d25f4ff3d456acfed4addfdba8d6a80f5170452a
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 bfd_size_type min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 bfd_size_type max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index corresponding to a local
319 symbol. */
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
322 symbol without a GOT entry. */
323 bfd_size_type max_non_got_dynindx;
324 };
325
326 /* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
329 processing. */
330
331 struct plt_entry
332 {
333 /* Traditional SVR4 stub offset, or -1 if none. */
334 bfd_vma stub_offset;
335
336 /* Standard PLT entry offset, or -1 if none. */
337 bfd_vma mips_offset;
338
339 /* Compressed PLT entry offset, or -1 if none. */
340 bfd_vma comp_offset;
341
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
344
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
347
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
350 };
351
352 /* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
354
355 struct mips_elf_link_hash_entry
356 {
357 struct elf_link_hash_entry root;
358
359 /* External symbol information. */
360 EXTR esym;
361
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
364
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366 this symbol. */
367 unsigned int possibly_dynamic_relocs;
368
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
371 asection *fn_stub;
372
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
375 asection *call_stub;
376
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
419 };
420
421 /* MIPS ELF linker hash table. */
422
423 struct mips_elf_link_hash_table
424 {
425 struct elf_link_hash_table root;
426
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
429
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
432
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
435 bfd_boolean use_rld_obj_head;
436
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
439
440 /* This is set if we see any mips16 stub sections. */
441 bfd_boolean mips16_stubs_seen;
442
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
445
446 /* True if we can only use 32-bit microMIPS instructions. */
447 bfd_boolean insn32;
448
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
451
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
454
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
457
458 /* Shortcuts to some dynamic sections, or NULL if they are not
459 being used. */
460 asection *srelplt2;
461 asection *sstubs;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519 };
520
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
522
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
529 {
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536 };
537
538 /* MIPS ELF private object data. */
539
540 struct mips_elf_obj_tdata
541 {
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573 };
574
575 /* Get MIPS ELF private object data from BFD's tdata. */
576
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609 /* Structure used to pass information to mips_elf_output_extsym. */
610
611 struct extsym_info
612 {
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618 };
619
620 /* The names of the runtime procedure table symbols used on IRIX5. */
621
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628 };
629
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633 typedef struct
634 {
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
642
643 typedef struct
644 {
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652
653 typedef struct
654 {
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
671
672 typedef struct
673 {
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678
679 typedef struct
680 {
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684
685 /* These are the constants used to swap the bitfields in a crinfo. */
686
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
701
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
716
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721 \f
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 \f
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
757
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
774
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
779
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
885
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
894
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112 };
1113
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126 };
1127
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136 };
1137
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145 };
1146
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156 };
1157
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180 };
1181
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187 };
1188 \f
1189 /* microMIPS 32-bit opcode helper installer. */
1190
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196 }
1197
1198 /* microMIPS 32-bit opcode helper retriever. */
1199
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 \f
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1207
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213 /* Traverse a MIPS ELF linker hash table. */
1214
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244
1245 /* Create an entry in a MIPS ELF linker hash table. */
1246
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250 {
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289 }
1290
1291 /* Allocate MIPS ELF private object data. */
1292
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298 }
1299
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 \f
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323 {
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402 }
1403 \f
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1405
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421
1422 /* Create a runtime procedure table from the .mdebug section. */
1423
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428 {
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570 }
1571 \f
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580 {
1581 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1582 struct bfd_link_hash_entry *bh;
1583 struct elf_link_hash_entry *elfh;
1584 char *name;
1585 bfd_boolean res;
1586
1587 if (micromips_p)
1588 value |= 1;
1589
1590 /* Create a new symbol. */
1591 name = concat (prefix, h->root.root.root.string, NULL);
1592 bh = NULL;
1593 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1594 BSF_LOCAL, s, value, NULL,
1595 TRUE, FALSE, &bh);
1596 free (name);
1597 if (! res)
1598 return FALSE;
1599
1600 /* Make it a local function. */
1601 elfh = (struct elf_link_hash_entry *) bh;
1602 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1603 elfh->size = size;
1604 elfh->forced_local = 1;
1605 if (micromips_p)
1606 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1607 return TRUE;
1608 }
1609
1610 /* We're about to redefine H. Create a symbol to represent H's
1611 current value and size, to help make the disassembly easier
1612 to read. */
1613
1614 static bfd_boolean
1615 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1616 struct mips_elf_link_hash_entry *h,
1617 const char *prefix)
1618 {
1619 struct bfd_link_hash_entry *bh;
1620 struct elf_link_hash_entry *elfh;
1621 char *name;
1622 asection *s;
1623 bfd_vma value;
1624 bfd_boolean res;
1625
1626 /* Read the symbol's value. */
1627 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1628 || h->root.root.type == bfd_link_hash_defweak);
1629 s = h->root.root.u.def.section;
1630 value = h->root.root.u.def.value;
1631
1632 /* Create a new symbol. */
1633 name = concat (prefix, h->root.root.root.string, NULL);
1634 bh = NULL;
1635 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1636 BSF_LOCAL, s, value, NULL,
1637 TRUE, FALSE, &bh);
1638 free (name);
1639 if (! res)
1640 return FALSE;
1641
1642 /* Make it local and copy the other attributes from H. */
1643 elfh = (struct elf_link_hash_entry *) bh;
1644 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1645 elfh->other = h->root.other;
1646 elfh->size = h->root.size;
1647 elfh->forced_local = 1;
1648 return TRUE;
1649 }
1650
1651 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1652 function rather than to a hard-float stub. */
1653
1654 static bfd_boolean
1655 section_allows_mips16_refs_p (asection *section)
1656 {
1657 const char *name;
1658
1659 name = bfd_get_section_name (section->owner, section);
1660 return (FN_STUB_P (name)
1661 || CALL_STUB_P (name)
1662 || CALL_FP_STUB_P (name)
1663 || strcmp (name, ".pdr") == 0);
1664 }
1665
1666 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1667 stub section of some kind. Return the R_SYMNDX of the target
1668 function, or 0 if we can't decide which function that is. */
1669
1670 static unsigned long
1671 mips16_stub_symndx (const struct elf_backend_data *bed,
1672 asection *sec ATTRIBUTE_UNUSED,
1673 const Elf_Internal_Rela *relocs,
1674 const Elf_Internal_Rela *relend)
1675 {
1676 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1677 const Elf_Internal_Rela *rel;
1678
1679 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1680 one in a compound relocation. */
1681 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1682 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1683 return ELF_R_SYM (sec->owner, rel->r_info);
1684
1685 /* Otherwise trust the first relocation, whatever its kind. This is
1686 the traditional behavior. */
1687 if (relocs < relend)
1688 return ELF_R_SYM (sec->owner, relocs->r_info);
1689
1690 return 0;
1691 }
1692
1693 /* Check the mips16 stubs for a particular symbol, and see if we can
1694 discard them. */
1695
1696 static void
1697 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1698 struct mips_elf_link_hash_entry *h)
1699 {
1700 /* Dynamic symbols must use the standard call interface, in case other
1701 objects try to call them. */
1702 if (h->fn_stub != NULL
1703 && h->root.dynindx != -1)
1704 {
1705 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1706 h->need_fn_stub = TRUE;
1707 }
1708
1709 if (h->fn_stub != NULL
1710 && ! h->need_fn_stub)
1711 {
1712 /* We don't need the fn_stub; the only references to this symbol
1713 are 16 bit calls. Clobber the size to 0 to prevent it from
1714 being included in the link. */
1715 h->fn_stub->size = 0;
1716 h->fn_stub->flags &= ~SEC_RELOC;
1717 h->fn_stub->reloc_count = 0;
1718 h->fn_stub->flags |= SEC_EXCLUDE;
1719 h->fn_stub->output_section = bfd_abs_section_ptr;
1720 }
1721
1722 if (h->call_stub != NULL
1723 && ELF_ST_IS_MIPS16 (h->root.other))
1724 {
1725 /* We don't need the call_stub; this is a 16 bit function, so
1726 calls from other 16 bit functions are OK. Clobber the size
1727 to 0 to prevent it from being included in the link. */
1728 h->call_stub->size = 0;
1729 h->call_stub->flags &= ~SEC_RELOC;
1730 h->call_stub->reloc_count = 0;
1731 h->call_stub->flags |= SEC_EXCLUDE;
1732 h->call_stub->output_section = bfd_abs_section_ptr;
1733 }
1734
1735 if (h->call_fp_stub != NULL
1736 && ELF_ST_IS_MIPS16 (h->root.other))
1737 {
1738 /* We don't need the call_stub; this is a 16 bit function, so
1739 calls from other 16 bit functions are OK. Clobber the size
1740 to 0 to prevent it from being included in the link. */
1741 h->call_fp_stub->size = 0;
1742 h->call_fp_stub->flags &= ~SEC_RELOC;
1743 h->call_fp_stub->reloc_count = 0;
1744 h->call_fp_stub->flags |= SEC_EXCLUDE;
1745 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1746 }
1747 }
1748
1749 /* Hashtable callbacks for mips_elf_la25_stubs. */
1750
1751 static hashval_t
1752 mips_elf_la25_stub_hash (const void *entry_)
1753 {
1754 const struct mips_elf_la25_stub *entry;
1755
1756 entry = (struct mips_elf_la25_stub *) entry_;
1757 return entry->h->root.root.u.def.section->id
1758 + entry->h->root.root.u.def.value;
1759 }
1760
1761 static int
1762 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1763 {
1764 const struct mips_elf_la25_stub *entry1, *entry2;
1765
1766 entry1 = (struct mips_elf_la25_stub *) entry1_;
1767 entry2 = (struct mips_elf_la25_stub *) entry2_;
1768 return ((entry1->h->root.root.u.def.section
1769 == entry2->h->root.root.u.def.section)
1770 && (entry1->h->root.root.u.def.value
1771 == entry2->h->root.root.u.def.value));
1772 }
1773
1774 /* Called by the linker to set up the la25 stub-creation code. FN is
1775 the linker's implementation of add_stub_function. Return true on
1776 success. */
1777
1778 bfd_boolean
1779 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1780 asection *(*fn) (const char *, asection *,
1781 asection *))
1782 {
1783 struct mips_elf_link_hash_table *htab;
1784
1785 htab = mips_elf_hash_table (info);
1786 if (htab == NULL)
1787 return FALSE;
1788
1789 htab->add_stub_section = fn;
1790 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1791 mips_elf_la25_stub_eq, NULL);
1792 if (htab->la25_stubs == NULL)
1793 return FALSE;
1794
1795 return TRUE;
1796 }
1797
1798 /* Return true if H is a locally-defined PIC function, in the sense
1799 that it or its fn_stub might need $25 to be valid on entry.
1800 Note that MIPS16 functions set up $gp using PC-relative instructions,
1801 so they themselves never need $25 to be valid. Only non-MIPS16
1802 entry points are of interest here. */
1803
1804 static bfd_boolean
1805 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1806 {
1807 return ((h->root.root.type == bfd_link_hash_defined
1808 || h->root.root.type == bfd_link_hash_defweak)
1809 && h->root.def_regular
1810 && !bfd_is_abs_section (h->root.root.u.def.section)
1811 && !bfd_is_und_section (h->root.root.u.def.section)
1812 && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 || (h->fn_stub && h->need_fn_stub))
1814 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1816 }
1817
1818 /* Set *SEC to the input section that contains the target of STUB.
1819 Return the offset of the target from the start of that section. */
1820
1821 static bfd_vma
1822 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1823 asection **sec)
1824 {
1825 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1826 {
1827 BFD_ASSERT (stub->h->need_fn_stub);
1828 *sec = stub->h->fn_stub;
1829 return 0;
1830 }
1831 else
1832 {
1833 *sec = stub->h->root.root.u.def.section;
1834 return stub->h->root.root.u.def.value;
1835 }
1836 }
1837
1838 /* STUB describes an la25 stub that we have decided to implement
1839 by inserting an LUI/ADDIU pair before the target function.
1840 Create the section and redirect the function symbol to it. */
1841
1842 static bfd_boolean
1843 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 struct bfd_link_info *info)
1845 {
1846 struct mips_elf_link_hash_table *htab;
1847 char *name;
1848 asection *s, *input_section;
1849 unsigned int align;
1850
1851 htab = mips_elf_hash_table (info);
1852 if (htab == NULL)
1853 return FALSE;
1854
1855 /* Create a unique name for the new section. */
1856 name = bfd_malloc (11 + sizeof (".text.stub."));
1857 if (name == NULL)
1858 return FALSE;
1859 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1860
1861 /* Create the section. */
1862 mips_elf_get_la25_target (stub, &input_section);
1863 s = htab->add_stub_section (name, input_section,
1864 input_section->output_section);
1865 if (s == NULL)
1866 return FALSE;
1867
1868 /* Make sure that any padding goes before the stub. */
1869 align = input_section->alignment_power;
1870 if (!bfd_set_section_alignment (s->owner, s, align))
1871 return FALSE;
1872 if (align > 3)
1873 s->size = (1 << align) - 8;
1874
1875 /* Create a symbol for the stub. */
1876 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877 stub->stub_section = s;
1878 stub->offset = s->size;
1879
1880 /* Allocate room for it. */
1881 s->size += 8;
1882 return TRUE;
1883 }
1884
1885 /* STUB describes an la25 stub that we have decided to implement
1886 with a separate trampoline. Allocate room for it and redirect
1887 the function symbol to it. */
1888
1889 static bfd_boolean
1890 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 struct bfd_link_info *info)
1892 {
1893 struct mips_elf_link_hash_table *htab;
1894 asection *s;
1895
1896 htab = mips_elf_hash_table (info);
1897 if (htab == NULL)
1898 return FALSE;
1899
1900 /* Create a trampoline section, if we haven't already. */
1901 s = htab->strampoline;
1902 if (s == NULL)
1903 {
1904 asection *input_section = stub->h->root.root.u.def.section;
1905 s = htab->add_stub_section (".text", NULL,
1906 input_section->output_section);
1907 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1908 return FALSE;
1909 htab->strampoline = s;
1910 }
1911
1912 /* Create a symbol for the stub. */
1913 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914 stub->stub_section = s;
1915 stub->offset = s->size;
1916
1917 /* Allocate room for it. */
1918 s->size += 16;
1919 return TRUE;
1920 }
1921
1922 /* H describes a symbol that needs an la25 stub. Make sure that an
1923 appropriate stub exists and point H at it. */
1924
1925 static bfd_boolean
1926 mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 struct mips_elf_link_hash_entry *h)
1928 {
1929 struct mips_elf_link_hash_table *htab;
1930 struct mips_elf_la25_stub search, *stub;
1931 bfd_boolean use_trampoline_p;
1932 asection *s;
1933 bfd_vma value;
1934 void **slot;
1935
1936 /* Describe the stub we want. */
1937 search.stub_section = NULL;
1938 search.offset = 0;
1939 search.h = h;
1940
1941 /* See if we've already created an equivalent stub. */
1942 htab = mips_elf_hash_table (info);
1943 if (htab == NULL)
1944 return FALSE;
1945
1946 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947 if (slot == NULL)
1948 return FALSE;
1949
1950 stub = (struct mips_elf_la25_stub *) *slot;
1951 if (stub != NULL)
1952 {
1953 /* We can reuse the existing stub. */
1954 h->la25_stub = stub;
1955 return TRUE;
1956 }
1957
1958 /* Create a permanent copy of ENTRY and add it to the hash table. */
1959 stub = bfd_malloc (sizeof (search));
1960 if (stub == NULL)
1961 return FALSE;
1962 *stub = search;
1963 *slot = stub;
1964
1965 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966 of the section and if we would need no more than 2 nops. */
1967 value = mips_elf_get_la25_target (stub, &s);
1968 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1969 value &= ~1;
1970 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1971
1972 h->la25_stub = stub;
1973 return (use_trampoline_p
1974 ? mips_elf_add_la25_trampoline (stub, info)
1975 : mips_elf_add_la25_intro (stub, info));
1976 }
1977
1978 /* A mips_elf_link_hash_traverse callback that is called before sizing
1979 sections. DATA points to a mips_htab_traverse_info structure. */
1980
1981 static bfd_boolean
1982 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1983 {
1984 struct mips_htab_traverse_info *hti;
1985
1986 hti = (struct mips_htab_traverse_info *) data;
1987 if (!bfd_link_relocatable (hti->info))
1988 mips_elf_check_mips16_stubs (hti->info, h);
1989
1990 if (mips_elf_local_pic_function_p (h))
1991 {
1992 /* PR 12845: If H is in a section that has been garbage
1993 collected it will have its output section set to *ABS*. */
1994 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1995 return TRUE;
1996
1997 /* H is a function that might need $25 to be valid on entry.
1998 If we're creating a non-PIC relocatable object, mark H as
1999 being PIC. If we're creating a non-relocatable object with
2000 non-PIC branches and jumps to H, make sure that H has an la25
2001 stub. */
2002 if (bfd_link_relocatable (hti->info))
2003 {
2004 if (!PIC_OBJECT_P (hti->output_bfd))
2005 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2006 }
2007 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2008 {
2009 hti->error = TRUE;
2010 return FALSE;
2011 }
2012 }
2013 return TRUE;
2014 }
2015 \f
2016 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2017 Most mips16 instructions are 16 bits, but these instructions
2018 are 32 bits.
2019
2020 The format of these instructions is:
2021
2022 +--------------+--------------------------------+
2023 | JALX | X| Imm 20:16 | Imm 25:21 |
2024 +--------------+--------------------------------+
2025 | Immediate 15:0 |
2026 +-----------------------------------------------+
2027
2028 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2029 Note that the immediate value in the first word is swapped.
2030
2031 When producing a relocatable object file, R_MIPS16_26 is
2032 handled mostly like R_MIPS_26. In particular, the addend is
2033 stored as a straight 26-bit value in a 32-bit instruction.
2034 (gas makes life simpler for itself by never adjusting a
2035 R_MIPS16_26 reloc to be against a section, so the addend is
2036 always zero). However, the 32 bit instruction is stored as 2
2037 16-bit values, rather than a single 32-bit value. In a
2038 big-endian file, the result is the same; in a little-endian
2039 file, the two 16-bit halves of the 32 bit value are swapped.
2040 This is so that a disassembler can recognize the jal
2041 instruction.
2042
2043 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2044 instruction stored as two 16-bit values. The addend A is the
2045 contents of the targ26 field. The calculation is the same as
2046 R_MIPS_26. When storing the calculated value, reorder the
2047 immediate value as shown above, and don't forget to store the
2048 value as two 16-bit values.
2049
2050 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2051 defined as
2052
2053 big-endian:
2054 +--------+----------------------+
2055 | | |
2056 | | targ26-16 |
2057 |31 26|25 0|
2058 +--------+----------------------+
2059
2060 little-endian:
2061 +----------+------+-------------+
2062 | | | |
2063 | sub1 | | sub2 |
2064 |0 9|10 15|16 31|
2065 +----------+--------------------+
2066 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2067 ((sub1 << 16) | sub2)).
2068
2069 When producing a relocatable object file, the calculation is
2070 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071 When producing a fully linked file, the calculation is
2072 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2073 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2074
2075 The table below lists the other MIPS16 instruction relocations.
2076 Each one is calculated in the same way as the non-MIPS16 relocation
2077 given on the right, but using the extended MIPS16 layout of 16-bit
2078 immediate fields:
2079
2080 R_MIPS16_GPREL R_MIPS_GPREL16
2081 R_MIPS16_GOT16 R_MIPS_GOT16
2082 R_MIPS16_CALL16 R_MIPS_CALL16
2083 R_MIPS16_HI16 R_MIPS_HI16
2084 R_MIPS16_LO16 R_MIPS_LO16
2085
2086 A typical instruction will have a format like this:
2087
2088 +--------------+--------------------------------+
2089 | EXTEND | Imm 10:5 | Imm 15:11 |
2090 +--------------+--------------------------------+
2091 | Major | rx | ry | Imm 4:0 |
2092 +--------------+--------------------------------+
2093
2094 EXTEND is the five bit value 11110. Major is the instruction
2095 opcode.
2096
2097 All we need to do here is shuffle the bits appropriately.
2098 As above, the two 16-bit halves must be swapped on a
2099 little-endian system.
2100
2101 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2102 relocatable field is shifted by 1 rather than 2 and the same bit
2103 shuffling is done as with the relocations above. */
2104
2105 static inline bfd_boolean
2106 mips16_reloc_p (int r_type)
2107 {
2108 switch (r_type)
2109 {
2110 case R_MIPS16_26:
2111 case R_MIPS16_GPREL:
2112 case R_MIPS16_GOT16:
2113 case R_MIPS16_CALL16:
2114 case R_MIPS16_HI16:
2115 case R_MIPS16_LO16:
2116 case R_MIPS16_TLS_GD:
2117 case R_MIPS16_TLS_LDM:
2118 case R_MIPS16_TLS_DTPREL_HI16:
2119 case R_MIPS16_TLS_DTPREL_LO16:
2120 case R_MIPS16_TLS_GOTTPREL:
2121 case R_MIPS16_TLS_TPREL_HI16:
2122 case R_MIPS16_TLS_TPREL_LO16:
2123 case R_MIPS16_PC16_S1:
2124 return TRUE;
2125
2126 default:
2127 return FALSE;
2128 }
2129 }
2130
2131 /* Check if a microMIPS reloc. */
2132
2133 static inline bfd_boolean
2134 micromips_reloc_p (unsigned int r_type)
2135 {
2136 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2137 }
2138
2139 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2140 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2141 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2142
2143 static inline bfd_boolean
2144 micromips_reloc_shuffle_p (unsigned int r_type)
2145 {
2146 return (micromips_reloc_p (r_type)
2147 && r_type != R_MICROMIPS_PC7_S1
2148 && r_type != R_MICROMIPS_PC10_S1);
2149 }
2150
2151 static inline bfd_boolean
2152 got16_reloc_p (int r_type)
2153 {
2154 return (r_type == R_MIPS_GOT16
2155 || r_type == R_MIPS16_GOT16
2156 || r_type == R_MICROMIPS_GOT16);
2157 }
2158
2159 static inline bfd_boolean
2160 call16_reloc_p (int r_type)
2161 {
2162 return (r_type == R_MIPS_CALL16
2163 || r_type == R_MIPS16_CALL16
2164 || r_type == R_MICROMIPS_CALL16);
2165 }
2166
2167 static inline bfd_boolean
2168 got_disp_reloc_p (unsigned int r_type)
2169 {
2170 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2171 }
2172
2173 static inline bfd_boolean
2174 got_page_reloc_p (unsigned int r_type)
2175 {
2176 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2177 }
2178
2179 static inline bfd_boolean
2180 got_lo16_reloc_p (unsigned int r_type)
2181 {
2182 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2183 }
2184
2185 static inline bfd_boolean
2186 call_hi16_reloc_p (unsigned int r_type)
2187 {
2188 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2189 }
2190
2191 static inline bfd_boolean
2192 call_lo16_reloc_p (unsigned int r_type)
2193 {
2194 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2195 }
2196
2197 static inline bfd_boolean
2198 hi16_reloc_p (int r_type)
2199 {
2200 return (r_type == R_MIPS_HI16
2201 || r_type == R_MIPS16_HI16
2202 || r_type == R_MICROMIPS_HI16
2203 || r_type == R_MIPS_PCHI16);
2204 }
2205
2206 static inline bfd_boolean
2207 lo16_reloc_p (int r_type)
2208 {
2209 return (r_type == R_MIPS_LO16
2210 || r_type == R_MIPS16_LO16
2211 || r_type == R_MICROMIPS_LO16
2212 || r_type == R_MIPS_PCLO16);
2213 }
2214
2215 static inline bfd_boolean
2216 mips16_call_reloc_p (int r_type)
2217 {
2218 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2219 }
2220
2221 static inline bfd_boolean
2222 jal_reloc_p (int r_type)
2223 {
2224 return (r_type == R_MIPS_26
2225 || r_type == R_MIPS16_26
2226 || r_type == R_MICROMIPS_26_S1);
2227 }
2228
2229 static inline bfd_boolean
2230 b_reloc_p (int r_type)
2231 {
2232 return (r_type == R_MIPS_PC26_S2
2233 || r_type == R_MIPS_PC21_S2
2234 || r_type == R_MIPS_PC16
2235 || r_type == R_MIPS_GNU_REL16_S2
2236 || r_type == R_MIPS16_PC16_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
2240 }
2241
2242 static inline bfd_boolean
2243 aligned_pcrel_reloc_p (int r_type)
2244 {
2245 return (r_type == R_MIPS_PC18_S3
2246 || r_type == R_MIPS_PC19_S2);
2247 }
2248
2249 static inline bfd_boolean
2250 branch_reloc_p (int r_type)
2251 {
2252 return (r_type == R_MIPS_26
2253 || r_type == R_MIPS_PC26_S2
2254 || r_type == R_MIPS_PC21_S2
2255 || r_type == R_MIPS_PC16
2256 || r_type == R_MIPS_GNU_REL16_S2);
2257 }
2258
2259 static inline bfd_boolean
2260 mips16_branch_reloc_p (int r_type)
2261 {
2262 return (r_type == R_MIPS16_26
2263 || r_type == R_MIPS16_PC16_S1);
2264 }
2265
2266 static inline bfd_boolean
2267 micromips_branch_reloc_p (int r_type)
2268 {
2269 return (r_type == R_MICROMIPS_26_S1
2270 || r_type == R_MICROMIPS_PC16_S1
2271 || r_type == R_MICROMIPS_PC10_S1
2272 || r_type == R_MICROMIPS_PC7_S1);
2273 }
2274
2275 static inline bfd_boolean
2276 tls_gd_reloc_p (unsigned int r_type)
2277 {
2278 return (r_type == R_MIPS_TLS_GD
2279 || r_type == R_MIPS16_TLS_GD
2280 || r_type == R_MICROMIPS_TLS_GD);
2281 }
2282
2283 static inline bfd_boolean
2284 tls_ldm_reloc_p (unsigned int r_type)
2285 {
2286 return (r_type == R_MIPS_TLS_LDM
2287 || r_type == R_MIPS16_TLS_LDM
2288 || r_type == R_MICROMIPS_TLS_LDM);
2289 }
2290
2291 static inline bfd_boolean
2292 tls_gottprel_reloc_p (unsigned int r_type)
2293 {
2294 return (r_type == R_MIPS_TLS_GOTTPREL
2295 || r_type == R_MIPS16_TLS_GOTTPREL
2296 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2297 }
2298
2299 void
2300 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2301 bfd_boolean jal_shuffle, bfd_byte *data)
2302 {
2303 bfd_vma first, second, val;
2304
2305 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2306 return;
2307
2308 /* Pick up the first and second halfwords of the instruction. */
2309 first = bfd_get_16 (abfd, data);
2310 second = bfd_get_16 (abfd, data + 2);
2311 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2312 val = first << 16 | second;
2313 else if (r_type != R_MIPS16_26)
2314 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2315 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2316 else
2317 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2318 | ((first & 0x1f) << 21) | second);
2319 bfd_put_32 (abfd, val, data);
2320 }
2321
2322 void
2323 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2324 bfd_boolean jal_shuffle, bfd_byte *data)
2325 {
2326 bfd_vma first, second, val;
2327
2328 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2329 return;
2330
2331 val = bfd_get_32 (abfd, data);
2332 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2333 {
2334 second = val & 0xffff;
2335 first = val >> 16;
2336 }
2337 else if (r_type != R_MIPS16_26)
2338 {
2339 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2340 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2341 }
2342 else
2343 {
2344 second = val & 0xffff;
2345 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2346 | ((val >> 21) & 0x1f);
2347 }
2348 bfd_put_16 (abfd, second, data + 2);
2349 bfd_put_16 (abfd, first, data);
2350 }
2351
2352 bfd_reloc_status_type
2353 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2354 arelent *reloc_entry, asection *input_section,
2355 bfd_boolean relocatable, void *data, bfd_vma gp)
2356 {
2357 bfd_vma relocation;
2358 bfd_signed_vma val;
2359 bfd_reloc_status_type status;
2360
2361 if (bfd_is_com_section (symbol->section))
2362 relocation = 0;
2363 else
2364 relocation = symbol->value;
2365
2366 relocation += symbol->section->output_section->vma;
2367 relocation += symbol->section->output_offset;
2368
2369 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2370 return bfd_reloc_outofrange;
2371
2372 /* Set val to the offset into the section or symbol. */
2373 val = reloc_entry->addend;
2374
2375 _bfd_mips_elf_sign_extend (val, 16);
2376
2377 /* Adjust val for the final section location and GP value. If we
2378 are producing relocatable output, we don't want to do this for
2379 an external symbol. */
2380 if (! relocatable
2381 || (symbol->flags & BSF_SECTION_SYM) != 0)
2382 val += relocation - gp;
2383
2384 if (reloc_entry->howto->partial_inplace)
2385 {
2386 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2387 (bfd_byte *) data
2388 + reloc_entry->address);
2389 if (status != bfd_reloc_ok)
2390 return status;
2391 }
2392 else
2393 reloc_entry->addend = val;
2394
2395 if (relocatable)
2396 reloc_entry->address += input_section->output_offset;
2397
2398 return bfd_reloc_ok;
2399 }
2400
2401 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2402 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2403 that contains the relocation field and DATA points to the start of
2404 INPUT_SECTION. */
2405
2406 struct mips_hi16
2407 {
2408 struct mips_hi16 *next;
2409 bfd_byte *data;
2410 asection *input_section;
2411 arelent rel;
2412 };
2413
2414 /* FIXME: This should not be a static variable. */
2415
2416 static struct mips_hi16 *mips_hi16_list;
2417
2418 /* A howto special_function for REL *HI16 relocations. We can only
2419 calculate the correct value once we've seen the partnering
2420 *LO16 relocation, so just save the information for later.
2421
2422 The ABI requires that the *LO16 immediately follow the *HI16.
2423 However, as a GNU extension, we permit an arbitrary number of
2424 *HI16s to be associated with a single *LO16. This significantly
2425 simplies the relocation handling in gcc. */
2426
2427 bfd_reloc_status_type
2428 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2429 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2430 asection *input_section, bfd *output_bfd,
2431 char **error_message ATTRIBUTE_UNUSED)
2432 {
2433 struct mips_hi16 *n;
2434
2435 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2436 return bfd_reloc_outofrange;
2437
2438 n = bfd_malloc (sizeof *n);
2439 if (n == NULL)
2440 return bfd_reloc_outofrange;
2441
2442 n->next = mips_hi16_list;
2443 n->data = data;
2444 n->input_section = input_section;
2445 n->rel = *reloc_entry;
2446 mips_hi16_list = n;
2447
2448 if (output_bfd != NULL)
2449 reloc_entry->address += input_section->output_offset;
2450
2451 return bfd_reloc_ok;
2452 }
2453
2454 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2455 like any other 16-bit relocation when applied to global symbols, but is
2456 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2457
2458 bfd_reloc_status_type
2459 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2460 void *data, asection *input_section,
2461 bfd *output_bfd, char **error_message)
2462 {
2463 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2464 || bfd_is_und_section (bfd_get_section (symbol))
2465 || bfd_is_com_section (bfd_get_section (symbol)))
2466 /* The relocation is against a global symbol. */
2467 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd,
2469 error_message);
2470
2471 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2472 input_section, output_bfd, error_message);
2473 }
2474
2475 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2476 is a straightforward 16 bit inplace relocation, but we must deal with
2477 any partnering high-part relocations as well. */
2478
2479 bfd_reloc_status_type
2480 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2483 {
2484 bfd_vma vallo;
2485 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2486
2487 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2488 return bfd_reloc_outofrange;
2489
2490 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2491 location);
2492 vallo = bfd_get_32 (abfd, location);
2493 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2494 location);
2495
2496 while (mips_hi16_list != NULL)
2497 {
2498 bfd_reloc_status_type ret;
2499 struct mips_hi16 *hi;
2500
2501 hi = mips_hi16_list;
2502
2503 /* R_MIPS*_GOT16 relocations are something of a special case. We
2504 want to install the addend in the same way as for a R_MIPS*_HI16
2505 relocation (with a rightshift of 16). However, since GOT16
2506 relocations can also be used with global symbols, their howto
2507 has a rightshift of 0. */
2508 if (hi->rel.howto->type == R_MIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2510 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2511 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2512 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2513 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2514
2515 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2516 carry or borrow will induce a change of +1 or -1 in the high part. */
2517 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2518
2519 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2520 hi->input_section, output_bfd,
2521 error_message);
2522 if (ret != bfd_reloc_ok)
2523 return ret;
2524
2525 mips_hi16_list = hi->next;
2526 free (hi);
2527 }
2528
2529 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2530 input_section, output_bfd,
2531 error_message);
2532 }
2533
2534 /* A generic howto special_function. This calculates and installs the
2535 relocation itself, thus avoiding the oft-discussed problems in
2536 bfd_perform_relocation and bfd_install_relocation. */
2537
2538 bfd_reloc_status_type
2539 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2540 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2541 asection *input_section, bfd *output_bfd,
2542 char **error_message ATTRIBUTE_UNUSED)
2543 {
2544 bfd_signed_vma val;
2545 bfd_reloc_status_type status;
2546 bfd_boolean relocatable;
2547
2548 relocatable = (output_bfd != NULL);
2549
2550 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2551 return bfd_reloc_outofrange;
2552
2553 /* Build up the field adjustment in VAL. */
2554 val = 0;
2555 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2556 {
2557 /* Either we're calculating the final field value or we have a
2558 relocation against a section symbol. Add in the section's
2559 offset or address. */
2560 val += symbol->section->output_section->vma;
2561 val += symbol->section->output_offset;
2562 }
2563
2564 if (!relocatable)
2565 {
2566 /* We're calculating the final field value. Add in the symbol's value
2567 and, if pc-relative, subtract the address of the field itself. */
2568 val += symbol->value;
2569 if (reloc_entry->howto->pc_relative)
2570 {
2571 val -= input_section->output_section->vma;
2572 val -= input_section->output_offset;
2573 val -= reloc_entry->address;
2574 }
2575 }
2576
2577 /* VAL is now the final adjustment. If we're keeping this relocation
2578 in the output file, and if the relocation uses a separate addend,
2579 we just need to add VAL to that addend. Otherwise we need to add
2580 VAL to the relocation field itself. */
2581 if (relocatable && !reloc_entry->howto->partial_inplace)
2582 reloc_entry->addend += val;
2583 else
2584 {
2585 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2586
2587 /* Add in the separate addend, if any. */
2588 val += reloc_entry->addend;
2589
2590 /* Add VAL to the relocation field. */
2591 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
2593 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2594 location);
2595 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2596 location);
2597
2598 if (status != bfd_reloc_ok)
2599 return status;
2600 }
2601
2602 if (relocatable)
2603 reloc_entry->address += input_section->output_offset;
2604
2605 return bfd_reloc_ok;
2606 }
2607 \f
2608 /* Swap an entry in a .gptab section. Note that these routines rely
2609 on the equivalence of the two elements of the union. */
2610
2611 static void
2612 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2613 Elf32_gptab *in)
2614 {
2615 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2616 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2617 }
2618
2619 static void
2620 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2621 Elf32_External_gptab *ex)
2622 {
2623 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2624 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2625 }
2626
2627 static void
2628 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2629 Elf32_External_compact_rel *ex)
2630 {
2631 H_PUT_32 (abfd, in->id1, ex->id1);
2632 H_PUT_32 (abfd, in->num, ex->num);
2633 H_PUT_32 (abfd, in->id2, ex->id2);
2634 H_PUT_32 (abfd, in->offset, ex->offset);
2635 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2636 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2637 }
2638
2639 static void
2640 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2641 Elf32_External_crinfo *ex)
2642 {
2643 unsigned long l;
2644
2645 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2646 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2647 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2648 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2649 H_PUT_32 (abfd, l, ex->info);
2650 H_PUT_32 (abfd, in->konst, ex->konst);
2651 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2652 }
2653 \f
2654 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2655 routines swap this structure in and out. They are used outside of
2656 BFD, so they are globally visible. */
2657
2658 void
2659 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2660 Elf32_RegInfo *in)
2661 {
2662 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2663 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2664 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2665 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2666 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2667 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2668 }
2669
2670 void
2671 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2672 Elf32_External_RegInfo *ex)
2673 {
2674 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2680 }
2681
2682 /* In the 64 bit ABI, the .MIPS.options section holds register
2683 information in an Elf64_Reginfo structure. These routines swap
2684 them in and out. They are globally visible because they are used
2685 outside of BFD. These routines are here so that gas can call them
2686 without worrying about whether the 64 bit ABI has been included. */
2687
2688 void
2689 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2690 Elf64_Internal_RegInfo *in)
2691 {
2692 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2693 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2694 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2695 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2696 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2697 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2698 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2699 }
2700
2701 void
2702 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2703 Elf64_External_RegInfo *ex)
2704 {
2705 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2706 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2707 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2708 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2709 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2710 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2711 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2712 }
2713
2714 /* Swap in an options header. */
2715
2716 void
2717 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2718 Elf_Internal_Options *in)
2719 {
2720 in->kind = H_GET_8 (abfd, ex->kind);
2721 in->size = H_GET_8 (abfd, ex->size);
2722 in->section = H_GET_16 (abfd, ex->section);
2723 in->info = H_GET_32 (abfd, ex->info);
2724 }
2725
2726 /* Swap out an options header. */
2727
2728 void
2729 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2730 Elf_External_Options *ex)
2731 {
2732 H_PUT_8 (abfd, in->kind, ex->kind);
2733 H_PUT_8 (abfd, in->size, ex->size);
2734 H_PUT_16 (abfd, in->section, ex->section);
2735 H_PUT_32 (abfd, in->info, ex->info);
2736 }
2737
2738 /* Swap in an abiflags structure. */
2739
2740 void
2741 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2742 const Elf_External_ABIFlags_v0 *ex,
2743 Elf_Internal_ABIFlags_v0 *in)
2744 {
2745 in->version = H_GET_16 (abfd, ex->version);
2746 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2747 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2748 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2749 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2750 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2751 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2752 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2753 in->ases = H_GET_32 (abfd, ex->ases);
2754 in->flags1 = H_GET_32 (abfd, ex->flags1);
2755 in->flags2 = H_GET_32 (abfd, ex->flags2);
2756 }
2757
2758 /* Swap out an abiflags structure. */
2759
2760 void
2761 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2762 const Elf_Internal_ABIFlags_v0 *in,
2763 Elf_External_ABIFlags_v0 *ex)
2764 {
2765 H_PUT_16 (abfd, in->version, ex->version);
2766 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2767 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2768 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2769 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2770 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2771 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2772 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2773 H_PUT_32 (abfd, in->ases, ex->ases);
2774 H_PUT_32 (abfd, in->flags1, ex->flags1);
2775 H_PUT_32 (abfd, in->flags2, ex->flags2);
2776 }
2777 \f
2778 /* This function is called via qsort() to sort the dynamic relocation
2779 entries by increasing r_symndx value. */
2780
2781 static int
2782 sort_dynamic_relocs (const void *arg1, const void *arg2)
2783 {
2784 Elf_Internal_Rela int_reloc1;
2785 Elf_Internal_Rela int_reloc2;
2786 int diff;
2787
2788 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2789 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2790
2791 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2792 if (diff != 0)
2793 return diff;
2794
2795 if (int_reloc1.r_offset < int_reloc2.r_offset)
2796 return -1;
2797 if (int_reloc1.r_offset > int_reloc2.r_offset)
2798 return 1;
2799 return 0;
2800 }
2801
2802 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2803
2804 static int
2805 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2806 const void *arg2 ATTRIBUTE_UNUSED)
2807 {
2808 #ifdef BFD64
2809 Elf_Internal_Rela int_reloc1[3];
2810 Elf_Internal_Rela int_reloc2[3];
2811
2812 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2813 (reldyn_sorting_bfd, arg1, int_reloc1);
2814 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2815 (reldyn_sorting_bfd, arg2, int_reloc2);
2816
2817 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2818 return -1;
2819 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2820 return 1;
2821
2822 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2823 return -1;
2824 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2825 return 1;
2826 return 0;
2827 #else
2828 abort ();
2829 #endif
2830 }
2831
2832
2833 /* This routine is used to write out ECOFF debugging external symbol
2834 information. It is called via mips_elf_link_hash_traverse. The
2835 ECOFF external symbol information must match the ELF external
2836 symbol information. Unfortunately, at this point we don't know
2837 whether a symbol is required by reloc information, so the two
2838 tables may wind up being different. We must sort out the external
2839 symbol information before we can set the final size of the .mdebug
2840 section, and we must set the size of the .mdebug section before we
2841 can relocate any sections, and we can't know which symbols are
2842 required by relocation until we relocate the sections.
