* mips.h (INSN_CHIP_MASK): Update according to INSN_LOONGSON_3A.
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29
30 /* This file handles functionality common to the different MIPS ABI's. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libbfd.h"
35 #include "libiberty.h"
36 #include "elf-bfd.h"
37 #include "elfxx-mips.h"
38 #include "elf/mips.h"
39 #include "elf-vxworks.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
51
52 (1) absolute addresses
53 (abfd == NULL)
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
57 (abfd != NULL, symndx == -1)
58
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
65
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
70
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
74 GOT index.
75
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
82 struct mips_got_entry
83 {
84 /* The input bfd in which the symbol is defined. */
85 bfd *abfd;
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
88 long symndx;
89 union
90 {
91 /* If abfd == NULL, an address that must be stored in the got. */
92 bfd_vma address;
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
95 bfd_vma addend;
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to symbol in the GOT. The symbol's entry
98 is in the local area if h->global_got_area is GGA_NONE,
99 otherwise it is in the global area. */
100 struct mips_elf_link_hash_entry *h;
101 } d;
102
103 /* The TLS types included in this GOT entry (specifically, GD and
104 IE). The GD and IE flags can be added as we encounter new
105 relocations. LDM can also be set; it will always be alone, not
106 combined with any GD or IE flags. An LDM GOT entry will be
107 a local symbol entry with r_symndx == 0. */
108 unsigned char tls_type;
109
110 /* The offset from the beginning of the .got section to the entry
111 corresponding to this symbol+addend. If it's a global symbol
112 whose offset is yet to be decided, it's going to be -1. */
113 long gotidx;
114 };
115
116 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
117 The structures form a non-overlapping list that is sorted by increasing
118 MIN_ADDEND. */
119 struct mips_got_page_range
120 {
121 struct mips_got_page_range *next;
122 bfd_signed_vma min_addend;
123 bfd_signed_vma max_addend;
124 };
125
126 /* This structure describes the range of addends that are applied to page
127 relocations against a given symbol. */
128 struct mips_got_page_entry
129 {
130 /* The input bfd in which the symbol is defined. */
131 bfd *abfd;
132 /* The index of the symbol, as stored in the relocation r_info. */
133 long symndx;
134 /* The ranges for this page entry. */
135 struct mips_got_page_range *ranges;
136 /* The maximum number of page entries needed for RANGES. */
137 bfd_vma num_pages;
138 };
139
140 /* This structure is used to hold .got information when linking. */
141
142 struct mips_got_info
143 {
144 /* The global symbol in the GOT with the lowest index in the dynamic
145 symbol table. */
146 struct elf_link_hash_entry *global_gotsym;
147 /* The number of global .got entries. */
148 unsigned int global_gotno;
149 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
150 unsigned int reloc_only_gotno;
151 /* The number of .got slots used for TLS. */
152 unsigned int tls_gotno;
153 /* The first unused TLS .got entry. Used only during
154 mips_elf_initialize_tls_index. */
155 unsigned int tls_assigned_gotno;
156 /* The number of local .got entries, eventually including page entries. */
157 unsigned int local_gotno;
158 /* The maximum number of page entries needed. */
159 unsigned int page_gotno;
160 /* The number of local .got entries we have used. */
161 unsigned int assigned_gotno;
162 /* A hash table holding members of the got. */
163 struct htab *got_entries;
164 /* A hash table of mips_got_page_entry structures. */
165 struct htab *got_page_entries;
166 /* A hash table mapping input bfds to other mips_got_info. NULL
167 unless multi-got was necessary. */
168 struct htab *bfd2got;
169 /* In multi-got links, a pointer to the next got (err, rather, most
170 of the time, it points to the previous got). */
171 struct mips_got_info *next;
172 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
173 for none, or MINUS_TWO for not yet assigned. This is needed
174 because a single-GOT link may have multiple hash table entries
175 for the LDM. It does not get initialized in multi-GOT mode. */
176 bfd_vma tls_ldm_offset;
177 };
178
179 /* Map an input bfd to a got in a multi-got link. */
180
181 struct mips_elf_bfd2got_hash
182 {
183 bfd *bfd;
184 struct mips_got_info *g;
185 };
186
187 /* Structure passed when traversing the bfd2got hash table, used to
188 create and merge bfd's gots. */
189
190 struct mips_elf_got_per_bfd_arg
191 {
192 /* A hashtable that maps bfds to gots. */
193 htab_t bfd2got;
194 /* The output bfd. */
195 bfd *obfd;
196 /* The link information. */
197 struct bfd_link_info *info;
198 /* A pointer to the primary got, i.e., the one that's going to get
199 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
200 DT_MIPS_GOTSYM. */
201 struct mips_got_info *primary;
202 /* A non-primary got we're trying to merge with other input bfd's
203 gots. */
204 struct mips_got_info *current;
205 /* The maximum number of got entries that can be addressed with a
206 16-bit offset. */
207 unsigned int max_count;
208 /* The maximum number of page entries needed by each got. */
209 unsigned int max_pages;
210 /* The total number of global entries which will live in the
211 primary got and be automatically relocated. This includes
212 those not referenced by the primary GOT but included in
213 the "master" GOT. */
214 unsigned int global_count;
215 };
216
217 /* Another structure used to pass arguments for got entries traversal. */
218
219 struct mips_elf_set_global_got_offset_arg
220 {
221 struct mips_got_info *g;
222 int value;
223 unsigned int needed_relocs;
224 struct bfd_link_info *info;
225 };
226
227 /* A structure used to count TLS relocations or GOT entries, for GOT
228 entry or ELF symbol table traversal. */
229
230 struct mips_elf_count_tls_arg
231 {
232 struct bfd_link_info *info;
233 unsigned int needed;
234 };
235
236 struct _mips_elf_section_data
237 {
238 struct bfd_elf_section_data elf;
239 union
240 {
241 bfd_byte *tdata;
242 } u;
243 };
244
245 #define mips_elf_section_data(sec) \
246 ((struct _mips_elf_section_data *) elf_section_data (sec))
247
248 #define is_mips_elf(bfd) \
249 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
250 && elf_tdata (bfd) != NULL \
251 && elf_object_id (bfd) == MIPS_ELF_DATA)
252
253 /* The ABI says that every symbol used by dynamic relocations must have
254 a global GOT entry. Among other things, this provides the dynamic
255 linker with a free, directly-indexed cache. The GOT can therefore
256 contain symbols that are not referenced by GOT relocations themselves
257 (in other words, it may have symbols that are not referenced by things
258 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
259
260 GOT relocations are less likely to overflow if we put the associated
261 GOT entries towards the beginning. We therefore divide the global
262 GOT entries into two areas: "normal" and "reloc-only". Entries in
263 the first area can be used for both dynamic relocations and GP-relative
264 accesses, while those in the "reloc-only" area are for dynamic
265 relocations only.
266
267 These GGA_* ("Global GOT Area") values are organised so that lower
268 values are more general than higher values. Also, non-GGA_NONE
269 values are ordered by the position of the area in the GOT. */
270 #define GGA_NORMAL 0
271 #define GGA_RELOC_ONLY 1
272 #define GGA_NONE 2
273
274 /* Information about a non-PIC interface to a PIC function. There are
275 two ways of creating these interfaces. The first is to add:
276
277 lui $25,%hi(func)
278 addiu $25,$25,%lo(func)
279
280 immediately before a PIC function "func". The second is to add:
281
282 lui $25,%hi(func)
283 j func
284 addiu $25,$25,%lo(func)
285
286 to a separate trampoline section.
287
288 Stubs of the first kind go in a new section immediately before the
289 target function. Stubs of the second kind go in a single section
290 pointed to by the hash table's "strampoline" field. */
291 struct mips_elf_la25_stub {
292 /* The generated section that contains this stub. */
293 asection *stub_section;
294
295 /* The offset of the stub from the start of STUB_SECTION. */
296 bfd_vma offset;
297
298 /* One symbol for the original function. Its location is available
299 in H->root.root.u.def. */
300 struct mips_elf_link_hash_entry *h;
301 };
302
303 /* Macros for populating a mips_elf_la25_stub. */
304
305 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
306 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
307 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
308
309 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
310 the dynamic symbols. */
311
312 struct mips_elf_hash_sort_data
313 {
314 /* The symbol in the global GOT with the lowest dynamic symbol table
315 index. */
316 struct elf_link_hash_entry *low;
317 /* The least dynamic symbol table index corresponding to a non-TLS
318 symbol with a GOT entry. */
319 long min_got_dynindx;
320 /* The greatest dynamic symbol table index corresponding to a symbol
321 with a GOT entry that is not referenced (e.g., a dynamic symbol
322 with dynamic relocations pointing to it from non-primary GOTs). */
323 long max_unref_got_dynindx;
324 /* The greatest dynamic symbol table index not corresponding to a
325 symbol without a GOT entry. */
326 long max_non_got_dynindx;
327 };
328
329 /* The MIPS ELF linker needs additional information for each symbol in
330 the global hash table. */
331
332 struct mips_elf_link_hash_entry
333 {
334 struct elf_link_hash_entry root;
335
336 /* External symbol information. */
337 EXTR esym;
338
339 /* The la25 stub we have created for ths symbol, if any. */
340 struct mips_elf_la25_stub *la25_stub;
341
342 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
343 this symbol. */
344 unsigned int possibly_dynamic_relocs;
345
346 /* If there is a stub that 32 bit functions should use to call this
347 16 bit function, this points to the section containing the stub. */
348 asection *fn_stub;
349
350 /* If there is a stub that 16 bit functions should use to call this
351 32 bit function, this points to the section containing the stub. */
352 asection *call_stub;
353
354 /* This is like the call_stub field, but it is used if the function
355 being called returns a floating point value. */
356 asection *call_fp_stub;
357
358 #define GOT_NORMAL 0
359 #define GOT_TLS_GD 1
360 #define GOT_TLS_LDM 2
361 #define GOT_TLS_IE 4
362 #define GOT_TLS_OFFSET_DONE 0x40
363 #define GOT_TLS_DONE 0x80
364 unsigned char tls_type;
365
366 /* This is only used in single-GOT mode; in multi-GOT mode there
367 is one mips_got_entry per GOT entry, so the offset is stored
368 there. In single-GOT mode there may be many mips_got_entry
369 structures all referring to the same GOT slot. It might be
370 possible to use root.got.offset instead, but that field is
371 overloaded already. */
372 bfd_vma tls_got_offset;
373
374 /* The highest GGA_* value that satisfies all references to this symbol. */
375 unsigned int global_got_area : 2;
376
377 /* True if all GOT relocations against this symbol are for calls. This is
378 a looser condition than no_fn_stub below, because there may be other
379 non-call non-GOT relocations against the symbol. */
380 unsigned int got_only_for_calls : 1;
381
382 /* True if one of the relocations described by possibly_dynamic_relocs
383 is against a readonly section. */
384 unsigned int readonly_reloc : 1;
385
386 /* True if there is a relocation against this symbol that must be
387 resolved by the static linker (in other words, if the relocation
388 cannot possibly be made dynamic). */
389 unsigned int has_static_relocs : 1;
390
391 /* True if we must not create a .MIPS.stubs entry for this symbol.
392 This is set, for example, if there are relocations related to
393 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
394 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
395 unsigned int no_fn_stub : 1;
396
397 /* Whether we need the fn_stub; this is true if this symbol appears
398 in any relocs other than a 16 bit call. */
399 unsigned int need_fn_stub : 1;
400
401 /* True if this symbol is referenced by branch relocations from
402 any non-PIC input file. This is used to determine whether an
403 la25 stub is required. */
404 unsigned int has_nonpic_branches : 1;
405
406 /* Does this symbol need a traditional MIPS lazy-binding stub
407 (as opposed to a PLT entry)? */
408 unsigned int needs_lazy_stub : 1;
409 };
410
411 /* MIPS ELF linker hash table. */
412
413 struct mips_elf_link_hash_table
414 {
415 struct elf_link_hash_table root;
416 #if 0
417 /* We no longer use this. */
418 /* String section indices for the dynamic section symbols. */
419 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
420 #endif
421
422 /* The number of .rtproc entries. */
423 bfd_size_type procedure_count;
424
425 /* The size of the .compact_rel section (if SGI_COMPAT). */
426 bfd_size_type compact_rel_size;
427
428 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
429 entry is set to the address of __rld_obj_head as in IRIX5. */
430 bfd_boolean use_rld_obj_head;
431
432 /* This is the value of the __rld_map or __rld_obj_head symbol. */
433 bfd_vma rld_value;
434
435 /* This is set if we see any mips16 stub sections. */
436 bfd_boolean mips16_stubs_seen;
437
438 /* True if we can generate copy relocs and PLTs. */
439 bfd_boolean use_plts_and_copy_relocs;
440
441 /* True if we're generating code for VxWorks. */
442 bfd_boolean is_vxworks;
443
444 /* True if we already reported the small-data section overflow. */
445 bfd_boolean small_data_overflow_reported;
446
447 /* Shortcuts to some dynamic sections, or NULL if they are not
448 being used. */
449 asection *srelbss;
450 asection *sdynbss;
451 asection *srelplt;
452 asection *srelplt2;
453 asection *sgotplt;
454 asection *splt;
455 asection *sstubs;
456 asection *sgot;
457
458 /* The master GOT information. */
459 struct mips_got_info *got_info;
460
461 /* The size of the PLT header in bytes. */
462 bfd_vma plt_header_size;
463
464 /* The size of a PLT entry in bytes. */
465 bfd_vma plt_entry_size;
466
467 /* The number of functions that need a lazy-binding stub. */
468 bfd_vma lazy_stub_count;
469
470 /* The size of a function stub entry in bytes. */
471 bfd_vma function_stub_size;
472
473 /* The number of reserved entries at the beginning of the GOT. */
474 unsigned int reserved_gotno;
475
476 /* The section used for mips_elf_la25_stub trampolines.
477 See the comment above that structure for details. */
478 asection *strampoline;
479
480 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
481 pairs. */
482 htab_t la25_stubs;
483
484 /* A function FN (NAME, IS, OS) that creates a new input section
485 called NAME and links it to output section OS. If IS is nonnull,
486 the new section should go immediately before it, otherwise it
487 should go at the (current) beginning of OS.
488
489 The function returns the new section on success, otherwise it
490 returns null. */
491 asection *(*add_stub_section) (const char *, asection *, asection *);
492 };
493
494 /* Get the MIPS ELF linker hash table from a link_info structure. */
495
496 #define mips_elf_hash_table(p) \
497 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
498 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
499
500 /* A structure used to communicate with htab_traverse callbacks. */
501 struct mips_htab_traverse_info
502 {
503 /* The usual link-wide information. */
504 struct bfd_link_info *info;
505 bfd *output_bfd;
506
507 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
508 bfd_boolean error;
509 };
510
511 #define TLS_RELOC_P(r_type) \
512 (r_type == R_MIPS_TLS_DTPMOD32 \
513 || r_type == R_MIPS_TLS_DTPMOD64 \
514 || r_type == R_MIPS_TLS_DTPREL32 \
515 || r_type == R_MIPS_TLS_DTPREL64 \
516 || r_type == R_MIPS_TLS_GD \
517 || r_type == R_MIPS_TLS_LDM \
518 || r_type == R_MIPS_TLS_DTPREL_HI16 \
519 || r_type == R_MIPS_TLS_DTPREL_LO16 \
520 || r_type == R_MIPS_TLS_GOTTPREL \
521 || r_type == R_MIPS_TLS_TPREL32 \
522 || r_type == R_MIPS_TLS_TPREL64 \
523 || r_type == R_MIPS_TLS_TPREL_HI16 \
524 || r_type == R_MIPS_TLS_TPREL_LO16)
525
526 /* Structure used to pass information to mips_elf_output_extsym. */
527
528 struct extsym_info
529 {
530 bfd *abfd;
531 struct bfd_link_info *info;
532 struct ecoff_debug_info *debug;
533 const struct ecoff_debug_swap *swap;
534 bfd_boolean failed;
535 };
536
537 /* The names of the runtime procedure table symbols used on IRIX5. */
538
539 static const char * const mips_elf_dynsym_rtproc_names[] =
540 {
541 "_procedure_table",
542 "_procedure_string_table",
543 "_procedure_table_size",
544 NULL
545 };
546
547 /* These structures are used to generate the .compact_rel section on
548 IRIX5. */
549
550 typedef struct
551 {
552 unsigned long id1; /* Always one? */
553 unsigned long num; /* Number of compact relocation entries. */
554 unsigned long id2; /* Always two? */
555 unsigned long offset; /* The file offset of the first relocation. */
556 unsigned long reserved0; /* Zero? */
557 unsigned long reserved1; /* Zero? */
558 } Elf32_compact_rel;
559
560 typedef struct
561 {
562 bfd_byte id1[4];
563 bfd_byte num[4];
564 bfd_byte id2[4];
565 bfd_byte offset[4];
566 bfd_byte reserved0[4];
567 bfd_byte reserved1[4];
568 } Elf32_External_compact_rel;
569
570 typedef struct
571 {
572 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
573 unsigned int rtype : 4; /* Relocation types. See below. */
574 unsigned int dist2to : 8;
575 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
576 unsigned long konst; /* KONST field. See below. */
577 unsigned long vaddr; /* VADDR to be relocated. */
578 } Elf32_crinfo;
579
580 typedef struct
581 {
582 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
583 unsigned int rtype : 4; /* Relocation types. See below. */
584 unsigned int dist2to : 8;
585 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
586 unsigned long konst; /* KONST field. See below. */
587 } Elf32_crinfo2;
588
589 typedef struct
590 {
591 bfd_byte info[4];
592 bfd_byte konst[4];
593 bfd_byte vaddr[4];
594 } Elf32_External_crinfo;
595
596 typedef struct
597 {
598 bfd_byte info[4];
599 bfd_byte konst[4];
600 } Elf32_External_crinfo2;
601
602 /* These are the constants used to swap the bitfields in a crinfo. */
603
604 #define CRINFO_CTYPE (0x1)
605 #define CRINFO_CTYPE_SH (31)
606 #define CRINFO_RTYPE (0xf)
607 #define CRINFO_RTYPE_SH (27)
608 #define CRINFO_DIST2TO (0xff)
609 #define CRINFO_DIST2TO_SH (19)
610 #define CRINFO_RELVADDR (0x7ffff)
611 #define CRINFO_RELVADDR_SH (0)
612
613 /* A compact relocation info has long (3 words) or short (2 words)
614 formats. A short format doesn't have VADDR field and relvaddr
615 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
616 #define CRF_MIPS_LONG 1
617 #define CRF_MIPS_SHORT 0
618
619 /* There are 4 types of compact relocation at least. The value KONST
620 has different meaning for each type:
621
622 (type) (konst)
623 CT_MIPS_REL32 Address in data
624 CT_MIPS_WORD Address in word (XXX)
625 CT_MIPS_GPHI_LO GP - vaddr
626 CT_MIPS_JMPAD Address to jump
627 */
628
629 #define CRT_MIPS_REL32 0xa
630 #define CRT_MIPS_WORD 0xb
631 #define CRT_MIPS_GPHI_LO 0xc
632 #define CRT_MIPS_JMPAD 0xd
633
634 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
635 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
636 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
637 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
638 \f
639 /* The structure of the runtime procedure descriptor created by the
640 loader for use by the static exception system. */
641
642 typedef struct runtime_pdr {
643 bfd_vma adr; /* Memory address of start of procedure. */
644 long regmask; /* Save register mask. */
645 long regoffset; /* Save register offset. */
646 long fregmask; /* Save floating point register mask. */
647 long fregoffset; /* Save floating point register offset. */
648 long frameoffset; /* Frame size. */
649 short framereg; /* Frame pointer register. */
650 short pcreg; /* Offset or reg of return pc. */
651 long irpss; /* Index into the runtime string table. */
652 long reserved;
653 struct exception_info *exception_info;/* Pointer to exception array. */
654 } RPDR, *pRPDR;
655 #define cbRPDR sizeof (RPDR)
656 #define rpdNil ((pRPDR) 0)
657 \f
658 static struct mips_got_entry *mips_elf_create_local_got_entry
659 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
660 struct mips_elf_link_hash_entry *, int);
661 static bfd_boolean mips_elf_sort_hash_table_f
662 (struct mips_elf_link_hash_entry *, void *);
663 static bfd_vma mips_elf_high
664 (bfd_vma);
665 static bfd_boolean mips_elf_create_dynamic_relocation
666 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
667 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
668 bfd_vma *, asection *);
669 static hashval_t mips_elf_got_entry_hash
670 (const void *);
671 static bfd_vma mips_elf_adjust_gp
672 (bfd *, struct mips_got_info *, bfd *);
673 static struct mips_got_info *mips_elf_got_for_ibfd
674 (struct mips_got_info *, bfd *);
675
676 /* This will be used when we sort the dynamic relocation records. */
677 static bfd *reldyn_sorting_bfd;
678
679 /* True if ABFD is for CPUs with load interlocking that include
680 non-MIPS1 CPUs and R3900. */
681 #define LOAD_INTERLOCKS_P(abfd) \
682 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
683 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
684
685 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
686 This should be safe for all architectures. We enable this predicate
687 for RM9000 for now. */
688 #define JAL_TO_BAL_P(abfd) \
689 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
690
691 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
692 This should be safe for all architectures. We enable this predicate for
693 all CPUs. */
694 #define JALR_TO_BAL_P(abfd) 1
695
696 /* True if ABFD is for CPUs that are faster if JR is converted to B.
697 This should be safe for all architectures. We enable this predicate for
698 all CPUs. */
699 #define JR_TO_B_P(abfd) 1
700
701 /* True if ABFD is a PIC object. */
702 #define PIC_OBJECT_P(abfd) \
703 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
704
705 /* Nonzero if ABFD is using the N32 ABI. */
706 #define ABI_N32_P(abfd) \
707 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
708
709 /* Nonzero if ABFD is using the N64 ABI. */
710 #define ABI_64_P(abfd) \
711 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
712
713 /* Nonzero if ABFD is using NewABI conventions. */
714 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
715
716 /* The IRIX compatibility level we are striving for. */
717 #define IRIX_COMPAT(abfd) \
718 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
719
720 /* Whether we are trying to be compatible with IRIX at all. */
721 #define SGI_COMPAT(abfd) \
722 (IRIX_COMPAT (abfd) != ict_none)
723
724 /* The name of the options section. */
725 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
726 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
727
728 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
729 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
730 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
731 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
732
733 /* Whether the section is readonly. */
734 #define MIPS_ELF_READONLY_SECTION(sec) \
735 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
736 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
737
738 /* The name of the stub section. */
739 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
740
741 /* The size of an external REL relocation. */
742 #define MIPS_ELF_REL_SIZE(abfd) \
743 (get_elf_backend_data (abfd)->s->sizeof_rel)
744
745 /* The size of an external RELA relocation. */
746 #define MIPS_ELF_RELA_SIZE(abfd) \
747 (get_elf_backend_data (abfd)->s->sizeof_rela)
748
749 /* The size of an external dynamic table entry. */
750 #define MIPS_ELF_DYN_SIZE(abfd) \
751 (get_elf_backend_data (abfd)->s->sizeof_dyn)
752
753 /* The size of a GOT entry. */
754 #define MIPS_ELF_GOT_SIZE(abfd) \
755 (get_elf_backend_data (abfd)->s->arch_size / 8)
756
757 /* The size of a symbol-table entry. */
758 #define MIPS_ELF_SYM_SIZE(abfd) \
759 (get_elf_backend_data (abfd)->s->sizeof_sym)
760
761 /* The default alignment for sections, as a power of two. */
762 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
763 (get_elf_backend_data (abfd)->s->log_file_align)
764
765 /* Get word-sized data. */
766 #define MIPS_ELF_GET_WORD(abfd, ptr) \
767 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
768
769 /* Put out word-sized data. */
770 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
771 (ABI_64_P (abfd) \
772 ? bfd_put_64 (abfd, val, ptr) \
773 : bfd_put_32 (abfd, val, ptr))
774
775 /* The opcode for word-sized loads (LW or LD). */
776 #define MIPS_ELF_LOAD_WORD(abfd) \
777 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
778
779 /* Add a dynamic symbol table-entry. */
780 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
781 _bfd_elf_add_dynamic_entry (info, tag, val)
782
783 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
784 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
785
786 /* The name of the dynamic relocation section. */
787 #define MIPS_ELF_REL_DYN_NAME(INFO) \
788 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
789
790 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
791 from smaller values. Start with zero, widen, *then* decrement. */
792 #define MINUS_ONE (((bfd_vma)0) - 1)
793 #define MINUS_TWO (((bfd_vma)0) - 2)
794
795 /* The value to write into got[1] for SVR4 targets, to identify it is
796 a GNU object. The dynamic linker can then use got[1] to store the
797 module pointer. */
798 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
799 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
800
801 /* The offset of $gp from the beginning of the .got section. */
802 #define ELF_MIPS_GP_OFFSET(INFO) \
803 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
804
805 /* The maximum size of the GOT for it to be addressable using 16-bit
806 offsets from $gp. */
807 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
808
809 /* Instructions which appear in a stub. */
810 #define STUB_LW(abfd) \
811 ((ABI_64_P (abfd) \
812 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
813 : 0x8f998010)) /* lw t9,0x8010(gp) */
814 #define STUB_MOVE(abfd) \
815 ((ABI_64_P (abfd) \
816 ? 0x03e0782d /* daddu t7,ra */ \
817 : 0x03e07821)) /* addu t7,ra */
818 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
819 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
820 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
821 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
822 #define STUB_LI16S(abfd, VAL) \
823 ((ABI_64_P (abfd) \
824 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
825 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
826
827 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
828 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
829
830 /* The name of the dynamic interpreter. This is put in the .interp
831 section. */
832
833 #define ELF_DYNAMIC_INTERPRETER(abfd) \
834 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
835 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
836 : "/usr/lib/libc.so.1")
837
838 #ifdef BFD64
839 #define MNAME(bfd,pre,pos) \
840 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
841 #define ELF_R_SYM(bfd, i) \
842 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
843 #define ELF_R_TYPE(bfd, i) \
844 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
845 #define ELF_R_INFO(bfd, s, t) \
846 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
847 #else
848 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
849 #define ELF_R_SYM(bfd, i) \
850 (ELF32_R_SYM (i))
851 #define ELF_R_TYPE(bfd, i) \
852 (ELF32_R_TYPE (i))
853 #define ELF_R_INFO(bfd, s, t) \
854 (ELF32_R_INFO (s, t))
855 #endif
856 \f
857 /* The mips16 compiler uses a couple of special sections to handle
858 floating point arguments.
859
860 Section names that look like .mips16.fn.FNNAME contain stubs that
861 copy floating point arguments from the fp regs to the gp regs and
862 then jump to FNNAME. If any 32 bit function calls FNNAME, the
863 call should be redirected to the stub instead. If no 32 bit
864 function calls FNNAME, the stub should be discarded. We need to
865 consider any reference to the function, not just a call, because
866 if the address of the function is taken we will need the stub,
867 since the address might be passed to a 32 bit function.
868
869 Section names that look like .mips16.call.FNNAME contain stubs
870 that copy floating point arguments from the gp regs to the fp
871 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
872 then any 16 bit function that calls FNNAME should be redirected
873 to the stub instead. If FNNAME is not a 32 bit function, the
874 stub should be discarded.
875
876 .mips16.call.fp.FNNAME sections are similar, but contain stubs
877 which call FNNAME and then copy the return value from the fp regs
878 to the gp regs. These stubs store the return value in $18 while
879 calling FNNAME; any function which might call one of these stubs
880 must arrange to save $18 around the call. (This case is not
881 needed for 32 bit functions that call 16 bit functions, because
882 16 bit functions always return floating point values in both
883 $f0/$f1 and $2/$3.)
884
885 Note that in all cases FNNAME might be defined statically.
886 Therefore, FNNAME is not used literally. Instead, the relocation
887 information will indicate which symbol the section is for.
888
889 We record any stubs that we find in the symbol table. */
890
891 #define FN_STUB ".mips16.fn."
892 #define CALL_STUB ".mips16.call."
893 #define CALL_FP_STUB ".mips16.call.fp."
894
895 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
896 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
897 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
898 \f
899 /* The format of the first PLT entry in an O32 executable. */
900 static const bfd_vma mips_o32_exec_plt0_entry[] =
901 {
902 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
903 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
904 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
905 0x031cc023, /* subu $24, $24, $28 */
906 0x03e07821, /* move $15, $31 */
907 0x0018c082, /* srl $24, $24, 2 */
908 0x0320f809, /* jalr $25 */
909 0x2718fffe /* subu $24, $24, 2 */
910 };
911
912 /* The format of the first PLT entry in an N32 executable. Different
913 because gp ($28) is not available; we use t2 ($14) instead. */
914 static const bfd_vma mips_n32_exec_plt0_entry[] =
915 {
916 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
917 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
918 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
919 0x030ec023, /* subu $24, $24, $14 */
920 0x03e07821, /* move $15, $31 */
921 0x0018c082, /* srl $24, $24, 2 */
922 0x0320f809, /* jalr $25 */
923 0x2718fffe /* subu $24, $24, 2 */
924 };
925
926 /* The format of the first PLT entry in an N64 executable. Different
927 from N32 because of the increased size of GOT entries. */
928 static const bfd_vma mips_n64_exec_plt0_entry[] =
929 {
930 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
931 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
932 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
933 0x030ec023, /* subu $24, $24, $14 */
934 0x03e07821, /* move $15, $31 */
935 0x0018c0c2, /* srl $24, $24, 3 */
936 0x0320f809, /* jalr $25 */
937 0x2718fffe /* subu $24, $24, 2 */
938 };
939
940 /* The format of subsequent PLT entries. */
941 static const bfd_vma mips_exec_plt_entry[] =
942 {
943 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
944 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
945 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
946 0x03200008 /* jr $25 */
947 };
948
949 /* The format of the first PLT entry in a VxWorks executable. */
950 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
951 {
952 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
953 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
954 0x8f390008, /* lw t9, 8(t9) */
955 0x00000000, /* nop */
956 0x03200008, /* jr t9 */
957 0x00000000 /* nop */
958 };
959
960 /* The format of subsequent PLT entries. */
961 static const bfd_vma mips_vxworks_exec_plt_entry[] =
962 {
963 0x10000000, /* b .PLT_resolver */
964 0x24180000, /* li t8, <pltindex> */
965 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
966 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
967 0x8f390000, /* lw t9, 0(t9) */
968 0x00000000, /* nop */
969 0x03200008, /* jr t9 */
970 0x00000000 /* nop */
971 };
972
973 /* The format of the first PLT entry in a VxWorks shared object. */
974 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
975 {
976 0x8f990008, /* lw t9, 8(gp) */
977 0x00000000, /* nop */
978 0x03200008, /* jr t9 */
979 0x00000000, /* nop */
980 0x00000000, /* nop */
981 0x00000000 /* nop */
982 };
983
984 /* The format of subsequent PLT entries. */
985 static const bfd_vma mips_vxworks_shared_plt_entry[] =
986 {
987 0x10000000, /* b .PLT_resolver */
988 0x24180000 /* li t8, <pltindex> */
989 };
990 \f
991 /* Look up an entry in a MIPS ELF linker hash table. */
992
993 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
994 ((struct mips_elf_link_hash_entry *) \
995 elf_link_hash_lookup (&(table)->root, (string), (create), \
996 (copy), (follow)))
997
998 /* Traverse a MIPS ELF linker hash table. */
999
1000 #define mips_elf_link_hash_traverse(table, func, info) \
1001 (elf_link_hash_traverse \
1002 (&(table)->root, \
1003 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1004 (info)))
1005
1006 /* Find the base offsets for thread-local storage in this object,
1007 for GD/LD and IE/LE respectively. */
1008
1009 #define TP_OFFSET 0x7000
1010 #define DTP_OFFSET 0x8000
1011
1012 static bfd_vma
1013 dtprel_base (struct bfd_link_info *info)
1014 {
1015 /* If tls_sec is NULL, we should have signalled an error already. */
1016 if (elf_hash_table (info)->tls_sec == NULL)
1017 return 0;
1018 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1019 }
1020
1021 static bfd_vma
1022 tprel_base (struct bfd_link_info *info)
1023 {
1024 /* If tls_sec is NULL, we should have signalled an error already. */
1025 if (elf_hash_table (info)->tls_sec == NULL)
1026 return 0;
1027 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1028 }
1029
1030 /* Create an entry in a MIPS ELF linker hash table. */
1031
1032 static struct bfd_hash_entry *
1033 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1034 struct bfd_hash_table *table, const char *string)
1035 {
1036 struct mips_elf_link_hash_entry *ret =
1037 (struct mips_elf_link_hash_entry *) entry;
1038
1039 /* Allocate the structure if it has not already been allocated by a
1040 subclass. */
1041 if (ret == NULL)
1042 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1043 if (ret == NULL)
1044 return (struct bfd_hash_entry *) ret;
1045
1046 /* Call the allocation method of the superclass. */
1047 ret = ((struct mips_elf_link_hash_entry *)
1048 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1049 table, string));
1050 if (ret != NULL)
1051 {
1052 /* Set local fields. */
1053 memset (&ret->esym, 0, sizeof (EXTR));
1054 /* We use -2 as a marker to indicate that the information has
1055 not been set. -1 means there is no associated ifd. */
1056 ret->esym.ifd = -2;
1057 ret->la25_stub = 0;
1058 ret->possibly_dynamic_relocs = 0;
1059 ret->fn_stub = NULL;
1060 ret->call_stub = NULL;
1061 ret->call_fp_stub = NULL;
1062 ret->tls_type = GOT_NORMAL;
1063 ret->global_got_area = GGA_NONE;
1064 ret->got_only_for_calls = TRUE;
1065 ret->readonly_reloc = FALSE;
1066 ret->has_static_relocs = FALSE;
1067 ret->no_fn_stub = FALSE;
1068 ret->need_fn_stub = FALSE;
1069 ret->has_nonpic_branches = FALSE;
1070 ret->needs_lazy_stub = FALSE;
1071 }
1072
1073 return (struct bfd_hash_entry *) ret;
1074 }
1075
1076 bfd_boolean
1077 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1078 {
1079 if (!sec->used_by_bfd)
1080 {
1081 struct _mips_elf_section_data *sdata;
1082 bfd_size_type amt = sizeof (*sdata);
1083
1084 sdata = bfd_zalloc (abfd, amt);
1085 if (sdata == NULL)
1086 return FALSE;
1087 sec->used_by_bfd = sdata;
1088 }
1089
1090 return _bfd_elf_new_section_hook (abfd, sec);
1091 }
1092 \f
1093 /* Read ECOFF debugging information from a .mdebug section into a
1094 ecoff_debug_info structure. */
1095
1096 bfd_boolean
1097 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1098 struct ecoff_debug_info *debug)
1099 {
1100 HDRR *symhdr;
1101 const struct ecoff_debug_swap *swap;
1102 char *ext_hdr;
1103
1104 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1105 memset (debug, 0, sizeof (*debug));
1106
1107 ext_hdr = bfd_malloc (swap->external_hdr_size);
1108 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1109 goto error_return;
1110
1111 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1112 swap->external_hdr_size))
1113 goto error_return;
1114
1115 symhdr = &debug->symbolic_header;
1116 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1117
1118 /* The symbolic header contains absolute file offsets and sizes to
1119 read. */
1120 #define READ(ptr, offset, count, size, type) \
1121 if (symhdr->count == 0) \
1122 debug->ptr = NULL; \
1123 else \
1124 { \
1125 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1126 debug->ptr = bfd_malloc (amt); \
1127 if (debug->ptr == NULL) \
1128 goto error_return; \
1129 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1130 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1131 goto error_return; \
1132 }
1133
1134 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1135 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1136 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1137 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1138 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1139 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1140 union aux_ext *);
1141 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1142 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1143 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1144 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1145 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1146 #undef READ
1147
1148 debug->fdr = NULL;
1149
1150 return TRUE;
1151
1152 error_return:
1153 if (ext_hdr != NULL)
1154 free (ext_hdr);
1155 if (debug->line != NULL)
1156 free (debug->line);
1157 if (debug->external_dnr != NULL)
1158 free (debug->external_dnr);
1159 if (debug->external_pdr != NULL)
1160 free (debug->external_pdr);
1161 if (debug->external_sym != NULL)
1162 free (debug->external_sym);
1163 if (debug->external_opt != NULL)
1164 free (debug->external_opt);
1165 if (debug->external_aux != NULL)
1166 free (debug->external_aux);
1167 if (debug->ss != NULL)
1168 free (debug->ss);
1169 if (debug->ssext != NULL)
1170 free (debug->ssext);
1171 if (debug->external_fdr != NULL)
1172 free (debug->external_fdr);
1173 if (debug->external_rfd != NULL)
1174 free (debug->external_rfd);
1175 if (debug->external_ext != NULL)
1176 free (debug->external_ext);
1177 return FALSE;
1178 }
1179 \f
1180 /* Swap RPDR (runtime procedure table entry) for output. */
1181
1182 static void
1183 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1184 {
1185 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1186 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1187 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1188 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1189 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1190 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1191
1192 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1193 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1194
1195 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1196 }
1197
1198 /* Create a runtime procedure table from the .mdebug section. */
1199
1200 static bfd_boolean
1201 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1202 struct bfd_link_info *info, asection *s,
1203 struct ecoff_debug_info *debug)
1204 {
1205 const struct ecoff_debug_swap *swap;
1206 HDRR *hdr = &debug->symbolic_header;
1207 RPDR *rpdr, *rp;
1208 struct rpdr_ext *erp;
1209 void *rtproc;
1210 struct pdr_ext *epdr;
1211 struct sym_ext *esym;
1212 char *ss, **sv;
1213 char *str;
1214 bfd_size_type size;
1215 bfd_size_type count;
1216 unsigned long sindex;
1217 unsigned long i;
1218 PDR pdr;
1219 SYMR sym;
1220 const char *no_name_func = _("static procedure (no name)");
1221
1222 epdr = NULL;
1223 rpdr = NULL;
1224 esym = NULL;
1225 ss = NULL;
1226 sv = NULL;
1227
1228 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1229
1230 sindex = strlen (no_name_func) + 1;
1231 count = hdr->ipdMax;
1232 if (count > 0)
1233 {
1234 size = swap->external_pdr_size;
1235
1236 epdr = bfd_malloc (size * count);
1237 if (epdr == NULL)
1238 goto error_return;
1239
1240 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1241 goto error_return;
1242
1243 size = sizeof (RPDR);
1244 rp = rpdr = bfd_malloc (size * count);
1245 if (rpdr == NULL)
1246 goto error_return;
1247
1248 size = sizeof (char *);
1249 sv = bfd_malloc (size * count);
1250 if (sv == NULL)
1251 goto error_return;
1252
1253 count = hdr->isymMax;
1254 size = swap->external_sym_size;
1255 esym = bfd_malloc (size * count);
1256 if (esym == NULL)
1257 goto error_return;
1258
1259 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1260 goto error_return;
1261
1262 count = hdr->issMax;
1263 ss = bfd_malloc (count);
1264 if (ss == NULL)
1265 goto error_return;
1266 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1267 goto error_return;
1268
1269 count = hdr->ipdMax;
1270 for (i = 0; i < (unsigned long) count; i++, rp++)
1271 {
1272 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1273 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1274 rp->adr = sym.value;
1275 rp->regmask = pdr.regmask;
1276 rp->regoffset = pdr.regoffset;
1277 rp->fregmask = pdr.fregmask;
1278 rp->fregoffset = pdr.fregoffset;
1279 rp->frameoffset = pdr.frameoffset;
1280 rp->framereg = pdr.framereg;
1281 rp->pcreg = pdr.pcreg;
1282 rp->irpss = sindex;
1283 sv[i] = ss + sym.iss;
1284 sindex += strlen (sv[i]) + 1;
1285 }
1286 }
1287
1288 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1289 size = BFD_ALIGN (size, 16);
1290 rtproc = bfd_alloc (abfd, size);
1291 if (rtproc == NULL)
1292 {
1293 mips_elf_hash_table (info)->procedure_count = 0;
1294 goto error_return;
1295 }
1296
1297 mips_elf_hash_table (info)->procedure_count = count + 2;
1298
1299 erp = rtproc;
1300 memset (erp, 0, sizeof (struct rpdr_ext));
1301 erp++;
1302 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1303 strcpy (str, no_name_func);
1304 str += strlen (no_name_func) + 1;
1305 for (i = 0; i < count; i++)
1306 {
1307 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1308 strcpy (str, sv[i]);
1309 str += strlen (sv[i]) + 1;
1310 }
1311 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1312
1313 /* Set the size and contents of .rtproc section. */
1314 s->size = size;
1315 s->contents = rtproc;
1316
1317 /* Skip this section later on (I don't think this currently
1318 matters, but someday it might). */
1319 s->map_head.link_order = NULL;
1320
1321 if (epdr != NULL)
1322 free (epdr);
1323 if (rpdr != NULL)
1324 free (rpdr);
1325 if (esym != NULL)
1326 free (esym);
1327 if (ss != NULL)
1328 free (ss);
1329 if (sv != NULL)
1330 free (sv);
1331
1332 return TRUE;
1333
1334 error_return:
1335 if (epdr != NULL)
1336 free (epdr);
1337 if (rpdr != NULL)
1338 free (rpdr);
1339 if (esym != NULL)
1340 free (esym);
1341 if (ss != NULL)
1342 free (ss);
1343 if (sv != NULL)
1344 free (sv);
1345 return FALSE;
1346 }
1347 \f
1348 /* We're going to create a stub for H. Create a symbol for the stub's
1349 value and size, to help make the disassembly easier to read. */
1350
1351 static bfd_boolean
1352 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1353 struct mips_elf_link_hash_entry *h,
1354 const char *prefix, asection *s, bfd_vma value,
1355 bfd_vma size)
1356 {
1357 struct bfd_link_hash_entry *bh;
1358 struct elf_link_hash_entry *elfh;
1359 const char *name;
1360
1361 /* Create a new symbol. */
1362 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1363 bh = NULL;
1364 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1365 BSF_LOCAL, s, value, NULL,
1366 TRUE, FALSE, &bh))
1367 return FALSE;
1368
1369 /* Make it a local function. */
1370 elfh = (struct elf_link_hash_entry *) bh;
1371 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1372 elfh->size = size;
1373 elfh->forced_local = 1;
1374 return TRUE;
1375 }
1376
1377 /* We're about to redefine H. Create a symbol to represent H's
1378 current value and size, to help make the disassembly easier
1379 to read. */
1380
1381 static bfd_boolean
1382 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1383 struct mips_elf_link_hash_entry *h,
1384 const char *prefix)
1385 {
1386 struct bfd_link_hash_entry *bh;
1387 struct elf_link_hash_entry *elfh;
1388 const char *name;
1389 asection *s;
1390 bfd_vma value;
1391
1392 /* Read the symbol's value. */
1393 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1394 || h->root.root.type == bfd_link_hash_defweak);
1395 s = h->root.root.u.def.section;
1396 value = h->root.root.u.def.value;
1397
1398 /* Create a new symbol. */
1399 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1400 bh = NULL;
1401 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1402 BSF_LOCAL, s, value, NULL,
1403 TRUE, FALSE, &bh))
1404 return FALSE;
1405
1406 /* Make it local and copy the other attributes from H. */
1407 elfh = (struct elf_link_hash_entry *) bh;
1408 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1409 elfh->other = h->root.other;
1410 elfh->size = h->root.size;
1411 elfh->forced_local = 1;
1412 return TRUE;
1413 }
1414
1415 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1416 function rather than to a hard-float stub. */
1417
1418 static bfd_boolean
1419 section_allows_mips16_refs_p (asection *section)
1420 {
1421 const char *name;
1422
1423 name = bfd_get_section_name (section->owner, section);
1424 return (FN_STUB_P (name)
1425 || CALL_STUB_P (name)
1426 || CALL_FP_STUB_P (name)
1427 || strcmp (name, ".pdr") == 0);
1428 }
1429
1430 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1431 stub section of some kind. Return the R_SYMNDX of the target
1432 function, or 0 if we can't decide which function that is. */
1433
1434 static unsigned long
1435 mips16_stub_symndx (asection *sec ATTRIBUTE_UNUSED,
1436 const Elf_Internal_Rela *relocs,
1437 const Elf_Internal_Rela *relend)
1438 {
1439 const Elf_Internal_Rela *rel;
1440
1441 /* Trust the first R_MIPS_NONE relocation, if any. */
1442 for (rel = relocs; rel < relend; rel++)
1443 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1444 return ELF_R_SYM (sec->owner, rel->r_info);
1445
1446 /* Otherwise trust the first relocation, whatever its kind. This is
1447 the traditional behavior. */
1448 if (relocs < relend)
1449 return ELF_R_SYM (sec->owner, relocs->r_info);
1450
1451 return 0;
1452 }
1453
1454 /* Check the mips16 stubs for a particular symbol, and see if we can
1455 discard them. */
1456
1457 static void
1458 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1459 struct mips_elf_link_hash_entry *h)
1460 {
1461 /* Dynamic symbols must use the standard call interface, in case other
1462 objects try to call them. */
1463 if (h->fn_stub != NULL
1464 && h->root.dynindx != -1)
1465 {
1466 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1467 h->need_fn_stub = TRUE;
1468 }
1469
1470 if (h->fn_stub != NULL
1471 && ! h->need_fn_stub)
1472 {
1473 /* We don't need the fn_stub; the only references to this symbol
1474 are 16 bit calls. Clobber the size to 0 to prevent it from
1475 being included in the link. */
1476 h->fn_stub->size = 0;
1477 h->fn_stub->flags &= ~SEC_RELOC;
1478 h->fn_stub->reloc_count = 0;
1479 h->fn_stub->flags |= SEC_EXCLUDE;
1480 }
1481
1482 if (h->call_stub != NULL
1483 && ELF_ST_IS_MIPS16 (h->root.other))
1484 {
1485 /* We don't need the call_stub; this is a 16 bit function, so
1486 calls from other 16 bit functions are OK. Clobber the size
1487 to 0 to prevent it from being included in the link. */
1488 h->call_stub->size = 0;
1489 h->call_stub->flags &= ~SEC_RELOC;
1490 h->call_stub->reloc_count = 0;
1491 h->call_stub->flags |= SEC_EXCLUDE;
1492 }
1493
1494 if (h->call_fp_stub != NULL
1495 && ELF_ST_IS_MIPS16 (h->root.other))
1496 {
1497 /* We don't need the call_stub; this is a 16 bit function, so
1498 calls from other 16 bit functions are OK. Clobber the size
1499 to 0 to prevent it from being included in the link. */
1500 h->call_fp_stub->size = 0;
1501 h->call_fp_stub->flags &= ~SEC_RELOC;
1502 h->call_fp_stub->reloc_count = 0;
1503 h->call_fp_stub->flags |= SEC_EXCLUDE;
1504 }
1505 }
1506
1507 /* Hashtable callbacks for mips_elf_la25_stubs. */
1508
1509 static hashval_t
1510 mips_elf_la25_stub_hash (const void *entry_)
1511 {
1512 const struct mips_elf_la25_stub *entry;
1513
1514 entry = (struct mips_elf_la25_stub *) entry_;
1515 return entry->h->root.root.u.def.section->id
1516 + entry->h->root.root.u.def.value;
1517 }
1518
1519 static int
1520 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1521 {
1522 const struct mips_elf_la25_stub *entry1, *entry2;
1523
1524 entry1 = (struct mips_elf_la25_stub *) entry1_;
1525 entry2 = (struct mips_elf_la25_stub *) entry2_;
1526 return ((entry1->h->root.root.u.def.section
1527 == entry2->h->root.root.u.def.section)
1528 && (entry1->h->root.root.u.def.value
1529 == entry2->h->root.root.u.def.value));
1530 }
1531
1532 /* Called by the linker to set up the la25 stub-creation code. FN is
1533 the linker's implementation of add_stub_function. Return true on
1534 success. */
1535
1536 bfd_boolean
1537 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1538 asection *(*fn) (const char *, asection *,
1539 asection *))
1540 {
1541 struct mips_elf_link_hash_table *htab;
1542
1543 htab = mips_elf_hash_table (info);
1544 if (htab == NULL)
1545 return FALSE;
1546
1547 htab->add_stub_section = fn;
1548 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1549 mips_elf_la25_stub_eq, NULL);
1550 if (htab->la25_stubs == NULL)
1551 return FALSE;
1552
1553 return TRUE;
1554 }
1555
1556 /* Return true if H is a locally-defined PIC function, in the sense
1557 that it might need $25 to be valid on entry. Note that MIPS16
1558 functions never need $25 to be valid on entry; they set up $gp
1559 using PC-relative instructions instead. */
1560
1561 static bfd_boolean
1562 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1563 {
1564 return ((h->root.root.type == bfd_link_hash_defined
1565 || h->root.root.type == bfd_link_hash_defweak)
1566 && h->root.def_regular
1567 && !bfd_is_abs_section (h->root.root.u.def.section)
1568 && !ELF_ST_IS_MIPS16 (h->root.other)
1569 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1570 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1571 }
1572
1573 /* STUB describes an la25 stub that we have decided to implement
1574 by inserting an LUI/ADDIU pair before the target function.
