d649676e2254f59df12cb292e26af0d269de5afd
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 long min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 long max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index not corresponding to a
319 symbol without a GOT entry. */
320 long max_non_got_dynindx;
321 };
322
323 /* We make up to two PLT entries if needed, one for standard MIPS code
324 and one for compressed code, either a MIPS16 or microMIPS one. We
325 keep a separate record of traditional lazy-binding stubs, for easier
326 processing. */
327
328 struct plt_entry
329 {
330 /* Traditional SVR4 stub offset, or -1 if none. */
331 bfd_vma stub_offset;
332
333 /* Standard PLT entry offset, or -1 if none. */
334 bfd_vma mips_offset;
335
336 /* Compressed PLT entry offset, or -1 if none. */
337 bfd_vma comp_offset;
338
339 /* The corresponding .got.plt index, or -1 if none. */
340 bfd_vma gotplt_index;
341
342 /* Whether we need a standard PLT entry. */
343 unsigned int need_mips : 1;
344
345 /* Whether we need a compressed PLT entry. */
346 unsigned int need_comp : 1;
347 };
348
349 /* The MIPS ELF linker needs additional information for each symbol in
350 the global hash table. */
351
352 struct mips_elf_link_hash_entry
353 {
354 struct elf_link_hash_entry root;
355
356 /* External symbol information. */
357 EXTR esym;
358
359 /* The la25 stub we have created for ths symbol, if any. */
360 struct mips_elf_la25_stub *la25_stub;
361
362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
363 this symbol. */
364 unsigned int possibly_dynamic_relocs;
365
366 /* If there is a stub that 32 bit functions should use to call this
367 16 bit function, this points to the section containing the stub. */
368 asection *fn_stub;
369
370 /* If there is a stub that 16 bit functions should use to call this
371 32 bit function, this points to the section containing the stub. */
372 asection *call_stub;
373
374 /* This is like the call_stub field, but it is used if the function
375 being called returns a floating point value. */
376 asection *call_fp_stub;
377
378 /* The highest GGA_* value that satisfies all references to this symbol. */
379 unsigned int global_got_area : 2;
380
381 /* True if all GOT relocations against this symbol are for calls. This is
382 a looser condition than no_fn_stub below, because there may be other
383 non-call non-GOT relocations against the symbol. */
384 unsigned int got_only_for_calls : 1;
385
386 /* True if one of the relocations described by possibly_dynamic_relocs
387 is against a readonly section. */
388 unsigned int readonly_reloc : 1;
389
390 /* True if there is a relocation against this symbol that must be
391 resolved by the static linker (in other words, if the relocation
392 cannot possibly be made dynamic). */
393 unsigned int has_static_relocs : 1;
394
395 /* True if we must not create a .MIPS.stubs entry for this symbol.
396 This is set, for example, if there are relocations related to
397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
399 unsigned int no_fn_stub : 1;
400
401 /* Whether we need the fn_stub; this is true if this symbol appears
402 in any relocs other than a 16 bit call. */
403 unsigned int need_fn_stub : 1;
404
405 /* True if this symbol is referenced by branch relocations from
406 any non-PIC input file. This is used to determine whether an
407 la25 stub is required. */
408 unsigned int has_nonpic_branches : 1;
409
410 /* Does this symbol need a traditional MIPS lazy-binding stub
411 (as opposed to a PLT entry)? */
412 unsigned int needs_lazy_stub : 1;
413
414 /* Does this symbol resolve to a PLT entry? */
415 unsigned int use_plt_entry : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423
424 /* The number of .rtproc entries. */
425 bfd_size_type procedure_count;
426
427 /* The size of the .compact_rel section (if SGI_COMPAT). */
428 bfd_size_type compact_rel_size;
429
430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
432 bfd_boolean use_rld_obj_head;
433
434 /* The __rld_map or __rld_obj_head symbol. */
435 struct elf_link_hash_entry *rld_symbol;
436
437 /* This is set if we see any mips16 stub sections. */
438 bfd_boolean mips16_stubs_seen;
439
440 /* True if we can generate copy relocs and PLTs. */
441 bfd_boolean use_plts_and_copy_relocs;
442
443 /* True if we can only use 32-bit microMIPS instructions. */
444 bfd_boolean insn32;
445
446 /* True if we're generating code for VxWorks. */
447 bfd_boolean is_vxworks;
448
449 /* True if we already reported the small-data section overflow. */
450 bfd_boolean small_data_overflow_reported;
451
452 /* Shortcuts to some dynamic sections, or NULL if they are not
453 being used. */
454 asection *srelbss;
455 asection *sdynbss;
456 asection *srelplt2;
457 asection *sstubs;
458
459 /* The master GOT information. */
460 struct mips_got_info *got_info;
461
462 /* The global symbol in the GOT with the lowest index in the dynamic
463 symbol table. */
464 struct elf_link_hash_entry *global_gotsym;
465
466 /* The size of the PLT header in bytes. */
467 bfd_vma plt_header_size;
468
469 /* The size of a standard PLT entry in bytes. */
470 bfd_vma plt_mips_entry_size;
471
472 /* The size of a compressed PLT entry in bytes. */
473 bfd_vma plt_comp_entry_size;
474
475 /* The offset of the next standard PLT entry to create. */
476 bfd_vma plt_mips_offset;
477
478 /* The offset of the next compressed PLT entry to create. */
479 bfd_vma plt_comp_offset;
480
481 /* The index of the next .got.plt entry to create. */
482 bfd_vma plt_got_index;
483
484 /* The number of functions that need a lazy-binding stub. */
485 bfd_vma lazy_stub_count;
486
487 /* The size of a function stub entry in bytes. */
488 bfd_vma function_stub_size;
489
490 /* The number of reserved entries at the beginning of the GOT. */
491 unsigned int reserved_gotno;
492
493 /* The section used for mips_elf_la25_stub trampolines.
494 See the comment above that structure for details. */
495 asection *strampoline;
496
497 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
498 pairs. */
499 htab_t la25_stubs;
500
501 /* A function FN (NAME, IS, OS) that creates a new input section
502 called NAME and links it to output section OS. If IS is nonnull,
503 the new section should go immediately before it, otherwise it
504 should go at the (current) beginning of OS.
505
506 The function returns the new section on success, otherwise it
507 returns null. */
508 asection *(*add_stub_section) (const char *, asection *, asection *);
509
510 /* Small local sym cache. */
511 struct sym_cache sym_cache;
512
513 /* Is the PLT header compressed? */
514 unsigned int plt_header_is_comp : 1;
515 };
516
517 /* Get the MIPS ELF linker hash table from a link_info structure. */
518
519 #define mips_elf_hash_table(p) \
520 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
521 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
522
523 /* A structure used to communicate with htab_traverse callbacks. */
524 struct mips_htab_traverse_info
525 {
526 /* The usual link-wide information. */
527 struct bfd_link_info *info;
528 bfd *output_bfd;
529
530 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
531 bfd_boolean error;
532 };
533
534 /* MIPS ELF private object data. */
535
536 struct mips_elf_obj_tdata
537 {
538 /* Generic ELF private object data. */
539 struct elf_obj_tdata root;
540
541 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
542 bfd *abi_fp_bfd;
543
544 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
545 bfd *abi_msa_bfd;
546
547 /* The abiflags for this object. */
548 Elf_Internal_ABIFlags_v0 abiflags;
549 bfd_boolean abiflags_valid;
550
551 /* The GOT requirements of input bfds. */
552 struct mips_got_info *got;
553
554 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
555 included directly in this one, but there's no point to wasting
556 the memory just for the infrequently called find_nearest_line. */
557 struct mips_elf_find_line *find_line_info;
558
559 /* An array of stub sections indexed by symbol number. */
560 asection **local_stubs;
561 asection **local_call_stubs;
562
563 /* The Irix 5 support uses two virtual sections, which represent
564 text/data symbols defined in dynamic objects. */
565 asymbol *elf_data_symbol;
566 asymbol *elf_text_symbol;
567 asection *elf_data_section;
568 asection *elf_text_section;
569 };
570
571 /* Get MIPS ELF private object data from BFD's tdata. */
572
573 #define mips_elf_tdata(bfd) \
574 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
575
576 #define TLS_RELOC_P(r_type) \
577 (r_type == R_MIPS_TLS_DTPMOD32 \
578 || r_type == R_MIPS_TLS_DTPMOD64 \
579 || r_type == R_MIPS_TLS_DTPREL32 \
580 || r_type == R_MIPS_TLS_DTPREL64 \
581 || r_type == R_MIPS_TLS_GD \
582 || r_type == R_MIPS_TLS_LDM \
583 || r_type == R_MIPS_TLS_DTPREL_HI16 \
584 || r_type == R_MIPS_TLS_DTPREL_LO16 \
585 || r_type == R_MIPS_TLS_GOTTPREL \
586 || r_type == R_MIPS_TLS_TPREL32 \
587 || r_type == R_MIPS_TLS_TPREL64 \
588 || r_type == R_MIPS_TLS_TPREL_HI16 \
589 || r_type == R_MIPS_TLS_TPREL_LO16 \
590 || r_type == R_MIPS16_TLS_GD \
591 || r_type == R_MIPS16_TLS_LDM \
592 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
593 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GOTTPREL \
595 || r_type == R_MIPS16_TLS_TPREL_HI16 \
596 || r_type == R_MIPS16_TLS_TPREL_LO16 \
597 || r_type == R_MICROMIPS_TLS_GD \
598 || r_type == R_MICROMIPS_TLS_LDM \
599 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
600 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GOTTPREL \
602 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
603 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
604
605 /* Structure used to pass information to mips_elf_output_extsym. */
606
607 struct extsym_info
608 {
609 bfd *abfd;
610 struct bfd_link_info *info;
611 struct ecoff_debug_info *debug;
612 const struct ecoff_debug_swap *swap;
613 bfd_boolean failed;
614 };
615
616 /* The names of the runtime procedure table symbols used on IRIX5. */
617
618 static const char * const mips_elf_dynsym_rtproc_names[] =
619 {
620 "_procedure_table",
621 "_procedure_string_table",
622 "_procedure_table_size",
623 NULL
624 };
625
626 /* These structures are used to generate the .compact_rel section on
627 IRIX5. */
628
629 typedef struct
630 {
631 unsigned long id1; /* Always one? */
632 unsigned long num; /* Number of compact relocation entries. */
633 unsigned long id2; /* Always two? */
634 unsigned long offset; /* The file offset of the first relocation. */
635 unsigned long reserved0; /* Zero? */
636 unsigned long reserved1; /* Zero? */
637 } Elf32_compact_rel;
638
639 typedef struct
640 {
641 bfd_byte id1[4];
642 bfd_byte num[4];
643 bfd_byte id2[4];
644 bfd_byte offset[4];
645 bfd_byte reserved0[4];
646 bfd_byte reserved1[4];
647 } Elf32_External_compact_rel;
648
649 typedef struct
650 {
651 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
652 unsigned int rtype : 4; /* Relocation types. See below. */
653 unsigned int dist2to : 8;
654 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
655 unsigned long konst; /* KONST field. See below. */
656 unsigned long vaddr; /* VADDR to be relocated. */
657 } Elf32_crinfo;
658
659 typedef struct
660 {
661 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
662 unsigned int rtype : 4; /* Relocation types. See below. */
663 unsigned int dist2to : 8;
664 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
665 unsigned long konst; /* KONST field. See below. */
666 } Elf32_crinfo2;
667
668 typedef struct
669 {
670 bfd_byte info[4];
671 bfd_byte konst[4];
672 bfd_byte vaddr[4];
673 } Elf32_External_crinfo;
674
675 typedef struct
676 {
677 bfd_byte info[4];
678 bfd_byte konst[4];
679 } Elf32_External_crinfo2;
680
681 /* These are the constants used to swap the bitfields in a crinfo. */
682
683 #define CRINFO_CTYPE (0x1)
684 #define CRINFO_CTYPE_SH (31)
685 #define CRINFO_RTYPE (0xf)
686 #define CRINFO_RTYPE_SH (27)
687 #define CRINFO_DIST2TO (0xff)
688 #define CRINFO_DIST2TO_SH (19)
689 #define CRINFO_RELVADDR (0x7ffff)
690 #define CRINFO_RELVADDR_SH (0)
691
692 /* A compact relocation info has long (3 words) or short (2 words)
693 formats. A short format doesn't have VADDR field and relvaddr
694 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
695 #define CRF_MIPS_LONG 1
696 #define CRF_MIPS_SHORT 0
697
698 /* There are 4 types of compact relocation at least. The value KONST
699 has different meaning for each type:
700
701 (type) (konst)
702 CT_MIPS_REL32 Address in data
703 CT_MIPS_WORD Address in word (XXX)
704 CT_MIPS_GPHI_LO GP - vaddr
705 CT_MIPS_JMPAD Address to jump
706 */
707
708 #define CRT_MIPS_REL32 0xa
709 #define CRT_MIPS_WORD 0xb
710 #define CRT_MIPS_GPHI_LO 0xc
711 #define CRT_MIPS_JMPAD 0xd
712
713 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
714 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
715 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
716 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
717 \f
718 /* The structure of the runtime procedure descriptor created by the
719 loader for use by the static exception system. */
720
721 typedef struct runtime_pdr {
722 bfd_vma adr; /* Memory address of start of procedure. */
723 long regmask; /* Save register mask. */
724 long regoffset; /* Save register offset. */
725 long fregmask; /* Save floating point register mask. */
726 long fregoffset; /* Save floating point register offset. */
727 long frameoffset; /* Frame size. */
728 short framereg; /* Frame pointer register. */
729 short pcreg; /* Offset or reg of return pc. */
730 long irpss; /* Index into the runtime string table. */
731 long reserved;
732 struct exception_info *exception_info;/* Pointer to exception array. */
733 } RPDR, *pRPDR;
734 #define cbRPDR sizeof (RPDR)
735 #define rpdNil ((pRPDR) 0)
736 \f
737 static struct mips_got_entry *mips_elf_create_local_got_entry
738 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
739 struct mips_elf_link_hash_entry *, int);
740 static bfd_boolean mips_elf_sort_hash_table_f
741 (struct mips_elf_link_hash_entry *, void *);
742 static bfd_vma mips_elf_high
743 (bfd_vma);
744 static bfd_boolean mips_elf_create_dynamic_relocation
745 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
746 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
747 bfd_vma *, asection *);
748 static bfd_vma mips_elf_adjust_gp
749 (bfd *, struct mips_got_info *, bfd *);
750
751 /* This will be used when we sort the dynamic relocation records. */
752 static bfd *reldyn_sorting_bfd;
753
754 /* True if ABFD is for CPUs with load interlocking that include
755 non-MIPS1 CPUs and R3900. */
756 #define LOAD_INTERLOCKS_P(abfd) \
757 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
758 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
759
760 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
761 This should be safe for all architectures. We enable this predicate
762 for RM9000 for now. */
763 #define JAL_TO_BAL_P(abfd) \
764 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
765
766 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
767 This should be safe for all architectures. We enable this predicate for
768 all CPUs. */
769 #define JALR_TO_BAL_P(abfd) 1
770
771 /* True if ABFD is for CPUs that are faster if JR is converted to B.
772 This should be safe for all architectures. We enable this predicate for
773 all CPUs. */
774 #define JR_TO_B_P(abfd) 1
775
776 /* True if ABFD is a PIC object. */
777 #define PIC_OBJECT_P(abfd) \
778 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
779
780 /* Nonzero if ABFD is using the O32 ABI. */
781 #define ABI_O32_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
783
784 /* Nonzero if ABFD is using the N32 ABI. */
785 #define ABI_N32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
787
788 /* Nonzero if ABFD is using the N64 ABI. */
789 #define ABI_64_P(abfd) \
790 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
791
792 /* Nonzero if ABFD is using NewABI conventions. */
793 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
794
795 /* Nonzero if ABFD has microMIPS code. */
796 #define MICROMIPS_P(abfd) \
797 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
798
799 /* Nonzero if ABFD is MIPS R6. */
800 #define MIPSR6_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
802 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
803
804 /* The IRIX compatibility level we are striving for. */
805 #define IRIX_COMPAT(abfd) \
806 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
807
808 /* Whether we are trying to be compatible with IRIX at all. */
809 #define SGI_COMPAT(abfd) \
810 (IRIX_COMPAT (abfd) != ict_none)
811
812 /* The name of the options section. */
813 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
814 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
815
816 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
817 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
818 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
819 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
820
821 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
822 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.abiflags") == 0)
824
825 /* Whether the section is readonly. */
826 #define MIPS_ELF_READONLY_SECTION(sec) \
827 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
828 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
829
830 /* The name of the stub section. */
831 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
832
833 /* The size of an external REL relocation. */
834 #define MIPS_ELF_REL_SIZE(abfd) \
835 (get_elf_backend_data (abfd)->s->sizeof_rel)
836
837 /* The size of an external RELA relocation. */
838 #define MIPS_ELF_RELA_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rela)
840
841 /* The size of an external dynamic table entry. */
842 #define MIPS_ELF_DYN_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_dyn)
844
845 /* The size of a GOT entry. */
846 #define MIPS_ELF_GOT_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->arch_size / 8)
848
849 /* The size of the .rld_map section. */
850 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of a symbol-table entry. */
854 #define MIPS_ELF_SYM_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->sizeof_sym)
856
857 /* The default alignment for sections, as a power of two. */
858 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
859 (get_elf_backend_data (abfd)->s->log_file_align)
860
861 /* Get word-sized data. */
862 #define MIPS_ELF_GET_WORD(abfd, ptr) \
863 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
864
865 /* Put out word-sized data. */
866 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
867 (ABI_64_P (abfd) \
868 ? bfd_put_64 (abfd, val, ptr) \
869 : bfd_put_32 (abfd, val, ptr))
870
871 /* The opcode for word-sized loads (LW or LD). */
872 #define MIPS_ELF_LOAD_WORD(abfd) \
873 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
874
875 /* Add a dynamic symbol table-entry. */
876 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
877 _bfd_elf_add_dynamic_entry (info, tag, val)
878
879 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
880 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
881
882 /* The name of the dynamic relocation section. */
883 #define MIPS_ELF_REL_DYN_NAME(INFO) \
884 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
885
886 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
887 from smaller values. Start with zero, widen, *then* decrement. */
888 #define MINUS_ONE (((bfd_vma)0) - 1)
889 #define MINUS_TWO (((bfd_vma)0) - 2)
890
891 /* The value to write into got[1] for SVR4 targets, to identify it is
892 a GNU object. The dynamic linker can then use got[1] to store the
893 module pointer. */
894 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
895 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
896
897 /* The offset of $gp from the beginning of the .got section. */
898 #define ELF_MIPS_GP_OFFSET(INFO) \
899 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
900
901 /* The maximum size of the GOT for it to be addressable using 16-bit
902 offsets from $gp. */
903 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
904
905 /* Instructions which appear in a stub. */
906 #define STUB_LW(abfd) \
907 ((ABI_64_P (abfd) \
908 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
909 : 0x8f998010)) /* lw t9,0x8010(gp) */
910 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
911 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
912 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
913 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
914 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
915 #define STUB_LI16S(abfd, VAL) \
916 ((ABI_64_P (abfd) \
917 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
918 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
919
920 /* Likewise for the microMIPS ASE. */
921 #define STUB_LW_MICROMIPS(abfd) \
922 (ABI_64_P (abfd) \
923 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
924 : 0xff3c8010) /* lw t9,0x8010(gp) */
925 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
926 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
927 #define STUB_LUI_MICROMIPS(VAL) \
928 (0x41b80000 + (VAL)) /* lui t8,VAL */
929 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
930 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
931 #define STUB_ORI_MICROMIPS(VAL) \
932 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
933 #define STUB_LI16U_MICROMIPS(VAL) \
934 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
935 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
936 (ABI_64_P (abfd) \
937 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
938 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
939
940 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
941 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
942 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
943 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
944 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
946
947 /* The name of the dynamic interpreter. This is put in the .interp
948 section. */
949
950 #define ELF_DYNAMIC_INTERPRETER(abfd) \
951 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
952 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
953 : "/usr/lib/libc.so.1")
954
955 #ifdef BFD64
956 #define MNAME(bfd,pre,pos) \
957 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
958 #define ELF_R_SYM(bfd, i) \
959 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
960 #define ELF_R_TYPE(bfd, i) \
961 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
962 #define ELF_R_INFO(bfd, s, t) \
963 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
964 #else
965 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
966 #define ELF_R_SYM(bfd, i) \
967 (ELF32_R_SYM (i))
968 #define ELF_R_TYPE(bfd, i) \
969 (ELF32_R_TYPE (i))
970 #define ELF_R_INFO(bfd, s, t) \
971 (ELF32_R_INFO (s, t))
972 #endif
973 \f
974 /* The mips16 compiler uses a couple of special sections to handle
975 floating point arguments.
976
977 Section names that look like .mips16.fn.FNNAME contain stubs that
978 copy floating point arguments from the fp regs to the gp regs and
979 then jump to FNNAME. If any 32 bit function calls FNNAME, the
980 call should be redirected to the stub instead. If no 32 bit
981 function calls FNNAME, the stub should be discarded. We need to
982 consider any reference to the function, not just a call, because
983 if the address of the function is taken we will need the stub,
984 since the address might be passed to a 32 bit function.
985
986 Section names that look like .mips16.call.FNNAME contain stubs
987 that copy floating point arguments from the gp regs to the fp
988 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
989 then any 16 bit function that calls FNNAME should be redirected
990 to the stub instead. If FNNAME is not a 32 bit function, the
991 stub should be discarded.
992
993 .mips16.call.fp.FNNAME sections are similar, but contain stubs
994 which call FNNAME and then copy the return value from the fp regs
995 to the gp regs. These stubs store the return value in $18 while
996 calling FNNAME; any function which might call one of these stubs
997 must arrange to save $18 around the call. (This case is not
998 needed for 32 bit functions that call 16 bit functions, because
999 16 bit functions always return floating point values in both
1000 $f0/$f1 and $2/$3.)
1001
1002 Note that in all cases FNNAME might be defined statically.
1003 Therefore, FNNAME is not used literally. Instead, the relocation
1004 information will indicate which symbol the section is for.
1005
1006 We record any stubs that we find in the symbol table. */
1007
1008 #define FN_STUB ".mips16.fn."
1009 #define CALL_STUB ".mips16.call."
1010 #define CALL_FP_STUB ".mips16.call.fp."
1011
1012 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1013 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1014 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1015 \f
1016 /* The format of the first PLT entry in an O32 executable. */
1017 static const bfd_vma mips_o32_exec_plt0_entry[] =
1018 {
1019 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1020 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1021 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1022 0x031cc023, /* subu $24, $24, $28 */
1023 0x03e07825, /* or t7, ra, zero */
1024 0x0018c082, /* srl $24, $24, 2 */
1025 0x0320f809, /* jalr $25 */
1026 0x2718fffe /* subu $24, $24, 2 */
1027 };
1028
1029 /* The format of the first PLT entry in an N32 executable. Different
1030 because gp ($28) is not available; we use t2 ($14) instead. */
1031 static const bfd_vma mips_n32_exec_plt0_entry[] =
1032 {
1033 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1034 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1035 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1036 0x030ec023, /* subu $24, $24, $14 */
1037 0x03e07825, /* or t7, ra, zero */
1038 0x0018c082, /* srl $24, $24, 2 */
1039 0x0320f809, /* jalr $25 */
1040 0x2718fffe /* subu $24, $24, 2 */
1041 };
1042
1043 /* The format of the first PLT entry in an N64 executable. Different
1044 from N32 because of the increased size of GOT entries. */
1045 static const bfd_vma mips_n64_exec_plt0_entry[] =
1046 {
1047 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1048 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1049 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1050 0x030ec023, /* subu $24, $24, $14 */
1051 0x03e07825, /* or t7, ra, zero */
1052 0x0018c0c2, /* srl $24, $24, 3 */
1053 0x0320f809, /* jalr $25 */
1054 0x2718fffe /* subu $24, $24, 2 */
1055 };
1056
1057 /* The format of the microMIPS first PLT entry in an O32 executable.
1058 We rely on v0 ($2) rather than t8 ($24) to contain the address
1059 of the GOTPLT entry handled, so this stub may only be used when
1060 all the subsequent PLT entries are microMIPS code too.
1061
1062 The trailing NOP is for alignment and correct disassembly only. */
1063 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1064 {
1065 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1066 0xff23, 0x0000, /* lw $25, 0($3) */
1067 0x0535, /* subu $2, $2, $3 */
1068 0x2525, /* srl $2, $2, 2 */
1069 0x3302, 0xfffe, /* subu $24, $2, 2 */
1070 0x0dff, /* move $15, $31 */
1071 0x45f9, /* jalrs $25 */
1072 0x0f83, /* move $28, $3 */
1073 0x0c00 /* nop */
1074 };
1075
1076 /* The format of the microMIPS first PLT entry in an O32 executable
1077 in the insn32 mode. */
1078 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1079 {
1080 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1081 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1082 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1083 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1084 0x001f, 0x7a90, /* or $15, $31, zero */
1085 0x0318, 0x1040, /* srl $24, $24, 2 */
1086 0x03f9, 0x0f3c, /* jalr $25 */
1087 0x3318, 0xfffe /* subu $24, $24, 2 */
1088 };
1089
1090 /* The format of subsequent standard PLT entries. */
1091 static const bfd_vma mips_exec_plt_entry[] =
1092 {
1093 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1094 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1095 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1096 0x03200008 /* jr $25 */
1097 };
1098
1099 /* In the following PLT entry the JR and ADDIU instructions will
1100 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1101 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1102 static const bfd_vma mipsr6_exec_plt_entry[] =
1103 {
1104 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1105 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1106 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1107 0x03200009 /* jr $25 */
1108 };
1109
1110 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1111 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1112 directly addressable. */
1113 static const bfd_vma mips16_o32_exec_plt_entry[] =
1114 {
1115 0xb203, /* lw $2, 12($pc) */
1116 0x9a60, /* lw $3, 0($2) */
1117 0x651a, /* move $24, $2 */
1118 0xeb00, /* jr $3 */
1119 0x653b, /* move $25, $3 */
1120 0x6500, /* nop */
1121 0x0000, 0x0000 /* .word (.got.plt entry) */
1122 };
1123
1124 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1125 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1126 static const bfd_vma micromips_o32_exec_plt_entry[] =
1127 {
1128 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1129 0xff22, 0x0000, /* lw $25, 0($2) */
1130 0x4599, /* jr $25 */
1131 0x0f02 /* move $24, $2 */
1132 };
1133
1134 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1135 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1136 {
1137 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1138 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1139 0x0019, 0x0f3c, /* jr $25 */
1140 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1141 };
1142
1143 /* The format of the first PLT entry in a VxWorks executable. */
1144 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1145 {
1146 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1147 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1148 0x8f390008, /* lw t9, 8(t9) */
1149 0x00000000, /* nop */
1150 0x03200008, /* jr t9 */
1151 0x00000000 /* nop */
1152 };
1153
1154 /* The format of subsequent PLT entries. */
1155 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1156 {
1157 0x10000000, /* b .PLT_resolver */
1158 0x24180000, /* li t8, <pltindex> */
1159 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1160 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1161 0x8f390000, /* lw t9, 0(t9) */
1162 0x00000000, /* nop */
1163 0x03200008, /* jr t9 */
1164 0x00000000 /* nop */
1165 };
1166
1167 /* The format of the first PLT entry in a VxWorks shared object. */
1168 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1169 {
1170 0x8f990008, /* lw t9, 8(gp) */
1171 0x00000000, /* nop */
1172 0x03200008, /* jr t9 */
1173 0x00000000, /* nop */
1174 0x00000000, /* nop */
1175 0x00000000 /* nop */
1176 };
1177
1178 /* The format of subsequent PLT entries. */
1179 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1180 {
1181 0x10000000, /* b .PLT_resolver */
1182 0x24180000 /* li t8, <pltindex> */
1183 };
1184 \f
1185 /* microMIPS 32-bit opcode helper installer. */
1186
1187 static void
1188 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1189 {
1190 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1191 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1192 }
1193
1194 /* microMIPS 32-bit opcode helper retriever. */
1195
1196 static bfd_vma
1197 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1198 {
1199 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1200 }
1201 \f
1202 /* Look up an entry in a MIPS ELF linker hash table. */
1203
1204 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1205 ((struct mips_elf_link_hash_entry *) \
1206 elf_link_hash_lookup (&(table)->root, (string), (create), \
1207 (copy), (follow)))
1208
1209 /* Traverse a MIPS ELF linker hash table. */
1210
1211 #define mips_elf_link_hash_traverse(table, func, info) \
1212 (elf_link_hash_traverse \
1213 (&(table)->root, \
1214 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1215 (info)))
1216
1217 /* Find the base offsets for thread-local storage in this object,
1218 for GD/LD and IE/LE respectively. */
1219
1220 #define TP_OFFSET 0x7000
1221 #define DTP_OFFSET 0x8000
1222
1223 static bfd_vma
1224 dtprel_base (struct bfd_link_info *info)
1225 {
1226 /* If tls_sec is NULL, we should have signalled an error already. */
1227 if (elf_hash_table (info)->tls_sec == NULL)
1228 return 0;
1229 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1230 }
1231
1232 static bfd_vma
1233 tprel_base (struct bfd_link_info *info)
1234 {
1235 /* If tls_sec is NULL, we should have signalled an error already. */
1236 if (elf_hash_table (info)->tls_sec == NULL)
1237 return 0;
1238 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1239 }
1240
1241 /* Create an entry in a MIPS ELF linker hash table. */
1242
1243 static struct bfd_hash_entry *
1244 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1245 struct bfd_hash_table *table, const char *string)
1246 {
1247 struct mips_elf_link_hash_entry *ret =
1248 (struct mips_elf_link_hash_entry *) entry;
1249
1250 /* Allocate the structure if it has not already been allocated by a
1251 subclass. */
1252 if (ret == NULL)
1253 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1254 if (ret == NULL)
1255 return (struct bfd_hash_entry *) ret;
1256
1257 /* Call the allocation method of the superclass. */
1258 ret = ((struct mips_elf_link_hash_entry *)
1259 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1260 table, string));
1261 if (ret != NULL)
1262 {
1263 /* Set local fields. */
1264 memset (&ret->esym, 0, sizeof (EXTR));
1265 /* We use -2 as a marker to indicate that the information has
1266 not been set. -1 means there is no associated ifd. */
1267 ret->esym.ifd = -2;
1268 ret->la25_stub = 0;
1269 ret->possibly_dynamic_relocs = 0;
1270 ret->fn_stub = NULL;
1271 ret->call_stub = NULL;
1272 ret->call_fp_stub = NULL;
1273 ret->global_got_area = GGA_NONE;
1274 ret->got_only_for_calls = TRUE;
1275 ret->readonly_reloc = FALSE;
1276 ret->has_static_relocs = FALSE;
1277 ret->no_fn_stub = FALSE;
1278 ret->need_fn_stub = FALSE;
1279 ret->has_nonpic_branches = FALSE;
1280 ret->needs_lazy_stub = FALSE;
1281 ret->use_plt_entry = FALSE;
1282 }
1283
1284 return (struct bfd_hash_entry *) ret;
1285 }
1286
1287 /* Allocate MIPS ELF private object data. */
1288
1289 bfd_boolean
1290 _bfd_mips_elf_mkobject (bfd *abfd)
1291 {
1292 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1293 MIPS_ELF_DATA);
1294 }
1295
1296 bfd_boolean
1297 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1298 {
1299 if (!sec->used_by_bfd)
1300 {
1301 struct _mips_elf_section_data *sdata;
1302 bfd_size_type amt = sizeof (*sdata);
1303
1304 sdata = bfd_zalloc (abfd, amt);
1305 if (sdata == NULL)
1306 return FALSE;
1307 sec->used_by_bfd = sdata;
1308 }
1309
1310 return _bfd_elf_new_section_hook (abfd, sec);
1311 }
1312 \f
1313 /* Read ECOFF debugging information from a .mdebug section into a
1314 ecoff_debug_info structure. */
1315
1316 bfd_boolean
1317 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1318 struct ecoff_debug_info *debug)
1319 {
1320 HDRR *symhdr;
1321 const struct ecoff_debug_swap *swap;
1322 char *ext_hdr;
1323
1324 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1325 memset (debug, 0, sizeof (*debug));
1326
1327 ext_hdr = bfd_malloc (swap->external_hdr_size);
1328 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1329 goto error_return;
1330
1331 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1332 swap->external_hdr_size))
1333 goto error_return;
1334
1335 symhdr = &debug->symbolic_header;
1336 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1337
1338 /* The symbolic header contains absolute file offsets and sizes to
1339 read. */
1340 #define READ(ptr, offset, count, size, type) \
1341 if (symhdr->count == 0) \
1342 debug->ptr = NULL; \
1343 else \
1344 { \
1345 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1346 debug->ptr = bfd_malloc (amt); \
1347 if (debug->ptr == NULL) \
1348 goto error_return; \
1349 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1350 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1351 goto error_return; \
1352 }
1353
1354 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1355 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1356 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1357 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1358 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1359 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1360 union aux_ext *);
1361 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1362 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1363 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1364 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1365 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1366 #undef READ
1367
1368 debug->fdr = NULL;
1369
1370 return TRUE;
1371
1372 error_return:
1373 if (ext_hdr != NULL)
1374 free (ext_hdr);
1375 if (debug->line != NULL)
1376 free (debug->line);
1377 if (debug->external_dnr != NULL)
1378 free (debug->external_dnr);
1379 if (debug->external_pdr != NULL)
1380 free (debug->external_pdr);
1381 if (debug->external_sym != NULL)
1382 free (debug->external_sym);
1383 if (debug->external_opt != NULL)
1384 free (debug->external_opt);
1385 if (debug->external_aux != NULL)
1386 free (debug->external_aux);
1387 if (debug->ss != NULL)
1388 free (debug->ss);
1389 if (debug->ssext != NULL)
1390 free (debug->ssext);
1391 if (debug->external_fdr != NULL)
1392 free (debug->external_fdr);
1393 if (debug->external_rfd != NULL)
1394 free (debug->external_rfd);
1395 if (debug->external_ext != NULL)
1396 free (debug->external_ext);
1397 return FALSE;
1398 }
1399 \f
1400 /* Swap RPDR (runtime procedure table entry) for output. */
1401
1402 static void
1403 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1404 {
1405 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1406 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1407 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1408 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1409 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1410 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1411
1412 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1413 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1414
1415 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1416 }
1417
1418 /* Create a runtime procedure table from the .mdebug section. */
1419
1420 static bfd_boolean
1421 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1422 struct bfd_link_info *info, asection *s,
1423 struct ecoff_debug_info *debug)
1424 {
1425 const struct ecoff_debug_swap *swap;
1426 HDRR *hdr = &debug->symbolic_header;
1427 RPDR *rpdr, *rp;
1428 struct rpdr_ext *erp;
1429 void *rtproc;
1430 struct pdr_ext *epdr;
1431 struct sym_ext *esym;
1432 char *ss, **sv;
1433 char *str;
1434 bfd_size_type size;
1435 bfd_size_type count;
1436 unsigned long sindex;
1437 unsigned long i;
1438 PDR pdr;
1439 SYMR sym;
1440 const char *no_name_func = _("static procedure (no name)");
1441
1442 epdr = NULL;
1443 rpdr = NULL;
1444 esym = NULL;
1445 ss = NULL;
1446 sv = NULL;
1447
1448 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1449
1450 sindex = strlen (no_name_func) + 1;
1451 count = hdr->ipdMax;
1452 if (count > 0)
1453 {
1454 size = swap->external_pdr_size;
1455
1456 epdr = bfd_malloc (size * count);
1457 if (epdr == NULL)
1458 goto error_return;
1459
1460 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1461 goto error_return;
1462
1463 size = sizeof (RPDR);
1464 rp = rpdr = bfd_malloc (size * count);
1465 if (rpdr == NULL)
1466 goto error_return;
1467
1468 size = sizeof (char *);
1469 sv = bfd_malloc (size * count);
1470 if (sv == NULL)
1471 goto error_return;
1472
1473 count = hdr->isymMax;
1474 size = swap->external_sym_size;
1475 esym = bfd_malloc (size * count);
1476 if (esym == NULL)
1477 goto error_return;
1478
1479 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1480 goto error_return;
1481
1482 count = hdr->issMax;
1483 ss = bfd_malloc (count);
1484 if (ss == NULL)
1485 goto error_return;
1486 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1487 goto error_return;
1488
1489 count = hdr->ipdMax;
1490 for (i = 0; i < (unsigned long) count; i++, rp++)
1491 {
1492 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1493 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1494 rp->adr = sym.value;
1495 rp->regmask = pdr.regmask;
1496 rp->regoffset = pdr.regoffset;
1497 rp->fregmask = pdr.fregmask;
1498 rp->fregoffset = pdr.fregoffset;
1499 rp->frameoffset = pdr.frameoffset;
1500 rp->framereg = pdr.framereg;
1501 rp->pcreg = pdr.pcreg;
1502 rp->irpss = sindex;
1503 sv[i] = ss + sym.iss;
1504 sindex += strlen (sv[i]) + 1;
1505 }
1506 }
1507
1508 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1509 size = BFD_ALIGN (size, 16);
1510 rtproc = bfd_alloc (abfd, size);
1511 if (rtproc == NULL)
1512 {
1513 mips_elf_hash_table (info)->procedure_count = 0;
1514 goto error_return;
1515 }
1516
1517 mips_elf_hash_table (info)->procedure_count = count + 2;
1518
1519 erp = rtproc;
1520 memset (erp, 0, sizeof (struct rpdr_ext));
1521 erp++;
1522 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1523 strcpy (str, no_name_func);
1524 str += strlen (no_name_func) + 1;
1525 for (i = 0; i < count; i++)
1526 {
1527 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1528 strcpy (str, sv[i]);
1529 str += strlen (sv[i]) + 1;
1530 }
1531 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1532
1533 /* Set the size and contents of .rtproc section. */
1534 s->size = size;
1535 s->contents = rtproc;
1536
1537 /* Skip this section later on (I don't think this currently
1538 matters, but someday it might). */
1539 s->map_head.link_order = NULL;
1540
1541 if (epdr != NULL)
1542 free (epdr);
1543 if (rpdr != NULL)
1544 free (rpdr);
1545 if (esym != NULL)
1546 free (esym);
1547 if (ss != NULL)
1548 free (ss);
1549 if (sv != NULL)
1550 free (sv);
1551
1552 return TRUE;
1553
1554 error_return:
1555 if (epdr != NULL)
1556 free (epdr);
1557 if (rpdr != NULL)
1558 free (rpdr);
1559 if (esym != NULL)
1560 free (esym);
1561 if (ss != NULL)
1562 free (ss);
1563 if (sv != NULL)
1564 free (sv);
1565 return FALSE;
1566 }
1567 \f
1568 /* We're going to create a stub for H. Create a symbol for the stub's
1569 value and size, to help make the disassembly easier to read. */
1570
1571 static bfd_boolean
1572 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1573 struct mips_elf_link_hash_entry *h,
1574 const char *prefix, asection *s, bfd_vma value,
1575 bfd_vma size)
1576 {
1577 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1578 struct bfd_link_hash_entry *bh;
1579 struct elf_link_hash_entry *elfh;
1580 char *name;
1581 bfd_boolean res;
1582
1583 if (micromips_p)
1584 value |= 1;
1585
1586 /* Create a new symbol. */
1587 name = concat (prefix, h->root.root.root.string, NULL);
1588 bh = NULL;
1589 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1590 BSF_LOCAL, s, value, NULL,
1591 TRUE, FALSE, &bh);
1592 free (name);
1593 if (! res)
1594 return FALSE;
1595
1596 /* Make it a local function. */
1597 elfh = (struct elf_link_hash_entry *) bh;
1598 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1599 elfh->size = size;
1600 elfh->forced_local = 1;
1601 if (micromips_p)
1602 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1603 return TRUE;
1604 }
1605
1606 /* We're about to redefine H. Create a symbol to represent H's
1607 current value and size, to help make the disassembly easier
1608 to read. */
1609
1610 static bfd_boolean
1611 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1612 struct mips_elf_link_hash_entry *h,
1613 const char *prefix)
1614 {
1615 struct bfd_link_hash_entry *bh;
1616 struct elf_link_hash_entry *elfh;
1617 char *name;
1618 asection *s;
1619 bfd_vma value;
1620 bfd_boolean res;
1621
1622 /* Read the symbol's value. */
1623 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1624 || h->root.root.type == bfd_link_hash_defweak);
1625 s = h->root.root.u.def.section;
1626 value = h->root.root.u.def.value;
1627
1628 /* Create a new symbol. */
1629 name = concat (prefix, h->root.root.root.string, NULL);
1630 bh = NULL;
1631 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1632 BSF_LOCAL, s, value, NULL,
1633 TRUE, FALSE, &bh);
1634 free (name);
1635 if (! res)
1636 return FALSE;
1637
1638 /* Make it local and copy the other attributes from H. */
1639 elfh = (struct elf_link_hash_entry *) bh;
1640 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1641 elfh->other = h->root.other;
1642 elfh->size = h->root.size;
1643 elfh->forced_local = 1;
1644 return TRUE;
1645 }
1646
1647 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1648 function rather than to a hard-float stub. */
1649
1650 static bfd_boolean
1651 section_allows_mips16_refs_p (asection *section)
1652 {
1653 const char *name;
1654
1655 name = bfd_get_section_name (section->owner, section);
1656 return (FN_STUB_P (name)
1657 || CALL_STUB_P (name)
1658 || CALL_FP_STUB_P (name)
1659 || strcmp (name, ".pdr") == 0);
1660 }
1661
1662 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1663 stub section of some kind. Return the R_SYMNDX of the target
1664 function, or 0 if we can't decide which function that is. */
1665
1666 static unsigned long
1667 mips16_stub_symndx (const struct elf_backend_data *bed,
1668 asection *sec ATTRIBUTE_UNUSED,
1669 const Elf_Internal_Rela *relocs,
1670 const Elf_Internal_Rela *relend)
1671 {
1672 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1673 const Elf_Internal_Rela *rel;
1674
1675 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1676 one in a compound relocation. */
1677 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1678 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1679 return ELF_R_SYM (sec->owner, rel->r_info);
1680
1681 /* Otherwise trust the first relocation, whatever its kind. This is
1682 the traditional behavior. */
1683 if (relocs < relend)
1684 return ELF_R_SYM (sec->owner, relocs->r_info);
1685
1686 return 0;
1687 }
1688
1689 /* Check the mips16 stubs for a particular symbol, and see if we can
1690 discard them. */
1691
1692 static void
1693 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1694 struct mips_elf_link_hash_entry *h)
1695 {
1696 /* Dynamic symbols must use the standard call interface, in case other
1697 objects try to call them. */
1698 if (h->fn_stub != NULL
1699 && h->root.dynindx != -1)
1700 {
1701 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1702 h->need_fn_stub = TRUE;
1703 }
1704
1705 if (h->fn_stub != NULL
1706 && ! h->need_fn_stub)
1707 {
1708 /* We don't need the fn_stub; the only references to this symbol
1709 are 16 bit calls. Clobber the size to 0 to prevent it from
1710 being included in the link. */
1711 h->fn_stub->size = 0;
1712 h->fn_stub->flags &= ~SEC_RELOC;
1713 h->fn_stub->reloc_count = 0;
1714 h->fn_stub->flags |= SEC_EXCLUDE;
1715 h->fn_stub->output_section = bfd_abs_section_ptr;
1716 }
1717
1718 if (h->call_stub != NULL
1719 && ELF_ST_IS_MIPS16 (h->root.other))
1720 {
1721 /* We don't need the call_stub; this is a 16 bit function, so
1722 calls from other 16 bit functions are OK. Clobber the size
1723 to 0 to prevent it from being included in the link. */
1724 h->call_stub->size = 0;
1725 h->call_stub->flags &= ~SEC_RELOC;
1726 h->call_stub->reloc_count = 0;
1727 h->call_stub->flags |= SEC_EXCLUDE;
1728 h->call_stub->output_section = bfd_abs_section_ptr;
1729 }
1730
1731 if (h->call_fp_stub != NULL
1732 && ELF_ST_IS_MIPS16 (h->root.other))
1733 {
1734 /* We don't need the call_stub; this is a 16 bit function, so
1735 calls from other 16 bit functions are OK. Clobber the size
1736 to 0 to prevent it from being included in the link. */
1737 h->call_fp_stub->size = 0;
1738 h->call_fp_stub->flags &= ~SEC_RELOC;
1739 h->call_fp_stub->reloc_count = 0;
1740 h->call_fp_stub->flags |= SEC_EXCLUDE;
1741 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1742 }
1743 }
1744
1745 /* Hashtable callbacks for mips_elf_la25_stubs. */
1746
1747 static hashval_t
1748 mips_elf_la25_stub_hash (const void *entry_)
1749 {
1750 const struct mips_elf_la25_stub *entry;
1751
1752 entry = (struct mips_elf_la25_stub *) entry_;
1753 return entry->h->root.root.u.def.section->id
1754 + entry->h->root.root.u.def.value;
1755 }
1756
1757 static int
1758 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1759 {
1760 const struct mips_elf_la25_stub *entry1, *entry2;
1761
1762 entry1 = (struct mips_elf_la25_stub *) entry1_;
1763 entry2 = (struct mips_elf_la25_stub *) entry2_;
1764 return ((entry1->h->root.root.u.def.section
1765 == entry2->h->root.root.u.def.section)
1766 && (entry1->h->root.root.u.def.value
1767 == entry2->h->root.root.u.def.value));
1768 }
1769
1770 /* Called by the linker to set up the la25 stub-creation code. FN is
1771 the linker's implementation of add_stub_function. Return true on
1772 success. */
1773
1774 bfd_boolean
1775 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1776 asection *(*fn) (const char *, asection *,
1777 asection *))
1778 {
1779 struct mips_elf_link_hash_table *htab;
1780
1781 htab = mips_elf_hash_table (info);
1782 if (htab == NULL)
1783 return FALSE;
1784
1785 htab->add_stub_section = fn;
1786 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1787 mips_elf_la25_stub_eq, NULL);
1788 if (htab->la25_stubs == NULL)
1789 return FALSE;
1790
1791 return TRUE;
1792 }
1793
1794 /* Return true if H is a locally-defined PIC function, in the sense
1795 that it or its fn_stub might need $25 to be valid on entry.
1796 Note that MIPS16 functions set up $gp using PC-relative instructions,
1797 so they themselves never need $25 to be valid. Only non-MIPS16
1798 entry points are of interest here. */
1799
1800 static bfd_boolean
1801 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1802 {
1803 return ((h->root.root.type == bfd_link_hash_defined
1804 || h->root.root.type == bfd_link_hash_defweak)
1805 && h->root.def_regular
1806 && !bfd_is_abs_section (h->root.root.u.def.section)
1807 && !bfd_is_und_section (h->root.root.u.def.section)
1808 && (!ELF_ST_IS_MIPS16 (h->root.other)
1809 || (h->fn_stub && h->need_fn_stub))
1810 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1811 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1812 }
1813
1814 /* Set *SEC to the input section that contains the target of STUB.
1815 Return the offset of the target from the start of that section. */
1816
1817 static bfd_vma
1818 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1819 asection **sec)
1820 {
1821 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1822 {
1823 BFD_ASSERT (stub->h->need_fn_stub);
1824 *sec = stub->h->fn_stub;
1825 return 0;
1826 }
1827 else
1828 {
1829 *sec = stub->h->root.root.u.def.section;
1830 return stub->h->root.root.u.def.value;
1831 }
1832 }
1833
1834 /* STUB describes an la25 stub that we have decided to implement
1835 by inserting an LUI/ADDIU pair before the target function.
1836 Create the section and redirect the function symbol to it. */
1837
1838 static bfd_boolean
1839 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1840 struct bfd_link_info *info)
1841 {
1842 struct mips_elf_link_hash_table *htab;
1843 char *name;
1844 asection *s, *input_section;
1845 unsigned int align;
1846
1847 htab = mips_elf_hash_table (info);
1848 if (htab == NULL)
1849 return FALSE;
1850
1851 /* Create a unique name for the new section. */
1852 name = bfd_malloc (11 + sizeof (".text.stub."));
1853 if (name == NULL)
1854 return FALSE;
1855 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1856
1857 /* Create the section. */
1858 mips_elf_get_la25_target (stub, &input_section);
1859 s = htab->add_stub_section (name, input_section,
1860 input_section->output_section);
1861 if (s == NULL)
1862 return FALSE;
1863
1864 /* Make sure that any padding goes before the stub. */
1865 align = input_section->alignment_power;
1866 if (!bfd_set_section_alignment (s->owner, s, align))
1867 return FALSE;
1868 if (align > 3)
1869 s->size = (1 << align) - 8;
1870
1871 /* Create a symbol for the stub. */
1872 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1873 stub->stub_section = s;
1874 stub->offset = s->size;
1875
1876 /* Allocate room for it. */
1877 s->size += 8;
1878 return TRUE;
1879 }
1880
1881 /* STUB describes an la25 stub that we have decided to implement
1882 with a separate trampoline. Allocate room for it and redirect
1883 the function symbol to it. */
1884
1885 static bfd_boolean
1886 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1887 struct bfd_link_info *info)
1888 {
1889 struct mips_elf_link_hash_table *htab;
1890 asection *s;
1891
1892 htab = mips_elf_hash_table (info);
1893 if (htab == NULL)
1894 return FALSE;
1895
1896 /* Create a trampoline section, if we haven't already. */
1897 s = htab->strampoline;
1898 if (s == NULL)
1899 {
1900 asection *input_section = stub->h->root.root.u.def.section;
1901 s = htab->add_stub_section (".text", NULL,
1902 input_section->output_section);
1903 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1904 return FALSE;
1905 htab->strampoline = s;
1906 }
1907
1908 /* Create a symbol for the stub. */
1909 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1910 stub->stub_section = s;
1911 stub->offset = s->size;
1912
1913 /* Allocate room for it. */
1914 s->size += 16;
1915 return TRUE;
1916 }
1917
1918 /* H describes a symbol that needs an la25 stub. Make sure that an
1919 appropriate stub exists and point H at it. */
1920
1921 static bfd_boolean
1922 mips_elf_add_la25_stub (struct bfd_link_info *info,
1923 struct mips_elf_link_hash_entry *h)
1924 {
1925 struct mips_elf_link_hash_table *htab;
1926 struct mips_elf_la25_stub search, *stub;
1927 bfd_boolean use_trampoline_p;
1928 asection *s;
1929 bfd_vma value;
1930 void **slot;
1931
1932 /* Describe the stub we want. */
1933 search.stub_section = NULL;
1934 search.offset = 0;
1935 search.h = h;
1936
1937 /* See if we've already created an equivalent stub. */
1938 htab = mips_elf_hash_table (info);
1939 if (htab == NULL)
1940 return FALSE;
1941
1942 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1943 if (slot == NULL)
1944 return FALSE;
1945
1946 stub = (struct mips_elf_la25_stub *) *slot;
1947 if (stub != NULL)
1948 {
1949 /* We can reuse the existing stub. */
1950 h->la25_stub = stub;
1951 return TRUE;
1952 }
1953
1954 /* Create a permanent copy of ENTRY and add it to the hash table. */
1955 stub = bfd_malloc (sizeof (search));
1956 if (stub == NULL)
1957 return FALSE;
1958 *stub = search;
1959 *slot = stub;
1960
1961 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1962 of the section and if we would need no more than 2 nops. */
1963 value = mips_elf_get_la25_target (stub, &s);
1964 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1965 value &= ~1;
1966 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1967
1968 h->la25_stub = stub;
1969 return (use_trampoline_p
1970 ? mips_elf_add_la25_trampoline (stub, info)
1971 : mips_elf_add_la25_intro (stub, info));
1972 }
1973
1974 /* A mips_elf_link_hash_traverse callback that is called before sizing
1975 sections. DATA points to a mips_htab_traverse_info structure. */
1976
1977 static bfd_boolean
1978 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1979 {
1980 struct mips_htab_traverse_info *hti;
1981
1982 hti = (struct mips_htab_traverse_info *) data;
1983 if (!bfd_link_relocatable (hti->info))
1984 mips_elf_check_mips16_stubs (hti->info, h);
1985
1986 if (mips_elf_local_pic_function_p (h))
1987 {
1988 /* PR 12845: If H is in a section that has been garbage
1989 collected it will have its output section set to *ABS*. */
1990 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1991 return TRUE;
1992
1993 /* H is a function that might need $25 to be valid on entry.
1994 If we're creating a non-PIC relocatable object, mark H as
1995 being PIC. If we're creating a non-relocatable object with
1996 non-PIC branches and jumps to H, make sure that H has an la25
1997 stub. */
1998 if (bfd_link_relocatable (hti->info))
1999 {
2000 if (!PIC_OBJECT_P (hti->output_bfd))
2001 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2002 }
2003 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2004 {
2005 hti->error = TRUE;
2006 return FALSE;
2007 }
2008 }
2009 return TRUE;
2010 }
2011 \f
2012 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2013 Most mips16 instructions are 16 bits, but these instructions
2014 are 32 bits.
2015
2016 The format of these instructions is:
2017
2018 +--------------+--------------------------------+
2019 | JALX | X| Imm 20:16 | Imm 25:21 |
2020 +--------------+--------------------------------+
2021 | Immediate 15:0 |
2022 +-----------------------------------------------+
2023
2024 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2025 Note that the immediate value in the first word is swapped.
2026
2027 When producing a relocatable object file, R_MIPS16_26 is
2028 handled mostly like R_MIPS_26. In particular, the addend is
2029 stored as a straight 26-bit value in a 32-bit instruction.
2030 (gas makes life simpler for itself by never adjusting a
2031 R_MIPS16_26 reloc to be against a section, so the addend is
2032 always zero). However, the 32 bit instruction is stored as 2
2033 16-bit values, rather than a single 32-bit value. In a
2034 big-endian file, the result is the same; in a little-endian
2035 file, the two 16-bit halves of the 32 bit value are swapped.
2036 This is so that a disassembler can recognize the jal
2037 instruction.
2038
2039 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2040 instruction stored as two 16-bit values. The addend A is the
2041 contents of the targ26 field. The calculation is the same as
2042 R_MIPS_26. When storing the calculated value, reorder the
2043 immediate value as shown above, and don't forget to store the
2044 value as two 16-bit values.
2045
2046 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2047 defined as
2048
2049 big-endian:
2050 +--------+----------------------+
2051 | | |
2052 | | targ26-16 |
2053 |31 26|25 0|
2054 +--------+----------------------+
2055
2056 little-endian:
2057 +----------+------+-------------+
2058 | | | |
2059 | sub1 | | sub2 |
2060 |0 9|10 15|16 31|
2061 +----------+--------------------+
2062 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2063 ((sub1 << 16) | sub2)).
2064
2065 When producing a relocatable object file, the calculation is
2066 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2067 When producing a fully linked file, the calculation is
2068 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2069 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2070
2071 The table below lists the other MIPS16 instruction relocations.
2072 Each one is calculated in the same way as the non-MIPS16 relocation
2073 given on the right, but using the extended MIPS16 layout of 16-bit
2074 immediate fields:
2075
2076 R_MIPS16_GPREL R_MIPS_GPREL16
2077 R_MIPS16_GOT16 R_MIPS_GOT16
2078 R_MIPS16_CALL16 R_MIPS_CALL16
2079 R_MIPS16_HI16 R_MIPS_HI16
2080 R_MIPS16_LO16 R_MIPS_LO16
2081
2082 A typical instruction will have a format like this:
2083
2084 +--------------+--------------------------------+
2085 | EXTEND | Imm 10:5 | Imm 15:11 |
2086 +--------------+--------------------------------+
2087 | Major | rx | ry | Imm 4:0 |
2088 +--------------+--------------------------------+
2089
2090 EXTEND is the five bit value 11110. Major is the instruction
2091 opcode.
2092
2093 All we need to do here is shuffle the bits appropriately.
2094 As above, the two 16-bit halves must be swapped on a
2095 little-endian system.
2096
2097 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2098 relocatable field is shifted by 1 rather than 2 and the same bit
2099 shuffling is done as with the relocations above. */
2100
2101 static inline bfd_boolean
2102 mips16_reloc_p (int r_type)
2103 {
2104 switch (r_type)
2105 {
2106 case R_MIPS16_26:
2107 case R_MIPS16_GPREL:
2108 case R_MIPS16_GOT16:
2109 case R_MIPS16_CALL16:
2110 case R_MIPS16_HI16:
2111 case R_MIPS16_LO16:
2112 case R_MIPS16_TLS_GD:
2113 case R_MIPS16_TLS_LDM:
2114 case R_MIPS16_TLS_DTPREL_HI16:
2115 case R_MIPS16_TLS_DTPREL_LO16:
2116 case R_MIPS16_TLS_GOTTPREL:
2117 case R_MIPS16_TLS_TPREL_HI16:
2118 case R_MIPS16_TLS_TPREL_LO16:
2119 case R_MIPS16_PC16_S1:
2120 return TRUE;
2121
2122 default:
2123 return FALSE;
2124 }
2125 }
2126
2127 /* Check if a microMIPS reloc. */
2128
2129 static inline bfd_boolean
2130 micromips_reloc_p (unsigned int r_type)
2131 {
2132 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2133 }
2134
2135 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2136 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2137 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2138
2139 static inline bfd_boolean
2140 micromips_reloc_shuffle_p (unsigned int r_type)
2141 {
2142 return (micromips_reloc_p (r_type)
2143 && r_type != R_MICROMIPS_PC7_S1
2144 && r_type != R_MICROMIPS_PC10_S1);
2145 }
2146
2147 static inline bfd_boolean
2148 got16_reloc_p (int r_type)
2149 {
2150 return (r_type == R_MIPS_GOT16
2151 || r_type == R_MIPS16_GOT16
2152 || r_type == R_MICROMIPS_GOT16);
2153 }
2154
2155 static inline bfd_boolean
2156 call16_reloc_p (int r_type)
2157 {
2158 return (r_type == R_MIPS_CALL16
2159 || r_type == R_MIPS16_CALL16
2160 || r_type == R_MICROMIPS_CALL16);
2161 }
2162
2163 static inline bfd_boolean
2164 got_disp_reloc_p (unsigned int r_type)
2165 {
2166 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2167 }
2168
2169 static inline bfd_boolean
2170 got_page_reloc_p (unsigned int r_type)
2171 {
2172 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2173 }
2174
2175 static inline bfd_boolean
2176 got_lo16_reloc_p (unsigned int r_type)
2177 {
2178 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2179 }
2180
2181 static inline bfd_boolean
2182 call_hi16_reloc_p (unsigned int r_type)
2183 {
2184 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2185 }
2186
2187 static inline bfd_boolean
2188 call_lo16_reloc_p (unsigned int r_type)
2189 {
2190 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2191 }
2192
2193 static inline bfd_boolean
2194 hi16_reloc_p (int r_type)
2195 {
2196 return (r_type == R_MIPS_HI16
2197 || r_type == R_MIPS16_HI16
2198 || r_type == R_MICROMIPS_HI16
2199 || r_type == R_MIPS_PCHI16);
2200 }
2201
2202 static inline bfd_boolean
2203 lo16_reloc_p (int r_type)
2204 {
2205 return (r_type == R_MIPS_LO16
2206 || r_type == R_MIPS16_LO16
2207 || r_type == R_MICROMIPS_LO16
2208 || r_type == R_MIPS_PCLO16);
2209 }
2210
2211 static inline bfd_boolean
2212 mips16_call_reloc_p (int r_type)
2213 {
2214 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2215 }
2216
2217 static inline bfd_boolean
2218 jal_reloc_p (int r_type)
2219 {
2220 return (r_type == R_MIPS_26
2221 || r_type == R_MIPS16_26
2222 || r_type == R_MICROMIPS_26_S1);
2223 }
2224
2225 static inline bfd_boolean
2226 b_reloc_p (int r_type)
2227 {
2228 return (r_type == R_MIPS_PC26_S2
2229 || r_type == R_MIPS_PC21_S2
2230 || r_type == R_MIPS_PC16
2231 || r_type == R_MIPS_GNU_REL16_S2
2232 || r_type == R_MIPS16_PC16_S1
2233 || r_type == R_MICROMIPS_PC16_S1
2234 || r_type == R_MICROMIPS_PC10_S1
2235 || r_type == R_MICROMIPS_PC7_S1);
2236 }
2237
2238 static inline bfd_boolean
2239 aligned_pcrel_reloc_p (int r_type)
2240 {
2241 return (r_type == R_MIPS_PC18_S3
2242 || r_type == R_MIPS_PC19_S2);
2243 }
2244
2245 static inline bfd_boolean
2246 branch_reloc_p (int r_type)
2247 {
2248 return (r_type == R_MIPS_26
2249 || r_type == R_MIPS_PC26_S2
2250 || r_type == R_MIPS_PC21_S2
2251 || r_type == R_MIPS_PC16
2252 || r_type == R_MIPS_GNU_REL16_S2);
2253 }
2254
2255 static inline bfd_boolean
2256 mips16_branch_reloc_p (int r_type)
2257 {
2258 return (r_type == R_MIPS16_26
2259 || r_type == R_MIPS16_PC16_S1);
2260 }
2261
2262 static inline bfd_boolean
2263 micromips_branch_reloc_p (int r_type)
2264 {
2265 return (r_type == R_MICROMIPS_26_S1
2266 || r_type == R_MICROMIPS_PC16_S1
2267 || r_type == R_MICROMIPS_PC10_S1
2268 || r_type == R_MICROMIPS_PC7_S1);
2269 }
2270
2271 static inline bfd_boolean
2272 tls_gd_reloc_p (unsigned int r_type)
2273 {
2274 return (r_type == R_MIPS_TLS_GD
2275 || r_type == R_MIPS16_TLS_GD
2276 || r_type == R_MICROMIPS_TLS_GD);
2277 }
2278
2279 static inline bfd_boolean
2280 tls_ldm_reloc_p (unsigned int r_type)
2281 {
2282 return (r_type == R_MIPS_TLS_LDM
2283 || r_type == R_MIPS16_TLS_LDM
2284 || r_type == R_MICROMIPS_TLS_LDM);
2285 }
2286
2287 static inline bfd_boolean
2288 tls_gottprel_reloc_p (unsigned int r_type)
2289 {
2290 return (r_type == R_MIPS_TLS_GOTTPREL
2291 || r_type == R_MIPS16_TLS_GOTTPREL
2292 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2293 }
2294
2295 void
2296 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2297 bfd_boolean jal_shuffle, bfd_byte *data)
2298 {
2299 bfd_vma first, second, val;
2300
2301 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2302 return;
2303
2304 /* Pick up the first and second halfwords of the instruction. */
2305 first = bfd_get_16 (abfd, data);
2306 second = bfd_get_16 (abfd, data + 2);
2307 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2308 val = first << 16 | second;
2309 else if (r_type != R_MIPS16_26)
2310 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2311 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2312 else
2313 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2314 | ((first & 0x1f) << 21) | second);
2315 bfd_put_32 (abfd, val, data);
2316 }
2317
2318 void
2319 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2320 bfd_boolean jal_shuffle, bfd_byte *data)
2321 {
2322 bfd_vma first, second, val;
2323
2324 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2325 return;
2326
2327 val = bfd_get_32 (abfd, data);
2328 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2329 {
2330 second = val & 0xffff;
2331 first = val >> 16;
2332 }
2333 else if (r_type != R_MIPS16_26)
2334 {
2335 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2336 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2337 }
2338 else
2339 {
2340 second = val & 0xffff;
2341 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2342 | ((val >> 21) & 0x1f);
2343 }
2344 bfd_put_16 (abfd, second, data + 2);
2345 bfd_put_16 (abfd, first, data);
2346 }
2347
2348 bfd_reloc_status_type
2349 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2350 arelent *reloc_entry, asection *input_section,
2351 bfd_boolean relocatable, void *data, bfd_vma gp)
2352 {
2353 bfd_vma relocation;
2354 bfd_signed_vma val;
2355 bfd_reloc_status_type status;
2356
2357 if (bfd_is_com_section (symbol->section))
2358 relocation = 0;
2359 else
2360 relocation = symbol->value;
2361
2362 relocation += symbol->section->output_section->vma;
2363 relocation += symbol->section->output_offset;
2364
2365 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2366 return bfd_reloc_outofrange;
2367
2368 /* Set val to the offset into the section or symbol. */
2369 val = reloc_entry->addend;
2370
2371 _bfd_mips_elf_sign_extend (val, 16);
2372
2373 /* Adjust val for the final section location and GP value. If we
2374 are producing relocatable output, we don't want to do this for
2375 an external symbol. */
2376 if (! relocatable
2377 || (symbol->flags & BSF_SECTION_SYM) != 0)
2378 val += relocation - gp;
2379
2380 if (reloc_entry->howto->partial_inplace)
2381 {
2382 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2383 (bfd_byte *) data
2384 + reloc_entry->address);
2385 if (status != bfd_reloc_ok)
2386 return status;
2387 }
2388 else
2389 reloc_entry->addend = val;
2390
2391 if (relocatable)
2392 reloc_entry->address += input_section->output_offset;
2393
2394 return bfd_reloc_ok;
2395 }
2396
2397 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2398 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2399 that contains the relocation field and DATA points to the start of
2400 INPUT_SECTION. */
2401
2402 struct mips_hi16
2403 {
2404 struct mips_hi16 *next;
2405 bfd_byte *data;
2406 asection *input_section;
2407 arelent rel;
2408 };
2409
2410 /* FIXME: This should not be a static variable. */
2411
2412 static struct mips_hi16 *mips_hi16_list;
2413
2414 /* A howto special_function for REL *HI16 relocations. We can only
2415 calculate the correct value once we've seen the partnering
2416 *LO16 relocation, so just save the information for later.
