PR 4454
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "sysdep.h"
31 #include "bfd.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37 #include "elf-vxworks.h"
38
39 /* Get the ECOFF swapping routines. */
40 #include "coff/sym.h"
41 #include "coff/symconst.h"
42 #include "coff/ecoff.h"
43 #include "coff/mips.h"
44
45 #include "hashtab.h"
46
47 /* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
49
50 (1) absolute addresses
51 (abfd == NULL)
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
56
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
63
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
68
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
72 GOT index.
73
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
80 struct mips_got_entry
81 {
82 /* The input bfd in which the symbol is defined. */
83 bfd *abfd;
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
86 long symndx;
87 union
88 {
89 /* If abfd == NULL, an address that must be stored in the got. */
90 bfd_vma address;
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
93 bfd_vma addend;
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
96 h->forced_local). */
97 struct mips_elf_link_hash_entry *h;
98 } d;
99
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type;
106
107 /* The offset from the beginning of the .got section to the entry
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
110 long gotidx;
111 };
112
113 /* This structure is used to hold .got information when linking. */
114
115 struct mips_got_info
116 {
117 /* The global symbol in the GOT with the lowest index in the dynamic
118 symbol table. */
119 struct elf_link_hash_entry *global_gotsym;
120 /* The number of global .got entries. */
121 unsigned int global_gotno;
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno;
127 /* The number of local .got entries. */
128 unsigned int local_gotno;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno;
131 /* A hash table holding members of the got. */
132 struct htab *got_entries;
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab *bfd2got;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info *next;
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset;
144 };
145
146 /* Map an input bfd to a got in a multi-got link. */
147
148 struct mips_elf_bfd2got_hash {
149 bfd *bfd;
150 struct mips_got_info *g;
151 };
152
153 /* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
155
156 struct mips_elf_got_per_bfd_arg
157 {
158 /* A hashtable that maps bfds to gots. */
159 htab_t bfd2got;
160 /* The output bfd. */
161 bfd *obfd;
162 /* The link information. */
163 struct bfd_link_info *info;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
166 DT_MIPS_GOTSYM. */
167 struct mips_got_info *primary;
168 /* A non-primary got we're trying to merge with other input bfd's
169 gots. */
170 struct mips_got_info *current;
171 /* The maximum number of got entries that can be addressed with a
172 16-bit offset. */
173 unsigned int max_count;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count;
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
181 the "master" GOT. */
182 unsigned int global_count;
183 };
184
185 /* Another structure used to pass arguments for got entries traversal. */
186
187 struct mips_elf_set_global_got_offset_arg
188 {
189 struct mips_got_info *g;
190 int value;
191 unsigned int needed_relocs;
192 struct bfd_link_info *info;
193 };
194
195 /* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
197
198 struct mips_elf_count_tls_arg
199 {
200 struct bfd_link_info *info;
201 unsigned int needed;
202 };
203
204 struct _mips_elf_section_data
205 {
206 struct bfd_elf_section_data elf;
207 union
208 {
209 struct mips_got_info *got_info;
210 bfd_byte *tdata;
211 } u;
212 };
213
214 #define mips_elf_section_data(sec) \
215 ((struct _mips_elf_section_data *) elf_section_data (sec))
216
217 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
219
220 struct mips_elf_hash_sort_data
221 {
222 /* The symbol in the global GOT with the lowest dynamic symbol table
223 index. */
224 struct elf_link_hash_entry *low;
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
227 long min_got_dynindx;
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
230 with dynamic relocations pointing to it from non-primary GOTs). */
231 long max_unref_got_dynindx;
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx;
235 };
236
237 /* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
239
240 struct mips_elf_link_hash_entry
241 {
242 struct elf_link_hash_entry root;
243
244 /* External symbol information. */
245 EXTR esym;
246
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
248 this symbol. */
249 unsigned int possibly_dynamic_relocs;
250
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
253 bfd_boolean readonly_reloc;
254
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
258 p. 4-20. */
259 bfd_boolean no_fn_stub;
260
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
263 asection *fn_stub;
264
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
267 bfd_boolean need_fn_stub;
268
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
271 asection *call_stub;
272
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection *call_fp_stub;
276
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
279 bfd_boolean forced_local;
280
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target;
283
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target;
286
287 #define GOT_NORMAL 0
288 #define GOT_TLS_GD 1
289 #define GOT_TLS_LDM 2
290 #define GOT_TLS_IE 4
291 #define GOT_TLS_OFFSET_DONE 0x40
292 #define GOT_TLS_DONE 0x80
293 unsigned char tls_type;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset;
301 };
302
303 /* MIPS ELF linker hash table. */
304
305 struct mips_elf_link_hash_table
306 {
307 struct elf_link_hash_table root;
308 #if 0
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
312 #endif
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
318 entry is set to the address of __rld_obj_head as in IRIX5. */
319 bfd_boolean use_rld_obj_head;
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
321 bfd_vma rld_value;
322 /* This is set if we see any mips16 stub sections. */
323 bfd_boolean mips16_stubs_seen;
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
327 being used. */
328 asection *srelbss;
329 asection *sdynbss;
330 asection *srelplt;
331 asection *srelplt2;
332 asection *sgotplt;
333 asection *splt;
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size;
338 /* The size of a function stub entry in bytes. */
339 bfd_vma function_stub_size;
340 };
341
342 #define TLS_RELOC_P(r_type) \
343 (r_type == R_MIPS_TLS_DTPMOD32 \
344 || r_type == R_MIPS_TLS_DTPMOD64 \
345 || r_type == R_MIPS_TLS_DTPREL32 \
346 || r_type == R_MIPS_TLS_DTPREL64 \
347 || r_type == R_MIPS_TLS_GD \
348 || r_type == R_MIPS_TLS_LDM \
349 || r_type == R_MIPS_TLS_DTPREL_HI16 \
350 || r_type == R_MIPS_TLS_DTPREL_LO16 \
351 || r_type == R_MIPS_TLS_GOTTPREL \
352 || r_type == R_MIPS_TLS_TPREL32 \
353 || r_type == R_MIPS_TLS_TPREL64 \
354 || r_type == R_MIPS_TLS_TPREL_HI16 \
355 || r_type == R_MIPS_TLS_TPREL_LO16)
356
357 /* Structure used to pass information to mips_elf_output_extsym. */
358
359 struct extsym_info
360 {
361 bfd *abfd;
362 struct bfd_link_info *info;
363 struct ecoff_debug_info *debug;
364 const struct ecoff_debug_swap *swap;
365 bfd_boolean failed;
366 };
367
368 /* The names of the runtime procedure table symbols used on IRIX5. */
369
370 static const char * const mips_elf_dynsym_rtproc_names[] =
371 {
372 "_procedure_table",
373 "_procedure_string_table",
374 "_procedure_table_size",
375 NULL
376 };
377
378 /* These structures are used to generate the .compact_rel section on
379 IRIX5. */
380
381 typedef struct
382 {
383 unsigned long id1; /* Always one? */
384 unsigned long num; /* Number of compact relocation entries. */
385 unsigned long id2; /* Always two? */
386 unsigned long offset; /* The file offset of the first relocation. */
387 unsigned long reserved0; /* Zero? */
388 unsigned long reserved1; /* Zero? */
389 } Elf32_compact_rel;
390
391 typedef struct
392 {
393 bfd_byte id1[4];
394 bfd_byte num[4];
395 bfd_byte id2[4];
396 bfd_byte offset[4];
397 bfd_byte reserved0[4];
398 bfd_byte reserved1[4];
399 } Elf32_External_compact_rel;
400
401 typedef struct
402 {
403 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
404 unsigned int rtype : 4; /* Relocation types. See below. */
405 unsigned int dist2to : 8;
406 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
407 unsigned long konst; /* KONST field. See below. */
408 unsigned long vaddr; /* VADDR to be relocated. */
409 } Elf32_crinfo;
410
411 typedef struct
412 {
413 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
414 unsigned int rtype : 4; /* Relocation types. See below. */
415 unsigned int dist2to : 8;
416 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
417 unsigned long konst; /* KONST field. See below. */
418 } Elf32_crinfo2;
419
420 typedef struct
421 {
422 bfd_byte info[4];
423 bfd_byte konst[4];
424 bfd_byte vaddr[4];
425 } Elf32_External_crinfo;
426
427 typedef struct
428 {
429 bfd_byte info[4];
430 bfd_byte konst[4];
431 } Elf32_External_crinfo2;
432
433 /* These are the constants used to swap the bitfields in a crinfo. */
434
435 #define CRINFO_CTYPE (0x1)
436 #define CRINFO_CTYPE_SH (31)
437 #define CRINFO_RTYPE (0xf)
438 #define CRINFO_RTYPE_SH (27)
439 #define CRINFO_DIST2TO (0xff)
440 #define CRINFO_DIST2TO_SH (19)
441 #define CRINFO_RELVADDR (0x7ffff)
442 #define CRINFO_RELVADDR_SH (0)
443
444 /* A compact relocation info has long (3 words) or short (2 words)
445 formats. A short format doesn't have VADDR field and relvaddr
446 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
447 #define CRF_MIPS_LONG 1
448 #define CRF_MIPS_SHORT 0
449
450 /* There are 4 types of compact relocation at least. The value KONST
451 has different meaning for each type:
452
453 (type) (konst)
454 CT_MIPS_REL32 Address in data
455 CT_MIPS_WORD Address in word (XXX)
456 CT_MIPS_GPHI_LO GP - vaddr
457 CT_MIPS_JMPAD Address to jump
458 */
459
460 #define CRT_MIPS_REL32 0xa
461 #define CRT_MIPS_WORD 0xb
462 #define CRT_MIPS_GPHI_LO 0xc
463 #define CRT_MIPS_JMPAD 0xd
464
465 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
466 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
467 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
468 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
469 \f
470 /* The structure of the runtime procedure descriptor created by the
471 loader for use by the static exception system. */
472
473 typedef struct runtime_pdr {
474 bfd_vma adr; /* Memory address of start of procedure. */
475 long regmask; /* Save register mask. */
476 long regoffset; /* Save register offset. */
477 long fregmask; /* Save floating point register mask. */
478 long fregoffset; /* Save floating point register offset. */
479 long frameoffset; /* Frame size. */
480 short framereg; /* Frame pointer register. */
481 short pcreg; /* Offset or reg of return pc. */
482 long irpss; /* Index into the runtime string table. */
483 long reserved;
484 struct exception_info *exception_info;/* Pointer to exception array. */
485 } RPDR, *pRPDR;
486 #define cbRPDR sizeof (RPDR)
487 #define rpdNil ((pRPDR) 0)
488 \f
489 static struct mips_got_entry *mips_elf_create_local_got_entry
490 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
491 asection *, bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
492 static bfd_boolean mips_elf_sort_hash_table_f
493 (struct mips_elf_link_hash_entry *, void *);
494 static bfd_vma mips_elf_high
495 (bfd_vma);
496 static bfd_boolean mips16_stub_section_p
497 (bfd *, asection *);
498 static bfd_boolean mips_elf_create_dynamic_relocation
499 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
500 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
501 bfd_vma *, asection *);
502 static hashval_t mips_elf_got_entry_hash
503 (const void *);
504 static bfd_vma mips_elf_adjust_gp
505 (bfd *, struct mips_got_info *, bfd *);
506 static struct mips_got_info *mips_elf_got_for_ibfd
507 (struct mips_got_info *, bfd *);
508
509 /* This will be used when we sort the dynamic relocation records. */
510 static bfd *reldyn_sorting_bfd;
511
512 /* Nonzero if ABFD is using the N32 ABI. */
513 #define ABI_N32_P(abfd) \
514 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
515
516 /* Nonzero if ABFD is using the N64 ABI. */
517 #define ABI_64_P(abfd) \
518 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
519
520 /* Nonzero if ABFD is using NewABI conventions. */
521 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
522
523 /* The IRIX compatibility level we are striving for. */
524 #define IRIX_COMPAT(abfd) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
526
527 /* Whether we are trying to be compatible with IRIX at all. */
528 #define SGI_COMPAT(abfd) \
529 (IRIX_COMPAT (abfd) != ict_none)
530
531 /* The name of the options section. */
532 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
533 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
534
535 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
536 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
537 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
538 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
539
540 /* Whether the section is readonly. */
541 #define MIPS_ELF_READONLY_SECTION(sec) \
542 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
543 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
544
545 /* The name of the stub section. */
546 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
547
548 /* The size of an external REL relocation. */
549 #define MIPS_ELF_REL_SIZE(abfd) \
550 (get_elf_backend_data (abfd)->s->sizeof_rel)
551
552 /* The size of an external RELA relocation. */
553 #define MIPS_ELF_RELA_SIZE(abfd) \
554 (get_elf_backend_data (abfd)->s->sizeof_rela)
555
556 /* The size of an external dynamic table entry. */
557 #define MIPS_ELF_DYN_SIZE(abfd) \
558 (get_elf_backend_data (abfd)->s->sizeof_dyn)
559
560 /* The size of a GOT entry. */
561 #define MIPS_ELF_GOT_SIZE(abfd) \
562 (get_elf_backend_data (abfd)->s->arch_size / 8)
563
564 /* The size of a symbol-table entry. */
565 #define MIPS_ELF_SYM_SIZE(abfd) \
566 (get_elf_backend_data (abfd)->s->sizeof_sym)
567
568 /* The default alignment for sections, as a power of two. */
569 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
570 (get_elf_backend_data (abfd)->s->log_file_align)
571
572 /* Get word-sized data. */
573 #define MIPS_ELF_GET_WORD(abfd, ptr) \
574 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
575
576 /* Put out word-sized data. */
577 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
578 (ABI_64_P (abfd) \
579 ? bfd_put_64 (abfd, val, ptr) \
580 : bfd_put_32 (abfd, val, ptr))
581
582 /* Add a dynamic symbol table-entry. */
583 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
584 _bfd_elf_add_dynamic_entry (info, tag, val)
585
586 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
587 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
588
589 /* Determine whether the internal relocation of index REL_IDX is REL
590 (zero) or RELA (non-zero). The assumption is that, if there are
591 two relocation sections for this section, one of them is REL and
592 the other is RELA. If the index of the relocation we're testing is
593 in range for the first relocation section, check that the external
594 relocation size is that for RELA. It is also assumed that, if
595 rel_idx is not in range for the first section, and this first
596 section contains REL relocs, then the relocation is in the second
597 section, that is RELA. */
598 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
599 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
600 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
601 > (bfd_vma)(rel_idx)) \
602 == (elf_section_data (sec)->rel_hdr.sh_entsize \
603 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
604 : sizeof (Elf32_External_Rela))))
605
606 /* The name of the dynamic relocation section. */
607 #define MIPS_ELF_REL_DYN_NAME(INFO) \
608 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
609
610 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
611 from smaller values. Start with zero, widen, *then* decrement. */
612 #define MINUS_ONE (((bfd_vma)0) - 1)
613 #define MINUS_TWO (((bfd_vma)0) - 2)
614
615 /* The number of local .got entries we reserve. */
616 #define MIPS_RESERVED_GOTNO(INFO) \
617 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
618
619 /* The offset of $gp from the beginning of the .got section. */
620 #define ELF_MIPS_GP_OFFSET(INFO) \
621 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
622
623 /* The maximum size of the GOT for it to be addressable using 16-bit
624 offsets from $gp. */
625 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
626
627 /* Instructions which appear in a stub. */
628 #define STUB_LW(abfd) \
629 ((ABI_64_P (abfd) \
630 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
631 : 0x8f998010)) /* lw t9,0x8010(gp) */
632 #define STUB_MOVE(abfd) \
633 ((ABI_64_P (abfd) \
634 ? 0x03e0782d /* daddu t7,ra */ \
635 : 0x03e07821)) /* addu t7,ra */
636 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
637 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
638 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
639 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
640 #define STUB_LI16S(abfd, VAL) \
641 ((ABI_64_P (abfd) \
642 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
643 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
644
645 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
646 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
647
648 /* The name of the dynamic interpreter. This is put in the .interp
649 section. */
650
651 #define ELF_DYNAMIC_INTERPRETER(abfd) \
652 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
653 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
654 : "/usr/lib/libc.so.1")
655
656 #ifdef BFD64
657 #define MNAME(bfd,pre,pos) \
658 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
659 #define ELF_R_SYM(bfd, i) \
660 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
661 #define ELF_R_TYPE(bfd, i) \
662 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
663 #define ELF_R_INFO(bfd, s, t) \
664 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
665 #else
666 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
667 #define ELF_R_SYM(bfd, i) \
668 (ELF32_R_SYM (i))
669 #define ELF_R_TYPE(bfd, i) \
670 (ELF32_R_TYPE (i))
671 #define ELF_R_INFO(bfd, s, t) \
672 (ELF32_R_INFO (s, t))
673 #endif
674 \f
675 /* The mips16 compiler uses a couple of special sections to handle
676 floating point arguments.
677
678 Section names that look like .mips16.fn.FNNAME contain stubs that
679 copy floating point arguments from the fp regs to the gp regs and
680 then jump to FNNAME. If any 32 bit function calls FNNAME, the
681 call should be redirected to the stub instead. If no 32 bit
682 function calls FNNAME, the stub should be discarded. We need to
683 consider any reference to the function, not just a call, because
684 if the address of the function is taken we will need the stub,
685 since the address might be passed to a 32 bit function.
686
687 Section names that look like .mips16.call.FNNAME contain stubs
688 that copy floating point arguments from the gp regs to the fp
689 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
690 then any 16 bit function that calls FNNAME should be redirected
691 to the stub instead. If FNNAME is not a 32 bit function, the
692 stub should be discarded.
693
694 .mips16.call.fp.FNNAME sections are similar, but contain stubs
695 which call FNNAME and then copy the return value from the fp regs
696 to the gp regs. These stubs store the return value in $18 while
697 calling FNNAME; any function which might call one of these stubs
698 must arrange to save $18 around the call. (This case is not
699 needed for 32 bit functions that call 16 bit functions, because
700 16 bit functions always return floating point values in both
701 $f0/$f1 and $2/$3.)
702
703 Note that in all cases FNNAME might be defined statically.
704 Therefore, FNNAME is not used literally. Instead, the relocation
705 information will indicate which symbol the section is for.
706
707 We record any stubs that we find in the symbol table. */
708
709 #define FN_STUB ".mips16.fn."
710 #define CALL_STUB ".mips16.call."
711 #define CALL_FP_STUB ".mips16.call.fp."
712
713 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
714 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
715 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
716 \f
717 /* The format of the first PLT entry in a VxWorks executable. */
718 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
719 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
720 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
721 0x8f390008, /* lw t9, 8(t9) */
722 0x00000000, /* nop */
723 0x03200008, /* jr t9 */
724 0x00000000 /* nop */
725 };
726
727 /* The format of subsequent PLT entries. */
728 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
729 0x10000000, /* b .PLT_resolver */
730 0x24180000, /* li t8, <pltindex> */
731 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
732 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
733 0x8f390000, /* lw t9, 0(t9) */
734 0x00000000, /* nop */
735 0x03200008, /* jr t9 */
736 0x00000000 /* nop */
737 };
738
739 /* The format of the first PLT entry in a VxWorks shared object. */
740 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
741 0x8f990008, /* lw t9, 8(gp) */
742 0x00000000, /* nop */
743 0x03200008, /* jr t9 */
744 0x00000000, /* nop */
745 0x00000000, /* nop */
746 0x00000000 /* nop */
747 };
748
749 /* The format of subsequent PLT entries. */
750 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
751 0x10000000, /* b .PLT_resolver */
752 0x24180000 /* li t8, <pltindex> */
753 };
754 \f
755 /* Look up an entry in a MIPS ELF linker hash table. */
756
757 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
758 ((struct mips_elf_link_hash_entry *) \
759 elf_link_hash_lookup (&(table)->root, (string), (create), \
760 (copy), (follow)))
761
762 /* Traverse a MIPS ELF linker hash table. */
763
764 #define mips_elf_link_hash_traverse(table, func, info) \
765 (elf_link_hash_traverse \
766 (&(table)->root, \
767 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
768 (info)))
769
770 /* Get the MIPS ELF linker hash table from a link_info structure. */
771
772 #define mips_elf_hash_table(p) \
773 ((struct mips_elf_link_hash_table *) ((p)->hash))
774
775 /* Find the base offsets for thread-local storage in this object,
776 for GD/LD and IE/LE respectively. */
777
778 #define TP_OFFSET 0x7000
779 #define DTP_OFFSET 0x8000
780
781 static bfd_vma
782 dtprel_base (struct bfd_link_info *info)
783 {
784 /* If tls_sec is NULL, we should have signalled an error already. */
785 if (elf_hash_table (info)->tls_sec == NULL)
786 return 0;
787 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
788 }
789
790 static bfd_vma
791 tprel_base (struct bfd_link_info *info)
792 {
793 /* If tls_sec is NULL, we should have signalled an error already. */
794 if (elf_hash_table (info)->tls_sec == NULL)
795 return 0;
796 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
797 }
798
799 /* Create an entry in a MIPS ELF linker hash table. */
800
801 static struct bfd_hash_entry *
802 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
803 struct bfd_hash_table *table, const char *string)
804 {
805 struct mips_elf_link_hash_entry *ret =
806 (struct mips_elf_link_hash_entry *) entry;
807
808 /* Allocate the structure if it has not already been allocated by a
809 subclass. */
810 if (ret == NULL)
811 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
812 if (ret == NULL)
813 return (struct bfd_hash_entry *) ret;
814
815 /* Call the allocation method of the superclass. */
816 ret = ((struct mips_elf_link_hash_entry *)
817 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
818 table, string));
819 if (ret != NULL)
820 {
821 /* Set local fields. */
822 memset (&ret->esym, 0, sizeof (EXTR));
823 /* We use -2 as a marker to indicate that the information has
824 not been set. -1 means there is no associated ifd. */
825 ret->esym.ifd = -2;
826 ret->possibly_dynamic_relocs = 0;
827 ret->readonly_reloc = FALSE;
828 ret->no_fn_stub = FALSE;
829 ret->fn_stub = NULL;
830 ret->need_fn_stub = FALSE;
831 ret->call_stub = NULL;
832 ret->call_fp_stub = NULL;
833 ret->forced_local = FALSE;
834 ret->is_branch_target = FALSE;
835 ret->is_relocation_target = FALSE;
836 ret->tls_type = GOT_NORMAL;
837 }
838
839 return (struct bfd_hash_entry *) ret;
840 }
841
842 bfd_boolean
843 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
844 {
845 if (!sec->used_by_bfd)
846 {
847 struct _mips_elf_section_data *sdata;
848 bfd_size_type amt = sizeof (*sdata);
849
850 sdata = bfd_zalloc (abfd, amt);
851 if (sdata == NULL)
852 return FALSE;
853 sec->used_by_bfd = sdata;
854 }
855
856 return _bfd_elf_new_section_hook (abfd, sec);
857 }
858 \f
859 /* Read ECOFF debugging information from a .mdebug section into a
860 ecoff_debug_info structure. */
861
862 bfd_boolean
863 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
864 struct ecoff_debug_info *debug)
865 {
866 HDRR *symhdr;
867 const struct ecoff_debug_swap *swap;
868 char *ext_hdr;
869
870 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
871 memset (debug, 0, sizeof (*debug));
872
873 ext_hdr = bfd_malloc (swap->external_hdr_size);
874 if (ext_hdr == NULL && swap->external_hdr_size != 0)
875 goto error_return;
876
877 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
878 swap->external_hdr_size))
879 goto error_return;
880
881 symhdr = &debug->symbolic_header;
882 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
883
884 /* The symbolic header contains absolute file offsets and sizes to
885 read. */
886 #define READ(ptr, offset, count, size, type) \
887 if (symhdr->count == 0) \
888 debug->ptr = NULL; \
889 else \
890 { \
891 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
892 debug->ptr = bfd_malloc (amt); \
893 if (debug->ptr == NULL) \
894 goto error_return; \
895 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
896 || bfd_bread (debug->ptr, amt, abfd) != amt) \
897 goto error_return; \
898 }
899
900 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
901 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
902 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
903 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
904 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
905 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
906 union aux_ext *);
907 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
908 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
909 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
910 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
911 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
912 #undef READ
913
914 debug->fdr = NULL;
915
916 return TRUE;
917
918 error_return:
919 if (ext_hdr != NULL)
920 free (ext_hdr);
921 if (debug->line != NULL)
922 free (debug->line);
923 if (debug->external_dnr != NULL)
924 free (debug->external_dnr);
925 if (debug->external_pdr != NULL)
926 free (debug->external_pdr);
927 if (debug->external_sym != NULL)
928 free (debug->external_sym);
929 if (debug->external_opt != NULL)
930 free (debug->external_opt);
931 if (debug->external_aux != NULL)
932 free (debug->external_aux);
933 if (debug->ss != NULL)
934 free (debug->ss);
935 if (debug->ssext != NULL)
936 free (debug->ssext);
937 if (debug->external_fdr != NULL)
938 free (debug->external_fdr);
939 if (debug->external_rfd != NULL)
940 free (debug->external_rfd);
941 if (debug->external_ext != NULL)
942 free (debug->external_ext);
943 return FALSE;
944 }
945 \f
946 /* Swap RPDR (runtime procedure table entry) for output. */
947
948 static void
949 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
950 {
951 H_PUT_S32 (abfd, in->adr, ex->p_adr);
952 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
953 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
954 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
955 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
956 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
957
958 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
959 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
960
961 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
962 }
963
964 /* Create a runtime procedure table from the .mdebug section. */
965
966 static bfd_boolean
967 mips_elf_create_procedure_table (void *handle, bfd *abfd,
968 struct bfd_link_info *info, asection *s,
969 struct ecoff_debug_info *debug)
970 {
971 const struct ecoff_debug_swap *swap;
972 HDRR *hdr = &debug->symbolic_header;
973 RPDR *rpdr, *rp;
974 struct rpdr_ext *erp;
975 void *rtproc;
976 struct pdr_ext *epdr;
977 struct sym_ext *esym;
978 char *ss, **sv;
979 char *str;
980 bfd_size_type size;
981 bfd_size_type count;
982 unsigned long sindex;
983 unsigned long i;
984 PDR pdr;
985 SYMR sym;
986 const char *no_name_func = _("static procedure (no name)");
987
988 epdr = NULL;
989 rpdr = NULL;
990 esym = NULL;
991 ss = NULL;
992 sv = NULL;
993
994 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
995
996 sindex = strlen (no_name_func) + 1;
997 count = hdr->ipdMax;
998 if (count > 0)
999 {
1000 size = swap->external_pdr_size;
1001
1002 epdr = bfd_malloc (size * count);
1003 if (epdr == NULL)
1004 goto error_return;
1005
1006 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1007 goto error_return;
1008
1009 size = sizeof (RPDR);
1010 rp = rpdr = bfd_malloc (size * count);
1011 if (rpdr == NULL)
1012 goto error_return;
1013
1014 size = sizeof (char *);
1015 sv = bfd_malloc (size * count);
1016 if (sv == NULL)
1017 goto error_return;
1018
1019 count = hdr->isymMax;
1020 size = swap->external_sym_size;
1021 esym = bfd_malloc (size * count);
1022 if (esym == NULL)
1023 goto error_return;
1024
1025 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1026 goto error_return;
1027
1028 count = hdr->issMax;
1029 ss = bfd_malloc (count);
1030 if (ss == NULL)
1031 goto error_return;
1032 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1033 goto error_return;
1034
1035 count = hdr->ipdMax;
1036 for (i = 0; i < (unsigned long) count; i++, rp++)
1037 {
1038 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1039 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1040 rp->adr = sym.value;
1041 rp->regmask = pdr.regmask;
1042 rp->regoffset = pdr.regoffset;
1043 rp->fregmask = pdr.fregmask;
1044 rp->fregoffset = pdr.fregoffset;
1045 rp->frameoffset = pdr.frameoffset;
1046 rp->framereg = pdr.framereg;
1047 rp->pcreg = pdr.pcreg;
1048 rp->irpss = sindex;
1049 sv[i] = ss + sym.iss;
1050 sindex += strlen (sv[i]) + 1;
1051 }
1052 }
1053
1054 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1055 size = BFD_ALIGN (size, 16);
1056 rtproc = bfd_alloc (abfd, size);
1057 if (rtproc == NULL)
1058 {
1059 mips_elf_hash_table (info)->procedure_count = 0;
1060 goto error_return;
1061 }
1062
1063 mips_elf_hash_table (info)->procedure_count = count + 2;
1064
1065 erp = rtproc;
1066 memset (erp, 0, sizeof (struct rpdr_ext));
1067 erp++;
1068 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1069 strcpy (str, no_name_func);
1070 str += strlen (no_name_func) + 1;
1071 for (i = 0; i < count; i++)
1072 {
1073 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1074 strcpy (str, sv[i]);
1075 str += strlen (sv[i]) + 1;
1076 }
1077 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1078
1079 /* Set the size and contents of .rtproc section. */
1080 s->size = size;
1081 s->contents = rtproc;
1082
1083 /* Skip this section later on (I don't think this currently
1084 matters, but someday it might). */
1085 s->map_head.link_order = NULL;
1086
1087 if (epdr != NULL)
1088 free (epdr);
1089 if (rpdr != NULL)
1090 free (rpdr);
1091 if (esym != NULL)
1092 free (esym);
1093 if (ss != NULL)
1094 free (ss);
1095 if (sv != NULL)
1096 free (sv);
1097
1098 return TRUE;
1099
1100 error_return:
1101 if (epdr != NULL)
1102 free (epdr);
1103 if (rpdr != NULL)
1104 free (rpdr);
1105 if (esym != NULL)
1106 free (esym);
1107 if (ss != NULL)
1108 free (ss);
1109 if (sv != NULL)
1110 free (sv);
1111 return FALSE;
1112 }
1113
1114 /* Check the mips16 stubs for a particular symbol, and see if we can
1115 discard them. */
1116
1117 static bfd_boolean
1118 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1119 void *data ATTRIBUTE_UNUSED)
1120 {
1121 if (h->root.root.type == bfd_link_hash_warning)
1122 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1123
1124 if (h->fn_stub != NULL
1125 && ! h->need_fn_stub)
1126 {
1127 /* We don't need the fn_stub; the only references to this symbol
1128 are 16 bit calls. Clobber the size to 0 to prevent it from
1129 being included in the link. */
1130 h->fn_stub->size = 0;
1131 h->fn_stub->flags &= ~SEC_RELOC;
1132 h->fn_stub->reloc_count = 0;
1133 h->fn_stub->flags |= SEC_EXCLUDE;
1134 }
1135
1136 if (h->call_stub != NULL
1137 && h->root.other == STO_MIPS16)
1138 {
1139 /* We don't need the call_stub; this is a 16 bit function, so
1140 calls from other 16 bit functions are OK. Clobber the size
1141 to 0 to prevent it from being included in the link. */
1142 h->call_stub->size = 0;
1143 h->call_stub->flags &= ~SEC_RELOC;
1144 h->call_stub->reloc_count = 0;
1145 h->call_stub->flags |= SEC_EXCLUDE;
1146 }
1147
1148 if (h->call_fp_stub != NULL
1149 && h->root.other == STO_MIPS16)
1150 {
1151 /* We don't need the call_stub; this is a 16 bit function, so
1152 calls from other 16 bit functions are OK. Clobber the size
1153 to 0 to prevent it from being included in the link. */
1154 h->call_fp_stub->size = 0;
1155 h->call_fp_stub->flags &= ~SEC_RELOC;
1156 h->call_fp_stub->reloc_count = 0;
1157 h->call_fp_stub->flags |= SEC_EXCLUDE;
1158 }
1159
1160 return TRUE;
1161 }
1162 \f
1163 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1164 Most mips16 instructions are 16 bits, but these instructions
1165 are 32 bits.
1166
1167 The format of these instructions is:
1168
1169 +--------------+--------------------------------+
1170 | JALX | X| Imm 20:16 | Imm 25:21 |
1171 +--------------+--------------------------------+
1172 | Immediate 15:0 |
1173 +-----------------------------------------------+
1174
1175 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1176 Note that the immediate value in the first word is swapped.
1177
1178 When producing a relocatable object file, R_MIPS16_26 is
1179 handled mostly like R_MIPS_26. In particular, the addend is
1180 stored as a straight 26-bit value in a 32-bit instruction.
1181 (gas makes life simpler for itself by never adjusting a
1182 R_MIPS16_26 reloc to be against a section, so the addend is
1183 always zero). However, the 32 bit instruction is stored as 2
1184 16-bit values, rather than a single 32-bit value. In a
1185 big-endian file, the result is the same; in a little-endian
1186 file, the two 16-bit halves of the 32 bit value are swapped.
1187 This is so that a disassembler can recognize the jal
1188 instruction.
1189
1190 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1191 instruction stored as two 16-bit values. The addend A is the
1192 contents of the targ26 field. The calculation is the same as
1193 R_MIPS_26. When storing the calculated value, reorder the
1194 immediate value as shown above, and don't forget to store the
1195 value as two 16-bit values.
1196
1197 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1198 defined as
1199
1200 big-endian:
1201 +--------+----------------------+
1202 | | |
1203 | | targ26-16 |
1204 |31 26|25 0|
1205 +--------+----------------------+
1206
1207 little-endian:
1208 +----------+------+-------------+
1209 | | | |
1210 | sub1 | | sub2 |
1211 |0 9|10 15|16 31|
1212 +----------+--------------------+
1213 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1214 ((sub1 << 16) | sub2)).
1215
1216 When producing a relocatable object file, the calculation is
1217 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1218 When producing a fully linked file, the calculation is
1219 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1220 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1221
1222 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1223 mode. A typical instruction will have a format like this:
1224
1225 +--------------+--------------------------------+
1226 | EXTEND | Imm 10:5 | Imm 15:11 |
1227 +--------------+--------------------------------+
1228 | Major | rx | ry | Imm 4:0 |
1229 +--------------+--------------------------------+
1230
1231 EXTEND is the five bit value 11110. Major is the instruction
1232 opcode.
1233
1234 This is handled exactly like R_MIPS_GPREL16, except that the
1235 addend is retrieved and stored as shown in this diagram; that
1236 is, the Imm fields above replace the V-rel16 field.
1237
1238 All we need to do here is shuffle the bits appropriately. As
1239 above, the two 16-bit halves must be swapped on a
1240 little-endian system.
1241
1242 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1243 access data when neither GP-relative nor PC-relative addressing
1244 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1245 except that the addend is retrieved and stored as shown above
1246 for R_MIPS16_GPREL.
1247 */
1248 void
1249 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1250 bfd_boolean jal_shuffle, bfd_byte *data)
1251 {
1252 bfd_vma extend, insn, val;
1253
1254 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1255 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1256 return;
1257
1258 /* Pick up the mips16 extend instruction and the real instruction. */
1259 extend = bfd_get_16 (abfd, data);
1260 insn = bfd_get_16 (abfd, data + 2);
1261 if (r_type == R_MIPS16_26)
1262 {
1263 if (jal_shuffle)
1264 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1265 | ((extend & 0x1f) << 21) | insn;
1266 else
1267 val = extend << 16 | insn;
1268 }
1269 else
1270 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1271 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1272 bfd_put_32 (abfd, val, data);
1273 }
1274
1275 void
1276 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1277 bfd_boolean jal_shuffle, bfd_byte *data)
1278 {
1279 bfd_vma extend, insn, val;
1280
1281 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1282 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1283 return;
1284
1285 val = bfd_get_32 (abfd, data);
1286 if (r_type == R_MIPS16_26)
1287 {
1288 if (jal_shuffle)
1289 {
1290 insn = val & 0xffff;
1291 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1292 | ((val >> 21) & 0x1f);
1293 }
1294 else
1295 {
1296 insn = val & 0xffff;
1297 extend = val >> 16;
1298 }
1299 }
1300 else
1301 {
1302 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1303 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1304 }
1305 bfd_put_16 (abfd, insn, data + 2);
1306 bfd_put_16 (abfd, extend, data);
1307 }
1308
1309 bfd_reloc_status_type
1310 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1311 arelent *reloc_entry, asection *input_section,
1312 bfd_boolean relocatable, void *data, bfd_vma gp)
1313 {
1314 bfd_vma relocation;
1315 bfd_signed_vma val;
1316 bfd_reloc_status_type status;
1317
1318 if (bfd_is_com_section (symbol->section))
1319 relocation = 0;
1320 else
1321 relocation = symbol->value;
1322
1323 relocation += symbol->section->output_section->vma;
1324 relocation += symbol->section->output_offset;
1325
1326 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1327 return bfd_reloc_outofrange;
1328
1329 /* Set val to the offset into the section or symbol. */
1330 val = reloc_entry->addend;
1331
1332 _bfd_mips_elf_sign_extend (val, 16);
1333
1334 /* Adjust val for the final section location and GP value. If we
1335 are producing relocatable output, we don't want to do this for
1336 an external symbol. */
1337 if (! relocatable
1338 || (symbol->flags & BSF_SECTION_SYM) != 0)
1339 val += relocation - gp;
1340
1341 if (reloc_entry->howto->partial_inplace)
1342 {
1343 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1344 (bfd_byte *) data
1345 + reloc_entry->address);
1346 if (status != bfd_reloc_ok)
1347 return status;
1348 }
1349 else
1350 reloc_entry->addend = val;
1351
1352 if (relocatable)
1353 reloc_entry->address += input_section->output_offset;
1354
1355 return bfd_reloc_ok;
1356 }
1357
1358 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1359 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1360 that contains the relocation field and DATA points to the start of
1361 INPUT_SECTION. */
1362
1363 struct mips_hi16
1364 {
1365 struct mips_hi16 *next;
1366 bfd_byte *data;
1367 asection *input_section;
1368 arelent rel;
1369 };
1370
1371 /* FIXME: This should not be a static variable. */
1372
1373 static struct mips_hi16 *mips_hi16_list;
1374
1375 /* A howto special_function for REL *HI16 relocations. We can only
1376 calculate the correct value once we've seen the partnering
1377 *LO16 relocation, so just save the information for later.
1378
1379 The ABI requires that the *LO16 immediately follow the *HI16.
1380 However, as a GNU extension, we permit an arbitrary number of
1381 *HI16s to be associated with a single *LO16. This significantly
1382 simplies the relocation handling in gcc. */
1383
1384 bfd_reloc_status_type
1385 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1386 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1387 asection *input_section, bfd *output_bfd,
1388 char **error_message ATTRIBUTE_UNUSED)
1389 {
1390 struct mips_hi16 *n;
1391
1392 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1393 return bfd_reloc_outofrange;
1394
1395 n = bfd_malloc (sizeof *n);
1396 if (n == NULL)
1397 return bfd_reloc_outofrange;
1398
1399 n->next = mips_hi16_list;
1400 n->data = data;
1401 n->input_section = input_section;
1402 n->rel = *reloc_entry;
1403 mips_hi16_list = n;
1404
1405 if (output_bfd != NULL)
1406 reloc_entry->address += input_section->output_offset;
1407
1408 return bfd_reloc_ok;
1409 }
1410
1411 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1412 like any other 16-bit relocation when applied to global symbols, but is
1413 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1414
1415 bfd_reloc_status_type
1416 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1417 void *data, asection *input_section,
1418 bfd *output_bfd, char **error_message)
1419 {
1420 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1421 || bfd_is_und_section (bfd_get_section (symbol))
1422 || bfd_is_com_section (bfd_get_section (symbol)))
1423 /* The relocation is against a global symbol. */
1424 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1425 input_section, output_bfd,
1426 error_message);
1427
1428 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1429 input_section, output_bfd, error_message);
1430 }
1431
1432 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1433 is a straightforward 16 bit inplace relocation, but we must deal with
1434 any partnering high-part relocations as well. */
1435
1436 bfd_reloc_status_type
1437 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1438 void *data, asection *input_section,
1439 bfd *output_bfd, char **error_message)
1440 {
1441 bfd_vma vallo;
1442 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1443
1444 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1445 return bfd_reloc_outofrange;
1446
1447 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1448 location);
1449 vallo = bfd_get_32 (abfd, location);
1450 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1451 location);
1452
1453 while (mips_hi16_list != NULL)
1454 {
1455 bfd_reloc_status_type ret;
1456 struct mips_hi16 *hi;
1457
1458 hi = mips_hi16_list;
1459
1460 /* R_MIPS_GOT16 relocations are something of a special case. We
1461 want to install the addend in the same way as for a R_MIPS_HI16
1462 relocation (with a rightshift of 16). However, since GOT16
1463 relocations can also be used with global symbols, their howto
1464 has a rightshift of 0. */
1465 if (hi->rel.howto->type == R_MIPS_GOT16)
1466 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1467
1468 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1469 carry or borrow will induce a change of +1 or -1 in the high part. */
1470 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1471
1472 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1473 hi->input_section, output_bfd,
1474 error_message);
1475 if (ret != bfd_reloc_ok)
1476 return ret;
1477
1478 mips_hi16_list = hi->next;
1479 free (hi);
1480 }
1481
1482 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1483 input_section, output_bfd,
1484 error_message);
1485 }
1486
1487 /* A generic howto special_function. This calculates and installs the
1488 relocation itself, thus avoiding the oft-discussed problems in
1489 bfd_perform_relocation and bfd_install_relocation. */
1490
1491 bfd_reloc_status_type
1492 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1493 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1494 asection *input_section, bfd *output_bfd,
1495 char **error_message ATTRIBUTE_UNUSED)
1496 {
1497 bfd_signed_vma val;
1498 bfd_reloc_status_type status;
1499 bfd_boolean relocatable;
1500
1501 relocatable = (output_bfd != NULL);
1502
1503 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1504 return bfd_reloc_outofrange;
1505
1506 /* Build up the field adjustment in VAL. */
1507 val = 0;
1508 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1509 {
1510 /* Either we're calculating the final field value or we have a
1511 relocation against a section symbol. Add in the section's
1512 offset or address. */
1513 val += symbol->section->output_section->vma;
1514 val += symbol->section->output_offset;
1515 }
1516
1517 if (!relocatable)
1518 {
1519 /* We're calculating the final field value. Add in the symbol's value
1520 and, if pc-relative, subtract the address of the field itself. */
1521 val += symbol->value;
1522 if (reloc_entry->howto->pc_relative)
1523 {
1524 val -= input_section->output_section->vma;
1525 val -= input_section->output_offset;
1526 val -= reloc_entry->address;
1527 }
1528 }
1529
1530 /* VAL is now the final adjustment. If we're keeping this relocation
1531 in the output file, and if the relocation uses a separate addend,
1532 we just need to add VAL to that addend. Otherwise we need to add
1533 VAL to the relocation field itself. */
1534 if (relocatable && !reloc_entry->howto->partial_inplace)
1535 reloc_entry->addend += val;
1536 else
1537 {
1538 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1539
1540 /* Add in the separate addend, if any. */
1541 val += reloc_entry->addend;
1542
1543 /* Add VAL to the relocation field. */
1544 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1545 location);
1546 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1547 location);
1548 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1549 location);
1550
1551 if (status != bfd_reloc_ok)
1552 return status;
1553 }
1554
1555 if (relocatable)
1556 reloc_entry->address += input_section->output_offset;
1557
1558 return bfd_reloc_ok;
1559 }
1560 \f
1561 /* Swap an entry in a .gptab section. Note that these routines rely
1562 on the equivalence of the two elements of the union. */
1563
1564 static void
1565 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1566 Elf32_gptab *in)
1567 {
1568 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1569 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1570 }
1571
1572 static void
1573 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1574 Elf32_External_gptab *ex)
1575 {
1576 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1577 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1578 }
1579
1580 static void
1581 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1582 Elf32_External_compact_rel *ex)
1583 {
1584 H_PUT_32 (abfd, in->id1, ex->id1);
1585 H_PUT_32 (abfd, in->num, ex->num);
1586 H_PUT_32 (abfd, in->id2, ex->id2);
1587 H_PUT_32 (abfd, in->offset, ex->offset);
1588 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1589 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1590 }
1591
1592 static void
1593 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1594 Elf32_External_crinfo *ex)
1595 {
1596 unsigned long l;
1597
1598 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1599 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1600 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1601 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1602 H_PUT_32 (abfd, l, ex->info);
1603 H_PUT_32 (abfd, in->konst, ex->konst);
1604 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1605 }
1606 \f
1607 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1608 routines swap this structure in and out. They are used outside of
1609 BFD, so they are globally visible. */
1610
1611 void
1612 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1613 Elf32_RegInfo *in)
1614 {
1615 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1616 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1617 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1618 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1619 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1620 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1621 }
1622
1623 void
1624 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1625 Elf32_External_RegInfo *ex)
1626 {
1627 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1628 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1629 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1630 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1631 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1632 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1633 }
1634
1635 /* In the 64 bit ABI, the .MIPS.options section holds register
1636 information in an Elf64_Reginfo structure. These routines swap
1637 them in and out. They are globally visible because they are used
1638 outside of BFD. These routines are here so that gas can call them
1639 without worrying about whether the 64 bit ABI has been included. */
1640
1641 void
1642 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1643 Elf64_Internal_RegInfo *in)
1644 {
1645 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1646 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1647 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1648 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1649 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1650 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1651 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1652 }
1653
1654 void
1655 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1656 Elf64_External_RegInfo *ex)
1657 {
1658 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1659 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1660 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1661 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1662 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1663 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1664 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1665 }
1666
1667 /* Swap in an options header. */
1668
1669 void
1670 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1671 Elf_Internal_Options *in)
1672 {
1673 in->kind = H_GET_8 (abfd, ex->kind);
1674 in->size = H_GET_8 (abfd, ex->size);
1675 in->section = H_GET_16 (abfd, ex->section);
1676 in->info = H_GET_32 (abfd, ex->info);
1677 }
1678
1679 /* Swap out an options header. */
1680
1681 void
1682 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1683 Elf_External_Options *ex)
1684 {
1685 H_PUT_8 (abfd, in->kind, ex->kind);
1686 H_PUT_8 (abfd, in->size, ex->size);
1687 H_PUT_16 (abfd, in->section, ex->section);
1688 H_PUT_32 (abfd, in->info, ex->info);
1689 }
1690 \f
1691 /* This function is called via qsort() to sort the dynamic relocation
1692 entries by increasing r_symndx value. */
1693
1694 static int
1695 sort_dynamic_relocs (const void *arg1, const void *arg2)
1696 {
1697 Elf_Internal_Rela int_reloc1;
1698 Elf_Internal_Rela int_reloc2;
1699 int diff;
1700
1701 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1702 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1703
1704 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1705 if (diff != 0)
1706 return diff;
1707
1708 if (int_reloc1.r_offset < int_reloc2.r_offset)
1709 return -1;
1710 if (int_reloc1.r_offset > int_reloc2.r_offset)
1711 return 1;
1712 return 0;
1713 }
1714
1715 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1716
1717 static int
1718 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1719 const void *arg2 ATTRIBUTE_UNUSED)
1720 {
1721 #ifdef BFD64
1722 Elf_Internal_Rela int_reloc1[3];
1723 Elf_Internal_Rela int_reloc2[3];
1724
1725 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1726 (reldyn_sorting_bfd, arg1, int_reloc1);
1727 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1728 (reldyn_sorting_bfd, arg2, int_reloc2);
1729
1730 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1731 return -1;
1732 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1733 return 1;
1734
1735 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1736 return -1;
1737 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1738 return 1;
1739 return 0;
1740 #else
1741 abort ();
1742 #endif
1743 }
1744
1745
1746 /* This routine is used to write out ECOFF debugging external symbol
1747 information. It is called via mips_elf_link_hash_traverse. The
1748 ECOFF external symbol information must match the ELF external
1749 symbol information. Unfortunately, at this point we don't know
1750 whether a symbol is required by reloc information, so the two
1751 tables may wind up being different. We must sort out the external
1752 symbol information before we can set the final size of the .mdebug
1753 section, and we must set the size of the .mdebug section before we
1754 can relocate any sections, and we can't know which symbols are
1755 required by relocation until we relocate the sections.