1575 Create the section and redirect the function symbol to it. */
1576
1577 static bfd_boolean
1578 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1579 struct bfd_link_info *info)
1580 {
1581 struct mips_elf_link_hash_table *htab;
1582 char *name;
1583 asection *s, *input_section;
1584 unsigned int align;
1585
1586 htab = mips_elf_hash_table (info);
1587 if (htab == NULL)
1588 return FALSE;
1589
1590 /* Create a unique name for the new section. */
1591 name = bfd_malloc (11 + sizeof (".text.stub."));
1592 if (name == NULL)
1593 return FALSE;
1594 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1595
1596 /* Create the section. */
1597 input_section = stub->h->root.root.u.def.section;
1598 s = htab->add_stub_section (name, input_section,
1599 input_section->output_section);
1600 if (s == NULL)
1601 return FALSE;
1602
1603 /* Make sure that any padding goes before the stub. */
1604 align = input_section->alignment_power;
1605 if (!bfd_set_section_alignment (s->owner, s, align))
1606 return FALSE;
1607 if (align > 3)
1608 s->size = (1 << align) - 8;
1609
1610 /* Create a symbol for the stub. */
1611 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1612 stub->stub_section = s;
1613 stub->offset = s->size;
1614
1615 /* Allocate room for it. */
1616 s->size += 8;
1617 return TRUE;
1618 }
1619
1620 /* STUB describes an la25 stub that we have decided to implement
1621 with a separate trampoline. Allocate room for it and redirect
1622 the function symbol to it. */
1623
1624 static bfd_boolean
1625 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1626 struct bfd_link_info *info)
1627 {
1628 struct mips_elf_link_hash_table *htab;
1629 asection *s;
1630
1631 htab = mips_elf_hash_table (info);
1632 if (htab == NULL)
1633 return FALSE;
1634
1635 /* Create a trampoline section, if we haven't already. */
1636 s = htab->strampoline;
1637 if (s == NULL)
1638 {
1639 asection *input_section = stub->h->root.root.u.def.section;
1640 s = htab->add_stub_section (".text", NULL,
1641 input_section->output_section);
1642 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1643 return FALSE;
1644 htab->strampoline = s;
1645 }
1646
1647 /* Create a symbol for the stub. */
1648 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1649 stub->stub_section = s;
1650 stub->offset = s->size;
1651
1652 /* Allocate room for it. */
1653 s->size += 16;
1654 return TRUE;
1655 }
1656
1657 /* H describes a symbol that needs an la25 stub. Make sure that an
1658 appropriate stub exists and point H at it. */
1659
1660 static bfd_boolean
1661 mips_elf_add_la25_stub (struct bfd_link_info *info,
1662 struct mips_elf_link_hash_entry *h)
1663 {
1664 struct mips_elf_link_hash_table *htab;
1665 struct mips_elf_la25_stub search, *stub;
1666 bfd_boolean use_trampoline_p;
1667 asection *s;
1668 bfd_vma value;
1669 void **slot;
1670
1671 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1672 of the section and if we would need no more than 2 nops. */
1673 s = h->root.root.u.def.section;
1674 value = h->root.root.u.def.value;
1675 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1676
1677 /* Describe the stub we want. */
1678 search.stub_section = NULL;
1679 search.offset = 0;
1680 search.h = h;
1681
1682 /* See if we've already created an equivalent stub. */
1683 htab = mips_elf_hash_table (info);
1684 if (htab == NULL)
1685 return FALSE;
1686
1687 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1688 if (slot == NULL)
1689 return FALSE;
1690
1691 stub = (struct mips_elf_la25_stub *) *slot;
1692 if (stub != NULL)
1693 {
1694 /* We can reuse the existing stub. */
1695 h->la25_stub = stub;
1696 return TRUE;
1697 }
1698
1699 /* Create a permanent copy of ENTRY and add it to the hash table. */
1700 stub = bfd_malloc (sizeof (search));
1701 if (stub == NULL)
1702 return FALSE;
1703 *stub = search;
1704 *slot = stub;
1705
1706 h->la25_stub = stub;
1707 return (use_trampoline_p
1708 ? mips_elf_add_la25_trampoline (stub, info)
1709 : mips_elf_add_la25_intro (stub, info));
1710 }
1711
1712 /* A mips_elf_link_hash_traverse callback that is called before sizing
1713 sections. DATA points to a mips_htab_traverse_info structure. */
1714
1715 static bfd_boolean
1716 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1717 {
1718 struct mips_htab_traverse_info *hti;
1719
1720 hti = (struct mips_htab_traverse_info *) data;
1721 if (h->root.root.type == bfd_link_hash_warning)
1722 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1723
1724 if (!hti->info->relocatable)
1725 mips_elf_check_mips16_stubs (hti->info, h);
1726
1727 if (mips_elf_local_pic_function_p (h))
1728 {
1729 /* H is a function that might need $25 to be valid on entry.
1730 If we're creating a non-PIC relocatable object, mark H as
1731 being PIC. If we're creating a non-relocatable object with
1732 non-PIC branches and jumps to H, make sure that H has an la25
1733 stub. */
1734 if (hti->info->relocatable)
1735 {
1736 if (!PIC_OBJECT_P (hti->output_bfd))
1737 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1738 }
1739 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1740 {
1741 hti->error = TRUE;
1742 return FALSE;
1743 }
1744 }
1745 return TRUE;
1746 }
1747 \f
1748 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1749 Most mips16 instructions are 16 bits, but these instructions
1750 are 32 bits.
1751
1752 The format of these instructions is:
1753
1754 +--------------+--------------------------------+
1755 | JALX | X| Imm 20:16 | Imm 25:21 |
1756 +--------------+--------------------------------+
1757 | Immediate 15:0 |
1758 +-----------------------------------------------+
1759
1760 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1761 Note that the immediate value in the first word is swapped.
1762
1763 When producing a relocatable object file, R_MIPS16_26 is
1764 handled mostly like R_MIPS_26. In particular, the addend is
1765 stored as a straight 26-bit value in a 32-bit instruction.
1766 (gas makes life simpler for itself by never adjusting a
1767 R_MIPS16_26 reloc to be against a section, so the addend is
1768 always zero). However, the 32 bit instruction is stored as 2
1769 16-bit values, rather than a single 32-bit value. In a
1770 big-endian file, the result is the same; in a little-endian
1771 file, the two 16-bit halves of the 32 bit value are swapped.
1772 This is so that a disassembler can recognize the jal
1773 instruction.
1774
1775 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1776 instruction stored as two 16-bit values. The addend A is the
1777 contents of the targ26 field. The calculation is the same as
1778 R_MIPS_26. When storing the calculated value, reorder the
1779 immediate value as shown above, and don't forget to store the
1780 value as two 16-bit values.
1781
1782 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1783 defined as
1784
1785 big-endian:
1786 +--------+----------------------+
1787 | | |
1788 | | targ26-16 |
1789 |31 26|25 0|
1790 +--------+----------------------+
1791
1792 little-endian:
1793 +----------+------+-------------+
1794 | | | |
1795 | sub1 | | sub2 |
1796 |0 9|10 15|16 31|
1797 +----------+--------------------+
1798 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1799 ((sub1 << 16) | sub2)).
1800
1801 When producing a relocatable object file, the calculation is
1802 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1803 When producing a fully linked file, the calculation is
1804 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1805 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1806
1807 The table below lists the other MIPS16 instruction relocations.
1808 Each one is calculated in the same way as the non-MIPS16 relocation
1809 given on the right, but using the extended MIPS16 layout of 16-bit
1810 immediate fields:
1811
1812 R_MIPS16_GPREL R_MIPS_GPREL16
1813 R_MIPS16_GOT16 R_MIPS_GOT16
1814 R_MIPS16_CALL16 R_MIPS_CALL16
1815 R_MIPS16_HI16 R_MIPS_HI16
1816 R_MIPS16_LO16 R_MIPS_LO16
1817
1818 A typical instruction will have a format like this:
1819
1820 +--------------+--------------------------------+
1821 | EXTEND | Imm 10:5 | Imm 15:11 |
1822 +--------------+--------------------------------+
1823 | Major | rx | ry | Imm 4:0 |
1824 +--------------+--------------------------------+
1825
1826 EXTEND is the five bit value 11110. Major is the instruction
1827 opcode.
1828
1829 All we need to do here is shuffle the bits appropriately.
1830 As above, the two 16-bit halves must be swapped on a
1831 little-endian system. */
1832
1833 static inline bfd_boolean
1834 mips16_reloc_p (int r_type)
1835 {
1836 switch (r_type)
1837 {
1838 case R_MIPS16_26:
1839 case R_MIPS16_GPREL:
1840 case R_MIPS16_GOT16:
1841 case R_MIPS16_CALL16:
1842 case R_MIPS16_HI16:
1843 case R_MIPS16_LO16:
1844 return TRUE;
1845
1846 default:
1847 return FALSE;
1848 }
1849 }
1850
1851 static inline bfd_boolean
1852 got16_reloc_p (int r_type)
1853 {
1854 return r_type == R_MIPS_GOT16 || r_type == R_MIPS16_GOT16;
1855 }
1856
1857 static inline bfd_boolean
1858 call16_reloc_p (int r_type)
1859 {
1860 return r_type == R_MIPS_CALL16 || r_type == R_MIPS16_CALL16;
1861 }
1862
1863 static inline bfd_boolean
1864 hi16_reloc_p (int r_type)
1865 {
1866 return r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16;
1867 }
1868
1869 static inline bfd_boolean
1870 lo16_reloc_p (int r_type)
1871 {
1872 return r_type == R_MIPS_LO16 || r_type == R_MIPS16_LO16;
1873 }
1874
1875 static inline bfd_boolean
1876 mips16_call_reloc_p (int r_type)
1877 {
1878 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
1879 }
1880
1881 static inline bfd_boolean
1882 jal_reloc_p (int r_type)
1883 {
1884 return r_type == R_MIPS_26 || r_type == R_MIPS16_26;
1885 }
1886
1887 void
1888 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1889 bfd_boolean jal_shuffle, bfd_byte *data)
1890 {
1891 bfd_vma extend, insn, val;
1892
1893 if (!mips16_reloc_p (r_type))
1894 return;
1895
1896 /* Pick up the mips16 extend instruction and the real instruction. */
1897 extend = bfd_get_16 (abfd, data);
1898 insn = bfd_get_16 (abfd, data + 2);
1899 if (r_type == R_MIPS16_26)
1900 {
1901 if (jal_shuffle)
1902 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1903 | ((extend & 0x1f) << 21) | insn;
1904 else
1905 val = extend << 16 | insn;
1906 }
1907 else
1908 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1909 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1910 bfd_put_32 (abfd, val, data);
1911 }
1912
1913 void
1914 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1915 bfd_boolean jal_shuffle, bfd_byte *data)
1916 {
1917 bfd_vma extend, insn, val;
1918
1919 if (!mips16_reloc_p (r_type))
1920 return;
1921
1922 val = bfd_get_32 (abfd, data);
1923 if (r_type == R_MIPS16_26)
1924 {
1925 if (jal_shuffle)
1926 {
1927 insn = val & 0xffff;
1928 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1929 | ((val >> 21) & 0x1f);
1930 }
1931 else
1932 {
1933 insn = val & 0xffff;
1934 extend = val >> 16;
1935 }
1936 }
1937 else
1938 {
1939 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1940 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1941 }
1942 bfd_put_16 (abfd, insn, data + 2);
1943 bfd_put_16 (abfd, extend, data);
1944 }
1945
1946 bfd_reloc_status_type
1947 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1948 arelent *reloc_entry, asection *input_section,
1949 bfd_boolean relocatable, void *data, bfd_vma gp)
1950 {
1951 bfd_vma relocation;
1952 bfd_signed_vma val;
1953 bfd_reloc_status_type status;
1954
1955 if (bfd_is_com_section (symbol->section))
1956 relocation = 0;
1957 else
1958 relocation = symbol->value;
1959
1960 relocation += symbol->section->output_section->vma;
1961 relocation += symbol->section->output_offset;
1962
1963 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1964 return bfd_reloc_outofrange;
1965
1966 /* Set val to the offset into the section or symbol. */
1967 val = reloc_entry->addend;
1968
1969 _bfd_mips_elf_sign_extend (val, 16);
1970
1971 /* Adjust val for the final section location and GP value. If we
1972 are producing relocatable output, we don't want to do this for
1973 an external symbol. */
1974 if (! relocatable
1975 || (symbol->flags & BSF_SECTION_SYM) != 0)
1976 val += relocation - gp;
1977
1978 if (reloc_entry->howto->partial_inplace)
1979 {
1980 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1981 (bfd_byte *) data
1982 + reloc_entry->address);
1983 if (status != bfd_reloc_ok)
1984 return status;
1985 }
1986 else
1987 reloc_entry->addend = val;
1988
1989 if (relocatable)
1990 reloc_entry->address += input_section->output_offset;
1991
1992 return bfd_reloc_ok;
1993 }
1994
1995 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1996 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1997 that contains the relocation field and DATA points to the start of
1998 INPUT_SECTION. */
1999
2000 struct mips_hi16
2001 {
2002 struct mips_hi16 *next;
2003 bfd_byte *data;
2004 asection *input_section;
2005 arelent rel;
2006 };
2007
2008 /* FIXME: This should not be a static variable. */
2009
2010 static struct mips_hi16 *mips_hi16_list;
2011
2012 /* A howto special_function for REL *HI16 relocations. We can only
2013 calculate the correct value once we've seen the partnering
2014 *LO16 relocation, so just save the information for later.
2015
2016 The ABI requires that the *LO16 immediately follow the *HI16.
2017 However, as a GNU extension, we permit an arbitrary number of
2018 *HI16s to be associated with a single *LO16. This significantly
2019 simplies the relocation handling in gcc. */
2020
2021 bfd_reloc_status_type
2022 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2023 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2024 asection *input_section, bfd *output_bfd,
2025 char **error_message ATTRIBUTE_UNUSED)
2026 {
2027 struct mips_hi16 *n;
2028
2029 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2030 return bfd_reloc_outofrange;
2031
2032 n = bfd_malloc (sizeof *n);
2033 if (n == NULL)
2034 return bfd_reloc_outofrange;
2035
2036 n->next = mips_hi16_list;
2037 n->data = data;
2038 n->input_section = input_section;
2039 n->rel = *reloc_entry;
2040 mips_hi16_list = n;
2041
2042 if (output_bfd != NULL)
2043 reloc_entry->address += input_section->output_offset;
2044
2045 return bfd_reloc_ok;
2046 }
2047
2048 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2049 like any other 16-bit relocation when applied to global symbols, but is
2050 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2051
2052 bfd_reloc_status_type
2053 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2054 void *data, asection *input_section,
2055 bfd *output_bfd, char **error_message)
2056 {
2057 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2058 || bfd_is_und_section (bfd_get_section (symbol))
2059 || bfd_is_com_section (bfd_get_section (symbol)))
2060 /* The relocation is against a global symbol. */
2061 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2062 input_section, output_bfd,
2063 error_message);
2064
2065 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2066 input_section, output_bfd, error_message);
2067 }
2068
2069 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2070 is a straightforward 16 bit inplace relocation, but we must deal with
2071 any partnering high-part relocations as well. */
2072
2073 bfd_reloc_status_type
2074 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2075 void *data, asection *input_section,
2076 bfd *output_bfd, char **error_message)
2077 {
2078 bfd_vma vallo;
2079 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2080
2081 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2082 return bfd_reloc_outofrange;
2083
2084 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2085 location);
2086 vallo = bfd_get_32 (abfd, location);
2087 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2088 location);
2089
2090 while (mips_hi16_list != NULL)
2091 {
2092 bfd_reloc_status_type ret;
2093 struct mips_hi16 *hi;
2094
2095 hi = mips_hi16_list;
2096
2097 /* R_MIPS*_GOT16 relocations are something of a special case. We
2098 want to install the addend in the same way as for a R_MIPS*_HI16
2099 relocation (with a rightshift of 16). However, since GOT16
2100 relocations can also be used with global symbols, their howto
2101 has a rightshift of 0. */
2102 if (hi->rel.howto->type == R_MIPS_GOT16)
2103 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2104 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2105 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2106
2107 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2108 carry or borrow will induce a change of +1 or -1 in the high part. */
2109 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2110
2111 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2112 hi->input_section, output_bfd,
2113 error_message);
2114 if (ret != bfd_reloc_ok)
2115 return ret;
2116
2117 mips_hi16_list = hi->next;
2118 free (hi);
2119 }
2120
2121 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2122 input_section, output_bfd,
2123 error_message);
2124 }
2125
2126 /* A generic howto special_function. This calculates and installs the
2127 relocation itself, thus avoiding the oft-discussed problems in
2128 bfd_perform_relocation and bfd_install_relocation. */
2129
2130 bfd_reloc_status_type
2131 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2132 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2133 asection *input_section, bfd *output_bfd,
2134 char **error_message ATTRIBUTE_UNUSED)
2135 {
2136 bfd_signed_vma val;
2137 bfd_reloc_status_type status;
2138 bfd_boolean relocatable;
2139
2140 relocatable = (output_bfd != NULL);
2141
2142 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2143 return bfd_reloc_outofrange;
2144
2145 /* Build up the field adjustment in VAL. */
2146 val = 0;
2147 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2148 {
2149 /* Either we're calculating the final field value or we have a
2150 relocation against a section symbol. Add in the section's
2151 offset or address. */
2152 val += symbol->section->output_section->vma;
2153 val += symbol->section->output_offset;
2154 }
2155
2156 if (!relocatable)
2157 {
2158 /* We're calculating the final field value. Add in the symbol's value
2159 and, if pc-relative, subtract the address of the field itself. */
2160 val += symbol->value;
2161 if (reloc_entry->howto->pc_relative)
2162 {
2163 val -= input_section->output_section->vma;
2164 val -= input_section->output_offset;
2165 val -= reloc_entry->address;
2166 }
2167 }
2168
2169 /* VAL is now the final adjustment. If we're keeping this relocation
2170 in the output file, and if the relocation uses a separate addend,
2171 we just need to add VAL to that addend. Otherwise we need to add
2172 VAL to the relocation field itself. */
2173 if (relocatable && !reloc_entry->howto->partial_inplace)
2174 reloc_entry->addend += val;
2175 else
2176 {
2177 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2178
2179 /* Add in the separate addend, if any. */
2180 val += reloc_entry->addend;
2181
2182 /* Add VAL to the relocation field. */
2183 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2184 location);
2185 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2186 location);
2187 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2188 location);
2189
2190 if (status != bfd_reloc_ok)
2191 return status;
2192 }
2193
2194 if (relocatable)
2195 reloc_entry->address += input_section->output_offset;
2196
2197 return bfd_reloc_ok;
2198 }
2199 \f
2200 /* Swap an entry in a .gptab section. Note that these routines rely
2201 on the equivalence of the two elements of the union. */
2202
2203 static void
2204 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2205 Elf32_gptab *in)
2206 {
2207 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2208 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2209 }
2210
2211 static void
2212 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2213 Elf32_External_gptab *ex)
2214 {
2215 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2216 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2217 }
2218
2219 static void
2220 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2221 Elf32_External_compact_rel *ex)
2222 {
2223 H_PUT_32 (abfd, in->id1, ex->id1);
2224 H_PUT_32 (abfd, in->num, ex->num);
2225 H_PUT_32 (abfd, in->id2, ex->id2);
2226 H_PUT_32 (abfd, in->offset, ex->offset);
2227 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2228 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2229 }
2230
2231 static void
2232 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2233 Elf32_External_crinfo *ex)
2234 {
2235 unsigned long l;
2236
2237 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2238 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2239 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2240 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2241 H_PUT_32 (abfd, l, ex->info);
2242 H_PUT_32 (abfd, in->konst, ex->konst);
2243 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2244 }
2245 \f
2246 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2247 routines swap this structure in and out. They are used outside of
2248 BFD, so they are globally visible. */
2249
2250 void
2251 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2252 Elf32_RegInfo *in)
2253 {
2254 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2255 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2256 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2257 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2258 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2259 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2260 }
2261
2262 void
2263 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2264 Elf32_External_RegInfo *ex)
2265 {
2266 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2267 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2268 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2269 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2270 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2271 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2272 }
2273
2274 /* In the 64 bit ABI, the .MIPS.options section holds register
2275 information in an Elf64_Reginfo structure. These routines swap
2276 them in and out. They are globally visible because they are used
2277 outside of BFD. These routines are here so that gas can call them
2278 without worrying about whether the 64 bit ABI has been included. */
2279
2280 void
2281 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2282 Elf64_Internal_RegInfo *in)
2283 {
2284 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2285 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2286 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2287 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2288 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2289 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2290 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2291 }
2292
2293 void
2294 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2295 Elf64_External_RegInfo *ex)
2296 {
2297 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2298 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2299 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2300 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2301 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2302 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2303 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2304 }
2305
2306 /* Swap in an options header. */
2307
2308 void
2309 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2310 Elf_Internal_Options *in)
2311 {
2312 in->kind = H_GET_8 (abfd, ex->kind);
2313 in->size = H_GET_8 (abfd, ex->size);
2314 in->section = H_GET_16 (abfd, ex->section);
2315 in->info = H_GET_32 (abfd, ex->info);
2316 }
2317
2318 /* Swap out an options header. */
2319
2320 void
2321 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2322 Elf_External_Options *ex)
2323 {
2324 H_PUT_8 (abfd, in->kind, ex->kind);
2325 H_PUT_8 (abfd, in->size, ex->size);
2326 H_PUT_16 (abfd, in->section, ex->section);
2327 H_PUT_32 (abfd, in->info, ex->info);
2328 }
2329 \f
2330 /* This function is called via qsort() to sort the dynamic relocation
2331 entries by increasing r_symndx value. */
2332
2333 static int
2334 sort_dynamic_relocs (const void *arg1, const void *arg2)
2335 {
2336 Elf_Internal_Rela int_reloc1;
2337 Elf_Internal_Rela int_reloc2;
2338 int diff;
2339
2340 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2341 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2342
2343 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2344 if (diff != 0)
2345 return diff;
2346
2347 if (int_reloc1.r_offset < int_reloc2.r_offset)
2348 return -1;
2349 if (int_reloc1.r_offset > int_reloc2.r_offset)
2350 return 1;
2351 return 0;
2352 }
2353
2354 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2355
2356 static int
2357 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2358 const void *arg2 ATTRIBUTE_UNUSED)
2359 {
2360 #ifdef BFD64
2361 Elf_Internal_Rela int_reloc1[3];
2362 Elf_Internal_Rela int_reloc2[3];
2363
2364 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2365 (reldyn_sorting_bfd, arg1, int_reloc1);
2366 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2367 (reldyn_sorting_bfd, arg2, int_reloc2);
2368
2369 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2370 return -1;
2371 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2372 return 1;
2373
2374 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2375 return -1;
2376 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2377 return 1;
2378 return 0;
2379 #else
2380 abort ();
2381 #endif
2382 }
2383
2384
2385 /* This routine is used to write out ECOFF debugging external symbol
2386 information. It is called via mips_elf_link_hash_traverse. The
2387 ECOFF external symbol information must match the ELF external
2388 symbol information. Unfortunately, at this point we don't know
2389 whether a symbol is required by reloc information, so the two
2390 tables may wind up being different. We must sort out the external
2391 symbol information before we can set the final size of the .mdebug
2392 section, and we must set the size of the .mdebug section before we
2393 can relocate any sections, and we can't know which symbols are
2394 required by relocation until we relocate the sections.
2395 Fortunately, it is relatively unlikely that any symbol will be
2396 stripped but required by a reloc. In particular, it can not happen
2397 when generating a final executable. */
2398
2399 static bfd_boolean
2400 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2401 {
2402 struct extsym_info *einfo = data;
2403 bfd_boolean strip;
2404 asection *sec, *output_section;
2405
2406 if (h->root.root.type == bfd_link_hash_warning)
2407 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2408
2409 if (h->root.indx == -2)
2410 strip = FALSE;
2411 else if ((h->root.def_dynamic
2412 || h->root.ref_dynamic
2413 || h->root.type == bfd_link_hash_new)
2414 && !h->root.def_regular
2415 && !h->root.ref_regular)
2416 strip = TRUE;
2417 else if (einfo->info->strip == strip_all
2418 || (einfo->info->strip == strip_some
2419 && bfd_hash_lookup (einfo->info->keep_hash,
2420 h->root.root.root.string,
2421 FALSE, FALSE) == NULL))
2422 strip = TRUE;
2423 else
2424 strip = FALSE;
2425
2426 if (strip)
2427 return TRUE;
2428
2429 if (h->esym.ifd == -2)
2430 {
2431 h->esym.jmptbl = 0;
2432 h->esym.cobol_main = 0;
2433 h->esym.weakext = 0;
2434 h->esym.reserved = 0;
2435 h->esym.ifd = ifdNil;
2436 h->esym.asym.value = 0;
2437 h->esym.asym.st = stGlobal;
2438
2439 if (h->root.root.type == bfd_link_hash_undefined
2440 || h->root.root.type == bfd_link_hash_undefweak)
2441 {
2442 const char *name;
2443
2444 /* Use undefined class. Also, set class and type for some
2445 special symbols. */
2446 name = h->root.root.root.string;
2447 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2448 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2449 {
2450 h->esym.asym.sc = scData;
2451 h->esym.asym.st = stLabel;
2452 h->esym.asym.value = 0;
2453 }
2454 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2455 {
2456 h->esym.asym.sc = scAbs;
2457 h->esym.asym.st = stLabel;
2458 h->esym.asym.value =
2459 mips_elf_hash_table (einfo->info)->procedure_count;
2460 }
2461 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2462 {
2463 h->esym.asym.sc = scAbs;
2464 h->esym.asym.st = stLabel;
2465 h->esym.asym.value = elf_gp (einfo->abfd);
2466 }
2467 else
2468 h->esym.asym.sc = scUndefined;
2469 }
2470 else if (h->root.root.type != bfd_link_hash_defined
2471 && h->root.root.type != bfd_link_hash_defweak)
2472 h->esym.asym.sc = scAbs;
2473 else
2474 {
2475 const char *name;
2476
2477 sec = h->root.root.u.def.section;
2478 output_section = sec->output_section;
2479
2480 /* When making a shared library and symbol h is the one from
2481 the another shared library, OUTPUT_SECTION may be null. */
2482 if (output_section == NULL)
2483 h->esym.asym.sc = scUndefined;
2484 else
2485 {
2486 name = bfd_section_name (output_section->owner, output_section);
2487
2488 if (strcmp (name, ".text") == 0)
2489 h->esym.asym.sc = scText;
2490 else if (strcmp (name, ".data") == 0)
2491 h->esym.asym.sc = scData;
2492 else if (strcmp (name, ".sdata") == 0)
2493 h->esym.asym.sc = scSData;
2494 else if (strcmp (name, ".rodata") == 0
2495 || strcmp (name, ".rdata") == 0)
2496 h->esym.asym.sc = scRData;
2497 else if (strcmp (name, ".bss") == 0)
2498 h->esym.asym.sc = scBss;
2499 else if (strcmp (name, ".sbss") == 0)
2500 h->esym.asym.sc = scSBss;
2501 else if (strcmp (name, ".init") == 0)
2502 h->esym.asym.sc = scInit;
2503 else if (strcmp (name, ".fini") == 0)
2504 h->esym.asym.sc = scFini;
2505 else
2506 h->esym.asym.sc = scAbs;
2507 }
2508 }
2509
2510 h->esym.asym.reserved = 0;
2511 h->esym.asym.index = indexNil;
2512 }
2513
2514 if (h->root.root.type == bfd_link_hash_common)
2515 h->esym.asym.value = h->root.root.u.c.size;
2516 else if (h->root.root.type == bfd_link_hash_defined
2517 || h->root.root.type == bfd_link_hash_defweak)
2518 {
2519 if (h->esym.asym.sc == scCommon)
2520 h->esym.asym.sc = scBss;
2521 else if (h->esym.asym.sc == scSCommon)
2522 h->esym.asym.sc = scSBss;
2523
2524 sec = h->root.root.u.def.section;
2525 output_section = sec->output_section;
2526 if (output_section != NULL)
2527 h->esym.asym.value = (h->root.root.u.def.value
2528 + sec->output_offset
2529 + output_section->vma);
2530 else
2531 h->esym.asym.value = 0;
2532 }
2533 else
2534 {
2535 struct mips_elf_link_hash_entry *hd = h;
2536
2537 while (hd->root.root.type == bfd_link_hash_indirect)
2538 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2539
2540 if (hd->needs_lazy_stub)
2541 {
2542 /* Set type and value for a symbol with a function stub. */
2543 h->esym.asym.st = stProc;
2544 sec = hd->root.root.u.def.section;
2545 if (sec == NULL)
2546 h->esym.asym.value = 0;
2547 else
2548 {
2549 output_section = sec->output_section;
2550 if (output_section != NULL)
2551 h->esym.asym.value = (hd->root.plt.offset
2552 + sec->output_offset
2553 + output_section->vma);
2554 else
2555 h->esym.asym.value = 0;
2556 }
2557 }
2558 }
2559
2560 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2561 h->root.root.root.string,
2562 &h->esym))
2563 {
2564 einfo->failed = TRUE;
2565 return FALSE;
2566 }
2567
2568 return TRUE;
2569 }
2570
2571 /* A comparison routine used to sort .gptab entries. */
2572
2573 static int
2574 gptab_compare (const void *p1, const void *p2)
2575 {
2576 const Elf32_gptab *a1 = p1;
2577 const Elf32_gptab *a2 = p2;
2578
2579 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2580 }
2581 \f
2582 /* Functions to manage the got entry hash table. */
2583
2584 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2585 hash number. */
2586
2587 static INLINE hashval_t
2588 mips_elf_hash_bfd_vma (bfd_vma addr)
2589 {
2590 #ifdef BFD64
2591 return addr + (addr >> 32);
2592 #else
2593 return addr;
2594 #endif
2595 }
2596
2597 /* got_entries only match if they're identical, except for gotidx, so
2598 use all fields to compute the hash, and compare the appropriate
2599 union members. */
2600
2601 static hashval_t
2602 mips_elf_got_entry_hash (const void *entry_)
2603 {
2604 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2605
2606 return entry->symndx
2607 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2608 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2609 : entry->abfd->id
2610 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2611 : entry->d.h->root.root.root.hash));
2612 }
2613
2614 static int
2615 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2616 {
2617 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2618 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2619
2620 /* An LDM entry can only match another LDM entry. */
2621 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2622 return 0;
2623
2624 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2625 && (! e1->abfd ? e1->d.address == e2->d.address
2626 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2627 : e1->d.h == e2->d.h);
2628 }
2629
2630 /* multi_got_entries are still a match in the case of global objects,
2631 even if the input bfd in which they're referenced differs, so the
2632 hash computation and compare functions are adjusted
2633 accordingly. */
2634
2635 static hashval_t
2636 mips_elf_multi_got_entry_hash (const void *entry_)
2637 {
2638 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2639
2640 return entry->symndx
2641 + (! entry->abfd
2642 ? mips_elf_hash_bfd_vma (entry->d.address)
2643 : entry->symndx >= 0
2644 ? ((entry->tls_type & GOT_TLS_LDM)
2645 ? (GOT_TLS_LDM << 17)
2646 : (entry->abfd->id
2647 + mips_elf_hash_bfd_vma (entry->d.addend)))
2648 : entry->d.h->root.root.root.hash);
2649 }
2650
2651 static int
2652 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2653 {
2654 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2655 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2656
2657 /* Any two LDM entries match. */
2658 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2659 return 1;
2660
2661 /* Nothing else matches an LDM entry. */
2662 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2663 return 0;
2664
2665 return e1->symndx == e2->symndx
2666 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2667 : e1->abfd == NULL || e2->abfd == NULL
2668 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2669 : e1->d.h == e2->d.h);
2670 }
2671
2672 static hashval_t
2673 mips_got_page_entry_hash (const void *entry_)
2674 {
2675 const struct mips_got_page_entry *entry;
2676
2677 entry = (const struct mips_got_page_entry *) entry_;
2678 return entry->abfd->id + entry->symndx;
2679 }
2680
2681 static int
2682 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2683 {
2684 const struct mips_got_page_entry *entry1, *entry2;
2685
2686 entry1 = (const struct mips_got_page_entry *) entry1_;
2687 entry2 = (const struct mips_got_page_entry *) entry2_;
2688 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2689 }
2690 \f
2691 /* Return the dynamic relocation section. If it doesn't exist, try to
2692 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2693 if creation fails. */
2694
2695 static asection *
2696 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2697 {
2698 const char *dname;
2699 asection *sreloc;
2700 bfd *dynobj;
2701
2702 dname = MIPS_ELF_REL_DYN_NAME (info);
2703 dynobj = elf_hash_table (info)->dynobj;
2704 sreloc = bfd_get_section_by_name (dynobj, dname);
2705 if (sreloc == NULL && create_p)
2706 {
2707 sreloc = bfd_make_section_with_flags (dynobj, dname,
2708 (SEC_ALLOC
2709 | SEC_LOAD
2710 | SEC_HAS_CONTENTS
2711 | SEC_IN_MEMORY
2712 | SEC_LINKER_CREATED
2713 | SEC_READONLY));
2714 if (sreloc == NULL
2715 || ! bfd_set_section_alignment (dynobj, sreloc,
2716 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2717 return NULL;
2718 }
2719 return sreloc;
2720 }
2721
2722 /* Count the number of relocations needed for a TLS GOT entry, with
2723 access types from TLS_TYPE, and symbol H (or a local symbol if H
2724 is NULL). */
2725
2726 static int
2727 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2728 struct elf_link_hash_entry *h)
2729 {
2730 int indx = 0;
2731 int ret = 0;
2732 bfd_boolean need_relocs = FALSE;
2733 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2734
2735 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2736 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2737 indx = h->dynindx;
2738
2739 if ((info->shared || indx != 0)
2740 && (h == NULL
2741 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2742 || h->root.type != bfd_link_hash_undefweak))
2743 need_relocs = TRUE;
2744
2745 if (!need_relocs)
2746 return FALSE;
2747
2748 if (tls_type & GOT_TLS_GD)
2749 {
2750 ret++;
2751 if (indx != 0)
2752 ret++;
2753 }
2754
2755 if (tls_type & GOT_TLS_IE)
2756 ret++;
2757
2758 if ((tls_type & GOT_TLS_LDM) && info->shared)
2759 ret++;
2760
2761 return ret;
2762 }
2763
2764 /* Count the number of TLS relocations required for the GOT entry in
2765 ARG1, if it describes a local symbol. */
2766
2767 static int
2768 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2769 {
2770 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2771 struct mips_elf_count_tls_arg *arg = arg2;
2772
2773 if (entry->abfd != NULL && entry->symndx != -1)
2774 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2775
2776 return 1;
2777 }
2778
2779 /* Count the number of TLS GOT entries required for the global (or
2780 forced-local) symbol in ARG1. */
2781
2782 static int
2783 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2784 {
2785 struct mips_elf_link_hash_entry *hm
2786 = (struct mips_elf_link_hash_entry *) arg1;
2787 struct mips_elf_count_tls_arg *arg = arg2;
2788
2789 if (hm->tls_type & GOT_TLS_GD)
2790 arg->needed += 2;
2791 if (hm->tls_type & GOT_TLS_IE)
2792 arg->needed += 1;
2793
2794 return 1;
2795 }
2796
2797 /* Count the number of TLS relocations required for the global (or
2798 forced-local) symbol in ARG1. */
2799
2800 static int
2801 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2802 {
2803 struct mips_elf_link_hash_entry *hm
2804 = (struct mips_elf_link_hash_entry *) arg1;
2805 struct mips_elf_count_tls_arg *arg = arg2;
2806
2807 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2808
2809 return 1;
2810 }
2811
2812 /* Output a simple dynamic relocation into SRELOC. */
2813
2814 static void
2815 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2816 asection *sreloc,
2817 unsigned long reloc_index,
2818 unsigned long indx,
2819 int r_type,
2820 bfd_vma offset)
2821 {
2822 Elf_Internal_Rela rel[3];
2823
2824 memset (rel, 0, sizeof (rel));
2825
2826 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2827 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2828
2829 if (ABI_64_P (output_bfd))
2830 {
2831 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2832 (output_bfd, &rel[0],
2833 (sreloc->contents
2834 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
2835 }
2836 else
2837 bfd_elf32_swap_reloc_out
2838 (output_bfd, &rel[0],
2839 (sreloc->contents
2840 + reloc_index * sizeof (Elf32_External_Rel)));
2841 }
2842
2843 /* Initialize a set of TLS GOT entries for one symbol. */
2844
2845 static void
2846 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2847 unsigned char *tls_type_p,
2848 struct bfd_link_info *info,
2849 struct mips_elf_link_hash_entry *h,
2850 bfd_vma value)
2851 {
2852 struct mips_elf_link_hash_table *htab;
2853 int indx;
2854 asection *sreloc, *sgot;
2855 bfd_vma offset, offset2;
2856 bfd_boolean need_relocs = FALSE;
2857
2858 htab = mips_elf_hash_table (info);
2859 if (htab == NULL)
2860 return;
2861
2862 sgot = htab->sgot;
2863
2864 indx = 0;
2865 if (h != NULL)
2866 {
2867 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2868
2869 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2870 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2871 indx = h->root.dynindx;
2872 }
2873
2874 if (*tls_type_p & GOT_TLS_DONE)
2875 return;
2876
2877 if ((info->shared || indx != 0)
2878 && (h == NULL
2879 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2880 || h->root.type != bfd_link_hash_undefweak))
2881 need_relocs = TRUE;
2882
2883 /* MINUS_ONE means the symbol is not defined in this object. It may not
2884 be defined at all; assume that the value doesn't matter in that
2885 case. Otherwise complain if we would use the value. */
2886 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2887 || h->root.root.type == bfd_link_hash_undefweak);
2888
2889 /* Emit necessary relocations. */
2890 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2891
2892 /* General Dynamic. */
2893 if (*tls_type_p & GOT_TLS_GD)
2894 {
2895 offset = got_offset;
2896 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2897
2898 if (need_relocs)
2899 {
2900 mips_elf_output_dynamic_relocation
2901 (abfd, sreloc, sreloc->reloc_count++, indx,
2902 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2903 sgot->output_offset + sgot->output_section->vma + offset);
2904
2905 if (indx)
2906 mips_elf_output_dynamic_relocation
2907 (abfd, sreloc, sreloc->reloc_count++, indx,
2908 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2909 sgot->output_offset + sgot->output_section->vma + offset2);
2910 else
2911 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2912 sgot->contents + offset2);
2913 }
2914 else
2915 {
2916 MIPS_ELF_PUT_WORD (abfd, 1,
2917 sgot->contents + offset);
2918 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2919 sgot->contents + offset2);
2920 }
2921
2922 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2923 }
2924
2925 /* Initial Exec model. */
2926 if (*tls_type_p & GOT_TLS_IE)
2927 {
2928 offset = got_offset;
2929
2930 if (need_relocs)
2931 {
2932 if (indx == 0)
2933 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2934 sgot->contents + offset);
2935 else
2936 MIPS_ELF_PUT_WORD (abfd, 0,
2937 sgot->contents + offset);
2938
2939 mips_elf_output_dynamic_relocation
2940 (abfd, sreloc, sreloc->reloc_count++, indx,
2941 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2942 sgot->output_offset + sgot->output_section->vma + offset);
2943 }
2944 else
2945 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2946 sgot->contents + offset);
2947 }
2948
2949 if (*tls_type_p & GOT_TLS_LDM)
2950 {
2951 /* The initial offset is zero, and the LD offsets will include the
2952 bias by DTP_OFFSET. */
2953 MIPS_ELF_PUT_WORD (abfd, 0,
2954 sgot->contents + got_offset
2955 + MIPS_ELF_GOT_SIZE (abfd));
2956
2957 if (!info->shared)
2958 MIPS_ELF_PUT_WORD (abfd, 1,
2959 sgot->contents + got_offset);
2960 else
2961 mips_elf_output_dynamic_relocation
2962 (abfd, sreloc, sreloc->reloc_count++, indx,
2963 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2964 sgot->output_offset + sgot->output_section->vma + got_offset);
2965 }
2966
2967 *tls_type_p |= GOT_TLS_DONE;
2968 }
2969
2970 /* Return the GOT index to use for a relocation of type R_TYPE against
2971 a symbol accessed using TLS_TYPE models. The GOT entries for this
2972 symbol in this GOT start at GOT_INDEX. This function initializes the
2973 GOT entries and corresponding relocations. */
2974
2975 static bfd_vma
2976 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2977 int r_type, struct bfd_link_info *info,
2978 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2979 {
2980 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2981 || r_type == R_MIPS_TLS_LDM);
2982
2983 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2984
2985 if (r_type == R_MIPS_TLS_GOTTPREL)
2986 {
2987 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2988 if (*tls_type & GOT_TLS_GD)
2989 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2990 else
2991 return got_index;
2992 }
2993
2994 if (r_type == R_MIPS_TLS_GD)
2995 {
2996 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2997 return got_index;
2998 }
2999
3000 if (r_type == R_MIPS_TLS_LDM)
3001 {
3002 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3003 return got_index;
3004 }
3005
3006 return got_index;
3007 }
3008
3009 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3010 for global symbol H. .got.plt comes before the GOT, so the offset
3011 will be negative. */
3012
3013 static bfd_vma
3014 mips_elf_gotplt_index (struct bfd_link_info *info,
3015 struct elf_link_hash_entry *h)
3016 {
3017 bfd_vma plt_index, got_address, got_value;
3018 struct mips_elf_link_hash_table *htab;
3019
3020 htab = mips_elf_hash_table (info);
3021 BFD_ASSERT (htab != NULL);
3022
3023 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3024
3025 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3026 section starts with reserved entries. */
3027 BFD_ASSERT (htab->is_vxworks);
3028
3029 /* Calculate the index of the symbol's PLT entry. */
3030 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3031
3032 /* Calculate the address of the associated .got.plt entry. */
3033 got_address = (htab->sgotplt->output_section->vma
3034 + htab->sgotplt->output_offset
3035 + plt_index * 4);
3036
3037 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3038 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3039 + htab->root.hgot->root.u.def.section->output_offset
3040 + htab->root.hgot->root.u.def.value);
3041
3042 return got_address - got_value;
3043 }
3044
3045 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3046 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3047 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3048 offset can be found. */
3049
3050 static bfd_vma
3051 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3052 bfd_vma value, unsigned long r_symndx,
3053 struct mips_elf_link_hash_entry *h, int r_type)
3054 {
3055 struct mips_elf_link_hash_table *htab;
3056 struct mips_got_entry *entry;
3057
3058 htab = mips_elf_hash_table (info);
3059 BFD_ASSERT (htab != NULL);
3060
3061 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3062 r_symndx, h, r_type);
3063 if (!entry)
3064 return MINUS_ONE;
3065
3066 if (TLS_RELOC_P (r_type))
3067 {
3068 if (entry->symndx == -1 && htab->got_info->next == NULL)
3069 /* A type (3) entry in the single-GOT case. We use the symbol's
3070 hash table entry to track the index. */
3071 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3072 r_type, info, h, value);
3073 else
3074 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3075 r_type, info, h, value);
3076 }
3077 else
3078 return entry->gotidx;
3079 }
3080
3081 /* Returns the GOT index for the global symbol indicated by H. */
3082
3083 static bfd_vma
3084 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3085 int r_type, struct bfd_link_info *info)
3086 {
3087 struct mips_elf_link_hash_table *htab;
3088 bfd_vma got_index;
3089 struct mips_got_info *g, *gg;
3090 long global_got_dynindx = 0;
3091
3092 htab = mips_elf_hash_table (info);
3093 BFD_ASSERT (htab != NULL);
3094
3095 gg = g = htab->got_info;
3096 if (g->bfd2got && ibfd)
3097 {
3098 struct mips_got_entry e, *p;
3099
3100 BFD_ASSERT (h->dynindx >= 0);
3101
3102 g = mips_elf_got_for_ibfd (g, ibfd);
3103 if (g->next != gg || TLS_RELOC_P (r_type))
3104 {
3105 e.abfd = ibfd;
3106 e.symndx = -1;
3107 e.d.h = (struct mips_elf_link_hash_entry *)h;
3108 e.tls_type = 0;
3109
3110 p = htab_find (g->got_entries, &e);
3111
3112 BFD_ASSERT (p->gotidx > 0);
3113
3114 if (TLS_RELOC_P (r_type))
3115 {
3116 bfd_vma value = MINUS_ONE;
3117 if ((h->root.type == bfd_link_hash_defined
3118 || h->root.type == bfd_link_hash_defweak)
3119 && h->root.u.def.section->output_section)
3120 value = (h->root.u.def.value
3121 + h->root.u.def.section->output_offset
3122 + h->root.u.def.section->output_section->vma);
3123
3124 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3125 info, e.d.h, value);
3126 }
3127 else
3128 return p->gotidx;
3129 }
3130 }
3131
3132 if (gg->global_gotsym != NULL)
3133 global_got_dynindx = gg->global_gotsym->dynindx;
3134
3135 if (TLS_RELOC_P (r_type))
3136 {
3137 struct mips_elf_link_hash_entry *hm
3138 = (struct mips_elf_link_hash_entry *) h;
3139 bfd_vma value = MINUS_ONE;
3140
3141 if ((h->root.type == bfd_link_hash_defined
3142 || h->root.type == bfd_link_hash_defweak)
3143 && h->root.u.def.section->output_section)
3144 value = (h->root.u.def.value
3145 + h->root.u.def.section->output_offset
3146 + h->root.u.def.section->output_section->vma);
3147
3148 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3149 r_type, info, hm, value);
3150 }
3151 else
3152 {
3153 /* Once we determine the global GOT entry with the lowest dynamic
3154 symbol table index, we must put all dynamic symbols with greater
3155 indices into the GOT. That makes it easy to calculate the GOT
3156 offset. */
3157 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3158 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3159 * MIPS_ELF_GOT_SIZE (abfd));
3160 }
3161 BFD_ASSERT (got_index < htab->sgot->size);
3162
3163 return got_index;
3164 }
3165
3166 /* Find a GOT page entry that points to within 32KB of VALUE. These
3167 entries are supposed to be placed at small offsets in the GOT, i.e.,
3168 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3169 entry could be created. If OFFSETP is nonnull, use it to return the
3170 offset of the GOT entry from VALUE. */
3171
3172 static bfd_vma
3173 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3174 bfd_vma value, bfd_vma *offsetp)
3175 {
3176 bfd_vma page, got_index;
3177 struct mips_got_entry *entry;
3178
3179 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3180 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3181 NULL, R_MIPS_GOT_PAGE);
3182
3183 if (!entry)
3184 return MINUS_ONE;
3185
3186 got_index = entry->gotidx;
3187
3188 if (offsetp)
3189 *offsetp = value - entry->d.address;
3190
3191 return got_index;
3192 }
3193
3194 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3195 EXTERNAL is true if the relocation was originally against a global
3196 symbol that binds locally. */
3197
3198 static bfd_vma
3199 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3200 bfd_vma value, bfd_boolean external)
3201 {
3202 struct mips_got_entry *entry;
3203
3204 /* GOT16 relocations against local symbols are followed by a LO16
3205 relocation; those against global symbols are not. Thus if the
3206 symbol was originally local, the GOT16 relocation should load the
3207 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3208 if (! external)
3209 value = mips_elf_high (value) << 16;
3210
3211 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3212 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3213 same in all cases. */
3214 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3215 NULL, R_MIPS_GOT16);
3216 if (entry)
3217 return entry->gotidx;
3218 else
3219 return MINUS_ONE;
3220 }
3221
3222 /* Returns the offset for the entry at the INDEXth position
3223 in the GOT. */
3224
3225 static bfd_vma
3226 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3227 bfd *input_bfd, bfd_vma got_index)
3228 {
3229 struct mips_elf_link_hash_table *htab;
3230 asection *sgot;
3231 bfd_vma gp;
3232
3233 htab = mips_elf_hash_table (info);
3234 BFD_ASSERT (htab != NULL);
3235
3236 sgot = htab->sgot;
3237 gp = _bfd_get_gp_value (output_bfd)
3238 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3239
3240 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3241 }
3242
3243 /* Create and return a local GOT entry for VALUE, which was calculated
3244 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3245 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3246 instead. */
3247
3248 static struct mips_got_entry *
3249 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3250 bfd *ibfd, bfd_vma value,
3251 unsigned long r_symndx,
3252 struct mips_elf_link_hash_entry *h,
3253 int r_type)
3254 {
3255 struct mips_got_entry entry, **loc;
3256 struct mips_got_info *g;
3257 struct mips_elf_link_hash_table *htab;
3258
3259 htab = mips_elf_hash_table (info);
3260 BFD_ASSERT (htab != NULL);
3261
3262 entry.abfd = NULL;
3263 entry.symndx = -1;
3264 entry.d.address = value;
3265 entry.tls_type = 0;
3266
3267 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3268 if (g == NULL)
3269 {
3270 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3271 BFD_ASSERT (g != NULL);
3272 }
3273
3274 /* This function shouldn't be called for symbols that live in the global
3275 area of the GOT. */
3276 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3277 if (TLS_RELOC_P (r_type))
3278 {
3279 struct mips_got_entry *p;
3280
3281 entry.abfd = ibfd;
3282 if (r_type == R_MIPS_TLS_LDM)
3283 {
3284 entry.tls_type = GOT_TLS_LDM;
3285 entry.symndx = 0;
3286 entry.d.addend = 0;
3287 }
3288 else if (h == NULL)
3289 {
3290 entry.symndx = r_symndx;
3291 entry.d.addend = 0;
3292 }
3293 else
3294 entry.d.h = h;
3295
3296 p = (struct mips_got_entry *)
3297 htab_find (g->got_entries, &entry);
3298
3299 BFD_ASSERT (p);
3300 return p;
3301 }
3302
3303 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3304 INSERT);
3305 if (*loc)
3306 return *loc;
3307
3308 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3309 entry.tls_type = 0;
3310
3311 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3312
3313 if (! *loc)
3314 return NULL;
3315
3316 memcpy (*loc, &entry, sizeof entry);
3317
3318 if (g->assigned_gotno > g->local_gotno)
3319 {
3320 (*loc)->gotidx = -1;
3321 /* We didn't allocate enough space in the GOT. */
3322 (*_bfd_error_handler)
3323 (_("not enough GOT space for local GOT entries"));
3324 bfd_set_error (bfd_error_bad_value);
3325 return NULL;
3326 }
3327
3328 MIPS_ELF_PUT_WORD (abfd, value,
3329 (htab->sgot->contents + entry.gotidx));
3330
3331 /* These GOT entries need a dynamic relocation on VxWorks. */
3332 if (htab->is_vxworks)
3333 {
3334 Elf_Internal_Rela outrel;
3335 asection *s;
3336 bfd_byte *rloc;
3337 bfd_vma got_address;
3338
3339 s = mips_elf_rel_dyn_section (info, FALSE);
3340 got_address = (htab->sgot->output_section->vma
3341 + htab->sgot->output_offset
3342 + entry.gotidx);
3343
3344 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3345 outrel.r_offset = got_address;
3346 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3347 outrel.r_addend = value;
3348 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3349 }
3350
3351 return *loc;
3352 }
3353
3354 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3355 The number might be exact or a worst-case estimate, depending on how
3356 much information is available to elf_backend_omit_section_dynsym at
3357 the current linking stage. */
3358
3359 static bfd_size_type
3360 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3361 {
3362 bfd_size_type count;
3363
3364 count = 0;
3365 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3366 {
3367 asection *p;
3368 const struct elf_backend_data *bed;
3369
3370 bed = get_elf_backend_data (output_bfd);
3371 for (p = output_bfd->sections; p ; p = p->next)
3372 if ((p->flags & SEC_EXCLUDE) == 0
3373 && (p->flags & SEC_ALLOC) != 0
3374 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3375 ++count;
3376 }
3377 return count;
3378 }
3379
3380 /* Sort the dynamic symbol table so that symbols that need GOT entries
3381 appear towards the end. */
3382
3383 static bfd_boolean
3384 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3385 {
3386 struct mips_elf_link_hash_table *htab;
3387 struct mips_elf_hash_sort_data hsd;
3388 struct mips_got_info *g;
3389
3390 if (elf_hash_table (info)->dynsymcount == 0)
3391 return TRUE;
3392
3393 htab = mips_elf_hash_table (info);
3394 BFD_ASSERT (htab != NULL);
3395
3396 g = htab->got_info;
3397 if (g == NULL)
3398 return TRUE;
3399
3400 hsd.low = NULL;
3401 hsd.max_unref_got_dynindx
3402 = hsd.min_got_dynindx
3403 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3404 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3405 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3406 elf_hash_table (info)),
3407 mips_elf_sort_hash_table_f,
3408 &hsd);
3409
3410 /* There should have been enough room in the symbol table to
3411 accommodate both the GOT and non-GOT symbols. */
3412 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3413 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3414 == elf_hash_table (info)->dynsymcount);
3415 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3416 == g->global_gotno);
3417
3418 /* Now we know which dynamic symbol has the lowest dynamic symbol
3419 table index in the GOT. */
3420 g->global_gotsym = hsd.low;
3421
3422 return TRUE;
3423 }
3424
3425 /* If H needs a GOT entry, assign it the highest available dynamic
3426 index. Otherwise, assign it the lowest available dynamic
3427 index. */
3428
3429 static bfd_boolean
3430 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3431 {
3432 struct mips_elf_hash_sort_data *hsd = data;
3433
3434 if (h->root.root.type == bfd_link_hash_warning)
3435 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3436
3437 /* Symbols without dynamic symbol table entries aren't interesting
3438 at all. */
3439 if (h->root.dynindx == -1)
3440 return TRUE;
3441
3442 switch (h->global_got_area)
3443 {
3444 case GGA_NONE:
3445 h->root.dynindx = hsd->max_non_got_dynindx++;
3446 break;
3447
3448 case GGA_NORMAL:
3449 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3450
3451 h->root.dynindx = --hsd->min_got_dynindx;
3452 hsd->low = (struct elf_link_hash_entry *) h;
3453 break;
3454
3455 case GGA_RELOC_ONLY:
3456 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3457
3458 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3459 hsd->low = (struct elf_link_hash_entry *) h;
3460 h->root.dynindx = hsd->max_unref_got_dynindx++;
3461 break;
3462 }
3463
3464 return TRUE;
3465 }
3466
3467 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3468 symbol table index lower than any we've seen to date, record it for
3469 posterity. FOR_CALL is true if the caller is only interested in
3470 using the GOT entry for calls. */
3471
3472 static bfd_boolean
3473 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3474 bfd *abfd, struct bfd_link_info *info,
3475 bfd_boolean for_call,
3476 unsigned char tls_flag)
3477 {
3478 struct mips_elf_link_hash_table *htab;
3479 struct mips_elf_link_hash_entry *hmips;
3480 struct mips_got_entry entry, **loc;
3481 struct mips_got_info *g;
3482
3483 htab = mips_elf_hash_table (info);
3484 BFD_ASSERT (htab != NULL);
3485
3486 hmips = (struct mips_elf_link_hash_entry *) h;
3487 if (!for_call)
3488 hmips->got_only_for_calls = FALSE;
3489
3490 /* A global symbol in the GOT must also be in the dynamic symbol
3491 table. */
3492 if (h->dynindx == -1)
3493 {
3494 switch (ELF_ST_VISIBILITY (h->other))
3495 {
3496 case STV_INTERNAL:
3497 case STV_HIDDEN:
3498 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3499 break;
3500 }
3501 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3502 return FALSE;
3503 }
3504
3505 /* Make sure we have a GOT to put this entry into. */
3506 g = htab->got_info;
3507 BFD_ASSERT (g != NULL);
3508
3509 entry.abfd = abfd;
3510 entry.symndx = -1;
3511 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3512 entry.tls_type = 0;
3513
3514 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3515 INSERT);
3516
3517 /* If we've already marked this entry as needing GOT space, we don't
3518 need to do it again. */
3519 if (*loc)
3520 {
3521 (*loc)->tls_type |= tls_flag;
3522 return TRUE;
3523 }
3524
3525 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3526
3527 if (! *loc)
3528 return FALSE;
3529
3530 entry.gotidx = -1;
3531 entry.tls_type = tls_flag;
3532
3533 memcpy (*loc, &entry, sizeof entry);
3534
3535 if (tls_flag == 0)
3536 hmips->global_got_area = GGA_NORMAL;
3537
3538 return TRUE;
3539 }
3540
3541 /* Reserve space in G for a GOT entry containing the value of symbol
3542 SYMNDX in input bfd ABDF, plus ADDEND. */
3543
3544 static bfd_boolean
3545 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3546 struct bfd_link_info *info,
3547 unsigned char tls_flag)
3548 {
3549 struct mips_elf_link_hash_table *htab;
3550 struct mips_got_info *g;
3551 struct mips_got_entry entry, **loc;
3552
3553 htab = mips_elf_hash_table (info);
3554 BFD_ASSERT (htab != NULL);
3555
3556 g = htab->got_info;
3557 BFD_ASSERT (g != NULL);
3558
3559 entry.abfd = abfd;
3560 entry.symndx = symndx;
3561 entry.d.addend = addend;
3562 entry.tls_type = tls_flag;
3563 loc = (struct mips_got_entry **)
3564 htab_find_slot (g->got_entries, &entry, INSERT);
3565
3566 if (*loc)
3567 {
3568 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3569 {
3570 g->tls_gotno += 2;
3571 (*loc)->tls_type |= tls_flag;
3572 }
3573 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3574 {
3575 g->tls_gotno += 1;
3576 (*loc)->tls_type |= tls_flag;
3577 }
3578 return TRUE;
3579 }
3580
3581 if (tls_flag != 0)
3582 {
3583 entry.gotidx = -1;
3584 entry.tls_type = tls_flag;
3585 if (tls_flag == GOT_TLS_IE)
3586 g->tls_gotno += 1;
3587 else if (tls_flag == GOT_TLS_GD)
3588 g->tls_gotno += 2;
3589 else if (g->tls_ldm_offset == MINUS_ONE)
3590 {
3591 g->tls_ldm_offset = MINUS_TWO;
3592 g->tls_gotno += 2;
3593 }
3594 }
3595 else
3596 {
3597 entry.gotidx = g->local_gotno++;
3598 entry.tls_type = 0;
3599 }
3600
3601 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3602
3603 if (! *loc)
3604 return FALSE;
3605
3606 memcpy (*loc, &entry, sizeof entry);
3607
3608 return TRUE;
3609 }
3610
3611 /* Return the maximum number of GOT page entries required for RANGE. */
3612
3613 static bfd_vma
3614 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3615 {
3616 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3617 }
3618
3619 /* Record that ABFD has a page relocation against symbol SYMNDX and
3620 that ADDEND is the addend for that relocation.
