MIPS16: Add R_MIPS16_PC16_S1 branch relocation support
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 long min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 long max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index not corresponding to a
319 symbol without a GOT entry. */
320 long max_non_got_dynindx;
321 };
322
323 /* We make up to two PLT entries if needed, one for standard MIPS code
324 and one for compressed code, either a MIPS16 or microMIPS one. We
325 keep a separate record of traditional lazy-binding stubs, for easier
326 processing. */
327
328 struct plt_entry
329 {
330 /* Traditional SVR4 stub offset, or -1 if none. */
331 bfd_vma stub_offset;
332
333 /* Standard PLT entry offset, or -1 if none. */
334 bfd_vma mips_offset;
335
336 /* Compressed PLT entry offset, or -1 if none. */
337 bfd_vma comp_offset;
338
339 /* The corresponding .got.plt index, or -1 if none. */
340 bfd_vma gotplt_index;
341
342 /* Whether we need a standard PLT entry. */
343 unsigned int need_mips : 1;
344
345 /* Whether we need a compressed PLT entry. */
346 unsigned int need_comp : 1;
347 };
348
349 /* The MIPS ELF linker needs additional information for each symbol in
350 the global hash table. */
351
352 struct mips_elf_link_hash_entry
353 {
354 struct elf_link_hash_entry root;
355
356 /* External symbol information. */
357 EXTR esym;
358
359 /* The la25 stub we have created for ths symbol, if any. */
360 struct mips_elf_la25_stub *la25_stub;
361
362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
363 this symbol. */
364 unsigned int possibly_dynamic_relocs;
365
366 /* If there is a stub that 32 bit functions should use to call this
367 16 bit function, this points to the section containing the stub. */
368 asection *fn_stub;
369
370 /* If there is a stub that 16 bit functions should use to call this
371 32 bit function, this points to the section containing the stub. */
372 asection *call_stub;
373
374 /* This is like the call_stub field, but it is used if the function
375 being called returns a floating point value. */
376 asection *call_fp_stub;
377
378 /* The highest GGA_* value that satisfies all references to this symbol. */
379 unsigned int global_got_area : 2;
380
381 /* True if all GOT relocations against this symbol are for calls. This is
382 a looser condition than no_fn_stub below, because there may be other
383 non-call non-GOT relocations against the symbol. */
384 unsigned int got_only_for_calls : 1;
385
386 /* True if one of the relocations described by possibly_dynamic_relocs
387 is against a readonly section. */
388 unsigned int readonly_reloc : 1;
389
390 /* True if there is a relocation against this symbol that must be
391 resolved by the static linker (in other words, if the relocation
392 cannot possibly be made dynamic). */
393 unsigned int has_static_relocs : 1;
394
395 /* True if we must not create a .MIPS.stubs entry for this symbol.
396 This is set, for example, if there are relocations related to
397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
399 unsigned int no_fn_stub : 1;
400
401 /* Whether we need the fn_stub; this is true if this symbol appears
402 in any relocs other than a 16 bit call. */
403 unsigned int need_fn_stub : 1;
404
405 /* True if this symbol is referenced by branch relocations from
406 any non-PIC input file. This is used to determine whether an
407 la25 stub is required. */
408 unsigned int has_nonpic_branches : 1;
409
410 /* Does this symbol need a traditional MIPS lazy-binding stub
411 (as opposed to a PLT entry)? */
412 unsigned int needs_lazy_stub : 1;
413
414 /* Does this symbol resolve to a PLT entry? */
415 unsigned int use_plt_entry : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423
424 /* The number of .rtproc entries. */
425 bfd_size_type procedure_count;
426
427 /* The size of the .compact_rel section (if SGI_COMPAT). */
428 bfd_size_type compact_rel_size;
429
430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
432 bfd_boolean use_rld_obj_head;
433
434 /* The __rld_map or __rld_obj_head symbol. */
435 struct elf_link_hash_entry *rld_symbol;
436
437 /* This is set if we see any mips16 stub sections. */
438 bfd_boolean mips16_stubs_seen;
439
440 /* True if we can generate copy relocs and PLTs. */
441 bfd_boolean use_plts_and_copy_relocs;
442
443 /* True if we can only use 32-bit microMIPS instructions. */
444 bfd_boolean insn32;
445
446 /* True if we're generating code for VxWorks. */
447 bfd_boolean is_vxworks;
448
449 /* True if we already reported the small-data section overflow. */
450 bfd_boolean small_data_overflow_reported;
451
452 /* Shortcuts to some dynamic sections, or NULL if they are not
453 being used. */
454 asection *srelbss;
455 asection *sdynbss;
456 asection *srelplt;
457 asection *srelplt2;
458 asection *sgotplt;
459 asection *splt;
460 asection *sstubs;
461 asection *sgot;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519 };
520
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
522
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
529 {
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536 };
537
538 /* MIPS ELF private object data. */
539
540 struct mips_elf_obj_tdata
541 {
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573 };
574
575 /* Get MIPS ELF private object data from BFD's tdata. */
576
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609 /* Structure used to pass information to mips_elf_output_extsym. */
610
611 struct extsym_info
612 {
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618 };
619
620 /* The names of the runtime procedure table symbols used on IRIX5. */
621
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628 };
629
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633 typedef struct
634 {
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
642
643 typedef struct
644 {
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652
653 typedef struct
654 {
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
671
672 typedef struct
673 {
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678
679 typedef struct
680 {
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684
685 /* These are the constants used to swap the bitfields in a crinfo. */
686
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
701
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
716
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721 \f
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 \f
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
757
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
774
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
779
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
894
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112 };
1113
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126 };
1127
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136 };
1137
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145 };
1146
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156 };
1157
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180 };
1181
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187 };
1188 \f
1189 /* microMIPS 32-bit opcode helper installer. */
1190
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196 }
1197
1198 /* microMIPS 32-bit opcode helper retriever. */
1199
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 \f
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1207
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213 /* Traverse a MIPS ELF linker hash table. */
1214
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244
1245 /* Create an entry in a MIPS ELF linker hash table. */
1246
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250 {
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289 }
1290
1291 /* Allocate MIPS ELF private object data. */
1292
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298 }
1299
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 \f
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323 {
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402 }
1403 \f
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1405
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421
1422 /* Create a runtime procedure table from the .mdebug section. */
1423
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428 {
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570 }
1571 \f
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580 {
1581 struct bfd_link_hash_entry *bh;
1582 struct elf_link_hash_entry *elfh;
1583 char *name;
1584 bfd_boolean res;
1585
1586 if (ELF_ST_IS_MICROMIPS (h->root.other))
1587 value |= 1;
1588
1589 /* Create a new symbol. */
1590 name = concat (prefix, h->root.root.root.string, NULL);
1591 bh = NULL;
1592 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1593 BSF_LOCAL, s, value, NULL,
1594 TRUE, FALSE, &bh);
1595 free (name);
1596 if (! res)
1597 return FALSE;
1598
1599 /* Make it a local function. */
1600 elfh = (struct elf_link_hash_entry *) bh;
1601 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1602 elfh->size = size;
1603 elfh->forced_local = 1;
1604 return TRUE;
1605 }
1606
1607 /* We're about to redefine H. Create a symbol to represent H's
1608 current value and size, to help make the disassembly easier
1609 to read. */
1610
1611 static bfd_boolean
1612 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1613 struct mips_elf_link_hash_entry *h,
1614 const char *prefix)
1615 {
1616 struct bfd_link_hash_entry *bh;
1617 struct elf_link_hash_entry *elfh;
1618 char *name;
1619 asection *s;
1620 bfd_vma value;
1621 bfd_boolean res;
1622
1623 /* Read the symbol's value. */
1624 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1625 || h->root.root.type == bfd_link_hash_defweak);
1626 s = h->root.root.u.def.section;
1627 value = h->root.root.u.def.value;
1628
1629 /* Create a new symbol. */
1630 name = concat (prefix, h->root.root.root.string, NULL);
1631 bh = NULL;
1632 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1633 BSF_LOCAL, s, value, NULL,
1634 TRUE, FALSE, &bh);
1635 free (name);
1636 if (! res)
1637 return FALSE;
1638
1639 /* Make it local and copy the other attributes from H. */
1640 elfh = (struct elf_link_hash_entry *) bh;
1641 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1642 elfh->other = h->root.other;
1643 elfh->size = h->root.size;
1644 elfh->forced_local = 1;
1645 return TRUE;
1646 }
1647
1648 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1649 function rather than to a hard-float stub. */
1650
1651 static bfd_boolean
1652 section_allows_mips16_refs_p (asection *section)
1653 {
1654 const char *name;
1655
1656 name = bfd_get_section_name (section->owner, section);
1657 return (FN_STUB_P (name)
1658 || CALL_STUB_P (name)
1659 || CALL_FP_STUB_P (name)
1660 || strcmp (name, ".pdr") == 0);
1661 }
1662
1663 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1664 stub section of some kind. Return the R_SYMNDX of the target
1665 function, or 0 if we can't decide which function that is. */
1666
1667 static unsigned long
1668 mips16_stub_symndx (const struct elf_backend_data *bed,
1669 asection *sec ATTRIBUTE_UNUSED,
1670 const Elf_Internal_Rela *relocs,
1671 const Elf_Internal_Rela *relend)
1672 {
1673 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1674 const Elf_Internal_Rela *rel;
1675
1676 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1677 one in a compound relocation. */
1678 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1679 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1680 return ELF_R_SYM (sec->owner, rel->r_info);
1681
1682 /* Otherwise trust the first relocation, whatever its kind. This is
1683 the traditional behavior. */
1684 if (relocs < relend)
1685 return ELF_R_SYM (sec->owner, relocs->r_info);
1686
1687 return 0;
1688 }
1689
1690 /* Check the mips16 stubs for a particular symbol, and see if we can
1691 discard them. */
1692
1693 static void
1694 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1695 struct mips_elf_link_hash_entry *h)
1696 {
1697 /* Dynamic symbols must use the standard call interface, in case other
1698 objects try to call them. */
1699 if (h->fn_stub != NULL
1700 && h->root.dynindx != -1)
1701 {
1702 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1703 h->need_fn_stub = TRUE;
1704 }
1705
1706 if (h->fn_stub != NULL
1707 && ! h->need_fn_stub)
1708 {
1709 /* We don't need the fn_stub; the only references to this symbol
1710 are 16 bit calls. Clobber the size to 0 to prevent it from
1711 being included in the link. */
1712 h->fn_stub->size = 0;
1713 h->fn_stub->flags &= ~SEC_RELOC;
1714 h->fn_stub->reloc_count = 0;
1715 h->fn_stub->flags |= SEC_EXCLUDE;
1716 h->fn_stub->output_section = bfd_abs_section_ptr;
1717 }
1718
1719 if (h->call_stub != NULL
1720 && ELF_ST_IS_MIPS16 (h->root.other))
1721 {
1722 /* We don't need the call_stub; this is a 16 bit function, so
1723 calls from other 16 bit functions are OK. Clobber the size
1724 to 0 to prevent it from being included in the link. */
1725 h->call_stub->size = 0;
1726 h->call_stub->flags &= ~SEC_RELOC;
1727 h->call_stub->reloc_count = 0;
1728 h->call_stub->flags |= SEC_EXCLUDE;
1729 h->call_stub->output_section = bfd_abs_section_ptr;
1730 }
1731
1732 if (h->call_fp_stub != NULL
1733 && ELF_ST_IS_MIPS16 (h->root.other))
1734 {
1735 /* We don't need the call_stub; this is a 16 bit function, so
1736 calls from other 16 bit functions are OK. Clobber the size
1737 to 0 to prevent it from being included in the link. */
1738 h->call_fp_stub->size = 0;
1739 h->call_fp_stub->flags &= ~SEC_RELOC;
1740 h->call_fp_stub->reloc_count = 0;
1741 h->call_fp_stub->flags |= SEC_EXCLUDE;
1742 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1743 }
1744 }
1745
1746 /* Hashtable callbacks for mips_elf_la25_stubs. */
1747
1748 static hashval_t
1749 mips_elf_la25_stub_hash (const void *entry_)
1750 {
1751 const struct mips_elf_la25_stub *entry;
1752
1753 entry = (struct mips_elf_la25_stub *) entry_;
1754 return entry->h->root.root.u.def.section->id
1755 + entry->h->root.root.u.def.value;
1756 }
1757
1758 static int
1759 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1760 {
1761 const struct mips_elf_la25_stub *entry1, *entry2;
1762
1763 entry1 = (struct mips_elf_la25_stub *) entry1_;
1764 entry2 = (struct mips_elf_la25_stub *) entry2_;
1765 return ((entry1->h->root.root.u.def.section
1766 == entry2->h->root.root.u.def.section)
1767 && (entry1->h->root.root.u.def.value
1768 == entry2->h->root.root.u.def.value));
1769 }
1770
1771 /* Called by the linker to set up the la25 stub-creation code. FN is
1772 the linker's implementation of add_stub_function. Return true on
1773 success. */
1774
1775 bfd_boolean
1776 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1777 asection *(*fn) (const char *, asection *,
1778 asection *))
1779 {
1780 struct mips_elf_link_hash_table *htab;
1781
1782 htab = mips_elf_hash_table (info);
1783 if (htab == NULL)
1784 return FALSE;
1785
1786 htab->add_stub_section = fn;
1787 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1788 mips_elf_la25_stub_eq, NULL);
1789 if (htab->la25_stubs == NULL)
1790 return FALSE;
1791
1792 return TRUE;
1793 }
1794
1795 /* Return true if H is a locally-defined PIC function, in the sense
1796 that it or its fn_stub might need $25 to be valid on entry.
1797 Note that MIPS16 functions set up $gp using PC-relative instructions,
1798 so they themselves never need $25 to be valid. Only non-MIPS16
1799 entry points are of interest here. */
1800
1801 static bfd_boolean
1802 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1803 {
1804 return ((h->root.root.type == bfd_link_hash_defined
1805 || h->root.root.type == bfd_link_hash_defweak)
1806 && h->root.def_regular
1807 && !bfd_is_abs_section (h->root.root.u.def.section)
1808 && (!ELF_ST_IS_MIPS16 (h->root.other)
1809 || (h->fn_stub && h->need_fn_stub))
1810 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1811 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1812 }
1813
1814 /* Set *SEC to the input section that contains the target of STUB.
1815 Return the offset of the target from the start of that section. */
1816
1817 static bfd_vma
1818 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1819 asection **sec)
1820 {
1821 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1822 {
1823 BFD_ASSERT (stub->h->need_fn_stub);
1824 *sec = stub->h->fn_stub;
1825 return 0;
1826 }
1827 else
1828 {
1829 *sec = stub->h->root.root.u.def.section;
1830 return stub->h->root.root.u.def.value;
1831 }
1832 }
1833
1834 /* STUB describes an la25 stub that we have decided to implement
1835 by inserting an LUI/ADDIU pair before the target function.
1836 Create the section and redirect the function symbol to it. */
1837
1838 static bfd_boolean
1839 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1840 struct bfd_link_info *info)
1841 {
1842 struct mips_elf_link_hash_table *htab;
1843 char *name;
1844 asection *s, *input_section;
1845 unsigned int align;
1846
1847 htab = mips_elf_hash_table (info);
1848 if (htab == NULL)
1849 return FALSE;
1850
1851 /* Create a unique name for the new section. */
1852 name = bfd_malloc (11 + sizeof (".text.stub."));
1853 if (name == NULL)
1854 return FALSE;
1855 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1856
1857 /* Create the section. */
1858 mips_elf_get_la25_target (stub, &input_section);
1859 s = htab->add_stub_section (name, input_section,
1860 input_section->output_section);
1861 if (s == NULL)
1862 return FALSE;
1863
1864 /* Make sure that any padding goes before the stub. */
1865 align = input_section->alignment_power;
1866 if (!bfd_set_section_alignment (s->owner, s, align))
1867 return FALSE;
1868 if (align > 3)
1869 s->size = (1 << align) - 8;
1870
1871 /* Create a symbol for the stub. */
1872 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1873 stub->stub_section = s;
1874 stub->offset = s->size;
1875
1876 /* Allocate room for it. */
1877 s->size += 8;
1878 return TRUE;
1879 }
1880
1881 /* STUB describes an la25 stub that we have decided to implement
1882 with a separate trampoline. Allocate room for it and redirect
1883 the function symbol to it. */
1884
1885 static bfd_boolean
1886 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1887 struct bfd_link_info *info)
1888 {
1889 struct mips_elf_link_hash_table *htab;
1890 asection *s;
1891
1892 htab = mips_elf_hash_table (info);
1893 if (htab == NULL)
1894 return FALSE;
1895
1896 /* Create a trampoline section, if we haven't already. */
1897 s = htab->strampoline;
1898 if (s == NULL)
1899 {
1900 asection *input_section = stub->h->root.root.u.def.section;
1901 s = htab->add_stub_section (".text", NULL,
1902 input_section->output_section);
1903 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1904 return FALSE;
1905 htab->strampoline = s;
1906 }
1907
1908 /* Create a symbol for the stub. */
1909 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1910 stub->stub_section = s;
1911 stub->offset = s->size;
1912
1913 /* Allocate room for it. */
1914 s->size += 16;
1915 return TRUE;
1916 }
1917
1918 /* H describes a symbol that needs an la25 stub. Make sure that an
1919 appropriate stub exists and point H at it. */
1920
1921 static bfd_boolean
1922 mips_elf_add_la25_stub (struct bfd_link_info *info,
1923 struct mips_elf_link_hash_entry *h)
1924 {
1925 struct mips_elf_link_hash_table *htab;
1926 struct mips_elf_la25_stub search, *stub;
1927 bfd_boolean use_trampoline_p;
1928 asection *s;
1929 bfd_vma value;
1930 void **slot;
1931
1932 /* Describe the stub we want. */
1933 search.stub_section = NULL;
1934 search.offset = 0;
1935 search.h = h;
1936
1937 /* See if we've already created an equivalent stub. */
1938 htab = mips_elf_hash_table (info);
1939 if (htab == NULL)
1940 return FALSE;
1941
1942 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1943 if (slot == NULL)
1944 return FALSE;
1945
1946 stub = (struct mips_elf_la25_stub *) *slot;
1947 if (stub != NULL)
1948 {
1949 /* We can reuse the existing stub. */
1950 h->la25_stub = stub;
1951 return TRUE;
1952 }
1953
1954 /* Create a permanent copy of ENTRY and add it to the hash table. */
1955 stub = bfd_malloc (sizeof (search));
1956 if (stub == NULL)
1957 return FALSE;
1958 *stub = search;
1959 *slot = stub;
1960
1961 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1962 of the section and if we would need no more than 2 nops. */
1963 value = mips_elf_get_la25_target (stub, &s);
1964 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1965
1966 h->la25_stub = stub;
1967 return (use_trampoline_p
1968 ? mips_elf_add_la25_trampoline (stub, info)
1969 : mips_elf_add_la25_intro (stub, info));
1970 }
1971
1972 /* A mips_elf_link_hash_traverse callback that is called before sizing
1973 sections. DATA points to a mips_htab_traverse_info structure. */
1974
1975 static bfd_boolean
1976 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1977 {
1978 struct mips_htab_traverse_info *hti;
1979
1980 hti = (struct mips_htab_traverse_info *) data;
1981 if (!bfd_link_relocatable (hti->info))
1982 mips_elf_check_mips16_stubs (hti->info, h);
1983
1984 if (mips_elf_local_pic_function_p (h))
1985 {
1986 /* PR 12845: If H is in a section that has been garbage
1987 collected it will have its output section set to *ABS*. */
1988 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1989 return TRUE;
1990
1991 /* H is a function that might need $25 to be valid on entry.
1992 If we're creating a non-PIC relocatable object, mark H as
1993 being PIC. If we're creating a non-relocatable object with
1994 non-PIC branches and jumps to H, make sure that H has an la25
1995 stub. */
1996 if (bfd_link_relocatable (hti->info))
1997 {
1998 if (!PIC_OBJECT_P (hti->output_bfd))
1999 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2000 }
2001 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2002 {
2003 hti->error = TRUE;
2004 return FALSE;
2005 }
2006 }
2007 return TRUE;
2008 }
2009 \f
2010 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2011 Most mips16 instructions are 16 bits, but these instructions
2012 are 32 bits.
2013
2014 The format of these instructions is:
2015
2016 +--------------+--------------------------------+
2017 | JALX | X| Imm 20:16 | Imm 25:21 |
2018 +--------------+--------------------------------+
2019 | Immediate 15:0 |
2020 +-----------------------------------------------+
2021
2022 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2023 Note that the immediate value in the first word is swapped.
2024
2025 When producing a relocatable object file, R_MIPS16_26 is
2026 handled mostly like R_MIPS_26. In particular, the addend is
2027 stored as a straight 26-bit value in a 32-bit instruction.
2028 (gas makes life simpler for itself by never adjusting a
2029 R_MIPS16_26 reloc to be against a section, so the addend is
2030 always zero). However, the 32 bit instruction is stored as 2
2031 16-bit values, rather than a single 32-bit value. In a
2032 big-endian file, the result is the same; in a little-endian
2033 file, the two 16-bit halves of the 32 bit value are swapped.
2034 This is so that a disassembler can recognize the jal
2035 instruction.
2036
2037 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2038 instruction stored as two 16-bit values. The addend A is the
2039 contents of the targ26 field. The calculation is the same as
2040 R_MIPS_26. When storing the calculated value, reorder the
2041 immediate value as shown above, and don't forget to store the
2042 value as two 16-bit values.
2043
2044 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2045 defined as
2046
2047 big-endian:
2048 +--------+----------------------+
2049 | | |
2050 | | targ26-16 |
2051 |31 26|25 0|
2052 +--------+----------------------+
2053
2054 little-endian:
2055 +----------+------+-------------+
2056 | | | |
2057 | sub1 | | sub2 |
2058 |0 9|10 15|16 31|
2059 +----------+--------------------+
2060 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2061 ((sub1 << 16) | sub2)).
2062
2063 When producing a relocatable object file, the calculation is
2064 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2065 When producing a fully linked file, the calculation is
2066 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2067 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2068
2069 The table below lists the other MIPS16 instruction relocations.
2070 Each one is calculated in the same way as the non-MIPS16 relocation
2071 given on the right, but using the extended MIPS16 layout of 16-bit
2072 immediate fields:
2073
2074 R_MIPS16_GPREL R_MIPS_GPREL16
2075 R_MIPS16_GOT16 R_MIPS_GOT16
2076 R_MIPS16_CALL16 R_MIPS_CALL16
2077 R_MIPS16_HI16 R_MIPS_HI16
2078 R_MIPS16_LO16 R_MIPS_LO16
2079
2080 A typical instruction will have a format like this:
2081
2082 +--------------+--------------------------------+
2083 | EXTEND | Imm 10:5 | Imm 15:11 |
2084 +--------------+--------------------------------+
2085 | Major | rx | ry | Imm 4:0 |
2086 +--------------+--------------------------------+
2087
2088 EXTEND is the five bit value 11110. Major is the instruction
2089 opcode.
2090
2091 All we need to do here is shuffle the bits appropriately.
2092 As above, the two 16-bit halves must be swapped on a
2093 little-endian system.
2094
2095 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2096 relocatable field is shifted by 1 rather than 2 and the same bit
2097 shuffling is done as with the relocations above. */
2098
2099 static inline bfd_boolean
2100 mips16_reloc_p (int r_type)
2101 {
2102 switch (r_type)
2103 {
2104 case R_MIPS16_26:
2105 case R_MIPS16_GPREL:
2106 case R_MIPS16_GOT16:
2107 case R_MIPS16_CALL16:
2108 case R_MIPS16_HI16:
2109 case R_MIPS16_LO16:
2110 case R_MIPS16_TLS_GD:
2111 case R_MIPS16_TLS_LDM:
2112 case R_MIPS16_TLS_DTPREL_HI16:
2113 case R_MIPS16_TLS_DTPREL_LO16:
2114 case R_MIPS16_TLS_GOTTPREL:
2115 case R_MIPS16_TLS_TPREL_HI16:
2116 case R_MIPS16_TLS_TPREL_LO16:
2117 case R_MIPS16_PC16_S1:
2118 return TRUE;
2119
2120 default:
2121 return FALSE;
2122 }
2123 }
2124
2125 /* Check if a microMIPS reloc. */
2126
2127 static inline bfd_boolean
2128 micromips_reloc_p (unsigned int r_type)
2129 {
2130 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2131 }
2132
2133 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2134 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2135 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2136
2137 static inline bfd_boolean
2138 micromips_reloc_shuffle_p (unsigned int r_type)
2139 {
2140 return (micromips_reloc_p (r_type)
2141 && r_type != R_MICROMIPS_PC7_S1
2142 && r_type != R_MICROMIPS_PC10_S1);
2143 }
2144
2145 static inline bfd_boolean
2146 got16_reloc_p (int r_type)
2147 {
2148 return (r_type == R_MIPS_GOT16
2149 || r_type == R_MIPS16_GOT16
2150 || r_type == R_MICROMIPS_GOT16);
2151 }
2152
2153 static inline bfd_boolean
2154 call16_reloc_p (int r_type)
2155 {
2156 return (r_type == R_MIPS_CALL16
2157 || r_type == R_MIPS16_CALL16
2158 || r_type == R_MICROMIPS_CALL16);
2159 }
2160
2161 static inline bfd_boolean
2162 got_disp_reloc_p (unsigned int r_type)
2163 {
2164 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2165 }
2166
2167 static inline bfd_boolean
2168 got_page_reloc_p (unsigned int r_type)
2169 {
2170 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2171 }
2172
2173 static inline bfd_boolean
2174 got_lo16_reloc_p (unsigned int r_type)
2175 {
2176 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2177 }
2178
2179 static inline bfd_boolean
2180 call_hi16_reloc_p (unsigned int r_type)
2181 {
2182 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2183 }
2184
2185 static inline bfd_boolean
2186 call_lo16_reloc_p (unsigned int r_type)
2187 {
2188 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2189 }
2190
2191 static inline bfd_boolean
2192 hi16_reloc_p (int r_type)
2193 {
2194 return (r_type == R_MIPS_HI16
2195 || r_type == R_MIPS16_HI16
2196 || r_type == R_MICROMIPS_HI16
2197 || r_type == R_MIPS_PCHI16);
2198 }
2199
2200 static inline bfd_boolean
2201 lo16_reloc_p (int r_type)
2202 {
2203 return (r_type == R_MIPS_LO16
2204 || r_type == R_MIPS16_LO16
2205 || r_type == R_MICROMIPS_LO16
2206 || r_type == R_MIPS_PCLO16);
2207 }
2208
2209 static inline bfd_boolean
2210 mips16_call_reloc_p (int r_type)
2211 {
2212 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2213 }
2214
2215 static inline bfd_boolean
2216 jal_reloc_p (int r_type)
2217 {
2218 return (r_type == R_MIPS_26
2219 || r_type == R_MIPS16_26
2220 || r_type == R_MICROMIPS_26_S1);
2221 }
2222
2223 static inline bfd_boolean
2224 b_reloc_p (int r_type)
2225 {
2226 return (r_type == R_MIPS_PC26_S2
2227 || r_type == R_MIPS_PC21_S2
2228 || r_type == R_MIPS_PC16
2229 || r_type == R_MIPS_GNU_REL16_S2
2230 || r_type == R_MIPS16_PC16_S1);
2231 }
2232
2233 static inline bfd_boolean
2234 aligned_pcrel_reloc_p (int r_type)
2235 {
2236 return (r_type == R_MIPS_PC18_S3
2237 || r_type == R_MIPS_PC19_S2);
2238 }
2239
2240 static inline bfd_boolean
2241 mips16_branch_reloc_p (int r_type)
2242 {
2243 return (r_type == R_MIPS16_26
2244 || r_type == R_MIPS16_PC16_S1);
2245 }
2246
2247 static inline bfd_boolean
2248 micromips_branch_reloc_p (int r_type)
2249 {
2250 return (r_type == R_MICROMIPS_26_S1
2251 || r_type == R_MICROMIPS_PC16_S1
2252 || r_type == R_MICROMIPS_PC10_S1
2253 || r_type == R_MICROMIPS_PC7_S1);
2254 }
2255
2256 static inline bfd_boolean
2257 tls_gd_reloc_p (unsigned int r_type)
2258 {
2259 return (r_type == R_MIPS_TLS_GD
2260 || r_type == R_MIPS16_TLS_GD
2261 || r_type == R_MICROMIPS_TLS_GD);
2262 }
2263
2264 static inline bfd_boolean
2265 tls_ldm_reloc_p (unsigned int r_type)
2266 {
2267 return (r_type == R_MIPS_TLS_LDM
2268 || r_type == R_MIPS16_TLS_LDM
2269 || r_type == R_MICROMIPS_TLS_LDM);
2270 }
2271
2272 static inline bfd_boolean
2273 tls_gottprel_reloc_p (unsigned int r_type)
2274 {
2275 return (r_type == R_MIPS_TLS_GOTTPREL
2276 || r_type == R_MIPS16_TLS_GOTTPREL
2277 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2278 }
2279
2280 void
2281 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2282 bfd_boolean jal_shuffle, bfd_byte *data)
2283 {
2284 bfd_vma first, second, val;
2285
2286 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2287 return;
2288
2289 /* Pick up the first and second halfwords of the instruction. */
2290 first = bfd_get_16 (abfd, data);
2291 second = bfd_get_16 (abfd, data + 2);
2292 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2293 val = first << 16 | second;
2294 else if (r_type != R_MIPS16_26)
2295 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2296 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2297 else
2298 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2299 | ((first & 0x1f) << 21) | second);
2300 bfd_put_32 (abfd, val, data);
2301 }
2302
2303 void
2304 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2305 bfd_boolean jal_shuffle, bfd_byte *data)
2306 {
2307 bfd_vma first, second, val;
2308
2309 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2310 return;
2311
2312 val = bfd_get_32 (abfd, data);
2313 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2314 {
2315 second = val & 0xffff;
2316 first = val >> 16;
2317 }
2318 else if (r_type != R_MIPS16_26)
2319 {
2320 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2321 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2322 }
2323 else
2324 {
2325 second = val & 0xffff;
2326 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2327 | ((val >> 21) & 0x1f);
2328 }
2329 bfd_put_16 (abfd, second, data + 2);
2330 bfd_put_16 (abfd, first, data);
2331 }
2332
2333 bfd_reloc_status_type
2334 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2335 arelent *reloc_entry, asection *input_section,
2336 bfd_boolean relocatable, void *data, bfd_vma gp)
2337 {
2338 bfd_vma relocation;
2339 bfd_signed_vma val;
2340 bfd_reloc_status_type status;
2341
2342 if (bfd_is_com_section (symbol->section))
2343 relocation = 0;
2344 else
2345 relocation = symbol->value;
2346
2347 relocation += symbol->section->output_section->vma;
2348 relocation += symbol->section->output_offset;
2349
2350 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2351 return bfd_reloc_outofrange;
2352
2353 /* Set val to the offset into the section or symbol. */
2354 val = reloc_entry->addend;
2355
2356 _bfd_mips_elf_sign_extend (val, 16);
2357
2358 /* Adjust val for the final section location and GP value. If we
2359 are producing relocatable output, we don't want to do this for
2360 an external symbol. */
2361 if (! relocatable
2362 || (symbol->flags & BSF_SECTION_SYM) != 0)
2363 val += relocation - gp;
2364
2365 if (reloc_entry->howto->partial_inplace)
2366 {
2367 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2368 (bfd_byte *) data
2369 + reloc_entry->address);
2370 if (status != bfd_reloc_ok)
2371 return status;
2372 }
2373 else
2374 reloc_entry->addend = val;
2375
2376 if (relocatable)
2377 reloc_entry->address += input_section->output_offset;
2378
2379 return bfd_reloc_ok;
2380 }
2381
2382 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2383 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2384 that contains the relocation field and DATA points to the start of
2385 INPUT_SECTION. */
2386
2387 struct mips_hi16
2388 {
2389 struct mips_hi16 *next;
2390 bfd_byte *data;
2391 asection *input_section;
2392 arelent rel;
2393 };
2394
2395 /* FIXME: This should not be a static variable. */
2396
2397 static struct mips_hi16 *mips_hi16_list;
2398
2399 /* A howto special_function for REL *HI16 relocations. We can only
2400 calculate the correct value once we've seen the partnering
2401 *LO16 relocation, so just save the information for later.
2402
2403 The ABI requires that the *LO16 immediately follow the *HI16.
2404 However, as a GNU extension, we permit an arbitrary number of
2405 *HI16s to be associated with a single *LO16. This significantly
2406 simplies the relocation handling in gcc. */
2407
2408 bfd_reloc_status_type
2409 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2410 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2411 asection *input_section, bfd *output_bfd,
2412 char **error_message ATTRIBUTE_UNUSED)
2413 {
2414 struct mips_hi16 *n;
2415
2416 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2417 return bfd_reloc_outofrange;
2418
2419 n = bfd_malloc (sizeof *n);
2420 if (n == NULL)
2421 return bfd_reloc_outofrange;
2422
2423 n->next = mips_hi16_list;
2424 n->data = data;
2425 n->input_section = input_section;
2426 n->rel = *reloc_entry;
2427 mips_hi16_list = n;
2428
2429 if (output_bfd != NULL)
2430 reloc_entry->address += input_section->output_offset;
2431
2432 return bfd_reloc_ok;
2433 }
2434
2435 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2436 like any other 16-bit relocation when applied to global symbols, but is
2437 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2438
2439 bfd_reloc_status_type
2440 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2441 void *data, asection *input_section,
2442 bfd *output_bfd, char **error_message)
2443 {
2444 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2445 || bfd_is_und_section (bfd_get_section (symbol))
2446 || bfd_is_com_section (bfd_get_section (symbol)))
2447 /* The relocation is against a global symbol. */
2448 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2449 input_section, output_bfd,
2450 error_message);
2451
2452 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2453 input_section, output_bfd, error_message);
2454 }
2455
2456 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2457 is a straightforward 16 bit inplace relocation, but we must deal with
2458 any partnering high-part relocations as well. */
2459
2460 bfd_reloc_status_type
2461 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2462 void *data, asection *input_section,
2463 bfd *output_bfd, char **error_message)
2464 {
2465 bfd_vma vallo;
2466 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2467
2468 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2469 return bfd_reloc_outofrange;
2470
2471 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2472 location);
2473 vallo = bfd_get_32 (abfd, location);
2474 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2475 location);
2476
2477 while (mips_hi16_list != NULL)
2478 {
2479 bfd_reloc_status_type ret;
2480 struct mips_hi16 *hi;
2481
2482 hi = mips_hi16_list;
2483
2484 /* R_MIPS*_GOT16 relocations are something of a special case. We
2485 want to install the addend in the same way as for a R_MIPS*_HI16
2486 relocation (with a rightshift of 16). However, since GOT16
2487 relocations can also be used with global symbols, their howto
2488 has a rightshift of 0. */
2489 if (hi->rel.howto->type == R_MIPS_GOT16)
2490 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2491 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2492 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2493 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2494 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2495
2496 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2497 carry or borrow will induce a change of +1 or -1 in the high part. */
2498 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2499
2500 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2501 hi->input_section, output_bfd,
2502 error_message);
2503 if (ret != bfd_reloc_ok)
2504 return ret;
2505
2506 mips_hi16_list = hi->next;
2507 free (hi);
2508 }
2509
2510 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2511 input_section, output_bfd,
2512 error_message);
2513 }
2514
2515 /* A generic howto special_function. This calculates and installs the
2516 relocation itself, thus avoiding the oft-discussed problems in
2517 bfd_perform_relocation and bfd_install_relocation. */
2518
2519 bfd_reloc_status_type
2520 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2521 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2522 asection *input_section, bfd *output_bfd,
2523 char **error_message ATTRIBUTE_UNUSED)
2524 {
2525 bfd_signed_vma val;
2526 bfd_reloc_status_type status;
2527 bfd_boolean relocatable;
2528
2529 relocatable = (output_bfd != NULL);
2530
2531 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2532 return bfd_reloc_outofrange;
2533
2534 /* Build up the field adjustment in VAL. */
2535 val = 0;
2536 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2537 {
2538 /* Either we're calculating the final field value or we have a
2539 relocation against a section symbol. Add in the section's
2540 offset or address. */
2541 val += symbol->section->output_section->vma;
2542 val += symbol->section->output_offset;
2543 }
2544
2545 if (!relocatable)
2546 {
2547 /* We're calculating the final field value. Add in the symbol's value
2548 and, if pc-relative, subtract the address of the field itself. */
2549 val += symbol->value;
2550 if (reloc_entry->howto->pc_relative)
2551 {
2552 val -= input_section->output_section->vma;
2553 val -= input_section->output_offset;
2554 val -= reloc_entry->address;
2555 }
2556 }
2557
2558 /* VAL is now the final adjustment. If we're keeping this relocation
2559 in the output file, and if the relocation uses a separate addend,
2560 we just need to add VAL to that addend. Otherwise we need to add
2561 VAL to the relocation field itself. */
2562 if (relocatable && !reloc_entry->howto->partial_inplace)
2563 reloc_entry->addend += val;
2564 else
2565 {
2566 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2567
2568 /* Add in the separate addend, if any. */
2569 val += reloc_entry->addend;
2570
2571 /* Add VAL to the relocation field. */
2572 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2573 location);
2574 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2575 location);
2576 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2577 location);
2578
2579 if (status != bfd_reloc_ok)
2580 return status;
2581 }
2582
2583 if (relocatable)
2584 reloc_entry->address += input_section->output_offset;
2585
2586 return bfd_reloc_ok;
2587 }
2588 \f
2589 /* Swap an entry in a .gptab section. Note that these routines rely
2590 on the equivalence of the two elements of the union. */
2591
2592 static void
2593 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2594 Elf32_gptab *in)
2595 {
2596 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2597 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2598 }
2599
2600 static void
2601 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2602 Elf32_External_gptab *ex)
2603 {
2604 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2605 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2606 }
2607
2608 static void
2609 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2610 Elf32_External_compact_rel *ex)
2611 {
2612 H_PUT_32 (abfd, in->id1, ex->id1);
2613 H_PUT_32 (abfd, in->num, ex->num);
2614 H_PUT_32 (abfd, in->id2, ex->id2);
2615 H_PUT_32 (abfd, in->offset, ex->offset);
2616 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2617 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2618 }
2619
2620 static void
2621 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2622 Elf32_External_crinfo *ex)
2623 {
2624 unsigned long l;
2625
2626 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2627 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2628 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2629 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2630 H_PUT_32 (abfd, l, ex->info);
2631 H_PUT_32 (abfd, in->konst, ex->konst);
2632 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2633 }
2634 \f
2635 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2636 routines swap this structure in and out. They are used outside of
2637 BFD, so they are globally visible. */
2638
2639 void
2640 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2641 Elf32_RegInfo *in)
2642 {
2643 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2644 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2645 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2646 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2647 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2648 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2649 }
2650
2651 void
2652 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2653 Elf32_External_RegInfo *ex)
2654 {
2655 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2656 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2657 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2658 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2659 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2660 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2661 }
2662
2663 /* In the 64 bit ABI, the .MIPS.options section holds register
2664 information in an Elf64_Reginfo structure. These routines swap
2665 them in and out. They are globally visible because they are used
2666 outside of BFD. These routines are here so that gas can call them
2667 without worrying about whether the 64 bit ABI has been included. */
2668
2669 void
2670 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2671 Elf64_Internal_RegInfo *in)
2672 {
2673 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2674 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2675 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2676 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2677 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2678 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2679 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2680 }
2681
2682 void
2683 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2684 Elf64_External_RegInfo *ex)
2685 {
2686 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2687 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2688 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2689 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2690 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2691 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2692 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2693 }
2694
2695 /* Swap in an options header. */
2696
2697 void
2698 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2699 Elf_Internal_Options *in)
2700 {
2701 in->kind = H_GET_8 (abfd, ex->kind);
2702 in->size = H_GET_8 (abfd, ex->size);
2703 in->section = H_GET_16 (abfd, ex->section);
2704 in->info = H_GET_32 (abfd, ex->info);
2705 }
2706
2707 /* Swap out an options header. */
2708
2709 void
2710 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2711 Elf_External_Options *ex)
2712 {
2713 H_PUT_8 (abfd, in->kind, ex->kind);
2714 H_PUT_8 (abfd, in->size, ex->size);
2715 H_PUT_16 (abfd, in->section, ex->section);
2716 H_PUT_32 (abfd, in->info, ex->info);
2717 }
2718
2719 /* Swap in an abiflags structure. */
2720
2721 void
2722 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2723 const Elf_External_ABIFlags_v0 *ex,
2724 Elf_Internal_ABIFlags_v0 *in)
2725 {
2726 in->version = H_GET_16 (abfd, ex->version);
2727 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2728 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2729 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2730 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2731 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2732 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2733 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2734 in->ases = H_GET_32 (abfd, ex->ases);
2735 in->flags1 = H_GET_32 (abfd, ex->flags1);
2736 in->flags2 = H_GET_32 (abfd, ex->flags2);
2737 }
2738
2739 /* Swap out an abiflags structure. */
2740
2741 void
2742 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2743 const Elf_Internal_ABIFlags_v0 *in,
2744 Elf_External_ABIFlags_v0 *ex)
2745 {
2746 H_PUT_16 (abfd, in->version, ex->version);
2747 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2748 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2749 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2750 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2751 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2752 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2753 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2754 H_PUT_32 (abfd, in->ases, ex->ases);
2755 H_PUT_32 (abfd, in->flags1, ex->flags1);
2756 H_PUT_32 (abfd, in->flags2, ex->flags2);
2757 }
2758 \f
2759 /* This function is called via qsort() to sort the dynamic relocation
2760 entries by increasing r_symndx value. */
2761
2762 static int
2763 sort_dynamic_relocs (const void *arg1, const void *arg2)
2764 {
2765 Elf_Internal_Rela int_reloc1;
2766 Elf_Internal_Rela int_reloc2;
2767 int diff;
2768
2769 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2770 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2771
2772 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2773 if (diff != 0)
2774 return diff;
2775
2776 if (int_reloc1.r_offset < int_reloc2.r_offset)
2777 return -1;
2778 if (int_reloc1.r_offset > int_reloc2.r_offset)
2779 return 1;
2780 return 0;
2781 }
2782
2783 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2784
2785 static int
2786 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2787 const void *arg2 ATTRIBUTE_UNUSED)
2788 {
2789 #ifdef BFD64
2790 Elf_Internal_Rela int_reloc1[3];
2791 Elf_Internal_Rela int_reloc2[3];
2792
2793 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2794 (reldyn_sorting_bfd, arg1, int_reloc1);
2795 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2796 (reldyn_sorting_bfd, arg2, int_reloc2);
2797
2798 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2799 return -1;
2800 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2801 return 1;
2802
2803 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2804 return -1;
2805 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2806 return 1;
2807 return 0;
2808 #else
2809 abort ();
2810 #endif
2811 }
2812
2813
2814 /* This routine is used to write out ECOFF debugging external symbol
2815 information. It is called via mips_elf_link_hash_traverse. The
2816 ECOFF external symbol information must match the ELF external
2817 symbol information. Unfortunately, at this point we don't know
2818 whether a symbol is required by reloc information, so the two
2819 tables may wind up being different. We must sort out the external
2820 symbol information before we can set the final size of the .mdebug
2821 section, and we must set the size of the .mdebug section before we
2822 can relocate any sections, and we can't know which symbols are
2823 required by relocation until we relocate the sections.