1756 Fortunately, it is relatively unlikely that any symbol will be
1757 stripped but required by a reloc. In particular, it can not happen
1758 when generating a final executable. */
1759
1760 static bfd_boolean
1761 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1762 {
1763 struct extsym_info *einfo = data;
1764 bfd_boolean strip;
1765 asection *sec, *output_section;
1766
1767 if (h->root.root.type == bfd_link_hash_warning)
1768 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1769
1770 if (h->root.indx == -2)
1771 strip = FALSE;
1772 else if ((h->root.def_dynamic
1773 || h->root.ref_dynamic
1774 || h->root.type == bfd_link_hash_new)
1775 && !h->root.def_regular
1776 && !h->root.ref_regular)
1777 strip = TRUE;
1778 else if (einfo->info->strip == strip_all
1779 || (einfo->info->strip == strip_some
1780 && bfd_hash_lookup (einfo->info->keep_hash,
1781 h->root.root.root.string,
1782 FALSE, FALSE) == NULL))
1783 strip = TRUE;
1784 else
1785 strip = FALSE;
1786
1787 if (strip)
1788 return TRUE;
1789
1790 if (h->esym.ifd == -2)
1791 {
1792 h->esym.jmptbl = 0;
1793 h->esym.cobol_main = 0;
1794 h->esym.weakext = 0;
1795 h->esym.reserved = 0;
1796 h->esym.ifd = ifdNil;
1797 h->esym.asym.value = 0;
1798 h->esym.asym.st = stGlobal;
1799
1800 if (h->root.root.type == bfd_link_hash_undefined
1801 || h->root.root.type == bfd_link_hash_undefweak)
1802 {
1803 const char *name;
1804
1805 /* Use undefined class. Also, set class and type for some
1806 special symbols. */
1807 name = h->root.root.root.string;
1808 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1809 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1810 {
1811 h->esym.asym.sc = scData;
1812 h->esym.asym.st = stLabel;
1813 h->esym.asym.value = 0;
1814 }
1815 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1816 {
1817 h->esym.asym.sc = scAbs;
1818 h->esym.asym.st = stLabel;
1819 h->esym.asym.value =
1820 mips_elf_hash_table (einfo->info)->procedure_count;
1821 }
1822 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1823 {
1824 h->esym.asym.sc = scAbs;
1825 h->esym.asym.st = stLabel;
1826 h->esym.asym.value = elf_gp (einfo->abfd);
1827 }
1828 else
1829 h->esym.asym.sc = scUndefined;
1830 }
1831 else if (h->root.root.type != bfd_link_hash_defined
1832 && h->root.root.type != bfd_link_hash_defweak)
1833 h->esym.asym.sc = scAbs;
1834 else
1835 {
1836 const char *name;
1837
1838 sec = h->root.root.u.def.section;
1839 output_section = sec->output_section;
1840
1841 /* When making a shared library and symbol h is the one from
1842 the another shared library, OUTPUT_SECTION may be null. */
1843 if (output_section == NULL)
1844 h->esym.asym.sc = scUndefined;
1845 else
1846 {
1847 name = bfd_section_name (output_section->owner, output_section);
1848
1849 if (strcmp (name, ".text") == 0)
1850 h->esym.asym.sc = scText;
1851 else if (strcmp (name, ".data") == 0)
1852 h->esym.asym.sc = scData;
1853 else if (strcmp (name, ".sdata") == 0)
1854 h->esym.asym.sc = scSData;
1855 else if (strcmp (name, ".rodata") == 0
1856 || strcmp (name, ".rdata") == 0)
1857 h->esym.asym.sc = scRData;
1858 else if (strcmp (name, ".bss") == 0)
1859 h->esym.asym.sc = scBss;
1860 else if (strcmp (name, ".sbss") == 0)
1861 h->esym.asym.sc = scSBss;
1862 else if (strcmp (name, ".init") == 0)
1863 h->esym.asym.sc = scInit;
1864 else if (strcmp (name, ".fini") == 0)
1865 h->esym.asym.sc = scFini;
1866 else
1867 h->esym.asym.sc = scAbs;
1868 }
1869 }
1870
1871 h->esym.asym.reserved = 0;
1872 h->esym.asym.index = indexNil;
1873 }
1874
1875 if (h->root.root.type == bfd_link_hash_common)
1876 h->esym.asym.value = h->root.root.u.c.size;
1877 else if (h->root.root.type == bfd_link_hash_defined
1878 || h->root.root.type == bfd_link_hash_defweak)
1879 {
1880 if (h->esym.asym.sc == scCommon)
1881 h->esym.asym.sc = scBss;
1882 else if (h->esym.asym.sc == scSCommon)
1883 h->esym.asym.sc = scSBss;
1884
1885 sec = h->root.root.u.def.section;
1886 output_section = sec->output_section;
1887 if (output_section != NULL)
1888 h->esym.asym.value = (h->root.root.u.def.value
1889 + sec->output_offset
1890 + output_section->vma);
1891 else
1892 h->esym.asym.value = 0;
1893 }
1894 else if (h->root.needs_plt)
1895 {
1896 struct mips_elf_link_hash_entry *hd = h;
1897 bfd_boolean no_fn_stub = h->no_fn_stub;
1898
1899 while (hd->root.root.type == bfd_link_hash_indirect)
1900 {
1901 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1902 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1903 }
1904
1905 if (!no_fn_stub)
1906 {
1907 /* Set type and value for a symbol with a function stub. */
1908 h->esym.asym.st = stProc;
1909 sec = hd->root.root.u.def.section;
1910 if (sec == NULL)
1911 h->esym.asym.value = 0;
1912 else
1913 {
1914 output_section = sec->output_section;
1915 if (output_section != NULL)
1916 h->esym.asym.value = (hd->root.plt.offset
1917 + sec->output_offset
1918 + output_section->vma);
1919 else
1920 h->esym.asym.value = 0;
1921 }
1922 }
1923 }
1924
1925 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1926 h->root.root.root.string,
1927 &h->esym))
1928 {
1929 einfo->failed = TRUE;
1930 return FALSE;
1931 }
1932
1933 return TRUE;
1934 }
1935
1936 /* A comparison routine used to sort .gptab entries. */
1937
1938 static int
1939 gptab_compare (const void *p1, const void *p2)
1940 {
1941 const Elf32_gptab *a1 = p1;
1942 const Elf32_gptab *a2 = p2;
1943
1944 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1945 }
1946 \f
1947 /* Functions to manage the got entry hash table. */
1948
1949 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1950 hash number. */
1951
1952 static INLINE hashval_t
1953 mips_elf_hash_bfd_vma (bfd_vma addr)
1954 {
1955 #ifdef BFD64
1956 return addr + (addr >> 32);
1957 #else
1958 return addr;
1959 #endif
1960 }
1961
1962 /* got_entries only match if they're identical, except for gotidx, so
1963 use all fields to compute the hash, and compare the appropriate
1964 union members. */
1965
1966 static hashval_t
1967 mips_elf_got_entry_hash (const void *entry_)
1968 {
1969 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1970
1971 return entry->symndx
1972 + ((entry->tls_type & GOT_TLS_LDM) << 17)
1973 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1974 : entry->abfd->id
1975 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1976 : entry->d.h->root.root.root.hash));
1977 }
1978
1979 static int
1980 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1981 {
1982 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1983 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1984
1985 /* An LDM entry can only match another LDM entry. */
1986 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1987 return 0;
1988
1989 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1990 && (! e1->abfd ? e1->d.address == e2->d.address
1991 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1992 : e1->d.h == e2->d.h);
1993 }
1994
1995 /* multi_got_entries are still a match in the case of global objects,
1996 even if the input bfd in which they're referenced differs, so the
1997 hash computation and compare functions are adjusted
1998 accordingly. */
1999
2000 static hashval_t
2001 mips_elf_multi_got_entry_hash (const void *entry_)
2002 {
2003 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2004
2005 return entry->symndx
2006 + (! entry->abfd
2007 ? mips_elf_hash_bfd_vma (entry->d.address)
2008 : entry->symndx >= 0
2009 ? ((entry->tls_type & GOT_TLS_LDM)
2010 ? (GOT_TLS_LDM << 17)
2011 : (entry->abfd->id
2012 + mips_elf_hash_bfd_vma (entry->d.addend)))
2013 : entry->d.h->root.root.root.hash);
2014 }
2015
2016 static int
2017 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2018 {
2019 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2020 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2021
2022 /* Any two LDM entries match. */
2023 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2024 return 1;
2025
2026 /* Nothing else matches an LDM entry. */
2027 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2028 return 0;
2029
2030 return e1->symndx == e2->symndx
2031 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2032 : e1->abfd == NULL || e2->abfd == NULL
2033 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2034 : e1->d.h == e2->d.h);
2035 }
2036 \f
2037 /* Return the dynamic relocation section. If it doesn't exist, try to
2038 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2039 if creation fails. */
2040
2041 static asection *
2042 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2043 {
2044 const char *dname;
2045 asection *sreloc;
2046 bfd *dynobj;
2047
2048 dname = MIPS_ELF_REL_DYN_NAME (info);
2049 dynobj = elf_hash_table (info)->dynobj;
2050 sreloc = bfd_get_section_by_name (dynobj, dname);
2051 if (sreloc == NULL && create_p)
2052 {
2053 sreloc = bfd_make_section_with_flags (dynobj, dname,
2054 (SEC_ALLOC
2055 | SEC_LOAD
2056 | SEC_HAS_CONTENTS
2057 | SEC_IN_MEMORY
2058 | SEC_LINKER_CREATED
2059 | SEC_READONLY));
2060 if (sreloc == NULL
2061 || ! bfd_set_section_alignment (dynobj, sreloc,
2062 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2063 return NULL;
2064 }
2065 return sreloc;
2066 }
2067
2068 /* Returns the GOT section for ABFD. */
2069
2070 static asection *
2071 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
2072 {
2073 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2074 if (sgot == NULL
2075 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2076 return NULL;
2077 return sgot;
2078 }
2079
2080 /* Returns the GOT information associated with the link indicated by
2081 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2082 section. */
2083
2084 static struct mips_got_info *
2085 mips_elf_got_info (bfd *abfd, asection **sgotp)
2086 {
2087 asection *sgot;
2088 struct mips_got_info *g;
2089
2090 sgot = mips_elf_got_section (abfd, TRUE);
2091 BFD_ASSERT (sgot != NULL);
2092 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2093 g = mips_elf_section_data (sgot)->u.got_info;
2094 BFD_ASSERT (g != NULL);
2095
2096 if (sgotp)
2097 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2098
2099 return g;
2100 }
2101
2102 /* Count the number of relocations needed for a TLS GOT entry, with
2103 access types from TLS_TYPE, and symbol H (or a local symbol if H
2104 is NULL). */
2105
2106 static int
2107 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2108 struct elf_link_hash_entry *h)
2109 {
2110 int indx = 0;
2111 int ret = 0;
2112 bfd_boolean need_relocs = FALSE;
2113 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2114
2115 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2116 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2117 indx = h->dynindx;
2118
2119 if ((info->shared || indx != 0)
2120 && (h == NULL
2121 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2122 || h->root.type != bfd_link_hash_undefweak))
2123 need_relocs = TRUE;
2124
2125 if (!need_relocs)
2126 return FALSE;
2127
2128 if (tls_type & GOT_TLS_GD)
2129 {
2130 ret++;
2131 if (indx != 0)
2132 ret++;
2133 }
2134
2135 if (tls_type & GOT_TLS_IE)
2136 ret++;
2137
2138 if ((tls_type & GOT_TLS_LDM) && info->shared)
2139 ret++;
2140
2141 return ret;
2142 }
2143
2144 /* Count the number of TLS relocations required for the GOT entry in
2145 ARG1, if it describes a local symbol. */
2146
2147 static int
2148 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2149 {
2150 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2151 struct mips_elf_count_tls_arg *arg = arg2;
2152
2153 if (entry->abfd != NULL && entry->symndx != -1)
2154 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2155
2156 return 1;
2157 }
2158
2159 /* Count the number of TLS GOT entries required for the global (or
2160 forced-local) symbol in ARG1. */
2161
2162 static int
2163 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2164 {
2165 struct mips_elf_link_hash_entry *hm
2166 = (struct mips_elf_link_hash_entry *) arg1;
2167 struct mips_elf_count_tls_arg *arg = arg2;
2168
2169 if (hm->tls_type & GOT_TLS_GD)
2170 arg->needed += 2;
2171 if (hm->tls_type & GOT_TLS_IE)
2172 arg->needed += 1;
2173
2174 return 1;
2175 }
2176
2177 /* Count the number of TLS relocations required for the global (or
2178 forced-local) symbol in ARG1. */
2179
2180 static int
2181 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2182 {
2183 struct mips_elf_link_hash_entry *hm
2184 = (struct mips_elf_link_hash_entry *) arg1;
2185 struct mips_elf_count_tls_arg *arg = arg2;
2186
2187 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2188
2189 return 1;
2190 }
2191
2192 /* Output a simple dynamic relocation into SRELOC. */
2193
2194 static void
2195 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2196 asection *sreloc,
2197 unsigned long indx,
2198 int r_type,
2199 bfd_vma offset)
2200 {
2201 Elf_Internal_Rela rel[3];
2202
2203 memset (rel, 0, sizeof (rel));
2204
2205 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2206 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2207
2208 if (ABI_64_P (output_bfd))
2209 {
2210 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2211 (output_bfd, &rel[0],
2212 (sreloc->contents
2213 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2214 }
2215 else
2216 bfd_elf32_swap_reloc_out
2217 (output_bfd, &rel[0],
2218 (sreloc->contents
2219 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2220 ++sreloc->reloc_count;
2221 }
2222
2223 /* Initialize a set of TLS GOT entries for one symbol. */
2224
2225 static void
2226 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2227 unsigned char *tls_type_p,
2228 struct bfd_link_info *info,
2229 struct mips_elf_link_hash_entry *h,
2230 bfd_vma value)
2231 {
2232 int indx;
2233 asection *sreloc, *sgot;
2234 bfd_vma offset, offset2;
2235 bfd *dynobj;
2236 bfd_boolean need_relocs = FALSE;
2237
2238 dynobj = elf_hash_table (info)->dynobj;
2239 sgot = mips_elf_got_section (dynobj, FALSE);
2240
2241 indx = 0;
2242 if (h != NULL)
2243 {
2244 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2245
2246 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2247 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2248 indx = h->root.dynindx;
2249 }
2250
2251 if (*tls_type_p & GOT_TLS_DONE)
2252 return;
2253
2254 if ((info->shared || indx != 0)
2255 && (h == NULL
2256 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2257 || h->root.type != bfd_link_hash_undefweak))
2258 need_relocs = TRUE;
2259
2260 /* MINUS_ONE means the symbol is not defined in this object. It may not
2261 be defined at all; assume that the value doesn't matter in that
2262 case. Otherwise complain if we would use the value. */
2263 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2264 || h->root.root.type == bfd_link_hash_undefweak);
2265
2266 /* Emit necessary relocations. */
2267 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2268
2269 /* General Dynamic. */
2270 if (*tls_type_p & GOT_TLS_GD)
2271 {
2272 offset = got_offset;
2273 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2274
2275 if (need_relocs)
2276 {
2277 mips_elf_output_dynamic_relocation
2278 (abfd, sreloc, indx,
2279 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2280 sgot->output_offset + sgot->output_section->vma + offset);
2281
2282 if (indx)
2283 mips_elf_output_dynamic_relocation
2284 (abfd, sreloc, indx,
2285 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2286 sgot->output_offset + sgot->output_section->vma + offset2);
2287 else
2288 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2289 sgot->contents + offset2);
2290 }
2291 else
2292 {
2293 MIPS_ELF_PUT_WORD (abfd, 1,
2294 sgot->contents + offset);
2295 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2296 sgot->contents + offset2);
2297 }
2298
2299 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2300 }
2301
2302 /* Initial Exec model. */
2303 if (*tls_type_p & GOT_TLS_IE)
2304 {
2305 offset = got_offset;
2306
2307 if (need_relocs)
2308 {
2309 if (indx == 0)
2310 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2311 sgot->contents + offset);
2312 else
2313 MIPS_ELF_PUT_WORD (abfd, 0,
2314 sgot->contents + offset);
2315
2316 mips_elf_output_dynamic_relocation
2317 (abfd, sreloc, indx,
2318 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2319 sgot->output_offset + sgot->output_section->vma + offset);
2320 }
2321 else
2322 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2323 sgot->contents + offset);
2324 }
2325
2326 if (*tls_type_p & GOT_TLS_LDM)
2327 {
2328 /* The initial offset is zero, and the LD offsets will include the
2329 bias by DTP_OFFSET. */
2330 MIPS_ELF_PUT_WORD (abfd, 0,
2331 sgot->contents + got_offset
2332 + MIPS_ELF_GOT_SIZE (abfd));
2333
2334 if (!info->shared)
2335 MIPS_ELF_PUT_WORD (abfd, 1,
2336 sgot->contents + got_offset);
2337 else
2338 mips_elf_output_dynamic_relocation
2339 (abfd, sreloc, indx,
2340 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2341 sgot->output_offset + sgot->output_section->vma + got_offset);
2342 }
2343
2344 *tls_type_p |= GOT_TLS_DONE;
2345 }
2346
2347 /* Return the GOT index to use for a relocation of type R_TYPE against
2348 a symbol accessed using TLS_TYPE models. The GOT entries for this
2349 symbol in this GOT start at GOT_INDEX. This function initializes the
2350 GOT entries and corresponding relocations. */
2351
2352 static bfd_vma
2353 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2354 int r_type, struct bfd_link_info *info,
2355 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2356 {
2357 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2358 || r_type == R_MIPS_TLS_LDM);
2359
2360 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2361
2362 if (r_type == R_MIPS_TLS_GOTTPREL)
2363 {
2364 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2365 if (*tls_type & GOT_TLS_GD)
2366 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2367 else
2368 return got_index;
2369 }
2370
2371 if (r_type == R_MIPS_TLS_GD)
2372 {
2373 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2374 return got_index;
2375 }
2376
2377 if (r_type == R_MIPS_TLS_LDM)
2378 {
2379 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2380 return got_index;
2381 }
2382
2383 return got_index;
2384 }
2385
2386 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2387 for global symbol H. .got.plt comes before the GOT, so the offset
2388 will be negative. */
2389
2390 static bfd_vma
2391 mips_elf_gotplt_index (struct bfd_link_info *info,
2392 struct elf_link_hash_entry *h)
2393 {
2394 bfd_vma plt_index, got_address, got_value;
2395 struct mips_elf_link_hash_table *htab;
2396
2397 htab = mips_elf_hash_table (info);
2398 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2399
2400 /* Calculate the index of the symbol's PLT entry. */
2401 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2402
2403 /* Calculate the address of the associated .got.plt entry. */
2404 got_address = (htab->sgotplt->output_section->vma
2405 + htab->sgotplt->output_offset
2406 + plt_index * 4);
2407
2408 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2409 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2410 + htab->root.hgot->root.u.def.section->output_offset
2411 + htab->root.hgot->root.u.def.value);
2412
2413 return got_address - got_value;
2414 }
2415
2416 /* Return the GOT offset for address VALUE, which was derived from
2417 a symbol belonging to INPUT_SECTION. If there is not yet a GOT
2418 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2419 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2420 offset can be found. */
2421
2422 static bfd_vma
2423 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2424 asection *input_section, bfd_vma value,
2425 unsigned long r_symndx,
2426 struct mips_elf_link_hash_entry *h, int r_type)
2427 {
2428 asection *sgot;
2429 struct mips_got_info *g;
2430 struct mips_got_entry *entry;
2431
2432 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2433
2434 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2435 input_section, value,
2436 r_symndx, h, r_type);
2437 if (!entry)
2438 return MINUS_ONE;
2439
2440 if (TLS_RELOC_P (r_type))
2441 {
2442 if (entry->symndx == -1 && g->next == NULL)
2443 /* A type (3) entry in the single-GOT case. We use the symbol's
2444 hash table entry to track the index. */
2445 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2446 r_type, info, h, value);
2447 else
2448 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2449 r_type, info, h, value);
2450 }
2451 else
2452 return entry->gotidx;
2453 }
2454
2455 /* Returns the GOT index for the global symbol indicated by H. */
2456
2457 static bfd_vma
2458 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2459 int r_type, struct bfd_link_info *info)
2460 {
2461 bfd_vma index;
2462 asection *sgot;
2463 struct mips_got_info *g, *gg;
2464 long global_got_dynindx = 0;
2465
2466 gg = g = mips_elf_got_info (abfd, &sgot);
2467 if (g->bfd2got && ibfd)
2468 {
2469 struct mips_got_entry e, *p;
2470
2471 BFD_ASSERT (h->dynindx >= 0);
2472
2473 g = mips_elf_got_for_ibfd (g, ibfd);
2474 if (g->next != gg || TLS_RELOC_P (r_type))
2475 {
2476 e.abfd = ibfd;
2477 e.symndx = -1;
2478 e.d.h = (struct mips_elf_link_hash_entry *)h;
2479 e.tls_type = 0;
2480
2481 p = htab_find (g->got_entries, &e);
2482
2483 BFD_ASSERT (p->gotidx > 0);
2484
2485 if (TLS_RELOC_P (r_type))
2486 {
2487 bfd_vma value = MINUS_ONE;
2488 if ((h->root.type == bfd_link_hash_defined
2489 || h->root.type == bfd_link_hash_defweak)
2490 && h->root.u.def.section->output_section)
2491 value = (h->root.u.def.value
2492 + h->root.u.def.section->output_offset
2493 + h->root.u.def.section->output_section->vma);
2494
2495 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2496 info, e.d.h, value);
2497 }
2498 else
2499 return p->gotidx;
2500 }
2501 }
2502
2503 if (gg->global_gotsym != NULL)
2504 global_got_dynindx = gg->global_gotsym->dynindx;
2505
2506 if (TLS_RELOC_P (r_type))
2507 {
2508 struct mips_elf_link_hash_entry *hm
2509 = (struct mips_elf_link_hash_entry *) h;
2510 bfd_vma value = MINUS_ONE;
2511
2512 if ((h->root.type == bfd_link_hash_defined
2513 || h->root.type == bfd_link_hash_defweak)
2514 && h->root.u.def.section->output_section)
2515 value = (h->root.u.def.value
2516 + h->root.u.def.section->output_offset
2517 + h->root.u.def.section->output_section->vma);
2518
2519 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2520 r_type, info, hm, value);
2521 }
2522 else
2523 {
2524 /* Once we determine the global GOT entry with the lowest dynamic
2525 symbol table index, we must put all dynamic symbols with greater
2526 indices into the GOT. That makes it easy to calculate the GOT
2527 offset. */
2528 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2529 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2530 * MIPS_ELF_GOT_SIZE (abfd));
2531 }
2532 BFD_ASSERT (index < sgot->size);
2533
2534 return index;
2535 }
2536
2537 /* Find a GOT page entry that points to within 32KB of VALUE, which was
2538 calculated from a symbol belonging to INPUT_SECTION. These entries
2539 are supposed to be placed at small offsets in the GOT, i.e., within
2540 32KB of GP. Return the index of the GOT entry, or -1 if no entry
2541 could be created. If OFFSETP is nonnull, use it to return the
2542 offset of the GOT entry from VALUE. */
2543
2544 static bfd_vma
2545 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2546 asection *input_section, bfd_vma value, bfd_vma *offsetp)
2547 {
2548 asection *sgot;
2549 struct mips_got_info *g;
2550 bfd_vma page, index;
2551 struct mips_got_entry *entry;
2552
2553 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2554
2555 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2556 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2557 input_section, page, 0,
2558 NULL, R_MIPS_GOT_PAGE);
2559
2560 if (!entry)
2561 return MINUS_ONE;
2562
2563 index = entry->gotidx;
2564
2565 if (offsetp)
2566 *offsetp = value - entry->d.address;
2567
2568 return index;
2569 }
2570
2571 /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE,
2572 which was calculated from a symbol belonging to INPUT_SECTION.
2573 EXTERNAL is true if the relocation was against a global symbol
2574 that has been forced local. */
2575
2576 static bfd_vma
2577 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2578 asection *input_section, bfd_vma value,
2579 bfd_boolean external)
2580 {
2581 asection *sgot;
2582 struct mips_got_info *g;
2583 struct mips_got_entry *entry;
2584
2585 /* GOT16 relocations against local symbols are followed by a LO16
2586 relocation; those against global symbols are not. Thus if the
2587 symbol was originally local, the GOT16 relocation should load the
2588 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2589 if (! external)
2590 value = mips_elf_high (value) << 16;
2591
2592 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2593
2594 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2595 input_section, value, 0,
2596 NULL, R_MIPS_GOT16);
2597 if (entry)
2598 return entry->gotidx;
2599 else
2600 return MINUS_ONE;
2601 }
2602
2603 /* Returns the offset for the entry at the INDEXth position
2604 in the GOT. */
2605
2606 static bfd_vma
2607 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2608 bfd *input_bfd, bfd_vma index)
2609 {
2610 asection *sgot;
2611 bfd_vma gp;
2612 struct mips_got_info *g;
2613
2614 g = mips_elf_got_info (dynobj, &sgot);
2615 gp = _bfd_get_gp_value (output_bfd)
2616 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2617
2618 return sgot->output_section->vma + sgot->output_offset + index - gp;
2619 }
2620
2621 /* Create and return a local GOT entry for VALUE, which was calculated
2622 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2623 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2624 instead. */
2625
2626 static struct mips_got_entry *
2627 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2628 bfd *ibfd, struct mips_got_info *gg,
2629 asection *sgot, asection *input_section,
2630 bfd_vma value, unsigned long r_symndx,
2631 struct mips_elf_link_hash_entry *h,
2632 int r_type)
2633 {
2634 struct mips_got_entry entry, **loc;
2635 struct mips_got_info *g;
2636 struct mips_elf_link_hash_table *htab;
2637
2638 htab = mips_elf_hash_table (info);
2639
2640 entry.abfd = NULL;
2641 entry.symndx = -1;
2642 entry.d.address = value;
2643 entry.tls_type = 0;
2644
2645 g = mips_elf_got_for_ibfd (gg, ibfd);
2646 if (g == NULL)
2647 {
2648 g = mips_elf_got_for_ibfd (gg, abfd);
2649 BFD_ASSERT (g != NULL);
2650 }
2651
2652 /* We might have a symbol, H, if it has been forced local. Use the
2653 global entry then. It doesn't matter whether an entry is local
2654 or global for TLS, since the dynamic linker does not
2655 automatically relocate TLS GOT entries. */
2656 BFD_ASSERT (h == NULL || h->root.forced_local);
2657 if (TLS_RELOC_P (r_type))
2658 {
2659 struct mips_got_entry *p;
2660
2661 entry.abfd = ibfd;
2662 if (r_type == R_MIPS_TLS_LDM)
2663 {
2664 entry.tls_type = GOT_TLS_LDM;
2665 entry.symndx = 0;
2666 entry.d.addend = 0;
2667 }
2668 else if (h == NULL)
2669 {
2670 entry.symndx = r_symndx;
2671 entry.d.addend = 0;
2672 }
2673 else
2674 entry.d.h = h;
2675
2676 p = (struct mips_got_entry *)
2677 htab_find (g->got_entries, &entry);
2678
2679 BFD_ASSERT (p);
2680 return p;
2681 }
2682
2683 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2684 INSERT);
2685 if (*loc)
2686 return *loc;
2687
2688 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2689 entry.tls_type = 0;
2690
2691 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2692
2693 if (! *loc)
2694 return NULL;
2695
2696 memcpy (*loc, &entry, sizeof entry);
2697
2698 if (g->assigned_gotno >= g->local_gotno)
2699 {
2700 (*loc)->gotidx = -1;
2701 /* We didn't allocate enough space in the GOT. */
2702 (*_bfd_error_handler)
2703 (_("not enough GOT space for local GOT entries"));
2704 bfd_set_error (bfd_error_bad_value);
2705 return NULL;
2706 }
2707
2708 MIPS_ELF_PUT_WORD (abfd, value,
2709 (sgot->contents + entry.gotidx));
2710
2711 /* These GOT entries need a dynamic relocation on VxWorks. Because
2712 the offset between segments is not fixed, the relocation must be
2713 against a symbol in the same segment as the original symbol.
2714 The easiest way to do this is to take INPUT_SECTION's output
2715 section and emit a relocation against its section symbol. */
2716 if (htab->is_vxworks)
2717 {
2718 Elf_Internal_Rela outrel;
2719 asection *s, *output_section;
2720 bfd_byte *loc;
2721 bfd_vma got_address;
2722 int dynindx;
2723
2724 s = mips_elf_rel_dyn_section (info, FALSE);
2725 output_section = input_section->output_section;
2726 dynindx = elf_section_data (output_section)->dynindx;
2727 got_address = (sgot->output_section->vma
2728 + sgot->output_offset
2729 + entry.gotidx);
2730
2731 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2732 outrel.r_offset = got_address;
2733 outrel.r_info = ELF32_R_INFO (dynindx, R_MIPS_32);
2734 outrel.r_addend = value - output_section->vma;
2735 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2736 }
2737
2738 return *loc;
2739 }
2740
2741 /* Sort the dynamic symbol table so that symbols that need GOT entries
2742 appear towards the end. This reduces the amount of GOT space
2743 required. MAX_LOCAL is used to set the number of local symbols
2744 known to be in the dynamic symbol table. During
2745 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2746 section symbols are added and the count is higher. */
2747
2748 static bfd_boolean
2749 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2750 {
2751 struct mips_elf_hash_sort_data hsd;
2752 struct mips_got_info *g;
2753 bfd *dynobj;
2754
2755 dynobj = elf_hash_table (info)->dynobj;
2756
2757 g = mips_elf_got_info (dynobj, NULL);
2758
2759 hsd.low = NULL;
2760 hsd.max_unref_got_dynindx =
2761 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2762 /* In the multi-got case, assigned_gotno of the master got_info
2763 indicate the number of entries that aren't referenced in the
2764 primary GOT, but that must have entries because there are
2765 dynamic relocations that reference it. Since they aren't
2766 referenced, we move them to the end of the GOT, so that they
2767 don't prevent other entries that are referenced from getting
2768 too large offsets. */
2769 - (g->next ? g->assigned_gotno : 0);
2770 hsd.max_non_got_dynindx = max_local;
2771 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2772 elf_hash_table (info)),
2773 mips_elf_sort_hash_table_f,
2774 &hsd);
2775
2776 /* There should have been enough room in the symbol table to
2777 accommodate both the GOT and non-GOT symbols. */
2778 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2779 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2780 <= elf_hash_table (info)->dynsymcount);
2781
2782 /* Now we know which dynamic symbol has the lowest dynamic symbol
2783 table index in the GOT. */
2784 g->global_gotsym = hsd.low;
2785
2786 return TRUE;
2787 }
2788
2789 /* If H needs a GOT entry, assign it the highest available dynamic
2790 index. Otherwise, assign it the lowest available dynamic
2791 index. */
2792
2793 static bfd_boolean
2794 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2795 {
2796 struct mips_elf_hash_sort_data *hsd = data;
2797
2798 if (h->root.root.type == bfd_link_hash_warning)
2799 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2800
2801 /* Symbols without dynamic symbol table entries aren't interesting
2802 at all. */
2803 if (h->root.dynindx == -1)
2804 return TRUE;
2805
2806 /* Global symbols that need GOT entries that are not explicitly
2807 referenced are marked with got offset 2. Those that are
2808 referenced get a 1, and those that don't need GOT entries get
2809 -1. */
2810 if (h->root.got.offset == 2)
2811 {
2812 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2813
2814 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2815 hsd->low = (struct elf_link_hash_entry *) h;
2816 h->root.dynindx = hsd->max_unref_got_dynindx++;
2817 }
2818 else if (h->root.got.offset != 1)
2819 h->root.dynindx = hsd->max_non_got_dynindx++;
2820 else
2821 {
2822 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2823
2824 h->root.dynindx = --hsd->min_got_dynindx;
2825 hsd->low = (struct elf_link_hash_entry *) h;
2826 }
2827
2828 return TRUE;
2829 }
2830
2831 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2832 symbol table index lower than any we've seen to date, record it for
2833 posterity. */
2834
2835 static bfd_boolean
2836 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2837 bfd *abfd, struct bfd_link_info *info,
2838 struct mips_got_info *g,
2839 unsigned char tls_flag)
2840 {
2841 struct mips_got_entry entry, **loc;
2842
2843 /* A global symbol in the GOT must also be in the dynamic symbol
2844 table. */
2845 if (h->dynindx == -1)
2846 {
2847 switch (ELF_ST_VISIBILITY (h->other))
2848 {
2849 case STV_INTERNAL:
2850 case STV_HIDDEN:
2851 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2852 break;
2853 }
2854 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2855 return FALSE;
2856 }
2857
2858 /* Make sure we have a GOT to put this entry into. */
2859 BFD_ASSERT (g != NULL);
2860
2861 entry.abfd = abfd;
2862 entry.symndx = -1;
2863 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2864 entry.tls_type = 0;
2865
2866 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2867 INSERT);
2868
2869 /* If we've already marked this entry as needing GOT space, we don't
2870 need to do it again. */
2871 if (*loc)
2872 {
2873 (*loc)->tls_type |= tls_flag;
2874 return TRUE;
2875 }
2876
2877 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2878
2879 if (! *loc)
2880 return FALSE;
2881
2882 entry.gotidx = -1;
2883 entry.tls_type = tls_flag;
2884
2885 memcpy (*loc, &entry, sizeof entry);
2886
2887 if (h->got.offset != MINUS_ONE)
2888 return TRUE;
2889
2890 /* By setting this to a value other than -1, we are indicating that
2891 there needs to be a GOT entry for H. Avoid using zero, as the
2892 generic ELF copy_indirect_symbol tests for <= 0. */
2893 if (tls_flag == 0)
2894 h->got.offset = 1;
2895
2896 return TRUE;
2897 }
2898
2899 /* Reserve space in G for a GOT entry containing the value of symbol
2900 SYMNDX in input bfd ABDF, plus ADDEND. */
2901
2902 static bfd_boolean
2903 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2904 struct mips_got_info *g,
2905 unsigned char tls_flag)
2906 {
2907 struct mips_got_entry entry, **loc;
2908
2909 entry.abfd = abfd;
2910 entry.symndx = symndx;
2911 entry.d.addend = addend;
2912 entry.tls_type = tls_flag;
2913 loc = (struct mips_got_entry **)
2914 htab_find_slot (g->got_entries, &entry, INSERT);
2915
2916 if (*loc)
2917 {
2918 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2919 {
2920 g->tls_gotno += 2;
2921 (*loc)->tls_type |= tls_flag;
2922 }
2923 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2924 {
2925 g->tls_gotno += 1;
2926 (*loc)->tls_type |= tls_flag;
2927 }
2928 return TRUE;
2929 }
2930
2931 if (tls_flag != 0)
2932 {
2933 entry.gotidx = -1;
2934 entry.tls_type = tls_flag;
2935 if (tls_flag == GOT_TLS_IE)
2936 g->tls_gotno += 1;
2937 else if (tls_flag == GOT_TLS_GD)
2938 g->tls_gotno += 2;
2939 else if (g->tls_ldm_offset == MINUS_ONE)
2940 {
2941 g->tls_ldm_offset = MINUS_TWO;
2942 g->tls_gotno += 2;
2943 }
2944 }
2945 else
2946 {
2947 entry.gotidx = g->local_gotno++;
2948 entry.tls_type = 0;
2949 }
2950
2951 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2952
2953 if (! *loc)
2954 return FALSE;
2955
2956 memcpy (*loc, &entry, sizeof entry);
2957
2958 return TRUE;
2959 }
2960 \f
2961 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2962
2963 static hashval_t
2964 mips_elf_bfd2got_entry_hash (const void *entry_)
2965 {
2966 const struct mips_elf_bfd2got_hash *entry
2967 = (struct mips_elf_bfd2got_hash *)entry_;
2968
2969 return entry->bfd->id;
2970 }
2971
2972 /* Check whether two hash entries have the same bfd. */
2973
2974 static int
2975 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2976 {
2977 const struct mips_elf_bfd2got_hash *e1
2978 = (const struct mips_elf_bfd2got_hash *)entry1;
2979 const struct mips_elf_bfd2got_hash *e2
2980 = (const struct mips_elf_bfd2got_hash *)entry2;
2981
2982 return e1->bfd == e2->bfd;
2983 }
2984
2985 /* In a multi-got link, determine the GOT to be used for IBFD. G must
2986 be the master GOT data. */
2987
2988 static struct mips_got_info *
2989 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2990 {
2991 struct mips_elf_bfd2got_hash e, *p;
2992
2993 if (! g->bfd2got)
2994 return g;
2995
2996 e.bfd = ibfd;
2997 p = htab_find (g->bfd2got, &e);
2998 return p ? p->g : NULL;
2999 }
3000
3001 /* Create one separate got for each bfd that has entries in the global
3002 got, such that we can tell how many local and global entries each
3003 bfd requires. */
3004
3005 static int
3006 mips_elf_make_got_per_bfd (void **entryp, void *p)
3007 {
3008 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3009 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3010 htab_t bfd2got = arg->bfd2got;
3011 struct mips_got_info *g;
3012 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3013 void **bfdgotp;
3014
3015 /* Find the got_info for this GOT entry's input bfd. Create one if
3016 none exists. */
3017 bfdgot_entry.bfd = entry->abfd;
3018 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3019 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
3020
3021 if (bfdgot != NULL)
3022 g = bfdgot->g;
3023 else
3024 {
3025 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3026 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3027
3028 if (bfdgot == NULL)
3029 {
3030 arg->obfd = 0;
3031 return 0;
3032 }
3033
3034 *bfdgotp = bfdgot;
3035
3036 bfdgot->bfd = entry->abfd;
3037 bfdgot->g = g = (struct mips_got_info *)
3038 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3039 if (g == NULL)
3040 {
3041 arg->obfd = 0;
3042 return 0;
3043 }
3044
3045 g->global_gotsym = NULL;
3046 g->global_gotno = 0;
3047 g->local_gotno = 0;
3048 g->assigned_gotno = -1;
3049 g->tls_gotno = 0;
3050 g->tls_assigned_gotno = 0;
3051 g->tls_ldm_offset = MINUS_ONE;
3052 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3053 mips_elf_multi_got_entry_eq, NULL);
3054 if (g->got_entries == NULL)
3055 {
3056 arg->obfd = 0;
3057 return 0;
3058 }
3059
3060 g->bfd2got = NULL;
3061 g->next = NULL;
3062 }
3063
3064 /* Insert the GOT entry in the bfd's got entry hash table. */
3065 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3066 if (*entryp != NULL)
3067 return 1;
3068
3069 *entryp = entry;
3070
3071 if (entry->tls_type)
3072 {
3073 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3074 g->tls_gotno += 2;
3075 if (entry->tls_type & GOT_TLS_IE)
3076 g->tls_gotno += 1;
3077 }
3078 else if (entry->symndx >= 0 || entry->d.h->forced_local)
3079 ++g->local_gotno;
3080 else
3081 ++g->global_gotno;
3082
3083 return 1;
3084 }
3085
3086 /* Attempt to merge gots of different input bfds. Try to use as much
3087 as possible of the primary got, since it doesn't require explicit
3088 dynamic relocations, but don't use bfds that would reference global
3089 symbols out of the addressable range. Failing the primary got,
3090 attempt to merge with the current got, or finish the current got
3091 and then make make the new got current. */
3092
3093 static int
3094 mips_elf_merge_gots (void **bfd2got_, void *p)
3095 {
3096 struct mips_elf_bfd2got_hash *bfd2got
3097 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3098 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3099 unsigned int lcount = bfd2got->g->local_gotno;
3100 unsigned int gcount = bfd2got->g->global_gotno;
3101 unsigned int tcount = bfd2got->g->tls_gotno;
3102 unsigned int maxcnt = arg->max_count;
3103 bfd_boolean too_many_for_tls = FALSE;
3104
3105 /* We place TLS GOT entries after both locals and globals. The globals
3106 for the primary GOT may overflow the normal GOT size limit, so be
3107 sure not to merge a GOT which requires TLS with the primary GOT in that
3108 case. This doesn't affect non-primary GOTs. */
3109 if (tcount > 0)
3110 {
3111 unsigned int primary_total = lcount + tcount + arg->global_count;
3112 if (primary_total > maxcnt)
3113 too_many_for_tls = TRUE;
3114 }
3115
3116 /* If we don't have a primary GOT and this is not too big, use it as
3117 a starting point for the primary GOT. */
3118 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3119 && ! too_many_for_tls)
3120 {
3121 arg->primary = bfd2got->g;
3122 arg->primary_count = lcount + gcount;
3123 }
3124 /* If it looks like we can merge this bfd's entries with those of
3125 the primary, merge them. The heuristics is conservative, but we
3126 don't have to squeeze it too hard. */
3127 else if (arg->primary && ! too_many_for_tls
3128 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
3129 {
3130 struct mips_got_info *g = bfd2got->g;
3131 int old_lcount = arg->primary->local_gotno;
3132 int old_gcount = arg->primary->global_gotno;
3133 int old_tcount = arg->primary->tls_gotno;
3134
3135 bfd2got->g = arg->primary;
3136
3137 htab_traverse (g->got_entries,
3138 mips_elf_make_got_per_bfd,
3139 arg);
3140 if (arg->obfd == NULL)
3141 return 0;
3142
3143 htab_delete (g->got_entries);
3144 /* We don't have to worry about releasing memory of the actual
3145 got entries, since they're all in the master got_entries hash
3146 table anyway. */
3147
3148 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
3149 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
3150 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
3151
3152 arg->primary_count = arg->primary->local_gotno
3153 + arg->primary->global_gotno + arg->primary->tls_gotno;
3154 }
3155 /* If we can merge with the last-created got, do it. */
3156 else if (arg->current
3157 && arg->current_count + lcount + gcount + tcount <= maxcnt)
3158 {
3159 struct mips_got_info *g = bfd2got->g;
3160 int old_lcount = arg->current->local_gotno;
3161 int old_gcount = arg->current->global_gotno;
3162 int old_tcount = arg->current->tls_gotno;
3163
3164 bfd2got->g = arg->current;
3165
3166 htab_traverse (g->got_entries,
3167 mips_elf_make_got_per_bfd,
3168 arg);
3169 if (arg->obfd == NULL)
3170 return 0;
3171
3172 htab_delete (g->got_entries);
3173
3174 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
3175 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
3176 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
3177
3178 arg->current_count = arg->current->local_gotno
3179 + arg->current->global_gotno + arg->current->tls_gotno;
3180 }
3181 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3182 fits; if it turns out that it doesn't, we'll get relocation
3183 overflows anyway. */
3184 else
3185 {
3186 bfd2got->g->next = arg->current;
3187 arg->current = bfd2got->g;
3188
3189 arg->current_count = lcount + gcount + 2 * tcount;
3190 }
3191
3192 return 1;
3193 }
3194
3195 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3196 is null iff there is just a single GOT. */
3197
3198 static int
3199 mips_elf_initialize_tls_index (void **entryp, void *p)
3200 {
3201 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3202 struct mips_got_info *g = p;
3203 bfd_vma next_index;
3204
3205 /* We're only interested in TLS symbols. */
3206 if (entry->tls_type == 0)
3207 return 1;
3208
3209 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3210
3211 if (entry->symndx == -1 && g->next == NULL)
3212 {
3213 /* A type (3) got entry in the single-GOT case. We use the symbol's
3214 hash table entry to track its index. */
3215 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3216 return 1;
3217 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3218 entry->d.h->tls_got_offset = next_index;
3219 }
3220 else
3221 {
3222 if (entry->tls_type & GOT_TLS_LDM)
3223 {
3224 /* There are separate mips_got_entry objects for each input bfd
3225 that requires an LDM entry. Make sure that all LDM entries in
3226 a GOT resolve to the same index. */
3227 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3228 {
3229 entry->gotidx = g->tls_ldm_offset;
3230 return 1;
3231 }
3232 g->tls_ldm_offset = next_index;
3233 }
3234 entry->gotidx = next_index;
3235 }
3236
3237 /* Account for the entries we've just allocated. */
3238 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3239 g->tls_assigned_gotno += 2;
3240 if (entry->tls_type & GOT_TLS_IE)
3241 g->tls_assigned_gotno += 1;
3242
3243 return 1;
3244 }
3245
3246 /* If passed a NULL mips_got_info in the argument, set the marker used
3247 to tell whether a global symbol needs a got entry (in the primary
3248 got) to the given VALUE.