2843 Fortunately, it is relatively unlikely that any symbol will be
2844 stripped but required by a reloc. In particular, it can not happen
2845 when generating a final executable. */
2846
2847 static bfd_boolean
2848 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2849 {
2850 struct extsym_info *einfo = data;
2851 bfd_boolean strip;
2852 asection *sec, *output_section;
2853
2854 if (h->root.indx == -2)
2855 strip = FALSE;
2856 else if ((h->root.def_dynamic
2857 || h->root.ref_dynamic
2858 || h->root.type == bfd_link_hash_new)
2859 && !h->root.def_regular
2860 && !h->root.ref_regular)
2861 strip = TRUE;
2862 else if (einfo->info->strip == strip_all
2863 || (einfo->info->strip == strip_some
2864 && bfd_hash_lookup (einfo->info->keep_hash,
2865 h->root.root.root.string,
2866 FALSE, FALSE) == NULL))
2867 strip = TRUE;
2868 else
2869 strip = FALSE;
2870
2871 if (strip)
2872 return TRUE;
2873
2874 if (h->esym.ifd == -2)
2875 {
2876 h->esym.jmptbl = 0;
2877 h->esym.cobol_main = 0;
2878 h->esym.weakext = 0;
2879 h->esym.reserved = 0;
2880 h->esym.ifd = ifdNil;
2881 h->esym.asym.value = 0;
2882 h->esym.asym.st = stGlobal;
2883
2884 if (h->root.root.type == bfd_link_hash_undefined
2885 || h->root.root.type == bfd_link_hash_undefweak)
2886 {
2887 const char *name;
2888
2889 /* Use undefined class. Also, set class and type for some
2890 special symbols. */
2891 name = h->root.root.root.string;
2892 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2893 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2894 {
2895 h->esym.asym.sc = scData;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value = 0;
2898 }
2899 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2900 {
2901 h->esym.asym.sc = scAbs;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value =
2904 mips_elf_hash_table (einfo->info)->procedure_count;
2905 }
2906 else
2907 h->esym.asym.sc = scUndefined;
2908 }
2909 else if (h->root.root.type != bfd_link_hash_defined
2910 && h->root.root.type != bfd_link_hash_defweak)
2911 h->esym.asym.sc = scAbs;
2912 else
2913 {
2914 const char *name;
2915
2916 sec = h->root.root.u.def.section;
2917 output_section = sec->output_section;
2918
2919 /* When making a shared library and symbol h is the one from
2920 the another shared library, OUTPUT_SECTION may be null. */
2921 if (output_section == NULL)
2922 h->esym.asym.sc = scUndefined;
2923 else
2924 {
2925 name = bfd_section_name (output_section->owner, output_section);
2926
2927 if (strcmp (name, ".text") == 0)
2928 h->esym.asym.sc = scText;
2929 else if (strcmp (name, ".data") == 0)
2930 h->esym.asym.sc = scData;
2931 else if (strcmp (name, ".sdata") == 0)
2932 h->esym.asym.sc = scSData;
2933 else if (strcmp (name, ".rodata") == 0
2934 || strcmp (name, ".rdata") == 0)
2935 h->esym.asym.sc = scRData;
2936 else if (strcmp (name, ".bss") == 0)
2937 h->esym.asym.sc = scBss;
2938 else if (strcmp (name, ".sbss") == 0)
2939 h->esym.asym.sc = scSBss;
2940 else if (strcmp (name, ".init") == 0)
2941 h->esym.asym.sc = scInit;
2942 else if (strcmp (name, ".fini") == 0)
2943 h->esym.asym.sc = scFini;
2944 else
2945 h->esym.asym.sc = scAbs;
2946 }
2947 }
2948
2949 h->esym.asym.reserved = 0;
2950 h->esym.asym.index = indexNil;
2951 }
2952
2953 if (h->root.root.type == bfd_link_hash_common)
2954 h->esym.asym.value = h->root.root.u.c.size;
2955 else if (h->root.root.type == bfd_link_hash_defined
2956 || h->root.root.type == bfd_link_hash_defweak)
2957 {
2958 if (h->esym.asym.sc == scCommon)
2959 h->esym.asym.sc = scBss;
2960 else if (h->esym.asym.sc == scSCommon)
2961 h->esym.asym.sc = scSBss;
2962
2963 sec = h->root.root.u.def.section;
2964 output_section = sec->output_section;
2965 if (output_section != NULL)
2966 h->esym.asym.value = (h->root.root.u.def.value
2967 + sec->output_offset
2968 + output_section->vma);
2969 else
2970 h->esym.asym.value = 0;
2971 }
2972 else
2973 {
2974 struct mips_elf_link_hash_entry *hd = h;
2975
2976 while (hd->root.root.type == bfd_link_hash_indirect)
2977 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2978
2979 if (hd->needs_lazy_stub)
2980 {
2981 BFD_ASSERT (hd->root.plt.plist != NULL);
2982 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2983 /* Set type and value for a symbol with a function stub. */
2984 h->esym.asym.st = stProc;
2985 sec = hd->root.root.u.def.section;
2986 if (sec == NULL)
2987 h->esym.asym.value = 0;
2988 else
2989 {
2990 output_section = sec->output_section;
2991 if (output_section != NULL)
2992 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2993 + sec->output_offset
2994 + output_section->vma);
2995 else
2996 h->esym.asym.value = 0;
2997 }
2998 }
2999 }
3000
3001 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3002 h->root.root.root.string,
3003 &h->esym))
3004 {
3005 einfo->failed = TRUE;
3006 return FALSE;
3007 }
3008
3009 return TRUE;
3010 }
3011
3012 /* A comparison routine used to sort .gptab entries. */
3013
3014 static int
3015 gptab_compare (const void *p1, const void *p2)
3016 {
3017 const Elf32_gptab *a1 = p1;
3018 const Elf32_gptab *a2 = p2;
3019
3020 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3021 }
3022 \f
3023 /* Functions to manage the got entry hash table. */
3024
3025 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3026 hash number. */
3027
3028 static INLINE hashval_t
3029 mips_elf_hash_bfd_vma (bfd_vma addr)
3030 {
3031 #ifdef BFD64
3032 return addr + (addr >> 32);
3033 #else
3034 return addr;
3035 #endif
3036 }
3037
3038 static hashval_t
3039 mips_elf_got_entry_hash (const void *entry_)
3040 {
3041 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3042
3043 return (entry->symndx
3044 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3045 + (entry->tls_type == GOT_TLS_LDM ? 0
3046 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3047 : entry->symndx >= 0 ? (entry->abfd->id
3048 + mips_elf_hash_bfd_vma (entry->d.addend))
3049 : entry->d.h->root.root.root.hash));
3050 }
3051
3052 static int
3053 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3054 {
3055 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3056 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3057
3058 return (e1->symndx == e2->symndx
3059 && e1->tls_type == e2->tls_type
3060 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3061 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3062 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3063 && e1->d.addend == e2->d.addend)
3064 : e2->abfd && e1->d.h == e2->d.h));
3065 }
3066
3067 static hashval_t
3068 mips_got_page_ref_hash (const void *ref_)
3069 {
3070 const struct mips_got_page_ref *ref;
3071
3072 ref = (const struct mips_got_page_ref *) ref_;
3073 return ((ref->symndx >= 0
3074 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3075 : ref->u.h->root.root.root.hash)
3076 + mips_elf_hash_bfd_vma (ref->addend));
3077 }
3078
3079 static int
3080 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3081 {
3082 const struct mips_got_page_ref *ref1, *ref2;
3083
3084 ref1 = (const struct mips_got_page_ref *) ref1_;
3085 ref2 = (const struct mips_got_page_ref *) ref2_;
3086 return (ref1->symndx == ref2->symndx
3087 && (ref1->symndx < 0
3088 ? ref1->u.h == ref2->u.h
3089 : ref1->u.abfd == ref2->u.abfd)
3090 && ref1->addend == ref2->addend);
3091 }
3092
3093 static hashval_t
3094 mips_got_page_entry_hash (const void *entry_)
3095 {
3096 const struct mips_got_page_entry *entry;
3097
3098 entry = (const struct mips_got_page_entry *) entry_;
3099 return entry->sec->id;
3100 }
3101
3102 static int
3103 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3104 {
3105 const struct mips_got_page_entry *entry1, *entry2;
3106
3107 entry1 = (const struct mips_got_page_entry *) entry1_;
3108 entry2 = (const struct mips_got_page_entry *) entry2_;
3109 return entry1->sec == entry2->sec;
3110 }
3111 \f
3112 /* Create and return a new mips_got_info structure. */
3113
3114 static struct mips_got_info *
3115 mips_elf_create_got_info (bfd *abfd)
3116 {
3117 struct mips_got_info *g;
3118
3119 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3120 if (g == NULL)
3121 return NULL;
3122
3123 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3124 mips_elf_got_entry_eq, NULL);
3125 if (g->got_entries == NULL)
3126 return NULL;
3127
3128 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3129 mips_got_page_ref_eq, NULL);
3130 if (g->got_page_refs == NULL)
3131 return NULL;
3132
3133 return g;
3134 }
3135
3136 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3137 CREATE_P and if ABFD doesn't already have a GOT. */
3138
3139 static struct mips_got_info *
3140 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3141 {
3142 struct mips_elf_obj_tdata *tdata;
3143
3144 if (!is_mips_elf (abfd))
3145 return NULL;
3146
3147 tdata = mips_elf_tdata (abfd);
3148 if (!tdata->got && create_p)
3149 tdata->got = mips_elf_create_got_info (abfd);
3150 return tdata->got;
3151 }
3152
3153 /* Record that ABFD should use output GOT G. */
3154
3155 static void
3156 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3157 {
3158 struct mips_elf_obj_tdata *tdata;
3159
3160 BFD_ASSERT (is_mips_elf (abfd));
3161 tdata = mips_elf_tdata (abfd);
3162 if (tdata->got)
3163 {
3164 /* The GOT structure itself and the hash table entries are
3165 allocated to a bfd, but the hash tables aren't. */
3166 htab_delete (tdata->got->got_entries);
3167 htab_delete (tdata->got->got_page_refs);
3168 if (tdata->got->got_page_entries)
3169 htab_delete (tdata->got->got_page_entries);
3170 }
3171 tdata->got = g;
3172 }
3173
3174 /* Return the dynamic relocation section. If it doesn't exist, try to
3175 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3176 if creation fails. */
3177
3178 static asection *
3179 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3180 {
3181 const char *dname;
3182 asection *sreloc;
3183 bfd *dynobj;
3184
3185 dname = MIPS_ELF_REL_DYN_NAME (info);
3186 dynobj = elf_hash_table (info)->dynobj;
3187 sreloc = bfd_get_linker_section (dynobj, dname);
3188 if (sreloc == NULL && create_p)
3189 {
3190 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3191 (SEC_ALLOC
3192 | SEC_LOAD
3193 | SEC_HAS_CONTENTS
3194 | SEC_IN_MEMORY
3195 | SEC_LINKER_CREATED
3196 | SEC_READONLY));
3197 if (sreloc == NULL
3198 || ! bfd_set_section_alignment (dynobj, sreloc,
3199 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3200 return NULL;
3201 }
3202 return sreloc;
3203 }
3204
3205 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3206
3207 static int
3208 mips_elf_reloc_tls_type (unsigned int r_type)
3209 {
3210 if (tls_gd_reloc_p (r_type))
3211 return GOT_TLS_GD;
3212
3213 if (tls_ldm_reloc_p (r_type))
3214 return GOT_TLS_LDM;
3215
3216 if (tls_gottprel_reloc_p (r_type))
3217 return GOT_TLS_IE;
3218
3219 return GOT_TLS_NONE;
3220 }
3221
3222 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3223
3224 static int
3225 mips_tls_got_entries (unsigned int type)
3226 {
3227 switch (type)
3228 {
3229 case GOT_TLS_GD:
3230 case GOT_TLS_LDM:
3231 return 2;
3232
3233 case GOT_TLS_IE:
3234 return 1;
3235
3236 case GOT_TLS_NONE:
3237 return 0;
3238 }
3239 abort ();
3240 }
3241
3242 /* Count the number of relocations needed for a TLS GOT entry, with
3243 access types from TLS_TYPE, and symbol H (or a local symbol if H
3244 is NULL). */
3245
3246 static int
3247 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3248 struct elf_link_hash_entry *h)
3249 {
3250 int indx = 0;
3251 bfd_boolean need_relocs = FALSE;
3252 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3253
3254 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3255 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3256 indx = h->dynindx;
3257
3258 if ((bfd_link_pic (info) || indx != 0)
3259 && (h == NULL
3260 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3261 || h->root.type != bfd_link_hash_undefweak))
3262 need_relocs = TRUE;
3263
3264 if (!need_relocs)
3265 return 0;
3266
3267 switch (tls_type)
3268 {
3269 case GOT_TLS_GD:
3270 return indx != 0 ? 2 : 1;
3271
3272 case GOT_TLS_IE:
3273 return 1;
3274
3275 case GOT_TLS_LDM:
3276 return bfd_link_pic (info) ? 1 : 0;
3277
3278 default:
3279 return 0;
3280 }
3281 }
3282
3283 /* Add the number of GOT entries and TLS relocations required by ENTRY
3284 to G. */
3285
3286 static void
3287 mips_elf_count_got_entry (struct bfd_link_info *info,
3288 struct mips_got_info *g,
3289 struct mips_got_entry *entry)
3290 {
3291 if (entry->tls_type)
3292 {
3293 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3294 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3295 entry->symndx < 0
3296 ? &entry->d.h->root : NULL);
3297 }
3298 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3299 g->local_gotno += 1;
3300 else
3301 g->global_gotno += 1;
3302 }
3303
3304 /* Output a simple dynamic relocation into SRELOC. */
3305
3306 static void
3307 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3308 asection *sreloc,
3309 unsigned long reloc_index,
3310 unsigned long indx,
3311 int r_type,
3312 bfd_vma offset)
3313 {
3314 Elf_Internal_Rela rel[3];
3315
3316 memset (rel, 0, sizeof (rel));
3317
3318 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3319 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3320
3321 if (ABI_64_P (output_bfd))
3322 {
3323 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3324 (output_bfd, &rel[0],
3325 (sreloc->contents
3326 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3327 }
3328 else
3329 bfd_elf32_swap_reloc_out
3330 (output_bfd, &rel[0],
3331 (sreloc->contents
3332 + reloc_index * sizeof (Elf32_External_Rel)));
3333 }
3334
3335 /* Initialize a set of TLS GOT entries for one symbol. */
3336
3337 static void
3338 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3339 struct mips_got_entry *entry,
3340 struct mips_elf_link_hash_entry *h,
3341 bfd_vma value)
3342 {
3343 struct mips_elf_link_hash_table *htab;
3344 int indx;
3345 asection *sreloc, *sgot;
3346 bfd_vma got_offset, got_offset2;
3347 bfd_boolean need_relocs = FALSE;
3348
3349 htab = mips_elf_hash_table (info);
3350 if (htab == NULL)
3351 return;
3352
3353 sgot = htab->root.sgot;
3354
3355 indx = 0;
3356 if (h != NULL)
3357 {
3358 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3359
3360 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3361 &h->root)
3362 && (!bfd_link_pic (info)
3363 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3364 indx = h->root.dynindx;
3365 }
3366
3367 if (entry->tls_initialized)
3368 return;
3369
3370 if ((bfd_link_pic (info) || indx != 0)
3371 && (h == NULL
3372 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3373 || h->root.type != bfd_link_hash_undefweak))
3374 need_relocs = TRUE;
3375
3376 /* MINUS_ONE means the symbol is not defined in this object. It may not
3377 be defined at all; assume that the value doesn't matter in that
3378 case. Otherwise complain if we would use the value. */
3379 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3380 || h->root.root.type == bfd_link_hash_undefweak);
3381
3382 /* Emit necessary relocations. */
3383 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3384 got_offset = entry->gotidx;
3385
3386 switch (entry->tls_type)
3387 {
3388 case GOT_TLS_GD:
3389 /* General Dynamic. */
3390 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3391
3392 if (need_relocs)
3393 {
3394 mips_elf_output_dynamic_relocation
3395 (abfd, sreloc, sreloc->reloc_count++, indx,
3396 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3397 sgot->output_offset + sgot->output_section->vma + got_offset);
3398
3399 if (indx)
3400 mips_elf_output_dynamic_relocation
3401 (abfd, sreloc, sreloc->reloc_count++, indx,
3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3403 sgot->output_offset + sgot->output_section->vma + got_offset2);
3404 else
3405 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3406 sgot->contents + got_offset2);
3407 }
3408 else
3409 {
3410 MIPS_ELF_PUT_WORD (abfd, 1,
3411 sgot->contents + got_offset);
3412 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3413 sgot->contents + got_offset2);
3414 }
3415 break;
3416
3417 case GOT_TLS_IE:
3418 /* Initial Exec model. */
3419 if (need_relocs)
3420 {
3421 if (indx == 0)
3422 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3423 sgot->contents + got_offset);
3424 else
3425 MIPS_ELF_PUT_WORD (abfd, 0,
3426 sgot->contents + got_offset);
3427
3428 mips_elf_output_dynamic_relocation
3429 (abfd, sreloc, sreloc->reloc_count++, indx,
3430 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3431 sgot->output_offset + sgot->output_section->vma + got_offset);
3432 }
3433 else
3434 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3435 sgot->contents + got_offset);
3436 break;
3437
3438 case GOT_TLS_LDM:
3439 /* The initial offset is zero, and the LD offsets will include the
3440 bias by DTP_OFFSET. */
3441 MIPS_ELF_PUT_WORD (abfd, 0,
3442 sgot->contents + got_offset
3443 + MIPS_ELF_GOT_SIZE (abfd));
3444
3445 if (!bfd_link_pic (info))
3446 MIPS_ELF_PUT_WORD (abfd, 1,
3447 sgot->contents + got_offset);
3448 else
3449 mips_elf_output_dynamic_relocation
3450 (abfd, sreloc, sreloc->reloc_count++, indx,
3451 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3452 sgot->output_offset + sgot->output_section->vma + got_offset);
3453 break;
3454
3455 default:
3456 abort ();
3457 }
3458
3459 entry->tls_initialized = TRUE;
3460 }
3461
3462 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3463 for global symbol H. .got.plt comes before the GOT, so the offset
3464 will be negative. */
3465
3466 static bfd_vma
3467 mips_elf_gotplt_index (struct bfd_link_info *info,
3468 struct elf_link_hash_entry *h)
3469 {
3470 bfd_vma got_address, got_value;
3471 struct mips_elf_link_hash_table *htab;
3472
3473 htab = mips_elf_hash_table (info);
3474 BFD_ASSERT (htab != NULL);
3475
3476 BFD_ASSERT (h->plt.plist != NULL);
3477 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3478
3479 /* Calculate the address of the associated .got.plt entry. */
3480 got_address = (htab->root.sgotplt->output_section->vma
3481 + htab->root.sgotplt->output_offset
3482 + (h->plt.plist->gotplt_index
3483 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3484
3485 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3486 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3487 + htab->root.hgot->root.u.def.section->output_offset
3488 + htab->root.hgot->root.u.def.value);
3489
3490 return got_address - got_value;
3491 }
3492
3493 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3494 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3495 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3496 offset can be found. */
3497
3498 static bfd_vma
3499 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3500 bfd_vma value, unsigned long r_symndx,
3501 struct mips_elf_link_hash_entry *h, int r_type)
3502 {
3503 struct mips_elf_link_hash_table *htab;
3504 struct mips_got_entry *entry;
3505
3506 htab = mips_elf_hash_table (info);
3507 BFD_ASSERT (htab != NULL);
3508
3509 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3510 r_symndx, h, r_type);
3511 if (!entry)
3512 return MINUS_ONE;
3513
3514 if (entry->tls_type)
3515 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3516 return entry->gotidx;
3517 }
3518
3519 /* Return the GOT index of global symbol H in the primary GOT. */
3520
3521 static bfd_vma
3522 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3523 struct elf_link_hash_entry *h)
3524 {
3525 struct mips_elf_link_hash_table *htab;
3526 long global_got_dynindx;
3527 struct mips_got_info *g;
3528 bfd_vma got_index;
3529
3530 htab = mips_elf_hash_table (info);
3531 BFD_ASSERT (htab != NULL);
3532
3533 global_got_dynindx = 0;
3534 if (htab->global_gotsym != NULL)
3535 global_got_dynindx = htab->global_gotsym->dynindx;
3536
3537 /* Once we determine the global GOT entry with the lowest dynamic
3538 symbol table index, we must put all dynamic symbols with greater
3539 indices into the primary GOT. That makes it easy to calculate the
3540 GOT offset. */
3541 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3542 g = mips_elf_bfd_got (obfd, FALSE);
3543 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3544 * MIPS_ELF_GOT_SIZE (obfd));
3545 BFD_ASSERT (got_index < htab->root.sgot->size);
3546
3547 return got_index;
3548 }
3549
3550 /* Return the GOT index for the global symbol indicated by H, which is
3551 referenced by a relocation of type R_TYPE in IBFD. */
3552
3553 static bfd_vma
3554 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3555 struct elf_link_hash_entry *h, int r_type)
3556 {
3557 struct mips_elf_link_hash_table *htab;
3558 struct mips_got_info *g;
3559 struct mips_got_entry lookup, *entry;
3560 bfd_vma gotidx;
3561
3562 htab = mips_elf_hash_table (info);
3563 BFD_ASSERT (htab != NULL);
3564
3565 g = mips_elf_bfd_got (ibfd, FALSE);
3566 BFD_ASSERT (g);
3567
3568 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3569 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3570 return mips_elf_primary_global_got_index (obfd, info, h);
3571
3572 lookup.abfd = ibfd;
3573 lookup.symndx = -1;
3574 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3575 entry = htab_find (g->got_entries, &lookup);
3576 BFD_ASSERT (entry);
3577
3578 gotidx = entry->gotidx;
3579 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3580
3581 if (lookup.tls_type)
3582 {
3583 bfd_vma value = MINUS_ONE;
3584
3585 if ((h->root.type == bfd_link_hash_defined
3586 || h->root.type == bfd_link_hash_defweak)
3587 && h->root.u.def.section->output_section)
3588 value = (h->root.u.def.value
3589 + h->root.u.def.section->output_offset
3590 + h->root.u.def.section->output_section->vma);
3591
3592 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3593 }
3594 return gotidx;
3595 }
3596
3597 /* Find a GOT page entry that points to within 32KB of VALUE. These
3598 entries are supposed to be placed at small offsets in the GOT, i.e.,
3599 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3600 entry could be created. If OFFSETP is nonnull, use it to return the
3601 offset of the GOT entry from VALUE. */
3602
3603 static bfd_vma
3604 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3605 bfd_vma value, bfd_vma *offsetp)
3606 {
3607 bfd_vma page, got_index;
3608 struct mips_got_entry *entry;
3609
3610 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3611 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3612 NULL, R_MIPS_GOT_PAGE);
3613
3614 if (!entry)
3615 return MINUS_ONE;
3616
3617 got_index = entry->gotidx;
3618
3619 if (offsetp)
3620 *offsetp = value - entry->d.address;
3621
3622 return got_index;
3623 }
3624
3625 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3626 EXTERNAL is true if the relocation was originally against a global
3627 symbol that binds locally. */
3628
3629 static bfd_vma
3630 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3631 bfd_vma value, bfd_boolean external)
3632 {
3633 struct mips_got_entry *entry;
3634
3635 /* GOT16 relocations against local symbols are followed by a LO16
3636 relocation; those against global symbols are not. Thus if the
3637 symbol was originally local, the GOT16 relocation should load the
3638 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3639 if (! external)
3640 value = mips_elf_high (value) << 16;
3641
3642 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3643 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3644 same in all cases. */
3645 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3646 NULL, R_MIPS_GOT16);
3647 if (entry)
3648 return entry->gotidx;
3649 else
3650 return MINUS_ONE;
3651 }
3652
3653 /* Returns the offset for the entry at the INDEXth position
3654 in the GOT. */
3655
3656 static bfd_vma
3657 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3658 bfd *input_bfd, bfd_vma got_index)
3659 {
3660 struct mips_elf_link_hash_table *htab;
3661 asection *sgot;
3662 bfd_vma gp;
3663
3664 htab = mips_elf_hash_table (info);
3665 BFD_ASSERT (htab != NULL);
3666
3667 sgot = htab->root.sgot;
3668 gp = _bfd_get_gp_value (output_bfd)
3669 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3670
3671 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3672 }
3673
3674 /* Create and return a local GOT entry for VALUE, which was calculated
3675 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3676 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3677 instead. */
3678
3679 static struct mips_got_entry *
3680 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3681 bfd *ibfd, bfd_vma value,
3682 unsigned long r_symndx,
3683 struct mips_elf_link_hash_entry *h,
3684 int r_type)
3685 {
3686 struct mips_got_entry lookup, *entry;
3687 void **loc;
3688 struct mips_got_info *g;
3689 struct mips_elf_link_hash_table *htab;
3690 bfd_vma gotidx;
3691
3692 htab = mips_elf_hash_table (info);
3693 BFD_ASSERT (htab != NULL);
3694
3695 g = mips_elf_bfd_got (ibfd, FALSE);
3696 if (g == NULL)
3697 {
3698 g = mips_elf_bfd_got (abfd, FALSE);
3699 BFD_ASSERT (g != NULL);
3700 }
3701
3702 /* This function shouldn't be called for symbols that live in the global
3703 area of the GOT. */
3704 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3705
3706 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3707 if (lookup.tls_type)
3708 {
3709 lookup.abfd = ibfd;
3710 if (tls_ldm_reloc_p (r_type))
3711 {
3712 lookup.symndx = 0;
3713 lookup.d.addend = 0;
3714 }
3715 else if (h == NULL)
3716 {
3717 lookup.symndx = r_symndx;
3718 lookup.d.addend = 0;
3719 }
3720 else
3721 {
3722 lookup.symndx = -1;
3723 lookup.d.h = h;
3724 }
3725
3726 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3727 BFD_ASSERT (entry);
3728
3729 gotidx = entry->gotidx;
3730 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3731
3732 return entry;
3733 }
3734
3735 lookup.abfd = NULL;
3736 lookup.symndx = -1;
3737 lookup.d.address = value;
3738 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3739 if (!loc)
3740 return NULL;
3741
3742 entry = (struct mips_got_entry *) *loc;
3743 if (entry)
3744 return entry;
3745
3746 if (g->assigned_low_gotno > g->assigned_high_gotno)
3747 {
3748 /* We didn't allocate enough space in the GOT. */
3749 _bfd_error_handler
3750 (_("not enough GOT space for local GOT entries"));
3751 bfd_set_error (bfd_error_bad_value);
3752 return NULL;
3753 }
3754
3755 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3756 if (!entry)
3757 return NULL;
3758
3759 if (got16_reloc_p (r_type)
3760 || call16_reloc_p (r_type)
3761 || got_page_reloc_p (r_type)
3762 || got_disp_reloc_p (r_type))
3763 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3764 else
3765 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3766
3767 *entry = lookup;
3768 *loc = entry;
3769
3770 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3771
3772 /* These GOT entries need a dynamic relocation on VxWorks. */
3773 if (htab->is_vxworks)
3774 {
3775 Elf_Internal_Rela outrel;
3776 asection *s;
3777 bfd_byte *rloc;
3778 bfd_vma got_address;
3779
3780 s = mips_elf_rel_dyn_section (info, FALSE);
3781 got_address = (htab->root.sgot->output_section->vma
3782 + htab->root.sgot->output_offset
3783 + entry->gotidx);
3784
3785 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3786 outrel.r_offset = got_address;
3787 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3788 outrel.r_addend = value;
3789 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3790 }
3791
3792 return entry;
3793 }
3794
3795 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3796 The number might be exact or a worst-case estimate, depending on how
3797 much information is available to elf_backend_omit_section_dynsym at
3798 the current linking stage. */
3799
3800 static bfd_size_type
3801 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3802 {
3803 bfd_size_type count;
3804
3805 count = 0;
3806 if (bfd_link_pic (info)
3807 || elf_hash_table (info)->is_relocatable_executable)
3808 {
3809 asection *p;
3810 const struct elf_backend_data *bed;
3811
3812 bed = get_elf_backend_data (output_bfd);
3813 for (p = output_bfd->sections; p ; p = p->next)
3814 if ((p->flags & SEC_EXCLUDE) == 0
3815 && (p->flags & SEC_ALLOC) != 0
3816 && elf_hash_table (info)->dynamic_relocs
3817 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3818 ++count;
3819 }
3820 return count;
3821 }
3822
3823 /* Sort the dynamic symbol table so that symbols that need GOT entries
3824 appear towards the end. */
3825
3826 static bfd_boolean
3827 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3828 {
3829 struct mips_elf_link_hash_table *htab;
3830 struct mips_elf_hash_sort_data hsd;
3831 struct mips_got_info *g;
3832
3833 htab = mips_elf_hash_table (info);
3834 BFD_ASSERT (htab != NULL);
3835
3836 if (htab->root.dynsymcount == 0)
3837 return TRUE;
3838
3839 g = htab->got_info;
3840 if (g == NULL)
3841 return TRUE;
3842
3843 hsd.low = NULL;
3844 hsd.max_unref_got_dynindx
3845 = hsd.min_got_dynindx
3846 = (htab->root.dynsymcount - g->reloc_only_gotno);
3847 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3848 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3849 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3850 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3851 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3852
3853 /* There should have been enough room in the symbol table to
3854 accommodate both the GOT and non-GOT symbols. */
3855 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3856 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3857 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3858 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3859
3860 /* Now we know which dynamic symbol has the lowest dynamic symbol
3861 table index in the GOT. */
3862 htab->global_gotsym = hsd.low;
3863
3864 return TRUE;
3865 }
3866
3867 /* If H needs a GOT entry, assign it the highest available dynamic
3868 index. Otherwise, assign it the lowest available dynamic
3869 index. */
3870
3871 static bfd_boolean
3872 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3873 {
3874 struct mips_elf_hash_sort_data *hsd = data;
3875
3876 /* Symbols without dynamic symbol table entries aren't interesting
3877 at all. */
3878 if (h->root.dynindx == -1)
3879 return TRUE;
3880
3881 switch (h->global_got_area)
3882 {
3883 case GGA_NONE:
3884 if (h->root.forced_local)
3885 h->root.dynindx = hsd->max_local_dynindx++;
3886 else
3887 h->root.dynindx = hsd->max_non_got_dynindx++;
3888 break;
3889
3890 case GGA_NORMAL:
3891 h->root.dynindx = --hsd->min_got_dynindx;
3892 hsd->low = (struct elf_link_hash_entry *) h;
3893 break;
3894
3895 case GGA_RELOC_ONLY:
3896 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3897 hsd->low = (struct elf_link_hash_entry *) h;
3898 h->root.dynindx = hsd->max_unref_got_dynindx++;
3899 break;
3900 }
3901
3902 return TRUE;
3903 }
3904
3905 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3906 (which is owned by the caller and shouldn't be added to the
3907 hash table directly). */
3908
3909 static bfd_boolean
3910 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3911 struct mips_got_entry *lookup)
3912 {
3913 struct mips_elf_link_hash_table *htab;
3914 struct mips_got_entry *entry;
3915 struct mips_got_info *g;
3916 void **loc, **bfd_loc;
3917
3918 /* Make sure there's a slot for this entry in the master GOT. */
3919 htab = mips_elf_hash_table (info);
3920 g = htab->got_info;
3921 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3922 if (!loc)
3923 return FALSE;
3924
3925 /* Populate the entry if it isn't already. */
3926 entry = (struct mips_got_entry *) *loc;
3927 if (!entry)
3928 {
3929 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3930 if (!entry)
3931 return FALSE;
3932
3933 lookup->tls_initialized = FALSE;
3934 lookup->gotidx = -1;
3935 *entry = *lookup;
3936 *loc = entry;
3937 }
3938
3939 /* Reuse the same GOT entry for the BFD's GOT. */
3940 g = mips_elf_bfd_got (abfd, TRUE);
3941 if (!g)
3942 return FALSE;
3943
3944 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3945 if (!bfd_loc)
3946 return FALSE;
3947
3948 if (!*bfd_loc)
3949 *bfd_loc = entry;
3950 return TRUE;
3951 }
3952
3953 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3954 entry for it. FOR_CALL is true if the caller is only interested in
3955 using the GOT entry for calls. */
3956
3957 static bfd_boolean
3958 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3959 bfd *abfd, struct bfd_link_info *info,
3960 bfd_boolean for_call, int r_type)
3961 {
3962 struct mips_elf_link_hash_table *htab;
3963 struct mips_elf_link_hash_entry *hmips;
3964 struct mips_got_entry entry;
3965 unsigned char tls_type;
3966
3967 htab = mips_elf_hash_table (info);
3968 BFD_ASSERT (htab != NULL);
3969
3970 hmips = (struct mips_elf_link_hash_entry *) h;
3971 if (!for_call)
3972 hmips->got_only_for_calls = FALSE;
3973
3974 /* A global symbol in the GOT must also be in the dynamic symbol
3975 table. */
3976 if (h->dynindx == -1)
3977 {
3978 switch (ELF_ST_VISIBILITY (h->other))
3979 {
3980 case STV_INTERNAL:
3981 case STV_HIDDEN:
3982 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3983 break;
3984 }
3985 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3986 return FALSE;
3987 }
3988
3989 tls_type = mips_elf_reloc_tls_type (r_type);
3990 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3991 hmips->global_got_area = GGA_NORMAL;
3992
3993 entry.abfd = abfd;
3994 entry.symndx = -1;
3995 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3996 entry.tls_type = tls_type;
3997 return mips_elf_record_got_entry (info, abfd, &entry);
3998 }
3999
4000 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4001 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4002
4003 static bfd_boolean
4004 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4005 struct bfd_link_info *info, int r_type)
4006 {
4007 struct mips_elf_link_hash_table *htab;
4008 struct mips_got_info *g;
4009 struct mips_got_entry entry;
4010
4011 htab = mips_elf_hash_table (info);
4012 BFD_ASSERT (htab != NULL);
4013
4014 g = htab->got_info;
4015 BFD_ASSERT (g != NULL);
4016
4017 entry.abfd = abfd;
4018 entry.symndx = symndx;
4019 entry.d.addend = addend;
4020 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4021 return mips_elf_record_got_entry (info, abfd, &entry);
4022 }
4023
4024 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4025 H is the symbol's hash table entry, or null if SYMNDX is local
4026 to ABFD. */
4027
4028 static bfd_boolean
4029 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4030 long symndx, struct elf_link_hash_entry *h,
4031 bfd_signed_vma addend)
4032 {
4033 struct mips_elf_link_hash_table *htab;
4034 struct mips_got_info *g1, *g2;
4035 struct mips_got_page_ref lookup, *entry;
4036 void **loc, **bfd_loc;
4037
4038 htab = mips_elf_hash_table (info);
4039 BFD_ASSERT (htab != NULL);
4040
4041 g1 = htab->got_info;
4042 BFD_ASSERT (g1 != NULL);
4043
4044 if (h)
4045 {
4046 lookup.symndx = -1;
4047 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4048 }
4049 else
4050 {
4051 lookup.symndx = symndx;
4052 lookup.u.abfd = abfd;
4053 }
4054 lookup.addend = addend;
4055 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4056 if (loc == NULL)
4057 return FALSE;
4058
4059 entry = (struct mips_got_page_ref *) *loc;
4060 if (!entry)
4061 {
4062 entry = bfd_alloc (abfd, sizeof (*entry));
4063 if (!entry)
4064 return FALSE;
4065
4066 *entry = lookup;
4067 *loc = entry;
4068 }
4069
4070 /* Add the same entry to the BFD's GOT. */
4071 g2 = mips_elf_bfd_got (abfd, TRUE);
4072 if (!g2)
4073 return FALSE;
4074
4075 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4076 if (!bfd_loc)
4077 return FALSE;
4078
4079 if (!*bfd_loc)
4080 *bfd_loc = entry;
4081
4082 return TRUE;
4083 }
4084
4085 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4086
4087 static void
4088 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4089 unsigned int n)
4090 {
4091 asection *s;
4092 struct mips_elf_link_hash_table *htab;
4093
4094 htab = mips_elf_hash_table (info);
4095 BFD_ASSERT (htab != NULL);
4096
4097 s = mips_elf_rel_dyn_section (info, FALSE);
4098 BFD_ASSERT (s != NULL);
4099
4100 if (htab->is_vxworks)
4101 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4102 else
4103 {
4104 if (s->size == 0)
4105 {
4106 /* Make room for a null element. */
4107 s->size += MIPS_ELF_REL_SIZE (abfd);
4108 ++s->reloc_count;
4109 }
4110 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4111 }
4112 }
4113 \f
4114 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4115 mips_elf_traverse_got_arg structure. Count the number of GOT
4116 entries and TLS relocs. Set DATA->value to true if we need
4117 to resolve indirect or warning symbols and then recreate the GOT. */
4118
4119 static int
4120 mips_elf_check_recreate_got (void **entryp, void *data)
4121 {
4122 struct mips_got_entry *entry;
4123 struct mips_elf_traverse_got_arg *arg;
4124
4125 entry = (struct mips_got_entry *) *entryp;
4126 arg = (struct mips_elf_traverse_got_arg *) data;
4127 if (entry->abfd != NULL && entry->symndx == -1)
4128 {
4129 struct mips_elf_link_hash_entry *h;
4130
4131 h = entry->d.h;
4132 if (h->root.root.type == bfd_link_hash_indirect
4133 || h->root.root.type == bfd_link_hash_warning)
4134 {
4135 arg->value = TRUE;
4136 return 0;
4137 }
4138 }
4139 mips_elf_count_got_entry (arg->info, arg->g, entry);
4140 return 1;
4141 }
4142
4143 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4144 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4145 converting entries for indirect and warning symbols into entries
4146 for the target symbol. Set DATA->g to null on error. */
4147
4148 static int
4149 mips_elf_recreate_got (void **entryp, void *data)
4150 {
4151 struct mips_got_entry new_entry, *entry;
4152 struct mips_elf_traverse_got_arg *arg;
4153 void **slot;
4154
4155 entry = (struct mips_got_entry *) *entryp;
4156 arg = (struct mips_elf_traverse_got_arg *) data;
4157 if (entry->abfd != NULL
4158 && entry->symndx == -1
4159 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4160 || entry->d.h->root.root.type == bfd_link_hash_warning))
4161 {
4162 struct mips_elf_link_hash_entry *h;
4163
4164 new_entry = *entry;
4165 entry = &new_entry;
4166 h = entry->d.h;
4167 do
4168 {
4169 BFD_ASSERT (h->global_got_area == GGA_NONE);
4170 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4171 }
4172 while (h->root.root.type == bfd_link_hash_indirect
4173 || h->root.root.type == bfd_link_hash_warning);
4174 entry->d.h = h;
4175 }
4176 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4177 if (slot == NULL)
4178 {
4179 arg->g = NULL;
4180 return 0;
4181 }
4182 if (*slot == NULL)
4183 {
4184 if (entry == &new_entry)
4185 {
4186 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4187 if (!entry)
4188 {
4189 arg->g = NULL;
4190 return 0;
4191 }
4192 *entry = new_entry;
4193 }
4194 *slot = entry;
4195 mips_elf_count_got_entry (arg->info, arg->g, entry);
4196 }
4197 return 1;
4198 }
4199
4200 /* Return the maximum number of GOT page entries required for RANGE. */
4201
4202 static bfd_vma
4203 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4204 {
4205 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4206 }
4207
4208 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4209
4210 static bfd_boolean
4211 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4212 asection *sec, bfd_signed_vma addend)
4213 {
4214 struct mips_got_info *g = arg->g;
4215 struct mips_got_page_entry lookup, *entry;
4216 struct mips_got_page_range **range_ptr, *range;
4217 bfd_vma old_pages, new_pages;
4218 void **loc;
4219
4220 /* Find the mips_got_page_entry hash table entry for this section. */
4221 lookup.sec = sec;
4222 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4223 if (loc == NULL)
4224 return FALSE;
4225
4226 /* Create a mips_got_page_entry if this is the first time we've
4227 seen the section. */
4228 entry = (struct mips_got_page_entry *) *loc;
4229 if (!entry)
4230 {
4231 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4232 if (!entry)
4233 return FALSE;
4234
4235 entry->sec = sec;
4236 *loc = entry;
4237 }
4238
4239 /* Skip over ranges whose maximum extent cannot share a page entry
4240 with ADDEND. */
4241 range_ptr = &entry->ranges;
4242 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4243 range_ptr = &(*range_ptr)->next;
4244
4245 /* If we scanned to the end of the list, or found a range whose
4246 minimum extent cannot share a page entry with ADDEND, create
4247 a new singleton range. */
4248 range = *range_ptr;
4249 if (!range || addend < range->min_addend - 0xffff)
4250 {
4251 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4252 if (!range)
4253 return FALSE;
4254
4255 range->next = *range_ptr;
4256 range->min_addend = addend;
4257 range->max_addend = addend;
4258
4259 *range_ptr = range;
4260 entry->num_pages++;
4261 g->page_gotno++;
4262 return TRUE;
4263 }
4264
4265 /* Remember how many pages the old range contributed. */
4266 old_pages = mips_elf_pages_for_range (range);
4267
4268 /* Update the ranges. */
4269 if (addend < range->min_addend)
4270 range->min_addend = addend;
4271 else if (addend > range->max_addend)
4272 {
4273 if (range->next && addend >= range->next->min_addend - 0xffff)
4274 {
4275 old_pages += mips_elf_pages_for_range (range->next);
4276 range->max_addend = range->next->max_addend;
4277 range->next = range->next->next;
4278 }
4279 else
4280 range->max_addend = addend;
4281 }
4282
4283 /* Record any change in the total estimate. */
4284 new_pages = mips_elf_pages_for_range (range);
4285 if (old_pages != new_pages)
4286 {
4287 entry->num_pages += new_pages - old_pages;
4288 g->page_gotno += new_pages - old_pages;
4289 }
4290
4291 return TRUE;
4292 }
4293
4294 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4295 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4296 whether the page reference described by *REFP needs a GOT page entry,
4297 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4298
4299 static bfd_boolean
4300 mips_elf_resolve_got_page_ref (void **refp, void *data)
4301 {
4302 struct mips_got_page_ref *ref;
4303 struct mips_elf_traverse_got_arg *arg;
4304 struct mips_elf_link_hash_table *htab;
4305 asection *sec;
4306 bfd_vma addend;
4307
4308 ref = (struct mips_got_page_ref *) *refp;
4309 arg = (struct mips_elf_traverse_got_arg *) data;
4310 htab = mips_elf_hash_table (arg->info);
4311
4312 if (ref->symndx < 0)
4313 {
4314 struct mips_elf_link_hash_entry *h;
4315
4316 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4317 h = ref->u.h;
4318 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4319 return 1;
4320
4321 /* Ignore undefined symbols; we'll issue an error later if
4322 appropriate. */
4323 if (!((h->root.root.type == bfd_link_hash_defined
4324 || h->root.root.type == bfd_link_hash_defweak)
4325 && h->root.root.u.def.section))
4326 return 1;
4327
4328 sec = h->root.root.u.def.section;
4329 addend = h->root.root.u.def.value + ref->addend;
4330 }
4331 else
4332 {
4333 Elf_Internal_Sym *isym;
4334
4335 /* Read in the symbol. */
4336 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4337 ref->symndx);
4338 if (isym == NULL)
4339 {
4340 arg->g = NULL;
4341 return 0;
4342 }
4343
4344 /* Get the associated input section. */
4345 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4346 if (sec == NULL)
4347 {
4348 arg->g = NULL;
4349 return 0;
4350 }
4351
4352 /* If this is a mergable section, work out the section and offset
4353 of the merged data. For section symbols, the addend specifies
4354 of the offset _of_ the first byte in the data, otherwise it
4355 specifies the offset _from_ the first byte. */
4356 if (sec->flags & SEC_MERGE)
4357 {
4358 void *secinfo;
4359
4360 secinfo = elf_section_data (sec)->sec_info;
4361 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4362 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4363 isym->st_value + ref->addend);
4364 else
4365 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4366 isym->st_value) + ref->addend;
4367 }
4368 else
4369 addend = isym->st_value + ref->addend;
4370 }
4371 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4372 {
4373 arg->g = NULL;
4374 return 0;
4375 }
4376 return 1;
4377 }
4378
4379 /* If any entries in G->got_entries are for indirect or warning symbols,
4380 replace them with entries for the target symbol. Convert g->got_page_refs
4381 into got_page_entry structures and estimate the number of page entries
4382 that they require. */
4383
4384 static bfd_boolean
4385 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4386 struct mips_got_info *g)
4387 {
4388 struct mips_elf_traverse_got_arg tga;
4389 struct mips_got_info oldg;
4390
4391 oldg = *g;
4392
4393 tga.info = info;
4394 tga.g = g;
4395 tga.value = FALSE;
4396 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4397 if (tga.value)
4398 {
4399 *g = oldg;
4400 g->got_entries = htab_create (htab_size (oldg.got_entries),
4401 mips_elf_got_entry_hash,
4402 mips_elf_got_entry_eq, NULL);
4403 if (!g->got_entries)
4404 return FALSE;
4405
4406 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4407 if (!tga.g)
4408 return FALSE;
4409
4410 htab_delete (oldg.got_entries);
4411 }
4412
4413 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4414 mips_got_page_entry_eq, NULL);
4415 if (g->got_page_entries == NULL)
4416 return FALSE;
4417
4418 tga.info = info;
4419 tga.g = g;
4420 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4421
4422 return TRUE;
4423 }
4424
4425 /* Return true if a GOT entry for H should live in the local rather than
4426 global GOT area. */
4427
4428 static bfd_boolean
4429 mips_use_local_got_p (struct bfd_link_info *info,
4430 struct mips_elf_link_hash_entry *h)
4431 {
4432 /* Symbols that aren't in the dynamic symbol table must live in the
4433 local GOT. This includes symbols that are completely undefined
4434 and which therefore don't bind locally. We'll report undefined
4435 symbols later if appropriate. */
4436 if (h->root.dynindx == -1)
4437 return TRUE;
4438
4439 /* Symbols that bind locally can (and in the case of forced-local
4440 symbols, must) live in the local GOT. */
4441 if (h->got_only_for_calls
4442 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4443 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4444 return TRUE;
4445
4446 /* If this is an executable that must provide a definition of the symbol,
4447 either though PLTs or copy relocations, then that address should go in
4448 the local rather than global GOT. */
4449 if (bfd_link_executable (info) && h->has_static_relocs)
4450 return TRUE;
4451
4452 return FALSE;
4453 }
4454
4455 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4456 link_info structure. Decide whether the hash entry needs an entry in
4457 the global part of the primary GOT, setting global_got_area accordingly.
4458 Count the number of global symbols that are in the primary GOT only
4459 because they have relocations against them (reloc_only_gotno). */
4460
4461 static int
4462 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4463 {
4464 struct bfd_link_info *info;
4465 struct mips_elf_link_hash_table *htab;
4466 struct mips_got_info *g;
4467
4468 info = (struct bfd_link_info *) data;
4469 htab = mips_elf_hash_table (info);
4470 g = htab->got_info;
4471 if (h->global_got_area != GGA_NONE)
4472 {
4473 /* Make a final decision about whether the symbol belongs in the
4474 local or global GOT. */
4475 if (mips_use_local_got_p (info, h))
4476 /* The symbol belongs in the local GOT. We no longer need this
4477 entry if it was only used for relocations; those relocations
4478 will be against the null or section symbol instead of H. */
4479 h->global_got_area = GGA_NONE;
4480 else if (htab->is_vxworks
4481 && h->got_only_for_calls
4482 && h->root.plt.plist->mips_offset != MINUS_ONE)
4483 /* On VxWorks, calls can refer directly to the .got.plt entry;
4484 they don't need entries in the regular GOT. .got.plt entries
4485 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4486 h->global_got_area = GGA_NONE;
4487 else if (h->global_got_area == GGA_RELOC_ONLY)
4488 {
4489 g->reloc_only_gotno++;
4490 g->global_gotno++;
4491 }
4492 }
4493 return 1;
4494 }
4495 \f
4496 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4497 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4498
4499 static int
4500 mips_elf_add_got_entry (void **entryp, void *data)
4501 {
4502 struct mips_got_entry *entry;
4503 struct mips_elf_traverse_got_arg *arg;
4504 void **slot;
4505
4506 entry = (struct mips_got_entry *) *entryp;
4507 arg = (struct mips_elf_traverse_got_arg *) data;
4508 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4509 if (!slot)
4510 {
4511 arg->g = NULL;
4512 return 0;
4513 }
4514 if (!*slot)
4515 {
4516 *slot = entry;
4517 mips_elf_count_got_entry (arg->info, arg->g, entry);
4518 }
4519 return 1;
4520 }
4521
4522 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4523 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4524
4525 static int
4526 mips_elf_add_got_page_entry (void **entryp, void *data)
4527 {
4528 struct mips_got_page_entry *entry;
4529 struct mips_elf_traverse_got_arg *arg;
4530 void **slot;
4531
4532 entry = (struct mips_got_page_entry *) *entryp;
4533 arg = (struct mips_elf_traverse_got_arg *) data;
4534 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4535 if (!slot)
4536 {
4537 arg->g = NULL;
4538 return 0;
4539 }
4540 if (!*slot)
4541 {
4542 *slot = entry;
4543 arg->g->page_gotno += entry->num_pages;
4544 }
4545 return 1;
4546 }
4547
4548 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4549 this would lead to overflow, 1 if they were merged successfully,
4550 and 0 if a merge failed due to lack of memory. (These values are chosen
4551 so that nonnegative return values can be returned by a htab_traverse
4552 callback.) */
4553
4554 static int
4555 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4556 struct mips_got_info *to,
4557 struct mips_elf_got_per_bfd_arg *arg)
4558 {
4559 struct mips_elf_traverse_got_arg tga;
4560 unsigned int estimate;
4561
4562 /* Work out how many page entries we would need for the combined GOT. */
4563 estimate = arg->max_pages;
4564 if (estimate >= from->page_gotno + to->page_gotno)
4565 estimate = from->page_gotno + to->page_gotno;
4566
4567 /* And conservatively estimate how many local and TLS entries
4568 would be needed. */
4569 estimate += from->local_gotno + to->local_gotno;
4570 estimate += from->tls_gotno + to->tls_gotno;
4571
4572 /* If we're merging with the primary got, any TLS relocations will
4573 come after the full set of global entries. Otherwise estimate those
4574 conservatively as well. */
4575 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4576 estimate += arg->global_count;
4577 else
4578 estimate += from->global_gotno + to->global_gotno;
4579
4580 /* Bail out if the combined GOT might be too big. */
4581 if (estimate > arg->max_count)
4582 return -1;
4583
4584 /* Transfer the bfd's got information from FROM to TO. */
4585 tga.info = arg->info;
4586 tga.g = to;
4587 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4588 if (!tga.g)
4589 return 0;
4590
4591 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4592 if (!tga.g)
4593 return 0;
4594
4595 mips_elf_replace_bfd_got (abfd, to);
4596 return 1;
4597 }
4598
4599 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4600 as possible of the primary got, since it doesn't require explicit
4601 dynamic relocations, but don't use bfds that would reference global
4602 symbols out of the addressable range. Failing the primary got,
4603 attempt to merge with the current got, or finish the current got
4604 and then make make the new got current. */
4605
4606 static bfd_boolean
4607 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4608 struct mips_elf_got_per_bfd_arg *arg)
4609 {
4610 unsigned int estimate;
4611 int result;
4612
4613 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4614 return FALSE;
4615
4616 /* Work out the number of page, local and TLS entries. */
4617 estimate = arg->max_pages;
4618 if (estimate > g->page_gotno)
4619 estimate = g->page_gotno;
4620 estimate += g->local_gotno + g->tls_gotno;
4621
4622 /* We place TLS GOT entries after both locals and globals. The globals
4623 for the primary GOT may overflow the normal GOT size limit, so be
4624 sure not to merge a GOT which requires TLS with the primary GOT in that
4625 case. This doesn't affect non-primary GOTs. */
4626 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4627
4628 if (estimate <= arg->max_count)
4629 {
4630 /* If we don't have a primary GOT, use it as
4631 a starting point for the primary GOT. */
4632 if (!arg->primary)
4633 {
4634 arg->primary = g;
4635 return TRUE;
4636 }
4637
4638 /* Try merging with the primary GOT. */
4639 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4640 if (result >= 0)
4641 return result;
4642 }
4643
4644 /* If we can merge with the last-created got, do it. */
4645 if (arg->current)
4646 {
4647 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4648 if (result >= 0)
4649 return result;
4650 }
4651
4652 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4653 fits; if it turns out that it doesn't, we'll get relocation
4654 overflows anyway. */
4655 g->next = arg->current;
4656 arg->current = g;
4657
4658 return TRUE;
4659 }
4660
4661 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4662 to GOTIDX, duplicating the entry if it has already been assigned
4663 an index in a different GOT. */
4664
4665 static bfd_boolean
4666 mips_elf_set_gotidx (void **entryp, long gotidx)
4667 {
4668 struct mips_got_entry *entry;
4669
4670 entry = (struct mips_got_entry *) *entryp;
4671 if (entry->gotidx > 0)
4672 {
4673 struct mips_got_entry *new_entry;
4674
4675 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4676 if (!new_entry)
4677 return FALSE;
4678
4679 *new_entry = *entry;
4680 *entryp = new_entry;
4681 entry = new_entry;
4682 }
4683 entry->gotidx = gotidx;
4684 return TRUE;
4685 }
4686
4687 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4688 mips_elf_traverse_got_arg in which DATA->value is the size of one
4689 GOT entry. Set DATA->g to null on failure. */
4690
4691 static int
4692 mips_elf_initialize_tls_index (void **entryp, void *data)
4693 {
4694 struct mips_got_entry *entry;
4695 struct mips_elf_traverse_got_arg *arg;
4696
4697 /* We're only interested in TLS symbols. */
4698 entry = (struct mips_got_entry *) *entryp;
4699 if (entry->tls_type == GOT_TLS_NONE)
4700 return 1;
4701
4702 arg = (struct mips_elf_traverse_got_arg *) data;
4703 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4704 {
4705 arg->g = NULL;
4706 return 0;
4707 }
4708
4709 /* Account for the entries we've just allocated. */
4710 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4711 return 1;
4712 }
4713
4714 /* A htab_traverse callback for GOT entries, where DATA points to a
4715 mips_elf_traverse_got_arg. Set the global_got_area of each global
4716 symbol to DATA->value. */
4717
4718 static int
4719 mips_elf_set_global_got_area (void **entryp, void *data)
4720 {
4721 struct mips_got_entry *entry;
4722 struct mips_elf_traverse_got_arg *arg;
4723
4724 entry = (struct mips_got_entry *) *entryp;
4725 arg = (struct mips_elf_traverse_got_arg *) data;
4726 if (entry->abfd != NULL
4727 && entry->symndx == -1
4728 && entry->d.h->global_got_area != GGA_NONE)
4729 entry->d.h->global_got_area = arg->value;
4730 return 1;
4731 }
4732
4733 /* A htab_traverse callback for secondary GOT entries, where DATA points
4734 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4735 and record the number of relocations they require. DATA->value is
4736 the size of one GOT entry. Set DATA->g to null on failure. */
4737
4738 static int
4739 mips_elf_set_global_gotidx (void **entryp, void *data)
4740 {
4741 struct mips_got_entry *entry;
4742 struct mips_elf_traverse_got_arg *arg;
4743
4744 entry = (struct mips_got_entry *) *entryp;
4745 arg = (struct mips_elf_traverse_got_arg *) data;
4746 if (entry->abfd != NULL
4747 && entry->symndx == -1
4748 && entry->d.h->global_got_area != GGA_NONE)
4749 {
4750 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4751 {
4752 arg->g = NULL;
4753 return 0;
4754 }
4755 arg->g->assigned_low_gotno += 1;
4756
4757 if (bfd_link_pic (arg->info)
4758 || (elf_hash_table (arg->info)->dynamic_sections_created
4759 && entry->d.h->root.def_dynamic
4760 && !entry->d.h->root.def_regular))
4761 arg->g->relocs += 1;
4762 }
4763
4764 return 1;
4765 }
4766
4767 /* A htab_traverse callback for GOT entries for which DATA is the
4768 bfd_link_info. Forbid any global symbols from having traditional
4769 lazy-binding stubs. */
4770
4771 static int
4772 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4773 {
4774 struct bfd_link_info *info;
4775 struct mips_elf_link_hash_table *htab;
4776 struct mips_got_entry *entry;
4777
4778 entry = (struct mips_got_entry *) *entryp;
4779 info = (struct bfd_link_info *) data;
4780 htab = mips_elf_hash_table (info);
4781 BFD_ASSERT (htab != NULL);
4782
4783 if (entry->abfd != NULL
4784 && entry->symndx == -1
4785 && entry->d.h->needs_lazy_stub)
4786 {
4787 entry->d.h->needs_lazy_stub = FALSE;
4788 htab->lazy_stub_count--;
4789 }
4790
4791 return 1;
4792 }
4793
4794 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4795 the primary GOT. */
4796 static bfd_vma
4797 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4798 {
4799 if (!g->next)
4800 return 0;
4801
4802 g = mips_elf_bfd_got (ibfd, FALSE);
4803 if (! g)
4804 return 0;
4805
4806 BFD_ASSERT (g->next);
4807
4808 g = g->next;
4809
4810 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4811 * MIPS_ELF_GOT_SIZE (abfd);
4812 }
4813
4814 /* Turn a single GOT that is too big for 16-bit addressing into
4815 a sequence of GOTs, each one 16-bit addressable. */
4816
4817 static bfd_boolean
4818 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4819 asection *got, bfd_size_type pages)
4820 {
4821 struct mips_elf_link_hash_table *htab;
4822 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4823 struct mips_elf_traverse_got_arg tga;
4824 struct mips_got_info *g, *gg;
4825 unsigned int assign, needed_relocs;
4826 bfd *dynobj, *ibfd;
4827
4828 dynobj = elf_hash_table (info)->dynobj;
4829 htab = mips_elf_hash_table (info);
4830 BFD_ASSERT (htab != NULL);
4831
4832 g = htab->got_info;
4833
4834 got_per_bfd_arg.obfd = abfd;
4835 got_per_bfd_arg.info = info;
4836 got_per_bfd_arg.current = NULL;
4837 got_per_bfd_arg.primary = NULL;
4838 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4839 / MIPS_ELF_GOT_SIZE (abfd))
4840 - htab->reserved_gotno);
4841 got_per_bfd_arg.max_pages = pages;
4842 /* The number of globals that will be included in the primary GOT.
4843 See the calls to mips_elf_set_global_got_area below for more
4844 information. */
4845 got_per_bfd_arg.global_count = g->global_gotno;
4846
4847 /* Try to merge the GOTs of input bfds together, as long as they
4848 don't seem to exceed the maximum GOT size, choosing one of them
4849 to be the primary GOT. */
4850 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4851 {
4852 gg = mips_elf_bfd_got (ibfd, FALSE);
4853 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4854 return FALSE;
4855 }
4856
4857 /* If we do not find any suitable primary GOT, create an empty one. */
4858 if (got_per_bfd_arg.primary == NULL)
4859 g->next = mips_elf_create_got_info (abfd);
4860 else
4861 g->next = got_per_bfd_arg.primary;
4862 g->next->next = got_per_bfd_arg.current;
4863
4864 /* GG is now the master GOT, and G is the primary GOT. */
4865 gg = g;
4866 g = g->next;
4867
4868 /* Map the output bfd to the primary got. That's what we're going
4869 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4870 didn't mark in check_relocs, and we want a quick way to find it.
4871 We can't just use gg->next because we're going to reverse the
4872 list. */
4873 mips_elf_replace_bfd_got (abfd, g);
4874
4875 /* Every symbol that is referenced in a dynamic relocation must be
4876 present in the primary GOT, so arrange for them to appear after
4877 those that are actually referenced. */
4878 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4879 g->global_gotno = gg->global_gotno;
4880
4881 tga.info = info;
4882 tga.value = GGA_RELOC_ONLY;
4883 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4884 tga.value = GGA_NORMAL;
4885 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4886
4887 /* Now go through the GOTs assigning them offset ranges.
4888 [assigned_low_gotno, local_gotno[ will be set to the range of local
4889 entries in each GOT. We can then compute the end of a GOT by
4890 adding local_gotno to global_gotno. We reverse the list and make
4891 it circular since then we'll be able to quickly compute the
4892 beginning of a GOT, by computing the end of its predecessor. To
4893 avoid special cases for the primary GOT, while still preserving
4894 assertions that are valid for both single- and multi-got links,
4895 we arrange for the main got struct to have the right number of
4896 global entries, but set its local_gotno such that the initial
4897 offset of the primary GOT is zero. Remember that the primary GOT
4898 will become the last item in the circular linked list, so it
4899 points back to the master GOT. */
4900 gg->local_gotno = -g->global_gotno;
4901 gg->global_gotno = g->global_gotno;
4902 gg->tls_gotno = 0;
4903 assign = 0;
4904 gg->next = gg;
4905
4906 do
4907 {
4908 struct mips_got_info *gn;
4909
4910 assign += htab->reserved_gotno;
4911 g->assigned_low_gotno = assign;
4912 g->local_gotno += assign;
4913 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4914 g->assigned_high_gotno = g->local_gotno - 1;
4915 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4916
4917 /* Take g out of the direct list, and push it onto the reversed
4918 list that gg points to. g->next is guaranteed to be nonnull after
4919 this operation, as required by mips_elf_initialize_tls_index. */
4920 gn = g->next;
4921 g->next = gg->next;
4922 gg->next = g;
4923
4924 /* Set up any TLS entries. We always place the TLS entries after
4925 all non-TLS entries. */
4926 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4927 tga.g = g;
4928 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4929 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4930 if (!tga.g)
4931 return FALSE;
4932 BFD_ASSERT (g->tls_assigned_gotno == assign);
4933
4934 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4935 g = gn;
4936
4937 /* Forbid global symbols in every non-primary GOT from having
4938 lazy-binding stubs. */
4939 if (g)
4940 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4941 }
4942 while (g);
4943
4944 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4945
4946 needed_relocs = 0;
4947 for (g = gg->next; g && g->next != gg; g = g->next)
4948 {
4949 unsigned int save_assign;
4950
4951 /* Assign offsets to global GOT entries and count how many
4952 relocations they need. */
4953 save_assign = g->assigned_low_gotno;
4954 g->assigned_low_gotno = g->local_gotno;
4955 tga.info = info;
4956 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4957 tga.g = g;
4958 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4959 if (!tga.g)
4960 return FALSE;
4961 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4962 g->assigned_low_gotno = save_assign;
4963
4964 if (bfd_link_pic (info))
4965 {
4966 g->relocs += g->local_gotno - g->assigned_low_gotno;
4967 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4968 + g->next->global_gotno
4969 + g->next->tls_gotno
4970 + htab->reserved_gotno);
4971 }
4972 needed_relocs += g->relocs;
4973 }
4974 needed_relocs += g->relocs;
4975
4976 if (needed_relocs)
4977 mips_elf_allocate_dynamic_relocations (dynobj, info,
4978 needed_relocs);
4979
4980 return TRUE;
4981 }
4982
4983 \f
4984 /* Returns the first relocation of type r_type found, beginning with
4985 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4986
4987 static const Elf_Internal_Rela *
4988 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4989 const Elf_Internal_Rela *relocation,
4990 const Elf_Internal_Rela *relend)
4991 {
4992 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4993
4994 while (relocation < relend)
4995 {
4996 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4997 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4998 return relocation;
4999
5000 ++relocation;
5001 }
5002
5003 /* We didn't find it. */
5004 return NULL;
5005 }
5006
5007 /* Return whether an input relocation is against a local symbol. */
5008
5009 static bfd_boolean
5010 mips_elf_local_relocation_p (bfd *input_bfd,
5011 const Elf_Internal_Rela *relocation,
5012 asection **local_sections)
5013 {
5014 unsigned long r_symndx;
5015 Elf_Internal_Shdr *symtab_hdr;
5016 size_t extsymoff;
5017
5018 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5019 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5020 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5021
5022 if (r_symndx < extsymoff)
5023 return TRUE;
5024 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5025 return TRUE;
5026
5027 return FALSE;
5028 }
5029 \f
5030 /* Sign-extend VALUE, which has the indicated number of BITS. */
5031
5032 bfd_vma
5033 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5034 {
5035 if (value & ((bfd_vma) 1 << (bits - 1)))
5036 /* VALUE is negative. */
5037 value |= ((bfd_vma) - 1) << bits;
5038
5039 return value;
5040 }
5041
5042 /* Return non-zero if the indicated VALUE has overflowed the maximum
5043 range expressible by a signed number with the indicated number of
5044 BITS. */
5045
5046 static bfd_boolean
5047 mips_elf_overflow_p (bfd_vma value, int bits)
5048 {
5049 bfd_signed_vma svalue = (bfd_signed_vma) value;
5050
5051 if (svalue > (1 << (bits - 1)) - 1)
5052 /* The value is too big. */
5053 return TRUE;
5054 else if (svalue < -(1 << (bits - 1)))
5055 /* The value is too small. */
5056 return TRUE;
5057
5058 /* All is well. */
5059 return FALSE;
5060 }
5061
5062 /* Calculate the %high function. */
5063
5064 static bfd_vma
5065 mips_elf_high (bfd_vma value)
5066 {
5067 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5068 }
5069
5070 /* Calculate the %higher function. */
5071
5072 static bfd_vma
5073 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5074 {
5075 #ifdef BFD64
5076 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5077 #else
5078 abort ();
5079 return MINUS_ONE;
5080 #endif
5081 }
5082
5083 /* Calculate the %highest function. */
5084
5085 static bfd_vma
5086 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5087 {
5088 #ifdef BFD64
5089 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5090 #else
5091 abort ();
5092 return MINUS_ONE;
5093 #endif
5094 }
5095 \f
5096 /* Create the .compact_rel section. */
5097
5098 static bfd_boolean
5099 mips_elf_create_compact_rel_section
5100 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5101 {
5102 flagword flags;
5103 register asection *s;
5104
5105 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5106 {
5107 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5108 | SEC_READONLY);
5109
5110 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5111 if (s == NULL
5112 || ! bfd_set_section_alignment (abfd, s,
5113 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5114 return FALSE;
5115
5116 s->size = sizeof (Elf32_External_compact_rel);
5117 }
5118
5119 return TRUE;
5120 }
5121
5122 /* Create the .got section to hold the global offset table. */
5123
5124 static bfd_boolean
5125 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5126 {
5127 flagword flags;
5128 register asection *s;
5129 struct elf_link_hash_entry *h;
5130 struct bfd_link_hash_entry *bh;
5131 struct mips_elf_link_hash_table *htab;
5132
5133 htab = mips_elf_hash_table (info);
5134 BFD_ASSERT (htab != NULL);
5135
5136 /* This function may be called more than once. */
5137 if (htab->root.sgot)
5138 return TRUE;
5139
5140 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5141 | SEC_LINKER_CREATED);
5142
5143 /* We have to use an alignment of 2**4 here because this is hardcoded
5144 in the function stub generation and in the linker script. */
5145 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5146 if (s == NULL
5147 || ! bfd_set_section_alignment (abfd, s, 4))
5148 return FALSE;
5149 htab->root.sgot = s;
5150
5151 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5152 linker script because we don't want to define the symbol if we
5153 are not creating a global offset table. */
5154 bh = NULL;
5155 if (! (_bfd_generic_link_add_one_symbol
5156 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5157 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5158 return FALSE;
5159
5160 h = (struct elf_link_hash_entry *) bh;
5161 h->non_elf = 0;
5162 h->def_regular = 1;
5163 h->type = STT_OBJECT;
5164 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5165 elf_hash_table (info)->hgot = h;
5166
5167 if (bfd_link_pic (info)
5168 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5169 return FALSE;
5170
5171 htab->got_info = mips_elf_create_got_info (abfd);
5172 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5173 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5174
5175 /* We also need a .got.plt section when generating PLTs. */
5176 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5177 SEC_ALLOC | SEC_LOAD
5178 | SEC_HAS_CONTENTS
5179 | SEC_IN_MEMORY
5180 | SEC_LINKER_CREATED);
5181 if (s == NULL)
5182 return FALSE;
5183 htab->root.sgotplt = s;
5184
5185 return TRUE;
5186 }
5187 \f
5188 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5189 __GOTT_INDEX__ symbols. These symbols are only special for
5190 shared objects; they are not used in executables. */
5191
5192 static bfd_boolean
5193 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5194 {
5195 return (mips_elf_hash_table (info)->is_vxworks
5196 && bfd_link_pic (info)
5197 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5198 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5199 }
5200
5201 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5202 require an la25 stub. See also mips_elf_local_pic_function_p,
5203 which determines whether the destination function ever requires a
5204 stub. */
5205
5206 static bfd_boolean
5207 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5208 bfd_boolean target_is_16_bit_code_p)
5209 {
5210 /* We specifically ignore branches and jumps from EF_PIC objects,
5211 where the onus is on the compiler or programmer to perform any
5212 necessary initialization of $25. Sometimes such initialization
5213 is unnecessary; for example, -mno-shared functions do not use
5214 the incoming value of $25, and may therefore be called directly. */
5215 if (PIC_OBJECT_P (input_bfd))
5216 return FALSE;
5217
5218 switch (r_type)
5219 {
5220 case R_MIPS_26:
5221 case R_MIPS_PC16:
5222 case R_MIPS_PC21_S2:
5223 case R_MIPS_PC26_S2:
5224 case R_MICROMIPS_26_S1:
5225 case R_MICROMIPS_PC7_S1:
5226 case R_MICROMIPS_PC10_S1:
5227 case R_MICROMIPS_PC16_S1:
5228 case R_MICROMIPS_PC23_S2:
5229 return TRUE;
5230
5231 case R_MIPS16_26:
5232 return !target_is_16_bit_code_p;
5233
5234 default:
5235 return FALSE;
5236 }
5237 }
5238 \f
5239 /* Calculate the value produced by the RELOCATION (which comes from
5240 the INPUT_BFD). The ADDEND is the addend to use for this
5241 RELOCATION; RELOCATION->R_ADDEND is ignored.
5242
5243 The result of the relocation calculation is stored in VALUEP.
5244 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5245 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5246
5247 This function returns bfd_reloc_continue if the caller need take no
5248 further action regarding this relocation, bfd_reloc_notsupported if
5249 something goes dramatically wrong, bfd_reloc_overflow if an
5250 overflow occurs, and bfd_reloc_ok to indicate success. */
5251
5252 static bfd_reloc_status_type
5253 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5254 asection *input_section,
5255 struct bfd_link_info *info,
5256 const Elf_Internal_Rela *relocation,
5257 bfd_vma addend, reloc_howto_type *howto,
5258 Elf_Internal_Sym *local_syms,
5259 asection **local_sections, bfd_vma *valuep,
5260 const char **namep,
5261 bfd_boolean *cross_mode_jump_p,
5262 bfd_boolean save_addend)
5263 {
5264 /* The eventual value we will return. */
5265 bfd_vma value;
5266 /* The address of the symbol against which the relocation is
5267 occurring. */
5268 bfd_vma symbol = 0;
5269 /* The final GP value to be used for the relocatable, executable, or
5270 shared object file being produced. */
5271 bfd_vma gp;
5272 /* The place (section offset or address) of the storage unit being
5273 relocated. */
5274 bfd_vma p;
5275 /* The value of GP used to create the relocatable object. */
5276 bfd_vma gp0;
5277 /* The offset into the global offset table at which the address of
5278 the relocation entry symbol, adjusted by the addend, resides
5279 during execution. */
5280 bfd_vma g = MINUS_ONE;
5281 /* The section in which the symbol referenced by the relocation is
5282 located. */
5283 asection *sec = NULL;
5284 struct mips_elf_link_hash_entry *h = NULL;
5285 /* TRUE if the symbol referred to by this relocation is a local
5286 symbol. */
5287 bfd_boolean local_p, was_local_p;
5288 /* TRUE if the symbol referred to by this relocation is a section
5289 symbol. */
5290 bfd_boolean section_p = FALSE;
5291 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5292 bfd_boolean gp_disp_p = FALSE;
5293 /* TRUE if the symbol referred to by this relocation is
5294 "__gnu_local_gp". */
5295 bfd_boolean gnu_local_gp_p = FALSE;
5296 Elf_Internal_Shdr *symtab_hdr;
5297 size_t extsymoff;
5298 unsigned long r_symndx;
5299 int r_type;
5300 /* TRUE if overflow occurred during the calculation of the
5301 relocation value. */
5302 bfd_boolean overflowed_p;
5303 /* TRUE if this relocation refers to a MIPS16 function. */
5304 bfd_boolean target_is_16_bit_code_p = FALSE;
5305 bfd_boolean target_is_micromips_code_p = FALSE;
5306 struct mips_elf_link_hash_table *htab;
5307 bfd *dynobj;
5308 bfd_boolean resolved_to_zero;
5309
5310 dynobj = elf_hash_table (info)->dynobj;
5311 htab = mips_elf_hash_table (info);
5312 BFD_ASSERT (htab != NULL);
5313
5314 /* Parse the relocation. */
5315 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5316 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5317 p = (input_section->output_section->vma
5318 + input_section->output_offset
5319 + relocation->r_offset);
5320
5321 /* Assume that there will be no overflow. */
5322 overflowed_p = FALSE;
5323
5324 /* Figure out whether or not the symbol is local, and get the offset
5325 used in the array of hash table entries. */
5326 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5327 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5328 local_sections);
5329 was_local_p = local_p;
5330 if (! elf_bad_symtab (input_bfd))
5331 extsymoff = symtab_hdr->sh_info;
5332 else
5333 {
5334 /* The symbol table does not follow the rule that local symbols
5335 must come before globals. */
5336 extsymoff = 0;
5337 }
5338
5339 /* Figure out the value of the symbol. */
5340 if (local_p)
5341 {
5342 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5343 Elf_Internal_Sym *sym;
5344
5345 sym = local_syms + r_symndx;
5346 sec = local_sections[r_symndx];
5347
5348 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5349
5350 symbol = sec->output_section->vma + sec->output_offset;
5351 if (!section_p || (sec->flags & SEC_MERGE))
5352 symbol += sym->st_value;
5353 if ((sec->flags & SEC_MERGE) && section_p)
5354 {
5355 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5356 addend -= symbol;
5357 addend += sec->output_section->vma + sec->output_offset;
5358 }
5359
5360 /* MIPS16/microMIPS text labels should be treated as odd. */
5361 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5362 ++symbol;
5363
5364 /* Record the name of this symbol, for our caller. */
5365 *namep = bfd_elf_string_from_elf_section (input_bfd,
5366 symtab_hdr->sh_link,
5367 sym->st_name);
5368 if (*namep == NULL || **namep == '\0')
5369 *namep = bfd_section_name (input_bfd, sec);
5370
5371 /* For relocations against a section symbol and ones against no
5372 symbol (absolute relocations) infer the ISA mode from the addend. */
5373 if (section_p || r_symndx == STN_UNDEF)
5374 {
5375 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5376 target_is_micromips_code_p = (addend & 1) && micromips_p;
5377 }
5378 /* For relocations against an absolute symbol infer the ISA mode
5379 from the value of the symbol plus addend. */
5380 else if (bfd_is_abs_section (sec))
5381 {
5382 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5383 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5384 }
5385 /* Otherwise just use the regular symbol annotation available. */
5386 else
5387 {
5388 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5389 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5390 }
5391 }
5392 else
5393 {
5394 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5395
5396 /* For global symbols we look up the symbol in the hash-table. */
5397 h = ((struct mips_elf_link_hash_entry *)
5398 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5399 /* Find the real hash-table entry for this symbol. */
5400 while (h->root.root.type == bfd_link_hash_indirect
5401 || h->root.root.type == bfd_link_hash_warning)
5402 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5403
5404 /* Record the name of this symbol, for our caller. */
5405 *namep = h->root.root.root.string;
5406
5407 /* See if this is the special _gp_disp symbol. Note that such a
5408 symbol must always be a global symbol. */
5409 if (strcmp (*namep, "_gp_disp") == 0
5410 && ! NEWABI_P (input_bfd))
5411 {
5412 /* Relocations against _gp_disp are permitted only with
5413 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5414 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5415 return bfd_reloc_notsupported;
5416
5417 gp_disp_p = TRUE;
5418 }
5419 /* See if this is the special _gp symbol. Note that such a
5420 symbol must always be a global symbol. */
5421 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5422 gnu_local_gp_p = TRUE;
5423
5424
5425 /* If this symbol is defined, calculate its address. Note that
5426 _gp_disp is a magic symbol, always implicitly defined by the
5427 linker, so it's inappropriate to check to see whether or not
5428 its defined. */
5429 else if ((h->root.root.type == bfd_link_hash_defined
5430 || h->root.root.type == bfd_link_hash_defweak)
5431 && h->root.root.u.def.section)
5432 {
5433 sec = h->root.root.u.def.section;
5434 if (sec->output_section)
5435 symbol = (h->root.root.u.def.value
5436 + sec->output_section->vma
5437 + sec->output_offset);
5438 else
5439 symbol = h->root.root.u.def.value;
5440 }
5441 else if (h->root.root.type == bfd_link_hash_undefweak)
5442 /* We allow relocations against undefined weak symbols, giving
5443 it the value zero, so that you can undefined weak functions
5444 and check to see if they exist by looking at their
5445 addresses. */
5446 symbol = 0;
5447 else if (info->unresolved_syms_in_objects == RM_IGNORE
5448 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5449 symbol = 0;
5450 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5451 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5452 {
5453 /* If this is a dynamic link, we should have created a
5454 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5455 in _bfd_mips_elf_create_dynamic_sections.