2824 Fortunately, it is relatively unlikely that any symbol will be
2825 stripped but required by a reloc. In particular, it can not happen
2826 when generating a final executable. */
2827
2828 static bfd_boolean
2829 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2830 {
2831 struct extsym_info *einfo = data;
2832 bfd_boolean strip;
2833 asection *sec, *output_section;
2834
2835 if (h->root.indx == -2)
2836 strip = FALSE;
2837 else if ((h->root.def_dynamic
2838 || h->root.ref_dynamic
2839 || h->root.type == bfd_link_hash_new)
2840 && !h->root.def_regular
2841 && !h->root.ref_regular)
2842 strip = TRUE;
2843 else if (einfo->info->strip == strip_all
2844 || (einfo->info->strip == strip_some
2845 && bfd_hash_lookup (einfo->info->keep_hash,
2846 h->root.root.root.string,
2847 FALSE, FALSE) == NULL))
2848 strip = TRUE;
2849 else
2850 strip = FALSE;
2851
2852 if (strip)
2853 return TRUE;
2854
2855 if (h->esym.ifd == -2)
2856 {
2857 h->esym.jmptbl = 0;
2858 h->esym.cobol_main = 0;
2859 h->esym.weakext = 0;
2860 h->esym.reserved = 0;
2861 h->esym.ifd = ifdNil;
2862 h->esym.asym.value = 0;
2863 h->esym.asym.st = stGlobal;
2864
2865 if (h->root.root.type == bfd_link_hash_undefined
2866 || h->root.root.type == bfd_link_hash_undefweak)
2867 {
2868 const char *name;
2869
2870 /* Use undefined class. Also, set class and type for some
2871 special symbols. */
2872 name = h->root.root.root.string;
2873 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2874 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2875 {
2876 h->esym.asym.sc = scData;
2877 h->esym.asym.st = stLabel;
2878 h->esym.asym.value = 0;
2879 }
2880 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2881 {
2882 h->esym.asym.sc = scAbs;
2883 h->esym.asym.st = stLabel;
2884 h->esym.asym.value =
2885 mips_elf_hash_table (einfo->info)->procedure_count;
2886 }
2887 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2888 {
2889 h->esym.asym.sc = scAbs;
2890 h->esym.asym.st = stLabel;
2891 h->esym.asym.value = elf_gp (einfo->abfd);
2892 }
2893 else
2894 h->esym.asym.sc = scUndefined;
2895 }
2896 else if (h->root.root.type != bfd_link_hash_defined
2897 && h->root.root.type != bfd_link_hash_defweak)
2898 h->esym.asym.sc = scAbs;
2899 else
2900 {
2901 const char *name;
2902
2903 sec = h->root.root.u.def.section;
2904 output_section = sec->output_section;
2905
2906 /* When making a shared library and symbol h is the one from
2907 the another shared library, OUTPUT_SECTION may be null. */
2908 if (output_section == NULL)
2909 h->esym.asym.sc = scUndefined;
2910 else
2911 {
2912 name = bfd_section_name (output_section->owner, output_section);
2913
2914 if (strcmp (name, ".text") == 0)
2915 h->esym.asym.sc = scText;
2916 else if (strcmp (name, ".data") == 0)
2917 h->esym.asym.sc = scData;
2918 else if (strcmp (name, ".sdata") == 0)
2919 h->esym.asym.sc = scSData;
2920 else if (strcmp (name, ".rodata") == 0
2921 || strcmp (name, ".rdata") == 0)
2922 h->esym.asym.sc = scRData;
2923 else if (strcmp (name, ".bss") == 0)
2924 h->esym.asym.sc = scBss;
2925 else if (strcmp (name, ".sbss") == 0)
2926 h->esym.asym.sc = scSBss;
2927 else if (strcmp (name, ".init") == 0)
2928 h->esym.asym.sc = scInit;
2929 else if (strcmp (name, ".fini") == 0)
2930 h->esym.asym.sc = scFini;
2931 else
2932 h->esym.asym.sc = scAbs;
2933 }
2934 }
2935
2936 h->esym.asym.reserved = 0;
2937 h->esym.asym.index = indexNil;
2938 }
2939
2940 if (h->root.root.type == bfd_link_hash_common)
2941 h->esym.asym.value = h->root.root.u.c.size;
2942 else if (h->root.root.type == bfd_link_hash_defined
2943 || h->root.root.type == bfd_link_hash_defweak)
2944 {
2945 if (h->esym.asym.sc == scCommon)
2946 h->esym.asym.sc = scBss;
2947 else if (h->esym.asym.sc == scSCommon)
2948 h->esym.asym.sc = scSBss;
2949
2950 sec = h->root.root.u.def.section;
2951 output_section = sec->output_section;
2952 if (output_section != NULL)
2953 h->esym.asym.value = (h->root.root.u.def.value
2954 + sec->output_offset
2955 + output_section->vma);
2956 else
2957 h->esym.asym.value = 0;
2958 }
2959 else
2960 {
2961 struct mips_elf_link_hash_entry *hd = h;
2962
2963 while (hd->root.root.type == bfd_link_hash_indirect)
2964 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2965
2966 if (hd->needs_lazy_stub)
2967 {
2968 BFD_ASSERT (hd->root.plt.plist != NULL);
2969 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2970 /* Set type and value for a symbol with a function stub. */
2971 h->esym.asym.st = stProc;
2972 sec = hd->root.root.u.def.section;
2973 if (sec == NULL)
2974 h->esym.asym.value = 0;
2975 else
2976 {
2977 output_section = sec->output_section;
2978 if (output_section != NULL)
2979 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2980 + sec->output_offset
2981 + output_section->vma);
2982 else
2983 h->esym.asym.value = 0;
2984 }
2985 }
2986 }
2987
2988 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2989 h->root.root.root.string,
2990 &h->esym))
2991 {
2992 einfo->failed = TRUE;
2993 return FALSE;
2994 }
2995
2996 return TRUE;
2997 }
2998
2999 /* A comparison routine used to sort .gptab entries. */
3000
3001 static int
3002 gptab_compare (const void *p1, const void *p2)
3003 {
3004 const Elf32_gptab *a1 = p1;
3005 const Elf32_gptab *a2 = p2;
3006
3007 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3008 }
3009 \f
3010 /* Functions to manage the got entry hash table. */
3011
3012 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3013 hash number. */
3014
3015 static INLINE hashval_t
3016 mips_elf_hash_bfd_vma (bfd_vma addr)
3017 {
3018 #ifdef BFD64
3019 return addr + (addr >> 32);
3020 #else
3021 return addr;
3022 #endif
3023 }
3024
3025 static hashval_t
3026 mips_elf_got_entry_hash (const void *entry_)
3027 {
3028 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3029
3030 return (entry->symndx
3031 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3032 + (entry->tls_type == GOT_TLS_LDM ? 0
3033 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3034 : entry->symndx >= 0 ? (entry->abfd->id
3035 + mips_elf_hash_bfd_vma (entry->d.addend))
3036 : entry->d.h->root.root.root.hash));
3037 }
3038
3039 static int
3040 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3041 {
3042 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3043 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3044
3045 return (e1->symndx == e2->symndx
3046 && e1->tls_type == e2->tls_type
3047 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3048 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3049 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3050 && e1->d.addend == e2->d.addend)
3051 : e2->abfd && e1->d.h == e2->d.h));
3052 }
3053
3054 static hashval_t
3055 mips_got_page_ref_hash (const void *ref_)
3056 {
3057 const struct mips_got_page_ref *ref;
3058
3059 ref = (const struct mips_got_page_ref *) ref_;
3060 return ((ref->symndx >= 0
3061 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3062 : ref->u.h->root.root.root.hash)
3063 + mips_elf_hash_bfd_vma (ref->addend));
3064 }
3065
3066 static int
3067 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3068 {
3069 const struct mips_got_page_ref *ref1, *ref2;
3070
3071 ref1 = (const struct mips_got_page_ref *) ref1_;
3072 ref2 = (const struct mips_got_page_ref *) ref2_;
3073 return (ref1->symndx == ref2->symndx
3074 && (ref1->symndx < 0
3075 ? ref1->u.h == ref2->u.h
3076 : ref1->u.abfd == ref2->u.abfd)
3077 && ref1->addend == ref2->addend);
3078 }
3079
3080 static hashval_t
3081 mips_got_page_entry_hash (const void *entry_)
3082 {
3083 const struct mips_got_page_entry *entry;
3084
3085 entry = (const struct mips_got_page_entry *) entry_;
3086 return entry->sec->id;
3087 }
3088
3089 static int
3090 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3091 {
3092 const struct mips_got_page_entry *entry1, *entry2;
3093
3094 entry1 = (const struct mips_got_page_entry *) entry1_;
3095 entry2 = (const struct mips_got_page_entry *) entry2_;
3096 return entry1->sec == entry2->sec;
3097 }
3098 \f
3099 /* Create and return a new mips_got_info structure. */
3100
3101 static struct mips_got_info *
3102 mips_elf_create_got_info (bfd *abfd)
3103 {
3104 struct mips_got_info *g;
3105
3106 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3107 if (g == NULL)
3108 return NULL;
3109
3110 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3111 mips_elf_got_entry_eq, NULL);
3112 if (g->got_entries == NULL)
3113 return NULL;
3114
3115 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3116 mips_got_page_ref_eq, NULL);
3117 if (g->got_page_refs == NULL)
3118 return NULL;
3119
3120 return g;
3121 }
3122
3123 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3124 CREATE_P and if ABFD doesn't already have a GOT. */
3125
3126 static struct mips_got_info *
3127 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3128 {
3129 struct mips_elf_obj_tdata *tdata;
3130
3131 if (!is_mips_elf (abfd))
3132 return NULL;
3133
3134 tdata = mips_elf_tdata (abfd);
3135 if (!tdata->got && create_p)
3136 tdata->got = mips_elf_create_got_info (abfd);
3137 return tdata->got;
3138 }
3139
3140 /* Record that ABFD should use output GOT G. */
3141
3142 static void
3143 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3144 {
3145 struct mips_elf_obj_tdata *tdata;
3146
3147 BFD_ASSERT (is_mips_elf (abfd));
3148 tdata = mips_elf_tdata (abfd);
3149 if (tdata->got)
3150 {
3151 /* The GOT structure itself and the hash table entries are
3152 allocated to a bfd, but the hash tables aren't. */
3153 htab_delete (tdata->got->got_entries);
3154 htab_delete (tdata->got->got_page_refs);
3155 if (tdata->got->got_page_entries)
3156 htab_delete (tdata->got->got_page_entries);
3157 }
3158 tdata->got = g;
3159 }
3160
3161 /* Return the dynamic relocation section. If it doesn't exist, try to
3162 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3163 if creation fails. */
3164
3165 static asection *
3166 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3167 {
3168 const char *dname;
3169 asection *sreloc;
3170 bfd *dynobj;
3171
3172 dname = MIPS_ELF_REL_DYN_NAME (info);
3173 dynobj = elf_hash_table (info)->dynobj;
3174 sreloc = bfd_get_linker_section (dynobj, dname);
3175 if (sreloc == NULL && create_p)
3176 {
3177 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3178 (SEC_ALLOC
3179 | SEC_LOAD
3180 | SEC_HAS_CONTENTS
3181 | SEC_IN_MEMORY
3182 | SEC_LINKER_CREATED
3183 | SEC_READONLY));
3184 if (sreloc == NULL
3185 || ! bfd_set_section_alignment (dynobj, sreloc,
3186 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3187 return NULL;
3188 }
3189 return sreloc;
3190 }
3191
3192 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3193
3194 static int
3195 mips_elf_reloc_tls_type (unsigned int r_type)
3196 {
3197 if (tls_gd_reloc_p (r_type))
3198 return GOT_TLS_GD;
3199
3200 if (tls_ldm_reloc_p (r_type))
3201 return GOT_TLS_LDM;
3202
3203 if (tls_gottprel_reloc_p (r_type))
3204 return GOT_TLS_IE;
3205
3206 return GOT_TLS_NONE;
3207 }
3208
3209 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3210
3211 static int
3212 mips_tls_got_entries (unsigned int type)
3213 {
3214 switch (type)
3215 {
3216 case GOT_TLS_GD:
3217 case GOT_TLS_LDM:
3218 return 2;
3219
3220 case GOT_TLS_IE:
3221 return 1;
3222
3223 case GOT_TLS_NONE:
3224 return 0;
3225 }
3226 abort ();
3227 }
3228
3229 /* Count the number of relocations needed for a TLS GOT entry, with
3230 access types from TLS_TYPE, and symbol H (or a local symbol if H
3231 is NULL). */
3232
3233 static int
3234 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3235 struct elf_link_hash_entry *h)
3236 {
3237 int indx = 0;
3238 bfd_boolean need_relocs = FALSE;
3239 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3240
3241 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3242 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3243 indx = h->dynindx;
3244
3245 if ((bfd_link_pic (info) || indx != 0)
3246 && (h == NULL
3247 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3248 || h->root.type != bfd_link_hash_undefweak))
3249 need_relocs = TRUE;
3250
3251 if (!need_relocs)
3252 return 0;
3253
3254 switch (tls_type)
3255 {
3256 case GOT_TLS_GD:
3257 return indx != 0 ? 2 : 1;
3258
3259 case GOT_TLS_IE:
3260 return 1;
3261
3262 case GOT_TLS_LDM:
3263 return bfd_link_pic (info) ? 1 : 0;
3264
3265 default:
3266 return 0;
3267 }
3268 }
3269
3270 /* Add the number of GOT entries and TLS relocations required by ENTRY
3271 to G. */
3272
3273 static void
3274 mips_elf_count_got_entry (struct bfd_link_info *info,
3275 struct mips_got_info *g,
3276 struct mips_got_entry *entry)
3277 {
3278 if (entry->tls_type)
3279 {
3280 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3281 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3282 entry->symndx < 0
3283 ? &entry->d.h->root : NULL);
3284 }
3285 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3286 g->local_gotno += 1;
3287 else
3288 g->global_gotno += 1;
3289 }
3290
3291 /* Output a simple dynamic relocation into SRELOC. */
3292
3293 static void
3294 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3295 asection *sreloc,
3296 unsigned long reloc_index,
3297 unsigned long indx,
3298 int r_type,
3299 bfd_vma offset)
3300 {
3301 Elf_Internal_Rela rel[3];
3302
3303 memset (rel, 0, sizeof (rel));
3304
3305 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3306 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3307
3308 if (ABI_64_P (output_bfd))
3309 {
3310 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3311 (output_bfd, &rel[0],
3312 (sreloc->contents
3313 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3314 }
3315 else
3316 bfd_elf32_swap_reloc_out
3317 (output_bfd, &rel[0],
3318 (sreloc->contents
3319 + reloc_index * sizeof (Elf32_External_Rel)));
3320 }
3321
3322 /* Initialize a set of TLS GOT entries for one symbol. */
3323
3324 static void
3325 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3326 struct mips_got_entry *entry,
3327 struct mips_elf_link_hash_entry *h,
3328 bfd_vma value)
3329 {
3330 struct mips_elf_link_hash_table *htab;
3331 int indx;
3332 asection *sreloc, *sgot;
3333 bfd_vma got_offset, got_offset2;
3334 bfd_boolean need_relocs = FALSE;
3335
3336 htab = mips_elf_hash_table (info);
3337 if (htab == NULL)
3338 return;
3339
3340 sgot = htab->sgot;
3341
3342 indx = 0;
3343 if (h != NULL)
3344 {
3345 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3346
3347 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3348 &h->root)
3349 && (!bfd_link_pic (info)
3350 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3351 indx = h->root.dynindx;
3352 }
3353
3354 if (entry->tls_initialized)
3355 return;
3356
3357 if ((bfd_link_pic (info) || indx != 0)
3358 && (h == NULL
3359 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3360 || h->root.type != bfd_link_hash_undefweak))
3361 need_relocs = TRUE;
3362
3363 /* MINUS_ONE means the symbol is not defined in this object. It may not
3364 be defined at all; assume that the value doesn't matter in that
3365 case. Otherwise complain if we would use the value. */
3366 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3367 || h->root.root.type == bfd_link_hash_undefweak);
3368
3369 /* Emit necessary relocations. */
3370 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3371 got_offset = entry->gotidx;
3372
3373 switch (entry->tls_type)
3374 {
3375 case GOT_TLS_GD:
3376 /* General Dynamic. */
3377 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3378
3379 if (need_relocs)
3380 {
3381 mips_elf_output_dynamic_relocation
3382 (abfd, sreloc, sreloc->reloc_count++, indx,
3383 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3384 sgot->output_offset + sgot->output_section->vma + got_offset);
3385
3386 if (indx)
3387 mips_elf_output_dynamic_relocation
3388 (abfd, sreloc, sreloc->reloc_count++, indx,
3389 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3390 sgot->output_offset + sgot->output_section->vma + got_offset2);
3391 else
3392 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3393 sgot->contents + got_offset2);
3394 }
3395 else
3396 {
3397 MIPS_ELF_PUT_WORD (abfd, 1,
3398 sgot->contents + got_offset);
3399 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3400 sgot->contents + got_offset2);
3401 }
3402 break;
3403
3404 case GOT_TLS_IE:
3405 /* Initial Exec model. */
3406 if (need_relocs)
3407 {
3408 if (indx == 0)
3409 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3410 sgot->contents + got_offset);
3411 else
3412 MIPS_ELF_PUT_WORD (abfd, 0,
3413 sgot->contents + got_offset);
3414
3415 mips_elf_output_dynamic_relocation
3416 (abfd, sreloc, sreloc->reloc_count++, indx,
3417 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3418 sgot->output_offset + sgot->output_section->vma + got_offset);
3419 }
3420 else
3421 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3422 sgot->contents + got_offset);
3423 break;
3424
3425 case GOT_TLS_LDM:
3426 /* The initial offset is zero, and the LD offsets will include the
3427 bias by DTP_OFFSET. */
3428 MIPS_ELF_PUT_WORD (abfd, 0,
3429 sgot->contents + got_offset
3430 + MIPS_ELF_GOT_SIZE (abfd));
3431
3432 if (!bfd_link_pic (info))
3433 MIPS_ELF_PUT_WORD (abfd, 1,
3434 sgot->contents + got_offset);
3435 else
3436 mips_elf_output_dynamic_relocation
3437 (abfd, sreloc, sreloc->reloc_count++, indx,
3438 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3439 sgot->output_offset + sgot->output_section->vma + got_offset);
3440 break;
3441
3442 default:
3443 abort ();
3444 }
3445
3446 entry->tls_initialized = TRUE;
3447 }
3448
3449 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3450 for global symbol H. .got.plt comes before the GOT, so the offset
3451 will be negative. */
3452
3453 static bfd_vma
3454 mips_elf_gotplt_index (struct bfd_link_info *info,
3455 struct elf_link_hash_entry *h)
3456 {
3457 bfd_vma got_address, got_value;
3458 struct mips_elf_link_hash_table *htab;
3459
3460 htab = mips_elf_hash_table (info);
3461 BFD_ASSERT (htab != NULL);
3462
3463 BFD_ASSERT (h->plt.plist != NULL);
3464 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3465
3466 /* Calculate the address of the associated .got.plt entry. */
3467 got_address = (htab->sgotplt->output_section->vma
3468 + htab->sgotplt->output_offset
3469 + (h->plt.plist->gotplt_index
3470 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3471
3472 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3473 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3474 + htab->root.hgot->root.u.def.section->output_offset
3475 + htab->root.hgot->root.u.def.value);
3476
3477 return got_address - got_value;
3478 }
3479
3480 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3481 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3482 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3483 offset can be found. */
3484
3485 static bfd_vma
3486 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3487 bfd_vma value, unsigned long r_symndx,
3488 struct mips_elf_link_hash_entry *h, int r_type)
3489 {
3490 struct mips_elf_link_hash_table *htab;
3491 struct mips_got_entry *entry;
3492
3493 htab = mips_elf_hash_table (info);
3494 BFD_ASSERT (htab != NULL);
3495
3496 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3497 r_symndx, h, r_type);
3498 if (!entry)
3499 return MINUS_ONE;
3500
3501 if (entry->tls_type)
3502 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3503 return entry->gotidx;
3504 }
3505
3506 /* Return the GOT index of global symbol H in the primary GOT. */
3507
3508 static bfd_vma
3509 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3510 struct elf_link_hash_entry *h)
3511 {
3512 struct mips_elf_link_hash_table *htab;
3513 long global_got_dynindx;
3514 struct mips_got_info *g;
3515 bfd_vma got_index;
3516
3517 htab = mips_elf_hash_table (info);
3518 BFD_ASSERT (htab != NULL);
3519
3520 global_got_dynindx = 0;
3521 if (htab->global_gotsym != NULL)
3522 global_got_dynindx = htab->global_gotsym->dynindx;
3523
3524 /* Once we determine the global GOT entry with the lowest dynamic
3525 symbol table index, we must put all dynamic symbols with greater
3526 indices into the primary GOT. That makes it easy to calculate the
3527 GOT offset. */
3528 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3529 g = mips_elf_bfd_got (obfd, FALSE);
3530 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3531 * MIPS_ELF_GOT_SIZE (obfd));
3532 BFD_ASSERT (got_index < htab->sgot->size);
3533
3534 return got_index;
3535 }
3536
3537 /* Return the GOT index for the global symbol indicated by H, which is
3538 referenced by a relocation of type R_TYPE in IBFD. */
3539
3540 static bfd_vma
3541 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3542 struct elf_link_hash_entry *h, int r_type)
3543 {
3544 struct mips_elf_link_hash_table *htab;
3545 struct mips_got_info *g;
3546 struct mips_got_entry lookup, *entry;
3547 bfd_vma gotidx;
3548
3549 htab = mips_elf_hash_table (info);
3550 BFD_ASSERT (htab != NULL);
3551
3552 g = mips_elf_bfd_got (ibfd, FALSE);
3553 BFD_ASSERT (g);
3554
3555 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3556 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3557 return mips_elf_primary_global_got_index (obfd, info, h);
3558
3559 lookup.abfd = ibfd;
3560 lookup.symndx = -1;
3561 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3562 entry = htab_find (g->got_entries, &lookup);
3563 BFD_ASSERT (entry);
3564
3565 gotidx = entry->gotidx;
3566 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3567
3568 if (lookup.tls_type)
3569 {
3570 bfd_vma value = MINUS_ONE;
3571
3572 if ((h->root.type == bfd_link_hash_defined
3573 || h->root.type == bfd_link_hash_defweak)
3574 && h->root.u.def.section->output_section)
3575 value = (h->root.u.def.value
3576 + h->root.u.def.section->output_offset
3577 + h->root.u.def.section->output_section->vma);
3578
3579 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3580 }
3581 return gotidx;
3582 }
3583
3584 /* Find a GOT page entry that points to within 32KB of VALUE. These
3585 entries are supposed to be placed at small offsets in the GOT, i.e.,
3586 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3587 entry could be created. If OFFSETP is nonnull, use it to return the
3588 offset of the GOT entry from VALUE. */
3589
3590 static bfd_vma
3591 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3592 bfd_vma value, bfd_vma *offsetp)
3593 {
3594 bfd_vma page, got_index;
3595 struct mips_got_entry *entry;
3596
3597 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3598 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3599 NULL, R_MIPS_GOT_PAGE);
3600
3601 if (!entry)
3602 return MINUS_ONE;
3603
3604 got_index = entry->gotidx;
3605
3606 if (offsetp)
3607 *offsetp = value - entry->d.address;
3608
3609 return got_index;
3610 }
3611
3612 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3613 EXTERNAL is true if the relocation was originally against a global
3614 symbol that binds locally. */
3615
3616 static bfd_vma
3617 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3618 bfd_vma value, bfd_boolean external)
3619 {
3620 struct mips_got_entry *entry;
3621
3622 /* GOT16 relocations against local symbols are followed by a LO16
3623 relocation; those against global symbols are not. Thus if the
3624 symbol was originally local, the GOT16 relocation should load the
3625 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3626 if (! external)
3627 value = mips_elf_high (value) << 16;
3628
3629 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3630 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3631 same in all cases. */
3632 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3633 NULL, R_MIPS_GOT16);
3634 if (entry)
3635 return entry->gotidx;
3636 else
3637 return MINUS_ONE;
3638 }
3639
3640 /* Returns the offset for the entry at the INDEXth position
3641 in the GOT. */
3642
3643 static bfd_vma
3644 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3645 bfd *input_bfd, bfd_vma got_index)
3646 {
3647 struct mips_elf_link_hash_table *htab;
3648 asection *sgot;
3649 bfd_vma gp;
3650
3651 htab = mips_elf_hash_table (info);
3652 BFD_ASSERT (htab != NULL);
3653
3654 sgot = htab->sgot;
3655 gp = _bfd_get_gp_value (output_bfd)
3656 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3657
3658 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3659 }
3660
3661 /* Create and return a local GOT entry for VALUE, which was calculated
3662 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3663 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3664 instead. */
3665
3666 static struct mips_got_entry *
3667 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3668 bfd *ibfd, bfd_vma value,
3669 unsigned long r_symndx,
3670 struct mips_elf_link_hash_entry *h,
3671 int r_type)
3672 {
3673 struct mips_got_entry lookup, *entry;
3674 void **loc;
3675 struct mips_got_info *g;
3676 struct mips_elf_link_hash_table *htab;
3677 bfd_vma gotidx;
3678
3679 htab = mips_elf_hash_table (info);
3680 BFD_ASSERT (htab != NULL);
3681
3682 g = mips_elf_bfd_got (ibfd, FALSE);
3683 if (g == NULL)
3684 {
3685 g = mips_elf_bfd_got (abfd, FALSE);
3686 BFD_ASSERT (g != NULL);
3687 }
3688
3689 /* This function shouldn't be called for symbols that live in the global
3690 area of the GOT. */
3691 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3692
3693 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3694 if (lookup.tls_type)
3695 {
3696 lookup.abfd = ibfd;
3697 if (tls_ldm_reloc_p (r_type))
3698 {
3699 lookup.symndx = 0;
3700 lookup.d.addend = 0;
3701 }
3702 else if (h == NULL)
3703 {
3704 lookup.symndx = r_symndx;
3705 lookup.d.addend = 0;
3706 }
3707 else
3708 {
3709 lookup.symndx = -1;
3710 lookup.d.h = h;
3711 }
3712
3713 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3714 BFD_ASSERT (entry);
3715
3716 gotidx = entry->gotidx;
3717 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3718
3719 return entry;
3720 }
3721
3722 lookup.abfd = NULL;
3723 lookup.symndx = -1;
3724 lookup.d.address = value;
3725 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3726 if (!loc)
3727 return NULL;
3728
3729 entry = (struct mips_got_entry *) *loc;
3730 if (entry)
3731 return entry;
3732
3733 if (g->assigned_low_gotno > g->assigned_high_gotno)
3734 {
3735 /* We didn't allocate enough space in the GOT. */
3736 (*_bfd_error_handler)
3737 (_("not enough GOT space for local GOT entries"));
3738 bfd_set_error (bfd_error_bad_value);
3739 return NULL;
3740 }
3741
3742 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3743 if (!entry)
3744 return NULL;
3745
3746 if (got16_reloc_p (r_type)
3747 || call16_reloc_p (r_type)
3748 || got_page_reloc_p (r_type)
3749 || got_disp_reloc_p (r_type))
3750 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3751 else
3752 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3753
3754 *entry = lookup;
3755 *loc = entry;
3756
3757 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3758
3759 /* These GOT entries need a dynamic relocation on VxWorks. */
3760 if (htab->is_vxworks)
3761 {
3762 Elf_Internal_Rela outrel;
3763 asection *s;
3764 bfd_byte *rloc;
3765 bfd_vma got_address;
3766
3767 s = mips_elf_rel_dyn_section (info, FALSE);
3768 got_address = (htab->sgot->output_section->vma
3769 + htab->sgot->output_offset
3770 + entry->gotidx);
3771
3772 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3773 outrel.r_offset = got_address;
3774 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3775 outrel.r_addend = value;
3776 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3777 }
3778
3779 return entry;
3780 }
3781
3782 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3783 The number might be exact or a worst-case estimate, depending on how
3784 much information is available to elf_backend_omit_section_dynsym at
3785 the current linking stage. */
3786
3787 static bfd_size_type
3788 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3789 {
3790 bfd_size_type count;
3791
3792 count = 0;
3793 if (bfd_link_pic (info)
3794 || elf_hash_table (info)->is_relocatable_executable)
3795 {
3796 asection *p;
3797 const struct elf_backend_data *bed;
3798
3799 bed = get_elf_backend_data (output_bfd);
3800 for (p = output_bfd->sections; p ; p = p->next)
3801 if ((p->flags & SEC_EXCLUDE) == 0
3802 && (p->flags & SEC_ALLOC) != 0
3803 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3804 ++count;
3805 }
3806 return count;
3807 }
3808
3809 /* Sort the dynamic symbol table so that symbols that need GOT entries
3810 appear towards the end. */
3811
3812 static bfd_boolean
3813 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3814 {
3815 struct mips_elf_link_hash_table *htab;
3816 struct mips_elf_hash_sort_data hsd;
3817 struct mips_got_info *g;
3818
3819 if (elf_hash_table (info)->dynsymcount == 0)
3820 return TRUE;
3821
3822 htab = mips_elf_hash_table (info);
3823 BFD_ASSERT (htab != NULL);
3824
3825 g = htab->got_info;
3826 if (g == NULL)
3827 return TRUE;
3828
3829 hsd.low = NULL;
3830 hsd.max_unref_got_dynindx
3831 = hsd.min_got_dynindx
3832 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3833 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3834 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3835 elf_hash_table (info)),
3836 mips_elf_sort_hash_table_f,
3837 &hsd);
3838
3839 /* There should have been enough room in the symbol table to
3840 accommodate both the GOT and non-GOT symbols. */
3841 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3842 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3843 == elf_hash_table (info)->dynsymcount);
3844 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3845 == g->global_gotno);
3846
3847 /* Now we know which dynamic symbol has the lowest dynamic symbol
3848 table index in the GOT. */
3849 htab->global_gotsym = hsd.low;
3850
3851 return TRUE;
3852 }
3853
3854 /* If H needs a GOT entry, assign it the highest available dynamic
3855 index. Otherwise, assign it the lowest available dynamic
3856 index. */
3857
3858 static bfd_boolean
3859 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3860 {
3861 struct mips_elf_hash_sort_data *hsd = data;
3862
3863 /* Symbols without dynamic symbol table entries aren't interesting
3864 at all. */
3865 if (h->root.dynindx == -1)
3866 return TRUE;
3867
3868 switch (h->global_got_area)
3869 {
3870 case GGA_NONE:
3871 h->root.dynindx = hsd->max_non_got_dynindx++;
3872 break;
3873
3874 case GGA_NORMAL:
3875 h->root.dynindx = --hsd->min_got_dynindx;
3876 hsd->low = (struct elf_link_hash_entry *) h;
3877 break;
3878
3879 case GGA_RELOC_ONLY:
3880 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3881 hsd->low = (struct elf_link_hash_entry *) h;
3882 h->root.dynindx = hsd->max_unref_got_dynindx++;
3883 break;
3884 }
3885
3886 return TRUE;
3887 }
3888
3889 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3890 (which is owned by the caller and shouldn't be added to the
3891 hash table directly). */
3892
3893 static bfd_boolean
3894 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3895 struct mips_got_entry *lookup)
3896 {
3897 struct mips_elf_link_hash_table *htab;
3898 struct mips_got_entry *entry;
3899 struct mips_got_info *g;
3900 void **loc, **bfd_loc;
3901
3902 /* Make sure there's a slot for this entry in the master GOT. */
3903 htab = mips_elf_hash_table (info);
3904 g = htab->got_info;
3905 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3906 if (!loc)
3907 return FALSE;
3908
3909 /* Populate the entry if it isn't already. */
3910 entry = (struct mips_got_entry *) *loc;
3911 if (!entry)
3912 {
3913 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3914 if (!entry)
3915 return FALSE;
3916
3917 lookup->tls_initialized = FALSE;
3918 lookup->gotidx = -1;
3919 *entry = *lookup;
3920 *loc = entry;
3921 }
3922
3923 /* Reuse the same GOT entry for the BFD's GOT. */
3924 g = mips_elf_bfd_got (abfd, TRUE);
3925 if (!g)
3926 return FALSE;
3927
3928 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3929 if (!bfd_loc)
3930 return FALSE;
3931
3932 if (!*bfd_loc)
3933 *bfd_loc = entry;
3934 return TRUE;
3935 }
3936
3937 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3938 entry for it. FOR_CALL is true if the caller is only interested in
3939 using the GOT entry for calls. */
3940
3941 static bfd_boolean
3942 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3943 bfd *abfd, struct bfd_link_info *info,
3944 bfd_boolean for_call, int r_type)
3945 {
3946 struct mips_elf_link_hash_table *htab;
3947 struct mips_elf_link_hash_entry *hmips;
3948 struct mips_got_entry entry;
3949 unsigned char tls_type;
3950
3951 htab = mips_elf_hash_table (info);
3952 BFD_ASSERT (htab != NULL);
3953
3954 hmips = (struct mips_elf_link_hash_entry *) h;
3955 if (!for_call)
3956 hmips->got_only_for_calls = FALSE;
3957
3958 /* A global symbol in the GOT must also be in the dynamic symbol
3959 table. */
3960 if (h->dynindx == -1)
3961 {
3962 switch (ELF_ST_VISIBILITY (h->other))
3963 {
3964 case STV_INTERNAL:
3965 case STV_HIDDEN:
3966 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3967 break;
3968 }
3969 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3970 return FALSE;
3971 }
3972
3973 tls_type = mips_elf_reloc_tls_type (r_type);
3974 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3975 hmips->global_got_area = GGA_NORMAL;
3976
3977 entry.abfd = abfd;
3978 entry.symndx = -1;
3979 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3980 entry.tls_type = tls_type;
3981 return mips_elf_record_got_entry (info, abfd, &entry);
3982 }
3983
3984 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3985 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3986
3987 static bfd_boolean
3988 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3989 struct bfd_link_info *info, int r_type)
3990 {
3991 struct mips_elf_link_hash_table *htab;
3992 struct mips_got_info *g;
3993 struct mips_got_entry entry;
3994
3995 htab = mips_elf_hash_table (info);
3996 BFD_ASSERT (htab != NULL);
3997
3998 g = htab->got_info;
3999 BFD_ASSERT (g != NULL);
4000
4001 entry.abfd = abfd;
4002 entry.symndx = symndx;
4003 entry.d.addend = addend;
4004 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4005 return mips_elf_record_got_entry (info, abfd, &entry);
4006 }
4007
4008 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4009 H is the symbol's hash table entry, or null if SYMNDX is local
4010 to ABFD. */
4011
4012 static bfd_boolean
4013 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4014 long symndx, struct elf_link_hash_entry *h,
4015 bfd_signed_vma addend)
4016 {
4017 struct mips_elf_link_hash_table *htab;
4018 struct mips_got_info *g1, *g2;
4019 struct mips_got_page_ref lookup, *entry;
4020 void **loc, **bfd_loc;
4021
4022 htab = mips_elf_hash_table (info);
4023 BFD_ASSERT (htab != NULL);
4024
4025 g1 = htab->got_info;
4026 BFD_ASSERT (g1 != NULL);
4027
4028 if (h)
4029 {
4030 lookup.symndx = -1;
4031 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4032 }
4033 else
4034 {
4035 lookup.symndx = symndx;
4036 lookup.u.abfd = abfd;
4037 }
4038 lookup.addend = addend;
4039 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4040 if (loc == NULL)
4041 return FALSE;
4042
4043 entry = (struct mips_got_page_ref *) *loc;
4044 if (!entry)
4045 {
4046 entry = bfd_alloc (abfd, sizeof (*entry));
4047 if (!entry)
4048 return FALSE;
4049
4050 *entry = lookup;
4051 *loc = entry;
4052 }
4053
4054 /* Add the same entry to the BFD's GOT. */
4055 g2 = mips_elf_bfd_got (abfd, TRUE);
4056 if (!g2)
4057 return FALSE;
4058
4059 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4060 if (!bfd_loc)
4061 return FALSE;
4062
4063 if (!*bfd_loc)
4064 *bfd_loc = entry;
4065
4066 return TRUE;
4067 }
4068
4069 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4070
4071 static void
4072 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4073 unsigned int n)
4074 {
4075 asection *s;
4076 struct mips_elf_link_hash_table *htab;
4077
4078 htab = mips_elf_hash_table (info);
4079 BFD_ASSERT (htab != NULL);
4080
4081 s = mips_elf_rel_dyn_section (info, FALSE);
4082 BFD_ASSERT (s != NULL);
4083
4084 if (htab->is_vxworks)
4085 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4086 else
4087 {
4088 if (s->size == 0)
4089 {
4090 /* Make room for a null element. */
4091 s->size += MIPS_ELF_REL_SIZE (abfd);
4092 ++s->reloc_count;
4093 }
4094 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4095 }
4096 }
4097 \f
4098 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4099 mips_elf_traverse_got_arg structure. Count the number of GOT
4100 entries and TLS relocs. Set DATA->value to true if we need
4101 to resolve indirect or warning symbols and then recreate the GOT. */
4102
4103 static int
4104 mips_elf_check_recreate_got (void **entryp, void *data)
4105 {
4106 struct mips_got_entry *entry;
4107 struct mips_elf_traverse_got_arg *arg;
4108
4109 entry = (struct mips_got_entry *) *entryp;
4110 arg = (struct mips_elf_traverse_got_arg *) data;
4111 if (entry->abfd != NULL && entry->symndx == -1)
4112 {
4113 struct mips_elf_link_hash_entry *h;
4114
4115 h = entry->d.h;
4116 if (h->root.root.type == bfd_link_hash_indirect
4117 || h->root.root.type == bfd_link_hash_warning)
4118 {
4119 arg->value = TRUE;
4120 return 0;
4121 }
4122 }
4123 mips_elf_count_got_entry (arg->info, arg->g, entry);
4124 return 1;
4125 }
4126
4127 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4128 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4129 converting entries for indirect and warning symbols into entries
4130 for the target symbol. Set DATA->g to null on error. */
4131
4132 static int
4133 mips_elf_recreate_got (void **entryp, void *data)
4134 {
4135 struct mips_got_entry new_entry, *entry;
4136 struct mips_elf_traverse_got_arg *arg;
4137 void **slot;
4138
4139 entry = (struct mips_got_entry *) *entryp;
4140 arg = (struct mips_elf_traverse_got_arg *) data;
4141 if (entry->abfd != NULL
4142 && entry->symndx == -1
4143 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4144 || entry->d.h->root.root.type == bfd_link_hash_warning))
4145 {
4146 struct mips_elf_link_hash_entry *h;
4147
4148 new_entry = *entry;
4149 entry = &new_entry;
4150 h = entry->d.h;
4151 do
4152 {
4153 BFD_ASSERT (h->global_got_area == GGA_NONE);
4154 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4155 }
4156 while (h->root.root.type == bfd_link_hash_indirect
4157 || h->root.root.type == bfd_link_hash_warning);
4158 entry->d.h = h;
4159 }
4160 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4161 if (slot == NULL)
4162 {
4163 arg->g = NULL;
4164 return 0;
4165 }
4166 if (*slot == NULL)
4167 {
4168 if (entry == &new_entry)
4169 {
4170 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4171 if (!entry)
4172 {
4173 arg->g = NULL;
4174 return 0;
4175 }
4176 *entry = new_entry;
4177 }
4178 *slot = entry;
4179 mips_elf_count_got_entry (arg->info, arg->g, entry);
4180 }
4181 return 1;
4182 }
4183
4184 /* Return the maximum number of GOT page entries required for RANGE. */
4185
4186 static bfd_vma
4187 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4188 {
4189 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4190 }
4191
4192 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4193
4194 static bfd_boolean
4195 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4196 asection *sec, bfd_signed_vma addend)
4197 {
4198 struct mips_got_info *g = arg->g;
4199 struct mips_got_page_entry lookup, *entry;
4200 struct mips_got_page_range **range_ptr, *range;
4201 bfd_vma old_pages, new_pages;
4202 void **loc;
4203
4204 /* Find the mips_got_page_entry hash table entry for this section. */
4205 lookup.sec = sec;
4206 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4207 if (loc == NULL)
4208 return FALSE;
4209
4210 /* Create a mips_got_page_entry if this is the first time we've
4211 seen the section. */
4212 entry = (struct mips_got_page_entry *) *loc;
4213 if (!entry)
4214 {
4215 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4216 if (!entry)
4217 return FALSE;
4218
4219 entry->sec = sec;
4220 *loc = entry;
4221 }
4222
4223 /* Skip over ranges whose maximum extent cannot share a page entry
4224 with ADDEND. */
4225 range_ptr = &entry->ranges;
4226 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4227 range_ptr = &(*range_ptr)->next;
4228
4229 /* If we scanned to the end of the list, or found a range whose
4230 minimum extent cannot share a page entry with ADDEND, create
4231 a new singleton range. */
4232 range = *range_ptr;
4233 if (!range || addend < range->min_addend - 0xffff)
4234 {
4235 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4236 if (!range)
4237 return FALSE;
4238
4239 range->next = *range_ptr;
4240 range->min_addend = addend;
4241 range->max_addend = addend;
4242
4243 *range_ptr = range;
4244 entry->num_pages++;
4245 g->page_gotno++;
4246 return TRUE;
4247 }
4248
4249 /* Remember how many pages the old range contributed. */
4250 old_pages = mips_elf_pages_for_range (range);
4251
4252 /* Update the ranges. */
4253 if (addend < range->min_addend)
4254 range->min_addend = addend;
4255 else if (addend > range->max_addend)
4256 {
4257 if (range->next && addend >= range->next->min_addend - 0xffff)
4258 {
4259 old_pages += mips_elf_pages_for_range (range->next);
4260 range->max_addend = range->next->max_addend;
4261 range->next = range->next->next;
4262 }
4263 else
4264 range->max_addend = addend;
4265 }
4266
4267 /* Record any change in the total estimate. */
4268 new_pages = mips_elf_pages_for_range (range);
4269 if (old_pages != new_pages)
4270 {
4271 entry->num_pages += new_pages - old_pages;
4272 g->page_gotno += new_pages - old_pages;
4273 }
4274
4275 return TRUE;
4276 }
4277
4278 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4279 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4280 whether the page reference described by *REFP needs a GOT page entry,
4281 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4282
4283 static bfd_boolean
4284 mips_elf_resolve_got_page_ref (void **refp, void *data)
4285 {
4286 struct mips_got_page_ref *ref;
4287 struct mips_elf_traverse_got_arg *arg;
4288 struct mips_elf_link_hash_table *htab;
4289 asection *sec;
4290 bfd_vma addend;
4291
4292 ref = (struct mips_got_page_ref *) *refp;
4293 arg = (struct mips_elf_traverse_got_arg *) data;
4294 htab = mips_elf_hash_table (arg->info);
4295
4296 if (ref->symndx < 0)
4297 {
4298 struct mips_elf_link_hash_entry *h;
4299
4300 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4301 h = ref->u.h;
4302 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4303 return 1;
4304
4305 /* Ignore undefined symbols; we'll issue an error later if
4306 appropriate. */
4307 if (!((h->root.root.type == bfd_link_hash_defined
4308 || h->root.root.type == bfd_link_hash_defweak)
4309 && h->root.root.u.def.section))
4310 return 1;
4311
4312 sec = h->root.root.u.def.section;
4313 addend = h->root.root.u.def.value + ref->addend;
4314 }
4315 else
4316 {
4317 Elf_Internal_Sym *isym;
4318
4319 /* Read in the symbol. */
4320 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4321 ref->symndx);
4322 if (isym == NULL)
4323 {
4324 arg->g = NULL;
4325 return 0;
4326 }
4327
4328 /* Get the associated input section. */
4329 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4330 if (sec == NULL)
4331 {
4332 arg->g = NULL;
4333 return 0;
4334 }
4335
4336 /* If this is a mergable section, work out the section and offset
4337 of the merged data. For section symbols, the addend specifies
4338 of the offset _of_ the first byte in the data, otherwise it
4339 specifies the offset _from_ the first byte. */
4340 if (sec->flags & SEC_MERGE)
4341 {
4342 void *secinfo;
4343
4344 secinfo = elf_section_data (sec)->sec_info;
4345 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4346 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4347 isym->st_value + ref->addend);
4348 else
4349 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4350 isym->st_value) + ref->addend;
4351 }
4352 else
4353 addend = isym->st_value + ref->addend;
4354 }
4355 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4356 {
4357 arg->g = NULL;
4358 return 0;
4359 }
4360 return 1;
4361 }
4362
4363 /* If any entries in G->got_entries are for indirect or warning symbols,
4364 replace them with entries for the target symbol. Convert g->got_page_refs
4365 into got_page_entry structures and estimate the number of page entries
4366 that they require. */
4367
4368 static bfd_boolean
4369 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4370 struct mips_got_info *g)
4371 {
4372 struct mips_elf_traverse_got_arg tga;
4373 struct mips_got_info oldg;
4374
4375 oldg = *g;
4376
4377 tga.info = info;
4378 tga.g = g;
4379 tga.value = FALSE;
4380 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4381 if (tga.value)
4382 {
4383 *g = oldg;
4384 g->got_entries = htab_create (htab_size (oldg.got_entries),
4385 mips_elf_got_entry_hash,
4386 mips_elf_got_entry_eq, NULL);
4387 if (!g->got_entries)
4388 return FALSE;
4389
4390 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4391 if (!tga.g)
4392 return FALSE;
4393
4394 htab_delete (oldg.got_entries);
4395 }
4396
4397 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4398 mips_got_page_entry_eq, NULL);
4399 if (g->got_page_entries == NULL)
4400 return FALSE;
4401
4402 tga.info = info;
4403 tga.g = g;
4404 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4405
4406 return TRUE;
4407 }
4408
4409 /* Return true if a GOT entry for H should live in the local rather than
4410 global GOT area. */
4411
4412 static bfd_boolean
4413 mips_use_local_got_p (struct bfd_link_info *info,
4414 struct mips_elf_link_hash_entry *h)
4415 {
4416 /* Symbols that aren't in the dynamic symbol table must live in the
4417 local GOT. This includes symbols that are completely undefined
4418 and which therefore don't bind locally. We'll report undefined
4419 symbols later if appropriate. */
4420 if (h->root.dynindx == -1)
4421 return TRUE;
4422
4423 /* Symbols that bind locally can (and in the case of forced-local
4424 symbols, must) live in the local GOT. */
4425 if (h->got_only_for_calls
4426 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4427 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4428 return TRUE;
4429
4430 /* If this is an executable that must provide a definition of the symbol,
4431 either though PLTs or copy relocations, then that address should go in
4432 the local rather than global GOT. */
4433 if (bfd_link_executable (info) && h->has_static_relocs)
4434 return TRUE;
4435
4436 return FALSE;
4437 }
4438
4439 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4440 link_info structure. Decide whether the hash entry needs an entry in
4441 the global part of the primary GOT, setting global_got_area accordingly.
4442 Count the number of global symbols that are in the primary GOT only
4443 because they have relocations against them (reloc_only_gotno). */
4444
4445 static int
4446 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4447 {
4448 struct bfd_link_info *info;
4449 struct mips_elf_link_hash_table *htab;
4450 struct mips_got_info *g;
4451
4452 info = (struct bfd_link_info *) data;
4453 htab = mips_elf_hash_table (info);
4454 g = htab->got_info;
4455 if (h->global_got_area != GGA_NONE)
4456 {
4457 /* Make a final decision about whether the symbol belongs in the
4458 local or global GOT. */
4459 if (mips_use_local_got_p (info, h))
4460 /* The symbol belongs in the local GOT. We no longer need this
4461 entry if it was only used for relocations; those relocations
4462 will be against the null or section symbol instead of H. */
4463 h->global_got_area = GGA_NONE;
4464 else if (htab->is_vxworks
4465 && h->got_only_for_calls
4466 && h->root.plt.plist->mips_offset != MINUS_ONE)
4467 /* On VxWorks, calls can refer directly to the .got.plt entry;
4468 they don't need entries in the regular GOT. .got.plt entries
4469 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4470 h->global_got_area = GGA_NONE;
4471 else if (h->global_got_area == GGA_RELOC_ONLY)
4472 {
4473 g->reloc_only_gotno++;
4474 g->global_gotno++;
4475 }
4476 }
4477 return 1;
4478 }
4479 \f
4480 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4481 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4482
4483 static int
4484 mips_elf_add_got_entry (void **entryp, void *data)
4485 {
4486 struct mips_got_entry *entry;
4487 struct mips_elf_traverse_got_arg *arg;
4488 void **slot;
4489
4490 entry = (struct mips_got_entry *) *entryp;
4491 arg = (struct mips_elf_traverse_got_arg *) data;
4492 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4493 if (!slot)
4494 {
4495 arg->g = NULL;
4496 return 0;
4497 }
4498 if (!*slot)
4499 {
4500 *slot = entry;
4501 mips_elf_count_got_entry (arg->info, arg->g, entry);
4502 }
4503 return 1;
4504 }
4505
4506 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4507 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4508
4509 static int
4510 mips_elf_add_got_page_entry (void **entryp, void *data)
4511 {
4512 struct mips_got_page_entry *entry;
4513 struct mips_elf_traverse_got_arg *arg;
4514 void **slot;
4515
4516 entry = (struct mips_got_page_entry *) *entryp;
4517 arg = (struct mips_elf_traverse_got_arg *) data;
4518 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4519 if (!slot)
4520 {
4521 arg->g = NULL;
4522 return 0;
4523 }
4524 if (!*slot)
4525 {
4526 *slot = entry;
4527 arg->g->page_gotno += entry->num_pages;
4528 }
4529 return 1;
4530 }
4531
4532 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4533 this would lead to overflow, 1 if they were merged successfully,
4534 and 0 if a merge failed due to lack of memory. (These values are chosen
4535 so that nonnegative return values can be returned by a htab_traverse
4536 callback.) */
4537
4538 static int
4539 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4540 struct mips_got_info *to,
4541 struct mips_elf_got_per_bfd_arg *arg)
4542 {
4543 struct mips_elf_traverse_got_arg tga;
4544 unsigned int estimate;
4545
4546 /* Work out how many page entries we would need for the combined GOT. */
4547 estimate = arg->max_pages;
4548 if (estimate >= from->page_gotno + to->page_gotno)
4549 estimate = from->page_gotno + to->page_gotno;
4550
4551 /* And conservatively estimate how many local and TLS entries
4552 would be needed. */
4553 estimate += from->local_gotno + to->local_gotno;
4554 estimate += from->tls_gotno + to->tls_gotno;
4555
4556 /* If we're merging with the primary got, any TLS relocations will
4557 come after the full set of global entries. Otherwise estimate those
4558 conservatively as well. */
4559 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4560 estimate += arg->global_count;
4561 else
4562 estimate += from->global_gotno + to->global_gotno;
4563
4564 /* Bail out if the combined GOT might be too big. */
4565 if (estimate > arg->max_count)
4566 return -1;
4567
4568 /* Transfer the bfd's got information from FROM to TO. */
4569 tga.info = arg->info;
4570 tga.g = to;
4571 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4572 if (!tga.g)
4573 return 0;
4574
4575 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4576 if (!tga.g)
4577 return 0;
4578
4579 mips_elf_replace_bfd_got (abfd, to);
4580 return 1;
4581 }
4582
4583 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4584 as possible of the primary got, since it doesn't require explicit
4585 dynamic relocations, but don't use bfds that would reference global
4586 symbols out of the addressable range. Failing the primary got,
4587 attempt to merge with the current got, or finish the current got
4588 and then make make the new got current. */
4589
4590 static bfd_boolean
4591 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4592 struct mips_elf_got_per_bfd_arg *arg)
4593 {
4594 unsigned int estimate;
4595 int result;
4596
4597 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4598 return FALSE;
4599
4600 /* Work out the number of page, local and TLS entries. */
4601 estimate = arg->max_pages;
4602 if (estimate > g->page_gotno)
4603 estimate = g->page_gotno;
4604 estimate += g->local_gotno + g->tls_gotno;
4605
4606 /* We place TLS GOT entries after both locals and globals. The globals
4607 for the primary GOT may overflow the normal GOT size limit, so be
4608 sure not to merge a GOT which requires TLS with the primary GOT in that
4609 case. This doesn't affect non-primary GOTs. */
4610 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4611
4612 if (estimate <= arg->max_count)
4613 {
4614 /* If we don't have a primary GOT, use it as
4615 a starting point for the primary GOT. */
4616 if (!arg->primary)
4617 {
4618 arg->primary = g;
4619 return TRUE;
4620 }
4621
4622 /* Try merging with the primary GOT. */
4623 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4624 if (result >= 0)
4625 return result;
4626 }
4627
4628 /* If we can merge with the last-created got, do it. */
4629 if (arg->current)
4630 {
4631 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4632 if (result >= 0)
4633 return result;
4634 }
4635
4636 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4637 fits; if it turns out that it doesn't, we'll get relocation
4638 overflows anyway. */
4639 g->next = arg->current;
4640 arg->current = g;
4641
4642 return TRUE;
4643 }
4644
4645 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4646 to GOTIDX, duplicating the entry if it has already been assigned
4647 an index in a different GOT. */
4648
4649 static bfd_boolean
4650 mips_elf_set_gotidx (void **entryp, long gotidx)
4651 {
4652 struct mips_got_entry *entry;
4653
4654 entry = (struct mips_got_entry *) *entryp;
4655 if (entry->gotidx > 0)
4656 {
4657 struct mips_got_entry *new_entry;
4658
4659 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4660 if (!new_entry)
4661 return FALSE;
4662
4663 *new_entry = *entry;
4664 *entryp = new_entry;
4665 entry = new_entry;
4666 }
4667 entry->gotidx = gotidx;
4668 return TRUE;
4669 }
4670
4671 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4672 mips_elf_traverse_got_arg in which DATA->value is the size of one
4673 GOT entry. Set DATA->g to null on failure. */
4674
4675 static int
4676 mips_elf_initialize_tls_index (void **entryp, void *data)
4677 {
4678 struct mips_got_entry *entry;
4679 struct mips_elf_traverse_got_arg *arg;
4680
4681 /* We're only interested in TLS symbols. */
4682 entry = (struct mips_got_entry *) *entryp;
4683 if (entry->tls_type == GOT_TLS_NONE)
4684 return 1;
4685
4686 arg = (struct mips_elf_traverse_got_arg *) data;
4687 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4688 {
4689 arg->g = NULL;
4690 return 0;
4691 }
4692
4693 /* Account for the entries we've just allocated. */
4694 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4695 return 1;
4696 }
4697
4698 /* A htab_traverse callback for GOT entries, where DATA points to a
4699 mips_elf_traverse_got_arg. Set the global_got_area of each global
4700 symbol to DATA->value. */
4701
4702 static int
4703 mips_elf_set_global_got_area (void **entryp, void *data)
4704 {
4705 struct mips_got_entry *entry;
4706 struct mips_elf_traverse_got_arg *arg;
4707
4708 entry = (struct mips_got_entry *) *entryp;
4709 arg = (struct mips_elf_traverse_got_arg *) data;
4710 if (entry->abfd != NULL
4711 && entry->symndx == -1
4712 && entry->d.h->global_got_area != GGA_NONE)
4713 entry->d.h->global_got_area = arg->value;
4714 return 1;
4715 }
4716
4717 /* A htab_traverse callback for secondary GOT entries, where DATA points
4718 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4719 and record the number of relocations they require. DATA->value is
4720 the size of one GOT entry. Set DATA->g to null on failure. */
4721
4722 static int
4723 mips_elf_set_global_gotidx (void **entryp, void *data)
4724 {
4725 struct mips_got_entry *entry;
4726 struct mips_elf_traverse_got_arg *arg;
4727
4728 entry = (struct mips_got_entry *) *entryp;
4729 arg = (struct mips_elf_traverse_got_arg *) data;
4730 if (entry->abfd != NULL
4731 && entry->symndx == -1
4732 && entry->d.h->global_got_area != GGA_NONE)
4733 {
4734 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4735 {
4736 arg->g = NULL;
4737 return 0;
4738 }
4739 arg->g->assigned_low_gotno += 1;
4740
4741 if (bfd_link_pic (arg->info)
4742 || (elf_hash_table (arg->info)->dynamic_sections_created
4743 && entry->d.h->root.def_dynamic
4744 && !entry->d.h->root.def_regular))
4745 arg->g->relocs += 1;
4746 }
4747
4748 return 1;
4749 }
4750
4751 /* A htab_traverse callback for GOT entries for which DATA is the
4752 bfd_link_info. Forbid any global symbols from having traditional
4753 lazy-binding stubs. */
4754
4755 static int
4756 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4757 {
4758 struct bfd_link_info *info;
4759 struct mips_elf_link_hash_table *htab;
4760 struct mips_got_entry *entry;
4761
4762 entry = (struct mips_got_entry *) *entryp;
4763 info = (struct bfd_link_info *) data;
4764 htab = mips_elf_hash_table (info);
4765 BFD_ASSERT (htab != NULL);
4766
4767 if (entry->abfd != NULL
4768 && entry->symndx == -1
4769 && entry->d.h->needs_lazy_stub)
4770 {
4771 entry->d.h->needs_lazy_stub = FALSE;
4772 htab->lazy_stub_count--;
4773 }
4774
4775 return 1;
4776 }
4777
4778 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4779 the primary GOT. */
4780 static bfd_vma
4781 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4782 {
4783 if (!g->next)
4784 return 0;
4785
4786 g = mips_elf_bfd_got (ibfd, FALSE);
4787 if (! g)
4788 return 0;
4789
4790 BFD_ASSERT (g->next);
4791
4792 g = g->next;
4793
4794 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4795 * MIPS_ELF_GOT_SIZE (abfd);
4796 }
4797
4798 /* Turn a single GOT that is too big for 16-bit addressing into
4799 a sequence of GOTs, each one 16-bit addressable. */
4800
4801 static bfd_boolean
4802 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4803 asection *got, bfd_size_type pages)
4804 {
4805 struct mips_elf_link_hash_table *htab;
4806 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4807 struct mips_elf_traverse_got_arg tga;
4808 struct mips_got_info *g, *gg;
4809 unsigned int assign, needed_relocs;
4810 bfd *dynobj, *ibfd;
4811
4812 dynobj = elf_hash_table (info)->dynobj;
4813 htab = mips_elf_hash_table (info);
4814 BFD_ASSERT (htab != NULL);
4815
4816 g = htab->got_info;
4817
4818 got_per_bfd_arg.obfd = abfd;
4819 got_per_bfd_arg.info = info;
4820 got_per_bfd_arg.current = NULL;
4821 got_per_bfd_arg.primary = NULL;
4822 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4823 / MIPS_ELF_GOT_SIZE (abfd))
4824 - htab->reserved_gotno);
4825 got_per_bfd_arg.max_pages = pages;
4826 /* The number of globals that will be included in the primary GOT.
4827 See the calls to mips_elf_set_global_got_area below for more
4828 information. */
4829 got_per_bfd_arg.global_count = g->global_gotno;
4830
4831 /* Try to merge the GOTs of input bfds together, as long as they
4832 don't seem to exceed the maximum GOT size, choosing one of them
4833 to be the primary GOT. */
4834 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4835 {
4836 gg = mips_elf_bfd_got (ibfd, FALSE);
4837 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4838 return FALSE;
4839 }
4840
4841 /* If we do not find any suitable primary GOT, create an empty one. */
4842 if (got_per_bfd_arg.primary == NULL)
4843 g->next = mips_elf_create_got_info (abfd);
4844 else
4845 g->next = got_per_bfd_arg.primary;
4846 g->next->next = got_per_bfd_arg.current;
4847
4848 /* GG is now the master GOT, and G is the primary GOT. */
4849 gg = g;
4850 g = g->next;
4851
4852 /* Map the output bfd to the primary got. That's what we're going
4853 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4854 didn't mark in check_relocs, and we want a quick way to find it.
4855 We can't just use gg->next because we're going to reverse the
4856 list. */
4857 mips_elf_replace_bfd_got (abfd, g);
4858
4859 /* Every symbol that is referenced in a dynamic relocation must be
4860 present in the primary GOT, so arrange for them to appear after
4861 those that are actually referenced. */
4862 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4863 g->global_gotno = gg->global_gotno;
4864
4865 tga.info = info;
4866 tga.value = GGA_RELOC_ONLY;
4867 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4868 tga.value = GGA_NORMAL;
4869 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4870
4871 /* Now go through the GOTs assigning them offset ranges.
4872 [assigned_low_gotno, local_gotno[ will be set to the range of local
4873 entries in each GOT. We can then compute the end of a GOT by
4874 adding local_gotno to global_gotno. We reverse the list and make
4875 it circular since then we'll be able to quickly compute the
4876 beginning of a GOT, by computing the end of its predecessor. To
4877 avoid special cases for the primary GOT, while still preserving
4878 assertions that are valid for both single- and multi-got links,
4879 we arrange for the main got struct to have the right number of
4880 global entries, but set its local_gotno such that the initial
4881 offset of the primary GOT is zero. Remember that the primary GOT
4882 will become the last item in the circular linked list, so it
4883 points back to the master GOT. */
4884 gg->local_gotno = -g->global_gotno;
4885 gg->global_gotno = g->global_gotno;
4886 gg->tls_gotno = 0;
4887 assign = 0;
4888 gg->next = gg;
4889
4890 do
4891 {
4892 struct mips_got_info *gn;
4893
4894 assign += htab->reserved_gotno;
4895 g->assigned_low_gotno = assign;
4896 g->local_gotno += assign;
4897 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4898 g->assigned_high_gotno = g->local_gotno - 1;
4899 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4900
4901 /* Take g out of the direct list, and push it onto the reversed
4902 list that gg points to. g->next is guaranteed to be nonnull after
4903 this operation, as required by mips_elf_initialize_tls_index. */
4904 gn = g->next;
4905 g->next = gg->next;
4906 gg->next = g;
4907
4908 /* Set up any TLS entries. We always place the TLS entries after
4909 all non-TLS entries. */
4910 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4911 tga.g = g;
4912 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4913 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4914 if (!tga.g)
4915 return FALSE;
4916 BFD_ASSERT (g->tls_assigned_gotno == assign);
4917
4918 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4919 g = gn;
4920
4921 /* Forbid global symbols in every non-primary GOT from having
4922 lazy-binding stubs. */
4923 if (g)
4924 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4925 }
4926 while (g);
4927
4928 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4929
4930 needed_relocs = 0;
4931 for (g = gg->next; g && g->next != gg; g = g->next)
4932 {
4933 unsigned int save_assign;
4934
4935 /* Assign offsets to global GOT entries and count how many
4936 relocations they need. */
4937 save_assign = g->assigned_low_gotno;
4938 g->assigned_low_gotno = g->local_gotno;
4939 tga.info = info;
4940 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4941 tga.g = g;
4942 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4943 if (!tga.g)
4944 return FALSE;
4945 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4946 g->assigned_low_gotno = save_assign;
4947
4948 if (bfd_link_pic (info))
4949 {
4950 g->relocs += g->local_gotno - g->assigned_low_gotno;
4951 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4952 + g->next->global_gotno
4953 + g->next->tls_gotno
4954 + htab->reserved_gotno);
4955 }
4956 needed_relocs += g->relocs;
4957 }
4958 needed_relocs += g->relocs;
4959
4960 if (needed_relocs)
4961 mips_elf_allocate_dynamic_relocations (dynobj, info,
4962 needed_relocs);
4963
4964 return TRUE;
4965 }
4966
4967 \f
4968 /* Returns the first relocation of type r_type found, beginning with
4969 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4970
4971 static const Elf_Internal_Rela *
4972 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4973 const Elf_Internal_Rela *relocation,
4974 const Elf_Internal_Rela *relend)
4975 {
4976 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4977
4978 while (relocation < relend)
4979 {
4980 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4981 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4982 return relocation;
4983
4984 ++relocation;
4985 }
4986
4987 /* We didn't find it. */
4988 return NULL;
4989 }
4990
4991 /* Return whether an input relocation is against a local symbol. */
4992
4993 static bfd_boolean
4994 mips_elf_local_relocation_p (bfd *input_bfd,
4995 const Elf_Internal_Rela *relocation,
4996 asection **local_sections)
4997 {
4998 unsigned long r_symndx;
4999 Elf_Internal_Shdr *symtab_hdr;
5000 size_t extsymoff;
5001
5002 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5003 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5004 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5005
5006 if (r_symndx < extsymoff)
5007 return TRUE;
5008 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5009 return TRUE;
5010
5011 return FALSE;
5012 }
5013 \f
5014 /* Sign-extend VALUE, which has the indicated number of BITS. */
5015
5016 bfd_vma
5017 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5018 {
5019 if (value & ((bfd_vma) 1 << (bits - 1)))
5020 /* VALUE is negative. */
5021 value |= ((bfd_vma) - 1) << bits;
5022
5023 return value;
5024 }
5025
5026 /* Return non-zero if the indicated VALUE has overflowed the maximum
5027 range expressible by a signed number with the indicated number of
5028 BITS. */
5029
5030 static bfd_boolean
5031 mips_elf_overflow_p (bfd_vma value, int bits)
5032 {
5033 bfd_signed_vma svalue = (bfd_signed_vma) value;
5034
5035 if (svalue > (1 << (bits - 1)) - 1)
5036 /* The value is too big. */
5037 return TRUE;
5038 else if (svalue < -(1 << (bits - 1)))
5039 /* The value is too small. */
5040 return TRUE;
5041
5042 /* All is well. */
5043 return FALSE;
5044 }
5045
5046 /* Calculate the %high function. */
5047
5048 static bfd_vma
5049 mips_elf_high (bfd_vma value)
5050 {
5051 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5052 }
5053
5054 /* Calculate the %higher function. */
5055
5056 static bfd_vma
5057 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5058 {
5059 #ifdef BFD64
5060 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5061 #else
5062 abort ();
5063 return MINUS_ONE;
5064 #endif
5065 }
5066
5067 /* Calculate the %highest function. */
5068
5069 static bfd_vma
5070 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5071 {
5072 #ifdef BFD64
5073 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5074 #else
5075 abort ();
5076 return MINUS_ONE;
5077 #endif
5078 }
5079 \f
5080 /* Create the .compact_rel section. */
5081
5082 static bfd_boolean
5083 mips_elf_create_compact_rel_section
5084 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5085 {
5086 flagword flags;
5087 register asection *s;
5088
5089 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5090 {
5091 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5092 | SEC_READONLY);
5093
5094 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5095 if (s == NULL
5096 || ! bfd_set_section_alignment (abfd, s,
5097 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5098 return FALSE;
5099
5100 s->size = sizeof (Elf32_External_compact_rel);
5101 }
5102
5103 return TRUE;
5104 }
5105
5106 /* Create the .got section to hold the global offset table. */
5107
5108 static bfd_boolean
5109 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5110 {
5111 flagword flags;
5112 register asection *s;
5113 struct elf_link_hash_entry *h;
5114 struct bfd_link_hash_entry *bh;
5115 struct mips_elf_link_hash_table *htab;
5116
5117 htab = mips_elf_hash_table (info);
5118 BFD_ASSERT (htab != NULL);
5119
5120 /* This function may be called more than once. */
5121 if (htab->sgot)
5122 return TRUE;
5123
5124 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5125 | SEC_LINKER_CREATED);
5126
5127 /* We have to use an alignment of 2**4 here because this is hardcoded
5128 in the function stub generation and in the linker script. */
5129 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5130 if (s == NULL
5131 || ! bfd_set_section_alignment (abfd, s, 4))
5132 return FALSE;
5133 htab->sgot = s;
5134
5135 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5136 linker script because we don't want to define the symbol if we
5137 are not creating a global offset table. */
5138 bh = NULL;
5139 if (! (_bfd_generic_link_add_one_symbol
5140 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5141 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5142 return FALSE;
5143
5144 h = (struct elf_link_hash_entry *) bh;
5145 h->non_elf = 0;
5146 h->def_regular = 1;
5147 h->type = STT_OBJECT;
5148 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5149 elf_hash_table (info)->hgot = h;
5150
5151 if (bfd_link_pic (info)
5152 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5153 return FALSE;
5154
5155 htab->got_info = mips_elf_create_got_info (abfd);
5156 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5157 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5158
5159 /* We also need a .got.plt section when generating PLTs. */
5160 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5161 SEC_ALLOC | SEC_LOAD
5162 | SEC_HAS_CONTENTS
5163 | SEC_IN_MEMORY
5164 | SEC_LINKER_CREATED);
5165 if (s == NULL)
5166 return FALSE;
5167 htab->sgotplt = s;
5168
5169 return TRUE;
5170 }
5171 \f
5172 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5173 __GOTT_INDEX__ symbols. These symbols are only special for
5174 shared objects; they are not used in executables. */
5175
5176 static bfd_boolean
5177 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5178 {
5179 return (mips_elf_hash_table (info)->is_vxworks
5180 && bfd_link_pic (info)
5181 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5182 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5183 }
5184
5185 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5186 require an la25 stub. See also mips_elf_local_pic_function_p,
5187 which determines whether the destination function ever requires a
5188 stub. */
5189
5190 static bfd_boolean
5191 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5192 bfd_boolean target_is_16_bit_code_p)
5193 {
5194 /* We specifically ignore branches and jumps from EF_PIC objects,
5195 where the onus is on the compiler or programmer to perform any
5196 necessary initialization of $25. Sometimes such initialization
5197 is unnecessary; for example, -mno-shared functions do not use
5198 the incoming value of $25, and may therefore be called directly. */
5199 if (PIC_OBJECT_P (input_bfd))
5200 return FALSE;
5201
5202 switch (r_type)
5203 {
5204 case R_MIPS_26:
5205 case R_MIPS_PC16:
5206 case R_MIPS_PC21_S2:
5207 case R_MIPS_PC26_S2:
5208 case R_MICROMIPS_26_S1:
5209 case R_MICROMIPS_PC7_S1:
5210 case R_MICROMIPS_PC10_S1:
5211 case R_MICROMIPS_PC16_S1:
5212 case R_MICROMIPS_PC23_S2:
5213 return TRUE;
5214
5215 case R_MIPS16_26:
5216 return !target_is_16_bit_code_p;
5217
5218 default:
5219 return FALSE;
5220 }
5221 }
5222 \f
5223 /* Calculate the value produced by the RELOCATION (which comes from
5224 the INPUT_BFD). The ADDEND is the addend to use for this
5225 RELOCATION; RELOCATION->R_ADDEND is ignored.
5226
5227 The result of the relocation calculation is stored in VALUEP.
5228 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5229 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5230
5231 This function returns bfd_reloc_continue if the caller need take no
5232 further action regarding this relocation, bfd_reloc_notsupported if
5233 something goes dramatically wrong, bfd_reloc_overflow if an
5234 overflow occurs, and bfd_reloc_ok to indicate success. */
5235
5236 static bfd_reloc_status_type
5237 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5238 asection *input_section,
5239 struct bfd_link_info *info,
5240 const Elf_Internal_Rela *relocation,
5241 bfd_vma addend, reloc_howto_type *howto,
5242 Elf_Internal_Sym *local_syms,
5243 asection **local_sections, bfd_vma *valuep,
5244 const char **namep,
5245 bfd_boolean *cross_mode_jump_p,
5246 bfd_boolean save_addend)
5247 {
5248 /* The eventual value we will return. */
5249 bfd_vma value;
5250 /* The address of the symbol against which the relocation is
5251 occurring. */
5252 bfd_vma symbol = 0;
5253 /* The final GP value to be used for the relocatable, executable, or
5254 shared object file being produced. */
5255 bfd_vma gp;
5256 /* The place (section offset or address) of the storage unit being
5257 relocated. */
5258 bfd_vma p;
5259 /* The value of GP used to create the relocatable object. */
5260 bfd_vma gp0;
5261 /* The offset into the global offset table at which the address of
5262 the relocation entry symbol, adjusted by the addend, resides
5263 during execution. */
5264 bfd_vma g = MINUS_ONE;
5265 /* The section in which the symbol referenced by the relocation is
5266 located. */
5267 asection *sec = NULL;
5268 struct mips_elf_link_hash_entry *h = NULL;
5269 /* TRUE if the symbol referred to by this relocation is a local
5270 symbol. */
5271 bfd_boolean local_p, was_local_p;
5272 /* TRUE if the symbol referred to by this relocation is a section
5273 symbol. */
5274 bfd_boolean section_p = FALSE;
5275 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5276 bfd_boolean gp_disp_p = FALSE;
5277 /* TRUE if the symbol referred to by this relocation is
5278 "__gnu_local_gp". */
5279 bfd_boolean gnu_local_gp_p = FALSE;
5280 Elf_Internal_Shdr *symtab_hdr;
5281 size_t extsymoff;
5282 unsigned long r_symndx;
5283 int r_type;
5284 /* TRUE if overflow occurred during the calculation of the
5285 relocation value. */
5286 bfd_boolean overflowed_p;
5287 /* TRUE if this relocation refers to a MIPS16 function. */
5288 bfd_boolean target_is_16_bit_code_p = FALSE;
5289 bfd_boolean target_is_micromips_code_p = FALSE;
5290 struct mips_elf_link_hash_table *htab;
5291 bfd *dynobj;
5292
5293 dynobj = elf_hash_table (info)->dynobj;
5294 htab = mips_elf_hash_table (info);
5295 BFD_ASSERT (htab != NULL);
5296
5297 /* Parse the relocation. */
5298 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5299 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5300 p = (input_section->output_section->vma
5301 + input_section->output_offset
5302 + relocation->r_offset);
5303
5304 /* Assume that there will be no overflow. */
5305 overflowed_p = FALSE;
5306
5307 /* Figure out whether or not the symbol is local, and get the offset
5308 used in the array of hash table entries. */
5309 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5310 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5311 local_sections);
5312 was_local_p = local_p;
5313 if (! elf_bad_symtab (input_bfd))
5314 extsymoff = symtab_hdr->sh_info;
5315 else
5316 {
5317 /* The symbol table does not follow the rule that local symbols
5318 must come before globals. */
5319 extsymoff = 0;
5320 }
5321
5322 /* Figure out the value of the symbol. */
5323 if (local_p)
5324 {
5325 Elf_Internal_Sym *sym;
5326
5327 sym = local_syms + r_symndx;
5328 sec = local_sections[r_symndx];
5329
5330 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5331
5332 symbol = sec->output_section->vma + sec->output_offset;
5333 if (!section_p || (sec->flags & SEC_MERGE))
5334 symbol += sym->st_value;
5335 if ((sec->flags & SEC_MERGE) && section_p)
5336 {
5337 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5338 addend -= symbol;
5339 addend += sec->output_section->vma + sec->output_offset;
5340 }
5341
5342 /* MIPS16/microMIPS text labels should be treated as odd. */
5343 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5344 ++symbol;
5345
5346 /* Record the name of this symbol, for our caller. */
5347 *namep = bfd_elf_string_from_elf_section (input_bfd,
5348 symtab_hdr->sh_link,
5349 sym->st_name);
5350 if (*namep == NULL || **namep == '\0')
5351 *namep = bfd_section_name (input_bfd, sec);
5352
5353 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5354 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5355 }
5356 else
5357 {
5358 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5359
5360 /* For global symbols we look up the symbol in the hash-table. */
5361 h = ((struct mips_elf_link_hash_entry *)
5362 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5363 /* Find the real hash-table entry for this symbol. */
5364 while (h->root.root.type == bfd_link_hash_indirect
5365 || h->root.root.type == bfd_link_hash_warning)
5366 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5367
5368 /* Record the name of this symbol, for our caller. */
5369 *namep = h->root.root.root.string;
5370
5371 /* See if this is the special _gp_disp symbol. Note that such a
5372 symbol must always be a global symbol. */
5373 if (strcmp (*namep, "_gp_disp") == 0
5374 && ! NEWABI_P (input_bfd))
5375 {
5376 /* Relocations against _gp_disp are permitted only with
5377 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5378 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5379 return bfd_reloc_notsupported;
5380
5381 gp_disp_p = TRUE;
5382 }
5383 /* See if this is the special _gp symbol. Note that such a
5384 symbol must always be a global symbol. */
5385 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5386 gnu_local_gp_p = TRUE;
5387
5388
5389 /* If this symbol is defined, calculate its address. Note that
5390 _gp_disp is a magic symbol, always implicitly defined by the
5391 linker, so it's inappropriate to check to see whether or not
5392 its defined. */
5393 else if ((h->root.root.type == bfd_link_hash_defined
5394 || h->root.root.type == bfd_link_hash_defweak)
5395 && h->root.root.u.def.section)
5396 {
5397 sec = h->root.root.u.def.section;
5398 if (sec->output_section)
5399 symbol = (h->root.root.u.def.value
5400 + sec->output_section->vma
5401 + sec->output_offset);
5402 else
5403 symbol = h->root.root.u.def.value;
5404 }
5405 else if (h->root.root.type == bfd_link_hash_undefweak)
5406 /* We allow relocations against undefined weak symbols, giving
5407 it the value zero, so that you can undefined weak functions
5408 and check to see if they exist by looking at their
5409 addresses. */
5410 symbol = 0;
5411 else if (info->unresolved_syms_in_objects == RM_IGNORE
5412 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5413 symbol = 0;
5414 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5415 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5416 {
5417 /* If this is a dynamic link, we should have created a
5418 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5419 in in _bfd_mips_elf_create_dynamic_sections.