3249
3250 If passed a pointer G to a mips_got_info in the argument (it must
3251 not be the primary GOT), compute the offset from the beginning of
3252 the (primary) GOT section to the entry in G corresponding to the
3253 global symbol. G's assigned_gotno must contain the index of the
3254 first available global GOT entry in G. VALUE must contain the size
3255 of a GOT entry in bytes. For each global GOT entry that requires a
3256 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3257 marked as not eligible for lazy resolution through a function
3258 stub. */
3259 static int
3260 mips_elf_set_global_got_offset (void **entryp, void *p)
3261 {
3262 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3263 struct mips_elf_set_global_got_offset_arg *arg
3264 = (struct mips_elf_set_global_got_offset_arg *)p;
3265 struct mips_got_info *g = arg->g;
3266
3267 if (g && entry->tls_type != GOT_NORMAL)
3268 arg->needed_relocs +=
3269 mips_tls_got_relocs (arg->info, entry->tls_type,
3270 entry->symndx == -1 ? &entry->d.h->root : NULL);
3271
3272 if (entry->abfd != NULL && entry->symndx == -1
3273 && entry->d.h->root.dynindx != -1
3274 && entry->d.h->tls_type == GOT_NORMAL)
3275 {
3276 if (g)
3277 {
3278 BFD_ASSERT (g->global_gotsym == NULL);
3279
3280 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3281 if (arg->info->shared
3282 || (elf_hash_table (arg->info)->dynamic_sections_created
3283 && entry->d.h->root.def_dynamic
3284 && !entry->d.h->root.def_regular))
3285 ++arg->needed_relocs;
3286 }
3287 else
3288 entry->d.h->root.got.offset = arg->value;
3289 }
3290
3291 return 1;
3292 }
3293
3294 /* Mark any global symbols referenced in the GOT we are iterating over
3295 as inelligible for lazy resolution stubs. */
3296 static int
3297 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3298 {
3299 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3300
3301 if (entry->abfd != NULL
3302 && entry->symndx == -1
3303 && entry->d.h->root.dynindx != -1)
3304 entry->d.h->no_fn_stub = TRUE;
3305
3306 return 1;
3307 }
3308
3309 /* Follow indirect and warning hash entries so that each got entry
3310 points to the final symbol definition. P must point to a pointer
3311 to the hash table we're traversing. Since this traversal may
3312 modify the hash table, we set this pointer to NULL to indicate
3313 we've made a potentially-destructive change to the hash table, so
3314 the traversal must be restarted. */
3315 static int
3316 mips_elf_resolve_final_got_entry (void **entryp, void *p)
3317 {
3318 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3319 htab_t got_entries = *(htab_t *)p;
3320
3321 if (entry->abfd != NULL && entry->symndx == -1)
3322 {
3323 struct mips_elf_link_hash_entry *h = entry->d.h;
3324
3325 while (h->root.root.type == bfd_link_hash_indirect
3326 || h->root.root.type == bfd_link_hash_warning)
3327 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3328
3329 if (entry->d.h == h)
3330 return 1;
3331
3332 entry->d.h = h;
3333
3334 /* If we can't find this entry with the new bfd hash, re-insert
3335 it, and get the traversal restarted. */
3336 if (! htab_find (got_entries, entry))
3337 {
3338 htab_clear_slot (got_entries, entryp);
3339 entryp = htab_find_slot (got_entries, entry, INSERT);
3340 if (! *entryp)
3341 *entryp = entry;
3342 /* Abort the traversal, since the whole table may have
3343 moved, and leave it up to the parent to restart the
3344 process. */
3345 *(htab_t *)p = NULL;
3346 return 0;
3347 }
3348 /* We might want to decrement the global_gotno count, but it's
3349 either too early or too late for that at this point. */
3350 }
3351
3352 return 1;
3353 }
3354
3355 /* Turn indirect got entries in a got_entries table into their final
3356 locations. */
3357 static void
3358 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3359 {
3360 htab_t got_entries;
3361
3362 do
3363 {
3364 got_entries = g->got_entries;
3365
3366 htab_traverse (got_entries,
3367 mips_elf_resolve_final_got_entry,
3368 &got_entries);
3369 }
3370 while (got_entries == NULL);
3371 }
3372
3373 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3374 the primary GOT. */
3375 static bfd_vma
3376 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3377 {
3378 if (g->bfd2got == NULL)
3379 return 0;
3380
3381 g = mips_elf_got_for_ibfd (g, ibfd);
3382 if (! g)
3383 return 0;
3384
3385 BFD_ASSERT (g->next);
3386
3387 g = g->next;
3388
3389 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3390 * MIPS_ELF_GOT_SIZE (abfd);
3391 }
3392
3393 /* Turn a single GOT that is too big for 16-bit addressing into
3394 a sequence of GOTs, each one 16-bit addressable. */
3395
3396 static bfd_boolean
3397 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3398 struct mips_got_info *g, asection *got,
3399 bfd_size_type pages)
3400 {
3401 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3402 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3403 struct mips_got_info *gg;
3404 unsigned int assign;
3405
3406 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3407 mips_elf_bfd2got_entry_eq, NULL);
3408 if (g->bfd2got == NULL)
3409 return FALSE;
3410
3411 got_per_bfd_arg.bfd2got = g->bfd2got;
3412 got_per_bfd_arg.obfd = abfd;
3413 got_per_bfd_arg.info = info;
3414
3415 /* Count how many GOT entries each input bfd requires, creating a
3416 map from bfd to got info while at that. */
3417 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3418 if (got_per_bfd_arg.obfd == NULL)
3419 return FALSE;
3420
3421 got_per_bfd_arg.current = NULL;
3422 got_per_bfd_arg.primary = NULL;
3423 /* Taking out PAGES entries is a worst-case estimate. We could
3424 compute the maximum number of pages that each separate input bfd
3425 uses, but it's probably not worth it. */
3426 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
3427 / MIPS_ELF_GOT_SIZE (abfd))
3428 - MIPS_RESERVED_GOTNO (info) - pages);
3429 /* The number of globals that will be included in the primary GOT.
3430 See the calls to mips_elf_set_global_got_offset below for more
3431 information. */
3432 got_per_bfd_arg.global_count = g->global_gotno;
3433
3434 /* Try to merge the GOTs of input bfds together, as long as they
3435 don't seem to exceed the maximum GOT size, choosing one of them
3436 to be the primary GOT. */
3437 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3438 if (got_per_bfd_arg.obfd == NULL)
3439 return FALSE;
3440
3441 /* If we do not find any suitable primary GOT, create an empty one. */
3442 if (got_per_bfd_arg.primary == NULL)
3443 {
3444 g->next = (struct mips_got_info *)
3445 bfd_alloc (abfd, sizeof (struct mips_got_info));
3446 if (g->next == NULL)
3447 return FALSE;
3448
3449 g->next->global_gotsym = NULL;
3450 g->next->global_gotno = 0;
3451 g->next->local_gotno = 0;
3452 g->next->tls_gotno = 0;
3453 g->next->assigned_gotno = 0;
3454 g->next->tls_assigned_gotno = 0;
3455 g->next->tls_ldm_offset = MINUS_ONE;
3456 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3457 mips_elf_multi_got_entry_eq,
3458 NULL);
3459 if (g->next->got_entries == NULL)
3460 return FALSE;
3461 g->next->bfd2got = NULL;
3462 }
3463 else
3464 g->next = got_per_bfd_arg.primary;
3465 g->next->next = got_per_bfd_arg.current;
3466
3467 /* GG is now the master GOT, and G is the primary GOT. */
3468 gg = g;
3469 g = g->next;
3470
3471 /* Map the output bfd to the primary got. That's what we're going
3472 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3473 didn't mark in check_relocs, and we want a quick way to find it.
3474 We can't just use gg->next because we're going to reverse the
3475 list. */
3476 {
3477 struct mips_elf_bfd2got_hash *bfdgot;
3478 void **bfdgotp;
3479
3480 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3481 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3482
3483 if (bfdgot == NULL)
3484 return FALSE;
3485
3486 bfdgot->bfd = abfd;
3487 bfdgot->g = g;
3488 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3489
3490 BFD_ASSERT (*bfdgotp == NULL);
3491 *bfdgotp = bfdgot;
3492 }
3493
3494 /* The IRIX dynamic linker requires every symbol that is referenced
3495 in a dynamic relocation to be present in the primary GOT, so
3496 arrange for them to appear after those that are actually
3497 referenced.
3498
3499 GNU/Linux could very well do without it, but it would slow down
3500 the dynamic linker, since it would have to resolve every dynamic
3501 symbol referenced in other GOTs more than once, without help from
3502 the cache. Also, knowing that every external symbol has a GOT
3503 helps speed up the resolution of local symbols too, so GNU/Linux
3504 follows IRIX's practice.
3505
3506 The number 2 is used by mips_elf_sort_hash_table_f to count
3507 global GOT symbols that are unreferenced in the primary GOT, with
3508 an initial dynamic index computed from gg->assigned_gotno, where
3509 the number of unreferenced global entries in the primary GOT is
3510 preserved. */
3511 if (1)
3512 {
3513 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3514 g->global_gotno = gg->global_gotno;
3515 set_got_offset_arg.value = 2;
3516 }
3517 else
3518 {
3519 /* This could be used for dynamic linkers that don't optimize
3520 symbol resolution while applying relocations so as to use
3521 primary GOT entries or assuming the symbol is locally-defined.
3522 With this code, we assign lower dynamic indices to global
3523 symbols that are not referenced in the primary GOT, so that
3524 their entries can be omitted. */
3525 gg->assigned_gotno = 0;
3526 set_got_offset_arg.value = -1;
3527 }
3528
3529 /* Reorder dynamic symbols as described above (which behavior
3530 depends on the setting of VALUE). */
3531 set_got_offset_arg.g = NULL;
3532 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3533 &set_got_offset_arg);
3534 set_got_offset_arg.value = 1;
3535 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3536 &set_got_offset_arg);
3537 if (! mips_elf_sort_hash_table (info, 1))
3538 return FALSE;
3539
3540 /* Now go through the GOTs assigning them offset ranges.
3541 [assigned_gotno, local_gotno[ will be set to the range of local
3542 entries in each GOT. We can then compute the end of a GOT by
3543 adding local_gotno to global_gotno. We reverse the list and make
3544 it circular since then we'll be able to quickly compute the
3545 beginning of a GOT, by computing the end of its predecessor. To
3546 avoid special cases for the primary GOT, while still preserving
3547 assertions that are valid for both single- and multi-got links,
3548 we arrange for the main got struct to have the right number of
3549 global entries, but set its local_gotno such that the initial
3550 offset of the primary GOT is zero. Remember that the primary GOT
3551 will become the last item in the circular linked list, so it
3552 points back to the master GOT. */
3553 gg->local_gotno = -g->global_gotno;
3554 gg->global_gotno = g->global_gotno;
3555 gg->tls_gotno = 0;
3556 assign = 0;
3557 gg->next = gg;
3558
3559 do
3560 {
3561 struct mips_got_info *gn;
3562
3563 assign += MIPS_RESERVED_GOTNO (info);
3564 g->assigned_gotno = assign;
3565 g->local_gotno += assign + pages;
3566 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3567
3568 /* Take g out of the direct list, and push it onto the reversed
3569 list that gg points to. g->next is guaranteed to be nonnull after
3570 this operation, as required by mips_elf_initialize_tls_index. */
3571 gn = g->next;
3572 g->next = gg->next;
3573 gg->next = g;
3574
3575 /* Set up any TLS entries. We always place the TLS entries after
3576 all non-TLS entries. */
3577 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3578 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3579
3580 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3581 g = gn;
3582
3583 /* Mark global symbols in every non-primary GOT as ineligible for
3584 stubs. */
3585 if (g)
3586 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3587 }
3588 while (g);
3589
3590 got->size = (gg->next->local_gotno
3591 + gg->next->global_gotno
3592 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3593
3594 return TRUE;
3595 }
3596
3597 \f
3598 /* Returns the first relocation of type r_type found, beginning with
3599 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3600
3601 static const Elf_Internal_Rela *
3602 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3603 const Elf_Internal_Rela *relocation,
3604 const Elf_Internal_Rela *relend)
3605 {
3606 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3607
3608 while (relocation < relend)
3609 {
3610 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3611 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
3612 return relocation;
3613
3614 ++relocation;
3615 }
3616
3617 /* We didn't find it. */
3618 return NULL;
3619 }
3620
3621 /* Return whether a relocation is against a local symbol. */
3622
3623 static bfd_boolean
3624 mips_elf_local_relocation_p (bfd *input_bfd,
3625 const Elf_Internal_Rela *relocation,
3626 asection **local_sections,
3627 bfd_boolean check_forced)
3628 {
3629 unsigned long r_symndx;
3630 Elf_Internal_Shdr *symtab_hdr;
3631 struct mips_elf_link_hash_entry *h;
3632 size_t extsymoff;
3633
3634 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3635 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3636 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3637
3638 if (r_symndx < extsymoff)
3639 return TRUE;
3640 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3641 return TRUE;
3642
3643 if (check_forced)
3644 {
3645 /* Look up the hash table to check whether the symbol
3646 was forced local. */
3647 h = (struct mips_elf_link_hash_entry *)
3648 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3649 /* Find the real hash-table entry for this symbol. */
3650 while (h->root.root.type == bfd_link_hash_indirect
3651 || h->root.root.type == bfd_link_hash_warning)
3652 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3653 if (h->root.forced_local)
3654 return TRUE;
3655 }
3656
3657 return FALSE;
3658 }
3659 \f
3660 /* Sign-extend VALUE, which has the indicated number of BITS. */
3661
3662 bfd_vma
3663 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
3664 {
3665 if (value & ((bfd_vma) 1 << (bits - 1)))
3666 /* VALUE is negative. */
3667 value |= ((bfd_vma) - 1) << bits;
3668
3669 return value;
3670 }
3671
3672 /* Return non-zero if the indicated VALUE has overflowed the maximum
3673 range expressible by a signed number with the indicated number of
3674 BITS. */
3675
3676 static bfd_boolean
3677 mips_elf_overflow_p (bfd_vma value, int bits)
3678 {
3679 bfd_signed_vma svalue = (bfd_signed_vma) value;
3680
3681 if (svalue > (1 << (bits - 1)) - 1)
3682 /* The value is too big. */
3683 return TRUE;
3684 else if (svalue < -(1 << (bits - 1)))
3685 /* The value is too small. */
3686 return TRUE;
3687
3688 /* All is well. */
3689 return FALSE;
3690 }
3691
3692 /* Calculate the %high function. */
3693
3694 static bfd_vma
3695 mips_elf_high (bfd_vma value)
3696 {
3697 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3698 }
3699
3700 /* Calculate the %higher function. */
3701
3702 static bfd_vma
3703 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
3704 {
3705 #ifdef BFD64
3706 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3707 #else
3708 abort ();
3709 return MINUS_ONE;
3710 #endif
3711 }
3712
3713 /* Calculate the %highest function. */
3714
3715 static bfd_vma
3716 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
3717 {
3718 #ifdef BFD64
3719 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3720 #else
3721 abort ();
3722 return MINUS_ONE;
3723 #endif
3724 }
3725 \f
3726 /* Create the .compact_rel section. */
3727
3728 static bfd_boolean
3729 mips_elf_create_compact_rel_section
3730 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
3731 {
3732 flagword flags;
3733 register asection *s;
3734
3735 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3736 {
3737 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3738 | SEC_READONLY);
3739
3740 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
3741 if (s == NULL
3742 || ! bfd_set_section_alignment (abfd, s,
3743 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3744 return FALSE;
3745
3746 s->size = sizeof (Elf32_External_compact_rel);
3747 }
3748
3749 return TRUE;
3750 }
3751
3752 /* Create the .got section to hold the global offset table. */
3753
3754 static bfd_boolean
3755 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3756 bfd_boolean maybe_exclude)
3757 {
3758 flagword flags;
3759 register asection *s;
3760 struct elf_link_hash_entry *h;
3761 struct bfd_link_hash_entry *bh;
3762 struct mips_got_info *g;
3763 bfd_size_type amt;
3764 struct mips_elf_link_hash_table *htab;
3765
3766 htab = mips_elf_hash_table (info);
3767
3768 /* This function may be called more than once. */
3769 s = mips_elf_got_section (abfd, TRUE);
3770 if (s)
3771 {
3772 if (! maybe_exclude)
3773 s->flags &= ~SEC_EXCLUDE;
3774 return TRUE;
3775 }
3776
3777 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3778 | SEC_LINKER_CREATED);
3779
3780 if (maybe_exclude)
3781 flags |= SEC_EXCLUDE;
3782
3783 /* We have to use an alignment of 2**4 here because this is hardcoded
3784 in the function stub generation and in the linker script. */
3785 s = bfd_make_section_with_flags (abfd, ".got", flags);
3786 if (s == NULL
3787 || ! bfd_set_section_alignment (abfd, s, 4))
3788 return FALSE;
3789
3790 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3791 linker script because we don't want to define the symbol if we
3792 are not creating a global offset table. */
3793 bh = NULL;
3794 if (! (_bfd_generic_link_add_one_symbol
3795 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
3796 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
3797 return FALSE;
3798
3799 h = (struct elf_link_hash_entry *) bh;
3800 h->non_elf = 0;
3801 h->def_regular = 1;
3802 h->type = STT_OBJECT;
3803 elf_hash_table (info)->hgot = h;
3804
3805 if (info->shared
3806 && ! bfd_elf_link_record_dynamic_symbol (info, h))
3807 return FALSE;
3808
3809 amt = sizeof (struct mips_got_info);
3810 g = bfd_alloc (abfd, amt);
3811 if (g == NULL)
3812 return FALSE;
3813 g->global_gotsym = NULL;
3814 g->global_gotno = 0;
3815 g->tls_gotno = 0;
3816 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3817 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
3818 g->bfd2got = NULL;
3819 g->next = NULL;
3820 g->tls_ldm_offset = MINUS_ONE;
3821 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3822 mips_elf_got_entry_eq, NULL);
3823 if (g->got_entries == NULL)
3824 return FALSE;
3825 mips_elf_section_data (s)->u.got_info = g;
3826 mips_elf_section_data (s)->elf.this_hdr.sh_flags
3827 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3828
3829 /* VxWorks also needs a .got.plt section. */
3830 if (htab->is_vxworks)
3831 {
3832 s = bfd_make_section_with_flags (abfd, ".got.plt",
3833 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3834 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3835 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3836 return FALSE;
3837
3838 htab->sgotplt = s;
3839 }
3840 return TRUE;
3841 }
3842 \f
3843 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3844 __GOTT_INDEX__ symbols. These symbols are only special for
3845 shared objects; they are not used in executables. */
3846
3847 static bfd_boolean
3848 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3849 {
3850 return (mips_elf_hash_table (info)->is_vxworks
3851 && info->shared
3852 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3853 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3854 }
3855 \f
3856 /* Calculate the value produced by the RELOCATION (which comes from
3857 the INPUT_BFD). The ADDEND is the addend to use for this
3858 RELOCATION; RELOCATION->R_ADDEND is ignored.
3859
3860 The result of the relocation calculation is stored in VALUEP.
3861 REQUIRE_JALXP indicates whether or not the opcode used with this
3862 relocation must be JALX.
3863
3864 This function returns bfd_reloc_continue if the caller need take no
3865 further action regarding this relocation, bfd_reloc_notsupported if
3866 something goes dramatically wrong, bfd_reloc_overflow if an
3867 overflow occurs, and bfd_reloc_ok to indicate success. */
3868
3869 static bfd_reloc_status_type
3870 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3871 asection *input_section,
3872 struct bfd_link_info *info,
3873 const Elf_Internal_Rela *relocation,
3874 bfd_vma addend, reloc_howto_type *howto,
3875 Elf_Internal_Sym *local_syms,
3876 asection **local_sections, bfd_vma *valuep,
3877 const char **namep, bfd_boolean *require_jalxp,
3878 bfd_boolean save_addend)
3879 {
3880 /* The eventual value we will return. */
3881 bfd_vma value;
3882 /* The address of the symbol against which the relocation is
3883 occurring. */
3884 bfd_vma symbol = 0;
3885 /* The final GP value to be used for the relocatable, executable, or
3886 shared object file being produced. */
3887 bfd_vma gp = MINUS_ONE;
3888 /* The place (section offset or address) of the storage unit being
3889 relocated. */
3890 bfd_vma p;
3891 /* The value of GP used to create the relocatable object. */
3892 bfd_vma gp0 = MINUS_ONE;
3893 /* The offset into the global offset table at which the address of
3894 the relocation entry symbol, adjusted by the addend, resides
3895 during execution. */
3896 bfd_vma g = MINUS_ONE;
3897 /* The section in which the symbol referenced by the relocation is
3898 located. */
3899 asection *sec = NULL;
3900 struct mips_elf_link_hash_entry *h = NULL;
3901 /* TRUE if the symbol referred to by this relocation is a local
3902 symbol. */
3903 bfd_boolean local_p, was_local_p;
3904 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3905 bfd_boolean gp_disp_p = FALSE;
3906 /* TRUE if the symbol referred to by this relocation is
3907 "__gnu_local_gp". */
3908 bfd_boolean gnu_local_gp_p = FALSE;
3909 Elf_Internal_Shdr *symtab_hdr;
3910 size_t extsymoff;
3911 unsigned long r_symndx;
3912 int r_type;
3913 /* TRUE if overflow occurred during the calculation of the
3914 relocation value. */
3915 bfd_boolean overflowed_p;
3916 /* TRUE if this relocation refers to a MIPS16 function. */
3917 bfd_boolean target_is_16_bit_code_p = FALSE;
3918 struct mips_elf_link_hash_table *htab;
3919 bfd *dynobj;
3920
3921 dynobj = elf_hash_table (info)->dynobj;
3922 htab = mips_elf_hash_table (info);
3923
3924 /* Parse the relocation. */
3925 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3926 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3927 p = (input_section->output_section->vma
3928 + input_section->output_offset
3929 + relocation->r_offset);
3930
3931 /* Assume that there will be no overflow. */
3932 overflowed_p = FALSE;
3933
3934 /* Figure out whether or not the symbol is local, and get the offset
3935 used in the array of hash table entries. */
3936 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3937 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3938 local_sections, FALSE);
3939 was_local_p = local_p;
3940 if (! elf_bad_symtab (input_bfd))
3941 extsymoff = symtab_hdr->sh_info;
3942 else
3943 {
3944 /* The symbol table does not follow the rule that local symbols
3945 must come before globals. */
3946 extsymoff = 0;
3947 }
3948
3949 /* Figure out the value of the symbol. */
3950 if (local_p)
3951 {
3952 Elf_Internal_Sym *sym;
3953
3954 sym = local_syms + r_symndx;
3955 sec = local_sections[r_symndx];
3956
3957 symbol = sec->output_section->vma + sec->output_offset;
3958 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3959 || (sec->flags & SEC_MERGE))
3960 symbol += sym->st_value;
3961 if ((sec->flags & SEC_MERGE)
3962 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3963 {
3964 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3965 addend -= symbol;
3966 addend += sec->output_section->vma + sec->output_offset;
3967 }
3968
3969 /* MIPS16 text labels should be treated as odd. */
3970 if (sym->st_other == STO_MIPS16)
3971 ++symbol;
3972
3973 /* Record the name of this symbol, for our caller. */
3974 *namep = bfd_elf_string_from_elf_section (input_bfd,
3975 symtab_hdr->sh_link,
3976 sym->st_name);
3977 if (*namep == '\0')
3978 *namep = bfd_section_name (input_bfd, sec);
3979
3980 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3981 }
3982 else
3983 {
3984 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3985
3986 /* For global symbols we look up the symbol in the hash-table. */
3987 h = ((struct mips_elf_link_hash_entry *)
3988 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3989 /* Find the real hash-table entry for this symbol. */
3990 while (h->root.root.type == bfd_link_hash_indirect
3991 || h->root.root.type == bfd_link_hash_warning)
3992 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3993
3994 /* Record the name of this symbol, for our caller. */
3995 *namep = h->root.root.root.string;
3996
3997 /* See if this is the special _gp_disp symbol. Note that such a
3998 symbol must always be a global symbol. */
3999 if (strcmp (*namep, "_gp_disp") == 0
4000 && ! NEWABI_P (input_bfd))
4001 {
4002 /* Relocations against _gp_disp are permitted only with
4003 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4004 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
4005 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
4006 return bfd_reloc_notsupported;
4007
4008 gp_disp_p = TRUE;
4009 }
4010 /* See if this is the special _gp symbol. Note that such a
4011 symbol must always be a global symbol. */
4012 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4013 gnu_local_gp_p = TRUE;
4014
4015
4016 /* If this symbol is defined, calculate its address. Note that
4017 _gp_disp is a magic symbol, always implicitly defined by the
4018 linker, so it's inappropriate to check to see whether or not
4019 its defined. */
4020 else if ((h->root.root.type == bfd_link_hash_defined
4021 || h->root.root.type == bfd_link_hash_defweak)
4022 && h->root.root.u.def.section)
4023 {
4024 sec = h->root.root.u.def.section;
4025 if (sec->output_section)
4026 symbol = (h->root.root.u.def.value
4027 + sec->output_section->vma
4028 + sec->output_offset);
4029 else
4030 symbol = h->root.root.u.def.value;
4031 }
4032 else if (h->root.root.type == bfd_link_hash_undefweak)
4033 /* We allow relocations against undefined weak symbols, giving
4034 it the value zero, so that you can undefined weak functions
4035 and check to see if they exist by looking at their
4036 addresses. */
4037 symbol = 0;
4038 else if (info->unresolved_syms_in_objects == RM_IGNORE
4039 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4040 symbol = 0;
4041 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4042 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4043 {
4044 /* If this is a dynamic link, we should have created a
4045 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4046 in in _bfd_mips_elf_create_dynamic_sections.
4047 Otherwise, we should define the symbol with a value of 0.
4048 FIXME: It should probably get into the symbol table
4049 somehow as well. */
4050 BFD_ASSERT (! info->shared);
4051 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4052 symbol = 0;
4053 }
4054 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4055 {
4056 /* This is an optional symbol - an Irix specific extension to the
4057 ELF spec. Ignore it for now.
4058 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4059 than simply ignoring them, but we do not handle this for now.
4060 For information see the "64-bit ELF Object File Specification"
4061 which is available from here:
4062 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4063 symbol = 0;
4064 }
4065 else
4066 {
4067 if (! ((*info->callbacks->undefined_symbol)
4068 (info, h->root.root.root.string, input_bfd,
4069 input_section, relocation->r_offset,
4070 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4071 || ELF_ST_VISIBILITY (h->root.other))))
4072 return bfd_reloc_undefined;
4073 symbol = 0;
4074 }
4075
4076 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4077 }
4078
4079 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4080 need to redirect the call to the stub, unless we're already *in*
4081 a stub. */
4082 if (r_type != R_MIPS16_26 && !info->relocatable
4083 && ((h != NULL && h->fn_stub != NULL)
4084 || (local_p
4085 && elf_tdata (input_bfd)->local_stubs != NULL
4086 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4087 && !mips16_stub_section_p (input_bfd, input_section))
4088 {
4089 /* This is a 32- or 64-bit call to a 16-bit function. We should
4090 have already noticed that we were going to need the
4091 stub. */
4092 if (local_p)
4093 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4094 else
4095 {
4096 BFD_ASSERT (h->need_fn_stub);
4097 sec = h->fn_stub;
4098 }
4099
4100 symbol = sec->output_section->vma + sec->output_offset;
4101 /* The target is 16-bit, but the stub isn't. */
4102 target_is_16_bit_code_p = FALSE;
4103 }
4104 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4105 need to redirect the call to the stub. */
4106 else if (r_type == R_MIPS16_26 && !info->relocatable
4107 && h != NULL
4108 && ((h->call_stub != NULL || h->call_fp_stub != NULL)
4109 || (local_p
4110 && elf_tdata (input_bfd)->local_call_stubs != NULL
4111 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
4112 && !target_is_16_bit_code_p)
4113 {
4114 if (local_p)
4115 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4116 else
4117 {
4118 /* If both call_stub and call_fp_stub are defined, we can figure
4119 out which one to use by checking which one appears in the input
4120 file. */
4121 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4122 {
4123 asection *o;
4124
4125 sec = NULL;
4126 for (o = input_bfd->sections; o != NULL; o = o->next)
4127 {
4128 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4129 {
4130 sec = h->call_fp_stub;
4131 break;
4132 }
4133 }
4134 if (sec == NULL)
4135 sec = h->call_stub;
4136 }
4137 else if (h->call_stub != NULL)
4138 sec = h->call_stub;
4139 else
4140 sec = h->call_fp_stub;
4141 }
4142
4143 BFD_ASSERT (sec->size > 0);
4144 symbol = sec->output_section->vma + sec->output_offset;
4145 }
4146
4147 /* Calls from 16-bit code to 32-bit code and vice versa require the
4148 special jalx instruction. */
4149 *require_jalxp = (!info->relocatable
4150 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4151 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4152
4153 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4154 local_sections, TRUE);
4155
4156 /* If we haven't already determined the GOT offset, or the GP value,
4157 and we're going to need it, get it now. */
4158 switch (r_type)
4159 {
4160 case R_MIPS_GOT_PAGE:
4161 case R_MIPS_GOT_OFST:
4162 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4163 bind locally. */
4164 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
4165 if (local_p || r_type == R_MIPS_GOT_OFST)
4166 break;
4167 /* Fall through. */
4168
4169 case R_MIPS_CALL16:
4170 case R_MIPS_GOT16:
4171 case R_MIPS_GOT_DISP:
4172 case R_MIPS_GOT_HI16:
4173 case R_MIPS_CALL_HI16:
4174 case R_MIPS_GOT_LO16:
4175 case R_MIPS_CALL_LO16:
4176 case R_MIPS_TLS_GD:
4177 case R_MIPS_TLS_GOTTPREL:
4178 case R_MIPS_TLS_LDM:
4179 /* Find the index into the GOT where this value is located. */
4180 if (r_type == R_MIPS_TLS_LDM)
4181 {
4182 g = mips_elf_local_got_index (abfd, input_bfd, info,
4183 sec, 0, 0, NULL, r_type);
4184 if (g == MINUS_ONE)
4185 return bfd_reloc_outofrange;
4186 }
4187 else if (!local_p)
4188 {
4189 /* On VxWorks, CALL relocations should refer to the .got.plt
4190 entry, which is initialized to point at the PLT stub. */
4191 if (htab->is_vxworks
4192 && (r_type == R_MIPS_CALL_HI16
4193 || r_type == R_MIPS_CALL_LO16
4194 || r_type == R_MIPS_CALL16))
4195 {
4196 BFD_ASSERT (addend == 0);
4197 BFD_ASSERT (h->root.needs_plt);
4198 g = mips_elf_gotplt_index (info, &h->root);
4199 }
4200 else
4201 {
4202 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4203 GOT_PAGE relocation that decays to GOT_DISP because the
4204 symbol turns out to be global. The addend is then added
4205 as GOT_OFST. */
4206 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4207 g = mips_elf_global_got_index (dynobj, input_bfd,
4208 &h->root, r_type, info);
4209 if (h->tls_type == GOT_NORMAL
4210 && (! elf_hash_table(info)->dynamic_sections_created
4211 || (info->shared
4212 && (info->symbolic || h->root.forced_local)
4213 && h->root.def_regular)))
4214 {
4215 /* This is a static link or a -Bsymbolic link. The
4216 symbol is defined locally, or was forced to be local.
4217 We must initialize this entry in the GOT. */
4218 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4219 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4220 }
4221 }
4222 }
4223 else if (!htab->is_vxworks
4224 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4225 /* The calculation below does not involve "g". */
4226 break;
4227 else
4228 {
4229 g = mips_elf_local_got_index (abfd, input_bfd, info, sec,
4230 symbol + addend, r_symndx, h, r_type);
4231 if (g == MINUS_ONE)
4232 return bfd_reloc_outofrange;
4233 }
4234
4235 /* Convert GOT indices to actual offsets. */
4236 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
4237 break;
4238
4239 case R_MIPS_HI16:
4240 case R_MIPS_LO16:
4241 case R_MIPS_GPREL16:
4242 case R_MIPS_GPREL32:
4243 case R_MIPS_LITERAL:
4244 case R_MIPS16_HI16:
4245 case R_MIPS16_LO16:
4246 case R_MIPS16_GPREL:
4247 gp0 = _bfd_get_gp_value (input_bfd);
4248 gp = _bfd_get_gp_value (abfd);
4249 if (dynobj)
4250 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
4251 input_bfd);
4252 break;
4253
4254 default:
4255 break;
4256 }
4257
4258 if (gnu_local_gp_p)
4259 symbol = gp;
4260
4261 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4262 symbols are resolved by the loader. Add them to .rela.dyn. */
4263 if (h != NULL && is_gott_symbol (info, &h->root))
4264 {
4265 Elf_Internal_Rela outrel;
4266 bfd_byte *loc;
4267 asection *s;
4268
4269 s = mips_elf_rel_dyn_section (info, FALSE);
4270 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4271
4272 outrel.r_offset = (input_section->output_section->vma
4273 + input_section->output_offset
4274 + relocation->r_offset);
4275 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4276 outrel.r_addend = addend;
4277 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4278
4279 /* If we've written this relocation for a readonly section,
4280 we need to set DF_TEXTREL again, so that we do not delete the
4281 DT_TEXTREL tag. */
4282 if (MIPS_ELF_READONLY_SECTION (input_section))
4283 info->flags |= DF_TEXTREL;
4284
4285 *valuep = 0;
4286 return bfd_reloc_ok;
4287 }
4288
4289 /* Figure out what kind of relocation is being performed. */
4290 switch (r_type)
4291 {
4292 case R_MIPS_NONE:
4293 return bfd_reloc_continue;
4294
4295 case R_MIPS_16:
4296 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
4297 overflowed_p = mips_elf_overflow_p (value, 16);
4298 break;
4299
4300 case R_MIPS_32:
4301 case R_MIPS_REL32:
4302 case R_MIPS_64:
4303 if ((info->shared
4304 || (!htab->is_vxworks
4305 && htab->root.dynamic_sections_created
4306 && h != NULL
4307 && h->root.def_dynamic
4308 && !h->root.def_regular))
4309 && r_symndx != 0
4310 && (input_section->flags & SEC_ALLOC) != 0)
4311 {
4312 /* If we're creating a shared library, or this relocation is
4313 against a symbol in a shared library, then we can't know
4314 where the symbol will end up. So, we create a relocation
4315 record in the output, and leave the job up to the dynamic
4316 linker.