5456 Otherwise, we should define the symbol with a value of 0.
5457 FIXME: It should probably get into the symbol table
5458 somehow as well. */
5459 BFD_ASSERT (! bfd_link_pic (info));
5460 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5461 symbol = 0;
5462 }
5463 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5464 {
5465 /* This is an optional symbol - an Irix specific extension to the
5466 ELF spec. Ignore it for now.
5467 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5468 than simply ignoring them, but we do not handle this for now.
5469 For information see the "64-bit ELF Object File Specification"
5470 which is available from here:
5471 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5472 symbol = 0;
5473 }
5474 else
5475 {
5476 bfd_boolean reject_undefined
5477 = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
5478 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5479
5480 (*info->callbacks->undefined_symbol)
5481 (info, h->root.root.root.string, input_bfd,
5482 input_section, relocation->r_offset, reject_undefined);
5483
5484 if (reject_undefined)
5485 return bfd_reloc_undefined;
5486
5487 symbol = 0;
5488 }
5489
5490 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5491 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5492 }
5493
5494 /* If this is a reference to a 16-bit function with a stub, we need
5495 to redirect the relocation to the stub unless:
5496
5497 (a) the relocation is for a MIPS16 JAL;
5498
5499 (b) the relocation is for a MIPS16 PIC call, and there are no
5500 non-MIPS16 uses of the GOT slot; or
5501
5502 (c) the section allows direct references to MIPS16 functions. */
5503 if (r_type != R_MIPS16_26
5504 && !bfd_link_relocatable (info)
5505 && ((h != NULL
5506 && h->fn_stub != NULL
5507 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5508 || (local_p
5509 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5510 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5511 && !section_allows_mips16_refs_p (input_section))
5512 {
5513 /* This is a 32- or 64-bit call to a 16-bit function. We should
5514 have already noticed that we were going to need the
5515 stub. */
5516 if (local_p)
5517 {
5518 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5519 value = 0;
5520 }
5521 else
5522 {
5523 BFD_ASSERT (h->need_fn_stub);
5524 if (h->la25_stub)
5525 {
5526 /* If a LA25 header for the stub itself exists, point to the
5527 prepended LUI/ADDIU sequence. */
5528 sec = h->la25_stub->stub_section;
5529 value = h->la25_stub->offset;
5530 }
5531 else
5532 {
5533 sec = h->fn_stub;
5534 value = 0;
5535 }
5536 }
5537
5538 symbol = sec->output_section->vma + sec->output_offset + value;
5539 /* The target is 16-bit, but the stub isn't. */
5540 target_is_16_bit_code_p = FALSE;
5541 }
5542 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5543 to a standard MIPS function, we need to redirect the call to the stub.
5544 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5545 indirect calls should use an indirect stub instead. */
5546 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5547 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5548 || (local_p
5549 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5550 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5551 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5552 {
5553 if (local_p)
5554 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5555 else
5556 {
5557 /* If both call_stub and call_fp_stub are defined, we can figure
5558 out which one to use by checking which one appears in the input
5559 file. */
5560 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5561 {
5562 asection *o;
5563
5564 sec = NULL;
5565 for (o = input_bfd->sections; o != NULL; o = o->next)
5566 {
5567 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5568 {
5569 sec = h->call_fp_stub;
5570 break;
5571 }
5572 }
5573 if (sec == NULL)
5574 sec = h->call_stub;
5575 }
5576 else if (h->call_stub != NULL)
5577 sec = h->call_stub;
5578 else
5579 sec = h->call_fp_stub;
5580 }
5581
5582 BFD_ASSERT (sec->size > 0);
5583 symbol = sec->output_section->vma + sec->output_offset;
5584 }
5585 /* If this is a direct call to a PIC function, redirect to the
5586 non-PIC stub. */
5587 else if (h != NULL && h->la25_stub
5588 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5589 target_is_16_bit_code_p))
5590 {
5591 symbol = (h->la25_stub->stub_section->output_section->vma
5592 + h->la25_stub->stub_section->output_offset
5593 + h->la25_stub->offset);
5594 if (ELF_ST_IS_MICROMIPS (h->root.other))
5595 symbol |= 1;
5596 }
5597 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5598 entry is used if a standard PLT entry has also been made. In this
5599 case the symbol will have been set by mips_elf_set_plt_sym_value
5600 to point to the standard PLT entry, so redirect to the compressed
5601 one. */
5602 else if ((mips16_branch_reloc_p (r_type)
5603 || micromips_branch_reloc_p (r_type))
5604 && !bfd_link_relocatable (info)
5605 && h != NULL
5606 && h->use_plt_entry
5607 && h->root.plt.plist->comp_offset != MINUS_ONE
5608 && h->root.plt.plist->mips_offset != MINUS_ONE)
5609 {
5610 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5611
5612 sec = htab->root.splt;
5613 symbol = (sec->output_section->vma
5614 + sec->output_offset
5615 + htab->plt_header_size
5616 + htab->plt_mips_offset
5617 + h->root.plt.plist->comp_offset
5618 + 1);
5619
5620 target_is_16_bit_code_p = !micromips_p;
5621 target_is_micromips_code_p = micromips_p;
5622 }
5623
5624 /* Make sure MIPS16 and microMIPS are not used together. */
5625 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5626 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5627 {
5628 _bfd_error_handler
5629 (_("MIPS16 and microMIPS functions cannot call each other"));
5630 return bfd_reloc_notsupported;
5631 }
5632
5633 /* Calls from 16-bit code to 32-bit code and vice versa require the
5634 mode change. However, we can ignore calls to undefined weak symbols,
5635 which should never be executed at runtime. This exception is important
5636 because the assembly writer may have "known" that any definition of the
5637 symbol would be 16-bit code, and that direct jumps were therefore
5638 acceptable. */
5639 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5640 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5641 && ((mips16_branch_reloc_p (r_type)
5642 && !target_is_16_bit_code_p)
5643 || (micromips_branch_reloc_p (r_type)
5644 && !target_is_micromips_code_p)
5645 || ((branch_reloc_p (r_type)
5646 || r_type == R_MIPS_JALR)
5647 && (target_is_16_bit_code_p
5648 || target_is_micromips_code_p))));
5649
5650 local_p = (h == NULL || mips_use_local_got_p (info, h));
5651
5652 gp0 = _bfd_get_gp_value (input_bfd);
5653 gp = _bfd_get_gp_value (abfd);
5654 if (htab->got_info)
5655 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5656
5657 if (gnu_local_gp_p)
5658 symbol = gp;
5659
5660 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5661 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5662 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5663 if (got_page_reloc_p (r_type) && !local_p)
5664 {
5665 r_type = (micromips_reloc_p (r_type)
5666 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5667 addend = 0;
5668 }
5669
5670 resolved_to_zero = (h != NULL
5671 && UNDEFWEAK_NO_DYNAMIC_RELOC (info,
5672 &h->root));
5673
5674 /* If we haven't already determined the GOT offset, and we're going
5675 to need it, get it now. */
5676 switch (r_type)
5677 {
5678 case R_MIPS16_CALL16:
5679 case R_MIPS16_GOT16:
5680 case R_MIPS_CALL16:
5681 case R_MIPS_GOT16:
5682 case R_MIPS_GOT_DISP:
5683 case R_MIPS_GOT_HI16:
5684 case R_MIPS_CALL_HI16:
5685 case R_MIPS_GOT_LO16:
5686 case R_MIPS_CALL_LO16:
5687 case R_MICROMIPS_CALL16:
5688 case R_MICROMIPS_GOT16:
5689 case R_MICROMIPS_GOT_DISP:
5690 case R_MICROMIPS_GOT_HI16:
5691 case R_MICROMIPS_CALL_HI16:
5692 case R_MICROMIPS_GOT_LO16:
5693 case R_MICROMIPS_CALL_LO16:
5694 case R_MIPS_TLS_GD:
5695 case R_MIPS_TLS_GOTTPREL:
5696 case R_MIPS_TLS_LDM:
5697 case R_MIPS16_TLS_GD:
5698 case R_MIPS16_TLS_GOTTPREL:
5699 case R_MIPS16_TLS_LDM:
5700 case R_MICROMIPS_TLS_GD:
5701 case R_MICROMIPS_TLS_GOTTPREL:
5702 case R_MICROMIPS_TLS_LDM:
5703 /* Find the index into the GOT where this value is located. */
5704 if (tls_ldm_reloc_p (r_type))
5705 {
5706 g = mips_elf_local_got_index (abfd, input_bfd, info,
5707 0, 0, NULL, r_type);
5708 if (g == MINUS_ONE)
5709 return bfd_reloc_outofrange;
5710 }
5711 else if (!local_p)
5712 {
5713 /* On VxWorks, CALL relocations should refer to the .got.plt
5714 entry, which is initialized to point at the PLT stub. */
5715 if (htab->is_vxworks
5716 && (call_hi16_reloc_p (r_type)
5717 || call_lo16_reloc_p (r_type)
5718 || call16_reloc_p (r_type)))
5719 {
5720 BFD_ASSERT (addend == 0);
5721 BFD_ASSERT (h->root.needs_plt);
5722 g = mips_elf_gotplt_index (info, &h->root);
5723 }
5724 else
5725 {
5726 BFD_ASSERT (addend == 0);
5727 g = mips_elf_global_got_index (abfd, info, input_bfd,
5728 &h->root, r_type);
5729 if (!TLS_RELOC_P (r_type)
5730 && !elf_hash_table (info)->dynamic_sections_created)
5731 /* This is a static link. We must initialize the GOT entry. */
5732 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5733 }
5734 }
5735 else if (!htab->is_vxworks
5736 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5737 /* The calculation below does not involve "g". */
5738 break;
5739 else
5740 {
5741 g = mips_elf_local_got_index (abfd, input_bfd, info,
5742 symbol + addend, r_symndx, h, r_type);
5743 if (g == MINUS_ONE)
5744 return bfd_reloc_outofrange;
5745 }
5746
5747 /* Convert GOT indices to actual offsets. */
5748 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5749 break;
5750 }
5751
5752 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5753 symbols are resolved by the loader. Add them to .rela.dyn. */
5754 if (h != NULL && is_gott_symbol (info, &h->root))
5755 {
5756 Elf_Internal_Rela outrel;
5757 bfd_byte *loc;
5758 asection *s;
5759
5760 s = mips_elf_rel_dyn_section (info, FALSE);
5761 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5762
5763 outrel.r_offset = (input_section->output_section->vma
5764 + input_section->output_offset
5765 + relocation->r_offset);
5766 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5767 outrel.r_addend = addend;
5768 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5769
5770 /* If we've written this relocation for a readonly section,
5771 we need to set DF_TEXTREL again, so that we do not delete the
5772 DT_TEXTREL tag. */
5773 if (MIPS_ELF_READONLY_SECTION (input_section))
5774 info->flags |= DF_TEXTREL;
5775
5776 *valuep = 0;
5777 return bfd_reloc_ok;
5778 }
5779
5780 /* Figure out what kind of relocation is being performed. */
5781 switch (r_type)
5782 {
5783 case R_MIPS_NONE:
5784 return bfd_reloc_continue;
5785
5786 case R_MIPS_16:
5787 if (howto->partial_inplace)
5788 addend = _bfd_mips_elf_sign_extend (addend, 16);
5789 value = symbol + addend;
5790 overflowed_p = mips_elf_overflow_p (value, 16);
5791 break;
5792
5793 case R_MIPS_32:
5794 case R_MIPS_REL32:
5795 case R_MIPS_64:
5796 if ((bfd_link_pic (info)
5797 || (htab->root.dynamic_sections_created
5798 && h != NULL
5799 && h->root.def_dynamic
5800 && !h->root.def_regular
5801 && !h->has_static_relocs))
5802 && r_symndx != STN_UNDEF
5803 && (h == NULL
5804 || h->root.root.type != bfd_link_hash_undefweak
5805 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5806 && !resolved_to_zero))
5807 && (input_section->flags & SEC_ALLOC) != 0)
5808 {
5809 /* If we're creating a shared library, then we can't know
5810 where the symbol will end up. So, we create a relocation
5811 record in the output, and leave the job up to the dynamic
5812 linker. We must do the same for executable references to
5813 shared library symbols, unless we've decided to use copy
5814 relocs or PLTs instead. */
5815 value = addend;
5816 if (!mips_elf_create_dynamic_relocation (abfd,
5817 info,
5818 relocation,
5819 h,
5820 sec,
5821 symbol,
5822 &value,
5823 input_section))
5824 return bfd_reloc_undefined;
5825 }
5826 else
5827 {
5828 if (r_type != R_MIPS_REL32)
5829 value = symbol + addend;
5830 else
5831 value = addend;
5832 }
5833 value &= howto->dst_mask;
5834 break;
5835
5836 case R_MIPS_PC32:
5837 value = symbol + addend - p;
5838 value &= howto->dst_mask;
5839 break;
5840
5841 case R_MIPS16_26:
5842 /* The calculation for R_MIPS16_26 is just the same as for an
5843 R_MIPS_26. It's only the storage of the relocated field into
5844 the output file that's different. That's handled in
5845 mips_elf_perform_relocation. So, we just fall through to the
5846 R_MIPS_26 case here. */
5847 case R_MIPS_26:
5848 case R_MICROMIPS_26_S1:
5849 {
5850 unsigned int shift;
5851
5852 /* Shift is 2, unusually, for microMIPS JALX. */
5853 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5854
5855 if (howto->partial_inplace && !section_p)
5856 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5857 else
5858 value = addend;
5859 value += symbol;
5860
5861 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5862 be the correct ISA mode selector except for weak undefined
5863 symbols. */
5864 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5865 && (*cross_mode_jump_p
5866 ? (value & 3) != (r_type == R_MIPS_26)
5867 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5868 return bfd_reloc_outofrange;
5869
5870 value >>= shift;
5871 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5872 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5873 value &= howto->dst_mask;
5874 }
5875 break;
5876
5877 case R_MIPS_TLS_DTPREL_HI16:
5878 case R_MIPS16_TLS_DTPREL_HI16:
5879 case R_MICROMIPS_TLS_DTPREL_HI16:
5880 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5881 & howto->dst_mask);
5882 break;
5883
5884 case R_MIPS_TLS_DTPREL_LO16:
5885 case R_MIPS_TLS_DTPREL32:
5886 case R_MIPS_TLS_DTPREL64:
5887 case R_MIPS16_TLS_DTPREL_LO16:
5888 case R_MICROMIPS_TLS_DTPREL_LO16:
5889 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5890 break;
5891
5892 case R_MIPS_TLS_TPREL_HI16:
5893 case R_MIPS16_TLS_TPREL_HI16:
5894 case R_MICROMIPS_TLS_TPREL_HI16:
5895 value = (mips_elf_high (addend + symbol - tprel_base (info))
5896 & howto->dst_mask);
5897 break;
5898
5899 case R_MIPS_TLS_TPREL_LO16:
5900 case R_MIPS_TLS_TPREL32:
5901 case R_MIPS_TLS_TPREL64:
5902 case R_MIPS16_TLS_TPREL_LO16:
5903 case R_MICROMIPS_TLS_TPREL_LO16:
5904 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5905 break;
5906
5907 case R_MIPS_HI16:
5908 case R_MIPS16_HI16:
5909 case R_MICROMIPS_HI16:
5910 if (!gp_disp_p)
5911 {
5912 value = mips_elf_high (addend + symbol);
5913 value &= howto->dst_mask;
5914 }
5915 else
5916 {
5917 /* For MIPS16 ABI code we generate this sequence
5918 0: li $v0,%hi(_gp_disp)
5919 4: addiupc $v1,%lo(_gp_disp)
5920 8: sll $v0,16
5921 12: addu $v0,$v1
5922 14: move $gp,$v0
5923 So the offsets of hi and lo relocs are the same, but the
5924 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5925 ADDIUPC clears the low two bits of the instruction address,
5926 so the base is ($t9 + 4) & ~3. */
5927 if (r_type == R_MIPS16_HI16)
5928 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5929 /* The microMIPS .cpload sequence uses the same assembly
5930 instructions as the traditional psABI version, but the
5931 incoming $t9 has the low bit set. */
5932 else if (r_type == R_MICROMIPS_HI16)
5933 value = mips_elf_high (addend + gp - p - 1);
5934 else
5935 value = mips_elf_high (addend + gp - p);
5936 }
5937 break;
5938
5939 case R_MIPS_LO16:
5940 case R_MIPS16_LO16:
5941 case R_MICROMIPS_LO16:
5942 case R_MICROMIPS_HI0_LO16:
5943 if (!gp_disp_p)
5944 value = (symbol + addend) & howto->dst_mask;
5945 else
5946 {
5947 /* See the comment for R_MIPS16_HI16 above for the reason
5948 for this conditional. */
5949 if (r_type == R_MIPS16_LO16)
5950 value = addend + gp - (p & ~(bfd_vma) 0x3);
5951 else if (r_type == R_MICROMIPS_LO16
5952 || r_type == R_MICROMIPS_HI0_LO16)
5953 value = addend + gp - p + 3;
5954 else
5955 value = addend + gp - p + 4;
5956 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5957 for overflow. But, on, say, IRIX5, relocations against
5958 _gp_disp are normally generated from the .cpload
5959 pseudo-op. It generates code that normally looks like
5960 this:
5961
5962 lui $gp,%hi(_gp_disp)
5963 addiu $gp,$gp,%lo(_gp_disp)
5964 addu $gp,$gp,$t9
5965
5966 Here $t9 holds the address of the function being called,
5967 as required by the MIPS ELF ABI. The R_MIPS_LO16
5968 relocation can easily overflow in this situation, but the
5969 R_MIPS_HI16 relocation will handle the overflow.
5970 Therefore, we consider this a bug in the MIPS ABI, and do
5971 not check for overflow here. */
5972 }
5973 break;
5974
5975 case R_MIPS_LITERAL:
5976 case R_MICROMIPS_LITERAL:
5977 /* Because we don't merge literal sections, we can handle this
5978 just like R_MIPS_GPREL16. In the long run, we should merge
5979 shared literals, and then we will need to additional work
5980 here. */
5981
5982 /* Fall through. */
5983
5984 case R_MIPS16_GPREL:
5985 /* The R_MIPS16_GPREL performs the same calculation as
5986 R_MIPS_GPREL16, but stores the relocated bits in a different
5987 order. We don't need to do anything special here; the
5988 differences are handled in mips_elf_perform_relocation. */
5989 case R_MIPS_GPREL16:
5990 case R_MICROMIPS_GPREL7_S2:
5991 case R_MICROMIPS_GPREL16:
5992 /* Only sign-extend the addend if it was extracted from the
5993 instruction. If the addend was separate, leave it alone,
5994 otherwise we may lose significant bits. */
5995 if (howto->partial_inplace)
5996 addend = _bfd_mips_elf_sign_extend (addend, 16);
5997 value = symbol + addend - gp;
5998 /* If the symbol was local, any earlier relocatable links will
5999 have adjusted its addend with the gp offset, so compensate
6000 for that now. Don't do it for symbols forced local in this
6001 link, though, since they won't have had the gp offset applied
6002 to them before. */
6003 if (was_local_p)
6004 value += gp0;
6005 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6006 overflowed_p = mips_elf_overflow_p (value, 16);
6007 break;
6008
6009 case R_MIPS16_GOT16:
6010 case R_MIPS16_CALL16:
6011 case R_MIPS_GOT16:
6012 case R_MIPS_CALL16:
6013 case R_MICROMIPS_GOT16:
6014 case R_MICROMIPS_CALL16:
6015 /* VxWorks does not have separate local and global semantics for
6016 R_MIPS*_GOT16; every relocation evaluates to "G". */
6017 if (!htab->is_vxworks && local_p)
6018 {
6019 value = mips_elf_got16_entry (abfd, input_bfd, info,
6020 symbol + addend, !was_local_p);
6021 if (value == MINUS_ONE)
6022 return bfd_reloc_outofrange;
6023 value
6024 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6025 overflowed_p = mips_elf_overflow_p (value, 16);
6026 break;
6027 }
6028
6029 /* Fall through. */
6030
6031 case R_MIPS_TLS_GD:
6032 case R_MIPS_TLS_GOTTPREL:
6033 case R_MIPS_TLS_LDM:
6034 case R_MIPS_GOT_DISP:
6035 case R_MIPS16_TLS_GD:
6036 case R_MIPS16_TLS_GOTTPREL:
6037 case R_MIPS16_TLS_LDM:
6038 case R_MICROMIPS_TLS_GD:
6039 case R_MICROMIPS_TLS_GOTTPREL:
6040 case R_MICROMIPS_TLS_LDM:
6041 case R_MICROMIPS_GOT_DISP:
6042 value = g;
6043 overflowed_p = mips_elf_overflow_p (value, 16);
6044 break;
6045
6046 case R_MIPS_GPREL32:
6047 value = (addend + symbol + gp0 - gp);
6048 if (!save_addend)
6049 value &= howto->dst_mask;
6050 break;
6051
6052 case R_MIPS_PC16:
6053 case R_MIPS_GNU_REL16_S2:
6054 if (howto->partial_inplace)
6055 addend = _bfd_mips_elf_sign_extend (addend, 18);
6056
6057 /* No need to exclude weak undefined symbols here as they resolve
6058 to 0 and never set `*cross_mode_jump_p', so this alignment check
6059 will never trigger for them. */
6060 if (*cross_mode_jump_p
6061 ? ((symbol + addend) & 3) != 1
6062 : ((symbol + addend) & 3) != 0)
6063 return bfd_reloc_outofrange;
6064
6065 value = symbol + addend - p;
6066 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6067 overflowed_p = mips_elf_overflow_p (value, 18);
6068 value >>= howto->rightshift;
6069 value &= howto->dst_mask;
6070 break;
6071
6072 case R_MIPS16_PC16_S1:
6073 if (howto->partial_inplace)
6074 addend = _bfd_mips_elf_sign_extend (addend, 17);
6075
6076 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6077 && (*cross_mode_jump_p
6078 ? ((symbol + addend) & 3) != 0
6079 : ((symbol + addend) & 1) == 0))
6080 return bfd_reloc_outofrange;
6081
6082 value = symbol + addend - p;
6083 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6084 overflowed_p = mips_elf_overflow_p (value, 17);
6085 value >>= howto->rightshift;
6086 value &= howto->dst_mask;
6087 break;
6088
6089 case R_MIPS_PC21_S2:
6090 if (howto->partial_inplace)
6091 addend = _bfd_mips_elf_sign_extend (addend, 23);
6092
6093 if ((symbol + addend) & 3)
6094 return bfd_reloc_outofrange;
6095
6096 value = symbol + addend - p;
6097 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6098 overflowed_p = mips_elf_overflow_p (value, 23);
6099 value >>= howto->rightshift;
6100 value &= howto->dst_mask;
6101 break;
6102
6103 case R_MIPS_PC26_S2:
6104 if (howto->partial_inplace)
6105 addend = _bfd_mips_elf_sign_extend (addend, 28);
6106
6107 if ((symbol + addend) & 3)
6108 return bfd_reloc_outofrange;
6109
6110 value = symbol + addend - p;
6111 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6112 overflowed_p = mips_elf_overflow_p (value, 28);
6113 value >>= howto->rightshift;
6114 value &= howto->dst_mask;
6115 break;
6116
6117 case R_MIPS_PC18_S3:
6118 if (howto->partial_inplace)
6119 addend = _bfd_mips_elf_sign_extend (addend, 21);
6120
6121 if ((symbol + addend) & 7)
6122 return bfd_reloc_outofrange;
6123
6124 value = symbol + addend - ((p | 7) ^ 7);
6125 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6126 overflowed_p = mips_elf_overflow_p (value, 21);
6127 value >>= howto->rightshift;
6128 value &= howto->dst_mask;
6129 break;
6130
6131 case R_MIPS_PC19_S2:
6132 if (howto->partial_inplace)
6133 addend = _bfd_mips_elf_sign_extend (addend, 21);
6134
6135 if ((symbol + addend) & 3)
6136 return bfd_reloc_outofrange;
6137
6138 value = symbol + addend - p;
6139 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6140 overflowed_p = mips_elf_overflow_p (value, 21);
6141 value >>= howto->rightshift;
6142 value &= howto->dst_mask;
6143 break;
6144
6145 case R_MIPS_PCHI16:
6146 value = mips_elf_high (symbol + addend - p);
6147 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6148 overflowed_p = mips_elf_overflow_p (value, 16);
6149 value &= howto->dst_mask;
6150 break;
6151
6152 case R_MIPS_PCLO16:
6153 if (howto->partial_inplace)
6154 addend = _bfd_mips_elf_sign_extend (addend, 16);
6155 value = symbol + addend - p;
6156 value &= howto->dst_mask;
6157 break;
6158
6159 case R_MICROMIPS_PC7_S1:
6160 if (howto->partial_inplace)
6161 addend = _bfd_mips_elf_sign_extend (addend, 8);
6162
6163 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6164 && (*cross_mode_jump_p
6165 ? ((symbol + addend + 2) & 3) != 0
6166 : ((symbol + addend + 2) & 1) == 0))
6167 return bfd_reloc_outofrange;
6168
6169 value = symbol + addend - p;
6170 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6171 overflowed_p = mips_elf_overflow_p (value, 8);
6172 value >>= howto->rightshift;
6173 value &= howto->dst_mask;
6174 break;
6175
6176 case R_MICROMIPS_PC10_S1:
6177 if (howto->partial_inplace)
6178 addend = _bfd_mips_elf_sign_extend (addend, 11);
6179
6180 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6181 && (*cross_mode_jump_p
6182 ? ((symbol + addend + 2) & 3) != 0
6183 : ((symbol + addend + 2) & 1) == 0))
6184 return bfd_reloc_outofrange;
6185
6186 value = symbol + addend - p;
6187 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6188 overflowed_p = mips_elf_overflow_p (value, 11);
6189 value >>= howto->rightshift;
6190 value &= howto->dst_mask;
6191 break;
6192
6193 case R_MICROMIPS_PC16_S1:
6194 if (howto->partial_inplace)
6195 addend = _bfd_mips_elf_sign_extend (addend, 17);
6196
6197 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6198 && (*cross_mode_jump_p
6199 ? ((symbol + addend) & 3) != 0
6200 : ((symbol + addend) & 1) == 0))
6201 return bfd_reloc_outofrange;
6202
6203 value = symbol + addend - p;
6204 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6205 overflowed_p = mips_elf_overflow_p (value, 17);
6206 value >>= howto->rightshift;
6207 value &= howto->dst_mask;
6208 break;
6209
6210 case R_MICROMIPS_PC23_S2:
6211 if (howto->partial_inplace)
6212 addend = _bfd_mips_elf_sign_extend (addend, 25);
6213 value = symbol + addend - ((p | 3) ^ 3);
6214 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6215 overflowed_p = mips_elf_overflow_p (value, 25);
6216 value >>= howto->rightshift;
6217 value &= howto->dst_mask;
6218 break;
6219
6220 case R_MIPS_GOT_HI16:
6221 case R_MIPS_CALL_HI16:
6222 case R_MICROMIPS_GOT_HI16:
6223 case R_MICROMIPS_CALL_HI16:
6224 /* We're allowed to handle these two relocations identically.
6225 The dynamic linker is allowed to handle the CALL relocations
6226 differently by creating a lazy evaluation stub. */
6227 value = g;
6228 value = mips_elf_high (value);
6229 value &= howto->dst_mask;
6230 break;
6231
6232 case R_MIPS_GOT_LO16:
6233 case R_MIPS_CALL_LO16:
6234 case R_MICROMIPS_GOT_LO16:
6235 case R_MICROMIPS_CALL_LO16:
6236 value = g & howto->dst_mask;
6237 break;
6238
6239 case R_MIPS_GOT_PAGE:
6240 case R_MICROMIPS_GOT_PAGE:
6241 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6242 if (value == MINUS_ONE)
6243 return bfd_reloc_outofrange;
6244 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6245 overflowed_p = mips_elf_overflow_p (value, 16);
6246 break;
6247
6248 case R_MIPS_GOT_OFST:
6249 case R_MICROMIPS_GOT_OFST:
6250 if (local_p)
6251 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6252 else
6253 value = addend;
6254 overflowed_p = mips_elf_overflow_p (value, 16);
6255 break;
6256
6257 case R_MIPS_SUB:
6258 case R_MICROMIPS_SUB:
6259 value = symbol - addend;
6260 value &= howto->dst_mask;
6261 break;
6262
6263 case R_MIPS_HIGHER:
6264 case R_MICROMIPS_HIGHER:
6265 value = mips_elf_higher (addend + symbol);
6266 value &= howto->dst_mask;
6267 break;
6268
6269 case R_MIPS_HIGHEST:
6270 case R_MICROMIPS_HIGHEST:
6271 value = mips_elf_highest (addend + symbol);
6272 value &= howto->dst_mask;
6273 break;
6274
6275 case R_MIPS_SCN_DISP:
6276 case R_MICROMIPS_SCN_DISP:
6277 value = symbol + addend - sec->output_offset;
6278 value &= howto->dst_mask;
6279 break;
6280
6281 case R_MIPS_JALR:
6282 case R_MICROMIPS_JALR:
6283 /* This relocation is only a hint. In some cases, we optimize
6284 it into a bal instruction. But we don't try to optimize
6285 when the symbol does not resolve locally. */
6286 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6287 return bfd_reloc_continue;
6288 /* We can't optimize cross-mode jumps either. */
6289 if (*cross_mode_jump_p)
6290 return bfd_reloc_continue;
6291 value = symbol + addend;
6292 /* Neither we can non-instruction-aligned targets. */
6293 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6294 return bfd_reloc_continue;
6295 break;
6296
6297 case R_MIPS_PJUMP:
6298 case R_MIPS_GNU_VTINHERIT:
6299 case R_MIPS_GNU_VTENTRY:
6300 /* We don't do anything with these at present. */
6301 return bfd_reloc_continue;
6302
6303 default:
6304 /* An unrecognized relocation type. */
6305 return bfd_reloc_notsupported;
6306 }
6307
6308 /* Store the VALUE for our caller. */
6309 *valuep = value;
6310 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6311 }
6312
6313 /* Obtain the field relocated by RELOCATION. */
6314
6315 static bfd_vma
6316 mips_elf_obtain_contents (reloc_howto_type *howto,
6317 const Elf_Internal_Rela *relocation,
6318 bfd *input_bfd, bfd_byte *contents)
6319 {
6320 bfd_vma x = 0;
6321 bfd_byte *location = contents + relocation->r_offset;
6322 unsigned int size = bfd_get_reloc_size (howto);
6323
6324 /* Obtain the bytes. */
6325 if (size != 0)
6326 x = bfd_get (8 * size, input_bfd, location);
6327
6328 return x;
6329 }
6330
6331 /* It has been determined that the result of the RELOCATION is the
6332 VALUE. Use HOWTO to place VALUE into the output file at the
6333 appropriate position. The SECTION is the section to which the
6334 relocation applies.
6335 CROSS_MODE_JUMP_P is true if the relocation field
6336 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6337
6338 Returns FALSE if anything goes wrong. */
6339
6340 static bfd_boolean
6341 mips_elf_perform_relocation (struct bfd_link_info *info,
6342 reloc_howto_type *howto,
6343 const Elf_Internal_Rela *relocation,
6344 bfd_vma value, bfd *input_bfd,
6345 asection *input_section, bfd_byte *contents,
6346 bfd_boolean cross_mode_jump_p)
6347 {
6348 bfd_vma x;
6349 bfd_byte *location;
6350 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6351 unsigned int size;
6352
6353 /* Figure out where the relocation is occurring. */
6354 location = contents + relocation->r_offset;
6355
6356 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6357
6358 /* Obtain the current value. */
6359 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6360
6361 /* Clear the field we are setting. */
6362 x &= ~howto->dst_mask;
6363
6364 /* Set the field. */
6365 x |= (value & howto->dst_mask);
6366
6367 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6368 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6369 {
6370 bfd_vma opcode = x >> 26;
6371
6372 if (r_type == R_MIPS16_26 ? opcode == 0x7
6373 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6374 : opcode == 0x1d)
6375 {
6376 info->callbacks->einfo
6377 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6378 input_bfd, input_section, relocation->r_offset);
6379 return TRUE;
6380 }
6381 }
6382 if (cross_mode_jump_p && jal_reloc_p (r_type))
6383 {
6384 bfd_boolean ok;
6385 bfd_vma opcode = x >> 26;
6386 bfd_vma jalx_opcode;
6387
6388 /* Check to see if the opcode is already JAL or JALX. */
6389 if (r_type == R_MIPS16_26)
6390 {
6391 ok = ((opcode == 0x6) || (opcode == 0x7));
6392 jalx_opcode = 0x7;
6393 }
6394 else if (r_type == R_MICROMIPS_26_S1)
6395 {
6396 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6397 jalx_opcode = 0x3c;
6398 }
6399 else
6400 {
6401 ok = ((opcode == 0x3) || (opcode == 0x1d));
6402 jalx_opcode = 0x1d;
6403 }
6404
6405 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6406 convert J or JALS to JALX. */
6407 if (!ok)
6408 {
6409 info->callbacks->einfo
6410 (_("%X%H: unsupported jump between ISA modes; "
6411 "consider recompiling with interlinking enabled\n"),
6412 input_bfd, input_section, relocation->r_offset);
6413 return TRUE;
6414 }
6415
6416 /* Make this the JALX opcode. */
6417 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6418 }
6419 else if (cross_mode_jump_p && b_reloc_p (r_type))
6420 {
6421 bfd_boolean ok = FALSE;
6422 bfd_vma opcode = x >> 16;
6423 bfd_vma jalx_opcode = 0;
6424 bfd_vma sign_bit = 0;
6425 bfd_vma addr;
6426 bfd_vma dest;
6427
6428 if (r_type == R_MICROMIPS_PC16_S1)
6429 {
6430 ok = opcode == 0x4060;
6431 jalx_opcode = 0x3c;
6432 sign_bit = 0x10000;
6433 value <<= 1;
6434 }
6435 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6436 {
6437 ok = opcode == 0x411;
6438 jalx_opcode = 0x1d;
6439 sign_bit = 0x20000;
6440 value <<= 2;
6441 }
6442
6443 if (ok && !bfd_link_pic (info))
6444 {
6445 addr = (input_section->output_section->vma
6446 + input_section->output_offset
6447 + relocation->r_offset
6448 + 4);
6449 dest = (addr
6450 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6451
6452 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6453 {
6454 info->callbacks->einfo
6455 (_("%X%H: cannot convert branch between ISA modes "
6456 "to JALX: relocation out of range\n"),
6457 input_bfd, input_section, relocation->r_offset);
6458 return TRUE;
6459 }
6460
6461 /* Make this the JALX opcode. */
6462 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6463 }
6464 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6465 {
6466 info->callbacks->einfo
6467 (_("%X%H: unsupported branch between ISA modes\n"),
6468 input_bfd, input_section, relocation->r_offset);
6469 return TRUE;
6470 }
6471 }
6472
6473 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6474 range. */
6475 if (!bfd_link_relocatable (info)
6476 && !cross_mode_jump_p
6477 && ((JAL_TO_BAL_P (input_bfd)
6478 && r_type == R_MIPS_26
6479 && (x >> 26) == 0x3) /* jal addr */
6480 || (JALR_TO_BAL_P (input_bfd)
6481 && r_type == R_MIPS_JALR
6482 && x == 0x0320f809) /* jalr t9 */
6483 || (JR_TO_B_P (input_bfd)
6484 && r_type == R_MIPS_JALR
6485 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6486 {
6487 bfd_vma addr;
6488 bfd_vma dest;
6489 bfd_signed_vma off;
6490
6491 addr = (input_section->output_section->vma
6492 + input_section->output_offset
6493 + relocation->r_offset
6494 + 4);
6495 if (r_type == R_MIPS_26)
6496 dest = (value << 2) | ((addr >> 28) << 28);
6497 else
6498 dest = value;
6499 off = dest - addr;
6500 if (off <= 0x1ffff && off >= -0x20000)
6501 {
6502 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6503 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6504 else
6505 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6506 }
6507 }
6508
6509 /* Put the value into the output. */
6510 size = bfd_get_reloc_size (howto);
6511 if (size != 0)
6512 bfd_put (8 * size, input_bfd, x, location);
6513
6514 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6515 location);
6516
6517 return TRUE;
6518 }
6519 \f
6520 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6521 is the original relocation, which is now being transformed into a
6522 dynamic relocation. The ADDENDP is adjusted if necessary; the
6523 caller should store the result in place of the original addend. */
6524
6525 static bfd_boolean
6526 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6527 struct bfd_link_info *info,
6528 const Elf_Internal_Rela *rel,
6529 struct mips_elf_link_hash_entry *h,
6530 asection *sec, bfd_vma symbol,
6531 bfd_vma *addendp, asection *input_section)
6532 {
6533 Elf_Internal_Rela outrel[3];
6534 asection *sreloc;
6535 bfd *dynobj;
6536 int r_type;
6537 long indx;
6538 bfd_boolean defined_p;
6539 struct mips_elf_link_hash_table *htab;
6540
6541 htab = mips_elf_hash_table (info);
6542 BFD_ASSERT (htab != NULL);
6543
6544 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6545 dynobj = elf_hash_table (info)->dynobj;
6546 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6547 BFD_ASSERT (sreloc != NULL);
6548 BFD_ASSERT (sreloc->contents != NULL);
6549 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6550 < sreloc->size);
6551
6552 outrel[0].r_offset =
6553 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6554 if (ABI_64_P (output_bfd))
6555 {
6556 outrel[1].r_offset =
6557 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6558 outrel[2].r_offset =
6559 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6560 }
6561
6562 if (outrel[0].r_offset == MINUS_ONE)
6563 /* The relocation field has been deleted. */
6564 return TRUE;
6565
6566 if (outrel[0].r_offset == MINUS_TWO)
6567 {
6568 /* The relocation field has been converted into a relative value of
6569 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6570 the field to be fully relocated, so add in the symbol's value. */
6571 *addendp += symbol;
6572 return TRUE;
6573 }
6574
6575 /* We must now calculate the dynamic symbol table index to use
6576 in the relocation. */
6577 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6578 {
6579 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6580 indx = h->root.dynindx;
6581 if (SGI_COMPAT (output_bfd))
6582 defined_p = h->root.def_regular;
6583 else
6584 /* ??? glibc's ld.so just adds the final GOT entry to the
6585 relocation field. It therefore treats relocs against
6586 defined symbols in the same way as relocs against
6587 undefined symbols. */
6588 defined_p = FALSE;
6589 }
6590 else
6591 {
6592 if (sec != NULL && bfd_is_abs_section (sec))
6593 indx = 0;
6594 else if (sec == NULL || sec->owner == NULL)
6595 {
6596 bfd_set_error (bfd_error_bad_value);
6597 return FALSE;
6598 }
6599 else
6600 {
6601 indx = elf_section_data (sec->output_section)->dynindx;
6602 if (indx == 0)
6603 {
6604 asection *osec = htab->root.text_index_section;
6605 indx = elf_section_data (osec)->dynindx;
6606 }
6607 if (indx == 0)
6608 abort ();
6609 }
6610
6611 /* Instead of generating a relocation using the section
6612 symbol, we may as well make it a fully relative
6613 relocation. We want to avoid generating relocations to
6614 local symbols because we used to generate them
6615 incorrectly, without adding the original symbol value,
6616 which is mandated by the ABI for section symbols. In
6617 order to give dynamic loaders and applications time to
6618 phase out the incorrect use, we refrain from emitting
6619 section-relative relocations. It's not like they're
6620 useful, after all. This should be a bit more efficient
6621 as well. */
6622 /* ??? Although this behavior is compatible with glibc's ld.so,
6623 the ABI says that relocations against STN_UNDEF should have
6624 a symbol value of 0. Irix rld honors this, so relocations
6625 against STN_UNDEF have no effect. */
6626 if (!SGI_COMPAT (output_bfd))
6627 indx = 0;
6628 defined_p = TRUE;
6629 }
6630
6631 /* If the relocation was previously an absolute relocation and
6632 this symbol will not be referred to by the relocation, we must
6633 adjust it by the value we give it in the dynamic symbol table.
6634 Otherwise leave the job up to the dynamic linker. */
6635 if (defined_p && r_type != R_MIPS_REL32)
6636 *addendp += symbol;
6637
6638 if (htab->is_vxworks)
6639 /* VxWorks uses non-relative relocations for this. */
6640 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6641 else
6642 /* The relocation is always an REL32 relocation because we don't
6643 know where the shared library will wind up at load-time. */
6644 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6645 R_MIPS_REL32);
6646
6647 /* For strict adherence to the ABI specification, we should
6648 generate a R_MIPS_64 relocation record by itself before the
6649 _REL32/_64 record as well, such that the addend is read in as
6650 a 64-bit value (REL32 is a 32-bit relocation, after all).
6651 However, since none of the existing ELF64 MIPS dynamic
6652 loaders seems to care, we don't waste space with these
6653 artificial relocations. If this turns out to not be true,
6654 mips_elf_allocate_dynamic_relocation() should be tweaked so
6655 as to make room for a pair of dynamic relocations per
6656 invocation if ABI_64_P, and here we should generate an
6657 additional relocation record with R_MIPS_64 by itself for a
6658 NULL symbol before this relocation record. */
6659 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6660 ABI_64_P (output_bfd)
6661 ? R_MIPS_64
6662 : R_MIPS_NONE);
6663 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6664
6665 /* Adjust the output offset of the relocation to reference the
6666 correct location in the output file. */
6667 outrel[0].r_offset += (input_section->output_section->vma
6668 + input_section->output_offset);
6669 outrel[1].r_offset += (input_section->output_section->vma
6670 + input_section->output_offset);
6671 outrel[2].r_offset += (input_section->output_section->vma
6672 + input_section->output_offset);
6673
6674 /* Put the relocation back out. We have to use the special
6675 relocation outputter in the 64-bit case since the 64-bit
6676 relocation format is non-standard. */
6677 if (ABI_64_P (output_bfd))
6678 {
6679 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6680 (output_bfd, &outrel[0],
6681 (sreloc->contents
6682 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6683 }
6684 else if (htab->is_vxworks)
6685 {
6686 /* VxWorks uses RELA rather than REL dynamic relocations. */
6687 outrel[0].r_addend = *addendp;
6688 bfd_elf32_swap_reloca_out
6689 (output_bfd, &outrel[0],
6690 (sreloc->contents
6691 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6692 }
6693 else
6694 bfd_elf32_swap_reloc_out
6695 (output_bfd, &outrel[0],
6696 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6697
6698 /* We've now added another relocation. */
6699 ++sreloc->reloc_count;
6700
6701 /* Make sure the output section is writable. The dynamic linker
6702 will be writing to it. */
6703 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6704 |= SHF_WRITE;
6705
6706 /* On IRIX5, make an entry of compact relocation info. */
6707 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6708 {
6709 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6710 bfd_byte *cr;
6711
6712 if (scpt)
6713 {
6714 Elf32_crinfo cptrel;
6715
6716 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6717 cptrel.vaddr = (rel->r_offset
6718 + input_section->output_section->vma
6719 + input_section->output_offset);
6720 if (r_type == R_MIPS_REL32)
6721 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6722 else
6723 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6724 mips_elf_set_cr_dist2to (cptrel, 0);
6725 cptrel.konst = *addendp;
6726
6727 cr = (scpt->contents
6728 + sizeof (Elf32_External_compact_rel));
6729 mips_elf_set_cr_relvaddr (cptrel, 0);
6730 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6731 ((Elf32_External_crinfo *) cr
6732 + scpt->reloc_count));
6733 ++scpt->reloc_count;
6734 }
6735 }
6736
6737 /* If we've written this relocation for a readonly section,
6738 we need to set DF_TEXTREL again, so that we do not delete the
6739 DT_TEXTREL tag. */
6740 if (MIPS_ELF_READONLY_SECTION (input_section))
6741 info->flags |= DF_TEXTREL;
6742
6743 return TRUE;
6744 }
6745 \f
6746 /* Return the MACH for a MIPS e_flags value. */
6747
6748 unsigned long
6749 _bfd_elf_mips_mach (flagword flags)
6750 {
6751 switch (flags & EF_MIPS_MACH)
6752 {
6753 case E_MIPS_MACH_3900:
6754 return bfd_mach_mips3900;
6755
6756 case E_MIPS_MACH_4010:
6757 return bfd_mach_mips4010;
6758
6759 case E_MIPS_MACH_4100:
6760 return bfd_mach_mips4100;
6761
6762 case E_MIPS_MACH_4111:
6763 return bfd_mach_mips4111;
6764
6765 case E_MIPS_MACH_4120:
6766 return bfd_mach_mips4120;
6767
6768 case E_MIPS_MACH_4650:
6769 return bfd_mach_mips4650;
6770
6771 case E_MIPS_MACH_5400:
6772 return bfd_mach_mips5400;
6773
6774 case E_MIPS_MACH_5500:
6775 return bfd_mach_mips5500;
6776
6777 case E_MIPS_MACH_5900:
6778 return bfd_mach_mips5900;
6779
6780 case E_MIPS_MACH_9000:
6781 return bfd_mach_mips9000;
6782
6783 case E_MIPS_MACH_SB1:
6784 return bfd_mach_mips_sb1;
6785
6786 case E_MIPS_MACH_LS2E:
6787 return bfd_mach_mips_loongson_2e;
6788
6789 case E_MIPS_MACH_LS2F:
6790 return bfd_mach_mips_loongson_2f;
6791
6792 case E_MIPS_MACH_LS3A:
6793 return bfd_mach_mips_loongson_3a;
6794
6795 case E_MIPS_MACH_OCTEON3:
6796 return bfd_mach_mips_octeon3;
6797
6798 case E_MIPS_MACH_OCTEON2:
6799 return bfd_mach_mips_octeon2;
6800
6801 case E_MIPS_MACH_OCTEON:
6802 return bfd_mach_mips_octeon;
6803
6804 case E_MIPS_MACH_XLR:
6805 return bfd_mach_mips_xlr;
6806
6807 case E_MIPS_MACH_IAMR2:
6808 return bfd_mach_mips_interaptiv_mr2;
6809
6810 default:
6811 switch (flags & EF_MIPS_ARCH)
6812 {
6813 default:
6814 case E_MIPS_ARCH_1:
6815 return bfd_mach_mips3000;
6816
6817 case E_MIPS_ARCH_2:
6818 return bfd_mach_mips6000;
6819
6820 case E_MIPS_ARCH_3:
6821 return bfd_mach_mips4000;
6822
6823 case E_MIPS_ARCH_4:
6824 return bfd_mach_mips8000;
6825
6826 case E_MIPS_ARCH_5:
6827 return bfd_mach_mips5;
6828
6829 case E_MIPS_ARCH_32:
6830 return bfd_mach_mipsisa32;
6831
6832 case E_MIPS_ARCH_64:
6833 return bfd_mach_mipsisa64;
6834
6835 case E_MIPS_ARCH_32R2:
6836 return bfd_mach_mipsisa32r2;
6837
6838 case E_MIPS_ARCH_64R2:
6839 return bfd_mach_mipsisa64r2;
6840
6841 case E_MIPS_ARCH_32R6:
6842 return bfd_mach_mipsisa32r6;
6843
6844 case E_MIPS_ARCH_64R6:
6845 return bfd_mach_mipsisa64r6;
6846 }
6847 }
6848
6849 return 0;
6850 }
6851
6852 /* Return printable name for ABI. */
6853
6854 static INLINE char *
6855 elf_mips_abi_name (bfd *abfd)
6856 {
6857 flagword flags;
6858
6859 flags = elf_elfheader (abfd)->e_flags;
6860 switch (flags & EF_MIPS_ABI)
6861 {
6862 case 0:
6863 if (ABI_N32_P (abfd))
6864 return "N32";
6865 else if (ABI_64_P (abfd))
6866 return "64";
6867 else
6868 return "none";
6869 case E_MIPS_ABI_O32:
6870 return "O32";
6871 case E_MIPS_ABI_O64:
6872 return "O64";
6873 case E_MIPS_ABI_EABI32:
6874 return "EABI32";
6875 case E_MIPS_ABI_EABI64:
6876 return "EABI64";
6877 default:
6878 return "unknown abi";
6879 }
6880 }
6881 \f
6882 /* MIPS ELF uses two common sections. One is the usual one, and the
6883 other is for small objects. All the small objects are kept
6884 together, and then referenced via the gp pointer, which yields
6885 faster assembler code. This is what we use for the small common
6886 section. This approach is copied from ecoff.c. */
6887 static asection mips_elf_scom_section;
6888 static asymbol mips_elf_scom_symbol;
6889 static asymbol *mips_elf_scom_symbol_ptr;
6890
6891 /* MIPS ELF also uses an acommon section, which represents an
6892 allocated common symbol which may be overridden by a
6893 definition in a shared library. */
6894 static asection mips_elf_acom_section;
6895 static asymbol mips_elf_acom_symbol;
6896 static asymbol *mips_elf_acom_symbol_ptr;
6897
6898 /* This is used for both the 32-bit and the 64-bit ABI. */
6899
6900 void
6901 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6902 {
6903 elf_symbol_type *elfsym;
6904
6905 /* Handle the special MIPS section numbers that a symbol may use. */
6906 elfsym = (elf_symbol_type *) asym;
6907 switch (elfsym->internal_elf_sym.st_shndx)
6908 {
6909 case SHN_MIPS_ACOMMON:
6910 /* This section is used in a dynamically linked executable file.