3621
3622 This function creates an upper bound on the number of GOT slots
3623 required; no attempt is made to combine references to non-overridable
3624 global symbols across multiple input files. */
3625
3626 static bfd_boolean
3627 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3628 long symndx, bfd_signed_vma addend)
3629 {
3630 struct mips_elf_link_hash_table *htab;
3631 struct mips_got_info *g;
3632 struct mips_got_page_entry lookup, *entry;
3633 struct mips_got_page_range **range_ptr, *range;
3634 bfd_vma old_pages, new_pages;
3635 void **loc;
3636
3637 htab = mips_elf_hash_table (info);
3638 BFD_ASSERT (htab != NULL);
3639
3640 g = htab->got_info;
3641 BFD_ASSERT (g != NULL);
3642
3643 /* Find the mips_got_page_entry hash table entry for this symbol. */
3644 lookup.abfd = abfd;
3645 lookup.symndx = symndx;
3646 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3647 if (loc == NULL)
3648 return FALSE;
3649
3650 /* Create a mips_got_page_entry if this is the first time we've
3651 seen the symbol. */
3652 entry = (struct mips_got_page_entry *) *loc;
3653 if (!entry)
3654 {
3655 entry = bfd_alloc (abfd, sizeof (*entry));
3656 if (!entry)
3657 return FALSE;
3658
3659 entry->abfd = abfd;
3660 entry->symndx = symndx;
3661 entry->ranges = NULL;
3662 entry->num_pages = 0;
3663 *loc = entry;
3664 }
3665
3666 /* Skip over ranges whose maximum extent cannot share a page entry
3667 with ADDEND. */
3668 range_ptr = &entry->ranges;
3669 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3670 range_ptr = &(*range_ptr)->next;
3671
3672 /* If we scanned to the end of the list, or found a range whose
3673 minimum extent cannot share a page entry with ADDEND, create
3674 a new singleton range. */
3675 range = *range_ptr;
3676 if (!range || addend < range->min_addend - 0xffff)
3677 {
3678 range = bfd_alloc (abfd, sizeof (*range));
3679 if (!range)
3680 return FALSE;
3681
3682 range->next = *range_ptr;
3683 range->min_addend = addend;
3684 range->max_addend = addend;
3685
3686 *range_ptr = range;
3687 entry->num_pages++;
3688 g->page_gotno++;
3689 return TRUE;
3690 }
3691
3692 /* Remember how many pages the old range contributed. */
3693 old_pages = mips_elf_pages_for_range (range);
3694
3695 /* Update the ranges. */
3696 if (addend < range->min_addend)
3697 range->min_addend = addend;
3698 else if (addend > range->max_addend)
3699 {
3700 if (range->next && addend >= range->next->min_addend - 0xffff)
3701 {
3702 old_pages += mips_elf_pages_for_range (range->next);
3703 range->max_addend = range->next->max_addend;
3704 range->next = range->next->next;
3705 }
3706 else
3707 range->max_addend = addend;
3708 }
3709
3710 /* Record any change in the total estimate. */
3711 new_pages = mips_elf_pages_for_range (range);
3712 if (old_pages != new_pages)
3713 {
3714 entry->num_pages += new_pages - old_pages;
3715 g->page_gotno += new_pages - old_pages;
3716 }
3717
3718 return TRUE;
3719 }
3720
3721 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3722
3723 static void
3724 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3725 unsigned int n)
3726 {
3727 asection *s;
3728 struct mips_elf_link_hash_table *htab;
3729
3730 htab = mips_elf_hash_table (info);
3731 BFD_ASSERT (htab != NULL);
3732
3733 s = mips_elf_rel_dyn_section (info, FALSE);
3734 BFD_ASSERT (s != NULL);
3735
3736 if (htab->is_vxworks)
3737 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3738 else
3739 {
3740 if (s->size == 0)
3741 {
3742 /* Make room for a null element. */
3743 s->size += MIPS_ELF_REL_SIZE (abfd);
3744 ++s->reloc_count;
3745 }
3746 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3747 }
3748 }
3749 \f
3750 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3751 if the GOT entry is for an indirect or warning symbol. */
3752
3753 static int
3754 mips_elf_check_recreate_got (void **entryp, void *data)
3755 {
3756 struct mips_got_entry *entry;
3757 bfd_boolean *must_recreate;
3758
3759 entry = (struct mips_got_entry *) *entryp;
3760 must_recreate = (bfd_boolean *) data;
3761 if (entry->abfd != NULL && entry->symndx == -1)
3762 {
3763 struct mips_elf_link_hash_entry *h;
3764
3765 h = entry->d.h;
3766 if (h->root.root.type == bfd_link_hash_indirect
3767 || h->root.root.type == bfd_link_hash_warning)
3768 {
3769 *must_recreate = TRUE;
3770 return 0;
3771 }
3772 }
3773 return 1;
3774 }
3775
3776 /* A htab_traverse callback for GOT entries. Add all entries to
3777 hash table *DATA, converting entries for indirect and warning
3778 symbols into entries for the target symbol. Set *DATA to null
3779 on error. */
3780
3781 static int
3782 mips_elf_recreate_got (void **entryp, void *data)
3783 {
3784 htab_t *new_got;
3785 struct mips_got_entry *entry;
3786 void **slot;
3787
3788 new_got = (htab_t *) data;
3789 entry = (struct mips_got_entry *) *entryp;
3790 if (entry->abfd != NULL && entry->symndx == -1)
3791 {
3792 struct mips_elf_link_hash_entry *h;
3793
3794 h = entry->d.h;
3795 while (h->root.root.type == bfd_link_hash_indirect
3796 || h->root.root.type == bfd_link_hash_warning)
3797 {
3798 BFD_ASSERT (h->global_got_area == GGA_NONE);
3799 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3800 }
3801 entry->d.h = h;
3802 }
3803 slot = htab_find_slot (*new_got, entry, INSERT);
3804 if (slot == NULL)
3805 {
3806 *new_got = NULL;
3807 return 0;
3808 }
3809 if (*slot == NULL)
3810 *slot = entry;
3811 else
3812 free (entry);
3813 return 1;
3814 }
3815
3816 /* If any entries in G->got_entries are for indirect or warning symbols,
3817 replace them with entries for the target symbol. */
3818
3819 static bfd_boolean
3820 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3821 {
3822 bfd_boolean must_recreate;
3823 htab_t new_got;
3824
3825 must_recreate = FALSE;
3826 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3827 if (must_recreate)
3828 {
3829 new_got = htab_create (htab_size (g->got_entries),
3830 mips_elf_got_entry_hash,
3831 mips_elf_got_entry_eq, NULL);
3832 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3833 if (new_got == NULL)
3834 return FALSE;
3835
3836 /* Each entry in g->got_entries has either been copied to new_got
3837 or freed. Now delete the hash table itself. */
3838 htab_delete (g->got_entries);
3839 g->got_entries = new_got;
3840 }
3841 return TRUE;
3842 }
3843
3844 /* A mips_elf_link_hash_traverse callback for which DATA points
3845 to the link_info structure. Count the number of type (3) entries
3846 in the master GOT. */
3847
3848 static int
3849 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
3850 {
3851 struct bfd_link_info *info;
3852 struct mips_elf_link_hash_table *htab;
3853 struct mips_got_info *g;
3854
3855 info = (struct bfd_link_info *) data;
3856 htab = mips_elf_hash_table (info);
3857 g = htab->got_info;
3858 if (h->global_got_area != GGA_NONE)
3859 {
3860 /* Make a final decision about whether the symbol belongs in the
3861 local or global GOT. Symbols that bind locally can (and in the
3862 case of forced-local symbols, must) live in the local GOT.
3863 Those that are aren't in the dynamic symbol table must also
3864 live in the local GOT.
3865
3866 Note that the former condition does not always imply the
3867 latter: symbols do not bind locally if they are completely
3868 undefined. We'll report undefined symbols later if appropriate. */
3869 if (h->root.dynindx == -1
3870 || (h->got_only_for_calls
3871 ? SYMBOL_CALLS_LOCAL (info, &h->root)
3872 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3873 {
3874 /* The symbol belongs in the local GOT. We no longer need this
3875 entry if it was only used for relocations; those relocations
3876 will be against the null or section symbol instead of H. */
3877 if (h->global_got_area != GGA_RELOC_ONLY)
3878 g->local_gotno++;
3879 h->global_got_area = GGA_NONE;
3880 }
3881 else if (htab->is_vxworks
3882 && h->got_only_for_calls
3883 && h->root.plt.offset != MINUS_ONE)
3884 /* On VxWorks, calls can refer directly to the .got.plt entry;
3885 they don't need entries in the regular GOT. .got.plt entries
3886 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
3887 h->global_got_area = GGA_NONE;
3888 else
3889 {
3890 g->global_gotno++;
3891 if (h->global_got_area == GGA_RELOC_ONLY)
3892 g->reloc_only_gotno++;
3893 }
3894 }
3895 return 1;
3896 }
3897 \f
3898 /* Compute the hash value of the bfd in a bfd2got hash entry. */
3899
3900 static hashval_t
3901 mips_elf_bfd2got_entry_hash (const void *entry_)
3902 {
3903 const struct mips_elf_bfd2got_hash *entry
3904 = (struct mips_elf_bfd2got_hash *)entry_;
3905
3906 return entry->bfd->id;
3907 }
3908
3909 /* Check whether two hash entries have the same bfd. */
3910
3911 static int
3912 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
3913 {
3914 const struct mips_elf_bfd2got_hash *e1
3915 = (const struct mips_elf_bfd2got_hash *)entry1;
3916 const struct mips_elf_bfd2got_hash *e2
3917 = (const struct mips_elf_bfd2got_hash *)entry2;
3918
3919 return e1->bfd == e2->bfd;
3920 }
3921
3922 /* In a multi-got link, determine the GOT to be used for IBFD. G must
3923 be the master GOT data. */
3924
3925 static struct mips_got_info *
3926 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
3927 {
3928 struct mips_elf_bfd2got_hash e, *p;
3929
3930 if (! g->bfd2got)
3931 return g;
3932
3933 e.bfd = ibfd;
3934 p = htab_find (g->bfd2got, &e);
3935 return p ? p->g : NULL;
3936 }
3937
3938 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
3939 Return NULL if an error occured. */
3940
3941 static struct mips_got_info *
3942 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
3943 bfd *input_bfd)
3944 {
3945 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3946 struct mips_got_info *g;
3947 void **bfdgotp;
3948
3949 bfdgot_entry.bfd = input_bfd;
3950 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3951 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
3952
3953 if (bfdgot == NULL)
3954 {
3955 bfdgot = ((struct mips_elf_bfd2got_hash *)
3956 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
3957 if (bfdgot == NULL)
3958 return NULL;
3959
3960 *bfdgotp = bfdgot;
3961
3962 g = ((struct mips_got_info *)
3963 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
3964 if (g == NULL)
3965 return NULL;
3966
3967 bfdgot->bfd = input_bfd;
3968 bfdgot->g = g;
3969
3970 g->global_gotsym = NULL;
3971 g->global_gotno = 0;
3972 g->reloc_only_gotno = 0;
3973 g->local_gotno = 0;
3974 g->page_gotno = 0;
3975 g->assigned_gotno = -1;
3976 g->tls_gotno = 0;
3977 g->tls_assigned_gotno = 0;
3978 g->tls_ldm_offset = MINUS_ONE;
3979 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3980 mips_elf_multi_got_entry_eq, NULL);
3981 if (g->got_entries == NULL)
3982 return NULL;
3983
3984 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3985 mips_got_page_entry_eq, NULL);
3986 if (g->got_page_entries == NULL)
3987 return NULL;
3988
3989 g->bfd2got = NULL;
3990 g->next = NULL;
3991 }
3992
3993 return bfdgot->g;
3994 }
3995
3996 /* A htab_traverse callback for the entries in the master got.
3997 Create one separate got for each bfd that has entries in the global
3998 got, such that we can tell how many local and global entries each
3999 bfd requires. */
4000
4001 static int
4002 mips_elf_make_got_per_bfd (void **entryp, void *p)
4003 {
4004 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4005 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4006 struct mips_got_info *g;
4007
4008 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4009 if (g == NULL)
4010 {
4011 arg->obfd = NULL;
4012 return 0;
4013 }
4014
4015 /* Insert the GOT entry in the bfd's got entry hash table. */
4016 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4017 if (*entryp != NULL)
4018 return 1;
4019
4020 *entryp = entry;
4021
4022 if (entry->tls_type)
4023 {
4024 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4025 g->tls_gotno += 2;
4026 if (entry->tls_type & GOT_TLS_IE)
4027 g->tls_gotno += 1;
4028 }
4029 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
4030 ++g->local_gotno;
4031 else
4032 ++g->global_gotno;
4033
4034 return 1;
4035 }
4036
4037 /* A htab_traverse callback for the page entries in the master got.
4038 Associate each page entry with the bfd's got. */
4039
4040 static int
4041 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4042 {
4043 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4044 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4045 struct mips_got_info *g;
4046
4047 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4048 if (g == NULL)
4049 {
4050 arg->obfd = NULL;
4051 return 0;
4052 }
4053
4054 /* Insert the GOT entry in the bfd's got entry hash table. */
4055 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4056 if (*entryp != NULL)
4057 return 1;
4058
4059 *entryp = entry;
4060 g->page_gotno += entry->num_pages;
4061 return 1;
4062 }
4063
4064 /* Consider merging the got described by BFD2GOT with TO, using the
4065 information given by ARG. Return -1 if this would lead to overflow,
4066 1 if they were merged successfully, and 0 if a merge failed due to
4067 lack of memory. (These values are chosen so that nonnegative return
4068 values can be returned by a htab_traverse callback.) */
4069
4070 static int
4071 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4072 struct mips_got_info *to,
4073 struct mips_elf_got_per_bfd_arg *arg)
4074 {
4075 struct mips_got_info *from = bfd2got->g;
4076 unsigned int estimate;
4077
4078 /* Work out how many page entries we would need for the combined GOT. */
4079 estimate = arg->max_pages;
4080 if (estimate >= from->page_gotno + to->page_gotno)
4081 estimate = from->page_gotno + to->page_gotno;
4082
4083 /* And conservatively estimate how many local, global and TLS entries
4084 would be needed. */
4085 estimate += (from->local_gotno
4086 + from->global_gotno
4087 + from->tls_gotno
4088 + to->local_gotno
4089 + to->global_gotno
4090 + to->tls_gotno);
4091
4092 /* Bail out if the combined GOT might be too big. */
4093 if (estimate > arg->max_count)
4094 return -1;
4095
4096 /* Commit to the merge. Record that TO is now the bfd for this got. */
4097 bfd2got->g = to;
4098
4099 /* Transfer the bfd's got information from FROM to TO. */
4100 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4101 if (arg->obfd == NULL)
4102 return 0;
4103
4104 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4105 if (arg->obfd == NULL)
4106 return 0;
4107
4108 /* We don't have to worry about releasing memory of the actual
4109 got entries, since they're all in the master got_entries hash
4110 table anyway. */
4111 htab_delete (from->got_entries);
4112 htab_delete (from->got_page_entries);
4113 return 1;
4114 }
4115
4116 /* Attempt to merge gots of different input bfds. Try to use as much
4117 as possible of the primary got, since it doesn't require explicit
4118 dynamic relocations, but don't use bfds that would reference global
4119 symbols out of the addressable range. Failing the primary got,
4120 attempt to merge with the current got, or finish the current got
4121 and then make make the new got current. */
4122
4123 static int
4124 mips_elf_merge_gots (void **bfd2got_, void *p)
4125 {
4126 struct mips_elf_bfd2got_hash *bfd2got
4127 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4128 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4129 struct mips_got_info *g;
4130 unsigned int estimate;
4131 int result;
4132
4133 g = bfd2got->g;
4134
4135 /* Work out the number of page, local and TLS entries. */
4136 estimate = arg->max_pages;
4137 if (estimate > g->page_gotno)
4138 estimate = g->page_gotno;
4139 estimate += g->local_gotno + g->tls_gotno;
4140
4141 /* We place TLS GOT entries after both locals and globals. The globals
4142 for the primary GOT may overflow the normal GOT size limit, so be
4143 sure not to merge a GOT which requires TLS with the primary GOT in that
4144 case. This doesn't affect non-primary GOTs. */
4145 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4146
4147 if (estimate <= arg->max_count)
4148 {
4149 /* If we don't have a primary GOT, use it as
4150 a starting point for the primary GOT. */
4151 if (!arg->primary)
4152 {
4153 arg->primary = bfd2got->g;
4154 return 1;
4155 }
4156
4157 /* Try merging with the primary GOT. */
4158 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4159 if (result >= 0)
4160 return result;
4161 }
4162
4163 /* If we can merge with the last-created got, do it. */
4164 if (arg->current)
4165 {
4166 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4167 if (result >= 0)
4168 return result;
4169 }
4170
4171 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4172 fits; if it turns out that it doesn't, we'll get relocation
4173 overflows anyway. */
4174 g->next = arg->current;
4175 arg->current = g;
4176
4177 return 1;
4178 }
4179
4180 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4181 is null iff there is just a single GOT. */
4182
4183 static int
4184 mips_elf_initialize_tls_index (void **entryp, void *p)
4185 {
4186 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4187 struct mips_got_info *g = p;
4188 bfd_vma next_index;
4189 unsigned char tls_type;
4190
4191 /* We're only interested in TLS symbols. */
4192 if (entry->tls_type == 0)
4193 return 1;
4194
4195 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4196
4197 if (entry->symndx == -1 && g->next == NULL)
4198 {
4199 /* A type (3) got entry in the single-GOT case. We use the symbol's
4200 hash table entry to track its index. */
4201 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4202 return 1;
4203 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4204 entry->d.h->tls_got_offset = next_index;
4205 tls_type = entry->d.h->tls_type;
4206 }
4207 else
4208 {
4209 if (entry->tls_type & GOT_TLS_LDM)
4210 {
4211 /* There are separate mips_got_entry objects for each input bfd
4212 that requires an LDM entry. Make sure that all LDM entries in
4213 a GOT resolve to the same index. */
4214 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4215 {
4216 entry->gotidx = g->tls_ldm_offset;
4217 return 1;
4218 }
4219 g->tls_ldm_offset = next_index;
4220 }
4221 entry->gotidx = next_index;
4222 tls_type = entry->tls_type;
4223 }
4224
4225 /* Account for the entries we've just allocated. */
4226 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4227 g->tls_assigned_gotno += 2;
4228 if (tls_type & GOT_TLS_IE)
4229 g->tls_assigned_gotno += 1;
4230
4231 return 1;
4232 }
4233
4234 /* If passed a NULL mips_got_info in the argument, set the marker used
4235 to tell whether a global symbol needs a got entry (in the primary
4236 got) to the given VALUE.
4237
4238 If passed a pointer G to a mips_got_info in the argument (it must
4239 not be the primary GOT), compute the offset from the beginning of
4240 the (primary) GOT section to the entry in G corresponding to the
4241 global symbol. G's assigned_gotno must contain the index of the
4242 first available global GOT entry in G. VALUE must contain the size
4243 of a GOT entry in bytes. For each global GOT entry that requires a
4244 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4245 marked as not eligible for lazy resolution through a function
4246 stub. */
4247 static int
4248 mips_elf_set_global_got_offset (void **entryp, void *p)
4249 {
4250 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4251 struct mips_elf_set_global_got_offset_arg *arg
4252 = (struct mips_elf_set_global_got_offset_arg *)p;
4253 struct mips_got_info *g = arg->g;
4254
4255 if (g && entry->tls_type != GOT_NORMAL)
4256 arg->needed_relocs +=
4257 mips_tls_got_relocs (arg->info, entry->tls_type,
4258 entry->symndx == -1 ? &entry->d.h->root : NULL);
4259
4260 if (entry->abfd != NULL
4261 && entry->symndx == -1
4262 && entry->d.h->global_got_area != GGA_NONE)
4263 {
4264 if (g)
4265 {
4266 BFD_ASSERT (g->global_gotsym == NULL);
4267
4268 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4269 if (arg->info->shared
4270 || (elf_hash_table (arg->info)->dynamic_sections_created
4271 && entry->d.h->root.def_dynamic
4272 && !entry->d.h->root.def_regular))
4273 ++arg->needed_relocs;
4274 }
4275 else
4276 entry->d.h->global_got_area = arg->value;
4277 }
4278
4279 return 1;
4280 }
4281
4282 /* A htab_traverse callback for GOT entries for which DATA is the
4283 bfd_link_info. Forbid any global symbols from having traditional
4284 lazy-binding stubs. */
4285
4286 static int
4287 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4288 {
4289 struct bfd_link_info *info;
4290 struct mips_elf_link_hash_table *htab;
4291 struct mips_got_entry *entry;
4292
4293 entry = (struct mips_got_entry *) *entryp;
4294 info = (struct bfd_link_info *) data;
4295 htab = mips_elf_hash_table (info);
4296 BFD_ASSERT (htab != NULL);
4297
4298 if (entry->abfd != NULL
4299 && entry->symndx == -1
4300 && entry->d.h->needs_lazy_stub)
4301 {
4302 entry->d.h->needs_lazy_stub = FALSE;
4303 htab->lazy_stub_count--;
4304 }
4305
4306 return 1;
4307 }
4308
4309 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4310 the primary GOT. */
4311 static bfd_vma
4312 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4313 {
4314 if (g->bfd2got == NULL)
4315 return 0;
4316
4317 g = mips_elf_got_for_ibfd (g, ibfd);
4318 if (! g)
4319 return 0;
4320
4321 BFD_ASSERT (g->next);
4322
4323 g = g->next;
4324
4325 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4326 * MIPS_ELF_GOT_SIZE (abfd);
4327 }
4328
4329 /* Turn a single GOT that is too big for 16-bit addressing into
4330 a sequence of GOTs, each one 16-bit addressable. */
4331
4332 static bfd_boolean
4333 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4334 asection *got, bfd_size_type pages)
4335 {
4336 struct mips_elf_link_hash_table *htab;
4337 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4338 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4339 struct mips_got_info *g, *gg;
4340 unsigned int assign, needed_relocs;
4341 bfd *dynobj;
4342
4343 dynobj = elf_hash_table (info)->dynobj;
4344 htab = mips_elf_hash_table (info);
4345 BFD_ASSERT (htab != NULL);
4346
4347 g = htab->got_info;
4348 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4349 mips_elf_bfd2got_entry_eq, NULL);
4350 if (g->bfd2got == NULL)
4351 return FALSE;
4352
4353 got_per_bfd_arg.bfd2got = g->bfd2got;
4354 got_per_bfd_arg.obfd = abfd;
4355 got_per_bfd_arg.info = info;
4356
4357 /* Count how many GOT entries each input bfd requires, creating a
4358 map from bfd to got info while at that. */
4359 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4360 if (got_per_bfd_arg.obfd == NULL)
4361 return FALSE;
4362
4363 /* Also count how many page entries each input bfd requires. */
4364 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4365 &got_per_bfd_arg);
4366 if (got_per_bfd_arg.obfd == NULL)
4367 return FALSE;
4368
4369 got_per_bfd_arg.current = NULL;
4370 got_per_bfd_arg.primary = NULL;
4371 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4372 / MIPS_ELF_GOT_SIZE (abfd))
4373 - htab->reserved_gotno);
4374 got_per_bfd_arg.max_pages = pages;
4375 /* The number of globals that will be included in the primary GOT.
4376 See the calls to mips_elf_set_global_got_offset below for more
4377 information. */
4378 got_per_bfd_arg.global_count = g->global_gotno;
4379
4380 /* Try to merge the GOTs of input bfds together, as long as they
4381 don't seem to exceed the maximum GOT size, choosing one of them
4382 to be the primary GOT. */
4383 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4384 if (got_per_bfd_arg.obfd == NULL)
4385 return FALSE;
4386
4387 /* If we do not find any suitable primary GOT, create an empty one. */
4388 if (got_per_bfd_arg.primary == NULL)
4389 {
4390 g->next = (struct mips_got_info *)
4391 bfd_alloc (abfd, sizeof (struct mips_got_info));
4392 if (g->next == NULL)
4393 return FALSE;
4394
4395 g->next->global_gotsym = NULL;
4396 g->next->global_gotno = 0;
4397 g->next->reloc_only_gotno = 0;
4398 g->next->local_gotno = 0;
4399 g->next->page_gotno = 0;
4400 g->next->tls_gotno = 0;
4401 g->next->assigned_gotno = 0;
4402 g->next->tls_assigned_gotno = 0;
4403 g->next->tls_ldm_offset = MINUS_ONE;
4404 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4405 mips_elf_multi_got_entry_eq,
4406 NULL);
4407 if (g->next->got_entries == NULL)
4408 return FALSE;
4409 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4410 mips_got_page_entry_eq,
4411 NULL);
4412 if (g->next->got_page_entries == NULL)
4413 return FALSE;
4414 g->next->bfd2got = NULL;
4415 }
4416 else
4417 g->next = got_per_bfd_arg.primary;
4418 g->next->next = got_per_bfd_arg.current;
4419
4420 /* GG is now the master GOT, and G is the primary GOT. */
4421 gg = g;
4422 g = g->next;
4423
4424 /* Map the output bfd to the primary got. That's what we're going
4425 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4426 didn't mark in check_relocs, and we want a quick way to find it.
4427 We can't just use gg->next because we're going to reverse the
4428 list. */
4429 {
4430 struct mips_elf_bfd2got_hash *bfdgot;
4431 void **bfdgotp;
4432
4433 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4434 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4435
4436 if (bfdgot == NULL)
4437 return FALSE;
4438
4439 bfdgot->bfd = abfd;
4440 bfdgot->g = g;
4441 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4442
4443 BFD_ASSERT (*bfdgotp == NULL);
4444 *bfdgotp = bfdgot;
4445 }
4446
4447 /* Every symbol that is referenced in a dynamic relocation must be
4448 present in the primary GOT, so arrange for them to appear after
4449 those that are actually referenced. */
4450 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4451 g->global_gotno = gg->global_gotno;
4452
4453 set_got_offset_arg.g = NULL;
4454 set_got_offset_arg.value = GGA_RELOC_ONLY;
4455 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4456 &set_got_offset_arg);
4457 set_got_offset_arg.value = GGA_NORMAL;
4458 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4459 &set_got_offset_arg);
4460
4461 /* Now go through the GOTs assigning them offset ranges.
4462 [assigned_gotno, local_gotno[ will be set to the range of local
4463 entries in each GOT. We can then compute the end of a GOT by
4464 adding local_gotno to global_gotno. We reverse the list and make
4465 it circular since then we'll be able to quickly compute the
4466 beginning of a GOT, by computing the end of its predecessor. To
4467 avoid special cases for the primary GOT, while still preserving
4468 assertions that are valid for both single- and multi-got links,
4469 we arrange for the main got struct to have the right number of
4470 global entries, but set its local_gotno such that the initial
4471 offset of the primary GOT is zero. Remember that the primary GOT
4472 will become the last item in the circular linked list, so it
4473 points back to the master GOT. */
4474 gg->local_gotno = -g->global_gotno;
4475 gg->global_gotno = g->global_gotno;
4476 gg->tls_gotno = 0;
4477 assign = 0;
4478 gg->next = gg;
4479
4480 do
4481 {
4482 struct mips_got_info *gn;
4483
4484 assign += htab->reserved_gotno;
4485 g->assigned_gotno = assign;
4486 g->local_gotno += assign;
4487 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4488 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4489
4490 /* Take g out of the direct list, and push it onto the reversed
4491 list that gg points to. g->next is guaranteed to be nonnull after
4492 this operation, as required by mips_elf_initialize_tls_index. */
4493 gn = g->next;
4494 g->next = gg->next;
4495 gg->next = g;
4496
4497 /* Set up any TLS entries. We always place the TLS entries after
4498 all non-TLS entries. */
4499 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4500 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4501
4502 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4503 g = gn;
4504
4505 /* Forbid global symbols in every non-primary GOT from having
4506 lazy-binding stubs. */
4507 if (g)
4508 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4509 }
4510 while (g);
4511
4512 got->size = (gg->next->local_gotno
4513 + gg->next->global_gotno
4514 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4515
4516 needed_relocs = 0;
4517 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4518 set_got_offset_arg.info = info;
4519 for (g = gg->next; g && g->next != gg; g = g->next)
4520 {
4521 unsigned int save_assign;
4522
4523 /* Assign offsets to global GOT entries. */
4524 save_assign = g->assigned_gotno;
4525 g->assigned_gotno = g->local_gotno;
4526 set_got_offset_arg.g = g;
4527 set_got_offset_arg.needed_relocs = 0;
4528 htab_traverse (g->got_entries,
4529 mips_elf_set_global_got_offset,
4530 &set_got_offset_arg);
4531 needed_relocs += set_got_offset_arg.needed_relocs;
4532 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4533
4534 g->assigned_gotno = save_assign;
4535 if (info->shared)
4536 {
4537 needed_relocs += g->local_gotno - g->assigned_gotno;
4538 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4539 + g->next->global_gotno
4540 + g->next->tls_gotno
4541 + htab->reserved_gotno);
4542 }
4543 }
4544
4545 if (needed_relocs)
4546 mips_elf_allocate_dynamic_relocations (dynobj, info,
4547 needed_relocs);
4548
4549 return TRUE;
4550 }
4551
4552 \f
4553 /* Returns the first relocation of type r_type found, beginning with
4554 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4555
4556 static const Elf_Internal_Rela *
4557 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4558 const Elf_Internal_Rela *relocation,
4559 const Elf_Internal_Rela *relend)
4560 {
4561 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4562
4563 while (relocation < relend)
4564 {
4565 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4566 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4567 return relocation;
4568
4569 ++relocation;
4570 }
4571
4572 /* We didn't find it. */
4573 return NULL;
4574 }
4575
4576 /* Return whether an input relocation is against a local symbol. */
4577
4578 static bfd_boolean
4579 mips_elf_local_relocation_p (bfd *input_bfd,
4580 const Elf_Internal_Rela *relocation,
4581 asection **local_sections)
4582 {
4583 unsigned long r_symndx;
4584 Elf_Internal_Shdr *symtab_hdr;
4585 size_t extsymoff;
4586
4587 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4588 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4589 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4590
4591 if (r_symndx < extsymoff)
4592 return TRUE;
4593 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4594 return TRUE;
4595
4596 return FALSE;
4597 }
4598 \f
4599 /* Sign-extend VALUE, which has the indicated number of BITS. */
4600
4601 bfd_vma
4602 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4603 {
4604 if (value & ((bfd_vma) 1 << (bits - 1)))
4605 /* VALUE is negative. */
4606 value |= ((bfd_vma) - 1) << bits;
4607
4608 return value;
4609 }
4610
4611 /* Return non-zero if the indicated VALUE has overflowed the maximum
4612 range expressible by a signed number with the indicated number of
4613 BITS. */
4614
4615 static bfd_boolean
4616 mips_elf_overflow_p (bfd_vma value, int bits)
4617 {
4618 bfd_signed_vma svalue = (bfd_signed_vma) value;
4619
4620 if (svalue > (1 << (bits - 1)) - 1)
4621 /* The value is too big. */
4622 return TRUE;
4623 else if (svalue < -(1 << (bits - 1)))
4624 /* The value is too small. */
4625 return TRUE;
4626
4627 /* All is well. */
4628 return FALSE;
4629 }
4630
4631 /* Calculate the %high function. */
4632
4633 static bfd_vma
4634 mips_elf_high (bfd_vma value)
4635 {
4636 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4637 }
4638
4639 /* Calculate the %higher function. */
4640
4641 static bfd_vma
4642 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4643 {
4644 #ifdef BFD64
4645 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4646 #else
4647 abort ();
4648 return MINUS_ONE;
4649 #endif
4650 }
4651
4652 /* Calculate the %highest function. */
4653
4654 static bfd_vma
4655 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4656 {
4657 #ifdef BFD64
4658 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4659 #else
4660 abort ();
4661 return MINUS_ONE;
4662 #endif
4663 }
4664 \f
4665 /* Create the .compact_rel section. */
4666
4667 static bfd_boolean
4668 mips_elf_create_compact_rel_section
4669 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4670 {
4671 flagword flags;
4672 register asection *s;
4673
4674 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4675 {
4676 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4677 | SEC_READONLY);
4678
4679 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
4680 if (s == NULL
4681 || ! bfd_set_section_alignment (abfd, s,
4682 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4683 return FALSE;
4684
4685 s->size = sizeof (Elf32_External_compact_rel);
4686 }
4687
4688 return TRUE;
4689 }
4690
4691 /* Create the .got section to hold the global offset table. */
4692
4693 static bfd_boolean
4694 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4695 {
4696 flagword flags;
4697 register asection *s;
4698 struct elf_link_hash_entry *h;
4699 struct bfd_link_hash_entry *bh;
4700 struct mips_got_info *g;
4701 bfd_size_type amt;
4702 struct mips_elf_link_hash_table *htab;
4703
4704 htab = mips_elf_hash_table (info);
4705 BFD_ASSERT (htab != NULL);
4706
4707 /* This function may be called more than once. */
4708 if (htab->sgot)
4709 return TRUE;
4710
4711 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4712 | SEC_LINKER_CREATED);
4713
4714 /* We have to use an alignment of 2**4 here because this is hardcoded
4715 in the function stub generation and in the linker script. */
4716 s = bfd_make_section_with_flags (abfd, ".got", flags);
4717 if (s == NULL
4718 || ! bfd_set_section_alignment (abfd, s, 4))
4719 return FALSE;
4720 htab->sgot = s;
4721
4722 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4723 linker script because we don't want to define the symbol if we
4724 are not creating a global offset table. */
4725 bh = NULL;
4726 if (! (_bfd_generic_link_add_one_symbol
4727 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4728 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4729 return FALSE;
4730
4731 h = (struct elf_link_hash_entry *) bh;
4732 h->non_elf = 0;
4733 h->def_regular = 1;
4734 h->type = STT_OBJECT;
4735 elf_hash_table (info)->hgot = h;
4736
4737 if (info->shared
4738 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4739 return FALSE;
4740
4741 amt = sizeof (struct mips_got_info);
4742 g = bfd_alloc (abfd, amt);
4743 if (g == NULL)
4744 return FALSE;
4745 g->global_gotsym = NULL;
4746 g->global_gotno = 0;
4747 g->reloc_only_gotno = 0;
4748 g->tls_gotno = 0;
4749 g->local_gotno = 0;
4750 g->page_gotno = 0;
4751 g->assigned_gotno = 0;
4752 g->bfd2got = NULL;
4753 g->next = NULL;
4754 g->tls_ldm_offset = MINUS_ONE;
4755 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4756 mips_elf_got_entry_eq, NULL);
4757 if (g->got_entries == NULL)
4758 return FALSE;
4759 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4760 mips_got_page_entry_eq, NULL);
4761 if (g->got_page_entries == NULL)
4762 return FALSE;
4763 htab->got_info = g;
4764 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4765 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4766
4767 /* We also need a .got.plt section when generating PLTs. */
4768 s = bfd_make_section_with_flags (abfd, ".got.plt",
4769 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4770 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4771 if (s == NULL)
4772 return FALSE;
4773 htab->sgotplt = s;
4774
4775 return TRUE;
4776 }
4777 \f
4778 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4779 __GOTT_INDEX__ symbols. These symbols are only special for
4780 shared objects; they are not used in executables. */
4781
4782 static bfd_boolean
4783 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4784 {
4785 return (mips_elf_hash_table (info)->is_vxworks
4786 && info->shared
4787 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4788 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4789 }
4790
4791 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4792 require an la25 stub. See also mips_elf_local_pic_function_p,
4793 which determines whether the destination function ever requires a
4794 stub. */
4795
4796 static bfd_boolean
4797 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type)
4798 {
4799 /* We specifically ignore branches and jumps from EF_PIC objects,
4800 where the onus is on the compiler or programmer to perform any
4801 necessary initialization of $25. Sometimes such initialization
4802 is unnecessary; for example, -mno-shared functions do not use
4803 the incoming value of $25, and may therefore be called directly. */
4804 if (PIC_OBJECT_P (input_bfd))
4805 return FALSE;
4806
4807 switch (r_type)
4808 {
4809 case R_MIPS_26:
4810 case R_MIPS_PC16:
4811 case R_MIPS16_26:
4812 return TRUE;
4813
4814 default:
4815 return FALSE;
4816 }
4817 }
4818 \f
4819 /* Calculate the value produced by the RELOCATION (which comes from
4820 the INPUT_BFD). The ADDEND is the addend to use for this
4821 RELOCATION; RELOCATION->R_ADDEND is ignored.
4822
4823 The result of the relocation calculation is stored in VALUEP.
4824 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4825 is a MIPS16 jump to non-MIPS16 code, or vice versa.
4826
4827 This function returns bfd_reloc_continue if the caller need take no
4828 further action regarding this relocation, bfd_reloc_notsupported if
4829 something goes dramatically wrong, bfd_reloc_overflow if an
4830 overflow occurs, and bfd_reloc_ok to indicate success. */
4831
4832 static bfd_reloc_status_type
4833 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4834 asection *input_section,
4835 struct bfd_link_info *info,
4836 const Elf_Internal_Rela *relocation,
4837 bfd_vma addend, reloc_howto_type *howto,
4838 Elf_Internal_Sym *local_syms,
4839 asection **local_sections, bfd_vma *valuep,
4840 const char **namep,
4841 bfd_boolean *cross_mode_jump_p,
4842 bfd_boolean save_addend)
4843 {
4844 /* The eventual value we will return. */
4845 bfd_vma value;
4846 /* The address of the symbol against which the relocation is
4847 occurring. */
4848 bfd_vma symbol = 0;
4849 /* The final GP value to be used for the relocatable, executable, or
4850 shared object file being produced. */
4851 bfd_vma gp;
4852 /* The place (section offset or address) of the storage unit being
4853 relocated. */
4854 bfd_vma p;
4855 /* The value of GP used to create the relocatable object. */
4856 bfd_vma gp0;
4857 /* The offset into the global offset table at which the address of
4858 the relocation entry symbol, adjusted by the addend, resides
4859 during execution. */
4860 bfd_vma g = MINUS_ONE;
4861 /* The section in which the symbol referenced by the relocation is
4862 located. */
4863 asection *sec = NULL;
4864 struct mips_elf_link_hash_entry *h = NULL;
4865 /* TRUE if the symbol referred to by this relocation is a local
4866 symbol. */
4867 bfd_boolean local_p, was_local_p;
4868 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4869 bfd_boolean gp_disp_p = FALSE;
4870 /* TRUE if the symbol referred to by this relocation is
4871 "__gnu_local_gp". */
4872 bfd_boolean gnu_local_gp_p = FALSE;
4873 Elf_Internal_Shdr *symtab_hdr;
4874 size_t extsymoff;
4875 unsigned long r_symndx;
4876 int r_type;
4877 /* TRUE if overflow occurred during the calculation of the
4878 relocation value. */
4879 bfd_boolean overflowed_p;
4880 /* TRUE if this relocation refers to a MIPS16 function. */
4881 bfd_boolean target_is_16_bit_code_p = FALSE;
4882 struct mips_elf_link_hash_table *htab;
4883 bfd *dynobj;
4884
4885 dynobj = elf_hash_table (info)->dynobj;
4886 htab = mips_elf_hash_table (info);
4887 BFD_ASSERT (htab != NULL);
4888
4889 /* Parse the relocation. */
4890 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4891 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4892 p = (input_section->output_section->vma
4893 + input_section->output_offset
4894 + relocation->r_offset);
4895
4896 /* Assume that there will be no overflow. */
4897 overflowed_p = FALSE;
4898
4899 /* Figure out whether or not the symbol is local, and get the offset
4900 used in the array of hash table entries. */
4901 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4902 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4903 local_sections);
4904 was_local_p = local_p;
4905 if (! elf_bad_symtab (input_bfd))
4906 extsymoff = symtab_hdr->sh_info;
4907 else
4908 {
4909 /* The symbol table does not follow the rule that local symbols
4910 must come before globals. */
4911 extsymoff = 0;
4912 }
4913
4914 /* Figure out the value of the symbol. */
4915 if (local_p)
4916 {
4917 Elf_Internal_Sym *sym;
4918
4919 sym = local_syms + r_symndx;
4920 sec = local_sections[r_symndx];
4921
4922 symbol = sec->output_section->vma + sec->output_offset;
4923 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
4924 || (sec->flags & SEC_MERGE))
4925 symbol += sym->st_value;
4926 if ((sec->flags & SEC_MERGE)
4927 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4928 {
4929 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
4930 addend -= symbol;
4931 addend += sec->output_section->vma + sec->output_offset;
4932 }
4933
4934 /* MIPS16 text labels should be treated as odd. */
4935 if (ELF_ST_IS_MIPS16 (sym->st_other))
4936 ++symbol;
4937
4938 /* Record the name of this symbol, for our caller. */
4939 *namep = bfd_elf_string_from_elf_section (input_bfd,
4940 symtab_hdr->sh_link,
4941 sym->st_name);
4942 if (*namep == '\0')
4943 *namep = bfd_section_name (input_bfd, sec);
4944
4945 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
4946 }
4947 else
4948 {
4949 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
4950
4951 /* For global symbols we look up the symbol in the hash-table. */
4952 h = ((struct mips_elf_link_hash_entry *)
4953 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
4954 /* Find the real hash-table entry for this symbol. */
4955 while (h->root.root.type == bfd_link_hash_indirect
4956 || h->root.root.type == bfd_link_hash_warning)
4957 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4958
4959 /* Record the name of this symbol, for our caller. */
4960 *namep = h->root.root.root.string;
4961
4962 /* See if this is the special _gp_disp symbol. Note that such a
4963 symbol must always be a global symbol. */
4964 if (strcmp (*namep, "_gp_disp") == 0
4965 && ! NEWABI_P (input_bfd))
4966 {
4967 /* Relocations against _gp_disp are permitted only with
4968 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4969 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
4970 return bfd_reloc_notsupported;
4971
4972 gp_disp_p = TRUE;
4973 }
4974 /* See if this is the special _gp symbol. Note that such a
4975 symbol must always be a global symbol. */
4976 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4977 gnu_local_gp_p = TRUE;
4978
4979
4980 /* If this symbol is defined, calculate its address. Note that
4981 _gp_disp is a magic symbol, always implicitly defined by the
4982 linker, so it's inappropriate to check to see whether or not
4983 its defined. */
4984 else if ((h->root.root.type == bfd_link_hash_defined
4985 || h->root.root.type == bfd_link_hash_defweak)
4986 && h->root.root.u.def.section)
4987 {
4988 sec = h->root.root.u.def.section;
4989 if (sec->output_section)
4990 symbol = (h->root.root.u.def.value
4991 + sec->output_section->vma
4992 + sec->output_offset);
4993 else
4994 symbol = h->root.root.u.def.value;
4995 }
4996 else if (h->root.root.type == bfd_link_hash_undefweak)
4997 /* We allow relocations against undefined weak symbols, giving
4998 it the value zero, so that you can undefined weak functions
4999 and check to see if they exist by looking at their
5000 addresses. */
5001 symbol = 0;
5002 else if (info->unresolved_syms_in_objects == RM_IGNORE
5003 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5004 symbol = 0;
5005 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5006 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5007 {
5008 /* If this is a dynamic link, we should have created a
5009 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5010 in in _bfd_mips_elf_create_dynamic_sections.