5420 Otherwise, we should define the symbol with a value of 0.
5421 FIXME: It should probably get into the symbol table
5422 somehow as well. */
5423 BFD_ASSERT (! bfd_link_pic (info));
5424 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5425 symbol = 0;
5426 }
5427 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5428 {
5429 /* This is an optional symbol - an Irix specific extension to the
5430 ELF spec. Ignore it for now.
5431 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5432 than simply ignoring them, but we do not handle this for now.
5433 For information see the "64-bit ELF Object File Specification"
5434 which is available from here:
5435 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5436 symbol = 0;
5437 }
5438 else
5439 {
5440 (*info->callbacks->undefined_symbol)
5441 (info, h->root.root.root.string, input_bfd,
5442 input_section, relocation->r_offset,
5443 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5444 || ELF_ST_VISIBILITY (h->root.other));
5445 return bfd_reloc_undefined;
5446 }
5447
5448 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5449 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5450 }
5451
5452 /* If this is a reference to a 16-bit function with a stub, we need
5453 to redirect the relocation to the stub unless:
5454
5455 (a) the relocation is for a MIPS16 JAL;
5456
5457 (b) the relocation is for a MIPS16 PIC call, and there are no
5458 non-MIPS16 uses of the GOT slot; or
5459
5460 (c) the section allows direct references to MIPS16 functions. */
5461 if (r_type != R_MIPS16_26
5462 && !bfd_link_relocatable (info)
5463 && ((h != NULL
5464 && h->fn_stub != NULL
5465 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5466 || (local_p
5467 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5468 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5469 && !section_allows_mips16_refs_p (input_section))
5470 {
5471 /* This is a 32- or 64-bit call to a 16-bit function. We should
5472 have already noticed that we were going to need the
5473 stub. */
5474 if (local_p)
5475 {
5476 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5477 value = 0;
5478 }
5479 else
5480 {
5481 BFD_ASSERT (h->need_fn_stub);
5482 if (h->la25_stub)
5483 {
5484 /* If a LA25 header for the stub itself exists, point to the
5485 prepended LUI/ADDIU sequence. */
5486 sec = h->la25_stub->stub_section;
5487 value = h->la25_stub->offset;
5488 }
5489 else
5490 {
5491 sec = h->fn_stub;
5492 value = 0;
5493 }
5494 }
5495
5496 symbol = sec->output_section->vma + sec->output_offset + value;
5497 /* The target is 16-bit, but the stub isn't. */
5498 target_is_16_bit_code_p = FALSE;
5499 }
5500 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5501 to a standard MIPS function, we need to redirect the call to the stub.
5502 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5503 indirect calls should use an indirect stub instead. */
5504 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5505 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5506 || (local_p
5507 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5508 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5509 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5510 {
5511 if (local_p)
5512 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5513 else
5514 {
5515 /* If both call_stub and call_fp_stub are defined, we can figure
5516 out which one to use by checking which one appears in the input
5517 file. */
5518 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5519 {
5520 asection *o;
5521
5522 sec = NULL;
5523 for (o = input_bfd->sections; o != NULL; o = o->next)
5524 {
5525 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5526 {
5527 sec = h->call_fp_stub;
5528 break;
5529 }
5530 }
5531 if (sec == NULL)
5532 sec = h->call_stub;
5533 }
5534 else if (h->call_stub != NULL)
5535 sec = h->call_stub;
5536 else
5537 sec = h->call_fp_stub;
5538 }
5539
5540 BFD_ASSERT (sec->size > 0);
5541 symbol = sec->output_section->vma + sec->output_offset;
5542 }
5543 /* If this is a direct call to a PIC function, redirect to the
5544 non-PIC stub. */
5545 else if (h != NULL && h->la25_stub
5546 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5547 target_is_16_bit_code_p))
5548 symbol = (h->la25_stub->stub_section->output_section->vma
5549 + h->la25_stub->stub_section->output_offset
5550 + h->la25_stub->offset);
5551 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5552 entry is used if a standard PLT entry has also been made. In this
5553 case the symbol will have been set by mips_elf_set_plt_sym_value
5554 to point to the standard PLT entry, so redirect to the compressed
5555 one. */
5556 else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1)
5557 && !bfd_link_relocatable (info)
5558 && h != NULL
5559 && h->use_plt_entry
5560 && h->root.plt.plist->comp_offset != MINUS_ONE
5561 && h->root.plt.plist->mips_offset != MINUS_ONE)
5562 {
5563 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5564
5565 sec = htab->splt;
5566 symbol = (sec->output_section->vma
5567 + sec->output_offset
5568 + htab->plt_header_size
5569 + htab->plt_mips_offset
5570 + h->root.plt.plist->comp_offset
5571 + 1);
5572
5573 target_is_16_bit_code_p = !micromips_p;
5574 target_is_micromips_code_p = micromips_p;
5575 }
5576
5577 /* Make sure MIPS16 and microMIPS are not used together. */
5578 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5579 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5580 {
5581 (*_bfd_error_handler)
5582 (_("MIPS16 and microMIPS functions cannot call each other"));
5583 return bfd_reloc_notsupported;
5584 }
5585
5586 /* Calls from 16-bit code to 32-bit code and vice versa require the
5587 mode change. However, we can ignore calls to undefined weak symbols,
5588 which should never be executed at runtime. This exception is important
5589 because the assembly writer may have "known" that any definition of the
5590 symbol would be 16-bit code, and that direct jumps were therefore
5591 acceptable. */
5592 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5593 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5594 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5595 || (r_type == R_MICROMIPS_26_S1
5596 && !target_is_micromips_code_p)
5597 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5598 && (target_is_16_bit_code_p
5599 || target_is_micromips_code_p))));
5600
5601 local_p = (h == NULL || mips_use_local_got_p (info, h));
5602
5603 gp0 = _bfd_get_gp_value (input_bfd);
5604 gp = _bfd_get_gp_value (abfd);
5605 if (htab->got_info)
5606 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5607
5608 if (gnu_local_gp_p)
5609 symbol = gp;
5610
5611 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5612 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5613 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5614 if (got_page_reloc_p (r_type) && !local_p)
5615 {
5616 r_type = (micromips_reloc_p (r_type)
5617 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5618 addend = 0;
5619 }
5620
5621 /* If we haven't already determined the GOT offset, and we're going
5622 to need it, get it now. */
5623 switch (r_type)
5624 {
5625 case R_MIPS16_CALL16:
5626 case R_MIPS16_GOT16:
5627 case R_MIPS_CALL16:
5628 case R_MIPS_GOT16:
5629 case R_MIPS_GOT_DISP:
5630 case R_MIPS_GOT_HI16:
5631 case R_MIPS_CALL_HI16:
5632 case R_MIPS_GOT_LO16:
5633 case R_MIPS_CALL_LO16:
5634 case R_MICROMIPS_CALL16:
5635 case R_MICROMIPS_GOT16:
5636 case R_MICROMIPS_GOT_DISP:
5637 case R_MICROMIPS_GOT_HI16:
5638 case R_MICROMIPS_CALL_HI16:
5639 case R_MICROMIPS_GOT_LO16:
5640 case R_MICROMIPS_CALL_LO16:
5641 case R_MIPS_TLS_GD:
5642 case R_MIPS_TLS_GOTTPREL:
5643 case R_MIPS_TLS_LDM:
5644 case R_MIPS16_TLS_GD:
5645 case R_MIPS16_TLS_GOTTPREL:
5646 case R_MIPS16_TLS_LDM:
5647 case R_MICROMIPS_TLS_GD:
5648 case R_MICROMIPS_TLS_GOTTPREL:
5649 case R_MICROMIPS_TLS_LDM:
5650 /* Find the index into the GOT where this value is located. */
5651 if (tls_ldm_reloc_p (r_type))
5652 {
5653 g = mips_elf_local_got_index (abfd, input_bfd, info,
5654 0, 0, NULL, r_type);
5655 if (g == MINUS_ONE)
5656 return bfd_reloc_outofrange;
5657 }
5658 else if (!local_p)
5659 {
5660 /* On VxWorks, CALL relocations should refer to the .got.plt
5661 entry, which is initialized to point at the PLT stub. */
5662 if (htab->is_vxworks
5663 && (call_hi16_reloc_p (r_type)
5664 || call_lo16_reloc_p (r_type)
5665 || call16_reloc_p (r_type)))
5666 {
5667 BFD_ASSERT (addend == 0);
5668 BFD_ASSERT (h->root.needs_plt);
5669 g = mips_elf_gotplt_index (info, &h->root);
5670 }
5671 else
5672 {
5673 BFD_ASSERT (addend == 0);
5674 g = mips_elf_global_got_index (abfd, info, input_bfd,
5675 &h->root, r_type);
5676 if (!TLS_RELOC_P (r_type)
5677 && !elf_hash_table (info)->dynamic_sections_created)
5678 /* This is a static link. We must initialize the GOT entry. */
5679 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5680 }
5681 }
5682 else if (!htab->is_vxworks
5683 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5684 /* The calculation below does not involve "g". */
5685 break;
5686 else
5687 {
5688 g = mips_elf_local_got_index (abfd, input_bfd, info,
5689 symbol + addend, r_symndx, h, r_type);
5690 if (g == MINUS_ONE)
5691 return bfd_reloc_outofrange;
5692 }
5693
5694 /* Convert GOT indices to actual offsets. */
5695 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5696 break;
5697 }
5698
5699 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5700 symbols are resolved by the loader. Add them to .rela.dyn. */
5701 if (h != NULL && is_gott_symbol (info, &h->root))
5702 {
5703 Elf_Internal_Rela outrel;
5704 bfd_byte *loc;
5705 asection *s;
5706
5707 s = mips_elf_rel_dyn_section (info, FALSE);
5708 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5709
5710 outrel.r_offset = (input_section->output_section->vma
5711 + input_section->output_offset
5712 + relocation->r_offset);
5713 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5714 outrel.r_addend = addend;
5715 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5716
5717 /* If we've written this relocation for a readonly section,
5718 we need to set DF_TEXTREL again, so that we do not delete the
5719 DT_TEXTREL tag. */
5720 if (MIPS_ELF_READONLY_SECTION (input_section))
5721 info->flags |= DF_TEXTREL;
5722
5723 *valuep = 0;
5724 return bfd_reloc_ok;
5725 }
5726
5727 /* Figure out what kind of relocation is being performed. */
5728 switch (r_type)
5729 {
5730 case R_MIPS_NONE:
5731 return bfd_reloc_continue;
5732
5733 case R_MIPS_16:
5734 if (howto->partial_inplace)
5735 addend = _bfd_mips_elf_sign_extend (addend, 16);
5736 value = symbol + addend;
5737 overflowed_p = mips_elf_overflow_p (value, 16);
5738 break;
5739
5740 case R_MIPS_32:
5741 case R_MIPS_REL32:
5742 case R_MIPS_64:
5743 if ((bfd_link_pic (info)
5744 || (htab->root.dynamic_sections_created
5745 && h != NULL
5746 && h->root.def_dynamic
5747 && !h->root.def_regular
5748 && !h->has_static_relocs))
5749 && r_symndx != STN_UNDEF
5750 && (h == NULL
5751 || h->root.root.type != bfd_link_hash_undefweak
5752 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5753 && (input_section->flags & SEC_ALLOC) != 0)
5754 {
5755 /* If we're creating a shared library, then we can't know
5756 where the symbol will end up. So, we create a relocation
5757 record in the output, and leave the job up to the dynamic
5758 linker. We must do the same for executable references to
5759 shared library symbols, unless we've decided to use copy
5760 relocs or PLTs instead. */
5761 value = addend;
5762 if (!mips_elf_create_dynamic_relocation (abfd,
5763 info,
5764 relocation,
5765 h,
5766 sec,
5767 symbol,
5768 &value,
5769 input_section))
5770 return bfd_reloc_undefined;
5771 }
5772 else
5773 {
5774 if (r_type != R_MIPS_REL32)
5775 value = symbol + addend;
5776 else
5777 value = addend;
5778 }
5779 value &= howto->dst_mask;
5780 break;
5781
5782 case R_MIPS_PC32:
5783 value = symbol + addend - p;
5784 value &= howto->dst_mask;
5785 break;
5786
5787 case R_MIPS16_26:
5788 /* The calculation for R_MIPS16_26 is just the same as for an
5789 R_MIPS_26. It's only the storage of the relocated field into
5790 the output file that's different. That's handled in
5791 mips_elf_perform_relocation. So, we just fall through to the
5792 R_MIPS_26 case here. */
5793 case R_MIPS_26:
5794 case R_MICROMIPS_26_S1:
5795 {
5796 unsigned int shift;
5797
5798 /* Shift is 2, unusually, for microMIPS JALX. */
5799 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5800
5801 if (howto->partial_inplace && !section_p)
5802 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5803 else
5804 value = addend;
5805 value += symbol;
5806
5807 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5808 the correct ISA mode selector and bit 1 must be 0. */
5809 if (*cross_mode_jump_p && (value & 3) != (r_type == R_MIPS_26))
5810 return bfd_reloc_outofrange;
5811
5812 value >>= shift;
5813 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5814 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5815 value &= howto->dst_mask;
5816 }
5817 break;
5818
5819 case R_MIPS_TLS_DTPREL_HI16:
5820 case R_MIPS16_TLS_DTPREL_HI16:
5821 case R_MICROMIPS_TLS_DTPREL_HI16:
5822 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5823 & howto->dst_mask);
5824 break;
5825
5826 case R_MIPS_TLS_DTPREL_LO16:
5827 case R_MIPS_TLS_DTPREL32:
5828 case R_MIPS_TLS_DTPREL64:
5829 case R_MIPS16_TLS_DTPREL_LO16:
5830 case R_MICROMIPS_TLS_DTPREL_LO16:
5831 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5832 break;
5833
5834 case R_MIPS_TLS_TPREL_HI16:
5835 case R_MIPS16_TLS_TPREL_HI16:
5836 case R_MICROMIPS_TLS_TPREL_HI16:
5837 value = (mips_elf_high (addend + symbol - tprel_base (info))
5838 & howto->dst_mask);
5839 break;
5840
5841 case R_MIPS_TLS_TPREL_LO16:
5842 case R_MIPS_TLS_TPREL32:
5843 case R_MIPS_TLS_TPREL64:
5844 case R_MIPS16_TLS_TPREL_LO16:
5845 case R_MICROMIPS_TLS_TPREL_LO16:
5846 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5847 break;
5848
5849 case R_MIPS_HI16:
5850 case R_MIPS16_HI16:
5851 case R_MICROMIPS_HI16:
5852 if (!gp_disp_p)
5853 {
5854 value = mips_elf_high (addend + symbol);
5855 value &= howto->dst_mask;
5856 }
5857 else
5858 {
5859 /* For MIPS16 ABI code we generate this sequence
5860 0: li $v0,%hi(_gp_disp)
5861 4: addiupc $v1,%lo(_gp_disp)
5862 8: sll $v0,16
5863 12: addu $v0,$v1
5864 14: move $gp,$v0
5865 So the offsets of hi and lo relocs are the same, but the
5866 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5867 ADDIUPC clears the low two bits of the instruction address,
5868 so the base is ($t9 + 4) & ~3. */
5869 if (r_type == R_MIPS16_HI16)
5870 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5871 /* The microMIPS .cpload sequence uses the same assembly
5872 instructions as the traditional psABI version, but the
5873 incoming $t9 has the low bit set. */
5874 else if (r_type == R_MICROMIPS_HI16)
5875 value = mips_elf_high (addend + gp - p - 1);
5876 else
5877 value = mips_elf_high (addend + gp - p);
5878 overflowed_p = mips_elf_overflow_p (value, 16);
5879 }
5880 break;
5881
5882 case R_MIPS_LO16:
5883 case R_MIPS16_LO16:
5884 case R_MICROMIPS_LO16:
5885 case R_MICROMIPS_HI0_LO16:
5886 if (!gp_disp_p)
5887 value = (symbol + addend) & howto->dst_mask;
5888 else
5889 {
5890 /* See the comment for R_MIPS16_HI16 above for the reason
5891 for this conditional. */
5892 if (r_type == R_MIPS16_LO16)
5893 value = addend + gp - (p & ~(bfd_vma) 0x3);
5894 else if (r_type == R_MICROMIPS_LO16
5895 || r_type == R_MICROMIPS_HI0_LO16)
5896 value = addend + gp - p + 3;
5897 else
5898 value = addend + gp - p + 4;
5899 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5900 for overflow. But, on, say, IRIX5, relocations against
5901 _gp_disp are normally generated from the .cpload
5902 pseudo-op. It generates code that normally looks like
5903 this:
5904
5905 lui $gp,%hi(_gp_disp)
5906 addiu $gp,$gp,%lo(_gp_disp)
5907 addu $gp,$gp,$t9
5908
5909 Here $t9 holds the address of the function being called,
5910 as required by the MIPS ELF ABI. The R_MIPS_LO16
5911 relocation can easily overflow in this situation, but the
5912 R_MIPS_HI16 relocation will handle the overflow.
5913 Therefore, we consider this a bug in the MIPS ABI, and do
5914 not check for overflow here. */
5915 }
5916 break;
5917
5918 case R_MIPS_LITERAL:
5919 case R_MICROMIPS_LITERAL:
5920 /* Because we don't merge literal sections, we can handle this
5921 just like R_MIPS_GPREL16. In the long run, we should merge
5922 shared literals, and then we will need to additional work
5923 here. */
5924
5925 /* Fall through. */
5926
5927 case R_MIPS16_GPREL:
5928 /* The R_MIPS16_GPREL performs the same calculation as
5929 R_MIPS_GPREL16, but stores the relocated bits in a different
5930 order. We don't need to do anything special here; the
5931 differences are handled in mips_elf_perform_relocation. */
5932 case R_MIPS_GPREL16:
5933 case R_MICROMIPS_GPREL7_S2:
5934 case R_MICROMIPS_GPREL16:
5935 /* Only sign-extend the addend if it was extracted from the
5936 instruction. If the addend was separate, leave it alone,
5937 otherwise we may lose significant bits. */
5938 if (howto->partial_inplace)
5939 addend = _bfd_mips_elf_sign_extend (addend, 16);
5940 value = symbol + addend - gp;
5941 /* If the symbol was local, any earlier relocatable links will
5942 have adjusted its addend with the gp offset, so compensate
5943 for that now. Don't do it for symbols forced local in this
5944 link, though, since they won't have had the gp offset applied
5945 to them before. */
5946 if (was_local_p)
5947 value += gp0;
5948 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5949 overflowed_p = mips_elf_overflow_p (value, 16);
5950 break;
5951
5952 case R_MIPS16_GOT16:
5953 case R_MIPS16_CALL16:
5954 case R_MIPS_GOT16:
5955 case R_MIPS_CALL16:
5956 case R_MICROMIPS_GOT16:
5957 case R_MICROMIPS_CALL16:
5958 /* VxWorks does not have separate local and global semantics for
5959 R_MIPS*_GOT16; every relocation evaluates to "G". */
5960 if (!htab->is_vxworks && local_p)
5961 {
5962 value = mips_elf_got16_entry (abfd, input_bfd, info,
5963 symbol + addend, !was_local_p);
5964 if (value == MINUS_ONE)
5965 return bfd_reloc_outofrange;
5966 value
5967 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5968 overflowed_p = mips_elf_overflow_p (value, 16);
5969 break;
5970 }
5971
5972 /* Fall through. */
5973
5974 case R_MIPS_TLS_GD:
5975 case R_MIPS_TLS_GOTTPREL:
5976 case R_MIPS_TLS_LDM:
5977 case R_MIPS_GOT_DISP:
5978 case R_MIPS16_TLS_GD:
5979 case R_MIPS16_TLS_GOTTPREL:
5980 case R_MIPS16_TLS_LDM:
5981 case R_MICROMIPS_TLS_GD:
5982 case R_MICROMIPS_TLS_GOTTPREL:
5983 case R_MICROMIPS_TLS_LDM:
5984 case R_MICROMIPS_GOT_DISP:
5985 value = g;
5986 overflowed_p = mips_elf_overflow_p (value, 16);
5987 break;
5988
5989 case R_MIPS_GPREL32:
5990 value = (addend + symbol + gp0 - gp);
5991 if (!save_addend)
5992 value &= howto->dst_mask;
5993 break;
5994
5995 case R_MIPS_PC16:
5996 case R_MIPS_GNU_REL16_S2:
5997 if (howto->partial_inplace)
5998 addend = _bfd_mips_elf_sign_extend (addend, 18);
5999
6000 if ((symbol + addend) & 3)
6001 return bfd_reloc_outofrange;
6002
6003 value = symbol + addend - p;
6004 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6005 overflowed_p = mips_elf_overflow_p (value, 18);
6006 value >>= howto->rightshift;
6007 value &= howto->dst_mask;
6008 break;
6009
6010 case R_MIPS16_PC16_S1:
6011 if (howto->partial_inplace)
6012 addend = _bfd_mips_elf_sign_extend (addend, 17);
6013
6014 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6015 && ((symbol + addend) & 1) == 0)
6016 return bfd_reloc_outofrange;
6017
6018 value = symbol + addend - p;
6019 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6020 overflowed_p = mips_elf_overflow_p (value, 17);
6021 value >>= howto->rightshift;
6022 value &= howto->dst_mask;
6023 break;
6024
6025 case R_MIPS_PC21_S2:
6026 if (howto->partial_inplace)
6027 addend = _bfd_mips_elf_sign_extend (addend, 23);
6028
6029 if ((symbol + addend) & 3)
6030 return bfd_reloc_outofrange;
6031
6032 value = symbol + addend - p;
6033 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6034 overflowed_p = mips_elf_overflow_p (value, 23);
6035 value >>= howto->rightshift;
6036 value &= howto->dst_mask;
6037 break;
6038
6039 case R_MIPS_PC26_S2:
6040 if (howto->partial_inplace)
6041 addend = _bfd_mips_elf_sign_extend (addend, 28);
6042
6043 if ((symbol + addend) & 3)
6044 return bfd_reloc_outofrange;
6045
6046 value = symbol + addend - p;
6047 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6048 overflowed_p = mips_elf_overflow_p (value, 28);
6049 value >>= howto->rightshift;
6050 value &= howto->dst_mask;
6051 break;
6052
6053 case R_MIPS_PC18_S3:
6054 if (howto->partial_inplace)
6055 addend = _bfd_mips_elf_sign_extend (addend, 21);
6056
6057 if ((symbol + addend) & 7)
6058 return bfd_reloc_outofrange;
6059
6060 value = symbol + addend - ((p | 7) ^ 7);
6061 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6062 overflowed_p = mips_elf_overflow_p (value, 21);
6063 value >>= howto->rightshift;
6064 value &= howto->dst_mask;
6065 break;
6066
6067 case R_MIPS_PC19_S2:
6068 if (howto->partial_inplace)
6069 addend = _bfd_mips_elf_sign_extend (addend, 21);
6070
6071 if ((symbol + addend) & 3)
6072 return bfd_reloc_outofrange;
6073
6074 value = symbol + addend - p;
6075 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6076 overflowed_p = mips_elf_overflow_p (value, 21);
6077 value >>= howto->rightshift;
6078 value &= howto->dst_mask;
6079 break;
6080
6081 case R_MIPS_PCHI16:
6082 value = mips_elf_high (symbol + addend - p);
6083 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6084 overflowed_p = mips_elf_overflow_p (value, 16);
6085 value &= howto->dst_mask;
6086 break;
6087
6088 case R_MIPS_PCLO16:
6089 if (howto->partial_inplace)
6090 addend = _bfd_mips_elf_sign_extend (addend, 16);
6091 value = symbol + addend - p;
6092 value &= howto->dst_mask;
6093 break;
6094
6095 case R_MICROMIPS_PC7_S1:
6096 if (howto->partial_inplace)
6097 addend = _bfd_mips_elf_sign_extend (addend, 8);
6098 value = symbol + addend - p;
6099 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6100 overflowed_p = mips_elf_overflow_p (value, 8);
6101 value >>= howto->rightshift;
6102 value &= howto->dst_mask;
6103 break;
6104
6105 case R_MICROMIPS_PC10_S1:
6106 if (howto->partial_inplace)
6107 addend = _bfd_mips_elf_sign_extend (addend, 11);
6108 value = symbol + addend - p;
6109 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6110 overflowed_p = mips_elf_overflow_p (value, 11);
6111 value >>= howto->rightshift;
6112 value &= howto->dst_mask;
6113 break;
6114
6115 case R_MICROMIPS_PC16_S1:
6116 if (howto->partial_inplace)
6117 addend = _bfd_mips_elf_sign_extend (addend, 17);
6118 value = symbol + addend - p;
6119 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6120 overflowed_p = mips_elf_overflow_p (value, 17);
6121 value >>= howto->rightshift;
6122 value &= howto->dst_mask;
6123 break;
6124
6125 case R_MICROMIPS_PC23_S2:
6126 if (howto->partial_inplace)
6127 addend = _bfd_mips_elf_sign_extend (addend, 25);
6128 value = symbol + addend - ((p | 3) ^ 3);
6129 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6130 overflowed_p = mips_elf_overflow_p (value, 25);
6131 value >>= howto->rightshift;
6132 value &= howto->dst_mask;
6133 break;
6134
6135 case R_MIPS_GOT_HI16:
6136 case R_MIPS_CALL_HI16:
6137 case R_MICROMIPS_GOT_HI16:
6138 case R_MICROMIPS_CALL_HI16:
6139 /* We're allowed to handle these two relocations identically.
6140 The dynamic linker is allowed to handle the CALL relocations
6141 differently by creating a lazy evaluation stub. */
6142 value = g;
6143 value = mips_elf_high (value);
6144 value &= howto->dst_mask;
6145 break;
6146
6147 case R_MIPS_GOT_LO16:
6148 case R_MIPS_CALL_LO16:
6149 case R_MICROMIPS_GOT_LO16:
6150 case R_MICROMIPS_CALL_LO16:
6151 value = g & howto->dst_mask;
6152 break;
6153
6154 case R_MIPS_GOT_PAGE:
6155 case R_MICROMIPS_GOT_PAGE:
6156 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6157 if (value == MINUS_ONE)
6158 return bfd_reloc_outofrange;
6159 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6160 overflowed_p = mips_elf_overflow_p (value, 16);
6161 break;
6162
6163 case R_MIPS_GOT_OFST:
6164 case R_MICROMIPS_GOT_OFST:
6165 if (local_p)
6166 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6167 else
6168 value = addend;
6169 overflowed_p = mips_elf_overflow_p (value, 16);
6170 break;
6171
6172 case R_MIPS_SUB:
6173 case R_MICROMIPS_SUB:
6174 value = symbol - addend;
6175 value &= howto->dst_mask;
6176 break;
6177
6178 case R_MIPS_HIGHER:
6179 case R_MICROMIPS_HIGHER:
6180 value = mips_elf_higher (addend + symbol);
6181 value &= howto->dst_mask;
6182 break;
6183
6184 case R_MIPS_HIGHEST:
6185 case R_MICROMIPS_HIGHEST:
6186 value = mips_elf_highest (addend + symbol);
6187 value &= howto->dst_mask;
6188 break;
6189
6190 case R_MIPS_SCN_DISP:
6191 case R_MICROMIPS_SCN_DISP:
6192 value = symbol + addend - sec->output_offset;
6193 value &= howto->dst_mask;
6194 break;
6195
6196 case R_MIPS_JALR:
6197 case R_MICROMIPS_JALR:
6198 /* This relocation is only a hint. In some cases, we optimize
6199 it into a bal instruction. But we don't try to optimize
6200 when the symbol does not resolve locally. */
6201 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6202 return bfd_reloc_continue;
6203 value = symbol + addend;
6204 break;
6205
6206 case R_MIPS_PJUMP:
6207 case R_MIPS_GNU_VTINHERIT:
6208 case R_MIPS_GNU_VTENTRY:
6209 /* We don't do anything with these at present. */
6210 return bfd_reloc_continue;
6211
6212 default:
6213 /* An unrecognized relocation type. */
6214 return bfd_reloc_notsupported;
6215 }
6216
6217 /* Store the VALUE for our caller. */
6218 *valuep = value;
6219 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6220 }
6221
6222 /* Obtain the field relocated by RELOCATION. */
6223
6224 static bfd_vma
6225 mips_elf_obtain_contents (reloc_howto_type *howto,
6226 const Elf_Internal_Rela *relocation,
6227 bfd *input_bfd, bfd_byte *contents)
6228 {
6229 bfd_vma x = 0;
6230 bfd_byte *location = contents + relocation->r_offset;
6231 unsigned int size = bfd_get_reloc_size (howto);
6232
6233 /* Obtain the bytes. */
6234 if (size != 0)
6235 x = bfd_get (8 * size, input_bfd, location);
6236
6237 return x;
6238 }
6239
6240 /* It has been determined that the result of the RELOCATION is the
6241 VALUE. Use HOWTO to place VALUE into the output file at the
6242 appropriate position. The SECTION is the section to which the
6243 relocation applies.
6244 CROSS_MODE_JUMP_P is true if the relocation field
6245 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6246
6247 Returns FALSE if anything goes wrong. */
6248
6249 static bfd_boolean
6250 mips_elf_perform_relocation (struct bfd_link_info *info,
6251 reloc_howto_type *howto,
6252 const Elf_Internal_Rela *relocation,
6253 bfd_vma value, bfd *input_bfd,
6254 asection *input_section, bfd_byte *contents,
6255 bfd_boolean cross_mode_jump_p)
6256 {
6257 bfd_vma x;
6258 bfd_byte *location;
6259 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6260 unsigned int size;
6261
6262 /* Figure out where the relocation is occurring. */
6263 location = contents + relocation->r_offset;
6264
6265 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6266
6267 /* Obtain the current value. */
6268 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6269
6270 /* Clear the field we are setting. */
6271 x &= ~howto->dst_mask;
6272
6273 /* Set the field. */
6274 x |= (value & howto->dst_mask);
6275
6276 /* If required, turn JAL into JALX. */
6277 if (cross_mode_jump_p && jal_reloc_p (r_type))
6278 {
6279 bfd_boolean ok;
6280 bfd_vma opcode = x >> 26;
6281 bfd_vma jalx_opcode;
6282
6283 /* Check to see if the opcode is already JAL or JALX. */
6284 if (r_type == R_MIPS16_26)
6285 {
6286 ok = ((opcode == 0x6) || (opcode == 0x7));
6287 jalx_opcode = 0x7;
6288 }
6289 else if (r_type == R_MICROMIPS_26_S1)
6290 {
6291 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6292 jalx_opcode = 0x3c;
6293 }
6294 else
6295 {
6296 ok = ((opcode == 0x3) || (opcode == 0x1d));
6297 jalx_opcode = 0x1d;
6298 }
6299
6300 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6301 convert J or JALS to JALX. */
6302 if (!ok)
6303 {
6304 info->callbacks->einfo
6305 (_("%X%H: Unsupported jump between ISA modes; "
6306 "consider recompiling with interlinking enabled\n"),
6307 input_bfd, input_section, relocation->r_offset);
6308 return TRUE;
6309 }
6310
6311 /* Make this the JALX opcode. */
6312 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6313 }
6314
6315 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6316 range. */
6317 if (!bfd_link_relocatable (info)
6318 && !cross_mode_jump_p
6319 && ((JAL_TO_BAL_P (input_bfd)
6320 && r_type == R_MIPS_26
6321 && (x >> 26) == 0x3) /* jal addr */
6322 || (JALR_TO_BAL_P (input_bfd)
6323 && r_type == R_MIPS_JALR
6324 && x == 0x0320f809) /* jalr t9 */
6325 || (JR_TO_B_P (input_bfd)
6326 && r_type == R_MIPS_JALR
6327 && x == 0x03200008))) /* jr t9 */
6328 {
6329 bfd_vma addr;
6330 bfd_vma dest;
6331 bfd_signed_vma off;
6332
6333 addr = (input_section->output_section->vma
6334 + input_section->output_offset
6335 + relocation->r_offset
6336 + 4);
6337 if (r_type == R_MIPS_26)
6338 dest = (value << 2) | ((addr >> 28) << 28);
6339 else
6340 dest = value;
6341 off = dest - addr;
6342 if (off <= 0x1ffff && off >= -0x20000)
6343 {
6344 if (x == 0x03200008) /* jr t9 */
6345 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6346 else
6347 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6348 }
6349 }
6350
6351 /* Put the value into the output. */
6352 size = bfd_get_reloc_size (howto);
6353 if (size != 0)
6354 bfd_put (8 * size, input_bfd, x, location);
6355
6356 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6357 location);
6358
6359 return TRUE;
6360 }
6361 \f
6362 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6363 is the original relocation, which is now being transformed into a
6364 dynamic relocation. The ADDENDP is adjusted if necessary; the
6365 caller should store the result in place of the original addend. */
6366
6367 static bfd_boolean
6368 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6369 struct bfd_link_info *info,
6370 const Elf_Internal_Rela *rel,
6371 struct mips_elf_link_hash_entry *h,
6372 asection *sec, bfd_vma symbol,
6373 bfd_vma *addendp, asection *input_section)
6374 {
6375 Elf_Internal_Rela outrel[3];
6376 asection *sreloc;
6377 bfd *dynobj;
6378 int r_type;
6379 long indx;
6380 bfd_boolean defined_p;
6381 struct mips_elf_link_hash_table *htab;
6382
6383 htab = mips_elf_hash_table (info);
6384 BFD_ASSERT (htab != NULL);
6385
6386 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6387 dynobj = elf_hash_table (info)->dynobj;
6388 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6389 BFD_ASSERT (sreloc != NULL);
6390 BFD_ASSERT (sreloc->contents != NULL);
6391 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6392 < sreloc->size);
6393
6394 outrel[0].r_offset =
6395 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6396 if (ABI_64_P (output_bfd))
6397 {
6398 outrel[1].r_offset =
6399 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6400 outrel[2].r_offset =
6401 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6402 }
6403
6404 if (outrel[0].r_offset == MINUS_ONE)
6405 /* The relocation field has been deleted. */
6406 return TRUE;
6407
6408 if (outrel[0].r_offset == MINUS_TWO)
6409 {
6410 /* The relocation field has been converted into a relative value of
6411 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6412 the field to be fully relocated, so add in the symbol's value. */
6413 *addendp += symbol;
6414 return TRUE;
6415 }
6416
6417 /* We must now calculate the dynamic symbol table index to use
6418 in the relocation. */
6419 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6420 {
6421 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6422 indx = h->root.dynindx;
6423 if (SGI_COMPAT (output_bfd))
6424 defined_p = h->root.def_regular;
6425 else
6426 /* ??? glibc's ld.so just adds the final GOT entry to the
6427 relocation field. It therefore treats relocs against
6428 defined symbols in the same way as relocs against
6429 undefined symbols. */
6430 defined_p = FALSE;
6431 }
6432 else
6433 {
6434 if (sec != NULL && bfd_is_abs_section (sec))
6435 indx = 0;
6436 else if (sec == NULL || sec->owner == NULL)
6437 {
6438 bfd_set_error (bfd_error_bad_value);
6439 return FALSE;
6440 }
6441 else
6442 {
6443 indx = elf_section_data (sec->output_section)->dynindx;
6444 if (indx == 0)
6445 {
6446 asection *osec = htab->root.text_index_section;
6447 indx = elf_section_data (osec)->dynindx;
6448 }
6449 if (indx == 0)
6450 abort ();
6451 }
6452
6453 /* Instead of generating a relocation using the section
6454 symbol, we may as well make it a fully relative
6455 relocation. We want to avoid generating relocations to
6456 local symbols because we used to generate them
6457 incorrectly, without adding the original symbol value,
6458 which is mandated by the ABI for section symbols. In
6459 order to give dynamic loaders and applications time to
6460 phase out the incorrect use, we refrain from emitting
6461 section-relative relocations. It's not like they're
6462 useful, after all. This should be a bit more efficient
6463 as well. */
6464 /* ??? Although this behavior is compatible with glibc's ld.so,
6465 the ABI says that relocations against STN_UNDEF should have
6466 a symbol value of 0. Irix rld honors this, so relocations
6467 against STN_UNDEF have no effect. */
6468 if (!SGI_COMPAT (output_bfd))
6469 indx = 0;
6470 defined_p = TRUE;
6471 }
6472
6473 /* If the relocation was previously an absolute relocation and
6474 this symbol will not be referred to by the relocation, we must
6475 adjust it by the value we give it in the dynamic symbol table.
6476 Otherwise leave the job up to the dynamic linker. */
6477 if (defined_p && r_type != R_MIPS_REL32)
6478 *addendp += symbol;
6479
6480 if (htab->is_vxworks)
6481 /* VxWorks uses non-relative relocations for this. */
6482 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6483 else
6484 /* The relocation is always an REL32 relocation because we don't
6485 know where the shared library will wind up at load-time. */
6486 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6487 R_MIPS_REL32);
6488
6489 /* For strict adherence to the ABI specification, we should
6490 generate a R_MIPS_64 relocation record by itself before the
6491 _REL32/_64 record as well, such that the addend is read in as
6492 a 64-bit value (REL32 is a 32-bit relocation, after all).
6493 However, since none of the existing ELF64 MIPS dynamic
6494 loaders seems to care, we don't waste space with these
6495 artificial relocations. If this turns out to not be true,
6496 mips_elf_allocate_dynamic_relocation() should be tweaked so
6497 as to make room for a pair of dynamic relocations per
6498 invocation if ABI_64_P, and here we should generate an
6499 additional relocation record with R_MIPS_64 by itself for a
6500 NULL symbol before this relocation record. */
6501 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6502 ABI_64_P (output_bfd)
6503 ? R_MIPS_64
6504 : R_MIPS_NONE);
6505 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6506
6507 /* Adjust the output offset of the relocation to reference the
6508 correct location in the output file. */
6509 outrel[0].r_offset += (input_section->output_section->vma
6510 + input_section->output_offset);
6511 outrel[1].r_offset += (input_section->output_section->vma
6512 + input_section->output_offset);
6513 outrel[2].r_offset += (input_section->output_section->vma
6514 + input_section->output_offset);
6515
6516 /* Put the relocation back out. We have to use the special
6517 relocation outputter in the 64-bit case since the 64-bit
6518 relocation format is non-standard. */
6519 if (ABI_64_P (output_bfd))
6520 {
6521 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6522 (output_bfd, &outrel[0],
6523 (sreloc->contents
6524 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6525 }
6526 else if (htab->is_vxworks)
6527 {
6528 /* VxWorks uses RELA rather than REL dynamic relocations. */
6529 outrel[0].r_addend = *addendp;
6530 bfd_elf32_swap_reloca_out
6531 (output_bfd, &outrel[0],
6532 (sreloc->contents
6533 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6534 }
6535 else
6536 bfd_elf32_swap_reloc_out
6537 (output_bfd, &outrel[0],
6538 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6539
6540 /* We've now added another relocation. */
6541 ++sreloc->reloc_count;
6542
6543 /* Make sure the output section is writable. The dynamic linker
6544 will be writing to it. */
6545 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6546 |= SHF_WRITE;
6547
6548 /* On IRIX5, make an entry of compact relocation info. */
6549 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6550 {
6551 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6552 bfd_byte *cr;
6553
6554 if (scpt)
6555 {
6556 Elf32_crinfo cptrel;
6557
6558 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6559 cptrel.vaddr = (rel->r_offset
6560 + input_section->output_section->vma
6561 + input_section->output_offset);
6562 if (r_type == R_MIPS_REL32)
6563 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6564 else
6565 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6566 mips_elf_set_cr_dist2to (cptrel, 0);
6567 cptrel.konst = *addendp;
6568
6569 cr = (scpt->contents
6570 + sizeof (Elf32_External_compact_rel));
6571 mips_elf_set_cr_relvaddr (cptrel, 0);
6572 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6573 ((Elf32_External_crinfo *) cr
6574 + scpt->reloc_count));
6575 ++scpt->reloc_count;
6576 }
6577 }
6578
6579 /* If we've written this relocation for a readonly section,
6580 we need to set DF_TEXTREL again, so that we do not delete the
6581 DT_TEXTREL tag. */
6582 if (MIPS_ELF_READONLY_SECTION (input_section))
6583 info->flags |= DF_TEXTREL;
6584
6585 return TRUE;
6586 }
6587 \f
6588 /* Return the MACH for a MIPS e_flags value. */
6589
6590 unsigned long
6591 _bfd_elf_mips_mach (flagword flags)
6592 {
6593 switch (flags & EF_MIPS_MACH)
6594 {
6595 case E_MIPS_MACH_3900:
6596 return bfd_mach_mips3900;
6597
6598 case E_MIPS_MACH_4010:
6599 return bfd_mach_mips4010;
6600
6601 case E_MIPS_MACH_4100:
6602 return bfd_mach_mips4100;
6603
6604 case E_MIPS_MACH_4111:
6605 return bfd_mach_mips4111;
6606
6607 case E_MIPS_MACH_4120:
6608 return bfd_mach_mips4120;
6609
6610 case E_MIPS_MACH_4650:
6611 return bfd_mach_mips4650;
6612
6613 case E_MIPS_MACH_5400:
6614 return bfd_mach_mips5400;
6615
6616 case E_MIPS_MACH_5500:
6617 return bfd_mach_mips5500;
6618
6619 case E_MIPS_MACH_5900:
6620 return bfd_mach_mips5900;
6621
6622 case E_MIPS_MACH_9000:
6623 return bfd_mach_mips9000;
6624
6625 case E_MIPS_MACH_SB1:
6626 return bfd_mach_mips_sb1;
6627
6628 case E_MIPS_MACH_LS2E:
6629 return bfd_mach_mips_loongson_2e;
6630
6631 case E_MIPS_MACH_LS2F:
6632 return bfd_mach_mips_loongson_2f;
6633
6634 case E_MIPS_MACH_LS3A:
6635 return bfd_mach_mips_loongson_3a;
6636
6637 case E_MIPS_MACH_OCTEON3:
6638 return bfd_mach_mips_octeon3;
6639
6640 case E_MIPS_MACH_OCTEON2:
6641 return bfd_mach_mips_octeon2;
6642
6643 case E_MIPS_MACH_OCTEON:
6644 return bfd_mach_mips_octeon;
6645
6646 case E_MIPS_MACH_XLR:
6647 return bfd_mach_mips_xlr;
6648
6649 default:
6650 switch (flags & EF_MIPS_ARCH)
6651 {
6652 default:
6653 case E_MIPS_ARCH_1:
6654 return bfd_mach_mips3000;
6655
6656 case E_MIPS_ARCH_2:
6657 return bfd_mach_mips6000;
6658
6659 case E_MIPS_ARCH_3:
6660 return bfd_mach_mips4000;
6661
6662 case E_MIPS_ARCH_4:
6663 return bfd_mach_mips8000;
6664
6665 case E_MIPS_ARCH_5:
6666 return bfd_mach_mips5;
6667
6668 case E_MIPS_ARCH_32:
6669 return bfd_mach_mipsisa32;
6670
6671 case E_MIPS_ARCH_64:
6672 return bfd_mach_mipsisa64;
6673
6674 case E_MIPS_ARCH_32R2:
6675 return bfd_mach_mipsisa32r2;
6676
6677 case E_MIPS_ARCH_64R2:
6678 return bfd_mach_mipsisa64r2;
6679
6680 case E_MIPS_ARCH_32R6:
6681 return bfd_mach_mipsisa32r6;
6682
6683 case E_MIPS_ARCH_64R6:
6684 return bfd_mach_mipsisa64r6;
6685 }
6686 }
6687
6688 return 0;
6689 }
6690
6691 /* Return printable name for ABI. */
6692
6693 static INLINE char *
6694 elf_mips_abi_name (bfd *abfd)
6695 {
6696 flagword flags;
6697
6698 flags = elf_elfheader (abfd)->e_flags;
6699 switch (flags & EF_MIPS_ABI)
6700 {
6701 case 0:
6702 if (ABI_N32_P (abfd))
6703 return "N32";
6704 else if (ABI_64_P (abfd))
6705 return "64";
6706 else
6707 return "none";
6708 case E_MIPS_ABI_O32:
6709 return "O32";
6710 case E_MIPS_ABI_O64:
6711 return "O64";
6712 case E_MIPS_ABI_EABI32:
6713 return "EABI32";
6714 case E_MIPS_ABI_EABI64:
6715 return "EABI64";
6716 default:
6717 return "unknown abi";
6718 }
6719 }
6720 \f
6721 /* MIPS ELF uses two common sections. One is the usual one, and the
6722 other is for small objects. All the small objects are kept
6723 together, and then referenced via the gp pointer, which yields
6724 faster assembler code. This is what we use for the small common
6725 section. This approach is copied from ecoff.c. */
6726 static asection mips_elf_scom_section;
6727 static asymbol mips_elf_scom_symbol;
6728 static asymbol *mips_elf_scom_symbol_ptr;
6729
6730 /* MIPS ELF also uses an acommon section, which represents an
6731 allocated common symbol which may be overridden by a
6732 definition in a shared library. */
6733 static asection mips_elf_acom_section;
6734 static asymbol mips_elf_acom_symbol;
6735 static asymbol *mips_elf_acom_symbol_ptr;
6736
6737 /* This is used for both the 32-bit and the 64-bit ABI. */
6738
6739 void
6740 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6741 {
6742 elf_symbol_type *elfsym;
6743
6744 /* Handle the special MIPS section numbers that a symbol may use. */
6745 elfsym = (elf_symbol_type *) asym;
6746 switch (elfsym->internal_elf_sym.st_shndx)
6747 {
6748 case SHN_MIPS_ACOMMON:
6749 /* This section is used in a dynamically linked executable file.
6750 It is an allocated common section. The dynamic linker can
6751 either resolve these symbols to something in a shared
6752 library, or it can just leave them here. For our purposes,
6753 we can consider these symbols to be in a new section. */
6754 if (mips_elf_acom_section.name == NULL)
6755 {
6756 /* Initialize the acommon section. */
6757 mips_elf_acom_section.name = ".acommon";
6758 mips_elf_acom_section.flags = SEC_ALLOC;
6759 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6760 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6761 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6762 mips_elf_acom_symbol.name = ".acommon";
6763 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6764 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6765 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6766 }
6767 asym->section = &mips_elf_acom_section;
6768 break;
6769
6770 case SHN_COMMON:
6771 /* Common symbols less than the GP size are automatically
6772 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6773 if (asym->value > elf_gp_size (abfd)
6774 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6775 || IRIX_COMPAT (abfd) == ict_irix6)
6776 break;
6777 /* Fall through. */
6778 case SHN_MIPS_SCOMMON:
6779 if (mips_elf_scom_section.name == NULL)
6780 {
6781 /* Initialize the small common section. */
6782 mips_elf_scom_section.name = ".scommon";
6783 mips_elf_scom_section.flags = SEC_IS_COMMON;
6784 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6785 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6786 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6787 mips_elf_scom_symbol.name = ".scommon";
6788 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6789 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6790 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6791 }
6792 asym->section = &mips_elf_scom_section;
6793 asym->value = elfsym->internal_elf_sym.st_size;
6794 break;
6795
6796 case SHN_MIPS_SUNDEFINED:
6797 asym->section = bfd_und_section_ptr;
6798 break;
6799
6800 case SHN_MIPS_TEXT:
6801 {
6802 asection *section = bfd_get_section_by_name (abfd, ".text");
6803
6804 if (section != NULL)
6805 {
6806 asym->section = section;
6807 /* MIPS_TEXT is a bit special, the address is not an offset
6808 to the base of the .text section. So substract the section
6809 base address to make it an offset. */
6810 asym->value -= section->vma;
6811 }
6812 }
6813 break;
6814
6815 case SHN_MIPS_DATA:
6816 {
6817 asection *section = bfd_get_section_by_name (abfd, ".data");
6818
6819 if (section != NULL)
6820 {
6821 asym->section = section;
6822 /* MIPS_DATA is a bit special, the address is not an offset
6823 to the base of the .data section. So substract the section
6824 base address to make it an offset. */
6825 asym->value -= section->vma;
6826 }
6827 }
6828 break;
6829 }
6830
6831 /* If this is an odd-valued function symbol, assume it's a MIPS16
6832 or microMIPS one. */
6833 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6834 && (asym->value & 1) != 0)
6835 {
6836 asym->value--;
6837 if (MICROMIPS_P (abfd))
6838 elfsym->internal_elf_sym.st_other
6839 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6840 else
6841 elfsym->internal_elf_sym.st_other
6842 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6843 }
6844 }
6845 \f
6846 /* Implement elf_backend_eh_frame_address_size. This differs from
6847 the default in the way it handles EABI64.
6848
6849 EABI64 was originally specified as an LP64 ABI, and that is what
6850 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6851 historically accepted the combination of -mabi=eabi and -mlong32,
6852 and this ILP32 variation has become semi-official over time.
6853 Both forms use elf32 and have pointer-sized FDE addresses.
6854
6855 If an EABI object was generated by GCC 4.0 or above, it will have
6856 an empty .gcc_compiled_longXX section, where XX is the size of longs
6857 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6858 have no special marking to distinguish them from LP64 objects.
6859
6860 We don't want users of the official LP64 ABI to be punished for the
6861 existence of the ILP32 variant, but at the same time, we don't want
6862 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6863 We therefore take the following approach:
6864
6865 - If ABFD contains a .gcc_compiled_longXX section, use it to
6866 determine the pointer size.
