Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 bfd_size_type min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 bfd_size_type max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index corresponding to a local
319 symbol. */
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
322 symbol without a GOT entry. */
323 bfd_size_type max_non_got_dynindx;
324 };
325
326 /* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
329 processing. */
330
331 struct plt_entry
332 {
333 /* Traditional SVR4 stub offset, or -1 if none. */
334 bfd_vma stub_offset;
335
336 /* Standard PLT entry offset, or -1 if none. */
337 bfd_vma mips_offset;
338
339 /* Compressed PLT entry offset, or -1 if none. */
340 bfd_vma comp_offset;
341
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
344
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
347
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
350 };
351
352 /* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
354
355 struct mips_elf_link_hash_entry
356 {
357 struct elf_link_hash_entry root;
358
359 /* External symbol information. */
360 EXTR esym;
361
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
364
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366 this symbol. */
367 unsigned int possibly_dynamic_relocs;
368
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
371 asection *fn_stub;
372
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
375 asection *call_stub;
376
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
419 };
420
421 /* MIPS ELF linker hash table. */
422
423 struct mips_elf_link_hash_table
424 {
425 struct elf_link_hash_table root;
426
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
429
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
432
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
435 bfd_boolean use_rld_obj_head;
436
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
439
440 /* This is set if we see any mips16 stub sections. */
441 bfd_boolean mips16_stubs_seen;
442
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
445
446 /* True if we can only use 32-bit microMIPS instructions. */
447 bfd_boolean insn32;
448
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
451
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
454
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
457
458 /* Shortcuts to some dynamic sections, or NULL if they are not
459 being used. */
460 asection *srelplt2;
461 asection *sstubs;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519 };
520
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
522
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
529 {
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536 };
537
538 /* MIPS ELF private object data. */
539
540 struct mips_elf_obj_tdata
541 {
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573 };
574
575 /* Get MIPS ELF private object data from BFD's tdata. */
576
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609 /* Structure used to pass information to mips_elf_output_extsym. */
610
611 struct extsym_info
612 {
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618 };
619
620 /* The names of the runtime procedure table symbols used on IRIX5. */
621
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628 };
629
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633 typedef struct
634 {
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
642
643 typedef struct
644 {
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652
653 typedef struct
654 {
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
671
672 typedef struct
673 {
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678
679 typedef struct
680 {
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684
685 /* These are the constants used to swap the bitfields in a crinfo. */
686
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
701
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
716
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721 \f
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 \f
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
757
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
774
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
779
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
894
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112 };
1113
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126 };
1127
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136 };
1137
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145 };
1146
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156 };
1157
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180 };
1181
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187 };
1188 \f
1189 /* microMIPS 32-bit opcode helper installer. */
1190
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196 }
1197
1198 /* microMIPS 32-bit opcode helper retriever. */
1199
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 \f
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1207
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213 /* Traverse a MIPS ELF linker hash table. */
1214
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244
1245 /* Create an entry in a MIPS ELF linker hash table. */
1246
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250 {
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289 }
1290
1291 /* Allocate MIPS ELF private object data. */
1292
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298 }
1299
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 \f
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323 {
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402 }
1403 \f
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1405
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421
1422 /* Create a runtime procedure table from the .mdebug section. */
1423
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428 {
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570 }
1571 \f
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580 {
1581 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1582 struct bfd_link_hash_entry *bh;
1583 struct elf_link_hash_entry *elfh;
1584 char *name;
1585 bfd_boolean res;
1586
1587 if (micromips_p)
1588 value |= 1;
1589
1590 /* Create a new symbol. */
1591 name = concat (prefix, h->root.root.root.string, NULL);
1592 bh = NULL;
1593 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1594 BSF_LOCAL, s, value, NULL,
1595 TRUE, FALSE, &bh);
1596 free (name);
1597 if (! res)
1598 return FALSE;
1599
1600 /* Make it a local function. */
1601 elfh = (struct elf_link_hash_entry *) bh;
1602 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1603 elfh->size = size;
1604 elfh->forced_local = 1;
1605 if (micromips_p)
1606 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1607 return TRUE;
1608 }
1609
1610 /* We're about to redefine H. Create a symbol to represent H's
1611 current value and size, to help make the disassembly easier
1612 to read. */
1613
1614 static bfd_boolean
1615 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1616 struct mips_elf_link_hash_entry *h,
1617 const char *prefix)
1618 {
1619 struct bfd_link_hash_entry *bh;
1620 struct elf_link_hash_entry *elfh;
1621 char *name;
1622 asection *s;
1623 bfd_vma value;
1624 bfd_boolean res;
1625
1626 /* Read the symbol's value. */
1627 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1628 || h->root.root.type == bfd_link_hash_defweak);
1629 s = h->root.root.u.def.section;
1630 value = h->root.root.u.def.value;
1631
1632 /* Create a new symbol. */
1633 name = concat (prefix, h->root.root.root.string, NULL);
1634 bh = NULL;
1635 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1636 BSF_LOCAL, s, value, NULL,
1637 TRUE, FALSE, &bh);
1638 free (name);
1639 if (! res)
1640 return FALSE;
1641
1642 /* Make it local and copy the other attributes from H. */
1643 elfh = (struct elf_link_hash_entry *) bh;
1644 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1645 elfh->other = h->root.other;
1646 elfh->size = h->root.size;
1647 elfh->forced_local = 1;
1648 return TRUE;
1649 }
1650
1651 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1652 function rather than to a hard-float stub. */
1653
1654 static bfd_boolean
1655 section_allows_mips16_refs_p (asection *section)
1656 {
1657 const char *name;
1658
1659 name = bfd_get_section_name (section->owner, section);
1660 return (FN_STUB_P (name)
1661 || CALL_STUB_P (name)
1662 || CALL_FP_STUB_P (name)
1663 || strcmp (name, ".pdr") == 0);
1664 }
1665
1666 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1667 stub section of some kind. Return the R_SYMNDX of the target
1668 function, or 0 if we can't decide which function that is. */
1669
1670 static unsigned long
1671 mips16_stub_symndx (const struct elf_backend_data *bed,
1672 asection *sec ATTRIBUTE_UNUSED,
1673 const Elf_Internal_Rela *relocs,
1674 const Elf_Internal_Rela *relend)
1675 {
1676 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1677 const Elf_Internal_Rela *rel;
1678
1679 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1680 one in a compound relocation. */
1681 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1682 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1683 return ELF_R_SYM (sec->owner, rel->r_info);
1684
1685 /* Otherwise trust the first relocation, whatever its kind. This is
1686 the traditional behavior. */
1687 if (relocs < relend)
1688 return ELF_R_SYM (sec->owner, relocs->r_info);
1689
1690 return 0;
1691 }
1692
1693 /* Check the mips16 stubs for a particular symbol, and see if we can
1694 discard them. */
1695
1696 static void
1697 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1698 struct mips_elf_link_hash_entry *h)
1699 {
1700 /* Dynamic symbols must use the standard call interface, in case other
1701 objects try to call them. */
1702 if (h->fn_stub != NULL
1703 && h->root.dynindx != -1)
1704 {
1705 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1706 h->need_fn_stub = TRUE;
1707 }
1708
1709 if (h->fn_stub != NULL
1710 && ! h->need_fn_stub)
1711 {
1712 /* We don't need the fn_stub; the only references to this symbol
1713 are 16 bit calls. Clobber the size to 0 to prevent it from
1714 being included in the link. */
1715 h->fn_stub->size = 0;
1716 h->fn_stub->flags &= ~SEC_RELOC;
1717 h->fn_stub->reloc_count = 0;
1718 h->fn_stub->flags |= SEC_EXCLUDE;
1719 h->fn_stub->output_section = bfd_abs_section_ptr;
1720 }
1721
1722 if (h->call_stub != NULL
1723 && ELF_ST_IS_MIPS16 (h->root.other))
1724 {
1725 /* We don't need the call_stub; this is a 16 bit function, so
1726 calls from other 16 bit functions are OK. Clobber the size
1727 to 0 to prevent it from being included in the link. */
1728 h->call_stub->size = 0;
1729 h->call_stub->flags &= ~SEC_RELOC;
1730 h->call_stub->reloc_count = 0;
1731 h->call_stub->flags |= SEC_EXCLUDE;
1732 h->call_stub->output_section = bfd_abs_section_ptr;
1733 }
1734
1735 if (h->call_fp_stub != NULL
1736 && ELF_ST_IS_MIPS16 (h->root.other))
1737 {
1738 /* We don't need the call_stub; this is a 16 bit function, so
1739 calls from other 16 bit functions are OK. Clobber the size
1740 to 0 to prevent it from being included in the link. */
1741 h->call_fp_stub->size = 0;
1742 h->call_fp_stub->flags &= ~SEC_RELOC;
1743 h->call_fp_stub->reloc_count = 0;
1744 h->call_fp_stub->flags |= SEC_EXCLUDE;
1745 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1746 }
1747 }
1748
1749 /* Hashtable callbacks for mips_elf_la25_stubs. */
1750
1751 static hashval_t
1752 mips_elf_la25_stub_hash (const void *entry_)
1753 {
1754 const struct mips_elf_la25_stub *entry;
1755
1756 entry = (struct mips_elf_la25_stub *) entry_;
1757 return entry->h->root.root.u.def.section->id
1758 + entry->h->root.root.u.def.value;
1759 }
1760
1761 static int
1762 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1763 {
1764 const struct mips_elf_la25_stub *entry1, *entry2;
1765
1766 entry1 = (struct mips_elf_la25_stub *) entry1_;
1767 entry2 = (struct mips_elf_la25_stub *) entry2_;
1768 return ((entry1->h->root.root.u.def.section
1769 == entry2->h->root.root.u.def.section)
1770 && (entry1->h->root.root.u.def.value
1771 == entry2->h->root.root.u.def.value));
1772 }
1773
1774 /* Called by the linker to set up the la25 stub-creation code. FN is
1775 the linker's implementation of add_stub_function. Return true on
1776 success. */
1777
1778 bfd_boolean
1779 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1780 asection *(*fn) (const char *, asection *,
1781 asection *))
1782 {
1783 struct mips_elf_link_hash_table *htab;
1784
1785 htab = mips_elf_hash_table (info);
1786 if (htab == NULL)
1787 return FALSE;
1788
1789 htab->add_stub_section = fn;
1790 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1791 mips_elf_la25_stub_eq, NULL);
1792 if (htab->la25_stubs == NULL)
1793 return FALSE;
1794
1795 return TRUE;
1796 }
1797
1798 /* Return true if H is a locally-defined PIC function, in the sense
1799 that it or its fn_stub might need $25 to be valid on entry.
1800 Note that MIPS16 functions set up $gp using PC-relative instructions,
1801 so they themselves never need $25 to be valid. Only non-MIPS16
1802 entry points are of interest here. */
1803
1804 static bfd_boolean
1805 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1806 {
1807 return ((h->root.root.type == bfd_link_hash_defined
1808 || h->root.root.type == bfd_link_hash_defweak)
1809 && h->root.def_regular
1810 && !bfd_is_abs_section (h->root.root.u.def.section)
1811 && !bfd_is_und_section (h->root.root.u.def.section)
1812 && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 || (h->fn_stub && h->need_fn_stub))
1814 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1816 }
1817
1818 /* Set *SEC to the input section that contains the target of STUB.
1819 Return the offset of the target from the start of that section. */
1820
1821 static bfd_vma
1822 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1823 asection **sec)
1824 {
1825 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1826 {
1827 BFD_ASSERT (stub->h->need_fn_stub);
1828 *sec = stub->h->fn_stub;
1829 return 0;
1830 }
1831 else
1832 {
1833 *sec = stub->h->root.root.u.def.section;
1834 return stub->h->root.root.u.def.value;
1835 }
1836 }
1837
1838 /* STUB describes an la25 stub that we have decided to implement
1839 by inserting an LUI/ADDIU pair before the target function.
1840 Create the section and redirect the function symbol to it. */
1841
1842 static bfd_boolean
1843 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 struct bfd_link_info *info)
1845 {
1846 struct mips_elf_link_hash_table *htab;
1847 char *name;
1848 asection *s, *input_section;
1849 unsigned int align;
1850
1851 htab = mips_elf_hash_table (info);
1852 if (htab == NULL)
1853 return FALSE;
1854
1855 /* Create a unique name for the new section. */
1856 name = bfd_malloc (11 + sizeof (".text.stub."));
1857 if (name == NULL)
1858 return FALSE;
1859 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1860
1861 /* Create the section. */
1862 mips_elf_get_la25_target (stub, &input_section);
1863 s = htab->add_stub_section (name, input_section,
1864 input_section->output_section);
1865 if (s == NULL)
1866 return FALSE;
1867
1868 /* Make sure that any padding goes before the stub. */
1869 align = input_section->alignment_power;
1870 if (!bfd_set_section_alignment (s->owner, s, align))
1871 return FALSE;
1872 if (align > 3)
1873 s->size = (1 << align) - 8;
1874
1875 /* Create a symbol for the stub. */
1876 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877 stub->stub_section = s;
1878 stub->offset = s->size;
1879
1880 /* Allocate room for it. */
1881 s->size += 8;
1882 return TRUE;
1883 }
1884
1885 /* STUB describes an la25 stub that we have decided to implement
1886 with a separate trampoline. Allocate room for it and redirect
1887 the function symbol to it. */
1888
1889 static bfd_boolean
1890 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 struct bfd_link_info *info)
1892 {
1893 struct mips_elf_link_hash_table *htab;
1894 asection *s;
1895
1896 htab = mips_elf_hash_table (info);
1897 if (htab == NULL)
1898 return FALSE;
1899
1900 /* Create a trampoline section, if we haven't already. */
1901 s = htab->strampoline;
1902 if (s == NULL)
1903 {
1904 asection *input_section = stub->h->root.root.u.def.section;
1905 s = htab->add_stub_section (".text", NULL,
1906 input_section->output_section);
1907 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1908 return FALSE;
1909 htab->strampoline = s;
1910 }
1911
1912 /* Create a symbol for the stub. */
1913 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914 stub->stub_section = s;
1915 stub->offset = s->size;
1916
1917 /* Allocate room for it. */
1918 s->size += 16;
1919 return TRUE;
1920 }
1921
1922 /* H describes a symbol that needs an la25 stub. Make sure that an
1923 appropriate stub exists and point H at it. */
1924
1925 static bfd_boolean
1926 mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 struct mips_elf_link_hash_entry *h)
1928 {
1929 struct mips_elf_link_hash_table *htab;
1930 struct mips_elf_la25_stub search, *stub;
1931 bfd_boolean use_trampoline_p;
1932 asection *s;
1933 bfd_vma value;
1934 void **slot;
1935
1936 /* Describe the stub we want. */
1937 search.stub_section = NULL;
1938 search.offset = 0;
1939 search.h = h;
1940
1941 /* See if we've already created an equivalent stub. */
1942 htab = mips_elf_hash_table (info);
1943 if (htab == NULL)
1944 return FALSE;
1945
1946 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947 if (slot == NULL)
1948 return FALSE;
1949
1950 stub = (struct mips_elf_la25_stub *) *slot;
1951 if (stub != NULL)
1952 {
1953 /* We can reuse the existing stub. */
1954 h->la25_stub = stub;
1955 return TRUE;
1956 }
1957
1958 /* Create a permanent copy of ENTRY and add it to the hash table. */
1959 stub = bfd_malloc (sizeof (search));
1960 if (stub == NULL)
1961 return FALSE;
1962 *stub = search;
1963 *slot = stub;
1964
1965 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966 of the section and if we would need no more than 2 nops. */
1967 value = mips_elf_get_la25_target (stub, &s);
1968 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1969 value &= ~1;
1970 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1971
1972 h->la25_stub = stub;
1973 return (use_trampoline_p
1974 ? mips_elf_add_la25_trampoline (stub, info)
1975 : mips_elf_add_la25_intro (stub, info));
1976 }
1977
1978 /* A mips_elf_link_hash_traverse callback that is called before sizing
1979 sections. DATA points to a mips_htab_traverse_info structure. */
1980
1981 static bfd_boolean
1982 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1983 {
1984 struct mips_htab_traverse_info *hti;
1985
1986 hti = (struct mips_htab_traverse_info *) data;
1987 if (!bfd_link_relocatable (hti->info))
1988 mips_elf_check_mips16_stubs (hti->info, h);
1989
1990 if (mips_elf_local_pic_function_p (h))
1991 {
1992 /* PR 12845: If H is in a section that has been garbage
1993 collected it will have its output section set to *ABS*. */
1994 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1995 return TRUE;
1996
1997 /* H is a function that might need $25 to be valid on entry.
1998 If we're creating a non-PIC relocatable object, mark H as
1999 being PIC. If we're creating a non-relocatable object with
2000 non-PIC branches and jumps to H, make sure that H has an la25
2001 stub. */
2002 if (bfd_link_relocatable (hti->info))
2003 {
2004 if (!PIC_OBJECT_P (hti->output_bfd))
2005 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2006 }
2007 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2008 {
2009 hti->error = TRUE;
2010 return FALSE;
2011 }
2012 }
2013 return TRUE;
2014 }
2015 \f
2016 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2017 Most mips16 instructions are 16 bits, but these instructions
2018 are 32 bits.
2019
2020 The format of these instructions is:
2021
2022 +--------------+--------------------------------+
2023 | JALX | X| Imm 20:16 | Imm 25:21 |
2024 +--------------+--------------------------------+
2025 | Immediate 15:0 |
2026 +-----------------------------------------------+
2027
2028 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2029 Note that the immediate value in the first word is swapped.
2030
2031 When producing a relocatable object file, R_MIPS16_26 is
2032 handled mostly like R_MIPS_26. In particular, the addend is
2033 stored as a straight 26-bit value in a 32-bit instruction.
2034 (gas makes life simpler for itself by never adjusting a
2035 R_MIPS16_26 reloc to be against a section, so the addend is
2036 always zero). However, the 32 bit instruction is stored as 2
2037 16-bit values, rather than a single 32-bit value. In a
2038 big-endian file, the result is the same; in a little-endian
2039 file, the two 16-bit halves of the 32 bit value are swapped.
2040 This is so that a disassembler can recognize the jal
2041 instruction.
2042
2043 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2044 instruction stored as two 16-bit values. The addend A is the
2045 contents of the targ26 field. The calculation is the same as
2046 R_MIPS_26. When storing the calculated value, reorder the
2047 immediate value as shown above, and don't forget to store the
2048 value as two 16-bit values.
2049
2050 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2051 defined as
2052
2053 big-endian:
2054 +--------+----------------------+
2055 | | |
2056 | | targ26-16 |
2057 |31 26|25 0|
2058 +--------+----------------------+
2059
2060 little-endian:
2061 +----------+------+-------------+
2062 | | | |
2063 | sub1 | | sub2 |
2064 |0 9|10 15|16 31|
2065 +----------+--------------------+
2066 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2067 ((sub1 << 16) | sub2)).
2068
2069 When producing a relocatable object file, the calculation is
2070 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071 When producing a fully linked file, the calculation is
2072 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2073 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2074
2075 The table below lists the other MIPS16 instruction relocations.
2076 Each one is calculated in the same way as the non-MIPS16 relocation
2077 given on the right, but using the extended MIPS16 layout of 16-bit
2078 immediate fields:
2079
2080 R_MIPS16_GPREL R_MIPS_GPREL16
2081 R_MIPS16_GOT16 R_MIPS_GOT16
2082 R_MIPS16_CALL16 R_MIPS_CALL16
2083 R_MIPS16_HI16 R_MIPS_HI16
2084 R_MIPS16_LO16 R_MIPS_LO16
2085
2086 A typical instruction will have a format like this:
2087
2088 +--------------+--------------------------------+
2089 | EXTEND | Imm 10:5 | Imm 15:11 |
2090 +--------------+--------------------------------+
2091 | Major | rx | ry | Imm 4:0 |
2092 +--------------+--------------------------------+
2093
2094 EXTEND is the five bit value 11110. Major is the instruction
2095 opcode.
2096
2097 All we need to do here is shuffle the bits appropriately.
2098 As above, the two 16-bit halves must be swapped on a
2099 little-endian system.
2100
2101 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2102 relocatable field is shifted by 1 rather than 2 and the same bit
2103 shuffling is done as with the relocations above. */
2104
2105 static inline bfd_boolean
2106 mips16_reloc_p (int r_type)
2107 {
2108 switch (r_type)
2109 {
2110 case R_MIPS16_26:
2111 case R_MIPS16_GPREL:
2112 case R_MIPS16_GOT16:
2113 case R_MIPS16_CALL16:
2114 case R_MIPS16_HI16:
2115 case R_MIPS16_LO16:
2116 case R_MIPS16_TLS_GD:
2117 case R_MIPS16_TLS_LDM:
2118 case R_MIPS16_TLS_DTPREL_HI16:
2119 case R_MIPS16_TLS_DTPREL_LO16:
2120 case R_MIPS16_TLS_GOTTPREL:
2121 case R_MIPS16_TLS_TPREL_HI16:
2122 case R_MIPS16_TLS_TPREL_LO16:
2123 case R_MIPS16_PC16_S1:
2124 return TRUE;
2125
2126 default:
2127 return FALSE;
2128 }
2129 }
2130
2131 /* Check if a microMIPS reloc. */
2132
2133 static inline bfd_boolean
2134 micromips_reloc_p (unsigned int r_type)
2135 {
2136 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2137 }
2138
2139 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2140 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2141 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2142
2143 static inline bfd_boolean
2144 micromips_reloc_shuffle_p (unsigned int r_type)
2145 {
2146 return (micromips_reloc_p (r_type)
2147 && r_type != R_MICROMIPS_PC7_S1
2148 && r_type != R_MICROMIPS_PC10_S1);
2149 }
2150
2151 static inline bfd_boolean
2152 got16_reloc_p (int r_type)
2153 {
2154 return (r_type == R_MIPS_GOT16
2155 || r_type == R_MIPS16_GOT16
2156 || r_type == R_MICROMIPS_GOT16);
2157 }
2158
2159 static inline bfd_boolean
2160 call16_reloc_p (int r_type)
2161 {
2162 return (r_type == R_MIPS_CALL16
2163 || r_type == R_MIPS16_CALL16
2164 || r_type == R_MICROMIPS_CALL16);
2165 }
2166
2167 static inline bfd_boolean
2168 got_disp_reloc_p (unsigned int r_type)
2169 {
2170 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2171 }
2172
2173 static inline bfd_boolean
2174 got_page_reloc_p (unsigned int r_type)
2175 {
2176 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2177 }
2178
2179 static inline bfd_boolean
2180 got_lo16_reloc_p (unsigned int r_type)
2181 {
2182 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2183 }
2184
2185 static inline bfd_boolean
2186 call_hi16_reloc_p (unsigned int r_type)
2187 {
2188 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2189 }
2190
2191 static inline bfd_boolean
2192 call_lo16_reloc_p (unsigned int r_type)
2193 {
2194 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2195 }
2196
2197 static inline bfd_boolean
2198 hi16_reloc_p (int r_type)
2199 {
2200 return (r_type == R_MIPS_HI16
2201 || r_type == R_MIPS16_HI16
2202 || r_type == R_MICROMIPS_HI16
2203 || r_type == R_MIPS_PCHI16);
2204 }
2205
2206 static inline bfd_boolean
2207 lo16_reloc_p (int r_type)
2208 {
2209 return (r_type == R_MIPS_LO16
2210 || r_type == R_MIPS16_LO16
2211 || r_type == R_MICROMIPS_LO16
2212 || r_type == R_MIPS_PCLO16);
2213 }
2214
2215 static inline bfd_boolean
2216 mips16_call_reloc_p (int r_type)
2217 {
2218 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2219 }
2220
2221 static inline bfd_boolean
2222 jal_reloc_p (int r_type)
2223 {
2224 return (r_type == R_MIPS_26
2225 || r_type == R_MIPS16_26
2226 || r_type == R_MICROMIPS_26_S1);
2227 }
2228
2229 static inline bfd_boolean
2230 b_reloc_p (int r_type)
2231 {
2232 return (r_type == R_MIPS_PC26_S2
2233 || r_type == R_MIPS_PC21_S2
2234 || r_type == R_MIPS_PC16
2235 || r_type == R_MIPS_GNU_REL16_S2
2236 || r_type == R_MIPS16_PC16_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
2240 }
2241
2242 static inline bfd_boolean
2243 aligned_pcrel_reloc_p (int r_type)
2244 {
2245 return (r_type == R_MIPS_PC18_S3
2246 || r_type == R_MIPS_PC19_S2);
2247 }
2248
2249 static inline bfd_boolean
2250 branch_reloc_p (int r_type)
2251 {
2252 return (r_type == R_MIPS_26
2253 || r_type == R_MIPS_PC26_S2
2254 || r_type == R_MIPS_PC21_S2
2255 || r_type == R_MIPS_PC16
2256 || r_type == R_MIPS_GNU_REL16_S2);
2257 }
2258
2259 static inline bfd_boolean
2260 mips16_branch_reloc_p (int r_type)
2261 {
2262 return (r_type == R_MIPS16_26
2263 || r_type == R_MIPS16_PC16_S1);
2264 }
2265
2266 static inline bfd_boolean
2267 micromips_branch_reloc_p (int r_type)
2268 {
2269 return (r_type == R_MICROMIPS_26_S1
2270 || r_type == R_MICROMIPS_PC16_S1
2271 || r_type == R_MICROMIPS_PC10_S1
2272 || r_type == R_MICROMIPS_PC7_S1);
2273 }
2274
2275 static inline bfd_boolean
2276 tls_gd_reloc_p (unsigned int r_type)
2277 {
2278 return (r_type == R_MIPS_TLS_GD
2279 || r_type == R_MIPS16_TLS_GD
2280 || r_type == R_MICROMIPS_TLS_GD);
2281 }
2282
2283 static inline bfd_boolean
2284 tls_ldm_reloc_p (unsigned int r_type)
2285 {
2286 return (r_type == R_MIPS_TLS_LDM
2287 || r_type == R_MIPS16_TLS_LDM
2288 || r_type == R_MICROMIPS_TLS_LDM);
2289 }
2290
2291 static inline bfd_boolean
2292 tls_gottprel_reloc_p (unsigned int r_type)
2293 {
2294 return (r_type == R_MIPS_TLS_GOTTPREL
2295 || r_type == R_MIPS16_TLS_GOTTPREL
2296 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2297 }
2298
2299 void
2300 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2301 bfd_boolean jal_shuffle, bfd_byte *data)
2302 {
2303 bfd_vma first, second, val;
2304
2305 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2306 return;
2307
2308 /* Pick up the first and second halfwords of the instruction. */
2309 first = bfd_get_16 (abfd, data);
2310 second = bfd_get_16 (abfd, data + 2);
2311 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2312 val = first << 16 | second;
2313 else if (r_type != R_MIPS16_26)
2314 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2315 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2316 else
2317 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2318 | ((first & 0x1f) << 21) | second);
2319 bfd_put_32 (abfd, val, data);
2320 }
2321
2322 void
2323 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2324 bfd_boolean jal_shuffle, bfd_byte *data)
2325 {
2326 bfd_vma first, second, val;
2327
2328 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2329 return;
2330
2331 val = bfd_get_32 (abfd, data);
2332 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2333 {
2334 second = val & 0xffff;
2335 first = val >> 16;
2336 }
2337 else if (r_type != R_MIPS16_26)
2338 {
2339 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2340 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2341 }
2342 else
2343 {
2344 second = val & 0xffff;
2345 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2346 | ((val >> 21) & 0x1f);
2347 }
2348 bfd_put_16 (abfd, second, data + 2);
2349 bfd_put_16 (abfd, first, data);
2350 }
2351
2352 bfd_reloc_status_type
2353 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2354 arelent *reloc_entry, asection *input_section,
2355 bfd_boolean relocatable, void *data, bfd_vma gp)
2356 {
2357 bfd_vma relocation;
2358 bfd_signed_vma val;
2359 bfd_reloc_status_type status;
2360
2361 if (bfd_is_com_section (symbol->section))
2362 relocation = 0;
2363 else
2364 relocation = symbol->value;
2365
2366 relocation += symbol->section->output_section->vma;
2367 relocation += symbol->section->output_offset;
2368
2369 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2370 return bfd_reloc_outofrange;
2371
2372 /* Set val to the offset into the section or symbol. */
2373 val = reloc_entry->addend;
2374
2375 _bfd_mips_elf_sign_extend (val, 16);
2376
2377 /* Adjust val for the final section location and GP value. If we
2378 are producing relocatable output, we don't want to do this for
2379 an external symbol. */
2380 if (! relocatable
2381 || (symbol->flags & BSF_SECTION_SYM) != 0)
2382 val += relocation - gp;
2383
2384 if (reloc_entry->howto->partial_inplace)
2385 {
2386 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2387 (bfd_byte *) data
2388 + reloc_entry->address);
2389 if (status != bfd_reloc_ok)
2390 return status;
2391 }
2392 else
2393 reloc_entry->addend = val;
2394
2395 if (relocatable)
2396 reloc_entry->address += input_section->output_offset;
2397
2398 return bfd_reloc_ok;
2399 }
2400
2401 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2402 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2403 that contains the relocation field and DATA points to the start of
2404 INPUT_SECTION. */
2405
2406 struct mips_hi16
2407 {
2408 struct mips_hi16 *next;
2409 bfd_byte *data;
2410 asection *input_section;
2411 arelent rel;
2412 };
2413
2414 /* FIXME: This should not be a static variable. */
2415
2416 static struct mips_hi16 *mips_hi16_list;
2417
2418 /* A howto special_function for REL *HI16 relocations. We can only
2419 calculate the correct value once we've seen the partnering
2420 *LO16 relocation, so just save the information for later.
2421
2422 The ABI requires that the *LO16 immediately follow the *HI16.
2423 However, as a GNU extension, we permit an arbitrary number of
2424 *HI16s to be associated with a single *LO16. This significantly
2425 simplies the relocation handling in gcc. */
2426
2427 bfd_reloc_status_type
2428 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2429 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2430 asection *input_section, bfd *output_bfd,
2431 char **error_message ATTRIBUTE_UNUSED)
2432 {
2433 struct mips_hi16 *n;
2434
2435 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2436 return bfd_reloc_outofrange;
2437
2438 n = bfd_malloc (sizeof *n);
2439 if (n == NULL)
2440 return bfd_reloc_outofrange;
2441
2442 n->next = mips_hi16_list;
2443 n->data = data;
2444 n->input_section = input_section;
2445 n->rel = *reloc_entry;
2446 mips_hi16_list = n;
2447
2448 if (output_bfd != NULL)
2449 reloc_entry->address += input_section->output_offset;
2450
2451 return bfd_reloc_ok;
2452 }
2453
2454 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2455 like any other 16-bit relocation when applied to global symbols, but is
2456 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2457
2458 bfd_reloc_status_type
2459 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2460 void *data, asection *input_section,
2461 bfd *output_bfd, char **error_message)
2462 {
2463 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2464 || bfd_is_und_section (bfd_get_section (symbol))
2465 || bfd_is_com_section (bfd_get_section (symbol)))
2466 /* The relocation is against a global symbol. */
2467 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd,
2469 error_message);
2470
2471 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2472 input_section, output_bfd, error_message);
2473 }
2474
2475 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2476 is a straightforward 16 bit inplace relocation, but we must deal with
2477 any partnering high-part relocations as well. */
2478
2479 bfd_reloc_status_type
2480 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2483 {
2484 bfd_vma vallo;
2485 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2486
2487 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2488 return bfd_reloc_outofrange;
2489
2490 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2491 location);
2492 vallo = bfd_get_32 (abfd, location);
2493 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2494 location);
2495
2496 while (mips_hi16_list != NULL)
2497 {
2498 bfd_reloc_status_type ret;
2499 struct mips_hi16 *hi;
2500
2501 hi = mips_hi16_list;
2502
2503 /* R_MIPS*_GOT16 relocations are something of a special case. We
2504 want to install the addend in the same way as for a R_MIPS*_HI16
2505 relocation (with a rightshift of 16). However, since GOT16
2506 relocations can also be used with global symbols, their howto
2507 has a rightshift of 0. */
2508 if (hi->rel.howto->type == R_MIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2510 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2511 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2512 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2513 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2514
2515 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2516 carry or borrow will induce a change of +1 or -1 in the high part. */
2517 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2518
2519 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2520 hi->input_section, output_bfd,
2521 error_message);
2522 if (ret != bfd_reloc_ok)
2523 return ret;
2524
2525 mips_hi16_list = hi->next;
2526 free (hi);
2527 }
2528
2529 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2530 input_section, output_bfd,
2531 error_message);
2532 }
2533
2534 /* A generic howto special_function. This calculates and installs the
2535 relocation itself, thus avoiding the oft-discussed problems in
2536 bfd_perform_relocation and bfd_install_relocation. */
2537
2538 bfd_reloc_status_type
2539 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2540 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2541 asection *input_section, bfd *output_bfd,
2542 char **error_message ATTRIBUTE_UNUSED)
2543 {
2544 bfd_signed_vma val;
2545 bfd_reloc_status_type status;
2546 bfd_boolean relocatable;
2547
2548 relocatable = (output_bfd != NULL);
2549
2550 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2551 return bfd_reloc_outofrange;
2552
2553 /* Build up the field adjustment in VAL. */
2554 val = 0;
2555 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2556 {
2557 /* Either we're calculating the final field value or we have a
2558 relocation against a section symbol. Add in the section's
2559 offset or address. */
2560 val += symbol->section->output_section->vma;
2561 val += symbol->section->output_offset;
2562 }
2563
2564 if (!relocatable)
2565 {
2566 /* We're calculating the final field value. Add in the symbol's value
2567 and, if pc-relative, subtract the address of the field itself. */
2568 val += symbol->value;
2569 if (reloc_entry->howto->pc_relative)
2570 {
2571 val -= input_section->output_section->vma;
2572 val -= input_section->output_offset;
2573 val -= reloc_entry->address;
2574 }
2575 }
2576
2577 /* VAL is now the final adjustment. If we're keeping this relocation
2578 in the output file, and if the relocation uses a separate addend,
2579 we just need to add VAL to that addend. Otherwise we need to add
2580 VAL to the relocation field itself. */
2581 if (relocatable && !reloc_entry->howto->partial_inplace)
2582 reloc_entry->addend += val;
2583 else
2584 {
2585 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2586
2587 /* Add in the separate addend, if any. */
2588 val += reloc_entry->addend;
2589
2590 /* Add VAL to the relocation field. */
2591 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
2593 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2594 location);
2595 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2596 location);
2597
2598 if (status != bfd_reloc_ok)
2599 return status;
2600 }
2601
2602 if (relocatable)
2603 reloc_entry->address += input_section->output_offset;
2604
2605 return bfd_reloc_ok;
2606 }
2607 \f
2608 /* Swap an entry in a .gptab section. Note that these routines rely
2609 on the equivalence of the two elements of the union. */
2610
2611 static void
2612 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2613 Elf32_gptab *in)
2614 {
2615 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2616 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2617 }
2618
2619 static void
2620 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2621 Elf32_External_gptab *ex)
2622 {
2623 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2624 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2625 }
2626
2627 static void
2628 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2629 Elf32_External_compact_rel *ex)
2630 {
2631 H_PUT_32 (abfd, in->id1, ex->id1);
2632 H_PUT_32 (abfd, in->num, ex->num);
2633 H_PUT_32 (abfd, in->id2, ex->id2);
2634 H_PUT_32 (abfd, in->offset, ex->offset);
2635 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2636 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2637 }
2638
2639 static void
2640 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2641 Elf32_External_crinfo *ex)
2642 {
2643 unsigned long l;
2644
2645 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2646 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2647 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2648 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2649 H_PUT_32 (abfd, l, ex->info);
2650 H_PUT_32 (abfd, in->konst, ex->konst);
2651 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2652 }
2653 \f
2654 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2655 routines swap this structure in and out. They are used outside of
2656 BFD, so they are globally visible. */
2657
2658 void
2659 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2660 Elf32_RegInfo *in)
2661 {
2662 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2663 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2664 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2665 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2666 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2667 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2668 }
2669
2670 void
2671 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2672 Elf32_External_RegInfo *ex)
2673 {
2674 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2680 }
2681
2682 /* In the 64 bit ABI, the .MIPS.options section holds register
2683 information in an Elf64_Reginfo structure. These routines swap
2684 them in and out. They are globally visible because they are used
2685 outside of BFD. These routines are here so that gas can call them
2686 without worrying about whether the 64 bit ABI has been included. */
2687
2688 void
2689 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2690 Elf64_Internal_RegInfo *in)
2691 {
2692 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2693 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2694 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2695 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2696 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2697 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2698 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2699 }
2700
2701 void
2702 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2703 Elf64_External_RegInfo *ex)
2704 {
2705 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2706 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2707 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2708 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2709 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2710 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2711 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2712 }
2713
2714 /* Swap in an options header. */
2715
2716 void
2717 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2718 Elf_Internal_Options *in)
2719 {
2720 in->kind = H_GET_8 (abfd, ex->kind);
2721 in->size = H_GET_8 (abfd, ex->size);
2722 in->section = H_GET_16 (abfd, ex->section);
2723 in->info = H_GET_32 (abfd, ex->info);
2724 }
2725
2726 /* Swap out an options header. */
2727
2728 void
2729 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2730 Elf_External_Options *ex)
2731 {
2732 H_PUT_8 (abfd, in->kind, ex->kind);
2733 H_PUT_8 (abfd, in->size, ex->size);
2734 H_PUT_16 (abfd, in->section, ex->section);
2735 H_PUT_32 (abfd, in->info, ex->info);
2736 }
2737
2738 /* Swap in an abiflags structure. */
2739
2740 void
2741 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2742 const Elf_External_ABIFlags_v0 *ex,
2743 Elf_Internal_ABIFlags_v0 *in)
2744 {
2745 in->version = H_GET_16 (abfd, ex->version);
2746 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2747 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2748 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2749 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2750 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2751 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2752 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2753 in->ases = H_GET_32 (abfd, ex->ases);
2754 in->flags1 = H_GET_32 (abfd, ex->flags1);
2755 in->flags2 = H_GET_32 (abfd, ex->flags2);
2756 }
2757
2758 /* Swap out an abiflags structure. */
2759
2760 void
2761 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2762 const Elf_Internal_ABIFlags_v0 *in,
2763 Elf_External_ABIFlags_v0 *ex)
2764 {
2765 H_PUT_16 (abfd, in->version, ex->version);
2766 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2767 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2768 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2769 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2770 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2771 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2772 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2773 H_PUT_32 (abfd, in->ases, ex->ases);
2774 H_PUT_32 (abfd, in->flags1, ex->flags1);
2775 H_PUT_32 (abfd, in->flags2, ex->flags2);
2776 }
2777 \f
2778 /* This function is called via qsort() to sort the dynamic relocation
2779 entries by increasing r_symndx value. */
2780
2781 static int
2782 sort_dynamic_relocs (const void *arg1, const void *arg2)
2783 {
2784 Elf_Internal_Rela int_reloc1;
2785 Elf_Internal_Rela int_reloc2;
2786 int diff;
2787
2788 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2789 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2790
2791 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2792 if (diff != 0)
2793 return diff;
2794
2795 if (int_reloc1.r_offset < int_reloc2.r_offset)
2796 return -1;
2797 if (int_reloc1.r_offset > int_reloc2.r_offset)
2798 return 1;
2799 return 0;
2800 }
2801
2802 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2803
2804 static int
2805 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2806 const void *arg2 ATTRIBUTE_UNUSED)
2807 {
2808 #ifdef BFD64
2809 Elf_Internal_Rela int_reloc1[3];
2810 Elf_Internal_Rela int_reloc2[3];
2811
2812 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2813 (reldyn_sorting_bfd, arg1, int_reloc1);
2814 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2815 (reldyn_sorting_bfd, arg2, int_reloc2);
2816
2817 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2818 return -1;
2819 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2820 return 1;
2821
2822 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2823 return -1;
2824 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2825 return 1;
2826 return 0;
2827 #else
2828 abort ();
2829 #endif
2830 }
2831
2832
2833 /* This routine is used to write out ECOFF debugging external symbol
2834 information. It is called via mips_elf_link_hash_traverse. The
2835 ECOFF external symbol information must match the ELF external
2836 symbol information. Unfortunately, at this point we don't know
2837 whether a symbol is required by reloc information, so the two
2838 tables may wind up being different. We must sort out the external
2839 symbol information before we can set the final size of the .mdebug
2840 section, and we must set the size of the .mdebug section before we
2841 can relocate any sections, and we can't know which symbols are
2842 required by relocation until we relocate the sections.