5011 Otherwise, we should define the symbol with a value of 0.
5012 FIXME: It should probably get into the symbol table
5013 somehow as well. */
5014 BFD_ASSERT (! info->shared);
5015 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5016 symbol = 0;
5017 }
5018 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5019 {
5020 /* This is an optional symbol - an Irix specific extension to the
5021 ELF spec. Ignore it for now.
5022 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5023 than simply ignoring them, but we do not handle this for now.
5024 For information see the "64-bit ELF Object File Specification"
5025 which is available from here:
5026 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5027 symbol = 0;
5028 }
5029 else if ((*info->callbacks->undefined_symbol)
5030 (info, h->root.root.root.string, input_bfd,
5031 input_section, relocation->r_offset,
5032 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5033 || ELF_ST_VISIBILITY (h->root.other)))
5034 {
5035 return bfd_reloc_undefined;
5036 }
5037 else
5038 {
5039 return bfd_reloc_notsupported;
5040 }
5041
5042 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5043 }
5044
5045 /* If this is a reference to a 16-bit function with a stub, we need
5046 to redirect the relocation to the stub unless:
5047
5048 (a) the relocation is for a MIPS16 JAL;
5049
5050 (b) the relocation is for a MIPS16 PIC call, and there are no
5051 non-MIPS16 uses of the GOT slot; or
5052
5053 (c) the section allows direct references to MIPS16 functions. */
5054 if (r_type != R_MIPS16_26
5055 && !info->relocatable
5056 && ((h != NULL
5057 && h->fn_stub != NULL
5058 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5059 || (local_p
5060 && elf_tdata (input_bfd)->local_stubs != NULL
5061 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5062 && !section_allows_mips16_refs_p (input_section))
5063 {
5064 /* This is a 32- or 64-bit call to a 16-bit function. We should
5065 have already noticed that we were going to need the
5066 stub. */
5067 if (local_p)
5068 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5069 else
5070 {
5071 BFD_ASSERT (h->need_fn_stub);
5072 sec = h->fn_stub;
5073 }
5074
5075 symbol = sec->output_section->vma + sec->output_offset;
5076 /* The target is 16-bit, but the stub isn't. */
5077 target_is_16_bit_code_p = FALSE;
5078 }
5079 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5080 need to redirect the call to the stub. Note that we specifically
5081 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5082 use an indirect stub instead. */
5083 else if (r_type == R_MIPS16_26 && !info->relocatable
5084 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5085 || (local_p
5086 && elf_tdata (input_bfd)->local_call_stubs != NULL
5087 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5088 && !target_is_16_bit_code_p)
5089 {
5090 if (local_p)
5091 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5092 else
5093 {
5094 /* If both call_stub and call_fp_stub are defined, we can figure
5095 out which one to use by checking which one appears in the input
5096 file. */
5097 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5098 {
5099 asection *o;
5100
5101 sec = NULL;
5102 for (o = input_bfd->sections; o != NULL; o = o->next)
5103 {
5104 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5105 {
5106 sec = h->call_fp_stub;
5107 break;
5108 }
5109 }
5110 if (sec == NULL)
5111 sec = h->call_stub;
5112 }
5113 else if (h->call_stub != NULL)
5114 sec = h->call_stub;
5115 else
5116 sec = h->call_fp_stub;
5117 }
5118
5119 BFD_ASSERT (sec->size > 0);
5120 symbol = sec->output_section->vma + sec->output_offset;
5121 }
5122 /* If this is a direct call to a PIC function, redirect to the
5123 non-PIC stub. */
5124 else if (h != NULL && h->la25_stub
5125 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type))
5126 symbol = (h->la25_stub->stub_section->output_section->vma
5127 + h->la25_stub->stub_section->output_offset
5128 + h->la25_stub->offset);
5129
5130 /* Calls from 16-bit code to 32-bit code and vice versa require the
5131 mode change. */
5132 *cross_mode_jump_p = !info->relocatable
5133 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5134 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5135 && target_is_16_bit_code_p));
5136
5137 local_p = h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->root);
5138
5139 gp0 = _bfd_get_gp_value (input_bfd);
5140 gp = _bfd_get_gp_value (abfd);
5141 if (htab->got_info)
5142 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5143
5144 if (gnu_local_gp_p)
5145 symbol = gp;
5146
5147 /* Global R_MIPS_GOT_PAGE relocations are equivalent to R_MIPS_GOT_DISP.
5148 The addend is applied by the corresponding R_MIPS_GOT_OFST. */
5149 if (r_type == R_MIPS_GOT_PAGE && !local_p)
5150 {
5151 r_type = R_MIPS_GOT_DISP;
5152 addend = 0;
5153 }
5154
5155 /* If we haven't already determined the GOT offset, and we're going
5156 to need it, get it now. */
5157 switch (r_type)
5158 {
5159 case R_MIPS16_CALL16:
5160 case R_MIPS16_GOT16:
5161 case R_MIPS_CALL16:
5162 case R_MIPS_GOT16:
5163 case R_MIPS_GOT_DISP:
5164 case R_MIPS_GOT_HI16:
5165 case R_MIPS_CALL_HI16:
5166 case R_MIPS_GOT_LO16:
5167 case R_MIPS_CALL_LO16:
5168 case R_MIPS_TLS_GD:
5169 case R_MIPS_TLS_GOTTPREL:
5170 case R_MIPS_TLS_LDM:
5171 /* Find the index into the GOT where this value is located. */
5172 if (r_type == R_MIPS_TLS_LDM)
5173 {
5174 g = mips_elf_local_got_index (abfd, input_bfd, info,
5175 0, 0, NULL, r_type);
5176 if (g == MINUS_ONE)
5177 return bfd_reloc_outofrange;
5178 }
5179 else if (!local_p)
5180 {
5181 /* On VxWorks, CALL relocations should refer to the .got.plt
5182 entry, which is initialized to point at the PLT stub. */
5183 if (htab->is_vxworks
5184 && (r_type == R_MIPS_CALL_HI16
5185 || r_type == R_MIPS_CALL_LO16
5186 || call16_reloc_p (r_type)))
5187 {
5188 BFD_ASSERT (addend == 0);
5189 BFD_ASSERT (h->root.needs_plt);
5190 g = mips_elf_gotplt_index (info, &h->root);
5191 }
5192 else
5193 {
5194 BFD_ASSERT (addend == 0);
5195 g = mips_elf_global_got_index (dynobj, input_bfd,
5196 &h->root, r_type, info);
5197 if (h->tls_type == GOT_NORMAL
5198 && !elf_hash_table (info)->dynamic_sections_created)
5199 /* This is a static link. We must initialize the GOT entry. */
5200 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5201 }
5202 }
5203 else if (!htab->is_vxworks
5204 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5205 /* The calculation below does not involve "g". */
5206 break;
5207 else
5208 {
5209 g = mips_elf_local_got_index (abfd, input_bfd, info,
5210 symbol + addend, r_symndx, h, r_type);
5211 if (g == MINUS_ONE)
5212 return bfd_reloc_outofrange;
5213 }
5214
5215 /* Convert GOT indices to actual offsets. */
5216 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5217 break;
5218 }
5219
5220 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5221 symbols are resolved by the loader. Add them to .rela.dyn. */
5222 if (h != NULL && is_gott_symbol (info, &h->root))
5223 {
5224 Elf_Internal_Rela outrel;
5225 bfd_byte *loc;
5226 asection *s;
5227
5228 s = mips_elf_rel_dyn_section (info, FALSE);
5229 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5230
5231 outrel.r_offset = (input_section->output_section->vma
5232 + input_section->output_offset
5233 + relocation->r_offset);
5234 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5235 outrel.r_addend = addend;
5236 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5237
5238 /* If we've written this relocation for a readonly section,
5239 we need to set DF_TEXTREL again, so that we do not delete the
5240 DT_TEXTREL tag. */
5241 if (MIPS_ELF_READONLY_SECTION (input_section))
5242 info->flags |= DF_TEXTREL;
5243
5244 *valuep = 0;
5245 return bfd_reloc_ok;
5246 }
5247
5248 /* Figure out what kind of relocation is being performed. */
5249 switch (r_type)
5250 {
5251 case R_MIPS_NONE:
5252 return bfd_reloc_continue;
5253
5254 case R_MIPS_16:
5255 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5256 overflowed_p = mips_elf_overflow_p (value, 16);
5257 break;
5258
5259 case R_MIPS_32:
5260 case R_MIPS_REL32:
5261 case R_MIPS_64:
5262 if ((info->shared
5263 || (htab->root.dynamic_sections_created
5264 && h != NULL
5265 && h->root.def_dynamic
5266 && !h->root.def_regular
5267 && !h->has_static_relocs))
5268 && r_symndx != STN_UNDEF
5269 && (h == NULL
5270 || h->root.root.type != bfd_link_hash_undefweak
5271 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5272 && (input_section->flags & SEC_ALLOC) != 0)
5273 {
5274 /* If we're creating a shared library, then we can't know
5275 where the symbol will end up. So, we create a relocation
5276 record in the output, and leave the job up to the dynamic
5277 linker. We must do the same for executable references to
5278 shared library symbols, unless we've decided to use copy
5279 relocs or PLTs instead. */
5280 value = addend;
5281 if (!mips_elf_create_dynamic_relocation (abfd,
5282 info,
5283 relocation,
5284 h,
5285 sec,
5286 symbol,
5287 &value,
5288 input_section))
5289 return bfd_reloc_undefined;
5290 }
5291 else
5292 {
5293 if (r_type != R_MIPS_REL32)
5294 value = symbol + addend;
5295 else
5296 value = addend;
5297 }
5298 value &= howto->dst_mask;
5299 break;
5300
5301 case R_MIPS_PC32:
5302 value = symbol + addend - p;
5303 value &= howto->dst_mask;
5304 break;
5305
5306 case R_MIPS16_26:
5307 /* The calculation for R_MIPS16_26 is just the same as for an
5308 R_MIPS_26. It's only the storage of the relocated field into
5309 the output file that's different. That's handled in
5310 mips_elf_perform_relocation. So, we just fall through to the
5311 R_MIPS_26 case here. */
5312 case R_MIPS_26:
5313 if (was_local_p)
5314 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
5315 else
5316 {
5317 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
5318 if (h->root.root.type != bfd_link_hash_undefweak)
5319 overflowed_p = (value >> 26) != ((p + 4) >> 28);
5320 }
5321 value &= howto->dst_mask;
5322 break;
5323
5324 case R_MIPS_TLS_DTPREL_HI16:
5325 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5326 & howto->dst_mask);
5327 break;
5328
5329 case R_MIPS_TLS_DTPREL_LO16:
5330 case R_MIPS_TLS_DTPREL32:
5331 case R_MIPS_TLS_DTPREL64:
5332 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5333 break;
5334
5335 case R_MIPS_TLS_TPREL_HI16:
5336 value = (mips_elf_high (addend + symbol - tprel_base (info))
5337 & howto->dst_mask);
5338 break;
5339
5340 case R_MIPS_TLS_TPREL_LO16:
5341 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5342 break;
5343
5344 case R_MIPS_HI16:
5345 case R_MIPS16_HI16:
5346 if (!gp_disp_p)
5347 {
5348 value = mips_elf_high (addend + symbol);
5349 value &= howto->dst_mask;
5350 }
5351 else
5352 {
5353 /* For MIPS16 ABI code we generate this sequence
5354 0: li $v0,%hi(_gp_disp)
5355 4: addiupc $v1,%lo(_gp_disp)
5356 8: sll $v0,16
5357 12: addu $v0,$v1
5358 14: move $gp,$v0
5359 So the offsets of hi and lo relocs are the same, but the
5360 $pc is four higher than $t9 would be, so reduce
5361 both reloc addends by 4. */
5362 if (r_type == R_MIPS16_HI16)
5363 value = mips_elf_high (addend + gp - p - 4);
5364 else
5365 value = mips_elf_high (addend + gp - p);
5366 overflowed_p = mips_elf_overflow_p (value, 16);
5367 }
5368 break;
5369
5370 case R_MIPS_LO16:
5371 case R_MIPS16_LO16:
5372 if (!gp_disp_p)
5373 value = (symbol + addend) & howto->dst_mask;
5374 else
5375 {
5376 /* See the comment for R_MIPS16_HI16 above for the reason
5377 for this conditional. */
5378 if (r_type == R_MIPS16_LO16)
5379 value = addend + gp - p;
5380 else
5381 value = addend + gp - p + 4;
5382 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5383 for overflow. But, on, say, IRIX5, relocations against
5384 _gp_disp are normally generated from the .cpload
5385 pseudo-op. It generates code that normally looks like
5386 this:
5387
5388 lui $gp,%hi(_gp_disp)
5389 addiu $gp,$gp,%lo(_gp_disp)
5390 addu $gp,$gp,$t9
5391
5392 Here $t9 holds the address of the function being called,
5393 as required by the MIPS ELF ABI. The R_MIPS_LO16
5394 relocation can easily overflow in this situation, but the
5395 R_MIPS_HI16 relocation will handle the overflow.
5396 Therefore, we consider this a bug in the MIPS ABI, and do
5397 not check for overflow here. */
5398 }
5399 break;
5400
5401 case R_MIPS_LITERAL:
5402 /* Because we don't merge literal sections, we can handle this
5403 just like R_MIPS_GPREL16. In the long run, we should merge
5404 shared literals, and then we will need to additional work
5405 here. */
5406
5407 /* Fall through. */
5408
5409 case R_MIPS16_GPREL:
5410 /* The R_MIPS16_GPREL performs the same calculation as
5411 R_MIPS_GPREL16, but stores the relocated bits in a different
5412 order. We don't need to do anything special here; the
5413 differences are handled in mips_elf_perform_relocation. */
5414 case R_MIPS_GPREL16:
5415 /* Only sign-extend the addend if it was extracted from the
5416 instruction. If the addend was separate, leave it alone,
5417 otherwise we may lose significant bits. */
5418 if (howto->partial_inplace)
5419 addend = _bfd_mips_elf_sign_extend (addend, 16);
5420 value = symbol + addend - gp;
5421 /* If the symbol was local, any earlier relocatable links will
5422 have adjusted its addend with the gp offset, so compensate
5423 for that now. Don't do it for symbols forced local in this
5424 link, though, since they won't have had the gp offset applied
5425 to them before. */
5426 if (was_local_p)
5427 value += gp0;
5428 overflowed_p = mips_elf_overflow_p (value, 16);
5429 break;
5430
5431 case R_MIPS16_GOT16:
5432 case R_MIPS16_CALL16:
5433 case R_MIPS_GOT16:
5434 case R_MIPS_CALL16:
5435 /* VxWorks does not have separate local and global semantics for
5436 R_MIPS*_GOT16; every relocation evaluates to "G". */
5437 if (!htab->is_vxworks && local_p)
5438 {
5439 value = mips_elf_got16_entry (abfd, input_bfd, info,
5440 symbol + addend, !was_local_p);
5441 if (value == MINUS_ONE)
5442 return bfd_reloc_outofrange;
5443 value
5444 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5445 overflowed_p = mips_elf_overflow_p (value, 16);
5446 break;
5447 }
5448
5449 /* Fall through. */
5450
5451 case R_MIPS_TLS_GD:
5452 case R_MIPS_TLS_GOTTPREL:
5453 case R_MIPS_TLS_LDM:
5454 case R_MIPS_GOT_DISP:
5455 value = g;
5456 overflowed_p = mips_elf_overflow_p (value, 16);
5457 break;
5458
5459 case R_MIPS_GPREL32:
5460 value = (addend + symbol + gp0 - gp);
5461 if (!save_addend)
5462 value &= howto->dst_mask;
5463 break;
5464
5465 case R_MIPS_PC16:
5466 case R_MIPS_GNU_REL16_S2:
5467 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5468 overflowed_p = mips_elf_overflow_p (value, 18);
5469 value >>= howto->rightshift;
5470 value &= howto->dst_mask;
5471 break;
5472
5473 case R_MIPS_GOT_HI16:
5474 case R_MIPS_CALL_HI16:
5475 /* We're allowed to handle these two relocations identically.
5476 The dynamic linker is allowed to handle the CALL relocations
5477 differently by creating a lazy evaluation stub. */
5478 value = g;
5479 value = mips_elf_high (value);
5480 value &= howto->dst_mask;
5481 break;
5482
5483 case R_MIPS_GOT_LO16:
5484 case R_MIPS_CALL_LO16:
5485 value = g & howto->dst_mask;
5486 break;
5487
5488 case R_MIPS_GOT_PAGE:
5489 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5490 if (value == MINUS_ONE)
5491 return bfd_reloc_outofrange;
5492 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5493 overflowed_p = mips_elf_overflow_p (value, 16);
5494 break;
5495
5496 case R_MIPS_GOT_OFST:
5497 if (local_p)
5498 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5499 else
5500 value = addend;
5501 overflowed_p = mips_elf_overflow_p (value, 16);
5502 break;
5503
5504 case R_MIPS_SUB:
5505 value = symbol - addend;
5506 value &= howto->dst_mask;
5507 break;
5508
5509 case R_MIPS_HIGHER:
5510 value = mips_elf_higher (addend + symbol);
5511 value &= howto->dst_mask;
5512 break;
5513
5514 case R_MIPS_HIGHEST:
5515 value = mips_elf_highest (addend + symbol);
5516 value &= howto->dst_mask;
5517 break;
5518
5519 case R_MIPS_SCN_DISP:
5520 value = symbol + addend - sec->output_offset;
5521 value &= howto->dst_mask;
5522 break;
5523
5524 case R_MIPS_JALR:
5525 /* This relocation is only a hint. In some cases, we optimize
5526 it into a bal instruction. But we don't try to optimize
5527 when the symbol does not resolve locally. */
5528 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5529 return bfd_reloc_continue;
5530 value = symbol + addend;
5531 break;
5532
5533 case R_MIPS_PJUMP:
5534 case R_MIPS_GNU_VTINHERIT:
5535 case R_MIPS_GNU_VTENTRY:
5536 /* We don't do anything with these at present. */
5537 return bfd_reloc_continue;
5538
5539 default:
5540 /* An unrecognized relocation type. */
5541 return bfd_reloc_notsupported;
5542 }
5543
5544 /* Store the VALUE for our caller. */
5545 *valuep = value;
5546 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5547 }
5548
5549 /* Obtain the field relocated by RELOCATION. */
5550
5551 static bfd_vma
5552 mips_elf_obtain_contents (reloc_howto_type *howto,
5553 const Elf_Internal_Rela *relocation,
5554 bfd *input_bfd, bfd_byte *contents)
5555 {
5556 bfd_vma x;
5557 bfd_byte *location = contents + relocation->r_offset;
5558
5559 /* Obtain the bytes. */
5560 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5561
5562 return x;
5563 }
5564
5565 /* It has been determined that the result of the RELOCATION is the
5566 VALUE. Use HOWTO to place VALUE into the output file at the
5567 appropriate position. The SECTION is the section to which the
5568 relocation applies.
5569 CROSS_MODE_JUMP_P is true if the relocation field
5570 is a MIPS16 jump to non-MIPS16 code, or vice versa.
5571
5572 Returns FALSE if anything goes wrong. */
5573
5574 static bfd_boolean
5575 mips_elf_perform_relocation (struct bfd_link_info *info,
5576 reloc_howto_type *howto,
5577 const Elf_Internal_Rela *relocation,
5578 bfd_vma value, bfd *input_bfd,
5579 asection *input_section, bfd_byte *contents,
5580 bfd_boolean cross_mode_jump_p)
5581 {
5582 bfd_vma x;
5583 bfd_byte *location;
5584 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5585
5586 /* Figure out where the relocation is occurring. */
5587 location = contents + relocation->r_offset;
5588
5589 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5590
5591 /* Obtain the current value. */
5592 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5593
5594 /* Clear the field we are setting. */
5595 x &= ~howto->dst_mask;
5596
5597 /* Set the field. */
5598 x |= (value & howto->dst_mask);
5599
5600 /* If required, turn JAL into JALX. */
5601 if (cross_mode_jump_p && jal_reloc_p (r_type))
5602 {
5603 bfd_boolean ok;
5604 bfd_vma opcode = x >> 26;
5605 bfd_vma jalx_opcode;
5606
5607 /* Check to see if the opcode is already JAL or JALX. */
5608 if (r_type == R_MIPS16_26)
5609 {
5610 ok = ((opcode == 0x6) || (opcode == 0x7));
5611 jalx_opcode = 0x7;
5612 }
5613 else
5614 {
5615 ok = ((opcode == 0x3) || (opcode == 0x1d));
5616 jalx_opcode = 0x1d;
5617 }
5618
5619 /* If the opcode is not JAL or JALX, there's a problem. */
5620 if (!ok)
5621 {
5622 (*_bfd_error_handler)
5623 (_("%B: %A+0x%lx: Direct jumps between ISA modes are not allowed; consider recompiling with interlinking enabled."),
5624 input_bfd,
5625 input_section,
5626 (unsigned long) relocation->r_offset);
5627 bfd_set_error (bfd_error_bad_value);
5628 return FALSE;
5629 }
5630
5631 /* Make this the JALX opcode. */
5632 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5633 }
5634
5635 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5636 range. */
5637 if (!info->relocatable
5638 && !cross_mode_jump_p
5639 && ((JAL_TO_BAL_P (input_bfd)
5640 && r_type == R_MIPS_26
5641 && (x >> 26) == 0x3) /* jal addr */
5642 || (JALR_TO_BAL_P (input_bfd)
5643 && r_type == R_MIPS_JALR
5644 && x == 0x0320f809) /* jalr t9 */
5645 || (JR_TO_B_P (input_bfd)
5646 && r_type == R_MIPS_JALR
5647 && x == 0x03200008))) /* jr t9 */
5648 {
5649 bfd_vma addr;
5650 bfd_vma dest;
5651 bfd_signed_vma off;
5652
5653 addr = (input_section->output_section->vma
5654 + input_section->output_offset
5655 + relocation->r_offset
5656 + 4);
5657 if (r_type == R_MIPS_26)
5658 dest = (value << 2) | ((addr >> 28) << 28);
5659 else
5660 dest = value;
5661 off = dest - addr;
5662 if (off <= 0x1ffff && off >= -0x20000)
5663 {
5664 if (x == 0x03200008) /* jr t9 */
5665 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5666 else
5667 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5668 }
5669 }
5670
5671 /* Put the value into the output. */
5672 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5673
5674 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
5675 location);
5676
5677 return TRUE;
5678 }
5679 \f
5680 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5681 is the original relocation, which is now being transformed into a
5682 dynamic relocation. The ADDENDP is adjusted if necessary; the
5683 caller should store the result in place of the original addend. */
5684
5685 static bfd_boolean
5686 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5687 struct bfd_link_info *info,
5688 const Elf_Internal_Rela *rel,
5689 struct mips_elf_link_hash_entry *h,
5690 asection *sec, bfd_vma symbol,
5691 bfd_vma *addendp, asection *input_section)
5692 {
5693 Elf_Internal_Rela outrel[3];
5694 asection *sreloc;
5695 bfd *dynobj;
5696 int r_type;
5697 long indx;
5698 bfd_boolean defined_p;
5699 struct mips_elf_link_hash_table *htab;
5700
5701 htab = mips_elf_hash_table (info);
5702 BFD_ASSERT (htab != NULL);
5703
5704 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5705 dynobj = elf_hash_table (info)->dynobj;
5706 sreloc = mips_elf_rel_dyn_section (info, FALSE);
5707 BFD_ASSERT (sreloc != NULL);
5708 BFD_ASSERT (sreloc->contents != NULL);
5709 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5710 < sreloc->size);
5711
5712 outrel[0].r_offset =
5713 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5714 if (ABI_64_P (output_bfd))
5715 {
5716 outrel[1].r_offset =
5717 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5718 outrel[2].r_offset =
5719 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5720 }
5721
5722 if (outrel[0].r_offset == MINUS_ONE)
5723 /* The relocation field has been deleted. */
5724 return TRUE;
5725
5726 if (outrel[0].r_offset == MINUS_TWO)
5727 {
5728 /* The relocation field has been converted into a relative value of
5729 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5730 the field to be fully relocated, so add in the symbol's value. */
5731 *addendp += symbol;
5732 return TRUE;
5733 }
5734
5735 /* We must now calculate the dynamic symbol table index to use
5736 in the relocation. */
5737 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5738 {
5739 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5740 indx = h->root.dynindx;
5741 if (SGI_COMPAT (output_bfd))
5742 defined_p = h->root.def_regular;
5743 else
5744 /* ??? glibc's ld.so just adds the final GOT entry to the
5745 relocation field. It therefore treats relocs against
5746 defined symbols in the same way as relocs against
5747 undefined symbols. */
5748 defined_p = FALSE;
5749 }
5750 else
5751 {
5752 if (sec != NULL && bfd_is_abs_section (sec))
5753 indx = 0;
5754 else if (sec == NULL || sec->owner == NULL)
5755 {
5756 bfd_set_error (bfd_error_bad_value);
5757 return FALSE;
5758 }
5759 else
5760 {
5761 indx = elf_section_data (sec->output_section)->dynindx;
5762 if (indx == 0)
5763 {
5764 asection *osec = htab->root.text_index_section;
5765 indx = elf_section_data (osec)->dynindx;
5766 }
5767 if (indx == 0)
5768 abort ();
5769 }
5770
5771 /* Instead of generating a relocation using the section
5772 symbol, we may as well make it a fully relative
5773 relocation. We want to avoid generating relocations to
5774 local symbols because we used to generate them
5775 incorrectly, without adding the original symbol value,
5776 which is mandated by the ABI for section symbols. In
5777 order to give dynamic loaders and applications time to
5778 phase out the incorrect use, we refrain from emitting
5779 section-relative relocations. It's not like they're
5780 useful, after all. This should be a bit more efficient
5781 as well. */
5782 /* ??? Although this behavior is compatible with glibc's ld.so,
5783 the ABI says that relocations against STN_UNDEF should have
5784 a symbol value of 0. Irix rld honors this, so relocations
5785 against STN_UNDEF have no effect. */
5786 if (!SGI_COMPAT (output_bfd))
5787 indx = 0;
5788 defined_p = TRUE;
5789 }
5790
5791 /* If the relocation was previously an absolute relocation and
5792 this symbol will not be referred to by the relocation, we must
5793 adjust it by the value we give it in the dynamic symbol table.
5794 Otherwise leave the job up to the dynamic linker. */
5795 if (defined_p && r_type != R_MIPS_REL32)
5796 *addendp += symbol;
5797
5798 if (htab->is_vxworks)
5799 /* VxWorks uses non-relative relocations for this. */
5800 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
5801 else
5802 /* The relocation is always an REL32 relocation because we don't
5803 know where the shared library will wind up at load-time. */
5804 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
5805 R_MIPS_REL32);
5806
5807 /* For strict adherence to the ABI specification, we should
5808 generate a R_MIPS_64 relocation record by itself before the
5809 _REL32/_64 record as well, such that the addend is read in as
5810 a 64-bit value (REL32 is a 32-bit relocation, after all).
5811 However, since none of the existing ELF64 MIPS dynamic
5812 loaders seems to care, we don't waste space with these
5813 artificial relocations. If this turns out to not be true,
5814 mips_elf_allocate_dynamic_relocation() should be tweaked so
5815 as to make room for a pair of dynamic relocations per
5816 invocation if ABI_64_P, and here we should generate an
5817 additional relocation record with R_MIPS_64 by itself for a
5818 NULL symbol before this relocation record. */
5819 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
5820 ABI_64_P (output_bfd)
5821 ? R_MIPS_64
5822 : R_MIPS_NONE);
5823 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
5824
5825 /* Adjust the output offset of the relocation to reference the
5826 correct location in the output file. */
5827 outrel[0].r_offset += (input_section->output_section->vma
5828 + input_section->output_offset);
5829 outrel[1].r_offset += (input_section->output_section->vma
5830 + input_section->output_offset);
5831 outrel[2].r_offset += (input_section->output_section->vma
5832 + input_section->output_offset);
5833
5834 /* Put the relocation back out. We have to use the special
5835 relocation outputter in the 64-bit case since the 64-bit
5836 relocation format is non-standard. */
5837 if (ABI_64_P (output_bfd))
5838 {
5839 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5840 (output_bfd, &outrel[0],
5841 (sreloc->contents
5842 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5843 }
5844 else if (htab->is_vxworks)
5845 {
5846 /* VxWorks uses RELA rather than REL dynamic relocations. */
5847 outrel[0].r_addend = *addendp;
5848 bfd_elf32_swap_reloca_out
5849 (output_bfd, &outrel[0],
5850 (sreloc->contents
5851 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
5852 }
5853 else
5854 bfd_elf32_swap_reloc_out
5855 (output_bfd, &outrel[0],
5856 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
5857
5858 /* We've now added another relocation. */
5859 ++sreloc->reloc_count;
5860
5861 /* Make sure the output section is writable. The dynamic linker
5862 will be writing to it. */
5863 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5864 |= SHF_WRITE;
5865
5866 /* On IRIX5, make an entry of compact relocation info. */
5867 if (IRIX_COMPAT (output_bfd) == ict_irix5)
5868 {
5869 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5870 bfd_byte *cr;
5871
5872 if (scpt)
5873 {
5874 Elf32_crinfo cptrel;
5875
5876 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5877 cptrel.vaddr = (rel->r_offset
5878 + input_section->output_section->vma
5879 + input_section->output_offset);
5880 if (r_type == R_MIPS_REL32)
5881 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5882 else
5883 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5884 mips_elf_set_cr_dist2to (cptrel, 0);
5885 cptrel.konst = *addendp;
5886
5887 cr = (scpt->contents
5888 + sizeof (Elf32_External_compact_rel));
5889 mips_elf_set_cr_relvaddr (cptrel, 0);
5890 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5891 ((Elf32_External_crinfo *) cr
5892 + scpt->reloc_count));
5893 ++scpt->reloc_count;
5894 }
5895 }
5896
5897 /* If we've written this relocation for a readonly section,
5898 we need to set DF_TEXTREL again, so that we do not delete the
5899 DT_TEXTREL tag. */
5900 if (MIPS_ELF_READONLY_SECTION (input_section))
5901 info->flags |= DF_TEXTREL;
5902
5903 return TRUE;
5904 }
5905 \f
5906 /* Return the MACH for a MIPS e_flags value. */
5907
5908 unsigned long
5909 _bfd_elf_mips_mach (flagword flags)
5910 {
5911 switch (flags & EF_MIPS_MACH)
5912 {
5913 case E_MIPS_MACH_3900:
5914 return bfd_mach_mips3900;
5915
5916 case E_MIPS_MACH_4010:
5917 return bfd_mach_mips4010;
5918
5919 case E_MIPS_MACH_4100:
5920 return bfd_mach_mips4100;
5921
5922 case E_MIPS_MACH_4111:
5923 return bfd_mach_mips4111;
5924
5925 case E_MIPS_MACH_4120:
5926 return bfd_mach_mips4120;
5927
5928 case E_MIPS_MACH_4650:
5929 return bfd_mach_mips4650;
5930
5931 case E_MIPS_MACH_5400:
5932 return bfd_mach_mips5400;
5933
5934 case E_MIPS_MACH_5500:
5935 return bfd_mach_mips5500;
5936
5937 case E_MIPS_MACH_9000:
5938 return bfd_mach_mips9000;
5939
5940 case E_MIPS_MACH_SB1:
5941 return bfd_mach_mips_sb1;
5942
5943 case E_MIPS_MACH_LS2E:
5944 return bfd_mach_mips_loongson_2e;
5945
5946 case E_MIPS_MACH_LS2F:
5947 return bfd_mach_mips_loongson_2f;
5948
5949 case E_MIPS_MACH_LS3A:
5950 return bfd_mach_mips_loongson_3a;
5951
5952 case E_MIPS_MACH_OCTEON:
5953 return bfd_mach_mips_octeon;
5954
5955 case E_MIPS_MACH_XLR:
5956 return bfd_mach_mips_xlr;
5957
5958 default:
5959 switch (flags & EF_MIPS_ARCH)
5960 {
5961 default:
5962 case E_MIPS_ARCH_1:
5963 return bfd_mach_mips3000;
5964
5965 case E_MIPS_ARCH_2:
5966 return bfd_mach_mips6000;
5967
5968 case E_MIPS_ARCH_3:
5969 return bfd_mach_mips4000;
5970
5971 case E_MIPS_ARCH_4:
5972 return bfd_mach_mips8000;
5973
5974 case E_MIPS_ARCH_5:
5975 return bfd_mach_mips5;
5976
5977 case E_MIPS_ARCH_32:
5978 return bfd_mach_mipsisa32;
5979
5980 case E_MIPS_ARCH_64:
5981 return bfd_mach_mipsisa64;
5982
5983 case E_MIPS_ARCH_32R2:
5984 return bfd_mach_mipsisa32r2;
5985
5986 case E_MIPS_ARCH_64R2:
5987 return bfd_mach_mipsisa64r2;
5988 }
5989 }
5990
5991 return 0;
5992 }
5993
5994 /* Return printable name for ABI. */
5995
5996 static INLINE char *
5997 elf_mips_abi_name (bfd *abfd)
5998 {
5999 flagword flags;
6000
6001 flags = elf_elfheader (abfd)->e_flags;
6002 switch (flags & EF_MIPS_ABI)
6003 {
6004 case 0:
6005 if (ABI_N32_P (abfd))
6006 return "N32";
6007 else if (ABI_64_P (abfd))
6008 return "64";
6009 else
6010 return "none";
6011 case E_MIPS_ABI_O32:
6012 return "O32";
6013 case E_MIPS_ABI_O64:
6014 return "O64";
6015 case E_MIPS_ABI_EABI32:
6016 return "EABI32";
6017 case E_MIPS_ABI_EABI64:
6018 return "EABI64";
6019 default:
6020 return "unknown abi";
6021 }
6022 }
6023 \f
6024 /* MIPS ELF uses two common sections. One is the usual one, and the
6025 other is for small objects. All the small objects are kept
6026 together, and then referenced via the gp pointer, which yields
6027 faster assembler code. This is what we use for the small common
6028 section. This approach is copied from ecoff.c. */
6029 static asection mips_elf_scom_section;
6030 static asymbol mips_elf_scom_symbol;
6031 static asymbol *mips_elf_scom_symbol_ptr;
6032
6033 /* MIPS ELF also uses an acommon section, which represents an
6034 allocated common symbol which may be overridden by a
6035 definition in a shared library. */
6036 static asection mips_elf_acom_section;
6037 static asymbol mips_elf_acom_symbol;
6038 static asymbol *mips_elf_acom_symbol_ptr;
6039
6040 /* This is used for both the 32-bit and the 64-bit ABI. */
6041
6042 void
6043 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6044 {
6045 elf_symbol_type *elfsym;
6046
6047 /* Handle the special MIPS section numbers that a symbol may use. */
6048 elfsym = (elf_symbol_type *) asym;
6049 switch (elfsym->internal_elf_sym.st_shndx)
6050 {
6051 case SHN_MIPS_ACOMMON:
6052 /* This section is used in a dynamically linked executable file.
6053 It is an allocated common section. The dynamic linker can
6054 either resolve these symbols to something in a shared
6055 library, or it can just leave them here. For our purposes,
6056 we can consider these symbols to be in a new section. */
6057 if (mips_elf_acom_section.name == NULL)
6058 {
6059 /* Initialize the acommon section. */
6060 mips_elf_acom_section.name = ".acommon";
6061 mips_elf_acom_section.flags = SEC_ALLOC;
6062 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6063 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6064 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6065 mips_elf_acom_symbol.name = ".acommon";
6066 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6067 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6068 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6069 }
6070 asym->section = &mips_elf_acom_section;
6071 break;
6072
6073 case SHN_COMMON:
6074 /* Common symbols less than the GP size are automatically
6075 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6076 if (asym->value > elf_gp_size (abfd)
6077 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6078 || IRIX_COMPAT (abfd) == ict_irix6)
6079 break;
6080 /* Fall through. */
6081 case SHN_MIPS_SCOMMON:
6082 if (mips_elf_scom_section.name == NULL)
6083 {
6084 /* Initialize the small common section. */
6085 mips_elf_scom_section.name = ".scommon";
6086 mips_elf_scom_section.flags = SEC_IS_COMMON;
6087 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6088 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6089 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6090 mips_elf_scom_symbol.name = ".scommon";
6091 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6092 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6093 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6094 }
6095 asym->section = &mips_elf_scom_section;
6096 asym->value = elfsym->internal_elf_sym.st_size;
6097 break;
6098
6099 case SHN_MIPS_SUNDEFINED:
6100 asym->section = bfd_und_section_ptr;
6101 break;
6102
6103 case SHN_MIPS_TEXT:
6104 {
6105 asection *section = bfd_get_section_by_name (abfd, ".text");
6106
6107 BFD_ASSERT (SGI_COMPAT (abfd));
6108 if (section != NULL)
6109 {
6110 asym->section = section;
6111 /* MIPS_TEXT is a bit special, the address is not an offset
6112 to the base of the .text section. So substract the section
6113 base address to make it an offset. */
6114 asym->value -= section->vma;
6115 }
6116 }
6117 break;
6118
6119 case SHN_MIPS_DATA:
6120 {
6121 asection *section = bfd_get_section_by_name (abfd, ".data");
6122
6123 BFD_ASSERT (SGI_COMPAT (abfd));
6124 if (section != NULL)
6125 {
6126 asym->section = section;
6127 /* MIPS_DATA is a bit special, the address is not an offset
6128 to the base of the .data section. So substract the section
6129 base address to make it an offset. */
6130 asym->value -= section->vma;
6131 }
6132 }
6133 break;
6134 }
6135
6136 /* If this is an odd-valued function symbol, assume it's a MIPS16 one. */
6137 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6138 && (asym->value & 1) != 0)
6139 {
6140 asym->value--;
6141 elfsym->internal_elf_sym.st_other
6142 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6143 }
6144 }
6145 \f
6146 /* Implement elf_backend_eh_frame_address_size. This differs from
6147 the default in the way it handles EABI64.
6148
6149 EABI64 was originally specified as an LP64 ABI, and that is what
6150 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6151 historically accepted the combination of -mabi=eabi and -mlong32,
6152 and this ILP32 variation has become semi-official over time.
6153 Both forms use elf32 and have pointer-sized FDE addresses.
6154
6155 If an EABI object was generated by GCC 4.0 or above, it will have
6156 an empty .gcc_compiled_longXX section, where XX is the size of longs
6157 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6158 have no special marking to distinguish them from LP64 objects.
6159
6160 We don't want users of the official LP64 ABI to be punished for the
6161 existence of the ILP32 variant, but at the same time, we don't want
6162 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6163 We therefore take the following approach:
6164
6165 - If ABFD contains a .gcc_compiled_longXX section, use it to
6166 determine the pointer size.
6167
6168 - Otherwise check the type of the first relocation. Assume that
6169 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6170
6171 - Otherwise punt.
6172
6173 The second check is enough to detect LP64 objects generated by pre-4.0
6174 compilers because, in the kind of output generated by those compilers,
6175 the first relocation will be associated with either a CIE personality
6176 routine or an FDE start address. Furthermore, the compilers never
6177 used a special (non-pointer) encoding for this ABI.
6178
6179 Checking the relocation type should also be safe because there is no
6180 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6181 did so. */
6182
6183 unsigned int
6184 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6185 {
6186 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6187 return 8;
6188 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6189 {
6190 bfd_boolean long32_p, long64_p;
6191
6192 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6193 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6194 if (long32_p && long64_p)
6195 return 0;
6196 if (long32_p)
6197 return 4;
6198 if (long64_p)
6199 return 8;
6200
6201 if (sec->reloc_count > 0
6202 && elf_section_data (sec)->relocs != NULL
6203 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6204 == R_MIPS_64))
6205 return 8;
6206
6207 return 0;
6208 }
6209 return 4;
6210 }
6211 \f
6212 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6213 relocations against two unnamed section symbols to resolve to the
6214 same address. For example, if we have code like:
6215
6216 lw $4,%got_disp(.data)($gp)
6217 lw $25,%got_disp(.text)($gp)
6218 jalr $25
6219
6220 then the linker will resolve both relocations to .data and the program
6221 will jump there rather than to .text.
6222
6223 We can work around this problem by giving names to local section symbols.
6224 This is also what the MIPSpro tools do. */
6225
6226 bfd_boolean
6227 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6228 {
6229 return SGI_COMPAT (abfd);
6230 }
6231 \f
6232 /* Work over a section just before writing it out. This routine is
6233 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6234 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6235 a better way. */
6236
6237 bfd_boolean
6238 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6239 {
6240 if (hdr->sh_type == SHT_MIPS_REGINFO
6241 && hdr->sh_size > 0)
6242 {
6243 bfd_byte buf[4];
6244
6245 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6246 BFD_ASSERT (hdr->contents == NULL);
6247
6248 if (bfd_seek (abfd,
6249 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6250 SEEK_SET) != 0)
6251 return FALSE;
6252 H_PUT_32 (abfd, elf_gp (abfd), buf);
6253 if (bfd_bwrite (buf, 4, abfd) != 4)
6254 return FALSE;
6255 }
6256
6257 if (hdr->sh_type == SHT_MIPS_OPTIONS
6258 && hdr->bfd_section != NULL
6259 && mips_elf_section_data (hdr->bfd_section) != NULL
6260 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6261 {
6262 bfd_byte *contents, *l, *lend;
6263
6264 /* We stored the section contents in the tdata field in the
6265 set_section_contents routine. We save the section contents
6266 so that we don't have to read them again.
6267 At this point we know that elf_gp is set, so we can look
6268 through the section contents to see if there is an
6269 ODK_REGINFO structure. */
6270
6271 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6272 l = contents;
6273 lend = contents + hdr->sh_size;
6274 while (l + sizeof (Elf_External_Options) <= lend)
6275 {
6276 Elf_Internal_Options intopt;
6277
6278 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6279 &intopt);
6280 if (intopt.size < sizeof (Elf_External_Options))
6281 {
6282 (*_bfd_error_handler)
6283 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6284 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6285 break;
6286 }
6287 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6288 {
6289 bfd_byte buf[8];
6290
6291 if (bfd_seek (abfd,
6292 (hdr->sh_offset
6293 + (l - contents)
6294 + sizeof (Elf_External_Options)
6295 + (sizeof (Elf64_External_RegInfo) - 8)),
6296 SEEK_SET) != 0)
6297 return FALSE;
6298 H_PUT_64 (abfd, elf_gp (abfd), buf);
6299 if (bfd_bwrite (buf, 8, abfd) != 8)
6300 return FALSE;
6301 }
6302 else if (intopt.kind == ODK_REGINFO)
6303 {
6304 bfd_byte buf[4];
6305
6306 if (bfd_seek (abfd,
6307 (hdr->sh_offset
6308 + (l - contents)
6309 + sizeof (Elf_External_Options)
6310 + (sizeof (Elf32_External_RegInfo) - 4)),
6311 SEEK_SET) != 0)
6312 return FALSE;
6313 H_PUT_32 (abfd, elf_gp (abfd), buf);
6314 if (bfd_bwrite (buf, 4, abfd) != 4)
6315 return FALSE;
6316 }
6317 l += intopt.size;
6318 }
6319 }
6320
6321 if (hdr->bfd_section != NULL)
6322 {
6323 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6324
6325 /* .sbss is not handled specially here because the GNU/Linux
6326 prelinker can convert .sbss from NOBITS to PROGBITS and
6327 changing it back to NOBITS breaks the binary. The entry in
6328 _bfd_mips_elf_special_sections will ensure the correct flags
6329 are set on .sbss if BFD creates it without reading it from an
6330 input file, and without special handling here the flags set
6331 on it in an input file will be followed. */
6332 if (strcmp (name, ".sdata") == 0
6333 || strcmp (name, ".lit8") == 0
6334 || strcmp (name, ".lit4") == 0)
6335 {
6336 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6337 hdr->sh_type = SHT_PROGBITS;
6338 }
6339 else if (strcmp (name, ".srdata") == 0)
6340 {
6341 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6342 hdr->sh_type = SHT_PROGBITS;
6343 }
6344 else if (strcmp (name, ".compact_rel") == 0)
6345 {
6346 hdr->sh_flags = 0;
6347 hdr->sh_type = SHT_PROGBITS;
6348 }
6349 else if (strcmp (name, ".rtproc") == 0)
6350 {
6351 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6352 {
6353 unsigned int adjust;
6354
6355 adjust = hdr->sh_size % hdr->sh_addralign;
6356 if (adjust != 0)
6357 hdr->sh_size += hdr->sh_addralign - adjust;
6358 }
6359 }
6360 }
6361
6362 return TRUE;
6363 }
6364
6365 /* Handle a MIPS specific section when reading an object file. This
6366 is called when elfcode.h finds a section with an unknown type.
6367 This routine supports both the 32-bit and 64-bit ELF ABI.
6368
6369 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6370 how to. */
6371
6372 bfd_boolean
6373 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6374 Elf_Internal_Shdr *hdr,
6375 const char *name,
6376 int shindex)
6377 {
6378 flagword flags = 0;
6379
6380 /* There ought to be a place to keep ELF backend specific flags, but
6381 at the moment there isn't one. We just keep track of the
6382 sections by their name, instead. Fortunately, the ABI gives
6383 suggested names for all the MIPS specific sections, so we will
6384 probably get away with this. */
6385 switch (hdr->sh_type)
6386 {
6387 case SHT_MIPS_LIBLIST:
6388 if (strcmp (name, ".liblist") != 0)
6389 return FALSE;
6390 break;
6391 case SHT_MIPS_MSYM:
6392 if (strcmp (name, ".msym") != 0)
6393 return FALSE;
6394 break;
6395 case SHT_MIPS_CONFLICT:
6396 if (strcmp (name, ".conflict") != 0)
6397 return FALSE;
6398 break;
6399 case SHT_MIPS_GPTAB:
6400 if (! CONST_STRNEQ (name, ".gptab."))
6401 return FALSE;
6402 break;
6403 case SHT_MIPS_UCODE:
6404 if (strcmp (name, ".ucode") != 0)
6405 return FALSE;
6406 break;
6407 case SHT_MIPS_DEBUG:
6408 if (strcmp (name, ".mdebug") != 0)
6409 return FALSE;
6410 flags = SEC_DEBUGGING;
6411 break;
6412 case SHT_MIPS_REGINFO:
6413 if (strcmp (name, ".reginfo") != 0
6414 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6415 return FALSE;
6416 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6417 break;
6418 case SHT_MIPS_IFACE:
6419 if (strcmp (name, ".MIPS.interfaces") != 0)
6420 return FALSE;
6421 break;
6422 case SHT_MIPS_CONTENT:
6423 if (! CONST_STRNEQ (name, ".MIPS.content"))
6424 return FALSE;
6425 break;
6426 case SHT_MIPS_OPTIONS:
6427 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6428 return FALSE;
6429 break;
6430 case SHT_MIPS_DWARF:
6431 if (! CONST_STRNEQ (name, ".debug_")
6432 && ! CONST_STRNEQ (name, ".zdebug_"))
6433 return FALSE;
6434 break;
6435 case SHT_MIPS_SYMBOL_LIB:
6436 if (strcmp (name, ".MIPS.symlib") != 0)
6437 return FALSE;
6438 break;
6439 case SHT_MIPS_EVENTS:
6440 if (! CONST_STRNEQ (name, ".MIPS.events")
6441 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6442 return FALSE;
6443 break;
6444 default:
6445 break;
6446 }
6447
6448 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6449 return FALSE;
6450
6451 if (flags)
6452 {
6453 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6454 (bfd_get_section_flags (abfd,
6455 hdr->bfd_section)
6456 | flags)))
6457 return FALSE;
6458 }
6459
6460 /* FIXME: We should record sh_info for a .gptab section. */
6461
6462 /* For a .reginfo section, set the gp value in the tdata information
6463 from the contents of this section. We need the gp value while
6464 processing relocs, so we just get it now. The .reginfo section
6465 is not used in the 64-bit MIPS ELF ABI. */
6466 if (hdr->sh_type == SHT_MIPS_REGINFO)
6467 {
6468 Elf32_External_RegInfo ext;
6469 Elf32_RegInfo s;
6470
6471 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6472 &ext, 0, sizeof ext))
6473 return FALSE;
6474 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6475 elf_gp (abfd) = s.ri_gp_value;
6476 }
6477
6478 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6479 set the gp value based on what we find. We may see both
6480 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6481 they should agree. */
6482 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6483 {
6484 bfd_byte *contents, *l, *lend;
6485
6486 contents = bfd_malloc (hdr->sh_size);
6487 if (contents == NULL)
6488 return FALSE;
6489 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6490 0, hdr->sh_size))
6491 {
6492 free (contents);
6493 return FALSE;
6494 }
6495 l = contents;
6496 lend = contents + hdr->sh_size;
6497 while (l + sizeof (Elf_External_Options) <= lend)
6498 {
6499 Elf_Internal_Options intopt;
6500
6501 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6502 &intopt);
6503 if (intopt.size < sizeof (Elf_External_Options))
6504 {
6505 (*_bfd_error_handler)
6506 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6507 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6508 break;
6509 }
6510 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6511 {
6512 Elf64_Internal_RegInfo intreg;
6513
6514 bfd_mips_elf64_swap_reginfo_in
6515 (abfd,
6516 ((Elf64_External_RegInfo *)
6517 (l + sizeof (Elf_External_Options))),
6518 &intreg);
6519 elf_gp (abfd) = intreg.ri_gp_value;
6520 }
6521 else if (intopt.kind == ODK_REGINFO)
6522 {
6523 Elf32_RegInfo intreg;
6524
6525 bfd_mips_elf32_swap_reginfo_in
6526 (abfd,
6527 ((Elf32_External_RegInfo *)
6528 (l + sizeof (Elf_External_Options))),
6529 &intreg);
6530 elf_gp (abfd) = intreg.ri_gp_value;
6531 }
6532 l += intopt.size;
6533 }
6534 free (contents);
6535 }
6536
6537 return TRUE;
6538 }
6539
6540 /* Set the correct type for a MIPS ELF section. We do this by the
6541 section name, which is a hack, but ought to work. This routine is
6542 used by both the 32-bit and the 64-bit ABI. */
6543
6544 bfd_boolean
6545 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6546 {
6547 const char *name = bfd_get_section_name (abfd, sec);
6548
6549 if (strcmp (name, ".liblist") == 0)
6550 {
6551 hdr->sh_type = SHT_MIPS_LIBLIST;
6552 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6553 /* The sh_link field is set in final_write_processing. */
6554 }
6555 else if (strcmp (name, ".conflict") == 0)
6556 hdr->sh_type = SHT_MIPS_CONFLICT;
6557 else if (CONST_STRNEQ (name, ".gptab."))
