2004-05-14 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37
38 /* Get the ECOFF swapping routines. */
39 #include "coff/sym.h"
40 #include "coff/symconst.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
43
44 #include "hashtab.h"
45
46 /* This structure is used to hold .got entries while estimating got
47 sizes. */
48 struct mips_got_entry
49 {
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
67 /* The offset from the beginning of the .got section to the entry
68 corresponding to this symbol+addend. If it's a global symbol
69 whose offset is yet to be decided, it's going to be -1. */
70 long gotidx;
71 };
72
73 /* This structure is used to hold .got information when linking. */
74
75 struct mips_got_info
76 {
77 /* The global symbol in the GOT with the lowest index in the dynamic
78 symbol table. */
79 struct elf_link_hash_entry *global_gotsym;
80 /* The number of global .got entries. */
81 unsigned int global_gotno;
82 /* The number of local .got entries. */
83 unsigned int local_gotno;
84 /* The number of local .got entries we have used. */
85 unsigned int assigned_gotno;
86 /* A hash table holding members of the got. */
87 struct htab *got_entries;
88 /* A hash table mapping input bfds to other mips_got_info. NULL
89 unless multi-got was necessary. */
90 struct htab *bfd2got;
91 /* In multi-got links, a pointer to the next got (err, rather, most
92 of the time, it points to the previous got). */
93 struct mips_got_info *next;
94 };
95
96 /* Map an input bfd to a got in a multi-got link. */
97
98 struct mips_elf_bfd2got_hash {
99 bfd *bfd;
100 struct mips_got_info *g;
101 };
102
103 /* Structure passed when traversing the bfd2got hash table, used to
104 create and merge bfd's gots. */
105
106 struct mips_elf_got_per_bfd_arg
107 {
108 /* A hashtable that maps bfds to gots. */
109 htab_t bfd2got;
110 /* The output bfd. */
111 bfd *obfd;
112 /* The link information. */
113 struct bfd_link_info *info;
114 /* A pointer to the primary got, i.e., the one that's going to get
115 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
116 DT_MIPS_GOTSYM. */
117 struct mips_got_info *primary;
118 /* A non-primary got we're trying to merge with other input bfd's
119 gots. */
120 struct mips_got_info *current;
121 /* The maximum number of got entries that can be addressed with a
122 16-bit offset. */
123 unsigned int max_count;
124 /* The number of local and global entries in the primary got. */
125 unsigned int primary_count;
126 /* The number of local and global entries in the current got. */
127 unsigned int current_count;
128 };
129
130 /* Another structure used to pass arguments for got entries traversal. */
131
132 struct mips_elf_set_global_got_offset_arg
133 {
134 struct mips_got_info *g;
135 int value;
136 unsigned int needed_relocs;
137 struct bfd_link_info *info;
138 };
139
140 struct _mips_elf_section_data
141 {
142 struct bfd_elf_section_data elf;
143 union
144 {
145 struct mips_got_info *got_info;
146 bfd_byte *tdata;
147 } u;
148 };
149
150 #define mips_elf_section_data(sec) \
151 ((struct _mips_elf_section_data *) elf_section_data (sec))
152
153 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
154 the dynamic symbols. */
155
156 struct mips_elf_hash_sort_data
157 {
158 /* The symbol in the global GOT with the lowest dynamic symbol table
159 index. */
160 struct elf_link_hash_entry *low;
161 /* The least dynamic symbol table index corresponding to a symbol
162 with a GOT entry. */
163 long min_got_dynindx;
164 /* The greatest dynamic symbol table index corresponding to a symbol
165 with a GOT entry that is not referenced (e.g., a dynamic symbol
166 with dynamic relocations pointing to it from non-primary GOTs). */
167 long max_unref_got_dynindx;
168 /* The greatest dynamic symbol table index not corresponding to a
169 symbol without a GOT entry. */
170 long max_non_got_dynindx;
171 };
172
173 /* The MIPS ELF linker needs additional information for each symbol in
174 the global hash table. */
175
176 struct mips_elf_link_hash_entry
177 {
178 struct elf_link_hash_entry root;
179
180 /* External symbol information. */
181 EXTR esym;
182
183 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
184 this symbol. */
185 unsigned int possibly_dynamic_relocs;
186
187 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
188 a readonly section. */
189 bfd_boolean readonly_reloc;
190
191 /* We must not create a stub for a symbol that has relocations
192 related to taking the function's address, i.e. any but
193 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
194 p. 4-20. */
195 bfd_boolean no_fn_stub;
196
197 /* If there is a stub that 32 bit functions should use to call this
198 16 bit function, this points to the section containing the stub. */
199 asection *fn_stub;
200
201 /* Whether we need the fn_stub; this is set if this symbol appears
202 in any relocs other than a 16 bit call. */
203 bfd_boolean need_fn_stub;
204
205 /* If there is a stub that 16 bit functions should use to call this
206 32 bit function, this points to the section containing the stub. */
207 asection *call_stub;
208
209 /* This is like the call_stub field, but it is used if the function
210 being called returns a floating point value. */
211 asection *call_fp_stub;
212
213 /* Are we forced local? .*/
214 bfd_boolean forced_local;
215 };
216
217 /* MIPS ELF linker hash table. */
218
219 struct mips_elf_link_hash_table
220 {
221 struct elf_link_hash_table root;
222 #if 0
223 /* We no longer use this. */
224 /* String section indices for the dynamic section symbols. */
225 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
226 #endif
227 /* The number of .rtproc entries. */
228 bfd_size_type procedure_count;
229 /* The size of the .compact_rel section (if SGI_COMPAT). */
230 bfd_size_type compact_rel_size;
231 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
232 entry is set to the address of __rld_obj_head as in IRIX5. */
233 bfd_boolean use_rld_obj_head;
234 /* This is the value of the __rld_map or __rld_obj_head symbol. */
235 bfd_vma rld_value;
236 /* This is set if we see any mips16 stub sections. */
237 bfd_boolean mips16_stubs_seen;
238 };
239
240 /* Structure used to pass information to mips_elf_output_extsym. */
241
242 struct extsym_info
243 {
244 bfd *abfd;
245 struct bfd_link_info *info;
246 struct ecoff_debug_info *debug;
247 const struct ecoff_debug_swap *swap;
248 bfd_boolean failed;
249 };
250
251 /* The names of the runtime procedure table symbols used on IRIX5. */
252
253 static const char * const mips_elf_dynsym_rtproc_names[] =
254 {
255 "_procedure_table",
256 "_procedure_string_table",
257 "_procedure_table_size",
258 NULL
259 };
260
261 /* These structures are used to generate the .compact_rel section on
262 IRIX5. */
263
264 typedef struct
265 {
266 unsigned long id1; /* Always one? */
267 unsigned long num; /* Number of compact relocation entries. */
268 unsigned long id2; /* Always two? */
269 unsigned long offset; /* The file offset of the first relocation. */
270 unsigned long reserved0; /* Zero? */
271 unsigned long reserved1; /* Zero? */
272 } Elf32_compact_rel;
273
274 typedef struct
275 {
276 bfd_byte id1[4];
277 bfd_byte num[4];
278 bfd_byte id2[4];
279 bfd_byte offset[4];
280 bfd_byte reserved0[4];
281 bfd_byte reserved1[4];
282 } Elf32_External_compact_rel;
283
284 typedef struct
285 {
286 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
287 unsigned int rtype : 4; /* Relocation types. See below. */
288 unsigned int dist2to : 8;
289 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
290 unsigned long konst; /* KONST field. See below. */
291 unsigned long vaddr; /* VADDR to be relocated. */
292 } Elf32_crinfo;
293
294 typedef struct
295 {
296 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
297 unsigned int rtype : 4; /* Relocation types. See below. */
298 unsigned int dist2to : 8;
299 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
300 unsigned long konst; /* KONST field. See below. */
301 } Elf32_crinfo2;
302
303 typedef struct
304 {
305 bfd_byte info[4];
306 bfd_byte konst[4];
307 bfd_byte vaddr[4];
308 } Elf32_External_crinfo;
309
310 typedef struct
311 {
312 bfd_byte info[4];
313 bfd_byte konst[4];
314 } Elf32_External_crinfo2;
315
316 /* These are the constants used to swap the bitfields in a crinfo. */
317
318 #define CRINFO_CTYPE (0x1)
319 #define CRINFO_CTYPE_SH (31)
320 #define CRINFO_RTYPE (0xf)
321 #define CRINFO_RTYPE_SH (27)
322 #define CRINFO_DIST2TO (0xff)
323 #define CRINFO_DIST2TO_SH (19)
324 #define CRINFO_RELVADDR (0x7ffff)
325 #define CRINFO_RELVADDR_SH (0)
326
327 /* A compact relocation info has long (3 words) or short (2 words)
328 formats. A short format doesn't have VADDR field and relvaddr
329 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
330 #define CRF_MIPS_LONG 1
331 #define CRF_MIPS_SHORT 0
332
333 /* There are 4 types of compact relocation at least. The value KONST
334 has different meaning for each type:
335
336 (type) (konst)
337 CT_MIPS_REL32 Address in data
338 CT_MIPS_WORD Address in word (XXX)
339 CT_MIPS_GPHI_LO GP - vaddr
340 CT_MIPS_JMPAD Address to jump
341 */
342
343 #define CRT_MIPS_REL32 0xa
344 #define CRT_MIPS_WORD 0xb
345 #define CRT_MIPS_GPHI_LO 0xc
346 #define CRT_MIPS_JMPAD 0xd
347
348 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
349 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
350 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
351 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
352 \f
353 /* The structure of the runtime procedure descriptor created by the
354 loader for use by the static exception system. */
355
356 typedef struct runtime_pdr {
357 bfd_vma adr; /* Memory address of start of procedure. */
358 long regmask; /* Save register mask. */
359 long regoffset; /* Save register offset. */
360 long fregmask; /* Save floating point register mask. */
361 long fregoffset; /* Save floating point register offset. */
362 long frameoffset; /* Frame size. */
363 short framereg; /* Frame pointer register. */
364 short pcreg; /* Offset or reg of return pc. */
365 long irpss; /* Index into the runtime string table. */
366 long reserved;
367 struct exception_info *exception_info;/* Pointer to exception array. */
368 } RPDR, *pRPDR;
369 #define cbRPDR sizeof (RPDR)
370 #define rpdNil ((pRPDR) 0)
371 \f
372 static struct bfd_hash_entry *mips_elf_link_hash_newfunc
373 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
374 static void ecoff_swap_rpdr_out
375 (bfd *, const RPDR *, struct rpdr_ext *);
376 static bfd_boolean mips_elf_create_procedure_table
377 (void *, bfd *, struct bfd_link_info *, asection *,
378 struct ecoff_debug_info *);
379 static bfd_boolean mips_elf_check_mips16_stubs