6911 It is an allocated common section. The dynamic linker can
6912 either resolve these symbols to something in a shared
6913 library, or it can just leave them here. For our purposes,
6914 we can consider these symbols to be in a new section. */
6915 if (mips_elf_acom_section.name == NULL)
6916 {
6917 /* Initialize the acommon section. */
6918 mips_elf_acom_section.name = ".acommon";
6919 mips_elf_acom_section.flags = SEC_ALLOC;
6920 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6921 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6922 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6923 mips_elf_acom_symbol.name = ".acommon";
6924 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6925 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6926 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6927 }
6928 asym->section = &mips_elf_acom_section;
6929 break;
6930
6931 case SHN_COMMON:
6932 /* Common symbols less than the GP size are automatically
6933 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6934 if (asym->value > elf_gp_size (abfd)
6935 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6936 || IRIX_COMPAT (abfd) == ict_irix6)
6937 break;
6938 /* Fall through. */
6939 case SHN_MIPS_SCOMMON:
6940 if (mips_elf_scom_section.name == NULL)
6941 {
6942 /* Initialize the small common section. */
6943 mips_elf_scom_section.name = ".scommon";
6944 mips_elf_scom_section.flags = SEC_IS_COMMON;
6945 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6946 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6947 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6948 mips_elf_scom_symbol.name = ".scommon";
6949 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6950 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6951 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6952 }
6953 asym->section = &mips_elf_scom_section;
6954 asym->value = elfsym->internal_elf_sym.st_size;
6955 break;
6956
6957 case SHN_MIPS_SUNDEFINED:
6958 asym->section = bfd_und_section_ptr;
6959 break;
6960
6961 case SHN_MIPS_TEXT:
6962 {
6963 asection *section = bfd_get_section_by_name (abfd, ".text");
6964
6965 if (section != NULL)
6966 {
6967 asym->section = section;
6968 /* MIPS_TEXT is a bit special, the address is not an offset
6969 to the base of the .text section. So subtract the section
6970 base address to make it an offset. */
6971 asym->value -= section->vma;
6972 }
6973 }
6974 break;
6975
6976 case SHN_MIPS_DATA:
6977 {
6978 asection *section = bfd_get_section_by_name (abfd, ".data");
6979
6980 if (section != NULL)
6981 {
6982 asym->section = section;
6983 /* MIPS_DATA is a bit special, the address is not an offset
6984 to the base of the .data section. So subtract the section
6985 base address to make it an offset. */
6986 asym->value -= section->vma;
6987 }
6988 }
6989 break;
6990 }
6991
6992 /* If this is an odd-valued function symbol, assume it's a MIPS16
6993 or microMIPS one. */
6994 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6995 && (asym->value & 1) != 0)
6996 {
6997 asym->value--;
6998 if (MICROMIPS_P (abfd))
6999 elfsym->internal_elf_sym.st_other
7000 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7001 else
7002 elfsym->internal_elf_sym.st_other
7003 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7004 }
7005 }
7006 \f
7007 /* Implement elf_backend_eh_frame_address_size. This differs from
7008 the default in the way it handles EABI64.
7009
7010 EABI64 was originally specified as an LP64 ABI, and that is what
7011 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7012 historically accepted the combination of -mabi=eabi and -mlong32,
7013 and this ILP32 variation has become semi-official over time.
7014 Both forms use elf32 and have pointer-sized FDE addresses.
7015
7016 If an EABI object was generated by GCC 4.0 or above, it will have
7017 an empty .gcc_compiled_longXX section, where XX is the size of longs
7018 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7019 have no special marking to distinguish them from LP64 objects.
7020
7021 We don't want users of the official LP64 ABI to be punished for the
7022 existence of the ILP32 variant, but at the same time, we don't want
7023 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7024 We therefore take the following approach:
7025
7026 - If ABFD contains a .gcc_compiled_longXX section, use it to
7027 determine the pointer size.
7028
7029 - Otherwise check the type of the first relocation. Assume that
7030 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7031
7032 - Otherwise punt.
7033
7034 The second check is enough to detect LP64 objects generated by pre-4.0
7035 compilers because, in the kind of output generated by those compilers,
7036 the first relocation will be associated with either a CIE personality
7037 routine or an FDE start address. Furthermore, the compilers never
7038 used a special (non-pointer) encoding for this ABI.
7039
7040 Checking the relocation type should also be safe because there is no
7041 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7042 did so. */
7043
7044 unsigned int
7045 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7046 {
7047 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7048 return 8;
7049 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7050 {
7051 bfd_boolean long32_p, long64_p;
7052
7053 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7054 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7055 if (long32_p && long64_p)
7056 return 0;
7057 if (long32_p)
7058 return 4;
7059 if (long64_p)
7060 return 8;
7061
7062 if (sec->reloc_count > 0
7063 && elf_section_data (sec)->relocs != NULL
7064 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7065 == R_MIPS_64))
7066 return 8;
7067
7068 return 0;
7069 }
7070 return 4;
7071 }
7072 \f
7073 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7074 relocations against two unnamed section symbols to resolve to the
7075 same address. For example, if we have code like:
7076
7077 lw $4,%got_disp(.data)($gp)
7078 lw $25,%got_disp(.text)($gp)
7079 jalr $25
7080
7081 then the linker will resolve both relocations to .data and the program
7082 will jump there rather than to .text.
7083
7084 We can work around this problem by giving names to local section symbols.
7085 This is also what the MIPSpro tools do. */
7086
7087 bfd_boolean
7088 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7089 {
7090 return SGI_COMPAT (abfd);
7091 }
7092 \f
7093 /* Work over a section just before writing it out. This routine is
7094 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7095 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7096 a better way. */
7097
7098 bfd_boolean
7099 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7100 {
7101 if (hdr->sh_type == SHT_MIPS_REGINFO
7102 && hdr->sh_size > 0)
7103 {
7104 bfd_byte buf[4];
7105
7106 BFD_ASSERT (hdr->contents == NULL);
7107
7108 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7109 {
7110 _bfd_error_handler
7111 (_("%pB: incorrect `.reginfo' section size; "
7112 "expected %" PRIu64 ", got %" PRIu64),
7113 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7114 (uint64_t) hdr->sh_size);
7115 bfd_set_error (bfd_error_bad_value);
7116 return FALSE;
7117 }
7118
7119 if (bfd_seek (abfd,
7120 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7121 SEEK_SET) != 0)
7122 return FALSE;
7123 H_PUT_32 (abfd, elf_gp (abfd), buf);
7124 if (bfd_bwrite (buf, 4, abfd) != 4)
7125 return FALSE;
7126 }
7127
7128 if (hdr->sh_type == SHT_MIPS_OPTIONS
7129 && hdr->bfd_section != NULL
7130 && mips_elf_section_data (hdr->bfd_section) != NULL
7131 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7132 {
7133 bfd_byte *contents, *l, *lend;
7134
7135 /* We stored the section contents in the tdata field in the
7136 set_section_contents routine. We save the section contents
7137 so that we don't have to read them again.
7138 At this point we know that elf_gp is set, so we can look
7139 through the section contents to see if there is an
7140 ODK_REGINFO structure. */
7141
7142 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7143 l = contents;
7144 lend = contents + hdr->sh_size;
7145 while (l + sizeof (Elf_External_Options) <= lend)
7146 {
7147 Elf_Internal_Options intopt;
7148
7149 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7150 &intopt);
7151 if (intopt.size < sizeof (Elf_External_Options))
7152 {
7153 _bfd_error_handler
7154 /* xgettext:c-format */
7155 (_("%pB: warning: bad `%s' option size %u smaller than"
7156 " its header"),
7157 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7158 break;
7159 }
7160 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7161 {
7162 bfd_byte buf[8];
7163
7164 if (bfd_seek (abfd,
7165 (hdr->sh_offset
7166 + (l - contents)
7167 + sizeof (Elf_External_Options)
7168 + (sizeof (Elf64_External_RegInfo) - 8)),
7169 SEEK_SET) != 0)
7170 return FALSE;
7171 H_PUT_64 (abfd, elf_gp (abfd), buf);
7172 if (bfd_bwrite (buf, 8, abfd) != 8)
7173 return FALSE;
7174 }
7175 else if (intopt.kind == ODK_REGINFO)
7176 {
7177 bfd_byte buf[4];
7178
7179 if (bfd_seek (abfd,
7180 (hdr->sh_offset
7181 + (l - contents)
7182 + sizeof (Elf_External_Options)
7183 + (sizeof (Elf32_External_RegInfo) - 4)),
7184 SEEK_SET) != 0)
7185 return FALSE;
7186 H_PUT_32 (abfd, elf_gp (abfd), buf);
7187 if (bfd_bwrite (buf, 4, abfd) != 4)
7188 return FALSE;
7189 }
7190 l += intopt.size;
7191 }
7192 }
7193
7194 if (hdr->bfd_section != NULL)
7195 {
7196 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7197
7198 /* .sbss is not handled specially here because the GNU/Linux
7199 prelinker can convert .sbss from NOBITS to PROGBITS and
7200 changing it back to NOBITS breaks the binary. The entry in
7201 _bfd_mips_elf_special_sections will ensure the correct flags
7202 are set on .sbss if BFD creates it without reading it from an
7203 input file, and without special handling here the flags set
7204 on it in an input file will be followed. */
7205 if (strcmp (name, ".sdata") == 0
7206 || strcmp (name, ".lit8") == 0
7207 || strcmp (name, ".lit4") == 0)
7208 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7209 else if (strcmp (name, ".srdata") == 0)
7210 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7211 else if (strcmp (name, ".compact_rel") == 0)
7212 hdr->sh_flags = 0;
7213 else if (strcmp (name, ".rtproc") == 0)
7214 {
7215 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7216 {
7217 unsigned int adjust;
7218
7219 adjust = hdr->sh_size % hdr->sh_addralign;
7220 if (adjust != 0)
7221 hdr->sh_size += hdr->sh_addralign - adjust;
7222 }
7223 }
7224 }
7225
7226 return TRUE;
7227 }
7228
7229 /* Handle a MIPS specific section when reading an object file. This
7230 is called when elfcode.h finds a section with an unknown type.
7231 This routine supports both the 32-bit and 64-bit ELF ABI.
7232
7233 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7234 how to. */
7235
7236 bfd_boolean
7237 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7238 Elf_Internal_Shdr *hdr,
7239 const char *name,
7240 int shindex)
7241 {
7242 flagword flags = 0;
7243
7244 /* There ought to be a place to keep ELF backend specific flags, but
7245 at the moment there isn't one. We just keep track of the
7246 sections by their name, instead. Fortunately, the ABI gives
7247 suggested names for all the MIPS specific sections, so we will
7248 probably get away with this. */
7249 switch (hdr->sh_type)
7250 {
7251 case SHT_MIPS_LIBLIST:
7252 if (strcmp (name, ".liblist") != 0)
7253 return FALSE;
7254 break;
7255 case SHT_MIPS_MSYM:
7256 if (strcmp (name, ".msym") != 0)
7257 return FALSE;
7258 break;
7259 case SHT_MIPS_CONFLICT:
7260 if (strcmp (name, ".conflict") != 0)
7261 return FALSE;
7262 break;
7263 case SHT_MIPS_GPTAB:
7264 if (! CONST_STRNEQ (name, ".gptab."))
7265 return FALSE;
7266 break;
7267 case SHT_MIPS_UCODE:
7268 if (strcmp (name, ".ucode") != 0)
7269 return FALSE;
7270 break;
7271 case SHT_MIPS_DEBUG:
7272 if (strcmp (name, ".mdebug") != 0)
7273 return FALSE;
7274 flags = SEC_DEBUGGING;
7275 break;
7276 case SHT_MIPS_REGINFO:
7277 if (strcmp (name, ".reginfo") != 0
7278 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7279 return FALSE;
7280 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7281 break;
7282 case SHT_MIPS_IFACE:
7283 if (strcmp (name, ".MIPS.interfaces") != 0)
7284 return FALSE;
7285 break;
7286 case SHT_MIPS_CONTENT:
7287 if (! CONST_STRNEQ (name, ".MIPS.content"))
7288 return FALSE;
7289 break;
7290 case SHT_MIPS_OPTIONS:
7291 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7292 return FALSE;
7293 break;
7294 case SHT_MIPS_ABIFLAGS:
7295 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7296 return FALSE;
7297 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7298 break;
7299 case SHT_MIPS_DWARF:
7300 if (! CONST_STRNEQ (name, ".debug_")
7301 && ! CONST_STRNEQ (name, ".zdebug_"))
7302 return FALSE;
7303 break;
7304 case SHT_MIPS_SYMBOL_LIB:
7305 if (strcmp (name, ".MIPS.symlib") != 0)
7306 return FALSE;
7307 break;
7308 case SHT_MIPS_EVENTS:
7309 if (! CONST_STRNEQ (name, ".MIPS.events")
7310 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7311 return FALSE;
7312 break;
7313 default:
7314 break;
7315 }
7316
7317 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7318 return FALSE;
7319
7320 if (flags)
7321 {
7322 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7323 (bfd_get_section_flags (abfd,
7324 hdr->bfd_section)
7325 | flags)))
7326 return FALSE;
7327 }
7328
7329 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7330 {
7331 Elf_External_ABIFlags_v0 ext;
7332
7333 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7334 &ext, 0, sizeof ext))
7335 return FALSE;
7336 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7337 &mips_elf_tdata (abfd)->abiflags);
7338 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7339 return FALSE;
7340 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7341 }
7342
7343 /* FIXME: We should record sh_info for a .gptab section. */
7344
7345 /* For a .reginfo section, set the gp value in the tdata information
7346 from the contents of this section. We need the gp value while
7347 processing relocs, so we just get it now. The .reginfo section
7348 is not used in the 64-bit MIPS ELF ABI. */
7349 if (hdr->sh_type == SHT_MIPS_REGINFO)
7350 {
7351 Elf32_External_RegInfo ext;
7352 Elf32_RegInfo s;
7353
7354 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7355 &ext, 0, sizeof ext))
7356 return FALSE;
7357 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7358 elf_gp (abfd) = s.ri_gp_value;
7359 }
7360
7361 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7362 set the gp value based on what we find. We may see both
7363 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7364 they should agree. */
7365 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7366 {
7367 bfd_byte *contents, *l, *lend;
7368
7369 contents = bfd_malloc (hdr->sh_size);
7370 if (contents == NULL)
7371 return FALSE;
7372 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7373 0, hdr->sh_size))
7374 {
7375 free (contents);
7376 return FALSE;
7377 }
7378 l = contents;
7379 lend = contents + hdr->sh_size;
7380 while (l + sizeof (Elf_External_Options) <= lend)
7381 {
7382 Elf_Internal_Options intopt;
7383
7384 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7385 &intopt);
7386 if (intopt.size < sizeof (Elf_External_Options))
7387 {
7388 _bfd_error_handler
7389 /* xgettext:c-format */
7390 (_("%pB: warning: bad `%s' option size %u smaller than"
7391 " its header"),
7392 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7393 break;
7394 }
7395 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7396 {
7397 Elf64_Internal_RegInfo intreg;
7398
7399 bfd_mips_elf64_swap_reginfo_in
7400 (abfd,
7401 ((Elf64_External_RegInfo *)
7402 (l + sizeof (Elf_External_Options))),
7403 &intreg);
7404 elf_gp (abfd) = intreg.ri_gp_value;
7405 }
7406 else if (intopt.kind == ODK_REGINFO)
7407 {
7408 Elf32_RegInfo intreg;
7409
7410 bfd_mips_elf32_swap_reginfo_in
7411 (abfd,
7412 ((Elf32_External_RegInfo *)
7413 (l + sizeof (Elf_External_Options))),
7414 &intreg);
7415 elf_gp (abfd) = intreg.ri_gp_value;
7416 }
7417 l += intopt.size;
7418 }
7419 free (contents);
7420 }
7421
7422 return TRUE;
7423 }
7424
7425 /* Set the correct type for a MIPS ELF section. We do this by the
7426 section name, which is a hack, but ought to work. This routine is
7427 used by both the 32-bit and the 64-bit ABI. */
7428
7429 bfd_boolean
7430 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7431 {
7432 const char *name = bfd_get_section_name (abfd, sec);
7433
7434 if (strcmp (name, ".liblist") == 0)
7435 {
7436 hdr->sh_type = SHT_MIPS_LIBLIST;
7437 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7438 /* The sh_link field is set in final_write_processing. */
7439 }
7440 else if (strcmp (name, ".conflict") == 0)
7441 hdr->sh_type = SHT_MIPS_CONFLICT;
7442 else if (CONST_STRNEQ (name, ".gptab."))
7443 {
7444 hdr->sh_type = SHT_MIPS_GPTAB;
7445 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7446 /* The sh_info field is set in final_write_processing. */
7447 }
7448 else if (strcmp (name, ".ucode") == 0)
7449 hdr->sh_type = SHT_MIPS_UCODE;
7450 else if (strcmp (name, ".mdebug") == 0)
7451 {
7452 hdr->sh_type = SHT_MIPS_DEBUG;
7453 /* In a shared object on IRIX 5.3, the .mdebug section has an
7454 entsize of 0. FIXME: Does this matter? */
7455 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7456 hdr->sh_entsize = 0;
7457 else
7458 hdr->sh_entsize = 1;
7459 }
7460 else if (strcmp (name, ".reginfo") == 0)
7461 {
7462 hdr->sh_type = SHT_MIPS_REGINFO;
7463 /* In a shared object on IRIX 5.3, the .reginfo section has an
7464 entsize of 0x18. FIXME: Does this matter? */
7465 if (SGI_COMPAT (abfd))
7466 {
7467 if ((abfd->flags & DYNAMIC) != 0)
7468 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7469 else
7470 hdr->sh_entsize = 1;
7471 }
7472 else
7473 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7474 }
7475 else if (SGI_COMPAT (abfd)
7476 && (strcmp (name, ".hash") == 0
7477 || strcmp (name, ".dynamic") == 0
7478 || strcmp (name, ".dynstr") == 0))
7479 {
7480 if (SGI_COMPAT (abfd))
7481 hdr->sh_entsize = 0;
7482 #if 0
7483 /* This isn't how the IRIX6 linker behaves. */
7484 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7485 #endif
7486 }
7487 else if (strcmp (name, ".got") == 0
7488 || strcmp (name, ".srdata") == 0
7489 || strcmp (name, ".sdata") == 0
7490 || strcmp (name, ".sbss") == 0
7491 || strcmp (name, ".lit4") == 0
7492 || strcmp (name, ".lit8") == 0)
7493 hdr->sh_flags |= SHF_MIPS_GPREL;
7494 else if (strcmp (name, ".MIPS.interfaces") == 0)
7495 {
7496 hdr->sh_type = SHT_MIPS_IFACE;
7497 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7498 }
7499 else if (CONST_STRNEQ (name, ".MIPS.content"))
7500 {
7501 hdr->sh_type = SHT_MIPS_CONTENT;
7502 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7503 /* The sh_info field is set in final_write_processing. */
7504 }
7505 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7506 {
7507 hdr->sh_type = SHT_MIPS_OPTIONS;
7508 hdr->sh_entsize = 1;
7509 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7510 }
7511 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7512 {
7513 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7514 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7515 }
7516 else if (CONST_STRNEQ (name, ".debug_")
7517 || CONST_STRNEQ (name, ".zdebug_"))
7518 {
7519 hdr->sh_type = SHT_MIPS_DWARF;
7520
7521 /* Irix facilities such as libexc expect a single .debug_frame
7522 per executable, the system ones have NOSTRIP set and the linker
7523 doesn't merge sections with different flags so ... */
7524 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7525 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7526 }
7527 else if (strcmp (name, ".MIPS.symlib") == 0)
7528 {
7529 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7530 /* The sh_link and sh_info fields are set in
7531 final_write_processing. */
7532 }
7533 else if (CONST_STRNEQ (name, ".MIPS.events")
7534 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7535 {
7536 hdr->sh_type = SHT_MIPS_EVENTS;
7537 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7538 /* The sh_link field is set in final_write_processing. */
7539 }
7540 else if (strcmp (name, ".msym") == 0)
7541 {
7542 hdr->sh_type = SHT_MIPS_MSYM;
7543 hdr->sh_flags |= SHF_ALLOC;
7544 hdr->sh_entsize = 8;
7545 }
7546
7547 /* The generic elf_fake_sections will set up REL_HDR using the default
7548 kind of relocations. We used to set up a second header for the
7549 non-default kind of relocations here, but only NewABI would use
7550 these, and the IRIX ld doesn't like resulting empty RELA sections.
7551 Thus we create those header only on demand now. */
7552
7553 return TRUE;
7554 }
7555
7556 /* Given a BFD section, try to locate the corresponding ELF section
7557 index. This is used by both the 32-bit and the 64-bit ABI.
7558 Actually, it's not clear to me that the 64-bit ABI supports these,
7559 but for non-PIC objects we will certainly want support for at least
7560 the .scommon section. */
7561
7562 bfd_boolean
7563 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7564 asection *sec, int *retval)
7565 {
7566 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7567 {
7568 *retval = SHN_MIPS_SCOMMON;
7569 return TRUE;
7570 }
7571 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7572 {
7573 *retval = SHN_MIPS_ACOMMON;
7574 return TRUE;
7575 }
7576 return FALSE;
7577 }
7578 \f
7579 /* Hook called by the linker routine which adds symbols from an object
7580 file. We must handle the special MIPS section numbers here. */
7581
7582 bfd_boolean
7583 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7584 Elf_Internal_Sym *sym, const char **namep,
7585 flagword *flagsp ATTRIBUTE_UNUSED,
7586 asection **secp, bfd_vma *valp)
7587 {
7588 if (SGI_COMPAT (abfd)
7589 && (abfd->flags & DYNAMIC) != 0
7590 && strcmp (*namep, "_rld_new_interface") == 0)
7591 {
7592 /* Skip IRIX5 rld entry name. */
7593 *namep = NULL;
7594 return TRUE;
7595 }
7596
7597 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7598 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7599 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7600 a magic symbol resolved by the linker, we ignore this bogus definition
7601 of _gp_disp. New ABI objects do not suffer from this problem so this
7602 is not done for them. */
7603 if (!NEWABI_P(abfd)
7604 && (sym->st_shndx == SHN_ABS)
7605 && (strcmp (*namep, "_gp_disp") == 0))
7606 {
7607 *namep = NULL;
7608 return TRUE;
7609 }
7610
7611 switch (sym->st_shndx)
7612 {
7613 case SHN_COMMON:
7614 /* Common symbols less than the GP size are automatically
7615 treated as SHN_MIPS_SCOMMON symbols. */
7616 if (sym->st_size > elf_gp_size (abfd)
7617 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7618 || IRIX_COMPAT (abfd) == ict_irix6)
7619 break;
7620 /* Fall through. */
7621 case SHN_MIPS_SCOMMON:
7622 *secp = bfd_make_section_old_way (abfd, ".scommon");
7623 (*secp)->flags |= SEC_IS_COMMON;
7624 *valp = sym->st_size;
7625 break;
7626
7627 case SHN_MIPS_TEXT:
7628 /* This section is used in a shared object. */
7629 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7630 {
7631 asymbol *elf_text_symbol;
7632 asection *elf_text_section;
7633 bfd_size_type amt = sizeof (asection);
7634
7635 elf_text_section = bfd_zalloc (abfd, amt);
7636 if (elf_text_section == NULL)
7637 return FALSE;
7638
7639 amt = sizeof (asymbol);
7640 elf_text_symbol = bfd_zalloc (abfd, amt);
7641 if (elf_text_symbol == NULL)
7642 return FALSE;
7643
7644 /* Initialize the section. */
7645
7646 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7647 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7648
7649 elf_text_section->symbol = elf_text_symbol;
7650 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7651
7652 elf_text_section->name = ".text";
7653 elf_text_section->flags = SEC_NO_FLAGS;
7654 elf_text_section->output_section = NULL;
7655 elf_text_section->owner = abfd;
7656 elf_text_symbol->name = ".text";
7657 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7658 elf_text_symbol->section = elf_text_section;
7659 }
7660 /* This code used to do *secp = bfd_und_section_ptr if
7661 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7662 so I took it out. */
7663 *secp = mips_elf_tdata (abfd)->elf_text_section;
7664 break;
7665
7666 case SHN_MIPS_ACOMMON:
7667 /* Fall through. XXX Can we treat this as allocated data? */
7668 case SHN_MIPS_DATA:
7669 /* This section is used in a shared object. */
7670 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7671 {
7672 asymbol *elf_data_symbol;
7673 asection *elf_data_section;
7674 bfd_size_type amt = sizeof (asection);
7675
7676 elf_data_section = bfd_zalloc (abfd, amt);
7677 if (elf_data_section == NULL)
7678 return FALSE;
7679
7680 amt = sizeof (asymbol);
7681 elf_data_symbol = bfd_zalloc (abfd, amt);
7682 if (elf_data_symbol == NULL)
7683 return FALSE;
7684
7685 /* Initialize the section. */
7686
7687 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7688 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7689
7690 elf_data_section->symbol = elf_data_symbol;
7691 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7692
7693 elf_data_section->name = ".data";
7694 elf_data_section->flags = SEC_NO_FLAGS;
7695 elf_data_section->output_section = NULL;
7696 elf_data_section->owner = abfd;
7697 elf_data_symbol->name = ".data";
7698 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7699 elf_data_symbol->section = elf_data_section;
7700 }
7701 /* This code used to do *secp = bfd_und_section_ptr if
7702 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7703 so I took it out. */
7704 *secp = mips_elf_tdata (abfd)->elf_data_section;
7705 break;
7706
7707 case SHN_MIPS_SUNDEFINED:
7708 *secp = bfd_und_section_ptr;
7709 break;
7710 }
7711
7712 if (SGI_COMPAT (abfd)
7713 && ! bfd_link_pic (info)
7714 && info->output_bfd->xvec == abfd->xvec
7715 && strcmp (*namep, "__rld_obj_head") == 0)
7716 {
7717 struct elf_link_hash_entry *h;
7718 struct bfd_link_hash_entry *bh;
7719
7720 /* Mark __rld_obj_head as dynamic. */
7721 bh = NULL;
7722 if (! (_bfd_generic_link_add_one_symbol
7723 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7724 get_elf_backend_data (abfd)->collect, &bh)))
7725 return FALSE;
7726
7727 h = (struct elf_link_hash_entry *) bh;
7728 h->non_elf = 0;
7729 h->def_regular = 1;
7730 h->type = STT_OBJECT;
7731
7732 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7733 return FALSE;
7734
7735 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7736 mips_elf_hash_table (info)->rld_symbol = h;
7737 }
7738
7739 /* If this is a mips16 text symbol, add 1 to the value to make it
7740 odd. This will cause something like .word SYM to come up with
7741 the right value when it is loaded into the PC. */
7742 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7743 ++*valp;
7744
7745 return TRUE;
7746 }
7747
7748 /* This hook function is called before the linker writes out a global
7749 symbol. We mark symbols as small common if appropriate. This is
7750 also where we undo the increment of the value for a mips16 symbol. */
7751
7752 int
7753 _bfd_mips_elf_link_output_symbol_hook
7754 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7755 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7756 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7757 {
7758 /* If we see a common symbol, which implies a relocatable link, then
7759 if a symbol was small common in an input file, mark it as small
7760 common in the output file. */
7761 if (sym->st_shndx == SHN_COMMON
7762 && strcmp (input_sec->name, ".scommon") == 0)
7763 sym->st_shndx = SHN_MIPS_SCOMMON;
7764
7765 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7766 sym->st_value &= ~1;
7767
7768 return 1;
7769 }
7770 \f
7771 /* Functions for the dynamic linker. */
7772
7773 /* Create dynamic sections when linking against a dynamic object. */
7774
7775 bfd_boolean
7776 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7777 {
7778 struct elf_link_hash_entry *h;
7779 struct bfd_link_hash_entry *bh;
7780 flagword flags;
7781 register asection *s;
7782 const char * const *namep;
7783 struct mips_elf_link_hash_table *htab;
7784
7785 htab = mips_elf_hash_table (info);
7786 BFD_ASSERT (htab != NULL);
7787
7788 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7789 | SEC_LINKER_CREATED | SEC_READONLY);
7790
7791 /* The psABI requires a read-only .dynamic section, but the VxWorks
7792 EABI doesn't. */
7793 if (!htab->is_vxworks)
7794 {
7795 s = bfd_get_linker_section (abfd, ".dynamic");
7796 if (s != NULL)
7797 {
7798 if (! bfd_set_section_flags (abfd, s, flags))
7799 return FALSE;
7800 }
7801 }
7802
7803 /* We need to create .got section. */
7804 if (!mips_elf_create_got_section (abfd, info))
7805 return FALSE;
7806
7807 if (! mips_elf_rel_dyn_section (info, TRUE))
7808 return FALSE;
7809
7810 /* Create .stub section. */
7811 s = bfd_make_section_anyway_with_flags (abfd,
7812 MIPS_ELF_STUB_SECTION_NAME (abfd),
7813 flags | SEC_CODE);
7814 if (s == NULL
7815 || ! bfd_set_section_alignment (abfd, s,
7816 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7817 return FALSE;
7818 htab->sstubs = s;
7819
7820 if (!mips_elf_hash_table (info)->use_rld_obj_head
7821 && bfd_link_executable (info)
7822 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7823 {
7824 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7825 flags &~ (flagword) SEC_READONLY);
7826 if (s == NULL
7827 || ! bfd_set_section_alignment (abfd, s,
7828 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7829 return FALSE;
7830 }
7831
7832 /* On IRIX5, we adjust add some additional symbols and change the
7833 alignments of several sections. There is no ABI documentation
7834 indicating that this is necessary on IRIX6, nor any evidence that
7835 the linker takes such action. */
7836 if (IRIX_COMPAT (abfd) == ict_irix5)
7837 {
7838 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7839 {
7840 bh = NULL;
7841 if (! (_bfd_generic_link_add_one_symbol
7842 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7843 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7844 return FALSE;
7845
7846 h = (struct elf_link_hash_entry *) bh;
7847 h->non_elf = 0;
7848 h->def_regular = 1;
7849 h->type = STT_SECTION;
7850
7851 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7852 return FALSE;
7853 }
7854
7855 /* We need to create a .compact_rel section. */
7856 if (SGI_COMPAT (abfd))
7857 {
7858 if (!mips_elf_create_compact_rel_section (abfd, info))
7859 return FALSE;
7860 }
7861
7862 /* Change alignments of some sections. */
7863 s = bfd_get_linker_section (abfd, ".hash");
7864 if (s != NULL)
7865 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7866
7867 s = bfd_get_linker_section (abfd, ".dynsym");
7868 if (s != NULL)
7869 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7870
7871 s = bfd_get_linker_section (abfd, ".dynstr");
7872 if (s != NULL)
7873 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7874
7875 /* ??? */
7876 s = bfd_get_section_by_name (abfd, ".reginfo");
7877 if (s != NULL)
7878 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7879
7880 s = bfd_get_linker_section (abfd, ".dynamic");
7881 if (s != NULL)
7882 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7883 }
7884
7885 if (bfd_link_executable (info))
7886 {
7887 const char *name;
7888
7889 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7890 bh = NULL;
7891 if (!(_bfd_generic_link_add_one_symbol
7892 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7893 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7894 return FALSE;
7895
7896 h = (struct elf_link_hash_entry *) bh;
7897 h->non_elf = 0;
7898 h->def_regular = 1;
7899 h->type = STT_SECTION;
7900
7901 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7902 return FALSE;
7903
7904 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7905 {
7906 /* __rld_map is a four byte word located in the .data section
7907 and is filled in by the rtld to contain a pointer to
7908 the _r_debug structure. Its symbol value will be set in
7909 _bfd_mips_elf_finish_dynamic_symbol. */
7910 s = bfd_get_linker_section (abfd, ".rld_map");
7911 BFD_ASSERT (s != NULL);
7912
7913 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7914 bh = NULL;
7915 if (!(_bfd_generic_link_add_one_symbol
7916 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7917 get_elf_backend_data (abfd)->collect, &bh)))
7918 return FALSE;
7919
7920 h = (struct elf_link_hash_entry *) bh;
7921 h->non_elf = 0;
7922 h->def_regular = 1;
7923 h->type = STT_OBJECT;
7924
7925 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7926 return FALSE;
7927 mips_elf_hash_table (info)->rld_symbol = h;
7928 }
7929 }
7930
7931 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7932 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7933 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7934 return FALSE;
7935
7936 /* Do the usual VxWorks handling. */
7937 if (htab->is_vxworks
7938 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7939 return FALSE;
7940
7941 return TRUE;
7942 }
7943 \f
7944 /* Return true if relocation REL against section SEC is a REL rather than
7945 RELA relocation. RELOCS is the first relocation in the section and
7946 ABFD is the bfd that contains SEC. */
7947
7948 static bfd_boolean
7949 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7950 const Elf_Internal_Rela *relocs,
7951 const Elf_Internal_Rela *rel)
7952 {
7953 Elf_Internal_Shdr *rel_hdr;
7954 const struct elf_backend_data *bed;
7955
7956 /* To determine which flavor of relocation this is, we depend on the
7957 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7958 rel_hdr = elf_section_data (sec)->rel.hdr;
7959 if (rel_hdr == NULL)
7960 return FALSE;
7961 bed = get_elf_backend_data (abfd);
7962 return ((size_t) (rel - relocs)
7963 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7964 }
7965
7966 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7967 HOWTO is the relocation's howto and CONTENTS points to the contents
7968 of the section that REL is against. */
7969
7970 static bfd_vma
7971 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7972 reloc_howto_type *howto, bfd_byte *contents)
7973 {
7974 bfd_byte *location;
7975 unsigned int r_type;
7976 bfd_vma addend;
7977 bfd_vma bytes;
7978
7979 r_type = ELF_R_TYPE (abfd, rel->r_info);
7980 location = contents + rel->r_offset;
7981
7982 /* Get the addend, which is stored in the input file. */
7983 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7984 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7985 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7986
7987 addend = bytes & howto->src_mask;
7988
7989 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7990 accordingly. */
7991 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7992 addend <<= 1;
7993
7994 return addend;
7995 }
7996
7997 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7998 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7999 and update *ADDEND with the final addend. Return true on success
8000 or false if the LO16 could not be found. RELEND is the exclusive
8001 upper bound on the relocations for REL's section. */
8002
8003 static bfd_boolean
8004 mips_elf_add_lo16_rel_addend (bfd *abfd,
8005 const Elf_Internal_Rela *rel,
8006 const Elf_Internal_Rela *relend,
8007 bfd_byte *contents, bfd_vma *addend)
8008 {
8009 unsigned int r_type, lo16_type;
8010 const Elf_Internal_Rela *lo16_relocation;
8011 reloc_howto_type *lo16_howto;
8012 bfd_vma l;
8013
8014 r_type = ELF_R_TYPE (abfd, rel->r_info);
8015 if (mips16_reloc_p (r_type))
8016 lo16_type = R_MIPS16_LO16;
8017 else if (micromips_reloc_p (r_type))
8018 lo16_type = R_MICROMIPS_LO16;
8019 else if (r_type == R_MIPS_PCHI16)
8020 lo16_type = R_MIPS_PCLO16;
8021 else
8022 lo16_type = R_MIPS_LO16;
8023
8024 /* The combined value is the sum of the HI16 addend, left-shifted by
8025 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8026 code does a `lui' of the HI16 value, and then an `addiu' of the
8027 LO16 value.)
8028
8029 Scan ahead to find a matching LO16 relocation.
8030
8031 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8032 be immediately following. However, for the IRIX6 ABI, the next
8033 relocation may be a composed relocation consisting of several
8034 relocations for the same address. In that case, the R_MIPS_LO16
8035 relocation may occur as one of these. We permit a similar
8036 extension in general, as that is useful for GCC.
8037
8038 In some cases GCC dead code elimination removes the LO16 but keeps
8039 the corresponding HI16. This is strictly speaking a violation of
8040 the ABI but not immediately harmful. */
8041 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8042 if (lo16_relocation == NULL)
8043 return FALSE;
8044
8045 /* Obtain the addend kept there. */
8046 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8047 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8048
8049 l <<= lo16_howto->rightshift;
8050 l = _bfd_mips_elf_sign_extend (l, 16);
8051
8052 *addend <<= 16;
8053 *addend += l;
8054 return TRUE;
8055 }
8056
8057 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8058 store the contents in *CONTENTS on success. Assume that *CONTENTS
8059 already holds the contents if it is nonull on entry. */
8060
8061 static bfd_boolean
8062 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8063 {
8064 if (*contents)
8065 return TRUE;
8066
8067 /* Get cached copy if it exists. */
8068 if (elf_section_data (sec)->this_hdr.contents != NULL)
8069 {
8070 *contents = elf_section_data (sec)->this_hdr.contents;
8071 return TRUE;
8072 }
8073
8074 return bfd_malloc_and_get_section (abfd, sec, contents);
8075 }
8076
8077 /* Make a new PLT record to keep internal data. */
8078
8079 static struct plt_entry *
8080 mips_elf_make_plt_record (bfd *abfd)
8081 {
8082 struct plt_entry *entry;
8083
8084 entry = bfd_zalloc (abfd, sizeof (*entry));
8085 if (entry == NULL)
8086 return NULL;
8087
8088 entry->stub_offset = MINUS_ONE;
8089 entry->mips_offset = MINUS_ONE;
8090 entry->comp_offset = MINUS_ONE;
8091 entry->gotplt_index = MINUS_ONE;
8092 return entry;
8093 }
8094
8095 /* Look through the relocs for a section during the first phase, and
8096 allocate space in the global offset table and record the need for
8097 standard MIPS and compressed procedure linkage table entries. */
8098
8099 bfd_boolean
8100 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8101 asection *sec, const Elf_Internal_Rela *relocs)
8102 {
8103 const char *name;
8104 bfd *dynobj;
8105 Elf_Internal_Shdr *symtab_hdr;
8106 struct elf_link_hash_entry **sym_hashes;
8107 size_t extsymoff;
8108 const Elf_Internal_Rela *rel;
8109 const Elf_Internal_Rela *rel_end;
8110 asection *sreloc;
8111 const struct elf_backend_data *bed;
8112 struct mips_elf_link_hash_table *htab;
8113 bfd_byte *contents;
8114 bfd_vma addend;
8115 reloc_howto_type *howto;
8116
8117 if (bfd_link_relocatable (info))
8118 return TRUE;
8119
8120 htab = mips_elf_hash_table (info);
8121 BFD_ASSERT (htab != NULL);
8122
8123 dynobj = elf_hash_table (info)->dynobj;
8124 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8125 sym_hashes = elf_sym_hashes (abfd);
8126 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8127
8128 bed = get_elf_backend_data (abfd);
8129 rel_end = relocs + sec->reloc_count;
8130
8131 /* Check for the mips16 stub sections. */
8132
8133 name = bfd_get_section_name (abfd, sec);
8134 if (FN_STUB_P (name))
8135 {
8136 unsigned long r_symndx;
8137
8138 /* Look at the relocation information to figure out which symbol
8139 this is for. */
8140
8141 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8142 if (r_symndx == 0)
8143 {
8144 _bfd_error_handler
8145 /* xgettext:c-format */
8146 (_("%pB: warning: cannot determine the target function for"
8147 " stub section `%s'"),
8148 abfd, name);
8149 bfd_set_error (bfd_error_bad_value);
8150 return FALSE;
8151 }
8152
8153 if (r_symndx < extsymoff
8154 || sym_hashes[r_symndx - extsymoff] == NULL)
8155 {
8156 asection *o;
8157
8158 /* This stub is for a local symbol. This stub will only be
8159 needed if there is some relocation in this BFD, other
8160 than a 16 bit function call, which refers to this symbol. */
8161 for (o = abfd->sections; o != NULL; o = o->next)
8162 {
8163 Elf_Internal_Rela *sec_relocs;
8164 const Elf_Internal_Rela *r, *rend;
8165
8166 /* We can ignore stub sections when looking for relocs. */
8167 if ((o->flags & SEC_RELOC) == 0
8168 || o->reloc_count == 0
8169 || section_allows_mips16_refs_p (o))
8170 continue;
8171
8172 sec_relocs
8173 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8174 info->keep_memory);
8175 if (sec_relocs == NULL)
8176 return FALSE;
8177
8178 rend = sec_relocs + o->reloc_count;
8179 for (r = sec_relocs; r < rend; r++)
8180 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8181 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8182 break;
8183
8184 if (elf_section_data (o)->relocs != sec_relocs)
8185 free (sec_relocs);
8186
8187 if (r < rend)
8188 break;
8189 }
8190
8191 if (o == NULL)
8192 {
8193 /* There is no non-call reloc for this stub, so we do
8194 not need it. Since this function is called before
8195 the linker maps input sections to output sections, we
8196 can easily discard it by setting the SEC_EXCLUDE
8197 flag. */
8198 sec->flags |= SEC_EXCLUDE;
8199 return TRUE;
8200 }
8201
8202 /* Record this stub in an array of local symbol stubs for
8203 this BFD. */
8204 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8205 {
8206 unsigned long symcount;
8207 asection **n;
8208 bfd_size_type amt;
8209
8210 if (elf_bad_symtab (abfd))
8211 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8212 else
8213 symcount = symtab_hdr->sh_info;
8214 amt = symcount * sizeof (asection *);
8215 n = bfd_zalloc (abfd, amt);
8216 if (n == NULL)
8217 return FALSE;
8218 mips_elf_tdata (abfd)->local_stubs = n;
8219 }
8220
8221 sec->flags |= SEC_KEEP;
8222 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8223
8224 /* We don't need to set mips16_stubs_seen in this case.
8225 That flag is used to see whether we need to look through
8226 the global symbol table for stubs. We don't need to set
8227 it here, because we just have a local stub. */
8228 }
8229 else
8230 {
8231 struct mips_elf_link_hash_entry *h;
8232
8233 h = ((struct mips_elf_link_hash_entry *)
8234 sym_hashes[r_symndx - extsymoff]);
8235
8236 while (h->root.root.type == bfd_link_hash_indirect
8237 || h->root.root.type == bfd_link_hash_warning)
8238 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8239
8240 /* H is the symbol this stub is for. */
8241
8242 /* If we already have an appropriate stub for this function, we
8243 don't need another one, so we can discard this one. Since
8244 this function is called before the linker maps input sections
8245 to output sections, we can easily discard it by setting the
8246 SEC_EXCLUDE flag. */
8247 if (h->fn_stub != NULL)
8248 {
8249 sec->flags |= SEC_EXCLUDE;
8250 return TRUE;
8251 }
8252
8253 sec->flags |= SEC_KEEP;
8254 h->fn_stub = sec;
8255 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8256 }
8257 }
8258 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8259 {
8260 unsigned long r_symndx;
8261 struct mips_elf_link_hash_entry *h;
8262 asection **loc;
8263
8264 /* Look at the relocation information to figure out which symbol
8265 this is for. */
8266
8267 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8268 if (r_symndx == 0)
8269 {
8270 _bfd_error_handler
8271 /* xgettext:c-format */
8272 (_("%pB: warning: cannot determine the target function for"
8273 " stub section `%s'"),
8274 abfd, name);
8275 bfd_set_error (bfd_error_bad_value);
8276 return FALSE;
8277 }
8278
8279 if (r_symndx < extsymoff
8280 || sym_hashes[r_symndx - extsymoff] == NULL)
8281 {
8282 asection *o;
8283
8284 /* This stub is for a local symbol. This stub will only be
8285 needed if there is some relocation (R_MIPS16_26) in this BFD
8286 that refers to this symbol. */
8287 for (o = abfd->sections; o != NULL; o = o->next)
8288 {
8289 Elf_Internal_Rela *sec_relocs;
8290 const Elf_Internal_Rela *r, *rend;
8291
8292 /* We can ignore stub sections when looking for relocs. */
8293 if ((o->flags & SEC_RELOC) == 0
8294 || o->reloc_count == 0
8295 || section_allows_mips16_refs_p (o))
8296 continue;
8297
8298 sec_relocs
8299 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8300 info->keep_memory);
8301 if (sec_relocs == NULL)
8302 return FALSE;
8303
8304 rend = sec_relocs + o->reloc_count;
8305 for (r = sec_relocs; r < rend; r++)
8306 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8307 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8308 break;
8309
8310 if (elf_section_data (o)->relocs != sec_relocs)
8311 free (sec_relocs);
8312
8313 if (r < rend)
8314 break;
8315 }
8316
8317 if (o == NULL)
8318 {
8319 /* There is no non-call reloc for this stub, so we do
8320 not need it. Since this function is called before
8321 the linker maps input sections to output sections, we
8322 can easily discard it by setting the SEC_EXCLUDE
8323 flag. */
8324 sec->flags |= SEC_EXCLUDE;
8325 return TRUE;
8326 }
8327
8328 /* Record this stub in an array of local symbol call_stubs for
8329 this BFD. */
8330 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8331 {
8332 unsigned long symcount;
8333 asection **n;
8334 bfd_size_type amt;
8335
8336 if (elf_bad_symtab (abfd))
8337 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8338 else
8339 symcount = symtab_hdr->sh_info;
8340 amt = symcount * sizeof (asection *);
8341 n = bfd_zalloc (abfd, amt);
8342 if (n == NULL)
8343 return FALSE;
8344 mips_elf_tdata (abfd)->local_call_stubs = n;
8345 }
8346
8347 sec->flags |= SEC_KEEP;
8348 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8349
8350 /* We don't need to set mips16_stubs_seen in this case.
8351 That flag is used to see whether we need to look through
8352 the global symbol table for stubs. We don't need to set
8353 it here, because we just have a local stub. */
8354 }
8355 else
8356 {
8357 h = ((struct mips_elf_link_hash_entry *)
8358 sym_hashes[r_symndx - extsymoff]);
8359
8360 /* H is the symbol this stub is for. */
8361
8362 if (CALL_FP_STUB_P (name))
8363 loc = &h->call_fp_stub;
8364 else
8365 loc = &h->call_stub;
8366
8367 /* If we already have an appropriate stub for this function, we
8368 don't need another one, so we can discard this one. Since
8369 this function is called before the linker maps input sections
8370 to output sections, we can easily discard it by setting the
8371 SEC_EXCLUDE flag. */
8372 if (*loc != NULL)
8373 {
8374 sec->flags |= SEC_EXCLUDE;
8375 return TRUE;
8376 }
8377
8378 sec->flags |= SEC_KEEP;
8379 *loc = sec;
8380 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8381 }
8382 }
8383
8384 sreloc = NULL;
8385 contents = NULL;
8386 for (rel = relocs; rel < rel_end; ++rel)
8387 {
8388 unsigned long r_symndx;
8389 unsigned int r_type;
8390 struct elf_link_hash_entry *h;
8391 bfd_boolean can_make_dynamic_p;
8392 bfd_boolean call_reloc_p;
8393 bfd_boolean constrain_symbol_p;
8394
8395 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8396 r_type = ELF_R_TYPE (abfd, rel->r_info);
8397
8398 if (r_symndx < extsymoff)
8399 h = NULL;
8400 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8401 {
8402 _bfd_error_handler
8403 /* xgettext:c-format */
8404 (_("%pB: malformed reloc detected for section %s"),
8405 abfd, name);
8406 bfd_set_error (bfd_error_bad_value);
8407 return FALSE;
8408 }
8409 else
8410 {
8411 h = sym_hashes[r_symndx - extsymoff];
8412 if (h != NULL)
8413 {
8414 while (h->root.type == bfd_link_hash_indirect
8415 || h->root.type == bfd_link_hash_warning)
8416 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8417 }
8418 }
8419
8420 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8421 relocation into a dynamic one. */
8422 can_make_dynamic_p = FALSE;
8423
8424 /* Set CALL_RELOC_P to true if the relocation is for a call,
8425 and if pointer equality therefore doesn't matter. */
8426 call_reloc_p = FALSE;
8427
8428 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8429 into account when deciding how to define the symbol.
8430 Relocations in nonallocatable sections such as .pdr and
8431 .debug* should have no effect. */
8432 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8433
8434 switch (r_type)
8435 {
8436 case R_MIPS_CALL16:
8437 case R_MIPS_CALL_HI16:
8438 case R_MIPS_CALL_LO16:
8439 case R_MIPS16_CALL16:
8440 case R_MICROMIPS_CALL16:
8441 case R_MICROMIPS_CALL_HI16:
8442 case R_MICROMIPS_CALL_LO16:
8443 call_reloc_p = TRUE;
8444 /* Fall through. */
8445
8446 case R_MIPS_GOT16:
8447 case R_MIPS_GOT_HI16:
8448 case R_MIPS_GOT_LO16:
8449 case R_MIPS_GOT_PAGE:
8450 case R_MIPS_GOT_OFST:
8451 case R_MIPS_GOT_DISP:
8452 case R_MIPS_TLS_GOTTPREL:
8453 case R_MIPS_TLS_GD:
8454 case R_MIPS_TLS_LDM:
8455 case R_MIPS16_GOT16:
8456 case R_MIPS16_TLS_GOTTPREL:
8457 case R_MIPS16_TLS_GD:
8458 case R_MIPS16_TLS_LDM:
8459 case R_MICROMIPS_GOT16:
8460 case R_MICROMIPS_GOT_HI16:
8461 case R_MICROMIPS_GOT_LO16:
8462 case R_MICROMIPS_GOT_PAGE:
8463 case R_MICROMIPS_GOT_OFST:
8464 case R_MICROMIPS_GOT_DISP:
8465 case R_MICROMIPS_TLS_GOTTPREL:
8466 case R_MICROMIPS_TLS_GD:
8467 case R_MICROMIPS_TLS_LDM:
8468 if (dynobj == NULL)
8469 elf_hash_table (info)->dynobj = dynobj = abfd;
8470 if (!mips_elf_create_got_section (dynobj, info))
8471 return FALSE;
8472 if (htab->is_vxworks && !bfd_link_pic (info))
8473 {
8474 _bfd_error_handler
8475 /* xgettext:c-format */
8476 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8477 abfd, (uint64_t) rel->r_offset);
8478 bfd_set_error (bfd_error_bad_value);
8479 return FALSE;
8480 }
8481 can_make_dynamic_p = TRUE;
8482 break;
8483
8484 case R_MIPS_NONE:
8485 case R_MIPS_JALR:
8486 case R_MICROMIPS_JALR:
8487 /* These relocations have empty fields and are purely there to
8488 provide link information. The symbol value doesn't matter. */
8489 constrain_symbol_p = FALSE;
8490 break;
8491
8492 case R_MIPS_GPREL16:
8493 case R_MIPS_GPREL32:
8494 case R_MIPS16_GPREL:
8495 case R_MICROMIPS_GPREL16:
8496 /* GP-relative relocations always resolve to a definition in a
8497 regular input file, ignoring the one-definition rule. This is
8498 important for the GP setup sequence in NewABI code, which
8499 always resolves to a local function even if other relocations
8500 against the symbol wouldn't. */
8501 constrain_symbol_p = FALSE;
8502 break;
8503
8504 case R_MIPS_32:
8505 case R_MIPS_REL32:
8506 case R_MIPS_64:
8507 /* In VxWorks executables, references to external symbols
8508 must be handled using copy relocs or PLT entries; it is not
8509 possible to convert this relocation into a dynamic one.
8510
8511 For executables that use PLTs and copy-relocs, we have a
8512 choice between converting the relocation into a dynamic
8513 one or using copy relocations or PLT entries. It is
8514 usually better to do the former, unless the relocation is
8515 against a read-only section. */
8516 if ((bfd_link_pic (info)
8517 || (h != NULL
8518 && !htab->is_vxworks
8519 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8520 && !(!info->nocopyreloc
8521 && !PIC_OBJECT_P (abfd)
8522 && MIPS_ELF_READONLY_SECTION (sec))))
8523 && (sec->flags & SEC_ALLOC) != 0)
8524 {
8525 can_make_dynamic_p = TRUE;
8526 if (dynobj == NULL)
8527 elf_hash_table (info)->dynobj = dynobj = abfd;
8528 }
8529 break;
8530
8531 case R_MIPS_26:
8532 case R_MIPS_PC16:
8533 case R_MIPS_PC21_S2:
8534 case R_MIPS_PC26_S2:
8535 case R_MIPS16_26:
8536 case R_MIPS16_PC16_S1:
8537 case R_MICROMIPS_26_S1:
8538 case R_MICROMIPS_PC7_S1:
8539 case R_MICROMIPS_PC10_S1:
8540 case R_MICROMIPS_PC16_S1:
8541 case R_MICROMIPS_PC23_S2:
8542 call_reloc_p = TRUE;
8543 break;
8544 }
8545
8546 if (h)
8547 {
8548 if (constrain_symbol_p)
8549 {
8550 if (!can_make_dynamic_p)
8551 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8552
8553 if (!call_reloc_p)
8554 h->pointer_equality_needed = 1;
8555
8556 /* We must not create a stub for a symbol that has
8557 relocations related to taking the function's address.
8558 This doesn't apply to VxWorks, where CALL relocs refer
8559 to a .got.plt entry instead of a normal .got entry. */
8560 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8561 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8562 }
8563
8564 /* Relocations against the special VxWorks __GOTT_BASE__ and
8565 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8566 room for them in .rela.dyn. */
8567 if (is_gott_symbol (info, h))
8568 {
8569 if (sreloc == NULL)
8570 {
8571 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8572 if (sreloc == NULL)
8573 return FALSE;
8574 }
8575 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8576 if (MIPS_ELF_READONLY_SECTION (sec))
8577 /* We tell the dynamic linker that there are
8578 relocations against the text segment. */
8579 info->flags |= DF_TEXTREL;
8580 }
8581 }
8582 else if (call_lo16_reloc_p (r_type)
8583 || got_lo16_reloc_p (r_type)
8584 || got_disp_reloc_p (r_type)
8585 || (got16_reloc_p (r_type) && htab->is_vxworks))
8586 {
8587 /* We may need a local GOT entry for this relocation. We
8588 don't count R_MIPS_GOT_PAGE because we can estimate the
8589 maximum number of pages needed by looking at the size of
8590 the segment. Similar comments apply to R_MIPS*_GOT16 and
8591 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8592 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8593 R_MIPS_CALL_HI16 because these are always followed by an
8594 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8595 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8596 rel->r_addend, info, r_type))
8597 return FALSE;
8598 }
8599
8600 if (h != NULL
8601 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8602 ELF_ST_IS_MIPS16 (h->other)))
8603 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8604
8605 switch (r_type)
8606 {
8607 case R_MIPS_CALL16:
8608 case R_MIPS16_CALL16:
8609 case R_MICROMIPS_CALL16:
8610 if (h == NULL)
8611 {
8612 _bfd_error_handler
8613 /* xgettext:c-format */
8614 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8615 abfd, (uint64_t) rel->r_offset);
8616 bfd_set_error (bfd_error_bad_value);
8617 return FALSE;
8618 }
8619 /* Fall through. */
8620
8621 case R_MIPS_CALL_HI16:
8622 case R_MIPS_CALL_LO16:
8623 case R_MICROMIPS_CALL_HI16:
8624 case R_MICROMIPS_CALL_LO16:
8625 if (h != NULL)
8626 {
8627 /* Make sure there is room in the regular GOT to hold the
8628 function's address. We may eliminate it in favour of
8629 a .got.plt entry later; see mips_elf_count_got_symbols. */
8630 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8631 r_type))
8632 return FALSE;
8633
8634 /* We need a stub, not a plt entry for the undefined
8635 function. But we record it as if it needs plt. See
8636 _bfd_elf_adjust_dynamic_symbol. */
8637 h->needs_plt = 1;
8638 h->type = STT_FUNC;
8639 }
8640 break;
8641
8642 case R_MIPS_GOT_PAGE:
8643 case R_MICROMIPS_GOT_PAGE:
8644 case R_MIPS16_GOT16:
8645 case R_MIPS_GOT16:
8646 case R_MIPS_GOT_HI16:
8647 case R_MIPS_GOT_LO16:
8648 case R_MICROMIPS_GOT16:
8649 case R_MICROMIPS_GOT_HI16:
8650 case R_MICROMIPS_GOT_LO16:
8651 if (!h || got_page_reloc_p (r_type))
8652 {
8653 /* This relocation needs (or may need, if h != NULL) a
8654 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8655 know for sure until we know whether the symbol is
8656 preemptible. */
8657 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8658 {
8659 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8660 return FALSE;
8661 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8662 addend = mips_elf_read_rel_addend (abfd, rel,
8663 howto, contents);
8664 if (got16_reloc_p (r_type))
8665 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8666 contents, &addend);
8667 else
8668 addend <<= howto->rightshift;
8669 }
8670 else
8671 addend = rel->r_addend;
8672 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8673 h, addend))
8674 return FALSE;
8675
8676 if (h)
8677 {
8678 struct mips_elf_link_hash_entry *hmips =
8679 (struct mips_elf_link_hash_entry *) h;
8680
8681 /* This symbol is definitely not overridable. */
8682 if (hmips->root.def_regular
8683 && ! (bfd_link_pic (info) && ! info->symbolic
8684 && ! hmips->root.forced_local))
8685 h = NULL;
8686 }
8687 }
8688 /* If this is a global, overridable symbol, GOT_PAGE will
8689 decay to GOT_DISP, so we'll need a GOT entry for it. */
8690 /* Fall through. */
8691
8692 case R_MIPS_GOT_DISP:
8693 case R_MICROMIPS_GOT_DISP:
8694 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8695 FALSE, r_type))
8696 return FALSE;
8697 break;
8698
8699 case R_MIPS_TLS_GOTTPREL:
8700 case R_MIPS16_TLS_GOTTPREL:
8701 case R_MICROMIPS_TLS_GOTTPREL:
8702 if (bfd_link_pic (info))
8703 info->flags |= DF_STATIC_TLS;
8704 /* Fall through */
8705
8706 case R_MIPS_TLS_LDM:
8707 case R_MIPS16_TLS_LDM:
8708 case R_MICROMIPS_TLS_LDM:
8709 if (tls_ldm_reloc_p (r_type))
8710 {
8711 r_symndx = STN_UNDEF;
8712 h = NULL;
8713 }
8714 /* Fall through */
8715
8716 case R_MIPS_TLS_GD:
8717 case R_MIPS16_TLS_GD:
8718 case R_MICROMIPS_TLS_GD:
8719 /* This symbol requires a global offset table entry, or two
8720 for TLS GD relocations. */
8721 if (h != NULL)
8722 {
8723 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8724 FALSE, r_type))
8725 return FALSE;
8726 }
8727 else
8728 {
8729 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8730 rel->r_addend,
8731 info, r_type))
8732 return FALSE;
8733 }
8734 break;
8735
8736 case R_MIPS_32:
8737 case R_MIPS_REL32:
8738 case R_MIPS_64:
8739 /* In VxWorks executables, references to external symbols
8740 are handled using copy relocs or PLT stubs, so there's
8741 no need to add a .rela.dyn entry for this relocation. */
8742 if (can_make_dynamic_p)
8743 {
8744 if (sreloc == NULL)
8745 {
8746 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8747 if (sreloc == NULL)
8748 return FALSE;
8749 }
8750 if (bfd_link_pic (info) && h == NULL)
8751 {
8752 /* When creating a shared object, we must copy these
8753 reloc types into the output file as R_MIPS_REL32
8754 relocs. Make room for this reloc in .rel(a).dyn. */
8755 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8756 if (MIPS_ELF_READONLY_SECTION (sec))
8757 /* We tell the dynamic linker that there are
8758 relocations against the text segment. */
8759 info->flags |= DF_TEXTREL;
8760 }
8761 else
8762 {
8763 struct mips_elf_link_hash_entry *hmips;
8764
8765 /* For a shared object, we must copy this relocation
8766 unless the symbol turns out to be undefined and
8767 weak with non-default visibility, in which case
8768 it will be left as zero.