6558 {
6559 hdr->sh_type = SHT_MIPS_GPTAB;
6560 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6561 /* The sh_info field is set in final_write_processing. */
6562 }
6563 else if (strcmp (name, ".ucode") == 0)
6564 hdr->sh_type = SHT_MIPS_UCODE;
6565 else if (strcmp (name, ".mdebug") == 0)
6566 {
6567 hdr->sh_type = SHT_MIPS_DEBUG;
6568 /* In a shared object on IRIX 5.3, the .mdebug section has an
6569 entsize of 0. FIXME: Does this matter? */
6570 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6571 hdr->sh_entsize = 0;
6572 else
6573 hdr->sh_entsize = 1;
6574 }
6575 else if (strcmp (name, ".reginfo") == 0)
6576 {
6577 hdr->sh_type = SHT_MIPS_REGINFO;
6578 /* In a shared object on IRIX 5.3, the .reginfo section has an
6579 entsize of 0x18. FIXME: Does this matter? */
6580 if (SGI_COMPAT (abfd))
6581 {
6582 if ((abfd->flags & DYNAMIC) != 0)
6583 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6584 else
6585 hdr->sh_entsize = 1;
6586 }
6587 else
6588 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6589 }
6590 else if (SGI_COMPAT (abfd)
6591 && (strcmp (name, ".hash") == 0
6592 || strcmp (name, ".dynamic") == 0
6593 || strcmp (name, ".dynstr") == 0))
6594 {
6595 if (SGI_COMPAT (abfd))
6596 hdr->sh_entsize = 0;
6597 #if 0
6598 /* This isn't how the IRIX6 linker behaves. */
6599 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6600 #endif
6601 }
6602 else if (strcmp (name, ".got") == 0
6603 || strcmp (name, ".srdata") == 0
6604 || strcmp (name, ".sdata") == 0
6605 || strcmp (name, ".sbss") == 0
6606 || strcmp (name, ".lit4") == 0
6607 || strcmp (name, ".lit8") == 0)
6608 hdr->sh_flags |= SHF_MIPS_GPREL;
6609 else if (strcmp (name, ".MIPS.interfaces") == 0)
6610 {
6611 hdr->sh_type = SHT_MIPS_IFACE;
6612 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6613 }
6614 else if (CONST_STRNEQ (name, ".MIPS.content"))
6615 {
6616 hdr->sh_type = SHT_MIPS_CONTENT;
6617 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6618 /* The sh_info field is set in final_write_processing. */
6619 }
6620 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6621 {
6622 hdr->sh_type = SHT_MIPS_OPTIONS;
6623 hdr->sh_entsize = 1;
6624 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6625 }
6626 else if (CONST_STRNEQ (name, ".debug_")
6627 || CONST_STRNEQ (name, ".zdebug_"))
6628 {
6629 hdr->sh_type = SHT_MIPS_DWARF;
6630
6631 /* Irix facilities such as libexc expect a single .debug_frame
6632 per executable, the system ones have NOSTRIP set and the linker
6633 doesn't merge sections with different flags so ... */
6634 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6635 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6636 }
6637 else if (strcmp (name, ".MIPS.symlib") == 0)
6638 {
6639 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6640 /* The sh_link and sh_info fields are set in
6641 final_write_processing. */
6642 }
6643 else if (CONST_STRNEQ (name, ".MIPS.events")
6644 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6645 {
6646 hdr->sh_type = SHT_MIPS_EVENTS;
6647 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6648 /* The sh_link field is set in final_write_processing. */
6649 }
6650 else if (strcmp (name, ".msym") == 0)
6651 {
6652 hdr->sh_type = SHT_MIPS_MSYM;
6653 hdr->sh_flags |= SHF_ALLOC;
6654 hdr->sh_entsize = 8;
6655 }
6656
6657 /* The generic elf_fake_sections will set up REL_HDR using the default
6658 kind of relocations. We used to set up a second header for the
6659 non-default kind of relocations here, but only NewABI would use
6660 these, and the IRIX ld doesn't like resulting empty RELA sections.
6661 Thus we create those header only on demand now. */
6662
6663 return TRUE;
6664 }
6665
6666 /* Given a BFD section, try to locate the corresponding ELF section
6667 index. This is used by both the 32-bit and the 64-bit ABI.
6668 Actually, it's not clear to me that the 64-bit ABI supports these,
6669 but for non-PIC objects we will certainly want support for at least
6670 the .scommon section. */
6671
6672 bfd_boolean
6673 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6674 asection *sec, int *retval)
6675 {
6676 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6677 {
6678 *retval = SHN_MIPS_SCOMMON;
6679 return TRUE;
6680 }
6681 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6682 {
6683 *retval = SHN_MIPS_ACOMMON;
6684 return TRUE;
6685 }
6686 return FALSE;
6687 }
6688 \f
6689 /* Hook called by the linker routine which adds symbols from an object
6690 file. We must handle the special MIPS section numbers here. */
6691
6692 bfd_boolean
6693 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6694 Elf_Internal_Sym *sym, const char **namep,
6695 flagword *flagsp ATTRIBUTE_UNUSED,
6696 asection **secp, bfd_vma *valp)
6697 {
6698 if (SGI_COMPAT (abfd)
6699 && (abfd->flags & DYNAMIC) != 0
6700 && strcmp (*namep, "_rld_new_interface") == 0)
6701 {
6702 /* Skip IRIX5 rld entry name. */
6703 *namep = NULL;
6704 return TRUE;
6705 }
6706
6707 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6708 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6709 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6710 a magic symbol resolved by the linker, we ignore this bogus definition
6711 of _gp_disp. New ABI objects do not suffer from this problem so this
6712 is not done for them. */
6713 if (!NEWABI_P(abfd)
6714 && (sym->st_shndx == SHN_ABS)
6715 && (strcmp (*namep, "_gp_disp") == 0))
6716 {
6717 *namep = NULL;
6718 return TRUE;
6719 }
6720
6721 switch (sym->st_shndx)
6722 {
6723 case SHN_COMMON:
6724 /* Common symbols less than the GP size are automatically
6725 treated as SHN_MIPS_SCOMMON symbols. */
6726 if (sym->st_size > elf_gp_size (abfd)
6727 || ELF_ST_TYPE (sym->st_info) == STT_TLS
6728 || IRIX_COMPAT (abfd) == ict_irix6)
6729 break;
6730 /* Fall through. */
6731 case SHN_MIPS_SCOMMON:
6732 *secp = bfd_make_section_old_way (abfd, ".scommon");
6733 (*secp)->flags |= SEC_IS_COMMON;
6734 *valp = sym->st_size;
6735 break;
6736
6737 case SHN_MIPS_TEXT:
6738 /* This section is used in a shared object. */
6739 if (elf_tdata (abfd)->elf_text_section == NULL)
6740 {
6741 asymbol *elf_text_symbol;
6742 asection *elf_text_section;
6743 bfd_size_type amt = sizeof (asection);
6744
6745 elf_text_section = bfd_zalloc (abfd, amt);
6746 if (elf_text_section == NULL)
6747 return FALSE;
6748
6749 amt = sizeof (asymbol);
6750 elf_text_symbol = bfd_zalloc (abfd, amt);
6751 if (elf_text_symbol == NULL)
6752 return FALSE;
6753
6754 /* Initialize the section. */
6755
6756 elf_tdata (abfd)->elf_text_section = elf_text_section;
6757 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6758
6759 elf_text_section->symbol = elf_text_symbol;
6760 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
6761
6762 elf_text_section->name = ".text";
6763 elf_text_section->flags = SEC_NO_FLAGS;
6764 elf_text_section->output_section = NULL;
6765 elf_text_section->owner = abfd;
6766 elf_text_symbol->name = ".text";
6767 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6768 elf_text_symbol->section = elf_text_section;
6769 }
6770 /* This code used to do *secp = bfd_und_section_ptr if
6771 info->shared. I don't know why, and that doesn't make sense,
6772 so I took it out. */
6773 *secp = elf_tdata (abfd)->elf_text_section;
6774 break;
6775
6776 case SHN_MIPS_ACOMMON:
6777 /* Fall through. XXX Can we treat this as allocated data? */
6778 case SHN_MIPS_DATA:
6779 /* This section is used in a shared object. */
6780 if (elf_tdata (abfd)->elf_data_section == NULL)
6781 {
6782 asymbol *elf_data_symbol;
6783 asection *elf_data_section;
6784 bfd_size_type amt = sizeof (asection);
6785
6786 elf_data_section = bfd_zalloc (abfd, amt);
6787 if (elf_data_section == NULL)
6788 return FALSE;
6789
6790 amt = sizeof (asymbol);
6791 elf_data_symbol = bfd_zalloc (abfd, amt);
6792 if (elf_data_symbol == NULL)
6793 return FALSE;
6794
6795 /* Initialize the section. */
6796
6797 elf_tdata (abfd)->elf_data_section = elf_data_section;
6798 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
6799
6800 elf_data_section->symbol = elf_data_symbol;
6801 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
6802
6803 elf_data_section->name = ".data";
6804 elf_data_section->flags = SEC_NO_FLAGS;
6805 elf_data_section->output_section = NULL;
6806 elf_data_section->owner = abfd;
6807 elf_data_symbol->name = ".data";
6808 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6809 elf_data_symbol->section = elf_data_section;
6810 }
6811 /* This code used to do *secp = bfd_und_section_ptr if
6812 info->shared. I don't know why, and that doesn't make sense,
6813 so I took it out. */
6814 *secp = elf_tdata (abfd)->elf_data_section;
6815 break;
6816
6817 case SHN_MIPS_SUNDEFINED:
6818 *secp = bfd_und_section_ptr;
6819 break;
6820 }
6821
6822 if (SGI_COMPAT (abfd)
6823 && ! info->shared
6824 && info->output_bfd->xvec == abfd->xvec
6825 && strcmp (*namep, "__rld_obj_head") == 0)
6826 {
6827 struct elf_link_hash_entry *h;
6828 struct bfd_link_hash_entry *bh;
6829
6830 /* Mark __rld_obj_head as dynamic. */
6831 bh = NULL;
6832 if (! (_bfd_generic_link_add_one_symbol
6833 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
6834 get_elf_backend_data (abfd)->collect, &bh)))
6835 return FALSE;
6836
6837 h = (struct elf_link_hash_entry *) bh;
6838 h->non_elf = 0;
6839 h->def_regular = 1;
6840 h->type = STT_OBJECT;
6841
6842 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6843 return FALSE;
6844
6845 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
6846 }
6847
6848 /* If this is a mips16 text symbol, add 1 to the value to make it
6849 odd. This will cause something like .word SYM to come up with
6850 the right value when it is loaded into the PC. */
6851 if (ELF_ST_IS_MIPS16 (sym->st_other))
6852 ++*valp;
6853
6854 return TRUE;
6855 }
6856
6857 /* This hook function is called before the linker writes out a global
6858 symbol. We mark symbols as small common if appropriate. This is
6859 also where we undo the increment of the value for a mips16 symbol. */
6860
6861 int
6862 _bfd_mips_elf_link_output_symbol_hook
6863 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6864 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
6865 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
6866 {
6867 /* If we see a common symbol, which implies a relocatable link, then
6868 if a symbol was small common in an input file, mark it as small
6869 common in the output file. */
6870 if (sym->st_shndx == SHN_COMMON
6871 && strcmp (input_sec->name, ".scommon") == 0)
6872 sym->st_shndx = SHN_MIPS_SCOMMON;
6873
6874 if (ELF_ST_IS_MIPS16 (sym->st_other))
6875 sym->st_value &= ~1;
6876
6877 return 1;
6878 }
6879 \f
6880 /* Functions for the dynamic linker. */
6881
6882 /* Create dynamic sections when linking against a dynamic object. */
6883
6884 bfd_boolean
6885 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
6886 {
6887 struct elf_link_hash_entry *h;
6888 struct bfd_link_hash_entry *bh;
6889 flagword flags;
6890 register asection *s;
6891 const char * const *namep;
6892 struct mips_elf_link_hash_table *htab;
6893
6894 htab = mips_elf_hash_table (info);
6895 BFD_ASSERT (htab != NULL);
6896
6897 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6898 | SEC_LINKER_CREATED | SEC_READONLY);
6899
6900 /* The psABI requires a read-only .dynamic section, but the VxWorks
6901 EABI doesn't. */
6902 if (!htab->is_vxworks)
6903 {
6904 s = bfd_get_section_by_name (abfd, ".dynamic");
6905 if (s != NULL)
6906 {
6907 if (! bfd_set_section_flags (abfd, s, flags))
6908 return FALSE;
6909 }
6910 }
6911
6912 /* We need to create .got section. */
6913 if (!mips_elf_create_got_section (abfd, info))
6914 return FALSE;
6915
6916 if (! mips_elf_rel_dyn_section (info, TRUE))
6917 return FALSE;
6918
6919 /* Create .stub section. */
6920 s = bfd_make_section_with_flags (abfd,
6921 MIPS_ELF_STUB_SECTION_NAME (abfd),
6922 flags | SEC_CODE);
6923 if (s == NULL
6924 || ! bfd_set_section_alignment (abfd, s,
6925 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6926 return FALSE;
6927 htab->sstubs = s;
6928
6929 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
6930 && !info->shared
6931 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
6932 {
6933 s = bfd_make_section_with_flags (abfd, ".rld_map",
6934 flags &~ (flagword) SEC_READONLY);
6935 if (s == NULL
6936 || ! bfd_set_section_alignment (abfd, s,
6937 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6938 return FALSE;
6939 }
6940
6941 /* On IRIX5, we adjust add some additional symbols and change the
6942 alignments of several sections. There is no ABI documentation
6943 indicating that this is necessary on IRIX6, nor any evidence that
6944 the linker takes such action. */
6945 if (IRIX_COMPAT (abfd) == ict_irix5)
6946 {
6947 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
6948 {
6949 bh = NULL;
6950 if (! (_bfd_generic_link_add_one_symbol
6951 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
6952 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6953 return FALSE;
6954
6955 h = (struct elf_link_hash_entry *) bh;
6956 h->non_elf = 0;
6957 h->def_regular = 1;
6958 h->type = STT_SECTION;
6959
6960 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6961 return FALSE;
6962 }
6963
6964 /* We need to create a .compact_rel section. */
6965 if (SGI_COMPAT (abfd))
6966 {
6967 if (!mips_elf_create_compact_rel_section (abfd, info))
6968 return FALSE;
6969 }
6970
6971 /* Change alignments of some sections. */
6972 s = bfd_get_section_by_name (abfd, ".hash");
6973 if (s != NULL)
6974 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6975 s = bfd_get_section_by_name (abfd, ".dynsym");
6976 if (s != NULL)
6977 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6978 s = bfd_get_section_by_name (abfd, ".dynstr");
6979 if (s != NULL)
6980 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6981 s = bfd_get_section_by_name (abfd, ".reginfo");
6982 if (s != NULL)
6983 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6984 s = bfd_get_section_by_name (abfd, ".dynamic");
6985 if (s != NULL)
6986 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6987 }
6988
6989 if (!info->shared)
6990 {
6991 const char *name;
6992
6993 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6994 bh = NULL;
6995 if (!(_bfd_generic_link_add_one_symbol
6996 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6997 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6998 return FALSE;
6999
7000 h = (struct elf_link_hash_entry *) bh;
7001 h->non_elf = 0;
7002 h->def_regular = 1;
7003 h->type = STT_SECTION;
7004
7005 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7006 return FALSE;
7007
7008 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7009 {
7010 /* __rld_map is a four byte word located in the .data section
7011 and is filled in by the rtld to contain a pointer to
7012 the _r_debug structure. Its symbol value will be set in
7013 _bfd_mips_elf_finish_dynamic_symbol. */
7014 s = bfd_get_section_by_name (abfd, ".rld_map");
7015 BFD_ASSERT (s != NULL);
7016
7017 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7018 bh = NULL;
7019 if (!(_bfd_generic_link_add_one_symbol
7020 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7021 get_elf_backend_data (abfd)->collect, &bh)))
7022 return FALSE;
7023
7024 h = (struct elf_link_hash_entry *) bh;
7025 h->non_elf = 0;
7026 h->def_regular = 1;
7027 h->type = STT_OBJECT;
7028
7029 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7030 return FALSE;
7031 }
7032 }
7033
7034 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7035 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7036 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7037 return FALSE;
7038
7039 /* Cache the sections created above. */
7040 htab->splt = bfd_get_section_by_name (abfd, ".plt");
7041 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
7042 if (htab->is_vxworks)
7043 {
7044 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
7045 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
7046 }
7047 else
7048 htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt");
7049 if (!htab->sdynbss
7050 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7051 || !htab->srelplt
7052 || !htab->splt)
7053 abort ();
7054
7055 if (htab->is_vxworks)
7056 {
7057 /* Do the usual VxWorks handling. */
7058 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7059 return FALSE;
7060
7061 /* Work out the PLT sizes. */
7062 if (info->shared)
7063 {
7064 htab->plt_header_size
7065 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7066 htab->plt_entry_size
7067 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7068 }
7069 else
7070 {
7071 htab->plt_header_size
7072 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7073 htab->plt_entry_size
7074 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7075 }
7076 }
7077 else if (!info->shared)
7078 {
7079 /* All variants of the plt0 entry are the same size. */
7080 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7081 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7082 }
7083
7084 return TRUE;
7085 }
7086 \f
7087 /* Return true if relocation REL against section SEC is a REL rather than
7088 RELA relocation. RELOCS is the first relocation in the section and
7089 ABFD is the bfd that contains SEC. */
7090
7091 static bfd_boolean
7092 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7093 const Elf_Internal_Rela *relocs,
7094 const Elf_Internal_Rela *rel)
7095 {
7096 Elf_Internal_Shdr *rel_hdr;
7097 const struct elf_backend_data *bed;
7098
7099 /* To determine which flavor of relocation this is, we depend on the
7100 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7101 rel_hdr = elf_section_data (sec)->rel.hdr;
7102 if (rel_hdr == NULL)
7103 return FALSE;
7104 bed = get_elf_backend_data (abfd);
7105 return ((size_t) (rel - relocs)
7106 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7107 }
7108
7109 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7110 HOWTO is the relocation's howto and CONTENTS points to the contents
7111 of the section that REL is against. */
7112
7113 static bfd_vma
7114 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7115 reloc_howto_type *howto, bfd_byte *contents)
7116 {
7117 bfd_byte *location;
7118 unsigned int r_type;
7119 bfd_vma addend;
7120
7121 r_type = ELF_R_TYPE (abfd, rel->r_info);
7122 location = contents + rel->r_offset;
7123
7124 /* Get the addend, which is stored in the input file. */
7125 _bfd_mips16_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7126 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7127 _bfd_mips16_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7128
7129 return addend & howto->src_mask;
7130 }
7131
7132 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7133 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7134 and update *ADDEND with the final addend. Return true on success
7135 or false if the LO16 could not be found. RELEND is the exclusive
7136 upper bound on the relocations for REL's section. */
7137
7138 static bfd_boolean
7139 mips_elf_add_lo16_rel_addend (bfd *abfd,
7140 const Elf_Internal_Rela *rel,
7141 const Elf_Internal_Rela *relend,
7142 bfd_byte *contents, bfd_vma *addend)
7143 {
7144 unsigned int r_type, lo16_type;
7145 const Elf_Internal_Rela *lo16_relocation;
7146 reloc_howto_type *lo16_howto;
7147 bfd_vma l;
7148
7149 r_type = ELF_R_TYPE (abfd, rel->r_info);
7150 if (mips16_reloc_p (r_type))
7151 lo16_type = R_MIPS16_LO16;
7152 else
7153 lo16_type = R_MIPS_LO16;
7154
7155 /* The combined value is the sum of the HI16 addend, left-shifted by
7156 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7157 code does a `lui' of the HI16 value, and then an `addiu' of the
7158 LO16 value.)
7159
7160 Scan ahead to find a matching LO16 relocation.
7161
7162 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7163 be immediately following. However, for the IRIX6 ABI, the next
7164 relocation may be a composed relocation consisting of several
7165 relocations for the same address. In that case, the R_MIPS_LO16
7166 relocation may occur as one of these. We permit a similar
7167 extension in general, as that is useful for GCC.
7168
7169 In some cases GCC dead code elimination removes the LO16 but keeps
7170 the corresponding HI16. This is strictly speaking a violation of
7171 the ABI but not immediately harmful. */
7172 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7173 if (lo16_relocation == NULL)
7174 return FALSE;
7175
7176 /* Obtain the addend kept there. */
7177 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7178 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7179
7180 l <<= lo16_howto->rightshift;
7181 l = _bfd_mips_elf_sign_extend (l, 16);
7182
7183 *addend <<= 16;
7184 *addend += l;
7185 return TRUE;
7186 }
7187
7188 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7189 store the contents in *CONTENTS on success. Assume that *CONTENTS
7190 already holds the contents if it is nonull on entry. */
7191
7192 static bfd_boolean
7193 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7194 {
7195 if (*contents)
7196 return TRUE;
7197
7198 /* Get cached copy if it exists. */
7199 if (elf_section_data (sec)->this_hdr.contents != NULL)
7200 {
7201 *contents = elf_section_data (sec)->this_hdr.contents;
7202 return TRUE;
7203 }
7204
7205 return bfd_malloc_and_get_section (abfd, sec, contents);
7206 }
7207
7208 /* Look through the relocs for a section during the first phase, and
7209 allocate space in the global offset table. */
7210
7211 bfd_boolean
7212 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7213 asection *sec, const Elf_Internal_Rela *relocs)
7214 {
7215 const char *name;
7216 bfd *dynobj;
7217 Elf_Internal_Shdr *symtab_hdr;
7218 struct elf_link_hash_entry **sym_hashes;
7219 size_t extsymoff;
7220 const Elf_Internal_Rela *rel;
7221 const Elf_Internal_Rela *rel_end;
7222 asection *sreloc;
7223 const struct elf_backend_data *bed;
7224 struct mips_elf_link_hash_table *htab;
7225 bfd_byte *contents;
7226 bfd_vma addend;
7227 reloc_howto_type *howto;
7228
7229 if (info->relocatable)
7230 return TRUE;
7231
7232 htab = mips_elf_hash_table (info);
7233 BFD_ASSERT (htab != NULL);
7234
7235 dynobj = elf_hash_table (info)->dynobj;
7236 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7237 sym_hashes = elf_sym_hashes (abfd);
7238 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7239
7240 bed = get_elf_backend_data (abfd);
7241 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7242
7243 /* Check for the mips16 stub sections. */
7244
7245 name = bfd_get_section_name (abfd, sec);
7246 if (FN_STUB_P (name))
7247 {
7248 unsigned long r_symndx;
7249
7250 /* Look at the relocation information to figure out which symbol
7251 this is for. */
7252
7253 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7254 if (r_symndx == 0)
7255 {
7256 (*_bfd_error_handler)
7257 (_("%B: Warning: cannot determine the target function for"
7258 " stub section `%s'"),
7259 abfd, name);
7260 bfd_set_error (bfd_error_bad_value);
7261 return FALSE;
7262 }
7263
7264 if (r_symndx < extsymoff
7265 || sym_hashes[r_symndx - extsymoff] == NULL)
7266 {
7267 asection *o;
7268
7269 /* This stub is for a local symbol. This stub will only be
7270 needed if there is some relocation in this BFD, other
7271 than a 16 bit function call, which refers to this symbol. */
7272 for (o = abfd->sections; o != NULL; o = o->next)
7273 {
7274 Elf_Internal_Rela *sec_relocs;
7275 const Elf_Internal_Rela *r, *rend;
7276
7277 /* We can ignore stub sections when looking for relocs. */
7278 if ((o->flags & SEC_RELOC) == 0
7279 || o->reloc_count == 0
7280 || section_allows_mips16_refs_p (o))
7281 continue;
7282
7283 sec_relocs
7284 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7285 info->keep_memory);
7286 if (sec_relocs == NULL)
7287 return FALSE;
7288
7289 rend = sec_relocs + o->reloc_count;
7290 for (r = sec_relocs; r < rend; r++)
7291 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7292 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7293 break;
7294
7295 if (elf_section_data (o)->relocs != sec_relocs)
7296 free (sec_relocs);
7297
7298 if (r < rend)
7299 break;
7300 }
7301
7302 if (o == NULL)
7303 {
7304 /* There is no non-call reloc for this stub, so we do
7305 not need it. Since this function is called before
7306 the linker maps input sections to output sections, we
7307 can easily discard it by setting the SEC_EXCLUDE
7308 flag. */
7309 sec->flags |= SEC_EXCLUDE;
7310 return TRUE;
7311 }
7312
7313 /* Record this stub in an array of local symbol stubs for
7314 this BFD. */
7315 if (elf_tdata (abfd)->local_stubs == NULL)
7316 {
7317 unsigned long symcount;
7318 asection **n;
7319 bfd_size_type amt;
7320
7321 if (elf_bad_symtab (abfd))
7322 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7323 else
7324 symcount = symtab_hdr->sh_info;
7325 amt = symcount * sizeof (asection *);
7326 n = bfd_zalloc (abfd, amt);
7327 if (n == NULL)
7328 return FALSE;
7329 elf_tdata (abfd)->local_stubs = n;
7330 }
7331
7332 sec->flags |= SEC_KEEP;
7333 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7334
7335 /* We don't need to set mips16_stubs_seen in this case.
7336 That flag is used to see whether we need to look through
7337 the global symbol table for stubs. We don't need to set
7338 it here, because we just have a local stub. */
7339 }
7340 else
7341 {
7342 struct mips_elf_link_hash_entry *h;
7343
7344 h = ((struct mips_elf_link_hash_entry *)
7345 sym_hashes[r_symndx - extsymoff]);
7346
7347 while (h->root.root.type == bfd_link_hash_indirect
7348 || h->root.root.type == bfd_link_hash_warning)
7349 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7350
7351 /* H is the symbol this stub is for. */
7352
7353 /* If we already have an appropriate stub for this function, we
7354 don't need another one, so we can discard this one. Since
7355 this function is called before the linker maps input sections
7356 to output sections, we can easily discard it by setting the
7357 SEC_EXCLUDE flag. */
7358 if (h->fn_stub != NULL)
7359 {
7360 sec->flags |= SEC_EXCLUDE;
7361 return TRUE;
7362 }
7363
7364 sec->flags |= SEC_KEEP;
7365 h->fn_stub = sec;
7366 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7367 }
7368 }
7369 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7370 {
7371 unsigned long r_symndx;
7372 struct mips_elf_link_hash_entry *h;
7373 asection **loc;
7374
7375 /* Look at the relocation information to figure out which symbol
7376 this is for. */
7377
7378 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7379 if (r_symndx == 0)
7380 {
7381 (*_bfd_error_handler)
7382 (_("%B: Warning: cannot determine the target function for"
7383 " stub section `%s'"),
7384 abfd, name);
7385 bfd_set_error (bfd_error_bad_value);
7386 return FALSE;
7387 }
7388
7389 if (r_symndx < extsymoff
7390 || sym_hashes[r_symndx - extsymoff] == NULL)
7391 {
7392 asection *o;
7393
7394 /* This stub is for a local symbol. This stub will only be
7395 needed if there is some relocation (R_MIPS16_26) in this BFD
7396 that refers to this symbol. */
7397 for (o = abfd->sections; o != NULL; o = o->next)
7398 {
7399 Elf_Internal_Rela *sec_relocs;
7400 const Elf_Internal_Rela *r, *rend;
7401
7402 /* We can ignore stub sections when looking for relocs. */
7403 if ((o->flags & SEC_RELOC) == 0
7404 || o->reloc_count == 0
7405 || section_allows_mips16_refs_p (o))
7406 continue;
7407
7408 sec_relocs
7409 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7410 info->keep_memory);
7411 if (sec_relocs == NULL)
7412 return FALSE;
7413
7414 rend = sec_relocs + o->reloc_count;
7415 for (r = sec_relocs; r < rend; r++)
7416 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7417 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7418 break;
7419
7420 if (elf_section_data (o)->relocs != sec_relocs)
7421 free (sec_relocs);
7422
7423 if (r < rend)
7424 break;
7425 }
7426
7427 if (o == NULL)
7428 {
7429 /* There is no non-call reloc for this stub, so we do
7430 not need it. Since this function is called before
7431 the linker maps input sections to output sections, we
7432 can easily discard it by setting the SEC_EXCLUDE
7433 flag. */
7434 sec->flags |= SEC_EXCLUDE;
7435 return TRUE;
7436 }
7437
7438 /* Record this stub in an array of local symbol call_stubs for
7439 this BFD. */
7440 if (elf_tdata (abfd)->local_call_stubs == NULL)
7441 {
7442 unsigned long symcount;
7443 asection **n;
7444 bfd_size_type amt;
7445
7446 if (elf_bad_symtab (abfd))
7447 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7448 else
7449 symcount = symtab_hdr->sh_info;
7450 amt = symcount * sizeof (asection *);
7451 n = bfd_zalloc (abfd, amt);
7452 if (n == NULL)
7453 return FALSE;
7454 elf_tdata (abfd)->local_call_stubs = n;
7455 }
7456
7457 sec->flags |= SEC_KEEP;
7458 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7459
7460 /* We don't need to set mips16_stubs_seen in this case.
7461 That flag is used to see whether we need to look through
7462 the global symbol table for stubs. We don't need to set
7463 it here, because we just have a local stub. */
7464 }
7465 else
7466 {
7467 h = ((struct mips_elf_link_hash_entry *)
7468 sym_hashes[r_symndx - extsymoff]);
7469
7470 /* H is the symbol this stub is for. */
7471
7472 if (CALL_FP_STUB_P (name))
7473 loc = &h->call_fp_stub;
7474 else
7475 loc = &h->call_stub;
7476
7477 /* If we already have an appropriate stub for this function, we
7478 don't need another one, so we can discard this one. Since
7479 this function is called before the linker maps input sections
7480 to output sections, we can easily discard it by setting the
7481 SEC_EXCLUDE flag. */
7482 if (*loc != NULL)
7483 {
7484 sec->flags |= SEC_EXCLUDE;
7485 return TRUE;
7486 }
7487
7488 sec->flags |= SEC_KEEP;
7489 *loc = sec;
7490 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7491 }
7492 }
7493
7494 sreloc = NULL;
7495 contents = NULL;
7496 for (rel = relocs; rel < rel_end; ++rel)
7497 {
7498 unsigned long r_symndx;
7499 unsigned int r_type;
7500 struct elf_link_hash_entry *h;
7501 bfd_boolean can_make_dynamic_p;
7502
7503 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7504 r_type = ELF_R_TYPE (abfd, rel->r_info);
7505
7506 if (r_symndx < extsymoff)
7507 h = NULL;
7508 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7509 {
7510 (*_bfd_error_handler)
7511 (_("%B: Malformed reloc detected for section %s"),
7512 abfd, name);
7513 bfd_set_error (bfd_error_bad_value);
7514 return FALSE;
7515 }
7516 else
7517 {
7518 h = sym_hashes[r_symndx - extsymoff];
7519 while (h != NULL
7520 && (h->root.type == bfd_link_hash_indirect
7521 || h->root.type == bfd_link_hash_warning))
7522 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7523 }
7524
7525 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7526 relocation into a dynamic one. */
7527 can_make_dynamic_p = FALSE;
7528 switch (r_type)
7529 {
7530 case R_MIPS16_GOT16:
7531 case R_MIPS16_CALL16:
7532 case R_MIPS_GOT16:
7533 case R_MIPS_CALL16:
7534 case R_MIPS_CALL_HI16:
7535 case R_MIPS_CALL_LO16:
7536 case R_MIPS_GOT_HI16:
7537 case R_MIPS_GOT_LO16:
7538 case R_MIPS_GOT_PAGE:
7539 case R_MIPS_GOT_OFST:
7540 case R_MIPS_GOT_DISP:
7541 case R_MIPS_TLS_GOTTPREL:
7542 case R_MIPS_TLS_GD:
7543 case R_MIPS_TLS_LDM:
7544 if (dynobj == NULL)
7545 elf_hash_table (info)->dynobj = dynobj = abfd;
7546 if (!mips_elf_create_got_section (dynobj, info))
7547 return FALSE;
7548 if (htab->is_vxworks && !info->shared)
7549 {
7550 (*_bfd_error_handler)
7551 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7552 abfd, (unsigned long) rel->r_offset);
7553 bfd_set_error (bfd_error_bad_value);
7554 return FALSE;
7555 }
7556 break;
7557
7558 /* This is just a hint; it can safely be ignored. Don't set
7559 has_static_relocs for the corresponding symbol. */
7560 case R_MIPS_JALR:
7561 break;
7562
7563 case R_MIPS_32:
7564 case R_MIPS_REL32:
7565 case R_MIPS_64:
7566 /* In VxWorks executables, references to external symbols
7567 must be handled using copy relocs or PLT entries; it is not
7568 possible to convert this relocation into a dynamic one.
7569
7570 For executables that use PLTs and copy-relocs, we have a
7571 choice between converting the relocation into a dynamic
7572 one or using copy relocations or PLT entries. It is
7573 usually better to do the former, unless the relocation is
7574 against a read-only section. */
7575 if ((info->shared
7576 || (h != NULL
7577 && !htab->is_vxworks
7578 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7579 && !(!info->nocopyreloc
7580 && !PIC_OBJECT_P (abfd)
7581 && MIPS_ELF_READONLY_SECTION (sec))))
7582 && (sec->flags & SEC_ALLOC) != 0)
7583 {
7584 can_make_dynamic_p = TRUE;
7585 if (dynobj == NULL)
7586 elf_hash_table (info)->dynobj = dynobj = abfd;
7587 break;
7588 }
7589 /* For sections that are not SEC_ALLOC a copy reloc would be
7590 output if possible (implying questionable semantics for
7591 read-only data objects) or otherwise the final link would
7592 fail as ld.so will not process them and could not therefore
7593 handle any outstanding dynamic relocations.
7594
7595 For such sections that are also SEC_DEBUGGING, we can avoid
7596 these problems by simply ignoring any relocs as these
7597 sections have a predefined use and we know it is safe to do
7598 so.
7599
7600 This is needed in cases such as a global symbol definition
7601 in a shared library causing a common symbol from an object
7602 file to be converted to an undefined reference. If that
7603 happens, then all the relocations against this symbol from
7604 SEC_DEBUGGING sections in the object file will resolve to
7605 nil. */
7606 if ((sec->flags & SEC_DEBUGGING) != 0)
7607 break;
7608 /* Fall through. */
7609
7610 default:
7611 /* Most static relocations require pointer equality, except
7612 for branches. */
7613 if (h)
7614 h->pointer_equality_needed = TRUE;
7615 /* Fall through. */
7616
7617 case R_MIPS_26:
7618 case R_MIPS_PC16:
7619 case R_MIPS16_26:
7620 if (h)
7621 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7622 break;
7623 }
7624
7625 if (h)
7626 {
7627 /* Relocations against the special VxWorks __GOTT_BASE__ and
7628 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7629 room for them in .rela.dyn. */
7630 if (is_gott_symbol (info, h))
7631 {
7632 if (sreloc == NULL)
7633 {
7634 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7635 if (sreloc == NULL)
7636 return FALSE;
7637 }
7638 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7639 if (MIPS_ELF_READONLY_SECTION (sec))
7640 /* We tell the dynamic linker that there are
7641 relocations against the text segment. */
7642 info->flags |= DF_TEXTREL;
7643 }
7644 }
7645 else if (r_type == R_MIPS_CALL_LO16
7646 || r_type == R_MIPS_GOT_LO16
7647 || r_type == R_MIPS_GOT_DISP
7648 || (got16_reloc_p (r_type) && htab->is_vxworks))
7649 {
7650 /* We may need a local GOT entry for this relocation. We
7651 don't count R_MIPS_GOT_PAGE because we can estimate the
7652 maximum number of pages needed by looking at the size of
7653 the segment. Similar comments apply to R_MIPS*_GOT16 and
7654 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7655 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7656 R_MIPS_CALL_HI16 because these are always followed by an
7657 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7658 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7659 rel->r_addend, info, 0))
7660 return FALSE;
7661 }
7662
7663 if (h != NULL && mips_elf_relocation_needs_la25_stub (abfd, r_type))
7664 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7665
7666 switch (r_type)
7667 {
7668 case R_MIPS_CALL16:
7669 case R_MIPS16_CALL16:
7670 if (h == NULL)
7671 {
7672 (*_bfd_error_handler)
7673 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7674 abfd, (unsigned long) rel->r_offset);
7675 bfd_set_error (bfd_error_bad_value);
7676 return FALSE;
7677 }
7678 /* Fall through. */
7679
7680 case R_MIPS_CALL_HI16:
7681 case R_MIPS_CALL_LO16:
7682 if (h != NULL)
7683 {
7684 /* Make sure there is room in the regular GOT to hold the
7685 function's address. We may eliminate it in favour of
7686 a .got.plt entry later; see mips_elf_count_got_symbols. */
7687 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
7688 return FALSE;
7689
7690 /* We need a stub, not a plt entry for the undefined
7691 function. But we record it as if it needs plt. See
7692 _bfd_elf_adjust_dynamic_symbol. */
7693 h->needs_plt = 1;
7694 h->type = STT_FUNC;
7695 }
7696 break;
7697
7698 case R_MIPS_GOT_PAGE:
7699 /* If this is a global, overridable symbol, GOT_PAGE will
7700 decay to GOT_DISP, so we'll need a GOT entry for it. */
7701 if (h)
7702 {
7703 struct mips_elf_link_hash_entry *hmips =
7704 (struct mips_elf_link_hash_entry *) h;
7705
7706 /* This symbol is definitely not overridable. */
7707 if (hmips->root.def_regular
7708 && ! (info->shared && ! info->symbolic
7709 && ! hmips->root.forced_local))
7710 h = NULL;
7711 }
7712 /* Fall through. */
7713
7714 case R_MIPS16_GOT16:
7715 case R_MIPS_GOT16:
7716 case R_MIPS_GOT_HI16:
7717 case R_MIPS_GOT_LO16:
7718 if (!h || r_type == R_MIPS_GOT_PAGE)
7719 {
7720 /* This relocation needs (or may need, if h != NULL) a
7721 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7722 know for sure until we know whether the symbol is
7723 preemptible. */
7724 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
7725 {
7726 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7727 return FALSE;
7728 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7729 addend = mips_elf_read_rel_addend (abfd, rel,
7730 howto, contents);
7731 if (got16_reloc_p (r_type))
7732 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
7733 contents, &addend);
7734 else
7735 addend <<= howto->rightshift;
7736 }
7737 else
7738 addend = rel->r_addend;
7739 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
7740 addend))
7741 return FALSE;
7742 break;
7743 }
7744 /* Fall through. */
7745
7746 case R_MIPS_GOT_DISP:
7747 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
7748 FALSE, 0))
7749 return FALSE;
7750 break;
7751
7752 case R_MIPS_TLS_GOTTPREL:
7753 if (info->shared)
7754 info->flags |= DF_STATIC_TLS;
7755 /* Fall through */
7756
7757 case R_MIPS_TLS_LDM:
7758 if (r_type == R_MIPS_TLS_LDM)
7759 {
7760 r_symndx = STN_UNDEF;
7761 h = NULL;
7762 }
7763 /* Fall through */
7764
7765 case R_MIPS_TLS_GD:
7766 /* This symbol requires a global offset table entry, or two
7767 for TLS GD relocations. */
7768 {
7769 unsigned char flag = (r_type == R_MIPS_TLS_GD
7770 ? GOT_TLS_GD
7771 : r_type == R_MIPS_TLS_LDM
7772 ? GOT_TLS_LDM
7773 : GOT_TLS_IE);
7774 if (h != NULL)
7775 {
7776 struct mips_elf_link_hash_entry *hmips =
7777 (struct mips_elf_link_hash_entry *) h;
7778 hmips->tls_type |= flag;
7779
7780 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
7781 FALSE, flag))
7782 return FALSE;
7783 }
7784 else
7785 {
7786 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
7787
7788 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7789 rel->r_addend,
7790 info, flag))
7791 return FALSE;
7792 }
7793 }
7794 break;
7795
7796 case R_MIPS_32:
7797 case R_MIPS_REL32:
7798 case R_MIPS_64:
7799 /* In VxWorks executables, references to external symbols
7800 are handled using copy relocs or PLT stubs, so there's
7801 no need to add a .rela.dyn entry for this relocation. */
7802 if (can_make_dynamic_p)
7803 {
7804 if (sreloc == NULL)
7805 {
7806 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7807 if (sreloc == NULL)
7808 return FALSE;
7809 }
7810 if (info->shared && h == NULL)
7811 {
7812 /* When creating a shared object, we must copy these
7813 reloc types into the output file as R_MIPS_REL32
7814 relocs. Make room for this reloc in .rel(a).dyn. */
7815 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7816 if (MIPS_ELF_READONLY_SECTION (sec))
7817 /* We tell the dynamic linker that there are
7818 relocations against the text segment. */
7819 info->flags |= DF_TEXTREL;
7820 }
7821 else
7822 {
7823 struct mips_elf_link_hash_entry *hmips;
7824
7825 /* For a shared object, we must copy this relocation
7826 unless the symbol turns out to be undefined and
7827 weak with non-default visibility, in which case
7828 it will be left as zero.
7829
7830 We could elide R_MIPS_REL32 for locally binding symbols
7831 in shared libraries, but do not yet do so.
7832
7833 For an executable, we only need to copy this
7834 reloc if the symbol is defined in a dynamic
7835 object. */
7836 hmips = (struct mips_elf_link_hash_entry *) h;
7837 ++hmips->possibly_dynamic_relocs;
7838 if (MIPS_ELF_READONLY_SECTION (sec))
7839 /* We need it to tell the dynamic linker if there
7840 are relocations against the text segment. */
7841 hmips->readonly_reloc = TRUE;
7842 }
7843 }
7844
7845 if (SGI_COMPAT (abfd))
7846 mips_elf_hash_table (info)->compact_rel_size +=
7847 sizeof (Elf32_External_crinfo);
7848 break;
7849
7850 case R_MIPS_26:
7851 case R_MIPS_GPREL16:
7852 case R_MIPS_LITERAL:
7853 case R_MIPS_GPREL32:
7854 if (SGI_COMPAT (abfd))
7855 mips_elf_hash_table (info)->compact_rel_size +=
7856 sizeof (Elf32_External_crinfo);
7857 break;
7858
7859 /* This relocation describes the C++ object vtable hierarchy.
7860 Reconstruct it for later use during GC. */
7861 case R_MIPS_GNU_VTINHERIT:
7862 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7863 return FALSE;
7864 break;
7865
7866 /* This relocation describes which C++ vtable entries are actually
7867 used. Record for later use during GC. */
7868 case R_MIPS_GNU_VTENTRY:
7869 BFD_ASSERT (h != NULL);
7870 if (h != NULL
7871 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7872 return FALSE;
7873 break;
7874
7875 default:
7876 break;
7877 }
7878
7879 /* We must not create a stub for a symbol that has relocations
7880 related to taking the function's address. This doesn't apply to
7881 VxWorks, where CALL relocs refer to a .got.plt entry instead of
7882 a normal .got entry. */
7883 if (!htab->is_vxworks && h != NULL)
7884 switch (r_type)
7885 {
7886 default:
7887 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
7888 break;
7889 case R_MIPS16_CALL16:
7890 case R_MIPS_CALL16:
7891 case R_MIPS_CALL_HI16:
7892 case R_MIPS_CALL_LO16:
7893 case R_MIPS_JALR:
7894 break;
7895 }
7896
7897 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
7898 if there is one. We only need to handle global symbols here;
7899 we decide whether to keep or delete stubs for local symbols
7900 when processing the stub's relocations. */
7901 if (h != NULL
7902 && !mips16_call_reloc_p (r_type)
7903 && !section_allows_mips16_refs_p (sec))
7904 {
7905 struct mips_elf_link_hash_entry *mh;
7906
7907 mh = (struct mips_elf_link_hash_entry *) h;
7908 mh->need_fn_stub = TRUE;
7909 }
7910
7911 /* Refuse some position-dependent relocations when creating a
7912 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
7913 not PIC, but we can create dynamic relocations and the result
7914 will be fine. Also do not refuse R_MIPS_LO16, which can be
7915 combined with R_MIPS_GOT16. */
7916 if (info->shared)
7917 {
7918 switch (r_type)
7919 {
7920 case R_MIPS16_HI16:
7921 case R_MIPS_HI16:
7922 case R_MIPS_HIGHER:
7923 case R_MIPS_HIGHEST:
7924 /* Don't refuse a high part relocation if it's against
7925 no symbol (e.g. part of a compound relocation). */
7926 if (r_symndx == STN_UNDEF)
7927 break;
7928
7929 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
7930 and has a special meaning. */
7931 if (!NEWABI_P (abfd) && h != NULL
7932 && strcmp (h->root.root.string, "_gp_disp") == 0)
7933 break;
7934
7935 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
7936 if (is_gott_symbol (info, h))
7937 break;
7938
7939 /* FALLTHROUGH */
7940
7941 case R_MIPS16_26:
7942 case R_MIPS_26:
7943 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7944 (*_bfd_error_handler)
7945 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
7946 abfd, howto->name,
7947 (h) ? h->root.root.string : "a local symbol");
7948 bfd_set_error (bfd_error_bad_value);
7949 return FALSE;
7950 default:
7951 break;
7952 }
7953 }
7954 }
7955
7956 return TRUE;
7957 }
7958 \f
7959 bfd_boolean
7960 _bfd_mips_relax_section (bfd *abfd, asection *sec,
7961 struct bfd_link_info *link_info,
7962 bfd_boolean *again)
7963 {
7964 Elf_Internal_Rela *internal_relocs;
7965 Elf_Internal_Rela *irel, *irelend;
7966 Elf_Internal_Shdr *symtab_hdr;
7967 bfd_byte *contents = NULL;
7968 size_t extsymoff;
7969 bfd_boolean changed_contents = FALSE;
7970 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
7971 Elf_Internal_Sym *isymbuf = NULL;
7972
7973 /* We are not currently changing any sizes, so only one pass. */
7974 *again = FALSE;
7975
7976 if (link_info->relocatable)
7977 return TRUE;
7978
7979 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7980 link_info->keep_memory);
7981 if (internal_relocs == NULL)
7982 return TRUE;
7983
7984 irelend = internal_relocs + sec->reloc_count
7985 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
7986 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7987 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7988
7989 for (irel = internal_relocs; irel < irelend; irel++)
7990 {
7991 bfd_vma symval;
7992 bfd_signed_vma sym_offset;
7993 unsigned int r_type;
7994 unsigned long r_symndx;
7995 asection *sym_sec;
7996 unsigned long instruction;
7997
7998 /* Turn jalr into bgezal, and jr into beq, if they're marked
7999 with a JALR relocation, that indicate where they jump to.