2843 Fortunately, it is relatively unlikely that any symbol will be
2844 stripped but required by a reloc. In particular, it can not happen
2845 when generating a final executable. */
2846
2847 static bfd_boolean
2848 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2849 {
2850 struct extsym_info *einfo = data;
2851 bfd_boolean strip;
2852 asection *sec, *output_section;
2853
2854 if (h->root.indx == -2)
2855 strip = FALSE;
2856 else if ((h->root.def_dynamic
2857 || h->root.ref_dynamic
2858 || h->root.type == bfd_link_hash_new)
2859 && !h->root.def_regular
2860 && !h->root.ref_regular)
2861 strip = TRUE;
2862 else if (einfo->info->strip == strip_all
2863 || (einfo->info->strip == strip_some
2864 && bfd_hash_lookup (einfo->info->keep_hash,
2865 h->root.root.root.string,
2866 FALSE, FALSE) == NULL))
2867 strip = TRUE;
2868 else
2869 strip = FALSE;
2870
2871 if (strip)
2872 return TRUE;
2873
2874 if (h->esym.ifd == -2)
2875 {
2876 h->esym.jmptbl = 0;
2877 h->esym.cobol_main = 0;
2878 h->esym.weakext = 0;
2879 h->esym.reserved = 0;
2880 h->esym.ifd = ifdNil;
2881 h->esym.asym.value = 0;
2882 h->esym.asym.st = stGlobal;
2883
2884 if (h->root.root.type == bfd_link_hash_undefined
2885 || h->root.root.type == bfd_link_hash_undefweak)
2886 {
2887 const char *name;
2888
2889 /* Use undefined class. Also, set class and type for some
2890 special symbols. */
2891 name = h->root.root.root.string;
2892 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2893 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2894 {
2895 h->esym.asym.sc = scData;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value = 0;
2898 }
2899 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2900 {
2901 h->esym.asym.sc = scAbs;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value =
2904 mips_elf_hash_table (einfo->info)->procedure_count;
2905 }
2906 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2907 {
2908 h->esym.asym.sc = scAbs;
2909 h->esym.asym.st = stLabel;
2910 h->esym.asym.value = elf_gp (einfo->abfd);
2911 }
2912 else
2913 h->esym.asym.sc = scUndefined;
2914 }
2915 else if (h->root.root.type != bfd_link_hash_defined
2916 && h->root.root.type != bfd_link_hash_defweak)
2917 h->esym.asym.sc = scAbs;
2918 else
2919 {
2920 const char *name;
2921
2922 sec = h->root.root.u.def.section;
2923 output_section = sec->output_section;
2924
2925 /* When making a shared library and symbol h is the one from
2926 the another shared library, OUTPUT_SECTION may be null. */
2927 if (output_section == NULL)
2928 h->esym.asym.sc = scUndefined;
2929 else
2930 {
2931 name = bfd_section_name (output_section->owner, output_section);
2932
2933 if (strcmp (name, ".text") == 0)
2934 h->esym.asym.sc = scText;
2935 else if (strcmp (name, ".data") == 0)
2936 h->esym.asym.sc = scData;
2937 else if (strcmp (name, ".sdata") == 0)
2938 h->esym.asym.sc = scSData;
2939 else if (strcmp (name, ".rodata") == 0
2940 || strcmp (name, ".rdata") == 0)
2941 h->esym.asym.sc = scRData;
2942 else if (strcmp (name, ".bss") == 0)
2943 h->esym.asym.sc = scBss;
2944 else if (strcmp (name, ".sbss") == 0)
2945 h->esym.asym.sc = scSBss;
2946 else if (strcmp (name, ".init") == 0)
2947 h->esym.asym.sc = scInit;
2948 else if (strcmp (name, ".fini") == 0)
2949 h->esym.asym.sc = scFini;
2950 else
2951 h->esym.asym.sc = scAbs;
2952 }
2953 }
2954
2955 h->esym.asym.reserved = 0;
2956 h->esym.asym.index = indexNil;
2957 }
2958
2959 if (h->root.root.type == bfd_link_hash_common)
2960 h->esym.asym.value = h->root.root.u.c.size;
2961 else if (h->root.root.type == bfd_link_hash_defined
2962 || h->root.root.type == bfd_link_hash_defweak)
2963 {
2964 if (h->esym.asym.sc == scCommon)
2965 h->esym.asym.sc = scBss;
2966 else if (h->esym.asym.sc == scSCommon)
2967 h->esym.asym.sc = scSBss;
2968
2969 sec = h->root.root.u.def.section;
2970 output_section = sec->output_section;
2971 if (output_section != NULL)
2972 h->esym.asym.value = (h->root.root.u.def.value
2973 + sec->output_offset
2974 + output_section->vma);
2975 else
2976 h->esym.asym.value = 0;
2977 }
2978 else
2979 {
2980 struct mips_elf_link_hash_entry *hd = h;
2981
2982 while (hd->root.root.type == bfd_link_hash_indirect)
2983 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2984
2985 if (hd->needs_lazy_stub)
2986 {
2987 BFD_ASSERT (hd->root.plt.plist != NULL);
2988 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2989 /* Set type and value for a symbol with a function stub. */
2990 h->esym.asym.st = stProc;
2991 sec = hd->root.root.u.def.section;
2992 if (sec == NULL)
2993 h->esym.asym.value = 0;
2994 else
2995 {
2996 output_section = sec->output_section;
2997 if (output_section != NULL)
2998 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2999 + sec->output_offset
3000 + output_section->vma);
3001 else
3002 h->esym.asym.value = 0;
3003 }
3004 }
3005 }
3006
3007 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3008 h->root.root.root.string,
3009 &h->esym))
3010 {
3011 einfo->failed = TRUE;
3012 return FALSE;
3013 }
3014
3015 return TRUE;
3016 }
3017
3018 /* A comparison routine used to sort .gptab entries. */
3019
3020 static int
3021 gptab_compare (const void *p1, const void *p2)
3022 {
3023 const Elf32_gptab *a1 = p1;
3024 const Elf32_gptab *a2 = p2;
3025
3026 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3027 }
3028 \f
3029 /* Functions to manage the got entry hash table. */
3030
3031 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3032 hash number. */
3033
3034 static INLINE hashval_t
3035 mips_elf_hash_bfd_vma (bfd_vma addr)
3036 {
3037 #ifdef BFD64
3038 return addr + (addr >> 32);
3039 #else
3040 return addr;
3041 #endif
3042 }
3043
3044 static hashval_t
3045 mips_elf_got_entry_hash (const void *entry_)
3046 {
3047 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3048
3049 return (entry->symndx
3050 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3051 + (entry->tls_type == GOT_TLS_LDM ? 0
3052 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3053 : entry->symndx >= 0 ? (entry->abfd->id
3054 + mips_elf_hash_bfd_vma (entry->d.addend))
3055 : entry->d.h->root.root.root.hash));
3056 }
3057
3058 static int
3059 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3060 {
3061 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3062 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3063
3064 return (e1->symndx == e2->symndx
3065 && e1->tls_type == e2->tls_type
3066 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3067 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3068 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3069 && e1->d.addend == e2->d.addend)
3070 : e2->abfd && e1->d.h == e2->d.h));
3071 }
3072
3073 static hashval_t
3074 mips_got_page_ref_hash (const void *ref_)
3075 {
3076 const struct mips_got_page_ref *ref;
3077
3078 ref = (const struct mips_got_page_ref *) ref_;
3079 return ((ref->symndx >= 0
3080 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3081 : ref->u.h->root.root.root.hash)
3082 + mips_elf_hash_bfd_vma (ref->addend));
3083 }
3084
3085 static int
3086 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3087 {
3088 const struct mips_got_page_ref *ref1, *ref2;
3089
3090 ref1 = (const struct mips_got_page_ref *) ref1_;
3091 ref2 = (const struct mips_got_page_ref *) ref2_;
3092 return (ref1->symndx == ref2->symndx
3093 && (ref1->symndx < 0
3094 ? ref1->u.h == ref2->u.h
3095 : ref1->u.abfd == ref2->u.abfd)
3096 && ref1->addend == ref2->addend);
3097 }
3098
3099 static hashval_t
3100 mips_got_page_entry_hash (const void *entry_)
3101 {
3102 const struct mips_got_page_entry *entry;
3103
3104 entry = (const struct mips_got_page_entry *) entry_;
3105 return entry->sec->id;
3106 }
3107
3108 static int
3109 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3110 {
3111 const struct mips_got_page_entry *entry1, *entry2;
3112
3113 entry1 = (const struct mips_got_page_entry *) entry1_;
3114 entry2 = (const struct mips_got_page_entry *) entry2_;
3115 return entry1->sec == entry2->sec;
3116 }
3117 \f
3118 /* Create and return a new mips_got_info structure. */
3119
3120 static struct mips_got_info *
3121 mips_elf_create_got_info (bfd *abfd)
3122 {
3123 struct mips_got_info *g;
3124
3125 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3126 if (g == NULL)
3127 return NULL;
3128
3129 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3130 mips_elf_got_entry_eq, NULL);
3131 if (g->got_entries == NULL)
3132 return NULL;
3133
3134 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3135 mips_got_page_ref_eq, NULL);
3136 if (g->got_page_refs == NULL)
3137 return NULL;
3138
3139 return g;
3140 }
3141
3142 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3143 CREATE_P and if ABFD doesn't already have a GOT. */
3144
3145 static struct mips_got_info *
3146 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3147 {
3148 struct mips_elf_obj_tdata *tdata;
3149
3150 if (!is_mips_elf (abfd))
3151 return NULL;
3152
3153 tdata = mips_elf_tdata (abfd);
3154 if (!tdata->got && create_p)
3155 tdata->got = mips_elf_create_got_info (abfd);
3156 return tdata->got;
3157 }
3158
3159 /* Record that ABFD should use output GOT G. */
3160
3161 static void
3162 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3163 {
3164 struct mips_elf_obj_tdata *tdata;
3165
3166 BFD_ASSERT (is_mips_elf (abfd));
3167 tdata = mips_elf_tdata (abfd);
3168 if (tdata->got)
3169 {
3170 /* The GOT structure itself and the hash table entries are
3171 allocated to a bfd, but the hash tables aren't. */
3172 htab_delete (tdata->got->got_entries);
3173 htab_delete (tdata->got->got_page_refs);
3174 if (tdata->got->got_page_entries)
3175 htab_delete (tdata->got->got_page_entries);
3176 }
3177 tdata->got = g;
3178 }
3179
3180 /* Return the dynamic relocation section. If it doesn't exist, try to
3181 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3182 if creation fails. */
3183
3184 static asection *
3185 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3186 {
3187 const char *dname;
3188 asection *sreloc;
3189 bfd *dynobj;
3190
3191 dname = MIPS_ELF_REL_DYN_NAME (info);
3192 dynobj = elf_hash_table (info)->dynobj;
3193 sreloc = bfd_get_linker_section (dynobj, dname);
3194 if (sreloc == NULL && create_p)
3195 {
3196 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3197 (SEC_ALLOC
3198 | SEC_LOAD
3199 | SEC_HAS_CONTENTS
3200 | SEC_IN_MEMORY
3201 | SEC_LINKER_CREATED
3202 | SEC_READONLY));
3203 if (sreloc == NULL
3204 || ! bfd_set_section_alignment (dynobj, sreloc,
3205 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3206 return NULL;
3207 }
3208 return sreloc;
3209 }
3210
3211 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3212
3213 static int
3214 mips_elf_reloc_tls_type (unsigned int r_type)
3215 {
3216 if (tls_gd_reloc_p (r_type))
3217 return GOT_TLS_GD;
3218
3219 if (tls_ldm_reloc_p (r_type))
3220 return GOT_TLS_LDM;
3221
3222 if (tls_gottprel_reloc_p (r_type))
3223 return GOT_TLS_IE;
3224
3225 return GOT_TLS_NONE;
3226 }
3227
3228 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3229
3230 static int
3231 mips_tls_got_entries (unsigned int type)
3232 {
3233 switch (type)
3234 {
3235 case GOT_TLS_GD:
3236 case GOT_TLS_LDM:
3237 return 2;
3238
3239 case GOT_TLS_IE:
3240 return 1;
3241
3242 case GOT_TLS_NONE:
3243 return 0;
3244 }
3245 abort ();
3246 }
3247
3248 /* Count the number of relocations needed for a TLS GOT entry, with
3249 access types from TLS_TYPE, and symbol H (or a local symbol if H
3250 is NULL). */
3251
3252 static int
3253 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3254 struct elf_link_hash_entry *h)
3255 {
3256 int indx = 0;
3257 bfd_boolean need_relocs = FALSE;
3258 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3259
3260 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3261 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3262 indx = h->dynindx;
3263
3264 if ((bfd_link_pic (info) || indx != 0)
3265 && (h == NULL
3266 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3267 || h->root.type != bfd_link_hash_undefweak))
3268 need_relocs = TRUE;
3269
3270 if (!need_relocs)
3271 return 0;
3272
3273 switch (tls_type)
3274 {
3275 case GOT_TLS_GD:
3276 return indx != 0 ? 2 : 1;
3277
3278 case GOT_TLS_IE:
3279 return 1;
3280
3281 case GOT_TLS_LDM:
3282 return bfd_link_pic (info) ? 1 : 0;
3283
3284 default:
3285 return 0;
3286 }
3287 }
3288
3289 /* Add the number of GOT entries and TLS relocations required by ENTRY
3290 to G. */
3291
3292 static void
3293 mips_elf_count_got_entry (struct bfd_link_info *info,
3294 struct mips_got_info *g,
3295 struct mips_got_entry *entry)
3296 {
3297 if (entry->tls_type)
3298 {
3299 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3300 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3301 entry->symndx < 0
3302 ? &entry->d.h->root : NULL);
3303 }
3304 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3305 g->local_gotno += 1;
3306 else
3307 g->global_gotno += 1;
3308 }
3309
3310 /* Output a simple dynamic relocation into SRELOC. */
3311
3312 static void
3313 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3314 asection *sreloc,
3315 unsigned long reloc_index,
3316 unsigned long indx,
3317 int r_type,
3318 bfd_vma offset)
3319 {
3320 Elf_Internal_Rela rel[3];
3321
3322 memset (rel, 0, sizeof (rel));
3323
3324 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3325 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3326
3327 if (ABI_64_P (output_bfd))
3328 {
3329 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3330 (output_bfd, &rel[0],
3331 (sreloc->contents
3332 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3333 }
3334 else
3335 bfd_elf32_swap_reloc_out
3336 (output_bfd, &rel[0],
3337 (sreloc->contents
3338 + reloc_index * sizeof (Elf32_External_Rel)));
3339 }
3340
3341 /* Initialize a set of TLS GOT entries for one symbol. */
3342
3343 static void
3344 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3345 struct mips_got_entry *entry,
3346 struct mips_elf_link_hash_entry *h,
3347 bfd_vma value)
3348 {
3349 struct mips_elf_link_hash_table *htab;
3350 int indx;
3351 asection *sreloc, *sgot;
3352 bfd_vma got_offset, got_offset2;
3353 bfd_boolean need_relocs = FALSE;
3354
3355 htab = mips_elf_hash_table (info);
3356 if (htab == NULL)
3357 return;
3358
3359 sgot = htab->root.sgot;
3360
3361 indx = 0;
3362 if (h != NULL)
3363 {
3364 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3365
3366 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3367 &h->root)
3368 && (!bfd_link_pic (info)
3369 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3370 indx = h->root.dynindx;
3371 }
3372
3373 if (entry->tls_initialized)
3374 return;
3375
3376 if ((bfd_link_pic (info) || indx != 0)
3377 && (h == NULL
3378 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3379 || h->root.type != bfd_link_hash_undefweak))
3380 need_relocs = TRUE;
3381
3382 /* MINUS_ONE means the symbol is not defined in this object. It may not
3383 be defined at all; assume that the value doesn't matter in that
3384 case. Otherwise complain if we would use the value. */
3385 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3386 || h->root.root.type == bfd_link_hash_undefweak);
3387
3388 /* Emit necessary relocations. */
3389 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3390 got_offset = entry->gotidx;
3391
3392 switch (entry->tls_type)
3393 {
3394 case GOT_TLS_GD:
3395 /* General Dynamic. */
3396 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3397
3398 if (need_relocs)
3399 {
3400 mips_elf_output_dynamic_relocation
3401 (abfd, sreloc, sreloc->reloc_count++, indx,
3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3403 sgot->output_offset + sgot->output_section->vma + got_offset);
3404
3405 if (indx)
3406 mips_elf_output_dynamic_relocation
3407 (abfd, sreloc, sreloc->reloc_count++, indx,
3408 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3409 sgot->output_offset + sgot->output_section->vma + got_offset2);
3410 else
3411 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3412 sgot->contents + got_offset2);
3413 }
3414 else
3415 {
3416 MIPS_ELF_PUT_WORD (abfd, 1,
3417 sgot->contents + got_offset);
3418 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3419 sgot->contents + got_offset2);
3420 }
3421 break;
3422
3423 case GOT_TLS_IE:
3424 /* Initial Exec model. */
3425 if (need_relocs)
3426 {
3427 if (indx == 0)
3428 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3429 sgot->contents + got_offset);
3430 else
3431 MIPS_ELF_PUT_WORD (abfd, 0,
3432 sgot->contents + got_offset);
3433
3434 mips_elf_output_dynamic_relocation
3435 (abfd, sreloc, sreloc->reloc_count++, indx,
3436 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3437 sgot->output_offset + sgot->output_section->vma + got_offset);
3438 }
3439 else
3440 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3441 sgot->contents + got_offset);
3442 break;
3443
3444 case GOT_TLS_LDM:
3445 /* The initial offset is zero, and the LD offsets will include the
3446 bias by DTP_OFFSET. */
3447 MIPS_ELF_PUT_WORD (abfd, 0,
3448 sgot->contents + got_offset
3449 + MIPS_ELF_GOT_SIZE (abfd));
3450
3451 if (!bfd_link_pic (info))
3452 MIPS_ELF_PUT_WORD (abfd, 1,
3453 sgot->contents + got_offset);
3454 else
3455 mips_elf_output_dynamic_relocation
3456 (abfd, sreloc, sreloc->reloc_count++, indx,
3457 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3458 sgot->output_offset + sgot->output_section->vma + got_offset);
3459 break;
3460
3461 default:
3462 abort ();
3463 }
3464
3465 entry->tls_initialized = TRUE;
3466 }
3467
3468 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3469 for global symbol H. .got.plt comes before the GOT, so the offset
3470 will be negative. */
3471
3472 static bfd_vma
3473 mips_elf_gotplt_index (struct bfd_link_info *info,
3474 struct elf_link_hash_entry *h)
3475 {
3476 bfd_vma got_address, got_value;
3477 struct mips_elf_link_hash_table *htab;
3478
3479 htab = mips_elf_hash_table (info);
3480 BFD_ASSERT (htab != NULL);
3481
3482 BFD_ASSERT (h->plt.plist != NULL);
3483 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3484
3485 /* Calculate the address of the associated .got.plt entry. */
3486 got_address = (htab->root.sgotplt->output_section->vma
3487 + htab->root.sgotplt->output_offset
3488 + (h->plt.plist->gotplt_index
3489 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3490
3491 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3492 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3493 + htab->root.hgot->root.u.def.section->output_offset
3494 + htab->root.hgot->root.u.def.value);
3495
3496 return got_address - got_value;
3497 }
3498
3499 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3500 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3501 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3502 offset can be found. */
3503
3504 static bfd_vma
3505 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3506 bfd_vma value, unsigned long r_symndx,
3507 struct mips_elf_link_hash_entry *h, int r_type)
3508 {
3509 struct mips_elf_link_hash_table *htab;
3510 struct mips_got_entry *entry;
3511
3512 htab = mips_elf_hash_table (info);
3513 BFD_ASSERT (htab != NULL);
3514
3515 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3516 r_symndx, h, r_type);
3517 if (!entry)
3518 return MINUS_ONE;
3519
3520 if (entry->tls_type)
3521 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3522 return entry->gotidx;
3523 }
3524
3525 /* Return the GOT index of global symbol H in the primary GOT. */
3526
3527 static bfd_vma
3528 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3529 struct elf_link_hash_entry *h)
3530 {
3531 struct mips_elf_link_hash_table *htab;
3532 long global_got_dynindx;
3533 struct mips_got_info *g;
3534 bfd_vma got_index;
3535
3536 htab = mips_elf_hash_table (info);
3537 BFD_ASSERT (htab != NULL);
3538
3539 global_got_dynindx = 0;
3540 if (htab->global_gotsym != NULL)
3541 global_got_dynindx = htab->global_gotsym->dynindx;
3542
3543 /* Once we determine the global GOT entry with the lowest dynamic
3544 symbol table index, we must put all dynamic symbols with greater
3545 indices into the primary GOT. That makes it easy to calculate the
3546 GOT offset. */
3547 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3548 g = mips_elf_bfd_got (obfd, FALSE);
3549 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3550 * MIPS_ELF_GOT_SIZE (obfd));
3551 BFD_ASSERT (got_index < htab->root.sgot->size);
3552
3553 return got_index;
3554 }
3555
3556 /* Return the GOT index for the global symbol indicated by H, which is
3557 referenced by a relocation of type R_TYPE in IBFD. */
3558
3559 static bfd_vma
3560 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3561 struct elf_link_hash_entry *h, int r_type)
3562 {
3563 struct mips_elf_link_hash_table *htab;
3564 struct mips_got_info *g;
3565 struct mips_got_entry lookup, *entry;
3566 bfd_vma gotidx;
3567
3568 htab = mips_elf_hash_table (info);
3569 BFD_ASSERT (htab != NULL);
3570
3571 g = mips_elf_bfd_got (ibfd, FALSE);
3572 BFD_ASSERT (g);
3573
3574 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3575 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3576 return mips_elf_primary_global_got_index (obfd, info, h);
3577
3578 lookup.abfd = ibfd;
3579 lookup.symndx = -1;
3580 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3581 entry = htab_find (g->got_entries, &lookup);
3582 BFD_ASSERT (entry);
3583
3584 gotidx = entry->gotidx;
3585 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3586
3587 if (lookup.tls_type)
3588 {
3589 bfd_vma value = MINUS_ONE;
3590
3591 if ((h->root.type == bfd_link_hash_defined
3592 || h->root.type == bfd_link_hash_defweak)
3593 && h->root.u.def.section->output_section)
3594 value = (h->root.u.def.value
3595 + h->root.u.def.section->output_offset
3596 + h->root.u.def.section->output_section->vma);
3597
3598 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3599 }
3600 return gotidx;
3601 }
3602
3603 /* Find a GOT page entry that points to within 32KB of VALUE. These
3604 entries are supposed to be placed at small offsets in the GOT, i.e.,
3605 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3606 entry could be created. If OFFSETP is nonnull, use it to return the
3607 offset of the GOT entry from VALUE. */
3608
3609 static bfd_vma
3610 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3611 bfd_vma value, bfd_vma *offsetp)
3612 {
3613 bfd_vma page, got_index;
3614 struct mips_got_entry *entry;
3615
3616 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3617 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3618 NULL, R_MIPS_GOT_PAGE);
3619
3620 if (!entry)
3621 return MINUS_ONE;
3622
3623 got_index = entry->gotidx;
3624
3625 if (offsetp)
3626 *offsetp = value - entry->d.address;
3627
3628 return got_index;
3629 }
3630
3631 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3632 EXTERNAL is true if the relocation was originally against a global
3633 symbol that binds locally. */
3634
3635 static bfd_vma
3636 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3637 bfd_vma value, bfd_boolean external)
3638 {
3639 struct mips_got_entry *entry;
3640
3641 /* GOT16 relocations against local symbols are followed by a LO16
3642 relocation; those against global symbols are not. Thus if the
3643 symbol was originally local, the GOT16 relocation should load the
3644 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3645 if (! external)
3646 value = mips_elf_high (value) << 16;
3647
3648 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3649 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3650 same in all cases. */
3651 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3652 NULL, R_MIPS_GOT16);
3653 if (entry)
3654 return entry->gotidx;
3655 else
3656 return MINUS_ONE;
3657 }
3658
3659 /* Returns the offset for the entry at the INDEXth position
3660 in the GOT. */
3661
3662 static bfd_vma
3663 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3664 bfd *input_bfd, bfd_vma got_index)
3665 {
3666 struct mips_elf_link_hash_table *htab;
3667 asection *sgot;
3668 bfd_vma gp;
3669
3670 htab = mips_elf_hash_table (info);
3671 BFD_ASSERT (htab != NULL);
3672
3673 sgot = htab->root.sgot;
3674 gp = _bfd_get_gp_value (output_bfd)
3675 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3676
3677 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3678 }
3679
3680 /* Create and return a local GOT entry for VALUE, which was calculated
3681 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3682 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3683 instead. */
3684
3685 static struct mips_got_entry *
3686 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3687 bfd *ibfd, bfd_vma value,
3688 unsigned long r_symndx,
3689 struct mips_elf_link_hash_entry *h,
3690 int r_type)
3691 {
3692 struct mips_got_entry lookup, *entry;
3693 void **loc;
3694 struct mips_got_info *g;
3695 struct mips_elf_link_hash_table *htab;
3696 bfd_vma gotidx;
3697
3698 htab = mips_elf_hash_table (info);
3699 BFD_ASSERT (htab != NULL);
3700
3701 g = mips_elf_bfd_got (ibfd, FALSE);
3702 if (g == NULL)
3703 {
3704 g = mips_elf_bfd_got (abfd, FALSE);
3705 BFD_ASSERT (g != NULL);
3706 }
3707
3708 /* This function shouldn't be called for symbols that live in the global
3709 area of the GOT. */
3710 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3711
3712 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3713 if (lookup.tls_type)
3714 {
3715 lookup.abfd = ibfd;
3716 if (tls_ldm_reloc_p (r_type))
3717 {
3718 lookup.symndx = 0;
3719 lookup.d.addend = 0;
3720 }
3721 else if (h == NULL)
3722 {
3723 lookup.symndx = r_symndx;
3724 lookup.d.addend = 0;
3725 }
3726 else
3727 {
3728 lookup.symndx = -1;
3729 lookup.d.h = h;
3730 }
3731
3732 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3733 BFD_ASSERT (entry);
3734
3735 gotidx = entry->gotidx;
3736 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3737
3738 return entry;
3739 }
3740
3741 lookup.abfd = NULL;
3742 lookup.symndx = -1;
3743 lookup.d.address = value;
3744 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3745 if (!loc)
3746 return NULL;
3747
3748 entry = (struct mips_got_entry *) *loc;
3749 if (entry)
3750 return entry;
3751
3752 if (g->assigned_low_gotno > g->assigned_high_gotno)
3753 {
3754 /* We didn't allocate enough space in the GOT. */
3755 _bfd_error_handler
3756 (_("not enough GOT space for local GOT entries"));
3757 bfd_set_error (bfd_error_bad_value);
3758 return NULL;
3759 }
3760
3761 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3762 if (!entry)
3763 return NULL;
3764
3765 if (got16_reloc_p (r_type)
3766 || call16_reloc_p (r_type)
3767 || got_page_reloc_p (r_type)
3768 || got_disp_reloc_p (r_type))
3769 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3770 else
3771 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3772
3773 *entry = lookup;
3774 *loc = entry;
3775
3776 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3777
3778 /* These GOT entries need a dynamic relocation on VxWorks. */
3779 if (htab->is_vxworks)
3780 {
3781 Elf_Internal_Rela outrel;
3782 asection *s;
3783 bfd_byte *rloc;
3784 bfd_vma got_address;
3785
3786 s = mips_elf_rel_dyn_section (info, FALSE);
3787 got_address = (htab->root.sgot->output_section->vma
3788 + htab->root.sgot->output_offset
3789 + entry->gotidx);
3790
3791 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3792 outrel.r_offset = got_address;
3793 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3794 outrel.r_addend = value;
3795 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3796 }
3797
3798 return entry;
3799 }
3800
3801 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3802 The number might be exact or a worst-case estimate, depending on how
3803 much information is available to elf_backend_omit_section_dynsym at
3804 the current linking stage. */
3805
3806 static bfd_size_type
3807 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3808 {
3809 bfd_size_type count;
3810
3811 count = 0;
3812 if (bfd_link_pic (info)
3813 || elf_hash_table (info)->is_relocatable_executable)
3814 {
3815 asection *p;
3816 const struct elf_backend_data *bed;
3817
3818 bed = get_elf_backend_data (output_bfd);
3819 for (p = output_bfd->sections; p ; p = p->next)
3820 if ((p->flags & SEC_EXCLUDE) == 0
3821 && (p->flags & SEC_ALLOC) != 0
3822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3823 ++count;
3824 }
3825 return count;
3826 }
3827
3828 /* Sort the dynamic symbol table so that symbols that need GOT entries
3829 appear towards the end. */
3830
3831 static bfd_boolean
3832 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3833 {
3834 struct mips_elf_link_hash_table *htab;
3835 struct mips_elf_hash_sort_data hsd;
3836 struct mips_got_info *g;
3837
3838 htab = mips_elf_hash_table (info);
3839 BFD_ASSERT (htab != NULL);
3840
3841 if (htab->root.dynsymcount == 0)
3842 return TRUE;
3843
3844 g = htab->got_info;
3845 if (g == NULL)
3846 return TRUE;
3847
3848 hsd.low = NULL;
3849 hsd.max_unref_got_dynindx
3850 = hsd.min_got_dynindx
3851 = (htab->root.dynsymcount - g->reloc_only_gotno);
3852 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3853 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3854 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3855 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3856 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3857
3858 /* There should have been enough room in the symbol table to
3859 accommodate both the GOT and non-GOT symbols. */
3860 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3861 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3862 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3863 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3864
3865 /* Now we know which dynamic symbol has the lowest dynamic symbol
3866 table index in the GOT. */
3867 htab->global_gotsym = hsd.low;
3868
3869 return TRUE;
3870 }
3871
3872 /* If H needs a GOT entry, assign it the highest available dynamic
3873 index. Otherwise, assign it the lowest available dynamic
3874 index. */
3875
3876 static bfd_boolean
3877 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3878 {
3879 struct mips_elf_hash_sort_data *hsd = data;
3880
3881 /* Symbols without dynamic symbol table entries aren't interesting
3882 at all. */
3883 if (h->root.dynindx == -1)
3884 return TRUE;
3885
3886 switch (h->global_got_area)
3887 {
3888 case GGA_NONE:
3889 if (h->root.forced_local)
3890 h->root.dynindx = hsd->max_local_dynindx++;
3891 else
3892 h->root.dynindx = hsd->max_non_got_dynindx++;
3893 break;
3894
3895 case GGA_NORMAL:
3896 h->root.dynindx = --hsd->min_got_dynindx;
3897 hsd->low = (struct elf_link_hash_entry *) h;
3898 break;
3899
3900 case GGA_RELOC_ONLY:
3901 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3902 hsd->low = (struct elf_link_hash_entry *) h;
3903 h->root.dynindx = hsd->max_unref_got_dynindx++;
3904 break;
3905 }
3906
3907 return TRUE;
3908 }
3909
3910 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3911 (which is owned by the caller and shouldn't be added to the
3912 hash table directly). */
3913
3914 static bfd_boolean
3915 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3916 struct mips_got_entry *lookup)
3917 {
3918 struct mips_elf_link_hash_table *htab;
3919 struct mips_got_entry *entry;
3920 struct mips_got_info *g;
3921 void **loc, **bfd_loc;
3922
3923 /* Make sure there's a slot for this entry in the master GOT. */
3924 htab = mips_elf_hash_table (info);
3925 g = htab->got_info;
3926 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3927 if (!loc)
3928 return FALSE;
3929
3930 /* Populate the entry if it isn't already. */
3931 entry = (struct mips_got_entry *) *loc;
3932 if (!entry)
3933 {
3934 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3935 if (!entry)
3936 return FALSE;
3937
3938 lookup->tls_initialized = FALSE;
3939 lookup->gotidx = -1;
3940 *entry = *lookup;
3941 *loc = entry;
3942 }
3943
3944 /* Reuse the same GOT entry for the BFD's GOT. */
3945 g = mips_elf_bfd_got (abfd, TRUE);
3946 if (!g)
3947 return FALSE;
3948
3949 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3950 if (!bfd_loc)
3951 return FALSE;
3952
3953 if (!*bfd_loc)
3954 *bfd_loc = entry;
3955 return TRUE;
3956 }
3957
3958 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3959 entry for it. FOR_CALL is true if the caller is only interested in
3960 using the GOT entry for calls. */
3961
3962 static bfd_boolean
3963 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3964 bfd *abfd, struct bfd_link_info *info,
3965 bfd_boolean for_call, int r_type)
3966 {
3967 struct mips_elf_link_hash_table *htab;
3968 struct mips_elf_link_hash_entry *hmips;
3969 struct mips_got_entry entry;
3970 unsigned char tls_type;
3971
3972 htab = mips_elf_hash_table (info);
3973 BFD_ASSERT (htab != NULL);
3974
3975 hmips = (struct mips_elf_link_hash_entry *) h;
3976 if (!for_call)
3977 hmips->got_only_for_calls = FALSE;
3978
3979 /* A global symbol in the GOT must also be in the dynamic symbol
3980 table. */
3981 if (h->dynindx == -1)
3982 {
3983 switch (ELF_ST_VISIBILITY (h->other))
3984 {
3985 case STV_INTERNAL:
3986 case STV_HIDDEN:
3987 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3988 break;
3989 }
3990 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3991 return FALSE;
3992 }
3993
3994 tls_type = mips_elf_reloc_tls_type (r_type);
3995 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3996 hmips->global_got_area = GGA_NORMAL;
3997
3998 entry.abfd = abfd;
3999 entry.symndx = -1;
4000 entry.d.h = (struct mips_elf_link_hash_entry *) h;
4001 entry.tls_type = tls_type;
4002 return mips_elf_record_got_entry (info, abfd, &entry);
4003 }
4004
4005 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4006 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4007
4008 static bfd_boolean
4009 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4010 struct bfd_link_info *info, int r_type)
4011 {
4012 struct mips_elf_link_hash_table *htab;
4013 struct mips_got_info *g;
4014 struct mips_got_entry entry;
4015
4016 htab = mips_elf_hash_table (info);
4017 BFD_ASSERT (htab != NULL);
4018
4019 g = htab->got_info;
4020 BFD_ASSERT (g != NULL);
4021
4022 entry.abfd = abfd;
4023 entry.symndx = symndx;
4024 entry.d.addend = addend;
4025 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4026 return mips_elf_record_got_entry (info, abfd, &entry);
4027 }
4028
4029 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4030 H is the symbol's hash table entry, or null if SYMNDX is local
4031 to ABFD. */
4032
4033 static bfd_boolean
4034 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4035 long symndx, struct elf_link_hash_entry *h,
4036 bfd_signed_vma addend)
4037 {
4038 struct mips_elf_link_hash_table *htab;
4039 struct mips_got_info *g1, *g2;
4040 struct mips_got_page_ref lookup, *entry;
4041 void **loc, **bfd_loc;
4042
4043 htab = mips_elf_hash_table (info);
4044 BFD_ASSERT (htab != NULL);
4045
4046 g1 = htab->got_info;
4047 BFD_ASSERT (g1 != NULL);
4048
4049 if (h)
4050 {
4051 lookup.symndx = -1;
4052 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4053 }
4054 else
4055 {
4056 lookup.symndx = symndx;
4057 lookup.u.abfd = abfd;
4058 }
4059 lookup.addend = addend;
4060 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4061 if (loc == NULL)
4062 return FALSE;
4063
4064 entry = (struct mips_got_page_ref *) *loc;
4065 if (!entry)
4066 {
4067 entry = bfd_alloc (abfd, sizeof (*entry));
4068 if (!entry)
4069 return FALSE;
4070
4071 *entry = lookup;
4072 *loc = entry;
4073 }
4074
4075 /* Add the same entry to the BFD's GOT. */
4076 g2 = mips_elf_bfd_got (abfd, TRUE);
4077 if (!g2)
4078 return FALSE;
4079
4080 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4081 if (!bfd_loc)
4082 return FALSE;
4083
4084 if (!*bfd_loc)
4085 *bfd_loc = entry;
4086
4087 return TRUE;
4088 }
4089
4090 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4091
4092 static void
4093 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4094 unsigned int n)
4095 {
4096 asection *s;
4097 struct mips_elf_link_hash_table *htab;
4098
4099 htab = mips_elf_hash_table (info);
4100 BFD_ASSERT (htab != NULL);
4101
4102 s = mips_elf_rel_dyn_section (info, FALSE);
4103 BFD_ASSERT (s != NULL);
4104
4105 if (htab->is_vxworks)
4106 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4107 else
4108 {
4109 if (s->size == 0)
4110 {
4111 /* Make room for a null element. */
4112 s->size += MIPS_ELF_REL_SIZE (abfd);
4113 ++s->reloc_count;
4114 }
4115 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4116 }
4117 }
4118 \f
4119 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4120 mips_elf_traverse_got_arg structure. Count the number of GOT
4121 entries and TLS relocs. Set DATA->value to true if we need
4122 to resolve indirect or warning symbols and then recreate the GOT. */
4123
4124 static int
4125 mips_elf_check_recreate_got (void **entryp, void *data)
4126 {
4127 struct mips_got_entry *entry;
4128 struct mips_elf_traverse_got_arg *arg;
4129
4130 entry = (struct mips_got_entry *) *entryp;
4131 arg = (struct mips_elf_traverse_got_arg *) data;
4132 if (entry->abfd != NULL && entry->symndx == -1)
4133 {
4134 struct mips_elf_link_hash_entry *h;
4135
4136 h = entry->d.h;
4137 if (h->root.root.type == bfd_link_hash_indirect
4138 || h->root.root.type == bfd_link_hash_warning)
4139 {
4140 arg->value = TRUE;
4141 return 0;
4142 }
4143 }
4144 mips_elf_count_got_entry (arg->info, arg->g, entry);
4145 return 1;
4146 }
4147
4148 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4149 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4150 converting entries for indirect and warning symbols into entries
4151 for the target symbol. Set DATA->g to null on error. */
4152
4153 static int
4154 mips_elf_recreate_got (void **entryp, void *data)
4155 {
4156 struct mips_got_entry new_entry, *entry;
4157 struct mips_elf_traverse_got_arg *arg;
4158 void **slot;
4159
4160 entry = (struct mips_got_entry *) *entryp;
4161 arg = (struct mips_elf_traverse_got_arg *) data;
4162 if (entry->abfd != NULL
4163 && entry->symndx == -1
4164 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4165 || entry->d.h->root.root.type == bfd_link_hash_warning))
4166 {
4167 struct mips_elf_link_hash_entry *h;
4168
4169 new_entry = *entry;
4170 entry = &new_entry;
4171 h = entry->d.h;
4172 do
4173 {
4174 BFD_ASSERT (h->global_got_area == GGA_NONE);
4175 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4176 }
4177 while (h->root.root.type == bfd_link_hash_indirect
4178 || h->root.root.type == bfd_link_hash_warning);
4179 entry->d.h = h;
4180 }
4181 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4182 if (slot == NULL)
4183 {
4184 arg->g = NULL;
4185 return 0;
4186 }
4187 if (*slot == NULL)
4188 {
4189 if (entry == &new_entry)
4190 {
4191 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4192 if (!entry)
4193 {
4194 arg->g = NULL;
4195 return 0;
4196 }
4197 *entry = new_entry;
4198 }
4199 *slot = entry;
4200 mips_elf_count_got_entry (arg->info, arg->g, entry);
4201 }
4202 return 1;
4203 }
4204
4205 /* Return the maximum number of GOT page entries required for RANGE. */
4206
4207 static bfd_vma
4208 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4209 {
4210 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4211 }
4212
4213 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4214
4215 static bfd_boolean
4216 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4217 asection *sec, bfd_signed_vma addend)
4218 {
4219 struct mips_got_info *g = arg->g;
4220 struct mips_got_page_entry lookup, *entry;
4221 struct mips_got_page_range **range_ptr, *range;
4222 bfd_vma old_pages, new_pages;
4223 void **loc;
4224
4225 /* Find the mips_got_page_entry hash table entry for this section. */
4226 lookup.sec = sec;
4227 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4228 if (loc == NULL)
4229 return FALSE;
4230
4231 /* Create a mips_got_page_entry if this is the first time we've
4232 seen the section. */
4233 entry = (struct mips_got_page_entry *) *loc;
4234 if (!entry)
4235 {
4236 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4237 if (!entry)
4238 return FALSE;
4239
4240 entry->sec = sec;
4241 *loc = entry;
4242 }
4243
4244 /* Skip over ranges whose maximum extent cannot share a page entry
4245 with ADDEND. */
4246 range_ptr = &entry->ranges;
4247 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4248 range_ptr = &(*range_ptr)->next;
4249
4250 /* If we scanned to the end of the list, or found a range whose
4251 minimum extent cannot share a page entry with ADDEND, create
4252 a new singleton range. */
4253 range = *range_ptr;
4254 if (!range || addend < range->min_addend - 0xffff)
4255 {
4256 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4257 if (!range)
4258 return FALSE;
4259
4260 range->next = *range_ptr;
4261 range->min_addend = addend;
4262 range->max_addend = addend;
4263
4264 *range_ptr = range;
4265 entry->num_pages++;
4266 g->page_gotno++;
4267 return TRUE;
4268 }
4269
4270 /* Remember how many pages the old range contributed. */
4271 old_pages = mips_elf_pages_for_range (range);
4272
4273 /* Update the ranges. */
4274 if (addend < range->min_addend)
4275 range->min_addend = addend;
4276 else if (addend > range->max_addend)
4277 {
4278 if (range->next && addend >= range->next->min_addend - 0xffff)
4279 {
4280 old_pages += mips_elf_pages_for_range (range->next);
4281 range->max_addend = range->next->max_addend;
4282 range->next = range->next->next;
4283 }
4284 else
4285 range->max_addend = addend;
4286 }
4287
4288 /* Record any change in the total estimate. */
4289 new_pages = mips_elf_pages_for_range (range);
4290 if (old_pages != new_pages)
4291 {
4292 entry->num_pages += new_pages - old_pages;
4293 g->page_gotno += new_pages - old_pages;
4294 }
4295
4296 return TRUE;
4297 }
4298
4299 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4300 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4301 whether the page reference described by *REFP needs a GOT page entry,
4302 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4303
4304 static bfd_boolean
4305 mips_elf_resolve_got_page_ref (void **refp, void *data)
4306 {
4307 struct mips_got_page_ref *ref;
4308 struct mips_elf_traverse_got_arg *arg;
4309 struct mips_elf_link_hash_table *htab;
4310 asection *sec;
4311 bfd_vma addend;
4312
4313 ref = (struct mips_got_page_ref *) *refp;
4314 arg = (struct mips_elf_traverse_got_arg *) data;
4315 htab = mips_elf_hash_table (arg->info);
4316
4317 if (ref->symndx < 0)
4318 {
4319 struct mips_elf_link_hash_entry *h;
4320
4321 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4322 h = ref->u.h;
4323 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4324 return 1;
4325
4326 /* Ignore undefined symbols; we'll issue an error later if
4327 appropriate. */
4328 if (!((h->root.root.type == bfd_link_hash_defined
4329 || h->root.root.type == bfd_link_hash_defweak)
4330 && h->root.root.u.def.section))
4331 return 1;
4332
4333 sec = h->root.root.u.def.section;
4334 addend = h->root.root.u.def.value + ref->addend;
4335 }
4336 else
4337 {
4338 Elf_Internal_Sym *isym;
4339
4340 /* Read in the symbol. */
4341 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4342 ref->symndx);
4343 if (isym == NULL)
4344 {
4345 arg->g = NULL;
4346 return 0;
4347 }
4348
4349 /* Get the associated input section. */
4350 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4351 if (sec == NULL)
4352 {
4353 arg->g = NULL;
4354 return 0;
4355 }
4356
4357 /* If this is a mergable section, work out the section and offset
4358 of the merged data. For section symbols, the addend specifies
4359 of the offset _of_ the first byte in the data, otherwise it
4360 specifies the offset _from_ the first byte. */
4361 if (sec->flags & SEC_MERGE)
4362 {
4363 void *secinfo;
4364
4365 secinfo = elf_section_data (sec)->sec_info;
4366 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4367 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4368 isym->st_value + ref->addend);
4369 else
4370 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4371 isym->st_value) + ref->addend;
4372 }
4373 else
4374 addend = isym->st_value + ref->addend;
4375 }
4376 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4377 {
4378 arg->g = NULL;
4379 return 0;
4380 }
4381 return 1;
4382 }
4383
4384 /* If any entries in G->got_entries are for indirect or warning symbols,
4385 replace them with entries for the target symbol. Convert g->got_page_refs
4386 into got_page_entry structures and estimate the number of page entries
4387 that they require. */
4388
4389 static bfd_boolean
4390 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4391 struct mips_got_info *g)
4392 {
4393 struct mips_elf_traverse_got_arg tga;
4394 struct mips_got_info oldg;
4395
4396 oldg = *g;
4397
4398 tga.info = info;
4399 tga.g = g;
4400 tga.value = FALSE;
4401 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4402 if (tga.value)
4403 {
4404 *g = oldg;
4405 g->got_entries = htab_create (htab_size (oldg.got_entries),
4406 mips_elf_got_entry_hash,
4407 mips_elf_got_entry_eq, NULL);
4408 if (!g->got_entries)
4409 return FALSE;
4410
4411 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4412 if (!tga.g)
4413 return FALSE;
4414
4415 htab_delete (oldg.got_entries);
4416 }
4417
4418 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4419 mips_got_page_entry_eq, NULL);
4420 if (g->got_page_entries == NULL)
4421 return FALSE;
4422
4423 tga.info = info;
4424 tga.g = g;
4425 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4426
4427 return TRUE;
4428 }
4429
4430 /* Return true if a GOT entry for H should live in the local rather than
4431 global GOT area. */
4432
4433 static bfd_boolean
4434 mips_use_local_got_p (struct bfd_link_info *info,
4435 struct mips_elf_link_hash_entry *h)
4436 {
4437 /* Symbols that aren't in the dynamic symbol table must live in the
4438 local GOT. This includes symbols that are completely undefined
4439 and which therefore don't bind locally. We'll report undefined
4440 symbols later if appropriate. */
4441 if (h->root.dynindx == -1)
4442 return TRUE;
4443
4444 /* Symbols that bind locally can (and in the case of forced-local
4445 symbols, must) live in the local GOT. */
4446 if (h->got_only_for_calls
4447 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4448 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4449 return TRUE;
4450
4451 /* If this is an executable that must provide a definition of the symbol,
4452 either though PLTs or copy relocations, then that address should go in
4453 the local rather than global GOT. */
4454 if (bfd_link_executable (info) && h->has_static_relocs)
4455 return TRUE;
4456
4457 return FALSE;
4458 }
4459
4460 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4461 link_info structure. Decide whether the hash entry needs an entry in
4462 the global part of the primary GOT, setting global_got_area accordingly.
4463 Count the number of global symbols that are in the primary GOT only
4464 because they have relocations against them (reloc_only_gotno). */
4465
4466 static int
4467 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4468 {
4469 struct bfd_link_info *info;
4470 struct mips_elf_link_hash_table *htab;
4471 struct mips_got_info *g;
4472
4473 info = (struct bfd_link_info *) data;
4474 htab = mips_elf_hash_table (info);
4475 g = htab->got_info;
4476 if (h->global_got_area != GGA_NONE)
4477 {
4478 /* Make a final decision about whether the symbol belongs in the
4479 local or global GOT. */
4480 if (mips_use_local_got_p (info, h))
4481 /* The symbol belongs in the local GOT. We no longer need this
4482 entry if it was only used for relocations; those relocations
4483 will be against the null or section symbol instead of H. */
4484 h->global_got_area = GGA_NONE;
4485 else if (htab->is_vxworks
4486 && h->got_only_for_calls
4487 && h->root.plt.plist->mips_offset != MINUS_ONE)
4488 /* On VxWorks, calls can refer directly to the .got.plt entry;
4489 they don't need entries in the regular GOT. .got.plt entries
4490 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4491 h->global_got_area = GGA_NONE;
4492 else if (h->global_got_area == GGA_RELOC_ONLY)
4493 {
4494 g->reloc_only_gotno++;
4495 g->global_gotno++;
4496 }
4497 }
4498 return 1;
4499 }
4500 \f
4501 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4502 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4503
4504 static int
4505 mips_elf_add_got_entry (void **entryp, void *data)
4506 {
4507 struct mips_got_entry *entry;
4508 struct mips_elf_traverse_got_arg *arg;
4509 void **slot;
4510
4511 entry = (struct mips_got_entry *) *entryp;
4512 arg = (struct mips_elf_traverse_got_arg *) data;
4513 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4514 if (!slot)
4515 {
4516 arg->g = NULL;
4517 return 0;
4518 }
4519 if (!*slot)
4520 {
4521 *slot = entry;
4522 mips_elf_count_got_entry (arg->info, arg->g, entry);
4523 }
4524 return 1;
4525 }
4526
4527 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4528 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4529
4530 static int
4531 mips_elf_add_got_page_entry (void **entryp, void *data)
4532 {
4533 struct mips_got_page_entry *entry;
4534 struct mips_elf_traverse_got_arg *arg;
4535 void **slot;
4536
4537 entry = (struct mips_got_page_entry *) *entryp;
4538 arg = (struct mips_elf_traverse_got_arg *) data;
4539 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4540 if (!slot)
4541 {
4542 arg->g = NULL;
4543 return 0;
4544 }
4545 if (!*slot)
4546 {
4547 *slot = entry;
4548 arg->g->page_gotno += entry->num_pages;
4549 }
4550 return 1;
4551 }
4552
4553 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4554 this would lead to overflow, 1 if they were merged successfully,
4555 and 0 if a merge failed due to lack of memory. (These values are chosen
4556 so that nonnegative return values can be returned by a htab_traverse
4557 callback.) */
4558
4559 static int
4560 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4561 struct mips_got_info *to,
4562 struct mips_elf_got_per_bfd_arg *arg)
4563 {
4564 struct mips_elf_traverse_got_arg tga;
4565 unsigned int estimate;
4566
4567 /* Work out how many page entries we would need for the combined GOT. */
4568 estimate = arg->max_pages;
4569 if (estimate >= from->page_gotno + to->page_gotno)
4570 estimate = from->page_gotno + to->page_gotno;
4571
4572 /* And conservatively estimate how many local and TLS entries
4573 would be needed. */
4574 estimate += from->local_gotno + to->local_gotno;
4575 estimate += from->tls_gotno + to->tls_gotno;
4576
4577 /* If we're merging with the primary got, any TLS relocations will
4578 come after the full set of global entries. Otherwise estimate those
4579 conservatively as well. */
4580 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4581 estimate += arg->global_count;
4582 else
4583 estimate += from->global_gotno + to->global_gotno;
4584
4585 /* Bail out if the combined GOT might be too big. */
4586 if (estimate > arg->max_count)
4587 return -1;
4588
4589 /* Transfer the bfd's got information from FROM to TO. */
4590 tga.info = arg->info;
4591 tga.g = to;
4592 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4593 if (!tga.g)
4594 return 0;
4595
4596 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4597 if (!tga.g)
4598 return 0;
4599
4600 mips_elf_replace_bfd_got (abfd, to);
4601 return 1;
4602 }
4603
4604 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4605 as possible of the primary got, since it doesn't require explicit
4606 dynamic relocations, but don't use bfds that would reference global
4607 symbols out of the addressable range. Failing the primary got,
4608 attempt to merge with the current got, or finish the current got
4609 and then make make the new got current. */
4610
4611 static bfd_boolean
4612 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4613 struct mips_elf_got_per_bfd_arg *arg)
4614 {
4615 unsigned int estimate;
4616 int result;
4617
4618 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4619 return FALSE;
4620
4621 /* Work out the number of page, local and TLS entries. */
4622 estimate = arg->max_pages;
4623 if (estimate > g->page_gotno)
4624 estimate = g->page_gotno;
4625 estimate += g->local_gotno + g->tls_gotno;
4626
4627 /* We place TLS GOT entries after both locals and globals. The globals
4628 for the primary GOT may overflow the normal GOT size limit, so be
4629 sure not to merge a GOT which requires TLS with the primary GOT in that
4630 case. This doesn't affect non-primary GOTs. */
4631 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4632
4633 if (estimate <= arg->max_count)
4634 {
4635 /* If we don't have a primary GOT, use it as
4636 a starting point for the primary GOT. */
4637 if (!arg->primary)
4638 {
4639 arg->primary = g;
4640 return TRUE;
4641 }
4642
4643 /* Try merging with the primary GOT. */
4644 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4645 if (result >= 0)
4646 return result;
4647 }
4648
4649 /* If we can merge with the last-created got, do it. */
4650 if (arg->current)
4651 {
4652 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4653 if (result >= 0)
4654 return result;
4655 }
4656
4657 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4658 fits; if it turns out that it doesn't, we'll get relocation
4659 overflows anyway. */
4660 g->next = arg->current;
4661 arg->current = g;
4662
4663 return TRUE;
4664 }
4665
4666 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4667 to GOTIDX, duplicating the entry if it has already been assigned
4668 an index in a different GOT. */
4669
4670 static bfd_boolean
4671 mips_elf_set_gotidx (void **entryp, long gotidx)
4672 {
4673 struct mips_got_entry *entry;
4674
4675 entry = (struct mips_got_entry *) *entryp;
4676 if (entry->gotidx > 0)
4677 {
4678 struct mips_got_entry *new_entry;
4679
4680 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4681 if (!new_entry)
4682 return FALSE;
4683
4684 *new_entry = *entry;
4685 *entryp = new_entry;
4686 entry = new_entry;
4687 }
4688 entry->gotidx = gotidx;
4689 return TRUE;
4690 }
4691
4692 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4693 mips_elf_traverse_got_arg in which DATA->value is the size of one
4694 GOT entry. Set DATA->g to null on failure. */
4695
4696 static int
4697 mips_elf_initialize_tls_index (void **entryp, void *data)
4698 {
4699 struct mips_got_entry *entry;
4700 struct mips_elf_traverse_got_arg *arg;
4701
4702 /* We're only interested in TLS symbols. */
4703 entry = (struct mips_got_entry *) *entryp;
4704 if (entry->tls_type == GOT_TLS_NONE)
4705 return 1;
4706
4707 arg = (struct mips_elf_traverse_got_arg *) data;
4708 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4709 {
4710 arg->g = NULL;
4711 return 0;
4712 }
4713
4714 /* Account for the entries we've just allocated. */
4715 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4716 return 1;
4717 }
4718
4719 /* A htab_traverse callback for GOT entries, where DATA points to a
4720 mips_elf_traverse_got_arg. Set the global_got_area of each global
4721 symbol to DATA->value. */
4722
4723 static int
4724 mips_elf_set_global_got_area (void **entryp, void *data)
4725 {
4726 struct mips_got_entry *entry;
4727 struct mips_elf_traverse_got_arg *arg;
4728
4729 entry = (struct mips_got_entry *) *entryp;
4730 arg = (struct mips_elf_traverse_got_arg *) data;
4731 if (entry->abfd != NULL
4732 && entry->symndx == -1
4733 && entry->d.h->global_got_area != GGA_NONE)
4734 entry->d.h->global_got_area = arg->value;
4735 return 1;
4736 }
4737
4738 /* A htab_traverse callback for secondary GOT entries, where DATA points
4739 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4740 and record the number of relocations they require. DATA->value is
4741 the size of one GOT entry. Set DATA->g to null on failure. */
4742
4743 static int
4744 mips_elf_set_global_gotidx (void **entryp, void *data)
4745 {
4746 struct mips_got_entry *entry;
4747 struct mips_elf_traverse_got_arg *arg;
4748
4749 entry = (struct mips_got_entry *) *entryp;
4750 arg = (struct mips_elf_traverse_got_arg *) data;
4751 if (entry->abfd != NULL
4752 && entry->symndx == -1
4753 && entry->d.h->global_got_area != GGA_NONE)
4754 {
4755 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4756 {
4757 arg->g = NULL;
4758 return 0;
4759 }
4760 arg->g->assigned_low_gotno += 1;
4761
4762 if (bfd_link_pic (arg->info)
4763 || (elf_hash_table (arg->info)->dynamic_sections_created
4764 && entry->d.h->root.def_dynamic
4765 && !entry->d.h->root.def_regular))
4766 arg->g->relocs += 1;
4767 }
4768
4769 return 1;
4770 }
4771
4772 /* A htab_traverse callback for GOT entries for which DATA is the
4773 bfd_link_info. Forbid any global symbols from having traditional
4774 lazy-binding stubs. */
4775
4776 static int
4777 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4778 {
4779 struct bfd_link_info *info;
4780 struct mips_elf_link_hash_table *htab;
4781 struct mips_got_entry *entry;
4782
4783 entry = (struct mips_got_entry *) *entryp;
4784 info = (struct bfd_link_info *) data;
4785 htab = mips_elf_hash_table (info);
4786 BFD_ASSERT (htab != NULL);
4787
4788 if (entry->abfd != NULL
4789 && entry->symndx == -1
4790 && entry->d.h->needs_lazy_stub)
4791 {
4792 entry->d.h->needs_lazy_stub = FALSE;
4793 htab->lazy_stub_count--;
4794 }
4795
4796 return 1;
4797 }
4798
4799 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4800 the primary GOT. */
4801 static bfd_vma
4802 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4803 {
4804 if (!g->next)
4805 return 0;
4806
4807 g = mips_elf_bfd_got (ibfd, FALSE);
4808 if (! g)
4809 return 0;
4810
4811 BFD_ASSERT (g->next);
4812
4813 g = g->next;
4814
4815 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4816 * MIPS_ELF_GOT_SIZE (abfd);
4817 }
4818
4819 /* Turn a single GOT that is too big for 16-bit addressing into
4820 a sequence of GOTs, each one 16-bit addressable. */
4821
4822 static bfd_boolean
4823 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4824 asection *got, bfd_size_type pages)
4825 {
4826 struct mips_elf_link_hash_table *htab;
4827 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4828 struct mips_elf_traverse_got_arg tga;
4829 struct mips_got_info *g, *gg;
4830 unsigned int assign, needed_relocs;
4831 bfd *dynobj, *ibfd;
4832
4833 dynobj = elf_hash_table (info)->dynobj;
4834 htab = mips_elf_hash_table (info);
4835 BFD_ASSERT (htab != NULL);
4836
4837 g = htab->got_info;
4838
4839 got_per_bfd_arg.obfd = abfd;
4840 got_per_bfd_arg.info = info;
4841 got_per_bfd_arg.current = NULL;
4842 got_per_bfd_arg.primary = NULL;
4843 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4844 / MIPS_ELF_GOT_SIZE (abfd))
4845 - htab->reserved_gotno);
4846 got_per_bfd_arg.max_pages = pages;
4847 /* The number of globals that will be included in the primary GOT.
4848 See the calls to mips_elf_set_global_got_area below for more
4849 information. */
4850 got_per_bfd_arg.global_count = g->global_gotno;
4851
4852 /* Try to merge the GOTs of input bfds together, as long as they
4853 don't seem to exceed the maximum GOT size, choosing one of them
4854 to be the primary GOT. */
4855 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4856 {
4857 gg = mips_elf_bfd_got (ibfd, FALSE);
4858 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4859 return FALSE;
4860 }
4861
4862 /* If we do not find any suitable primary GOT, create an empty one. */
4863 if (got_per_bfd_arg.primary == NULL)
4864 g->next = mips_elf_create_got_info (abfd);
4865 else
4866 g->next = got_per_bfd_arg.primary;
4867 g->next->next = got_per_bfd_arg.current;
4868
4869 /* GG is now the master GOT, and G is the primary GOT. */
4870 gg = g;
4871 g = g->next;
4872
4873 /* Map the output bfd to the primary got. That's what we're going
4874 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4875 didn't mark in check_relocs, and we want a quick way to find it.
4876 We can't just use gg->next because we're going to reverse the
4877 list. */
4878 mips_elf_replace_bfd_got (abfd, g);
4879
4880 /* Every symbol that is referenced in a dynamic relocation must be
4881 present in the primary GOT, so arrange for them to appear after
4882 those that are actually referenced. */
4883 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4884 g->global_gotno = gg->global_gotno;
4885
4886 tga.info = info;
4887 tga.value = GGA_RELOC_ONLY;
4888 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4889 tga.value = GGA_NORMAL;
4890 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4891
4892 /* Now go through the GOTs assigning them offset ranges.
4893 [assigned_low_gotno, local_gotno[ will be set to the range of local
4894 entries in each GOT. We can then compute the end of a GOT by
4895 adding local_gotno to global_gotno. We reverse the list and make
4896 it circular since then we'll be able to quickly compute the
4897 beginning of a GOT, by computing the end of its predecessor. To
4898 avoid special cases for the primary GOT, while still preserving
4899 assertions that are valid for both single- and multi-got links,
4900 we arrange for the main got struct to have the right number of
4901 global entries, but set its local_gotno such that the initial
4902 offset of the primary GOT is zero. Remember that the primary GOT
4903 will become the last item in the circular linked list, so it
4904 points back to the master GOT. */
4905 gg->local_gotno = -g->global_gotno;
4906 gg->global_gotno = g->global_gotno;
4907 gg->tls_gotno = 0;
4908 assign = 0;
4909 gg->next = gg;
4910
4911 do
4912 {
4913 struct mips_got_info *gn;
4914
4915 assign += htab->reserved_gotno;
4916 g->assigned_low_gotno = assign;
4917 g->local_gotno += assign;
4918 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4919 g->assigned_high_gotno = g->local_gotno - 1;
4920 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4921
4922 /* Take g out of the direct list, and push it onto the reversed
4923 list that gg points to. g->next is guaranteed to be nonnull after
4924 this operation, as required by mips_elf_initialize_tls_index. */
4925 gn = g->next;
4926 g->next = gg->next;
4927 gg->next = g;
4928
4929 /* Set up any TLS entries. We always place the TLS entries after
4930 all non-TLS entries. */
4931 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4932 tga.g = g;
4933 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4934 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4935 if (!tga.g)
4936 return FALSE;
4937 BFD_ASSERT (g->tls_assigned_gotno == assign);
4938
4939 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4940 g = gn;
4941
4942 /* Forbid global symbols in every non-primary GOT from having
4943 lazy-binding stubs. */
4944 if (g)
4945 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4946 }
4947 while (g);
4948
4949 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4950
4951 needed_relocs = 0;
4952 for (g = gg->next; g && g->next != gg; g = g->next)
4953 {
4954 unsigned int save_assign;
4955
4956 /* Assign offsets to global GOT entries and count how many
4957 relocations they need. */
4958 save_assign = g->assigned_low_gotno;
4959 g->assigned_low_gotno = g->local_gotno;
4960 tga.info = info;
4961 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4962 tga.g = g;
4963 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4964 if (!tga.g)
4965 return FALSE;
4966 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4967 g->assigned_low_gotno = save_assign;
4968
4969 if (bfd_link_pic (info))
4970 {
4971 g->relocs += g->local_gotno - g->assigned_low_gotno;
4972 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4973 + g->next->global_gotno
4974 + g->next->tls_gotno
4975 + htab->reserved_gotno);
4976 }
4977 needed_relocs += g->relocs;
4978 }
4979 needed_relocs += g->relocs;
4980
4981 if (needed_relocs)
4982 mips_elf_allocate_dynamic_relocations (dynobj, info,
4983 needed_relocs);
4984
4985 return TRUE;
4986 }
4987
4988 \f
4989 /* Returns the first relocation of type r_type found, beginning with
4990 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4991
4992 static const Elf_Internal_Rela *
4993 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4994 const Elf_Internal_Rela *relocation,
4995 const Elf_Internal_Rela *relend)
4996 {
4997 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4998
4999 while (relocation < relend)
5000 {
5001 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5002 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5003 return relocation;
5004
5005 ++relocation;
5006 }
5007
5008 /* We didn't find it. */
5009 return NULL;
5010 }
5011
5012 /* Return whether an input relocation is against a local symbol. */
5013
5014 static bfd_boolean
5015 mips_elf_local_relocation_p (bfd *input_bfd,
5016 const Elf_Internal_Rela *relocation,
5017 asection **local_sections)
5018 {
5019 unsigned long r_symndx;
5020 Elf_Internal_Shdr *symtab_hdr;
5021 size_t extsymoff;
5022
5023 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5024 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5025 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5026
5027 if (r_symndx < extsymoff)
5028 return TRUE;
5029 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5030 return TRUE;
5031
5032 return FALSE;
5033 }
5034 \f
5035 /* Sign-extend VALUE, which has the indicated number of BITS. */
5036
5037 bfd_vma
5038 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5039 {
5040 if (value & ((bfd_vma) 1 << (bits - 1)))
5041 /* VALUE is negative. */
5042 value |= ((bfd_vma) - 1) << bits;
5043
5044 return value;
5045 }
5046
5047 /* Return non-zero if the indicated VALUE has overflowed the maximum
5048 range expressible by a signed number with the indicated number of
5049 BITS. */
5050
5051 static bfd_boolean
5052 mips_elf_overflow_p (bfd_vma value, int bits)
5053 {
5054 bfd_signed_vma svalue = (bfd_signed_vma) value;
5055
5056 if (svalue > (1 << (bits - 1)) - 1)
5057 /* The value is too big. */
5058 return TRUE;
5059 else if (svalue < -(1 << (bits - 1)))
5060 /* The value is too small. */
5061 return TRUE;
5062
5063 /* All is well. */
5064 return FALSE;
5065 }
5066
5067 /* Calculate the %high function. */
5068
5069 static bfd_vma
5070 mips_elf_high (bfd_vma value)
5071 {
5072 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5073 }
5074
5075 /* Calculate the %higher function. */
5076
5077 static bfd_vma
5078 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5079 {
5080 #ifdef BFD64
5081 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5082 #else
5083 abort ();
5084 return MINUS_ONE;
5085 #endif
5086 }
5087
5088 /* Calculate the %highest function. */
5089
5090 static bfd_vma
5091 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5092 {
5093 #ifdef BFD64
5094 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5095 #else
5096 abort ();
5097 return MINUS_ONE;
5098 #endif
5099 }
5100 \f
5101 /* Create the .compact_rel section. */
5102
5103 static bfd_boolean
5104 mips_elf_create_compact_rel_section
5105 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5106 {
5107 flagword flags;
5108 register asection *s;
5109
5110 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5111 {
5112 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5113 | SEC_READONLY);
5114
5115 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5116 if (s == NULL
5117 || ! bfd_set_section_alignment (abfd, s,
5118 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5119 return FALSE;
5120
5121 s->size = sizeof (Elf32_External_compact_rel);
5122 }
5123
5124 return TRUE;
5125 }
5126
5127 /* Create the .got section to hold the global offset table. */
5128
5129 static bfd_boolean
5130 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5131 {
5132 flagword flags;
5133 register asection *s;
5134 struct elf_link_hash_entry *h;
5135 struct bfd_link_hash_entry *bh;
5136 struct mips_elf_link_hash_table *htab;
5137
5138 htab = mips_elf_hash_table (info);
5139 BFD_ASSERT (htab != NULL);
5140
5141 /* This function may be called more than once. */
5142 if (htab->root.sgot)
5143 return TRUE;
5144
5145 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5146 | SEC_LINKER_CREATED);
5147
5148 /* We have to use an alignment of 2**4 here because this is hardcoded
5149 in the function stub generation and in the linker script. */
5150 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5151 if (s == NULL
5152 || ! bfd_set_section_alignment (abfd, s, 4))
5153 return FALSE;
5154 htab->root.sgot = s;
5155
5156 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5157 linker script because we don't want to define the symbol if we
5158 are not creating a global offset table. */
5159 bh = NULL;
5160 if (! (_bfd_generic_link_add_one_symbol
5161 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5162 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5163 return FALSE;
5164
5165 h = (struct elf_link_hash_entry *) bh;
5166 h->non_elf = 0;
5167 h->def_regular = 1;
5168 h->type = STT_OBJECT;
5169 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5170 elf_hash_table (info)->hgot = h;
5171
5172 if (bfd_link_pic (info)
5173 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5174 return FALSE;
5175
5176 htab->got_info = mips_elf_create_got_info (abfd);
5177 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5178 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5179
5180 /* We also need a .got.plt section when generating PLTs. */
5181 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5182 SEC_ALLOC | SEC_LOAD
5183 | SEC_HAS_CONTENTS
5184 | SEC_IN_MEMORY
5185 | SEC_LINKER_CREATED);
5186 if (s == NULL)
5187 return FALSE;
5188 htab->root.sgotplt = s;
5189
5190 return TRUE;
5191 }
5192 \f
5193 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5194 __GOTT_INDEX__ symbols. These symbols are only special for
5195 shared objects; they are not used in executables. */
5196
5197 static bfd_boolean
5198 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5199 {
5200 return (mips_elf_hash_table (info)->is_vxworks
5201 && bfd_link_pic (info)
5202 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5203 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5204 }
5205
5206 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5207 require an la25 stub. See also mips_elf_local_pic_function_p,
5208 which determines whether the destination function ever requires a
5209 stub. */
5210
5211 static bfd_boolean
5212 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5213 bfd_boolean target_is_16_bit_code_p)
5214 {
5215 /* We specifically ignore branches and jumps from EF_PIC objects,
5216 where the onus is on the compiler or programmer to perform any
5217 necessary initialization of $25. Sometimes such initialization
5218 is unnecessary; for example, -mno-shared functions do not use
5219 the incoming value of $25, and may therefore be called directly. */
5220 if (PIC_OBJECT_P (input_bfd))
5221 return FALSE;
5222
5223 switch (r_type)
5224 {
5225 case R_MIPS_26:
5226 case R_MIPS_PC16:
5227 case R_MIPS_PC21_S2:
5228 case R_MIPS_PC26_S2:
5229 case R_MICROMIPS_26_S1:
5230 case R_MICROMIPS_PC7_S1:
5231 case R_MICROMIPS_PC10_S1:
5232 case R_MICROMIPS_PC16_S1:
5233 case R_MICROMIPS_PC23_S2:
5234 return TRUE;
5235
5236 case R_MIPS16_26:
5237 return !target_is_16_bit_code_p;
5238
5239 default:
5240 return FALSE;
5241 }
5242 }
5243 \f
5244 /* Calculate the value produced by the RELOCATION (which comes from
5245 the INPUT_BFD). The ADDEND is the addend to use for this
5246 RELOCATION; RELOCATION->R_ADDEND is ignored.
5247
5248 The result of the relocation calculation is stored in VALUEP.
5249 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5250 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5251
5252 This function returns bfd_reloc_continue if the caller need take no
5253 further action regarding this relocation, bfd_reloc_notsupported if
5254 something goes dramatically wrong, bfd_reloc_overflow if an
5255 overflow occurs, and bfd_reloc_ok to indicate success. */
5256
5257 static bfd_reloc_status_type
5258 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5259 asection *input_section,
5260 struct bfd_link_info *info,
5261 const Elf_Internal_Rela *relocation,
5262 bfd_vma addend, reloc_howto_type *howto,
5263 Elf_Internal_Sym *local_syms,
5264 asection **local_sections, bfd_vma *valuep,
5265 const char **namep,
5266 bfd_boolean *cross_mode_jump_p,
5267 bfd_boolean save_addend)
5268 {
5269 /* The eventual value we will return. */
5270 bfd_vma value;
5271 /* The address of the symbol against which the relocation is
5272 occurring. */
5273 bfd_vma symbol = 0;
5274 /* The final GP value to be used for the relocatable, executable, or
5275 shared object file being produced. */
5276 bfd_vma gp;
5277 /* The place (section offset or address) of the storage unit being
5278 relocated. */
5279 bfd_vma p;
5280 /* The value of GP used to create the relocatable object. */
5281 bfd_vma gp0;
5282 /* The offset into the global offset table at which the address of
5283 the relocation entry symbol, adjusted by the addend, resides
5284 during execution. */
5285 bfd_vma g = MINUS_ONE;
5286 /* The section in which the symbol referenced by the relocation is
5287 located. */
5288 asection *sec = NULL;
5289 struct mips_elf_link_hash_entry *h = NULL;
5290 /* TRUE if the symbol referred to by this relocation is a local
5291 symbol. */
5292 bfd_boolean local_p, was_local_p;
5293 /* TRUE if the symbol referred to by this relocation is a section
5294 symbol. */
5295 bfd_boolean section_p = FALSE;
5296 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5297 bfd_boolean gp_disp_p = FALSE;
5298 /* TRUE if the symbol referred to by this relocation is
5299 "__gnu_local_gp". */
5300 bfd_boolean gnu_local_gp_p = FALSE;
5301 Elf_Internal_Shdr *symtab_hdr;
5302 size_t extsymoff;
5303 unsigned long r_symndx;
5304 int r_type;
5305 /* TRUE if overflow occurred during the calculation of the
5306 relocation value. */
5307 bfd_boolean overflowed_p;
5308 /* TRUE if this relocation refers to a MIPS16 function. */
5309 bfd_boolean target_is_16_bit_code_p = FALSE;
5310 bfd_boolean target_is_micromips_code_p = FALSE;
5311 struct mips_elf_link_hash_table *htab;
5312 bfd *dynobj;
5313
5314 dynobj = elf_hash_table (info)->dynobj;
5315 htab = mips_elf_hash_table (info);
5316 BFD_ASSERT (htab != NULL);
5317
5318 /* Parse the relocation. */
5319 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5320 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5321 p = (input_section->output_section->vma
5322 + input_section->output_offset
5323 + relocation->r_offset);
5324
5325 /* Assume that there will be no overflow. */
5326 overflowed_p = FALSE;
5327
5328 /* Figure out whether or not the symbol is local, and get the offset
5329 used in the array of hash table entries. */
5330 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5331 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5332 local_sections);
5333 was_local_p = local_p;
5334 if (! elf_bad_symtab (input_bfd))
5335 extsymoff = symtab_hdr->sh_info;
5336 else
5337 {
5338 /* The symbol table does not follow the rule that local symbols
5339 must come before globals. */
5340 extsymoff = 0;
5341 }
5342
5343 /* Figure out the value of the symbol. */
5344 if (local_p)
5345 {
5346 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5347 Elf_Internal_Sym *sym;
5348
5349 sym = local_syms + r_symndx;
5350 sec = local_sections[r_symndx];
5351
5352 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5353
5354 symbol = sec->output_section->vma + sec->output_offset;
5355 if (!section_p || (sec->flags & SEC_MERGE))
5356 symbol += sym->st_value;
5357 if ((sec->flags & SEC_MERGE) && section_p)
5358 {
5359 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5360 addend -= symbol;
5361 addend += sec->output_section->vma + sec->output_offset;
5362 }
5363
5364 /* MIPS16/microMIPS text labels should be treated as odd. */
5365 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5366 ++symbol;
5367
5368 /* Record the name of this symbol, for our caller. */
5369 *namep = bfd_elf_string_from_elf_section (input_bfd,
5370 symtab_hdr->sh_link,
5371 sym->st_name);
5372 if (*namep == NULL || **namep == '\0')
5373 *namep = bfd_section_name (input_bfd, sec);
5374
5375 /* For relocations against a section symbol and ones against no
5376 symbol (absolute relocations) infer the ISA mode from the addend. */
5377 if (section_p || r_symndx == STN_UNDEF)
5378 {
5379 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5380 target_is_micromips_code_p = (addend & 1) && micromips_p;
5381 }
5382 /* For relocations against an absolute symbol infer the ISA mode
5383 from the value of the symbol plus addend. */
5384 else if (bfd_is_abs_section (sec))
5385 {
5386 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5387 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5388 }
5389 /* Otherwise just use the regular symbol annotation available. */
5390 else
5391 {
5392 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5393 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5394 }
5395 }
5396 else
5397 {
5398 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5399
5400 /* For global symbols we look up the symbol in the hash-table. */
5401 h = ((struct mips_elf_link_hash_entry *)
5402 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5403 /* Find the real hash-table entry for this symbol. */
5404 while (h->root.root.type == bfd_link_hash_indirect
5405 || h->root.root.type == bfd_link_hash_warning)
5406 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5407
5408 /* Record the name of this symbol, for our caller. */
5409 *namep = h->root.root.root.string;
5410
5411 /* See if this is the special _gp_disp symbol. Note that such a
5412 symbol must always be a global symbol. */
5413 if (strcmp (*namep, "_gp_disp") == 0
5414 && ! NEWABI_P (input_bfd))
5415 {
5416 /* Relocations against _gp_disp are permitted only with
5417 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5418 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5419 return bfd_reloc_notsupported;
5420
5421 gp_disp_p = TRUE;
5422 }
5423 /* See if this is the special _gp symbol. Note that such a
5424 symbol must always be a global symbol. */
5425 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5426 gnu_local_gp_p = TRUE;
5427
5428
5429 /* If this symbol is defined, calculate its address. Note that
5430 _gp_disp is a magic symbol, always implicitly defined by the
5431 linker, so it's inappropriate to check to see whether or not
5432 its defined. */
5433 else if ((h->root.root.type == bfd_link_hash_defined
5434 || h->root.root.type == bfd_link_hash_defweak)
5435 && h->root.root.u.def.section)
5436 {
5437 sec = h->root.root.u.def.section;
5438 if (sec->output_section)
5439 symbol = (h->root.root.u.def.value
5440 + sec->output_section->vma
5441 + sec->output_offset);
5442 else
5443 symbol = h->root.root.u.def.value;
5444 }
5445 else if (h->root.root.type == bfd_link_hash_undefweak)
5446 /* We allow relocations against undefined weak symbols, giving
5447 it the value zero, so that you can undefined weak functions
5448 and check to see if they exist by looking at their
5449 addresses. */
5450 symbol = 0;
5451 else if (info->unresolved_syms_in_objects == RM_IGNORE
5452 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5453 symbol = 0;
5454 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5455 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5456 {
5457 /* If this is a dynamic link, we should have created a
5458 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5459 in in _bfd_mips_elf_create_dynamic_sections.