2417
2418 The ABI requires that the *LO16 immediately follow the *HI16.
2419 However, as a GNU extension, we permit an arbitrary number of
2420 *HI16s to be associated with a single *LO16. This significantly
2421 simplies the relocation handling in gcc. */
2422
2423 bfd_reloc_status_type
2424 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2425 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2426 asection *input_section, bfd *output_bfd,
2427 char **error_message ATTRIBUTE_UNUSED)
2428 {
2429 struct mips_hi16 *n;
2430
2431 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2432 return bfd_reloc_outofrange;
2433
2434 n = bfd_malloc (sizeof *n);
2435 if (n == NULL)
2436 return bfd_reloc_outofrange;
2437
2438 n->next = mips_hi16_list;
2439 n->data = data;
2440 n->input_section = input_section;
2441 n->rel = *reloc_entry;
2442 mips_hi16_list = n;
2443
2444 if (output_bfd != NULL)
2445 reloc_entry->address += input_section->output_offset;
2446
2447 return bfd_reloc_ok;
2448 }
2449
2450 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2451 like any other 16-bit relocation when applied to global symbols, but is
2452 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2453
2454 bfd_reloc_status_type
2455 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2456 void *data, asection *input_section,
2457 bfd *output_bfd, char **error_message)
2458 {
2459 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2460 || bfd_is_und_section (bfd_get_section (symbol))
2461 || bfd_is_com_section (bfd_get_section (symbol)))
2462 /* The relocation is against a global symbol. */
2463 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2464 input_section, output_bfd,
2465 error_message);
2466
2467 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd, error_message);
2469 }
2470
2471 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2472 is a straightforward 16 bit inplace relocation, but we must deal with
2473 any partnering high-part relocations as well. */
2474
2475 bfd_reloc_status_type
2476 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2477 void *data, asection *input_section,
2478 bfd *output_bfd, char **error_message)
2479 {
2480 bfd_vma vallo;
2481 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2482
2483 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2484 return bfd_reloc_outofrange;
2485
2486 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2487 location);
2488 vallo = bfd_get_32 (abfd, location);
2489 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2490 location);
2491
2492 while (mips_hi16_list != NULL)
2493 {
2494 bfd_reloc_status_type ret;
2495 struct mips_hi16 *hi;
2496
2497 hi = mips_hi16_list;
2498
2499 /* R_MIPS*_GOT16 relocations are something of a special case. We
2500 want to install the addend in the same way as for a R_MIPS*_HI16
2501 relocation (with a rightshift of 16). However, since GOT16
2502 relocations can also be used with global symbols, their howto
2503 has a rightshift of 0. */
2504 if (hi->rel.howto->type == R_MIPS_GOT16)
2505 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2506 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2507 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2508 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2510
2511 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2512 carry or borrow will induce a change of +1 or -1 in the high part. */
2513 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2514
2515 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2516 hi->input_section, output_bfd,
2517 error_message);
2518 if (ret != bfd_reloc_ok)
2519 return ret;
2520
2521 mips_hi16_list = hi->next;
2522 free (hi);
2523 }
2524
2525 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2526 input_section, output_bfd,
2527 error_message);
2528 }
2529
2530 /* A generic howto special_function. This calculates and installs the
2531 relocation itself, thus avoiding the oft-discussed problems in
2532 bfd_perform_relocation and bfd_install_relocation. */
2533
2534 bfd_reloc_status_type
2535 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2536 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2537 asection *input_section, bfd *output_bfd,
2538 char **error_message ATTRIBUTE_UNUSED)
2539 {
2540 bfd_signed_vma val;
2541 bfd_reloc_status_type status;
2542 bfd_boolean relocatable;
2543
2544 relocatable = (output_bfd != NULL);
2545
2546 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2547 return bfd_reloc_outofrange;
2548
2549 /* Build up the field adjustment in VAL. */
2550 val = 0;
2551 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2552 {
2553 /* Either we're calculating the final field value or we have a
2554 relocation against a section symbol. Add in the section's
2555 offset or address. */
2556 val += symbol->section->output_section->vma;
2557 val += symbol->section->output_offset;
2558 }
2559
2560 if (!relocatable)
2561 {
2562 /* We're calculating the final field value. Add in the symbol's value
2563 and, if pc-relative, subtract the address of the field itself. */
2564 val += symbol->value;
2565 if (reloc_entry->howto->pc_relative)
2566 {
2567 val -= input_section->output_section->vma;
2568 val -= input_section->output_offset;
2569 val -= reloc_entry->address;
2570 }
2571 }
2572
2573 /* VAL is now the final adjustment. If we're keeping this relocation
2574 in the output file, and if the relocation uses a separate addend,
2575 we just need to add VAL to that addend. Otherwise we need to add
2576 VAL to the relocation field itself. */
2577 if (relocatable && !reloc_entry->howto->partial_inplace)
2578 reloc_entry->addend += val;
2579 else
2580 {
2581 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2582
2583 /* Add in the separate addend, if any. */
2584 val += reloc_entry->addend;
2585
2586 /* Add VAL to the relocation field. */
2587 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2588 location);
2589 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2590 location);
2591 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
2593
2594 if (status != bfd_reloc_ok)
2595 return status;
2596 }
2597
2598 if (relocatable)
2599 reloc_entry->address += input_section->output_offset;
2600
2601 return bfd_reloc_ok;
2602 }
2603 \f
2604 /* Swap an entry in a .gptab section. Note that these routines rely
2605 on the equivalence of the two elements of the union. */
2606
2607 static void
2608 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2609 Elf32_gptab *in)
2610 {
2611 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2612 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2613 }
2614
2615 static void
2616 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2617 Elf32_External_gptab *ex)
2618 {
2619 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2620 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2621 }
2622
2623 static void
2624 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2625 Elf32_External_compact_rel *ex)
2626 {
2627 H_PUT_32 (abfd, in->id1, ex->id1);
2628 H_PUT_32 (abfd, in->num, ex->num);
2629 H_PUT_32 (abfd, in->id2, ex->id2);
2630 H_PUT_32 (abfd, in->offset, ex->offset);
2631 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2632 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2633 }
2634
2635 static void
2636 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2637 Elf32_External_crinfo *ex)
2638 {
2639 unsigned long l;
2640
2641 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2642 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2643 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2644 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2645 H_PUT_32 (abfd, l, ex->info);
2646 H_PUT_32 (abfd, in->konst, ex->konst);
2647 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2648 }
2649 \f
2650 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2651 routines swap this structure in and out. They are used outside of
2652 BFD, so they are globally visible. */
2653
2654 void
2655 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2656 Elf32_RegInfo *in)
2657 {
2658 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2659 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2660 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2661 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2662 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2663 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2664 }
2665
2666 void
2667 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2668 Elf32_External_RegInfo *ex)
2669 {
2670 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2671 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2672 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2673 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2674 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2675 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2676 }
2677
2678 /* In the 64 bit ABI, the .MIPS.options section holds register
2679 information in an Elf64_Reginfo structure. These routines swap
2680 them in and out. They are globally visible because they are used
2681 outside of BFD. These routines are here so that gas can call them
2682 without worrying about whether the 64 bit ABI has been included. */
2683
2684 void
2685 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2686 Elf64_Internal_RegInfo *in)
2687 {
2688 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2689 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2690 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2691 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2692 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2693 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2694 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2695 }
2696
2697 void
2698 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2699 Elf64_External_RegInfo *ex)
2700 {
2701 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2702 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2703 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2704 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2705 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2706 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2707 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2708 }
2709
2710 /* Swap in an options header. */
2711
2712 void
2713 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2714 Elf_Internal_Options *in)
2715 {
2716 in->kind = H_GET_8 (abfd, ex->kind);
2717 in->size = H_GET_8 (abfd, ex->size);
2718 in->section = H_GET_16 (abfd, ex->section);
2719 in->info = H_GET_32 (abfd, ex->info);
2720 }
2721
2722 /* Swap out an options header. */
2723
2724 void
2725 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2726 Elf_External_Options *ex)
2727 {
2728 H_PUT_8 (abfd, in->kind, ex->kind);
2729 H_PUT_8 (abfd, in->size, ex->size);
2730 H_PUT_16 (abfd, in->section, ex->section);
2731 H_PUT_32 (abfd, in->info, ex->info);
2732 }
2733
2734 /* Swap in an abiflags structure. */
2735
2736 void
2737 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2738 const Elf_External_ABIFlags_v0 *ex,
2739 Elf_Internal_ABIFlags_v0 *in)
2740 {
2741 in->version = H_GET_16 (abfd, ex->version);
2742 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2743 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2744 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2745 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2746 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2747 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2748 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2749 in->ases = H_GET_32 (abfd, ex->ases);
2750 in->flags1 = H_GET_32 (abfd, ex->flags1);
2751 in->flags2 = H_GET_32 (abfd, ex->flags2);
2752 }
2753
2754 /* Swap out an abiflags structure. */
2755
2756 void
2757 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2758 const Elf_Internal_ABIFlags_v0 *in,
2759 Elf_External_ABIFlags_v0 *ex)
2760 {
2761 H_PUT_16 (abfd, in->version, ex->version);
2762 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2763 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2764 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2765 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2766 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2767 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2768 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2769 H_PUT_32 (abfd, in->ases, ex->ases);
2770 H_PUT_32 (abfd, in->flags1, ex->flags1);
2771 H_PUT_32 (abfd, in->flags2, ex->flags2);
2772 }
2773 \f
2774 /* This function is called via qsort() to sort the dynamic relocation
2775 entries by increasing r_symndx value. */
2776
2777 static int
2778 sort_dynamic_relocs (const void *arg1, const void *arg2)
2779 {
2780 Elf_Internal_Rela int_reloc1;
2781 Elf_Internal_Rela int_reloc2;
2782 int diff;
2783
2784 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2785 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2786
2787 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2788 if (diff != 0)
2789 return diff;
2790
2791 if (int_reloc1.r_offset < int_reloc2.r_offset)
2792 return -1;
2793 if (int_reloc1.r_offset > int_reloc2.r_offset)
2794 return 1;
2795 return 0;
2796 }
2797
2798 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2799
2800 static int
2801 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2802 const void *arg2 ATTRIBUTE_UNUSED)
2803 {
2804 #ifdef BFD64
2805 Elf_Internal_Rela int_reloc1[3];
2806 Elf_Internal_Rela int_reloc2[3];
2807
2808 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2809 (reldyn_sorting_bfd, arg1, int_reloc1);
2810 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2811 (reldyn_sorting_bfd, arg2, int_reloc2);
2812
2813 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2814 return -1;
2815 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2816 return 1;
2817
2818 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2819 return -1;
2820 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2821 return 1;
2822 return 0;
2823 #else
2824 abort ();
2825 #endif
2826 }
2827
2828
2829 /* This routine is used to write out ECOFF debugging external symbol
2830 information. It is called via mips_elf_link_hash_traverse. The
2831 ECOFF external symbol information must match the ELF external
2832 symbol information. Unfortunately, at this point we don't know
2833 whether a symbol is required by reloc information, so the two
2834 tables may wind up being different. We must sort out the external
2835 symbol information before we can set the final size of the .mdebug
2836 section, and we must set the size of the .mdebug section before we
2837 can relocate any sections, and we can't know which symbols are
2838 required by relocation until we relocate the sections.
2839 Fortunately, it is relatively unlikely that any symbol will be
2840 stripped but required by a reloc. In particular, it can not happen
2841 when generating a final executable. */
2842
2843 static bfd_boolean
2844 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2845 {
2846 struct extsym_info *einfo = data;
2847 bfd_boolean strip;
2848 asection *sec, *output_section;
2849
2850 if (h->root.indx == -2)
2851 strip = FALSE;
2852 else if ((h->root.def_dynamic
2853 || h->root.ref_dynamic
2854 || h->root.type == bfd_link_hash_new)
2855 && !h->root.def_regular
2856 && !h->root.ref_regular)
2857 strip = TRUE;
2858 else if (einfo->info->strip == strip_all
2859 || (einfo->info->strip == strip_some
2860 && bfd_hash_lookup (einfo->info->keep_hash,
2861 h->root.root.root.string,
2862 FALSE, FALSE) == NULL))
2863 strip = TRUE;
2864 else
2865 strip = FALSE;
2866
2867 if (strip)
2868 return TRUE;
2869
2870 if (h->esym.ifd == -2)
2871 {
2872 h->esym.jmptbl = 0;
2873 h->esym.cobol_main = 0;
2874 h->esym.weakext = 0;
2875 h->esym.reserved = 0;
2876 h->esym.ifd = ifdNil;
2877 h->esym.asym.value = 0;
2878 h->esym.asym.st = stGlobal;
2879
2880 if (h->root.root.type == bfd_link_hash_undefined
2881 || h->root.root.type == bfd_link_hash_undefweak)
2882 {
2883 const char *name;
2884
2885 /* Use undefined class. Also, set class and type for some
2886 special symbols. */
2887 name = h->root.root.root.string;
2888 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2889 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2890 {
2891 h->esym.asym.sc = scData;
2892 h->esym.asym.st = stLabel;
2893 h->esym.asym.value = 0;
2894 }
2895 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2896 {
2897 h->esym.asym.sc = scAbs;
2898 h->esym.asym.st = stLabel;
2899 h->esym.asym.value =
2900 mips_elf_hash_table (einfo->info)->procedure_count;
2901 }
2902 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2903 {
2904 h->esym.asym.sc = scAbs;
2905 h->esym.asym.st = stLabel;
2906 h->esym.asym.value = elf_gp (einfo->abfd);
2907 }
2908 else
2909 h->esym.asym.sc = scUndefined;
2910 }
2911 else if (h->root.root.type != bfd_link_hash_defined
2912 && h->root.root.type != bfd_link_hash_defweak)
2913 h->esym.asym.sc = scAbs;
2914 else
2915 {
2916 const char *name;
2917
2918 sec = h->root.root.u.def.section;
2919 output_section = sec->output_section;
2920
2921 /* When making a shared library and symbol h is the one from
2922 the another shared library, OUTPUT_SECTION may be null. */
2923 if (output_section == NULL)
2924 h->esym.asym.sc = scUndefined;
2925 else
2926 {
2927 name = bfd_section_name (output_section->owner, output_section);
2928
2929 if (strcmp (name, ".text") == 0)
2930 h->esym.asym.sc = scText;
2931 else if (strcmp (name, ".data") == 0)
2932 h->esym.asym.sc = scData;
2933 else if (strcmp (name, ".sdata") == 0)
2934 h->esym.asym.sc = scSData;
2935 else if (strcmp (name, ".rodata") == 0
2936 || strcmp (name, ".rdata") == 0)
2937 h->esym.asym.sc = scRData;
2938 else if (strcmp (name, ".bss") == 0)
2939 h->esym.asym.sc = scBss;
2940 else if (strcmp (name, ".sbss") == 0)
2941 h->esym.asym.sc = scSBss;
2942 else if (strcmp (name, ".init") == 0)
2943 h->esym.asym.sc = scInit;
2944 else if (strcmp (name, ".fini") == 0)
2945 h->esym.asym.sc = scFini;
2946 else
2947 h->esym.asym.sc = scAbs;
2948 }
2949 }
2950
2951 h->esym.asym.reserved = 0;
2952 h->esym.asym.index = indexNil;
2953 }
2954
2955 if (h->root.root.type == bfd_link_hash_common)
2956 h->esym.asym.value = h->root.root.u.c.size;
2957 else if (h->root.root.type == bfd_link_hash_defined
2958 || h->root.root.type == bfd_link_hash_defweak)
2959 {
2960 if (h->esym.asym.sc == scCommon)
2961 h->esym.asym.sc = scBss;
2962 else if (h->esym.asym.sc == scSCommon)
2963 h->esym.asym.sc = scSBss;
2964
2965 sec = h->root.root.u.def.section;
2966 output_section = sec->output_section;
2967 if (output_section != NULL)
2968 h->esym.asym.value = (h->root.root.u.def.value
2969 + sec->output_offset
2970 + output_section->vma);
2971 else
2972 h->esym.asym.value = 0;
2973 }
2974 else
2975 {
2976 struct mips_elf_link_hash_entry *hd = h;
2977
2978 while (hd->root.root.type == bfd_link_hash_indirect)
2979 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2980
2981 if (hd->needs_lazy_stub)
2982 {
2983 BFD_ASSERT (hd->root.plt.plist != NULL);
2984 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2985 /* Set type and value for a symbol with a function stub. */
2986 h->esym.asym.st = stProc;
2987 sec = hd->root.root.u.def.section;
2988 if (sec == NULL)
2989 h->esym.asym.value = 0;
2990 else
2991 {
2992 output_section = sec->output_section;
2993 if (output_section != NULL)
2994 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2995 + sec->output_offset
2996 + output_section->vma);
2997 else
2998 h->esym.asym.value = 0;
2999 }
3000 }
3001 }
3002
3003 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3004 h->root.root.root.string,
3005 &h->esym))
3006 {
3007 einfo->failed = TRUE;
3008 return FALSE;
3009 }
3010
3011 return TRUE;
3012 }
3013
3014 /* A comparison routine used to sort .gptab entries. */
3015
3016 static int
3017 gptab_compare (const void *p1, const void *p2)
3018 {
3019 const Elf32_gptab *a1 = p1;
3020 const Elf32_gptab *a2 = p2;
3021
3022 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3023 }
3024 \f
3025 /* Functions to manage the got entry hash table. */
3026
3027 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3028 hash number. */
3029
3030 static INLINE hashval_t
3031 mips_elf_hash_bfd_vma (bfd_vma addr)
3032 {
3033 #ifdef BFD64
3034 return addr + (addr >> 32);
3035 #else
3036 return addr;
3037 #endif
3038 }
3039
3040 static hashval_t
3041 mips_elf_got_entry_hash (const void *entry_)
3042 {
3043 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3044
3045 return (entry->symndx
3046 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3047 + (entry->tls_type == GOT_TLS_LDM ? 0
3048 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3049 : entry->symndx >= 0 ? (entry->abfd->id
3050 + mips_elf_hash_bfd_vma (entry->d.addend))
3051 : entry->d.h->root.root.root.hash));
3052 }
3053
3054 static int
3055 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3056 {
3057 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3058 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3059
3060 return (e1->symndx == e2->symndx
3061 && e1->tls_type == e2->tls_type
3062 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3063 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3064 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3065 && e1->d.addend == e2->d.addend)
3066 : e2->abfd && e1->d.h == e2->d.h));
3067 }
3068
3069 static hashval_t
3070 mips_got_page_ref_hash (const void *ref_)
3071 {
3072 const struct mips_got_page_ref *ref;
3073
3074 ref = (const struct mips_got_page_ref *) ref_;
3075 return ((ref->symndx >= 0
3076 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3077 : ref->u.h->root.root.root.hash)
3078 + mips_elf_hash_bfd_vma (ref->addend));
3079 }
3080
3081 static int
3082 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3083 {
3084 const struct mips_got_page_ref *ref1, *ref2;
3085
3086 ref1 = (const struct mips_got_page_ref *) ref1_;
3087 ref2 = (const struct mips_got_page_ref *) ref2_;
3088 return (ref1->symndx == ref2->symndx
3089 && (ref1->symndx < 0
3090 ? ref1->u.h == ref2->u.h
3091 : ref1->u.abfd == ref2->u.abfd)
3092 && ref1->addend == ref2->addend);
3093 }
3094
3095 static hashval_t
3096 mips_got_page_entry_hash (const void *entry_)
3097 {
3098 const struct mips_got_page_entry *entry;
3099
3100 entry = (const struct mips_got_page_entry *) entry_;
3101 return entry->sec->id;
3102 }
3103
3104 static int
3105 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3106 {
3107 const struct mips_got_page_entry *entry1, *entry2;
3108
3109 entry1 = (const struct mips_got_page_entry *) entry1_;
3110 entry2 = (const struct mips_got_page_entry *) entry2_;
3111 return entry1->sec == entry2->sec;
3112 }
3113 \f
3114 /* Create and return a new mips_got_info structure. */
3115
3116 static struct mips_got_info *
3117 mips_elf_create_got_info (bfd *abfd)
3118 {
3119 struct mips_got_info *g;
3120
3121 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3122 if (g == NULL)
3123 return NULL;
3124
3125 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3126 mips_elf_got_entry_eq, NULL);
3127 if (g->got_entries == NULL)
3128 return NULL;
3129
3130 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3131 mips_got_page_ref_eq, NULL);
3132 if (g->got_page_refs == NULL)
3133 return NULL;
3134
3135 return g;
3136 }
3137
3138 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3139 CREATE_P and if ABFD doesn't already have a GOT. */
3140
3141 static struct mips_got_info *
3142 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3143 {
3144 struct mips_elf_obj_tdata *tdata;
3145
3146 if (!is_mips_elf (abfd))
3147 return NULL;
3148
3149 tdata = mips_elf_tdata (abfd);
3150 if (!tdata->got && create_p)
3151 tdata->got = mips_elf_create_got_info (abfd);
3152 return tdata->got;
3153 }
3154
3155 /* Record that ABFD should use output GOT G. */
3156
3157 static void
3158 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3159 {
3160 struct mips_elf_obj_tdata *tdata;
3161
3162 BFD_ASSERT (is_mips_elf (abfd));
3163 tdata = mips_elf_tdata (abfd);
3164 if (tdata->got)
3165 {
3166 /* The GOT structure itself and the hash table entries are
3167 allocated to a bfd, but the hash tables aren't. */
3168 htab_delete (tdata->got->got_entries);
3169 htab_delete (tdata->got->got_page_refs);
3170 if (tdata->got->got_page_entries)
3171 htab_delete (tdata->got->got_page_entries);
3172 }
3173 tdata->got = g;
3174 }
3175
3176 /* Return the dynamic relocation section. If it doesn't exist, try to
3177 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3178 if creation fails. */
3179
3180 static asection *
3181 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3182 {
3183 const char *dname;
3184 asection *sreloc;
3185 bfd *dynobj;
3186
3187 dname = MIPS_ELF_REL_DYN_NAME (info);
3188 dynobj = elf_hash_table (info)->dynobj;
3189 sreloc = bfd_get_linker_section (dynobj, dname);
3190 if (sreloc == NULL && create_p)
3191 {
3192 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3193 (SEC_ALLOC
3194 | SEC_LOAD
3195 | SEC_HAS_CONTENTS
3196 | SEC_IN_MEMORY
3197 | SEC_LINKER_CREATED
3198 | SEC_READONLY));
3199 if (sreloc == NULL
3200 || ! bfd_set_section_alignment (dynobj, sreloc,
3201 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3202 return NULL;
3203 }
3204 return sreloc;
3205 }
3206
3207 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3208
3209 static int
3210 mips_elf_reloc_tls_type (unsigned int r_type)
3211 {
3212 if (tls_gd_reloc_p (r_type))
3213 return GOT_TLS_GD;
3214
3215 if (tls_ldm_reloc_p (r_type))
3216 return GOT_TLS_LDM;
3217
3218 if (tls_gottprel_reloc_p (r_type))
3219 return GOT_TLS_IE;
3220
3221 return GOT_TLS_NONE;
3222 }
3223
3224 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3225
3226 static int
3227 mips_tls_got_entries (unsigned int type)
3228 {
3229 switch (type)
3230 {
3231 case GOT_TLS_GD:
3232 case GOT_TLS_LDM:
3233 return 2;
3234
3235 case GOT_TLS_IE:
3236 return 1;
3237
3238 case GOT_TLS_NONE:
3239 return 0;
3240 }
3241 abort ();
3242 }
3243
3244 /* Count the number of relocations needed for a TLS GOT entry, with
3245 access types from TLS_TYPE, and symbol H (or a local symbol if H
3246 is NULL). */
3247
3248 static int
3249 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3250 struct elf_link_hash_entry *h)
3251 {
3252 int indx = 0;
3253 bfd_boolean need_relocs = FALSE;
3254 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3255
3256 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3257 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3258 indx = h->dynindx;
3259
3260 if ((bfd_link_pic (info) || indx != 0)
3261 && (h == NULL
3262 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3263 || h->root.type != bfd_link_hash_undefweak))
3264 need_relocs = TRUE;
3265
3266 if (!need_relocs)
3267 return 0;
3268
3269 switch (tls_type)
3270 {
3271 case GOT_TLS_GD:
3272 return indx != 0 ? 2 : 1;
3273
3274 case GOT_TLS_IE:
3275 return 1;
3276
3277 case GOT_TLS_LDM:
3278 return bfd_link_pic (info) ? 1 : 0;
3279
3280 default:
3281 return 0;
3282 }
3283 }
3284
3285 /* Add the number of GOT entries and TLS relocations required by ENTRY
3286 to G. */
3287
3288 static void
3289 mips_elf_count_got_entry (struct bfd_link_info *info,
3290 struct mips_got_info *g,
3291 struct mips_got_entry *entry)
3292 {
3293 if (entry->tls_type)
3294 {
3295 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3296 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3297 entry->symndx < 0
3298 ? &entry->d.h->root : NULL);
3299 }
3300 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3301 g->local_gotno += 1;
3302 else
3303 g->global_gotno += 1;
3304 }
3305
3306 /* Output a simple dynamic relocation into SRELOC. */
3307
3308 static void
3309 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3310 asection *sreloc,
3311 unsigned long reloc_index,
3312 unsigned long indx,
3313 int r_type,
3314 bfd_vma offset)
3315 {
3316 Elf_Internal_Rela rel[3];
3317
3318 memset (rel, 0, sizeof (rel));
3319
3320 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3321 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3322
3323 if (ABI_64_P (output_bfd))
3324 {
3325 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3326 (output_bfd, &rel[0],
3327 (sreloc->contents
3328 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3329 }
3330 else
3331 bfd_elf32_swap_reloc_out
3332 (output_bfd, &rel[0],
3333 (sreloc->contents
3334 + reloc_index * sizeof (Elf32_External_Rel)));
3335 }
3336
3337 /* Initialize a set of TLS GOT entries for one symbol. */
3338
3339 static void
3340 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3341 struct mips_got_entry *entry,
3342 struct mips_elf_link_hash_entry *h,
3343 bfd_vma value)
3344 {
3345 struct mips_elf_link_hash_table *htab;
3346 int indx;
3347 asection *sreloc, *sgot;
3348 bfd_vma got_offset, got_offset2;
3349 bfd_boolean need_relocs = FALSE;
3350
3351 htab = mips_elf_hash_table (info);
3352 if (htab == NULL)
3353 return;
3354
3355 sgot = htab->root.sgot;
3356
3357 indx = 0;
3358 if (h != NULL)
3359 {
3360 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3361
3362 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3363 &h->root)
3364 && (!bfd_link_pic (info)
3365 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3366 indx = h->root.dynindx;
3367 }
3368
3369 if (entry->tls_initialized)
3370 return;
3371
3372 if ((bfd_link_pic (info) || indx != 0)
3373 && (h == NULL
3374 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3375 || h->root.type != bfd_link_hash_undefweak))
3376 need_relocs = TRUE;
3377
3378 /* MINUS_ONE means the symbol is not defined in this object. It may not
3379 be defined at all; assume that the value doesn't matter in that
3380 case. Otherwise complain if we would use the value. */
3381 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3382 || h->root.root.type == bfd_link_hash_undefweak);
3383
3384 /* Emit necessary relocations. */
3385 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3386 got_offset = entry->gotidx;
3387
3388 switch (entry->tls_type)
3389 {
3390 case GOT_TLS_GD:
3391 /* General Dynamic. */
3392 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3393
3394 if (need_relocs)
3395 {
3396 mips_elf_output_dynamic_relocation
3397 (abfd, sreloc, sreloc->reloc_count++, indx,
3398 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3399 sgot->output_offset + sgot->output_section->vma + got_offset);
3400
3401 if (indx)
3402 mips_elf_output_dynamic_relocation
3403 (abfd, sreloc, sreloc->reloc_count++, indx,
3404 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3405 sgot->output_offset + sgot->output_section->vma + got_offset2);
3406 else
3407 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3408 sgot->contents + got_offset2);
3409 }
3410 else
3411 {
3412 MIPS_ELF_PUT_WORD (abfd, 1,
3413 sgot->contents + got_offset);
3414 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3415 sgot->contents + got_offset2);
3416 }
3417 break;
3418
3419 case GOT_TLS_IE:
3420 /* Initial Exec model. */
3421 if (need_relocs)
3422 {
3423 if (indx == 0)
3424 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3425 sgot->contents + got_offset);
3426 else
3427 MIPS_ELF_PUT_WORD (abfd, 0,
3428 sgot->contents + got_offset);
3429
3430 mips_elf_output_dynamic_relocation
3431 (abfd, sreloc, sreloc->reloc_count++, indx,
3432 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3433 sgot->output_offset + sgot->output_section->vma + got_offset);
3434 }
3435 else
3436 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3437 sgot->contents + got_offset);
3438 break;
3439
3440 case GOT_TLS_LDM:
3441 /* The initial offset is zero, and the LD offsets will include the
3442 bias by DTP_OFFSET. */
3443 MIPS_ELF_PUT_WORD (abfd, 0,
3444 sgot->contents + got_offset
3445 + MIPS_ELF_GOT_SIZE (abfd));
3446
3447 if (!bfd_link_pic (info))
3448 MIPS_ELF_PUT_WORD (abfd, 1,
3449 sgot->contents + got_offset);
3450 else
3451 mips_elf_output_dynamic_relocation
3452 (abfd, sreloc, sreloc->reloc_count++, indx,
3453 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3454 sgot->output_offset + sgot->output_section->vma + got_offset);
3455 break;
3456
3457 default:
3458 abort ();
3459 }
3460
3461 entry->tls_initialized = TRUE;
3462 }
3463
3464 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3465 for global symbol H. .got.plt comes before the GOT, so the offset
3466 will be negative. */
3467
3468 static bfd_vma
3469 mips_elf_gotplt_index (struct bfd_link_info *info,
3470 struct elf_link_hash_entry *h)
3471 {
3472 bfd_vma got_address, got_value;
3473 struct mips_elf_link_hash_table *htab;
3474
3475 htab = mips_elf_hash_table (info);
3476 BFD_ASSERT (htab != NULL);
3477
3478 BFD_ASSERT (h->plt.plist != NULL);
3479 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3480
3481 /* Calculate the address of the associated .got.plt entry. */
3482 got_address = (htab->root.sgotplt->output_section->vma
3483 + htab->root.sgotplt->output_offset
3484 + (h->plt.plist->gotplt_index
3485 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3486
3487 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3488 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3489 + htab->root.hgot->root.u.def.section->output_offset
3490 + htab->root.hgot->root.u.def.value);
3491
3492 return got_address - got_value;
3493 }
3494
3495 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3496 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3497 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3498 offset can be found. */
3499
3500 static bfd_vma
3501 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3502 bfd_vma value, unsigned long r_symndx,
3503 struct mips_elf_link_hash_entry *h, int r_type)
3504 {
3505 struct mips_elf_link_hash_table *htab;
3506 struct mips_got_entry *entry;
3507
3508 htab = mips_elf_hash_table (info);
3509 BFD_ASSERT (htab != NULL);
3510
3511 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3512 r_symndx, h, r_type);
3513 if (!entry)
3514 return MINUS_ONE;
3515
3516 if (entry->tls_type)
3517 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3518 return entry->gotidx;
3519 }
3520
3521 /* Return the GOT index of global symbol H in the primary GOT. */
3522
3523 static bfd_vma
3524 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3525 struct elf_link_hash_entry *h)
3526 {
3527 struct mips_elf_link_hash_table *htab;
3528 long global_got_dynindx;
3529 struct mips_got_info *g;
3530 bfd_vma got_index;
3531
3532 htab = mips_elf_hash_table (info);
3533 BFD_ASSERT (htab != NULL);
3534
3535 global_got_dynindx = 0;
3536 if (htab->global_gotsym != NULL)
3537 global_got_dynindx = htab->global_gotsym->dynindx;
3538
3539 /* Once we determine the global GOT entry with the lowest dynamic
3540 symbol table index, we must put all dynamic symbols with greater
3541 indices into the primary GOT. That makes it easy to calculate the
3542 GOT offset. */
3543 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3544 g = mips_elf_bfd_got (obfd, FALSE);
3545 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3546 * MIPS_ELF_GOT_SIZE (obfd));
3547 BFD_ASSERT (got_index < htab->root.sgot->size);
3548
3549 return got_index;
3550 }
3551
3552 /* Return the GOT index for the global symbol indicated by H, which is
3553 referenced by a relocation of type R_TYPE in IBFD. */
3554
3555 static bfd_vma
3556 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3557 struct elf_link_hash_entry *h, int r_type)
3558 {
3559 struct mips_elf_link_hash_table *htab;
3560 struct mips_got_info *g;
3561 struct mips_got_entry lookup, *entry;
3562 bfd_vma gotidx;
3563
3564 htab = mips_elf_hash_table (info);
3565 BFD_ASSERT (htab != NULL);
3566
3567 g = mips_elf_bfd_got (ibfd, FALSE);
3568 BFD_ASSERT (g);
3569
3570 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3571 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3572 return mips_elf_primary_global_got_index (obfd, info, h);
3573
3574 lookup.abfd = ibfd;
3575 lookup.symndx = -1;
3576 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3577 entry = htab_find (g->got_entries, &lookup);
3578 BFD_ASSERT (entry);
3579
3580 gotidx = entry->gotidx;
3581 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3582
3583 if (lookup.tls_type)
3584 {
3585 bfd_vma value = MINUS_ONE;
3586
3587 if ((h->root.type == bfd_link_hash_defined
3588 || h->root.type == bfd_link_hash_defweak)
3589 && h->root.u.def.section->output_section)
3590 value = (h->root.u.def.value
3591 + h->root.u.def.section->output_offset
3592 + h->root.u.def.section->output_section->vma);
3593
3594 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3595 }
3596 return gotidx;
3597 }
3598
3599 /* Find a GOT page entry that points to within 32KB of VALUE. These
3600 entries are supposed to be placed at small offsets in the GOT, i.e.,
3601 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3602 entry could be created. If OFFSETP is nonnull, use it to return the
3603 offset of the GOT entry from VALUE. */
3604
3605 static bfd_vma
3606 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3607 bfd_vma value, bfd_vma *offsetp)
3608 {
3609 bfd_vma page, got_index;
3610 struct mips_got_entry *entry;
3611
3612 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3613 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3614 NULL, R_MIPS_GOT_PAGE);
3615
3616 if (!entry)
3617 return MINUS_ONE;
3618
3619 got_index = entry->gotidx;
3620
3621 if (offsetp)
3622 *offsetp = value - entry->d.address;
3623
3624 return got_index;
3625 }
3626
3627 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3628 EXTERNAL is true if the relocation was originally against a global
3629 symbol that binds locally. */
3630
3631 static bfd_vma
3632 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3633 bfd_vma value, bfd_boolean external)
3634 {
3635 struct mips_got_entry *entry;
3636
3637 /* GOT16 relocations against local symbols are followed by a LO16
3638 relocation; those against global symbols are not. Thus if the
3639 symbol was originally local, the GOT16 relocation should load the
3640 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3641 if (! external)
3642 value = mips_elf_high (value) << 16;
3643
3644 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3645 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3646 same in all cases. */
3647 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3648 NULL, R_MIPS_GOT16);
3649 if (entry)
3650 return entry->gotidx;
3651 else
3652 return MINUS_ONE;
3653 }
3654
3655 /* Returns the offset for the entry at the INDEXth position
3656 in the GOT. */
3657
3658 static bfd_vma
3659 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3660 bfd *input_bfd, bfd_vma got_index)
3661 {
3662 struct mips_elf_link_hash_table *htab;
3663 asection *sgot;
3664 bfd_vma gp;
3665
3666 htab = mips_elf_hash_table (info);
3667 BFD_ASSERT (htab != NULL);
3668
3669 sgot = htab->root.sgot;
3670 gp = _bfd_get_gp_value (output_bfd)
3671 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3672
3673 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3674 }
3675
3676 /* Create and return a local GOT entry for VALUE, which was calculated
3677 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3678 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3679 instead. */
3680
3681 static struct mips_got_entry *
3682 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3683 bfd *ibfd, bfd_vma value,
3684 unsigned long r_symndx,
3685 struct mips_elf_link_hash_entry *h,
3686 int r_type)
3687 {
3688 struct mips_got_entry lookup, *entry;
3689 void **loc;
3690 struct mips_got_info *g;
3691 struct mips_elf_link_hash_table *htab;
3692 bfd_vma gotidx;
3693
3694 htab = mips_elf_hash_table (info);
3695 BFD_ASSERT (htab != NULL);
3696
3697 g = mips_elf_bfd_got (ibfd, FALSE);
3698 if (g == NULL)
3699 {
3700 g = mips_elf_bfd_got (abfd, FALSE);
3701 BFD_ASSERT (g != NULL);
3702 }
3703
3704 /* This function shouldn't be called for symbols that live in the global
3705 area of the GOT. */
3706 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3707
3708 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3709 if (lookup.tls_type)
3710 {
3711 lookup.abfd = ibfd;
3712 if (tls_ldm_reloc_p (r_type))
3713 {
3714 lookup.symndx = 0;
3715 lookup.d.addend = 0;
3716 }
3717 else if (h == NULL)
3718 {
3719 lookup.symndx = r_symndx;
3720 lookup.d.addend = 0;
3721 }
3722 else
3723 {
3724 lookup.symndx = -1;
3725 lookup.d.h = h;
3726 }
3727
3728 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3729 BFD_ASSERT (entry);
3730
3731 gotidx = entry->gotidx;
3732 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3733
3734 return entry;
3735 }
3736
3737 lookup.abfd = NULL;
3738 lookup.symndx = -1;
3739 lookup.d.address = value;
3740 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3741 if (!loc)
3742 return NULL;
3743
3744 entry = (struct mips_got_entry *) *loc;
3745 if (entry)
3746 return entry;
3747
3748 if (g->assigned_low_gotno > g->assigned_high_gotno)
3749 {
3750 /* We didn't allocate enough space in the GOT. */
3751 _bfd_error_handler
3752 (_("not enough GOT space for local GOT entries"));
3753 bfd_set_error (bfd_error_bad_value);
3754 return NULL;
3755 }
3756
3757 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3758 if (!entry)
3759 return NULL;
3760
3761 if (got16_reloc_p (r_type)
3762 || call16_reloc_p (r_type)
3763 || got_page_reloc_p (r_type)
3764 || got_disp_reloc_p (r_type))
3765 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3766 else
3767 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3768
3769 *entry = lookup;
3770 *loc = entry;
3771
3772 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3773
3774 /* These GOT entries need a dynamic relocation on VxWorks. */
3775 if (htab->is_vxworks)
3776 {
3777 Elf_Internal_Rela outrel;
3778 asection *s;
3779 bfd_byte *rloc;
3780 bfd_vma got_address;
3781
3782 s = mips_elf_rel_dyn_section (info, FALSE);
3783 got_address = (htab->root.sgot->output_section->vma
3784 + htab->root.sgot->output_offset
3785 + entry->gotidx);
3786
3787 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3788 outrel.r_offset = got_address;
3789 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3790 outrel.r_addend = value;
3791 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3792 }
3793
3794 return entry;
3795 }
3796
3797 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3798 The number might be exact or a worst-case estimate, depending on how
3799 much information is available to elf_backend_omit_section_dynsym at
3800 the current linking stage. */
3801
3802 static bfd_size_type
3803 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3804 {
3805 bfd_size_type count;
3806
3807 count = 0;
3808 if (bfd_link_pic (info)
3809 || elf_hash_table (info)->is_relocatable_executable)
3810 {
3811 asection *p;
3812 const struct elf_backend_data *bed;
3813
3814 bed = get_elf_backend_data (output_bfd);
3815 for (p = output_bfd->sections; p ; p = p->next)
3816 if ((p->flags & SEC_EXCLUDE) == 0
3817 && (p->flags & SEC_ALLOC) != 0
3818 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3819 ++count;
3820 }
3821 return count;
3822 }
3823
3824 /* Sort the dynamic symbol table so that symbols that need GOT entries
3825 appear towards the end. */
3826
3827 static bfd_boolean
3828 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3829 {
3830 struct mips_elf_link_hash_table *htab;
3831 struct mips_elf_hash_sort_data hsd;
3832 struct mips_got_info *g;
3833
3834 if (elf_hash_table (info)->dynsymcount == 0)
3835 return TRUE;
3836
3837 htab = mips_elf_hash_table (info);
3838 BFD_ASSERT (htab != NULL);
3839
3840 g = htab->got_info;
3841 if (g == NULL)
3842 return TRUE;
3843
3844 hsd.low = NULL;
3845 hsd.max_unref_got_dynindx
3846 = hsd.min_got_dynindx
3847 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3848 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3849 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3850 elf_hash_table (info)),
3851 mips_elf_sort_hash_table_f,
3852 &hsd);
3853
3854 /* There should have been enough room in the symbol table to
3855 accommodate both the GOT and non-GOT symbols. */
3856 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3857 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3858 == elf_hash_table (info)->dynsymcount);
3859 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3860 == g->global_gotno);
3861
3862 /* Now we know which dynamic symbol has the lowest dynamic symbol
3863 table index in the GOT. */
3864 htab->global_gotsym = hsd.low;
3865
3866 return TRUE;
3867 }
3868
3869 /* If H needs a GOT entry, assign it the highest available dynamic
3870 index. Otherwise, assign it the lowest available dynamic
3871 index. */
3872
3873 static bfd_boolean
3874 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3875 {
3876 struct mips_elf_hash_sort_data *hsd = data;
3877
3878 /* Symbols without dynamic symbol table entries aren't interesting
3879 at all. */
3880 if (h->root.dynindx == -1)
3881 return TRUE;
3882
3883 switch (h->global_got_area)
3884 {
3885 case GGA_NONE:
3886 h->root.dynindx = hsd->max_non_got_dynindx++;
3887 break;
3888
3889 case GGA_NORMAL:
3890 h->root.dynindx = --hsd->min_got_dynindx;
3891 hsd->low = (struct elf_link_hash_entry *) h;
3892 break;
3893
3894 case GGA_RELOC_ONLY:
3895 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3896 hsd->low = (struct elf_link_hash_entry *) h;
3897 h->root.dynindx = hsd->max_unref_got_dynindx++;
3898 break;
3899 }
3900
3901 return TRUE;
3902 }
3903
3904 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3905 (which is owned by the caller and shouldn't be added to the
3906 hash table directly). */
3907
3908 static bfd_boolean
3909 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3910 struct mips_got_entry *lookup)
3911 {
3912 struct mips_elf_link_hash_table *htab;
3913 struct mips_got_entry *entry;
3914 struct mips_got_info *g;
3915 void **loc, **bfd_loc;
3916
3917 /* Make sure there's a slot for this entry in the master GOT. */
3918 htab = mips_elf_hash_table (info);
3919 g = htab->got_info;
3920 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3921 if (!loc)
3922 return FALSE;
3923
3924 /* Populate the entry if it isn't already. */
3925 entry = (struct mips_got_entry *) *loc;
3926 if (!entry)
3927 {
3928 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3929 if (!entry)
3930 return FALSE;
3931
3932 lookup->tls_initialized = FALSE;
3933 lookup->gotidx = -1;
3934 *entry = *lookup;
3935 *loc = entry;
3936 }
3937
3938 /* Reuse the same GOT entry for the BFD's GOT. */
3939 g = mips_elf_bfd_got (abfd, TRUE);
3940 if (!g)
3941 return FALSE;
3942
3943 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3944 if (!bfd_loc)
3945 return FALSE;
3946
3947 if (!*bfd_loc)
3948 *bfd_loc = entry;
3949 return TRUE;
3950 }
3951
3952 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3953 entry for it. FOR_CALL is true if the caller is only interested in
3954 using the GOT entry for calls. */
3955
3956 static bfd_boolean
3957 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3958 bfd *abfd, struct bfd_link_info *info,
3959 bfd_boolean for_call, int r_type)
3960 {
3961 struct mips_elf_link_hash_table *htab;
3962 struct mips_elf_link_hash_entry *hmips;
3963 struct mips_got_entry entry;
3964 unsigned char tls_type;
3965
3966 htab = mips_elf_hash_table (info);
3967 BFD_ASSERT (htab != NULL);
3968
3969 hmips = (struct mips_elf_link_hash_entry *) h;
3970 if (!for_call)
3971 hmips->got_only_for_calls = FALSE;
3972
3973 /* A global symbol in the GOT must also be in the dynamic symbol
3974 table. */
3975 if (h->dynindx == -1)
3976 {
3977 switch (ELF_ST_VISIBILITY (h->other))
3978 {
3979 case STV_INTERNAL:
3980 case STV_HIDDEN:
3981 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3982 break;
3983 }
3984 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3985 return FALSE;
3986 }
3987
3988 tls_type = mips_elf_reloc_tls_type (r_type);
3989 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3990 hmips->global_got_area = GGA_NORMAL;
3991
3992 entry.abfd = abfd;
3993 entry.symndx = -1;
3994 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3995 entry.tls_type = tls_type;
3996 return mips_elf_record_got_entry (info, abfd, &entry);
3997 }
3998
3999 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4000 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4001
4002 static bfd_boolean
4003 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4004 struct bfd_link_info *info, int r_type)
4005 {
4006 struct mips_elf_link_hash_table *htab;
4007 struct mips_got_info *g;
4008 struct mips_got_entry entry;
4009
4010 htab = mips_elf_hash_table (info);
4011 BFD_ASSERT (htab != NULL);
4012
4013 g = htab->got_info;
4014 BFD_ASSERT (g != NULL);
4015
4016 entry.abfd = abfd;
4017 entry.symndx = symndx;
4018 entry.d.addend = addend;
4019 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4020 return mips_elf_record_got_entry (info, abfd, &entry);
4021 }
4022
4023 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4024 H is the symbol's hash table entry, or null if SYMNDX is local
4025 to ABFD. */
4026
4027 static bfd_boolean
4028 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4029 long symndx, struct elf_link_hash_entry *h,
4030 bfd_signed_vma addend)
4031 {
4032 struct mips_elf_link_hash_table *htab;
4033 struct mips_got_info *g1, *g2;
4034 struct mips_got_page_ref lookup, *entry;
4035 void **loc, **bfd_loc;
4036
4037 htab = mips_elf_hash_table (info);
4038 BFD_ASSERT (htab != NULL);
4039
4040 g1 = htab->got_info;
4041 BFD_ASSERT (g1 != NULL);
4042
4043 if (h)
4044 {
4045 lookup.symndx = -1;
4046 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4047 }
4048 else
4049 {
4050 lookup.symndx = symndx;
4051 lookup.u.abfd = abfd;
4052 }
4053 lookup.addend = addend;
4054 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4055 if (loc == NULL)
4056 return FALSE;
4057
4058 entry = (struct mips_got_page_ref *) *loc;
4059 if (!entry)
4060 {
4061 entry = bfd_alloc (abfd, sizeof (*entry));
4062 if (!entry)
4063 return FALSE;
4064
4065 *entry = lookup;
4066 *loc = entry;
4067 }
4068
4069 /* Add the same entry to the BFD's GOT. */
4070 g2 = mips_elf_bfd_got (abfd, TRUE);
4071 if (!g2)
4072 return FALSE;
4073
4074 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4075 if (!bfd_loc)
4076 return FALSE;
4077
4078 if (!*bfd_loc)
4079 *bfd_loc = entry;
4080
4081 return TRUE;
4082 }
4083
4084 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4085
4086 static void
4087 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4088 unsigned int n)
4089 {
4090 asection *s;
4091 struct mips_elf_link_hash_table *htab;
4092
4093 htab = mips_elf_hash_table (info);
4094 BFD_ASSERT (htab != NULL);
4095
4096 s = mips_elf_rel_dyn_section (info, FALSE);
4097 BFD_ASSERT (s != NULL);
4098
4099 if (htab->is_vxworks)
4100 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4101 else
4102 {
4103 if (s->size == 0)
4104 {
4105 /* Make room for a null element. */
4106 s->size += MIPS_ELF_REL_SIZE (abfd);
4107 ++s->reloc_count;
4108 }
4109 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4110 }
4111 }
4112 \f
4113 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4114 mips_elf_traverse_got_arg structure. Count the number of GOT
4115 entries and TLS relocs. Set DATA->value to true if we need
4116 to resolve indirect or warning symbols and then recreate the GOT. */
4117
4118 static int
4119 mips_elf_check_recreate_got (void **entryp, void *data)
4120 {
4121 struct mips_got_entry *entry;
4122 struct mips_elf_traverse_got_arg *arg;
4123
4124 entry = (struct mips_got_entry *) *entryp;
4125 arg = (struct mips_elf_traverse_got_arg *) data;
4126 if (entry->abfd != NULL && entry->symndx == -1)
4127 {
4128 struct mips_elf_link_hash_entry *h;
4129
4130 h = entry->d.h;
4131 if (h->root.root.type == bfd_link_hash_indirect
4132 || h->root.root.type == bfd_link_hash_warning)
4133 {
4134 arg->value = TRUE;
4135 return 0;
4136 }
4137 }
4138 mips_elf_count_got_entry (arg->info, arg->g, entry);
4139 return 1;
4140 }
4141
4142 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4143 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4144 converting entries for indirect and warning symbols into entries
4145 for the target symbol. Set DATA->g to null on error. */
4146
4147 static int
4148 mips_elf_recreate_got (void **entryp, void *data)
4149 {
4150 struct mips_got_entry new_entry, *entry;
4151 struct mips_elf_traverse_got_arg *arg;
4152 void **slot;
4153
4154 entry = (struct mips_got_entry *) *entryp;
4155 arg = (struct mips_elf_traverse_got_arg *) data;
4156 if (entry->abfd != NULL
4157 && entry->symndx == -1
4158 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4159 || entry->d.h->root.root.type == bfd_link_hash_warning))
4160 {
4161 struct mips_elf_link_hash_entry *h;
4162
4163 new_entry = *entry;
4164 entry = &new_entry;
4165 h = entry->d.h;
4166 do
4167 {
4168 BFD_ASSERT (h->global_got_area == GGA_NONE);
4169 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4170 }
4171 while (h->root.root.type == bfd_link_hash_indirect
4172 || h->root.root.type == bfd_link_hash_warning);
4173 entry->d.h = h;
4174 }
4175 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4176 if (slot == NULL)
4177 {
4178 arg->g = NULL;
4179 return 0;
4180 }
4181 if (*slot == NULL)
4182 {
4183 if (entry == &new_entry)
4184 {
4185 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4186 if (!entry)
4187 {
4188 arg->g = NULL;
4189 return 0;
4190 }
4191 *entry = new_entry;
4192 }
4193 *slot = entry;
4194 mips_elf_count_got_entry (arg->info, arg->g, entry);
4195 }
4196 return 1;
4197 }
4198
4199 /* Return the maximum number of GOT page entries required for RANGE. */
4200
4201 static bfd_vma
4202 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4203 {
4204 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4205 }
4206
4207 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4208
4209 static bfd_boolean
4210 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4211 asection *sec, bfd_signed_vma addend)
4212 {
4213 struct mips_got_info *g = arg->g;
4214 struct mips_got_page_entry lookup, *entry;
4215 struct mips_got_page_range **range_ptr, *range;
4216 bfd_vma old_pages, new_pages;
4217 void **loc;
4218
4219 /* Find the mips_got_page_entry hash table entry for this section. */
4220 lookup.sec = sec;
4221 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4222 if (loc == NULL)
4223 return FALSE;
4224
4225 /* Create a mips_got_page_entry if this is the first time we've
4226 seen the section. */
4227 entry = (struct mips_got_page_entry *) *loc;
4228 if (!entry)
4229 {
4230 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4231 if (!entry)
4232 return FALSE;
4233
4234 entry->sec = sec;
4235 *loc = entry;
4236 }
4237
4238 /* Skip over ranges whose maximum extent cannot share a page entry
4239 with ADDEND. */
4240 range_ptr = &entry->ranges;
4241 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4242 range_ptr = &(*range_ptr)->next;
4243
4244 /* If we scanned to the end of the list, or found a range whose
4245 minimum extent cannot share a page entry with ADDEND, create
4246 a new singleton range. */
4247 range = *range_ptr;
4248 if (!range || addend < range->min_addend - 0xffff)
4249 {
4250 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4251 if (!range)
4252 return FALSE;
4253
4254 range->next = *range_ptr;
4255 range->min_addend = addend;
4256 range->max_addend = addend;
4257
4258 *range_ptr = range;
4259 entry->num_pages++;
4260 g->page_gotno++;
4261 return TRUE;
4262 }
4263
4264 /* Remember how many pages the old range contributed. */
4265 old_pages = mips_elf_pages_for_range (range);
4266
4267 /* Update the ranges. */
4268 if (addend < range->min_addend)
4269 range->min_addend = addend;
4270 else if (addend > range->max_addend)
4271 {
4272 if (range->next && addend >= range->next->min_addend - 0xffff)
4273 {
4274 old_pages += mips_elf_pages_for_range (range->next);
4275 range->max_addend = range->next->max_addend;
4276 range->next = range->next->next;
4277 }
4278 else
4279 range->max_addend = addend;
4280 }
4281
4282 /* Record any change in the total estimate. */
4283 new_pages = mips_elf_pages_for_range (range);
4284 if (old_pages != new_pages)
4285 {
4286 entry->num_pages += new_pages - old_pages;
4287 g->page_gotno += new_pages - old_pages;
4288 }
4289
4290 return TRUE;
4291 }
4292
4293 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4294 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4295 whether the page reference described by *REFP needs a GOT page entry,
4296 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4297
4298 static bfd_boolean
4299 mips_elf_resolve_got_page_ref (void **refp, void *data)
4300 {
4301 struct mips_got_page_ref *ref;
4302 struct mips_elf_traverse_got_arg *arg;
4303 struct mips_elf_link_hash_table *htab;
4304 asection *sec;
4305 bfd_vma addend;
4306
4307 ref = (struct mips_got_page_ref *) *refp;
4308 arg = (struct mips_elf_traverse_got_arg *) data;
4309 htab = mips_elf_hash_table (arg->info);
4310
4311 if (ref->symndx < 0)
4312 {
4313 struct mips_elf_link_hash_entry *h;
4314
4315 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4316 h = ref->u.h;
4317 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4318 return 1;
4319
4320 /* Ignore undefined symbols; we'll issue an error later if
4321 appropriate. */
4322 if (!((h->root.root.type == bfd_link_hash_defined
4323 || h->root.root.type == bfd_link_hash_defweak)
4324 && h->root.root.u.def.section))
4325 return 1;
4326
4327 sec = h->root.root.u.def.section;
4328 addend = h->root.root.u.def.value + ref->addend;
4329 }
4330 else
4331 {
4332 Elf_Internal_Sym *isym;
4333
4334 /* Read in the symbol. */
4335 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4336 ref->symndx);
4337 if (isym == NULL)
4338 {
4339 arg->g = NULL;
4340 return 0;
4341 }
4342
4343 /* Get the associated input section. */
4344 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4345 if (sec == NULL)
4346 {
4347 arg->g = NULL;
4348 return 0;
4349 }
4350
4351 /* If this is a mergable section, work out the section and offset
4352 of the merged data. For section symbols, the addend specifies
4353 of the offset _of_ the first byte in the data, otherwise it
4354 specifies the offset _from_ the first byte. */
4355 if (sec->flags & SEC_MERGE)
4356 {
4357 void *secinfo;
4358
4359 secinfo = elf_section_data (sec)->sec_info;
4360 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4361 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4362 isym->st_value + ref->addend);
4363 else
4364 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4365 isym->st_value) + ref->addend;
4366 }
4367 else
4368 addend = isym->st_value + ref->addend;
4369 }
4370 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4371 {
4372 arg->g = NULL;
4373 return 0;
4374 }
4375 return 1;
4376 }
4377
4378 /* If any entries in G->got_entries are for indirect or warning symbols,
4379 replace them with entries for the target symbol. Convert g->got_page_refs
4380 into got_page_entry structures and estimate the number of page entries
4381 that they require. */
4382
4383 static bfd_boolean
4384 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4385 struct mips_got_info *g)
4386 {
4387 struct mips_elf_traverse_got_arg tga;
4388 struct mips_got_info oldg;
4389
4390 oldg = *g;
4391
4392 tga.info = info;
4393 tga.g = g;
4394 tga.value = FALSE;
4395 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4396 if (tga.value)
4397 {
4398 *g = oldg;
4399 g->got_entries = htab_create (htab_size (oldg.got_entries),
4400 mips_elf_got_entry_hash,
4401 mips_elf_got_entry_eq, NULL);
4402 if (!g->got_entries)
4403 return FALSE;
4404
4405 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4406 if (!tga.g)
4407 return FALSE;
4408
4409 htab_delete (oldg.got_entries);
4410 }
4411
4412 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4413 mips_got_page_entry_eq, NULL);
4414 if (g->got_page_entries == NULL)
4415 return FALSE;
4416
4417 tga.info = info;
4418 tga.g = g;
4419 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4420
4421 return TRUE;
4422 }
4423
4424 /* Return true if a GOT entry for H should live in the local rather than
4425 global GOT area. */
4426
4427 static bfd_boolean
4428 mips_use_local_got_p (struct bfd_link_info *info,
4429 struct mips_elf_link_hash_entry *h)
4430 {
4431 /* Symbols that aren't in the dynamic symbol table must live in the
4432 local GOT. This includes symbols that are completely undefined
4433 and which therefore don't bind locally. We'll report undefined
4434 symbols later if appropriate. */
4435 if (h->root.dynindx == -1)
4436 return TRUE;
4437
4438 /* Symbols that bind locally can (and in the case of forced-local
4439 symbols, must) live in the local GOT. */
4440 if (h->got_only_for_calls
4441 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4442 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4443 return TRUE;
4444
4445 /* If this is an executable that must provide a definition of the symbol,
4446 either though PLTs or copy relocations, then that address should go in
4447 the local rather than global GOT. */
4448 if (bfd_link_executable (info) && h->has_static_relocs)
4449 return TRUE;
4450
4451 return FALSE;
4452 }
4453
4454 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4455 link_info structure. Decide whether the hash entry needs an entry in
4456 the global part of the primary GOT, setting global_got_area accordingly.