6867
6868 - Otherwise check the type of the first relocation. Assume that
6869 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6870
6871 - Otherwise punt.
6872
6873 The second check is enough to detect LP64 objects generated by pre-4.0
6874 compilers because, in the kind of output generated by those compilers,
6875 the first relocation will be associated with either a CIE personality
6876 routine or an FDE start address. Furthermore, the compilers never
6877 used a special (non-pointer) encoding for this ABI.
6878
6879 Checking the relocation type should also be safe because there is no
6880 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6881 did so. */
6882
6883 unsigned int
6884 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6885 {
6886 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6887 return 8;
6888 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6889 {
6890 bfd_boolean long32_p, long64_p;
6891
6892 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6893 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6894 if (long32_p && long64_p)
6895 return 0;
6896 if (long32_p)
6897 return 4;
6898 if (long64_p)
6899 return 8;
6900
6901 if (sec->reloc_count > 0
6902 && elf_section_data (sec)->relocs != NULL
6903 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6904 == R_MIPS_64))
6905 return 8;
6906
6907 return 0;
6908 }
6909 return 4;
6910 }
6911 \f
6912 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6913 relocations against two unnamed section symbols to resolve to the
6914 same address. For example, if we have code like:
6915
6916 lw $4,%got_disp(.data)($gp)
6917 lw $25,%got_disp(.text)($gp)
6918 jalr $25
6919
6920 then the linker will resolve both relocations to .data and the program
6921 will jump there rather than to .text.
6922
6923 We can work around this problem by giving names to local section symbols.
6924 This is also what the MIPSpro tools do. */
6925
6926 bfd_boolean
6927 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6928 {
6929 return SGI_COMPAT (abfd);
6930 }
6931 \f
6932 /* Work over a section just before writing it out. This routine is
6933 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6934 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6935 a better way. */
6936
6937 bfd_boolean
6938 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6939 {
6940 if (hdr->sh_type == SHT_MIPS_REGINFO
6941 && hdr->sh_size > 0)
6942 {
6943 bfd_byte buf[4];
6944
6945 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6946 BFD_ASSERT (hdr->contents == NULL);
6947
6948 if (bfd_seek (abfd,
6949 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6950 SEEK_SET) != 0)
6951 return FALSE;
6952 H_PUT_32 (abfd, elf_gp (abfd), buf);
6953 if (bfd_bwrite (buf, 4, abfd) != 4)
6954 return FALSE;
6955 }
6956
6957 if (hdr->sh_type == SHT_MIPS_OPTIONS
6958 && hdr->bfd_section != NULL
6959 && mips_elf_section_data (hdr->bfd_section) != NULL
6960 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6961 {
6962 bfd_byte *contents, *l, *lend;
6963
6964 /* We stored the section contents in the tdata field in the
6965 set_section_contents routine. We save the section contents
6966 so that we don't have to read them again.
6967 At this point we know that elf_gp is set, so we can look
6968 through the section contents to see if there is an
6969 ODK_REGINFO structure. */
6970
6971 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6972 l = contents;
6973 lend = contents + hdr->sh_size;
6974 while (l + sizeof (Elf_External_Options) <= lend)
6975 {
6976 Elf_Internal_Options intopt;
6977
6978 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6979 &intopt);
6980 if (intopt.size < sizeof (Elf_External_Options))
6981 {
6982 (*_bfd_error_handler)
6983 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6984 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6985 break;
6986 }
6987 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6988 {
6989 bfd_byte buf[8];
6990
6991 if (bfd_seek (abfd,
6992 (hdr->sh_offset
6993 + (l - contents)
6994 + sizeof (Elf_External_Options)
6995 + (sizeof (Elf64_External_RegInfo) - 8)),
6996 SEEK_SET) != 0)
6997 return FALSE;
6998 H_PUT_64 (abfd, elf_gp (abfd), buf);
6999 if (bfd_bwrite (buf, 8, abfd) != 8)
7000 return FALSE;
7001 }
7002 else if (intopt.kind == ODK_REGINFO)
7003 {
7004 bfd_byte buf[4];
7005
7006 if (bfd_seek (abfd,
7007 (hdr->sh_offset
7008 + (l - contents)
7009 + sizeof (Elf_External_Options)
7010 + (sizeof (Elf32_External_RegInfo) - 4)),
7011 SEEK_SET) != 0)
7012 return FALSE;
7013 H_PUT_32 (abfd, elf_gp (abfd), buf);
7014 if (bfd_bwrite (buf, 4, abfd) != 4)
7015 return FALSE;
7016 }
7017 l += intopt.size;
7018 }
7019 }
7020
7021 if (hdr->bfd_section != NULL)
7022 {
7023 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7024
7025 /* .sbss is not handled specially here because the GNU/Linux
7026 prelinker can convert .sbss from NOBITS to PROGBITS and
7027 changing it back to NOBITS breaks the binary. The entry in
7028 _bfd_mips_elf_special_sections will ensure the correct flags
7029 are set on .sbss if BFD creates it without reading it from an
7030 input file, and without special handling here the flags set
7031 on it in an input file will be followed. */
7032 if (strcmp (name, ".sdata") == 0
7033 || strcmp (name, ".lit8") == 0
7034 || strcmp (name, ".lit4") == 0)
7035 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7036 else if (strcmp (name, ".srdata") == 0)
7037 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7038 else if (strcmp (name, ".compact_rel") == 0)
7039 hdr->sh_flags = 0;
7040 else if (strcmp (name, ".rtproc") == 0)
7041 {
7042 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7043 {
7044 unsigned int adjust;
7045
7046 adjust = hdr->sh_size % hdr->sh_addralign;
7047 if (adjust != 0)
7048 hdr->sh_size += hdr->sh_addralign - adjust;
7049 }
7050 }
7051 }
7052
7053 return TRUE;
7054 }
7055
7056 /* Handle a MIPS specific section when reading an object file. This
7057 is called when elfcode.h finds a section with an unknown type.
7058 This routine supports both the 32-bit and 64-bit ELF ABI.
7059
7060 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7061 how to. */
7062
7063 bfd_boolean
7064 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7065 Elf_Internal_Shdr *hdr,
7066 const char *name,
7067 int shindex)
7068 {
7069 flagword flags = 0;
7070
7071 /* There ought to be a place to keep ELF backend specific flags, but
7072 at the moment there isn't one. We just keep track of the
7073 sections by their name, instead. Fortunately, the ABI gives
7074 suggested names for all the MIPS specific sections, so we will
7075 probably get away with this. */
7076 switch (hdr->sh_type)
7077 {
7078 case SHT_MIPS_LIBLIST:
7079 if (strcmp (name, ".liblist") != 0)
7080 return FALSE;
7081 break;
7082 case SHT_MIPS_MSYM:
7083 if (strcmp (name, ".msym") != 0)
7084 return FALSE;
7085 break;
7086 case SHT_MIPS_CONFLICT:
7087 if (strcmp (name, ".conflict") != 0)
7088 return FALSE;
7089 break;
7090 case SHT_MIPS_GPTAB:
7091 if (! CONST_STRNEQ (name, ".gptab."))
7092 return FALSE;
7093 break;
7094 case SHT_MIPS_UCODE:
7095 if (strcmp (name, ".ucode") != 0)
7096 return FALSE;
7097 break;
7098 case SHT_MIPS_DEBUG:
7099 if (strcmp (name, ".mdebug") != 0)
7100 return FALSE;
7101 flags = SEC_DEBUGGING;
7102 break;
7103 case SHT_MIPS_REGINFO:
7104 if (strcmp (name, ".reginfo") != 0
7105 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7106 return FALSE;
7107 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7108 break;
7109 case SHT_MIPS_IFACE:
7110 if (strcmp (name, ".MIPS.interfaces") != 0)
7111 return FALSE;
7112 break;
7113 case SHT_MIPS_CONTENT:
7114 if (! CONST_STRNEQ (name, ".MIPS.content"))
7115 return FALSE;
7116 break;
7117 case SHT_MIPS_OPTIONS:
7118 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7119 return FALSE;
7120 break;
7121 case SHT_MIPS_ABIFLAGS:
7122 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7123 return FALSE;
7124 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7125 break;
7126 case SHT_MIPS_DWARF:
7127 if (! CONST_STRNEQ (name, ".debug_")
7128 && ! CONST_STRNEQ (name, ".zdebug_"))
7129 return FALSE;
7130 break;
7131 case SHT_MIPS_SYMBOL_LIB:
7132 if (strcmp (name, ".MIPS.symlib") != 0)
7133 return FALSE;
7134 break;
7135 case SHT_MIPS_EVENTS:
7136 if (! CONST_STRNEQ (name, ".MIPS.events")
7137 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7138 return FALSE;
7139 break;
7140 default:
7141 break;
7142 }
7143
7144 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7145 return FALSE;
7146
7147 if (flags)
7148 {
7149 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7150 (bfd_get_section_flags (abfd,
7151 hdr->bfd_section)
7152 | flags)))
7153 return FALSE;
7154 }
7155
7156 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7157 {
7158 Elf_External_ABIFlags_v0 ext;
7159
7160 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7161 &ext, 0, sizeof ext))
7162 return FALSE;
7163 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7164 &mips_elf_tdata (abfd)->abiflags);
7165 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7166 return FALSE;
7167 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7168 }
7169
7170 /* FIXME: We should record sh_info for a .gptab section. */
7171
7172 /* For a .reginfo section, set the gp value in the tdata information
7173 from the contents of this section. We need the gp value while
7174 processing relocs, so we just get it now. The .reginfo section
7175 is not used in the 64-bit MIPS ELF ABI. */
7176 if (hdr->sh_type == SHT_MIPS_REGINFO)
7177 {
7178 Elf32_External_RegInfo ext;
7179 Elf32_RegInfo s;
7180
7181 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7182 &ext, 0, sizeof ext))
7183 return FALSE;
7184 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7185 elf_gp (abfd) = s.ri_gp_value;
7186 }
7187
7188 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7189 set the gp value based on what we find. We may see both
7190 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7191 they should agree. */
7192 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7193 {
7194 bfd_byte *contents, *l, *lend;
7195
7196 contents = bfd_malloc (hdr->sh_size);
7197 if (contents == NULL)
7198 return FALSE;
7199 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7200 0, hdr->sh_size))
7201 {
7202 free (contents);
7203 return FALSE;
7204 }
7205 l = contents;
7206 lend = contents + hdr->sh_size;
7207 while (l + sizeof (Elf_External_Options) <= lend)
7208 {
7209 Elf_Internal_Options intopt;
7210
7211 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7212 &intopt);
7213 if (intopt.size < sizeof (Elf_External_Options))
7214 {
7215 (*_bfd_error_handler)
7216 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7217 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7218 break;
7219 }
7220 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7221 {
7222 Elf64_Internal_RegInfo intreg;
7223
7224 bfd_mips_elf64_swap_reginfo_in
7225 (abfd,
7226 ((Elf64_External_RegInfo *)
7227 (l + sizeof (Elf_External_Options))),
7228 &intreg);
7229 elf_gp (abfd) = intreg.ri_gp_value;
7230 }
7231 else if (intopt.kind == ODK_REGINFO)
7232 {
7233 Elf32_RegInfo intreg;
7234
7235 bfd_mips_elf32_swap_reginfo_in
7236 (abfd,
7237 ((Elf32_External_RegInfo *)
7238 (l + sizeof (Elf_External_Options))),
7239 &intreg);
7240 elf_gp (abfd) = intreg.ri_gp_value;
7241 }
7242 l += intopt.size;
7243 }
7244 free (contents);
7245 }
7246
7247 return TRUE;
7248 }
7249
7250 /* Set the correct type for a MIPS ELF section. We do this by the
7251 section name, which is a hack, but ought to work. This routine is
7252 used by both the 32-bit and the 64-bit ABI. */
7253
7254 bfd_boolean
7255 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7256 {
7257 const char *name = bfd_get_section_name (abfd, sec);
7258
7259 if (strcmp (name, ".liblist") == 0)
7260 {
7261 hdr->sh_type = SHT_MIPS_LIBLIST;
7262 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7263 /* The sh_link field is set in final_write_processing. */
7264 }
7265 else if (strcmp (name, ".conflict") == 0)
7266 hdr->sh_type = SHT_MIPS_CONFLICT;
7267 else if (CONST_STRNEQ (name, ".gptab."))
7268 {
7269 hdr->sh_type = SHT_MIPS_GPTAB;
7270 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7271 /* The sh_info field is set in final_write_processing. */
7272 }
7273 else if (strcmp (name, ".ucode") == 0)
7274 hdr->sh_type = SHT_MIPS_UCODE;
7275 else if (strcmp (name, ".mdebug") == 0)
7276 {
7277 hdr->sh_type = SHT_MIPS_DEBUG;
7278 /* In a shared object on IRIX 5.3, the .mdebug section has an
7279 entsize of 0. FIXME: Does this matter? */
7280 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7281 hdr->sh_entsize = 0;
7282 else
7283 hdr->sh_entsize = 1;
7284 }
7285 else if (strcmp (name, ".reginfo") == 0)
7286 {
7287 hdr->sh_type = SHT_MIPS_REGINFO;
7288 /* In a shared object on IRIX 5.3, the .reginfo section has an
7289 entsize of 0x18. FIXME: Does this matter? */
7290 if (SGI_COMPAT (abfd))
7291 {
7292 if ((abfd->flags & DYNAMIC) != 0)
7293 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7294 else
7295 hdr->sh_entsize = 1;
7296 }
7297 else
7298 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7299 }
7300 else if (SGI_COMPAT (abfd)
7301 && (strcmp (name, ".hash") == 0
7302 || strcmp (name, ".dynamic") == 0
7303 || strcmp (name, ".dynstr") == 0))
7304 {
7305 if (SGI_COMPAT (abfd))
7306 hdr->sh_entsize = 0;
7307 #if 0
7308 /* This isn't how the IRIX6 linker behaves. */
7309 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7310 #endif
7311 }
7312 else if (strcmp (name, ".got") == 0
7313 || strcmp (name, ".srdata") == 0
7314 || strcmp (name, ".sdata") == 0
7315 || strcmp (name, ".sbss") == 0
7316 || strcmp (name, ".lit4") == 0
7317 || strcmp (name, ".lit8") == 0)
7318 hdr->sh_flags |= SHF_MIPS_GPREL;
7319 else if (strcmp (name, ".MIPS.interfaces") == 0)
7320 {
7321 hdr->sh_type = SHT_MIPS_IFACE;
7322 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7323 }
7324 else if (CONST_STRNEQ (name, ".MIPS.content"))
7325 {
7326 hdr->sh_type = SHT_MIPS_CONTENT;
7327 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7328 /* The sh_info field is set in final_write_processing. */
7329 }
7330 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7331 {
7332 hdr->sh_type = SHT_MIPS_OPTIONS;
7333 hdr->sh_entsize = 1;
7334 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7335 }
7336 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7337 {
7338 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7339 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7340 }
7341 else if (CONST_STRNEQ (name, ".debug_")
7342 || CONST_STRNEQ (name, ".zdebug_"))
7343 {
7344 hdr->sh_type = SHT_MIPS_DWARF;
7345
7346 /* Irix facilities such as libexc expect a single .debug_frame
7347 per executable, the system ones have NOSTRIP set and the linker
7348 doesn't merge sections with different flags so ... */
7349 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7350 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7351 }
7352 else if (strcmp (name, ".MIPS.symlib") == 0)
7353 {
7354 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7355 /* The sh_link and sh_info fields are set in
7356 final_write_processing. */
7357 }
7358 else if (CONST_STRNEQ (name, ".MIPS.events")
7359 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7360 {
7361 hdr->sh_type = SHT_MIPS_EVENTS;
7362 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7363 /* The sh_link field is set in final_write_processing. */
7364 }
7365 else if (strcmp (name, ".msym") == 0)
7366 {
7367 hdr->sh_type = SHT_MIPS_MSYM;
7368 hdr->sh_flags |= SHF_ALLOC;
7369 hdr->sh_entsize = 8;
7370 }
7371
7372 /* The generic elf_fake_sections will set up REL_HDR using the default
7373 kind of relocations. We used to set up a second header for the
7374 non-default kind of relocations here, but only NewABI would use
7375 these, and the IRIX ld doesn't like resulting empty RELA sections.
7376 Thus we create those header only on demand now. */
7377
7378 return TRUE;
7379 }
7380
7381 /* Given a BFD section, try to locate the corresponding ELF section
7382 index. This is used by both the 32-bit and the 64-bit ABI.
7383 Actually, it's not clear to me that the 64-bit ABI supports these,
7384 but for non-PIC objects we will certainly want support for at least
7385 the .scommon section. */
7386
7387 bfd_boolean
7388 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7389 asection *sec, int *retval)
7390 {
7391 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7392 {
7393 *retval = SHN_MIPS_SCOMMON;
7394 return TRUE;
7395 }
7396 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7397 {
7398 *retval = SHN_MIPS_ACOMMON;
7399 return TRUE;
7400 }
7401 return FALSE;
7402 }
7403 \f
7404 /* Hook called by the linker routine which adds symbols from an object
7405 file. We must handle the special MIPS section numbers here. */
7406
7407 bfd_boolean
7408 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7409 Elf_Internal_Sym *sym, const char **namep,
7410 flagword *flagsp ATTRIBUTE_UNUSED,
7411 asection **secp, bfd_vma *valp)
7412 {
7413 if (SGI_COMPAT (abfd)
7414 && (abfd->flags & DYNAMIC) != 0
7415 && strcmp (*namep, "_rld_new_interface") == 0)
7416 {
7417 /* Skip IRIX5 rld entry name. */
7418 *namep = NULL;
7419 return TRUE;
7420 }
7421
7422 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7423 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7424 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7425 a magic symbol resolved by the linker, we ignore this bogus definition
7426 of _gp_disp. New ABI objects do not suffer from this problem so this
7427 is not done for them. */
7428 if (!NEWABI_P(abfd)
7429 && (sym->st_shndx == SHN_ABS)
7430 && (strcmp (*namep, "_gp_disp") == 0))
7431 {
7432 *namep = NULL;
7433 return TRUE;
7434 }
7435
7436 switch (sym->st_shndx)
7437 {
7438 case SHN_COMMON:
7439 /* Common symbols less than the GP size are automatically
7440 treated as SHN_MIPS_SCOMMON symbols. */
7441 if (sym->st_size > elf_gp_size (abfd)
7442 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7443 || IRIX_COMPAT (abfd) == ict_irix6)
7444 break;
7445 /* Fall through. */
7446 case SHN_MIPS_SCOMMON:
7447 *secp = bfd_make_section_old_way (abfd, ".scommon");
7448 (*secp)->flags |= SEC_IS_COMMON;
7449 *valp = sym->st_size;
7450 break;
7451
7452 case SHN_MIPS_TEXT:
7453 /* This section is used in a shared object. */
7454 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7455 {
7456 asymbol *elf_text_symbol;
7457 asection *elf_text_section;
7458 bfd_size_type amt = sizeof (asection);
7459
7460 elf_text_section = bfd_zalloc (abfd, amt);
7461 if (elf_text_section == NULL)
7462 return FALSE;
7463
7464 amt = sizeof (asymbol);
7465 elf_text_symbol = bfd_zalloc (abfd, amt);
7466 if (elf_text_symbol == NULL)
7467 return FALSE;
7468
7469 /* Initialize the section. */
7470
7471 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7472 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7473
7474 elf_text_section->symbol = elf_text_symbol;
7475 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7476
7477 elf_text_section->name = ".text";
7478 elf_text_section->flags = SEC_NO_FLAGS;
7479 elf_text_section->output_section = NULL;
7480 elf_text_section->owner = abfd;
7481 elf_text_symbol->name = ".text";
7482 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7483 elf_text_symbol->section = elf_text_section;
7484 }
7485 /* This code used to do *secp = bfd_und_section_ptr if
7486 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7487 so I took it out. */
7488 *secp = mips_elf_tdata (abfd)->elf_text_section;
7489 break;
7490
7491 case SHN_MIPS_ACOMMON:
7492 /* Fall through. XXX Can we treat this as allocated data? */
7493 case SHN_MIPS_DATA:
7494 /* This section is used in a shared object. */
7495 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7496 {
7497 asymbol *elf_data_symbol;
7498 asection *elf_data_section;
7499 bfd_size_type amt = sizeof (asection);
7500
7501 elf_data_section = bfd_zalloc (abfd, amt);
7502 if (elf_data_section == NULL)
7503 return FALSE;
7504
7505 amt = sizeof (asymbol);
7506 elf_data_symbol = bfd_zalloc (abfd, amt);
7507 if (elf_data_symbol == NULL)
7508 return FALSE;
7509
7510 /* Initialize the section. */
7511
7512 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7513 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7514
7515 elf_data_section->symbol = elf_data_symbol;
7516 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7517
7518 elf_data_section->name = ".data";
7519 elf_data_section->flags = SEC_NO_FLAGS;
7520 elf_data_section->output_section = NULL;
7521 elf_data_section->owner = abfd;
7522 elf_data_symbol->name = ".data";
7523 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7524 elf_data_symbol->section = elf_data_section;
7525 }
7526 /* This code used to do *secp = bfd_und_section_ptr if
7527 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7528 so I took it out. */
7529 *secp = mips_elf_tdata (abfd)->elf_data_section;
7530 break;
7531
7532 case SHN_MIPS_SUNDEFINED:
7533 *secp = bfd_und_section_ptr;
7534 break;
7535 }
7536
7537 if (SGI_COMPAT (abfd)
7538 && ! bfd_link_pic (info)
7539 && info->output_bfd->xvec == abfd->xvec
7540 && strcmp (*namep, "__rld_obj_head") == 0)
7541 {
7542 struct elf_link_hash_entry *h;
7543 struct bfd_link_hash_entry *bh;
7544
7545 /* Mark __rld_obj_head as dynamic. */
7546 bh = NULL;
7547 if (! (_bfd_generic_link_add_one_symbol
7548 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7549 get_elf_backend_data (abfd)->collect, &bh)))
7550 return FALSE;
7551
7552 h = (struct elf_link_hash_entry *) bh;
7553 h->non_elf = 0;
7554 h->def_regular = 1;
7555 h->type = STT_OBJECT;
7556
7557 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7558 return FALSE;
7559
7560 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7561 mips_elf_hash_table (info)->rld_symbol = h;
7562 }
7563
7564 /* If this is a mips16 text symbol, add 1 to the value to make it
7565 odd. This will cause something like .word SYM to come up with
7566 the right value when it is loaded into the PC. */
7567 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7568 ++*valp;
7569
7570 return TRUE;
7571 }
7572
7573 /* This hook function is called before the linker writes out a global
7574 symbol. We mark symbols as small common if appropriate. This is
7575 also where we undo the increment of the value for a mips16 symbol. */
7576
7577 int
7578 _bfd_mips_elf_link_output_symbol_hook
7579 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7580 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7581 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7582 {
7583 /* If we see a common symbol, which implies a relocatable link, then
7584 if a symbol was small common in an input file, mark it as small
7585 common in the output file. */
7586 if (sym->st_shndx == SHN_COMMON
7587 && strcmp (input_sec->name, ".scommon") == 0)
7588 sym->st_shndx = SHN_MIPS_SCOMMON;
7589
7590 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7591 sym->st_value &= ~1;
7592
7593 return 1;
7594 }
7595 \f
7596 /* Functions for the dynamic linker. */
7597
7598 /* Create dynamic sections when linking against a dynamic object. */
7599
7600 bfd_boolean
7601 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7602 {
7603 struct elf_link_hash_entry *h;
7604 struct bfd_link_hash_entry *bh;
7605 flagword flags;
7606 register asection *s;
7607 const char * const *namep;
7608 struct mips_elf_link_hash_table *htab;
7609
7610 htab = mips_elf_hash_table (info);
7611 BFD_ASSERT (htab != NULL);
7612
7613 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7614 | SEC_LINKER_CREATED | SEC_READONLY);
7615
7616 /* The psABI requires a read-only .dynamic section, but the VxWorks
7617 EABI doesn't. */
7618 if (!htab->is_vxworks)
7619 {
7620 s = bfd_get_linker_section (abfd, ".dynamic");
7621 if (s != NULL)
7622 {
7623 if (! bfd_set_section_flags (abfd, s, flags))
7624 return FALSE;
7625 }
7626 }
7627
7628 /* We need to create .got section. */
7629 if (!mips_elf_create_got_section (abfd, info))
7630 return FALSE;
7631
7632 if (! mips_elf_rel_dyn_section (info, TRUE))
7633 return FALSE;
7634
7635 /* Create .stub section. */
7636 s = bfd_make_section_anyway_with_flags (abfd,
7637 MIPS_ELF_STUB_SECTION_NAME (abfd),
7638 flags | SEC_CODE);
7639 if (s == NULL
7640 || ! bfd_set_section_alignment (abfd, s,
7641 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7642 return FALSE;
7643 htab->sstubs = s;
7644
7645 if (!mips_elf_hash_table (info)->use_rld_obj_head
7646 && bfd_link_executable (info)
7647 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7648 {
7649 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7650 flags &~ (flagword) SEC_READONLY);
7651 if (s == NULL
7652 || ! bfd_set_section_alignment (abfd, s,
7653 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7654 return FALSE;
7655 }
7656
7657 /* On IRIX5, we adjust add some additional symbols and change the
7658 alignments of several sections. There is no ABI documentation
7659 indicating that this is necessary on IRIX6, nor any evidence that
7660 the linker takes such action. */
7661 if (IRIX_COMPAT (abfd) == ict_irix5)
7662 {
7663 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7664 {
7665 bh = NULL;
7666 if (! (_bfd_generic_link_add_one_symbol
7667 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7668 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7669 return FALSE;
7670
7671 h = (struct elf_link_hash_entry *) bh;
7672 h->non_elf = 0;
7673 h->def_regular = 1;
7674 h->type = STT_SECTION;
7675
7676 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7677 return FALSE;
7678 }
7679
7680 /* We need to create a .compact_rel section. */
7681 if (SGI_COMPAT (abfd))
7682 {
7683 if (!mips_elf_create_compact_rel_section (abfd, info))
7684 return FALSE;
7685 }
7686
7687 /* Change alignments of some sections. */
7688 s = bfd_get_linker_section (abfd, ".hash");
7689 if (s != NULL)
7690 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7691
7692 s = bfd_get_linker_section (abfd, ".dynsym");
7693 if (s != NULL)
7694 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7695
7696 s = bfd_get_linker_section (abfd, ".dynstr");
7697 if (s != NULL)
7698 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7699
7700 /* ??? */
7701 s = bfd_get_section_by_name (abfd, ".reginfo");
7702 if (s != NULL)
7703 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7704
7705 s = bfd_get_linker_section (abfd, ".dynamic");
7706 if (s != NULL)
7707 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7708 }
7709
7710 if (bfd_link_executable (info))
7711 {
7712 const char *name;
7713
7714 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7715 bh = NULL;
7716 if (!(_bfd_generic_link_add_one_symbol
7717 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7718 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7719 return FALSE;
7720
7721 h = (struct elf_link_hash_entry *) bh;
7722 h->non_elf = 0;
7723 h->def_regular = 1;
7724 h->type = STT_SECTION;
7725
7726 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7727 return FALSE;
7728
7729 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7730 {
7731 /* __rld_map is a four byte word located in the .data section
7732 and is filled in by the rtld to contain a pointer to
7733 the _r_debug structure. Its symbol value will be set in
7734 _bfd_mips_elf_finish_dynamic_symbol. */
7735 s = bfd_get_linker_section (abfd, ".rld_map");
7736 BFD_ASSERT (s != NULL);
7737
7738 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7739 bh = NULL;
7740 if (!(_bfd_generic_link_add_one_symbol
7741 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7742 get_elf_backend_data (abfd)->collect, &bh)))
7743 return FALSE;
7744
7745 h = (struct elf_link_hash_entry *) bh;
7746 h->non_elf = 0;
7747 h->def_regular = 1;
7748 h->type = STT_OBJECT;
7749
7750 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7751 return FALSE;
7752 mips_elf_hash_table (info)->rld_symbol = h;
7753 }
7754 }
7755
7756 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7757 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7758 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7759 return FALSE;
7760
7761 /* Cache the sections created above. */
7762 htab->splt = bfd_get_linker_section (abfd, ".plt");
7763 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7764 if (htab->is_vxworks)
7765 {
7766 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7767 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7768 }
7769 else
7770 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7771 if (!htab->sdynbss
7772 || (htab->is_vxworks && !htab->srelbss && !bfd_link_pic (info))
7773 || !htab->srelplt
7774 || !htab->splt)
7775 abort ();
7776
7777 /* Do the usual VxWorks handling. */
7778 if (htab->is_vxworks
7779 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7780 return FALSE;
7781
7782 return TRUE;
7783 }
7784 \f
7785 /* Return true if relocation REL against section SEC is a REL rather than
7786 RELA relocation. RELOCS is the first relocation in the section and
7787 ABFD is the bfd that contains SEC. */
7788
7789 static bfd_boolean
7790 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7791 const Elf_Internal_Rela *relocs,
7792 const Elf_Internal_Rela *rel)
7793 {
7794 Elf_Internal_Shdr *rel_hdr;
7795 const struct elf_backend_data *bed;
7796
7797 /* To determine which flavor of relocation this is, we depend on the
7798 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7799 rel_hdr = elf_section_data (sec)->rel.hdr;
7800 if (rel_hdr == NULL)
7801 return FALSE;
7802 bed = get_elf_backend_data (abfd);
7803 return ((size_t) (rel - relocs)
7804 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7805 }
7806
7807 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7808 HOWTO is the relocation's howto and CONTENTS points to the contents
7809 of the section that REL is against. */
7810
7811 static bfd_vma
7812 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7813 reloc_howto_type *howto, bfd_byte *contents)
7814 {
7815 bfd_byte *location;
7816 unsigned int r_type;
7817 bfd_vma addend;
7818 bfd_vma bytes;
7819
7820 r_type = ELF_R_TYPE (abfd, rel->r_info);
7821 location = contents + rel->r_offset;
7822
7823 /* Get the addend, which is stored in the input file. */
7824 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7825 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7826 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7827
7828 addend = bytes & howto->src_mask;
7829
7830 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7831 accordingly. */
7832 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7833 addend <<= 1;
7834
7835 return addend;
7836 }
7837
7838 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7839 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7840 and update *ADDEND with the final addend. Return true on success
7841 or false if the LO16 could not be found. RELEND is the exclusive
7842 upper bound on the relocations for REL's section. */
7843
7844 static bfd_boolean
7845 mips_elf_add_lo16_rel_addend (bfd *abfd,
7846 const Elf_Internal_Rela *rel,
7847 const Elf_Internal_Rela *relend,
7848 bfd_byte *contents, bfd_vma *addend)
7849 {
7850 unsigned int r_type, lo16_type;
7851 const Elf_Internal_Rela *lo16_relocation;
7852 reloc_howto_type *lo16_howto;
7853 bfd_vma l;
7854
7855 r_type = ELF_R_TYPE (abfd, rel->r_info);
7856 if (mips16_reloc_p (r_type))
7857 lo16_type = R_MIPS16_LO16;
7858 else if (micromips_reloc_p (r_type))
7859 lo16_type = R_MICROMIPS_LO16;
7860 else if (r_type == R_MIPS_PCHI16)
7861 lo16_type = R_MIPS_PCLO16;
7862 else
7863 lo16_type = R_MIPS_LO16;
7864
7865 /* The combined value is the sum of the HI16 addend, left-shifted by
7866 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7867 code does a `lui' of the HI16 value, and then an `addiu' of the
7868 LO16 value.)
7869
7870 Scan ahead to find a matching LO16 relocation.
7871
7872 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7873 be immediately following. However, for the IRIX6 ABI, the next
7874 relocation may be a composed relocation consisting of several
7875 relocations for the same address. In that case, the R_MIPS_LO16
7876 relocation may occur as one of these. We permit a similar
7877 extension in general, as that is useful for GCC.
7878
7879 In some cases GCC dead code elimination removes the LO16 but keeps
7880 the corresponding HI16. This is strictly speaking a violation of
7881 the ABI but not immediately harmful. */
7882 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7883 if (lo16_relocation == NULL)
7884 return FALSE;
7885
7886 /* Obtain the addend kept there. */
7887 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7888 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7889
7890 l <<= lo16_howto->rightshift;
7891 l = _bfd_mips_elf_sign_extend (l, 16);
7892
7893 *addend <<= 16;
7894 *addend += l;
7895 return TRUE;
7896 }
7897
7898 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7899 store the contents in *CONTENTS on success. Assume that *CONTENTS
7900 already holds the contents if it is nonull on entry. */
7901
7902 static bfd_boolean
7903 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7904 {
7905 if (*contents)
7906 return TRUE;
7907
7908 /* Get cached copy if it exists. */
7909 if (elf_section_data (sec)->this_hdr.contents != NULL)
7910 {
7911 *contents = elf_section_data (sec)->this_hdr.contents;
7912 return TRUE;
7913 }
7914
7915 return bfd_malloc_and_get_section (abfd, sec, contents);
7916 }
7917
7918 /* Make a new PLT record to keep internal data. */
7919
7920 static struct plt_entry *
7921 mips_elf_make_plt_record (bfd *abfd)
7922 {
7923 struct plt_entry *entry;
7924
7925 entry = bfd_zalloc (abfd, sizeof (*entry));
7926 if (entry == NULL)
7927 return NULL;
7928
7929 entry->stub_offset = MINUS_ONE;
7930 entry->mips_offset = MINUS_ONE;
7931 entry->comp_offset = MINUS_ONE;
7932 entry->gotplt_index = MINUS_ONE;
7933 return entry;
7934 }
7935
7936 /* Look through the relocs for a section during the first phase, and
7937 allocate space in the global offset table and record the need for
7938 standard MIPS and compressed procedure linkage table entries. */
7939
7940 bfd_boolean
7941 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7942 asection *sec, const Elf_Internal_Rela *relocs)
7943 {
7944 const char *name;
7945 bfd *dynobj;
7946 Elf_Internal_Shdr *symtab_hdr;
7947 struct elf_link_hash_entry **sym_hashes;
7948 size_t extsymoff;
7949 const Elf_Internal_Rela *rel;
7950 const Elf_Internal_Rela *rel_end;
7951 asection *sreloc;
7952 const struct elf_backend_data *bed;
7953 struct mips_elf_link_hash_table *htab;
7954 bfd_byte *contents;
7955 bfd_vma addend;
7956 reloc_howto_type *howto;
7957
7958 if (bfd_link_relocatable (info))
7959 return TRUE;
7960
7961 htab = mips_elf_hash_table (info);
7962 BFD_ASSERT (htab != NULL);
7963
7964 dynobj = elf_hash_table (info)->dynobj;
7965 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7966 sym_hashes = elf_sym_hashes (abfd);
7967 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7968
7969 bed = get_elf_backend_data (abfd);
7970 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7971
7972 /* Check for the mips16 stub sections. */
7973
7974 name = bfd_get_section_name (abfd, sec);
7975 if (FN_STUB_P (name))
7976 {
7977 unsigned long r_symndx;
7978
7979 /* Look at the relocation information to figure out which symbol
7980 this is for. */
7981
7982 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7983 if (r_symndx == 0)
7984 {
7985 (*_bfd_error_handler)
7986 (_("%B: Warning: cannot determine the target function for"
7987 " stub section `%s'"),
7988 abfd, name);
7989 bfd_set_error (bfd_error_bad_value);
7990 return FALSE;
7991 }
7992
7993 if (r_symndx < extsymoff
7994 || sym_hashes[r_symndx - extsymoff] == NULL)
7995 {
7996 asection *o;
7997
7998 /* This stub is for a local symbol. This stub will only be
7999 needed if there is some relocation in this BFD, other
8000 than a 16 bit function call, which refers to this symbol. */
8001 for (o = abfd->sections; o != NULL; o = o->next)
8002 {
8003 Elf_Internal_Rela *sec_relocs;
8004 const Elf_Internal_Rela *r, *rend;
8005
8006 /* We can ignore stub sections when looking for relocs. */
8007 if ((o->flags & SEC_RELOC) == 0
8008 || o->reloc_count == 0
8009 || section_allows_mips16_refs_p (o))
8010 continue;
8011
8012 sec_relocs
8013 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8014 info->keep_memory);
8015 if (sec_relocs == NULL)
8016 return FALSE;
8017
8018 rend = sec_relocs + o->reloc_count;
8019 for (r = sec_relocs; r < rend; r++)
8020 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8021 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8022 break;
8023
8024 if (elf_section_data (o)->relocs != sec_relocs)
8025 free (sec_relocs);
8026
8027 if (r < rend)
8028 break;
8029 }
8030
8031 if (o == NULL)
8032 {
8033 /* There is no non-call reloc for this stub, so we do
8034 not need it. Since this function is called before
8035 the linker maps input sections to output sections, we
8036 can easily discard it by setting the SEC_EXCLUDE
8037 flag. */
8038 sec->flags |= SEC_EXCLUDE;
8039 return TRUE;
8040 }
8041
8042 /* Record this stub in an array of local symbol stubs for
8043 this BFD. */
8044 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8045 {
8046 unsigned long symcount;
8047 asection **n;
8048 bfd_size_type amt;
8049
8050 if (elf_bad_symtab (abfd))
8051 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8052 else
8053 symcount = symtab_hdr->sh_info;
8054 amt = symcount * sizeof (asection *);
8055 n = bfd_zalloc (abfd, amt);
8056 if (n == NULL)
8057 return FALSE;
8058 mips_elf_tdata (abfd)->local_stubs = n;
8059 }
8060
8061 sec->flags |= SEC_KEEP;
8062 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8063
8064 /* We don't need to set mips16_stubs_seen in this case.
8065 That flag is used to see whether we need to look through
8066 the global symbol table for stubs. We don't need to set
8067 it here, because we just have a local stub. */
8068 }
8069 else
8070 {
8071 struct mips_elf_link_hash_entry *h;
8072
8073 h = ((struct mips_elf_link_hash_entry *)
8074 sym_hashes[r_symndx - extsymoff]);
8075
8076 while (h->root.root.type == bfd_link_hash_indirect
8077 || h->root.root.type == bfd_link_hash_warning)
8078 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8079
8080 /* H is the symbol this stub is for. */
8081
8082 /* If we already have an appropriate stub for this function, we
8083 don't need another one, so we can discard this one. Since
8084 this function is called before the linker maps input sections
8085 to output sections, we can easily discard it by setting the
8086 SEC_EXCLUDE flag. */
8087 if (h->fn_stub != NULL)
8088 {
8089 sec->flags |= SEC_EXCLUDE;
8090 return TRUE;
8091 }
8092
8093 sec->flags |= SEC_KEEP;
8094 h->fn_stub = sec;
8095 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8096 }
8097 }
8098 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8099 {
8100 unsigned long r_symndx;
8101 struct mips_elf_link_hash_entry *h;
8102 asection **loc;
8103
8104 /* Look at the relocation information to figure out which symbol
8105 this is for. */
8106
8107 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8108 if (r_symndx == 0)
8109 {
8110 (*_bfd_error_handler)
8111 (_("%B: Warning: cannot determine the target function for"
8112 " stub section `%s'"),
8113 abfd, name);
8114 bfd_set_error (bfd_error_bad_value);
8115 return FALSE;
8116 }
8117
8118 if (r_symndx < extsymoff
8119 || sym_hashes[r_symndx - extsymoff] == NULL)
8120 {
8121 asection *o;
8122
8123 /* This stub is for a local symbol. This stub will only be
8124 needed if there is some relocation (R_MIPS16_26) in this BFD
8125 that refers to this symbol. */
8126 for (o = abfd->sections; o != NULL; o = o->next)
8127 {
8128 Elf_Internal_Rela *sec_relocs;
8129 const Elf_Internal_Rela *r, *rend;
8130
8131 /* We can ignore stub sections when looking for relocs. */
8132 if ((o->flags & SEC_RELOC) == 0
8133 || o->reloc_count == 0
8134 || section_allows_mips16_refs_p (o))
8135 continue;
8136
8137 sec_relocs
8138 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8139 info->keep_memory);
8140 if (sec_relocs == NULL)
8141 return FALSE;
8142
8143 rend = sec_relocs + o->reloc_count;
8144 for (r = sec_relocs; r < rend; r++)
8145 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8146 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8147 break;
8148
8149 if (elf_section_data (o)->relocs != sec_relocs)
8150 free (sec_relocs);
8151
8152 if (r < rend)
8153 break;
8154 }
8155
8156 if (o == NULL)
8157 {
8158 /* There is no non-call reloc for this stub, so we do
8159 not need it. Since this function is called before
8160 the linker maps input sections to output sections, we
8161 can easily discard it by setting the SEC_EXCLUDE
8162 flag. */
8163 sec->flags |= SEC_EXCLUDE;
8164 return TRUE;
8165 }
8166
8167 /* Record this stub in an array of local symbol call_stubs for
8168 this BFD. */
8169 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8170 {
8171 unsigned long symcount;
8172 asection **n;
8173 bfd_size_type amt;
8174
8175 if (elf_bad_symtab (abfd))
8176 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8177 else
8178 symcount = symtab_hdr->sh_info;
8179 amt = symcount * sizeof (asection *);
8180 n = bfd_zalloc (abfd, amt);
8181 if (n == NULL)
8182 return FALSE;
8183 mips_elf_tdata (abfd)->local_call_stubs = n;
8184 }
8185
8186 sec->flags |= SEC_KEEP;
8187 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8188
8189 /* We don't need to set mips16_stubs_seen in this case.
8190 That flag is used to see whether we need to look through
8191 the global symbol table for stubs. We don't need to set
8192 it here, because we just have a local stub. */
8193 }
8194 else
8195 {
8196 h = ((struct mips_elf_link_hash_entry *)
8197 sym_hashes[r_symndx - extsymoff]);
8198
8199 /* H is the symbol this stub is for. */
8200
8201 if (CALL_FP_STUB_P (name))
8202 loc = &h->call_fp_stub;
8203 else
8204 loc = &h->call_stub;
8205
8206 /* If we already have an appropriate stub for this function, we
8207 don't need another one, so we can discard this one. Since
8208 this function is called before the linker maps input sections
8209 to output sections, we can easily discard it by setting the
8210 SEC_EXCLUDE flag. */
8211 if (*loc != NULL)
8212 {
8213 sec->flags |= SEC_EXCLUDE;
8214 return TRUE;
8215 }
8216
8217 sec->flags |= SEC_KEEP;
8218 *loc = sec;
8219 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8220 }
8221 }
8222
8223 sreloc = NULL;
8224 contents = NULL;
8225 for (rel = relocs; rel < rel_end; ++rel)
8226 {
8227 unsigned long r_symndx;
8228 unsigned int r_type;
8229 struct elf_link_hash_entry *h;
8230 bfd_boolean can_make_dynamic_p;
8231 bfd_boolean call_reloc_p;
8232 bfd_boolean constrain_symbol_p;
8233
8234 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8235 r_type = ELF_R_TYPE (abfd, rel->r_info);
8236
8237 if (r_symndx < extsymoff)
8238 h = NULL;
8239 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8240 {
8241 (*_bfd_error_handler)
8242 (_("%B: Malformed reloc detected for section %s"),
8243 abfd, name);
8244 bfd_set_error (bfd_error_bad_value);
8245 return FALSE;
8246 }
8247 else
8248 {
8249 h = sym_hashes[r_symndx - extsymoff];
8250 if (h != NULL)
8251 {
8252 while (h->root.type == bfd_link_hash_indirect
8253 || h->root.type == bfd_link_hash_warning)
8254 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8255
8256 /* PR15323, ref flags aren't set for references in the
8257 same object. */
8258 h->root.non_ir_ref = 1;
8259 }
8260 }
8261
8262 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8263 relocation into a dynamic one. */
8264 can_make_dynamic_p = FALSE;
8265
8266 /* Set CALL_RELOC_P to true if the relocation is for a call,
8267 and if pointer equality therefore doesn't matter. */
8268 call_reloc_p = FALSE;
8269
8270 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8271 into account when deciding how to define the symbol.
8272 Relocations in nonallocatable sections such as .pdr and
8273 .debug* should have no effect. */
8274 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8275
8276 switch (r_type)
8277 {
8278 case R_MIPS_CALL16:
8279 case R_MIPS_CALL_HI16:
8280 case R_MIPS_CALL_LO16:
8281 case R_MIPS16_CALL16:
8282 case R_MICROMIPS_CALL16:
8283 case R_MICROMIPS_CALL_HI16:
8284 case R_MICROMIPS_CALL_LO16:
8285 call_reloc_p = TRUE;
8286 /* Fall through. */
8287
8288 case R_MIPS_GOT16:
8289 case R_MIPS_GOT_HI16:
8290 case R_MIPS_GOT_LO16:
8291 case R_MIPS_GOT_PAGE:
8292 case R_MIPS_GOT_OFST:
8293 case R_MIPS_GOT_DISP:
8294 case R_MIPS_TLS_GOTTPREL:
8295 case R_MIPS_TLS_GD:
8296 case R_MIPS_TLS_LDM:
8297 case R_MIPS16_GOT16:
8298 case R_MIPS16_TLS_GOTTPREL:
8299 case R_MIPS16_TLS_GD:
8300 case R_MIPS16_TLS_LDM:
8301 case R_MICROMIPS_GOT16:
8302 case R_MICROMIPS_GOT_HI16:
8303 case R_MICROMIPS_GOT_LO16:
8304 case R_MICROMIPS_GOT_PAGE:
8305 case R_MICROMIPS_GOT_OFST:
8306 case R_MICROMIPS_GOT_DISP:
8307 case R_MICROMIPS_TLS_GOTTPREL:
8308 case R_MICROMIPS_TLS_GD:
8309 case R_MICROMIPS_TLS_LDM:
8310 if (dynobj == NULL)
8311 elf_hash_table (info)->dynobj = dynobj = abfd;
8312 if (!mips_elf_create_got_section (dynobj, info))
8313 return FALSE;
8314 if (htab->is_vxworks && !bfd_link_pic (info))
8315 {
8316 (*_bfd_error_handler)
8317 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8318 abfd, (unsigned long) rel->r_offset);
8319 bfd_set_error (bfd_error_bad_value);
8320 return FALSE;
8321 }
8322 can_make_dynamic_p = TRUE;
8323 break;
8324
8325 case R_MIPS_NONE:
8326 case R_MIPS_JALR:
8327 case R_MICROMIPS_JALR:
8328 /* These relocations have empty fields and are purely there to
8329 provide link information. The symbol value doesn't matter. */
8330 constrain_symbol_p = FALSE;
8331 break;
8332
8333 case R_MIPS_GPREL16:
8334 case R_MIPS_GPREL32:
8335 case R_MIPS16_GPREL:
8336 case R_MICROMIPS_GPREL16:
8337 /* GP-relative relocations always resolve to a definition in a
8338 regular input file, ignoring the one-definition rule. This is
8339 important for the GP setup sequence in NewABI code, which
8340 always resolves to a local function even if other relocations
8341 against the symbol wouldn't. */
8342 constrain_symbol_p = FALSE;
8343 break;
8344
8345 case R_MIPS_32:
8346 case R_MIPS_REL32:
8347 case R_MIPS_64:
8348 /* In VxWorks executables, references to external symbols
8349 must be handled using copy relocs or PLT entries; it is not
8350 possible to convert this relocation into a dynamic one.
8351
8352 For executables that use PLTs and copy-relocs, we have a
8353 choice between converting the relocation into a dynamic
8354 one or using copy relocations or PLT entries. It is
8355 usually better to do the former, unless the relocation is
8356 against a read-only section. */
8357 if ((bfd_link_pic (info)
8358 || (h != NULL
8359 && !htab->is_vxworks
8360 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8361 && !(!info->nocopyreloc
8362 && !PIC_OBJECT_P (abfd)
8363 && MIPS_ELF_READONLY_SECTION (sec))))
8364 && (sec->flags & SEC_ALLOC) != 0)
8365 {
8366 can_make_dynamic_p = TRUE;
8367 if (dynobj == NULL)
8368 elf_hash_table (info)->dynobj = dynobj = abfd;
8369 }
8370 break;
8371
8372 case R_MIPS_26:
8373 case R_MIPS_PC16:
8374 case R_MIPS_PC21_S2:
8375 case R_MIPS_PC26_S2:
8376 case R_MIPS16_26:
8377 case R_MIPS16_PC16_S1:
8378 case R_MICROMIPS_26_S1:
8379 case R_MICROMIPS_PC7_S1:
8380 case R_MICROMIPS_PC10_S1:
8381 case R_MICROMIPS_PC16_S1:
8382 case R_MICROMIPS_PC23_S2:
8383 call_reloc_p = TRUE;
8384 break;
8385 }
8386
8387 if (h)
8388 {
8389 if (constrain_symbol_p)
8390 {
8391 if (!can_make_dynamic_p)
8392 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8393
8394 if (!call_reloc_p)
8395 h->pointer_equality_needed = 1;
8396
8397 /* We must not create a stub for a symbol that has
8398 relocations related to taking the function's address.
8399 This doesn't apply to VxWorks, where CALL relocs refer
8400 to a .got.plt entry instead of a normal .got entry. */
8401 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8402 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8403 }
8404
8405 /* Relocations against the special VxWorks __GOTT_BASE__ and
8406 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8407 room for them in .rela.dyn. */
8408 if (is_gott_symbol (info, h))
8409 {
8410 if (sreloc == NULL)
8411 {
8412 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8413 if (sreloc == NULL)
8414 return FALSE;
8415 }
8416 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8417 if (MIPS_ELF_READONLY_SECTION (sec))
8418 /* We tell the dynamic linker that there are
8419 relocations against the text segment. */
8420 info->flags |= DF_TEXTREL;
8421 }
8422 }
8423 else if (call_lo16_reloc_p (r_type)
8424 || got_lo16_reloc_p (r_type)
8425 || got_disp_reloc_p (r_type)
8426 || (got16_reloc_p (r_type) && htab->is_vxworks))
8427 {
8428 /* We may need a local GOT entry for this relocation. We
8429 don't count R_MIPS_GOT_PAGE because we can estimate the
8430 maximum number of pages needed by looking at the size of
8431 the segment. Similar comments apply to R_MIPS*_GOT16 and
8432 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8433 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8434 R_MIPS_CALL_HI16 because these are always followed by an
8435 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8436 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8437 rel->r_addend, info, r_type))
8438 return FALSE;
8439 }
8440
8441 if (h != NULL
8442 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8443 ELF_ST_IS_MIPS16 (h->other)))
8444 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8445
8446 switch (r_type)
8447 {
8448 case R_MIPS_CALL16:
8449 case R_MIPS16_CALL16:
8450 case R_MICROMIPS_CALL16:
8451 if (h == NULL)
8452 {
8453 (*_bfd_error_handler)
8454 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8455 abfd, (unsigned long) rel->r_offset);
8456 bfd_set_error (bfd_error_bad_value);
8457 return FALSE;
8458 }
8459 /* Fall through. */
8460
8461 case R_MIPS_CALL_HI16:
8462 case R_MIPS_CALL_LO16:
8463 case R_MICROMIPS_CALL_HI16:
8464 case R_MICROMIPS_CALL_LO16:
8465 if (h != NULL)
8466 {
8467 /* Make sure there is room in the regular GOT to hold the
8468 function's address. We may eliminate it in favour of
8469 a .got.plt entry later; see mips_elf_count_got_symbols. */
8470 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8471 r_type))
8472 return FALSE;
8473
8474 /* We need a stub, not a plt entry for the undefined
8475 function. But we record it as if it needs plt. See
8476 _bfd_elf_adjust_dynamic_symbol. */
8477 h->needs_plt = 1;
8478 h->type = STT_FUNC;
8479 }
8480 break;
8481
8482 case R_MIPS_GOT_PAGE:
8483 case R_MICROMIPS_GOT_PAGE:
8484 case R_MIPS16_GOT16:
8485 case R_MIPS_GOT16:
8486 case R_MIPS_GOT_HI16:
8487 case R_MIPS_GOT_LO16:
8488 case R_MICROMIPS_GOT16:
8489 case R_MICROMIPS_GOT_HI16:
8490 case R_MICROMIPS_GOT_LO16:
8491 if (!h || got_page_reloc_p (r_type))
8492 {
8493 /* This relocation needs (or may need, if h != NULL) a
8494 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8495 know for sure until we know whether the symbol is
8496 preemptible. */
8497 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8498 {
8499 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8500 return FALSE;
8501 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8502 addend = mips_elf_read_rel_addend (abfd, rel,
8503 howto, contents);
8504 if (got16_reloc_p (r_type))
8505 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8506 contents, &addend);
8507 else
8508 addend <<= howto->rightshift;
8509 }
8510 else
8511 addend = rel->r_addend;
8512 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8513 h, addend))
8514 return FALSE;
8515
8516 if (h)
8517 {
8518 struct mips_elf_link_hash_entry *hmips =
8519 (struct mips_elf_link_hash_entry *) h;
8520
8521 /* This symbol is definitely not overridable. */
8522 if (hmips->root.def_regular
8523 && ! (bfd_link_pic (info) && ! info->symbolic
8524 && ! hmips->root.forced_local))
8525 h = NULL;
8526 }
8527 }
8528 /* If this is a global, overridable symbol, GOT_PAGE will
8529 decay to GOT_DISP, so we'll need a GOT entry for it. */
8530 /* Fall through. */
8531
8532 case R_MIPS_GOT_DISP:
8533 case R_MICROMIPS_GOT_DISP:
8534 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8535 FALSE, r_type))
8536 return FALSE;
8537 break;
8538
8539 case R_MIPS_TLS_GOTTPREL:
8540 case R_MIPS16_TLS_GOTTPREL:
8541 case R_MICROMIPS_TLS_GOTTPREL:
8542 if (bfd_link_pic (info))
8543 info->flags |= DF_STATIC_TLS;
8544 /* Fall through */
8545
8546 case R_MIPS_TLS_LDM:
8547 case R_MIPS16_TLS_LDM:
8548 case R_MICROMIPS_TLS_LDM:
8549 if (tls_ldm_reloc_p (r_type))
8550 {
8551 r_symndx = STN_UNDEF;
8552 h = NULL;
8553 }
8554 /* Fall through */
8555
8556 case R_MIPS_TLS_GD:
8557 case R_MIPS16_TLS_GD:
8558 case R_MICROMIPS_TLS_GD:
8559 /* This symbol requires a global offset table entry, or two
8560 for TLS GD relocations. */
8561 if (h != NULL)
8562 {
8563 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8564 FALSE, r_type))
8565 return FALSE;
8566 }
8567 else
8568 {
8569 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8570 rel->r_addend,
8571 info, r_type))
8572 return FALSE;
8573 }
8574 break;
8575
8576 case R_MIPS_32:
8577 case R_MIPS_REL32:
8578 case R_MIPS_64:
8579 /* In VxWorks executables, references to external symbols
8580 are handled using copy relocs or PLT stubs, so there's
8581 no need to add a .rela.dyn entry for this relocation. */
8582 if (can_make_dynamic_p)
8583 {
8584 if (sreloc == NULL)
8585 {
8586 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8587 if (sreloc == NULL)
8588 return FALSE;
8589 }
8590 if (bfd_link_pic (info) && h == NULL)
8591 {
8592 /* When creating a shared object, we must copy these
8593 reloc types into the output file as R_MIPS_REL32
8594 relocs. Make room for this reloc in .rel(a).dyn. */
8595 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8596 if (MIPS_ELF_READONLY_SECTION (sec))
8597 /* We tell the dynamic linker that there are
8598 relocations against the text segment. */
8599 info->flags |= DF_TEXTREL;
8600 }
8601 else
8602 {
8603 struct mips_elf_link_hash_entry *hmips;
8604
8605 /* For a shared object, we must copy this relocation
8606 unless the symbol turns out to be undefined and
8607 weak with non-default visibility, in which case
8608 it will be left as zero.
8609
8610 We could elide R_MIPS_REL32 for locally binding symbols
8611 in shared libraries, but do not yet do so.
8612
8613 For an executable, we only need to copy this
8614 reloc if the symbol is defined in a dynamic
8615 object. */
8616 hmips = (struct mips_elf_link_hash_entry *) h;
8617 ++hmips->possibly_dynamic_relocs;
8618 if (MIPS_ELF_READONLY_SECTION (sec))
8619 /* We need it to tell the dynamic linker if there
8620 are relocations against the text segment. */
8621 hmips->readonly_reloc = TRUE;
8622 }
8623 }
8624
8625 if (SGI_COMPAT (abfd))
8626 mips_elf_hash_table (info)->compact_rel_size +=
8627 sizeof (Elf32_External_crinfo);
8628 break;
8629
8630 case R_MIPS_26:
8631 case R_MIPS_GPREL16:
8632 case R_MIPS_LITERAL:
8633 case R_MIPS_GPREL32:
8634 case R_MICROMIPS_26_S1:
8635 case R_MICROMIPS_GPREL16:
8636 case R_MICROMIPS_LITERAL:
8637 case R_MICROMIPS_GPREL7_S2:
8638 if (SGI_COMPAT (abfd))
8639 mips_elf_hash_table (info)->compact_rel_size +=
8640 sizeof (Elf32_External_crinfo);
8641 break;
8642
8643 /* This relocation describes the C++ object vtable hierarchy.
