bfd/
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37 #include "elf-vxworks.h"
38
39 /* Get the ECOFF swapping routines. */
40 #include "coff/sym.h"
41 #include "coff/symconst.h"
42 #include "coff/ecoff.h"
43 #include "coff/mips.h"
44
45 #include "hashtab.h"
46
47 /* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
49
50 (1) absolute addresses
51 (abfd == NULL)
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
56
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
63
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
68
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
72 GOT index.
73
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
80 struct mips_got_entry
81 {
82 /* The input bfd in which the symbol is defined. */
83 bfd *abfd;
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
86 long symndx;
87 union
88 {
89 /* If abfd == NULL, an address that must be stored in the got. */
90 bfd_vma address;
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
93 bfd_vma addend;
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
96 h->forced_local). */
97 struct mips_elf_link_hash_entry *h;
98 } d;
99
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type;
106
107 /* The offset from the beginning of the .got section to the entry
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
110 long gotidx;
111 };
112
113 /* This structure is used to hold .got information when linking. */
114
115 struct mips_got_info
116 {
117 /* The global symbol in the GOT with the lowest index in the dynamic
118 symbol table. */
119 struct elf_link_hash_entry *global_gotsym;
120 /* The number of global .got entries. */
121 unsigned int global_gotno;
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno;
127 /* The number of local .got entries. */
128 unsigned int local_gotno;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno;
131 /* A hash table holding members of the got. */
132 struct htab *got_entries;
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab *bfd2got;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info *next;
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset;
144 };
145
146 /* Map an input bfd to a got in a multi-got link. */
147
148 struct mips_elf_bfd2got_hash {
149 bfd *bfd;
150 struct mips_got_info *g;
151 };
152
153 /* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
155
156 struct mips_elf_got_per_bfd_arg
157 {
158 /* A hashtable that maps bfds to gots. */
159 htab_t bfd2got;
160 /* The output bfd. */
161 bfd *obfd;
162 /* The link information. */
163 struct bfd_link_info *info;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
166 DT_MIPS_GOTSYM. */
167 struct mips_got_info *primary;
168 /* A non-primary got we're trying to merge with other input bfd's
169 gots. */
170 struct mips_got_info *current;
171 /* The maximum number of got entries that can be addressed with a
172 16-bit offset. */
173 unsigned int max_count;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count;
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
181 the "master" GOT. */
182 unsigned int global_count;
183 };
184
185 /* Another structure used to pass arguments for got entries traversal. */
186
187 struct mips_elf_set_global_got_offset_arg
188 {
189 struct mips_got_info *g;
190 int value;
191 unsigned int needed_relocs;
192 struct bfd_link_info *info;
193 };
194
195 /* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
197
198 struct mips_elf_count_tls_arg
199 {
200 struct bfd_link_info *info;
201 unsigned int needed;
202 };
203
204 struct _mips_elf_section_data
205 {
206 struct bfd_elf_section_data elf;
207 union
208 {
209 struct mips_got_info *got_info;
210 bfd_byte *tdata;
211 } u;
212 };
213
214 #define mips_elf_section_data(sec) \
215 ((struct _mips_elf_section_data *) elf_section_data (sec))
216
217 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
219
220 struct mips_elf_hash_sort_data
221 {
222 /* The symbol in the global GOT with the lowest dynamic symbol table
223 index. */
224 struct elf_link_hash_entry *low;
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
227 long min_got_dynindx;
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
230 with dynamic relocations pointing to it from non-primary GOTs). */
231 long max_unref_got_dynindx;
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx;
235 };
236
237 /* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
239
240 struct mips_elf_link_hash_entry
241 {
242 struct elf_link_hash_entry root;
243
244 /* External symbol information. */
245 EXTR esym;
246
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
248 this symbol. */
249 unsigned int possibly_dynamic_relocs;
250
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
253 bfd_boolean readonly_reloc;
254
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
258 p. 4-20. */
259 bfd_boolean no_fn_stub;
260
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
263 asection *fn_stub;
264
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
267 bfd_boolean need_fn_stub;
268
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
271 asection *call_stub;
272
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection *call_fp_stub;
276
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
279 bfd_boolean forced_local;
280
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target;
283
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target;
286
287 #define GOT_NORMAL 0
288 #define GOT_TLS_GD 1
289 #define GOT_TLS_LDM 2
290 #define GOT_TLS_IE 4
291 #define GOT_TLS_OFFSET_DONE 0x40
292 #define GOT_TLS_DONE 0x80
293 unsigned char tls_type;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset;
301 };
302
303 /* MIPS ELF linker hash table. */
304
305 struct mips_elf_link_hash_table
306 {
307 struct elf_link_hash_table root;
308 #if 0
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
312 #endif
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
318 entry is set to the address of __rld_obj_head as in IRIX5. */
319 bfd_boolean use_rld_obj_head;
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
321 bfd_vma rld_value;
322 /* This is set if we see any mips16 stub sections. */
323 bfd_boolean mips16_stubs_seen;
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
327 being used. */
328 asection *srelbss;
329 asection *sdynbss;
330 asection *srelplt;
331 asection *srelplt2;
332 asection *sgotplt;
333 asection *splt;
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size;
338 };
339
340 #define TLS_RELOC_P(r_type) \
341 (r_type == R_MIPS_TLS_DTPMOD32 \
342 || r_type == R_MIPS_TLS_DTPMOD64 \
343 || r_type == R_MIPS_TLS_DTPREL32 \
344 || r_type == R_MIPS_TLS_DTPREL64 \
345 || r_type == R_MIPS_TLS_GD \
346 || r_type == R_MIPS_TLS_LDM \
347 || r_type == R_MIPS_TLS_DTPREL_HI16 \
348 || r_type == R_MIPS_TLS_DTPREL_LO16 \
349 || r_type == R_MIPS_TLS_GOTTPREL \
350 || r_type == R_MIPS_TLS_TPREL32 \
351 || r_type == R_MIPS_TLS_TPREL64 \
352 || r_type == R_MIPS_TLS_TPREL_HI16 \
353 || r_type == R_MIPS_TLS_TPREL_LO16)
354
355 /* Structure used to pass information to mips_elf_output_extsym. */
356
357 struct extsym_info
358 {
359 bfd *abfd;
360 struct bfd_link_info *info;
361 struct ecoff_debug_info *debug;
362 const struct ecoff_debug_swap *swap;
363 bfd_boolean failed;
364 };
365
366 /* The names of the runtime procedure table symbols used on IRIX5. */
367
368 static const char * const mips_elf_dynsym_rtproc_names[] =
369 {
370 "_procedure_table",
371 "_procedure_string_table",
372 "_procedure_table_size",
373 NULL
374 };
375
376 /* These structures are used to generate the .compact_rel section on
377 IRIX5. */
378
379 typedef struct
380 {
381 unsigned long id1; /* Always one? */
382 unsigned long num; /* Number of compact relocation entries. */
383 unsigned long id2; /* Always two? */
384 unsigned long offset; /* The file offset of the first relocation. */
385 unsigned long reserved0; /* Zero? */
386 unsigned long reserved1; /* Zero? */
387 } Elf32_compact_rel;
388
389 typedef struct
390 {
391 bfd_byte id1[4];
392 bfd_byte num[4];
393 bfd_byte id2[4];
394 bfd_byte offset[4];
395 bfd_byte reserved0[4];
396 bfd_byte reserved1[4];
397 } Elf32_External_compact_rel;
398
399 typedef struct
400 {
401 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
402 unsigned int rtype : 4; /* Relocation types. See below. */
403 unsigned int dist2to : 8;
404 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
405 unsigned long konst; /* KONST field. See below. */
406 unsigned long vaddr; /* VADDR to be relocated. */
407 } Elf32_crinfo;
408
409 typedef struct
410 {
411 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
412 unsigned int rtype : 4; /* Relocation types. See below. */
413 unsigned int dist2to : 8;
414 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
415 unsigned long konst; /* KONST field. See below. */
416 } Elf32_crinfo2;
417
418 typedef struct
419 {
420 bfd_byte info[4];
421 bfd_byte konst[4];
422 bfd_byte vaddr[4];
423 } Elf32_External_crinfo;
424
425 typedef struct
426 {
427 bfd_byte info[4];
428 bfd_byte konst[4];
429 } Elf32_External_crinfo2;
430
431 /* These are the constants used to swap the bitfields in a crinfo. */
432
433 #define CRINFO_CTYPE (0x1)
434 #define CRINFO_CTYPE_SH (31)
435 #define CRINFO_RTYPE (0xf)
436 #define CRINFO_RTYPE_SH (27)
437 #define CRINFO_DIST2TO (0xff)
438 #define CRINFO_DIST2TO_SH (19)
439 #define CRINFO_RELVADDR (0x7ffff)
440 #define CRINFO_RELVADDR_SH (0)
441
442 /* A compact relocation info has long (3 words) or short (2 words)
443 formats. A short format doesn't have VADDR field and relvaddr
444 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
445 #define CRF_MIPS_LONG 1
446 #define CRF_MIPS_SHORT 0
447
448 /* There are 4 types of compact relocation at least. The value KONST
449 has different meaning for each type:
450
451 (type) (konst)
452 CT_MIPS_REL32 Address in data
453 CT_MIPS_WORD Address in word (XXX)
454 CT_MIPS_GPHI_LO GP - vaddr
455 CT_MIPS_JMPAD Address to jump
456 */
457
458 #define CRT_MIPS_REL32 0xa
459 #define CRT_MIPS_WORD 0xb
460 #define CRT_MIPS_GPHI_LO 0xc
461 #define CRT_MIPS_JMPAD 0xd
462
463 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
464 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
465 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
466 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
467 \f
468 /* The structure of the runtime procedure descriptor created by the
469 loader for use by the static exception system. */
470
471 typedef struct runtime_pdr {
472 bfd_vma adr; /* Memory address of start of procedure. */
473 long regmask; /* Save register mask. */
474 long regoffset; /* Save register offset. */
475 long fregmask; /* Save floating point register mask. */
476 long fregoffset; /* Save floating point register offset. */
477 long frameoffset; /* Frame size. */
478 short framereg; /* Frame pointer register. */
479 short pcreg; /* Offset or reg of return pc. */
480 long irpss; /* Index into the runtime string table. */
481 long reserved;
482 struct exception_info *exception_info;/* Pointer to exception array. */
483 } RPDR, *pRPDR;
484 #define cbRPDR sizeof (RPDR)
485 #define rpdNil ((pRPDR) 0)
486 \f
487 static struct mips_got_entry *mips_elf_create_local_got_entry
488 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
489 asection *, bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
490 static bfd_boolean mips_elf_sort_hash_table_f
491 (struct mips_elf_link_hash_entry *, void *);
492 static bfd_vma mips_elf_high
493 (bfd_vma);
494 static bfd_boolean mips_elf_stub_section_p
495 (bfd *, asection *);
496 static bfd_boolean mips_elf_create_dynamic_relocation
497 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
498 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
499 bfd_vma *, asection *);
500 static hashval_t mips_elf_got_entry_hash
501 (const void *);
502 static bfd_vma mips_elf_adjust_gp
503 (bfd *, struct mips_got_info *, bfd *);
504 static struct mips_got_info *mips_elf_got_for_ibfd
505 (struct mips_got_info *, bfd *);
506
507 /* This will be used when we sort the dynamic relocation records. */
508 static bfd *reldyn_sorting_bfd;
509
510 /* Nonzero if ABFD is using the N32 ABI. */
511 #define ABI_N32_P(abfd) \
512 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
513
514 /* Nonzero if ABFD is using the N64 ABI. */
515 #define ABI_64_P(abfd) \
516 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
517
518 /* Nonzero if ABFD is using NewABI conventions. */
519 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
520
521 /* The IRIX compatibility level we are striving for. */
522 #define IRIX_COMPAT(abfd) \
523 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
524
525 /* Whether we are trying to be compatible with IRIX at all. */
526 #define SGI_COMPAT(abfd) \
527 (IRIX_COMPAT (abfd) != ict_none)
528
529 /* The name of the options section. */
530 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
531 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
532
533 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
534 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
535 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
536 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
537
538 /* The name of the stub section. */
539 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
540
541 /* The size of an external REL relocation. */
542 #define MIPS_ELF_REL_SIZE(abfd) \
543 (get_elf_backend_data (abfd)->s->sizeof_rel)
544
545 /* The size of an external RELA relocation. */
546 #define MIPS_ELF_RELA_SIZE(abfd) \
547 (get_elf_backend_data (abfd)->s->sizeof_rela)
548
549 /* The size of an external dynamic table entry. */
550 #define MIPS_ELF_DYN_SIZE(abfd) \
551 (get_elf_backend_data (abfd)->s->sizeof_dyn)
552
553 /* The size of a GOT entry. */
554 #define MIPS_ELF_GOT_SIZE(abfd) \
555 (get_elf_backend_data (abfd)->s->arch_size / 8)
556
557 /* The size of a symbol-table entry. */
558 #define MIPS_ELF_SYM_SIZE(abfd) \
559 (get_elf_backend_data (abfd)->s->sizeof_sym)
560
561 /* The default alignment for sections, as a power of two. */
562 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
563 (get_elf_backend_data (abfd)->s->log_file_align)
564
565 /* Get word-sized data. */
566 #define MIPS_ELF_GET_WORD(abfd, ptr) \
567 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
568
569 /* Put out word-sized data. */
570 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
571 (ABI_64_P (abfd) \
572 ? bfd_put_64 (abfd, val, ptr) \
573 : bfd_put_32 (abfd, val, ptr))
574
575 /* Add a dynamic symbol table-entry. */
576 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
577 _bfd_elf_add_dynamic_entry (info, tag, val)
578
579 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
580 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
581
582 /* Determine whether the internal relocation of index REL_IDX is REL
583 (zero) or RELA (non-zero). The assumption is that, if there are
584 two relocation sections for this section, one of them is REL and
585 the other is RELA. If the index of the relocation we're testing is
586 in range for the first relocation section, check that the external
587 relocation size is that for RELA. It is also assumed that, if
588 rel_idx is not in range for the first section, and this first
589 section contains REL relocs, then the relocation is in the second
590 section, that is RELA. */
591 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
592 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
593 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
594 > (bfd_vma)(rel_idx)) \
595 == (elf_section_data (sec)->rel_hdr.sh_entsize \
596 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
597 : sizeof (Elf32_External_Rela))))
598
599 /* The name of the dynamic relocation section. */
600 #define MIPS_ELF_REL_DYN_NAME(INFO) \
601 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
602
603 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
604 from smaller values. Start with zero, widen, *then* decrement. */
605 #define MINUS_ONE (((bfd_vma)0) - 1)
606 #define MINUS_TWO (((bfd_vma)0) - 2)
607
608 /* The number of local .got entries we reserve. */
609 #define MIPS_RESERVED_GOTNO(INFO) \
610 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
611
612 /* The offset of $gp from the beginning of the .got section. */
613 #define ELF_MIPS_GP_OFFSET(INFO) \
614 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
615
616 /* The maximum size of the GOT for it to be addressable using 16-bit
617 offsets from $gp. */
618 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
619
620 /* Instructions which appear in a stub. */
621 #define STUB_LW(abfd) \
622 ((ABI_64_P (abfd) \
623 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
624 : 0x8f998010)) /* lw t9,0x8010(gp) */
625 #define STUB_MOVE(abfd) \
626 ((ABI_64_P (abfd) \
627 ? 0x03e0782d /* daddu t7,ra */ \
628 : 0x03e07821)) /* addu t7,ra */
629 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
630 #define STUB_LI16(abfd) \
631 ((ABI_64_P (abfd) \
632 ? 0x64180000 /* daddiu t8,zero,0 */ \
633 : 0x24180000)) /* addiu t8,zero,0 */
634 #define MIPS_FUNCTION_STUB_SIZE (16)
635
636 /* The name of the dynamic interpreter. This is put in the .interp
637 section. */
638
639 #define ELF_DYNAMIC_INTERPRETER(abfd) \
640 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
641 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
642 : "/usr/lib/libc.so.1")
643
644 #ifdef BFD64
645 #define MNAME(bfd,pre,pos) \
646 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
647 #define ELF_R_SYM(bfd, i) \
648 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
649 #define ELF_R_TYPE(bfd, i) \
650 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
651 #define ELF_R_INFO(bfd, s, t) \
652 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
653 #else
654 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
655 #define ELF_R_SYM(bfd, i) \
656 (ELF32_R_SYM (i))
657 #define ELF_R_TYPE(bfd, i) \
658 (ELF32_R_TYPE (i))
659 #define ELF_R_INFO(bfd, s, t) \
660 (ELF32_R_INFO (s, t))
661 #endif
662 \f
663 /* The mips16 compiler uses a couple of special sections to handle
664 floating point arguments.
665
666 Section names that look like .mips16.fn.FNNAME contain stubs that
667 copy floating point arguments from the fp regs to the gp regs and
668 then jump to FNNAME. If any 32 bit function calls FNNAME, the
669 call should be redirected to the stub instead. If no 32 bit
670 function calls FNNAME, the stub should be discarded. We need to
671 consider any reference to the function, not just a call, because
672 if the address of the function is taken we will need the stub,
673 since the address might be passed to a 32 bit function.
674
675 Section names that look like .mips16.call.FNNAME contain stubs
676 that copy floating point arguments from the gp regs to the fp
677 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
678 then any 16 bit function that calls FNNAME should be redirected
679 to the stub instead. If FNNAME is not a 32 bit function, the
680 stub should be discarded.
681
682 .mips16.call.fp.FNNAME sections are similar, but contain stubs
683 which call FNNAME and then copy the return value from the fp regs
684 to the gp regs. These stubs store the return value in $18 while
685 calling FNNAME; any function which might call one of these stubs
686 must arrange to save $18 around the call. (This case is not
687 needed for 32 bit functions that call 16 bit functions, because
688 16 bit functions always return floating point values in both
689 $f0/$f1 and $2/$3.)
690
691 Note that in all cases FNNAME might be defined statically.
692 Therefore, FNNAME is not used literally. Instead, the relocation
693 information will indicate which symbol the section is for.
694
695 We record any stubs that we find in the symbol table. */
696
697 #define FN_STUB ".mips16.fn."
698 #define CALL_STUB ".mips16.call."
699 #define CALL_FP_STUB ".mips16.call.fp."
700 \f
701 /* The format of the first PLT entry in a VxWorks executable. */
702 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
703 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
704 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
705 0x8f390008, /* lw t9, 8(t9) */
706 0x00000000, /* nop */
707 0x03200008, /* jr t9 */
708 0x00000000 /* nop */
709 };
710
711 /* The format of subsequent PLT entries. */
712 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
713 0x10000000, /* b .PLT_resolver */
714 0x24180000, /* li t8, <pltindex> */
715 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
716 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
717 0x8f390000, /* lw t9, 0(t9) */
718 0x00000000, /* nop */
719 0x03200008, /* jr t9 */
720 0x00000000 /* nop */
721 };
722
723 /* The format of the first PLT entry in a VxWorks shared object. */
724 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
725 0x8f990008, /* lw t9, 8(gp) */
726 0x00000000, /* nop */
727 0x03200008, /* jr t9 */
728 0x00000000, /* nop */
729 0x00000000, /* nop */
730 0x00000000 /* nop */
731 };
732
733 /* The format of subsequent PLT entries. */
734 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
735 0x10000000, /* b .PLT_resolver */
736 0x24180000 /* li t8, <pltindex> */
737 };
738 \f
739 /* Look up an entry in a MIPS ELF linker hash table. */
740
741 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
742 ((struct mips_elf_link_hash_entry *) \
743 elf_link_hash_lookup (&(table)->root, (string), (create), \
744 (copy), (follow)))
745
746 /* Traverse a MIPS ELF linker hash table. */
747
748 #define mips_elf_link_hash_traverse(table, func, info) \
749 (elf_link_hash_traverse \
750 (&(table)->root, \
751 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
752 (info)))
753
754 /* Get the MIPS ELF linker hash table from a link_info structure. */
755
756 #define mips_elf_hash_table(p) \
757 ((struct mips_elf_link_hash_table *) ((p)->hash))
758
759 /* Find the base offsets for thread-local storage in this object,
760 for GD/LD and IE/LE respectively. */
761
762 #define TP_OFFSET 0x7000
763 #define DTP_OFFSET 0x8000
764
765 static bfd_vma
766 dtprel_base (struct bfd_link_info *info)
767 {
768 /* If tls_sec is NULL, we should have signalled an error already. */
769 if (elf_hash_table (info)->tls_sec == NULL)
770 return 0;
771 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
772 }
773
774 static bfd_vma
775 tprel_base (struct bfd_link_info *info)
776 {
777 /* If tls_sec is NULL, we should have signalled an error already. */
778 if (elf_hash_table (info)->tls_sec == NULL)
779 return 0;
780 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
781 }
782
783 /* Create an entry in a MIPS ELF linker hash table. */
784
785 static struct bfd_hash_entry *
786 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
787 struct bfd_hash_table *table, const char *string)
788 {
789 struct mips_elf_link_hash_entry *ret =
790 (struct mips_elf_link_hash_entry *) entry;
791
792 /* Allocate the structure if it has not already been allocated by a
793 subclass. */
794 if (ret == NULL)
795 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
796 if (ret == NULL)
797 return (struct bfd_hash_entry *) ret;
798
799 /* Call the allocation method of the superclass. */
800 ret = ((struct mips_elf_link_hash_entry *)
801 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
802 table, string));
803 if (ret != NULL)
804 {
805 /* Set local fields. */
806 memset (&ret->esym, 0, sizeof (EXTR));
807 /* We use -2 as a marker to indicate that the information has
808 not been set. -1 means there is no associated ifd. */
809 ret->esym.ifd = -2;
810 ret->possibly_dynamic_relocs = 0;
811 ret->readonly_reloc = FALSE;
812 ret->no_fn_stub = FALSE;
813 ret->fn_stub = NULL;
814 ret->need_fn_stub = FALSE;
815 ret->call_stub = NULL;
816 ret->call_fp_stub = NULL;
817 ret->forced_local = FALSE;
818 ret->is_branch_target = FALSE;
819 ret->is_relocation_target = FALSE;
820 ret->tls_type = GOT_NORMAL;
821 }
822
823 return (struct bfd_hash_entry *) ret;
824 }
825
826 bfd_boolean
827 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
828 {
829 if (!sec->used_by_bfd)
830 {
831 struct _mips_elf_section_data *sdata;
832 bfd_size_type amt = sizeof (*sdata);
833
834 sdata = bfd_zalloc (abfd, amt);
835 if (sdata == NULL)
836 return FALSE;
837 sec->used_by_bfd = sdata;
838 }
839
840 return _bfd_elf_new_section_hook (abfd, sec);
841 }
842 \f
843 /* Read ECOFF debugging information from a .mdebug section into a
844 ecoff_debug_info structure. */
845
846 bfd_boolean
847 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
848 struct ecoff_debug_info *debug)
849 {
850 HDRR *symhdr;
851 const struct ecoff_debug_swap *swap;
852 char *ext_hdr;
853
854 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
855 memset (debug, 0, sizeof (*debug));
856
857 ext_hdr = bfd_malloc (swap->external_hdr_size);
858 if (ext_hdr == NULL && swap->external_hdr_size != 0)
859 goto error_return;
860
861 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
862 swap->external_hdr_size))
863 goto error_return;
864
865 symhdr = &debug->symbolic_header;
866 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
867
868 /* The symbolic header contains absolute file offsets and sizes to
869 read. */
870 #define READ(ptr, offset, count, size, type) \
871 if (symhdr->count == 0) \
872 debug->ptr = NULL; \
873 else \
874 { \
875 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
876 debug->ptr = bfd_malloc (amt); \
877 if (debug->ptr == NULL) \
878 goto error_return; \
879 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
880 || bfd_bread (debug->ptr, amt, abfd) != amt) \
881 goto error_return; \
882 }
883
884 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
885 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
886 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
887 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
888 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
889 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
890 union aux_ext *);
891 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
892 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
893 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
894 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
895 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
896 #undef READ
897
898 debug->fdr = NULL;
899
900 return TRUE;
901
902 error_return:
903 if (ext_hdr != NULL)
904 free (ext_hdr);
905 if (debug->line != NULL)
906 free (debug->line);
907 if (debug->external_dnr != NULL)
908 free (debug->external_dnr);
909 if (debug->external_pdr != NULL)
910 free (debug->external_pdr);
911 if (debug->external_sym != NULL)
912 free (debug->external_sym);
913 if (debug->external_opt != NULL)
914 free (debug->external_opt);
915 if (debug->external_aux != NULL)
916 free (debug->external_aux);
917 if (debug->ss != NULL)
918 free (debug->ss);
919 if (debug->ssext != NULL)
920 free (debug->ssext);
921 if (debug->external_fdr != NULL)
922 free (debug->external_fdr);
923 if (debug->external_rfd != NULL)
924 free (debug->external_rfd);
925 if (debug->external_ext != NULL)
926 free (debug->external_ext);
927 return FALSE;
928 }
929 \f
930 /* Swap RPDR (runtime procedure table entry) for output. */
931
932 static void
933 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
934 {
935 H_PUT_S32 (abfd, in->adr, ex->p_adr);
936 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
937 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
938 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
939 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
940 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
941
942 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
943 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
944
945 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
946 }
947
948 /* Create a runtime procedure table from the .mdebug section. */
949
950 static bfd_boolean
951 mips_elf_create_procedure_table (void *handle, bfd *abfd,
952 struct bfd_link_info *info, asection *s,
953 struct ecoff_debug_info *debug)
954 {
955 const struct ecoff_debug_swap *swap;
956 HDRR *hdr = &debug->symbolic_header;
957 RPDR *rpdr, *rp;
958 struct rpdr_ext *erp;
959 void *rtproc;
960 struct pdr_ext *epdr;
961 struct sym_ext *esym;
962 char *ss, **sv;
963 char *str;
964 bfd_size_type size;
965 bfd_size_type count;
966 unsigned long sindex;
967 unsigned long i;
968 PDR pdr;
969 SYMR sym;
970 const char *no_name_func = _("static procedure (no name)");
971
972 epdr = NULL;
973 rpdr = NULL;
974 esym = NULL;
975 ss = NULL;
976 sv = NULL;
977
978 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
979
980 sindex = strlen (no_name_func) + 1;
981 count = hdr->ipdMax;
982 if (count > 0)
983 {
984 size = swap->external_pdr_size;
985
986 epdr = bfd_malloc (size * count);
987 if (epdr == NULL)
988 goto error_return;
989
990 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
991 goto error_return;
992
993 size = sizeof (RPDR);
994 rp = rpdr = bfd_malloc (size * count);
995 if (rpdr == NULL)
996 goto error_return;
997
998 size = sizeof (char *);
999 sv = bfd_malloc (size * count);
1000 if (sv == NULL)
1001 goto error_return;
1002
1003 count = hdr->isymMax;
1004 size = swap->external_sym_size;
1005 esym = bfd_malloc (size * count);
1006 if (esym == NULL)
1007 goto error_return;
1008
1009 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1010 goto error_return;
1011
1012 count = hdr->issMax;
1013 ss = bfd_malloc (count);
1014 if (ss == NULL)
1015 goto error_return;
1016 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1017 goto error_return;
1018
1019 count = hdr->ipdMax;
1020 for (i = 0; i < (unsigned long) count; i++, rp++)
1021 {
1022 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1023 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1024 rp->adr = sym.value;
1025 rp->regmask = pdr.regmask;
1026 rp->regoffset = pdr.regoffset;
1027 rp->fregmask = pdr.fregmask;
1028 rp->fregoffset = pdr.fregoffset;
1029 rp->frameoffset = pdr.frameoffset;
1030 rp->framereg = pdr.framereg;
1031 rp->pcreg = pdr.pcreg;
1032 rp->irpss = sindex;
1033 sv[i] = ss + sym.iss;
1034 sindex += strlen (sv[i]) + 1;
1035 }
1036 }
1037
1038 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1039 size = BFD_ALIGN (size, 16);
1040 rtproc = bfd_alloc (abfd, size);
1041 if (rtproc == NULL)
1042 {
1043 mips_elf_hash_table (info)->procedure_count = 0;
1044 goto error_return;
1045 }
1046
1047 mips_elf_hash_table (info)->procedure_count = count + 2;
1048
1049 erp = rtproc;
1050 memset (erp, 0, sizeof (struct rpdr_ext));
1051 erp++;
1052 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1053 strcpy (str, no_name_func);
1054 str += strlen (no_name_func) + 1;
1055 for (i = 0; i < count; i++)
1056 {
1057 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1058 strcpy (str, sv[i]);
1059 str += strlen (sv[i]) + 1;
1060 }
1061 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1062
1063 /* Set the size and contents of .rtproc section. */
1064 s->size = size;
1065 s->contents = rtproc;
1066
1067 /* Skip this section later on (I don't think this currently
1068 matters, but someday it might). */
1069 s->map_head.link_order = NULL;
1070
1071 if (epdr != NULL)
1072 free (epdr);
1073 if (rpdr != NULL)
1074 free (rpdr);
1075 if (esym != NULL)
1076 free (esym);
1077 if (ss != NULL)
1078 free (ss);
1079 if (sv != NULL)
1080 free (sv);
1081
1082 return TRUE;
1083
1084 error_return:
1085 if (epdr != NULL)
1086 free (epdr);
1087 if (rpdr != NULL)
1088 free (rpdr);
1089 if (esym != NULL)
1090 free (esym);
1091 if (ss != NULL)
1092 free (ss);
1093 if (sv != NULL)
1094 free (sv);
1095 return FALSE;
1096 }
1097
1098 /* Check the mips16 stubs for a particular symbol, and see if we can
1099 discard them. */
1100
1101 static bfd_boolean
1102 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1103 void *data ATTRIBUTE_UNUSED)
1104 {
1105 if (h->root.root.type == bfd_link_hash_warning)
1106 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1107
1108 if (h->fn_stub != NULL
1109 && ! h->need_fn_stub)
1110 {
1111 /* We don't need the fn_stub; the only references to this symbol
1112 are 16 bit calls. Clobber the size to 0 to prevent it from
1113 being included in the link. */
1114 h->fn_stub->size = 0;
1115 h->fn_stub->flags &= ~SEC_RELOC;
1116 h->fn_stub->reloc_count = 0;
1117 h->fn_stub->flags |= SEC_EXCLUDE;
1118 }
1119
1120 if (h->call_stub != NULL
1121 && h->root.other == STO_MIPS16)
1122 {
1123 /* We don't need the call_stub; this is a 16 bit function, so
1124 calls from other 16 bit functions are OK. Clobber the size
1125 to 0 to prevent it from being included in the link. */
1126 h->call_stub->size = 0;
1127 h->call_stub->flags &= ~SEC_RELOC;
1128 h->call_stub->reloc_count = 0;
1129 h->call_stub->flags |= SEC_EXCLUDE;
1130 }
1131
1132 if (h->call_fp_stub != NULL
1133 && h->root.other == STO_MIPS16)
1134 {
1135 /* We don't need the call_stub; this is a 16 bit function, so
1136 calls from other 16 bit functions are OK. Clobber the size
1137 to 0 to prevent it from being included in the link. */
1138 h->call_fp_stub->size = 0;
1139 h->call_fp_stub->flags &= ~SEC_RELOC;
1140 h->call_fp_stub->reloc_count = 0;
1141 h->call_fp_stub->flags |= SEC_EXCLUDE;
1142 }
1143
1144 return TRUE;
1145 }
1146 \f
1147 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1148 Most mips16 instructions are 16 bits, but these instructions
1149 are 32 bits.
1150
1151 The format of these instructions is:
1152
1153 +--------------+--------------------------------+
1154 | JALX | X| Imm 20:16 | Imm 25:21 |
1155 +--------------+--------------------------------+
1156 | Immediate 15:0 |
1157 +-----------------------------------------------+
1158
1159 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1160 Note that the immediate value in the first word is swapped.
1161
1162 When producing a relocatable object file, R_MIPS16_26 is
1163 handled mostly like R_MIPS_26. In particular, the addend is
1164 stored as a straight 26-bit value in a 32-bit instruction.
1165 (gas makes life simpler for itself by never adjusting a
1166 R_MIPS16_26 reloc to be against a section, so the addend is
1167 always zero). However, the 32 bit instruction is stored as 2
1168 16-bit values, rather than a single 32-bit value. In a
1169 big-endian file, the result is the same; in a little-endian
1170 file, the two 16-bit halves of the 32 bit value are swapped.
1171 This is so that a disassembler can recognize the jal
1172 instruction.
1173
1174 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1175 instruction stored as two 16-bit values. The addend A is the
1176 contents of the targ26 field. The calculation is the same as
1177 R_MIPS_26. When storing the calculated value, reorder the
1178 immediate value as shown above, and don't forget to store the
1179 value as two 16-bit values.
1180
1181 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1182 defined as
1183
1184 big-endian:
1185 +--------+----------------------+
1186 | | |
1187 | | targ26-16 |
1188 |31 26|25 0|
1189 +--------+----------------------+
1190
1191 little-endian:
1192 +----------+------+-------------+
1193 | | | |
1194 | sub1 | | sub2 |
1195 |0 9|10 15|16 31|
1196 +----------+--------------------+
1197 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1198 ((sub1 << 16) | sub2)).
1199
1200 When producing a relocatable object file, the calculation is
1201 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1202 When producing a fully linked file, the calculation is
1203 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1204 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1205
1206 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1207 mode. A typical instruction will have a format like this:
1208
1209 +--------------+--------------------------------+
1210 | EXTEND | Imm 10:5 | Imm 15:11 |
1211 +--------------+--------------------------------+
1212 | Major | rx | ry | Imm 4:0 |
1213 +--------------+--------------------------------+
1214
1215 EXTEND is the five bit value 11110. Major is the instruction
1216 opcode.
1217
1218 This is handled exactly like R_MIPS_GPREL16, except that the
1219 addend is retrieved and stored as shown in this diagram; that
1220 is, the Imm fields above replace the V-rel16 field.
1221
1222 All we need to do here is shuffle the bits appropriately. As
1223 above, the two 16-bit halves must be swapped on a
1224 little-endian system.
1225
1226 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1227 access data when neither GP-relative nor PC-relative addressing
1228 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1229 except that the addend is retrieved and stored as shown above
1230 for R_MIPS16_GPREL.
1231 */
1232 void
1233 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1234 bfd_boolean jal_shuffle, bfd_byte *data)
1235 {
1236 bfd_vma extend, insn, val;
1237
1238 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1239 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1240 return;
1241
1242 /* Pick up the mips16 extend instruction and the real instruction. */
1243 extend = bfd_get_16 (abfd, data);
1244 insn = bfd_get_16 (abfd, data + 2);
1245 if (r_type == R_MIPS16_26)
1246 {
1247 if (jal_shuffle)
1248 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1249 | ((extend & 0x1f) << 21) | insn;
1250 else
1251 val = extend << 16 | insn;
1252 }
1253 else
1254 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1255 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1256 bfd_put_32 (abfd, val, data);
1257 }
1258
1259 void
1260 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1261 bfd_boolean jal_shuffle, bfd_byte *data)
1262 {
1263 bfd_vma extend, insn, val;
1264
1265 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1266 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1267 return;
1268
1269 val = bfd_get_32 (abfd, data);
1270 if (r_type == R_MIPS16_26)
1271 {
1272 if (jal_shuffle)
1273 {
1274 insn = val & 0xffff;
1275 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1276 | ((val >> 21) & 0x1f);
1277 }
1278 else
1279 {
1280 insn = val & 0xffff;
1281 extend = val >> 16;
1282 }
1283 }
1284 else
1285 {
1286 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1287 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1288 }
1289 bfd_put_16 (abfd, insn, data + 2);
1290 bfd_put_16 (abfd, extend, data);
1291 }
1292
1293 bfd_reloc_status_type
1294 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1295 arelent *reloc_entry, asection *input_section,
1296 bfd_boolean relocatable, void *data, bfd_vma gp)
1297 {
1298 bfd_vma relocation;
1299 bfd_signed_vma val;
1300 bfd_reloc_status_type status;
1301
1302 if (bfd_is_com_section (symbol->section))
1303 relocation = 0;
1304 else
1305 relocation = symbol->value;
1306
1307 relocation += symbol->section->output_section->vma;
1308 relocation += symbol->section->output_offset;
1309
1310 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1311 return bfd_reloc_outofrange;
1312
1313 /* Set val to the offset into the section or symbol. */
1314 val = reloc_entry->addend;
1315
1316 _bfd_mips_elf_sign_extend (val, 16);
1317
1318 /* Adjust val for the final section location and GP value. If we
1319 are producing relocatable output, we don't want to do this for
1320 an external symbol. */
1321 if (! relocatable
1322 || (symbol->flags & BSF_SECTION_SYM) != 0)
1323 val += relocation - gp;
1324
1325 if (reloc_entry->howto->partial_inplace)
1326 {
1327 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1328 (bfd_byte *) data
1329 + reloc_entry->address);
1330 if (status != bfd_reloc_ok)
1331 return status;
1332 }
1333 else
1334 reloc_entry->addend = val;
1335
1336 if (relocatable)
1337 reloc_entry->address += input_section->output_offset;
1338
1339 return bfd_reloc_ok;
1340 }
1341
1342 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1343 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1344 that contains the relocation field and DATA points to the start of
1345 INPUT_SECTION. */
1346
1347 struct mips_hi16
1348 {
1349 struct mips_hi16 *next;
1350 bfd_byte *data;
1351 asection *input_section;
1352 arelent rel;
1353 };
1354
1355 /* FIXME: This should not be a static variable. */
1356
1357 static struct mips_hi16 *mips_hi16_list;
1358
1359 /* A howto special_function for REL *HI16 relocations. We can only
1360 calculate the correct value once we've seen the partnering
1361 *LO16 relocation, so just save the information for later.