4457 Count the number of global symbols that are in the primary GOT only
4458 because they have relocations against them (reloc_only_gotno). */
4459
4460 static int
4461 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4462 {
4463 struct bfd_link_info *info;
4464 struct mips_elf_link_hash_table *htab;
4465 struct mips_got_info *g;
4466
4467 info = (struct bfd_link_info *) data;
4468 htab = mips_elf_hash_table (info);
4469 g = htab->got_info;
4470 if (h->global_got_area != GGA_NONE)
4471 {
4472 /* Make a final decision about whether the symbol belongs in the
4473 local or global GOT. */
4474 if (mips_use_local_got_p (info, h))
4475 /* The symbol belongs in the local GOT. We no longer need this
4476 entry if it was only used for relocations; those relocations
4477 will be against the null or section symbol instead of H. */
4478 h->global_got_area = GGA_NONE;
4479 else if (htab->is_vxworks
4480 && h->got_only_for_calls
4481 && h->root.plt.plist->mips_offset != MINUS_ONE)
4482 /* On VxWorks, calls can refer directly to the .got.plt entry;
4483 they don't need entries in the regular GOT. .got.plt entries
4484 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4485 h->global_got_area = GGA_NONE;
4486 else if (h->global_got_area == GGA_RELOC_ONLY)
4487 {
4488 g->reloc_only_gotno++;
4489 g->global_gotno++;
4490 }
4491 }
4492 return 1;
4493 }
4494 \f
4495 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4496 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4497
4498 static int
4499 mips_elf_add_got_entry (void **entryp, void *data)
4500 {
4501 struct mips_got_entry *entry;
4502 struct mips_elf_traverse_got_arg *arg;
4503 void **slot;
4504
4505 entry = (struct mips_got_entry *) *entryp;
4506 arg = (struct mips_elf_traverse_got_arg *) data;
4507 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4508 if (!slot)
4509 {
4510 arg->g = NULL;
4511 return 0;
4512 }
4513 if (!*slot)
4514 {
4515 *slot = entry;
4516 mips_elf_count_got_entry (arg->info, arg->g, entry);
4517 }
4518 return 1;
4519 }
4520
4521 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4522 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4523
4524 static int
4525 mips_elf_add_got_page_entry (void **entryp, void *data)
4526 {
4527 struct mips_got_page_entry *entry;
4528 struct mips_elf_traverse_got_arg *arg;
4529 void **slot;
4530
4531 entry = (struct mips_got_page_entry *) *entryp;
4532 arg = (struct mips_elf_traverse_got_arg *) data;
4533 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4534 if (!slot)
4535 {
4536 arg->g = NULL;
4537 return 0;
4538 }
4539 if (!*slot)
4540 {
4541 *slot = entry;
4542 arg->g->page_gotno += entry->num_pages;
4543 }
4544 return 1;
4545 }
4546
4547 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4548 this would lead to overflow, 1 if they were merged successfully,
4549 and 0 if a merge failed due to lack of memory. (These values are chosen
4550 so that nonnegative return values can be returned by a htab_traverse
4551 callback.) */
4552
4553 static int
4554 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4555 struct mips_got_info *to,
4556 struct mips_elf_got_per_bfd_arg *arg)
4557 {
4558 struct mips_elf_traverse_got_arg tga;
4559 unsigned int estimate;
4560
4561 /* Work out how many page entries we would need for the combined GOT. */
4562 estimate = arg->max_pages;
4563 if (estimate >= from->page_gotno + to->page_gotno)
4564 estimate = from->page_gotno + to->page_gotno;
4565
4566 /* And conservatively estimate how many local and TLS entries
4567 would be needed. */
4568 estimate += from->local_gotno + to->local_gotno;
4569 estimate += from->tls_gotno + to->tls_gotno;
4570
4571 /* If we're merging with the primary got, any TLS relocations will
4572 come after the full set of global entries. Otherwise estimate those
4573 conservatively as well. */
4574 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4575 estimate += arg->global_count;
4576 else
4577 estimate += from->global_gotno + to->global_gotno;
4578
4579 /* Bail out if the combined GOT might be too big. */
4580 if (estimate > arg->max_count)
4581 return -1;
4582
4583 /* Transfer the bfd's got information from FROM to TO. */
4584 tga.info = arg->info;
4585 tga.g = to;
4586 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4587 if (!tga.g)
4588 return 0;
4589
4590 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4591 if (!tga.g)
4592 return 0;
4593
4594 mips_elf_replace_bfd_got (abfd, to);
4595 return 1;
4596 }
4597
4598 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4599 as possible of the primary got, since it doesn't require explicit
4600 dynamic relocations, but don't use bfds that would reference global
4601 symbols out of the addressable range. Failing the primary got,
4602 attempt to merge with the current got, or finish the current got
4603 and then make make the new got current. */
4604
4605 static bfd_boolean
4606 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4607 struct mips_elf_got_per_bfd_arg *arg)
4608 {
4609 unsigned int estimate;
4610 int result;
4611
4612 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4613 return FALSE;
4614
4615 /* Work out the number of page, local and TLS entries. */
4616 estimate = arg->max_pages;
4617 if (estimate > g->page_gotno)
4618 estimate = g->page_gotno;
4619 estimate += g->local_gotno + g->tls_gotno;
4620
4621 /* We place TLS GOT entries after both locals and globals. The globals
4622 for the primary GOT may overflow the normal GOT size limit, so be
4623 sure not to merge a GOT which requires TLS with the primary GOT in that
4624 case. This doesn't affect non-primary GOTs. */
4625 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4626
4627 if (estimate <= arg->max_count)
4628 {
4629 /* If we don't have a primary GOT, use it as
4630 a starting point for the primary GOT. */
4631 if (!arg->primary)
4632 {
4633 arg->primary = g;
4634 return TRUE;
4635 }
4636
4637 /* Try merging with the primary GOT. */
4638 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4639 if (result >= 0)
4640 return result;
4641 }
4642
4643 /* If we can merge with the last-created got, do it. */
4644 if (arg->current)
4645 {
4646 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4647 if (result >= 0)
4648 return result;
4649 }
4650
4651 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4652 fits; if it turns out that it doesn't, we'll get relocation
4653 overflows anyway. */
4654 g->next = arg->current;
4655 arg->current = g;
4656
4657 return TRUE;
4658 }
4659
4660 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4661 to GOTIDX, duplicating the entry if it has already been assigned
4662 an index in a different GOT. */
4663
4664 static bfd_boolean
4665 mips_elf_set_gotidx (void **entryp, long gotidx)
4666 {
4667 struct mips_got_entry *entry;
4668
4669 entry = (struct mips_got_entry *) *entryp;
4670 if (entry->gotidx > 0)
4671 {
4672 struct mips_got_entry *new_entry;
4673
4674 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4675 if (!new_entry)
4676 return FALSE;
4677
4678 *new_entry = *entry;
4679 *entryp = new_entry;
4680 entry = new_entry;
4681 }
4682 entry->gotidx = gotidx;
4683 return TRUE;
4684 }
4685
4686 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4687 mips_elf_traverse_got_arg in which DATA->value is the size of one
4688 GOT entry. Set DATA->g to null on failure. */
4689
4690 static int
4691 mips_elf_initialize_tls_index (void **entryp, void *data)
4692 {
4693 struct mips_got_entry *entry;
4694 struct mips_elf_traverse_got_arg *arg;
4695
4696 /* We're only interested in TLS symbols. */
4697 entry = (struct mips_got_entry *) *entryp;
4698 if (entry->tls_type == GOT_TLS_NONE)
4699 return 1;
4700
4701 arg = (struct mips_elf_traverse_got_arg *) data;
4702 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4703 {
4704 arg->g = NULL;
4705 return 0;
4706 }
4707
4708 /* Account for the entries we've just allocated. */
4709 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4710 return 1;
4711 }
4712
4713 /* A htab_traverse callback for GOT entries, where DATA points to a
4714 mips_elf_traverse_got_arg. Set the global_got_area of each global
4715 symbol to DATA->value. */
4716
4717 static int
4718 mips_elf_set_global_got_area (void **entryp, void *data)
4719 {
4720 struct mips_got_entry *entry;
4721 struct mips_elf_traverse_got_arg *arg;
4722
4723 entry = (struct mips_got_entry *) *entryp;
4724 arg = (struct mips_elf_traverse_got_arg *) data;
4725 if (entry->abfd != NULL
4726 && entry->symndx == -1
4727 && entry->d.h->global_got_area != GGA_NONE)
4728 entry->d.h->global_got_area = arg->value;
4729 return 1;
4730 }
4731
4732 /* A htab_traverse callback for secondary GOT entries, where DATA points
4733 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4734 and record the number of relocations they require. DATA->value is
4735 the size of one GOT entry. Set DATA->g to null on failure. */
4736
4737 static int
4738 mips_elf_set_global_gotidx (void **entryp, void *data)
4739 {
4740 struct mips_got_entry *entry;
4741 struct mips_elf_traverse_got_arg *arg;
4742
4743 entry = (struct mips_got_entry *) *entryp;
4744 arg = (struct mips_elf_traverse_got_arg *) data;
4745 if (entry->abfd != NULL
4746 && entry->symndx == -1
4747 && entry->d.h->global_got_area != GGA_NONE)
4748 {
4749 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4750 {
4751 arg->g = NULL;
4752 return 0;
4753 }
4754 arg->g->assigned_low_gotno += 1;
4755
4756 if (bfd_link_pic (arg->info)
4757 || (elf_hash_table (arg->info)->dynamic_sections_created
4758 && entry->d.h->root.def_dynamic
4759 && !entry->d.h->root.def_regular))
4760 arg->g->relocs += 1;
4761 }
4762
4763 return 1;
4764 }
4765
4766 /* A htab_traverse callback for GOT entries for which DATA is the
4767 bfd_link_info. Forbid any global symbols from having traditional
4768 lazy-binding stubs. */
4769
4770 static int
4771 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4772 {
4773 struct bfd_link_info *info;
4774 struct mips_elf_link_hash_table *htab;
4775 struct mips_got_entry *entry;
4776
4777 entry = (struct mips_got_entry *) *entryp;
4778 info = (struct bfd_link_info *) data;
4779 htab = mips_elf_hash_table (info);
4780 BFD_ASSERT (htab != NULL);
4781
4782 if (entry->abfd != NULL
4783 && entry->symndx == -1
4784 && entry->d.h->needs_lazy_stub)
4785 {
4786 entry->d.h->needs_lazy_stub = FALSE;
4787 htab->lazy_stub_count--;
4788 }
4789
4790 return 1;
4791 }
4792
4793 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4794 the primary GOT. */
4795 static bfd_vma
4796 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4797 {
4798 if (!g->next)
4799 return 0;
4800
4801 g = mips_elf_bfd_got (ibfd, FALSE);
4802 if (! g)
4803 return 0;
4804
4805 BFD_ASSERT (g->next);
4806
4807 g = g->next;
4808
4809 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4810 * MIPS_ELF_GOT_SIZE (abfd);
4811 }
4812
4813 /* Turn a single GOT that is too big for 16-bit addressing into
4814 a sequence of GOTs, each one 16-bit addressable. */
4815
4816 static bfd_boolean
4817 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4818 asection *got, bfd_size_type pages)
4819 {
4820 struct mips_elf_link_hash_table *htab;
4821 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4822 struct mips_elf_traverse_got_arg tga;
4823 struct mips_got_info *g, *gg;
4824 unsigned int assign, needed_relocs;
4825 bfd *dynobj, *ibfd;
4826
4827 dynobj = elf_hash_table (info)->dynobj;
4828 htab = mips_elf_hash_table (info);
4829 BFD_ASSERT (htab != NULL);
4830
4831 g = htab->got_info;
4832
4833 got_per_bfd_arg.obfd = abfd;
4834 got_per_bfd_arg.info = info;
4835 got_per_bfd_arg.current = NULL;
4836 got_per_bfd_arg.primary = NULL;
4837 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4838 / MIPS_ELF_GOT_SIZE (abfd))
4839 - htab->reserved_gotno);
4840 got_per_bfd_arg.max_pages = pages;
4841 /* The number of globals that will be included in the primary GOT.
4842 See the calls to mips_elf_set_global_got_area below for more
4843 information. */
4844 got_per_bfd_arg.global_count = g->global_gotno;
4845
4846 /* Try to merge the GOTs of input bfds together, as long as they
4847 don't seem to exceed the maximum GOT size, choosing one of them
4848 to be the primary GOT. */
4849 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4850 {
4851 gg = mips_elf_bfd_got (ibfd, FALSE);
4852 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4853 return FALSE;
4854 }
4855
4856 /* If we do not find any suitable primary GOT, create an empty one. */
4857 if (got_per_bfd_arg.primary == NULL)
4858 g->next = mips_elf_create_got_info (abfd);
4859 else
4860 g->next = got_per_bfd_arg.primary;
4861 g->next->next = got_per_bfd_arg.current;
4862
4863 /* GG is now the master GOT, and G is the primary GOT. */
4864 gg = g;
4865 g = g->next;
4866
4867 /* Map the output bfd to the primary got. That's what we're going
4868 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4869 didn't mark in check_relocs, and we want a quick way to find it.
4870 We can't just use gg->next because we're going to reverse the
4871 list. */
4872 mips_elf_replace_bfd_got (abfd, g);
4873
4874 /* Every symbol that is referenced in a dynamic relocation must be
4875 present in the primary GOT, so arrange for them to appear after
4876 those that are actually referenced. */
4877 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4878 g->global_gotno = gg->global_gotno;
4879
4880 tga.info = info;
4881 tga.value = GGA_RELOC_ONLY;
4882 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4883 tga.value = GGA_NORMAL;
4884 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4885
4886 /* Now go through the GOTs assigning them offset ranges.
4887 [assigned_low_gotno, local_gotno[ will be set to the range of local
4888 entries in each GOT. We can then compute the end of a GOT by
4889 adding local_gotno to global_gotno. We reverse the list and make
4890 it circular since then we'll be able to quickly compute the
4891 beginning of a GOT, by computing the end of its predecessor. To
4892 avoid special cases for the primary GOT, while still preserving
4893 assertions that are valid for both single- and multi-got links,
4894 we arrange for the main got struct to have the right number of
4895 global entries, but set its local_gotno such that the initial
4896 offset of the primary GOT is zero. Remember that the primary GOT
4897 will become the last item in the circular linked list, so it
4898 points back to the master GOT. */
4899 gg->local_gotno = -g->global_gotno;
4900 gg->global_gotno = g->global_gotno;
4901 gg->tls_gotno = 0;
4902 assign = 0;
4903 gg->next = gg;
4904
4905 do
4906 {
4907 struct mips_got_info *gn;
4908
4909 assign += htab->reserved_gotno;
4910 g->assigned_low_gotno = assign;
4911 g->local_gotno += assign;
4912 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4913 g->assigned_high_gotno = g->local_gotno - 1;
4914 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4915
4916 /* Take g out of the direct list, and push it onto the reversed
4917 list that gg points to. g->next is guaranteed to be nonnull after
4918 this operation, as required by mips_elf_initialize_tls_index. */
4919 gn = g->next;
4920 g->next = gg->next;
4921 gg->next = g;
4922
4923 /* Set up any TLS entries. We always place the TLS entries after
4924 all non-TLS entries. */
4925 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4926 tga.g = g;
4927 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4928 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4929 if (!tga.g)
4930 return FALSE;
4931 BFD_ASSERT (g->tls_assigned_gotno == assign);
4932
4933 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4934 g = gn;
4935
4936 /* Forbid global symbols in every non-primary GOT from having
4937 lazy-binding stubs. */
4938 if (g)
4939 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4940 }
4941 while (g);
4942
4943 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4944
4945 needed_relocs = 0;
4946 for (g = gg->next; g && g->next != gg; g = g->next)
4947 {
4948 unsigned int save_assign;
4949
4950 /* Assign offsets to global GOT entries and count how many
4951 relocations they need. */
4952 save_assign = g->assigned_low_gotno;
4953 g->assigned_low_gotno = g->local_gotno;
4954 tga.info = info;
4955 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4956 tga.g = g;
4957 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4958 if (!tga.g)
4959 return FALSE;
4960 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4961 g->assigned_low_gotno = save_assign;
4962
4963 if (bfd_link_pic (info))
4964 {
4965 g->relocs += g->local_gotno - g->assigned_low_gotno;
4966 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4967 + g->next->global_gotno
4968 + g->next->tls_gotno
4969 + htab->reserved_gotno);
4970 }
4971 needed_relocs += g->relocs;
4972 }
4973 needed_relocs += g->relocs;
4974
4975 if (needed_relocs)
4976 mips_elf_allocate_dynamic_relocations (dynobj, info,
4977 needed_relocs);
4978
4979 return TRUE;
4980 }
4981
4982 \f
4983 /* Returns the first relocation of type r_type found, beginning with
4984 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4985
4986 static const Elf_Internal_Rela *
4987 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4988 const Elf_Internal_Rela *relocation,
4989 const Elf_Internal_Rela *relend)
4990 {
4991 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4992
4993 while (relocation < relend)
4994 {
4995 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4996 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4997 return relocation;
4998
4999 ++relocation;
5000 }
5001
5002 /* We didn't find it. */
5003 return NULL;
5004 }
5005
5006 /* Return whether an input relocation is against a local symbol. */
5007
5008 static bfd_boolean
5009 mips_elf_local_relocation_p (bfd *input_bfd,
5010 const Elf_Internal_Rela *relocation,
5011 asection **local_sections)
5012 {
5013 unsigned long r_symndx;
5014 Elf_Internal_Shdr *symtab_hdr;
5015 size_t extsymoff;
5016
5017 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5018 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5019 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5020
5021 if (r_symndx < extsymoff)
5022 return TRUE;
5023 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5024 return TRUE;
5025
5026 return FALSE;
5027 }
5028 \f
5029 /* Sign-extend VALUE, which has the indicated number of BITS. */
5030
5031 bfd_vma
5032 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5033 {
5034 if (value & ((bfd_vma) 1 << (bits - 1)))
5035 /* VALUE is negative. */
5036 value |= ((bfd_vma) - 1) << bits;
5037
5038 return value;
5039 }
5040
5041 /* Return non-zero if the indicated VALUE has overflowed the maximum
5042 range expressible by a signed number with the indicated number of
5043 BITS. */
5044
5045 static bfd_boolean
5046 mips_elf_overflow_p (bfd_vma value, int bits)
5047 {
5048 bfd_signed_vma svalue = (bfd_signed_vma) value;
5049
5050 if (svalue > (1 << (bits - 1)) - 1)
5051 /* The value is too big. */
5052 return TRUE;
5053 else if (svalue < -(1 << (bits - 1)))
5054 /* The value is too small. */
5055 return TRUE;
5056
5057 /* All is well. */
5058 return FALSE;
5059 }
5060
5061 /* Calculate the %high function. */
5062
5063 static bfd_vma
5064 mips_elf_high (bfd_vma value)
5065 {
5066 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5067 }
5068
5069 /* Calculate the %higher function. */
5070
5071 static bfd_vma
5072 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5073 {
5074 #ifdef BFD64
5075 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5076 #else
5077 abort ();
5078 return MINUS_ONE;
5079 #endif
5080 }
5081
5082 /* Calculate the %highest function. */
5083
5084 static bfd_vma
5085 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5086 {
5087 #ifdef BFD64
5088 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5089 #else
5090 abort ();
5091 return MINUS_ONE;
5092 #endif
5093 }
5094 \f
5095 /* Create the .compact_rel section. */
5096
5097 static bfd_boolean
5098 mips_elf_create_compact_rel_section
5099 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5100 {
5101 flagword flags;
5102 register asection *s;
5103
5104 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5105 {
5106 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5107 | SEC_READONLY);
5108
5109 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5110 if (s == NULL
5111 || ! bfd_set_section_alignment (abfd, s,
5112 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5113 return FALSE;
5114
5115 s->size = sizeof (Elf32_External_compact_rel);
5116 }
5117
5118 return TRUE;
5119 }
5120
5121 /* Create the .got section to hold the global offset table. */
5122
5123 static bfd_boolean
5124 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5125 {
5126 flagword flags;
5127 register asection *s;
5128 struct elf_link_hash_entry *h;
5129 struct bfd_link_hash_entry *bh;
5130 struct mips_elf_link_hash_table *htab;
5131
5132 htab = mips_elf_hash_table (info);
5133 BFD_ASSERT (htab != NULL);
5134
5135 /* This function may be called more than once. */
5136 if (htab->root.sgot)
5137 return TRUE;
5138
5139 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5140 | SEC_LINKER_CREATED);
5141
5142 /* We have to use an alignment of 2**4 here because this is hardcoded
5143 in the function stub generation and in the linker script. */
5144 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5145 if (s == NULL
5146 || ! bfd_set_section_alignment (abfd, s, 4))
5147 return FALSE;
5148 htab->root.sgot = s;
5149
5150 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5151 linker script because we don't want to define the symbol if we
5152 are not creating a global offset table. */
5153 bh = NULL;
5154 if (! (_bfd_generic_link_add_one_symbol
5155 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5156 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5157 return FALSE;
5158
5159 h = (struct elf_link_hash_entry *) bh;
5160 h->non_elf = 0;
5161 h->def_regular = 1;
5162 h->type = STT_OBJECT;
5163 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5164 elf_hash_table (info)->hgot = h;
5165
5166 if (bfd_link_pic (info)
5167 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5168 return FALSE;
5169
5170 htab->got_info = mips_elf_create_got_info (abfd);
5171 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5172 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5173
5174 /* We also need a .got.plt section when generating PLTs. */
5175 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5176 SEC_ALLOC | SEC_LOAD
5177 | SEC_HAS_CONTENTS
5178 | SEC_IN_MEMORY
5179 | SEC_LINKER_CREATED);
5180 if (s == NULL)
5181 return FALSE;
5182 htab->root.sgotplt = s;
5183
5184 return TRUE;
5185 }
5186 \f
5187 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5188 __GOTT_INDEX__ symbols. These symbols are only special for
5189 shared objects; they are not used in executables. */
5190
5191 static bfd_boolean
5192 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5193 {
5194 return (mips_elf_hash_table (info)->is_vxworks
5195 && bfd_link_pic (info)
5196 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5197 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5198 }
5199
5200 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5201 require an la25 stub. See also mips_elf_local_pic_function_p,
5202 which determines whether the destination function ever requires a
5203 stub. */
5204
5205 static bfd_boolean
5206 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5207 bfd_boolean target_is_16_bit_code_p)
5208 {
5209 /* We specifically ignore branches and jumps from EF_PIC objects,
5210 where the onus is on the compiler or programmer to perform any
5211 necessary initialization of $25. Sometimes such initialization
5212 is unnecessary; for example, -mno-shared functions do not use
5213 the incoming value of $25, and may therefore be called directly. */
5214 if (PIC_OBJECT_P (input_bfd))
5215 return FALSE;
5216
5217 switch (r_type)
5218 {
5219 case R_MIPS_26:
5220 case R_MIPS_PC16:
5221 case R_MIPS_PC21_S2:
5222 case R_MIPS_PC26_S2:
5223 case R_MICROMIPS_26_S1:
5224 case R_MICROMIPS_PC7_S1:
5225 case R_MICROMIPS_PC10_S1:
5226 case R_MICROMIPS_PC16_S1:
5227 case R_MICROMIPS_PC23_S2:
5228 return TRUE;
5229
5230 case R_MIPS16_26:
5231 return !target_is_16_bit_code_p;
5232
5233 default:
5234 return FALSE;
5235 }
5236 }
5237 \f
5238 /* Calculate the value produced by the RELOCATION (which comes from
5239 the INPUT_BFD). The ADDEND is the addend to use for this
5240 RELOCATION; RELOCATION->R_ADDEND is ignored.
5241
5242 The result of the relocation calculation is stored in VALUEP.
5243 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5244 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5245
5246 This function returns bfd_reloc_continue if the caller need take no
5247 further action regarding this relocation, bfd_reloc_notsupported if
5248 something goes dramatically wrong, bfd_reloc_overflow if an
5249 overflow occurs, and bfd_reloc_ok to indicate success. */
5250
5251 static bfd_reloc_status_type
5252 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5253 asection *input_section,
5254 struct bfd_link_info *info,
5255 const Elf_Internal_Rela *relocation,
5256 bfd_vma addend, reloc_howto_type *howto,
5257 Elf_Internal_Sym *local_syms,
5258 asection **local_sections, bfd_vma *valuep,
5259 const char **namep,
5260 bfd_boolean *cross_mode_jump_p,
5261 bfd_boolean save_addend)
5262 {
5263 /* The eventual value we will return. */
5264 bfd_vma value;
5265 /* The address of the symbol against which the relocation is
5266 occurring. */
5267 bfd_vma symbol = 0;
5268 /* The final GP value to be used for the relocatable, executable, or
5269 shared object file being produced. */
5270 bfd_vma gp;
5271 /* The place (section offset or address) of the storage unit being
5272 relocated. */
5273 bfd_vma p;
5274 /* The value of GP used to create the relocatable object. */
5275 bfd_vma gp0;
5276 /* The offset into the global offset table at which the address of
5277 the relocation entry symbol, adjusted by the addend, resides
5278 during execution. */
5279 bfd_vma g = MINUS_ONE;
5280 /* The section in which the symbol referenced by the relocation is
5281 located. */
5282 asection *sec = NULL;
5283 struct mips_elf_link_hash_entry *h = NULL;
5284 /* TRUE if the symbol referred to by this relocation is a local
5285 symbol. */
5286 bfd_boolean local_p, was_local_p;
5287 /* TRUE if the symbol referred to by this relocation is a section
5288 symbol. */
5289 bfd_boolean section_p = FALSE;
5290 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5291 bfd_boolean gp_disp_p = FALSE;
5292 /* TRUE if the symbol referred to by this relocation is
5293 "__gnu_local_gp". */
5294 bfd_boolean gnu_local_gp_p = FALSE;
5295 Elf_Internal_Shdr *symtab_hdr;
5296 size_t extsymoff;
5297 unsigned long r_symndx;
5298 int r_type;
5299 /* TRUE if overflow occurred during the calculation of the
5300 relocation value. */
5301 bfd_boolean overflowed_p;
5302 /* TRUE if this relocation refers to a MIPS16 function. */
5303 bfd_boolean target_is_16_bit_code_p = FALSE;
5304 bfd_boolean target_is_micromips_code_p = FALSE;
5305 struct mips_elf_link_hash_table *htab;
5306 bfd *dynobj;
5307
5308 dynobj = elf_hash_table (info)->dynobj;
5309 htab = mips_elf_hash_table (info);
5310 BFD_ASSERT (htab != NULL);
5311
5312 /* Parse the relocation. */
5313 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5314 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5315 p = (input_section->output_section->vma
5316 + input_section->output_offset
5317 + relocation->r_offset);
5318
5319 /* Assume that there will be no overflow. */
5320 overflowed_p = FALSE;
5321
5322 /* Figure out whether or not the symbol is local, and get the offset
5323 used in the array of hash table entries. */
5324 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5325 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5326 local_sections);
5327 was_local_p = local_p;
5328 if (! elf_bad_symtab (input_bfd))
5329 extsymoff = symtab_hdr->sh_info;
5330 else
5331 {
5332 /* The symbol table does not follow the rule that local symbols
5333 must come before globals. */
5334 extsymoff = 0;
5335 }
5336
5337 /* Figure out the value of the symbol. */
5338 if (local_p)
5339 {
5340 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5341 Elf_Internal_Sym *sym;
5342
5343 sym = local_syms + r_symndx;
5344 sec = local_sections[r_symndx];
5345
5346 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5347
5348 symbol = sec->output_section->vma + sec->output_offset;
5349 if (!section_p || (sec->flags & SEC_MERGE))
5350 symbol += sym->st_value;
5351 if ((sec->flags & SEC_MERGE) && section_p)
5352 {
5353 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5354 addend -= symbol;
5355 addend += sec->output_section->vma + sec->output_offset;
5356 }
5357
5358 /* MIPS16/microMIPS text labels should be treated as odd. */
5359 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5360 ++symbol;
5361
5362 /* Record the name of this symbol, for our caller. */
5363 *namep = bfd_elf_string_from_elf_section (input_bfd,
5364 symtab_hdr->sh_link,
5365 sym->st_name);
5366 if (*namep == NULL || **namep == '\0')
5367 *namep = bfd_section_name (input_bfd, sec);
5368
5369 /* For relocations against a section symbol and ones against no
5370 symbol (absolute relocations) infer the ISA mode from the addend. */
5371 if (section_p || r_symndx == STN_UNDEF)
5372 {
5373 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5374 target_is_micromips_code_p = (addend & 1) && micromips_p;
5375 }
5376 /* For relocations against an absolute symbol infer the ISA mode
5377 from the value of the symbol plus addend. */
5378 else if (bfd_is_abs_section (sec))
5379 {
5380 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5381 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5382 }
5383 /* Otherwise just use the regular symbol annotation available. */
5384 else
5385 {
5386 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5387 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5388 }
5389 }
5390 else
5391 {
5392 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5393
5394 /* For global symbols we look up the symbol in the hash-table. */
5395 h = ((struct mips_elf_link_hash_entry *)
5396 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5397 /* Find the real hash-table entry for this symbol. */
5398 while (h->root.root.type == bfd_link_hash_indirect
5399 || h->root.root.type == bfd_link_hash_warning)
5400 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5401
5402 /* Record the name of this symbol, for our caller. */
5403 *namep = h->root.root.root.string;
5404
5405 /* See if this is the special _gp_disp symbol. Note that such a
5406 symbol must always be a global symbol. */
5407 if (strcmp (*namep, "_gp_disp") == 0
5408 && ! NEWABI_P (input_bfd))
5409 {
5410 /* Relocations against _gp_disp are permitted only with
5411 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5412 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5413 return bfd_reloc_notsupported;
5414
5415 gp_disp_p = TRUE;
5416 }
5417 /* See if this is the special _gp symbol. Note that such a
5418 symbol must always be a global symbol. */
5419 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5420 gnu_local_gp_p = TRUE;
5421
5422
5423 /* If this symbol is defined, calculate its address. Note that
5424 _gp_disp is a magic symbol, always implicitly defined by the
5425 linker, so it's inappropriate to check to see whether or not
5426 its defined. */
5427 else if ((h->root.root.type == bfd_link_hash_defined
5428 || h->root.root.type == bfd_link_hash_defweak)
5429 && h->root.root.u.def.section)
5430 {
5431 sec = h->root.root.u.def.section;
5432 if (sec->output_section)
5433 symbol = (h->root.root.u.def.value
5434 + sec->output_section->vma
5435 + sec->output_offset);
5436 else
5437 symbol = h->root.root.u.def.value;
5438 }
5439 else if (h->root.root.type == bfd_link_hash_undefweak)
5440 /* We allow relocations against undefined weak symbols, giving
5441 it the value zero, so that you can undefined weak functions
5442 and check to see if they exist by looking at their
5443 addresses. */
5444 symbol = 0;
5445 else if (info->unresolved_syms_in_objects == RM_IGNORE
5446 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5447 symbol = 0;
5448 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5449 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5450 {
5451 /* If this is a dynamic link, we should have created a
5452 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5453 in in _bfd_mips_elf_create_dynamic_sections.
5454 Otherwise, we should define the symbol with a value of 0.
5455 FIXME: It should probably get into the symbol table
5456 somehow as well. */
5457 BFD_ASSERT (! bfd_link_pic (info));
5458 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5459 symbol = 0;
5460 }
5461 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5462 {
5463 /* This is an optional symbol - an Irix specific extension to the
5464 ELF spec. Ignore it for now.
5465 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5466 than simply ignoring them, but we do not handle this for now.
5467 For information see the "64-bit ELF Object File Specification"
5468 which is available from here:
5469 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5470 symbol = 0;
5471 }
5472 else
5473 {
5474 (*info->callbacks->undefined_symbol)
5475 (info, h->root.root.root.string, input_bfd,
5476 input_section, relocation->r_offset,
5477 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5478 || ELF_ST_VISIBILITY (h->root.other));
5479 return bfd_reloc_undefined;
5480 }
5481
5482 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5483 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5484 }
5485
5486 /* If this is a reference to a 16-bit function with a stub, we need
5487 to redirect the relocation to the stub unless:
5488
5489 (a) the relocation is for a MIPS16 JAL;
5490
5491 (b) the relocation is for a MIPS16 PIC call, and there are no
5492 non-MIPS16 uses of the GOT slot; or
5493
5494 (c) the section allows direct references to MIPS16 functions. */
5495 if (r_type != R_MIPS16_26
5496 && !bfd_link_relocatable (info)
5497 && ((h != NULL
5498 && h->fn_stub != NULL
5499 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5500 || (local_p
5501 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5502 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5503 && !section_allows_mips16_refs_p (input_section))
5504 {
5505 /* This is a 32- or 64-bit call to a 16-bit function. We should
5506 have already noticed that we were going to need the
5507 stub. */
5508 if (local_p)
5509 {
5510 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5511 value = 0;
5512 }
5513 else
5514 {
5515 BFD_ASSERT (h->need_fn_stub);
5516 if (h->la25_stub)
5517 {
5518 /* If a LA25 header for the stub itself exists, point to the
5519 prepended LUI/ADDIU sequence. */
5520 sec = h->la25_stub->stub_section;
5521 value = h->la25_stub->offset;
5522 }
5523 else
5524 {
5525 sec = h->fn_stub;
5526 value = 0;
5527 }
5528 }
5529
5530 symbol = sec->output_section->vma + sec->output_offset + value;
5531 /* The target is 16-bit, but the stub isn't. */
5532 target_is_16_bit_code_p = FALSE;
5533 }
5534 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5535 to a standard MIPS function, we need to redirect the call to the stub.
5536 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5537 indirect calls should use an indirect stub instead. */
5538 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5539 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5540 || (local_p
5541 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5542 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5543 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5544 {
5545 if (local_p)
5546 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5547 else
5548 {
5549 /* If both call_stub and call_fp_stub are defined, we can figure
5550 out which one to use by checking which one appears in the input
5551 file. */
5552 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5553 {
5554 asection *o;
5555
5556 sec = NULL;
5557 for (o = input_bfd->sections; o != NULL; o = o->next)
5558 {
5559 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5560 {
5561 sec = h->call_fp_stub;
5562 break;
5563 }
5564 }
5565 if (sec == NULL)
5566 sec = h->call_stub;
5567 }
5568 else if (h->call_stub != NULL)
5569 sec = h->call_stub;
5570 else
5571 sec = h->call_fp_stub;
5572 }
5573
5574 BFD_ASSERT (sec->size > 0);
5575 symbol = sec->output_section->vma + sec->output_offset;
5576 }
5577 /* If this is a direct call to a PIC function, redirect to the
5578 non-PIC stub. */
5579 else if (h != NULL && h->la25_stub
5580 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5581 target_is_16_bit_code_p))
5582 {
5583 symbol = (h->la25_stub->stub_section->output_section->vma
5584 + h->la25_stub->stub_section->output_offset
5585 + h->la25_stub->offset);
5586 if (ELF_ST_IS_MICROMIPS (h->root.other))
5587 symbol |= 1;
5588 }
5589 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5590 entry is used if a standard PLT entry has also been made. In this
5591 case the symbol will have been set by mips_elf_set_plt_sym_value
5592 to point to the standard PLT entry, so redirect to the compressed
5593 one. */
5594 else if ((mips16_branch_reloc_p (r_type)
5595 || micromips_branch_reloc_p (r_type))
5596 && !bfd_link_relocatable (info)
5597 && h != NULL
5598 && h->use_plt_entry
5599 && h->root.plt.plist->comp_offset != MINUS_ONE
5600 && h->root.plt.plist->mips_offset != MINUS_ONE)
5601 {
5602 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5603
5604 sec = htab->root.splt;
5605 symbol = (sec->output_section->vma
5606 + sec->output_offset
5607 + htab->plt_header_size
5608 + htab->plt_mips_offset
5609 + h->root.plt.plist->comp_offset
5610 + 1);
5611
5612 target_is_16_bit_code_p = !micromips_p;
5613 target_is_micromips_code_p = micromips_p;
5614 }
5615
5616 /* Make sure MIPS16 and microMIPS are not used together. */
5617 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5618 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5619 {
5620 _bfd_error_handler
5621 (_("MIPS16 and microMIPS functions cannot call each other"));
5622 return bfd_reloc_notsupported;
5623 }
5624
5625 /* Calls from 16-bit code to 32-bit code and vice versa require the
5626 mode change. However, we can ignore calls to undefined weak symbols,
5627 which should never be executed at runtime. This exception is important
5628 because the assembly writer may have "known" that any definition of the
5629 symbol would be 16-bit code, and that direct jumps were therefore
5630 acceptable. */
5631 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5632 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5633 && ((mips16_branch_reloc_p (r_type)
5634 && !target_is_16_bit_code_p)
5635 || (micromips_branch_reloc_p (r_type)
5636 && !target_is_micromips_code_p)
5637 || ((branch_reloc_p (r_type)
5638 || r_type == R_MIPS_JALR)
5639 && (target_is_16_bit_code_p
5640 || target_is_micromips_code_p))));
5641
5642 local_p = (h == NULL || mips_use_local_got_p (info, h));
5643
5644 gp0 = _bfd_get_gp_value (input_bfd);
5645 gp = _bfd_get_gp_value (abfd);
5646 if (htab->got_info)
5647 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5648
5649 if (gnu_local_gp_p)
5650 symbol = gp;
5651
5652 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5653 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5654 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5655 if (got_page_reloc_p (r_type) && !local_p)
5656 {
5657 r_type = (micromips_reloc_p (r_type)
5658 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5659 addend = 0;
5660 }
5661
5662 /* If we haven't already determined the GOT offset, and we're going
5663 to need it, get it now. */
5664 switch (r_type)
5665 {
5666 case R_MIPS16_CALL16:
5667 case R_MIPS16_GOT16:
5668 case R_MIPS_CALL16:
5669 case R_MIPS_GOT16:
5670 case R_MIPS_GOT_DISP:
5671 case R_MIPS_GOT_HI16:
5672 case R_MIPS_CALL_HI16:
5673 case R_MIPS_GOT_LO16:
5674 case R_MIPS_CALL_LO16:
5675 case R_MICROMIPS_CALL16:
5676 case R_MICROMIPS_GOT16:
5677 case R_MICROMIPS_GOT_DISP:
5678 case R_MICROMIPS_GOT_HI16:
5679 case R_MICROMIPS_CALL_HI16:
5680 case R_MICROMIPS_GOT_LO16:
5681 case R_MICROMIPS_CALL_LO16:
5682 case R_MIPS_TLS_GD:
5683 case R_MIPS_TLS_GOTTPREL:
5684 case R_MIPS_TLS_LDM:
5685 case R_MIPS16_TLS_GD:
5686 case R_MIPS16_TLS_GOTTPREL:
5687 case R_MIPS16_TLS_LDM:
5688 case R_MICROMIPS_TLS_GD:
5689 case R_MICROMIPS_TLS_GOTTPREL:
5690 case R_MICROMIPS_TLS_LDM:
5691 /* Find the index into the GOT where this value is located. */
5692 if (tls_ldm_reloc_p (r_type))
5693 {
5694 g = mips_elf_local_got_index (abfd, input_bfd, info,
5695 0, 0, NULL, r_type);
5696 if (g == MINUS_ONE)
5697 return bfd_reloc_outofrange;
5698 }
5699 else if (!local_p)
5700 {
5701 /* On VxWorks, CALL relocations should refer to the .got.plt
5702 entry, which is initialized to point at the PLT stub. */
5703 if (htab->is_vxworks
5704 && (call_hi16_reloc_p (r_type)
5705 || call_lo16_reloc_p (r_type)
5706 || call16_reloc_p (r_type)))
5707 {
5708 BFD_ASSERT (addend == 0);
5709 BFD_ASSERT (h->root.needs_plt);
5710 g = mips_elf_gotplt_index (info, &h->root);
5711 }
5712 else
5713 {
5714 BFD_ASSERT (addend == 0);
5715 g = mips_elf_global_got_index (abfd, info, input_bfd,
5716 &h->root, r_type);
5717 if (!TLS_RELOC_P (r_type)
5718 && !elf_hash_table (info)->dynamic_sections_created)
5719 /* This is a static link. We must initialize the GOT entry. */
5720 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5721 }
5722 }
5723 else if (!htab->is_vxworks
5724 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5725 /* The calculation below does not involve "g". */
5726 break;
5727 else
5728 {
5729 g = mips_elf_local_got_index (abfd, input_bfd, info,
5730 symbol + addend, r_symndx, h, r_type);
5731 if (g == MINUS_ONE)
5732 return bfd_reloc_outofrange;
5733 }
5734
5735 /* Convert GOT indices to actual offsets. */
5736 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5737 break;
5738 }
5739
5740 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5741 symbols are resolved by the loader. Add them to .rela.dyn. */
5742 if (h != NULL && is_gott_symbol (info, &h->root))
5743 {
5744 Elf_Internal_Rela outrel;
5745 bfd_byte *loc;
5746 asection *s;
5747
5748 s = mips_elf_rel_dyn_section (info, FALSE);
5749 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5750
5751 outrel.r_offset = (input_section->output_section->vma
5752 + input_section->output_offset
5753 + relocation->r_offset);
5754 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5755 outrel.r_addend = addend;
5756 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5757
5758 /* If we've written this relocation for a readonly section,
5759 we need to set DF_TEXTREL again, so that we do not delete the
5760 DT_TEXTREL tag. */
5761 if (MIPS_ELF_READONLY_SECTION (input_section))
5762 info->flags |= DF_TEXTREL;
5763
5764 *valuep = 0;
5765 return bfd_reloc_ok;
5766 }
5767
5768 /* Figure out what kind of relocation is being performed. */
5769 switch (r_type)
5770 {
5771 case R_MIPS_NONE:
5772 return bfd_reloc_continue;
5773
5774 case R_MIPS_16:
5775 if (howto->partial_inplace)
5776 addend = _bfd_mips_elf_sign_extend (addend, 16);
5777 value = symbol + addend;
5778 overflowed_p = mips_elf_overflow_p (value, 16);
5779 break;
5780
5781 case R_MIPS_32:
5782 case R_MIPS_REL32:
5783 case R_MIPS_64:
5784 if ((bfd_link_pic (info)
5785 || (htab->root.dynamic_sections_created
5786 && h != NULL
5787 && h->root.def_dynamic
5788 && !h->root.def_regular
5789 && !h->has_static_relocs))
5790 && r_symndx != STN_UNDEF
5791 && (h == NULL
5792 || h->root.root.type != bfd_link_hash_undefweak
5793 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5794 && (input_section->flags & SEC_ALLOC) != 0)
5795 {
5796 /* If we're creating a shared library, then we can't know
5797 where the symbol will end up. So, we create a relocation
5798 record in the output, and leave the job up to the dynamic
5799 linker. We must do the same for executable references to
5800 shared library symbols, unless we've decided to use copy
5801 relocs or PLTs instead. */
5802 value = addend;
5803 if (!mips_elf_create_dynamic_relocation (abfd,
5804 info,
5805 relocation,
5806 h,
5807 sec,
5808 symbol,
5809 &value,
5810 input_section))
5811 return bfd_reloc_undefined;
5812 }
5813 else
5814 {
5815 if (r_type != R_MIPS_REL32)
5816 value = symbol + addend;
5817 else
5818 value = addend;
5819 }
5820 value &= howto->dst_mask;
5821 break;
5822
5823 case R_MIPS_PC32:
5824 value = symbol + addend - p;
5825 value &= howto->dst_mask;
5826 break;
5827
5828 case R_MIPS16_26:
5829 /* The calculation for R_MIPS16_26 is just the same as for an
5830 R_MIPS_26. It's only the storage of the relocated field into
5831 the output file that's different. That's handled in
5832 mips_elf_perform_relocation. So, we just fall through to the
5833 R_MIPS_26 case here. */
5834 case R_MIPS_26:
5835 case R_MICROMIPS_26_S1:
5836 {
5837 unsigned int shift;
5838
5839 /* Shift is 2, unusually, for microMIPS JALX. */
5840 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5841
5842 if (howto->partial_inplace && !section_p)
5843 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5844 else
5845 value = addend;
5846 value += symbol;
5847
5848 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5849 be the correct ISA mode selector except for weak undefined
5850 symbols. */
5851 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5852 && (*cross_mode_jump_p
5853 ? (value & 3) != (r_type == R_MIPS_26)
5854 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5855 return bfd_reloc_outofrange;
5856
5857 value >>= shift;
5858 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5859 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5860 value &= howto->dst_mask;
5861 }
5862 break;
5863
5864 case R_MIPS_TLS_DTPREL_HI16:
5865 case R_MIPS16_TLS_DTPREL_HI16:
5866 case R_MICROMIPS_TLS_DTPREL_HI16:
5867 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5868 & howto->dst_mask);
5869 break;
5870
5871 case R_MIPS_TLS_DTPREL_LO16:
5872 case R_MIPS_TLS_DTPREL32:
5873 case R_MIPS_TLS_DTPREL64:
5874 case R_MIPS16_TLS_DTPREL_LO16:
5875 case R_MICROMIPS_TLS_DTPREL_LO16:
5876 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5877 break;
5878
5879 case R_MIPS_TLS_TPREL_HI16:
5880 case R_MIPS16_TLS_TPREL_HI16:
5881 case R_MICROMIPS_TLS_TPREL_HI16:
5882 value = (mips_elf_high (addend + symbol - tprel_base (info))
5883 & howto->dst_mask);
5884 break;
5885
5886 case R_MIPS_TLS_TPREL_LO16:
5887 case R_MIPS_TLS_TPREL32:
5888 case R_MIPS_TLS_TPREL64:
5889 case R_MIPS16_TLS_TPREL_LO16:
5890 case R_MICROMIPS_TLS_TPREL_LO16:
5891 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5892 break;
5893
5894 case R_MIPS_HI16:
5895 case R_MIPS16_HI16:
5896 case R_MICROMIPS_HI16:
5897 if (!gp_disp_p)
5898 {
5899 value = mips_elf_high (addend + symbol);
5900 value &= howto->dst_mask;
5901 }
5902 else
5903 {
5904 /* For MIPS16 ABI code we generate this sequence
5905 0: li $v0,%hi(_gp_disp)
5906 4: addiupc $v1,%lo(_gp_disp)
5907 8: sll $v0,16
5908 12: addu $v0,$v1
5909 14: move $gp,$v0
5910 So the offsets of hi and lo relocs are the same, but the
5911 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5912 ADDIUPC clears the low two bits of the instruction address,
5913 so the base is ($t9 + 4) & ~3. */
5914 if (r_type == R_MIPS16_HI16)
5915 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5916 /* The microMIPS .cpload sequence uses the same assembly
5917 instructions as the traditional psABI version, but the
5918 incoming $t9 has the low bit set. */
5919 else if (r_type == R_MICROMIPS_HI16)
5920 value = mips_elf_high (addend + gp - p - 1);
5921 else
5922 value = mips_elf_high (addend + gp - p);
5923 }
5924 break;
5925
5926 case R_MIPS_LO16:
5927 case R_MIPS16_LO16:
5928 case R_MICROMIPS_LO16:
5929 case R_MICROMIPS_HI0_LO16:
5930 if (!gp_disp_p)
5931 value = (symbol + addend) & howto->dst_mask;
5932 else
5933 {
5934 /* See the comment for R_MIPS16_HI16 above for the reason
5935 for this conditional. */
5936 if (r_type == R_MIPS16_LO16)
5937 value = addend + gp - (p & ~(bfd_vma) 0x3);
5938 else if (r_type == R_MICROMIPS_LO16
5939 || r_type == R_MICROMIPS_HI0_LO16)
5940 value = addend + gp - p + 3;
5941 else
5942 value = addend + gp - p + 4;
5943 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5944 for overflow. But, on, say, IRIX5, relocations against
5945 _gp_disp are normally generated from the .cpload
5946 pseudo-op. It generates code that normally looks like
5947 this:
5948
5949 lui $gp,%hi(_gp_disp)
5950 addiu $gp,$gp,%lo(_gp_disp)
5951 addu $gp,$gp,$t9
5952
5953 Here $t9 holds the address of the function being called,
5954 as required by the MIPS ELF ABI. The R_MIPS_LO16
5955 relocation can easily overflow in this situation, but the
5956 R_MIPS_HI16 relocation will handle the overflow.
5957 Therefore, we consider this a bug in the MIPS ABI, and do
5958 not check for overflow here. */
5959 }
5960 break;
5961
5962 case R_MIPS_LITERAL:
5963 case R_MICROMIPS_LITERAL:
5964 /* Because we don't merge literal sections, we can handle this
5965 just like R_MIPS_GPREL16. In the long run, we should merge
5966 shared literals, and then we will need to additional work
5967 here. */
5968
5969 /* Fall through. */
5970
5971 case R_MIPS16_GPREL:
5972 /* The R_MIPS16_GPREL performs the same calculation as
5973 R_MIPS_GPREL16, but stores the relocated bits in a different
5974 order. We don't need to do anything special here; the
5975 differences are handled in mips_elf_perform_relocation. */
5976 case R_MIPS_GPREL16:
5977 case R_MICROMIPS_GPREL7_S2:
5978 case R_MICROMIPS_GPREL16:
5979 /* Only sign-extend the addend if it was extracted from the
5980 instruction. If the addend was separate, leave it alone,
5981 otherwise we may lose significant bits. */
5982 if (howto->partial_inplace)
5983 addend = _bfd_mips_elf_sign_extend (addend, 16);
5984 value = symbol + addend - gp;
5985 /* If the symbol was local, any earlier relocatable links will
5986 have adjusted its addend with the gp offset, so compensate
5987 for that now. Don't do it for symbols forced local in this
5988 link, though, since they won't have had the gp offset applied
5989 to them before. */
5990 if (was_local_p)
5991 value += gp0;
5992 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5993 overflowed_p = mips_elf_overflow_p (value, 16);
5994 break;
5995
5996 case R_MIPS16_GOT16:
5997 case R_MIPS16_CALL16:
5998 case R_MIPS_GOT16:
5999 case R_MIPS_CALL16:
6000 case R_MICROMIPS_GOT16:
6001 case R_MICROMIPS_CALL16:
6002 /* VxWorks does not have separate local and global semantics for
6003 R_MIPS*_GOT16; every relocation evaluates to "G". */
6004 if (!htab->is_vxworks && local_p)
6005 {
6006 value = mips_elf_got16_entry (abfd, input_bfd, info,
6007 symbol + addend, !was_local_p);
6008 if (value == MINUS_ONE)
6009 return bfd_reloc_outofrange;
6010 value
6011 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6012 overflowed_p = mips_elf_overflow_p (value, 16);
6013 break;
6014 }
6015
6016 /* Fall through. */
6017
6018 case R_MIPS_TLS_GD:
6019 case R_MIPS_TLS_GOTTPREL:
6020 case R_MIPS_TLS_LDM:
6021 case R_MIPS_GOT_DISP:
6022 case R_MIPS16_TLS_GD:
6023 case R_MIPS16_TLS_GOTTPREL:
6024 case R_MIPS16_TLS_LDM:
6025 case R_MICROMIPS_TLS_GD:
6026 case R_MICROMIPS_TLS_GOTTPREL:
6027 case R_MICROMIPS_TLS_LDM:
6028 case R_MICROMIPS_GOT_DISP:
6029 value = g;
6030 overflowed_p = mips_elf_overflow_p (value, 16);
6031 break;
6032
6033 case R_MIPS_GPREL32:
6034 value = (addend + symbol + gp0 - gp);
6035 if (!save_addend)
6036 value &= howto->dst_mask;
6037 break;
6038
6039 case R_MIPS_PC16:
6040 case R_MIPS_GNU_REL16_S2:
6041 if (howto->partial_inplace)
6042 addend = _bfd_mips_elf_sign_extend (addend, 18);
6043
6044 /* No need to exclude weak undefined symbols here as they resolve
6045 to 0 and never set `*cross_mode_jump_p', so this alignment check
6046 will never trigger for them. */
6047 if (*cross_mode_jump_p
6048 ? ((symbol + addend) & 3) != 1
6049 : ((symbol + addend) & 3) != 0)
6050 return bfd_reloc_outofrange;
6051
6052 value = symbol + addend - p;
6053 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6054 overflowed_p = mips_elf_overflow_p (value, 18);
6055 value >>= howto->rightshift;
6056 value &= howto->dst_mask;
6057 break;
6058
6059 case R_MIPS16_PC16_S1:
6060 if (howto->partial_inplace)
6061 addend = _bfd_mips_elf_sign_extend (addend, 17);
6062
6063 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6064 && (*cross_mode_jump_p
6065 ? ((symbol + addend) & 3) != 0
6066 : ((symbol + addend) & 1) == 0))
6067 return bfd_reloc_outofrange;
6068
6069 value = symbol + addend - p;
6070 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6071 overflowed_p = mips_elf_overflow_p (value, 17);
6072 value >>= howto->rightshift;
6073 value &= howto->dst_mask;
6074 break;
6075
6076 case R_MIPS_PC21_S2:
6077 if (howto->partial_inplace)
6078 addend = _bfd_mips_elf_sign_extend (addend, 23);
6079
6080 if ((symbol + addend) & 3)
6081 return bfd_reloc_outofrange;
6082
6083 value = symbol + addend - p;
6084 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6085 overflowed_p = mips_elf_overflow_p (value, 23);
6086 value >>= howto->rightshift;
6087 value &= howto->dst_mask;
6088 break;
6089
6090 case R_MIPS_PC26_S2:
6091 if (howto->partial_inplace)
6092 addend = _bfd_mips_elf_sign_extend (addend, 28);
6093
6094 if ((symbol + addend) & 3)
6095 return bfd_reloc_outofrange;
6096
6097 value = symbol + addend - p;
6098 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6099 overflowed_p = mips_elf_overflow_p (value, 28);
6100 value >>= howto->rightshift;
6101 value &= howto->dst_mask;
6102 break;
6103
6104 case R_MIPS_PC18_S3:
6105 if (howto->partial_inplace)
6106 addend = _bfd_mips_elf_sign_extend (addend, 21);
6107
6108 if ((symbol + addend) & 7)
6109 return bfd_reloc_outofrange;
6110
6111 value = symbol + addend - ((p | 7) ^ 7);
6112 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6113 overflowed_p = mips_elf_overflow_p (value, 21);
6114 value >>= howto->rightshift;
6115 value &= howto->dst_mask;
6116 break;
6117
6118 case R_MIPS_PC19_S2:
6119 if (howto->partial_inplace)
6120 addend = _bfd_mips_elf_sign_extend (addend, 21);
6121
6122 if ((symbol + addend) & 3)
6123 return bfd_reloc_outofrange;
6124
6125 value = symbol + addend - p;
6126 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6127 overflowed_p = mips_elf_overflow_p (value, 21);
6128 value >>= howto->rightshift;
6129 value &= howto->dst_mask;
6130 break;
6131
6132 case R_MIPS_PCHI16:
6133 value = mips_elf_high (symbol + addend - p);
6134 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6135 overflowed_p = mips_elf_overflow_p (value, 16);
6136 value &= howto->dst_mask;
6137 break;
6138
6139 case R_MIPS_PCLO16:
6140 if (howto->partial_inplace)
6141 addend = _bfd_mips_elf_sign_extend (addend, 16);
6142 value = symbol + addend - p;
6143 value &= howto->dst_mask;
6144 break;
6145
6146 case R_MICROMIPS_PC7_S1:
6147 if (howto->partial_inplace)
6148 addend = _bfd_mips_elf_sign_extend (addend, 8);
6149
6150 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6151 && (*cross_mode_jump_p
6152 ? ((symbol + addend + 2) & 3) != 0
6153 : ((symbol + addend + 2) & 1) == 0))
6154 return bfd_reloc_outofrange;
6155
6156 value = symbol + addend - p;
6157 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6158 overflowed_p = mips_elf_overflow_p (value, 8);
6159 value >>= howto->rightshift;
6160 value &= howto->dst_mask;
6161 break;
6162
6163 case R_MICROMIPS_PC10_S1:
6164 if (howto->partial_inplace)
6165 addend = _bfd_mips_elf_sign_extend (addend, 11);
6166
6167 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6168 && (*cross_mode_jump_p
6169 ? ((symbol + addend + 2) & 3) != 0
6170 : ((symbol + addend + 2) & 1) == 0))
6171 return bfd_reloc_outofrange;
6172
6173 value = symbol + addend - p;
6174 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6175 overflowed_p = mips_elf_overflow_p (value, 11);
6176 value >>= howto->rightshift;
6177 value &= howto->dst_mask;
6178 break;
6179
6180 case R_MICROMIPS_PC16_S1:
6181 if (howto->partial_inplace)
6182 addend = _bfd_mips_elf_sign_extend (addend, 17);
6183
6184 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6185 && (*cross_mode_jump_p
6186 ? ((symbol + addend) & 3) != 0
6187 : ((symbol + addend) & 1) == 0))
6188 return bfd_reloc_outofrange;
6189
6190 value = symbol + addend - p;
6191 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6192 overflowed_p = mips_elf_overflow_p (value, 17);
6193 value >>= howto->rightshift;
6194 value &= howto->dst_mask;
6195 break;
6196
6197 case R_MICROMIPS_PC23_S2:
6198 if (howto->partial_inplace)
6199 addend = _bfd_mips_elf_sign_extend (addend, 25);
6200 value = symbol + addend - ((p | 3) ^ 3);
6201 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6202 overflowed_p = mips_elf_overflow_p (value, 25);
6203 value >>= howto->rightshift;
6204 value &= howto->dst_mask;
6205 break;
6206
6207 case R_MIPS_GOT_HI16:
6208 case R_MIPS_CALL_HI16:
6209 case R_MICROMIPS_GOT_HI16:
6210 case R_MICROMIPS_CALL_HI16:
6211 /* We're allowed to handle these two relocations identically.
6212 The dynamic linker is allowed to handle the CALL relocations
6213 differently by creating a lazy evaluation stub. */
6214 value = g;
6215 value = mips_elf_high (value);
6216 value &= howto->dst_mask;
6217 break;
6218
6219 case R_MIPS_GOT_LO16:
6220 case R_MIPS_CALL_LO16:
6221 case R_MICROMIPS_GOT_LO16:
6222 case R_MICROMIPS_CALL_LO16:
6223 value = g & howto->dst_mask;
6224 break;
6225
6226 case R_MIPS_GOT_PAGE:
6227 case R_MICROMIPS_GOT_PAGE:
6228 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6229 if (value == MINUS_ONE)
6230 return bfd_reloc_outofrange;
6231 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6232 overflowed_p = mips_elf_overflow_p (value, 16);
6233 break;
6234
6235 case R_MIPS_GOT_OFST:
6236 case R_MICROMIPS_GOT_OFST:
6237 if (local_p)
6238 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6239 else
6240 value = addend;
6241 overflowed_p = mips_elf_overflow_p (value, 16);
6242 break;
6243
6244 case R_MIPS_SUB:
6245 case R_MICROMIPS_SUB:
6246 value = symbol - addend;
6247 value &= howto->dst_mask;
6248 break;
6249
6250 case R_MIPS_HIGHER:
6251 case R_MICROMIPS_HIGHER:
6252 value = mips_elf_higher (addend + symbol);
6253 value &= howto->dst_mask;
6254 break;
6255
6256 case R_MIPS_HIGHEST:
6257 case R_MICROMIPS_HIGHEST:
6258 value = mips_elf_highest (addend + symbol);
6259 value &= howto->dst_mask;
6260 break;
6261
6262 case R_MIPS_SCN_DISP:
6263 case R_MICROMIPS_SCN_DISP:
6264 value = symbol + addend - sec->output_offset;
6265 value &= howto->dst_mask;
6266 break;
6267
6268 case R_MIPS_JALR:
6269 case R_MICROMIPS_JALR:
6270 /* This relocation is only a hint. In some cases, we optimize
6271 it into a bal instruction. But we don't try to optimize
6272 when the symbol does not resolve locally. */
6273 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6274 return bfd_reloc_continue;
6275 value = symbol + addend;
6276 break;
6277
6278 case R_MIPS_PJUMP:
6279 case R_MIPS_GNU_VTINHERIT:
6280 case R_MIPS_GNU_VTENTRY:
6281 /* We don't do anything with these at present. */
6282 return bfd_reloc_continue;
6283
6284 default:
6285 /* An unrecognized relocation type. */
6286 return bfd_reloc_notsupported;
6287 }
6288
6289 /* Store the VALUE for our caller. */
6290 *valuep = value;
6291 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6292 }
6293
6294 /* Obtain the field relocated by RELOCATION. */
6295
6296 static bfd_vma
6297 mips_elf_obtain_contents (reloc_howto_type *howto,
6298 const Elf_Internal_Rela *relocation,
6299 bfd *input_bfd, bfd_byte *contents)
6300 {
6301 bfd_vma x = 0;
6302 bfd_byte *location = contents + relocation->r_offset;
6303 unsigned int size = bfd_get_reloc_size (howto);
6304
6305 /* Obtain the bytes. */
6306 if (size != 0)
6307 x = bfd_get (8 * size, input_bfd, location);
6308
6309 return x;
6310 }
6311
6312 /* It has been determined that the result of the RELOCATION is the
6313 VALUE. Use HOWTO to place VALUE into the output file at the
6314 appropriate position. The SECTION is the section to which the
6315 relocation applies.