380 (struct mips_elf_link_hash_entry *, void *);
381 static void bfd_mips_elf32_swap_gptab_in
382 (bfd *, const Elf32_External_gptab *, Elf32_gptab *);
383 static void bfd_mips_elf32_swap_gptab_out
384 (bfd *, const Elf32_gptab *, Elf32_External_gptab *);
385 static void bfd_elf32_swap_compact_rel_out
386 (bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *);
387 static void bfd_elf32_swap_crinfo_out
388 (bfd *, const Elf32_crinfo *, Elf32_External_crinfo *);
389 static int sort_dynamic_relocs
390 (const void *, const void *);
391 static int sort_dynamic_relocs_64
392 (const void *, const void *);
393 static bfd_boolean mips_elf_output_extsym
394 (struct mips_elf_link_hash_entry *, void *);
395 static int gptab_compare
396 (const void *, const void *);
397 static asection *mips_elf_rel_dyn_section
398 (bfd *, bfd_boolean);
399 static asection *mips_elf_got_section
400 (bfd *, bfd_boolean);
401 static struct mips_got_info *mips_elf_got_info
402 (bfd *, asection **);
403 static bfd_vma mips_elf_local_got_index
404 (bfd *, bfd *, struct bfd_link_info *, bfd_vma);
405 static bfd_vma mips_elf_global_got_index
406 (bfd *, bfd *, struct elf_link_hash_entry *);
407 static bfd_vma mips_elf_got_page
408 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *);
409 static bfd_vma mips_elf_got16_entry
410 (bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean);
411 static bfd_vma mips_elf_got_offset_from_index
412 (bfd *, bfd *, bfd *, bfd_vma);
413 static struct mips_got_entry *mips_elf_create_local_got_entry
414 (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma);
415 static bfd_boolean mips_elf_sort_hash_table
416 (struct bfd_link_info *, unsigned long);
417 static bfd_boolean mips_elf_sort_hash_table_f
418 (struct mips_elf_link_hash_entry *, void *);
419 static bfd_boolean mips_elf_record_local_got_symbol
420 (bfd *, long, bfd_vma, struct mips_got_info *);
421 static bfd_boolean mips_elf_record_global_got_symbol
422 (struct elf_link_hash_entry *, bfd *, struct bfd_link_info *,
423 struct mips_got_info *);
424 static const Elf_Internal_Rela *mips_elf_next_relocation
425 (bfd *, unsigned int, const Elf_Internal_Rela *, const Elf_Internal_Rela *);
426 static bfd_boolean mips_elf_local_relocation_p
427 (bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean);
428 static bfd_boolean mips_elf_overflow_p
429 (bfd_vma, int);
430 static bfd_vma mips_elf_high
431 (bfd_vma);
432 static bfd_vma mips_elf_higher
433 (bfd_vma);
434 static bfd_vma mips_elf_highest
435 (bfd_vma);
436 static bfd_boolean mips_elf_create_compact_rel_section
437 (bfd *, struct bfd_link_info *);
438 static bfd_boolean mips_elf_create_got_section
439 (bfd *, struct bfd_link_info *, bfd_boolean);
440 static bfd_reloc_status_type mips_elf_calculate_relocation
441 (bfd *, bfd *, asection *, struct bfd_link_info *,
442 const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *,
443 Elf_Internal_Sym *, asection **, bfd_vma *, const char **,
444 bfd_boolean *, bfd_boolean);
445 static bfd_vma mips_elf_obtain_contents
446 (reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *);
447 static bfd_boolean mips_elf_perform_relocation
448 (struct bfd_link_info *, reloc_howto_type *, const Elf_Internal_Rela *,
449 bfd_vma, bfd *, asection *, bfd_byte *, bfd_boolean);
450 static bfd_boolean mips_elf_stub_section_p
451 (bfd *, asection *);
452 static void mips_elf_allocate_dynamic_relocations
453 (bfd *, unsigned int);
454 static bfd_boolean mips_elf_create_dynamic_relocation
455 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
456 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
457 bfd_vma *, asection *);
458 static void mips_set_isa_flags
459 (bfd *);
460 static INLINE char *elf_mips_abi_name
461 (bfd *);
462 static void mips_elf_irix6_finish_dynamic_symbol
463 (bfd *, const char *, Elf_Internal_Sym *);
464 static bfd_boolean mips_mach_extends_p
465 (unsigned long, unsigned long);
466 static bfd_boolean mips_32bit_flags_p
467 (flagword);
468 static INLINE hashval_t mips_elf_hash_bfd_vma
469 (bfd_vma);
470 static hashval_t mips_elf_got_entry_hash
471 (const void *);
472 static int mips_elf_got_entry_eq
473 (const void *, const void *);
474
475 static bfd_boolean mips_elf_multi_got
476 (bfd *, struct bfd_link_info *, struct mips_got_info *,
477 asection *, bfd_size_type);
478 static hashval_t mips_elf_multi_got_entry_hash
479 (const void *);
480 static int mips_elf_multi_got_entry_eq
481 (const void *, const void *);
482 static hashval_t mips_elf_bfd2got_entry_hash
483 (const void *);
484 static int mips_elf_bfd2got_entry_eq
485 (const void *, const void *);
486 static int mips_elf_make_got_per_bfd
487 (void **, void *);
488 static int mips_elf_merge_gots
489 (void **, void *);
490 static int mips_elf_set_global_got_offset
491 (void **, void *);
492 static int mips_elf_set_no_stub
493 (void **, void *);
494 static int mips_elf_resolve_final_got_entry
495 (void **, void *);
496 static void mips_elf_resolve_final_got_entries
497 (struct mips_got_info *);
498 static bfd_vma mips_elf_adjust_gp
499 (bfd *, struct mips_got_info *, bfd *);
500 static struct mips_got_info *mips_elf_got_for_ibfd
501 (struct mips_got_info *, bfd *);
502
503 /* This will be used when we sort the dynamic relocation records. */
504 static bfd *reldyn_sorting_bfd;
505
506 /* Nonzero if ABFD is using the N32 ABI. */
507
508 #define ABI_N32_P(abfd) \
509 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
510
511 /* Nonzero if ABFD is using the N64 ABI. */
512 #define ABI_64_P(abfd) \
513 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
514
515 /* Nonzero if ABFD is using NewABI conventions. */
516 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
517
518 /* The IRIX compatibility level we are striving for. */
519 #define IRIX_COMPAT(abfd) \
520 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
521
522 /* Whether we are trying to be compatible with IRIX at all. */
523 #define SGI_COMPAT(abfd) \
524 (IRIX_COMPAT (abfd) != ict_none)
525
526 /* The name of the options section. */
527 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
528 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
529
530 /* The name of the stub section. */
531 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
532
533 /* The size of an external REL relocation. */
534 #define MIPS_ELF_REL_SIZE(abfd) \
535 (get_elf_backend_data (abfd)->s->sizeof_rel)
536
537 /* The size of an external dynamic table entry. */
538 #define MIPS_ELF_DYN_SIZE(abfd) \
539 (get_elf_backend_data (abfd)->s->sizeof_dyn)
540
541 /* The size of a GOT entry. */
542 #define MIPS_ELF_GOT_SIZE(abfd) \
543 (get_elf_backend_data (abfd)->s->arch_size / 8)
544
545 /* The size of a symbol-table entry. */
546 #define MIPS_ELF_SYM_SIZE(abfd) \
547 (get_elf_backend_data (abfd)->s->sizeof_sym)
548
549 /* The default alignment for sections, as a power of two. */
550 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
551 (get_elf_backend_data (abfd)->s->log_file_align)
552
553 /* Get word-sized data. */
554 #define MIPS_ELF_GET_WORD(abfd, ptr) \
555 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
556
557 /* Put out word-sized data. */
558 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
559 (ABI_64_P (abfd) \
560 ? bfd_put_64 (abfd, val, ptr) \
561 : bfd_put_32 (abfd, val, ptr))
562
563 /* Add a dynamic symbol table-entry. */
564 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
565 _bfd_elf_add_dynamic_entry (info, tag, val)
566
567 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
568 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
569
570 /* Determine whether the internal relocation of index REL_IDX is REL
571 (zero) or RELA (non-zero). The assumption is that, if there are
572 two relocation sections for this section, one of them is REL and
573 the other is RELA. If the index of the relocation we're testing is
574 in range for the first relocation section, check that the external
575 relocation size is that for RELA. It is also assumed that, if
576 rel_idx is not in range for the first section, and this first
577 section contains REL relocs, then the relocation is in the second
578 section, that is RELA. */
579 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
580 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
581 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
582 > (bfd_vma)(rel_idx)) \
583 == (elf_section_data (sec)->rel_hdr.sh_entsize \
584 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
585 : sizeof (Elf32_External_Rela))))
586
587 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
588 from smaller values. Start with zero, widen, *then* decrement. */
589 #define MINUS_ONE (((bfd_vma)0) - 1)
590
591 /* The number of local .got entries we reserve. */
592 #define MIPS_RESERVED_GOTNO (2)
593
594 /* The offset of $gp from the beginning of the .got section. */
595 #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
596
597 /* The maximum size of the GOT for it to be addressable using 16-bit
598 offsets from $gp. */
599 #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
600
601 /* Instructions which appear in a stub. */
602 #define STUB_LW(abfd) \
603 ((ABI_64_P (abfd) \
604 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
605 : 0x8f998010)) /* lw t9,0x8010(gp) */
606 #define STUB_MOVE(abfd) \
607 ((ABI_64_P (abfd) \
608 ? 0x03e0782d /* daddu t7,ra */ \
609 : 0x03e07821)) /* addu t7,ra */
610 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
611 #define STUB_LI16(abfd) \
612 ((ABI_64_P (abfd) \
613 ? 0x64180000 /* daddiu t8,zero,0 */ \
614 : 0x24180000)) /* addiu t8,zero,0 */
615 #define MIPS_FUNCTION_STUB_SIZE (16)
616
617 /* The name of the dynamic interpreter. This is put in the .interp
618 section. */
619
620 #define ELF_DYNAMIC_INTERPRETER(abfd) \
621 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
622 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
623 : "/usr/lib/libc.so.1")
624
625 #ifdef BFD64
626 #define MNAME(bfd,pre,pos) \
627 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
628 #define ELF_R_SYM(bfd, i) \
629 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
630 #define ELF_R_TYPE(bfd, i) \
631 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
632 #define ELF_R_INFO(bfd, s, t) \
633 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
634 #else
635 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
636 #define ELF_R_SYM(bfd, i) \
637 (ELF32_R_SYM (i))
638 #define ELF_R_TYPE(bfd, i) \
639 (ELF32_R_TYPE (i))
640 #define ELF_R_INFO(bfd, s, t) \
641 (ELF32_R_INFO (s, t))
642 #endif
643 \f
644 /* The mips16 compiler uses a couple of special sections to handle
645 floating point arguments.