1362
1363 The ABI requires that the *LO16 immediately follow the *HI16.
1364 However, as a GNU extension, we permit an arbitrary number of
1365 *HI16s to be associated with a single *LO16. This significantly
1366 simplies the relocation handling in gcc. */
1367
1368 bfd_reloc_status_type
1369 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1370 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1371 asection *input_section, bfd *output_bfd,
1372 char **error_message ATTRIBUTE_UNUSED)
1373 {
1374 struct mips_hi16 *n;
1375
1376 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1377 return bfd_reloc_outofrange;
1378
1379 n = bfd_malloc (sizeof *n);
1380 if (n == NULL)
1381 return bfd_reloc_outofrange;
1382
1383 n->next = mips_hi16_list;
1384 n->data = data;
1385 n->input_section = input_section;
1386 n->rel = *reloc_entry;
1387 mips_hi16_list = n;
1388
1389 if (output_bfd != NULL)
1390 reloc_entry->address += input_section->output_offset;
1391
1392 return bfd_reloc_ok;
1393 }
1394
1395 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1396 like any other 16-bit relocation when applied to global symbols, but is
1397 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1398
1399 bfd_reloc_status_type
1400 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1401 void *data, asection *input_section,
1402 bfd *output_bfd, char **error_message)
1403 {
1404 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1405 || bfd_is_und_section (bfd_get_section (symbol))
1406 || bfd_is_com_section (bfd_get_section (symbol)))
1407 /* The relocation is against a global symbol. */
1408 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1409 input_section, output_bfd,
1410 error_message);
1411
1412 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1413 input_section, output_bfd, error_message);
1414 }
1415
1416 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1417 is a straightforward 16 bit inplace relocation, but we must deal with
1418 any partnering high-part relocations as well. */
1419
1420 bfd_reloc_status_type
1421 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1422 void *data, asection *input_section,
1423 bfd *output_bfd, char **error_message)
1424 {
1425 bfd_vma vallo;
1426 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1427
1428 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1429 return bfd_reloc_outofrange;
1430
1431 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1432 location);
1433 vallo = bfd_get_32 (abfd, location);
1434 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1435 location);
1436
1437 while (mips_hi16_list != NULL)
1438 {
1439 bfd_reloc_status_type ret;
1440 struct mips_hi16 *hi;
1441
1442 hi = mips_hi16_list;
1443
1444 /* R_MIPS_GOT16 relocations are something of a special case. We
1445 want to install the addend in the same way as for a R_MIPS_HI16
1446 relocation (with a rightshift of 16). However, since GOT16
1447 relocations can also be used with global symbols, their howto
1448 has a rightshift of 0. */
1449 if (hi->rel.howto->type == R_MIPS_GOT16)
1450 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1451
1452 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1453 carry or borrow will induce a change of +1 or -1 in the high part. */
1454 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1455
1456 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1457 hi->input_section, output_bfd,
1458 error_message);
1459 if (ret != bfd_reloc_ok)
1460 return ret;
1461
1462 mips_hi16_list = hi->next;
1463 free (hi);
1464 }
1465
1466 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1467 input_section, output_bfd,
1468 error_message);
1469 }
1470
1471 /* A generic howto special_function. This calculates and installs the
1472 relocation itself, thus avoiding the oft-discussed problems in
1473 bfd_perform_relocation and bfd_install_relocation. */
1474
1475 bfd_reloc_status_type
1476 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1477 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1478 asection *input_section, bfd *output_bfd,
1479 char **error_message ATTRIBUTE_UNUSED)
1480 {
1481 bfd_signed_vma val;
1482 bfd_reloc_status_type status;
1483 bfd_boolean relocatable;
1484
1485 relocatable = (output_bfd != NULL);
1486
1487 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1488 return bfd_reloc_outofrange;
1489
1490 /* Build up the field adjustment in VAL. */
1491 val = 0;
1492 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1493 {
1494 /* Either we're calculating the final field value or we have a
1495 relocation against a section symbol. Add in the section's
1496 offset or address. */
1497 val += symbol->section->output_section->vma;
1498 val += symbol->section->output_offset;
1499 }
1500
1501 if (!relocatable)
1502 {
1503 /* We're calculating the final field value. Add in the symbol's value
1504 and, if pc-relative, subtract the address of the field itself. */
1505 val += symbol->value;
1506 if (reloc_entry->howto->pc_relative)
1507 {
1508 val -= input_section->output_section->vma;
1509 val -= input_section->output_offset;
1510 val -= reloc_entry->address;
1511 }
1512 }
1513
1514 /* VAL is now the final adjustment. If we're keeping this relocation
1515 in the output file, and if the relocation uses a separate addend,
1516 we just need to add VAL to that addend. Otherwise we need to add
1517 VAL to the relocation field itself. */
1518 if (relocatable && !reloc_entry->howto->partial_inplace)
1519 reloc_entry->addend += val;
1520 else
1521 {
1522 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1523
1524 /* Add in the separate addend, if any. */
1525 val += reloc_entry->addend;
1526
1527 /* Add VAL to the relocation field. */
1528 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1529 location);
1530 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1531 location);
1532 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1533 location);
1534
1535 if (status != bfd_reloc_ok)
1536 return status;
1537 }
1538
1539 if (relocatable)
1540 reloc_entry->address += input_section->output_offset;
1541
1542 return bfd_reloc_ok;
1543 }
1544 \f
1545 /* Swap an entry in a .gptab section. Note that these routines rely
1546 on the equivalence of the two elements of the union. */
1547
1548 static void
1549 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1550 Elf32_gptab *in)
1551 {
1552 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1553 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1554 }
1555
1556 static void
1557 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1558 Elf32_External_gptab *ex)
1559 {
1560 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1561 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1562 }
1563
1564 static void
1565 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1566 Elf32_External_compact_rel *ex)
1567 {
1568 H_PUT_32 (abfd, in->id1, ex->id1);
1569 H_PUT_32 (abfd, in->num, ex->num);
1570 H_PUT_32 (abfd, in->id2, ex->id2);
1571 H_PUT_32 (abfd, in->offset, ex->offset);
1572 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1573 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1574 }
1575
1576 static void
1577 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1578 Elf32_External_crinfo *ex)
1579 {
1580 unsigned long l;
1581
1582 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1583 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1584 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1585 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1586 H_PUT_32 (abfd, l, ex->info);
1587 H_PUT_32 (abfd, in->konst, ex->konst);
1588 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1589 }
1590 \f
1591 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1592 routines swap this structure in and out. They are used outside of
1593 BFD, so they are globally visible. */
1594
1595 void
1596 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1597 Elf32_RegInfo *in)
1598 {
1599 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1600 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1601 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1602 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1603 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1604 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1605 }
1606
1607 void
1608 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1609 Elf32_External_RegInfo *ex)
1610 {
1611 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1612 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1613 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1614 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1615 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1616 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1617 }
1618
1619 /* In the 64 bit ABI, the .MIPS.options section holds register
1620 information in an Elf64_Reginfo structure. These routines swap
1621 them in and out. They are globally visible because they are used
1622 outside of BFD. These routines are here so that gas can call them
1623 without worrying about whether the 64 bit ABI has been included. */
1624
1625 void
1626 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1627 Elf64_Internal_RegInfo *in)
1628 {
1629 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1630 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1631 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1632 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1633 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1634 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1635 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1636 }
1637
1638 void
1639 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1640 Elf64_External_RegInfo *ex)
1641 {
1642 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1643 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1644 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1645 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1646 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1647 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1648 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1649 }
1650
1651 /* Swap in an options header. */
1652
1653 void
1654 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1655 Elf_Internal_Options *in)
1656 {
1657 in->kind = H_GET_8 (abfd, ex->kind);
1658 in->size = H_GET_8 (abfd, ex->size);
1659 in->section = H_GET_16 (abfd, ex->section);
1660 in->info = H_GET_32 (abfd, ex->info);
1661 }
1662
1663 /* Swap out an options header. */
1664
1665 void
1666 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1667 Elf_External_Options *ex)
1668 {
1669 H_PUT_8 (abfd, in->kind, ex->kind);
1670 H_PUT_8 (abfd, in->size, ex->size);
1671 H_PUT_16 (abfd, in->section, ex->section);
1672 H_PUT_32 (abfd, in->info, ex->info);
1673 }
1674 \f
1675 /* This function is called via qsort() to sort the dynamic relocation
1676 entries by increasing r_symndx value. */
1677
1678 static int
1679 sort_dynamic_relocs (const void *arg1, const void *arg2)
1680 {
1681 Elf_Internal_Rela int_reloc1;
1682 Elf_Internal_Rela int_reloc2;
1683
1684 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1685 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1686
1687 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1688 }
1689
1690 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1691
1692 static int
1693 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1694 const void *arg2 ATTRIBUTE_UNUSED)
1695 {
1696 #ifdef BFD64
1697 Elf_Internal_Rela int_reloc1[3];
1698 Elf_Internal_Rela int_reloc2[3];
1699
1700 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1701 (reldyn_sorting_bfd, arg1, int_reloc1);
1702 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1703 (reldyn_sorting_bfd, arg2, int_reloc2);
1704
1705 return (ELF64_R_SYM (int_reloc1[0].r_info)
1706 - ELF64_R_SYM (int_reloc2[0].r_info));
1707 #else
1708 abort ();
1709 #endif
1710 }
1711
1712
1713 /* This routine is used to write out ECOFF debugging external symbol
1714 information. It is called via mips_elf_link_hash_traverse. The
1715 ECOFF external symbol information must match the ELF external
1716 symbol information. Unfortunately, at this point we don't know
1717 whether a symbol is required by reloc information, so the two
1718 tables may wind up being different. We must sort out the external
1719 symbol information before we can set the final size of the .mdebug
1720 section, and we must set the size of the .mdebug section before we
1721 can relocate any sections, and we can't know which symbols are
1722 required by relocation until we relocate the sections.
1723 Fortunately, it is relatively unlikely that any symbol will be
1724 stripped but required by a reloc. In particular, it can not happen
1725 when generating a final executable. */
1726
1727 static bfd_boolean
1728 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1729 {
1730 struct extsym_info *einfo = data;
1731 bfd_boolean strip;
1732 asection *sec, *output_section;
1733
1734 if (h->root.root.type == bfd_link_hash_warning)
1735 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1736
1737 if (h->root.indx == -2)
1738 strip = FALSE;
1739 else if ((h->root.def_dynamic
1740 || h->root.ref_dynamic
1741 || h->root.type == bfd_link_hash_new)
1742 && !h->root.def_regular
1743 && !h->root.ref_regular)
1744 strip = TRUE;
1745 else if (einfo->info->strip == strip_all
1746 || (einfo->info->strip == strip_some
1747 && bfd_hash_lookup (einfo->info->keep_hash,
1748 h->root.root.root.string,
1749 FALSE, FALSE) == NULL))
1750 strip = TRUE;
1751 else
1752 strip = FALSE;
1753
1754 if (strip)
1755 return TRUE;
1756
1757 if (h->esym.ifd == -2)
1758 {
1759 h->esym.jmptbl = 0;
1760 h->esym.cobol_main = 0;
1761 h->esym.weakext = 0;
1762 h->esym.reserved = 0;
1763 h->esym.ifd = ifdNil;
1764 h->esym.asym.value = 0;
1765 h->esym.asym.st = stGlobal;
1766
1767 if (h->root.root.type == bfd_link_hash_undefined
1768 || h->root.root.type == bfd_link_hash_undefweak)
1769 {
1770 const char *name;
1771
1772 /* Use undefined class. Also, set class and type for some
1773 special symbols. */
1774 name = h->root.root.root.string;
1775 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1776 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1777 {
1778 h->esym.asym.sc = scData;
1779 h->esym.asym.st = stLabel;
1780 h->esym.asym.value = 0;
1781 }
1782 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1783 {
1784 h->esym.asym.sc = scAbs;
1785 h->esym.asym.st = stLabel;
1786 h->esym.asym.value =
1787 mips_elf_hash_table (einfo->info)->procedure_count;
1788 }
1789 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1790 {
1791 h->esym.asym.sc = scAbs;
1792 h->esym.asym.st = stLabel;
1793 h->esym.asym.value = elf_gp (einfo->abfd);
1794 }
1795 else
1796 h->esym.asym.sc = scUndefined;
1797 }
1798 else if (h->root.root.type != bfd_link_hash_defined
1799 && h->root.root.type != bfd_link_hash_defweak)
1800 h->esym.asym.sc = scAbs;
1801 else
1802 {
1803 const char *name;
1804
1805 sec = h->root.root.u.def.section;
1806 output_section = sec->output_section;
1807
1808 /* When making a shared library and symbol h is the one from
1809 the another shared library, OUTPUT_SECTION may be null. */
1810 if (output_section == NULL)
1811 h->esym.asym.sc = scUndefined;
1812 else
1813 {
1814 name = bfd_section_name (output_section->owner, output_section);
1815
1816 if (strcmp (name, ".text") == 0)
1817 h->esym.asym.sc = scText;
1818 else if (strcmp (name, ".data") == 0)
1819 h->esym.asym.sc = scData;
1820 else if (strcmp (name, ".sdata") == 0)
1821 h->esym.asym.sc = scSData;
1822 else if (strcmp (name, ".rodata") == 0
1823 || strcmp (name, ".rdata") == 0)
1824 h->esym.asym.sc = scRData;
1825 else if (strcmp (name, ".bss") == 0)
1826 h->esym.asym.sc = scBss;
1827 else if (strcmp (name, ".sbss") == 0)
1828 h->esym.asym.sc = scSBss;
1829 else if (strcmp (name, ".init") == 0)
1830 h->esym.asym.sc = scInit;
1831 else if (strcmp (name, ".fini") == 0)
1832 h->esym.asym.sc = scFini;
1833 else
1834 h->esym.asym.sc = scAbs;
1835 }
1836 }
1837
1838 h->esym.asym.reserved = 0;
1839 h->esym.asym.index = indexNil;
1840 }
1841
1842 if (h->root.root.type == bfd_link_hash_common)
1843 h->esym.asym.value = h->root.root.u.c.size;
1844 else if (h->root.root.type == bfd_link_hash_defined
1845 || h->root.root.type == bfd_link_hash_defweak)
1846 {
1847 if (h->esym.asym.sc == scCommon)
1848 h->esym.asym.sc = scBss;
1849 else if (h->esym.asym.sc == scSCommon)
1850 h->esym.asym.sc = scSBss;
1851
1852 sec = h->root.root.u.def.section;
1853 output_section = sec->output_section;
1854 if (output_section != NULL)
1855 h->esym.asym.value = (h->root.root.u.def.value
1856 + sec->output_offset
1857 + output_section->vma);
1858 else
1859 h->esym.asym.value = 0;
1860 }
1861 else if (h->root.needs_plt)
1862 {
1863 struct mips_elf_link_hash_entry *hd = h;
1864 bfd_boolean no_fn_stub = h->no_fn_stub;
1865
1866 while (hd->root.root.type == bfd_link_hash_indirect)
1867 {
1868 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1869 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1870 }
1871
1872 if (!no_fn_stub)
1873 {
1874 /* Set type and value for a symbol with a function stub. */
1875 h->esym.asym.st = stProc;
1876 sec = hd->root.root.u.def.section;
1877 if (sec == NULL)
1878 h->esym.asym.value = 0;
1879 else
1880 {
1881 output_section = sec->output_section;
1882 if (output_section != NULL)
1883 h->esym.asym.value = (hd->root.plt.offset
1884 + sec->output_offset
1885 + output_section->vma);
1886 else
1887 h->esym.asym.value = 0;
1888 }
1889 }
1890 }
1891
1892 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1893 h->root.root.root.string,
1894 &h->esym))
1895 {
1896 einfo->failed = TRUE;
1897 return FALSE;
1898 }
1899
1900 return TRUE;
1901 }
1902
1903 /* A comparison routine used to sort .gptab entries. */
1904
1905 static int
1906 gptab_compare (const void *p1, const void *p2)
1907 {
1908 const Elf32_gptab *a1 = p1;
1909 const Elf32_gptab *a2 = p2;
1910
1911 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1912 }
1913 \f
1914 /* Functions to manage the got entry hash table. */
1915
1916 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1917 hash number. */
1918
1919 static INLINE hashval_t
1920 mips_elf_hash_bfd_vma (bfd_vma addr)
1921 {
1922 #ifdef BFD64
1923 return addr + (addr >> 32);
1924 #else
1925 return addr;
1926 #endif
1927 }
1928
1929 /* got_entries only match if they're identical, except for gotidx, so
1930 use all fields to compute the hash, and compare the appropriate
1931 union members. */
1932
1933 static hashval_t
1934 mips_elf_got_entry_hash (const void *entry_)
1935 {
1936 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1937
1938 return entry->symndx
1939 + ((entry->tls_type & GOT_TLS_LDM) << 17)
1940 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1941 : entry->abfd->id
1942 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1943 : entry->d.h->root.root.root.hash));
1944 }
1945
1946 static int
1947 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1948 {
1949 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1950 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1951
1952 /* An LDM entry can only match another LDM entry. */
1953 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1954 return 0;
1955
1956 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1957 && (! e1->abfd ? e1->d.address == e2->d.address
1958 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1959 : e1->d.h == e2->d.h);
1960 }
1961
1962 /* multi_got_entries are still a match in the case of global objects,
1963 even if the input bfd in which they're referenced differs, so the
1964 hash computation and compare functions are adjusted
1965 accordingly. */
1966
1967 static hashval_t
1968 mips_elf_multi_got_entry_hash (const void *entry_)
1969 {
1970 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1971
1972 return entry->symndx
1973 + (! entry->abfd
1974 ? mips_elf_hash_bfd_vma (entry->d.address)
1975 : entry->symndx >= 0
1976 ? ((entry->tls_type & GOT_TLS_LDM)
1977 ? (GOT_TLS_LDM << 17)
1978 : (entry->abfd->id
1979 + mips_elf_hash_bfd_vma (entry->d.addend)))
1980 : entry->d.h->root.root.root.hash);
1981 }
1982
1983 static int
1984 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
1985 {
1986 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1987 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1988
1989 /* Any two LDM entries match. */
1990 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
1991 return 1;
1992
1993 /* Nothing else matches an LDM entry. */
1994 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1995 return 0;
1996
1997 return e1->symndx == e2->symndx
1998 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1999 : e1->abfd == NULL || e2->abfd == NULL
2000 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2001 : e1->d.h == e2->d.h);
2002 }
2003 \f
2004 /* Return the dynamic relocation section. If it doesn't exist, try to
2005 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2006 if creation fails. */
2007
2008 static asection *
2009 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2010 {
2011 const char *dname;
2012 asection *sreloc;
2013 bfd *dynobj;
2014
2015 dname = MIPS_ELF_REL_DYN_NAME (info);
2016 dynobj = elf_hash_table (info)->dynobj;
2017 sreloc = bfd_get_section_by_name (dynobj, dname);
2018 if (sreloc == NULL && create_p)
2019 {
2020 sreloc = bfd_make_section_with_flags (dynobj, dname,
2021 (SEC_ALLOC
2022 | SEC_LOAD
2023 | SEC_HAS_CONTENTS
2024 | SEC_IN_MEMORY
2025 | SEC_LINKER_CREATED
2026 | SEC_READONLY));
2027 if (sreloc == NULL
2028 || ! bfd_set_section_alignment (dynobj, sreloc,
2029 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2030 return NULL;
2031 }
2032 return sreloc;
2033 }
2034
2035 /* Returns the GOT section for ABFD. */
2036
2037 static asection *
2038 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
2039 {
2040 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2041 if (sgot == NULL
2042 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2043 return NULL;
2044 return sgot;
2045 }
2046
2047 /* Returns the GOT information associated with the link indicated by
2048 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2049 section. */
2050
2051 static struct mips_got_info *
2052 mips_elf_got_info (bfd *abfd, asection **sgotp)
2053 {
2054 asection *sgot;
2055 struct mips_got_info *g;
2056
2057 sgot = mips_elf_got_section (abfd, TRUE);
2058 BFD_ASSERT (sgot != NULL);
2059 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2060 g = mips_elf_section_data (sgot)->u.got_info;
2061 BFD_ASSERT (g != NULL);
2062
2063 if (sgotp)
2064 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2065
2066 return g;
2067 }
2068
2069 /* Count the number of relocations needed for a TLS GOT entry, with
2070 access types from TLS_TYPE, and symbol H (or a local symbol if H
2071 is NULL). */
2072
2073 static int
2074 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2075 struct elf_link_hash_entry *h)
2076 {
2077 int indx = 0;
2078 int ret = 0;
2079 bfd_boolean need_relocs = FALSE;
2080 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2081
2082 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2083 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2084 indx = h->dynindx;
2085
2086 if ((info->shared || indx != 0)
2087 && (h == NULL
2088 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2089 || h->root.type != bfd_link_hash_undefweak))
2090 need_relocs = TRUE;
2091
2092 if (!need_relocs)
2093 return FALSE;
2094
2095 if (tls_type & GOT_TLS_GD)
2096 {
2097 ret++;
2098 if (indx != 0)
2099 ret++;
2100 }
2101
2102 if (tls_type & GOT_TLS_IE)
2103 ret++;
2104
2105 if ((tls_type & GOT_TLS_LDM) && info->shared)
2106 ret++;
2107
2108 return ret;
2109 }
2110
2111 /* Count the number of TLS relocations required for the GOT entry in
2112 ARG1, if it describes a local symbol. */
2113
2114 static int
2115 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2116 {
2117 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2118 struct mips_elf_count_tls_arg *arg = arg2;
2119
2120 if (entry->abfd != NULL && entry->symndx != -1)
2121 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2122
2123 return 1;
2124 }
2125
2126 /* Count the number of TLS GOT entries required for the global (or
2127 forced-local) symbol in ARG1. */
2128
2129 static int
2130 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2131 {
2132 struct mips_elf_link_hash_entry *hm
2133 = (struct mips_elf_link_hash_entry *) arg1;
2134 struct mips_elf_count_tls_arg *arg = arg2;
2135
2136 if (hm->tls_type & GOT_TLS_GD)
2137 arg->needed += 2;
2138 if (hm->tls_type & GOT_TLS_IE)
2139 arg->needed += 1;
2140
2141 return 1;
2142 }
2143
2144 /* Count the number of TLS relocations required for the global (or
2145 forced-local) symbol in ARG1. */
2146
2147 static int
2148 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2149 {
2150 struct mips_elf_link_hash_entry *hm
2151 = (struct mips_elf_link_hash_entry *) arg1;
2152 struct mips_elf_count_tls_arg *arg = arg2;
2153
2154 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2155
2156 return 1;
2157 }
2158
2159 /* Output a simple dynamic relocation into SRELOC. */
2160
2161 static void
2162 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2163 asection *sreloc,
2164 unsigned long indx,
2165 int r_type,
2166 bfd_vma offset)
2167 {
2168 Elf_Internal_Rela rel[3];
2169
2170 memset (rel, 0, sizeof (rel));
2171
2172 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2173 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2174
2175 if (ABI_64_P (output_bfd))
2176 {
2177 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2178 (output_bfd, &rel[0],
2179 (sreloc->contents
2180 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2181 }
2182 else
2183 bfd_elf32_swap_reloc_out
2184 (output_bfd, &rel[0],
2185 (sreloc->contents
2186 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2187 ++sreloc->reloc_count;
2188 }
2189
2190 /* Initialize a set of TLS GOT entries for one symbol. */
2191
2192 static void
2193 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2194 unsigned char *tls_type_p,
2195 struct bfd_link_info *info,
2196 struct mips_elf_link_hash_entry *h,
2197 bfd_vma value)
2198 {
2199 int indx;
2200 asection *sreloc, *sgot;
2201 bfd_vma offset, offset2;
2202 bfd *dynobj;
2203 bfd_boolean need_relocs = FALSE;
2204
2205 dynobj = elf_hash_table (info)->dynobj;
2206 sgot = mips_elf_got_section (dynobj, FALSE);
2207
2208 indx = 0;
2209 if (h != NULL)
2210 {
2211 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2212
2213 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2214 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2215 indx = h->root.dynindx;
2216 }
2217
2218 if (*tls_type_p & GOT_TLS_DONE)
2219 return;
2220
2221 if ((info->shared || indx != 0)
2222 && (h == NULL
2223 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2224 || h->root.type != bfd_link_hash_undefweak))
2225 need_relocs = TRUE;
2226
2227 /* MINUS_ONE means the symbol is not defined in this object. It may not
2228 be defined at all; assume that the value doesn't matter in that
2229 case. Otherwise complain if we would use the value. */
2230 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2231 || h->root.root.type == bfd_link_hash_undefweak);
2232
2233 /* Emit necessary relocations. */
2234 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2235
2236 /* General Dynamic. */
2237 if (*tls_type_p & GOT_TLS_GD)
2238 {
2239 offset = got_offset;
2240 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2241
2242 if (need_relocs)
2243 {
2244 mips_elf_output_dynamic_relocation
2245 (abfd, sreloc, indx,
2246 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2247 sgot->output_offset + sgot->output_section->vma + offset);
2248
2249 if (indx)
2250 mips_elf_output_dynamic_relocation
2251 (abfd, sreloc, indx,
2252 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2253 sgot->output_offset + sgot->output_section->vma + offset2);
2254 else
2255 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2256 sgot->contents + offset2);
2257 }
2258 else
2259 {
2260 MIPS_ELF_PUT_WORD (abfd, 1,
2261 sgot->contents + offset);
2262 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2263 sgot->contents + offset2);
2264 }
2265
2266 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2267 }
2268
2269 /* Initial Exec model. */
2270 if (*tls_type_p & GOT_TLS_IE)
2271 {
2272 offset = got_offset;
2273
2274 if (need_relocs)
2275 {
2276 if (indx == 0)
2277 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2278 sgot->contents + offset);
2279 else
2280 MIPS_ELF_PUT_WORD (abfd, 0,
2281 sgot->contents + offset);
2282
2283 mips_elf_output_dynamic_relocation
2284 (abfd, sreloc, indx,
2285 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2286 sgot->output_offset + sgot->output_section->vma + offset);
2287 }
2288 else
2289 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2290 sgot->contents + offset);
2291 }
2292
2293 if (*tls_type_p & GOT_TLS_LDM)
2294 {
2295 /* The initial offset is zero, and the LD offsets will include the
2296 bias by DTP_OFFSET. */
2297 MIPS_ELF_PUT_WORD (abfd, 0,
2298 sgot->contents + got_offset
2299 + MIPS_ELF_GOT_SIZE (abfd));
2300
2301 if (!info->shared)
2302 MIPS_ELF_PUT_WORD (abfd, 1,
2303 sgot->contents + got_offset);
2304 else
2305 mips_elf_output_dynamic_relocation
2306 (abfd, sreloc, indx,
2307 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2308 sgot->output_offset + sgot->output_section->vma + got_offset);
2309 }
2310
2311 *tls_type_p |= GOT_TLS_DONE;
2312 }
2313
2314 /* Return the GOT index to use for a relocation of type R_TYPE against
2315 a symbol accessed using TLS_TYPE models. The GOT entries for this
2316 symbol in this GOT start at GOT_INDEX. This function initializes the
2317 GOT entries and corresponding relocations. */
2318
2319 static bfd_vma
2320 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2321 int r_type, struct bfd_link_info *info,
2322 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2323 {
2324 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2325 || r_type == R_MIPS_TLS_LDM);
2326
2327 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2328
2329 if (r_type == R_MIPS_TLS_GOTTPREL)
2330 {
2331 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2332 if (*tls_type & GOT_TLS_GD)
2333 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2334 else
2335 return got_index;
2336 }
2337
2338 if (r_type == R_MIPS_TLS_GD)
2339 {
2340 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2341 return got_index;
2342 }
2343
2344 if (r_type == R_MIPS_TLS_LDM)
2345 {
2346 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2347 return got_index;
2348 }
2349
2350 return got_index;
2351 }
2352
2353 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2354 for global symbol H. .got.plt comes before the GOT, so the offset
2355 will be negative. */
2356
2357 static bfd_vma
2358 mips_elf_gotplt_index (struct bfd_link_info *info,
2359 struct elf_link_hash_entry *h)
2360 {
2361 bfd_vma plt_index, got_address, got_value;
2362 struct mips_elf_link_hash_table *htab;
2363
2364 htab = mips_elf_hash_table (info);
2365 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2366
2367 /* Calculate the index of the symbol's PLT entry. */
2368 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2369
2370 /* Calculate the address of the associated .got.plt entry. */
2371 got_address = (htab->sgotplt->output_section->vma
2372 + htab->sgotplt->output_offset
2373 + plt_index * 4);
2374
2375 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2376 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2377 + htab->root.hgot->root.u.def.section->output_offset
2378 + htab->root.hgot->root.u.def.value);
2379
2380 return got_address - got_value;
2381 }
2382
2383 /* Return the GOT offset for address VALUE, which was derived from
2384 a symbol belonging to INPUT_SECTION. If there is not yet a GOT
2385 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2386 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2387 offset can be found. */
2388
2389 static bfd_vma
2390 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2391 asection *input_section, bfd_vma value,
2392 unsigned long r_symndx,
2393 struct mips_elf_link_hash_entry *h, int r_type)
2394 {
2395 asection *sgot;
2396 struct mips_got_info *g;
2397 struct mips_got_entry *entry;
2398
2399 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2400
2401 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2402 input_section, value,
2403 r_symndx, h, r_type);
2404 if (!entry)
2405 return MINUS_ONE;
2406
2407 if (TLS_RELOC_P (r_type))
2408 {
2409 if (entry->symndx == -1 && g->next == NULL)
2410 /* A type (3) entry in the single-GOT case. We use the symbol's
2411 hash table entry to track the index. */
2412 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2413 r_type, info, h, value);
2414 else
2415 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2416 r_type, info, h, value);
2417 }
2418 else
2419 return entry->gotidx;
2420 }
2421
2422 /* Returns the GOT index for the global symbol indicated by H. */
2423
2424 static bfd_vma
2425 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2426 int r_type, struct bfd_link_info *info)
2427 {
2428 bfd_vma index;
2429 asection *sgot;
2430 struct mips_got_info *g, *gg;
2431 long global_got_dynindx = 0;
2432
2433 gg = g = mips_elf_got_info (abfd, &sgot);
2434 if (g->bfd2got && ibfd)
2435 {
2436 struct mips_got_entry e, *p;
2437
2438 BFD_ASSERT (h->dynindx >= 0);
2439
2440 g = mips_elf_got_for_ibfd (g, ibfd);
2441 if (g->next != gg || TLS_RELOC_P (r_type))
2442 {
2443 e.abfd = ibfd;
2444 e.symndx = -1;
2445 e.d.h = (struct mips_elf_link_hash_entry *)h;
2446 e.tls_type = 0;
2447
2448 p = htab_find (g->got_entries, &e);
2449
2450 BFD_ASSERT (p->gotidx > 0);
2451
2452 if (TLS_RELOC_P (r_type))
2453 {
2454 bfd_vma value = MINUS_ONE;
2455 if ((h->root.type == bfd_link_hash_defined
2456 || h->root.type == bfd_link_hash_defweak)
2457 && h->root.u.def.section->output_section)
2458 value = (h->root.u.def.value
2459 + h->root.u.def.section->output_offset
2460 + h->root.u.def.section->output_section->vma);
2461
2462 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2463 info, e.d.h, value);
2464 }
2465 else
2466 return p->gotidx;
2467 }
2468 }
2469
2470 if (gg->global_gotsym != NULL)
2471 global_got_dynindx = gg->global_gotsym->dynindx;
2472
2473 if (TLS_RELOC_P (r_type))
2474 {
2475 struct mips_elf_link_hash_entry *hm
2476 = (struct mips_elf_link_hash_entry *) h;
2477 bfd_vma value = MINUS_ONE;
2478
2479 if ((h->root.type == bfd_link_hash_defined
2480 || h->root.type == bfd_link_hash_defweak)
2481 && h->root.u.def.section->output_section)
2482 value = (h->root.u.def.value
2483 + h->root.u.def.section->output_offset
2484 + h->root.u.def.section->output_section->vma);
2485
2486 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2487 r_type, info, hm, value);
2488 }
2489 else
2490 {
2491 /* Once we determine the global GOT entry with the lowest dynamic
2492 symbol table index, we must put all dynamic symbols with greater
2493 indices into the GOT. That makes it easy to calculate the GOT
2494 offset. */
2495 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2496 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2497 * MIPS_ELF_GOT_SIZE (abfd));
2498 }
2499 BFD_ASSERT (index < sgot->size);
2500
2501 return index;
2502 }
2503
2504 /* Find a GOT page entry that points to within 32KB of VALUE, which was
2505 calculated from a symbol belonging to INPUT_SECTION. These entries
2506 are supposed to be placed at small offsets in the GOT, i.e., within
2507 32KB of GP. Return the index of the GOT entry, or -1 if no entry
2508 could be created. If OFFSETP is nonnull, use it to return the
2509 offset of the GOT entry from VALUE. */
2510
2511 static bfd_vma
2512 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2513 asection *input_section, bfd_vma value, bfd_vma *offsetp)
2514 {
2515 asection *sgot;
2516 struct mips_got_info *g;
2517 bfd_vma page, index;
2518 struct mips_got_entry *entry;
2519
2520 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2521
2522 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2523 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2524 input_section, page, 0,
2525 NULL, R_MIPS_GOT_PAGE);
2526
2527 if (!entry)
2528 return MINUS_ONE;
2529
2530 index = entry->gotidx;
2531
2532 if (offsetp)
2533 *offsetp = value - entry->d.address;
2534
2535 return index;
2536 }
2537
2538 /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE,
2539 which was calculated from a symbol belonging to INPUT_SECTION.
2540 EXTERNAL is true if the relocation was against a global symbol
2541 that has been forced local. */
2542
2543 static bfd_vma
2544 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2545 asection *input_section, bfd_vma value,
2546 bfd_boolean external)
2547 {
2548 asection *sgot;
2549 struct mips_got_info *g;
2550 struct mips_got_entry *entry;
2551
2552 /* GOT16 relocations against local symbols are followed by a LO16
2553 relocation; those against global symbols are not. Thus if the
2554 symbol was originally local, the GOT16 relocation should load the
2555 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2556 if (! external)
2557 value = mips_elf_high (value) << 16;
2558
2559 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2560
2561 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2562 input_section, value, 0,
2563 NULL, R_MIPS_GOT16);
2564 if (entry)
2565 return entry->gotidx;
2566 else
2567 return MINUS_ONE;
2568 }
2569
2570 /* Returns the offset for the entry at the INDEXth position
2571 in the GOT. */
2572
2573 static bfd_vma
2574 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2575 bfd *input_bfd, bfd_vma index)
2576 {
2577 asection *sgot;
2578 bfd_vma gp;
2579 struct mips_got_info *g;
2580
2581 g = mips_elf_got_info (dynobj, &sgot);
2582 gp = _bfd_get_gp_value (output_bfd)
2583 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2584
2585 return sgot->output_section->vma + sgot->output_offset + index - gp;
2586 }
2587
2588 /* Create and return a local GOT entry for VALUE, which was calculated
2589 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2590 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2591 instead. */
2592
2593 static struct mips_got_entry *
2594 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2595 bfd *ibfd, struct mips_got_info *gg,
2596 asection *sgot, asection *input_section,
2597 bfd_vma value, unsigned long r_symndx,
2598 struct mips_elf_link_hash_entry *h,
2599 int r_type)
2600 {
2601 struct mips_got_entry entry, **loc;
2602 struct mips_got_info *g;
2603 struct mips_elf_link_hash_table *htab;
2604
2605 htab = mips_elf_hash_table (info);
2606
2607 entry.abfd = NULL;
2608 entry.symndx = -1;
2609 entry.d.address = value;
2610 entry.tls_type = 0;
2611
2612 g = mips_elf_got_for_ibfd (gg, ibfd);
2613 if (g == NULL)
2614 {
2615 g = mips_elf_got_for_ibfd (gg, abfd);
2616 BFD_ASSERT (g != NULL);
2617 }
2618
2619 /* We might have a symbol, H, if it has been forced local. Use the
2620 global entry then. It doesn't matter whether an entry is local
2621 or global for TLS, since the dynamic linker does not
2622 automatically relocate TLS GOT entries. */
2623 BFD_ASSERT (h == NULL || h->root.forced_local);
2624 if (TLS_RELOC_P (r_type))
2625 {
2626 struct mips_got_entry *p;
2627
2628 entry.abfd = ibfd;
2629 if (r_type == R_MIPS_TLS_LDM)
2630 {
2631 entry.tls_type = GOT_TLS_LDM;
2632 entry.symndx = 0;
2633 entry.d.addend = 0;
2634 }
2635 else if (h == NULL)
2636 {
2637 entry.symndx = r_symndx;
2638 entry.d.addend = 0;
2639 }
2640 else
2641 entry.d.h = h;
2642
2643 p = (struct mips_got_entry *)
2644 htab_find (g->got_entries, &entry);
2645
2646 BFD_ASSERT (p);
2647 return p;
2648 }
2649
2650 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2651 INSERT);
2652 if (*loc)
2653 return *loc;
2654
2655 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2656 entry.tls_type = 0;
2657
2658 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2659
2660 if (! *loc)
2661 return NULL;
2662
2663 memcpy (*loc, &entry, sizeof entry);
2664
2665 if (g->assigned_gotno >= g->local_gotno)
2666 {
2667 (*loc)->gotidx = -1;
2668 /* We didn't allocate enough space in the GOT. */
2669 (*_bfd_error_handler)
2670 (_("not enough GOT space for local GOT entries"));
2671 bfd_set_error (bfd_error_bad_value);
2672 return NULL;
2673 }
2674
2675 MIPS_ELF_PUT_WORD (abfd, value,
2676 (sgot->contents + entry.gotidx));
2677
2678 /* These GOT entries need a dynamic relocation on VxWorks. Because
2679 the offset between segments is not fixed, the relocation must be
2680 against a symbol in the same segment as the original symbol.