8644 Reconstruct it for later use during GC. */
8645 case R_MIPS_GNU_VTINHERIT:
8646 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8647 return FALSE;
8648 break;
8649
8650 /* This relocation describes which C++ vtable entries are actually
8651 used. Record for later use during GC. */
8652 case R_MIPS_GNU_VTENTRY:
8653 BFD_ASSERT (h != NULL);
8654 if (h != NULL
8655 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8656 return FALSE;
8657 break;
8658
8659 default:
8660 break;
8661 }
8662
8663 /* Record the need for a PLT entry. At this point we don't know
8664 yet if we are going to create a PLT in the first place, but
8665 we only record whether the relocation requires a standard MIPS
8666 or a compressed code entry anyway. If we don't make a PLT after
8667 all, then we'll just ignore these arrangements. Likewise if
8668 a PLT entry is not created because the symbol is satisfied
8669 locally. */
8670 if (h != NULL
8671 && jal_reloc_p (r_type)
8672 && !SYMBOL_CALLS_LOCAL (info, h))
8673 {
8674 if (h->plt.plist == NULL)
8675 h->plt.plist = mips_elf_make_plt_record (abfd);
8676 if (h->plt.plist == NULL)
8677 return FALSE;
8678
8679 if (r_type == R_MIPS_26)
8680 h->plt.plist->need_mips = TRUE;
8681 else
8682 h->plt.plist->need_comp = TRUE;
8683 }
8684
8685 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8686 if there is one. We only need to handle global symbols here;
8687 we decide whether to keep or delete stubs for local symbols
8688 when processing the stub's relocations. */
8689 if (h != NULL
8690 && !mips16_call_reloc_p (r_type)
8691 && !section_allows_mips16_refs_p (sec))
8692 {
8693 struct mips_elf_link_hash_entry *mh;
8694
8695 mh = (struct mips_elf_link_hash_entry *) h;
8696 mh->need_fn_stub = TRUE;
8697 }
8698
8699 /* Refuse some position-dependent relocations when creating a
8700 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8701 not PIC, but we can create dynamic relocations and the result
8702 will be fine. Also do not refuse R_MIPS_LO16, which can be
8703 combined with R_MIPS_GOT16. */
8704 if (bfd_link_pic (info))
8705 {
8706 switch (r_type)
8707 {
8708 case R_MIPS16_HI16:
8709 case R_MIPS_HI16:
8710 case R_MIPS_HIGHER:
8711 case R_MIPS_HIGHEST:
8712 case R_MICROMIPS_HI16:
8713 case R_MICROMIPS_HIGHER:
8714 case R_MICROMIPS_HIGHEST:
8715 /* Don't refuse a high part relocation if it's against
8716 no symbol (e.g. part of a compound relocation). */
8717 if (r_symndx == STN_UNDEF)
8718 break;
8719
8720 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8721 and has a special meaning. */
8722 if (!NEWABI_P (abfd) && h != NULL
8723 && strcmp (h->root.root.string, "_gp_disp") == 0)
8724 break;
8725
8726 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8727 if (is_gott_symbol (info, h))
8728 break;
8729
8730 /* FALLTHROUGH */
8731
8732 case R_MIPS16_26:
8733 case R_MIPS_26:
8734 case R_MICROMIPS_26_S1:
8735 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8736 (*_bfd_error_handler)
8737 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8738 abfd, howto->name,
8739 (h) ? h->root.root.string : "a local symbol");
8740 bfd_set_error (bfd_error_bad_value);
8741 return FALSE;
8742 default:
8743 break;
8744 }
8745 }
8746 }
8747
8748 return TRUE;
8749 }
8750 \f
8751 bfd_boolean
8752 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8753 struct bfd_link_info *link_info,
8754 bfd_boolean *again)
8755 {
8756 Elf_Internal_Rela *internal_relocs;
8757 Elf_Internal_Rela *irel, *irelend;
8758 Elf_Internal_Shdr *symtab_hdr;
8759 bfd_byte *contents = NULL;
8760 size_t extsymoff;
8761 bfd_boolean changed_contents = FALSE;
8762 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8763 Elf_Internal_Sym *isymbuf = NULL;
8764
8765 /* We are not currently changing any sizes, so only one pass. */
8766 *again = FALSE;
8767
8768 if (bfd_link_relocatable (link_info))
8769 return TRUE;
8770
8771 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8772 link_info->keep_memory);
8773 if (internal_relocs == NULL)
8774 return TRUE;
8775
8776 irelend = internal_relocs + sec->reloc_count
8777 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8778 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8779 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8780
8781 for (irel = internal_relocs; irel < irelend; irel++)
8782 {
8783 bfd_vma symval;
8784 bfd_signed_vma sym_offset;
8785 unsigned int r_type;
8786 unsigned long r_symndx;
8787 asection *sym_sec;
8788 unsigned long instruction;
8789
8790 /* Turn jalr into bgezal, and jr into beq, if they're marked
8791 with a JALR relocation, that indicate where they jump to.
8792 This saves some pipeline bubbles. */
8793 r_type = ELF_R_TYPE (abfd, irel->r_info);
8794 if (r_type != R_MIPS_JALR)
8795 continue;
8796
8797 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8798 /* Compute the address of the jump target. */
8799 if (r_symndx >= extsymoff)
8800 {
8801 struct mips_elf_link_hash_entry *h
8802 = ((struct mips_elf_link_hash_entry *)
8803 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8804
8805 while (h->root.root.type == bfd_link_hash_indirect
8806 || h->root.root.type == bfd_link_hash_warning)
8807 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8808
8809 /* If a symbol is undefined, or if it may be overridden,
8810 skip it. */
8811 if (! ((h->root.root.type == bfd_link_hash_defined
8812 || h->root.root.type == bfd_link_hash_defweak)
8813 && h->root.root.u.def.section)
8814 || (bfd_link_pic (link_info) && ! link_info->symbolic
8815 && !h->root.forced_local))
8816 continue;
8817
8818 sym_sec = h->root.root.u.def.section;
8819 if (sym_sec->output_section)
8820 symval = (h->root.root.u.def.value
8821 + sym_sec->output_section->vma
8822 + sym_sec->output_offset);
8823 else
8824 symval = h->root.root.u.def.value;
8825 }
8826 else
8827 {
8828 Elf_Internal_Sym *isym;
8829
8830 /* Read this BFD's symbols if we haven't done so already. */
8831 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8832 {
8833 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8834 if (isymbuf == NULL)
8835 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8836 symtab_hdr->sh_info, 0,
8837 NULL, NULL, NULL);
8838 if (isymbuf == NULL)
8839 goto relax_return;
8840 }
8841
8842 isym = isymbuf + r_symndx;
8843 if (isym->st_shndx == SHN_UNDEF)
8844 continue;
8845 else if (isym->st_shndx == SHN_ABS)
8846 sym_sec = bfd_abs_section_ptr;
8847 else if (isym->st_shndx == SHN_COMMON)
8848 sym_sec = bfd_com_section_ptr;
8849 else
8850 sym_sec
8851 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8852 symval = isym->st_value
8853 + sym_sec->output_section->vma
8854 + sym_sec->output_offset;
8855 }
8856
8857 /* Compute branch offset, from delay slot of the jump to the
8858 branch target. */
8859 sym_offset = (symval + irel->r_addend)
8860 - (sec_start + irel->r_offset + 4);
8861
8862 /* Branch offset must be properly aligned. */
8863 if ((sym_offset & 3) != 0)
8864 continue;
8865
8866 sym_offset >>= 2;
8867
8868 /* Check that it's in range. */
8869 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8870 continue;
8871
8872 /* Get the section contents if we haven't done so already. */
8873 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8874 goto relax_return;
8875
8876 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8877
8878 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8879 if ((instruction & 0xfc1fffff) == 0x0000f809)
8880 instruction = 0x04110000;
8881 /* If it was jr <reg>, turn it into b <target>. */
8882 else if ((instruction & 0xfc1fffff) == 0x00000008)
8883 instruction = 0x10000000;
8884 else
8885 continue;
8886
8887 instruction |= (sym_offset & 0xffff);
8888 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8889 changed_contents = TRUE;
8890 }
8891
8892 if (contents != NULL
8893 && elf_section_data (sec)->this_hdr.contents != contents)
8894 {
8895 if (!changed_contents && !link_info->keep_memory)
8896 free (contents);
8897 else
8898 {
8899 /* Cache the section contents for elf_link_input_bfd. */
8900 elf_section_data (sec)->this_hdr.contents = contents;
8901 }
8902 }
8903 return TRUE;
8904
8905 relax_return:
8906 if (contents != NULL
8907 && elf_section_data (sec)->this_hdr.contents != contents)
8908 free (contents);
8909 return FALSE;
8910 }
8911 \f
8912 /* Allocate space for global sym dynamic relocs. */
8913
8914 static bfd_boolean
8915 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8916 {
8917 struct bfd_link_info *info = inf;
8918 bfd *dynobj;
8919 struct mips_elf_link_hash_entry *hmips;
8920 struct mips_elf_link_hash_table *htab;
8921
8922 htab = mips_elf_hash_table (info);
8923 BFD_ASSERT (htab != NULL);
8924
8925 dynobj = elf_hash_table (info)->dynobj;
8926 hmips = (struct mips_elf_link_hash_entry *) h;
8927
8928 /* VxWorks executables are handled elsewhere; we only need to
8929 allocate relocations in shared objects. */
8930 if (htab->is_vxworks && !bfd_link_pic (info))
8931 return TRUE;
8932
8933 /* Ignore indirect symbols. All relocations against such symbols
8934 will be redirected to the target symbol. */
8935 if (h->root.type == bfd_link_hash_indirect)
8936 return TRUE;
8937
8938 /* If this symbol is defined in a dynamic object, or we are creating
8939 a shared library, we will need to copy any R_MIPS_32 or
8940 R_MIPS_REL32 relocs against it into the output file. */
8941 if (! bfd_link_relocatable (info)
8942 && hmips->possibly_dynamic_relocs != 0
8943 && (h->root.type == bfd_link_hash_defweak
8944 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8945 || bfd_link_pic (info)))
8946 {
8947 bfd_boolean do_copy = TRUE;
8948
8949 if (h->root.type == bfd_link_hash_undefweak)
8950 {
8951 /* Do not copy relocations for undefined weak symbols with
8952 non-default visibility. */
8953 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8954 do_copy = FALSE;
8955
8956 /* Make sure undefined weak symbols are output as a dynamic
8957 symbol in PIEs. */
8958 else if (h->dynindx == -1 && !h->forced_local)
8959 {
8960 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8961 return FALSE;
8962 }
8963 }
8964
8965 if (do_copy)
8966 {
8967 /* Even though we don't directly need a GOT entry for this symbol,
8968 the SVR4 psABI requires it to have a dynamic symbol table
8969 index greater that DT_MIPS_GOTSYM if there are dynamic
8970 relocations against it.
8971
8972 VxWorks does not enforce the same mapping between the GOT
8973 and the symbol table, so the same requirement does not
8974 apply there. */
8975 if (!htab->is_vxworks)
8976 {
8977 if (hmips->global_got_area > GGA_RELOC_ONLY)
8978 hmips->global_got_area = GGA_RELOC_ONLY;
8979 hmips->got_only_for_calls = FALSE;
8980 }
8981
8982 mips_elf_allocate_dynamic_relocations
8983 (dynobj, info, hmips->possibly_dynamic_relocs);
8984 if (hmips->readonly_reloc)
8985 /* We tell the dynamic linker that there are relocations
8986 against the text segment. */
8987 info->flags |= DF_TEXTREL;
8988 }
8989 }
8990
8991 return TRUE;
8992 }
8993
8994 /* Adjust a symbol defined by a dynamic object and referenced by a
8995 regular object. The current definition is in some section of the
8996 dynamic object, but we're not including those sections. We have to
8997 change the definition to something the rest of the link can
8998 understand. */
8999
9000 bfd_boolean
9001 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9002 struct elf_link_hash_entry *h)
9003 {
9004 bfd *dynobj;
9005 struct mips_elf_link_hash_entry *hmips;
9006 struct mips_elf_link_hash_table *htab;
9007
9008 htab = mips_elf_hash_table (info);
9009 BFD_ASSERT (htab != NULL);
9010
9011 dynobj = elf_hash_table (info)->dynobj;
9012 hmips = (struct mips_elf_link_hash_entry *) h;
9013
9014 /* Make sure we know what is going on here. */
9015 BFD_ASSERT (dynobj != NULL
9016 && (h->needs_plt
9017 || h->u.weakdef != NULL
9018 || (h->def_dynamic
9019 && h->ref_regular
9020 && !h->def_regular)));
9021
9022 hmips = (struct mips_elf_link_hash_entry *) h;
9023
9024 /* If there are call relocations against an externally-defined symbol,
9025 see whether we can create a MIPS lazy-binding stub for it. We can
9026 only do this if all references to the function are through call
9027 relocations, and in that case, the traditional lazy-binding stubs
9028 are much more efficient than PLT entries.
9029
9030 Traditional stubs are only available on SVR4 psABI-based systems;
9031 VxWorks always uses PLTs instead. */
9032 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9033 {
9034 if (! elf_hash_table (info)->dynamic_sections_created)
9035 return TRUE;
9036
9037 /* If this symbol is not defined in a regular file, then set
9038 the symbol to the stub location. This is required to make
9039 function pointers compare as equal between the normal
9040 executable and the shared library. */
9041 if (!h->def_regular)
9042 {
9043 hmips->needs_lazy_stub = TRUE;
9044 htab->lazy_stub_count++;
9045 return TRUE;
9046 }
9047 }
9048 /* As above, VxWorks requires PLT entries for externally-defined
9049 functions that are only accessed through call relocations.
9050
9051 Both VxWorks and non-VxWorks targets also need PLT entries if there
9052 are static-only relocations against an externally-defined function.
9053 This can technically occur for shared libraries if there are
9054 branches to the symbol, although it is unlikely that this will be
9055 used in practice due to the short ranges involved. It can occur
9056 for any relative or absolute relocation in executables; in that
9057 case, the PLT entry becomes the function's canonical address. */
9058 else if (((h->needs_plt && !hmips->no_fn_stub)
9059 || (h->type == STT_FUNC && hmips->has_static_relocs))
9060 && htab->use_plts_and_copy_relocs
9061 && !SYMBOL_CALLS_LOCAL (info, h)
9062 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9063 && h->root.type == bfd_link_hash_undefweak))
9064 {
9065 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9066 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9067
9068 /* If this is the first symbol to need a PLT entry, then make some
9069 basic setup. Also work out PLT entry sizes. We'll need them
9070 for PLT offset calculations. */
9071 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9072 {
9073 BFD_ASSERT (htab->sgotplt->size == 0);
9074 BFD_ASSERT (htab->plt_got_index == 0);
9075
9076 /* If we're using the PLT additions to the psABI, each PLT
9077 entry is 16 bytes and the PLT0 entry is 32 bytes.
9078 Encourage better cache usage by aligning. We do this
9079 lazily to avoid pessimizing traditional objects. */
9080 if (!htab->is_vxworks
9081 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
9082 return FALSE;
9083
9084 /* Make sure that .got.plt is word-aligned. We do this lazily
9085 for the same reason as above. */
9086 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
9087 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9088 return FALSE;
9089
9090 /* On non-VxWorks targets, the first two entries in .got.plt
9091 are reserved. */
9092 if (!htab->is_vxworks)
9093 htab->plt_got_index
9094 += (get_elf_backend_data (dynobj)->got_header_size
9095 / MIPS_ELF_GOT_SIZE (dynobj));
9096
9097 /* On VxWorks, also allocate room for the header's
9098 .rela.plt.unloaded entries. */
9099 if (htab->is_vxworks && !bfd_link_pic (info))
9100 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9101
9102 /* Now work out the sizes of individual PLT entries. */
9103 if (htab->is_vxworks && bfd_link_pic (info))
9104 htab->plt_mips_entry_size
9105 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9106 else if (htab->is_vxworks)
9107 htab->plt_mips_entry_size
9108 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9109 else if (newabi_p)
9110 htab->plt_mips_entry_size
9111 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9112 else if (!micromips_p)
9113 {
9114 htab->plt_mips_entry_size
9115 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9116 htab->plt_comp_entry_size
9117 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9118 }
9119 else if (htab->insn32)
9120 {
9121 htab->plt_mips_entry_size
9122 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9123 htab->plt_comp_entry_size
9124 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9125 }
9126 else
9127 {
9128 htab->plt_mips_entry_size
9129 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9130 htab->plt_comp_entry_size
9131 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9132 }
9133 }
9134
9135 if (h->plt.plist == NULL)
9136 h->plt.plist = mips_elf_make_plt_record (dynobj);
9137 if (h->plt.plist == NULL)
9138 return FALSE;
9139
9140 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9141 n32 or n64, so always use a standard entry there.
9142
9143 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9144 all MIPS16 calls will go via that stub, and there is no benefit
9145 to having a MIPS16 entry. And in the case of call_stub a
9146 standard entry actually has to be used as the stub ends with a J
9147 instruction. */
9148 if (newabi_p
9149 || htab->is_vxworks
9150 || hmips->call_stub
9151 || hmips->call_fp_stub)
9152 {
9153 h->plt.plist->need_mips = TRUE;
9154 h->plt.plist->need_comp = FALSE;
9155 }
9156
9157 /* Otherwise, if there are no direct calls to the function, we
9158 have a free choice of whether to use standard or compressed
9159 entries. Prefer microMIPS entries if the object is known to
9160 contain microMIPS code, so that it becomes possible to create
9161 pure microMIPS binaries. Prefer standard entries otherwise,
9162 because MIPS16 ones are no smaller and are usually slower. */
9163 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9164 {
9165 if (micromips_p)
9166 h->plt.plist->need_comp = TRUE;
9167 else
9168 h->plt.plist->need_mips = TRUE;
9169 }
9170
9171 if (h->plt.plist->need_mips)
9172 {
9173 h->plt.plist->mips_offset = htab->plt_mips_offset;
9174 htab->plt_mips_offset += htab->plt_mips_entry_size;
9175 }
9176 if (h->plt.plist->need_comp)
9177 {
9178 h->plt.plist->comp_offset = htab->plt_comp_offset;
9179 htab->plt_comp_offset += htab->plt_comp_entry_size;
9180 }
9181
9182 /* Reserve the corresponding .got.plt entry now too. */
9183 h->plt.plist->gotplt_index = htab->plt_got_index++;
9184
9185 /* If the output file has no definition of the symbol, set the
9186 symbol's value to the address of the stub. */
9187 if (!bfd_link_pic (info) && !h->def_regular)
9188 hmips->use_plt_entry = TRUE;
9189
9190 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9191 htab->srelplt->size += (htab->is_vxworks
9192 ? MIPS_ELF_RELA_SIZE (dynobj)
9193 : MIPS_ELF_REL_SIZE (dynobj));
9194
9195 /* Make room for the .rela.plt.unloaded relocations. */
9196 if (htab->is_vxworks && !bfd_link_pic (info))
9197 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9198
9199 /* All relocations against this symbol that could have been made
9200 dynamic will now refer to the PLT entry instead. */
9201 hmips->possibly_dynamic_relocs = 0;
9202
9203 return TRUE;
9204 }
9205
9206 /* If this is a weak symbol, and there is a real definition, the
9207 processor independent code will have arranged for us to see the
9208 real definition first, and we can just use the same value. */
9209 if (h->u.weakdef != NULL)
9210 {
9211 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9212 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9213 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9214 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9215 return TRUE;
9216 }
9217
9218 /* Otherwise, there is nothing further to do for symbols defined
9219 in regular objects. */
9220 if (h->def_regular)
9221 return TRUE;
9222
9223 /* There's also nothing more to do if we'll convert all relocations
9224 against this symbol into dynamic relocations. */
9225 if (!hmips->has_static_relocs)
9226 return TRUE;
9227
9228 /* We're now relying on copy relocations. Complain if we have
9229 some that we can't convert. */
9230 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9231 {
9232 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
9233 "dynamic symbol %s"),
9234 h->root.root.string);
9235 bfd_set_error (bfd_error_bad_value);
9236 return FALSE;
9237 }
9238
9239 /* We must allocate the symbol in our .dynbss section, which will
9240 become part of the .bss section of the executable. There will be
9241 an entry for this symbol in the .dynsym section. The dynamic
9242 object will contain position independent code, so all references
9243 from the dynamic object to this symbol will go through the global
9244 offset table. The dynamic linker will use the .dynsym entry to
9245 determine the address it must put in the global offset table, so
9246 both the dynamic object and the regular object will refer to the
9247 same memory location for the variable. */
9248
9249 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9250 {
9251 if (htab->is_vxworks)
9252 htab->srelbss->size += sizeof (Elf32_External_Rela);
9253 else
9254 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9255 h->needs_copy = 1;
9256 }
9257
9258 /* All relocations against this symbol that could have been made
9259 dynamic will now refer to the local copy instead. */
9260 hmips->possibly_dynamic_relocs = 0;
9261
9262 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss);
9263 }
9264 \f
9265 /* This function is called after all the input files have been read,
9266 and the input sections have been assigned to output sections. We
9267 check for any mips16 stub sections that we can discard. */
9268
9269 bfd_boolean
9270 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9271 struct bfd_link_info *info)
9272 {
9273 asection *sect;
9274 struct mips_elf_link_hash_table *htab;
9275 struct mips_htab_traverse_info hti;
9276
9277 htab = mips_elf_hash_table (info);
9278 BFD_ASSERT (htab != NULL);
9279
9280 /* The .reginfo section has a fixed size. */
9281 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9282 if (sect != NULL)
9283 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9284
9285 /* The .MIPS.abiflags section has a fixed size. */
9286 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9287 if (sect != NULL)
9288 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9289
9290 hti.info = info;
9291 hti.output_bfd = output_bfd;
9292 hti.error = FALSE;
9293 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9294 mips_elf_check_symbols, &hti);
9295 if (hti.error)
9296 return FALSE;
9297
9298 return TRUE;
9299 }
9300
9301 /* If the link uses a GOT, lay it out and work out its size. */
9302
9303 static bfd_boolean
9304 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9305 {
9306 bfd *dynobj;
9307 asection *s;
9308 struct mips_got_info *g;
9309 bfd_size_type loadable_size = 0;
9310 bfd_size_type page_gotno;
9311 bfd *ibfd;
9312 struct mips_elf_traverse_got_arg tga;
9313 struct mips_elf_link_hash_table *htab;
9314
9315 htab = mips_elf_hash_table (info);
9316 BFD_ASSERT (htab != NULL);
9317
9318 s = htab->sgot;
9319 if (s == NULL)
9320 return TRUE;
9321
9322 dynobj = elf_hash_table (info)->dynobj;
9323 g = htab->got_info;
9324
9325 /* Allocate room for the reserved entries. VxWorks always reserves
9326 3 entries; other objects only reserve 2 entries. */
9327 BFD_ASSERT (g->assigned_low_gotno == 0);
9328 if (htab->is_vxworks)
9329 htab->reserved_gotno = 3;
9330 else
9331 htab->reserved_gotno = 2;
9332 g->local_gotno += htab->reserved_gotno;
9333 g->assigned_low_gotno = htab->reserved_gotno;
9334
9335 /* Decide which symbols need to go in the global part of the GOT and
9336 count the number of reloc-only GOT symbols. */
9337 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9338
9339 if (!mips_elf_resolve_final_got_entries (info, g))
9340 return FALSE;
9341
9342 /* Calculate the total loadable size of the output. That
9343 will give us the maximum number of GOT_PAGE entries
9344 required. */
9345 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9346 {
9347 asection *subsection;
9348
9349 for (subsection = ibfd->sections;
9350 subsection;
9351 subsection = subsection->next)
9352 {
9353 if ((subsection->flags & SEC_ALLOC) == 0)
9354 continue;
9355 loadable_size += ((subsection->size + 0xf)
9356 &~ (bfd_size_type) 0xf);
9357 }
9358 }
9359
9360 if (htab->is_vxworks)
9361 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9362 relocations against local symbols evaluate to "G", and the EABI does
9363 not include R_MIPS_GOT_PAGE. */
9364 page_gotno = 0;
9365 else
9366 /* Assume there are two loadable segments consisting of contiguous
9367 sections. Is 5 enough? */
9368 page_gotno = (loadable_size >> 16) + 5;
9369
9370 /* Choose the smaller of the two page estimates; both are intended to be
9371 conservative. */
9372 if (page_gotno > g->page_gotno)
9373 page_gotno = g->page_gotno;
9374
9375 g->local_gotno += page_gotno;
9376 g->assigned_high_gotno = g->local_gotno - 1;
9377
9378 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9379 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9380 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9381
9382 /* VxWorks does not support multiple GOTs. It initializes $gp to
9383 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9384 dynamic loader. */
9385 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9386 {
9387 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9388 return FALSE;
9389 }
9390 else
9391 {
9392 /* Record that all bfds use G. This also has the effect of freeing
9393 the per-bfd GOTs, which we no longer need. */
9394 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9395 if (mips_elf_bfd_got (ibfd, FALSE))
9396 mips_elf_replace_bfd_got (ibfd, g);
9397 mips_elf_replace_bfd_got (output_bfd, g);
9398
9399 /* Set up TLS entries. */
9400 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9401 tga.info = info;
9402 tga.g = g;
9403 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9404 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9405 if (!tga.g)
9406 return FALSE;
9407 BFD_ASSERT (g->tls_assigned_gotno
9408 == g->global_gotno + g->local_gotno + g->tls_gotno);
9409
9410 /* Each VxWorks GOT entry needs an explicit relocation. */
9411 if (htab->is_vxworks && bfd_link_pic (info))
9412 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9413
9414 /* Allocate room for the TLS relocations. */
9415 if (g->relocs)
9416 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9417 }
9418
9419 return TRUE;
9420 }
9421
9422 /* Estimate the size of the .MIPS.stubs section. */
9423
9424 static void
9425 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9426 {
9427 struct mips_elf_link_hash_table *htab;
9428 bfd_size_type dynsymcount;
9429
9430 htab = mips_elf_hash_table (info);
9431 BFD_ASSERT (htab != NULL);
9432
9433 if (htab->lazy_stub_count == 0)
9434 return;
9435
9436 /* IRIX rld assumes that a function stub isn't at the end of the .text
9437 section, so add a dummy entry to the end. */
9438 htab->lazy_stub_count++;
9439
9440 /* Get a worst-case estimate of the number of dynamic symbols needed.
9441 At this point, dynsymcount does not account for section symbols
9442 and count_section_dynsyms may overestimate the number that will
9443 be needed. */
9444 dynsymcount = (elf_hash_table (info)->dynsymcount
9445 + count_section_dynsyms (output_bfd, info));
9446
9447 /* Determine the size of one stub entry. There's no disadvantage
9448 from using microMIPS code here, so for the sake of pure-microMIPS
9449 binaries we prefer it whenever there's any microMIPS code in
9450 output produced at all. This has a benefit of stubs being
9451 shorter by 4 bytes each too, unless in the insn32 mode. */
9452 if (!MICROMIPS_P (output_bfd))
9453 htab->function_stub_size = (dynsymcount > 0x10000
9454 ? MIPS_FUNCTION_STUB_BIG_SIZE
9455 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9456 else if (htab->insn32)
9457 htab->function_stub_size = (dynsymcount > 0x10000
9458 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9459 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9460 else
9461 htab->function_stub_size = (dynsymcount > 0x10000
9462 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9463 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9464
9465 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9466 }
9467
9468 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9469 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9470 stub, allocate an entry in the stubs section. */
9471
9472 static bfd_boolean
9473 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9474 {
9475 struct mips_htab_traverse_info *hti = data;
9476 struct mips_elf_link_hash_table *htab;
9477 struct bfd_link_info *info;
9478 bfd *output_bfd;
9479
9480 info = hti->info;
9481 output_bfd = hti->output_bfd;
9482 htab = mips_elf_hash_table (info);
9483 BFD_ASSERT (htab != NULL);
9484
9485 if (h->needs_lazy_stub)
9486 {
9487 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9488 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9489 bfd_vma isa_bit = micromips_p;
9490
9491 BFD_ASSERT (htab->root.dynobj != NULL);
9492 if (h->root.plt.plist == NULL)
9493 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9494 if (h->root.plt.plist == NULL)
9495 {
9496 hti->error = TRUE;
9497 return FALSE;
9498 }
9499 h->root.root.u.def.section = htab->sstubs;
9500 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9501 h->root.plt.plist->stub_offset = htab->sstubs->size;
9502 h->root.other = other;
9503 htab->sstubs->size += htab->function_stub_size;
9504 }
9505 return TRUE;
9506 }
9507
9508 /* Allocate offsets in the stubs section to each symbol that needs one.
9509 Set the final size of the .MIPS.stub section. */
9510
9511 static bfd_boolean
9512 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9513 {
9514 bfd *output_bfd = info->output_bfd;
9515 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9516 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9517 bfd_vma isa_bit = micromips_p;
9518 struct mips_elf_link_hash_table *htab;
9519 struct mips_htab_traverse_info hti;
9520 struct elf_link_hash_entry *h;
9521 bfd *dynobj;
9522
9523 htab = mips_elf_hash_table (info);
9524 BFD_ASSERT (htab != NULL);
9525
9526 if (htab->lazy_stub_count == 0)
9527 return TRUE;
9528
9529 htab->sstubs->size = 0;
9530 hti.info = info;
9531 hti.output_bfd = output_bfd;
9532 hti.error = FALSE;
9533 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9534 if (hti.error)
9535 return FALSE;
9536 htab->sstubs->size += htab->function_stub_size;
9537 BFD_ASSERT (htab->sstubs->size
9538 == htab->lazy_stub_count * htab->function_stub_size);
9539
9540 dynobj = elf_hash_table (info)->dynobj;
9541 BFD_ASSERT (dynobj != NULL);
9542 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9543 if (h == NULL)
9544 return FALSE;
9545 h->root.u.def.value = isa_bit;
9546 h->other = other;
9547 h->type = STT_FUNC;
9548
9549 return TRUE;
9550 }
9551
9552 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9553 bfd_link_info. If H uses the address of a PLT entry as the value
9554 of the symbol, then set the entry in the symbol table now. Prefer
9555 a standard MIPS PLT entry. */
9556
9557 static bfd_boolean
9558 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9559 {
9560 struct bfd_link_info *info = data;
9561 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9562 struct mips_elf_link_hash_table *htab;
9563 unsigned int other;
9564 bfd_vma isa_bit;
9565 bfd_vma val;
9566
9567 htab = mips_elf_hash_table (info);
9568 BFD_ASSERT (htab != NULL);
9569
9570 if (h->use_plt_entry)
9571 {
9572 BFD_ASSERT (h->root.plt.plist != NULL);
9573 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9574 || h->root.plt.plist->comp_offset != MINUS_ONE);
9575
9576 val = htab->plt_header_size;
9577 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9578 {
9579 isa_bit = 0;
9580 val += h->root.plt.plist->mips_offset;
9581 other = 0;
9582 }
9583 else
9584 {
9585 isa_bit = 1;
9586 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9587 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9588 }
9589 val += isa_bit;
9590 /* For VxWorks, point at the PLT load stub rather than the lazy
9591 resolution stub; this stub will become the canonical function
9592 address. */
9593 if (htab->is_vxworks)
9594 val += 8;
9595
9596 h->root.root.u.def.section = htab->splt;
9597 h->root.root.u.def.value = val;
9598 h->root.other = other;
9599 }
9600
9601 return TRUE;
9602 }
9603
9604 /* Set the sizes of the dynamic sections. */
9605
9606 bfd_boolean
9607 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9608 struct bfd_link_info *info)
9609 {
9610 bfd *dynobj;
9611 asection *s, *sreldyn;
9612 bfd_boolean reltext;
9613 struct mips_elf_link_hash_table *htab;
9614
9615 htab = mips_elf_hash_table (info);
9616 BFD_ASSERT (htab != NULL);
9617 dynobj = elf_hash_table (info)->dynobj;
9618 BFD_ASSERT (dynobj != NULL);
9619
9620 if (elf_hash_table (info)->dynamic_sections_created)
9621 {
9622 /* Set the contents of the .interp section to the interpreter. */
9623 if (bfd_link_executable (info) && !info->nointerp)
9624 {
9625 s = bfd_get_linker_section (dynobj, ".interp");
9626 BFD_ASSERT (s != NULL);
9627 s->size
9628 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9629 s->contents
9630 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9631 }
9632
9633 /* Figure out the size of the PLT header if we know that we
9634 are using it. For the sake of cache alignment always use
9635 a standard header whenever any standard entries are present
9636 even if microMIPS entries are present as well. This also
9637 lets the microMIPS header rely on the value of $v0 only set
9638 by microMIPS entries, for a small size reduction.
9639
9640 Set symbol table entry values for symbols that use the
9641 address of their PLT entry now that we can calculate it.
9642
9643 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9644 haven't already in _bfd_elf_create_dynamic_sections. */
9645 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9646 {
9647 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9648 && !htab->plt_mips_offset);
9649 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9650 bfd_vma isa_bit = micromips_p;
9651 struct elf_link_hash_entry *h;
9652 bfd_vma size;
9653
9654 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9655 BFD_ASSERT (htab->sgotplt->size == 0);
9656 BFD_ASSERT (htab->splt->size == 0);
9657
9658 if (htab->is_vxworks && bfd_link_pic (info))
9659 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9660 else if (htab->is_vxworks)
9661 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9662 else if (ABI_64_P (output_bfd))
9663 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9664 else if (ABI_N32_P (output_bfd))
9665 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9666 else if (!micromips_p)
9667 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9668 else if (htab->insn32)
9669 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9670 else
9671 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9672
9673 htab->plt_header_is_comp = micromips_p;
9674 htab->plt_header_size = size;
9675 htab->splt->size = (size
9676 + htab->plt_mips_offset
9677 + htab->plt_comp_offset);
9678 htab->sgotplt->size = (htab->plt_got_index
9679 * MIPS_ELF_GOT_SIZE (dynobj));
9680
9681 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9682
9683 if (htab->root.hplt == NULL)
9684 {
9685 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9686 "_PROCEDURE_LINKAGE_TABLE_");
9687 htab->root.hplt = h;
9688 if (h == NULL)
9689 return FALSE;
9690 }
9691
9692 h = htab->root.hplt;
9693 h->root.u.def.value = isa_bit;
9694 h->other = other;
9695 h->type = STT_FUNC;
9696 }
9697 }
9698
9699 /* Allocate space for global sym dynamic relocs. */
9700 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9701
9702 mips_elf_estimate_stub_size (output_bfd, info);
9703
9704 if (!mips_elf_lay_out_got (output_bfd, info))
9705 return FALSE;
9706
9707 mips_elf_lay_out_lazy_stubs (info);
9708
9709 /* The check_relocs and adjust_dynamic_symbol entry points have
9710 determined the sizes of the various dynamic sections. Allocate
9711 memory for them. */
9712 reltext = FALSE;
9713 for (s = dynobj->sections; s != NULL; s = s->next)
9714 {
9715 const char *name;
9716
9717 /* It's OK to base decisions on the section name, because none
9718 of the dynobj section names depend upon the input files. */
9719 name = bfd_get_section_name (dynobj, s);
9720
9721 if ((s->flags & SEC_LINKER_CREATED) == 0)
9722 continue;
9723
9724 if (CONST_STRNEQ (name, ".rel"))
9725 {
9726 if (s->size != 0)
9727 {
9728 const char *outname;
9729 asection *target;
9730
9731 /* If this relocation section applies to a read only
9732 section, then we probably need a DT_TEXTREL entry.
9733 If the relocation section is .rel(a).dyn, we always
9734 assert a DT_TEXTREL entry rather than testing whether
9735 there exists a relocation to a read only section or
9736 not. */
9737 outname = bfd_get_section_name (output_bfd,
9738 s->output_section);
9739 target = bfd_get_section_by_name (output_bfd, outname + 4);
9740 if ((target != NULL
9741 && (target->flags & SEC_READONLY) != 0
9742 && (target->flags & SEC_ALLOC) != 0)
9743 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9744 reltext = TRUE;
9745
9746 /* We use the reloc_count field as a counter if we need
9747 to copy relocs into the output file. */
9748 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9749 s->reloc_count = 0;
9750
9751 /* If combreloc is enabled, elf_link_sort_relocs() will
9752 sort relocations, but in a different way than we do,
9753 and before we're done creating relocations. Also, it
9754 will move them around between input sections'
9755 relocation's contents, so our sorting would be
9756 broken, so don't let it run. */
9757 info->combreloc = 0;
9758 }
9759 }
9760 else if (bfd_link_executable (info)
9761 && ! mips_elf_hash_table (info)->use_rld_obj_head
9762 && CONST_STRNEQ (name, ".rld_map"))
9763 {
9764 /* We add a room for __rld_map. It will be filled in by the
9765 rtld to contain a pointer to the _r_debug structure. */
9766 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9767 }
9768 else if (SGI_COMPAT (output_bfd)
9769 && CONST_STRNEQ (name, ".compact_rel"))
9770 s->size += mips_elf_hash_table (info)->compact_rel_size;
9771 else if (s == htab->splt)
9772 {
9773 /* If the last PLT entry has a branch delay slot, allocate
9774 room for an extra nop to fill the delay slot. This is
9775 for CPUs without load interlocking. */
9776 if (! LOAD_INTERLOCKS_P (output_bfd)
9777 && ! htab->is_vxworks && s->size > 0)
9778 s->size += 4;
9779 }
9780 else if (! CONST_STRNEQ (name, ".init")
9781 && s != htab->sgot
9782 && s != htab->sgotplt
9783 && s != htab->sstubs
9784 && s != htab->sdynbss)
9785 {
9786 /* It's not one of our sections, so don't allocate space. */
9787 continue;
9788 }
9789
9790 if (s->size == 0)
9791 {
9792 s->flags |= SEC_EXCLUDE;
9793 continue;
9794 }
9795
9796 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9797 continue;
9798
9799 /* Allocate memory for the section contents. */
9800 s->contents = bfd_zalloc (dynobj, s->size);
9801 if (s->contents == NULL)
9802 {
9803 bfd_set_error (bfd_error_no_memory);
9804 return FALSE;
9805 }
9806 }
9807
9808 if (elf_hash_table (info)->dynamic_sections_created)
9809 {
9810 /* Add some entries to the .dynamic section. We fill in the
9811 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9812 must add the entries now so that we get the correct size for
9813 the .dynamic section. */
9814
9815 /* SGI object has the equivalence of DT_DEBUG in the
9816 DT_MIPS_RLD_MAP entry. This must come first because glibc
9817 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9818 may only look at the first one they see. */
9819 if (!bfd_link_pic (info)
9820 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9821 return FALSE;
9822
9823 if (bfd_link_executable (info)
9824 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9825 return FALSE;
9826
9827 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9828 used by the debugger. */
9829 if (bfd_link_executable (info)
9830 && !SGI_COMPAT (output_bfd)
9831 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9832 return FALSE;
9833
9834 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9835 info->flags |= DF_TEXTREL;
9836
9837 if ((info->flags & DF_TEXTREL) != 0)
9838 {
9839 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9840 return FALSE;
9841
9842 /* Clear the DF_TEXTREL flag. It will be set again if we
9843 write out an actual text relocation; we may not, because
9844 at this point we do not know whether e.g. any .eh_frame
9845 absolute relocations have been converted to PC-relative. */
9846 info->flags &= ~DF_TEXTREL;
9847 }
9848
9849 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9850 return FALSE;
9851
9852 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9853 if (htab->is_vxworks)
9854 {
9855 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9856 use any of the DT_MIPS_* tags. */
9857 if (sreldyn && sreldyn->size > 0)
9858 {
9859 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9860 return FALSE;
9861
9862 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9863 return FALSE;
9864
9865 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9866 return FALSE;
9867 }
9868 }
9869 else
9870 {
9871 if (sreldyn && sreldyn->size > 0)
9872 {
9873 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9874 return FALSE;
9875
9876 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9877 return FALSE;
9878
9879 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9880 return FALSE;
9881 }
9882
9883 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9884 return FALSE;
9885
9886 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9887 return FALSE;
9888
9889 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9890 return FALSE;
9891
9892 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9893 return FALSE;
9894
9895 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9896 return FALSE;
9897
9898 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9899 return FALSE;
9900
9901 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9902 return FALSE;
9903
9904 if (IRIX_COMPAT (dynobj) == ict_irix5
9905 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9906 return FALSE;
9907
9908 if (IRIX_COMPAT (dynobj) == ict_irix6
9909 && (bfd_get_section_by_name
9910 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9911 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9912 return FALSE;
9913 }
9914 if (htab->splt->size > 0)
9915 {
9916 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9917 return FALSE;
9918
9919 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9920 return FALSE;
9921
9922 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9923 return FALSE;
9924
9925 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9926 return FALSE;
9927 }
9928 if (htab->is_vxworks
9929 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9930 return FALSE;
9931 }
9932
9933 return TRUE;
9934 }
9935 \f
9936 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9937 Adjust its R_ADDEND field so that it is correct for the output file.