646
647 Section names that look like .mips16.fn.FNNAME contain stubs that
648 copy floating point arguments from the fp regs to the gp regs and
649 then jump to FNNAME. If any 32 bit function calls FNNAME, the
650 call should be redirected to the stub instead. If no 32 bit
651 function calls FNNAME, the stub should be discarded. We need to
652 consider any reference to the function, not just a call, because
653 if the address of the function is taken we will need the stub,
654 since the address might be passed to a 32 bit function.
655
656 Section names that look like .mips16.call.FNNAME contain stubs
657 that copy floating point arguments from the gp regs to the fp
658 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
659 then any 16 bit function that calls FNNAME should be redirected
660 to the stub instead. If FNNAME is not a 32 bit function, the
661 stub should be discarded.
662
663 .mips16.call.fp.FNNAME sections are similar, but contain stubs
664 which call FNNAME and then copy the return value from the fp regs
665 to the gp regs. These stubs store the return value in $18 while
666 calling FNNAME; any function which might call one of these stubs
667 must arrange to save $18 around the call. (This case is not
668 needed for 32 bit functions that call 16 bit functions, because
669 16 bit functions always return floating point values in both
670 $f0/$f1 and $2/$3.)
671
672 Note that in all cases FNNAME might be defined statically.
673 Therefore, FNNAME is not used literally. Instead, the relocation
674 information will indicate which symbol the section is for.
675
676 We record any stubs that we find in the symbol table. */
677
678 #define FN_STUB ".mips16.fn."
679 #define CALL_STUB ".mips16.call."
680 #define CALL_FP_STUB ".mips16.call.fp."
681 \f
682 /* Look up an entry in a MIPS ELF linker hash table. */
683
684 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
685 ((struct mips_elf_link_hash_entry *) \
686 elf_link_hash_lookup (&(table)->root, (string), (create), \
687 (copy), (follow)))
688
689 /* Traverse a MIPS ELF linker hash table. */
690
691 #define mips_elf_link_hash_traverse(table, func, info) \
692 (elf_link_hash_traverse \
693 (&(table)->root, \
694 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
695 (info)))
696
697 /* Get the MIPS ELF linker hash table from a link_info structure. */
698
699 #define mips_elf_hash_table(p) \
700 ((struct mips_elf_link_hash_table *) ((p)->hash))
701
702 /* Create an entry in a MIPS ELF linker hash table. */
703
704 static struct bfd_hash_entry *
705 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
706 struct bfd_hash_table *table, const char *string)
707 {
708 struct mips_elf_link_hash_entry *ret =
709 (struct mips_elf_link_hash_entry *) entry;
710
711 /* Allocate the structure if it has not already been allocated by a
712 subclass. */
713 if (ret == NULL)
714 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
715 if (ret == NULL)
716 return (struct bfd_hash_entry *) ret;
717
718 /* Call the allocation method of the superclass. */
719 ret = ((struct mips_elf_link_hash_entry *)
720 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
721 table, string));
722 if (ret != NULL)
723 {
724 /* Set local fields. */
725 memset (&ret->esym, 0, sizeof (EXTR));
726 /* We use -2 as a marker to indicate that the information has
727 not been set. -1 means there is no associated ifd. */
728 ret->esym.ifd = -2;
729 ret->possibly_dynamic_relocs = 0;
730 ret->readonly_reloc = FALSE;
731 ret->no_fn_stub = FALSE;
732 ret->fn_stub = NULL;
733 ret->need_fn_stub = FALSE;
734 ret->call_stub = NULL;
735 ret->call_fp_stub = NULL;
736 ret->forced_local = FALSE;
737 }
738
739 return (struct bfd_hash_entry *) ret;
740 }
741
742 bfd_boolean
743 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
744 {
745 struct _mips_elf_section_data *sdata;
746 bfd_size_type amt = sizeof (*sdata);
747
748 sdata = bfd_zalloc (abfd, amt);
749 if (sdata == NULL)
750 return FALSE;
751 sec->used_by_bfd = sdata;
752
753 return _bfd_elf_new_section_hook (abfd, sec);
754 }
755 \f
756 /* Read ECOFF debugging information from a .mdebug section into a
757 ecoff_debug_info structure. */
758
759 bfd_boolean
760 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
761 struct ecoff_debug_info *debug)
762 {
763 HDRR *symhdr;
764 const struct ecoff_debug_swap *swap;
765 char *ext_hdr;
766
767 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
768 memset (debug, 0, sizeof (*debug));
769
770 ext_hdr = bfd_malloc (swap->external_hdr_size);
771 if (ext_hdr == NULL && swap->external_hdr_size != 0)
772 goto error_return;
773
774 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
775 swap->external_hdr_size))
776 goto error_return;
777
778 symhdr = &debug->symbolic_header;
779 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
780
781 /* The symbolic header contains absolute file offsets and sizes to
782 read. */
783 #define READ(ptr, offset, count, size, type) \
784 if (symhdr->count == 0) \
785 debug->ptr = NULL; \
786 else \
787 { \
788 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
789 debug->ptr = bfd_malloc (amt); \
790 if (debug->ptr == NULL) \
791 goto error_return; \
792 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
793 || bfd_bread (debug->ptr, amt, abfd) != amt) \
794 goto error_return; \
795 }
796
797 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
798 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
799 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
800 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
801 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
802 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
803 union aux_ext *);
804 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
805 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
806 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
807 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
808 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
809 #undef READ
810
811 debug->fdr = NULL;
812
813 return TRUE;
814
815 error_return:
816 if (ext_hdr != NULL)
817 free (ext_hdr);
818 if (debug->line != NULL)
819 free (debug->line);
820 if (debug->external_dnr != NULL)
821 free (debug->external_dnr);
822 if (debug->external_pdr != NULL)
823 free (debug->external_pdr);
824 if (debug->external_sym != NULL)
825 free (debug->external_sym);
826 if (debug->external_opt != NULL)
827 free (debug->external_opt);
828 if (debug->external_aux != NULL)
829 free (debug->external_aux);
830 if (debug->ss != NULL)
831 free (debug->ss);
832 if (debug->ssext != NULL)
833 free (debug->ssext);
834 if (debug->external_fdr != NULL)
835 free (debug->external_fdr);
836 if (debug->external_rfd != NULL)
837 free (debug->external_rfd);
838 if (debug->external_ext != NULL)
839 free (debug->external_ext);
840 return FALSE;
841 }
842 \f
843 /* Swap RPDR (runtime procedure table entry) for output. */
844
845 static void
846 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
847 {
848 H_PUT_S32 (abfd, in->adr, ex->p_adr);
849 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
850 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
851 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
852 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
853 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
854
855 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
856 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
857
858 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
859 #if 0 /* FIXME */
860 H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info);
861 #endif
862 }
863
864 /* Create a runtime procedure table from the .mdebug section. */
865
866 static bfd_boolean
867 mips_elf_create_procedure_table (void *handle, bfd *abfd,
868 struct bfd_link_info *info, asection *s,
869 struct ecoff_debug_info *debug)
870 {
871 const struct ecoff_debug_swap *swap;
872 HDRR *hdr = &debug->symbolic_header;
873 RPDR *rpdr, *rp;
874 struct rpdr_ext *erp;
875 void *rtproc;
876 struct pdr_ext *epdr;
877 struct sym_ext *esym;
878 char *ss, **sv;
879 char *str;
880 bfd_size_type size;
881 bfd_size_type count;
882 unsigned long sindex;
883 unsigned long i;
884 PDR pdr;
885 SYMR sym;
886 const char *no_name_func = _("static procedure (no name)");
887
888 epdr = NULL;
889 rpdr = NULL;
890 esym = NULL;
891 ss = NULL;
892 sv = NULL;
893
894 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
895
896 sindex = strlen (no_name_func) + 1;
897 count = hdr->ipdMax;
898 if (count > 0)
899 {
900 size = swap->external_pdr_size;
901
902 epdr = bfd_malloc (size * count);
903 if (epdr == NULL)
904 goto error_return;
905
906 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
907 goto error_return;
908
909 size = sizeof (RPDR);
910 rp = rpdr = bfd_malloc (size * count);
911 if (rpdr == NULL)
912 goto error_return;
913
914 size = sizeof (char *);
915 sv = bfd_malloc (size * count);
916 if (sv == NULL)
917 goto error_return;
918
919 count = hdr->isymMax;
920 size = swap->external_sym_size;
921 esym = bfd_malloc (size * count);
922 if (esym == NULL)
923 goto error_return;
924
925 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
926 goto error_return;
927
928 count = hdr->issMax;
929 ss = bfd_malloc (count);
930 if (ss == NULL)
931 goto error_return;
932 if (! _bfd_ecoff_get_accumulated_ss (handle, ss))
933 goto error_return;
934
935 count = hdr->ipdMax;
936 for (i = 0; i < (unsigned long) count; i++, rp++)
937 {
938 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
939 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
940 rp->adr = sym.value;
941 rp->regmask = pdr.regmask;
942 rp->regoffset = pdr.regoffset;
943 rp->fregmask = pdr.fregmask;
944 rp->fregoffset = pdr.fregoffset;
945 rp->frameoffset = pdr.frameoffset;
946 rp->framereg = pdr.framereg;
947 rp->pcreg = pdr.pcreg;
948 rp->irpss = sindex;
949 sv[i] = ss + sym.iss;
950 sindex += strlen (sv[i]) + 1;
951 }
952 }
953
954 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
955 size = BFD_ALIGN (size, 16);
956 rtproc = bfd_alloc (abfd, size);