2681 The easiest way to do this is to take INPUT_SECTION's output
2682 section and emit a relocation against its section symbol. */
2683 if (htab->is_vxworks)
2684 {
2685 Elf_Internal_Rela outrel;
2686 asection *s, *output_section;
2687 bfd_byte *loc;
2688 bfd_vma got_address;
2689 int dynindx;
2690
2691 s = mips_elf_rel_dyn_section (info, FALSE);
2692 output_section = input_section->output_section;
2693 dynindx = elf_section_data (output_section)->dynindx;
2694 got_address = (sgot->output_section->vma
2695 + sgot->output_offset
2696 + entry.gotidx);
2697
2698 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2699 outrel.r_offset = got_address;
2700 outrel.r_info = ELF32_R_INFO (dynindx, R_MIPS_32);
2701 outrel.r_addend = value - output_section->vma;
2702 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2703 }
2704
2705 return *loc;
2706 }
2707
2708 /* Sort the dynamic symbol table so that symbols that need GOT entries
2709 appear towards the end. This reduces the amount of GOT space
2710 required. MAX_LOCAL is used to set the number of local symbols
2711 known to be in the dynamic symbol table. During
2712 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2713 section symbols are added and the count is higher. */
2714
2715 static bfd_boolean
2716 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2717 {
2718 struct mips_elf_hash_sort_data hsd;
2719 struct mips_got_info *g;
2720 bfd *dynobj;
2721
2722 dynobj = elf_hash_table (info)->dynobj;
2723
2724 g = mips_elf_got_info (dynobj, NULL);
2725
2726 hsd.low = NULL;
2727 hsd.max_unref_got_dynindx =
2728 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2729 /* In the multi-got case, assigned_gotno of the master got_info
2730 indicate the number of entries that aren't referenced in the
2731 primary GOT, but that must have entries because there are
2732 dynamic relocations that reference it. Since they aren't
2733 referenced, we move them to the end of the GOT, so that they
2734 don't prevent other entries that are referenced from getting
2735 too large offsets. */
2736 - (g->next ? g->assigned_gotno : 0);
2737 hsd.max_non_got_dynindx = max_local;
2738 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2739 elf_hash_table (info)),
2740 mips_elf_sort_hash_table_f,
2741 &hsd);
2742
2743 /* There should have been enough room in the symbol table to
2744 accommodate both the GOT and non-GOT symbols. */
2745 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2746 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2747 <= elf_hash_table (info)->dynsymcount);
2748
2749 /* Now we know which dynamic symbol has the lowest dynamic symbol
2750 table index in the GOT. */
2751 g->global_gotsym = hsd.low;
2752
2753 return TRUE;
2754 }
2755
2756 /* If H needs a GOT entry, assign it the highest available dynamic
2757 index. Otherwise, assign it the lowest available dynamic
2758 index. */
2759
2760 static bfd_boolean
2761 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2762 {
2763 struct mips_elf_hash_sort_data *hsd = data;
2764
2765 if (h->root.root.type == bfd_link_hash_warning)
2766 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2767
2768 /* Symbols without dynamic symbol table entries aren't interesting
2769 at all. */
2770 if (h->root.dynindx == -1)
2771 return TRUE;
2772
2773 /* Global symbols that need GOT entries that are not explicitly
2774 referenced are marked with got offset 2. Those that are
2775 referenced get a 1, and those that don't need GOT entries get
2776 -1. */
2777 if (h->root.got.offset == 2)
2778 {
2779 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2780
2781 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2782 hsd->low = (struct elf_link_hash_entry *) h;
2783 h->root.dynindx = hsd->max_unref_got_dynindx++;
2784 }
2785 else if (h->root.got.offset != 1)
2786 h->root.dynindx = hsd->max_non_got_dynindx++;
2787 else
2788 {
2789 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2790
2791 h->root.dynindx = --hsd->min_got_dynindx;
2792 hsd->low = (struct elf_link_hash_entry *) h;
2793 }
2794
2795 return TRUE;
2796 }
2797
2798 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2799 symbol table index lower than any we've seen to date, record it for
2800 posterity. */
2801
2802 static bfd_boolean
2803 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2804 bfd *abfd, struct bfd_link_info *info,
2805 struct mips_got_info *g,
2806 unsigned char tls_flag)
2807 {
2808 struct mips_got_entry entry, **loc;
2809
2810 /* A global symbol in the GOT must also be in the dynamic symbol
2811 table. */
2812 if (h->dynindx == -1)
2813 {
2814 switch (ELF_ST_VISIBILITY (h->other))
2815 {
2816 case STV_INTERNAL:
2817 case STV_HIDDEN:
2818 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2819 break;
2820 }
2821 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2822 return FALSE;
2823 }
2824
2825 /* Make sure we have a GOT to put this entry into. */
2826 BFD_ASSERT (g != NULL);
2827
2828 entry.abfd = abfd;
2829 entry.symndx = -1;
2830 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2831 entry.tls_type = 0;
2832
2833 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2834 INSERT);
2835
2836 /* If we've already marked this entry as needing GOT space, we don't
2837 need to do it again. */
2838 if (*loc)
2839 {
2840 (*loc)->tls_type |= tls_flag;
2841 return TRUE;
2842 }
2843
2844 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2845
2846 if (! *loc)
2847 return FALSE;
2848
2849 entry.gotidx = -1;
2850 entry.tls_type = tls_flag;
2851
2852 memcpy (*loc, &entry, sizeof entry);
2853
2854 if (h->got.offset != MINUS_ONE)
2855 return TRUE;
2856
2857 /* By setting this to a value other than -1, we are indicating that
2858 there needs to be a GOT entry for H. Avoid using zero, as the
2859 generic ELF copy_indirect_symbol tests for <= 0. */
2860 if (tls_flag == 0)
2861 h->got.offset = 1;
2862
2863 return TRUE;
2864 }
2865
2866 /* Reserve space in G for a GOT entry containing the value of symbol
2867 SYMNDX in input bfd ABDF, plus ADDEND. */
2868
2869 static bfd_boolean
2870 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2871 struct mips_got_info *g,
2872 unsigned char tls_flag)
2873 {
2874 struct mips_got_entry entry, **loc;
2875
2876 entry.abfd = abfd;
2877 entry.symndx = symndx;
2878 entry.d.addend = addend;
2879 entry.tls_type = tls_flag;
2880 loc = (struct mips_got_entry **)
2881 htab_find_slot (g->got_entries, &entry, INSERT);
2882
2883 if (*loc)
2884 {
2885 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2886 {
2887 g->tls_gotno += 2;
2888 (*loc)->tls_type |= tls_flag;
2889 }
2890 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2891 {
2892 g->tls_gotno += 1;
2893 (*loc)->tls_type |= tls_flag;
2894 }
2895 return TRUE;
2896 }
2897
2898 if (tls_flag != 0)
2899 {
2900 entry.gotidx = -1;
2901 entry.tls_type = tls_flag;
2902 if (tls_flag == GOT_TLS_IE)
2903 g->tls_gotno += 1;
2904 else if (tls_flag == GOT_TLS_GD)
2905 g->tls_gotno += 2;
2906 else if (g->tls_ldm_offset == MINUS_ONE)
2907 {
2908 g->tls_ldm_offset = MINUS_TWO;
2909 g->tls_gotno += 2;
2910 }
2911 }
2912 else
2913 {
2914 entry.gotidx = g->local_gotno++;
2915 entry.tls_type = 0;
2916 }
2917
2918 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2919
2920 if (! *loc)
2921 return FALSE;
2922
2923 memcpy (*loc, &entry, sizeof entry);
2924
2925 return TRUE;
2926 }
2927 \f
2928 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2929
2930 static hashval_t
2931 mips_elf_bfd2got_entry_hash (const void *entry_)
2932 {
2933 const struct mips_elf_bfd2got_hash *entry
2934 = (struct mips_elf_bfd2got_hash *)entry_;
2935
2936 return entry->bfd->id;
2937 }
2938
2939 /* Check whether two hash entries have the same bfd. */
2940
2941 static int
2942 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2943 {
2944 const struct mips_elf_bfd2got_hash *e1
2945 = (const struct mips_elf_bfd2got_hash *)entry1;
2946 const struct mips_elf_bfd2got_hash *e2
2947 = (const struct mips_elf_bfd2got_hash *)entry2;
2948
2949 return e1->bfd == e2->bfd;
2950 }
2951
2952 /* In a multi-got link, determine the GOT to be used for IBFD. G must
2953 be the master GOT data. */
2954
2955 static struct mips_got_info *
2956 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2957 {
2958 struct mips_elf_bfd2got_hash e, *p;
2959
2960 if (! g->bfd2got)
2961 return g;
2962
2963 e.bfd = ibfd;
2964 p = htab_find (g->bfd2got, &e);
2965 return p ? p->g : NULL;
2966 }
2967
2968 /* Create one separate got for each bfd that has entries in the global
2969 got, such that we can tell how many local and global entries each
2970 bfd requires. */
2971
2972 static int
2973 mips_elf_make_got_per_bfd (void **entryp, void *p)
2974 {
2975 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2976 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2977 htab_t bfd2got = arg->bfd2got;
2978 struct mips_got_info *g;
2979 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2980 void **bfdgotp;
2981
2982 /* Find the got_info for this GOT entry's input bfd. Create one if
2983 none exists. */
2984 bfdgot_entry.bfd = entry->abfd;
2985 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2986 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2987
2988 if (bfdgot != NULL)
2989 g = bfdgot->g;
2990 else
2991 {
2992 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2993 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2994
2995 if (bfdgot == NULL)
2996 {
2997 arg->obfd = 0;
2998 return 0;
2999 }
3000
3001 *bfdgotp = bfdgot;
3002
3003 bfdgot->bfd = entry->abfd;
3004 bfdgot->g = g = (struct mips_got_info *)
3005 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3006 if (g == NULL)
3007 {
3008 arg->obfd = 0;
3009 return 0;
3010 }
3011
3012 g->global_gotsym = NULL;
3013 g->global_gotno = 0;
3014 g->local_gotno = 0;
3015 g->assigned_gotno = -1;
3016 g->tls_gotno = 0;
3017 g->tls_assigned_gotno = 0;
3018 g->tls_ldm_offset = MINUS_ONE;
3019 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3020 mips_elf_multi_got_entry_eq, NULL);
3021 if (g->got_entries == NULL)
3022 {
3023 arg->obfd = 0;
3024 return 0;
3025 }
3026
3027 g->bfd2got = NULL;
3028 g->next = NULL;
3029 }
3030
3031 /* Insert the GOT entry in the bfd's got entry hash table. */
3032 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3033 if (*entryp != NULL)
3034 return 1;
3035
3036 *entryp = entry;
3037
3038 if (entry->tls_type)
3039 {
3040 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3041 g->tls_gotno += 2;
3042 if (entry->tls_type & GOT_TLS_IE)
3043 g->tls_gotno += 1;
3044 }
3045 else if (entry->symndx >= 0 || entry->d.h->forced_local)
3046 ++g->local_gotno;
3047 else
3048 ++g->global_gotno;
3049
3050 return 1;
3051 }
3052
3053 /* Attempt to merge gots of different input bfds. Try to use as much
3054 as possible of the primary got, since it doesn't require explicit
3055 dynamic relocations, but don't use bfds that would reference global
3056 symbols out of the addressable range. Failing the primary got,
3057 attempt to merge with the current got, or finish the current got
3058 and then make make the new got current. */
3059
3060 static int
3061 mips_elf_merge_gots (void **bfd2got_, void *p)
3062 {
3063 struct mips_elf_bfd2got_hash *bfd2got
3064 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3065 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3066 unsigned int lcount = bfd2got->g->local_gotno;
3067 unsigned int gcount = bfd2got->g->global_gotno;
3068 unsigned int tcount = bfd2got->g->tls_gotno;
3069 unsigned int maxcnt = arg->max_count;
3070 bfd_boolean too_many_for_tls = FALSE;
3071
3072 /* We place TLS GOT entries after both locals and globals. The globals
3073 for the primary GOT may overflow the normal GOT size limit, so be
3074 sure not to merge a GOT which requires TLS with the primary GOT in that
3075 case. This doesn't affect non-primary GOTs. */
3076 if (tcount > 0)
3077 {
3078 unsigned int primary_total = lcount + tcount + arg->global_count;
3079 if (primary_total * MIPS_ELF_GOT_SIZE (bfd2got->bfd)
3080 >= MIPS_ELF_GOT_MAX_SIZE (arg->info))
3081 too_many_for_tls = TRUE;
3082 }
3083
3084 /* If we don't have a primary GOT and this is not too big, use it as
3085 a starting point for the primary GOT. */
3086 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3087 && ! too_many_for_tls)
3088 {
3089 arg->primary = bfd2got->g;
3090 arg->primary_count = lcount + gcount;
3091 }
3092 /* If it looks like we can merge this bfd's entries with those of
3093 the primary, merge them. The heuristics is conservative, but we
3094 don't have to squeeze it too hard. */
3095 else if (arg->primary && ! too_many_for_tls
3096 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
3097 {
3098 struct mips_got_info *g = bfd2got->g;
3099 int old_lcount = arg->primary->local_gotno;
3100 int old_gcount = arg->primary->global_gotno;
3101 int old_tcount = arg->primary->tls_gotno;
3102
3103 bfd2got->g = arg->primary;
3104
3105 htab_traverse (g->got_entries,
3106 mips_elf_make_got_per_bfd,
3107 arg);
3108 if (arg->obfd == NULL)
3109 return 0;
3110
3111 htab_delete (g->got_entries);
3112 /* We don't have to worry about releasing memory of the actual
3113 got entries, since they're all in the master got_entries hash
3114 table anyway. */
3115
3116 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
3117 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
3118 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
3119
3120 arg->primary_count = arg->primary->local_gotno
3121 + arg->primary->global_gotno + arg->primary->tls_gotno;
3122 }
3123 /* If we can merge with the last-created got, do it. */
3124 else if (arg->current
3125 && arg->current_count + lcount + gcount + tcount <= maxcnt)
3126 {
3127 struct mips_got_info *g = bfd2got->g;
3128 int old_lcount = arg->current->local_gotno;
3129 int old_gcount = arg->current->global_gotno;
3130 int old_tcount = arg->current->tls_gotno;
3131
3132 bfd2got->g = arg->current;
3133
3134 htab_traverse (g->got_entries,
3135 mips_elf_make_got_per_bfd,
3136 arg);
3137 if (arg->obfd == NULL)
3138 return 0;
3139
3140 htab_delete (g->got_entries);
3141
3142 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
3143 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
3144 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
3145
3146 arg->current_count = arg->current->local_gotno
3147 + arg->current->global_gotno + arg->current->tls_gotno;
3148 }
3149 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3150 fits; if it turns out that it doesn't, we'll get relocation
3151 overflows anyway. */
3152 else
3153 {
3154 bfd2got->g->next = arg->current;
3155 arg->current = bfd2got->g;
3156
3157 arg->current_count = lcount + gcount + 2 * tcount;
3158 }
3159
3160 return 1;
3161 }
3162
3163 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3164 is null iff there is just a single GOT. */
3165
3166 static int
3167 mips_elf_initialize_tls_index (void **entryp, void *p)
3168 {
3169 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3170 struct mips_got_info *g = p;
3171 bfd_vma next_index;
3172
3173 /* We're only interested in TLS symbols. */
3174 if (entry->tls_type == 0)
3175 return 1;
3176
3177 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3178
3179 if (entry->symndx == -1 && g->next == NULL)
3180 {
3181 /* A type (3) got entry in the single-GOT case. We use the symbol's
3182 hash table entry to track its index. */
3183 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3184 return 1;
3185 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3186 entry->d.h->tls_got_offset = next_index;
3187 }
3188 else
3189 {
3190 if (entry->tls_type & GOT_TLS_LDM)
3191 {
3192 /* There are separate mips_got_entry objects for each input bfd
3193 that requires an LDM entry. Make sure that all LDM entries in
3194 a GOT resolve to the same index. */
3195 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3196 {
3197 entry->gotidx = g->tls_ldm_offset;
3198 return 1;
3199 }
3200 g->tls_ldm_offset = next_index;
3201 }
3202 entry->gotidx = next_index;
3203 }
3204
3205 /* Account for the entries we've just allocated. */
3206 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3207 g->tls_assigned_gotno += 2;
3208 if (entry->tls_type & GOT_TLS_IE)
3209 g->tls_assigned_gotno += 1;
3210
3211 return 1;
3212 }
3213
3214 /* If passed a NULL mips_got_info in the argument, set the marker used
3215 to tell whether a global symbol needs a got entry (in the primary
3216 got) to the given VALUE.
3217
3218 If passed a pointer G to a mips_got_info in the argument (it must
3219 not be the primary GOT), compute the offset from the beginning of
3220 the (primary) GOT section to the entry in G corresponding to the
3221 global symbol. G's assigned_gotno must contain the index of the
3222 first available global GOT entry in G. VALUE must contain the size
3223 of a GOT entry in bytes. For each global GOT entry that requires a
3224 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3225 marked as not eligible for lazy resolution through a function
3226 stub. */
3227 static int
3228 mips_elf_set_global_got_offset (void **entryp, void *p)
3229 {
3230 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3231 struct mips_elf_set_global_got_offset_arg *arg
3232 = (struct mips_elf_set_global_got_offset_arg *)p;
3233 struct mips_got_info *g = arg->g;
3234
3235 if (g && entry->tls_type != GOT_NORMAL)
3236 arg->needed_relocs +=
3237 mips_tls_got_relocs (arg->info, entry->tls_type,
3238 entry->symndx == -1 ? &entry->d.h->root : NULL);
3239
3240 if (entry->abfd != NULL && entry->symndx == -1
3241 && entry->d.h->root.dynindx != -1
3242 && entry->d.h->tls_type == GOT_NORMAL)
3243 {
3244 if (g)
3245 {
3246 BFD_ASSERT (g->global_gotsym == NULL);
3247
3248 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3249 if (arg->info->shared
3250 || (elf_hash_table (arg->info)->dynamic_sections_created
3251 && entry->d.h->root.def_dynamic
3252 && !entry->d.h->root.def_regular))
3253 ++arg->needed_relocs;
3254 }
3255 else
3256 entry->d.h->root.got.offset = arg->value;
3257 }
3258
3259 return 1;
3260 }
3261
3262 /* Mark any global symbols referenced in the GOT we are iterating over
3263 as inelligible for lazy resolution stubs. */
3264 static int
3265 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3266 {
3267 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3268
3269 if (entry->abfd != NULL
3270 && entry->symndx == -1
3271 && entry->d.h->root.dynindx != -1)
3272 entry->d.h->no_fn_stub = TRUE;
3273
3274 return 1;
3275 }
3276
3277 /* Follow indirect and warning hash entries so that each got entry
3278 points to the final symbol definition. P must point to a pointer
3279 to the hash table we're traversing. Since this traversal may
3280 modify the hash table, we set this pointer to NULL to indicate
3281 we've made a potentially-destructive change to the hash table, so
3282 the traversal must be restarted. */
3283 static int
3284 mips_elf_resolve_final_got_entry (void **entryp, void *p)
3285 {
3286 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3287 htab_t got_entries = *(htab_t *)p;
3288
3289 if (entry->abfd != NULL && entry->symndx == -1)
3290 {
3291 struct mips_elf_link_hash_entry *h = entry->d.h;
3292
3293 while (h->root.root.type == bfd_link_hash_indirect
3294 || h->root.root.type == bfd_link_hash_warning)
3295 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3296
3297 if (entry->d.h == h)
3298 return 1;
3299
3300 entry->d.h = h;
3301
3302 /* If we can't find this entry with the new bfd hash, re-insert
3303 it, and get the traversal restarted. */
3304 if (! htab_find (got_entries, entry))
3305 {
3306 htab_clear_slot (got_entries, entryp);
3307 entryp = htab_find_slot (got_entries, entry, INSERT);
3308 if (! *entryp)
3309 *entryp = entry;
3310 /* Abort the traversal, since the whole table may have
3311 moved, and leave it up to the parent to restart the
3312 process. */
3313 *(htab_t *)p = NULL;
3314 return 0;
3315 }
3316 /* We might want to decrement the global_gotno count, but it's
3317 either too early or too late for that at this point. */
3318 }
3319
3320 return 1;
3321 }
3322
3323 /* Turn indirect got entries in a got_entries table into their final
3324 locations. */
3325 static void
3326 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3327 {
3328 htab_t got_entries;
3329
3330 do
3331 {
3332 got_entries = g->got_entries;
3333
3334 htab_traverse (got_entries,
3335 mips_elf_resolve_final_got_entry,
3336 &got_entries);
3337 }
3338 while (got_entries == NULL);
3339 }
3340
3341 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3342 the primary GOT. */
3343 static bfd_vma
3344 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3345 {
3346 if (g->bfd2got == NULL)
3347 return 0;
3348
3349 g = mips_elf_got_for_ibfd (g, ibfd);
3350 if (! g)
3351 return 0;
3352
3353 BFD_ASSERT (g->next);
3354
3355 g = g->next;
3356
3357 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3358 * MIPS_ELF_GOT_SIZE (abfd);
3359 }
3360
3361 /* Turn a single GOT that is too big for 16-bit addressing into
3362 a sequence of GOTs, each one 16-bit addressable. */
3363
3364 static bfd_boolean
3365 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3366 struct mips_got_info *g, asection *got,
3367 bfd_size_type pages)
3368 {
3369 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3370 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3371 struct mips_got_info *gg;
3372 unsigned int assign;
3373
3374 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3375 mips_elf_bfd2got_entry_eq, NULL);
3376 if (g->bfd2got == NULL)
3377 return FALSE;
3378
3379 got_per_bfd_arg.bfd2got = g->bfd2got;
3380 got_per_bfd_arg.obfd = abfd;
3381 got_per_bfd_arg.info = info;
3382
3383 /* Count how many GOT entries each input bfd requires, creating a
3384 map from bfd to got info while at that. */
3385 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3386 if (got_per_bfd_arg.obfd == NULL)
3387 return FALSE;
3388
3389 got_per_bfd_arg.current = NULL;
3390 got_per_bfd_arg.primary = NULL;
3391 /* Taking out PAGES entries is a worst-case estimate. We could
3392 compute the maximum number of pages that each separate input bfd
3393 uses, but it's probably not worth it. */
3394 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
3395 / MIPS_ELF_GOT_SIZE (abfd))
3396 - MIPS_RESERVED_GOTNO (info) - pages);
3397 /* The number of globals that will be included in the primary GOT.
3398 See the calls to mips_elf_set_global_got_offset below for more
3399 information. */
3400 got_per_bfd_arg.global_count = g->global_gotno;
3401
3402 /* Try to merge the GOTs of input bfds together, as long as they
3403 don't seem to exceed the maximum GOT size, choosing one of them
3404 to be the primary GOT. */
3405 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3406 if (got_per_bfd_arg.obfd == NULL)
3407 return FALSE;
3408
3409 /* If we do not find any suitable primary GOT, create an empty one. */
3410 if (got_per_bfd_arg.primary == NULL)
3411 {
3412 g->next = (struct mips_got_info *)
3413 bfd_alloc (abfd, sizeof (struct mips_got_info));
3414 if (g->next == NULL)
3415 return FALSE;
3416
3417 g->next->global_gotsym = NULL;
3418 g->next->global_gotno = 0;
3419 g->next->local_gotno = 0;
3420 g->next->tls_gotno = 0;
3421 g->next->assigned_gotno = 0;
3422 g->next->tls_assigned_gotno = 0;
3423 g->next->tls_ldm_offset = MINUS_ONE;
3424 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3425 mips_elf_multi_got_entry_eq,
3426 NULL);
3427 if (g->next->got_entries == NULL)
3428 return FALSE;
3429 g->next->bfd2got = NULL;
3430 }
3431 else
3432 g->next = got_per_bfd_arg.primary;
3433 g->next->next = got_per_bfd_arg.current;
3434
3435 /* GG is now the master GOT, and G is the primary GOT. */
3436 gg = g;
3437 g = g->next;
3438
3439 /* Map the output bfd to the primary got. That's what we're going
3440 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3441 didn't mark in check_relocs, and we want a quick way to find it.
3442 We can't just use gg->next because we're going to reverse the
3443 list. */
3444 {
3445 struct mips_elf_bfd2got_hash *bfdgot;
3446 void **bfdgotp;
3447
3448 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3449 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3450
3451 if (bfdgot == NULL)
3452 return FALSE;
3453
3454 bfdgot->bfd = abfd;
3455 bfdgot->g = g;
3456 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3457
3458 BFD_ASSERT (*bfdgotp == NULL);
3459 *bfdgotp = bfdgot;
3460 }
3461
3462 /* The IRIX dynamic linker requires every symbol that is referenced
3463 in a dynamic relocation to be present in the primary GOT, so
3464 arrange for them to appear after those that are actually
3465 referenced.
3466
3467 GNU/Linux could very well do without it, but it would slow down
3468 the dynamic linker, since it would have to resolve every dynamic
3469 symbol referenced in other GOTs more than once, without help from
3470 the cache. Also, knowing that every external symbol has a GOT
3471 helps speed up the resolution of local symbols too, so GNU/Linux
3472 follows IRIX's practice.
3473
3474 The number 2 is used by mips_elf_sort_hash_table_f to count
3475 global GOT symbols that are unreferenced in the primary GOT, with
3476 an initial dynamic index computed from gg->assigned_gotno, where
3477 the number of unreferenced global entries in the primary GOT is
3478 preserved. */
3479 if (1)
3480 {
3481 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3482 g->global_gotno = gg->global_gotno;
3483 set_got_offset_arg.value = 2;
3484 }
3485 else
3486 {
3487 /* This could be used for dynamic linkers that don't optimize
3488 symbol resolution while applying relocations so as to use
3489 primary GOT entries or assuming the symbol is locally-defined.
3490 With this code, we assign lower dynamic indices to global
3491 symbols that are not referenced in the primary GOT, so that
3492 their entries can be omitted. */
3493 gg->assigned_gotno = 0;
3494 set_got_offset_arg.value = -1;
3495 }
3496
3497 /* Reorder dynamic symbols as described above (which behavior
3498 depends on the setting of VALUE). */
3499 set_got_offset_arg.g = NULL;
3500 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3501 &set_got_offset_arg);
3502 set_got_offset_arg.value = 1;
3503 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3504 &set_got_offset_arg);
3505 if (! mips_elf_sort_hash_table (info, 1))
3506 return FALSE;
3507
3508 /* Now go through the GOTs assigning them offset ranges.
3509 [assigned_gotno, local_gotno[ will be set to the range of local
3510 entries in each GOT. We can then compute the end of a GOT by
3511 adding local_gotno to global_gotno. We reverse the list and make
3512 it circular since then we'll be able to quickly compute the
3513 beginning of a GOT, by computing the end of its predecessor. To
3514 avoid special cases for the primary GOT, while still preserving
3515 assertions that are valid for both single- and multi-got links,
3516 we arrange for the main got struct to have the right number of
3517 global entries, but set its local_gotno such that the initial
3518 offset of the primary GOT is zero. Remember that the primary GOT
3519 will become the last item in the circular linked list, so it
3520 points back to the master GOT. */
3521 gg->local_gotno = -g->global_gotno;
3522 gg->global_gotno = g->global_gotno;
3523 gg->tls_gotno = 0;
3524 assign = 0;
3525 gg->next = gg;
3526
3527 do
3528 {
3529 struct mips_got_info *gn;
3530
3531 assign += MIPS_RESERVED_GOTNO (info);
3532 g->assigned_gotno = assign;
3533 g->local_gotno += assign + pages;
3534 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3535
3536 /* Take g out of the direct list, and push it onto the reversed
3537 list that gg points to. g->next is guaranteed to be nonnull after
3538 this operation, as required by mips_elf_initialize_tls_index. */
3539 gn = g->next;
3540 g->next = gg->next;
3541 gg->next = g;
3542
3543 /* Set up any TLS entries. We always place the TLS entries after
3544 all non-TLS entries. */
3545 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3546 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3547
3548 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3549 g = gn;
3550
3551 /* Mark global symbols in every non-primary GOT as ineligible for
3552 stubs. */
3553 if (g)
3554 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3555 }
3556 while (g);
3557
3558 got->size = (gg->next->local_gotno
3559 + gg->next->global_gotno
3560 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3561
3562 return TRUE;
3563 }
3564
3565 \f
3566 /* Returns the first relocation of type r_type found, beginning with
3567 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3568
3569 static const Elf_Internal_Rela *
3570 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3571 const Elf_Internal_Rela *relocation,
3572 const Elf_Internal_Rela *relend)
3573 {
3574 while (relocation < relend)
3575 {
3576 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
3577 return relocation;
3578
3579 ++relocation;
3580 }
3581
3582 /* We didn't find it. */
3583 bfd_set_error (bfd_error_bad_value);
3584 return NULL;
3585 }
3586
3587 /* Return whether a relocation is against a local symbol. */
3588
3589 static bfd_boolean
3590 mips_elf_local_relocation_p (bfd *input_bfd,
3591 const Elf_Internal_Rela *relocation,
3592 asection **local_sections,
3593 bfd_boolean check_forced)
3594 {
3595 unsigned long r_symndx;
3596 Elf_Internal_Shdr *symtab_hdr;
3597 struct mips_elf_link_hash_entry *h;
3598 size_t extsymoff;
3599
3600 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3601 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3602 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3603
3604 if (r_symndx < extsymoff)
3605 return TRUE;
3606 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3607 return TRUE;
3608
3609 if (check_forced)
3610 {
3611 /* Look up the hash table to check whether the symbol
3612 was forced local. */
3613 h = (struct mips_elf_link_hash_entry *)
3614 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3615 /* Find the real hash-table entry for this symbol. */
3616 while (h->root.root.type == bfd_link_hash_indirect
3617 || h->root.root.type == bfd_link_hash_warning)
3618 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3619 if (h->root.forced_local)
3620 return TRUE;
3621 }
3622
3623 return FALSE;
3624 }
3625 \f
3626 /* Sign-extend VALUE, which has the indicated number of BITS. */
3627
3628 bfd_vma
3629 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
3630 {
3631 if (value & ((bfd_vma) 1 << (bits - 1)))
3632 /* VALUE is negative. */
3633 value |= ((bfd_vma) - 1) << bits;
3634
3635 return value;
3636 }
3637
3638 /* Return non-zero if the indicated VALUE has overflowed the maximum
3639 range expressible by a signed number with the indicated number of
3640 BITS. */
3641
3642 static bfd_boolean
3643 mips_elf_overflow_p (bfd_vma value, int bits)
3644 {
3645 bfd_signed_vma svalue = (bfd_signed_vma) value;
3646
3647 if (svalue > (1 << (bits - 1)) - 1)
3648 /* The value is too big. */
3649 return TRUE;
3650 else if (svalue < -(1 << (bits - 1)))
3651 /* The value is too small. */
3652 return TRUE;
3653
3654 /* All is well. */
3655 return FALSE;
3656 }
3657
3658 /* Calculate the %high function. */
3659
3660 static bfd_vma
3661 mips_elf_high (bfd_vma value)
3662 {
3663 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3664 }
3665
3666 /* Calculate the %higher function. */
3667
3668 static bfd_vma
3669 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
3670 {
3671 #ifdef BFD64
3672 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3673 #else
3674 abort ();
3675 return MINUS_ONE;
3676 #endif
3677 }
3678
3679 /* Calculate the %highest function. */
3680
3681 static bfd_vma
3682 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
3683 {
3684 #ifdef BFD64
3685 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3686 #else
3687 abort ();
3688 return MINUS_ONE;
3689 #endif
3690 }
3691 \f
3692 /* Create the .compact_rel section. */
3693
3694 static bfd_boolean
3695 mips_elf_create_compact_rel_section
3696 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
3697 {
3698 flagword flags;
3699 register asection *s;
3700
3701 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3702 {
3703 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3704 | SEC_READONLY);
3705
3706 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
3707 if (s == NULL
3708 || ! bfd_set_section_alignment (abfd, s,
3709 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3710 return FALSE;
3711
3712 s->size = sizeof (Elf32_External_compact_rel);
3713 }
3714
3715 return TRUE;
3716 }
3717
3718 /* Create the .got section to hold the global offset table. */
3719
3720 static bfd_boolean
3721 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3722 bfd_boolean maybe_exclude)
3723 {
3724 flagword flags;
3725 register asection *s;
3726 struct elf_link_hash_entry *h;
3727 struct bfd_link_hash_entry *bh;
3728 struct mips_got_info *g;
3729 bfd_size_type amt;
3730 struct mips_elf_link_hash_table *htab;
3731
3732 htab = mips_elf_hash_table (info);
3733
3734 /* This function may be called more than once. */
3735 s = mips_elf_got_section (abfd, TRUE);
3736 if (s)
3737 {
3738 if (! maybe_exclude)
3739 s->flags &= ~SEC_EXCLUDE;
3740 return TRUE;
3741 }
3742
3743 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3744 | SEC_LINKER_CREATED);
3745
3746 if (maybe_exclude)
3747 flags |= SEC_EXCLUDE;
3748
3749 /* We have to use an alignment of 2**4 here because this is hardcoded
3750 in the function stub generation and in the linker script. */
3751 s = bfd_make_section_with_flags (abfd, ".got", flags);
3752 if (s == NULL
3753 || ! bfd_set_section_alignment (abfd, s, 4))
3754 return FALSE;
3755
3756 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3757 linker script because we don't want to define the symbol if we
3758 are not creating a global offset table. */
3759 bh = NULL;
3760 if (! (_bfd_generic_link_add_one_symbol
3761 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
3762 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
3763 return FALSE;
3764
3765 h = (struct elf_link_hash_entry *) bh;
3766 h->non_elf = 0;
3767 h->def_regular = 1;
3768 h->type = STT_OBJECT;
3769 elf_hash_table (info)->hgot = h;
3770
3771 if (info->shared
3772 && ! bfd_elf_link_record_dynamic_symbol (info, h))
3773 return FALSE;
3774
3775 amt = sizeof (struct mips_got_info);
3776 g = bfd_alloc (abfd, amt);
3777 if (g == NULL)
3778 return FALSE;
3779 g->global_gotsym = NULL;
3780 g->global_gotno = 0;
3781 g->tls_gotno = 0;
3782 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3783 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
3784 g->bfd2got = NULL;
3785 g->next = NULL;
3786 g->tls_ldm_offset = MINUS_ONE;
3787 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3788 mips_elf_got_entry_eq, NULL);
3789 if (g->got_entries == NULL)
3790 return FALSE;
3791 mips_elf_section_data (s)->u.got_info = g;
3792 mips_elf_section_data (s)->elf.this_hdr.sh_flags
3793 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3794
3795 /* VxWorks also needs a .got.plt section. */
3796 if (htab->is_vxworks)
3797 {
3798 s = bfd_make_section_with_flags (abfd, ".got.plt",
3799 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3800 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3801 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3802 return FALSE;
3803
3804 htab->sgotplt = s;
3805 }
3806 return TRUE;
3807 }
3808 \f
3809 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3810 __GOTT_INDEX__ symbols. These symbols are only special for
3811 shared objects; they are not used in executables. */
3812
3813 static bfd_boolean
3814 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3815 {
3816 return (mips_elf_hash_table (info)->is_vxworks
3817 && info->shared
3818 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3819 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3820 }
3821 \f
3822 /* Calculate the value produced by the RELOCATION (which comes from
3823 the INPUT_BFD). The ADDEND is the addend to use for this
3824 RELOCATION; RELOCATION->R_ADDEND is ignored.
3825
3826 The result of the relocation calculation is stored in VALUEP.
3827 REQUIRE_JALXP indicates whether or not the opcode used with this
3828 relocation must be JALX.
3829
3830 This function returns bfd_reloc_continue if the caller need take no
3831 further action regarding this relocation, bfd_reloc_notsupported if
3832 something goes dramatically wrong, bfd_reloc_overflow if an
3833 overflow occurs, and bfd_reloc_ok to indicate success. */
3834
3835 static bfd_reloc_status_type
3836 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3837 asection *input_section,
3838 struct bfd_link_info *info,
3839 const Elf_Internal_Rela *relocation,
3840 bfd_vma addend, reloc_howto_type *howto,
3841 Elf_Internal_Sym *local_syms,
3842 asection **local_sections, bfd_vma *valuep,
3843 const char **namep, bfd_boolean *require_jalxp,
3844 bfd_boolean save_addend)
3845 {
3846 /* The eventual value we will return. */
3847 bfd_vma value;
3848 /* The address of the symbol against which the relocation is
3849 occurring. */
3850 bfd_vma symbol = 0;
3851 /* The final GP value to be used for the relocatable, executable, or
3852 shared object file being produced. */
3853 bfd_vma gp = MINUS_ONE;
3854 /* The place (section offset or address) of the storage unit being
3855 relocated. */
3856 bfd_vma p;
3857 /* The value of GP used to create the relocatable object. */
3858 bfd_vma gp0 = MINUS_ONE;
3859 /* The offset into the global offset table at which the address of
3860 the relocation entry symbol, adjusted by the addend, resides
3861 during execution. */
3862 bfd_vma g = MINUS_ONE;
3863 /* The section in which the symbol referenced by the relocation is
3864 located. */
3865 asection *sec = NULL;
3866 struct mips_elf_link_hash_entry *h = NULL;
3867 /* TRUE if the symbol referred to by this relocation is a local
3868 symbol. */
3869 bfd_boolean local_p, was_local_p;
3870 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3871 bfd_boolean gp_disp_p = FALSE;
3872 /* TRUE if the symbol referred to by this relocation is
3873 "__gnu_local_gp". */
3874 bfd_boolean gnu_local_gp_p = FALSE;
3875 Elf_Internal_Shdr *symtab_hdr;
3876 size_t extsymoff;
3877 unsigned long r_symndx;
3878 int r_type;
3879 /* TRUE if overflow occurred during the calculation of the
3880 relocation value. */
3881 bfd_boolean overflowed_p;
3882 /* TRUE if this relocation refers to a MIPS16 function. */
3883 bfd_boolean target_is_16_bit_code_p = FALSE;
3884 struct mips_elf_link_hash_table *htab;
3885 bfd *dynobj;
3886
3887 dynobj = elf_hash_table (info)->dynobj;
3888 htab = mips_elf_hash_table (info);
3889
3890 /* Parse the relocation. */
3891 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3892 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3893 p = (input_section->output_section->vma
3894 + input_section->output_offset
3895 + relocation->r_offset);
3896
3897 /* Assume that there will be no overflow. */
3898 overflowed_p = FALSE;
3899
3900 /* Figure out whether or not the symbol is local, and get the offset
3901 used in the array of hash table entries. */
3902 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3903 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3904 local_sections, FALSE);
3905 was_local_p = local_p;
3906 if (! elf_bad_symtab (input_bfd))
3907 extsymoff = symtab_hdr->sh_info;
3908 else
3909 {
3910 /* The symbol table does not follow the rule that local symbols
3911 must come before globals. */
3912 extsymoff = 0;
3913 }
3914
3915 /* Figure out the value of the symbol. */
3916 if (local_p)
3917 {
3918 Elf_Internal_Sym *sym;
3919
3920 sym = local_syms + r_symndx;
3921 sec = local_sections[r_symndx];
3922
3923 symbol = sec->output_section->vma + sec->output_offset;
3924 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3925 || (sec->flags & SEC_MERGE))
3926 symbol += sym->st_value;
3927 if ((sec->flags & SEC_MERGE)
3928 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3929 {
3930 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3931 addend -= symbol;
3932 addend += sec->output_section->vma + sec->output_offset;
3933 }
3934
3935 /* MIPS16 text labels should be treated as odd. */
3936 if (sym->st_other == STO_MIPS16)
3937 ++symbol;
3938
3939 /* Record the name of this symbol, for our caller. */
3940 *namep = bfd_elf_string_from_elf_section (input_bfd,
3941 symtab_hdr->sh_link,
3942 sym->st_name);
3943 if (*namep == '\0')
3944 *namep = bfd_section_name (input_bfd, sec);
3945
3946 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3947 }
3948 else
3949 {
3950 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3951
3952 /* For global symbols we look up the symbol in the hash-table. */
3953 h = ((struct mips_elf_link_hash_entry *)
3954 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3955 /* Find the real hash-table entry for this symbol. */
3956 while (h->root.root.type == bfd_link_hash_indirect
3957 || h->root.root.type == bfd_link_hash_warning)
3958 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3959
3960 /* Record the name of this symbol, for our caller. */
3961 *namep = h->root.root.root.string;
3962
3963 /* See if this is the special _gp_disp symbol. Note that such a
3964 symbol must always be a global symbol. */
3965 if (strcmp (*namep, "_gp_disp") == 0
3966 && ! NEWABI_P (input_bfd))
3967 {
3968 /* Relocations against _gp_disp are permitted only with
3969 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3970 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3971 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
3972 return bfd_reloc_notsupported;
3973
3974 gp_disp_p = TRUE;
3975 }
3976 /* See if this is the special _gp symbol. Note that such a
3977 symbol must always be a global symbol. */
3978 else if (strcmp (*namep, "__gnu_local_gp") == 0)
3979 gnu_local_gp_p = TRUE;
3980
3981
3982 /* If this symbol is defined, calculate its address. Note that
3983 _gp_disp is a magic symbol, always implicitly defined by the
3984 linker, so it's inappropriate to check to see whether or not
3985 its defined. */
3986 else if ((h->root.root.type == bfd_link_hash_defined
3987 || h->root.root.type == bfd_link_hash_defweak)
3988 && h->root.root.u.def.section)
3989 {
3990 sec = h->root.root.u.def.section;
3991 if (sec->output_section)
3992 symbol = (h->root.root.u.def.value
3993 + sec->output_section->vma
3994 + sec->output_offset);
3995 else
3996 symbol = h->root.root.u.def.value;
3997 }
3998 else if (h->root.root.type == bfd_link_hash_undefweak)
3999 /* We allow relocations against undefined weak symbols, giving
4000 it the value zero, so that you can undefined weak functions
4001 and check to see if they exist by looking at their
4002 addresses. */
4003 symbol = 0;
4004 else if (info->unresolved_syms_in_objects == RM_IGNORE
4005 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4006 symbol = 0;
4007 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4008 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4009 {
4010 /* If this is a dynamic link, we should have created a
4011 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4012 in in _bfd_mips_elf_create_dynamic_sections.
4013 Otherwise, we should define the symbol with a value of 0.
4014 FIXME: It should probably get into the symbol table
4015 somehow as well. */
4016 BFD_ASSERT (! info->shared);
4017 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4018 symbol = 0;
4019 }
4020 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4021 {
4022 /* This is an optional symbol - an Irix specific extension to the
4023 ELF spec. Ignore it for now.
4024 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4025 than simply ignoring them, but we do not handle this for now.
4026 For information see the "64-bit ELF Object File Specification"
4027 which is available from here:
4028 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4029 symbol = 0;
4030 }
4031 else
4032 {
4033 if (! ((*info->callbacks->undefined_symbol)
4034 (info, h->root.root.root.string, input_bfd,
4035 input_section, relocation->r_offset,
4036 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4037 || ELF_ST_VISIBILITY (h->root.other))))
4038 return bfd_reloc_undefined;
4039 symbol = 0;
4040 }
4041
4042 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4043 }
4044
4045 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4046 need to redirect the call to the stub, unless we're already *in*
4047 a stub. */
4048 if (r_type != R_MIPS16_26 && !info->relocatable
4049 && ((h != NULL && h->fn_stub != NULL)
4050 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
4051 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4052 && !mips_elf_stub_section_p (input_bfd, input_section))
4053 {
4054 /* This is a 32- or 64-bit call to a 16-bit function. We should
4055 have already noticed that we were going to need the
4056 stub. */
4057 if (local_p)
4058 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4059 else
4060 {
4061 BFD_ASSERT (h->need_fn_stub);
4062 sec = h->fn_stub;
4063 }
4064
4065 symbol = sec->output_section->vma + sec->output_offset;
4066 }
4067 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4068 need to redirect the call to the stub. */
4069 else if (r_type == R_MIPS16_26 && !info->relocatable
4070 && h != NULL
4071 && (h->call_stub != NULL || h->call_fp_stub != NULL)
4072 && !target_is_16_bit_code_p)
4073 {
4074 /* If both call_stub and call_fp_stub are defined, we can figure
4075 out which one to use by seeing which one appears in the input
4076 file. */
4077 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4078 {
4079 asection *o;
4080
4081 sec = NULL;
4082 for (o = input_bfd->sections; o != NULL; o = o->next)
4083 {
4084 if (strncmp (bfd_get_section_name (input_bfd, o),
4085 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
4086 {
4087 sec = h->call_fp_stub;
4088 break;
4089 }
4090 }
4091 if (sec == NULL)
4092 sec = h->call_stub;
4093 }
4094 else if (h->call_stub != NULL)
4095 sec = h->call_stub;
4096 else
4097 sec = h->call_fp_stub;
4098
4099 BFD_ASSERT (sec->size > 0);
4100 symbol = sec->output_section->vma + sec->output_offset;
4101 }
4102
4103 /* Calls from 16-bit code to 32-bit code and vice versa require the
4104 special jalx instruction. */
4105 *require_jalxp = (!info->relocatable
4106 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4107 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4108
4109 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4110 local_sections, TRUE);
4111
4112 /* If we haven't already determined the GOT offset, or the GP value,
4113 and we're going to need it, get it now. */
4114 switch (r_type)
4115 {
4116 case R_MIPS_GOT_PAGE:
4117 case R_MIPS_GOT_OFST:
4118 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4119 bind locally. */
4120 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
4121 if (local_p || r_type == R_MIPS_GOT_OFST)
4122 break;
4123 /* Fall through. */
4124
4125 case R_MIPS_CALL16:
4126 case R_MIPS_GOT16:
4127 case R_MIPS_GOT_DISP:
4128 case R_MIPS_GOT_HI16:
4129 case R_MIPS_CALL_HI16:
4130 case R_MIPS_GOT_LO16:
4131 case R_MIPS_CALL_LO16:
4132 case R_MIPS_TLS_GD:
4133 case R_MIPS_TLS_GOTTPREL:
4134 case R_MIPS_TLS_LDM:
4135 /* Find the index into the GOT where this value is located. */
4136 if (r_type == R_MIPS_TLS_LDM)
4137 {
4138 g = mips_elf_local_got_index (abfd, input_bfd, info,
4139 sec, 0, 0, NULL, r_type);
4140 if (g == MINUS_ONE)
4141 return bfd_reloc_outofrange;
4142 }
4143 else if (!local_p)
4144 {
4145 /* On VxWorks, CALL relocations should refer to the .got.plt
4146 entry, which is initialized to point at the PLT stub. */
4147 if (htab->is_vxworks
4148 && (r_type == R_MIPS_CALL_HI16
4149 || r_type == R_MIPS_CALL_LO16
4150 || r_type == R_MIPS_CALL16))
4151 {
4152 BFD_ASSERT (addend == 0);
4153 BFD_ASSERT (h->root.needs_plt);
4154 g = mips_elf_gotplt_index (info, &h->root);
4155 }
4156 else
4157 {
4158 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4159 GOT_PAGE relocation that decays to GOT_DISP because the
4160 symbol turns out to be global. The addend is then added
4161 as GOT_OFST. */
4162 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4163 g = mips_elf_global_got_index (dynobj, input_bfd,
4164 &h->root, r_type, info);
4165 if (h->tls_type == GOT_NORMAL
4166 && (! elf_hash_table(info)->dynamic_sections_created
4167 || (info->shared
4168 && (info->symbolic || h->root.forced_local)
4169 && h->root.def_regular)))
4170 {
4171 /* This is a static link or a -Bsymbolic link. The
4172 symbol is defined locally, or was forced to be local.
4173 We must initialize this entry in the GOT. */
4174 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4175 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4176 }
4177 }
4178 }
4179 else if (!htab->is_vxworks
4180 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4181 /* The calculation below does not involve "g". */
4182 break;
4183 else
4184 {
4185 g = mips_elf_local_got_index (abfd, input_bfd, info, sec,
4186 symbol + addend, r_symndx, h, r_type);
4187 if (g == MINUS_ONE)
4188 return bfd_reloc_outofrange;
4189 }
4190
4191 /* Convert GOT indices to actual offsets. */
4192 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
4193 break;
4194
4195 case R_MIPS_HI16:
4196 case R_MIPS_LO16:
4197 case R_MIPS_GPREL16:
4198 case R_MIPS_GPREL32:
4199 case R_MIPS_LITERAL:
4200 case R_MIPS16_HI16:
4201 case R_MIPS16_LO16:
4202 case R_MIPS16_GPREL:
4203 gp0 = _bfd_get_gp_value (input_bfd);
4204 gp = _bfd_get_gp_value (abfd);
4205 if (dynobj)
4206 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
4207 input_bfd);
4208 break;
4209
4210 default:
4211 break;
4212 }
4213
4214 if (gnu_local_gp_p)
4215 symbol = gp;
4216
4217 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4218 symbols are resolved by the loader. Add them to .rela.dyn. */
4219 if (h != NULL && is_gott_symbol (info, &h->root))
4220 {
4221 Elf_Internal_Rela outrel;
4222 bfd_byte *loc;
4223 asection *s;
4224
4225 s = mips_elf_rel_dyn_section (info, FALSE);
4226 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4227
4228 outrel.r_offset = (input_section->output_section->vma
4229 + input_section->output_offset
4230 + relocation->r_offset);
4231 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4232 outrel.r_addend = addend;
4233 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4234 *valuep = 0;
4235 return bfd_reloc_ok;
4236 }
4237
4238 /* Figure out what kind of relocation is being performed. */
4239 switch (r_type)
4240 {
4241 case R_MIPS_NONE:
4242 return bfd_reloc_continue;
4243
4244 case R_MIPS_16:
4245 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
4246 overflowed_p = mips_elf_overflow_p (value, 16);
4247 break;
4248
4249 case R_MIPS_32:
4250 case R_MIPS_REL32:
4251 case R_MIPS_64:
4252 if ((info->shared
4253 || (!htab->is_vxworks
4254 && htab->root.dynamic_sections_created
4255 && h != NULL
4256 && h->root.def_dynamic
4257 && !h->root.def_regular))
4258 && r_symndx != 0
4259 && (input_section->flags & SEC_ALLOC) != 0)
4260 {
4261 /* If we're creating a shared library, or this relocation is
4262 against a symbol in a shared library, then we can't know
4263 where the symbol will end up. So, we create a relocation
4264 record in the output, and leave the job up to the dynamic
4265 linker.