4317
4318 In VxWorks executables, references to external symbols
4319 are handled using copy relocs or PLT stubs, so there's
4320 no need to add a dynamic relocation here. */
4321 value = addend;
4322 if (!mips_elf_create_dynamic_relocation (abfd,
4323 info,
4324 relocation,
4325 h,
4326 sec,
4327 symbol,
4328 &value,
4329 input_section))
4330 return bfd_reloc_undefined;
4331 }
4332 else
4333 {
4334 if (r_type != R_MIPS_REL32)
4335 value = symbol + addend;
4336 else
4337 value = addend;
4338 }
4339 value &= howto->dst_mask;
4340 break;
4341
4342 case R_MIPS_PC32:
4343 value = symbol + addend - p;
4344 value &= howto->dst_mask;
4345 break;
4346
4347 case R_MIPS16_26:
4348 /* The calculation for R_MIPS16_26 is just the same as for an
4349 R_MIPS_26. It's only the storage of the relocated field into
4350 the output file that's different. That's handled in
4351 mips_elf_perform_relocation. So, we just fall through to the
4352 R_MIPS_26 case here. */
4353 case R_MIPS_26:
4354 if (local_p)
4355 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4356 else
4357 {
4358 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4359 if (h->root.root.type != bfd_link_hash_undefweak)
4360 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4361 }
4362 value &= howto->dst_mask;
4363 break;
4364
4365 case R_MIPS_TLS_DTPREL_HI16:
4366 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4367 & howto->dst_mask);
4368 break;
4369
4370 case R_MIPS_TLS_DTPREL_LO16:
4371 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4372 break;
4373
4374 case R_MIPS_TLS_TPREL_HI16:
4375 value = (mips_elf_high (addend + symbol - tprel_base (info))
4376 & howto->dst_mask);
4377 break;
4378
4379 case R_MIPS_TLS_TPREL_LO16:
4380 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4381 break;
4382
4383 case R_MIPS_HI16:
4384 case R_MIPS16_HI16:
4385 if (!gp_disp_p)
4386 {
4387 value = mips_elf_high (addend + symbol);
4388 value &= howto->dst_mask;
4389 }
4390 else
4391 {
4392 /* For MIPS16 ABI code we generate this sequence
4393 0: li $v0,%hi(_gp_disp)
4394 4: addiupc $v1,%lo(_gp_disp)
4395 8: sll $v0,16
4396 12: addu $v0,$v1
4397 14: move $gp,$v0
4398 So the offsets of hi and lo relocs are the same, but the
4399 $pc is four higher than $t9 would be, so reduce
4400 both reloc addends by 4. */
4401 if (r_type == R_MIPS16_HI16)
4402 value = mips_elf_high (addend + gp - p - 4);
4403 else
4404 value = mips_elf_high (addend + gp - p);
4405 overflowed_p = mips_elf_overflow_p (value, 16);
4406 }
4407 break;
4408
4409 case R_MIPS_LO16:
4410 case R_MIPS16_LO16:
4411 if (!gp_disp_p)
4412 value = (symbol + addend) & howto->dst_mask;
4413 else
4414 {
4415 /* See the comment for R_MIPS16_HI16 above for the reason
4416 for this conditional. */
4417 if (r_type == R_MIPS16_LO16)
4418 value = addend + gp - p;
4419 else
4420 value = addend + gp - p + 4;
4421 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4422 for overflow. But, on, say, IRIX5, relocations against
4423 _gp_disp are normally generated from the .cpload
4424 pseudo-op. It generates code that normally looks like
4425 this:
4426
4427 lui $gp,%hi(_gp_disp)
4428 addiu $gp,$gp,%lo(_gp_disp)
4429 addu $gp,$gp,$t9
4430
4431 Here $t9 holds the address of the function being called,
4432 as required by the MIPS ELF ABI. The R_MIPS_LO16
4433 relocation can easily overflow in this situation, but the
4434 R_MIPS_HI16 relocation will handle the overflow.
4435 Therefore, we consider this a bug in the MIPS ABI, and do
4436 not check for overflow here. */
4437 }
4438 break;
4439
4440 case R_MIPS_LITERAL:
4441 /* Because we don't merge literal sections, we can handle this
4442 just like R_MIPS_GPREL16. In the long run, we should merge
4443 shared literals, and then we will need to additional work
4444 here. */
4445
4446 /* Fall through. */
4447
4448 case R_MIPS16_GPREL:
4449 /* The R_MIPS16_GPREL performs the same calculation as
4450 R_MIPS_GPREL16, but stores the relocated bits in a different
4451 order. We don't need to do anything special here; the
4452 differences are handled in mips_elf_perform_relocation. */
4453 case R_MIPS_GPREL16:
4454 /* Only sign-extend the addend if it was extracted from the
4455 instruction. If the addend was separate, leave it alone,
4456 otherwise we may lose significant bits. */
4457 if (howto->partial_inplace)
4458 addend = _bfd_mips_elf_sign_extend (addend, 16);
4459 value = symbol + addend - gp;
4460 /* If the symbol was local, any earlier relocatable links will
4461 have adjusted its addend with the gp offset, so compensate
4462 for that now. Don't do it for symbols forced local in this
4463 link, though, since they won't have had the gp offset applied
4464 to them before. */
4465 if (was_local_p)
4466 value += gp0;
4467 overflowed_p = mips_elf_overflow_p (value, 16);
4468 break;
4469
4470 case R_MIPS_GOT16:
4471 case R_MIPS_CALL16:
4472 /* VxWorks does not have separate local and global semantics for
4473 R_MIPS_GOT16; every relocation evaluates to "G". */
4474 if (!htab->is_vxworks && local_p)
4475 {
4476 bfd_boolean forced;
4477
4478 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4479 local_sections, FALSE);
4480 value = mips_elf_got16_entry (abfd, input_bfd, info, sec,
4481 symbol + addend, forced);
4482 if (value == MINUS_ONE)
4483 return bfd_reloc_outofrange;
4484 value
4485 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4486 overflowed_p = mips_elf_overflow_p (value, 16);
4487 break;
4488 }
4489
4490 /* Fall through. */
4491
4492 case R_MIPS_TLS_GD:
4493 case R_MIPS_TLS_GOTTPREL:
4494 case R_MIPS_TLS_LDM:
4495 case R_MIPS_GOT_DISP:
4496 got_disp:
4497 value = g;
4498 overflowed_p = mips_elf_overflow_p (value, 16);
4499 break;
4500
4501 case R_MIPS_GPREL32:
4502 value = (addend + symbol + gp0 - gp);
4503 if (!save_addend)
4504 value &= howto->dst_mask;
4505 break;
4506
4507 case R_MIPS_PC16:
4508 case R_MIPS_GNU_REL16_S2:
4509 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4510 overflowed_p = mips_elf_overflow_p (value, 18);
4511 value >>= howto->rightshift;
4512 value &= howto->dst_mask;
4513 break;
4514
4515 case R_MIPS_GOT_HI16:
4516 case R_MIPS_CALL_HI16:
4517 /* We're allowed to handle these two relocations identically.
4518 The dynamic linker is allowed to handle the CALL relocations
4519 differently by creating a lazy evaluation stub. */
4520 value = g;
4521 value = mips_elf_high (value);
4522 value &= howto->dst_mask;
4523 break;
4524
4525 case R_MIPS_GOT_LO16:
4526 case R_MIPS_CALL_LO16:
4527 value = g & howto->dst_mask;
4528 break;
4529
4530 case R_MIPS_GOT_PAGE:
4531 /* GOT_PAGE relocations that reference non-local symbols decay
4532 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4533 0. */
4534 if (! local_p)
4535 goto got_disp;
4536 value = mips_elf_got_page (abfd, input_bfd, info, sec,
4537 symbol + addend, NULL);
4538 if (value == MINUS_ONE)
4539 return bfd_reloc_outofrange;
4540 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4541 overflowed_p = mips_elf_overflow_p (value, 16);
4542 break;
4543
4544 case R_MIPS_GOT_OFST:
4545 if (local_p)
4546 mips_elf_got_page (abfd, input_bfd, info, sec,
4547 symbol + addend, &value);
4548 else
4549 value = addend;
4550 overflowed_p = mips_elf_overflow_p (value, 16);
4551 break;
4552
4553 case R_MIPS_SUB:
4554 value = symbol - addend;
4555 value &= howto->dst_mask;
4556 break;
4557
4558 case R_MIPS_HIGHER:
4559 value = mips_elf_higher (addend + symbol);
4560 value &= howto->dst_mask;
4561 break;
4562
4563 case R_MIPS_HIGHEST:
4564 value = mips_elf_highest (addend + symbol);
4565 value &= howto->dst_mask;
4566 break;
4567
4568 case R_MIPS_SCN_DISP:
4569 value = symbol + addend - sec->output_offset;
4570 value &= howto->dst_mask;
4571 break;
4572
4573 case R_MIPS_JALR:
4574 /* This relocation is only a hint. In some cases, we optimize
4575 it into a bal instruction. But we don't try to optimize
4576 branches to the PLT; that will wind up wasting time. */
4577 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4578 return bfd_reloc_continue;
4579 value = symbol + addend;
4580 break;
4581
4582 case R_MIPS_PJUMP:
4583 case R_MIPS_GNU_VTINHERIT:
4584 case R_MIPS_GNU_VTENTRY:
4585 /* We don't do anything with these at present. */
4586 return bfd_reloc_continue;
4587
4588 default:
4589 /* An unrecognized relocation type. */
4590 return bfd_reloc_notsupported;
4591 }
4592
4593 /* Store the VALUE for our caller. */
4594 *valuep = value;
4595 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4596 }
4597
4598 /* Obtain the field relocated by RELOCATION. */
4599
4600 static bfd_vma
4601 mips_elf_obtain_contents (reloc_howto_type *howto,
4602 const Elf_Internal_Rela *relocation,
4603 bfd *input_bfd, bfd_byte *contents)
4604 {
4605 bfd_vma x;
4606 bfd_byte *location = contents + relocation->r_offset;
4607
4608 /* Obtain the bytes. */
4609 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4610
4611 return x;
4612 }
4613
4614 /* It has been determined that the result of the RELOCATION is the
4615 VALUE. Use HOWTO to place VALUE into the output file at the
4616 appropriate position. The SECTION is the section to which the
4617 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4618 for the relocation must be either JAL or JALX, and it is
4619 unconditionally converted to JALX.
4620
4621 Returns FALSE if anything goes wrong. */
4622
4623 static bfd_boolean
4624 mips_elf_perform_relocation (struct bfd_link_info *info,
4625 reloc_howto_type *howto,
4626 const Elf_Internal_Rela *relocation,
4627 bfd_vma value, bfd *input_bfd,
4628 asection *input_section, bfd_byte *contents,
4629 bfd_boolean require_jalx)
4630 {
4631 bfd_vma x;
4632 bfd_byte *location;
4633 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4634
4635 /* Figure out where the relocation is occurring. */
4636 location = contents + relocation->r_offset;
4637
4638 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4639
4640 /* Obtain the current value. */
4641 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4642
4643 /* Clear the field we are setting. */
4644 x &= ~howto->dst_mask;
4645
4646 /* Set the field. */
4647 x |= (value & howto->dst_mask);
4648
4649 /* If required, turn JAL into JALX. */
4650 if (require_jalx)
4651 {
4652 bfd_boolean ok;
4653 bfd_vma opcode = x >> 26;
4654 bfd_vma jalx_opcode;
4655
4656 /* Check to see if the opcode is already JAL or JALX. */
4657 if (r_type == R_MIPS16_26)
4658 {
4659 ok = ((opcode == 0x6) || (opcode == 0x7));
4660 jalx_opcode = 0x7;
4661 }
4662 else
4663 {
4664 ok = ((opcode == 0x3) || (opcode == 0x1d));
4665 jalx_opcode = 0x1d;
4666 }
4667
4668 /* If the opcode is not JAL or JALX, there's a problem. */
4669 if (!ok)
4670 {
4671 (*_bfd_error_handler)
4672 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4673 input_bfd,
4674 input_section,
4675 (unsigned long) relocation->r_offset);
4676 bfd_set_error (bfd_error_bad_value);
4677 return FALSE;
4678 }
4679
4680 /* Make this the JALX opcode. */
4681 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4682 }
4683
4684 /* On the RM9000, bal is faster than jal, because bal uses branch
4685 prediction hardware. If we are linking for the RM9000, and we
4686 see jal, and bal fits, use it instead. Note that this
4687 transformation should be safe for all architectures. */
4688 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4689 && !info->relocatable
4690 && !require_jalx
4691 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4692 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4693 {
4694 bfd_vma addr;
4695 bfd_vma dest;
4696 bfd_signed_vma off;
4697
4698 addr = (input_section->output_section->vma
4699 + input_section->output_offset
4700 + relocation->r_offset
4701 + 4);
4702 if (r_type == R_MIPS_26)
4703 dest = (value << 2) | ((addr >> 28) << 28);
4704 else
4705 dest = value;
4706 off = dest - addr;
4707 if (off <= 0x1ffff && off >= -0x20000)
4708 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4709 }
4710
4711 /* Put the value into the output. */
4712 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
4713
4714 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4715 location);
4716
4717 return TRUE;
4718 }
4719
4720 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4721
4722 static bfd_boolean
4723 mips16_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
4724 {
4725 const char *name = bfd_get_section_name (abfd, section);
4726
4727 return FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name);
4728 }
4729 \f
4730 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4731
4732 static void
4733 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4734 unsigned int n)
4735 {
4736 asection *s;
4737 struct mips_elf_link_hash_table *htab;
4738
4739 htab = mips_elf_hash_table (info);
4740 s = mips_elf_rel_dyn_section (info, FALSE);
4741 BFD_ASSERT (s != NULL);
4742
4743 if (htab->is_vxworks)
4744 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4745 else
4746 {
4747 if (s->size == 0)
4748 {
4749 /* Make room for a null element. */
4750 s->size += MIPS_ELF_REL_SIZE (abfd);
4751 ++s->reloc_count;
4752 }
4753 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4754 }
4755 }
4756
4757 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4758 is the original relocation, which is now being transformed into a
4759 dynamic relocation. The ADDENDP is adjusted if necessary; the
4760 caller should store the result in place of the original addend. */
4761
4762 static bfd_boolean
4763 mips_elf_create_dynamic_relocation (bfd *output_bfd,
4764 struct bfd_link_info *info,
4765 const Elf_Internal_Rela *rel,
4766 struct mips_elf_link_hash_entry *h,
4767 asection *sec, bfd_vma symbol,
4768 bfd_vma *addendp, asection *input_section)
4769 {
4770 Elf_Internal_Rela outrel[3];
4771 asection *sreloc;
4772 bfd *dynobj;
4773 int r_type;
4774 long indx;
4775 bfd_boolean defined_p;
4776 struct mips_elf_link_hash_table *htab;
4777
4778 htab = mips_elf_hash_table (info);
4779 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4780 dynobj = elf_hash_table (info)->dynobj;
4781 sreloc = mips_elf_rel_dyn_section (info, FALSE);
4782 BFD_ASSERT (sreloc != NULL);
4783 BFD_ASSERT (sreloc->contents != NULL);
4784 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
4785 < sreloc->size);
4786
4787 outrel[0].r_offset =
4788 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4789 if (ABI_64_P (output_bfd))
4790 {
4791 outrel[1].r_offset =
4792 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4793 outrel[2].r_offset =
4794 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4795 }
4796
4797 if (outrel[0].r_offset == MINUS_ONE)
4798 /* The relocation field has been deleted. */
4799 return TRUE;
4800
4801 if (outrel[0].r_offset == MINUS_TWO)
4802 {
4803 /* The relocation field has been converted into a relative value of
4804 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4805 the field to be fully relocated, so add in the symbol's value. */
4806 *addendp += symbol;
4807 return TRUE;
4808 }
4809
4810 /* We must now calculate the dynamic symbol table index to use
4811 in the relocation. */
4812 if (h != NULL
4813 && (!h->root.def_regular
4814 || (info->shared && !info->symbolic && !h->root.forced_local)))
4815 {
4816 indx = h->root.dynindx;
4817 if (SGI_COMPAT (output_bfd))
4818 defined_p = h->root.def_regular;
4819 else
4820 /* ??? glibc's ld.so just adds the final GOT entry to the
4821 relocation field. It therefore treats relocs against
4822 defined symbols in the same way as relocs against
4823 undefined symbols. */
4824 defined_p = FALSE;
4825 }
4826 else
4827 {
4828 if (sec != NULL && bfd_is_abs_section (sec))
4829 indx = 0;
4830 else if (sec == NULL || sec->owner == NULL)
4831 {
4832 bfd_set_error (bfd_error_bad_value);
4833 return FALSE;
4834 }
4835 else
4836 {
4837 indx = elf_section_data (sec->output_section)->dynindx;
4838 if (indx == 0)
4839 {
4840 asection *osec = htab->root.text_index_section;
4841 indx = elf_section_data (osec)->dynindx;
4842 }
4843 if (indx == 0)
4844 abort ();
4845 }
4846
4847 /* Instead of generating a relocation using the section
4848 symbol, we may as well make it a fully relative
4849 relocation. We want to avoid generating relocations to
4850 local symbols because we used to generate them
4851 incorrectly, without adding the original symbol value,
4852 which is mandated by the ABI for section symbols. In
4853 order to give dynamic loaders and applications time to
4854 phase out the incorrect use, we refrain from emitting
4855 section-relative relocations. It's not like they're
4856 useful, after all. This should be a bit more efficient
4857 as well. */
4858 /* ??? Although this behavior is compatible with glibc's ld.so,
4859 the ABI says that relocations against STN_UNDEF should have
4860 a symbol value of 0. Irix rld honors this, so relocations
4861 against STN_UNDEF have no effect. */
4862 if (!SGI_COMPAT (output_bfd))
4863 indx = 0;
4864 defined_p = TRUE;
4865 }
4866
4867 /* If the relocation was previously an absolute relocation and
4868 this symbol will not be referred to by the relocation, we must
4869 adjust it by the value we give it in the dynamic symbol table.
4870 Otherwise leave the job up to the dynamic linker. */
4871 if (defined_p && r_type != R_MIPS_REL32)
4872 *addendp += symbol;
4873
4874 if (htab->is_vxworks)
4875 /* VxWorks uses non-relative relocations for this. */
4876 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4877 else
4878 /* The relocation is always an REL32 relocation because we don't
4879 know where the shared library will wind up at load-time. */
4880 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4881 R_MIPS_REL32);
4882
4883 /* For strict adherence to the ABI specification, we should
4884 generate a R_MIPS_64 relocation record by itself before the
4885 _REL32/_64 record as well, such that the addend is read in as
4886 a 64-bit value (REL32 is a 32-bit relocation, after all).
4887 However, since none of the existing ELF64 MIPS dynamic
4888 loaders seems to care, we don't waste space with these
4889 artificial relocations. If this turns out to not be true,
4890 mips_elf_allocate_dynamic_relocation() should be tweaked so
4891 as to make room for a pair of dynamic relocations per
4892 invocation if ABI_64_P, and here we should generate an
4893 additional relocation record with R_MIPS_64 by itself for a
4894 NULL symbol before this relocation record. */
4895 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4896 ABI_64_P (output_bfd)
4897 ? R_MIPS_64
4898 : R_MIPS_NONE);
4899 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4900
4901 /* Adjust the output offset of the relocation to reference the
4902 correct location in the output file. */
4903 outrel[0].r_offset += (input_section->output_section->vma
4904 + input_section->output_offset);
4905 outrel[1].r_offset += (input_section->output_section->vma
4906 + input_section->output_offset);
4907 outrel[2].r_offset += (input_section->output_section->vma
4908 + input_section->output_offset);
4909
4910 /* Put the relocation back out. We have to use the special
4911 relocation outputter in the 64-bit case since the 64-bit
4912 relocation format is non-standard. */
4913 if (ABI_64_P (output_bfd))
4914 {
4915 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4916 (output_bfd, &outrel[0],
4917 (sreloc->contents
4918 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4919 }
4920 else if (htab->is_vxworks)
4921 {
4922 /* VxWorks uses RELA rather than REL dynamic relocations. */
4923 outrel[0].r_addend = *addendp;
4924 bfd_elf32_swap_reloca_out
4925 (output_bfd, &outrel[0],
4926 (sreloc->contents
4927 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4928 }
4929 else
4930 bfd_elf32_swap_reloc_out
4931 (output_bfd, &outrel[0],
4932 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4933
4934 /* We've now added another relocation. */
4935 ++sreloc->reloc_count;
4936
4937 /* Make sure the output section is writable. The dynamic linker
4938 will be writing to it. */
4939 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4940 |= SHF_WRITE;
4941
4942 /* On IRIX5, make an entry of compact relocation info. */
4943 if (IRIX_COMPAT (output_bfd) == ict_irix5)
4944 {
4945 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4946 bfd_byte *cr;
4947
4948 if (scpt)
4949 {
4950 Elf32_crinfo cptrel;
4951
4952 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4953 cptrel.vaddr = (rel->r_offset
4954 + input_section->output_section->vma
4955 + input_section->output_offset);
4956 if (r_type == R_MIPS_REL32)
4957 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4958 else
4959 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4960 mips_elf_set_cr_dist2to (cptrel, 0);
4961 cptrel.konst = *addendp;
4962
4963 cr = (scpt->contents
4964 + sizeof (Elf32_External_compact_rel));
4965 mips_elf_set_cr_relvaddr (cptrel, 0);
4966 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4967 ((Elf32_External_crinfo *) cr
4968 + scpt->reloc_count));
4969 ++scpt->reloc_count;
4970 }
4971 }
4972
4973 /* If we've written this relocation for a readonly section,
4974 we need to set DF_TEXTREL again, so that we do not delete the
4975 DT_TEXTREL tag. */
4976 if (MIPS_ELF_READONLY_SECTION (input_section))
4977 info->flags |= DF_TEXTREL;
4978
4979 return TRUE;
4980 }
4981 \f
4982 /* Return the MACH for a MIPS e_flags value. */
4983
4984 unsigned long
4985 _bfd_elf_mips_mach (flagword flags)
4986 {
4987 switch (flags & EF_MIPS_MACH)
4988 {
4989 case E_MIPS_MACH_3900:
4990 return bfd_mach_mips3900;
4991
4992 case E_MIPS_MACH_4010:
4993 return bfd_mach_mips4010;
4994
4995 case E_MIPS_MACH_4100:
4996 return bfd_mach_mips4100;
4997
4998 case E_MIPS_MACH_4111:
4999 return bfd_mach_mips4111;
5000
5001 case E_MIPS_MACH_4120:
5002 return bfd_mach_mips4120;
5003
5004 case E_MIPS_MACH_4650:
5005 return bfd_mach_mips4650;
5006
5007 case E_MIPS_MACH_5400:
5008 return bfd_mach_mips5400;
5009
5010 case E_MIPS_MACH_5500:
5011 return bfd_mach_mips5500;
5012
5013 case E_MIPS_MACH_9000:
5014 return bfd_mach_mips9000;
5015
5016 case E_MIPS_MACH_SB1:
5017 return bfd_mach_mips_sb1;
5018
5019 default:
5020 switch (flags & EF_MIPS_ARCH)
5021 {
5022 default:
5023 case E_MIPS_ARCH_1:
5024 return bfd_mach_mips3000;
5025
5026 case E_MIPS_ARCH_2:
5027 return bfd_mach_mips6000;
5028
5029 case E_MIPS_ARCH_3:
5030 return bfd_mach_mips4000;
5031
5032 case E_MIPS_ARCH_4:
5033 return bfd_mach_mips8000;
5034
5035 case E_MIPS_ARCH_5:
5036 return bfd_mach_mips5;
5037
5038 case E_MIPS_ARCH_32:
5039 return bfd_mach_mipsisa32;
5040
5041 case E_MIPS_ARCH_64:
5042 return bfd_mach_mipsisa64;
5043
5044 case E_MIPS_ARCH_32R2:
5045 return bfd_mach_mipsisa32r2;
5046
5047 case E_MIPS_ARCH_64R2:
5048 return bfd_mach_mipsisa64r2;
5049 }
5050 }
5051
5052 return 0;
5053 }
5054
5055 /* Return printable name for ABI. */
5056
5057 static INLINE char *
5058 elf_mips_abi_name (bfd *abfd)
5059 {
5060 flagword flags;
5061
5062 flags = elf_elfheader (abfd)->e_flags;
5063 switch (flags & EF_MIPS_ABI)
5064 {
5065 case 0:
5066 if (ABI_N32_P (abfd))
5067 return "N32";
5068 else if (ABI_64_P (abfd))
5069 return "64";
5070 else
5071 return "none";
5072 case E_MIPS_ABI_O32:
5073 return "O32";
5074 case E_MIPS_ABI_O64:
5075 return "O64";
5076 case E_MIPS_ABI_EABI32:
5077 return "EABI32";
5078 case E_MIPS_ABI_EABI64:
5079 return "EABI64";
5080 default:
5081 return "unknown abi";
5082 }
5083 }
5084 \f
5085 /* MIPS ELF uses two common sections. One is the usual one, and the
5086 other is for small objects. All the small objects are kept
5087 together, and then referenced via the gp pointer, which yields
5088 faster assembler code. This is what we use for the small common
5089 section. This approach is copied from ecoff.c. */
5090 static asection mips_elf_scom_section;
5091 static asymbol mips_elf_scom_symbol;
5092 static asymbol *mips_elf_scom_symbol_ptr;
5093
5094 /* MIPS ELF also uses an acommon section, which represents an
5095 allocated common symbol which may be overridden by a
5096 definition in a shared library. */
5097 static asection mips_elf_acom_section;
5098 static asymbol mips_elf_acom_symbol;
5099 static asymbol *mips_elf_acom_symbol_ptr;
5100
5101 /* Handle the special MIPS section numbers that a symbol may use.
5102 This is used for both the 32-bit and the 64-bit ABI. */
5103
5104 void
5105 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5106 {
5107 elf_symbol_type *elfsym;
5108
5109 elfsym = (elf_symbol_type *) asym;
5110 switch (elfsym->internal_elf_sym.st_shndx)
5111 {
5112 case SHN_MIPS_ACOMMON:
5113 /* This section is used in a dynamically linked executable file.
5114 It is an allocated common section. The dynamic linker can
5115 either resolve these symbols to something in a shared
5116 library, or it can just leave them here. For our purposes,
5117 we can consider these symbols to be in a new section. */
5118 if (mips_elf_acom_section.name == NULL)
5119 {
5120 /* Initialize the acommon section. */
5121 mips_elf_acom_section.name = ".acommon";
5122 mips_elf_acom_section.flags = SEC_ALLOC;
5123 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5124 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5125 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5126 mips_elf_acom_symbol.name = ".acommon";
5127 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5128 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5129 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5130 }
5131 asym->section = &mips_elf_acom_section;
5132 break;
5133
5134 case SHN_COMMON:
5135 /* Common symbols less than the GP size are automatically
5136 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5137 if (asym->value > elf_gp_size (abfd)
5138 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
5139 || IRIX_COMPAT (abfd) == ict_irix6)
5140 break;
5141 /* Fall through. */
5142 case SHN_MIPS_SCOMMON:
5143 if (mips_elf_scom_section.name == NULL)
5144 {
5145 /* Initialize the small common section. */
5146 mips_elf_scom_section.name = ".scommon";
5147 mips_elf_scom_section.flags = SEC_IS_COMMON;
5148 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5149 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5150 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5151 mips_elf_scom_symbol.name = ".scommon";
5152 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5153 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5154 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5155 }
5156 asym->section = &mips_elf_scom_section;
5157 asym->value = elfsym->internal_elf_sym.st_size;
5158 break;
5159
5160 case SHN_MIPS_SUNDEFINED:
5161 asym->section = bfd_und_section_ptr;
5162 break;
5163
5164 case SHN_MIPS_TEXT:
5165 {
5166 asection *section = bfd_get_section_by_name (abfd, ".text");
5167
5168 BFD_ASSERT (SGI_COMPAT (abfd));
5169 if (section != NULL)
5170 {
5171 asym->section = section;
5172 /* MIPS_TEXT is a bit special, the address is not an offset
5173 to the base of the .text section. So substract the section
5174 base address to make it an offset. */
5175 asym->value -= section->vma;
5176 }
5177 }
5178 break;
5179
5180 case SHN_MIPS_DATA:
5181 {
5182 asection *section = bfd_get_section_by_name (abfd, ".data");
5183
5184 BFD_ASSERT (SGI_COMPAT (abfd));
5185 if (section != NULL)
5186 {
5187 asym->section = section;
5188 /* MIPS_DATA is a bit special, the address is not an offset
5189 to the base of the .data section. So substract the section
5190 base address to make it an offset. */
5191 asym->value -= section->vma;
5192 }
5193 }
5194 break;
5195 }
5196 }
5197 \f
5198 /* Implement elf_backend_eh_frame_address_size. This differs from
5199 the default in the way it handles EABI64.
5200
5201 EABI64 was originally specified as an LP64 ABI, and that is what
5202 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5203 historically accepted the combination of -mabi=eabi and -mlong32,
5204 and this ILP32 variation has become semi-official over time.
5205 Both forms use elf32 and have pointer-sized FDE addresses.
5206
5207 If an EABI object was generated by GCC 4.0 or above, it will have
5208 an empty .gcc_compiled_longXX section, where XX is the size of longs
5209 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5210 have no special marking to distinguish them from LP64 objects.
5211
5212 We don't want users of the official LP64 ABI to be punished for the
5213 existence of the ILP32 variant, but at the same time, we don't want
5214 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5215 We therefore take the following approach:
5216
5217 - If ABFD contains a .gcc_compiled_longXX section, use it to
5218 determine the pointer size.
5219
5220 - Otherwise check the type of the first relocation. Assume that
5221 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5222
5223 - Otherwise punt.
5224
5225 The second check is enough to detect LP64 objects generated by pre-4.0
5226 compilers because, in the kind of output generated by those compilers,
5227 the first relocation will be associated with either a CIE personality
5228 routine or an FDE start address. Furthermore, the compilers never
5229 used a special (non-pointer) encoding for this ABI.
5230
5231 Checking the relocation type should also be safe because there is no
5232 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5233 did so. */
5234
5235 unsigned int
5236 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5237 {
5238 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5239 return 8;
5240 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5241 {
5242 bfd_boolean long32_p, long64_p;
5243
5244 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5245 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5246 if (long32_p && long64_p)
5247 return 0;
5248 if (long32_p)
5249 return 4;
5250 if (long64_p)
5251 return 8;
5252
5253 if (sec->reloc_count > 0
5254 && elf_section_data (sec)->relocs != NULL
5255 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5256 == R_MIPS_64))
5257 return 8;
5258
5259 return 0;
5260 }
5261 return 4;
5262 }
5263 \f
5264 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5265 relocations against two unnamed section symbols to resolve to the
5266 same address. For example, if we have code like:
5267
5268 lw $4,%got_disp(.data)($gp)
5269 lw $25,%got_disp(.text)($gp)
5270 jalr $25
5271
5272 then the linker will resolve both relocations to .data and the program
5273 will jump there rather than to .text.
5274
5275 We can work around this problem by giving names to local section symbols.
5276 This is also what the MIPSpro tools do. */
5277
5278 bfd_boolean
5279 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5280 {
5281 return SGI_COMPAT (abfd);
5282 }
5283 \f
5284 /* Work over a section just before writing it out. This routine is
5285 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5286 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5287 a better way. */
5288
5289 bfd_boolean
5290 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
5291 {
5292 if (hdr->sh_type == SHT_MIPS_REGINFO
5293 && hdr->sh_size > 0)
5294 {
5295 bfd_byte buf[4];
5296
5297 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5298 BFD_ASSERT (hdr->contents == NULL);
5299
5300 if (bfd_seek (abfd,
5301 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5302 SEEK_SET) != 0)
5303 return FALSE;
5304 H_PUT_32 (abfd, elf_gp (abfd), buf);
5305 if (bfd_bwrite (buf, 4, abfd) != 4)
5306 return FALSE;
5307 }
5308
5309 if (hdr->sh_type == SHT_MIPS_OPTIONS
5310 && hdr->bfd_section != NULL
5311 && mips_elf_section_data (hdr->bfd_section) != NULL
5312 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
5313 {
5314 bfd_byte *contents, *l, *lend;
5315
5316 /* We stored the section contents in the tdata field in the
5317 set_section_contents routine. We save the section contents
5318 so that we don't have to read them again.
5319 At this point we know that elf_gp is set, so we can look
5320 through the section contents to see if there is an
5321 ODK_REGINFO structure. */
5322
5323 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
5324 l = contents;
5325 lend = contents + hdr->sh_size;
5326 while (l + sizeof (Elf_External_Options) <= lend)
5327 {
5328 Elf_Internal_Options intopt;
5329
5330 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5331 &intopt);
5332 if (intopt.size < sizeof (Elf_External_Options))
5333 {
5334 (*_bfd_error_handler)
5335 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5336 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5337 break;
5338 }
5339 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5340 {
5341 bfd_byte buf[8];
5342
5343 if (bfd_seek (abfd,
5344 (hdr->sh_offset
5345 + (l - contents)
5346 + sizeof (Elf_External_Options)
5347 + (sizeof (Elf64_External_RegInfo) - 8)),
5348 SEEK_SET) != 0)
5349 return FALSE;
5350 H_PUT_64 (abfd, elf_gp (abfd), buf);
5351 if (bfd_bwrite (buf, 8, abfd) != 8)
5352 return FALSE;
5353 }
5354 else if (intopt.kind == ODK_REGINFO)
5355 {
5356 bfd_byte buf[4];
5357
5358 if (bfd_seek (abfd,
5359 (hdr->sh_offset
5360 + (l - contents)
5361 + sizeof (Elf_External_Options)
5362 + (sizeof (Elf32_External_RegInfo) - 4)),
5363 SEEK_SET) != 0)
5364 return FALSE;
5365 H_PUT_32 (abfd, elf_gp (abfd), buf);
5366 if (bfd_bwrite (buf, 4, abfd) != 4)
5367 return FALSE;
5368 }
5369 l += intopt.size;
5370 }
5371 }
5372
5373 if (hdr->bfd_section != NULL)
5374 {
5375 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5376
5377 if (strcmp (name, ".sdata") == 0
5378 || strcmp (name, ".lit8") == 0
5379 || strcmp (name, ".lit4") == 0)
5380 {
5381 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5382 hdr->sh_type = SHT_PROGBITS;
5383 }
5384 else if (strcmp (name, ".sbss") == 0)
5385 {
5386 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5387 hdr->sh_type = SHT_NOBITS;
5388 }
5389 else if (strcmp (name, ".srdata") == 0)
5390 {
5391 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5392 hdr->sh_type = SHT_PROGBITS;
5393 }
5394 else if (strcmp (name, ".compact_rel") == 0)
5395 {
5396 hdr->sh_flags = 0;
5397 hdr->sh_type = SHT_PROGBITS;
5398 }
5399 else if (strcmp (name, ".rtproc") == 0)
5400 {
5401 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5402 {
5403 unsigned int adjust;
5404
5405 adjust = hdr->sh_size % hdr->sh_addralign;
5406 if (adjust != 0)
5407 hdr->sh_size += hdr->sh_addralign - adjust;
5408 }
5409 }
5410 }
5411
5412 return TRUE;
5413 }
5414
5415 /* Handle a MIPS specific section when reading an object file. This
5416 is called when elfcode.h finds a section with an unknown type.
5417 This routine supports both the 32-bit and 64-bit ELF ABI.
5418
5419 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5420 how to. */
5421
5422 bfd_boolean
5423 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5424 Elf_Internal_Shdr *hdr,
5425 const char *name,
5426 int shindex)
5427 {
5428 flagword flags = 0;
5429
5430 /* There ought to be a place to keep ELF backend specific flags, but
5431 at the moment there isn't one. We just keep track of the
5432 sections by their name, instead. Fortunately, the ABI gives
5433 suggested names for all the MIPS specific sections, so we will
5434 probably get away with this. */
5435 switch (hdr->sh_type)
5436 {
5437 case SHT_MIPS_LIBLIST:
5438 if (strcmp (name, ".liblist") != 0)
5439 return FALSE;
5440 break;
5441 case SHT_MIPS_MSYM:
5442 if (strcmp (name, ".msym") != 0)
5443 return FALSE;
5444 break;
5445 case SHT_MIPS_CONFLICT:
5446 if (strcmp (name, ".conflict") != 0)
5447 return FALSE;
5448 break;
5449 case SHT_MIPS_GPTAB:
5450 if (! CONST_STRNEQ (name, ".gptab."))
5451 return FALSE;
5452 break;
5453 case SHT_MIPS_UCODE:
5454 if (strcmp (name, ".ucode") != 0)
5455 return FALSE;
5456 break;
5457 case SHT_MIPS_DEBUG:
5458 if (strcmp (name, ".mdebug") != 0)
5459 return FALSE;
5460 flags = SEC_DEBUGGING;
5461 break;
5462 case SHT_MIPS_REGINFO:
5463 if (strcmp (name, ".reginfo") != 0
5464 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5465 return FALSE;
5466 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5467 break;
5468 case SHT_MIPS_IFACE:
5469 if (strcmp (name, ".MIPS.interfaces") != 0)
5470 return FALSE;
5471 break;
5472 case SHT_MIPS_CONTENT:
5473 if (! CONST_STRNEQ (name, ".MIPS.content"))
5474 return FALSE;
5475 break;
5476 case SHT_MIPS_OPTIONS:
5477 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5478 return FALSE;
5479 break;
5480 case SHT_MIPS_DWARF:
5481 if (! CONST_STRNEQ (name, ".debug_"))
5482 return FALSE;
5483 break;
5484 case SHT_MIPS_SYMBOL_LIB:
5485 if (strcmp (name, ".MIPS.symlib") != 0)
5486 return FALSE;
5487 break;
5488 case SHT_MIPS_EVENTS:
5489 if (! CONST_STRNEQ (name, ".MIPS.events")
5490 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
5491 return FALSE;
5492 break;
5493 default:
5494 break;
5495 }
5496
5497 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5498 return FALSE;
5499
5500 if (flags)
5501 {
5502 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5503 (bfd_get_section_flags (abfd,
5504 hdr->bfd_section)
5505 | flags)))
5506 return FALSE;
5507 }
5508
5509 /* FIXME: We should record sh_info for a .gptab section. */
5510
5511 /* For a .reginfo section, set the gp value in the tdata information
5512 from the contents of this section. We need the gp value while
5513 processing relocs, so we just get it now. The .reginfo section
5514 is not used in the 64-bit MIPS ELF ABI. */
5515 if (hdr->sh_type == SHT_MIPS_REGINFO)
5516 {
5517 Elf32_External_RegInfo ext;
5518 Elf32_RegInfo s;
5519
5520 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5521 &ext, 0, sizeof ext))
5522 return FALSE;
5523 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5524 elf_gp (abfd) = s.ri_gp_value;
5525 }
5526
5527 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5528 set the gp value based on what we find. We may see both
5529 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5530 they should agree. */
5531 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5532 {
5533 bfd_byte *contents, *l, *lend;
5534
5535 contents = bfd_malloc (hdr->sh_size);
5536 if (contents == NULL)
5537 return FALSE;
5538 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5539 0, hdr->sh_size))
5540 {
5541 free (contents);
5542 return FALSE;
5543 }
5544 l = contents;
5545 lend = contents + hdr->sh_size;
5546 while (l + sizeof (Elf_External_Options) <= lend)
5547 {
5548 Elf_Internal_Options intopt;
5549
5550 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5551 &intopt);
5552 if (intopt.size < sizeof (Elf_External_Options))
5553 {
5554 (*_bfd_error_handler)
5555 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5556 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5557 break;
5558 }
5559 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5560 {
5561 Elf64_Internal_RegInfo intreg;
5562
5563 bfd_mips_elf64_swap_reginfo_in
5564 (abfd,
5565 ((Elf64_External_RegInfo *)
5566 (l + sizeof (Elf_External_Options))),
5567 &intreg);
5568 elf_gp (abfd) = intreg.ri_gp_value;
5569 }
5570 else if (intopt.kind == ODK_REGINFO)
5571 {
5572 Elf32_RegInfo intreg;
5573
5574 bfd_mips_elf32_swap_reginfo_in
5575 (abfd,
5576 ((Elf32_External_RegInfo *)
5577 (l + sizeof (Elf_External_Options))),
5578 &intreg);
5579 elf_gp (abfd) = intreg.ri_gp_value;
5580 }
5581 l += intopt.size;
5582 }
5583 free (contents);
5584 }
5585
5586 return TRUE;
5587 }
5588
5589 /* Set the correct type for a MIPS ELF section. We do this by the
5590 section name, which is a hack, but ought to work. This routine is
5591 used by both the 32-bit and the 64-bit ABI. */
5592
5593 bfd_boolean
5594 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5595 {
5596 register const char *name;
5597 unsigned int sh_type;
5598
5599 name = bfd_get_section_name (abfd, sec);
5600 sh_type = hdr->sh_type;
5601
5602 if (strcmp (name, ".liblist") == 0)
5603 {
5604 hdr->sh_type = SHT_MIPS_LIBLIST;
5605 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5606 /* The sh_link field is set in final_write_processing. */
5607 }
5608 else if (strcmp (name, ".conflict") == 0)
5609 hdr->sh_type = SHT_MIPS_CONFLICT;
5610 else if (CONST_STRNEQ (name, ".gptab."))
5611 {
5612 hdr->sh_type = SHT_MIPS_GPTAB;
5613 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5614 /* The sh_info field is set in final_write_processing. */
5615 }
5616 else if (strcmp (name, ".ucode") == 0)
5617 hdr->sh_type = SHT_MIPS_UCODE;
5618 else if (strcmp (name, ".mdebug") == 0)
5619 {
5620 hdr->sh_type = SHT_MIPS_DEBUG;
5621 /* In a shared object on IRIX 5.3, the .mdebug section has an
5622 entsize of 0. FIXME: Does this matter? */
5623 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5624 hdr->sh_entsize = 0;
5625 else
5626 hdr->sh_entsize = 1;
5627 }
5628 else if (strcmp (name, ".reginfo") == 0)
5629 {
5630 hdr->sh_type = SHT_MIPS_REGINFO;
5631 /* In a shared object on IRIX 5.3, the .reginfo section has an
5632 entsize of 0x18. FIXME: Does this matter? */
5633 if (SGI_COMPAT (abfd))
5634 {
5635 if ((abfd->flags & DYNAMIC) != 0)
5636 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5637 else
5638 hdr->sh_entsize = 1;
5639 }
5640 else
5641 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5642 }
5643 else if (SGI_COMPAT (abfd)
5644 && (strcmp (name, ".hash") == 0
5645 || strcmp (name, ".dynamic") == 0
5646 || strcmp (name, ".dynstr") == 0))
5647 {
5648 if (SGI_COMPAT (abfd))
5649 hdr->sh_entsize = 0;
5650 #if 0
5651 /* This isn't how the IRIX6 linker behaves. */
5652 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5653 #endif
5654 }
5655 else if (strcmp (name, ".got") == 0
5656 || strcmp (name, ".srdata") == 0
5657 || strcmp (name, ".sdata") == 0
5658 || strcmp (name, ".sbss") == 0
5659 || strcmp (name, ".lit4") == 0
5660 || strcmp (name, ".lit8") == 0)
5661 hdr->sh_flags |= SHF_MIPS_GPREL;
5662 else if (strcmp (name, ".MIPS.interfaces") == 0)
5663 {
5664 hdr->sh_type = SHT_MIPS_IFACE;
5665 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5666 }
5667 else if (CONST_STRNEQ (name, ".MIPS.content"))
5668 {
5669 hdr->sh_type = SHT_MIPS_CONTENT;
5670 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5671 /* The sh_info field is set in final_write_processing. */
5672 }
5673 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5674 {
5675 hdr->sh_type = SHT_MIPS_OPTIONS;
5676 hdr->sh_entsize = 1;
5677 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5678 }
5679 else if (CONST_STRNEQ (name, ".debug_"))
5680 hdr->sh_type = SHT_MIPS_DWARF;
5681 else if (strcmp (name, ".MIPS.symlib") == 0)
5682 {
5683 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5684 /* The sh_link and sh_info fields are set in
5685 final_write_processing. */
5686 }
5687 else if (CONST_STRNEQ (name, ".MIPS.events")
5688 || CONST_STRNEQ (name, ".MIPS.post_rel"))
5689 {
5690 hdr->sh_type = SHT_MIPS_EVENTS;
5691 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5692 /* The sh_link field is set in final_write_processing. */
5693 }
5694 else if (strcmp (name, ".msym") == 0)
5695 {
5696 hdr->sh_type = SHT_MIPS_MSYM;
5697 hdr->sh_flags |= SHF_ALLOC;
5698 hdr->sh_entsize = 8;
5699 }
5700
5701 /* In the unlikely event a special section is empty it has to lose its
5702 special meaning. This may happen e.g. when using `strip' with the
5703 "--only-keep-debug" option. */
5704 if (sec->size > 0 && !(sec->flags & SEC_HAS_CONTENTS))
5705 hdr->sh_type = sh_type;
5706
5707 /* The generic elf_fake_sections will set up REL_HDR using the default
5708 kind of relocations. We used to set up a second header for the
5709 non-default kind of relocations here, but only NewABI would use
5710 these, and the IRIX ld doesn't like resulting empty RELA sections.