8769
8770 We could elide R_MIPS_REL32 for locally binding symbols
8771 in shared libraries, but do not yet do so.
8772
8773 For an executable, we only need to copy this
8774 reloc if the symbol is defined in a dynamic
8775 object. */
8776 hmips = (struct mips_elf_link_hash_entry *) h;
8777 ++hmips->possibly_dynamic_relocs;
8778 if (MIPS_ELF_READONLY_SECTION (sec))
8779 /* We need it to tell the dynamic linker if there
8780 are relocations against the text segment. */
8781 hmips->readonly_reloc = TRUE;
8782 }
8783 }
8784
8785 if (SGI_COMPAT (abfd))
8786 mips_elf_hash_table (info)->compact_rel_size +=
8787 sizeof (Elf32_External_crinfo);
8788 break;
8789
8790 case R_MIPS_26:
8791 case R_MIPS_GPREL16:
8792 case R_MIPS_LITERAL:
8793 case R_MIPS_GPREL32:
8794 case R_MICROMIPS_26_S1:
8795 case R_MICROMIPS_GPREL16:
8796 case R_MICROMIPS_LITERAL:
8797 case R_MICROMIPS_GPREL7_S2:
8798 if (SGI_COMPAT (abfd))
8799 mips_elf_hash_table (info)->compact_rel_size +=
8800 sizeof (Elf32_External_crinfo);
8801 break;
8802
8803 /* This relocation describes the C++ object vtable hierarchy.
8804 Reconstruct it for later use during GC. */
8805 case R_MIPS_GNU_VTINHERIT:
8806 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8807 return FALSE;
8808 break;
8809
8810 /* This relocation describes which C++ vtable entries are actually
8811 used. Record for later use during GC. */
8812 case R_MIPS_GNU_VTENTRY:
8813 BFD_ASSERT (h != NULL);
8814 if (h != NULL
8815 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8816 return FALSE;
8817 break;
8818
8819 default:
8820 break;
8821 }
8822
8823 /* Record the need for a PLT entry. At this point we don't know
8824 yet if we are going to create a PLT in the first place, but
8825 we only record whether the relocation requires a standard MIPS
8826 or a compressed code entry anyway. If we don't make a PLT after
8827 all, then we'll just ignore these arrangements. Likewise if
8828 a PLT entry is not created because the symbol is satisfied
8829 locally. */
8830 if (h != NULL
8831 && (branch_reloc_p (r_type)
8832 || mips16_branch_reloc_p (r_type)
8833 || micromips_branch_reloc_p (r_type))
8834 && !SYMBOL_CALLS_LOCAL (info, h))
8835 {
8836 if (h->plt.plist == NULL)
8837 h->plt.plist = mips_elf_make_plt_record (abfd);
8838 if (h->plt.plist == NULL)
8839 return FALSE;
8840
8841 if (branch_reloc_p (r_type))
8842 h->plt.plist->need_mips = TRUE;
8843 else
8844 h->plt.plist->need_comp = TRUE;
8845 }
8846
8847 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8848 if there is one. We only need to handle global symbols here;
8849 we decide whether to keep or delete stubs for local symbols
8850 when processing the stub's relocations. */
8851 if (h != NULL
8852 && !mips16_call_reloc_p (r_type)
8853 && !section_allows_mips16_refs_p (sec))
8854 {
8855 struct mips_elf_link_hash_entry *mh;
8856
8857 mh = (struct mips_elf_link_hash_entry *) h;
8858 mh->need_fn_stub = TRUE;
8859 }
8860
8861 /* Refuse some position-dependent relocations when creating a
8862 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8863 not PIC, but we can create dynamic relocations and the result
8864 will be fine. Also do not refuse R_MIPS_LO16, which can be
8865 combined with R_MIPS_GOT16. */
8866 if (bfd_link_pic (info))
8867 {
8868 switch (r_type)
8869 {
8870 case R_MIPS16_HI16:
8871 case R_MIPS_HI16:
8872 case R_MIPS_HIGHER:
8873 case R_MIPS_HIGHEST:
8874 case R_MICROMIPS_HI16:
8875 case R_MICROMIPS_HIGHER:
8876 case R_MICROMIPS_HIGHEST:
8877 /* Don't refuse a high part relocation if it's against
8878 no symbol (e.g. part of a compound relocation). */
8879 if (r_symndx == STN_UNDEF)
8880 break;
8881
8882 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8883 and has a special meaning. */
8884 if (!NEWABI_P (abfd) && h != NULL
8885 && strcmp (h->root.root.string, "_gp_disp") == 0)
8886 break;
8887
8888 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8889 if (is_gott_symbol (info, h))
8890 break;
8891
8892 /* FALLTHROUGH */
8893
8894 case R_MIPS16_26:
8895 case R_MIPS_26:
8896 case R_MICROMIPS_26_S1:
8897 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8898 _bfd_error_handler
8899 /* xgettext:c-format */
8900 (_("%pB: relocation %s against `%s' can not be used"
8901 " when making a shared object; recompile with -fPIC"),
8902 abfd, howto->name,
8903 (h) ? h->root.root.string : "a local symbol");
8904 bfd_set_error (bfd_error_bad_value);
8905 return FALSE;
8906 default:
8907 break;
8908 }
8909 }
8910 }
8911
8912 return TRUE;
8913 }
8914 \f
8915 /* Allocate space for global sym dynamic relocs. */
8916
8917 static bfd_boolean
8918 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8919 {
8920 struct bfd_link_info *info = inf;
8921 bfd *dynobj;
8922 struct mips_elf_link_hash_entry *hmips;
8923 struct mips_elf_link_hash_table *htab;
8924
8925 htab = mips_elf_hash_table (info);
8926 BFD_ASSERT (htab != NULL);
8927
8928 dynobj = elf_hash_table (info)->dynobj;
8929 hmips = (struct mips_elf_link_hash_entry *) h;
8930
8931 /* VxWorks executables are handled elsewhere; we only need to
8932 allocate relocations in shared objects. */
8933 if (htab->is_vxworks && !bfd_link_pic (info))
8934 return TRUE;
8935
8936 /* Ignore indirect symbols. All relocations against such symbols
8937 will be redirected to the target symbol. */
8938 if (h->root.type == bfd_link_hash_indirect)
8939 return TRUE;
8940
8941 /* If this symbol is defined in a dynamic object, or we are creating
8942 a shared library, we will need to copy any R_MIPS_32 or
8943 R_MIPS_REL32 relocs against it into the output file. */
8944 if (! bfd_link_relocatable (info)
8945 && hmips->possibly_dynamic_relocs != 0
8946 && (h->root.type == bfd_link_hash_defweak
8947 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8948 || bfd_link_pic (info)))
8949 {
8950 bfd_boolean do_copy = TRUE;
8951
8952 if (h->root.type == bfd_link_hash_undefweak)
8953 {
8954 /* Do not copy relocations for undefined weak symbols with
8955 non-default visibility. */
8956 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8957 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8958 do_copy = FALSE;
8959
8960 /* Make sure undefined weak symbols are output as a dynamic
8961 symbol in PIEs. */
8962 else if (h->dynindx == -1 && !h->forced_local)
8963 {
8964 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8965 return FALSE;
8966 }
8967 }
8968
8969 if (do_copy)
8970 {
8971 /* Even though we don't directly need a GOT entry for this symbol,
8972 the SVR4 psABI requires it to have a dynamic symbol table
8973 index greater that DT_MIPS_GOTSYM if there are dynamic
8974 relocations against it.
8975
8976 VxWorks does not enforce the same mapping between the GOT
8977 and the symbol table, so the same requirement does not
8978 apply there. */
8979 if (!htab->is_vxworks)
8980 {
8981 if (hmips->global_got_area > GGA_RELOC_ONLY)
8982 hmips->global_got_area = GGA_RELOC_ONLY;
8983 hmips->got_only_for_calls = FALSE;
8984 }
8985
8986 mips_elf_allocate_dynamic_relocations
8987 (dynobj, info, hmips->possibly_dynamic_relocs);
8988 if (hmips->readonly_reloc)
8989 /* We tell the dynamic linker that there are relocations
8990 against the text segment. */
8991 info->flags |= DF_TEXTREL;
8992 }
8993 }
8994
8995 return TRUE;
8996 }
8997
8998 /* Adjust a symbol defined by a dynamic object and referenced by a
8999 regular object. The current definition is in some section of the
9000 dynamic object, but we're not including those sections. We have to
9001 change the definition to something the rest of the link can
9002 understand. */
9003
9004 bfd_boolean
9005 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9006 struct elf_link_hash_entry *h)
9007 {
9008 bfd *dynobj;
9009 struct mips_elf_link_hash_entry *hmips;
9010 struct mips_elf_link_hash_table *htab;
9011 asection *s, *srel;
9012
9013 htab = mips_elf_hash_table (info);
9014 BFD_ASSERT (htab != NULL);
9015
9016 dynobj = elf_hash_table (info)->dynobj;
9017 hmips = (struct mips_elf_link_hash_entry *) h;
9018
9019 /* Make sure we know what is going on here. */
9020 BFD_ASSERT (dynobj != NULL
9021 && (h->needs_plt
9022 || h->is_weakalias
9023 || (h->def_dynamic
9024 && h->ref_regular
9025 && !h->def_regular)));
9026
9027 hmips = (struct mips_elf_link_hash_entry *) h;
9028
9029 /* If there are call relocations against an externally-defined symbol,
9030 see whether we can create a MIPS lazy-binding stub for it. We can
9031 only do this if all references to the function are through call
9032 relocations, and in that case, the traditional lazy-binding stubs
9033 are much more efficient than PLT entries.
9034
9035 Traditional stubs are only available on SVR4 psABI-based systems;
9036 VxWorks always uses PLTs instead. */
9037 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9038 {
9039 if (! elf_hash_table (info)->dynamic_sections_created)
9040 return TRUE;
9041
9042 /* If this symbol is not defined in a regular file, then set
9043 the symbol to the stub location. This is required to make
9044 function pointers compare as equal between the normal
9045 executable and the shared library. */
9046 if (!h->def_regular)
9047 {
9048 hmips->needs_lazy_stub = TRUE;
9049 htab->lazy_stub_count++;
9050 return TRUE;
9051 }
9052 }
9053 /* As above, VxWorks requires PLT entries for externally-defined
9054 functions that are only accessed through call relocations.
9055
9056 Both VxWorks and non-VxWorks targets also need PLT entries if there
9057 are static-only relocations against an externally-defined function.
9058 This can technically occur for shared libraries if there are
9059 branches to the symbol, although it is unlikely that this will be
9060 used in practice due to the short ranges involved. It can occur
9061 for any relative or absolute relocation in executables; in that
9062 case, the PLT entry becomes the function's canonical address. */
9063 else if (((h->needs_plt && !hmips->no_fn_stub)
9064 || (h->type == STT_FUNC && hmips->has_static_relocs))
9065 && htab->use_plts_and_copy_relocs
9066 && !SYMBOL_CALLS_LOCAL (info, h)
9067 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9068 && h->root.type == bfd_link_hash_undefweak))
9069 {
9070 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9071 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9072
9073 /* If this is the first symbol to need a PLT entry, then make some
9074 basic setup. Also work out PLT entry sizes. We'll need them
9075 for PLT offset calculations. */
9076 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9077 {
9078 BFD_ASSERT (htab->root.sgotplt->size == 0);
9079 BFD_ASSERT (htab->plt_got_index == 0);
9080
9081 /* If we're using the PLT additions to the psABI, each PLT
9082 entry is 16 bytes and the PLT0 entry is 32 bytes.
9083 Encourage better cache usage by aligning. We do this
9084 lazily to avoid pessimizing traditional objects. */
9085 if (!htab->is_vxworks
9086 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9087 return FALSE;
9088
9089 /* Make sure that .got.plt is word-aligned. We do this lazily
9090 for the same reason as above. */
9091 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9092 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9093 return FALSE;
9094
9095 /* On non-VxWorks targets, the first two entries in .got.plt
9096 are reserved. */
9097 if (!htab->is_vxworks)
9098 htab->plt_got_index
9099 += (get_elf_backend_data (dynobj)->got_header_size
9100 / MIPS_ELF_GOT_SIZE (dynobj));
9101
9102 /* On VxWorks, also allocate room for the header's
9103 .rela.plt.unloaded entries. */
9104 if (htab->is_vxworks && !bfd_link_pic (info))
9105 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9106
9107 /* Now work out the sizes of individual PLT entries. */
9108 if (htab->is_vxworks && bfd_link_pic (info))
9109 htab->plt_mips_entry_size
9110 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9111 else if (htab->is_vxworks)
9112 htab->plt_mips_entry_size
9113 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9114 else if (newabi_p)
9115 htab->plt_mips_entry_size
9116 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9117 else if (!micromips_p)
9118 {
9119 htab->plt_mips_entry_size
9120 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9121 htab->plt_comp_entry_size
9122 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9123 }
9124 else if (htab->insn32)
9125 {
9126 htab->plt_mips_entry_size
9127 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9128 htab->plt_comp_entry_size
9129 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9130 }
9131 else
9132 {
9133 htab->plt_mips_entry_size
9134 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9135 htab->plt_comp_entry_size
9136 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9137 }
9138 }
9139
9140 if (h->plt.plist == NULL)
9141 h->plt.plist = mips_elf_make_plt_record (dynobj);
9142 if (h->plt.plist == NULL)
9143 return FALSE;
9144
9145 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9146 n32 or n64, so always use a standard entry there.
9147
9148 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9149 all MIPS16 calls will go via that stub, and there is no benefit
9150 to having a MIPS16 entry. And in the case of call_stub a
9151 standard entry actually has to be used as the stub ends with a J
9152 instruction. */
9153 if (newabi_p
9154 || htab->is_vxworks
9155 || hmips->call_stub
9156 || hmips->call_fp_stub)
9157 {
9158 h->plt.plist->need_mips = TRUE;
9159 h->plt.plist->need_comp = FALSE;
9160 }
9161
9162 /* Otherwise, if there are no direct calls to the function, we
9163 have a free choice of whether to use standard or compressed
9164 entries. Prefer microMIPS entries if the object is known to
9165 contain microMIPS code, so that it becomes possible to create
9166 pure microMIPS binaries. Prefer standard entries otherwise,
9167 because MIPS16 ones are no smaller and are usually slower. */
9168 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9169 {
9170 if (micromips_p)
9171 h->plt.plist->need_comp = TRUE;
9172 else
9173 h->plt.plist->need_mips = TRUE;
9174 }
9175
9176 if (h->plt.plist->need_mips)
9177 {
9178 h->plt.plist->mips_offset = htab->plt_mips_offset;
9179 htab->plt_mips_offset += htab->plt_mips_entry_size;
9180 }
9181 if (h->plt.plist->need_comp)
9182 {
9183 h->plt.plist->comp_offset = htab->plt_comp_offset;
9184 htab->plt_comp_offset += htab->plt_comp_entry_size;
9185 }
9186
9187 /* Reserve the corresponding .got.plt entry now too. */
9188 h->plt.plist->gotplt_index = htab->plt_got_index++;
9189
9190 /* If the output file has no definition of the symbol, set the
9191 symbol's value to the address of the stub. */
9192 if (!bfd_link_pic (info) && !h->def_regular)
9193 hmips->use_plt_entry = TRUE;
9194
9195 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9196 htab->root.srelplt->size += (htab->is_vxworks
9197 ? MIPS_ELF_RELA_SIZE (dynobj)
9198 : MIPS_ELF_REL_SIZE (dynobj));
9199
9200 /* Make room for the .rela.plt.unloaded relocations. */
9201 if (htab->is_vxworks && !bfd_link_pic (info))
9202 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9203
9204 /* All relocations against this symbol that could have been made
9205 dynamic will now refer to the PLT entry instead. */
9206 hmips->possibly_dynamic_relocs = 0;
9207
9208 return TRUE;
9209 }
9210
9211 /* If this is a weak symbol, and there is a real definition, the
9212 processor independent code will have arranged for us to see the
9213 real definition first, and we can just use the same value. */
9214 if (h->is_weakalias)
9215 {
9216 struct elf_link_hash_entry *def = weakdef (h);
9217 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9218 h->root.u.def.section = def->root.u.def.section;
9219 h->root.u.def.value = def->root.u.def.value;
9220 return TRUE;
9221 }
9222
9223 /* Otherwise, there is nothing further to do for symbols defined
9224 in regular objects. */
9225 if (h->def_regular)
9226 return TRUE;
9227
9228 /* There's also nothing more to do if we'll convert all relocations
9229 against this symbol into dynamic relocations. */
9230 if (!hmips->has_static_relocs)
9231 return TRUE;
9232
9233 /* We're now relying on copy relocations. Complain if we have
9234 some that we can't convert. */
9235 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9236 {
9237 _bfd_error_handler (_("non-dynamic relocations refer to "
9238 "dynamic symbol %s"),
9239 h->root.root.string);
9240 bfd_set_error (bfd_error_bad_value);
9241 return FALSE;
9242 }
9243
9244 /* We must allocate the symbol in our .dynbss section, which will
9245 become part of the .bss section of the executable. There will be
9246 an entry for this symbol in the .dynsym section. The dynamic
9247 object will contain position independent code, so all references
9248 from the dynamic object to this symbol will go through the global
9249 offset table. The dynamic linker will use the .dynsym entry to
9250 determine the address it must put in the global offset table, so
9251 both the dynamic object and the regular object will refer to the
9252 same memory location for the variable. */
9253
9254 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9255 {
9256 s = htab->root.sdynrelro;
9257 srel = htab->root.sreldynrelro;
9258 }
9259 else
9260 {
9261 s = htab->root.sdynbss;
9262 srel = htab->root.srelbss;
9263 }
9264 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9265 {
9266 if (htab->is_vxworks)
9267 srel->size += sizeof (Elf32_External_Rela);
9268 else
9269 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9270 h->needs_copy = 1;
9271 }
9272
9273 /* All relocations against this symbol that could have been made
9274 dynamic will now refer to the local copy instead. */
9275 hmips->possibly_dynamic_relocs = 0;
9276
9277 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9278 }
9279 \f
9280 /* This function is called after all the input files have been read,
9281 and the input sections have been assigned to output sections. We
9282 check for any mips16 stub sections that we can discard. */
9283
9284 bfd_boolean
9285 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9286 struct bfd_link_info *info)
9287 {
9288 asection *sect;
9289 struct mips_elf_link_hash_table *htab;
9290 struct mips_htab_traverse_info hti;
9291
9292 htab = mips_elf_hash_table (info);
9293 BFD_ASSERT (htab != NULL);
9294
9295 /* The .reginfo section has a fixed size. */
9296 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9297 if (sect != NULL)
9298 {
9299 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9300 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9301 }
9302
9303 /* The .MIPS.abiflags section has a fixed size. */
9304 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9305 if (sect != NULL)
9306 {
9307 bfd_set_section_size (output_bfd, sect,
9308 sizeof (Elf_External_ABIFlags_v0));
9309 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9310 }
9311
9312 hti.info = info;
9313 hti.output_bfd = output_bfd;
9314 hti.error = FALSE;
9315 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9316 mips_elf_check_symbols, &hti);
9317 if (hti.error)
9318 return FALSE;
9319
9320 return TRUE;
9321 }
9322
9323 /* If the link uses a GOT, lay it out and work out its size. */
9324
9325 static bfd_boolean
9326 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9327 {
9328 bfd *dynobj;
9329 asection *s;
9330 struct mips_got_info *g;
9331 bfd_size_type loadable_size = 0;
9332 bfd_size_type page_gotno;
9333 bfd *ibfd;
9334 struct mips_elf_traverse_got_arg tga;
9335 struct mips_elf_link_hash_table *htab;
9336
9337 htab = mips_elf_hash_table (info);
9338 BFD_ASSERT (htab != NULL);
9339
9340 s = htab->root.sgot;
9341 if (s == NULL)
9342 return TRUE;
9343
9344 dynobj = elf_hash_table (info)->dynobj;
9345 g = htab->got_info;
9346
9347 /* Allocate room for the reserved entries. VxWorks always reserves
9348 3 entries; other objects only reserve 2 entries. */
9349 BFD_ASSERT (g->assigned_low_gotno == 0);
9350 if (htab->is_vxworks)
9351 htab->reserved_gotno = 3;
9352 else
9353 htab->reserved_gotno = 2;
9354 g->local_gotno += htab->reserved_gotno;
9355 g->assigned_low_gotno = htab->reserved_gotno;
9356
9357 /* Decide which symbols need to go in the global part of the GOT and
9358 count the number of reloc-only GOT symbols. */
9359 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9360
9361 if (!mips_elf_resolve_final_got_entries (info, g))
9362 return FALSE;
9363
9364 /* Calculate the total loadable size of the output. That
9365 will give us the maximum number of GOT_PAGE entries
9366 required. */
9367 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9368 {
9369 asection *subsection;
9370
9371 for (subsection = ibfd->sections;
9372 subsection;
9373 subsection = subsection->next)
9374 {
9375 if ((subsection->flags & SEC_ALLOC) == 0)
9376 continue;
9377 loadable_size += ((subsection->size + 0xf)
9378 &~ (bfd_size_type) 0xf);
9379 }
9380 }
9381
9382 if (htab->is_vxworks)
9383 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9384 relocations against local symbols evaluate to "G", and the EABI does
9385 not include R_MIPS_GOT_PAGE. */
9386 page_gotno = 0;
9387 else
9388 /* Assume there are two loadable segments consisting of contiguous
9389 sections. Is 5 enough? */
9390 page_gotno = (loadable_size >> 16) + 5;
9391
9392 /* Choose the smaller of the two page estimates; both are intended to be
9393 conservative. */
9394 if (page_gotno > g->page_gotno)
9395 page_gotno = g->page_gotno;
9396
9397 g->local_gotno += page_gotno;
9398 g->assigned_high_gotno = g->local_gotno - 1;
9399
9400 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9401 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9402 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9403
9404 /* VxWorks does not support multiple GOTs. It initializes $gp to
9405 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9406 dynamic loader. */
9407 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9408 {
9409 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9410 return FALSE;
9411 }
9412 else
9413 {
9414 /* Record that all bfds use G. This also has the effect of freeing
9415 the per-bfd GOTs, which we no longer need. */
9416 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9417 if (mips_elf_bfd_got (ibfd, FALSE))
9418 mips_elf_replace_bfd_got (ibfd, g);
9419 mips_elf_replace_bfd_got (output_bfd, g);
9420
9421 /* Set up TLS entries. */
9422 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9423 tga.info = info;
9424 tga.g = g;
9425 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9426 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9427 if (!tga.g)
9428 return FALSE;
9429 BFD_ASSERT (g->tls_assigned_gotno
9430 == g->global_gotno + g->local_gotno + g->tls_gotno);
9431
9432 /* Each VxWorks GOT entry needs an explicit relocation. */
9433 if (htab->is_vxworks && bfd_link_pic (info))
9434 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9435
9436 /* Allocate room for the TLS relocations. */
9437 if (g->relocs)
9438 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9439 }
9440
9441 return TRUE;
9442 }
9443
9444 /* Estimate the size of the .MIPS.stubs section. */
9445
9446 static void
9447 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9448 {
9449 struct mips_elf_link_hash_table *htab;
9450 bfd_size_type dynsymcount;
9451
9452 htab = mips_elf_hash_table (info);
9453 BFD_ASSERT (htab != NULL);
9454
9455 if (htab->lazy_stub_count == 0)
9456 return;
9457
9458 /* IRIX rld assumes that a function stub isn't at the end of the .text
9459 section, so add a dummy entry to the end. */
9460 htab->lazy_stub_count++;
9461
9462 /* Get a worst-case estimate of the number of dynamic symbols needed.
9463 At this point, dynsymcount does not account for section symbols
9464 and count_section_dynsyms may overestimate the number that will
9465 be needed. */
9466 dynsymcount = (elf_hash_table (info)->dynsymcount
9467 + count_section_dynsyms (output_bfd, info));
9468
9469 /* Determine the size of one stub entry. There's no disadvantage
9470 from using microMIPS code here, so for the sake of pure-microMIPS
9471 binaries we prefer it whenever there's any microMIPS code in
9472 output produced at all. This has a benefit of stubs being
9473 shorter by 4 bytes each too, unless in the insn32 mode. */
9474 if (!MICROMIPS_P (output_bfd))
9475 htab->function_stub_size = (dynsymcount > 0x10000
9476 ? MIPS_FUNCTION_STUB_BIG_SIZE
9477 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9478 else if (htab->insn32)
9479 htab->function_stub_size = (dynsymcount > 0x10000
9480 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9481 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9482 else
9483 htab->function_stub_size = (dynsymcount > 0x10000
9484 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9485 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9486
9487 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9488 }
9489
9490 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9491 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9492 stub, allocate an entry in the stubs section. */
9493
9494 static bfd_boolean
9495 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9496 {
9497 struct mips_htab_traverse_info *hti = data;
9498 struct mips_elf_link_hash_table *htab;
9499 struct bfd_link_info *info;
9500 bfd *output_bfd;
9501
9502 info = hti->info;
9503 output_bfd = hti->output_bfd;
9504 htab = mips_elf_hash_table (info);
9505 BFD_ASSERT (htab != NULL);
9506
9507 if (h->needs_lazy_stub)
9508 {
9509 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9510 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9511 bfd_vma isa_bit = micromips_p;
9512
9513 BFD_ASSERT (htab->root.dynobj != NULL);
9514 if (h->root.plt.plist == NULL)
9515 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9516 if (h->root.plt.plist == NULL)
9517 {
9518 hti->error = TRUE;
9519 return FALSE;
9520 }
9521 h->root.root.u.def.section = htab->sstubs;
9522 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9523 h->root.plt.plist->stub_offset = htab->sstubs->size;
9524 h->root.other = other;
9525 htab->sstubs->size += htab->function_stub_size;
9526 }
9527 return TRUE;
9528 }
9529
9530 /* Allocate offsets in the stubs section to each symbol that needs one.
9531 Set the final size of the .MIPS.stub section. */
9532
9533 static bfd_boolean
9534 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9535 {
9536 bfd *output_bfd = info->output_bfd;
9537 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9538 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9539 bfd_vma isa_bit = micromips_p;
9540 struct mips_elf_link_hash_table *htab;
9541 struct mips_htab_traverse_info hti;
9542 struct elf_link_hash_entry *h;
9543 bfd *dynobj;
9544
9545 htab = mips_elf_hash_table (info);
9546 BFD_ASSERT (htab != NULL);
9547
9548 if (htab->lazy_stub_count == 0)
9549 return TRUE;
9550
9551 htab->sstubs->size = 0;
9552 hti.info = info;
9553 hti.output_bfd = output_bfd;
9554 hti.error = FALSE;
9555 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9556 if (hti.error)
9557 return FALSE;
9558 htab->sstubs->size += htab->function_stub_size;
9559 BFD_ASSERT (htab->sstubs->size
9560 == htab->lazy_stub_count * htab->function_stub_size);
9561
9562 dynobj = elf_hash_table (info)->dynobj;
9563 BFD_ASSERT (dynobj != NULL);
9564 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9565 if (h == NULL)
9566 return FALSE;
9567 h->root.u.def.value = isa_bit;
9568 h->other = other;
9569 h->type = STT_FUNC;
9570
9571 return TRUE;
9572 }
9573
9574 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9575 bfd_link_info. If H uses the address of a PLT entry as the value
9576 of the symbol, then set the entry in the symbol table now. Prefer
9577 a standard MIPS PLT entry. */
9578
9579 static bfd_boolean
9580 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9581 {
9582 struct bfd_link_info *info = data;
9583 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9584 struct mips_elf_link_hash_table *htab;
9585 unsigned int other;
9586 bfd_vma isa_bit;
9587 bfd_vma val;
9588
9589 htab = mips_elf_hash_table (info);
9590 BFD_ASSERT (htab != NULL);
9591
9592 if (h->use_plt_entry)
9593 {
9594 BFD_ASSERT (h->root.plt.plist != NULL);
9595 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9596 || h->root.plt.plist->comp_offset != MINUS_ONE);
9597
9598 val = htab->plt_header_size;
9599 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9600 {
9601 isa_bit = 0;
9602 val += h->root.plt.plist->mips_offset;
9603 other = 0;
9604 }
9605 else
9606 {
9607 isa_bit = 1;
9608 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9609 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9610 }
9611 val += isa_bit;
9612 /* For VxWorks, point at the PLT load stub rather than the lazy
9613 resolution stub; this stub will become the canonical function
9614 address. */
9615 if (htab->is_vxworks)
9616 val += 8;
9617
9618 h->root.root.u.def.section = htab->root.splt;
9619 h->root.root.u.def.value = val;
9620 h->root.other = other;
9621 }
9622
9623 return TRUE;
9624 }
9625
9626 /* Set the sizes of the dynamic sections. */
9627
9628 bfd_boolean
9629 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9630 struct bfd_link_info *info)
9631 {
9632 bfd *dynobj;
9633 asection *s, *sreldyn;
9634 bfd_boolean reltext;
9635 struct mips_elf_link_hash_table *htab;
9636
9637 htab = mips_elf_hash_table (info);
9638 BFD_ASSERT (htab != NULL);
9639 dynobj = elf_hash_table (info)->dynobj;
9640 BFD_ASSERT (dynobj != NULL);
9641
9642 if (elf_hash_table (info)->dynamic_sections_created)
9643 {
9644 /* Set the contents of the .interp section to the interpreter. */
9645 if (bfd_link_executable (info) && !info->nointerp)
9646 {
9647 s = bfd_get_linker_section (dynobj, ".interp");
9648 BFD_ASSERT (s != NULL);
9649 s->size
9650 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9651 s->contents
9652 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9653 }
9654
9655 /* Figure out the size of the PLT header if we know that we
9656 are using it. For the sake of cache alignment always use
9657 a standard header whenever any standard entries are present
9658 even if microMIPS entries are present as well. This also
9659 lets the microMIPS header rely on the value of $v0 only set
9660 by microMIPS entries, for a small size reduction.
9661
9662 Set symbol table entry values for symbols that use the
9663 address of their PLT entry now that we can calculate it.
9664
9665 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9666 haven't already in _bfd_elf_create_dynamic_sections. */
9667 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9668 {
9669 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9670 && !htab->plt_mips_offset);
9671 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9672 bfd_vma isa_bit = micromips_p;
9673 struct elf_link_hash_entry *h;
9674 bfd_vma size;
9675
9676 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9677 BFD_ASSERT (htab->root.sgotplt->size == 0);
9678 BFD_ASSERT (htab->root.splt->size == 0);
9679
9680 if (htab->is_vxworks && bfd_link_pic (info))
9681 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9682 else if (htab->is_vxworks)
9683 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9684 else if (ABI_64_P (output_bfd))
9685 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9686 else if (ABI_N32_P (output_bfd))
9687 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9688 else if (!micromips_p)
9689 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9690 else if (htab->insn32)
9691 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9692 else
9693 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9694
9695 htab->plt_header_is_comp = micromips_p;
9696 htab->plt_header_size = size;
9697 htab->root.splt->size = (size
9698 + htab->plt_mips_offset
9699 + htab->plt_comp_offset);
9700 htab->root.sgotplt->size = (htab->plt_got_index
9701 * MIPS_ELF_GOT_SIZE (dynobj));
9702
9703 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9704
9705 if (htab->root.hplt == NULL)
9706 {
9707 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9708 "_PROCEDURE_LINKAGE_TABLE_");
9709 htab->root.hplt = h;
9710 if (h == NULL)
9711 return FALSE;
9712 }
9713
9714 h = htab->root.hplt;
9715 h->root.u.def.value = isa_bit;
9716 h->other = other;
9717 h->type = STT_FUNC;
9718 }
9719 }
9720
9721 /* Allocate space for global sym dynamic relocs. */
9722 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9723
9724 mips_elf_estimate_stub_size (output_bfd, info);
9725
9726 if (!mips_elf_lay_out_got (output_bfd, info))
9727 return FALSE;
9728
9729 mips_elf_lay_out_lazy_stubs (info);
9730
9731 /* The check_relocs and adjust_dynamic_symbol entry points have
9732 determined the sizes of the various dynamic sections. Allocate
9733 memory for them. */
9734 reltext = FALSE;
9735 for (s = dynobj->sections; s != NULL; s = s->next)
9736 {
9737 const char *name;
9738
9739 /* It's OK to base decisions on the section name, because none
9740 of the dynobj section names depend upon the input files. */
9741 name = bfd_get_section_name (dynobj, s);
9742
9743 if ((s->flags & SEC_LINKER_CREATED) == 0)
9744 continue;
9745
9746 if (CONST_STRNEQ (name, ".rel"))
9747 {
9748 if (s->size != 0)
9749 {
9750 const char *outname;
9751 asection *target;
9752
9753 /* If this relocation section applies to a read only
9754 section, then we probably need a DT_TEXTREL entry.
9755 If the relocation section is .rel(a).dyn, we always
9756 assert a DT_TEXTREL entry rather than testing whether
9757 there exists a relocation to a read only section or
9758 not. */
9759 outname = bfd_get_section_name (output_bfd,
9760 s->output_section);
9761 target = bfd_get_section_by_name (output_bfd, outname + 4);
9762 if ((target != NULL
9763 && (target->flags & SEC_READONLY) != 0
9764 && (target->flags & SEC_ALLOC) != 0)
9765 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9766 reltext = TRUE;
9767
9768 /* We use the reloc_count field as a counter if we need
9769 to copy relocs into the output file. */
9770 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9771 s->reloc_count = 0;
9772
9773 /* If combreloc is enabled, elf_link_sort_relocs() will
9774 sort relocations, but in a different way than we do,
9775 and before we're done creating relocations. Also, it
9776 will move them around between input sections'
9777 relocation's contents, so our sorting would be
9778 broken, so don't let it run. */
9779 info->combreloc = 0;
9780 }
9781 }
9782 else if (bfd_link_executable (info)
9783 && ! mips_elf_hash_table (info)->use_rld_obj_head
9784 && CONST_STRNEQ (name, ".rld_map"))
9785 {
9786 /* We add a room for __rld_map. It will be filled in by the
9787 rtld to contain a pointer to the _r_debug structure. */
9788 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9789 }
9790 else if (SGI_COMPAT (output_bfd)
9791 && CONST_STRNEQ (name, ".compact_rel"))
9792 s->size += mips_elf_hash_table (info)->compact_rel_size;
9793 else if (s == htab->root.splt)
9794 {
9795 /* If the last PLT entry has a branch delay slot, allocate
9796 room for an extra nop to fill the delay slot. This is
9797 for CPUs without load interlocking. */
9798 if (! LOAD_INTERLOCKS_P (output_bfd)
9799 && ! htab->is_vxworks && s->size > 0)
9800 s->size += 4;
9801 }
9802 else if (! CONST_STRNEQ (name, ".init")
9803 && s != htab->root.sgot
9804 && s != htab->root.sgotplt
9805 && s != htab->sstubs
9806 && s != htab->root.sdynbss
9807 && s != htab->root.sdynrelro)
9808 {
9809 /* It's not one of our sections, so don't allocate space. */
9810 continue;
9811 }
9812
9813 if (s->size == 0)
9814 {
9815 s->flags |= SEC_EXCLUDE;
9816 continue;
9817 }
9818
9819 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9820 continue;
9821
9822 /* Allocate memory for the section contents. */
9823 s->contents = bfd_zalloc (dynobj, s->size);
9824 if (s->contents == NULL)
9825 {
9826 bfd_set_error (bfd_error_no_memory);
9827 return FALSE;
9828 }
9829 }
9830
9831 if (elf_hash_table (info)->dynamic_sections_created)
9832 {
9833 /* Add some entries to the .dynamic section. We fill in the
9834 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9835 must add the entries now so that we get the correct size for
9836 the .dynamic section. */
9837
9838 /* SGI object has the equivalence of DT_DEBUG in the
9839 DT_MIPS_RLD_MAP entry. This must come first because glibc
9840 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9841 may only look at the first one they see. */
9842 if (!bfd_link_pic (info)
9843 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9844 return FALSE;
9845
9846 if (bfd_link_executable (info)
9847 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9848 return FALSE;
9849
9850 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9851 used by the debugger. */
9852 if (bfd_link_executable (info)
9853 && !SGI_COMPAT (output_bfd)
9854 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9855 return FALSE;
9856
9857 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9858 info->flags |= DF_TEXTREL;
9859
9860 if ((info->flags & DF_TEXTREL) != 0)
9861 {
9862 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9863 return FALSE;
9864
9865 /* Clear the DF_TEXTREL flag. It will be set again if we
9866 write out an actual text relocation; we may not, because
9867 at this point we do not know whether e.g. any .eh_frame
9868 absolute relocations have been converted to PC-relative. */
9869 info->flags &= ~DF_TEXTREL;
9870 }
9871
9872 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9873 return FALSE;
9874
9875 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9876 if (htab->is_vxworks)
9877 {
9878 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9879 use any of the DT_MIPS_* tags. */
9880 if (sreldyn && sreldyn->size > 0)
9881 {
9882 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9883 return FALSE;
9884
9885 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9886 return FALSE;
9887
9888 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9889 return FALSE;
9890 }
9891 }
9892 else
9893 {
9894 if (sreldyn && sreldyn->size > 0)
9895 {
9896 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9897 return FALSE;
9898
9899 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9900 return FALSE;
9901
9902 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9903 return FALSE;
9904 }
9905
9906 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9907 return FALSE;
9908
9909 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9910 return FALSE;
9911
9912 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9913 return FALSE;
9914
9915 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9916 return FALSE;
9917
9918 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9919 return FALSE;
9920
9921 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9922 return FALSE;
9923
9924 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9925 return FALSE;
9926
9927 if (IRIX_COMPAT (dynobj) == ict_irix5
9928 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9929 return FALSE;
9930
9931 if (IRIX_COMPAT (dynobj) == ict_irix6
9932 && (bfd_get_section_by_name
9933 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9934 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9935 return FALSE;
9936 }
9937 if (htab->root.splt->size > 0)
9938 {
9939 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9940 return FALSE;
9941
9942 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9943 return FALSE;
9944
9945 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9946 return FALSE;
9947
9948 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9949 return FALSE;
9950 }
9951 if (htab->is_vxworks
9952 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9953 return FALSE;
9954 }
9955
9956 return TRUE;
9957 }
9958 \f
9959 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9960 Adjust its R_ADDEND field so that it is correct for the output file.