957 if (rtproc == NULL)
958 {
959 mips_elf_hash_table (info)->procedure_count = 0;
960 goto error_return;
961 }
962
963 mips_elf_hash_table (info)->procedure_count = count + 2;
964
965 erp = rtproc;
966 memset (erp, 0, sizeof (struct rpdr_ext));
967 erp++;
968 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
969 strcpy (str, no_name_func);
970 str += strlen (no_name_func) + 1;
971 for (i = 0; i < count; i++)
972 {
973 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
974 strcpy (str, sv[i]);
975 str += strlen (sv[i]) + 1;
976 }
977 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
978
979 /* Set the size and contents of .rtproc section. */
980 s->_raw_size = size;
981 s->contents = rtproc;
982
983 /* Skip this section later on (I don't think this currently
984 matters, but someday it might). */
985 s->link_order_head = NULL;
986
987 if (epdr != NULL)
988 free (epdr);
989 if (rpdr != NULL)
990 free (rpdr);
991 if (esym != NULL)
992 free (esym);
993 if (ss != NULL)
994 free (ss);
995 if (sv != NULL)
996 free (sv);
997
998 return TRUE;
999
1000 error_return:
1001 if (epdr != NULL)
1002 free (epdr);
1003 if (rpdr != NULL)
1004 free (rpdr);
1005 if (esym != NULL)
1006 free (esym);
1007 if (ss != NULL)
1008 free (ss);
1009 if (sv != NULL)
1010 free (sv);
1011 return FALSE;
1012 }
1013
1014 /* Check the mips16 stubs for a particular symbol, and see if we can
1015 discard them. */
1016
1017 static bfd_boolean
1018 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1019 void *data ATTRIBUTE_UNUSED)
1020 {
1021 if (h->root.root.type == bfd_link_hash_warning)
1022 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1023
1024 if (h->fn_stub != NULL
1025 && ! h->need_fn_stub)
1026 {
1027 /* We don't need the fn_stub; the only references to this symbol
1028 are 16 bit calls. Clobber the size to 0 to prevent it from
1029 being included in the link. */
1030 h->fn_stub->_raw_size = 0;
1031 h->fn_stub->_cooked_size = 0;
1032 h->fn_stub->flags &= ~SEC_RELOC;
1033 h->fn_stub->reloc_count = 0;
1034 h->fn_stub->flags |= SEC_EXCLUDE;
1035 }
1036
1037 if (h->call_stub != NULL
1038 && h->root.other == STO_MIPS16)
1039 {
1040 /* We don't need the call_stub; this is a 16 bit function, so
1041 calls from other 16 bit functions are OK. Clobber the size
1042 to 0 to prevent it from being included in the link. */
1043 h->call_stub->_raw_size = 0;
1044 h->call_stub->_cooked_size = 0;
1045 h->call_stub->flags &= ~SEC_RELOC;
1046 h->call_stub->reloc_count = 0;
1047 h->call_stub->flags |= SEC_EXCLUDE;
1048 }
1049
1050 if (h->call_fp_stub != NULL
1051 && h->root.other == STO_MIPS16)
1052 {
1053 /* We don't need the call_stub; this is a 16 bit function, so
1054 calls from other 16 bit functions are OK. Clobber the size
1055 to 0 to prevent it from being included in the link. */
1056 h->call_fp_stub->_raw_size = 0;
1057 h->call_fp_stub->_cooked_size = 0;
1058 h->call_fp_stub->flags &= ~SEC_RELOC;
1059 h->call_fp_stub->reloc_count = 0;
1060 h->call_fp_stub->flags |= SEC_EXCLUDE;
1061 }
1062
1063 return TRUE;
1064 }
1065 \f
1066 bfd_reloc_status_type
1067 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1068 arelent *reloc_entry, asection *input_section,
1069 bfd_boolean relocatable, void *data, bfd_vma gp)
1070 {
1071 bfd_vma relocation;
1072 bfd_signed_vma val;
1073 bfd_reloc_status_type status;
1074
1075 if (bfd_is_com_section (symbol->section))
1076 relocation = 0;
1077 else
1078 relocation = symbol->value;
1079
1080 relocation += symbol->section->output_section->vma;
1081 relocation += symbol->section->output_offset;
1082
1083 if (reloc_entry->address > input_section->_cooked_size)
1084 return bfd_reloc_outofrange;
1085
1086 /* Set val to the offset into the section or symbol. */
1087 val = reloc_entry->addend;
1088
1089 _bfd_mips_elf_sign_extend (val, 16);
1090
1091 /* Adjust val for the final section location and GP value. If we
1092 are producing relocatable output, we don't want to do this for
1093 an external symbol. */
1094 if (! relocatable
1095 || (symbol->flags & BSF_SECTION_SYM) != 0)
1096 val += relocation - gp;
1097
1098 if (reloc_entry->howto->partial_inplace)
1099 {
1100 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1101 (bfd_byte *) data
1102 + reloc_entry->address);
1103 if (status != bfd_reloc_ok)
1104 return status;
1105 }
1106 else
1107 reloc_entry->addend = val;
1108
1109 if (relocatable)
1110 reloc_entry->address += input_section->output_offset;
1111
1112 return bfd_reloc_ok;
1113 }
1114
1115 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1116 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1117 that contains the relocation field and DATA points to the start of
1118 INPUT_SECTION. */
1119
1120 struct mips_hi16
1121 {
1122 struct mips_hi16 *next;
1123 bfd_byte *data;
1124 asection *input_section;
1125 arelent rel;
1126 };
1127
1128 /* FIXME: This should not be a static variable. */
1129
1130 static struct mips_hi16 *mips_hi16_list;
1131
1132 /* A howto special_function for REL *HI16 relocations. We can only
1133 calculate the correct value once we've seen the partnering
1134 *LO16 relocation, so just save the information for later.
1135
1136 The ABI requires that the *LO16 immediately follow the *HI16.
1137 However, as a GNU extension, we permit an arbitrary number of
1138 *HI16s to be associated with a single *LO16. This significantly
1139 simplies the relocation handling in gcc. */
1140
1141 bfd_reloc_status_type
1142 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1143 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1144 asection *input_section, bfd *output_bfd,
1145 char **error_message ATTRIBUTE_UNUSED)
1146 {
1147 struct mips_hi16 *n;
1148
1149 if (reloc_entry->address > input_section->_cooked_size)
1150 return bfd_reloc_outofrange;
1151
1152 n = bfd_malloc (sizeof *n);
1153 if (n == NULL)
1154 return bfd_reloc_outofrange;
1155
1156 n->next = mips_hi16_list;
1157 n->data = data;
1158 n->input_section = input_section;
1159 n->rel = *reloc_entry;
1160 mips_hi16_list = n;
1161
1162 if (output_bfd != NULL)
1163 reloc_entry->address += input_section->output_offset;
1164
1165 return bfd_reloc_ok;
1166 }
1167
1168 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1169 like any other 16-bit relocation when applied to global symbols, but is
1170 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1171
1172 bfd_reloc_status_type
1173 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1174 void *data, asection *input_section,
1175 bfd *output_bfd, char **error_message)
1176 {
1177 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1178 || bfd_is_und_section (bfd_get_section (symbol))
1179 || bfd_is_com_section (bfd_get_section (symbol)))
1180 /* The relocation is against a global symbol. */
1181 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1182 input_section, output_bfd,
1183 error_message);
1184
1185 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1186 input_section, output_bfd, error_message);
1187 }
1188
1189 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1190 is a straightforward 16 bit inplace relocation, but we must deal with
1191 any partnering high-part relocations as well. */
1192
1193 bfd_reloc_status_type
1194 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1195 void *data, asection *input_section,
1196 bfd *output_bfd, char **error_message)
1197 {
1198 bfd_vma vallo;
1199
1200 if (reloc_entry->address > input_section->_cooked_size)
1201 return bfd_reloc_outofrange;
1202
1203 vallo = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1204 while (mips_hi16_list != NULL)
1205 {
1206 bfd_reloc_status_type ret;
1207 struct mips_hi16 *hi;
1208
1209 hi = mips_hi16_list;
1210
1211 /* R_MIPS_GOT16 relocations are something of a special case. We
1212 want to install the addend in the same way as for a R_MIPS_HI16
1213 relocation (with a rightshift of 16). However, since GOT16
1214 relocations can also be used with global symbols, their howto
1215 has a rightshift of 0. */
1216 if (hi->rel.howto->type == R_MIPS_GOT16)
1217 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1218
1219 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1220 carry or borrow will induce a change of +1 or -1 in the high part. */
1221 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1222
1223 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1224 hi->input_section, output_bfd,
1225 error_message);
1226 if (ret != bfd_reloc_ok)
1227 return ret;
1228
1229 mips_hi16_list = hi->next;
1230 free (hi);
1231 }
1232
1233 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1234 input_section, output_bfd,
1235 error_message);
1236 }
1237
1238 /* A generic howto special_function. This calculates and installs the
1239 relocation itself, thus avoiding the oft-discussed problems in
1240 bfd_perform_relocation and bfd_install_relocation. */
1241
1242 bfd_reloc_status_type
1243 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1244 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1245 asection *input_section, bfd *output_bfd,
1246 char **error_message ATTRIBUTE_UNUSED)
1247 {
1248 bfd_signed_vma val;
1249 bfd_reloc_status_type status;
1250 bfd_boolean relocatable;
1251
1252 relocatable = (output_bfd != NULL);
1253
1254 if (reloc_entry->address > input_section->_cooked_size)
1255 return bfd_reloc_outofrange;
1256
1257 /* Build up the field adjustment in VAL. */
1258 val = 0;
1259 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1260 {
1261 /* Either we're calculating the final field value or we have a
1262 relocation against a section symbol. Add in the section's
1263 offset or address. */
1264 val += symbol->section->output_section->vma;
1265 val += symbol->section->output_offset;
1266 }
1267
1268 if (!relocatable)
1269 {
1270 /* We're calculating the final field value. Add in the symbol's value
1271 and, if pc-relative, subtract the address of the field itself. */
1272 val += symbol->value;
1273 if (reloc_entry->howto->pc_relative)
1274 {
1275 val -= input_section->output_section->vma;
1276 val -= input_section->output_offset;
1277 val -= reloc_entry->address;