5711 Thus we create those header only on demand now. */
5712
5713 return TRUE;
5714 }
5715
5716 /* Given a BFD section, try to locate the corresponding ELF section
5717 index. This is used by both the 32-bit and the 64-bit ABI.
5718 Actually, it's not clear to me that the 64-bit ABI supports these,
5719 but for non-PIC objects we will certainly want support for at least
5720 the .scommon section. */
5721
5722 bfd_boolean
5723 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5724 asection *sec, int *retval)
5725 {
5726 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5727 {
5728 *retval = SHN_MIPS_SCOMMON;
5729 return TRUE;
5730 }
5731 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5732 {
5733 *retval = SHN_MIPS_ACOMMON;
5734 return TRUE;
5735 }
5736 return FALSE;
5737 }
5738 \f
5739 /* Hook called by the linker routine which adds symbols from an object
5740 file. We must handle the special MIPS section numbers here. */
5741
5742 bfd_boolean
5743 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
5744 Elf_Internal_Sym *sym, const char **namep,
5745 flagword *flagsp ATTRIBUTE_UNUSED,
5746 asection **secp, bfd_vma *valp)
5747 {
5748 if (SGI_COMPAT (abfd)
5749 && (abfd->flags & DYNAMIC) != 0
5750 && strcmp (*namep, "_rld_new_interface") == 0)
5751 {
5752 /* Skip IRIX5 rld entry name. */
5753 *namep = NULL;
5754 return TRUE;
5755 }
5756
5757 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5758 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5759 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5760 a magic symbol resolved by the linker, we ignore this bogus definition
5761 of _gp_disp. New ABI objects do not suffer from this problem so this
5762 is not done for them. */
5763 if (!NEWABI_P(abfd)
5764 && (sym->st_shndx == SHN_ABS)
5765 && (strcmp (*namep, "_gp_disp") == 0))
5766 {
5767 *namep = NULL;
5768 return TRUE;
5769 }
5770
5771 switch (sym->st_shndx)
5772 {
5773 case SHN_COMMON:
5774 /* Common symbols less than the GP size are automatically
5775 treated as SHN_MIPS_SCOMMON symbols. */
5776 if (sym->st_size > elf_gp_size (abfd)
5777 || ELF_ST_TYPE (sym->st_info) == STT_TLS
5778 || IRIX_COMPAT (abfd) == ict_irix6)
5779 break;
5780 /* Fall through. */
5781 case SHN_MIPS_SCOMMON:
5782 *secp = bfd_make_section_old_way (abfd, ".scommon");
5783 (*secp)->flags |= SEC_IS_COMMON;
5784 *valp = sym->st_size;
5785 break;
5786
5787 case SHN_MIPS_TEXT:
5788 /* This section is used in a shared object. */
5789 if (elf_tdata (abfd)->elf_text_section == NULL)
5790 {
5791 asymbol *elf_text_symbol;
5792 asection *elf_text_section;
5793 bfd_size_type amt = sizeof (asection);
5794
5795 elf_text_section = bfd_zalloc (abfd, amt);
5796 if (elf_text_section == NULL)
5797 return FALSE;
5798
5799 amt = sizeof (asymbol);
5800 elf_text_symbol = bfd_zalloc (abfd, amt);
5801 if (elf_text_symbol == NULL)
5802 return FALSE;
5803
5804 /* Initialize the section. */
5805
5806 elf_tdata (abfd)->elf_text_section = elf_text_section;
5807 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5808
5809 elf_text_section->symbol = elf_text_symbol;
5810 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5811
5812 elf_text_section->name = ".text";
5813 elf_text_section->flags = SEC_NO_FLAGS;
5814 elf_text_section->output_section = NULL;
5815 elf_text_section->owner = abfd;
5816 elf_text_symbol->name = ".text";
5817 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5818 elf_text_symbol->section = elf_text_section;
5819 }
5820 /* This code used to do *secp = bfd_und_section_ptr if
5821 info->shared. I don't know why, and that doesn't make sense,
5822 so I took it out. */
5823 *secp = elf_tdata (abfd)->elf_text_section;
5824 break;
5825
5826 case SHN_MIPS_ACOMMON:
5827 /* Fall through. XXX Can we treat this as allocated data? */
5828 case SHN_MIPS_DATA:
5829 /* This section is used in a shared object. */
5830 if (elf_tdata (abfd)->elf_data_section == NULL)
5831 {
5832 asymbol *elf_data_symbol;
5833 asection *elf_data_section;
5834 bfd_size_type amt = sizeof (asection);
5835
5836 elf_data_section = bfd_zalloc (abfd, amt);
5837 if (elf_data_section == NULL)
5838 return FALSE;
5839
5840 amt = sizeof (asymbol);
5841 elf_data_symbol = bfd_zalloc (abfd, amt);
5842 if (elf_data_symbol == NULL)
5843 return FALSE;
5844
5845 /* Initialize the section. */
5846
5847 elf_tdata (abfd)->elf_data_section = elf_data_section;
5848 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5849
5850 elf_data_section->symbol = elf_data_symbol;
5851 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5852
5853 elf_data_section->name = ".data";
5854 elf_data_section->flags = SEC_NO_FLAGS;
5855 elf_data_section->output_section = NULL;
5856 elf_data_section->owner = abfd;
5857 elf_data_symbol->name = ".data";
5858 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5859 elf_data_symbol->section = elf_data_section;
5860 }
5861 /* This code used to do *secp = bfd_und_section_ptr if
5862 info->shared. I don't know why, and that doesn't make sense,
5863 so I took it out. */
5864 *secp = elf_tdata (abfd)->elf_data_section;
5865 break;
5866
5867 case SHN_MIPS_SUNDEFINED:
5868 *secp = bfd_und_section_ptr;
5869 break;
5870 }
5871
5872 if (SGI_COMPAT (abfd)
5873 && ! info->shared
5874 && info->hash->creator == abfd->xvec
5875 && strcmp (*namep, "__rld_obj_head") == 0)
5876 {
5877 struct elf_link_hash_entry *h;
5878 struct bfd_link_hash_entry *bh;
5879
5880 /* Mark __rld_obj_head as dynamic. */
5881 bh = NULL;
5882 if (! (_bfd_generic_link_add_one_symbol
5883 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
5884 get_elf_backend_data (abfd)->collect, &bh)))
5885 return FALSE;
5886
5887 h = (struct elf_link_hash_entry *) bh;
5888 h->non_elf = 0;
5889 h->def_regular = 1;
5890 h->type = STT_OBJECT;
5891
5892 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5893 return FALSE;
5894
5895 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
5896 }
5897
5898 /* If this is a mips16 text symbol, add 1 to the value to make it
5899 odd. This will cause something like .word SYM to come up with
5900 the right value when it is loaded into the PC. */
5901 if (sym->st_other == STO_MIPS16)
5902 ++*valp;
5903
5904 return TRUE;
5905 }
5906
5907 /* This hook function is called before the linker writes out a global
5908 symbol. We mark symbols as small common if appropriate. This is
5909 also where we undo the increment of the value for a mips16 symbol. */
5910
5911 bfd_boolean
5912 _bfd_mips_elf_link_output_symbol_hook
5913 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5914 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5915 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
5916 {
5917 /* If we see a common symbol, which implies a relocatable link, then
5918 if a symbol was small common in an input file, mark it as small
5919 common in the output file. */
5920 if (sym->st_shndx == SHN_COMMON
5921 && strcmp (input_sec->name, ".scommon") == 0)
5922 sym->st_shndx = SHN_MIPS_SCOMMON;
5923
5924 if (sym->st_other == STO_MIPS16)
5925 sym->st_value &= ~1;
5926
5927 return TRUE;
5928 }
5929 \f
5930 /* Functions for the dynamic linker. */
5931
5932 /* Create dynamic sections when linking against a dynamic object. */
5933
5934 bfd_boolean
5935 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
5936 {
5937 struct elf_link_hash_entry *h;
5938 struct bfd_link_hash_entry *bh;
5939 flagword flags;
5940 register asection *s;
5941 const char * const *namep;
5942 struct mips_elf_link_hash_table *htab;
5943
5944 htab = mips_elf_hash_table (info);
5945 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5946 | SEC_LINKER_CREATED | SEC_READONLY);
5947
5948 /* The psABI requires a read-only .dynamic section, but the VxWorks
5949 EABI doesn't. */
5950 if (!htab->is_vxworks)
5951 {
5952 s = bfd_get_section_by_name (abfd, ".dynamic");
5953 if (s != NULL)
5954 {
5955 if (! bfd_set_section_flags (abfd, s, flags))
5956 return FALSE;
5957 }
5958 }
5959
5960 /* We need to create .got section. */
5961 if (! mips_elf_create_got_section (abfd, info, FALSE))
5962 return FALSE;
5963
5964 if (! mips_elf_rel_dyn_section (info, TRUE))
5965 return FALSE;
5966
5967 /* Create .stub section. */
5968 if (bfd_get_section_by_name (abfd,
5969 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5970 {
5971 s = bfd_make_section_with_flags (abfd,
5972 MIPS_ELF_STUB_SECTION_NAME (abfd),
5973 flags | SEC_CODE);
5974 if (s == NULL
5975 || ! bfd_set_section_alignment (abfd, s,
5976 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5977 return FALSE;
5978 }
5979
5980 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5981 && !info->shared
5982 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5983 {
5984 s = bfd_make_section_with_flags (abfd, ".rld_map",
5985 flags &~ (flagword) SEC_READONLY);
5986 if (s == NULL
5987 || ! bfd_set_section_alignment (abfd, s,
5988 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5989 return FALSE;
5990 }
5991
5992 /* On IRIX5, we adjust add some additional symbols and change the
5993 alignments of several sections. There is no ABI documentation
5994 indicating that this is necessary on IRIX6, nor any evidence that
5995 the linker takes such action. */
5996 if (IRIX_COMPAT (abfd) == ict_irix5)
5997 {
5998 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5999 {
6000 bh = NULL;
6001 if (! (_bfd_generic_link_add_one_symbol
6002 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
6003 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6004 return FALSE;
6005
6006 h = (struct elf_link_hash_entry *) bh;
6007 h->non_elf = 0;
6008 h->def_regular = 1;
6009 h->type = STT_SECTION;
6010
6011 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6012 return FALSE;
6013 }
6014
6015 /* We need to create a .compact_rel section. */
6016 if (SGI_COMPAT (abfd))
6017 {
6018 if (!mips_elf_create_compact_rel_section (abfd, info))
6019 return FALSE;
6020 }
6021
6022 /* Change alignments of some sections. */
6023 s = bfd_get_section_by_name (abfd, ".hash");
6024 if (s != NULL)
6025 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6026 s = bfd_get_section_by_name (abfd, ".dynsym");
6027 if (s != NULL)
6028 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6029 s = bfd_get_section_by_name (abfd, ".dynstr");
6030 if (s != NULL)
6031 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6032 s = bfd_get_section_by_name (abfd, ".reginfo");
6033 if (s != NULL)
6034 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6035 s = bfd_get_section_by_name (abfd, ".dynamic");
6036 if (s != NULL)
6037 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6038 }
6039
6040 if (!info->shared)
6041 {
6042 const char *name;
6043
6044 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6045 bh = NULL;
6046 if (!(_bfd_generic_link_add_one_symbol
6047 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6048 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6049 return FALSE;
6050
6051 h = (struct elf_link_hash_entry *) bh;
6052 h->non_elf = 0;
6053 h->def_regular = 1;
6054 h->type = STT_SECTION;
6055
6056 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6057 return FALSE;
6058
6059 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6060 {
6061 /* __rld_map is a four byte word located in the .data section
6062 and is filled in by the rtld to contain a pointer to
6063 the _r_debug structure. Its symbol value will be set in
6064 _bfd_mips_elf_finish_dynamic_symbol. */
6065 s = bfd_get_section_by_name (abfd, ".rld_map");
6066 BFD_ASSERT (s != NULL);
6067
6068 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6069 bh = NULL;
6070 if (!(_bfd_generic_link_add_one_symbol
6071 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6072 get_elf_backend_data (abfd)->collect, &bh)))
6073 return FALSE;
6074
6075 h = (struct elf_link_hash_entry *) bh;
6076 h->non_elf = 0;
6077 h->def_regular = 1;
6078 h->type = STT_OBJECT;
6079
6080 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6081 return FALSE;
6082 }
6083 }
6084
6085 if (htab->is_vxworks)
6086 {
6087 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6088 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6089 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6090 return FALSE;
6091
6092 /* Cache the sections created above. */
6093 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6094 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6095 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6096 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6097 if (!htab->sdynbss
6098 || (!htab->srelbss && !info->shared)
6099 || !htab->srelplt
6100 || !htab->splt)
6101 abort ();
6102
6103 /* Do the usual VxWorks handling. */
6104 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6105 return FALSE;
6106
6107 /* Work out the PLT sizes. */
6108 if (info->shared)
6109 {
6110 htab->plt_header_size
6111 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6112 htab->plt_entry_size
6113 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6114 }
6115 else
6116 {
6117 htab->plt_header_size
6118 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6119 htab->plt_entry_size
6120 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6121 }
6122 }
6123
6124 return TRUE;
6125 }
6126 \f
6127 /* Look through the relocs for a section during the first phase, and
6128 allocate space in the global offset table. */
6129
6130 bfd_boolean
6131 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6132 asection *sec, const Elf_Internal_Rela *relocs)
6133 {
6134 const char *name;
6135 bfd *dynobj;
6136 Elf_Internal_Shdr *symtab_hdr;
6137 struct elf_link_hash_entry **sym_hashes;
6138 struct mips_got_info *g;
6139 size_t extsymoff;
6140 const Elf_Internal_Rela *rel;
6141 const Elf_Internal_Rela *rel_end;
6142 asection *sgot;
6143 asection *sreloc;
6144 const struct elf_backend_data *bed;
6145 struct mips_elf_link_hash_table *htab;
6146
6147 if (info->relocatable)
6148 return TRUE;
6149
6150 htab = mips_elf_hash_table (info);
6151 dynobj = elf_hash_table (info)->dynobj;
6152 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6153 sym_hashes = elf_sym_hashes (abfd);
6154 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6155
6156 /* Check for the mips16 stub sections. */
6157
6158 name = bfd_get_section_name (abfd, sec);
6159 if (FN_STUB_P (name))
6160 {
6161 unsigned long r_symndx;
6162
6163 /* Look at the relocation information to figure out which symbol
6164 this is for. */
6165
6166 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6167
6168 if (r_symndx < extsymoff
6169 || sym_hashes[r_symndx - extsymoff] == NULL)
6170 {
6171 asection *o;
6172
6173 /* This stub is for a local symbol. This stub will only be
6174 needed if there is some relocation in this BFD, other
6175 than a 16 bit function call, which refers to this symbol. */
6176 for (o = abfd->sections; o != NULL; o = o->next)
6177 {
6178 Elf_Internal_Rela *sec_relocs;
6179 const Elf_Internal_Rela *r, *rend;
6180
6181 /* We can ignore stub sections when looking for relocs. */
6182 if ((o->flags & SEC_RELOC) == 0
6183 || o->reloc_count == 0
6184 || mips16_stub_section_p (abfd, o))
6185 continue;
6186
6187 sec_relocs
6188 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6189 info->keep_memory);
6190 if (sec_relocs == NULL)
6191 return FALSE;
6192
6193 rend = sec_relocs + o->reloc_count;
6194 for (r = sec_relocs; r < rend; r++)
6195 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6196 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6197 break;
6198
6199 if (elf_section_data (o)->relocs != sec_relocs)
6200 free (sec_relocs);
6201
6202 if (r < rend)
6203 break;
6204 }
6205
6206 if (o == NULL)
6207 {
6208 /* There is no non-call reloc for this stub, so we do
6209 not need it. Since this function is called before
6210 the linker maps input sections to output sections, we
6211 can easily discard it by setting the SEC_EXCLUDE
6212 flag. */
6213 sec->flags |= SEC_EXCLUDE;
6214 return TRUE;
6215 }
6216
6217 /* Record this stub in an array of local symbol stubs for
6218 this BFD. */
6219 if (elf_tdata (abfd)->local_stubs == NULL)
6220 {
6221 unsigned long symcount;
6222 asection **n;
6223 bfd_size_type amt;
6224
6225 if (elf_bad_symtab (abfd))
6226 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6227 else
6228 symcount = symtab_hdr->sh_info;
6229 amt = symcount * sizeof (asection *);
6230 n = bfd_zalloc (abfd, amt);
6231 if (n == NULL)
6232 return FALSE;
6233 elf_tdata (abfd)->local_stubs = n;
6234 }
6235
6236 sec->flags |= SEC_KEEP;
6237 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6238
6239 /* We don't need to set mips16_stubs_seen in this case.
6240 That flag is used to see whether we need to look through
6241 the global symbol table for stubs. We don't need to set
6242 it here, because we just have a local stub. */
6243 }
6244 else
6245 {
6246 struct mips_elf_link_hash_entry *h;
6247
6248 h = ((struct mips_elf_link_hash_entry *)
6249 sym_hashes[r_symndx - extsymoff]);
6250
6251 while (h->root.root.type == bfd_link_hash_indirect
6252 || h->root.root.type == bfd_link_hash_warning)
6253 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6254
6255 /* H is the symbol this stub is for. */
6256
6257 /* If we already have an appropriate stub for this function, we
6258 don't need another one, so we can discard this one. Since
6259 this function is called before the linker maps input sections
6260 to output sections, we can easily discard it by setting the
6261 SEC_EXCLUDE flag. */
6262 if (h->fn_stub != NULL)
6263 {
6264 sec->flags |= SEC_EXCLUDE;
6265 return TRUE;
6266 }
6267
6268 sec->flags |= SEC_KEEP;
6269 h->fn_stub = sec;
6270 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6271 }
6272 }
6273 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
6274 {
6275 unsigned long r_symndx;
6276 struct mips_elf_link_hash_entry *h;
6277 asection **loc;
6278
6279 /* Look at the relocation information to figure out which symbol
6280 this is for. */
6281
6282 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6283
6284 if (r_symndx < extsymoff
6285 || sym_hashes[r_symndx - extsymoff] == NULL)
6286 {
6287 asection *o;
6288
6289 /* This stub is for a local symbol. This stub will only be
6290 needed if there is some relocation (R_MIPS16_26) in this BFD
6291 that refers to this symbol. */
6292 for (o = abfd->sections; o != NULL; o = o->next)
6293 {
6294 Elf_Internal_Rela *sec_relocs;
6295 const Elf_Internal_Rela *r, *rend;
6296
6297 /* We can ignore stub sections when looking for relocs. */
6298 if ((o->flags & SEC_RELOC) == 0
6299 || o->reloc_count == 0
6300 || mips16_stub_section_p (abfd, o))
6301 continue;
6302
6303 sec_relocs
6304 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6305 info->keep_memory);
6306 if (sec_relocs == NULL)
6307 return FALSE;
6308
6309 rend = sec_relocs + o->reloc_count;
6310 for (r = sec_relocs; r < rend; r++)
6311 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6312 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6313 break;
6314
6315 if (elf_section_data (o)->relocs != sec_relocs)
6316 free (sec_relocs);
6317
6318 if (r < rend)
6319 break;
6320 }
6321
6322 if (o == NULL)
6323 {
6324 /* There is no non-call reloc for this stub, so we do
6325 not need it. Since this function is called before
6326 the linker maps input sections to output sections, we
6327 can easily discard it by setting the SEC_EXCLUDE
6328 flag. */
6329 sec->flags |= SEC_EXCLUDE;
6330 return TRUE;
6331 }
6332
6333 /* Record this stub in an array of local symbol call_stubs for
6334 this BFD. */
6335 if (elf_tdata (abfd)->local_call_stubs == NULL)
6336 {
6337 unsigned long symcount;
6338 asection **n;
6339 bfd_size_type amt;
6340
6341 if (elf_bad_symtab (abfd))
6342 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6343 else
6344 symcount = symtab_hdr->sh_info;
6345 amt = symcount * sizeof (asection *);
6346 n = bfd_zalloc (abfd, amt);
6347 if (n == NULL)
6348 return FALSE;
6349 elf_tdata (abfd)->local_call_stubs = n;
6350 }
6351
6352 sec->flags |= SEC_KEEP;
6353 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
6354
6355 /* We don't need to set mips16_stubs_seen in this case.
6356 That flag is used to see whether we need to look through
6357 the global symbol table for stubs. We don't need to set
6358 it here, because we just have a local stub. */
6359 }
6360 else
6361 {
6362 h = ((struct mips_elf_link_hash_entry *)
6363 sym_hashes[r_symndx - extsymoff]);
6364
6365 /* H is the symbol this stub is for. */
6366
6367 if (CALL_FP_STUB_P (name))
6368 loc = &h->call_fp_stub;
6369 else
6370 loc = &h->call_stub;
6371
6372 /* If we already have an appropriate stub for this function, we
6373 don't need another one, so we can discard this one. Since
6374 this function is called before the linker maps input sections
6375 to output sections, we can easily discard it by setting the
6376 SEC_EXCLUDE flag. */
6377 if (*loc != NULL)
6378 {
6379 sec->flags |= SEC_EXCLUDE;
6380 return TRUE;
6381 }
6382
6383 sec->flags |= SEC_KEEP;
6384 *loc = sec;
6385 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6386 }
6387 }
6388
6389 if (dynobj == NULL)
6390 {
6391 sgot = NULL;
6392 g = NULL;
6393 }
6394 else
6395 {
6396 sgot = mips_elf_got_section (dynobj, FALSE);
6397 if (sgot == NULL)
6398 g = NULL;
6399 else
6400 {
6401 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6402 g = mips_elf_section_data (sgot)->u.got_info;
6403 BFD_ASSERT (g != NULL);
6404 }
6405 }
6406
6407 sreloc = NULL;
6408 bed = get_elf_backend_data (abfd);
6409 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6410 for (rel = relocs; rel < rel_end; ++rel)
6411 {
6412 unsigned long r_symndx;
6413 unsigned int r_type;
6414 struct elf_link_hash_entry *h;
6415
6416 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6417 r_type = ELF_R_TYPE (abfd, rel->r_info);
6418
6419 if (r_symndx < extsymoff)
6420 h = NULL;
6421 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6422 {
6423 (*_bfd_error_handler)
6424 (_("%B: Malformed reloc detected for section %s"),
6425 abfd, name);
6426 bfd_set_error (bfd_error_bad_value);
6427 return FALSE;
6428 }
6429 else
6430 {
6431 h = sym_hashes[r_symndx - extsymoff];
6432
6433 /* This may be an indirect symbol created because of a version. */
6434 if (h != NULL)
6435 {
6436 while (h->root.type == bfd_link_hash_indirect)
6437 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6438 }
6439 }
6440
6441 /* Some relocs require a global offset table. */
6442 if (dynobj == NULL || sgot == NULL)
6443 {
6444 switch (r_type)
6445 {
6446 case R_MIPS_GOT16:
6447 case R_MIPS_CALL16:
6448 case R_MIPS_CALL_HI16:
6449 case R_MIPS_CALL_LO16:
6450 case R_MIPS_GOT_HI16:
6451 case R_MIPS_GOT_LO16:
6452 case R_MIPS_GOT_PAGE:
6453 case R_MIPS_GOT_OFST:
6454 case R_MIPS_GOT_DISP:
6455 case R_MIPS_TLS_GOTTPREL:
6456 case R_MIPS_TLS_GD:
6457 case R_MIPS_TLS_LDM:
6458 if (dynobj == NULL)
6459 elf_hash_table (info)->dynobj = dynobj = abfd;
6460 if (! mips_elf_create_got_section (dynobj, info, FALSE))
6461 return FALSE;
6462 g = mips_elf_got_info (dynobj, &sgot);
6463 if (htab->is_vxworks && !info->shared)
6464 {
6465 (*_bfd_error_handler)
6466 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6467 abfd, (unsigned long) rel->r_offset);
6468 bfd_set_error (bfd_error_bad_value);
6469 return FALSE;
6470 }
6471 break;
6472
6473 case R_MIPS_32:
6474 case R_MIPS_REL32:
6475 case R_MIPS_64:
6476 /* In VxWorks executables, references to external symbols
6477 are handled using copy relocs or PLT stubs, so there's
6478 no need to add a dynamic relocation here. */
6479 if (dynobj == NULL
6480 && (info->shared || (h != NULL && !htab->is_vxworks))
6481 && (sec->flags & SEC_ALLOC) != 0)
6482 elf_hash_table (info)->dynobj = dynobj = abfd;
6483 break;
6484
6485 default:
6486 break;
6487 }
6488 }
6489
6490 if (h)
6491 {
6492 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6493
6494 /* Relocations against the special VxWorks __GOTT_BASE__ and
6495 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6496 room for them in .rela.dyn. */
6497 if (is_gott_symbol (info, h))
6498 {
6499 if (sreloc == NULL)
6500 {
6501 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6502 if (sreloc == NULL)
6503 return FALSE;
6504 }
6505 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6506 if (MIPS_ELF_READONLY_SECTION (sec))
6507 /* We tell the dynamic linker that there are
6508 relocations against the text segment. */
6509 info->flags |= DF_TEXTREL;
6510 }
6511 }
6512 else if (r_type == R_MIPS_CALL_LO16
6513 || r_type == R_MIPS_GOT_LO16
6514 || r_type == R_MIPS_GOT_DISP
6515 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
6516 {
6517 /* We may need a local GOT entry for this relocation. We
6518 don't count R_MIPS_GOT_PAGE because we can estimate the
6519 maximum number of pages needed by looking at the size of
6520 the segment. Similar comments apply to R_MIPS_GOT16 and
6521 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6522 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
6523 R_MIPS_CALL_HI16 because these are always followed by an
6524 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6525 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6526 rel->r_addend, g, 0))
6527 return FALSE;
6528 }
6529
6530 switch (r_type)
6531 {
6532 case R_MIPS_CALL16:
6533 if (h == NULL)
6534 {
6535 (*_bfd_error_handler)
6536 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6537 abfd, (unsigned long) rel->r_offset);
6538 bfd_set_error (bfd_error_bad_value);
6539 return FALSE;
6540 }
6541 /* Fall through. */
6542
6543 case R_MIPS_CALL_HI16:
6544 case R_MIPS_CALL_LO16:
6545 if (h != NULL)
6546 {
6547 /* VxWorks call relocations point the function's .got.plt
6548 entry, which will be allocated by adjust_dynamic_symbol.
6549 Otherwise, this symbol requires a global GOT entry. */
6550 if (!htab->is_vxworks
6551 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6552 return FALSE;
6553
6554 /* We need a stub, not a plt entry for the undefined
6555 function. But we record it as if it needs plt. See
6556 _bfd_elf_adjust_dynamic_symbol. */
6557 h->needs_plt = 1;
6558 h->type = STT_FUNC;
6559 }
6560 break;
6561
6562 case R_MIPS_GOT_PAGE:
6563 /* If this is a global, overridable symbol, GOT_PAGE will
6564 decay to GOT_DISP, so we'll need a GOT entry for it. */
6565 if (h == NULL)
6566 break;
6567 else
6568 {
6569 struct mips_elf_link_hash_entry *hmips =
6570 (struct mips_elf_link_hash_entry *) h;
6571
6572 while (hmips->root.root.type == bfd_link_hash_indirect
6573 || hmips->root.root.type == bfd_link_hash_warning)
6574 hmips = (struct mips_elf_link_hash_entry *)
6575 hmips->root.root.u.i.link;
6576
6577 if (hmips->root.def_regular
6578 && ! (info->shared && ! info->symbolic
6579 && ! hmips->root.forced_local))
6580 break;
6581 }
6582 /* Fall through. */
6583
6584 case R_MIPS_GOT16:
6585 case R_MIPS_GOT_HI16:
6586 case R_MIPS_GOT_LO16:
6587 case R_MIPS_GOT_DISP:
6588 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6589 return FALSE;
6590 break;
6591
6592 case R_MIPS_TLS_GOTTPREL:
6593 if (info->shared)
6594 info->flags |= DF_STATIC_TLS;
6595 /* Fall through */
6596
6597 case R_MIPS_TLS_LDM:
6598 if (r_type == R_MIPS_TLS_LDM)
6599 {
6600 r_symndx = 0;
6601 h = NULL;
6602 }
6603 /* Fall through */
6604
6605 case R_MIPS_TLS_GD:
6606 /* This symbol requires a global offset table entry, or two
6607 for TLS GD relocations. */
6608 {
6609 unsigned char flag = (r_type == R_MIPS_TLS_GD
6610 ? GOT_TLS_GD
6611 : r_type == R_MIPS_TLS_LDM
6612 ? GOT_TLS_LDM
6613 : GOT_TLS_IE);
6614 if (h != NULL)
6615 {
6616 struct mips_elf_link_hash_entry *hmips =
6617 (struct mips_elf_link_hash_entry *) h;
6618 hmips->tls_type |= flag;
6619
6620 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6621 return FALSE;
6622 }
6623 else
6624 {
6625 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6626
6627 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6628 rel->r_addend, g, flag))
6629 return FALSE;
6630 }
6631 }
6632 break;
6633
6634 case R_MIPS_32:
6635 case R_MIPS_REL32:
6636 case R_MIPS_64:
6637 /* In VxWorks executables, references to external symbols
6638 are handled using copy relocs or PLT stubs, so there's
6639 no need to add a .rela.dyn entry for this relocation. */
6640 if ((info->shared || (h != NULL && !htab->is_vxworks))
6641 && (sec->flags & SEC_ALLOC) != 0)
6642 {
6643 if (sreloc == NULL)
6644 {
6645 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6646 if (sreloc == NULL)
6647 return FALSE;
6648 }
6649 if (info->shared)
6650 {
6651 /* When creating a shared object, we must copy these
6652 reloc types into the output file as R_MIPS_REL32
6653 relocs. Make room for this reloc in .rel(a).dyn. */
6654 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6655 if (MIPS_ELF_READONLY_SECTION (sec))
6656 /* We tell the dynamic linker that there are
6657 relocations against the text segment. */
6658 info->flags |= DF_TEXTREL;
6659 }
6660 else
6661 {
6662 struct mips_elf_link_hash_entry *hmips;
6663
6664 /* We only need to copy this reloc if the symbol is
6665 defined in a dynamic object. */
6666 hmips = (struct mips_elf_link_hash_entry *) h;
6667 ++hmips->possibly_dynamic_relocs;
6668 if (MIPS_ELF_READONLY_SECTION (sec))
6669 /* We need it to tell the dynamic linker if there
6670 are relocations against the text segment. */
6671 hmips->readonly_reloc = TRUE;
6672 }
6673
6674 /* Even though we don't directly need a GOT entry for
6675 this symbol, a symbol must have a dynamic symbol
6676 table index greater that DT_MIPS_GOTSYM if there are
6677 dynamic relocations against it. This does not apply
6678 to VxWorks, which does not have the usual coupling
6679 between global GOT entries and .dynsym entries. */
6680 if (h != NULL && !htab->is_vxworks)
6681 {
6682 if (dynobj == NULL)
6683 elf_hash_table (info)->dynobj = dynobj = abfd;
6684 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6685 return FALSE;
6686 g = mips_elf_got_info (dynobj, &sgot);
6687 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6688 return FALSE;
6689 }
6690 }
6691
6692 if (SGI_COMPAT (abfd))
6693 mips_elf_hash_table (info)->compact_rel_size +=
6694 sizeof (Elf32_External_crinfo);
6695 break;
6696
6697 case R_MIPS_PC16:
6698 if (h)
6699 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6700 break;
6701
6702 case R_MIPS_26:
6703 if (h)
6704 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6705 /* Fall through. */
6706
6707 case R_MIPS_GPREL16:
6708 case R_MIPS_LITERAL:
6709 case R_MIPS_GPREL32:
6710 if (SGI_COMPAT (abfd))
6711 mips_elf_hash_table (info)->compact_rel_size +=
6712 sizeof (Elf32_External_crinfo);
6713 break;
6714
6715 /* This relocation describes the C++ object vtable hierarchy.
6716 Reconstruct it for later use during GC. */
6717 case R_MIPS_GNU_VTINHERIT:
6718 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
6719 return FALSE;
6720 break;
6721
6722 /* This relocation describes which C++ vtable entries are actually
6723 used. Record for later use during GC. */
6724 case R_MIPS_GNU_VTENTRY:
6725 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
6726 return FALSE;
6727 break;
6728
6729 default:
6730 break;
6731 }
6732
6733 /* We must not create a stub for a symbol that has relocations
6734 related to taking the function's address. This doesn't apply to
6735 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6736 a normal .got entry. */
6737 if (!htab->is_vxworks && h != NULL)
6738 switch (r_type)
6739 {
6740 default:
6741 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6742 break;
6743 case R_MIPS_CALL16:
6744 case R_MIPS_CALL_HI16:
6745 case R_MIPS_CALL_LO16:
6746 case R_MIPS_JALR:
6747 break;
6748 }
6749
6750 /* If this reloc is not a 16 bit call, and it has a global
6751 symbol, then we will need the fn_stub if there is one.
6752 References from a stub section do not count. */
6753 if (h != NULL
6754 && r_type != R_MIPS16_26
6755 && !mips16_stub_section_p (abfd, sec))
6756 {
6757 struct mips_elf_link_hash_entry *mh;
6758
6759 mh = (struct mips_elf_link_hash_entry *) h;
6760 mh->need_fn_stub = TRUE;
6761 }
6762 }
6763
6764 return TRUE;
6765 }
6766 \f
6767 bfd_boolean
6768 _bfd_mips_relax_section (bfd *abfd, asection *sec,
6769 struct bfd_link_info *link_info,
6770 bfd_boolean *again)
6771 {
6772 Elf_Internal_Rela *internal_relocs;
6773 Elf_Internal_Rela *irel, *irelend;
6774 Elf_Internal_Shdr *symtab_hdr;
6775 bfd_byte *contents = NULL;
6776 size_t extsymoff;
6777 bfd_boolean changed_contents = FALSE;
6778 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6779 Elf_Internal_Sym *isymbuf = NULL;
6780
6781 /* We are not currently changing any sizes, so only one pass. */
6782 *again = FALSE;
6783
6784 if (link_info->relocatable)
6785 return TRUE;
6786
6787 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
6788 link_info->keep_memory);
6789 if (internal_relocs == NULL)
6790 return TRUE;
6791
6792 irelend = internal_relocs + sec->reloc_count
6793 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6794 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6795 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6796
6797 for (irel = internal_relocs; irel < irelend; irel++)
6798 {
6799 bfd_vma symval;
6800 bfd_signed_vma sym_offset;
6801 unsigned int r_type;
6802 unsigned long r_symndx;
6803 asection *sym_sec;
6804 unsigned long instruction;
6805
6806 /* Turn jalr into bgezal, and jr into beq, if they're marked
6807 with a JALR relocation, that indicate where they jump to.
6808 This saves some pipeline bubbles. */
6809 r_type = ELF_R_TYPE (abfd, irel->r_info);
6810 if (r_type != R_MIPS_JALR)
6811 continue;
6812
6813 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6814 /* Compute the address of the jump target. */
6815 if (r_symndx >= extsymoff)
6816 {
6817 struct mips_elf_link_hash_entry *h
6818 = ((struct mips_elf_link_hash_entry *)
6819 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6820
6821 while (h->root.root.type == bfd_link_hash_indirect
6822 || h->root.root.type == bfd_link_hash_warning)
6823 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6824
6825 /* If a symbol is undefined, or if it may be overridden,
6826 skip it. */
6827 if (! ((h->root.root.type == bfd_link_hash_defined
6828 || h->root.root.type == bfd_link_hash_defweak)
6829 && h->root.root.u.def.section)
6830 || (link_info->shared && ! link_info->symbolic
6831 && !h->root.forced_local))
6832 continue;
6833
6834 sym_sec = h->root.root.u.def.section;
6835 if (sym_sec->output_section)
6836 symval = (h->root.root.u.def.value
6837 + sym_sec->output_section->vma
6838 + sym_sec->output_offset);
6839 else
6840 symval = h->root.root.u.def.value;
6841 }
6842 else
6843 {
6844 Elf_Internal_Sym *isym;
6845
6846 /* Read this BFD's symbols if we haven't done so already. */
6847 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6848 {
6849 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6850 if (isymbuf == NULL)
6851 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6852 symtab_hdr->sh_info, 0,
6853 NULL, NULL, NULL);
6854 if (isymbuf == NULL)
6855 goto relax_return;
6856 }
6857
6858 isym = isymbuf + r_symndx;
6859 if (isym->st_shndx == SHN_UNDEF)
6860 continue;
6861 else if (isym->st_shndx == SHN_ABS)
6862 sym_sec = bfd_abs_section_ptr;
6863 else if (isym->st_shndx == SHN_COMMON)
6864 sym_sec = bfd_com_section_ptr;
6865 else
6866 sym_sec
6867 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6868 symval = isym->st_value
6869 + sym_sec->output_section->vma
6870 + sym_sec->output_offset;
6871 }
6872
6873 /* Compute branch offset, from delay slot of the jump to the
6874 branch target. */
6875 sym_offset = (symval + irel->r_addend)
6876 - (sec_start + irel->r_offset + 4);
6877
6878 /* Branch offset must be properly aligned. */
6879 if ((sym_offset & 3) != 0)
6880 continue;
6881
6882 sym_offset >>= 2;
6883
6884 /* Check that it's in range. */
6885 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6886 continue;
6887
6888 /* Get the section contents if we haven't done so already. */
6889 if (contents == NULL)
6890 {
6891 /* Get cached copy if it exists. */
6892 if (elf_section_data (sec)->this_hdr.contents != NULL)
6893 contents = elf_section_data (sec)->this_hdr.contents;
6894 else
6895 {
6896 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6897 goto relax_return;
6898 }
6899 }
6900
6901 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6902
6903 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6904 if ((instruction & 0xfc1fffff) == 0x0000f809)
6905 instruction = 0x04110000;
6906 /* If it was jr <reg>, turn it into b <target>. */
6907 else if ((instruction & 0xfc1fffff) == 0x00000008)
6908 instruction = 0x10000000;
6909 else
6910 continue;
6911
6912 instruction |= (sym_offset & 0xffff);
6913 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6914 changed_contents = TRUE;
6915 }
6916
6917 if (contents != NULL
6918 && elf_section_data (sec)->this_hdr.contents != contents)
6919 {
6920 if (!changed_contents && !link_info->keep_memory)
6921 free (contents);
6922 else
6923 {
6924 /* Cache the section contents for elf_link_input_bfd. */
6925 elf_section_data (sec)->this_hdr.contents = contents;
6926 }
6927 }
6928 return TRUE;
6929
6930 relax_return:
6931 if (contents != NULL
6932 && elf_section_data (sec)->this_hdr.contents != contents)
6933 free (contents);
6934 return FALSE;
6935 }
6936 \f
6937 /* Adjust a symbol defined by a dynamic object and referenced by a
6938 regular object. The current definition is in some section of the
6939 dynamic object, but we're not including those sections. We have to
6940 change the definition to something the rest of the link can
6941 understand. */
6942
6943 bfd_boolean
6944 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6945 struct elf_link_hash_entry *h)
6946 {
6947 bfd *dynobj;
6948 struct mips_elf_link_hash_entry *hmips;
6949 asection *s;
6950 struct mips_elf_link_hash_table *htab;
6951
6952 htab = mips_elf_hash_table (info);
6953 dynobj = elf_hash_table (info)->dynobj;
6954
6955 /* Make sure we know what is going on here. */
6956 BFD_ASSERT (dynobj != NULL
6957 && (h->needs_plt
6958 || h->u.weakdef != NULL
6959 || (h->def_dynamic
6960 && h->ref_regular
6961 && !h->def_regular)));
6962
6963 /* If this symbol is defined in a dynamic object, we need to copy
6964 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6965 file. */
6966 hmips = (struct mips_elf_link_hash_entry *) h;
6967 if (! info->relocatable
6968 && hmips->possibly_dynamic_relocs != 0
6969 && (h->root.type == bfd_link_hash_defweak
6970 || !h->def_regular))
6971 {
6972 mips_elf_allocate_dynamic_relocations
6973 (dynobj, info, hmips->possibly_dynamic_relocs);
6974 if (hmips->readonly_reloc)
6975 /* We tell the dynamic linker that there are relocations
6976 against the text segment. */
6977 info->flags |= DF_TEXTREL;
6978 }
6979
6980 /* For a function, create a stub, if allowed. */
6981 if (! hmips->no_fn_stub
6982 && h->needs_plt)
6983 {
6984 if (! elf_hash_table (info)->dynamic_sections_created)
6985 return TRUE;
6986
6987 /* If this symbol is not defined in a regular file, then set
6988 the symbol to the stub location. This is required to make
6989 function pointers compare as equal between the normal
6990 executable and the shared library. */
6991 if (!h->def_regular)
6992 {
6993 /* We need .stub section. */
6994 s = bfd_get_section_by_name (dynobj,
6995 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6996 BFD_ASSERT (s != NULL);
6997
6998 h->root.u.def.section = s;
6999 h->root.u.def.value = s->size;
7000
7001 /* XXX Write this stub address somewhere. */
7002 h->plt.offset = s->size;
7003
7004 /* Make room for this stub code. */
7005 s->size += htab->function_stub_size;
7006
7007 /* The last half word of the stub will be filled with the index
7008 of this symbol in .dynsym section. */
7009 return TRUE;
7010 }
7011 }
7012 else if ((h->type == STT_FUNC)
7013 && !h->needs_plt)
7014 {
7015 /* This will set the entry for this symbol in the GOT to 0, and
7016 the dynamic linker will take care of this. */
7017 h->root.u.def.value = 0;
7018 return TRUE;
7019 }
7020
7021 /* If this is a weak symbol, and there is a real definition, the
7022 processor independent code will have arranged for us to see the
7023 real definition first, and we can just use the same value. */
7024 if (h->u.weakdef != NULL)
7025 {
7026 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7027 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7028 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7029 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7030 return TRUE;
7031 }
7032
7033 /* This is a reference to a symbol defined by a dynamic object which
7034 is not a function. */
7035
7036 return TRUE;
7037 }
7038
7039 /* Likewise, for VxWorks. */
7040
7041 bfd_boolean
7042 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7043 struct elf_link_hash_entry *h)
7044 {
7045 bfd *dynobj;
7046 struct mips_elf_link_hash_entry *hmips;
7047 struct mips_elf_link_hash_table *htab;
7048 unsigned int power_of_two;
7049
7050 htab = mips_elf_hash_table (info);
7051 dynobj = elf_hash_table (info)->dynobj;
7052 hmips = (struct mips_elf_link_hash_entry *) h;
7053
7054 /* Make sure we know what is going on here. */
7055 BFD_ASSERT (dynobj != NULL
7056 && (h->needs_plt
7057 || h->needs_copy
7058 || h->u.weakdef != NULL
7059 || (h->def_dynamic
7060 && h->ref_regular
7061 && !h->def_regular)));
7062
7063 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7064 either (a) we want to branch to the symbol or (b) we're linking an
7065 executable that needs a canonical function address. In the latter
7066 case, the canonical address will be the address of the executable's
7067 load stub. */
7068 if ((hmips->is_branch_target
7069 || (!info->shared
7070 && h->type == STT_FUNC
7071 && hmips->is_relocation_target))
7072 && h->def_dynamic
7073 && h->ref_regular
7074 && !h->def_regular
7075 && !h->forced_local)
7076 h->needs_plt = 1;
7077
7078 /* Locally-binding symbols do not need a PLT stub; we can refer to
7079 the functions directly. */
7080 else if (h->needs_plt
7081 && (SYMBOL_CALLS_LOCAL (info, h)
7082 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7083 && h->root.type == bfd_link_hash_undefweak)))
7084 {
7085 h->needs_plt = 0;
7086 return TRUE;
7087 }
7088
7089 if (h->needs_plt)
7090 {
7091 /* If this is the first symbol to need a PLT entry, allocate room
7092 for the header, and for the header's .rela.plt.unloaded entries. */
7093 if (htab->splt->size == 0)
7094 {
7095 htab->splt->size += htab->plt_header_size;
7096 if (!info->shared)
7097 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7098 }
7099
7100 /* Assign the next .plt entry to this symbol. */
7101 h->plt.offset = htab->splt->size;
7102 htab->splt->size += htab->plt_entry_size;
7103
7104 /* If the output file has no definition of the symbol, set the
7105 symbol's value to the address of the stub. For executables,
7106 point at the PLT load stub rather than the lazy resolution stub;
7107 this stub will become the canonical function address. */
7108 if (!h->def_regular)
7109 {
7110 h->root.u.def.section = htab->splt;
7111 h->root.u.def.value = h->plt.offset;
7112 if (!info->shared)
7113 h->root.u.def.value += 8;
7114 }
7115
7116 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7117 htab->sgotplt->size += 4;
7118 htab->srelplt->size += sizeof (Elf32_External_Rela);
7119
7120 /* Make room for the .rela.plt.unloaded relocations. */
7121 if (!info->shared)
7122 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7123
7124 return TRUE;
7125 }
7126
7127 /* If a function symbol is defined by a dynamic object, and we do not
7128 need a PLT stub for it, the symbol's value should be zero. */
7129 if (h->type == STT_FUNC
7130 && h->def_dynamic
7131 && h->ref_regular
7132 && !h->def_regular)
7133 {
7134 h->root.u.def.value = 0;
7135 return TRUE;
7136 }
7137
7138 /* If this is a weak symbol, and there is a real definition, the
7139 processor independent code will have arranged for us to see the
7140 real definition first, and we can just use the same value. */
7141 if (h->u.weakdef != NULL)
7142 {
7143 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7144 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7145 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7146 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7147 return TRUE;
7148 }
7149
7150 /* This is a reference to a symbol defined by a dynamic object which
7151 is not a function. */
7152 if (info->shared)
7153 return TRUE;
7154
7155 /* We must allocate the symbol in our .dynbss section, which will
7156 become part of the .bss section of the executable. There will be
7157 an entry for this symbol in the .dynsym section. The dynamic
7158 object will contain position independent code, so all references
7159 from the dynamic object to this symbol will go through the global
7160 offset table. The dynamic linker will use the .dynsym entry to
7161 determine the address it must put in the global offset table, so
7162 both the dynamic object and the regular object will refer to the
7163 same memory location for the variable. */
7164
7165 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7166 {
7167 htab->srelbss->size += sizeof (Elf32_External_Rela);
7168 h->needs_copy = 1;
7169 }
7170
7171 /* We need to figure out the alignment required for this symbol. */
7172 power_of_two = bfd_log2 (h->size);
7173 if (power_of_two > 4)
7174 power_of_two = 4;
7175
7176 /* Apply the required alignment. */
7177 htab->sdynbss->size = BFD_ALIGN (htab->sdynbss->size,
7178 (bfd_size_type) 1 << power_of_two);
7179 if (power_of_two > bfd_get_section_alignment (dynobj, htab->sdynbss)
7180 && !bfd_set_section_alignment (dynobj, htab->sdynbss, power_of_two))
7181 return FALSE;
7182
7183 /* Define the symbol as being at this point in the section. */
7184 h->root.u.def.section = htab->sdynbss;
7185 h->root.u.def.value = htab->sdynbss->size;
7186
7187 /* Increment the section size to make room for the symbol. */
7188 htab->sdynbss->size += h->size;
7189
7190 return TRUE;
7191 }
7192 \f
7193 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
7194 The number might be exact or a worst-case estimate, depending on how
7195 much information is available to elf_backend_omit_section_dynsym at
7196 the current linking stage. */
7197
7198 static bfd_size_type
7199 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7200 {
7201 bfd_size_type count;
7202
7203 count = 0;
7204 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7205 {
7206 asection *p;
7207 const struct elf_backend_data *bed;
7208
7209 bed = get_elf_backend_data (output_bfd);
7210 for (p = output_bfd->sections; p ; p = p->next)
7211 if ((p->flags & SEC_EXCLUDE) == 0
7212 && (p->flags & SEC_ALLOC) != 0
7213 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7214 ++count;
7215 }
7216 return count;
7217 }
7218
7219 /* This function is called after all the input files have been read,
7220 and the input sections have been assigned to output sections. We
7221 check for any mips16 stub sections that we can discard. */
7222
7223 bfd_boolean
7224 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
7225 struct bfd_link_info *info)
7226 {
7227 asection *ri;
7228
7229 bfd *dynobj;
7230 asection *s;
7231 struct mips_got_info *g;
7232 int i;
7233 bfd_size_type loadable_size = 0;
7234 bfd_size_type local_gotno;
7235 bfd_size_type dynsymcount;
7236 bfd *sub;
7237 struct mips_elf_count_tls_arg count_tls_arg;
7238 struct mips_elf_link_hash_table *htab;
7239
7240 htab = mips_elf_hash_table (info);
7241
7242 /* The .reginfo section has a fixed size. */
7243 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7244 if (ri != NULL)
7245 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7246
7247 if (! (info->relocatable
7248 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7249 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7250 mips_elf_check_mips16_stubs, NULL);
7251
7252 dynobj = elf_hash_table (info)->dynobj;
7253 if (dynobj == NULL)
7254 /* Relocatable links don't have it. */
7255 return TRUE;
7256
7257 g = mips_elf_got_info (dynobj, &s);
7258 if (s == NULL)
7259 return TRUE;
7260
7261 /* Calculate the total loadable size of the output. That
7262 will give us the maximum number of GOT_PAGE entries
7263 required. */
7264 for (sub = info->input_bfds; sub; sub = sub->link_next)
7265 {
7266 asection *subsection;
7267
7268 for (subsection = sub->sections;
7269 subsection;
7270 subsection = subsection->next)
7271 {
7272 if ((subsection->flags & SEC_ALLOC) == 0)
7273 continue;
7274 loadable_size += ((subsection->size + 0xf)
7275 &~ (bfd_size_type) 0xf);
7276 }
7277 }
7278
7279 /* There has to be a global GOT entry for every symbol with
7280 a dynamic symbol table index of DT_MIPS_GOTSYM or
7281 higher. Therefore, it make sense to put those symbols
7282 that need GOT entries at the end of the symbol table. We
7283 do that here. */
7284 if (! mips_elf_sort_hash_table (info, 1))
7285 return FALSE;
7286
7287 if (g->global_gotsym != NULL)
7288 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7289 else
7290 /* If there are no global symbols, or none requiring
7291 relocations, then GLOBAL_GOTSYM will be NULL. */
7292 i = 0;
7293
7294 /* Get a worst-case estimate of the number of dynamic symbols needed.