9938 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9939 and sections respectively; both use symbol indexes. */
9940
9941 static void
9942 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9943 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9944 asection **local_sections, Elf_Internal_Rela *rel)
9945 {
9946 unsigned int r_type, r_symndx;
9947 Elf_Internal_Sym *sym;
9948 asection *sec;
9949
9950 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9951 {
9952 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9953 if (gprel16_reloc_p (r_type)
9954 || r_type == R_MIPS_GPREL32
9955 || literal_reloc_p (r_type))
9956 {
9957 rel->r_addend += _bfd_get_gp_value (input_bfd);
9958 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9959 }
9960
9961 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9962 sym = local_syms + r_symndx;
9963
9964 /* Adjust REL's addend to account for section merging. */
9965 if (!bfd_link_relocatable (info))
9966 {
9967 sec = local_sections[r_symndx];
9968 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9969 }
9970
9971 /* This would normally be done by the rela_normal code in elflink.c. */
9972 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9973 rel->r_addend += local_sections[r_symndx]->output_offset;
9974 }
9975 }
9976
9977 /* Handle relocations against symbols from removed linkonce sections,
9978 or sections discarded by a linker script. We use this wrapper around
9979 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9980 on 64-bit ELF targets. In this case for any relocation handled, which
9981 always be the first in a triplet, the remaining two have to be processed
9982 together with the first, even if they are R_MIPS_NONE. It is the symbol
9983 index referred by the first reloc that applies to all the three and the
9984 remaining two never refer to an object symbol. And it is the final
9985 relocation (the last non-null one) that determines the output field of
9986 the whole relocation so retrieve the corresponding howto structure for
9987 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9988
9989 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9990 and therefore requires to be pasted in a loop. It also defines a block
9991 and does not protect any of its arguments, hence the extra brackets. */
9992
9993 static void
9994 mips_reloc_against_discarded_section (bfd *output_bfd,
9995 struct bfd_link_info *info,
9996 bfd *input_bfd, asection *input_section,
9997 Elf_Internal_Rela **rel,
9998 const Elf_Internal_Rela **relend,
9999 bfd_boolean rel_reloc,
10000 reloc_howto_type *howto,
10001 bfd_byte *contents)
10002 {
10003 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10004 int count = bed->s->int_rels_per_ext_rel;
10005 unsigned int r_type;
10006 int i;
10007
10008 for (i = count - 1; i > 0; i--)
10009 {
10010 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10011 if (r_type != R_MIPS_NONE)
10012 {
10013 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10014 break;
10015 }
10016 }
10017 do
10018 {
10019 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10020 (*rel), count, (*relend),
10021 howto, i, contents);
10022 }
10023 while (0);
10024 }
10025
10026 /* Relocate a MIPS ELF section. */
10027
10028 bfd_boolean
10029 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10030 bfd *input_bfd, asection *input_section,
10031 bfd_byte *contents, Elf_Internal_Rela *relocs,
10032 Elf_Internal_Sym *local_syms,
10033 asection **local_sections)
10034 {
10035 Elf_Internal_Rela *rel;
10036 const Elf_Internal_Rela *relend;
10037 bfd_vma addend = 0;
10038 bfd_boolean use_saved_addend_p = FALSE;
10039 const struct elf_backend_data *bed;
10040
10041 bed = get_elf_backend_data (output_bfd);
10042 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10043 for (rel = relocs; rel < relend; ++rel)
10044 {
10045 const char *name;
10046 bfd_vma value = 0;
10047 reloc_howto_type *howto;
10048 bfd_boolean cross_mode_jump_p = FALSE;
10049 /* TRUE if the relocation is a RELA relocation, rather than a
10050 REL relocation. */
10051 bfd_boolean rela_relocation_p = TRUE;
10052 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10053 const char *msg;
10054 unsigned long r_symndx;
10055 asection *sec;
10056 Elf_Internal_Shdr *symtab_hdr;
10057 struct elf_link_hash_entry *h;
10058 bfd_boolean rel_reloc;
10059
10060 rel_reloc = (NEWABI_P (input_bfd)
10061 && mips_elf_rel_relocation_p (input_bfd, input_section,
10062 relocs, rel));
10063 /* Find the relocation howto for this relocation. */
10064 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10065
10066 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10067 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10068 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10069 {
10070 sec = local_sections[r_symndx];
10071 h = NULL;
10072 }
10073 else
10074 {
10075 unsigned long extsymoff;
10076
10077 extsymoff = 0;
10078 if (!elf_bad_symtab (input_bfd))
10079 extsymoff = symtab_hdr->sh_info;
10080 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10081 while (h->root.type == bfd_link_hash_indirect
10082 || h->root.type == bfd_link_hash_warning)
10083 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10084
10085 sec = NULL;
10086 if (h->root.type == bfd_link_hash_defined
10087 || h->root.type == bfd_link_hash_defweak)
10088 sec = h->root.u.def.section;
10089 }
10090
10091 if (sec != NULL && discarded_section (sec))
10092 {
10093 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10094 input_section, &rel, &relend,
10095 rel_reloc, howto, contents);
10096 continue;
10097 }
10098
10099 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10100 {
10101 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10102 64-bit code, but make sure all their addresses are in the
10103 lowermost or uppermost 32-bit section of the 64-bit address
10104 space. Thus, when they use an R_MIPS_64 they mean what is
10105 usually meant by R_MIPS_32, with the exception that the
10106 stored value is sign-extended to 64 bits. */
10107 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10108
10109 /* On big-endian systems, we need to lie about the position
10110 of the reloc. */
10111 if (bfd_big_endian (input_bfd))
10112 rel->r_offset += 4;
10113 }
10114
10115 if (!use_saved_addend_p)
10116 {
10117 /* If these relocations were originally of the REL variety,
10118 we must pull the addend out of the field that will be
10119 relocated. Otherwise, we simply use the contents of the
10120 RELA relocation. */
10121 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10122 relocs, rel))
10123 {
10124 rela_relocation_p = FALSE;
10125 addend = mips_elf_read_rel_addend (input_bfd, rel,
10126 howto, contents);
10127 if (hi16_reloc_p (r_type)
10128 || (got16_reloc_p (r_type)
10129 && mips_elf_local_relocation_p (input_bfd, rel,
10130 local_sections)))
10131 {
10132 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10133 contents, &addend))
10134 {
10135 if (h)
10136 name = h->root.root.string;
10137 else
10138 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10139 local_syms + r_symndx,
10140 sec);
10141 (*_bfd_error_handler)
10142 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10143 input_bfd, input_section, name, howto->name,
10144 rel->r_offset);
10145 }
10146 }
10147 else
10148 addend <<= howto->rightshift;
10149 }
10150 else
10151 addend = rel->r_addend;
10152 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10153 local_syms, local_sections, rel);
10154 }
10155
10156 if (bfd_link_relocatable (info))
10157 {
10158 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10159 && bfd_big_endian (input_bfd))
10160 rel->r_offset -= 4;
10161
10162 if (!rela_relocation_p && rel->r_addend)
10163 {
10164 addend += rel->r_addend;
10165 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10166 addend = mips_elf_high (addend);
10167 else if (r_type == R_MIPS_HIGHER)
10168 addend = mips_elf_higher (addend);
10169 else if (r_type == R_MIPS_HIGHEST)
10170 addend = mips_elf_highest (addend);
10171 else
10172 addend >>= howto->rightshift;
10173
10174 /* We use the source mask, rather than the destination
10175 mask because the place to which we are writing will be
10176 source of the addend in the final link. */
10177 addend &= howto->src_mask;
10178
10179 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10180 /* See the comment above about using R_MIPS_64 in the 32-bit
10181 ABI. Here, we need to update the addend. It would be
10182 possible to get away with just using the R_MIPS_32 reloc
10183 but for endianness. */
10184 {
10185 bfd_vma sign_bits;
10186 bfd_vma low_bits;
10187 bfd_vma high_bits;
10188
10189 if (addend & ((bfd_vma) 1 << 31))
10190 #ifdef BFD64
10191 sign_bits = ((bfd_vma) 1 << 32) - 1;
10192 #else
10193 sign_bits = -1;
10194 #endif
10195 else
10196 sign_bits = 0;
10197
10198 /* If we don't know that we have a 64-bit type,
10199 do two separate stores. */
10200 if (bfd_big_endian (input_bfd))
10201 {
10202 /* Store the sign-bits (which are most significant)
10203 first. */
10204 low_bits = sign_bits;
10205 high_bits = addend;
10206 }
10207 else
10208 {
10209 low_bits = addend;
10210 high_bits = sign_bits;
10211 }
10212 bfd_put_32 (input_bfd, low_bits,
10213 contents + rel->r_offset);
10214 bfd_put_32 (input_bfd, high_bits,
10215 contents + rel->r_offset + 4);
10216 continue;
10217 }
10218
10219 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10220 input_bfd, input_section,
10221 contents, FALSE))
10222 return FALSE;
10223 }
10224
10225 /* Go on to the next relocation. */
10226 continue;
10227 }
10228
10229 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10230 relocations for the same offset. In that case we are
10231 supposed to treat the output of each relocation as the addend
10232 for the next. */
10233 if (rel + 1 < relend
10234 && rel->r_offset == rel[1].r_offset
10235 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10236 use_saved_addend_p = TRUE;
10237 else
10238 use_saved_addend_p = FALSE;
10239
10240 /* Figure out what value we are supposed to relocate. */
10241 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10242 input_section, info, rel,
10243 addend, howto, local_syms,
10244 local_sections, &value,
10245 &name, &cross_mode_jump_p,
10246 use_saved_addend_p))
10247 {
10248 case bfd_reloc_continue:
10249 /* There's nothing to do. */
10250 continue;
10251
10252 case bfd_reloc_undefined:
10253 /* mips_elf_calculate_relocation already called the
10254 undefined_symbol callback. There's no real point in
10255 trying to perform the relocation at this point, so we
10256 just skip ahead to the next relocation. */
10257 continue;
10258
10259 case bfd_reloc_notsupported:
10260 msg = _("internal error: unsupported relocation error");
10261 info->callbacks->warning
10262 (info, msg, name, input_bfd, input_section, rel->r_offset);
10263 return FALSE;
10264
10265 case bfd_reloc_overflow:
10266 if (use_saved_addend_p)
10267 /* Ignore overflow until we reach the last relocation for
10268 a given location. */
10269 ;
10270 else
10271 {
10272 struct mips_elf_link_hash_table *htab;
10273
10274 htab = mips_elf_hash_table (info);
10275 BFD_ASSERT (htab != NULL);
10276 BFD_ASSERT (name != NULL);
10277 if (!htab->small_data_overflow_reported
10278 && (gprel16_reloc_p (howto->type)
10279 || literal_reloc_p (howto->type)))
10280 {
10281 msg = _("small-data section exceeds 64KB;"
10282 " lower small-data size limit (see option -G)");
10283
10284 htab->small_data_overflow_reported = TRUE;
10285 (*info->callbacks->einfo) ("%P: %s\n", msg);
10286 }
10287 (*info->callbacks->reloc_overflow)
10288 (info, NULL, name, howto->name, (bfd_vma) 0,
10289 input_bfd, input_section, rel->r_offset);
10290 }
10291 break;
10292
10293 case bfd_reloc_ok:
10294 break;
10295
10296 case bfd_reloc_outofrange:
10297 msg = NULL;
10298 if (jal_reloc_p (howto->type))
10299 msg = _("JALX to a non-word-aligned address");
10300 else if (b_reloc_p (howto->type))
10301 msg = _("Branch to a non-instruction-aligned address");
10302 else if (aligned_pcrel_reloc_p (howto->type))
10303 msg = _("PC-relative load from unaligned address");
10304 if (msg)
10305 {
10306 info->callbacks->einfo
10307 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10308 break;
10309 }
10310 /* Fall through. */
10311
10312 default:
10313 abort ();
10314 break;
10315 }
10316
10317 /* If we've got another relocation for the address, keep going
10318 until we reach the last one. */
10319 if (use_saved_addend_p)
10320 {
10321 addend = value;
10322 continue;
10323 }
10324
10325 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10326 /* See the comment above about using R_MIPS_64 in the 32-bit
10327 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10328 that calculated the right value. Now, however, we
10329 sign-extend the 32-bit result to 64-bits, and store it as a
10330 64-bit value. We are especially generous here in that we
10331 go to extreme lengths to support this usage on systems with
10332 only a 32-bit VMA. */
10333 {
10334 bfd_vma sign_bits;
10335 bfd_vma low_bits;
10336 bfd_vma high_bits;
10337
10338 if (value & ((bfd_vma) 1 << 31))
10339 #ifdef BFD64
10340 sign_bits = ((bfd_vma) 1 << 32) - 1;
10341 #else
10342 sign_bits = -1;
10343 #endif
10344 else
10345 sign_bits = 0;
10346
10347 /* If we don't know that we have a 64-bit type,
10348 do two separate stores. */
10349 if (bfd_big_endian (input_bfd))
10350 {
10351 /* Undo what we did above. */
10352 rel->r_offset -= 4;
10353 /* Store the sign-bits (which are most significant)
10354 first. */
10355 low_bits = sign_bits;
10356 high_bits = value;
10357 }
10358 else
10359 {
10360 low_bits = value;
10361 high_bits = sign_bits;
10362 }
10363 bfd_put_32 (input_bfd, low_bits,
10364 contents + rel->r_offset);
10365 bfd_put_32 (input_bfd, high_bits,
10366 contents + rel->r_offset + 4);
10367 continue;
10368 }
10369
10370 /* Actually perform the relocation. */
10371 if (! mips_elf_perform_relocation (info, howto, rel, value,
10372 input_bfd, input_section,
10373 contents, cross_mode_jump_p))
10374 return FALSE;
10375 }
10376
10377 return TRUE;
10378 }
10379 \f
10380 /* A function that iterates over each entry in la25_stubs and fills
10381 in the code for each one. DATA points to a mips_htab_traverse_info. */
10382
10383 static int
10384 mips_elf_create_la25_stub (void **slot, void *data)
10385 {
10386 struct mips_htab_traverse_info *hti;
10387 struct mips_elf_link_hash_table *htab;
10388 struct mips_elf_la25_stub *stub;
10389 asection *s;
10390 bfd_byte *loc;
10391 bfd_vma offset, target, target_high, target_low;
10392
10393 stub = (struct mips_elf_la25_stub *) *slot;
10394 hti = (struct mips_htab_traverse_info *) data;
10395 htab = mips_elf_hash_table (hti->info);
10396 BFD_ASSERT (htab != NULL);
10397
10398 /* Create the section contents, if we haven't already. */
10399 s = stub->stub_section;
10400 loc = s->contents;
10401 if (loc == NULL)
10402 {
10403 loc = bfd_malloc (s->size);
10404 if (loc == NULL)
10405 {
10406 hti->error = TRUE;
10407 return FALSE;
10408 }
10409 s->contents = loc;
10410 }
10411
10412 /* Work out where in the section this stub should go. */
10413 offset = stub->offset;
10414
10415 /* Work out the target address. */
10416 target = mips_elf_get_la25_target (stub, &s);
10417 target += s->output_section->vma + s->output_offset;
10418
10419 target_high = ((target + 0x8000) >> 16) & 0xffff;
10420 target_low = (target & 0xffff);
10421
10422 if (stub->stub_section != htab->strampoline)
10423 {
10424 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10425 of the section and write the two instructions at the end. */
10426 memset (loc, 0, offset);
10427 loc += offset;
10428 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10429 {
10430 bfd_put_micromips_32 (hti->output_bfd,
10431 LA25_LUI_MICROMIPS (target_high),
10432 loc);
10433 bfd_put_micromips_32 (hti->output_bfd,
10434 LA25_ADDIU_MICROMIPS (target_low),
10435 loc + 4);
10436 }
10437 else
10438 {
10439 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10440 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10441 }
10442 }
10443 else
10444 {
10445 /* This is trampoline. */
10446 loc += offset;
10447 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10448 {
10449 bfd_put_micromips_32 (hti->output_bfd,
10450 LA25_LUI_MICROMIPS (target_high), loc);
10451 bfd_put_micromips_32 (hti->output_bfd,
10452 LA25_J_MICROMIPS (target), loc + 4);
10453 bfd_put_micromips_32 (hti->output_bfd,
10454 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10455 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10456 }
10457 else
10458 {
10459 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10460 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10461 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10462 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10463 }
10464 }
10465 return TRUE;
10466 }
10467
10468 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10469 adjust it appropriately now. */
10470
10471 static void
10472 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10473 const char *name, Elf_Internal_Sym *sym)
10474 {
10475 /* The linker script takes care of providing names and values for
10476 these, but we must place them into the right sections. */
10477 static const char* const text_section_symbols[] = {
10478 "_ftext",
10479 "_etext",
10480 "__dso_displacement",
10481 "__elf_header",
10482 "__program_header_table",
10483 NULL
10484 };
10485
10486 static const char* const data_section_symbols[] = {
10487 "_fdata",
10488 "_edata",
10489 "_end",
10490 "_fbss",
10491 NULL
10492 };
10493
10494 const char* const *p;
10495 int i;
10496
10497 for (i = 0; i < 2; ++i)
10498 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10499 *p;
10500 ++p)
10501 if (strcmp (*p, name) == 0)
10502 {
10503 /* All of these symbols are given type STT_SECTION by the
10504 IRIX6 linker. */
10505 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10506 sym->st_other = STO_PROTECTED;
10507
10508 /* The IRIX linker puts these symbols in special sections. */
10509 if (i == 0)
10510 sym->st_shndx = SHN_MIPS_TEXT;
10511 else
10512 sym->st_shndx = SHN_MIPS_DATA;
10513
10514 break;
10515 }
10516 }
10517
10518 /* Finish up dynamic symbol handling. We set the contents of various
10519 dynamic sections here. */
10520
10521 bfd_boolean
10522 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10523 struct bfd_link_info *info,
10524 struct elf_link_hash_entry *h,
10525 Elf_Internal_Sym *sym)
10526 {
10527 bfd *dynobj;
10528 asection *sgot;
10529 struct mips_got_info *g, *gg;
10530 const char *name;
10531 int idx;
10532 struct mips_elf_link_hash_table *htab;
10533 struct mips_elf_link_hash_entry *hmips;
10534
10535 htab = mips_elf_hash_table (info);
10536 BFD_ASSERT (htab != NULL);
10537 dynobj = elf_hash_table (info)->dynobj;
10538 hmips = (struct mips_elf_link_hash_entry *) h;
10539
10540 BFD_ASSERT (!htab->is_vxworks);
10541
10542 if (h->plt.plist != NULL
10543 && (h->plt.plist->mips_offset != MINUS_ONE
10544 || h->plt.plist->comp_offset != MINUS_ONE))
10545 {
10546 /* We've decided to create a PLT entry for this symbol. */
10547 bfd_byte *loc;
10548 bfd_vma header_address, got_address;
10549 bfd_vma got_address_high, got_address_low, load;
10550 bfd_vma got_index;
10551 bfd_vma isa_bit;
10552
10553 got_index = h->plt.plist->gotplt_index;
10554
10555 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10556 BFD_ASSERT (h->dynindx != -1);
10557 BFD_ASSERT (htab->splt != NULL);
10558 BFD_ASSERT (got_index != MINUS_ONE);
10559 BFD_ASSERT (!h->def_regular);
10560
10561 /* Calculate the address of the PLT header. */
10562 isa_bit = htab->plt_header_is_comp;
10563 header_address = (htab->splt->output_section->vma
10564 + htab->splt->output_offset + isa_bit);
10565
10566 /* Calculate the address of the .got.plt entry. */
10567 got_address = (htab->sgotplt->output_section->vma
10568 + htab->sgotplt->output_offset
10569 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10570
10571 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10572 got_address_low = got_address & 0xffff;
10573
10574 /* Initially point the .got.plt entry at the PLT header. */
10575 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10576 if (ABI_64_P (output_bfd))
10577 bfd_put_64 (output_bfd, header_address, loc);
10578 else
10579 bfd_put_32 (output_bfd, header_address, loc);
10580
10581 /* Now handle the PLT itself. First the standard entry (the order
10582 does not matter, we just have to pick one). */
10583 if (h->plt.plist->mips_offset != MINUS_ONE)
10584 {
10585 const bfd_vma *plt_entry;
10586 bfd_vma plt_offset;
10587
10588 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10589
10590 BFD_ASSERT (plt_offset <= htab->splt->size);
10591
10592 /* Find out where the .plt entry should go. */
10593 loc = htab->splt->contents + plt_offset;
10594
10595 /* Pick the load opcode. */
10596 load = MIPS_ELF_LOAD_WORD (output_bfd);
10597
10598 /* Fill in the PLT entry itself. */
10599
10600 if (MIPSR6_P (output_bfd))
10601 plt_entry = mipsr6_exec_plt_entry;
10602 else
10603 plt_entry = mips_exec_plt_entry;
10604 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10605 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10606 loc + 4);
10607
10608 if (! LOAD_INTERLOCKS_P (output_bfd))
10609 {
10610 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10611 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10612 }
10613 else
10614 {
10615 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10616 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10617 loc + 12);
10618 }
10619 }
10620
10621 /* Now the compressed entry. They come after any standard ones. */
10622 if (h->plt.plist->comp_offset != MINUS_ONE)
10623 {
10624 bfd_vma plt_offset;
10625
10626 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10627 + h->plt.plist->comp_offset);
10628
10629 BFD_ASSERT (plt_offset <= htab->splt->size);
10630
10631 /* Find out where the .plt entry should go. */
10632 loc = htab->splt->contents + plt_offset;
10633
10634 /* Fill in the PLT entry itself. */
10635 if (!MICROMIPS_P (output_bfd))
10636 {
10637 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10638
10639 bfd_put_16 (output_bfd, plt_entry[0], loc);
10640 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10641 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10642 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10643 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10644 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10645 bfd_put_32 (output_bfd, got_address, loc + 12);
10646 }
10647 else if (htab->insn32)
10648 {
10649 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10650
10651 bfd_put_16 (output_bfd, plt_entry[0], loc);
10652 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10653 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10654 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10655 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10656 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10657 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10658 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10659 }
10660 else
10661 {
10662 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10663 bfd_signed_vma gotpc_offset;
10664 bfd_vma loc_address;
10665
10666 BFD_ASSERT (got_address % 4 == 0);
10667
10668 loc_address = (htab->splt->output_section->vma
10669 + htab->splt->output_offset + plt_offset);
10670 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10671
10672 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10673 if (gotpc_offset + 0x1000000 >= 0x2000000)
10674 {
10675 (*_bfd_error_handler)
10676 (_("%B: `%A' offset of %ld from `%A' "
10677 "beyond the range of ADDIUPC"),
10678 output_bfd,
10679 htab->sgotplt->output_section,
10680 htab->splt->output_section,
10681 (long) gotpc_offset);
10682 bfd_set_error (bfd_error_no_error);
10683 return FALSE;
10684 }
10685 bfd_put_16 (output_bfd,
10686 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10687 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10688 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10689 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10690 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10691 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10692 }
10693 }
10694
10695 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10696 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
10697 got_index - 2, h->dynindx,
10698 R_MIPS_JUMP_SLOT, got_address);
10699
10700 /* We distinguish between PLT entries and lazy-binding stubs by
10701 giving the former an st_other value of STO_MIPS_PLT. Set the
10702 flag and leave the value if there are any relocations in the
10703 binary where pointer equality matters. */
10704 sym->st_shndx = SHN_UNDEF;
10705 if (h->pointer_equality_needed)
10706 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10707 else
10708 {
10709 sym->st_value = 0;
10710 sym->st_other = 0;
10711 }
10712 }
10713
10714 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10715 {
10716 /* We've decided to create a lazy-binding stub. */
10717 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10718 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10719 bfd_vma stub_size = htab->function_stub_size;
10720 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10721 bfd_vma isa_bit = micromips_p;
10722 bfd_vma stub_big_size;
10723
10724 if (!micromips_p)
10725 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10726 else if (htab->insn32)
10727 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10728 else
10729 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10730
10731 /* This symbol has a stub. Set it up. */
10732
10733 BFD_ASSERT (h->dynindx != -1);
10734
10735 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10736
10737 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10738 sign extension at runtime in the stub, resulting in a negative
10739 index value. */
10740 if (h->dynindx & ~0x7fffffff)
10741 return FALSE;
10742
10743 /* Fill the stub. */
10744 if (micromips_p)
10745 {
10746 idx = 0;
10747 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10748 stub + idx);
10749 idx += 4;
10750 if (htab->insn32)
10751 {
10752 bfd_put_micromips_32 (output_bfd,
10753 STUB_MOVE32_MICROMIPS, stub + idx);
10754 idx += 4;
10755 }
10756 else
10757 {
10758 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10759 idx += 2;
10760 }
10761 if (stub_size == stub_big_size)
10762 {
10763 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10764
10765 bfd_put_micromips_32 (output_bfd,
10766 STUB_LUI_MICROMIPS (dynindx_hi),
10767 stub + idx);
10768 idx += 4;
10769 }
10770 if (htab->insn32)
10771 {
10772 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10773 stub + idx);
10774 idx += 4;
10775 }
10776 else
10777 {
10778 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10779 idx += 2;
10780 }
10781
10782 /* If a large stub is not required and sign extension is not a
10783 problem, then use legacy code in the stub. */
10784 if (stub_size == stub_big_size)
10785 bfd_put_micromips_32 (output_bfd,
10786 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10787 stub + idx);
10788 else if (h->dynindx & ~0x7fff)
10789 bfd_put_micromips_32 (output_bfd,
10790 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10791 stub + idx);
10792 else
10793 bfd_put_micromips_32 (output_bfd,
10794 STUB_LI16S_MICROMIPS (output_bfd,
10795 h->dynindx),
10796 stub + idx);
10797 }
10798 else
10799 {
10800 idx = 0;
10801 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10802 idx += 4;
10803 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10804 idx += 4;
10805 if (stub_size == stub_big_size)
10806 {
10807 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10808 stub + idx);
10809 idx += 4;
10810 }
10811 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10812 idx += 4;
10813
10814 /* If a large stub is not required and sign extension is not a
10815 problem, then use legacy code in the stub. */
10816 if (stub_size == stub_big_size)
10817 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10818 stub + idx);
10819 else if (h->dynindx & ~0x7fff)
10820 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10821 stub + idx);
10822 else
10823 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10824 stub + idx);
10825 }
10826
10827 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10828 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10829 stub, stub_size);
10830
10831 /* Mark the symbol as undefined. stub_offset != -1 occurs
10832 only for the referenced symbol. */
10833 sym->st_shndx = SHN_UNDEF;
10834
10835 /* The run-time linker uses the st_value field of the symbol
10836 to reset the global offset table entry for this external
10837 to its stub address when unlinking a shared object. */
10838 sym->st_value = (htab->sstubs->output_section->vma
10839 + htab->sstubs->output_offset
10840 + h->plt.plist->stub_offset
10841 + isa_bit);
10842 sym->st_other = other;
10843 }
10844
10845 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10846 refer to the stub, since only the stub uses the standard calling
10847 conventions. */
10848 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10849 {
10850 BFD_ASSERT (hmips->need_fn_stub);
10851 sym->st_value = (hmips->fn_stub->output_section->vma
10852 + hmips->fn_stub->output_offset);
10853 sym->st_size = hmips->fn_stub->size;
10854 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10855 }
10856
10857 BFD_ASSERT (h->dynindx != -1
10858 || h->forced_local);
10859
10860 sgot = htab->sgot;
10861 g = htab->got_info;
10862 BFD_ASSERT (g != NULL);
10863
10864 /* Run through the global symbol table, creating GOT entries for all
10865 the symbols that need them. */
10866 if (hmips->global_got_area != GGA_NONE)
10867 {
10868 bfd_vma offset;
10869 bfd_vma value;
10870
10871 value = sym->st_value;
10872 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10873 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10874 }
10875
10876 if (hmips->global_got_area != GGA_NONE && g->next)
10877 {
10878 struct mips_got_entry e, *p;
10879 bfd_vma entry;
10880 bfd_vma offset;
10881
10882 gg = g;
10883
10884 e.abfd = output_bfd;
10885 e.symndx = -1;
10886 e.d.h = hmips;
10887 e.tls_type = GOT_TLS_NONE;
10888
10889 for (g = g->next; g->next != gg; g = g->next)
10890 {
10891 if (g->got_entries
10892 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10893 &e)))
10894 {
10895 offset = p->gotidx;
10896 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
10897 if (bfd_link_pic (info)
10898 || (elf_hash_table (info)->dynamic_sections_created
10899 && p->d.h != NULL
10900 && p->d.h->root.def_dynamic
10901 && !p->d.h->root.def_regular))
10902 {
10903 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10904 the various compatibility problems, it's easier to mock
10905 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10906 mips_elf_create_dynamic_relocation to calculate the
10907 appropriate addend. */
10908 Elf_Internal_Rela rel[3];
10909
10910 memset (rel, 0, sizeof (rel));
10911 if (ABI_64_P (output_bfd))
10912 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10913 else
10914 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10915 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10916
10917 entry = 0;
10918 if (! (mips_elf_create_dynamic_relocation
10919 (output_bfd, info, rel,
10920 e.d.h, NULL, sym->st_value, &entry, sgot)))
10921 return FALSE;
10922 }
10923 else
10924 entry = sym->st_value;
10925 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10926 }
10927 }
10928 }
10929
10930 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10931 name = h->root.root.string;
10932 if (h == elf_hash_table (info)->hdynamic
10933 || h == elf_hash_table (info)->hgot)
10934 sym->st_shndx = SHN_ABS;
10935 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10936 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10937 {
10938 sym->st_shndx = SHN_ABS;
10939 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10940 sym->st_value = 1;
10941 }
10942 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10943 {
10944 sym->st_shndx = SHN_ABS;
10945 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10946 sym->st_value = elf_gp (output_bfd);
10947 }
10948 else if (SGI_COMPAT (output_bfd))
10949 {
10950 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10951 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10952 {
10953 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10954 sym->st_other = STO_PROTECTED;
10955 sym->st_value = 0;
10956 sym->st_shndx = SHN_MIPS_DATA;
10957 }
10958 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10959 {
10960 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10961 sym->st_other = STO_PROTECTED;
10962 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10963 sym->st_shndx = SHN_ABS;
10964 }
10965 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10966 {
10967 if (h->type == STT_FUNC)
10968 sym->st_shndx = SHN_MIPS_TEXT;
10969 else if (h->type == STT_OBJECT)
10970 sym->st_shndx = SHN_MIPS_DATA;
10971 }
10972 }
10973
10974 /* Emit a copy reloc, if needed. */
10975 if (h->needs_copy)
10976 {
10977 asection *s;
10978 bfd_vma symval;
10979
10980 BFD_ASSERT (h->dynindx != -1);
10981 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10982
10983 s = mips_elf_rel_dyn_section (info, FALSE);
10984 symval = (h->root.u.def.section->output_section->vma
10985 + h->root.u.def.section->output_offset
10986 + h->root.u.def.value);
10987 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10988 h->dynindx, R_MIPS_COPY, symval);
10989 }
10990
10991 /* Handle the IRIX6-specific symbols. */
10992 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10993 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10994
10995 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
10996 to treat compressed symbols like any other. */
10997 if (ELF_ST_IS_MIPS16 (sym->st_other))
10998 {
10999 BFD_ASSERT (sym->st_value & 1);
11000 sym->st_other -= STO_MIPS16;
11001 }
11002 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11003 {
11004 BFD_ASSERT (sym->st_value & 1);
11005 sym->st_other -= STO_MICROMIPS;
11006 }
11007
11008 return TRUE;
11009 }
11010
11011 /* Likewise, for VxWorks. */
11012
11013 bfd_boolean
11014 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11015 struct bfd_link_info *info,
11016 struct elf_link_hash_entry *h,
11017 Elf_Internal_Sym *sym)
11018 {
11019 bfd *dynobj;
11020 asection *sgot;
11021 struct mips_got_info *g;
11022 struct mips_elf_link_hash_table *htab;
11023 struct mips_elf_link_hash_entry *hmips;
11024
11025 htab = mips_elf_hash_table (info);
11026 BFD_ASSERT (htab != NULL);
11027 dynobj = elf_hash_table (info)->dynobj;
11028 hmips = (struct mips_elf_link_hash_entry *) h;
11029
11030 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11031 {
11032 bfd_byte *loc;
11033 bfd_vma plt_address, got_address, got_offset, branch_offset;
11034 Elf_Internal_Rela rel;
11035 static const bfd_vma *plt_entry;
11036 bfd_vma gotplt_index;
11037 bfd_vma plt_offset;
11038
11039 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11040 gotplt_index = h->plt.plist->gotplt_index;
11041
11042 BFD_ASSERT (h->dynindx != -1);
11043 BFD_ASSERT (htab->splt != NULL);
11044 BFD_ASSERT (gotplt_index != MINUS_ONE);
11045 BFD_ASSERT (plt_offset <= htab->splt->size);
11046
11047 /* Calculate the address of the .plt entry. */
11048 plt_address = (htab->splt->output_section->vma
11049 + htab->splt->output_offset
11050 + plt_offset);
11051
11052 /* Calculate the address of the .got.plt entry. */
11053 got_address = (htab->sgotplt->output_section->vma
11054 + htab->sgotplt->output_offset
11055 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11056
11057 /* Calculate the offset of the .got.plt entry from
11058 _GLOBAL_OFFSET_TABLE_. */
11059 got_offset = mips_elf_gotplt_index (info, h);
11060
11061 /* Calculate the offset for the branch at the start of the PLT
11062 entry. The branch jumps to the beginning of .plt. */
11063 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11064
11065 /* Fill in the initial value of the .got.plt entry. */
11066 bfd_put_32 (output_bfd, plt_address,
11067 (htab->sgotplt->contents
11068 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11069
11070 /* Find out where the .plt entry should go. */
11071 loc = htab->splt->contents + plt_offset;
11072
11073 if (bfd_link_pic (info))
11074 {
11075 plt_entry = mips_vxworks_shared_plt_entry;
11076 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11077 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11078 }
11079 else
11080 {
11081 bfd_vma got_address_high, got_address_low;
11082
11083 plt_entry = mips_vxworks_exec_plt_entry;
11084 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11085 got_address_low = got_address & 0xffff;
11086
11087 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11088 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11089 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11090 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11091 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11092 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11093 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11094 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11095
11096 loc = (htab->srelplt2->contents
11097 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11098
11099 /* Emit a relocation for the .got.plt entry. */
11100 rel.r_offset = got_address;
11101 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11102 rel.r_addend = plt_offset;
11103 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11104
11105 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11106 loc += sizeof (Elf32_External_Rela);
11107 rel.r_offset = plt_address + 8;
11108 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11109 rel.r_addend = got_offset;
11110 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11111
11112 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11113 loc += sizeof (Elf32_External_Rela);
11114 rel.r_offset += 4;
11115 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11116 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11117 }
11118
11119 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11120 loc = (htab->srelplt->contents
11121 + gotplt_index * sizeof (Elf32_External_Rela));
11122 rel.r_offset = got_address;
11123 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11124 rel.r_addend = 0;
11125 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11126
11127 if (!h->def_regular)
11128 sym->st_shndx = SHN_UNDEF;
11129 }
11130
11131 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11132
11133 sgot = htab->sgot;
11134 g = htab->got_info;
11135 BFD_ASSERT (g != NULL);
11136
11137 /* See if this symbol has an entry in the GOT. */
11138 if (hmips->global_got_area != GGA_NONE)
11139 {
11140 bfd_vma offset;
11141 Elf_Internal_Rela outrel;
11142 bfd_byte *loc;
11143 asection *s;
11144
11145 /* Install the symbol value in the GOT. */
11146 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11147 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11148
11149 /* Add a dynamic relocation for it. */
11150 s = mips_elf_rel_dyn_section (info, FALSE);
11151 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11152 outrel.r_offset = (sgot->output_section->vma
11153 + sgot->output_offset
11154 + offset);
11155 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11156 outrel.r_addend = 0;
11157 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11158 }
11159
11160 /* Emit a copy reloc, if needed. */
11161 if (h->needs_copy)
11162 {
11163 Elf_Internal_Rela rel;
11164
11165 BFD_ASSERT (h->dynindx != -1);
11166
11167 rel.r_offset = (h->root.u.def.section->output_section->vma
11168 + h->root.u.def.section->output_offset
11169 + h->root.u.def.value);
11170 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11171 rel.r_addend = 0;
11172 bfd_elf32_swap_reloca_out (output_bfd, &rel,
11173 htab->srelbss->contents
11174 + (htab->srelbss->reloc_count
11175 * sizeof (Elf32_External_Rela)));
11176 ++htab->srelbss->reloc_count;
11177 }
11178
11179 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11180 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11181 sym->st_value &= ~1;
11182
11183 return TRUE;
11184 }
11185
11186 /* Write out a plt0 entry to the beginning of .plt. */
11187
11188 static bfd_boolean
11189 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11190 {
11191 bfd_byte *loc;
11192 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11193 static const bfd_vma *plt_entry;
11194 struct mips_elf_link_hash_table *htab;
11195
11196 htab = mips_elf_hash_table (info);
11197 BFD_ASSERT (htab != NULL);
11198
11199 if (ABI_64_P (output_bfd))
11200 plt_entry = mips_n64_exec_plt0_entry;
11201 else if (ABI_N32_P (output_bfd))
11202 plt_entry = mips_n32_exec_plt0_entry;
11203 else if (!htab->plt_header_is_comp)
11204 plt_entry = mips_o32_exec_plt0_entry;
11205 else if (htab->insn32)
11206 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11207 else
11208 plt_entry = micromips_o32_exec_plt0_entry;
11209
11210 /* Calculate the value of .got.plt. */
11211 gotplt_value = (htab->sgotplt->output_section->vma
11212 + htab->sgotplt->output_offset);
11213 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11214 gotplt_value_low = gotplt_value & 0xffff;
11215
11216 /* The PLT sequence is not safe for N64 if .got.plt's address can
11217 not be loaded in two instructions. */
11218 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11219 || ~(gotplt_value | 0x7fffffff) == 0);
11220
11221 /* Install the PLT header. */
11222 loc = htab->splt->contents;
11223 if (plt_entry == micromips_o32_exec_plt0_entry)
11224 {
11225 bfd_vma gotpc_offset;
11226 bfd_vma loc_address;
11227 size_t i;
11228
11229 BFD_ASSERT (gotplt_value % 4 == 0);
11230
11231 loc_address = (htab->splt->output_section->vma
11232 + htab->splt->output_offset);
11233 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11234
11235 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11236 if (gotpc_offset + 0x1000000 >= 0x2000000)
11237 {
11238 (*_bfd_error_handler)
11239 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11240 output_bfd,
11241 htab->sgotplt->output_section,
11242 htab->splt->output_section,
11243 (long) gotpc_offset);
11244 bfd_set_error (bfd_error_no_error);
11245 return FALSE;
11246 }
11247 bfd_put_16 (output_bfd,
11248 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11249 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11250 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11251 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11252 }
11253 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11254 {
11255 size_t i;
11256
11257 bfd_put_16 (output_bfd, plt_entry[0], loc);
11258 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11259 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11260 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11261 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11262 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11263 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11264 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11265 }
11266 else
11267 {
11268 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11269 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11270 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11271 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11272 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11273 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11274 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11275 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11276 }
11277
11278 return TRUE;
11279 }
11280
11281 /* Install the PLT header for a VxWorks executable and finalize the
11282 contents of .rela.plt.unloaded. */
11283
11284 static void
11285 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11286 {
11287 Elf_Internal_Rela rela;
11288 bfd_byte *loc;
11289 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11290 static const bfd_vma *plt_entry;
11291 struct mips_elf_link_hash_table *htab;
11292
11293 htab = mips_elf_hash_table (info);
11294 BFD_ASSERT (htab != NULL);
11295
11296 plt_entry = mips_vxworks_exec_plt0_entry;
11297
11298 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11299 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11300 + htab->root.hgot->root.u.def.section->output_offset
11301 + htab->root.hgot->root.u.def.value);
11302
11303 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11304 got_value_low = got_value & 0xffff;
11305
11306 /* Calculate the address of the PLT header. */
11307 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11308
11309 /* Install the PLT header. */
11310 loc = htab->splt->contents;
11311 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11312 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11313 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11314 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11315 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11316 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11317
11318 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11319 loc = htab->srelplt2->contents;
11320 rela.r_offset = plt_address;
11321 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11322 rela.r_addend = 0;
11323 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11324 loc += sizeof (Elf32_External_Rela);
11325
11326 /* Output the relocation for the following addiu of
11327 %lo(_GLOBAL_OFFSET_TABLE_). */
11328 rela.r_offset += 4;
11329 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11330 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11331 loc += sizeof (Elf32_External_Rela);
11332
11333 /* Fix up the remaining relocations. They may have the wrong
11334 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11335 in which symbols were output. */
11336 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11337 {
11338 Elf_Internal_Rela rel;
11339
11340 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11341 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11342 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11343 loc += sizeof (Elf32_External_Rela);
11344
11345 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11346 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11347 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11348 loc += sizeof (Elf32_External_Rela);
11349
11350 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11351 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11352 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11353 loc += sizeof (Elf32_External_Rela);
11354 }
11355 }
11356
11357 /* Install the PLT header for a VxWorks shared library. */
11358
11359 static void
11360 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11361 {
11362 unsigned int i;
11363 struct mips_elf_link_hash_table *htab;
11364
11365 htab = mips_elf_hash_table (info);
11366 BFD_ASSERT (htab != NULL);
11367
11368 /* We just need to copy the entry byte-by-byte. */
11369 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11370 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11371 htab->splt->contents + i * 4);
11372 }
11373
11374 /* Finish up the dynamic sections. */
11375
11376 bfd_boolean
11377 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11378 struct bfd_link_info *info)
11379 {
11380 bfd *dynobj;
11381 asection *sdyn;
11382 asection *sgot;
11383 struct mips_got_info *gg, *g;
11384 struct mips_elf_link_hash_table *htab;
11385
11386 htab = mips_elf_hash_table (info);
11387 BFD_ASSERT (htab != NULL);
11388
11389 dynobj = elf_hash_table (info)->dynobj;
11390
11391 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11392
11393 sgot = htab->sgot;
11394 gg = htab->got_info;
11395
11396 if (elf_hash_table (info)->dynamic_sections_created)
11397 {
11398 bfd_byte *b;
11399 int dyn_to_skip = 0, dyn_skipped = 0;
11400
11401 BFD_ASSERT (sdyn != NULL);
11402 BFD_ASSERT (gg != NULL);
11403
11404 g = mips_elf_bfd_got (output_bfd, FALSE);
11405 BFD_ASSERT (g != NULL);
11406
11407 for (b = sdyn->contents;
11408 b < sdyn->contents + sdyn->size;
11409 b += MIPS_ELF_DYN_SIZE (dynobj))
11410 {
11411 Elf_Internal_Dyn dyn;
11412 const char *name;
11413 size_t elemsize;
11414 asection *s;
11415 bfd_boolean swap_out_p;
11416
11417 /* Read in the current dynamic entry. */
11418 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11419
11420 /* Assume that we're going to modify it and write it out. */
11421 swap_out_p = TRUE;
11422
11423 switch (dyn.d_tag)
11424 {
11425 case DT_RELENT:
11426 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11427 break;
11428
11429 case DT_RELAENT:
11430 BFD_ASSERT (htab->is_vxworks);
11431 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11432 break;
11433
11434 case DT_STRSZ:
11435 /* Rewrite DT_STRSZ. */
11436 dyn.d_un.d_val =
11437 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11438 break;
11439
11440 case DT_PLTGOT:
11441 s = htab->sgot;
11442 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11443 break;
11444
11445 case DT_MIPS_PLTGOT:
11446 s = htab->sgotplt;
11447 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11448 break;
11449
11450 case DT_MIPS_RLD_VERSION:
11451 dyn.d_un.d_val = 1; /* XXX */
11452 break;
11453
11454 case DT_MIPS_FLAGS:
11455 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11456 break;
11457
11458 case DT_MIPS_TIME_STAMP:
11459 {
11460 time_t t;
11461 time (&t);
11462 dyn.d_un.d_val = t;
11463 }
11464 break;
11465
11466 case DT_MIPS_ICHECKSUM:
11467 /* XXX FIXME: */
11468 swap_out_p = FALSE;
11469 break;
11470
11471 case DT_MIPS_IVERSION:
11472 /* XXX FIXME: */
11473 swap_out_p = FALSE;
11474 break;
11475
11476 case DT_MIPS_BASE_ADDRESS:
11477 s = output_bfd->sections;
11478 BFD_ASSERT (s != NULL);
11479 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11480 break;
11481
11482 case DT_MIPS_LOCAL_GOTNO:
11483 dyn.d_un.d_val = g->local_gotno;
11484 break;
11485
11486 case DT_MIPS_UNREFEXTNO:
11487 /* The index into the dynamic symbol table which is the
11488 entry of the first external symbol that is not
11489 referenced within the same object. */
11490 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11491 break;
11492
11493 case DT_MIPS_GOTSYM:
11494 if (htab->global_gotsym)
11495 {
11496 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11497 break;
11498 }
11499 /* In case if we don't have global got symbols we default
11500 to setting DT_MIPS_GOTSYM to the same value as
11501 DT_MIPS_SYMTABNO, so we just fall through. */
11502
11503 case DT_MIPS_SYMTABNO:
11504 name = ".dynsym";
11505 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11506 s = bfd_get_linker_section (dynobj, name);
11507
11508 if (s != NULL)
11509 dyn.d_un.d_val = s->size / elemsize;
11510 else
11511 dyn.d_un.d_val = 0;
11512 break;
11513
11514 case DT_MIPS_HIPAGENO:
11515 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11516 break;
11517
11518 case DT_MIPS_RLD_MAP:
11519 {
11520 struct elf_link_hash_entry *h;
11521 h = mips_elf_hash_table (info)->rld_symbol;
11522 if (!h)
11523 {
11524 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11525 swap_out_p = FALSE;
11526 break;
11527 }
11528 s = h->root.u.def.section;
11529
11530 /* The MIPS_RLD_MAP tag stores the absolute address of the
11531 debug pointer. */
11532 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11533 + h->root.u.def.value);
11534 }
11535 break;
11536
11537 case DT_MIPS_RLD_MAP_REL:
11538 {
11539 struct elf_link_hash_entry *h;
11540 bfd_vma dt_addr, rld_addr;
11541 h = mips_elf_hash_table (info)->rld_symbol;
11542 if (!h)
11543 {
11544 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11545 swap_out_p = FALSE;
11546 break;
11547 }
11548 s = h->root.u.def.section;
11549
11550 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11551 pointer, relative to the address of the tag. */
11552 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11553 + (b - sdyn->contents));
11554 rld_addr = (s->output_section->vma + s->output_offset
11555 + h->root.u.def.value);
11556 dyn.d_un.d_ptr = rld_addr - dt_addr;
11557 }
11558 break;
11559
11560 case DT_MIPS_OPTIONS:
11561 s = (bfd_get_section_by_name
11562 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11563 dyn.d_un.d_ptr = s->vma;
11564 break;
11565
11566 case DT_RELASZ:
11567 BFD_ASSERT (htab->is_vxworks);
11568 /* The count does not include the JUMP_SLOT relocations. */
11569 if (htab->srelplt)
11570 dyn.d_un.d_val -= htab->srelplt->size;
11571 break;
11572
11573 case DT_PLTREL:
11574 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11575 if (htab->is_vxworks)
11576 dyn.d_un.d_val = DT_RELA;
11577 else
11578 dyn.d_un.d_val = DT_REL;
11579 break;
11580
11581 case DT_PLTRELSZ:
11582 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11583 dyn.d_un.d_val = htab->srelplt->size;
11584 break;
11585
11586 case DT_JMPREL:
11587 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11588 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
11589 + htab->srelplt->output_offset);
11590 break;
11591
11592 case DT_TEXTREL:
11593 /* If we didn't need any text relocations after all, delete
11594 the dynamic tag. */
11595 if (!(info->flags & DF_TEXTREL))
11596 {
11597 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11598 swap_out_p = FALSE;
11599 }
11600 break;
11601
11602 case DT_FLAGS:
11603 /* If we didn't need any text relocations after all, clear
11604 DF_TEXTREL from DT_FLAGS. */
11605 if (!(info->flags & DF_TEXTREL))
11606 dyn.d_un.d_val &= ~DF_TEXTREL;
11607 else
11608 swap_out_p = FALSE;
11609 break;
11610
11611 default:
11612 swap_out_p = FALSE;
11613 if (htab->is_vxworks
11614 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11615 swap_out_p = TRUE;
11616 break;
11617 }
11618
11619 if (swap_out_p || dyn_skipped)
11620 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11621 (dynobj, &dyn, b - dyn_skipped);
11622
11623 if (dyn_to_skip)
11624 {
11625 dyn_skipped += dyn_to_skip;
11626 dyn_to_skip = 0;
11627 }
11628 }
11629
11630 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11631 if (dyn_skipped > 0)
11632 memset (b - dyn_skipped, 0, dyn_skipped);
11633 }
11634
11635 if (sgot != NULL && sgot->size > 0
11636 && !bfd_is_abs_section (sgot->output_section))
11637 {
11638 if (htab->is_vxworks)
11639 {
11640 /* The first entry of the global offset table points to the
11641 ".dynamic" section. The second is initialized by the
11642 loader and contains the shared library identifier.
11643 The third is also initialized by the loader and points
11644 to the lazy resolution stub. */
11645 MIPS_ELF_PUT_WORD (output_bfd,
11646 sdyn->output_offset + sdyn->output_section->vma,
11647 sgot->contents);
11648 MIPS_ELF_PUT_WORD (output_bfd, 0,
11649 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11650 MIPS_ELF_PUT_WORD (output_bfd, 0,
11651 sgot->contents
11652 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11653 }
11654 else
11655 {
11656 /* The first entry of the global offset table will be filled at
11657 runtime. The second entry will be used by some runtime loaders.
11658 This isn't the case of IRIX rld. */
11659 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11660 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11661 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11662 }
11663
11664 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11665 = MIPS_ELF_GOT_SIZE (output_bfd);
11666 }
11667
11668 /* Generate dynamic relocations for the non-primary gots. */
11669 if (gg != NULL && gg->next)
11670 {
11671 Elf_Internal_Rela rel[3];
11672 bfd_vma addend = 0;
11673
11674 memset (rel, 0, sizeof (rel));
11675 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11676
11677 for (g = gg->next; g->next != gg; g = g->next)
11678 {
11679 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11680 + g->next->tls_gotno;
11681
11682 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11683 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11684 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11685 sgot->contents
11686 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11687
11688 if (! bfd_link_pic (info))
11689 continue;
11690
11691 for (; got_index < g->local_gotno; got_index++)
11692 {
11693 if (got_index >= g->assigned_low_gotno
11694 && got_index <= g->assigned_high_gotno)
11695 continue;
11696
11697 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11698 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11699 if (!(mips_elf_create_dynamic_relocation
11700 (output_bfd, info, rel, NULL,
11701 bfd_abs_section_ptr,
11702 0, &addend, sgot)))
11703 return FALSE;
11704 BFD_ASSERT (addend == 0);
11705 }
11706 }
11707 }
11708
11709 /* The generation of dynamic relocations for the non-primary gots
11710 adds more dynamic relocations. We cannot count them until
11711 here. */
11712
11713 if (elf_hash_table (info)->dynamic_sections_created)
11714 {
11715 bfd_byte *b;
11716 bfd_boolean swap_out_p;
11717
11718 BFD_ASSERT (sdyn != NULL);
11719
11720 for (b = sdyn->contents;
11721 b < sdyn->contents + sdyn->size;
11722 b += MIPS_ELF_DYN_SIZE (dynobj))
11723 {
11724 Elf_Internal_Dyn dyn;
11725 asection *s;
11726
11727 /* Read in the current dynamic entry. */
11728 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11729
11730 /* Assume that we're going to modify it and write it out. */
11731 swap_out_p = TRUE;
11732
11733 switch (dyn.d_tag)
11734 {
11735 case DT_RELSZ:
11736 /* Reduce DT_RELSZ to account for any relocations we
11737 decided not to make. This is for the n64 irix rld,
11738 which doesn't seem to apply any relocations if there
11739 are trailing null entries. */
11740 s = mips_elf_rel_dyn_section (info, FALSE);
11741 dyn.d_un.d_val = (s->reloc_count
11742 * (ABI_64_P (output_bfd)
11743 ? sizeof (Elf64_Mips_External_Rel)
11744 : sizeof (Elf32_External_Rel)));
11745 /* Adjust the section size too. Tools like the prelinker
11746 can reasonably expect the values to the same. */
11747 elf_section_data (s->output_section)->this_hdr.sh_size
11748 = dyn.d_un.d_val;
11749 break;
11750
11751 default:
11752 swap_out_p = FALSE;
11753 break;
11754 }
11755
11756 if (swap_out_p)
11757 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11758 (dynobj, &dyn, b);
11759 }
11760 }
11761
11762 {
11763 asection *s;
11764 Elf32_compact_rel cpt;
11765
11766 if (SGI_COMPAT (output_bfd))
11767 {
11768 /* Write .compact_rel section out. */
11769 s = bfd_get_linker_section (dynobj, ".compact_rel");
11770 if (s != NULL)
11771 {
11772 cpt.id1 = 1;
11773 cpt.num = s->reloc_count;
11774 cpt.id2 = 2;
11775 cpt.offset = (s->output_section->filepos
11776 + sizeof (Elf32_External_compact_rel));
11777 cpt.reserved0 = 0;
11778 cpt.reserved1 = 0;
11779 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11780 ((Elf32_External_compact_rel *)
11781 s->contents));
11782
11783 /* Clean up a dummy stub function entry in .text. */
11784 if (htab->sstubs != NULL)
11785 {
11786 file_ptr dummy_offset;
11787
11788 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11789 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11790 memset (htab->sstubs->contents + dummy_offset, 0,
11791 htab->function_stub_size);
11792 }
11793 }
11794 }
11795
11796 /* The psABI says that the dynamic relocations must be sorted in
11797 increasing order of r_symndx. The VxWorks EABI doesn't require
11798 this, and because the code below handles REL rather than RELA
11799 relocations, using it for VxWorks would be outright harmful. */
11800 if (!htab->is_vxworks)
11801 {
11802 s = mips_elf_rel_dyn_section (info, FALSE);
11803 if (s != NULL
11804 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11805 {
11806 reldyn_sorting_bfd = output_bfd;
11807
11808 if (ABI_64_P (output_bfd))
11809 qsort ((Elf64_External_Rel *) s->contents + 1,
11810 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11811 sort_dynamic_relocs_64);
11812 else
11813 qsort ((Elf32_External_Rel *) s->contents + 1,
11814 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11815 sort_dynamic_relocs);
11816 }
11817 }
11818 }
11819
11820 if (htab->splt && htab->splt->size > 0)
11821 {
11822 if (htab->is_vxworks)
11823 {
11824 if (bfd_link_pic (info))
11825 mips_vxworks_finish_shared_plt (output_bfd, info);
11826 else
11827 mips_vxworks_finish_exec_plt (output_bfd, info);
11828 }
11829 else
11830 {
11831 BFD_ASSERT (!bfd_link_pic (info));
11832 if (!mips_finish_exec_plt (output_bfd, info))
11833 return FALSE;
11834 }
11835 }
11836 return TRUE;
11837 }
11838
11839
11840 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11841
11842 static void
11843 mips_set_isa_flags (bfd *abfd)
11844 {
11845 flagword val;
11846
11847 switch (bfd_get_mach (abfd))
11848 {
11849 default:
11850 case bfd_mach_mips3000:
11851 val = E_MIPS_ARCH_1;
11852 break;
11853
11854 case bfd_mach_mips3900:
11855 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11856 break;
11857
11858 case bfd_mach_mips6000:
11859 val = E_MIPS_ARCH_2;
11860 break;
11861
11862 case bfd_mach_mips4000:
11863 case bfd_mach_mips4300:
11864 case bfd_mach_mips4400:
11865 case bfd_mach_mips4600:
11866 val = E_MIPS_ARCH_3;
11867 break;
11868
11869 case bfd_mach_mips4010:
11870 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11871 break;
11872
11873 case bfd_mach_mips4100:
11874 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11875 break;
11876
11877 case bfd_mach_mips4111:
11878 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11879 break;
11880
11881 case bfd_mach_mips4120:
11882 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11883 break;
11884
11885 case bfd_mach_mips4650:
11886 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11887 break;
11888
11889 case bfd_mach_mips5400:
11890 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11891 break;
11892
11893 case bfd_mach_mips5500:
11894 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11895 break;
11896
11897 case bfd_mach_mips5900:
11898 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11899 break;
11900
11901 case bfd_mach_mips9000:
11902 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11903 break;
11904
11905 case bfd_mach_mips5000:
11906 case bfd_mach_mips7000:
11907 case bfd_mach_mips8000:
11908 case bfd_mach_mips10000:
11909 case bfd_mach_mips12000:
11910 case bfd_mach_mips14000:
11911 case bfd_mach_mips16000:
11912 val = E_MIPS_ARCH_4;
11913 break;
11914
11915 case bfd_mach_mips5:
11916 val = E_MIPS_ARCH_5;
11917 break;
11918
11919 case bfd_mach_mips_loongson_2e:
11920 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11921 break;
11922
11923 case bfd_mach_mips_loongson_2f:
11924 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11925 break;
11926
11927 case bfd_mach_mips_sb1:
11928 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11929 break;
11930
11931 case bfd_mach_mips_loongson_3a:
11932 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11933 break;
11934
11935 case bfd_mach_mips_octeon:
11936 case bfd_mach_mips_octeonp:
11937 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11938 break;
11939
11940 case bfd_mach_mips_octeon3:
11941 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11942 break;
11943
11944 case bfd_mach_mips_xlr:
11945 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11946 break;
11947
11948 case bfd_mach_mips_octeon2:
11949 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11950 break;
11951
11952 case bfd_mach_mipsisa32:
11953 val = E_MIPS_ARCH_32;
11954 break;
11955
11956 case bfd_mach_mipsisa64:
11957 val = E_MIPS_ARCH_64;
11958 break;
11959
11960 case bfd_mach_mipsisa32r2:
11961 case bfd_mach_mipsisa32r3:
11962 case bfd_mach_mipsisa32r5:
11963 val = E_MIPS_ARCH_32R2;
11964 break;
11965
11966 case bfd_mach_mipsisa64r2:
11967 case bfd_mach_mipsisa64r3:
11968 case bfd_mach_mipsisa64r5:
11969 val = E_MIPS_ARCH_64R2;
11970 break;
11971
11972 case bfd_mach_mipsisa32r6:
11973 val = E_MIPS_ARCH_32R6;
11974 break;
11975
11976 case bfd_mach_mipsisa64r6:
11977 val = E_MIPS_ARCH_64R6;
11978 break;
11979 }
11980 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11981 elf_elfheader (abfd)->e_flags |= val;
11982
11983 }
11984
11985
11986 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
11987 Don't do so for code sections. We want to keep ordering of HI16/LO16
11988 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
11989 relocs to be sorted. */
11990
11991 bfd_boolean
11992 _bfd_mips_elf_sort_relocs_p (asection *sec)
11993 {
11994 return (sec->flags & SEC_CODE) == 0;
11995 }
11996
11997
11998 /* The final processing done just before writing out a MIPS ELF object
11999 file. This gets the MIPS architecture right based on the machine
12000 number. This is used by both the 32-bit and the 64-bit ABI. */
12001
12002 void
12003 _bfd_mips_elf_final_write_processing (bfd *abfd,
12004 bfd_boolean linker ATTRIBUTE_UNUSED)
12005 {
12006 unsigned int i;
12007 Elf_Internal_Shdr **hdrpp;
12008 const char *name;
12009 asection *sec;
12010
12011 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12012 is nonzero. This is for compatibility with old objects, which used
12013 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12014 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12015 mips_set_isa_flags (abfd);
12016
12017 /* Set the sh_info field for .gptab sections and other appropriate
12018 info for each special section. */
12019 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12020 i < elf_numsections (abfd);
12021 i++, hdrpp++)
12022 {
12023 switch ((*hdrpp)->sh_type)
12024 {
12025 case SHT_MIPS_MSYM:
12026 case SHT_MIPS_LIBLIST:
12027 sec = bfd_get_section_by_name (abfd, ".dynstr");
12028 if (sec != NULL)
12029 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12030 break;
12031
12032 case SHT_MIPS_GPTAB:
12033 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12034 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12035 BFD_ASSERT (name != NULL
12036 && CONST_STRNEQ (name, ".gptab."));
12037 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12038 BFD_ASSERT (sec != NULL);
12039 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12040 break;
12041
12042 case SHT_MIPS_CONTENT:
12043 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12044 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12045 BFD_ASSERT (name != NULL
12046 && CONST_STRNEQ (name, ".MIPS.content"));
12047 sec = bfd_get_section_by_name (abfd,
12048 name + sizeof ".MIPS.content" - 1);
12049 BFD_ASSERT (sec != NULL);
12050 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12051 break;
12052
12053 case SHT_MIPS_SYMBOL_LIB:
12054 sec = bfd_get_section_by_name (abfd, ".dynsym");
12055 if (sec != NULL)
12056 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12057 sec = bfd_get_section_by_name (abfd, ".liblist");
12058 if (sec != NULL)
12059 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12060 break;
12061
12062 case SHT_MIPS_EVENTS:
12063 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12064 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12065 BFD_ASSERT (name != NULL);
12066 if (CONST_STRNEQ (name, ".MIPS.events"))
12067 sec = bfd_get_section_by_name (abfd,
12068 name + sizeof ".MIPS.events" - 1);
12069 else
12070 {
12071 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12072 sec = bfd_get_section_by_name (abfd,
12073 (name
12074 + sizeof ".MIPS.post_rel" - 1));
12075 }
12076 BFD_ASSERT (sec != NULL);
12077 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12078 break;
12079
12080 }
12081 }
12082 }
12083 \f
12084 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12085 segments. */
12086
12087 int
12088 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12089 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12090 {
12091 asection *s;
12092 int ret = 0;
12093
12094 /* See if we need a PT_MIPS_REGINFO segment. */
12095 s = bfd_get_section_by_name (abfd, ".reginfo");
12096 if (s && (s->flags & SEC_LOAD))
12097 ++ret;
12098
12099 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12100 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12101 ++ret;
12102
12103 /* See if we need a PT_MIPS_OPTIONS segment. */
12104 if (IRIX_COMPAT (abfd) == ict_irix6
12105 && bfd_get_section_by_name (abfd,
12106 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12107 ++ret;
12108
12109 /* See if we need a PT_MIPS_RTPROC segment. */
12110 if (IRIX_COMPAT (abfd) == ict_irix5
12111 && bfd_get_section_by_name (abfd, ".dynamic")
12112 && bfd_get_section_by_name (abfd, ".mdebug"))
12113 ++ret;
12114
12115 /* Allocate a PT_NULL header in dynamic objects. See
12116 _bfd_mips_elf_modify_segment_map for details. */
12117 if (!SGI_COMPAT (abfd)
12118 && bfd_get_section_by_name (abfd, ".dynamic"))
12119 ++ret;
12120
12121 return ret;
12122 }
12123
12124 /* Modify the segment map for an IRIX5 executable. */
12125
12126 bfd_boolean
12127 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12128 struct bfd_link_info *info)
12129 {
12130 asection *s;
12131 struct elf_segment_map *m, **pm;
12132 bfd_size_type amt;
12133
12134 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12135 segment. */
12136 s = bfd_get_section_by_name (abfd, ".reginfo");
12137 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12138 {
12139 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12140 if (m->p_type == PT_MIPS_REGINFO)
12141 break;
12142 if (m == NULL)
12143 {
12144 amt = sizeof *m;
12145 m = bfd_zalloc (abfd, amt);
12146 if (m == NULL)
12147 return FALSE;
12148
12149 m->p_type = PT_MIPS_REGINFO;
12150 m->count = 1;
12151 m->sections[0] = s;
12152
12153 /* We want to put it after the PHDR and INTERP segments. */
12154 pm = &elf_seg_map (abfd);
12155 while (*pm != NULL
12156 && ((*pm)->p_type == PT_PHDR
12157 || (*pm)->p_type == PT_INTERP))
12158 pm = &(*pm)->next;
12159
12160 m->next = *pm;
12161 *pm = m;
12162 }
12163 }
12164
12165 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12166 segment. */
12167 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12168 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12169 {
12170 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12171 if (m->p_type == PT_MIPS_ABIFLAGS)
12172 break;
12173 if (m == NULL)
12174 {
12175 amt = sizeof *m;
12176 m = bfd_zalloc (abfd, amt);
12177 if (m == NULL)
12178 return FALSE;
12179
12180 m->p_type = PT_MIPS_ABIFLAGS;
12181 m->count = 1;
12182 m->sections[0] = s;
12183
12184 /* We want to put it after the PHDR and INTERP segments. */
12185 pm = &elf_seg_map (abfd);
12186 while (*pm != NULL
12187 && ((*pm)->p_type == PT_PHDR
12188 || (*pm)->p_type == PT_INTERP))
12189 pm = &(*pm)->next;
12190
12191 m->next = *pm;
12192 *pm = m;
12193 }
12194 }
12195
12196 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12197 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12198 PT_MIPS_OPTIONS segment immediately following the program header
12199 table. */
12200 if (NEWABI_P (abfd)
12201 /* On non-IRIX6 new abi, we'll have already created a segment
12202 for this section, so don't create another. I'm not sure this
12203 is not also the case for IRIX 6, but I can't test it right
12204 now. */
12205 && IRIX_COMPAT (abfd) == ict_irix6)
12206 {
12207 for (s = abfd->sections; s; s = s->next)
12208 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12209 break;
12210
12211 if (s)
12212 {
12213 struct elf_segment_map *options_segment;
12214
12215 pm = &elf_seg_map (abfd);
12216 while (*pm != NULL
12217 && ((*pm)->p_type == PT_PHDR
12218 || (*pm)->p_type == PT_INTERP))
12219 pm = &(*pm)->next;
12220
12221 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12222 {
12223 amt = sizeof (struct elf_segment_map);
12224 options_segment = bfd_zalloc (abfd, amt);
12225 options_segment->next = *pm;
12226 options_segment->p_type = PT_MIPS_OPTIONS;
12227 options_segment->p_flags = PF_R;
12228 options_segment->p_flags_valid = TRUE;
12229 options_segment->count = 1;
12230 options_segment->sections[0] = s;
12231 *pm = options_segment;
12232 }
12233 }
12234 }
12235 else
12236 {
12237 if (IRIX_COMPAT (abfd) == ict_irix5)
12238 {
12239 /* If there are .dynamic and .mdebug sections, we make a room
12240 for the RTPROC header. FIXME: Rewrite without section names. */
12241 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12242 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12243 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12244 {
12245 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12246 if (m->p_type == PT_MIPS_RTPROC)
12247 break;
12248 if (m == NULL)
12249 {
12250 amt = sizeof *m;
12251 m = bfd_zalloc (abfd, amt);
12252 if (m == NULL)
12253 return FALSE;
12254
12255 m->p_type = PT_MIPS_RTPROC;
12256
12257 s = bfd_get_section_by_name (abfd, ".rtproc");
12258 if (s == NULL)
12259 {
12260 m->count = 0;
12261 m->p_flags = 0;
12262 m->p_flags_valid = 1;
12263 }
12264 else
12265 {
12266 m->count = 1;
12267 m->sections[0] = s;
12268 }
12269
12270 /* We want to put it after the DYNAMIC segment. */
12271 pm = &elf_seg_map (abfd);
12272 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12273 pm = &(*pm)->next;
12274 if (*pm != NULL)
12275 pm = &(*pm)->next;
12276
12277 m->next = *pm;
12278 *pm = m;
12279 }
12280 }
12281 }
12282 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12283 .dynstr, .dynsym, and .hash sections, and everything in
12284 between. */
12285 for (pm = &elf_seg_map (abfd); *pm != NULL;
12286 pm = &(*pm)->next)
12287 if ((*pm)->p_type == PT_DYNAMIC)
12288 break;
12289 m = *pm;
12290 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12291 glibc's dynamic linker has traditionally derived the number of
12292 tags from the p_filesz field, and sometimes allocates stack
12293 arrays of that size. An overly-big PT_DYNAMIC segment can
12294 be actively harmful in such cases. Making PT_DYNAMIC contain
12295 other sections can also make life hard for the prelinker,
12296 which might move one of the other sections to a different
12297 PT_LOAD segment. */
12298 if (SGI_COMPAT (abfd)
12299 && m != NULL
12300 && m->count == 1
12301 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12302 {
12303 static const char *sec_names[] =
12304 {
12305 ".dynamic", ".dynstr", ".dynsym", ".hash"
12306 };
12307 bfd_vma low, high;
12308 unsigned int i, c;
12309 struct elf_segment_map *n;
12310
12311 low = ~(bfd_vma) 0;
12312 high = 0;
12313 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12314 {
12315 s = bfd_get_section_by_name (abfd, sec_names[i]);
12316 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12317 {
12318 bfd_size_type sz;
12319
12320 if (low > s->vma)
12321 low = s->vma;
12322 sz = s->size;
12323 if (high < s->vma + sz)
12324 high = s->vma + sz;
12325 }
12326 }
12327
12328 c = 0;
12329 for (s = abfd->sections; s != NULL; s = s->next)
12330 if ((s->flags & SEC_LOAD) != 0
12331 && s->vma >= low
12332 && s->vma + s->size <= high)
12333 ++c;
12334
12335 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12336 n = bfd_zalloc (abfd, amt);
12337 if (n == NULL)
12338 return FALSE;
12339 *n = *m;
12340 n->count = c;
12341
12342 i = 0;
12343 for (s = abfd->sections; s != NULL; s = s->next)
12344 {
12345 if ((s->flags & SEC_LOAD) != 0
12346 && s->vma >= low
12347 && s->vma + s->size <= high)
12348 {
12349 n->sections[i] = s;
12350 ++i;
12351 }
12352 }
12353
12354 *pm = n;
12355 }
12356 }
12357
12358 /* Allocate a spare program header in dynamic objects so that tools
12359 like the prelinker can add an extra PT_LOAD entry.
12360
12361 If the prelinker needs to make room for a new PT_LOAD entry, its
12362 standard procedure is to move the first (read-only) sections into
12363 the new (writable) segment. However, the MIPS ABI requires
12364 .dynamic to be in a read-only segment, and the section will often
12365 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12366
12367 Although the prelinker could in principle move .dynamic to a
12368 writable segment, it seems better to allocate a spare program
12369 header instead, and avoid the need to move any sections.
12370 There is a long tradition of allocating spare dynamic tags,
12371 so allocating a spare program header seems like a natural
12372 extension.