8000 This saves some pipeline bubbles. */
8001 r_type = ELF_R_TYPE (abfd, irel->r_info);
8002 if (r_type != R_MIPS_JALR)
8003 continue;
8004
8005 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8006 /* Compute the address of the jump target. */
8007 if (r_symndx >= extsymoff)
8008 {
8009 struct mips_elf_link_hash_entry *h
8010 = ((struct mips_elf_link_hash_entry *)
8011 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8012
8013 while (h->root.root.type == bfd_link_hash_indirect
8014 || h->root.root.type == bfd_link_hash_warning)
8015 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8016
8017 /* If a symbol is undefined, or if it may be overridden,
8018 skip it. */
8019 if (! ((h->root.root.type == bfd_link_hash_defined
8020 || h->root.root.type == bfd_link_hash_defweak)
8021 && h->root.root.u.def.section)
8022 || (link_info->shared && ! link_info->symbolic
8023 && !h->root.forced_local))
8024 continue;
8025
8026 sym_sec = h->root.root.u.def.section;
8027 if (sym_sec->output_section)
8028 symval = (h->root.root.u.def.value
8029 + sym_sec->output_section->vma
8030 + sym_sec->output_offset);
8031 else
8032 symval = h->root.root.u.def.value;
8033 }
8034 else
8035 {
8036 Elf_Internal_Sym *isym;
8037
8038 /* Read this BFD's symbols if we haven't done so already. */
8039 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8040 {
8041 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8042 if (isymbuf == NULL)
8043 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8044 symtab_hdr->sh_info, 0,
8045 NULL, NULL, NULL);
8046 if (isymbuf == NULL)
8047 goto relax_return;
8048 }
8049
8050 isym = isymbuf + r_symndx;
8051 if (isym->st_shndx == SHN_UNDEF)
8052 continue;
8053 else if (isym->st_shndx == SHN_ABS)
8054 sym_sec = bfd_abs_section_ptr;
8055 else if (isym->st_shndx == SHN_COMMON)
8056 sym_sec = bfd_com_section_ptr;
8057 else
8058 sym_sec
8059 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8060 symval = isym->st_value
8061 + sym_sec->output_section->vma
8062 + sym_sec->output_offset;
8063 }
8064
8065 /* Compute branch offset, from delay slot of the jump to the
8066 branch target. */
8067 sym_offset = (symval + irel->r_addend)
8068 - (sec_start + irel->r_offset + 4);
8069
8070 /* Branch offset must be properly aligned. */
8071 if ((sym_offset & 3) != 0)
8072 continue;
8073
8074 sym_offset >>= 2;
8075
8076 /* Check that it's in range. */
8077 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8078 continue;
8079
8080 /* Get the section contents if we haven't done so already. */
8081 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8082 goto relax_return;
8083
8084 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8085
8086 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8087 if ((instruction & 0xfc1fffff) == 0x0000f809)
8088 instruction = 0x04110000;
8089 /* If it was jr <reg>, turn it into b <target>. */
8090 else if ((instruction & 0xfc1fffff) == 0x00000008)
8091 instruction = 0x10000000;
8092 else
8093 continue;
8094
8095 instruction |= (sym_offset & 0xffff);
8096 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8097 changed_contents = TRUE;
8098 }
8099
8100 if (contents != NULL
8101 && elf_section_data (sec)->this_hdr.contents != contents)
8102 {
8103 if (!changed_contents && !link_info->keep_memory)
8104 free (contents);
8105 else
8106 {
8107 /* Cache the section contents for elf_link_input_bfd. */
8108 elf_section_data (sec)->this_hdr.contents = contents;
8109 }
8110 }
8111 return TRUE;
8112
8113 relax_return:
8114 if (contents != NULL
8115 && elf_section_data (sec)->this_hdr.contents != contents)
8116 free (contents);
8117 return FALSE;
8118 }
8119 \f
8120 /* Allocate space for global sym dynamic relocs. */
8121
8122 static bfd_boolean
8123 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8124 {
8125 struct bfd_link_info *info = inf;
8126 bfd *dynobj;
8127 struct mips_elf_link_hash_entry *hmips;
8128 struct mips_elf_link_hash_table *htab;
8129
8130 htab = mips_elf_hash_table (info);
8131 BFD_ASSERT (htab != NULL);
8132
8133 dynobj = elf_hash_table (info)->dynobj;
8134 hmips = (struct mips_elf_link_hash_entry *) h;
8135
8136 /* VxWorks executables are handled elsewhere; we only need to
8137 allocate relocations in shared objects. */
8138 if (htab->is_vxworks && !info->shared)
8139 return TRUE;
8140
8141 /* Ignore indirect and warning symbols. All relocations against
8142 such symbols will be redirected to the target symbol. */
8143 if (h->root.type == bfd_link_hash_indirect
8144 || h->root.type == bfd_link_hash_warning)
8145 return TRUE;
8146
8147 /* If this symbol is defined in a dynamic object, or we are creating
8148 a shared library, we will need to copy any R_MIPS_32 or
8149 R_MIPS_REL32 relocs against it into the output file. */
8150 if (! info->relocatable
8151 && hmips->possibly_dynamic_relocs != 0
8152 && (h->root.type == bfd_link_hash_defweak
8153 || !h->def_regular
8154 || info->shared))
8155 {
8156 bfd_boolean do_copy = TRUE;
8157
8158 if (h->root.type == bfd_link_hash_undefweak)
8159 {
8160 /* Do not copy relocations for undefined weak symbols with
8161 non-default visibility. */
8162 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8163 do_copy = FALSE;
8164
8165 /* Make sure undefined weak symbols are output as a dynamic
8166 symbol in PIEs. */
8167 else if (h->dynindx == -1 && !h->forced_local)
8168 {
8169 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8170 return FALSE;
8171 }
8172 }
8173
8174 if (do_copy)
8175 {
8176 /* Even though we don't directly need a GOT entry for this symbol,
8177 the SVR4 psABI requires it to have a dynamic symbol table
8178 index greater that DT_MIPS_GOTSYM if there are dynamic
8179 relocations against it.
8180
8181 VxWorks does not enforce the same mapping between the GOT
8182 and the symbol table, so the same requirement does not
8183 apply there. */
8184 if (!htab->is_vxworks)
8185 {
8186 if (hmips->global_got_area > GGA_RELOC_ONLY)
8187 hmips->global_got_area = GGA_RELOC_ONLY;
8188 hmips->got_only_for_calls = FALSE;
8189 }
8190
8191 mips_elf_allocate_dynamic_relocations
8192 (dynobj, info, hmips->possibly_dynamic_relocs);
8193 if (hmips->readonly_reloc)
8194 /* We tell the dynamic linker that there are relocations
8195 against the text segment. */
8196 info->flags |= DF_TEXTREL;
8197 }
8198 }
8199
8200 return TRUE;
8201 }
8202
8203 /* Adjust a symbol defined by a dynamic object and referenced by a
8204 regular object. The current definition is in some section of the
8205 dynamic object, but we're not including those sections. We have to
8206 change the definition to something the rest of the link can
8207 understand. */
8208
8209 bfd_boolean
8210 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8211 struct elf_link_hash_entry *h)
8212 {
8213 bfd *dynobj;
8214 struct mips_elf_link_hash_entry *hmips;
8215 struct mips_elf_link_hash_table *htab;
8216
8217 htab = mips_elf_hash_table (info);
8218 BFD_ASSERT (htab != NULL);
8219
8220 dynobj = elf_hash_table (info)->dynobj;
8221 hmips = (struct mips_elf_link_hash_entry *) h;
8222
8223 /* Make sure we know what is going on here. */
8224 BFD_ASSERT (dynobj != NULL
8225 && (h->needs_plt
8226 || h->u.weakdef != NULL
8227 || (h->def_dynamic
8228 && h->ref_regular
8229 && !h->def_regular)));
8230
8231 hmips = (struct mips_elf_link_hash_entry *) h;
8232
8233 /* If there are call relocations against an externally-defined symbol,
8234 see whether we can create a MIPS lazy-binding stub for it. We can
8235 only do this if all references to the function are through call
8236 relocations, and in that case, the traditional lazy-binding stubs
8237 are much more efficient than PLT entries.
8238
8239 Traditional stubs are only available on SVR4 psABI-based systems;
8240 VxWorks always uses PLTs instead. */
8241 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8242 {
8243 if (! elf_hash_table (info)->dynamic_sections_created)
8244 return TRUE;
8245
8246 /* If this symbol is not defined in a regular file, then set
8247 the symbol to the stub location. This is required to make
8248 function pointers compare as equal between the normal
8249 executable and the shared library. */
8250 if (!h->def_regular)
8251 {
8252 hmips->needs_lazy_stub = TRUE;
8253 htab->lazy_stub_count++;
8254 return TRUE;
8255 }
8256 }
8257 /* As above, VxWorks requires PLT entries for externally-defined
8258 functions that are only accessed through call relocations.
8259
8260 Both VxWorks and non-VxWorks targets also need PLT entries if there
8261 are static-only relocations against an externally-defined function.
8262 This can technically occur for shared libraries if there are
8263 branches to the symbol, although it is unlikely that this will be
8264 used in practice due to the short ranges involved. It can occur
8265 for any relative or absolute relocation in executables; in that
8266 case, the PLT entry becomes the function's canonical address. */
8267 else if (((h->needs_plt && !hmips->no_fn_stub)
8268 || (h->type == STT_FUNC && hmips->has_static_relocs))
8269 && htab->use_plts_and_copy_relocs
8270 && !SYMBOL_CALLS_LOCAL (info, h)
8271 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8272 && h->root.type == bfd_link_hash_undefweak))
8273 {
8274 /* If this is the first symbol to need a PLT entry, allocate room
8275 for the header. */
8276 if (htab->splt->size == 0)
8277 {
8278 BFD_ASSERT (htab->sgotplt->size == 0);
8279
8280 /* If we're using the PLT additions to the psABI, each PLT
8281 entry is 16 bytes and the PLT0 entry is 32 bytes.
8282 Encourage better cache usage by aligning. We do this
8283 lazily to avoid pessimizing traditional objects. */
8284 if (!htab->is_vxworks
8285 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8286 return FALSE;
8287
8288 /* Make sure that .got.plt is word-aligned. We do this lazily
8289 for the same reason as above. */
8290 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8291 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8292 return FALSE;
8293
8294 htab->splt->size += htab->plt_header_size;
8295
8296 /* On non-VxWorks targets, the first two entries in .got.plt
8297 are reserved. */
8298 if (!htab->is_vxworks)
8299 htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj);
8300
8301 /* On VxWorks, also allocate room for the header's
8302 .rela.plt.unloaded entries. */
8303 if (htab->is_vxworks && !info->shared)
8304 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8305 }
8306
8307 /* Assign the next .plt entry to this symbol. */
8308 h->plt.offset = htab->splt->size;
8309 htab->splt->size += htab->plt_entry_size;
8310
8311 /* If the output file has no definition of the symbol, set the
8312 symbol's value to the address of the stub. */
8313 if (!info->shared && !h->def_regular)
8314 {
8315 h->root.u.def.section = htab->splt;
8316 h->root.u.def.value = h->plt.offset;
8317 /* For VxWorks, point at the PLT load stub rather than the
8318 lazy resolution stub; this stub will become the canonical
8319 function address. */
8320 if (htab->is_vxworks)
8321 h->root.u.def.value += 8;
8322 }
8323
8324 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8325 relocation. */
8326 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8327 htab->srelplt->size += (htab->is_vxworks
8328 ? MIPS_ELF_RELA_SIZE (dynobj)
8329 : MIPS_ELF_REL_SIZE (dynobj));
8330
8331 /* Make room for the .rela.plt.unloaded relocations. */
8332 if (htab->is_vxworks && !info->shared)
8333 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8334
8335 /* All relocations against this symbol that could have been made
8336 dynamic will now refer to the PLT entry instead. */
8337 hmips->possibly_dynamic_relocs = 0;
8338
8339 return TRUE;
8340 }
8341
8342 /* If this is a weak symbol, and there is a real definition, the
8343 processor independent code will have arranged for us to see the
8344 real definition first, and we can just use the same value. */
8345 if (h->u.weakdef != NULL)
8346 {
8347 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8348 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8349 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8350 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8351 return TRUE;
8352 }
8353
8354 /* Otherwise, there is nothing further to do for symbols defined
8355 in regular objects. */
8356 if (h->def_regular)
8357 return TRUE;
8358
8359 /* There's also nothing more to do if we'll convert all relocations
8360 against this symbol into dynamic relocations. */
8361 if (!hmips->has_static_relocs)
8362 return TRUE;
8363
8364 /* We're now relying on copy relocations. Complain if we have
8365 some that we can't convert. */
8366 if (!htab->use_plts_and_copy_relocs || info->shared)
8367 {
8368 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8369 "dynamic symbol %s"),
8370 h->root.root.string);
8371 bfd_set_error (bfd_error_bad_value);
8372 return FALSE;
8373 }
8374
8375 /* We must allocate the symbol in our .dynbss section, which will
8376 become part of the .bss section of the executable. There will be
8377 an entry for this symbol in the .dynsym section. The dynamic
8378 object will contain position independent code, so all references
8379 from the dynamic object to this symbol will go through the global
8380 offset table. The dynamic linker will use the .dynsym entry to
8381 determine the address it must put in the global offset table, so
8382 both the dynamic object and the regular object will refer to the
8383 same memory location for the variable. */
8384
8385 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8386 {
8387 if (htab->is_vxworks)
8388 htab->srelbss->size += sizeof (Elf32_External_Rela);
8389 else
8390 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8391 h->needs_copy = 1;
8392 }
8393
8394 /* All relocations against this symbol that could have been made
8395 dynamic will now refer to the local copy instead. */
8396 hmips->possibly_dynamic_relocs = 0;
8397
8398 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8399 }
8400 \f
8401 /* This function is called after all the input files have been read,
8402 and the input sections have been assigned to output sections. We
8403 check for any mips16 stub sections that we can discard. */
8404
8405 bfd_boolean
8406 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8407 struct bfd_link_info *info)
8408 {
8409 asection *ri;
8410 struct mips_elf_link_hash_table *htab;
8411 struct mips_htab_traverse_info hti;
8412
8413 htab = mips_elf_hash_table (info);
8414 BFD_ASSERT (htab != NULL);
8415
8416 /* The .reginfo section has a fixed size. */
8417 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8418 if (ri != NULL)
8419 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8420
8421 hti.info = info;
8422 hti.output_bfd = output_bfd;
8423 hti.error = FALSE;
8424 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8425 mips_elf_check_symbols, &hti);
8426 if (hti.error)
8427 return FALSE;
8428
8429 return TRUE;
8430 }
8431
8432 /* If the link uses a GOT, lay it out and work out its size. */
8433
8434 static bfd_boolean
8435 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8436 {
8437 bfd *dynobj;
8438 asection *s;
8439 struct mips_got_info *g;
8440 bfd_size_type loadable_size = 0;
8441 bfd_size_type page_gotno;
8442 bfd *sub;
8443 struct mips_elf_count_tls_arg count_tls_arg;
8444 struct mips_elf_link_hash_table *htab;
8445
8446 htab = mips_elf_hash_table (info);
8447 BFD_ASSERT (htab != NULL);
8448
8449 s = htab->sgot;
8450 if (s == NULL)
8451 return TRUE;
8452
8453 dynobj = elf_hash_table (info)->dynobj;
8454 g = htab->got_info;
8455
8456 /* Allocate room for the reserved entries. VxWorks always reserves
8457 3 entries; other objects only reserve 2 entries. */
8458 BFD_ASSERT (g->assigned_gotno == 0);
8459 if (htab->is_vxworks)
8460 htab->reserved_gotno = 3;
8461 else
8462 htab->reserved_gotno = 2;
8463 g->local_gotno += htab->reserved_gotno;
8464 g->assigned_gotno = htab->reserved_gotno;
8465
8466 /* Replace entries for indirect and warning symbols with entries for
8467 the target symbol. */
8468 if (!mips_elf_resolve_final_got_entries (g))
8469 return FALSE;
8470
8471 /* Count the number of GOT symbols. */
8472 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8473
8474 /* Calculate the total loadable size of the output. That
8475 will give us the maximum number of GOT_PAGE entries
8476 required. */
8477 for (sub = info->input_bfds; sub; sub = sub->link_next)
8478 {
8479 asection *subsection;
8480
8481 for (subsection = sub->sections;
8482 subsection;
8483 subsection = subsection->next)
8484 {
8485 if ((subsection->flags & SEC_ALLOC) == 0)
8486 continue;
8487 loadable_size += ((subsection->size + 0xf)
8488 &~ (bfd_size_type) 0xf);
8489 }
8490 }
8491
8492 if (htab->is_vxworks)
8493 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8494 relocations against local symbols evaluate to "G", and the EABI does
8495 not include R_MIPS_GOT_PAGE. */
8496 page_gotno = 0;
8497 else
8498 /* Assume there are two loadable segments consisting of contiguous
8499 sections. Is 5 enough? */
8500 page_gotno = (loadable_size >> 16) + 5;
8501
8502 /* Choose the smaller of the two estimates; both are intended to be
8503 conservative. */
8504 if (page_gotno > g->page_gotno)
8505 page_gotno = g->page_gotno;
8506
8507 g->local_gotno += page_gotno;
8508 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8509 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8510
8511 /* We need to calculate tls_gotno for global symbols at this point
8512 instead of building it up earlier, to avoid doublecounting
8513 entries for one global symbol from multiple input files. */
8514 count_tls_arg.info = info;
8515 count_tls_arg.needed = 0;
8516 elf_link_hash_traverse (elf_hash_table (info),
8517 mips_elf_count_global_tls_entries,
8518 &count_tls_arg);
8519 g->tls_gotno += count_tls_arg.needed;
8520 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8521
8522 /* VxWorks does not support multiple GOTs. It initializes $gp to
8523 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8524 dynamic loader. */
8525 if (htab->is_vxworks)
8526 {
8527 /* VxWorks executables do not need a GOT. */
8528 if (info->shared)
8529 {
8530 /* Each VxWorks GOT entry needs an explicit relocation. */
8531 unsigned int count;
8532
8533 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8534 if (count)
8535 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8536 }
8537 }
8538 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8539 {
8540 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8541 return FALSE;
8542 }
8543 else
8544 {
8545 struct mips_elf_count_tls_arg arg;
8546
8547 /* Set up TLS entries. */
8548 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8549 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8550
8551 /* Allocate room for the TLS relocations. */
8552 arg.info = info;
8553 arg.needed = 0;
8554 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8555 elf_link_hash_traverse (elf_hash_table (info),
8556 mips_elf_count_global_tls_relocs,
8557 &arg);
8558 if (arg.needed)
8559 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8560 }
8561
8562 return TRUE;
8563 }
8564
8565 /* Estimate the size of the .MIPS.stubs section. */
8566
8567 static void
8568 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8569 {
8570 struct mips_elf_link_hash_table *htab;
8571 bfd_size_type dynsymcount;
8572
8573 htab = mips_elf_hash_table (info);
8574 BFD_ASSERT (htab != NULL);
8575
8576 if (htab->lazy_stub_count == 0)
8577 return;
8578
8579 /* IRIX rld assumes that a function stub isn't at the end of the .text
8580 section, so add a dummy entry to the end. */
8581 htab->lazy_stub_count++;
8582
8583 /* Get a worst-case estimate of the number of dynamic symbols needed.
8584 At this point, dynsymcount does not account for section symbols
8585 and count_section_dynsyms may overestimate the number that will
8586 be needed. */
8587 dynsymcount = (elf_hash_table (info)->dynsymcount
8588 + count_section_dynsyms (output_bfd, info));
8589
8590 /* Determine the size of one stub entry. */
8591 htab->function_stub_size = (dynsymcount > 0x10000
8592 ? MIPS_FUNCTION_STUB_BIG_SIZE
8593 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8594
8595 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8596 }
8597
8598 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8599 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8600 allocate an entry in the stubs section. */
8601
8602 static bfd_boolean
8603 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8604 {
8605 struct mips_elf_link_hash_table *htab;
8606
8607 htab = (struct mips_elf_link_hash_table *) data;
8608 if (h->needs_lazy_stub)
8609 {
8610 h->root.root.u.def.section = htab->sstubs;
8611 h->root.root.u.def.value = htab->sstubs->size;
8612 h->root.plt.offset = htab->sstubs->size;
8613 htab->sstubs->size += htab->function_stub_size;
8614 }
8615 return TRUE;
8616 }
8617
8618 /* Allocate offsets in the stubs section to each symbol that needs one.
8619 Set the final size of the .MIPS.stub section. */
8620
8621 static void
8622 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8623 {
8624 struct mips_elf_link_hash_table *htab;
8625
8626 htab = mips_elf_hash_table (info);
8627 BFD_ASSERT (htab != NULL);
8628
8629 if (htab->lazy_stub_count == 0)
8630 return;
8631
8632 htab->sstubs->size = 0;
8633 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
8634 htab->sstubs->size += htab->function_stub_size;
8635 BFD_ASSERT (htab->sstubs->size
8636 == htab->lazy_stub_count * htab->function_stub_size);
8637 }
8638
8639 /* Set the sizes of the dynamic sections. */
8640
8641 bfd_boolean
8642 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8643 struct bfd_link_info *info)
8644 {
8645 bfd *dynobj;
8646 asection *s, *sreldyn;
8647 bfd_boolean reltext;
8648 struct mips_elf_link_hash_table *htab;
8649
8650 htab = mips_elf_hash_table (info);
8651 BFD_ASSERT (htab != NULL);
8652 dynobj = elf_hash_table (info)->dynobj;
8653 BFD_ASSERT (dynobj != NULL);
8654
8655 if (elf_hash_table (info)->dynamic_sections_created)
8656 {
8657 /* Set the contents of the .interp section to the interpreter. */
8658 if (info->executable)
8659 {
8660 s = bfd_get_section_by_name (dynobj, ".interp");
8661 BFD_ASSERT (s != NULL);
8662 s->size
8663 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8664 s->contents
8665 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8666 }
8667
8668 /* Create a symbol for the PLT, if we know that we are using it. */
8669 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8670 {
8671 struct elf_link_hash_entry *h;
8672
8673 BFD_ASSERT (htab->use_plts_and_copy_relocs);
8674
8675 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8676 "_PROCEDURE_LINKAGE_TABLE_");
8677 htab->root.hplt = h;
8678 if (h == NULL)
8679 return FALSE;
8680 h->type = STT_FUNC;
8681 }
8682 }
8683
8684 /* Allocate space for global sym dynamic relocs. */
8685 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
8686
8687 mips_elf_estimate_stub_size (output_bfd, info);
8688
8689 if (!mips_elf_lay_out_got (output_bfd, info))
8690 return FALSE;
8691
8692 mips_elf_lay_out_lazy_stubs (info);
8693
8694 /* The check_relocs and adjust_dynamic_symbol entry points have
8695 determined the sizes of the various dynamic sections. Allocate
8696 memory for them. */
8697 reltext = FALSE;
8698 for (s = dynobj->sections; s != NULL; s = s->next)
8699 {
8700 const char *name;
8701
8702 /* It's OK to base decisions on the section name, because none
8703 of the dynobj section names depend upon the input files. */
8704 name = bfd_get_section_name (dynobj, s);
8705
8706 if ((s->flags & SEC_LINKER_CREATED) == 0)
8707 continue;
8708
8709 if (CONST_STRNEQ (name, ".rel"))
8710 {
8711 if (s->size != 0)
8712 {
8713 const char *outname;
8714 asection *target;
8715
8716 /* If this relocation section applies to a read only
8717 section, then we probably need a DT_TEXTREL entry.
8718 If the relocation section is .rel(a).dyn, we always
8719 assert a DT_TEXTREL entry rather than testing whether
8720 there exists a relocation to a read only section or
8721 not. */
8722 outname = bfd_get_section_name (output_bfd,
8723 s->output_section);
8724 target = bfd_get_section_by_name (output_bfd, outname + 4);
8725 if ((target != NULL
8726 && (target->flags & SEC_READONLY) != 0
8727 && (target->flags & SEC_ALLOC) != 0)
8728 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
8729 reltext = TRUE;
8730
8731 /* We use the reloc_count field as a counter if we need
8732 to copy relocs into the output file. */
8733 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
8734 s->reloc_count = 0;
8735
8736 /* If combreloc is enabled, elf_link_sort_relocs() will
8737 sort relocations, but in a different way than we do,
8738 and before we're done creating relocations. Also, it
8739 will move them around between input sections'
8740 relocation's contents, so our sorting would be
8741 broken, so don't let it run. */
8742 info->combreloc = 0;
8743 }
8744 }
8745 else if (! info->shared
8746 && ! mips_elf_hash_table (info)->use_rld_obj_head
8747 && CONST_STRNEQ (name, ".rld_map"))
8748 {
8749 /* We add a room for __rld_map. It will be filled in by the
8750 rtld to contain a pointer to the _r_debug structure. */
8751 s->size += 4;
8752 }
8753 else if (SGI_COMPAT (output_bfd)
8754 && CONST_STRNEQ (name, ".compact_rel"))
8755 s->size += mips_elf_hash_table (info)->compact_rel_size;
8756 else if (s == htab->splt)
8757 {
8758 /* If the last PLT entry has a branch delay slot, allocate
8759 room for an extra nop to fill the delay slot. This is
8760 for CPUs without load interlocking. */
8761 if (! LOAD_INTERLOCKS_P (output_bfd)
8762 && ! htab->is_vxworks && s->size > 0)
8763 s->size += 4;
8764 }
8765 else if (! CONST_STRNEQ (name, ".init")
8766 && s != htab->sgot
8767 && s != htab->sgotplt
8768 && s != htab->sstubs
8769 && s != htab->sdynbss)
8770 {
8771 /* It's not one of our sections, so don't allocate space. */
8772 continue;
8773 }
8774
8775 if (s->size == 0)
8776 {
8777 s->flags |= SEC_EXCLUDE;
8778 continue;
8779 }
8780
8781 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8782 continue;
8783
8784 /* Allocate memory for the section contents. */
8785 s->contents = bfd_zalloc (dynobj, s->size);
8786 if (s->contents == NULL)
8787 {
8788 bfd_set_error (bfd_error_no_memory);
8789 return FALSE;
8790 }
8791 }
8792
8793 if (elf_hash_table (info)->dynamic_sections_created)
8794 {
8795 /* Add some entries to the .dynamic section. We fill in the
8796 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
8797 must add the entries now so that we get the correct size for
8798 the .dynamic section. */
8799
8800 /* SGI object has the equivalence of DT_DEBUG in the
8801 DT_MIPS_RLD_MAP entry. This must come first because glibc
8802 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
8803 looks at the first one it sees. */
8804 if (!info->shared
8805 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8806 return FALSE;
8807
8808 /* The DT_DEBUG entry may be filled in by the dynamic linker and
8809 used by the debugger. */
8810 if (info->executable
8811 && !SGI_COMPAT (output_bfd)
8812 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8813 return FALSE;
8814
8815 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
8816 info->flags |= DF_TEXTREL;
8817
8818 if ((info->flags & DF_TEXTREL) != 0)
8819 {
8820 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
8821 return FALSE;
8822
8823 /* Clear the DF_TEXTREL flag. It will be set again if we
8824 write out an actual text relocation; we may not, because
8825 at this point we do not know whether e.g. any .eh_frame
8826 absolute relocations have been converted to PC-relative. */
8827 info->flags &= ~DF_TEXTREL;
8828 }
8829
8830 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
8831 return FALSE;
8832
8833 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
8834 if (htab->is_vxworks)
8835 {
8836 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
8837 use any of the DT_MIPS_* tags. */
8838 if (sreldyn && sreldyn->size > 0)
8839 {
8840 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
8841 return FALSE;
8842
8843 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
8844 return FALSE;
8845
8846 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
8847 return FALSE;
8848 }
8849 }
8850 else
8851 {
8852 if (sreldyn && sreldyn->size > 0)
8853 {
8854 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8855 return FALSE;
8856
8857 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8858 return FALSE;
8859
8860 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8861 return FALSE;
8862 }
8863
8864 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8865 return FALSE;
8866
8867 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8868 return FALSE;
8869
8870 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8871 return FALSE;
8872
8873 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8874 return FALSE;
8875
8876 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8877 return FALSE;
8878
8879 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8880 return FALSE;
8881
8882 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8883 return FALSE;
8884
8885 if (IRIX_COMPAT (dynobj) == ict_irix5
8886 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8887 return FALSE;
8888
8889 if (IRIX_COMPAT (dynobj) == ict_irix6
8890 && (bfd_get_section_by_name
8891 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8892 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8893 return FALSE;
8894 }
8895 if (htab->splt->size > 0)
8896 {
8897 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
8898 return FALSE;
8899
8900 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
8901 return FALSE;
8902
8903 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
8904 return FALSE;
8905
8906 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
8907 return FALSE;
8908 }
8909 if (htab->is_vxworks
8910 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
8911 return FALSE;
8912 }
8913
8914 return TRUE;
8915 }
8916 \f
8917 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
8918 Adjust its R_ADDEND field so that it is correct for the output file.
8919 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
8920 and sections respectively; both use symbol indexes. */
8921
8922 static void
8923 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
8924 bfd *input_bfd, Elf_Internal_Sym *local_syms,
8925 asection **local_sections, Elf_Internal_Rela *rel)
8926 {
8927 unsigned int r_type, r_symndx;
8928 Elf_Internal_Sym *sym;
8929 asection *sec;
8930
8931 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
8932 {
8933 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8934 if (r_type == R_MIPS16_GPREL
8935 || r_type == R_MIPS_GPREL16
8936 || r_type == R_MIPS_GPREL32
8937 || r_type == R_MIPS_LITERAL)
8938 {
8939 rel->r_addend += _bfd_get_gp_value (input_bfd);
8940 rel->r_addend -= _bfd_get_gp_value (output_bfd);
8941 }
8942
8943 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
8944 sym = local_syms + r_symndx;
8945
8946 /* Adjust REL's addend to account for section merging. */
8947 if (!info->relocatable)
8948 {
8949 sec = local_sections[r_symndx];
8950 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8951 }
8952
8953 /* This would normally be done by the rela_normal code in elflink.c. */
8954 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8955 rel->r_addend += local_sections[r_symndx]->output_offset;
8956 }
8957 }
8958
8959 /* Relocate a MIPS ELF section. */
8960
8961 bfd_boolean
8962 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
8963 bfd *input_bfd, asection *input_section,
8964 bfd_byte *contents, Elf_Internal_Rela *relocs,
8965 Elf_Internal_Sym *local_syms,
8966 asection **local_sections)
8967 {
8968 Elf_Internal_Rela *rel;
8969 const Elf_Internal_Rela *relend;
8970 bfd_vma addend = 0;
8971 bfd_boolean use_saved_addend_p = FALSE;
8972 const struct elf_backend_data *bed;
8973
8974 bed = get_elf_backend_data (output_bfd);
8975 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
8976 for (rel = relocs; rel < relend; ++rel)
8977 {
8978 const char *name;
8979 bfd_vma value = 0;
8980 reloc_howto_type *howto;
8981 bfd_boolean cross_mode_jump_p;
8982 /* TRUE if the relocation is a RELA relocation, rather than a
8983 REL relocation. */
8984 bfd_boolean rela_relocation_p = TRUE;
8985 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8986 const char *msg;
8987 unsigned long r_symndx;
8988 asection *sec;
8989 Elf_Internal_Shdr *symtab_hdr;
8990 struct elf_link_hash_entry *h;
8991 bfd_boolean rel_reloc;
8992
8993 rel_reloc = (NEWABI_P (input_bfd)
8994 && mips_elf_rel_relocation_p (input_bfd, input_section,
8995 relocs, rel));
8996 /* Find the relocation howto for this relocation. */
8997 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
8998
8999 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9000 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9001 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9002 {
9003 sec = local_sections[r_symndx];
9004 h = NULL;
9005 }
9006 else
9007 {
9008 unsigned long extsymoff;
9009
9010 extsymoff = 0;
9011 if (!elf_bad_symtab (input_bfd))
9012 extsymoff = symtab_hdr->sh_info;
9013 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9014 while (h->root.type == bfd_link_hash_indirect
9015 || h->root.type == bfd_link_hash_warning)
9016 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9017
9018 sec = NULL;
9019 if (h->root.type == bfd_link_hash_defined
9020 || h->root.type == bfd_link_hash_defweak)
9021 sec = h->root.u.def.section;
9022 }
9023
9024 if (sec != NULL && elf_discarded_section (sec))
9025 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9026 rel, relend, howto, contents);
9027
9028 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9029 {
9030 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9031 64-bit code, but make sure all their addresses are in the
9032 lowermost or uppermost 32-bit section of the 64-bit address
9033 space. Thus, when they use an R_MIPS_64 they mean what is
9034 usually meant by R_MIPS_32, with the exception that the
9035 stored value is sign-extended to 64 bits. */
9036 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9037
9038 /* On big-endian systems, we need to lie about the position
9039 of the reloc. */
9040 if (bfd_big_endian (input_bfd))
9041 rel->r_offset += 4;
9042 }
9043
9044 if (!use_saved_addend_p)
9045 {
9046 /* If these relocations were originally of the REL variety,
9047 we must pull the addend out of the field that will be
9048 relocated. Otherwise, we simply use the contents of the
9049 RELA relocation. */
9050 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9051 relocs, rel))
9052 {
9053 rela_relocation_p = FALSE;
9054 addend = mips_elf_read_rel_addend (input_bfd, rel,
9055 howto, contents);
9056 if (hi16_reloc_p (r_type)
9057 || (got16_reloc_p (r_type)
9058 && mips_elf_local_relocation_p (input_bfd, rel,
9059 local_sections)))
9060 {
9061 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9062 contents, &addend))
9063 {
9064 if (h)
9065 name = h->root.root.string;
9066 else
9067 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9068 local_syms + r_symndx,
9069 sec);
9070 (*_bfd_error_handler)
9071 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9072 input_bfd, input_section, name, howto->name,
9073 rel->r_offset);
9074 }
9075 }
9076 else
9077 addend <<= howto->rightshift;
9078 }
9079 else
9080 addend = rel->r_addend;
9081 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9082 local_syms, local_sections, rel);
9083 }
9084
9085 if (info->relocatable)
9086 {
9087 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9088 && bfd_big_endian (input_bfd))
9089 rel->r_offset -= 4;
9090
9091 if (!rela_relocation_p && rel->r_addend)
9092 {
9093 addend += rel->r_addend;
9094 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9095 addend = mips_elf_high (addend);
9096 else if (r_type == R_MIPS_HIGHER)
9097 addend = mips_elf_higher (addend);
9098 else if (r_type == R_MIPS_HIGHEST)
9099 addend = mips_elf_highest (addend);
9100 else
9101 addend >>= howto->rightshift;
9102
9103 /* We use the source mask, rather than the destination
9104 mask because the place to which we are writing will be
9105 source of the addend in the final link. */
9106 addend &= howto->src_mask;
9107
9108 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9109 /* See the comment above about using R_MIPS_64 in the 32-bit
9110 ABI. Here, we need to update the addend. It would be
9111 possible to get away with just using the R_MIPS_32 reloc
9112 but for endianness. */
9113 {
9114 bfd_vma sign_bits;
9115 bfd_vma low_bits;
9116 bfd_vma high_bits;
9117
9118 if (addend & ((bfd_vma) 1 << 31))
9119 #ifdef BFD64
9120 sign_bits = ((bfd_vma) 1 << 32) - 1;
9121 #else
9122 sign_bits = -1;
9123 #endif
9124 else
9125 sign_bits = 0;
9126
9127 /* If we don't know that we have a 64-bit type,
9128 do two separate stores. */
9129 if (bfd_big_endian (input_bfd))
9130 {
9131 /* Store the sign-bits (which are most significant)
9132 first. */
9133 low_bits = sign_bits;
9134 high_bits = addend;
9135 }
9136 else
9137 {
9138 low_bits = addend;
9139 high_bits = sign_bits;
9140 }
9141 bfd_put_32 (input_bfd, low_bits,
9142 contents + rel->r_offset);
9143 bfd_put_32 (input_bfd, high_bits,
9144 contents + rel->r_offset + 4);
9145 continue;
9146 }
9147
9148 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9149 input_bfd, input_section,
9150 contents, FALSE))
9151 return FALSE;
9152 }
9153
9154 /* Go on to the next relocation. */
9155 continue;
9156 }
9157
9158 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9159 relocations for the same offset. In that case we are
9160 supposed to treat the output of each relocation as the addend
9161 for the next. */
9162 if (rel + 1 < relend
9163 && rel->r_offset == rel[1].r_offset
9164 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9165 use_saved_addend_p = TRUE;
9166 else
9167 use_saved_addend_p = FALSE;
9168
9169 /* Figure out what value we are supposed to relocate. */
9170 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9171 input_section, info, rel,
9172 addend, howto, local_syms,
9173 local_sections, &value,
9174 &name, &cross_mode_jump_p,
9175 use_saved_addend_p))
9176 {
9177 case bfd_reloc_continue:
9178 /* There's nothing to do. */
9179 continue;
9180
9181 case bfd_reloc_undefined:
9182 /* mips_elf_calculate_relocation already called the
9183 undefined_symbol callback. There's no real point in
9184 trying to perform the relocation at this point, so we
9185 just skip ahead to the next relocation. */
9186 continue;
9187
9188 case bfd_reloc_notsupported:
9189 msg = _("internal error: unsupported relocation error");
9190 info->callbacks->warning
9191 (info, msg, name, input_bfd, input_section, rel->r_offset);
9192 return FALSE;
9193
9194 case bfd_reloc_overflow:
9195 if (use_saved_addend_p)
9196 /* Ignore overflow until we reach the last relocation for
9197 a given location. */
9198 ;
9199 else
9200 {
9201 struct mips_elf_link_hash_table *htab;
9202
9203 htab = mips_elf_hash_table (info);
9204 BFD_ASSERT (htab != NULL);
9205 BFD_ASSERT (name != NULL);
9206 if (!htab->small_data_overflow_reported
9207 && (gprel16_reloc_p (howto->type)
9208 || howto->type == R_MIPS_LITERAL))
9209 {
9210 msg = _("small-data section exceeds 64KB;"
9211 " lower small-data size limit (see option -G)");
9212
9213 htab->small_data_overflow_reported = TRUE;
9214 (*info->callbacks->einfo) ("%P: %s\n", msg);
9215 }
9216 if (! ((*info->callbacks->reloc_overflow)
9217 (info, NULL, name, howto->name, (bfd_vma) 0,
9218 input_bfd, input_section, rel->r_offset)))
9219 return FALSE;
9220 }
9221 break;
9222
9223 case bfd_reloc_ok:
9224 break;
9225
9226 default:
9227 abort ();
9228 break;
9229 }
9230
9231 /* If we've got another relocation for the address, keep going
9232 until we reach the last one. */
9233 if (use_saved_addend_p)
9234 {
9235 addend = value;
9236 continue;
9237 }
9238
9239 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9240 /* See the comment above about using R_MIPS_64 in the 32-bit
9241 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9242 that calculated the right value. Now, however, we
9243 sign-extend the 32-bit result to 64-bits, and store it as a
9244 64-bit value. We are especially generous here in that we
9245 go to extreme lengths to support this usage on systems with
9246 only a 32-bit VMA. */
9247 {
9248 bfd_vma sign_bits;
9249 bfd_vma low_bits;
9250 bfd_vma high_bits;
9251
9252 if (value & ((bfd_vma) 1 << 31))
9253 #ifdef BFD64
9254 sign_bits = ((bfd_vma) 1 << 32) - 1;
9255 #else
9256 sign_bits = -1;
9257 #endif
9258 else
9259 sign_bits = 0;
9260
9261 /* If we don't know that we have a 64-bit type,
9262 do two separate stores. */
9263 if (bfd_big_endian (input_bfd))
9264 {
9265 /* Undo what we did above. */
9266 rel->r_offset -= 4;
9267 /* Store the sign-bits (which are most significant)
9268 first. */
9269 low_bits = sign_bits;
9270 high_bits = value;
9271 }
9272 else
9273 {
9274 low_bits = value;
9275 high_bits = sign_bits;
9276 }
9277 bfd_put_32 (input_bfd, low_bits,
9278 contents + rel->r_offset);
9279 bfd_put_32 (input_bfd, high_bits,
9280 contents + rel->r_offset + 4);
9281 continue;
9282 }
9283
9284 /* Actually perform the relocation. */
9285 if (! mips_elf_perform_relocation (info, howto, rel, value,
9286 input_bfd, input_section,
9287 contents, cross_mode_jump_p))
9288 return FALSE;
9289 }
9290
9291 return TRUE;
9292 }
9293 \f
9294 /* A function that iterates over each entry in la25_stubs and fills
9295 in the code for each one. DATA points to a mips_htab_traverse_info. */
9296
9297 static int
9298 mips_elf_create_la25_stub (void **slot, void *data)
9299 {
9300 struct mips_htab_traverse_info *hti;
9301 struct mips_elf_link_hash_table *htab;
9302 struct mips_elf_la25_stub *stub;
9303 asection *s;
9304 bfd_byte *loc;
9305 bfd_vma offset, target, target_high, target_low;
9306
9307 stub = (struct mips_elf_la25_stub *) *slot;
9308 hti = (struct mips_htab_traverse_info *) data;
9309 htab = mips_elf_hash_table (hti->info);
9310 BFD_ASSERT (htab != NULL);
9311
9312 /* Create the section contents, if we haven't already. */
9313 s = stub->stub_section;
9314 loc = s->contents;
9315 if (loc == NULL)
9316 {
9317 loc = bfd_malloc (s->size);
9318 if (loc == NULL)
9319 {
9320 hti->error = TRUE;
9321 return FALSE;
9322 }
9323 s->contents = loc;
9324 }
9325
9326 /* Work out where in the section this stub should go. */
9327 offset = stub->offset;
9328
9329 /* Work out the target address. */
9330 target = (stub->h->root.root.u.def.section->output_section->vma
9331 + stub->h->root.root.u.def.section->output_offset
9332 + stub->h->root.root.u.def.value);
9333 target_high = ((target + 0x8000) >> 16) & 0xffff;
9334 target_low = (target & 0xffff);
9335
9336 if (stub->stub_section != htab->strampoline)
9337 {
9338 /* This is a simple LUI/ADIDU stub. Zero out the beginning
9339 of the section and write the two instructions at the end. */
9340 memset (loc, 0, offset);
9341 loc += offset;
9342 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9343 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9344 }
9345 else
9346 {
9347 /* This is trampoline. */
9348 loc += offset;
9349 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9350 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9351 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9352 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9353 }
9354 return TRUE;
9355 }
9356
9357 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9358 adjust it appropriately now. */
9359
9360 static void
9361 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9362 const char *name, Elf_Internal_Sym *sym)
9363 {
9364 /* The linker script takes care of providing names and values for
9365 these, but we must place them into the right sections. */
9366 static const char* const text_section_symbols[] = {
9367 "_ftext",
9368 "_etext",
9369 "__dso_displacement",
9370 "__elf_header",
9371 "__program_header_table",
9372 NULL
9373 };
9374
9375 static const char* const data_section_symbols[] = {
9376 "_fdata",
9377 "_edata",
9378 "_end",
9379 "_fbss",
9380 NULL
9381 };
9382
9383 const char* const *p;
9384 int i;
9385
9386 for (i = 0; i < 2; ++i)
9387 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9388 *p;
9389 ++p)
9390 if (strcmp (*p, name) == 0)
9391 {
9392 /* All of these symbols are given type STT_SECTION by the
9393 IRIX6 linker. */
9394 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9395 sym->st_other = STO_PROTECTED;
9396
9397 /* The IRIX linker puts these symbols in special sections. */
9398 if (i == 0)
9399 sym->st_shndx = SHN_MIPS_TEXT;
9400 else
9401 sym->st_shndx = SHN_MIPS_DATA;
9402
9403 break;
9404 }
9405 }
9406
9407 /* Finish up dynamic symbol handling. We set the contents of various
9408 dynamic sections here. */
9409
9410 bfd_boolean
9411 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9412 struct bfd_link_info *info,
9413 struct elf_link_hash_entry *h,
9414 Elf_Internal_Sym *sym)
9415 {
9416 bfd *dynobj;
9417 asection *sgot;
9418 struct mips_got_info *g, *gg;
9419 const char *name;
9420 int idx;
9421 struct mips_elf_link_hash_table *htab;
9422 struct mips_elf_link_hash_entry *hmips;
9423
9424 htab = mips_elf_hash_table (info);
9425 BFD_ASSERT (htab != NULL);
9426 dynobj = elf_hash_table (info)->dynobj;
9427 hmips = (struct mips_elf_link_hash_entry *) h;
9428
9429 BFD_ASSERT (!htab->is_vxworks);
9430
9431 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9432 {
9433 /* We've decided to create a PLT entry for this symbol. */
9434 bfd_byte *loc;
9435 bfd_vma header_address, plt_index, got_address;
9436 bfd_vma got_address_high, got_address_low, load;
9437 const bfd_vma *plt_entry;
9438
9439 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9440 BFD_ASSERT (h->dynindx != -1);
9441 BFD_ASSERT (htab->splt != NULL);
9442 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9443 BFD_ASSERT (!h->def_regular);
9444
9445 /* Calculate the address of the PLT header. */
9446 header_address = (htab->splt->output_section->vma
9447 + htab->splt->output_offset);
9448
9449 /* Calculate the index of the entry. */
9450 plt_index = ((h->plt.offset - htab->plt_header_size)
9451 / htab->plt_entry_size);
9452
9453 /* Calculate the address of the .got.plt entry. */
9454 got_address = (htab->sgotplt->output_section->vma
9455 + htab->sgotplt->output_offset
9456 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9457 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9458 got_address_low = got_address & 0xffff;
9459
9460 /* Initially point the .got.plt entry at the PLT header. */
9461 loc = (htab->sgotplt->contents
9462 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9463 if (ABI_64_P (output_bfd))
9464 bfd_put_64 (output_bfd, header_address, loc);
9465 else
9466 bfd_put_32 (output_bfd, header_address, loc);
9467
9468 /* Find out where the .plt entry should go. */
9469 loc = htab->splt->contents + h->plt.offset;
9470
9471 /* Pick the load opcode. */
9472 load = MIPS_ELF_LOAD_WORD (output_bfd);
9473
9474 /* Fill in the PLT entry itself. */
9475 plt_entry = mips_exec_plt_entry;
9476 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9477 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9478
9479 if (! LOAD_INTERLOCKS_P (output_bfd))
9480 {
9481 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9482 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9483 }
9484 else
9485 {
9486 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9487 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9488 }
9489
9490 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9491 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9492 plt_index, h->dynindx,
9493 R_MIPS_JUMP_SLOT, got_address);
9494
9495 /* We distinguish between PLT entries and lazy-binding stubs by
9496 giving the former an st_other value of STO_MIPS_PLT. Set the
9497 flag and leave the value if there are any relocations in the
9498 binary where pointer equality matters. */
9499 sym->st_shndx = SHN_UNDEF;
9500 if (h->pointer_equality_needed)
9501 sym->st_other = STO_MIPS_PLT;
9502 else
9503 sym->st_value = 0;
9504 }
9505 else if (h->plt.offset != MINUS_ONE)
9506 {
9507 /* We've decided to create a lazy-binding stub. */
9508 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9509
9510 /* This symbol has a stub. Set it up. */
9511
9512 BFD_ASSERT (h->dynindx != -1);
9513
9514 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9515 || (h->dynindx <= 0xffff));
9516
9517 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9518 sign extension at runtime in the stub, resulting in a negative
9519 index value. */
9520 if (h->dynindx & ~0x7fffffff)
9521 return FALSE;
9522
9523 /* Fill the stub. */
9524 idx = 0;
9525 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9526 idx += 4;
9527 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9528 idx += 4;
9529 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9530 {
9531 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9532 stub + idx);
9533 idx += 4;
9534 }
9535 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9536 idx += 4;
9537
9538 /* If a large stub is not required and sign extension is not a
9539 problem, then use legacy code in the stub. */
9540 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9541 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9542 else if (h->dynindx & ~0x7fff)
9543 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9544 else
9545 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9546 stub + idx);
9547
9548 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9549 memcpy (htab->sstubs->contents + h->plt.offset,
9550 stub, htab->function_stub_size);
9551
9552 /* Mark the symbol as undefined. plt.offset != -1 occurs
9553 only for the referenced symbol. */
9554 sym->st_shndx = SHN_UNDEF;
9555
9556 /* The run-time linker uses the st_value field of the symbol
9557 to reset the global offset table entry for this external
9558 to its stub address when unlinking a shared object. */
9559 sym->st_value = (htab->sstubs->output_section->vma
9560 + htab->sstubs->output_offset
9561 + h->plt.offset);
9562 }
9563
9564 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9565 refer to the stub, since only the stub uses the standard calling
9566 conventions. */
9567 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9568 {
9569 BFD_ASSERT (hmips->need_fn_stub);
9570 sym->st_value = (hmips->fn_stub->output_section->vma
9571 + hmips->fn_stub->output_offset);
9572 sym->st_size = hmips->fn_stub->size;
9573 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9574 }
9575
9576 BFD_ASSERT (h->dynindx != -1
9577 || h->forced_local);
9578
9579 sgot = htab->sgot;
9580 g = htab->got_info;
9581 BFD_ASSERT (g != NULL);
9582
9583 /* Run through the global symbol table, creating GOT entries for all
9584 the symbols that need them. */
9585 if (hmips->global_got_area != GGA_NONE)
9586 {
9587 bfd_vma offset;
9588 bfd_vma value;
9589
9590 value = sym->st_value;
9591 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9592 R_MIPS_GOT16, info);
9593 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9594 }
9595
9596 if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
9597 {
9598 struct mips_got_entry e, *p;
9599 bfd_vma entry;
9600 bfd_vma offset;
9601
9602 gg = g;
9603
9604 e.abfd = output_bfd;
9605 e.symndx = -1;