7295 At this point, dynsymcount does not account for section symbols
7296 and count_section_dynsyms may overestimate the number that will
7297 be needed. */
7298 dynsymcount = (elf_hash_table (info)->dynsymcount
7299 + count_section_dynsyms (output_bfd, info));
7300
7301 /* Determine the size of one stub entry. */
7302 htab->function_stub_size = (dynsymcount > 0x10000
7303 ? MIPS_FUNCTION_STUB_BIG_SIZE
7304 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7305
7306 /* In the worst case, we'll get one stub per dynamic symbol, plus
7307 one to account for the dummy entry at the end required by IRIX
7308 rld. */
7309 loadable_size += htab->function_stub_size * (i + 1);
7310
7311 if (htab->is_vxworks)
7312 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7313 relocations against local symbols evaluate to "G", and the EABI does
7314 not include R_MIPS_GOT_PAGE. */
7315 local_gotno = 0;
7316 else
7317 /* Assume there are two loadable segments consisting of contiguous
7318 sections. Is 5 enough? */
7319 local_gotno = (loadable_size >> 16) + 5;
7320
7321 g->local_gotno += local_gotno;
7322 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7323
7324 g->global_gotno = i;
7325 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
7326
7327 /* We need to calculate tls_gotno for global symbols at this point
7328 instead of building it up earlier, to avoid doublecounting
7329 entries for one global symbol from multiple input files. */
7330 count_tls_arg.info = info;
7331 count_tls_arg.needed = 0;
7332 elf_link_hash_traverse (elf_hash_table (info),
7333 mips_elf_count_global_tls_entries,
7334 &count_tls_arg);
7335 g->tls_gotno += count_tls_arg.needed;
7336 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7337
7338 mips_elf_resolve_final_got_entries (g);
7339
7340 /* VxWorks does not support multiple GOTs. It initializes $gp to
7341 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7342 dynamic loader. */
7343 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
7344 {
7345 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7346 return FALSE;
7347 }
7348 else
7349 {
7350 /* Set up TLS entries for the first GOT. */
7351 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7352 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7353 }
7354
7355 return TRUE;
7356 }
7357
7358 /* Set the sizes of the dynamic sections. */
7359
7360 bfd_boolean
7361 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7362 struct bfd_link_info *info)
7363 {
7364 bfd *dynobj;
7365 asection *s, *sreldyn;
7366 bfd_boolean reltext;
7367 struct mips_elf_link_hash_table *htab;
7368
7369 htab = mips_elf_hash_table (info);
7370 dynobj = elf_hash_table (info)->dynobj;
7371 BFD_ASSERT (dynobj != NULL);
7372
7373 if (elf_hash_table (info)->dynamic_sections_created)
7374 {
7375 /* Set the contents of the .interp section to the interpreter. */
7376 if (info->executable)
7377 {
7378 s = bfd_get_section_by_name (dynobj, ".interp");
7379 BFD_ASSERT (s != NULL);
7380 s->size
7381 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7382 s->contents
7383 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7384 }
7385 }
7386
7387 /* The check_relocs and adjust_dynamic_symbol entry points have
7388 determined the sizes of the various dynamic sections. Allocate
7389 memory for them. */
7390 reltext = FALSE;
7391 sreldyn = NULL;
7392 for (s = dynobj->sections; s != NULL; s = s->next)
7393 {
7394 const char *name;
7395
7396 /* It's OK to base decisions on the section name, because none
7397 of the dynobj section names depend upon the input files. */
7398 name = bfd_get_section_name (dynobj, s);
7399
7400 if ((s->flags & SEC_LINKER_CREATED) == 0)
7401 continue;
7402
7403 if (CONST_STRNEQ (name, ".rel"))
7404 {
7405 if (s->size != 0)
7406 {
7407 const char *outname;
7408 asection *target;
7409
7410 /* If this relocation section applies to a read only
7411 section, then we probably need a DT_TEXTREL entry.
7412 If the relocation section is .rel(a).dyn, we always
7413 assert a DT_TEXTREL entry rather than testing whether
7414 there exists a relocation to a read only section or
7415 not. */
7416 outname = bfd_get_section_name (output_bfd,
7417 s->output_section);
7418 target = bfd_get_section_by_name (output_bfd, outname + 4);
7419 if ((target != NULL
7420 && (target->flags & SEC_READONLY) != 0
7421 && (target->flags & SEC_ALLOC) != 0)
7422 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7423 reltext = TRUE;
7424
7425 /* We use the reloc_count field as a counter if we need
7426 to copy relocs into the output file. */
7427 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
7428 s->reloc_count = 0;
7429
7430 /* If combreloc is enabled, elf_link_sort_relocs() will
7431 sort relocations, but in a different way than we do,
7432 and before we're done creating relocations. Also, it
7433 will move them around between input sections'
7434 relocation's contents, so our sorting would be
7435 broken, so don't let it run. */
7436 info->combreloc = 0;
7437 }
7438 }
7439 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7440 {
7441 /* Executables do not need a GOT. */
7442 if (info->shared)
7443 {
7444 /* Allocate relocations for all but the reserved entries. */
7445 struct mips_got_info *g;
7446 unsigned int count;
7447
7448 g = mips_elf_got_info (dynobj, NULL);
7449 count = (g->global_gotno
7450 + g->local_gotno
7451 - MIPS_RESERVED_GOTNO (info));
7452 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7453 }
7454 }
7455 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
7456 {
7457 /* _bfd_mips_elf_always_size_sections() has already done
7458 most of the work, but some symbols may have been mapped
7459 to versions that we must now resolve in the got_entries
7460 hash tables. */
7461 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7462 struct mips_got_info *g = gg;
7463 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7464 unsigned int needed_relocs = 0;
7465
7466 if (gg->next)
7467 {
7468 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7469 set_got_offset_arg.info = info;
7470
7471 /* NOTE 2005-02-03: How can this call, or the next, ever
7472 find any indirect entries to resolve? They were all
7473 resolved in mips_elf_multi_got. */
7474 mips_elf_resolve_final_got_entries (gg);
7475 for (g = gg->next; g && g->next != gg; g = g->next)
7476 {
7477 unsigned int save_assign;
7478
7479 mips_elf_resolve_final_got_entries (g);
7480
7481 /* Assign offsets to global GOT entries. */
7482 save_assign = g->assigned_gotno;
7483 g->assigned_gotno = g->local_gotno;
7484 set_got_offset_arg.g = g;
7485 set_got_offset_arg.needed_relocs = 0;
7486 htab_traverse (g->got_entries,
7487 mips_elf_set_global_got_offset,
7488 &set_got_offset_arg);
7489 needed_relocs += set_got_offset_arg.needed_relocs;
7490 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7491 <= g->global_gotno);
7492
7493 g->assigned_gotno = save_assign;
7494 if (info->shared)
7495 {
7496 needed_relocs += g->local_gotno - g->assigned_gotno;
7497 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7498 + g->next->global_gotno
7499 + g->next->tls_gotno
7500 + MIPS_RESERVED_GOTNO (info));
7501 }
7502 }
7503 }
7504 else
7505 {
7506 struct mips_elf_count_tls_arg arg;
7507 arg.info = info;
7508 arg.needed = 0;
7509
7510 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7511 &arg);
7512 elf_link_hash_traverse (elf_hash_table (info),
7513 mips_elf_count_global_tls_relocs,
7514 &arg);
7515
7516 needed_relocs += arg.needed;
7517 }
7518
7519 if (needed_relocs)
7520 mips_elf_allocate_dynamic_relocations (dynobj, info,
7521 needed_relocs);
7522 }
7523 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7524 {
7525 /* IRIX rld assumes that the function stub isn't at the end
7526 of .text section. So put a dummy. XXX */
7527 s->size += htab->function_stub_size;
7528 }
7529 else if (! info->shared
7530 && ! mips_elf_hash_table (info)->use_rld_obj_head
7531 && CONST_STRNEQ (name, ".rld_map"))
7532 {
7533 /* We add a room for __rld_map. It will be filled in by the
7534 rtld to contain a pointer to the _r_debug structure. */
7535 s->size += 4;
7536 }
7537 else if (SGI_COMPAT (output_bfd)
7538 && CONST_STRNEQ (name, ".compact_rel"))
7539 s->size += mips_elf_hash_table (info)->compact_rel_size;
7540 else if (! CONST_STRNEQ (name, ".init")
7541 && s != htab->sgotplt
7542 && s != htab->splt)
7543 {
7544 /* It's not one of our sections, so don't allocate space. */
7545 continue;
7546 }
7547
7548 if (s->size == 0)
7549 {
7550 s->flags |= SEC_EXCLUDE;
7551 continue;
7552 }
7553
7554 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7555 continue;
7556
7557 /* Allocate memory for this section last, since we may increase its
7558 size above. */
7559 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7560 {
7561 sreldyn = s;
7562 continue;
7563 }
7564
7565 /* Allocate memory for the section contents. */
7566 s->contents = bfd_zalloc (dynobj, s->size);
7567 if (s->contents == NULL)
7568 {
7569 bfd_set_error (bfd_error_no_memory);
7570 return FALSE;
7571 }
7572 }
7573
7574 /* Allocate memory for the .rel(a).dyn section. */
7575 if (sreldyn != NULL)
7576 {
7577 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7578 if (sreldyn->contents == NULL)
7579 {
7580 bfd_set_error (bfd_error_no_memory);
7581 return FALSE;
7582 }
7583 }
7584
7585 if (elf_hash_table (info)->dynamic_sections_created)
7586 {
7587 /* Add some entries to the .dynamic section. We fill in the
7588 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7589 must add the entries now so that we get the correct size for
7590 the .dynamic section. */
7591
7592 /* SGI object has the equivalence of DT_DEBUG in the
7593 DT_MIPS_RLD_MAP entry. This must come first because glibc
7594 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
7595 looks at the first one it sees. */
7596 if (!info->shared
7597 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7598 return FALSE;
7599
7600 /* The DT_DEBUG entry may be filled in by the dynamic linker and
7601 used by the debugger. */
7602 if (info->executable
7603 && !SGI_COMPAT (output_bfd)
7604 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7605 return FALSE;
7606
7607 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
7608 info->flags |= DF_TEXTREL;
7609
7610 if ((info->flags & DF_TEXTREL) != 0)
7611 {
7612 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
7613 return FALSE;
7614
7615 /* Clear the DF_TEXTREL flag. It will be set again if we
7616 write out an actual text relocation; we may not, because
7617 at this point we do not know whether e.g. any .eh_frame
7618 absolute relocations have been converted to PC-relative. */
7619 info->flags &= ~DF_TEXTREL;
7620 }
7621
7622 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
7623 return FALSE;
7624
7625 if (htab->is_vxworks)
7626 {
7627 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7628 use any of the DT_MIPS_* tags. */
7629 if (mips_elf_rel_dyn_section (info, FALSE))
7630 {
7631 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7632 return FALSE;
7633
7634 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7635 return FALSE;
7636
7637 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7638 return FALSE;
7639 }
7640 if (htab->splt->size > 0)
7641 {
7642 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7643 return FALSE;
7644
7645 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7646 return FALSE;
7647
7648 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7649 return FALSE;
7650 }
7651 }
7652 else
7653 {
7654 if (mips_elf_rel_dyn_section (info, FALSE))
7655 {
7656 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7657 return FALSE;
7658
7659 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7660 return FALSE;
7661
7662 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7663 return FALSE;
7664 }
7665
7666 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7667 return FALSE;
7668
7669 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7670 return FALSE;
7671
7672 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7673 return FALSE;
7674
7675 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7676 return FALSE;
7677
7678 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7679 return FALSE;
7680
7681 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7682 return FALSE;
7683
7684 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7685 return FALSE;
7686
7687 if (IRIX_COMPAT (dynobj) == ict_irix5
7688 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7689 return FALSE;
7690
7691 if (IRIX_COMPAT (dynobj) == ict_irix6
7692 && (bfd_get_section_by_name
7693 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7694 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7695 return FALSE;
7696 }
7697 }
7698
7699 return TRUE;
7700 }
7701 \f
7702 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7703 Adjust its R_ADDEND field so that it is correct for the output file.
7704 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7705 and sections respectively; both use symbol indexes. */
7706
7707 static void
7708 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7709 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7710 asection **local_sections, Elf_Internal_Rela *rel)
7711 {
7712 unsigned int r_type, r_symndx;
7713 Elf_Internal_Sym *sym;
7714 asection *sec;
7715
7716 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7717 {
7718 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7719 if (r_type == R_MIPS16_GPREL
7720 || r_type == R_MIPS_GPREL16
7721 || r_type == R_MIPS_GPREL32
7722 || r_type == R_MIPS_LITERAL)
7723 {
7724 rel->r_addend += _bfd_get_gp_value (input_bfd);
7725 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7726 }
7727
7728 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7729 sym = local_syms + r_symndx;
7730
7731 /* Adjust REL's addend to account for section merging. */
7732 if (!info->relocatable)
7733 {
7734 sec = local_sections[r_symndx];
7735 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7736 }
7737
7738 /* This would normally be done by the rela_normal code in elflink.c. */
7739 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7740 rel->r_addend += local_sections[r_symndx]->output_offset;
7741 }
7742 }
7743
7744 /* Relocate a MIPS ELF section. */
7745
7746 bfd_boolean
7747 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7748 bfd *input_bfd, asection *input_section,
7749 bfd_byte *contents, Elf_Internal_Rela *relocs,
7750 Elf_Internal_Sym *local_syms,
7751 asection **local_sections)
7752 {
7753 Elf_Internal_Rela *rel;
7754 const Elf_Internal_Rela *relend;
7755 bfd_vma addend = 0;
7756 bfd_boolean use_saved_addend_p = FALSE;
7757 const struct elf_backend_data *bed;
7758
7759 bed = get_elf_backend_data (output_bfd);
7760 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7761 for (rel = relocs; rel < relend; ++rel)
7762 {
7763 const char *name;
7764 bfd_vma value = 0;
7765 reloc_howto_type *howto;
7766 bfd_boolean require_jalx;
7767 /* TRUE if the relocation is a RELA relocation, rather than a
7768 REL relocation. */
7769 bfd_boolean rela_relocation_p = TRUE;
7770 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7771 const char *msg;
7772 unsigned long r_symndx;
7773 asection *sec;
7774 Elf_Internal_Shdr *symtab_hdr;
7775 struct elf_link_hash_entry *h;
7776
7777 /* Find the relocation howto for this relocation. */
7778 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7779 NEWABI_P (input_bfd)
7780 && (MIPS_RELOC_RELA_P
7781 (input_bfd, input_section,
7782 rel - relocs)));
7783
7784 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
7785 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7786 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7787 {
7788 sec = local_sections[r_symndx];
7789 h = NULL;
7790 }
7791 else
7792 {
7793 unsigned long extsymoff;
7794
7795 extsymoff = 0;
7796 if (!elf_bad_symtab (input_bfd))
7797 extsymoff = symtab_hdr->sh_info;
7798 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
7799 while (h->root.type == bfd_link_hash_indirect
7800 || h->root.type == bfd_link_hash_warning)
7801 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7802
7803 sec = NULL;
7804 if (h->root.type == bfd_link_hash_defined
7805 || h->root.type == bfd_link_hash_defweak)
7806 sec = h->root.u.def.section;
7807 }
7808
7809 if (sec != NULL && elf_discarded_section (sec))
7810 {
7811 /* For relocs against symbols from removed linkonce sections,
7812 or sections discarded by a linker script, we just want the
7813 section contents zeroed. Avoid any special processing. */
7814 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7815 rel->r_info = 0;
7816 rel->r_addend = 0;
7817 continue;
7818 }
7819
7820 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
7821 {
7822 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7823 64-bit code, but make sure all their addresses are in the
7824 lowermost or uppermost 32-bit section of the 64-bit address
7825 space. Thus, when they use an R_MIPS_64 they mean what is
7826 usually meant by R_MIPS_32, with the exception that the
7827 stored value is sign-extended to 64 bits. */
7828 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
7829
7830 /* On big-endian systems, we need to lie about the position
7831 of the reloc. */
7832 if (bfd_big_endian (input_bfd))
7833 rel->r_offset += 4;
7834 }
7835
7836 if (!use_saved_addend_p)
7837 {
7838 Elf_Internal_Shdr *rel_hdr;
7839
7840 /* If these relocations were originally of the REL variety,
7841 we must pull the addend out of the field that will be
7842 relocated. Otherwise, we simply use the contents of the
7843 RELA relocation. To determine which flavor or relocation
7844 this is, we depend on the fact that the INPUT_SECTION's
7845 REL_HDR is read before its REL_HDR2. */
7846 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7847 if ((size_t) (rel - relocs)
7848 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7849 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7850 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7851 {
7852 bfd_byte *location = contents + rel->r_offset;
7853
7854 /* Note that this is a REL relocation. */
7855 rela_relocation_p = FALSE;
7856
7857 /* Get the addend, which is stored in the input file. */
7858 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7859 location);
7860 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7861 contents);
7862 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7863 location);
7864
7865 addend &= howto->src_mask;
7866
7867 /* For some kinds of relocations, the ADDEND is a
7868 combination of the addend stored in two different
7869 relocations. */
7870 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
7871 || (r_type == R_MIPS_GOT16
7872 && mips_elf_local_relocation_p (input_bfd, rel,
7873 local_sections, FALSE)))
7874 {
7875 const Elf_Internal_Rela *lo16_relocation;
7876 reloc_howto_type *lo16_howto;
7877 int lo16_type;
7878
7879 if (r_type == R_MIPS16_HI16)
7880 lo16_type = R_MIPS16_LO16;
7881 else
7882 lo16_type = R_MIPS_LO16;
7883
7884 /* The combined value is the sum of the HI16 addend,
7885 left-shifted by sixteen bits, and the LO16
7886 addend, sign extended. (Usually, the code does
7887 a `lui' of the HI16 value, and then an `addiu' of
7888 the LO16 value.)
7889
7890 Scan ahead to find a matching LO16 relocation.
7891
7892 According to the MIPS ELF ABI, the R_MIPS_LO16
7893 relocation must be immediately following.
7894 However, for the IRIX6 ABI, the next relocation
7895 may be a composed relocation consisting of
7896 several relocations for the same address. In
7897 that case, the R_MIPS_LO16 relocation may occur
7898 as one of these. We permit a similar extension
7899 in general, as that is useful for GCC.
7900
7901 In some cases GCC dead code elimination removes
7902 the LO16 but keeps the corresponding HI16. This
7903 is strictly speaking a violation of the ABI but
7904 not immediately harmful. */
7905 lo16_relocation = mips_elf_next_relocation (input_bfd,
7906 lo16_type,
7907 rel, relend);
7908 if (lo16_relocation == NULL)
7909 {
7910 const char *name;
7911
7912 if (h)
7913 name = h->root.root.string;
7914 else
7915 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
7916 local_syms + r_symndx,
7917 sec);
7918 (*_bfd_error_handler)
7919 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
7920 input_bfd, input_section, name, howto->name,
7921 rel->r_offset);
7922 }
7923 else
7924 {
7925 bfd_byte *lo16_location;
7926 bfd_vma l;
7927
7928 lo16_location = contents + lo16_relocation->r_offset;
7929
7930 /* Obtain the addend kept there. */
7931 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7932 lo16_type, FALSE);
7933 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type,
7934 FALSE, lo16_location);
7935 l = mips_elf_obtain_contents (lo16_howto,
7936 lo16_relocation,
7937 input_bfd, contents);
7938 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type,
7939 FALSE, lo16_location);
7940 l &= lo16_howto->src_mask;
7941 l <<= lo16_howto->rightshift;
7942 l = _bfd_mips_elf_sign_extend (l, 16);
7943
7944 addend <<= 16;
7945
7946 /* Compute the combined addend. */
7947 addend += l;
7948 }
7949 }
7950 else
7951 addend <<= howto->rightshift;
7952 }
7953 else
7954 addend = rel->r_addend;
7955 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7956 local_syms, local_sections, rel);
7957 }
7958
7959 if (info->relocatable)
7960 {
7961 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
7962 && bfd_big_endian (input_bfd))
7963 rel->r_offset -= 4;
7964
7965 if (!rela_relocation_p && rel->r_addend)
7966 {
7967 addend += rel->r_addend;
7968 if (r_type == R_MIPS_HI16
7969 || r_type == R_MIPS_GOT16)
7970 addend = mips_elf_high (addend);
7971 else if (r_type == R_MIPS_HIGHER)
7972 addend = mips_elf_higher (addend);
7973 else if (r_type == R_MIPS_HIGHEST)
7974 addend = mips_elf_highest (addend);
7975 else
7976 addend >>= howto->rightshift;
7977
7978 /* We use the source mask, rather than the destination
7979 mask because the place to which we are writing will be
7980 source of the addend in the final link. */
7981 addend &= howto->src_mask;
7982
7983 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7984 /* See the comment above about using R_MIPS_64 in the 32-bit
7985 ABI. Here, we need to update the addend. It would be
7986 possible to get away with just using the R_MIPS_32 reloc
7987 but for endianness. */
7988 {
7989 bfd_vma sign_bits;
7990 bfd_vma low_bits;
7991 bfd_vma high_bits;
7992
7993 if (addend & ((bfd_vma) 1 << 31))
7994 #ifdef BFD64
7995 sign_bits = ((bfd_vma) 1 << 32) - 1;
7996 #else
7997 sign_bits = -1;
7998 #endif
7999 else
8000 sign_bits = 0;
8001
8002 /* If we don't know that we have a 64-bit type,
8003 do two separate stores. */
8004 if (bfd_big_endian (input_bfd))
8005 {
8006 /* Store the sign-bits (which are most significant)
8007 first. */
8008 low_bits = sign_bits;
8009 high_bits = addend;
8010 }
8011 else
8012 {
8013 low_bits = addend;
8014 high_bits = sign_bits;
8015 }
8016 bfd_put_32 (input_bfd, low_bits,
8017 contents + rel->r_offset);
8018 bfd_put_32 (input_bfd, high_bits,
8019 contents + rel->r_offset + 4);
8020 continue;
8021 }
8022
8023 if (! mips_elf_perform_relocation (info, howto, rel, addend,
8024 input_bfd, input_section,
8025 contents, FALSE))
8026 return FALSE;
8027 }
8028
8029 /* Go on to the next relocation. */
8030 continue;
8031 }
8032
8033 /* In the N32 and 64-bit ABIs there may be multiple consecutive
8034 relocations for the same offset. In that case we are
8035 supposed to treat the output of each relocation as the addend
8036 for the next. */
8037 if (rel + 1 < relend
8038 && rel->r_offset == rel[1].r_offset
8039 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
8040 use_saved_addend_p = TRUE;
8041 else
8042 use_saved_addend_p = FALSE;
8043
8044 /* Figure out what value we are supposed to relocate. */
8045 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
8046 input_section, info, rel,
8047 addend, howto, local_syms,
8048 local_sections, &value,
8049 &name, &require_jalx,
8050 use_saved_addend_p))
8051 {
8052 case bfd_reloc_continue:
8053 /* There's nothing to do. */
8054 continue;
8055
8056 case bfd_reloc_undefined:
8057 /* mips_elf_calculate_relocation already called the
8058 undefined_symbol callback. There's no real point in
8059 trying to perform the relocation at this point, so we
8060 just skip ahead to the next relocation. */
8061 continue;
8062
8063 case bfd_reloc_notsupported:
8064 msg = _("internal error: unsupported relocation error");
8065 info->callbacks->warning
8066 (info, msg, name, input_bfd, input_section, rel->r_offset);
8067 return FALSE;
8068
8069 case bfd_reloc_overflow:
8070 if (use_saved_addend_p)
8071 /* Ignore overflow until we reach the last relocation for
8072 a given location. */
8073 ;
8074 else
8075 {
8076 BFD_ASSERT (name != NULL);
8077 if (! ((*info->callbacks->reloc_overflow)
8078 (info, NULL, name, howto->name, (bfd_vma) 0,
8079 input_bfd, input_section, rel->r_offset)))
8080 return FALSE;
8081 }
8082 break;
8083
8084 case bfd_reloc_ok:
8085 break;
8086
8087 default:
8088 abort ();
8089 break;
8090 }
8091
8092 /* If we've got another relocation for the address, keep going
8093 until we reach the last one. */
8094 if (use_saved_addend_p)
8095 {
8096 addend = value;
8097 continue;
8098 }
8099
8100 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
8101 /* See the comment above about using R_MIPS_64 in the 32-bit
8102 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8103 that calculated the right value. Now, however, we
8104 sign-extend the 32-bit result to 64-bits, and store it as a
8105 64-bit value. We are especially generous here in that we
8106 go to extreme lengths to support this usage on systems with
8107 only a 32-bit VMA. */
8108 {
8109 bfd_vma sign_bits;
8110 bfd_vma low_bits;
8111 bfd_vma high_bits;
8112
8113 if (value & ((bfd_vma) 1 << 31))
8114 #ifdef BFD64
8115 sign_bits = ((bfd_vma) 1 << 32) - 1;
8116 #else
8117 sign_bits = -1;
8118 #endif
8119 else
8120 sign_bits = 0;
8121
8122 /* If we don't know that we have a 64-bit type,
8123 do two separate stores. */
8124 if (bfd_big_endian (input_bfd))
8125 {
8126 /* Undo what we did above. */
8127 rel->r_offset -= 4;
8128 /* Store the sign-bits (which are most significant)
8129 first. */
8130 low_bits = sign_bits;
8131 high_bits = value;
8132 }
8133 else
8134 {
8135 low_bits = value;
8136 high_bits = sign_bits;
8137 }
8138 bfd_put_32 (input_bfd, low_bits,
8139 contents + rel->r_offset);
8140 bfd_put_32 (input_bfd, high_bits,
8141 contents + rel->r_offset + 4);
8142 continue;
8143 }
8144
8145 /* Actually perform the relocation. */
8146 if (! mips_elf_perform_relocation (info, howto, rel, value,
8147 input_bfd, input_section,
8148 contents, require_jalx))
8149 return FALSE;
8150 }
8151
8152 return TRUE;
8153 }
8154 \f
8155 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8156 adjust it appropriately now. */
8157
8158 static void
8159 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8160 const char *name, Elf_Internal_Sym *sym)
8161 {
8162 /* The linker script takes care of providing names and values for
8163 these, but we must place them into the right sections. */
8164 static const char* const text_section_symbols[] = {
8165 "_ftext",
8166 "_etext",
8167 "__dso_displacement",
8168 "__elf_header",
8169 "__program_header_table",
8170 NULL
8171 };
8172
8173 static const char* const data_section_symbols[] = {
8174 "_fdata",
8175 "_edata",
8176 "_end",
8177 "_fbss",
8178 NULL
8179 };
8180
8181 const char* const *p;
8182 int i;
8183
8184 for (i = 0; i < 2; ++i)
8185 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8186 *p;
8187 ++p)
8188 if (strcmp (*p, name) == 0)
8189 {
8190 /* All of these symbols are given type STT_SECTION by the
8191 IRIX6 linker. */
8192 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8193 sym->st_other = STO_PROTECTED;
8194
8195 /* The IRIX linker puts these symbols in special sections. */
8196 if (i == 0)
8197 sym->st_shndx = SHN_MIPS_TEXT;
8198 else
8199 sym->st_shndx = SHN_MIPS_DATA;
8200
8201 break;
8202 }
8203 }
8204
8205 /* Finish up dynamic symbol handling. We set the contents of various
8206 dynamic sections here. */
8207
8208 bfd_boolean
8209 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8210 struct bfd_link_info *info,
8211 struct elf_link_hash_entry *h,
8212 Elf_Internal_Sym *sym)
8213 {
8214 bfd *dynobj;
8215 asection *sgot;
8216 struct mips_got_info *g, *gg;
8217 const char *name;
8218 int idx;
8219 struct mips_elf_link_hash_table *htab;
8220
8221 htab = mips_elf_hash_table (info);
8222 dynobj = elf_hash_table (info)->dynobj;
8223
8224 if (h->plt.offset != MINUS_ONE)
8225 {
8226 asection *s;
8227 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
8228
8229 /* This symbol has a stub. Set it up. */
8230
8231 BFD_ASSERT (h->dynindx != -1);
8232
8233 s = bfd_get_section_by_name (dynobj,
8234 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8235 BFD_ASSERT (s != NULL);
8236
8237 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8238 || (h->dynindx <= 0xffff));
8239
8240 /* Values up to 2^31 - 1 are allowed. Larger values would cause
8241 sign extension at runtime in the stub, resulting in a negative
8242 index value. */
8243 if (h->dynindx & ~0x7fffffff)
8244 return FALSE;
8245
8246 /* Fill the stub. */
8247 idx = 0;
8248 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8249 idx += 4;
8250 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8251 idx += 4;
8252 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8253 {
8254 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
8255 stub + idx);
8256 idx += 4;
8257 }
8258 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8259 idx += 4;
8260
8261 /* If a large stub is not required and sign extension is not a
8262 problem, then use legacy code in the stub. */
8263 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8264 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8265 else if (h->dynindx & ~0x7fff)
8266 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8267 else
8268 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8269 stub + idx);
8270
8271 BFD_ASSERT (h->plt.offset <= s->size);
8272 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
8273
8274 /* Mark the symbol as undefined. plt.offset != -1 occurs
8275 only for the referenced symbol. */
8276 sym->st_shndx = SHN_UNDEF;
8277
8278 /* The run-time linker uses the st_value field of the symbol
8279 to reset the global offset table entry for this external
8280 to its stub address when unlinking a shared object. */
8281 sym->st_value = (s->output_section->vma + s->output_offset
8282 + h->plt.offset);
8283 }
8284
8285 BFD_ASSERT (h->dynindx != -1
8286 || h->forced_local);
8287
8288 sgot = mips_elf_got_section (dynobj, FALSE);
8289 BFD_ASSERT (sgot != NULL);
8290 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8291 g = mips_elf_section_data (sgot)->u.got_info;
8292 BFD_ASSERT (g != NULL);
8293
8294 /* Run through the global symbol table, creating GOT entries for all
8295 the symbols that need them. */
8296 if (g->global_gotsym != NULL
8297 && h->dynindx >= g->global_gotsym->dynindx)
8298 {
8299 bfd_vma offset;
8300 bfd_vma value;
8301
8302 value = sym->st_value;
8303 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
8304 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8305 }
8306
8307 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
8308 {
8309 struct mips_got_entry e, *p;
8310 bfd_vma entry;
8311 bfd_vma offset;
8312
8313 gg = g;
8314
8315 e.abfd = output_bfd;
8316 e.symndx = -1;
8317 e.d.h = (struct mips_elf_link_hash_entry *)h;
8318 e.tls_type = 0;
8319
8320 for (g = g->next; g->next != gg; g = g->next)
8321 {
8322 if (g->got_entries
8323 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8324 &e)))
8325 {
8326 offset = p->gotidx;
8327 if (info->shared
8328 || (elf_hash_table (info)->dynamic_sections_created
8329 && p->d.h != NULL
8330 && p->d.h->root.def_dynamic
8331 && !p->d.h->root.def_regular))
8332 {
8333 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8334 the various compatibility problems, it's easier to mock
8335 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8336 mips_elf_create_dynamic_relocation to calculate the
8337 appropriate addend. */
8338 Elf_Internal_Rela rel[3];
8339
8340 memset (rel, 0, sizeof (rel));
8341 if (ABI_64_P (output_bfd))
8342 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8343 else
8344 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8345 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8346
8347 entry = 0;
8348 if (! (mips_elf_create_dynamic_relocation
8349 (output_bfd, info, rel,
8350 e.d.h, NULL, sym->st_value, &entry, sgot)))
8351 return FALSE;
8352 }
8353 else
8354 entry = sym->st_value;
8355 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
8356 }
8357 }
8358 }
8359
8360 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8361 name = h->root.root.string;
8362 if (strcmp (name, "_DYNAMIC") == 0
8363 || h == elf_hash_table (info)->hgot)
8364 sym->st_shndx = SHN_ABS;
8365 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8366 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8367 {
8368 sym->st_shndx = SHN_ABS;
8369 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8370 sym->st_value = 1;
8371 }
8372 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
8373 {
8374 sym->st_shndx = SHN_ABS;
8375 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8376 sym->st_value = elf_gp (output_bfd);
8377 }
8378 else if (SGI_COMPAT (output_bfd))
8379 {
8380 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8381 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8382 {
8383 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8384 sym->st_other = STO_PROTECTED;
8385 sym->st_value = 0;
8386 sym->st_shndx = SHN_MIPS_DATA;
8387 }
8388 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8389 {
8390 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8391 sym->st_other = STO_PROTECTED;
8392 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8393 sym->st_shndx = SHN_ABS;
8394 }
8395 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8396 {
8397 if (h->type == STT_FUNC)
8398 sym->st_shndx = SHN_MIPS_TEXT;
8399 else if (h->type == STT_OBJECT)
8400 sym->st_shndx = SHN_MIPS_DATA;
8401 }
8402 }
8403
8404 /* Handle the IRIX6-specific symbols. */
8405 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8406 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8407
8408 if (! info->shared)
8409 {
8410 if (! mips_elf_hash_table (info)->use_rld_obj_head
8411 && (strcmp (name, "__rld_map") == 0
8412 || strcmp (name, "__RLD_MAP") == 0))
8413 {
8414 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8415 BFD_ASSERT (s != NULL);
8416 sym->st_value = s->output_section->vma + s->output_offset;
8417 bfd_put_32 (output_bfd, 0, s->contents);
8418 if (mips_elf_hash_table (info)->rld_value == 0)
8419 mips_elf_hash_table (info)->rld_value = sym->st_value;
8420 }
8421 else if (mips_elf_hash_table (info)->use_rld_obj_head
8422 && strcmp (name, "__rld_obj_head") == 0)
8423 {
8424 /* IRIX6 does not use a .rld_map section. */
8425 if (IRIX_COMPAT (output_bfd) == ict_irix5
8426 || IRIX_COMPAT (output_bfd) == ict_none)
8427 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8428 != NULL);
8429 mips_elf_hash_table (info)->rld_value = sym->st_value;
8430 }
8431 }
8432
8433 /* If this is a mips16 symbol, force the value to be even. */
8434 if (sym->st_other == STO_MIPS16)
8435 sym->st_value &= ~1;
8436
8437 return TRUE;
8438 }
8439
8440 /* Likewise, for VxWorks. */
8441
8442 bfd_boolean
8443 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8444 struct bfd_link_info *info,
8445 struct elf_link_hash_entry *h,
8446 Elf_Internal_Sym *sym)
8447 {
8448 bfd *dynobj;
8449 asection *sgot;
8450 struct mips_got_info *g;
8451 struct mips_elf_link_hash_table *htab;
8452
8453 htab = mips_elf_hash_table (info);
8454 dynobj = elf_hash_table (info)->dynobj;
8455
8456 if (h->plt.offset != (bfd_vma) -1)
8457 {
8458 bfd_byte *loc;
8459 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8460 Elf_Internal_Rela rel;
8461 static const bfd_vma *plt_entry;
8462
8463 BFD_ASSERT (h->dynindx != -1);
8464 BFD_ASSERT (htab->splt != NULL);
8465 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8466
8467 /* Calculate the address of the .plt entry. */
8468 plt_address = (htab->splt->output_section->vma
8469 + htab->splt->output_offset
8470 + h->plt.offset);
8471
8472 /* Calculate the index of the entry. */
8473 plt_index = ((h->plt.offset - htab->plt_header_size)
8474 / htab->plt_entry_size);
8475
8476 /* Calculate the address of the .got.plt entry. */
8477 got_address = (htab->sgotplt->output_section->vma
8478 + htab->sgotplt->output_offset
8479 + plt_index * 4);
8480
8481 /* Calculate the offset of the .got.plt entry from
8482 _GLOBAL_OFFSET_TABLE_. */
8483 got_offset = mips_elf_gotplt_index (info, h);
8484
8485 /* Calculate the offset for the branch at the start of the PLT
8486 entry. The branch jumps to the beginning of .plt. */
8487 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8488
8489 /* Fill in the initial value of the .got.plt entry. */
8490 bfd_put_32 (output_bfd, plt_address,
8491 htab->sgotplt->contents + plt_index * 4);
8492
8493 /* Find out where the .plt entry should go. */
8494 loc = htab->splt->contents + h->plt.offset;
8495
8496 if (info->shared)
8497 {
8498 plt_entry = mips_vxworks_shared_plt_entry;
8499 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8500 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8501 }
8502 else
8503 {
8504 bfd_vma got_address_high, got_address_low;
8505
8506 plt_entry = mips_vxworks_exec_plt_entry;
8507 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8508 got_address_low = got_address & 0xffff;
8509
8510 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8511 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8512 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8513 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8514 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8515 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8516 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8517 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8518
8519 loc = (htab->srelplt2->contents
8520 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8521
8522 /* Emit a relocation for the .got.plt entry. */
8523 rel.r_offset = got_address;
8524 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8525 rel.r_addend = h->plt.offset;
8526 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8527
8528 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8529 loc += sizeof (Elf32_External_Rela);
8530 rel.r_offset = plt_address + 8;
8531 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8532 rel.r_addend = got_offset;
8533 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8534
8535 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8536 loc += sizeof (Elf32_External_Rela);
8537 rel.r_offset += 4;
8538 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8539 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8540 }
8541
8542 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8543 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8544 rel.r_offset = got_address;
8545 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8546 rel.r_addend = 0;
8547 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8548
8549 if (!h->def_regular)
8550 sym->st_shndx = SHN_UNDEF;
8551 }
8552
8553 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8554
8555 sgot = mips_elf_got_section (dynobj, FALSE);
8556 BFD_ASSERT (sgot != NULL);
8557 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8558 g = mips_elf_section_data (sgot)->u.got_info;
8559 BFD_ASSERT (g != NULL);
8560
8561 /* See if this symbol has an entry in the GOT. */
8562 if (g->global_gotsym != NULL
8563 && h->dynindx >= g->global_gotsym->dynindx)
8564 {
8565 bfd_vma offset;
8566 Elf_Internal_Rela outrel;