6316 CROSS_MODE_JUMP_P is true if the relocation field
6317 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6318
6319 Returns FALSE if anything goes wrong. */
6320
6321 static bfd_boolean
6322 mips_elf_perform_relocation (struct bfd_link_info *info,
6323 reloc_howto_type *howto,
6324 const Elf_Internal_Rela *relocation,
6325 bfd_vma value, bfd *input_bfd,
6326 asection *input_section, bfd_byte *contents,
6327 bfd_boolean cross_mode_jump_p)
6328 {
6329 bfd_vma x;
6330 bfd_byte *location;
6331 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6332 unsigned int size;
6333
6334 /* Figure out where the relocation is occurring. */
6335 location = contents + relocation->r_offset;
6336
6337 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6338
6339 /* Obtain the current value. */
6340 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6341
6342 /* Clear the field we are setting. */
6343 x &= ~howto->dst_mask;
6344
6345 /* Set the field. */
6346 x |= (value & howto->dst_mask);
6347
6348 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6349 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6350 {
6351 bfd_vma opcode = x >> 26;
6352
6353 if (r_type == R_MIPS16_26 ? opcode == 0x7
6354 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6355 : opcode == 0x1d)
6356 {
6357 info->callbacks->einfo
6358 (_("%X%H: Unsupported JALX to the same ISA mode\n"),
6359 input_bfd, input_section, relocation->r_offset);
6360 return TRUE;
6361 }
6362 }
6363 if (cross_mode_jump_p && jal_reloc_p (r_type))
6364 {
6365 bfd_boolean ok;
6366 bfd_vma opcode = x >> 26;
6367 bfd_vma jalx_opcode;
6368
6369 /* Check to see if the opcode is already JAL or JALX. */
6370 if (r_type == R_MIPS16_26)
6371 {
6372 ok = ((opcode == 0x6) || (opcode == 0x7));
6373 jalx_opcode = 0x7;
6374 }
6375 else if (r_type == R_MICROMIPS_26_S1)
6376 {
6377 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6378 jalx_opcode = 0x3c;
6379 }
6380 else
6381 {
6382 ok = ((opcode == 0x3) || (opcode == 0x1d));
6383 jalx_opcode = 0x1d;
6384 }
6385
6386 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6387 convert J or JALS to JALX. */
6388 if (!ok)
6389 {
6390 info->callbacks->einfo
6391 (_("%X%H: Unsupported jump between ISA modes; "
6392 "consider recompiling with interlinking enabled\n"),
6393 input_bfd, input_section, relocation->r_offset);
6394 return TRUE;
6395 }
6396
6397 /* Make this the JALX opcode. */
6398 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6399 }
6400 else if (cross_mode_jump_p && b_reloc_p (r_type))
6401 {
6402 bfd_boolean ok = FALSE;
6403 bfd_vma opcode = x >> 16;
6404 bfd_vma jalx_opcode = 0;
6405 bfd_vma addr;
6406 bfd_vma dest;
6407
6408 if (r_type == R_MICROMIPS_PC16_S1)
6409 {
6410 ok = opcode == 0x4060;
6411 jalx_opcode = 0x3c;
6412 value <<= 1;
6413 }
6414 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6415 {
6416 ok = opcode == 0x411;
6417 jalx_opcode = 0x1d;
6418 value <<= 2;
6419 }
6420
6421 if (bfd_link_pic (info) || !ok)
6422 {
6423 info->callbacks->einfo
6424 (_("%X%H: Unsupported branch between ISA modes\n"),
6425 input_bfd, input_section, relocation->r_offset);
6426 return TRUE;
6427 }
6428
6429 addr = (input_section->output_section->vma
6430 + input_section->output_offset
6431 + relocation->r_offset
6432 + 4);
6433 dest = addr + (((value & 0x3ffff) ^ 0x20000) - 0x20000);
6434
6435 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6436 {
6437 info->callbacks->einfo
6438 (_("%X%H: Cannot convert branch between ISA modes "
6439 "to JALX: relocation out of range\n"),
6440 input_bfd, input_section, relocation->r_offset);
6441 return TRUE;
6442 }
6443
6444 /* Make this the JALX opcode. */
6445 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6446 }
6447
6448 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6449 range. */
6450 if (!bfd_link_relocatable (info)
6451 && !cross_mode_jump_p
6452 && ((JAL_TO_BAL_P (input_bfd)
6453 && r_type == R_MIPS_26
6454 && (x >> 26) == 0x3) /* jal addr */
6455 || (JALR_TO_BAL_P (input_bfd)
6456 && r_type == R_MIPS_JALR
6457 && x == 0x0320f809) /* jalr t9 */
6458 || (JR_TO_B_P (input_bfd)
6459 && r_type == R_MIPS_JALR
6460 && x == 0x03200008))) /* jr t9 */
6461 {
6462 bfd_vma addr;
6463 bfd_vma dest;
6464 bfd_signed_vma off;
6465
6466 addr = (input_section->output_section->vma
6467 + input_section->output_offset
6468 + relocation->r_offset
6469 + 4);
6470 if (r_type == R_MIPS_26)
6471 dest = (value << 2) | ((addr >> 28) << 28);
6472 else
6473 dest = value;
6474 off = dest - addr;
6475 if (off <= 0x1ffff && off >= -0x20000)
6476 {
6477 if (x == 0x03200008) /* jr t9 */
6478 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6479 else
6480 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6481 }
6482 }
6483
6484 /* Put the value into the output. */
6485 size = bfd_get_reloc_size (howto);
6486 if (size != 0)
6487 bfd_put (8 * size, input_bfd, x, location);
6488
6489 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6490 location);
6491
6492 return TRUE;
6493 }
6494 \f
6495 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6496 is the original relocation, which is now being transformed into a
6497 dynamic relocation. The ADDENDP is adjusted if necessary; the
6498 caller should store the result in place of the original addend. */
6499
6500 static bfd_boolean
6501 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6502 struct bfd_link_info *info,
6503 const Elf_Internal_Rela *rel,
6504 struct mips_elf_link_hash_entry *h,
6505 asection *sec, bfd_vma symbol,
6506 bfd_vma *addendp, asection *input_section)
6507 {
6508 Elf_Internal_Rela outrel[3];
6509 asection *sreloc;
6510 bfd *dynobj;
6511 int r_type;
6512 long indx;
6513 bfd_boolean defined_p;
6514 struct mips_elf_link_hash_table *htab;
6515
6516 htab = mips_elf_hash_table (info);
6517 BFD_ASSERT (htab != NULL);
6518
6519 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6520 dynobj = elf_hash_table (info)->dynobj;
6521 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6522 BFD_ASSERT (sreloc != NULL);
6523 BFD_ASSERT (sreloc->contents != NULL);
6524 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6525 < sreloc->size);
6526
6527 outrel[0].r_offset =
6528 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6529 if (ABI_64_P (output_bfd))
6530 {
6531 outrel[1].r_offset =
6532 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6533 outrel[2].r_offset =
6534 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6535 }
6536
6537 if (outrel[0].r_offset == MINUS_ONE)
6538 /* The relocation field has been deleted. */
6539 return TRUE;
6540
6541 if (outrel[0].r_offset == MINUS_TWO)
6542 {
6543 /* The relocation field has been converted into a relative value of
6544 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6545 the field to be fully relocated, so add in the symbol's value. */
6546 *addendp += symbol;
6547 return TRUE;
6548 }
6549
6550 /* We must now calculate the dynamic symbol table index to use
6551 in the relocation. */
6552 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6553 {
6554 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6555 indx = h->root.dynindx;
6556 if (SGI_COMPAT (output_bfd))
6557 defined_p = h->root.def_regular;
6558 else
6559 /* ??? glibc's ld.so just adds the final GOT entry to the
6560 relocation field. It therefore treats relocs against
6561 defined symbols in the same way as relocs against
6562 undefined symbols. */
6563 defined_p = FALSE;
6564 }
6565 else
6566 {
6567 if (sec != NULL && bfd_is_abs_section (sec))
6568 indx = 0;
6569 else if (sec == NULL || sec->owner == NULL)
6570 {
6571 bfd_set_error (bfd_error_bad_value);
6572 return FALSE;
6573 }
6574 else
6575 {
6576 indx = elf_section_data (sec->output_section)->dynindx;
6577 if (indx == 0)
6578 {
6579 asection *osec = htab->root.text_index_section;
6580 indx = elf_section_data (osec)->dynindx;
6581 }
6582 if (indx == 0)
6583 abort ();
6584 }
6585
6586 /* Instead of generating a relocation using the section
6587 symbol, we may as well make it a fully relative
6588 relocation. We want to avoid generating relocations to
6589 local symbols because we used to generate them
6590 incorrectly, without adding the original symbol value,
6591 which is mandated by the ABI for section symbols. In
6592 order to give dynamic loaders and applications time to
6593 phase out the incorrect use, we refrain from emitting
6594 section-relative relocations. It's not like they're
6595 useful, after all. This should be a bit more efficient
6596 as well. */
6597 /* ??? Although this behavior is compatible with glibc's ld.so,
6598 the ABI says that relocations against STN_UNDEF should have
6599 a symbol value of 0. Irix rld honors this, so relocations
6600 against STN_UNDEF have no effect. */
6601 if (!SGI_COMPAT (output_bfd))
6602 indx = 0;
6603 defined_p = TRUE;
6604 }
6605
6606 /* If the relocation was previously an absolute relocation and
6607 this symbol will not be referred to by the relocation, we must
6608 adjust it by the value we give it in the dynamic symbol table.
6609 Otherwise leave the job up to the dynamic linker. */
6610 if (defined_p && r_type != R_MIPS_REL32)
6611 *addendp += symbol;
6612
6613 if (htab->is_vxworks)
6614 /* VxWorks uses non-relative relocations for this. */
6615 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6616 else
6617 /* The relocation is always an REL32 relocation because we don't
6618 know where the shared library will wind up at load-time. */
6619 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6620 R_MIPS_REL32);
6621
6622 /* For strict adherence to the ABI specification, we should
6623 generate a R_MIPS_64 relocation record by itself before the
6624 _REL32/_64 record as well, such that the addend is read in as
6625 a 64-bit value (REL32 is a 32-bit relocation, after all).
6626 However, since none of the existing ELF64 MIPS dynamic
6627 loaders seems to care, we don't waste space with these
6628 artificial relocations. If this turns out to not be true,
6629 mips_elf_allocate_dynamic_relocation() should be tweaked so
6630 as to make room for a pair of dynamic relocations per
6631 invocation if ABI_64_P, and here we should generate an
6632 additional relocation record with R_MIPS_64 by itself for a
6633 NULL symbol before this relocation record. */
6634 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6635 ABI_64_P (output_bfd)
6636 ? R_MIPS_64
6637 : R_MIPS_NONE);
6638 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6639
6640 /* Adjust the output offset of the relocation to reference the
6641 correct location in the output file. */
6642 outrel[0].r_offset += (input_section->output_section->vma
6643 + input_section->output_offset);
6644 outrel[1].r_offset += (input_section->output_section->vma
6645 + input_section->output_offset);
6646 outrel[2].r_offset += (input_section->output_section->vma
6647 + input_section->output_offset);
6648
6649 /* Put the relocation back out. We have to use the special
6650 relocation outputter in the 64-bit case since the 64-bit
6651 relocation format is non-standard. */
6652 if (ABI_64_P (output_bfd))
6653 {
6654 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6655 (output_bfd, &outrel[0],
6656 (sreloc->contents
6657 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6658 }
6659 else if (htab->is_vxworks)
6660 {
6661 /* VxWorks uses RELA rather than REL dynamic relocations. */
6662 outrel[0].r_addend = *addendp;
6663 bfd_elf32_swap_reloca_out
6664 (output_bfd, &outrel[0],
6665 (sreloc->contents
6666 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6667 }
6668 else
6669 bfd_elf32_swap_reloc_out
6670 (output_bfd, &outrel[0],
6671 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6672
6673 /* We've now added another relocation. */
6674 ++sreloc->reloc_count;
6675
6676 /* Make sure the output section is writable. The dynamic linker
6677 will be writing to it. */
6678 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6679 |= SHF_WRITE;
6680
6681 /* On IRIX5, make an entry of compact relocation info. */
6682 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6683 {
6684 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6685 bfd_byte *cr;
6686
6687 if (scpt)
6688 {
6689 Elf32_crinfo cptrel;
6690
6691 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6692 cptrel.vaddr = (rel->r_offset
6693 + input_section->output_section->vma
6694 + input_section->output_offset);
6695 if (r_type == R_MIPS_REL32)
6696 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6697 else
6698 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6699 mips_elf_set_cr_dist2to (cptrel, 0);
6700 cptrel.konst = *addendp;
6701
6702 cr = (scpt->contents
6703 + sizeof (Elf32_External_compact_rel));
6704 mips_elf_set_cr_relvaddr (cptrel, 0);
6705 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6706 ((Elf32_External_crinfo *) cr
6707 + scpt->reloc_count));
6708 ++scpt->reloc_count;
6709 }
6710 }
6711
6712 /* If we've written this relocation for a readonly section,
6713 we need to set DF_TEXTREL again, so that we do not delete the
6714 DT_TEXTREL tag. */
6715 if (MIPS_ELF_READONLY_SECTION (input_section))
6716 info->flags |= DF_TEXTREL;
6717
6718 return TRUE;
6719 }
6720 \f
6721 /* Return the MACH for a MIPS e_flags value. */
6722
6723 unsigned long
6724 _bfd_elf_mips_mach (flagword flags)
6725 {
6726 switch (flags & EF_MIPS_MACH)
6727 {
6728 case E_MIPS_MACH_3900:
6729 return bfd_mach_mips3900;
6730
6731 case E_MIPS_MACH_4010:
6732 return bfd_mach_mips4010;
6733
6734 case E_MIPS_MACH_4100:
6735 return bfd_mach_mips4100;
6736
6737 case E_MIPS_MACH_4111:
6738 return bfd_mach_mips4111;
6739
6740 case E_MIPS_MACH_4120:
6741 return bfd_mach_mips4120;
6742
6743 case E_MIPS_MACH_4650:
6744 return bfd_mach_mips4650;
6745
6746 case E_MIPS_MACH_5400:
6747 return bfd_mach_mips5400;
6748
6749 case E_MIPS_MACH_5500:
6750 return bfd_mach_mips5500;
6751
6752 case E_MIPS_MACH_5900:
6753 return bfd_mach_mips5900;
6754
6755 case E_MIPS_MACH_9000:
6756 return bfd_mach_mips9000;
6757
6758 case E_MIPS_MACH_SB1:
6759 return bfd_mach_mips_sb1;
6760
6761 case E_MIPS_MACH_LS2E:
6762 return bfd_mach_mips_loongson_2e;
6763
6764 case E_MIPS_MACH_LS2F:
6765 return bfd_mach_mips_loongson_2f;
6766
6767 case E_MIPS_MACH_LS3A:
6768 return bfd_mach_mips_loongson_3a;
6769
6770 case E_MIPS_MACH_OCTEON3:
6771 return bfd_mach_mips_octeon3;
6772
6773 case E_MIPS_MACH_OCTEON2:
6774 return bfd_mach_mips_octeon2;
6775
6776 case E_MIPS_MACH_OCTEON:
6777 return bfd_mach_mips_octeon;
6778
6779 case E_MIPS_MACH_XLR:
6780 return bfd_mach_mips_xlr;
6781
6782 default:
6783 switch (flags & EF_MIPS_ARCH)
6784 {
6785 default:
6786 case E_MIPS_ARCH_1:
6787 return bfd_mach_mips3000;
6788
6789 case E_MIPS_ARCH_2:
6790 return bfd_mach_mips6000;
6791
6792 case E_MIPS_ARCH_3:
6793 return bfd_mach_mips4000;
6794
6795 case E_MIPS_ARCH_4:
6796 return bfd_mach_mips8000;
6797
6798 case E_MIPS_ARCH_5:
6799 return bfd_mach_mips5;
6800
6801 case E_MIPS_ARCH_32:
6802 return bfd_mach_mipsisa32;
6803
6804 case E_MIPS_ARCH_64:
6805 return bfd_mach_mipsisa64;
6806
6807 case E_MIPS_ARCH_32R2:
6808 return bfd_mach_mipsisa32r2;
6809
6810 case E_MIPS_ARCH_64R2:
6811 return bfd_mach_mipsisa64r2;
6812
6813 case E_MIPS_ARCH_32R6:
6814 return bfd_mach_mipsisa32r6;
6815
6816 case E_MIPS_ARCH_64R6:
6817 return bfd_mach_mipsisa64r6;
6818 }
6819 }
6820
6821 return 0;
6822 }
6823
6824 /* Return printable name for ABI. */
6825
6826 static INLINE char *
6827 elf_mips_abi_name (bfd *abfd)
6828 {
6829 flagword flags;
6830
6831 flags = elf_elfheader (abfd)->e_flags;
6832 switch (flags & EF_MIPS_ABI)
6833 {
6834 case 0:
6835 if (ABI_N32_P (abfd))
6836 return "N32";
6837 else if (ABI_64_P (abfd))
6838 return "64";
6839 else
6840 return "none";
6841 case E_MIPS_ABI_O32:
6842 return "O32";
6843 case E_MIPS_ABI_O64:
6844 return "O64";
6845 case E_MIPS_ABI_EABI32:
6846 return "EABI32";
6847 case E_MIPS_ABI_EABI64:
6848 return "EABI64";
6849 default:
6850 return "unknown abi";
6851 }
6852 }
6853 \f
6854 /* MIPS ELF uses two common sections. One is the usual one, and the
6855 other is for small objects. All the small objects are kept
6856 together, and then referenced via the gp pointer, which yields
6857 faster assembler code. This is what we use for the small common
6858 section. This approach is copied from ecoff.c. */
6859 static asection mips_elf_scom_section;
6860 static asymbol mips_elf_scom_symbol;
6861 static asymbol *mips_elf_scom_symbol_ptr;
6862
6863 /* MIPS ELF also uses an acommon section, which represents an
6864 allocated common symbol which may be overridden by a
6865 definition in a shared library. */
6866 static asection mips_elf_acom_section;
6867 static asymbol mips_elf_acom_symbol;
6868 static asymbol *mips_elf_acom_symbol_ptr;
6869
6870 /* This is used for both the 32-bit and the 64-bit ABI. */
6871
6872 void
6873 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6874 {
6875 elf_symbol_type *elfsym;
6876
6877 /* Handle the special MIPS section numbers that a symbol may use. */
6878 elfsym = (elf_symbol_type *) asym;
6879 switch (elfsym->internal_elf_sym.st_shndx)
6880 {
6881 case SHN_MIPS_ACOMMON:
6882 /* This section is used in a dynamically linked executable file.
6883 It is an allocated common section. The dynamic linker can
6884 either resolve these symbols to something in a shared
6885 library, or it can just leave them here. For our purposes,
6886 we can consider these symbols to be in a new section. */
6887 if (mips_elf_acom_section.name == NULL)
6888 {
6889 /* Initialize the acommon section. */
6890 mips_elf_acom_section.name = ".acommon";
6891 mips_elf_acom_section.flags = SEC_ALLOC;
6892 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6893 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6894 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6895 mips_elf_acom_symbol.name = ".acommon";
6896 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6897 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6898 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6899 }
6900 asym->section = &mips_elf_acom_section;
6901 break;
6902
6903 case SHN_COMMON:
6904 /* Common symbols less than the GP size are automatically
6905 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6906 if (asym->value > elf_gp_size (abfd)
6907 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6908 || IRIX_COMPAT (abfd) == ict_irix6)
6909 break;
6910 /* Fall through. */
6911 case SHN_MIPS_SCOMMON:
6912 if (mips_elf_scom_section.name == NULL)
6913 {
6914 /* Initialize the small common section. */
6915 mips_elf_scom_section.name = ".scommon";
6916 mips_elf_scom_section.flags = SEC_IS_COMMON;
6917 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6918 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6919 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6920 mips_elf_scom_symbol.name = ".scommon";
6921 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6922 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6923 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6924 }
6925 asym->section = &mips_elf_scom_section;
6926 asym->value = elfsym->internal_elf_sym.st_size;
6927 break;
6928
6929 case SHN_MIPS_SUNDEFINED:
6930 asym->section = bfd_und_section_ptr;
6931 break;
6932
6933 case SHN_MIPS_TEXT:
6934 {
6935 asection *section = bfd_get_section_by_name (abfd, ".text");
6936
6937 if (section != NULL)
6938 {
6939 asym->section = section;
6940 /* MIPS_TEXT is a bit special, the address is not an offset
6941 to the base of the .text section. So substract the section
6942 base address to make it an offset. */
6943 asym->value -= section->vma;
6944 }
6945 }
6946 break;
6947
6948 case SHN_MIPS_DATA:
6949 {
6950 asection *section = bfd_get_section_by_name (abfd, ".data");
6951
6952 if (section != NULL)
6953 {
6954 asym->section = section;
6955 /* MIPS_DATA is a bit special, the address is not an offset
6956 to the base of the .data section. So substract the section
6957 base address to make it an offset. */
6958 asym->value -= section->vma;
6959 }
6960 }
6961 break;
6962 }
6963
6964 /* If this is an odd-valued function symbol, assume it's a MIPS16
6965 or microMIPS one. */
6966 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6967 && (asym->value & 1) != 0)
6968 {
6969 asym->value--;
6970 if (MICROMIPS_P (abfd))
6971 elfsym->internal_elf_sym.st_other
6972 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6973 else
6974 elfsym->internal_elf_sym.st_other
6975 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6976 }
6977 }
6978 \f
6979 /* Implement elf_backend_eh_frame_address_size. This differs from
6980 the default in the way it handles EABI64.
6981
6982 EABI64 was originally specified as an LP64 ABI, and that is what
6983 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6984 historically accepted the combination of -mabi=eabi and -mlong32,
6985 and this ILP32 variation has become semi-official over time.
6986 Both forms use elf32 and have pointer-sized FDE addresses.
6987
6988 If an EABI object was generated by GCC 4.0 or above, it will have
6989 an empty .gcc_compiled_longXX section, where XX is the size of longs
6990 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6991 have no special marking to distinguish them from LP64 objects.
6992
6993 We don't want users of the official LP64 ABI to be punished for the
6994 existence of the ILP32 variant, but at the same time, we don't want
6995 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6996 We therefore take the following approach:
6997
6998 - If ABFD contains a .gcc_compiled_longXX section, use it to
6999 determine the pointer size.
7000
7001 - Otherwise check the type of the first relocation. Assume that
7002 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7003
7004 - Otherwise punt.
7005
7006 The second check is enough to detect LP64 objects generated by pre-4.0
7007 compilers because, in the kind of output generated by those compilers,
7008 the first relocation will be associated with either a CIE personality
7009 routine or an FDE start address. Furthermore, the compilers never
7010 used a special (non-pointer) encoding for this ABI.
7011
7012 Checking the relocation type should also be safe because there is no
7013 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7014 did so. */
7015
7016 unsigned int
7017 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
7018 {
7019 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7020 return 8;
7021 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7022 {
7023 bfd_boolean long32_p, long64_p;
7024
7025 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7026 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7027 if (long32_p && long64_p)
7028 return 0;
7029 if (long32_p)
7030 return 4;
7031 if (long64_p)
7032 return 8;
7033
7034 if (sec->reloc_count > 0
7035 && elf_section_data (sec)->relocs != NULL
7036 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7037 == R_MIPS_64))
7038 return 8;
7039
7040 return 0;
7041 }
7042 return 4;
7043 }
7044 \f
7045 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7046 relocations against two unnamed section symbols to resolve to the
7047 same address. For example, if we have code like:
7048
7049 lw $4,%got_disp(.data)($gp)
7050 lw $25,%got_disp(.text)($gp)
7051 jalr $25
7052
7053 then the linker will resolve both relocations to .data and the program
7054 will jump there rather than to .text.
7055
7056 We can work around this problem by giving names to local section symbols.
7057 This is also what the MIPSpro tools do. */
7058
7059 bfd_boolean
7060 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7061 {
7062 return SGI_COMPAT (abfd);
7063 }
7064 \f
7065 /* Work over a section just before writing it out. This routine is
7066 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7067 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7068 a better way. */
7069
7070 bfd_boolean
7071 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7072 {
7073 if (hdr->sh_type == SHT_MIPS_REGINFO
7074 && hdr->sh_size > 0)
7075 {
7076 bfd_byte buf[4];
7077
7078 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
7079 BFD_ASSERT (hdr->contents == NULL);
7080
7081 if (bfd_seek (abfd,
7082 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7083 SEEK_SET) != 0)
7084 return FALSE;
7085 H_PUT_32 (abfd, elf_gp (abfd), buf);
7086 if (bfd_bwrite (buf, 4, abfd) != 4)
7087 return FALSE;
7088 }
7089
7090 if (hdr->sh_type == SHT_MIPS_OPTIONS
7091 && hdr->bfd_section != NULL
7092 && mips_elf_section_data (hdr->bfd_section) != NULL
7093 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7094 {
7095 bfd_byte *contents, *l, *lend;
7096
7097 /* We stored the section contents in the tdata field in the
7098 set_section_contents routine. We save the section contents
7099 so that we don't have to read them again.
7100 At this point we know that elf_gp is set, so we can look
7101 through the section contents to see if there is an
7102 ODK_REGINFO structure. */
7103
7104 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7105 l = contents;
7106 lend = contents + hdr->sh_size;
7107 while (l + sizeof (Elf_External_Options) <= lend)
7108 {
7109 Elf_Internal_Options intopt;
7110
7111 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7112 &intopt);
7113 if (intopt.size < sizeof (Elf_External_Options))
7114 {
7115 _bfd_error_handler
7116 /* xgettext:c-format */
7117 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7118 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7119 break;
7120 }
7121 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7122 {
7123 bfd_byte buf[8];
7124
7125 if (bfd_seek (abfd,
7126 (hdr->sh_offset
7127 + (l - contents)
7128 + sizeof (Elf_External_Options)
7129 + (sizeof (Elf64_External_RegInfo) - 8)),
7130 SEEK_SET) != 0)
7131 return FALSE;
7132 H_PUT_64 (abfd, elf_gp (abfd), buf);
7133 if (bfd_bwrite (buf, 8, abfd) != 8)
7134 return FALSE;
7135 }
7136 else if (intopt.kind == ODK_REGINFO)
7137 {
7138 bfd_byte buf[4];
7139
7140 if (bfd_seek (abfd,
7141 (hdr->sh_offset
7142 + (l - contents)
7143 + sizeof (Elf_External_Options)
7144 + (sizeof (Elf32_External_RegInfo) - 4)),
7145 SEEK_SET) != 0)
7146 return FALSE;
7147 H_PUT_32 (abfd, elf_gp (abfd), buf);
7148 if (bfd_bwrite (buf, 4, abfd) != 4)
7149 return FALSE;
7150 }
7151 l += intopt.size;
7152 }
7153 }
7154
7155 if (hdr->bfd_section != NULL)
7156 {
7157 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7158
7159 /* .sbss is not handled specially here because the GNU/Linux
7160 prelinker can convert .sbss from NOBITS to PROGBITS and
7161 changing it back to NOBITS breaks the binary. The entry in
7162 _bfd_mips_elf_special_sections will ensure the correct flags
7163 are set on .sbss if BFD creates it without reading it from an
7164 input file, and without special handling here the flags set
7165 on it in an input file will be followed. */
7166 if (strcmp (name, ".sdata") == 0
7167 || strcmp (name, ".lit8") == 0
7168 || strcmp (name, ".lit4") == 0)
7169 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7170 else if (strcmp (name, ".srdata") == 0)
7171 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7172 else if (strcmp (name, ".compact_rel") == 0)
7173 hdr->sh_flags = 0;
7174 else if (strcmp (name, ".rtproc") == 0)
7175 {
7176 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7177 {
7178 unsigned int adjust;
7179
7180 adjust = hdr->sh_size % hdr->sh_addralign;
7181 if (adjust != 0)
7182 hdr->sh_size += hdr->sh_addralign - adjust;
7183 }
7184 }
7185 }
7186
7187 return TRUE;
7188 }
7189
7190 /* Handle a MIPS specific section when reading an object file. This
7191 is called when elfcode.h finds a section with an unknown type.
7192 This routine supports both the 32-bit and 64-bit ELF ABI.
7193
7194 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7195 how to. */
7196
7197 bfd_boolean
7198 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7199 Elf_Internal_Shdr *hdr,
7200 const char *name,
7201 int shindex)
7202 {
7203 flagword flags = 0;
7204
7205 /* There ought to be a place to keep ELF backend specific flags, but
7206 at the moment there isn't one. We just keep track of the
7207 sections by their name, instead. Fortunately, the ABI gives
7208 suggested names for all the MIPS specific sections, so we will
7209 probably get away with this. */
7210 switch (hdr->sh_type)
7211 {
7212 case SHT_MIPS_LIBLIST:
7213 if (strcmp (name, ".liblist") != 0)
7214 return FALSE;
7215 break;
7216 case SHT_MIPS_MSYM:
7217 if (strcmp (name, ".msym") != 0)
7218 return FALSE;
7219 break;
7220 case SHT_MIPS_CONFLICT:
7221 if (strcmp (name, ".conflict") != 0)
7222 return FALSE;
7223 break;
7224 case SHT_MIPS_GPTAB:
7225 if (! CONST_STRNEQ (name, ".gptab."))
7226 return FALSE;
7227 break;
7228 case SHT_MIPS_UCODE:
7229 if (strcmp (name, ".ucode") != 0)
7230 return FALSE;
7231 break;
7232 case SHT_MIPS_DEBUG:
7233 if (strcmp (name, ".mdebug") != 0)
7234 return FALSE;
7235 flags = SEC_DEBUGGING;
7236 break;
7237 case SHT_MIPS_REGINFO:
7238 if (strcmp (name, ".reginfo") != 0
7239 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7240 return FALSE;
7241 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7242 break;
7243 case SHT_MIPS_IFACE:
7244 if (strcmp (name, ".MIPS.interfaces") != 0)
7245 return FALSE;
7246 break;
7247 case SHT_MIPS_CONTENT:
7248 if (! CONST_STRNEQ (name, ".MIPS.content"))
7249 return FALSE;
7250 break;
7251 case SHT_MIPS_OPTIONS:
7252 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7253 return FALSE;
7254 break;
7255 case SHT_MIPS_ABIFLAGS:
7256 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7257 return FALSE;
7258 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7259 break;
7260 case SHT_MIPS_DWARF:
7261 if (! CONST_STRNEQ (name, ".debug_")
7262 && ! CONST_STRNEQ (name, ".zdebug_"))
7263 return FALSE;
7264 break;
7265 case SHT_MIPS_SYMBOL_LIB:
7266 if (strcmp (name, ".MIPS.symlib") != 0)
7267 return FALSE;
7268 break;
7269 case SHT_MIPS_EVENTS:
7270 if (! CONST_STRNEQ (name, ".MIPS.events")
7271 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7272 return FALSE;
7273 break;
7274 default:
7275 break;
7276 }
7277
7278 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7279 return FALSE;
7280
7281 if (flags)
7282 {
7283 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7284 (bfd_get_section_flags (abfd,
7285 hdr->bfd_section)
7286 | flags)))
7287 return FALSE;
7288 }
7289
7290 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7291 {
7292 Elf_External_ABIFlags_v0 ext;
7293
7294 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7295 &ext, 0, sizeof ext))
7296 return FALSE;
7297 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7298 &mips_elf_tdata (abfd)->abiflags);
7299 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7300 return FALSE;
7301 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7302 }
7303
7304 /* FIXME: We should record sh_info for a .gptab section. */
7305
7306 /* For a .reginfo section, set the gp value in the tdata information
7307 from the contents of this section. We need the gp value while
7308 processing relocs, so we just get it now. The .reginfo section
7309 is not used in the 64-bit MIPS ELF ABI. */
7310 if (hdr->sh_type == SHT_MIPS_REGINFO)
7311 {
7312 Elf32_External_RegInfo ext;
7313 Elf32_RegInfo s;
7314
7315 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7316 &ext, 0, sizeof ext))
7317 return FALSE;
7318 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7319 elf_gp (abfd) = s.ri_gp_value;
7320 }
7321
7322 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7323 set the gp value based on what we find. We may see both
7324 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7325 they should agree. */
7326 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7327 {
7328 bfd_byte *contents, *l, *lend;
7329
7330 contents = bfd_malloc (hdr->sh_size);
7331 if (contents == NULL)
7332 return FALSE;
7333 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7334 0, hdr->sh_size))
7335 {
7336 free (contents);
7337 return FALSE;
7338 }
7339 l = contents;
7340 lend = contents + hdr->sh_size;
7341 while (l + sizeof (Elf_External_Options) <= lend)
7342 {
7343 Elf_Internal_Options intopt;
7344
7345 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7346 &intopt);
7347 if (intopt.size < sizeof (Elf_External_Options))
7348 {
7349 _bfd_error_handler
7350 /* xgettext:c-format */
7351 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7352 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7353 break;
7354 }
7355 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7356 {
7357 Elf64_Internal_RegInfo intreg;
7358
7359 bfd_mips_elf64_swap_reginfo_in
7360 (abfd,
7361 ((Elf64_External_RegInfo *)
7362 (l + sizeof (Elf_External_Options))),
7363 &intreg);
7364 elf_gp (abfd) = intreg.ri_gp_value;
7365 }
7366 else if (intopt.kind == ODK_REGINFO)
7367 {
7368 Elf32_RegInfo intreg;
7369
7370 bfd_mips_elf32_swap_reginfo_in
7371 (abfd,
7372 ((Elf32_External_RegInfo *)
7373 (l + sizeof (Elf_External_Options))),
7374 &intreg);
7375 elf_gp (abfd) = intreg.ri_gp_value;
7376 }
7377 l += intopt.size;
7378 }
7379 free (contents);
7380 }
7381
7382 return TRUE;
7383 }
7384
7385 /* Set the correct type for a MIPS ELF section. We do this by the
7386 section name, which is a hack, but ought to work. This routine is
7387 used by both the 32-bit and the 64-bit ABI. */
7388
7389 bfd_boolean
7390 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7391 {
7392 const char *name = bfd_get_section_name (abfd, sec);
7393
7394 if (strcmp (name, ".liblist") == 0)
7395 {
7396 hdr->sh_type = SHT_MIPS_LIBLIST;
7397 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7398 /* The sh_link field is set in final_write_processing. */
7399 }
7400 else if (strcmp (name, ".conflict") == 0)
7401 hdr->sh_type = SHT_MIPS_CONFLICT;
7402 else if (CONST_STRNEQ (name, ".gptab."))
7403 {
7404 hdr->sh_type = SHT_MIPS_GPTAB;
7405 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7406 /* The sh_info field is set in final_write_processing. */
7407 }
7408 else if (strcmp (name, ".ucode") == 0)
7409 hdr->sh_type = SHT_MIPS_UCODE;
7410 else if (strcmp (name, ".mdebug") == 0)
7411 {
7412 hdr->sh_type = SHT_MIPS_DEBUG;
7413 /* In a shared object on IRIX 5.3, the .mdebug section has an
7414 entsize of 0. FIXME: Does this matter? */
7415 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7416 hdr->sh_entsize = 0;
7417 else
7418 hdr->sh_entsize = 1;
7419 }
7420 else if (strcmp (name, ".reginfo") == 0)
7421 {
7422 hdr->sh_type = SHT_MIPS_REGINFO;
7423 /* In a shared object on IRIX 5.3, the .reginfo section has an
7424 entsize of 0x18. FIXME: Does this matter? */
7425 if (SGI_COMPAT (abfd))
7426 {
7427 if ((abfd->flags & DYNAMIC) != 0)
7428 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7429 else
7430 hdr->sh_entsize = 1;
7431 }
7432 else
7433 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7434 }
7435 else if (SGI_COMPAT (abfd)
7436 && (strcmp (name, ".hash") == 0
7437 || strcmp (name, ".dynamic") == 0
7438 || strcmp (name, ".dynstr") == 0))
7439 {
7440 if (SGI_COMPAT (abfd))
7441 hdr->sh_entsize = 0;
7442 #if 0
7443 /* This isn't how the IRIX6 linker behaves. */
7444 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7445 #endif
7446 }
7447 else if (strcmp (name, ".got") == 0
7448 || strcmp (name, ".srdata") == 0
7449 || strcmp (name, ".sdata") == 0
7450 || strcmp (name, ".sbss") == 0
7451 || strcmp (name, ".lit4") == 0
7452 || strcmp (name, ".lit8") == 0)
7453 hdr->sh_flags |= SHF_MIPS_GPREL;
7454 else if (strcmp (name, ".MIPS.interfaces") == 0)
7455 {
7456 hdr->sh_type = SHT_MIPS_IFACE;
7457 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7458 }
7459 else if (CONST_STRNEQ (name, ".MIPS.content"))
7460 {
7461 hdr->sh_type = SHT_MIPS_CONTENT;
7462 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7463 /* The sh_info field is set in final_write_processing. */
7464 }
7465 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7466 {
7467 hdr->sh_type = SHT_MIPS_OPTIONS;
7468 hdr->sh_entsize = 1;
7469 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7470 }
7471 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7472 {
7473 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7474 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7475 }
7476 else if (CONST_STRNEQ (name, ".debug_")
7477 || CONST_STRNEQ (name, ".zdebug_"))
7478 {
7479 hdr->sh_type = SHT_MIPS_DWARF;
7480
7481 /* Irix facilities such as libexc expect a single .debug_frame
7482 per executable, the system ones have NOSTRIP set and the linker
7483 doesn't merge sections with different flags so ... */
7484 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7485 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7486 }
7487 else if (strcmp (name, ".MIPS.symlib") == 0)
7488 {
7489 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7490 /* The sh_link and sh_info fields are set in
7491 final_write_processing. */
7492 }
7493 else if (CONST_STRNEQ (name, ".MIPS.events")
7494 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7495 {
7496 hdr->sh_type = SHT_MIPS_EVENTS;
7497 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7498 /* The sh_link field is set in final_write_processing. */
7499 }
7500 else if (strcmp (name, ".msym") == 0)
7501 {
7502 hdr->sh_type = SHT_MIPS_MSYM;
7503 hdr->sh_flags |= SHF_ALLOC;
7504 hdr->sh_entsize = 8;
7505 }
7506
7507 /* The generic elf_fake_sections will set up REL_HDR using the default
7508 kind of relocations. We used to set up a second header for the
7509 non-default kind of relocations here, but only NewABI would use
7510 these, and the IRIX ld doesn't like resulting empty RELA sections.
7511 Thus we create those header only on demand now. */
7512
7513 return TRUE;
7514 }
7515
7516 /* Given a BFD section, try to locate the corresponding ELF section
7517 index. This is used by both the 32-bit and the 64-bit ABI.
7518 Actually, it's not clear to me that the 64-bit ABI supports these,
7519 but for non-PIC objects we will certainly want support for at least
7520 the .scommon section. */
7521
7522 bfd_boolean
7523 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7524 asection *sec, int *retval)
7525 {
7526 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7527 {
7528 *retval = SHN_MIPS_SCOMMON;
7529 return TRUE;
7530 }
7531 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7532 {
7533 *retval = SHN_MIPS_ACOMMON;
7534 return TRUE;
7535 }
7536 return FALSE;
7537 }
7538 \f
7539 /* Hook called by the linker routine which adds symbols from an object
7540 file. We must handle the special MIPS section numbers here. */
7541
7542 bfd_boolean
7543 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7544 Elf_Internal_Sym *sym, const char **namep,
7545 flagword *flagsp ATTRIBUTE_UNUSED,
7546 asection **secp, bfd_vma *valp)
7547 {
7548 if (SGI_COMPAT (abfd)
7549 && (abfd->flags & DYNAMIC) != 0
7550 && strcmp (*namep, "_rld_new_interface") == 0)
7551 {
7552 /* Skip IRIX5 rld entry name. */
7553 *namep = NULL;
7554 return TRUE;
7555 }
7556
7557 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7558 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7559 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7560 a magic symbol resolved by the linker, we ignore this bogus definition
7561 of _gp_disp. New ABI objects do not suffer from this problem so this
7562 is not done for them. */
7563 if (!NEWABI_P(abfd)
7564 && (sym->st_shndx == SHN_ABS)
7565 && (strcmp (*namep, "_gp_disp") == 0))
7566 {
7567 *namep = NULL;
7568 return TRUE;
7569 }
7570
7571 switch (sym->st_shndx)
7572 {
7573 case SHN_COMMON:
7574 /* Common symbols less than the GP size are automatically
7575 treated as SHN_MIPS_SCOMMON symbols. */
7576 if (sym->st_size > elf_gp_size (abfd)
7577 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7578 || IRIX_COMPAT (abfd) == ict_irix6)
7579 break;
7580 /* Fall through. */
7581 case SHN_MIPS_SCOMMON:
7582 *secp = bfd_make_section_old_way (abfd, ".scommon");
7583 (*secp)->flags |= SEC_IS_COMMON;
7584 *valp = sym->st_size;
7585 break;
7586
7587 case SHN_MIPS_TEXT:
7588 /* This section is used in a shared object. */
7589 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7590 {
7591 asymbol *elf_text_symbol;
7592 asection *elf_text_section;
7593 bfd_size_type amt = sizeof (asection);
7594
7595 elf_text_section = bfd_zalloc (abfd, amt);
7596 if (elf_text_section == NULL)
7597 return FALSE;
7598
7599 amt = sizeof (asymbol);
7600 elf_text_symbol = bfd_zalloc (abfd, amt);
7601 if (elf_text_symbol == NULL)
7602 return FALSE;
7603
7604 /* Initialize the section. */
7605
7606 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7607 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7608
7609 elf_text_section->symbol = elf_text_symbol;
7610 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7611
7612 elf_text_section->name = ".text";
7613 elf_text_section->flags = SEC_NO_FLAGS;
7614 elf_text_section->output_section = NULL;
7615 elf_text_section->owner = abfd;
7616 elf_text_symbol->name = ".text";
7617 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7618 elf_text_symbol->section = elf_text_section;
7619 }
7620 /* This code used to do *secp = bfd_und_section_ptr if
7621 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7622 so I took it out. */
7623 *secp = mips_elf_tdata (abfd)->elf_text_section;
7624 break;
7625
7626 case SHN_MIPS_ACOMMON:
7627 /* Fall through. XXX Can we treat this as allocated data? */
7628 case SHN_MIPS_DATA:
7629 /* This section is used in a shared object. */
7630 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7631 {
7632 asymbol *elf_data_symbol;
7633 asection *elf_data_section;
7634 bfd_size_type amt = sizeof (asection);
7635
7636 elf_data_section = bfd_zalloc (abfd, amt);
7637 if (elf_data_section == NULL)
7638 return FALSE;
7639
7640 amt = sizeof (asymbol);
7641 elf_data_symbol = bfd_zalloc (abfd, amt);
7642 if (elf_data_symbol == NULL)
7643 return FALSE;
7644
7645 /* Initialize the section. */
7646
7647 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7648 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7649
7650 elf_data_section->symbol = elf_data_symbol;
7651 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7652
7653 elf_data_section->name = ".data";
7654 elf_data_section->flags = SEC_NO_FLAGS;
7655 elf_data_section->output_section = NULL;
7656 elf_data_section->owner = abfd;
7657 elf_data_symbol->name = ".data";
7658 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7659 elf_data_symbol->section = elf_data_section;
7660 }
7661 /* This code used to do *secp = bfd_und_section_ptr if
7662 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7663 so I took it out. */
7664 *secp = mips_elf_tdata (abfd)->elf_data_section;
7665 break;
7666
7667 case SHN_MIPS_SUNDEFINED:
7668 *secp = bfd_und_section_ptr;
7669 break;
7670 }
7671
7672 if (SGI_COMPAT (abfd)
7673 && ! bfd_link_pic (info)
7674 && info->output_bfd->xvec == abfd->xvec
7675 && strcmp (*namep, "__rld_obj_head") == 0)
7676 {
7677 struct elf_link_hash_entry *h;
7678 struct bfd_link_hash_entry *bh;
7679
7680 /* Mark __rld_obj_head as dynamic. */
7681 bh = NULL;
7682 if (! (_bfd_generic_link_add_one_symbol
7683 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7684 get_elf_backend_data (abfd)->collect, &bh)))
7685 return FALSE;
7686
7687 h = (struct elf_link_hash_entry *) bh;
7688 h->non_elf = 0;
7689 h->def_regular = 1;
7690 h->type = STT_OBJECT;
7691
7692 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7693 return FALSE;
7694
7695 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7696 mips_elf_hash_table (info)->rld_symbol = h;
7697 }
7698
7699 /* If this is a mips16 text symbol, add 1 to the value to make it
7700 odd. This will cause something like .word SYM to come up with
7701 the right value when it is loaded into the PC. */
7702 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7703 ++*valp;
7704
7705 return TRUE;
7706 }
7707
7708 /* This hook function is called before the linker writes out a global
7709 symbol. We mark symbols as small common if appropriate. This is
7710 also where we undo the increment of the value for a mips16 symbol. */
7711
7712 int
7713 _bfd_mips_elf_link_output_symbol_hook
7714 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7715 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7716 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7717 {
7718 /* If we see a common symbol, which implies a relocatable link, then
7719 if a symbol was small common in an input file, mark it as small
7720 common in the output file. */
7721 if (sym->st_shndx == SHN_COMMON
7722 && strcmp (input_sec->name, ".scommon") == 0)
7723 sym->st_shndx = SHN_MIPS_SCOMMON;
7724
7725 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7726 sym->st_value &= ~1;
7727
7728 return 1;
7729 }
7730 \f
7731 /* Functions for the dynamic linker. */
7732
7733 /* Create dynamic sections when linking against a dynamic object. */
7734
7735 bfd_boolean
7736 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7737 {
7738 struct elf_link_hash_entry *h;
7739 struct bfd_link_hash_entry *bh;
7740 flagword flags;
7741 register asection *s;
7742 const char * const *namep;
7743 struct mips_elf_link_hash_table *htab;
7744
7745 htab = mips_elf_hash_table (info);
7746 BFD_ASSERT (htab != NULL);
7747
7748 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7749 | SEC_LINKER_CREATED | SEC_READONLY);
7750
7751 /* The psABI requires a read-only .dynamic section, but the VxWorks
7752 EABI doesn't. */
7753 if (!htab->is_vxworks)
7754 {
7755 s = bfd_get_linker_section (abfd, ".dynamic");
7756 if (s != NULL)
7757 {
7758 if (! bfd_set_section_flags (abfd, s, flags))
7759 return FALSE;
7760 }
7761 }
7762
7763 /* We need to create .got section. */
7764 if (!mips_elf_create_got_section (abfd, info))
7765 return FALSE;
7766
7767 if (! mips_elf_rel_dyn_section (info, TRUE))
7768 return FALSE;
7769
7770 /* Create .stub section. */
7771 s = bfd_make_section_anyway_with_flags (abfd,
7772 MIPS_ELF_STUB_SECTION_NAME (abfd),
7773 flags | SEC_CODE);
7774 if (s == NULL
7775 || ! bfd_set_section_alignment (abfd, s,
7776 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7777 return FALSE;
7778 htab->sstubs = s;
7779
7780 if (!mips_elf_hash_table (info)->use_rld_obj_head
7781 && bfd_link_executable (info)
7782 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7783 {
7784 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7785 flags &~ (flagword) SEC_READONLY);
7786 if (s == NULL
7787 || ! bfd_set_section_alignment (abfd, s,
7788 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7789 return FALSE;
7790 }
7791
7792 /* On IRIX5, we adjust add some additional symbols and change the
7793 alignments of several sections. There is no ABI documentation
7794 indicating that this is necessary on IRIX6, nor any evidence that
7795 the linker takes such action. */
7796 if (IRIX_COMPAT (abfd) == ict_irix5)
7797 {
7798 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7799 {
7800 bh = NULL;
7801 if (! (_bfd_generic_link_add_one_symbol
7802 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7803 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7804 return FALSE;
7805
7806 h = (struct elf_link_hash_entry *) bh;
7807 h->non_elf = 0;
7808 h->def_regular = 1;
7809 h->type = STT_SECTION;
7810
7811 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7812 return FALSE;
7813 }
7814
7815 /* We need to create a .compact_rel section. */
7816 if (SGI_COMPAT (abfd))
7817 {
7818 if (!mips_elf_create_compact_rel_section (abfd, info))
7819 return FALSE;
7820 }
7821
7822 /* Change alignments of some sections. */
7823 s = bfd_get_linker_section (abfd, ".hash");
7824 if (s != NULL)
7825 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7826
7827 s = bfd_get_linker_section (abfd, ".dynsym");
7828 if (s != NULL)
7829 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7830
7831 s = bfd_get_linker_section (abfd, ".dynstr");
7832 if (s != NULL)
7833 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7834
7835 /* ??? */
7836 s = bfd_get_section_by_name (abfd, ".reginfo");
7837 if (s != NULL)
7838 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7839
7840 s = bfd_get_linker_section (abfd, ".dynamic");
7841 if (s != NULL)
7842 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7843 }
7844
7845 if (bfd_link_executable (info))
7846 {
7847 const char *name;
7848
7849 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7850 bh = NULL;
7851 if (!(_bfd_generic_link_add_one_symbol
7852 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7853 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7854 return FALSE;
7855
7856 h = (struct elf_link_hash_entry *) bh;
7857 h->non_elf = 0;
7858 h->def_regular = 1;
7859 h->type = STT_SECTION;
7860
7861 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7862 return FALSE;
7863
7864 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7865 {
7866 /* __rld_map is a four byte word located in the .data section
7867 and is filled in by the rtld to contain a pointer to
7868 the _r_debug structure. Its symbol value will be set in
7869 _bfd_mips_elf_finish_dynamic_symbol. */
7870 s = bfd_get_linker_section (abfd, ".rld_map");
7871 BFD_ASSERT (s != NULL);
7872
7873 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7874 bh = NULL;
7875 if (!(_bfd_generic_link_add_one_symbol
7876 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7877 get_elf_backend_data (abfd)->collect, &bh)))
7878 return FALSE;
7879
7880 h = (struct elf_link_hash_entry *) bh;
7881 h->non_elf = 0;
7882 h->def_regular = 1;
7883 h->type = STT_OBJECT;
7884
7885 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7886 return FALSE;
7887 mips_elf_hash_table (info)->rld_symbol = h;
7888 }
7889 }
7890
7891 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7892 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7893 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7894 return FALSE;
7895
7896 /* Cache the sections created above. */
7897 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7898 if (htab->is_vxworks)
7899 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7900 if (!htab->sdynbss
7901 || (htab->is_vxworks && !htab->srelbss && !bfd_link_pic (info))
7902 || !htab->root.srelplt
7903 || !htab->root.splt)
7904 abort ();
7905
7906 /* Do the usual VxWorks handling. */
7907 if (htab->is_vxworks
7908 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7909 return FALSE;
7910
7911 return TRUE;
7912 }
7913 \f
7914 /* Return true if relocation REL against section SEC is a REL rather than
7915 RELA relocation. RELOCS is the first relocation in the section and
7916 ABFD is the bfd that contains SEC. */
7917
7918 static bfd_boolean
7919 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7920 const Elf_Internal_Rela *relocs,
7921 const Elf_Internal_Rela *rel)
7922 {
7923 Elf_Internal_Shdr *rel_hdr;
7924 const struct elf_backend_data *bed;
7925
7926 /* To determine which flavor of relocation this is, we depend on the
7927 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7928 rel_hdr = elf_section_data (sec)->rel.hdr;
7929 if (rel_hdr == NULL)
7930 return FALSE;
7931 bed = get_elf_backend_data (abfd);
7932 return ((size_t) (rel - relocs)
7933 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7934 }
7935
7936 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7937 HOWTO is the relocation's howto and CONTENTS points to the contents
7938 of the section that REL is against. */
7939
7940 static bfd_vma
7941 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7942 reloc_howto_type *howto, bfd_byte *contents)
7943 {
7944 bfd_byte *location;
7945 unsigned int r_type;
7946 bfd_vma addend;
7947 bfd_vma bytes;
7948
7949 r_type = ELF_R_TYPE (abfd, rel->r_info);
7950 location = contents + rel->r_offset;
7951
7952 /* Get the addend, which is stored in the input file. */
7953 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7954 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7955 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7956
7957 addend = bytes & howto->src_mask;
7958
7959 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7960 accordingly. */
7961 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7962 addend <<= 1;
7963
7964 return addend;
7965 }
7966
7967 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7968 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7969 and update *ADDEND with the final addend. Return true on success
7970 or false if the LO16 could not be found. RELEND is the exclusive
7971 upper bound on the relocations for REL's section. */
7972
7973 static bfd_boolean
7974 mips_elf_add_lo16_rel_addend (bfd *abfd,
7975 const Elf_Internal_Rela *rel,
7976 const Elf_Internal_Rela *relend,
7977 bfd_byte *contents, bfd_vma *addend)
7978 {
7979 unsigned int r_type, lo16_type;
7980 const Elf_Internal_Rela *lo16_relocation;
7981 reloc_howto_type *lo16_howto;
7982 bfd_vma l;
7983
7984 r_type = ELF_R_TYPE (abfd, rel->r_info);
7985 if (mips16_reloc_p (r_type))
7986 lo16_type = R_MIPS16_LO16;
7987 else if (micromips_reloc_p (r_type))
7988 lo16_type = R_MICROMIPS_LO16;
7989 else if (r_type == R_MIPS_PCHI16)
7990 lo16_type = R_MIPS_PCLO16;
7991 else
7992 lo16_type = R_MIPS_LO16;
7993
7994 /* The combined value is the sum of the HI16 addend, left-shifted by
7995 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7996 code does a `lui' of the HI16 value, and then an `addiu' of the
7997 LO16 value.)
7998
7999 Scan ahead to find a matching LO16 relocation.
8000
8001 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8002 be immediately following. However, for the IRIX6 ABI, the next
8003 relocation may be a composed relocation consisting of several
8004 relocations for the same address. In that case, the R_MIPS_LO16
8005 relocation may occur as one of these. We permit a similar
8006 extension in general, as that is useful for GCC.
8007
8008 In some cases GCC dead code elimination removes the LO16 but keeps
8009 the corresponding HI16. This is strictly speaking a violation of
8010 the ABI but not immediately harmful. */
8011 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8012 if (lo16_relocation == NULL)
8013 return FALSE;
8014
8015 /* Obtain the addend kept there. */
8016 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8017 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8018
8019 l <<= lo16_howto->rightshift;
8020 l = _bfd_mips_elf_sign_extend (l, 16);
8021
8022 *addend <<= 16;
8023 *addend += l;
8024 return TRUE;
8025 }
8026
8027 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8028 store the contents in *CONTENTS on success. Assume that *CONTENTS
8029 already holds the contents if it is nonull on entry. */
8030
8031 static bfd_boolean
8032 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8033 {
8034 if (*contents)
8035 return TRUE;
8036
8037 /* Get cached copy if it exists. */
8038 if (elf_section_data (sec)->this_hdr.contents != NULL)
8039 {
8040 *contents = elf_section_data (sec)->this_hdr.contents;
8041 return TRUE;
8042 }
8043
8044 return bfd_malloc_and_get_section (abfd, sec, contents);
8045 }
8046
8047 /* Make a new PLT record to keep internal data. */
8048
8049 static struct plt_entry *
8050 mips_elf_make_plt_record (bfd *abfd)
8051 {
8052 struct plt_entry *entry;
8053
8054 entry = bfd_zalloc (abfd, sizeof (*entry));
8055 if (entry == NULL)
8056 return NULL;
8057
8058 entry->stub_offset = MINUS_ONE;
8059 entry->mips_offset = MINUS_ONE;
8060 entry->comp_offset = MINUS_ONE;
8061 entry->gotplt_index = MINUS_ONE;
8062 return entry;
8063 }
8064
8065 /* Look through the relocs for a section during the first phase, and
8066 allocate space in the global offset table and record the need for
8067 standard MIPS and compressed procedure linkage table entries. */
8068
8069 bfd_boolean
8070 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8071 asection *sec, const Elf_Internal_Rela *relocs)
8072 {
8073 const char *name;
8074 bfd *dynobj;
8075 Elf_Internal_Shdr *symtab_hdr;
8076 struct elf_link_hash_entry **sym_hashes;
8077 size_t extsymoff;
8078 const Elf_Internal_Rela *rel;
8079 const Elf_Internal_Rela *rel_end;
8080 asection *sreloc;
8081 const struct elf_backend_data *bed;
8082 struct mips_elf_link_hash_table *htab;
8083 bfd_byte *contents;
8084 bfd_vma addend;
8085 reloc_howto_type *howto;
8086
8087 if (bfd_link_relocatable (info))
8088 return TRUE;
8089
8090 htab = mips_elf_hash_table (info);
8091 BFD_ASSERT (htab != NULL);
8092
8093 dynobj = elf_hash_table (info)->dynobj;
8094 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8095 sym_hashes = elf_sym_hashes (abfd);
8096 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8097
8098 bed = get_elf_backend_data (abfd);
8099 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8100
8101 /* Check for the mips16 stub sections. */
8102
8103 name = bfd_get_section_name (abfd, sec);
8104 if (FN_STUB_P (name))
8105 {
8106 unsigned long r_symndx;
8107
8108 /* Look at the relocation information to figure out which symbol
8109 this is for. */
8110
8111 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8112 if (r_symndx == 0)
8113 {
8114 _bfd_error_handler
8115 /* xgettext:c-format */
8116 (_("%B: Warning: cannot determine the target function for"
8117 " stub section `%s'"),
8118 abfd, name);
8119 bfd_set_error (bfd_error_bad_value);
8120 return FALSE;
8121 }
8122
8123 if (r_symndx < extsymoff
8124 || sym_hashes[r_symndx - extsymoff] == NULL)
8125 {
8126 asection *o;
8127
8128 /* This stub is for a local symbol. This stub will only be
8129 needed if there is some relocation in this BFD, other
8130 than a 16 bit function call, which refers to this symbol. */
8131 for (o = abfd->sections; o != NULL; o = o->next)
8132 {
8133 Elf_Internal_Rela *sec_relocs;
8134 const Elf_Internal_Rela *r, *rend;
8135
8136 /* We can ignore stub sections when looking for relocs. */
8137 if ((o->flags & SEC_RELOC) == 0
8138 || o->reloc_count == 0
8139 || section_allows_mips16_refs_p (o))
8140 continue;
8141
8142 sec_relocs
8143 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8144 info->keep_memory);
8145 if (sec_relocs == NULL)
8146 return FALSE;
8147
8148 rend = sec_relocs + o->reloc_count;
8149 for (r = sec_relocs; r < rend; r++)
8150 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8151 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8152 break;
8153
8154 if (elf_section_data (o)->relocs != sec_relocs)
8155 free (sec_relocs);
8156
8157 if (r < rend)
8158 break;
8159 }
8160
8161 if (o == NULL)
8162 {
8163 /* There is no non-call reloc for this stub, so we do
8164 not need it. Since this function is called before
8165 the linker maps input sections to output sections, we
8166 can easily discard it by setting the SEC_EXCLUDE
8167 flag. */
8168 sec->flags |= SEC_EXCLUDE;
8169 return TRUE;
8170 }
8171
8172 /* Record this stub in an array of local symbol stubs for
8173 this BFD. */
8174 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8175 {
8176 unsigned long symcount;
8177 asection **n;
8178 bfd_size_type amt;
8179
8180 if (elf_bad_symtab (abfd))
8181 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8182 else
8183 symcount = symtab_hdr->sh_info;
8184 amt = symcount * sizeof (asection *);
8185 n = bfd_zalloc (abfd, amt);
8186 if (n == NULL)
8187 return FALSE;
8188 mips_elf_tdata (abfd)->local_stubs = n;
8189 }
8190
8191 sec->flags |= SEC_KEEP;
8192 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8193
8194 /* We don't need to set mips16_stubs_seen in this case.