1278 }
1279 }
1280
1281 /* VAL is now the final adjustment. If we're keeping this relocation
1282 in the output file, and if the relocation uses a separate addend,
1283 we just need to add VAL to that addend. Otherwise we need to add
1284 VAL to the relocation field itself. */
1285 if (relocatable && !reloc_entry->howto->partial_inplace)
1286 reloc_entry->addend += val;
1287 else
1288 {
1289 /* Add in the separate addend, if any. */
1290 val += reloc_entry->addend;
1291
1292 /* Add VAL to the relocation field. */
1293 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1294 (bfd_byte *) data
1295 + reloc_entry->address);
1296 if (status != bfd_reloc_ok)
1297 return status;
1298 }
1299
1300 if (relocatable)
1301 reloc_entry->address += input_section->output_offset;
1302
1303 return bfd_reloc_ok;
1304 }
1305 \f
1306 /* Swap an entry in a .gptab section. Note that these routines rely
1307 on the equivalence of the two elements of the union. */
1308
1309 static void
1310 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1311 Elf32_gptab *in)
1312 {
1313 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1314 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1315 }
1316
1317 static void
1318 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1319 Elf32_External_gptab *ex)
1320 {
1321 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1322 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1323 }
1324
1325 static void
1326 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1327 Elf32_External_compact_rel *ex)
1328 {
1329 H_PUT_32 (abfd, in->id1, ex->id1);
1330 H_PUT_32 (abfd, in->num, ex->num);
1331 H_PUT_32 (abfd, in->id2, ex->id2);
1332 H_PUT_32 (abfd, in->offset, ex->offset);
1333 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1334 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1335 }
1336
1337 static void
1338 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1339 Elf32_External_crinfo *ex)
1340 {
1341 unsigned long l;
1342
1343 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1344 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1345 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1346 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1347 H_PUT_32 (abfd, l, ex->info);
1348 H_PUT_32 (abfd, in->konst, ex->konst);
1349 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1350 }
1351 \f
1352 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1353 routines swap this structure in and out. They are used outside of
1354 BFD, so they are globally visible. */
1355
1356 void
1357 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1358 Elf32_RegInfo *in)
1359 {
1360 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1361 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1362 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1363 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1364 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1365 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1366 }
1367
1368 void
1369 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1370 Elf32_External_RegInfo *ex)
1371 {
1372 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1373 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1374 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1375 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1376 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1377 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1378 }
1379
1380 /* In the 64 bit ABI, the .MIPS.options section holds register
1381 information in an Elf64_Reginfo structure. These routines swap
1382 them in and out. They are globally visible because they are used
1383 outside of BFD. These routines are here so that gas can call them
1384 without worrying about whether the 64 bit ABI has been included. */
1385
1386 void
1387 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1388 Elf64_Internal_RegInfo *in)
1389 {
1390 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1391 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1392 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1393 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1394 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1395 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1396 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1397 }
1398
1399 void
1400 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1401 Elf64_External_RegInfo *ex)
1402 {
1403 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1404 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1405 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1406 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1407 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1408 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1409 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1410 }
1411
1412 /* Swap in an options header. */
1413
1414 void
1415 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1416 Elf_Internal_Options *in)
1417 {
1418 in->kind = H_GET_8 (abfd, ex->kind);
1419 in->size = H_GET_8 (abfd, ex->size);
1420 in->section = H_GET_16 (abfd, ex->section);
1421 in->info = H_GET_32 (abfd, ex->info);
1422 }
1423
1424 /* Swap out an options header. */
1425
1426 void
1427 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1428 Elf_External_Options *ex)
1429 {
1430 H_PUT_8 (abfd, in->kind, ex->kind);
1431 H_PUT_8 (abfd, in->size, ex->size);
1432 H_PUT_16 (abfd, in->section, ex->section);
1433 H_PUT_32 (abfd, in->info, ex->info);
1434 }
1435 \f
1436 /* This function is called via qsort() to sort the dynamic relocation
1437 entries by increasing r_symndx value. */
1438
1439 static int
1440 sort_dynamic_relocs (const void *arg1, const void *arg2)
1441 {
1442 Elf_Internal_Rela int_reloc1;
1443 Elf_Internal_Rela int_reloc2;
1444
1445 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1446 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1447
1448 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1449 }
1450
1451 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1452
1453 static int
1454 sort_dynamic_relocs_64 (const void *arg1, const void *arg2)
1455 {
1456 Elf_Internal_Rela int_reloc1[3];
1457 Elf_Internal_Rela int_reloc2[3];
1458
1459 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1460 (reldyn_sorting_bfd, arg1, int_reloc1);
1461 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1462 (reldyn_sorting_bfd, arg2, int_reloc2);
1463
1464 return (ELF64_R_SYM (int_reloc1[0].r_info)
1465 - ELF64_R_SYM (int_reloc2[0].r_info));
1466 }
1467
1468
1469 /* This routine is used to write out ECOFF debugging external symbol
1470 information. It is called via mips_elf_link_hash_traverse. The
1471 ECOFF external symbol information must match the ELF external
1472 symbol information. Unfortunately, at this point we don't know
1473 whether a symbol is required by reloc information, so the two
1474 tables may wind up being different. We must sort out the external
1475 symbol information before we can set the final size of the .mdebug
1476 section, and we must set the size of the .mdebug section before we
1477 can relocate any sections, and we can't know which symbols are
1478 required by relocation until we relocate the sections.
1479 Fortunately, it is relatively unlikely that any symbol will be
1480 stripped but required by a reloc. In particular, it can not happen
1481 when generating a final executable. */
1482
1483 static bfd_boolean
1484 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1485 {
1486 struct extsym_info *einfo = data;
1487 bfd_boolean strip;
1488 asection *sec, *output_section;
1489
1490 if (h->root.root.type == bfd_link_hash_warning)
1491 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1492
1493 if (h->root.indx == -2)
1494 strip = FALSE;
1495 else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1496 || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
1497 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
1498 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
1499 strip = TRUE;
1500 else if (einfo->info->strip == strip_all
1501 || (einfo->info->strip == strip_some
1502 && bfd_hash_lookup (einfo->info->keep_hash,
1503 h->root.root.root.string,
1504 FALSE, FALSE) == NULL))
1505 strip = TRUE;
1506 else
1507 strip = FALSE;
1508
1509 if (strip)
1510 return TRUE;
1511
1512 if (h->esym.ifd == -2)
1513 {
1514 h->esym.jmptbl = 0;
1515 h->esym.cobol_main = 0;
1516 h->esym.weakext = 0;
1517 h->esym.reserved = 0;
1518 h->esym.ifd = ifdNil;
1519 h->esym.asym.value = 0;
1520 h->esym.asym.st = stGlobal;
1521
1522 if (h->root.root.type == bfd_link_hash_undefined
1523 || h->root.root.type == bfd_link_hash_undefweak)
1524 {
1525 const char *name;
1526
1527 /* Use undefined class. Also, set class and type for some
1528 special symbols. */
1529 name = h->root.root.root.string;
1530 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1531 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1532 {
1533 h->esym.asym.sc = scData;
1534 h->esym.asym.st = stLabel;
1535 h->esym.asym.value = 0;
1536 }
1537 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1538 {
1539 h->esym.asym.sc = scAbs;
1540 h->esym.asym.st = stLabel;
1541 h->esym.asym.value =
1542 mips_elf_hash_table (einfo->info)->procedure_count;
1543 }
1544 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1545 {
1546 h->esym.asym.sc = scAbs;
1547 h->esym.asym.st = stLabel;
1548 h->esym.asym.value = elf_gp (einfo->abfd);
1549 }
1550 else
1551 h->esym.asym.sc = scUndefined;
1552 }
1553 else if (h->root.root.type != bfd_link_hash_defined
1554 && h->root.root.type != bfd_link_hash_defweak)
1555 h->esym.asym.sc = scAbs;
1556 else
1557 {
1558 const char *name;
1559
1560 sec = h->root.root.u.def.section;
1561 output_section = sec->output_section;
1562
1563 /* When making a shared library and symbol h is the one from
1564 the another shared library, OUTPUT_SECTION may be null. */
1565 if (output_section == NULL)
1566 h->esym.asym.sc = scUndefined;
1567 else
1568 {
1569 name = bfd_section_name (output_section->owner, output_section);