5460 Otherwise, we should define the symbol with a value of 0.
5461 FIXME: It should probably get into the symbol table
5462 somehow as well. */
5463 BFD_ASSERT (! bfd_link_pic (info));
5464 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5465 symbol = 0;
5466 }
5467 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5468 {
5469 /* This is an optional symbol - an Irix specific extension to the
5470 ELF spec. Ignore it for now.
5471 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5472 than simply ignoring them, but we do not handle this for now.
5473 For information see the "64-bit ELF Object File Specification"
5474 which is available from here:
5475 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5476 symbol = 0;
5477 }
5478 else
5479 {
5480 (*info->callbacks->undefined_symbol)
5481 (info, h->root.root.root.string, input_bfd,
5482 input_section, relocation->r_offset,
5483 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5484 || ELF_ST_VISIBILITY (h->root.other));
5485 return bfd_reloc_undefined;
5486 }
5487
5488 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5489 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5490 }
5491
5492 /* If this is a reference to a 16-bit function with a stub, we need
5493 to redirect the relocation to the stub unless:
5494
5495 (a) the relocation is for a MIPS16 JAL;
5496
5497 (b) the relocation is for a MIPS16 PIC call, and there are no
5498 non-MIPS16 uses of the GOT slot; or
5499
5500 (c) the section allows direct references to MIPS16 functions. */
5501 if (r_type != R_MIPS16_26
5502 && !bfd_link_relocatable (info)
5503 && ((h != NULL
5504 && h->fn_stub != NULL
5505 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5506 || (local_p
5507 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5508 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5509 && !section_allows_mips16_refs_p (input_section))
5510 {
5511 /* This is a 32- or 64-bit call to a 16-bit function. We should
5512 have already noticed that we were going to need the
5513 stub. */
5514 if (local_p)
5515 {
5516 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5517 value = 0;
5518 }
5519 else
5520 {
5521 BFD_ASSERT (h->need_fn_stub);
5522 if (h->la25_stub)
5523 {
5524 /* If a LA25 header for the stub itself exists, point to the
5525 prepended LUI/ADDIU sequence. */
5526 sec = h->la25_stub->stub_section;
5527 value = h->la25_stub->offset;
5528 }
5529 else
5530 {
5531 sec = h->fn_stub;
5532 value = 0;
5533 }
5534 }
5535
5536 symbol = sec->output_section->vma + sec->output_offset + value;
5537 /* The target is 16-bit, but the stub isn't. */
5538 target_is_16_bit_code_p = FALSE;
5539 }
5540 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5541 to a standard MIPS function, we need to redirect the call to the stub.
5542 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5543 indirect calls should use an indirect stub instead. */
5544 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5545 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5546 || (local_p
5547 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5548 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5549 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5550 {
5551 if (local_p)
5552 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5553 else
5554 {
5555 /* If both call_stub and call_fp_stub are defined, we can figure
5556 out which one to use by checking which one appears in the input
5557 file. */
5558 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5559 {
5560 asection *o;
5561
5562 sec = NULL;
5563 for (o = input_bfd->sections; o != NULL; o = o->next)
5564 {
5565 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5566 {
5567 sec = h->call_fp_stub;
5568 break;
5569 }
5570 }
5571 if (sec == NULL)
5572 sec = h->call_stub;
5573 }
5574 else if (h->call_stub != NULL)
5575 sec = h->call_stub;
5576 else
5577 sec = h->call_fp_stub;
5578 }
5579
5580 BFD_ASSERT (sec->size > 0);
5581 symbol = sec->output_section->vma + sec->output_offset;
5582 }
5583 /* If this is a direct call to a PIC function, redirect to the
5584 non-PIC stub. */
5585 else if (h != NULL && h->la25_stub
5586 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5587 target_is_16_bit_code_p))
5588 {
5589 symbol = (h->la25_stub->stub_section->output_section->vma
5590 + h->la25_stub->stub_section->output_offset
5591 + h->la25_stub->offset);
5592 if (ELF_ST_IS_MICROMIPS (h->root.other))
5593 symbol |= 1;
5594 }
5595 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5596 entry is used if a standard PLT entry has also been made. In this
5597 case the symbol will have been set by mips_elf_set_plt_sym_value
5598 to point to the standard PLT entry, so redirect to the compressed
5599 one. */
5600 else if ((mips16_branch_reloc_p (r_type)
5601 || micromips_branch_reloc_p (r_type))
5602 && !bfd_link_relocatable (info)
5603 && h != NULL
5604 && h->use_plt_entry
5605 && h->root.plt.plist->comp_offset != MINUS_ONE
5606 && h->root.plt.plist->mips_offset != MINUS_ONE)
5607 {
5608 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5609
5610 sec = htab->root.splt;
5611 symbol = (sec->output_section->vma
5612 + sec->output_offset
5613 + htab->plt_header_size
5614 + htab->plt_mips_offset
5615 + h->root.plt.plist->comp_offset
5616 + 1);
5617
5618 target_is_16_bit_code_p = !micromips_p;
5619 target_is_micromips_code_p = micromips_p;
5620 }
5621
5622 /* Make sure MIPS16 and microMIPS are not used together. */
5623 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5624 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5625 {
5626 _bfd_error_handler
5627 (_("MIPS16 and microMIPS functions cannot call each other"));
5628 return bfd_reloc_notsupported;
5629 }
5630
5631 /* Calls from 16-bit code to 32-bit code and vice versa require the
5632 mode change. However, we can ignore calls to undefined weak symbols,
5633 which should never be executed at runtime. This exception is important
5634 because the assembly writer may have "known" that any definition of the
5635 symbol would be 16-bit code, and that direct jumps were therefore
5636 acceptable. */
5637 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5638 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5639 && ((mips16_branch_reloc_p (r_type)
5640 && !target_is_16_bit_code_p)
5641 || (micromips_branch_reloc_p (r_type)
5642 && !target_is_micromips_code_p)
5643 || ((branch_reloc_p (r_type)
5644 || r_type == R_MIPS_JALR)
5645 && (target_is_16_bit_code_p
5646 || target_is_micromips_code_p))));
5647
5648 local_p = (h == NULL || mips_use_local_got_p (info, h));
5649
5650 gp0 = _bfd_get_gp_value (input_bfd);
5651 gp = _bfd_get_gp_value (abfd);
5652 if (htab->got_info)
5653 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5654
5655 if (gnu_local_gp_p)
5656 symbol = gp;
5657
5658 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5659 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5660 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5661 if (got_page_reloc_p (r_type) && !local_p)
5662 {
5663 r_type = (micromips_reloc_p (r_type)
5664 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5665 addend = 0;
5666 }
5667
5668 /* If we haven't already determined the GOT offset, and we're going
5669 to need it, get it now. */
5670 switch (r_type)
5671 {
5672 case R_MIPS16_CALL16:
5673 case R_MIPS16_GOT16:
5674 case R_MIPS_CALL16:
5675 case R_MIPS_GOT16:
5676 case R_MIPS_GOT_DISP:
5677 case R_MIPS_GOT_HI16:
5678 case R_MIPS_CALL_HI16:
5679 case R_MIPS_GOT_LO16:
5680 case R_MIPS_CALL_LO16:
5681 case R_MICROMIPS_CALL16:
5682 case R_MICROMIPS_GOT16:
5683 case R_MICROMIPS_GOT_DISP:
5684 case R_MICROMIPS_GOT_HI16:
5685 case R_MICROMIPS_CALL_HI16:
5686 case R_MICROMIPS_GOT_LO16:
5687 case R_MICROMIPS_CALL_LO16:
5688 case R_MIPS_TLS_GD:
5689 case R_MIPS_TLS_GOTTPREL:
5690 case R_MIPS_TLS_LDM:
5691 case R_MIPS16_TLS_GD:
5692 case R_MIPS16_TLS_GOTTPREL:
5693 case R_MIPS16_TLS_LDM:
5694 case R_MICROMIPS_TLS_GD:
5695 case R_MICROMIPS_TLS_GOTTPREL:
5696 case R_MICROMIPS_TLS_LDM:
5697 /* Find the index into the GOT where this value is located. */
5698 if (tls_ldm_reloc_p (r_type))
5699 {
5700 g = mips_elf_local_got_index (abfd, input_bfd, info,
5701 0, 0, NULL, r_type);
5702 if (g == MINUS_ONE)
5703 return bfd_reloc_outofrange;
5704 }
5705 else if (!local_p)
5706 {
5707 /* On VxWorks, CALL relocations should refer to the .got.plt
5708 entry, which is initialized to point at the PLT stub. */
5709 if (htab->is_vxworks
5710 && (call_hi16_reloc_p (r_type)
5711 || call_lo16_reloc_p (r_type)
5712 || call16_reloc_p (r_type)))
5713 {
5714 BFD_ASSERT (addend == 0);
5715 BFD_ASSERT (h->root.needs_plt);
5716 g = mips_elf_gotplt_index (info, &h->root);
5717 }
5718 else
5719 {
5720 BFD_ASSERT (addend == 0);
5721 g = mips_elf_global_got_index (abfd, info, input_bfd,
5722 &h->root, r_type);
5723 if (!TLS_RELOC_P (r_type)
5724 && !elf_hash_table (info)->dynamic_sections_created)
5725 /* This is a static link. We must initialize the GOT entry. */
5726 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5727 }
5728 }
5729 else if (!htab->is_vxworks
5730 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5731 /* The calculation below does not involve "g". */
5732 break;
5733 else
5734 {
5735 g = mips_elf_local_got_index (abfd, input_bfd, info,
5736 symbol + addend, r_symndx, h, r_type);
5737 if (g == MINUS_ONE)
5738 return bfd_reloc_outofrange;
5739 }
5740
5741 /* Convert GOT indices to actual offsets. */
5742 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5743 break;
5744 }
5745
5746 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5747 symbols are resolved by the loader. Add them to .rela.dyn. */
5748 if (h != NULL && is_gott_symbol (info, &h->root))
5749 {
5750 Elf_Internal_Rela outrel;
5751 bfd_byte *loc;
5752 asection *s;
5753
5754 s = mips_elf_rel_dyn_section (info, FALSE);
5755 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5756
5757 outrel.r_offset = (input_section->output_section->vma
5758 + input_section->output_offset
5759 + relocation->r_offset);
5760 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5761 outrel.r_addend = addend;
5762 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5763
5764 /* If we've written this relocation for a readonly section,
5765 we need to set DF_TEXTREL again, so that we do not delete the
5766 DT_TEXTREL tag. */
5767 if (MIPS_ELF_READONLY_SECTION (input_section))
5768 info->flags |= DF_TEXTREL;
5769
5770 *valuep = 0;
5771 return bfd_reloc_ok;
5772 }
5773
5774 /* Figure out what kind of relocation is being performed. */
5775 switch (r_type)
5776 {
5777 case R_MIPS_NONE:
5778 return bfd_reloc_continue;
5779
5780 case R_MIPS_16:
5781 if (howto->partial_inplace)
5782 addend = _bfd_mips_elf_sign_extend (addend, 16);
5783 value = symbol + addend;
5784 overflowed_p = mips_elf_overflow_p (value, 16);
5785 break;
5786
5787 case R_MIPS_32:
5788 case R_MIPS_REL32:
5789 case R_MIPS_64:
5790 if ((bfd_link_pic (info)
5791 || (htab->root.dynamic_sections_created
5792 && h != NULL
5793 && h->root.def_dynamic
5794 && !h->root.def_regular
5795 && !h->has_static_relocs))
5796 && r_symndx != STN_UNDEF
5797 && (h == NULL
5798 || h->root.root.type != bfd_link_hash_undefweak
5799 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5800 && (input_section->flags & SEC_ALLOC) != 0)
5801 {
5802 /* If we're creating a shared library, then we can't know
5803 where the symbol will end up. So, we create a relocation
5804 record in the output, and leave the job up to the dynamic
5805 linker. We must do the same for executable references to
5806 shared library symbols, unless we've decided to use copy
5807 relocs or PLTs instead. */
5808 value = addend;
5809 if (!mips_elf_create_dynamic_relocation (abfd,
5810 info,
5811 relocation,
5812 h,
5813 sec,
5814 symbol,
5815 &value,
5816 input_section))
5817 return bfd_reloc_undefined;
5818 }
5819 else
5820 {
5821 if (r_type != R_MIPS_REL32)
5822 value = symbol + addend;
5823 else
5824 value = addend;
5825 }
5826 value &= howto->dst_mask;
5827 break;
5828
5829 case R_MIPS_PC32:
5830 value = symbol + addend - p;
5831 value &= howto->dst_mask;
5832 break;
5833
5834 case R_MIPS16_26:
5835 /* The calculation for R_MIPS16_26 is just the same as for an
5836 R_MIPS_26. It's only the storage of the relocated field into
5837 the output file that's different. That's handled in
5838 mips_elf_perform_relocation. So, we just fall through to the
5839 R_MIPS_26 case here. */
5840 case R_MIPS_26:
5841 case R_MICROMIPS_26_S1:
5842 {
5843 unsigned int shift;
5844
5845 /* Shift is 2, unusually, for microMIPS JALX. */
5846 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5847
5848 if (howto->partial_inplace && !section_p)
5849 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5850 else
5851 value = addend;
5852 value += symbol;
5853
5854 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5855 be the correct ISA mode selector except for weak undefined
5856 symbols. */
5857 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5858 && (*cross_mode_jump_p
5859 ? (value & 3) != (r_type == R_MIPS_26)
5860 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5861 return bfd_reloc_outofrange;
5862
5863 value >>= shift;
5864 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5865 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5866 value &= howto->dst_mask;
5867 }
5868 break;
5869
5870 case R_MIPS_TLS_DTPREL_HI16:
5871 case R_MIPS16_TLS_DTPREL_HI16:
5872 case R_MICROMIPS_TLS_DTPREL_HI16:
5873 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5874 & howto->dst_mask);
5875 break;
5876
5877 case R_MIPS_TLS_DTPREL_LO16:
5878 case R_MIPS_TLS_DTPREL32:
5879 case R_MIPS_TLS_DTPREL64:
5880 case R_MIPS16_TLS_DTPREL_LO16:
5881 case R_MICROMIPS_TLS_DTPREL_LO16:
5882 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5883 break;
5884
5885 case R_MIPS_TLS_TPREL_HI16:
5886 case R_MIPS16_TLS_TPREL_HI16:
5887 case R_MICROMIPS_TLS_TPREL_HI16:
5888 value = (mips_elf_high (addend + symbol - tprel_base (info))
5889 & howto->dst_mask);
5890 break;
5891
5892 case R_MIPS_TLS_TPREL_LO16:
5893 case R_MIPS_TLS_TPREL32:
5894 case R_MIPS_TLS_TPREL64:
5895 case R_MIPS16_TLS_TPREL_LO16:
5896 case R_MICROMIPS_TLS_TPREL_LO16:
5897 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5898 break;
5899
5900 case R_MIPS_HI16:
5901 case R_MIPS16_HI16:
5902 case R_MICROMIPS_HI16:
5903 if (!gp_disp_p)
5904 {
5905 value = mips_elf_high (addend + symbol);
5906 value &= howto->dst_mask;
5907 }
5908 else
5909 {
5910 /* For MIPS16 ABI code we generate this sequence
5911 0: li $v0,%hi(_gp_disp)
5912 4: addiupc $v1,%lo(_gp_disp)
5913 8: sll $v0,16
5914 12: addu $v0,$v1
5915 14: move $gp,$v0
5916 So the offsets of hi and lo relocs are the same, but the
5917 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5918 ADDIUPC clears the low two bits of the instruction address,
5919 so the base is ($t9 + 4) & ~3. */
5920 if (r_type == R_MIPS16_HI16)
5921 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5922 /* The microMIPS .cpload sequence uses the same assembly
5923 instructions as the traditional psABI version, but the
5924 incoming $t9 has the low bit set. */
5925 else if (r_type == R_MICROMIPS_HI16)
5926 value = mips_elf_high (addend + gp - p - 1);
5927 else
5928 value = mips_elf_high (addend + gp - p);
5929 }
5930 break;
5931
5932 case R_MIPS_LO16:
5933 case R_MIPS16_LO16:
5934 case R_MICROMIPS_LO16:
5935 case R_MICROMIPS_HI0_LO16:
5936 if (!gp_disp_p)
5937 value = (symbol + addend) & howto->dst_mask;
5938 else
5939 {
5940 /* See the comment for R_MIPS16_HI16 above for the reason
5941 for this conditional. */
5942 if (r_type == R_MIPS16_LO16)
5943 value = addend + gp - (p & ~(bfd_vma) 0x3);
5944 else if (r_type == R_MICROMIPS_LO16
5945 || r_type == R_MICROMIPS_HI0_LO16)
5946 value = addend + gp - p + 3;
5947 else
5948 value = addend + gp - p + 4;
5949 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5950 for overflow. But, on, say, IRIX5, relocations against
5951 _gp_disp are normally generated from the .cpload
5952 pseudo-op. It generates code that normally looks like
5953 this:
5954
5955 lui $gp,%hi(_gp_disp)
5956 addiu $gp,$gp,%lo(_gp_disp)
5957 addu $gp,$gp,$t9
5958
5959 Here $t9 holds the address of the function being called,
5960 as required by the MIPS ELF ABI. The R_MIPS_LO16
5961 relocation can easily overflow in this situation, but the
5962 R_MIPS_HI16 relocation will handle the overflow.
5963 Therefore, we consider this a bug in the MIPS ABI, and do
5964 not check for overflow here. */
5965 }
5966 break;
5967
5968 case R_MIPS_LITERAL:
5969 case R_MICROMIPS_LITERAL:
5970 /* Because we don't merge literal sections, we can handle this
5971 just like R_MIPS_GPREL16. In the long run, we should merge
5972 shared literals, and then we will need to additional work
5973 here. */
5974
5975 /* Fall through. */
5976
5977 case R_MIPS16_GPREL:
5978 /* The R_MIPS16_GPREL performs the same calculation as
5979 R_MIPS_GPREL16, but stores the relocated bits in a different
5980 order. We don't need to do anything special here; the
5981 differences are handled in mips_elf_perform_relocation. */
5982 case R_MIPS_GPREL16:
5983 case R_MICROMIPS_GPREL7_S2:
5984 case R_MICROMIPS_GPREL16:
5985 /* Only sign-extend the addend if it was extracted from the
5986 instruction. If the addend was separate, leave it alone,
5987 otherwise we may lose significant bits. */
5988 if (howto->partial_inplace)
5989 addend = _bfd_mips_elf_sign_extend (addend, 16);
5990 value = symbol + addend - gp;
5991 /* If the symbol was local, any earlier relocatable links will
5992 have adjusted its addend with the gp offset, so compensate
5993 for that now. Don't do it for symbols forced local in this
5994 link, though, since they won't have had the gp offset applied
5995 to them before. */
5996 if (was_local_p)
5997 value += gp0;
5998 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5999 overflowed_p = mips_elf_overflow_p (value, 16);
6000 break;
6001
6002 case R_MIPS16_GOT16:
6003 case R_MIPS16_CALL16:
6004 case R_MIPS_GOT16:
6005 case R_MIPS_CALL16:
6006 case R_MICROMIPS_GOT16:
6007 case R_MICROMIPS_CALL16:
6008 /* VxWorks does not have separate local and global semantics for
6009 R_MIPS*_GOT16; every relocation evaluates to "G". */
6010 if (!htab->is_vxworks && local_p)
6011 {
6012 value = mips_elf_got16_entry (abfd, input_bfd, info,
6013 symbol + addend, !was_local_p);
6014 if (value == MINUS_ONE)
6015 return bfd_reloc_outofrange;
6016 value
6017 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6018 overflowed_p = mips_elf_overflow_p (value, 16);
6019 break;
6020 }
6021
6022 /* Fall through. */
6023
6024 case R_MIPS_TLS_GD:
6025 case R_MIPS_TLS_GOTTPREL:
6026 case R_MIPS_TLS_LDM:
6027 case R_MIPS_GOT_DISP:
6028 case R_MIPS16_TLS_GD:
6029 case R_MIPS16_TLS_GOTTPREL:
6030 case R_MIPS16_TLS_LDM:
6031 case R_MICROMIPS_TLS_GD:
6032 case R_MICROMIPS_TLS_GOTTPREL:
6033 case R_MICROMIPS_TLS_LDM:
6034 case R_MICROMIPS_GOT_DISP:
6035 value = g;
6036 overflowed_p = mips_elf_overflow_p (value, 16);
6037 break;
6038
6039 case R_MIPS_GPREL32:
6040 value = (addend + symbol + gp0 - gp);
6041 if (!save_addend)
6042 value &= howto->dst_mask;
6043 break;
6044
6045 case R_MIPS_PC16:
6046 case R_MIPS_GNU_REL16_S2:
6047 if (howto->partial_inplace)
6048 addend = _bfd_mips_elf_sign_extend (addend, 18);
6049
6050 /* No need to exclude weak undefined symbols here as they resolve
6051 to 0 and never set `*cross_mode_jump_p', so this alignment check
6052 will never trigger for them. */
6053 if (*cross_mode_jump_p
6054 ? ((symbol + addend) & 3) != 1
6055 : ((symbol + addend) & 3) != 0)
6056 return bfd_reloc_outofrange;
6057
6058 value = symbol + addend - p;
6059 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6060 overflowed_p = mips_elf_overflow_p (value, 18);
6061 value >>= howto->rightshift;
6062 value &= howto->dst_mask;
6063 break;
6064
6065 case R_MIPS16_PC16_S1:
6066 if (howto->partial_inplace)
6067 addend = _bfd_mips_elf_sign_extend (addend, 17);
6068
6069 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6070 && (*cross_mode_jump_p
6071 ? ((symbol + addend) & 3) != 0
6072 : ((symbol + addend) & 1) == 0))
6073 return bfd_reloc_outofrange;
6074
6075 value = symbol + addend - p;
6076 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6077 overflowed_p = mips_elf_overflow_p (value, 17);
6078 value >>= howto->rightshift;
6079 value &= howto->dst_mask;
6080 break;
6081
6082 case R_MIPS_PC21_S2:
6083 if (howto->partial_inplace)
6084 addend = _bfd_mips_elf_sign_extend (addend, 23);
6085
6086 if ((symbol + addend) & 3)
6087 return bfd_reloc_outofrange;
6088
6089 value = symbol + addend - p;
6090 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6091 overflowed_p = mips_elf_overflow_p (value, 23);
6092 value >>= howto->rightshift;
6093 value &= howto->dst_mask;
6094 break;
6095
6096 case R_MIPS_PC26_S2:
6097 if (howto->partial_inplace)
6098 addend = _bfd_mips_elf_sign_extend (addend, 28);
6099
6100 if ((symbol + addend) & 3)
6101 return bfd_reloc_outofrange;
6102
6103 value = symbol + addend - p;
6104 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6105 overflowed_p = mips_elf_overflow_p (value, 28);
6106 value >>= howto->rightshift;
6107 value &= howto->dst_mask;
6108 break;
6109
6110 case R_MIPS_PC18_S3:
6111 if (howto->partial_inplace)
6112 addend = _bfd_mips_elf_sign_extend (addend, 21);
6113
6114 if ((symbol + addend) & 7)
6115 return bfd_reloc_outofrange;
6116
6117 value = symbol + addend - ((p | 7) ^ 7);
6118 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6119 overflowed_p = mips_elf_overflow_p (value, 21);
6120 value >>= howto->rightshift;
6121 value &= howto->dst_mask;
6122 break;
6123
6124 case R_MIPS_PC19_S2:
6125 if (howto->partial_inplace)
6126 addend = _bfd_mips_elf_sign_extend (addend, 21);
6127
6128 if ((symbol + addend) & 3)
6129 return bfd_reloc_outofrange;
6130
6131 value = symbol + addend - p;
6132 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6133 overflowed_p = mips_elf_overflow_p (value, 21);
6134 value >>= howto->rightshift;
6135 value &= howto->dst_mask;
6136 break;
6137
6138 case R_MIPS_PCHI16:
6139 value = mips_elf_high (symbol + addend - p);
6140 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6141 overflowed_p = mips_elf_overflow_p (value, 16);
6142 value &= howto->dst_mask;
6143 break;
6144
6145 case R_MIPS_PCLO16:
6146 if (howto->partial_inplace)
6147 addend = _bfd_mips_elf_sign_extend (addend, 16);
6148 value = symbol + addend - p;
6149 value &= howto->dst_mask;
6150 break;
6151
6152 case R_MICROMIPS_PC7_S1:
6153 if (howto->partial_inplace)
6154 addend = _bfd_mips_elf_sign_extend (addend, 8);
6155
6156 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6157 && (*cross_mode_jump_p
6158 ? ((symbol + addend + 2) & 3) != 0
6159 : ((symbol + addend + 2) & 1) == 0))
6160 return bfd_reloc_outofrange;
6161
6162 value = symbol + addend - p;
6163 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6164 overflowed_p = mips_elf_overflow_p (value, 8);
6165 value >>= howto->rightshift;
6166 value &= howto->dst_mask;
6167 break;
6168
6169 case R_MICROMIPS_PC10_S1:
6170 if (howto->partial_inplace)
6171 addend = _bfd_mips_elf_sign_extend (addend, 11);
6172
6173 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6174 && (*cross_mode_jump_p
6175 ? ((symbol + addend + 2) & 3) != 0
6176 : ((symbol + addend + 2) & 1) == 0))
6177 return bfd_reloc_outofrange;
6178
6179 value = symbol + addend - p;
6180 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6181 overflowed_p = mips_elf_overflow_p (value, 11);
6182 value >>= howto->rightshift;
6183 value &= howto->dst_mask;
6184 break;
6185
6186 case R_MICROMIPS_PC16_S1:
6187 if (howto->partial_inplace)
6188 addend = _bfd_mips_elf_sign_extend (addend, 17);
6189
6190 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6191 && (*cross_mode_jump_p
6192 ? ((symbol + addend) & 3) != 0
6193 : ((symbol + addend) & 1) == 0))
6194 return bfd_reloc_outofrange;
6195
6196 value = symbol + addend - p;
6197 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6198 overflowed_p = mips_elf_overflow_p (value, 17);
6199 value >>= howto->rightshift;
6200 value &= howto->dst_mask;
6201 break;
6202
6203 case R_MICROMIPS_PC23_S2:
6204 if (howto->partial_inplace)
6205 addend = _bfd_mips_elf_sign_extend (addend, 25);
6206 value = symbol + addend - ((p | 3) ^ 3);
6207 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6208 overflowed_p = mips_elf_overflow_p (value, 25);
6209 value >>= howto->rightshift;
6210 value &= howto->dst_mask;
6211 break;
6212
6213 case R_MIPS_GOT_HI16:
6214 case R_MIPS_CALL_HI16:
6215 case R_MICROMIPS_GOT_HI16:
6216 case R_MICROMIPS_CALL_HI16:
6217 /* We're allowed to handle these two relocations identically.
6218 The dynamic linker is allowed to handle the CALL relocations
6219 differently by creating a lazy evaluation stub. */
6220 value = g;
6221 value = mips_elf_high (value);
6222 value &= howto->dst_mask;
6223 break;
6224
6225 case R_MIPS_GOT_LO16:
6226 case R_MIPS_CALL_LO16:
6227 case R_MICROMIPS_GOT_LO16:
6228 case R_MICROMIPS_CALL_LO16:
6229 value = g & howto->dst_mask;
6230 break;
6231
6232 case R_MIPS_GOT_PAGE:
6233 case R_MICROMIPS_GOT_PAGE:
6234 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6235 if (value == MINUS_ONE)
6236 return bfd_reloc_outofrange;
6237 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6238 overflowed_p = mips_elf_overflow_p (value, 16);
6239 break;
6240
6241 case R_MIPS_GOT_OFST:
6242 case R_MICROMIPS_GOT_OFST:
6243 if (local_p)
6244 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6245 else
6246 value = addend;
6247 overflowed_p = mips_elf_overflow_p (value, 16);
6248 break;
6249
6250 case R_MIPS_SUB:
6251 case R_MICROMIPS_SUB:
6252 value = symbol - addend;
6253 value &= howto->dst_mask;
6254 break;
6255
6256 case R_MIPS_HIGHER:
6257 case R_MICROMIPS_HIGHER:
6258 value = mips_elf_higher (addend + symbol);
6259 value &= howto->dst_mask;
6260 break;
6261
6262 case R_MIPS_HIGHEST:
6263 case R_MICROMIPS_HIGHEST:
6264 value = mips_elf_highest (addend + symbol);
6265 value &= howto->dst_mask;
6266 break;
6267
6268 case R_MIPS_SCN_DISP:
6269 case R_MICROMIPS_SCN_DISP:
6270 value = symbol + addend - sec->output_offset;
6271 value &= howto->dst_mask;
6272 break;
6273
6274 case R_MIPS_JALR:
6275 case R_MICROMIPS_JALR:
6276 /* This relocation is only a hint. In some cases, we optimize
6277 it into a bal instruction. But we don't try to optimize
6278 when the symbol does not resolve locally. */
6279 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6280 return bfd_reloc_continue;
6281 value = symbol + addend;
6282 break;
6283
6284 case R_MIPS_PJUMP:
6285 case R_MIPS_GNU_VTINHERIT:
6286 case R_MIPS_GNU_VTENTRY:
6287 /* We don't do anything with these at present. */
6288 return bfd_reloc_continue;
6289
6290 default:
6291 /* An unrecognized relocation type. */
6292 return bfd_reloc_notsupported;
6293 }
6294
6295 /* Store the VALUE for our caller. */
6296 *valuep = value;
6297 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6298 }
6299
6300 /* Obtain the field relocated by RELOCATION. */
6301
6302 static bfd_vma
6303 mips_elf_obtain_contents (reloc_howto_type *howto,
6304 const Elf_Internal_Rela *relocation,
6305 bfd *input_bfd, bfd_byte *contents)
6306 {
6307 bfd_vma x = 0;
6308 bfd_byte *location = contents + relocation->r_offset;
6309 unsigned int size = bfd_get_reloc_size (howto);
6310
6311 /* Obtain the bytes. */
6312 if (size != 0)
6313 x = bfd_get (8 * size, input_bfd, location);
6314
6315 return x;
6316 }
6317
6318 /* It has been determined that the result of the RELOCATION is the
6319 VALUE. Use HOWTO to place VALUE into the output file at the
6320 appropriate position. The SECTION is the section to which the
6321 relocation applies.
6322 CROSS_MODE_JUMP_P is true if the relocation field
6323 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6324
6325 Returns FALSE if anything goes wrong. */
6326
6327 static bfd_boolean
6328 mips_elf_perform_relocation (struct bfd_link_info *info,
6329 reloc_howto_type *howto,
6330 const Elf_Internal_Rela *relocation,
6331 bfd_vma value, bfd *input_bfd,
6332 asection *input_section, bfd_byte *contents,
6333 bfd_boolean cross_mode_jump_p)
6334 {
6335 bfd_vma x;
6336 bfd_byte *location;
6337 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6338 unsigned int size;
6339
6340 /* Figure out where the relocation is occurring. */
6341 location = contents + relocation->r_offset;
6342
6343 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6344
6345 /* Obtain the current value. */
6346 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6347
6348 /* Clear the field we are setting. */
6349 x &= ~howto->dst_mask;
6350
6351 /* Set the field. */
6352 x |= (value & howto->dst_mask);
6353
6354 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6355 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6356 {
6357 bfd_vma opcode = x >> 26;
6358
6359 if (r_type == R_MIPS16_26 ? opcode == 0x7
6360 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6361 : opcode == 0x1d)
6362 {
6363 info->callbacks->einfo
6364 (_("%X%H: Unsupported JALX to the same ISA mode\n"),
6365 input_bfd, input_section, relocation->r_offset);
6366 return TRUE;
6367 }
6368 }
6369 if (cross_mode_jump_p && jal_reloc_p (r_type))
6370 {
6371 bfd_boolean ok;
6372 bfd_vma opcode = x >> 26;
6373 bfd_vma jalx_opcode;
6374
6375 /* Check to see if the opcode is already JAL or JALX. */
6376 if (r_type == R_MIPS16_26)
6377 {
6378 ok = ((opcode == 0x6) || (opcode == 0x7));
6379 jalx_opcode = 0x7;
6380 }
6381 else if (r_type == R_MICROMIPS_26_S1)
6382 {
6383 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6384 jalx_opcode = 0x3c;
6385 }
6386 else
6387 {
6388 ok = ((opcode == 0x3) || (opcode == 0x1d));
6389 jalx_opcode = 0x1d;
6390 }
6391
6392 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6393 convert J or JALS to JALX. */
6394 if (!ok)
6395 {
6396 info->callbacks->einfo
6397 (_("%X%H: Unsupported jump between ISA modes; "
6398 "consider recompiling with interlinking enabled\n"),
6399 input_bfd, input_section, relocation->r_offset);
6400 return TRUE;
6401 }
6402
6403 /* Make this the JALX opcode. */
6404 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6405 }
6406 else if (cross_mode_jump_p && b_reloc_p (r_type))
6407 {
6408 bfd_boolean ok = FALSE;
6409 bfd_vma opcode = x >> 16;
6410 bfd_vma jalx_opcode = 0;
6411 bfd_vma addr;
6412 bfd_vma dest;
6413
6414 if (r_type == R_MICROMIPS_PC16_S1)
6415 {
6416 ok = opcode == 0x4060;
6417 jalx_opcode = 0x3c;
6418 value <<= 1;
6419 }
6420 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6421 {
6422 ok = opcode == 0x411;
6423 jalx_opcode = 0x1d;
6424 value <<= 2;
6425 }
6426
6427 if (ok && !bfd_link_pic (info))
6428 {
6429 addr = (input_section->output_section->vma
6430 + input_section->output_offset
6431 + relocation->r_offset
6432 + 4);
6433 dest = addr + (((value & 0x3ffff) ^ 0x20000) - 0x20000);
6434
6435 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6436 {
6437 info->callbacks->einfo
6438 (_("%X%H: Cannot convert branch between ISA modes "
6439 "to JALX: relocation out of range\n"),
6440 input_bfd, input_section, relocation->r_offset);
6441 return TRUE;
6442 }
6443
6444 /* Make this the JALX opcode. */
6445 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6446 }
6447 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6448 {
6449 info->callbacks->einfo
6450 (_("%X%H: Unsupported branch between ISA modes\n"),
6451 input_bfd, input_section, relocation->r_offset);
6452 return TRUE;
6453 }
6454 }
6455
6456 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6457 range. */
6458 if (!bfd_link_relocatable (info)
6459 && !cross_mode_jump_p
6460 && ((JAL_TO_BAL_P (input_bfd)
6461 && r_type == R_MIPS_26
6462 && (x >> 26) == 0x3) /* jal addr */
6463 || (JALR_TO_BAL_P (input_bfd)
6464 && r_type == R_MIPS_JALR
6465 && x == 0x0320f809) /* jalr t9 */
6466 || (JR_TO_B_P (input_bfd)
6467 && r_type == R_MIPS_JALR
6468 && x == 0x03200008))) /* jr t9 */
6469 {
6470 bfd_vma addr;
6471 bfd_vma dest;
6472 bfd_signed_vma off;
6473
6474 addr = (input_section->output_section->vma
6475 + input_section->output_offset
6476 + relocation->r_offset
6477 + 4);
6478 if (r_type == R_MIPS_26)
6479 dest = (value << 2) | ((addr >> 28) << 28);
6480 else
6481 dest = value;
6482 off = dest - addr;
6483 if (off <= 0x1ffff && off >= -0x20000)
6484 {
6485 if (x == 0x03200008) /* jr t9 */
6486 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6487 else
6488 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6489 }
6490 }
6491
6492 /* Put the value into the output. */
6493 size = bfd_get_reloc_size (howto);
6494 if (size != 0)
6495 bfd_put (8 * size, input_bfd, x, location);
6496
6497 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6498 location);
6499
6500 return TRUE;
6501 }
6502 \f
6503 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6504 is the original relocation, which is now being transformed into a
6505 dynamic relocation. The ADDENDP is adjusted if necessary; the
6506 caller should store the result in place of the original addend. */
6507
6508 static bfd_boolean
6509 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6510 struct bfd_link_info *info,
6511 const Elf_Internal_Rela *rel,
6512 struct mips_elf_link_hash_entry *h,
6513 asection *sec, bfd_vma symbol,
6514 bfd_vma *addendp, asection *input_section)
6515 {
6516 Elf_Internal_Rela outrel[3];
6517 asection *sreloc;
6518 bfd *dynobj;
6519 int r_type;
6520 long indx;
6521 bfd_boolean defined_p;
6522 struct mips_elf_link_hash_table *htab;
6523
6524 htab = mips_elf_hash_table (info);
6525 BFD_ASSERT (htab != NULL);
6526
6527 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6528 dynobj = elf_hash_table (info)->dynobj;
6529 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6530 BFD_ASSERT (sreloc != NULL);
6531 BFD_ASSERT (sreloc->contents != NULL);
6532 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6533 < sreloc->size);
6534
6535 outrel[0].r_offset =
6536 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6537 if (ABI_64_P (output_bfd))
6538 {
6539 outrel[1].r_offset =
6540 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6541 outrel[2].r_offset =
6542 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6543 }
6544
6545 if (outrel[0].r_offset == MINUS_ONE)
6546 /* The relocation field has been deleted. */
6547 return TRUE;
6548
6549 if (outrel[0].r_offset == MINUS_TWO)
6550 {
6551 /* The relocation field has been converted into a relative value of
6552 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6553 the field to be fully relocated, so add in the symbol's value. */
6554 *addendp += symbol;
6555 return TRUE;
6556 }
6557
6558 /* We must now calculate the dynamic symbol table index to use
6559 in the relocation. */
6560 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6561 {
6562 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6563 indx = h->root.dynindx;
6564 if (SGI_COMPAT (output_bfd))
6565 defined_p = h->root.def_regular;
6566 else
6567 /* ??? glibc's ld.so just adds the final GOT entry to the
6568 relocation field. It therefore treats relocs against
6569 defined symbols in the same way as relocs against
6570 undefined symbols. */
6571 defined_p = FALSE;
6572 }
6573 else
6574 {
6575 if (sec != NULL && bfd_is_abs_section (sec))
6576 indx = 0;
6577 else if (sec == NULL || sec->owner == NULL)
6578 {
6579 bfd_set_error (bfd_error_bad_value);
6580 return FALSE;
6581 }
6582 else
6583 {
6584 indx = elf_section_data (sec->output_section)->dynindx;
6585 if (indx == 0)
6586 {
6587 asection *osec = htab->root.text_index_section;
6588 indx = elf_section_data (osec)->dynindx;
6589 }
6590 if (indx == 0)
6591 abort ();
6592 }
6593
6594 /* Instead of generating a relocation using the section
6595 symbol, we may as well make it a fully relative
6596 relocation. We want to avoid generating relocations to
6597 local symbols because we used to generate them
6598 incorrectly, without adding the original symbol value,
6599 which is mandated by the ABI for section symbols. In
6600 order to give dynamic loaders and applications time to
6601 phase out the incorrect use, we refrain from emitting
6602 section-relative relocations. It's not like they're
6603 useful, after all. This should be a bit more efficient
6604 as well. */
6605 /* ??? Although this behavior is compatible with glibc's ld.so,
6606 the ABI says that relocations against STN_UNDEF should have
6607 a symbol value of 0. Irix rld honors this, so relocations
6608 against STN_UNDEF have no effect. */
6609 if (!SGI_COMPAT (output_bfd))
6610 indx = 0;
6611 defined_p = TRUE;
6612 }
6613
6614 /* If the relocation was previously an absolute relocation and
6615 this symbol will not be referred to by the relocation, we must
6616 adjust it by the value we give it in the dynamic symbol table.
6617 Otherwise leave the job up to the dynamic linker. */
6618 if (defined_p && r_type != R_MIPS_REL32)
6619 *addendp += symbol;
6620
6621 if (htab->is_vxworks)
6622 /* VxWorks uses non-relative relocations for this. */
6623 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6624 else
6625 /* The relocation is always an REL32 relocation because we don't
6626 know where the shared library will wind up at load-time. */
6627 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6628 R_MIPS_REL32);
6629
6630 /* For strict adherence to the ABI specification, we should
6631 generate a R_MIPS_64 relocation record by itself before the
6632 _REL32/_64 record as well, such that the addend is read in as
6633 a 64-bit value (REL32 is a 32-bit relocation, after all).
6634 However, since none of the existing ELF64 MIPS dynamic
6635 loaders seems to care, we don't waste space with these
6636 artificial relocations. If this turns out to not be true,
6637 mips_elf_allocate_dynamic_relocation() should be tweaked so
6638 as to make room for a pair of dynamic relocations per
6639 invocation if ABI_64_P, and here we should generate an
6640 additional relocation record with R_MIPS_64 by itself for a
6641 NULL symbol before this relocation record. */
6642 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6643 ABI_64_P (output_bfd)
6644 ? R_MIPS_64
6645 : R_MIPS_NONE);
6646 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6647
6648 /* Adjust the output offset of the relocation to reference the
6649 correct location in the output file. */
6650 outrel[0].r_offset += (input_section->output_section->vma
6651 + input_section->output_offset);
6652 outrel[1].r_offset += (input_section->output_section->vma
6653 + input_section->output_offset);
6654 outrel[2].r_offset += (input_section->output_section->vma
6655 + input_section->output_offset);
6656
6657 /* Put the relocation back out. We have to use the special
6658 relocation outputter in the 64-bit case since the 64-bit
6659 relocation format is non-standard. */
6660 if (ABI_64_P (output_bfd))
6661 {
6662 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6663 (output_bfd, &outrel[0],
6664 (sreloc->contents
6665 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6666 }
6667 else if (htab->is_vxworks)
6668 {
6669 /* VxWorks uses RELA rather than REL dynamic relocations. */
6670 outrel[0].r_addend = *addendp;
6671 bfd_elf32_swap_reloca_out
6672 (output_bfd, &outrel[0],
6673 (sreloc->contents
6674 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6675 }
6676 else
6677 bfd_elf32_swap_reloc_out
6678 (output_bfd, &outrel[0],
6679 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6680
6681 /* We've now added another relocation. */
6682 ++sreloc->reloc_count;
6683
6684 /* Make sure the output section is writable. The dynamic linker
6685 will be writing to it. */
6686 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6687 |= SHF_WRITE;
6688
6689 /* On IRIX5, make an entry of compact relocation info. */
6690 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6691 {
6692 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6693 bfd_byte *cr;
6694
6695 if (scpt)
6696 {
6697 Elf32_crinfo cptrel;
6698
6699 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6700 cptrel.vaddr = (rel->r_offset
6701 + input_section->output_section->vma
6702 + input_section->output_offset);
6703 if (r_type == R_MIPS_REL32)
6704 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6705 else
6706 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6707 mips_elf_set_cr_dist2to (cptrel, 0);
6708 cptrel.konst = *addendp;
6709
6710 cr = (scpt->contents
6711 + sizeof (Elf32_External_compact_rel));
6712 mips_elf_set_cr_relvaddr (cptrel, 0);
6713 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6714 ((Elf32_External_crinfo *) cr
6715 + scpt->reloc_count));
6716 ++scpt->reloc_count;
6717 }
6718 }
6719
6720 /* If we've written this relocation for a readonly section,
6721 we need to set DF_TEXTREL again, so that we do not delete the
6722 DT_TEXTREL tag. */
6723 if (MIPS_ELF_READONLY_SECTION (input_section))
6724 info->flags |= DF_TEXTREL;
6725
6726 return TRUE;
6727 }
6728 \f
6729 /* Return the MACH for a MIPS e_flags value. */
6730
6731 unsigned long
6732 _bfd_elf_mips_mach (flagword flags)
6733 {
6734 switch (flags & EF_MIPS_MACH)
6735 {
6736 case E_MIPS_MACH_3900:
6737 return bfd_mach_mips3900;
6738
6739 case E_MIPS_MACH_4010:
6740 return bfd_mach_mips4010;
6741
6742 case E_MIPS_MACH_4100:
6743 return bfd_mach_mips4100;
6744
6745 case E_MIPS_MACH_4111:
6746 return bfd_mach_mips4111;
6747
6748 case E_MIPS_MACH_4120:
6749 return bfd_mach_mips4120;
6750
6751 case E_MIPS_MACH_4650:
6752 return bfd_mach_mips4650;
6753
6754 case E_MIPS_MACH_5400:
6755 return bfd_mach_mips5400;
6756
6757 case E_MIPS_MACH_5500:
6758 return bfd_mach_mips5500;
6759
6760 case E_MIPS_MACH_5900:
6761 return bfd_mach_mips5900;
6762
6763 case E_MIPS_MACH_9000:
6764 return bfd_mach_mips9000;
6765
6766 case E_MIPS_MACH_SB1:
6767 return bfd_mach_mips_sb1;
6768
6769 case E_MIPS_MACH_LS2E:
6770 return bfd_mach_mips_loongson_2e;
6771
6772 case E_MIPS_MACH_LS2F:
6773 return bfd_mach_mips_loongson_2f;
6774
6775 case E_MIPS_MACH_LS3A:
6776 return bfd_mach_mips_loongson_3a;
6777
6778 case E_MIPS_MACH_OCTEON3:
6779 return bfd_mach_mips_octeon3;
6780
6781 case E_MIPS_MACH_OCTEON2:
6782 return bfd_mach_mips_octeon2;
6783
6784 case E_MIPS_MACH_OCTEON:
6785 return bfd_mach_mips_octeon;
6786
6787 case E_MIPS_MACH_XLR:
6788 return bfd_mach_mips_xlr;
6789
6790 default:
6791 switch (flags & EF_MIPS_ARCH)
6792 {
6793 default:
6794 case E_MIPS_ARCH_1:
6795 return bfd_mach_mips3000;
6796
6797 case E_MIPS_ARCH_2:
6798 return bfd_mach_mips6000;
6799
6800 case E_MIPS_ARCH_3:
6801 return bfd_mach_mips4000;
6802
6803 case E_MIPS_ARCH_4:
6804 return bfd_mach_mips8000;
6805
6806 case E_MIPS_ARCH_5:
6807 return bfd_mach_mips5;
6808
6809 case E_MIPS_ARCH_32:
6810 return bfd_mach_mipsisa32;
6811
6812 case E_MIPS_ARCH_64:
6813 return bfd_mach_mipsisa64;
6814
6815 case E_MIPS_ARCH_32R2:
6816 return bfd_mach_mipsisa32r2;
6817
6818 case E_MIPS_ARCH_64R2:
6819 return bfd_mach_mipsisa64r2;
6820
6821 case E_MIPS_ARCH_32R6:
6822 return bfd_mach_mipsisa32r6;
6823
6824 case E_MIPS_ARCH_64R6:
6825 return bfd_mach_mipsisa64r6;
6826 }
6827 }
6828
6829 return 0;
6830 }
6831
6832 /* Return printable name for ABI. */
6833
6834 static INLINE char *
6835 elf_mips_abi_name (bfd *abfd)
6836 {
6837 flagword flags;
6838
6839 flags = elf_elfheader (abfd)->e_flags;
6840 switch (flags & EF_MIPS_ABI)
6841 {
6842 case 0:
6843 if (ABI_N32_P (abfd))
6844 return "N32";
6845 else if (ABI_64_P (abfd))
6846 return "64";
6847 else
6848 return "none";
6849 case E_MIPS_ABI_O32:
6850 return "O32";
6851 case E_MIPS_ABI_O64:
6852 return "O64";
6853 case E_MIPS_ABI_EABI32:
6854 return "EABI32";
6855 case E_MIPS_ABI_EABI64:
6856 return "EABI64";
6857 default:
6858 return "unknown abi";
6859 }
6860 }
6861 \f
6862 /* MIPS ELF uses two common sections. One is the usual one, and the
6863 other is for small objects. All the small objects are kept
6864 together, and then referenced via the gp pointer, which yields
6865 faster assembler code. This is what we use for the small common
6866 section. This approach is copied from ecoff.c. */
6867 static asection mips_elf_scom_section;
6868 static asymbol mips_elf_scom_symbol;
6869 static asymbol *mips_elf_scom_symbol_ptr;
6870
6871 /* MIPS ELF also uses an acommon section, which represents an
6872 allocated common symbol which may be overridden by a
6873 definition in a shared library. */
6874 static asection mips_elf_acom_section;
6875 static asymbol mips_elf_acom_symbol;
6876 static asymbol *mips_elf_acom_symbol_ptr;
6877
6878 /* This is used for both the 32-bit and the 64-bit ABI. */
6879
6880 void
6881 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6882 {
6883 elf_symbol_type *elfsym;
6884
6885 /* Handle the special MIPS section numbers that a symbol may use. */
6886 elfsym = (elf_symbol_type *) asym;
6887 switch (elfsym->internal_elf_sym.st_shndx)
6888 {
6889 case SHN_MIPS_ACOMMON:
6890 /* This section is used in a dynamically linked executable file.
6891 It is an allocated common section. The dynamic linker can
6892 either resolve these symbols to something in a shared
6893 library, or it can just leave them here. For our purposes,
6894 we can consider these symbols to be in a new section. */
6895 if (mips_elf_acom_section.name == NULL)
6896 {
6897 /* Initialize the acommon section. */
6898 mips_elf_acom_section.name = ".acommon";
6899 mips_elf_acom_section.flags = SEC_ALLOC;
6900 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6901 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6902 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6903 mips_elf_acom_symbol.name = ".acommon";
6904 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6905 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6906 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6907 }
6908 asym->section = &mips_elf_acom_section;
6909 break;
6910
6911 case SHN_COMMON:
6912 /* Common symbols less than the GP size are automatically
6913 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6914 if (asym->value > elf_gp_size (abfd)
6915 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6916 || IRIX_COMPAT (abfd) == ict_irix6)
6917 break;
6918 /* Fall through. */
6919 case SHN_MIPS_SCOMMON:
6920 if (mips_elf_scom_section.name == NULL)
6921 {
6922 /* Initialize the small common section. */
6923 mips_elf_scom_section.name = ".scommon";
6924 mips_elf_scom_section.flags = SEC_IS_COMMON;
6925 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6926 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6927 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6928 mips_elf_scom_symbol.name = ".scommon";
6929 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6930 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6931 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6932 }
6933 asym->section = &mips_elf_scom_section;
6934 asym->value = elfsym->internal_elf_sym.st_size;
6935 break;
6936
6937 case SHN_MIPS_SUNDEFINED:
6938 asym->section = bfd_und_section_ptr;
6939 break;
6940
6941 case SHN_MIPS_TEXT:
6942 {
6943 asection *section = bfd_get_section_by_name (abfd, ".text");
6944
6945 if (section != NULL)
6946 {
6947 asym->section = section;
6948 /* MIPS_TEXT is a bit special, the address is not an offset
6949 to the base of the .text section. So substract the section
6950 base address to make it an offset. */
6951 asym->value -= section->vma;
6952 }
6953 }
6954 break;
6955
6956 case SHN_MIPS_DATA:
6957 {
6958 asection *section = bfd_get_section_by_name (abfd, ".data");
6959
6960 if (section != NULL)
6961 {
6962 asym->section = section;
6963 /* MIPS_DATA is a bit special, the address is not an offset
6964 to the base of the .data section. So substract the section
6965 base address to make it an offset. */
6966 asym->value -= section->vma;
6967 }
6968 }
6969 break;
6970 }
6971
6972 /* If this is an odd-valued function symbol, assume it's a MIPS16
6973 or microMIPS one. */
6974 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6975 && (asym->value & 1) != 0)
6976 {
6977 asym->value--;
6978 if (MICROMIPS_P (abfd))
6979 elfsym->internal_elf_sym.st_other
6980 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6981 else
6982 elfsym->internal_elf_sym.st_other
6983 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6984 }
6985 }
6986 \f
6987 /* Implement elf_backend_eh_frame_address_size. This differs from
6988 the default in the way it handles EABI64.
6989
6990 EABI64 was originally specified as an LP64 ABI, and that is what
6991 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6992 historically accepted the combination of -mabi=eabi and -mlong32,
6993 and this ILP32 variation has become semi-official over time.
6994 Both forms use elf32 and have pointer-sized FDE addresses.
6995
6996 If an EABI object was generated by GCC 4.0 or above, it will have
6997 an empty .gcc_compiled_longXX section, where XX is the size of longs
6998 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6999 have no special marking to distinguish them from LP64 objects.
7000
7001 We don't want users of the official LP64 ABI to be punished for the
7002 existence of the ILP32 variant, but at the same time, we don't want
7003 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7004 We therefore take the following approach:
7005
7006 - If ABFD contains a .gcc_compiled_longXX section, use it to
7007 determine the pointer size.