9606 e.d.h = hmips;
9607 e.tls_type = 0;
9608
9609 for (g = g->next; g->next != gg; g = g->next)
9610 {
9611 if (g->got_entries
9612 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
9613 &e)))
9614 {
9615 offset = p->gotidx;
9616 if (info->shared
9617 || (elf_hash_table (info)->dynamic_sections_created
9618 && p->d.h != NULL
9619 && p->d.h->root.def_dynamic
9620 && !p->d.h->root.def_regular))
9621 {
9622 /* Create an R_MIPS_REL32 relocation for this entry. Due to
9623 the various compatibility problems, it's easier to mock
9624 up an R_MIPS_32 or R_MIPS_64 relocation and leave
9625 mips_elf_create_dynamic_relocation to calculate the
9626 appropriate addend. */
9627 Elf_Internal_Rela rel[3];
9628
9629 memset (rel, 0, sizeof (rel));
9630 if (ABI_64_P (output_bfd))
9631 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
9632 else
9633 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
9634 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
9635
9636 entry = 0;
9637 if (! (mips_elf_create_dynamic_relocation
9638 (output_bfd, info, rel,
9639 e.d.h, NULL, sym->st_value, &entry, sgot)))
9640 return FALSE;
9641 }
9642 else
9643 entry = sym->st_value;
9644 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
9645 }
9646 }
9647 }
9648
9649 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9650 name = h->root.root.string;
9651 if (strcmp (name, "_DYNAMIC") == 0
9652 || h == elf_hash_table (info)->hgot)
9653 sym->st_shndx = SHN_ABS;
9654 else if (strcmp (name, "_DYNAMIC_LINK") == 0
9655 || strcmp (name, "_DYNAMIC_LINKING") == 0)
9656 {
9657 sym->st_shndx = SHN_ABS;
9658 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9659 sym->st_value = 1;
9660 }
9661 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
9662 {
9663 sym->st_shndx = SHN_ABS;
9664 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9665 sym->st_value = elf_gp (output_bfd);
9666 }
9667 else if (SGI_COMPAT (output_bfd))
9668 {
9669 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
9670 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
9671 {
9672 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9673 sym->st_other = STO_PROTECTED;
9674 sym->st_value = 0;
9675 sym->st_shndx = SHN_MIPS_DATA;
9676 }
9677 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
9678 {
9679 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9680 sym->st_other = STO_PROTECTED;
9681 sym->st_value = mips_elf_hash_table (info)->procedure_count;
9682 sym->st_shndx = SHN_ABS;
9683 }
9684 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
9685 {
9686 if (h->type == STT_FUNC)
9687 sym->st_shndx = SHN_MIPS_TEXT;
9688 else if (h->type == STT_OBJECT)
9689 sym->st_shndx = SHN_MIPS_DATA;
9690 }
9691 }
9692
9693 /* Emit a copy reloc, if needed. */
9694 if (h->needs_copy)
9695 {
9696 asection *s;
9697 bfd_vma symval;
9698
9699 BFD_ASSERT (h->dynindx != -1);
9700 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9701
9702 s = mips_elf_rel_dyn_section (info, FALSE);
9703 symval = (h->root.u.def.section->output_section->vma
9704 + h->root.u.def.section->output_offset
9705 + h->root.u.def.value);
9706 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
9707 h->dynindx, R_MIPS_COPY, symval);
9708 }
9709
9710 /* Handle the IRIX6-specific symbols. */
9711 if (IRIX_COMPAT (output_bfd) == ict_irix6)
9712 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
9713
9714 if (! info->shared)
9715 {
9716 if (! mips_elf_hash_table (info)->use_rld_obj_head
9717 && (strcmp (name, "__rld_map") == 0
9718 || strcmp (name, "__RLD_MAP") == 0))
9719 {
9720 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
9721 BFD_ASSERT (s != NULL);
9722 sym->st_value = s->output_section->vma + s->output_offset;
9723 bfd_put_32 (output_bfd, 0, s->contents);
9724 if (mips_elf_hash_table (info)->rld_value == 0)
9725 mips_elf_hash_table (info)->rld_value = sym->st_value;
9726 }
9727 else if (mips_elf_hash_table (info)->use_rld_obj_head
9728 && strcmp (name, "__rld_obj_head") == 0)
9729 {
9730 /* IRIX6 does not use a .rld_map section. */
9731 if (IRIX_COMPAT (output_bfd) == ict_irix5
9732 || IRIX_COMPAT (output_bfd) == ict_none)
9733 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
9734 != NULL);
9735 mips_elf_hash_table (info)->rld_value = sym->st_value;
9736 }
9737 }
9738
9739 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
9740 treat MIPS16 symbols like any other. */
9741 if (ELF_ST_IS_MIPS16 (sym->st_other))
9742 {
9743 BFD_ASSERT (sym->st_value & 1);
9744 sym->st_other -= STO_MIPS16;
9745 }
9746
9747 return TRUE;
9748 }
9749
9750 /* Likewise, for VxWorks. */
9751
9752 bfd_boolean
9753 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
9754 struct bfd_link_info *info,
9755 struct elf_link_hash_entry *h,
9756 Elf_Internal_Sym *sym)
9757 {
9758 bfd *dynobj;
9759 asection *sgot;
9760 struct mips_got_info *g;
9761 struct mips_elf_link_hash_table *htab;
9762 struct mips_elf_link_hash_entry *hmips;
9763
9764 htab = mips_elf_hash_table (info);
9765 BFD_ASSERT (htab != NULL);
9766 dynobj = elf_hash_table (info)->dynobj;
9767 hmips = (struct mips_elf_link_hash_entry *) h;
9768
9769 if (h->plt.offset != (bfd_vma) -1)
9770 {
9771 bfd_byte *loc;
9772 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
9773 Elf_Internal_Rela rel;
9774 static const bfd_vma *plt_entry;
9775
9776 BFD_ASSERT (h->dynindx != -1);
9777 BFD_ASSERT (htab->splt != NULL);
9778 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9779
9780 /* Calculate the address of the .plt entry. */
9781 plt_address = (htab->splt->output_section->vma
9782 + htab->splt->output_offset
9783 + h->plt.offset);
9784
9785 /* Calculate the index of the entry. */
9786 plt_index = ((h->plt.offset - htab->plt_header_size)
9787 / htab->plt_entry_size);
9788
9789 /* Calculate the address of the .got.plt entry. */
9790 got_address = (htab->sgotplt->output_section->vma
9791 + htab->sgotplt->output_offset
9792 + plt_index * 4);
9793
9794 /* Calculate the offset of the .got.plt entry from
9795 _GLOBAL_OFFSET_TABLE_. */
9796 got_offset = mips_elf_gotplt_index (info, h);
9797
9798 /* Calculate the offset for the branch at the start of the PLT
9799 entry. The branch jumps to the beginning of .plt. */
9800 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
9801
9802 /* Fill in the initial value of the .got.plt entry. */
9803 bfd_put_32 (output_bfd, plt_address,
9804 htab->sgotplt->contents + plt_index * 4);
9805
9806 /* Find out where the .plt entry should go. */
9807 loc = htab->splt->contents + h->plt.offset;
9808
9809 if (info->shared)
9810 {
9811 plt_entry = mips_vxworks_shared_plt_entry;
9812 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9813 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9814 }
9815 else
9816 {
9817 bfd_vma got_address_high, got_address_low;
9818
9819 plt_entry = mips_vxworks_exec_plt_entry;
9820 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9821 got_address_low = got_address & 0xffff;
9822
9823 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9824 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9825 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
9826 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
9827 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9828 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9829 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9830 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9831
9832 loc = (htab->srelplt2->contents
9833 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
9834
9835 /* Emit a relocation for the .got.plt entry. */
9836 rel.r_offset = got_address;
9837 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
9838 rel.r_addend = h->plt.offset;
9839 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9840
9841 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
9842 loc += sizeof (Elf32_External_Rela);
9843 rel.r_offset = plt_address + 8;
9844 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9845 rel.r_addend = got_offset;
9846 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9847
9848 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
9849 loc += sizeof (Elf32_External_Rela);
9850 rel.r_offset += 4;
9851 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9852 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9853 }
9854
9855 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9856 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
9857 rel.r_offset = got_address;
9858 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
9859 rel.r_addend = 0;
9860 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9861
9862 if (!h->def_regular)
9863 sym->st_shndx = SHN_UNDEF;
9864 }
9865
9866 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
9867
9868 sgot = htab->sgot;
9869 g = htab->got_info;
9870 BFD_ASSERT (g != NULL);
9871
9872 /* See if this symbol has an entry in the GOT. */
9873 if (hmips->global_got_area != GGA_NONE)
9874 {
9875 bfd_vma offset;
9876 Elf_Internal_Rela outrel;
9877 bfd_byte *loc;
9878 asection *s;
9879
9880 /* Install the symbol value in the GOT. */
9881 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9882 R_MIPS_GOT16, info);
9883 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
9884
9885 /* Add a dynamic relocation for it. */
9886 s = mips_elf_rel_dyn_section (info, FALSE);
9887 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
9888 outrel.r_offset = (sgot->output_section->vma
9889 + sgot->output_offset
9890 + offset);
9891 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
9892 outrel.r_addend = 0;
9893 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
9894 }
9895
9896 /* Emit a copy reloc, if needed. */
9897 if (h->needs_copy)
9898 {
9899 Elf_Internal_Rela rel;
9900
9901 BFD_ASSERT (h->dynindx != -1);
9902
9903 rel.r_offset = (h->root.u.def.section->output_section->vma
9904 + h->root.u.def.section->output_offset
9905 + h->root.u.def.value);
9906 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
9907 rel.r_addend = 0;
9908 bfd_elf32_swap_reloca_out (output_bfd, &rel,
9909 htab->srelbss->contents
9910 + (htab->srelbss->reloc_count
9911 * sizeof (Elf32_External_Rela)));
9912 ++htab->srelbss->reloc_count;
9913 }
9914
9915 /* If this is a mips16 symbol, force the value to be even. */
9916 if (ELF_ST_IS_MIPS16 (sym->st_other))
9917 sym->st_value &= ~1;
9918
9919 return TRUE;
9920 }
9921
9922 /* Write out a plt0 entry to the beginning of .plt. */
9923
9924 static void
9925 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9926 {
9927 bfd_byte *loc;
9928 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
9929 static const bfd_vma *plt_entry;
9930 struct mips_elf_link_hash_table *htab;
9931
9932 htab = mips_elf_hash_table (info);
9933 BFD_ASSERT (htab != NULL);
9934
9935 if (ABI_64_P (output_bfd))
9936 plt_entry = mips_n64_exec_plt0_entry;
9937 else if (ABI_N32_P (output_bfd))
9938 plt_entry = mips_n32_exec_plt0_entry;
9939 else
9940 plt_entry = mips_o32_exec_plt0_entry;
9941
9942 /* Calculate the value of .got.plt. */
9943 gotplt_value = (htab->sgotplt->output_section->vma
9944 + htab->sgotplt->output_offset);
9945 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
9946 gotplt_value_low = gotplt_value & 0xffff;
9947
9948 /* The PLT sequence is not safe for N64 if .got.plt's address can
9949 not be loaded in two instructions. */
9950 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
9951 || ~(gotplt_value | 0x7fffffff) == 0);
9952
9953 /* Install the PLT header. */
9954 loc = htab->splt->contents;
9955 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
9956 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
9957 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
9958 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9959 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9960 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9961 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9962 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9963 }
9964
9965 /* Install the PLT header for a VxWorks executable and finalize the
9966 contents of .rela.plt.unloaded. */
9967
9968 static void
9969 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9970 {
9971 Elf_Internal_Rela rela;
9972 bfd_byte *loc;
9973 bfd_vma got_value, got_value_high, got_value_low, plt_address;
9974 static const bfd_vma *plt_entry;
9975 struct mips_elf_link_hash_table *htab;
9976
9977 htab = mips_elf_hash_table (info);
9978 BFD_ASSERT (htab != NULL);
9979
9980 plt_entry = mips_vxworks_exec_plt0_entry;
9981
9982 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
9983 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
9984 + htab->root.hgot->root.u.def.section->output_offset
9985 + htab->root.hgot->root.u.def.value);
9986
9987 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
9988 got_value_low = got_value & 0xffff;
9989
9990 /* Calculate the address of the PLT header. */
9991 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
9992
9993 /* Install the PLT header. */
9994 loc = htab->splt->contents;
9995 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
9996 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
9997 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
9998 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9999 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10000 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10001
10002 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10003 loc = htab->srelplt2->contents;
10004 rela.r_offset = plt_address;
10005 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10006 rela.r_addend = 0;
10007 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10008 loc += sizeof (Elf32_External_Rela);
10009
10010 /* Output the relocation for the following addiu of
10011 %lo(_GLOBAL_OFFSET_TABLE_). */
10012 rela.r_offset += 4;
10013 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10014 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10015 loc += sizeof (Elf32_External_Rela);
10016
10017 /* Fix up the remaining relocations. They may have the wrong
10018 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10019 in which symbols were output. */
10020 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10021 {
10022 Elf_Internal_Rela rel;
10023
10024 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10025 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10026 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10027 loc += sizeof (Elf32_External_Rela);
10028
10029 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10030 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10031 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10032 loc += sizeof (Elf32_External_Rela);
10033
10034 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10035 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10036 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10037 loc += sizeof (Elf32_External_Rela);
10038 }
10039 }
10040
10041 /* Install the PLT header for a VxWorks shared library. */
10042
10043 static void
10044 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10045 {
10046 unsigned int i;
10047 struct mips_elf_link_hash_table *htab;
10048
10049 htab = mips_elf_hash_table (info);
10050 BFD_ASSERT (htab != NULL);
10051
10052 /* We just need to copy the entry byte-by-byte. */
10053 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10054 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10055 htab->splt->contents + i * 4);
10056 }
10057
10058 /* Finish up the dynamic sections. */
10059
10060 bfd_boolean
10061 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10062 struct bfd_link_info *info)
10063 {
10064 bfd *dynobj;
10065 asection *sdyn;
10066 asection *sgot;
10067 struct mips_got_info *gg, *g;
10068 struct mips_elf_link_hash_table *htab;
10069
10070 htab = mips_elf_hash_table (info);
10071 BFD_ASSERT (htab != NULL);
10072
10073 dynobj = elf_hash_table (info)->dynobj;
10074
10075 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10076
10077 sgot = htab->sgot;
10078 gg = htab->got_info;
10079
10080 if (elf_hash_table (info)->dynamic_sections_created)
10081 {
10082 bfd_byte *b;
10083 int dyn_to_skip = 0, dyn_skipped = 0;
10084
10085 BFD_ASSERT (sdyn != NULL);
10086 BFD_ASSERT (gg != NULL);
10087
10088 g = mips_elf_got_for_ibfd (gg, output_bfd);
10089 BFD_ASSERT (g != NULL);
10090
10091 for (b = sdyn->contents;
10092 b < sdyn->contents + sdyn->size;
10093 b += MIPS_ELF_DYN_SIZE (dynobj))
10094 {
10095 Elf_Internal_Dyn dyn;
10096 const char *name;
10097 size_t elemsize;
10098 asection *s;
10099 bfd_boolean swap_out_p;
10100
10101 /* Read in the current dynamic entry. */
10102 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10103
10104 /* Assume that we're going to modify it and write it out. */
10105 swap_out_p = TRUE;
10106
10107 switch (dyn.d_tag)
10108 {
10109 case DT_RELENT:
10110 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10111 break;
10112
10113 case DT_RELAENT:
10114 BFD_ASSERT (htab->is_vxworks);
10115 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10116 break;
10117
10118 case DT_STRSZ:
10119 /* Rewrite DT_STRSZ. */
10120 dyn.d_un.d_val =
10121 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10122 break;
10123
10124 case DT_PLTGOT:
10125 s = htab->sgot;
10126 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10127 break;
10128
10129 case DT_MIPS_PLTGOT:
10130 s = htab->sgotplt;
10131 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10132 break;
10133
10134 case DT_MIPS_RLD_VERSION:
10135 dyn.d_un.d_val = 1; /* XXX */
10136 break;
10137
10138 case DT_MIPS_FLAGS:
10139 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10140 break;
10141
10142 case DT_MIPS_TIME_STAMP:
10143 {
10144 time_t t;
10145 time (&t);
10146 dyn.d_un.d_val = t;
10147 }
10148 break;
10149
10150 case DT_MIPS_ICHECKSUM:
10151 /* XXX FIXME: */
10152 swap_out_p = FALSE;
10153 break;
10154
10155 case DT_MIPS_IVERSION:
10156 /* XXX FIXME: */
10157 swap_out_p = FALSE;
10158 break;
10159
10160 case DT_MIPS_BASE_ADDRESS:
10161 s = output_bfd->sections;
10162 BFD_ASSERT (s != NULL);
10163 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10164 break;
10165
10166 case DT_MIPS_LOCAL_GOTNO:
10167 dyn.d_un.d_val = g->local_gotno;
10168 break;
10169
10170 case DT_MIPS_UNREFEXTNO:
10171 /* The index into the dynamic symbol table which is the
10172 entry of the first external symbol that is not
10173 referenced within the same object. */
10174 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10175 break;
10176
10177 case DT_MIPS_GOTSYM:
10178 if (gg->global_gotsym)
10179 {
10180 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10181 break;
10182 }
10183 /* In case if we don't have global got symbols we default
10184 to setting DT_MIPS_GOTSYM to the same value as
10185 DT_MIPS_SYMTABNO, so we just fall through. */
10186
10187 case DT_MIPS_SYMTABNO:
10188 name = ".dynsym";
10189 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10190 s = bfd_get_section_by_name (output_bfd, name);
10191 BFD_ASSERT (s != NULL);
10192
10193 dyn.d_un.d_val = s->size / elemsize;
10194 break;
10195
10196 case DT_MIPS_HIPAGENO:
10197 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10198 break;
10199
10200 case DT_MIPS_RLD_MAP:
10201 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
10202 break;
10203
10204 case DT_MIPS_OPTIONS:
10205 s = (bfd_get_section_by_name
10206 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10207 dyn.d_un.d_ptr = s->vma;
10208 break;
10209
10210 case DT_RELASZ:
10211 BFD_ASSERT (htab->is_vxworks);
10212 /* The count does not include the JUMP_SLOT relocations. */
10213 if (htab->srelplt)
10214 dyn.d_un.d_val -= htab->srelplt->size;
10215 break;
10216
10217 case DT_PLTREL:
10218 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10219 if (htab->is_vxworks)
10220 dyn.d_un.d_val = DT_RELA;
10221 else
10222 dyn.d_un.d_val = DT_REL;
10223 break;
10224
10225 case DT_PLTRELSZ:
10226 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10227 dyn.d_un.d_val = htab->srelplt->size;
10228 break;
10229
10230 case DT_JMPREL:
10231 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10232 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10233 + htab->srelplt->output_offset);
10234 break;
10235
10236 case DT_TEXTREL:
10237 /* If we didn't need any text relocations after all, delete
10238 the dynamic tag. */
10239 if (!(info->flags & DF_TEXTREL))
10240 {
10241 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10242 swap_out_p = FALSE;
10243 }
10244 break;
10245
10246 case DT_FLAGS:
10247 /* If we didn't need any text relocations after all, clear
10248 DF_TEXTREL from DT_FLAGS. */
10249 if (!(info->flags & DF_TEXTREL))
10250 dyn.d_un.d_val &= ~DF_TEXTREL;
10251 else
10252 swap_out_p = FALSE;
10253 break;
10254
10255 default:
10256 swap_out_p = FALSE;
10257 if (htab->is_vxworks
10258 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10259 swap_out_p = TRUE;
10260 break;
10261 }
10262
10263 if (swap_out_p || dyn_skipped)
10264 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10265 (dynobj, &dyn, b - dyn_skipped);
10266
10267 if (dyn_to_skip)
10268 {
10269 dyn_skipped += dyn_to_skip;
10270 dyn_to_skip = 0;
10271 }
10272 }
10273
10274 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10275 if (dyn_skipped > 0)
10276 memset (b - dyn_skipped, 0, dyn_skipped);
10277 }
10278
10279 if (sgot != NULL && sgot->size > 0
10280 && !bfd_is_abs_section (sgot->output_section))
10281 {
10282 if (htab->is_vxworks)
10283 {
10284 /* The first entry of the global offset table points to the
10285 ".dynamic" section. The second is initialized by the
10286 loader and contains the shared library identifier.
10287 The third is also initialized by the loader and points
10288 to the lazy resolution stub. */
10289 MIPS_ELF_PUT_WORD (output_bfd,
10290 sdyn->output_offset + sdyn->output_section->vma,
10291 sgot->contents);
10292 MIPS_ELF_PUT_WORD (output_bfd, 0,
10293 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10294 MIPS_ELF_PUT_WORD (output_bfd, 0,
10295 sgot->contents
10296 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10297 }
10298 else
10299 {
10300 /* The first entry of the global offset table will be filled at
10301 runtime. The second entry will be used by some runtime loaders.
10302 This isn't the case of IRIX rld. */
10303 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10304 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10305 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10306 }
10307
10308 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10309 = MIPS_ELF_GOT_SIZE (output_bfd);
10310 }
10311
10312 /* Generate dynamic relocations for the non-primary gots. */
10313 if (gg != NULL && gg->next)
10314 {
10315 Elf_Internal_Rela rel[3];
10316 bfd_vma addend = 0;
10317
10318 memset (rel, 0, sizeof (rel));
10319 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10320
10321 for (g = gg->next; g->next != gg; g = g->next)
10322 {
10323 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10324 + g->next->tls_gotno;
10325
10326 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10327 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10328 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10329 sgot->contents
10330 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10331
10332 if (! info->shared)
10333 continue;
10334
10335 while (got_index < g->assigned_gotno)
10336 {
10337 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10338 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10339 if (!(mips_elf_create_dynamic_relocation
10340 (output_bfd, info, rel, NULL,
10341 bfd_abs_section_ptr,
10342 0, &addend, sgot)))
10343 return FALSE;
10344 BFD_ASSERT (addend == 0);
10345 }
10346 }
10347 }
10348
10349 /* The generation of dynamic relocations for the non-primary gots
10350 adds more dynamic relocations. We cannot count them until
10351 here. */
10352
10353 if (elf_hash_table (info)->dynamic_sections_created)
10354 {
10355 bfd_byte *b;
10356 bfd_boolean swap_out_p;
10357
10358 BFD_ASSERT (sdyn != NULL);
10359
10360 for (b = sdyn->contents;
10361 b < sdyn->contents + sdyn->size;
10362 b += MIPS_ELF_DYN_SIZE (dynobj))
10363 {
10364 Elf_Internal_Dyn dyn;
10365 asection *s;
10366
10367 /* Read in the current dynamic entry. */
10368 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10369
10370 /* Assume that we're going to modify it and write it out. */
10371 swap_out_p = TRUE;
10372
10373 switch (dyn.d_tag)
10374 {
10375 case DT_RELSZ:
10376 /* Reduce DT_RELSZ to account for any relocations we
10377 decided not to make. This is for the n64 irix rld,
10378 which doesn't seem to apply any relocations if there
10379 are trailing null entries. */
10380 s = mips_elf_rel_dyn_section (info, FALSE);
10381 dyn.d_un.d_val = (s->reloc_count
10382 * (ABI_64_P (output_bfd)
10383 ? sizeof (Elf64_Mips_External_Rel)
10384 : sizeof (Elf32_External_Rel)));
10385 /* Adjust the section size too. Tools like the prelinker
10386 can reasonably expect the values to the same. */
10387 elf_section_data (s->output_section)->this_hdr.sh_size
10388 = dyn.d_un.d_val;
10389 break;
10390
10391 default:
10392 swap_out_p = FALSE;
10393 break;
10394 }
10395
10396 if (swap_out_p)
10397 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10398 (dynobj, &dyn, b);
10399 }
10400 }
10401
10402 {
10403 asection *s;
10404 Elf32_compact_rel cpt;
10405
10406 if (SGI_COMPAT (output_bfd))
10407 {
10408 /* Write .compact_rel section out. */
10409 s = bfd_get_section_by_name (dynobj, ".compact_rel");
10410 if (s != NULL)
10411 {
10412 cpt.id1 = 1;
10413 cpt.num = s->reloc_count;
10414 cpt.id2 = 2;
10415 cpt.offset = (s->output_section->filepos
10416 + sizeof (Elf32_External_compact_rel));
10417 cpt.reserved0 = 0;
10418 cpt.reserved1 = 0;
10419 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10420 ((Elf32_External_compact_rel *)
10421 s->contents));
10422
10423 /* Clean up a dummy stub function entry in .text. */
10424 if (htab->sstubs != NULL)
10425 {
10426 file_ptr dummy_offset;
10427
10428 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10429 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10430 memset (htab->sstubs->contents + dummy_offset, 0,
10431 htab->function_stub_size);
10432 }
10433 }
10434 }
10435
10436 /* The psABI says that the dynamic relocations must be sorted in
10437 increasing order of r_symndx. The VxWorks EABI doesn't require
10438 this, and because the code below handles REL rather than RELA
10439 relocations, using it for VxWorks would be outright harmful. */
10440 if (!htab->is_vxworks)
10441 {
10442 s = mips_elf_rel_dyn_section (info, FALSE);
10443 if (s != NULL
10444 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10445 {
10446 reldyn_sorting_bfd = output_bfd;
10447
10448 if (ABI_64_P (output_bfd))
10449 qsort ((Elf64_External_Rel *) s->contents + 1,
10450 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10451 sort_dynamic_relocs_64);
10452 else
10453 qsort ((Elf32_External_Rel *) s->contents + 1,
10454 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10455 sort_dynamic_relocs);
10456 }
10457 }
10458 }
10459
10460 if (htab->splt && htab->splt->size > 0)
10461 {
10462 if (htab->is_vxworks)
10463 {
10464 if (info->shared)
10465 mips_vxworks_finish_shared_plt (output_bfd, info);
10466 else
10467 mips_vxworks_finish_exec_plt (output_bfd, info);
10468 }
10469 else
10470 {
10471 BFD_ASSERT (!info->shared);
10472 mips_finish_exec_plt (output_bfd, info);
10473 }
10474 }
10475 return TRUE;
10476 }
10477
10478
10479 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10480
10481 static void
10482 mips_set_isa_flags (bfd *abfd)
10483 {
10484 flagword val;
10485
10486 switch (bfd_get_mach (abfd))
10487 {
10488 default:
10489 case bfd_mach_mips3000:
10490 val = E_MIPS_ARCH_1;
10491 break;
10492
10493 case bfd_mach_mips3900:
10494 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10495 break;
10496
10497 case bfd_mach_mips6000:
10498 val = E_MIPS_ARCH_2;
10499 break;
10500
10501 case bfd_mach_mips4000:
10502 case bfd_mach_mips4300:
10503 case bfd_mach_mips4400:
10504 case bfd_mach_mips4600:
10505 val = E_MIPS_ARCH_3;
10506 break;
10507
10508 case bfd_mach_mips4010:
10509 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10510 break;
10511
10512 case bfd_mach_mips4100:
10513 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10514 break;
10515
10516 case bfd_mach_mips4111:
10517 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10518 break;
10519
10520 case bfd_mach_mips4120:
10521 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10522 break;
10523
10524 case bfd_mach_mips4650:
10525 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10526 break;
10527
10528 case bfd_mach_mips5400:
10529 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10530 break;
10531
10532 case bfd_mach_mips5500:
10533 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10534 break;
10535
10536 case bfd_mach_mips9000:
10537 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10538 break;
10539
10540 case bfd_mach_mips5000:
10541 case bfd_mach_mips7000:
10542 case bfd_mach_mips8000:
10543 case bfd_mach_mips10000:
10544 case bfd_mach_mips12000:
10545 case bfd_mach_mips14000:
10546 case bfd_mach_mips16000:
10547 val = E_MIPS_ARCH_4;
10548 break;
10549
10550 case bfd_mach_mips5:
10551 val = E_MIPS_ARCH_5;
10552 break;
10553
10554 case bfd_mach_mips_loongson_2e:
10555 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10556 break;
10557
10558 case bfd_mach_mips_loongson_2f:
10559 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10560 break;
10561
10562 case bfd_mach_mips_sb1:
10563 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10564 break;
10565
10566 case bfd_mach_mips_loongson_3a:
10567 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
10568 break;
10569
10570 case bfd_mach_mips_octeon:
10571 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10572 break;
10573
10574 case bfd_mach_mips_xlr:
10575 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10576 break;
10577
10578 case bfd_mach_mipsisa32:
10579 val = E_MIPS_ARCH_32;
10580 break;
10581
10582 case bfd_mach_mipsisa64:
10583 val = E_MIPS_ARCH_64;
10584 break;
10585
10586 case bfd_mach_mipsisa32r2:
10587 val = E_MIPS_ARCH_32R2;
10588 break;
10589
10590 case bfd_mach_mipsisa64r2:
10591 val = E_MIPS_ARCH_64R2;
10592 break;
10593 }
10594 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10595 elf_elfheader (abfd)->e_flags |= val;
10596
10597 }
10598
10599
10600 /* The final processing done just before writing out a MIPS ELF object
10601 file. This gets the MIPS architecture right based on the machine
10602 number. This is used by both the 32-bit and the 64-bit ABI. */
10603
10604 void
10605 _bfd_mips_elf_final_write_processing (bfd *abfd,
10606 bfd_boolean linker ATTRIBUTE_UNUSED)
10607 {
10608 unsigned int i;
10609 Elf_Internal_Shdr **hdrpp;
10610 const char *name;
10611 asection *sec;
10612
10613 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10614 is nonzero. This is for compatibility with old objects, which used
10615 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
10616 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
10617 mips_set_isa_flags (abfd);
10618
10619 /* Set the sh_info field for .gptab sections and other appropriate
10620 info for each special section. */
10621 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
10622 i < elf_numsections (abfd);
10623 i++, hdrpp++)
10624 {
10625 switch ((*hdrpp)->sh_type)
10626 {
10627 case SHT_MIPS_MSYM:
10628 case SHT_MIPS_LIBLIST:
10629 sec = bfd_get_section_by_name (abfd, ".dynstr");
10630 if (sec != NULL)
10631 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10632 break;
10633
10634 case SHT_MIPS_GPTAB:
10635 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10636 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10637 BFD_ASSERT (name != NULL
10638 && CONST_STRNEQ (name, ".gptab."));
10639 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
10640 BFD_ASSERT (sec != NULL);
10641 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10642 break;
10643
10644 case SHT_MIPS_CONTENT:
10645 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10646 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10647 BFD_ASSERT (name != NULL
10648 && CONST_STRNEQ (name, ".MIPS.content"));
10649 sec = bfd_get_section_by_name (abfd,
10650 name + sizeof ".MIPS.content" - 1);
10651 BFD_ASSERT (sec != NULL);
10652 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10653 break;
10654
10655 case SHT_MIPS_SYMBOL_LIB:
10656 sec = bfd_get_section_by_name (abfd, ".dynsym");
10657 if (sec != NULL)
10658 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10659 sec = bfd_get_section_by_name (abfd, ".liblist");
10660 if (sec != NULL)
10661 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10662 break;
10663
10664 case SHT_MIPS_EVENTS:
10665 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10666 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10667 BFD_ASSERT (name != NULL);
10668 if (CONST_STRNEQ (name, ".MIPS.events"))
10669 sec = bfd_get_section_by_name (abfd,
10670 name + sizeof ".MIPS.events" - 1);
10671 else
10672 {
10673 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
10674 sec = bfd_get_section_by_name (abfd,
10675 (name
10676 + sizeof ".MIPS.post_rel" - 1));
10677 }
10678 BFD_ASSERT (sec != NULL);
10679 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10680 break;
10681
10682 }
10683 }
10684 }
10685 \f
10686 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
10687 segments. */
10688
10689 int
10690 _bfd_mips_elf_additional_program_headers (bfd *abfd,
10691 struct bfd_link_info *info ATTRIBUTE_UNUSED)
10692 {
10693 asection *s;
10694 int ret = 0;
10695
10696 /* See if we need a PT_MIPS_REGINFO segment. */
10697 s = bfd_get_section_by_name (abfd, ".reginfo");
10698 if (s && (s->flags & SEC_LOAD))
10699 ++ret;
10700
10701 /* See if we need a PT_MIPS_OPTIONS segment. */
10702 if (IRIX_COMPAT (abfd) == ict_irix6
10703 && bfd_get_section_by_name (abfd,
10704 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
10705 ++ret;
10706
10707 /* See if we need a PT_MIPS_RTPROC segment. */
10708 if (IRIX_COMPAT (abfd) == ict_irix5
10709 && bfd_get_section_by_name (abfd, ".dynamic")
10710 && bfd_get_section_by_name (abfd, ".mdebug"))
10711 ++ret;
10712
10713 /* Allocate a PT_NULL header in dynamic objects. See
10714 _bfd_mips_elf_modify_segment_map for details. */
10715 if (!SGI_COMPAT (abfd)
10716 && bfd_get_section_by_name (abfd, ".dynamic"))
10717 ++ret;
10718
10719 return ret;
10720 }
10721
10722 /* Modify the segment map for an IRIX5 executable. */
10723
10724 bfd_boolean
10725 _bfd_mips_elf_modify_segment_map (bfd *abfd,
10726 struct bfd_link_info *info)
10727 {
10728 asection *s;
10729 struct elf_segment_map *m, **pm;
10730 bfd_size_type amt;
10731
10732 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
10733 segment. */
10734 s = bfd_get_section_by_name (abfd, ".reginfo");
10735 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10736 {
10737 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10738 if (m->p_type == PT_MIPS_REGINFO)
10739 break;
10740 if (m == NULL)
10741 {
10742 amt = sizeof *m;
10743 m = bfd_zalloc (abfd, amt);
10744 if (m == NULL)
10745 return FALSE;
10746
10747 m->p_type = PT_MIPS_REGINFO;
10748 m->count = 1;
10749 m->sections[0] = s;
10750
10751 /* We want to put it after the PHDR and INTERP segments. */
10752 pm = &elf_tdata (abfd)->segment_map;
10753 while (*pm != NULL
10754 && ((*pm)->p_type == PT_PHDR
10755 || (*pm)->p_type == PT_INTERP))
10756 pm = &(*pm)->next;
10757
10758 m->next = *pm;
10759 *pm = m;
10760 }
10761 }
10762
10763 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
10764 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
10765 PT_MIPS_OPTIONS segment immediately following the program header
10766 table. */
10767 if (NEWABI_P (abfd)
10768 /* On non-IRIX6 new abi, we'll have already created a segment
10769 for this section, so don't create another. I'm not sure this
10770 is not also the case for IRIX 6, but I can't test it right
10771 now. */
10772 && IRIX_COMPAT (abfd) == ict_irix6)
10773 {
10774 for (s = abfd->sections; s; s = s->next)
10775 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
10776 break;
10777
10778 if (s)
10779 {
10780 struct elf_segment_map *options_segment;
10781
10782 pm = &elf_tdata (abfd)->segment_map;
10783 while (*pm != NULL
10784 && ((*pm)->p_type == PT_PHDR
10785 || (*pm)->p_type == PT_INTERP))
10786 pm = &(*pm)->next;
10787
10788 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
10789 {
10790 amt = sizeof (struct elf_segment_map);
10791 options_segment = bfd_zalloc (abfd, amt);
10792 options_segment->next = *pm;
10793 options_segment->p_type = PT_MIPS_OPTIONS;
10794 options_segment->p_flags = PF_R;
10795 options_segment->p_flags_valid = TRUE;
10796 options_segment->count = 1;
10797 options_segment->sections[0] = s;
10798 *pm = options_segment;
10799 }
10800 }
10801 }
10802 else
10803 {
10804 if (IRIX_COMPAT (abfd) == ict_irix5)
10805 {
10806 /* If there are .dynamic and .mdebug sections, we make a room
10807 for the RTPROC header. FIXME: Rewrite without section names. */
10808 if (bfd_get_section_by_name (abfd, ".interp") == NULL
10809 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
10810 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
10811 {
10812 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10813 if (m->p_type == PT_MIPS_RTPROC)
10814 break;
10815 if (m == NULL)
10816 {
10817 amt = sizeof *m;
10818 m = bfd_zalloc (abfd, amt);
10819 if (m == NULL)
10820 return FALSE;
10821
10822 m->p_type = PT_MIPS_RTPROC;
10823
10824 s = bfd_get_section_by_name (abfd, ".rtproc");
10825 if (s == NULL)
10826 {
10827 m->count = 0;
10828 m->p_flags = 0;
10829 m->p_flags_valid = 1;
10830 }
10831 else
10832 {
10833 m->count = 1;
10834 m->sections[0] = s;
10835 }
10836
10837 /* We want to put it after the DYNAMIC segment. */
10838 pm = &elf_tdata (abfd)->segment_map;
10839 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
10840 pm = &(*pm)->next;
10841 if (*pm != NULL)
10842 pm = &(*pm)->next;
10843
10844 m->next = *pm;
10845 *pm = m;
10846 }
10847 }
10848 }
10849 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
10850 .dynstr, .dynsym, and .hash sections, and everything in
10851 between. */
10852 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
10853 pm = &(*pm)->next)
10854 if ((*pm)->p_type == PT_DYNAMIC)
10855 break;
10856 m = *pm;
10857 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
10858 {
10859 /* For a normal mips executable the permissions for the PT_DYNAMIC
10860 segment are read, write and execute. We do that here since
10861 the code in elf.c sets only the read permission. This matters
10862 sometimes for the dynamic linker. */
10863 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
10864 {
10865 m->p_flags = PF_R | PF_W | PF_X;
10866 m->p_flags_valid = 1;
10867 }
10868 }
10869 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
10870 glibc's dynamic linker has traditionally derived the number of
10871 tags from the p_filesz field, and sometimes allocates stack
10872 arrays of that size. An overly-big PT_DYNAMIC segment can
10873 be actively harmful in such cases. Making PT_DYNAMIC contain
10874 other sections can also make life hard for the prelinker,
10875 which might move one of the other sections to a different
10876 PT_LOAD segment. */
10877 if (SGI_COMPAT (abfd)
10878 && m != NULL
10879 && m->count == 1
10880 && strcmp (m->sections[0]->name, ".dynamic") == 0)
10881 {
10882 static const char *sec_names[] =
10883 {
10884 ".dynamic", ".dynstr", ".dynsym", ".hash"
10885 };
10886 bfd_vma low, high;
10887 unsigned int i, c;
10888 struct elf_segment_map *n;
10889
10890 low = ~(bfd_vma) 0;
10891 high = 0;
10892 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
10893 {
10894 s = bfd_get_section_by_name (abfd, sec_names[i]);
10895 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10896 {
10897 bfd_size_type sz;
10898
10899 if (low > s->vma)
10900 low = s->vma;
10901 sz = s->size;
10902 if (high < s->vma + sz)
10903 high = s->vma + sz;
10904 }
10905 }
10906
10907 c = 0;
10908 for (s = abfd->sections; s != NULL; s = s->next)
10909 if ((s->flags & SEC_LOAD) != 0
10910 && s->vma >= low
10911 && s->vma + s->size <= high)
10912 ++c;
10913
10914 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
10915 n = bfd_zalloc (abfd, amt);
10916 if (n == NULL)
10917 return FALSE;
10918 *n = *m;
10919 n->count = c;
10920
10921 i = 0;
10922 for (s = abfd->sections; s != NULL; s = s->next)
10923 {
10924 if ((s->flags & SEC_LOAD) != 0
10925 && s->vma >= low
10926 && s->vma + s->size <= high)
10927 {
10928 n->sections[i] = s;
10929 ++i;
10930 }
10931 }
10932
10933 *pm = n;
10934 }
10935 }
10936
10937 /* Allocate a spare program header in dynamic objects so that tools
10938 like the prelinker can add an extra PT_LOAD entry.
10939
10940 If the prelinker needs to make room for a new PT_LOAD entry, its
10941 standard procedure is to move the first (read-only) sections into
10942 the new (writable) segment. However, the MIPS ABI requires
10943 .dynamic to be in a read-only segment, and the section will often
10944 start within sizeof (ElfNN_Phdr) bytes of the last program header.
10945
10946 Although the prelinker could in principle move .dynamic to a
10947 writable segment, it seems better to allocate a spare program
10948 header instead, and avoid the need to move any sections.
10949 There is a long tradition of allocating spare dynamic tags,
10950 so allocating a spare program header seems like a natural
10951 extension.
10952
10953 If INFO is NULL, we may be copying an already prelinked binary
10954 with objcopy or strip, so do not add this header. */
10955 if (info != NULL
10956 && !SGI_COMPAT (abfd)
10957 && bfd_get_section_by_name (abfd, ".dynamic"))
10958 {
10959 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
10960 if ((*pm)->p_type == PT_NULL)
10961 break;
10962 if (*pm == NULL)
10963 {
10964 m = bfd_zalloc (abfd, sizeof (*m));
10965 if (m == NULL)
10966 return FALSE;
10967
10968 m->p_type = PT_NULL;
10969 *pm = m;
10970 }
10971 }
10972
10973 return TRUE;
10974 }
10975 \f
10976 /* Return the section that should be marked against GC for a given
10977 relocation. */
10978
10979 asection *
10980 _bfd_mips_elf_gc_mark_hook (asection *sec,
10981 struct bfd_link_info *info,
10982 Elf_Internal_Rela *rel,
10983 struct elf_link_hash_entry *h,
10984 Elf_Internal_Sym *sym)
10985 {
10986 /* ??? Do mips16 stub sections need to be handled special? */
10987
10988 if (h != NULL)
10989 switch (ELF_R_TYPE (sec->owner, rel->r_info))
10990 {
10991 case R_MIPS_GNU_VTINHERIT:
10992 case R_MIPS_GNU_VTENTRY:
10993 return NULL;
10994 }
10995
10996 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
10997 }
10998
10999 /* Update the got entry reference counts for the section being removed. */
11000
11001 bfd_boolean
11002 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11003 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11004 asection *sec ATTRIBUTE_UNUSED,
11005 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11006 {
11007 #if 0
11008 Elf_Internal_Shdr *symtab_hdr;
11009 struct elf_link_hash_entry **sym_hashes;
11010 bfd_signed_vma *local_got_refcounts;
11011 const Elf_Internal_Rela *rel, *relend;
11012 unsigned long r_symndx;
11013 struct elf_link_hash_entry *h;
11014
11015 if (info->relocatable)
11016 return TRUE;
11017
11018 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11019 sym_hashes = elf_sym_hashes (abfd);
11020 local_got_refcounts = elf_local_got_refcounts (abfd);
11021
11022 relend = relocs + sec->reloc_count;
11023 for (rel = relocs; rel < relend; rel++)
11024 switch (ELF_R_TYPE (abfd, rel->r_info))
11025 {
11026 case R_MIPS16_GOT16:
11027 case R_MIPS16_CALL16:
11028 case R_MIPS_GOT16:
11029 case R_MIPS_CALL16:
11030 case R_MIPS_CALL_HI16:
11031 case R_MIPS_CALL_LO16:
11032 case R_MIPS_GOT_HI16:
11033 case R_MIPS_GOT_LO16:
11034 case R_MIPS_GOT_DISP:
11035 case R_MIPS_GOT_PAGE:
11036 case R_MIPS_GOT_OFST:
11037 /* ??? It would seem that the existing MIPS code does no sort
11038 of reference counting or whatnot on its GOT and PLT entries,
11039 so it is not possible to garbage collect them at this time. */
11040 break;
11041
11042 default:
11043 break;
11044 }
11045 #endif
11046
11047 return TRUE;
11048 }
11049 \f
11050 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11051 hiding the old indirect symbol. Process additional relocation
11052 information. Also called for weakdefs, in which case we just let
11053 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11054
11055 void
11056 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11057 struct elf_link_hash_entry *dir,
11058 struct elf_link_hash_entry *ind)
11059 {
11060 struct mips_elf_link_hash_entry *dirmips, *indmips;
11061
11062 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11063
11064 dirmips = (struct mips_elf_link_hash_entry *) dir;
11065 indmips = (struct mips_elf_link_hash_entry *) ind;
11066 /* Any absolute non-dynamic relocations against an indirect or weak
11067 definition will be against the target symbol. */
11068 if (indmips->has_static_relocs)
11069 dirmips->has_static_relocs = TRUE;
11070
11071 if (ind->root.type != bfd_link_hash_indirect)
11072 return;
11073
11074 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11075 if (indmips->readonly_reloc)
11076 dirmips->readonly_reloc = TRUE;
11077 if (indmips->no_fn_stub)
11078 dirmips->no_fn_stub = TRUE;
11079 if (indmips->fn_stub)
11080 {
11081 dirmips->fn_stub = indmips->fn_stub;
11082 indmips->fn_stub = NULL;
11083 }
11084 if (indmips->need_fn_stub)
11085 {
11086 dirmips->need_fn_stub = TRUE;
11087 indmips->need_fn_stub = FALSE;
11088 }
11089 if (indmips->call_stub)
11090 {
11091 dirmips->call_stub = indmips->call_stub;
11092 indmips->call_stub = NULL;
11093 }
11094 if (indmips->call_fp_stub)
11095 {
11096 dirmips->call_fp_stub = indmips->call_fp_stub;
11097 indmips->call_fp_stub = NULL;
11098 }
11099 if (indmips->global_got_area < dirmips->global_got_area)
11100 dirmips->global_got_area = indmips->global_got_area;
11101 if (indmips->global_got_area < GGA_NONE)
11102 indmips->global_got_area = GGA_NONE;
11103 if (indmips->has_nonpic_branches)
11104 dirmips->has_nonpic_branches = TRUE;
11105
11106 if (dirmips->tls_type == 0)
11107 dirmips->tls_type = indmips->tls_type;
11108 }
11109 \f
11110 #define PDR_SIZE 32
11111
11112 bfd_boolean
11113 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11114 struct bfd_link_info *info)
11115 {
11116 asection *o;
11117 bfd_boolean ret = FALSE;
11118 unsigned char *tdata;
11119 size_t i, skip;
11120
11121 o = bfd_get_section_by_name (abfd, ".pdr");
11122 if (! o)
11123 return FALSE;
11124 if (o->size == 0)
11125 return FALSE;
11126 if (o->size % PDR_SIZE != 0)
11127 return FALSE;
11128 if (o->output_section != NULL
11129 && bfd_is_abs_section (o->output_section))
11130 return FALSE;
11131
11132 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11133 if (! tdata)
11134 return FALSE;
11135
11136 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11137 info->keep_memory);
11138 if (!cookie->rels)
11139 {
11140 free (tdata);
11141 return FALSE;
11142 }
11143
11144 cookie->rel = cookie->rels;
11145 cookie->relend = cookie->rels + o->reloc_count;
11146
11147 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11148 {
11149 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11150 {
11151 tdata[i] = 1;
11152 skip ++;
11153 }
11154 }
11155
11156 if (skip != 0)
11157 {
11158 mips_elf_section_data (o)->u.tdata = tdata;
11159 o->size -= skip * PDR_SIZE;
11160 ret = TRUE;
11161 }
11162 else
11163 free (tdata);
11164
11165 if (! info->keep_memory)
11166 free (cookie->rels);
11167
11168 return ret;
11169 }
11170
11171 bfd_boolean
11172 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11173 {
11174 if (strcmp (sec->name, ".pdr") == 0)
11175 return TRUE;
11176 return FALSE;
11177 }
11178
11179 bfd_boolean
11180 _bfd_mips_elf_write_section (bfd *output_bfd,
11181 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11182 asection *sec, bfd_byte *contents)
11183 {
11184 bfd_byte *to, *from, *end;
11185 int i;
11186
11187 if (strcmp (sec->name, ".pdr") != 0)
11188 return FALSE;
11189
11190 if (mips_elf_section_data (sec)->u.tdata == NULL)
11191 return FALSE;
11192
11193 to = contents;
11194 end = contents + sec->size;
11195 for (from = contents, i = 0;
11196 from < end;
11197 from += PDR_SIZE, i++)
11198 {
11199 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11200 continue;
11201 if (to != from)
11202 memcpy (to, from, PDR_SIZE);
11203 to += PDR_SIZE;
11204 }
11205 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11206 sec->output_offset, sec->size);
11207 return TRUE;
11208 }
11209 \f
11210 /* MIPS ELF uses a special find_nearest_line routine in order the
11211 handle the ECOFF debugging information. */
11212
11213 struct mips_elf_find_line
11214 {
11215 struct ecoff_debug_info d;
11216 struct ecoff_find_line i;
11217 };
11218
11219 bfd_boolean
11220 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11221 asymbol **symbols, bfd_vma offset,
11222 const char **filename_ptr,
11223 const char **functionname_ptr,
11224 unsigned int *line_ptr)
11225 {
11226 asection *msec;
11227
11228 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11229 filename_ptr, functionname_ptr,
11230 line_ptr))
11231 return TRUE;
11232
11233 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
11234 filename_ptr, functionname_ptr,
11235 line_ptr, ABI_64_P (abfd) ? 8 : 0,
11236 &elf_tdata (abfd)->dwarf2_find_line_info))
11237 return TRUE;
11238
11239 msec = bfd_get_section_by_name (abfd, ".mdebug");
11240 if (msec != NULL)
11241 {
11242 flagword origflags;
11243 struct mips_elf_find_line *fi;
11244 const struct ecoff_debug_swap * const swap =
11245 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11246
11247 /* If we are called during a link, mips_elf_final_link may have
11248 cleared the SEC_HAS_CONTENTS field. We force it back on here
11249 if appropriate (which it normally will be). */
11250 origflags = msec->flags;
11251 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11252 msec->flags |= SEC_HAS_CONTENTS;
11253
11254 fi = elf_tdata (abfd)->find_line_info;
11255 if (fi == NULL)
11256 {
11257 bfd_size_type external_fdr_size;
11258 char *fraw_src;
11259 char *fraw_end;
11260 struct fdr *fdr_ptr;
11261 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11262
11263 fi = bfd_zalloc (abfd, amt);
11264 if (fi == NULL)
11265 {
11266 msec->flags = origflags;
11267 return FALSE;
11268 }
11269
11270 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11271 {
11272 msec->flags = origflags;
11273 return FALSE;
11274 }
11275
11276 /* Swap in the FDR information. */
11277 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11278 fi->d.fdr = bfd_alloc (abfd, amt);
11279 if (fi->d.fdr == NULL)
11280 {
11281 msec->flags = origflags;
11282 return FALSE;
11283 }
11284 external_fdr_size = swap->external_fdr_size;
11285 fdr_ptr = fi->d.fdr;
11286 fraw_src = (char *) fi->d.external_fdr;
11287 fraw_end = (fraw_src
11288 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11289 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11290 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11291
11292 elf_tdata (abfd)->find_line_info = fi;
11293
11294 /* Note that we don't bother to ever free this information.