1570
1571 if (strcmp (name, ".text") == 0)
1572 h->esym.asym.sc = scText;
1573 else if (strcmp (name, ".data") == 0)
1574 h->esym.asym.sc = scData;
1575 else if (strcmp (name, ".sdata") == 0)
1576 h->esym.asym.sc = scSData;
1577 else if (strcmp (name, ".rodata") == 0
1578 || strcmp (name, ".rdata") == 0)
1579 h->esym.asym.sc = scRData;
1580 else if (strcmp (name, ".bss") == 0)
1581 h->esym.asym.sc = scBss;
1582 else if (strcmp (name, ".sbss") == 0)
1583 h->esym.asym.sc = scSBss;
1584 else if (strcmp (name, ".init") == 0)
1585 h->esym.asym.sc = scInit;
1586 else if (strcmp (name, ".fini") == 0)
1587 h->esym.asym.sc = scFini;
1588 else
1589 h->esym.asym.sc = scAbs;
1590 }
1591 }
1592
1593 h->esym.asym.reserved = 0;
1594 h->esym.asym.index = indexNil;
1595 }
1596
1597 if (h->root.root.type == bfd_link_hash_common)
1598 h->esym.asym.value = h->root.root.u.c.size;
1599 else if (h->root.root.type == bfd_link_hash_defined
1600 || h->root.root.type == bfd_link_hash_defweak)
1601 {
1602 if (h->esym.asym.sc == scCommon)
1603 h->esym.asym.sc = scBss;
1604 else if (h->esym.asym.sc == scSCommon)
1605 h->esym.asym.sc = scSBss;
1606
1607 sec = h->root.root.u.def.section;
1608 output_section = sec->output_section;
1609 if (output_section != NULL)
1610 h->esym.asym.value = (h->root.root.u.def.value
1611 + sec->output_offset
1612 + output_section->vma);
1613 else
1614 h->esym.asym.value = 0;
1615 }
1616 else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1617 {
1618 struct mips_elf_link_hash_entry *hd = h;
1619 bfd_boolean no_fn_stub = h->no_fn_stub;
1620
1621 while (hd->root.root.type == bfd_link_hash_indirect)
1622 {
1623 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1624 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1625 }
1626
1627 if (!no_fn_stub)
1628 {
1629 /* Set type and value for a symbol with a function stub. */
1630 h->esym.asym.st = stProc;
1631 sec = hd->root.root.u.def.section;
1632 if (sec == NULL)
1633 h->esym.asym.value = 0;
1634 else
1635 {
1636 output_section = sec->output_section;
1637 if (output_section != NULL)
1638 h->esym.asym.value = (hd->root.plt.offset
1639 + sec->output_offset
1640 + output_section->vma);
1641 else
1642 h->esym.asym.value = 0;
1643 }
1644 #if 0 /* FIXME? */
1645 h->esym.ifd = 0;
1646 #endif
1647 }
1648 }
1649
1650 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1651 h->root.root.root.string,
1652 &h->esym))
1653 {
1654 einfo->failed = TRUE;
1655 return FALSE;
1656 }
1657
1658 return TRUE;
1659 }
1660
1661 /* A comparison routine used to sort .gptab entries. */
1662
1663 static int
1664 gptab_compare (const void *p1, const void *p2)
1665 {
1666 const Elf32_gptab *a1 = p1;
1667 const Elf32_gptab *a2 = p2;
1668
1669 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1670 }
1671 \f
1672 /* Functions to manage the got entry hash table. */
1673
1674 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1675 hash number. */
1676
1677 static INLINE hashval_t
1678 mips_elf_hash_bfd_vma (bfd_vma addr)
1679 {
1680 #ifdef BFD64
1681 return addr + (addr >> 32);
1682 #else
1683 return addr;
1684 #endif
1685 }
1686
1687 /* got_entries only match if they're identical, except for gotidx, so
1688 use all fields to compute the hash, and compare the appropriate
1689 union members. */
1690
1691 static hashval_t
1692 mips_elf_got_entry_hash (const void *entry_)
1693 {
1694 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1695
1696 return entry->symndx
1697 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1698 : entry->abfd->id
1699 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1700 : entry->d.h->root.root.root.hash));
1701 }
1702
1703 static int
1704 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1705 {
1706 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1707 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1708
1709 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1710 && (! e1->abfd ? e1->d.address == e2->d.address
1711 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1712 : e1->d.h == e2->d.h);
1713 }
1714
1715 /* multi_got_entries are still a match in the case of global objects,
1716 even if the input bfd in which they're referenced differs, so the
1717 hash computation and compare functions are adjusted
1718 accordingly. */
1719
1720 static hashval_t
1721 mips_elf_multi_got_entry_hash (const void *entry_)
1722 {
1723 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1724
1725 return entry->symndx
1726 + (! entry->abfd
1727 ? mips_elf_hash_bfd_vma (entry->d.address)
1728 : entry->symndx >= 0
1729 ? (entry->abfd->id
1730 + mips_elf_hash_bfd_vma (entry->d.addend))
1731 : entry->d.h->root.root.root.hash);
1732 }
1733
1734 static int
1735 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
1736 {
1737 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1738 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1739
1740 return e1->symndx == e2->symndx
1741 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1742 : e1->abfd == NULL || e2->abfd == NULL
1743 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1744 : e1->d.h == e2->d.h);
1745 }
1746 \f
1747 /* Returns the dynamic relocation section for DYNOBJ. */
1748
1749 static asection *
1750 mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p)
1751 {
1752 static const char dname[] = ".rel.dyn";
1753 asection *sreloc;
1754
1755 sreloc = bfd_get_section_by_name (dynobj, dname);
1756 if (sreloc == NULL && create_p)
1757 {
1758 sreloc = bfd_make_section (dynobj, dname);
1759 if (sreloc == NULL
1760 || ! bfd_set_section_flags (dynobj, sreloc,
1761 (SEC_ALLOC
1762 | SEC_LOAD
1763 | SEC_HAS_CONTENTS
1764 | SEC_IN_MEMORY
1765 | SEC_LINKER_CREATED
1766 | SEC_READONLY))
1767 || ! bfd_set_section_alignment (dynobj, sreloc,
1768 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
1769 return NULL;
1770 }
1771 return sreloc;
1772 }
1773
1774 /* Returns the GOT section for ABFD. */
1775
1776 static asection *
1777 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
1778 {
1779 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1780 if (sgot == NULL
1781 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1782 return NULL;
1783 return sgot;
1784 }
1785
1786 /* Returns the GOT information associated with the link indicated by
1787 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1788 section. */
1789
1790 static struct mips_got_info *
1791 mips_elf_got_info (bfd *abfd, asection **sgotp)
1792 {
1793 asection *sgot;
1794 struct mips_got_info *g;
1795
1796 sgot = mips_elf_got_section (abfd, TRUE);
1797 BFD_ASSERT (sgot != NULL);
1798 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1799 g = mips_elf_section_data (sgot)->u.got_info;
1800 BFD_ASSERT (g != NULL);
1801
1802 if (sgotp)
1803 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1804
1805 return g;
1806 }
1807
1808 /* Returns the GOT offset at which the indicated address can be found.
1809 If there is not yet a GOT entry for this value, create one. Returns
1810 -1 if no satisfactory GOT offset can be found. */
1811
1812 static bfd_vma
1813 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1814 bfd_vma value)
1815 {
1816 asection *sgot;
1817 struct mips_got_info *g;
1818 struct mips_got_entry *entry;
1819
1820 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1821
1822 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1823 if (entry)
1824 return entry->gotidx;
1825 else
1826 return MINUS_ONE;
1827 }
1828
1829 /* Returns the GOT index for the global symbol indicated by H. */
1830
1831 static bfd_vma
1832 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h)
1833 {
1834 bfd_vma index;
1835 asection *sgot;
1836 struct mips_got_info *g, *gg;
1837 long global_got_dynindx = 0;
1838
1839 gg = g = mips_elf_got_info (abfd, &sgot);
1840 if (g->bfd2got && ibfd)
1841 {
1842 struct mips_got_entry e, *p;
1843
1844 BFD_ASSERT (h->dynindx >= 0);
1845
1846 g = mips_elf_got_for_ibfd (g, ibfd);
1847 if (g->next != gg)
1848 {
1849 e.abfd = ibfd;
1850 e.symndx = -1;
1851 e.d.h = (struct mips_elf_link_hash_entry *)h;
1852
1853 p = htab_find (g->got_entries, &e);
1854
1855 BFD_ASSERT (p->gotidx > 0);
1856 return p->gotidx;
1857 }
1858 }
1859
1860 if (gg->global_gotsym != NULL)
1861 global_got_dynindx = gg->global_gotsym->dynindx;
1862
1863 /* Once we determine the global GOT entry with the lowest dynamic
1864 symbol table index, we must put all dynamic symbols with greater
1865 indices into the GOT. That makes it easy to calculate the GOT
1866 offset. */
1867 BFD_ASSERT (h->dynindx >= global_got_dynindx);
1868 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
1869 * MIPS_ELF_GOT_SIZE (abfd));
1870 BFD_ASSERT (index < sgot->_raw_size);
1871
1872 return index;
1873 }
1874
1875 /* Find a GOT entry that is within 32KB of the VALUE. These entries
1876 are supposed to be placed at small offsets in the GOT, i.e.,
1877 within 32KB of GP. Return the index into the GOT for this page,
1878 and store the offset from this entry to the desired address in
1879 OFFSETP, if it is non-NULL. */
1880
1881 static bfd_vma
1882 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1883 bfd_vma value, bfd_vma *offsetp)
1884 {
1885 asection *sgot;
1886 struct mips_got_info *g;
1887 bfd_vma index;
1888 struct mips_got_entry *entry;
1889
1890 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1891
1892 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
1893 (value + 0x8000)
1894 & (~(bfd_vma)0xffff));
1895
1896 if (!entry)
1897 return MINUS_ONE;
1898
1899 index = entry->gotidx;
1900
1901 if (offsetp)
1902 *offsetp = value - entry->d.address;
1903
1904 return index;
1905 }
1906
1907 /* Find a GOT entry whose higher-order 16 bits are the same as those
1908 for value. Return the index into the GOT for this entry. */
1909
1910 static bfd_vma
1911 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
1912 bfd_vma value, bfd_boolean external)
1913 {
1914 asection *sgot;
1915 struct mips_got_info *g;
1916 struct mips_got_entry *entry;
1917
1918 if (! external)
1919 {
1920 /* Although the ABI says that it is "the high-order 16 bits" that we