4266
4267 In VxWorks executables, references to external symbols
4268 are handled using copy relocs or PLT stubs, so there's
4269 no need to add a dynamic relocation here. */
4270 value = addend;
4271 if (!mips_elf_create_dynamic_relocation (abfd,
4272 info,
4273 relocation,
4274 h,
4275 sec,
4276 symbol,
4277 &value,
4278 input_section))
4279 return bfd_reloc_undefined;
4280 }
4281 else
4282 {
4283 if (r_type != R_MIPS_REL32)
4284 value = symbol + addend;
4285 else
4286 value = addend;
4287 }
4288 value &= howto->dst_mask;
4289 break;
4290
4291 case R_MIPS_PC32:
4292 value = symbol + addend - p;
4293 value &= howto->dst_mask;
4294 break;
4295
4296 case R_MIPS16_26:
4297 /* The calculation for R_MIPS16_26 is just the same as for an
4298 R_MIPS_26. It's only the storage of the relocated field into
4299 the output file that's different. That's handled in
4300 mips_elf_perform_relocation. So, we just fall through to the
4301 R_MIPS_26 case here. */
4302 case R_MIPS_26:
4303 if (local_p)
4304 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4305 else
4306 {
4307 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4308 if (h->root.root.type != bfd_link_hash_undefweak)
4309 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4310 }
4311 value &= howto->dst_mask;
4312 break;
4313
4314 case R_MIPS_TLS_DTPREL_HI16:
4315 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4316 & howto->dst_mask);
4317 break;
4318
4319 case R_MIPS_TLS_DTPREL_LO16:
4320 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4321 break;
4322
4323 case R_MIPS_TLS_TPREL_HI16:
4324 value = (mips_elf_high (addend + symbol - tprel_base (info))
4325 & howto->dst_mask);
4326 break;
4327
4328 case R_MIPS_TLS_TPREL_LO16:
4329 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4330 break;
4331
4332 case R_MIPS_HI16:
4333 case R_MIPS16_HI16:
4334 if (!gp_disp_p)
4335 {
4336 value = mips_elf_high (addend + symbol);
4337 value &= howto->dst_mask;
4338 }
4339 else
4340 {
4341 /* For MIPS16 ABI code we generate this sequence
4342 0: li $v0,%hi(_gp_disp)
4343 4: addiupc $v1,%lo(_gp_disp)
4344 8: sll $v0,16
4345 12: addu $v0,$v1
4346 14: move $gp,$v0
4347 So the offsets of hi and lo relocs are the same, but the
4348 $pc is four higher than $t9 would be, so reduce
4349 both reloc addends by 4. */
4350 if (r_type == R_MIPS16_HI16)
4351 value = mips_elf_high (addend + gp - p - 4);
4352 else
4353 value = mips_elf_high (addend + gp - p);
4354 overflowed_p = mips_elf_overflow_p (value, 16);
4355 }
4356 break;
4357
4358 case R_MIPS_LO16:
4359 case R_MIPS16_LO16:
4360 if (!gp_disp_p)
4361 value = (symbol + addend) & howto->dst_mask;
4362 else
4363 {
4364 /* See the comment for R_MIPS16_HI16 above for the reason
4365 for this conditional. */
4366 if (r_type == R_MIPS16_LO16)
4367 value = addend + gp - p;
4368 else
4369 value = addend + gp - p + 4;
4370 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4371 for overflow. But, on, say, IRIX5, relocations against
4372 _gp_disp are normally generated from the .cpload
4373 pseudo-op. It generates code that normally looks like
4374 this:
4375
4376 lui $gp,%hi(_gp_disp)
4377 addiu $gp,$gp,%lo(_gp_disp)
4378 addu $gp,$gp,$t9
4379
4380 Here $t9 holds the address of the function being called,
4381 as required by the MIPS ELF ABI. The R_MIPS_LO16
4382 relocation can easily overflow in this situation, but the
4383 R_MIPS_HI16 relocation will handle the overflow.
4384 Therefore, we consider this a bug in the MIPS ABI, and do
4385 not check for overflow here. */
4386 }
4387 break;
4388
4389 case R_MIPS_LITERAL:
4390 /* Because we don't merge literal sections, we can handle this
4391 just like R_MIPS_GPREL16. In the long run, we should merge
4392 shared literals, and then we will need to additional work
4393 here. */
4394
4395 /* Fall through. */
4396
4397 case R_MIPS16_GPREL:
4398 /* The R_MIPS16_GPREL performs the same calculation as
4399 R_MIPS_GPREL16, but stores the relocated bits in a different
4400 order. We don't need to do anything special here; the
4401 differences are handled in mips_elf_perform_relocation. */
4402 case R_MIPS_GPREL16:
4403 /* Only sign-extend the addend if it was extracted from the
4404 instruction. If the addend was separate, leave it alone,
4405 otherwise we may lose significant bits. */
4406 if (howto->partial_inplace)
4407 addend = _bfd_mips_elf_sign_extend (addend, 16);
4408 value = symbol + addend - gp;
4409 /* If the symbol was local, any earlier relocatable links will
4410 have adjusted its addend with the gp offset, so compensate
4411 for that now. Don't do it for symbols forced local in this
4412 link, though, since they won't have had the gp offset applied
4413 to them before. */
4414 if (was_local_p)
4415 value += gp0;
4416 overflowed_p = mips_elf_overflow_p (value, 16);
4417 break;
4418
4419 case R_MIPS_GOT16:
4420 case R_MIPS_CALL16:
4421 /* VxWorks does not have separate local and global semantics for
4422 R_MIPS_GOT16; every relocation evaluates to "G". */
4423 if (!htab->is_vxworks && local_p)
4424 {
4425 bfd_boolean forced;
4426
4427 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4428 local_sections, FALSE);
4429 value = mips_elf_got16_entry (abfd, input_bfd, info, sec,
4430 symbol + addend, forced);
4431 if (value == MINUS_ONE)
4432 return bfd_reloc_outofrange;
4433 value
4434 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4435 overflowed_p = mips_elf_overflow_p (value, 16);
4436 break;
4437 }
4438
4439 /* Fall through. */
4440
4441 case R_MIPS_TLS_GD:
4442 case R_MIPS_TLS_GOTTPREL:
4443 case R_MIPS_TLS_LDM:
4444 case R_MIPS_GOT_DISP:
4445 got_disp:
4446 value = g;
4447 overflowed_p = mips_elf_overflow_p (value, 16);
4448 break;
4449
4450 case R_MIPS_GPREL32:
4451 value = (addend + symbol + gp0 - gp);
4452 if (!save_addend)
4453 value &= howto->dst_mask;
4454 break;
4455
4456 case R_MIPS_PC16:
4457 case R_MIPS_GNU_REL16_S2:
4458 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4459 overflowed_p = mips_elf_overflow_p (value, 18);
4460 value = (value >> 2) & howto->dst_mask;
4461 break;
4462
4463 case R_MIPS_GOT_HI16:
4464 case R_MIPS_CALL_HI16:
4465 /* We're allowed to handle these two relocations identically.
4466 The dynamic linker is allowed to handle the CALL relocations
4467 differently by creating a lazy evaluation stub. */
4468 value = g;
4469 value = mips_elf_high (value);
4470 value &= howto->dst_mask;
4471 break;
4472
4473 case R_MIPS_GOT_LO16:
4474 case R_MIPS_CALL_LO16:
4475 value = g & howto->dst_mask;
4476 break;
4477
4478 case R_MIPS_GOT_PAGE:
4479 /* GOT_PAGE relocations that reference non-local symbols decay
4480 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4481 0. */
4482 if (! local_p)
4483 goto got_disp;
4484 value = mips_elf_got_page (abfd, input_bfd, info, sec,
4485 symbol + addend, NULL);
4486 if (value == MINUS_ONE)
4487 return bfd_reloc_outofrange;
4488 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4489 overflowed_p = mips_elf_overflow_p (value, 16);
4490 break;
4491
4492 case R_MIPS_GOT_OFST:
4493 if (local_p)
4494 mips_elf_got_page (abfd, input_bfd, info, sec,
4495 symbol + addend, &value);
4496 else
4497 value = addend;
4498 overflowed_p = mips_elf_overflow_p (value, 16);
4499 break;
4500
4501 case R_MIPS_SUB:
4502 value = symbol - addend;
4503 value &= howto->dst_mask;
4504 break;
4505
4506 case R_MIPS_HIGHER:
4507 value = mips_elf_higher (addend + symbol);
4508 value &= howto->dst_mask;
4509 break;
4510
4511 case R_MIPS_HIGHEST:
4512 value = mips_elf_highest (addend + symbol);
4513 value &= howto->dst_mask;
4514 break;
4515
4516 case R_MIPS_SCN_DISP:
4517 value = symbol + addend - sec->output_offset;
4518 value &= howto->dst_mask;
4519 break;
4520
4521 case R_MIPS_JALR:
4522 /* This relocation is only a hint. In some cases, we optimize
4523 it into a bal instruction. But we don't try to optimize
4524 branches to the PLT; that will wind up wasting time. */
4525 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4526 return bfd_reloc_continue;
4527 value = symbol + addend;
4528 break;
4529
4530 case R_MIPS_PJUMP:
4531 case R_MIPS_GNU_VTINHERIT:
4532 case R_MIPS_GNU_VTENTRY:
4533 /* We don't do anything with these at present. */
4534 return bfd_reloc_continue;
4535
4536 default:
4537 /* An unrecognized relocation type. */
4538 return bfd_reloc_notsupported;
4539 }
4540
4541 /* Store the VALUE for our caller. */
4542 *valuep = value;
4543 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4544 }
4545
4546 /* Obtain the field relocated by RELOCATION. */
4547
4548 static bfd_vma
4549 mips_elf_obtain_contents (reloc_howto_type *howto,
4550 const Elf_Internal_Rela *relocation,
4551 bfd *input_bfd, bfd_byte *contents)
4552 {
4553 bfd_vma x;
4554 bfd_byte *location = contents + relocation->r_offset;
4555
4556 /* Obtain the bytes. */
4557 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4558
4559 return x;
4560 }
4561
4562 /* It has been determined that the result of the RELOCATION is the
4563 VALUE. Use HOWTO to place VALUE into the output file at the
4564 appropriate position. The SECTION is the section to which the
4565 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4566 for the relocation must be either JAL or JALX, and it is
4567 unconditionally converted to JALX.
4568
4569 Returns FALSE if anything goes wrong. */
4570
4571 static bfd_boolean
4572 mips_elf_perform_relocation (struct bfd_link_info *info,
4573 reloc_howto_type *howto,
4574 const Elf_Internal_Rela *relocation,
4575 bfd_vma value, bfd *input_bfd,
4576 asection *input_section, bfd_byte *contents,
4577 bfd_boolean require_jalx)
4578 {
4579 bfd_vma x;
4580 bfd_byte *location;
4581 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4582
4583 /* Figure out where the relocation is occurring. */
4584 location = contents + relocation->r_offset;
4585
4586 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4587
4588 /* Obtain the current value. */
4589 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4590
4591 /* Clear the field we are setting. */
4592 x &= ~howto->dst_mask;
4593
4594 /* Set the field. */
4595 x |= (value & howto->dst_mask);
4596
4597 /* If required, turn JAL into JALX. */
4598 if (require_jalx)
4599 {
4600 bfd_boolean ok;
4601 bfd_vma opcode = x >> 26;
4602 bfd_vma jalx_opcode;
4603
4604 /* Check to see if the opcode is already JAL or JALX. */
4605 if (r_type == R_MIPS16_26)
4606 {
4607 ok = ((opcode == 0x6) || (opcode == 0x7));
4608 jalx_opcode = 0x7;
4609 }
4610 else
4611 {
4612 ok = ((opcode == 0x3) || (opcode == 0x1d));
4613 jalx_opcode = 0x1d;
4614 }
4615
4616 /* If the opcode is not JAL or JALX, there's a problem. */
4617 if (!ok)
4618 {
4619 (*_bfd_error_handler)
4620 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4621 input_bfd,
4622 input_section,
4623 (unsigned long) relocation->r_offset);
4624 bfd_set_error (bfd_error_bad_value);
4625 return FALSE;
4626 }
4627
4628 /* Make this the JALX opcode. */
4629 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4630 }
4631
4632 /* On the RM9000, bal is faster than jal, because bal uses branch
4633 prediction hardware. If we are linking for the RM9000, and we
4634 see jal, and bal fits, use it instead. Note that this
4635 transformation should be safe for all architectures. */
4636 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4637 && !info->relocatable
4638 && !require_jalx
4639 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4640 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4641 {
4642 bfd_vma addr;
4643 bfd_vma dest;
4644 bfd_signed_vma off;
4645
4646 addr = (input_section->output_section->vma
4647 + input_section->output_offset
4648 + relocation->r_offset
4649 + 4);
4650 if (r_type == R_MIPS_26)
4651 dest = (value << 2) | ((addr >> 28) << 28);
4652 else
4653 dest = value;
4654 off = dest - addr;
4655 if (off <= 0x1ffff && off >= -0x20000)
4656 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4657 }
4658
4659 /* Put the value into the output. */
4660 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
4661
4662 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4663 location);
4664
4665 return TRUE;
4666 }
4667
4668 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4669
4670 static bfd_boolean
4671 mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
4672 {
4673 const char *name = bfd_get_section_name (abfd, section);
4674
4675 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
4676 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
4677 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
4678 }
4679 \f
4680 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4681
4682 static void
4683 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4684 unsigned int n)
4685 {
4686 asection *s;
4687 struct mips_elf_link_hash_table *htab;
4688
4689 htab = mips_elf_hash_table (info);
4690 s = mips_elf_rel_dyn_section (info, FALSE);
4691 BFD_ASSERT (s != NULL);
4692
4693 if (htab->is_vxworks)
4694 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4695 else
4696 {
4697 if (s->size == 0)
4698 {
4699 /* Make room for a null element. */
4700 s->size += MIPS_ELF_REL_SIZE (abfd);
4701 ++s->reloc_count;
4702 }
4703 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4704 }
4705 }
4706
4707 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4708 is the original relocation, which is now being transformed into a
4709 dynamic relocation. The ADDENDP is adjusted if necessary; the
4710 caller should store the result in place of the original addend. */
4711
4712 static bfd_boolean
4713 mips_elf_create_dynamic_relocation (bfd *output_bfd,
4714 struct bfd_link_info *info,
4715 const Elf_Internal_Rela *rel,
4716 struct mips_elf_link_hash_entry *h,
4717 asection *sec, bfd_vma symbol,
4718 bfd_vma *addendp, asection *input_section)
4719 {
4720 Elf_Internal_Rela outrel[3];
4721 asection *sreloc;
4722 bfd *dynobj;
4723 int r_type;
4724 long indx;
4725 bfd_boolean defined_p;
4726 struct mips_elf_link_hash_table *htab;
4727
4728 htab = mips_elf_hash_table (info);
4729 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4730 dynobj = elf_hash_table (info)->dynobj;
4731 sreloc = mips_elf_rel_dyn_section (info, FALSE);
4732 BFD_ASSERT (sreloc != NULL);
4733 BFD_ASSERT (sreloc->contents != NULL);
4734 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
4735 < sreloc->size);
4736
4737 outrel[0].r_offset =
4738 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4739 outrel[1].r_offset =
4740 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4741 outrel[2].r_offset =
4742 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4743
4744 if (outrel[0].r_offset == MINUS_ONE)
4745 /* The relocation field has been deleted. */
4746 return TRUE;
4747
4748 if (outrel[0].r_offset == MINUS_TWO)
4749 {
4750 /* The relocation field has been converted into a relative value of
4751 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4752 the field to be fully relocated, so add in the symbol's value. */
4753 *addendp += symbol;
4754 return TRUE;
4755 }
4756
4757 /* We must now calculate the dynamic symbol table index to use
4758 in the relocation. */
4759 if (h != NULL
4760 && (!h->root.def_regular
4761 || (info->shared && !info->symbolic && !h->root.forced_local)))
4762 {
4763 indx = h->root.dynindx;
4764 if (SGI_COMPAT (output_bfd))
4765 defined_p = h->root.def_regular;
4766 else
4767 /* ??? glibc's ld.so just adds the final GOT entry to the
4768 relocation field. It therefore treats relocs against
4769 defined symbols in the same way as relocs against
4770 undefined symbols. */
4771 defined_p = FALSE;
4772 }
4773 else
4774 {
4775 if (sec != NULL && bfd_is_abs_section (sec))
4776 indx = 0;
4777 else if (sec == NULL || sec->owner == NULL)
4778 {
4779 bfd_set_error (bfd_error_bad_value);
4780 return FALSE;
4781 }
4782 else
4783 {
4784 indx = elf_section_data (sec->output_section)->dynindx;
4785 if (indx == 0)
4786 abort ();
4787 }
4788
4789 /* Instead of generating a relocation using the section
4790 symbol, we may as well make it a fully relative
4791 relocation. We want to avoid generating relocations to
4792 local symbols because we used to generate them
4793 incorrectly, without adding the original symbol value,
4794 which is mandated by the ABI for section symbols. In
4795 order to give dynamic loaders and applications time to
4796 phase out the incorrect use, we refrain from emitting
4797 section-relative relocations. It's not like they're
4798 useful, after all. This should be a bit more efficient
4799 as well. */
4800 /* ??? Although this behavior is compatible with glibc's ld.so,
4801 the ABI says that relocations against STN_UNDEF should have
4802 a symbol value of 0. Irix rld honors this, so relocations
4803 against STN_UNDEF have no effect. */
4804 if (!SGI_COMPAT (output_bfd))
4805 indx = 0;
4806 defined_p = TRUE;
4807 }
4808
4809 /* If the relocation was previously an absolute relocation and
4810 this symbol will not be referred to by the relocation, we must
4811 adjust it by the value we give it in the dynamic symbol table.
4812 Otherwise leave the job up to the dynamic linker. */
4813 if (defined_p && r_type != R_MIPS_REL32)
4814 *addendp += symbol;
4815
4816 if (htab->is_vxworks)
4817 /* VxWorks uses non-relative relocations for this. */
4818 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4819 else
4820 /* The relocation is always an REL32 relocation because we don't
4821 know where the shared library will wind up at load-time. */
4822 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4823 R_MIPS_REL32);
4824
4825 /* For strict adherence to the ABI specification, we should
4826 generate a R_MIPS_64 relocation record by itself before the
4827 _REL32/_64 record as well, such that the addend is read in as
4828 a 64-bit value (REL32 is a 32-bit relocation, after all).
4829 However, since none of the existing ELF64 MIPS dynamic
4830 loaders seems to care, we don't waste space with these
4831 artificial relocations. If this turns out to not be true,
4832 mips_elf_allocate_dynamic_relocation() should be tweaked so
4833 as to make room for a pair of dynamic relocations per
4834 invocation if ABI_64_P, and here we should generate an
4835 additional relocation record with R_MIPS_64 by itself for a
4836 NULL symbol before this relocation record. */
4837 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4838 ABI_64_P (output_bfd)
4839 ? R_MIPS_64
4840 : R_MIPS_NONE);
4841 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4842
4843 /* Adjust the output offset of the relocation to reference the
4844 correct location in the output file. */
4845 outrel[0].r_offset += (input_section->output_section->vma
4846 + input_section->output_offset);
4847 outrel[1].r_offset += (input_section->output_section->vma
4848 + input_section->output_offset);
4849 outrel[2].r_offset += (input_section->output_section->vma
4850 + input_section->output_offset);
4851
4852 /* Put the relocation back out. We have to use the special
4853 relocation outputter in the 64-bit case since the 64-bit
4854 relocation format is non-standard. */
4855 if (ABI_64_P (output_bfd))
4856 {
4857 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4858 (output_bfd, &outrel[0],
4859 (sreloc->contents
4860 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4861 }
4862 else if (htab->is_vxworks)
4863 {
4864 /* VxWorks uses RELA rather than REL dynamic relocations. */
4865 outrel[0].r_addend = *addendp;
4866 bfd_elf32_swap_reloca_out
4867 (output_bfd, &outrel[0],
4868 (sreloc->contents
4869 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4870 }
4871 else
4872 bfd_elf32_swap_reloc_out
4873 (output_bfd, &outrel[0],
4874 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4875
4876 /* We've now added another relocation. */
4877 ++sreloc->reloc_count;
4878
4879 /* Make sure the output section is writable. The dynamic linker
4880 will be writing to it. */
4881 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4882 |= SHF_WRITE;
4883
4884 /* On IRIX5, make an entry of compact relocation info. */
4885 if (IRIX_COMPAT (output_bfd) == ict_irix5)
4886 {
4887 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4888 bfd_byte *cr;
4889
4890 if (scpt)
4891 {
4892 Elf32_crinfo cptrel;
4893
4894 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4895 cptrel.vaddr = (rel->r_offset
4896 + input_section->output_section->vma
4897 + input_section->output_offset);
4898 if (r_type == R_MIPS_REL32)
4899 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4900 else
4901 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4902 mips_elf_set_cr_dist2to (cptrel, 0);
4903 cptrel.konst = *addendp;
4904
4905 cr = (scpt->contents
4906 + sizeof (Elf32_External_compact_rel));
4907 mips_elf_set_cr_relvaddr (cptrel, 0);
4908 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4909 ((Elf32_External_crinfo *) cr
4910 + scpt->reloc_count));
4911 ++scpt->reloc_count;
4912 }
4913 }
4914
4915 return TRUE;
4916 }
4917 \f
4918 /* Return the MACH for a MIPS e_flags value. */
4919
4920 unsigned long
4921 _bfd_elf_mips_mach (flagword flags)
4922 {
4923 switch (flags & EF_MIPS_MACH)
4924 {
4925 case E_MIPS_MACH_3900:
4926 return bfd_mach_mips3900;
4927
4928 case E_MIPS_MACH_4010:
4929 return bfd_mach_mips4010;
4930
4931 case E_MIPS_MACH_4100:
4932 return bfd_mach_mips4100;
4933
4934 case E_MIPS_MACH_4111:
4935 return bfd_mach_mips4111;
4936
4937 case E_MIPS_MACH_4120:
4938 return bfd_mach_mips4120;
4939
4940 case E_MIPS_MACH_4650:
4941 return bfd_mach_mips4650;
4942
4943 case E_MIPS_MACH_5400:
4944 return bfd_mach_mips5400;
4945
4946 case E_MIPS_MACH_5500:
4947 return bfd_mach_mips5500;
4948
4949 case E_MIPS_MACH_9000:
4950 return bfd_mach_mips9000;
4951
4952 case E_MIPS_MACH_SB1:
4953 return bfd_mach_mips_sb1;
4954
4955 default:
4956 switch (flags & EF_MIPS_ARCH)
4957 {
4958 default:
4959 case E_MIPS_ARCH_1:
4960 return bfd_mach_mips3000;
4961
4962 case E_MIPS_ARCH_2:
4963 return bfd_mach_mips6000;
4964
4965 case E_MIPS_ARCH_3:
4966 return bfd_mach_mips4000;
4967
4968 case E_MIPS_ARCH_4:
4969 return bfd_mach_mips8000;
4970
4971 case E_MIPS_ARCH_5:
4972 return bfd_mach_mips5;
4973
4974 case E_MIPS_ARCH_32:
4975 return bfd_mach_mipsisa32;
4976
4977 case E_MIPS_ARCH_64:
4978 return bfd_mach_mipsisa64;
4979
4980 case E_MIPS_ARCH_32R2:
4981 return bfd_mach_mipsisa32r2;
4982
4983 case E_MIPS_ARCH_64R2:
4984 return bfd_mach_mipsisa64r2;
4985 }
4986 }
4987
4988 return 0;
4989 }
4990
4991 /* Return printable name for ABI. */
4992
4993 static INLINE char *
4994 elf_mips_abi_name (bfd *abfd)
4995 {
4996 flagword flags;
4997
4998 flags = elf_elfheader (abfd)->e_flags;
4999 switch (flags & EF_MIPS_ABI)
5000 {
5001 case 0:
5002 if (ABI_N32_P (abfd))
5003 return "N32";
5004 else if (ABI_64_P (abfd))
5005 return "64";
5006 else
5007 return "none";
5008 case E_MIPS_ABI_O32:
5009 return "O32";
5010 case E_MIPS_ABI_O64:
5011 return "O64";
5012 case E_MIPS_ABI_EABI32:
5013 return "EABI32";
5014 case E_MIPS_ABI_EABI64:
5015 return "EABI64";
5016 default:
5017 return "unknown abi";
5018 }
5019 }
5020 \f
5021 /* MIPS ELF uses two common sections. One is the usual one, and the
5022 other is for small objects. All the small objects are kept
5023 together, and then referenced via the gp pointer, which yields
5024 faster assembler code. This is what we use for the small common
5025 section. This approach is copied from ecoff.c. */
5026 static asection mips_elf_scom_section;
5027 static asymbol mips_elf_scom_symbol;
5028 static asymbol *mips_elf_scom_symbol_ptr;
5029
5030 /* MIPS ELF also uses an acommon section, which represents an
5031 allocated common symbol which may be overridden by a
5032 definition in a shared library. */
5033 static asection mips_elf_acom_section;
5034 static asymbol mips_elf_acom_symbol;
5035 static asymbol *mips_elf_acom_symbol_ptr;
5036
5037 /* Handle the special MIPS section numbers that a symbol may use.
5038 This is used for both the 32-bit and the 64-bit ABI. */
5039
5040 void
5041 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5042 {
5043 elf_symbol_type *elfsym;
5044
5045 elfsym = (elf_symbol_type *) asym;
5046 switch (elfsym->internal_elf_sym.st_shndx)
5047 {
5048 case SHN_MIPS_ACOMMON:
5049 /* This section is used in a dynamically linked executable file.
5050 It is an allocated common section. The dynamic linker can
5051 either resolve these symbols to something in a shared
5052 library, or it can just leave them here. For our purposes,
5053 we can consider these symbols to be in a new section. */
5054 if (mips_elf_acom_section.name == NULL)
5055 {
5056 /* Initialize the acommon section. */
5057 mips_elf_acom_section.name = ".acommon";
5058 mips_elf_acom_section.flags = SEC_ALLOC;
5059 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5060 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5061 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5062 mips_elf_acom_symbol.name = ".acommon";
5063 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5064 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5065 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5066 }
5067 asym->section = &mips_elf_acom_section;
5068 break;
5069
5070 case SHN_COMMON:
5071 /* Common symbols less than the GP size are automatically
5072 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5073 if (asym->value > elf_gp_size (abfd)
5074 || IRIX_COMPAT (abfd) == ict_irix6)
5075 break;
5076 /* Fall through. */
5077 case SHN_MIPS_SCOMMON:
5078 if (mips_elf_scom_section.name == NULL)
5079 {
5080 /* Initialize the small common section. */
5081 mips_elf_scom_section.name = ".scommon";
5082 mips_elf_scom_section.flags = SEC_IS_COMMON;
5083 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5084 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5085 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5086 mips_elf_scom_symbol.name = ".scommon";
5087 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5088 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5089 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5090 }
5091 asym->section = &mips_elf_scom_section;
5092 asym->value = elfsym->internal_elf_sym.st_size;
5093 break;
5094
5095 case SHN_MIPS_SUNDEFINED:
5096 asym->section = bfd_und_section_ptr;
5097 break;
5098
5099 case SHN_MIPS_TEXT:
5100 {
5101 asection *section = bfd_get_section_by_name (abfd, ".text");
5102
5103 BFD_ASSERT (SGI_COMPAT (abfd));
5104 if (section != NULL)
5105 {
5106 asym->section = section;
5107 /* MIPS_TEXT is a bit special, the address is not an offset
5108 to the base of the .text section. So substract the section
5109 base address to make it an offset. */
5110 asym->value -= section->vma;
5111 }
5112 }
5113 break;
5114
5115 case SHN_MIPS_DATA:
5116 {
5117 asection *section = bfd_get_section_by_name (abfd, ".data");
5118
5119 BFD_ASSERT (SGI_COMPAT (abfd));
5120 if (section != NULL)
5121 {
5122 asym->section = section;
5123 /* MIPS_DATA is a bit special, the address is not an offset
5124 to the base of the .data section. So substract the section
5125 base address to make it an offset. */
5126 asym->value -= section->vma;
5127 }
5128 }
5129 break;
5130 }
5131 }
5132 \f
5133 /* Implement elf_backend_eh_frame_address_size. This differs from
5134 the default in the way it handles EABI64.
5135
5136 EABI64 was originally specified as an LP64 ABI, and that is what
5137 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5138 historically accepted the combination of -mabi=eabi and -mlong32,
5139 and this ILP32 variation has become semi-official over time.
5140 Both forms use elf32 and have pointer-sized FDE addresses.
5141
5142 If an EABI object was generated by GCC 4.0 or above, it will have
5143 an empty .gcc_compiled_longXX section, where XX is the size of longs
5144 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5145 have no special marking to distinguish them from LP64 objects.
5146
5147 We don't want users of the official LP64 ABI to be punished for the
5148 existence of the ILP32 variant, but at the same time, we don't want
5149 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5150 We therefore take the following approach:
5151
5152 - If ABFD contains a .gcc_compiled_longXX section, use it to
5153 determine the pointer size.
5154
5155 - Otherwise check the type of the first relocation. Assume that
5156 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5157
5158 - Otherwise punt.
5159
5160 The second check is enough to detect LP64 objects generated by pre-4.0
5161 compilers because, in the kind of output generated by those compilers,
5162 the first relocation will be associated with either a CIE personality
5163 routine or an FDE start address. Furthermore, the compilers never
5164 used a special (non-pointer) encoding for this ABI.
5165
5166 Checking the relocation type should also be safe because there is no
5167 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5168 did so. */
5169
5170 unsigned int
5171 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5172 {
5173 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5174 return 8;
5175 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5176 {
5177 bfd_boolean long32_p, long64_p;
5178
5179 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5180 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5181 if (long32_p && long64_p)
5182 return 0;
5183 if (long32_p)
5184 return 4;
5185 if (long64_p)
5186 return 8;
5187
5188 if (sec->reloc_count > 0
5189 && elf_section_data (sec)->relocs != NULL
5190 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5191 == R_MIPS_64))
5192 return 8;
5193
5194 return 0;
5195 }
5196 return 4;
5197 }
5198 \f
5199 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5200 relocations against two unnamed section symbols to resolve to the
5201 same address. For example, if we have code like:
5202
5203 lw $4,%got_disp(.data)($gp)
5204 lw $25,%got_disp(.text)($gp)
5205 jalr $25
5206
5207 then the linker will resolve both relocations to .data and the program
5208 will jump there rather than to .text.
5209
5210 We can work around this problem by giving names to local section symbols.
5211 This is also what the MIPSpro tools do. */
5212
5213 bfd_boolean
5214 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5215 {
5216 return SGI_COMPAT (abfd);
5217 }
5218 \f
5219 /* Work over a section just before writing it out. This routine is
5220 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5221 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5222 a better way. */
5223
5224 bfd_boolean
5225 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
5226 {
5227 if (hdr->sh_type == SHT_MIPS_REGINFO
5228 && hdr->sh_size > 0)
5229 {
5230 bfd_byte buf[4];
5231
5232 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5233 BFD_ASSERT (hdr->contents == NULL);
5234
5235 if (bfd_seek (abfd,
5236 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5237 SEEK_SET) != 0)
5238 return FALSE;
5239 H_PUT_32 (abfd, elf_gp (abfd), buf);
5240 if (bfd_bwrite (buf, 4, abfd) != 4)
5241 return FALSE;
5242 }
5243
5244 if (hdr->sh_type == SHT_MIPS_OPTIONS
5245 && hdr->bfd_section != NULL
5246 && mips_elf_section_data (hdr->bfd_section) != NULL
5247 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
5248 {
5249 bfd_byte *contents, *l, *lend;
5250
5251 /* We stored the section contents in the tdata field in the
5252 set_section_contents routine. We save the section contents
5253 so that we don't have to read them again.
5254 At this point we know that elf_gp is set, so we can look
5255 through the section contents to see if there is an
5256 ODK_REGINFO structure. */
5257
5258 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
5259 l = contents;
5260 lend = contents + hdr->sh_size;
5261 while (l + sizeof (Elf_External_Options) <= lend)
5262 {
5263 Elf_Internal_Options intopt;
5264
5265 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5266 &intopt);
5267 if (intopt.size < sizeof (Elf_External_Options))
5268 {
5269 (*_bfd_error_handler)
5270 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5271 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5272 break;
5273 }
5274 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5275 {
5276 bfd_byte buf[8];
5277
5278 if (bfd_seek (abfd,
5279 (hdr->sh_offset
5280 + (l - contents)
5281 + sizeof (Elf_External_Options)
5282 + (sizeof (Elf64_External_RegInfo) - 8)),
5283 SEEK_SET) != 0)
5284 return FALSE;
5285 H_PUT_64 (abfd, elf_gp (abfd), buf);
5286 if (bfd_bwrite (buf, 8, abfd) != 8)
5287 return FALSE;
5288 }
5289 else if (intopt.kind == ODK_REGINFO)
5290 {
5291 bfd_byte buf[4];
5292
5293 if (bfd_seek (abfd,
5294 (hdr->sh_offset
5295 + (l - contents)
5296 + sizeof (Elf_External_Options)
5297 + (sizeof (Elf32_External_RegInfo) - 4)),
5298 SEEK_SET) != 0)
5299 return FALSE;
5300 H_PUT_32 (abfd, elf_gp (abfd), buf);
5301 if (bfd_bwrite (buf, 4, abfd) != 4)
5302 return FALSE;
5303 }
5304 l += intopt.size;
5305 }
5306 }
5307
5308 if (hdr->bfd_section != NULL)
5309 {
5310 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5311
5312 if (strcmp (name, ".sdata") == 0
5313 || strcmp (name, ".lit8") == 0
5314 || strcmp (name, ".lit4") == 0)
5315 {
5316 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5317 hdr->sh_type = SHT_PROGBITS;
5318 }
5319 else if (strcmp (name, ".sbss") == 0)
5320 {
5321 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5322 hdr->sh_type = SHT_NOBITS;
5323 }
5324 else if (strcmp (name, ".srdata") == 0)
5325 {
5326 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5327 hdr->sh_type = SHT_PROGBITS;
5328 }
5329 else if (strcmp (name, ".compact_rel") == 0)
5330 {
5331 hdr->sh_flags = 0;
5332 hdr->sh_type = SHT_PROGBITS;
5333 }
5334 else if (strcmp (name, ".rtproc") == 0)
5335 {
5336 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5337 {
5338 unsigned int adjust;
5339
5340 adjust = hdr->sh_size % hdr->sh_addralign;
5341 if (adjust != 0)
5342 hdr->sh_size += hdr->sh_addralign - adjust;
5343 }
5344 }
5345 }
5346
5347 return TRUE;
5348 }
5349
5350 /* Handle a MIPS specific section when reading an object file. This
5351 is called when elfcode.h finds a section with an unknown type.
5352 This routine supports both the 32-bit and 64-bit ELF ABI.
5353
5354 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5355 how to. */
5356
5357 bfd_boolean
5358 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5359 Elf_Internal_Shdr *hdr,
5360 const char *name,
5361 int shindex)
5362 {
5363 flagword flags = 0;
5364
5365 /* There ought to be a place to keep ELF backend specific flags, but
5366 at the moment there isn't one. We just keep track of the
5367 sections by their name, instead. Fortunately, the ABI gives
5368 suggested names for all the MIPS specific sections, so we will
5369 probably get away with this. */
5370 switch (hdr->sh_type)
5371 {
5372 case SHT_MIPS_LIBLIST:
5373 if (strcmp (name, ".liblist") != 0)
5374 return FALSE;
5375 break;
5376 case SHT_MIPS_MSYM:
5377 if (strcmp (name, ".msym") != 0)
5378 return FALSE;
5379 break;
5380 case SHT_MIPS_CONFLICT:
5381 if (strcmp (name, ".conflict") != 0)
5382 return FALSE;
5383 break;
5384 case SHT_MIPS_GPTAB:
5385 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
5386 return FALSE;
5387 break;
5388 case SHT_MIPS_UCODE:
5389 if (strcmp (name, ".ucode") != 0)
5390 return FALSE;
5391 break;
5392 case SHT_MIPS_DEBUG:
5393 if (strcmp (name, ".mdebug") != 0)
5394 return FALSE;
5395 flags = SEC_DEBUGGING;
5396 break;
5397 case SHT_MIPS_REGINFO:
5398 if (strcmp (name, ".reginfo") != 0
5399 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5400 return FALSE;
5401 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5402 break;
5403 case SHT_MIPS_IFACE:
5404 if (strcmp (name, ".MIPS.interfaces") != 0)
5405 return FALSE;
5406 break;
5407 case SHT_MIPS_CONTENT:
5408 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
5409 return FALSE;
5410 break;
5411 case SHT_MIPS_OPTIONS:
5412 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5413 return FALSE;
5414 break;
5415 case SHT_MIPS_DWARF:
5416 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
5417 return FALSE;
5418 break;
5419 case SHT_MIPS_SYMBOL_LIB:
5420 if (strcmp (name, ".MIPS.symlib") != 0)
5421 return FALSE;
5422 break;
5423 case SHT_MIPS_EVENTS:
5424 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
5425 && strncmp (name, ".MIPS.post_rel",
5426 sizeof ".MIPS.post_rel" - 1) != 0)
5427 return FALSE;
5428 break;
5429 default:
5430 break;
5431 }
5432
5433 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5434 return FALSE;
5435
5436 if (flags)
5437 {
5438 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5439 (bfd_get_section_flags (abfd,
5440 hdr->bfd_section)
5441 | flags)))
5442 return FALSE;
5443 }
5444
5445 /* FIXME: We should record sh_info for a .gptab section. */
5446
5447 /* For a .reginfo section, set the gp value in the tdata information
5448 from the contents of this section. We need the gp value while
5449 processing relocs, so we just get it now. The .reginfo section
5450 is not used in the 64-bit MIPS ELF ABI. */
5451 if (hdr->sh_type == SHT_MIPS_REGINFO)
5452 {
5453 Elf32_External_RegInfo ext;
5454 Elf32_RegInfo s;
5455
5456 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5457 &ext, 0, sizeof ext))
5458 return FALSE;
5459 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5460 elf_gp (abfd) = s.ri_gp_value;
5461 }
5462
5463 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5464 set the gp value based on what we find. We may see both
5465 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5466 they should agree. */
5467 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5468 {
5469 bfd_byte *contents, *l, *lend;
5470
5471 contents = bfd_malloc (hdr->sh_size);
5472 if (contents == NULL)
5473 return FALSE;
5474 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5475 0, hdr->sh_size))
5476 {
5477 free (contents);
5478 return FALSE;
5479 }
5480 l = contents;
5481 lend = contents + hdr->sh_size;
5482 while (l + sizeof (Elf_External_Options) <= lend)
5483 {
5484 Elf_Internal_Options intopt;
5485
5486 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5487 &intopt);
5488 if (intopt.size < sizeof (Elf_External_Options))
5489 {
5490 (*_bfd_error_handler)
5491 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5492 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5493 break;
5494 }
5495 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5496 {
5497 Elf64_Internal_RegInfo intreg;
5498
5499 bfd_mips_elf64_swap_reginfo_in
5500 (abfd,
5501 ((Elf64_External_RegInfo *)
5502 (l + sizeof (Elf_External_Options))),
5503 &intreg);
5504 elf_gp (abfd) = intreg.ri_gp_value;
5505 }
5506 else if (intopt.kind == ODK_REGINFO)
5507 {
5508 Elf32_RegInfo intreg;
5509
5510 bfd_mips_elf32_swap_reginfo_in
5511 (abfd,
5512 ((Elf32_External_RegInfo *)
5513 (l + sizeof (Elf_External_Options))),
5514 &intreg);
5515 elf_gp (abfd) = intreg.ri_gp_value;
5516 }
5517 l += intopt.size;
5518 }
5519 free (contents);
5520 }
5521
5522 return TRUE;
5523 }
5524
5525 /* Set the correct type for a MIPS ELF section. We do this by the
5526 section name, which is a hack, but ought to work. This routine is
5527 used by both the 32-bit and the 64-bit ABI. */
5528
5529 bfd_boolean
5530 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5531 {
5532 register const char *name;
5533 unsigned int sh_type;
5534
5535 name = bfd_get_section_name (abfd, sec);
5536 sh_type = hdr->sh_type;
5537
5538 if (strcmp (name, ".liblist") == 0)
5539 {
5540 hdr->sh_type = SHT_MIPS_LIBLIST;
5541 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5542 /* The sh_link field is set in final_write_processing. */
5543 }
5544 else if (strcmp (name, ".conflict") == 0)
5545 hdr->sh_type = SHT_MIPS_CONFLICT;
5546 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
5547 {
5548 hdr->sh_type = SHT_MIPS_GPTAB;
5549 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5550 /* The sh_info field is set in final_write_processing. */
5551 }
5552 else if (strcmp (name, ".ucode") == 0)
5553 hdr->sh_type = SHT_MIPS_UCODE;
5554 else if (strcmp (name, ".mdebug") == 0)
5555 {
5556 hdr->sh_type = SHT_MIPS_DEBUG;
5557 /* In a shared object on IRIX 5.3, the .mdebug section has an
5558 entsize of 0. FIXME: Does this matter? */
5559 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5560 hdr->sh_entsize = 0;
5561 else
5562 hdr->sh_entsize = 1;
5563 }
5564 else if (strcmp (name, ".reginfo") == 0)
5565 {
5566 hdr->sh_type = SHT_MIPS_REGINFO;
5567 /* In a shared object on IRIX 5.3, the .reginfo section has an
5568 entsize of 0x18. FIXME: Does this matter? */
5569 if (SGI_COMPAT (abfd))
5570 {
5571 if ((abfd->flags & DYNAMIC) != 0)
5572 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5573 else
5574 hdr->sh_entsize = 1;
5575 }
5576 else
5577 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5578 }
5579 else if (SGI_COMPAT (abfd)
5580 && (strcmp (name, ".hash") == 0
5581 || strcmp (name, ".dynamic") == 0
5582 || strcmp (name, ".dynstr") == 0))
5583 {
5584 if (SGI_COMPAT (abfd))
5585 hdr->sh_entsize = 0;
5586 #if 0
5587 /* This isn't how the IRIX6 linker behaves. */
5588 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5589 #endif
5590 }
5591 else if (strcmp (name, ".got") == 0
5592 || strcmp (name, ".srdata") == 0
5593 || strcmp (name, ".sdata") == 0
5594 || strcmp (name, ".sbss") == 0
5595 || strcmp (name, ".lit4") == 0
5596 || strcmp (name, ".lit8") == 0)
5597 hdr->sh_flags |= SHF_MIPS_GPREL;
5598 else if (strcmp (name, ".MIPS.interfaces") == 0)
5599 {
5600 hdr->sh_type = SHT_MIPS_IFACE;
5601 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5602 }
5603 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
5604 {
5605 hdr->sh_type = SHT_MIPS_CONTENT;
5606 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5607 /* The sh_info field is set in final_write_processing. */
5608 }
5609 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5610 {
5611 hdr->sh_type = SHT_MIPS_OPTIONS;
5612 hdr->sh_entsize = 1;
5613 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5614 }
5615 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
5616 hdr->sh_type = SHT_MIPS_DWARF;
5617 else if (strcmp (name, ".MIPS.symlib") == 0)
5618 {
5619 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5620 /* The sh_link and sh_info fields are set in
5621 final_write_processing. */
5622 }
5623 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
5624 || strncmp (name, ".MIPS.post_rel",
5625 sizeof ".MIPS.post_rel" - 1) == 0)
5626 {
5627 hdr->sh_type = SHT_MIPS_EVENTS;
5628 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5629 /* The sh_link field is set in final_write_processing. */
5630 }
5631 else if (strcmp (name, ".msym") == 0)
5632 {
5633 hdr->sh_type = SHT_MIPS_MSYM;
5634 hdr->sh_flags |= SHF_ALLOC;
5635 hdr->sh_entsize = 8;
5636 }
5637
5638 /* In the unlikely event a special section is empty it has to lose its
5639 special meaning. This may happen e.g. when using `strip' with the
5640 "--only-keep-debug" option. */
5641 if (sec->size > 0 && !(sec->flags & SEC_HAS_CONTENTS))
5642 hdr->sh_type = sh_type;
5643
5644 /* The generic elf_fake_sections will set up REL_HDR using the default
5645 kind of relocations. We used to set up a second header for the
5646 non-default kind of relocations here, but only NewABI would use
5647 these, and the IRIX ld doesn't like resulting empty RELA sections.