11295 find_nearest_line is either called all the time, as in
11296 objdump -l, so the information should be saved, or it is
11297 rarely called, as in ld error messages, so the memory
11298 wasted is unimportant. Still, it would probably be a
11299 good idea for free_cached_info to throw it away. */
11300 }
11301
11302 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11303 &fi->i, filename_ptr, functionname_ptr,
11304 line_ptr))
11305 {
11306 msec->flags = origflags;
11307 return TRUE;
11308 }
11309
11310 msec->flags = origflags;
11311 }
11312
11313 /* Fall back on the generic ELF find_nearest_line routine. */
11314
11315 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11316 filename_ptr, functionname_ptr,
11317 line_ptr);
11318 }
11319
11320 bfd_boolean
11321 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11322 const char **filename_ptr,
11323 const char **functionname_ptr,
11324 unsigned int *line_ptr)
11325 {
11326 bfd_boolean found;
11327 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11328 functionname_ptr, line_ptr,
11329 & elf_tdata (abfd)->dwarf2_find_line_info);
11330 return found;
11331 }
11332
11333 \f
11334 /* When are writing out the .options or .MIPS.options section,
11335 remember the bytes we are writing out, so that we can install the
11336 GP value in the section_processing routine. */
11337
11338 bfd_boolean
11339 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11340 const void *location,
11341 file_ptr offset, bfd_size_type count)
11342 {
11343 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11344 {
11345 bfd_byte *c;
11346
11347 if (elf_section_data (section) == NULL)
11348 {
11349 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11350 section->used_by_bfd = bfd_zalloc (abfd, amt);
11351 if (elf_section_data (section) == NULL)
11352 return FALSE;
11353 }
11354 c = mips_elf_section_data (section)->u.tdata;
11355 if (c == NULL)
11356 {
11357 c = bfd_zalloc (abfd, section->size);
11358 if (c == NULL)
11359 return FALSE;
11360 mips_elf_section_data (section)->u.tdata = c;
11361 }
11362
11363 memcpy (c + offset, location, count);
11364 }
11365
11366 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11367 count);
11368 }
11369
11370 /* This is almost identical to bfd_generic_get_... except that some
11371 MIPS relocations need to be handled specially. Sigh. */
11372
11373 bfd_byte *
11374 _bfd_elf_mips_get_relocated_section_contents
11375 (bfd *abfd,
11376 struct bfd_link_info *link_info,
11377 struct bfd_link_order *link_order,
11378 bfd_byte *data,
11379 bfd_boolean relocatable,
11380 asymbol **symbols)
11381 {
11382 /* Get enough memory to hold the stuff */
11383 bfd *input_bfd = link_order->u.indirect.section->owner;
11384 asection *input_section = link_order->u.indirect.section;
11385 bfd_size_type sz;
11386
11387 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11388 arelent **reloc_vector = NULL;
11389 long reloc_count;
11390
11391 if (reloc_size < 0)
11392 goto error_return;
11393
11394 reloc_vector = bfd_malloc (reloc_size);
11395 if (reloc_vector == NULL && reloc_size != 0)
11396 goto error_return;
11397
11398 /* read in the section */
11399 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11400 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11401 goto error_return;
11402
11403 reloc_count = bfd_canonicalize_reloc (input_bfd,
11404 input_section,
11405 reloc_vector,
11406 symbols);
11407 if (reloc_count < 0)
11408 goto error_return;
11409
11410 if (reloc_count > 0)
11411 {
11412 arelent **parent;
11413 /* for mips */
11414 int gp_found;
11415 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11416
11417 {
11418 struct bfd_hash_entry *h;
11419 struct bfd_link_hash_entry *lh;
11420 /* Skip all this stuff if we aren't mixing formats. */
11421 if (abfd && input_bfd
11422 && abfd->xvec == input_bfd->xvec)
11423 lh = 0;
11424 else
11425 {
11426 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11427 lh = (struct bfd_link_hash_entry *) h;
11428 }
11429 lookup:
11430 if (lh)
11431 {
11432 switch (lh->type)
11433 {
11434 case bfd_link_hash_undefined:
11435 case bfd_link_hash_undefweak:
11436 case bfd_link_hash_common:
11437 gp_found = 0;
11438 break;
11439 case bfd_link_hash_defined:
11440 case bfd_link_hash_defweak:
11441 gp_found = 1;
11442 gp = lh->u.def.value;
11443 break;
11444 case bfd_link_hash_indirect:
11445 case bfd_link_hash_warning:
11446 lh = lh->u.i.link;
11447 /* @@FIXME ignoring warning for now */
11448 goto lookup;
11449 case bfd_link_hash_new:
11450 default:
11451 abort ();
11452 }
11453 }
11454 else
11455 gp_found = 0;
11456 }
11457 /* end mips */
11458 for (parent = reloc_vector; *parent != NULL; parent++)
11459 {
11460 char *error_message = NULL;
11461 bfd_reloc_status_type r;
11462
11463 /* Specific to MIPS: Deal with relocation types that require
11464 knowing the gp of the output bfd. */
11465 asymbol *sym = *(*parent)->sym_ptr_ptr;
11466
11467 /* If we've managed to find the gp and have a special
11468 function for the relocation then go ahead, else default
11469 to the generic handling. */
11470 if (gp_found
11471 && (*parent)->howto->special_function
11472 == _bfd_mips_elf32_gprel16_reloc)
11473 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11474 input_section, relocatable,
11475 data, gp);
11476 else
11477 r = bfd_perform_relocation (input_bfd, *parent, data,
11478 input_section,
11479 relocatable ? abfd : NULL,
11480 &error_message);
11481
11482 if (relocatable)
11483 {
11484 asection *os = input_section->output_section;
11485
11486 /* A partial link, so keep the relocs */
11487 os->orelocation[os->reloc_count] = *parent;
11488 os->reloc_count++;
11489 }
11490
11491 if (r != bfd_reloc_ok)
11492 {
11493 switch (r)
11494 {
11495 case bfd_reloc_undefined:
11496 if (!((*link_info->callbacks->undefined_symbol)
11497 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11498 input_bfd, input_section, (*parent)->address, TRUE)))
11499 goto error_return;
11500 break;
11501 case bfd_reloc_dangerous:
11502 BFD_ASSERT (error_message != NULL);
11503 if (!((*link_info->callbacks->reloc_dangerous)
11504 (link_info, error_message, input_bfd, input_section,
11505 (*parent)->address)))
11506 goto error_return;
11507 break;
11508 case bfd_reloc_overflow:
11509 if (!((*link_info->callbacks->reloc_overflow)
11510 (link_info, NULL,
11511 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11512 (*parent)->howto->name, (*parent)->addend,
11513 input_bfd, input_section, (*parent)->address)))
11514 goto error_return;
11515 break;
11516 case bfd_reloc_outofrange:
11517 default:
11518 abort ();
11519 break;
11520 }
11521
11522 }
11523 }
11524 }
11525 if (reloc_vector != NULL)
11526 free (reloc_vector);
11527 return data;
11528
11529 error_return:
11530 if (reloc_vector != NULL)
11531 free (reloc_vector);
11532 return NULL;
11533 }
11534 \f
11535 /* Create a MIPS ELF linker hash table. */
11536
11537 struct bfd_link_hash_table *
11538 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
11539 {
11540 struct mips_elf_link_hash_table *ret;
11541 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
11542
11543 ret = bfd_malloc (amt);
11544 if (ret == NULL)
11545 return NULL;
11546
11547 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
11548 mips_elf_link_hash_newfunc,
11549 sizeof (struct mips_elf_link_hash_entry),
11550 MIPS_ELF_DATA))
11551 {
11552 free (ret);
11553 return NULL;
11554 }
11555
11556 #if 0
11557 /* We no longer use this. */
11558 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
11559 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
11560 #endif
11561 ret->procedure_count = 0;
11562 ret->compact_rel_size = 0;
11563 ret->use_rld_obj_head = FALSE;
11564 ret->rld_value = 0;
11565 ret->mips16_stubs_seen = FALSE;
11566 ret->use_plts_and_copy_relocs = FALSE;
11567 ret->is_vxworks = FALSE;
11568 ret->small_data_overflow_reported = FALSE;
11569 ret->srelbss = NULL;
11570 ret->sdynbss = NULL;
11571 ret->srelplt = NULL;
11572 ret->srelplt2 = NULL;
11573 ret->sgotplt = NULL;
11574 ret->splt = NULL;
11575 ret->sstubs = NULL;
11576 ret->sgot = NULL;
11577 ret->got_info = NULL;
11578 ret->plt_header_size = 0;
11579 ret->plt_entry_size = 0;
11580 ret->lazy_stub_count = 0;
11581 ret->function_stub_size = 0;
11582 ret->strampoline = NULL;
11583 ret->la25_stubs = NULL;
11584 ret->add_stub_section = NULL;
11585
11586 return &ret->root.root;
11587 }
11588
11589 /* Likewise, but indicate that the target is VxWorks. */
11590
11591 struct bfd_link_hash_table *
11592 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
11593 {
11594 struct bfd_link_hash_table *ret;
11595
11596 ret = _bfd_mips_elf_link_hash_table_create (abfd);
11597 if (ret)
11598 {
11599 struct mips_elf_link_hash_table *htab;
11600
11601 htab = (struct mips_elf_link_hash_table *) ret;
11602 htab->use_plts_and_copy_relocs = TRUE;
11603 htab->is_vxworks = TRUE;
11604 }
11605 return ret;
11606 }
11607
11608 /* A function that the linker calls if we are allowed to use PLTs
11609 and copy relocs. */
11610
11611 void
11612 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
11613 {
11614 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
11615 }
11616 \f
11617 /* We need to use a special link routine to handle the .reginfo and
11618 the .mdebug sections. We need to merge all instances of these
11619 sections together, not write them all out sequentially. */
11620
11621 bfd_boolean
11622 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11623 {
11624 asection *o;
11625 struct bfd_link_order *p;
11626 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
11627 asection *rtproc_sec;
11628 Elf32_RegInfo reginfo;
11629 struct ecoff_debug_info debug;
11630 struct mips_htab_traverse_info hti;
11631 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11632 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
11633 HDRR *symhdr = &debug.symbolic_header;
11634 void *mdebug_handle = NULL;
11635 asection *s;
11636 EXTR esym;
11637 unsigned int i;
11638 bfd_size_type amt;
11639 struct mips_elf_link_hash_table *htab;
11640
11641 static const char * const secname[] =
11642 {
11643 ".text", ".init", ".fini", ".data",
11644 ".rodata", ".sdata", ".sbss", ".bss"
11645 };
11646 static const int sc[] =
11647 {
11648 scText, scInit, scFini, scData,
11649 scRData, scSData, scSBss, scBss
11650 };
11651
11652 /* Sort the dynamic symbols so that those with GOT entries come after
11653 those without. */
11654 htab = mips_elf_hash_table (info);
11655 BFD_ASSERT (htab != NULL);
11656
11657 if (!mips_elf_sort_hash_table (abfd, info))
11658 return FALSE;
11659
11660 /* Create any scheduled LA25 stubs. */
11661 hti.info = info;
11662 hti.output_bfd = abfd;
11663 hti.error = FALSE;
11664 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
11665 if (hti.error)
11666 return FALSE;
11667
11668 /* Get a value for the GP register. */
11669 if (elf_gp (abfd) == 0)
11670 {
11671 struct bfd_link_hash_entry *h;
11672
11673 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
11674 if (h != NULL && h->type == bfd_link_hash_defined)
11675 elf_gp (abfd) = (h->u.def.value
11676 + h->u.def.section->output_section->vma
11677 + h->u.def.section->output_offset);
11678 else if (htab->is_vxworks
11679 && (h = bfd_link_hash_lookup (info->hash,
11680 "_GLOBAL_OFFSET_TABLE_",
11681 FALSE, FALSE, TRUE))
11682 && h->type == bfd_link_hash_defined)
11683 elf_gp (abfd) = (h->u.def.section->output_section->vma
11684 + h->u.def.section->output_offset
11685 + h->u.def.value);
11686 else if (info->relocatable)
11687 {
11688 bfd_vma lo = MINUS_ONE;
11689
11690 /* Find the GP-relative section with the lowest offset. */
11691 for (o = abfd->sections; o != NULL; o = o->next)
11692 if (o->vma < lo
11693 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
11694 lo = o->vma;
11695
11696 /* And calculate GP relative to that. */
11697 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
11698 }
11699 else
11700 {
11701 /* If the relocate_section function needs to do a reloc
11702 involving the GP value, it should make a reloc_dangerous
11703 callback to warn that GP is not defined. */
11704 }
11705 }
11706
11707 /* Go through the sections and collect the .reginfo and .mdebug
11708 information. */
11709 reginfo_sec = NULL;
11710 mdebug_sec = NULL;
11711 gptab_data_sec = NULL;
11712 gptab_bss_sec = NULL;
11713 for (o = abfd->sections; o != NULL; o = o->next)
11714 {
11715 if (strcmp (o->name, ".reginfo") == 0)
11716 {
11717 memset (&reginfo, 0, sizeof reginfo);
11718
11719 /* We have found the .reginfo section in the output file.
11720 Look through all the link_orders comprising it and merge
11721 the information together. */
11722 for (p = o->map_head.link_order; p != NULL; p = p->next)
11723 {
11724 asection *input_section;
11725 bfd *input_bfd;
11726 Elf32_External_RegInfo ext;
11727 Elf32_RegInfo sub;
11728
11729 if (p->type != bfd_indirect_link_order)
11730 {
11731 if (p->type == bfd_data_link_order)
11732 continue;
11733 abort ();
11734 }
11735
11736 input_section = p->u.indirect.section;
11737 input_bfd = input_section->owner;
11738
11739 if (! bfd_get_section_contents (input_bfd, input_section,
11740 &ext, 0, sizeof ext))
11741 return FALSE;
11742
11743 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
11744
11745 reginfo.ri_gprmask |= sub.ri_gprmask;
11746 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
11747 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
11748 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
11749 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
11750
11751 /* ri_gp_value is set by the function
11752 mips_elf32_section_processing when the section is
11753 finally written out. */
11754
11755 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11756 elf_link_input_bfd ignores this section. */
11757 input_section->flags &= ~SEC_HAS_CONTENTS;
11758 }
11759
11760 /* Size has been set in _bfd_mips_elf_always_size_sections. */
11761 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
11762
11763 /* Skip this section later on (I don't think this currently
11764 matters, but someday it might). */
11765 o->map_head.link_order = NULL;
11766
11767 reginfo_sec = o;
11768 }
11769
11770 if (strcmp (o->name, ".mdebug") == 0)
11771 {
11772 struct extsym_info einfo;
11773 bfd_vma last;
11774
11775 /* We have found the .mdebug section in the output file.
11776 Look through all the link_orders comprising it and merge
11777 the information together. */
11778 symhdr->magic = swap->sym_magic;
11779 /* FIXME: What should the version stamp be? */
11780 symhdr->vstamp = 0;
11781 symhdr->ilineMax = 0;
11782 symhdr->cbLine = 0;
11783 symhdr->idnMax = 0;
11784 symhdr->ipdMax = 0;
11785 symhdr->isymMax = 0;
11786 symhdr->ioptMax = 0;
11787 symhdr->iauxMax = 0;
11788 symhdr->issMax = 0;
11789 symhdr->issExtMax = 0;
11790 symhdr->ifdMax = 0;
11791 symhdr->crfd = 0;
11792 symhdr->iextMax = 0;
11793
11794 /* We accumulate the debugging information itself in the
11795 debug_info structure. */
11796 debug.line = NULL;
11797 debug.external_dnr = NULL;
11798 debug.external_pdr = NULL;
11799 debug.external_sym = NULL;
11800 debug.external_opt = NULL;
11801 debug.external_aux = NULL;
11802 debug.ss = NULL;
11803 debug.ssext = debug.ssext_end = NULL;
11804 debug.external_fdr = NULL;
11805 debug.external_rfd = NULL;
11806 debug.external_ext = debug.external_ext_end = NULL;
11807
11808 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
11809 if (mdebug_handle == NULL)
11810 return FALSE;
11811
11812 esym.jmptbl = 0;
11813 esym.cobol_main = 0;
11814 esym.weakext = 0;
11815 esym.reserved = 0;
11816 esym.ifd = ifdNil;
11817 esym.asym.iss = issNil;
11818 esym.asym.st = stLocal;
11819 esym.asym.reserved = 0;
11820 esym.asym.index = indexNil;
11821 last = 0;
11822 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
11823 {
11824 esym.asym.sc = sc[i];
11825 s = bfd_get_section_by_name (abfd, secname[i]);
11826 if (s != NULL)
11827 {
11828 esym.asym.value = s->vma;
11829 last = s->vma + s->size;
11830 }
11831 else
11832 esym.asym.value = last;
11833 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
11834 secname[i], &esym))
11835 return FALSE;
11836 }
11837
11838 for (p = o->map_head.link_order; p != NULL; p = p->next)
11839 {
11840 asection *input_section;
11841 bfd *input_bfd;
11842 const struct ecoff_debug_swap *input_swap;
11843 struct ecoff_debug_info input_debug;
11844 char *eraw_src;
11845 char *eraw_end;
11846
11847 if (p->type != bfd_indirect_link_order)
11848 {
11849 if (p->type == bfd_data_link_order)
11850 continue;
11851 abort ();
11852 }
11853
11854 input_section = p->u.indirect.section;
11855 input_bfd = input_section->owner;
11856
11857 if (!is_mips_elf (input_bfd))
11858 {
11859 /* I don't know what a non MIPS ELF bfd would be
11860 doing with a .mdebug section, but I don't really
11861 want to deal with it. */
11862 continue;
11863 }
11864
11865 input_swap = (get_elf_backend_data (input_bfd)
11866 ->elf_backend_ecoff_debug_swap);
11867
11868 BFD_ASSERT (p->size == input_section->size);
11869
11870 /* The ECOFF linking code expects that we have already
11871 read in the debugging information and set up an
11872 ecoff_debug_info structure, so we do that now. */
11873 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
11874 &input_debug))
11875 return FALSE;
11876
11877 if (! (bfd_ecoff_debug_accumulate
11878 (mdebug_handle, abfd, &debug, swap, input_bfd,
11879 &input_debug, input_swap, info)))
11880 return FALSE;
11881
11882 /* Loop through the external symbols. For each one with
11883 interesting information, try to find the symbol in
11884 the linker global hash table and save the information
11885 for the output external symbols. */
11886 eraw_src = input_debug.external_ext;
11887 eraw_end = (eraw_src
11888 + (input_debug.symbolic_header.iextMax
11889 * input_swap->external_ext_size));
11890 for (;
11891 eraw_src < eraw_end;
11892 eraw_src += input_swap->external_ext_size)
11893 {
11894 EXTR ext;
11895 const char *name;
11896 struct mips_elf_link_hash_entry *h;
11897
11898 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
11899 if (ext.asym.sc == scNil
11900 || ext.asym.sc == scUndefined
11901 || ext.asym.sc == scSUndefined)
11902 continue;
11903
11904 name = input_debug.ssext + ext.asym.iss;
11905 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
11906 name, FALSE, FALSE, TRUE);
11907 if (h == NULL || h->esym.ifd != -2)
11908 continue;
11909
11910 if (ext.ifd != -1)
11911 {
11912 BFD_ASSERT (ext.ifd
11913 < input_debug.symbolic_header.ifdMax);
11914 ext.ifd = input_debug.ifdmap[ext.ifd];
11915 }
11916
11917 h->esym = ext;
11918 }
11919
11920 /* Free up the information we just read. */
11921 free (input_debug.line);
11922 free (input_debug.external_dnr);
11923 free (input_debug.external_pdr);
11924 free (input_debug.external_sym);
11925 free (input_debug.external_opt);
11926 free (input_debug.external_aux);
11927 free (input_debug.ss);
11928 free (input_debug.ssext);
11929 free (input_debug.external_fdr);
11930 free (input_debug.external_rfd);
11931 free (input_debug.external_ext);
11932
11933 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11934 elf_link_input_bfd ignores this section. */
11935 input_section->flags &= ~SEC_HAS_CONTENTS;
11936 }
11937
11938 if (SGI_COMPAT (abfd) && info->shared)
11939 {
11940 /* Create .rtproc section. */
11941 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
11942 if (rtproc_sec == NULL)
11943 {
11944 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
11945 | SEC_LINKER_CREATED | SEC_READONLY);
11946
11947 rtproc_sec = bfd_make_section_with_flags (abfd,
11948 ".rtproc",
11949 flags);
11950 if (rtproc_sec == NULL
11951 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
11952 return FALSE;
11953 }
11954
11955 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
11956 info, rtproc_sec,
11957 &debug))
11958 return FALSE;
11959 }
11960
11961 /* Build the external symbol information. */
11962 einfo.abfd = abfd;
11963 einfo.info = info;
11964 einfo.debug = &debug;
11965 einfo.swap = swap;
11966 einfo.failed = FALSE;
11967 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
11968 mips_elf_output_extsym, &einfo);
11969 if (einfo.failed)
11970 return FALSE;
11971
11972 /* Set the size of the .mdebug section. */
11973 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
11974
11975 /* Skip this section later on (I don't think this currently
11976 matters, but someday it might). */
11977 o->map_head.link_order = NULL;
11978
11979 mdebug_sec = o;
11980 }
11981
11982 if (CONST_STRNEQ (o->name, ".gptab."))
11983 {
11984 const char *subname;
11985 unsigned int c;
11986 Elf32_gptab *tab;
11987 Elf32_External_gptab *ext_tab;
11988 unsigned int j;
11989
11990 /* The .gptab.sdata and .gptab.sbss sections hold
11991 information describing how the small data area would
11992 change depending upon the -G switch. These sections
11993 not used in executables files. */
11994 if (! info->relocatable)
11995 {
11996 for (p = o->map_head.link_order; p != NULL; p = p->next)
11997 {
11998 asection *input_section;
11999
12000 if (p->type != bfd_indirect_link_order)
12001 {
12002 if (p->type == bfd_data_link_order)
12003 continue;
12004 abort ();
12005 }
12006
12007 input_section = p->u.indirect.section;
12008
12009 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12010 elf_link_input_bfd ignores this section. */
12011 input_section->flags &= ~SEC_HAS_CONTENTS;
12012 }
12013
12014 /* Skip this section later on (I don't think this
12015 currently matters, but someday it might). */
12016 o->map_head.link_order = NULL;
12017
12018 /* Really remove the section. */
12019 bfd_section_list_remove (abfd, o);
12020 --abfd->section_count;
12021
12022 continue;
12023 }
12024
12025 /* There is one gptab for initialized data, and one for
12026 uninitialized data. */
12027 if (strcmp (o->name, ".gptab.sdata") == 0)
12028 gptab_data_sec = o;
12029 else if (strcmp (o->name, ".gptab.sbss") == 0)
12030 gptab_bss_sec = o;
12031 else
12032 {
12033 (*_bfd_error_handler)
12034 (_("%s: illegal section name `%s'"),
12035 bfd_get_filename (abfd), o->name);
12036 bfd_set_error (bfd_error_nonrepresentable_section);
12037 return FALSE;
12038 }
12039
12040 /* The linker script always combines .gptab.data and
12041 .gptab.sdata into .gptab.sdata, and likewise for
12042 .gptab.bss and .gptab.sbss. It is possible that there is
12043 no .sdata or .sbss section in the output file, in which
12044 case we must change the name of the output section. */
12045 subname = o->name + sizeof ".gptab" - 1;
12046 if (bfd_get_section_by_name (abfd, subname) == NULL)
12047 {
12048 if (o == gptab_data_sec)
12049 o->name = ".gptab.data";
12050 else
12051 o->name = ".gptab.bss";
12052 subname = o->name + sizeof ".gptab" - 1;
12053 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
12054 }
12055
12056 /* Set up the first entry. */
12057 c = 1;
12058 amt = c * sizeof (Elf32_gptab);
12059 tab = bfd_malloc (amt);
12060 if (tab == NULL)
12061 return FALSE;
12062 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
12063 tab[0].gt_header.gt_unused = 0;
12064
12065 /* Combine the input sections. */
12066 for (p = o->map_head.link_order; p != NULL; p = p->next)
12067 {
12068 asection *input_section;
12069 bfd *input_bfd;
12070 bfd_size_type size;
12071 unsigned long last;
12072 bfd_size_type gpentry;
12073
12074 if (p->type != bfd_indirect_link_order)
12075 {
12076 if (p->type == bfd_data_link_order)
12077 continue;
12078 abort ();
12079 }
12080
12081 input_section = p->u.indirect.section;
12082 input_bfd = input_section->owner;
12083
12084 /* Combine the gptab entries for this input section one
12085 by one. We know that the input gptab entries are
12086 sorted by ascending -G value. */
12087 size = input_section->size;
12088 last = 0;
12089 for (gpentry = sizeof (Elf32_External_gptab);
12090 gpentry < size;
12091 gpentry += sizeof (Elf32_External_gptab))
12092 {
12093 Elf32_External_gptab ext_gptab;
12094 Elf32_gptab int_gptab;
12095 unsigned long val;
12096 unsigned long add;
12097 bfd_boolean exact;
12098 unsigned int look;
12099
12100 if (! (bfd_get_section_contents
12101 (input_bfd, input_section, &ext_gptab, gpentry,
12102 sizeof (Elf32_External_gptab))))
12103 {
12104 free (tab);
12105 return FALSE;
12106 }
12107
12108 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
12109 &int_gptab);
12110 val = int_gptab.gt_entry.gt_g_value;
12111 add = int_gptab.gt_entry.gt_bytes - last;
12112
12113 exact = FALSE;
12114 for (look = 1; look < c; look++)
12115 {
12116 if (tab[look].gt_entry.gt_g_value >= val)
12117 tab[look].gt_entry.gt_bytes += add;
12118
12119 if (tab[look].gt_entry.gt_g_value == val)
12120 exact = TRUE;
12121 }
12122
12123 if (! exact)
12124 {
12125 Elf32_gptab *new_tab;
12126 unsigned int max;
12127
12128 /* We need a new table entry. */
12129 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
12130 new_tab = bfd_realloc (tab, amt);
12131 if (new_tab == NULL)
12132 {
12133 free (tab);
12134 return FALSE;
12135 }
12136 tab = new_tab;
12137 tab[c].gt_entry.gt_g_value = val;
12138 tab[c].gt_entry.gt_bytes = add;
12139
12140 /* Merge in the size for the next smallest -G
12141 value, since that will be implied by this new
12142 value. */
12143 max = 0;
12144 for (look = 1; look < c; look++)
12145 {
12146 if (tab[look].gt_entry.gt_g_value < val
12147 && (max == 0
12148 || (tab[look].gt_entry.gt_g_value
12149 > tab[max].gt_entry.gt_g_value)))
12150 max = look;
12151 }
12152 if (max != 0)
12153 tab[c].gt_entry.gt_bytes +=
12154 tab[max].gt_entry.gt_bytes;
12155
12156 ++c;
12157 }
12158
12159 last = int_gptab.gt_entry.gt_bytes;
12160 }
12161
12162 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12163 elf_link_input_bfd ignores this section. */
12164 input_section->flags &= ~SEC_HAS_CONTENTS;
12165 }
12166
12167 /* The table must be sorted by -G value. */
12168 if (c > 2)
12169 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
12170
12171 /* Swap out the table. */
12172 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
12173 ext_tab = bfd_alloc (abfd, amt);
12174 if (ext_tab == NULL)
12175 {
12176 free (tab);
12177 return FALSE;
12178 }
12179
12180 for (j = 0; j < c; j++)
12181 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
12182 free (tab);
12183
12184 o->size = c * sizeof (Elf32_External_gptab);
12185 o->contents = (bfd_byte *) ext_tab;
12186
12187 /* Skip this section later on (I don't think this currently
12188 matters, but someday it might). */
12189 o->map_head.link_order = NULL;
12190 }
12191 }
12192
12193 /* Invoke the regular ELF backend linker to do all the work. */
12194 if (!bfd_elf_final_link (abfd, info))
12195 return FALSE;
12196
12197 /* Now write out the computed sections. */
12198
12199 if (reginfo_sec != NULL)
12200 {
12201 Elf32_External_RegInfo ext;
12202
12203 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
12204 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
12205 return FALSE;
12206 }
12207
12208 if (mdebug_sec != NULL)
12209 {
12210 BFD_ASSERT (abfd->output_has_begun);
12211 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
12212 swap, info,
12213 mdebug_sec->filepos))
12214 return FALSE;
12215
12216 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
12217 }
12218
12219 if (gptab_data_sec != NULL)
12220 {
12221 if (! bfd_set_section_contents (abfd, gptab_data_sec,
12222 gptab_data_sec->contents,
12223 0, gptab_data_sec->size))
12224 return FALSE;
12225 }
12226
12227 if (gptab_bss_sec != NULL)
12228 {
12229 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
12230 gptab_bss_sec->contents,
12231 0, gptab_bss_sec->size))
12232 return FALSE;
12233 }
12234
12235 if (SGI_COMPAT (abfd))
12236 {
12237 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
12238 if (rtproc_sec != NULL)
12239 {
12240 if (! bfd_set_section_contents (abfd, rtproc_sec,
12241 rtproc_sec->contents,
12242 0, rtproc_sec->size))
12243 return FALSE;
12244 }
12245 }
12246
12247 return TRUE;
12248 }
12249 \f
12250 /* Structure for saying that BFD machine EXTENSION extends BASE. */
12251
12252 struct mips_mach_extension {
12253 unsigned long extension, base;
12254 };
12255
12256
12257 /* An array describing how BFD machines relate to one another. The entries
12258 are ordered topologically with MIPS I extensions listed last. */
12259
12260 static const struct mips_mach_extension mips_mach_extensions[] = {
12261 /* MIPS64r2 extensions. */
12262 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
12263
12264 /* MIPS64 extensions. */
12265 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
12266 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
12267 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
12268 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
12269
12270 /* MIPS V extensions. */
12271 { bfd_mach_mipsisa64, bfd_mach_mips5 },
12272
12273 /* R10000 extensions. */
12274 { bfd_mach_mips12000, bfd_mach_mips10000 },
12275 { bfd_mach_mips14000, bfd_mach_mips10000 },
12276 { bfd_mach_mips16000, bfd_mach_mips10000 },
12277
12278 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
12279 vr5400 ISA, but doesn't include the multimedia stuff. It seems
12280 better to allow vr5400 and vr5500 code to be merged anyway, since
12281 many libraries will just use the core ISA. Perhaps we could add
12282 some sort of ASE flag if this ever proves a problem. */
12283 { bfd_mach_mips5500, bfd_mach_mips5400 },
12284 { bfd_mach_mips5400, bfd_mach_mips5000 },
12285
12286 /* MIPS IV extensions. */
12287 { bfd_mach_mips5, bfd_mach_mips8000 },
12288 { bfd_mach_mips10000, bfd_mach_mips8000 },
12289 { bfd_mach_mips5000, bfd_mach_mips8000 },
12290 { bfd_mach_mips7000, bfd_mach_mips8000 },
12291 { bfd_mach_mips9000, bfd_mach_mips8000 },
12292
12293 /* VR4100 extensions. */
12294 { bfd_mach_mips4120, bfd_mach_mips4100 },
12295 { bfd_mach_mips4111, bfd_mach_mips4100 },
12296
12297 /* MIPS III extensions. */
12298 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
12299 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
12300 { bfd_mach_mips8000, bfd_mach_mips4000 },
12301 { bfd_mach_mips4650, bfd_mach_mips4000 },
12302 { bfd_mach_mips4600, bfd_mach_mips4000 },
12303 { bfd_mach_mips4400, bfd_mach_mips4000 },
12304 { bfd_mach_mips4300, bfd_mach_mips4000 },
12305 { bfd_mach_mips4100, bfd_mach_mips4000 },
12306 { bfd_mach_mips4010, bfd_mach_mips4000 },
12307
12308 /* MIPS32 extensions. */
12309 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
12310
12311 /* MIPS II extensions. */
12312 { bfd_mach_mips4000, bfd_mach_mips6000 },
12313 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
12314
12315 /* MIPS I extensions. */
12316 { bfd_mach_mips6000, bfd_mach_mips3000 },
12317 { bfd_mach_mips3900, bfd_mach_mips3000 }
12318 };
12319
12320
12321 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
12322
12323 static bfd_boolean
12324 mips_mach_extends_p (unsigned long base, unsigned long extension)
12325 {
12326 size_t i;
12327
12328 if (extension == base)
12329 return TRUE;
12330
12331 if (base == bfd_mach_mipsisa32
12332 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
12333 return TRUE;
12334
12335 if (base == bfd_mach_mipsisa32r2
12336 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
12337 return TRUE;
12338
12339 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
12340 if (extension == mips_mach_extensions[i].extension)
12341 {
12342 extension = mips_mach_extensions[i].base;
12343 if (extension == base)
12344 return TRUE;
12345 }
12346
12347 return FALSE;
12348 }
12349
12350
12351 /* Return true if the given ELF header flags describe a 32-bit binary. */
12352
12353 static bfd_boolean
12354 mips_32bit_flags_p (flagword flags)
12355 {
12356 return ((flags & EF_MIPS_32BITMODE) != 0
12357 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
12358 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
12359 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
12360 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
12361 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
12362 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
12363 }
12364
12365
12366 /* Merge object attributes from IBFD into OBFD. Raise an error if
12367 there are conflicting attributes. */
12368 static bfd_boolean
12369 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
12370 {
12371 obj_attribute *in_attr;
12372 obj_attribute *out_attr;
12373
12374 if (!elf_known_obj_attributes_proc (obfd)[0].i)
12375 {
12376 /* This is the first object. Copy the attributes. */
12377 _bfd_elf_copy_obj_attributes (ibfd, obfd);
12378
12379 /* Use the Tag_null value to indicate the attributes have been
12380 initialized. */
12381 elf_known_obj_attributes_proc (obfd)[0].i = 1;
12382
12383 return TRUE;
12384 }
12385
12386 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
12387 non-conflicting ones. */
12388 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
12389 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
12390 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
12391 {
12392 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
12393 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12394 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
12395 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12396 ;
12397 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
12398 _bfd_error_handler
12399 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
12400 in_attr[Tag_GNU_MIPS_ABI_FP].i);
12401 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
12402 _bfd_error_handler
12403 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
12404 out_attr[Tag_GNU_MIPS_ABI_FP].i);
12405 else
12406 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
12407 {
12408 case 1:
12409 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12410 {
12411 case 2:
12412 _bfd_error_handler
12413 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12414 obfd, ibfd);
12415 break;
12416
12417 case 3:
12418 _bfd_error_handler
12419 (_("Warning: %B uses hard float, %B uses soft float"),
12420 obfd, ibfd);
12421 break;
12422
12423 case 4:
12424 _bfd_error_handler
12425 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12426 obfd, ibfd);
12427 break;
12428
12429 default:
12430 abort ();
12431 }
12432 break;
12433
12434 case 2:
12435 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12436 {
12437 case 1:
12438 _bfd_error_handler
12439 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12440 ibfd, obfd);
12441 break;
12442
12443 case 3:
12444 _bfd_error_handler
12445 (_("Warning: %B uses hard float, %B uses soft float"),
12446 obfd, ibfd);
12447 break;
12448
12449 case 4:
12450 _bfd_error_handler
12451 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12452 obfd, ibfd);
12453 break;
12454
12455 default:
12456 abort ();
12457 }
12458 break;
12459
12460 case 3:
12461 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12462 {
12463 case 1:
12464 case 2:
12465 case 4:
12466 _bfd_error_handler
12467 (_("Warning: %B uses hard float, %B uses soft float"),
12468 ibfd, obfd);
12469 break;
12470
12471 default:
12472 abort ();
12473 }
12474 break;
12475
12476 case 4:
12477 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12478 {
12479 case 1:
12480 _bfd_error_handler
12481 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12482 ibfd, obfd);
12483 break;
12484
12485 case 2:
12486 _bfd_error_handler
12487 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12488 ibfd, obfd);
12489 break;
12490
12491 case 3:
12492 _bfd_error_handler
12493 (_("Warning: %B uses hard float, %B uses soft float"),
12494 obfd, ibfd);
12495 break;
12496
12497 default:
12498 abort ();
12499 }
12500 break;
12501
12502 default:
12503 abort ();
12504 }
12505 }
12506
12507 /* Merge Tag_compatibility attributes and any common GNU ones. */
12508 _bfd_elf_merge_object_attributes (ibfd, obfd);
12509
12510 return TRUE;
12511 }
12512
12513 /* Merge backend specific data from an object file to the output
12514 object file when linking. */
12515
12516 bfd_boolean
12517 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
12518 {
12519 flagword old_flags;
12520 flagword new_flags;
12521 bfd_boolean ok;
12522 bfd_boolean null_input_bfd = TRUE;
12523 asection *sec;
12524
12525 /* Check if we have the same endianess */
12526 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
12527 {
12528 (*_bfd_error_handler)
12529 (_("%B: endianness incompatible with that of the selected emulation"),
12530 ibfd);
12531 return FALSE;
12532 }
12533
12534 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
12535 return TRUE;
12536
12537 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
12538 {
12539 (*_bfd_error_handler)
12540 (_("%B: ABI is incompatible with that of the selected emulation"),
12541 ibfd);
12542 return FALSE;
12543 }
12544
12545 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
12546 return FALSE;
12547
12548 new_flags = elf_elfheader (ibfd)->e_flags;
12549 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
12550 old_flags = elf_elfheader (obfd)->e_flags;
12551
12552 if (! elf_flags_init (obfd))
12553 {
12554 elf_flags_init (obfd) = TRUE;
12555 elf_elfheader (obfd)->e_flags = new_flags;
12556 elf_elfheader (obfd)->e_ident[EI_CLASS]
12557 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
12558
12559 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
12560 && (bfd_get_arch_info (obfd)->the_default
12561 || mips_mach_extends_p (bfd_get_mach (obfd),
12562 bfd_get_mach (ibfd))))
12563 {
12564 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
12565 bfd_get_mach (ibfd)))
12566 return FALSE;
12567 }
12568
12569 return TRUE;
12570 }
12571
12572 /* Check flag compatibility. */
12573
12574 new_flags &= ~EF_MIPS_NOREORDER;
12575 old_flags &= ~EF_MIPS_NOREORDER;
12576
12577 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
12578 doesn't seem to matter. */
12579 new_flags &= ~EF_MIPS_XGOT;
12580 old_flags &= ~EF_MIPS_XGOT;
12581
12582 /* MIPSpro generates ucode info in n64 objects. Again, we should
12583 just be able to ignore this. */
12584 new_flags &= ~EF_MIPS_UCODE;
12585 old_flags &= ~EF_MIPS_UCODE;
12586
12587 /* DSOs should only be linked with CPIC code. */
12588 if ((ibfd->flags & DYNAMIC) != 0)
12589 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
12590
12591 if (new_flags == old_flags)
12592 return TRUE;
12593
12594 /* Check to see if the input BFD actually contains any sections.
12595 If not, its flags may not have been initialised either, but it cannot
12596 actually cause any incompatibility. */
12597 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
12598 {
12599 /* Ignore synthetic sections and empty .text, .data and .bss sections
12600 which are automatically generated by gas. */
12601 if (strcmp (sec->name, ".reginfo")
12602 && strcmp (sec->name, ".mdebug")
12603 && (sec->size != 0
12604 || (strcmp (sec->name, ".text")
12605 && strcmp (sec->name, ".data")
12606 && strcmp (sec->name, ".bss"))))
12607 {
12608 null_input_bfd = FALSE;
12609 break;
12610 }
12611 }
12612 if (null_input_bfd)
12613 return TRUE;
12614
12615 ok = TRUE;
12616
12617 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
12618 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
12619 {
12620 (*_bfd_error_handler)
12621 (_("%B: warning: linking abicalls files with non-abicalls files"),
12622 ibfd);
12623 ok = TRUE;
12624 }
12625
12626 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
12627 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
12628 if (! (new_flags & EF_MIPS_PIC))
12629 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
12630
12631 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
12632 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
12633
12634 /* Compare the ISAs. */
12635 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
12636 {
12637 (*_bfd_error_handler)
12638 (_("%B: linking 32-bit code with 64-bit code"),
12639 ibfd);
12640 ok = FALSE;
12641 }
12642 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
12643 {
12644 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
12645 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
12646 {
12647 /* Copy the architecture info from IBFD to OBFD. Also copy
12648 the 32-bit flag (if set) so that we continue to recognise
12649 OBFD as a 32-bit binary. */
12650 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
12651 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12652 elf_elfheader (obfd)->e_flags
12653 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12654
12655 /* Copy across the ABI flags if OBFD doesn't use them
12656 and if that was what caused us to treat IBFD as 32-bit. */
12657 if ((old_flags & EF_MIPS_ABI) == 0
12658 && mips_32bit_flags_p (new_flags)
12659 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
12660 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
12661 }
12662 else
12663 {
12664 /* The ISAs aren't compatible. */
12665 (*_bfd_error_handler)
12666 (_("%B: linking %s module with previous %s modules"),
12667 ibfd,
12668 bfd_printable_name (ibfd),
12669 bfd_printable_name (obfd));
12670 ok = FALSE;
12671 }
12672 }
12673
12674 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12675 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12676
12677 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
12678 does set EI_CLASS differently from any 32-bit ABI. */
12679 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
12680 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12681 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12682 {
12683 /* Only error if both are set (to different values). */
12684 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
12685 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12686 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12687 {
12688 (*_bfd_error_handler)
12689 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
12690 ibfd,
12691 elf_mips_abi_name (ibfd),
12692 elf_mips_abi_name (obfd));
12693 ok = FALSE;
12694 }
12695 new_flags &= ~EF_MIPS_ABI;
12696 old_flags &= ~EF_MIPS_ABI;
12697 }
12698
12699 /* For now, allow arbitrary mixing of ASEs (retain the union). */
12700 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
12701 {
12702 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
12703
12704 new_flags &= ~ EF_MIPS_ARCH_ASE;
12705 old_flags &= ~ EF_MIPS_ARCH_ASE;
12706 }
12707
12708 /* Warn about any other mismatches */
12709 if (new_flags != old_flags)
12710 {
12711 (*_bfd_error_handler)
12712 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
12713 ibfd, (unsigned long) new_flags,
12714 (unsigned long) old_flags);
12715 ok = FALSE;
12716 }
12717
12718 if (! ok)
12719 {
12720 bfd_set_error (bfd_error_bad_value);
12721 return FALSE;
12722 }
12723
12724 return TRUE;
12725 }
12726
12727 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
12728
12729 bfd_boolean
12730 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
12731 {
12732 BFD_ASSERT (!elf_flags_init (abfd)
12733 || elf_elfheader (abfd)->e_flags == flags);
12734
12735 elf_elfheader (abfd)->e_flags = flags;
12736 elf_flags_init (abfd) = TRUE;
12737 return TRUE;
12738 }
12739
12740 char *
12741 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
12742 {
12743 switch (dtag)
12744 {
12745 default: return "";
12746 case DT_MIPS_RLD_VERSION:
12747 return "MIPS_RLD_VERSION";
12748 case DT_MIPS_TIME_STAMP:
12749 return "MIPS_TIME_STAMP";
12750 case DT_MIPS_ICHECKSUM:
12751 return "MIPS_ICHECKSUM";
12752 case DT_MIPS_IVERSION:
12753 return "MIPS_IVERSION";
12754 case DT_MIPS_FLAGS:
12755 return "MIPS_FLAGS";
12756 case DT_MIPS_BASE_ADDRESS:
12757 return "MIPS_BASE_ADDRESS";
12758 case DT_MIPS_MSYM:
12759 return "MIPS_MSYM";
12760 case DT_MIPS_CONFLICT:
12761 return "MIPS_CONFLICT";
12762 case DT_MIPS_LIBLIST:
12763 return "MIPS_LIBLIST";
12764 case DT_MIPS_LOCAL_GOTNO:
12765 return "MIPS_LOCAL_GOTNO";
12766 case DT_MIPS_CONFLICTNO:
12767 return "MIPS_CONFLICTNO";
12768 case DT_MIPS_LIBLISTNO:
12769 return "MIPS_LIBLISTNO";
12770 case DT_MIPS_SYMTABNO:
12771 return "MIPS_SYMTABNO";
12772 case DT_MIPS_UNREFEXTNO:
12773 return "MIPS_UNREFEXTNO";
12774 case DT_MIPS_GOTSYM:
12775 return "MIPS_GOTSYM";
12776 case DT_MIPS_HIPAGENO:
12777 return "MIPS_HIPAGENO";
12778 case DT_MIPS_RLD_MAP:
12779 return "MIPS_RLD_MAP";
12780 case DT_MIPS_DELTA_CLASS:
12781 return "MIPS_DELTA_CLASS";
12782 case DT_MIPS_DELTA_CLASS_NO:
12783 return "MIPS_DELTA_CLASS_NO";
12784 case DT_MIPS_DELTA_INSTANCE:
12785 return "MIPS_DELTA_INSTANCE";
12786 case DT_MIPS_DELTA_INSTANCE_NO:
12787 return "MIPS_DELTA_INSTANCE_NO";
12788 case DT_MIPS_DELTA_RELOC:
12789 return "MIPS_DELTA_RELOC";
12790 case DT_MIPS_DELTA_RELOC_NO:
12791 return "MIPS_DELTA_RELOC_NO";
12792 case DT_MIPS_DELTA_SYM:
12793 return "MIPS_DELTA_SYM";
12794 case DT_MIPS_DELTA_SYM_NO:
12795 return "MIPS_DELTA_SYM_NO";
12796 case DT_MIPS_DELTA_CLASSSYM:
12797 return "MIPS_DELTA_CLASSSYM";
12798 case DT_MIPS_DELTA_CLASSSYM_NO:
12799 return "MIPS_DELTA_CLASSSYM_NO";
12800 case DT_MIPS_CXX_FLAGS:
12801 return "MIPS_CXX_FLAGS";
12802 case DT_MIPS_PIXIE_INIT:
12803 return "MIPS_PIXIE_INIT";
12804 case DT_MIPS_SYMBOL_LIB:
12805 return "MIPS_SYMBOL_LIB";
12806 case DT_MIPS_LOCALPAGE_GOTIDX:
12807 return "MIPS_LOCALPAGE_GOTIDX";
12808 case DT_MIPS_LOCAL_GOTIDX:
12809 return "MIPS_LOCAL_GOTIDX";
12810 case DT_MIPS_HIDDEN_GOTIDX:
12811 return "MIPS_HIDDEN_GOTIDX";
12812 case DT_MIPS_PROTECTED_GOTIDX:
12813 return "MIPS_PROTECTED_GOT_IDX";
12814 case DT_MIPS_OPTIONS:
12815 return "MIPS_OPTIONS";
12816 case DT_MIPS_INTERFACE:
12817 return "MIPS_INTERFACE";
12818 case DT_MIPS_DYNSTR_ALIGN:
12819 return "DT_MIPS_DYNSTR_ALIGN";
12820 case DT_MIPS_INTERFACE_SIZE:
12821 return "DT_MIPS_INTERFACE_SIZE";
12822 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
12823 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
12824 case DT_MIPS_PERF_SUFFIX:
12825 return "DT_MIPS_PERF_SUFFIX";
12826 case DT_MIPS_COMPACT_SIZE:
12827 return "DT_MIPS_COMPACT_SIZE";
12828 case DT_MIPS_GP_VALUE:
12829 return "DT_MIPS_GP_VALUE";
12830 case DT_MIPS_AUX_DYNAMIC:
12831 return "DT_MIPS_AUX_DYNAMIC";
12832 case DT_MIPS_PLTGOT:
12833 return "DT_MIPS_PLTGOT";
12834 case DT_MIPS_RWPLT:
12835 return "DT_MIPS_RWPLT";
12836 }
12837 }
12838
12839 bfd_boolean
12840 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
12841 {
12842 FILE *file = ptr;
12843
12844 BFD_ASSERT (abfd != NULL && ptr != NULL);
12845
12846 /* Print normal ELF private data. */
12847 _bfd_elf_print_private_bfd_data (abfd, ptr);
12848
12849 /* xgettext:c-format */
12850 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
12851
12852 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
12853 fprintf (file, _(" [abi=O32]"));
12854 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
12855 fprintf (file, _(" [abi=O64]"));
12856 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
12857 fprintf (file, _(" [abi=EABI32]"));
12858 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
12859 fprintf (file, _(" [abi=EABI64]"));
12860 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
12861 fprintf (file, _(" [abi unknown]"));
12862 else if (ABI_N32_P (abfd))
12863 fprintf (file, _(" [abi=N32]"));
12864 else if (ABI_64_P (abfd))
12865 fprintf (file, _(" [abi=64]"));
12866 else
12867 fprintf (file, _(" [no abi set]"));
12868
12869 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
12870 fprintf (file, " [mips1]");
12871 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
12872 fprintf (file, " [mips2]");
12873 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
12874 fprintf (file, " [mips3]");
12875 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
12876 fprintf (file, " [mips4]");
12877 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
12878 fprintf (file, " [mips5]");
12879 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
12880 fprintf (file, " [mips32]");
12881 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
12882 fprintf (file, " [mips64]");
12883 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
12884 fprintf (file, " [mips32r2]");
12885 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
12886 fprintf (file, " [mips64r2]");
12887 else
12888 fprintf (file, _(" [unknown ISA]"));
12889
12890 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
12891 fprintf (file, " [mdmx]");
12892
12893 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
12894 fprintf (file, " [mips16]");
12895
12896 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
12897 fprintf (file, " [32bitmode]");
12898 else
12899 fprintf (file, _(" [not 32bitmode]"));
12900
12901 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
12902 fprintf (file, " [noreorder]");
12903
12904 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
12905 fprintf (file, " [PIC]");
12906
12907 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
12908 fprintf (file, " [CPIC]");
12909
12910 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
12911 fprintf (file, " [XGOT]");
12912
12913 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
12914 fprintf (file, " [UCODE]");
12915
12916 fputc ('\n', file);
12917
12918 return TRUE;
12919 }
12920
12921 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
12922 {
12923 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12924 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12925 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
12926 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12927 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12928 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
12929 { NULL, 0, 0, 0, 0 }
12930 };
12931
12932 /* Merge non visibility st_other attributes. Ensure that the
12933 STO_OPTIONAL flag is copied into h->other, even if this is not a
12934 definiton of the symbol. */
12935 void
12936 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
12937 const Elf_Internal_Sym *isym,
12938 bfd_boolean definition,
12939 bfd_boolean dynamic ATTRIBUTE_UNUSED)
12940 {
12941 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
12942 {
12943 unsigned char other;
12944
12945 other = (definition ? isym->st_other : h->other);
12946 other &= ~ELF_ST_VISIBILITY (-1);
12947 h->other = other | ELF_ST_VISIBILITY (h->other);
12948 }
12949
12950 if (!definition
12951 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
12952 h->other |= STO_OPTIONAL;
12953 }
12954
12955 /* Decide whether an undefined symbol is special and can be ignored.
12956 This is the case for OPTIONAL symbols on IRIX. */
12957 bfd_boolean
12958 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
12959 {
12960 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
12961 }
12962
12963 bfd_boolean
12964 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
12965 {
12966 return (sym->st_shndx == SHN_COMMON
12967 || sym->st_shndx == SHN_MIPS_ACOMMON
12968 || sym->st_shndx == SHN_MIPS_SCOMMON);
12969 }
12970
12971 /* Return address for Ith PLT stub in section PLT, for relocation REL
12972 or (bfd_vma) -1 if it should not be included. */
12973
12974 bfd_vma
12975 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
12976 const arelent *rel ATTRIBUTE_UNUSED)
12977 {
12978 return (plt->vma
12979 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
12980 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
12981 }
12982
12983 void
12984 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
12985 {
12986 struct mips_elf_link_hash_table *htab;
12987 Elf_Internal_Ehdr *i_ehdrp;
12988
12989 i_ehdrp = elf_elfheader (abfd);
12990 if (link_info)
12991 {
12992 htab = mips_elf_hash_table (link_info);
12993 BFD_ASSERT (htab != NULL);
12994
12995 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
12996 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
12997 }
12998 }
This page took 0.369021 seconds and 4 git commands to generate.