12373
12374 If INFO is NULL, we may be copying an already prelinked binary
12375 with objcopy or strip, so do not add this header. */
12376 if (info != NULL
12377 && !SGI_COMPAT (abfd)
12378 && bfd_get_section_by_name (abfd, ".dynamic"))
12379 {
12380 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12381 if ((*pm)->p_type == PT_NULL)
12382 break;
12383 if (*pm == NULL)
12384 {
12385 m = bfd_zalloc (abfd, sizeof (*m));
12386 if (m == NULL)
12387 return FALSE;
12388
12389 m->p_type = PT_NULL;
12390 *pm = m;
12391 }
12392 }
12393
12394 return TRUE;
12395 }
12396 \f
12397 /* Return the section that should be marked against GC for a given
12398 relocation. */
12399
12400 asection *
12401 _bfd_mips_elf_gc_mark_hook (asection *sec,
12402 struct bfd_link_info *info,
12403 Elf_Internal_Rela *rel,
12404 struct elf_link_hash_entry *h,
12405 Elf_Internal_Sym *sym)
12406 {
12407 /* ??? Do mips16 stub sections need to be handled special? */
12408
12409 if (h != NULL)
12410 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12411 {
12412 case R_MIPS_GNU_VTINHERIT:
12413 case R_MIPS_GNU_VTENTRY:
12414 return NULL;
12415 }
12416
12417 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12418 }
12419
12420 /* Update the got entry reference counts for the section being removed. */
12421
12422 bfd_boolean
12423 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12424 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12425 asection *sec ATTRIBUTE_UNUSED,
12426 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12427 {
12428 #if 0
12429 Elf_Internal_Shdr *symtab_hdr;
12430 struct elf_link_hash_entry **sym_hashes;
12431 bfd_signed_vma *local_got_refcounts;
12432 const Elf_Internal_Rela *rel, *relend;
12433 unsigned long r_symndx;
12434 struct elf_link_hash_entry *h;
12435
12436 if (bfd_link_relocatable (info))
12437 return TRUE;
12438
12439 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12440 sym_hashes = elf_sym_hashes (abfd);
12441 local_got_refcounts = elf_local_got_refcounts (abfd);
12442
12443 relend = relocs + sec->reloc_count;
12444 for (rel = relocs; rel < relend; rel++)
12445 switch (ELF_R_TYPE (abfd, rel->r_info))
12446 {
12447 case R_MIPS16_GOT16:
12448 case R_MIPS16_CALL16:
12449 case R_MIPS_GOT16:
12450 case R_MIPS_CALL16:
12451 case R_MIPS_CALL_HI16:
12452 case R_MIPS_CALL_LO16:
12453 case R_MIPS_GOT_HI16:
12454 case R_MIPS_GOT_LO16:
12455 case R_MIPS_GOT_DISP:
12456 case R_MIPS_GOT_PAGE:
12457 case R_MIPS_GOT_OFST:
12458 case R_MICROMIPS_GOT16:
12459 case R_MICROMIPS_CALL16:
12460 case R_MICROMIPS_CALL_HI16:
12461 case R_MICROMIPS_CALL_LO16:
12462 case R_MICROMIPS_GOT_HI16:
12463 case R_MICROMIPS_GOT_LO16:
12464 case R_MICROMIPS_GOT_DISP:
12465 case R_MICROMIPS_GOT_PAGE:
12466 case R_MICROMIPS_GOT_OFST:
12467 /* ??? It would seem that the existing MIPS code does no sort
12468 of reference counting or whatnot on its GOT and PLT entries,
12469 so it is not possible to garbage collect them at this time. */
12470 break;
12471
12472 default:
12473 break;
12474 }
12475 #endif
12476
12477 return TRUE;
12478 }
12479
12480 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12481
12482 bfd_boolean
12483 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12484 elf_gc_mark_hook_fn gc_mark_hook)
12485 {
12486 bfd *sub;
12487
12488 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12489
12490 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12491 {
12492 asection *o;
12493
12494 if (! is_mips_elf (sub))
12495 continue;
12496
12497 for (o = sub->sections; o != NULL; o = o->next)
12498 if (!o->gc_mark
12499 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12500 (bfd_get_section_name (sub, o)))
12501 {
12502 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12503 return FALSE;
12504 }
12505 }
12506
12507 return TRUE;
12508 }
12509 \f
12510 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12511 hiding the old indirect symbol. Process additional relocation
12512 information. Also called for weakdefs, in which case we just let
12513 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12514
12515 void
12516 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12517 struct elf_link_hash_entry *dir,
12518 struct elf_link_hash_entry *ind)
12519 {
12520 struct mips_elf_link_hash_entry *dirmips, *indmips;
12521
12522 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12523
12524 dirmips = (struct mips_elf_link_hash_entry *) dir;
12525 indmips = (struct mips_elf_link_hash_entry *) ind;
12526 /* Any absolute non-dynamic relocations against an indirect or weak
12527 definition will be against the target symbol. */
12528 if (indmips->has_static_relocs)
12529 dirmips->has_static_relocs = TRUE;
12530
12531 if (ind->root.type != bfd_link_hash_indirect)
12532 return;
12533
12534 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12535 if (indmips->readonly_reloc)
12536 dirmips->readonly_reloc = TRUE;
12537 if (indmips->no_fn_stub)
12538 dirmips->no_fn_stub = TRUE;
12539 if (indmips->fn_stub)
12540 {
12541 dirmips->fn_stub = indmips->fn_stub;
12542 indmips->fn_stub = NULL;
12543 }
12544 if (indmips->need_fn_stub)
12545 {
12546 dirmips->need_fn_stub = TRUE;
12547 indmips->need_fn_stub = FALSE;
12548 }
12549 if (indmips->call_stub)
12550 {
12551 dirmips->call_stub = indmips->call_stub;
12552 indmips->call_stub = NULL;
12553 }
12554 if (indmips->call_fp_stub)
12555 {
12556 dirmips->call_fp_stub = indmips->call_fp_stub;
12557 indmips->call_fp_stub = NULL;
12558 }
12559 if (indmips->global_got_area < dirmips->global_got_area)
12560 dirmips->global_got_area = indmips->global_got_area;
12561 if (indmips->global_got_area < GGA_NONE)
12562 indmips->global_got_area = GGA_NONE;
12563 if (indmips->has_nonpic_branches)
12564 dirmips->has_nonpic_branches = TRUE;
12565 }
12566 \f
12567 #define PDR_SIZE 32
12568
12569 bfd_boolean
12570 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12571 struct bfd_link_info *info)
12572 {
12573 asection *o;
12574 bfd_boolean ret = FALSE;
12575 unsigned char *tdata;
12576 size_t i, skip;
12577
12578 o = bfd_get_section_by_name (abfd, ".pdr");
12579 if (! o)
12580 return FALSE;
12581 if (o->size == 0)
12582 return FALSE;
12583 if (o->size % PDR_SIZE != 0)
12584 return FALSE;
12585 if (o->output_section != NULL
12586 && bfd_is_abs_section (o->output_section))
12587 return FALSE;
12588
12589 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12590 if (! tdata)
12591 return FALSE;
12592
12593 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12594 info->keep_memory);
12595 if (!cookie->rels)
12596 {
12597 free (tdata);
12598 return FALSE;
12599 }
12600
12601 cookie->rel = cookie->rels;
12602 cookie->relend = cookie->rels + o->reloc_count;
12603
12604 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12605 {
12606 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12607 {
12608 tdata[i] = 1;
12609 skip ++;
12610 }
12611 }
12612
12613 if (skip != 0)
12614 {
12615 mips_elf_section_data (o)->u.tdata = tdata;
12616 if (o->rawsize == 0)
12617 o->rawsize = o->size;
12618 o->size -= skip * PDR_SIZE;
12619 ret = TRUE;
12620 }
12621 else
12622 free (tdata);
12623
12624 if (! info->keep_memory)
12625 free (cookie->rels);
12626
12627 return ret;
12628 }
12629
12630 bfd_boolean
12631 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12632 {
12633 if (strcmp (sec->name, ".pdr") == 0)
12634 return TRUE;
12635 return FALSE;
12636 }
12637
12638 bfd_boolean
12639 _bfd_mips_elf_write_section (bfd *output_bfd,
12640 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12641 asection *sec, bfd_byte *contents)
12642 {
12643 bfd_byte *to, *from, *end;
12644 int i;
12645
12646 if (strcmp (sec->name, ".pdr") != 0)
12647 return FALSE;
12648
12649 if (mips_elf_section_data (sec)->u.tdata == NULL)
12650 return FALSE;
12651
12652 to = contents;
12653 end = contents + sec->size;
12654 for (from = contents, i = 0;
12655 from < end;
12656 from += PDR_SIZE, i++)
12657 {
12658 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12659 continue;
12660 if (to != from)
12661 memcpy (to, from, PDR_SIZE);
12662 to += PDR_SIZE;
12663 }
12664 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12665 sec->output_offset, sec->size);
12666 return TRUE;
12667 }
12668 \f
12669 /* microMIPS code retains local labels for linker relaxation. Omit them
12670 from output by default for clarity. */
12671
12672 bfd_boolean
12673 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12674 {
12675 return _bfd_elf_is_local_label_name (abfd, sym->name);
12676 }
12677
12678 /* MIPS ELF uses a special find_nearest_line routine in order the
12679 handle the ECOFF debugging information. */
12680
12681 struct mips_elf_find_line
12682 {
12683 struct ecoff_debug_info d;
12684 struct ecoff_find_line i;
12685 };
12686
12687 bfd_boolean
12688 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12689 asection *section, bfd_vma offset,
12690 const char **filename_ptr,
12691 const char **functionname_ptr,
12692 unsigned int *line_ptr,
12693 unsigned int *discriminator_ptr)
12694 {
12695 asection *msec;
12696
12697 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12698 filename_ptr, functionname_ptr,
12699 line_ptr, discriminator_ptr,
12700 dwarf_debug_sections,
12701 ABI_64_P (abfd) ? 8 : 0,
12702 &elf_tdata (abfd)->dwarf2_find_line_info))
12703 return TRUE;
12704
12705 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12706 filename_ptr, functionname_ptr,
12707 line_ptr))
12708 return TRUE;
12709
12710 msec = bfd_get_section_by_name (abfd, ".mdebug");
12711 if (msec != NULL)
12712 {
12713 flagword origflags;
12714 struct mips_elf_find_line *fi;
12715 const struct ecoff_debug_swap * const swap =
12716 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12717
12718 /* If we are called during a link, mips_elf_final_link may have
12719 cleared the SEC_HAS_CONTENTS field. We force it back on here
12720 if appropriate (which it normally will be). */
12721 origflags = msec->flags;
12722 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12723 msec->flags |= SEC_HAS_CONTENTS;
12724
12725 fi = mips_elf_tdata (abfd)->find_line_info;
12726 if (fi == NULL)
12727 {
12728 bfd_size_type external_fdr_size;
12729 char *fraw_src;
12730 char *fraw_end;
12731 struct fdr *fdr_ptr;
12732 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12733
12734 fi = bfd_zalloc (abfd, amt);
12735 if (fi == NULL)
12736 {
12737 msec->flags = origflags;
12738 return FALSE;
12739 }
12740
12741 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12742 {
12743 msec->flags = origflags;
12744 return FALSE;
12745 }
12746
12747 /* Swap in the FDR information. */
12748 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12749 fi->d.fdr = bfd_alloc (abfd, amt);
12750 if (fi->d.fdr == NULL)
12751 {
12752 msec->flags = origflags;
12753 return FALSE;
12754 }
12755 external_fdr_size = swap->external_fdr_size;
12756 fdr_ptr = fi->d.fdr;
12757 fraw_src = (char *) fi->d.external_fdr;
12758 fraw_end = (fraw_src
12759 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12760 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12761 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12762
12763 mips_elf_tdata (abfd)->find_line_info = fi;
12764
12765 /* Note that we don't bother to ever free this information.
12766 find_nearest_line is either called all the time, as in
12767 objdump -l, so the information should be saved, or it is
12768 rarely called, as in ld error messages, so the memory
12769 wasted is unimportant. Still, it would probably be a
12770 good idea for free_cached_info to throw it away. */
12771 }
12772
12773 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12774 &fi->i, filename_ptr, functionname_ptr,
12775 line_ptr))
12776 {
12777 msec->flags = origflags;
12778 return TRUE;
12779 }
12780
12781 msec->flags = origflags;
12782 }
12783
12784 /* Fall back on the generic ELF find_nearest_line routine. */
12785
12786 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12787 filename_ptr, functionname_ptr,
12788 line_ptr, discriminator_ptr);
12789 }
12790
12791 bfd_boolean
12792 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12793 const char **filename_ptr,
12794 const char **functionname_ptr,
12795 unsigned int *line_ptr)
12796 {
12797 bfd_boolean found;
12798 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12799 functionname_ptr, line_ptr,
12800 & elf_tdata (abfd)->dwarf2_find_line_info);
12801 return found;
12802 }
12803
12804 \f
12805 /* When are writing out the .options or .MIPS.options section,
12806 remember the bytes we are writing out, so that we can install the
12807 GP value in the section_processing routine. */
12808
12809 bfd_boolean
12810 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12811 const void *location,
12812 file_ptr offset, bfd_size_type count)
12813 {
12814 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12815 {
12816 bfd_byte *c;
12817
12818 if (elf_section_data (section) == NULL)
12819 {
12820 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12821 section->used_by_bfd = bfd_zalloc (abfd, amt);
12822 if (elf_section_data (section) == NULL)
12823 return FALSE;
12824 }
12825 c = mips_elf_section_data (section)->u.tdata;
12826 if (c == NULL)
12827 {
12828 c = bfd_zalloc (abfd, section->size);
12829 if (c == NULL)
12830 return FALSE;
12831 mips_elf_section_data (section)->u.tdata = c;
12832 }
12833
12834 memcpy (c + offset, location, count);
12835 }
12836
12837 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12838 count);
12839 }
12840
12841 /* This is almost identical to bfd_generic_get_... except that some
12842 MIPS relocations need to be handled specially. Sigh. */
12843
12844 bfd_byte *
12845 _bfd_elf_mips_get_relocated_section_contents
12846 (bfd *abfd,
12847 struct bfd_link_info *link_info,
12848 struct bfd_link_order *link_order,
12849 bfd_byte *data,
12850 bfd_boolean relocatable,
12851 asymbol **symbols)
12852 {
12853 /* Get enough memory to hold the stuff */
12854 bfd *input_bfd = link_order->u.indirect.section->owner;
12855 asection *input_section = link_order->u.indirect.section;
12856 bfd_size_type sz;
12857
12858 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12859 arelent **reloc_vector = NULL;
12860 long reloc_count;
12861
12862 if (reloc_size < 0)
12863 goto error_return;
12864
12865 reloc_vector = bfd_malloc (reloc_size);
12866 if (reloc_vector == NULL && reloc_size != 0)
12867 goto error_return;
12868
12869 /* read in the section */
12870 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12871 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12872 goto error_return;
12873
12874 reloc_count = bfd_canonicalize_reloc (input_bfd,
12875 input_section,
12876 reloc_vector,
12877 symbols);
12878 if (reloc_count < 0)
12879 goto error_return;
12880
12881 if (reloc_count > 0)
12882 {
12883 arelent **parent;
12884 /* for mips */
12885 int gp_found;
12886 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12887
12888 {
12889 struct bfd_hash_entry *h;
12890 struct bfd_link_hash_entry *lh;
12891 /* Skip all this stuff if we aren't mixing formats. */
12892 if (abfd && input_bfd
12893 && abfd->xvec == input_bfd->xvec)
12894 lh = 0;
12895 else
12896 {
12897 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12898 lh = (struct bfd_link_hash_entry *) h;
12899 }
12900 lookup:
12901 if (lh)
12902 {
12903 switch (lh->type)
12904 {
12905 case bfd_link_hash_undefined:
12906 case bfd_link_hash_undefweak:
12907 case bfd_link_hash_common:
12908 gp_found = 0;
12909 break;
12910 case bfd_link_hash_defined:
12911 case bfd_link_hash_defweak:
12912 gp_found = 1;
12913 gp = lh->u.def.value;
12914 break;
12915 case bfd_link_hash_indirect:
12916 case bfd_link_hash_warning:
12917 lh = lh->u.i.link;
12918 /* @@FIXME ignoring warning for now */
12919 goto lookup;
12920 case bfd_link_hash_new:
12921 default:
12922 abort ();
12923 }
12924 }
12925 else
12926 gp_found = 0;
12927 }
12928 /* end mips */
12929 for (parent = reloc_vector; *parent != NULL; parent++)
12930 {
12931 char *error_message = NULL;
12932 bfd_reloc_status_type r;
12933
12934 /* Specific to MIPS: Deal with relocation types that require
12935 knowing the gp of the output bfd. */
12936 asymbol *sym = *(*parent)->sym_ptr_ptr;
12937
12938 /* If we've managed to find the gp and have a special
12939 function for the relocation then go ahead, else default
12940 to the generic handling. */
12941 if (gp_found
12942 && (*parent)->howto->special_function
12943 == _bfd_mips_elf32_gprel16_reloc)
12944 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12945 input_section, relocatable,
12946 data, gp);
12947 else
12948 r = bfd_perform_relocation (input_bfd, *parent, data,
12949 input_section,
12950 relocatable ? abfd : NULL,
12951 &error_message);
12952
12953 if (relocatable)
12954 {
12955 asection *os = input_section->output_section;
12956
12957 /* A partial link, so keep the relocs */
12958 os->orelocation[os->reloc_count] = *parent;
12959 os->reloc_count++;
12960 }
12961
12962 if (r != bfd_reloc_ok)
12963 {
12964 switch (r)
12965 {
12966 case bfd_reloc_undefined:
12967 (*link_info->callbacks->undefined_symbol)
12968 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12969 input_bfd, input_section, (*parent)->address, TRUE);
12970 break;
12971 case bfd_reloc_dangerous:
12972 BFD_ASSERT (error_message != NULL);
12973 (*link_info->callbacks->reloc_dangerous)
12974 (link_info, error_message,
12975 input_bfd, input_section, (*parent)->address);
12976 break;
12977 case bfd_reloc_overflow:
12978 (*link_info->callbacks->reloc_overflow)
12979 (link_info, NULL,
12980 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12981 (*parent)->howto->name, (*parent)->addend,
12982 input_bfd, input_section, (*parent)->address);
12983 break;
12984 case bfd_reloc_outofrange:
12985 default:
12986 abort ();
12987 break;
12988 }
12989
12990 }
12991 }
12992 }
12993 if (reloc_vector != NULL)
12994 free (reloc_vector);
12995 return data;
12996
12997 error_return:
12998 if (reloc_vector != NULL)
12999 free (reloc_vector);
13000 return NULL;
13001 }
13002 \f
13003 static bfd_boolean
13004 mips_elf_relax_delete_bytes (bfd *abfd,
13005 asection *sec, bfd_vma addr, int count)
13006 {
13007 Elf_Internal_Shdr *symtab_hdr;
13008 unsigned int sec_shndx;
13009 bfd_byte *contents;
13010 Elf_Internal_Rela *irel, *irelend;
13011 Elf_Internal_Sym *isym;
13012 Elf_Internal_Sym *isymend;
13013 struct elf_link_hash_entry **sym_hashes;
13014 struct elf_link_hash_entry **end_hashes;
13015 struct elf_link_hash_entry **start_hashes;
13016 unsigned int symcount;
13017
13018 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13019 contents = elf_section_data (sec)->this_hdr.contents;
13020
13021 irel = elf_section_data (sec)->relocs;
13022 irelend = irel + sec->reloc_count;
13023
13024 /* Actually delete the bytes. */
13025 memmove (contents + addr, contents + addr + count,
13026 (size_t) (sec->size - addr - count));
13027 sec->size -= count;
13028
13029 /* Adjust all the relocs. */
13030 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13031 {
13032 /* Get the new reloc address. */
13033 if (irel->r_offset > addr)
13034 irel->r_offset -= count;
13035 }
13036
13037 BFD_ASSERT (addr % 2 == 0);
13038 BFD_ASSERT (count % 2 == 0);
13039
13040 /* Adjust the local symbols defined in this section. */
13041 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13042 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13043 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13044 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13045 isym->st_value -= count;
13046
13047 /* Now adjust the global symbols defined in this section. */
13048 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13049 - symtab_hdr->sh_info);
13050 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13051 end_hashes = sym_hashes + symcount;
13052
13053 for (; sym_hashes < end_hashes; sym_hashes++)
13054 {
13055 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13056
13057 if ((sym_hash->root.type == bfd_link_hash_defined
13058 || sym_hash->root.type == bfd_link_hash_defweak)
13059 && sym_hash->root.u.def.section == sec)
13060 {
13061 bfd_vma value = sym_hash->root.u.def.value;
13062
13063 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13064 value &= MINUS_TWO;
13065 if (value > addr)
13066 sym_hash->root.u.def.value -= count;
13067 }
13068 }
13069
13070 return TRUE;
13071 }
13072
13073
13074 /* Opcodes needed for microMIPS relaxation as found in
13075 opcodes/micromips-opc.c. */
13076
13077 struct opcode_descriptor {
13078 unsigned long match;
13079 unsigned long mask;
13080 };
13081
13082 /* The $ra register aka $31. */
13083
13084 #define RA 31
13085
13086 /* 32-bit instruction format register fields. */
13087
13088 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13089 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13090
13091 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13092
13093 #define OP16_VALID_REG(r) \
13094 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13095
13096
13097 /* 32-bit and 16-bit branches. */
13098
13099 static const struct opcode_descriptor b_insns_32[] = {
13100 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13101 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13102 { 0, 0 } /* End marker for find_match(). */
13103 };
13104
13105 static const struct opcode_descriptor bc_insn_32 =
13106 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13107
13108 static const struct opcode_descriptor bz_insn_32 =
13109 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13110
13111 static const struct opcode_descriptor bzal_insn_32 =
13112 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13113
13114 static const struct opcode_descriptor beq_insn_32 =
13115 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13116
13117 static const struct opcode_descriptor b_insn_16 =
13118 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13119
13120 static const struct opcode_descriptor bz_insn_16 =
13121 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13122
13123
13124 /* 32-bit and 16-bit branch EQ and NE zero. */
13125
13126 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13127 eq and second the ne. This convention is used when replacing a
13128 32-bit BEQ/BNE with the 16-bit version. */
13129
13130 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13131
13132 static const struct opcode_descriptor bz_rs_insns_32[] = {
13133 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13134 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13135 { 0, 0 } /* End marker for find_match(). */
13136 };
13137
13138 static const struct opcode_descriptor bz_rt_insns_32[] = {
13139 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13140 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13141 { 0, 0 } /* End marker for find_match(). */
13142 };
13143
13144 static const struct opcode_descriptor bzc_insns_32[] = {
13145 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13146 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13147 { 0, 0 } /* End marker for find_match(). */
13148 };
13149
13150 static const struct opcode_descriptor bz_insns_16[] = {
13151 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13152 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13153 { 0, 0 } /* End marker for find_match(). */
13154 };
13155
13156 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13157
13158 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13159 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13160
13161
13162 /* 32-bit instructions with a delay slot. */
13163
13164 static const struct opcode_descriptor jal_insn_32_bd16 =
13165 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13166
13167 static const struct opcode_descriptor jal_insn_32_bd32 =
13168 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13169
13170 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13171 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13172
13173 static const struct opcode_descriptor j_insn_32 =
13174 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13175
13176 static const struct opcode_descriptor jalr_insn_32 =
13177 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13178
13179 /* This table can be compacted, because no opcode replacement is made. */
13180
13181 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13182 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13183
13184 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13185 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13186
13187 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13188 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13189 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13190 { 0, 0 } /* End marker for find_match(). */
13191 };
13192
13193 /* This table can be compacted, because no opcode replacement is made. */
13194
13195 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13196 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13197
13198 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13199 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13200 { 0, 0 } /* End marker for find_match(). */
13201 };
13202
13203
13204 /* 16-bit instructions with a delay slot. */
13205
13206 static const struct opcode_descriptor jalr_insn_16_bd16 =
13207 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13208
13209 static const struct opcode_descriptor jalr_insn_16_bd32 =
13210 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13211
13212 static const struct opcode_descriptor jr_insn_16 =
13213 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13214
13215 #define JR16_REG(opcode) ((opcode) & 0x1f)
13216
13217 /* This table can be compacted, because no opcode replacement is made. */
13218
13219 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13220 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13221
13222 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13223 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13224 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13225 { 0, 0 } /* End marker for find_match(). */
13226 };
13227
13228
13229 /* LUI instruction. */
13230
13231 static const struct opcode_descriptor lui_insn =
13232 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13233
13234
13235 /* ADDIU instruction. */
13236
13237 static const struct opcode_descriptor addiu_insn =
13238 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13239
13240 static const struct opcode_descriptor addiupc_insn =
13241 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13242
13243 #define ADDIUPC_REG_FIELD(r) \
13244 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13245
13246
13247 /* Relaxable instructions in a JAL delay slot: MOVE. */
13248
13249 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13250 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13251 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13252 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13253
13254 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13255 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13256
13257 static const struct opcode_descriptor move_insns_32[] = {
13258 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13259 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13260 { 0, 0 } /* End marker for find_match(). */
13261 };
13262
13263 static const struct opcode_descriptor move_insn_16 =
13264 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13265
13266
13267 /* NOP instructions. */
13268
13269 static const struct opcode_descriptor nop_insn_32 =
13270 { /* "nop", "", */ 0x00000000, 0xffffffff };
13271
13272 static const struct opcode_descriptor nop_insn_16 =
13273 { /* "nop", "", */ 0x0c00, 0xffff };
13274
13275
13276 /* Instruction match support. */
13277
13278 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13279
13280 static int
13281 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13282 {
13283 unsigned long indx;
13284
13285 for (indx = 0; insn[indx].mask != 0; indx++)
13286 if (MATCH (opcode, insn[indx]))
13287 return indx;
13288
13289 return -1;
13290 }
13291
13292
13293 /* Branch and delay slot decoding support. */
13294
13295 /* If PTR points to what *might* be a 16-bit branch or jump, then
13296 return the minimum length of its delay slot, otherwise return 0.
13297 Non-zero results are not definitive as we might be checking against
13298 the second half of another instruction. */
13299
13300 static int
13301 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13302 {
13303 unsigned long opcode;
13304 int bdsize;
13305
13306 opcode = bfd_get_16 (abfd, ptr);
13307 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13308 /* 16-bit branch/jump with a 32-bit delay slot. */
13309 bdsize = 4;
13310 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13311 || find_match (opcode, ds_insns_16_bd16) >= 0)
13312 /* 16-bit branch/jump with a 16-bit delay slot. */
13313 bdsize = 2;
13314 else
13315 /* No delay slot. */
13316 bdsize = 0;
13317
13318 return bdsize;
13319 }
13320
13321 /* If PTR points to what *might* be a 32-bit branch or jump, then
13322 return the minimum length of its delay slot, otherwise return 0.
13323 Non-zero results are not definitive as we might be checking against
13324 the second half of another instruction. */
13325
13326 static int
13327 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13328 {
13329 unsigned long opcode;
13330 int bdsize;
13331
13332 opcode = bfd_get_micromips_32 (abfd, ptr);
13333 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13334 /* 32-bit branch/jump with a 32-bit delay slot. */
13335 bdsize = 4;
13336 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13337 /* 32-bit branch/jump with a 16-bit delay slot. */
13338 bdsize = 2;
13339 else
13340 /* No delay slot. */
13341 bdsize = 0;
13342
13343 return bdsize;
13344 }
13345
13346 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13347 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13348
13349 static bfd_boolean
13350 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13351 {
13352 unsigned long opcode;
13353
13354 opcode = bfd_get_16 (abfd, ptr);
13355 if (MATCH (opcode, b_insn_16)
13356 /* B16 */
13357 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13358 /* JR16 */
13359 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13360 /* BEQZ16, BNEZ16 */
13361 || (MATCH (opcode, jalr_insn_16_bd32)
13362 /* JALR16 */
13363 && reg != JR16_REG (opcode) && reg != RA))
13364 return TRUE;
13365
13366 return FALSE;
13367 }
13368
13369 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13370 then return TRUE, otherwise FALSE. */
13371
13372 static bfd_boolean
13373 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13374 {
13375 unsigned long opcode;
13376
13377 opcode = bfd_get_micromips_32 (abfd, ptr);
13378 if (MATCH (opcode, j_insn_32)
13379 /* J */
13380 || MATCH (opcode, bc_insn_32)
13381 /* BC1F, BC1T, BC2F, BC2T */
13382 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13383 /* JAL, JALX */
13384 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13385 /* BGEZ, BGTZ, BLEZ, BLTZ */
13386 || (MATCH (opcode, bzal_insn_32)
13387 /* BGEZAL, BLTZAL */
13388 && reg != OP32_SREG (opcode) && reg != RA)
13389 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13390 /* JALR, JALR.HB, BEQ, BNE */
13391 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13392 return TRUE;
13393
13394 return FALSE;
13395 }
13396
13397 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13398 IRELEND) at OFFSET indicate that there must be a compact branch there,
13399 then return TRUE, otherwise FALSE. */
13400
13401 static bfd_boolean
13402 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13403 const Elf_Internal_Rela *internal_relocs,
13404 const Elf_Internal_Rela *irelend)
13405 {
13406 const Elf_Internal_Rela *irel;
13407 unsigned long opcode;
13408
13409 opcode = bfd_get_micromips_32 (abfd, ptr);
13410 if (find_match (opcode, bzc_insns_32) < 0)
13411 return FALSE;
13412
13413 for (irel = internal_relocs; irel < irelend; irel++)
13414 if (irel->r_offset == offset
13415 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13416 return TRUE;
13417
13418 return FALSE;
13419 }
13420
13421 /* Bitsize checking. */
13422 #define IS_BITSIZE(val, N) \
13423 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13424 - (1ULL << ((N) - 1))) == (val))
13425
13426 \f
13427 bfd_boolean
13428 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13429 struct bfd_link_info *link_info,
13430 bfd_boolean *again)
13431 {
13432 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13433 Elf_Internal_Shdr *symtab_hdr;
13434 Elf_Internal_Rela *internal_relocs;
13435 Elf_Internal_Rela *irel, *irelend;
13436 bfd_byte *contents = NULL;
13437 Elf_Internal_Sym *isymbuf = NULL;
13438
13439 /* Assume nothing changes. */
13440 *again = FALSE;
13441
13442 /* We don't have to do anything for a relocatable link, if
13443 this section does not have relocs, or if this is not a
13444 code section. */
13445
13446 if (bfd_link_relocatable (link_info)
13447 || (sec->flags & SEC_RELOC) == 0
13448 || sec->reloc_count == 0
13449 || (sec->flags & SEC_CODE) == 0)
13450 return TRUE;
13451
13452 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13453
13454 /* Get a copy of the native relocations. */
13455 internal_relocs = (_bfd_elf_link_read_relocs
13456 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13457 link_info->keep_memory));
13458 if (internal_relocs == NULL)
13459 goto error_return;
13460
13461 /* Walk through them looking for relaxing opportunities. */
13462 irelend = internal_relocs + sec->reloc_count;
13463 for (irel = internal_relocs; irel < irelend; irel++)
13464 {
13465 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13466 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13467 bfd_boolean target_is_micromips_code_p;
13468 unsigned long opcode;
13469 bfd_vma symval;
13470 bfd_vma pcrval;
13471 bfd_byte *ptr;
13472 int fndopc;
13473
13474 /* The number of bytes to delete for relaxation and from where
13475 to delete these bytes starting at irel->r_offset. */
13476 int delcnt = 0;
13477 int deloff = 0;
13478
13479 /* If this isn't something that can be relaxed, then ignore
13480 this reloc. */
13481 if (r_type != R_MICROMIPS_HI16
13482 && r_type != R_MICROMIPS_PC16_S1
13483 && r_type != R_MICROMIPS_26_S1)
13484 continue;
13485
13486 /* Get the section contents if we haven't done so already. */
13487 if (contents == NULL)
13488 {
13489 /* Get cached copy if it exists. */
13490 if (elf_section_data (sec)->this_hdr.contents != NULL)
13491 contents = elf_section_data (sec)->this_hdr.contents;
13492 /* Go get them off disk. */
13493 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13494 goto error_return;
13495 }
13496 ptr = contents + irel->r_offset;
13497
13498 /* Read this BFD's local symbols if we haven't done so already. */
13499 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13500 {
13501 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13502 if (isymbuf == NULL)
13503 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13504 symtab_hdr->sh_info, 0,
13505 NULL, NULL, NULL);
13506 if (isymbuf == NULL)
13507 goto error_return;
13508 }
13509
13510 /* Get the value of the symbol referred to by the reloc. */
13511 if (r_symndx < symtab_hdr->sh_info)
13512 {
13513 /* A local symbol. */
13514 Elf_Internal_Sym *isym;
13515 asection *sym_sec;
13516
13517 isym = isymbuf + r_symndx;
13518 if (isym->st_shndx == SHN_UNDEF)
13519 sym_sec = bfd_und_section_ptr;
13520 else if (isym->st_shndx == SHN_ABS)
13521 sym_sec = bfd_abs_section_ptr;
13522 else if (isym->st_shndx == SHN_COMMON)
13523 sym_sec = bfd_com_section_ptr;
13524 else
13525 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13526 symval = (isym->st_value
13527 + sym_sec->output_section->vma
13528 + sym_sec->output_offset);
13529 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13530 }
13531 else
13532 {
13533 unsigned long indx;
13534 struct elf_link_hash_entry *h;
13535
13536 /* An external symbol. */
13537 indx = r_symndx - symtab_hdr->sh_info;
13538 h = elf_sym_hashes (abfd)[indx];
13539 BFD_ASSERT (h != NULL);
13540
13541 if (h->root.type != bfd_link_hash_defined
13542 && h->root.type != bfd_link_hash_defweak)
13543 /* This appears to be a reference to an undefined
13544 symbol. Just ignore it -- it will be caught by the
13545 regular reloc processing. */
13546 continue;
13547
13548 symval = (h->root.u.def.value
13549 + h->root.u.def.section->output_section->vma
13550 + h->root.u.def.section->output_offset);
13551 target_is_micromips_code_p = (!h->needs_plt
13552 && ELF_ST_IS_MICROMIPS (h->other));
13553 }
13554
13555
13556 /* For simplicity of coding, we are going to modify the
13557 section contents, the section relocs, and the BFD symbol
13558 table. We must tell the rest of the code not to free up this
13559 information. It would be possible to instead create a table
13560 of changes which have to be made, as is done in coff-mips.c;
13561 that would be more work, but would require less memory when
13562 the linker is run. */
13563
13564 /* Only 32-bit instructions relaxed. */
13565 if (irel->r_offset + 4 > sec->size)
13566 continue;
13567
13568 opcode = bfd_get_micromips_32 (abfd, ptr);
13569
13570 /* This is the pc-relative distance from the instruction the
13571 relocation is applied to, to the symbol referred. */
13572 pcrval = (symval
13573 - (sec->output_section->vma + sec->output_offset)
13574 - irel->r_offset);
13575
13576 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13577 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13578 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13579
13580 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13581
13582 where pcrval has first to be adjusted to apply against the LO16
13583 location (we make the adjustment later on, when we have figured
13584 out the offset). */
13585 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13586 {
13587 bfd_boolean bzc = FALSE;
13588 unsigned long nextopc;
13589 unsigned long reg;
13590 bfd_vma offset;
13591
13592 /* Give up if the previous reloc was a HI16 against this symbol
13593 too. */
13594 if (irel > internal_relocs
13595 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13596 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13597 continue;
13598
13599 /* Or if the next reloc is not a LO16 against this symbol. */
13600 if (irel + 1 >= irelend
13601 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13602 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13603 continue;
13604
13605 /* Or if the second next reloc is a LO16 against this symbol too. */
13606 if (irel + 2 >= irelend
13607 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13608 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13609 continue;
13610
13611 /* See if the LUI instruction *might* be in a branch delay slot.
13612 We check whether what looks like a 16-bit branch or jump is
13613 actually an immediate argument to a compact branch, and let
13614 it through if so. */
13615 if (irel->r_offset >= 2
13616 && check_br16_dslot (abfd, ptr - 2)
13617 && !(irel->r_offset >= 4
13618 && (bzc = check_relocated_bzc (abfd,
13619 ptr - 4, irel->r_offset - 4,
13620 internal_relocs, irelend))))
13621 continue;
13622 if (irel->r_offset >= 4
13623 && !bzc
13624 && check_br32_dslot (abfd, ptr - 4))
13625 continue;
13626
13627 reg = OP32_SREG (opcode);
13628
13629 /* We only relax adjacent instructions or ones separated with
13630 a branch or jump that has a delay slot. The branch or jump
13631 must not fiddle with the register used to hold the address.
13632 Subtract 4 for the LUI itself. */
13633 offset = irel[1].r_offset - irel[0].r_offset;
13634 switch (offset - 4)
13635 {
13636 case 0:
13637 break;
13638 case 2:
13639 if (check_br16 (abfd, ptr + 4, reg))
13640 break;
13641 continue;
13642 case 4:
13643 if (check_br32 (abfd, ptr + 4, reg))
13644 break;
13645 continue;
13646 default:
13647 continue;
13648 }
13649
13650 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13651
13652 /* Give up unless the same register is used with both
13653 relocations. */
13654 if (OP32_SREG (nextopc) != reg)
13655 continue;
13656
13657 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13658 and rounding up to take masking of the two LSBs into account. */
13659 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13660
13661 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13662 if (IS_BITSIZE (symval, 16))
13663 {
13664 /* Fix the relocation's type. */
13665 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13666
13667 /* Instructions using R_MICROMIPS_LO16 have the base or
13668 source register in bits 20:16. This register becomes $0
13669 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13670 nextopc &= ~0x001f0000;
13671 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13672 contents + irel[1].r_offset);
13673 }
13674
13675 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13676 We add 4 to take LUI deletion into account while checking
13677 the PC-relative distance. */
13678 else if (symval % 4 == 0
13679 && IS_BITSIZE (pcrval + 4, 25)
13680 && MATCH (nextopc, addiu_insn)
13681 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13682 && OP16_VALID_REG (OP32_TREG (nextopc)))
13683 {
13684 /* Fix the relocation's type. */
13685 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13686
13687 /* Replace ADDIU with the ADDIUPC version. */
13688 nextopc = (addiupc_insn.match
13689 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13690
13691 bfd_put_micromips_32 (abfd, nextopc,
13692 contents + irel[1].r_offset);
13693 }
13694
13695 /* Can't do anything, give up, sigh... */
13696 else
13697 continue;
13698
13699 /* Fix the relocation's type. */
13700 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13701
13702 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13703 delcnt = 4;
13704 deloff = 0;
13705 }
13706
13707 /* Compact branch relaxation -- due to the multitude of macros
13708 employed by the compiler/assembler, compact branches are not
13709 always generated. Obviously, this can/will be fixed elsewhere,
13710 but there is no drawback in double checking it here. */
13711 else if (r_type == R_MICROMIPS_PC16_S1
13712 && irel->r_offset + 5 < sec->size
13713 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13714 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13715 && ((!insn32
13716 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13717 nop_insn_16) ? 2 : 0))
13718 || (irel->r_offset + 7 < sec->size
13719 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13720 ptr + 4),
13721 nop_insn_32) ? 4 : 0))))
13722 {
13723 unsigned long reg;
13724
13725 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13726
13727 /* Replace BEQZ/BNEZ with the compact version. */
13728 opcode = (bzc_insns_32[fndopc].match
13729 | BZC32_REG_FIELD (reg)
13730 | (opcode & 0xffff)); /* Addend value. */
13731
13732 bfd_put_micromips_32 (abfd, opcode, ptr);
13733
13734 /* Delete the delay slot NOP: two or four bytes from
13735 irel->offset + 4; delcnt has already been set above. */
13736 deloff = 4;
13737 }
13738
13739 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13740 to check the distance from the next instruction, so subtract 2. */
13741 else if (!insn32
13742 && r_type == R_MICROMIPS_PC16_S1
13743 && IS_BITSIZE (pcrval - 2, 11)
13744 && find_match (opcode, b_insns_32) >= 0)
13745 {
13746 /* Fix the relocation's type. */
13747 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13748
13749 /* Replace the 32-bit opcode with a 16-bit opcode. */
13750 bfd_put_16 (abfd,
13751 (b_insn_16.match
13752 | (opcode & 0x3ff)), /* Addend value. */
13753 ptr);
13754
13755 /* Delete 2 bytes from irel->r_offset + 2. */
13756 delcnt = 2;
13757 deloff = 2;
13758 }
13759
13760 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13761 to check the distance from the next instruction, so subtract 2. */
13762 else if (!insn32
13763 && r_type == R_MICROMIPS_PC16_S1
13764 && IS_BITSIZE (pcrval - 2, 8)
13765 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13766 && OP16_VALID_REG (OP32_SREG (opcode)))
13767 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13768 && OP16_VALID_REG (OP32_TREG (opcode)))))
13769 {
13770 unsigned long reg;
13771
13772 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13773
13774 /* Fix the relocation's type. */
13775 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13776
13777 /* Replace the 32-bit opcode with a 16-bit opcode. */
13778 bfd_put_16 (abfd,
13779 (bz_insns_16[fndopc].match
13780 | BZ16_REG_FIELD (reg)
13781 | (opcode & 0x7f)), /* Addend value. */
13782 ptr);
13783
13784 /* Delete 2 bytes from irel->r_offset + 2. */
13785 delcnt = 2;
13786 deloff = 2;
13787 }
13788
13789 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13790 else if (!insn32
13791 && r_type == R_MICROMIPS_26_S1
13792 && target_is_micromips_code_p
13793 && irel->r_offset + 7 < sec->size
13794 && MATCH (opcode, jal_insn_32_bd32))
13795 {
13796 unsigned long n32opc;
13797 bfd_boolean relaxed = FALSE;
13798
13799 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13800
13801 if (MATCH (n32opc, nop_insn_32))
13802 {
13803 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13804 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13805
13806 relaxed = TRUE;
13807 }
13808 else if (find_match (n32opc, move_insns_32) >= 0)
13809 {
13810 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13811 bfd_put_16 (abfd,
13812 (move_insn_16.match
13813 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13814 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13815 ptr + 4);
13816
13817 relaxed = TRUE;
13818 }
13819 /* Other 32-bit instructions relaxable to 16-bit
13820 instructions will be handled here later. */
13821
13822 if (relaxed)
13823 {
13824 /* JAL with 32-bit delay slot that is changed to a JALS
13825 with 16-bit delay slot. */
13826 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13827
13828 /* Delete 2 bytes from irel->r_offset + 6. */
13829 delcnt = 2;
13830 deloff = 6;
13831 }
13832 }
13833
13834 if (delcnt != 0)
13835 {
13836 /* Note that we've changed the relocs, section contents, etc. */
13837 elf_section_data (sec)->relocs = internal_relocs;
13838 elf_section_data (sec)->this_hdr.contents = contents;
13839 symtab_hdr->contents = (unsigned char *) isymbuf;
13840
13841 /* Delete bytes depending on the delcnt and deloff. */
13842 if (!mips_elf_relax_delete_bytes (abfd, sec,
13843 irel->r_offset + deloff, delcnt))
13844 goto error_return;
13845
13846 /* That will change things, so we should relax again.
13847 Note that this is not required, and it may be slow. */
13848 *again = TRUE;
13849 }
13850 }
13851
13852 if (isymbuf != NULL
13853 && symtab_hdr->contents != (unsigned char *) isymbuf)
13854 {
13855 if (! link_info->keep_memory)
13856 free (isymbuf);
13857 else
13858 {
13859 /* Cache the symbols for elf_link_input_bfd. */
13860 symtab_hdr->contents = (unsigned char *) isymbuf;
13861 }
13862 }
13863
13864 if (contents != NULL
13865 && elf_section_data (sec)->this_hdr.contents != contents)
13866 {
13867 if (! link_info->keep_memory)
13868 free (contents);
13869 else
13870 {
13871 /* Cache the section contents for elf_link_input_bfd. */
13872 elf_section_data (sec)->this_hdr.contents = contents;
13873 }
13874 }
13875
13876 if (internal_relocs != NULL
13877 && elf_section_data (sec)->relocs != internal_relocs)
13878 free (internal_relocs);
13879
13880 return TRUE;
13881
13882 error_return:
13883 if (isymbuf != NULL
13884 && symtab_hdr->contents != (unsigned char *) isymbuf)
13885 free (isymbuf);
13886 if (contents != NULL
13887 && elf_section_data (sec)->this_hdr.contents != contents)
13888 free (contents);
13889 if (internal_relocs != NULL
13890 && elf_section_data (sec)->relocs != internal_relocs)
13891 free (internal_relocs);
13892
13893 return FALSE;
13894 }
13895 \f
13896 /* Create a MIPS ELF linker hash table. */
13897
13898 struct bfd_link_hash_table *
13899 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13900 {
13901 struct mips_elf_link_hash_table *ret;
13902 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13903
13904 ret = bfd_zmalloc (amt);
13905 if (ret == NULL)
13906 return NULL;
13907
13908 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13909 mips_elf_link_hash_newfunc,
13910 sizeof (struct mips_elf_link_hash_entry),
13911 MIPS_ELF_DATA))
13912 {
13913 free (ret);
13914 return NULL;
13915 }
13916 ret->root.init_plt_refcount.plist = NULL;
13917 ret->root.init_plt_offset.plist = NULL;
13918
13919 return &ret->root.root;
13920 }
13921
13922 /* Likewise, but indicate that the target is VxWorks. */
13923
13924 struct bfd_link_hash_table *
13925 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13926 {
13927 struct bfd_link_hash_table *ret;
13928
13929 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13930 if (ret)
13931 {
13932 struct mips_elf_link_hash_table *htab;
13933
13934 htab = (struct mips_elf_link_hash_table *) ret;
13935 htab->use_plts_and_copy_relocs = TRUE;
13936 htab->is_vxworks = TRUE;
13937 }
13938 return ret;
13939 }
13940
13941 /* A function that the linker calls if we are allowed to use PLTs
13942 and copy relocs. */
13943
13944 void
13945 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13946 {
13947 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13948 }
13949
13950 /* A function that the linker calls to select between all or only
13951 32-bit microMIPS instructions. */
13952
13953 void
13954 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
13955 {
13956 mips_elf_hash_table (info)->insn32 = on;
13957 }
13958 \f
13959 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13960
13961 struct mips_mach_extension
13962 {
13963 unsigned long extension, base;
13964 };
13965
13966
13967 /* An array describing how BFD machines relate to one another. The entries
13968 are ordered topologically with MIPS I extensions listed last. */
13969
13970 static const struct mips_mach_extension mips_mach_extensions[] =
13971 {
13972 /* MIPS64r2 extensions. */
13973 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13974 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13975 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13976 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13977 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13978
13979 /* MIPS64 extensions. */
13980 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13981 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13982 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13983
13984 /* MIPS V extensions. */
13985 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13986
13987 /* R10000 extensions. */
13988 { bfd_mach_mips12000, bfd_mach_mips10000 },
13989 { bfd_mach_mips14000, bfd_mach_mips10000 },
13990 { bfd_mach_mips16000, bfd_mach_mips10000 },
13991
13992 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13993 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13994 better to allow vr5400 and vr5500 code to be merged anyway, since
13995 many libraries will just use the core ISA. Perhaps we could add
13996 some sort of ASE flag if this ever proves a problem. */
13997 { bfd_mach_mips5500, bfd_mach_mips5400 },
13998 { bfd_mach_mips5400, bfd_mach_mips5000 },
13999
14000 /* MIPS IV extensions. */
14001 { bfd_mach_mips5, bfd_mach_mips8000 },
14002 { bfd_mach_mips10000, bfd_mach_mips8000 },
14003 { bfd_mach_mips5000, bfd_mach_mips8000 },
14004 { bfd_mach_mips7000, bfd_mach_mips8000 },
14005 { bfd_mach_mips9000, bfd_mach_mips8000 },
14006
14007 /* VR4100 extensions. */
14008 { bfd_mach_mips4120, bfd_mach_mips4100 },
14009 { bfd_mach_mips4111, bfd_mach_mips4100 },
14010
14011 /* MIPS III extensions. */
14012 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14013 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14014 { bfd_mach_mips8000, bfd_mach_mips4000 },
14015 { bfd_mach_mips4650, bfd_mach_mips4000 },
14016 { bfd_mach_mips4600, bfd_mach_mips4000 },
14017 { bfd_mach_mips4400, bfd_mach_mips4000 },
14018 { bfd_mach_mips4300, bfd_mach_mips4000 },
14019 { bfd_mach_mips4100, bfd_mach_mips4000 },
14020 { bfd_mach_mips4010, bfd_mach_mips4000 },
14021 { bfd_mach_mips5900, bfd_mach_mips4000 },
14022
14023 /* MIPS32 extensions. */
14024 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14025
14026 /* MIPS II extensions. */
14027 { bfd_mach_mips4000, bfd_mach_mips6000 },
14028 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14029
14030 /* MIPS I extensions. */
14031 { bfd_mach_mips6000, bfd_mach_mips3000 },
14032 { bfd_mach_mips3900, bfd_mach_mips3000 }
14033 };
14034
14035 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14036
14037 static bfd_boolean
14038 mips_mach_extends_p (unsigned long base, unsigned long extension)
14039 {
14040 size_t i;
14041
14042 if (extension == base)
14043 return TRUE;
14044
14045 if (base == bfd_mach_mipsisa32
14046 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14047 return TRUE;
14048
14049 if (base == bfd_mach_mipsisa32r2
14050 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14051 return TRUE;
14052
14053 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14054 if (extension == mips_mach_extensions[i].extension)
14055 {
14056 extension = mips_mach_extensions[i].base;
14057 if (extension == base)
14058 return TRUE;
14059 }
14060
14061 return FALSE;
14062 }
14063
14064 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14065
14066 static unsigned long
14067 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14068 {
14069 switch (isa_ext)
14070 {
14071 case AFL_EXT_3900: return bfd_mach_mips3900;
14072 case AFL_EXT_4010: return bfd_mach_mips4010;
14073 case AFL_EXT_4100: return bfd_mach_mips4100;
14074 case AFL_EXT_4111: return bfd_mach_mips4111;
14075 case AFL_EXT_4120: return bfd_mach_mips4120;
14076 case AFL_EXT_4650: return bfd_mach_mips4650;
14077 case AFL_EXT_5400: return bfd_mach_mips5400;
14078 case AFL_EXT_5500: return bfd_mach_mips5500;
14079 case AFL_EXT_5900: return bfd_mach_mips5900;
14080 case AFL_EXT_10000: return bfd_mach_mips10000;
14081 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14082 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14083 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14084 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14085 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14086 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14087 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14088 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14089 default: return bfd_mach_mips3000;
14090 }
14091 }
14092
14093 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14094
14095 unsigned int
14096 bfd_mips_isa_ext (bfd *abfd)
14097 {
14098 switch (bfd_get_mach (abfd))
14099 {
14100 case bfd_mach_mips3900: return AFL_EXT_3900;
14101 case bfd_mach_mips4010: return AFL_EXT_4010;
14102 case bfd_mach_mips4100: return AFL_EXT_4100;
14103 case bfd_mach_mips4111: return AFL_EXT_4111;
14104 case bfd_mach_mips4120: return AFL_EXT_4120;
14105 case bfd_mach_mips4650: return AFL_EXT_4650;
14106 case bfd_mach_mips5400: return AFL_EXT_5400;
14107 case bfd_mach_mips5500: return AFL_EXT_5500;
14108 case bfd_mach_mips5900: return AFL_EXT_5900;
14109 case bfd_mach_mips10000: return AFL_EXT_10000;
14110 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14111 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14112 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14113 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14114 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14115 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14116 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14117 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14118 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14119 default: return 0;
14120 }
14121 }
14122
14123 /* Encode ISA level and revision as a single value. */
14124 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14125
14126 /* Decode a single value into level and revision. */
14127 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14128 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14129
14130 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14131
14132 static void
14133 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14134 {
14135 int new_isa = 0;
14136 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14137 {
14138 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14139 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14140 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14141 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14142 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14143 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14144 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14145 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14146 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14147 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14148 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14149 default:
14150 (*_bfd_error_handler)
14151 (_("%B: Unknown architecture %s"),
14152 abfd, bfd_printable_name (abfd));
14153 }
14154
14155 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14156 {
14157 abiflags->isa_level = ISA_LEVEL (new_isa);
14158 abiflags->isa_rev = ISA_REV (new_isa);
14159 }
14160
14161 /* Update the isa_ext if ABFD describes a further extension. */
14162 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14163 bfd_get_mach (abfd)))
14164 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14165 }
14166
14167 /* Return true if the given ELF header flags describe a 32-bit binary. */
14168
14169 static bfd_boolean
14170 mips_32bit_flags_p (flagword flags)
14171 {
14172 return ((flags & EF_MIPS_32BITMODE) != 0
14173 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14174 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14175 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14176 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14177 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14178 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14179 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14180 }
14181
14182 /* Infer the content of the ABI flags based on the elf header. */
14183
14184 static void
14185 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14186 {
14187 obj_attribute *in_attr;
14188
14189 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14190 update_mips_abiflags_isa (abfd, abiflags);
14191
14192 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14193 abiflags->gpr_size = AFL_REG_32;
14194 else
14195 abiflags->gpr_size = AFL_REG_64;
14196
14197 abiflags->cpr1_size = AFL_REG_NONE;
14198
14199 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14200 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14201
14202 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14203 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14204 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14205 && abiflags->gpr_size == AFL_REG_32))
14206 abiflags->cpr1_size = AFL_REG_32;
14207 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14208 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14209 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14210 abiflags->cpr1_size = AFL_REG_64;
14211
14212 abiflags->cpr2_size = AFL_REG_NONE;
14213
14214 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14215 abiflags->ases |= AFL_ASE_MDMX;
14216 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14217 abiflags->ases |= AFL_ASE_MIPS16;
14218 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14219 abiflags->ases |= AFL_ASE_MICROMIPS;
14220
14221 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14222 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14223 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14224 && abiflags->isa_level >= 32
14225 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14226 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14227 }
14228
14229 /* We need to use a special link routine to handle the .reginfo and
14230 the .mdebug sections. We need to merge all instances of these
14231 sections together, not write them all out sequentially. */
14232
14233 bfd_boolean
14234 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14235 {
14236 asection *o;
14237 struct bfd_link_order *p;
14238 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14239 asection *rtproc_sec, *abiflags_sec;
14240 Elf32_RegInfo reginfo;
14241 struct ecoff_debug_info debug;
14242 struct mips_htab_traverse_info hti;
14243 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14244 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14245 HDRR *symhdr = &debug.symbolic_header;
14246 void *mdebug_handle = NULL;
14247 asection *s;
14248 EXTR esym;
14249 unsigned int i;
14250 bfd_size_type amt;
14251 struct mips_elf_link_hash_table *htab;
14252
14253 static const char * const secname[] =
14254 {
14255 ".text", ".init", ".fini", ".data",
14256 ".rodata", ".sdata", ".sbss", ".bss"
14257 };
14258 static const int sc[] =
14259 {
14260 scText, scInit, scFini, scData,
14261 scRData, scSData, scSBss, scBss
14262 };
14263
14264 /* Sort the dynamic symbols so that those with GOT entries come after
14265 those without. */
14266 htab = mips_elf_hash_table (info);
14267 BFD_ASSERT (htab != NULL);
14268
14269 if (!mips_elf_sort_hash_table (abfd, info))
14270 return FALSE;
14271
14272 /* Create any scheduled LA25 stubs. */
14273 hti.info = info;
14274 hti.output_bfd = abfd;
14275 hti.error = FALSE;
14276 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14277 if (hti.error)
14278 return FALSE;
14279
14280 /* Get a value for the GP register. */
14281 if (elf_gp (abfd) == 0)
14282 {
14283 struct bfd_link_hash_entry *h;
14284
14285 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14286 if (h != NULL && h->type == bfd_link_hash_defined)
14287 elf_gp (abfd) = (h->u.def.value
14288 + h->u.def.section->output_section->vma
14289 + h->u.def.section->output_offset);
14290 else if (htab->is_vxworks
14291 && (h = bfd_link_hash_lookup (info->hash,
14292 "_GLOBAL_OFFSET_TABLE_",
14293 FALSE, FALSE, TRUE))
14294 && h->type == bfd_link_hash_defined)
14295 elf_gp (abfd) = (h->u.def.section->output_section->vma
14296 + h->u.def.section->output_offset
14297 + h->u.def.value);
14298 else if (bfd_link_relocatable (info))
14299 {
14300 bfd_vma lo = MINUS_ONE;
14301
14302 /* Find the GP-relative section with the lowest offset. */
14303 for (o = abfd->sections; o != NULL; o = o->next)
14304 if (o->vma < lo
14305 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14306 lo = o->vma;
14307
14308 /* And calculate GP relative to that. */
14309 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14310 }
14311 else
14312 {
14313 /* If the relocate_section function needs to do a reloc
14314 involving the GP value, it should make a reloc_dangerous
14315 callback to warn that GP is not defined. */
14316 }
14317 }
14318
14319 /* Go through the sections and collect the .reginfo and .mdebug
14320 information. */
14321 abiflags_sec = NULL;
14322 reginfo_sec = NULL;
14323 mdebug_sec = NULL;
14324 gptab_data_sec = NULL;
14325 gptab_bss_sec = NULL;
14326 for (o = abfd->sections; o != NULL; o = o->next)
14327 {
14328 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14329 {
14330 /* We have found the .MIPS.abiflags section in the output file.