5648 Thus we create those header only on demand now. */
5649
5650 return TRUE;
5651 }
5652
5653 /* Given a BFD section, try to locate the corresponding ELF section
5654 index. This is used by both the 32-bit and the 64-bit ABI.
5655 Actually, it's not clear to me that the 64-bit ABI supports these,
5656 but for non-PIC objects we will certainly want support for at least
5657 the .scommon section. */
5658
5659 bfd_boolean
5660 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5661 asection *sec, int *retval)
5662 {
5663 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5664 {
5665 *retval = SHN_MIPS_SCOMMON;
5666 return TRUE;
5667 }
5668 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5669 {
5670 *retval = SHN_MIPS_ACOMMON;
5671 return TRUE;
5672 }
5673 return FALSE;
5674 }
5675 \f
5676 /* Hook called by the linker routine which adds symbols from an object
5677 file. We must handle the special MIPS section numbers here. */
5678
5679 bfd_boolean
5680 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
5681 Elf_Internal_Sym *sym, const char **namep,
5682 flagword *flagsp ATTRIBUTE_UNUSED,
5683 asection **secp, bfd_vma *valp)
5684 {
5685 if (SGI_COMPAT (abfd)
5686 && (abfd->flags & DYNAMIC) != 0
5687 && strcmp (*namep, "_rld_new_interface") == 0)
5688 {
5689 /* Skip IRIX5 rld entry name. */
5690 *namep = NULL;
5691 return TRUE;
5692 }
5693
5694 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5695 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5696 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5697 a magic symbol resolved by the linker, we ignore this bogus definition
5698 of _gp_disp. New ABI objects do not suffer from this problem so this
5699 is not done for them. */
5700 if (!NEWABI_P(abfd)
5701 && (sym->st_shndx == SHN_ABS)
5702 && (strcmp (*namep, "_gp_disp") == 0))
5703 {
5704 *namep = NULL;
5705 return TRUE;
5706 }
5707
5708 switch (sym->st_shndx)
5709 {
5710 case SHN_COMMON:
5711 /* Common symbols less than the GP size are automatically
5712 treated as SHN_MIPS_SCOMMON symbols. */
5713 if (sym->st_size > elf_gp_size (abfd)
5714 || IRIX_COMPAT (abfd) == ict_irix6)
5715 break;
5716 /* Fall through. */
5717 case SHN_MIPS_SCOMMON:
5718 *secp = bfd_make_section_old_way (abfd, ".scommon");
5719 (*secp)->flags |= SEC_IS_COMMON;
5720 *valp = sym->st_size;
5721 break;
5722
5723 case SHN_MIPS_TEXT:
5724 /* This section is used in a shared object. */
5725 if (elf_tdata (abfd)->elf_text_section == NULL)
5726 {
5727 asymbol *elf_text_symbol;
5728 asection *elf_text_section;
5729 bfd_size_type amt = sizeof (asection);
5730
5731 elf_text_section = bfd_zalloc (abfd, amt);
5732 if (elf_text_section == NULL)
5733 return FALSE;
5734
5735 amt = sizeof (asymbol);
5736 elf_text_symbol = bfd_zalloc (abfd, amt);
5737 if (elf_text_symbol == NULL)
5738 return FALSE;
5739
5740 /* Initialize the section. */
5741
5742 elf_tdata (abfd)->elf_text_section = elf_text_section;
5743 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5744
5745 elf_text_section->symbol = elf_text_symbol;
5746 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5747
5748 elf_text_section->name = ".text";
5749 elf_text_section->flags = SEC_NO_FLAGS;
5750 elf_text_section->output_section = NULL;
5751 elf_text_section->owner = abfd;
5752 elf_text_symbol->name = ".text";
5753 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5754 elf_text_symbol->section = elf_text_section;
5755 }
5756 /* This code used to do *secp = bfd_und_section_ptr if
5757 info->shared. I don't know why, and that doesn't make sense,
5758 so I took it out. */
5759 *secp = elf_tdata (abfd)->elf_text_section;
5760 break;
5761
5762 case SHN_MIPS_ACOMMON:
5763 /* Fall through. XXX Can we treat this as allocated data? */
5764 case SHN_MIPS_DATA:
5765 /* This section is used in a shared object. */
5766 if (elf_tdata (abfd)->elf_data_section == NULL)
5767 {
5768 asymbol *elf_data_symbol;
5769 asection *elf_data_section;
5770 bfd_size_type amt = sizeof (asection);
5771
5772 elf_data_section = bfd_zalloc (abfd, amt);
5773 if (elf_data_section == NULL)
5774 return FALSE;
5775
5776 amt = sizeof (asymbol);
5777 elf_data_symbol = bfd_zalloc (abfd, amt);
5778 if (elf_data_symbol == NULL)
5779 return FALSE;
5780
5781 /* Initialize the section. */
5782
5783 elf_tdata (abfd)->elf_data_section = elf_data_section;
5784 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5785
5786 elf_data_section->symbol = elf_data_symbol;
5787 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5788
5789 elf_data_section->name = ".data";
5790 elf_data_section->flags = SEC_NO_FLAGS;
5791 elf_data_section->output_section = NULL;
5792 elf_data_section->owner = abfd;
5793 elf_data_symbol->name = ".data";
5794 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5795 elf_data_symbol->section = elf_data_section;
5796 }
5797 /* This code used to do *secp = bfd_und_section_ptr if
5798 info->shared. I don't know why, and that doesn't make sense,
5799 so I took it out. */
5800 *secp = elf_tdata (abfd)->elf_data_section;
5801 break;
5802
5803 case SHN_MIPS_SUNDEFINED:
5804 *secp = bfd_und_section_ptr;
5805 break;
5806 }
5807
5808 if (SGI_COMPAT (abfd)
5809 && ! info->shared
5810 && info->hash->creator == abfd->xvec
5811 && strcmp (*namep, "__rld_obj_head") == 0)
5812 {
5813 struct elf_link_hash_entry *h;
5814 struct bfd_link_hash_entry *bh;
5815
5816 /* Mark __rld_obj_head as dynamic. */
5817 bh = NULL;
5818 if (! (_bfd_generic_link_add_one_symbol
5819 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
5820 get_elf_backend_data (abfd)->collect, &bh)))
5821 return FALSE;
5822
5823 h = (struct elf_link_hash_entry *) bh;
5824 h->non_elf = 0;
5825 h->def_regular = 1;
5826 h->type = STT_OBJECT;
5827
5828 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5829 return FALSE;
5830
5831 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
5832 }
5833
5834 /* If this is a mips16 text symbol, add 1 to the value to make it
5835 odd. This will cause something like .word SYM to come up with
5836 the right value when it is loaded into the PC. */
5837 if (sym->st_other == STO_MIPS16)
5838 ++*valp;
5839
5840 return TRUE;
5841 }
5842
5843 /* This hook function is called before the linker writes out a global
5844 symbol. We mark symbols as small common if appropriate. This is
5845 also where we undo the increment of the value for a mips16 symbol. */
5846
5847 bfd_boolean
5848 _bfd_mips_elf_link_output_symbol_hook
5849 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5850 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5851 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
5852 {
5853 /* If we see a common symbol, which implies a relocatable link, then
5854 if a symbol was small common in an input file, mark it as small
5855 common in the output file. */
5856 if (sym->st_shndx == SHN_COMMON
5857 && strcmp (input_sec->name, ".scommon") == 0)
5858 sym->st_shndx = SHN_MIPS_SCOMMON;
5859
5860 if (sym->st_other == STO_MIPS16)
5861 sym->st_value &= ~1;
5862
5863 return TRUE;
5864 }
5865 \f
5866 /* Functions for the dynamic linker. */
5867
5868 /* Create dynamic sections when linking against a dynamic object. */
5869
5870 bfd_boolean
5871 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
5872 {
5873 struct elf_link_hash_entry *h;
5874 struct bfd_link_hash_entry *bh;
5875 flagword flags;
5876 register asection *s;
5877 const char * const *namep;
5878 struct mips_elf_link_hash_table *htab;
5879
5880 htab = mips_elf_hash_table (info);
5881 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5882 | SEC_LINKER_CREATED | SEC_READONLY);
5883
5884 /* The psABI requires a read-only .dynamic section, but the VxWorks
5885 EABI doesn't. */
5886 if (!htab->is_vxworks)
5887 {
5888 s = bfd_get_section_by_name (abfd, ".dynamic");
5889 if (s != NULL)
5890 {
5891 if (! bfd_set_section_flags (abfd, s, flags))
5892 return FALSE;
5893 }
5894 }
5895
5896 /* We need to create .got section. */
5897 if (! mips_elf_create_got_section (abfd, info, FALSE))
5898 return FALSE;
5899
5900 if (! mips_elf_rel_dyn_section (info, TRUE))
5901 return FALSE;
5902
5903 /* Create .stub section. */
5904 if (bfd_get_section_by_name (abfd,
5905 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5906 {
5907 s = bfd_make_section_with_flags (abfd,
5908 MIPS_ELF_STUB_SECTION_NAME (abfd),
5909 flags | SEC_CODE);
5910 if (s == NULL
5911 || ! bfd_set_section_alignment (abfd, s,
5912 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5913 return FALSE;
5914 }
5915
5916 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5917 && !info->shared
5918 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5919 {
5920 s = bfd_make_section_with_flags (abfd, ".rld_map",
5921 flags &~ (flagword) SEC_READONLY);
5922 if (s == NULL
5923 || ! bfd_set_section_alignment (abfd, s,
5924 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5925 return FALSE;
5926 }
5927
5928 /* On IRIX5, we adjust add some additional symbols and change the
5929 alignments of several sections. There is no ABI documentation
5930 indicating that this is necessary on IRIX6, nor any evidence that
5931 the linker takes such action. */
5932 if (IRIX_COMPAT (abfd) == ict_irix5)
5933 {
5934 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5935 {
5936 bh = NULL;
5937 if (! (_bfd_generic_link_add_one_symbol
5938 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5939 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5940 return FALSE;
5941
5942 h = (struct elf_link_hash_entry *) bh;
5943 h->non_elf = 0;
5944 h->def_regular = 1;
5945 h->type = STT_SECTION;
5946
5947 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5948 return FALSE;
5949 }
5950
5951 /* We need to create a .compact_rel section. */
5952 if (SGI_COMPAT (abfd))
5953 {
5954 if (!mips_elf_create_compact_rel_section (abfd, info))
5955 return FALSE;
5956 }
5957
5958 /* Change alignments of some sections. */
5959 s = bfd_get_section_by_name (abfd, ".hash");
5960 if (s != NULL)
5961 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5962 s = bfd_get_section_by_name (abfd, ".dynsym");
5963 if (s != NULL)
5964 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5965 s = bfd_get_section_by_name (abfd, ".dynstr");
5966 if (s != NULL)
5967 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5968 s = bfd_get_section_by_name (abfd, ".reginfo");
5969 if (s != NULL)
5970 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5971 s = bfd_get_section_by_name (abfd, ".dynamic");
5972 if (s != NULL)
5973 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5974 }
5975
5976 if (!info->shared)
5977 {
5978 const char *name;
5979
5980 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
5981 bh = NULL;
5982 if (!(_bfd_generic_link_add_one_symbol
5983 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
5984 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5985 return FALSE;
5986
5987 h = (struct elf_link_hash_entry *) bh;
5988 h->non_elf = 0;
5989 h->def_regular = 1;
5990 h->type = STT_SECTION;
5991
5992 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5993 return FALSE;
5994
5995 if (! mips_elf_hash_table (info)->use_rld_obj_head)
5996 {
5997 /* __rld_map is a four byte word located in the .data section
5998 and is filled in by the rtld to contain a pointer to
5999 the _r_debug structure. Its symbol value will be set in
6000 _bfd_mips_elf_finish_dynamic_symbol. */
6001 s = bfd_get_section_by_name (abfd, ".rld_map");
6002 BFD_ASSERT (s != NULL);
6003
6004 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6005 bh = NULL;
6006 if (!(_bfd_generic_link_add_one_symbol
6007 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6008 get_elf_backend_data (abfd)->collect, &bh)))
6009 return FALSE;
6010
6011 h = (struct elf_link_hash_entry *) bh;
6012 h->non_elf = 0;
6013 h->def_regular = 1;
6014 h->type = STT_OBJECT;
6015
6016 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6017 return FALSE;
6018 }
6019 }
6020
6021 if (htab->is_vxworks)
6022 {
6023 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6024 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6025 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6026 return FALSE;
6027
6028 /* Cache the sections created above. */
6029 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6030 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6031 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6032 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6033 if (!htab->sdynbss
6034 || (!htab->srelbss && !info->shared)
6035 || !htab->srelplt
6036 || !htab->splt)
6037 abort ();
6038
6039 /* Do the usual VxWorks handling. */
6040 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6041 return FALSE;
6042
6043 /* Work out the PLT sizes. */
6044 if (info->shared)
6045 {
6046 htab->plt_header_size
6047 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6048 htab->plt_entry_size
6049 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6050 }
6051 else
6052 {
6053 htab->plt_header_size
6054 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6055 htab->plt_entry_size
6056 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6057 }
6058 }
6059
6060 return TRUE;
6061 }
6062 \f
6063 /* Look through the relocs for a section during the first phase, and
6064 allocate space in the global offset table. */
6065
6066 bfd_boolean
6067 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6068 asection *sec, const Elf_Internal_Rela *relocs)
6069 {
6070 const char *name;
6071 bfd *dynobj;
6072 Elf_Internal_Shdr *symtab_hdr;
6073 struct elf_link_hash_entry **sym_hashes;
6074 struct mips_got_info *g;
6075 size_t extsymoff;
6076 const Elf_Internal_Rela *rel;
6077 const Elf_Internal_Rela *rel_end;
6078 asection *sgot;
6079 asection *sreloc;
6080 const struct elf_backend_data *bed;
6081 struct mips_elf_link_hash_table *htab;
6082
6083 if (info->relocatable)
6084 return TRUE;
6085
6086 htab = mips_elf_hash_table (info);
6087 dynobj = elf_hash_table (info)->dynobj;
6088 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6089 sym_hashes = elf_sym_hashes (abfd);
6090 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6091
6092 /* Check for the mips16 stub sections. */
6093
6094 name = bfd_get_section_name (abfd, sec);
6095 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
6096 {
6097 unsigned long r_symndx;
6098
6099 /* Look at the relocation information to figure out which symbol
6100 this is for. */
6101
6102 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6103
6104 if (r_symndx < extsymoff
6105 || sym_hashes[r_symndx - extsymoff] == NULL)
6106 {
6107 asection *o;
6108
6109 /* This stub is for a local symbol. This stub will only be
6110 needed if there is some relocation in this BFD, other
6111 than a 16 bit function call, which refers to this symbol. */
6112 for (o = abfd->sections; o != NULL; o = o->next)
6113 {
6114 Elf_Internal_Rela *sec_relocs;
6115 const Elf_Internal_Rela *r, *rend;
6116
6117 /* We can ignore stub sections when looking for relocs. */
6118 if ((o->flags & SEC_RELOC) == 0
6119 || o->reloc_count == 0
6120 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
6121 sizeof FN_STUB - 1) == 0
6122 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
6123 sizeof CALL_STUB - 1) == 0
6124 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
6125 sizeof CALL_FP_STUB - 1) == 0)
6126 continue;
6127
6128 sec_relocs
6129 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6130 info->keep_memory);
6131 if (sec_relocs == NULL)
6132 return FALSE;
6133
6134 rend = sec_relocs + o->reloc_count;
6135 for (r = sec_relocs; r < rend; r++)
6136 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6137 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6138 break;
6139
6140 if (elf_section_data (o)->relocs != sec_relocs)
6141 free (sec_relocs);
6142
6143 if (r < rend)
6144 break;
6145 }
6146
6147 if (o == NULL)
6148 {
6149 /* There is no non-call reloc for this stub, so we do
6150 not need it. Since this function is called before
6151 the linker maps input sections to output sections, we
6152 can easily discard it by setting the SEC_EXCLUDE
6153 flag. */
6154 sec->flags |= SEC_EXCLUDE;
6155 return TRUE;
6156 }
6157
6158 /* Record this stub in an array of local symbol stubs for
6159 this BFD. */
6160 if (elf_tdata (abfd)->local_stubs == NULL)
6161 {
6162 unsigned long symcount;
6163 asection **n;
6164 bfd_size_type amt;
6165
6166 if (elf_bad_symtab (abfd))
6167 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6168 else
6169 symcount = symtab_hdr->sh_info;
6170 amt = symcount * sizeof (asection *);
6171 n = bfd_zalloc (abfd, amt);
6172 if (n == NULL)
6173 return FALSE;
6174 elf_tdata (abfd)->local_stubs = n;
6175 }
6176
6177 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6178
6179 /* We don't need to set mips16_stubs_seen in this case.
6180 That flag is used to see whether we need to look through
6181 the global symbol table for stubs. We don't need to set
6182 it here, because we just have a local stub. */
6183 }
6184 else
6185 {
6186 struct mips_elf_link_hash_entry *h;
6187
6188 h = ((struct mips_elf_link_hash_entry *)
6189 sym_hashes[r_symndx - extsymoff]);
6190
6191 while (h->root.root.type == bfd_link_hash_indirect
6192 || h->root.root.type == bfd_link_hash_warning)
6193 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6194
6195 /* H is the symbol this stub is for. */
6196
6197 h->fn_stub = sec;
6198 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6199 }
6200 }
6201 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
6202 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6203 {
6204 unsigned long r_symndx;
6205 struct mips_elf_link_hash_entry *h;
6206 asection **loc;
6207
6208 /* Look at the relocation information to figure out which symbol
6209 this is for. */
6210
6211 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6212
6213 if (r_symndx < extsymoff
6214 || sym_hashes[r_symndx - extsymoff] == NULL)
6215 {
6216 /* This stub was actually built for a static symbol defined
6217 in the same file. We assume that all static symbols in
6218 mips16 code are themselves mips16, so we can simply
6219 discard this stub. Since this function is called before
6220 the linker maps input sections to output sections, we can
6221 easily discard it by setting the SEC_EXCLUDE flag. */
6222 sec->flags |= SEC_EXCLUDE;
6223 return TRUE;
6224 }
6225
6226 h = ((struct mips_elf_link_hash_entry *)
6227 sym_hashes[r_symndx - extsymoff]);
6228
6229 /* H is the symbol this stub is for. */
6230
6231 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6232 loc = &h->call_fp_stub;
6233 else
6234 loc = &h->call_stub;
6235
6236 /* If we already have an appropriate stub for this function, we
6237 don't need another one, so we can discard this one. Since
6238 this function is called before the linker maps input sections
6239 to output sections, we can easily discard it by setting the
6240 SEC_EXCLUDE flag. We can also discard this section if we
6241 happen to already know that this is a mips16 function; it is
6242 not necessary to check this here, as it is checked later, but
6243 it is slightly faster to check now. */
6244 if (*loc != NULL || h->root.other == STO_MIPS16)
6245 {
6246 sec->flags |= SEC_EXCLUDE;
6247 return TRUE;
6248 }
6249
6250 *loc = sec;
6251 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6252 }
6253
6254 if (dynobj == NULL)
6255 {
6256 sgot = NULL;
6257 g = NULL;
6258 }
6259 else
6260 {
6261 sgot = mips_elf_got_section (dynobj, FALSE);
6262 if (sgot == NULL)
6263 g = NULL;
6264 else
6265 {
6266 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6267 g = mips_elf_section_data (sgot)->u.got_info;
6268 BFD_ASSERT (g != NULL);
6269 }
6270 }
6271
6272 sreloc = NULL;
6273 bed = get_elf_backend_data (abfd);
6274 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6275 for (rel = relocs; rel < rel_end; ++rel)
6276 {
6277 unsigned long r_symndx;
6278 unsigned int r_type;
6279 struct elf_link_hash_entry *h;
6280
6281 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6282 r_type = ELF_R_TYPE (abfd, rel->r_info);
6283
6284 if (r_symndx < extsymoff)
6285 h = NULL;
6286 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6287 {
6288 (*_bfd_error_handler)
6289 (_("%B: Malformed reloc detected for section %s"),
6290 abfd, name);
6291 bfd_set_error (bfd_error_bad_value);
6292 return FALSE;
6293 }
6294 else
6295 {
6296 h = sym_hashes[r_symndx - extsymoff];
6297
6298 /* This may be an indirect symbol created because of a version. */
6299 if (h != NULL)
6300 {
6301 while (h->root.type == bfd_link_hash_indirect)
6302 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6303 }
6304 }
6305
6306 /* Some relocs require a global offset table. */
6307 if (dynobj == NULL || sgot == NULL)
6308 {
6309 switch (r_type)
6310 {
6311 case R_MIPS_GOT16:
6312 case R_MIPS_CALL16:
6313 case R_MIPS_CALL_HI16:
6314 case R_MIPS_CALL_LO16:
6315 case R_MIPS_GOT_HI16:
6316 case R_MIPS_GOT_LO16:
6317 case R_MIPS_GOT_PAGE:
6318 case R_MIPS_GOT_OFST:
6319 case R_MIPS_GOT_DISP:
6320 case R_MIPS_TLS_GOTTPREL:
6321 case R_MIPS_TLS_GD:
6322 case R_MIPS_TLS_LDM:
6323 if (dynobj == NULL)
6324 elf_hash_table (info)->dynobj = dynobj = abfd;
6325 if (! mips_elf_create_got_section (dynobj, info, FALSE))
6326 return FALSE;
6327 g = mips_elf_got_info (dynobj, &sgot);
6328 if (htab->is_vxworks && !info->shared)
6329 {
6330 (*_bfd_error_handler)
6331 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6332 abfd, (unsigned long) rel->r_offset);
6333 bfd_set_error (bfd_error_bad_value);
6334 return FALSE;
6335 }
6336 break;
6337
6338 case R_MIPS_32:
6339 case R_MIPS_REL32:
6340 case R_MIPS_64:
6341 /* In VxWorks executables, references to external symbols
6342 are handled using copy relocs or PLT stubs, so there's
6343 no need to add a dynamic relocation here. */
6344 if (dynobj == NULL
6345 && (info->shared || (h != NULL && !htab->is_vxworks))
6346 && (sec->flags & SEC_ALLOC) != 0)
6347 elf_hash_table (info)->dynobj = dynobj = abfd;
6348 break;
6349
6350 default:
6351 break;
6352 }
6353 }
6354
6355 if (h)
6356 {
6357 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6358
6359 /* Relocations against the special VxWorks __GOTT_BASE__ and
6360 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6361 room for them in .rela.dyn. */
6362 if (is_gott_symbol (info, h))
6363 {
6364 if (sreloc == NULL)
6365 {
6366 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6367 if (sreloc == NULL)
6368 return FALSE;
6369 }
6370 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6371 }
6372 }
6373 else if (r_type == R_MIPS_CALL_LO16
6374 || r_type == R_MIPS_GOT_LO16
6375 || r_type == R_MIPS_GOT_DISP
6376 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
6377 {
6378 /* We may need a local GOT entry for this relocation. We
6379 don't count R_MIPS_GOT_PAGE because we can estimate the
6380 maximum number of pages needed by looking at the size of
6381 the segment. Similar comments apply to R_MIPS_GOT16 and
6382 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6383 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
6384 R_MIPS_CALL_HI16 because these are always followed by an
6385 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6386 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6387 rel->r_addend, g, 0))
6388 return FALSE;
6389 }
6390
6391 switch (r_type)
6392 {
6393 case R_MIPS_CALL16:
6394 if (h == NULL)
6395 {
6396 (*_bfd_error_handler)
6397 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6398 abfd, (unsigned long) rel->r_offset);
6399 bfd_set_error (bfd_error_bad_value);
6400 return FALSE;
6401 }
6402 /* Fall through. */
6403
6404 case R_MIPS_CALL_HI16:
6405 case R_MIPS_CALL_LO16:
6406 if (h != NULL)
6407 {
6408 /* VxWorks call relocations point the function's .got.plt
6409 entry, which will be allocated by adjust_dynamic_symbol.
6410 Otherwise, this symbol requires a global GOT entry. */
6411 if (!htab->is_vxworks
6412 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6413 return FALSE;
6414
6415 /* We need a stub, not a plt entry for the undefined
6416 function. But we record it as if it needs plt. See
6417 _bfd_elf_adjust_dynamic_symbol. */
6418 h->needs_plt = 1;
6419 h->type = STT_FUNC;
6420 }
6421 break;
6422
6423 case R_MIPS_GOT_PAGE:
6424 /* If this is a global, overridable symbol, GOT_PAGE will
6425 decay to GOT_DISP, so we'll need a GOT entry for it. */
6426 if (h == NULL)
6427 break;
6428 else
6429 {
6430 struct mips_elf_link_hash_entry *hmips =
6431 (struct mips_elf_link_hash_entry *) h;
6432
6433 while (hmips->root.root.type == bfd_link_hash_indirect
6434 || hmips->root.root.type == bfd_link_hash_warning)
6435 hmips = (struct mips_elf_link_hash_entry *)
6436 hmips->root.root.u.i.link;
6437
6438 if (hmips->root.def_regular
6439 && ! (info->shared && ! info->symbolic
6440 && ! hmips->root.forced_local))
6441 break;
6442 }
6443 /* Fall through. */
6444
6445 case R_MIPS_GOT16:
6446 case R_MIPS_GOT_HI16:
6447 case R_MIPS_GOT_LO16:
6448 case R_MIPS_GOT_DISP:
6449 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6450 return FALSE;
6451 break;
6452
6453 case R_MIPS_TLS_GOTTPREL:
6454 if (info->shared)
6455 info->flags |= DF_STATIC_TLS;
6456 /* Fall through */
6457
6458 case R_MIPS_TLS_LDM:
6459 if (r_type == R_MIPS_TLS_LDM)
6460 {
6461 r_symndx = 0;
6462 h = NULL;
6463 }
6464 /* Fall through */
6465
6466 case R_MIPS_TLS_GD:
6467 /* This symbol requires a global offset table entry, or two
6468 for TLS GD relocations. */
6469 {
6470 unsigned char flag = (r_type == R_MIPS_TLS_GD
6471 ? GOT_TLS_GD
6472 : r_type == R_MIPS_TLS_LDM
6473 ? GOT_TLS_LDM
6474 : GOT_TLS_IE);
6475 if (h != NULL)
6476 {
6477 struct mips_elf_link_hash_entry *hmips =
6478 (struct mips_elf_link_hash_entry *) h;
6479 hmips->tls_type |= flag;
6480
6481 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6482 return FALSE;
6483 }
6484 else
6485 {
6486 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6487
6488 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6489 rel->r_addend, g, flag))
6490 return FALSE;
6491 }
6492 }
6493 break;
6494
6495 case R_MIPS_32:
6496 case R_MIPS_REL32:
6497 case R_MIPS_64:
6498 /* In VxWorks executables, references to external symbols
6499 are handled using copy relocs or PLT stubs, so there's
6500 no need to add a .rela.dyn entry for this relocation. */
6501 if ((info->shared || (h != NULL && !htab->is_vxworks))
6502 && (sec->flags & SEC_ALLOC) != 0)
6503 {
6504 if (sreloc == NULL)
6505 {
6506 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6507 if (sreloc == NULL)
6508 return FALSE;
6509 }
6510 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
6511 if (info->shared)
6512 {
6513 /* When creating a shared object, we must copy these
6514 reloc types into the output file as R_MIPS_REL32
6515 relocs. Make room for this reloc in .rel(a).dyn. */
6516 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6517 if ((sec->flags & MIPS_READONLY_SECTION)
6518 == MIPS_READONLY_SECTION)
6519 /* We tell the dynamic linker that there are
6520 relocations against the text segment. */
6521 info->flags |= DF_TEXTREL;
6522 }
6523 else
6524 {
6525 struct mips_elf_link_hash_entry *hmips;
6526
6527 /* We only need to copy this reloc if the symbol is
6528 defined in a dynamic object. */
6529 hmips = (struct mips_elf_link_hash_entry *) h;
6530 ++hmips->possibly_dynamic_relocs;
6531 if ((sec->flags & MIPS_READONLY_SECTION)
6532 == MIPS_READONLY_SECTION)
6533 /* We need it to tell the dynamic linker if there
6534 are relocations against the text segment. */
6535 hmips->readonly_reloc = TRUE;
6536 }
6537
6538 /* Even though we don't directly need a GOT entry for
6539 this symbol, a symbol must have a dynamic symbol
6540 table index greater that DT_MIPS_GOTSYM if there are
6541 dynamic relocations against it. This does not apply
6542 to VxWorks, which does not have the usual coupling
6543 between global GOT entries and .dynsym entries. */
6544 if (h != NULL && !htab->is_vxworks)
6545 {
6546 if (dynobj == NULL)
6547 elf_hash_table (info)->dynobj = dynobj = abfd;
6548 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6549 return FALSE;
6550 g = mips_elf_got_info (dynobj, &sgot);
6551 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6552 return FALSE;
6553 }
6554 }
6555
6556 if (SGI_COMPAT (abfd))
6557 mips_elf_hash_table (info)->compact_rel_size +=
6558 sizeof (Elf32_External_crinfo);
6559 break;
6560
6561 case R_MIPS_PC16:
6562 if (h)
6563 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6564 break;
6565
6566 case R_MIPS_26:
6567 if (h)
6568 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6569 /* Fall through. */
6570
6571 case R_MIPS_GPREL16:
6572 case R_MIPS_LITERAL:
6573 case R_MIPS_GPREL32:
6574 if (SGI_COMPAT (abfd))
6575 mips_elf_hash_table (info)->compact_rel_size +=
6576 sizeof (Elf32_External_crinfo);
6577 break;
6578
6579 /* This relocation describes the C++ object vtable hierarchy.
6580 Reconstruct it for later use during GC. */
6581 case R_MIPS_GNU_VTINHERIT:
6582 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
6583 return FALSE;
6584 break;
6585
6586 /* This relocation describes which C++ vtable entries are actually
6587 used. Record for later use during GC. */
6588 case R_MIPS_GNU_VTENTRY:
6589 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
6590 return FALSE;
6591 break;
6592
6593 default:
6594 break;
6595 }
6596
6597 /* We must not create a stub for a symbol that has relocations
6598 related to taking the function's address. This doesn't apply to
6599 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6600 a normal .got entry. */
6601 if (!htab->is_vxworks && h != NULL)
6602 switch (r_type)
6603 {
6604 default:
6605 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6606 break;
6607 case R_MIPS_CALL16:
6608 case R_MIPS_CALL_HI16:
6609 case R_MIPS_CALL_LO16:
6610 case R_MIPS_JALR:
6611 break;
6612 }
6613
6614 /* If this reloc is not a 16 bit call, and it has a global
6615 symbol, then we will need the fn_stub if there is one.
6616 References from a stub section do not count. */
6617 if (h != NULL
6618 && r_type != R_MIPS16_26
6619 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
6620 sizeof FN_STUB - 1) != 0
6621 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
6622 sizeof CALL_STUB - 1) != 0
6623 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
6624 sizeof CALL_FP_STUB - 1) != 0)
6625 {
6626 struct mips_elf_link_hash_entry *mh;
6627
6628 mh = (struct mips_elf_link_hash_entry *) h;
6629 mh->need_fn_stub = TRUE;
6630 }
6631 }
6632
6633 return TRUE;
6634 }
6635 \f
6636 bfd_boolean
6637 _bfd_mips_relax_section (bfd *abfd, asection *sec,
6638 struct bfd_link_info *link_info,
6639 bfd_boolean *again)
6640 {
6641 Elf_Internal_Rela *internal_relocs;
6642 Elf_Internal_Rela *irel, *irelend;
6643 Elf_Internal_Shdr *symtab_hdr;
6644 bfd_byte *contents = NULL;
6645 size_t extsymoff;
6646 bfd_boolean changed_contents = FALSE;
6647 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6648 Elf_Internal_Sym *isymbuf = NULL;
6649
6650 /* We are not currently changing any sizes, so only one pass. */
6651 *again = FALSE;
6652
6653 if (link_info->relocatable)
6654 return TRUE;
6655
6656 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
6657 link_info->keep_memory);
6658 if (internal_relocs == NULL)
6659 return TRUE;
6660
6661 irelend = internal_relocs + sec->reloc_count
6662 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6663 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6664 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6665
6666 for (irel = internal_relocs; irel < irelend; irel++)
6667 {
6668 bfd_vma symval;
6669 bfd_signed_vma sym_offset;
6670 unsigned int r_type;
6671 unsigned long r_symndx;
6672 asection *sym_sec;
6673 unsigned long instruction;
6674
6675 /* Turn jalr into bgezal, and jr into beq, if they're marked
6676 with a JALR relocation, that indicate where they jump to.