7008
7009 - Otherwise check the type of the first relocation. Assume that
7010 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7011
7012 - Otherwise punt.
7013
7014 The second check is enough to detect LP64 objects generated by pre-4.0
7015 compilers because, in the kind of output generated by those compilers,
7016 the first relocation will be associated with either a CIE personality
7017 routine or an FDE start address. Furthermore, the compilers never
7018 used a special (non-pointer) encoding for this ABI.
7019
7020 Checking the relocation type should also be safe because there is no
7021 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7022 did so. */
7023
7024 unsigned int
7025 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
7026 {
7027 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7028 return 8;
7029 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7030 {
7031 bfd_boolean long32_p, long64_p;
7032
7033 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7034 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7035 if (long32_p && long64_p)
7036 return 0;
7037 if (long32_p)
7038 return 4;
7039 if (long64_p)
7040 return 8;
7041
7042 if (sec->reloc_count > 0
7043 && elf_section_data (sec)->relocs != NULL
7044 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7045 == R_MIPS_64))
7046 return 8;
7047
7048 return 0;
7049 }
7050 return 4;
7051 }
7052 \f
7053 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7054 relocations against two unnamed section symbols to resolve to the
7055 same address. For example, if we have code like:
7056
7057 lw $4,%got_disp(.data)($gp)
7058 lw $25,%got_disp(.text)($gp)
7059 jalr $25
7060
7061 then the linker will resolve both relocations to .data and the program
7062 will jump there rather than to .text.
7063
7064 We can work around this problem by giving names to local section symbols.
7065 This is also what the MIPSpro tools do. */
7066
7067 bfd_boolean
7068 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7069 {
7070 return SGI_COMPAT (abfd);
7071 }
7072 \f
7073 /* Work over a section just before writing it out. This routine is
7074 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7075 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7076 a better way. */
7077
7078 bfd_boolean
7079 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7080 {
7081 if (hdr->sh_type == SHT_MIPS_REGINFO
7082 && hdr->sh_size > 0)
7083 {
7084 bfd_byte buf[4];
7085
7086 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
7087 BFD_ASSERT (hdr->contents == NULL);
7088
7089 if (bfd_seek (abfd,
7090 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7091 SEEK_SET) != 0)
7092 return FALSE;
7093 H_PUT_32 (abfd, elf_gp (abfd), buf);
7094 if (bfd_bwrite (buf, 4, abfd) != 4)
7095 return FALSE;
7096 }
7097
7098 if (hdr->sh_type == SHT_MIPS_OPTIONS
7099 && hdr->bfd_section != NULL
7100 && mips_elf_section_data (hdr->bfd_section) != NULL
7101 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7102 {
7103 bfd_byte *contents, *l, *lend;
7104
7105 /* We stored the section contents in the tdata field in the
7106 set_section_contents routine. We save the section contents
7107 so that we don't have to read them again.
7108 At this point we know that elf_gp is set, so we can look
7109 through the section contents to see if there is an
7110 ODK_REGINFO structure. */
7111
7112 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7113 l = contents;
7114 lend = contents + hdr->sh_size;
7115 while (l + sizeof (Elf_External_Options) <= lend)
7116 {
7117 Elf_Internal_Options intopt;
7118
7119 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7120 &intopt);
7121 if (intopt.size < sizeof (Elf_External_Options))
7122 {
7123 _bfd_error_handler
7124 /* xgettext:c-format */
7125 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7126 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7127 break;
7128 }
7129 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7130 {
7131 bfd_byte buf[8];
7132
7133 if (bfd_seek (abfd,
7134 (hdr->sh_offset
7135 + (l - contents)
7136 + sizeof (Elf_External_Options)
7137 + (sizeof (Elf64_External_RegInfo) - 8)),
7138 SEEK_SET) != 0)
7139 return FALSE;
7140 H_PUT_64 (abfd, elf_gp (abfd), buf);
7141 if (bfd_bwrite (buf, 8, abfd) != 8)
7142 return FALSE;
7143 }
7144 else if (intopt.kind == ODK_REGINFO)
7145 {
7146 bfd_byte buf[4];
7147
7148 if (bfd_seek (abfd,
7149 (hdr->sh_offset
7150 + (l - contents)
7151 + sizeof (Elf_External_Options)
7152 + (sizeof (Elf32_External_RegInfo) - 4)),
7153 SEEK_SET) != 0)
7154 return FALSE;
7155 H_PUT_32 (abfd, elf_gp (abfd), buf);
7156 if (bfd_bwrite (buf, 4, abfd) != 4)
7157 return FALSE;
7158 }
7159 l += intopt.size;
7160 }
7161 }
7162
7163 if (hdr->bfd_section != NULL)
7164 {
7165 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7166
7167 /* .sbss is not handled specially here because the GNU/Linux
7168 prelinker can convert .sbss from NOBITS to PROGBITS and
7169 changing it back to NOBITS breaks the binary. The entry in
7170 _bfd_mips_elf_special_sections will ensure the correct flags
7171 are set on .sbss if BFD creates it without reading it from an
7172 input file, and without special handling here the flags set
7173 on it in an input file will be followed. */
7174 if (strcmp (name, ".sdata") == 0
7175 || strcmp (name, ".lit8") == 0
7176 || strcmp (name, ".lit4") == 0)
7177 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7178 else if (strcmp (name, ".srdata") == 0)
7179 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7180 else if (strcmp (name, ".compact_rel") == 0)
7181 hdr->sh_flags = 0;
7182 else if (strcmp (name, ".rtproc") == 0)
7183 {
7184 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7185 {
7186 unsigned int adjust;
7187
7188 adjust = hdr->sh_size % hdr->sh_addralign;
7189 if (adjust != 0)
7190 hdr->sh_size += hdr->sh_addralign - adjust;
7191 }
7192 }
7193 }
7194
7195 return TRUE;
7196 }
7197
7198 /* Handle a MIPS specific section when reading an object file. This
7199 is called when elfcode.h finds a section with an unknown type.
7200 This routine supports both the 32-bit and 64-bit ELF ABI.
7201
7202 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7203 how to. */
7204
7205 bfd_boolean
7206 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7207 Elf_Internal_Shdr *hdr,
7208 const char *name,
7209 int shindex)
7210 {
7211 flagword flags = 0;
7212
7213 /* There ought to be a place to keep ELF backend specific flags, but
7214 at the moment there isn't one. We just keep track of the
7215 sections by their name, instead. Fortunately, the ABI gives
7216 suggested names for all the MIPS specific sections, so we will
7217 probably get away with this. */
7218 switch (hdr->sh_type)
7219 {
7220 case SHT_MIPS_LIBLIST:
7221 if (strcmp (name, ".liblist") != 0)
7222 return FALSE;
7223 break;
7224 case SHT_MIPS_MSYM:
7225 if (strcmp (name, ".msym") != 0)
7226 return FALSE;
7227 break;
7228 case SHT_MIPS_CONFLICT:
7229 if (strcmp (name, ".conflict") != 0)
7230 return FALSE;
7231 break;
7232 case SHT_MIPS_GPTAB:
7233 if (! CONST_STRNEQ (name, ".gptab."))
7234 return FALSE;
7235 break;
7236 case SHT_MIPS_UCODE:
7237 if (strcmp (name, ".ucode") != 0)
7238 return FALSE;
7239 break;
7240 case SHT_MIPS_DEBUG:
7241 if (strcmp (name, ".mdebug") != 0)
7242 return FALSE;
7243 flags = SEC_DEBUGGING;
7244 break;
7245 case SHT_MIPS_REGINFO:
7246 if (strcmp (name, ".reginfo") != 0
7247 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7248 return FALSE;
7249 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7250 break;
7251 case SHT_MIPS_IFACE:
7252 if (strcmp (name, ".MIPS.interfaces") != 0)
7253 return FALSE;
7254 break;
7255 case SHT_MIPS_CONTENT:
7256 if (! CONST_STRNEQ (name, ".MIPS.content"))
7257 return FALSE;
7258 break;
7259 case SHT_MIPS_OPTIONS:
7260 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7261 return FALSE;
7262 break;
7263 case SHT_MIPS_ABIFLAGS:
7264 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7265 return FALSE;
7266 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7267 break;
7268 case SHT_MIPS_DWARF:
7269 if (! CONST_STRNEQ (name, ".debug_")
7270 && ! CONST_STRNEQ (name, ".zdebug_"))
7271 return FALSE;
7272 break;
7273 case SHT_MIPS_SYMBOL_LIB:
7274 if (strcmp (name, ".MIPS.symlib") != 0)
7275 return FALSE;
7276 break;
7277 case SHT_MIPS_EVENTS:
7278 if (! CONST_STRNEQ (name, ".MIPS.events")
7279 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7280 return FALSE;
7281 break;
7282 default:
7283 break;
7284 }
7285
7286 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7287 return FALSE;
7288
7289 if (flags)
7290 {
7291 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7292 (bfd_get_section_flags (abfd,
7293 hdr->bfd_section)
7294 | flags)))
7295 return FALSE;
7296 }
7297
7298 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7299 {
7300 Elf_External_ABIFlags_v0 ext;
7301
7302 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7303 &ext, 0, sizeof ext))
7304 return FALSE;
7305 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7306 &mips_elf_tdata (abfd)->abiflags);
7307 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7308 return FALSE;
7309 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7310 }
7311
7312 /* FIXME: We should record sh_info for a .gptab section. */
7313
7314 /* For a .reginfo section, set the gp value in the tdata information
7315 from the contents of this section. We need the gp value while
7316 processing relocs, so we just get it now. The .reginfo section
7317 is not used in the 64-bit MIPS ELF ABI. */
7318 if (hdr->sh_type == SHT_MIPS_REGINFO)
7319 {
7320 Elf32_External_RegInfo ext;
7321 Elf32_RegInfo s;
7322
7323 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7324 &ext, 0, sizeof ext))
7325 return FALSE;
7326 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7327 elf_gp (abfd) = s.ri_gp_value;
7328 }
7329
7330 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7331 set the gp value based on what we find. We may see both
7332 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7333 they should agree. */
7334 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7335 {
7336 bfd_byte *contents, *l, *lend;
7337
7338 contents = bfd_malloc (hdr->sh_size);
7339 if (contents == NULL)
7340 return FALSE;
7341 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7342 0, hdr->sh_size))
7343 {
7344 free (contents);
7345 return FALSE;
7346 }
7347 l = contents;
7348 lend = contents + hdr->sh_size;
7349 while (l + sizeof (Elf_External_Options) <= lend)
7350 {
7351 Elf_Internal_Options intopt;
7352
7353 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7354 &intopt);
7355 if (intopt.size < sizeof (Elf_External_Options))
7356 {
7357 _bfd_error_handler
7358 /* xgettext:c-format */
7359 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7360 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7361 break;
7362 }
7363 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7364 {
7365 Elf64_Internal_RegInfo intreg;
7366
7367 bfd_mips_elf64_swap_reginfo_in
7368 (abfd,
7369 ((Elf64_External_RegInfo *)
7370 (l + sizeof (Elf_External_Options))),
7371 &intreg);
7372 elf_gp (abfd) = intreg.ri_gp_value;
7373 }
7374 else if (intopt.kind == ODK_REGINFO)
7375 {
7376 Elf32_RegInfo intreg;
7377
7378 bfd_mips_elf32_swap_reginfo_in
7379 (abfd,
7380 ((Elf32_External_RegInfo *)
7381 (l + sizeof (Elf_External_Options))),
7382 &intreg);
7383 elf_gp (abfd) = intreg.ri_gp_value;
7384 }
7385 l += intopt.size;
7386 }
7387 free (contents);
7388 }
7389
7390 return TRUE;
7391 }
7392
7393 /* Set the correct type for a MIPS ELF section. We do this by the
7394 section name, which is a hack, but ought to work. This routine is
7395 used by both the 32-bit and the 64-bit ABI. */
7396
7397 bfd_boolean
7398 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7399 {
7400 const char *name = bfd_get_section_name (abfd, sec);
7401
7402 if (strcmp (name, ".liblist") == 0)
7403 {
7404 hdr->sh_type = SHT_MIPS_LIBLIST;
7405 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7406 /* The sh_link field is set in final_write_processing. */
7407 }
7408 else if (strcmp (name, ".conflict") == 0)
7409 hdr->sh_type = SHT_MIPS_CONFLICT;
7410 else if (CONST_STRNEQ (name, ".gptab."))
7411 {
7412 hdr->sh_type = SHT_MIPS_GPTAB;
7413 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7414 /* The sh_info field is set in final_write_processing. */
7415 }
7416 else if (strcmp (name, ".ucode") == 0)
7417 hdr->sh_type = SHT_MIPS_UCODE;
7418 else if (strcmp (name, ".mdebug") == 0)
7419 {
7420 hdr->sh_type = SHT_MIPS_DEBUG;
7421 /* In a shared object on IRIX 5.3, the .mdebug section has an
7422 entsize of 0. FIXME: Does this matter? */
7423 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7424 hdr->sh_entsize = 0;
7425 else
7426 hdr->sh_entsize = 1;
7427 }
7428 else if (strcmp (name, ".reginfo") == 0)
7429 {
7430 hdr->sh_type = SHT_MIPS_REGINFO;
7431 /* In a shared object on IRIX 5.3, the .reginfo section has an
7432 entsize of 0x18. FIXME: Does this matter? */
7433 if (SGI_COMPAT (abfd))
7434 {
7435 if ((abfd->flags & DYNAMIC) != 0)
7436 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7437 else
7438 hdr->sh_entsize = 1;
7439 }
7440 else
7441 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7442 }
7443 else if (SGI_COMPAT (abfd)
7444 && (strcmp (name, ".hash") == 0
7445 || strcmp (name, ".dynamic") == 0
7446 || strcmp (name, ".dynstr") == 0))
7447 {
7448 if (SGI_COMPAT (abfd))
7449 hdr->sh_entsize = 0;
7450 #if 0
7451 /* This isn't how the IRIX6 linker behaves. */
7452 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7453 #endif
7454 }
7455 else if (strcmp (name, ".got") == 0
7456 || strcmp (name, ".srdata") == 0
7457 || strcmp (name, ".sdata") == 0
7458 || strcmp (name, ".sbss") == 0
7459 || strcmp (name, ".lit4") == 0
7460 || strcmp (name, ".lit8") == 0)
7461 hdr->sh_flags |= SHF_MIPS_GPREL;
7462 else if (strcmp (name, ".MIPS.interfaces") == 0)
7463 {
7464 hdr->sh_type = SHT_MIPS_IFACE;
7465 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7466 }
7467 else if (CONST_STRNEQ (name, ".MIPS.content"))
7468 {
7469 hdr->sh_type = SHT_MIPS_CONTENT;
7470 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7471 /* The sh_info field is set in final_write_processing. */
7472 }
7473 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7474 {
7475 hdr->sh_type = SHT_MIPS_OPTIONS;
7476 hdr->sh_entsize = 1;
7477 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7478 }
7479 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7480 {
7481 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7482 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7483 }
7484 else if (CONST_STRNEQ (name, ".debug_")
7485 || CONST_STRNEQ (name, ".zdebug_"))
7486 {
7487 hdr->sh_type = SHT_MIPS_DWARF;
7488
7489 /* Irix facilities such as libexc expect a single .debug_frame
7490 per executable, the system ones have NOSTRIP set and the linker
7491 doesn't merge sections with different flags so ... */
7492 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7493 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7494 }
7495 else if (strcmp (name, ".MIPS.symlib") == 0)
7496 {
7497 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7498 /* The sh_link and sh_info fields are set in
7499 final_write_processing. */
7500 }
7501 else if (CONST_STRNEQ (name, ".MIPS.events")
7502 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7503 {
7504 hdr->sh_type = SHT_MIPS_EVENTS;
7505 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7506 /* The sh_link field is set in final_write_processing. */
7507 }
7508 else if (strcmp (name, ".msym") == 0)
7509 {
7510 hdr->sh_type = SHT_MIPS_MSYM;
7511 hdr->sh_flags |= SHF_ALLOC;
7512 hdr->sh_entsize = 8;
7513 }
7514
7515 /* The generic elf_fake_sections will set up REL_HDR using the default
7516 kind of relocations. We used to set up a second header for the
7517 non-default kind of relocations here, but only NewABI would use
7518 these, and the IRIX ld doesn't like resulting empty RELA sections.
7519 Thus we create those header only on demand now. */
7520
7521 return TRUE;
7522 }
7523
7524 /* Given a BFD section, try to locate the corresponding ELF section
7525 index. This is used by both the 32-bit and the 64-bit ABI.
7526 Actually, it's not clear to me that the 64-bit ABI supports these,
7527 but for non-PIC objects we will certainly want support for at least
7528 the .scommon section. */
7529
7530 bfd_boolean
7531 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7532 asection *sec, int *retval)
7533 {
7534 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7535 {
7536 *retval = SHN_MIPS_SCOMMON;
7537 return TRUE;
7538 }
7539 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7540 {
7541 *retval = SHN_MIPS_ACOMMON;
7542 return TRUE;
7543 }
7544 return FALSE;
7545 }
7546 \f
7547 /* Hook called by the linker routine which adds symbols from an object
7548 file. We must handle the special MIPS section numbers here. */
7549
7550 bfd_boolean
7551 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7552 Elf_Internal_Sym *sym, const char **namep,
7553 flagword *flagsp ATTRIBUTE_UNUSED,
7554 asection **secp, bfd_vma *valp)
7555 {
7556 if (SGI_COMPAT (abfd)
7557 && (abfd->flags & DYNAMIC) != 0
7558 && strcmp (*namep, "_rld_new_interface") == 0)
7559 {
7560 /* Skip IRIX5 rld entry name. */
7561 *namep = NULL;
7562 return TRUE;
7563 }
7564
7565 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7566 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7567 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7568 a magic symbol resolved by the linker, we ignore this bogus definition
7569 of _gp_disp. New ABI objects do not suffer from this problem so this
7570 is not done for them. */
7571 if (!NEWABI_P(abfd)
7572 && (sym->st_shndx == SHN_ABS)
7573 && (strcmp (*namep, "_gp_disp") == 0))
7574 {
7575 *namep = NULL;
7576 return TRUE;
7577 }
7578
7579 switch (sym->st_shndx)
7580 {
7581 case SHN_COMMON:
7582 /* Common symbols less than the GP size are automatically
7583 treated as SHN_MIPS_SCOMMON symbols. */
7584 if (sym->st_size > elf_gp_size (abfd)
7585 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7586 || IRIX_COMPAT (abfd) == ict_irix6)
7587 break;
7588 /* Fall through. */
7589 case SHN_MIPS_SCOMMON:
7590 *secp = bfd_make_section_old_way (abfd, ".scommon");
7591 (*secp)->flags |= SEC_IS_COMMON;
7592 *valp = sym->st_size;
7593 break;
7594
7595 case SHN_MIPS_TEXT:
7596 /* This section is used in a shared object. */
7597 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7598 {
7599 asymbol *elf_text_symbol;
7600 asection *elf_text_section;
7601 bfd_size_type amt = sizeof (asection);
7602
7603 elf_text_section = bfd_zalloc (abfd, amt);
7604 if (elf_text_section == NULL)
7605 return FALSE;
7606
7607 amt = sizeof (asymbol);
7608 elf_text_symbol = bfd_zalloc (abfd, amt);
7609 if (elf_text_symbol == NULL)
7610 return FALSE;
7611
7612 /* Initialize the section. */
7613
7614 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7615 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7616
7617 elf_text_section->symbol = elf_text_symbol;
7618 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7619
7620 elf_text_section->name = ".text";
7621 elf_text_section->flags = SEC_NO_FLAGS;
7622 elf_text_section->output_section = NULL;
7623 elf_text_section->owner = abfd;
7624 elf_text_symbol->name = ".text";
7625 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7626 elf_text_symbol->section = elf_text_section;
7627 }
7628 /* This code used to do *secp = bfd_und_section_ptr if
7629 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7630 so I took it out. */
7631 *secp = mips_elf_tdata (abfd)->elf_text_section;
7632 break;
7633
7634 case SHN_MIPS_ACOMMON:
7635 /* Fall through. XXX Can we treat this as allocated data? */
7636 case SHN_MIPS_DATA:
7637 /* This section is used in a shared object. */
7638 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7639 {
7640 asymbol *elf_data_symbol;
7641 asection *elf_data_section;
7642 bfd_size_type amt = sizeof (asection);
7643
7644 elf_data_section = bfd_zalloc (abfd, amt);
7645 if (elf_data_section == NULL)
7646 return FALSE;
7647
7648 amt = sizeof (asymbol);
7649 elf_data_symbol = bfd_zalloc (abfd, amt);
7650 if (elf_data_symbol == NULL)
7651 return FALSE;
7652
7653 /* Initialize the section. */
7654
7655 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7656 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7657
7658 elf_data_section->symbol = elf_data_symbol;
7659 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7660
7661 elf_data_section->name = ".data";
7662 elf_data_section->flags = SEC_NO_FLAGS;
7663 elf_data_section->output_section = NULL;
7664 elf_data_section->owner = abfd;
7665 elf_data_symbol->name = ".data";
7666 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7667 elf_data_symbol->section = elf_data_section;
7668 }
7669 /* This code used to do *secp = bfd_und_section_ptr if
7670 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7671 so I took it out. */
7672 *secp = mips_elf_tdata (abfd)->elf_data_section;
7673 break;
7674
7675 case SHN_MIPS_SUNDEFINED:
7676 *secp = bfd_und_section_ptr;
7677 break;
7678 }
7679
7680 if (SGI_COMPAT (abfd)
7681 && ! bfd_link_pic (info)
7682 && info->output_bfd->xvec == abfd->xvec
7683 && strcmp (*namep, "__rld_obj_head") == 0)
7684 {
7685 struct elf_link_hash_entry *h;
7686 struct bfd_link_hash_entry *bh;
7687
7688 /* Mark __rld_obj_head as dynamic. */
7689 bh = NULL;
7690 if (! (_bfd_generic_link_add_one_symbol
7691 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7692 get_elf_backend_data (abfd)->collect, &bh)))
7693 return FALSE;
7694
7695 h = (struct elf_link_hash_entry *) bh;
7696 h->non_elf = 0;
7697 h->def_regular = 1;
7698 h->type = STT_OBJECT;
7699
7700 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7701 return FALSE;
7702
7703 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7704 mips_elf_hash_table (info)->rld_symbol = h;
7705 }
7706
7707 /* If this is a mips16 text symbol, add 1 to the value to make it
7708 odd. This will cause something like .word SYM to come up with
7709 the right value when it is loaded into the PC. */
7710 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7711 ++*valp;
7712
7713 return TRUE;
7714 }
7715
7716 /* This hook function is called before the linker writes out a global
7717 symbol. We mark symbols as small common if appropriate. This is
7718 also where we undo the increment of the value for a mips16 symbol. */
7719
7720 int
7721 _bfd_mips_elf_link_output_symbol_hook
7722 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7723 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7724 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7725 {
7726 /* If we see a common symbol, which implies a relocatable link, then
7727 if a symbol was small common in an input file, mark it as small
7728 common in the output file. */
7729 if (sym->st_shndx == SHN_COMMON
7730 && strcmp (input_sec->name, ".scommon") == 0)
7731 sym->st_shndx = SHN_MIPS_SCOMMON;
7732
7733 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7734 sym->st_value &= ~1;
7735
7736 return 1;
7737 }
7738 \f
7739 /* Functions for the dynamic linker. */
7740
7741 /* Create dynamic sections when linking against a dynamic object. */
7742
7743 bfd_boolean
7744 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7745 {
7746 struct elf_link_hash_entry *h;
7747 struct bfd_link_hash_entry *bh;
7748 flagword flags;
7749 register asection *s;
7750 const char * const *namep;
7751 struct mips_elf_link_hash_table *htab;
7752
7753 htab = mips_elf_hash_table (info);
7754 BFD_ASSERT (htab != NULL);
7755
7756 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7757 | SEC_LINKER_CREATED | SEC_READONLY);
7758
7759 /* The psABI requires a read-only .dynamic section, but the VxWorks
7760 EABI doesn't. */
7761 if (!htab->is_vxworks)
7762 {
7763 s = bfd_get_linker_section (abfd, ".dynamic");
7764 if (s != NULL)
7765 {
7766 if (! bfd_set_section_flags (abfd, s, flags))
7767 return FALSE;
7768 }
7769 }
7770
7771 /* We need to create .got section. */
7772 if (!mips_elf_create_got_section (abfd, info))
7773 return FALSE;
7774
7775 if (! mips_elf_rel_dyn_section (info, TRUE))
7776 return FALSE;
7777
7778 /* Create .stub section. */
7779 s = bfd_make_section_anyway_with_flags (abfd,
7780 MIPS_ELF_STUB_SECTION_NAME (abfd),
7781 flags | SEC_CODE);
7782 if (s == NULL
7783 || ! bfd_set_section_alignment (abfd, s,
7784 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7785 return FALSE;
7786 htab->sstubs = s;
7787
7788 if (!mips_elf_hash_table (info)->use_rld_obj_head
7789 && bfd_link_executable (info)
7790 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7791 {
7792 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7793 flags &~ (flagword) SEC_READONLY);
7794 if (s == NULL
7795 || ! bfd_set_section_alignment (abfd, s,
7796 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7797 return FALSE;
7798 }
7799
7800 /* On IRIX5, we adjust add some additional symbols and change the
7801 alignments of several sections. There is no ABI documentation
7802 indicating that this is necessary on IRIX6, nor any evidence that
7803 the linker takes such action. */
7804 if (IRIX_COMPAT (abfd) == ict_irix5)
7805 {
7806 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7807 {
7808 bh = NULL;
7809 if (! (_bfd_generic_link_add_one_symbol
7810 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7811 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7812 return FALSE;
7813
7814 h = (struct elf_link_hash_entry *) bh;
7815 h->non_elf = 0;
7816 h->def_regular = 1;
7817 h->type = STT_SECTION;
7818
7819 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7820 return FALSE;
7821 }
7822
7823 /* We need to create a .compact_rel section. */
7824 if (SGI_COMPAT (abfd))
7825 {
7826 if (!mips_elf_create_compact_rel_section (abfd, info))
7827 return FALSE;
7828 }
7829
7830 /* Change alignments of some sections. */
7831 s = bfd_get_linker_section (abfd, ".hash");
7832 if (s != NULL)
7833 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7834
7835 s = bfd_get_linker_section (abfd, ".dynsym");
7836 if (s != NULL)
7837 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7838
7839 s = bfd_get_linker_section (abfd, ".dynstr");
7840 if (s != NULL)
7841 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7842
7843 /* ??? */
7844 s = bfd_get_section_by_name (abfd, ".reginfo");
7845 if (s != NULL)
7846 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7847
7848 s = bfd_get_linker_section (abfd, ".dynamic");
7849 if (s != NULL)
7850 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7851 }
7852
7853 if (bfd_link_executable (info))
7854 {
7855 const char *name;
7856
7857 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7858 bh = NULL;
7859 if (!(_bfd_generic_link_add_one_symbol
7860 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7861 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7862 return FALSE;
7863
7864 h = (struct elf_link_hash_entry *) bh;
7865 h->non_elf = 0;
7866 h->def_regular = 1;
7867 h->type = STT_SECTION;
7868
7869 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7870 return FALSE;
7871
7872 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7873 {
7874 /* __rld_map is a four byte word located in the .data section
7875 and is filled in by the rtld to contain a pointer to
7876 the _r_debug structure. Its symbol value will be set in
7877 _bfd_mips_elf_finish_dynamic_symbol. */
7878 s = bfd_get_linker_section (abfd, ".rld_map");
7879 BFD_ASSERT (s != NULL);
7880
7881 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7882 bh = NULL;
7883 if (!(_bfd_generic_link_add_one_symbol
7884 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7885 get_elf_backend_data (abfd)->collect, &bh)))
7886 return FALSE;
7887
7888 h = (struct elf_link_hash_entry *) bh;
7889 h->non_elf = 0;
7890 h->def_regular = 1;
7891 h->type = STT_OBJECT;
7892
7893 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7894 return FALSE;
7895 mips_elf_hash_table (info)->rld_symbol = h;
7896 }
7897 }
7898
7899 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7900 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7901 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7902 return FALSE;
7903
7904 /* Do the usual VxWorks handling. */
7905 if (htab->is_vxworks
7906 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7907 return FALSE;
7908
7909 return TRUE;
7910 }
7911 \f
7912 /* Return true if relocation REL against section SEC is a REL rather than
7913 RELA relocation. RELOCS is the first relocation in the section and
7914 ABFD is the bfd that contains SEC. */
7915
7916 static bfd_boolean
7917 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7918 const Elf_Internal_Rela *relocs,
7919 const Elf_Internal_Rela *rel)
7920 {
7921 Elf_Internal_Shdr *rel_hdr;
7922 const struct elf_backend_data *bed;
7923
7924 /* To determine which flavor of relocation this is, we depend on the
7925 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7926 rel_hdr = elf_section_data (sec)->rel.hdr;
7927 if (rel_hdr == NULL)
7928 return FALSE;
7929 bed = get_elf_backend_data (abfd);
7930 return ((size_t) (rel - relocs)
7931 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7932 }
7933
7934 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7935 HOWTO is the relocation's howto and CONTENTS points to the contents
7936 of the section that REL is against. */
7937
7938 static bfd_vma
7939 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7940 reloc_howto_type *howto, bfd_byte *contents)
7941 {
7942 bfd_byte *location;
7943 unsigned int r_type;
7944 bfd_vma addend;
7945 bfd_vma bytes;
7946
7947 r_type = ELF_R_TYPE (abfd, rel->r_info);
7948 location = contents + rel->r_offset;
7949
7950 /* Get the addend, which is stored in the input file. */
7951 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7952 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7953 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7954
7955 addend = bytes & howto->src_mask;
7956
7957 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7958 accordingly. */
7959 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7960 addend <<= 1;
7961
7962 return addend;
7963 }
7964
7965 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7966 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7967 and update *ADDEND with the final addend. Return true on success
7968 or false if the LO16 could not be found. RELEND is the exclusive
7969 upper bound on the relocations for REL's section. */
7970
7971 static bfd_boolean
7972 mips_elf_add_lo16_rel_addend (bfd *abfd,
7973 const Elf_Internal_Rela *rel,
7974 const Elf_Internal_Rela *relend,
7975 bfd_byte *contents, bfd_vma *addend)
7976 {
7977 unsigned int r_type, lo16_type;
7978 const Elf_Internal_Rela *lo16_relocation;
7979 reloc_howto_type *lo16_howto;
7980 bfd_vma l;
7981
7982 r_type = ELF_R_TYPE (abfd, rel->r_info);
7983 if (mips16_reloc_p (r_type))
7984 lo16_type = R_MIPS16_LO16;
7985 else if (micromips_reloc_p (r_type))
7986 lo16_type = R_MICROMIPS_LO16;
7987 else if (r_type == R_MIPS_PCHI16)
7988 lo16_type = R_MIPS_PCLO16;
7989 else
7990 lo16_type = R_MIPS_LO16;
7991
7992 /* The combined value is the sum of the HI16 addend, left-shifted by
7993 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7994 code does a `lui' of the HI16 value, and then an `addiu' of the
7995 LO16 value.)
7996
7997 Scan ahead to find a matching LO16 relocation.
7998
7999 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8000 be immediately following. However, for the IRIX6 ABI, the next
8001 relocation may be a composed relocation consisting of several
8002 relocations for the same address. In that case, the R_MIPS_LO16
8003 relocation may occur as one of these. We permit a similar
8004 extension in general, as that is useful for GCC.
8005
8006 In some cases GCC dead code elimination removes the LO16 but keeps
8007 the corresponding HI16. This is strictly speaking a violation of
8008 the ABI but not immediately harmful. */
8009 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8010 if (lo16_relocation == NULL)
8011 return FALSE;
8012
8013 /* Obtain the addend kept there. */
8014 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8015 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8016
8017 l <<= lo16_howto->rightshift;
8018 l = _bfd_mips_elf_sign_extend (l, 16);
8019
8020 *addend <<= 16;
8021 *addend += l;
8022 return TRUE;
8023 }
8024
8025 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8026 store the contents in *CONTENTS on success. Assume that *CONTENTS
8027 already holds the contents if it is nonull on entry. */
8028
8029 static bfd_boolean
8030 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8031 {
8032 if (*contents)
8033 return TRUE;
8034
8035 /* Get cached copy if it exists. */
8036 if (elf_section_data (sec)->this_hdr.contents != NULL)
8037 {
8038 *contents = elf_section_data (sec)->this_hdr.contents;
8039 return TRUE;
8040 }
8041
8042 return bfd_malloc_and_get_section (abfd, sec, contents);
8043 }
8044
8045 /* Make a new PLT record to keep internal data. */
8046
8047 static struct plt_entry *
8048 mips_elf_make_plt_record (bfd *abfd)
8049 {
8050 struct plt_entry *entry;
8051
8052 entry = bfd_zalloc (abfd, sizeof (*entry));
8053 if (entry == NULL)
8054 return NULL;
8055
8056 entry->stub_offset = MINUS_ONE;
8057 entry->mips_offset = MINUS_ONE;
8058 entry->comp_offset = MINUS_ONE;
8059 entry->gotplt_index = MINUS_ONE;
8060 return entry;
8061 }
8062
8063 /* Look through the relocs for a section during the first phase, and
8064 allocate space in the global offset table and record the need for
8065 standard MIPS and compressed procedure linkage table entries. */
8066
8067 bfd_boolean
8068 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8069 asection *sec, const Elf_Internal_Rela *relocs)
8070 {
8071 const char *name;
8072 bfd *dynobj;
8073 Elf_Internal_Shdr *symtab_hdr;
8074 struct elf_link_hash_entry **sym_hashes;
8075 size_t extsymoff;
8076 const Elf_Internal_Rela *rel;
8077 const Elf_Internal_Rela *rel_end;
8078 asection *sreloc;
8079 const struct elf_backend_data *bed;
8080 struct mips_elf_link_hash_table *htab;
8081 bfd_byte *contents;
8082 bfd_vma addend;
8083 reloc_howto_type *howto;
8084
8085 if (bfd_link_relocatable (info))
8086 return TRUE;
8087
8088 htab = mips_elf_hash_table (info);
8089 BFD_ASSERT (htab != NULL);
8090
8091 dynobj = elf_hash_table (info)->dynobj;
8092 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8093 sym_hashes = elf_sym_hashes (abfd);
8094 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8095
8096 bed = get_elf_backend_data (abfd);
8097 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8098
8099 /* Check for the mips16 stub sections. */
8100
8101 name = bfd_get_section_name (abfd, sec);
8102 if (FN_STUB_P (name))
8103 {
8104 unsigned long r_symndx;
8105
8106 /* Look at the relocation information to figure out which symbol
8107 this is for. */
8108
8109 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8110 if (r_symndx == 0)
8111 {
8112 _bfd_error_handler
8113 /* xgettext:c-format */
8114 (_("%B: Warning: cannot determine the target function for"
8115 " stub section `%s'"),
8116 abfd, name);
8117 bfd_set_error (bfd_error_bad_value);
8118 return FALSE;
8119 }
8120
8121 if (r_symndx < extsymoff
8122 || sym_hashes[r_symndx - extsymoff] == NULL)
8123 {
8124 asection *o;
8125
8126 /* This stub is for a local symbol. This stub will only be
8127 needed if there is some relocation in this BFD, other
8128 than a 16 bit function call, which refers to this symbol. */
8129 for (o = abfd->sections; o != NULL; o = o->next)
8130 {
8131 Elf_Internal_Rela *sec_relocs;
8132 const Elf_Internal_Rela *r, *rend;
8133
8134 /* We can ignore stub sections when looking for relocs. */
8135 if ((o->flags & SEC_RELOC) == 0
8136 || o->reloc_count == 0
8137 || section_allows_mips16_refs_p (o))
8138 continue;
8139
8140 sec_relocs
8141 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8142 info->keep_memory);
8143 if (sec_relocs == NULL)
8144 return FALSE;
8145
8146 rend = sec_relocs + o->reloc_count;
8147 for (r = sec_relocs; r < rend; r++)
8148 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8149 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8150 break;
8151
8152 if (elf_section_data (o)->relocs != sec_relocs)
8153 free (sec_relocs);
8154
8155 if (r < rend)
8156 break;
8157 }
8158
8159 if (o == NULL)
8160 {
8161 /* There is no non-call reloc for this stub, so we do
8162 not need it. Since this function is called before
8163 the linker maps input sections to output sections, we
8164 can easily discard it by setting the SEC_EXCLUDE
8165 flag. */
8166 sec->flags |= SEC_EXCLUDE;
8167 return TRUE;
8168 }
8169
8170 /* Record this stub in an array of local symbol stubs for
8171 this BFD. */
8172 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8173 {
8174 unsigned long symcount;
8175 asection **n;
8176 bfd_size_type amt;
8177
8178 if (elf_bad_symtab (abfd))
8179 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8180 else
8181 symcount = symtab_hdr->sh_info;
8182 amt = symcount * sizeof (asection *);
8183 n = bfd_zalloc (abfd, amt);
8184 if (n == NULL)
8185 return FALSE;
8186 mips_elf_tdata (abfd)->local_stubs = n;
8187 }
8188
8189 sec->flags |= SEC_KEEP;
8190 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8191
8192 /* We don't need to set mips16_stubs_seen in this case.
8193 That flag is used to see whether we need to look through
8194 the global symbol table for stubs. We don't need to set
8195 it here, because we just have a local stub. */
8196 }
8197 else
8198 {
8199 struct mips_elf_link_hash_entry *h;
8200
8201 h = ((struct mips_elf_link_hash_entry *)
8202 sym_hashes[r_symndx - extsymoff]);
8203
8204 while (h->root.root.type == bfd_link_hash_indirect
8205 || h->root.root.type == bfd_link_hash_warning)
8206 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8207
8208 /* H is the symbol this stub is for. */
8209
8210 /* If we already have an appropriate stub for this function, we
8211 don't need another one, so we can discard this one. Since
8212 this function is called before the linker maps input sections
8213 to output sections, we can easily discard it by setting the
8214 SEC_EXCLUDE flag. */
8215 if (h->fn_stub != NULL)
8216 {
8217 sec->flags |= SEC_EXCLUDE;
8218 return TRUE;
8219 }
8220
8221 sec->flags |= SEC_KEEP;
8222 h->fn_stub = sec;
8223 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8224 }
8225 }
8226 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8227 {
8228 unsigned long r_symndx;
8229 struct mips_elf_link_hash_entry *h;
8230 asection **loc;
8231
8232 /* Look at the relocation information to figure out which symbol
8233 this is for. */
8234
8235 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8236 if (r_symndx == 0)
8237 {
8238 _bfd_error_handler
8239 /* xgettext:c-format */
8240 (_("%B: Warning: cannot determine the target function for"
8241 " stub section `%s'"),
8242 abfd, name);
8243 bfd_set_error (bfd_error_bad_value);
8244 return FALSE;
8245 }
8246
8247 if (r_symndx < extsymoff
8248 || sym_hashes[r_symndx - extsymoff] == NULL)
8249 {
8250 asection *o;
8251
8252 /* This stub is for a local symbol. This stub will only be
8253 needed if there is some relocation (R_MIPS16_26) in this BFD
8254 that refers to this symbol. */
8255 for (o = abfd->sections; o != NULL; o = o->next)
8256 {
8257 Elf_Internal_Rela *sec_relocs;
8258 const Elf_Internal_Rela *r, *rend;
8259
8260 /* We can ignore stub sections when looking for relocs. */
8261 if ((o->flags & SEC_RELOC) == 0
8262 || o->reloc_count == 0
8263 || section_allows_mips16_refs_p (o))
8264 continue;
8265
8266 sec_relocs
8267 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8268 info->keep_memory);
8269 if (sec_relocs == NULL)
8270 return FALSE;
8271
8272 rend = sec_relocs + o->reloc_count;
8273 for (r = sec_relocs; r < rend; r++)
8274 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8275 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8276 break;
8277
8278 if (elf_section_data (o)->relocs != sec_relocs)
8279 free (sec_relocs);
8280
8281 if (r < rend)
8282 break;
8283 }
8284
8285 if (o == NULL)
8286 {
8287 /* There is no non-call reloc for this stub, so we do
8288 not need it. Since this function is called before
8289 the linker maps input sections to output sections, we
8290 can easily discard it by setting the SEC_EXCLUDE
8291 flag. */
8292 sec->flags |= SEC_EXCLUDE;
8293 return TRUE;
8294 }
8295
8296 /* Record this stub in an array of local symbol call_stubs for
8297 this BFD. */
8298 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8299 {
8300 unsigned long symcount;
8301 asection **n;
8302 bfd_size_type amt;
8303
8304 if (elf_bad_symtab (abfd))
8305 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8306 else
8307 symcount = symtab_hdr->sh_info;
8308 amt = symcount * sizeof (asection *);
8309 n = bfd_zalloc (abfd, amt);
8310 if (n == NULL)
8311 return FALSE;
8312 mips_elf_tdata (abfd)->local_call_stubs = n;
8313 }
8314
8315 sec->flags |= SEC_KEEP;
8316 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8317
8318 /* We don't need to set mips16_stubs_seen in this case.
8319 That flag is used to see whether we need to look through
8320 the global symbol table for stubs. We don't need to set
8321 it here, because we just have a local stub. */
8322 }
8323 else
8324 {
8325 h = ((struct mips_elf_link_hash_entry *)
8326 sym_hashes[r_symndx - extsymoff]);
8327
8328 /* H is the symbol this stub is for. */
8329
8330 if (CALL_FP_STUB_P (name))
8331 loc = &h->call_fp_stub;
8332 else
8333 loc = &h->call_stub;
8334
8335 /* If we already have an appropriate stub for this function, we
8336 don't need another one, so we can discard this one. Since
8337 this function is called before the linker maps input sections
8338 to output sections, we can easily discard it by setting the
8339 SEC_EXCLUDE flag. */
8340 if (*loc != NULL)
8341 {
8342 sec->flags |= SEC_EXCLUDE;
8343 return TRUE;
8344 }
8345
8346 sec->flags |= SEC_KEEP;
8347 *loc = sec;
8348 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8349 }
8350 }
8351
8352 sreloc = NULL;
8353 contents = NULL;
8354 for (rel = relocs; rel < rel_end; ++rel)
8355 {
8356 unsigned long r_symndx;
8357 unsigned int r_type;
8358 struct elf_link_hash_entry *h;
8359 bfd_boolean can_make_dynamic_p;
8360 bfd_boolean call_reloc_p;
8361 bfd_boolean constrain_symbol_p;
8362
8363 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8364 r_type = ELF_R_TYPE (abfd, rel->r_info);
8365
8366 if (r_symndx < extsymoff)
8367 h = NULL;
8368 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8369 {
8370 _bfd_error_handler
8371 /* xgettext:c-format */
8372 (_("%B: Malformed reloc detected for section %s"),
8373 abfd, name);
8374 bfd_set_error (bfd_error_bad_value);
8375 return FALSE;
8376 }
8377 else
8378 {
8379 h = sym_hashes[r_symndx - extsymoff];
8380 if (h != NULL)
8381 {
8382 while (h->root.type == bfd_link_hash_indirect
8383 || h->root.type == bfd_link_hash_warning)
8384 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8385
8386 /* PR15323, ref flags aren't set for references in the
8387 same object. */
8388 h->root.non_ir_ref = 1;
8389 }
8390 }
8391
8392 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8393 relocation into a dynamic one. */
8394 can_make_dynamic_p = FALSE;
8395
8396 /* Set CALL_RELOC_P to true if the relocation is for a call,
8397 and if pointer equality therefore doesn't matter. */
8398 call_reloc_p = FALSE;
8399
8400 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8401 into account when deciding how to define the symbol.
8402 Relocations in nonallocatable sections such as .pdr and
8403 .debug* should have no effect. */
8404 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8405
8406 switch (r_type)
8407 {
8408 case R_MIPS_CALL16:
8409 case R_MIPS_CALL_HI16:
8410 case R_MIPS_CALL_LO16:
8411 case R_MIPS16_CALL16:
8412 case R_MICROMIPS_CALL16:
8413 case R_MICROMIPS_CALL_HI16:
8414 case R_MICROMIPS_CALL_LO16:
8415 call_reloc_p = TRUE;
8416 /* Fall through. */
8417
8418 case R_MIPS_GOT16:
8419 case R_MIPS_GOT_HI16:
8420 case R_MIPS_GOT_LO16:
8421 case R_MIPS_GOT_PAGE:
8422 case R_MIPS_GOT_OFST:
8423 case R_MIPS_GOT_DISP:
8424 case R_MIPS_TLS_GOTTPREL:
8425 case R_MIPS_TLS_GD:
8426 case R_MIPS_TLS_LDM:
8427 case R_MIPS16_GOT16:
8428 case R_MIPS16_TLS_GOTTPREL:
8429 case R_MIPS16_TLS_GD:
8430 case R_MIPS16_TLS_LDM:
8431 case R_MICROMIPS_GOT16:
8432 case R_MICROMIPS_GOT_HI16:
8433 case R_MICROMIPS_GOT_LO16:
8434 case R_MICROMIPS_GOT_PAGE:
8435 case R_MICROMIPS_GOT_OFST:
8436 case R_MICROMIPS_GOT_DISP:
8437 case R_MICROMIPS_TLS_GOTTPREL:
8438 case R_MICROMIPS_TLS_GD:
8439 case R_MICROMIPS_TLS_LDM:
8440 if (dynobj == NULL)
8441 elf_hash_table (info)->dynobj = dynobj = abfd;
8442 if (!mips_elf_create_got_section (dynobj, info))
8443 return FALSE;
8444 if (htab->is_vxworks && !bfd_link_pic (info))
8445 {
8446 _bfd_error_handler
8447 /* xgettext:c-format */
8448 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8449 abfd, (unsigned long) rel->r_offset);
8450 bfd_set_error (bfd_error_bad_value);
8451 return FALSE;
8452 }
8453 can_make_dynamic_p = TRUE;
8454 break;
8455
8456 case R_MIPS_NONE:
8457 case R_MIPS_JALR:
8458 case R_MICROMIPS_JALR:
8459 /* These relocations have empty fields and are purely there to
8460 provide link information. The symbol value doesn't matter. */
8461 constrain_symbol_p = FALSE;
8462 break;
8463
8464 case R_MIPS_GPREL16:
8465 case R_MIPS_GPREL32:
8466 case R_MIPS16_GPREL:
8467 case R_MICROMIPS_GPREL16:
8468 /* GP-relative relocations always resolve to a definition in a
8469 regular input file, ignoring the one-definition rule. This is
8470 important for the GP setup sequence in NewABI code, which
8471 always resolves to a local function even if other relocations
8472 against the symbol wouldn't. */
8473 constrain_symbol_p = FALSE;
8474 break;
8475
8476 case R_MIPS_32:
8477 case R_MIPS_REL32:
8478 case R_MIPS_64:
8479 /* In VxWorks executables, references to external symbols
8480 must be handled using copy relocs or PLT entries; it is not
8481 possible to convert this relocation into a dynamic one.
8482
8483 For executables that use PLTs and copy-relocs, we have a
8484 choice between converting the relocation into a dynamic
8485 one or using copy relocations or PLT entries. It is
8486 usually better to do the former, unless the relocation is
8487 against a read-only section. */
8488 if ((bfd_link_pic (info)
8489 || (h != NULL
8490 && !htab->is_vxworks
8491 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8492 && !(!info->nocopyreloc
8493 && !PIC_OBJECT_P (abfd)
8494 && MIPS_ELF_READONLY_SECTION (sec))))
8495 && (sec->flags & SEC_ALLOC) != 0)
8496 {
8497 can_make_dynamic_p = TRUE;
8498 if (dynobj == NULL)
8499 elf_hash_table (info)->dynobj = dynobj = abfd;
8500 }
8501 break;
8502
8503 case R_MIPS_26:
8504 case R_MIPS_PC16:
8505 case R_MIPS_PC21_S2:
8506 case R_MIPS_PC26_S2:
8507 case R_MIPS16_26:
8508 case R_MIPS16_PC16_S1:
8509 case R_MICROMIPS_26_S1:
8510 case R_MICROMIPS_PC7_S1:
8511 case R_MICROMIPS_PC10_S1:
8512 case R_MICROMIPS_PC16_S1:
8513 case R_MICROMIPS_PC23_S2:
8514 call_reloc_p = TRUE;
8515 break;
8516 }
8517
8518 if (h)
8519 {
8520 if (constrain_symbol_p)
8521 {
8522 if (!can_make_dynamic_p)
8523 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8524
8525 if (!call_reloc_p)
8526 h->pointer_equality_needed = 1;
8527
8528 /* We must not create a stub for a symbol that has
8529 relocations related to taking the function's address.
8530 This doesn't apply to VxWorks, where CALL relocs refer
8531 to a .got.plt entry instead of a normal .got entry. */
8532 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8533 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8534 }
8535
8536 /* Relocations against the special VxWorks __GOTT_BASE__ and
8537 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8538 room for them in .rela.dyn. */
8539 if (is_gott_symbol (info, h))
8540 {
8541 if (sreloc == NULL)
8542 {
8543 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8544 if (sreloc == NULL)
8545 return FALSE;
8546 }
8547 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8548 if (MIPS_ELF_READONLY_SECTION (sec))
8549 /* We tell the dynamic linker that there are
8550 relocations against the text segment. */
8551 info->flags |= DF_TEXTREL;
8552 }
8553 }
8554 else if (call_lo16_reloc_p (r_type)
8555 || got_lo16_reloc_p (r_type)
8556 || got_disp_reloc_p (r_type)
8557 || (got16_reloc_p (r_type) && htab->is_vxworks))
8558 {
8559 /* We may need a local GOT entry for this relocation. We
8560 don't count R_MIPS_GOT_PAGE because we can estimate the
8561 maximum number of pages needed by looking at the size of
8562 the segment. Similar comments apply to R_MIPS*_GOT16 and
8563 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8564 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8565 R_MIPS_CALL_HI16 because these are always followed by an
8566 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8567 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8568 rel->r_addend, info, r_type))
8569 return FALSE;
8570 }
8571
8572 if (h != NULL
8573 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8574 ELF_ST_IS_MIPS16 (h->other)))
8575 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8576
8577 switch (r_type)
8578 {
8579 case R_MIPS_CALL16:
8580 case R_MIPS16_CALL16:
8581 case R_MICROMIPS_CALL16:
8582 if (h == NULL)
8583 {
8584 _bfd_error_handler
8585 /* xgettext:c-format */
8586 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8587 abfd, (unsigned long) rel->r_offset);
8588 bfd_set_error (bfd_error_bad_value);
8589 return FALSE;
8590 }
8591 /* Fall through. */
8592
8593 case R_MIPS_CALL_HI16:
8594 case R_MIPS_CALL_LO16:
8595 case R_MICROMIPS_CALL_HI16:
8596 case R_MICROMIPS_CALL_LO16:
8597 if (h != NULL)
8598 {
8599 /* Make sure there is room in the regular GOT to hold the
8600 function's address. We may eliminate it in favour of
8601 a .got.plt entry later; see mips_elf_count_got_symbols. */
8602 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8603 r_type))
8604 return FALSE;
8605
8606 /* We need a stub, not a plt entry for the undefined
8607 function. But we record it as if it needs plt. See
8608 _bfd_elf_adjust_dynamic_symbol. */
8609 h->needs_plt = 1;
8610 h->type = STT_FUNC;
8611 }
8612 break;
8613
8614 case R_MIPS_GOT_PAGE:
8615 case R_MICROMIPS_GOT_PAGE:
8616 case R_MIPS16_GOT16:
8617 case R_MIPS_GOT16:
8618 case R_MIPS_GOT_HI16:
8619 case R_MIPS_GOT_LO16:
8620 case R_MICROMIPS_GOT16:
8621 case R_MICROMIPS_GOT_HI16:
8622 case R_MICROMIPS_GOT_LO16:
8623 if (!h || got_page_reloc_p (r_type))
8624 {
8625 /* This relocation needs (or may need, if h != NULL) a
8626 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8627 know for sure until we know whether the symbol is
8628 preemptible. */
8629 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8630 {
8631 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8632 return FALSE;
8633 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8634 addend = mips_elf_read_rel_addend (abfd, rel,
8635 howto, contents);
8636 if (got16_reloc_p (r_type))
8637 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8638 contents, &addend);
8639 else
8640 addend <<= howto->rightshift;
8641 }
8642 else
8643 addend = rel->r_addend;
8644 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8645 h, addend))
8646 return FALSE;
8647
8648 if (h)
8649 {
8650 struct mips_elf_link_hash_entry *hmips =
8651 (struct mips_elf_link_hash_entry *) h;
8652
8653 /* This symbol is definitely not overridable. */
8654 if (hmips->root.def_regular
8655 && ! (bfd_link_pic (info) && ! info->symbolic
8656 && ! hmips->root.forced_local))
8657 h = NULL;
8658 }
8659 }
8660 /* If this is a global, overridable symbol, GOT_PAGE will
8661 decay to GOT_DISP, so we'll need a GOT entry for it. */
8662 /* Fall through. */
8663
8664 case R_MIPS_GOT_DISP:
8665 case R_MICROMIPS_GOT_DISP:
8666 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8667 FALSE, r_type))
8668 return FALSE;
8669 break;
8670
8671 case R_MIPS_TLS_GOTTPREL:
8672 case R_MIPS16_TLS_GOTTPREL:
8673 case R_MICROMIPS_TLS_GOTTPREL:
8674 if (bfd_link_pic (info))
8675 info->flags |= DF_STATIC_TLS;
8676 /* Fall through */
8677
8678 case R_MIPS_TLS_LDM:
8679 case R_MIPS16_TLS_LDM:
8680 case R_MICROMIPS_TLS_LDM:
8681 if (tls_ldm_reloc_p (r_type))
8682 {
8683 r_symndx = STN_UNDEF;
8684 h = NULL;
8685 }
8686 /* Fall through */
8687
8688 case R_MIPS_TLS_GD:
8689 case R_MIPS16_TLS_GD:
8690 case R_MICROMIPS_TLS_GD:
8691 /* This symbol requires a global offset table entry, or two
8692 for TLS GD relocations. */
8693 if (h != NULL)
8694 {
8695 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8696 FALSE, r_type))
8697 return FALSE;
8698 }
8699 else
8700 {
8701 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8702 rel->r_addend,
8703 info, r_type))
8704 return FALSE;
8705 }
8706 break;
8707
8708 case R_MIPS_32:
8709 case R_MIPS_REL32:
8710 case R_MIPS_64:
8711 /* In VxWorks executables, references to external symbols
8712 are handled using copy relocs or PLT stubs, so there's
8713 no need to add a .rela.dyn entry for this relocation. */
8714 if (can_make_dynamic_p)
8715 {
8716 if (sreloc == NULL)
8717 {
8718 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8719 if (sreloc == NULL)
8720 return FALSE;
8721 }
8722 if (bfd_link_pic (info) && h == NULL)
8723 {
8724 /* When creating a shared object, we must copy these
8725 reloc types into the output file as R_MIPS_REL32
8726 relocs. Make room for this reloc in .rel(a).dyn. */
8727 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8728 if (MIPS_ELF_READONLY_SECTION (sec))
8729 /* We tell the dynamic linker that there are
8730 relocations against the text segment. */
8731 info->flags |= DF_TEXTREL;
8732 }
8733 else
8734 {
8735 struct mips_elf_link_hash_entry *hmips;
8736
8737 /* For a shared object, we must copy this relocation
8738 unless the symbol turns out to be undefined and
8739 weak with non-default visibility, in which case
8740 it will be left as zero.
8741
8742 We could elide R_MIPS_REL32 for locally binding symbols
8743 in shared libraries, but do not yet do so.
8744
8745 For an executable, we only need to copy this
8746 reloc if the symbol is defined in a dynamic
8747 object. */
8748 hmips = (struct mips_elf_link_hash_entry *) h;
8749 ++hmips->possibly_dynamic_relocs;
8750 if (MIPS_ELF_READONLY_SECTION (sec))
8751 /* We need it to tell the dynamic linker if there
8752 are relocations against the text segment. */
8753 hmips->readonly_reloc = TRUE;
8754 }
8755 }
8756
8757 if (SGI_COMPAT (abfd))
8758 mips_elf_hash_table (info)->compact_rel_size +=
8759 sizeof (Elf32_External_crinfo);
8760 break;
8761
8762 case R_MIPS_26:
8763 case R_MIPS_GPREL16:
8764 case R_MIPS_LITERAL:
8765 case R_MIPS_GPREL32:
8766 case R_MICROMIPS_26_S1:
8767 case R_MICROMIPS_GPREL16:
8768 case R_MICROMIPS_LITERAL:
8769 case R_MICROMIPS_GPREL7_S2:
8770 if (SGI_COMPAT (abfd))
8771 mips_elf_hash_table (info)->compact_rel_size +=
8772 sizeof (Elf32_External_crinfo);
8773 break;
8774
8775 /* This relocation describes the C++ object vtable hierarchy.