1921 want, it is really the %high value. The complete value is
1922 calculated with a `addiu' of a LO16 relocation, just as with a
1923 HI16/LO16 pair. */
1924 value = mips_elf_high (value) << 16;
1925 }
1926
1927 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
1928
1929 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value);
1930 if (entry)
1931 return entry->gotidx;
1932 else
1933 return MINUS_ONE;
1934 }
1935
1936 /* Returns the offset for the entry at the INDEXth position
1937 in the GOT. */
1938
1939 static bfd_vma
1940 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
1941 bfd *input_bfd, bfd_vma index)
1942 {
1943 asection *sgot;
1944 bfd_vma gp;
1945 struct mips_got_info *g;
1946
1947 g = mips_elf_got_info (dynobj, &sgot);
1948 gp = _bfd_get_gp_value (output_bfd)
1949 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
1950
1951 return sgot->output_section->vma + sgot->output_offset + index - gp;
1952 }
1953
1954 /* Create a local GOT entry for VALUE. Return the index of the entry,
1955 or -1 if it could not be created. */
1956
1957 static struct mips_got_entry *
1958 mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd,
1959 struct mips_got_info *gg,
1960 asection *sgot, bfd_vma value)
1961 {
1962 struct mips_got_entry entry, **loc;
1963 struct mips_got_info *g;
1964
1965 entry.abfd = NULL;
1966 entry.symndx = -1;
1967 entry.d.address = value;
1968
1969 g = mips_elf_got_for_ibfd (gg, ibfd);
1970 if (g == NULL)
1971 {
1972 g = mips_elf_got_for_ibfd (gg, abfd);
1973 BFD_ASSERT (g != NULL);
1974 }
1975
1976 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
1977 INSERT);
1978 if (*loc)
1979 return *loc;
1980
1981 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
1982
1983 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
1984
1985 if (! *loc)
1986 return NULL;
1987
1988 memcpy (*loc, &entry, sizeof entry);
1989
1990 if (g->assigned_gotno >= g->local_gotno)
1991 {
1992 (*loc)->gotidx = -1;
1993 /* We didn't allocate enough space in the GOT. */
1994 (*_bfd_error_handler)
1995 (_("not enough GOT space for local GOT entries"));
1996 bfd_set_error (bfd_error_bad_value);
1997 return NULL;
1998 }
1999
2000 MIPS_ELF_PUT_WORD (abfd, value,
2001 (sgot->contents + entry.gotidx));
2002
2003 return *loc;
2004 }
2005
2006 /* Sort the dynamic symbol table so that symbols that need GOT entries
2007 appear towards the end. This reduces the amount of GOT space
2008 required. MAX_LOCAL is used to set the number of local symbols
2009 known to be in the dynamic symbol table. During
2010 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2011 section symbols are added and the count is higher. */
2012
2013 static bfd_boolean
2014 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2015 {
2016 struct mips_elf_hash_sort_data hsd;
2017 struct mips_got_info *g;
2018 bfd *dynobj;
2019
2020 dynobj = elf_hash_table (info)->dynobj;
2021
2022 g = mips_elf_got_info (dynobj, NULL);
2023
2024 hsd.low = NULL;
2025 hsd.max_unref_got_dynindx =
2026 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2027 /* In the multi-got case, assigned_gotno of the master got_info
2028 indicate the number of entries that aren't referenced in the
2029 primary GOT, but that must have entries because there are
2030 dynamic relocations that reference it. Since they aren't
2031 referenced, we move them to the end of the GOT, so that they
2032 don't prevent other entries that are referenced from getting
2033 too large offsets. */
2034 - (g->next ? g->assigned_gotno : 0);
2035 hsd.max_non_got_dynindx = max_local;
2036 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2037 elf_hash_table (info)),
2038 mips_elf_sort_hash_table_f,
2039 &hsd);
2040
2041 /* There should have been enough room in the symbol table to
2042 accommodate both the GOT and non-GOT symbols. */
2043 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2044 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2045 <= elf_hash_table (info)->dynsymcount);
2046
2047 /* Now we know which dynamic symbol has the lowest dynamic symbol
2048 table index in the GOT. */
2049 g->global_gotsym = hsd.low;
2050
2051 return TRUE;
2052 }
2053
2054 /* If H needs a GOT entry, assign it the highest available dynamic
2055 index. Otherwise, assign it the lowest available dynamic
2056 index. */
2057
2058 static bfd_boolean
2059 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2060 {
2061 struct mips_elf_hash_sort_data *hsd = data;
2062
2063 if (h->root.root.type == bfd_link_hash_warning)
2064 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2065
2066 /* Symbols without dynamic symbol table entries aren't interesting
2067 at all. */
2068 if (h->root.dynindx == -1)
2069 return TRUE;
2070
2071 /* Global symbols that need GOT entries that are not explicitly
2072 referenced are marked with got offset 2. Those that are
2073 referenced get a 1, and those that don't need GOT entries get
2074 -1. */
2075 if (h->root.got.offset == 2)
2076 {
2077 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2078 hsd->low = (struct elf_link_hash_entry *) h;
2079 h->root.dynindx = hsd->max_unref_got_dynindx++;
2080 }
2081 else if (h->root.got.offset != 1)
2082 h->root.dynindx = hsd->max_non_got_dynindx++;
2083 else
2084 {
2085 h->root.dynindx = --hsd->min_got_dynindx;
2086 hsd->low = (struct elf_link_hash_entry *) h;
2087 }
2088
2089 return TRUE;
2090 }
2091
2092 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2093 symbol table index lower than any we've seen to date, record it for
2094 posterity. */
2095
2096 static bfd_boolean
2097 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2098 bfd *abfd, struct bfd_link_info *info,
2099 struct mips_got_info *g)
2100 {
2101 struct mips_got_entry entry, **loc;
2102
2103 /* A global symbol in the GOT must also be in the dynamic symbol
2104 table. */
2105 if (h->dynindx == -1)
2106 {
2107 switch (ELF_ST_VISIBILITY (h->other))
2108 {
2109 case STV_INTERNAL:
2110 case STV_HIDDEN:
2111 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2112 break;
2113 }
2114 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2115 return FALSE;
2116 }
2117
2118 entry.abfd = abfd;
2119 entry.symndx = -1;
2120 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2121
2122 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2123 INSERT);
2124
2125 /* If we've already marked this entry as needing GOT space, we don't
2126 need to do it again. */
2127 if (*loc)
2128 return TRUE;
2129
2130 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2131
2132 if (! *loc)
2133 return FALSE;
2134
2135 entry.gotidx = -1;
2136 memcpy (*loc, &entry, sizeof entry);
2137
2138 if (h->got.offset != MINUS_ONE)
2139 return TRUE;
2140
2141 /* By setting this to a value other than -1, we are indicating that
2142 there needs to be a GOT entry for H. Avoid using zero, as the
2143 generic ELF copy_indirect_symbol tests for <= 0. */
2144 h->got.offset = 1;
2145
2146 return TRUE;
2147 }
2148
2149 /* Reserve space in G for a GOT entry containing the value of symbol
2150 SYMNDX in input bfd ABDF, plus ADDEND. */
2151
2152 static bfd_boolean
2153 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2154 struct mips_got_info *g)
2155 {
2156 struct mips_got_entry entry, **loc;
2157
2158 entry.abfd = abfd;
2159 entry.symndx = symndx;
2160 entry.d.addend = addend;
2161 loc = (struct mips_got_entry **)
2162 htab_find_slot (g->got_entries, &entry, INSERT);
2163
2164 if (*loc)
2165 return TRUE;
2166
2167 entry.gotidx = g->local_gotno++;
2168
2169 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2170
2171 if (! *loc)
2172 return FALSE;
2173
2174 memcpy (*loc, &entry, sizeof entry);
2175
2176 return TRUE;
2177 }
2178 \f
2179 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2180
2181 static hashval_t
2182 mips_elf_bfd2got_entry_hash (const void *entry_)
2183 {
2184 const struct mips_elf_bfd2got_hash *entry
2185 = (struct mips_elf_bfd2got_hash *)entry_;
2186
2187 return entry->bfd->id;
2188 }
2189
2190 /* Check whether two hash entries have the same bfd. */
2191
2192 static int
2193 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2194 {
2195 const struct mips_elf_bfd2got_hash *e1
2196 = (const struct mips_elf_bfd2got_hash *)entry1;
2197 const struct mips_elf_bfd2got_hash *e2
2198 = (const struct mips_elf_bfd2got_hash *)entry2;
2199
2200 return e1->bfd == e2->bfd;
2201 }
2202
2203 /* In a multi-got link, determine the GOT to be used for IBDF. G must
2204 be the master GOT data. */
2205
2206 static struct mips_got_info *
2207 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2208 {
2209 struct mips_elf_bfd2got_hash e, *p;
2210
2211 if (! g->bfd2got)
2212 return g;
2213
2214 e.bfd = ibfd;
2215 p = htab_find (g->bfd2got, &e);
2216 return p ? p->g : NULL;
2217 }
2218
2219 /* Create one separate got for each bfd that has entries in the global
2220 got, such that we can tell how many local and global entries each
2221 bfd requires. */
2222
2223 static int
2224 mips_elf_make_got_per_bfd (void **entryp, void *p)
2225 {
2226 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2227 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2228 htab_t bfd2got = arg->bfd2got;
2229 struct mips_got_info *g;
2230 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2231 void **bfdgotp;
2232
2233 /* Find the got_info for this GOT entry's input bfd. Create one if
2234 none exists. */
2235 bfdgot_entry.bfd = entry->abfd;
2236 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2237 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2238
2239 if (bfdgot != NULL)
2240 g = bfdgot->g;
2241 else
2242 {
2243 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2244 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2245
2246 if (bfdgot == NULL)
2247 {
2248 arg->obfd = 0;
2249 return 0;
2250 }
2251
2252 *bfdgotp = bfdgot;
2253
2254 bfdgot->bfd = entry->abfd;
2255 bfdgot->g = g = (struct mips_got_info *)
2256 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2257 if (g == NULL)
2258 {
2259 arg->obfd = 0;
2260 return 0;
2261 }
2262
2263 g->global_gotsym = NULL;
2264 g->global_gotno = 0;
2265 g->local_gotno = 0;