6677 This saves some pipeline bubbles. */
6678 r_type = ELF_R_TYPE (abfd, irel->r_info);
6679 if (r_type != R_MIPS_JALR)
6680 continue;
6681
6682 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6683 /* Compute the address of the jump target. */
6684 if (r_symndx >= extsymoff)
6685 {
6686 struct mips_elf_link_hash_entry *h
6687 = ((struct mips_elf_link_hash_entry *)
6688 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6689
6690 while (h->root.root.type == bfd_link_hash_indirect
6691 || h->root.root.type == bfd_link_hash_warning)
6692 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6693
6694 /* If a symbol is undefined, or if it may be overridden,
6695 skip it. */
6696 if (! ((h->root.root.type == bfd_link_hash_defined
6697 || h->root.root.type == bfd_link_hash_defweak)
6698 && h->root.root.u.def.section)
6699 || (link_info->shared && ! link_info->symbolic
6700 && !h->root.forced_local))
6701 continue;
6702
6703 sym_sec = h->root.root.u.def.section;
6704 if (sym_sec->output_section)
6705 symval = (h->root.root.u.def.value
6706 + sym_sec->output_section->vma
6707 + sym_sec->output_offset);
6708 else
6709 symval = h->root.root.u.def.value;
6710 }
6711 else
6712 {
6713 Elf_Internal_Sym *isym;
6714
6715 /* Read this BFD's symbols if we haven't done so already. */
6716 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6717 {
6718 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6719 if (isymbuf == NULL)
6720 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6721 symtab_hdr->sh_info, 0,
6722 NULL, NULL, NULL);
6723 if (isymbuf == NULL)
6724 goto relax_return;
6725 }
6726
6727 isym = isymbuf + r_symndx;
6728 if (isym->st_shndx == SHN_UNDEF)
6729 continue;
6730 else if (isym->st_shndx == SHN_ABS)
6731 sym_sec = bfd_abs_section_ptr;
6732 else if (isym->st_shndx == SHN_COMMON)
6733 sym_sec = bfd_com_section_ptr;
6734 else
6735 sym_sec
6736 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6737 symval = isym->st_value
6738 + sym_sec->output_section->vma
6739 + sym_sec->output_offset;
6740 }
6741
6742 /* Compute branch offset, from delay slot of the jump to the
6743 branch target. */
6744 sym_offset = (symval + irel->r_addend)
6745 - (sec_start + irel->r_offset + 4);
6746
6747 /* Branch offset must be properly aligned. */
6748 if ((sym_offset & 3) != 0)
6749 continue;
6750
6751 sym_offset >>= 2;
6752
6753 /* Check that it's in range. */
6754 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6755 continue;
6756
6757 /* Get the section contents if we haven't done so already. */
6758 if (contents == NULL)
6759 {
6760 /* Get cached copy if it exists. */
6761 if (elf_section_data (sec)->this_hdr.contents != NULL)
6762 contents = elf_section_data (sec)->this_hdr.contents;
6763 else
6764 {
6765 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6766 goto relax_return;
6767 }
6768 }
6769
6770 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6771
6772 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6773 if ((instruction & 0xfc1fffff) == 0x0000f809)
6774 instruction = 0x04110000;
6775 /* If it was jr <reg>, turn it into b <target>. */
6776 else if ((instruction & 0xfc1fffff) == 0x00000008)
6777 instruction = 0x10000000;
6778 else
6779 continue;
6780
6781 instruction |= (sym_offset & 0xffff);
6782 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6783 changed_contents = TRUE;
6784 }
6785
6786 if (contents != NULL
6787 && elf_section_data (sec)->this_hdr.contents != contents)
6788 {
6789 if (!changed_contents && !link_info->keep_memory)
6790 free (contents);
6791 else
6792 {
6793 /* Cache the section contents for elf_link_input_bfd. */
6794 elf_section_data (sec)->this_hdr.contents = contents;
6795 }
6796 }
6797 return TRUE;
6798
6799 relax_return:
6800 if (contents != NULL
6801 && elf_section_data (sec)->this_hdr.contents != contents)
6802 free (contents);
6803 return FALSE;
6804 }
6805 \f
6806 /* Adjust a symbol defined by a dynamic object and referenced by a
6807 regular object. The current definition is in some section of the
6808 dynamic object, but we're not including those sections. We have to
6809 change the definition to something the rest of the link can
6810 understand. */
6811
6812 bfd_boolean
6813 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6814 struct elf_link_hash_entry *h)
6815 {
6816 bfd *dynobj;
6817 struct mips_elf_link_hash_entry *hmips;
6818 asection *s;
6819
6820 dynobj = elf_hash_table (info)->dynobj;
6821
6822 /* Make sure we know what is going on here. */
6823 BFD_ASSERT (dynobj != NULL
6824 && (h->needs_plt
6825 || h->u.weakdef != NULL
6826 || (h->def_dynamic
6827 && h->ref_regular
6828 && !h->def_regular)));
6829
6830 /* If this symbol is defined in a dynamic object, we need to copy
6831 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6832 file. */
6833 hmips = (struct mips_elf_link_hash_entry *) h;
6834 if (! info->relocatable
6835 && hmips->possibly_dynamic_relocs != 0
6836 && (h->root.type == bfd_link_hash_defweak
6837 || !h->def_regular))
6838 {
6839 mips_elf_allocate_dynamic_relocations
6840 (dynobj, info, hmips->possibly_dynamic_relocs);
6841 if (hmips->readonly_reloc)
6842 /* We tell the dynamic linker that there are relocations
6843 against the text segment. */
6844 info->flags |= DF_TEXTREL;
6845 }
6846
6847 /* For a function, create a stub, if allowed. */
6848 if (! hmips->no_fn_stub
6849 && h->needs_plt)
6850 {
6851 if (! elf_hash_table (info)->dynamic_sections_created)
6852 return TRUE;
6853
6854 /* If this symbol is not defined in a regular file, then set
6855 the symbol to the stub location. This is required to make
6856 function pointers compare as equal between the normal
6857 executable and the shared library. */
6858 if (!h->def_regular)
6859 {
6860 /* We need .stub section. */
6861 s = bfd_get_section_by_name (dynobj,
6862 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6863 BFD_ASSERT (s != NULL);
6864
6865 h->root.u.def.section = s;
6866 h->root.u.def.value = s->size;
6867
6868 /* XXX Write this stub address somewhere. */
6869 h->plt.offset = s->size;
6870
6871 /* Make room for this stub code. */
6872 s->size += MIPS_FUNCTION_STUB_SIZE;
6873
6874 /* The last half word of the stub will be filled with the index
6875 of this symbol in .dynsym section. */
6876 return TRUE;
6877 }
6878 }
6879 else if ((h->type == STT_FUNC)
6880 && !h->needs_plt)
6881 {
6882 /* This will set the entry for this symbol in the GOT to 0, and
6883 the dynamic linker will take care of this. */
6884 h->root.u.def.value = 0;
6885 return TRUE;
6886 }
6887
6888 /* If this is a weak symbol, and there is a real definition, the
6889 processor independent code will have arranged for us to see the
6890 real definition first, and we can just use the same value. */
6891 if (h->u.weakdef != NULL)
6892 {
6893 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6894 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6895 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6896 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6897 return TRUE;
6898 }
6899
6900 /* This is a reference to a symbol defined by a dynamic object which
6901 is not a function. */
6902
6903 return TRUE;
6904 }
6905
6906 /* Likewise, for VxWorks. */
6907
6908 bfd_boolean
6909 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
6910 struct elf_link_hash_entry *h)
6911 {
6912 bfd *dynobj;
6913 struct mips_elf_link_hash_entry *hmips;
6914 struct mips_elf_link_hash_table *htab;
6915 unsigned int power_of_two;
6916
6917 htab = mips_elf_hash_table (info);
6918 dynobj = elf_hash_table (info)->dynobj;
6919 hmips = (struct mips_elf_link_hash_entry *) h;
6920
6921 /* Make sure we know what is going on here. */
6922 BFD_ASSERT (dynobj != NULL
6923 && (h->needs_plt
6924 || h->needs_copy
6925 || h->u.weakdef != NULL
6926 || (h->def_dynamic
6927 && h->ref_regular
6928 && !h->def_regular)));
6929
6930 /* If the symbol is defined by a dynamic object, we need a PLT stub if
6931 either (a) we want to branch to the symbol or (b) we're linking an
6932 executable that needs a canonical function address. In the latter
6933 case, the canonical address will be the address of the executable's
6934 load stub. */
6935 if ((hmips->is_branch_target
6936 || (!info->shared
6937 && h->type == STT_FUNC
6938 && hmips->is_relocation_target))
6939 && h->def_dynamic
6940 && h->ref_regular
6941 && !h->def_regular
6942 && !h->forced_local)
6943 h->needs_plt = 1;
6944
6945 /* Locally-binding symbols do not need a PLT stub; we can refer to
6946 the functions directly. */
6947 else if (h->needs_plt
6948 && (SYMBOL_CALLS_LOCAL (info, h)
6949 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6950 && h->root.type == bfd_link_hash_undefweak)))
6951 {
6952 h->needs_plt = 0;
6953 return TRUE;
6954 }
6955
6956 if (h->needs_plt)
6957 {
6958 /* If this is the first symbol to need a PLT entry, allocate room
6959 for the header, and for the header's .rela.plt.unloaded entries. */
6960 if (htab->splt->size == 0)
6961 {
6962 htab->splt->size += htab->plt_header_size;
6963 if (!info->shared)
6964 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
6965 }
6966
6967 /* Assign the next .plt entry to this symbol. */
6968 h->plt.offset = htab->splt->size;
6969 htab->splt->size += htab->plt_entry_size;
6970
6971 /* If the output file has no definition of the symbol, set the
6972 symbol's value to the address of the stub. For executables,
6973 point at the PLT load stub rather than the lazy resolution stub;
6974 this stub will become the canonical function address. */
6975 if (!h->def_regular)
6976 {
6977 h->root.u.def.section = htab->splt;
6978 h->root.u.def.value = h->plt.offset;
6979 if (!info->shared)
6980 h->root.u.def.value += 8;
6981 }
6982
6983 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
6984 htab->sgotplt->size += 4;
6985 htab->srelplt->size += sizeof (Elf32_External_Rela);
6986
6987 /* Make room for the .rela.plt.unloaded relocations. */
6988 if (!info->shared)
6989 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
6990
6991 return TRUE;
6992 }
6993
6994 /* If a function symbol is defined by a dynamic object, and we do not
6995 need a PLT stub for it, the symbol's value should be zero. */
6996 if (h->type == STT_FUNC
6997 && h->def_dynamic
6998 && h->ref_regular
6999 && !h->def_regular)
7000 {
7001 h->root.u.def.value = 0;
7002 return TRUE;
7003 }
7004
7005 /* If this is a weak symbol, and there is a real definition, the
7006 processor independent code will have arranged for us to see the
7007 real definition first, and we can just use the same value. */
7008 if (h->u.weakdef != NULL)
7009 {
7010 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7011 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7012 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7013 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7014 return TRUE;
7015 }
7016
7017 /* This is a reference to a symbol defined by a dynamic object which
7018 is not a function. */
7019 if (info->shared)
7020 return TRUE;
7021
7022 /* We must allocate the symbol in our .dynbss section, which will
7023 become part of the .bss section of the executable. There will be
7024 an entry for this symbol in the .dynsym section. The dynamic
7025 object will contain position independent code, so all references
7026 from the dynamic object to this symbol will go through the global
7027 offset table. The dynamic linker will use the .dynsym entry to
7028 determine the address it must put in the global offset table, so
7029 both the dynamic object and the regular object will refer to the
7030 same memory location for the variable. */
7031
7032 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7033 {
7034 htab->srelbss->size += sizeof (Elf32_External_Rela);
7035 h->needs_copy = 1;
7036 }
7037
7038 /* We need to figure out the alignment required for this symbol. */
7039 power_of_two = bfd_log2 (h->size);
7040 if (power_of_two > 4)
7041 power_of_two = 4;
7042
7043 /* Apply the required alignment. */
7044 htab->sdynbss->size = BFD_ALIGN (htab->sdynbss->size,
7045 (bfd_size_type) 1 << power_of_two);
7046 if (power_of_two > bfd_get_section_alignment (dynobj, htab->sdynbss)
7047 && !bfd_set_section_alignment (dynobj, htab->sdynbss, power_of_two))
7048 return FALSE;
7049
7050 /* Define the symbol as being at this point in the section. */
7051 h->root.u.def.section = htab->sdynbss;
7052 h->root.u.def.value = htab->sdynbss->size;
7053
7054 /* Increment the section size to make room for the symbol. */
7055 htab->sdynbss->size += h->size;
7056
7057 return TRUE;
7058 }
7059 \f
7060 /* This function is called after all the input files have been read,
7061 and the input sections have been assigned to output sections. We
7062 check for any mips16 stub sections that we can discard. */
7063
7064 bfd_boolean
7065 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
7066 struct bfd_link_info *info)
7067 {
7068 asection *ri;
7069
7070 bfd *dynobj;
7071 asection *s;
7072 struct mips_got_info *g;
7073 int i;
7074 bfd_size_type loadable_size = 0;
7075 bfd_size_type local_gotno;
7076 bfd *sub;
7077 struct mips_elf_count_tls_arg count_tls_arg;
7078 struct mips_elf_link_hash_table *htab;
7079
7080 htab = mips_elf_hash_table (info);
7081
7082 /* The .reginfo section has a fixed size. */
7083 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7084 if (ri != NULL)
7085 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7086
7087 if (! (info->relocatable
7088 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7089 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7090 mips_elf_check_mips16_stubs, NULL);
7091
7092 dynobj = elf_hash_table (info)->dynobj;
7093 if (dynobj == NULL)
7094 /* Relocatable links don't have it. */
7095 return TRUE;
7096
7097 g = mips_elf_got_info (dynobj, &s);
7098 if (s == NULL)
7099 return TRUE;
7100
7101 /* Calculate the total loadable size of the output. That
7102 will give us the maximum number of GOT_PAGE entries
7103 required. */
7104 for (sub = info->input_bfds; sub; sub = sub->link_next)
7105 {
7106 asection *subsection;
7107
7108 for (subsection = sub->sections;
7109 subsection;
7110 subsection = subsection->next)
7111 {
7112 if ((subsection->flags & SEC_ALLOC) == 0)
7113 continue;
7114 loadable_size += ((subsection->size + 0xf)
7115 &~ (bfd_size_type) 0xf);
7116 }
7117 }
7118
7119 /* There has to be a global GOT entry for every symbol with
7120 a dynamic symbol table index of DT_MIPS_GOTSYM or
7121 higher. Therefore, it make sense to put those symbols
7122 that need GOT entries at the end of the symbol table. We
7123 do that here. */
7124 if (! mips_elf_sort_hash_table (info, 1))
7125 return FALSE;
7126
7127 if (g->global_gotsym != NULL)
7128 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7129 else
7130 /* If there are no global symbols, or none requiring
7131 relocations, then GLOBAL_GOTSYM will be NULL. */
7132 i = 0;
7133
7134 /* In the worst case, we'll get one stub per dynamic symbol, plus
7135 one to account for the dummy entry at the end required by IRIX
7136 rld. */
7137 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
7138
7139 if (htab->is_vxworks)
7140 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7141 relocations against local symbols evaluate to "G", and the EABI does
7142 not include R_MIPS_GOT_PAGE. */
7143 local_gotno = 0;
7144 else
7145 /* Assume there are two loadable segments consisting of contiguous
7146 sections. Is 5 enough? */
7147 local_gotno = (loadable_size >> 16) + 5;
7148
7149 g->local_gotno += local_gotno;
7150 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7151
7152 g->global_gotno = i;
7153 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
7154
7155 /* We need to calculate tls_gotno for global symbols at this point
7156 instead of building it up earlier, to avoid doublecounting
7157 entries for one global symbol from multiple input files. */
7158 count_tls_arg.info = info;
7159 count_tls_arg.needed = 0;
7160 elf_link_hash_traverse (elf_hash_table (info),
7161 mips_elf_count_global_tls_entries,
7162 &count_tls_arg);
7163 g->tls_gotno += count_tls_arg.needed;
7164 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7165
7166 mips_elf_resolve_final_got_entries (g);
7167
7168 /* VxWorks does not support multiple GOTs. It initializes $gp to
7169 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7170 dynamic loader. */
7171 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
7172 {
7173 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7174 return FALSE;
7175 }
7176 else
7177 {
7178 /* Set up TLS entries for the first GOT. */
7179 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7180 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7181 }
7182
7183 return TRUE;
7184 }
7185
7186 /* Set the sizes of the dynamic sections. */
7187
7188 bfd_boolean
7189 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7190 struct bfd_link_info *info)
7191 {
7192 bfd *dynobj;
7193 asection *s, *sreldyn;
7194 bfd_boolean reltext;
7195 struct mips_elf_link_hash_table *htab;
7196
7197 htab = mips_elf_hash_table (info);
7198 dynobj = elf_hash_table (info)->dynobj;
7199 BFD_ASSERT (dynobj != NULL);
7200
7201 if (elf_hash_table (info)->dynamic_sections_created)
7202 {
7203 /* Set the contents of the .interp section to the interpreter. */
7204 if (info->executable)
7205 {
7206 s = bfd_get_section_by_name (dynobj, ".interp");
7207 BFD_ASSERT (s != NULL);
7208 s->size
7209 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7210 s->contents
7211 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7212 }
7213 }
7214
7215 /* The check_relocs and adjust_dynamic_symbol entry points have
7216 determined the sizes of the various dynamic sections. Allocate
7217 memory for them. */
7218 reltext = FALSE;
7219 sreldyn = NULL;
7220 for (s = dynobj->sections; s != NULL; s = s->next)
7221 {
7222 const char *name;
7223
7224 /* It's OK to base decisions on the section name, because none
7225 of the dynobj section names depend upon the input files. */
7226 name = bfd_get_section_name (dynobj, s);
7227
7228 if ((s->flags & SEC_LINKER_CREATED) == 0)
7229 continue;
7230
7231 if (strncmp (name, ".rel", 4) == 0)
7232 {
7233 if (s->size != 0)
7234 {
7235 const char *outname;
7236 asection *target;
7237
7238 /* If this relocation section applies to a read only
7239 section, then we probably need a DT_TEXTREL entry.
7240 If the relocation section is .rel(a).dyn, we always
7241 assert a DT_TEXTREL entry rather than testing whether
7242 there exists a relocation to a read only section or
7243 not. */
7244 outname = bfd_get_section_name (output_bfd,
7245 s->output_section);
7246 target = bfd_get_section_by_name (output_bfd, outname + 4);
7247 if ((target != NULL
7248 && (target->flags & SEC_READONLY) != 0
7249 && (target->flags & SEC_ALLOC) != 0)
7250 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7251 reltext = TRUE;
7252
7253 /* We use the reloc_count field as a counter if we need
7254 to copy relocs into the output file. */
7255 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
7256 s->reloc_count = 0;
7257
7258 /* If combreloc is enabled, elf_link_sort_relocs() will
7259 sort relocations, but in a different way than we do,
7260 and before we're done creating relocations. Also, it
7261 will move them around between input sections'
7262 relocation's contents, so our sorting would be
7263 broken, so don't let it run. */
7264 info->combreloc = 0;
7265 }
7266 }
7267 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7268 {
7269 /* Executables do not need a GOT. */
7270 if (info->shared)
7271 {
7272 /* Allocate relocations for all but the reserved entries. */
7273 struct mips_got_info *g;
7274 unsigned int count;
7275
7276 g = mips_elf_got_info (dynobj, NULL);
7277 count = (g->global_gotno
7278 + g->local_gotno
7279 - MIPS_RESERVED_GOTNO (info));
7280 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7281 }
7282 }
7283 else if (!htab->is_vxworks && strncmp (name, ".got", 4) == 0)
7284 {
7285 /* _bfd_mips_elf_always_size_sections() has already done
7286 most of the work, but some symbols may have been mapped
7287 to versions that we must now resolve in the got_entries
7288 hash tables. */
7289 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7290 struct mips_got_info *g = gg;
7291 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7292 unsigned int needed_relocs = 0;
7293
7294 if (gg->next)
7295 {
7296 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7297 set_got_offset_arg.info = info;
7298
7299 /* NOTE 2005-02-03: How can this call, or the next, ever
7300 find any indirect entries to resolve? They were all
7301 resolved in mips_elf_multi_got. */
7302 mips_elf_resolve_final_got_entries (gg);
7303 for (g = gg->next; g && g->next != gg; g = g->next)
7304 {
7305 unsigned int save_assign;
7306
7307 mips_elf_resolve_final_got_entries (g);
7308
7309 /* Assign offsets to global GOT entries. */
7310 save_assign = g->assigned_gotno;
7311 g->assigned_gotno = g->local_gotno;
7312 set_got_offset_arg.g = g;
7313 set_got_offset_arg.needed_relocs = 0;
7314 htab_traverse (g->got_entries,
7315 mips_elf_set_global_got_offset,
7316 &set_got_offset_arg);
7317 needed_relocs += set_got_offset_arg.needed_relocs;
7318 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7319 <= g->global_gotno);
7320
7321 g->assigned_gotno = save_assign;
7322 if (info->shared)
7323 {
7324 needed_relocs += g->local_gotno - g->assigned_gotno;
7325 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7326 + g->next->global_gotno
7327 + g->next->tls_gotno
7328 + MIPS_RESERVED_GOTNO (info));
7329 }
7330 }
7331 }
7332 else
7333 {
7334 struct mips_elf_count_tls_arg arg;
7335 arg.info = info;
7336 arg.needed = 0;
7337
7338 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7339 &arg);
7340 elf_link_hash_traverse (elf_hash_table (info),
7341 mips_elf_count_global_tls_relocs,
7342 &arg);
7343
7344 needed_relocs += arg.needed;
7345 }
7346
7347 if (needed_relocs)
7348 mips_elf_allocate_dynamic_relocations (dynobj, info,
7349 needed_relocs);
7350 }
7351 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7352 {
7353 /* IRIX rld assumes that the function stub isn't at the end
7354 of .text section. So put a dummy. XXX */
7355 s->size += MIPS_FUNCTION_STUB_SIZE;
7356 }
7357 else if (! info->shared
7358 && ! mips_elf_hash_table (info)->use_rld_obj_head
7359 && strncmp (name, ".rld_map", 8) == 0)
7360 {
7361 /* We add a room for __rld_map. It will be filled in by the
7362 rtld to contain a pointer to the _r_debug structure. */
7363 s->size += 4;
7364 }
7365 else if (SGI_COMPAT (output_bfd)
7366 && strncmp (name, ".compact_rel", 12) == 0)
7367 s->size += mips_elf_hash_table (info)->compact_rel_size;
7368 else if (strncmp (name, ".init", 5) != 0
7369 && s != htab->sgotplt
7370 && s != htab->splt)
7371 {
7372 /* It's not one of our sections, so don't allocate space. */
7373 continue;
7374 }
7375
7376 if (s->size == 0)
7377 {
7378 s->flags |= SEC_EXCLUDE;
7379 continue;
7380 }
7381
7382 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7383 continue;
7384
7385 /* Allocate memory for this section last, since we may increase its
7386 size above. */
7387 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7388 {
7389 sreldyn = s;
7390 continue;
7391 }
7392
7393 /* Allocate memory for the section contents. */
7394 s->contents = bfd_zalloc (dynobj, s->size);
7395 if (s->contents == NULL)
7396 {
7397 bfd_set_error (bfd_error_no_memory);
7398 return FALSE;
7399 }
7400 }
7401
7402 /* Allocate memory for the .rel(a).dyn section. */
7403 if (sreldyn != NULL)
7404 {
7405 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7406 if (sreldyn->contents == NULL)
7407 {
7408 bfd_set_error (bfd_error_no_memory);
7409 return FALSE;
7410 }
7411 }
7412
7413 if (elf_hash_table (info)->dynamic_sections_created)
7414 {
7415 /* Add some entries to the .dynamic section. We fill in the
7416 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7417 must add the entries now so that we get the correct size for
7418 the .dynamic section. The DT_DEBUG entry is filled in by the
7419 dynamic linker and used by the debugger. */
7420 if (! info->shared)
7421 {
7422 /* SGI object has the equivalence of DT_DEBUG in the
7423 DT_MIPS_RLD_MAP entry. */
7424 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7425 return FALSE;
7426 if (!SGI_COMPAT (output_bfd))
7427 {
7428 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7429 return FALSE;
7430 }
7431 }
7432 else
7433 {
7434 /* Shared libraries on traditional mips have DT_DEBUG. */
7435 if (!SGI_COMPAT (output_bfd))
7436 {
7437 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7438 return FALSE;
7439 }
7440 }
7441
7442 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
7443 info->flags |= DF_TEXTREL;
7444
7445 if ((info->flags & DF_TEXTREL) != 0)
7446 {
7447 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
7448 return FALSE;
7449 }
7450
7451 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
7452 return FALSE;
7453
7454 if (htab->is_vxworks)
7455 {
7456 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7457 use any of the DT_MIPS_* tags. */
7458 if (mips_elf_rel_dyn_section (info, FALSE))
7459 {
7460 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7461 return FALSE;
7462
7463 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7464 return FALSE;
7465
7466 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7467 return FALSE;
7468 }
7469 if (htab->splt->size > 0)
7470 {
7471 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7472 return FALSE;
7473
7474 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7475 return FALSE;
7476
7477 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7478 return FALSE;
7479 }
7480 }
7481 else
7482 {
7483 if (mips_elf_rel_dyn_section (info, FALSE))
7484 {
7485 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7486 return FALSE;
7487
7488 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7489 return FALSE;
7490
7491 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7492 return FALSE;
7493 }
7494
7495 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7496 return FALSE;
7497
7498 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7499 return FALSE;
7500
7501 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7502 return FALSE;
7503
7504 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7505 return FALSE;
7506
7507 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7508 return FALSE;
7509
7510 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7511 return FALSE;
7512
7513 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7514 return FALSE;
7515
7516 if (IRIX_COMPAT (dynobj) == ict_irix5
7517 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7518 return FALSE;
7519
7520 if (IRIX_COMPAT (dynobj) == ict_irix6
7521 && (bfd_get_section_by_name
7522 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7523 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7524 return FALSE;
7525 }
7526 }
7527
7528 return TRUE;
7529 }
7530 \f
7531 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7532 Adjust its R_ADDEND field so that it is correct for the output file.
7533 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7534 and sections respectively; both use symbol indexes. */
7535
7536 static void
7537 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7538 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7539 asection **local_sections, Elf_Internal_Rela *rel)
7540 {
7541 unsigned int r_type, r_symndx;
7542 Elf_Internal_Sym *sym;
7543 asection *sec;
7544
7545 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7546 {
7547 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7548 if (r_type == R_MIPS16_GPREL
7549 || r_type == R_MIPS_GPREL16
7550 || r_type == R_MIPS_GPREL32
7551 || r_type == R_MIPS_LITERAL)
7552 {
7553 rel->r_addend += _bfd_get_gp_value (input_bfd);
7554 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7555 }
7556
7557 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7558 sym = local_syms + r_symndx;
7559
7560 /* Adjust REL's addend to account for section merging. */
7561 if (!info->relocatable)
7562 {
7563 sec = local_sections[r_symndx];
7564 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7565 }
7566
7567 /* This would normally be done by the rela_normal code in elflink.c. */
7568 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7569 rel->r_addend += local_sections[r_symndx]->output_offset;
7570 }
7571 }
7572
7573 /* Relocate a MIPS ELF section. */
7574
7575 bfd_boolean
7576 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7577 bfd *input_bfd, asection *input_section,
7578 bfd_byte *contents, Elf_Internal_Rela *relocs,
7579 Elf_Internal_Sym *local_syms,
7580 asection **local_sections)
7581 {
7582 Elf_Internal_Rela *rel;
7583 const Elf_Internal_Rela *relend;
7584 bfd_vma addend = 0;
7585 bfd_boolean use_saved_addend_p = FALSE;
7586 const struct elf_backend_data *bed;
7587
7588 bed = get_elf_backend_data (output_bfd);
7589 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7590 for (rel = relocs; rel < relend; ++rel)
7591 {
7592 const char *name;
7593 bfd_vma value = 0;
7594 reloc_howto_type *howto;
7595 bfd_boolean require_jalx;
7596 /* TRUE if the relocation is a RELA relocation, rather than a
7597 REL relocation. */
7598 bfd_boolean rela_relocation_p = TRUE;
7599 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7600 const char *msg;
7601
7602 /* Find the relocation howto for this relocation. */
7603 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
7604 {
7605 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7606 64-bit code, but make sure all their addresses are in the
7607 lowermost or uppermost 32-bit section of the 64-bit address
7608 space. Thus, when they use an R_MIPS_64 they mean what is
7609 usually meant by R_MIPS_32, with the exception that the
7610 stored value is sign-extended to 64 bits. */
7611 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
7612
7613 /* On big-endian systems, we need to lie about the position
7614 of the reloc. */
7615 if (bfd_big_endian (input_bfd))
7616 rel->r_offset += 4;
7617 }
7618 else
7619 /* NewABI defaults to RELA relocations. */
7620 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7621 NEWABI_P (input_bfd)
7622 && (MIPS_RELOC_RELA_P
7623 (input_bfd, input_section,
7624 rel - relocs)));
7625
7626 if (!use_saved_addend_p)
7627 {
7628 Elf_Internal_Shdr *rel_hdr;
7629
7630 /* If these relocations were originally of the REL variety,
7631 we must pull the addend out of the field that will be
7632 relocated. Otherwise, we simply use the contents of the
7633 RELA relocation. To determine which flavor or relocation
7634 this is, we depend on the fact that the INPUT_SECTION's
7635 REL_HDR is read before its REL_HDR2. */
7636 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7637 if ((size_t) (rel - relocs)
7638 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7639 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7640 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7641 {
7642 bfd_byte *location = contents + rel->r_offset;
7643
7644 /* Note that this is a REL relocation. */
7645 rela_relocation_p = FALSE;
7646
7647 /* Get the addend, which is stored in the input file. */
7648 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7649 location);
7650 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7651 contents);
7652 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7653 location);
7654
7655 addend &= howto->src_mask;
7656
7657 /* For some kinds of relocations, the ADDEND is a
7658 combination of the addend stored in two different
7659 relocations. */
7660 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
7661 || (r_type == R_MIPS_GOT16
7662 && mips_elf_local_relocation_p (input_bfd, rel,
7663 local_sections, FALSE)))
7664 {
7665 bfd_vma l;
7666 const Elf_Internal_Rela *lo16_relocation;
7667 reloc_howto_type *lo16_howto;
7668 bfd_byte *lo16_location;
7669 int lo16_type;
7670
7671 if (r_type == R_MIPS16_HI16)
7672 lo16_type = R_MIPS16_LO16;
7673 else
7674 lo16_type = R_MIPS_LO16;
7675
7676 /* The combined value is the sum of the HI16 addend,
7677 left-shifted by sixteen bits, and the LO16
7678 addend, sign extended. (Usually, the code does
7679 a `lui' of the HI16 value, and then an `addiu' of
7680 the LO16 value.)
7681
7682 Scan ahead to find a matching LO16 relocation.
7683
7684 According to the MIPS ELF ABI, the R_MIPS_LO16
7685 relocation must be immediately following.
7686 However, for the IRIX6 ABI, the next relocation
7687 may be a composed relocation consisting of
7688 several relocations for the same address. In
7689 that case, the R_MIPS_LO16 relocation may occur
7690 as one of these. We permit a similar extension
7691 in general, as that is useful for GCC. */
7692 lo16_relocation = mips_elf_next_relocation (input_bfd,
7693 lo16_type,
7694 rel, relend);
7695 if (lo16_relocation == NULL)
7696 return FALSE;
7697
7698 lo16_location = contents + lo16_relocation->r_offset;
7699
7700 /* Obtain the addend kept there. */
7701 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7702 lo16_type, FALSE);
7703 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE,
7704 lo16_location);
7705 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
7706 input_bfd, contents);
7707 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE,
7708 lo16_location);
7709 l &= lo16_howto->src_mask;
7710 l <<= lo16_howto->rightshift;
7711 l = _bfd_mips_elf_sign_extend (l, 16);
7712
7713 addend <<= 16;
7714
7715 /* Compute the combined addend. */
7716 addend += l;
7717 }
7718 else
7719 addend <<= howto->rightshift;
7720 }
7721 else
7722 addend = rel->r_addend;
7723 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7724 local_syms, local_sections, rel);
7725 }
7726
7727 if (info->relocatable)
7728 {
7729 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
7730 && bfd_big_endian (input_bfd))
7731 rel->r_offset -= 4;
7732
7733 if (!rela_relocation_p && rel->r_addend)
7734 {
7735 addend += rel->r_addend;
7736 if (r_type == R_MIPS_HI16
7737 || r_type == R_MIPS_GOT16)
7738 addend = mips_elf_high (addend);
7739 else if (r_type == R_MIPS_HIGHER)
7740 addend = mips_elf_higher (addend);
7741 else if (r_type == R_MIPS_HIGHEST)
7742 addend = mips_elf_highest (addend);
7743 else
7744 addend >>= howto->rightshift;
7745
7746 /* We use the source mask, rather than the destination
7747 mask because the place to which we are writing will be
7748 source of the addend in the final link. */
7749 addend &= howto->src_mask;
7750
7751 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7752 /* See the comment above about using R_MIPS_64 in the 32-bit
7753 ABI. Here, we need to update the addend. It would be
7754 possible to get away with just using the R_MIPS_32 reloc
7755 but for endianness. */
7756 {
7757 bfd_vma sign_bits;
7758 bfd_vma low_bits;
7759 bfd_vma high_bits;
7760
7761 if (addend & ((bfd_vma) 1 << 31))
7762 #ifdef BFD64
7763 sign_bits = ((bfd_vma) 1 << 32) - 1;
7764 #else
7765 sign_bits = -1;
7766 #endif
7767 else
7768 sign_bits = 0;
7769
7770 /* If we don't know that we have a 64-bit type,
7771 do two separate stores. */
7772 if (bfd_big_endian (input_bfd))
7773 {
7774 /* Store the sign-bits (which are most significant)
7775 first. */
7776 low_bits = sign_bits;
7777 high_bits = addend;
7778 }
7779 else
7780 {
7781 low_bits = addend;
7782 high_bits = sign_bits;
7783 }
7784 bfd_put_32 (input_bfd, low_bits,
7785 contents + rel->r_offset);
7786 bfd_put_32 (input_bfd, high_bits,
7787 contents + rel->r_offset + 4);
7788 continue;
7789 }
7790
7791 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7792 input_bfd, input_section,
7793 contents, FALSE))
7794 return FALSE;
7795 }
7796
7797 /* Go on to the next relocation. */
7798 continue;
7799 }
7800
7801 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7802 relocations for the same offset. In that case we are
7803 supposed to treat the output of each relocation as the addend
7804 for the next. */
7805 if (rel + 1 < relend
7806 && rel->r_offset == rel[1].r_offset
7807 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
7808 use_saved_addend_p = TRUE;
7809 else
7810 use_saved_addend_p = FALSE;
7811
7812 /* Figure out what value we are supposed to relocate. */
7813 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
7814 input_section, info, rel,
7815 addend, howto, local_syms,
7816 local_sections, &value,
7817 &name, &require_jalx,
7818 use_saved_addend_p))
7819 {
7820 case bfd_reloc_continue:
7821 /* There's nothing to do. */
7822 continue;
7823
7824 case bfd_reloc_undefined:
7825 /* mips_elf_calculate_relocation already called the
7826 undefined_symbol callback. There's no real point in
7827 trying to perform the relocation at this point, so we
7828 just skip ahead to the next relocation. */
7829 continue;
7830
7831 case bfd_reloc_notsupported:
7832 msg = _("internal error: unsupported relocation error");
7833 info->callbacks->warning
7834 (info, msg, name, input_bfd, input_section, rel->r_offset);
7835 return FALSE;
7836
7837 case bfd_reloc_overflow:
7838 if (use_saved_addend_p)
7839 /* Ignore overflow until we reach the last relocation for
7840 a given location. */
7841 ;
7842 else
7843 {
7844 BFD_ASSERT (name != NULL);
7845 if (! ((*info->callbacks->reloc_overflow)
7846 (info, NULL, name, howto->name, (bfd_vma) 0,
7847 input_bfd, input_section, rel->r_offset)))
7848 return FALSE;
7849 }
7850 break;
7851
7852 case bfd_reloc_ok:
7853 break;
7854
7855 default:
7856 abort ();
7857 break;
7858 }
7859
7860 /* If we've got another relocation for the address, keep going
7861 until we reach the last one. */
7862 if (use_saved_addend_p)
7863 {
7864 addend = value;
7865 continue;
7866 }
7867
7868 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7869 /* See the comment above about using R_MIPS_64 in the 32-bit
7870 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7871 that calculated the right value. Now, however, we
7872 sign-extend the 32-bit result to 64-bits, and store it as a
7873 64-bit value. We are especially generous here in that we
7874 go to extreme lengths to support this usage on systems with
7875 only a 32-bit VMA. */
7876 {
7877 bfd_vma sign_bits;
7878 bfd_vma low_bits;
7879 bfd_vma high_bits;
7880
7881 if (value & ((bfd_vma) 1 << 31))
7882 #ifdef BFD64
7883 sign_bits = ((bfd_vma) 1 << 32) - 1;
7884 #else
7885 sign_bits = -1;
7886 #endif
7887 else
7888 sign_bits = 0;
7889
7890 /* If we don't know that we have a 64-bit type,
7891 do two separate stores. */
7892 if (bfd_big_endian (input_bfd))
7893 {
7894 /* Undo what we did above. */
7895 rel->r_offset -= 4;
7896 /* Store the sign-bits (which are most significant)
7897 first. */
7898 low_bits = sign_bits;
7899 high_bits = value;
7900 }
7901 else
7902 {
7903 low_bits = value;
7904 high_bits = sign_bits;
7905 }
7906 bfd_put_32 (input_bfd, low_bits,
7907 contents + rel->r_offset);
7908 bfd_put_32 (input_bfd, high_bits,
7909 contents + rel->r_offset + 4);
7910 continue;
7911 }
7912
7913 /* Actually perform the relocation. */
7914 if (! mips_elf_perform_relocation (info, howto, rel, value,
7915 input_bfd, input_section,
7916 contents, require_jalx))
7917 return FALSE;
7918 }
7919
7920 return TRUE;
7921 }
7922 \f
7923 /* If NAME is one of the special IRIX6 symbols defined by the linker,
7924 adjust it appropriately now. */
7925
7926 static void
7927 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7928 const char *name, Elf_Internal_Sym *sym)
7929 {
7930 /* The linker script takes care of providing names and values for
7931 these, but we must place them into the right sections. */
7932 static const char* const text_section_symbols[] = {
7933 "_ftext",
7934 "_etext",
7935 "__dso_displacement",
7936 "__elf_header",
7937 "__program_header_table",
7938 NULL
7939 };
7940
7941 static const char* const data_section_symbols[] = {
7942 "_fdata",
7943 "_edata",
7944 "_end",
7945 "_fbss",
7946 NULL
7947 };
7948
7949 const char* const *p;
7950 int i;
7951
7952 for (i = 0; i < 2; ++i)
7953 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
7954 *p;
7955 ++p)
7956 if (strcmp (*p, name) == 0)
7957 {
7958 /* All of these symbols are given type STT_SECTION by the
7959 IRIX6 linker. */
7960 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7961 sym->st_other = STO_PROTECTED;
7962
7963 /* The IRIX linker puts these symbols in special sections. */
7964 if (i == 0)
7965 sym->st_shndx = SHN_MIPS_TEXT;
7966 else
7967 sym->st_shndx = SHN_MIPS_DATA;
7968
7969 break;
7970 }
7971 }
7972
7973 /* Finish up dynamic symbol handling. We set the contents of various
7974 dynamic sections here. */
7975
7976 bfd_boolean
7977 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
7978 struct bfd_link_info *info,
7979 struct elf_link_hash_entry *h,
7980 Elf_Internal_Sym *sym)
7981 {
7982 bfd *dynobj;
7983 asection *sgot;
7984 struct mips_got_info *g, *gg;
7985 const char *name;
7986
7987 dynobj = elf_hash_table (info)->dynobj;
7988
7989 if (h->plt.offset != MINUS_ONE)
7990 {
7991 asection *s;
7992 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
7993
7994 /* This symbol has a stub. Set it up. */
7995
7996 BFD_ASSERT (h->dynindx != -1);
7997
7998 s = bfd_get_section_by_name (dynobj,
7999 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8000 BFD_ASSERT (s != NULL);
8001
8002 /* FIXME: Can h->dynindx be more than 64K? */
8003 if (h->dynindx & 0xffff0000)
8004 return FALSE;
8005
8006 /* Fill the stub. */
8007 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
8008 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
8009 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
8010 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
8011
8012 BFD_ASSERT (h->plt.offset <= s->size);
8013 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
8014
8015 /* Mark the symbol as undefined. plt.offset != -1 occurs
8016 only for the referenced symbol. */
8017 sym->st_shndx = SHN_UNDEF;
8018
8019 /* The run-time linker uses the st_value field of the symbol
8020 to reset the global offset table entry for this external
8021 to its stub address when unlinking a shared object. */
8022 sym->st_value = (s->output_section->vma + s->output_offset
8023 + h->plt.offset);
8024 }
8025
8026 BFD_ASSERT (h->dynindx != -1
8027 || h->forced_local);
8028
8029 sgot = mips_elf_got_section (dynobj, FALSE);
8030 BFD_ASSERT (sgot != NULL);
8031 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8032 g = mips_elf_section_data (sgot)->u.got_info;
8033 BFD_ASSERT (g != NULL);
8034
8035 /* Run through the global symbol table, creating GOT entries for all
8036 the symbols that need them. */
8037 if (g->global_gotsym != NULL
8038 && h->dynindx >= g->global_gotsym->dynindx)
8039 {
8040 bfd_vma offset;
8041 bfd_vma value;
8042
8043 value = sym->st_value;
8044 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
8045 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8046 }
8047
8048 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
8049 {
8050 struct mips_got_entry e, *p;
8051 bfd_vma entry;
8052 bfd_vma offset;
8053
8054 gg = g;
8055
8056 e.abfd = output_bfd;
8057 e.symndx = -1;
8058 e.d.h = (struct mips_elf_link_hash_entry *)h;
8059 e.tls_type = 0;
8060
8061 for (g = g->next; g->next != gg; g = g->next)
8062 {
8063 if (g->got_entries
8064 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8065 &e)))
8066 {
8067 offset = p->gotidx;
8068 if (info->shared
8069 || (elf_hash_table (info)->dynamic_sections_created
8070 && p->d.h != NULL
8071 && p->d.h->root.def_dynamic
8072 && !p->d.h->root.def_regular))
8073 {
8074 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8075 the various compatibility problems, it's easier to mock
8076 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8077 mips_elf_create_dynamic_relocation to calculate the
8078 appropriate addend. */
8079 Elf_Internal_Rela rel[3];
8080
8081 memset (rel, 0, sizeof (rel));
8082 if (ABI_64_P (output_bfd))
8083 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8084 else
8085 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8086 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8087
8088 entry = 0;
8089 if (! (mips_elf_create_dynamic_relocation
8090 (output_bfd, info, rel,
8091 e.d.h, NULL, sym->st_value, &entry, sgot)))
8092 return FALSE;
8093 }
8094 else
8095 entry = sym->st_value;
8096 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
8097 }
8098 }
8099 }
8100
8101 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8102 name = h->root.root.string;
8103 if (strcmp (name, "_DYNAMIC") == 0
8104 || h == elf_hash_table (info)->hgot)
8105 sym->st_shndx = SHN_ABS;
8106 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8107 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8108 {
8109 sym->st_shndx = SHN_ABS;
8110 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8111 sym->st_value = 1;
8112 }
8113 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
8114 {
8115 sym->st_shndx = SHN_ABS;
8116 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8117 sym->st_value = elf_gp (output_bfd);
8118 }
8119 else if (SGI_COMPAT (output_bfd))
8120 {
8121 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8122 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8123 {
8124 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8125 sym->st_other = STO_PROTECTED;
8126 sym->st_value = 0;
8127 sym->st_shndx = SHN_MIPS_DATA;
8128 }
8129 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8130 {
8131 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8132 sym->st_other = STO_PROTECTED;
8133 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8134 sym->st_shndx = SHN_ABS;
8135 }
8136 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8137 {
8138 if (h->type == STT_FUNC)
8139 sym->st_shndx = SHN_MIPS_TEXT;
8140 else if (h->type == STT_OBJECT)
8141 sym->st_shndx = SHN_MIPS_DATA;
8142 }
8143 }
8144
8145 /* Handle the IRIX6-specific symbols. */
8146 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8147 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8148
8149 if (! info->shared)
8150 {
8151 if (! mips_elf_hash_table (info)->use_rld_obj_head
8152 && (strcmp (name, "__rld_map") == 0
8153 || strcmp (name, "__RLD_MAP") == 0))
8154 {
8155 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8156 BFD_ASSERT (s != NULL);
8157 sym->st_value = s->output_section->vma + s->output_offset;
8158 bfd_put_32 (output_bfd, 0, s->contents);
8159 if (mips_elf_hash_table (info)->rld_value == 0)
8160 mips_elf_hash_table (info)->rld_value = sym->st_value;
8161 }
8162 else if (mips_elf_hash_table (info)->use_rld_obj_head
8163 && strcmp (name, "__rld_obj_head") == 0)
8164 {
8165 /* IRIX6 does not use a .rld_map section. */
8166 if (IRIX_COMPAT (output_bfd) == ict_irix5
8167 || IRIX_COMPAT (output_bfd) == ict_none)
8168 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8169 != NULL);
8170 mips_elf_hash_table (info)->rld_value = sym->st_value;
8171 }
8172 }
8173
8174 /* If this is a mips16 symbol, force the value to be even. */
8175 if (sym->st_other == STO_MIPS16)
8176 sym->st_value &= ~1;
8177
8178 return TRUE;
8179 }
8180
8181 /* Likewise, for VxWorks. */
8182
8183 bfd_boolean
8184 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8185 struct bfd_link_info *info,
8186 struct elf_link_hash_entry *h,
8187 Elf_Internal_Sym *sym)
8188 {
8189 bfd *dynobj;
8190 asection *sgot;
8191 struct mips_got_info *g;
8192 struct mips_elf_link_hash_table *htab;
8193
8194 htab = mips_elf_hash_table (info);
8195 dynobj = elf_hash_table (info)->dynobj;
8196
8197 if (h->plt.offset != (bfd_vma) -1)
8198 {
8199 bfd_byte *loc;
8200 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8201 Elf_Internal_Rela rel;
8202 static const bfd_vma *plt_entry;
8203
8204 BFD_ASSERT (h->dynindx != -1);
8205 BFD_ASSERT (htab->splt != NULL);
8206 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8207
8208 /* Calculate the address of the .plt entry. */
8209 plt_address = (htab->splt->output_section->vma
8210 + htab->splt->output_offset
8211 + h->plt.offset);
8212
8213 /* Calculate the index of the entry. */
8214 plt_index = ((h->plt.offset - htab->plt_header_size)
8215 / htab->plt_entry_size);
8216
8217 /* Calculate the address of the .got.plt entry. */
8218 got_address = (htab->sgotplt->output_section->vma
8219 + htab->sgotplt->output_offset
8220 + plt_index * 4);
8221
8222 /* Calculate the offset of the .got.plt entry from
8223 _GLOBAL_OFFSET_TABLE_. */
8224 got_offset = mips_elf_gotplt_index (info, h);
8225
8226 /* Calculate the offset for the branch at the start of the PLT
8227 entry. The branch jumps to the beginning of .plt. */
8228 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8229
8230 /* Fill in the initial value of the .got.plt entry. */
8231 bfd_put_32 (output_bfd, plt_address,
8232 htab->sgotplt->contents + plt_index * 4);
8233
8234 /* Find out where the .plt entry should go. */
8235 loc = htab->splt->contents + h->plt.offset;
8236
8237 if (info->shared)
8238 {
8239 plt_entry = mips_vxworks_shared_plt_entry;
8240 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8241 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8242 }
8243 else
8244 {
8245 bfd_vma got_address_high, got_address_low;
8246
8247 plt_entry = mips_vxworks_exec_plt_entry;
8248 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8249 got_address_low = got_address & 0xffff;
8250
8251 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8252 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8253 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8254 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8255 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8256 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8257 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8258 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8259
8260 loc = (htab->srelplt2->contents
8261 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8262
8263 /* Emit a relocation for the .got.plt entry. */
8264 rel.r_offset = got_address;
8265 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8266 rel.r_addend = h->plt.offset;
8267 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8268
8269 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8270 loc += sizeof (Elf32_External_Rela);
8271 rel.r_offset = plt_address + 8;
8272 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8273 rel.r_addend = got_offset;
8274 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8275
8276 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8277 loc += sizeof (Elf32_External_Rela);
8278 rel.r_offset += 4;
8279 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8280 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8281 }
8282
8283 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8284 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8285 rel.r_offset = got_address;
8286 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8287 rel.r_addend = 0;
8288 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8289
8290 if (!h->def_regular)
8291 sym->st_shndx = SHN_UNDEF;
8292 }
8293
8294 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8295
8296 sgot = mips_elf_got_section (dynobj, FALSE);
8297 BFD_ASSERT (sgot != NULL);
8298 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8299 g = mips_elf_section_data (sgot)->u.got_info;
8300 BFD_ASSERT (g != NULL);
8301
8302 /* See if this symbol has an entry in the GOT. */
8303 if (g->global_gotsym != NULL
8304 && h->dynindx >= g->global_gotsym->dynindx)
8305 {
8306 bfd_vma offset;
8307 Elf_Internal_Rela outrel;
8308 bfd_byte *loc;
8309 asection *s;
8310
8311 /* Install the symbol value in the GOT. */
8312 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8313 R_MIPS_GOT16, info);
8314 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8315
8316 /* Add a dynamic relocation for it. */
8317 s = mips_elf_rel_dyn_section (info, FALSE);
8318 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8319 outrel.r_offset = (sgot->output_section->vma
8320 + sgot->output_offset
8321 + offset);
8322 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8323 outrel.r_addend = 0;
8324 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8325 }
8326
8327 /* Emit a copy reloc, if needed. */
8328 if (h->needs_copy)
8329 {
8330 Elf_Internal_Rela rel;
8331
8332 BFD_ASSERT (h->dynindx != -1);
8333
8334 rel.r_offset = (h->root.u.def.section->output_section->vma
8335 + h->root.u.def.section->output_offset
8336 + h->root.u.def.value);
8337 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8338 rel.r_addend = 0;
8339 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8340 htab->srelbss->contents
8341 + (htab->srelbss->reloc_count
8342 * sizeof (Elf32_External_Rela)));
8343 ++htab->srelbss->reloc_count;
8344 }
8345
8346 /* If this is a mips16 symbol, force the value to be even. */
8347 if (sym->st_other == STO_MIPS16)
8348 sym->st_value &= ~1;
8349
8350 return TRUE;
8351 }
8352
8353 /* Install the PLT header for a VxWorks executable and finalize the
8354 contents of .rela.plt.unloaded. */
8355
8356 static void
8357 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8358 {
8359 Elf_Internal_Rela rela;
8360 bfd_byte *loc;
8361 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8362 static const bfd_vma *plt_entry;
8363 struct mips_elf_link_hash_table *htab;
8364
8365 htab = mips_elf_hash_table (info);
8366 plt_entry = mips_vxworks_exec_plt0_entry;
8367
8368 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8369 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8370 + htab->root.hgot->root.u.def.section->output_offset
8371 + htab->root.hgot->root.u.def.value);
8372
8373 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8374 got_value_low = got_value & 0xffff;
8375
8376 /* Calculate the address of the PLT header. */
8377 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8378
8379 /* Install the PLT header. */
8380 loc = htab->splt->contents;
8381 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8382 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8383 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8384 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8385 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8386 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8387
8388 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8389 loc = htab->srelplt2->contents;
8390 rela.r_offset = plt_address;
8391 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8392 rela.r_addend = 0;
8393 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8394 loc += sizeof (Elf32_External_Rela);
8395
8396 /* Output the relocation for the following addiu of
8397 %lo(_GLOBAL_OFFSET_TABLE_). */
8398 rela.r_offset += 4;
8399 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8400 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8401 loc += sizeof (Elf32_External_Rela);
8402
8403 /* Fix up the remaining relocations. They may have the wrong
8404 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8405 in which symbols were output. */
8406 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8407 {
8408 Elf_Internal_Rela rel;
8409
8410 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8411 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8412 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8413 loc += sizeof (Elf32_External_Rela);
8414
8415 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8416 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8417 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8418 loc += sizeof (Elf32_External_Rela);
8419
8420 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8421 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8422 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8423 loc += sizeof (Elf32_External_Rela);
8424 }
8425 }
8426
8427 /* Install the PLT header for a VxWorks shared library. */
8428
8429 static void
8430 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8431 {
8432 unsigned int i;
8433 struct mips_elf_link_hash_table *htab;
8434
8435 htab = mips_elf_hash_table (info);
8436
8437 /* We just need to copy the entry byte-by-byte. */
8438 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8439 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8440 htab->splt->contents + i * 4);
8441 }
8442
8443 /* Finish up the dynamic sections. */
8444
8445 bfd_boolean
8446 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8447 struct bfd_link_info *info)
8448 {
8449 bfd *dynobj;
8450 asection *sdyn;
8451 asection *sgot;
8452 struct mips_got_info *gg, *g;
8453 struct mips_elf_link_hash_table *htab;
8454
8455 htab = mips_elf_hash_table (info);
8456 dynobj = elf_hash_table (info)->dynobj;
8457
8458 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8459
8460 sgot = mips_elf_got_section (dynobj, FALSE);
8461 if (sgot == NULL)
8462 gg = g = NULL;
8463 else
8464 {
8465 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8466 gg = mips_elf_section_data (sgot)->u.got_info;
8467 BFD_ASSERT (gg != NULL);
8468 g = mips_elf_got_for_ibfd (gg, output_bfd);
8469 BFD_ASSERT (g != NULL);
8470 }
8471
8472 if (elf_hash_table (info)->dynamic_sections_created)
8473 {
8474 bfd_byte *b;
8475
8476 BFD_ASSERT (sdyn != NULL);
8477 BFD_ASSERT (g != NULL);
8478
8479 for (b = sdyn->contents;
8480 b < sdyn->contents + sdyn->size;
8481 b += MIPS_ELF_DYN_SIZE (dynobj))
8482 {
8483 Elf_Internal_Dyn dyn;
8484 const char *name;
8485 size_t elemsize;
8486 asection *s;
8487 bfd_boolean swap_out_p;
8488
8489 /* Read in the current dynamic entry. */
8490 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8491
8492 /* Assume that we're going to modify it and write it out. */
8493 swap_out_p = TRUE;
8494
8495 switch (dyn.d_tag)
8496 {
8497 case DT_RELENT:
8498 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8499 break;
8500
8501 case DT_RELAENT:
8502 BFD_ASSERT (htab->is_vxworks);
8503 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8504 break;
8505
8506 case DT_STRSZ:
8507 /* Rewrite DT_STRSZ. */
8508 dyn.d_un.d_val =
8509 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8510 break;
8511
8512 case DT_PLTGOT:
8513 name = ".got";
8514 if (htab->is_vxworks)
8515 {
8516 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8517 of the ".got" section in DYNOBJ. */
8518 s = bfd_get_section_by_name (dynobj, name);
8519 BFD_ASSERT (s != NULL);
8520 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8521 }
8522 else
8523 {
8524 s = bfd_get_section_by_name (output_bfd, name);
8525 BFD_ASSERT (s != NULL);
8526 dyn.d_un.d_ptr = s->vma;
8527 }
8528 break;
8529
8530 case DT_MIPS_RLD_VERSION:
8531 dyn.d_un.d_val = 1; /* XXX */
8532 break;
8533
8534 case DT_MIPS_FLAGS:
8535 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8536 break;
8537
8538 case DT_MIPS_TIME_STAMP:
8539 {
8540 time_t t;
8541 time (&t);
8542 dyn.d_un.d_val = t;
8543 }
8544 break;
8545
8546 case DT_MIPS_ICHECKSUM:
8547 /* XXX FIXME: */
8548 swap_out_p = FALSE;
8549 break;
8550
8551 case DT_MIPS_IVERSION:
8552 /* XXX FIXME: */
8553 swap_out_p = FALSE;
8554 break;
8555
8556 case DT_MIPS_BASE_ADDRESS:
8557 s = output_bfd->sections;
8558 BFD_ASSERT (s != NULL);
8559 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8560 break;
8561
8562 case DT_MIPS_LOCAL_GOTNO:
8563 dyn.d_un.d_val = g->local_gotno;
8564 break;
8565
8566 case DT_MIPS_UNREFEXTNO:
8567 /* The index into the dynamic symbol table which is the
8568 entry of the first external symbol that is not
8569 referenced within the same object. */
8570 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8571 break;
8572
8573 case DT_MIPS_GOTSYM:
8574 if (gg->global_gotsym)
8575 {
8576 dyn.d_un.d_val = gg->global_gotsym->dynindx;
8577 break;
8578 }
8579 /* In case if we don't have global got symbols we default
8580 to setting DT_MIPS_GOTSYM to the same value as
8581 DT_MIPS_SYMTABNO, so we just fall through. */
8582
8583 case DT_MIPS_SYMTABNO:
8584 name = ".dynsym";
8585 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8586 s = bfd_get_section_by_name (output_bfd, name);
8587 BFD_ASSERT (s != NULL);
8588
8589 dyn.d_un.d_val = s->size / elemsize;
8590 break;
8591
8592 case DT_MIPS_HIPAGENO:
8593 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
8594 break;
8595
8596 case DT_MIPS_RLD_MAP:
8597 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8598 break;
8599
8600 case DT_MIPS_OPTIONS:
8601 s = (bfd_get_section_by_name
8602 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8603 dyn.d_un.d_ptr = s->vma;
8604 break;
8605
8606 case DT_RELASZ:
8607 BFD_ASSERT (htab->is_vxworks);
8608 /* The count does not include the JUMP_SLOT relocations. */
8609 if (htab->srelplt)
8610 dyn.d_un.d_val -= htab->srelplt->size;
8611 break;
8612
8613 case DT_PLTREL:
8614 BFD_ASSERT (htab->is_vxworks);
8615 dyn.d_un.d_val = DT_RELA;
8616 break;
8617
8618 case DT_PLTRELSZ:
8619 BFD_ASSERT (htab->is_vxworks);
8620 dyn.d_un.d_val = htab->srelplt->size;
8621 break;
8622
8623 case DT_JMPREL:
8624 BFD_ASSERT (htab->is_vxworks);
8625 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8626 + htab->srelplt->output_offset);
8627 break;
8628
8629 default:
8630 swap_out_p = FALSE;
8631 break;
8632 }
8633
8634 if (swap_out_p)
8635 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8636 (dynobj, &dyn, b);
8637 }
8638 }
8639
8640 if (sgot != NULL && sgot->size > 0)
8641 {
8642 if (htab->is_vxworks)
8643 {
8644 /* The first entry of the global offset table points to the
8645 ".dynamic" section. The second is initialized by the
8646 loader and contains the shared library identifier.