9961 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9962 and sections respectively; both use symbol indexes. */
9963
9964 static void
9965 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9966 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9967 asection **local_sections, Elf_Internal_Rela *rel)
9968 {
9969 unsigned int r_type, r_symndx;
9970 Elf_Internal_Sym *sym;
9971 asection *sec;
9972
9973 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9974 {
9975 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9976 if (gprel16_reloc_p (r_type)
9977 || r_type == R_MIPS_GPREL32
9978 || literal_reloc_p (r_type))
9979 {
9980 rel->r_addend += _bfd_get_gp_value (input_bfd);
9981 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9982 }
9983
9984 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9985 sym = local_syms + r_symndx;
9986
9987 /* Adjust REL's addend to account for section merging. */
9988 if (!bfd_link_relocatable (info))
9989 {
9990 sec = local_sections[r_symndx];
9991 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9992 }
9993
9994 /* This would normally be done by the rela_normal code in elflink.c. */
9995 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9996 rel->r_addend += local_sections[r_symndx]->output_offset;
9997 }
9998 }
9999
10000 /* Handle relocations against symbols from removed linkonce sections,
10001 or sections discarded by a linker script. We use this wrapper around
10002 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10003 on 64-bit ELF targets. In this case for any relocation handled, which
10004 always be the first in a triplet, the remaining two have to be processed
10005 together with the first, even if they are R_MIPS_NONE. It is the symbol
10006 index referred by the first reloc that applies to all the three and the
10007 remaining two never refer to an object symbol. And it is the final
10008 relocation (the last non-null one) that determines the output field of
10009 the whole relocation so retrieve the corresponding howto structure for
10010 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10011
10012 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10013 and therefore requires to be pasted in a loop. It also defines a block
10014 and does not protect any of its arguments, hence the extra brackets. */
10015
10016 static void
10017 mips_reloc_against_discarded_section (bfd *output_bfd,
10018 struct bfd_link_info *info,
10019 bfd *input_bfd, asection *input_section,
10020 Elf_Internal_Rela **rel,
10021 const Elf_Internal_Rela **relend,
10022 bfd_boolean rel_reloc,
10023 reloc_howto_type *howto,
10024 bfd_byte *contents)
10025 {
10026 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10027 int count = bed->s->int_rels_per_ext_rel;
10028 unsigned int r_type;
10029 int i;
10030
10031 for (i = count - 1; i > 0; i--)
10032 {
10033 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10034 if (r_type != R_MIPS_NONE)
10035 {
10036 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10037 break;
10038 }
10039 }
10040 do
10041 {
10042 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10043 (*rel), count, (*relend),
10044 howto, i, contents);
10045 }
10046 while (0);
10047 }
10048
10049 /* Relocate a MIPS ELF section. */
10050
10051 bfd_boolean
10052 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10053 bfd *input_bfd, asection *input_section,
10054 bfd_byte *contents, Elf_Internal_Rela *relocs,
10055 Elf_Internal_Sym *local_syms,
10056 asection **local_sections)
10057 {
10058 Elf_Internal_Rela *rel;
10059 const Elf_Internal_Rela *relend;
10060 bfd_vma addend = 0;
10061 bfd_boolean use_saved_addend_p = FALSE;
10062
10063 relend = relocs + input_section->reloc_count;
10064 for (rel = relocs; rel < relend; ++rel)
10065 {
10066 const char *name;
10067 bfd_vma value = 0;
10068 reloc_howto_type *howto;
10069 bfd_boolean cross_mode_jump_p = FALSE;
10070 /* TRUE if the relocation is a RELA relocation, rather than a
10071 REL relocation. */
10072 bfd_boolean rela_relocation_p = TRUE;
10073 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10074 const char *msg;
10075 unsigned long r_symndx;
10076 asection *sec;
10077 Elf_Internal_Shdr *symtab_hdr;
10078 struct elf_link_hash_entry *h;
10079 bfd_boolean rel_reloc;
10080
10081 rel_reloc = (NEWABI_P (input_bfd)
10082 && mips_elf_rel_relocation_p (input_bfd, input_section,
10083 relocs, rel));
10084 /* Find the relocation howto for this relocation. */
10085 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10086
10087 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10088 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10089 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10090 {
10091 sec = local_sections[r_symndx];
10092 h = NULL;
10093 }
10094 else
10095 {
10096 unsigned long extsymoff;
10097
10098 extsymoff = 0;
10099 if (!elf_bad_symtab (input_bfd))
10100 extsymoff = symtab_hdr->sh_info;
10101 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10102 while (h->root.type == bfd_link_hash_indirect
10103 || h->root.type == bfd_link_hash_warning)
10104 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10105
10106 sec = NULL;
10107 if (h->root.type == bfd_link_hash_defined
10108 || h->root.type == bfd_link_hash_defweak)
10109 sec = h->root.u.def.section;
10110 }
10111
10112 if (sec != NULL && discarded_section (sec))
10113 {
10114 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10115 input_section, &rel, &relend,
10116 rel_reloc, howto, contents);
10117 continue;
10118 }
10119
10120 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10121 {
10122 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10123 64-bit code, but make sure all their addresses are in the
10124 lowermost or uppermost 32-bit section of the 64-bit address
10125 space. Thus, when they use an R_MIPS_64 they mean what is
10126 usually meant by R_MIPS_32, with the exception that the
10127 stored value is sign-extended to 64 bits. */
10128 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10129
10130 /* On big-endian systems, we need to lie about the position
10131 of the reloc. */
10132 if (bfd_big_endian (input_bfd))
10133 rel->r_offset += 4;
10134 }
10135
10136 if (!use_saved_addend_p)
10137 {
10138 /* If these relocations were originally of the REL variety,
10139 we must pull the addend out of the field that will be
10140 relocated. Otherwise, we simply use the contents of the
10141 RELA relocation. */
10142 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10143 relocs, rel))
10144 {
10145 rela_relocation_p = FALSE;
10146 addend = mips_elf_read_rel_addend (input_bfd, rel,
10147 howto, contents);
10148 if (hi16_reloc_p (r_type)
10149 || (got16_reloc_p (r_type)
10150 && mips_elf_local_relocation_p (input_bfd, rel,
10151 local_sections)))
10152 {
10153 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10154 contents, &addend))
10155 {
10156 if (h)
10157 name = h->root.root.string;
10158 else
10159 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10160 local_syms + r_symndx,
10161 sec);
10162 _bfd_error_handler
10163 /* xgettext:c-format */
10164 (_("%pB: can't find matching LO16 reloc against `%s'"
10165 " for %s at %#" PRIx64 " in section `%pA'"),
10166 input_bfd, name,
10167 howto->name, (uint64_t) rel->r_offset, input_section);
10168 }
10169 }
10170 else
10171 addend <<= howto->rightshift;
10172 }
10173 else
10174 addend = rel->r_addend;
10175 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10176 local_syms, local_sections, rel);
10177 }
10178
10179 if (bfd_link_relocatable (info))
10180 {
10181 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10182 && bfd_big_endian (input_bfd))
10183 rel->r_offset -= 4;
10184
10185 if (!rela_relocation_p && rel->r_addend)
10186 {
10187 addend += rel->r_addend;
10188 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10189 addend = mips_elf_high (addend);
10190 else if (r_type == R_MIPS_HIGHER)
10191 addend = mips_elf_higher (addend);
10192 else if (r_type == R_MIPS_HIGHEST)
10193 addend = mips_elf_highest (addend);
10194 else
10195 addend >>= howto->rightshift;
10196
10197 /* We use the source mask, rather than the destination
10198 mask because the place to which we are writing will be
10199 source of the addend in the final link. */
10200 addend &= howto->src_mask;
10201
10202 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10203 /* See the comment above about using R_MIPS_64 in the 32-bit
10204 ABI. Here, we need to update the addend. It would be
10205 possible to get away with just using the R_MIPS_32 reloc
10206 but for endianness. */
10207 {
10208 bfd_vma sign_bits;
10209 bfd_vma low_bits;
10210 bfd_vma high_bits;
10211
10212 if (addend & ((bfd_vma) 1 << 31))
10213 #ifdef BFD64
10214 sign_bits = ((bfd_vma) 1 << 32) - 1;
10215 #else
10216 sign_bits = -1;
10217 #endif
10218 else
10219 sign_bits = 0;
10220
10221 /* If we don't know that we have a 64-bit type,
10222 do two separate stores. */
10223 if (bfd_big_endian (input_bfd))
10224 {
10225 /* Store the sign-bits (which are most significant)
10226 first. */
10227 low_bits = sign_bits;
10228 high_bits = addend;
10229 }
10230 else
10231 {
10232 low_bits = addend;
10233 high_bits = sign_bits;
10234 }
10235 bfd_put_32 (input_bfd, low_bits,
10236 contents + rel->r_offset);
10237 bfd_put_32 (input_bfd, high_bits,
10238 contents + rel->r_offset + 4);
10239 continue;
10240 }
10241
10242 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10243 input_bfd, input_section,
10244 contents, FALSE))
10245 return FALSE;
10246 }
10247
10248 /* Go on to the next relocation. */
10249 continue;
10250 }
10251
10252 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10253 relocations for the same offset. In that case we are
10254 supposed to treat the output of each relocation as the addend
10255 for the next. */
10256 if (rel + 1 < relend
10257 && rel->r_offset == rel[1].r_offset
10258 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10259 use_saved_addend_p = TRUE;
10260 else
10261 use_saved_addend_p = FALSE;
10262
10263 /* Figure out what value we are supposed to relocate. */
10264 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10265 input_section, info, rel,
10266 addend, howto, local_syms,
10267 local_sections, &value,
10268 &name, &cross_mode_jump_p,
10269 use_saved_addend_p))
10270 {
10271 case bfd_reloc_continue:
10272 /* There's nothing to do. */
10273 continue;
10274
10275 case bfd_reloc_undefined:
10276 /* mips_elf_calculate_relocation already called the
10277 undefined_symbol callback. There's no real point in
10278 trying to perform the relocation at this point, so we
10279 just skip ahead to the next relocation. */
10280 continue;
10281
10282 case bfd_reloc_notsupported:
10283 msg = _("internal error: unsupported relocation error");
10284 info->callbacks->warning
10285 (info, msg, name, input_bfd, input_section, rel->r_offset);
10286 return FALSE;
10287
10288 case bfd_reloc_overflow:
10289 if (use_saved_addend_p)
10290 /* Ignore overflow until we reach the last relocation for
10291 a given location. */
10292 ;
10293 else
10294 {
10295 struct mips_elf_link_hash_table *htab;
10296
10297 htab = mips_elf_hash_table (info);
10298 BFD_ASSERT (htab != NULL);
10299 BFD_ASSERT (name != NULL);
10300 if (!htab->small_data_overflow_reported
10301 && (gprel16_reloc_p (howto->type)
10302 || literal_reloc_p (howto->type)))
10303 {
10304 msg = _("small-data section exceeds 64KB;"
10305 " lower small-data size limit (see option -G)");
10306
10307 htab->small_data_overflow_reported = TRUE;
10308 (*info->callbacks->einfo) ("%P: %s\n", msg);
10309 }
10310 (*info->callbacks->reloc_overflow)
10311 (info, NULL, name, howto->name, (bfd_vma) 0,
10312 input_bfd, input_section, rel->r_offset);
10313 }
10314 break;
10315
10316 case bfd_reloc_ok:
10317 break;
10318
10319 case bfd_reloc_outofrange:
10320 msg = NULL;
10321 if (jal_reloc_p (howto->type))
10322 msg = (cross_mode_jump_p
10323 ? _("cannot convert a jump to JALX "
10324 "for a non-word-aligned address")
10325 : (howto->type == R_MIPS16_26
10326 ? _("jump to a non-word-aligned address")
10327 : _("jump to a non-instruction-aligned address")));
10328 else if (b_reloc_p (howto->type))
10329 msg = (cross_mode_jump_p
10330 ? _("cannot convert a branch to JALX "
10331 "for a non-word-aligned address")
10332 : _("branch to a non-instruction-aligned address"));
10333 else if (aligned_pcrel_reloc_p (howto->type))
10334 msg = _("PC-relative load from unaligned address");
10335 if (msg)
10336 {
10337 info->callbacks->einfo
10338 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10339 break;
10340 }
10341 /* Fall through. */
10342
10343 default:
10344 abort ();
10345 break;
10346 }
10347
10348 /* If we've got another relocation for the address, keep going
10349 until we reach the last one. */
10350 if (use_saved_addend_p)
10351 {
10352 addend = value;
10353 continue;
10354 }
10355
10356 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10357 /* See the comment above about using R_MIPS_64 in the 32-bit
10358 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10359 that calculated the right value. Now, however, we
10360 sign-extend the 32-bit result to 64-bits, and store it as a
10361 64-bit value. We are especially generous here in that we
10362 go to extreme lengths to support this usage on systems with
10363 only a 32-bit VMA. */
10364 {
10365 bfd_vma sign_bits;
10366 bfd_vma low_bits;
10367 bfd_vma high_bits;
10368
10369 if (value & ((bfd_vma) 1 << 31))
10370 #ifdef BFD64
10371 sign_bits = ((bfd_vma) 1 << 32) - 1;
10372 #else
10373 sign_bits = -1;
10374 #endif
10375 else
10376 sign_bits = 0;
10377
10378 /* If we don't know that we have a 64-bit type,
10379 do two separate stores. */
10380 if (bfd_big_endian (input_bfd))
10381 {
10382 /* Undo what we did above. */
10383 rel->r_offset -= 4;
10384 /* Store the sign-bits (which are most significant)
10385 first. */
10386 low_bits = sign_bits;
10387 high_bits = value;
10388 }
10389 else
10390 {
10391 low_bits = value;
10392 high_bits = sign_bits;
10393 }
10394 bfd_put_32 (input_bfd, low_bits,
10395 contents + rel->r_offset);
10396 bfd_put_32 (input_bfd, high_bits,
10397 contents + rel->r_offset + 4);
10398 continue;
10399 }
10400
10401 /* Actually perform the relocation. */
10402 if (! mips_elf_perform_relocation (info, howto, rel, value,
10403 input_bfd, input_section,
10404 contents, cross_mode_jump_p))
10405 return FALSE;
10406 }
10407
10408 return TRUE;
10409 }
10410 \f
10411 /* A function that iterates over each entry in la25_stubs and fills
10412 in the code for each one. DATA points to a mips_htab_traverse_info. */
10413
10414 static int
10415 mips_elf_create_la25_stub (void **slot, void *data)
10416 {
10417 struct mips_htab_traverse_info *hti;
10418 struct mips_elf_link_hash_table *htab;
10419 struct mips_elf_la25_stub *stub;
10420 asection *s;
10421 bfd_byte *loc;
10422 bfd_vma offset, target, target_high, target_low;
10423
10424 stub = (struct mips_elf_la25_stub *) *slot;
10425 hti = (struct mips_htab_traverse_info *) data;
10426 htab = mips_elf_hash_table (hti->info);
10427 BFD_ASSERT (htab != NULL);
10428
10429 /* Create the section contents, if we haven't already. */
10430 s = stub->stub_section;
10431 loc = s->contents;
10432 if (loc == NULL)
10433 {
10434 loc = bfd_malloc (s->size);
10435 if (loc == NULL)
10436 {
10437 hti->error = TRUE;
10438 return FALSE;
10439 }
10440 s->contents = loc;
10441 }
10442
10443 /* Work out where in the section this stub should go. */
10444 offset = stub->offset;
10445
10446 /* Work out the target address. */
10447 target = mips_elf_get_la25_target (stub, &s);
10448 target += s->output_section->vma + s->output_offset;
10449
10450 target_high = ((target + 0x8000) >> 16) & 0xffff;
10451 target_low = (target & 0xffff);
10452
10453 if (stub->stub_section != htab->strampoline)
10454 {
10455 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10456 of the section and write the two instructions at the end. */
10457 memset (loc, 0, offset);
10458 loc += offset;
10459 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10460 {
10461 bfd_put_micromips_32 (hti->output_bfd,
10462 LA25_LUI_MICROMIPS (target_high),
10463 loc);
10464 bfd_put_micromips_32 (hti->output_bfd,
10465 LA25_ADDIU_MICROMIPS (target_low),
10466 loc + 4);
10467 }
10468 else
10469 {
10470 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10471 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10472 }
10473 }
10474 else
10475 {
10476 /* This is trampoline. */
10477 loc += offset;
10478 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10479 {
10480 bfd_put_micromips_32 (hti->output_bfd,
10481 LA25_LUI_MICROMIPS (target_high), loc);
10482 bfd_put_micromips_32 (hti->output_bfd,
10483 LA25_J_MICROMIPS (target), loc + 4);
10484 bfd_put_micromips_32 (hti->output_bfd,
10485 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10486 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10487 }
10488 else
10489 {
10490 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10491 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10492 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10493 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10494 }
10495 }
10496 return TRUE;
10497 }
10498
10499 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10500 adjust it appropriately now. */
10501
10502 static void
10503 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10504 const char *name, Elf_Internal_Sym *sym)
10505 {
10506 /* The linker script takes care of providing names and values for
10507 these, but we must place them into the right sections. */
10508 static const char* const text_section_symbols[] = {
10509 "_ftext",
10510 "_etext",
10511 "__dso_displacement",
10512 "__elf_header",
10513 "__program_header_table",
10514 NULL
10515 };
10516
10517 static const char* const data_section_symbols[] = {
10518 "_fdata",
10519 "_edata",
10520 "_end",
10521 "_fbss",
10522 NULL
10523 };
10524
10525 const char* const *p;
10526 int i;
10527
10528 for (i = 0; i < 2; ++i)
10529 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10530 *p;
10531 ++p)
10532 if (strcmp (*p, name) == 0)
10533 {
10534 /* All of these symbols are given type STT_SECTION by the
10535 IRIX6 linker. */
10536 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10537 sym->st_other = STO_PROTECTED;
10538
10539 /* The IRIX linker puts these symbols in special sections. */
10540 if (i == 0)
10541 sym->st_shndx = SHN_MIPS_TEXT;
10542 else
10543 sym->st_shndx = SHN_MIPS_DATA;
10544
10545 break;
10546 }
10547 }
10548
10549 /* Finish up dynamic symbol handling. We set the contents of various
10550 dynamic sections here. */
10551
10552 bfd_boolean
10553 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10554 struct bfd_link_info *info,
10555 struct elf_link_hash_entry *h,
10556 Elf_Internal_Sym *sym)
10557 {
10558 bfd *dynobj;
10559 asection *sgot;
10560 struct mips_got_info *g, *gg;
10561 const char *name;
10562 int idx;
10563 struct mips_elf_link_hash_table *htab;
10564 struct mips_elf_link_hash_entry *hmips;
10565
10566 htab = mips_elf_hash_table (info);
10567 BFD_ASSERT (htab != NULL);
10568 dynobj = elf_hash_table (info)->dynobj;
10569 hmips = (struct mips_elf_link_hash_entry *) h;
10570
10571 BFD_ASSERT (!htab->is_vxworks);
10572
10573 if (h->plt.plist != NULL
10574 && (h->plt.plist->mips_offset != MINUS_ONE
10575 || h->plt.plist->comp_offset != MINUS_ONE))
10576 {
10577 /* We've decided to create a PLT entry for this symbol. */
10578 bfd_byte *loc;
10579 bfd_vma header_address, got_address;
10580 bfd_vma got_address_high, got_address_low, load;
10581 bfd_vma got_index;
10582 bfd_vma isa_bit;
10583
10584 got_index = h->plt.plist->gotplt_index;
10585
10586 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10587 BFD_ASSERT (h->dynindx != -1);
10588 BFD_ASSERT (htab->root.splt != NULL);
10589 BFD_ASSERT (got_index != MINUS_ONE);
10590 BFD_ASSERT (!h->def_regular);
10591
10592 /* Calculate the address of the PLT header. */
10593 isa_bit = htab->plt_header_is_comp;
10594 header_address = (htab->root.splt->output_section->vma
10595 + htab->root.splt->output_offset + isa_bit);
10596
10597 /* Calculate the address of the .got.plt entry. */
10598 got_address = (htab->root.sgotplt->output_section->vma
10599 + htab->root.sgotplt->output_offset
10600 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10601
10602 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10603 got_address_low = got_address & 0xffff;
10604
10605 /* Initially point the .got.plt entry at the PLT header. */
10606 loc = (htab->root.sgotplt->contents
10607 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10608 if (ABI_64_P (output_bfd))
10609 bfd_put_64 (output_bfd, header_address, loc);
10610 else
10611 bfd_put_32 (output_bfd, header_address, loc);
10612
10613 /* Now handle the PLT itself. First the standard entry (the order
10614 does not matter, we just have to pick one). */
10615 if (h->plt.plist->mips_offset != MINUS_ONE)
10616 {
10617 const bfd_vma *plt_entry;
10618 bfd_vma plt_offset;
10619
10620 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10621
10622 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10623
10624 /* Find out where the .plt entry should go. */
10625 loc = htab->root.splt->contents + plt_offset;
10626
10627 /* Pick the load opcode. */
10628 load = MIPS_ELF_LOAD_WORD (output_bfd);
10629
10630 /* Fill in the PLT entry itself. */
10631
10632 if (MIPSR6_P (output_bfd))
10633 plt_entry = mipsr6_exec_plt_entry;
10634 else
10635 plt_entry = mips_exec_plt_entry;
10636 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10637 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10638 loc + 4);
10639
10640 if (! LOAD_INTERLOCKS_P (output_bfd))
10641 {
10642 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10643 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10644 }
10645 else
10646 {
10647 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10648 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10649 loc + 12);
10650 }
10651 }
10652
10653 /* Now the compressed entry. They come after any standard ones. */
10654 if (h->plt.plist->comp_offset != MINUS_ONE)
10655 {
10656 bfd_vma plt_offset;
10657
10658 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10659 + h->plt.plist->comp_offset);
10660
10661 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10662
10663 /* Find out where the .plt entry should go. */
10664 loc = htab->root.splt->contents + plt_offset;
10665
10666 /* Fill in the PLT entry itself. */
10667 if (!MICROMIPS_P (output_bfd))
10668 {
10669 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10670
10671 bfd_put_16 (output_bfd, plt_entry[0], loc);
10672 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10673 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10674 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10675 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10676 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10677 bfd_put_32 (output_bfd, got_address, loc + 12);
10678 }
10679 else if (htab->insn32)
10680 {
10681 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10682
10683 bfd_put_16 (output_bfd, plt_entry[0], loc);
10684 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10685 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10686 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10687 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10688 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10689 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10690 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10691 }
10692 else
10693 {
10694 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10695 bfd_signed_vma gotpc_offset;
10696 bfd_vma loc_address;
10697
10698 BFD_ASSERT (got_address % 4 == 0);
10699
10700 loc_address = (htab->root.splt->output_section->vma
10701 + htab->root.splt->output_offset + plt_offset);
10702 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10703
10704 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10705 if (gotpc_offset + 0x1000000 >= 0x2000000)
10706 {
10707 _bfd_error_handler
10708 /* xgettext:c-format */
10709 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
10710 "beyond the range of ADDIUPC"),
10711 output_bfd,
10712 htab->root.sgotplt->output_section,
10713 (int64_t) gotpc_offset,
10714 htab->root.splt->output_section);
10715 bfd_set_error (bfd_error_no_error);
10716 return FALSE;
10717 }
10718 bfd_put_16 (output_bfd,
10719 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10720 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10721 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10722 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10723 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10724 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10725 }
10726 }
10727
10728 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10729 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10730 got_index - 2, h->dynindx,
10731 R_MIPS_JUMP_SLOT, got_address);
10732
10733 /* We distinguish between PLT entries and lazy-binding stubs by
10734 giving the former an st_other value of STO_MIPS_PLT. Set the
10735 flag and leave the value if there are any relocations in the
10736 binary where pointer equality matters. */
10737 sym->st_shndx = SHN_UNDEF;
10738 if (h->pointer_equality_needed)
10739 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10740 else
10741 {
10742 sym->st_value = 0;
10743 sym->st_other = 0;
10744 }
10745 }
10746
10747 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10748 {
10749 /* We've decided to create a lazy-binding stub. */
10750 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10751 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10752 bfd_vma stub_size = htab->function_stub_size;
10753 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10754 bfd_vma isa_bit = micromips_p;
10755 bfd_vma stub_big_size;
10756
10757 if (!micromips_p)
10758 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10759 else if (htab->insn32)
10760 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10761 else
10762 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10763
10764 /* This symbol has a stub. Set it up. */
10765
10766 BFD_ASSERT (h->dynindx != -1);
10767
10768 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10769
10770 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10771 sign extension at runtime in the stub, resulting in a negative
10772 index value. */
10773 if (h->dynindx & ~0x7fffffff)
10774 return FALSE;
10775
10776 /* Fill the stub. */
10777 if (micromips_p)
10778 {
10779 idx = 0;
10780 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10781 stub + idx);
10782 idx += 4;
10783 if (htab->insn32)
10784 {
10785 bfd_put_micromips_32 (output_bfd,
10786 STUB_MOVE32_MICROMIPS, stub + idx);
10787 idx += 4;
10788 }
10789 else
10790 {
10791 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10792 idx += 2;
10793 }
10794 if (stub_size == stub_big_size)
10795 {
10796 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10797
10798 bfd_put_micromips_32 (output_bfd,
10799 STUB_LUI_MICROMIPS (dynindx_hi),
10800 stub + idx);
10801 idx += 4;
10802 }
10803 if (htab->insn32)
10804 {
10805 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10806 stub + idx);
10807 idx += 4;
10808 }
10809 else
10810 {
10811 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10812 idx += 2;
10813 }
10814
10815 /* If a large stub is not required and sign extension is not a
10816 problem, then use legacy code in the stub. */
10817 if (stub_size == stub_big_size)
10818 bfd_put_micromips_32 (output_bfd,
10819 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10820 stub + idx);
10821 else if (h->dynindx & ~0x7fff)
10822 bfd_put_micromips_32 (output_bfd,
10823 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10824 stub + idx);
10825 else
10826 bfd_put_micromips_32 (output_bfd,
10827 STUB_LI16S_MICROMIPS (output_bfd,
10828 h->dynindx),
10829 stub + idx);
10830 }
10831 else
10832 {
10833 idx = 0;
10834 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10835 idx += 4;
10836 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10837 idx += 4;
10838 if (stub_size == stub_big_size)
10839 {
10840 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10841 stub + idx);
10842 idx += 4;
10843 }
10844 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10845 idx += 4;
10846
10847 /* If a large stub is not required and sign extension is not a
10848 problem, then use legacy code in the stub. */
10849 if (stub_size == stub_big_size)
10850 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10851 stub + idx);
10852 else if (h->dynindx & ~0x7fff)
10853 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10854 stub + idx);
10855 else
10856 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10857 stub + idx);
10858 }
10859
10860 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10861 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10862 stub, stub_size);
10863
10864 /* Mark the symbol as undefined. stub_offset != -1 occurs
10865 only for the referenced symbol. */
10866 sym->st_shndx = SHN_UNDEF;
10867
10868 /* The run-time linker uses the st_value field of the symbol
10869 to reset the global offset table entry for this external
10870 to its stub address when unlinking a shared object. */
10871 sym->st_value = (htab->sstubs->output_section->vma
10872 + htab->sstubs->output_offset
10873 + h->plt.plist->stub_offset
10874 + isa_bit);
10875 sym->st_other = other;
10876 }
10877
10878 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10879 refer to the stub, since only the stub uses the standard calling
10880 conventions. */
10881 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10882 {
10883 BFD_ASSERT (hmips->need_fn_stub);
10884 sym->st_value = (hmips->fn_stub->output_section->vma
10885 + hmips->fn_stub->output_offset);
10886 sym->st_size = hmips->fn_stub->size;
10887 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10888 }
10889
10890 BFD_ASSERT (h->dynindx != -1
10891 || h->forced_local);
10892
10893 sgot = htab->root.sgot;
10894 g = htab->got_info;
10895 BFD_ASSERT (g != NULL);
10896
10897 /* Run through the global symbol table, creating GOT entries for all
10898 the symbols that need them. */
10899 if (hmips->global_got_area != GGA_NONE)
10900 {
10901 bfd_vma offset;
10902 bfd_vma value;
10903
10904 value = sym->st_value;
10905 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10906 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10907 }
10908
10909 if (hmips->global_got_area != GGA_NONE && g->next)
10910 {
10911 struct mips_got_entry e, *p;
10912 bfd_vma entry;
10913 bfd_vma offset;
10914
10915 gg = g;
10916
10917 e.abfd = output_bfd;
10918 e.symndx = -1;
10919 e.d.h = hmips;
10920 e.tls_type = GOT_TLS_NONE;
10921
10922 for (g = g->next; g->next != gg; g = g->next)
10923 {
10924 if (g->got_entries
10925 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10926 &e)))
10927 {
10928 offset = p->gotidx;
10929 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
10930 if (bfd_link_pic (info)
10931 || (elf_hash_table (info)->dynamic_sections_created
10932 && p->d.h != NULL
10933 && p->d.h->root.def_dynamic
10934 && !p->d.h->root.def_regular))
10935 {
10936 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10937 the various compatibility problems, it's easier to mock
10938 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10939 mips_elf_create_dynamic_relocation to calculate the
10940 appropriate addend. */
10941 Elf_Internal_Rela rel[3];
10942
10943 memset (rel, 0, sizeof (rel));
10944 if (ABI_64_P (output_bfd))
10945 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10946 else
10947 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10948 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10949
10950 entry = 0;
10951 if (! (mips_elf_create_dynamic_relocation
10952 (output_bfd, info, rel,
10953 e.d.h, NULL, sym->st_value, &entry, sgot)))
10954 return FALSE;
10955 }
10956 else
10957 entry = sym->st_value;
10958 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10959 }
10960 }
10961 }
10962
10963 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10964 name = h->root.root.string;
10965 if (h == elf_hash_table (info)->hdynamic
10966 || h == elf_hash_table (info)->hgot)
10967 sym->st_shndx = SHN_ABS;
10968 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10969 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10970 {
10971 sym->st_shndx = SHN_ABS;
10972 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10973 sym->st_value = 1;
10974 }
10975 else if (SGI_COMPAT (output_bfd))
10976 {
10977 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10978 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10979 {
10980 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10981 sym->st_other = STO_PROTECTED;
10982 sym->st_value = 0;
10983 sym->st_shndx = SHN_MIPS_DATA;
10984 }
10985 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10986 {
10987 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10988 sym->st_other = STO_PROTECTED;
10989 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10990 sym->st_shndx = SHN_ABS;
10991 }
10992 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10993 {
10994 if (h->type == STT_FUNC)
10995 sym->st_shndx = SHN_MIPS_TEXT;
10996 else if (h->type == STT_OBJECT)
10997 sym->st_shndx = SHN_MIPS_DATA;
10998 }
10999 }
11000
11001 /* Emit a copy reloc, if needed. */
11002 if (h->needs_copy)
11003 {
11004 asection *s;
11005 bfd_vma symval;
11006
11007 BFD_ASSERT (h->dynindx != -1);
11008 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11009
11010 s = mips_elf_rel_dyn_section (info, FALSE);
11011 symval = (h->root.u.def.section->output_section->vma
11012 + h->root.u.def.section->output_offset
11013 + h->root.u.def.value);
11014 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11015 h->dynindx, R_MIPS_COPY, symval);
11016 }
11017
11018 /* Handle the IRIX6-specific symbols. */
11019 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11020 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11021
11022 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11023 to treat compressed symbols like any other. */
11024 if (ELF_ST_IS_MIPS16 (sym->st_other))
11025 {
11026 BFD_ASSERT (sym->st_value & 1);
11027 sym->st_other -= STO_MIPS16;
11028 }
11029 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11030 {
11031 BFD_ASSERT (sym->st_value & 1);
11032 sym->st_other -= STO_MICROMIPS;
11033 }
11034
11035 return TRUE;
11036 }
11037
11038 /* Likewise, for VxWorks. */
11039
11040 bfd_boolean
11041 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11042 struct bfd_link_info *info,
11043 struct elf_link_hash_entry *h,
11044 Elf_Internal_Sym *sym)
11045 {
11046 bfd *dynobj;
11047 asection *sgot;
11048 struct mips_got_info *g;
11049 struct mips_elf_link_hash_table *htab;
11050 struct mips_elf_link_hash_entry *hmips;
11051
11052 htab = mips_elf_hash_table (info);
11053 BFD_ASSERT (htab != NULL);
11054 dynobj = elf_hash_table (info)->dynobj;
11055 hmips = (struct mips_elf_link_hash_entry *) h;
11056
11057 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11058 {
11059 bfd_byte *loc;
11060 bfd_vma plt_address, got_address, got_offset, branch_offset;
11061 Elf_Internal_Rela rel;
11062 static const bfd_vma *plt_entry;
11063 bfd_vma gotplt_index;
11064 bfd_vma plt_offset;
11065
11066 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11067 gotplt_index = h->plt.plist->gotplt_index;
11068
11069 BFD_ASSERT (h->dynindx != -1);
11070 BFD_ASSERT (htab->root.splt != NULL);
11071 BFD_ASSERT (gotplt_index != MINUS_ONE);
11072 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11073
11074 /* Calculate the address of the .plt entry. */
11075 plt_address = (htab->root.splt->output_section->vma
11076 + htab->root.splt->output_offset
11077 + plt_offset);
11078
11079 /* Calculate the address of the .got.plt entry. */
11080 got_address = (htab->root.sgotplt->output_section->vma
11081 + htab->root.sgotplt->output_offset
11082 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11083
11084 /* Calculate the offset of the .got.plt entry from
11085 _GLOBAL_OFFSET_TABLE_. */
11086 got_offset = mips_elf_gotplt_index (info, h);
11087
11088 /* Calculate the offset for the branch at the start of the PLT
11089 entry. The branch jumps to the beginning of .plt. */
11090 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11091
11092 /* Fill in the initial value of the .got.plt entry. */
11093 bfd_put_32 (output_bfd, plt_address,
11094 (htab->root.sgotplt->contents
11095 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11096
11097 /* Find out where the .plt entry should go. */
11098 loc = htab->root.splt->contents + plt_offset;
11099
11100 if (bfd_link_pic (info))
11101 {
11102 plt_entry = mips_vxworks_shared_plt_entry;
11103 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11104 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11105 }
11106 else
11107 {
11108 bfd_vma got_address_high, got_address_low;
11109
11110 plt_entry = mips_vxworks_exec_plt_entry;
11111 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11112 got_address_low = got_address & 0xffff;
11113
11114 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11115 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11116 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11117 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11118 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11119 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11120 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11121 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11122
11123 loc = (htab->srelplt2->contents
11124 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11125
11126 /* Emit a relocation for the .got.plt entry. */
11127 rel.r_offset = got_address;
11128 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11129 rel.r_addend = plt_offset;
11130 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11131
11132 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11133 loc += sizeof (Elf32_External_Rela);
11134 rel.r_offset = plt_address + 8;
11135 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11136 rel.r_addend = got_offset;
11137 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11138
11139 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11140 loc += sizeof (Elf32_External_Rela);
11141 rel.r_offset += 4;
11142 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11143 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11144 }
11145
11146 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11147 loc = (htab->root.srelplt->contents
11148 + gotplt_index * sizeof (Elf32_External_Rela));
11149 rel.r_offset = got_address;
11150 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11151 rel.r_addend = 0;
11152 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11153
11154 if (!h->def_regular)
11155 sym->st_shndx = SHN_UNDEF;
11156 }
11157
11158 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11159
11160 sgot = htab->root.sgot;
11161 g = htab->got_info;
11162 BFD_ASSERT (g != NULL);
11163
11164 /* See if this symbol has an entry in the GOT. */
11165 if (hmips->global_got_area != GGA_NONE)
11166 {
11167 bfd_vma offset;
11168 Elf_Internal_Rela outrel;
11169 bfd_byte *loc;
11170 asection *s;
11171
11172 /* Install the symbol value in the GOT. */
11173 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11174 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11175
11176 /* Add a dynamic relocation for it. */
11177 s = mips_elf_rel_dyn_section (info, FALSE);
11178 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11179 outrel.r_offset = (sgot->output_section->vma
11180 + sgot->output_offset
11181 + offset);
11182 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11183 outrel.r_addend = 0;
11184 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11185 }
11186
11187 /* Emit a copy reloc, if needed. */
11188 if (h->needs_copy)
11189 {
11190 Elf_Internal_Rela rel;
11191 asection *srel;
11192 bfd_byte *loc;
11193
11194 BFD_ASSERT (h->dynindx != -1);
11195
11196 rel.r_offset = (h->root.u.def.section->output_section->vma
11197 + h->root.u.def.section->output_offset
11198 + h->root.u.def.value);
11199 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11200 rel.r_addend = 0;
11201 if (h->root.u.def.section == htab->root.sdynrelro)
11202 srel = htab->root.sreldynrelro;
11203 else
11204 srel = htab->root.srelbss;
11205 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11206 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11207 ++srel->reloc_count;
11208 }
11209
11210 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11211 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11212 sym->st_value &= ~1;
11213
11214 return TRUE;
11215 }
11216
11217 /* Write out a plt0 entry to the beginning of .plt. */
11218
11219 static bfd_boolean
11220 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11221 {
11222 bfd_byte *loc;
11223 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11224 static const bfd_vma *plt_entry;
11225 struct mips_elf_link_hash_table *htab;
11226
11227 htab = mips_elf_hash_table (info);
11228 BFD_ASSERT (htab != NULL);
11229
11230 if (ABI_64_P (output_bfd))
11231 plt_entry = mips_n64_exec_plt0_entry;
11232 else if (ABI_N32_P (output_bfd))
11233 plt_entry = mips_n32_exec_plt0_entry;
11234 else if (!htab->plt_header_is_comp)
11235 plt_entry = mips_o32_exec_plt0_entry;
11236 else if (htab->insn32)
11237 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11238 else
11239 plt_entry = micromips_o32_exec_plt0_entry;
11240
11241 /* Calculate the value of .got.plt. */
11242 gotplt_value = (htab->root.sgotplt->output_section->vma
11243 + htab->root.sgotplt->output_offset);
11244 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11245 gotplt_value_low = gotplt_value & 0xffff;
11246
11247 /* The PLT sequence is not safe for N64 if .got.plt's address can
11248 not be loaded in two instructions. */
11249 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11250 || ~(gotplt_value | 0x7fffffff) == 0);
11251
11252 /* Install the PLT header. */
11253 loc = htab->root.splt->contents;
11254 if (plt_entry == micromips_o32_exec_plt0_entry)
11255 {
11256 bfd_vma gotpc_offset;
11257 bfd_vma loc_address;
11258 size_t i;
11259
11260 BFD_ASSERT (gotplt_value % 4 == 0);
11261
11262 loc_address = (htab->root.splt->output_section->vma
11263 + htab->root.splt->output_offset);
11264 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11265
11266 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11267 if (gotpc_offset + 0x1000000 >= 0x2000000)
11268 {
11269 _bfd_error_handler
11270 /* xgettext:c-format */
11271 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11272 "beyond the range of ADDIUPC"),
11273 output_bfd,
11274 htab->root.sgotplt->output_section,
11275 (int64_t) gotpc_offset,
11276 htab->root.splt->output_section);
11277 bfd_set_error (bfd_error_no_error);
11278 return FALSE;
11279 }
11280 bfd_put_16 (output_bfd,
11281 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11282 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11283 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11284 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11285 }
11286 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11287 {
11288 size_t i;
11289
11290 bfd_put_16 (output_bfd, plt_entry[0], loc);
11291 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11292 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11293 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11294 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11295 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11296 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11297 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11298 }
11299 else
11300 {
11301 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11302 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11303 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11304 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11305 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11306 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11307 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11308 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11309 }
11310
11311 return TRUE;
11312 }
11313
11314 /* Install the PLT header for a VxWorks executable and finalize the
11315 contents of .rela.plt.unloaded. */
11316
11317 static void
11318 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11319 {
11320 Elf_Internal_Rela rela;
11321 bfd_byte *loc;
11322 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11323 static const bfd_vma *plt_entry;
11324 struct mips_elf_link_hash_table *htab;
11325
11326 htab = mips_elf_hash_table (info);
11327 BFD_ASSERT (htab != NULL);
11328
11329 plt_entry = mips_vxworks_exec_plt0_entry;
11330
11331 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11332 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11333 + htab->root.hgot->root.u.def.section->output_offset
11334 + htab->root.hgot->root.u.def.value);
11335
11336 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11337 got_value_low = got_value & 0xffff;
11338
11339 /* Calculate the address of the PLT header. */
11340 plt_address = (htab->root.splt->output_section->vma
11341 + htab->root.splt->output_offset);
11342
11343 /* Install the PLT header. */
11344 loc = htab->root.splt->contents;
11345 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11346 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11347 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11348 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11349 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11350 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11351
11352 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11353 loc = htab->srelplt2->contents;
11354 rela.r_offset = plt_address;
11355 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11356 rela.r_addend = 0;
11357 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11358 loc += sizeof (Elf32_External_Rela);
11359
11360 /* Output the relocation for the following addiu of
11361 %lo(_GLOBAL_OFFSET_TABLE_). */
11362 rela.r_offset += 4;
11363 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11364 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11365 loc += sizeof (Elf32_External_Rela);
11366
11367 /* Fix up the remaining relocations. They may have the wrong
11368 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11369 in which symbols were output. */
11370 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11371 {
11372 Elf_Internal_Rela rel;
11373
11374 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11375 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11376 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11377 loc += sizeof (Elf32_External_Rela);
11378
11379 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11380 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11381 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11382 loc += sizeof (Elf32_External_Rela);
11383
11384 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11385 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11386 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11387 loc += sizeof (Elf32_External_Rela);
11388 }
11389 }
11390
11391 /* Install the PLT header for a VxWorks shared library. */
11392
11393 static void
11394 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11395 {
11396 unsigned int i;
11397 struct mips_elf_link_hash_table *htab;
11398
11399 htab = mips_elf_hash_table (info);
11400 BFD_ASSERT (htab != NULL);
11401
11402 /* We just need to copy the entry byte-by-byte. */
11403 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11404 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11405 htab->root.splt->contents + i * 4);
11406 }
11407
11408 /* Finish up the dynamic sections. */
11409
11410 bfd_boolean
11411 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11412 struct bfd_link_info *info)
11413 {
11414 bfd *dynobj;
11415 asection *sdyn;
11416 asection *sgot;
11417 struct mips_got_info *gg, *g;
11418 struct mips_elf_link_hash_table *htab;
11419
11420 htab = mips_elf_hash_table (info);
11421 BFD_ASSERT (htab != NULL);
11422
11423 dynobj = elf_hash_table (info)->dynobj;
11424
11425 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11426
11427 sgot = htab->root.sgot;
11428 gg = htab->got_info;
11429
11430 if (elf_hash_table (info)->dynamic_sections_created)
11431 {
11432 bfd_byte *b;
11433 int dyn_to_skip = 0, dyn_skipped = 0;
11434
11435 BFD_ASSERT (sdyn != NULL);
11436 BFD_ASSERT (gg != NULL);
11437
11438 g = mips_elf_bfd_got (output_bfd, FALSE);
11439 BFD_ASSERT (g != NULL);
11440
11441 for (b = sdyn->contents;
11442 b < sdyn->contents + sdyn->size;
11443 b += MIPS_ELF_DYN_SIZE (dynobj))
11444 {
11445 Elf_Internal_Dyn dyn;
11446 const char *name;
11447 size_t elemsize;
11448 asection *s;
11449 bfd_boolean swap_out_p;
11450
11451 /* Read in the current dynamic entry. */
11452 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11453
11454 /* Assume that we're going to modify it and write it out. */
11455 swap_out_p = TRUE;
11456
11457 switch (dyn.d_tag)
11458 {
11459 case DT_RELENT:
11460 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11461 break;
11462
11463 case DT_RELAENT:
11464 BFD_ASSERT (htab->is_vxworks);
11465 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11466 break;
11467
11468 case DT_STRSZ:
11469 /* Rewrite DT_STRSZ. */
11470 dyn.d_un.d_val =
11471 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11472 break;
11473
11474 case DT_PLTGOT:
11475 s = htab->root.sgot;
11476 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11477 break;
11478
11479 case DT_MIPS_PLTGOT:
11480 s = htab->root.sgotplt;
11481 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11482 break;
11483
11484 case DT_MIPS_RLD_VERSION:
11485 dyn.d_un.d_val = 1; /* XXX */
11486 break;
11487
11488 case DT_MIPS_FLAGS:
11489 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11490 break;
11491
11492 case DT_MIPS_TIME_STAMP:
11493 {
11494 time_t t;
11495 time (&t);
11496 dyn.d_un.d_val = t;
11497 }
11498 break;
11499
11500 case DT_MIPS_ICHECKSUM:
11501 /* XXX FIXME: */
11502 swap_out_p = FALSE;
11503 break;
11504
11505 case DT_MIPS_IVERSION:
11506 /* XXX FIXME: */
11507 swap_out_p = FALSE;
11508 break;
11509
11510 case DT_MIPS_BASE_ADDRESS:
11511 s = output_bfd->sections;
11512 BFD_ASSERT (s != NULL);
11513 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11514 break;
11515
11516 case DT_MIPS_LOCAL_GOTNO:
11517 dyn.d_un.d_val = g->local_gotno;
11518 break;
11519
11520 case DT_MIPS_UNREFEXTNO:
11521 /* The index into the dynamic symbol table which is the
11522 entry of the first external symbol that is not
11523 referenced within the same object. */
11524 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11525 break;
11526
11527 case DT_MIPS_GOTSYM:
11528 if (htab->global_gotsym)
11529 {
11530 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11531 break;
11532 }
11533 /* In case if we don't have global got symbols we default
11534 to setting DT_MIPS_GOTSYM to the same value as
11535 DT_MIPS_SYMTABNO. */
11536 /* Fall through. */
11537
11538 case DT_MIPS_SYMTABNO:
11539 name = ".dynsym";
11540 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11541 s = bfd_get_linker_section (dynobj, name);
11542
11543 if (s != NULL)
11544 dyn.d_un.d_val = s->size / elemsize;
11545 else
11546 dyn.d_un.d_val = 0;
11547 break;
11548
11549 case DT_MIPS_HIPAGENO:
11550 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11551 break;
11552
11553 case DT_MIPS_RLD_MAP:
11554 {
11555 struct elf_link_hash_entry *h;
11556 h = mips_elf_hash_table (info)->rld_symbol;
11557 if (!h)
11558 {
11559 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11560 swap_out_p = FALSE;
11561 break;
11562 }
11563 s = h->root.u.def.section;
11564
11565 /* The MIPS_RLD_MAP tag stores the absolute address of the
11566 debug pointer. */
11567 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11568 + h->root.u.def.value);
11569 }
11570 break;
11571
11572 case DT_MIPS_RLD_MAP_REL:
11573 {
11574 struct elf_link_hash_entry *h;
11575 bfd_vma dt_addr, rld_addr;
11576 h = mips_elf_hash_table (info)->rld_symbol;
11577 if (!h)
11578 {
11579 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11580 swap_out_p = FALSE;
11581 break;
11582 }
11583 s = h->root.u.def.section;
11584
11585 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11586 pointer, relative to the address of the tag. */
11587 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11588 + (b - sdyn->contents));
11589 rld_addr = (s->output_section->vma + s->output_offset
11590 + h->root.u.def.value);
11591 dyn.d_un.d_ptr = rld_addr - dt_addr;
11592 }
11593 break;
11594
11595 case DT_MIPS_OPTIONS:
11596 s = (bfd_get_section_by_name
11597 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11598 dyn.d_un.d_ptr = s->vma;
11599 break;
11600
11601 case DT_PLTREL:
11602 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11603 if (htab->is_vxworks)
11604 dyn.d_un.d_val = DT_RELA;
11605 else
11606 dyn.d_un.d_val = DT_REL;
11607 break;
11608
11609 case DT_PLTRELSZ:
11610 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11611 dyn.d_un.d_val = htab->root.srelplt->size;
11612 break;
11613
11614 case DT_JMPREL:
11615 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11616 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11617 + htab->root.srelplt->output_offset);
11618 break;
11619
11620 case DT_TEXTREL:
11621 /* If we didn't need any text relocations after all, delete
11622 the dynamic tag. */
11623 if (!(info->flags & DF_TEXTREL))
11624 {
11625 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11626 swap_out_p = FALSE;
11627 }
11628 break;
11629
11630 case DT_FLAGS:
11631 /* If we didn't need any text relocations after all, clear
11632 DF_TEXTREL from DT_FLAGS. */
11633 if (!(info->flags & DF_TEXTREL))
11634 dyn.d_un.d_val &= ~DF_TEXTREL;
11635 else
11636 swap_out_p = FALSE;
11637 break;
11638
11639 default:
11640 swap_out_p = FALSE;
11641 if (htab->is_vxworks
11642 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11643 swap_out_p = TRUE;
11644 break;
11645 }
11646
11647 if (swap_out_p || dyn_skipped)
11648 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11649 (dynobj, &dyn, b - dyn_skipped);
11650
11651 if (dyn_to_skip)
11652 {
11653 dyn_skipped += dyn_to_skip;
11654 dyn_to_skip = 0;
11655 }
11656 }
11657
11658 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11659 if (dyn_skipped > 0)
11660 memset (b - dyn_skipped, 0, dyn_skipped);
11661 }
11662
11663 if (sgot != NULL && sgot->size > 0
11664 && !bfd_is_abs_section (sgot->output_section))
11665 {
11666 if (htab->is_vxworks)
11667 {
11668 /* The first entry of the global offset table points to the
11669 ".dynamic" section. The second is initialized by the
11670 loader and contains the shared library identifier.
11671 The third is also initialized by the loader and points
11672 to the lazy resolution stub. */
11673 MIPS_ELF_PUT_WORD (output_bfd,
11674 sdyn->output_offset + sdyn->output_section->vma,
11675 sgot->contents);
11676 MIPS_ELF_PUT_WORD (output_bfd, 0,
11677 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11678 MIPS_ELF_PUT_WORD (output_bfd, 0,
11679 sgot->contents
11680 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11681 }
11682 else
11683 {
11684 /* The first entry of the global offset table will be filled at
11685 runtime. The second entry will be used by some runtime loaders.
11686 This isn't the case of IRIX rld. */
11687 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11688 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11689 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11690 }
11691
11692 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11693 = MIPS_ELF_GOT_SIZE (output_bfd);
11694 }
11695
11696 /* Generate dynamic relocations for the non-primary gots. */
11697 if (gg != NULL && gg->next)
11698 {
11699 Elf_Internal_Rela rel[3];
11700 bfd_vma addend = 0;
11701
11702 memset (rel, 0, sizeof (rel));
11703 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11704
11705 for (g = gg->next; g->next != gg; g = g->next)
11706 {
11707 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11708 + g->next->tls_gotno;
11709
11710 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11711 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11712 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11713 sgot->contents
11714 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11715
11716 if (! bfd_link_pic (info))
11717 continue;
11718
11719 for (; got_index < g->local_gotno; got_index++)
11720 {
11721 if (got_index >= g->assigned_low_gotno
11722 && got_index <= g->assigned_high_gotno)
11723 continue;
11724
11725 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11726 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11727 if (!(mips_elf_create_dynamic_relocation
11728 (output_bfd, info, rel, NULL,
11729 bfd_abs_section_ptr,
11730 0, &addend, sgot)))
11731 return FALSE;
11732 BFD_ASSERT (addend == 0);
11733 }
11734 }
11735 }
11736
11737 /* The generation of dynamic relocations for the non-primary gots
11738 adds more dynamic relocations. We cannot count them until
11739 here. */
11740
11741 if (elf_hash_table (info)->dynamic_sections_created)
11742 {
11743 bfd_byte *b;
11744 bfd_boolean swap_out_p;
11745
11746 BFD_ASSERT (sdyn != NULL);
11747
11748 for (b = sdyn->contents;
11749 b < sdyn->contents + sdyn->size;
11750 b += MIPS_ELF_DYN_SIZE (dynobj))
11751 {
11752 Elf_Internal_Dyn dyn;
11753 asection *s;
11754
11755 /* Read in the current dynamic entry. */
11756 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11757
11758 /* Assume that we're going to modify it and write it out. */
11759 swap_out_p = TRUE;
11760
11761 switch (dyn.d_tag)
11762 {
11763 case DT_RELSZ:
11764 /* Reduce DT_RELSZ to account for any relocations we
11765 decided not to make. This is for the n64 irix rld,
11766 which doesn't seem to apply any relocations if there
11767 are trailing null entries. */
11768 s = mips_elf_rel_dyn_section (info, FALSE);
11769 dyn.d_un.d_val = (s->reloc_count
11770 * (ABI_64_P (output_bfd)
11771 ? sizeof (Elf64_Mips_External_Rel)
11772 : sizeof (Elf32_External_Rel)));
11773 /* Adjust the section size too. Tools like the prelinker
11774 can reasonably expect the values to the same. */
11775 elf_section_data (s->output_section)->this_hdr.sh_size
11776 = dyn.d_un.d_val;
11777 break;
11778
11779 default:
11780 swap_out_p = FALSE;
11781 break;
11782 }
11783
11784 if (swap_out_p)
11785 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11786 (dynobj, &dyn, b);
11787 }
11788 }
11789
11790 {
11791 asection *s;
11792 Elf32_compact_rel cpt;
11793
11794 if (SGI_COMPAT (output_bfd))
11795 {
11796 /* Write .compact_rel section out. */
11797 s = bfd_get_linker_section (dynobj, ".compact_rel");
11798 if (s != NULL)
11799 {
11800 cpt.id1 = 1;
11801 cpt.num = s->reloc_count;
11802 cpt.id2 = 2;
11803 cpt.offset = (s->output_section->filepos
11804 + sizeof (Elf32_External_compact_rel));
11805 cpt.reserved0 = 0;
11806 cpt.reserved1 = 0;
11807 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11808 ((Elf32_External_compact_rel *)
11809 s->contents));
11810
11811 /* Clean up a dummy stub function entry in .text. */
11812 if (htab->sstubs != NULL)
11813 {
11814 file_ptr dummy_offset;
11815
11816 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11817 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11818 memset (htab->sstubs->contents + dummy_offset, 0,
11819 htab->function_stub_size);
11820 }
11821 }
11822 }
11823
11824 /* The psABI says that the dynamic relocations must be sorted in
11825 increasing order of r_symndx. The VxWorks EABI doesn't require
11826 this, and because the code below handles REL rather than RELA
11827 relocations, using it for VxWorks would be outright harmful. */
11828 if (!htab->is_vxworks)
11829 {
11830 s = mips_elf_rel_dyn_section (info, FALSE);
11831 if (s != NULL
11832 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11833 {
11834 reldyn_sorting_bfd = output_bfd;
11835
11836 if (ABI_64_P (output_bfd))
11837 qsort ((Elf64_External_Rel *) s->contents + 1,
11838 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11839 sort_dynamic_relocs_64);
11840 else
11841 qsort ((Elf32_External_Rel *) s->contents + 1,
11842 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11843 sort_dynamic_relocs);
11844 }
11845 }
11846 }
11847
11848 if (htab->root.splt && htab->root.splt->size > 0)
11849 {
11850 if (htab->is_vxworks)
11851 {
11852 if (bfd_link_pic (info))
11853 mips_vxworks_finish_shared_plt (output_bfd, info);
11854 else
11855 mips_vxworks_finish_exec_plt (output_bfd, info);
11856 }
11857 else
11858 {
11859 BFD_ASSERT (!bfd_link_pic (info));
11860 if (!mips_finish_exec_plt (output_bfd, info))
11861 return FALSE;
11862 }
11863 }
11864 return TRUE;
11865 }
11866
11867
11868 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11869
11870 static void
11871 mips_set_isa_flags (bfd *abfd)
11872 {
11873 flagword val;
11874
11875 switch (bfd_get_mach (abfd))
11876 {
11877 default:
11878 case bfd_mach_mips3000:
11879 val = E_MIPS_ARCH_1;
11880 break;
11881
11882 case bfd_mach_mips3900:
11883 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11884 break;
11885
11886 case bfd_mach_mips6000:
11887 val = E_MIPS_ARCH_2;
11888 break;
11889
11890 case bfd_mach_mips4010:
11891 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
11892 break;
11893
11894 case bfd_mach_mips4000:
11895 case bfd_mach_mips4300:
11896 case bfd_mach_mips4400:
11897 case bfd_mach_mips4600:
11898 val = E_MIPS_ARCH_3;
11899 break;
11900
11901 case bfd_mach_mips4100:
11902 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11903 break;
11904
11905 case bfd_mach_mips4111:
11906 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11907 break;
11908
11909 case bfd_mach_mips4120:
11910 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11911 break;
11912
11913 case bfd_mach_mips4650:
11914 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11915 break;
11916
11917 case bfd_mach_mips5400:
11918 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11919 break;
11920
11921 case bfd_mach_mips5500:
11922 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11923 break;
11924
11925 case bfd_mach_mips5900:
11926 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11927 break;
11928
11929 case bfd_mach_mips9000:
11930 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11931 break;
11932
11933 case bfd_mach_mips5000:
11934 case bfd_mach_mips7000:
11935 case bfd_mach_mips8000:
11936 case bfd_mach_mips10000:
11937 case bfd_mach_mips12000:
11938 case bfd_mach_mips14000:
11939 case bfd_mach_mips16000:
11940 val = E_MIPS_ARCH_4;
11941 break;
11942
11943 case bfd_mach_mips5:
11944 val = E_MIPS_ARCH_5;
11945 break;
11946
11947 case bfd_mach_mips_loongson_2e:
11948 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11949 break;
11950
11951 case bfd_mach_mips_loongson_2f:
11952 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11953 break;
11954
11955 case bfd_mach_mips_sb1:
11956 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11957 break;
11958
11959 case bfd_mach_mips_loongson_3a:
11960 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11961 break;
11962
11963 case bfd_mach_mips_octeon:
11964 case bfd_mach_mips_octeonp:
11965 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11966 break;
11967
11968 case bfd_mach_mips_octeon3:
11969 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11970 break;
11971
11972 case bfd_mach_mips_xlr:
11973 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11974 break;
11975
11976 case bfd_mach_mips_octeon2:
11977 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11978 break;
11979
11980 case bfd_mach_mipsisa32:
11981 val = E_MIPS_ARCH_32;
11982 break;
11983
11984 case bfd_mach_mipsisa64:
11985 val = E_MIPS_ARCH_64;
11986 break;
11987
11988 case bfd_mach_mipsisa32r2:
11989 case bfd_mach_mipsisa32r3:
11990 case bfd_mach_mipsisa32r5:
11991 val = E_MIPS_ARCH_32R2;
11992 break;
11993
11994 case bfd_mach_mips_interaptiv_mr2:
11995 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
11996 break;
11997
11998 case bfd_mach_mipsisa64r2:
11999 case bfd_mach_mipsisa64r3:
12000 case bfd_mach_mipsisa64r5:
12001 val = E_MIPS_ARCH_64R2;
12002 break;
12003
12004 case bfd_mach_mipsisa32r6:
12005 val = E_MIPS_ARCH_32R6;
12006 break;
12007
12008 case bfd_mach_mipsisa64r6:
12009 val = E_MIPS_ARCH_64R6;
12010 break;
12011 }
12012 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12013 elf_elfheader (abfd)->e_flags |= val;
12014
12015 }
12016
12017
12018 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12019 Don't do so for code sections. We want to keep ordering of HI16/LO16
12020 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12021 relocs to be sorted. */
12022
12023 bfd_boolean
12024 _bfd_mips_elf_sort_relocs_p (asection *sec)
12025 {
12026 return (sec->flags & SEC_CODE) == 0;
12027 }
12028
12029
12030 /* The final processing done just before writing out a MIPS ELF object
12031 file. This gets the MIPS architecture right based on the machine
12032 number. This is used by both the 32-bit and the 64-bit ABI. */
12033
12034 void
12035 _bfd_mips_elf_final_write_processing (bfd *abfd,
12036 bfd_boolean linker ATTRIBUTE_UNUSED)
12037 {
12038 unsigned int i;
12039 Elf_Internal_Shdr **hdrpp;
12040 const char *name;
12041 asection *sec;
12042
12043 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12044 is nonzero. This is for compatibility with old objects, which used
12045 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12046 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12047 mips_set_isa_flags (abfd);
12048
12049 /* Set the sh_info field for .gptab sections and other appropriate
12050 info for each special section. */
12051 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12052 i < elf_numsections (abfd);
12053 i++, hdrpp++)
12054 {
12055 switch ((*hdrpp)->sh_type)
12056 {
12057 case SHT_MIPS_MSYM:
12058 case SHT_MIPS_LIBLIST:
12059 sec = bfd_get_section_by_name (abfd, ".dynstr");
12060 if (sec != NULL)
12061 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12062 break;
12063
12064 case SHT_MIPS_GPTAB:
12065 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12066 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12067 BFD_ASSERT (name != NULL
12068 && CONST_STRNEQ (name, ".gptab."));
12069 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12070 BFD_ASSERT (sec != NULL);
12071 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12072 break;
12073
12074 case SHT_MIPS_CONTENT:
12075 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12076 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12077 BFD_ASSERT (name != NULL
12078 && CONST_STRNEQ (name, ".MIPS.content"));
12079 sec = bfd_get_section_by_name (abfd,
12080 name + sizeof ".MIPS.content" - 1);
12081 BFD_ASSERT (sec != NULL);
12082 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12083 break;
12084
12085 case SHT_MIPS_SYMBOL_LIB:
12086 sec = bfd_get_section_by_name (abfd, ".dynsym");
12087 if (sec != NULL)
12088 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12089 sec = bfd_get_section_by_name (abfd, ".liblist");
12090 if (sec != NULL)
12091 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12092 break;
12093
12094 case SHT_MIPS_EVENTS:
12095 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12096 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12097 BFD_ASSERT (name != NULL);
12098 if (CONST_STRNEQ (name, ".MIPS.events"))
12099 sec = bfd_get_section_by_name (abfd,
12100 name + sizeof ".MIPS.events" - 1);
12101 else
12102 {
12103 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12104 sec = bfd_get_section_by_name (abfd,
12105 (name
12106 + sizeof ".MIPS.post_rel" - 1));
12107 }
12108 BFD_ASSERT (sec != NULL);
12109 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12110 break;
12111
12112 }
12113 }
12114 }
12115 \f
12116 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12117 segments. */
12118
12119 int
12120 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12121 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12122 {
12123 asection *s;
12124 int ret = 0;
12125
12126 /* See if we need a PT_MIPS_REGINFO segment. */
12127 s = bfd_get_section_by_name (abfd, ".reginfo");
12128 if (s && (s->flags & SEC_LOAD))
12129 ++ret;
12130
12131 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12132 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12133 ++ret;
12134
12135 /* See if we need a PT_MIPS_OPTIONS segment. */
12136 if (IRIX_COMPAT (abfd) == ict_irix6
12137 && bfd_get_section_by_name (abfd,
12138 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12139 ++ret;
12140
12141 /* See if we need a PT_MIPS_RTPROC segment. */
12142 if (IRIX_COMPAT (abfd) == ict_irix5
12143 && bfd_get_section_by_name (abfd, ".dynamic")
12144 && bfd_get_section_by_name (abfd, ".mdebug"))
12145 ++ret;
12146
12147 /* Allocate a PT_NULL header in dynamic objects. See
12148 _bfd_mips_elf_modify_segment_map for details. */
12149 if (!SGI_COMPAT (abfd)
12150 && bfd_get_section_by_name (abfd, ".dynamic"))
12151 ++ret;
12152
12153 return ret;
12154 }
12155
12156 /* Modify the segment map for an IRIX5 executable. */
12157
12158 bfd_boolean
12159 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12160 struct bfd_link_info *info)
12161 {
12162 asection *s;
12163 struct elf_segment_map *m, **pm;
12164 bfd_size_type amt;
12165
12166 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12167 segment. */
12168 s = bfd_get_section_by_name (abfd, ".reginfo");
12169 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12170 {
12171 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12172 if (m->p_type == PT_MIPS_REGINFO)
12173 break;
12174 if (m == NULL)
12175 {
12176 amt = sizeof *m;
12177 m = bfd_zalloc (abfd, amt);
12178 if (m == NULL)
12179 return FALSE;
12180
12181 m->p_type = PT_MIPS_REGINFO;
12182 m->count = 1;
12183 m->sections[0] = s;
12184
12185 /* We want to put it after the PHDR and INTERP segments. */
12186 pm = &elf_seg_map (abfd);
12187 while (*pm != NULL
12188 && ((*pm)->p_type == PT_PHDR
12189 || (*pm)->p_type == PT_INTERP))
12190 pm = &(*pm)->next;
12191
12192 m->next = *pm;
12193 *pm = m;
12194 }
12195 }
12196
12197 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12198 segment. */
12199 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12200 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12201 {
12202 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12203 if (m->p_type == PT_MIPS_ABIFLAGS)
12204 break;
12205 if (m == NULL)
12206 {
12207 amt = sizeof *m;
12208 m = bfd_zalloc (abfd, amt);
12209 if (m == NULL)
12210 return FALSE;
12211
12212 m->p_type = PT_MIPS_ABIFLAGS;
12213 m->count = 1;
12214 m->sections[0] = s;
12215
12216 /* We want to put it after the PHDR and INTERP segments. */
12217 pm = &elf_seg_map (abfd);
12218 while (*pm != NULL
12219 && ((*pm)->p_type == PT_PHDR
12220 || (*pm)->p_type == PT_INTERP))
12221 pm = &(*pm)->next;
12222
12223 m->next = *pm;
12224 *pm = m;
12225 }
12226 }
12227
12228 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12229 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12230 PT_MIPS_OPTIONS segment immediately following the program header
12231 table. */
12232 if (NEWABI_P (abfd)
12233 /* On non-IRIX6 new abi, we'll have already created a segment
12234 for this section, so don't create another. I'm not sure this
12235 is not also the case for IRIX 6, but I can't test it right
12236 now. */
12237 && IRIX_COMPAT (abfd) == ict_irix6)
12238 {
12239 for (s = abfd->sections; s; s = s->next)
12240 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12241 break;
12242
12243 if (s)
12244 {
12245 struct elf_segment_map *options_segment;
12246
12247 pm = &elf_seg_map (abfd);
12248 while (*pm != NULL
12249 && ((*pm)->p_type == PT_PHDR
12250 || (*pm)->p_type == PT_INTERP))
12251 pm = &(*pm)->next;
12252
12253 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12254 {
12255 amt = sizeof (struct elf_segment_map);
12256 options_segment = bfd_zalloc (abfd, amt);
12257 options_segment->next = *pm;
12258 options_segment->p_type = PT_MIPS_OPTIONS;
12259 options_segment->p_flags = PF_R;
12260 options_segment->p_flags_valid = TRUE;
12261 options_segment->count = 1;
12262 options_segment->sections[0] = s;
12263 *pm = options_segment;
12264 }
12265 }
12266 }
12267 else
12268 {
12269 if (IRIX_COMPAT (abfd) == ict_irix5)
12270 {
12271 /* If there are .dynamic and .mdebug sections, we make a room
12272 for the RTPROC header. FIXME: Rewrite without section names. */
12273 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12274 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12275 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12276 {
12277 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12278 if (m->p_type == PT_MIPS_RTPROC)
12279 break;
12280 if (m == NULL)
12281 {
12282 amt = sizeof *m;
12283 m = bfd_zalloc (abfd, amt);
12284 if (m == NULL)
12285 return FALSE;
12286
12287 m->p_type = PT_MIPS_RTPROC;
12288
12289 s = bfd_get_section_by_name (abfd, ".rtproc");
12290 if (s == NULL)
12291 {
12292 m->count = 0;
12293 m->p_flags = 0;
12294 m->p_flags_valid = 1;
12295 }
12296 else
12297 {
12298 m->count = 1;
12299 m->sections[0] = s;
12300 }
12301
12302 /* We want to put it after the DYNAMIC segment. */
12303 pm = &elf_seg_map (abfd);
12304 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12305 pm = &(*pm)->next;
12306 if (*pm != NULL)
12307 pm = &(*pm)->next;
12308
12309 m->next = *pm;
12310 *pm = m;
12311 }
12312 }
12313 }
12314 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12315 .dynstr, .dynsym, and .hash sections, and everything in
12316 between. */
12317 for (pm = &elf_seg_map (abfd); *pm != NULL;
12318 pm = &(*pm)->next)
12319 if ((*pm)->p_type == PT_DYNAMIC)
12320 break;
12321 m = *pm;
12322 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12323 glibc's dynamic linker has traditionally derived the number of
12324 tags from the p_filesz field, and sometimes allocates stack
12325 arrays of that size. An overly-big PT_DYNAMIC segment can
12326 be actively harmful in such cases. Making PT_DYNAMIC contain
12327 other sections can also make life hard for the prelinker,
12328 which might move one of the other sections to a different
12329 PT_LOAD segment. */
12330 if (SGI_COMPAT (abfd)
12331 && m != NULL
12332 && m->count == 1
12333 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12334 {
12335 static const char *sec_names[] =
12336 {
12337 ".dynamic", ".dynstr", ".dynsym", ".hash"
12338 };
12339 bfd_vma low, high;
12340 unsigned int i, c;
12341 struct elf_segment_map *n;
12342
12343 low = ~(bfd_vma) 0;
12344 high = 0;
12345 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12346 {
12347 s = bfd_get_section_by_name (abfd, sec_names[i]);
12348 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12349 {
12350 bfd_size_type sz;
12351
12352 if (low > s->vma)
12353 low = s->vma;
12354 sz = s->size;
12355 if (high < s->vma + sz)
12356 high = s->vma + sz;
12357 }
12358 }
12359
12360 c = 0;
12361 for (s = abfd->sections; s != NULL; s = s->next)
12362 if ((s->flags & SEC_LOAD) != 0
12363 && s->vma >= low
12364 && s->vma + s->size <= high)
12365 ++c;
12366
12367 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12368 n = bfd_zalloc (abfd, amt);
12369 if (n == NULL)
12370 return FALSE;
12371 *n = *m;
12372 n->count = c;
12373
12374 i = 0;
12375 for (s = abfd->sections; s != NULL; s = s->next)
12376 {
12377 if ((s->flags & SEC_LOAD) != 0
12378 && s->vma >= low
12379 && s->vma + s->size <= high)
12380 {
12381 n->sections[i] = s;
12382 ++i;
12383 }
12384 }
12385
12386 *pm = n;
12387 }
12388 }
12389
12390 /* Allocate a spare program header in dynamic objects so that tools
12391 like the prelinker can add an extra PT_LOAD entry.
12392
12393 If the prelinker needs to make room for a new PT_LOAD entry, its
12394 standard procedure is to move the first (read-only) sections into
12395 the new (writable) segment. However, the MIPS ABI requires
12396 .dynamic to be in a read-only segment, and the section will often
12397 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12398
12399 Although the prelinker could in principle move .dynamic to a
12400 writable segment, it seems better to allocate a spare program
12401 header instead, and avoid the need to move any sections.
12402 There is a long tradition of allocating spare dynamic tags,
12403 so allocating a spare program header seems like a natural
12404 extension.