8195 That flag is used to see whether we need to look through
8196 the global symbol table for stubs. We don't need to set
8197 it here, because we just have a local stub. */
8198 }
8199 else
8200 {
8201 struct mips_elf_link_hash_entry *h;
8202
8203 h = ((struct mips_elf_link_hash_entry *)
8204 sym_hashes[r_symndx - extsymoff]);
8205
8206 while (h->root.root.type == bfd_link_hash_indirect
8207 || h->root.root.type == bfd_link_hash_warning)
8208 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8209
8210 /* H is the symbol this stub is for. */
8211
8212 /* If we already have an appropriate stub for this function, we
8213 don't need another one, so we can discard this one. Since
8214 this function is called before the linker maps input sections
8215 to output sections, we can easily discard it by setting the
8216 SEC_EXCLUDE flag. */
8217 if (h->fn_stub != NULL)
8218 {
8219 sec->flags |= SEC_EXCLUDE;
8220 return TRUE;
8221 }
8222
8223 sec->flags |= SEC_KEEP;
8224 h->fn_stub = sec;
8225 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8226 }
8227 }
8228 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8229 {
8230 unsigned long r_symndx;
8231 struct mips_elf_link_hash_entry *h;
8232 asection **loc;
8233
8234 /* Look at the relocation information to figure out which symbol
8235 this is for. */
8236
8237 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8238 if (r_symndx == 0)
8239 {
8240 _bfd_error_handler
8241 /* xgettext:c-format */
8242 (_("%B: Warning: cannot determine the target function for"
8243 " stub section `%s'"),
8244 abfd, name);
8245 bfd_set_error (bfd_error_bad_value);
8246 return FALSE;
8247 }
8248
8249 if (r_symndx < extsymoff
8250 || sym_hashes[r_symndx - extsymoff] == NULL)
8251 {
8252 asection *o;
8253
8254 /* This stub is for a local symbol. This stub will only be
8255 needed if there is some relocation (R_MIPS16_26) in this BFD
8256 that refers to this symbol. */
8257 for (o = abfd->sections; o != NULL; o = o->next)
8258 {
8259 Elf_Internal_Rela *sec_relocs;
8260 const Elf_Internal_Rela *r, *rend;
8261
8262 /* We can ignore stub sections when looking for relocs. */
8263 if ((o->flags & SEC_RELOC) == 0
8264 || o->reloc_count == 0
8265 || section_allows_mips16_refs_p (o))
8266 continue;
8267
8268 sec_relocs
8269 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8270 info->keep_memory);
8271 if (sec_relocs == NULL)
8272 return FALSE;
8273
8274 rend = sec_relocs + o->reloc_count;
8275 for (r = sec_relocs; r < rend; r++)
8276 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8277 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8278 break;
8279
8280 if (elf_section_data (o)->relocs != sec_relocs)
8281 free (sec_relocs);
8282
8283 if (r < rend)
8284 break;
8285 }
8286
8287 if (o == NULL)
8288 {
8289 /* There is no non-call reloc for this stub, so we do
8290 not need it. Since this function is called before
8291 the linker maps input sections to output sections, we
8292 can easily discard it by setting the SEC_EXCLUDE
8293 flag. */
8294 sec->flags |= SEC_EXCLUDE;
8295 return TRUE;
8296 }
8297
8298 /* Record this stub in an array of local symbol call_stubs for
8299 this BFD. */
8300 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8301 {
8302 unsigned long symcount;
8303 asection **n;
8304 bfd_size_type amt;
8305
8306 if (elf_bad_symtab (abfd))
8307 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8308 else
8309 symcount = symtab_hdr->sh_info;
8310 amt = symcount * sizeof (asection *);
8311 n = bfd_zalloc (abfd, amt);
8312 if (n == NULL)
8313 return FALSE;
8314 mips_elf_tdata (abfd)->local_call_stubs = n;
8315 }
8316
8317 sec->flags |= SEC_KEEP;
8318 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8319
8320 /* We don't need to set mips16_stubs_seen in this case.
8321 That flag is used to see whether we need to look through
8322 the global symbol table for stubs. We don't need to set
8323 it here, because we just have a local stub. */
8324 }
8325 else
8326 {
8327 h = ((struct mips_elf_link_hash_entry *)
8328 sym_hashes[r_symndx - extsymoff]);
8329
8330 /* H is the symbol this stub is for. */
8331
8332 if (CALL_FP_STUB_P (name))
8333 loc = &h->call_fp_stub;
8334 else
8335 loc = &h->call_stub;
8336
8337 /* If we already have an appropriate stub for this function, we
8338 don't need another one, so we can discard this one. Since
8339 this function is called before the linker maps input sections
8340 to output sections, we can easily discard it by setting the
8341 SEC_EXCLUDE flag. */
8342 if (*loc != NULL)
8343 {
8344 sec->flags |= SEC_EXCLUDE;
8345 return TRUE;
8346 }
8347
8348 sec->flags |= SEC_KEEP;
8349 *loc = sec;
8350 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8351 }
8352 }
8353
8354 sreloc = NULL;
8355 contents = NULL;
8356 for (rel = relocs; rel < rel_end; ++rel)
8357 {
8358 unsigned long r_symndx;
8359 unsigned int r_type;
8360 struct elf_link_hash_entry *h;
8361 bfd_boolean can_make_dynamic_p;
8362 bfd_boolean call_reloc_p;
8363 bfd_boolean constrain_symbol_p;
8364
8365 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8366 r_type = ELF_R_TYPE (abfd, rel->r_info);
8367
8368 if (r_symndx < extsymoff)
8369 h = NULL;
8370 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8371 {
8372 _bfd_error_handler
8373 /* xgettext:c-format */
8374 (_("%B: Malformed reloc detected for section %s"),
8375 abfd, name);
8376 bfd_set_error (bfd_error_bad_value);
8377 return FALSE;
8378 }
8379 else
8380 {
8381 h = sym_hashes[r_symndx - extsymoff];
8382 if (h != NULL)
8383 {
8384 while (h->root.type == bfd_link_hash_indirect
8385 || h->root.type == bfd_link_hash_warning)
8386 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8387
8388 /* PR15323, ref flags aren't set for references in the
8389 same object. */
8390 h->root.non_ir_ref = 1;
8391 }
8392 }
8393
8394 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8395 relocation into a dynamic one. */
8396 can_make_dynamic_p = FALSE;
8397
8398 /* Set CALL_RELOC_P to true if the relocation is for a call,
8399 and if pointer equality therefore doesn't matter. */
8400 call_reloc_p = FALSE;
8401
8402 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8403 into account when deciding how to define the symbol.
8404 Relocations in nonallocatable sections such as .pdr and
8405 .debug* should have no effect. */
8406 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8407
8408 switch (r_type)
8409 {
8410 case R_MIPS_CALL16:
8411 case R_MIPS_CALL_HI16:
8412 case R_MIPS_CALL_LO16:
8413 case R_MIPS16_CALL16:
8414 case R_MICROMIPS_CALL16:
8415 case R_MICROMIPS_CALL_HI16:
8416 case R_MICROMIPS_CALL_LO16:
8417 call_reloc_p = TRUE;
8418 /* Fall through. */
8419
8420 case R_MIPS_GOT16:
8421 case R_MIPS_GOT_HI16:
8422 case R_MIPS_GOT_LO16:
8423 case R_MIPS_GOT_PAGE:
8424 case R_MIPS_GOT_OFST:
8425 case R_MIPS_GOT_DISP:
8426 case R_MIPS_TLS_GOTTPREL:
8427 case R_MIPS_TLS_GD:
8428 case R_MIPS_TLS_LDM:
8429 case R_MIPS16_GOT16:
8430 case R_MIPS16_TLS_GOTTPREL:
8431 case R_MIPS16_TLS_GD:
8432 case R_MIPS16_TLS_LDM:
8433 case R_MICROMIPS_GOT16:
8434 case R_MICROMIPS_GOT_HI16:
8435 case R_MICROMIPS_GOT_LO16:
8436 case R_MICROMIPS_GOT_PAGE:
8437 case R_MICROMIPS_GOT_OFST:
8438 case R_MICROMIPS_GOT_DISP:
8439 case R_MICROMIPS_TLS_GOTTPREL:
8440 case R_MICROMIPS_TLS_GD:
8441 case R_MICROMIPS_TLS_LDM:
8442 if (dynobj == NULL)
8443 elf_hash_table (info)->dynobj = dynobj = abfd;
8444 if (!mips_elf_create_got_section (dynobj, info))
8445 return FALSE;
8446 if (htab->is_vxworks && !bfd_link_pic (info))
8447 {
8448 _bfd_error_handler
8449 /* xgettext:c-format */
8450 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8451 abfd, (unsigned long) rel->r_offset);
8452 bfd_set_error (bfd_error_bad_value);
8453 return FALSE;
8454 }
8455 can_make_dynamic_p = TRUE;
8456 break;
8457
8458 case R_MIPS_NONE:
8459 case R_MIPS_JALR:
8460 case R_MICROMIPS_JALR:
8461 /* These relocations have empty fields and are purely there to
8462 provide link information. The symbol value doesn't matter. */
8463 constrain_symbol_p = FALSE;
8464 break;
8465
8466 case R_MIPS_GPREL16:
8467 case R_MIPS_GPREL32:
8468 case R_MIPS16_GPREL:
8469 case R_MICROMIPS_GPREL16:
8470 /* GP-relative relocations always resolve to a definition in a
8471 regular input file, ignoring the one-definition rule. This is
8472 important for the GP setup sequence in NewABI code, which
8473 always resolves to a local function even if other relocations
8474 against the symbol wouldn't. */
8475 constrain_symbol_p = FALSE;
8476 break;
8477
8478 case R_MIPS_32:
8479 case R_MIPS_REL32:
8480 case R_MIPS_64:
8481 /* In VxWorks executables, references to external symbols
8482 must be handled using copy relocs or PLT entries; it is not
8483 possible to convert this relocation into a dynamic one.
8484
8485 For executables that use PLTs and copy-relocs, we have a
8486 choice between converting the relocation into a dynamic
8487 one or using copy relocations or PLT entries. It is
8488 usually better to do the former, unless the relocation is
8489 against a read-only section. */
8490 if ((bfd_link_pic (info)
8491 || (h != NULL
8492 && !htab->is_vxworks
8493 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8494 && !(!info->nocopyreloc
8495 && !PIC_OBJECT_P (abfd)
8496 && MIPS_ELF_READONLY_SECTION (sec))))
8497 && (sec->flags & SEC_ALLOC) != 0)
8498 {
8499 can_make_dynamic_p = TRUE;
8500 if (dynobj == NULL)
8501 elf_hash_table (info)->dynobj = dynobj = abfd;
8502 }
8503 break;
8504
8505 case R_MIPS_26:
8506 case R_MIPS_PC16:
8507 case R_MIPS_PC21_S2:
8508 case R_MIPS_PC26_S2:
8509 case R_MIPS16_26:
8510 case R_MIPS16_PC16_S1:
8511 case R_MICROMIPS_26_S1:
8512 case R_MICROMIPS_PC7_S1:
8513 case R_MICROMIPS_PC10_S1:
8514 case R_MICROMIPS_PC16_S1:
8515 case R_MICROMIPS_PC23_S2:
8516 call_reloc_p = TRUE;
8517 break;
8518 }
8519
8520 if (h)
8521 {
8522 if (constrain_symbol_p)
8523 {
8524 if (!can_make_dynamic_p)
8525 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8526
8527 if (!call_reloc_p)
8528 h->pointer_equality_needed = 1;
8529
8530 /* We must not create a stub for a symbol that has
8531 relocations related to taking the function's address.
8532 This doesn't apply to VxWorks, where CALL relocs refer
8533 to a .got.plt entry instead of a normal .got entry. */
8534 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8535 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8536 }
8537
8538 /* Relocations against the special VxWorks __GOTT_BASE__ and
8539 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8540 room for them in .rela.dyn. */
8541 if (is_gott_symbol (info, h))
8542 {
8543 if (sreloc == NULL)
8544 {
8545 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8546 if (sreloc == NULL)
8547 return FALSE;
8548 }
8549 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8550 if (MIPS_ELF_READONLY_SECTION (sec))
8551 /* We tell the dynamic linker that there are
8552 relocations against the text segment. */
8553 info->flags |= DF_TEXTREL;
8554 }
8555 }
8556 else if (call_lo16_reloc_p (r_type)
8557 || got_lo16_reloc_p (r_type)
8558 || got_disp_reloc_p (r_type)
8559 || (got16_reloc_p (r_type) && htab->is_vxworks))
8560 {
8561 /* We may need a local GOT entry for this relocation. We
8562 don't count R_MIPS_GOT_PAGE because we can estimate the
8563 maximum number of pages needed by looking at the size of
8564 the segment. Similar comments apply to R_MIPS*_GOT16 and
8565 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8566 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8567 R_MIPS_CALL_HI16 because these are always followed by an
8568 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8569 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8570 rel->r_addend, info, r_type))
8571 return FALSE;
8572 }
8573
8574 if (h != NULL
8575 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8576 ELF_ST_IS_MIPS16 (h->other)))
8577 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8578
8579 switch (r_type)
8580 {
8581 case R_MIPS_CALL16:
8582 case R_MIPS16_CALL16:
8583 case R_MICROMIPS_CALL16:
8584 if (h == NULL)
8585 {
8586 _bfd_error_handler
8587 /* xgettext:c-format */
8588 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8589 abfd, (unsigned long) rel->r_offset);
8590 bfd_set_error (bfd_error_bad_value);
8591 return FALSE;
8592 }
8593 /* Fall through. */
8594
8595 case R_MIPS_CALL_HI16:
8596 case R_MIPS_CALL_LO16:
8597 case R_MICROMIPS_CALL_HI16:
8598 case R_MICROMIPS_CALL_LO16:
8599 if (h != NULL)
8600 {
8601 /* Make sure there is room in the regular GOT to hold the
8602 function's address. We may eliminate it in favour of
8603 a .got.plt entry later; see mips_elf_count_got_symbols. */
8604 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8605 r_type))
8606 return FALSE;
8607
8608 /* We need a stub, not a plt entry for the undefined
8609 function. But we record it as if it needs plt. See
8610 _bfd_elf_adjust_dynamic_symbol. */
8611 h->needs_plt = 1;
8612 h->type = STT_FUNC;
8613 }
8614 break;
8615
8616 case R_MIPS_GOT_PAGE:
8617 case R_MICROMIPS_GOT_PAGE:
8618 case R_MIPS16_GOT16:
8619 case R_MIPS_GOT16:
8620 case R_MIPS_GOT_HI16:
8621 case R_MIPS_GOT_LO16:
8622 case R_MICROMIPS_GOT16:
8623 case R_MICROMIPS_GOT_HI16:
8624 case R_MICROMIPS_GOT_LO16:
8625 if (!h || got_page_reloc_p (r_type))
8626 {
8627 /* This relocation needs (or may need, if h != NULL) a
8628 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8629 know for sure until we know whether the symbol is
8630 preemptible. */
8631 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8632 {
8633 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8634 return FALSE;
8635 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8636 addend = mips_elf_read_rel_addend (abfd, rel,
8637 howto, contents);
8638 if (got16_reloc_p (r_type))
8639 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8640 contents, &addend);
8641 else
8642 addend <<= howto->rightshift;
8643 }
8644 else
8645 addend = rel->r_addend;
8646 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8647 h, addend))
8648 return FALSE;
8649
8650 if (h)
8651 {
8652 struct mips_elf_link_hash_entry *hmips =
8653 (struct mips_elf_link_hash_entry *) h;
8654
8655 /* This symbol is definitely not overridable. */
8656 if (hmips->root.def_regular
8657 && ! (bfd_link_pic (info) && ! info->symbolic
8658 && ! hmips->root.forced_local))
8659 h = NULL;
8660 }
8661 }
8662 /* If this is a global, overridable symbol, GOT_PAGE will
8663 decay to GOT_DISP, so we'll need a GOT entry for it. */
8664 /* Fall through. */
8665
8666 case R_MIPS_GOT_DISP:
8667 case R_MICROMIPS_GOT_DISP:
8668 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8669 FALSE, r_type))
8670 return FALSE;
8671 break;
8672
8673 case R_MIPS_TLS_GOTTPREL:
8674 case R_MIPS16_TLS_GOTTPREL:
8675 case R_MICROMIPS_TLS_GOTTPREL:
8676 if (bfd_link_pic (info))
8677 info->flags |= DF_STATIC_TLS;
8678 /* Fall through */
8679
8680 case R_MIPS_TLS_LDM:
8681 case R_MIPS16_TLS_LDM:
8682 case R_MICROMIPS_TLS_LDM:
8683 if (tls_ldm_reloc_p (r_type))
8684 {
8685 r_symndx = STN_UNDEF;
8686 h = NULL;
8687 }
8688 /* Fall through */
8689
8690 case R_MIPS_TLS_GD:
8691 case R_MIPS16_TLS_GD:
8692 case R_MICROMIPS_TLS_GD:
8693 /* This symbol requires a global offset table entry, or two
8694 for TLS GD relocations. */
8695 if (h != NULL)
8696 {
8697 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8698 FALSE, r_type))
8699 return FALSE;
8700 }
8701 else
8702 {
8703 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8704 rel->r_addend,
8705 info, r_type))
8706 return FALSE;
8707 }
8708 break;
8709
8710 case R_MIPS_32:
8711 case R_MIPS_REL32:
8712 case R_MIPS_64:
8713 /* In VxWorks executables, references to external symbols
8714 are handled using copy relocs or PLT stubs, so there's
8715 no need to add a .rela.dyn entry for this relocation. */
8716 if (can_make_dynamic_p)
8717 {
8718 if (sreloc == NULL)
8719 {
8720 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8721 if (sreloc == NULL)
8722 return FALSE;
8723 }
8724 if (bfd_link_pic (info) && h == NULL)
8725 {
8726 /* When creating a shared object, we must copy these
8727 reloc types into the output file as R_MIPS_REL32
8728 relocs. Make room for this reloc in .rel(a).dyn. */
8729 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8730 if (MIPS_ELF_READONLY_SECTION (sec))
8731 /* We tell the dynamic linker that there are
8732 relocations against the text segment. */
8733 info->flags |= DF_TEXTREL;
8734 }
8735 else
8736 {
8737 struct mips_elf_link_hash_entry *hmips;
8738
8739 /* For a shared object, we must copy this relocation
8740 unless the symbol turns out to be undefined and
8741 weak with non-default visibility, in which case
8742 it will be left as zero.
8743
8744 We could elide R_MIPS_REL32 for locally binding symbols
8745 in shared libraries, but do not yet do so.
8746
8747 For an executable, we only need to copy this
8748 reloc if the symbol is defined in a dynamic
8749 object. */
8750 hmips = (struct mips_elf_link_hash_entry *) h;
8751 ++hmips->possibly_dynamic_relocs;
8752 if (MIPS_ELF_READONLY_SECTION (sec))
8753 /* We need it to tell the dynamic linker if there
8754 are relocations against the text segment. */
8755 hmips->readonly_reloc = TRUE;
8756 }
8757 }
8758
8759 if (SGI_COMPAT (abfd))
8760 mips_elf_hash_table (info)->compact_rel_size +=
8761 sizeof (Elf32_External_crinfo);
8762 break;
8763
8764 case R_MIPS_26:
8765 case R_MIPS_GPREL16:
8766 case R_MIPS_LITERAL:
8767 case R_MIPS_GPREL32:
8768 case R_MICROMIPS_26_S1:
8769 case R_MICROMIPS_GPREL16:
8770 case R_MICROMIPS_LITERAL:
8771 case R_MICROMIPS_GPREL7_S2:
8772 if (SGI_COMPAT (abfd))
8773 mips_elf_hash_table (info)->compact_rel_size +=
8774 sizeof (Elf32_External_crinfo);
8775 break;
8776
8777 /* This relocation describes the C++ object vtable hierarchy.
8778 Reconstruct it for later use during GC. */
8779 case R_MIPS_GNU_VTINHERIT:
8780 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8781 return FALSE;
8782 break;
8783
8784 /* This relocation describes which C++ vtable entries are actually
8785 used. Record for later use during GC. */
8786 case R_MIPS_GNU_VTENTRY:
8787 BFD_ASSERT (h != NULL);
8788 if (h != NULL
8789 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8790 return FALSE;
8791 break;
8792
8793 default:
8794 break;
8795 }
8796
8797 /* Record the need for a PLT entry. At this point we don't know
8798 yet if we are going to create a PLT in the first place, but
8799 we only record whether the relocation requires a standard MIPS
8800 or a compressed code entry anyway. If we don't make a PLT after
8801 all, then we'll just ignore these arrangements. Likewise if
8802 a PLT entry is not created because the symbol is satisfied
8803 locally. */
8804 if (h != NULL
8805 && (branch_reloc_p (r_type)
8806 || mips16_branch_reloc_p (r_type)
8807 || micromips_branch_reloc_p (r_type))
8808 && !SYMBOL_CALLS_LOCAL (info, h))
8809 {
8810 if (h->plt.plist == NULL)
8811 h->plt.plist = mips_elf_make_plt_record (abfd);
8812 if (h->plt.plist == NULL)
8813 return FALSE;
8814
8815 if (branch_reloc_p (r_type))
8816 h->plt.plist->need_mips = TRUE;
8817 else
8818 h->plt.plist->need_comp = TRUE;
8819 }
8820
8821 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8822 if there is one. We only need to handle global symbols here;
8823 we decide whether to keep or delete stubs for local symbols
8824 when processing the stub's relocations. */
8825 if (h != NULL
8826 && !mips16_call_reloc_p (r_type)
8827 && !section_allows_mips16_refs_p (sec))
8828 {
8829 struct mips_elf_link_hash_entry *mh;
8830
8831 mh = (struct mips_elf_link_hash_entry *) h;
8832 mh->need_fn_stub = TRUE;
8833 }
8834
8835 /* Refuse some position-dependent relocations when creating a
8836 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8837 not PIC, but we can create dynamic relocations and the result
8838 will be fine. Also do not refuse R_MIPS_LO16, which can be
8839 combined with R_MIPS_GOT16. */
8840 if (bfd_link_pic (info))
8841 {
8842 switch (r_type)
8843 {
8844 case R_MIPS16_HI16:
8845 case R_MIPS_HI16:
8846 case R_MIPS_HIGHER:
8847 case R_MIPS_HIGHEST:
8848 case R_MICROMIPS_HI16:
8849 case R_MICROMIPS_HIGHER:
8850 case R_MICROMIPS_HIGHEST:
8851 /* Don't refuse a high part relocation if it's against
8852 no symbol (e.g. part of a compound relocation). */
8853 if (r_symndx == STN_UNDEF)
8854 break;
8855
8856 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8857 and has a special meaning. */
8858 if (!NEWABI_P (abfd) && h != NULL
8859 && strcmp (h->root.root.string, "_gp_disp") == 0)
8860 break;
8861
8862 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8863 if (is_gott_symbol (info, h))
8864 break;
8865
8866 /* FALLTHROUGH */
8867
8868 case R_MIPS16_26:
8869 case R_MIPS_26:
8870 case R_MICROMIPS_26_S1:
8871 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8872 _bfd_error_handler
8873 /* xgettext:c-format */
8874 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8875 abfd, howto->name,
8876 (h) ? h->root.root.string : "a local symbol");
8877 bfd_set_error (bfd_error_bad_value);
8878 return FALSE;
8879 default:
8880 break;
8881 }
8882 }
8883 }
8884
8885 return TRUE;
8886 }
8887 \f
8888 bfd_boolean
8889 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8890 struct bfd_link_info *link_info,
8891 bfd_boolean *again)
8892 {
8893 Elf_Internal_Rela *internal_relocs;
8894 Elf_Internal_Rela *irel, *irelend;
8895 Elf_Internal_Shdr *symtab_hdr;
8896 bfd_byte *contents = NULL;
8897 size_t extsymoff;
8898 bfd_boolean changed_contents = FALSE;
8899 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8900 Elf_Internal_Sym *isymbuf = NULL;
8901
8902 /* We are not currently changing any sizes, so only one pass. */
8903 *again = FALSE;
8904
8905 if (bfd_link_relocatable (link_info))
8906 return TRUE;
8907
8908 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8909 link_info->keep_memory);
8910 if (internal_relocs == NULL)
8911 return TRUE;
8912
8913 irelend = internal_relocs + sec->reloc_count
8914 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8915 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8916 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8917
8918 for (irel = internal_relocs; irel < irelend; irel++)
8919 {
8920 bfd_vma symval;
8921 bfd_signed_vma sym_offset;
8922 unsigned int r_type;
8923 unsigned long r_symndx;
8924 asection *sym_sec;
8925 unsigned long instruction;
8926
8927 /* Turn jalr into bgezal, and jr into beq, if they're marked
8928 with a JALR relocation, that indicate where they jump to.
8929 This saves some pipeline bubbles. */
8930 r_type = ELF_R_TYPE (abfd, irel->r_info);
8931 if (r_type != R_MIPS_JALR)
8932 continue;
8933
8934 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8935 /* Compute the address of the jump target. */
8936 if (r_symndx >= extsymoff)
8937 {
8938 struct mips_elf_link_hash_entry *h
8939 = ((struct mips_elf_link_hash_entry *)
8940 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8941
8942 while (h->root.root.type == bfd_link_hash_indirect
8943 || h->root.root.type == bfd_link_hash_warning)
8944 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8945
8946 /* If a symbol is undefined, or if it may be overridden,
8947 skip it. */
8948 if (! ((h->root.root.type == bfd_link_hash_defined
8949 || h->root.root.type == bfd_link_hash_defweak)
8950 && h->root.root.u.def.section)
8951 || (bfd_link_pic (link_info) && ! link_info->symbolic
8952 && !h->root.forced_local))
8953 continue;
8954
8955 sym_sec = h->root.root.u.def.section;
8956 if (sym_sec->output_section)
8957 symval = (h->root.root.u.def.value
8958 + sym_sec->output_section->vma
8959 + sym_sec->output_offset);
8960 else
8961 symval = h->root.root.u.def.value;
8962 }
8963 else
8964 {
8965 Elf_Internal_Sym *isym;
8966
8967 /* Read this BFD's symbols if we haven't done so already. */
8968 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8969 {
8970 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8971 if (isymbuf == NULL)
8972 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8973 symtab_hdr->sh_info, 0,
8974 NULL, NULL, NULL);
8975 if (isymbuf == NULL)
8976 goto relax_return;
8977 }
8978
8979 isym = isymbuf + r_symndx;
8980 if (isym->st_shndx == SHN_UNDEF)
8981 continue;
8982 else if (isym->st_shndx == SHN_ABS)
8983 sym_sec = bfd_abs_section_ptr;
8984 else if (isym->st_shndx == SHN_COMMON)
8985 sym_sec = bfd_com_section_ptr;
8986 else
8987 sym_sec
8988 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8989 symval = isym->st_value
8990 + sym_sec->output_section->vma
8991 + sym_sec->output_offset;
8992 }
8993
8994 /* Compute branch offset, from delay slot of the jump to the
8995 branch target. */
8996 sym_offset = (symval + irel->r_addend)
8997 - (sec_start + irel->r_offset + 4);
8998
8999 /* Branch offset must be properly aligned. */
9000 if ((sym_offset & 3) != 0)
9001 continue;
9002
9003 sym_offset >>= 2;
9004
9005 /* Check that it's in range. */
9006 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
9007 continue;
9008
9009 /* Get the section contents if we haven't done so already. */
9010 if (!mips_elf_get_section_contents (abfd, sec, &contents))
9011 goto relax_return;
9012
9013 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
9014
9015 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
9016 if ((instruction & 0xfc1fffff) == 0x0000f809)
9017 instruction = 0x04110000;
9018 /* If it was jr <reg>, turn it into b <target>. */
9019 else if ((instruction & 0xfc1fffff) == 0x00000008)
9020 instruction = 0x10000000;
9021 else
9022 continue;
9023
9024 instruction |= (sym_offset & 0xffff);
9025 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
9026 changed_contents = TRUE;
9027 }
9028
9029 if (contents != NULL
9030 && elf_section_data (sec)->this_hdr.contents != contents)
9031 {
9032 if (!changed_contents && !link_info->keep_memory)
9033 free (contents);
9034 else
9035 {
9036 /* Cache the section contents for elf_link_input_bfd. */
9037 elf_section_data (sec)->this_hdr.contents = contents;
9038 }
9039 }
9040 return TRUE;
9041
9042 relax_return:
9043 if (contents != NULL
9044 && elf_section_data (sec)->this_hdr.contents != contents)
9045 free (contents);
9046 return FALSE;
9047 }
9048 \f
9049 /* Allocate space for global sym dynamic relocs. */
9050
9051 static bfd_boolean
9052 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9053 {
9054 struct bfd_link_info *info = inf;
9055 bfd *dynobj;
9056 struct mips_elf_link_hash_entry *hmips;
9057 struct mips_elf_link_hash_table *htab;
9058
9059 htab = mips_elf_hash_table (info);
9060 BFD_ASSERT (htab != NULL);
9061
9062 dynobj = elf_hash_table (info)->dynobj;
9063 hmips = (struct mips_elf_link_hash_entry *) h;
9064
9065 /* VxWorks executables are handled elsewhere; we only need to
9066 allocate relocations in shared objects. */
9067 if (htab->is_vxworks && !bfd_link_pic (info))
9068 return TRUE;
9069
9070 /* Ignore indirect symbols. All relocations against such symbols
9071 will be redirected to the target symbol. */
9072 if (h->root.type == bfd_link_hash_indirect)
9073 return TRUE;
9074
9075 /* If this symbol is defined in a dynamic object, or we are creating
9076 a shared library, we will need to copy any R_MIPS_32 or
9077 R_MIPS_REL32 relocs against it into the output file. */
9078 if (! bfd_link_relocatable (info)
9079 && hmips->possibly_dynamic_relocs != 0
9080 && (h->root.type == bfd_link_hash_defweak
9081 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9082 || bfd_link_pic (info)))
9083 {
9084 bfd_boolean do_copy = TRUE;
9085
9086 if (h->root.type == bfd_link_hash_undefweak)
9087 {
9088 /* Do not copy relocations for undefined weak symbols with
9089 non-default visibility. */
9090 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9091 do_copy = FALSE;
9092
9093 /* Make sure undefined weak symbols are output as a dynamic
9094 symbol in PIEs. */
9095 else if (h->dynindx == -1 && !h->forced_local)
9096 {
9097 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9098 return FALSE;
9099 }
9100 }
9101
9102 if (do_copy)
9103 {
9104 /* Even though we don't directly need a GOT entry for this symbol,
9105 the SVR4 psABI requires it to have a dynamic symbol table
9106 index greater that DT_MIPS_GOTSYM if there are dynamic
9107 relocations against it.
9108
9109 VxWorks does not enforce the same mapping between the GOT
9110 and the symbol table, so the same requirement does not
9111 apply there. */
9112 if (!htab->is_vxworks)
9113 {
9114 if (hmips->global_got_area > GGA_RELOC_ONLY)
9115 hmips->global_got_area = GGA_RELOC_ONLY;
9116 hmips->got_only_for_calls = FALSE;
9117 }
9118
9119 mips_elf_allocate_dynamic_relocations
9120 (dynobj, info, hmips->possibly_dynamic_relocs);
9121 if (hmips->readonly_reloc)
9122 /* We tell the dynamic linker that there are relocations
9123 against the text segment. */
9124 info->flags |= DF_TEXTREL;
9125 }
9126 }
9127
9128 return TRUE;
9129 }
9130
9131 /* Adjust a symbol defined by a dynamic object and referenced by a
9132 regular object. The current definition is in some section of the
9133 dynamic object, but we're not including those sections. We have to
9134 change the definition to something the rest of the link can
9135 understand. */
9136
9137 bfd_boolean
9138 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9139 struct elf_link_hash_entry *h)
9140 {
9141 bfd *dynobj;
9142 struct mips_elf_link_hash_entry *hmips;
9143 struct mips_elf_link_hash_table *htab;
9144
9145 htab = mips_elf_hash_table (info);
9146 BFD_ASSERT (htab != NULL);
9147
9148 dynobj = elf_hash_table (info)->dynobj;
9149 hmips = (struct mips_elf_link_hash_entry *) h;
9150
9151 /* Make sure we know what is going on here. */
9152 BFD_ASSERT (dynobj != NULL
9153 && (h->needs_plt
9154 || h->u.weakdef != NULL
9155 || (h->def_dynamic
9156 && h->ref_regular
9157 && !h->def_regular)));
9158
9159 hmips = (struct mips_elf_link_hash_entry *) h;
9160
9161 /* If there are call relocations against an externally-defined symbol,
9162 see whether we can create a MIPS lazy-binding stub for it. We can
9163 only do this if all references to the function are through call
9164 relocations, and in that case, the traditional lazy-binding stubs
9165 are much more efficient than PLT entries.
9166
9167 Traditional stubs are only available on SVR4 psABI-based systems;
9168 VxWorks always uses PLTs instead. */
9169 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9170 {
9171 if (! elf_hash_table (info)->dynamic_sections_created)
9172 return TRUE;
9173
9174 /* If this symbol is not defined in a regular file, then set
9175 the symbol to the stub location. This is required to make
9176 function pointers compare as equal between the normal
9177 executable and the shared library. */
9178 if (!h->def_regular)
9179 {
9180 hmips->needs_lazy_stub = TRUE;
9181 htab->lazy_stub_count++;
9182 return TRUE;
9183 }
9184 }
9185 /* As above, VxWorks requires PLT entries for externally-defined
9186 functions that are only accessed through call relocations.
9187
9188 Both VxWorks and non-VxWorks targets also need PLT entries if there
9189 are static-only relocations against an externally-defined function.
9190 This can technically occur for shared libraries if there are
9191 branches to the symbol, although it is unlikely that this will be
9192 used in practice due to the short ranges involved. It can occur
9193 for any relative or absolute relocation in executables; in that
9194 case, the PLT entry becomes the function's canonical address. */
9195 else if (((h->needs_plt && !hmips->no_fn_stub)
9196 || (h->type == STT_FUNC && hmips->has_static_relocs))
9197 && htab->use_plts_and_copy_relocs
9198 && !SYMBOL_CALLS_LOCAL (info, h)
9199 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9200 && h->root.type == bfd_link_hash_undefweak))
9201 {
9202 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9203 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9204
9205 /* If this is the first symbol to need a PLT entry, then make some
9206 basic setup. Also work out PLT entry sizes. We'll need them
9207 for PLT offset calculations. */
9208 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9209 {
9210 BFD_ASSERT (htab->root.sgotplt->size == 0);
9211 BFD_ASSERT (htab->plt_got_index == 0);
9212
9213 /* If we're using the PLT additions to the psABI, each PLT
9214 entry is 16 bytes and the PLT0 entry is 32 bytes.
9215 Encourage better cache usage by aligning. We do this
9216 lazily to avoid pessimizing traditional objects. */
9217 if (!htab->is_vxworks
9218 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9219 return FALSE;
9220
9221 /* Make sure that .got.plt is word-aligned. We do this lazily
9222 for the same reason as above. */
9223 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9224 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9225 return FALSE;
9226
9227 /* On non-VxWorks targets, the first two entries in .got.plt
9228 are reserved. */
9229 if (!htab->is_vxworks)
9230 htab->plt_got_index
9231 += (get_elf_backend_data (dynobj)->got_header_size
9232 / MIPS_ELF_GOT_SIZE (dynobj));
9233
9234 /* On VxWorks, also allocate room for the header's
9235 .rela.plt.unloaded entries. */
9236 if (htab->is_vxworks && !bfd_link_pic (info))
9237 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9238
9239 /* Now work out the sizes of individual PLT entries. */
9240 if (htab->is_vxworks && bfd_link_pic (info))
9241 htab->plt_mips_entry_size
9242 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9243 else if (htab->is_vxworks)
9244 htab->plt_mips_entry_size
9245 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9246 else if (newabi_p)
9247 htab->plt_mips_entry_size
9248 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9249 else if (!micromips_p)
9250 {
9251 htab->plt_mips_entry_size
9252 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9253 htab->plt_comp_entry_size
9254 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9255 }
9256 else if (htab->insn32)
9257 {
9258 htab->plt_mips_entry_size
9259 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9260 htab->plt_comp_entry_size
9261 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9262 }
9263 else
9264 {
9265 htab->plt_mips_entry_size
9266 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9267 htab->plt_comp_entry_size
9268 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9269 }
9270 }
9271
9272 if (h->plt.plist == NULL)
9273 h->plt.plist = mips_elf_make_plt_record (dynobj);
9274 if (h->plt.plist == NULL)
9275 return FALSE;
9276
9277 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9278 n32 or n64, so always use a standard entry there.
9279
9280 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9281 all MIPS16 calls will go via that stub, and there is no benefit
9282 to having a MIPS16 entry. And in the case of call_stub a
9283 standard entry actually has to be used as the stub ends with a J
9284 instruction. */
9285 if (newabi_p
9286 || htab->is_vxworks
9287 || hmips->call_stub
9288 || hmips->call_fp_stub)
9289 {
9290 h->plt.plist->need_mips = TRUE;
9291 h->plt.plist->need_comp = FALSE;
9292 }
9293
9294 /* Otherwise, if there are no direct calls to the function, we
9295 have a free choice of whether to use standard or compressed
9296 entries. Prefer microMIPS entries if the object is known to
9297 contain microMIPS code, so that it becomes possible to create
9298 pure microMIPS binaries. Prefer standard entries otherwise,
9299 because MIPS16 ones are no smaller and are usually slower. */
9300 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9301 {
9302 if (micromips_p)
9303 h->plt.plist->need_comp = TRUE;
9304 else
9305 h->plt.plist->need_mips = TRUE;
9306 }
9307
9308 if (h->plt.plist->need_mips)
9309 {
9310 h->plt.plist->mips_offset = htab->plt_mips_offset;
9311 htab->plt_mips_offset += htab->plt_mips_entry_size;
9312 }
9313 if (h->plt.plist->need_comp)
9314 {
9315 h->plt.plist->comp_offset = htab->plt_comp_offset;
9316 htab->plt_comp_offset += htab->plt_comp_entry_size;
9317 }
9318
9319 /* Reserve the corresponding .got.plt entry now too. */
9320 h->plt.plist->gotplt_index = htab->plt_got_index++;
9321
9322 /* If the output file has no definition of the symbol, set the
9323 symbol's value to the address of the stub. */
9324 if (!bfd_link_pic (info) && !h->def_regular)
9325 hmips->use_plt_entry = TRUE;
9326
9327 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9328 htab->root.srelplt->size += (htab->is_vxworks
9329 ? MIPS_ELF_RELA_SIZE (dynobj)
9330 : MIPS_ELF_REL_SIZE (dynobj));
9331
9332 /* Make room for the .rela.plt.unloaded relocations. */
9333 if (htab->is_vxworks && !bfd_link_pic (info))
9334 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9335
9336 /* All relocations against this symbol that could have been made
9337 dynamic will now refer to the PLT entry instead. */
9338 hmips->possibly_dynamic_relocs = 0;
9339
9340 return TRUE;
9341 }
9342
9343 /* If this is a weak symbol, and there is a real definition, the
9344 processor independent code will have arranged for us to see the
9345 real definition first, and we can just use the same value. */
9346 if (h->u.weakdef != NULL)
9347 {
9348 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9349 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9350 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9351 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9352 return TRUE;
9353 }
9354
9355 /* Otherwise, there is nothing further to do for symbols defined
9356 in regular objects. */
9357 if (h->def_regular)
9358 return TRUE;
9359
9360 /* There's also nothing more to do if we'll convert all relocations
9361 against this symbol into dynamic relocations. */
9362 if (!hmips->has_static_relocs)
9363 return TRUE;
9364
9365 /* We're now relying on copy relocations. Complain if we have
9366 some that we can't convert. */
9367 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9368 {
9369 _bfd_error_handler (_("non-dynamic relocations refer to "
9370 "dynamic symbol %s"),
9371 h->root.root.string);
9372 bfd_set_error (bfd_error_bad_value);
9373 return FALSE;
9374 }
9375
9376 /* We must allocate the symbol in our .dynbss section, which will
9377 become part of the .bss section of the executable. There will be
9378 an entry for this symbol in the .dynsym section. The dynamic
9379 object will contain position independent code, so all references
9380 from the dynamic object to this symbol will go through the global
9381 offset table. The dynamic linker will use the .dynsym entry to
9382 determine the address it must put in the global offset table, so
9383 both the dynamic object and the regular object will refer to the
9384 same memory location for the variable. */
9385
9386 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9387 {
9388 if (htab->is_vxworks)
9389 htab->srelbss->size += sizeof (Elf32_External_Rela);
9390 else
9391 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9392 h->needs_copy = 1;
9393 }
9394
9395 /* All relocations against this symbol that could have been made
9396 dynamic will now refer to the local copy instead. */
9397 hmips->possibly_dynamic_relocs = 0;
9398
9399 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss);
9400 }
9401 \f
9402 /* This function is called after all the input files have been read,
9403 and the input sections have been assigned to output sections. We
9404 check for any mips16 stub sections that we can discard. */
9405
9406 bfd_boolean
9407 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9408 struct bfd_link_info *info)
9409 {
9410 asection *sect;
9411 struct mips_elf_link_hash_table *htab;
9412 struct mips_htab_traverse_info hti;
9413
9414 htab = mips_elf_hash_table (info);
9415 BFD_ASSERT (htab != NULL);
9416
9417 /* The .reginfo section has a fixed size. */
9418 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9419 if (sect != NULL)
9420 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9421
9422 /* The .MIPS.abiflags section has a fixed size. */
9423 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9424 if (sect != NULL)
9425 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9426
9427 hti.info = info;
9428 hti.output_bfd = output_bfd;
9429 hti.error = FALSE;
9430 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9431 mips_elf_check_symbols, &hti);
9432 if (hti.error)
9433 return FALSE;
9434
9435 return TRUE;
9436 }
9437
9438 /* If the link uses a GOT, lay it out and work out its size. */
9439
9440 static bfd_boolean
9441 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9442 {
9443 bfd *dynobj;
9444 asection *s;
9445 struct mips_got_info *g;
9446 bfd_size_type loadable_size = 0;
9447 bfd_size_type page_gotno;
9448 bfd *ibfd;
9449 struct mips_elf_traverse_got_arg tga;
9450 struct mips_elf_link_hash_table *htab;
9451
9452 htab = mips_elf_hash_table (info);
9453 BFD_ASSERT (htab != NULL);
9454
9455 s = htab->root.sgot;
9456 if (s == NULL)
9457 return TRUE;
9458
9459 dynobj = elf_hash_table (info)->dynobj;
9460 g = htab->got_info;
9461
9462 /* Allocate room for the reserved entries. VxWorks always reserves
9463 3 entries; other objects only reserve 2 entries. */
9464 BFD_ASSERT (g->assigned_low_gotno == 0);
9465 if (htab->is_vxworks)
9466 htab->reserved_gotno = 3;
9467 else
9468 htab->reserved_gotno = 2;
9469 g->local_gotno += htab->reserved_gotno;
9470 g->assigned_low_gotno = htab->reserved_gotno;
9471
9472 /* Decide which symbols need to go in the global part of the GOT and
9473 count the number of reloc-only GOT symbols. */
9474 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9475
9476 if (!mips_elf_resolve_final_got_entries (info, g))
9477 return FALSE;
9478
9479 /* Calculate the total loadable size of the output. That
9480 will give us the maximum number of GOT_PAGE entries
9481 required. */
9482 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9483 {
9484 asection *subsection;
9485
9486 for (subsection = ibfd->sections;
9487 subsection;
9488 subsection = subsection->next)
9489 {
9490 if ((subsection->flags & SEC_ALLOC) == 0)
9491 continue;
9492 loadable_size += ((subsection->size + 0xf)
9493 &~ (bfd_size_type) 0xf);
9494 }
9495 }
9496
9497 if (htab->is_vxworks)
9498 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9499 relocations against local symbols evaluate to "G", and the EABI does
9500 not include R_MIPS_GOT_PAGE. */
9501 page_gotno = 0;
9502 else
9503 /* Assume there are two loadable segments consisting of contiguous
9504 sections. Is 5 enough? */
9505 page_gotno = (loadable_size >> 16) + 5;
9506
9507 /* Choose the smaller of the two page estimates; both are intended to be
9508 conservative. */
9509 if (page_gotno > g->page_gotno)
9510 page_gotno = g->page_gotno;
9511
9512 g->local_gotno += page_gotno;
9513 g->assigned_high_gotno = g->local_gotno - 1;
9514
9515 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9516 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9517 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9518
9519 /* VxWorks does not support multiple GOTs. It initializes $gp to
9520 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9521 dynamic loader. */
9522 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9523 {
9524 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9525 return FALSE;
9526 }
9527 else
9528 {
9529 /* Record that all bfds use G. This also has the effect of freeing
9530 the per-bfd GOTs, which we no longer need. */
9531 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9532 if (mips_elf_bfd_got (ibfd, FALSE))
9533 mips_elf_replace_bfd_got (ibfd, g);
9534 mips_elf_replace_bfd_got (output_bfd, g);
9535
9536 /* Set up TLS entries. */
9537 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9538 tga.info = info;
9539 tga.g = g;
9540 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9541 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9542 if (!tga.g)
9543 return FALSE;
9544 BFD_ASSERT (g->tls_assigned_gotno
9545 == g->global_gotno + g->local_gotno + g->tls_gotno);
9546
9547 /* Each VxWorks GOT entry needs an explicit relocation. */
9548 if (htab->is_vxworks && bfd_link_pic (info))
9549 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9550
9551 /* Allocate room for the TLS relocations. */
9552 if (g->relocs)
9553 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9554 }
9555
9556 return TRUE;
9557 }
9558
9559 /* Estimate the size of the .MIPS.stubs section. */
9560
9561 static void
9562 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9563 {
9564 struct mips_elf_link_hash_table *htab;
9565 bfd_size_type dynsymcount;
9566
9567 htab = mips_elf_hash_table (info);
9568 BFD_ASSERT (htab != NULL);
9569
9570 if (htab->lazy_stub_count == 0)
9571 return;
9572
9573 /* IRIX rld assumes that a function stub isn't at the end of the .text
9574 section, so add a dummy entry to the end. */
9575 htab->lazy_stub_count++;
9576
9577 /* Get a worst-case estimate of the number of dynamic symbols needed.
9578 At this point, dynsymcount does not account for section symbols
9579 and count_section_dynsyms may overestimate the number that will
9580 be needed. */
9581 dynsymcount = (elf_hash_table (info)->dynsymcount
9582 + count_section_dynsyms (output_bfd, info));
9583
9584 /* Determine the size of one stub entry. There's no disadvantage
9585 from using microMIPS code here, so for the sake of pure-microMIPS
9586 binaries we prefer it whenever there's any microMIPS code in
9587 output produced at all. This has a benefit of stubs being
9588 shorter by 4 bytes each too, unless in the insn32 mode. */
9589 if (!MICROMIPS_P (output_bfd))
9590 htab->function_stub_size = (dynsymcount > 0x10000
9591 ? MIPS_FUNCTION_STUB_BIG_SIZE
9592 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9593 else if (htab->insn32)
9594 htab->function_stub_size = (dynsymcount > 0x10000
9595 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9596 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9597 else
9598 htab->function_stub_size = (dynsymcount > 0x10000
9599 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9600 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9601
9602 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9603 }
9604
9605 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9606 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9607 stub, allocate an entry in the stubs section. */
9608
9609 static bfd_boolean
9610 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9611 {
9612 struct mips_htab_traverse_info *hti = data;
9613 struct mips_elf_link_hash_table *htab;
9614 struct bfd_link_info *info;
9615 bfd *output_bfd;
9616
9617 info = hti->info;
9618 output_bfd = hti->output_bfd;
9619 htab = mips_elf_hash_table (info);
9620 BFD_ASSERT (htab != NULL);
9621
9622 if (h->needs_lazy_stub)
9623 {
9624 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9625 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9626 bfd_vma isa_bit = micromips_p;
9627
9628 BFD_ASSERT (htab->root.dynobj != NULL);
9629 if (h->root.plt.plist == NULL)
9630 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9631 if (h->root.plt.plist == NULL)
9632 {
9633 hti->error = TRUE;
9634 return FALSE;
9635 }
9636 h->root.root.u.def.section = htab->sstubs;
9637 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9638 h->root.plt.plist->stub_offset = htab->sstubs->size;
9639 h->root.other = other;
9640 htab->sstubs->size += htab->function_stub_size;
9641 }
9642 return TRUE;
9643 }
9644
9645 /* Allocate offsets in the stubs section to each symbol that needs one.
9646 Set the final size of the .MIPS.stub section. */
9647
9648 static bfd_boolean
9649 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9650 {
9651 bfd *output_bfd = info->output_bfd;
9652 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9653 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9654 bfd_vma isa_bit = micromips_p;
9655 struct mips_elf_link_hash_table *htab;
9656 struct mips_htab_traverse_info hti;
9657 struct elf_link_hash_entry *h;
9658 bfd *dynobj;
9659
9660 htab = mips_elf_hash_table (info);
9661 BFD_ASSERT (htab != NULL);
9662
9663 if (htab->lazy_stub_count == 0)
9664 return TRUE;
9665
9666 htab->sstubs->size = 0;
9667 hti.info = info;
9668 hti.output_bfd = output_bfd;
9669 hti.error = FALSE;
9670 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9671 if (hti.error)
9672 return FALSE;
9673 htab->sstubs->size += htab->function_stub_size;
9674 BFD_ASSERT (htab->sstubs->size
9675 == htab->lazy_stub_count * htab->function_stub_size);
9676
9677 dynobj = elf_hash_table (info)->dynobj;
9678 BFD_ASSERT (dynobj != NULL);
9679 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9680 if (h == NULL)
9681 return FALSE;
9682 h->root.u.def.value = isa_bit;
9683 h->other = other;
9684 h->type = STT_FUNC;
9685
9686 return TRUE;
9687 }
9688
9689 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9690 bfd_link_info. If H uses the address of a PLT entry as the value
9691 of the symbol, then set the entry in the symbol table now. Prefer
9692 a standard MIPS PLT entry. */
9693
9694 static bfd_boolean
9695 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9696 {
9697 struct bfd_link_info *info = data;
9698 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9699 struct mips_elf_link_hash_table *htab;
9700 unsigned int other;
9701 bfd_vma isa_bit;
9702 bfd_vma val;
9703
9704 htab = mips_elf_hash_table (info);
9705 BFD_ASSERT (htab != NULL);
9706
9707 if (h->use_plt_entry)
9708 {
9709 BFD_ASSERT (h->root.plt.plist != NULL);
9710 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9711 || h->root.plt.plist->comp_offset != MINUS_ONE);
9712
9713 val = htab->plt_header_size;
9714 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9715 {
9716 isa_bit = 0;
9717 val += h->root.plt.plist->mips_offset;
9718 other = 0;
9719 }
9720 else
9721 {
9722 isa_bit = 1;
9723 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9724 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9725 }
9726 val += isa_bit;
9727 /* For VxWorks, point at the PLT load stub rather than the lazy
9728 resolution stub; this stub will become the canonical function
9729 address. */
9730 if (htab->is_vxworks)
9731 val += 8;
9732
9733 h->root.root.u.def.section = htab->root.splt;
9734 h->root.root.u.def.value = val;
9735 h->root.other = other;
9736 }
9737
9738 return TRUE;
9739 }
9740
9741 /* Set the sizes of the dynamic sections. */
9742
9743 bfd_boolean
9744 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9745 struct bfd_link_info *info)
9746 {
9747 bfd *dynobj;
9748 asection *s, *sreldyn;
9749 bfd_boolean reltext;
9750 struct mips_elf_link_hash_table *htab;
9751
9752 htab = mips_elf_hash_table (info);
9753 BFD_ASSERT (htab != NULL);
9754 dynobj = elf_hash_table (info)->dynobj;
9755 BFD_ASSERT (dynobj != NULL);
9756
9757 if (elf_hash_table (info)->dynamic_sections_created)
9758 {
9759 /* Set the contents of the .interp section to the interpreter. */
9760 if (bfd_link_executable (info) && !info->nointerp)
9761 {
9762 s = bfd_get_linker_section (dynobj, ".interp");
9763 BFD_ASSERT (s != NULL);
9764 s->size
9765 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9766 s->contents
9767 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9768 }
9769
9770 /* Figure out the size of the PLT header if we know that we
9771 are using it. For the sake of cache alignment always use
9772 a standard header whenever any standard entries are present
9773 even if microMIPS entries are present as well. This also
9774 lets the microMIPS header rely on the value of $v0 only set
9775 by microMIPS entries, for a small size reduction.
9776
9777 Set symbol table entry values for symbols that use the
9778 address of their PLT entry now that we can calculate it.
9779
9780 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9781 haven't already in _bfd_elf_create_dynamic_sections. */
9782 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9783 {
9784 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9785 && !htab->plt_mips_offset);
9786 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9787 bfd_vma isa_bit = micromips_p;
9788 struct elf_link_hash_entry *h;
9789 bfd_vma size;
9790
9791 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9792 BFD_ASSERT (htab->root.sgotplt->size == 0);
9793 BFD_ASSERT (htab->root.splt->size == 0);
9794
9795 if (htab->is_vxworks && bfd_link_pic (info))
9796 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9797 else if (htab->is_vxworks)
9798 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9799 else if (ABI_64_P (output_bfd))
9800 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9801 else if (ABI_N32_P (output_bfd))
9802 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9803 else if (!micromips_p)
9804 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9805 else if (htab->insn32)
9806 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9807 else
9808 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9809
9810 htab->plt_header_is_comp = micromips_p;
9811 htab->plt_header_size = size;
9812 htab->root.splt->size = (size
9813 + htab->plt_mips_offset
9814 + htab->plt_comp_offset);
9815 htab->root.sgotplt->size = (htab->plt_got_index
9816 * MIPS_ELF_GOT_SIZE (dynobj));
9817
9818 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9819
9820 if (htab->root.hplt == NULL)
9821 {
9822 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9823 "_PROCEDURE_LINKAGE_TABLE_");
9824 htab->root.hplt = h;
9825 if (h == NULL)
9826 return FALSE;
9827 }
9828
9829 h = htab->root.hplt;
9830 h->root.u.def.value = isa_bit;
9831 h->other = other;
9832 h->type = STT_FUNC;
9833 }
9834 }
9835
9836 /* Allocate space for global sym dynamic relocs. */
9837 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9838
9839 mips_elf_estimate_stub_size (output_bfd, info);
9840
9841 if (!mips_elf_lay_out_got (output_bfd, info))
9842 return FALSE;
9843
9844 mips_elf_lay_out_lazy_stubs (info);
9845
9846 /* The check_relocs and adjust_dynamic_symbol entry points have
9847 determined the sizes of the various dynamic sections. Allocate
9848 memory for them. */
9849 reltext = FALSE;
9850 for (s = dynobj->sections; s != NULL; s = s->next)
9851 {
9852 const char *name;
9853
9854 /* It's OK to base decisions on the section name, because none
9855 of the dynobj section names depend upon the input files. */
9856 name = bfd_get_section_name (dynobj, s);
9857
9858 if ((s->flags & SEC_LINKER_CREATED) == 0)
9859 continue;
9860
9861 if (CONST_STRNEQ (name, ".rel"))
9862 {
9863 if (s->size != 0)
9864 {
9865 const char *outname;
9866 asection *target;
9867
9868 /* If this relocation section applies to a read only
9869 section, then we probably need a DT_TEXTREL entry.
9870 If the relocation section is .rel(a).dyn, we always
9871 assert a DT_TEXTREL entry rather than testing whether
9872 there exists a relocation to a read only section or
9873 not. */
9874 outname = bfd_get_section_name (output_bfd,
9875 s->output_section);
9876 target = bfd_get_section_by_name (output_bfd, outname + 4);
9877 if ((target != NULL
9878 && (target->flags & SEC_READONLY) != 0
9879 && (target->flags & SEC_ALLOC) != 0)
9880 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9881 reltext = TRUE;
9882
9883 /* We use the reloc_count field as a counter if we need
9884 to copy relocs into the output file. */
9885 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9886 s->reloc_count = 0;
9887
9888 /* If combreloc is enabled, elf_link_sort_relocs() will
9889 sort relocations, but in a different way than we do,
9890 and before we're done creating relocations. Also, it
9891 will move them around between input sections'
9892 relocation's contents, so our sorting would be
9893 broken, so don't let it run. */
9894 info->combreloc = 0;
9895 }
9896 }
9897 else if (bfd_link_executable (info)
9898 && ! mips_elf_hash_table (info)->use_rld_obj_head
9899 && CONST_STRNEQ (name, ".rld_map"))
9900 {
9901 /* We add a room for __rld_map. It will be filled in by the
9902 rtld to contain a pointer to the _r_debug structure. */
9903 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9904 }
9905 else if (SGI_COMPAT (output_bfd)
9906 && CONST_STRNEQ (name, ".compact_rel"))
9907 s->size += mips_elf_hash_table (info)->compact_rel_size;
9908 else if (s == htab->root.splt)
9909 {
9910 /* If the last PLT entry has a branch delay slot, allocate
9911 room for an extra nop to fill the delay slot. This is
9912 for CPUs without load interlocking. */
9913 if (! LOAD_INTERLOCKS_P (output_bfd)
9914 && ! htab->is_vxworks && s->size > 0)
9915 s->size += 4;
9916 }
9917 else if (! CONST_STRNEQ (name, ".init")
9918 && s != htab->root.sgot
9919 && s != htab->root.sgotplt
9920 && s != htab->sstubs
9921 && s != htab->sdynbss)
9922 {
9923 /* It's not one of our sections, so don't allocate space. */
9924 continue;
9925 }
9926
9927 if (s->size == 0)
9928 {
9929 s->flags |= SEC_EXCLUDE;
9930 continue;
9931 }
9932
9933 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9934 continue;
9935
9936 /* Allocate memory for the section contents. */
9937 s->contents = bfd_zalloc (dynobj, s->size);
9938 if (s->contents == NULL)
9939 {
9940 bfd_set_error (bfd_error_no_memory);
9941 return FALSE;
9942 }
9943 }
9944
9945 if (elf_hash_table (info)->dynamic_sections_created)
9946 {
9947 /* Add some entries to the .dynamic section. We fill in the
9948 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9949 must add the entries now so that we get the correct size for
9950 the .dynamic section. */
9951
9952 /* SGI object has the equivalence of DT_DEBUG in the
9953 DT_MIPS_RLD_MAP entry. This must come first because glibc
9954 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9955 may only look at the first one they see. */
9956 if (!bfd_link_pic (info)
9957 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9958 return FALSE;
9959
9960 if (bfd_link_executable (info)
9961 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9962 return FALSE;
9963
9964 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9965 used by the debugger. */
9966 if (bfd_link_executable (info)
9967 && !SGI_COMPAT (output_bfd)
9968 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9969 return FALSE;
9970
9971 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9972 info->flags |= DF_TEXTREL;
9973
9974 if ((info->flags & DF_TEXTREL) != 0)
9975 {
9976 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9977 return FALSE;
9978
9979 /* Clear the DF_TEXTREL flag. It will be set again if we
9980 write out an actual text relocation; we may not, because
9981 at this point we do not know whether e.g. any .eh_frame
9982 absolute relocations have been converted to PC-relative. */
9983 info->flags &= ~DF_TEXTREL;
9984 }
9985
9986 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9987 return FALSE;
9988
9989 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9990 if (htab->is_vxworks)
9991 {
9992 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9993 use any of the DT_MIPS_* tags. */
9994 if (sreldyn && sreldyn->size > 0)
9995 {
9996 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9997 return FALSE;
9998
9999 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10000 return FALSE;
10001
10002 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10003 return FALSE;
10004 }
10005 }
10006 else
10007 {
10008 if (sreldyn && sreldyn->size > 0)
10009 {
10010 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10011 return FALSE;
10012
10013 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10014 return FALSE;
10015
10016 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10017 return FALSE;
10018 }
10019
10020 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10021 return FALSE;
10022
10023 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10024 return FALSE;
10025
10026 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10027 return FALSE;
10028
10029 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10030 return FALSE;
10031
10032 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10033 return FALSE;
10034
10035 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10036 return FALSE;
10037
10038 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10039 return FALSE;
10040
10041 if (IRIX_COMPAT (dynobj) == ict_irix5
10042 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10043 return FALSE;
10044
10045 if (IRIX_COMPAT (dynobj) == ict_irix6
10046 && (bfd_get_section_by_name
10047 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10048 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10049 return FALSE;
10050 }
10051 if (htab->root.splt->size > 0)
10052 {
10053 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10054 return FALSE;
10055
10056 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10057 return FALSE;
10058
10059 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10060 return FALSE;
10061
10062 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10063 return FALSE;
10064 }
10065 if (htab->is_vxworks
10066 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10067 return FALSE;
10068 }
10069
10070 return TRUE;
10071 }
10072 \f
10073 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10074 Adjust its R_ADDEND field so that it is correct for the output file.