8647 The third is also initialized by the loader and points
8648 to the lazy resolution stub. */
8649 MIPS_ELF_PUT_WORD (output_bfd,
8650 sdyn->output_offset + sdyn->output_section->vma,
8651 sgot->contents);
8652 MIPS_ELF_PUT_WORD (output_bfd, 0,
8653 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8654 MIPS_ELF_PUT_WORD (output_bfd, 0,
8655 sgot->contents
8656 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8657 }
8658 else
8659 {
8660 /* The first entry of the global offset table will be filled at
8661 runtime. The second entry will be used by some runtime loaders.
8662 This isn't the case of IRIX rld. */
8663 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8664 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8665 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8666 }
8667 }
8668
8669 if (sgot != NULL)
8670 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8671 = MIPS_ELF_GOT_SIZE (output_bfd);
8672
8673 /* Generate dynamic relocations for the non-primary gots. */
8674 if (gg != NULL && gg->next)
8675 {
8676 Elf_Internal_Rela rel[3];
8677 bfd_vma addend = 0;
8678
8679 memset (rel, 0, sizeof (rel));
8680 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8681
8682 for (g = gg->next; g->next != gg; g = g->next)
8683 {
8684 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8685 + g->next->tls_gotno;
8686
8687 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
8688 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8689 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
8690 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8691
8692 if (! info->shared)
8693 continue;
8694
8695 while (index < g->assigned_gotno)
8696 {
8697 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8698 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8699 if (!(mips_elf_create_dynamic_relocation
8700 (output_bfd, info, rel, NULL,
8701 bfd_abs_section_ptr,
8702 0, &addend, sgot)))
8703 return FALSE;
8704 BFD_ASSERT (addend == 0);
8705 }
8706 }
8707 }
8708
8709 /* The generation of dynamic relocations for the non-primary gots
8710 adds more dynamic relocations. We cannot count them until
8711 here. */
8712
8713 if (elf_hash_table (info)->dynamic_sections_created)
8714 {
8715 bfd_byte *b;
8716 bfd_boolean swap_out_p;
8717
8718 BFD_ASSERT (sdyn != NULL);
8719
8720 for (b = sdyn->contents;
8721 b < sdyn->contents + sdyn->size;
8722 b += MIPS_ELF_DYN_SIZE (dynobj))
8723 {
8724 Elf_Internal_Dyn dyn;
8725 asection *s;
8726
8727 /* Read in the current dynamic entry. */
8728 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8729
8730 /* Assume that we're going to modify it and write it out. */
8731 swap_out_p = TRUE;
8732
8733 switch (dyn.d_tag)
8734 {
8735 case DT_RELSZ:
8736 /* Reduce DT_RELSZ to account for any relocations we
8737 decided not to make. This is for the n64 irix rld,
8738 which doesn't seem to apply any relocations if there
8739 are trailing null entries. */
8740 s = mips_elf_rel_dyn_section (info, FALSE);
8741 dyn.d_un.d_val = (s->reloc_count
8742 * (ABI_64_P (output_bfd)
8743 ? sizeof (Elf64_Mips_External_Rel)
8744 : sizeof (Elf32_External_Rel)));
8745 break;
8746
8747 default:
8748 swap_out_p = FALSE;
8749 break;
8750 }
8751
8752 if (swap_out_p)
8753 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8754 (dynobj, &dyn, b);
8755 }
8756 }
8757
8758 {
8759 asection *s;
8760 Elf32_compact_rel cpt;
8761
8762 if (SGI_COMPAT (output_bfd))
8763 {
8764 /* Write .compact_rel section out. */
8765 s = bfd_get_section_by_name (dynobj, ".compact_rel");
8766 if (s != NULL)
8767 {
8768 cpt.id1 = 1;
8769 cpt.num = s->reloc_count;
8770 cpt.id2 = 2;
8771 cpt.offset = (s->output_section->filepos
8772 + sizeof (Elf32_External_compact_rel));
8773 cpt.reserved0 = 0;
8774 cpt.reserved1 = 0;
8775 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
8776 ((Elf32_External_compact_rel *)
8777 s->contents));
8778
8779 /* Clean up a dummy stub function entry in .text. */
8780 s = bfd_get_section_by_name (dynobj,
8781 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8782 if (s != NULL)
8783 {
8784 file_ptr dummy_offset;
8785
8786 BFD_ASSERT (s->size >= MIPS_FUNCTION_STUB_SIZE);
8787 dummy_offset = s->size - MIPS_FUNCTION_STUB_SIZE;
8788 memset (s->contents + dummy_offset, 0,
8789 MIPS_FUNCTION_STUB_SIZE);
8790 }
8791 }
8792 }
8793
8794 /* The psABI says that the dynamic relocations must be sorted in
8795 increasing order of r_symndx. The VxWorks EABI doesn't require
8796 this, and because the code below handles REL rather than RELA
8797 relocations, using it for VxWorks would be outright harmful. */
8798 if (!htab->is_vxworks)
8799 {
8800 s = mips_elf_rel_dyn_section (info, FALSE);
8801 if (s != NULL
8802 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
8803 {
8804 reldyn_sorting_bfd = output_bfd;
8805
8806 if (ABI_64_P (output_bfd))
8807 qsort ((Elf64_External_Rel *) s->contents + 1,
8808 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
8809 sort_dynamic_relocs_64);
8810 else
8811 qsort ((Elf32_External_Rel *) s->contents + 1,
8812 s->reloc_count - 1, sizeof (Elf32_External_Rel),
8813 sort_dynamic_relocs);
8814 }
8815 }
8816 }
8817
8818 if (htab->is_vxworks && htab->splt->size > 0)
8819 {
8820 if (info->shared)
8821 mips_vxworks_finish_shared_plt (output_bfd, info);
8822 else
8823 mips_vxworks_finish_exec_plt (output_bfd, info);
8824 }
8825 return TRUE;
8826 }
8827
8828
8829 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
8830
8831 static void
8832 mips_set_isa_flags (bfd *abfd)
8833 {
8834 flagword val;
8835
8836 switch (bfd_get_mach (abfd))
8837 {
8838 default:
8839 case bfd_mach_mips3000:
8840 val = E_MIPS_ARCH_1;
8841 break;
8842
8843 case bfd_mach_mips3900:
8844 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
8845 break;
8846
8847 case bfd_mach_mips6000:
8848 val = E_MIPS_ARCH_2;
8849 break;
8850
8851 case bfd_mach_mips4000:
8852 case bfd_mach_mips4300:
8853 case bfd_mach_mips4400:
8854 case bfd_mach_mips4600:
8855 val = E_MIPS_ARCH_3;
8856 break;
8857
8858 case bfd_mach_mips4010:
8859 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
8860 break;
8861
8862 case bfd_mach_mips4100:
8863 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
8864 break;
8865
8866 case bfd_mach_mips4111:
8867 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
8868 break;
8869
8870 case bfd_mach_mips4120:
8871 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
8872 break;
8873
8874 case bfd_mach_mips4650:
8875 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
8876 break;
8877
8878 case bfd_mach_mips5400:
8879 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
8880 break;
8881
8882 case bfd_mach_mips5500:
8883 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
8884 break;
8885
8886 case bfd_mach_mips9000:
8887 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
8888 break;
8889
8890 case bfd_mach_mips5000:
8891 case bfd_mach_mips7000:
8892 case bfd_mach_mips8000:
8893 case bfd_mach_mips10000:
8894 case bfd_mach_mips12000:
8895 val = E_MIPS_ARCH_4;
8896 break;
8897
8898 case bfd_mach_mips5:
8899 val = E_MIPS_ARCH_5;
8900 break;
8901
8902 case bfd_mach_mips_sb1:
8903 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
8904 break;
8905
8906 case bfd_mach_mipsisa32:
8907 val = E_MIPS_ARCH_32;
8908 break;
8909
8910 case bfd_mach_mipsisa64:
8911 val = E_MIPS_ARCH_64;
8912 break;
8913
8914 case bfd_mach_mipsisa32r2:
8915 val = E_MIPS_ARCH_32R2;
8916 break;
8917
8918 case bfd_mach_mipsisa64r2:
8919 val = E_MIPS_ARCH_64R2;
8920 break;
8921 }
8922 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
8923 elf_elfheader (abfd)->e_flags |= val;
8924
8925 }
8926
8927
8928 /* The final processing done just before writing out a MIPS ELF object
8929 file. This gets the MIPS architecture right based on the machine
8930 number. This is used by both the 32-bit and the 64-bit ABI. */
8931
8932 void
8933 _bfd_mips_elf_final_write_processing (bfd *abfd,
8934 bfd_boolean linker ATTRIBUTE_UNUSED)
8935 {
8936 unsigned int i;
8937 Elf_Internal_Shdr **hdrpp;
8938 const char *name;
8939 asection *sec;
8940
8941 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
8942 is nonzero. This is for compatibility with old objects, which used
8943 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
8944 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
8945 mips_set_isa_flags (abfd);
8946
8947 /* Set the sh_info field for .gptab sections and other appropriate
8948 info for each special section. */
8949 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
8950 i < elf_numsections (abfd);
8951 i++, hdrpp++)
8952 {
8953 switch ((*hdrpp)->sh_type)
8954 {
8955 case SHT_MIPS_MSYM:
8956 case SHT_MIPS_LIBLIST:
8957 sec = bfd_get_section_by_name (abfd, ".dynstr");
8958 if (sec != NULL)
8959 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8960 break;
8961
8962 case SHT_MIPS_GPTAB:
8963 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
8964 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
8965 BFD_ASSERT (name != NULL
8966 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
8967 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
8968 BFD_ASSERT (sec != NULL);
8969 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
8970 break;
8971
8972 case SHT_MIPS_CONTENT:
8973 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
8974 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
8975 BFD_ASSERT (name != NULL
8976 && strncmp (name, ".MIPS.content",
8977 sizeof ".MIPS.content" - 1) == 0);
8978 sec = bfd_get_section_by_name (abfd,
8979 name + sizeof ".MIPS.content" - 1);
8980 BFD_ASSERT (sec != NULL);
8981 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8982 break;
8983
8984 case SHT_MIPS_SYMBOL_LIB:
8985 sec = bfd_get_section_by_name (abfd, ".dynsym");
8986 if (sec != NULL)
8987 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8988 sec = bfd_get_section_by_name (abfd, ".liblist");
8989 if (sec != NULL)
8990 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
8991 break;
8992
8993 case SHT_MIPS_EVENTS:
8994 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
8995 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
8996 BFD_ASSERT (name != NULL);
8997 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
8998 sec = bfd_get_section_by_name (abfd,
8999 name + sizeof ".MIPS.events" - 1);
9000 else
9001 {
9002 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
9003 sizeof ".MIPS.post_rel" - 1) == 0);
9004 sec = bfd_get_section_by_name (abfd,
9005 (name
9006 + sizeof ".MIPS.post_rel" - 1));
9007 }
9008 BFD_ASSERT (sec != NULL);
9009 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9010 break;
9011
9012 }
9013 }
9014 }
9015 \f
9016 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9017 segments. */
9018
9019 int
9020 _bfd_mips_elf_additional_program_headers (bfd *abfd)
9021 {
9022 asection *s;
9023 int ret = 0;
9024
9025 /* See if we need a PT_MIPS_REGINFO segment. */
9026 s = bfd_get_section_by_name (abfd, ".reginfo");
9027 if (s && (s->flags & SEC_LOAD))
9028 ++ret;
9029
9030 /* See if we need a PT_MIPS_OPTIONS segment. */
9031 if (IRIX_COMPAT (abfd) == ict_irix6
9032 && bfd_get_section_by_name (abfd,
9033 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9034 ++ret;
9035
9036 /* See if we need a PT_MIPS_RTPROC segment. */
9037 if (IRIX_COMPAT (abfd) == ict_irix5
9038 && bfd_get_section_by_name (abfd, ".dynamic")
9039 && bfd_get_section_by_name (abfd, ".mdebug"))
9040 ++ret;
9041
9042 return ret;
9043 }
9044
9045 /* Modify the segment map for an IRIX5 executable. */
9046
9047 bfd_boolean
9048 _bfd_mips_elf_modify_segment_map (bfd *abfd,
9049 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9050 {
9051 asection *s;
9052 struct elf_segment_map *m, **pm;
9053 bfd_size_type amt;
9054
9055 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9056 segment. */
9057 s = bfd_get_section_by_name (abfd, ".reginfo");
9058 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9059 {
9060 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9061 if (m->p_type == PT_MIPS_REGINFO)
9062 break;
9063 if (m == NULL)
9064 {
9065 amt = sizeof *m;
9066 m = bfd_zalloc (abfd, amt);
9067 if (m == NULL)
9068 return FALSE;
9069
9070 m->p_type = PT_MIPS_REGINFO;
9071 m->count = 1;
9072 m->sections[0] = s;
9073
9074 /* We want to put it after the PHDR and INTERP segments. */
9075 pm = &elf_tdata (abfd)->segment_map;
9076 while (*pm != NULL
9077 && ((*pm)->p_type == PT_PHDR
9078 || (*pm)->p_type == PT_INTERP))
9079 pm = &(*pm)->next;
9080
9081 m->next = *pm;
9082 *pm = m;
9083 }
9084 }
9085
9086 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9087 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9088 PT_MIPS_OPTIONS segment immediately following the program header
9089 table. */
9090 if (NEWABI_P (abfd)
9091 /* On non-IRIX6 new abi, we'll have already created a segment
9092 for this section, so don't create another. I'm not sure this
9093 is not also the case for IRIX 6, but I can't test it right
9094 now. */
9095 && IRIX_COMPAT (abfd) == ict_irix6)
9096 {
9097 for (s = abfd->sections; s; s = s->next)
9098 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9099 break;
9100
9101 if (s)
9102 {
9103 struct elf_segment_map *options_segment;
9104
9105 pm = &elf_tdata (abfd)->segment_map;
9106 while (*pm != NULL
9107 && ((*pm)->p_type == PT_PHDR
9108 || (*pm)->p_type == PT_INTERP))
9109 pm = &(*pm)->next;
9110
9111 amt = sizeof (struct elf_segment_map);
9112 options_segment = bfd_zalloc (abfd, amt);
9113 options_segment->next = *pm;
9114 options_segment->p_type = PT_MIPS_OPTIONS;
9115 options_segment->p_flags = PF_R;
9116 options_segment->p_flags_valid = TRUE;
9117 options_segment->count = 1;
9118 options_segment->sections[0] = s;
9119 *pm = options_segment;
9120 }
9121 }
9122 else
9123 {
9124 if (IRIX_COMPAT (abfd) == ict_irix5)
9125 {
9126 /* If there are .dynamic and .mdebug sections, we make a room
9127 for the RTPROC header. FIXME: Rewrite without section names. */
9128 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9129 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9130 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9131 {
9132 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9133 if (m->p_type == PT_MIPS_RTPROC)
9134 break;
9135 if (m == NULL)
9136 {
9137 amt = sizeof *m;
9138 m = bfd_zalloc (abfd, amt);
9139 if (m == NULL)
9140 return FALSE;
9141
9142 m->p_type = PT_MIPS_RTPROC;
9143
9144 s = bfd_get_section_by_name (abfd, ".rtproc");
9145 if (s == NULL)
9146 {
9147 m->count = 0;
9148 m->p_flags = 0;
9149 m->p_flags_valid = 1;
9150 }
9151 else
9152 {
9153 m->count = 1;
9154 m->sections[0] = s;
9155 }
9156
9157 /* We want to put it after the DYNAMIC segment. */
9158 pm = &elf_tdata (abfd)->segment_map;
9159 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9160 pm = &(*pm)->next;
9161 if (*pm != NULL)
9162 pm = &(*pm)->next;
9163
9164 m->next = *pm;
9165 *pm = m;
9166 }
9167 }
9168 }
9169 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9170 .dynstr, .dynsym, and .hash sections, and everything in
9171 between. */
9172 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9173 pm = &(*pm)->next)
9174 if ((*pm)->p_type == PT_DYNAMIC)
9175 break;
9176 m = *pm;
9177 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9178 {
9179 /* For a normal mips executable the permissions for the PT_DYNAMIC
9180 segment are read, write and execute. We do that here since
9181 the code in elf.c sets only the read permission. This matters
9182 sometimes for the dynamic linker. */
9183 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9184 {
9185 m->p_flags = PF_R | PF_W | PF_X;
9186 m->p_flags_valid = 1;
9187 }
9188 }
9189 if (m != NULL
9190 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9191 {
9192 static const char *sec_names[] =
9193 {
9194 ".dynamic", ".dynstr", ".dynsym", ".hash"
9195 };
9196 bfd_vma low, high;
9197 unsigned int i, c;
9198 struct elf_segment_map *n;
9199
9200 low = ~(bfd_vma) 0;
9201 high = 0;
9202 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9203 {
9204 s = bfd_get_section_by_name (abfd, sec_names[i]);
9205 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9206 {
9207 bfd_size_type sz;
9208
9209 if (low > s->vma)
9210 low = s->vma;
9211 sz = s->size;
9212 if (high < s->vma + sz)
9213 high = s->vma + sz;
9214 }
9215 }
9216
9217 c = 0;
9218 for (s = abfd->sections; s != NULL; s = s->next)
9219 if ((s->flags & SEC_LOAD) != 0
9220 && s->vma >= low
9221 && s->vma + s->size <= high)
9222 ++c;
9223
9224 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9225 n = bfd_zalloc (abfd, amt);
9226 if (n == NULL)
9227 return FALSE;
9228 *n = *m;
9229 n->count = c;
9230
9231 i = 0;
9232 for (s = abfd->sections; s != NULL; s = s->next)
9233 {
9234 if ((s->flags & SEC_LOAD) != 0
9235 && s->vma >= low
9236 && s->vma + s->size <= high)
9237 {
9238 n->sections[i] = s;
9239 ++i;
9240 }
9241 }
9242
9243 *pm = n;
9244 }
9245 }
9246
9247 return TRUE;
9248 }
9249 \f
9250 /* Return the section that should be marked against GC for a given
9251 relocation. */
9252
9253 asection *
9254 _bfd_mips_elf_gc_mark_hook (asection *sec,
9255 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9256 Elf_Internal_Rela *rel,
9257 struct elf_link_hash_entry *h,
9258 Elf_Internal_Sym *sym)
9259 {
9260 /* ??? Do mips16 stub sections need to be handled special? */
9261
9262 if (h != NULL)
9263 {
9264 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9265 {
9266 case R_MIPS_GNU_VTINHERIT:
9267 case R_MIPS_GNU_VTENTRY:
9268 break;
9269
9270 default:
9271 switch (h->root.type)
9272 {
9273 case bfd_link_hash_defined:
9274 case bfd_link_hash_defweak:
9275 return h->root.u.def.section;
9276
9277 case bfd_link_hash_common:
9278 return h->root.u.c.p->section;
9279
9280 default:
9281 break;
9282 }
9283 }
9284 }
9285 else
9286 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
9287
9288 return NULL;
9289 }
9290
9291 /* Update the got entry reference counts for the section being removed. */
9292
9293 bfd_boolean
9294 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9295 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9296 asection *sec ATTRIBUTE_UNUSED,
9297 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
9298 {
9299 #if 0
9300 Elf_Internal_Shdr *symtab_hdr;
9301 struct elf_link_hash_entry **sym_hashes;
9302 bfd_signed_vma *local_got_refcounts;
9303 const Elf_Internal_Rela *rel, *relend;
9304 unsigned long r_symndx;
9305 struct elf_link_hash_entry *h;
9306
9307 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9308 sym_hashes = elf_sym_hashes (abfd);
9309 local_got_refcounts = elf_local_got_refcounts (abfd);
9310
9311 relend = relocs + sec->reloc_count;
9312 for (rel = relocs; rel < relend; rel++)
9313 switch (ELF_R_TYPE (abfd, rel->r_info))
9314 {
9315 case R_MIPS_GOT16:
9316 case R_MIPS_CALL16:
9317 case R_MIPS_CALL_HI16:
9318 case R_MIPS_CALL_LO16:
9319 case R_MIPS_GOT_HI16:
9320 case R_MIPS_GOT_LO16:
9321 case R_MIPS_GOT_DISP:
9322 case R_MIPS_GOT_PAGE:
9323 case R_MIPS_GOT_OFST:
9324 /* ??? It would seem that the existing MIPS code does no sort
9325 of reference counting or whatnot on its GOT and PLT entries,
9326 so it is not possible to garbage collect them at this time. */
9327 break;
9328
9329 default:
9330 break;
9331 }
9332 #endif
9333
9334 return TRUE;
9335 }
9336 \f
9337 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9338 hiding the old indirect symbol. Process additional relocation
9339 information. Also called for weakdefs, in which case we just let
9340 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9341
9342 void
9343 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9344 struct elf_link_hash_entry *dir,
9345 struct elf_link_hash_entry *ind)
9346 {
9347 struct mips_elf_link_hash_entry *dirmips, *indmips;
9348
9349 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
9350
9351 if (ind->root.type != bfd_link_hash_indirect)
9352 return;
9353
9354 dirmips = (struct mips_elf_link_hash_entry *) dir;
9355 indmips = (struct mips_elf_link_hash_entry *) ind;
9356 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9357 if (indmips->readonly_reloc)
9358 dirmips->readonly_reloc = TRUE;
9359 if (indmips->no_fn_stub)
9360 dirmips->no_fn_stub = TRUE;
9361
9362 if (dirmips->tls_type == 0)
9363 dirmips->tls_type = indmips->tls_type;
9364 }
9365
9366 void
9367 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9368 struct elf_link_hash_entry *entry,
9369 bfd_boolean force_local)
9370 {
9371 bfd *dynobj;
9372 asection *got;
9373 struct mips_got_info *g;
9374 struct mips_elf_link_hash_entry *h;
9375
9376 h = (struct mips_elf_link_hash_entry *) entry;
9377 if (h->forced_local)
9378 return;
9379 h->forced_local = force_local;
9380
9381 dynobj = elf_hash_table (info)->dynobj;
9382 if (dynobj != NULL && force_local && h->root.type != STT_TLS
9383 && (got = mips_elf_got_section (dynobj, FALSE)) != NULL
9384 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
9385 {
9386 if (g->next)
9387 {
9388 struct mips_got_entry e;
9389 struct mips_got_info *gg = g;
9390
9391 /* Since we're turning what used to be a global symbol into a
9392 local one, bump up the number of local entries of each GOT
9393 that had an entry for it. This will automatically decrease
9394 the number of global entries, since global_gotno is actually
9395 the upper limit of global entries. */
9396 e.abfd = dynobj;
9397 e.symndx = -1;
9398 e.d.h = h;
9399 e.tls_type = 0;
9400
9401 for (g = g->next; g != gg; g = g->next)
9402 if (htab_find (g->got_entries, &e))
9403 {
9404 BFD_ASSERT (g->global_gotno > 0);
9405 g->local_gotno++;
9406 g->global_gotno--;
9407 }
9408
9409 /* If this was a global symbol forced into the primary GOT, we
9410 no longer need an entry for it. We can't release the entry
9411 at this point, but we must at least stop counting it as one
9412 of the symbols that required a forced got entry. */
9413 if (h->root.got.offset == 2)
9414 {
9415 BFD_ASSERT (gg->assigned_gotno > 0);
9416 gg->assigned_gotno--;
9417 }
9418 }
9419 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9420 /* If we haven't got through GOT allocation yet, just bump up the
9421 number of local entries, as this symbol won't be counted as
9422 global. */
9423 g->local_gotno++;
9424 else if (h->root.got.offset == 1)
9425 {
9426 /* If we're past non-multi-GOT allocation and this symbol had
9427 been marked for a global got entry, give it a local entry
9428 instead. */
9429 BFD_ASSERT (g->global_gotno > 0);
9430 g->local_gotno++;
9431 g->global_gotno--;
9432 }
9433 }
9434
9435 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
9436 }
9437 \f
9438 #define PDR_SIZE 32
9439
9440 bfd_boolean
9441 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9442 struct bfd_link_info *info)
9443 {
9444 asection *o;
9445 bfd_boolean ret = FALSE;
9446 unsigned char *tdata;
9447 size_t i, skip;
9448
9449 o = bfd_get_section_by_name (abfd, ".pdr");
9450 if (! o)
9451 return FALSE;
9452 if (o->size == 0)
9453 return FALSE;
9454 if (o->size % PDR_SIZE != 0)
9455 return FALSE;
9456 if (o->output_section != NULL
9457 && bfd_is_abs_section (o->output_section))
9458 return FALSE;
9459
9460 tdata = bfd_zmalloc (o->size / PDR_SIZE);
9461 if (! tdata)
9462 return FALSE;
9463
9464 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
9465 info->keep_memory);
9466 if (!cookie->rels)
9467 {
9468 free (tdata);
9469 return FALSE;
9470 }
9471
9472 cookie->rel = cookie->rels;
9473 cookie->relend = cookie->rels + o->reloc_count;
9474
9475 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
9476 {
9477 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
9478 {
9479 tdata[i] = 1;
9480 skip ++;
9481 }
9482 }
9483
9484 if (skip != 0)
9485 {
9486 mips_elf_section_data (o)->u.tdata = tdata;
9487 o->size -= skip * PDR_SIZE;
9488 ret = TRUE;
9489 }
9490 else
9491 free (tdata);
9492
9493 if (! info->keep_memory)
9494 free (cookie->rels);
9495
9496 return ret;
9497 }
9498
9499 bfd_boolean
9500 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
9501 {
9502 if (strcmp (sec->name, ".pdr") == 0)
9503 return TRUE;
9504 return FALSE;
9505 }
9506
9507 bfd_boolean
9508 _bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
9509 bfd_byte *contents)
9510 {
9511 bfd_byte *to, *from, *end;
9512 int i;
9513
9514 if (strcmp (sec->name, ".pdr") != 0)
9515 return FALSE;
9516
9517 if (mips_elf_section_data (sec)->u.tdata == NULL)
9518 return FALSE;
9519
9520 to = contents;
9521 end = contents + sec->size;
9522 for (from = contents, i = 0;
9523 from < end;
9524 from += PDR_SIZE, i++)
9525 {
9526 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
9527 continue;
9528 if (to != from)
9529 memcpy (to, from, PDR_SIZE);
9530 to += PDR_SIZE;
9531 }
9532 bfd_set_section_contents (output_bfd, sec->output_section, contents,
9533 sec->output_offset, sec->size);
9534 return TRUE;
9535 }
9536 \f
9537 /* MIPS ELF uses a special find_nearest_line routine in order the
9538 handle the ECOFF debugging information. */
9539
9540 struct mips_elf_find_line
9541 {
9542 struct ecoff_debug_info d;
9543 struct ecoff_find_line i;
9544 };
9545
9546 bfd_boolean
9547 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9548 asymbol **symbols, bfd_vma offset,
9549 const char **filename_ptr,
9550 const char **functionname_ptr,
9551 unsigned int *line_ptr)
9552 {
9553 asection *msec;
9554
9555 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9556 filename_ptr, functionname_ptr,
9557 line_ptr))
9558 return TRUE;
9559
9560 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9561 filename_ptr, functionname_ptr,
9562 line_ptr, ABI_64_P (abfd) ? 8 : 0,
9563 &elf_tdata (abfd)->dwarf2_find_line_info))
9564 return TRUE;
9565
9566 msec = bfd_get_section_by_name (abfd, ".mdebug");
9567 if (msec != NULL)
9568 {
9569 flagword origflags;
9570 struct mips_elf_find_line *fi;
9571 const struct ecoff_debug_swap * const swap =
9572 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9573
9574 /* If we are called during a link, mips_elf_final_link may have
9575 cleared the SEC_HAS_CONTENTS field. We force it back on here
9576 if appropriate (which it normally will be). */
9577 origflags = msec->flags;
9578 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9579 msec->flags |= SEC_HAS_CONTENTS;
9580
9581 fi = elf_tdata (abfd)->find_line_info;
9582 if (fi == NULL)
9583 {
9584 bfd_size_type external_fdr_size;
9585 char *fraw_src;
9586 char *fraw_end;
9587 struct fdr *fdr_ptr;
9588 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9589
9590 fi = bfd_zalloc (abfd, amt);
9591 if (fi == NULL)
9592 {
9593 msec->flags = origflags;
9594 return FALSE;
9595 }
9596
9597 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9598 {
9599 msec->flags = origflags;
9600 return FALSE;
9601 }
9602
9603 /* Swap in the FDR information. */
9604 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9605 fi->d.fdr = bfd_alloc (abfd, amt);
9606 if (fi->d.fdr == NULL)
9607 {
9608 msec->flags = origflags;
9609 return FALSE;
9610 }
9611 external_fdr_size = swap->external_fdr_size;
9612 fdr_ptr = fi->d.fdr;
9613 fraw_src = (char *) fi->d.external_fdr;
9614 fraw_end = (fraw_src
9615 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9616 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9617 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
9618
9619 elf_tdata (abfd)->find_line_info = fi;
9620
9621 /* Note that we don't bother to ever free this information.