8567 bfd_byte *loc;
8568 asection *s;
8569
8570 /* Install the symbol value in the GOT. */
8571 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8572 R_MIPS_GOT16, info);
8573 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8574
8575 /* Add a dynamic relocation for it. */
8576 s = mips_elf_rel_dyn_section (info, FALSE);
8577 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8578 outrel.r_offset = (sgot->output_section->vma
8579 + sgot->output_offset
8580 + offset);
8581 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8582 outrel.r_addend = 0;
8583 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8584 }
8585
8586 /* Emit a copy reloc, if needed. */
8587 if (h->needs_copy)
8588 {
8589 Elf_Internal_Rela rel;
8590
8591 BFD_ASSERT (h->dynindx != -1);
8592
8593 rel.r_offset = (h->root.u.def.section->output_section->vma
8594 + h->root.u.def.section->output_offset
8595 + h->root.u.def.value);
8596 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8597 rel.r_addend = 0;
8598 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8599 htab->srelbss->contents
8600 + (htab->srelbss->reloc_count
8601 * sizeof (Elf32_External_Rela)));
8602 ++htab->srelbss->reloc_count;
8603 }
8604
8605 /* If this is a mips16 symbol, force the value to be even. */
8606 if (sym->st_other == STO_MIPS16)
8607 sym->st_value &= ~1;
8608
8609 return TRUE;
8610 }
8611
8612 /* Install the PLT header for a VxWorks executable and finalize the
8613 contents of .rela.plt.unloaded. */
8614
8615 static void
8616 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8617 {
8618 Elf_Internal_Rela rela;
8619 bfd_byte *loc;
8620 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8621 static const bfd_vma *plt_entry;
8622 struct mips_elf_link_hash_table *htab;
8623
8624 htab = mips_elf_hash_table (info);
8625 plt_entry = mips_vxworks_exec_plt0_entry;
8626
8627 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8628 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8629 + htab->root.hgot->root.u.def.section->output_offset
8630 + htab->root.hgot->root.u.def.value);
8631
8632 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8633 got_value_low = got_value & 0xffff;
8634
8635 /* Calculate the address of the PLT header. */
8636 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8637
8638 /* Install the PLT header. */
8639 loc = htab->splt->contents;
8640 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8641 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8642 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8643 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8644 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8645 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8646
8647 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8648 loc = htab->srelplt2->contents;
8649 rela.r_offset = plt_address;
8650 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8651 rela.r_addend = 0;
8652 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8653 loc += sizeof (Elf32_External_Rela);
8654
8655 /* Output the relocation for the following addiu of
8656 %lo(_GLOBAL_OFFSET_TABLE_). */
8657 rela.r_offset += 4;
8658 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8659 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8660 loc += sizeof (Elf32_External_Rela);
8661
8662 /* Fix up the remaining relocations. They may have the wrong
8663 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8664 in which symbols were output. */
8665 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8666 {
8667 Elf_Internal_Rela rel;
8668
8669 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8670 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8671 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8672 loc += sizeof (Elf32_External_Rela);
8673
8674 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8675 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8676 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8677 loc += sizeof (Elf32_External_Rela);
8678
8679 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8680 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8681 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8682 loc += sizeof (Elf32_External_Rela);
8683 }
8684 }
8685
8686 /* Install the PLT header for a VxWorks shared library. */
8687
8688 static void
8689 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8690 {
8691 unsigned int i;
8692 struct mips_elf_link_hash_table *htab;
8693
8694 htab = mips_elf_hash_table (info);
8695
8696 /* We just need to copy the entry byte-by-byte. */
8697 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8698 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8699 htab->splt->contents + i * 4);
8700 }
8701
8702 /* Finish up the dynamic sections. */
8703
8704 bfd_boolean
8705 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8706 struct bfd_link_info *info)
8707 {
8708 bfd *dynobj;
8709 asection *sdyn;
8710 asection *sgot;
8711 struct mips_got_info *gg, *g;
8712 struct mips_elf_link_hash_table *htab;
8713
8714 htab = mips_elf_hash_table (info);
8715 dynobj = elf_hash_table (info)->dynobj;
8716
8717 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8718
8719 sgot = mips_elf_got_section (dynobj, FALSE);
8720 if (sgot == NULL)
8721 gg = g = NULL;
8722 else
8723 {
8724 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8725 gg = mips_elf_section_data (sgot)->u.got_info;
8726 BFD_ASSERT (gg != NULL);
8727 g = mips_elf_got_for_ibfd (gg, output_bfd);
8728 BFD_ASSERT (g != NULL);
8729 }
8730
8731 if (elf_hash_table (info)->dynamic_sections_created)
8732 {
8733 bfd_byte *b;
8734 int dyn_to_skip = 0, dyn_skipped = 0;
8735
8736 BFD_ASSERT (sdyn != NULL);
8737 BFD_ASSERT (g != NULL);
8738
8739 for (b = sdyn->contents;
8740 b < sdyn->contents + sdyn->size;
8741 b += MIPS_ELF_DYN_SIZE (dynobj))
8742 {
8743 Elf_Internal_Dyn dyn;
8744 const char *name;
8745 size_t elemsize;
8746 asection *s;
8747 bfd_boolean swap_out_p;
8748
8749 /* Read in the current dynamic entry. */
8750 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8751
8752 /* Assume that we're going to modify it and write it out. */
8753 swap_out_p = TRUE;
8754
8755 switch (dyn.d_tag)
8756 {
8757 case DT_RELENT:
8758 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8759 break;
8760
8761 case DT_RELAENT:
8762 BFD_ASSERT (htab->is_vxworks);
8763 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8764 break;
8765
8766 case DT_STRSZ:
8767 /* Rewrite DT_STRSZ. */
8768 dyn.d_un.d_val =
8769 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8770 break;
8771
8772 case DT_PLTGOT:
8773 name = ".got";
8774 if (htab->is_vxworks)
8775 {
8776 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8777 of the ".got" section in DYNOBJ. */
8778 s = bfd_get_section_by_name (dynobj, name);
8779 BFD_ASSERT (s != NULL);
8780 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8781 }
8782 else
8783 {
8784 s = bfd_get_section_by_name (output_bfd, name);
8785 BFD_ASSERT (s != NULL);
8786 dyn.d_un.d_ptr = s->vma;
8787 }
8788 break;
8789
8790 case DT_MIPS_RLD_VERSION:
8791 dyn.d_un.d_val = 1; /* XXX */
8792 break;
8793
8794 case DT_MIPS_FLAGS:
8795 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8796 break;
8797
8798 case DT_MIPS_TIME_STAMP:
8799 {
8800 time_t t;
8801 time (&t);
8802 dyn.d_un.d_val = t;
8803 }
8804 break;
8805
8806 case DT_MIPS_ICHECKSUM:
8807 /* XXX FIXME: */
8808 swap_out_p = FALSE;
8809 break;
8810
8811 case DT_MIPS_IVERSION:
8812 /* XXX FIXME: */
8813 swap_out_p = FALSE;
8814 break;
8815
8816 case DT_MIPS_BASE_ADDRESS:
8817 s = output_bfd->sections;
8818 BFD_ASSERT (s != NULL);
8819 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8820 break;
8821
8822 case DT_MIPS_LOCAL_GOTNO:
8823 dyn.d_un.d_val = g->local_gotno;
8824 break;
8825
8826 case DT_MIPS_UNREFEXTNO:
8827 /* The index into the dynamic symbol table which is the
8828 entry of the first external symbol that is not
8829 referenced within the same object. */
8830 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8831 break;
8832
8833 case DT_MIPS_GOTSYM:
8834 if (gg->global_gotsym)
8835 {
8836 dyn.d_un.d_val = gg->global_gotsym->dynindx;
8837 break;
8838 }
8839 /* In case if we don't have global got symbols we default
8840 to setting DT_MIPS_GOTSYM to the same value as
8841 DT_MIPS_SYMTABNO, so we just fall through. */
8842
8843 case DT_MIPS_SYMTABNO:
8844 name = ".dynsym";
8845 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8846 s = bfd_get_section_by_name (output_bfd, name);
8847 BFD_ASSERT (s != NULL);
8848
8849 dyn.d_un.d_val = s->size / elemsize;
8850 break;
8851
8852 case DT_MIPS_HIPAGENO:
8853 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
8854 break;
8855
8856 case DT_MIPS_RLD_MAP:
8857 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8858 break;
8859
8860 case DT_MIPS_OPTIONS:
8861 s = (bfd_get_section_by_name
8862 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8863 dyn.d_un.d_ptr = s->vma;
8864 break;
8865
8866 case DT_RELASZ:
8867 BFD_ASSERT (htab->is_vxworks);
8868 /* The count does not include the JUMP_SLOT relocations. */
8869 if (htab->srelplt)
8870 dyn.d_un.d_val -= htab->srelplt->size;
8871 break;
8872
8873 case DT_PLTREL:
8874 BFD_ASSERT (htab->is_vxworks);
8875 dyn.d_un.d_val = DT_RELA;
8876 break;
8877
8878 case DT_PLTRELSZ:
8879 BFD_ASSERT (htab->is_vxworks);
8880 dyn.d_un.d_val = htab->srelplt->size;
8881 break;
8882
8883 case DT_JMPREL:
8884 BFD_ASSERT (htab->is_vxworks);
8885 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8886 + htab->srelplt->output_offset);
8887 break;
8888
8889 case DT_TEXTREL:
8890 /* If we didn't need any text relocations after all, delete
8891 the dynamic tag. */
8892 if (!(info->flags & DF_TEXTREL))
8893 {
8894 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8895 swap_out_p = FALSE;
8896 }
8897 break;
8898
8899 case DT_FLAGS:
8900 /* If we didn't need any text relocations after all, clear
8901 DF_TEXTREL from DT_FLAGS. */
8902 if (!(info->flags & DF_TEXTREL))
8903 dyn.d_un.d_val &= ~DF_TEXTREL;
8904 else
8905 swap_out_p = FALSE;
8906 break;
8907
8908 default:
8909 swap_out_p = FALSE;
8910 break;
8911 }
8912
8913 if (swap_out_p || dyn_skipped)
8914 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8915 (dynobj, &dyn, b - dyn_skipped);
8916
8917 if (dyn_to_skip)
8918 {
8919 dyn_skipped += dyn_to_skip;
8920 dyn_to_skip = 0;
8921 }
8922 }
8923
8924 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8925 if (dyn_skipped > 0)
8926 memset (b - dyn_skipped, 0, dyn_skipped);
8927 }
8928
8929 if (sgot != NULL && sgot->size > 0)
8930 {
8931 if (htab->is_vxworks)
8932 {
8933 /* The first entry of the global offset table points to the
8934 ".dynamic" section. The second is initialized by the
8935 loader and contains the shared library identifier.
8936 The third is also initialized by the loader and points
8937 to the lazy resolution stub. */
8938 MIPS_ELF_PUT_WORD (output_bfd,
8939 sdyn->output_offset + sdyn->output_section->vma,
8940 sgot->contents);
8941 MIPS_ELF_PUT_WORD (output_bfd, 0,
8942 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8943 MIPS_ELF_PUT_WORD (output_bfd, 0,
8944 sgot->contents
8945 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8946 }
8947 else
8948 {
8949 /* The first entry of the global offset table will be filled at
8950 runtime. The second entry will be used by some runtime loaders.
8951 This isn't the case of IRIX rld. */
8952 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8953 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8954 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8955 }
8956
8957 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8958 = MIPS_ELF_GOT_SIZE (output_bfd);
8959 }
8960
8961 /* Generate dynamic relocations for the non-primary gots. */
8962 if (gg != NULL && gg->next)
8963 {
8964 Elf_Internal_Rela rel[3];
8965 bfd_vma addend = 0;
8966
8967 memset (rel, 0, sizeof (rel));
8968 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8969
8970 for (g = gg->next; g->next != gg; g = g->next)
8971 {
8972 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8973 + g->next->tls_gotno;
8974
8975 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
8976 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8977 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
8978 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8979
8980 if (! info->shared)
8981 continue;
8982
8983 while (index < g->assigned_gotno)
8984 {
8985 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8986 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8987 if (!(mips_elf_create_dynamic_relocation
8988 (output_bfd, info, rel, NULL,
8989 bfd_abs_section_ptr,
8990 0, &addend, sgot)))
8991 return FALSE;
8992 BFD_ASSERT (addend == 0);
8993 }
8994 }
8995 }
8996
8997 /* The generation of dynamic relocations for the non-primary gots
8998 adds more dynamic relocations. We cannot count them until
8999 here. */
9000
9001 if (elf_hash_table (info)->dynamic_sections_created)
9002 {
9003 bfd_byte *b;
9004 bfd_boolean swap_out_p;
9005
9006 BFD_ASSERT (sdyn != NULL);
9007
9008 for (b = sdyn->contents;
9009 b < sdyn->contents + sdyn->size;
9010 b += MIPS_ELF_DYN_SIZE (dynobj))
9011 {
9012 Elf_Internal_Dyn dyn;
9013 asection *s;
9014
9015 /* Read in the current dynamic entry. */
9016 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9017
9018 /* Assume that we're going to modify it and write it out. */
9019 swap_out_p = TRUE;
9020
9021 switch (dyn.d_tag)
9022 {
9023 case DT_RELSZ:
9024 /* Reduce DT_RELSZ to account for any relocations we
9025 decided not to make. This is for the n64 irix rld,
9026 which doesn't seem to apply any relocations if there
9027 are trailing null entries. */
9028 s = mips_elf_rel_dyn_section (info, FALSE);
9029 dyn.d_un.d_val = (s->reloc_count
9030 * (ABI_64_P (output_bfd)
9031 ? sizeof (Elf64_Mips_External_Rel)
9032 : sizeof (Elf32_External_Rel)));
9033 /* Adjust the section size too. Tools like the prelinker
9034 can reasonably expect the values to the same. */
9035 elf_section_data (s->output_section)->this_hdr.sh_size
9036 = dyn.d_un.d_val;
9037 break;
9038
9039 default:
9040 swap_out_p = FALSE;
9041 break;
9042 }
9043
9044 if (swap_out_p)
9045 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9046 (dynobj, &dyn, b);
9047 }
9048 }
9049
9050 {
9051 asection *s;
9052 Elf32_compact_rel cpt;
9053
9054 if (SGI_COMPAT (output_bfd))
9055 {
9056 /* Write .compact_rel section out. */
9057 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9058 if (s != NULL)
9059 {
9060 cpt.id1 = 1;
9061 cpt.num = s->reloc_count;
9062 cpt.id2 = 2;
9063 cpt.offset = (s->output_section->filepos
9064 + sizeof (Elf32_External_compact_rel));
9065 cpt.reserved0 = 0;
9066 cpt.reserved1 = 0;
9067 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9068 ((Elf32_External_compact_rel *)
9069 s->contents));
9070
9071 /* Clean up a dummy stub function entry in .text. */
9072 s = bfd_get_section_by_name (dynobj,
9073 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9074 if (s != NULL)
9075 {
9076 file_ptr dummy_offset;
9077
9078 BFD_ASSERT (s->size >= htab->function_stub_size);
9079 dummy_offset = s->size - htab->function_stub_size;
9080 memset (s->contents + dummy_offset, 0,
9081 htab->function_stub_size);
9082 }
9083 }
9084 }
9085
9086 /* The psABI says that the dynamic relocations must be sorted in
9087 increasing order of r_symndx. The VxWorks EABI doesn't require
9088 this, and because the code below handles REL rather than RELA
9089 relocations, using it for VxWorks would be outright harmful. */
9090 if (!htab->is_vxworks)
9091 {
9092 s = mips_elf_rel_dyn_section (info, FALSE);
9093 if (s != NULL
9094 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9095 {
9096 reldyn_sorting_bfd = output_bfd;
9097
9098 if (ABI_64_P (output_bfd))
9099 qsort ((Elf64_External_Rel *) s->contents + 1,
9100 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9101 sort_dynamic_relocs_64);
9102 else
9103 qsort ((Elf32_External_Rel *) s->contents + 1,
9104 s->reloc_count - 1, sizeof (Elf32_External_Rel),
9105 sort_dynamic_relocs);
9106 }
9107 }
9108 }
9109
9110 if (htab->is_vxworks && htab->splt->size > 0)
9111 {
9112 if (info->shared)
9113 mips_vxworks_finish_shared_plt (output_bfd, info);
9114 else
9115 mips_vxworks_finish_exec_plt (output_bfd, info);
9116 }
9117 return TRUE;
9118 }
9119
9120
9121 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9122
9123 static void
9124 mips_set_isa_flags (bfd *abfd)
9125 {
9126 flagword val;
9127
9128 switch (bfd_get_mach (abfd))
9129 {
9130 default:
9131 case bfd_mach_mips3000:
9132 val = E_MIPS_ARCH_1;
9133 break;
9134
9135 case bfd_mach_mips3900:
9136 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9137 break;
9138
9139 case bfd_mach_mips6000:
9140 val = E_MIPS_ARCH_2;
9141 break;
9142
9143 case bfd_mach_mips4000:
9144 case bfd_mach_mips4300:
9145 case bfd_mach_mips4400:
9146 case bfd_mach_mips4600:
9147 val = E_MIPS_ARCH_3;
9148 break;
9149
9150 case bfd_mach_mips4010:
9151 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9152 break;
9153
9154 case bfd_mach_mips4100:
9155 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9156 break;
9157
9158 case bfd_mach_mips4111:
9159 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9160 break;
9161
9162 case bfd_mach_mips4120:
9163 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9164 break;
9165
9166 case bfd_mach_mips4650:
9167 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9168 break;
9169
9170 case bfd_mach_mips5400:
9171 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9172 break;
9173
9174 case bfd_mach_mips5500:
9175 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9176 break;
9177
9178 case bfd_mach_mips9000:
9179 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9180 break;
9181
9182 case bfd_mach_mips5000:
9183 case bfd_mach_mips7000:
9184 case bfd_mach_mips8000:
9185 case bfd_mach_mips10000:
9186 case bfd_mach_mips12000:
9187 val = E_MIPS_ARCH_4;
9188 break;
9189
9190 case bfd_mach_mips5:
9191 val = E_MIPS_ARCH_5;
9192 break;
9193
9194 case bfd_mach_mips_sb1:
9195 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9196 break;
9197
9198 case bfd_mach_mipsisa32:
9199 val = E_MIPS_ARCH_32;
9200 break;
9201
9202 case bfd_mach_mipsisa64:
9203 val = E_MIPS_ARCH_64;
9204 break;
9205
9206 case bfd_mach_mipsisa32r2:
9207 val = E_MIPS_ARCH_32R2;
9208 break;
9209
9210 case bfd_mach_mipsisa64r2:
9211 val = E_MIPS_ARCH_64R2;
9212 break;
9213 }
9214 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9215 elf_elfheader (abfd)->e_flags |= val;
9216
9217 }
9218
9219
9220 /* The final processing done just before writing out a MIPS ELF object
9221 file. This gets the MIPS architecture right based on the machine
9222 number. This is used by both the 32-bit and the 64-bit ABI. */
9223
9224 void
9225 _bfd_mips_elf_final_write_processing (bfd *abfd,
9226 bfd_boolean linker ATTRIBUTE_UNUSED)
9227 {
9228 unsigned int i;
9229 Elf_Internal_Shdr **hdrpp;
9230 const char *name;
9231 asection *sec;
9232
9233 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9234 is nonzero. This is for compatibility with old objects, which used
9235 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9236 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9237 mips_set_isa_flags (abfd);
9238
9239 /* Set the sh_info field for .gptab sections and other appropriate
9240 info for each special section. */
9241 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9242 i < elf_numsections (abfd);
9243 i++, hdrpp++)
9244 {
9245 switch ((*hdrpp)->sh_type)
9246 {
9247 case SHT_MIPS_MSYM:
9248 case SHT_MIPS_LIBLIST:
9249 sec = bfd_get_section_by_name (abfd, ".dynstr");
9250 if (sec != NULL)
9251 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9252 break;
9253
9254 case SHT_MIPS_GPTAB:
9255 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9256 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9257 BFD_ASSERT (name != NULL
9258 && CONST_STRNEQ (name, ".gptab."));
9259 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9260 BFD_ASSERT (sec != NULL);
9261 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9262 break;
9263
9264 case SHT_MIPS_CONTENT:
9265 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9266 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9267 BFD_ASSERT (name != NULL
9268 && CONST_STRNEQ (name, ".MIPS.content"));
9269 sec = bfd_get_section_by_name (abfd,
9270 name + sizeof ".MIPS.content" - 1);
9271 BFD_ASSERT (sec != NULL);
9272 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9273 break;
9274
9275 case SHT_MIPS_SYMBOL_LIB:
9276 sec = bfd_get_section_by_name (abfd, ".dynsym");
9277 if (sec != NULL)
9278 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9279 sec = bfd_get_section_by_name (abfd, ".liblist");
9280 if (sec != NULL)
9281 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9282 break;
9283
9284 case SHT_MIPS_EVENTS:
9285 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9286 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9287 BFD_ASSERT (name != NULL);
9288 if (CONST_STRNEQ (name, ".MIPS.events"))
9289 sec = bfd_get_section_by_name (abfd,
9290 name + sizeof ".MIPS.events" - 1);
9291 else
9292 {
9293 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
9294 sec = bfd_get_section_by_name (abfd,
9295 (name
9296 + sizeof ".MIPS.post_rel" - 1));
9297 }
9298 BFD_ASSERT (sec != NULL);
9299 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9300 break;
9301
9302 }
9303 }
9304 }
9305 \f
9306 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9307 segments. */
9308
9309 int
9310 _bfd_mips_elf_additional_program_headers (bfd *abfd,
9311 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9312 {
9313 asection *s;
9314 int ret = 0;
9315
9316 /* See if we need a PT_MIPS_REGINFO segment. */
9317 s = bfd_get_section_by_name (abfd, ".reginfo");
9318 if (s && (s->flags & SEC_LOAD))
9319 ++ret;
9320
9321 /* See if we need a PT_MIPS_OPTIONS segment. */
9322 if (IRIX_COMPAT (abfd) == ict_irix6
9323 && bfd_get_section_by_name (abfd,
9324 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9325 ++ret;
9326
9327 /* See if we need a PT_MIPS_RTPROC segment. */
9328 if (IRIX_COMPAT (abfd) == ict_irix5
9329 && bfd_get_section_by_name (abfd, ".dynamic")
9330 && bfd_get_section_by_name (abfd, ".mdebug"))
9331 ++ret;
9332
9333 /* Allocate a PT_NULL header in dynamic objects. See
9334 _bfd_mips_elf_modify_segment_map for details. */
9335 if (!SGI_COMPAT (abfd)
9336 && bfd_get_section_by_name (abfd, ".dynamic"))
9337 ++ret;
9338
9339 return ret;
9340 }
9341
9342 /* Modify the segment map for an IRIX5 executable. */
9343
9344 bfd_boolean
9345 _bfd_mips_elf_modify_segment_map (bfd *abfd,
9346 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9347 {
9348 asection *s;
9349 struct elf_segment_map *m, **pm;
9350 bfd_size_type amt;
9351
9352 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9353 segment. */
9354 s = bfd_get_section_by_name (abfd, ".reginfo");
9355 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9356 {
9357 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9358 if (m->p_type == PT_MIPS_REGINFO)
9359 break;
9360 if (m == NULL)
9361 {
9362 amt = sizeof *m;
9363 m = bfd_zalloc (abfd, amt);
9364 if (m == NULL)
9365 return FALSE;
9366
9367 m->p_type = PT_MIPS_REGINFO;
9368 m->count = 1;
9369 m->sections[0] = s;
9370
9371 /* We want to put it after the PHDR and INTERP segments. */
9372 pm = &elf_tdata (abfd)->segment_map;
9373 while (*pm != NULL
9374 && ((*pm)->p_type == PT_PHDR
9375 || (*pm)->p_type == PT_INTERP))
9376 pm = &(*pm)->next;
9377
9378 m->next = *pm;
9379 *pm = m;
9380 }
9381 }
9382
9383 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9384 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9385 PT_MIPS_OPTIONS segment immediately following the program header
9386 table. */
9387 if (NEWABI_P (abfd)
9388 /* On non-IRIX6 new abi, we'll have already created a segment
9389 for this section, so don't create another. I'm not sure this
9390 is not also the case for IRIX 6, but I can't test it right
9391 now. */
9392 && IRIX_COMPAT (abfd) == ict_irix6)
9393 {
9394 for (s = abfd->sections; s; s = s->next)
9395 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9396 break;
9397
9398 if (s)
9399 {
9400 struct elf_segment_map *options_segment;
9401
9402 pm = &elf_tdata (abfd)->segment_map;
9403 while (*pm != NULL
9404 && ((*pm)->p_type == PT_PHDR
9405 || (*pm)->p_type == PT_INTERP))
9406 pm = &(*pm)->next;
9407
9408 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9409 {
9410 amt = sizeof (struct elf_segment_map);
9411 options_segment = bfd_zalloc (abfd, amt);
9412 options_segment->next = *pm;
9413 options_segment->p_type = PT_MIPS_OPTIONS;
9414 options_segment->p_flags = PF_R;
9415 options_segment->p_flags_valid = TRUE;
9416 options_segment->count = 1;
9417 options_segment->sections[0] = s;
9418 *pm = options_segment;
9419 }
9420 }
9421 }
9422 else
9423 {
9424 if (IRIX_COMPAT (abfd) == ict_irix5)
9425 {
9426 /* If there are .dynamic and .mdebug sections, we make a room
9427 for the RTPROC header. FIXME: Rewrite without section names. */
9428 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9429 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9430 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9431 {
9432 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9433 if (m->p_type == PT_MIPS_RTPROC)
9434 break;
9435 if (m == NULL)
9436 {
9437 amt = sizeof *m;
9438 m = bfd_zalloc (abfd, amt);
9439 if (m == NULL)
9440 return FALSE;
9441
9442 m->p_type = PT_MIPS_RTPROC;
9443
9444 s = bfd_get_section_by_name (abfd, ".rtproc");
9445 if (s == NULL)
9446 {
9447 m->count = 0;
9448 m->p_flags = 0;
9449 m->p_flags_valid = 1;
9450 }
9451 else
9452 {
9453 m->count = 1;
9454 m->sections[0] = s;
9455 }
9456
9457 /* We want to put it after the DYNAMIC segment. */
9458 pm = &elf_tdata (abfd)->segment_map;
9459 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9460 pm = &(*pm)->next;
9461 if (*pm != NULL)
9462 pm = &(*pm)->next;
9463
9464 m->next = *pm;
9465 *pm = m;
9466 }
9467 }
9468 }
9469 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9470 .dynstr, .dynsym, and .hash sections, and everything in
9471 between. */
9472 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9473 pm = &(*pm)->next)
9474 if ((*pm)->p_type == PT_DYNAMIC)
9475 break;
9476 m = *pm;
9477 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9478 {
9479 /* For a normal mips executable the permissions for the PT_DYNAMIC
9480 segment are read, write and execute. We do that here since
9481 the code in elf.c sets only the read permission. This matters
9482 sometimes for the dynamic linker. */
9483 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9484 {
9485 m->p_flags = PF_R | PF_W | PF_X;
9486 m->p_flags_valid = 1;
9487 }
9488 }
9489 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
9490 glibc's dynamic linker has traditionally derived the number of
9491 tags from the p_filesz field, and sometimes allocates stack
9492 arrays of that size. An overly-big PT_DYNAMIC segment can
9493 be actively harmful in such cases. Making PT_DYNAMIC contain
9494 other sections can also make life hard for the prelinker,
9495 which might move one of the other sections to a different
9496 PT_LOAD segment. */
9497 if (SGI_COMPAT (abfd)
9498 && m != NULL
9499 && m->count == 1
9500 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9501 {
9502 static const char *sec_names[] =
9503 {
9504 ".dynamic", ".dynstr", ".dynsym", ".hash"
9505 };
9506 bfd_vma low, high;
9507 unsigned int i, c;
9508 struct elf_segment_map *n;
9509
9510 low = ~(bfd_vma) 0;
9511 high = 0;
9512 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9513 {
9514 s = bfd_get_section_by_name (abfd, sec_names[i]);
9515 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9516 {
9517 bfd_size_type sz;
9518
9519 if (low > s->vma)
9520 low = s->vma;
9521 sz = s->size;
9522 if (high < s->vma + sz)
9523 high = s->vma + sz;
9524 }
9525 }
9526
9527 c = 0;
9528 for (s = abfd->sections; s != NULL; s = s->next)
9529 if ((s->flags & SEC_LOAD) != 0
9530 && s->vma >= low
9531 && s->vma + s->size <= high)
9532 ++c;
9533
9534 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9535 n = bfd_zalloc (abfd, amt);
9536 if (n == NULL)
9537 return FALSE;
9538 *n = *m;
9539 n->count = c;
9540
9541 i = 0;
9542 for (s = abfd->sections; s != NULL; s = s->next)
9543 {
9544 if ((s->flags & SEC_LOAD) != 0
9545 && s->vma >= low
9546 && s->vma + s->size <= high)
9547 {
9548 n->sections[i] = s;
9549 ++i;
9550 }
9551 }
9552
9553 *pm = n;
9554 }
9555 }
9556
9557 /* Allocate a spare program header in dynamic objects so that tools
9558 like the prelinker can add an extra PT_LOAD entry.
9559
9560 If the prelinker needs to make room for a new PT_LOAD entry, its
9561 standard procedure is to move the first (read-only) sections into
9562 the new (writable) segment. However, the MIPS ABI requires
9563 .dynamic to be in a read-only segment, and the section will often
9564 start within sizeof (ElfNN_Phdr) bytes of the last program header.
9565
9566 Although the prelinker could in principle move .dynamic to a
9567 writable segment, it seems better to allocate a spare program
9568 header instead, and avoid the need to move any sections.
9569 There is a long tradition of allocating spare dynamic tags,
9570 so allocating a spare program header seems like a natural
9571 extension. */
9572 if (!SGI_COMPAT (abfd)
9573 && bfd_get_section_by_name (abfd, ".dynamic"))
9574 {
9575 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
9576 if ((*pm)->p_type == PT_NULL)
9577 break;
9578 if (*pm == NULL)
9579 {
9580 m = bfd_zalloc (abfd, sizeof (*m));
9581 if (m == NULL)
9582 return FALSE;
9583
9584 m->p_type = PT_NULL;
9585 *pm = m;
9586 }
9587 }
9588
9589 return TRUE;
9590 }
9591 \f
9592 /* Return the section that should be marked against GC for a given
9593 relocation. */
9594
9595 asection *
9596 _bfd_mips_elf_gc_mark_hook (asection *sec,
9597 struct bfd_link_info *info,
9598 Elf_Internal_Rela *rel,
9599 struct elf_link_hash_entry *h,
9600 Elf_Internal_Sym *sym)
9601 {
9602 /* ??? Do mips16 stub sections need to be handled special? */
9603
9604 if (h != NULL)
9605 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9606 {
9607 case R_MIPS_GNU_VTINHERIT:
9608 case R_MIPS_GNU_VTENTRY:
9609 return NULL;
9610 }
9611
9612 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
9613 }
9614
9615 /* Update the got entry reference counts for the section being removed. */
9616
9617 bfd_boolean
9618 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9619 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9620 asection *sec ATTRIBUTE_UNUSED,
9621 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
9622 {
9623 #if 0
9624 Elf_Internal_Shdr *symtab_hdr;
9625 struct elf_link_hash_entry **sym_hashes;
9626 bfd_signed_vma *local_got_refcounts;
9627 const Elf_Internal_Rela *rel, *relend;
9628 unsigned long r_symndx;
9629 struct elf_link_hash_entry *h;
9630
9631 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9632 sym_hashes = elf_sym_hashes (abfd);
9633 local_got_refcounts = elf_local_got_refcounts (abfd);
9634
9635 relend = relocs + sec->reloc_count;
9636 for (rel = relocs; rel < relend; rel++)
9637 switch (ELF_R_TYPE (abfd, rel->r_info))
9638 {
9639 case R_MIPS_GOT16:
9640 case R_MIPS_CALL16:
9641 case R_MIPS_CALL_HI16:
9642 case R_MIPS_CALL_LO16:
9643 case R_MIPS_GOT_HI16:
9644 case R_MIPS_GOT_LO16:
9645 case R_MIPS_GOT_DISP:
9646 case R_MIPS_GOT_PAGE:
9647 case R_MIPS_GOT_OFST:
9648 /* ??? It would seem that the existing MIPS code does no sort
9649 of reference counting or whatnot on its GOT and PLT entries,
9650 so it is not possible to garbage collect them at this time. */
9651 break;
9652
9653 default:
9654 break;
9655 }
9656 #endif
9657
9658 return TRUE;
9659 }
9660 \f
9661 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9662 hiding the old indirect symbol. Process additional relocation
9663 information. Also called for weakdefs, in which case we just let
9664 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9665
9666 void
9667 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9668 struct elf_link_hash_entry *dir,
9669 struct elf_link_hash_entry *ind)
9670 {
9671 struct mips_elf_link_hash_entry *dirmips, *indmips;
9672
9673 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
9674
9675 if (ind->root.type != bfd_link_hash_indirect)
9676 return;
9677
9678 dirmips = (struct mips_elf_link_hash_entry *) dir;
9679 indmips = (struct mips_elf_link_hash_entry *) ind;
9680 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9681 if (indmips->readonly_reloc)
9682 dirmips->readonly_reloc = TRUE;
9683 if (indmips->no_fn_stub)
9684 dirmips->no_fn_stub = TRUE;
9685
9686 if (dirmips->tls_type == 0)
9687 dirmips->tls_type = indmips->tls_type;
9688 }
9689
9690 void
9691 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9692 struct elf_link_hash_entry *entry,
9693 bfd_boolean force_local)
9694 {
9695 bfd *dynobj;
9696 asection *got;
9697 struct mips_got_info *g;
9698 struct mips_elf_link_hash_entry *h;
9699
9700 h = (struct mips_elf_link_hash_entry *) entry;
9701 if (h->forced_local)
9702 return;
9703 h->forced_local = force_local;
9704
9705 dynobj = elf_hash_table (info)->dynobj;
9706 if (dynobj != NULL && force_local && h->root.type != STT_TLS
9707 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
9708 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
9709 {
9710 if (g->next)
9711 {
9712 struct mips_got_entry e;
9713 struct mips_got_info *gg = g;
9714
9715 /* Since we're turning what used to be a global symbol into a
9716 local one, bump up the number of local entries of each GOT
9717 that had an entry for it. This will automatically decrease
9718 the number of global entries, since global_gotno is actually
9719 the upper limit of global entries. */
9720 e.abfd = dynobj;
9721 e.symndx = -1;
9722 e.d.h = h;
9723 e.tls_type = 0;
9724
9725 for (g = g->next; g != gg; g = g->next)
9726 if (htab_find (g->got_entries, &e))
9727 {
9728 BFD_ASSERT (g->global_gotno > 0);
9729 g->local_gotno++;
9730 g->global_gotno--;
9731 }
9732
9733 /* If this was a global symbol forced into the primary GOT, we
9734 no longer need an entry for it. We can't release the entry
9735 at this point, but we must at least stop counting it as one
9736 of the symbols that required a forced got entry. */
9737 if (h->root.got.offset == 2)
9738 {
9739 BFD_ASSERT (gg->assigned_gotno > 0);
9740 gg->assigned_gotno--;
9741 }
9742 }
9743 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9744 /* If we haven't got through GOT allocation yet, just bump up the
9745 number of local entries, as this symbol won't be counted as
9746 global. */
9747 g->local_gotno++;
9748 else if (h->root.got.offset == 1)
9749 {
9750 /* If we're past non-multi-GOT allocation and this symbol had
9751 been marked for a global got entry, give it a local entry
9752 instead. */
9753 BFD_ASSERT (g->global_gotno > 0);
9754 g->local_gotno++;
9755 g->global_gotno--;
9756 }
9757 }
9758
9759 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
9760 }
9761 \f
9762 #define PDR_SIZE 32
9763
9764 bfd_boolean
9765 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9766 struct bfd_link_info *info)
9767 {
9768 asection *o;
9769 bfd_boolean ret = FALSE;
9770 unsigned char *tdata;
9771 size_t i, skip;
9772
9773 o = bfd_get_section_by_name (abfd, ".pdr");
9774 if (! o)
9775 return FALSE;
9776 if (o->size == 0)
9777 return FALSE;
9778 if (o->size % PDR_SIZE != 0)
9779 return FALSE;
9780 if (o->output_section != NULL
9781 && bfd_is_abs_section (o->output_section))
9782 return FALSE;
9783
9784 tdata = bfd_zmalloc (o->size / PDR_SIZE);
9785 if (! tdata)
9786 return FALSE;
9787
9788 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
9789 info->keep_memory);
9790 if (!cookie->rels)
9791 {
9792 free (tdata);
9793 return FALSE;
9794 }
9795
9796 cookie->rel = cookie->rels;
9797 cookie->relend = cookie->rels + o->reloc_count;
9798
9799 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
9800 {
9801 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
9802 {
9803 tdata[i] = 1;
9804 skip ++;
9805 }
9806 }
9807
9808 if (skip != 0)
9809 {
9810 mips_elf_section_data (o)->u.tdata = tdata;
9811 o->size -= skip * PDR_SIZE;
9812 ret = TRUE;
9813 }
9814 else
9815 free (tdata);
9816
9817 if (! info->keep_memory)
9818 free (cookie->rels);
9819
9820 return ret;
9821 }
9822
9823 bfd_boolean
9824 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
9825 {
9826 if (strcmp (sec->name, ".pdr") == 0)
9827 return TRUE;
9828 return FALSE;
9829 }
9830
9831 bfd_boolean
9832 _bfd_mips_elf_write_section (bfd *output_bfd,
9833 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
9834 asection *sec, bfd_byte *contents)
9835 {
9836 bfd_byte *to, *from, *end;
9837 int i;
9838
9839 if (strcmp (sec->name, ".pdr") != 0)
9840 return FALSE;
9841
9842 if (mips_elf_section_data (sec)->u.tdata == NULL)
9843 return FALSE;
9844
9845 to = contents;
9846 end = contents + sec->size;
9847 for (from = contents, i = 0;
9848 from < end;
9849 from += PDR_SIZE, i++)
9850 {
9851 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
9852 continue;
9853 if (to != from)
9854 memcpy (to, from, PDR_SIZE);
9855 to += PDR_SIZE;
9856 }
9857 bfd_set_section_contents (output_bfd, sec->output_section, contents,
9858 sec->output_offset, sec->size);
9859 return TRUE;
9860 }
9861 \f
9862 /* MIPS ELF uses a special find_nearest_line routine in order the
9863 handle the ECOFF debugging information. */
9864
9865 struct mips_elf_find_line
9866 {
9867 struct ecoff_debug_info d;
9868 struct ecoff_find_line i;
9869 };
9870
9871 bfd_boolean
9872 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9873 asymbol **symbols, bfd_vma offset,
9874 const char **filename_ptr,
9875 const char **functionname_ptr,
9876 unsigned int *line_ptr)
9877 {
9878 asection *msec;
9879
9880 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9881 filename_ptr, functionname_ptr,
9882 line_ptr))
9883 return TRUE;
9884
9885 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9886 filename_ptr, functionname_ptr,
9887 line_ptr, ABI_64_P (abfd) ? 8 : 0,
9888 &elf_tdata (abfd)->dwarf2_find_line_info))
9889 return TRUE;
9890
9891 msec = bfd_get_section_by_name (abfd, ".mdebug");
9892 if (msec != NULL)
9893 {
9894 flagword origflags;
9895 struct mips_elf_find_line *fi;
9896 const struct ecoff_debug_swap * const swap =
9897 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9898
9899 /* If we are called during a link, mips_elf_final_link may have
9900 cleared the SEC_HAS_CONTENTS field. We force it back on here
9901 if appropriate (which it normally will be). */
9902 origflags = msec->flags;
9903 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9904 msec->flags |= SEC_HAS_CONTENTS;
9905
9906 fi = elf_tdata (abfd)->find_line_info;
9907 if (fi == NULL)
9908 {
9909 bfd_size_type external_fdr_size;
9910 char *fraw_src;
9911 char *fraw_end;
9912 struct fdr *fdr_ptr;
9913 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9914
9915 fi = bfd_zalloc (abfd, amt);
9916 if (fi == NULL)
9917 {
9918 msec->flags = origflags;
9919 return FALSE;
9920 }
9921
9922 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9923 {
9924 msec->flags = origflags;
9925 return FALSE;
9926 }
9927
9928 /* Swap in the FDR information. */
9929 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9930 fi->d.fdr = bfd_alloc (abfd, amt);
9931 if (fi->d.fdr == NULL)
9932 {
9933 msec->flags = origflags;
9934 return FALSE;
9935 }
9936 external_fdr_size = swap->external_fdr_size;
9937 fdr_ptr = fi->d.fdr;
9938 fraw_src = (char *) fi->d.external_fdr;
9939 fraw_end = (fraw_src
9940 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9941 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9942 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
9943
9944 elf_tdata (abfd)->find_line_info = fi;
9945
9946 /* Note that we don't bother to ever free this information.