10075 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10076 and sections respectively; both use symbol indexes. */
10077
10078 static void
10079 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10080 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10081 asection **local_sections, Elf_Internal_Rela *rel)
10082 {
10083 unsigned int r_type, r_symndx;
10084 Elf_Internal_Sym *sym;
10085 asection *sec;
10086
10087 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10088 {
10089 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10090 if (gprel16_reloc_p (r_type)
10091 || r_type == R_MIPS_GPREL32
10092 || literal_reloc_p (r_type))
10093 {
10094 rel->r_addend += _bfd_get_gp_value (input_bfd);
10095 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10096 }
10097
10098 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10099 sym = local_syms + r_symndx;
10100
10101 /* Adjust REL's addend to account for section merging. */
10102 if (!bfd_link_relocatable (info))
10103 {
10104 sec = local_sections[r_symndx];
10105 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10106 }
10107
10108 /* This would normally be done by the rela_normal code in elflink.c. */
10109 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10110 rel->r_addend += local_sections[r_symndx]->output_offset;
10111 }
10112 }
10113
10114 /* Handle relocations against symbols from removed linkonce sections,
10115 or sections discarded by a linker script. We use this wrapper around
10116 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10117 on 64-bit ELF targets. In this case for any relocation handled, which
10118 always be the first in a triplet, the remaining two have to be processed
10119 together with the first, even if they are R_MIPS_NONE. It is the symbol
10120 index referred by the first reloc that applies to all the three and the
10121 remaining two never refer to an object symbol. And it is the final
10122 relocation (the last non-null one) that determines the output field of
10123 the whole relocation so retrieve the corresponding howto structure for
10124 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10125
10126 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10127 and therefore requires to be pasted in a loop. It also defines a block
10128 and does not protect any of its arguments, hence the extra brackets. */
10129
10130 static void
10131 mips_reloc_against_discarded_section (bfd *output_bfd,
10132 struct bfd_link_info *info,
10133 bfd *input_bfd, asection *input_section,
10134 Elf_Internal_Rela **rel,
10135 const Elf_Internal_Rela **relend,
10136 bfd_boolean rel_reloc,
10137 reloc_howto_type *howto,
10138 bfd_byte *contents)
10139 {
10140 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10141 int count = bed->s->int_rels_per_ext_rel;
10142 unsigned int r_type;
10143 int i;
10144
10145 for (i = count - 1; i > 0; i--)
10146 {
10147 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10148 if (r_type != R_MIPS_NONE)
10149 {
10150 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10151 break;
10152 }
10153 }
10154 do
10155 {
10156 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10157 (*rel), count, (*relend),
10158 howto, i, contents);
10159 }
10160 while (0);
10161 }
10162
10163 /* Relocate a MIPS ELF section. */
10164
10165 bfd_boolean
10166 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10167 bfd *input_bfd, asection *input_section,
10168 bfd_byte *contents, Elf_Internal_Rela *relocs,
10169 Elf_Internal_Sym *local_syms,
10170 asection **local_sections)
10171 {
10172 Elf_Internal_Rela *rel;
10173 const Elf_Internal_Rela *relend;
10174 bfd_vma addend = 0;
10175 bfd_boolean use_saved_addend_p = FALSE;
10176 const struct elf_backend_data *bed;
10177
10178 bed = get_elf_backend_data (output_bfd);
10179 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10180 for (rel = relocs; rel < relend; ++rel)
10181 {
10182 const char *name;
10183 bfd_vma value = 0;
10184 reloc_howto_type *howto;
10185 bfd_boolean cross_mode_jump_p = FALSE;
10186 /* TRUE if the relocation is a RELA relocation, rather than a
10187 REL relocation. */
10188 bfd_boolean rela_relocation_p = TRUE;
10189 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10190 const char *msg;
10191 unsigned long r_symndx;
10192 asection *sec;
10193 Elf_Internal_Shdr *symtab_hdr;
10194 struct elf_link_hash_entry *h;
10195 bfd_boolean rel_reloc;
10196
10197 rel_reloc = (NEWABI_P (input_bfd)
10198 && mips_elf_rel_relocation_p (input_bfd, input_section,
10199 relocs, rel));
10200 /* Find the relocation howto for this relocation. */
10201 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10202
10203 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10204 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10205 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10206 {
10207 sec = local_sections[r_symndx];
10208 h = NULL;
10209 }
10210 else
10211 {
10212 unsigned long extsymoff;
10213
10214 extsymoff = 0;
10215 if (!elf_bad_symtab (input_bfd))
10216 extsymoff = symtab_hdr->sh_info;
10217 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10218 while (h->root.type == bfd_link_hash_indirect
10219 || h->root.type == bfd_link_hash_warning)
10220 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10221
10222 sec = NULL;
10223 if (h->root.type == bfd_link_hash_defined
10224 || h->root.type == bfd_link_hash_defweak)
10225 sec = h->root.u.def.section;
10226 }
10227
10228 if (sec != NULL && discarded_section (sec))
10229 {
10230 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10231 input_section, &rel, &relend,
10232 rel_reloc, howto, contents);
10233 continue;
10234 }
10235
10236 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10237 {
10238 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10239 64-bit code, but make sure all their addresses are in the
10240 lowermost or uppermost 32-bit section of the 64-bit address
10241 space. Thus, when they use an R_MIPS_64 they mean what is
10242 usually meant by R_MIPS_32, with the exception that the
10243 stored value is sign-extended to 64 bits. */
10244 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10245
10246 /* On big-endian systems, we need to lie about the position
10247 of the reloc. */
10248 if (bfd_big_endian (input_bfd))
10249 rel->r_offset += 4;
10250 }
10251
10252 if (!use_saved_addend_p)
10253 {
10254 /* If these relocations were originally of the REL variety,
10255 we must pull the addend out of the field that will be
10256 relocated. Otherwise, we simply use the contents of the
10257 RELA relocation. */
10258 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10259 relocs, rel))
10260 {
10261 rela_relocation_p = FALSE;
10262 addend = mips_elf_read_rel_addend (input_bfd, rel,
10263 howto, contents);
10264 if (hi16_reloc_p (r_type)
10265 || (got16_reloc_p (r_type)
10266 && mips_elf_local_relocation_p (input_bfd, rel,
10267 local_sections)))
10268 {
10269 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10270 contents, &addend))
10271 {
10272 if (h)
10273 name = h->root.root.string;
10274 else
10275 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10276 local_syms + r_symndx,
10277 sec);
10278 _bfd_error_handler
10279 /* xgettext:c-format */
10280 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10281 input_bfd, input_section, name, howto->name,
10282 rel->r_offset);
10283 }
10284 }
10285 else
10286 addend <<= howto->rightshift;
10287 }
10288 else
10289 addend = rel->r_addend;
10290 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10291 local_syms, local_sections, rel);
10292 }
10293
10294 if (bfd_link_relocatable (info))
10295 {
10296 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10297 && bfd_big_endian (input_bfd))
10298 rel->r_offset -= 4;
10299
10300 if (!rela_relocation_p && rel->r_addend)
10301 {
10302 addend += rel->r_addend;
10303 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10304 addend = mips_elf_high (addend);
10305 else if (r_type == R_MIPS_HIGHER)
10306 addend = mips_elf_higher (addend);
10307 else if (r_type == R_MIPS_HIGHEST)
10308 addend = mips_elf_highest (addend);
10309 else
10310 addend >>= howto->rightshift;
10311
10312 /* We use the source mask, rather than the destination
10313 mask because the place to which we are writing will be
10314 source of the addend in the final link. */
10315 addend &= howto->src_mask;
10316
10317 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10318 /* See the comment above about using R_MIPS_64 in the 32-bit
10319 ABI. Here, we need to update the addend. It would be
10320 possible to get away with just using the R_MIPS_32 reloc
10321 but for endianness. */
10322 {
10323 bfd_vma sign_bits;
10324 bfd_vma low_bits;
10325 bfd_vma high_bits;
10326
10327 if (addend & ((bfd_vma) 1 << 31))
10328 #ifdef BFD64
10329 sign_bits = ((bfd_vma) 1 << 32) - 1;
10330 #else
10331 sign_bits = -1;
10332 #endif
10333 else
10334 sign_bits = 0;
10335
10336 /* If we don't know that we have a 64-bit type,
10337 do two separate stores. */
10338 if (bfd_big_endian (input_bfd))
10339 {
10340 /* Store the sign-bits (which are most significant)
10341 first. */
10342 low_bits = sign_bits;
10343 high_bits = addend;
10344 }
10345 else
10346 {
10347 low_bits = addend;
10348 high_bits = sign_bits;
10349 }
10350 bfd_put_32 (input_bfd, low_bits,
10351 contents + rel->r_offset);
10352 bfd_put_32 (input_bfd, high_bits,
10353 contents + rel->r_offset + 4);
10354 continue;
10355 }
10356
10357 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10358 input_bfd, input_section,
10359 contents, FALSE))
10360 return FALSE;
10361 }
10362
10363 /* Go on to the next relocation. */
10364 continue;
10365 }
10366
10367 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10368 relocations for the same offset. In that case we are
10369 supposed to treat the output of each relocation as the addend
10370 for the next. */
10371 if (rel + 1 < relend
10372 && rel->r_offset == rel[1].r_offset
10373 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10374 use_saved_addend_p = TRUE;
10375 else
10376 use_saved_addend_p = FALSE;
10377
10378 /* Figure out what value we are supposed to relocate. */
10379 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10380 input_section, info, rel,
10381 addend, howto, local_syms,
10382 local_sections, &value,
10383 &name, &cross_mode_jump_p,
10384 use_saved_addend_p))
10385 {
10386 case bfd_reloc_continue:
10387 /* There's nothing to do. */
10388 continue;
10389
10390 case bfd_reloc_undefined:
10391 /* mips_elf_calculate_relocation already called the
10392 undefined_symbol callback. There's no real point in
10393 trying to perform the relocation at this point, so we
10394 just skip ahead to the next relocation. */
10395 continue;
10396
10397 case bfd_reloc_notsupported:
10398 msg = _("internal error: unsupported relocation error");
10399 info->callbacks->warning
10400 (info, msg, name, input_bfd, input_section, rel->r_offset);
10401 return FALSE;
10402
10403 case bfd_reloc_overflow:
10404 if (use_saved_addend_p)
10405 /* Ignore overflow until we reach the last relocation for
10406 a given location. */
10407 ;
10408 else
10409 {
10410 struct mips_elf_link_hash_table *htab;
10411
10412 htab = mips_elf_hash_table (info);
10413 BFD_ASSERT (htab != NULL);
10414 BFD_ASSERT (name != NULL);
10415 if (!htab->small_data_overflow_reported
10416 && (gprel16_reloc_p (howto->type)
10417 || literal_reloc_p (howto->type)))
10418 {
10419 msg = _("small-data section exceeds 64KB;"
10420 " lower small-data size limit (see option -G)");
10421
10422 htab->small_data_overflow_reported = TRUE;
10423 (*info->callbacks->einfo) ("%P: %s\n", msg);
10424 }
10425 (*info->callbacks->reloc_overflow)
10426 (info, NULL, name, howto->name, (bfd_vma) 0,
10427 input_bfd, input_section, rel->r_offset);
10428 }
10429 break;
10430
10431 case bfd_reloc_ok:
10432 break;
10433
10434 case bfd_reloc_outofrange:
10435 msg = NULL;
10436 if (jal_reloc_p (howto->type))
10437 msg = (cross_mode_jump_p
10438 ? _("Cannot convert a jump to JALX "
10439 "for a non-word-aligned address")
10440 : (howto->type == R_MIPS16_26
10441 ? _("Jump to a non-word-aligned address")
10442 : _("Jump to a non-instruction-aligned address")));
10443 else if (b_reloc_p (howto->type))
10444 msg = (cross_mode_jump_p
10445 ? _("Cannot convert a branch to JALX "
10446 "for a non-word-aligned address")
10447 : _("Branch to a non-instruction-aligned address"));
10448 else if (aligned_pcrel_reloc_p (howto->type))
10449 msg = _("PC-relative load from unaligned address");
10450 if (msg)
10451 {
10452 info->callbacks->einfo
10453 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10454 break;
10455 }
10456 /* Fall through. */
10457
10458 default:
10459 abort ();
10460 break;
10461 }
10462
10463 /* If we've got another relocation for the address, keep going
10464 until we reach the last one. */
10465 if (use_saved_addend_p)
10466 {
10467 addend = value;
10468 continue;
10469 }
10470
10471 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10472 /* See the comment above about using R_MIPS_64 in the 32-bit
10473 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10474 that calculated the right value. Now, however, we
10475 sign-extend the 32-bit result to 64-bits, and store it as a
10476 64-bit value. We are especially generous here in that we
10477 go to extreme lengths to support this usage on systems with
10478 only a 32-bit VMA. */
10479 {
10480 bfd_vma sign_bits;
10481 bfd_vma low_bits;
10482 bfd_vma high_bits;
10483
10484 if (value & ((bfd_vma) 1 << 31))
10485 #ifdef BFD64
10486 sign_bits = ((bfd_vma) 1 << 32) - 1;
10487 #else
10488 sign_bits = -1;
10489 #endif
10490 else
10491 sign_bits = 0;
10492
10493 /* If we don't know that we have a 64-bit type,
10494 do two separate stores. */
10495 if (bfd_big_endian (input_bfd))
10496 {
10497 /* Undo what we did above. */
10498 rel->r_offset -= 4;
10499 /* Store the sign-bits (which are most significant)
10500 first. */
10501 low_bits = sign_bits;
10502 high_bits = value;
10503 }
10504 else
10505 {
10506 low_bits = value;
10507 high_bits = sign_bits;
10508 }
10509 bfd_put_32 (input_bfd, low_bits,
10510 contents + rel->r_offset);
10511 bfd_put_32 (input_bfd, high_bits,
10512 contents + rel->r_offset + 4);
10513 continue;
10514 }
10515
10516 /* Actually perform the relocation. */
10517 if (! mips_elf_perform_relocation (info, howto, rel, value,
10518 input_bfd, input_section,
10519 contents, cross_mode_jump_p))
10520 return FALSE;
10521 }
10522
10523 return TRUE;
10524 }
10525 \f
10526 /* A function that iterates over each entry in la25_stubs and fills
10527 in the code for each one. DATA points to a mips_htab_traverse_info. */
10528
10529 static int
10530 mips_elf_create_la25_stub (void **slot, void *data)
10531 {
10532 struct mips_htab_traverse_info *hti;
10533 struct mips_elf_link_hash_table *htab;
10534 struct mips_elf_la25_stub *stub;
10535 asection *s;
10536 bfd_byte *loc;
10537 bfd_vma offset, target, target_high, target_low;
10538
10539 stub = (struct mips_elf_la25_stub *) *slot;
10540 hti = (struct mips_htab_traverse_info *) data;
10541 htab = mips_elf_hash_table (hti->info);
10542 BFD_ASSERT (htab != NULL);
10543
10544 /* Create the section contents, if we haven't already. */
10545 s = stub->stub_section;
10546 loc = s->contents;
10547 if (loc == NULL)
10548 {
10549 loc = bfd_malloc (s->size);
10550 if (loc == NULL)
10551 {
10552 hti->error = TRUE;
10553 return FALSE;
10554 }
10555 s->contents = loc;
10556 }
10557
10558 /* Work out where in the section this stub should go. */
10559 offset = stub->offset;
10560
10561 /* Work out the target address. */
10562 target = mips_elf_get_la25_target (stub, &s);
10563 target += s->output_section->vma + s->output_offset;
10564
10565 target_high = ((target + 0x8000) >> 16) & 0xffff;
10566 target_low = (target & 0xffff);
10567
10568 if (stub->stub_section != htab->strampoline)
10569 {
10570 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10571 of the section and write the two instructions at the end. */
10572 memset (loc, 0, offset);
10573 loc += offset;
10574 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10575 {
10576 bfd_put_micromips_32 (hti->output_bfd,
10577 LA25_LUI_MICROMIPS (target_high),
10578 loc);
10579 bfd_put_micromips_32 (hti->output_bfd,
10580 LA25_ADDIU_MICROMIPS (target_low),
10581 loc + 4);
10582 }
10583 else
10584 {
10585 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10586 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10587 }
10588 }
10589 else
10590 {
10591 /* This is trampoline. */
10592 loc += offset;
10593 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10594 {
10595 bfd_put_micromips_32 (hti->output_bfd,
10596 LA25_LUI_MICROMIPS (target_high), loc);
10597 bfd_put_micromips_32 (hti->output_bfd,
10598 LA25_J_MICROMIPS (target), loc + 4);
10599 bfd_put_micromips_32 (hti->output_bfd,
10600 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10601 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10602 }
10603 else
10604 {
10605 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10606 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10607 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10608 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10609 }
10610 }
10611 return TRUE;
10612 }
10613
10614 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10615 adjust it appropriately now. */
10616
10617 static void
10618 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10619 const char *name, Elf_Internal_Sym *sym)
10620 {
10621 /* The linker script takes care of providing names and values for
10622 these, but we must place them into the right sections. */
10623 static const char* const text_section_symbols[] = {
10624 "_ftext",
10625 "_etext",
10626 "__dso_displacement",
10627 "__elf_header",
10628 "__program_header_table",
10629 NULL
10630 };
10631
10632 static const char* const data_section_symbols[] = {
10633 "_fdata",
10634 "_edata",
10635 "_end",
10636 "_fbss",
10637 NULL
10638 };
10639
10640 const char* const *p;
10641 int i;
10642
10643 for (i = 0; i < 2; ++i)
10644 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10645 *p;
10646 ++p)
10647 if (strcmp (*p, name) == 0)
10648 {
10649 /* All of these symbols are given type STT_SECTION by the
10650 IRIX6 linker. */
10651 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10652 sym->st_other = STO_PROTECTED;
10653
10654 /* The IRIX linker puts these symbols in special sections. */
10655 if (i == 0)
10656 sym->st_shndx = SHN_MIPS_TEXT;
10657 else
10658 sym->st_shndx = SHN_MIPS_DATA;
10659
10660 break;
10661 }
10662 }
10663
10664 /* Finish up dynamic symbol handling. We set the contents of various
10665 dynamic sections here. */
10666
10667 bfd_boolean
10668 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10669 struct bfd_link_info *info,
10670 struct elf_link_hash_entry *h,
10671 Elf_Internal_Sym *sym)
10672 {
10673 bfd *dynobj;
10674 asection *sgot;
10675 struct mips_got_info *g, *gg;
10676 const char *name;
10677 int idx;
10678 struct mips_elf_link_hash_table *htab;
10679 struct mips_elf_link_hash_entry *hmips;
10680
10681 htab = mips_elf_hash_table (info);
10682 BFD_ASSERT (htab != NULL);
10683 dynobj = elf_hash_table (info)->dynobj;
10684 hmips = (struct mips_elf_link_hash_entry *) h;
10685
10686 BFD_ASSERT (!htab->is_vxworks);
10687
10688 if (h->plt.plist != NULL
10689 && (h->plt.plist->mips_offset != MINUS_ONE
10690 || h->plt.plist->comp_offset != MINUS_ONE))
10691 {
10692 /* We've decided to create a PLT entry for this symbol. */
10693 bfd_byte *loc;
10694 bfd_vma header_address, got_address;
10695 bfd_vma got_address_high, got_address_low, load;
10696 bfd_vma got_index;
10697 bfd_vma isa_bit;
10698
10699 got_index = h->plt.plist->gotplt_index;
10700
10701 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10702 BFD_ASSERT (h->dynindx != -1);
10703 BFD_ASSERT (htab->root.splt != NULL);
10704 BFD_ASSERT (got_index != MINUS_ONE);
10705 BFD_ASSERT (!h->def_regular);
10706
10707 /* Calculate the address of the PLT header. */
10708 isa_bit = htab->plt_header_is_comp;
10709 header_address = (htab->root.splt->output_section->vma
10710 + htab->root.splt->output_offset + isa_bit);
10711
10712 /* Calculate the address of the .got.plt entry. */
10713 got_address = (htab->root.sgotplt->output_section->vma
10714 + htab->root.sgotplt->output_offset
10715 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10716
10717 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10718 got_address_low = got_address & 0xffff;
10719
10720 /* Initially point the .got.plt entry at the PLT header. */
10721 loc = (htab->root.sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10722 if (ABI_64_P (output_bfd))
10723 bfd_put_64 (output_bfd, header_address, loc);
10724 else
10725 bfd_put_32 (output_bfd, header_address, loc);
10726
10727 /* Now handle the PLT itself. First the standard entry (the order
10728 does not matter, we just have to pick one). */
10729 if (h->plt.plist->mips_offset != MINUS_ONE)
10730 {
10731 const bfd_vma *plt_entry;
10732 bfd_vma plt_offset;
10733
10734 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10735
10736 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10737
10738 /* Find out where the .plt entry should go. */
10739 loc = htab->root.splt->contents + plt_offset;
10740
10741 /* Pick the load opcode. */
10742 load = MIPS_ELF_LOAD_WORD (output_bfd);
10743
10744 /* Fill in the PLT entry itself. */
10745
10746 if (MIPSR6_P (output_bfd))
10747 plt_entry = mipsr6_exec_plt_entry;
10748 else
10749 plt_entry = mips_exec_plt_entry;
10750 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10751 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10752 loc + 4);
10753
10754 if (! LOAD_INTERLOCKS_P (output_bfd))
10755 {
10756 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10757 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10758 }
10759 else
10760 {
10761 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10762 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10763 loc + 12);
10764 }
10765 }
10766
10767 /* Now the compressed entry. They come after any standard ones. */
10768 if (h->plt.plist->comp_offset != MINUS_ONE)
10769 {
10770 bfd_vma plt_offset;
10771
10772 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10773 + h->plt.plist->comp_offset);
10774
10775 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10776
10777 /* Find out where the .plt entry should go. */
10778 loc = htab->root.splt->contents + plt_offset;
10779
10780 /* Fill in the PLT entry itself. */
10781 if (!MICROMIPS_P (output_bfd))
10782 {
10783 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10784
10785 bfd_put_16 (output_bfd, plt_entry[0], loc);
10786 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10787 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10788 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10789 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10790 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10791 bfd_put_32 (output_bfd, got_address, loc + 12);
10792 }
10793 else if (htab->insn32)
10794 {
10795 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10796
10797 bfd_put_16 (output_bfd, plt_entry[0], loc);
10798 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10799 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10800 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10801 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10802 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10803 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10804 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10805 }
10806 else
10807 {
10808 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10809 bfd_signed_vma gotpc_offset;
10810 bfd_vma loc_address;
10811
10812 BFD_ASSERT (got_address % 4 == 0);
10813
10814 loc_address = (htab->root.splt->output_section->vma
10815 + htab->root.splt->output_offset + plt_offset);
10816 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10817
10818 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10819 if (gotpc_offset + 0x1000000 >= 0x2000000)
10820 {
10821 _bfd_error_handler
10822 /* xgettext:c-format */
10823 (_("%B: `%A' offset of %ld from `%A' "
10824 "beyond the range of ADDIUPC"),
10825 output_bfd,
10826 htab->root.sgotplt->output_section,
10827 htab->root.splt->output_section,
10828 (long) gotpc_offset);
10829 bfd_set_error (bfd_error_no_error);
10830 return FALSE;
10831 }
10832 bfd_put_16 (output_bfd,
10833 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10834 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10835 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10836 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10837 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10838 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10839 }
10840 }
10841
10842 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10843 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10844 got_index - 2, h->dynindx,
10845 R_MIPS_JUMP_SLOT, got_address);
10846
10847 /* We distinguish between PLT entries and lazy-binding stubs by
10848 giving the former an st_other value of STO_MIPS_PLT. Set the
10849 flag and leave the value if there are any relocations in the
10850 binary where pointer equality matters. */
10851 sym->st_shndx = SHN_UNDEF;
10852 if (h->pointer_equality_needed)
10853 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10854 else
10855 {
10856 sym->st_value = 0;
10857 sym->st_other = 0;
10858 }
10859 }
10860
10861 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10862 {
10863 /* We've decided to create a lazy-binding stub. */
10864 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10865 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10866 bfd_vma stub_size = htab->function_stub_size;
10867 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10868 bfd_vma isa_bit = micromips_p;
10869 bfd_vma stub_big_size;
10870
10871 if (!micromips_p)
10872 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10873 else if (htab->insn32)
10874 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10875 else
10876 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10877
10878 /* This symbol has a stub. Set it up. */
10879
10880 BFD_ASSERT (h->dynindx != -1);
10881
10882 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10883
10884 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10885 sign extension at runtime in the stub, resulting in a negative
10886 index value. */
10887 if (h->dynindx & ~0x7fffffff)
10888 return FALSE;
10889
10890 /* Fill the stub. */
10891 if (micromips_p)
10892 {
10893 idx = 0;
10894 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10895 stub + idx);
10896 idx += 4;
10897 if (htab->insn32)
10898 {
10899 bfd_put_micromips_32 (output_bfd,
10900 STUB_MOVE32_MICROMIPS, stub + idx);
10901 idx += 4;
10902 }
10903 else
10904 {
10905 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10906 idx += 2;
10907 }
10908 if (stub_size == stub_big_size)
10909 {
10910 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10911
10912 bfd_put_micromips_32 (output_bfd,
10913 STUB_LUI_MICROMIPS (dynindx_hi),
10914 stub + idx);
10915 idx += 4;
10916 }
10917 if (htab->insn32)
10918 {
10919 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10920 stub + idx);
10921 idx += 4;
10922 }
10923 else
10924 {
10925 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10926 idx += 2;
10927 }
10928
10929 /* If a large stub is not required and sign extension is not a
10930 problem, then use legacy code in the stub. */
10931 if (stub_size == stub_big_size)
10932 bfd_put_micromips_32 (output_bfd,
10933 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10934 stub + idx);
10935 else if (h->dynindx & ~0x7fff)
10936 bfd_put_micromips_32 (output_bfd,
10937 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10938 stub + idx);
10939 else
10940 bfd_put_micromips_32 (output_bfd,
10941 STUB_LI16S_MICROMIPS (output_bfd,
10942 h->dynindx),
10943 stub + idx);
10944 }
10945 else
10946 {
10947 idx = 0;
10948 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10949 idx += 4;
10950 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10951 idx += 4;
10952 if (stub_size == stub_big_size)
10953 {
10954 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10955 stub + idx);
10956 idx += 4;
10957 }
10958 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10959 idx += 4;
10960
10961 /* If a large stub is not required and sign extension is not a
10962 problem, then use legacy code in the stub. */
10963 if (stub_size == stub_big_size)
10964 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10965 stub + idx);
10966 else if (h->dynindx & ~0x7fff)
10967 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10968 stub + idx);
10969 else
10970 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10971 stub + idx);
10972 }
10973
10974 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10975 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10976 stub, stub_size);
10977
10978 /* Mark the symbol as undefined. stub_offset != -1 occurs
10979 only for the referenced symbol. */
10980 sym->st_shndx = SHN_UNDEF;
10981
10982 /* The run-time linker uses the st_value field of the symbol
10983 to reset the global offset table entry for this external
10984 to its stub address when unlinking a shared object. */
10985 sym->st_value = (htab->sstubs->output_section->vma
10986 + htab->sstubs->output_offset
10987 + h->plt.plist->stub_offset
10988 + isa_bit);
10989 sym->st_other = other;
10990 }
10991
10992 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10993 refer to the stub, since only the stub uses the standard calling
10994 conventions. */
10995 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10996 {
10997 BFD_ASSERT (hmips->need_fn_stub);
10998 sym->st_value = (hmips->fn_stub->output_section->vma
10999 + hmips->fn_stub->output_offset);
11000 sym->st_size = hmips->fn_stub->size;
11001 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11002 }
11003
11004 BFD_ASSERT (h->dynindx != -1
11005 || h->forced_local);
11006
11007 sgot = htab->root.sgot;
11008 g = htab->got_info;
11009 BFD_ASSERT (g != NULL);
11010
11011 /* Run through the global symbol table, creating GOT entries for all
11012 the symbols that need them. */
11013 if (hmips->global_got_area != GGA_NONE)
11014 {
11015 bfd_vma offset;
11016 bfd_vma value;
11017
11018 value = sym->st_value;
11019 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11020 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11021 }
11022
11023 if (hmips->global_got_area != GGA_NONE && g->next)
11024 {
11025 struct mips_got_entry e, *p;
11026 bfd_vma entry;
11027 bfd_vma offset;
11028
11029 gg = g;
11030
11031 e.abfd = output_bfd;
11032 e.symndx = -1;
11033 e.d.h = hmips;
11034 e.tls_type = GOT_TLS_NONE;
11035
11036 for (g = g->next; g->next != gg; g = g->next)
11037 {
11038 if (g->got_entries
11039 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11040 &e)))
11041 {
11042 offset = p->gotidx;
11043 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
11044 if (bfd_link_pic (info)
11045 || (elf_hash_table (info)->dynamic_sections_created
11046 && p->d.h != NULL
11047 && p->d.h->root.def_dynamic
11048 && !p->d.h->root.def_regular))
11049 {
11050 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11051 the various compatibility problems, it's easier to mock
11052 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11053 mips_elf_create_dynamic_relocation to calculate the
11054 appropriate addend. */
11055 Elf_Internal_Rela rel[3];
11056
11057 memset (rel, 0, sizeof (rel));
11058 if (ABI_64_P (output_bfd))
11059 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11060 else
11061 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11062 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11063
11064 entry = 0;
11065 if (! (mips_elf_create_dynamic_relocation
11066 (output_bfd, info, rel,
11067 e.d.h, NULL, sym->st_value, &entry, sgot)))
11068 return FALSE;
11069 }
11070 else
11071 entry = sym->st_value;
11072 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11073 }
11074 }
11075 }
11076
11077 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11078 name = h->root.root.string;
11079 if (h == elf_hash_table (info)->hdynamic
11080 || h == elf_hash_table (info)->hgot)
11081 sym->st_shndx = SHN_ABS;
11082 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11083 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11084 {
11085 sym->st_shndx = SHN_ABS;
11086 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11087 sym->st_value = 1;
11088 }
11089 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
11090 {
11091 sym->st_shndx = SHN_ABS;
11092 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11093 sym->st_value = elf_gp (output_bfd);
11094 }
11095 else if (SGI_COMPAT (output_bfd))
11096 {
11097 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11098 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11099 {
11100 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11101 sym->st_other = STO_PROTECTED;
11102 sym->st_value = 0;
11103 sym->st_shndx = SHN_MIPS_DATA;
11104 }
11105 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11106 {
11107 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11108 sym->st_other = STO_PROTECTED;
11109 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11110 sym->st_shndx = SHN_ABS;
11111 }
11112 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11113 {
11114 if (h->type == STT_FUNC)
11115 sym->st_shndx = SHN_MIPS_TEXT;
11116 else if (h->type == STT_OBJECT)
11117 sym->st_shndx = SHN_MIPS_DATA;
11118 }
11119 }
11120
11121 /* Emit a copy reloc, if needed. */
11122 if (h->needs_copy)
11123 {
11124 asection *s;
11125 bfd_vma symval;
11126
11127 BFD_ASSERT (h->dynindx != -1);
11128 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11129
11130 s = mips_elf_rel_dyn_section (info, FALSE);
11131 symval = (h->root.u.def.section->output_section->vma
11132 + h->root.u.def.section->output_offset
11133 + h->root.u.def.value);
11134 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11135 h->dynindx, R_MIPS_COPY, symval);
11136 }
11137
11138 /* Handle the IRIX6-specific symbols. */
11139 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11140 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11141
11142 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11143 to treat compressed symbols like any other. */
11144 if (ELF_ST_IS_MIPS16 (sym->st_other))
11145 {
11146 BFD_ASSERT (sym->st_value & 1);
11147 sym->st_other -= STO_MIPS16;
11148 }
11149 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11150 {
11151 BFD_ASSERT (sym->st_value & 1);
11152 sym->st_other -= STO_MICROMIPS;
11153 }
11154
11155 return TRUE;
11156 }
11157
11158 /* Likewise, for VxWorks. */
11159
11160 bfd_boolean
11161 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11162 struct bfd_link_info *info,
11163 struct elf_link_hash_entry *h,
11164 Elf_Internal_Sym *sym)
11165 {
11166 bfd *dynobj;
11167 asection *sgot;
11168 struct mips_got_info *g;
11169 struct mips_elf_link_hash_table *htab;
11170 struct mips_elf_link_hash_entry *hmips;
11171
11172 htab = mips_elf_hash_table (info);
11173 BFD_ASSERT (htab != NULL);
11174 dynobj = elf_hash_table (info)->dynobj;
11175 hmips = (struct mips_elf_link_hash_entry *) h;
11176
11177 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11178 {
11179 bfd_byte *loc;
11180 bfd_vma plt_address, got_address, got_offset, branch_offset;
11181 Elf_Internal_Rela rel;
11182 static const bfd_vma *plt_entry;
11183 bfd_vma gotplt_index;
11184 bfd_vma plt_offset;
11185
11186 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11187 gotplt_index = h->plt.plist->gotplt_index;
11188
11189 BFD_ASSERT (h->dynindx != -1);
11190 BFD_ASSERT (htab->root.splt != NULL);
11191 BFD_ASSERT (gotplt_index != MINUS_ONE);
11192 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11193
11194 /* Calculate the address of the .plt entry. */
11195 plt_address = (htab->root.splt->output_section->vma
11196 + htab->root.splt->output_offset
11197 + plt_offset);
11198
11199 /* Calculate the address of the .got.plt entry. */
11200 got_address = (htab->root.sgotplt->output_section->vma
11201 + htab->root.sgotplt->output_offset
11202 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11203
11204 /* Calculate the offset of the .got.plt entry from
11205 _GLOBAL_OFFSET_TABLE_. */
11206 got_offset = mips_elf_gotplt_index (info, h);
11207
11208 /* Calculate the offset for the branch at the start of the PLT
11209 entry. The branch jumps to the beginning of .plt. */
11210 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11211
11212 /* Fill in the initial value of the .got.plt entry. */
11213 bfd_put_32 (output_bfd, plt_address,
11214 (htab->root.sgotplt->contents
11215 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11216
11217 /* Find out where the .plt entry should go. */
11218 loc = htab->root.splt->contents + plt_offset;
11219
11220 if (bfd_link_pic (info))
11221 {
11222 plt_entry = mips_vxworks_shared_plt_entry;
11223 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11224 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11225 }
11226 else
11227 {
11228 bfd_vma got_address_high, got_address_low;
11229
11230 plt_entry = mips_vxworks_exec_plt_entry;
11231 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11232 got_address_low = got_address & 0xffff;
11233
11234 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11235 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11236 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11237 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11238 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11239 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11240 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11241 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11242
11243 loc = (htab->srelplt2->contents
11244 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11245
11246 /* Emit a relocation for the .got.plt entry. */
11247 rel.r_offset = got_address;
11248 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11249 rel.r_addend = plt_offset;
11250 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11251
11252 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11253 loc += sizeof (Elf32_External_Rela);
11254 rel.r_offset = plt_address + 8;
11255 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11256 rel.r_addend = got_offset;
11257 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11258
11259 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11260 loc += sizeof (Elf32_External_Rela);
11261 rel.r_offset += 4;
11262 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11263 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11264 }
11265
11266 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11267 loc = (htab->root.srelplt->contents
11268 + gotplt_index * sizeof (Elf32_External_Rela));
11269 rel.r_offset = got_address;
11270 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11271 rel.r_addend = 0;
11272 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11273
11274 if (!h->def_regular)
11275 sym->st_shndx = SHN_UNDEF;
11276 }
11277
11278 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11279
11280 sgot = htab->root.sgot;
11281 g = htab->got_info;
11282 BFD_ASSERT (g != NULL);
11283
11284 /* See if this symbol has an entry in the GOT. */
11285 if (hmips->global_got_area != GGA_NONE)
11286 {
11287 bfd_vma offset;
11288 Elf_Internal_Rela outrel;
11289 bfd_byte *loc;
11290 asection *s;
11291
11292 /* Install the symbol value in the GOT. */
11293 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11294 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11295
11296 /* Add a dynamic relocation for it. */
11297 s = mips_elf_rel_dyn_section (info, FALSE);
11298 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11299 outrel.r_offset = (sgot->output_section->vma
11300 + sgot->output_offset
11301 + offset);
11302 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11303 outrel.r_addend = 0;
11304 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11305 }
11306
11307 /* Emit a copy reloc, if needed. */
11308 if (h->needs_copy)
11309 {
11310 Elf_Internal_Rela rel;
11311
11312 BFD_ASSERT (h->dynindx != -1);
11313
11314 rel.r_offset = (h->root.u.def.section->output_section->vma
11315 + h->root.u.def.section->output_offset
11316 + h->root.u.def.value);
11317 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11318 rel.r_addend = 0;
11319 bfd_elf32_swap_reloca_out (output_bfd, &rel,
11320 htab->srelbss->contents
11321 + (htab->srelbss->reloc_count
11322 * sizeof (Elf32_External_Rela)));
11323 ++htab->srelbss->reloc_count;
11324 }
11325
11326 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11327 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11328 sym->st_value &= ~1;
11329
11330 return TRUE;
11331 }
11332
11333 /* Write out a plt0 entry to the beginning of .plt. */
11334
11335 static bfd_boolean
11336 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11337 {
11338 bfd_byte *loc;
11339 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11340 static const bfd_vma *plt_entry;
11341 struct mips_elf_link_hash_table *htab;
11342
11343 htab = mips_elf_hash_table (info);
11344 BFD_ASSERT (htab != NULL);
11345
11346 if (ABI_64_P (output_bfd))
11347 plt_entry = mips_n64_exec_plt0_entry;
11348 else if (ABI_N32_P (output_bfd))
11349 plt_entry = mips_n32_exec_plt0_entry;
11350 else if (!htab->plt_header_is_comp)
11351 plt_entry = mips_o32_exec_plt0_entry;
11352 else if (htab->insn32)
11353 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11354 else
11355 plt_entry = micromips_o32_exec_plt0_entry;
11356
11357 /* Calculate the value of .got.plt. */
11358 gotplt_value = (htab->root.sgotplt->output_section->vma
11359 + htab->root.sgotplt->output_offset);
11360 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11361 gotplt_value_low = gotplt_value & 0xffff;
11362
11363 /* The PLT sequence is not safe for N64 if .got.plt's address can
11364 not be loaded in two instructions. */
11365 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11366 || ~(gotplt_value | 0x7fffffff) == 0);
11367
11368 /* Install the PLT header. */
11369 loc = htab->root.splt->contents;
11370 if (plt_entry == micromips_o32_exec_plt0_entry)
11371 {
11372 bfd_vma gotpc_offset;
11373 bfd_vma loc_address;
11374 size_t i;
11375
11376 BFD_ASSERT (gotplt_value % 4 == 0);
11377
11378 loc_address = (htab->root.splt->output_section->vma
11379 + htab->root.splt->output_offset);
11380 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11381
11382 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11383 if (gotpc_offset + 0x1000000 >= 0x2000000)
11384 {
11385 _bfd_error_handler
11386 /* xgettext:c-format */
11387 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11388 output_bfd,
11389 htab->root.sgotplt->output_section,
11390 htab->root.splt->output_section,
11391 (long) gotpc_offset);
11392 bfd_set_error (bfd_error_no_error);
11393 return FALSE;
11394 }
11395 bfd_put_16 (output_bfd,
11396 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11397 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11398 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11399 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11400 }
11401 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11402 {
11403 size_t i;
11404
11405 bfd_put_16 (output_bfd, plt_entry[0], loc);
11406 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11407 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11408 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11409 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11410 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11411 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11412 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11413 }
11414 else
11415 {
11416 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11417 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11418 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11419 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11420 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11421 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11422 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11423 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11424 }
11425
11426 return TRUE;
11427 }
11428
11429 /* Install the PLT header for a VxWorks executable and finalize the
11430 contents of .rela.plt.unloaded. */
11431
11432 static void
11433 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11434 {
11435 Elf_Internal_Rela rela;
11436 bfd_byte *loc;
11437 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11438 static const bfd_vma *plt_entry;
11439 struct mips_elf_link_hash_table *htab;
11440
11441 htab = mips_elf_hash_table (info);
11442 BFD_ASSERT (htab != NULL);
11443
11444 plt_entry = mips_vxworks_exec_plt0_entry;
11445
11446 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11447 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11448 + htab->root.hgot->root.u.def.section->output_offset
11449 + htab->root.hgot->root.u.def.value);
11450
11451 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11452 got_value_low = got_value & 0xffff;
11453
11454 /* Calculate the address of the PLT header. */
11455 plt_address = (htab->root.splt->output_section->vma
11456 + htab->root.splt->output_offset);
11457
11458 /* Install the PLT header. */
11459 loc = htab->root.splt->contents;
11460 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11461 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11462 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11463 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11464 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11465 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11466
11467 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11468 loc = htab->srelplt2->contents;
11469 rela.r_offset = plt_address;
11470 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11471 rela.r_addend = 0;
11472 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11473 loc += sizeof (Elf32_External_Rela);
11474
11475 /* Output the relocation for the following addiu of
11476 %lo(_GLOBAL_OFFSET_TABLE_). */
11477 rela.r_offset += 4;
11478 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11479 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11480 loc += sizeof (Elf32_External_Rela);
11481
11482 /* Fix up the remaining relocations. They may have the wrong
11483 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11484 in which symbols were output. */
11485 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11486 {
11487 Elf_Internal_Rela rel;
11488
11489 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11490 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11491 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11492 loc += sizeof (Elf32_External_Rela);
11493
11494 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11495 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11496 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11497 loc += sizeof (Elf32_External_Rela);
11498
11499 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11500 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11501 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11502 loc += sizeof (Elf32_External_Rela);
11503 }
11504 }
11505
11506 /* Install the PLT header for a VxWorks shared library. */
11507
11508 static void
11509 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11510 {
11511 unsigned int i;
11512 struct mips_elf_link_hash_table *htab;
11513
11514 htab = mips_elf_hash_table (info);
11515 BFD_ASSERT (htab != NULL);
11516
11517 /* We just need to copy the entry byte-by-byte. */
11518 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11519 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11520 htab->root.splt->contents + i * 4);
11521 }
11522
11523 /* Finish up the dynamic sections. */
11524
11525 bfd_boolean
11526 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11527 struct bfd_link_info *info)
11528 {
11529 bfd *dynobj;
11530 asection *sdyn;
11531 asection *sgot;
11532 struct mips_got_info *gg, *g;
11533 struct mips_elf_link_hash_table *htab;
11534
11535 htab = mips_elf_hash_table (info);
11536 BFD_ASSERT (htab != NULL);
11537
11538 dynobj = elf_hash_table (info)->dynobj;
11539
11540 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11541
11542 sgot = htab->root.sgot;
11543 gg = htab->got_info;
11544
11545 if (elf_hash_table (info)->dynamic_sections_created)
11546 {
11547 bfd_byte *b;
11548 int dyn_to_skip = 0, dyn_skipped = 0;
11549
11550 BFD_ASSERT (sdyn != NULL);
11551 BFD_ASSERT (gg != NULL);
11552
11553 g = mips_elf_bfd_got (output_bfd, FALSE);
11554 BFD_ASSERT (g != NULL);
11555
11556 for (b = sdyn->contents;
11557 b < sdyn->contents + sdyn->size;
11558 b += MIPS_ELF_DYN_SIZE (dynobj))
11559 {
11560 Elf_Internal_Dyn dyn;
11561 const char *name;
11562 size_t elemsize;
11563 asection *s;
11564 bfd_boolean swap_out_p;
11565
11566 /* Read in the current dynamic entry. */
11567 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11568
11569 /* Assume that we're going to modify it and write it out. */
11570 swap_out_p = TRUE;
11571
11572 switch (dyn.d_tag)
11573 {
11574 case DT_RELENT:
11575 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11576 break;
11577
11578 case DT_RELAENT:
11579 BFD_ASSERT (htab->is_vxworks);
11580 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11581 break;
11582
11583 case DT_STRSZ:
11584 /* Rewrite DT_STRSZ. */
11585 dyn.d_un.d_val =
11586 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11587 break;
11588
11589 case DT_PLTGOT:
11590 s = htab->root.sgot;
11591 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11592 break;
11593
11594 case DT_MIPS_PLTGOT:
11595 s = htab->root.sgotplt;
11596 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11597 break;
11598
11599 case DT_MIPS_RLD_VERSION:
11600 dyn.d_un.d_val = 1; /* XXX */
11601 break;
11602
11603 case DT_MIPS_FLAGS:
11604 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11605 break;
11606
11607 case DT_MIPS_TIME_STAMP:
11608 {
11609 time_t t;
11610 time (&t);
11611 dyn.d_un.d_val = t;
11612 }
11613 break;
11614
11615 case DT_MIPS_ICHECKSUM:
11616 /* XXX FIXME: */
11617 swap_out_p = FALSE;
11618 break;
11619
11620 case DT_MIPS_IVERSION:
11621 /* XXX FIXME: */
11622 swap_out_p = FALSE;
11623 break;
11624
11625 case DT_MIPS_BASE_ADDRESS:
11626 s = output_bfd->sections;
11627 BFD_ASSERT (s != NULL);
11628 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11629 break;
11630
11631 case DT_MIPS_LOCAL_GOTNO:
11632 dyn.d_un.d_val = g->local_gotno;
11633 break;
11634
11635 case DT_MIPS_UNREFEXTNO:
11636 /* The index into the dynamic symbol table which is the
11637 entry of the first external symbol that is not
11638 referenced within the same object. */
11639 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11640 break;
11641
11642 case DT_MIPS_GOTSYM:
11643 if (htab->global_gotsym)
11644 {
11645 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11646 break;
11647 }
11648 /* In case if we don't have global got symbols we default
11649 to setting DT_MIPS_GOTSYM to the same value as
11650 DT_MIPS_SYMTABNO. */
11651 /* Fall through. */
11652
11653 case DT_MIPS_SYMTABNO:
11654 name = ".dynsym";
11655 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11656 s = bfd_get_linker_section (dynobj, name);
11657
11658 if (s != NULL)
11659 dyn.d_un.d_val = s->size / elemsize;
11660 else
11661 dyn.d_un.d_val = 0;
11662 break;
11663
11664 case DT_MIPS_HIPAGENO:
11665 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11666 break;
11667
11668 case DT_MIPS_RLD_MAP:
11669 {
11670 struct elf_link_hash_entry *h;
11671 h = mips_elf_hash_table (info)->rld_symbol;
11672 if (!h)
11673 {
11674 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11675 swap_out_p = FALSE;
11676 break;
11677 }
11678 s = h->root.u.def.section;
11679
11680 /* The MIPS_RLD_MAP tag stores the absolute address of the
11681 debug pointer. */
11682 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11683 + h->root.u.def.value);
11684 }
11685 break;
11686
11687 case DT_MIPS_RLD_MAP_REL:
11688 {
11689 struct elf_link_hash_entry *h;
11690 bfd_vma dt_addr, rld_addr;
11691 h = mips_elf_hash_table (info)->rld_symbol;
11692 if (!h)
11693 {
11694 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11695 swap_out_p = FALSE;
11696 break;
11697 }
11698 s = h->root.u.def.section;
11699
11700 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11701 pointer, relative to the address of the tag. */
11702 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11703 + (b - sdyn->contents));
11704 rld_addr = (s->output_section->vma + s->output_offset
11705 + h->root.u.def.value);
11706 dyn.d_un.d_ptr = rld_addr - dt_addr;
11707 }
11708 break;
11709
11710 case DT_MIPS_OPTIONS:
11711 s = (bfd_get_section_by_name
11712 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11713 dyn.d_un.d_ptr = s->vma;
11714 break;
11715
11716 case DT_PLTREL:
11717 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11718 if (htab->is_vxworks)
11719 dyn.d_un.d_val = DT_RELA;
11720 else
11721 dyn.d_un.d_val = DT_REL;
11722 break;
11723
11724 case DT_PLTRELSZ:
11725 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11726 dyn.d_un.d_val = htab->root.srelplt->size;
11727 break;
11728
11729 case DT_JMPREL:
11730 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11731 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11732 + htab->root.srelplt->output_offset);
11733 break;
11734
11735 case DT_TEXTREL:
11736 /* If we didn't need any text relocations after all, delete
11737 the dynamic tag. */
11738 if (!(info->flags & DF_TEXTREL))
11739 {
11740 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11741 swap_out_p = FALSE;
11742 }
11743 break;
11744
11745 case DT_FLAGS:
11746 /* If we didn't need any text relocations after all, clear
11747 DF_TEXTREL from DT_FLAGS. */
11748 if (!(info->flags & DF_TEXTREL))
11749 dyn.d_un.d_val &= ~DF_TEXTREL;
11750 else
11751 swap_out_p = FALSE;
11752 break;
11753
11754 default:
11755 swap_out_p = FALSE;
11756 if (htab->is_vxworks
11757 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11758 swap_out_p = TRUE;
11759 break;
11760 }
11761
11762 if (swap_out_p || dyn_skipped)
11763 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11764 (dynobj, &dyn, b - dyn_skipped);
11765
11766 if (dyn_to_skip)
11767 {
11768 dyn_skipped += dyn_to_skip;
11769 dyn_to_skip = 0;
11770 }
11771 }
11772
11773 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11774 if (dyn_skipped > 0)
11775 memset (b - dyn_skipped, 0, dyn_skipped);
11776 }
11777
11778 if (sgot != NULL && sgot->size > 0
11779 && !bfd_is_abs_section (sgot->output_section))
11780 {
11781 if (htab->is_vxworks)
11782 {
11783 /* The first entry of the global offset table points to the
11784 ".dynamic" section. The second is initialized by the
11785 loader and contains the shared library identifier.
11786 The third is also initialized by the loader and points
11787 to the lazy resolution stub. */
11788 MIPS_ELF_PUT_WORD (output_bfd,
11789 sdyn->output_offset + sdyn->output_section->vma,
11790 sgot->contents);
11791 MIPS_ELF_PUT_WORD (output_bfd, 0,
11792 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11793 MIPS_ELF_PUT_WORD (output_bfd, 0,
11794 sgot->contents
11795 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11796 }
11797 else
11798 {
11799 /* The first entry of the global offset table will be filled at
11800 runtime. The second entry will be used by some runtime loaders.
11801 This isn't the case of IRIX rld. */
11802 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11803 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11804 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11805 }
11806
11807 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11808 = MIPS_ELF_GOT_SIZE (output_bfd);
11809 }
11810
11811 /* Generate dynamic relocations for the non-primary gots. */
11812 if (gg != NULL && gg->next)
11813 {
11814 Elf_Internal_Rela rel[3];
11815 bfd_vma addend = 0;
11816
11817 memset (rel, 0, sizeof (rel));
11818 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11819
11820 for (g = gg->next; g->next != gg; g = g->next)
11821 {
11822 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11823 + g->next->tls_gotno;
11824
11825 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11826 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11827 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11828 sgot->contents
11829 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11830
11831 if (! bfd_link_pic (info))
11832 continue;
11833
11834 for (; got_index < g->local_gotno; got_index++)
11835 {
11836 if (got_index >= g->assigned_low_gotno
11837 && got_index <= g->assigned_high_gotno)
11838 continue;
11839
11840 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11841 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11842 if (!(mips_elf_create_dynamic_relocation
11843 (output_bfd, info, rel, NULL,
11844 bfd_abs_section_ptr,
11845 0, &addend, sgot)))
11846 return FALSE;
11847 BFD_ASSERT (addend == 0);
11848 }
11849 }
11850 }
11851
11852 /* The generation of dynamic relocations for the non-primary gots
11853 adds more dynamic relocations. We cannot count them until
11854 here. */
11855
11856 if (elf_hash_table (info)->dynamic_sections_created)
11857 {
11858 bfd_byte *b;
11859 bfd_boolean swap_out_p;
11860
11861 BFD_ASSERT (sdyn != NULL);
11862
11863 for (b = sdyn->contents;
11864 b < sdyn->contents + sdyn->size;
11865 b += MIPS_ELF_DYN_SIZE (dynobj))
11866 {
11867 Elf_Internal_Dyn dyn;
11868 asection *s;
11869
11870 /* Read in the current dynamic entry. */
11871 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11872
11873 /* Assume that we're going to modify it and write it out. */
11874 swap_out_p = TRUE;
11875
11876 switch (dyn.d_tag)
11877 {
11878 case DT_RELSZ:
11879 /* Reduce DT_RELSZ to account for any relocations we
11880 decided not to make. This is for the n64 irix rld,
11881 which doesn't seem to apply any relocations if there
11882 are trailing null entries. */
11883 s = mips_elf_rel_dyn_section (info, FALSE);
11884 dyn.d_un.d_val = (s->reloc_count
11885 * (ABI_64_P (output_bfd)
11886 ? sizeof (Elf64_Mips_External_Rel)
11887 : sizeof (Elf32_External_Rel)));
11888 /* Adjust the section size too. Tools like the prelinker
11889 can reasonably expect the values to the same. */
11890 elf_section_data (s->output_section)->this_hdr.sh_size
11891 = dyn.d_un.d_val;
11892 break;
11893
11894 default:
11895 swap_out_p = FALSE;
11896 break;
11897 }
11898
11899 if (swap_out_p)
11900 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11901 (dynobj, &dyn, b);
11902 }
11903 }
11904
11905 {
11906 asection *s;
11907 Elf32_compact_rel cpt;
11908
11909 if (SGI_COMPAT (output_bfd))
11910 {
11911 /* Write .compact_rel section out. */
11912 s = bfd_get_linker_section (dynobj, ".compact_rel");
11913 if (s != NULL)
11914 {
11915 cpt.id1 = 1;
11916 cpt.num = s->reloc_count;
11917 cpt.id2 = 2;
11918 cpt.offset = (s->output_section->filepos
11919 + sizeof (Elf32_External_compact_rel));
11920 cpt.reserved0 = 0;
11921 cpt.reserved1 = 0;
11922 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11923 ((Elf32_External_compact_rel *)
11924 s->contents));
11925
11926 /* Clean up a dummy stub function entry in .text. */
11927 if (htab->sstubs != NULL)
11928 {
11929 file_ptr dummy_offset;
11930
11931 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11932 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11933 memset (htab->sstubs->contents + dummy_offset, 0,
11934 htab->function_stub_size);
11935 }
11936 }
11937 }
11938
11939 /* The psABI says that the dynamic relocations must be sorted in
11940 increasing order of r_symndx. The VxWorks EABI doesn't require
11941 this, and because the code below handles REL rather than RELA
11942 relocations, using it for VxWorks would be outright harmful. */
11943 if (!htab->is_vxworks)
11944 {
11945 s = mips_elf_rel_dyn_section (info, FALSE);
11946 if (s != NULL
11947 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11948 {
11949 reldyn_sorting_bfd = output_bfd;
11950
11951 if (ABI_64_P (output_bfd))
11952 qsort ((Elf64_External_Rel *) s->contents + 1,
11953 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11954 sort_dynamic_relocs_64);
11955 else
11956 qsort ((Elf32_External_Rel *) s->contents + 1,
11957 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11958 sort_dynamic_relocs);
11959 }
11960 }
11961 }
11962
11963 if (htab->root.splt && htab->root.splt->size > 0)
11964 {
11965 if (htab->is_vxworks)
11966 {
11967 if (bfd_link_pic (info))
11968 mips_vxworks_finish_shared_plt (output_bfd, info);
11969 else
11970 mips_vxworks_finish_exec_plt (output_bfd, info);
11971 }
11972 else
11973 {
11974 BFD_ASSERT (!bfd_link_pic (info));
11975 if (!mips_finish_exec_plt (output_bfd, info))
11976 return FALSE;
11977 }
11978 }
11979 return TRUE;
11980 }
11981
11982
11983 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11984
11985 static void
11986 mips_set_isa_flags (bfd *abfd)
11987 {
11988 flagword val;
11989
11990 switch (bfd_get_mach (abfd))
11991 {
11992 default:
11993 case bfd_mach_mips3000:
11994 val = E_MIPS_ARCH_1;
11995 break;
11996
11997 case bfd_mach_mips3900:
11998 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11999 break;
12000
12001 case bfd_mach_mips6000:
12002 val = E_MIPS_ARCH_2;
12003 break;
12004
12005 case bfd_mach_mips4000:
12006 case bfd_mach_mips4300:
12007 case bfd_mach_mips4400:
12008 case bfd_mach_mips4600:
12009 val = E_MIPS_ARCH_3;
12010 break;
12011
12012 case bfd_mach_mips4010:
12013 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
12014 break;
12015
12016 case bfd_mach_mips4100:
12017 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12018 break;
12019
12020 case bfd_mach_mips4111:
12021 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12022 break;
12023
12024 case bfd_mach_mips4120:
12025 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12026 break;
12027
12028 case bfd_mach_mips4650:
12029 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12030 break;
12031
12032 case bfd_mach_mips5400:
12033 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12034 break;
12035
12036 case bfd_mach_mips5500:
12037 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12038 break;
12039
12040 case bfd_mach_mips5900:
12041 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12042 break;
12043
12044 case bfd_mach_mips9000:
12045 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12046 break;
12047
12048 case bfd_mach_mips5000:
12049 case bfd_mach_mips7000:
12050 case bfd_mach_mips8000:
12051 case bfd_mach_mips10000:
12052 case bfd_mach_mips12000:
12053 case bfd_mach_mips14000:
12054 case bfd_mach_mips16000:
12055 val = E_MIPS_ARCH_4;
12056 break;
12057
12058 case bfd_mach_mips5:
12059 val = E_MIPS_ARCH_5;
12060 break;
12061
12062 case bfd_mach_mips_loongson_2e:
12063 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12064 break;
12065
12066 case bfd_mach_mips_loongson_2f:
12067 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12068 break;
12069
12070 case bfd_mach_mips_sb1:
12071 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12072 break;
12073
12074 case bfd_mach_mips_loongson_3a:
12075 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
12076 break;
12077
12078 case bfd_mach_mips_octeon:
12079 case bfd_mach_mips_octeonp:
12080 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12081 break;
12082
12083 case bfd_mach_mips_octeon3:
12084 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12085 break;
12086
12087 case bfd_mach_mips_xlr:
12088 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12089 break;
12090
12091 case bfd_mach_mips_octeon2:
12092 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12093 break;
12094
12095 case bfd_mach_mipsisa32:
12096 val = E_MIPS_ARCH_32;
12097 break;
12098
12099 case bfd_mach_mipsisa64:
12100 val = E_MIPS_ARCH_64;
12101 break;
12102
12103 case bfd_mach_mipsisa32r2:
12104 case bfd_mach_mipsisa32r3:
12105 case bfd_mach_mipsisa32r5:
12106 val = E_MIPS_ARCH_32R2;
12107 break;
12108
12109 case bfd_mach_mipsisa64r2:
12110 case bfd_mach_mipsisa64r3:
12111 case bfd_mach_mipsisa64r5:
12112 val = E_MIPS_ARCH_64R2;
12113 break;
12114
12115 case bfd_mach_mipsisa32r6:
12116 val = E_MIPS_ARCH_32R6;
12117 break;
12118
12119 case bfd_mach_mipsisa64r6:
12120 val = E_MIPS_ARCH_64R6;
12121 break;
12122 }
12123 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12124 elf_elfheader (abfd)->e_flags |= val;
12125
12126 }
12127
12128
12129 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12130 Don't do so for code sections. We want to keep ordering of HI16/LO16
12131 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12132 relocs to be sorted. */
12133
12134 bfd_boolean
12135 _bfd_mips_elf_sort_relocs_p (asection *sec)
12136 {
12137 return (sec->flags & SEC_CODE) == 0;
12138 }
12139
12140
12141 /* The final processing done just before writing out a MIPS ELF object
12142 file. This gets the MIPS architecture right based on the machine
12143 number. This is used by both the 32-bit and the 64-bit ABI. */
12144
12145 void
12146 _bfd_mips_elf_final_write_processing (bfd *abfd,
12147 bfd_boolean linker ATTRIBUTE_UNUSED)
12148 {
12149 unsigned int i;
12150 Elf_Internal_Shdr **hdrpp;
12151 const char *name;
12152 asection *sec;
12153
12154 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12155 is nonzero. This is for compatibility with old objects, which used
12156 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12157 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12158 mips_set_isa_flags (abfd);
12159
12160 /* Set the sh_info field for .gptab sections and other appropriate
12161 info for each special section. */
12162 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12163 i < elf_numsections (abfd);
12164 i++, hdrpp++)
12165 {
12166 switch ((*hdrpp)->sh_type)
12167 {
12168 case SHT_MIPS_MSYM:
12169 case SHT_MIPS_LIBLIST:
12170 sec = bfd_get_section_by_name (abfd, ".dynstr");
12171 if (sec != NULL)
12172 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12173 break;
12174
12175 case SHT_MIPS_GPTAB:
12176 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12177 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12178 BFD_ASSERT (name != NULL
12179 && CONST_STRNEQ (name, ".gptab."));
12180 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12181 BFD_ASSERT (sec != NULL);
12182 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12183 break;
12184
12185 case SHT_MIPS_CONTENT:
12186 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12187 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12188 BFD_ASSERT (name != NULL
12189 && CONST_STRNEQ (name, ".MIPS.content"));
12190 sec = bfd_get_section_by_name (abfd,
12191 name + sizeof ".MIPS.content" - 1);
12192 BFD_ASSERT (sec != NULL);
12193 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12194 break;
12195
12196 case SHT_MIPS_SYMBOL_LIB:
12197 sec = bfd_get_section_by_name (abfd, ".dynsym");
12198 if (sec != NULL)
12199 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12200 sec = bfd_get_section_by_name (abfd, ".liblist");
12201 if (sec != NULL)
12202 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12203 break;
12204
12205 case SHT_MIPS_EVENTS:
12206 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12207 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12208 BFD_ASSERT (name != NULL);
12209 if (CONST_STRNEQ (name, ".MIPS.events"))
12210 sec = bfd_get_section_by_name (abfd,
12211 name + sizeof ".MIPS.events" - 1);
12212 else
12213 {
12214 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12215 sec = bfd_get_section_by_name (abfd,
12216 (name
12217 + sizeof ".MIPS.post_rel" - 1));
12218 }
12219 BFD_ASSERT (sec != NULL);
12220 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12221 break;
12222
12223 }
12224 }
12225 }
12226 \f
12227 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12228 segments. */
12229
12230 int
12231 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12232 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12233 {
12234 asection *s;
12235 int ret = 0;
12236
12237 /* See if we need a PT_MIPS_REGINFO segment. */
12238 s = bfd_get_section_by_name (abfd, ".reginfo");
12239 if (s && (s->flags & SEC_LOAD))
12240 ++ret;
12241
12242 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12243 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12244 ++ret;
12245
12246 /* See if we need a PT_MIPS_OPTIONS segment. */
12247 if (IRIX_COMPAT (abfd) == ict_irix6
12248 && bfd_get_section_by_name (abfd,
12249 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12250 ++ret;
12251
12252 /* See if we need a PT_MIPS_RTPROC segment. */
12253 if (IRIX_COMPAT (abfd) == ict_irix5
12254 && bfd_get_section_by_name (abfd, ".dynamic")
12255 && bfd_get_section_by_name (abfd, ".mdebug"))
12256 ++ret;
12257
12258 /* Allocate a PT_NULL header in dynamic objects. See
12259 _bfd_mips_elf_modify_segment_map for details. */
12260 if (!SGI_COMPAT (abfd)
12261 && bfd_get_section_by_name (abfd, ".dynamic"))
12262 ++ret;
12263
12264 return ret;
12265 }
12266
12267 /* Modify the segment map for an IRIX5 executable. */
12268
12269 bfd_boolean
12270 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12271 struct bfd_link_info *info)
12272 {
12273 asection *s;
12274 struct elf_segment_map *m, **pm;
12275 bfd_size_type amt;
12276
12277 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12278 segment. */
12279 s = bfd_get_section_by_name (abfd, ".reginfo");
12280 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12281 {
12282 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12283 if (m->p_type == PT_MIPS_REGINFO)
12284 break;
12285 if (m == NULL)
12286 {
12287 amt = sizeof *m;
12288 m = bfd_zalloc (abfd, amt);
12289 if (m == NULL)
12290 return FALSE;
12291
12292 m->p_type = PT_MIPS_REGINFO;
12293 m->count = 1;
12294 m->sections[0] = s;
12295
12296 /* We want to put it after the PHDR and INTERP segments. */
12297 pm = &elf_seg_map (abfd);
12298 while (*pm != NULL
12299 && ((*pm)->p_type == PT_PHDR
12300 || (*pm)->p_type == PT_INTERP))
12301 pm = &(*pm)->next;
12302
12303 m->next = *pm;
12304 *pm = m;
12305 }
12306 }
12307
12308 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12309 segment. */
12310 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12311 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12312 {
12313 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12314 if (m->p_type == PT_MIPS_ABIFLAGS)
12315 break;
12316 if (m == NULL)
12317 {
12318 amt = sizeof *m;
12319 m = bfd_zalloc (abfd, amt);
12320 if (m == NULL)
12321 return FALSE;
12322
12323 m->p_type = PT_MIPS_ABIFLAGS;
12324 m->count = 1;
12325 m->sections[0] = s;
12326
12327 /* We want to put it after the PHDR and INTERP segments. */
12328 pm = &elf_seg_map (abfd);
12329 while (*pm != NULL
12330 && ((*pm)->p_type == PT_PHDR
12331 || (*pm)->p_type == PT_INTERP))
12332 pm = &(*pm)->next;
12333
12334 m->next = *pm;
12335 *pm = m;
12336 }
12337 }
12338
12339 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12340 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12341 PT_MIPS_OPTIONS segment immediately following the program header
12342 table. */
12343 if (NEWABI_P (abfd)
12344 /* On non-IRIX6 new abi, we'll have already created a segment
12345 for this section, so don't create another. I'm not sure this
12346 is not also the case for IRIX 6, but I can't test it right
12347 now. */
12348 && IRIX_COMPAT (abfd) == ict_irix6)
12349 {
12350 for (s = abfd->sections; s; s = s->next)
12351 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12352 break;
12353
12354 if (s)
12355 {
12356 struct elf_segment_map *options_segment;
12357
12358 pm = &elf_seg_map (abfd);
12359 while (*pm != NULL
12360 && ((*pm)->p_type == PT_PHDR
12361 || (*pm)->p_type == PT_INTERP))
12362 pm = &(*pm)->next;
12363
12364 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12365 {
12366 amt = sizeof (struct elf_segment_map);
12367 options_segment = bfd_zalloc (abfd, amt);
12368 options_segment->next = *pm;
12369 options_segment->p_type = PT_MIPS_OPTIONS;
12370 options_segment->p_flags = PF_R;
12371 options_segment->p_flags_valid = TRUE;
12372 options_segment->count = 1;
12373 options_segment->sections[0] = s;
12374 *pm = options_segment;
12375 }
12376 }
12377 }
12378 else
12379 {
12380 if (IRIX_COMPAT (abfd) == ict_irix5)
12381 {
12382 /* If there are .dynamic and .mdebug sections, we make a room
12383 for the RTPROC header. FIXME: Rewrite without section names. */
12384 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12385 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12386 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12387 {
12388 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12389 if (m->p_type == PT_MIPS_RTPROC)
12390 break;
12391 if (m == NULL)
12392 {
12393 amt = sizeof *m;
12394 m = bfd_zalloc (abfd, amt);
12395 if (m == NULL)
12396 return FALSE;
12397
12398 m->p_type = PT_MIPS_RTPROC;
12399
12400 s = bfd_get_section_by_name (abfd, ".rtproc");
12401 if (s == NULL)
12402 {
12403 m->count = 0;
12404 m->p_flags = 0;
12405 m->p_flags_valid = 1;
12406 }
12407 else
12408 {
12409 m->count = 1;
12410 m->sections[0] = s;
12411 }
12412
12413 /* We want to put it after the DYNAMIC segment. */
12414 pm = &elf_seg_map (abfd);
12415 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12416 pm = &(*pm)->next;
12417 if (*pm != NULL)
12418 pm = &(*pm)->next;
12419
12420 m->next = *pm;
12421 *pm = m;
12422 }
12423 }
12424 }
12425 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12426 .dynstr, .dynsym, and .hash sections, and everything in
12427 between. */
12428 for (pm = &elf_seg_map (abfd); *pm != NULL;
12429 pm = &(*pm)->next)
12430 if ((*pm)->p_type == PT_DYNAMIC)
12431 break;
12432 m = *pm;
12433 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12434 glibc's dynamic linker has traditionally derived the number of
12435 tags from the p_filesz field, and sometimes allocates stack
12436 arrays of that size. An overly-big PT_DYNAMIC segment can
12437 be actively harmful in such cases. Making PT_DYNAMIC contain
12438 other sections can also make life hard for the prelinker,
12439 which might move one of the other sections to a different
12440 PT_LOAD segment. */
12441 if (SGI_COMPAT (abfd)
12442 && m != NULL
12443 && m->count == 1
12444 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12445 {
12446 static const char *sec_names[] =
12447 {
12448 ".dynamic", ".dynstr", ".dynsym", ".hash"
12449 };
12450 bfd_vma low, high;
12451 unsigned int i, c;
12452 struct elf_segment_map *n;
12453
12454 low = ~(bfd_vma) 0;
12455 high = 0;
12456 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12457 {
12458 s = bfd_get_section_by_name (abfd, sec_names[i]);
12459 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12460 {
12461 bfd_size_type sz;
12462
12463 if (low > s->vma)
12464 low = s->vma;
12465 sz = s->size;
12466 if (high < s->vma + sz)
12467 high = s->vma + sz;
12468 }
12469 }
12470
12471 c = 0;
12472 for (s = abfd->sections; s != NULL; s = s->next)
12473 if ((s->flags & SEC_LOAD) != 0
12474 && s->vma >= low
12475 && s->vma + s->size <= high)
12476 ++c;
12477
12478 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12479 n = bfd_zalloc (abfd, amt);
12480 if (n == NULL)
12481 return FALSE;
12482 *n = *m;
12483 n->count = c;
12484
12485 i = 0;
12486 for (s = abfd->sections; s != NULL; s = s->next)
12487 {
12488 if ((s->flags & SEC_LOAD) != 0
12489 && s->vma >= low
12490 && s->vma + s->size <= high)
12491 {
12492 n->sections[i] = s;
12493 ++i;
12494 }
12495 }
12496
12497 *pm = n;
12498 }
12499 }
12500
12501 /* Allocate a spare program header in dynamic objects so that tools
12502 like the prelinker can add an extra PT_LOAD entry.