9622 find_nearest_line is either called all the time, as in
9623 objdump -l, so the information should be saved, or it is
9624 rarely called, as in ld error messages, so the memory
9625 wasted is unimportant. Still, it would probably be a
9626 good idea for free_cached_info to throw it away. */
9627 }
9628
9629 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9630 &fi->i, filename_ptr, functionname_ptr,
9631 line_ptr))
9632 {
9633 msec->flags = origflags;
9634 return TRUE;
9635 }
9636
9637 msec->flags = origflags;
9638 }
9639
9640 /* Fall back on the generic ELF find_nearest_line routine. */
9641
9642 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9643 filename_ptr, functionname_ptr,
9644 line_ptr);
9645 }
9646
9647 bfd_boolean
9648 _bfd_mips_elf_find_inliner_info (bfd *abfd,
9649 const char **filename_ptr,
9650 const char **functionname_ptr,
9651 unsigned int *line_ptr)
9652 {
9653 bfd_boolean found;
9654 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9655 functionname_ptr, line_ptr,
9656 & elf_tdata (abfd)->dwarf2_find_line_info);
9657 return found;
9658 }
9659
9660 \f
9661 /* When are writing out the .options or .MIPS.options section,
9662 remember the bytes we are writing out, so that we can install the
9663 GP value in the section_processing routine. */
9664
9665 bfd_boolean
9666 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9667 const void *location,
9668 file_ptr offset, bfd_size_type count)
9669 {
9670 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
9671 {
9672 bfd_byte *c;
9673
9674 if (elf_section_data (section) == NULL)
9675 {
9676 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9677 section->used_by_bfd = bfd_zalloc (abfd, amt);
9678 if (elf_section_data (section) == NULL)
9679 return FALSE;
9680 }
9681 c = mips_elf_section_data (section)->u.tdata;
9682 if (c == NULL)
9683 {
9684 c = bfd_zalloc (abfd, section->size);
9685 if (c == NULL)
9686 return FALSE;
9687 mips_elf_section_data (section)->u.tdata = c;
9688 }
9689
9690 memcpy (c + offset, location, count);
9691 }
9692
9693 return _bfd_elf_set_section_contents (abfd, section, location, offset,
9694 count);
9695 }
9696
9697 /* This is almost identical to bfd_generic_get_... except that some
9698 MIPS relocations need to be handled specially. Sigh. */
9699
9700 bfd_byte *
9701 _bfd_elf_mips_get_relocated_section_contents
9702 (bfd *abfd,
9703 struct bfd_link_info *link_info,
9704 struct bfd_link_order *link_order,
9705 bfd_byte *data,
9706 bfd_boolean relocatable,
9707 asymbol **symbols)
9708 {
9709 /* Get enough memory to hold the stuff */
9710 bfd *input_bfd = link_order->u.indirect.section->owner;
9711 asection *input_section = link_order->u.indirect.section;
9712 bfd_size_type sz;
9713
9714 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9715 arelent **reloc_vector = NULL;
9716 long reloc_count;
9717
9718 if (reloc_size < 0)
9719 goto error_return;
9720
9721 reloc_vector = bfd_malloc (reloc_size);
9722 if (reloc_vector == NULL && reloc_size != 0)
9723 goto error_return;
9724
9725 /* read in the section */
9726 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
9727 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
9728 goto error_return;
9729
9730 reloc_count = bfd_canonicalize_reloc (input_bfd,
9731 input_section,
9732 reloc_vector,
9733 symbols);
9734 if (reloc_count < 0)
9735 goto error_return;
9736
9737 if (reloc_count > 0)
9738 {
9739 arelent **parent;
9740 /* for mips */
9741 int gp_found;
9742 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
9743
9744 {
9745 struct bfd_hash_entry *h;
9746 struct bfd_link_hash_entry *lh;
9747 /* Skip all this stuff if we aren't mixing formats. */
9748 if (abfd && input_bfd
9749 && abfd->xvec == input_bfd->xvec)
9750 lh = 0;
9751 else
9752 {
9753 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
9754 lh = (struct bfd_link_hash_entry *) h;
9755 }
9756 lookup:
9757 if (lh)
9758 {
9759 switch (lh->type)
9760 {
9761 case bfd_link_hash_undefined:
9762 case bfd_link_hash_undefweak:
9763 case bfd_link_hash_common:
9764 gp_found = 0;
9765 break;
9766 case bfd_link_hash_defined:
9767 case bfd_link_hash_defweak:
9768 gp_found = 1;
9769 gp = lh->u.def.value;
9770 break;
9771 case bfd_link_hash_indirect:
9772 case bfd_link_hash_warning:
9773 lh = lh->u.i.link;
9774 /* @@FIXME ignoring warning for now */
9775 goto lookup;
9776 case bfd_link_hash_new:
9777 default:
9778 abort ();
9779 }
9780 }
9781 else
9782 gp_found = 0;
9783 }
9784 /* end mips */
9785 for (parent = reloc_vector; *parent != NULL; parent++)
9786 {
9787 char *error_message = NULL;
9788 bfd_reloc_status_type r;
9789
9790 /* Specific to MIPS: Deal with relocation types that require
9791 knowing the gp of the output bfd. */
9792 asymbol *sym = *(*parent)->sym_ptr_ptr;
9793
9794 /* If we've managed to find the gp and have a special
9795 function for the relocation then go ahead, else default
9796 to the generic handling. */
9797 if (gp_found
9798 && (*parent)->howto->special_function
9799 == _bfd_mips_elf32_gprel16_reloc)
9800 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
9801 input_section, relocatable,
9802 data, gp);
9803 else
9804 r = bfd_perform_relocation (input_bfd, *parent, data,
9805 input_section,
9806 relocatable ? abfd : NULL,
9807 &error_message);
9808
9809 if (relocatable)
9810 {
9811 asection *os = input_section->output_section;
9812
9813 /* A partial link, so keep the relocs */
9814 os->orelocation[os->reloc_count] = *parent;
9815 os->reloc_count++;
9816 }
9817
9818 if (r != bfd_reloc_ok)
9819 {
9820 switch (r)
9821 {
9822 case bfd_reloc_undefined:
9823 if (!((*link_info->callbacks->undefined_symbol)
9824 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9825 input_bfd, input_section, (*parent)->address, TRUE)))
9826 goto error_return;
9827 break;
9828 case bfd_reloc_dangerous:
9829 BFD_ASSERT (error_message != NULL);
9830 if (!((*link_info->callbacks->reloc_dangerous)
9831 (link_info, error_message, input_bfd, input_section,
9832 (*parent)->address)))
9833 goto error_return;
9834 break;
9835 case bfd_reloc_overflow:
9836 if (!((*link_info->callbacks->reloc_overflow)
9837 (link_info, NULL,
9838 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9839 (*parent)->howto->name, (*parent)->addend,
9840 input_bfd, input_section, (*parent)->address)))
9841 goto error_return;
9842 break;
9843 case bfd_reloc_outofrange:
9844 default:
9845 abort ();
9846 break;
9847 }
9848
9849 }
9850 }
9851 }
9852 if (reloc_vector != NULL)
9853 free (reloc_vector);
9854 return data;
9855
9856 error_return:
9857 if (reloc_vector != NULL)
9858 free (reloc_vector);
9859 return NULL;
9860 }
9861 \f
9862 /* Create a MIPS ELF linker hash table. */
9863
9864 struct bfd_link_hash_table *
9865 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
9866 {
9867 struct mips_elf_link_hash_table *ret;
9868 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
9869
9870 ret = bfd_malloc (amt);
9871 if (ret == NULL)
9872 return NULL;
9873
9874 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
9875 mips_elf_link_hash_newfunc,
9876 sizeof (struct mips_elf_link_hash_entry)))
9877 {
9878 free (ret);
9879 return NULL;
9880 }
9881
9882 #if 0
9883 /* We no longer use this. */
9884 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
9885 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
9886 #endif
9887 ret->procedure_count = 0;
9888 ret->compact_rel_size = 0;
9889 ret->use_rld_obj_head = FALSE;
9890 ret->rld_value = 0;
9891 ret->mips16_stubs_seen = FALSE;
9892 ret->is_vxworks = FALSE;
9893 ret->srelbss = NULL;
9894 ret->sdynbss = NULL;
9895 ret->srelplt = NULL;
9896 ret->srelplt2 = NULL;
9897 ret->sgotplt = NULL;
9898 ret->splt = NULL;
9899 ret->plt_header_size = 0;
9900 ret->plt_entry_size = 0;
9901
9902 return &ret->root.root;
9903 }
9904
9905 /* Likewise, but indicate that the target is VxWorks. */
9906
9907 struct bfd_link_hash_table *
9908 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
9909 {
9910 struct bfd_link_hash_table *ret;
9911
9912 ret = _bfd_mips_elf_link_hash_table_create (abfd);
9913 if (ret)
9914 {
9915 struct mips_elf_link_hash_table *htab;
9916
9917 htab = (struct mips_elf_link_hash_table *) ret;
9918 htab->is_vxworks = 1;
9919 }
9920 return ret;
9921 }
9922 \f
9923 /* We need to use a special link routine to handle the .reginfo and
9924 the .mdebug sections. We need to merge all instances of these
9925 sections together, not write them all out sequentially. */
9926
9927 bfd_boolean
9928 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
9929 {
9930 asection *o;
9931 struct bfd_link_order *p;
9932 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
9933 asection *rtproc_sec;
9934 Elf32_RegInfo reginfo;
9935 struct ecoff_debug_info debug;
9936 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9937 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
9938 HDRR *symhdr = &debug.symbolic_header;
9939 void *mdebug_handle = NULL;
9940 asection *s;
9941 EXTR esym;
9942 unsigned int i;
9943 bfd_size_type amt;
9944 struct mips_elf_link_hash_table *htab;
9945
9946 static const char * const secname[] =
9947 {
9948 ".text", ".init", ".fini", ".data",
9949 ".rodata", ".sdata", ".sbss", ".bss"
9950 };
9951 static const int sc[] =
9952 {
9953 scText, scInit, scFini, scData,
9954 scRData, scSData, scSBss, scBss
9955 };
9956
9957 /* We'd carefully arranged the dynamic symbol indices, and then the
9958 generic size_dynamic_sections renumbered them out from under us.
9959 Rather than trying somehow to prevent the renumbering, just do
9960 the sort again. */
9961 htab = mips_elf_hash_table (info);
9962 if (elf_hash_table (info)->dynamic_sections_created)
9963 {
9964 bfd *dynobj;
9965 asection *got;
9966 struct mips_got_info *g;
9967 bfd_size_type dynsecsymcount;
9968
9969 /* When we resort, we must tell mips_elf_sort_hash_table what
9970 the lowest index it may use is. That's the number of section
9971 symbols we're going to add. The generic ELF linker only
9972 adds these symbols when building a shared object. Note that
9973 we count the sections after (possibly) removing the .options
9974 section above. */
9975
9976 dynsecsymcount = 0;
9977 if (info->shared)
9978 {
9979 asection * p;
9980
9981 for (p = abfd->sections; p ; p = p->next)
9982 if ((p->flags & SEC_EXCLUDE) == 0
9983 && (p->flags & SEC_ALLOC) != 0
9984 && !(*bed->elf_backend_omit_section_dynsym) (abfd, info, p))
9985 ++ dynsecsymcount;
9986 }
9987
9988 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
9989 return FALSE;
9990
9991 /* Make sure we didn't grow the global .got region. */
9992 dynobj = elf_hash_table (info)->dynobj;
9993 got = mips_elf_got_section (dynobj, FALSE);
9994 g = mips_elf_section_data (got)->u.got_info;
9995
9996 if (g->global_gotsym != NULL)
9997 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
9998 - g->global_gotsym->dynindx)
9999 <= g->global_gotno);
10000 }
10001
10002 /* Get a value for the GP register. */
10003 if (elf_gp (abfd) == 0)
10004 {
10005 struct bfd_link_hash_entry *h;
10006
10007 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
10008 if (h != NULL && h->type == bfd_link_hash_defined)
10009 elf_gp (abfd) = (h->u.def.value
10010 + h->u.def.section->output_section->vma
10011 + h->u.def.section->output_offset);
10012 else if (htab->is_vxworks
10013 && (h = bfd_link_hash_lookup (info->hash,
10014 "_GLOBAL_OFFSET_TABLE_",
10015 FALSE, FALSE, TRUE))
10016 && h->type == bfd_link_hash_defined)
10017 elf_gp (abfd) = (h->u.def.section->output_section->vma
10018 + h->u.def.section->output_offset
10019 + h->u.def.value);
10020 else if (info->relocatable)
10021 {
10022 bfd_vma lo = MINUS_ONE;
10023
10024 /* Find the GP-relative section with the lowest offset. */
10025 for (o = abfd->sections; o != NULL; o = o->next)
10026 if (o->vma < lo
10027 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10028 lo = o->vma;
10029
10030 /* And calculate GP relative to that. */
10031 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
10032 }
10033 else
10034 {
10035 /* If the relocate_section function needs to do a reloc
10036 involving the GP value, it should make a reloc_dangerous
10037 callback to warn that GP is not defined. */
10038 }
10039 }
10040
10041 /* Go through the sections and collect the .reginfo and .mdebug
10042 information. */
10043 reginfo_sec = NULL;
10044 mdebug_sec = NULL;
10045 gptab_data_sec = NULL;
10046 gptab_bss_sec = NULL;
10047 for (o = abfd->sections; o != NULL; o = o->next)
10048 {
10049 if (strcmp (o->name, ".reginfo") == 0)
10050 {
10051 memset (&reginfo, 0, sizeof reginfo);
10052
10053 /* We have found the .reginfo section in the output file.
10054 Look through all the link_orders comprising it and merge
10055 the information together. */
10056 for (p = o->map_head.link_order; p != NULL; p = p->next)
10057 {
10058 asection *input_section;
10059 bfd *input_bfd;
10060 Elf32_External_RegInfo ext;
10061 Elf32_RegInfo sub;
10062
10063 if (p->type != bfd_indirect_link_order)
10064 {
10065 if (p->type == bfd_data_link_order)
10066 continue;
10067 abort ();
10068 }
10069
10070 input_section = p->u.indirect.section;
10071 input_bfd = input_section->owner;
10072
10073 if (! bfd_get_section_contents (input_bfd, input_section,
10074 &ext, 0, sizeof ext))
10075 return FALSE;
10076
10077 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10078
10079 reginfo.ri_gprmask |= sub.ri_gprmask;
10080 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10081 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10082 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10083 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10084
10085 /* ri_gp_value is set by the function
10086 mips_elf32_section_processing when the section is
10087 finally written out. */
10088
10089 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10090 elf_link_input_bfd ignores this section. */
10091 input_section->flags &= ~SEC_HAS_CONTENTS;
10092 }
10093
10094 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10095 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
10096
10097 /* Skip this section later on (I don't think this currently
10098 matters, but someday it might). */
10099 o->map_head.link_order = NULL;
10100
10101 reginfo_sec = o;
10102 }
10103
10104 if (strcmp (o->name, ".mdebug") == 0)
10105 {
10106 struct extsym_info einfo;
10107 bfd_vma last;
10108
10109 /* We have found the .mdebug section in the output file.
10110 Look through all the link_orders comprising it and merge
10111 the information together. */
10112 symhdr->magic = swap->sym_magic;
10113 /* FIXME: What should the version stamp be? */
10114 symhdr->vstamp = 0;
10115 symhdr->ilineMax = 0;
10116 symhdr->cbLine = 0;
10117 symhdr->idnMax = 0;
10118 symhdr->ipdMax = 0;
10119 symhdr->isymMax = 0;
10120 symhdr->ioptMax = 0;
10121 symhdr->iauxMax = 0;
10122 symhdr->issMax = 0;
10123 symhdr->issExtMax = 0;
10124 symhdr->ifdMax = 0;
10125 symhdr->crfd = 0;
10126 symhdr->iextMax = 0;
10127
10128 /* We accumulate the debugging information itself in the
10129 debug_info structure. */
10130 debug.line = NULL;
10131 debug.external_dnr = NULL;
10132 debug.external_pdr = NULL;
10133 debug.external_sym = NULL;
10134 debug.external_opt = NULL;
10135 debug.external_aux = NULL;
10136 debug.ss = NULL;
10137 debug.ssext = debug.ssext_end = NULL;
10138 debug.external_fdr = NULL;
10139 debug.external_rfd = NULL;
10140 debug.external_ext = debug.external_ext_end = NULL;
10141
10142 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
10143 if (mdebug_handle == NULL)
10144 return FALSE;
10145
10146 esym.jmptbl = 0;
10147 esym.cobol_main = 0;
10148 esym.weakext = 0;
10149 esym.reserved = 0;
10150 esym.ifd = ifdNil;
10151 esym.asym.iss = issNil;
10152 esym.asym.st = stLocal;
10153 esym.asym.reserved = 0;
10154 esym.asym.index = indexNil;
10155 last = 0;
10156 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10157 {
10158 esym.asym.sc = sc[i];
10159 s = bfd_get_section_by_name (abfd, secname[i]);
10160 if (s != NULL)
10161 {
10162 esym.asym.value = s->vma;
10163 last = s->vma + s->size;
10164 }
10165 else
10166 esym.asym.value = last;
10167 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10168 secname[i], &esym))
10169 return FALSE;
10170 }
10171
10172 for (p = o->map_head.link_order; p != NULL; p = p->next)
10173 {
10174 asection *input_section;
10175 bfd *input_bfd;
10176 const struct ecoff_debug_swap *input_swap;
10177 struct ecoff_debug_info input_debug;
10178 char *eraw_src;
10179 char *eraw_end;
10180
10181 if (p->type != bfd_indirect_link_order)
10182 {
10183 if (p->type == bfd_data_link_order)
10184 continue;
10185 abort ();
10186 }
10187
10188 input_section = p->u.indirect.section;
10189 input_bfd = input_section->owner;
10190
10191 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10192 || (get_elf_backend_data (input_bfd)
10193 ->elf_backend_ecoff_debug_swap) == NULL)
10194 {
10195 /* I don't know what a non MIPS ELF bfd would be
10196 doing with a .mdebug section, but I don't really
10197 want to deal with it. */
10198 continue;
10199 }
10200
10201 input_swap = (get_elf_backend_data (input_bfd)
10202 ->elf_backend_ecoff_debug_swap);
10203
10204 BFD_ASSERT (p->size == input_section->size);
10205
10206 /* The ECOFF linking code expects that we have already
10207 read in the debugging information and set up an
10208 ecoff_debug_info structure, so we do that now. */
10209 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10210 &input_debug))
10211 return FALSE;
10212
10213 if (! (bfd_ecoff_debug_accumulate
10214 (mdebug_handle, abfd, &debug, swap, input_bfd,
10215 &input_debug, input_swap, info)))
10216 return FALSE;
10217
10218 /* Loop through the external symbols. For each one with
10219 interesting information, try to find the symbol in
10220 the linker global hash table and save the information
10221 for the output external symbols. */
10222 eraw_src = input_debug.external_ext;
10223 eraw_end = (eraw_src
10224 + (input_debug.symbolic_header.iextMax
10225 * input_swap->external_ext_size));
10226 for (;
10227 eraw_src < eraw_end;
10228 eraw_src += input_swap->external_ext_size)
10229 {
10230 EXTR ext;
10231 const char *name;
10232 struct mips_elf_link_hash_entry *h;
10233
10234 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
10235 if (ext.asym.sc == scNil
10236 || ext.asym.sc == scUndefined
10237 || ext.asym.sc == scSUndefined)
10238 continue;
10239
10240 name = input_debug.ssext + ext.asym.iss;
10241 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
10242 name, FALSE, FALSE, TRUE);
10243 if (h == NULL || h->esym.ifd != -2)
10244 continue;
10245
10246 if (ext.ifd != -1)
10247 {
10248 BFD_ASSERT (ext.ifd
10249 < input_debug.symbolic_header.ifdMax);
10250 ext.ifd = input_debug.ifdmap[ext.ifd];
10251 }
10252
10253 h->esym = ext;
10254 }
10255
10256 /* Free up the information we just read. */
10257 free (input_debug.line);
10258 free (input_debug.external_dnr);
10259 free (input_debug.external_pdr);
10260 free (input_debug.external_sym);
10261 free (input_debug.external_opt);
10262 free (input_debug.external_aux);
10263 free (input_debug.ss);
10264 free (input_debug.ssext);
10265 free (input_debug.external_fdr);
10266 free (input_debug.external_rfd);
10267 free (input_debug.external_ext);
10268
10269 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10270 elf_link_input_bfd ignores this section. */
10271 input_section->flags &= ~SEC_HAS_CONTENTS;
10272 }
10273
10274 if (SGI_COMPAT (abfd) && info->shared)
10275 {
10276 /* Create .rtproc section. */
10277 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10278 if (rtproc_sec == NULL)
10279 {
10280 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10281 | SEC_LINKER_CREATED | SEC_READONLY);
10282
10283 rtproc_sec = bfd_make_section_with_flags (abfd,
10284 ".rtproc",
10285 flags);
10286 if (rtproc_sec == NULL
10287 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
10288 return FALSE;
10289 }
10290
10291 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10292 info, rtproc_sec,
10293 &debug))
10294 return FALSE;
10295 }
10296
10297 /* Build the external symbol information. */
10298 einfo.abfd = abfd;
10299 einfo.info = info;
10300 einfo.debug = &debug;
10301 einfo.swap = swap;
10302 einfo.failed = FALSE;
10303 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
10304 mips_elf_output_extsym, &einfo);
10305 if (einfo.failed)
10306 return FALSE;
10307
10308 /* Set the size of the .mdebug section. */
10309 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
10310
10311 /* Skip this section later on (I don't think this currently
10312 matters, but someday it might). */
10313 o->map_head.link_order = NULL;
10314
10315 mdebug_sec = o;
10316 }
10317
10318 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
10319 {
10320 const char *subname;
10321 unsigned int c;
10322 Elf32_gptab *tab;
10323 Elf32_External_gptab *ext_tab;
10324 unsigned int j;
10325
10326 /* The .gptab.sdata and .gptab.sbss sections hold
10327 information describing how the small data area would
10328 change depending upon the -G switch. These sections
10329 not used in executables files. */
10330 if (! info->relocatable)
10331 {
10332 for (p = o->map_head.link_order; p != NULL; p = p->next)
10333 {
10334 asection *input_section;
10335
10336 if (p->type != bfd_indirect_link_order)
10337 {
10338 if (p->type == bfd_data_link_order)
10339 continue;
10340 abort ();
10341 }
10342
10343 input_section = p->u.indirect.section;
10344
10345 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10346 elf_link_input_bfd ignores this section. */
10347 input_section->flags &= ~SEC_HAS_CONTENTS;
10348 }
10349
10350 /* Skip this section later on (I don't think this
10351 currently matters, but someday it might). */
10352 o->map_head.link_order = NULL;
10353
10354 /* Really remove the section. */
10355 bfd_section_list_remove (abfd, o);
10356 --abfd->section_count;
10357
10358 continue;
10359 }
10360
10361 /* There is one gptab for initialized data, and one for
10362 uninitialized data. */
10363 if (strcmp (o->name, ".gptab.sdata") == 0)
10364 gptab_data_sec = o;
10365 else if (strcmp (o->name, ".gptab.sbss") == 0)
10366 gptab_bss_sec = o;
10367 else
10368 {
10369 (*_bfd_error_handler)
10370 (_("%s: illegal section name `%s'"),
10371 bfd_get_filename (abfd), o->name);
10372 bfd_set_error (bfd_error_nonrepresentable_section);
10373 return FALSE;
10374 }
10375
10376 /* The linker script always combines .gptab.data and
10377 .gptab.sdata into .gptab.sdata, and likewise for
10378 .gptab.bss and .gptab.sbss. It is possible that there is
10379 no .sdata or .sbss section in the output file, in which
10380 case we must change the name of the output section. */
10381 subname = o->name + sizeof ".gptab" - 1;
10382 if (bfd_get_section_by_name (abfd, subname) == NULL)
10383 {
10384 if (o == gptab_data_sec)
10385 o->name = ".gptab.data";
10386 else
10387 o->name = ".gptab.bss";
10388 subname = o->name + sizeof ".gptab" - 1;
10389 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10390 }
10391
10392 /* Set up the first entry. */
10393 c = 1;
10394 amt = c * sizeof (Elf32_gptab);
10395 tab = bfd_malloc (amt);
10396 if (tab == NULL)
10397 return FALSE;
10398 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10399 tab[0].gt_header.gt_unused = 0;
10400
10401 /* Combine the input sections. */
10402 for (p = o->map_head.link_order; p != NULL; p = p->next)
10403 {
10404 asection *input_section;
10405 bfd *input_bfd;
10406 bfd_size_type size;
10407 unsigned long last;
10408 bfd_size_type gpentry;
10409
10410 if (p->type != bfd_indirect_link_order)
10411 {
10412 if (p->type == bfd_data_link_order)
10413 continue;
10414 abort ();
10415 }
10416
10417 input_section = p->u.indirect.section;
10418 input_bfd = input_section->owner;
10419
10420 /* Combine the gptab entries for this input section one
10421 by one. We know that the input gptab entries are
10422 sorted by ascending -G value. */
10423 size = input_section->size;
10424 last = 0;
10425 for (gpentry = sizeof (Elf32_External_gptab);
10426 gpentry < size;
10427 gpentry += sizeof (Elf32_External_gptab))
10428 {
10429 Elf32_External_gptab ext_gptab;
10430 Elf32_gptab int_gptab;
10431 unsigned long val;
10432 unsigned long add;
10433 bfd_boolean exact;
10434 unsigned int look;
10435
10436 if (! (bfd_get_section_contents
10437 (input_bfd, input_section, &ext_gptab, gpentry,
10438 sizeof (Elf32_External_gptab))))
10439 {
10440 free (tab);
10441 return FALSE;
10442 }
10443
10444 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10445 &int_gptab);
10446 val = int_gptab.gt_entry.gt_g_value;
10447 add = int_gptab.gt_entry.gt_bytes - last;
10448
10449 exact = FALSE;
10450 for (look = 1; look < c; look++)
10451 {
10452 if (tab[look].gt_entry.gt_g_value >= val)
10453 tab[look].gt_entry.gt_bytes += add;
10454
10455 if (tab[look].gt_entry.gt_g_value == val)
10456 exact = TRUE;
10457 }
10458
10459 if (! exact)
10460 {
10461 Elf32_gptab *new_tab;
10462 unsigned int max;
10463
10464 /* We need a new table entry. */
10465 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
10466 new_tab = bfd_realloc (tab, amt);
10467 if (new_tab == NULL)
10468 {
10469 free (tab);
10470 return FALSE;
10471 }
10472 tab = new_tab;
10473 tab[c].gt_entry.gt_g_value = val;
10474 tab[c].gt_entry.gt_bytes = add;
10475
10476 /* Merge in the size for the next smallest -G
10477 value, since that will be implied by this new
10478 value. */
10479 max = 0;
10480 for (look = 1; look < c; look++)
10481 {
10482 if (tab[look].gt_entry.gt_g_value < val
10483 && (max == 0
10484 || (tab[look].gt_entry.gt_g_value
10485 > tab[max].gt_entry.gt_g_value)))
10486 max = look;
10487 }
10488 if (max != 0)
10489 tab[c].gt_entry.gt_bytes +=
10490 tab[max].gt_entry.gt_bytes;
10491
10492 ++c;
10493 }
10494
10495 last = int_gptab.gt_entry.gt_bytes;
10496 }
10497
10498 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10499 elf_link_input_bfd ignores this section. */
10500 input_section->flags &= ~SEC_HAS_CONTENTS;
10501 }
10502
10503 /* The table must be sorted by -G value. */
10504 if (c > 2)
10505 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10506
10507 /* Swap out the table. */
10508 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
10509 ext_tab = bfd_alloc (abfd, amt);
10510 if (ext_tab == NULL)
10511 {
10512 free (tab);
10513 return FALSE;
10514 }
10515
10516 for (j = 0; j < c; j++)
10517 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10518 free (tab);
10519
10520 o->size = c * sizeof (Elf32_External_gptab);
10521 o->contents = (bfd_byte *) ext_tab;
10522
10523 /* Skip this section later on (I don't think this currently
10524 matters, but someday it might). */
10525 o->map_head.link_order = NULL;
10526 }
10527 }
10528
10529 /* Invoke the regular ELF backend linker to do all the work. */
10530 if (!bfd_elf_final_link (abfd, info))
10531 return FALSE;
10532
10533 /* Now write out the computed sections. */
10534
10535 if (reginfo_sec != NULL)
10536 {
10537 Elf32_External_RegInfo ext;
10538
10539 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
10540 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
10541 return FALSE;
10542 }
10543
10544 if (mdebug_sec != NULL)
10545 {
10546 BFD_ASSERT (abfd->output_has_begun);
10547 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10548 swap, info,
10549 mdebug_sec->filepos))
10550 return FALSE;
10551
10552 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10553 }
10554
10555 if (gptab_data_sec != NULL)
10556 {
10557 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10558 gptab_data_sec->contents,
10559 0, gptab_data_sec->size))
10560 return FALSE;
10561 }
10562
10563 if (gptab_bss_sec != NULL)
10564 {
10565 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10566 gptab_bss_sec->contents,
10567 0, gptab_bss_sec->size))
10568 return FALSE;
10569 }
10570
10571 if (SGI_COMPAT (abfd))
10572 {
10573 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10574 if (rtproc_sec != NULL)
10575 {
10576 if (! bfd_set_section_contents (abfd, rtproc_sec,
10577 rtproc_sec->contents,
10578 0, rtproc_sec->size))
10579 return FALSE;
10580 }
10581 }
10582
10583 return TRUE;
10584 }
10585 \f
10586 /* Structure for saying that BFD machine EXTENSION extends BASE. */
10587
10588 struct mips_mach_extension {
10589 unsigned long extension, base;
10590 };
10591
10592
10593 /* An array describing how BFD machines relate to one another. The entries
10594 are ordered topologically with MIPS I extensions listed last. */
10595
10596 static const struct mips_mach_extension mips_mach_extensions[] = {
10597 /* MIPS64 extensions. */
10598 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
10599 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10600
10601 /* MIPS V extensions. */
10602 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10603
10604 /* R10000 extensions. */
10605 { bfd_mach_mips12000, bfd_mach_mips10000 },
10606
10607 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10608 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10609 better to allow vr5400 and vr5500 code to be merged anyway, since
10610 many libraries will just use the core ISA. Perhaps we could add
10611 some sort of ASE flag if this ever proves a problem. */
10612 { bfd_mach_mips5500, bfd_mach_mips5400 },
10613 { bfd_mach_mips5400, bfd_mach_mips5000 },
10614
10615 /* MIPS IV extensions. */
10616 { bfd_mach_mips5, bfd_mach_mips8000 },
10617 { bfd_mach_mips10000, bfd_mach_mips8000 },
10618 { bfd_mach_mips5000, bfd_mach_mips8000 },
10619 { bfd_mach_mips7000, bfd_mach_mips8000 },
10620 { bfd_mach_mips9000, bfd_mach_mips8000 },
10621
10622 /* VR4100 extensions. */
10623 { bfd_mach_mips4120, bfd_mach_mips4100 },
10624 { bfd_mach_mips4111, bfd_mach_mips4100 },
10625
10626 /* MIPS III extensions. */
10627 { bfd_mach_mips8000, bfd_mach_mips4000 },
10628 { bfd_mach_mips4650, bfd_mach_mips4000 },
10629 { bfd_mach_mips4600, bfd_mach_mips4000 },
10630 { bfd_mach_mips4400, bfd_mach_mips4000 },
10631 { bfd_mach_mips4300, bfd_mach_mips4000 },
10632 { bfd_mach_mips4100, bfd_mach_mips4000 },
10633 { bfd_mach_mips4010, bfd_mach_mips4000 },
10634
10635 /* MIPS32 extensions. */
10636 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10637
10638 /* MIPS II extensions. */
10639 { bfd_mach_mips4000, bfd_mach_mips6000 },
10640 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10641
10642 /* MIPS I extensions. */
10643 { bfd_mach_mips6000, bfd_mach_mips3000 },
10644 { bfd_mach_mips3900, bfd_mach_mips3000 }
10645 };
10646
10647
10648 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10649
10650 static bfd_boolean
10651 mips_mach_extends_p (unsigned long base, unsigned long extension)
10652 {
10653 size_t i;
10654
10655 if (extension == base)
10656 return TRUE;
10657
10658 if (base == bfd_mach_mipsisa32
10659 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10660 return TRUE;
10661
10662 if (base == bfd_mach_mipsisa32r2
10663 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10664 return TRUE;
10665
10666 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
10667 if (extension == mips_mach_extensions[i].extension)
10668 {
10669 extension = mips_mach_extensions[i].base;
10670 if (extension == base)
10671 return TRUE;
10672 }
10673
10674 return FALSE;
10675 }
10676
10677
10678 /* Return true if the given ELF header flags describe a 32-bit binary. */
10679
10680 static bfd_boolean
10681 mips_32bit_flags_p (flagword flags)
10682 {
10683 return ((flags & EF_MIPS_32BITMODE) != 0
10684 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10685 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10686 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10687 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10688 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10689 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
10690 }
10691
10692
10693 /* Merge backend specific data from an object file to the output
10694 object file when linking. */
10695
10696 bfd_boolean
10697 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
10698 {
10699 flagword old_flags;
10700 flagword new_flags;
10701 bfd_boolean ok;
10702 bfd_boolean null_input_bfd = TRUE;
10703 asection *sec;
10704
10705 /* Check if we have the same endianess */
10706 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
10707 {
10708 (*_bfd_error_handler)
10709 (_("%B: endianness incompatible with that of the selected emulation"),
10710 ibfd);
10711 return FALSE;
10712 }
10713
10714 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
10715 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
10716 return TRUE;
10717
10718 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
10719 {
10720 (*_bfd_error_handler)
10721 (_("%B: ABI is incompatible with that of the selected emulation"),
10722 ibfd);
10723 return FALSE;
10724 }
10725
10726 new_flags = elf_elfheader (ibfd)->e_flags;
10727 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
10728 old_flags = elf_elfheader (obfd)->e_flags;
10729
10730 if (! elf_flags_init (obfd))
10731 {
10732 elf_flags_init (obfd) = TRUE;
10733 elf_elfheader (obfd)->e_flags = new_flags;
10734 elf_elfheader (obfd)->e_ident[EI_CLASS]
10735 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
10736
10737 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
10738 && bfd_get_arch_info (obfd)->the_default)
10739 {
10740 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
10741 bfd_get_mach (ibfd)))
10742 return FALSE;
10743 }
10744
10745 return TRUE;
10746 }
10747
10748 /* Check flag compatibility. */
10749
10750 new_flags &= ~EF_MIPS_NOREORDER;
10751 old_flags &= ~EF_MIPS_NOREORDER;
10752
10753 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
10754 doesn't seem to matter. */
10755 new_flags &= ~EF_MIPS_XGOT;
10756 old_flags &= ~EF_MIPS_XGOT;
10757
10758 /* MIPSpro generates ucode info in n64 objects. Again, we should
10759 just be able to ignore this. */
10760 new_flags &= ~EF_MIPS_UCODE;
10761 old_flags &= ~EF_MIPS_UCODE;
10762
10763 /* Don't care about the PIC flags from dynamic objects; they are
10764 PIC by design. */
10765 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
10766 && (ibfd->flags & DYNAMIC) != 0)
10767 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10768
10769 if (new_flags == old_flags)
10770 return TRUE;
10771
10772 /* Check to see if the input BFD actually contains any sections.
10773 If not, its flags may not have been initialised either, but it cannot
10774 actually cause any incompatibility. */
10775 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
10776 {
10777 /* Ignore synthetic sections and empty .text, .data and .bss sections
10778 which are automatically generated by gas. */
10779 if (strcmp (sec->name, ".reginfo")
10780 && strcmp (sec->name, ".mdebug")
10781 && (sec->size != 0
10782 || (strcmp (sec->name, ".text")
10783 && strcmp (sec->name, ".data")
10784 && strcmp (sec->name, ".bss"))))
10785 {
10786 null_input_bfd = FALSE;
10787 break;
10788 }
10789 }
10790 if (null_input_bfd)
10791 return TRUE;
10792
10793 ok = TRUE;
10794
10795 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
10796 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
10797 {
10798 (*_bfd_error_handler)
10799 (_("%B: warning: linking PIC files with non-PIC files"),
10800 ibfd);
10801 ok = TRUE;
10802 }
10803
10804 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
10805 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
10806 if (! (new_flags & EF_MIPS_PIC))
10807 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
10808
10809 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10810 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10811
10812 /* Compare the ISAs. */
10813 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
10814 {
10815 (*_bfd_error_handler)
10816 (_("%B: linking 32-bit code with 64-bit code"),
10817 ibfd);
10818 ok = FALSE;
10819 }
10820 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
10821 {
10822 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
10823 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
10824 {
10825 /* Copy the architecture info from IBFD to OBFD. Also copy
10826 the 32-bit flag (if set) so that we continue to recognise
10827 OBFD as a 32-bit binary. */
10828 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
10829 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10830 elf_elfheader (obfd)->e_flags
10831 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10832
10833 /* Copy across the ABI flags if OBFD doesn't use them
10834 and if that was what caused us to treat IBFD as 32-bit. */
10835 if ((old_flags & EF_MIPS_ABI) == 0
10836 && mips_32bit_flags_p (new_flags)
10837 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
10838 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
10839 }
10840 else
10841 {
10842 /* The ISAs aren't compatible. */
10843 (*_bfd_error_handler)
10844 (_("%B: linking %s module with previous %s modules"),
10845 ibfd,
10846 bfd_printable_name (ibfd),
10847 bfd_printable_name (obfd));
10848 ok = FALSE;
10849 }
10850 }
10851
10852 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10853 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10854
10855 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
10856 does set EI_CLASS differently from any 32-bit ABI. */
10857 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
10858 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
10859 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
10860 {
10861 /* Only error if both are set (to different values). */
10862 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
10863 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
10864 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
10865 {
10866 (*_bfd_error_handler)
10867 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
10868 ibfd,
10869 elf_mips_abi_name (ibfd),
10870 elf_mips_abi_name (obfd));
10871 ok = FALSE;
10872 }
10873 new_flags &= ~EF_MIPS_ABI;
10874 old_flags &= ~EF_MIPS_ABI;
10875 }
10876
10877 /* For now, allow arbitrary mixing of ASEs (retain the union). */
10878 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
10879 {
10880 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
10881
10882 new_flags &= ~ EF_MIPS_ARCH_ASE;
10883 old_flags &= ~ EF_MIPS_ARCH_ASE;
10884 }
10885
10886 /* Warn about any other mismatches */
10887 if (new_flags != old_flags)
10888 {
10889 (*_bfd_error_handler)
10890 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
10891 ibfd, (unsigned long) new_flags,
10892 (unsigned long) old_flags);
10893 ok = FALSE;
10894 }
10895
10896 if (! ok)
10897 {
10898 bfd_set_error (bfd_error_bad_value);
10899 return FALSE;
10900 }
10901
10902 return TRUE;
10903 }
10904
10905 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
10906
10907 bfd_boolean
10908 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
10909 {
10910 BFD_ASSERT (!elf_flags_init (abfd)
10911 || elf_elfheader (abfd)->e_flags == flags);
10912
10913 elf_elfheader (abfd)->e_flags = flags;
10914 elf_flags_init (abfd) = TRUE;
10915 return TRUE;
10916 }
10917
10918 bfd_boolean
10919 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
10920 {
10921 FILE *file = ptr;
10922
10923 BFD_ASSERT (abfd != NULL && ptr != NULL);
10924
10925 /* Print normal ELF private data. */
10926 _bfd_elf_print_private_bfd_data (abfd, ptr);
10927
10928 /* xgettext:c-format */
10929 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
10930
10931 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
10932 fprintf (file, _(" [abi=O32]"));
10933 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
10934 fprintf (file, _(" [abi=O64]"));
10935 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
10936 fprintf (file, _(" [abi=EABI32]"));
10937 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
10938 fprintf (file, _(" [abi=EABI64]"));
10939 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
10940 fprintf (file, _(" [abi unknown]"));
10941 else if (ABI_N32_P (abfd))
10942 fprintf (file, _(" [abi=N32]"));
10943 else if (ABI_64_P (abfd))
10944 fprintf (file, _(" [abi=64]"));
10945 else
10946 fprintf (file, _(" [no abi set]"));
10947
10948 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
10949 fprintf (file, _(" [mips1]"));
10950 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
10951 fprintf (file, _(" [mips2]"));
10952 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
10953 fprintf (file, _(" [mips3]"));
10954 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
10955 fprintf (file, _(" [mips4]"));
10956 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
10957 fprintf (file, _(" [mips5]"));
10958 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
10959 fprintf (file, _(" [mips32]"));
10960 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
10961 fprintf (file, _(" [mips64]"));
10962 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
10963 fprintf (file, _(" [mips32r2]"));
10964 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
10965 fprintf (file, _(" [mips64r2]"));
10966 else
10967 fprintf (file, _(" [unknown ISA]"));
10968
10969 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
10970 fprintf (file, _(" [mdmx]"));
10971
10972 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
10973 fprintf (file, _(" [mips16]"));
10974
10975 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
10976 fprintf (file, _(" [32bitmode]"));
10977 else
10978 fprintf (file, _(" [not 32bitmode]"));
10979
10980 fputc ('\n', file);
10981
10982 return TRUE;
10983 }
10984
10985 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
10986 {
10987 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
10988 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
10989 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
10990 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
10991 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
10992 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
10993 { NULL, 0, 0, 0, 0 }
10994 };
10995
10996 /* Ensure that the STO_OPTIONAL flag is copied into h->other,
10997 even if this is not a defintion of the symbol. */
10998 void
10999 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11000 const Elf_Internal_Sym *isym,
11001 bfd_boolean definition,
11002 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11003 {
11004 if (! definition
11005 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11006 h->other |= STO_OPTIONAL;
11007 }
11008
11009 /* Decide whether an undefined symbol is special and can be ignored.
11010 This is the case for OPTIONAL symbols on IRIX. */
11011 bfd_boolean
11012 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11013 {
11014 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11015 }
This page took 0.303046 seconds and 4 git commands to generate.