9947 find_nearest_line is either called all the time, as in
9948 objdump -l, so the information should be saved, or it is
9949 rarely called, as in ld error messages, so the memory
9950 wasted is unimportant. Still, it would probably be a
9951 good idea for free_cached_info to throw it away. */
9952 }
9953
9954 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9955 &fi->i, filename_ptr, functionname_ptr,
9956 line_ptr))
9957 {
9958 msec->flags = origflags;
9959 return TRUE;
9960 }
9961
9962 msec->flags = origflags;
9963 }
9964
9965 /* Fall back on the generic ELF find_nearest_line routine. */
9966
9967 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9968 filename_ptr, functionname_ptr,
9969 line_ptr);
9970 }
9971
9972 bfd_boolean
9973 _bfd_mips_elf_find_inliner_info (bfd *abfd,
9974 const char **filename_ptr,
9975 const char **functionname_ptr,
9976 unsigned int *line_ptr)
9977 {
9978 bfd_boolean found;
9979 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9980 functionname_ptr, line_ptr,
9981 & elf_tdata (abfd)->dwarf2_find_line_info);
9982 return found;
9983 }
9984
9985 \f
9986 /* When are writing out the .options or .MIPS.options section,
9987 remember the bytes we are writing out, so that we can install the
9988 GP value in the section_processing routine. */
9989
9990 bfd_boolean
9991 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9992 const void *location,
9993 file_ptr offset, bfd_size_type count)
9994 {
9995 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
9996 {
9997 bfd_byte *c;
9998
9999 if (elf_section_data (section) == NULL)
10000 {
10001 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
10002 section->used_by_bfd = bfd_zalloc (abfd, amt);
10003 if (elf_section_data (section) == NULL)
10004 return FALSE;
10005 }
10006 c = mips_elf_section_data (section)->u.tdata;
10007 if (c == NULL)
10008 {
10009 c = bfd_zalloc (abfd, section->size);
10010 if (c == NULL)
10011 return FALSE;
10012 mips_elf_section_data (section)->u.tdata = c;
10013 }
10014
10015 memcpy (c + offset, location, count);
10016 }
10017
10018 return _bfd_elf_set_section_contents (abfd, section, location, offset,
10019 count);
10020 }
10021
10022 /* This is almost identical to bfd_generic_get_... except that some
10023 MIPS relocations need to be handled specially. Sigh. */
10024
10025 bfd_byte *
10026 _bfd_elf_mips_get_relocated_section_contents
10027 (bfd *abfd,
10028 struct bfd_link_info *link_info,
10029 struct bfd_link_order *link_order,
10030 bfd_byte *data,
10031 bfd_boolean relocatable,
10032 asymbol **symbols)
10033 {
10034 /* Get enough memory to hold the stuff */
10035 bfd *input_bfd = link_order->u.indirect.section->owner;
10036 asection *input_section = link_order->u.indirect.section;
10037 bfd_size_type sz;
10038
10039 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
10040 arelent **reloc_vector = NULL;
10041 long reloc_count;
10042
10043 if (reloc_size < 0)
10044 goto error_return;
10045
10046 reloc_vector = bfd_malloc (reloc_size);
10047 if (reloc_vector == NULL && reloc_size != 0)
10048 goto error_return;
10049
10050 /* read in the section */
10051 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
10052 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
10053 goto error_return;
10054
10055 reloc_count = bfd_canonicalize_reloc (input_bfd,
10056 input_section,
10057 reloc_vector,
10058 symbols);
10059 if (reloc_count < 0)
10060 goto error_return;
10061
10062 if (reloc_count > 0)
10063 {
10064 arelent **parent;
10065 /* for mips */
10066 int gp_found;
10067 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
10068
10069 {
10070 struct bfd_hash_entry *h;
10071 struct bfd_link_hash_entry *lh;
10072 /* Skip all this stuff if we aren't mixing formats. */
10073 if (abfd && input_bfd
10074 && abfd->xvec == input_bfd->xvec)
10075 lh = 0;
10076 else
10077 {
10078 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
10079 lh = (struct bfd_link_hash_entry *) h;
10080 }
10081 lookup:
10082 if (lh)
10083 {
10084 switch (lh->type)
10085 {
10086 case bfd_link_hash_undefined:
10087 case bfd_link_hash_undefweak:
10088 case bfd_link_hash_common:
10089 gp_found = 0;
10090 break;
10091 case bfd_link_hash_defined:
10092 case bfd_link_hash_defweak:
10093 gp_found = 1;
10094 gp = lh->u.def.value;
10095 break;
10096 case bfd_link_hash_indirect:
10097 case bfd_link_hash_warning:
10098 lh = lh->u.i.link;
10099 /* @@FIXME ignoring warning for now */
10100 goto lookup;
10101 case bfd_link_hash_new:
10102 default:
10103 abort ();
10104 }
10105 }
10106 else
10107 gp_found = 0;
10108 }
10109 /* end mips */
10110 for (parent = reloc_vector; *parent != NULL; parent++)
10111 {
10112 char *error_message = NULL;
10113 bfd_reloc_status_type r;
10114
10115 /* Specific to MIPS: Deal with relocation types that require
10116 knowing the gp of the output bfd. */
10117 asymbol *sym = *(*parent)->sym_ptr_ptr;
10118
10119 /* If we've managed to find the gp and have a special
10120 function for the relocation then go ahead, else default
10121 to the generic handling. */
10122 if (gp_found
10123 && (*parent)->howto->special_function
10124 == _bfd_mips_elf32_gprel16_reloc)
10125 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10126 input_section, relocatable,
10127 data, gp);
10128 else
10129 r = bfd_perform_relocation (input_bfd, *parent, data,
10130 input_section,
10131 relocatable ? abfd : NULL,
10132 &error_message);
10133
10134 if (relocatable)
10135 {
10136 asection *os = input_section->output_section;
10137
10138 /* A partial link, so keep the relocs */
10139 os->orelocation[os->reloc_count] = *parent;
10140 os->reloc_count++;
10141 }
10142
10143 if (r != bfd_reloc_ok)
10144 {
10145 switch (r)
10146 {
10147 case bfd_reloc_undefined:
10148 if (!((*link_info->callbacks->undefined_symbol)
10149 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10150 input_bfd, input_section, (*parent)->address, TRUE)))
10151 goto error_return;
10152 break;
10153 case bfd_reloc_dangerous:
10154 BFD_ASSERT (error_message != NULL);
10155 if (!((*link_info->callbacks->reloc_dangerous)
10156 (link_info, error_message, input_bfd, input_section,
10157 (*parent)->address)))
10158 goto error_return;
10159 break;
10160 case bfd_reloc_overflow:
10161 if (!((*link_info->callbacks->reloc_overflow)
10162 (link_info, NULL,
10163 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10164 (*parent)->howto->name, (*parent)->addend,
10165 input_bfd, input_section, (*parent)->address)))
10166 goto error_return;
10167 break;
10168 case bfd_reloc_outofrange:
10169 default:
10170 abort ();
10171 break;
10172 }
10173
10174 }
10175 }
10176 }
10177 if (reloc_vector != NULL)
10178 free (reloc_vector);
10179 return data;
10180
10181 error_return:
10182 if (reloc_vector != NULL)
10183 free (reloc_vector);
10184 return NULL;
10185 }
10186 \f
10187 /* Create a MIPS ELF linker hash table. */
10188
10189 struct bfd_link_hash_table *
10190 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
10191 {
10192 struct mips_elf_link_hash_table *ret;
10193 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10194
10195 ret = bfd_malloc (amt);
10196 if (ret == NULL)
10197 return NULL;
10198
10199 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10200 mips_elf_link_hash_newfunc,
10201 sizeof (struct mips_elf_link_hash_entry)))
10202 {
10203 free (ret);
10204 return NULL;
10205 }
10206
10207 #if 0
10208 /* We no longer use this. */
10209 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10210 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10211 #endif
10212 ret->procedure_count = 0;
10213 ret->compact_rel_size = 0;
10214 ret->use_rld_obj_head = FALSE;
10215 ret->rld_value = 0;
10216 ret->mips16_stubs_seen = FALSE;
10217 ret->is_vxworks = FALSE;
10218 ret->srelbss = NULL;
10219 ret->sdynbss = NULL;
10220 ret->srelplt = NULL;
10221 ret->srelplt2 = NULL;
10222 ret->sgotplt = NULL;
10223 ret->splt = NULL;
10224 ret->plt_header_size = 0;
10225 ret->plt_entry_size = 0;
10226 ret->function_stub_size = 0;
10227
10228 return &ret->root.root;
10229 }
10230
10231 /* Likewise, but indicate that the target is VxWorks. */
10232
10233 struct bfd_link_hash_table *
10234 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10235 {
10236 struct bfd_link_hash_table *ret;
10237
10238 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10239 if (ret)
10240 {
10241 struct mips_elf_link_hash_table *htab;
10242
10243 htab = (struct mips_elf_link_hash_table *) ret;
10244 htab->is_vxworks = 1;
10245 }
10246 return ret;
10247 }
10248 \f
10249 /* We need to use a special link routine to handle the .reginfo and
10250 the .mdebug sections. We need to merge all instances of these
10251 sections together, not write them all out sequentially. */
10252
10253 bfd_boolean
10254 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10255 {
10256 asection *o;
10257 struct bfd_link_order *p;
10258 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10259 asection *rtproc_sec;
10260 Elf32_RegInfo reginfo;
10261 struct ecoff_debug_info debug;
10262 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10263 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
10264 HDRR *symhdr = &debug.symbolic_header;
10265 void *mdebug_handle = NULL;
10266 asection *s;
10267 EXTR esym;
10268 unsigned int i;
10269 bfd_size_type amt;
10270 struct mips_elf_link_hash_table *htab;
10271
10272 static const char * const secname[] =
10273 {
10274 ".text", ".init", ".fini", ".data",
10275 ".rodata", ".sdata", ".sbss", ".bss"
10276 };
10277 static const int sc[] =
10278 {
10279 scText, scInit, scFini, scData,
10280 scRData, scSData, scSBss, scBss
10281 };
10282
10283 /* We'd carefully arranged the dynamic symbol indices, and then the
10284 generic size_dynamic_sections renumbered them out from under us.
10285 Rather than trying somehow to prevent the renumbering, just do
10286 the sort again. */
10287 htab = mips_elf_hash_table (info);
10288 if (elf_hash_table (info)->dynamic_sections_created)
10289 {
10290 bfd *dynobj;
10291 asection *got;
10292 struct mips_got_info *g;
10293 bfd_size_type dynsecsymcount;
10294
10295 /* When we resort, we must tell mips_elf_sort_hash_table what
10296 the lowest index it may use is. That's the number of section
10297 symbols we're going to add. The generic ELF linker only
10298 adds these symbols when building a shared object. Note that
10299 we count the sections after (possibly) removing the .options
10300 section above. */
10301
10302 dynsecsymcount = count_section_dynsyms (abfd, info);
10303 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
10304 return FALSE;
10305
10306 /* Make sure we didn't grow the global .got region. */
10307 dynobj = elf_hash_table (info)->dynobj;
10308 got = mips_elf_got_section (dynobj, FALSE);
10309 g = mips_elf_section_data (got)->u.got_info;
10310
10311 if (g->global_gotsym != NULL)
10312 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10313 - g->global_gotsym->dynindx)
10314 <= g->global_gotno);
10315 }
10316
10317 /* Get a value for the GP register. */
10318 if (elf_gp (abfd) == 0)
10319 {
10320 struct bfd_link_hash_entry *h;
10321
10322 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
10323 if (h != NULL && h->type == bfd_link_hash_defined)
10324 elf_gp (abfd) = (h->u.def.value
10325 + h->u.def.section->output_section->vma
10326 + h->u.def.section->output_offset);
10327 else if (htab->is_vxworks
10328 && (h = bfd_link_hash_lookup (info->hash,
10329 "_GLOBAL_OFFSET_TABLE_",
10330 FALSE, FALSE, TRUE))
10331 && h->type == bfd_link_hash_defined)
10332 elf_gp (abfd) = (h->u.def.section->output_section->vma
10333 + h->u.def.section->output_offset
10334 + h->u.def.value);
10335 else if (info->relocatable)
10336 {
10337 bfd_vma lo = MINUS_ONE;
10338
10339 /* Find the GP-relative section with the lowest offset. */
10340 for (o = abfd->sections; o != NULL; o = o->next)
10341 if (o->vma < lo
10342 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10343 lo = o->vma;
10344
10345 /* And calculate GP relative to that. */
10346 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
10347 }
10348 else
10349 {
10350 /* If the relocate_section function needs to do a reloc
10351 involving the GP value, it should make a reloc_dangerous
10352 callback to warn that GP is not defined. */
10353 }
10354 }
10355
10356 /* Go through the sections and collect the .reginfo and .mdebug
10357 information. */
10358 reginfo_sec = NULL;
10359 mdebug_sec = NULL;
10360 gptab_data_sec = NULL;
10361 gptab_bss_sec = NULL;
10362 for (o = abfd->sections; o != NULL; o = o->next)
10363 {
10364 if (strcmp (o->name, ".reginfo") == 0)
10365 {
10366 memset (&reginfo, 0, sizeof reginfo);
10367
10368 /* We have found the .reginfo section in the output file.
10369 Look through all the link_orders comprising it and merge
10370 the information together. */
10371 for (p = o->map_head.link_order; p != NULL; p = p->next)
10372 {
10373 asection *input_section;
10374 bfd *input_bfd;
10375 Elf32_External_RegInfo ext;
10376 Elf32_RegInfo sub;
10377
10378 if (p->type != bfd_indirect_link_order)
10379 {
10380 if (p->type == bfd_data_link_order)
10381 continue;
10382 abort ();
10383 }
10384
10385 input_section = p->u.indirect.section;
10386 input_bfd = input_section->owner;
10387
10388 if (! bfd_get_section_contents (input_bfd, input_section,
10389 &ext, 0, sizeof ext))
10390 return FALSE;
10391
10392 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10393
10394 reginfo.ri_gprmask |= sub.ri_gprmask;
10395 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10396 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10397 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10398 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10399
10400 /* ri_gp_value is set by the function
10401 mips_elf32_section_processing when the section is
10402 finally written out. */
10403
10404 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10405 elf_link_input_bfd ignores this section. */
10406 input_section->flags &= ~SEC_HAS_CONTENTS;
10407 }
10408
10409 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10410 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
10411
10412 /* Skip this section later on (I don't think this currently
10413 matters, but someday it might). */
10414 o->map_head.link_order = NULL;
10415
10416 reginfo_sec = o;
10417 }
10418
10419 if (strcmp (o->name, ".mdebug") == 0)
10420 {
10421 struct extsym_info einfo;
10422 bfd_vma last;
10423
10424 /* We have found the .mdebug section in the output file.
10425 Look through all the link_orders comprising it and merge
10426 the information together. */
10427 symhdr->magic = swap->sym_magic;
10428 /* FIXME: What should the version stamp be? */
10429 symhdr->vstamp = 0;
10430 symhdr->ilineMax = 0;
10431 symhdr->cbLine = 0;
10432 symhdr->idnMax = 0;
10433 symhdr->ipdMax = 0;
10434 symhdr->isymMax = 0;
10435 symhdr->ioptMax = 0;
10436 symhdr->iauxMax = 0;
10437 symhdr->issMax = 0;
10438 symhdr->issExtMax = 0;
10439 symhdr->ifdMax = 0;
10440 symhdr->crfd = 0;
10441 symhdr->iextMax = 0;
10442
10443 /* We accumulate the debugging information itself in the
10444 debug_info structure. */
10445 debug.line = NULL;
10446 debug.external_dnr = NULL;
10447 debug.external_pdr = NULL;
10448 debug.external_sym = NULL;
10449 debug.external_opt = NULL;
10450 debug.external_aux = NULL;
10451 debug.ss = NULL;
10452 debug.ssext = debug.ssext_end = NULL;
10453 debug.external_fdr = NULL;
10454 debug.external_rfd = NULL;
10455 debug.external_ext = debug.external_ext_end = NULL;
10456
10457 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
10458 if (mdebug_handle == NULL)
10459 return FALSE;
10460
10461 esym.jmptbl = 0;
10462 esym.cobol_main = 0;
10463 esym.weakext = 0;
10464 esym.reserved = 0;
10465 esym.ifd = ifdNil;
10466 esym.asym.iss = issNil;
10467 esym.asym.st = stLocal;
10468 esym.asym.reserved = 0;
10469 esym.asym.index = indexNil;
10470 last = 0;
10471 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10472 {
10473 esym.asym.sc = sc[i];
10474 s = bfd_get_section_by_name (abfd, secname[i]);
10475 if (s != NULL)
10476 {
10477 esym.asym.value = s->vma;
10478 last = s->vma + s->size;
10479 }
10480 else
10481 esym.asym.value = last;
10482 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10483 secname[i], &esym))
10484 return FALSE;
10485 }
10486
10487 for (p = o->map_head.link_order; p != NULL; p = p->next)
10488 {
10489 asection *input_section;
10490 bfd *input_bfd;
10491 const struct ecoff_debug_swap *input_swap;
10492 struct ecoff_debug_info input_debug;
10493 char *eraw_src;
10494 char *eraw_end;
10495
10496 if (p->type != bfd_indirect_link_order)
10497 {
10498 if (p->type == bfd_data_link_order)
10499 continue;
10500 abort ();
10501 }
10502
10503 input_section = p->u.indirect.section;
10504 input_bfd = input_section->owner;
10505
10506 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10507 || (get_elf_backend_data (input_bfd)
10508 ->elf_backend_ecoff_debug_swap) == NULL)
10509 {
10510 /* I don't know what a non MIPS ELF bfd would be
10511 doing with a .mdebug section, but I don't really
10512 want to deal with it. */
10513 continue;
10514 }
10515
10516 input_swap = (get_elf_backend_data (input_bfd)
10517 ->elf_backend_ecoff_debug_swap);
10518
10519 BFD_ASSERT (p->size == input_section->size);
10520
10521 /* The ECOFF linking code expects that we have already
10522 read in the debugging information and set up an
10523 ecoff_debug_info structure, so we do that now. */
10524 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10525 &input_debug))
10526 return FALSE;
10527
10528 if (! (bfd_ecoff_debug_accumulate
10529 (mdebug_handle, abfd, &debug, swap, input_bfd,
10530 &input_debug, input_swap, info)))
10531 return FALSE;
10532
10533 /* Loop through the external symbols. For each one with
10534 interesting information, try to find the symbol in
10535 the linker global hash table and save the information
10536 for the output external symbols. */
10537 eraw_src = input_debug.external_ext;
10538 eraw_end = (eraw_src
10539 + (input_debug.symbolic_header.iextMax
10540 * input_swap->external_ext_size));
10541 for (;
10542 eraw_src < eraw_end;
10543 eraw_src += input_swap->external_ext_size)
10544 {
10545 EXTR ext;
10546 const char *name;
10547 struct mips_elf_link_hash_entry *h;
10548
10549 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
10550 if (ext.asym.sc == scNil
10551 || ext.asym.sc == scUndefined
10552 || ext.asym.sc == scSUndefined)
10553 continue;
10554
10555 name = input_debug.ssext + ext.asym.iss;
10556 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
10557 name, FALSE, FALSE, TRUE);
10558 if (h == NULL || h->esym.ifd != -2)
10559 continue;
10560
10561 if (ext.ifd != -1)
10562 {
10563 BFD_ASSERT (ext.ifd
10564 < input_debug.symbolic_header.ifdMax);
10565 ext.ifd = input_debug.ifdmap[ext.ifd];
10566 }
10567
10568 h->esym = ext;
10569 }
10570
10571 /* Free up the information we just read. */
10572 free (input_debug.line);
10573 free (input_debug.external_dnr);
10574 free (input_debug.external_pdr);
10575 free (input_debug.external_sym);
10576 free (input_debug.external_opt);
10577 free (input_debug.external_aux);
10578 free (input_debug.ss);
10579 free (input_debug.ssext);
10580 free (input_debug.external_fdr);
10581 free (input_debug.external_rfd);
10582 free (input_debug.external_ext);
10583
10584 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10585 elf_link_input_bfd ignores this section. */
10586 input_section->flags &= ~SEC_HAS_CONTENTS;
10587 }
10588
10589 if (SGI_COMPAT (abfd) && info->shared)
10590 {
10591 /* Create .rtproc section. */
10592 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10593 if (rtproc_sec == NULL)
10594 {
10595 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10596 | SEC_LINKER_CREATED | SEC_READONLY);
10597
10598 rtproc_sec = bfd_make_section_with_flags (abfd,
10599 ".rtproc",
10600 flags);
10601 if (rtproc_sec == NULL
10602 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
10603 return FALSE;
10604 }
10605
10606 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10607 info, rtproc_sec,
10608 &debug))
10609 return FALSE;
10610 }
10611
10612 /* Build the external symbol information. */
10613 einfo.abfd = abfd;
10614 einfo.info = info;
10615 einfo.debug = &debug;
10616 einfo.swap = swap;
10617 einfo.failed = FALSE;
10618 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
10619 mips_elf_output_extsym, &einfo);
10620 if (einfo.failed)
10621 return FALSE;
10622
10623 /* Set the size of the .mdebug section. */
10624 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
10625
10626 /* Skip this section later on (I don't think this currently
10627 matters, but someday it might). */
10628 o->map_head.link_order = NULL;
10629
10630 mdebug_sec = o;
10631 }
10632
10633 if (CONST_STRNEQ (o->name, ".gptab."))
10634 {
10635 const char *subname;
10636 unsigned int c;
10637 Elf32_gptab *tab;
10638 Elf32_External_gptab *ext_tab;
10639 unsigned int j;
10640
10641 /* The .gptab.sdata and .gptab.sbss sections hold
10642 information describing how the small data area would
10643 change depending upon the -G switch. These sections
10644 not used in executables files. */
10645 if (! info->relocatable)
10646 {
10647 for (p = o->map_head.link_order; p != NULL; p = p->next)
10648 {
10649 asection *input_section;
10650
10651 if (p->type != bfd_indirect_link_order)
10652 {
10653 if (p->type == bfd_data_link_order)
10654 continue;
10655 abort ();
10656 }
10657
10658 input_section = p->u.indirect.section;
10659
10660 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10661 elf_link_input_bfd ignores this section. */
10662 input_section->flags &= ~SEC_HAS_CONTENTS;
10663 }
10664
10665 /* Skip this section later on (I don't think this
10666 currently matters, but someday it might). */
10667 o->map_head.link_order = NULL;
10668
10669 /* Really remove the section. */
10670 bfd_section_list_remove (abfd, o);
10671 --abfd->section_count;
10672
10673 continue;
10674 }
10675
10676 /* There is one gptab for initialized data, and one for
10677 uninitialized data. */
10678 if (strcmp (o->name, ".gptab.sdata") == 0)
10679 gptab_data_sec = o;
10680 else if (strcmp (o->name, ".gptab.sbss") == 0)
10681 gptab_bss_sec = o;
10682 else
10683 {
10684 (*_bfd_error_handler)
10685 (_("%s: illegal section name `%s'"),
10686 bfd_get_filename (abfd), o->name);
10687 bfd_set_error (bfd_error_nonrepresentable_section);
10688 return FALSE;
10689 }
10690
10691 /* The linker script always combines .gptab.data and
10692 .gptab.sdata into .gptab.sdata, and likewise for
10693 .gptab.bss and .gptab.sbss. It is possible that there is
10694 no .sdata or .sbss section in the output file, in which
10695 case we must change the name of the output section. */
10696 subname = o->name + sizeof ".gptab" - 1;
10697 if (bfd_get_section_by_name (abfd, subname) == NULL)
10698 {
10699 if (o == gptab_data_sec)
10700 o->name = ".gptab.data";
10701 else
10702 o->name = ".gptab.bss";
10703 subname = o->name + sizeof ".gptab" - 1;
10704 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10705 }
10706
10707 /* Set up the first entry. */
10708 c = 1;
10709 amt = c * sizeof (Elf32_gptab);
10710 tab = bfd_malloc (amt);
10711 if (tab == NULL)
10712 return FALSE;
10713 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10714 tab[0].gt_header.gt_unused = 0;
10715
10716 /* Combine the input sections. */
10717 for (p = o->map_head.link_order; p != NULL; p = p->next)
10718 {
10719 asection *input_section;
10720 bfd *input_bfd;
10721 bfd_size_type size;
10722 unsigned long last;
10723 bfd_size_type gpentry;
10724
10725 if (p->type != bfd_indirect_link_order)
10726 {
10727 if (p->type == bfd_data_link_order)
10728 continue;
10729 abort ();
10730 }
10731
10732 input_section = p->u.indirect.section;
10733 input_bfd = input_section->owner;
10734
10735 /* Combine the gptab entries for this input section one
10736 by one. We know that the input gptab entries are
10737 sorted by ascending -G value. */
10738 size = input_section->size;
10739 last = 0;
10740 for (gpentry = sizeof (Elf32_External_gptab);
10741 gpentry < size;
10742 gpentry += sizeof (Elf32_External_gptab))
10743 {
10744 Elf32_External_gptab ext_gptab;
10745 Elf32_gptab int_gptab;
10746 unsigned long val;
10747 unsigned long add;
10748 bfd_boolean exact;
10749 unsigned int look;
10750
10751 if (! (bfd_get_section_contents
10752 (input_bfd, input_section, &ext_gptab, gpentry,
10753 sizeof (Elf32_External_gptab))))
10754 {
10755 free (tab);
10756 return FALSE;
10757 }
10758
10759 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10760 &int_gptab);
10761 val = int_gptab.gt_entry.gt_g_value;
10762 add = int_gptab.gt_entry.gt_bytes - last;
10763
10764 exact = FALSE;
10765 for (look = 1; look < c; look++)
10766 {
10767 if (tab[look].gt_entry.gt_g_value >= val)
10768 tab[look].gt_entry.gt_bytes += add;
10769
10770 if (tab[look].gt_entry.gt_g_value == val)
10771 exact = TRUE;
10772 }
10773
10774 if (! exact)
10775 {
10776 Elf32_gptab *new_tab;
10777 unsigned int max;
10778
10779 /* We need a new table entry. */
10780 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
10781 new_tab = bfd_realloc (tab, amt);
10782 if (new_tab == NULL)
10783 {
10784 free (tab);
10785 return FALSE;
10786 }
10787 tab = new_tab;
10788 tab[c].gt_entry.gt_g_value = val;
10789 tab[c].gt_entry.gt_bytes = add;
10790
10791 /* Merge in the size for the next smallest -G
10792 value, since that will be implied by this new
10793 value. */
10794 max = 0;
10795 for (look = 1; look < c; look++)
10796 {
10797 if (tab[look].gt_entry.gt_g_value < val
10798 && (max == 0
10799 || (tab[look].gt_entry.gt_g_value
10800 > tab[max].gt_entry.gt_g_value)))
10801 max = look;
10802 }
10803 if (max != 0)
10804 tab[c].gt_entry.gt_bytes +=
10805 tab[max].gt_entry.gt_bytes;
10806
10807 ++c;
10808 }
10809
10810 last = int_gptab.gt_entry.gt_bytes;
10811 }
10812
10813 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10814 elf_link_input_bfd ignores this section. */
10815 input_section->flags &= ~SEC_HAS_CONTENTS;
10816 }
10817
10818 /* The table must be sorted by -G value. */
10819 if (c > 2)
10820 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10821
10822 /* Swap out the table. */
10823 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
10824 ext_tab = bfd_alloc (abfd, amt);
10825 if (ext_tab == NULL)
10826 {
10827 free (tab);
10828 return FALSE;
10829 }
10830
10831 for (j = 0; j < c; j++)
10832 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10833 free (tab);
10834
10835 o->size = c * sizeof (Elf32_External_gptab);
10836 o->contents = (bfd_byte *) ext_tab;
10837
10838 /* Skip this section later on (I don't think this currently
10839 matters, but someday it might). */
10840 o->map_head.link_order = NULL;
10841 }
10842 }
10843
10844 /* Invoke the regular ELF backend linker to do all the work. */
10845 if (!bfd_elf_final_link (abfd, info))
10846 return FALSE;
10847
10848 /* Now write out the computed sections. */
10849
10850 if (reginfo_sec != NULL)
10851 {
10852 Elf32_External_RegInfo ext;
10853
10854 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
10855 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
10856 return FALSE;
10857 }
10858
10859 if (mdebug_sec != NULL)
10860 {
10861 BFD_ASSERT (abfd->output_has_begun);
10862 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10863 swap, info,
10864 mdebug_sec->filepos))
10865 return FALSE;
10866
10867 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10868 }
10869
10870 if (gptab_data_sec != NULL)
10871 {
10872 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10873 gptab_data_sec->contents,
10874 0, gptab_data_sec->size))
10875 return FALSE;
10876 }
10877
10878 if (gptab_bss_sec != NULL)
10879 {
10880 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10881 gptab_bss_sec->contents,
10882 0, gptab_bss_sec->size))
10883 return FALSE;
10884 }
10885
10886 if (SGI_COMPAT (abfd))
10887 {
10888 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10889 if (rtproc_sec != NULL)
10890 {
10891 if (! bfd_set_section_contents (abfd, rtproc_sec,
10892 rtproc_sec->contents,
10893 0, rtproc_sec->size))
10894 return FALSE;
10895 }
10896 }
10897
10898 return TRUE;
10899 }
10900 \f
10901 /* Structure for saying that BFD machine EXTENSION extends BASE. */
10902
10903 struct mips_mach_extension {
10904 unsigned long extension, base;
10905 };
10906
10907
10908 /* An array describing how BFD machines relate to one another. The entries
10909 are ordered topologically with MIPS I extensions listed last. */
10910
10911 static const struct mips_mach_extension mips_mach_extensions[] = {
10912 /* MIPS64 extensions. */
10913 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
10914 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10915
10916 /* MIPS V extensions. */
10917 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10918
10919 /* R10000 extensions. */
10920 { bfd_mach_mips12000, bfd_mach_mips10000 },
10921
10922 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10923 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10924 better to allow vr5400 and vr5500 code to be merged anyway, since
10925 many libraries will just use the core ISA. Perhaps we could add
10926 some sort of ASE flag if this ever proves a problem. */
10927 { bfd_mach_mips5500, bfd_mach_mips5400 },
10928 { bfd_mach_mips5400, bfd_mach_mips5000 },
10929
10930 /* MIPS IV extensions. */
10931 { bfd_mach_mips5, bfd_mach_mips8000 },
10932 { bfd_mach_mips10000, bfd_mach_mips8000 },
10933 { bfd_mach_mips5000, bfd_mach_mips8000 },
10934 { bfd_mach_mips7000, bfd_mach_mips8000 },
10935 { bfd_mach_mips9000, bfd_mach_mips8000 },
10936
10937 /* VR4100 extensions. */
10938 { bfd_mach_mips4120, bfd_mach_mips4100 },
10939 { bfd_mach_mips4111, bfd_mach_mips4100 },
10940
10941 /* MIPS III extensions. */
10942 { bfd_mach_mips8000, bfd_mach_mips4000 },
10943 { bfd_mach_mips4650, bfd_mach_mips4000 },
10944 { bfd_mach_mips4600, bfd_mach_mips4000 },
10945 { bfd_mach_mips4400, bfd_mach_mips4000 },
10946 { bfd_mach_mips4300, bfd_mach_mips4000 },
10947 { bfd_mach_mips4100, bfd_mach_mips4000 },
10948 { bfd_mach_mips4010, bfd_mach_mips4000 },
10949
10950 /* MIPS32 extensions. */
10951 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10952
10953 /* MIPS II extensions. */
10954 { bfd_mach_mips4000, bfd_mach_mips6000 },
10955 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10956
10957 /* MIPS I extensions. */
10958 { bfd_mach_mips6000, bfd_mach_mips3000 },
10959 { bfd_mach_mips3900, bfd_mach_mips3000 }
10960 };
10961
10962
10963 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10964
10965 static bfd_boolean
10966 mips_mach_extends_p (unsigned long base, unsigned long extension)
10967 {
10968 size_t i;
10969
10970 if (extension == base)
10971 return TRUE;
10972
10973 if (base == bfd_mach_mipsisa32
10974 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10975 return TRUE;
10976
10977 if (base == bfd_mach_mipsisa32r2
10978 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10979 return TRUE;
10980
10981 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
10982 if (extension == mips_mach_extensions[i].extension)
10983 {
10984 extension = mips_mach_extensions[i].base;
10985 if (extension == base)
10986 return TRUE;
10987 }
10988
10989 return FALSE;
10990 }
10991
10992
10993 /* Return true if the given ELF header flags describe a 32-bit binary. */
10994
10995 static bfd_boolean
10996 mips_32bit_flags_p (flagword flags)
10997 {
10998 return ((flags & EF_MIPS_32BITMODE) != 0
10999 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
11000 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
11001 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
11002 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
11003 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
11004 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
11005 }
11006
11007
11008 /* Merge backend specific data from an object file to the output
11009 object file when linking. */
11010
11011 bfd_boolean
11012 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
11013 {
11014 flagword old_flags;
11015 flagword new_flags;
11016 bfd_boolean ok;
11017 bfd_boolean null_input_bfd = TRUE;
11018 asection *sec;
11019
11020 /* Check if we have the same endianess */
11021 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
11022 {
11023 (*_bfd_error_handler)
11024 (_("%B: endianness incompatible with that of the selected emulation"),
11025 ibfd);
11026 return FALSE;
11027 }
11028
11029 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
11030 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
11031 return TRUE;
11032
11033 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
11034 {
11035 (*_bfd_error_handler)
11036 (_("%B: ABI is incompatible with that of the selected emulation"),
11037 ibfd);
11038 return FALSE;
11039 }
11040
11041 new_flags = elf_elfheader (ibfd)->e_flags;
11042 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
11043 old_flags = elf_elfheader (obfd)->e_flags;
11044
11045 if (! elf_flags_init (obfd))
11046 {
11047 elf_flags_init (obfd) = TRUE;
11048 elf_elfheader (obfd)->e_flags = new_flags;
11049 elf_elfheader (obfd)->e_ident[EI_CLASS]
11050 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
11051
11052 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
11053 && (bfd_get_arch_info (obfd)->the_default
11054 || mips_mach_extends_p (bfd_get_mach (obfd),
11055 bfd_get_mach (ibfd))))
11056 {
11057 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
11058 bfd_get_mach (ibfd)))
11059 return FALSE;
11060 }
11061
11062 return TRUE;
11063 }
11064
11065 /* Check flag compatibility. */
11066
11067 new_flags &= ~EF_MIPS_NOREORDER;
11068 old_flags &= ~EF_MIPS_NOREORDER;
11069
11070 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11071 doesn't seem to matter. */
11072 new_flags &= ~EF_MIPS_XGOT;
11073 old_flags &= ~EF_MIPS_XGOT;
11074
11075 /* MIPSpro generates ucode info in n64 objects. Again, we should
11076 just be able to ignore this. */
11077 new_flags &= ~EF_MIPS_UCODE;
11078 old_flags &= ~EF_MIPS_UCODE;
11079
11080 /* Don't care about the PIC flags from dynamic objects; they are
11081 PIC by design. */
11082 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11083 && (ibfd->flags & DYNAMIC) != 0)
11084 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11085
11086 if (new_flags == old_flags)
11087 return TRUE;
11088
11089 /* Check to see if the input BFD actually contains any sections.
11090 If not, its flags may not have been initialised either, but it cannot
11091 actually cause any incompatibility. */
11092 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11093 {
11094 /* Ignore synthetic sections and empty .text, .data and .bss sections
11095 which are automatically generated by gas. */
11096 if (strcmp (sec->name, ".reginfo")
11097 && strcmp (sec->name, ".mdebug")
11098 && (sec->size != 0
11099 || (strcmp (sec->name, ".text")
11100 && strcmp (sec->name, ".data")
11101 && strcmp (sec->name, ".bss"))))
11102 {
11103 null_input_bfd = FALSE;
11104 break;
11105 }
11106 }
11107 if (null_input_bfd)
11108 return TRUE;
11109
11110 ok = TRUE;
11111
11112 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11113 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
11114 {
11115 (*_bfd_error_handler)
11116 (_("%B: warning: linking PIC files with non-PIC files"),
11117 ibfd);
11118 ok = TRUE;
11119 }
11120
11121 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11122 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11123 if (! (new_flags & EF_MIPS_PIC))
11124 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11125
11126 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11127 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11128
11129 /* Compare the ISAs. */
11130 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
11131 {
11132 (*_bfd_error_handler)
11133 (_("%B: linking 32-bit code with 64-bit code"),
11134 ibfd);
11135 ok = FALSE;
11136 }
11137 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11138 {
11139 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11140 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
11141 {
11142 /* Copy the architecture info from IBFD to OBFD. Also copy
11143 the 32-bit flag (if set) so that we continue to recognise
11144 OBFD as a 32-bit binary. */
11145 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11146 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11147 elf_elfheader (obfd)->e_flags
11148 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11149
11150 /* Copy across the ABI flags if OBFD doesn't use them
11151 and if that was what caused us to treat IBFD as 32-bit. */
11152 if ((old_flags & EF_MIPS_ABI) == 0
11153 && mips_32bit_flags_p (new_flags)
11154 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11155 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
11156 }
11157 else
11158 {
11159 /* The ISAs aren't compatible. */
11160 (*_bfd_error_handler)
11161 (_("%B: linking %s module with previous %s modules"),
11162 ibfd,
11163 bfd_printable_name (ibfd),
11164 bfd_printable_name (obfd));
11165 ok = FALSE;
11166 }
11167 }
11168
11169 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11170 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11171
11172 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
11173 does set EI_CLASS differently from any 32-bit ABI. */
11174 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11175 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11176 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11177 {
11178 /* Only error if both are set (to different values). */
11179 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11180 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11181 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11182 {
11183 (*_bfd_error_handler)
11184 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11185 ibfd,
11186 elf_mips_abi_name (ibfd),
11187 elf_mips_abi_name (obfd));
11188 ok = FALSE;
11189 }
11190 new_flags &= ~EF_MIPS_ABI;
11191 old_flags &= ~EF_MIPS_ABI;
11192 }
11193
11194 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11195 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11196 {
11197 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11198
11199 new_flags &= ~ EF_MIPS_ARCH_ASE;
11200 old_flags &= ~ EF_MIPS_ARCH_ASE;
11201 }
11202
11203 /* Warn about any other mismatches */
11204 if (new_flags != old_flags)
11205 {
11206 (*_bfd_error_handler)
11207 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11208 ibfd, (unsigned long) new_flags,
11209 (unsigned long) old_flags);
11210 ok = FALSE;
11211 }
11212
11213 if (! ok)
11214 {
11215 bfd_set_error (bfd_error_bad_value);
11216 return FALSE;
11217 }
11218
11219 return TRUE;
11220 }
11221
11222 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11223
11224 bfd_boolean
11225 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
11226 {
11227 BFD_ASSERT (!elf_flags_init (abfd)
11228 || elf_elfheader (abfd)->e_flags == flags);
11229
11230 elf_elfheader (abfd)->e_flags = flags;
11231 elf_flags_init (abfd) = TRUE;
11232 return TRUE;
11233 }
11234
11235 bfd_boolean
11236 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
11237 {
11238 FILE *file = ptr;
11239
11240 BFD_ASSERT (abfd != NULL && ptr != NULL);
11241
11242 /* Print normal ELF private data. */
11243 _bfd_elf_print_private_bfd_data (abfd, ptr);
11244
11245 /* xgettext:c-format */
11246 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11247
11248 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11249 fprintf (file, _(" [abi=O32]"));
11250 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11251 fprintf (file, _(" [abi=O64]"));
11252 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11253 fprintf (file, _(" [abi=EABI32]"));
11254 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11255 fprintf (file, _(" [abi=EABI64]"));
11256 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11257 fprintf (file, _(" [abi unknown]"));
11258 else if (ABI_N32_P (abfd))
11259 fprintf (file, _(" [abi=N32]"));
11260 else if (ABI_64_P (abfd))
11261 fprintf (file, _(" [abi=64]"));
11262 else
11263 fprintf (file, _(" [no abi set]"));
11264
11265 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
11266 fprintf (file, " [mips1]");
11267 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
11268 fprintf (file, " [mips2]");
11269 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
11270 fprintf (file, " [mips3]");
11271 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
11272 fprintf (file, " [mips4]");
11273 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
11274 fprintf (file, " [mips5]");
11275 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
11276 fprintf (file, " [mips32]");
11277 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
11278 fprintf (file, " [mips64]");
11279 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
11280 fprintf (file, " [mips32r2]");
11281 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
11282 fprintf (file, " [mips64r2]");
11283 else
11284 fprintf (file, _(" [unknown ISA]"));
11285
11286 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
11287 fprintf (file, " [mdmx]");
11288
11289 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
11290 fprintf (file, " [mips16]");
11291
11292 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
11293 fprintf (file, " [32bitmode]");
11294 else
11295 fprintf (file, _(" [not 32bitmode]"));
11296
11297 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
11298 fprintf (file, " [noreorder]");
11299
11300 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
11301 fprintf (file, " [PIC]");
11302
11303 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
11304 fprintf (file, " [CPIC]");
11305
11306 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
11307 fprintf (file, " [XGOT]");
11308
11309 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
11310 fprintf (file, " [UCODE]");
11311
11312 fputc ('\n', file);
11313
11314 return TRUE;
11315 }
11316
11317 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
11318 {
11319 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11320 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11321 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
11322 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11323 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11324 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
11325 { NULL, 0, 0, 0, 0 }
11326 };
11327
11328 /* Merge non visibility st_other attributes. Ensure that the
11329 STO_OPTIONAL flag is copied into h->other, even if this is not a
11330 definiton of the symbol. */
11331 void
11332 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11333 const Elf_Internal_Sym *isym,
11334 bfd_boolean definition,
11335 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11336 {
11337 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11338 {
11339 unsigned char other;
11340
11341 other = (definition ? isym->st_other : h->other);
11342 other &= ~ELF_ST_VISIBILITY (-1);
11343 h->other = other | ELF_ST_VISIBILITY (h->other);
11344 }
11345
11346 if (!definition
11347 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11348 h->other |= STO_OPTIONAL;
11349 }
11350
11351 /* Decide whether an undefined symbol is special and can be ignored.
11352 This is the case for OPTIONAL symbols on IRIX. */
11353 bfd_boolean
11354 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11355 {
11356 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11357 }
11358
11359 bfd_boolean
11360 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11361 {
11362 return (sym->st_shndx == SHN_COMMON
11363 || sym->st_shndx == SHN_MIPS_ACOMMON
11364 || sym->st_shndx == SHN_MIPS_SCOMMON);
11365 }
This page took 0.270286 seconds and 4 git commands to generate.