12503
12504 If the prelinker needs to make room for a new PT_LOAD entry, its
12505 standard procedure is to move the first (read-only) sections into
12506 the new (writable) segment. However, the MIPS ABI requires
12507 .dynamic to be in a read-only segment, and the section will often
12508 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12509
12510 Although the prelinker could in principle move .dynamic to a
12511 writable segment, it seems better to allocate a spare program
12512 header instead, and avoid the need to move any sections.
12513 There is a long tradition of allocating spare dynamic tags,
12514 so allocating a spare program header seems like a natural
12515 extension.
12516
12517 If INFO is NULL, we may be copying an already prelinked binary
12518 with objcopy or strip, so do not add this header. */
12519 if (info != NULL
12520 && !SGI_COMPAT (abfd)
12521 && bfd_get_section_by_name (abfd, ".dynamic"))
12522 {
12523 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12524 if ((*pm)->p_type == PT_NULL)
12525 break;
12526 if (*pm == NULL)
12527 {
12528 m = bfd_zalloc (abfd, sizeof (*m));
12529 if (m == NULL)
12530 return FALSE;
12531
12532 m->p_type = PT_NULL;
12533 *pm = m;
12534 }
12535 }
12536
12537 return TRUE;
12538 }
12539 \f
12540 /* Return the section that should be marked against GC for a given
12541 relocation. */
12542
12543 asection *
12544 _bfd_mips_elf_gc_mark_hook (asection *sec,
12545 struct bfd_link_info *info,
12546 Elf_Internal_Rela *rel,
12547 struct elf_link_hash_entry *h,
12548 Elf_Internal_Sym *sym)
12549 {
12550 /* ??? Do mips16 stub sections need to be handled special? */
12551
12552 if (h != NULL)
12553 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12554 {
12555 case R_MIPS_GNU_VTINHERIT:
12556 case R_MIPS_GNU_VTENTRY:
12557 return NULL;
12558 }
12559
12560 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12561 }
12562
12563 /* Update the got entry reference counts for the section being removed. */
12564
12565 bfd_boolean
12566 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12567 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12568 asection *sec ATTRIBUTE_UNUSED,
12569 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12570 {
12571 #if 0
12572 Elf_Internal_Shdr *symtab_hdr;
12573 struct elf_link_hash_entry **sym_hashes;
12574 bfd_signed_vma *local_got_refcounts;
12575 const Elf_Internal_Rela *rel, *relend;
12576 unsigned long r_symndx;
12577 struct elf_link_hash_entry *h;
12578
12579 if (bfd_link_relocatable (info))
12580 return TRUE;
12581
12582 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12583 sym_hashes = elf_sym_hashes (abfd);
12584 local_got_refcounts = elf_local_got_refcounts (abfd);
12585
12586 relend = relocs + sec->reloc_count;
12587 for (rel = relocs; rel < relend; rel++)
12588 switch (ELF_R_TYPE (abfd, rel->r_info))
12589 {
12590 case R_MIPS16_GOT16:
12591 case R_MIPS16_CALL16:
12592 case R_MIPS_GOT16:
12593 case R_MIPS_CALL16:
12594 case R_MIPS_CALL_HI16:
12595 case R_MIPS_CALL_LO16:
12596 case R_MIPS_GOT_HI16:
12597 case R_MIPS_GOT_LO16:
12598 case R_MIPS_GOT_DISP:
12599 case R_MIPS_GOT_PAGE:
12600 case R_MIPS_GOT_OFST:
12601 case R_MICROMIPS_GOT16:
12602 case R_MICROMIPS_CALL16:
12603 case R_MICROMIPS_CALL_HI16:
12604 case R_MICROMIPS_CALL_LO16:
12605 case R_MICROMIPS_GOT_HI16:
12606 case R_MICROMIPS_GOT_LO16:
12607 case R_MICROMIPS_GOT_DISP:
12608 case R_MICROMIPS_GOT_PAGE:
12609 case R_MICROMIPS_GOT_OFST:
12610 /* ??? It would seem that the existing MIPS code does no sort
12611 of reference counting or whatnot on its GOT and PLT entries,
12612 so it is not possible to garbage collect them at this time. */
12613 break;
12614
12615 default:
12616 break;
12617 }
12618 #endif
12619
12620 return TRUE;
12621 }
12622
12623 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12624
12625 bfd_boolean
12626 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12627 elf_gc_mark_hook_fn gc_mark_hook)
12628 {
12629 bfd *sub;
12630
12631 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12632
12633 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12634 {
12635 asection *o;
12636
12637 if (! is_mips_elf (sub))
12638 continue;
12639
12640 for (o = sub->sections; o != NULL; o = o->next)
12641 if (!o->gc_mark
12642 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12643 (bfd_get_section_name (sub, o)))
12644 {
12645 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12646 return FALSE;
12647 }
12648 }
12649
12650 return TRUE;
12651 }
12652 \f
12653 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12654 hiding the old indirect symbol. Process additional relocation
12655 information. Also called for weakdefs, in which case we just let
12656 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12657
12658 void
12659 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12660 struct elf_link_hash_entry *dir,
12661 struct elf_link_hash_entry *ind)
12662 {
12663 struct mips_elf_link_hash_entry *dirmips, *indmips;
12664
12665 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12666
12667 dirmips = (struct mips_elf_link_hash_entry *) dir;
12668 indmips = (struct mips_elf_link_hash_entry *) ind;
12669 /* Any absolute non-dynamic relocations against an indirect or weak
12670 definition will be against the target symbol. */
12671 if (indmips->has_static_relocs)
12672 dirmips->has_static_relocs = TRUE;
12673
12674 if (ind->root.type != bfd_link_hash_indirect)
12675 return;
12676
12677 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12678 if (indmips->readonly_reloc)
12679 dirmips->readonly_reloc = TRUE;
12680 if (indmips->no_fn_stub)
12681 dirmips->no_fn_stub = TRUE;
12682 if (indmips->fn_stub)
12683 {
12684 dirmips->fn_stub = indmips->fn_stub;
12685 indmips->fn_stub = NULL;
12686 }
12687 if (indmips->need_fn_stub)
12688 {
12689 dirmips->need_fn_stub = TRUE;
12690 indmips->need_fn_stub = FALSE;
12691 }
12692 if (indmips->call_stub)
12693 {
12694 dirmips->call_stub = indmips->call_stub;
12695 indmips->call_stub = NULL;
12696 }
12697 if (indmips->call_fp_stub)
12698 {
12699 dirmips->call_fp_stub = indmips->call_fp_stub;
12700 indmips->call_fp_stub = NULL;
12701 }
12702 if (indmips->global_got_area < dirmips->global_got_area)
12703 dirmips->global_got_area = indmips->global_got_area;
12704 if (indmips->global_got_area < GGA_NONE)
12705 indmips->global_got_area = GGA_NONE;
12706 if (indmips->has_nonpic_branches)
12707 dirmips->has_nonpic_branches = TRUE;
12708 }
12709 \f
12710 #define PDR_SIZE 32
12711
12712 bfd_boolean
12713 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12714 struct bfd_link_info *info)
12715 {
12716 asection *o;
12717 bfd_boolean ret = FALSE;
12718 unsigned char *tdata;
12719 size_t i, skip;
12720
12721 o = bfd_get_section_by_name (abfd, ".pdr");
12722 if (! o)
12723 return FALSE;
12724 if (o->size == 0)
12725 return FALSE;
12726 if (o->size % PDR_SIZE != 0)
12727 return FALSE;
12728 if (o->output_section != NULL
12729 && bfd_is_abs_section (o->output_section))
12730 return FALSE;
12731
12732 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12733 if (! tdata)
12734 return FALSE;
12735
12736 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12737 info->keep_memory);
12738 if (!cookie->rels)
12739 {
12740 free (tdata);
12741 return FALSE;
12742 }
12743
12744 cookie->rel = cookie->rels;
12745 cookie->relend = cookie->rels + o->reloc_count;
12746
12747 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12748 {
12749 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12750 {
12751 tdata[i] = 1;
12752 skip ++;
12753 }
12754 }
12755
12756 if (skip != 0)
12757 {
12758 mips_elf_section_data (o)->u.tdata = tdata;
12759 if (o->rawsize == 0)
12760 o->rawsize = o->size;
12761 o->size -= skip * PDR_SIZE;
12762 ret = TRUE;
12763 }
12764 else
12765 free (tdata);
12766
12767 if (! info->keep_memory)
12768 free (cookie->rels);
12769
12770 return ret;
12771 }
12772
12773 bfd_boolean
12774 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12775 {
12776 if (strcmp (sec->name, ".pdr") == 0)
12777 return TRUE;
12778 return FALSE;
12779 }
12780
12781 bfd_boolean
12782 _bfd_mips_elf_write_section (bfd *output_bfd,
12783 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12784 asection *sec, bfd_byte *contents)
12785 {
12786 bfd_byte *to, *from, *end;
12787 int i;
12788
12789 if (strcmp (sec->name, ".pdr") != 0)
12790 return FALSE;
12791
12792 if (mips_elf_section_data (sec)->u.tdata == NULL)
12793 return FALSE;
12794
12795 to = contents;
12796 end = contents + sec->size;
12797 for (from = contents, i = 0;
12798 from < end;
12799 from += PDR_SIZE, i++)
12800 {
12801 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12802 continue;
12803 if (to != from)
12804 memcpy (to, from, PDR_SIZE);
12805 to += PDR_SIZE;
12806 }
12807 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12808 sec->output_offset, sec->size);
12809 return TRUE;
12810 }
12811 \f
12812 /* microMIPS code retains local labels for linker relaxation. Omit them
12813 from output by default for clarity. */
12814
12815 bfd_boolean
12816 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12817 {
12818 return _bfd_elf_is_local_label_name (abfd, sym->name);
12819 }
12820
12821 /* MIPS ELF uses a special find_nearest_line routine in order the
12822 handle the ECOFF debugging information. */
12823
12824 struct mips_elf_find_line
12825 {
12826 struct ecoff_debug_info d;
12827 struct ecoff_find_line i;
12828 };
12829
12830 bfd_boolean
12831 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12832 asection *section, bfd_vma offset,
12833 const char **filename_ptr,
12834 const char **functionname_ptr,
12835 unsigned int *line_ptr,
12836 unsigned int *discriminator_ptr)
12837 {
12838 asection *msec;
12839
12840 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12841 filename_ptr, functionname_ptr,
12842 line_ptr, discriminator_ptr,
12843 dwarf_debug_sections,
12844 ABI_64_P (abfd) ? 8 : 0,
12845 &elf_tdata (abfd)->dwarf2_find_line_info))
12846 return TRUE;
12847
12848 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12849 filename_ptr, functionname_ptr,
12850 line_ptr))
12851 return TRUE;
12852
12853 msec = bfd_get_section_by_name (abfd, ".mdebug");
12854 if (msec != NULL)
12855 {
12856 flagword origflags;
12857 struct mips_elf_find_line *fi;
12858 const struct ecoff_debug_swap * const swap =
12859 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12860
12861 /* If we are called during a link, mips_elf_final_link may have
12862 cleared the SEC_HAS_CONTENTS field. We force it back on here
12863 if appropriate (which it normally will be). */
12864 origflags = msec->flags;
12865 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12866 msec->flags |= SEC_HAS_CONTENTS;
12867
12868 fi = mips_elf_tdata (abfd)->find_line_info;
12869 if (fi == NULL)
12870 {
12871 bfd_size_type external_fdr_size;
12872 char *fraw_src;
12873 char *fraw_end;
12874 struct fdr *fdr_ptr;
12875 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12876
12877 fi = bfd_zalloc (abfd, amt);
12878 if (fi == NULL)
12879 {
12880 msec->flags = origflags;
12881 return FALSE;
12882 }
12883
12884 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12885 {
12886 msec->flags = origflags;
12887 return FALSE;
12888 }
12889
12890 /* Swap in the FDR information. */
12891 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12892 fi->d.fdr = bfd_alloc (abfd, amt);
12893 if (fi->d.fdr == NULL)
12894 {
12895 msec->flags = origflags;
12896 return FALSE;
12897 }
12898 external_fdr_size = swap->external_fdr_size;
12899 fdr_ptr = fi->d.fdr;
12900 fraw_src = (char *) fi->d.external_fdr;
12901 fraw_end = (fraw_src
12902 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12903 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12904 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12905
12906 mips_elf_tdata (abfd)->find_line_info = fi;
12907
12908 /* Note that we don't bother to ever free this information.
12909 find_nearest_line is either called all the time, as in
12910 objdump -l, so the information should be saved, or it is
12911 rarely called, as in ld error messages, so the memory
12912 wasted is unimportant. Still, it would probably be a
12913 good idea for free_cached_info to throw it away. */
12914 }
12915
12916 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12917 &fi->i, filename_ptr, functionname_ptr,
12918 line_ptr))
12919 {
12920 msec->flags = origflags;
12921 return TRUE;
12922 }
12923
12924 msec->flags = origflags;
12925 }
12926
12927 /* Fall back on the generic ELF find_nearest_line routine. */
12928
12929 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12930 filename_ptr, functionname_ptr,
12931 line_ptr, discriminator_ptr);
12932 }
12933
12934 bfd_boolean
12935 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12936 const char **filename_ptr,
12937 const char **functionname_ptr,
12938 unsigned int *line_ptr)
12939 {
12940 bfd_boolean found;
12941 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12942 functionname_ptr, line_ptr,
12943 & elf_tdata (abfd)->dwarf2_find_line_info);
12944 return found;
12945 }
12946
12947 \f
12948 /* When are writing out the .options or .MIPS.options section,
12949 remember the bytes we are writing out, so that we can install the
12950 GP value in the section_processing routine. */
12951
12952 bfd_boolean
12953 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12954 const void *location,
12955 file_ptr offset, bfd_size_type count)
12956 {
12957 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12958 {
12959 bfd_byte *c;
12960
12961 if (elf_section_data (section) == NULL)
12962 {
12963 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12964 section->used_by_bfd = bfd_zalloc (abfd, amt);
12965 if (elf_section_data (section) == NULL)
12966 return FALSE;
12967 }
12968 c = mips_elf_section_data (section)->u.tdata;
12969 if (c == NULL)
12970 {
12971 c = bfd_zalloc (abfd, section->size);
12972 if (c == NULL)
12973 return FALSE;
12974 mips_elf_section_data (section)->u.tdata = c;
12975 }
12976
12977 memcpy (c + offset, location, count);
12978 }
12979
12980 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12981 count);
12982 }
12983
12984 /* This is almost identical to bfd_generic_get_... except that some
12985 MIPS relocations need to be handled specially. Sigh. */
12986
12987 bfd_byte *
12988 _bfd_elf_mips_get_relocated_section_contents
12989 (bfd *abfd,
12990 struct bfd_link_info *link_info,
12991 struct bfd_link_order *link_order,
12992 bfd_byte *data,
12993 bfd_boolean relocatable,
12994 asymbol **symbols)
12995 {
12996 /* Get enough memory to hold the stuff */
12997 bfd *input_bfd = link_order->u.indirect.section->owner;
12998 asection *input_section = link_order->u.indirect.section;
12999 bfd_size_type sz;
13000
13001 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13002 arelent **reloc_vector = NULL;
13003 long reloc_count;
13004
13005 if (reloc_size < 0)
13006 goto error_return;
13007
13008 reloc_vector = bfd_malloc (reloc_size);
13009 if (reloc_vector == NULL && reloc_size != 0)
13010 goto error_return;
13011
13012 /* read in the section */
13013 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13014 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
13015 goto error_return;
13016
13017 reloc_count = bfd_canonicalize_reloc (input_bfd,
13018 input_section,
13019 reloc_vector,
13020 symbols);
13021 if (reloc_count < 0)
13022 goto error_return;
13023
13024 if (reloc_count > 0)
13025 {
13026 arelent **parent;
13027 /* for mips */
13028 int gp_found;
13029 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13030
13031 {
13032 struct bfd_hash_entry *h;
13033 struct bfd_link_hash_entry *lh;
13034 /* Skip all this stuff if we aren't mixing formats. */
13035 if (abfd && input_bfd
13036 && abfd->xvec == input_bfd->xvec)
13037 lh = 0;
13038 else
13039 {
13040 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
13041 lh = (struct bfd_link_hash_entry *) h;
13042 }
13043 lookup:
13044 if (lh)
13045 {
13046 switch (lh->type)
13047 {
13048 case bfd_link_hash_undefined:
13049 case bfd_link_hash_undefweak:
13050 case bfd_link_hash_common:
13051 gp_found = 0;
13052 break;
13053 case bfd_link_hash_defined:
13054 case bfd_link_hash_defweak:
13055 gp_found = 1;
13056 gp = lh->u.def.value;
13057 break;
13058 case bfd_link_hash_indirect:
13059 case bfd_link_hash_warning:
13060 lh = lh->u.i.link;
13061 /* @@FIXME ignoring warning for now */
13062 goto lookup;
13063 case bfd_link_hash_new:
13064 default:
13065 abort ();
13066 }
13067 }
13068 else
13069 gp_found = 0;
13070 }
13071 /* end mips */
13072 for (parent = reloc_vector; *parent != NULL; parent++)
13073 {
13074 char *error_message = NULL;
13075 bfd_reloc_status_type r;
13076
13077 /* Specific to MIPS: Deal with relocation types that require
13078 knowing the gp of the output bfd. */
13079 asymbol *sym = *(*parent)->sym_ptr_ptr;
13080
13081 /* If we've managed to find the gp and have a special
13082 function for the relocation then go ahead, else default
13083 to the generic handling. */
13084 if (gp_found
13085 && (*parent)->howto->special_function
13086 == _bfd_mips_elf32_gprel16_reloc)
13087 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13088 input_section, relocatable,
13089 data, gp);
13090 else
13091 r = bfd_perform_relocation (input_bfd, *parent, data,
13092 input_section,
13093 relocatable ? abfd : NULL,
13094 &error_message);
13095
13096 if (relocatable)
13097 {
13098 asection *os = input_section->output_section;
13099
13100 /* A partial link, so keep the relocs */
13101 os->orelocation[os->reloc_count] = *parent;
13102 os->reloc_count++;
13103 }
13104
13105 if (r != bfd_reloc_ok)
13106 {
13107 switch (r)
13108 {
13109 case bfd_reloc_undefined:
13110 (*link_info->callbacks->undefined_symbol)
13111 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13112 input_bfd, input_section, (*parent)->address, TRUE);
13113 break;
13114 case bfd_reloc_dangerous:
13115 BFD_ASSERT (error_message != NULL);
13116 (*link_info->callbacks->reloc_dangerous)
13117 (link_info, error_message,
13118 input_bfd, input_section, (*parent)->address);
13119 break;
13120 case bfd_reloc_overflow:
13121 (*link_info->callbacks->reloc_overflow)
13122 (link_info, NULL,
13123 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13124 (*parent)->howto->name, (*parent)->addend,
13125 input_bfd, input_section, (*parent)->address);
13126 break;
13127 case bfd_reloc_outofrange:
13128 default:
13129 abort ();
13130 break;
13131 }
13132
13133 }
13134 }
13135 }
13136 if (reloc_vector != NULL)
13137 free (reloc_vector);
13138 return data;
13139
13140 error_return:
13141 if (reloc_vector != NULL)
13142 free (reloc_vector);
13143 return NULL;
13144 }
13145 \f
13146 static bfd_boolean
13147 mips_elf_relax_delete_bytes (bfd *abfd,
13148 asection *sec, bfd_vma addr, int count)
13149 {
13150 Elf_Internal_Shdr *symtab_hdr;
13151 unsigned int sec_shndx;
13152 bfd_byte *contents;
13153 Elf_Internal_Rela *irel, *irelend;
13154 Elf_Internal_Sym *isym;
13155 Elf_Internal_Sym *isymend;
13156 struct elf_link_hash_entry **sym_hashes;
13157 struct elf_link_hash_entry **end_hashes;
13158 struct elf_link_hash_entry **start_hashes;
13159 unsigned int symcount;
13160
13161 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13162 contents = elf_section_data (sec)->this_hdr.contents;
13163
13164 irel = elf_section_data (sec)->relocs;
13165 irelend = irel + sec->reloc_count;
13166
13167 /* Actually delete the bytes. */
13168 memmove (contents + addr, contents + addr + count,
13169 (size_t) (sec->size - addr - count));
13170 sec->size -= count;
13171
13172 /* Adjust all the relocs. */
13173 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13174 {
13175 /* Get the new reloc address. */
13176 if (irel->r_offset > addr)
13177 irel->r_offset -= count;
13178 }
13179
13180 BFD_ASSERT (addr % 2 == 0);
13181 BFD_ASSERT (count % 2 == 0);
13182
13183 /* Adjust the local symbols defined in this section. */
13184 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13185 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13186 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13187 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13188 isym->st_value -= count;
13189
13190 /* Now adjust the global symbols defined in this section. */
13191 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13192 - symtab_hdr->sh_info);
13193 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13194 end_hashes = sym_hashes + symcount;
13195
13196 for (; sym_hashes < end_hashes; sym_hashes++)
13197 {
13198 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13199
13200 if ((sym_hash->root.type == bfd_link_hash_defined
13201 || sym_hash->root.type == bfd_link_hash_defweak)
13202 && sym_hash->root.u.def.section == sec)
13203 {
13204 bfd_vma value = sym_hash->root.u.def.value;
13205
13206 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13207 value &= MINUS_TWO;
13208 if (value > addr)
13209 sym_hash->root.u.def.value -= count;
13210 }
13211 }
13212
13213 return TRUE;
13214 }
13215
13216
13217 /* Opcodes needed for microMIPS relaxation as found in
13218 opcodes/micromips-opc.c. */
13219
13220 struct opcode_descriptor {
13221 unsigned long match;
13222 unsigned long mask;
13223 };
13224
13225 /* The $ra register aka $31. */
13226
13227 #define RA 31
13228
13229 /* 32-bit instruction format register fields. */
13230
13231 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13232 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13233
13234 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13235
13236 #define OP16_VALID_REG(r) \
13237 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13238
13239
13240 /* 32-bit and 16-bit branches. */
13241
13242 static const struct opcode_descriptor b_insns_32[] = {
13243 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13244 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13245 { 0, 0 } /* End marker for find_match(). */
13246 };
13247
13248 static const struct opcode_descriptor bc_insn_32 =
13249 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13250
13251 static const struct opcode_descriptor bz_insn_32 =
13252 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13253
13254 static const struct opcode_descriptor bzal_insn_32 =
13255 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13256
13257 static const struct opcode_descriptor beq_insn_32 =
13258 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13259
13260 static const struct opcode_descriptor b_insn_16 =
13261 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13262
13263 static const struct opcode_descriptor bz_insn_16 =
13264 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13265
13266
13267 /* 32-bit and 16-bit branch EQ and NE zero. */
13268
13269 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13270 eq and second the ne. This convention is used when replacing a
13271 32-bit BEQ/BNE with the 16-bit version. */
13272
13273 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13274
13275 static const struct opcode_descriptor bz_rs_insns_32[] = {
13276 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13277 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13278 { 0, 0 } /* End marker for find_match(). */
13279 };
13280
13281 static const struct opcode_descriptor bz_rt_insns_32[] = {
13282 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13283 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13284 { 0, 0 } /* End marker for find_match(). */
13285 };
13286
13287 static const struct opcode_descriptor bzc_insns_32[] = {
13288 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13289 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13290 { 0, 0 } /* End marker for find_match(). */
13291 };
13292
13293 static const struct opcode_descriptor bz_insns_16[] = {
13294 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13295 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13296 { 0, 0 } /* End marker for find_match(). */
13297 };
13298
13299 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13300
13301 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13302 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13303
13304
13305 /* 32-bit instructions with a delay slot. */
13306
13307 static const struct opcode_descriptor jal_insn_32_bd16 =
13308 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13309
13310 static const struct opcode_descriptor jal_insn_32_bd32 =
13311 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13312
13313 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13314 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13315
13316 static const struct opcode_descriptor j_insn_32 =
13317 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13318
13319 static const struct opcode_descriptor jalr_insn_32 =
13320 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13321
13322 /* This table can be compacted, because no opcode replacement is made. */
13323
13324 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13325 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13326
13327 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13328 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13329
13330 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13331 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13332 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13333 { 0, 0 } /* End marker for find_match(). */
13334 };
13335
13336 /* This table can be compacted, because no opcode replacement is made. */
13337
13338 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13339 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13340
13341 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13342 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13343 { 0, 0 } /* End marker for find_match(). */
13344 };
13345
13346
13347 /* 16-bit instructions with a delay slot. */
13348
13349 static const struct opcode_descriptor jalr_insn_16_bd16 =
13350 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13351
13352 static const struct opcode_descriptor jalr_insn_16_bd32 =
13353 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13354
13355 static const struct opcode_descriptor jr_insn_16 =
13356 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13357
13358 #define JR16_REG(opcode) ((opcode) & 0x1f)
13359
13360 /* This table can be compacted, because no opcode replacement is made. */
13361
13362 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13363 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13364
13365 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13366 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13367 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13368 { 0, 0 } /* End marker for find_match(). */
13369 };
13370
13371
13372 /* LUI instruction. */
13373
13374 static const struct opcode_descriptor lui_insn =
13375 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13376
13377
13378 /* ADDIU instruction. */
13379
13380 static const struct opcode_descriptor addiu_insn =
13381 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13382
13383 static const struct opcode_descriptor addiupc_insn =
13384 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13385
13386 #define ADDIUPC_REG_FIELD(r) \
13387 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13388
13389
13390 /* Relaxable instructions in a JAL delay slot: MOVE. */
13391
13392 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13393 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13394 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13395 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13396
13397 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13398 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13399
13400 static const struct opcode_descriptor move_insns_32[] = {
13401 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13402 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13403 { 0, 0 } /* End marker for find_match(). */
13404 };
13405
13406 static const struct opcode_descriptor move_insn_16 =
13407 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13408
13409
13410 /* NOP instructions. */
13411
13412 static const struct opcode_descriptor nop_insn_32 =
13413 { /* "nop", "", */ 0x00000000, 0xffffffff };
13414
13415 static const struct opcode_descriptor nop_insn_16 =
13416 { /* "nop", "", */ 0x0c00, 0xffff };
13417
13418
13419 /* Instruction match support. */
13420
13421 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13422
13423 static int
13424 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13425 {
13426 unsigned long indx;
13427
13428 for (indx = 0; insn[indx].mask != 0; indx++)
13429 if (MATCH (opcode, insn[indx]))
13430 return indx;
13431
13432 return -1;
13433 }
13434
13435
13436 /* Branch and delay slot decoding support. */
13437
13438 /* If PTR points to what *might* be a 16-bit branch or jump, then
13439 return the minimum length of its delay slot, otherwise return 0.
13440 Non-zero results are not definitive as we might be checking against
13441 the second half of another instruction. */
13442
13443 static int
13444 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13445 {
13446 unsigned long opcode;
13447 int bdsize;
13448
13449 opcode = bfd_get_16 (abfd, ptr);
13450 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13451 /* 16-bit branch/jump with a 32-bit delay slot. */
13452 bdsize = 4;
13453 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13454 || find_match (opcode, ds_insns_16_bd16) >= 0)
13455 /* 16-bit branch/jump with a 16-bit delay slot. */
13456 bdsize = 2;
13457 else
13458 /* No delay slot. */
13459 bdsize = 0;
13460
13461 return bdsize;
13462 }
13463
13464 /* If PTR points to what *might* be a 32-bit branch or jump, then
13465 return the minimum length of its delay slot, otherwise return 0.
13466 Non-zero results are not definitive as we might be checking against
13467 the second half of another instruction. */
13468
13469 static int
13470 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13471 {
13472 unsigned long opcode;
13473 int bdsize;
13474
13475 opcode = bfd_get_micromips_32 (abfd, ptr);
13476 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13477 /* 32-bit branch/jump with a 32-bit delay slot. */
13478 bdsize = 4;
13479 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13480 /* 32-bit branch/jump with a 16-bit delay slot. */
13481 bdsize = 2;
13482 else
13483 /* No delay slot. */
13484 bdsize = 0;
13485
13486 return bdsize;
13487 }
13488
13489 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13490 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13491
13492 static bfd_boolean
13493 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13494 {
13495 unsigned long opcode;
13496
13497 opcode = bfd_get_16 (abfd, ptr);
13498 if (MATCH (opcode, b_insn_16)
13499 /* B16 */
13500 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13501 /* JR16 */
13502 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13503 /* BEQZ16, BNEZ16 */
13504 || (MATCH (opcode, jalr_insn_16_bd32)
13505 /* JALR16 */
13506 && reg != JR16_REG (opcode) && reg != RA))
13507 return TRUE;
13508
13509 return FALSE;
13510 }
13511
13512 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13513 then return TRUE, otherwise FALSE. */
13514
13515 static bfd_boolean
13516 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13517 {
13518 unsigned long opcode;
13519
13520 opcode = bfd_get_micromips_32 (abfd, ptr);
13521 if (MATCH (opcode, j_insn_32)
13522 /* J */
13523 || MATCH (opcode, bc_insn_32)
13524 /* BC1F, BC1T, BC2F, BC2T */
13525 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13526 /* JAL, JALX */
13527 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13528 /* BGEZ, BGTZ, BLEZ, BLTZ */
13529 || (MATCH (opcode, bzal_insn_32)
13530 /* BGEZAL, BLTZAL */
13531 && reg != OP32_SREG (opcode) && reg != RA)
13532 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13533 /* JALR, JALR.HB, BEQ, BNE */
13534 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13535 return TRUE;
13536
13537 return FALSE;
13538 }
13539
13540 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13541 IRELEND) at OFFSET indicate that there must be a compact branch there,
13542 then return TRUE, otherwise FALSE. */
13543
13544 static bfd_boolean
13545 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13546 const Elf_Internal_Rela *internal_relocs,
13547 const Elf_Internal_Rela *irelend)
13548 {
13549 const Elf_Internal_Rela *irel;
13550 unsigned long opcode;
13551
13552 opcode = bfd_get_micromips_32 (abfd, ptr);
13553 if (find_match (opcode, bzc_insns_32) < 0)
13554 return FALSE;
13555
13556 for (irel = internal_relocs; irel < irelend; irel++)
13557 if (irel->r_offset == offset
13558 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13559 return TRUE;
13560
13561 return FALSE;
13562 }
13563
13564 /* Bitsize checking. */
13565 #define IS_BITSIZE(val, N) \
13566 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13567 - (1ULL << ((N) - 1))) == (val))
13568
13569 \f
13570 bfd_boolean
13571 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13572 struct bfd_link_info *link_info,
13573 bfd_boolean *again)
13574 {
13575 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13576 Elf_Internal_Shdr *symtab_hdr;
13577 Elf_Internal_Rela *internal_relocs;
13578 Elf_Internal_Rela *irel, *irelend;
13579 bfd_byte *contents = NULL;
13580 Elf_Internal_Sym *isymbuf = NULL;
13581
13582 /* Assume nothing changes. */
13583 *again = FALSE;
13584
13585 /* We don't have to do anything for a relocatable link, if
13586 this section does not have relocs, or if this is not a
13587 code section. */
13588
13589 if (bfd_link_relocatable (link_info)
13590 || (sec->flags & SEC_RELOC) == 0
13591 || sec->reloc_count == 0
13592 || (sec->flags & SEC_CODE) == 0)
13593 return TRUE;
13594
13595 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13596
13597 /* Get a copy of the native relocations. */
13598 internal_relocs = (_bfd_elf_link_read_relocs
13599 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13600 link_info->keep_memory));
13601 if (internal_relocs == NULL)
13602 goto error_return;
13603
13604 /* Walk through them looking for relaxing opportunities. */
13605 irelend = internal_relocs + sec->reloc_count;
13606 for (irel = internal_relocs; irel < irelend; irel++)
13607 {
13608 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13609 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13610 bfd_boolean target_is_micromips_code_p;
13611 unsigned long opcode;
13612 bfd_vma symval;
13613 bfd_vma pcrval;
13614 bfd_byte *ptr;
13615 int fndopc;
13616
13617 /* The number of bytes to delete for relaxation and from where
13618 to delete these bytes starting at irel->r_offset. */
13619 int delcnt = 0;
13620 int deloff = 0;
13621
13622 /* If this isn't something that can be relaxed, then ignore
13623 this reloc. */
13624 if (r_type != R_MICROMIPS_HI16
13625 && r_type != R_MICROMIPS_PC16_S1
13626 && r_type != R_MICROMIPS_26_S1)
13627 continue;
13628
13629 /* Get the section contents if we haven't done so already. */
13630 if (contents == NULL)
13631 {
13632 /* Get cached copy if it exists. */
13633 if (elf_section_data (sec)->this_hdr.contents != NULL)
13634 contents = elf_section_data (sec)->this_hdr.contents;
13635 /* Go get them off disk. */
13636 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13637 goto error_return;
13638 }
13639 ptr = contents + irel->r_offset;
13640
13641 /* Read this BFD's local symbols if we haven't done so already. */
13642 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13643 {
13644 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13645 if (isymbuf == NULL)
13646 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13647 symtab_hdr->sh_info, 0,
13648 NULL, NULL, NULL);
13649 if (isymbuf == NULL)
13650 goto error_return;
13651 }
13652
13653 /* Get the value of the symbol referred to by the reloc. */
13654 if (r_symndx < symtab_hdr->sh_info)
13655 {
13656 /* A local symbol. */
13657 Elf_Internal_Sym *isym;
13658 asection *sym_sec;
13659
13660 isym = isymbuf + r_symndx;
13661 if (isym->st_shndx == SHN_UNDEF)
13662 sym_sec = bfd_und_section_ptr;
13663 else if (isym->st_shndx == SHN_ABS)
13664 sym_sec = bfd_abs_section_ptr;
13665 else if (isym->st_shndx == SHN_COMMON)
13666 sym_sec = bfd_com_section_ptr;
13667 else
13668 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13669 symval = (isym->st_value
13670 + sym_sec->output_section->vma
13671 + sym_sec->output_offset);
13672 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13673 }
13674 else
13675 {
13676 unsigned long indx;
13677 struct elf_link_hash_entry *h;
13678
13679 /* An external symbol. */
13680 indx = r_symndx - symtab_hdr->sh_info;
13681 h = elf_sym_hashes (abfd)[indx];
13682 BFD_ASSERT (h != NULL);
13683
13684 if (h->root.type != bfd_link_hash_defined
13685 && h->root.type != bfd_link_hash_defweak)
13686 /* This appears to be a reference to an undefined
13687 symbol. Just ignore it -- it will be caught by the
13688 regular reloc processing. */
13689 continue;
13690
13691 symval = (h->root.u.def.value
13692 + h->root.u.def.section->output_section->vma
13693 + h->root.u.def.section->output_offset);
13694 target_is_micromips_code_p = (!h->needs_plt
13695 && ELF_ST_IS_MICROMIPS (h->other));
13696 }
13697
13698
13699 /* For simplicity of coding, we are going to modify the
13700 section contents, the section relocs, and the BFD symbol
13701 table. We must tell the rest of the code not to free up this
13702 information. It would be possible to instead create a table
13703 of changes which have to be made, as is done in coff-mips.c;
13704 that would be more work, but would require less memory when
13705 the linker is run. */
13706
13707 /* Only 32-bit instructions relaxed. */
13708 if (irel->r_offset + 4 > sec->size)
13709 continue;
13710
13711 opcode = bfd_get_micromips_32 (abfd, ptr);
13712
13713 /* This is the pc-relative distance from the instruction the
13714 relocation is applied to, to the symbol referred. */
13715 pcrval = (symval
13716 - (sec->output_section->vma + sec->output_offset)
13717 - irel->r_offset);
13718
13719 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13720 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13721 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13722
13723 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13724
13725 where pcrval has first to be adjusted to apply against the LO16
13726 location (we make the adjustment later on, when we have figured
13727 out the offset). */
13728 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13729 {
13730 bfd_boolean bzc = FALSE;
13731 unsigned long nextopc;
13732 unsigned long reg;
13733 bfd_vma offset;
13734
13735 /* Give up if the previous reloc was a HI16 against this symbol
13736 too. */
13737 if (irel > internal_relocs
13738 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13739 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13740 continue;
13741
13742 /* Or if the next reloc is not a LO16 against this symbol. */
13743 if (irel + 1 >= irelend
13744 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13745 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13746 continue;
13747
13748 /* Or if the second next reloc is a LO16 against this symbol too. */
13749 if (irel + 2 >= irelend
13750 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13751 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13752 continue;
13753
13754 /* See if the LUI instruction *might* be in a branch delay slot.
13755 We check whether what looks like a 16-bit branch or jump is
13756 actually an immediate argument to a compact branch, and let
13757 it through if so. */
13758 if (irel->r_offset >= 2
13759 && check_br16_dslot (abfd, ptr - 2)
13760 && !(irel->r_offset >= 4
13761 && (bzc = check_relocated_bzc (abfd,
13762 ptr - 4, irel->r_offset - 4,
13763 internal_relocs, irelend))))
13764 continue;
13765 if (irel->r_offset >= 4
13766 && !bzc
13767 && check_br32_dslot (abfd, ptr - 4))
13768 continue;
13769
13770 reg = OP32_SREG (opcode);
13771
13772 /* We only relax adjacent instructions or ones separated with
13773 a branch or jump that has a delay slot. The branch or jump
13774 must not fiddle with the register used to hold the address.
13775 Subtract 4 for the LUI itself. */
13776 offset = irel[1].r_offset - irel[0].r_offset;
13777 switch (offset - 4)
13778 {
13779 case 0:
13780 break;
13781 case 2:
13782 if (check_br16 (abfd, ptr + 4, reg))
13783 break;
13784 continue;
13785 case 4:
13786 if (check_br32 (abfd, ptr + 4, reg))
13787 break;
13788 continue;
13789 default:
13790 continue;
13791 }
13792
13793 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13794
13795 /* Give up unless the same register is used with both
13796 relocations. */
13797 if (OP32_SREG (nextopc) != reg)
13798 continue;
13799
13800 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13801 and rounding up to take masking of the two LSBs into account. */
13802 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13803
13804 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13805 if (IS_BITSIZE (symval, 16))
13806 {
13807 /* Fix the relocation's type. */
13808 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13809
13810 /* Instructions using R_MICROMIPS_LO16 have the base or
13811 source register in bits 20:16. This register becomes $0
13812 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13813 nextopc &= ~0x001f0000;
13814 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13815 contents + irel[1].r_offset);
13816 }
13817
13818 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13819 We add 4 to take LUI deletion into account while checking
13820 the PC-relative distance. */
13821 else if (symval % 4 == 0
13822 && IS_BITSIZE (pcrval + 4, 25)
13823 && MATCH (nextopc, addiu_insn)
13824 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13825 && OP16_VALID_REG (OP32_TREG (nextopc)))
13826 {
13827 /* Fix the relocation's type. */
13828 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13829
13830 /* Replace ADDIU with the ADDIUPC version. */
13831 nextopc = (addiupc_insn.match
13832 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13833
13834 bfd_put_micromips_32 (abfd, nextopc,
13835 contents + irel[1].r_offset);
13836 }
13837
13838 /* Can't do anything, give up, sigh... */
13839 else
13840 continue;
13841
13842 /* Fix the relocation's type. */
13843 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13844
13845 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13846 delcnt = 4;
13847 deloff = 0;
13848 }
13849
13850 /* Compact branch relaxation -- due to the multitude of macros
13851 employed by the compiler/assembler, compact branches are not
13852 always generated. Obviously, this can/will be fixed elsewhere,
13853 but there is no drawback in double checking it here. */
13854 else if (r_type == R_MICROMIPS_PC16_S1
13855 && irel->r_offset + 5 < sec->size
13856 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13857 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13858 && ((!insn32
13859 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13860 nop_insn_16) ? 2 : 0))
13861 || (irel->r_offset + 7 < sec->size
13862 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13863 ptr + 4),
13864 nop_insn_32) ? 4 : 0))))
13865 {
13866 unsigned long reg;
13867
13868 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13869
13870 /* Replace BEQZ/BNEZ with the compact version. */
13871 opcode = (bzc_insns_32[fndopc].match
13872 | BZC32_REG_FIELD (reg)
13873 | (opcode & 0xffff)); /* Addend value. */
13874
13875 bfd_put_micromips_32 (abfd, opcode, ptr);
13876
13877 /* Delete the delay slot NOP: two or four bytes from
13878 irel->offset + 4; delcnt has already been set above. */
13879 deloff = 4;
13880 }
13881
13882 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13883 to check the distance from the next instruction, so subtract 2. */
13884 else if (!insn32
13885 && r_type == R_MICROMIPS_PC16_S1
13886 && IS_BITSIZE (pcrval - 2, 11)
13887 && find_match (opcode, b_insns_32) >= 0)
13888 {
13889 /* Fix the relocation's type. */
13890 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13891
13892 /* Replace the 32-bit opcode with a 16-bit opcode. */
13893 bfd_put_16 (abfd,
13894 (b_insn_16.match
13895 | (opcode & 0x3ff)), /* Addend value. */
13896 ptr);
13897
13898 /* Delete 2 bytes from irel->r_offset + 2. */
13899 delcnt = 2;
13900 deloff = 2;
13901 }
13902
13903 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13904 to check the distance from the next instruction, so subtract 2. */
13905 else if (!insn32
13906 && r_type == R_MICROMIPS_PC16_S1
13907 && IS_BITSIZE (pcrval - 2, 8)
13908 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13909 && OP16_VALID_REG (OP32_SREG (opcode)))
13910 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13911 && OP16_VALID_REG (OP32_TREG (opcode)))))
13912 {
13913 unsigned long reg;
13914
13915 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13916
13917 /* Fix the relocation's type. */
13918 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13919
13920 /* Replace the 32-bit opcode with a 16-bit opcode. */
13921 bfd_put_16 (abfd,
13922 (bz_insns_16[fndopc].match
13923 | BZ16_REG_FIELD (reg)
13924 | (opcode & 0x7f)), /* Addend value. */
13925 ptr);
13926
13927 /* Delete 2 bytes from irel->r_offset + 2. */
13928 delcnt = 2;
13929 deloff = 2;
13930 }
13931
13932 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13933 else if (!insn32
13934 && r_type == R_MICROMIPS_26_S1
13935 && target_is_micromips_code_p
13936 && irel->r_offset + 7 < sec->size
13937 && MATCH (opcode, jal_insn_32_bd32))
13938 {
13939 unsigned long n32opc;
13940 bfd_boolean relaxed = FALSE;
13941
13942 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13943
13944 if (MATCH (n32opc, nop_insn_32))
13945 {
13946 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13947 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13948
13949 relaxed = TRUE;
13950 }
13951 else if (find_match (n32opc, move_insns_32) >= 0)
13952 {
13953 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13954 bfd_put_16 (abfd,
13955 (move_insn_16.match
13956 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13957 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13958 ptr + 4);
13959
13960 relaxed = TRUE;
13961 }
13962 /* Other 32-bit instructions relaxable to 16-bit
13963 instructions will be handled here later. */
13964
13965 if (relaxed)
13966 {
13967 /* JAL with 32-bit delay slot that is changed to a JALS
13968 with 16-bit delay slot. */
13969 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13970
13971 /* Delete 2 bytes from irel->r_offset + 6. */
13972 delcnt = 2;
13973 deloff = 6;
13974 }
13975 }
13976
13977 if (delcnt != 0)
13978 {
13979 /* Note that we've changed the relocs, section contents, etc. */
13980 elf_section_data (sec)->relocs = internal_relocs;
13981 elf_section_data (sec)->this_hdr.contents = contents;
13982 symtab_hdr->contents = (unsigned char *) isymbuf;
13983
13984 /* Delete bytes depending on the delcnt and deloff. */
13985 if (!mips_elf_relax_delete_bytes (abfd, sec,
13986 irel->r_offset + deloff, delcnt))
13987 goto error_return;
13988
13989 /* That will change things, so we should relax again.
13990 Note that this is not required, and it may be slow. */
13991 *again = TRUE;
13992 }
13993 }
13994
13995 if (isymbuf != NULL
13996 && symtab_hdr->contents != (unsigned char *) isymbuf)
13997 {
13998 if (! link_info->keep_memory)
13999 free (isymbuf);
14000 else
14001 {
14002 /* Cache the symbols for elf_link_input_bfd. */
14003 symtab_hdr->contents = (unsigned char *) isymbuf;
14004 }
14005 }
14006
14007 if (contents != NULL
14008 && elf_section_data (sec)->this_hdr.contents != contents)
14009 {
14010 if (! link_info->keep_memory)
14011 free (contents);
14012 else
14013 {
14014 /* Cache the section contents for elf_link_input_bfd. */
14015 elf_section_data (sec)->this_hdr.contents = contents;
14016 }
14017 }
14018
14019 if (internal_relocs != NULL
14020 && elf_section_data (sec)->relocs != internal_relocs)
14021 free (internal_relocs);
14022
14023 return TRUE;
14024
14025 error_return:
14026 if (isymbuf != NULL
14027 && symtab_hdr->contents != (unsigned char *) isymbuf)
14028 free (isymbuf);
14029 if (contents != NULL
14030 && elf_section_data (sec)->this_hdr.contents != contents)
14031 free (contents);
14032 if (internal_relocs != NULL
14033 && elf_section_data (sec)->relocs != internal_relocs)
14034 free (internal_relocs);
14035
14036 return FALSE;
14037 }
14038 \f
14039 /* Create a MIPS ELF linker hash table. */
14040
14041 struct bfd_link_hash_table *
14042 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14043 {
14044 struct mips_elf_link_hash_table *ret;
14045 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14046
14047 ret = bfd_zmalloc (amt);
14048 if (ret == NULL)
14049 return NULL;
14050
14051 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14052 mips_elf_link_hash_newfunc,
14053 sizeof (struct mips_elf_link_hash_entry),
14054 MIPS_ELF_DATA))
14055 {
14056 free (ret);
14057 return NULL;
14058 }
14059 ret->root.init_plt_refcount.plist = NULL;
14060 ret->root.init_plt_offset.plist = NULL;
14061
14062 return &ret->root.root;
14063 }
14064
14065 /* Likewise, but indicate that the target is VxWorks. */
14066
14067 struct bfd_link_hash_table *
14068 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14069 {
14070 struct bfd_link_hash_table *ret;
14071
14072 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14073 if (ret)
14074 {
14075 struct mips_elf_link_hash_table *htab;
14076
14077 htab = (struct mips_elf_link_hash_table *) ret;
14078 htab->use_plts_and_copy_relocs = TRUE;
14079 htab->is_vxworks = TRUE;
14080 }
14081 return ret;
14082 }
14083
14084 /* A function that the linker calls if we are allowed to use PLTs
14085 and copy relocs. */
14086
14087 void
14088 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14089 {
14090 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14091 }
14092
14093 /* A function that the linker calls to select between all or only
14094 32-bit microMIPS instructions. */
14095
14096 void
14097 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
14098 {
14099 mips_elf_hash_table (info)->insn32 = on;
14100 }
14101 \f
14102 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14103
14104 struct mips_mach_extension
14105 {
14106 unsigned long extension, base;
14107 };
14108
14109
14110 /* An array describing how BFD machines relate to one another. The entries
14111 are ordered topologically with MIPS I extensions listed last. */
14112
14113 static const struct mips_mach_extension mips_mach_extensions[] =
14114 {
14115 /* MIPS64r2 extensions. */
14116 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14117 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14118 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14119 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14120 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
14121
14122 /* MIPS64 extensions. */
14123 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14124 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14125 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14126
14127 /* MIPS V extensions. */
14128 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14129
14130 /* R10000 extensions. */
14131 { bfd_mach_mips12000, bfd_mach_mips10000 },
14132 { bfd_mach_mips14000, bfd_mach_mips10000 },
14133 { bfd_mach_mips16000, bfd_mach_mips10000 },
14134
14135 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14136 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14137 better to allow vr5400 and vr5500 code to be merged anyway, since
14138 many libraries will just use the core ISA. Perhaps we could add
14139 some sort of ASE flag if this ever proves a problem. */
14140 { bfd_mach_mips5500, bfd_mach_mips5400 },
14141 { bfd_mach_mips5400, bfd_mach_mips5000 },
14142
14143 /* MIPS IV extensions. */
14144 { bfd_mach_mips5, bfd_mach_mips8000 },
14145 { bfd_mach_mips10000, bfd_mach_mips8000 },
14146 { bfd_mach_mips5000, bfd_mach_mips8000 },
14147 { bfd_mach_mips7000, bfd_mach_mips8000 },
14148 { bfd_mach_mips9000, bfd_mach_mips8000 },
14149
14150 /* VR4100 extensions. */
14151 { bfd_mach_mips4120, bfd_mach_mips4100 },
14152 { bfd_mach_mips4111, bfd_mach_mips4100 },
14153
14154 /* MIPS III extensions. */
14155 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14156 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14157 { bfd_mach_mips8000, bfd_mach_mips4000 },
14158 { bfd_mach_mips4650, bfd_mach_mips4000 },
14159 { bfd_mach_mips4600, bfd_mach_mips4000 },
14160 { bfd_mach_mips4400, bfd_mach_mips4000 },
14161 { bfd_mach_mips4300, bfd_mach_mips4000 },
14162 { bfd_mach_mips4100, bfd_mach_mips4000 },
14163 { bfd_mach_mips4010, bfd_mach_mips4000 },
14164 { bfd_mach_mips5900, bfd_mach_mips4000 },
14165
14166 /* MIPS32 extensions. */
14167 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14168
14169 /* MIPS II extensions. */
14170 { bfd_mach_mips4000, bfd_mach_mips6000 },
14171 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14172
14173 /* MIPS I extensions. */
14174 { bfd_mach_mips6000, bfd_mach_mips3000 },
14175 { bfd_mach_mips3900, bfd_mach_mips3000 }
14176 };
14177
14178 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14179
14180 static bfd_boolean
14181 mips_mach_extends_p (unsigned long base, unsigned long extension)
14182 {
14183 size_t i;
14184
14185 if (extension == base)
14186 return TRUE;
14187
14188 if (base == bfd_mach_mipsisa32
14189 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14190 return TRUE;
14191
14192 if (base == bfd_mach_mipsisa32r2
14193 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14194 return TRUE;
14195
14196 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14197 if (extension == mips_mach_extensions[i].extension)
14198 {
14199 extension = mips_mach_extensions[i].base;
14200 if (extension == base)
14201 return TRUE;
14202 }
14203
14204 return FALSE;
14205 }
14206
14207 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14208
14209 static unsigned long
14210 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14211 {
14212 switch (isa_ext)
14213 {
14214 case AFL_EXT_3900: return bfd_mach_mips3900;
14215 case AFL_EXT_4010: return bfd_mach_mips4010;
14216 case AFL_EXT_4100: return bfd_mach_mips4100;
14217 case AFL_EXT_4111: return bfd_mach_mips4111;
14218 case AFL_EXT_4120: return bfd_mach_mips4120;
14219 case AFL_EXT_4650: return bfd_mach_mips4650;
14220 case AFL_EXT_5400: return bfd_mach_mips5400;
14221 case AFL_EXT_5500: return bfd_mach_mips5500;
14222 case AFL_EXT_5900: return bfd_mach_mips5900;
14223 case AFL_EXT_10000: return bfd_mach_mips10000;
14224 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14225 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14226 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14227 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14228 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14229 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14230 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14231 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14232 default: return bfd_mach_mips3000;
14233 }
14234 }
14235
14236 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14237
14238 unsigned int
14239 bfd_mips_isa_ext (bfd *abfd)
14240 {
14241 switch (bfd_get_mach (abfd))
14242 {
14243 case bfd_mach_mips3900: return AFL_EXT_3900;
14244 case bfd_mach_mips4010: return AFL_EXT_4010;
14245 case bfd_mach_mips4100: return AFL_EXT_4100;
14246 case bfd_mach_mips4111: return AFL_EXT_4111;
14247 case bfd_mach_mips4120: return AFL_EXT_4120;
14248 case bfd_mach_mips4650: return AFL_EXT_4650;
14249 case bfd_mach_mips5400: return AFL_EXT_5400;
14250 case bfd_mach_mips5500: return AFL_EXT_5500;
14251 case bfd_mach_mips5900: return AFL_EXT_5900;
14252 case bfd_mach_mips10000: return AFL_EXT_10000;
14253 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14254 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14255 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14256 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14257 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14258 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14259 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14260 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14261 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14262 default: return 0;
14263 }
14264 }
14265
14266 /* Encode ISA level and revision as a single value. */
14267 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14268
14269 /* Decode a single value into level and revision. */
14270 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14271 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14272
14273 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14274
14275 static void
14276 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14277 {
14278 int new_isa = 0;
14279 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14280 {
14281 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14282 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14283 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14284 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14285 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14286 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14287 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14288 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14289 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14290 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14291 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14292 default:
14293 _bfd_error_handler
14294 /* xgettext:c-format */
14295 (_("%B: Unknown architecture %s"),
14296 abfd, bfd_printable_name (abfd));
14297 }
14298
14299 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14300 {
14301 abiflags->isa_level = ISA_LEVEL (new_isa);
14302 abiflags->isa_rev = ISA_REV (new_isa);
14303 }
14304
14305 /* Update the isa_ext if ABFD describes a further extension. */
14306 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14307 bfd_get_mach (abfd)))
14308 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14309 }
14310
14311 /* Return true if the given ELF header flags describe a 32-bit binary. */
14312
14313 static bfd_boolean
14314 mips_32bit_flags_p (flagword flags)
14315 {
14316 return ((flags & EF_MIPS_32BITMODE) != 0
14317 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14318 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14319 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14320 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14321 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14322 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14323 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14324 }
14325
14326 /* Infer the content of the ABI flags based on the elf header. */
14327
14328 static void
14329 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14330 {
14331 obj_attribute *in_attr;
14332
14333 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14334 update_mips_abiflags_isa (abfd, abiflags);
14335
14336 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14337 abiflags->gpr_size = AFL_REG_32;
14338 else
14339 abiflags->gpr_size = AFL_REG_64;
14340
14341 abiflags->cpr1_size = AFL_REG_NONE;
14342
14343 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14344 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14345
14346 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14347 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14348 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14349 && abiflags->gpr_size == AFL_REG_32))
14350 abiflags->cpr1_size = AFL_REG_32;
14351 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14352 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14353 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14354 abiflags->cpr1_size = AFL_REG_64;
14355
14356 abiflags->cpr2_size = AFL_REG_NONE;
14357
14358 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14359 abiflags->ases |= AFL_ASE_MDMX;
14360 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14361 abiflags->ases |= AFL_ASE_MIPS16;
14362 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14363 abiflags->ases |= AFL_ASE_MICROMIPS;
14364
14365 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14366 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14367 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14368 && abiflags->isa_level >= 32
14369 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14370 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14371 }
14372
14373 /* We need to use a special link routine to handle the .reginfo and
14374 the .mdebug sections. We need to merge all instances of these
14375 sections together, not write them all out sequentially. */
14376
14377 bfd_boolean
14378 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14379 {
14380 asection *o;
14381 struct bfd_link_order *p;
14382 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14383 asection *rtproc_sec, *abiflags_sec;
14384 Elf32_RegInfo reginfo;
14385 struct ecoff_debug_info debug;
14386 struct mips_htab_traverse_info hti;
14387 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14388 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14389 HDRR *symhdr = &debug.symbolic_header;
14390 void *mdebug_handle = NULL;
14391 asection *s;
14392 EXTR esym;
14393 unsigned int i;
14394 bfd_size_type amt;
14395 struct mips_elf_link_hash_table *htab;
14396
14397 static const char * const secname[] =
14398 {
14399 ".text", ".init", ".fini", ".data",
14400 ".rodata", ".sdata", ".sbss", ".bss"
14401 };
14402 static const int sc[] =
14403 {
14404 scText, scInit, scFini, scData,
14405 scRData, scSData, scSBss, scBss
14406 };
14407
14408 /* Sort the dynamic symbols so that those with GOT entries come after
14409 those without. */
14410 htab = mips_elf_hash_table (info);
14411 BFD_ASSERT (htab != NULL);
14412
14413 if (!mips_elf_sort_hash_table (abfd, info))
14414 return FALSE;
14415
14416 /* Create any scheduled LA25 stubs. */
14417 hti.info = info;
14418 hti.output_bfd = abfd;
14419 hti.error = FALSE;
14420 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14421 if (hti.error)
14422 return FALSE;
14423
14424 /* Get a value for the GP register. */
14425 if (elf_gp (abfd) == 0)
14426 {
14427 struct bfd_link_hash_entry *h;
14428
14429 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14430 if (h != NULL && h->type == bfd_link_hash_defined)
14431 elf_gp (abfd) = (h->u.def.value
14432 + h->u.def.section->output_section->vma
14433 + h->u.def.section->output_offset);
14434 else if (htab->is_vxworks
14435 && (h = bfd_link_hash_lookup (info->hash,
14436 "_GLOBAL_OFFSET_TABLE_",
14437 FALSE, FALSE, TRUE))
14438 && h->type == bfd_link_hash_defined)
14439 elf_gp (abfd) = (h->u.def.section->output_section->vma
14440 + h->u.def.section->output_offset
14441 + h->u.def.value);
14442 else if (bfd_link_relocatable (info))
14443 {
14444 bfd_vma lo = MINUS_ONE;
14445
14446 /* Find the GP-relative section with the lowest offset. */
14447 for (o = abfd->sections; o != NULL; o = o->next)
14448 if (o->vma < lo
14449 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14450 lo = o->vma;
14451
14452 /* And calculate GP relative to that. */
14453 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14454 }
14455 else
14456 {
14457 /* If the relocate_section function needs to do a reloc
14458 involving the GP value, it should make a reloc_dangerous
14459 callback to warn that GP is not defined. */
14460 }
14461 }
14462
14463 /* Go through the sections and collect the .reginfo and .mdebug
14464 information. */
14465 abiflags_sec = NULL;
14466 reginfo_sec = NULL;
14467 mdebug_sec = NULL;
14468 gptab_data_sec = NULL;
14469 gptab_bss_sec = NULL;
14470 for (o = abfd->sections; o != NULL; o = o->next)
14471 {
14472 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14473 {
14474 /* We have found the .MIPS.abiflags section in the output file.