8776 Reconstruct it for later use during GC. */
8777 case R_MIPS_GNU_VTINHERIT:
8778 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8779 return FALSE;
8780 break;
8781
8782 /* This relocation describes which C++ vtable entries are actually
8783 used. Record for later use during GC. */
8784 case R_MIPS_GNU_VTENTRY:
8785 BFD_ASSERT (h != NULL);
8786 if (h != NULL
8787 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8788 return FALSE;
8789 break;
8790
8791 default:
8792 break;
8793 }
8794
8795 /* Record the need for a PLT entry. At this point we don't know
8796 yet if we are going to create a PLT in the first place, but
8797 we only record whether the relocation requires a standard MIPS
8798 or a compressed code entry anyway. If we don't make a PLT after
8799 all, then we'll just ignore these arrangements. Likewise if
8800 a PLT entry is not created because the symbol is satisfied
8801 locally. */
8802 if (h != NULL
8803 && (branch_reloc_p (r_type)
8804 || mips16_branch_reloc_p (r_type)
8805 || micromips_branch_reloc_p (r_type))
8806 && !SYMBOL_CALLS_LOCAL (info, h))
8807 {
8808 if (h->plt.plist == NULL)
8809 h->plt.plist = mips_elf_make_plt_record (abfd);
8810 if (h->plt.plist == NULL)
8811 return FALSE;
8812
8813 if (branch_reloc_p (r_type))
8814 h->plt.plist->need_mips = TRUE;
8815 else
8816 h->plt.plist->need_comp = TRUE;
8817 }
8818
8819 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8820 if there is one. We only need to handle global symbols here;
8821 we decide whether to keep or delete stubs for local symbols
8822 when processing the stub's relocations. */
8823 if (h != NULL
8824 && !mips16_call_reloc_p (r_type)
8825 && !section_allows_mips16_refs_p (sec))
8826 {
8827 struct mips_elf_link_hash_entry *mh;
8828
8829 mh = (struct mips_elf_link_hash_entry *) h;
8830 mh->need_fn_stub = TRUE;
8831 }
8832
8833 /* Refuse some position-dependent relocations when creating a
8834 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8835 not PIC, but we can create dynamic relocations and the result
8836 will be fine. Also do not refuse R_MIPS_LO16, which can be
8837 combined with R_MIPS_GOT16. */
8838 if (bfd_link_pic (info))
8839 {
8840 switch (r_type)
8841 {
8842 case R_MIPS16_HI16:
8843 case R_MIPS_HI16:
8844 case R_MIPS_HIGHER:
8845 case R_MIPS_HIGHEST:
8846 case R_MICROMIPS_HI16:
8847 case R_MICROMIPS_HIGHER:
8848 case R_MICROMIPS_HIGHEST:
8849 /* Don't refuse a high part relocation if it's against
8850 no symbol (e.g. part of a compound relocation). */
8851 if (r_symndx == STN_UNDEF)
8852 break;
8853
8854 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8855 and has a special meaning. */
8856 if (!NEWABI_P (abfd) && h != NULL
8857 && strcmp (h->root.root.string, "_gp_disp") == 0)
8858 break;
8859
8860 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8861 if (is_gott_symbol (info, h))
8862 break;
8863
8864 /* FALLTHROUGH */
8865
8866 case R_MIPS16_26:
8867 case R_MIPS_26:
8868 case R_MICROMIPS_26_S1:
8869 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8870 _bfd_error_handler
8871 /* xgettext:c-format */
8872 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8873 abfd, howto->name,
8874 (h) ? h->root.root.string : "a local symbol");
8875 bfd_set_error (bfd_error_bad_value);
8876 return FALSE;
8877 default:
8878 break;
8879 }
8880 }
8881 }
8882
8883 return TRUE;
8884 }
8885 \f
8886 bfd_boolean
8887 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8888 struct bfd_link_info *link_info,
8889 bfd_boolean *again)
8890 {
8891 Elf_Internal_Rela *internal_relocs;
8892 Elf_Internal_Rela *irel, *irelend;
8893 Elf_Internal_Shdr *symtab_hdr;
8894 bfd_byte *contents = NULL;
8895 size_t extsymoff;
8896 bfd_boolean changed_contents = FALSE;
8897 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8898 Elf_Internal_Sym *isymbuf = NULL;
8899
8900 /* We are not currently changing any sizes, so only one pass. */
8901 *again = FALSE;
8902
8903 if (bfd_link_relocatable (link_info))
8904 return TRUE;
8905
8906 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8907 link_info->keep_memory);
8908 if (internal_relocs == NULL)
8909 return TRUE;
8910
8911 irelend = internal_relocs + sec->reloc_count
8912 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8913 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8914 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8915
8916 for (irel = internal_relocs; irel < irelend; irel++)
8917 {
8918 bfd_vma symval;
8919 bfd_signed_vma sym_offset;
8920 unsigned int r_type;
8921 unsigned long r_symndx;
8922 asection *sym_sec;
8923 unsigned long instruction;
8924
8925 /* Turn jalr into bgezal, and jr into beq, if they're marked
8926 with a JALR relocation, that indicate where they jump to.
8927 This saves some pipeline bubbles. */
8928 r_type = ELF_R_TYPE (abfd, irel->r_info);
8929 if (r_type != R_MIPS_JALR)
8930 continue;
8931
8932 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8933 /* Compute the address of the jump target. */
8934 if (r_symndx >= extsymoff)
8935 {
8936 struct mips_elf_link_hash_entry *h
8937 = ((struct mips_elf_link_hash_entry *)
8938 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8939
8940 while (h->root.root.type == bfd_link_hash_indirect
8941 || h->root.root.type == bfd_link_hash_warning)
8942 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8943
8944 /* If a symbol is undefined, or if it may be overridden,
8945 skip it. */
8946 if (! ((h->root.root.type == bfd_link_hash_defined
8947 || h->root.root.type == bfd_link_hash_defweak)
8948 && h->root.root.u.def.section)
8949 || (bfd_link_pic (link_info) && ! link_info->symbolic
8950 && !h->root.forced_local))
8951 continue;
8952
8953 sym_sec = h->root.root.u.def.section;
8954 if (sym_sec->output_section)
8955 symval = (h->root.root.u.def.value
8956 + sym_sec->output_section->vma
8957 + sym_sec->output_offset);
8958 else
8959 symval = h->root.root.u.def.value;
8960 }
8961 else
8962 {
8963 Elf_Internal_Sym *isym;
8964
8965 /* Read this BFD's symbols if we haven't done so already. */
8966 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8967 {
8968 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8969 if (isymbuf == NULL)
8970 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8971 symtab_hdr->sh_info, 0,
8972 NULL, NULL, NULL);
8973 if (isymbuf == NULL)
8974 goto relax_return;
8975 }
8976
8977 isym = isymbuf + r_symndx;
8978 if (isym->st_shndx == SHN_UNDEF)
8979 continue;
8980 else if (isym->st_shndx == SHN_ABS)
8981 sym_sec = bfd_abs_section_ptr;
8982 else if (isym->st_shndx == SHN_COMMON)
8983 sym_sec = bfd_com_section_ptr;
8984 else
8985 sym_sec
8986 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8987 symval = isym->st_value
8988 + sym_sec->output_section->vma
8989 + sym_sec->output_offset;
8990 }
8991
8992 /* Compute branch offset, from delay slot of the jump to the
8993 branch target. */
8994 sym_offset = (symval + irel->r_addend)
8995 - (sec_start + irel->r_offset + 4);
8996
8997 /* Branch offset must be properly aligned. */
8998 if ((sym_offset & 3) != 0)
8999 continue;
9000
9001 sym_offset >>= 2;
9002
9003 /* Check that it's in range. */
9004 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
9005 continue;
9006
9007 /* Get the section contents if we haven't done so already. */
9008 if (!mips_elf_get_section_contents (abfd, sec, &contents))
9009 goto relax_return;
9010
9011 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
9012
9013 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
9014 if ((instruction & 0xfc1fffff) == 0x0000f809)
9015 instruction = 0x04110000;
9016 /* If it was jr <reg>, turn it into b <target>. */
9017 else if ((instruction & 0xfc1fffff) == 0x00000008)
9018 instruction = 0x10000000;
9019 else
9020 continue;
9021
9022 instruction |= (sym_offset & 0xffff);
9023 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
9024 changed_contents = TRUE;
9025 }
9026
9027 if (contents != NULL
9028 && elf_section_data (sec)->this_hdr.contents != contents)
9029 {
9030 if (!changed_contents && !link_info->keep_memory)
9031 free (contents);
9032 else
9033 {
9034 /* Cache the section contents for elf_link_input_bfd. */
9035 elf_section_data (sec)->this_hdr.contents = contents;
9036 }
9037 }
9038 return TRUE;
9039
9040 relax_return:
9041 if (contents != NULL
9042 && elf_section_data (sec)->this_hdr.contents != contents)
9043 free (contents);
9044 return FALSE;
9045 }
9046 \f
9047 /* Allocate space for global sym dynamic relocs. */
9048
9049 static bfd_boolean
9050 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9051 {
9052 struct bfd_link_info *info = inf;
9053 bfd *dynobj;
9054 struct mips_elf_link_hash_entry *hmips;
9055 struct mips_elf_link_hash_table *htab;
9056
9057 htab = mips_elf_hash_table (info);
9058 BFD_ASSERT (htab != NULL);
9059
9060 dynobj = elf_hash_table (info)->dynobj;
9061 hmips = (struct mips_elf_link_hash_entry *) h;
9062
9063 /* VxWorks executables are handled elsewhere; we only need to
9064 allocate relocations in shared objects. */
9065 if (htab->is_vxworks && !bfd_link_pic (info))
9066 return TRUE;
9067
9068 /* Ignore indirect symbols. All relocations against such symbols
9069 will be redirected to the target symbol. */
9070 if (h->root.type == bfd_link_hash_indirect)
9071 return TRUE;
9072
9073 /* If this symbol is defined in a dynamic object, or we are creating
9074 a shared library, we will need to copy any R_MIPS_32 or
9075 R_MIPS_REL32 relocs against it into the output file. */
9076 if (! bfd_link_relocatable (info)
9077 && hmips->possibly_dynamic_relocs != 0
9078 && (h->root.type == bfd_link_hash_defweak
9079 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9080 || bfd_link_pic (info)))
9081 {
9082 bfd_boolean do_copy = TRUE;
9083
9084 if (h->root.type == bfd_link_hash_undefweak)
9085 {
9086 /* Do not copy relocations for undefined weak symbols with
9087 non-default visibility. */
9088 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9089 do_copy = FALSE;
9090
9091 /* Make sure undefined weak symbols are output as a dynamic
9092 symbol in PIEs. */
9093 else if (h->dynindx == -1 && !h->forced_local)
9094 {
9095 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9096 return FALSE;
9097 }
9098 }
9099
9100 if (do_copy)
9101 {
9102 /* Even though we don't directly need a GOT entry for this symbol,
9103 the SVR4 psABI requires it to have a dynamic symbol table
9104 index greater that DT_MIPS_GOTSYM if there are dynamic
9105 relocations against it.
9106
9107 VxWorks does not enforce the same mapping between the GOT
9108 and the symbol table, so the same requirement does not
9109 apply there. */
9110 if (!htab->is_vxworks)
9111 {
9112 if (hmips->global_got_area > GGA_RELOC_ONLY)
9113 hmips->global_got_area = GGA_RELOC_ONLY;
9114 hmips->got_only_for_calls = FALSE;
9115 }
9116
9117 mips_elf_allocate_dynamic_relocations
9118 (dynobj, info, hmips->possibly_dynamic_relocs);
9119 if (hmips->readonly_reloc)
9120 /* We tell the dynamic linker that there are relocations
9121 against the text segment. */
9122 info->flags |= DF_TEXTREL;
9123 }
9124 }
9125
9126 return TRUE;
9127 }
9128
9129 /* Adjust a symbol defined by a dynamic object and referenced by a
9130 regular object. The current definition is in some section of the
9131 dynamic object, but we're not including those sections. We have to
9132 change the definition to something the rest of the link can
9133 understand. */
9134
9135 bfd_boolean
9136 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9137 struct elf_link_hash_entry *h)
9138 {
9139 bfd *dynobj;
9140 struct mips_elf_link_hash_entry *hmips;
9141 struct mips_elf_link_hash_table *htab;
9142 asection *s, *srel;
9143
9144 htab = mips_elf_hash_table (info);
9145 BFD_ASSERT (htab != NULL);
9146
9147 dynobj = elf_hash_table (info)->dynobj;
9148 hmips = (struct mips_elf_link_hash_entry *) h;
9149
9150 /* Make sure we know what is going on here. */
9151 BFD_ASSERT (dynobj != NULL
9152 && (h->needs_plt
9153 || h->u.weakdef != NULL
9154 || (h->def_dynamic
9155 && h->ref_regular
9156 && !h->def_regular)));
9157
9158 hmips = (struct mips_elf_link_hash_entry *) h;
9159
9160 /* If there are call relocations against an externally-defined symbol,
9161 see whether we can create a MIPS lazy-binding stub for it. We can
9162 only do this if all references to the function are through call
9163 relocations, and in that case, the traditional lazy-binding stubs
9164 are much more efficient than PLT entries.
9165
9166 Traditional stubs are only available on SVR4 psABI-based systems;
9167 VxWorks always uses PLTs instead. */
9168 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9169 {
9170 if (! elf_hash_table (info)->dynamic_sections_created)
9171 return TRUE;
9172
9173 /* If this symbol is not defined in a regular file, then set
9174 the symbol to the stub location. This is required to make
9175 function pointers compare as equal between the normal
9176 executable and the shared library. */
9177 if (!h->def_regular)
9178 {
9179 hmips->needs_lazy_stub = TRUE;
9180 htab->lazy_stub_count++;
9181 return TRUE;
9182 }
9183 }
9184 /* As above, VxWorks requires PLT entries for externally-defined
9185 functions that are only accessed through call relocations.
9186
9187 Both VxWorks and non-VxWorks targets also need PLT entries if there
9188 are static-only relocations against an externally-defined function.
9189 This can technically occur for shared libraries if there are
9190 branches to the symbol, although it is unlikely that this will be
9191 used in practice due to the short ranges involved. It can occur
9192 for any relative or absolute relocation in executables; in that
9193 case, the PLT entry becomes the function's canonical address. */
9194 else if (((h->needs_plt && !hmips->no_fn_stub)
9195 || (h->type == STT_FUNC && hmips->has_static_relocs))
9196 && htab->use_plts_and_copy_relocs
9197 && !SYMBOL_CALLS_LOCAL (info, h)
9198 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9199 && h->root.type == bfd_link_hash_undefweak))
9200 {
9201 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9202 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9203
9204 /* If this is the first symbol to need a PLT entry, then make some
9205 basic setup. Also work out PLT entry sizes. We'll need them
9206 for PLT offset calculations. */
9207 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9208 {
9209 BFD_ASSERT (htab->root.sgotplt->size == 0);
9210 BFD_ASSERT (htab->plt_got_index == 0);
9211
9212 /* If we're using the PLT additions to the psABI, each PLT
9213 entry is 16 bytes and the PLT0 entry is 32 bytes.
9214 Encourage better cache usage by aligning. We do this
9215 lazily to avoid pessimizing traditional objects. */
9216 if (!htab->is_vxworks
9217 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9218 return FALSE;
9219
9220 /* Make sure that .got.plt is word-aligned. We do this lazily
9221 for the same reason as above. */
9222 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9223 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9224 return FALSE;
9225
9226 /* On non-VxWorks targets, the first two entries in .got.plt
9227 are reserved. */
9228 if (!htab->is_vxworks)
9229 htab->plt_got_index
9230 += (get_elf_backend_data (dynobj)->got_header_size
9231 / MIPS_ELF_GOT_SIZE (dynobj));
9232
9233 /* On VxWorks, also allocate room for the header's
9234 .rela.plt.unloaded entries. */
9235 if (htab->is_vxworks && !bfd_link_pic (info))
9236 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9237
9238 /* Now work out the sizes of individual PLT entries. */
9239 if (htab->is_vxworks && bfd_link_pic (info))
9240 htab->plt_mips_entry_size
9241 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9242 else if (htab->is_vxworks)
9243 htab->plt_mips_entry_size
9244 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9245 else if (newabi_p)
9246 htab->plt_mips_entry_size
9247 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9248 else if (!micromips_p)
9249 {
9250 htab->plt_mips_entry_size
9251 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9252 htab->plt_comp_entry_size
9253 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9254 }
9255 else if (htab->insn32)
9256 {
9257 htab->plt_mips_entry_size
9258 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9259 htab->plt_comp_entry_size
9260 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9261 }
9262 else
9263 {
9264 htab->plt_mips_entry_size
9265 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9266 htab->plt_comp_entry_size
9267 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9268 }
9269 }
9270
9271 if (h->plt.plist == NULL)
9272 h->plt.plist = mips_elf_make_plt_record (dynobj);
9273 if (h->plt.plist == NULL)
9274 return FALSE;
9275
9276 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9277 n32 or n64, so always use a standard entry there.
9278
9279 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9280 all MIPS16 calls will go via that stub, and there is no benefit
9281 to having a MIPS16 entry. And in the case of call_stub a
9282 standard entry actually has to be used as the stub ends with a J
9283 instruction. */
9284 if (newabi_p
9285 || htab->is_vxworks
9286 || hmips->call_stub
9287 || hmips->call_fp_stub)
9288 {
9289 h->plt.plist->need_mips = TRUE;
9290 h->plt.plist->need_comp = FALSE;
9291 }
9292
9293 /* Otherwise, if there are no direct calls to the function, we
9294 have a free choice of whether to use standard or compressed
9295 entries. Prefer microMIPS entries if the object is known to
9296 contain microMIPS code, so that it becomes possible to create
9297 pure microMIPS binaries. Prefer standard entries otherwise,
9298 because MIPS16 ones are no smaller and are usually slower. */
9299 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9300 {
9301 if (micromips_p)
9302 h->plt.plist->need_comp = TRUE;
9303 else
9304 h->plt.plist->need_mips = TRUE;
9305 }
9306
9307 if (h->plt.plist->need_mips)
9308 {
9309 h->plt.plist->mips_offset = htab->plt_mips_offset;
9310 htab->plt_mips_offset += htab->plt_mips_entry_size;
9311 }
9312 if (h->plt.plist->need_comp)
9313 {
9314 h->plt.plist->comp_offset = htab->plt_comp_offset;
9315 htab->plt_comp_offset += htab->plt_comp_entry_size;
9316 }
9317
9318 /* Reserve the corresponding .got.plt entry now too. */
9319 h->plt.plist->gotplt_index = htab->plt_got_index++;
9320
9321 /* If the output file has no definition of the symbol, set the
9322 symbol's value to the address of the stub. */
9323 if (!bfd_link_pic (info) && !h->def_regular)
9324 hmips->use_plt_entry = TRUE;
9325
9326 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9327 htab->root.srelplt->size += (htab->is_vxworks
9328 ? MIPS_ELF_RELA_SIZE (dynobj)
9329 : MIPS_ELF_REL_SIZE (dynobj));
9330
9331 /* Make room for the .rela.plt.unloaded relocations. */
9332 if (htab->is_vxworks && !bfd_link_pic (info))
9333 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9334
9335 /* All relocations against this symbol that could have been made
9336 dynamic will now refer to the PLT entry instead. */
9337 hmips->possibly_dynamic_relocs = 0;
9338
9339 return TRUE;
9340 }
9341
9342 /* If this is a weak symbol, and there is a real definition, the
9343 processor independent code will have arranged for us to see the
9344 real definition first, and we can just use the same value. */
9345 if (h->u.weakdef != NULL)
9346 {
9347 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9348 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9349 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9350 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9351 return TRUE;
9352 }
9353
9354 /* Otherwise, there is nothing further to do for symbols defined
9355 in regular objects. */
9356 if (h->def_regular)
9357 return TRUE;
9358
9359 /* There's also nothing more to do if we'll convert all relocations
9360 against this symbol into dynamic relocations. */
9361 if (!hmips->has_static_relocs)
9362 return TRUE;
9363
9364 /* We're now relying on copy relocations. Complain if we have
9365 some that we can't convert. */
9366 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9367 {
9368 _bfd_error_handler (_("non-dynamic relocations refer to "
9369 "dynamic symbol %s"),
9370 h->root.root.string);
9371 bfd_set_error (bfd_error_bad_value);
9372 return FALSE;
9373 }
9374
9375 /* We must allocate the symbol in our .dynbss section, which will
9376 become part of the .bss section of the executable. There will be
9377 an entry for this symbol in the .dynsym section. The dynamic
9378 object will contain position independent code, so all references
9379 from the dynamic object to this symbol will go through the global
9380 offset table. The dynamic linker will use the .dynsym entry to
9381 determine the address it must put in the global offset table, so
9382 both the dynamic object and the regular object will refer to the
9383 same memory location for the variable. */
9384
9385 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9386 {
9387 s = htab->root.sdynrelro;
9388 srel = htab->root.sreldynrelro;
9389 }
9390 else
9391 {
9392 s = htab->root.sdynbss;
9393 srel = htab->root.srelbss;
9394 }
9395 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9396 {
9397 if (htab->is_vxworks)
9398 srel->size += sizeof (Elf32_External_Rela);
9399 else
9400 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9401 h->needs_copy = 1;
9402 }
9403
9404 /* All relocations against this symbol that could have been made
9405 dynamic will now refer to the local copy instead. */
9406 hmips->possibly_dynamic_relocs = 0;
9407
9408 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9409 }
9410 \f
9411 /* This function is called after all the input files have been read,
9412 and the input sections have been assigned to output sections. We
9413 check for any mips16 stub sections that we can discard. */
9414
9415 bfd_boolean
9416 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9417 struct bfd_link_info *info)
9418 {
9419 asection *sect;
9420 struct mips_elf_link_hash_table *htab;
9421 struct mips_htab_traverse_info hti;
9422
9423 htab = mips_elf_hash_table (info);
9424 BFD_ASSERT (htab != NULL);
9425
9426 /* The .reginfo section has a fixed size. */
9427 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9428 if (sect != NULL)
9429 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9430
9431 /* The .MIPS.abiflags section has a fixed size. */
9432 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9433 if (sect != NULL)
9434 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9435
9436 hti.info = info;
9437 hti.output_bfd = output_bfd;
9438 hti.error = FALSE;
9439 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9440 mips_elf_check_symbols, &hti);
9441 if (hti.error)
9442 return FALSE;
9443
9444 return TRUE;
9445 }
9446
9447 /* If the link uses a GOT, lay it out and work out its size. */
9448
9449 static bfd_boolean
9450 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9451 {
9452 bfd *dynobj;
9453 asection *s;
9454 struct mips_got_info *g;
9455 bfd_size_type loadable_size = 0;
9456 bfd_size_type page_gotno;
9457 bfd *ibfd;
9458 struct mips_elf_traverse_got_arg tga;
9459 struct mips_elf_link_hash_table *htab;
9460
9461 htab = mips_elf_hash_table (info);
9462 BFD_ASSERT (htab != NULL);
9463
9464 s = htab->root.sgot;
9465 if (s == NULL)
9466 return TRUE;
9467
9468 dynobj = elf_hash_table (info)->dynobj;
9469 g = htab->got_info;
9470
9471 /* Allocate room for the reserved entries. VxWorks always reserves
9472 3 entries; other objects only reserve 2 entries. */
9473 BFD_ASSERT (g->assigned_low_gotno == 0);
9474 if (htab->is_vxworks)
9475 htab->reserved_gotno = 3;
9476 else
9477 htab->reserved_gotno = 2;
9478 g->local_gotno += htab->reserved_gotno;
9479 g->assigned_low_gotno = htab->reserved_gotno;
9480
9481 /* Decide which symbols need to go in the global part of the GOT and
9482 count the number of reloc-only GOT symbols. */
9483 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9484
9485 if (!mips_elf_resolve_final_got_entries (info, g))
9486 return FALSE;
9487
9488 /* Calculate the total loadable size of the output. That
9489 will give us the maximum number of GOT_PAGE entries
9490 required. */
9491 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9492 {
9493 asection *subsection;
9494
9495 for (subsection = ibfd->sections;
9496 subsection;
9497 subsection = subsection->next)
9498 {
9499 if ((subsection->flags & SEC_ALLOC) == 0)
9500 continue;
9501 loadable_size += ((subsection->size + 0xf)
9502 &~ (bfd_size_type) 0xf);
9503 }
9504 }
9505
9506 if (htab->is_vxworks)
9507 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9508 relocations against local symbols evaluate to "G", and the EABI does
9509 not include R_MIPS_GOT_PAGE. */
9510 page_gotno = 0;
9511 else
9512 /* Assume there are two loadable segments consisting of contiguous
9513 sections. Is 5 enough? */
9514 page_gotno = (loadable_size >> 16) + 5;
9515
9516 /* Choose the smaller of the two page estimates; both are intended to be
9517 conservative. */
9518 if (page_gotno > g->page_gotno)
9519 page_gotno = g->page_gotno;
9520
9521 g->local_gotno += page_gotno;
9522 g->assigned_high_gotno = g->local_gotno - 1;
9523
9524 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9525 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9526 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9527
9528 /* VxWorks does not support multiple GOTs. It initializes $gp to
9529 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9530 dynamic loader. */
9531 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9532 {
9533 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9534 return FALSE;
9535 }
9536 else
9537 {
9538 /* Record that all bfds use G. This also has the effect of freeing
9539 the per-bfd GOTs, which we no longer need. */
9540 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9541 if (mips_elf_bfd_got (ibfd, FALSE))
9542 mips_elf_replace_bfd_got (ibfd, g);
9543 mips_elf_replace_bfd_got (output_bfd, g);
9544
9545 /* Set up TLS entries. */
9546 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9547 tga.info = info;
9548 tga.g = g;
9549 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9550 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9551 if (!tga.g)
9552 return FALSE;
9553 BFD_ASSERT (g->tls_assigned_gotno
9554 == g->global_gotno + g->local_gotno + g->tls_gotno);
9555
9556 /* Each VxWorks GOT entry needs an explicit relocation. */
9557 if (htab->is_vxworks && bfd_link_pic (info))
9558 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9559
9560 /* Allocate room for the TLS relocations. */
9561 if (g->relocs)
9562 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9563 }
9564
9565 return TRUE;
9566 }
9567
9568 /* Estimate the size of the .MIPS.stubs section. */
9569
9570 static void
9571 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9572 {
9573 struct mips_elf_link_hash_table *htab;
9574 bfd_size_type dynsymcount;
9575
9576 htab = mips_elf_hash_table (info);
9577 BFD_ASSERT (htab != NULL);
9578
9579 if (htab->lazy_stub_count == 0)
9580 return;
9581
9582 /* IRIX rld assumes that a function stub isn't at the end of the .text
9583 section, so add a dummy entry to the end. */
9584 htab->lazy_stub_count++;
9585
9586 /* Get a worst-case estimate of the number of dynamic symbols needed.
9587 At this point, dynsymcount does not account for section symbols
9588 and count_section_dynsyms may overestimate the number that will
9589 be needed. */
9590 dynsymcount = (elf_hash_table (info)->dynsymcount
9591 + count_section_dynsyms (output_bfd, info));
9592
9593 /* Determine the size of one stub entry. There's no disadvantage
9594 from using microMIPS code here, so for the sake of pure-microMIPS
9595 binaries we prefer it whenever there's any microMIPS code in
9596 output produced at all. This has a benefit of stubs being
9597 shorter by 4 bytes each too, unless in the insn32 mode. */
9598 if (!MICROMIPS_P (output_bfd))
9599 htab->function_stub_size = (dynsymcount > 0x10000
9600 ? MIPS_FUNCTION_STUB_BIG_SIZE
9601 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9602 else if (htab->insn32)
9603 htab->function_stub_size = (dynsymcount > 0x10000
9604 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9605 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9606 else
9607 htab->function_stub_size = (dynsymcount > 0x10000
9608 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9609 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9610
9611 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9612 }
9613
9614 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9615 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9616 stub, allocate an entry in the stubs section. */
9617
9618 static bfd_boolean
9619 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9620 {
9621 struct mips_htab_traverse_info *hti = data;
9622 struct mips_elf_link_hash_table *htab;
9623 struct bfd_link_info *info;
9624 bfd *output_bfd;
9625
9626 info = hti->info;
9627 output_bfd = hti->output_bfd;
9628 htab = mips_elf_hash_table (info);
9629 BFD_ASSERT (htab != NULL);
9630
9631 if (h->needs_lazy_stub)
9632 {
9633 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9634 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9635 bfd_vma isa_bit = micromips_p;
9636
9637 BFD_ASSERT (htab->root.dynobj != NULL);
9638 if (h->root.plt.plist == NULL)
9639 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9640 if (h->root.plt.plist == NULL)
9641 {
9642 hti->error = TRUE;
9643 return FALSE;
9644 }
9645 h->root.root.u.def.section = htab->sstubs;
9646 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9647 h->root.plt.plist->stub_offset = htab->sstubs->size;
9648 h->root.other = other;
9649 htab->sstubs->size += htab->function_stub_size;
9650 }
9651 return TRUE;
9652 }
9653
9654 /* Allocate offsets in the stubs section to each symbol that needs one.
9655 Set the final size of the .MIPS.stub section. */
9656
9657 static bfd_boolean
9658 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9659 {
9660 bfd *output_bfd = info->output_bfd;
9661 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9662 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9663 bfd_vma isa_bit = micromips_p;
9664 struct mips_elf_link_hash_table *htab;
9665 struct mips_htab_traverse_info hti;
9666 struct elf_link_hash_entry *h;
9667 bfd *dynobj;
9668
9669 htab = mips_elf_hash_table (info);
9670 BFD_ASSERT (htab != NULL);
9671
9672 if (htab->lazy_stub_count == 0)
9673 return TRUE;
9674
9675 htab->sstubs->size = 0;
9676 hti.info = info;
9677 hti.output_bfd = output_bfd;
9678 hti.error = FALSE;
9679 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9680 if (hti.error)
9681 return FALSE;
9682 htab->sstubs->size += htab->function_stub_size;
9683 BFD_ASSERT (htab->sstubs->size
9684 == htab->lazy_stub_count * htab->function_stub_size);
9685
9686 dynobj = elf_hash_table (info)->dynobj;
9687 BFD_ASSERT (dynobj != NULL);
9688 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9689 if (h == NULL)
9690 return FALSE;
9691 h->root.u.def.value = isa_bit;
9692 h->other = other;
9693 h->type = STT_FUNC;
9694
9695 return TRUE;
9696 }
9697
9698 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9699 bfd_link_info. If H uses the address of a PLT entry as the value
9700 of the symbol, then set the entry in the symbol table now. Prefer
9701 a standard MIPS PLT entry. */
9702
9703 static bfd_boolean
9704 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9705 {
9706 struct bfd_link_info *info = data;
9707 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9708 struct mips_elf_link_hash_table *htab;
9709 unsigned int other;
9710 bfd_vma isa_bit;
9711 bfd_vma val;
9712
9713 htab = mips_elf_hash_table (info);
9714 BFD_ASSERT (htab != NULL);
9715
9716 if (h->use_plt_entry)
9717 {
9718 BFD_ASSERT (h->root.plt.plist != NULL);
9719 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9720 || h->root.plt.plist->comp_offset != MINUS_ONE);
9721
9722 val = htab->plt_header_size;
9723 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9724 {
9725 isa_bit = 0;
9726 val += h->root.plt.plist->mips_offset;
9727 other = 0;
9728 }
9729 else
9730 {
9731 isa_bit = 1;
9732 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9733 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9734 }
9735 val += isa_bit;
9736 /* For VxWorks, point at the PLT load stub rather than the lazy
9737 resolution stub; this stub will become the canonical function
9738 address. */
9739 if (htab->is_vxworks)
9740 val += 8;
9741
9742 h->root.root.u.def.section = htab->root.splt;
9743 h->root.root.u.def.value = val;
9744 h->root.other = other;
9745 }
9746
9747 return TRUE;
9748 }
9749
9750 /* Set the sizes of the dynamic sections. */
9751
9752 bfd_boolean
9753 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9754 struct bfd_link_info *info)
9755 {
9756 bfd *dynobj;
9757 asection *s, *sreldyn;
9758 bfd_boolean reltext;
9759 struct mips_elf_link_hash_table *htab;
9760
9761 htab = mips_elf_hash_table (info);
9762 BFD_ASSERT (htab != NULL);
9763 dynobj = elf_hash_table (info)->dynobj;
9764 BFD_ASSERT (dynobj != NULL);
9765
9766 if (elf_hash_table (info)->dynamic_sections_created)
9767 {
9768 /* Set the contents of the .interp section to the interpreter. */
9769 if (bfd_link_executable (info) && !info->nointerp)
9770 {
9771 s = bfd_get_linker_section (dynobj, ".interp");
9772 BFD_ASSERT (s != NULL);
9773 s->size
9774 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9775 s->contents
9776 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9777 }
9778
9779 /* Figure out the size of the PLT header if we know that we
9780 are using it. For the sake of cache alignment always use
9781 a standard header whenever any standard entries are present
9782 even if microMIPS entries are present as well. This also
9783 lets the microMIPS header rely on the value of $v0 only set
9784 by microMIPS entries, for a small size reduction.
9785
9786 Set symbol table entry values for symbols that use the
9787 address of their PLT entry now that we can calculate it.
9788
9789 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9790 haven't already in _bfd_elf_create_dynamic_sections. */
9791 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9792 {
9793 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9794 && !htab->plt_mips_offset);
9795 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9796 bfd_vma isa_bit = micromips_p;
9797 struct elf_link_hash_entry *h;
9798 bfd_vma size;
9799
9800 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9801 BFD_ASSERT (htab->root.sgotplt->size == 0);
9802 BFD_ASSERT (htab->root.splt->size == 0);
9803
9804 if (htab->is_vxworks && bfd_link_pic (info))
9805 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9806 else if (htab->is_vxworks)
9807 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9808 else if (ABI_64_P (output_bfd))
9809 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9810 else if (ABI_N32_P (output_bfd))
9811 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9812 else if (!micromips_p)
9813 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9814 else if (htab->insn32)
9815 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9816 else
9817 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9818
9819 htab->plt_header_is_comp = micromips_p;
9820 htab->plt_header_size = size;
9821 htab->root.splt->size = (size
9822 + htab->plt_mips_offset
9823 + htab->plt_comp_offset);
9824 htab->root.sgotplt->size = (htab->plt_got_index
9825 * MIPS_ELF_GOT_SIZE (dynobj));
9826
9827 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9828
9829 if (htab->root.hplt == NULL)
9830 {
9831 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9832 "_PROCEDURE_LINKAGE_TABLE_");
9833 htab->root.hplt = h;
9834 if (h == NULL)
9835 return FALSE;
9836 }
9837
9838 h = htab->root.hplt;
9839 h->root.u.def.value = isa_bit;
9840 h->other = other;
9841 h->type = STT_FUNC;
9842 }
9843 }
9844
9845 /* Allocate space for global sym dynamic relocs. */
9846 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9847
9848 mips_elf_estimate_stub_size (output_bfd, info);
9849
9850 if (!mips_elf_lay_out_got (output_bfd, info))
9851 return FALSE;
9852
9853 mips_elf_lay_out_lazy_stubs (info);
9854
9855 /* The check_relocs and adjust_dynamic_symbol entry points have
9856 determined the sizes of the various dynamic sections. Allocate
9857 memory for them. */
9858 reltext = FALSE;
9859 for (s = dynobj->sections; s != NULL; s = s->next)
9860 {
9861 const char *name;
9862
9863 /* It's OK to base decisions on the section name, because none
9864 of the dynobj section names depend upon the input files. */
9865 name = bfd_get_section_name (dynobj, s);
9866
9867 if ((s->flags & SEC_LINKER_CREATED) == 0)
9868 continue;
9869
9870 if (CONST_STRNEQ (name, ".rel"))
9871 {
9872 if (s->size != 0)
9873 {
9874 const char *outname;
9875 asection *target;
9876
9877 /* If this relocation section applies to a read only
9878 section, then we probably need a DT_TEXTREL entry.
9879 If the relocation section is .rel(a).dyn, we always
9880 assert a DT_TEXTREL entry rather than testing whether
9881 there exists a relocation to a read only section or
9882 not. */
9883 outname = bfd_get_section_name (output_bfd,
9884 s->output_section);
9885 target = bfd_get_section_by_name (output_bfd, outname + 4);
9886 if ((target != NULL
9887 && (target->flags & SEC_READONLY) != 0
9888 && (target->flags & SEC_ALLOC) != 0)
9889 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9890 reltext = TRUE;
9891
9892 /* We use the reloc_count field as a counter if we need
9893 to copy relocs into the output file. */
9894 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9895 s->reloc_count = 0;
9896
9897 /* If combreloc is enabled, elf_link_sort_relocs() will
9898 sort relocations, but in a different way than we do,
9899 and before we're done creating relocations. Also, it
9900 will move them around between input sections'
9901 relocation's contents, so our sorting would be
9902 broken, so don't let it run. */
9903 info->combreloc = 0;
9904 }
9905 }
9906 else if (bfd_link_executable (info)
9907 && ! mips_elf_hash_table (info)->use_rld_obj_head
9908 && CONST_STRNEQ (name, ".rld_map"))
9909 {
9910 /* We add a room for __rld_map. It will be filled in by the
9911 rtld to contain a pointer to the _r_debug structure. */
9912 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9913 }
9914 else if (SGI_COMPAT (output_bfd)
9915 && CONST_STRNEQ (name, ".compact_rel"))
9916 s->size += mips_elf_hash_table (info)->compact_rel_size;
9917 else if (s == htab->root.splt)
9918 {
9919 /* If the last PLT entry has a branch delay slot, allocate
9920 room for an extra nop to fill the delay slot. This is
9921 for CPUs without load interlocking. */
9922 if (! LOAD_INTERLOCKS_P (output_bfd)
9923 && ! htab->is_vxworks && s->size > 0)
9924 s->size += 4;
9925 }
9926 else if (! CONST_STRNEQ (name, ".init")
9927 && s != htab->root.sgot
9928 && s != htab->root.sgotplt
9929 && s != htab->sstubs
9930 && s != htab->root.sdynbss
9931 && s != htab->root.sdynrelro)
9932 {
9933 /* It's not one of our sections, so don't allocate space. */
9934 continue;
9935 }
9936
9937 if (s->size == 0)
9938 {
9939 s->flags |= SEC_EXCLUDE;
9940 continue;
9941 }
9942
9943 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9944 continue;
9945
9946 /* Allocate memory for the section contents. */
9947 s->contents = bfd_zalloc (dynobj, s->size);
9948 if (s->contents == NULL)
9949 {
9950 bfd_set_error (bfd_error_no_memory);
9951 return FALSE;
9952 }
9953 }
9954
9955 if (elf_hash_table (info)->dynamic_sections_created)
9956 {
9957 /* Add some entries to the .dynamic section. We fill in the
9958 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9959 must add the entries now so that we get the correct size for
9960 the .dynamic section. */
9961
9962 /* SGI object has the equivalence of DT_DEBUG in the
9963 DT_MIPS_RLD_MAP entry. This must come first because glibc
9964 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9965 may only look at the first one they see. */
9966 if (!bfd_link_pic (info)
9967 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9968 return FALSE;
9969
9970 if (bfd_link_executable (info)
9971 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9972 return FALSE;
9973
9974 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9975 used by the debugger. */
9976 if (bfd_link_executable (info)
9977 && !SGI_COMPAT (output_bfd)
9978 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9979 return FALSE;
9980
9981 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9982 info->flags |= DF_TEXTREL;
9983
9984 if ((info->flags & DF_TEXTREL) != 0)
9985 {
9986 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9987 return FALSE;
9988
9989 /* Clear the DF_TEXTREL flag. It will be set again if we
9990 write out an actual text relocation; we may not, because
9991 at this point we do not know whether e.g. any .eh_frame
9992 absolute relocations have been converted to PC-relative. */
9993 info->flags &= ~DF_TEXTREL;
9994 }
9995
9996 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9997 return FALSE;
9998
9999 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
10000 if (htab->is_vxworks)
10001 {
10002 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10003 use any of the DT_MIPS_* tags. */
10004 if (sreldyn && sreldyn->size > 0)
10005 {
10006 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10007 return FALSE;
10008
10009 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10010 return FALSE;
10011
10012 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10013 return FALSE;
10014 }
10015 }
10016 else
10017 {
10018 if (sreldyn && sreldyn->size > 0)
10019 {
10020 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10021 return FALSE;
10022
10023 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10024 return FALSE;
10025
10026 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10027 return FALSE;
10028 }
10029
10030 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10031 return FALSE;
10032
10033 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10034 return FALSE;
10035
10036 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10037 return FALSE;
10038
10039 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10040 return FALSE;
10041
10042 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10043 return FALSE;
10044
10045 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10046 return FALSE;
10047
10048 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10049 return FALSE;
10050
10051 if (IRIX_COMPAT (dynobj) == ict_irix5
10052 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10053 return FALSE;
10054
10055 if (IRIX_COMPAT (dynobj) == ict_irix6
10056 && (bfd_get_section_by_name
10057 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10058 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10059 return FALSE;
10060 }
10061 if (htab->root.splt->size > 0)
10062 {
10063 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10064 return FALSE;
10065
10066 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10067 return FALSE;
10068
10069 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10070 return FALSE;
10071
10072 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10073 return FALSE;
10074 }
10075 if (htab->is_vxworks
10076 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10077 return FALSE;
10078 }
10079
10080 return TRUE;
10081 }
10082 \f
10083 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10084 Adjust its R_ADDEND field so that it is correct for the output file.