14331 Look through all the link_orders comprising it and remove them.
14332 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14333 for (p = o->map_head.link_order; p != NULL; p = p->next)
14334 {
14335 asection *input_section;
14336
14337 if (p->type != bfd_indirect_link_order)
14338 {
14339 if (p->type == bfd_data_link_order)
14340 continue;
14341 abort ();
14342 }
14343
14344 input_section = p->u.indirect.section;
14345
14346 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14347 elf_link_input_bfd ignores this section. */
14348 input_section->flags &= ~SEC_HAS_CONTENTS;
14349 }
14350
14351 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14352 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14353
14354 /* Skip this section later on (I don't think this currently
14355 matters, but someday it might). */
14356 o->map_head.link_order = NULL;
14357
14358 abiflags_sec = o;
14359 }
14360
14361 if (strcmp (o->name, ".reginfo") == 0)
14362 {
14363 memset (&reginfo, 0, sizeof reginfo);
14364
14365 /* We have found the .reginfo section in the output file.
14366 Look through all the link_orders comprising it and merge
14367 the information together. */
14368 for (p = o->map_head.link_order; p != NULL; p = p->next)
14369 {
14370 asection *input_section;
14371 bfd *input_bfd;
14372 Elf32_External_RegInfo ext;
14373 Elf32_RegInfo sub;
14374
14375 if (p->type != bfd_indirect_link_order)
14376 {
14377 if (p->type == bfd_data_link_order)
14378 continue;
14379 abort ();
14380 }
14381
14382 input_section = p->u.indirect.section;
14383 input_bfd = input_section->owner;
14384
14385 if (! bfd_get_section_contents (input_bfd, input_section,
14386 &ext, 0, sizeof ext))
14387 return FALSE;
14388
14389 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14390
14391 reginfo.ri_gprmask |= sub.ri_gprmask;
14392 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14393 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14394 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14395 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14396
14397 /* ri_gp_value is set by the function
14398 mips_elf32_section_processing when the section is
14399 finally written out. */
14400
14401 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14402 elf_link_input_bfd ignores this section. */
14403 input_section->flags &= ~SEC_HAS_CONTENTS;
14404 }
14405
14406 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14407 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14408
14409 /* Skip this section later on (I don't think this currently
14410 matters, but someday it might). */
14411 o->map_head.link_order = NULL;
14412
14413 reginfo_sec = o;
14414 }
14415
14416 if (strcmp (o->name, ".mdebug") == 0)
14417 {
14418 struct extsym_info einfo;
14419 bfd_vma last;
14420
14421 /* We have found the .mdebug section in the output file.
14422 Look through all the link_orders comprising it and merge
14423 the information together. */
14424 symhdr->magic = swap->sym_magic;
14425 /* FIXME: What should the version stamp be? */
14426 symhdr->vstamp = 0;
14427 symhdr->ilineMax = 0;
14428 symhdr->cbLine = 0;
14429 symhdr->idnMax = 0;
14430 symhdr->ipdMax = 0;
14431 symhdr->isymMax = 0;
14432 symhdr->ioptMax = 0;
14433 symhdr->iauxMax = 0;
14434 symhdr->issMax = 0;
14435 symhdr->issExtMax = 0;
14436 symhdr->ifdMax = 0;
14437 symhdr->crfd = 0;
14438 symhdr->iextMax = 0;
14439
14440 /* We accumulate the debugging information itself in the
14441 debug_info structure. */
14442 debug.line = NULL;
14443 debug.external_dnr = NULL;
14444 debug.external_pdr = NULL;
14445 debug.external_sym = NULL;
14446 debug.external_opt = NULL;
14447 debug.external_aux = NULL;
14448 debug.ss = NULL;
14449 debug.ssext = debug.ssext_end = NULL;
14450 debug.external_fdr = NULL;
14451 debug.external_rfd = NULL;
14452 debug.external_ext = debug.external_ext_end = NULL;
14453
14454 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14455 if (mdebug_handle == NULL)
14456 return FALSE;
14457
14458 esym.jmptbl = 0;
14459 esym.cobol_main = 0;
14460 esym.weakext = 0;
14461 esym.reserved = 0;
14462 esym.ifd = ifdNil;
14463 esym.asym.iss = issNil;
14464 esym.asym.st = stLocal;
14465 esym.asym.reserved = 0;
14466 esym.asym.index = indexNil;
14467 last = 0;
14468 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14469 {
14470 esym.asym.sc = sc[i];
14471 s = bfd_get_section_by_name (abfd, secname[i]);
14472 if (s != NULL)
14473 {
14474 esym.asym.value = s->vma;
14475 last = s->vma + s->size;
14476 }
14477 else
14478 esym.asym.value = last;
14479 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14480 secname[i], &esym))
14481 return FALSE;
14482 }
14483
14484 for (p = o->map_head.link_order; p != NULL; p = p->next)
14485 {
14486 asection *input_section;
14487 bfd *input_bfd;
14488 const struct ecoff_debug_swap *input_swap;
14489 struct ecoff_debug_info input_debug;
14490 char *eraw_src;
14491 char *eraw_end;
14492
14493 if (p->type != bfd_indirect_link_order)
14494 {
14495 if (p->type == bfd_data_link_order)
14496 continue;
14497 abort ();
14498 }
14499
14500 input_section = p->u.indirect.section;
14501 input_bfd = input_section->owner;
14502
14503 if (!is_mips_elf (input_bfd))
14504 {
14505 /* I don't know what a non MIPS ELF bfd would be
14506 doing with a .mdebug section, but I don't really
14507 want to deal with it. */
14508 continue;
14509 }
14510
14511 input_swap = (get_elf_backend_data (input_bfd)
14512 ->elf_backend_ecoff_debug_swap);
14513
14514 BFD_ASSERT (p->size == input_section->size);
14515
14516 /* The ECOFF linking code expects that we have already
14517 read in the debugging information and set up an
14518 ecoff_debug_info structure, so we do that now. */
14519 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14520 &input_debug))
14521 return FALSE;
14522
14523 if (! (bfd_ecoff_debug_accumulate
14524 (mdebug_handle, abfd, &debug, swap, input_bfd,
14525 &input_debug, input_swap, info)))
14526 return FALSE;
14527
14528 /* Loop through the external symbols. For each one with
14529 interesting information, try to find the symbol in
14530 the linker global hash table and save the information
14531 for the output external symbols. */
14532 eraw_src = input_debug.external_ext;
14533 eraw_end = (eraw_src
14534 + (input_debug.symbolic_header.iextMax
14535 * input_swap->external_ext_size));
14536 for (;
14537 eraw_src < eraw_end;
14538 eraw_src += input_swap->external_ext_size)
14539 {
14540 EXTR ext;
14541 const char *name;
14542 struct mips_elf_link_hash_entry *h;
14543
14544 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14545 if (ext.asym.sc == scNil
14546 || ext.asym.sc == scUndefined
14547 || ext.asym.sc == scSUndefined)
14548 continue;
14549
14550 name = input_debug.ssext + ext.asym.iss;
14551 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14552 name, FALSE, FALSE, TRUE);
14553 if (h == NULL || h->esym.ifd != -2)
14554 continue;
14555
14556 if (ext.ifd != -1)
14557 {
14558 BFD_ASSERT (ext.ifd
14559 < input_debug.symbolic_header.ifdMax);
14560 ext.ifd = input_debug.ifdmap[ext.ifd];
14561 }
14562
14563 h->esym = ext;
14564 }
14565
14566 /* Free up the information we just read. */
14567 free (input_debug.line);
14568 free (input_debug.external_dnr);
14569 free (input_debug.external_pdr);
14570 free (input_debug.external_sym);
14571 free (input_debug.external_opt);
14572 free (input_debug.external_aux);
14573 free (input_debug.ss);
14574 free (input_debug.ssext);
14575 free (input_debug.external_fdr);
14576 free (input_debug.external_rfd);
14577 free (input_debug.external_ext);
14578
14579 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14580 elf_link_input_bfd ignores this section. */
14581 input_section->flags &= ~SEC_HAS_CONTENTS;
14582 }
14583
14584 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14585 {
14586 /* Create .rtproc section. */
14587 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14588 if (rtproc_sec == NULL)
14589 {
14590 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14591 | SEC_LINKER_CREATED | SEC_READONLY);
14592
14593 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14594 ".rtproc",
14595 flags);
14596 if (rtproc_sec == NULL
14597 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14598 return FALSE;
14599 }
14600
14601 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14602 info, rtproc_sec,
14603 &debug))
14604 return FALSE;
14605 }
14606
14607 /* Build the external symbol information. */
14608 einfo.abfd = abfd;
14609 einfo.info = info;
14610 einfo.debug = &debug;
14611 einfo.swap = swap;
14612 einfo.failed = FALSE;
14613 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14614 mips_elf_output_extsym, &einfo);
14615 if (einfo.failed)
14616 return FALSE;
14617
14618 /* Set the size of the .mdebug section. */
14619 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14620
14621 /* Skip this section later on (I don't think this currently
14622 matters, but someday it might). */
14623 o->map_head.link_order = NULL;
14624
14625 mdebug_sec = o;
14626 }
14627
14628 if (CONST_STRNEQ (o->name, ".gptab."))
14629 {
14630 const char *subname;
14631 unsigned int c;
14632 Elf32_gptab *tab;
14633 Elf32_External_gptab *ext_tab;
14634 unsigned int j;
14635
14636 /* The .gptab.sdata and .gptab.sbss sections hold
14637 information describing how the small data area would
14638 change depending upon the -G switch. These sections
14639 not used in executables files. */
14640 if (! bfd_link_relocatable (info))
14641 {
14642 for (p = o->map_head.link_order; p != NULL; p = p->next)
14643 {
14644 asection *input_section;
14645
14646 if (p->type != bfd_indirect_link_order)
14647 {
14648 if (p->type == bfd_data_link_order)
14649 continue;
14650 abort ();
14651 }
14652
14653 input_section = p->u.indirect.section;
14654
14655 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14656 elf_link_input_bfd ignores this section. */
14657 input_section->flags &= ~SEC_HAS_CONTENTS;
14658 }
14659
14660 /* Skip this section later on (I don't think this
14661 currently matters, but someday it might). */
14662 o->map_head.link_order = NULL;
14663
14664 /* Really remove the section. */
14665 bfd_section_list_remove (abfd, o);
14666 --abfd->section_count;
14667
14668 continue;
14669 }
14670
14671 /* There is one gptab for initialized data, and one for
14672 uninitialized data. */
14673 if (strcmp (o->name, ".gptab.sdata") == 0)
14674 gptab_data_sec = o;
14675 else if (strcmp (o->name, ".gptab.sbss") == 0)
14676 gptab_bss_sec = o;
14677 else
14678 {
14679 (*_bfd_error_handler)
14680 (_("%s: illegal section name `%s'"),
14681 bfd_get_filename (abfd), o->name);
14682 bfd_set_error (bfd_error_nonrepresentable_section);
14683 return FALSE;
14684 }
14685
14686 /* The linker script always combines .gptab.data and
14687 .gptab.sdata into .gptab.sdata, and likewise for
14688 .gptab.bss and .gptab.sbss. It is possible that there is
14689 no .sdata or .sbss section in the output file, in which
14690 case we must change the name of the output section. */
14691 subname = o->name + sizeof ".gptab" - 1;
14692 if (bfd_get_section_by_name (abfd, subname) == NULL)
14693 {
14694 if (o == gptab_data_sec)
14695 o->name = ".gptab.data";
14696 else
14697 o->name = ".gptab.bss";
14698 subname = o->name + sizeof ".gptab" - 1;
14699 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14700 }
14701
14702 /* Set up the first entry. */
14703 c = 1;
14704 amt = c * sizeof (Elf32_gptab);
14705 tab = bfd_malloc (amt);
14706 if (tab == NULL)
14707 return FALSE;
14708 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14709 tab[0].gt_header.gt_unused = 0;
14710
14711 /* Combine the input sections. */
14712 for (p = o->map_head.link_order; p != NULL; p = p->next)
14713 {
14714 asection *input_section;
14715 bfd *input_bfd;
14716 bfd_size_type size;
14717 unsigned long last;
14718 bfd_size_type gpentry;
14719
14720 if (p->type != bfd_indirect_link_order)
14721 {
14722 if (p->type == bfd_data_link_order)
14723 continue;
14724 abort ();
14725 }
14726
14727 input_section = p->u.indirect.section;
14728 input_bfd = input_section->owner;
14729
14730 /* Combine the gptab entries for this input section one
14731 by one. We know that the input gptab entries are
14732 sorted by ascending -G value. */
14733 size = input_section->size;
14734 last = 0;
14735 for (gpentry = sizeof (Elf32_External_gptab);
14736 gpentry < size;
14737 gpentry += sizeof (Elf32_External_gptab))
14738 {
14739 Elf32_External_gptab ext_gptab;
14740 Elf32_gptab int_gptab;
14741 unsigned long val;
14742 unsigned long add;
14743 bfd_boolean exact;
14744 unsigned int look;
14745
14746 if (! (bfd_get_section_contents
14747 (input_bfd, input_section, &ext_gptab, gpentry,
14748 sizeof (Elf32_External_gptab))))
14749 {
14750 free (tab);
14751 return FALSE;
14752 }
14753
14754 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14755 &int_gptab);
14756 val = int_gptab.gt_entry.gt_g_value;
14757 add = int_gptab.gt_entry.gt_bytes - last;
14758
14759 exact = FALSE;
14760 for (look = 1; look < c; look++)
14761 {
14762 if (tab[look].gt_entry.gt_g_value >= val)
14763 tab[look].gt_entry.gt_bytes += add;
14764
14765 if (tab[look].gt_entry.gt_g_value == val)
14766 exact = TRUE;
14767 }
14768
14769 if (! exact)
14770 {
14771 Elf32_gptab *new_tab;
14772 unsigned int max;
14773
14774 /* We need a new table entry. */
14775 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14776 new_tab = bfd_realloc (tab, amt);
14777 if (new_tab == NULL)
14778 {
14779 free (tab);
14780 return FALSE;
14781 }
14782 tab = new_tab;
14783 tab[c].gt_entry.gt_g_value = val;
14784 tab[c].gt_entry.gt_bytes = add;
14785
14786 /* Merge in the size for the next smallest -G
14787 value, since that will be implied by this new
14788 value. */
14789 max = 0;
14790 for (look = 1; look < c; look++)
14791 {
14792 if (tab[look].gt_entry.gt_g_value < val
14793 && (max == 0
14794 || (tab[look].gt_entry.gt_g_value
14795 > tab[max].gt_entry.gt_g_value)))
14796 max = look;
14797 }
14798 if (max != 0)
14799 tab[c].gt_entry.gt_bytes +=
14800 tab[max].gt_entry.gt_bytes;
14801
14802 ++c;
14803 }
14804
14805 last = int_gptab.gt_entry.gt_bytes;
14806 }
14807
14808 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14809 elf_link_input_bfd ignores this section. */
14810 input_section->flags &= ~SEC_HAS_CONTENTS;
14811 }
14812
14813 /* The table must be sorted by -G value. */
14814 if (c > 2)
14815 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14816
14817 /* Swap out the table. */
14818 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14819 ext_tab = bfd_alloc (abfd, amt);
14820 if (ext_tab == NULL)
14821 {
14822 free (tab);
14823 return FALSE;
14824 }
14825
14826 for (j = 0; j < c; j++)
14827 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14828 free (tab);
14829
14830 o->size = c * sizeof (Elf32_External_gptab);
14831 o->contents = (bfd_byte *) ext_tab;
14832
14833 /* Skip this section later on (I don't think this currently
14834 matters, but someday it might). */
14835 o->map_head.link_order = NULL;
14836 }
14837 }
14838
14839 /* Invoke the regular ELF backend linker to do all the work. */
14840 if (!bfd_elf_final_link (abfd, info))
14841 return FALSE;
14842
14843 /* Now write out the computed sections. */
14844
14845 if (abiflags_sec != NULL)
14846 {
14847 Elf_External_ABIFlags_v0 ext;
14848 Elf_Internal_ABIFlags_v0 *abiflags;
14849
14850 abiflags = &mips_elf_tdata (abfd)->abiflags;
14851
14852 /* Set up the abiflags if no valid input sections were found. */
14853 if (!mips_elf_tdata (abfd)->abiflags_valid)
14854 {
14855 infer_mips_abiflags (abfd, abiflags);
14856 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14857 }
14858 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14859 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14860 return FALSE;
14861 }
14862
14863 if (reginfo_sec != NULL)
14864 {
14865 Elf32_External_RegInfo ext;
14866
14867 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14868 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14869 return FALSE;
14870 }
14871
14872 if (mdebug_sec != NULL)
14873 {
14874 BFD_ASSERT (abfd->output_has_begun);
14875 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14876 swap, info,
14877 mdebug_sec->filepos))
14878 return FALSE;
14879
14880 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14881 }
14882
14883 if (gptab_data_sec != NULL)
14884 {
14885 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14886 gptab_data_sec->contents,
14887 0, gptab_data_sec->size))
14888 return FALSE;
14889 }
14890
14891 if (gptab_bss_sec != NULL)
14892 {
14893 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14894 gptab_bss_sec->contents,
14895 0, gptab_bss_sec->size))
14896 return FALSE;
14897 }
14898
14899 if (SGI_COMPAT (abfd))
14900 {
14901 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14902 if (rtproc_sec != NULL)
14903 {
14904 if (! bfd_set_section_contents (abfd, rtproc_sec,
14905 rtproc_sec->contents,
14906 0, rtproc_sec->size))
14907 return FALSE;
14908 }
14909 }
14910
14911 return TRUE;
14912 }
14913 \f
14914 /* Merge object file header flags from IBFD into OBFD. Raise an error
14915 if there are conflicting settings. */
14916
14917 static bfd_boolean
14918 mips_elf_merge_obj_e_flags (bfd *ibfd, bfd *obfd)
14919 {
14920 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14921 flagword old_flags;
14922 flagword new_flags;
14923 bfd_boolean ok;
14924
14925 new_flags = elf_elfheader (ibfd)->e_flags;
14926 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14927 old_flags = elf_elfheader (obfd)->e_flags;
14928
14929 /* Check flag compatibility. */
14930
14931 new_flags &= ~EF_MIPS_NOREORDER;
14932 old_flags &= ~EF_MIPS_NOREORDER;
14933
14934 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14935 doesn't seem to matter. */
14936 new_flags &= ~EF_MIPS_XGOT;
14937 old_flags &= ~EF_MIPS_XGOT;
14938
14939 /* MIPSpro generates ucode info in n64 objects. Again, we should
14940 just be able to ignore this. */
14941 new_flags &= ~EF_MIPS_UCODE;
14942 old_flags &= ~EF_MIPS_UCODE;
14943
14944 /* DSOs should only be linked with CPIC code. */
14945 if ((ibfd->flags & DYNAMIC) != 0)
14946 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14947
14948 if (new_flags == old_flags)
14949 return TRUE;
14950
14951 ok = TRUE;
14952
14953 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14954 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14955 {
14956 (*_bfd_error_handler)
14957 (_("%B: warning: linking abicalls files with non-abicalls files"),
14958 ibfd);
14959 ok = TRUE;
14960 }
14961
14962 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14963 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14964 if (! (new_flags & EF_MIPS_PIC))
14965 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14966
14967 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14968 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14969
14970 /* Compare the ISAs. */
14971 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14972 {
14973 (*_bfd_error_handler)
14974 (_("%B: linking 32-bit code with 64-bit code"),
14975 ibfd);
14976 ok = FALSE;
14977 }
14978 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14979 {
14980 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14981 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14982 {
14983 /* Copy the architecture info from IBFD to OBFD. Also copy
14984 the 32-bit flag (if set) so that we continue to recognise
14985 OBFD as a 32-bit binary. */
14986 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14987 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14988 elf_elfheader (obfd)->e_flags
14989 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14990
14991 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
14992 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
14993
14994 /* Copy across the ABI flags if OBFD doesn't use them
14995 and if that was what caused us to treat IBFD as 32-bit. */
14996 if ((old_flags & EF_MIPS_ABI) == 0
14997 && mips_32bit_flags_p (new_flags)
14998 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14999 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15000 }
15001 else
15002 {
15003 /* The ISAs aren't compatible. */
15004 (*_bfd_error_handler)
15005 (_("%B: linking %s module with previous %s modules"),
15006 ibfd,
15007 bfd_printable_name (ibfd),
15008 bfd_printable_name (obfd));
15009 ok = FALSE;
15010 }
15011 }
15012
15013 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15014 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15015
15016 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15017 does set EI_CLASS differently from any 32-bit ABI. */
15018 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15019 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15020 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15021 {
15022 /* Only error if both are set (to different values). */
15023 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15024 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15025 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15026 {
15027 (*_bfd_error_handler)
15028 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15029 ibfd,
15030 elf_mips_abi_name (ibfd),
15031 elf_mips_abi_name (obfd));
15032 ok = FALSE;
15033 }
15034 new_flags &= ~EF_MIPS_ABI;
15035 old_flags &= ~EF_MIPS_ABI;
15036 }
15037
15038 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15039 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15040 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15041 {
15042 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15043 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15044 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15045 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15046 int micro_mis = old_m16 && new_micro;
15047 int m16_mis = old_micro && new_m16;
15048
15049 if (m16_mis || micro_mis)
15050 {
15051 (*_bfd_error_handler)
15052 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15053 ibfd,
15054 m16_mis ? "MIPS16" : "microMIPS",
15055 m16_mis ? "microMIPS" : "MIPS16");
15056 ok = FALSE;
15057 }
15058
15059 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15060
15061 new_flags &= ~ EF_MIPS_ARCH_ASE;
15062 old_flags &= ~ EF_MIPS_ARCH_ASE;
15063 }
15064
15065 /* Compare NaN encodings. */
15066 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15067 {
15068 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15069 ibfd,
15070 (new_flags & EF_MIPS_NAN2008
15071 ? "-mnan=2008" : "-mnan=legacy"),
15072 (old_flags & EF_MIPS_NAN2008
15073 ? "-mnan=2008" : "-mnan=legacy"));
15074 ok = FALSE;
15075 new_flags &= ~EF_MIPS_NAN2008;
15076 old_flags &= ~EF_MIPS_NAN2008;
15077 }
15078
15079 /* Compare FP64 state. */
15080 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15081 {
15082 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15083 ibfd,
15084 (new_flags & EF_MIPS_FP64
15085 ? "-mfp64" : "-mfp32"),
15086 (old_flags & EF_MIPS_FP64
15087 ? "-mfp64" : "-mfp32"));
15088 ok = FALSE;
15089 new_flags &= ~EF_MIPS_FP64;
15090 old_flags &= ~EF_MIPS_FP64;
15091 }
15092
15093 /* Warn about any other mismatches */
15094 if (new_flags != old_flags)
15095 {
15096 (*_bfd_error_handler)
15097 (_("%B: uses different e_flags (0x%lx) fields than previous modules "
15098 "(0x%lx)"),
15099 ibfd, (unsigned long) new_flags,
15100 (unsigned long) old_flags);
15101 ok = FALSE;
15102 }
15103
15104 return ok;
15105 }
15106
15107 /* Merge object attributes from IBFD into OBFD. Raise an error if
15108 there are conflicting attributes. */
15109 static bfd_boolean
15110 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
15111 {
15112 obj_attribute *in_attr;
15113 obj_attribute *out_attr;
15114 bfd *abi_fp_bfd;
15115 bfd *abi_msa_bfd;
15116
15117 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15118 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15119 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15120 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15121
15122 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15123 if (!abi_msa_bfd
15124 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15125 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15126
15127 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15128 {
15129 /* This is the first object. Copy the attributes. */
15130 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15131
15132 /* Use the Tag_null value to indicate the attributes have been
15133 initialized. */
15134 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15135
15136 return TRUE;
15137 }
15138
15139 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15140 non-conflicting ones. */
15141 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15142 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15143 {
15144 int out_fp, in_fp;
15145
15146 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15147 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15148 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15149 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15150 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15151 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15152 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15153 || in_fp == Val_GNU_MIPS_ABI_FP_64
15154 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15155 {
15156 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15157 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15158 }
15159 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15160 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15161 || out_fp == Val_GNU_MIPS_ABI_FP_64
15162 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15163 /* Keep the current setting. */;
15164 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15165 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15166 {
15167 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15168 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15169 }
15170 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15171 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15172 /* Keep the current setting. */;
15173 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15174 {
15175 const char *out_string, *in_string;
15176
15177 out_string = _bfd_mips_fp_abi_string (out_fp);
15178 in_string = _bfd_mips_fp_abi_string (in_fp);
15179 /* First warn about cases involving unrecognised ABIs. */
15180 if (!out_string && !in_string)
15181 _bfd_error_handler
15182 (_("Warning: %B uses unknown floating point ABI %d "
15183 "(set by %B), %B uses unknown floating point ABI %d"),
15184 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
15185 else if (!out_string)
15186 _bfd_error_handler
15187 (_("Warning: %B uses unknown floating point ABI %d "
15188 "(set by %B), %B uses %s"),
15189 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
15190 else if (!in_string)
15191 _bfd_error_handler
15192 (_("Warning: %B uses %s (set by %B), "
15193 "%B uses unknown floating point ABI %d"),
15194 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
15195 else
15196 {
15197 /* If one of the bfds is soft-float, the other must be
15198 hard-float. The exact choice of hard-float ABI isn't
15199 really relevant to the error message. */
15200 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15201 out_string = "-mhard-float";
15202 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15203 in_string = "-mhard-float";
15204 _bfd_error_handler
15205 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15206 obfd, abi_fp_bfd, ibfd, out_string, in_string);
15207 }
15208 }
15209 }
15210
15211 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15212 non-conflicting ones. */
15213 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15214 {
15215 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15216 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15217 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15218 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15219 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15220 {
15221 case Val_GNU_MIPS_ABI_MSA_128:
15222 _bfd_error_handler
15223 (_("Warning: %B uses %s (set by %B), "
15224 "%B uses unknown MSA ABI %d"),
15225 obfd, abi_msa_bfd, ibfd,
15226 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15227 break;
15228
15229 default:
15230 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15231 {
15232 case Val_GNU_MIPS_ABI_MSA_128:
15233 _bfd_error_handler
15234 (_("Warning: %B uses unknown MSA ABI %d "
15235 "(set by %B), %B uses %s"),
15236 obfd, abi_msa_bfd, ibfd,
15237 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15238 break;
15239
15240 default:
15241 _bfd_error_handler
15242 (_("Warning: %B uses unknown MSA ABI %d "
15243 "(set by %B), %B uses unknown MSA ABI %d"),
15244 obfd, abi_msa_bfd, ibfd,
15245 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15246 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15247 break;
15248 }
15249 }
15250 }
15251
15252 /* Merge Tag_compatibility attributes and any common GNU ones. */
15253 return _bfd_elf_merge_object_attributes (ibfd, obfd);
15254 }
15255
15256 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15257 there are conflicting settings. */
15258
15259 static bfd_boolean
15260 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15261 {
15262 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15263 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15264 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15265
15266 /* Update the output abiflags fp_abi using the computed fp_abi. */
15267 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15268
15269 #define max(a, b) ((a) > (b) ? (a) : (b))
15270 /* Merge abiflags. */
15271 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15272 in_tdata->abiflags.isa_level);
15273 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15274 in_tdata->abiflags.isa_rev);
15275 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15276 in_tdata->abiflags.gpr_size);
15277 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15278 in_tdata->abiflags.cpr1_size);
15279 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15280 in_tdata->abiflags.cpr2_size);
15281 #undef max
15282 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15283 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15284
15285 return TRUE;
15286 }
15287
15288 /* Merge backend specific data from an object file to the output
15289 object file when linking. */
15290
15291 bfd_boolean
15292 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
15293 {
15294 struct mips_elf_obj_tdata *out_tdata;
15295 struct mips_elf_obj_tdata *in_tdata;
15296 bfd_boolean null_input_bfd = TRUE;
15297 asection *sec;
15298 bfd_boolean ok;
15299
15300 /* Check if we have the same endianness. */
15301 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15302 {
15303 (*_bfd_error_handler)
15304 (_("%B: endianness incompatible with that of the selected emulation"),
15305 ibfd);
15306 return FALSE;
15307 }
15308
15309 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15310 return TRUE;
15311
15312 in_tdata = mips_elf_tdata (ibfd);
15313 out_tdata = mips_elf_tdata (obfd);
15314
15315 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15316 {
15317 (*_bfd_error_handler)
15318 (_("%B: ABI is incompatible with that of the selected emulation"),
15319 ibfd);
15320 return FALSE;
15321 }
15322
15323 /* Check to see if the input BFD actually contains any sections. If not,
15324 then it has no attributes, and its flags may not have been initialized
15325 either, but it cannot actually cause any incompatibility. */
15326 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15327 {
15328 /* Ignore synthetic sections and empty .text, .data and .bss sections
15329 which are automatically generated by gas. Also ignore fake
15330 (s)common sections, since merely defining a common symbol does
15331 not affect compatibility. */
15332 if ((sec->flags & SEC_IS_COMMON) == 0
15333 && strcmp (sec->name, ".reginfo")
15334 && strcmp (sec->name, ".mdebug")
15335 && (sec->size != 0
15336 || (strcmp (sec->name, ".text")
15337 && strcmp (sec->name, ".data")
15338 && strcmp (sec->name, ".bss"))))
15339 {
15340 null_input_bfd = FALSE;
15341 break;
15342 }
15343 }
15344 if (null_input_bfd)
15345 return TRUE;
15346
15347 /* Populate abiflags using existing information. */
15348 if (in_tdata->abiflags_valid)
15349 {
15350 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15351 Elf_Internal_ABIFlags_v0 in_abiflags;
15352 Elf_Internal_ABIFlags_v0 abiflags;
15353
15354 /* Set up the FP ABI attribute from the abiflags if it is not already
15355 set. */
15356 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15357 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15358
15359 infer_mips_abiflags (ibfd, &abiflags);
15360 in_abiflags = in_tdata->abiflags;
15361
15362 /* It is not possible to infer the correct ISA revision
15363 for R3 or R5 so drop down to R2 for the checks. */
15364 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15365 in_abiflags.isa_rev = 2;
15366
15367 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15368 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15369 (*_bfd_error_handler)
15370 (_("%B: warning: Inconsistent ISA between e_flags and "
15371 ".MIPS.abiflags"), ibfd);
15372 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15373 && in_abiflags.fp_abi != abiflags.fp_abi)
15374 (*_bfd_error_handler)
15375 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
15376 ".MIPS.abiflags"), ibfd);
15377 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15378 (*_bfd_error_handler)
15379 (_("%B: warning: Inconsistent ASEs between e_flags and "
15380 ".MIPS.abiflags"), ibfd);
15381 /* The isa_ext is allowed to be an extension of what can be inferred
15382 from e_flags. */
15383 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15384 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15385 (*_bfd_error_handler)
15386 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15387 ".MIPS.abiflags"), ibfd);
15388 if (in_abiflags.flags2 != 0)
15389 (*_bfd_error_handler)
15390 (_("%B: warning: Unexpected flag in the flags2 field of "
15391 ".MIPS.abiflags (0x%lx)"), ibfd,
15392 (unsigned long) in_abiflags.flags2);
15393 }
15394 else
15395 {
15396 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15397 in_tdata->abiflags_valid = TRUE;
15398 }
15399
15400 if (!out_tdata->abiflags_valid)
15401 {
15402 /* Copy input abiflags if output abiflags are not already valid. */
15403 out_tdata->abiflags = in_tdata->abiflags;
15404 out_tdata->abiflags_valid = TRUE;
15405 }
15406
15407 if (! elf_flags_init (obfd))
15408 {
15409 elf_flags_init (obfd) = TRUE;
15410 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15411 elf_elfheader (obfd)->e_ident[EI_CLASS]
15412 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15413
15414 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15415 && (bfd_get_arch_info (obfd)->the_default
15416 || mips_mach_extends_p (bfd_get_mach (obfd),
15417 bfd_get_mach (ibfd))))
15418 {
15419 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15420 bfd_get_mach (ibfd)))
15421 return FALSE;
15422
15423 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15424 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15425 }
15426
15427 ok = TRUE;
15428 }
15429 else
15430 ok = mips_elf_merge_obj_e_flags (ibfd, obfd);
15431
15432 ok = mips_elf_merge_obj_attributes (ibfd, obfd) && ok;
15433
15434 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15435
15436 if (!ok)
15437 {
15438 bfd_set_error (bfd_error_bad_value);
15439 return FALSE;
15440 }
15441
15442 return TRUE;
15443 }
15444
15445 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15446
15447 bfd_boolean
15448 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15449 {
15450 BFD_ASSERT (!elf_flags_init (abfd)
15451 || elf_elfheader (abfd)->e_flags == flags);
15452
15453 elf_elfheader (abfd)->e_flags = flags;
15454 elf_flags_init (abfd) = TRUE;
15455 return TRUE;
15456 }
15457
15458 char *
15459 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15460 {
15461 switch (dtag)
15462 {
15463 default: return "";
15464 case DT_MIPS_RLD_VERSION:
15465 return "MIPS_RLD_VERSION";
15466 case DT_MIPS_TIME_STAMP:
15467 return "MIPS_TIME_STAMP";
15468 case DT_MIPS_ICHECKSUM:
15469 return "MIPS_ICHECKSUM";
15470 case DT_MIPS_IVERSION:
15471 return "MIPS_IVERSION";
15472 case DT_MIPS_FLAGS:
15473 return "MIPS_FLAGS";
15474 case DT_MIPS_BASE_ADDRESS:
15475 return "MIPS_BASE_ADDRESS";
15476 case DT_MIPS_MSYM:
15477 return "MIPS_MSYM";
15478 case DT_MIPS_CONFLICT:
15479 return "MIPS_CONFLICT";
15480 case DT_MIPS_LIBLIST:
15481 return "MIPS_LIBLIST";
15482 case DT_MIPS_LOCAL_GOTNO:
15483 return "MIPS_LOCAL_GOTNO";
15484 case DT_MIPS_CONFLICTNO:
15485 return "MIPS_CONFLICTNO";
15486 case DT_MIPS_LIBLISTNO:
15487 return "MIPS_LIBLISTNO";
15488 case DT_MIPS_SYMTABNO:
15489 return "MIPS_SYMTABNO";
15490 case DT_MIPS_UNREFEXTNO:
15491 return "MIPS_UNREFEXTNO";
15492 case DT_MIPS_GOTSYM:
15493 return "MIPS_GOTSYM";
15494 case DT_MIPS_HIPAGENO:
15495 return "MIPS_HIPAGENO";
15496 case DT_MIPS_RLD_MAP:
15497 return "MIPS_RLD_MAP";
15498 case DT_MIPS_RLD_MAP_REL:
15499 return "MIPS_RLD_MAP_REL";
15500 case DT_MIPS_DELTA_CLASS:
15501 return "MIPS_DELTA_CLASS";
15502 case DT_MIPS_DELTA_CLASS_NO:
15503 return "MIPS_DELTA_CLASS_NO";
15504 case DT_MIPS_DELTA_INSTANCE:
15505 return "MIPS_DELTA_INSTANCE";
15506 case DT_MIPS_DELTA_INSTANCE_NO:
15507 return "MIPS_DELTA_INSTANCE_NO";
15508 case DT_MIPS_DELTA_RELOC:
15509 return "MIPS_DELTA_RELOC";
15510 case DT_MIPS_DELTA_RELOC_NO:
15511 return "MIPS_DELTA_RELOC_NO";
15512 case DT_MIPS_DELTA_SYM:
15513 return "MIPS_DELTA_SYM";
15514 case DT_MIPS_DELTA_SYM_NO:
15515 return "MIPS_DELTA_SYM_NO";
15516 case DT_MIPS_DELTA_CLASSSYM:
15517 return "MIPS_DELTA_CLASSSYM";
15518 case DT_MIPS_DELTA_CLASSSYM_NO:
15519 return "MIPS_DELTA_CLASSSYM_NO";
15520 case DT_MIPS_CXX_FLAGS:
15521 return "MIPS_CXX_FLAGS";
15522 case DT_MIPS_PIXIE_INIT:
15523 return "MIPS_PIXIE_INIT";
15524 case DT_MIPS_SYMBOL_LIB:
15525 return "MIPS_SYMBOL_LIB";
15526 case DT_MIPS_LOCALPAGE_GOTIDX:
15527 return "MIPS_LOCALPAGE_GOTIDX";
15528 case DT_MIPS_LOCAL_GOTIDX:
15529 return "MIPS_LOCAL_GOTIDX";
15530 case DT_MIPS_HIDDEN_GOTIDX:
15531 return "MIPS_HIDDEN_GOTIDX";
15532 case DT_MIPS_PROTECTED_GOTIDX:
15533 return "MIPS_PROTECTED_GOT_IDX";
15534 case DT_MIPS_OPTIONS:
15535 return "MIPS_OPTIONS";
15536 case DT_MIPS_INTERFACE:
15537 return "MIPS_INTERFACE";
15538 case DT_MIPS_DYNSTR_ALIGN:
15539 return "DT_MIPS_DYNSTR_ALIGN";
15540 case DT_MIPS_INTERFACE_SIZE:
15541 return "DT_MIPS_INTERFACE_SIZE";
15542 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15543 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15544 case DT_MIPS_PERF_SUFFIX:
15545 return "DT_MIPS_PERF_SUFFIX";
15546 case DT_MIPS_COMPACT_SIZE:
15547 return "DT_MIPS_COMPACT_SIZE";
15548 case DT_MIPS_GP_VALUE:
15549 return "DT_MIPS_GP_VALUE";
15550 case DT_MIPS_AUX_DYNAMIC:
15551 return "DT_MIPS_AUX_DYNAMIC";
15552 case DT_MIPS_PLTGOT:
15553 return "DT_MIPS_PLTGOT";
15554 case DT_MIPS_RWPLT:
15555 return "DT_MIPS_RWPLT";
15556 }
15557 }
15558
15559 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15560 not known. */
15561
15562 const char *
15563 _bfd_mips_fp_abi_string (int fp)
15564 {
15565 switch (fp)
15566 {
15567 /* These strings aren't translated because they're simply
15568 option lists. */
15569 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15570 return "-mdouble-float";
15571
15572 case Val_GNU_MIPS_ABI_FP_SINGLE:
15573 return "-msingle-float";
15574
15575 case Val_GNU_MIPS_ABI_FP_SOFT:
15576 return "-msoft-float";
15577
15578 case Val_GNU_MIPS_ABI_FP_OLD_64:
15579 return _("-mips32r2 -mfp64 (12 callee-saved)");
15580
15581 case Val_GNU_MIPS_ABI_FP_XX:
15582 return "-mfpxx";
15583
15584 case Val_GNU_MIPS_ABI_FP_64:
15585 return "-mgp32 -mfp64";
15586
15587 case Val_GNU_MIPS_ABI_FP_64A:
15588 return "-mgp32 -mfp64 -mno-odd-spreg";
15589
15590 default:
15591 return 0;
15592 }
15593 }
15594
15595 static void
15596 print_mips_ases (FILE *file, unsigned int mask)
15597 {
15598 if (mask & AFL_ASE_DSP)
15599 fputs ("\n\tDSP ASE", file);
15600 if (mask & AFL_ASE_DSPR2)
15601 fputs ("\n\tDSP R2 ASE", file);
15602 if (mask & AFL_ASE_DSPR3)
15603 fputs ("\n\tDSP R3 ASE", file);
15604 if (mask & AFL_ASE_EVA)
15605 fputs ("\n\tEnhanced VA Scheme", file);
15606 if (mask & AFL_ASE_MCU)
15607 fputs ("\n\tMCU (MicroController) ASE", file);
15608 if (mask & AFL_ASE_MDMX)
15609 fputs ("\n\tMDMX ASE", file);
15610 if (mask & AFL_ASE_MIPS3D)
15611 fputs ("\n\tMIPS-3D ASE", file);
15612 if (mask & AFL_ASE_MT)
15613 fputs ("\n\tMT ASE", file);
15614 if (mask & AFL_ASE_SMARTMIPS)
15615 fputs ("\n\tSmartMIPS ASE", file);
15616 if (mask & AFL_ASE_VIRT)
15617 fputs ("\n\tVZ ASE", file);
15618 if (mask & AFL_ASE_MSA)
15619 fputs ("\n\tMSA ASE", file);
15620 if (mask & AFL_ASE_MIPS16)
15621 fputs ("\n\tMIPS16 ASE", file);
15622 if (mask & AFL_ASE_MICROMIPS)
15623 fputs ("\n\tMICROMIPS ASE", file);
15624 if (mask & AFL_ASE_XPA)
15625 fputs ("\n\tXPA ASE", file);
15626 if (mask == 0)
15627 fprintf (file, "\n\t%s", _("None"));
15628 else if ((mask & ~AFL_ASE_MASK) != 0)
15629 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15630 }
15631
15632 static void
15633 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15634 {
15635 switch (isa_ext)
15636 {
15637 case 0:
15638 fputs (_("None"), file);
15639 break;
15640 case AFL_EXT_XLR:
15641 fputs ("RMI XLR", file);
15642 break;
15643 case AFL_EXT_OCTEON3:
15644 fputs ("Cavium Networks Octeon3", file);
15645 break;
15646 case AFL_EXT_OCTEON2:
15647 fputs ("Cavium Networks Octeon2", file);
15648 break;
15649 case AFL_EXT_OCTEONP:
15650 fputs ("Cavium Networks OcteonP", file);
15651 break;
15652 case AFL_EXT_LOONGSON_3A:
15653 fputs ("Loongson 3A", file);
15654 break;
15655 case AFL_EXT_OCTEON:
15656 fputs ("Cavium Networks Octeon", file);
15657 break;
15658 case AFL_EXT_5900:
15659 fputs ("Toshiba R5900", file);
15660 break;
15661 case AFL_EXT_4650:
15662 fputs ("MIPS R4650", file);
15663 break;
15664 case AFL_EXT_4010:
15665 fputs ("LSI R4010", file);
15666 break;
15667 case AFL_EXT_4100:
15668 fputs ("NEC VR4100", file);
15669 break;
15670 case AFL_EXT_3900:
15671 fputs ("Toshiba R3900", file);
15672 break;
15673 case AFL_EXT_10000:
15674 fputs ("MIPS R10000", file);
15675 break;
15676 case AFL_EXT_SB1:
15677 fputs ("Broadcom SB-1", file);
15678 break;
15679 case AFL_EXT_4111:
15680 fputs ("NEC VR4111/VR4181", file);
15681 break;
15682 case AFL_EXT_4120:
15683 fputs ("NEC VR4120", file);
15684 break;
15685 case AFL_EXT_5400:
15686 fputs ("NEC VR5400", file);
15687 break;
15688 case AFL_EXT_5500:
15689 fputs ("NEC VR5500", file);
15690 break;
15691 case AFL_EXT_LOONGSON_2E:
15692 fputs ("ST Microelectronics Loongson 2E", file);
15693 break;
15694 case AFL_EXT_LOONGSON_2F:
15695 fputs ("ST Microelectronics Loongson 2F", file);
15696 break;
15697 default:
15698 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15699 break;
15700 }
15701 }
15702
15703 static void
15704 print_mips_fp_abi_value (FILE *file, int val)
15705 {
15706 switch (val)
15707 {
15708 case Val_GNU_MIPS_ABI_FP_ANY:
15709 fprintf (file, _("Hard or soft float\n"));
15710 break;
15711 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15712 fprintf (file, _("Hard float (double precision)\n"));
15713 break;
15714 case Val_GNU_MIPS_ABI_FP_SINGLE:
15715 fprintf (file, _("Hard float (single precision)\n"));
15716 break;
15717 case Val_GNU_MIPS_ABI_FP_SOFT:
15718 fprintf (file, _("Soft float\n"));
15719 break;
15720 case Val_GNU_MIPS_ABI_FP_OLD_64:
15721 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15722 break;
15723 case Val_GNU_MIPS_ABI_FP_XX:
15724 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15725 break;
15726 case Val_GNU_MIPS_ABI_FP_64:
15727 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15728 break;
15729 case Val_GNU_MIPS_ABI_FP_64A:
15730 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15731 break;
15732 default:
15733 fprintf (file, "??? (%d)\n", val);
15734 break;
15735 }
15736 }
15737
15738 static int
15739 get_mips_reg_size (int reg_size)
15740 {
15741 return (reg_size == AFL_REG_NONE) ? 0
15742 : (reg_size == AFL_REG_32) ? 32
15743 : (reg_size == AFL_REG_64) ? 64
15744 : (reg_size == AFL_REG_128) ? 128
15745 : -1;
15746 }
15747
15748 bfd_boolean
15749 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15750 {
15751 FILE *file = ptr;
15752
15753 BFD_ASSERT (abfd != NULL && ptr != NULL);
15754
15755 /* Print normal ELF private data. */
15756 _bfd_elf_print_private_bfd_data (abfd, ptr);
15757
15758 /* xgettext:c-format */
15759 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15760
15761 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15762 fprintf (file, _(" [abi=O32]"));
15763 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15764 fprintf (file, _(" [abi=O64]"));
15765 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15766 fprintf (file, _(" [abi=EABI32]"));
15767 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15768 fprintf (file, _(" [abi=EABI64]"));
15769 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15770 fprintf (file, _(" [abi unknown]"));
15771 else if (ABI_N32_P (abfd))
15772 fprintf (file, _(" [abi=N32]"));
15773 else if (ABI_64_P (abfd))
15774 fprintf (file, _(" [abi=64]"));
15775 else
15776 fprintf (file, _(" [no abi set]"));
15777
15778 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15779 fprintf (file, " [mips1]");
15780 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15781 fprintf (file, " [mips2]");
15782 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15783 fprintf (file, " [mips3]");
15784 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15785 fprintf (file, " [mips4]");
15786 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15787 fprintf (file, " [mips5]");
15788 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15789 fprintf (file, " [mips32]");
15790 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15791 fprintf (file, " [mips64]");
15792 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15793 fprintf (file, " [mips32r2]");
15794 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15795 fprintf (file, " [mips64r2]");
15796 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15797 fprintf (file, " [mips32r6]");
15798 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15799 fprintf (file, " [mips64r6]");
15800 else
15801 fprintf (file, _(" [unknown ISA]"));
15802
15803 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15804 fprintf (file, " [mdmx]");
15805
15806 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15807 fprintf (file, " [mips16]");
15808
15809 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15810 fprintf (file, " [micromips]");
15811
15812 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15813 fprintf (file, " [nan2008]");
15814
15815 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15816 fprintf (file, " [old fp64]");
15817
15818 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15819 fprintf (file, " [32bitmode]");
15820 else
15821 fprintf (file, _(" [not 32bitmode]"));
15822
15823 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15824 fprintf (file, " [noreorder]");
15825
15826 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15827 fprintf (file, " [PIC]");
15828
15829 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15830 fprintf (file, " [CPIC]");
15831
15832 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15833 fprintf (file, " [XGOT]");
15834
15835 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15836 fprintf (file, " [UCODE]");
15837
15838 fputc ('\n', file);
15839
15840 if (mips_elf_tdata (abfd)->abiflags_valid)
15841 {
15842 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15843 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15844 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15845 if (abiflags->isa_rev > 1)
15846 fprintf (file, "r%d", abiflags->isa_rev);
15847 fprintf (file, "\nGPR size: %d",
15848 get_mips_reg_size (abiflags->gpr_size));
15849 fprintf (file, "\nCPR1 size: %d",
15850 get_mips_reg_size (abiflags->cpr1_size));
15851 fprintf (file, "\nCPR2 size: %d",
15852 get_mips_reg_size (abiflags->cpr2_size));
15853 fputs ("\nFP ABI: ", file);
15854 print_mips_fp_abi_value (file, abiflags->fp_abi);
15855 fputs ("ISA Extension: ", file);
15856 print_mips_isa_ext (file, abiflags->isa_ext);
15857 fputs ("\nASEs:", file);
15858 print_mips_ases (file, abiflags->ases);
15859 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15860 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15861 fputc ('\n', file);
15862 }
15863
15864 return TRUE;
15865 }
15866
15867 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15868 {
15869 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15870 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15871 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15872 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15873 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15874 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15875 { NULL, 0, 0, 0, 0 }
15876 };
15877
15878 /* Merge non visibility st_other attributes. Ensure that the
15879 STO_OPTIONAL flag is copied into h->other, even if this is not a
15880 definiton of the symbol. */
15881 void
15882 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15883 const Elf_Internal_Sym *isym,
15884 bfd_boolean definition,
15885 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15886 {
15887 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15888 {
15889 unsigned char other;
15890
15891 other = (definition ? isym->st_other : h->other);
15892 other &= ~ELF_ST_VISIBILITY (-1);
15893 h->other = other | ELF_ST_VISIBILITY (h->other);
15894 }
15895
15896 if (!definition
15897 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15898 h->other |= STO_OPTIONAL;
15899 }
15900
15901 /* Decide whether an undefined symbol is special and can be ignored.
15902 This is the case for OPTIONAL symbols on IRIX. */
15903 bfd_boolean
15904 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15905 {
15906 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15907 }
15908
15909 bfd_boolean
15910 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15911 {
15912 return (sym->st_shndx == SHN_COMMON
15913 || sym->st_shndx == SHN_MIPS_ACOMMON
15914 || sym->st_shndx == SHN_MIPS_SCOMMON);
15915 }
15916
15917 /* Return address for Ith PLT stub in section PLT, for relocation REL
15918 or (bfd_vma) -1 if it should not be included. */
15919
15920 bfd_vma
15921 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15922 const arelent *rel ATTRIBUTE_UNUSED)
15923 {
15924 return (plt->vma
15925 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15926 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15927 }
15928
15929 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15930 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15931 and .got.plt and also the slots may be of a different size each we walk
15932 the PLT manually fetching instructions and matching them against known
15933 patterns. To make things easier standard MIPS slots, if any, always come
15934 first. As we don't create proper ELF symbols we use the UDATA.I member
15935 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15936 with the ST_OTHER member of the ELF symbol. */
15937
15938 long
15939 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15940 long symcount ATTRIBUTE_UNUSED,
15941 asymbol **syms ATTRIBUTE_UNUSED,
15942 long dynsymcount, asymbol **dynsyms,
15943 asymbol **ret)
15944 {
15945 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15946 static const char microsuffix[] = "@micromipsplt";
15947 static const char m16suffix[] = "@mips16plt";
15948 static const char mipssuffix[] = "@plt";
15949
15950 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15951 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15952 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15953 Elf_Internal_Shdr *hdr;
15954 bfd_byte *plt_data;
15955 bfd_vma plt_offset;
15956 unsigned int other;
15957 bfd_vma entry_size;
15958 bfd_vma plt0_size;
15959 asection *relplt;
15960 bfd_vma opcode;
15961 asection *plt;
15962 asymbol *send;
15963 size_t size;
15964 char *names;
15965 long counti;
15966 arelent *p;
15967 asymbol *s;
15968 char *nend;
15969 long count;
15970 long pi;
15971 long i;
15972 long n;
15973
15974 *ret = NULL;
15975
15976 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
15977 return 0;
15978
15979 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
15980 if (relplt == NULL)
15981 return 0;
15982
15983 hdr = &elf_section_data (relplt)->this_hdr;
15984 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
15985 return 0;
15986
15987 plt = bfd_get_section_by_name (abfd, ".plt");
15988 if (plt == NULL)
15989 return 0;
15990
15991 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
15992 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
15993 return -1;
15994 p = relplt->relocation;
15995
15996 /* Calculating the exact amount of space required for symbols would
15997 require two passes over the PLT, so just pessimise assuming two
15998 PLT slots per relocation. */
15999 count = relplt->size / hdr->sh_entsize;
16000 counti = count * bed->s->int_rels_per_ext_rel;
16001 size = 2 * count * sizeof (asymbol);
16002 size += count * (sizeof (mipssuffix) +
16003 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16004 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16005 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16006
16007 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16008 size += sizeof (asymbol) + sizeof (pltname);
16009
16010 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16011 return -1;
16012
16013 if (plt->size < 16)
16014 return -1;
16015
16016 s = *ret = bfd_malloc (size);
16017 if (s == NULL)
16018 return -1;
16019 send = s + 2 * count + 1;
16020
16021 names = (char *) send;
16022 nend = (char *) s + size;
16023 n = 0;
16024
16025 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16026 if (opcode == 0x3302fffe)
16027 {
16028 if (!micromips_p)
16029 return -1;
16030 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16031 other = STO_MICROMIPS;
16032 }
16033 else if (opcode == 0x0398c1d0)
16034 {
16035 if (!micromips_p)
16036 return -1;
16037 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16038 other = STO_MICROMIPS;
16039 }
16040 else
16041 {
16042 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16043 other = 0;
16044 }
16045
16046 s->the_bfd = abfd;
16047 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16048 s->section = plt;
16049 s->value = 0;
16050 s->name = names;
16051 s->udata.i = other;
16052 memcpy (names, pltname, sizeof (pltname));
16053 names += sizeof (pltname);
16054 ++s, ++n;
16055
16056 pi = 0;
16057 for (plt_offset = plt0_size;
16058 plt_offset + 8 <= plt->size && s < send;
16059 plt_offset += entry_size)
16060 {
16061 bfd_vma gotplt_addr;
16062 const char *suffix;
16063 bfd_vma gotplt_hi;
16064 bfd_vma gotplt_lo;
16065 size_t suffixlen;
16066
16067 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16068
16069 /* Check if the second word matches the expected MIPS16 instruction. */
16070 if (opcode == 0x651aeb00)
16071 {
16072 if (micromips_p)
16073 return -1;
16074 /* Truncated table??? */
16075 if (plt_offset + 16 > plt->size)
16076 break;
16077 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16078 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16079 suffixlen = sizeof (m16suffix);
16080 suffix = m16suffix;
16081 other = STO_MIPS16;
16082 }
16083 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16084 else if (opcode == 0xff220000)
16085 {
16086 if (!micromips_p)
16087 return -1;
16088 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16089 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16090 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16091 gotplt_lo <<= 2;
16092 gotplt_addr = gotplt_hi + gotplt_lo;
16093 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16094 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16095 suffixlen = sizeof (microsuffix);
16096 suffix = microsuffix;
16097 other = STO_MICROMIPS;
16098 }
16099 /* Likewise the expected microMIPS instruction (insn32 mode). */
16100 else if ((opcode & 0xffff0000) == 0xff2f0000)
16101 {
16102 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16103 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16104 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16105 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16106 gotplt_addr = gotplt_hi + gotplt_lo;
16107 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16108 suffixlen = sizeof (microsuffix);
16109 suffix = microsuffix;
16110 other = STO_MICROMIPS;
16111 }
16112 /* Otherwise assume standard MIPS code. */
16113 else
16114 {
16115 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16116 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16117 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16118 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16119 gotplt_addr = gotplt_hi + gotplt_lo;
16120 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16121 suffixlen = sizeof (mipssuffix);
16122 suffix = mipssuffix;
16123 other = 0;
16124 }
16125 /* Truncated table??? */
16126 if (plt_offset + entry_size > plt->size)
16127 break;
16128
16129 for (i = 0;
16130 i < count && p[pi].address != gotplt_addr;
16131 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16132
16133 if (i < count)
16134 {
16135 size_t namelen;
16136 size_t len;
16137
16138 *s = **p[pi].sym_ptr_ptr;
16139 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16140 we are defining a symbol, ensure one of them is set. */
16141 if ((s->flags & BSF_LOCAL) == 0)
16142 s->flags |= BSF_GLOBAL;
16143 s->flags |= BSF_SYNTHETIC;
16144 s->section = plt;
16145 s->value = plt_offset;
16146 s->name = names;
16147 s->udata.i = other;
16148
16149 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16150 namelen = len + suffixlen;
16151 if (names + namelen > nend)
16152 break;
16153
16154 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16155 names += len;
16156 memcpy (names, suffix, suffixlen);
16157 names += suffixlen;
16158
16159 ++s, ++n;
16160 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16161 }
16162 }
16163
16164 free (plt_data);
16165
16166 return n;
16167 }
16168
16169 void
16170 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16171 {
16172 struct mips_elf_link_hash_table *htab;
16173 Elf_Internal_Ehdr *i_ehdrp;
16174
16175 i_ehdrp = elf_elfheader (abfd);
16176 if (link_info)
16177 {
16178 htab = mips_elf_hash_table (link_info);
16179 BFD_ASSERT (htab != NULL);
16180
16181 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16182 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16183 }
16184
16185 _bfd_elf_post_process_headers (abfd, link_info);
16186
16187 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16188 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16189 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16190
16191 if (elf_stack_flags (abfd) && !(elf_stack_flags (abfd) & PF_X))
16192 i_ehdrp->e_ident[EI_ABIVERSION] = 5;
16193 }
16194
16195 int
16196 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16197 {
16198 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16199 }
16200
16201 /* Return the opcode for can't unwind. */
16202
16203 int
16204 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16205 {
16206 return COMPACT_EH_CANT_UNWIND_OPCODE;
16207 }
This page took 0.400434 seconds and 4 git commands to generate.