12405
12406 If INFO is NULL, we may be copying an already prelinked binary
12407 with objcopy or strip, so do not add this header. */
12408 if (info != NULL
12409 && !SGI_COMPAT (abfd)
12410 && bfd_get_section_by_name (abfd, ".dynamic"))
12411 {
12412 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12413 if ((*pm)->p_type == PT_NULL)
12414 break;
12415 if (*pm == NULL)
12416 {
12417 m = bfd_zalloc (abfd, sizeof (*m));
12418 if (m == NULL)
12419 return FALSE;
12420
12421 m->p_type = PT_NULL;
12422 *pm = m;
12423 }
12424 }
12425
12426 return TRUE;
12427 }
12428 \f
12429 /* Return the section that should be marked against GC for a given
12430 relocation. */
12431
12432 asection *
12433 _bfd_mips_elf_gc_mark_hook (asection *sec,
12434 struct bfd_link_info *info,
12435 Elf_Internal_Rela *rel,
12436 struct elf_link_hash_entry *h,
12437 Elf_Internal_Sym *sym)
12438 {
12439 /* ??? Do mips16 stub sections need to be handled special? */
12440
12441 if (h != NULL)
12442 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12443 {
12444 case R_MIPS_GNU_VTINHERIT:
12445 case R_MIPS_GNU_VTENTRY:
12446 return NULL;
12447 }
12448
12449 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12450 }
12451
12452 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12453
12454 bfd_boolean
12455 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12456 elf_gc_mark_hook_fn gc_mark_hook)
12457 {
12458 bfd *sub;
12459
12460 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12461
12462 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12463 {
12464 asection *o;
12465
12466 if (! is_mips_elf (sub))
12467 continue;
12468
12469 for (o = sub->sections; o != NULL; o = o->next)
12470 if (!o->gc_mark
12471 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12472 (bfd_get_section_name (sub, o)))
12473 {
12474 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12475 return FALSE;
12476 }
12477 }
12478
12479 return TRUE;
12480 }
12481 \f
12482 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12483 hiding the old indirect symbol. Process additional relocation
12484 information. Also called for weakdefs, in which case we just let
12485 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12486
12487 void
12488 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12489 struct elf_link_hash_entry *dir,
12490 struct elf_link_hash_entry *ind)
12491 {
12492 struct mips_elf_link_hash_entry *dirmips, *indmips;
12493
12494 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12495
12496 dirmips = (struct mips_elf_link_hash_entry *) dir;
12497 indmips = (struct mips_elf_link_hash_entry *) ind;
12498 /* Any absolute non-dynamic relocations against an indirect or weak
12499 definition will be against the target symbol. */
12500 if (indmips->has_static_relocs)
12501 dirmips->has_static_relocs = TRUE;
12502
12503 if (ind->root.type != bfd_link_hash_indirect)
12504 return;
12505
12506 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12507 if (indmips->readonly_reloc)
12508 dirmips->readonly_reloc = TRUE;
12509 if (indmips->no_fn_stub)
12510 dirmips->no_fn_stub = TRUE;
12511 if (indmips->fn_stub)
12512 {
12513 dirmips->fn_stub = indmips->fn_stub;
12514 indmips->fn_stub = NULL;
12515 }
12516 if (indmips->need_fn_stub)
12517 {
12518 dirmips->need_fn_stub = TRUE;
12519 indmips->need_fn_stub = FALSE;
12520 }
12521 if (indmips->call_stub)
12522 {
12523 dirmips->call_stub = indmips->call_stub;
12524 indmips->call_stub = NULL;
12525 }
12526 if (indmips->call_fp_stub)
12527 {
12528 dirmips->call_fp_stub = indmips->call_fp_stub;
12529 indmips->call_fp_stub = NULL;
12530 }
12531 if (indmips->global_got_area < dirmips->global_got_area)
12532 dirmips->global_got_area = indmips->global_got_area;
12533 if (indmips->global_got_area < GGA_NONE)
12534 indmips->global_got_area = GGA_NONE;
12535 if (indmips->has_nonpic_branches)
12536 dirmips->has_nonpic_branches = TRUE;
12537 }
12538 \f
12539 #define PDR_SIZE 32
12540
12541 bfd_boolean
12542 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12543 struct bfd_link_info *info)
12544 {
12545 asection *o;
12546 bfd_boolean ret = FALSE;
12547 unsigned char *tdata;
12548 size_t i, skip;
12549
12550 o = bfd_get_section_by_name (abfd, ".pdr");
12551 if (! o)
12552 return FALSE;
12553 if (o->size == 0)
12554 return FALSE;
12555 if (o->size % PDR_SIZE != 0)
12556 return FALSE;
12557 if (o->output_section != NULL
12558 && bfd_is_abs_section (o->output_section))
12559 return FALSE;
12560
12561 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12562 if (! tdata)
12563 return FALSE;
12564
12565 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12566 info->keep_memory);
12567 if (!cookie->rels)
12568 {
12569 free (tdata);
12570 return FALSE;
12571 }
12572
12573 cookie->rel = cookie->rels;
12574 cookie->relend = cookie->rels + o->reloc_count;
12575
12576 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12577 {
12578 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12579 {
12580 tdata[i] = 1;
12581 skip ++;
12582 }
12583 }
12584
12585 if (skip != 0)
12586 {
12587 mips_elf_section_data (o)->u.tdata = tdata;
12588 if (o->rawsize == 0)
12589 o->rawsize = o->size;
12590 o->size -= skip * PDR_SIZE;
12591 ret = TRUE;
12592 }
12593 else
12594 free (tdata);
12595
12596 if (! info->keep_memory)
12597 free (cookie->rels);
12598
12599 return ret;
12600 }
12601
12602 bfd_boolean
12603 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12604 {
12605 if (strcmp (sec->name, ".pdr") == 0)
12606 return TRUE;
12607 return FALSE;
12608 }
12609
12610 bfd_boolean
12611 _bfd_mips_elf_write_section (bfd *output_bfd,
12612 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12613 asection *sec, bfd_byte *contents)
12614 {
12615 bfd_byte *to, *from, *end;
12616 int i;
12617
12618 if (strcmp (sec->name, ".pdr") != 0)
12619 return FALSE;
12620
12621 if (mips_elf_section_data (sec)->u.tdata == NULL)
12622 return FALSE;
12623
12624 to = contents;
12625 end = contents + sec->size;
12626 for (from = contents, i = 0;
12627 from < end;
12628 from += PDR_SIZE, i++)
12629 {
12630 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12631 continue;
12632 if (to != from)
12633 memcpy (to, from, PDR_SIZE);
12634 to += PDR_SIZE;
12635 }
12636 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12637 sec->output_offset, sec->size);
12638 return TRUE;
12639 }
12640 \f
12641 /* microMIPS code retains local labels for linker relaxation. Omit them
12642 from output by default for clarity. */
12643
12644 bfd_boolean
12645 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12646 {
12647 return _bfd_elf_is_local_label_name (abfd, sym->name);
12648 }
12649
12650 /* MIPS ELF uses a special find_nearest_line routine in order the
12651 handle the ECOFF debugging information. */
12652
12653 struct mips_elf_find_line
12654 {
12655 struct ecoff_debug_info d;
12656 struct ecoff_find_line i;
12657 };
12658
12659 bfd_boolean
12660 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12661 asection *section, bfd_vma offset,
12662 const char **filename_ptr,
12663 const char **functionname_ptr,
12664 unsigned int *line_ptr,
12665 unsigned int *discriminator_ptr)
12666 {
12667 asection *msec;
12668
12669 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12670 filename_ptr, functionname_ptr,
12671 line_ptr, discriminator_ptr,
12672 dwarf_debug_sections,
12673 ABI_64_P (abfd) ? 8 : 0,
12674 &elf_tdata (abfd)->dwarf2_find_line_info)
12675 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12676 filename_ptr, functionname_ptr,
12677 line_ptr))
12678 {
12679 /* PR 22789: If the function name or filename was not found through
12680 the debug information, then try an ordinary lookup instead. */
12681 if ((functionname_ptr != NULL && *functionname_ptr == NULL)
12682 || (filename_ptr != NULL && *filename_ptr == NULL))
12683 {
12684 /* Do not override already discovered names. */
12685 if (functionname_ptr != NULL && *functionname_ptr != NULL)
12686 functionname_ptr = NULL;
12687
12688 if (filename_ptr != NULL && *filename_ptr != NULL)
12689 filename_ptr = NULL;
12690
12691 _bfd_elf_find_function (abfd, symbols, section, offset,
12692 filename_ptr, functionname_ptr);
12693 }
12694
12695 return TRUE;
12696 }
12697
12698 msec = bfd_get_section_by_name (abfd, ".mdebug");
12699 if (msec != NULL)
12700 {
12701 flagword origflags;
12702 struct mips_elf_find_line *fi;
12703 const struct ecoff_debug_swap * const swap =
12704 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12705
12706 /* If we are called during a link, mips_elf_final_link may have
12707 cleared the SEC_HAS_CONTENTS field. We force it back on here
12708 if appropriate (which it normally will be). */
12709 origflags = msec->flags;
12710 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12711 msec->flags |= SEC_HAS_CONTENTS;
12712
12713 fi = mips_elf_tdata (abfd)->find_line_info;
12714 if (fi == NULL)
12715 {
12716 bfd_size_type external_fdr_size;
12717 char *fraw_src;
12718 char *fraw_end;
12719 struct fdr *fdr_ptr;
12720 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12721
12722 fi = bfd_zalloc (abfd, amt);
12723 if (fi == NULL)
12724 {
12725 msec->flags = origflags;
12726 return FALSE;
12727 }
12728
12729 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12730 {
12731 msec->flags = origflags;
12732 return FALSE;
12733 }
12734
12735 /* Swap in the FDR information. */
12736 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12737 fi->d.fdr = bfd_alloc (abfd, amt);
12738 if (fi->d.fdr == NULL)
12739 {
12740 msec->flags = origflags;
12741 return FALSE;
12742 }
12743 external_fdr_size = swap->external_fdr_size;
12744 fdr_ptr = fi->d.fdr;
12745 fraw_src = (char *) fi->d.external_fdr;
12746 fraw_end = (fraw_src
12747 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12748 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12749 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12750
12751 mips_elf_tdata (abfd)->find_line_info = fi;
12752
12753 /* Note that we don't bother to ever free this information.
12754 find_nearest_line is either called all the time, as in
12755 objdump -l, so the information should be saved, or it is
12756 rarely called, as in ld error messages, so the memory
12757 wasted is unimportant. Still, it would probably be a
12758 good idea for free_cached_info to throw it away. */
12759 }
12760
12761 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12762 &fi->i, filename_ptr, functionname_ptr,
12763 line_ptr))
12764 {
12765 msec->flags = origflags;
12766 return TRUE;
12767 }
12768
12769 msec->flags = origflags;
12770 }
12771
12772 /* Fall back on the generic ELF find_nearest_line routine. */
12773
12774 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12775 filename_ptr, functionname_ptr,
12776 line_ptr, discriminator_ptr);
12777 }
12778
12779 bfd_boolean
12780 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12781 const char **filename_ptr,
12782 const char **functionname_ptr,
12783 unsigned int *line_ptr)
12784 {
12785 bfd_boolean found;
12786 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12787 functionname_ptr, line_ptr,
12788 & elf_tdata (abfd)->dwarf2_find_line_info);
12789 return found;
12790 }
12791
12792 \f
12793 /* When are writing out the .options or .MIPS.options section,
12794 remember the bytes we are writing out, so that we can install the
12795 GP value in the section_processing routine. */
12796
12797 bfd_boolean
12798 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12799 const void *location,
12800 file_ptr offset, bfd_size_type count)
12801 {
12802 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12803 {
12804 bfd_byte *c;
12805
12806 if (elf_section_data (section) == NULL)
12807 {
12808 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12809 section->used_by_bfd = bfd_zalloc (abfd, amt);
12810 if (elf_section_data (section) == NULL)
12811 return FALSE;
12812 }
12813 c = mips_elf_section_data (section)->u.tdata;
12814 if (c == NULL)
12815 {
12816 c = bfd_zalloc (abfd, section->size);
12817 if (c == NULL)
12818 return FALSE;
12819 mips_elf_section_data (section)->u.tdata = c;
12820 }
12821
12822 memcpy (c + offset, location, count);
12823 }
12824
12825 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12826 count);
12827 }
12828
12829 /* This is almost identical to bfd_generic_get_... except that some
12830 MIPS relocations need to be handled specially. Sigh. */
12831
12832 bfd_byte *
12833 _bfd_elf_mips_get_relocated_section_contents
12834 (bfd *abfd,
12835 struct bfd_link_info *link_info,
12836 struct bfd_link_order *link_order,
12837 bfd_byte *data,
12838 bfd_boolean relocatable,
12839 asymbol **symbols)
12840 {
12841 /* Get enough memory to hold the stuff */
12842 bfd *input_bfd = link_order->u.indirect.section->owner;
12843 asection *input_section = link_order->u.indirect.section;
12844 bfd_size_type sz;
12845
12846 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12847 arelent **reloc_vector = NULL;
12848 long reloc_count;
12849
12850 if (reloc_size < 0)
12851 goto error_return;
12852
12853 reloc_vector = bfd_malloc (reloc_size);
12854 if (reloc_vector == NULL && reloc_size != 0)
12855 goto error_return;
12856
12857 /* read in the section */
12858 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12859 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12860 goto error_return;
12861
12862 reloc_count = bfd_canonicalize_reloc (input_bfd,
12863 input_section,
12864 reloc_vector,
12865 symbols);
12866 if (reloc_count < 0)
12867 goto error_return;
12868
12869 if (reloc_count > 0)
12870 {
12871 arelent **parent;
12872 /* for mips */
12873 int gp_found;
12874 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12875
12876 {
12877 struct bfd_hash_entry *h;
12878 struct bfd_link_hash_entry *lh;
12879 /* Skip all this stuff if we aren't mixing formats. */
12880 if (abfd && input_bfd
12881 && abfd->xvec == input_bfd->xvec)
12882 lh = 0;
12883 else
12884 {
12885 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12886 lh = (struct bfd_link_hash_entry *) h;
12887 }
12888 lookup:
12889 if (lh)
12890 {
12891 switch (lh->type)
12892 {
12893 case bfd_link_hash_undefined:
12894 case bfd_link_hash_undefweak:
12895 case bfd_link_hash_common:
12896 gp_found = 0;
12897 break;
12898 case bfd_link_hash_defined:
12899 case bfd_link_hash_defweak:
12900 gp_found = 1;
12901 gp = lh->u.def.value;
12902 break;
12903 case bfd_link_hash_indirect:
12904 case bfd_link_hash_warning:
12905 lh = lh->u.i.link;
12906 /* @@FIXME ignoring warning for now */
12907 goto lookup;
12908 case bfd_link_hash_new:
12909 default:
12910 abort ();
12911 }
12912 }
12913 else
12914 gp_found = 0;
12915 }
12916 /* end mips */
12917 for (parent = reloc_vector; *parent != NULL; parent++)
12918 {
12919 char *error_message = NULL;
12920 bfd_reloc_status_type r;
12921
12922 /* Specific to MIPS: Deal with relocation types that require
12923 knowing the gp of the output bfd. */
12924 asymbol *sym = *(*parent)->sym_ptr_ptr;
12925
12926 /* If we've managed to find the gp and have a special
12927 function for the relocation then go ahead, else default
12928 to the generic handling. */
12929 if (gp_found
12930 && (*parent)->howto->special_function
12931 == _bfd_mips_elf32_gprel16_reloc)
12932 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12933 input_section, relocatable,
12934 data, gp);
12935 else
12936 r = bfd_perform_relocation (input_bfd, *parent, data,
12937 input_section,
12938 relocatable ? abfd : NULL,
12939 &error_message);
12940
12941 if (relocatable)
12942 {
12943 asection *os = input_section->output_section;
12944
12945 /* A partial link, so keep the relocs */
12946 os->orelocation[os->reloc_count] = *parent;
12947 os->reloc_count++;
12948 }
12949
12950 if (r != bfd_reloc_ok)
12951 {
12952 switch (r)
12953 {
12954 case bfd_reloc_undefined:
12955 (*link_info->callbacks->undefined_symbol)
12956 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12957 input_bfd, input_section, (*parent)->address, TRUE);
12958 break;
12959 case bfd_reloc_dangerous:
12960 BFD_ASSERT (error_message != NULL);
12961 (*link_info->callbacks->reloc_dangerous)
12962 (link_info, error_message,
12963 input_bfd, input_section, (*parent)->address);
12964 break;
12965 case bfd_reloc_overflow:
12966 (*link_info->callbacks->reloc_overflow)
12967 (link_info, NULL,
12968 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12969 (*parent)->howto->name, (*parent)->addend,
12970 input_bfd, input_section, (*parent)->address);
12971 break;
12972 case bfd_reloc_outofrange:
12973 default:
12974 abort ();
12975 break;
12976 }
12977
12978 }
12979 }
12980 }
12981 if (reloc_vector != NULL)
12982 free (reloc_vector);
12983 return data;
12984
12985 error_return:
12986 if (reloc_vector != NULL)
12987 free (reloc_vector);
12988 return NULL;
12989 }
12990 \f
12991 static bfd_boolean
12992 mips_elf_relax_delete_bytes (bfd *abfd,
12993 asection *sec, bfd_vma addr, int count)
12994 {
12995 Elf_Internal_Shdr *symtab_hdr;
12996 unsigned int sec_shndx;
12997 bfd_byte *contents;
12998 Elf_Internal_Rela *irel, *irelend;
12999 Elf_Internal_Sym *isym;
13000 Elf_Internal_Sym *isymend;
13001 struct elf_link_hash_entry **sym_hashes;
13002 struct elf_link_hash_entry **end_hashes;
13003 struct elf_link_hash_entry **start_hashes;
13004 unsigned int symcount;
13005
13006 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13007 contents = elf_section_data (sec)->this_hdr.contents;
13008
13009 irel = elf_section_data (sec)->relocs;
13010 irelend = irel + sec->reloc_count;
13011
13012 /* Actually delete the bytes. */
13013 memmove (contents + addr, contents + addr + count,
13014 (size_t) (sec->size - addr - count));
13015 sec->size -= count;
13016
13017 /* Adjust all the relocs. */
13018 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13019 {
13020 /* Get the new reloc address. */
13021 if (irel->r_offset > addr)
13022 irel->r_offset -= count;
13023 }
13024
13025 BFD_ASSERT (addr % 2 == 0);
13026 BFD_ASSERT (count % 2 == 0);
13027
13028 /* Adjust the local symbols defined in this section. */
13029 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13030 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13031 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13032 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13033 isym->st_value -= count;
13034
13035 /* Now adjust the global symbols defined in this section. */
13036 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13037 - symtab_hdr->sh_info);
13038 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13039 end_hashes = sym_hashes + symcount;
13040
13041 for (; sym_hashes < end_hashes; sym_hashes++)
13042 {
13043 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13044
13045 if ((sym_hash->root.type == bfd_link_hash_defined
13046 || sym_hash->root.type == bfd_link_hash_defweak)
13047 && sym_hash->root.u.def.section == sec)
13048 {
13049 bfd_vma value = sym_hash->root.u.def.value;
13050
13051 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13052 value &= MINUS_TWO;
13053 if (value > addr)
13054 sym_hash->root.u.def.value -= count;
13055 }
13056 }
13057
13058 return TRUE;
13059 }
13060
13061
13062 /* Opcodes needed for microMIPS relaxation as found in
13063 opcodes/micromips-opc.c. */
13064
13065 struct opcode_descriptor {
13066 unsigned long match;
13067 unsigned long mask;
13068 };
13069
13070 /* The $ra register aka $31. */
13071
13072 #define RA 31
13073
13074 /* 32-bit instruction format register fields. */
13075
13076 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13077 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13078
13079 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13080
13081 #define OP16_VALID_REG(r) \
13082 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13083
13084
13085 /* 32-bit and 16-bit branches. */
13086
13087 static const struct opcode_descriptor b_insns_32[] = {
13088 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13089 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13090 { 0, 0 } /* End marker for find_match(). */
13091 };
13092
13093 static const struct opcode_descriptor bc_insn_32 =
13094 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13095
13096 static const struct opcode_descriptor bz_insn_32 =
13097 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13098
13099 static const struct opcode_descriptor bzal_insn_32 =
13100 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13101
13102 static const struct opcode_descriptor beq_insn_32 =
13103 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13104
13105 static const struct opcode_descriptor b_insn_16 =
13106 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13107
13108 static const struct opcode_descriptor bz_insn_16 =
13109 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13110
13111
13112 /* 32-bit and 16-bit branch EQ and NE zero. */
13113
13114 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13115 eq and second the ne. This convention is used when replacing a
13116 32-bit BEQ/BNE with the 16-bit version. */
13117
13118 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13119
13120 static const struct opcode_descriptor bz_rs_insns_32[] = {
13121 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13122 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13123 { 0, 0 } /* End marker for find_match(). */
13124 };
13125
13126 static const struct opcode_descriptor bz_rt_insns_32[] = {
13127 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13128 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13129 { 0, 0 } /* End marker for find_match(). */
13130 };
13131
13132 static const struct opcode_descriptor bzc_insns_32[] = {
13133 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13134 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13135 { 0, 0 } /* End marker for find_match(). */
13136 };
13137
13138 static const struct opcode_descriptor bz_insns_16[] = {
13139 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13140 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13141 { 0, 0 } /* End marker for find_match(). */
13142 };
13143
13144 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13145
13146 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13147 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13148
13149
13150 /* 32-bit instructions with a delay slot. */
13151
13152 static const struct opcode_descriptor jal_insn_32_bd16 =
13153 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13154
13155 static const struct opcode_descriptor jal_insn_32_bd32 =
13156 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13157
13158 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13159 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13160
13161 static const struct opcode_descriptor j_insn_32 =
13162 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13163
13164 static const struct opcode_descriptor jalr_insn_32 =
13165 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13166
13167 /* This table can be compacted, because no opcode replacement is made. */
13168
13169 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13170 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13171
13172 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13173 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13174
13175 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13176 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13177 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13178 { 0, 0 } /* End marker for find_match(). */
13179 };
13180
13181 /* This table can be compacted, because no opcode replacement is made. */
13182
13183 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13184 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13185
13186 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13187 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13188 { 0, 0 } /* End marker for find_match(). */
13189 };
13190
13191
13192 /* 16-bit instructions with a delay slot. */
13193
13194 static const struct opcode_descriptor jalr_insn_16_bd16 =
13195 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13196
13197 static const struct opcode_descriptor jalr_insn_16_bd32 =
13198 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13199
13200 static const struct opcode_descriptor jr_insn_16 =
13201 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13202
13203 #define JR16_REG(opcode) ((opcode) & 0x1f)
13204
13205 /* This table can be compacted, because no opcode replacement is made. */
13206
13207 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13208 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13209
13210 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13211 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13212 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13213 { 0, 0 } /* End marker for find_match(). */
13214 };
13215
13216
13217 /* LUI instruction. */
13218
13219 static const struct opcode_descriptor lui_insn =
13220 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13221
13222
13223 /* ADDIU instruction. */
13224
13225 static const struct opcode_descriptor addiu_insn =
13226 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13227
13228 static const struct opcode_descriptor addiupc_insn =
13229 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13230
13231 #define ADDIUPC_REG_FIELD(r) \
13232 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13233
13234
13235 /* Relaxable instructions in a JAL delay slot: MOVE. */
13236
13237 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13238 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13239 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13240 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13241
13242 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13243 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13244
13245 static const struct opcode_descriptor move_insns_32[] = {
13246 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13247 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13248 { 0, 0 } /* End marker for find_match(). */
13249 };
13250
13251 static const struct opcode_descriptor move_insn_16 =
13252 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13253
13254
13255 /* NOP instructions. */
13256
13257 static const struct opcode_descriptor nop_insn_32 =
13258 { /* "nop", "", */ 0x00000000, 0xffffffff };
13259
13260 static const struct opcode_descriptor nop_insn_16 =
13261 { /* "nop", "", */ 0x0c00, 0xffff };
13262
13263
13264 /* Instruction match support. */
13265
13266 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13267
13268 static int
13269 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13270 {
13271 unsigned long indx;
13272
13273 for (indx = 0; insn[indx].mask != 0; indx++)
13274 if (MATCH (opcode, insn[indx]))
13275 return indx;
13276
13277 return -1;
13278 }
13279
13280
13281 /* Branch and delay slot decoding support. */
13282
13283 /* If PTR points to what *might* be a 16-bit branch or jump, then
13284 return the minimum length of its delay slot, otherwise return 0.
13285 Non-zero results are not definitive as we might be checking against
13286 the second half of another instruction. */
13287
13288 static int
13289 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13290 {
13291 unsigned long opcode;
13292 int bdsize;
13293
13294 opcode = bfd_get_16 (abfd, ptr);
13295 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13296 /* 16-bit branch/jump with a 32-bit delay slot. */
13297 bdsize = 4;
13298 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13299 || find_match (opcode, ds_insns_16_bd16) >= 0)
13300 /* 16-bit branch/jump with a 16-bit delay slot. */
13301 bdsize = 2;
13302 else
13303 /* No delay slot. */
13304 bdsize = 0;
13305
13306 return bdsize;
13307 }
13308
13309 /* If PTR points to what *might* be a 32-bit branch or jump, then
13310 return the minimum length of its delay slot, otherwise return 0.
13311 Non-zero results are not definitive as we might be checking against
13312 the second half of another instruction. */
13313
13314 static int
13315 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13316 {
13317 unsigned long opcode;
13318 int bdsize;
13319
13320 opcode = bfd_get_micromips_32 (abfd, ptr);
13321 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13322 /* 32-bit branch/jump with a 32-bit delay slot. */
13323 bdsize = 4;
13324 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13325 /* 32-bit branch/jump with a 16-bit delay slot. */
13326 bdsize = 2;
13327 else
13328 /* No delay slot. */
13329 bdsize = 0;
13330
13331 return bdsize;
13332 }
13333
13334 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13335 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13336
13337 static bfd_boolean
13338 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13339 {
13340 unsigned long opcode;
13341
13342 opcode = bfd_get_16 (abfd, ptr);
13343 if (MATCH (opcode, b_insn_16)
13344 /* B16 */
13345 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13346 /* JR16 */
13347 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13348 /* BEQZ16, BNEZ16 */
13349 || (MATCH (opcode, jalr_insn_16_bd32)
13350 /* JALR16 */
13351 && reg != JR16_REG (opcode) && reg != RA))
13352 return TRUE;
13353
13354 return FALSE;
13355 }
13356
13357 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13358 then return TRUE, otherwise FALSE. */
13359
13360 static bfd_boolean
13361 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13362 {
13363 unsigned long opcode;
13364
13365 opcode = bfd_get_micromips_32 (abfd, ptr);
13366 if (MATCH (opcode, j_insn_32)
13367 /* J */
13368 || MATCH (opcode, bc_insn_32)
13369 /* BC1F, BC1T, BC2F, BC2T */
13370 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13371 /* JAL, JALX */
13372 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13373 /* BGEZ, BGTZ, BLEZ, BLTZ */
13374 || (MATCH (opcode, bzal_insn_32)
13375 /* BGEZAL, BLTZAL */
13376 && reg != OP32_SREG (opcode) && reg != RA)
13377 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13378 /* JALR, JALR.HB, BEQ, BNE */
13379 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13380 return TRUE;
13381
13382 return FALSE;
13383 }
13384
13385 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13386 IRELEND) at OFFSET indicate that there must be a compact branch there,
13387 then return TRUE, otherwise FALSE. */
13388
13389 static bfd_boolean
13390 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13391 const Elf_Internal_Rela *internal_relocs,
13392 const Elf_Internal_Rela *irelend)
13393 {
13394 const Elf_Internal_Rela *irel;
13395 unsigned long opcode;
13396
13397 opcode = bfd_get_micromips_32 (abfd, ptr);
13398 if (find_match (opcode, bzc_insns_32) < 0)
13399 return FALSE;
13400
13401 for (irel = internal_relocs; irel < irelend; irel++)
13402 if (irel->r_offset == offset
13403 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13404 return TRUE;
13405
13406 return FALSE;
13407 }
13408
13409 /* Bitsize checking. */
13410 #define IS_BITSIZE(val, N) \
13411 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13412 - (1ULL << ((N) - 1))) == (val))
13413
13414 \f
13415 bfd_boolean
13416 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13417 struct bfd_link_info *link_info,
13418 bfd_boolean *again)
13419 {
13420 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13421 Elf_Internal_Shdr *symtab_hdr;
13422 Elf_Internal_Rela *internal_relocs;
13423 Elf_Internal_Rela *irel, *irelend;
13424 bfd_byte *contents = NULL;
13425 Elf_Internal_Sym *isymbuf = NULL;
13426
13427 /* Assume nothing changes. */
13428 *again = FALSE;
13429
13430 /* We don't have to do anything for a relocatable link, if
13431 this section does not have relocs, or if this is not a
13432 code section. */
13433
13434 if (bfd_link_relocatable (link_info)
13435 || (sec->flags & SEC_RELOC) == 0
13436 || sec->reloc_count == 0
13437 || (sec->flags & SEC_CODE) == 0)
13438 return TRUE;
13439
13440 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13441
13442 /* Get a copy of the native relocations. */
13443 internal_relocs = (_bfd_elf_link_read_relocs
13444 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13445 link_info->keep_memory));
13446 if (internal_relocs == NULL)
13447 goto error_return;
13448
13449 /* Walk through them looking for relaxing opportunities. */
13450 irelend = internal_relocs + sec->reloc_count;
13451 for (irel = internal_relocs; irel < irelend; irel++)
13452 {
13453 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13454 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13455 bfd_boolean target_is_micromips_code_p;
13456 unsigned long opcode;
13457 bfd_vma symval;
13458 bfd_vma pcrval;
13459 bfd_byte *ptr;
13460 int fndopc;
13461
13462 /* The number of bytes to delete for relaxation and from where
13463 to delete these bytes starting at irel->r_offset. */
13464 int delcnt = 0;
13465 int deloff = 0;
13466
13467 /* If this isn't something that can be relaxed, then ignore
13468 this reloc. */
13469 if (r_type != R_MICROMIPS_HI16
13470 && r_type != R_MICROMIPS_PC16_S1
13471 && r_type != R_MICROMIPS_26_S1)
13472 continue;
13473
13474 /* Get the section contents if we haven't done so already. */
13475 if (contents == NULL)
13476 {
13477 /* Get cached copy if it exists. */
13478 if (elf_section_data (sec)->this_hdr.contents != NULL)
13479 contents = elf_section_data (sec)->this_hdr.contents;
13480 /* Go get them off disk. */
13481 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13482 goto error_return;
13483 }
13484 ptr = contents + irel->r_offset;
13485
13486 /* Read this BFD's local symbols if we haven't done so already. */
13487 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13488 {
13489 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13490 if (isymbuf == NULL)
13491 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13492 symtab_hdr->sh_info, 0,
13493 NULL, NULL, NULL);
13494 if (isymbuf == NULL)
13495 goto error_return;
13496 }
13497
13498 /* Get the value of the symbol referred to by the reloc. */
13499 if (r_symndx < symtab_hdr->sh_info)
13500 {
13501 /* A local symbol. */
13502 Elf_Internal_Sym *isym;
13503 asection *sym_sec;
13504
13505 isym = isymbuf + r_symndx;
13506 if (isym->st_shndx == SHN_UNDEF)
13507 sym_sec = bfd_und_section_ptr;
13508 else if (isym->st_shndx == SHN_ABS)
13509 sym_sec = bfd_abs_section_ptr;
13510 else if (isym->st_shndx == SHN_COMMON)
13511 sym_sec = bfd_com_section_ptr;
13512 else
13513 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13514 symval = (isym->st_value
13515 + sym_sec->output_section->vma
13516 + sym_sec->output_offset);
13517 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13518 }
13519 else
13520 {
13521 unsigned long indx;
13522 struct elf_link_hash_entry *h;
13523
13524 /* An external symbol. */
13525 indx = r_symndx - symtab_hdr->sh_info;
13526 h = elf_sym_hashes (abfd)[indx];
13527 BFD_ASSERT (h != NULL);
13528
13529 if (h->root.type != bfd_link_hash_defined
13530 && h->root.type != bfd_link_hash_defweak)
13531 /* This appears to be a reference to an undefined
13532 symbol. Just ignore it -- it will be caught by the
13533 regular reloc processing. */
13534 continue;
13535
13536 symval = (h->root.u.def.value
13537 + h->root.u.def.section->output_section->vma
13538 + h->root.u.def.section->output_offset);
13539 target_is_micromips_code_p = (!h->needs_plt
13540 && ELF_ST_IS_MICROMIPS (h->other));
13541 }
13542
13543
13544 /* For simplicity of coding, we are going to modify the
13545 section contents, the section relocs, and the BFD symbol
13546 table. We must tell the rest of the code not to free up this
13547 information. It would be possible to instead create a table
13548 of changes which have to be made, as is done in coff-mips.c;
13549 that would be more work, but would require less memory when
13550 the linker is run. */
13551
13552 /* Only 32-bit instructions relaxed. */
13553 if (irel->r_offset + 4 > sec->size)
13554 continue;
13555
13556 opcode = bfd_get_micromips_32 (abfd, ptr);
13557
13558 /* This is the pc-relative distance from the instruction the
13559 relocation is applied to, to the symbol referred. */
13560 pcrval = (symval
13561 - (sec->output_section->vma + sec->output_offset)
13562 - irel->r_offset);
13563
13564 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13565 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13566 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13567
13568 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13569
13570 where pcrval has first to be adjusted to apply against the LO16
13571 location (we make the adjustment later on, when we have figured
13572 out the offset). */
13573 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13574 {
13575 bfd_boolean bzc = FALSE;
13576 unsigned long nextopc;
13577 unsigned long reg;
13578 bfd_vma offset;
13579
13580 /* Give up if the previous reloc was a HI16 against this symbol
13581 too. */
13582 if (irel > internal_relocs
13583 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13584 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13585 continue;
13586
13587 /* Or if the next reloc is not a LO16 against this symbol. */
13588 if (irel + 1 >= irelend
13589 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13590 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13591 continue;
13592
13593 /* Or if the second next reloc is a LO16 against this symbol too. */
13594 if (irel + 2 >= irelend
13595 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13596 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13597 continue;
13598
13599 /* See if the LUI instruction *might* be in a branch delay slot.
13600 We check whether what looks like a 16-bit branch or jump is
13601 actually an immediate argument to a compact branch, and let
13602 it through if so. */
13603 if (irel->r_offset >= 2
13604 && check_br16_dslot (abfd, ptr - 2)
13605 && !(irel->r_offset >= 4
13606 && (bzc = check_relocated_bzc (abfd,
13607 ptr - 4, irel->r_offset - 4,
13608 internal_relocs, irelend))))
13609 continue;
13610 if (irel->r_offset >= 4
13611 && !bzc
13612 && check_br32_dslot (abfd, ptr - 4))
13613 continue;
13614
13615 reg = OP32_SREG (opcode);
13616
13617 /* We only relax adjacent instructions or ones separated with
13618 a branch or jump that has a delay slot. The branch or jump
13619 must not fiddle with the register used to hold the address.
13620 Subtract 4 for the LUI itself. */
13621 offset = irel[1].r_offset - irel[0].r_offset;
13622 switch (offset - 4)
13623 {
13624 case 0:
13625 break;
13626 case 2:
13627 if (check_br16 (abfd, ptr + 4, reg))
13628 break;
13629 continue;
13630 case 4:
13631 if (check_br32 (abfd, ptr + 4, reg))
13632 break;
13633 continue;
13634 default:
13635 continue;
13636 }
13637
13638 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13639
13640 /* Give up unless the same register is used with both
13641 relocations. */
13642 if (OP32_SREG (nextopc) != reg)
13643 continue;
13644
13645 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13646 and rounding up to take masking of the two LSBs into account. */
13647 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13648
13649 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13650 if (IS_BITSIZE (symval, 16))
13651 {
13652 /* Fix the relocation's type. */
13653 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13654
13655 /* Instructions using R_MICROMIPS_LO16 have the base or
13656 source register in bits 20:16. This register becomes $0
13657 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13658 nextopc &= ~0x001f0000;
13659 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13660 contents + irel[1].r_offset);
13661 }
13662
13663 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13664 We add 4 to take LUI deletion into account while checking
13665 the PC-relative distance. */
13666 else if (symval % 4 == 0
13667 && IS_BITSIZE (pcrval + 4, 25)
13668 && MATCH (nextopc, addiu_insn)
13669 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13670 && OP16_VALID_REG (OP32_TREG (nextopc)))
13671 {
13672 /* Fix the relocation's type. */
13673 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13674
13675 /* Replace ADDIU with the ADDIUPC version. */
13676 nextopc = (addiupc_insn.match
13677 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13678
13679 bfd_put_micromips_32 (abfd, nextopc,
13680 contents + irel[1].r_offset);
13681 }
13682
13683 /* Can't do anything, give up, sigh... */
13684 else
13685 continue;
13686
13687 /* Fix the relocation's type. */
13688 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13689
13690 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13691 delcnt = 4;
13692 deloff = 0;
13693 }
13694
13695 /* Compact branch relaxation -- due to the multitude of macros
13696 employed by the compiler/assembler, compact branches are not
13697 always generated. Obviously, this can/will be fixed elsewhere,
13698 but there is no drawback in double checking it here. */
13699 else if (r_type == R_MICROMIPS_PC16_S1
13700 && irel->r_offset + 5 < sec->size
13701 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13702 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13703 && ((!insn32
13704 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13705 nop_insn_16) ? 2 : 0))
13706 || (irel->r_offset + 7 < sec->size
13707 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13708 ptr + 4),
13709 nop_insn_32) ? 4 : 0))))
13710 {
13711 unsigned long reg;
13712
13713 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13714
13715 /* Replace BEQZ/BNEZ with the compact version. */
13716 opcode = (bzc_insns_32[fndopc].match
13717 | BZC32_REG_FIELD (reg)
13718 | (opcode & 0xffff)); /* Addend value. */
13719
13720 bfd_put_micromips_32 (abfd, opcode, ptr);
13721
13722 /* Delete the delay slot NOP: two or four bytes from
13723 irel->offset + 4; delcnt has already been set above. */
13724 deloff = 4;
13725 }
13726
13727 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13728 to check the distance from the next instruction, so subtract 2. */
13729 else if (!insn32
13730 && r_type == R_MICROMIPS_PC16_S1
13731 && IS_BITSIZE (pcrval - 2, 11)
13732 && find_match (opcode, b_insns_32) >= 0)
13733 {
13734 /* Fix the relocation's type. */
13735 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13736
13737 /* Replace the 32-bit opcode with a 16-bit opcode. */
13738 bfd_put_16 (abfd,
13739 (b_insn_16.match
13740 | (opcode & 0x3ff)), /* Addend value. */
13741 ptr);
13742
13743 /* Delete 2 bytes from irel->r_offset + 2. */
13744 delcnt = 2;
13745 deloff = 2;
13746 }
13747
13748 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13749 to check the distance from the next instruction, so subtract 2. */
13750 else if (!insn32
13751 && r_type == R_MICROMIPS_PC16_S1
13752 && IS_BITSIZE (pcrval - 2, 8)
13753 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13754 && OP16_VALID_REG (OP32_SREG (opcode)))
13755 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13756 && OP16_VALID_REG (OP32_TREG (opcode)))))
13757 {
13758 unsigned long reg;
13759
13760 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13761
13762 /* Fix the relocation's type. */
13763 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13764
13765 /* Replace the 32-bit opcode with a 16-bit opcode. */
13766 bfd_put_16 (abfd,
13767 (bz_insns_16[fndopc].match
13768 | BZ16_REG_FIELD (reg)
13769 | (opcode & 0x7f)), /* Addend value. */
13770 ptr);
13771
13772 /* Delete 2 bytes from irel->r_offset + 2. */
13773 delcnt = 2;
13774 deloff = 2;
13775 }
13776
13777 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13778 else if (!insn32
13779 && r_type == R_MICROMIPS_26_S1
13780 && target_is_micromips_code_p
13781 && irel->r_offset + 7 < sec->size
13782 && MATCH (opcode, jal_insn_32_bd32))
13783 {
13784 unsigned long n32opc;
13785 bfd_boolean relaxed = FALSE;
13786
13787 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13788
13789 if (MATCH (n32opc, nop_insn_32))
13790 {
13791 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13792 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13793
13794 relaxed = TRUE;
13795 }
13796 else if (find_match (n32opc, move_insns_32) >= 0)
13797 {
13798 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13799 bfd_put_16 (abfd,
13800 (move_insn_16.match
13801 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13802 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13803 ptr + 4);
13804
13805 relaxed = TRUE;
13806 }
13807 /* Other 32-bit instructions relaxable to 16-bit
13808 instructions will be handled here later. */
13809
13810 if (relaxed)
13811 {
13812 /* JAL with 32-bit delay slot that is changed to a JALS
13813 with 16-bit delay slot. */
13814 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13815
13816 /* Delete 2 bytes from irel->r_offset + 6. */
13817 delcnt = 2;
13818 deloff = 6;
13819 }
13820 }
13821
13822 if (delcnt != 0)
13823 {
13824 /* Note that we've changed the relocs, section contents, etc. */
13825 elf_section_data (sec)->relocs = internal_relocs;
13826 elf_section_data (sec)->this_hdr.contents = contents;
13827 symtab_hdr->contents = (unsigned char *) isymbuf;
13828
13829 /* Delete bytes depending on the delcnt and deloff. */
13830 if (!mips_elf_relax_delete_bytes (abfd, sec,
13831 irel->r_offset + deloff, delcnt))
13832 goto error_return;
13833
13834 /* That will change things, so we should relax again.
13835 Note that this is not required, and it may be slow. */
13836 *again = TRUE;
13837 }
13838 }
13839
13840 if (isymbuf != NULL
13841 && symtab_hdr->contents != (unsigned char *) isymbuf)
13842 {
13843 if (! link_info->keep_memory)
13844 free (isymbuf);
13845 else
13846 {
13847 /* Cache the symbols for elf_link_input_bfd. */
13848 symtab_hdr->contents = (unsigned char *) isymbuf;
13849 }
13850 }
13851
13852 if (contents != NULL
13853 && elf_section_data (sec)->this_hdr.contents != contents)
13854 {
13855 if (! link_info->keep_memory)
13856 free (contents);
13857 else
13858 {
13859 /* Cache the section contents for elf_link_input_bfd. */
13860 elf_section_data (sec)->this_hdr.contents = contents;
13861 }
13862 }
13863
13864 if (internal_relocs != NULL
13865 && elf_section_data (sec)->relocs != internal_relocs)
13866 free (internal_relocs);
13867
13868 return TRUE;
13869
13870 error_return:
13871 if (isymbuf != NULL
13872 && symtab_hdr->contents != (unsigned char *) isymbuf)
13873 free (isymbuf);
13874 if (contents != NULL
13875 && elf_section_data (sec)->this_hdr.contents != contents)
13876 free (contents);
13877 if (internal_relocs != NULL
13878 && elf_section_data (sec)->relocs != internal_relocs)
13879 free (internal_relocs);
13880
13881 return FALSE;
13882 }
13883 \f
13884 /* Create a MIPS ELF linker hash table. */
13885
13886 struct bfd_link_hash_table *
13887 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13888 {
13889 struct mips_elf_link_hash_table *ret;
13890 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13891
13892 ret = bfd_zmalloc (amt);
13893 if (ret == NULL)
13894 return NULL;
13895
13896 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13897 mips_elf_link_hash_newfunc,
13898 sizeof (struct mips_elf_link_hash_entry),
13899 MIPS_ELF_DATA))
13900 {
13901 free (ret);
13902 return NULL;
13903 }
13904 ret->root.init_plt_refcount.plist = NULL;
13905 ret->root.init_plt_offset.plist = NULL;
13906
13907 return &ret->root.root;
13908 }
13909
13910 /* Likewise, but indicate that the target is VxWorks. */
13911
13912 struct bfd_link_hash_table *
13913 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13914 {
13915 struct bfd_link_hash_table *ret;
13916
13917 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13918 if (ret)
13919 {
13920 struct mips_elf_link_hash_table *htab;
13921
13922 htab = (struct mips_elf_link_hash_table *) ret;
13923 htab->use_plts_and_copy_relocs = TRUE;
13924 htab->is_vxworks = TRUE;
13925 }
13926 return ret;
13927 }
13928
13929 /* A function that the linker calls if we are allowed to use PLTs
13930 and copy relocs. */
13931
13932 void
13933 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13934 {
13935 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13936 }
13937
13938 /* A function that the linker calls to select between all or only
13939 32-bit microMIPS instructions, and between making or ignoring
13940 branch relocation checks for invalid transitions between ISA modes. */
13941
13942 void
13943 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
13944 bfd_boolean ignore_branch_isa)
13945 {
13946 mips_elf_hash_table (info)->insn32 = insn32;
13947 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
13948 }
13949 \f
13950 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13951
13952 struct mips_mach_extension
13953 {
13954 unsigned long extension, base;
13955 };
13956
13957
13958 /* An array describing how BFD machines relate to one another. The entries
13959 are ordered topologically with MIPS I extensions listed last. */
13960
13961 static const struct mips_mach_extension mips_mach_extensions[] =
13962 {
13963 /* MIPS64r2 extensions. */
13964 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13965 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13966 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13967 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13968 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13969
13970 /* MIPS64 extensions. */
13971 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13972 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13973 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13974
13975 /* MIPS V extensions. */
13976 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13977
13978 /* R10000 extensions. */
13979 { bfd_mach_mips12000, bfd_mach_mips10000 },
13980 { bfd_mach_mips14000, bfd_mach_mips10000 },
13981 { bfd_mach_mips16000, bfd_mach_mips10000 },
13982
13983 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13984 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13985 better to allow vr5400 and vr5500 code to be merged anyway, since
13986 many libraries will just use the core ISA. Perhaps we could add
13987 some sort of ASE flag if this ever proves a problem. */
13988 { bfd_mach_mips5500, bfd_mach_mips5400 },
13989 { bfd_mach_mips5400, bfd_mach_mips5000 },
13990
13991 /* MIPS IV extensions. */
13992 { bfd_mach_mips5, bfd_mach_mips8000 },
13993 { bfd_mach_mips10000, bfd_mach_mips8000 },
13994 { bfd_mach_mips5000, bfd_mach_mips8000 },
13995 { bfd_mach_mips7000, bfd_mach_mips8000 },
13996 { bfd_mach_mips9000, bfd_mach_mips8000 },
13997
13998 /* VR4100 extensions. */
13999 { bfd_mach_mips4120, bfd_mach_mips4100 },
14000 { bfd_mach_mips4111, bfd_mach_mips4100 },
14001
14002 /* MIPS III extensions. */
14003 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14004 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14005 { bfd_mach_mips8000, bfd_mach_mips4000 },
14006 { bfd_mach_mips4650, bfd_mach_mips4000 },
14007 { bfd_mach_mips4600, bfd_mach_mips4000 },
14008 { bfd_mach_mips4400, bfd_mach_mips4000 },
14009 { bfd_mach_mips4300, bfd_mach_mips4000 },
14010 { bfd_mach_mips4100, bfd_mach_mips4000 },
14011 { bfd_mach_mips5900, bfd_mach_mips4000 },
14012
14013 /* MIPS32r3 extensions. */
14014 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14015
14016 /* MIPS32r2 extensions. */
14017 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14018
14019 /* MIPS32 extensions. */
14020 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14021
14022 /* MIPS II extensions. */
14023 { bfd_mach_mips4000, bfd_mach_mips6000 },
14024 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14025 { bfd_mach_mips4010, bfd_mach_mips6000 },
14026
14027 /* MIPS I extensions. */
14028 { bfd_mach_mips6000, bfd_mach_mips3000 },
14029 { bfd_mach_mips3900, bfd_mach_mips3000 }
14030 };
14031
14032 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14033
14034 static bfd_boolean
14035 mips_mach_extends_p (unsigned long base, unsigned long extension)
14036 {
14037 size_t i;
14038
14039 if (extension == base)
14040 return TRUE;
14041
14042 if (base == bfd_mach_mipsisa32
14043 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14044 return TRUE;
14045
14046 if (base == bfd_mach_mipsisa32r2
14047 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14048 return TRUE;
14049
14050 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14051 if (extension == mips_mach_extensions[i].extension)
14052 {
14053 extension = mips_mach_extensions[i].base;
14054 if (extension == base)
14055 return TRUE;
14056 }
14057
14058 return FALSE;
14059 }
14060
14061 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14062
14063 static unsigned long
14064 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14065 {
14066 switch (isa_ext)
14067 {
14068 case AFL_EXT_3900: return bfd_mach_mips3900;
14069 case AFL_EXT_4010: return bfd_mach_mips4010;
14070 case AFL_EXT_4100: return bfd_mach_mips4100;
14071 case AFL_EXT_4111: return bfd_mach_mips4111;
14072 case AFL_EXT_4120: return bfd_mach_mips4120;
14073 case AFL_EXT_4650: return bfd_mach_mips4650;
14074 case AFL_EXT_5400: return bfd_mach_mips5400;
14075 case AFL_EXT_5500: return bfd_mach_mips5500;
14076 case AFL_EXT_5900: return bfd_mach_mips5900;
14077 case AFL_EXT_10000: return bfd_mach_mips10000;
14078 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14079 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14080 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14081 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14082 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14083 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14084 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14085 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14086 default: return bfd_mach_mips3000;
14087 }
14088 }
14089
14090 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14091
14092 unsigned int
14093 bfd_mips_isa_ext (bfd *abfd)
14094 {
14095 switch (bfd_get_mach (abfd))
14096 {
14097 case bfd_mach_mips3900: return AFL_EXT_3900;
14098 case bfd_mach_mips4010: return AFL_EXT_4010;
14099 case bfd_mach_mips4100: return AFL_EXT_4100;
14100 case bfd_mach_mips4111: return AFL_EXT_4111;
14101 case bfd_mach_mips4120: return AFL_EXT_4120;
14102 case bfd_mach_mips4650: return AFL_EXT_4650;
14103 case bfd_mach_mips5400: return AFL_EXT_5400;
14104 case bfd_mach_mips5500: return AFL_EXT_5500;
14105 case bfd_mach_mips5900: return AFL_EXT_5900;
14106 case bfd_mach_mips10000: return AFL_EXT_10000;
14107 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14108 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14109 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14110 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14111 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14112 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14113 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14114 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14115 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14116 case bfd_mach_mips_interaptiv_mr2:
14117 return AFL_EXT_INTERAPTIV_MR2;
14118 default: return 0;
14119 }
14120 }
14121
14122 /* Encode ISA level and revision as a single value. */
14123 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14124
14125 /* Decode a single value into level and revision. */
14126 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14127 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14128
14129 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14130
14131 static void
14132 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14133 {
14134 int new_isa = 0;
14135 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14136 {
14137 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14138 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14139 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14140 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14141 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14142 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14143 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14144 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14145 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14146 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14147 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14148 default:
14149 _bfd_error_handler
14150 /* xgettext:c-format */
14151 (_("%pB: unknown architecture %s"),
14152 abfd, bfd_printable_name (abfd));
14153 }
14154
14155 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14156 {
14157 abiflags->isa_level = ISA_LEVEL (new_isa);
14158 abiflags->isa_rev = ISA_REV (new_isa);
14159 }
14160
14161 /* Update the isa_ext if ABFD describes a further extension. */
14162 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14163 bfd_get_mach (abfd)))
14164 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14165 }
14166
14167 /* Return true if the given ELF header flags describe a 32-bit binary. */
14168
14169 static bfd_boolean
14170 mips_32bit_flags_p (flagword flags)
14171 {
14172 return ((flags & EF_MIPS_32BITMODE) != 0
14173 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14174 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14175 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14176 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14177 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14178 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14179 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14180 }
14181
14182 /* Infer the content of the ABI flags based on the elf header. */
14183
14184 static void
14185 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14186 {
14187 obj_attribute *in_attr;
14188
14189 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14190 update_mips_abiflags_isa (abfd, abiflags);
14191
14192 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14193 abiflags->gpr_size = AFL_REG_32;
14194 else
14195 abiflags->gpr_size = AFL_REG_64;
14196
14197 abiflags->cpr1_size = AFL_REG_NONE;
14198
14199 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14200 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14201
14202 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14203 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14204 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14205 && abiflags->gpr_size == AFL_REG_32))
14206 abiflags->cpr1_size = AFL_REG_32;
14207 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14208 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14209 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14210 abiflags->cpr1_size = AFL_REG_64;
14211
14212 abiflags->cpr2_size = AFL_REG_NONE;
14213
14214 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14215 abiflags->ases |= AFL_ASE_MDMX;
14216 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14217 abiflags->ases |= AFL_ASE_MIPS16;
14218 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14219 abiflags->ases |= AFL_ASE_MICROMIPS;
14220
14221 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14222 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14223 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14224 && abiflags->isa_level >= 32
14225 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14226 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14227 }
14228
14229 /* We need to use a special link routine to handle the .reginfo and
14230 the .mdebug sections. We need to merge all instances of these
14231 sections together, not write them all out sequentially. */
14232
14233 bfd_boolean
14234 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14235 {
14236 asection *o;
14237 struct bfd_link_order *p;
14238 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14239 asection *rtproc_sec, *abiflags_sec;
14240 Elf32_RegInfo reginfo;
14241 struct ecoff_debug_info debug;
14242 struct mips_htab_traverse_info hti;
14243 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14244 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14245 HDRR *symhdr = &debug.symbolic_header;
14246 void *mdebug_handle = NULL;
14247 asection *s;
14248 EXTR esym;
14249 unsigned int i;
14250 bfd_size_type amt;
14251 struct mips_elf_link_hash_table *htab;
14252
14253 static const char * const secname[] =
14254 {
14255 ".text", ".init", ".fini", ".data",
14256 ".rodata", ".sdata", ".sbss", ".bss"
14257 };
14258 static const int sc[] =
14259 {
14260 scText, scInit, scFini, scData,
14261 scRData, scSData, scSBss, scBss
14262 };
14263
14264 htab = mips_elf_hash_table (info);
14265 BFD_ASSERT (htab != NULL);
14266
14267 /* Sort the dynamic symbols so that those with GOT entries come after
14268 those without. */
14269 if (!mips_elf_sort_hash_table (abfd, info))
14270 return FALSE;
14271
14272 /* Create any scheduled LA25 stubs. */
14273 hti.info = info;
14274 hti.output_bfd = abfd;
14275 hti.error = FALSE;
14276 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14277 if (hti.error)
14278 return FALSE;
14279
14280 /* Get a value for the GP register. */
14281 if (elf_gp (abfd) == 0)
14282 {
14283 struct bfd_link_hash_entry *h;
14284
14285 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14286 if (h != NULL && h->type == bfd_link_hash_defined)
14287 elf_gp (abfd) = (h->u.def.value
14288 + h->u.def.section->output_section->vma
14289 + h->u.def.section->output_offset);
14290 else if (htab->is_vxworks
14291 && (h = bfd_link_hash_lookup (info->hash,
14292 "_GLOBAL_OFFSET_TABLE_",
14293 FALSE, FALSE, TRUE))
14294 && h->type == bfd_link_hash_defined)
14295 elf_gp (abfd) = (h->u.def.section->output_section->vma
14296 + h->u.def.section->output_offset
14297 + h->u.def.value);
14298 else if (bfd_link_relocatable (info))
14299 {
14300 bfd_vma lo = MINUS_ONE;
14301
14302 /* Find the GP-relative section with the lowest offset. */
14303 for (o = abfd->sections; o != NULL; o = o->next)
14304 if (o->vma < lo
14305 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14306 lo = o->vma;
14307
14308 /* And calculate GP relative to that. */
14309 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14310 }
14311 else
14312 {
14313 /* If the relocate_section function needs to do a reloc
14314 involving the GP value, it should make a reloc_dangerous
14315 callback to warn that GP is not defined. */
14316 }
14317 }
14318
14319 /* Go through the sections and collect the .reginfo and .mdebug
14320 information. */
14321 abiflags_sec = NULL;
14322 reginfo_sec = NULL;
14323 mdebug_sec = NULL;
14324 gptab_data_sec = NULL;
14325 gptab_bss_sec = NULL;
14326 for (o = abfd->sections; o != NULL; o = o->next)
14327 {
14328 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14329 {
14330 /* We have found the .MIPS.abiflags section in the output file.
14331 Look through all the link_orders comprising it and remove them.
14332 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14333 for (p = o->map_head.link_order; p != NULL; p = p->next)
14334 {
14335 asection *input_section;
14336
14337 if (p->type != bfd_indirect_link_order)
14338 {
14339 if (p->type == bfd_data_link_order)
14340 continue;
14341 abort ();
14342 }
14343
14344 input_section = p->u.indirect.section;
14345
14346 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14347 elf_link_input_bfd ignores this section. */
14348 input_section->flags &= ~SEC_HAS_CONTENTS;
14349 }
14350
14351 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14352 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14353
14354 /* Skip this section later on (I don't think this currently
14355 matters, but someday it might). */
14356 o->map_head.link_order = NULL;
14357
14358 abiflags_sec = o;
14359 }
14360
14361 if (strcmp (o->name, ".reginfo") == 0)
14362 {
14363 memset (&reginfo, 0, sizeof reginfo);
14364
14365 /* We have found the .reginfo section in the output file.