10085 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10086 and sections respectively; both use symbol indexes. */
10087
10088 static void
10089 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10090 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10091 asection **local_sections, Elf_Internal_Rela *rel)
10092 {
10093 unsigned int r_type, r_symndx;
10094 Elf_Internal_Sym *sym;
10095 asection *sec;
10096
10097 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10098 {
10099 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10100 if (gprel16_reloc_p (r_type)
10101 || r_type == R_MIPS_GPREL32
10102 || literal_reloc_p (r_type))
10103 {
10104 rel->r_addend += _bfd_get_gp_value (input_bfd);
10105 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10106 }
10107
10108 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10109 sym = local_syms + r_symndx;
10110
10111 /* Adjust REL's addend to account for section merging. */
10112 if (!bfd_link_relocatable (info))
10113 {
10114 sec = local_sections[r_symndx];
10115 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10116 }
10117
10118 /* This would normally be done by the rela_normal code in elflink.c. */
10119 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10120 rel->r_addend += local_sections[r_symndx]->output_offset;
10121 }
10122 }
10123
10124 /* Handle relocations against symbols from removed linkonce sections,
10125 or sections discarded by a linker script. We use this wrapper around
10126 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10127 on 64-bit ELF targets. In this case for any relocation handled, which
10128 always be the first in a triplet, the remaining two have to be processed
10129 together with the first, even if they are R_MIPS_NONE. It is the symbol
10130 index referred by the first reloc that applies to all the three and the
10131 remaining two never refer to an object symbol. And it is the final
10132 relocation (the last non-null one) that determines the output field of
10133 the whole relocation so retrieve the corresponding howto structure for
10134 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10135
10136 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10137 and therefore requires to be pasted in a loop. It also defines a block
10138 and does not protect any of its arguments, hence the extra brackets. */
10139
10140 static void
10141 mips_reloc_against_discarded_section (bfd *output_bfd,
10142 struct bfd_link_info *info,
10143 bfd *input_bfd, asection *input_section,
10144 Elf_Internal_Rela **rel,
10145 const Elf_Internal_Rela **relend,
10146 bfd_boolean rel_reloc,
10147 reloc_howto_type *howto,
10148 bfd_byte *contents)
10149 {
10150 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10151 int count = bed->s->int_rels_per_ext_rel;
10152 unsigned int r_type;
10153 int i;
10154
10155 for (i = count - 1; i > 0; i--)
10156 {
10157 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10158 if (r_type != R_MIPS_NONE)
10159 {
10160 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10161 break;
10162 }
10163 }
10164 do
10165 {
10166 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10167 (*rel), count, (*relend),
10168 howto, i, contents);
10169 }
10170 while (0);
10171 }
10172
10173 /* Relocate a MIPS ELF section. */
10174
10175 bfd_boolean
10176 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10177 bfd *input_bfd, asection *input_section,
10178 bfd_byte *contents, Elf_Internal_Rela *relocs,
10179 Elf_Internal_Sym *local_syms,
10180 asection **local_sections)
10181 {
10182 Elf_Internal_Rela *rel;
10183 const Elf_Internal_Rela *relend;
10184 bfd_vma addend = 0;
10185 bfd_boolean use_saved_addend_p = FALSE;
10186 const struct elf_backend_data *bed;
10187
10188 bed = get_elf_backend_data (output_bfd);
10189 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10190 for (rel = relocs; rel < relend; ++rel)
10191 {
10192 const char *name;
10193 bfd_vma value = 0;
10194 reloc_howto_type *howto;
10195 bfd_boolean cross_mode_jump_p = FALSE;
10196 /* TRUE if the relocation is a RELA relocation, rather than a
10197 REL relocation. */
10198 bfd_boolean rela_relocation_p = TRUE;
10199 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10200 const char *msg;
10201 unsigned long r_symndx;
10202 asection *sec;
10203 Elf_Internal_Shdr *symtab_hdr;
10204 struct elf_link_hash_entry *h;
10205 bfd_boolean rel_reloc;
10206
10207 rel_reloc = (NEWABI_P (input_bfd)
10208 && mips_elf_rel_relocation_p (input_bfd, input_section,
10209 relocs, rel));
10210 /* Find the relocation howto for this relocation. */
10211 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10212
10213 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10214 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10215 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10216 {
10217 sec = local_sections[r_symndx];
10218 h = NULL;
10219 }
10220 else
10221 {
10222 unsigned long extsymoff;
10223
10224 extsymoff = 0;
10225 if (!elf_bad_symtab (input_bfd))
10226 extsymoff = symtab_hdr->sh_info;
10227 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10228 while (h->root.type == bfd_link_hash_indirect
10229 || h->root.type == bfd_link_hash_warning)
10230 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10231
10232 sec = NULL;
10233 if (h->root.type == bfd_link_hash_defined
10234 || h->root.type == bfd_link_hash_defweak)
10235 sec = h->root.u.def.section;
10236 }
10237
10238 if (sec != NULL && discarded_section (sec))
10239 {
10240 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10241 input_section, &rel, &relend,
10242 rel_reloc, howto, contents);
10243 continue;
10244 }
10245
10246 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10247 {
10248 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10249 64-bit code, but make sure all their addresses are in the
10250 lowermost or uppermost 32-bit section of the 64-bit address
10251 space. Thus, when they use an R_MIPS_64 they mean what is
10252 usually meant by R_MIPS_32, with the exception that the
10253 stored value is sign-extended to 64 bits. */
10254 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10255
10256 /* On big-endian systems, we need to lie about the position
10257 of the reloc. */
10258 if (bfd_big_endian (input_bfd))
10259 rel->r_offset += 4;
10260 }
10261
10262 if (!use_saved_addend_p)
10263 {
10264 /* If these relocations were originally of the REL variety,
10265 we must pull the addend out of the field that will be
10266 relocated. Otherwise, we simply use the contents of the
10267 RELA relocation. */
10268 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10269 relocs, rel))
10270 {
10271 rela_relocation_p = FALSE;
10272 addend = mips_elf_read_rel_addend (input_bfd, rel,
10273 howto, contents);
10274 if (hi16_reloc_p (r_type)
10275 || (got16_reloc_p (r_type)
10276 && mips_elf_local_relocation_p (input_bfd, rel,
10277 local_sections)))
10278 {
10279 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10280 contents, &addend))
10281 {
10282 if (h)
10283 name = h->root.root.string;
10284 else
10285 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10286 local_syms + r_symndx,
10287 sec);
10288 _bfd_error_handler
10289 /* xgettext:c-format */
10290 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10291 input_bfd, input_section, name, howto->name,
10292 rel->r_offset);
10293 }
10294 }
10295 else
10296 addend <<= howto->rightshift;
10297 }
10298 else
10299 addend = rel->r_addend;
10300 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10301 local_syms, local_sections, rel);
10302 }
10303
10304 if (bfd_link_relocatable (info))
10305 {
10306 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10307 && bfd_big_endian (input_bfd))
10308 rel->r_offset -= 4;
10309
10310 if (!rela_relocation_p && rel->r_addend)
10311 {
10312 addend += rel->r_addend;
10313 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10314 addend = mips_elf_high (addend);
10315 else if (r_type == R_MIPS_HIGHER)
10316 addend = mips_elf_higher (addend);
10317 else if (r_type == R_MIPS_HIGHEST)
10318 addend = mips_elf_highest (addend);
10319 else
10320 addend >>= howto->rightshift;
10321
10322 /* We use the source mask, rather than the destination
10323 mask because the place to which we are writing will be
10324 source of the addend in the final link. */
10325 addend &= howto->src_mask;
10326
10327 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10328 /* See the comment above about using R_MIPS_64 in the 32-bit
10329 ABI. Here, we need to update the addend. It would be
10330 possible to get away with just using the R_MIPS_32 reloc
10331 but for endianness. */
10332 {
10333 bfd_vma sign_bits;
10334 bfd_vma low_bits;
10335 bfd_vma high_bits;
10336
10337 if (addend & ((bfd_vma) 1 << 31))
10338 #ifdef BFD64
10339 sign_bits = ((bfd_vma) 1 << 32) - 1;
10340 #else
10341 sign_bits = -1;
10342 #endif
10343 else
10344 sign_bits = 0;
10345
10346 /* If we don't know that we have a 64-bit type,
10347 do two separate stores. */
10348 if (bfd_big_endian (input_bfd))
10349 {
10350 /* Store the sign-bits (which are most significant)
10351 first. */
10352 low_bits = sign_bits;
10353 high_bits = addend;
10354 }
10355 else
10356 {
10357 low_bits = addend;
10358 high_bits = sign_bits;
10359 }
10360 bfd_put_32 (input_bfd, low_bits,
10361 contents + rel->r_offset);
10362 bfd_put_32 (input_bfd, high_bits,
10363 contents + rel->r_offset + 4);
10364 continue;
10365 }
10366
10367 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10368 input_bfd, input_section,
10369 contents, FALSE))
10370 return FALSE;
10371 }
10372
10373 /* Go on to the next relocation. */
10374 continue;
10375 }
10376
10377 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10378 relocations for the same offset. In that case we are
10379 supposed to treat the output of each relocation as the addend
10380 for the next. */
10381 if (rel + 1 < relend
10382 && rel->r_offset == rel[1].r_offset
10383 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10384 use_saved_addend_p = TRUE;
10385 else
10386 use_saved_addend_p = FALSE;
10387
10388 /* Figure out what value we are supposed to relocate. */
10389 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10390 input_section, info, rel,
10391 addend, howto, local_syms,
10392 local_sections, &value,
10393 &name, &cross_mode_jump_p,
10394 use_saved_addend_p))
10395 {
10396 case bfd_reloc_continue:
10397 /* There's nothing to do. */
10398 continue;
10399
10400 case bfd_reloc_undefined:
10401 /* mips_elf_calculate_relocation already called the
10402 undefined_symbol callback. There's no real point in
10403 trying to perform the relocation at this point, so we
10404 just skip ahead to the next relocation. */
10405 continue;
10406
10407 case bfd_reloc_notsupported:
10408 msg = _("internal error: unsupported relocation error");
10409 info->callbacks->warning
10410 (info, msg, name, input_bfd, input_section, rel->r_offset);
10411 return FALSE;
10412
10413 case bfd_reloc_overflow:
10414 if (use_saved_addend_p)
10415 /* Ignore overflow until we reach the last relocation for
10416 a given location. */
10417 ;
10418 else
10419 {
10420 struct mips_elf_link_hash_table *htab;
10421
10422 htab = mips_elf_hash_table (info);
10423 BFD_ASSERT (htab != NULL);
10424 BFD_ASSERT (name != NULL);
10425 if (!htab->small_data_overflow_reported
10426 && (gprel16_reloc_p (howto->type)
10427 || literal_reloc_p (howto->type)))
10428 {
10429 msg = _("small-data section exceeds 64KB;"
10430 " lower small-data size limit (see option -G)");
10431
10432 htab->small_data_overflow_reported = TRUE;
10433 (*info->callbacks->einfo) ("%P: %s\n", msg);
10434 }
10435 (*info->callbacks->reloc_overflow)
10436 (info, NULL, name, howto->name, (bfd_vma) 0,
10437 input_bfd, input_section, rel->r_offset);
10438 }
10439 break;
10440
10441 case bfd_reloc_ok:
10442 break;
10443
10444 case bfd_reloc_outofrange:
10445 msg = NULL;
10446 if (jal_reloc_p (howto->type))
10447 msg = (cross_mode_jump_p
10448 ? _("Cannot convert a jump to JALX "
10449 "for a non-word-aligned address")
10450 : (howto->type == R_MIPS16_26
10451 ? _("Jump to a non-word-aligned address")
10452 : _("Jump to a non-instruction-aligned address")));
10453 else if (b_reloc_p (howto->type))
10454 msg = (cross_mode_jump_p
10455 ? _("Cannot convert a branch to JALX "
10456 "for a non-word-aligned address")
10457 : _("Branch to a non-instruction-aligned address"));
10458 else if (aligned_pcrel_reloc_p (howto->type))
10459 msg = _("PC-relative load from unaligned address");
10460 if (msg)
10461 {
10462 info->callbacks->einfo
10463 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10464 break;
10465 }
10466 /* Fall through. */
10467
10468 default:
10469 abort ();
10470 break;
10471 }
10472
10473 /* If we've got another relocation for the address, keep going
10474 until we reach the last one. */
10475 if (use_saved_addend_p)
10476 {
10477 addend = value;
10478 continue;
10479 }
10480
10481 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10482 /* See the comment above about using R_MIPS_64 in the 32-bit
10483 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10484 that calculated the right value. Now, however, we
10485 sign-extend the 32-bit result to 64-bits, and store it as a
10486 64-bit value. We are especially generous here in that we
10487 go to extreme lengths to support this usage on systems with
10488 only a 32-bit VMA. */
10489 {
10490 bfd_vma sign_bits;
10491 bfd_vma low_bits;
10492 bfd_vma high_bits;
10493
10494 if (value & ((bfd_vma) 1 << 31))
10495 #ifdef BFD64
10496 sign_bits = ((bfd_vma) 1 << 32) - 1;
10497 #else
10498 sign_bits = -1;
10499 #endif
10500 else
10501 sign_bits = 0;
10502
10503 /* If we don't know that we have a 64-bit type,
10504 do two separate stores. */
10505 if (bfd_big_endian (input_bfd))
10506 {
10507 /* Undo what we did above. */
10508 rel->r_offset -= 4;
10509 /* Store the sign-bits (which are most significant)
10510 first. */
10511 low_bits = sign_bits;
10512 high_bits = value;
10513 }
10514 else
10515 {
10516 low_bits = value;
10517 high_bits = sign_bits;
10518 }
10519 bfd_put_32 (input_bfd, low_bits,
10520 contents + rel->r_offset);
10521 bfd_put_32 (input_bfd, high_bits,
10522 contents + rel->r_offset + 4);
10523 continue;
10524 }
10525
10526 /* Actually perform the relocation. */
10527 if (! mips_elf_perform_relocation (info, howto, rel, value,
10528 input_bfd, input_section,
10529 contents, cross_mode_jump_p))
10530 return FALSE;
10531 }
10532
10533 return TRUE;
10534 }
10535 \f
10536 /* A function that iterates over each entry in la25_stubs and fills
10537 in the code for each one. DATA points to a mips_htab_traverse_info. */
10538
10539 static int
10540 mips_elf_create_la25_stub (void **slot, void *data)
10541 {
10542 struct mips_htab_traverse_info *hti;
10543 struct mips_elf_link_hash_table *htab;
10544 struct mips_elf_la25_stub *stub;
10545 asection *s;
10546 bfd_byte *loc;
10547 bfd_vma offset, target, target_high, target_low;
10548
10549 stub = (struct mips_elf_la25_stub *) *slot;
10550 hti = (struct mips_htab_traverse_info *) data;
10551 htab = mips_elf_hash_table (hti->info);
10552 BFD_ASSERT (htab != NULL);
10553
10554 /* Create the section contents, if we haven't already. */
10555 s = stub->stub_section;
10556 loc = s->contents;
10557 if (loc == NULL)
10558 {
10559 loc = bfd_malloc (s->size);
10560 if (loc == NULL)
10561 {
10562 hti->error = TRUE;
10563 return FALSE;
10564 }
10565 s->contents = loc;
10566 }
10567
10568 /* Work out where in the section this stub should go. */
10569 offset = stub->offset;
10570
10571 /* Work out the target address. */
10572 target = mips_elf_get_la25_target (stub, &s);
10573 target += s->output_section->vma + s->output_offset;
10574
10575 target_high = ((target + 0x8000) >> 16) & 0xffff;
10576 target_low = (target & 0xffff);
10577
10578 if (stub->stub_section != htab->strampoline)
10579 {
10580 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10581 of the section and write the two instructions at the end. */
10582 memset (loc, 0, offset);
10583 loc += offset;
10584 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10585 {
10586 bfd_put_micromips_32 (hti->output_bfd,
10587 LA25_LUI_MICROMIPS (target_high),
10588 loc);
10589 bfd_put_micromips_32 (hti->output_bfd,
10590 LA25_ADDIU_MICROMIPS (target_low),
10591 loc + 4);
10592 }
10593 else
10594 {
10595 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10596 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10597 }
10598 }
10599 else
10600 {
10601 /* This is trampoline. */
10602 loc += offset;
10603 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10604 {
10605 bfd_put_micromips_32 (hti->output_bfd,
10606 LA25_LUI_MICROMIPS (target_high), loc);
10607 bfd_put_micromips_32 (hti->output_bfd,
10608 LA25_J_MICROMIPS (target), loc + 4);
10609 bfd_put_micromips_32 (hti->output_bfd,
10610 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10611 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10612 }
10613 else
10614 {
10615 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10616 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10617 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10618 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10619 }
10620 }
10621 return TRUE;
10622 }
10623
10624 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10625 adjust it appropriately now. */
10626
10627 static void
10628 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10629 const char *name, Elf_Internal_Sym *sym)
10630 {
10631 /* The linker script takes care of providing names and values for
10632 these, but we must place them into the right sections. */
10633 static const char* const text_section_symbols[] = {
10634 "_ftext",
10635 "_etext",
10636 "__dso_displacement",
10637 "__elf_header",
10638 "__program_header_table",
10639 NULL
10640 };
10641
10642 static const char* const data_section_symbols[] = {
10643 "_fdata",
10644 "_edata",
10645 "_end",
10646 "_fbss",
10647 NULL
10648 };
10649
10650 const char* const *p;
10651 int i;
10652
10653 for (i = 0; i < 2; ++i)
10654 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10655 *p;
10656 ++p)
10657 if (strcmp (*p, name) == 0)
10658 {
10659 /* All of these symbols are given type STT_SECTION by the
10660 IRIX6 linker. */
10661 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10662 sym->st_other = STO_PROTECTED;
10663
10664 /* The IRIX linker puts these symbols in special sections. */
10665 if (i == 0)
10666 sym->st_shndx = SHN_MIPS_TEXT;
10667 else
10668 sym->st_shndx = SHN_MIPS_DATA;
10669
10670 break;
10671 }
10672 }
10673
10674 /* Finish up dynamic symbol handling. We set the contents of various
10675 dynamic sections here. */
10676
10677 bfd_boolean
10678 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10679 struct bfd_link_info *info,
10680 struct elf_link_hash_entry *h,
10681 Elf_Internal_Sym *sym)
10682 {
10683 bfd *dynobj;
10684 asection *sgot;
10685 struct mips_got_info *g, *gg;
10686 const char *name;
10687 int idx;
10688 struct mips_elf_link_hash_table *htab;
10689 struct mips_elf_link_hash_entry *hmips;
10690
10691 htab = mips_elf_hash_table (info);
10692 BFD_ASSERT (htab != NULL);
10693 dynobj = elf_hash_table (info)->dynobj;
10694 hmips = (struct mips_elf_link_hash_entry *) h;
10695
10696 BFD_ASSERT (!htab->is_vxworks);
10697
10698 if (h->plt.plist != NULL
10699 && (h->plt.plist->mips_offset != MINUS_ONE
10700 || h->plt.plist->comp_offset != MINUS_ONE))
10701 {
10702 /* We've decided to create a PLT entry for this symbol. */
10703 bfd_byte *loc;
10704 bfd_vma header_address, got_address;
10705 bfd_vma got_address_high, got_address_low, load;
10706 bfd_vma got_index;
10707 bfd_vma isa_bit;
10708
10709 got_index = h->plt.plist->gotplt_index;
10710
10711 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10712 BFD_ASSERT (h->dynindx != -1);
10713 BFD_ASSERT (htab->root.splt != NULL);
10714 BFD_ASSERT (got_index != MINUS_ONE);
10715 BFD_ASSERT (!h->def_regular);
10716
10717 /* Calculate the address of the PLT header. */
10718 isa_bit = htab->plt_header_is_comp;
10719 header_address = (htab->root.splt->output_section->vma
10720 + htab->root.splt->output_offset + isa_bit);
10721
10722 /* Calculate the address of the .got.plt entry. */
10723 got_address = (htab->root.sgotplt->output_section->vma
10724 + htab->root.sgotplt->output_offset
10725 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10726
10727 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10728 got_address_low = got_address & 0xffff;
10729
10730 /* Initially point the .got.plt entry at the PLT header. */
10731 loc = (htab->root.sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10732 if (ABI_64_P (output_bfd))
10733 bfd_put_64 (output_bfd, header_address, loc);
10734 else
10735 bfd_put_32 (output_bfd, header_address, loc);
10736
10737 /* Now handle the PLT itself. First the standard entry (the order
10738 does not matter, we just have to pick one). */
10739 if (h->plt.plist->mips_offset != MINUS_ONE)
10740 {
10741 const bfd_vma *plt_entry;
10742 bfd_vma plt_offset;
10743
10744 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10745
10746 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10747
10748 /* Find out where the .plt entry should go. */
10749 loc = htab->root.splt->contents + plt_offset;
10750
10751 /* Pick the load opcode. */
10752 load = MIPS_ELF_LOAD_WORD (output_bfd);
10753
10754 /* Fill in the PLT entry itself. */
10755
10756 if (MIPSR6_P (output_bfd))
10757 plt_entry = mipsr6_exec_plt_entry;
10758 else
10759 plt_entry = mips_exec_plt_entry;
10760 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10761 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10762 loc + 4);
10763
10764 if (! LOAD_INTERLOCKS_P (output_bfd))
10765 {
10766 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10767 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10768 }
10769 else
10770 {
10771 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10772 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10773 loc + 12);
10774 }
10775 }
10776
10777 /* Now the compressed entry. They come after any standard ones. */
10778 if (h->plt.plist->comp_offset != MINUS_ONE)
10779 {
10780 bfd_vma plt_offset;
10781
10782 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10783 + h->plt.plist->comp_offset);
10784
10785 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10786
10787 /* Find out where the .plt entry should go. */
10788 loc = htab->root.splt->contents + plt_offset;
10789
10790 /* Fill in the PLT entry itself. */
10791 if (!MICROMIPS_P (output_bfd))
10792 {
10793 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10794
10795 bfd_put_16 (output_bfd, plt_entry[0], loc);
10796 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10797 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10798 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10799 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10800 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10801 bfd_put_32 (output_bfd, got_address, loc + 12);
10802 }
10803 else if (htab->insn32)
10804 {
10805 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10806
10807 bfd_put_16 (output_bfd, plt_entry[0], loc);
10808 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10809 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10810 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10811 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10812 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10813 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10814 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10815 }
10816 else
10817 {
10818 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10819 bfd_signed_vma gotpc_offset;
10820 bfd_vma loc_address;
10821
10822 BFD_ASSERT (got_address % 4 == 0);
10823
10824 loc_address = (htab->root.splt->output_section->vma
10825 + htab->root.splt->output_offset + plt_offset);
10826 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10827
10828 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10829 if (gotpc_offset + 0x1000000 >= 0x2000000)
10830 {
10831 _bfd_error_handler
10832 /* xgettext:c-format */
10833 (_("%B: `%A' offset of %ld from `%A' "
10834 "beyond the range of ADDIUPC"),
10835 output_bfd,
10836 htab->root.sgotplt->output_section,
10837 htab->root.splt->output_section,
10838 (long) gotpc_offset);
10839 bfd_set_error (bfd_error_no_error);
10840 return FALSE;
10841 }
10842 bfd_put_16 (output_bfd,
10843 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10844 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10845 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10846 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10847 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10848 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10849 }
10850 }
10851
10852 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10853 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10854 got_index - 2, h->dynindx,
10855 R_MIPS_JUMP_SLOT, got_address);
10856
10857 /* We distinguish between PLT entries and lazy-binding stubs by
10858 giving the former an st_other value of STO_MIPS_PLT. Set the
10859 flag and leave the value if there are any relocations in the
10860 binary where pointer equality matters. */
10861 sym->st_shndx = SHN_UNDEF;
10862 if (h->pointer_equality_needed)
10863 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10864 else
10865 {
10866 sym->st_value = 0;
10867 sym->st_other = 0;
10868 }
10869 }
10870
10871 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10872 {
10873 /* We've decided to create a lazy-binding stub. */
10874 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10875 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10876 bfd_vma stub_size = htab->function_stub_size;
10877 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10878 bfd_vma isa_bit = micromips_p;
10879 bfd_vma stub_big_size;
10880
10881 if (!micromips_p)
10882 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10883 else if (htab->insn32)
10884 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10885 else
10886 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10887
10888 /* This symbol has a stub. Set it up. */
10889
10890 BFD_ASSERT (h->dynindx != -1);
10891
10892 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10893
10894 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10895 sign extension at runtime in the stub, resulting in a negative
10896 index value. */
10897 if (h->dynindx & ~0x7fffffff)
10898 return FALSE;
10899
10900 /* Fill the stub. */
10901 if (micromips_p)
10902 {
10903 idx = 0;
10904 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10905 stub + idx);
10906 idx += 4;
10907 if (htab->insn32)
10908 {
10909 bfd_put_micromips_32 (output_bfd,
10910 STUB_MOVE32_MICROMIPS, stub + idx);
10911 idx += 4;
10912 }
10913 else
10914 {
10915 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10916 idx += 2;
10917 }
10918 if (stub_size == stub_big_size)
10919 {
10920 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10921
10922 bfd_put_micromips_32 (output_bfd,
10923 STUB_LUI_MICROMIPS (dynindx_hi),
10924 stub + idx);
10925 idx += 4;
10926 }
10927 if (htab->insn32)
10928 {
10929 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10930 stub + idx);
10931 idx += 4;
10932 }
10933 else
10934 {
10935 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10936 idx += 2;
10937 }
10938
10939 /* If a large stub is not required and sign extension is not a
10940 problem, then use legacy code in the stub. */
10941 if (stub_size == stub_big_size)
10942 bfd_put_micromips_32 (output_bfd,
10943 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10944 stub + idx);
10945 else if (h->dynindx & ~0x7fff)
10946 bfd_put_micromips_32 (output_bfd,
10947 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10948 stub + idx);
10949 else
10950 bfd_put_micromips_32 (output_bfd,
10951 STUB_LI16S_MICROMIPS (output_bfd,
10952 h->dynindx),
10953 stub + idx);
10954 }
10955 else
10956 {
10957 idx = 0;
10958 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10959 idx += 4;
10960 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10961 idx += 4;
10962 if (stub_size == stub_big_size)
10963 {
10964 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10965 stub + idx);
10966 idx += 4;
10967 }
10968 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10969 idx += 4;
10970
10971 /* If a large stub is not required and sign extension is not a
10972 problem, then use legacy code in the stub. */
10973 if (stub_size == stub_big_size)
10974 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10975 stub + idx);
10976 else if (h->dynindx & ~0x7fff)
10977 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10978 stub + idx);
10979 else
10980 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10981 stub + idx);
10982 }
10983
10984 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10985 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10986 stub, stub_size);
10987
10988 /* Mark the symbol as undefined. stub_offset != -1 occurs
10989 only for the referenced symbol. */
10990 sym->st_shndx = SHN_UNDEF;
10991
10992 /* The run-time linker uses the st_value field of the symbol
10993 to reset the global offset table entry for this external
10994 to its stub address when unlinking a shared object. */
10995 sym->st_value = (htab->sstubs->output_section->vma
10996 + htab->sstubs->output_offset
10997 + h->plt.plist->stub_offset
10998 + isa_bit);
10999 sym->st_other = other;
11000 }
11001
11002 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11003 refer to the stub, since only the stub uses the standard calling
11004 conventions. */
11005 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11006 {
11007 BFD_ASSERT (hmips->need_fn_stub);
11008 sym->st_value = (hmips->fn_stub->output_section->vma
11009 + hmips->fn_stub->output_offset);
11010 sym->st_size = hmips->fn_stub->size;
11011 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11012 }
11013
11014 BFD_ASSERT (h->dynindx != -1
11015 || h->forced_local);
11016
11017 sgot = htab->root.sgot;
11018 g = htab->got_info;
11019 BFD_ASSERT (g != NULL);
11020
11021 /* Run through the global symbol table, creating GOT entries for all
11022 the symbols that need them. */
11023 if (hmips->global_got_area != GGA_NONE)
11024 {
11025 bfd_vma offset;
11026 bfd_vma value;
11027
11028 value = sym->st_value;
11029 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11030 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11031 }
11032
11033 if (hmips->global_got_area != GGA_NONE && g->next)
11034 {
11035 struct mips_got_entry e, *p;
11036 bfd_vma entry;
11037 bfd_vma offset;
11038
11039 gg = g;
11040
11041 e.abfd = output_bfd;
11042 e.symndx = -1;
11043 e.d.h = hmips;
11044 e.tls_type = GOT_TLS_NONE;
11045
11046 for (g = g->next; g->next != gg; g = g->next)
11047 {
11048 if (g->got_entries
11049 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11050 &e)))
11051 {
11052 offset = p->gotidx;
11053 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
11054 if (bfd_link_pic (info)
11055 || (elf_hash_table (info)->dynamic_sections_created
11056 && p->d.h != NULL
11057 && p->d.h->root.def_dynamic
11058 && !p->d.h->root.def_regular))
11059 {
11060 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11061 the various compatibility problems, it's easier to mock
11062 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11063 mips_elf_create_dynamic_relocation to calculate the
11064 appropriate addend. */
11065 Elf_Internal_Rela rel[3];
11066
11067 memset (rel, 0, sizeof (rel));
11068 if (ABI_64_P (output_bfd))
11069 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11070 else
11071 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11072 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11073
11074 entry = 0;
11075 if (! (mips_elf_create_dynamic_relocation
11076 (output_bfd, info, rel,
11077 e.d.h, NULL, sym->st_value, &entry, sgot)))
11078 return FALSE;
11079 }
11080 else
11081 entry = sym->st_value;
11082 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11083 }
11084 }
11085 }
11086
11087 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11088 name = h->root.root.string;
11089 if (h == elf_hash_table (info)->hdynamic
11090 || h == elf_hash_table (info)->hgot)
11091 sym->st_shndx = SHN_ABS;
11092 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11093 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11094 {
11095 sym->st_shndx = SHN_ABS;
11096 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11097 sym->st_value = 1;
11098 }
11099 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
11100 {
11101 sym->st_shndx = SHN_ABS;
11102 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11103 sym->st_value = elf_gp (output_bfd);
11104 }
11105 else if (SGI_COMPAT (output_bfd))
11106 {
11107 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11108 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11109 {
11110 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11111 sym->st_other = STO_PROTECTED;
11112 sym->st_value = 0;
11113 sym->st_shndx = SHN_MIPS_DATA;
11114 }
11115 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11116 {
11117 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11118 sym->st_other = STO_PROTECTED;
11119 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11120 sym->st_shndx = SHN_ABS;
11121 }
11122 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11123 {
11124 if (h->type == STT_FUNC)
11125 sym->st_shndx = SHN_MIPS_TEXT;
11126 else if (h->type == STT_OBJECT)
11127 sym->st_shndx = SHN_MIPS_DATA;
11128 }
11129 }
11130
11131 /* Emit a copy reloc, if needed. */
11132 if (h->needs_copy)
11133 {
11134 asection *s;
11135 bfd_vma symval;
11136
11137 BFD_ASSERT (h->dynindx != -1);
11138 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11139
11140 s = mips_elf_rel_dyn_section (info, FALSE);
11141 symval = (h->root.u.def.section->output_section->vma
11142 + h->root.u.def.section->output_offset
11143 + h->root.u.def.value);
11144 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11145 h->dynindx, R_MIPS_COPY, symval);
11146 }
11147
11148 /* Handle the IRIX6-specific symbols. */
11149 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11150 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11151
11152 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11153 to treat compressed symbols like any other. */
11154 if (ELF_ST_IS_MIPS16 (sym->st_other))
11155 {
11156 BFD_ASSERT (sym->st_value & 1);
11157 sym->st_other -= STO_MIPS16;
11158 }
11159 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11160 {
11161 BFD_ASSERT (sym->st_value & 1);
11162 sym->st_other -= STO_MICROMIPS;
11163 }
11164
11165 return TRUE;
11166 }
11167
11168 /* Likewise, for VxWorks. */
11169
11170 bfd_boolean
11171 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11172 struct bfd_link_info *info,
11173 struct elf_link_hash_entry *h,
11174 Elf_Internal_Sym *sym)
11175 {
11176 bfd *dynobj;
11177 asection *sgot;
11178 struct mips_got_info *g;
11179 struct mips_elf_link_hash_table *htab;
11180 struct mips_elf_link_hash_entry *hmips;
11181
11182 htab = mips_elf_hash_table (info);
11183 BFD_ASSERT (htab != NULL);
11184 dynobj = elf_hash_table (info)->dynobj;
11185 hmips = (struct mips_elf_link_hash_entry *) h;
11186
11187 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11188 {
11189 bfd_byte *loc;
11190 bfd_vma plt_address, got_address, got_offset, branch_offset;
11191 Elf_Internal_Rela rel;
11192 static const bfd_vma *plt_entry;
11193 bfd_vma gotplt_index;
11194 bfd_vma plt_offset;
11195
11196 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11197 gotplt_index = h->plt.plist->gotplt_index;
11198
11199 BFD_ASSERT (h->dynindx != -1);
11200 BFD_ASSERT (htab->root.splt != NULL);
11201 BFD_ASSERT (gotplt_index != MINUS_ONE);
11202 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11203
11204 /* Calculate the address of the .plt entry. */
11205 plt_address = (htab->root.splt->output_section->vma
11206 + htab->root.splt->output_offset
11207 + plt_offset);
11208
11209 /* Calculate the address of the .got.plt entry. */
11210 got_address = (htab->root.sgotplt->output_section->vma
11211 + htab->root.sgotplt->output_offset
11212 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11213
11214 /* Calculate the offset of the .got.plt entry from
11215 _GLOBAL_OFFSET_TABLE_. */
11216 got_offset = mips_elf_gotplt_index (info, h);
11217
11218 /* Calculate the offset for the branch at the start of the PLT
11219 entry. The branch jumps to the beginning of .plt. */
11220 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11221
11222 /* Fill in the initial value of the .got.plt entry. */
11223 bfd_put_32 (output_bfd, plt_address,
11224 (htab->root.sgotplt->contents
11225 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11226
11227 /* Find out where the .plt entry should go. */
11228 loc = htab->root.splt->contents + plt_offset;
11229
11230 if (bfd_link_pic (info))
11231 {
11232 plt_entry = mips_vxworks_shared_plt_entry;
11233 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11234 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11235 }
11236 else
11237 {
11238 bfd_vma got_address_high, got_address_low;
11239
11240 plt_entry = mips_vxworks_exec_plt_entry;
11241 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11242 got_address_low = got_address & 0xffff;
11243
11244 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11245 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11246 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11247 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11248 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11249 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11250 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11251 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11252
11253 loc = (htab->srelplt2->contents
11254 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11255
11256 /* Emit a relocation for the .got.plt entry. */
11257 rel.r_offset = got_address;
11258 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11259 rel.r_addend = plt_offset;
11260 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11261
11262 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11263 loc += sizeof (Elf32_External_Rela);
11264 rel.r_offset = plt_address + 8;
11265 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11266 rel.r_addend = got_offset;
11267 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11268
11269 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11270 loc += sizeof (Elf32_External_Rela);
11271 rel.r_offset += 4;
11272 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11273 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11274 }
11275
11276 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11277 loc = (htab->root.srelplt->contents
11278 + gotplt_index * sizeof (Elf32_External_Rela));
11279 rel.r_offset = got_address;
11280 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11281 rel.r_addend = 0;
11282 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11283
11284 if (!h->def_regular)
11285 sym->st_shndx = SHN_UNDEF;
11286 }
11287
11288 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11289
11290 sgot = htab->root.sgot;
11291 g = htab->got_info;
11292 BFD_ASSERT (g != NULL);
11293
11294 /* See if this symbol has an entry in the GOT. */
11295 if (hmips->global_got_area != GGA_NONE)
11296 {
11297 bfd_vma offset;
11298 Elf_Internal_Rela outrel;
11299 bfd_byte *loc;
11300 asection *s;
11301
11302 /* Install the symbol value in the GOT. */
11303 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11304 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11305
11306 /* Add a dynamic relocation for it. */
11307 s = mips_elf_rel_dyn_section (info, FALSE);
11308 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11309 outrel.r_offset = (sgot->output_section->vma
11310 + sgot->output_offset
11311 + offset);
11312 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11313 outrel.r_addend = 0;
11314 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11315 }
11316
11317 /* Emit a copy reloc, if needed. */
11318 if (h->needs_copy)
11319 {
11320 Elf_Internal_Rela rel;
11321 asection *srel;
11322 bfd_byte *loc;
11323
11324 BFD_ASSERT (h->dynindx != -1);
11325
11326 rel.r_offset = (h->root.u.def.section->output_section->vma
11327 + h->root.u.def.section->output_offset
11328 + h->root.u.def.value);
11329 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11330 rel.r_addend = 0;
11331 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
11332 srel = htab->root.sreldynrelro;
11333 else
11334 srel = htab->root.srelbss;
11335 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11336 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11337 ++srel->reloc_count;
11338 }
11339
11340 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11341 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11342 sym->st_value &= ~1;
11343
11344 return TRUE;
11345 }
11346
11347 /* Write out a plt0 entry to the beginning of .plt. */
11348
11349 static bfd_boolean
11350 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11351 {
11352 bfd_byte *loc;
11353 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11354 static const bfd_vma *plt_entry;
11355 struct mips_elf_link_hash_table *htab;
11356
11357 htab = mips_elf_hash_table (info);
11358 BFD_ASSERT (htab != NULL);
11359
11360 if (ABI_64_P (output_bfd))
11361 plt_entry = mips_n64_exec_plt0_entry;
11362 else if (ABI_N32_P (output_bfd))
11363 plt_entry = mips_n32_exec_plt0_entry;
11364 else if (!htab->plt_header_is_comp)
11365 plt_entry = mips_o32_exec_plt0_entry;
11366 else if (htab->insn32)
11367 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11368 else
11369 plt_entry = micromips_o32_exec_plt0_entry;
11370
11371 /* Calculate the value of .got.plt. */
11372 gotplt_value = (htab->root.sgotplt->output_section->vma
11373 + htab->root.sgotplt->output_offset);
11374 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11375 gotplt_value_low = gotplt_value & 0xffff;
11376
11377 /* The PLT sequence is not safe for N64 if .got.plt's address can
11378 not be loaded in two instructions. */
11379 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11380 || ~(gotplt_value | 0x7fffffff) == 0);
11381
11382 /* Install the PLT header. */
11383 loc = htab->root.splt->contents;
11384 if (plt_entry == micromips_o32_exec_plt0_entry)
11385 {
11386 bfd_vma gotpc_offset;
11387 bfd_vma loc_address;
11388 size_t i;
11389
11390 BFD_ASSERT (gotplt_value % 4 == 0);
11391
11392 loc_address = (htab->root.splt->output_section->vma
11393 + htab->root.splt->output_offset);
11394 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11395
11396 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11397 if (gotpc_offset + 0x1000000 >= 0x2000000)
11398 {
11399 _bfd_error_handler
11400 /* xgettext:c-format */
11401 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11402 output_bfd,
11403 htab->root.sgotplt->output_section,
11404 htab->root.splt->output_section,
11405 (long) gotpc_offset);
11406 bfd_set_error (bfd_error_no_error);
11407 return FALSE;
11408 }
11409 bfd_put_16 (output_bfd,
11410 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11411 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11412 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11413 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11414 }
11415 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11416 {
11417 size_t i;
11418
11419 bfd_put_16 (output_bfd, plt_entry[0], loc);
11420 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11421 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11422 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11423 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11424 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11425 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11426 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11427 }
11428 else
11429 {
11430 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11431 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11432 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11433 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11434 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11435 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11436 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11437 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11438 }
11439
11440 return TRUE;
11441 }
11442
11443 /* Install the PLT header for a VxWorks executable and finalize the
11444 contents of .rela.plt.unloaded. */
11445
11446 static void
11447 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11448 {
11449 Elf_Internal_Rela rela;
11450 bfd_byte *loc;
11451 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11452 static const bfd_vma *plt_entry;
11453 struct mips_elf_link_hash_table *htab;
11454
11455 htab = mips_elf_hash_table (info);
11456 BFD_ASSERT (htab != NULL);
11457
11458 plt_entry = mips_vxworks_exec_plt0_entry;
11459
11460 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11461 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11462 + htab->root.hgot->root.u.def.section->output_offset
11463 + htab->root.hgot->root.u.def.value);
11464
11465 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11466 got_value_low = got_value & 0xffff;
11467
11468 /* Calculate the address of the PLT header. */
11469 plt_address = (htab->root.splt->output_section->vma
11470 + htab->root.splt->output_offset);
11471
11472 /* Install the PLT header. */
11473 loc = htab->root.splt->contents;
11474 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11475 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11476 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11477 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11478 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11479 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11480
11481 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11482 loc = htab->srelplt2->contents;
11483 rela.r_offset = plt_address;
11484 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11485 rela.r_addend = 0;
11486 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11487 loc += sizeof (Elf32_External_Rela);
11488
11489 /* Output the relocation for the following addiu of
11490 %lo(_GLOBAL_OFFSET_TABLE_). */
11491 rela.r_offset += 4;
11492 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11493 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11494 loc += sizeof (Elf32_External_Rela);
11495
11496 /* Fix up the remaining relocations. They may have the wrong
11497 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11498 in which symbols were output. */
11499 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11500 {
11501 Elf_Internal_Rela rel;
11502
11503 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11504 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11505 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11506 loc += sizeof (Elf32_External_Rela);
11507
11508 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11509 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11510 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11511 loc += sizeof (Elf32_External_Rela);
11512
11513 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11514 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11515 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11516 loc += sizeof (Elf32_External_Rela);
11517 }
11518 }
11519
11520 /* Install the PLT header for a VxWorks shared library. */
11521
11522 static void
11523 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11524 {
11525 unsigned int i;
11526 struct mips_elf_link_hash_table *htab;
11527
11528 htab = mips_elf_hash_table (info);
11529 BFD_ASSERT (htab != NULL);
11530
11531 /* We just need to copy the entry byte-by-byte. */
11532 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11533 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11534 htab->root.splt->contents + i * 4);
11535 }
11536
11537 /* Finish up the dynamic sections. */
11538
11539 bfd_boolean
11540 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11541 struct bfd_link_info *info)
11542 {
11543 bfd *dynobj;
11544 asection *sdyn;
11545 asection *sgot;
11546 struct mips_got_info *gg, *g;
11547 struct mips_elf_link_hash_table *htab;
11548
11549 htab = mips_elf_hash_table (info);
11550 BFD_ASSERT (htab != NULL);
11551
11552 dynobj = elf_hash_table (info)->dynobj;
11553
11554 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11555
11556 sgot = htab->root.sgot;
11557 gg = htab->got_info;
11558
11559 if (elf_hash_table (info)->dynamic_sections_created)
11560 {
11561 bfd_byte *b;
11562 int dyn_to_skip = 0, dyn_skipped = 0;
11563
11564 BFD_ASSERT (sdyn != NULL);
11565 BFD_ASSERT (gg != NULL);
11566
11567 g = mips_elf_bfd_got (output_bfd, FALSE);
11568 BFD_ASSERT (g != NULL);
11569
11570 for (b = sdyn->contents;
11571 b < sdyn->contents + sdyn->size;
11572 b += MIPS_ELF_DYN_SIZE (dynobj))
11573 {
11574 Elf_Internal_Dyn dyn;
11575 const char *name;
11576 size_t elemsize;
11577 asection *s;
11578 bfd_boolean swap_out_p;
11579
11580 /* Read in the current dynamic entry. */
11581 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11582
11583 /* Assume that we're going to modify it and write it out. */
11584 swap_out_p = TRUE;
11585
11586 switch (dyn.d_tag)
11587 {
11588 case DT_RELENT:
11589 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11590 break;
11591
11592 case DT_RELAENT:
11593 BFD_ASSERT (htab->is_vxworks);
11594 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11595 break;
11596
11597 case DT_STRSZ:
11598 /* Rewrite DT_STRSZ. */
11599 dyn.d_un.d_val =
11600 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11601 break;
11602
11603 case DT_PLTGOT:
11604 s = htab->root.sgot;
11605 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11606 break;
11607
11608 case DT_MIPS_PLTGOT:
11609 s = htab->root.sgotplt;
11610 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11611 break;
11612
11613 case DT_MIPS_RLD_VERSION:
11614 dyn.d_un.d_val = 1; /* XXX */
11615 break;
11616
11617 case DT_MIPS_FLAGS:
11618 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11619 break;
11620
11621 case DT_MIPS_TIME_STAMP:
11622 {
11623 time_t t;
11624 time (&t);
11625 dyn.d_un.d_val = t;
11626 }
11627 break;
11628
11629 case DT_MIPS_ICHECKSUM:
11630 /* XXX FIXME: */
11631 swap_out_p = FALSE;
11632 break;
11633
11634 case DT_MIPS_IVERSION:
11635 /* XXX FIXME: */
11636 swap_out_p = FALSE;
11637 break;
11638
11639 case DT_MIPS_BASE_ADDRESS:
11640 s = output_bfd->sections;
11641 BFD_ASSERT (s != NULL);
11642 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11643 break;
11644
11645 case DT_MIPS_LOCAL_GOTNO:
11646 dyn.d_un.d_val = g->local_gotno;
11647 break;
11648
11649 case DT_MIPS_UNREFEXTNO:
11650 /* The index into the dynamic symbol table which is the
11651 entry of the first external symbol that is not
11652 referenced within the same object. */
11653 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11654 break;
11655
11656 case DT_MIPS_GOTSYM:
11657 if (htab->global_gotsym)
11658 {
11659 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11660 break;
11661 }
11662 /* In case if we don't have global got symbols we default
11663 to setting DT_MIPS_GOTSYM to the same value as
11664 DT_MIPS_SYMTABNO. */
11665 /* Fall through. */
11666
11667 case DT_MIPS_SYMTABNO:
11668 name = ".dynsym";
11669 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11670 s = bfd_get_linker_section (dynobj, name);
11671
11672 if (s != NULL)
11673 dyn.d_un.d_val = s->size / elemsize;
11674 else
11675 dyn.d_un.d_val = 0;
11676 break;
11677
11678 case DT_MIPS_HIPAGENO:
11679 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11680 break;
11681
11682 case DT_MIPS_RLD_MAP:
11683 {
11684 struct elf_link_hash_entry *h;
11685 h = mips_elf_hash_table (info)->rld_symbol;
11686 if (!h)
11687 {
11688 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11689 swap_out_p = FALSE;
11690 break;
11691 }
11692 s = h->root.u.def.section;
11693
11694 /* The MIPS_RLD_MAP tag stores the absolute address of the
11695 debug pointer. */
11696 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11697 + h->root.u.def.value);
11698 }
11699 break;
11700
11701 case DT_MIPS_RLD_MAP_REL:
11702 {
11703 struct elf_link_hash_entry *h;
11704 bfd_vma dt_addr, rld_addr;
11705 h = mips_elf_hash_table (info)->rld_symbol;
11706 if (!h)
11707 {
11708 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11709 swap_out_p = FALSE;
11710 break;
11711 }
11712 s = h->root.u.def.section;
11713
11714 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11715 pointer, relative to the address of the tag. */
11716 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11717 + (b - sdyn->contents));
11718 rld_addr = (s->output_section->vma + s->output_offset
11719 + h->root.u.def.value);
11720 dyn.d_un.d_ptr = rld_addr - dt_addr;
11721 }
11722 break;
11723
11724 case DT_MIPS_OPTIONS:
11725 s = (bfd_get_section_by_name
11726 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11727 dyn.d_un.d_ptr = s->vma;
11728 break;
11729
11730 case DT_PLTREL:
11731 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11732 if (htab->is_vxworks)
11733 dyn.d_un.d_val = DT_RELA;
11734 else
11735 dyn.d_un.d_val = DT_REL;
11736 break;
11737
11738 case DT_PLTRELSZ:
11739 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11740 dyn.d_un.d_val = htab->root.srelplt->size;
11741 break;
11742
11743 case DT_JMPREL:
11744 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11745 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11746 + htab->root.srelplt->output_offset);
11747 break;
11748
11749 case DT_TEXTREL:
11750 /* If we didn't need any text relocations after all, delete
11751 the dynamic tag. */
11752 if (!(info->flags & DF_TEXTREL))
11753 {
11754 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11755 swap_out_p = FALSE;
11756 }
11757 break;
11758
11759 case DT_FLAGS:
11760 /* If we didn't need any text relocations after all, clear
11761 DF_TEXTREL from DT_FLAGS. */
11762 if (!(info->flags & DF_TEXTREL))
11763 dyn.d_un.d_val &= ~DF_TEXTREL;
11764 else
11765 swap_out_p = FALSE;
11766 break;
11767
11768 default:
11769 swap_out_p = FALSE;
11770 if (htab->is_vxworks
11771 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11772 swap_out_p = TRUE;
11773 break;
11774 }
11775
11776 if (swap_out_p || dyn_skipped)
11777 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11778 (dynobj, &dyn, b - dyn_skipped);
11779
11780 if (dyn_to_skip)
11781 {
11782 dyn_skipped += dyn_to_skip;
11783 dyn_to_skip = 0;
11784 }
11785 }
11786
11787 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11788 if (dyn_skipped > 0)
11789 memset (b - dyn_skipped, 0, dyn_skipped);
11790 }
11791
11792 if (sgot != NULL && sgot->size > 0
11793 && !bfd_is_abs_section (sgot->output_section))
11794 {
11795 if (htab->is_vxworks)
11796 {
11797 /* The first entry of the global offset table points to the
11798 ".dynamic" section. The second is initialized by the
11799 loader and contains the shared library identifier.
11800 The third is also initialized by the loader and points
11801 to the lazy resolution stub. */
11802 MIPS_ELF_PUT_WORD (output_bfd,
11803 sdyn->output_offset + sdyn->output_section->vma,
11804 sgot->contents);
11805 MIPS_ELF_PUT_WORD (output_bfd, 0,
11806 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11807 MIPS_ELF_PUT_WORD (output_bfd, 0,
11808 sgot->contents
11809 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11810 }
11811 else
11812 {
11813 /* The first entry of the global offset table will be filled at
11814 runtime. The second entry will be used by some runtime loaders.
11815 This isn't the case of IRIX rld. */
11816 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11817 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11818 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11819 }
11820
11821 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11822 = MIPS_ELF_GOT_SIZE (output_bfd);
11823 }
11824
11825 /* Generate dynamic relocations for the non-primary gots. */
11826 if (gg != NULL && gg->next)
11827 {
11828 Elf_Internal_Rela rel[3];
11829 bfd_vma addend = 0;
11830
11831 memset (rel, 0, sizeof (rel));
11832 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11833
11834 for (g = gg->next; g->next != gg; g = g->next)
11835 {
11836 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11837 + g->next->tls_gotno;
11838
11839 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11840 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11841 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11842 sgot->contents
11843 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11844
11845 if (! bfd_link_pic (info))
11846 continue;
11847
11848 for (; got_index < g->local_gotno; got_index++)
11849 {
11850 if (got_index >= g->assigned_low_gotno
11851 && got_index <= g->assigned_high_gotno)
11852 continue;
11853
11854 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11855 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11856 if (!(mips_elf_create_dynamic_relocation
11857 (output_bfd, info, rel, NULL,
11858 bfd_abs_section_ptr,
11859 0, &addend, sgot)))
11860 return FALSE;
11861 BFD_ASSERT (addend == 0);
11862 }
11863 }
11864 }
11865
11866 /* The generation of dynamic relocations for the non-primary gots
11867 adds more dynamic relocations. We cannot count them until
11868 here. */
11869
11870 if (elf_hash_table (info)->dynamic_sections_created)
11871 {
11872 bfd_byte *b;
11873 bfd_boolean swap_out_p;
11874
11875 BFD_ASSERT (sdyn != NULL);
11876
11877 for (b = sdyn->contents;
11878 b < sdyn->contents + sdyn->size;
11879 b += MIPS_ELF_DYN_SIZE (dynobj))
11880 {
11881 Elf_Internal_Dyn dyn;
11882 asection *s;
11883
11884 /* Read in the current dynamic entry. */
11885 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11886
11887 /* Assume that we're going to modify it and write it out. */
11888 swap_out_p = TRUE;
11889
11890 switch (dyn.d_tag)
11891 {
11892 case DT_RELSZ:
11893 /* Reduce DT_RELSZ to account for any relocations we
11894 decided not to make. This is for the n64 irix rld,
11895 which doesn't seem to apply any relocations if there
11896 are trailing null entries. */
11897 s = mips_elf_rel_dyn_section (info, FALSE);
11898 dyn.d_un.d_val = (s->reloc_count
11899 * (ABI_64_P (output_bfd)
11900 ? sizeof (Elf64_Mips_External_Rel)
11901 : sizeof (Elf32_External_Rel)));
11902 /* Adjust the section size too. Tools like the prelinker
11903 can reasonably expect the values to the same. */
11904 elf_section_data (s->output_section)->this_hdr.sh_size
11905 = dyn.d_un.d_val;
11906 break;
11907
11908 default:
11909 swap_out_p = FALSE;
11910 break;
11911 }
11912
11913 if (swap_out_p)
11914 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11915 (dynobj, &dyn, b);
11916 }
11917 }
11918
11919 {
11920 asection *s;
11921 Elf32_compact_rel cpt;
11922
11923 if (SGI_COMPAT (output_bfd))
11924 {
11925 /* Write .compact_rel section out. */
11926 s = bfd_get_linker_section (dynobj, ".compact_rel");
11927 if (s != NULL)
11928 {
11929 cpt.id1 = 1;
11930 cpt.num = s->reloc_count;
11931 cpt.id2 = 2;
11932 cpt.offset = (s->output_section->filepos
11933 + sizeof (Elf32_External_compact_rel));
11934 cpt.reserved0 = 0;
11935 cpt.reserved1 = 0;
11936 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11937 ((Elf32_External_compact_rel *)
11938 s->contents));
11939
11940 /* Clean up a dummy stub function entry in .text. */
11941 if (htab->sstubs != NULL)
11942 {
11943 file_ptr dummy_offset;
11944
11945 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11946 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11947 memset (htab->sstubs->contents + dummy_offset, 0,
11948 htab->function_stub_size);
11949 }
11950 }
11951 }
11952
11953 /* The psABI says that the dynamic relocations must be sorted in
11954 increasing order of r_symndx. The VxWorks EABI doesn't require
11955 this, and because the code below handles REL rather than RELA
11956 relocations, using it for VxWorks would be outright harmful. */
11957 if (!htab->is_vxworks)
11958 {
11959 s = mips_elf_rel_dyn_section (info, FALSE);
11960 if (s != NULL
11961 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11962 {
11963 reldyn_sorting_bfd = output_bfd;
11964
11965 if (ABI_64_P (output_bfd))
11966 qsort ((Elf64_External_Rel *) s->contents + 1,
11967 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11968 sort_dynamic_relocs_64);
11969 else
11970 qsort ((Elf32_External_Rel *) s->contents + 1,
11971 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11972 sort_dynamic_relocs);
11973 }
11974 }
11975 }
11976
11977 if (htab->root.splt && htab->root.splt->size > 0)
11978 {
11979 if (htab->is_vxworks)
11980 {
11981 if (bfd_link_pic (info))
11982 mips_vxworks_finish_shared_plt (output_bfd, info);
11983 else
11984 mips_vxworks_finish_exec_plt (output_bfd, info);
11985 }
11986 else
11987 {
11988 BFD_ASSERT (!bfd_link_pic (info));
11989 if (!mips_finish_exec_plt (output_bfd, info))
11990 return FALSE;
11991 }
11992 }
11993 return TRUE;
11994 }
11995
11996
11997 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11998
11999 static void
12000 mips_set_isa_flags (bfd *abfd)
12001 {
12002 flagword val;
12003
12004 switch (bfd_get_mach (abfd))
12005 {
12006 default:
12007 case bfd_mach_mips3000:
12008 val = E_MIPS_ARCH_1;
12009 break;
12010
12011 case bfd_mach_mips3900:
12012 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12013 break;
12014
12015 case bfd_mach_mips6000:
12016 val = E_MIPS_ARCH_2;
12017 break;
12018
12019 case bfd_mach_mips4000:
12020 case bfd_mach_mips4300:
12021 case bfd_mach_mips4400:
12022 case bfd_mach_mips4600:
12023 val = E_MIPS_ARCH_3;
12024 break;
12025
12026 case bfd_mach_mips4010:
12027 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
12028 break;
12029
12030 case bfd_mach_mips4100:
12031 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12032 break;
12033
12034 case bfd_mach_mips4111:
12035 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12036 break;
12037
12038 case bfd_mach_mips4120:
12039 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12040 break;
12041
12042 case bfd_mach_mips4650:
12043 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12044 break;
12045
12046 case bfd_mach_mips5400:
12047 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12048 break;
12049
12050 case bfd_mach_mips5500:
12051 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12052 break;
12053
12054 case bfd_mach_mips5900:
12055 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12056 break;
12057
12058 case bfd_mach_mips9000:
12059 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12060 break;
12061
12062 case bfd_mach_mips5000:
12063 case bfd_mach_mips7000:
12064 case bfd_mach_mips8000:
12065 case bfd_mach_mips10000:
12066 case bfd_mach_mips12000:
12067 case bfd_mach_mips14000:
12068 case bfd_mach_mips16000:
12069 val = E_MIPS_ARCH_4;
12070 break;
12071
12072 case bfd_mach_mips5:
12073 val = E_MIPS_ARCH_5;
12074 break;
12075
12076 case bfd_mach_mips_loongson_2e:
12077 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12078 break;
12079
12080 case bfd_mach_mips_loongson_2f:
12081 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12082 break;
12083
12084 case bfd_mach_mips_sb1:
12085 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12086 break;
12087
12088 case bfd_mach_mips_loongson_3a:
12089 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
12090 break;
12091
12092 case bfd_mach_mips_octeon:
12093 case bfd_mach_mips_octeonp:
12094 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12095 break;
12096
12097 case bfd_mach_mips_octeon3:
12098 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12099 break;
12100
12101 case bfd_mach_mips_xlr:
12102 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12103 break;
12104
12105 case bfd_mach_mips_octeon2:
12106 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12107 break;
12108
12109 case bfd_mach_mipsisa32:
12110 val = E_MIPS_ARCH_32;
12111 break;
12112
12113 case bfd_mach_mipsisa64:
12114 val = E_MIPS_ARCH_64;
12115 break;
12116
12117 case bfd_mach_mipsisa32r2:
12118 case bfd_mach_mipsisa32r3:
12119 case bfd_mach_mipsisa32r5:
12120 val = E_MIPS_ARCH_32R2;
12121 break;
12122
12123 case bfd_mach_mipsisa64r2:
12124 case bfd_mach_mipsisa64r3:
12125 case bfd_mach_mipsisa64r5:
12126 val = E_MIPS_ARCH_64R2;
12127 break;
12128
12129 case bfd_mach_mipsisa32r6:
12130 val = E_MIPS_ARCH_32R6;
12131 break;
12132
12133 case bfd_mach_mipsisa64r6:
12134 val = E_MIPS_ARCH_64R6;
12135 break;
12136 }
12137 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12138 elf_elfheader (abfd)->e_flags |= val;
12139
12140 }
12141
12142
12143 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12144 Don't do so for code sections. We want to keep ordering of HI16/LO16
12145 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12146 relocs to be sorted. */
12147
12148 bfd_boolean
12149 _bfd_mips_elf_sort_relocs_p (asection *sec)
12150 {
12151 return (sec->flags & SEC_CODE) == 0;
12152 }
12153
12154
12155 /* The final processing done just before writing out a MIPS ELF object
12156 file. This gets the MIPS architecture right based on the machine
12157 number. This is used by both the 32-bit and the 64-bit ABI. */
12158
12159 void
12160 _bfd_mips_elf_final_write_processing (bfd *abfd,
12161 bfd_boolean linker ATTRIBUTE_UNUSED)
12162 {
12163 unsigned int i;
12164 Elf_Internal_Shdr **hdrpp;
12165 const char *name;
12166 asection *sec;
12167
12168 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12169 is nonzero. This is for compatibility with old objects, which used
12170 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12171 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12172 mips_set_isa_flags (abfd);
12173
12174 /* Set the sh_info field for .gptab sections and other appropriate
12175 info for each special section. */
12176 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12177 i < elf_numsections (abfd);
12178 i++, hdrpp++)
12179 {
12180 switch ((*hdrpp)->sh_type)
12181 {
12182 case SHT_MIPS_MSYM:
12183 case SHT_MIPS_LIBLIST:
12184 sec = bfd_get_section_by_name (abfd, ".dynstr");
12185 if (sec != NULL)
12186 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12187 break;
12188
12189 case SHT_MIPS_GPTAB:
12190 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12191 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12192 BFD_ASSERT (name != NULL
12193 && CONST_STRNEQ (name, ".gptab."));
12194 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12195 BFD_ASSERT (sec != NULL);
12196 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12197 break;
12198
12199 case SHT_MIPS_CONTENT:
12200 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12201 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12202 BFD_ASSERT (name != NULL
12203 && CONST_STRNEQ (name, ".MIPS.content"));
12204 sec = bfd_get_section_by_name (abfd,
12205 name + sizeof ".MIPS.content" - 1);
12206 BFD_ASSERT (sec != NULL);
12207 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12208 break;
12209
12210 case SHT_MIPS_SYMBOL_LIB:
12211 sec = bfd_get_section_by_name (abfd, ".dynsym");
12212 if (sec != NULL)
12213 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12214 sec = bfd_get_section_by_name (abfd, ".liblist");
12215 if (sec != NULL)
12216 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12217 break;
12218
12219 case SHT_MIPS_EVENTS:
12220 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12221 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12222 BFD_ASSERT (name != NULL);
12223 if (CONST_STRNEQ (name, ".MIPS.events"))
12224 sec = bfd_get_section_by_name (abfd,
12225 name + sizeof ".MIPS.events" - 1);
12226 else
12227 {
12228 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12229 sec = bfd_get_section_by_name (abfd,
12230 (name
12231 + sizeof ".MIPS.post_rel" - 1));
12232 }
12233 BFD_ASSERT (sec != NULL);
12234 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12235 break;
12236
12237 }
12238 }
12239 }
12240 \f
12241 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12242 segments. */
12243
12244 int
12245 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12246 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12247 {
12248 asection *s;
12249 int ret = 0;
12250
12251 /* See if we need a PT_MIPS_REGINFO segment. */
12252 s = bfd_get_section_by_name (abfd, ".reginfo");
12253 if (s && (s->flags & SEC_LOAD))
12254 ++ret;
12255
12256 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12257 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12258 ++ret;
12259
12260 /* See if we need a PT_MIPS_OPTIONS segment. */
12261 if (IRIX_COMPAT (abfd) == ict_irix6
12262 && bfd_get_section_by_name (abfd,
12263 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12264 ++ret;
12265
12266 /* See if we need a PT_MIPS_RTPROC segment. */
12267 if (IRIX_COMPAT (abfd) == ict_irix5
12268 && bfd_get_section_by_name (abfd, ".dynamic")
12269 && bfd_get_section_by_name (abfd, ".mdebug"))
12270 ++ret;
12271
12272 /* Allocate a PT_NULL header in dynamic objects. See
12273 _bfd_mips_elf_modify_segment_map for details. */
12274 if (!SGI_COMPAT (abfd)
12275 && bfd_get_section_by_name (abfd, ".dynamic"))
12276 ++ret;
12277
12278 return ret;
12279 }
12280
12281 /* Modify the segment map for an IRIX5 executable. */
12282
12283 bfd_boolean
12284 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12285 struct bfd_link_info *info)
12286 {
12287 asection *s;
12288 struct elf_segment_map *m, **pm;
12289 bfd_size_type amt;
12290
12291 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12292 segment. */
12293 s = bfd_get_section_by_name (abfd, ".reginfo");
12294 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12295 {
12296 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12297 if (m->p_type == PT_MIPS_REGINFO)
12298 break;
12299 if (m == NULL)
12300 {
12301 amt = sizeof *m;
12302 m = bfd_zalloc (abfd, amt);
12303 if (m == NULL)
12304 return FALSE;
12305
12306 m->p_type = PT_MIPS_REGINFO;
12307 m->count = 1;
12308 m->sections[0] = s;
12309
12310 /* We want to put it after the PHDR and INTERP segments. */
12311 pm = &elf_seg_map (abfd);
12312 while (*pm != NULL
12313 && ((*pm)->p_type == PT_PHDR
12314 || (*pm)->p_type == PT_INTERP))
12315 pm = &(*pm)->next;
12316
12317 m->next = *pm;
12318 *pm = m;
12319 }
12320 }
12321
12322 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12323 segment. */
12324 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12325 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12326 {
12327 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12328 if (m->p_type == PT_MIPS_ABIFLAGS)
12329 break;
12330 if (m == NULL)
12331 {
12332 amt = sizeof *m;
12333 m = bfd_zalloc (abfd, amt);
12334 if (m == NULL)
12335 return FALSE;
12336
12337 m->p_type = PT_MIPS_ABIFLAGS;
12338 m->count = 1;
12339 m->sections[0] = s;
12340
12341 /* We want to put it after the PHDR and INTERP segments. */
12342 pm = &elf_seg_map (abfd);
12343 while (*pm != NULL
12344 && ((*pm)->p_type == PT_PHDR
12345 || (*pm)->p_type == PT_INTERP))
12346 pm = &(*pm)->next;
12347
12348 m->next = *pm;
12349 *pm = m;
12350 }
12351 }
12352
12353 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12354 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12355 PT_MIPS_OPTIONS segment immediately following the program header
12356 table. */
12357 if (NEWABI_P (abfd)
12358 /* On non-IRIX6 new abi, we'll have already created a segment
12359 for this section, so don't create another. I'm not sure this
12360 is not also the case for IRIX 6, but I can't test it right
12361 now. */
12362 && IRIX_COMPAT (abfd) == ict_irix6)
12363 {
12364 for (s = abfd->sections; s; s = s->next)
12365 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12366 break;
12367
12368 if (s)
12369 {
12370 struct elf_segment_map *options_segment;
12371
12372 pm = &elf_seg_map (abfd);
12373 while (*pm != NULL
12374 && ((*pm)->p_type == PT_PHDR
12375 || (*pm)->p_type == PT_INTERP))
12376 pm = &(*pm)->next;
12377
12378 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12379 {
12380 amt = sizeof (struct elf_segment_map);
12381 options_segment = bfd_zalloc (abfd, amt);
12382 options_segment->next = *pm;
12383 options_segment->p_type = PT_MIPS_OPTIONS;
12384 options_segment->p_flags = PF_R;
12385 options_segment->p_flags_valid = TRUE;
12386 options_segment->count = 1;
12387 options_segment->sections[0] = s;
12388 *pm = options_segment;
12389 }
12390 }
12391 }
12392 else
12393 {
12394 if (IRIX_COMPAT (abfd) == ict_irix5)
12395 {
12396 /* If there are .dynamic and .mdebug sections, we make a room
12397 for the RTPROC header. FIXME: Rewrite without section names. */
12398 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12399 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12400 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12401 {
12402 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12403 if (m->p_type == PT_MIPS_RTPROC)
12404 break;
12405 if (m == NULL)
12406 {
12407 amt = sizeof *m;
12408 m = bfd_zalloc (abfd, amt);
12409 if (m == NULL)
12410 return FALSE;
12411
12412 m->p_type = PT_MIPS_RTPROC;
12413
12414 s = bfd_get_section_by_name (abfd, ".rtproc");
12415 if (s == NULL)
12416 {
12417 m->count = 0;
12418 m->p_flags = 0;
12419 m->p_flags_valid = 1;
12420 }
12421 else
12422 {
12423 m->count = 1;
12424 m->sections[0] = s;
12425 }
12426
12427 /* We want to put it after the DYNAMIC segment. */
12428 pm = &elf_seg_map (abfd);
12429 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12430 pm = &(*pm)->next;
12431 if (*pm != NULL)
12432 pm = &(*pm)->next;
12433
12434 m->next = *pm;
12435 *pm = m;
12436 }
12437 }
12438 }
12439 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12440 .dynstr, .dynsym, and .hash sections, and everything in
12441 between. */
12442 for (pm = &elf_seg_map (abfd); *pm != NULL;
12443 pm = &(*pm)->next)
12444 if ((*pm)->p_type == PT_DYNAMIC)
12445 break;
12446 m = *pm;
12447 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12448 glibc's dynamic linker has traditionally derived the number of
12449 tags from the p_filesz field, and sometimes allocates stack
12450 arrays of that size. An overly-big PT_DYNAMIC segment can
12451 be actively harmful in such cases. Making PT_DYNAMIC contain
12452 other sections can also make life hard for the prelinker,
12453 which might move one of the other sections to a different
12454 PT_LOAD segment. */
12455 if (SGI_COMPAT (abfd)
12456 && m != NULL
12457 && m->count == 1
12458 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12459 {
12460 static const char *sec_names[] =
12461 {
12462 ".dynamic", ".dynstr", ".dynsym", ".hash"
12463 };
12464 bfd_vma low, high;
12465 unsigned int i, c;
12466 struct elf_segment_map *n;
12467
12468 low = ~(bfd_vma) 0;
12469 high = 0;
12470 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12471 {
12472 s = bfd_get_section_by_name (abfd, sec_names[i]);
12473 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12474 {
12475 bfd_size_type sz;
12476
12477 if (low > s->vma)
12478 low = s->vma;
12479 sz = s->size;
12480 if (high < s->vma + sz)
12481 high = s->vma + sz;
12482 }
12483 }
12484
12485 c = 0;
12486 for (s = abfd->sections; s != NULL; s = s->next)
12487 if ((s->flags & SEC_LOAD) != 0
12488 && s->vma >= low
12489 && s->vma + s->size <= high)
12490 ++c;
12491
12492 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12493 n = bfd_zalloc (abfd, amt);
12494 if (n == NULL)
12495 return FALSE;
12496 *n = *m;
12497 n->count = c;
12498
12499 i = 0;
12500 for (s = abfd->sections; s != NULL; s = s->next)
12501 {
12502 if ((s->flags & SEC_LOAD) != 0
12503 && s->vma >= low
12504 && s->vma + s->size <= high)
12505 {
12506 n->sections[i] = s;
12507 ++i;
12508 }
12509 }
12510
12511 *pm = n;
12512 }
12513 }
12514
12515 /* Allocate a spare program header in dynamic objects so that tools
12516 like the prelinker can add an extra PT_LOAD entry.
12517
12518 If the prelinker needs to make room for a new PT_LOAD entry, its
12519 standard procedure is to move the first (read-only) sections into
12520 the new (writable) segment. However, the MIPS ABI requires
12521 .dynamic to be in a read-only segment, and the section will often
12522 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12523
12524 Although the prelinker could in principle move .dynamic to a
12525 writable segment, it seems better to allocate a spare program
12526 header instead, and avoid the need to move any sections.
12527 There is a long tradition of allocating spare dynamic tags,
12528 so allocating a spare program header seems like a natural
12529 extension.