14475 Look through all the link_orders comprising it and remove them.
14476 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14477 for (p = o->map_head.link_order; p != NULL; p = p->next)
14478 {
14479 asection *input_section;
14480
14481 if (p->type != bfd_indirect_link_order)
14482 {
14483 if (p->type == bfd_data_link_order)
14484 continue;
14485 abort ();
14486 }
14487
14488 input_section = p->u.indirect.section;
14489
14490 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14491 elf_link_input_bfd ignores this section. */
14492 input_section->flags &= ~SEC_HAS_CONTENTS;
14493 }
14494
14495 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14496 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14497
14498 /* Skip this section later on (I don't think this currently
14499 matters, but someday it might). */
14500 o->map_head.link_order = NULL;
14501
14502 abiflags_sec = o;
14503 }
14504
14505 if (strcmp (o->name, ".reginfo") == 0)
14506 {
14507 memset (&reginfo, 0, sizeof reginfo);
14508
14509 /* We have found the .reginfo section in the output file.
14510 Look through all the link_orders comprising it and merge
14511 the information together. */
14512 for (p = o->map_head.link_order; p != NULL; p = p->next)
14513 {
14514 asection *input_section;
14515 bfd *input_bfd;
14516 Elf32_External_RegInfo ext;
14517 Elf32_RegInfo sub;
14518
14519 if (p->type != bfd_indirect_link_order)
14520 {
14521 if (p->type == bfd_data_link_order)
14522 continue;
14523 abort ();
14524 }
14525
14526 input_section = p->u.indirect.section;
14527 input_bfd = input_section->owner;
14528
14529 if (! bfd_get_section_contents (input_bfd, input_section,
14530 &ext, 0, sizeof ext))
14531 return FALSE;
14532
14533 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14534
14535 reginfo.ri_gprmask |= sub.ri_gprmask;
14536 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14537 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14538 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14539 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14540
14541 /* ri_gp_value is set by the function
14542 mips_elf32_section_processing when the section is
14543 finally written out. */
14544
14545 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14546 elf_link_input_bfd ignores this section. */
14547 input_section->flags &= ~SEC_HAS_CONTENTS;
14548 }
14549
14550 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14551 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14552
14553 /* Skip this section later on (I don't think this currently
14554 matters, but someday it might). */
14555 o->map_head.link_order = NULL;
14556
14557 reginfo_sec = o;
14558 }
14559
14560 if (strcmp (o->name, ".mdebug") == 0)
14561 {
14562 struct extsym_info einfo;
14563 bfd_vma last;
14564
14565 /* We have found the .mdebug section in the output file.
14566 Look through all the link_orders comprising it and merge
14567 the information together. */
14568 symhdr->magic = swap->sym_magic;
14569 /* FIXME: What should the version stamp be? */
14570 symhdr->vstamp = 0;
14571 symhdr->ilineMax = 0;
14572 symhdr->cbLine = 0;
14573 symhdr->idnMax = 0;
14574 symhdr->ipdMax = 0;
14575 symhdr->isymMax = 0;
14576 symhdr->ioptMax = 0;
14577 symhdr->iauxMax = 0;
14578 symhdr->issMax = 0;
14579 symhdr->issExtMax = 0;
14580 symhdr->ifdMax = 0;
14581 symhdr->crfd = 0;
14582 symhdr->iextMax = 0;
14583
14584 /* We accumulate the debugging information itself in the
14585 debug_info structure. */
14586 debug.line = NULL;
14587 debug.external_dnr = NULL;
14588 debug.external_pdr = NULL;
14589 debug.external_sym = NULL;
14590 debug.external_opt = NULL;
14591 debug.external_aux = NULL;
14592 debug.ss = NULL;
14593 debug.ssext = debug.ssext_end = NULL;
14594 debug.external_fdr = NULL;
14595 debug.external_rfd = NULL;
14596 debug.external_ext = debug.external_ext_end = NULL;
14597
14598 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14599 if (mdebug_handle == NULL)
14600 return FALSE;
14601
14602 esym.jmptbl = 0;
14603 esym.cobol_main = 0;
14604 esym.weakext = 0;
14605 esym.reserved = 0;
14606 esym.ifd = ifdNil;
14607 esym.asym.iss = issNil;
14608 esym.asym.st = stLocal;
14609 esym.asym.reserved = 0;
14610 esym.asym.index = indexNil;
14611 last = 0;
14612 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14613 {
14614 esym.asym.sc = sc[i];
14615 s = bfd_get_section_by_name (abfd, secname[i]);
14616 if (s != NULL)
14617 {
14618 esym.asym.value = s->vma;
14619 last = s->vma + s->size;
14620 }
14621 else
14622 esym.asym.value = last;
14623 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14624 secname[i], &esym))
14625 return FALSE;
14626 }
14627
14628 for (p = o->map_head.link_order; p != NULL; p = p->next)
14629 {
14630 asection *input_section;
14631 bfd *input_bfd;
14632 const struct ecoff_debug_swap *input_swap;
14633 struct ecoff_debug_info input_debug;
14634 char *eraw_src;
14635 char *eraw_end;
14636
14637 if (p->type != bfd_indirect_link_order)
14638 {
14639 if (p->type == bfd_data_link_order)
14640 continue;
14641 abort ();
14642 }
14643
14644 input_section = p->u.indirect.section;
14645 input_bfd = input_section->owner;
14646
14647 if (!is_mips_elf (input_bfd))
14648 {
14649 /* I don't know what a non MIPS ELF bfd would be
14650 doing with a .mdebug section, but I don't really
14651 want to deal with it. */
14652 continue;
14653 }
14654
14655 input_swap = (get_elf_backend_data (input_bfd)
14656 ->elf_backend_ecoff_debug_swap);
14657
14658 BFD_ASSERT (p->size == input_section->size);
14659
14660 /* The ECOFF linking code expects that we have already
14661 read in the debugging information and set up an
14662 ecoff_debug_info structure, so we do that now. */
14663 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14664 &input_debug))
14665 return FALSE;
14666
14667 if (! (bfd_ecoff_debug_accumulate
14668 (mdebug_handle, abfd, &debug, swap, input_bfd,
14669 &input_debug, input_swap, info)))
14670 return FALSE;
14671
14672 /* Loop through the external symbols. For each one with
14673 interesting information, try to find the symbol in
14674 the linker global hash table and save the information
14675 for the output external symbols. */
14676 eraw_src = input_debug.external_ext;
14677 eraw_end = (eraw_src
14678 + (input_debug.symbolic_header.iextMax
14679 * input_swap->external_ext_size));
14680 for (;
14681 eraw_src < eraw_end;
14682 eraw_src += input_swap->external_ext_size)
14683 {
14684 EXTR ext;
14685 const char *name;
14686 struct mips_elf_link_hash_entry *h;
14687
14688 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14689 if (ext.asym.sc == scNil
14690 || ext.asym.sc == scUndefined
14691 || ext.asym.sc == scSUndefined)
14692 continue;
14693
14694 name = input_debug.ssext + ext.asym.iss;
14695 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14696 name, FALSE, FALSE, TRUE);
14697 if (h == NULL || h->esym.ifd != -2)
14698 continue;
14699
14700 if (ext.ifd != -1)
14701 {
14702 BFD_ASSERT (ext.ifd
14703 < input_debug.symbolic_header.ifdMax);
14704 ext.ifd = input_debug.ifdmap[ext.ifd];
14705 }
14706
14707 h->esym = ext;
14708 }
14709
14710 /* Free up the information we just read. */
14711 free (input_debug.line);
14712 free (input_debug.external_dnr);
14713 free (input_debug.external_pdr);
14714 free (input_debug.external_sym);
14715 free (input_debug.external_opt);
14716 free (input_debug.external_aux);
14717 free (input_debug.ss);
14718 free (input_debug.ssext);
14719 free (input_debug.external_fdr);
14720 free (input_debug.external_rfd);
14721 free (input_debug.external_ext);
14722
14723 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14724 elf_link_input_bfd ignores this section. */
14725 input_section->flags &= ~SEC_HAS_CONTENTS;
14726 }
14727
14728 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14729 {
14730 /* Create .rtproc section. */
14731 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14732 if (rtproc_sec == NULL)
14733 {
14734 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14735 | SEC_LINKER_CREATED | SEC_READONLY);
14736
14737 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14738 ".rtproc",
14739 flags);
14740 if (rtproc_sec == NULL
14741 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14742 return FALSE;
14743 }
14744
14745 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14746 info, rtproc_sec,
14747 &debug))
14748 return FALSE;
14749 }
14750
14751 /* Build the external symbol information. */
14752 einfo.abfd = abfd;
14753 einfo.info = info;
14754 einfo.debug = &debug;
14755 einfo.swap = swap;
14756 einfo.failed = FALSE;
14757 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14758 mips_elf_output_extsym, &einfo);
14759 if (einfo.failed)
14760 return FALSE;
14761
14762 /* Set the size of the .mdebug section. */
14763 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14764
14765 /* Skip this section later on (I don't think this currently
14766 matters, but someday it might). */
14767 o->map_head.link_order = NULL;
14768
14769 mdebug_sec = o;
14770 }
14771
14772 if (CONST_STRNEQ (o->name, ".gptab."))
14773 {
14774 const char *subname;
14775 unsigned int c;
14776 Elf32_gptab *tab;
14777 Elf32_External_gptab *ext_tab;
14778 unsigned int j;
14779
14780 /* The .gptab.sdata and .gptab.sbss sections hold
14781 information describing how the small data area would
14782 change depending upon the -G switch. These sections
14783 not used in executables files. */
14784 if (! bfd_link_relocatable (info))
14785 {
14786 for (p = o->map_head.link_order; p != NULL; p = p->next)
14787 {
14788 asection *input_section;
14789
14790 if (p->type != bfd_indirect_link_order)
14791 {
14792 if (p->type == bfd_data_link_order)
14793 continue;
14794 abort ();
14795 }
14796
14797 input_section = p->u.indirect.section;
14798
14799 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14800 elf_link_input_bfd ignores this section. */
14801 input_section->flags &= ~SEC_HAS_CONTENTS;
14802 }
14803
14804 /* Skip this section later on (I don't think this
14805 currently matters, but someday it might). */
14806 o->map_head.link_order = NULL;
14807
14808 /* Really remove the section. */
14809 bfd_section_list_remove (abfd, o);
14810 --abfd->section_count;
14811
14812 continue;
14813 }
14814
14815 /* There is one gptab for initialized data, and one for
14816 uninitialized data. */
14817 if (strcmp (o->name, ".gptab.sdata") == 0)
14818 gptab_data_sec = o;
14819 else if (strcmp (o->name, ".gptab.sbss") == 0)
14820 gptab_bss_sec = o;
14821 else
14822 {
14823 _bfd_error_handler
14824 /* xgettext:c-format */
14825 (_("%s: illegal section name `%s'"),
14826 bfd_get_filename (abfd), o->name);
14827 bfd_set_error (bfd_error_nonrepresentable_section);
14828 return FALSE;
14829 }
14830
14831 /* The linker script always combines .gptab.data and
14832 .gptab.sdata into .gptab.sdata, and likewise for
14833 .gptab.bss and .gptab.sbss. It is possible that there is
14834 no .sdata or .sbss section in the output file, in which
14835 case we must change the name of the output section. */
14836 subname = o->name + sizeof ".gptab" - 1;
14837 if (bfd_get_section_by_name (abfd, subname) == NULL)
14838 {
14839 if (o == gptab_data_sec)
14840 o->name = ".gptab.data";
14841 else
14842 o->name = ".gptab.bss";
14843 subname = o->name + sizeof ".gptab" - 1;
14844 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14845 }
14846
14847 /* Set up the first entry. */
14848 c = 1;
14849 amt = c * sizeof (Elf32_gptab);
14850 tab = bfd_malloc (amt);
14851 if (tab == NULL)
14852 return FALSE;
14853 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14854 tab[0].gt_header.gt_unused = 0;
14855
14856 /* Combine the input sections. */
14857 for (p = o->map_head.link_order; p != NULL; p = p->next)
14858 {
14859 asection *input_section;
14860 bfd *input_bfd;
14861 bfd_size_type size;
14862 unsigned long last;
14863 bfd_size_type gpentry;
14864
14865 if (p->type != bfd_indirect_link_order)
14866 {
14867 if (p->type == bfd_data_link_order)
14868 continue;
14869 abort ();
14870 }
14871
14872 input_section = p->u.indirect.section;
14873 input_bfd = input_section->owner;
14874
14875 /* Combine the gptab entries for this input section one
14876 by one. We know that the input gptab entries are
14877 sorted by ascending -G value. */
14878 size = input_section->size;
14879 last = 0;
14880 for (gpentry = sizeof (Elf32_External_gptab);
14881 gpentry < size;
14882 gpentry += sizeof (Elf32_External_gptab))
14883 {
14884 Elf32_External_gptab ext_gptab;
14885 Elf32_gptab int_gptab;
14886 unsigned long val;
14887 unsigned long add;
14888 bfd_boolean exact;
14889 unsigned int look;
14890
14891 if (! (bfd_get_section_contents
14892 (input_bfd, input_section, &ext_gptab, gpentry,
14893 sizeof (Elf32_External_gptab))))
14894 {
14895 free (tab);
14896 return FALSE;
14897 }
14898
14899 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14900 &int_gptab);
14901 val = int_gptab.gt_entry.gt_g_value;
14902 add = int_gptab.gt_entry.gt_bytes - last;
14903
14904 exact = FALSE;
14905 for (look = 1; look < c; look++)
14906 {
14907 if (tab[look].gt_entry.gt_g_value >= val)
14908 tab[look].gt_entry.gt_bytes += add;
14909
14910 if (tab[look].gt_entry.gt_g_value == val)
14911 exact = TRUE;
14912 }
14913
14914 if (! exact)
14915 {
14916 Elf32_gptab *new_tab;
14917 unsigned int max;
14918
14919 /* We need a new table entry. */
14920 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14921 new_tab = bfd_realloc (tab, amt);
14922 if (new_tab == NULL)
14923 {
14924 free (tab);
14925 return FALSE;
14926 }
14927 tab = new_tab;
14928 tab[c].gt_entry.gt_g_value = val;
14929 tab[c].gt_entry.gt_bytes = add;
14930
14931 /* Merge in the size for the next smallest -G
14932 value, since that will be implied by this new
14933 value. */
14934 max = 0;
14935 for (look = 1; look < c; look++)
14936 {
14937 if (tab[look].gt_entry.gt_g_value < val
14938 && (max == 0
14939 || (tab[look].gt_entry.gt_g_value
14940 > tab[max].gt_entry.gt_g_value)))
14941 max = look;
14942 }
14943 if (max != 0)
14944 tab[c].gt_entry.gt_bytes +=
14945 tab[max].gt_entry.gt_bytes;
14946
14947 ++c;
14948 }
14949
14950 last = int_gptab.gt_entry.gt_bytes;
14951 }
14952
14953 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14954 elf_link_input_bfd ignores this section. */
14955 input_section->flags &= ~SEC_HAS_CONTENTS;
14956 }
14957
14958 /* The table must be sorted by -G value. */
14959 if (c > 2)
14960 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14961
14962 /* Swap out the table. */
14963 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14964 ext_tab = bfd_alloc (abfd, amt);
14965 if (ext_tab == NULL)
14966 {
14967 free (tab);
14968 return FALSE;
14969 }
14970
14971 for (j = 0; j < c; j++)
14972 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14973 free (tab);
14974
14975 o->size = c * sizeof (Elf32_External_gptab);
14976 o->contents = (bfd_byte *) ext_tab;
14977
14978 /* Skip this section later on (I don't think this currently
14979 matters, but someday it might). */
14980 o->map_head.link_order = NULL;
14981 }
14982 }
14983
14984 /* Invoke the regular ELF backend linker to do all the work. */
14985 if (!bfd_elf_final_link (abfd, info))
14986 return FALSE;
14987
14988 /* Now write out the computed sections. */
14989
14990 if (abiflags_sec != NULL)
14991 {
14992 Elf_External_ABIFlags_v0 ext;
14993 Elf_Internal_ABIFlags_v0 *abiflags;
14994
14995 abiflags = &mips_elf_tdata (abfd)->abiflags;
14996
14997 /* Set up the abiflags if no valid input sections were found. */
14998 if (!mips_elf_tdata (abfd)->abiflags_valid)
14999 {
15000 infer_mips_abiflags (abfd, abiflags);
15001 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15002 }
15003 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15004 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15005 return FALSE;
15006 }
15007
15008 if (reginfo_sec != NULL)
15009 {
15010 Elf32_External_RegInfo ext;
15011
15012 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
15013 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15014 return FALSE;
15015 }
15016
15017 if (mdebug_sec != NULL)
15018 {
15019 BFD_ASSERT (abfd->output_has_begun);
15020 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15021 swap, info,
15022 mdebug_sec->filepos))
15023 return FALSE;
15024
15025 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15026 }
15027
15028 if (gptab_data_sec != NULL)
15029 {
15030 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15031 gptab_data_sec->contents,
15032 0, gptab_data_sec->size))
15033 return FALSE;
15034 }
15035
15036 if (gptab_bss_sec != NULL)
15037 {
15038 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15039 gptab_bss_sec->contents,
15040 0, gptab_bss_sec->size))
15041 return FALSE;
15042 }
15043
15044 if (SGI_COMPAT (abfd))
15045 {
15046 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15047 if (rtproc_sec != NULL)
15048 {
15049 if (! bfd_set_section_contents (abfd, rtproc_sec,
15050 rtproc_sec->contents,
15051 0, rtproc_sec->size))
15052 return FALSE;
15053 }
15054 }
15055
15056 return TRUE;
15057 }
15058 \f
15059 /* Merge object file header flags from IBFD into OBFD. Raise an error
15060 if there are conflicting settings. */
15061
15062 static bfd_boolean
15063 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15064 {
15065 bfd *obfd = info->output_bfd;
15066 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15067 flagword old_flags;
15068 flagword new_flags;
15069 bfd_boolean ok;
15070
15071 new_flags = elf_elfheader (ibfd)->e_flags;
15072 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15073 old_flags = elf_elfheader (obfd)->e_flags;
15074
15075 /* Check flag compatibility. */
15076
15077 new_flags &= ~EF_MIPS_NOREORDER;
15078 old_flags &= ~EF_MIPS_NOREORDER;
15079
15080 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15081 doesn't seem to matter. */
15082 new_flags &= ~EF_MIPS_XGOT;
15083 old_flags &= ~EF_MIPS_XGOT;
15084
15085 /* MIPSpro generates ucode info in n64 objects. Again, we should
15086 just be able to ignore this. */
15087 new_flags &= ~EF_MIPS_UCODE;
15088 old_flags &= ~EF_MIPS_UCODE;
15089
15090 /* DSOs should only be linked with CPIC code. */
15091 if ((ibfd->flags & DYNAMIC) != 0)
15092 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15093
15094 if (new_flags == old_flags)
15095 return TRUE;
15096
15097 ok = TRUE;
15098
15099 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15100 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15101 {
15102 _bfd_error_handler
15103 (_("%B: warning: linking abicalls files with non-abicalls files"),
15104 ibfd);
15105 ok = TRUE;
15106 }
15107
15108 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15109 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15110 if (! (new_flags & EF_MIPS_PIC))
15111 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15112
15113 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15114 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15115
15116 /* Compare the ISAs. */
15117 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15118 {
15119 _bfd_error_handler
15120 (_("%B: linking 32-bit code with 64-bit code"),
15121 ibfd);
15122 ok = FALSE;
15123 }
15124 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15125 {
15126 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15127 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15128 {
15129 /* Copy the architecture info from IBFD to OBFD. Also copy
15130 the 32-bit flag (if set) so that we continue to recognise
15131 OBFD as a 32-bit binary. */
15132 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15133 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15134 elf_elfheader (obfd)->e_flags
15135 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15136
15137 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15138 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15139
15140 /* Copy across the ABI flags if OBFD doesn't use them
15141 and if that was what caused us to treat IBFD as 32-bit. */
15142 if ((old_flags & EF_MIPS_ABI) == 0
15143 && mips_32bit_flags_p (new_flags)
15144 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15145 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15146 }
15147 else
15148 {
15149 /* The ISAs aren't compatible. */
15150 _bfd_error_handler
15151 /* xgettext:c-format */
15152 (_("%B: linking %s module with previous %s modules"),
15153 ibfd,
15154 bfd_printable_name (ibfd),
15155 bfd_printable_name (obfd));
15156 ok = FALSE;
15157 }
15158 }
15159
15160 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15161 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15162
15163 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15164 does set EI_CLASS differently from any 32-bit ABI. */
15165 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15166 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15167 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15168 {
15169 /* Only error if both are set (to different values). */
15170 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15171 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15172 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15173 {
15174 _bfd_error_handler
15175 /* xgettext:c-format */
15176 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15177 ibfd,
15178 elf_mips_abi_name (ibfd),
15179 elf_mips_abi_name (obfd));
15180 ok = FALSE;
15181 }
15182 new_flags &= ~EF_MIPS_ABI;
15183 old_flags &= ~EF_MIPS_ABI;
15184 }
15185
15186 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15187 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15188 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15189 {
15190 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15191 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15192 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15193 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15194 int micro_mis = old_m16 && new_micro;
15195 int m16_mis = old_micro && new_m16;
15196
15197 if (m16_mis || micro_mis)
15198 {
15199 _bfd_error_handler
15200 /* xgettext:c-format */
15201 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15202 ibfd,
15203 m16_mis ? "MIPS16" : "microMIPS",
15204 m16_mis ? "microMIPS" : "MIPS16");
15205 ok = FALSE;
15206 }
15207
15208 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15209
15210 new_flags &= ~ EF_MIPS_ARCH_ASE;
15211 old_flags &= ~ EF_MIPS_ARCH_ASE;
15212 }
15213
15214 /* Compare NaN encodings. */
15215 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15216 {
15217 /* xgettext:c-format */
15218 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15219 ibfd,
15220 (new_flags & EF_MIPS_NAN2008
15221 ? "-mnan=2008" : "-mnan=legacy"),
15222 (old_flags & EF_MIPS_NAN2008
15223 ? "-mnan=2008" : "-mnan=legacy"));
15224 ok = FALSE;
15225 new_flags &= ~EF_MIPS_NAN2008;
15226 old_flags &= ~EF_MIPS_NAN2008;
15227 }
15228
15229 /* Compare FP64 state. */
15230 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15231 {
15232 /* xgettext:c-format */
15233 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15234 ibfd,
15235 (new_flags & EF_MIPS_FP64
15236 ? "-mfp64" : "-mfp32"),
15237 (old_flags & EF_MIPS_FP64
15238 ? "-mfp64" : "-mfp32"));
15239 ok = FALSE;
15240 new_flags &= ~EF_MIPS_FP64;
15241 old_flags &= ~EF_MIPS_FP64;
15242 }
15243
15244 /* Warn about any other mismatches */
15245 if (new_flags != old_flags)
15246 {
15247 /* xgettext:c-format */
15248 _bfd_error_handler
15249 (_("%B: uses different e_flags (0x%lx) fields than previous modules "
15250 "(0x%lx)"),
15251 ibfd, (unsigned long) new_flags,
15252 (unsigned long) old_flags);
15253 ok = FALSE;
15254 }
15255
15256 return ok;
15257 }
15258
15259 /* Merge object attributes from IBFD into OBFD. Raise an error if
15260 there are conflicting attributes. */
15261 static bfd_boolean
15262 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15263 {
15264 bfd *obfd = info->output_bfd;
15265 obj_attribute *in_attr;
15266 obj_attribute *out_attr;
15267 bfd *abi_fp_bfd;
15268 bfd *abi_msa_bfd;
15269
15270 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15271 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15272 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15273 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15274
15275 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15276 if (!abi_msa_bfd
15277 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15278 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15279
15280 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15281 {
15282 /* This is the first object. Copy the attributes. */
15283 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15284
15285 /* Use the Tag_null value to indicate the attributes have been
15286 initialized. */
15287 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15288
15289 return TRUE;
15290 }
15291
15292 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15293 non-conflicting ones. */
15294 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15295 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15296 {
15297 int out_fp, in_fp;
15298
15299 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15300 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15301 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15302 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15303 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15304 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15305 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15306 || in_fp == Val_GNU_MIPS_ABI_FP_64
15307 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15308 {
15309 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15310 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15311 }
15312 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15313 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15314 || out_fp == Val_GNU_MIPS_ABI_FP_64
15315 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15316 /* Keep the current setting. */;
15317 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15318 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15319 {
15320 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15321 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15322 }
15323 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15324 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15325 /* Keep the current setting. */;
15326 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15327 {
15328 const char *out_string, *in_string;
15329
15330 out_string = _bfd_mips_fp_abi_string (out_fp);
15331 in_string = _bfd_mips_fp_abi_string (in_fp);
15332 /* First warn about cases involving unrecognised ABIs. */
15333 if (!out_string && !in_string)
15334 /* xgettext:c-format */
15335 _bfd_error_handler
15336 (_("Warning: %B uses unknown floating point ABI %d "
15337 "(set by %B), %B uses unknown floating point ABI %d"),
15338 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
15339 else if (!out_string)
15340 _bfd_error_handler
15341 /* xgettext:c-format */
15342 (_("Warning: %B uses unknown floating point ABI %d "
15343 "(set by %B), %B uses %s"),
15344 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
15345 else if (!in_string)
15346 _bfd_error_handler
15347 /* xgettext:c-format */
15348 (_("Warning: %B uses %s (set by %B), "
15349 "%B uses unknown floating point ABI %d"),
15350 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
15351 else
15352 {
15353 /* If one of the bfds is soft-float, the other must be
15354 hard-float. The exact choice of hard-float ABI isn't
15355 really relevant to the error message. */
15356 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15357 out_string = "-mhard-float";
15358 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15359 in_string = "-mhard-float";
15360 _bfd_error_handler
15361 /* xgettext:c-format */
15362 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15363 obfd, abi_fp_bfd, ibfd, out_string, in_string);
15364 }
15365 }
15366 }
15367
15368 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15369 non-conflicting ones. */
15370 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15371 {
15372 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15373 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15374 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15375 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15376 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15377 {
15378 case Val_GNU_MIPS_ABI_MSA_128:
15379 _bfd_error_handler
15380 /* xgettext:c-format */
15381 (_("Warning: %B uses %s (set by %B), "
15382 "%B uses unknown MSA ABI %d"),
15383 obfd, abi_msa_bfd, ibfd,
15384 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15385 break;
15386
15387 default:
15388 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15389 {
15390 case Val_GNU_MIPS_ABI_MSA_128:
15391 _bfd_error_handler
15392 /* xgettext:c-format */
15393 (_("Warning: %B uses unknown MSA ABI %d "
15394 "(set by %B), %B uses %s"),
15395 obfd, abi_msa_bfd, ibfd,
15396 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15397 break;
15398
15399 default:
15400 _bfd_error_handler
15401 /* xgettext:c-format */
15402 (_("Warning: %B uses unknown MSA ABI %d "
15403 "(set by %B), %B uses unknown MSA ABI %d"),
15404 obfd, abi_msa_bfd, ibfd,
15405 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15406 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15407 break;
15408 }
15409 }
15410 }
15411
15412 /* Merge Tag_compatibility attributes and any common GNU ones. */
15413 return _bfd_elf_merge_object_attributes (ibfd, info);
15414 }
15415
15416 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15417 there are conflicting settings. */
15418
15419 static bfd_boolean
15420 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15421 {
15422 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15423 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15424 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15425
15426 /* Update the output abiflags fp_abi using the computed fp_abi. */
15427 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15428
15429 #define max(a, b) ((a) > (b) ? (a) : (b))
15430 /* Merge abiflags. */
15431 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15432 in_tdata->abiflags.isa_level);
15433 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15434 in_tdata->abiflags.isa_rev);
15435 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15436 in_tdata->abiflags.gpr_size);
15437 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15438 in_tdata->abiflags.cpr1_size);
15439 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15440 in_tdata->abiflags.cpr2_size);
15441 #undef max
15442 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15443 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15444
15445 return TRUE;
15446 }
15447
15448 /* Merge backend specific data from an object file to the output
15449 object file when linking. */
15450
15451 bfd_boolean
15452 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15453 {
15454 bfd *obfd = info->output_bfd;
15455 struct mips_elf_obj_tdata *out_tdata;
15456 struct mips_elf_obj_tdata *in_tdata;
15457 bfd_boolean null_input_bfd = TRUE;
15458 asection *sec;
15459 bfd_boolean ok;
15460
15461 /* Check if we have the same endianness. */
15462 if (! _bfd_generic_verify_endian_match (ibfd, info))
15463 {
15464 _bfd_error_handler
15465 (_("%B: endianness incompatible with that of the selected emulation"),
15466 ibfd);
15467 return FALSE;
15468 }
15469
15470 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15471 return TRUE;
15472
15473 in_tdata = mips_elf_tdata (ibfd);
15474 out_tdata = mips_elf_tdata (obfd);
15475
15476 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15477 {
15478 _bfd_error_handler
15479 (_("%B: ABI is incompatible with that of the selected emulation"),
15480 ibfd);
15481 return FALSE;
15482 }
15483
15484 /* Check to see if the input BFD actually contains any sections. If not,
15485 then it has no attributes, and its flags may not have been initialized
15486 either, but it cannot actually cause any incompatibility. */
15487 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15488 {
15489 /* Ignore synthetic sections and empty .text, .data and .bss sections
15490 which are automatically generated by gas. Also ignore fake
15491 (s)common sections, since merely defining a common symbol does
15492 not affect compatibility. */
15493 if ((sec->flags & SEC_IS_COMMON) == 0
15494 && strcmp (sec->name, ".reginfo")
15495 && strcmp (sec->name, ".mdebug")
15496 && (sec->size != 0
15497 || (strcmp (sec->name, ".text")
15498 && strcmp (sec->name, ".data")
15499 && strcmp (sec->name, ".bss"))))
15500 {
15501 null_input_bfd = FALSE;
15502 break;
15503 }
15504 }
15505 if (null_input_bfd)
15506 return TRUE;
15507
15508 /* Populate abiflags using existing information. */
15509 if (in_tdata->abiflags_valid)
15510 {
15511 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15512 Elf_Internal_ABIFlags_v0 in_abiflags;
15513 Elf_Internal_ABIFlags_v0 abiflags;
15514
15515 /* Set up the FP ABI attribute from the abiflags if it is not already
15516 set. */
15517 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15518 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15519
15520 infer_mips_abiflags (ibfd, &abiflags);
15521 in_abiflags = in_tdata->abiflags;
15522
15523 /* It is not possible to infer the correct ISA revision
15524 for R3 or R5 so drop down to R2 for the checks. */
15525 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15526 in_abiflags.isa_rev = 2;
15527
15528 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15529 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15530 _bfd_error_handler
15531 (_("%B: warning: Inconsistent ISA between e_flags and "
15532 ".MIPS.abiflags"), ibfd);
15533 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15534 && in_abiflags.fp_abi != abiflags.fp_abi)
15535 _bfd_error_handler
15536 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
15537 ".MIPS.abiflags"), ibfd);
15538 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15539 _bfd_error_handler
15540 (_("%B: warning: Inconsistent ASEs between e_flags and "
15541 ".MIPS.abiflags"), ibfd);
15542 /* The isa_ext is allowed to be an extension of what can be inferred
15543 from e_flags. */
15544 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15545 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15546 _bfd_error_handler
15547 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15548 ".MIPS.abiflags"), ibfd);
15549 if (in_abiflags.flags2 != 0)
15550 _bfd_error_handler
15551 (_("%B: warning: Unexpected flag in the flags2 field of "
15552 ".MIPS.abiflags (0x%lx)"), ibfd,
15553 (unsigned long) in_abiflags.flags2);
15554 }
15555 else
15556 {
15557 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15558 in_tdata->abiflags_valid = TRUE;
15559 }
15560
15561 if (!out_tdata->abiflags_valid)
15562 {
15563 /* Copy input abiflags if output abiflags are not already valid. */
15564 out_tdata->abiflags = in_tdata->abiflags;
15565 out_tdata->abiflags_valid = TRUE;
15566 }
15567
15568 if (! elf_flags_init (obfd))
15569 {
15570 elf_flags_init (obfd) = TRUE;
15571 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15572 elf_elfheader (obfd)->e_ident[EI_CLASS]
15573 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15574
15575 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15576 && (bfd_get_arch_info (obfd)->the_default
15577 || mips_mach_extends_p (bfd_get_mach (obfd),
15578 bfd_get_mach (ibfd))))
15579 {
15580 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15581 bfd_get_mach (ibfd)))
15582 return FALSE;
15583
15584 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15585 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15586 }
15587
15588 ok = TRUE;
15589 }
15590 else
15591 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15592
15593 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15594
15595 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15596
15597 if (!ok)
15598 {
15599 bfd_set_error (bfd_error_bad_value);
15600 return FALSE;
15601 }
15602
15603 return TRUE;
15604 }
15605
15606 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15607
15608 bfd_boolean
15609 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15610 {
15611 BFD_ASSERT (!elf_flags_init (abfd)
15612 || elf_elfheader (abfd)->e_flags == flags);
15613
15614 elf_elfheader (abfd)->e_flags = flags;
15615 elf_flags_init (abfd) = TRUE;
15616 return TRUE;
15617 }
15618
15619 char *
15620 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15621 {
15622 switch (dtag)
15623 {
15624 default: return "";
15625 case DT_MIPS_RLD_VERSION:
15626 return "MIPS_RLD_VERSION";
15627 case DT_MIPS_TIME_STAMP:
15628 return "MIPS_TIME_STAMP";
15629 case DT_MIPS_ICHECKSUM:
15630 return "MIPS_ICHECKSUM";
15631 case DT_MIPS_IVERSION:
15632 return "MIPS_IVERSION";
15633 case DT_MIPS_FLAGS:
15634 return "MIPS_FLAGS";
15635 case DT_MIPS_BASE_ADDRESS:
15636 return "MIPS_BASE_ADDRESS";
15637 case DT_MIPS_MSYM:
15638 return "MIPS_MSYM";
15639 case DT_MIPS_CONFLICT:
15640 return "MIPS_CONFLICT";
15641 case DT_MIPS_LIBLIST:
15642 return "MIPS_LIBLIST";
15643 case DT_MIPS_LOCAL_GOTNO:
15644 return "MIPS_LOCAL_GOTNO";
15645 case DT_MIPS_CONFLICTNO:
15646 return "MIPS_CONFLICTNO";
15647 case DT_MIPS_LIBLISTNO:
15648 return "MIPS_LIBLISTNO";
15649 case DT_MIPS_SYMTABNO:
15650 return "MIPS_SYMTABNO";
15651 case DT_MIPS_UNREFEXTNO:
15652 return "MIPS_UNREFEXTNO";
15653 case DT_MIPS_GOTSYM:
15654 return "MIPS_GOTSYM";
15655 case DT_MIPS_HIPAGENO:
15656 return "MIPS_HIPAGENO";
15657 case DT_MIPS_RLD_MAP:
15658 return "MIPS_RLD_MAP";
15659 case DT_MIPS_RLD_MAP_REL:
15660 return "MIPS_RLD_MAP_REL";
15661 case DT_MIPS_DELTA_CLASS:
15662 return "MIPS_DELTA_CLASS";
15663 case DT_MIPS_DELTA_CLASS_NO:
15664 return "MIPS_DELTA_CLASS_NO";
15665 case DT_MIPS_DELTA_INSTANCE:
15666 return "MIPS_DELTA_INSTANCE";
15667 case DT_MIPS_DELTA_INSTANCE_NO:
15668 return "MIPS_DELTA_INSTANCE_NO";
15669 case DT_MIPS_DELTA_RELOC:
15670 return "MIPS_DELTA_RELOC";
15671 case DT_MIPS_DELTA_RELOC_NO:
15672 return "MIPS_DELTA_RELOC_NO";
15673 case DT_MIPS_DELTA_SYM:
15674 return "MIPS_DELTA_SYM";
15675 case DT_MIPS_DELTA_SYM_NO:
15676 return "MIPS_DELTA_SYM_NO";
15677 case DT_MIPS_DELTA_CLASSSYM:
15678 return "MIPS_DELTA_CLASSSYM";
15679 case DT_MIPS_DELTA_CLASSSYM_NO:
15680 return "MIPS_DELTA_CLASSSYM_NO";
15681 case DT_MIPS_CXX_FLAGS:
15682 return "MIPS_CXX_FLAGS";
15683 case DT_MIPS_PIXIE_INIT:
15684 return "MIPS_PIXIE_INIT";
15685 case DT_MIPS_SYMBOL_LIB:
15686 return "MIPS_SYMBOL_LIB";
15687 case DT_MIPS_LOCALPAGE_GOTIDX:
15688 return "MIPS_LOCALPAGE_GOTIDX";
15689 case DT_MIPS_LOCAL_GOTIDX:
15690 return "MIPS_LOCAL_GOTIDX";
15691 case DT_MIPS_HIDDEN_GOTIDX:
15692 return "MIPS_HIDDEN_GOTIDX";
15693 case DT_MIPS_PROTECTED_GOTIDX:
15694 return "MIPS_PROTECTED_GOT_IDX";
15695 case DT_MIPS_OPTIONS:
15696 return "MIPS_OPTIONS";
15697 case DT_MIPS_INTERFACE:
15698 return "MIPS_INTERFACE";
15699 case DT_MIPS_DYNSTR_ALIGN:
15700 return "DT_MIPS_DYNSTR_ALIGN";
15701 case DT_MIPS_INTERFACE_SIZE:
15702 return "DT_MIPS_INTERFACE_SIZE";
15703 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15704 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15705 case DT_MIPS_PERF_SUFFIX:
15706 return "DT_MIPS_PERF_SUFFIX";
15707 case DT_MIPS_COMPACT_SIZE:
15708 return "DT_MIPS_COMPACT_SIZE";
15709 case DT_MIPS_GP_VALUE:
15710 return "DT_MIPS_GP_VALUE";
15711 case DT_MIPS_AUX_DYNAMIC:
15712 return "DT_MIPS_AUX_DYNAMIC";
15713 case DT_MIPS_PLTGOT:
15714 return "DT_MIPS_PLTGOT";
15715 case DT_MIPS_RWPLT:
15716 return "DT_MIPS_RWPLT";
15717 }
15718 }
15719
15720 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15721 not known. */
15722
15723 const char *
15724 _bfd_mips_fp_abi_string (int fp)
15725 {
15726 switch (fp)
15727 {
15728 /* These strings aren't translated because they're simply
15729 option lists. */
15730 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15731 return "-mdouble-float";
15732
15733 case Val_GNU_MIPS_ABI_FP_SINGLE:
15734 return "-msingle-float";
15735
15736 case Val_GNU_MIPS_ABI_FP_SOFT:
15737 return "-msoft-float";
15738
15739 case Val_GNU_MIPS_ABI_FP_OLD_64:
15740 return _("-mips32r2 -mfp64 (12 callee-saved)");
15741
15742 case Val_GNU_MIPS_ABI_FP_XX:
15743 return "-mfpxx";
15744
15745 case Val_GNU_MIPS_ABI_FP_64:
15746 return "-mgp32 -mfp64";
15747
15748 case Val_GNU_MIPS_ABI_FP_64A:
15749 return "-mgp32 -mfp64 -mno-odd-spreg";
15750
15751 default:
15752 return 0;
15753 }
15754 }
15755
15756 static void
15757 print_mips_ases (FILE *file, unsigned int mask)
15758 {
15759 if (mask & AFL_ASE_DSP)
15760 fputs ("\n\tDSP ASE", file);
15761 if (mask & AFL_ASE_DSPR2)
15762 fputs ("\n\tDSP R2 ASE", file);
15763 if (mask & AFL_ASE_DSPR3)
15764 fputs ("\n\tDSP R3 ASE", file);
15765 if (mask & AFL_ASE_EVA)
15766 fputs ("\n\tEnhanced VA Scheme", file);
15767 if (mask & AFL_ASE_MCU)
15768 fputs ("\n\tMCU (MicroController) ASE", file);
15769 if (mask & AFL_ASE_MDMX)
15770 fputs ("\n\tMDMX ASE", file);
15771 if (mask & AFL_ASE_MIPS3D)
15772 fputs ("\n\tMIPS-3D ASE", file);
15773 if (mask & AFL_ASE_MT)
15774 fputs ("\n\tMT ASE", file);
15775 if (mask & AFL_ASE_SMARTMIPS)
15776 fputs ("\n\tSmartMIPS ASE", file);
15777 if (mask & AFL_ASE_VIRT)
15778 fputs ("\n\tVZ ASE", file);
15779 if (mask & AFL_ASE_MSA)
15780 fputs ("\n\tMSA ASE", file);
15781 if (mask & AFL_ASE_MIPS16)
15782 fputs ("\n\tMIPS16 ASE", file);
15783 if (mask & AFL_ASE_MICROMIPS)
15784 fputs ("\n\tMICROMIPS ASE", file);
15785 if (mask & AFL_ASE_XPA)
15786 fputs ("\n\tXPA ASE", file);
15787 if (mask == 0)
15788 fprintf (file, "\n\t%s", _("None"));
15789 else if ((mask & ~AFL_ASE_MASK) != 0)
15790 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15791 }
15792
15793 static void
15794 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15795 {
15796 switch (isa_ext)
15797 {
15798 case 0:
15799 fputs (_("None"), file);
15800 break;
15801 case AFL_EXT_XLR:
15802 fputs ("RMI XLR", file);
15803 break;
15804 case AFL_EXT_OCTEON3:
15805 fputs ("Cavium Networks Octeon3", file);
15806 break;
15807 case AFL_EXT_OCTEON2:
15808 fputs ("Cavium Networks Octeon2", file);
15809 break;
15810 case AFL_EXT_OCTEONP:
15811 fputs ("Cavium Networks OcteonP", file);
15812 break;
15813 case AFL_EXT_LOONGSON_3A:
15814 fputs ("Loongson 3A", file);
15815 break;
15816 case AFL_EXT_OCTEON:
15817 fputs ("Cavium Networks Octeon", file);
15818 break;
15819 case AFL_EXT_5900:
15820 fputs ("Toshiba R5900", file);
15821 break;
15822 case AFL_EXT_4650:
15823 fputs ("MIPS R4650", file);
15824 break;
15825 case AFL_EXT_4010:
15826 fputs ("LSI R4010", file);
15827 break;
15828 case AFL_EXT_4100:
15829 fputs ("NEC VR4100", file);
15830 break;
15831 case AFL_EXT_3900:
15832 fputs ("Toshiba R3900", file);
15833 break;
15834 case AFL_EXT_10000:
15835 fputs ("MIPS R10000", file);
15836 break;
15837 case AFL_EXT_SB1:
15838 fputs ("Broadcom SB-1", file);
15839 break;
15840 case AFL_EXT_4111:
15841 fputs ("NEC VR4111/VR4181", file);
15842 break;
15843 case AFL_EXT_4120:
15844 fputs ("NEC VR4120", file);
15845 break;
15846 case AFL_EXT_5400:
15847 fputs ("NEC VR5400", file);
15848 break;
15849 case AFL_EXT_5500:
15850 fputs ("NEC VR5500", file);
15851 break;
15852 case AFL_EXT_LOONGSON_2E:
15853 fputs ("ST Microelectronics Loongson 2E", file);
15854 break;
15855 case AFL_EXT_LOONGSON_2F:
15856 fputs ("ST Microelectronics Loongson 2F", file);
15857 break;
15858 default:
15859 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15860 break;
15861 }
15862 }
15863
15864 static void
15865 print_mips_fp_abi_value (FILE *file, int val)
15866 {
15867 switch (val)
15868 {
15869 case Val_GNU_MIPS_ABI_FP_ANY:
15870 fprintf (file, _("Hard or soft float\n"));
15871 break;
15872 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15873 fprintf (file, _("Hard float (double precision)\n"));
15874 break;
15875 case Val_GNU_MIPS_ABI_FP_SINGLE:
15876 fprintf (file, _("Hard float (single precision)\n"));
15877 break;
15878 case Val_GNU_MIPS_ABI_FP_SOFT:
15879 fprintf (file, _("Soft float\n"));
15880 break;
15881 case Val_GNU_MIPS_ABI_FP_OLD_64:
15882 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15883 break;
15884 case Val_GNU_MIPS_ABI_FP_XX:
15885 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15886 break;
15887 case Val_GNU_MIPS_ABI_FP_64:
15888 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15889 break;
15890 case Val_GNU_MIPS_ABI_FP_64A:
15891 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15892 break;
15893 default:
15894 fprintf (file, "??? (%d)\n", val);
15895 break;
15896 }
15897 }
15898
15899 static int
15900 get_mips_reg_size (int reg_size)
15901 {
15902 return (reg_size == AFL_REG_NONE) ? 0
15903 : (reg_size == AFL_REG_32) ? 32
15904 : (reg_size == AFL_REG_64) ? 64
15905 : (reg_size == AFL_REG_128) ? 128
15906 : -1;
15907 }
15908
15909 bfd_boolean
15910 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15911 {
15912 FILE *file = ptr;
15913
15914 BFD_ASSERT (abfd != NULL && ptr != NULL);
15915
15916 /* Print normal ELF private data. */
15917 _bfd_elf_print_private_bfd_data (abfd, ptr);
15918
15919 /* xgettext:c-format */
15920 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15921
15922 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15923 fprintf (file, _(" [abi=O32]"));
15924 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15925 fprintf (file, _(" [abi=O64]"));
15926 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15927 fprintf (file, _(" [abi=EABI32]"));
15928 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15929 fprintf (file, _(" [abi=EABI64]"));
15930 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15931 fprintf (file, _(" [abi unknown]"));
15932 else if (ABI_N32_P (abfd))
15933 fprintf (file, _(" [abi=N32]"));
15934 else if (ABI_64_P (abfd))
15935 fprintf (file, _(" [abi=64]"));
15936 else
15937 fprintf (file, _(" [no abi set]"));
15938
15939 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15940 fprintf (file, " [mips1]");
15941 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15942 fprintf (file, " [mips2]");
15943 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15944 fprintf (file, " [mips3]");
15945 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15946 fprintf (file, " [mips4]");
15947 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15948 fprintf (file, " [mips5]");
15949 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15950 fprintf (file, " [mips32]");
15951 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15952 fprintf (file, " [mips64]");
15953 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15954 fprintf (file, " [mips32r2]");
15955 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15956 fprintf (file, " [mips64r2]");
15957 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15958 fprintf (file, " [mips32r6]");
15959 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15960 fprintf (file, " [mips64r6]");
15961 else
15962 fprintf (file, _(" [unknown ISA]"));
15963
15964 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15965 fprintf (file, " [mdmx]");
15966
15967 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15968 fprintf (file, " [mips16]");
15969
15970 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15971 fprintf (file, " [micromips]");
15972
15973 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15974 fprintf (file, " [nan2008]");
15975
15976 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15977 fprintf (file, " [old fp64]");
15978
15979 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15980 fprintf (file, " [32bitmode]");
15981 else
15982 fprintf (file, _(" [not 32bitmode]"));
15983
15984 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15985 fprintf (file, " [noreorder]");
15986
15987 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15988 fprintf (file, " [PIC]");
15989
15990 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15991 fprintf (file, " [CPIC]");
15992
15993 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15994 fprintf (file, " [XGOT]");
15995
15996 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15997 fprintf (file, " [UCODE]");
15998
15999 fputc ('\n', file);
16000
16001 if (mips_elf_tdata (abfd)->abiflags_valid)
16002 {
16003 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16004 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16005 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16006 if (abiflags->isa_rev > 1)
16007 fprintf (file, "r%d", abiflags->isa_rev);
16008 fprintf (file, "\nGPR size: %d",
16009 get_mips_reg_size (abiflags->gpr_size));
16010 fprintf (file, "\nCPR1 size: %d",
16011 get_mips_reg_size (abiflags->cpr1_size));
16012 fprintf (file, "\nCPR2 size: %d",
16013 get_mips_reg_size (abiflags->cpr2_size));
16014 fputs ("\nFP ABI: ", file);
16015 print_mips_fp_abi_value (file, abiflags->fp_abi);
16016 fputs ("ISA Extension: ", file);
16017 print_mips_isa_ext (file, abiflags->isa_ext);
16018 fputs ("\nASEs:", file);
16019 print_mips_ases (file, abiflags->ases);
16020 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16021 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16022 fputc ('\n', file);
16023 }
16024
16025 return TRUE;
16026 }
16027
16028 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16029 {
16030 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16031 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16032 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16033 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16034 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16035 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16036 { NULL, 0, 0, 0, 0 }
16037 };
16038
16039 /* Merge non visibility st_other attributes. Ensure that the
16040 STO_OPTIONAL flag is copied into h->other, even if this is not a
16041 definiton of the symbol. */
16042 void
16043 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16044 const Elf_Internal_Sym *isym,
16045 bfd_boolean definition,
16046 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16047 {
16048 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16049 {
16050 unsigned char other;
16051
16052 other = (definition ? isym->st_other : h->other);
16053 other &= ~ELF_ST_VISIBILITY (-1);
16054 h->other = other | ELF_ST_VISIBILITY (h->other);
16055 }
16056
16057 if (!definition
16058 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16059 h->other |= STO_OPTIONAL;
16060 }
16061
16062 /* Decide whether an undefined symbol is special and can be ignored.
16063 This is the case for OPTIONAL symbols on IRIX. */
16064 bfd_boolean
16065 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16066 {
16067 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16068 }
16069
16070 bfd_boolean
16071 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16072 {
16073 return (sym->st_shndx == SHN_COMMON
16074 || sym->st_shndx == SHN_MIPS_ACOMMON
16075 || sym->st_shndx == SHN_MIPS_SCOMMON);
16076 }
16077
16078 /* Return address for Ith PLT stub in section PLT, for relocation REL
16079 or (bfd_vma) -1 if it should not be included. */
16080
16081 bfd_vma
16082 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16083 const arelent *rel ATTRIBUTE_UNUSED)
16084 {
16085 return (plt->vma
16086 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16087 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16088 }
16089
16090 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16091 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16092 and .got.plt and also the slots may be of a different size each we walk
16093 the PLT manually fetching instructions and matching them against known
16094 patterns. To make things easier standard MIPS slots, if any, always come
16095 first. As we don't create proper ELF symbols we use the UDATA.I member
16096 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16097 with the ST_OTHER member of the ELF symbol. */
16098
16099 long
16100 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16101 long symcount ATTRIBUTE_UNUSED,
16102 asymbol **syms ATTRIBUTE_UNUSED,
16103 long dynsymcount, asymbol **dynsyms,
16104 asymbol **ret)
16105 {
16106 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16107 static const char microsuffix[] = "@micromipsplt";
16108 static const char m16suffix[] = "@mips16plt";
16109 static const char mipssuffix[] = "@plt";
16110
16111 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16112 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16113 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16114 Elf_Internal_Shdr *hdr;
16115 bfd_byte *plt_data;
16116 bfd_vma plt_offset;
16117 unsigned int other;
16118 bfd_vma entry_size;
16119 bfd_vma plt0_size;
16120 asection *relplt;
16121 bfd_vma opcode;
16122 asection *plt;
16123 asymbol *send;
16124 size_t size;
16125 char *names;
16126 long counti;
16127 arelent *p;
16128 asymbol *s;
16129 char *nend;
16130 long count;
16131 long pi;
16132 long i;
16133 long n;
16134
16135 *ret = NULL;
16136
16137 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16138 return 0;
16139
16140 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16141 if (relplt == NULL)
16142 return 0;
16143
16144 hdr = &elf_section_data (relplt)->this_hdr;
16145 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16146 return 0;
16147
16148 plt = bfd_get_section_by_name (abfd, ".plt");
16149 if (plt == NULL)
16150 return 0;
16151
16152 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16153 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16154 return -1;
16155 p = relplt->relocation;
16156
16157 /* Calculating the exact amount of space required for symbols would
16158 require two passes over the PLT, so just pessimise assuming two
16159 PLT slots per relocation. */
16160 count = relplt->size / hdr->sh_entsize;
16161 counti = count * bed->s->int_rels_per_ext_rel;
16162 size = 2 * count * sizeof (asymbol);
16163 size += count * (sizeof (mipssuffix) +
16164 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16165 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16166 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16167
16168 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16169 size += sizeof (asymbol) + sizeof (pltname);
16170
16171 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16172 return -1;
16173
16174 if (plt->size < 16)
16175 return -1;
16176
16177 s = *ret = bfd_malloc (size);
16178 if (s == NULL)
16179 return -1;
16180 send = s + 2 * count + 1;
16181
16182 names = (char *) send;
16183 nend = (char *) s + size;
16184 n = 0;
16185
16186 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16187 if (opcode == 0x3302fffe)
16188 {
16189 if (!micromips_p)
16190 return -1;
16191 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16192 other = STO_MICROMIPS;
16193 }
16194 else if (opcode == 0x0398c1d0)
16195 {
16196 if (!micromips_p)
16197 return -1;
16198 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16199 other = STO_MICROMIPS;
16200 }
16201 else
16202 {
16203 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16204 other = 0;
16205 }
16206
16207 s->the_bfd = abfd;
16208 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16209 s->section = plt;
16210 s->value = 0;
16211 s->name = names;
16212 s->udata.i = other;
16213 memcpy (names, pltname, sizeof (pltname));
16214 names += sizeof (pltname);
16215 ++s, ++n;
16216
16217 pi = 0;
16218 for (plt_offset = plt0_size;
16219 plt_offset + 8 <= plt->size && s < send;
16220 plt_offset += entry_size)
16221 {
16222 bfd_vma gotplt_addr;
16223 const char *suffix;
16224 bfd_vma gotplt_hi;
16225 bfd_vma gotplt_lo;
16226 size_t suffixlen;
16227
16228 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16229
16230 /* Check if the second word matches the expected MIPS16 instruction. */
16231 if (opcode == 0x651aeb00)
16232 {
16233 if (micromips_p)
16234 return -1;
16235 /* Truncated table??? */
16236 if (plt_offset + 16 > plt->size)
16237 break;
16238 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16239 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16240 suffixlen = sizeof (m16suffix);
16241 suffix = m16suffix;
16242 other = STO_MIPS16;
16243 }
16244 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16245 else if (opcode == 0xff220000)
16246 {
16247 if (!micromips_p)
16248 return -1;
16249 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16250 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16251 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16252 gotplt_lo <<= 2;
16253 gotplt_addr = gotplt_hi + gotplt_lo;
16254 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16255 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16256 suffixlen = sizeof (microsuffix);
16257 suffix = microsuffix;
16258 other = STO_MICROMIPS;
16259 }
16260 /* Likewise the expected microMIPS instruction (insn32 mode). */
16261 else if ((opcode & 0xffff0000) == 0xff2f0000)
16262 {
16263 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16264 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16265 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16266 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16267 gotplt_addr = gotplt_hi + gotplt_lo;
16268 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16269 suffixlen = sizeof (microsuffix);
16270 suffix = microsuffix;
16271 other = STO_MICROMIPS;
16272 }
16273 /* Otherwise assume standard MIPS code. */
16274 else
16275 {
16276 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16277 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16278 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16279 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16280 gotplt_addr = gotplt_hi + gotplt_lo;
16281 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16282 suffixlen = sizeof (mipssuffix);
16283 suffix = mipssuffix;
16284 other = 0;
16285 }
16286 /* Truncated table??? */
16287 if (plt_offset + entry_size > plt->size)
16288 break;
16289
16290 for (i = 0;
16291 i < count && p[pi].address != gotplt_addr;
16292 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16293
16294 if (i < count)
16295 {
16296 size_t namelen;
16297 size_t len;
16298
16299 *s = **p[pi].sym_ptr_ptr;
16300 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16301 we are defining a symbol, ensure one of them is set. */
16302 if ((s->flags & BSF_LOCAL) == 0)
16303 s->flags |= BSF_GLOBAL;
16304 s->flags |= BSF_SYNTHETIC;
16305 s->section = plt;
16306 s->value = plt_offset;
16307 s->name = names;
16308 s->udata.i = other;
16309
16310 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16311 namelen = len + suffixlen;
16312 if (names + namelen > nend)
16313 break;
16314
16315 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16316 names += len;
16317 memcpy (names, suffix, suffixlen);
16318 names += suffixlen;
16319
16320 ++s, ++n;
16321 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16322 }
16323 }
16324
16325 free (plt_data);
16326
16327 return n;
16328 }
16329
16330 /* Return the ABI flags associated with ABFD if available. */
16331
16332 Elf_Internal_ABIFlags_v0 *
16333 bfd_mips_elf_get_abiflags (bfd *abfd)
16334 {
16335 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16336
16337 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16338 }
16339
16340 void
16341 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16342 {
16343 struct mips_elf_link_hash_table *htab;
16344 Elf_Internal_Ehdr *i_ehdrp;
16345
16346 i_ehdrp = elf_elfheader (abfd);
16347 if (link_info)
16348 {
16349 htab = mips_elf_hash_table (link_info);
16350 BFD_ASSERT (htab != NULL);
16351
16352 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16353 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16354 }
16355
16356 _bfd_elf_post_process_headers (abfd, link_info);
16357
16358 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16359 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16360 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16361
16362 if (elf_stack_flags (abfd) && !(elf_stack_flags (abfd) & PF_X))
16363 i_ehdrp->e_ident[EI_ABIVERSION] = 5;
16364 }
16365
16366 int
16367 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16368 {
16369 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16370 }
16371
16372 /* Return the opcode for can't unwind. */
16373
16374 int
16375 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16376 {
16377 return COMPACT_EH_CANT_UNWIND_OPCODE;
16378 }
This page took 0.636405 seconds and 4 git commands to generate.