14366 Look through all the link_orders comprising it and merge
14367 the information together. */
14368 for (p = o->map_head.link_order; p != NULL; p = p->next)
14369 {
14370 asection *input_section;
14371 bfd *input_bfd;
14372 Elf32_External_RegInfo ext;
14373 Elf32_RegInfo sub;
14374 bfd_size_type sz;
14375
14376 if (p->type != bfd_indirect_link_order)
14377 {
14378 if (p->type == bfd_data_link_order)
14379 continue;
14380 abort ();
14381 }
14382
14383 input_section = p->u.indirect.section;
14384 input_bfd = input_section->owner;
14385
14386 sz = (input_section->size < sizeof (ext)
14387 ? input_section->size : sizeof (ext));
14388 memset (&ext, 0, sizeof (ext));
14389 if (! bfd_get_section_contents (input_bfd, input_section,
14390 &ext, 0, sz))
14391 return FALSE;
14392
14393 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14394
14395 reginfo.ri_gprmask |= sub.ri_gprmask;
14396 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14397 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14398 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14399 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14400
14401 /* ri_gp_value is set by the function
14402 `_bfd_mips_elf_section_processing' when the section is
14403 finally written out. */
14404
14405 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14406 elf_link_input_bfd ignores this section. */
14407 input_section->flags &= ~SEC_HAS_CONTENTS;
14408 }
14409
14410 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14411 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14412
14413 /* Skip this section later on (I don't think this currently
14414 matters, but someday it might). */
14415 o->map_head.link_order = NULL;
14416
14417 reginfo_sec = o;
14418 }
14419
14420 if (strcmp (o->name, ".mdebug") == 0)
14421 {
14422 struct extsym_info einfo;
14423 bfd_vma last;
14424
14425 /* We have found the .mdebug section in the output file.
14426 Look through all the link_orders comprising it and merge
14427 the information together. */
14428 symhdr->magic = swap->sym_magic;
14429 /* FIXME: What should the version stamp be? */
14430 symhdr->vstamp = 0;
14431 symhdr->ilineMax = 0;
14432 symhdr->cbLine = 0;
14433 symhdr->idnMax = 0;
14434 symhdr->ipdMax = 0;
14435 symhdr->isymMax = 0;
14436 symhdr->ioptMax = 0;
14437 symhdr->iauxMax = 0;
14438 symhdr->issMax = 0;
14439 symhdr->issExtMax = 0;
14440 symhdr->ifdMax = 0;
14441 symhdr->crfd = 0;
14442 symhdr->iextMax = 0;
14443
14444 /* We accumulate the debugging information itself in the
14445 debug_info structure. */
14446 debug.line = NULL;
14447 debug.external_dnr = NULL;
14448 debug.external_pdr = NULL;
14449 debug.external_sym = NULL;
14450 debug.external_opt = NULL;
14451 debug.external_aux = NULL;
14452 debug.ss = NULL;
14453 debug.ssext = debug.ssext_end = NULL;
14454 debug.external_fdr = NULL;
14455 debug.external_rfd = NULL;
14456 debug.external_ext = debug.external_ext_end = NULL;
14457
14458 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14459 if (mdebug_handle == NULL)
14460 return FALSE;
14461
14462 esym.jmptbl = 0;
14463 esym.cobol_main = 0;
14464 esym.weakext = 0;
14465 esym.reserved = 0;
14466 esym.ifd = ifdNil;
14467 esym.asym.iss = issNil;
14468 esym.asym.st = stLocal;
14469 esym.asym.reserved = 0;
14470 esym.asym.index = indexNil;
14471 last = 0;
14472 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14473 {
14474 esym.asym.sc = sc[i];
14475 s = bfd_get_section_by_name (abfd, secname[i]);
14476 if (s != NULL)
14477 {
14478 esym.asym.value = s->vma;
14479 last = s->vma + s->size;
14480 }
14481 else
14482 esym.asym.value = last;
14483 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14484 secname[i], &esym))
14485 return FALSE;
14486 }
14487
14488 for (p = o->map_head.link_order; p != NULL; p = p->next)
14489 {
14490 asection *input_section;
14491 bfd *input_bfd;
14492 const struct ecoff_debug_swap *input_swap;
14493 struct ecoff_debug_info input_debug;
14494 char *eraw_src;
14495 char *eraw_end;
14496
14497 if (p->type != bfd_indirect_link_order)
14498 {
14499 if (p->type == bfd_data_link_order)
14500 continue;
14501 abort ();
14502 }
14503
14504 input_section = p->u.indirect.section;
14505 input_bfd = input_section->owner;
14506
14507 if (!is_mips_elf (input_bfd))
14508 {
14509 /* I don't know what a non MIPS ELF bfd would be
14510 doing with a .mdebug section, but I don't really
14511 want to deal with it. */
14512 continue;
14513 }
14514
14515 input_swap = (get_elf_backend_data (input_bfd)
14516 ->elf_backend_ecoff_debug_swap);
14517
14518 BFD_ASSERT (p->size == input_section->size);
14519
14520 /* The ECOFF linking code expects that we have already
14521 read in the debugging information and set up an
14522 ecoff_debug_info structure, so we do that now. */
14523 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14524 &input_debug))
14525 return FALSE;
14526
14527 if (! (bfd_ecoff_debug_accumulate
14528 (mdebug_handle, abfd, &debug, swap, input_bfd,
14529 &input_debug, input_swap, info)))
14530 return FALSE;
14531
14532 /* Loop through the external symbols. For each one with
14533 interesting information, try to find the symbol in
14534 the linker global hash table and save the information
14535 for the output external symbols. */
14536 eraw_src = input_debug.external_ext;
14537 eraw_end = (eraw_src
14538 + (input_debug.symbolic_header.iextMax
14539 * input_swap->external_ext_size));
14540 for (;
14541 eraw_src < eraw_end;
14542 eraw_src += input_swap->external_ext_size)
14543 {
14544 EXTR ext;
14545 const char *name;
14546 struct mips_elf_link_hash_entry *h;
14547
14548 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14549 if (ext.asym.sc == scNil
14550 || ext.asym.sc == scUndefined
14551 || ext.asym.sc == scSUndefined)
14552 continue;
14553
14554 name = input_debug.ssext + ext.asym.iss;
14555 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14556 name, FALSE, FALSE, TRUE);
14557 if (h == NULL || h->esym.ifd != -2)
14558 continue;
14559
14560 if (ext.ifd != -1)
14561 {
14562 BFD_ASSERT (ext.ifd
14563 < input_debug.symbolic_header.ifdMax);
14564 ext.ifd = input_debug.ifdmap[ext.ifd];
14565 }
14566
14567 h->esym = ext;
14568 }
14569
14570 /* Free up the information we just read. */
14571 free (input_debug.line);
14572 free (input_debug.external_dnr);
14573 free (input_debug.external_pdr);
14574 free (input_debug.external_sym);
14575 free (input_debug.external_opt);
14576 free (input_debug.external_aux);
14577 free (input_debug.ss);
14578 free (input_debug.ssext);
14579 free (input_debug.external_fdr);
14580 free (input_debug.external_rfd);
14581 free (input_debug.external_ext);
14582
14583 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14584 elf_link_input_bfd ignores this section. */
14585 input_section->flags &= ~SEC_HAS_CONTENTS;
14586 }
14587
14588 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14589 {
14590 /* Create .rtproc section. */
14591 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14592 if (rtproc_sec == NULL)
14593 {
14594 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14595 | SEC_LINKER_CREATED | SEC_READONLY);
14596
14597 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14598 ".rtproc",
14599 flags);
14600 if (rtproc_sec == NULL
14601 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14602 return FALSE;
14603 }
14604
14605 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14606 info, rtproc_sec,
14607 &debug))
14608 return FALSE;
14609 }
14610
14611 /* Build the external symbol information. */
14612 einfo.abfd = abfd;
14613 einfo.info = info;
14614 einfo.debug = &debug;
14615 einfo.swap = swap;
14616 einfo.failed = FALSE;
14617 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14618 mips_elf_output_extsym, &einfo);
14619 if (einfo.failed)
14620 return FALSE;
14621
14622 /* Set the size of the .mdebug section. */
14623 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14624
14625 /* Skip this section later on (I don't think this currently
14626 matters, but someday it might). */
14627 o->map_head.link_order = NULL;
14628
14629 mdebug_sec = o;
14630 }
14631
14632 if (CONST_STRNEQ (o->name, ".gptab."))
14633 {
14634 const char *subname;
14635 unsigned int c;
14636 Elf32_gptab *tab;
14637 Elf32_External_gptab *ext_tab;
14638 unsigned int j;
14639
14640 /* The .gptab.sdata and .gptab.sbss sections hold
14641 information describing how the small data area would
14642 change depending upon the -G switch. These sections
14643 not used in executables files. */
14644 if (! bfd_link_relocatable (info))
14645 {
14646 for (p = o->map_head.link_order; p != NULL; p = p->next)
14647 {
14648 asection *input_section;
14649
14650 if (p->type != bfd_indirect_link_order)
14651 {
14652 if (p->type == bfd_data_link_order)
14653 continue;
14654 abort ();
14655 }
14656
14657 input_section = p->u.indirect.section;
14658
14659 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14660 elf_link_input_bfd ignores this section. */
14661 input_section->flags &= ~SEC_HAS_CONTENTS;
14662 }
14663
14664 /* Skip this section later on (I don't think this
14665 currently matters, but someday it might). */
14666 o->map_head.link_order = NULL;
14667
14668 /* Really remove the section. */
14669 bfd_section_list_remove (abfd, o);
14670 --abfd->section_count;
14671
14672 continue;
14673 }
14674
14675 /* There is one gptab for initialized data, and one for
14676 uninitialized data. */
14677 if (strcmp (o->name, ".gptab.sdata") == 0)
14678 gptab_data_sec = o;
14679 else if (strcmp (o->name, ".gptab.sbss") == 0)
14680 gptab_bss_sec = o;
14681 else
14682 {
14683 _bfd_error_handler
14684 /* xgettext:c-format */
14685 (_("%pB: illegal section name `%pA'"), abfd, o);
14686 bfd_set_error (bfd_error_nonrepresentable_section);
14687 return FALSE;
14688 }
14689
14690 /* The linker script always combines .gptab.data and
14691 .gptab.sdata into .gptab.sdata, and likewise for
14692 .gptab.bss and .gptab.sbss. It is possible that there is
14693 no .sdata or .sbss section in the output file, in which
14694 case we must change the name of the output section. */
14695 subname = o->name + sizeof ".gptab" - 1;
14696 if (bfd_get_section_by_name (abfd, subname) == NULL)
14697 {
14698 if (o == gptab_data_sec)
14699 o->name = ".gptab.data";
14700 else
14701 o->name = ".gptab.bss";
14702 subname = o->name + sizeof ".gptab" - 1;
14703 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14704 }
14705
14706 /* Set up the first entry. */
14707 c = 1;
14708 amt = c * sizeof (Elf32_gptab);
14709 tab = bfd_malloc (amt);
14710 if (tab == NULL)
14711 return FALSE;
14712 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14713 tab[0].gt_header.gt_unused = 0;
14714
14715 /* Combine the input sections. */
14716 for (p = o->map_head.link_order; p != NULL; p = p->next)
14717 {
14718 asection *input_section;
14719 bfd *input_bfd;
14720 bfd_size_type size;
14721 unsigned long last;
14722 bfd_size_type gpentry;
14723
14724 if (p->type != bfd_indirect_link_order)
14725 {
14726 if (p->type == bfd_data_link_order)
14727 continue;
14728 abort ();
14729 }
14730
14731 input_section = p->u.indirect.section;
14732 input_bfd = input_section->owner;
14733
14734 /* Combine the gptab entries for this input section one
14735 by one. We know that the input gptab entries are
14736 sorted by ascending -G value. */
14737 size = input_section->size;
14738 last = 0;
14739 for (gpentry = sizeof (Elf32_External_gptab);
14740 gpentry < size;
14741 gpentry += sizeof (Elf32_External_gptab))
14742 {
14743 Elf32_External_gptab ext_gptab;
14744 Elf32_gptab int_gptab;
14745 unsigned long val;
14746 unsigned long add;
14747 bfd_boolean exact;
14748 unsigned int look;
14749
14750 if (! (bfd_get_section_contents
14751 (input_bfd, input_section, &ext_gptab, gpentry,
14752 sizeof (Elf32_External_gptab))))
14753 {
14754 free (tab);
14755 return FALSE;
14756 }
14757
14758 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14759 &int_gptab);
14760 val = int_gptab.gt_entry.gt_g_value;
14761 add = int_gptab.gt_entry.gt_bytes - last;
14762
14763 exact = FALSE;
14764 for (look = 1; look < c; look++)
14765 {
14766 if (tab[look].gt_entry.gt_g_value >= val)
14767 tab[look].gt_entry.gt_bytes += add;
14768
14769 if (tab[look].gt_entry.gt_g_value == val)
14770 exact = TRUE;
14771 }
14772
14773 if (! exact)
14774 {
14775 Elf32_gptab *new_tab;
14776 unsigned int max;
14777
14778 /* We need a new table entry. */
14779 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14780 new_tab = bfd_realloc (tab, amt);
14781 if (new_tab == NULL)
14782 {
14783 free (tab);
14784 return FALSE;
14785 }
14786 tab = new_tab;
14787 tab[c].gt_entry.gt_g_value = val;
14788 tab[c].gt_entry.gt_bytes = add;
14789
14790 /* Merge in the size for the next smallest -G
14791 value, since that will be implied by this new
14792 value. */
14793 max = 0;
14794 for (look = 1; look < c; look++)
14795 {
14796 if (tab[look].gt_entry.gt_g_value < val
14797 && (max == 0
14798 || (tab[look].gt_entry.gt_g_value
14799 > tab[max].gt_entry.gt_g_value)))
14800 max = look;
14801 }
14802 if (max != 0)
14803 tab[c].gt_entry.gt_bytes +=
14804 tab[max].gt_entry.gt_bytes;
14805
14806 ++c;
14807 }
14808
14809 last = int_gptab.gt_entry.gt_bytes;
14810 }
14811
14812 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14813 elf_link_input_bfd ignores this section. */
14814 input_section->flags &= ~SEC_HAS_CONTENTS;
14815 }
14816
14817 /* The table must be sorted by -G value. */
14818 if (c > 2)
14819 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14820
14821 /* Swap out the table. */
14822 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14823 ext_tab = bfd_alloc (abfd, amt);
14824 if (ext_tab == NULL)
14825 {
14826 free (tab);
14827 return FALSE;
14828 }
14829
14830 for (j = 0; j < c; j++)
14831 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14832 free (tab);
14833
14834 o->size = c * sizeof (Elf32_External_gptab);
14835 o->contents = (bfd_byte *) ext_tab;
14836
14837 /* Skip this section later on (I don't think this currently
14838 matters, but someday it might). */
14839 o->map_head.link_order = NULL;
14840 }
14841 }
14842
14843 /* Invoke the regular ELF backend linker to do all the work. */
14844 if (!bfd_elf_final_link (abfd, info))
14845 return FALSE;
14846
14847 /* Now write out the computed sections. */
14848
14849 if (abiflags_sec != NULL)
14850 {
14851 Elf_External_ABIFlags_v0 ext;
14852 Elf_Internal_ABIFlags_v0 *abiflags;
14853
14854 abiflags = &mips_elf_tdata (abfd)->abiflags;
14855
14856 /* Set up the abiflags if no valid input sections were found. */
14857 if (!mips_elf_tdata (abfd)->abiflags_valid)
14858 {
14859 infer_mips_abiflags (abfd, abiflags);
14860 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14861 }
14862 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14863 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14864 return FALSE;
14865 }
14866
14867 if (reginfo_sec != NULL)
14868 {
14869 Elf32_External_RegInfo ext;
14870
14871 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14872 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14873 return FALSE;
14874 }
14875
14876 if (mdebug_sec != NULL)
14877 {
14878 BFD_ASSERT (abfd->output_has_begun);
14879 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14880 swap, info,
14881 mdebug_sec->filepos))
14882 return FALSE;
14883
14884 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14885 }
14886
14887 if (gptab_data_sec != NULL)
14888 {
14889 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14890 gptab_data_sec->contents,
14891 0, gptab_data_sec->size))
14892 return FALSE;
14893 }
14894
14895 if (gptab_bss_sec != NULL)
14896 {
14897 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14898 gptab_bss_sec->contents,
14899 0, gptab_bss_sec->size))
14900 return FALSE;
14901 }
14902
14903 if (SGI_COMPAT (abfd))
14904 {
14905 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14906 if (rtproc_sec != NULL)
14907 {
14908 if (! bfd_set_section_contents (abfd, rtproc_sec,
14909 rtproc_sec->contents,
14910 0, rtproc_sec->size))
14911 return FALSE;
14912 }
14913 }
14914
14915 return TRUE;
14916 }
14917 \f
14918 /* Merge object file header flags from IBFD into OBFD. Raise an error
14919 if there are conflicting settings. */
14920
14921 static bfd_boolean
14922 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
14923 {
14924 bfd *obfd = info->output_bfd;
14925 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14926 flagword old_flags;
14927 flagword new_flags;
14928 bfd_boolean ok;
14929
14930 new_flags = elf_elfheader (ibfd)->e_flags;
14931 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14932 old_flags = elf_elfheader (obfd)->e_flags;
14933
14934 /* Check flag compatibility. */
14935
14936 new_flags &= ~EF_MIPS_NOREORDER;
14937 old_flags &= ~EF_MIPS_NOREORDER;
14938
14939 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14940 doesn't seem to matter. */
14941 new_flags &= ~EF_MIPS_XGOT;
14942 old_flags &= ~EF_MIPS_XGOT;
14943
14944 /* MIPSpro generates ucode info in n64 objects. Again, we should
14945 just be able to ignore this. */
14946 new_flags &= ~EF_MIPS_UCODE;
14947 old_flags &= ~EF_MIPS_UCODE;
14948
14949 /* DSOs should only be linked with CPIC code. */
14950 if ((ibfd->flags & DYNAMIC) != 0)
14951 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14952
14953 if (new_flags == old_flags)
14954 return TRUE;
14955
14956 ok = TRUE;
14957
14958 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14959 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14960 {
14961 _bfd_error_handler
14962 (_("%pB: warning: linking abicalls files with non-abicalls files"),
14963 ibfd);
14964 ok = TRUE;
14965 }
14966
14967 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14968 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14969 if (! (new_flags & EF_MIPS_PIC))
14970 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14971
14972 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14973 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14974
14975 /* Compare the ISAs. */
14976 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14977 {
14978 _bfd_error_handler
14979 (_("%pB: linking 32-bit code with 64-bit code"),
14980 ibfd);
14981 ok = FALSE;
14982 }
14983 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14984 {
14985 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14986 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14987 {
14988 /* Copy the architecture info from IBFD to OBFD. Also copy
14989 the 32-bit flag (if set) so that we continue to recognise
14990 OBFD as a 32-bit binary. */
14991 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14992 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14993 elf_elfheader (obfd)->e_flags
14994 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14995
14996 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
14997 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
14998
14999 /* Copy across the ABI flags if OBFD doesn't use them
15000 and if that was what caused us to treat IBFD as 32-bit. */
15001 if ((old_flags & EF_MIPS_ABI) == 0
15002 && mips_32bit_flags_p (new_flags)
15003 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15004 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15005 }
15006 else
15007 {
15008 /* The ISAs aren't compatible. */
15009 _bfd_error_handler
15010 /* xgettext:c-format */
15011 (_("%pB: linking %s module with previous %s modules"),
15012 ibfd,
15013 bfd_printable_name (ibfd),
15014 bfd_printable_name (obfd));
15015 ok = FALSE;
15016 }
15017 }
15018
15019 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15020 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15021
15022 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15023 does set EI_CLASS differently from any 32-bit ABI. */
15024 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15025 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15026 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15027 {
15028 /* Only error if both are set (to different values). */
15029 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15030 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15031 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15032 {
15033 _bfd_error_handler
15034 /* xgettext:c-format */
15035 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15036 ibfd,
15037 elf_mips_abi_name (ibfd),
15038 elf_mips_abi_name (obfd));
15039 ok = FALSE;
15040 }
15041 new_flags &= ~EF_MIPS_ABI;
15042 old_flags &= ~EF_MIPS_ABI;
15043 }
15044
15045 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15046 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15047 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15048 {
15049 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15050 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15051 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15052 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15053 int micro_mis = old_m16 && new_micro;
15054 int m16_mis = old_micro && new_m16;
15055
15056 if (m16_mis || micro_mis)
15057 {
15058 _bfd_error_handler
15059 /* xgettext:c-format */
15060 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15061 ibfd,
15062 m16_mis ? "MIPS16" : "microMIPS",
15063 m16_mis ? "microMIPS" : "MIPS16");
15064 ok = FALSE;
15065 }
15066
15067 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15068
15069 new_flags &= ~ EF_MIPS_ARCH_ASE;
15070 old_flags &= ~ EF_MIPS_ARCH_ASE;
15071 }
15072
15073 /* Compare NaN encodings. */
15074 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15075 {
15076 /* xgettext:c-format */
15077 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15078 ibfd,
15079 (new_flags & EF_MIPS_NAN2008
15080 ? "-mnan=2008" : "-mnan=legacy"),
15081 (old_flags & EF_MIPS_NAN2008
15082 ? "-mnan=2008" : "-mnan=legacy"));
15083 ok = FALSE;
15084 new_flags &= ~EF_MIPS_NAN2008;
15085 old_flags &= ~EF_MIPS_NAN2008;
15086 }
15087
15088 /* Compare FP64 state. */
15089 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15090 {
15091 /* xgettext:c-format */
15092 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15093 ibfd,
15094 (new_flags & EF_MIPS_FP64
15095 ? "-mfp64" : "-mfp32"),
15096 (old_flags & EF_MIPS_FP64
15097 ? "-mfp64" : "-mfp32"));
15098 ok = FALSE;
15099 new_flags &= ~EF_MIPS_FP64;
15100 old_flags &= ~EF_MIPS_FP64;
15101 }
15102
15103 /* Warn about any other mismatches */
15104 if (new_flags != old_flags)
15105 {
15106 /* xgettext:c-format */
15107 _bfd_error_handler
15108 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15109 "(%#x)"),
15110 ibfd, new_flags, old_flags);
15111 ok = FALSE;
15112 }
15113
15114 return ok;
15115 }
15116
15117 /* Merge object attributes from IBFD into OBFD. Raise an error if
15118 there are conflicting attributes. */
15119 static bfd_boolean
15120 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15121 {
15122 bfd *obfd = info->output_bfd;
15123 obj_attribute *in_attr;
15124 obj_attribute *out_attr;
15125 bfd *abi_fp_bfd;
15126 bfd *abi_msa_bfd;
15127
15128 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15129 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15130 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15131 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15132
15133 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15134 if (!abi_msa_bfd
15135 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15136 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15137
15138 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15139 {
15140 /* This is the first object. Copy the attributes. */
15141 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15142
15143 /* Use the Tag_null value to indicate the attributes have been
15144 initialized. */
15145 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15146
15147 return TRUE;
15148 }
15149
15150 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15151 non-conflicting ones. */
15152 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15153 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15154 {
15155 int out_fp, in_fp;
15156
15157 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15158 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15159 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15160 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15161 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15162 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15163 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15164 || in_fp == Val_GNU_MIPS_ABI_FP_64
15165 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15166 {
15167 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15168 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15169 }
15170 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15171 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15172 || out_fp == Val_GNU_MIPS_ABI_FP_64
15173 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15174 /* Keep the current setting. */;
15175 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15176 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15177 {
15178 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15179 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15180 }
15181 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15182 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15183 /* Keep the current setting. */;
15184 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15185 {
15186 const char *out_string, *in_string;
15187
15188 out_string = _bfd_mips_fp_abi_string (out_fp);
15189 in_string = _bfd_mips_fp_abi_string (in_fp);
15190 /* First warn about cases involving unrecognised ABIs. */
15191 if (!out_string && !in_string)
15192 /* xgettext:c-format */
15193 _bfd_error_handler
15194 (_("warning: %pB uses unknown floating point ABI %d "
15195 "(set by %pB), %pB uses unknown floating point ABI %d"),
15196 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15197 else if (!out_string)
15198 _bfd_error_handler
15199 /* xgettext:c-format */
15200 (_("warning: %pB uses unknown floating point ABI %d "
15201 "(set by %pB), %pB uses %s"),
15202 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15203 else if (!in_string)
15204 _bfd_error_handler
15205 /* xgettext:c-format */
15206 (_("warning: %pB uses %s (set by %pB), "
15207 "%pB uses unknown floating point ABI %d"),
15208 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15209 else
15210 {
15211 /* If one of the bfds is soft-float, the other must be
15212 hard-float. The exact choice of hard-float ABI isn't
15213 really relevant to the error message. */
15214 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15215 out_string = "-mhard-float";
15216 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15217 in_string = "-mhard-float";
15218 _bfd_error_handler
15219 /* xgettext:c-format */
15220 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15221 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15222 }
15223 }
15224 }
15225
15226 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15227 non-conflicting ones. */
15228 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15229 {
15230 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15231 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15232 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15233 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15234 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15235 {
15236 case Val_GNU_MIPS_ABI_MSA_128:
15237 _bfd_error_handler
15238 /* xgettext:c-format */
15239 (_("warning: %pB uses %s (set by %pB), "
15240 "%pB uses unknown MSA ABI %d"),
15241 obfd, "-mmsa", abi_msa_bfd,
15242 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15243 break;
15244
15245 default:
15246 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15247 {
15248 case Val_GNU_MIPS_ABI_MSA_128:
15249 _bfd_error_handler
15250 /* xgettext:c-format */
15251 (_("warning: %pB uses unknown MSA ABI %d "
15252 "(set by %pB), %pB uses %s"),
15253 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15254 abi_msa_bfd, ibfd, "-mmsa");
15255 break;
15256
15257 default:
15258 _bfd_error_handler
15259 /* xgettext:c-format */
15260 (_("warning: %pB uses unknown MSA ABI %d "
15261 "(set by %pB), %pB uses unknown MSA ABI %d"),
15262 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15263 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15264 break;
15265 }
15266 }
15267 }
15268
15269 /* Merge Tag_compatibility attributes and any common GNU ones. */
15270 return _bfd_elf_merge_object_attributes (ibfd, info);
15271 }
15272
15273 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15274 there are conflicting settings. */
15275
15276 static bfd_boolean
15277 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15278 {
15279 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15280 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15281 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15282
15283 /* Update the output abiflags fp_abi using the computed fp_abi. */
15284 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15285
15286 #define max(a, b) ((a) > (b) ? (a) : (b))
15287 /* Merge abiflags. */
15288 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15289 in_tdata->abiflags.isa_level);
15290 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15291 in_tdata->abiflags.isa_rev);
15292 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15293 in_tdata->abiflags.gpr_size);
15294 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15295 in_tdata->abiflags.cpr1_size);
15296 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15297 in_tdata->abiflags.cpr2_size);
15298 #undef max
15299 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15300 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15301
15302 return TRUE;
15303 }
15304
15305 /* Merge backend specific data from an object file to the output
15306 object file when linking. */
15307
15308 bfd_boolean
15309 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15310 {
15311 bfd *obfd = info->output_bfd;
15312 struct mips_elf_obj_tdata *out_tdata;
15313 struct mips_elf_obj_tdata *in_tdata;
15314 bfd_boolean null_input_bfd = TRUE;
15315 asection *sec;
15316 bfd_boolean ok;
15317
15318 /* Check if we have the same endianness. */
15319 if (! _bfd_generic_verify_endian_match (ibfd, info))
15320 {
15321 _bfd_error_handler
15322 (_("%pB: endianness incompatible with that of the selected emulation"),
15323 ibfd);
15324 return FALSE;
15325 }
15326
15327 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15328 return TRUE;
15329
15330 in_tdata = mips_elf_tdata (ibfd);
15331 out_tdata = mips_elf_tdata (obfd);
15332
15333 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15334 {
15335 _bfd_error_handler
15336 (_("%pB: ABI is incompatible with that of the selected emulation"),
15337 ibfd);
15338 return FALSE;
15339 }
15340
15341 /* Check to see if the input BFD actually contains any sections. If not,
15342 then it has no attributes, and its flags may not have been initialized
15343 either, but it cannot actually cause any incompatibility. */
15344 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15345 {
15346 /* Ignore synthetic sections and empty .text, .data and .bss sections
15347 which are automatically generated by gas. Also ignore fake
15348 (s)common sections, since merely defining a common symbol does
15349 not affect compatibility. */
15350 if ((sec->flags & SEC_IS_COMMON) == 0
15351 && strcmp (sec->name, ".reginfo")
15352 && strcmp (sec->name, ".mdebug")
15353 && (sec->size != 0
15354 || (strcmp (sec->name, ".text")
15355 && strcmp (sec->name, ".data")
15356 && strcmp (sec->name, ".bss"))))
15357 {
15358 null_input_bfd = FALSE;
15359 break;
15360 }
15361 }
15362 if (null_input_bfd)
15363 return TRUE;
15364
15365 /* Populate abiflags using existing information. */
15366 if (in_tdata->abiflags_valid)
15367 {
15368 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15369 Elf_Internal_ABIFlags_v0 in_abiflags;
15370 Elf_Internal_ABIFlags_v0 abiflags;
15371
15372 /* Set up the FP ABI attribute from the abiflags if it is not already
15373 set. */
15374 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15375 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15376
15377 infer_mips_abiflags (ibfd, &abiflags);
15378 in_abiflags = in_tdata->abiflags;
15379
15380 /* It is not possible to infer the correct ISA revision
15381 for R3 or R5 so drop down to R2 for the checks. */
15382 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15383 in_abiflags.isa_rev = 2;
15384
15385 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15386 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15387 _bfd_error_handler
15388 (_("%pB: warning: inconsistent ISA between e_flags and "
15389 ".MIPS.abiflags"), ibfd);
15390 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15391 && in_abiflags.fp_abi != abiflags.fp_abi)
15392 _bfd_error_handler
15393 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15394 ".MIPS.abiflags"), ibfd);
15395 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15396 _bfd_error_handler
15397 (_("%pB: warning: inconsistent ASEs between e_flags and "
15398 ".MIPS.abiflags"), ibfd);
15399 /* The isa_ext is allowed to be an extension of what can be inferred
15400 from e_flags. */
15401 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15402 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15403 _bfd_error_handler
15404 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15405 ".MIPS.abiflags"), ibfd);
15406 if (in_abiflags.flags2 != 0)
15407 _bfd_error_handler
15408 (_("%pB: warning: unexpected flag in the flags2 field of "
15409 ".MIPS.abiflags (0x%lx)"), ibfd,
15410 in_abiflags.flags2);
15411 }
15412 else
15413 {
15414 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15415 in_tdata->abiflags_valid = TRUE;
15416 }
15417
15418 if (!out_tdata->abiflags_valid)
15419 {
15420 /* Copy input abiflags if output abiflags are not already valid. */
15421 out_tdata->abiflags = in_tdata->abiflags;
15422 out_tdata->abiflags_valid = TRUE;
15423 }
15424
15425 if (! elf_flags_init (obfd))
15426 {
15427 elf_flags_init (obfd) = TRUE;
15428 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15429 elf_elfheader (obfd)->e_ident[EI_CLASS]
15430 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15431
15432 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15433 && (bfd_get_arch_info (obfd)->the_default
15434 || mips_mach_extends_p (bfd_get_mach (obfd),
15435 bfd_get_mach (ibfd))))
15436 {
15437 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15438 bfd_get_mach (ibfd)))
15439 return FALSE;
15440
15441 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15442 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15443 }
15444
15445 ok = TRUE;
15446 }
15447 else
15448 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15449
15450 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15451
15452 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15453
15454 if (!ok)
15455 {
15456 bfd_set_error (bfd_error_bad_value);
15457 return FALSE;
15458 }
15459
15460 return TRUE;
15461 }
15462
15463 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15464
15465 bfd_boolean
15466 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15467 {
15468 BFD_ASSERT (!elf_flags_init (abfd)
15469 || elf_elfheader (abfd)->e_flags == flags);
15470
15471 elf_elfheader (abfd)->e_flags = flags;
15472 elf_flags_init (abfd) = TRUE;
15473 return TRUE;
15474 }
15475
15476 char *
15477 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15478 {
15479 switch (dtag)
15480 {
15481 default: return "";
15482 case DT_MIPS_RLD_VERSION:
15483 return "MIPS_RLD_VERSION";
15484 case DT_MIPS_TIME_STAMP:
15485 return "MIPS_TIME_STAMP";
15486 case DT_MIPS_ICHECKSUM:
15487 return "MIPS_ICHECKSUM";
15488 case DT_MIPS_IVERSION:
15489 return "MIPS_IVERSION";
15490 case DT_MIPS_FLAGS:
15491 return "MIPS_FLAGS";
15492 case DT_MIPS_BASE_ADDRESS:
15493 return "MIPS_BASE_ADDRESS";
15494 case DT_MIPS_MSYM:
15495 return "MIPS_MSYM";
15496 case DT_MIPS_CONFLICT:
15497 return "MIPS_CONFLICT";
15498 case DT_MIPS_LIBLIST:
15499 return "MIPS_LIBLIST";
15500 case DT_MIPS_LOCAL_GOTNO:
15501 return "MIPS_LOCAL_GOTNO";
15502 case DT_MIPS_CONFLICTNO:
15503 return "MIPS_CONFLICTNO";
15504 case DT_MIPS_LIBLISTNO:
15505 return "MIPS_LIBLISTNO";
15506 case DT_MIPS_SYMTABNO:
15507 return "MIPS_SYMTABNO";
15508 case DT_MIPS_UNREFEXTNO:
15509 return "MIPS_UNREFEXTNO";
15510 case DT_MIPS_GOTSYM:
15511 return "MIPS_GOTSYM";
15512 case DT_MIPS_HIPAGENO:
15513 return "MIPS_HIPAGENO";
15514 case DT_MIPS_RLD_MAP:
15515 return "MIPS_RLD_MAP";
15516 case DT_MIPS_RLD_MAP_REL:
15517 return "MIPS_RLD_MAP_REL";
15518 case DT_MIPS_DELTA_CLASS:
15519 return "MIPS_DELTA_CLASS";
15520 case DT_MIPS_DELTA_CLASS_NO:
15521 return "MIPS_DELTA_CLASS_NO";
15522 case DT_MIPS_DELTA_INSTANCE:
15523 return "MIPS_DELTA_INSTANCE";
15524 case DT_MIPS_DELTA_INSTANCE_NO:
15525 return "MIPS_DELTA_INSTANCE_NO";
15526 case DT_MIPS_DELTA_RELOC:
15527 return "MIPS_DELTA_RELOC";
15528 case DT_MIPS_DELTA_RELOC_NO:
15529 return "MIPS_DELTA_RELOC_NO";
15530 case DT_MIPS_DELTA_SYM:
15531 return "MIPS_DELTA_SYM";
15532 case DT_MIPS_DELTA_SYM_NO:
15533 return "MIPS_DELTA_SYM_NO";
15534 case DT_MIPS_DELTA_CLASSSYM:
15535 return "MIPS_DELTA_CLASSSYM";
15536 case DT_MIPS_DELTA_CLASSSYM_NO:
15537 return "MIPS_DELTA_CLASSSYM_NO";
15538 case DT_MIPS_CXX_FLAGS:
15539 return "MIPS_CXX_FLAGS";
15540 case DT_MIPS_PIXIE_INIT:
15541 return "MIPS_PIXIE_INIT";
15542 case DT_MIPS_SYMBOL_LIB:
15543 return "MIPS_SYMBOL_LIB";
15544 case DT_MIPS_LOCALPAGE_GOTIDX:
15545 return "MIPS_LOCALPAGE_GOTIDX";
15546 case DT_MIPS_LOCAL_GOTIDX:
15547 return "MIPS_LOCAL_GOTIDX";
15548 case DT_MIPS_HIDDEN_GOTIDX:
15549 return "MIPS_HIDDEN_GOTIDX";
15550 case DT_MIPS_PROTECTED_GOTIDX:
15551 return "MIPS_PROTECTED_GOT_IDX";
15552 case DT_MIPS_OPTIONS:
15553 return "MIPS_OPTIONS";
15554 case DT_MIPS_INTERFACE:
15555 return "MIPS_INTERFACE";
15556 case DT_MIPS_DYNSTR_ALIGN:
15557 return "DT_MIPS_DYNSTR_ALIGN";
15558 case DT_MIPS_INTERFACE_SIZE:
15559 return "DT_MIPS_INTERFACE_SIZE";
15560 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15561 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15562 case DT_MIPS_PERF_SUFFIX:
15563 return "DT_MIPS_PERF_SUFFIX";
15564 case DT_MIPS_COMPACT_SIZE:
15565 return "DT_MIPS_COMPACT_SIZE";
15566 case DT_MIPS_GP_VALUE:
15567 return "DT_MIPS_GP_VALUE";
15568 case DT_MIPS_AUX_DYNAMIC:
15569 return "DT_MIPS_AUX_DYNAMIC";
15570 case DT_MIPS_PLTGOT:
15571 return "DT_MIPS_PLTGOT";
15572 case DT_MIPS_RWPLT:
15573 return "DT_MIPS_RWPLT";
15574 }
15575 }
15576
15577 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15578 not known. */
15579
15580 const char *
15581 _bfd_mips_fp_abi_string (int fp)
15582 {
15583 switch (fp)
15584 {
15585 /* These strings aren't translated because they're simply
15586 option lists. */
15587 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15588 return "-mdouble-float";
15589
15590 case Val_GNU_MIPS_ABI_FP_SINGLE:
15591 return "-msingle-float";
15592
15593 case Val_GNU_MIPS_ABI_FP_SOFT:
15594 return "-msoft-float";
15595
15596 case Val_GNU_MIPS_ABI_FP_OLD_64:
15597 return _("-mips32r2 -mfp64 (12 callee-saved)");
15598
15599 case Val_GNU_MIPS_ABI_FP_XX:
15600 return "-mfpxx";
15601
15602 case Val_GNU_MIPS_ABI_FP_64:
15603 return "-mgp32 -mfp64";
15604
15605 case Val_GNU_MIPS_ABI_FP_64A:
15606 return "-mgp32 -mfp64 -mno-odd-spreg";
15607
15608 default:
15609 return 0;
15610 }
15611 }
15612
15613 static void
15614 print_mips_ases (FILE *file, unsigned int mask)
15615 {
15616 if (mask & AFL_ASE_DSP)
15617 fputs ("\n\tDSP ASE", file);
15618 if (mask & AFL_ASE_DSPR2)
15619 fputs ("\n\tDSP R2 ASE", file);
15620 if (mask & AFL_ASE_DSPR3)
15621 fputs ("\n\tDSP R3 ASE", file);
15622 if (mask & AFL_ASE_EVA)
15623 fputs ("\n\tEnhanced VA Scheme", file);
15624 if (mask & AFL_ASE_MCU)
15625 fputs ("\n\tMCU (MicroController) ASE", file);
15626 if (mask & AFL_ASE_MDMX)
15627 fputs ("\n\tMDMX ASE", file);
15628 if (mask & AFL_ASE_MIPS3D)
15629 fputs ("\n\tMIPS-3D ASE", file);
15630 if (mask & AFL_ASE_MT)
15631 fputs ("\n\tMT ASE", file);
15632 if (mask & AFL_ASE_SMARTMIPS)
15633 fputs ("\n\tSmartMIPS ASE", file);
15634 if (mask & AFL_ASE_VIRT)
15635 fputs ("\n\tVZ ASE", file);
15636 if (mask & AFL_ASE_MSA)
15637 fputs ("\n\tMSA ASE", file);
15638 if (mask & AFL_ASE_MIPS16)
15639 fputs ("\n\tMIPS16 ASE", file);
15640 if (mask & AFL_ASE_MICROMIPS)
15641 fputs ("\n\tMICROMIPS ASE", file);
15642 if (mask & AFL_ASE_XPA)
15643 fputs ("\n\tXPA ASE", file);
15644 if (mask & AFL_ASE_MIPS16E2)
15645 fputs ("\n\tMIPS16e2 ASE", file);
15646 if (mask & AFL_ASE_CRC)
15647 fputs ("\n\tCRC ASE", file);
15648 if (mask & AFL_ASE_GINV)
15649 fputs ("\n\tGINV ASE", file);
15650 if (mask == 0)
15651 fprintf (file, "\n\t%s", _("None"));
15652 else if ((mask & ~AFL_ASE_MASK) != 0)
15653 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15654 }
15655
15656 static void
15657 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15658 {
15659 switch (isa_ext)
15660 {
15661 case 0:
15662 fputs (_("None"), file);
15663 break;
15664 case AFL_EXT_XLR:
15665 fputs ("RMI XLR", file);
15666 break;
15667 case AFL_EXT_OCTEON3:
15668 fputs ("Cavium Networks Octeon3", file);
15669 break;
15670 case AFL_EXT_OCTEON2:
15671 fputs ("Cavium Networks Octeon2", file);
15672 break;
15673 case AFL_EXT_OCTEONP:
15674 fputs ("Cavium Networks OcteonP", file);
15675 break;
15676 case AFL_EXT_LOONGSON_3A:
15677 fputs ("Loongson 3A", file);
15678 break;
15679 case AFL_EXT_OCTEON:
15680 fputs ("Cavium Networks Octeon", file);
15681 break;
15682 case AFL_EXT_5900:
15683 fputs ("Toshiba R5900", file);
15684 break;
15685 case AFL_EXT_4650:
15686 fputs ("MIPS R4650", file);
15687 break;
15688 case AFL_EXT_4010:
15689 fputs ("LSI R4010", file);
15690 break;
15691 case AFL_EXT_4100:
15692 fputs ("NEC VR4100", file);
15693 break;
15694 case AFL_EXT_3900:
15695 fputs ("Toshiba R3900", file);
15696 break;
15697 case AFL_EXT_10000:
15698 fputs ("MIPS R10000", file);
15699 break;
15700 case AFL_EXT_SB1:
15701 fputs ("Broadcom SB-1", file);
15702 break;
15703 case AFL_EXT_4111:
15704 fputs ("NEC VR4111/VR4181", file);
15705 break;
15706 case AFL_EXT_4120:
15707 fputs ("NEC VR4120", file);
15708 break;
15709 case AFL_EXT_5400:
15710 fputs ("NEC VR5400", file);
15711 break;
15712 case AFL_EXT_5500:
15713 fputs ("NEC VR5500", file);
15714 break;
15715 case AFL_EXT_LOONGSON_2E:
15716 fputs ("ST Microelectronics Loongson 2E", file);
15717 break;
15718 case AFL_EXT_LOONGSON_2F:
15719 fputs ("ST Microelectronics Loongson 2F", file);
15720 break;
15721 case AFL_EXT_INTERAPTIV_MR2:
15722 fputs ("Imagination interAptiv MR2", file);
15723 break;
15724 default:
15725 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15726 break;
15727 }
15728 }
15729
15730 static void
15731 print_mips_fp_abi_value (FILE *file, int val)
15732 {
15733 switch (val)
15734 {
15735 case Val_GNU_MIPS_ABI_FP_ANY:
15736 fprintf (file, _("Hard or soft float\n"));
15737 break;
15738 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15739 fprintf (file, _("Hard float (double precision)\n"));
15740 break;
15741 case Val_GNU_MIPS_ABI_FP_SINGLE:
15742 fprintf (file, _("Hard float (single precision)\n"));
15743 break;
15744 case Val_GNU_MIPS_ABI_FP_SOFT:
15745 fprintf (file, _("Soft float\n"));
15746 break;
15747 case Val_GNU_MIPS_ABI_FP_OLD_64:
15748 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15749 break;
15750 case Val_GNU_MIPS_ABI_FP_XX:
15751 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15752 break;
15753 case Val_GNU_MIPS_ABI_FP_64:
15754 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15755 break;
15756 case Val_GNU_MIPS_ABI_FP_64A:
15757 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15758 break;
15759 default:
15760 fprintf (file, "??? (%d)\n", val);
15761 break;
15762 }
15763 }
15764
15765 static int
15766 get_mips_reg_size (int reg_size)
15767 {
15768 return (reg_size == AFL_REG_NONE) ? 0
15769 : (reg_size == AFL_REG_32) ? 32
15770 : (reg_size == AFL_REG_64) ? 64
15771 : (reg_size == AFL_REG_128) ? 128
15772 : -1;
15773 }
15774
15775 bfd_boolean
15776 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15777 {
15778 FILE *file = ptr;
15779
15780 BFD_ASSERT (abfd != NULL && ptr != NULL);
15781
15782 /* Print normal ELF private data. */
15783 _bfd_elf_print_private_bfd_data (abfd, ptr);
15784
15785 /* xgettext:c-format */
15786 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15787
15788 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15789 fprintf (file, _(" [abi=O32]"));
15790 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15791 fprintf (file, _(" [abi=O64]"));
15792 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15793 fprintf (file, _(" [abi=EABI32]"));
15794 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15795 fprintf (file, _(" [abi=EABI64]"));
15796 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15797 fprintf (file, _(" [abi unknown]"));
15798 else if (ABI_N32_P (abfd))
15799 fprintf (file, _(" [abi=N32]"));
15800 else if (ABI_64_P (abfd))
15801 fprintf (file, _(" [abi=64]"));
15802 else
15803 fprintf (file, _(" [no abi set]"));
15804
15805 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15806 fprintf (file, " [mips1]");
15807 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15808 fprintf (file, " [mips2]");
15809 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15810 fprintf (file, " [mips3]");
15811 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15812 fprintf (file, " [mips4]");
15813 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15814 fprintf (file, " [mips5]");
15815 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15816 fprintf (file, " [mips32]");
15817 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15818 fprintf (file, " [mips64]");
15819 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15820 fprintf (file, " [mips32r2]");
15821 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15822 fprintf (file, " [mips64r2]");
15823 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15824 fprintf (file, " [mips32r6]");
15825 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15826 fprintf (file, " [mips64r6]");
15827 else
15828 fprintf (file, _(" [unknown ISA]"));
15829
15830 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15831 fprintf (file, " [mdmx]");
15832
15833 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15834 fprintf (file, " [mips16]");
15835
15836 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15837 fprintf (file, " [micromips]");
15838
15839 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15840 fprintf (file, " [nan2008]");
15841
15842 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15843 fprintf (file, " [old fp64]");
15844
15845 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15846 fprintf (file, " [32bitmode]");
15847 else
15848 fprintf (file, _(" [not 32bitmode]"));
15849
15850 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15851 fprintf (file, " [noreorder]");
15852
15853 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15854 fprintf (file, " [PIC]");
15855
15856 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15857 fprintf (file, " [CPIC]");
15858
15859 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15860 fprintf (file, " [XGOT]");
15861
15862 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15863 fprintf (file, " [UCODE]");
15864
15865 fputc ('\n', file);
15866
15867 if (mips_elf_tdata (abfd)->abiflags_valid)
15868 {
15869 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15870 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15871 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15872 if (abiflags->isa_rev > 1)
15873 fprintf (file, "r%d", abiflags->isa_rev);
15874 fprintf (file, "\nGPR size: %d",
15875 get_mips_reg_size (abiflags->gpr_size));
15876 fprintf (file, "\nCPR1 size: %d",
15877 get_mips_reg_size (abiflags->cpr1_size));
15878 fprintf (file, "\nCPR2 size: %d",
15879 get_mips_reg_size (abiflags->cpr2_size));
15880 fputs ("\nFP ABI: ", file);
15881 print_mips_fp_abi_value (file, abiflags->fp_abi);
15882 fputs ("ISA Extension: ", file);
15883 print_mips_isa_ext (file, abiflags->isa_ext);
15884 fputs ("\nASEs:", file);
15885 print_mips_ases (file, abiflags->ases);
15886 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15887 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15888 fputc ('\n', file);
15889 }
15890
15891 return TRUE;
15892 }
15893
15894 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15895 {
15896 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15897 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15898 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15899 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15900 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15901 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15902 { NULL, 0, 0, 0, 0 }
15903 };
15904
15905 /* Merge non visibility st_other attributes. Ensure that the
15906 STO_OPTIONAL flag is copied into h->other, even if this is not a
15907 definiton of the symbol. */
15908 void
15909 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15910 const Elf_Internal_Sym *isym,
15911 bfd_boolean definition,
15912 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15913 {
15914 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15915 {
15916 unsigned char other;
15917
15918 other = (definition ? isym->st_other : h->other);
15919 other &= ~ELF_ST_VISIBILITY (-1);
15920 h->other = other | ELF_ST_VISIBILITY (h->other);
15921 }
15922
15923 if (!definition
15924 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15925 h->other |= STO_OPTIONAL;
15926 }
15927
15928 /* Decide whether an undefined symbol is special and can be ignored.
15929 This is the case for OPTIONAL symbols on IRIX. */
15930 bfd_boolean
15931 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15932 {
15933 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15934 }
15935
15936 bfd_boolean
15937 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15938 {
15939 return (sym->st_shndx == SHN_COMMON
15940 || sym->st_shndx == SHN_MIPS_ACOMMON
15941 || sym->st_shndx == SHN_MIPS_SCOMMON);
15942 }
15943
15944 /* Return address for Ith PLT stub in section PLT, for relocation REL
15945 or (bfd_vma) -1 if it should not be included. */
15946
15947 bfd_vma
15948 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15949 const arelent *rel ATTRIBUTE_UNUSED)
15950 {
15951 return (plt->vma
15952 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15953 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15954 }
15955
15956 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15957 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15958 and .got.plt and also the slots may be of a different size each we walk
15959 the PLT manually fetching instructions and matching them against known
15960 patterns. To make things easier standard MIPS slots, if any, always come
15961 first. As we don't create proper ELF symbols we use the UDATA.I member
15962 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15963 with the ST_OTHER member of the ELF symbol. */
15964
15965 long
15966 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15967 long symcount ATTRIBUTE_UNUSED,
15968 asymbol **syms ATTRIBUTE_UNUSED,
15969 long dynsymcount, asymbol **dynsyms,
15970 asymbol **ret)
15971 {
15972 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15973 static const char microsuffix[] = "@micromipsplt";
15974 static const char m16suffix[] = "@mips16plt";
15975 static const char mipssuffix[] = "@plt";
15976
15977 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15978 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15979 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15980 Elf_Internal_Shdr *hdr;
15981 bfd_byte *plt_data;
15982 bfd_vma plt_offset;
15983 unsigned int other;
15984 bfd_vma entry_size;
15985 bfd_vma plt0_size;
15986 asection *relplt;
15987 bfd_vma opcode;
15988 asection *plt;
15989 asymbol *send;
15990 size_t size;
15991 char *names;
15992 long counti;
15993 arelent *p;
15994 asymbol *s;
15995 char *nend;
15996 long count;
15997 long pi;
15998 long i;
15999 long n;
16000
16001 *ret = NULL;
16002
16003 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16004 return 0;
16005
16006 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16007 if (relplt == NULL)
16008 return 0;
16009
16010 hdr = &elf_section_data (relplt)->this_hdr;
16011 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16012 return 0;
16013
16014 plt = bfd_get_section_by_name (abfd, ".plt");
16015 if (plt == NULL)
16016 return 0;
16017
16018 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16019 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16020 return -1;
16021 p = relplt->relocation;
16022
16023 /* Calculating the exact amount of space required for symbols would
16024 require two passes over the PLT, so just pessimise assuming two
16025 PLT slots per relocation. */
16026 count = relplt->size / hdr->sh_entsize;
16027 counti = count * bed->s->int_rels_per_ext_rel;
16028 size = 2 * count * sizeof (asymbol);
16029 size += count * (sizeof (mipssuffix) +
16030 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16031 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16032 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16033
16034 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16035 size += sizeof (asymbol) + sizeof (pltname);
16036
16037 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16038 return -1;
16039
16040 if (plt->size < 16)
16041 return -1;
16042
16043 s = *ret = bfd_malloc (size);
16044 if (s == NULL)
16045 return -1;
16046 send = s + 2 * count + 1;
16047
16048 names = (char *) send;
16049 nend = (char *) s + size;
16050 n = 0;
16051
16052 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16053 if (opcode == 0x3302fffe)
16054 {
16055 if (!micromips_p)
16056 return -1;
16057 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16058 other = STO_MICROMIPS;
16059 }
16060 else if (opcode == 0x0398c1d0)
16061 {
16062 if (!micromips_p)
16063 return -1;
16064 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16065 other = STO_MICROMIPS;
16066 }
16067 else
16068 {
16069 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16070 other = 0;
16071 }
16072
16073 s->the_bfd = abfd;
16074 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16075 s->section = plt;
16076 s->value = 0;
16077 s->name = names;
16078 s->udata.i = other;
16079 memcpy (names, pltname, sizeof (pltname));
16080 names += sizeof (pltname);
16081 ++s, ++n;
16082
16083 pi = 0;
16084 for (plt_offset = plt0_size;
16085 plt_offset + 8 <= plt->size && s < send;
16086 plt_offset += entry_size)
16087 {
16088 bfd_vma gotplt_addr;
16089 const char *suffix;
16090 bfd_vma gotplt_hi;
16091 bfd_vma gotplt_lo;
16092 size_t suffixlen;
16093
16094 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16095
16096 /* Check if the second word matches the expected MIPS16 instruction. */
16097 if (opcode == 0x651aeb00)
16098 {
16099 if (micromips_p)
16100 return -1;
16101 /* Truncated table??? */
16102 if (plt_offset + 16 > plt->size)
16103 break;
16104 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16105 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16106 suffixlen = sizeof (m16suffix);
16107 suffix = m16suffix;
16108 other = STO_MIPS16;
16109 }
16110 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16111 else if (opcode == 0xff220000)
16112 {
16113 if (!micromips_p)
16114 return -1;
16115 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16116 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16117 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16118 gotplt_lo <<= 2;
16119 gotplt_addr = gotplt_hi + gotplt_lo;
16120 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16121 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16122 suffixlen = sizeof (microsuffix);
16123 suffix = microsuffix;
16124 other = STO_MICROMIPS;
16125 }
16126 /* Likewise the expected microMIPS instruction (insn32 mode). */
16127 else if ((opcode & 0xffff0000) == 0xff2f0000)
16128 {
16129 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16130 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16131 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16132 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16133 gotplt_addr = gotplt_hi + gotplt_lo;
16134 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16135 suffixlen = sizeof (microsuffix);
16136 suffix = microsuffix;
16137 other = STO_MICROMIPS;
16138 }
16139 /* Otherwise assume standard MIPS code. */
16140 else
16141 {
16142 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16143 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16144 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16145 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16146 gotplt_addr = gotplt_hi + gotplt_lo;
16147 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16148 suffixlen = sizeof (mipssuffix);
16149 suffix = mipssuffix;
16150 other = 0;
16151 }
16152 /* Truncated table??? */
16153 if (plt_offset + entry_size > plt->size)
16154 break;
16155
16156 for (i = 0;
16157 i < count && p[pi].address != gotplt_addr;
16158 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16159
16160 if (i < count)
16161 {
16162 size_t namelen;
16163 size_t len;
16164
16165 *s = **p[pi].sym_ptr_ptr;
16166 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16167 we are defining a symbol, ensure one of them is set. */
16168 if ((s->flags & BSF_LOCAL) == 0)
16169 s->flags |= BSF_GLOBAL;
16170 s->flags |= BSF_SYNTHETIC;
16171 s->section = plt;
16172 s->value = plt_offset;
16173 s->name = names;
16174 s->udata.i = other;
16175
16176 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16177 namelen = len + suffixlen;
16178 if (names + namelen > nend)
16179 break;
16180
16181 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16182 names += len;
16183 memcpy (names, suffix, suffixlen);
16184 names += suffixlen;
16185
16186 ++s, ++n;
16187 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16188 }
16189 }
16190
16191 free (plt_data);
16192
16193 return n;
16194 }
16195
16196 /* Return the ABI flags associated with ABFD if available. */
16197
16198 Elf_Internal_ABIFlags_v0 *
16199 bfd_mips_elf_get_abiflags (bfd *abfd)
16200 {
16201 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16202
16203 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16204 }
16205
16206 void
16207 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16208 {
16209 struct mips_elf_link_hash_table *htab;
16210 Elf_Internal_Ehdr *i_ehdrp;
16211
16212 i_ehdrp = elf_elfheader (abfd);
16213 if (link_info)
16214 {
16215 htab = mips_elf_hash_table (link_info);
16216 BFD_ASSERT (htab != NULL);
16217
16218 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16219 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16220 }
16221
16222 _bfd_elf_post_process_headers (abfd, link_info);
16223
16224 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16225 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16226 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16227 }
16228
16229 int
16230 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16231 {
16232 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16233 }
16234
16235 /* Return the opcode for can't unwind. */
16236
16237 int
16238 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16239 {
16240 return COMPACT_EH_CANT_UNWIND_OPCODE;
16241 }
This page took 0.518649 seconds and 4 git commands to generate.