12530
12531 If INFO is NULL, we may be copying an already prelinked binary
12532 with objcopy or strip, so do not add this header. */
12533 if (info != NULL
12534 && !SGI_COMPAT (abfd)
12535 && bfd_get_section_by_name (abfd, ".dynamic"))
12536 {
12537 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12538 if ((*pm)->p_type == PT_NULL)
12539 break;
12540 if (*pm == NULL)
12541 {
12542 m = bfd_zalloc (abfd, sizeof (*m));
12543 if (m == NULL)
12544 return FALSE;
12545
12546 m->p_type = PT_NULL;
12547 *pm = m;
12548 }
12549 }
12550
12551 return TRUE;
12552 }
12553 \f
12554 /* Return the section that should be marked against GC for a given
12555 relocation. */
12556
12557 asection *
12558 _bfd_mips_elf_gc_mark_hook (asection *sec,
12559 struct bfd_link_info *info,
12560 Elf_Internal_Rela *rel,
12561 struct elf_link_hash_entry *h,
12562 Elf_Internal_Sym *sym)
12563 {
12564 /* ??? Do mips16 stub sections need to be handled special? */
12565
12566 if (h != NULL)
12567 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12568 {
12569 case R_MIPS_GNU_VTINHERIT:
12570 case R_MIPS_GNU_VTENTRY:
12571 return NULL;
12572 }
12573
12574 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12575 }
12576
12577 /* Update the got entry reference counts for the section being removed. */
12578
12579 bfd_boolean
12580 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12581 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12582 asection *sec ATTRIBUTE_UNUSED,
12583 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12584 {
12585 #if 0
12586 Elf_Internal_Shdr *symtab_hdr;
12587 struct elf_link_hash_entry **sym_hashes;
12588 bfd_signed_vma *local_got_refcounts;
12589 const Elf_Internal_Rela *rel, *relend;
12590 unsigned long r_symndx;
12591 struct elf_link_hash_entry *h;
12592
12593 if (bfd_link_relocatable (info))
12594 return TRUE;
12595
12596 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12597 sym_hashes = elf_sym_hashes (abfd);
12598 local_got_refcounts = elf_local_got_refcounts (abfd);
12599
12600 relend = relocs + sec->reloc_count;
12601 for (rel = relocs; rel < relend; rel++)
12602 switch (ELF_R_TYPE (abfd, rel->r_info))
12603 {
12604 case R_MIPS16_GOT16:
12605 case R_MIPS16_CALL16:
12606 case R_MIPS_GOT16:
12607 case R_MIPS_CALL16:
12608 case R_MIPS_CALL_HI16:
12609 case R_MIPS_CALL_LO16:
12610 case R_MIPS_GOT_HI16:
12611 case R_MIPS_GOT_LO16:
12612 case R_MIPS_GOT_DISP:
12613 case R_MIPS_GOT_PAGE:
12614 case R_MIPS_GOT_OFST:
12615 case R_MICROMIPS_GOT16:
12616 case R_MICROMIPS_CALL16:
12617 case R_MICROMIPS_CALL_HI16:
12618 case R_MICROMIPS_CALL_LO16:
12619 case R_MICROMIPS_GOT_HI16:
12620 case R_MICROMIPS_GOT_LO16:
12621 case R_MICROMIPS_GOT_DISP:
12622 case R_MICROMIPS_GOT_PAGE:
12623 case R_MICROMIPS_GOT_OFST:
12624 /* ??? It would seem that the existing MIPS code does no sort
12625 of reference counting or whatnot on its GOT and PLT entries,
12626 so it is not possible to garbage collect them at this time. */
12627 break;
12628
12629 default:
12630 break;
12631 }
12632 #endif
12633
12634 return TRUE;
12635 }
12636
12637 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12638
12639 bfd_boolean
12640 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12641 elf_gc_mark_hook_fn gc_mark_hook)
12642 {
12643 bfd *sub;
12644
12645 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12646
12647 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12648 {
12649 asection *o;
12650
12651 if (! is_mips_elf (sub))
12652 continue;
12653
12654 for (o = sub->sections; o != NULL; o = o->next)
12655 if (!o->gc_mark
12656 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12657 (bfd_get_section_name (sub, o)))
12658 {
12659 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12660 return FALSE;
12661 }
12662 }
12663
12664 return TRUE;
12665 }
12666 \f
12667 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12668 hiding the old indirect symbol. Process additional relocation
12669 information. Also called for weakdefs, in which case we just let
12670 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12671
12672 void
12673 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12674 struct elf_link_hash_entry *dir,
12675 struct elf_link_hash_entry *ind)
12676 {
12677 struct mips_elf_link_hash_entry *dirmips, *indmips;
12678
12679 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12680
12681 dirmips = (struct mips_elf_link_hash_entry *) dir;
12682 indmips = (struct mips_elf_link_hash_entry *) ind;
12683 /* Any absolute non-dynamic relocations against an indirect or weak
12684 definition will be against the target symbol. */
12685 if (indmips->has_static_relocs)
12686 dirmips->has_static_relocs = TRUE;
12687
12688 if (ind->root.type != bfd_link_hash_indirect)
12689 return;
12690
12691 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12692 if (indmips->readonly_reloc)
12693 dirmips->readonly_reloc = TRUE;
12694 if (indmips->no_fn_stub)
12695 dirmips->no_fn_stub = TRUE;
12696 if (indmips->fn_stub)
12697 {
12698 dirmips->fn_stub = indmips->fn_stub;
12699 indmips->fn_stub = NULL;
12700 }
12701 if (indmips->need_fn_stub)
12702 {
12703 dirmips->need_fn_stub = TRUE;
12704 indmips->need_fn_stub = FALSE;
12705 }
12706 if (indmips->call_stub)
12707 {
12708 dirmips->call_stub = indmips->call_stub;
12709 indmips->call_stub = NULL;
12710 }
12711 if (indmips->call_fp_stub)
12712 {
12713 dirmips->call_fp_stub = indmips->call_fp_stub;
12714 indmips->call_fp_stub = NULL;
12715 }
12716 if (indmips->global_got_area < dirmips->global_got_area)
12717 dirmips->global_got_area = indmips->global_got_area;
12718 if (indmips->global_got_area < GGA_NONE)
12719 indmips->global_got_area = GGA_NONE;
12720 if (indmips->has_nonpic_branches)
12721 dirmips->has_nonpic_branches = TRUE;
12722 }
12723 \f
12724 #define PDR_SIZE 32
12725
12726 bfd_boolean
12727 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12728 struct bfd_link_info *info)
12729 {
12730 asection *o;
12731 bfd_boolean ret = FALSE;
12732 unsigned char *tdata;
12733 size_t i, skip;
12734
12735 o = bfd_get_section_by_name (abfd, ".pdr");
12736 if (! o)
12737 return FALSE;
12738 if (o->size == 0)
12739 return FALSE;
12740 if (o->size % PDR_SIZE != 0)
12741 return FALSE;
12742 if (o->output_section != NULL
12743 && bfd_is_abs_section (o->output_section))
12744 return FALSE;
12745
12746 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12747 if (! tdata)
12748 return FALSE;
12749
12750 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12751 info->keep_memory);
12752 if (!cookie->rels)
12753 {
12754 free (tdata);
12755 return FALSE;
12756 }
12757
12758 cookie->rel = cookie->rels;
12759 cookie->relend = cookie->rels + o->reloc_count;
12760
12761 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12762 {
12763 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12764 {
12765 tdata[i] = 1;
12766 skip ++;
12767 }
12768 }
12769
12770 if (skip != 0)
12771 {
12772 mips_elf_section_data (o)->u.tdata = tdata;
12773 if (o->rawsize == 0)
12774 o->rawsize = o->size;
12775 o->size -= skip * PDR_SIZE;
12776 ret = TRUE;
12777 }
12778 else
12779 free (tdata);
12780
12781 if (! info->keep_memory)
12782 free (cookie->rels);
12783
12784 return ret;
12785 }
12786
12787 bfd_boolean
12788 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12789 {
12790 if (strcmp (sec->name, ".pdr") == 0)
12791 return TRUE;
12792 return FALSE;
12793 }
12794
12795 bfd_boolean
12796 _bfd_mips_elf_write_section (bfd *output_bfd,
12797 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12798 asection *sec, bfd_byte *contents)
12799 {
12800 bfd_byte *to, *from, *end;
12801 int i;
12802
12803 if (strcmp (sec->name, ".pdr") != 0)
12804 return FALSE;
12805
12806 if (mips_elf_section_data (sec)->u.tdata == NULL)
12807 return FALSE;
12808
12809 to = contents;
12810 end = contents + sec->size;
12811 for (from = contents, i = 0;
12812 from < end;
12813 from += PDR_SIZE, i++)
12814 {
12815 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12816 continue;
12817 if (to != from)
12818 memcpy (to, from, PDR_SIZE);
12819 to += PDR_SIZE;
12820 }
12821 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12822 sec->output_offset, sec->size);
12823 return TRUE;
12824 }
12825 \f
12826 /* microMIPS code retains local labels for linker relaxation. Omit them
12827 from output by default for clarity. */
12828
12829 bfd_boolean
12830 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12831 {
12832 return _bfd_elf_is_local_label_name (abfd, sym->name);
12833 }
12834
12835 /* MIPS ELF uses a special find_nearest_line routine in order the
12836 handle the ECOFF debugging information. */
12837
12838 struct mips_elf_find_line
12839 {
12840 struct ecoff_debug_info d;
12841 struct ecoff_find_line i;
12842 };
12843
12844 bfd_boolean
12845 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12846 asection *section, bfd_vma offset,
12847 const char **filename_ptr,
12848 const char **functionname_ptr,
12849 unsigned int *line_ptr,
12850 unsigned int *discriminator_ptr)
12851 {
12852 asection *msec;
12853
12854 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12855 filename_ptr, functionname_ptr,
12856 line_ptr, discriminator_ptr,
12857 dwarf_debug_sections,
12858 ABI_64_P (abfd) ? 8 : 0,
12859 &elf_tdata (abfd)->dwarf2_find_line_info))
12860 return TRUE;
12861
12862 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12863 filename_ptr, functionname_ptr,
12864 line_ptr))
12865 return TRUE;
12866
12867 msec = bfd_get_section_by_name (abfd, ".mdebug");
12868 if (msec != NULL)
12869 {
12870 flagword origflags;
12871 struct mips_elf_find_line *fi;
12872 const struct ecoff_debug_swap * const swap =
12873 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12874
12875 /* If we are called during a link, mips_elf_final_link may have
12876 cleared the SEC_HAS_CONTENTS field. We force it back on here
12877 if appropriate (which it normally will be). */
12878 origflags = msec->flags;
12879 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12880 msec->flags |= SEC_HAS_CONTENTS;
12881
12882 fi = mips_elf_tdata (abfd)->find_line_info;
12883 if (fi == NULL)
12884 {
12885 bfd_size_type external_fdr_size;
12886 char *fraw_src;
12887 char *fraw_end;
12888 struct fdr *fdr_ptr;
12889 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12890
12891 fi = bfd_zalloc (abfd, amt);
12892 if (fi == NULL)
12893 {
12894 msec->flags = origflags;
12895 return FALSE;
12896 }
12897
12898 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12899 {
12900 msec->flags = origflags;
12901 return FALSE;
12902 }
12903
12904 /* Swap in the FDR information. */
12905 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12906 fi->d.fdr = bfd_alloc (abfd, amt);
12907 if (fi->d.fdr == NULL)
12908 {
12909 msec->flags = origflags;
12910 return FALSE;
12911 }
12912 external_fdr_size = swap->external_fdr_size;
12913 fdr_ptr = fi->d.fdr;
12914 fraw_src = (char *) fi->d.external_fdr;
12915 fraw_end = (fraw_src
12916 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12917 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12918 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12919
12920 mips_elf_tdata (abfd)->find_line_info = fi;
12921
12922 /* Note that we don't bother to ever free this information.
12923 find_nearest_line is either called all the time, as in
12924 objdump -l, so the information should be saved, or it is
12925 rarely called, as in ld error messages, so the memory
12926 wasted is unimportant. Still, it would probably be a
12927 good idea for free_cached_info to throw it away. */
12928 }
12929
12930 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12931 &fi->i, filename_ptr, functionname_ptr,
12932 line_ptr))
12933 {
12934 msec->flags = origflags;
12935 return TRUE;
12936 }
12937
12938 msec->flags = origflags;
12939 }
12940
12941 /* Fall back on the generic ELF find_nearest_line routine. */
12942
12943 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12944 filename_ptr, functionname_ptr,
12945 line_ptr, discriminator_ptr);
12946 }
12947
12948 bfd_boolean
12949 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12950 const char **filename_ptr,
12951 const char **functionname_ptr,
12952 unsigned int *line_ptr)
12953 {
12954 bfd_boolean found;
12955 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12956 functionname_ptr, line_ptr,
12957 & elf_tdata (abfd)->dwarf2_find_line_info);
12958 return found;
12959 }
12960
12961 \f
12962 /* When are writing out the .options or .MIPS.options section,
12963 remember the bytes we are writing out, so that we can install the
12964 GP value in the section_processing routine. */
12965
12966 bfd_boolean
12967 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12968 const void *location,
12969 file_ptr offset, bfd_size_type count)
12970 {
12971 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12972 {
12973 bfd_byte *c;
12974
12975 if (elf_section_data (section) == NULL)
12976 {
12977 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12978 section->used_by_bfd = bfd_zalloc (abfd, amt);
12979 if (elf_section_data (section) == NULL)
12980 return FALSE;
12981 }
12982 c = mips_elf_section_data (section)->u.tdata;
12983 if (c == NULL)
12984 {
12985 c = bfd_zalloc (abfd, section->size);
12986 if (c == NULL)
12987 return FALSE;
12988 mips_elf_section_data (section)->u.tdata = c;
12989 }
12990
12991 memcpy (c + offset, location, count);
12992 }
12993
12994 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12995 count);
12996 }
12997
12998 /* This is almost identical to bfd_generic_get_... except that some
12999 MIPS relocations need to be handled specially. Sigh. */
13000
13001 bfd_byte *
13002 _bfd_elf_mips_get_relocated_section_contents
13003 (bfd *abfd,
13004 struct bfd_link_info *link_info,
13005 struct bfd_link_order *link_order,
13006 bfd_byte *data,
13007 bfd_boolean relocatable,
13008 asymbol **symbols)
13009 {
13010 /* Get enough memory to hold the stuff */
13011 bfd *input_bfd = link_order->u.indirect.section->owner;
13012 asection *input_section = link_order->u.indirect.section;
13013 bfd_size_type sz;
13014
13015 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13016 arelent **reloc_vector = NULL;
13017 long reloc_count;
13018
13019 if (reloc_size < 0)
13020 goto error_return;
13021
13022 reloc_vector = bfd_malloc (reloc_size);
13023 if (reloc_vector == NULL && reloc_size != 0)
13024 goto error_return;
13025
13026 /* read in the section */
13027 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13028 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
13029 goto error_return;
13030
13031 reloc_count = bfd_canonicalize_reloc (input_bfd,
13032 input_section,
13033 reloc_vector,
13034 symbols);
13035 if (reloc_count < 0)
13036 goto error_return;
13037
13038 if (reloc_count > 0)
13039 {
13040 arelent **parent;
13041 /* for mips */
13042 int gp_found;
13043 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13044
13045 {
13046 struct bfd_hash_entry *h;
13047 struct bfd_link_hash_entry *lh;
13048 /* Skip all this stuff if we aren't mixing formats. */
13049 if (abfd && input_bfd
13050 && abfd->xvec == input_bfd->xvec)
13051 lh = 0;
13052 else
13053 {
13054 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
13055 lh = (struct bfd_link_hash_entry *) h;
13056 }
13057 lookup:
13058 if (lh)
13059 {
13060 switch (lh->type)
13061 {
13062 case bfd_link_hash_undefined:
13063 case bfd_link_hash_undefweak:
13064 case bfd_link_hash_common:
13065 gp_found = 0;
13066 break;
13067 case bfd_link_hash_defined:
13068 case bfd_link_hash_defweak:
13069 gp_found = 1;
13070 gp = lh->u.def.value;
13071 break;
13072 case bfd_link_hash_indirect:
13073 case bfd_link_hash_warning:
13074 lh = lh->u.i.link;
13075 /* @@FIXME ignoring warning for now */
13076 goto lookup;
13077 case bfd_link_hash_new:
13078 default:
13079 abort ();
13080 }
13081 }
13082 else
13083 gp_found = 0;
13084 }
13085 /* end mips */
13086 for (parent = reloc_vector; *parent != NULL; parent++)
13087 {
13088 char *error_message = NULL;
13089 bfd_reloc_status_type r;
13090
13091 /* Specific to MIPS: Deal with relocation types that require
13092 knowing the gp of the output bfd. */
13093 asymbol *sym = *(*parent)->sym_ptr_ptr;
13094
13095 /* If we've managed to find the gp and have a special
13096 function for the relocation then go ahead, else default
13097 to the generic handling. */
13098 if (gp_found
13099 && (*parent)->howto->special_function
13100 == _bfd_mips_elf32_gprel16_reloc)
13101 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13102 input_section, relocatable,
13103 data, gp);
13104 else
13105 r = bfd_perform_relocation (input_bfd, *parent, data,
13106 input_section,
13107 relocatable ? abfd : NULL,
13108 &error_message);
13109
13110 if (relocatable)
13111 {
13112 asection *os = input_section->output_section;
13113
13114 /* A partial link, so keep the relocs */
13115 os->orelocation[os->reloc_count] = *parent;
13116 os->reloc_count++;
13117 }
13118
13119 if (r != bfd_reloc_ok)
13120 {
13121 switch (r)
13122 {
13123 case bfd_reloc_undefined:
13124 (*link_info->callbacks->undefined_symbol)
13125 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13126 input_bfd, input_section, (*parent)->address, TRUE);
13127 break;
13128 case bfd_reloc_dangerous:
13129 BFD_ASSERT (error_message != NULL);
13130 (*link_info->callbacks->reloc_dangerous)
13131 (link_info, error_message,
13132 input_bfd, input_section, (*parent)->address);
13133 break;
13134 case bfd_reloc_overflow:
13135 (*link_info->callbacks->reloc_overflow)
13136 (link_info, NULL,
13137 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13138 (*parent)->howto->name, (*parent)->addend,
13139 input_bfd, input_section, (*parent)->address);
13140 break;
13141 case bfd_reloc_outofrange:
13142 default:
13143 abort ();
13144 break;
13145 }
13146
13147 }
13148 }
13149 }
13150 if (reloc_vector != NULL)
13151 free (reloc_vector);
13152 return data;
13153
13154 error_return:
13155 if (reloc_vector != NULL)
13156 free (reloc_vector);
13157 return NULL;
13158 }
13159 \f
13160 static bfd_boolean
13161 mips_elf_relax_delete_bytes (bfd *abfd,
13162 asection *sec, bfd_vma addr, int count)
13163 {
13164 Elf_Internal_Shdr *symtab_hdr;
13165 unsigned int sec_shndx;
13166 bfd_byte *contents;
13167 Elf_Internal_Rela *irel, *irelend;
13168 Elf_Internal_Sym *isym;
13169 Elf_Internal_Sym *isymend;
13170 struct elf_link_hash_entry **sym_hashes;
13171 struct elf_link_hash_entry **end_hashes;
13172 struct elf_link_hash_entry **start_hashes;
13173 unsigned int symcount;
13174
13175 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13176 contents = elf_section_data (sec)->this_hdr.contents;
13177
13178 irel = elf_section_data (sec)->relocs;
13179 irelend = irel + sec->reloc_count;
13180
13181 /* Actually delete the bytes. */
13182 memmove (contents + addr, contents + addr + count,
13183 (size_t) (sec->size - addr - count));
13184 sec->size -= count;
13185
13186 /* Adjust all the relocs. */
13187 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13188 {
13189 /* Get the new reloc address. */
13190 if (irel->r_offset > addr)
13191 irel->r_offset -= count;
13192 }
13193
13194 BFD_ASSERT (addr % 2 == 0);
13195 BFD_ASSERT (count % 2 == 0);
13196
13197 /* Adjust the local symbols defined in this section. */
13198 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13199 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13200 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13201 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13202 isym->st_value -= count;
13203
13204 /* Now adjust the global symbols defined in this section. */
13205 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13206 - symtab_hdr->sh_info);
13207 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13208 end_hashes = sym_hashes + symcount;
13209
13210 for (; sym_hashes < end_hashes; sym_hashes++)
13211 {
13212 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13213
13214 if ((sym_hash->root.type == bfd_link_hash_defined
13215 || sym_hash->root.type == bfd_link_hash_defweak)
13216 && sym_hash->root.u.def.section == sec)
13217 {
13218 bfd_vma value = sym_hash->root.u.def.value;
13219
13220 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13221 value &= MINUS_TWO;
13222 if (value > addr)
13223 sym_hash->root.u.def.value -= count;
13224 }
13225 }
13226
13227 return TRUE;
13228 }
13229
13230
13231 /* Opcodes needed for microMIPS relaxation as found in
13232 opcodes/micromips-opc.c. */
13233
13234 struct opcode_descriptor {
13235 unsigned long match;
13236 unsigned long mask;
13237 };
13238
13239 /* The $ra register aka $31. */
13240
13241 #define RA 31
13242
13243 /* 32-bit instruction format register fields. */
13244
13245 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13246 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13247
13248 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13249
13250 #define OP16_VALID_REG(r) \
13251 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13252
13253
13254 /* 32-bit and 16-bit branches. */
13255
13256 static const struct opcode_descriptor b_insns_32[] = {
13257 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13258 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13259 { 0, 0 } /* End marker for find_match(). */
13260 };
13261
13262 static const struct opcode_descriptor bc_insn_32 =
13263 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13264
13265 static const struct opcode_descriptor bz_insn_32 =
13266 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13267
13268 static const struct opcode_descriptor bzal_insn_32 =
13269 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13270
13271 static const struct opcode_descriptor beq_insn_32 =
13272 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13273
13274 static const struct opcode_descriptor b_insn_16 =
13275 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13276
13277 static const struct opcode_descriptor bz_insn_16 =
13278 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13279
13280
13281 /* 32-bit and 16-bit branch EQ and NE zero. */
13282
13283 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13284 eq and second the ne. This convention is used when replacing a
13285 32-bit BEQ/BNE with the 16-bit version. */
13286
13287 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13288
13289 static const struct opcode_descriptor bz_rs_insns_32[] = {
13290 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13291 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13292 { 0, 0 } /* End marker for find_match(). */
13293 };
13294
13295 static const struct opcode_descriptor bz_rt_insns_32[] = {
13296 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13297 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13298 { 0, 0 } /* End marker for find_match(). */
13299 };
13300
13301 static const struct opcode_descriptor bzc_insns_32[] = {
13302 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13303 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13304 { 0, 0 } /* End marker for find_match(). */
13305 };
13306
13307 static const struct opcode_descriptor bz_insns_16[] = {
13308 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13309 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13310 { 0, 0 } /* End marker for find_match(). */
13311 };
13312
13313 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13314
13315 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13316 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13317
13318
13319 /* 32-bit instructions with a delay slot. */
13320
13321 static const struct opcode_descriptor jal_insn_32_bd16 =
13322 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13323
13324 static const struct opcode_descriptor jal_insn_32_bd32 =
13325 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13326
13327 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13328 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13329
13330 static const struct opcode_descriptor j_insn_32 =
13331 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13332
13333 static const struct opcode_descriptor jalr_insn_32 =
13334 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13335
13336 /* This table can be compacted, because no opcode replacement is made. */
13337
13338 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13339 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13340
13341 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13342 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13343
13344 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13345 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13346 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13347 { 0, 0 } /* End marker for find_match(). */
13348 };
13349
13350 /* This table can be compacted, because no opcode replacement is made. */
13351
13352 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13353 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13354
13355 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13356 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13357 { 0, 0 } /* End marker for find_match(). */
13358 };
13359
13360
13361 /* 16-bit instructions with a delay slot. */
13362
13363 static const struct opcode_descriptor jalr_insn_16_bd16 =
13364 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13365
13366 static const struct opcode_descriptor jalr_insn_16_bd32 =
13367 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13368
13369 static const struct opcode_descriptor jr_insn_16 =
13370 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13371
13372 #define JR16_REG(opcode) ((opcode) & 0x1f)
13373
13374 /* This table can be compacted, because no opcode replacement is made. */
13375
13376 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13377 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13378
13379 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13380 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13381 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13382 { 0, 0 } /* End marker for find_match(). */
13383 };
13384
13385
13386 /* LUI instruction. */
13387
13388 static const struct opcode_descriptor lui_insn =
13389 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13390
13391
13392 /* ADDIU instruction. */
13393
13394 static const struct opcode_descriptor addiu_insn =
13395 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13396
13397 static const struct opcode_descriptor addiupc_insn =
13398 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13399
13400 #define ADDIUPC_REG_FIELD(r) \
13401 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13402
13403
13404 /* Relaxable instructions in a JAL delay slot: MOVE. */
13405
13406 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13407 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13408 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13409 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13410
13411 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13412 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13413
13414 static const struct opcode_descriptor move_insns_32[] = {
13415 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13416 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13417 { 0, 0 } /* End marker for find_match(). */
13418 };
13419
13420 static const struct opcode_descriptor move_insn_16 =
13421 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13422
13423
13424 /* NOP instructions. */
13425
13426 static const struct opcode_descriptor nop_insn_32 =
13427 { /* "nop", "", */ 0x00000000, 0xffffffff };
13428
13429 static const struct opcode_descriptor nop_insn_16 =
13430 { /* "nop", "", */ 0x0c00, 0xffff };
13431
13432
13433 /* Instruction match support. */
13434
13435 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13436
13437 static int
13438 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13439 {
13440 unsigned long indx;
13441
13442 for (indx = 0; insn[indx].mask != 0; indx++)
13443 if (MATCH (opcode, insn[indx]))
13444 return indx;
13445
13446 return -1;
13447 }
13448
13449
13450 /* Branch and delay slot decoding support. */
13451
13452 /* If PTR points to what *might* be a 16-bit branch or jump, then
13453 return the minimum length of its delay slot, otherwise return 0.
13454 Non-zero results are not definitive as we might be checking against
13455 the second half of another instruction. */
13456
13457 static int
13458 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13459 {
13460 unsigned long opcode;
13461 int bdsize;
13462
13463 opcode = bfd_get_16 (abfd, ptr);
13464 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13465 /* 16-bit branch/jump with a 32-bit delay slot. */
13466 bdsize = 4;
13467 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13468 || find_match (opcode, ds_insns_16_bd16) >= 0)
13469 /* 16-bit branch/jump with a 16-bit delay slot. */
13470 bdsize = 2;
13471 else
13472 /* No delay slot. */
13473 bdsize = 0;
13474
13475 return bdsize;
13476 }
13477
13478 /* If PTR points to what *might* be a 32-bit branch or jump, then
13479 return the minimum length of its delay slot, otherwise return 0.
13480 Non-zero results are not definitive as we might be checking against
13481 the second half of another instruction. */
13482
13483 static int
13484 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13485 {
13486 unsigned long opcode;
13487 int bdsize;
13488
13489 opcode = bfd_get_micromips_32 (abfd, ptr);
13490 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13491 /* 32-bit branch/jump with a 32-bit delay slot. */
13492 bdsize = 4;
13493 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13494 /* 32-bit branch/jump with a 16-bit delay slot. */
13495 bdsize = 2;
13496 else
13497 /* No delay slot. */
13498 bdsize = 0;
13499
13500 return bdsize;
13501 }
13502
13503 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13504 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13505
13506 static bfd_boolean
13507 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13508 {
13509 unsigned long opcode;
13510
13511 opcode = bfd_get_16 (abfd, ptr);
13512 if (MATCH (opcode, b_insn_16)
13513 /* B16 */
13514 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13515 /* JR16 */
13516 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13517 /* BEQZ16, BNEZ16 */
13518 || (MATCH (opcode, jalr_insn_16_bd32)
13519 /* JALR16 */
13520 && reg != JR16_REG (opcode) && reg != RA))
13521 return TRUE;
13522
13523 return FALSE;
13524 }
13525
13526 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13527 then return TRUE, otherwise FALSE. */
13528
13529 static bfd_boolean
13530 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13531 {
13532 unsigned long opcode;
13533
13534 opcode = bfd_get_micromips_32 (abfd, ptr);
13535 if (MATCH (opcode, j_insn_32)
13536 /* J */
13537 || MATCH (opcode, bc_insn_32)
13538 /* BC1F, BC1T, BC2F, BC2T */
13539 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13540 /* JAL, JALX */
13541 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13542 /* BGEZ, BGTZ, BLEZ, BLTZ */
13543 || (MATCH (opcode, bzal_insn_32)
13544 /* BGEZAL, BLTZAL */
13545 && reg != OP32_SREG (opcode) && reg != RA)
13546 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13547 /* JALR, JALR.HB, BEQ, BNE */
13548 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13549 return TRUE;
13550
13551 return FALSE;
13552 }
13553
13554 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13555 IRELEND) at OFFSET indicate that there must be a compact branch there,
13556 then return TRUE, otherwise FALSE. */
13557
13558 static bfd_boolean
13559 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13560 const Elf_Internal_Rela *internal_relocs,
13561 const Elf_Internal_Rela *irelend)
13562 {
13563 const Elf_Internal_Rela *irel;
13564 unsigned long opcode;
13565
13566 opcode = bfd_get_micromips_32 (abfd, ptr);
13567 if (find_match (opcode, bzc_insns_32) < 0)
13568 return FALSE;
13569
13570 for (irel = internal_relocs; irel < irelend; irel++)
13571 if (irel->r_offset == offset
13572 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13573 return TRUE;
13574
13575 return FALSE;
13576 }
13577
13578 /* Bitsize checking. */
13579 #define IS_BITSIZE(val, N) \
13580 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13581 - (1ULL << ((N) - 1))) == (val))
13582
13583 \f
13584 bfd_boolean
13585 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13586 struct bfd_link_info *link_info,
13587 bfd_boolean *again)
13588 {
13589 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13590 Elf_Internal_Shdr *symtab_hdr;
13591 Elf_Internal_Rela *internal_relocs;
13592 Elf_Internal_Rela *irel, *irelend;
13593 bfd_byte *contents = NULL;
13594 Elf_Internal_Sym *isymbuf = NULL;
13595
13596 /* Assume nothing changes. */
13597 *again = FALSE;
13598
13599 /* We don't have to do anything for a relocatable link, if
13600 this section does not have relocs, or if this is not a
13601 code section. */
13602
13603 if (bfd_link_relocatable (link_info)
13604 || (sec->flags & SEC_RELOC) == 0
13605 || sec->reloc_count == 0
13606 || (sec->flags & SEC_CODE) == 0)
13607 return TRUE;
13608
13609 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13610
13611 /* Get a copy of the native relocations. */
13612 internal_relocs = (_bfd_elf_link_read_relocs
13613 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13614 link_info->keep_memory));
13615 if (internal_relocs == NULL)
13616 goto error_return;
13617
13618 /* Walk through them looking for relaxing opportunities. */
13619 irelend = internal_relocs + sec->reloc_count;
13620 for (irel = internal_relocs; irel < irelend; irel++)
13621 {
13622 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13623 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13624 bfd_boolean target_is_micromips_code_p;
13625 unsigned long opcode;
13626 bfd_vma symval;
13627 bfd_vma pcrval;
13628 bfd_byte *ptr;
13629 int fndopc;
13630
13631 /* The number of bytes to delete for relaxation and from where
13632 to delete these bytes starting at irel->r_offset. */
13633 int delcnt = 0;
13634 int deloff = 0;
13635
13636 /* If this isn't something that can be relaxed, then ignore
13637 this reloc. */
13638 if (r_type != R_MICROMIPS_HI16
13639 && r_type != R_MICROMIPS_PC16_S1
13640 && r_type != R_MICROMIPS_26_S1)
13641 continue;
13642
13643 /* Get the section contents if we haven't done so already. */
13644 if (contents == NULL)
13645 {
13646 /* Get cached copy if it exists. */
13647 if (elf_section_data (sec)->this_hdr.contents != NULL)
13648 contents = elf_section_data (sec)->this_hdr.contents;
13649 /* Go get them off disk. */
13650 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13651 goto error_return;
13652 }
13653 ptr = contents + irel->r_offset;
13654
13655 /* Read this BFD's local symbols if we haven't done so already. */
13656 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13657 {
13658 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13659 if (isymbuf == NULL)
13660 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13661 symtab_hdr->sh_info, 0,
13662 NULL, NULL, NULL);
13663 if (isymbuf == NULL)
13664 goto error_return;
13665 }
13666
13667 /* Get the value of the symbol referred to by the reloc. */
13668 if (r_symndx < symtab_hdr->sh_info)
13669 {
13670 /* A local symbol. */
13671 Elf_Internal_Sym *isym;
13672 asection *sym_sec;
13673
13674 isym = isymbuf + r_symndx;
13675 if (isym->st_shndx == SHN_UNDEF)
13676 sym_sec = bfd_und_section_ptr;
13677 else if (isym->st_shndx == SHN_ABS)
13678 sym_sec = bfd_abs_section_ptr;
13679 else if (isym->st_shndx == SHN_COMMON)
13680 sym_sec = bfd_com_section_ptr;
13681 else
13682 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13683 symval = (isym->st_value
13684 + sym_sec->output_section->vma
13685 + sym_sec->output_offset);
13686 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13687 }
13688 else
13689 {
13690 unsigned long indx;
13691 struct elf_link_hash_entry *h;
13692
13693 /* An external symbol. */
13694 indx = r_symndx - symtab_hdr->sh_info;
13695 h = elf_sym_hashes (abfd)[indx];
13696 BFD_ASSERT (h != NULL);
13697
13698 if (h->root.type != bfd_link_hash_defined
13699 && h->root.type != bfd_link_hash_defweak)
13700 /* This appears to be a reference to an undefined
13701 symbol. Just ignore it -- it will be caught by the
13702 regular reloc processing. */
13703 continue;
13704
13705 symval = (h->root.u.def.value
13706 + h->root.u.def.section->output_section->vma
13707 + h->root.u.def.section->output_offset);
13708 target_is_micromips_code_p = (!h->needs_plt
13709 && ELF_ST_IS_MICROMIPS (h->other));
13710 }
13711
13712
13713 /* For simplicity of coding, we are going to modify the
13714 section contents, the section relocs, and the BFD symbol
13715 table. We must tell the rest of the code not to free up this
13716 information. It would be possible to instead create a table
13717 of changes which have to be made, as is done in coff-mips.c;
13718 that would be more work, but would require less memory when
13719 the linker is run. */
13720
13721 /* Only 32-bit instructions relaxed. */
13722 if (irel->r_offset + 4 > sec->size)
13723 continue;
13724
13725 opcode = bfd_get_micromips_32 (abfd, ptr);
13726
13727 /* This is the pc-relative distance from the instruction the
13728 relocation is applied to, to the symbol referred. */
13729 pcrval = (symval
13730 - (sec->output_section->vma + sec->output_offset)
13731 - irel->r_offset);
13732
13733 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13734 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13735 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13736
13737 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13738
13739 where pcrval has first to be adjusted to apply against the LO16
13740 location (we make the adjustment later on, when we have figured
13741 out the offset). */
13742 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13743 {
13744 bfd_boolean bzc = FALSE;
13745 unsigned long nextopc;
13746 unsigned long reg;
13747 bfd_vma offset;
13748
13749 /* Give up if the previous reloc was a HI16 against this symbol
13750 too. */
13751 if (irel > internal_relocs
13752 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13753 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13754 continue;
13755
13756 /* Or if the next reloc is not a LO16 against this symbol. */
13757 if (irel + 1 >= irelend
13758 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13759 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13760 continue;
13761
13762 /* Or if the second next reloc is a LO16 against this symbol too. */
13763 if (irel + 2 >= irelend
13764 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13765 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13766 continue;
13767
13768 /* See if the LUI instruction *might* be in a branch delay slot.
13769 We check whether what looks like a 16-bit branch or jump is
13770 actually an immediate argument to a compact branch, and let
13771 it through if so. */
13772 if (irel->r_offset >= 2
13773 && check_br16_dslot (abfd, ptr - 2)
13774 && !(irel->r_offset >= 4
13775 && (bzc = check_relocated_bzc (abfd,
13776 ptr - 4, irel->r_offset - 4,
13777 internal_relocs, irelend))))
13778 continue;
13779 if (irel->r_offset >= 4
13780 && !bzc
13781 && check_br32_dslot (abfd, ptr - 4))
13782 continue;
13783
13784 reg = OP32_SREG (opcode);
13785
13786 /* We only relax adjacent instructions or ones separated with
13787 a branch or jump that has a delay slot. The branch or jump
13788 must not fiddle with the register used to hold the address.
13789 Subtract 4 for the LUI itself. */
13790 offset = irel[1].r_offset - irel[0].r_offset;
13791 switch (offset - 4)
13792 {
13793 case 0:
13794 break;
13795 case 2:
13796 if (check_br16 (abfd, ptr + 4, reg))
13797 break;
13798 continue;
13799 case 4:
13800 if (check_br32 (abfd, ptr + 4, reg))
13801 break;
13802 continue;
13803 default:
13804 continue;
13805 }
13806
13807 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13808
13809 /* Give up unless the same register is used with both
13810 relocations. */
13811 if (OP32_SREG (nextopc) != reg)
13812 continue;
13813
13814 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13815 and rounding up to take masking of the two LSBs into account. */
13816 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13817
13818 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13819 if (IS_BITSIZE (symval, 16))
13820 {
13821 /* Fix the relocation's type. */
13822 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13823
13824 /* Instructions using R_MICROMIPS_LO16 have the base or
13825 source register in bits 20:16. This register becomes $0
13826 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13827 nextopc &= ~0x001f0000;
13828 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13829 contents + irel[1].r_offset);
13830 }
13831
13832 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13833 We add 4 to take LUI deletion into account while checking
13834 the PC-relative distance. */
13835 else if (symval % 4 == 0
13836 && IS_BITSIZE (pcrval + 4, 25)
13837 && MATCH (nextopc, addiu_insn)
13838 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13839 && OP16_VALID_REG (OP32_TREG (nextopc)))
13840 {
13841 /* Fix the relocation's type. */
13842 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13843
13844 /* Replace ADDIU with the ADDIUPC version. */
13845 nextopc = (addiupc_insn.match
13846 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13847
13848 bfd_put_micromips_32 (abfd, nextopc,
13849 contents + irel[1].r_offset);
13850 }
13851
13852 /* Can't do anything, give up, sigh... */
13853 else
13854 continue;
13855
13856 /* Fix the relocation's type. */
13857 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13858
13859 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13860 delcnt = 4;
13861 deloff = 0;
13862 }
13863
13864 /* Compact branch relaxation -- due to the multitude of macros
13865 employed by the compiler/assembler, compact branches are not
13866 always generated. Obviously, this can/will be fixed elsewhere,
13867 but there is no drawback in double checking it here. */
13868 else if (r_type == R_MICROMIPS_PC16_S1
13869 && irel->r_offset + 5 < sec->size
13870 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13871 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13872 && ((!insn32
13873 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13874 nop_insn_16) ? 2 : 0))
13875 || (irel->r_offset + 7 < sec->size
13876 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13877 ptr + 4),
13878 nop_insn_32) ? 4 : 0))))
13879 {
13880 unsigned long reg;
13881
13882 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13883
13884 /* Replace BEQZ/BNEZ with the compact version. */
13885 opcode = (bzc_insns_32[fndopc].match
13886 | BZC32_REG_FIELD (reg)
13887 | (opcode & 0xffff)); /* Addend value. */
13888
13889 bfd_put_micromips_32 (abfd, opcode, ptr);
13890
13891 /* Delete the delay slot NOP: two or four bytes from
13892 irel->offset + 4; delcnt has already been set above. */
13893 deloff = 4;
13894 }
13895
13896 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13897 to check the distance from the next instruction, so subtract 2. */
13898 else if (!insn32
13899 && r_type == R_MICROMIPS_PC16_S1
13900 && IS_BITSIZE (pcrval - 2, 11)
13901 && find_match (opcode, b_insns_32) >= 0)
13902 {
13903 /* Fix the relocation's type. */
13904 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13905
13906 /* Replace the 32-bit opcode with a 16-bit opcode. */
13907 bfd_put_16 (abfd,
13908 (b_insn_16.match
13909 | (opcode & 0x3ff)), /* Addend value. */
13910 ptr);
13911
13912 /* Delete 2 bytes from irel->r_offset + 2. */
13913 delcnt = 2;
13914 deloff = 2;
13915 }
13916
13917 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13918 to check the distance from the next instruction, so subtract 2. */
13919 else if (!insn32
13920 && r_type == R_MICROMIPS_PC16_S1
13921 && IS_BITSIZE (pcrval - 2, 8)
13922 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13923 && OP16_VALID_REG (OP32_SREG (opcode)))
13924 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13925 && OP16_VALID_REG (OP32_TREG (opcode)))))
13926 {
13927 unsigned long reg;
13928
13929 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13930
13931 /* Fix the relocation's type. */
13932 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13933
13934 /* Replace the 32-bit opcode with a 16-bit opcode. */
13935 bfd_put_16 (abfd,
13936 (bz_insns_16[fndopc].match
13937 | BZ16_REG_FIELD (reg)
13938 | (opcode & 0x7f)), /* Addend value. */
13939 ptr);
13940
13941 /* Delete 2 bytes from irel->r_offset + 2. */
13942 delcnt = 2;
13943 deloff = 2;
13944 }
13945
13946 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13947 else if (!insn32
13948 && r_type == R_MICROMIPS_26_S1
13949 && target_is_micromips_code_p
13950 && irel->r_offset + 7 < sec->size
13951 && MATCH (opcode, jal_insn_32_bd32))
13952 {
13953 unsigned long n32opc;
13954 bfd_boolean relaxed = FALSE;
13955
13956 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13957
13958 if (MATCH (n32opc, nop_insn_32))
13959 {
13960 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13961 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13962
13963 relaxed = TRUE;
13964 }
13965 else if (find_match (n32opc, move_insns_32) >= 0)
13966 {
13967 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13968 bfd_put_16 (abfd,
13969 (move_insn_16.match
13970 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13971 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13972 ptr + 4);
13973
13974 relaxed = TRUE;
13975 }
13976 /* Other 32-bit instructions relaxable to 16-bit
13977 instructions will be handled here later. */
13978
13979 if (relaxed)
13980 {
13981 /* JAL with 32-bit delay slot that is changed to a JALS
13982 with 16-bit delay slot. */
13983 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13984
13985 /* Delete 2 bytes from irel->r_offset + 6. */
13986 delcnt = 2;
13987 deloff = 6;
13988 }
13989 }
13990
13991 if (delcnt != 0)
13992 {
13993 /* Note that we've changed the relocs, section contents, etc. */
13994 elf_section_data (sec)->relocs = internal_relocs;
13995 elf_section_data (sec)->this_hdr.contents = contents;
13996 symtab_hdr->contents = (unsigned char *) isymbuf;
13997
13998 /* Delete bytes depending on the delcnt and deloff. */
13999 if (!mips_elf_relax_delete_bytes (abfd, sec,
14000 irel->r_offset + deloff, delcnt))
14001 goto error_return;
14002
14003 /* That will change things, so we should relax again.
14004 Note that this is not required, and it may be slow. */
14005 *again = TRUE;
14006 }
14007 }
14008
14009 if (isymbuf != NULL
14010 && symtab_hdr->contents != (unsigned char *) isymbuf)
14011 {
14012 if (! link_info->keep_memory)
14013 free (isymbuf);
14014 else
14015 {
14016 /* Cache the symbols for elf_link_input_bfd. */
14017 symtab_hdr->contents = (unsigned char *) isymbuf;
14018 }
14019 }
14020
14021 if (contents != NULL
14022 && elf_section_data (sec)->this_hdr.contents != contents)
14023 {
14024 if (! link_info->keep_memory)
14025 free (contents);
14026 else
14027 {
14028 /* Cache the section contents for elf_link_input_bfd. */
14029 elf_section_data (sec)->this_hdr.contents = contents;
14030 }
14031 }
14032
14033 if (internal_relocs != NULL
14034 && elf_section_data (sec)->relocs != internal_relocs)
14035 free (internal_relocs);
14036
14037 return TRUE;
14038
14039 error_return:
14040 if (isymbuf != NULL
14041 && symtab_hdr->contents != (unsigned char *) isymbuf)
14042 free (isymbuf);
14043 if (contents != NULL
14044 && elf_section_data (sec)->this_hdr.contents != contents)
14045 free (contents);
14046 if (internal_relocs != NULL
14047 && elf_section_data (sec)->relocs != internal_relocs)
14048 free (internal_relocs);
14049
14050 return FALSE;
14051 }
14052 \f
14053 /* Create a MIPS ELF linker hash table. */
14054
14055 struct bfd_link_hash_table *
14056 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14057 {
14058 struct mips_elf_link_hash_table *ret;
14059 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14060
14061 ret = bfd_zmalloc (amt);
14062 if (ret == NULL)
14063 return NULL;
14064
14065 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14066 mips_elf_link_hash_newfunc,
14067 sizeof (struct mips_elf_link_hash_entry),
14068 MIPS_ELF_DATA))
14069 {
14070 free (ret);
14071 return NULL;
14072 }
14073 ret->root.init_plt_refcount.plist = NULL;
14074 ret->root.init_plt_offset.plist = NULL;
14075
14076 return &ret->root.root;
14077 }
14078
14079 /* Likewise, but indicate that the target is VxWorks. */
14080
14081 struct bfd_link_hash_table *
14082 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14083 {
14084 struct bfd_link_hash_table *ret;
14085
14086 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14087 if (ret)
14088 {
14089 struct mips_elf_link_hash_table *htab;
14090
14091 htab = (struct mips_elf_link_hash_table *) ret;
14092 htab->use_plts_and_copy_relocs = TRUE;
14093 htab->is_vxworks = TRUE;
14094 }
14095 return ret;
14096 }
14097
14098 /* A function that the linker calls if we are allowed to use PLTs
14099 and copy relocs. */
14100
14101 void
14102 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14103 {
14104 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14105 }
14106
14107 /* A function that the linker calls to select between all or only
14108 32-bit microMIPS instructions, and between making or ignoring
14109 branch relocation checks for invalid transitions between ISA modes. */
14110
14111 void
14112 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
14113 bfd_boolean ignore_branch_isa)
14114 {
14115 mips_elf_hash_table (info)->insn32 = insn32;
14116 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
14117 }
14118 \f
14119 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14120
14121 struct mips_mach_extension
14122 {
14123 unsigned long extension, base;
14124 };
14125
14126
14127 /* An array describing how BFD machines relate to one another. The entries
14128 are ordered topologically with MIPS I extensions listed last. */
14129
14130 static const struct mips_mach_extension mips_mach_extensions[] =
14131 {
14132 /* MIPS64r2 extensions. */
14133 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14134 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14135 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14136 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14137 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
14138
14139 /* MIPS64 extensions. */
14140 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14141 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14142 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14143
14144 /* MIPS V extensions. */
14145 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14146
14147 /* R10000 extensions. */
14148 { bfd_mach_mips12000, bfd_mach_mips10000 },
14149 { bfd_mach_mips14000, bfd_mach_mips10000 },
14150 { bfd_mach_mips16000, bfd_mach_mips10000 },
14151
14152 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14153 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14154 better to allow vr5400 and vr5500 code to be merged anyway, since
14155 many libraries will just use the core ISA. Perhaps we could add
14156 some sort of ASE flag if this ever proves a problem. */
14157 { bfd_mach_mips5500, bfd_mach_mips5400 },
14158 { bfd_mach_mips5400, bfd_mach_mips5000 },
14159
14160 /* MIPS IV extensions. */
14161 { bfd_mach_mips5, bfd_mach_mips8000 },
14162 { bfd_mach_mips10000, bfd_mach_mips8000 },
14163 { bfd_mach_mips5000, bfd_mach_mips8000 },
14164 { bfd_mach_mips7000, bfd_mach_mips8000 },
14165 { bfd_mach_mips9000, bfd_mach_mips8000 },
14166
14167 /* VR4100 extensions. */
14168 { bfd_mach_mips4120, bfd_mach_mips4100 },
14169 { bfd_mach_mips4111, bfd_mach_mips4100 },
14170
14171 /* MIPS III extensions. */
14172 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14173 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14174 { bfd_mach_mips8000, bfd_mach_mips4000 },
14175 { bfd_mach_mips4650, bfd_mach_mips4000 },
14176 { bfd_mach_mips4600, bfd_mach_mips4000 },
14177 { bfd_mach_mips4400, bfd_mach_mips4000 },
14178 { bfd_mach_mips4300, bfd_mach_mips4000 },
14179 { bfd_mach_mips4100, bfd_mach_mips4000 },
14180 { bfd_mach_mips4010, bfd_mach_mips4000 },
14181 { bfd_mach_mips5900, bfd_mach_mips4000 },
14182
14183 /* MIPS32 extensions. */
14184 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14185
14186 /* MIPS II extensions. */
14187 { bfd_mach_mips4000, bfd_mach_mips6000 },
14188 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14189
14190 /* MIPS I extensions. */
14191 { bfd_mach_mips6000, bfd_mach_mips3000 },
14192 { bfd_mach_mips3900, bfd_mach_mips3000 }
14193 };
14194
14195 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14196
14197 static bfd_boolean
14198 mips_mach_extends_p (unsigned long base, unsigned long extension)
14199 {
14200 size_t i;
14201
14202 if (extension == base)
14203 return TRUE;
14204
14205 if (base == bfd_mach_mipsisa32
14206 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14207 return TRUE;
14208
14209 if (base == bfd_mach_mipsisa32r2
14210 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14211 return TRUE;
14212
14213 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14214 if (extension == mips_mach_extensions[i].extension)
14215 {
14216 extension = mips_mach_extensions[i].base;
14217 if (extension == base)
14218 return TRUE;
14219 }
14220
14221 return FALSE;
14222 }
14223
14224 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14225
14226 static unsigned long
14227 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14228 {
14229 switch (isa_ext)
14230 {
14231 case AFL_EXT_3900: return bfd_mach_mips3900;
14232 case AFL_EXT_4010: return bfd_mach_mips4010;
14233 case AFL_EXT_4100: return bfd_mach_mips4100;
14234 case AFL_EXT_4111: return bfd_mach_mips4111;
14235 case AFL_EXT_4120: return bfd_mach_mips4120;
14236 case AFL_EXT_4650: return bfd_mach_mips4650;
14237 case AFL_EXT_5400: return bfd_mach_mips5400;
14238 case AFL_EXT_5500: return bfd_mach_mips5500;
14239 case AFL_EXT_5900: return bfd_mach_mips5900;
14240 case AFL_EXT_10000: return bfd_mach_mips10000;
14241 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14242 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14243 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14244 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14245 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14246 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14247 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14248 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14249 default: return bfd_mach_mips3000;
14250 }
14251 }
14252
14253 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14254
14255 unsigned int
14256 bfd_mips_isa_ext (bfd *abfd)
14257 {
14258 switch (bfd_get_mach (abfd))
14259 {
14260 case bfd_mach_mips3900: return AFL_EXT_3900;
14261 case bfd_mach_mips4010: return AFL_EXT_4010;
14262 case bfd_mach_mips4100: return AFL_EXT_4100;
14263 case bfd_mach_mips4111: return AFL_EXT_4111;
14264 case bfd_mach_mips4120: return AFL_EXT_4120;
14265 case bfd_mach_mips4650: return AFL_EXT_4650;
14266 case bfd_mach_mips5400: return AFL_EXT_5400;
14267 case bfd_mach_mips5500: return AFL_EXT_5500;
14268 case bfd_mach_mips5900: return AFL_EXT_5900;
14269 case bfd_mach_mips10000: return AFL_EXT_10000;
14270 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14271 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14272 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14273 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14274 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14275 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14276 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14277 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14278 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14279 default: return 0;
14280 }
14281 }
14282
14283 /* Encode ISA level and revision as a single value. */
14284 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14285
14286 /* Decode a single value into level and revision. */
14287 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14288 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14289
14290 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14291
14292 static void
14293 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14294 {
14295 int new_isa = 0;
14296 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14297 {
14298 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14299 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14300 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14301 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14302 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14303 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14304 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14305 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14306 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14307 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14308 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14309 default:
14310 _bfd_error_handler
14311 /* xgettext:c-format */
14312 (_("%B: Unknown architecture %s"),
14313 abfd, bfd_printable_name (abfd));
14314 }
14315
14316 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14317 {
14318 abiflags->isa_level = ISA_LEVEL (new_isa);
14319 abiflags->isa_rev = ISA_REV (new_isa);
14320 }
14321
14322 /* Update the isa_ext if ABFD describes a further extension. */
14323 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14324 bfd_get_mach (abfd)))
14325 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14326 }
14327
14328 /* Return true if the given ELF header flags describe a 32-bit binary. */
14329
14330 static bfd_boolean
14331 mips_32bit_flags_p (flagword flags)
14332 {
14333 return ((flags & EF_MIPS_32BITMODE) != 0
14334 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14335 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14336 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14337 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14338 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14339 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14340 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14341 }
14342
14343 /* Infer the content of the ABI flags based on the elf header. */
14344
14345 static void
14346 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14347 {
14348 obj_attribute *in_attr;
14349
14350 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14351 update_mips_abiflags_isa (abfd, abiflags);
14352
14353 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14354 abiflags->gpr_size = AFL_REG_32;
14355 else
14356 abiflags->gpr_size = AFL_REG_64;
14357
14358 abiflags->cpr1_size = AFL_REG_NONE;
14359
14360 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14361 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14362
14363 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14364 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14365 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14366 && abiflags->gpr_size == AFL_REG_32))
14367 abiflags->cpr1_size = AFL_REG_32;
14368 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14369 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14370 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14371 abiflags->cpr1_size = AFL_REG_64;
14372
14373 abiflags->cpr2_size = AFL_REG_NONE;
14374
14375 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14376 abiflags->ases |= AFL_ASE_MDMX;
14377 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14378 abiflags->ases |= AFL_ASE_MIPS16;
14379 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14380 abiflags->ases |= AFL_ASE_MICROMIPS;
14381
14382 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14383 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14384 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14385 && abiflags->isa_level >= 32
14386 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14387 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14388 }
14389
14390 /* We need to use a special link routine to handle the .reginfo and
14391 the .mdebug sections. We need to merge all instances of these
14392 sections together, not write them all out sequentially. */
14393
14394 bfd_boolean
14395 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14396 {
14397 asection *o;
14398 struct bfd_link_order *p;
14399 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14400 asection *rtproc_sec, *abiflags_sec;
14401 Elf32_RegInfo reginfo;
14402 struct ecoff_debug_info debug;
14403 struct mips_htab_traverse_info hti;
14404 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14405 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14406 HDRR *symhdr = &debug.symbolic_header;
14407 void *mdebug_handle = NULL;
14408 asection *s;
14409 EXTR esym;
14410 unsigned int i;
14411 bfd_size_type amt;
14412 struct mips_elf_link_hash_table *htab;
14413
14414 static const char * const secname[] =
14415 {
14416 ".text", ".init", ".fini", ".data",
14417 ".rodata", ".sdata", ".sbss", ".bss"
14418 };
14419 static const int sc[] =
14420 {
14421 scText, scInit, scFini, scData,
14422 scRData, scSData, scSBss, scBss
14423 };
14424
14425 /* Sort the dynamic symbols so that those with GOT entries come after
14426 those without. */
14427 htab = mips_elf_hash_table (info);
14428 BFD_ASSERT (htab != NULL);
14429
14430 if (!mips_elf_sort_hash_table (abfd, info))
14431 return FALSE;
14432
14433 /* Create any scheduled LA25 stubs. */
14434 hti.info = info;
14435 hti.output_bfd = abfd;
14436 hti.error = FALSE;
14437 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14438 if (hti.error)
14439 return FALSE;
14440
14441 /* Get a value for the GP register. */
14442 if (elf_gp (abfd) == 0)
14443 {
14444 struct bfd_link_hash_entry *h;
14445
14446 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14447 if (h != NULL && h->type == bfd_link_hash_defined)
14448 elf_gp (abfd) = (h->u.def.value
14449 + h->u.def.section->output_section->vma
14450 + h->u.def.section->output_offset);
14451 else if (htab->is_vxworks
14452 && (h = bfd_link_hash_lookup (info->hash,
14453 "_GLOBAL_OFFSET_TABLE_",
14454 FALSE, FALSE, TRUE))
14455 && h->type == bfd_link_hash_defined)
14456 elf_gp (abfd) = (h->u.def.section->output_section->vma
14457 + h->u.def.section->output_offset
14458 + h->u.def.value);
14459 else if (bfd_link_relocatable (info))
14460 {
14461 bfd_vma lo = MINUS_ONE;
14462
14463 /* Find the GP-relative section with the lowest offset. */
14464 for (o = abfd->sections; o != NULL; o = o->next)
14465 if (o->vma < lo
14466 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14467 lo = o->vma;
14468
14469 /* And calculate GP relative to that. */
14470 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14471 }
14472 else
14473 {
14474 /* If the relocate_section function needs to do a reloc
14475 involving the GP value, it should make a reloc_dangerous
14476 callback to warn that GP is not defined. */
14477 }
14478 }
14479
14480 /* Go through the sections and collect the .reginfo and .mdebug
14481 information. */
14482 abiflags_sec = NULL;
14483 reginfo_sec = NULL;
14484 mdebug_sec = NULL;
14485 gptab_data_sec = NULL;
14486 gptab_bss_sec = NULL;
14487 for (o = abfd->sections; o != NULL; o = o->next)
14488 {
14489 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14490 {
14491 /* We have found the .MIPS.abiflags section in the output file.
14492 Look through all the link_orders comprising it and remove them.
14493 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14494 for (p = o->map_head.link_order; p != NULL; p = p->next)
14495 {
14496 asection *input_section;
14497
14498 if (p->type != bfd_indirect_link_order)
14499 {
14500 if (p->type == bfd_data_link_order)
14501 continue;
14502 abort ();
14503 }
14504
14505 input_section = p->u.indirect.section;
14506
14507 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14508 elf_link_input_bfd ignores this section. */
14509 input_section->flags &= ~SEC_HAS_CONTENTS;
14510 }
14511
14512 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14513 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14514
14515 /* Skip this section later on (I don't think this currently
14516 matters, but someday it might). */
14517 o->map_head.link_order = NULL;
14518
14519 abiflags_sec = o;
14520 }
14521
14522 if (strcmp (o->name, ".reginfo") == 0)
14523 {
14524 memset (&reginfo, 0, sizeof reginfo);
14525
14526 /* We have found the .reginfo section in the output file.
14527 Look through all the link_orders comprising it and merge
14528 the information together. */
14529 for (p = o->map_head.link_order; p != NULL; p = p->next)
14530 {
14531 asection *input_section;
14532 bfd *input_bfd;
14533 Elf32_External_RegInfo ext;
14534 Elf32_RegInfo sub;
14535
14536 if (p->type != bfd_indirect_link_order)
14537 {
14538 if (p->type == bfd_data_link_order)
14539 continue;
14540 abort ();
14541 }
14542
14543 input_section = p->u.indirect.section;
14544 input_bfd = input_section->owner;
14545
14546 if (! bfd_get_section_contents (input_bfd, input_section,
14547 &ext, 0, sizeof ext))
14548 return FALSE;
14549
14550 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14551
14552 reginfo.ri_gprmask |= sub.ri_gprmask;
14553 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14554 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14555 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14556 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14557
14558 /* ri_gp_value is set by the function
14559 mips_elf32_section_processing when the section is
14560 finally written out. */
14561
14562 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14563 elf_link_input_bfd ignores this section. */
14564 input_section->flags &= ~SEC_HAS_CONTENTS;
14565 }
14566
14567 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14568 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14569
14570 /* Skip this section later on (I don't think this currently
14571 matters, but someday it might). */
14572 o->map_head.link_order = NULL;
14573
14574 reginfo_sec = o;
14575 }
14576
14577 if (strcmp (o->name, ".mdebug") == 0)
14578 {
14579 struct extsym_info einfo;
14580 bfd_vma last;
14581
14582 /* We have found the .mdebug section in the output file.
14583 Look through all the link_orders comprising it and merge
14584 the information together. */
14585 symhdr->magic = swap->sym_magic;
14586 /* FIXME: What should the version stamp be? */
14587 symhdr->vstamp = 0;
14588 symhdr->ilineMax = 0;
14589 symhdr->cbLine = 0;
14590 symhdr->idnMax = 0;
14591 symhdr->ipdMax = 0;
14592 symhdr->isymMax = 0;
14593 symhdr->ioptMax = 0;
14594 symhdr->iauxMax = 0;
14595 symhdr->issMax = 0;
14596 symhdr->issExtMax = 0;
14597 symhdr->ifdMax = 0;
14598 symhdr->crfd = 0;
14599 symhdr->iextMax = 0;
14600
14601 /* We accumulate the debugging information itself in the
14602 debug_info structure. */
14603 debug.line = NULL;
14604 debug.external_dnr = NULL;
14605 debug.external_pdr = NULL;
14606 debug.external_sym = NULL;
14607 debug.external_opt = NULL;
14608 debug.external_aux = NULL;
14609 debug.ss = NULL;
14610 debug.ssext = debug.ssext_end = NULL;
14611 debug.external_fdr = NULL;
14612 debug.external_rfd = NULL;
14613 debug.external_ext = debug.external_ext_end = NULL;
14614
14615 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14616 if (mdebug_handle == NULL)
14617 return FALSE;
14618
14619 esym.jmptbl = 0;
14620 esym.cobol_main = 0;
14621 esym.weakext = 0;
14622 esym.reserved = 0;
14623 esym.ifd = ifdNil;
14624 esym.asym.iss = issNil;
14625 esym.asym.st = stLocal;
14626 esym.asym.reserved = 0;
14627 esym.asym.index = indexNil;
14628 last = 0;
14629 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14630 {
14631 esym.asym.sc = sc[i];
14632 s = bfd_get_section_by_name (abfd, secname[i]);
14633 if (s != NULL)
14634 {
14635 esym.asym.value = s->vma;
14636 last = s->vma + s->size;
14637 }
14638 else
14639 esym.asym.value = last;
14640 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14641 secname[i], &esym))
14642 return FALSE;
14643 }
14644
14645 for (p = o->map_head.link_order; p != NULL; p = p->next)
14646 {
14647 asection *input_section;
14648 bfd *input_bfd;
14649 const struct ecoff_debug_swap *input_swap;
14650 struct ecoff_debug_info input_debug;
14651 char *eraw_src;
14652 char *eraw_end;
14653
14654 if (p->type != bfd_indirect_link_order)
14655 {
14656 if (p->type == bfd_data_link_order)
14657 continue;
14658 abort ();
14659 }
14660
14661 input_section = p->u.indirect.section;
14662 input_bfd = input_section->owner;
14663
14664 if (!is_mips_elf (input_bfd))
14665 {
14666 /* I don't know what a non MIPS ELF bfd would be
14667 doing with a .mdebug section, but I don't really
14668 want to deal with it. */
14669 continue;
14670 }
14671
14672 input_swap = (get_elf_backend_data (input_bfd)
14673 ->elf_backend_ecoff_debug_swap);
14674
14675 BFD_ASSERT (p->size == input_section->size);
14676
14677 /* The ECOFF linking code expects that we have already
14678 read in the debugging information and set up an
14679 ecoff_debug_info structure, so we do that now. */
14680 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14681 &input_debug))
14682 return FALSE;
14683
14684 if (! (bfd_ecoff_debug_accumulate
14685 (mdebug_handle, abfd, &debug, swap, input_bfd,
14686 &input_debug, input_swap, info)))
14687 return FALSE;
14688
14689 /* Loop through the external symbols. For each one with
14690 interesting information, try to find the symbol in
14691 the linker global hash table and save the information
14692 for the output external symbols. */
14693 eraw_src = input_debug.external_ext;
14694 eraw_end = (eraw_src
14695 + (input_debug.symbolic_header.iextMax
14696 * input_swap->external_ext_size));
14697 for (;
14698 eraw_src < eraw_end;
14699 eraw_src += input_swap->external_ext_size)
14700 {
14701 EXTR ext;
14702 const char *name;
14703 struct mips_elf_link_hash_entry *h;
14704
14705 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14706 if (ext.asym.sc == scNil
14707 || ext.asym.sc == scUndefined
14708 || ext.asym.sc == scSUndefined)
14709 continue;
14710
14711 name = input_debug.ssext + ext.asym.iss;
14712 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14713 name, FALSE, FALSE, TRUE);
14714 if (h == NULL || h->esym.ifd != -2)
14715 continue;
14716
14717 if (ext.ifd != -1)
14718 {
14719 BFD_ASSERT (ext.ifd
14720 < input_debug.symbolic_header.ifdMax);
14721 ext.ifd = input_debug.ifdmap[ext.ifd];
14722 }
14723
14724 h->esym = ext;
14725 }
14726
14727 /* Free up the information we just read. */
14728 free (input_debug.line);
14729 free (input_debug.external_dnr);
14730 free (input_debug.external_pdr);
14731 free (input_debug.external_sym);
14732 free (input_debug.external_opt);
14733 free (input_debug.external_aux);
14734 free (input_debug.ss);
14735 free (input_debug.ssext);
14736 free (input_debug.external_fdr);
14737 free (input_debug.external_rfd);
14738 free (input_debug.external_ext);
14739
14740 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14741 elf_link_input_bfd ignores this section. */
14742 input_section->flags &= ~SEC_HAS_CONTENTS;
14743 }
14744
14745 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14746 {
14747 /* Create .rtproc section. */
14748 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14749 if (rtproc_sec == NULL)
14750 {
14751 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14752 | SEC_LINKER_CREATED | SEC_READONLY);
14753
14754 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14755 ".rtproc",
14756 flags);
14757 if (rtproc_sec == NULL
14758 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14759 return FALSE;
14760 }
14761
14762 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14763 info, rtproc_sec,
14764 &debug))
14765 return FALSE;
14766 }
14767
14768 /* Build the external symbol information. */
14769 einfo.abfd = abfd;
14770 einfo.info = info;
14771 einfo.debug = &debug;
14772 einfo.swap = swap;
14773 einfo.failed = FALSE;
14774 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14775 mips_elf_output_extsym, &einfo);
14776 if (einfo.failed)
14777 return FALSE;
14778
14779 /* Set the size of the .mdebug section. */
14780 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14781
14782 /* Skip this section later on (I don't think this currently
14783 matters, but someday it might). */
14784 o->map_head.link_order = NULL;
14785
14786 mdebug_sec = o;
14787 }
14788
14789 if (CONST_STRNEQ (o->name, ".gptab."))
14790 {
14791 const char *subname;
14792 unsigned int c;
14793 Elf32_gptab *tab;
14794 Elf32_External_gptab *ext_tab;
14795 unsigned int j;
14796
14797 /* The .gptab.sdata and .gptab.sbss sections hold
14798 information describing how the small data area would
14799 change depending upon the -G switch. These sections
14800 not used in executables files. */
14801 if (! bfd_link_relocatable (info))
14802 {
14803 for (p = o->map_head.link_order; p != NULL; p = p->next)
14804 {
14805 asection *input_section;
14806
14807 if (p->type != bfd_indirect_link_order)
14808 {
14809 if (p->type == bfd_data_link_order)
14810 continue;
14811 abort ();
14812 }
14813
14814 input_section = p->u.indirect.section;
14815
14816 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14817 elf_link_input_bfd ignores this section. */
14818 input_section->flags &= ~SEC_HAS_CONTENTS;
14819 }
14820
14821 /* Skip this section later on (I don't think this
14822 currently matters, but someday it might). */
14823 o->map_head.link_order = NULL;
14824
14825 /* Really remove the section. */
14826 bfd_section_list_remove (abfd, o);
14827 --abfd->section_count;
14828
14829 continue;
14830 }
14831
14832 /* There is one gptab for initialized data, and one for
14833 uninitialized data. */
14834 if (strcmp (o->name, ".gptab.sdata") == 0)
14835 gptab_data_sec = o;
14836 else if (strcmp (o->name, ".gptab.sbss") == 0)
14837 gptab_bss_sec = o;
14838 else
14839 {
14840 _bfd_error_handler
14841 /* xgettext:c-format */
14842 (_("%s: illegal section name `%s'"),
14843 bfd_get_filename (abfd), o->name);
14844 bfd_set_error (bfd_error_nonrepresentable_section);
14845 return FALSE;
14846 }
14847
14848 /* The linker script always combines .gptab.data and
14849 .gptab.sdata into .gptab.sdata, and likewise for
14850 .gptab.bss and .gptab.sbss. It is possible that there is
14851 no .sdata or .sbss section in the output file, in which
14852 case we must change the name of the output section. */
14853 subname = o->name + sizeof ".gptab" - 1;
14854 if (bfd_get_section_by_name (abfd, subname) == NULL)
14855 {
14856 if (o == gptab_data_sec)
14857 o->name = ".gptab.data";
14858 else
14859 o->name = ".gptab.bss";
14860 subname = o->name + sizeof ".gptab" - 1;
14861 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14862 }
14863
14864 /* Set up the first entry. */
14865 c = 1;
14866 amt = c * sizeof (Elf32_gptab);
14867 tab = bfd_malloc (amt);
14868 if (tab == NULL)
14869 return FALSE;
14870 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14871 tab[0].gt_header.gt_unused = 0;
14872
14873 /* Combine the input sections. */
14874 for (p = o->map_head.link_order; p != NULL; p = p->next)
14875 {
14876 asection *input_section;
14877 bfd *input_bfd;
14878 bfd_size_type size;
14879 unsigned long last;
14880 bfd_size_type gpentry;
14881
14882 if (p->type != bfd_indirect_link_order)
14883 {
14884 if (p->type == bfd_data_link_order)
14885 continue;
14886 abort ();
14887 }
14888
14889 input_section = p->u.indirect.section;
14890 input_bfd = input_section->owner;
14891
14892 /* Combine the gptab entries for this input section one
14893 by one. We know that the input gptab entries are
14894 sorted by ascending -G value. */
14895 size = input_section->size;
14896 last = 0;
14897 for (gpentry = sizeof (Elf32_External_gptab);
14898 gpentry < size;
14899 gpentry += sizeof (Elf32_External_gptab))
14900 {
14901 Elf32_External_gptab ext_gptab;
14902 Elf32_gptab int_gptab;
14903 unsigned long val;
14904 unsigned long add;
14905 bfd_boolean exact;
14906 unsigned int look;
14907
14908 if (! (bfd_get_section_contents
14909 (input_bfd, input_section, &ext_gptab, gpentry,
14910 sizeof (Elf32_External_gptab))))
14911 {
14912 free (tab);
14913 return FALSE;
14914 }
14915
14916 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14917 &int_gptab);
14918 val = int_gptab.gt_entry.gt_g_value;
14919 add = int_gptab.gt_entry.gt_bytes - last;
14920
14921 exact = FALSE;
14922 for (look = 1; look < c; look++)
14923 {
14924 if (tab[look].gt_entry.gt_g_value >= val)
14925 tab[look].gt_entry.gt_bytes += add;
14926
14927 if (tab[look].gt_entry.gt_g_value == val)
14928 exact = TRUE;
14929 }
14930
14931 if (! exact)
14932 {
14933 Elf32_gptab *new_tab;
14934 unsigned int max;
14935
14936 /* We need a new table entry. */
14937 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14938 new_tab = bfd_realloc (tab, amt);
14939 if (new_tab == NULL)
14940 {
14941 free (tab);
14942 return FALSE;
14943 }
14944 tab = new_tab;
14945 tab[c].gt_entry.gt_g_value = val;
14946 tab[c].gt_entry.gt_bytes = add;
14947
14948 /* Merge in the size for the next smallest -G
14949 value, since that will be implied by this new
14950 value. */
14951 max = 0;
14952 for (look = 1; look < c; look++)
14953 {
14954 if (tab[look].gt_entry.gt_g_value < val
14955 && (max == 0
14956 || (tab[look].gt_entry.gt_g_value
14957 > tab[max].gt_entry.gt_g_value)))
14958 max = look;
14959 }
14960 if (max != 0)
14961 tab[c].gt_entry.gt_bytes +=
14962 tab[max].gt_entry.gt_bytes;
14963
14964 ++c;
14965 }
14966
14967 last = int_gptab.gt_entry.gt_bytes;
14968 }
14969
14970 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14971 elf_link_input_bfd ignores this section. */
14972 input_section->flags &= ~SEC_HAS_CONTENTS;
14973 }
14974
14975 /* The table must be sorted by -G value. */
14976 if (c > 2)
14977 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14978
14979 /* Swap out the table. */
14980 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14981 ext_tab = bfd_alloc (abfd, amt);
14982 if (ext_tab == NULL)
14983 {
14984 free (tab);
14985 return FALSE;
14986 }
14987
14988 for (j = 0; j < c; j++)
14989 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14990 free (tab);
14991
14992 o->size = c * sizeof (Elf32_External_gptab);
14993 o->contents = (bfd_byte *) ext_tab;
14994
14995 /* Skip this section later on (I don't think this currently
14996 matters, but someday it might). */
14997 o->map_head.link_order = NULL;
14998 }
14999 }
15000
15001 /* Invoke the regular ELF backend linker to do all the work. */
15002 if (!bfd_elf_final_link (abfd, info))
15003 return FALSE;
15004
15005 /* Now write out the computed sections. */
15006
15007 if (abiflags_sec != NULL)
15008 {
15009 Elf_External_ABIFlags_v0 ext;
15010 Elf_Internal_ABIFlags_v0 *abiflags;
15011
15012 abiflags = &mips_elf_tdata (abfd)->abiflags;
15013
15014 /* Set up the abiflags if no valid input sections were found. */
15015 if (!mips_elf_tdata (abfd)->abiflags_valid)
15016 {
15017 infer_mips_abiflags (abfd, abiflags);
15018 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15019 }
15020 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15021 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15022 return FALSE;
15023 }
15024
15025 if (reginfo_sec != NULL)
15026 {
15027 Elf32_External_RegInfo ext;
15028
15029 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
15030 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15031 return FALSE;
15032 }
15033
15034 if (mdebug_sec != NULL)
15035 {
15036 BFD_ASSERT (abfd->output_has_begun);
15037 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15038 swap, info,
15039 mdebug_sec->filepos))
15040 return FALSE;
15041
15042 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15043 }
15044
15045 if (gptab_data_sec != NULL)
15046 {
15047 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15048 gptab_data_sec->contents,
15049 0, gptab_data_sec->size))
15050 return FALSE;
15051 }
15052
15053 if (gptab_bss_sec != NULL)
15054 {
15055 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15056 gptab_bss_sec->contents,
15057 0, gptab_bss_sec->size))
15058 return FALSE;
15059 }
15060
15061 if (SGI_COMPAT (abfd))
15062 {
15063 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15064 if (rtproc_sec != NULL)
15065 {
15066 if (! bfd_set_section_contents (abfd, rtproc_sec,
15067 rtproc_sec->contents,
15068 0, rtproc_sec->size))
15069 return FALSE;
15070 }
15071 }
15072
15073 return TRUE;
15074 }
15075 \f
15076 /* Merge object file header flags from IBFD into OBFD. Raise an error
15077 if there are conflicting settings. */
15078
15079 static bfd_boolean
15080 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15081 {
15082 bfd *obfd = info->output_bfd;
15083 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15084 flagword old_flags;
15085 flagword new_flags;
15086 bfd_boolean ok;
15087
15088 new_flags = elf_elfheader (ibfd)->e_flags;
15089 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15090 old_flags = elf_elfheader (obfd)->e_flags;
15091
15092 /* Check flag compatibility. */
15093
15094 new_flags &= ~EF_MIPS_NOREORDER;
15095 old_flags &= ~EF_MIPS_NOREORDER;
15096
15097 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15098 doesn't seem to matter. */
15099 new_flags &= ~EF_MIPS_XGOT;
15100 old_flags &= ~EF_MIPS_XGOT;
15101
15102 /* MIPSpro generates ucode info in n64 objects. Again, we should
15103 just be able to ignore this. */
15104 new_flags &= ~EF_MIPS_UCODE;
15105 old_flags &= ~EF_MIPS_UCODE;
15106
15107 /* DSOs should only be linked with CPIC code. */
15108 if ((ibfd->flags & DYNAMIC) != 0)
15109 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15110
15111 if (new_flags == old_flags)
15112 return TRUE;
15113
15114 ok = TRUE;
15115
15116 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15117 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15118 {
15119 _bfd_error_handler
15120 (_("%B: warning: linking abicalls files with non-abicalls files"),
15121 ibfd);
15122 ok = TRUE;
15123 }
15124
15125 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15126 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15127 if (! (new_flags & EF_MIPS_PIC))
15128 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15129
15130 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15131 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15132
15133 /* Compare the ISAs. */
15134 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15135 {
15136 _bfd_error_handler
15137 (_("%B: linking 32-bit code with 64-bit code"),
15138 ibfd);
15139 ok = FALSE;
15140 }
15141 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15142 {
15143 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15144 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15145 {
15146 /* Copy the architecture info from IBFD to OBFD. Also copy
15147 the 32-bit flag (if set) so that we continue to recognise
15148 OBFD as a 32-bit binary. */
15149 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15150 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15151 elf_elfheader (obfd)->e_flags
15152 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15153
15154 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15155 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15156
15157 /* Copy across the ABI flags if OBFD doesn't use them
15158 and if that was what caused us to treat IBFD as 32-bit. */
15159 if ((old_flags & EF_MIPS_ABI) == 0
15160 && mips_32bit_flags_p (new_flags)
15161 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15162 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15163 }
15164 else
15165 {
15166 /* The ISAs aren't compatible. */
15167 _bfd_error_handler
15168 /* xgettext:c-format */
15169 (_("%B: linking %s module with previous %s modules"),
15170 ibfd,
15171 bfd_printable_name (ibfd),
15172 bfd_printable_name (obfd));
15173 ok = FALSE;
15174 }
15175 }
15176
15177 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15178 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15179
15180 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15181 does set EI_CLASS differently from any 32-bit ABI. */
15182 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15183 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15184 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15185 {
15186 /* Only error if both are set (to different values). */
15187 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15188 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15189 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15190 {
15191 _bfd_error_handler
15192 /* xgettext:c-format */
15193 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15194 ibfd,
15195 elf_mips_abi_name (ibfd),
15196 elf_mips_abi_name (obfd));
15197 ok = FALSE;
15198 }
15199 new_flags &= ~EF_MIPS_ABI;
15200 old_flags &= ~EF_MIPS_ABI;
15201 }
15202
15203 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15204 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15205 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15206 {
15207 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15208 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15209 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15210 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15211 int micro_mis = old_m16 && new_micro;
15212 int m16_mis = old_micro && new_m16;
15213
15214 if (m16_mis || micro_mis)
15215 {
15216 _bfd_error_handler
15217 /* xgettext:c-format */
15218 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15219 ibfd,
15220 m16_mis ? "MIPS16" : "microMIPS",
15221 m16_mis ? "microMIPS" : "MIPS16");
15222 ok = FALSE;
15223 }
15224
15225 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15226
15227 new_flags &= ~ EF_MIPS_ARCH_ASE;
15228 old_flags &= ~ EF_MIPS_ARCH_ASE;
15229 }
15230
15231 /* Compare NaN encodings. */
15232 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15233 {
15234 /* xgettext:c-format */
15235 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15236 ibfd,
15237 (new_flags & EF_MIPS_NAN2008
15238 ? "-mnan=2008" : "-mnan=legacy"),
15239 (old_flags & EF_MIPS_NAN2008
15240 ? "-mnan=2008" : "-mnan=legacy"));
15241 ok = FALSE;
15242 new_flags &= ~EF_MIPS_NAN2008;
15243 old_flags &= ~EF_MIPS_NAN2008;
15244 }
15245
15246 /* Compare FP64 state. */
15247 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15248 {
15249 /* xgettext:c-format */
15250 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15251 ibfd,
15252 (new_flags & EF_MIPS_FP64
15253 ? "-mfp64" : "-mfp32"),
15254 (old_flags & EF_MIPS_FP64
15255 ? "-mfp64" : "-mfp32"));
15256 ok = FALSE;
15257 new_flags &= ~EF_MIPS_FP64;
15258 old_flags &= ~EF_MIPS_FP64;
15259 }
15260
15261 /* Warn about any other mismatches */
15262 if (new_flags != old_flags)
15263 {
15264 /* xgettext:c-format */
15265 _bfd_error_handler
15266 (_("%B: uses different e_flags (0x%lx) fields than previous modules "
15267 "(0x%lx)"),
15268 ibfd, (unsigned long) new_flags,
15269 (unsigned long) old_flags);
15270 ok = FALSE;
15271 }
15272
15273 return ok;
15274 }
15275
15276 /* Merge object attributes from IBFD into OBFD. Raise an error if
15277 there are conflicting attributes. */
15278 static bfd_boolean
15279 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15280 {
15281 bfd *obfd = info->output_bfd;
15282 obj_attribute *in_attr;
15283 obj_attribute *out_attr;
15284 bfd *abi_fp_bfd;
15285 bfd *abi_msa_bfd;
15286
15287 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15288 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15289 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15290 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15291
15292 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15293 if (!abi_msa_bfd
15294 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15295 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15296
15297 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15298 {
15299 /* This is the first object. Copy the attributes. */
15300 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15301
15302 /* Use the Tag_null value to indicate the attributes have been
15303 initialized. */
15304 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15305
15306 return TRUE;
15307 }
15308
15309 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15310 non-conflicting ones. */
15311 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15312 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15313 {
15314 int out_fp, in_fp;
15315
15316 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15317 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15318 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15319 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15320 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15321 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15322 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15323 || in_fp == Val_GNU_MIPS_ABI_FP_64
15324 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15325 {
15326 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15327 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15328 }
15329 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15330 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15331 || out_fp == Val_GNU_MIPS_ABI_FP_64
15332 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15333 /* Keep the current setting. */;
15334 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15335 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15336 {
15337 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15338 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15339 }
15340 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15341 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15342 /* Keep the current setting. */;
15343 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15344 {
15345 const char *out_string, *in_string;
15346
15347 out_string = _bfd_mips_fp_abi_string (out_fp);
15348 in_string = _bfd_mips_fp_abi_string (in_fp);
15349 /* First warn about cases involving unrecognised ABIs. */
15350 if (!out_string && !in_string)
15351 /* xgettext:c-format */
15352 _bfd_error_handler
15353 (_("Warning: %B uses unknown floating point ABI %d "
15354 "(set by %B), %B uses unknown floating point ABI %d"),
15355 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
15356 else if (!out_string)
15357 _bfd_error_handler
15358 /* xgettext:c-format */
15359 (_("Warning: %B uses unknown floating point ABI %d "
15360 "(set by %B), %B uses %s"),
15361 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
15362 else if (!in_string)
15363 _bfd_error_handler
15364 /* xgettext:c-format */
15365 (_("Warning: %B uses %s (set by %B), "
15366 "%B uses unknown floating point ABI %d"),
15367 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
15368 else
15369 {
15370 /* If one of the bfds is soft-float, the other must be
15371 hard-float. The exact choice of hard-float ABI isn't
15372 really relevant to the error message. */
15373 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15374 out_string = "-mhard-float";
15375 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15376 in_string = "-mhard-float";
15377 _bfd_error_handler
15378 /* xgettext:c-format */
15379 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15380 obfd, abi_fp_bfd, ibfd, out_string, in_string);
15381 }
15382 }
15383 }
15384
15385 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15386 non-conflicting ones. */
15387 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15388 {
15389 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15390 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15391 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15392 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15393 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15394 {
15395 case Val_GNU_MIPS_ABI_MSA_128:
15396 _bfd_error_handler
15397 /* xgettext:c-format */
15398 (_("Warning: %B uses %s (set by %B), "
15399 "%B uses unknown MSA ABI %d"),
15400 obfd, abi_msa_bfd, ibfd,
15401 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15402 break;
15403
15404 default:
15405 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15406 {
15407 case Val_GNU_MIPS_ABI_MSA_128:
15408 _bfd_error_handler
15409 /* xgettext:c-format */
15410 (_("Warning: %B uses unknown MSA ABI %d "
15411 "(set by %B), %B uses %s"),
15412 obfd, abi_msa_bfd, ibfd,
15413 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15414 break;
15415
15416 default:
15417 _bfd_error_handler
15418 /* xgettext:c-format */
15419 (_("Warning: %B uses unknown MSA ABI %d "
15420 "(set by %B), %B uses unknown MSA ABI %d"),
15421 obfd, abi_msa_bfd, ibfd,
15422 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15423 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15424 break;
15425 }
15426 }
15427 }
15428
15429 /* Merge Tag_compatibility attributes and any common GNU ones. */
15430 return _bfd_elf_merge_object_attributes (ibfd, info);
15431 }
15432
15433 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15434 there are conflicting settings. */
15435
15436 static bfd_boolean
15437 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15438 {
15439 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15440 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15441 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15442
15443 /* Update the output abiflags fp_abi using the computed fp_abi. */
15444 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15445
15446 #define max(a, b) ((a) > (b) ? (a) : (b))
15447 /* Merge abiflags. */
15448 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15449 in_tdata->abiflags.isa_level);
15450 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15451 in_tdata->abiflags.isa_rev);
15452 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15453 in_tdata->abiflags.gpr_size);
15454 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15455 in_tdata->abiflags.cpr1_size);
15456 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15457 in_tdata->abiflags.cpr2_size);
15458 #undef max
15459 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15460 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15461
15462 return TRUE;
15463 }
15464
15465 /* Merge backend specific data from an object file to the output
15466 object file when linking. */
15467
15468 bfd_boolean
15469 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15470 {
15471 bfd *obfd = info->output_bfd;
15472 struct mips_elf_obj_tdata *out_tdata;
15473 struct mips_elf_obj_tdata *in_tdata;
15474 bfd_boolean null_input_bfd = TRUE;
15475 asection *sec;
15476 bfd_boolean ok;
15477
15478 /* Check if we have the same endianness. */
15479 if (! _bfd_generic_verify_endian_match (ibfd, info))
15480 {
15481 _bfd_error_handler
15482 (_("%B: endianness incompatible with that of the selected emulation"),
15483 ibfd);
15484 return FALSE;
15485 }
15486
15487 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15488 return TRUE;
15489
15490 in_tdata = mips_elf_tdata (ibfd);
15491 out_tdata = mips_elf_tdata (obfd);
15492
15493 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15494 {
15495 _bfd_error_handler
15496 (_("%B: ABI is incompatible with that of the selected emulation"),
15497 ibfd);
15498 return FALSE;
15499 }
15500
15501 /* Check to see if the input BFD actually contains any sections. If not,
15502 then it has no attributes, and its flags may not have been initialized
15503 either, but it cannot actually cause any incompatibility. */
15504 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15505 {
15506 /* Ignore synthetic sections and empty .text, .data and .bss sections
15507 which are automatically generated by gas. Also ignore fake
15508 (s)common sections, since merely defining a common symbol does
15509 not affect compatibility. */
15510 if ((sec->flags & SEC_IS_COMMON) == 0
15511 && strcmp (sec->name, ".reginfo")
15512 && strcmp (sec->name, ".mdebug")
15513 && (sec->size != 0
15514 || (strcmp (sec->name, ".text")
15515 && strcmp (sec->name, ".data")
15516 && strcmp (sec->name, ".bss"))))
15517 {
15518 null_input_bfd = FALSE;
15519 break;
15520 }
15521 }
15522 if (null_input_bfd)
15523 return TRUE;
15524
15525 /* Populate abiflags using existing information. */
15526 if (in_tdata->abiflags_valid)
15527 {
15528 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15529 Elf_Internal_ABIFlags_v0 in_abiflags;
15530 Elf_Internal_ABIFlags_v0 abiflags;
15531
15532 /* Set up the FP ABI attribute from the abiflags if it is not already
15533 set. */
15534 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15535 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15536
15537 infer_mips_abiflags (ibfd, &abiflags);
15538 in_abiflags = in_tdata->abiflags;
15539
15540 /* It is not possible to infer the correct ISA revision
15541 for R3 or R5 so drop down to R2 for the checks. */
15542 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15543 in_abiflags.isa_rev = 2;
15544
15545 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15546 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15547 _bfd_error_handler
15548 (_("%B: warning: Inconsistent ISA between e_flags and "
15549 ".MIPS.abiflags"), ibfd);
15550 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15551 && in_abiflags.fp_abi != abiflags.fp_abi)
15552 _bfd_error_handler
15553 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
15554 ".MIPS.abiflags"), ibfd);
15555 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15556 _bfd_error_handler
15557 (_("%B: warning: Inconsistent ASEs between e_flags and "
15558 ".MIPS.abiflags"), ibfd);
15559 /* The isa_ext is allowed to be an extension of what can be inferred
15560 from e_flags. */
15561 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15562 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15563 _bfd_error_handler
15564 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15565 ".MIPS.abiflags"), ibfd);
15566 if (in_abiflags.flags2 != 0)
15567 _bfd_error_handler
15568 (_("%B: warning: Unexpected flag in the flags2 field of "
15569 ".MIPS.abiflags (0x%lx)"), ibfd,
15570 (unsigned long) in_abiflags.flags2);
15571 }
15572 else
15573 {
15574 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15575 in_tdata->abiflags_valid = TRUE;
15576 }
15577
15578 if (!out_tdata->abiflags_valid)
15579 {
15580 /* Copy input abiflags if output abiflags are not already valid. */
15581 out_tdata->abiflags = in_tdata->abiflags;
15582 out_tdata->abiflags_valid = TRUE;
15583 }
15584
15585 if (! elf_flags_init (obfd))
15586 {
15587 elf_flags_init (obfd) = TRUE;
15588 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15589 elf_elfheader (obfd)->e_ident[EI_CLASS]
15590 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15591
15592 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15593 && (bfd_get_arch_info (obfd)->the_default
15594 || mips_mach_extends_p (bfd_get_mach (obfd),
15595 bfd_get_mach (ibfd))))
15596 {
15597 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15598 bfd_get_mach (ibfd)))
15599 return FALSE;
15600
15601 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15602 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15603 }
15604
15605 ok = TRUE;
15606 }
15607 else
15608 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15609
15610 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15611
15612 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15613
15614 if (!ok)
15615 {
15616 bfd_set_error (bfd_error_bad_value);
15617 return FALSE;
15618 }
15619
15620 return TRUE;
15621 }
15622
15623 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15624
15625 bfd_boolean
15626 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15627 {
15628 BFD_ASSERT (!elf_flags_init (abfd)
15629 || elf_elfheader (abfd)->e_flags == flags);
15630
15631 elf_elfheader (abfd)->e_flags = flags;
15632 elf_flags_init (abfd) = TRUE;
15633 return TRUE;
15634 }
15635
15636 char *
15637 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15638 {
15639 switch (dtag)
15640 {
15641 default: return "";
15642 case DT_MIPS_RLD_VERSION:
15643 return "MIPS_RLD_VERSION";
15644 case DT_MIPS_TIME_STAMP:
15645 return "MIPS_TIME_STAMP";
15646 case DT_MIPS_ICHECKSUM:
15647 return "MIPS_ICHECKSUM";
15648 case DT_MIPS_IVERSION:
15649 return "MIPS_IVERSION";
15650 case DT_MIPS_FLAGS:
15651 return "MIPS_FLAGS";
15652 case DT_MIPS_BASE_ADDRESS:
15653 return "MIPS_BASE_ADDRESS";
15654 case DT_MIPS_MSYM:
15655 return "MIPS_MSYM";
15656 case DT_MIPS_CONFLICT:
15657 return "MIPS_CONFLICT";
15658 case DT_MIPS_LIBLIST:
15659 return "MIPS_LIBLIST";
15660 case DT_MIPS_LOCAL_GOTNO:
15661 return "MIPS_LOCAL_GOTNO";
15662 case DT_MIPS_CONFLICTNO:
15663 return "MIPS_CONFLICTNO";
15664 case DT_MIPS_LIBLISTNO:
15665 return "MIPS_LIBLISTNO";
15666 case DT_MIPS_SYMTABNO:
15667 return "MIPS_SYMTABNO";
15668 case DT_MIPS_UNREFEXTNO:
15669 return "MIPS_UNREFEXTNO";
15670 case DT_MIPS_GOTSYM:
15671 return "MIPS_GOTSYM";
15672 case DT_MIPS_HIPAGENO:
15673 return "MIPS_HIPAGENO";
15674 case DT_MIPS_RLD_MAP:
15675 return "MIPS_RLD_MAP";
15676 case DT_MIPS_RLD_MAP_REL:
15677 return "MIPS_RLD_MAP_REL";
15678 case DT_MIPS_DELTA_CLASS:
15679 return "MIPS_DELTA_CLASS";
15680 case DT_MIPS_DELTA_CLASS_NO:
15681 return "MIPS_DELTA_CLASS_NO";
15682 case DT_MIPS_DELTA_INSTANCE:
15683 return "MIPS_DELTA_INSTANCE";
15684 case DT_MIPS_DELTA_INSTANCE_NO:
15685 return "MIPS_DELTA_INSTANCE_NO";
15686 case DT_MIPS_DELTA_RELOC:
15687 return "MIPS_DELTA_RELOC";
15688 case DT_MIPS_DELTA_RELOC_NO:
15689 return "MIPS_DELTA_RELOC_NO";
15690 case DT_MIPS_DELTA_SYM:
15691 return "MIPS_DELTA_SYM";
15692 case DT_MIPS_DELTA_SYM_NO:
15693 return "MIPS_DELTA_SYM_NO";
15694 case DT_MIPS_DELTA_CLASSSYM:
15695 return "MIPS_DELTA_CLASSSYM";
15696 case DT_MIPS_DELTA_CLASSSYM_NO:
15697 return "MIPS_DELTA_CLASSSYM_NO";
15698 case DT_MIPS_CXX_FLAGS:
15699 return "MIPS_CXX_FLAGS";
15700 case DT_MIPS_PIXIE_INIT:
15701 return "MIPS_PIXIE_INIT";
15702 case DT_MIPS_SYMBOL_LIB:
15703 return "MIPS_SYMBOL_LIB";
15704 case DT_MIPS_LOCALPAGE_GOTIDX:
15705 return "MIPS_LOCALPAGE_GOTIDX";
15706 case DT_MIPS_LOCAL_GOTIDX:
15707 return "MIPS_LOCAL_GOTIDX";
15708 case DT_MIPS_HIDDEN_GOTIDX:
15709 return "MIPS_HIDDEN_GOTIDX";
15710 case DT_MIPS_PROTECTED_GOTIDX:
15711 return "MIPS_PROTECTED_GOT_IDX";
15712 case DT_MIPS_OPTIONS:
15713 return "MIPS_OPTIONS";
15714 case DT_MIPS_INTERFACE:
15715 return "MIPS_INTERFACE";
15716 case DT_MIPS_DYNSTR_ALIGN:
15717 return "DT_MIPS_DYNSTR_ALIGN";
15718 case DT_MIPS_INTERFACE_SIZE:
15719 return "DT_MIPS_INTERFACE_SIZE";
15720 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15721 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15722 case DT_MIPS_PERF_SUFFIX:
15723 return "DT_MIPS_PERF_SUFFIX";
15724 case DT_MIPS_COMPACT_SIZE:
15725 return "DT_MIPS_COMPACT_SIZE";
15726 case DT_MIPS_GP_VALUE:
15727 return "DT_MIPS_GP_VALUE";
15728 case DT_MIPS_AUX_DYNAMIC:
15729 return "DT_MIPS_AUX_DYNAMIC";
15730 case DT_MIPS_PLTGOT:
15731 return "DT_MIPS_PLTGOT";
15732 case DT_MIPS_RWPLT:
15733 return "DT_MIPS_RWPLT";
15734 }
15735 }
15736
15737 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15738 not known. */
15739
15740 const char *
15741 _bfd_mips_fp_abi_string (int fp)
15742 {
15743 switch (fp)
15744 {
15745 /* These strings aren't translated because they're simply
15746 option lists. */
15747 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15748 return "-mdouble-float";
15749
15750 case Val_GNU_MIPS_ABI_FP_SINGLE:
15751 return "-msingle-float";
15752
15753 case Val_GNU_MIPS_ABI_FP_SOFT:
15754 return "-msoft-float";
15755
15756 case Val_GNU_MIPS_ABI_FP_OLD_64:
15757 return _("-mips32r2 -mfp64 (12 callee-saved)");
15758
15759 case Val_GNU_MIPS_ABI_FP_XX:
15760 return "-mfpxx";
15761
15762 case Val_GNU_MIPS_ABI_FP_64:
15763 return "-mgp32 -mfp64";
15764
15765 case Val_GNU_MIPS_ABI_FP_64A:
15766 return "-mgp32 -mfp64 -mno-odd-spreg";
15767
15768 default:
15769 return 0;
15770 }
15771 }
15772
15773 static void
15774 print_mips_ases (FILE *file, unsigned int mask)
15775 {
15776 if (mask & AFL_ASE_DSP)
15777 fputs ("\n\tDSP ASE", file);
15778 if (mask & AFL_ASE_DSPR2)
15779 fputs ("\n\tDSP R2 ASE", file);
15780 if (mask & AFL_ASE_DSPR3)
15781 fputs ("\n\tDSP R3 ASE", file);
15782 if (mask & AFL_ASE_EVA)
15783 fputs ("\n\tEnhanced VA Scheme", file);
15784 if (mask & AFL_ASE_MCU)
15785 fputs ("\n\tMCU (MicroController) ASE", file);
15786 if (mask & AFL_ASE_MDMX)
15787 fputs ("\n\tMDMX ASE", file);
15788 if (mask & AFL_ASE_MIPS3D)
15789 fputs ("\n\tMIPS-3D ASE", file);
15790 if (mask & AFL_ASE_MT)
15791 fputs ("\n\tMT ASE", file);
15792 if (mask & AFL_ASE_SMARTMIPS)
15793 fputs ("\n\tSmartMIPS ASE", file);
15794 if (mask & AFL_ASE_VIRT)
15795 fputs ("\n\tVZ ASE", file);
15796 if (mask & AFL_ASE_MSA)
15797 fputs ("\n\tMSA ASE", file);
15798 if (mask & AFL_ASE_MIPS16)
15799 fputs ("\n\tMIPS16 ASE", file);
15800 if (mask & AFL_ASE_MICROMIPS)
15801 fputs ("\n\tMICROMIPS ASE", file);
15802 if (mask & AFL_ASE_XPA)
15803 fputs ("\n\tXPA ASE", file);
15804 if (mask == 0)
15805 fprintf (file, "\n\t%s", _("None"));
15806 else if ((mask & ~AFL_ASE_MASK) != 0)
15807 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15808 }
15809
15810 static void
15811 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15812 {
15813 switch (isa_ext)
15814 {
15815 case 0:
15816 fputs (_("None"), file);
15817 break;
15818 case AFL_EXT_XLR:
15819 fputs ("RMI XLR", file);
15820 break;
15821 case AFL_EXT_OCTEON3:
15822 fputs ("Cavium Networks Octeon3", file);
15823 break;
15824 case AFL_EXT_OCTEON2:
15825 fputs ("Cavium Networks Octeon2", file);
15826 break;
15827 case AFL_EXT_OCTEONP:
15828 fputs ("Cavium Networks OcteonP", file);
15829 break;
15830 case AFL_EXT_LOONGSON_3A:
15831 fputs ("Loongson 3A", file);
15832 break;
15833 case AFL_EXT_OCTEON:
15834 fputs ("Cavium Networks Octeon", file);
15835 break;
15836 case AFL_EXT_5900:
15837 fputs ("Toshiba R5900", file);
15838 break;
15839 case AFL_EXT_4650:
15840 fputs ("MIPS R4650", file);
15841 break;
15842 case AFL_EXT_4010:
15843 fputs ("LSI R4010", file);
15844 break;
15845 case AFL_EXT_4100:
15846 fputs ("NEC VR4100", file);
15847 break;
15848 case AFL_EXT_3900:
15849 fputs ("Toshiba R3900", file);
15850 break;
15851 case AFL_EXT_10000:
15852 fputs ("MIPS R10000", file);
15853 break;
15854 case AFL_EXT_SB1:
15855 fputs ("Broadcom SB-1", file);
15856 break;
15857 case AFL_EXT_4111:
15858 fputs ("NEC VR4111/VR4181", file);
15859 break;
15860 case AFL_EXT_4120:
15861 fputs ("NEC VR4120", file);
15862 break;
15863 case AFL_EXT_5400:
15864 fputs ("NEC VR5400", file);
15865 break;
15866 case AFL_EXT_5500:
15867 fputs ("NEC VR5500", file);
15868 break;
15869 case AFL_EXT_LOONGSON_2E:
15870 fputs ("ST Microelectronics Loongson 2E", file);
15871 break;
15872 case AFL_EXT_LOONGSON_2F:
15873 fputs ("ST Microelectronics Loongson 2F", file);
15874 break;
15875 default:
15876 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15877 break;
15878 }
15879 }
15880
15881 static void
15882 print_mips_fp_abi_value (FILE *file, int val)
15883 {
15884 switch (val)
15885 {
15886 case Val_GNU_MIPS_ABI_FP_ANY:
15887 fprintf (file, _("Hard or soft float\n"));
15888 break;
15889 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15890 fprintf (file, _("Hard float (double precision)\n"));
15891 break;
15892 case Val_GNU_MIPS_ABI_FP_SINGLE:
15893 fprintf (file, _("Hard float (single precision)\n"));
15894 break;
15895 case Val_GNU_MIPS_ABI_FP_SOFT:
15896 fprintf (file, _("Soft float\n"));
15897 break;
15898 case Val_GNU_MIPS_ABI_FP_OLD_64:
15899 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15900 break;
15901 case Val_GNU_MIPS_ABI_FP_XX:
15902 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15903 break;
15904 case Val_GNU_MIPS_ABI_FP_64:
15905 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15906 break;
15907 case Val_GNU_MIPS_ABI_FP_64A:
15908 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15909 break;
15910 default:
15911 fprintf (file, "??? (%d)\n", val);
15912 break;
15913 }
15914 }
15915
15916 static int
15917 get_mips_reg_size (int reg_size)
15918 {
15919 return (reg_size == AFL_REG_NONE) ? 0
15920 : (reg_size == AFL_REG_32) ? 32
15921 : (reg_size == AFL_REG_64) ? 64
15922 : (reg_size == AFL_REG_128) ? 128
15923 : -1;
15924 }
15925
15926 bfd_boolean
15927 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15928 {
15929 FILE *file = ptr;
15930
15931 BFD_ASSERT (abfd != NULL && ptr != NULL);
15932
15933 /* Print normal ELF private data. */
15934 _bfd_elf_print_private_bfd_data (abfd, ptr);
15935
15936 /* xgettext:c-format */
15937 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15938
15939 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15940 fprintf (file, _(" [abi=O32]"));
15941 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15942 fprintf (file, _(" [abi=O64]"));
15943 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15944 fprintf (file, _(" [abi=EABI32]"));
15945 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15946 fprintf (file, _(" [abi=EABI64]"));
15947 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15948 fprintf (file, _(" [abi unknown]"));
15949 else if (ABI_N32_P (abfd))
15950 fprintf (file, _(" [abi=N32]"));
15951 else if (ABI_64_P (abfd))
15952 fprintf (file, _(" [abi=64]"));
15953 else
15954 fprintf (file, _(" [no abi set]"));
15955
15956 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15957 fprintf (file, " [mips1]");
15958 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15959 fprintf (file, " [mips2]");
15960 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15961 fprintf (file, " [mips3]");
15962 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15963 fprintf (file, " [mips4]");
15964 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15965 fprintf (file, " [mips5]");
15966 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15967 fprintf (file, " [mips32]");
15968 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15969 fprintf (file, " [mips64]");
15970 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15971 fprintf (file, " [mips32r2]");
15972 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15973 fprintf (file, " [mips64r2]");
15974 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15975 fprintf (file, " [mips32r6]");
15976 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15977 fprintf (file, " [mips64r6]");
15978 else
15979 fprintf (file, _(" [unknown ISA]"));
15980
15981 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15982 fprintf (file, " [mdmx]");
15983
15984 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15985 fprintf (file, " [mips16]");
15986
15987 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15988 fprintf (file, " [micromips]");
15989
15990 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15991 fprintf (file, " [nan2008]");
15992
15993 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15994 fprintf (file, " [old fp64]");
15995
15996 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15997 fprintf (file, " [32bitmode]");
15998 else
15999 fprintf (file, _(" [not 32bitmode]"));
16000
16001 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
16002 fprintf (file, " [noreorder]");
16003
16004 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
16005 fprintf (file, " [PIC]");
16006
16007 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
16008 fprintf (file, " [CPIC]");
16009
16010 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
16011 fprintf (file, " [XGOT]");
16012
16013 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
16014 fprintf (file, " [UCODE]");
16015
16016 fputc ('\n', file);
16017
16018 if (mips_elf_tdata (abfd)->abiflags_valid)
16019 {
16020 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16021 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16022 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16023 if (abiflags->isa_rev > 1)
16024 fprintf (file, "r%d", abiflags->isa_rev);
16025 fprintf (file, "\nGPR size: %d",
16026 get_mips_reg_size (abiflags->gpr_size));
16027 fprintf (file, "\nCPR1 size: %d",
16028 get_mips_reg_size (abiflags->cpr1_size));
16029 fprintf (file, "\nCPR2 size: %d",
16030 get_mips_reg_size (abiflags->cpr2_size));
16031 fputs ("\nFP ABI: ", file);
16032 print_mips_fp_abi_value (file, abiflags->fp_abi);
16033 fputs ("ISA Extension: ", file);
16034 print_mips_isa_ext (file, abiflags->isa_ext);
16035 fputs ("\nASEs:", file);
16036 print_mips_ases (file, abiflags->ases);
16037 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16038 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16039 fputc ('\n', file);
16040 }
16041
16042 return TRUE;
16043 }
16044
16045 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16046 {
16047 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16048 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16049 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16050 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16051 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16052 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16053 { NULL, 0, 0, 0, 0 }
16054 };
16055
16056 /* Merge non visibility st_other attributes. Ensure that the
16057 STO_OPTIONAL flag is copied into h->other, even if this is not a
16058 definiton of the symbol. */
16059 void
16060 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16061 const Elf_Internal_Sym *isym,
16062 bfd_boolean definition,
16063 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16064 {
16065 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16066 {
16067 unsigned char other;
16068
16069 other = (definition ? isym->st_other : h->other);
16070 other &= ~ELF_ST_VISIBILITY (-1);
16071 h->other = other | ELF_ST_VISIBILITY (h->other);
16072 }
16073
16074 if (!definition
16075 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16076 h->other |= STO_OPTIONAL;
16077 }
16078
16079 /* Decide whether an undefined symbol is special and can be ignored.
16080 This is the case for OPTIONAL symbols on IRIX. */
16081 bfd_boolean
16082 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16083 {
16084 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16085 }
16086
16087 bfd_boolean
16088 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16089 {
16090 return (sym->st_shndx == SHN_COMMON
16091 || sym->st_shndx == SHN_MIPS_ACOMMON
16092 || sym->st_shndx == SHN_MIPS_SCOMMON);
16093 }
16094
16095 /* Return address for Ith PLT stub in section PLT, for relocation REL
16096 or (bfd_vma) -1 if it should not be included. */
16097
16098 bfd_vma
16099 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16100 const arelent *rel ATTRIBUTE_UNUSED)
16101 {
16102 return (plt->vma
16103 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16104 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16105 }
16106
16107 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16108 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16109 and .got.plt and also the slots may be of a different size each we walk
16110 the PLT manually fetching instructions and matching them against known
16111 patterns. To make things easier standard MIPS slots, if any, always come
16112 first. As we don't create proper ELF symbols we use the UDATA.I member
16113 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16114 with the ST_OTHER member of the ELF symbol. */
16115
16116 long
16117 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16118 long symcount ATTRIBUTE_UNUSED,
16119 asymbol **syms ATTRIBUTE_UNUSED,
16120 long dynsymcount, asymbol **dynsyms,
16121 asymbol **ret)
16122 {
16123 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16124 static const char microsuffix[] = "@micromipsplt";
16125 static const char m16suffix[] = "@mips16plt";
16126 static const char mipssuffix[] = "@plt";
16127
16128 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16129 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16130 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16131 Elf_Internal_Shdr *hdr;
16132 bfd_byte *plt_data;
16133 bfd_vma plt_offset;
16134 unsigned int other;
16135 bfd_vma entry_size;
16136 bfd_vma plt0_size;
16137 asection *relplt;
16138 bfd_vma opcode;
16139 asection *plt;
16140 asymbol *send;
16141 size_t size;
16142 char *names;
16143 long counti;
16144 arelent *p;
16145 asymbol *s;
16146 char *nend;
16147 long count;
16148 long pi;
16149 long i;
16150 long n;
16151
16152 *ret = NULL;
16153
16154 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16155 return 0;
16156
16157 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16158 if (relplt == NULL)
16159 return 0;
16160
16161 hdr = &elf_section_data (relplt)->this_hdr;
16162 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16163 return 0;
16164
16165 plt = bfd_get_section_by_name (abfd, ".plt");
16166 if (plt == NULL)
16167 return 0;
16168
16169 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16170 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16171 return -1;
16172 p = relplt->relocation;
16173
16174 /* Calculating the exact amount of space required for symbols would
16175 require two passes over the PLT, so just pessimise assuming two
16176 PLT slots per relocation. */
16177 count = relplt->size / hdr->sh_entsize;
16178 counti = count * bed->s->int_rels_per_ext_rel;
16179 size = 2 * count * sizeof (asymbol);
16180 size += count * (sizeof (mipssuffix) +
16181 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16182 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16183 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16184
16185 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16186 size += sizeof (asymbol) + sizeof (pltname);
16187
16188 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16189 return -1;
16190
16191 if (plt->size < 16)
16192 return -1;
16193
16194 s = *ret = bfd_malloc (size);
16195 if (s == NULL)
16196 return -1;
16197 send = s + 2 * count + 1;
16198
16199 names = (char *) send;
16200 nend = (char *) s + size;
16201 n = 0;
16202
16203 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16204 if (opcode == 0x3302fffe)
16205 {
16206 if (!micromips_p)
16207 return -1;
16208 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16209 other = STO_MICROMIPS;
16210 }
16211 else if (opcode == 0x0398c1d0)
16212 {
16213 if (!micromips_p)
16214 return -1;
16215 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16216 other = STO_MICROMIPS;
16217 }
16218 else
16219 {
16220 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16221 other = 0;
16222 }
16223
16224 s->the_bfd = abfd;
16225 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16226 s->section = plt;
16227 s->value = 0;
16228 s->name = names;
16229 s->udata.i = other;
16230 memcpy (names, pltname, sizeof (pltname));
16231 names += sizeof (pltname);
16232 ++s, ++n;
16233
16234 pi = 0;
16235 for (plt_offset = plt0_size;
16236 plt_offset + 8 <= plt->size && s < send;
16237 plt_offset += entry_size)
16238 {
16239 bfd_vma gotplt_addr;
16240 const char *suffix;
16241 bfd_vma gotplt_hi;
16242 bfd_vma gotplt_lo;
16243 size_t suffixlen;
16244
16245 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16246
16247 /* Check if the second word matches the expected MIPS16 instruction. */
16248 if (opcode == 0x651aeb00)
16249 {
16250 if (micromips_p)
16251 return -1;
16252 /* Truncated table??? */
16253 if (plt_offset + 16 > plt->size)
16254 break;
16255 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16256 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16257 suffixlen = sizeof (m16suffix);
16258 suffix = m16suffix;
16259 other = STO_MIPS16;
16260 }
16261 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16262 else if (opcode == 0xff220000)
16263 {
16264 if (!micromips_p)
16265 return -1;
16266 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16267 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16268 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16269 gotplt_lo <<= 2;
16270 gotplt_addr = gotplt_hi + gotplt_lo;
16271 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16272 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16273 suffixlen = sizeof (microsuffix);
16274 suffix = microsuffix;
16275 other = STO_MICROMIPS;
16276 }
16277 /* Likewise the expected microMIPS instruction (insn32 mode). */
16278 else if ((opcode & 0xffff0000) == 0xff2f0000)
16279 {
16280 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16281 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16282 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16283 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16284 gotplt_addr = gotplt_hi + gotplt_lo;
16285 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16286 suffixlen = sizeof (microsuffix);
16287 suffix = microsuffix;
16288 other = STO_MICROMIPS;
16289 }
16290 /* Otherwise assume standard MIPS code. */
16291 else
16292 {
16293 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16294 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16295 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16296 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16297 gotplt_addr = gotplt_hi + gotplt_lo;
16298 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16299 suffixlen = sizeof (mipssuffix);
16300 suffix = mipssuffix;
16301 other = 0;
16302 }
16303 /* Truncated table??? */
16304 if (plt_offset + entry_size > plt->size)
16305 break;
16306
16307 for (i = 0;
16308 i < count && p[pi].address != gotplt_addr;
16309 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16310
16311 if (i < count)
16312 {
16313 size_t namelen;
16314 size_t len;
16315
16316 *s = **p[pi].sym_ptr_ptr;
16317 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16318 we are defining a symbol, ensure one of them is set. */
16319 if ((s->flags & BSF_LOCAL) == 0)
16320 s->flags |= BSF_GLOBAL;
16321 s->flags |= BSF_SYNTHETIC;
16322 s->section = plt;
16323 s->value = plt_offset;
16324 s->name = names;
16325 s->udata.i = other;
16326
16327 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16328 namelen = len + suffixlen;
16329 if (names + namelen > nend)
16330 break;
16331
16332 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16333 names += len;
16334 memcpy (names, suffix, suffixlen);
16335 names += suffixlen;
16336
16337 ++s, ++n;
16338 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16339 }
16340 }
16341
16342 free (plt_data);
16343
16344 return n;
16345 }
16346
16347 /* Return the ABI flags associated with ABFD if available. */
16348
16349 Elf_Internal_ABIFlags_v0 *
16350 bfd_mips_elf_get_abiflags (bfd *abfd)
16351 {
16352 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16353
16354 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16355 }
16356
16357 void
16358 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16359 {
16360 struct mips_elf_link_hash_table *htab;
16361 Elf_Internal_Ehdr *i_ehdrp;
16362
16363 i_ehdrp = elf_elfheader (abfd);
16364 if (link_info)
16365 {
16366 htab = mips_elf_hash_table (link_info);
16367 BFD_ASSERT (htab != NULL);
16368
16369 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16370 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16371 }
16372
16373 _bfd_elf_post_process_headers (abfd, link_info);
16374
16375 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16376 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16377 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16378 }
16379
16380 int
16381 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16382 {
16383 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16384 }
16385
16386 /* Return the opcode for can't unwind. */
16387
16388 int
16389 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16390 {
16391 return COMPACT_EH_CANT_UNWIND_OPCODE;
16392 }
This page took 0.389373 seconds and 4 git commands to generate.