2266 g->assigned_gotno = -1;
2267 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2268 mips_elf_multi_got_entry_eq, NULL);
2269 if (g->got_entries == NULL)
2270 {
2271 arg->obfd = 0;
2272 return 0;
2273 }
2274
2275 g->bfd2got = NULL;
2276 g->next = NULL;
2277 }
2278
2279 /* Insert the GOT entry in the bfd's got entry hash table. */
2280 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2281 if (*entryp != NULL)
2282 return 1;
2283
2284 *entryp = entry;
2285
2286 if (entry->symndx >= 0 || entry->d.h->forced_local)
2287 ++g->local_gotno;
2288 else
2289 ++g->global_gotno;
2290
2291 return 1;
2292 }
2293
2294 /* Attempt to merge gots of different input bfds. Try to use as much
2295 as possible of the primary got, since it doesn't require explicit
2296 dynamic relocations, but don't use bfds that would reference global
2297 symbols out of the addressable range. Failing the primary got,
2298 attempt to merge with the current got, or finish the current got
2299 and then make make the new got current. */
2300
2301 static int
2302 mips_elf_merge_gots (void **bfd2got_, void *p)
2303 {
2304 struct mips_elf_bfd2got_hash *bfd2got
2305 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2306 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2307 unsigned int lcount = bfd2got->g->local_gotno;
2308 unsigned int gcount = bfd2got->g->global_gotno;
2309 unsigned int maxcnt = arg->max_count;
2310
2311 /* If we don't have a primary GOT and this is not too big, use it as
2312 a starting point for the primary GOT. */
2313 if (! arg->primary && lcount + gcount <= maxcnt)
2314 {
2315 arg->primary = bfd2got->g;
2316 arg->primary_count = lcount + gcount;
2317 }
2318 /* If it looks like we can merge this bfd's entries with those of
2319 the primary, merge them. The heuristics is conservative, but we
2320 don't have to squeeze it too hard. */
2321 else if (arg->primary
2322 && (arg->primary_count + lcount + gcount) <= maxcnt)
2323 {
2324 struct mips_got_info *g = bfd2got->g;
2325 int old_lcount = arg->primary->local_gotno;
2326 int old_gcount = arg->primary->global_gotno;
2327
2328 bfd2got->g = arg->primary;
2329
2330 htab_traverse (g->got_entries,
2331 mips_elf_make_got_per_bfd,
2332 arg);
2333 if (arg->obfd == NULL)
2334 return 0;
2335
2336 htab_delete (g->got_entries);
2337 /* We don't have to worry about releasing memory of the actual
2338 got entries, since they're all in the master got_entries hash
2339 table anyway. */
2340
2341 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
2342 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2343
2344 arg->primary_count = arg->primary->local_gotno
2345 + arg->primary->global_gotno;
2346 }
2347 /* If we can merge with the last-created got, do it. */
2348 else if (arg->current
2349 && arg->current_count + lcount + gcount <= maxcnt)
2350 {
2351 struct mips_got_info *g = bfd2got->g;
2352 int old_lcount = arg->current->local_gotno;
2353 int old_gcount = arg->current->global_gotno;
2354
2355 bfd2got->g = arg->current;
2356
2357 htab_traverse (g->got_entries,
2358 mips_elf_make_got_per_bfd,
2359 arg);
2360 if (arg->obfd == NULL)
2361 return 0;
2362
2363 htab_delete (g->got_entries);
2364
2365 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
2366 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2367
2368 arg->current_count = arg->current->local_gotno
2369 + arg->current->global_gotno;
2370 }
2371 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2372 fits; if it turns out that it doesn't, we'll get relocation
2373 overflows anyway. */
2374 else
2375 {
2376 bfd2got->g->next = arg->current;
2377 arg->current = bfd2got->g;
2378
2379 arg->current_count = lcount + gcount;
2380 }
2381
2382 return 1;
2383 }
2384
2385 /* If passed a NULL mips_got_info in the argument, set the marker used
2386 to tell whether a global symbol needs a got entry (in the primary
2387 got) to the given VALUE.
2388
2389 If passed a pointer G to a mips_got_info in the argument (it must
2390 not be the primary GOT), compute the offset from the beginning of
2391 the (primary) GOT section to the entry in G corresponding to the
2392 global symbol. G's assigned_gotno must contain the index of the
2393 first available global GOT entry in G. VALUE must contain the size
2394 of a GOT entry in bytes. For each global GOT entry that requires a
2395 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
2396 marked as not eligible for lazy resolution through a function
2397 stub. */
2398 static int
2399 mips_elf_set_global_got_offset (void **entryp, void *p)
2400 {
2401 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2402 struct mips_elf_set_global_got_offset_arg *arg
2403 = (struct mips_elf_set_global_got_offset_arg *)p;
2404 struct mips_got_info *g = arg->g;
2405
2406 if (entry->abfd != NULL && entry->symndx == -1
2407 && entry->d.h->root.dynindx != -1)
2408 {
2409 if (g)
2410 {
2411 BFD_ASSERT (g->global_gotsym == NULL);
2412
2413 entry->gotidx = arg->value * (long) g->assigned_gotno++;
2414 if (arg->info->shared
2415 || (elf_hash_table (arg->info)->dynamic_sections_created
2416 && ((entry->d.h->root.elf_link_hash_flags
2417 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
2418 && ((entry->d.h->root.elf_link_hash_flags
2419 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
2420 ++arg->needed_relocs;
2421 }
2422 else
2423 entry->d.h->root.got.offset = arg->value;
2424 }
2425
2426 return 1;
2427 }
2428
2429 /* Mark any global symbols referenced in the GOT we are iterating over
2430 as inelligible for lazy resolution stubs. */
2431 static int
2432 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
2433 {
2434 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2435
2436 if (entry->abfd != NULL
2437 && entry->symndx == -1
2438 && entry->d.h->root.dynindx != -1)
2439 entry->d.h->no_fn_stub = TRUE;
2440
2441 return 1;
2442 }
2443
2444 /* Follow indirect and warning hash entries so that each got entry
2445 points to the final symbol definition. P must point to a pointer
2446 to the hash table we're traversing. Since this traversal may
2447 modify the hash table, we set this pointer to NULL to indicate
2448 we've made a potentially-destructive change to the hash table, so
2449 the traversal must be restarted. */
2450 static int
2451 mips_elf_resolve_final_got_entry (void **entryp, void *p)
2452 {
2453 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2454 htab_t got_entries = *(htab_t *)p;
2455
2456 if (entry->abfd != NULL && entry->symndx == -1)
2457 {
2458 struct mips_elf_link_hash_entry *h = entry->d.h;
2459
2460 while (h->root.root.type == bfd_link_hash_indirect
2461 || h->root.root.type == bfd_link_hash_warning)
2462 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2463
2464 if (entry->d.h == h)
2465 return 1;
2466
2467 entry->d.h = h;
2468
2469 /* If we can't find this entry with the new bfd hash, re-insert
2470 it, and get the traversal restarted. */
2471 if (! htab_find (got_entries, entry))
2472 {
2473 htab_clear_slot (got_entries, entryp);
2474 entryp = htab_find_slot (got_entries, entry, INSERT);
2475 if (! *entryp)
2476 *entryp = entry;
2477 /* Abort the traversal, since the whole table may have
2478 moved, and leave it up to the parent to restart the
2479 process. */
2480 *(htab_t *)p = NULL;
2481 return 0;
2482 }
2483 /* We might want to decrement the global_gotno count, but it's
2484 either too early or too late for that at this point. */
2485 }
2486
2487 return 1;
2488 }
2489
2490 /* Turn indirect got entries in a got_entries table into their final
2491 locations. */
2492 static void
2493 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
2494 {
2495 htab_t got_entries;
2496
2497 do
2498 {
2499 got_entries = g->got_entries;
2500
2501 htab_traverse (got_entries,
2502 mips_elf_resolve_final_got_entry,
2503 &got_entries);
2504 }
2505 while (got_entries == NULL);
2506 }
2507
2508 /* Return the offset of an input bfd IBFD's GOT from the beginning of
2509 the primary GOT. */
2510 static bfd_vma
2511 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
2512 {
2513 if (g->bfd2got == NULL)
2514 return 0;
2515
2516 g = mips_elf_got_for_ibfd (g, ibfd);
2517 if (! g)
2518 return 0;
2519
2520 BFD_ASSERT (g->next);
2521
2522 g = g->next;
2523
2524 return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2525 }
2526
2527 /* Turn a single GOT that is too big for 16-bit addressing into
2528 a sequence of GOTs, each one 16-bit addressable. */
2529
2530 static bfd_boolean
2531 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
2532 struct mips_got_info *g, asection *got,
2533 bfd_size_type pages)
2534 {
2535 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
2536 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
2537 struct mips_got_info *gg;
2538 unsigned int assign;
2539
2540 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
2541 mips_elf_bfd2got_entry_eq, NULL);
2542 if (g->bfd2got == NULL)
2543 return FALSE;
2544
2545 got_per_bfd_arg.bfd2got = g->bfd2got;
2546 got_per_bfd_arg.obfd = abfd;
2547 got_per_bfd_arg.info = info;
2548
2549 /* Count how many GOT entries each input bfd requires, creating a
2550 map from bfd to got info while at that. */
2551 mips_elf_resolve_final_got_entries (g);
2552 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
2553 if (got_per_bfd_arg.obfd == NULL)
2554 return FALSE;
2555
2556 got_per_bfd_arg.current = NULL;
2557 got_per_bfd_arg.primary = NULL;
2558 /* Taking out PAGES entries is a worst-case estimate. We could
2559 compute the maximum number of pages that each separate input bfd
2560 uses, but it's probably not worth it. */
2561 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
2562 / MIPS_ELF_GOT_SIZE (abfd))
2563 - MIPS_RESERVED_GOTNO - pages);
2564
2565 /* Try to merge the GOTs of input bfds together, as long as they
2566 don't seem to exceed the maximum GOT size, choosing one of them
2567 to be the primary GOT. */
2568 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
2569 if (got_per_bfd_arg.obfd == NULL)
2570 return FALSE;
2571
2572 /* If we find any suitable primary GOT, create an empty one. */
2573 if (got_per_bfd_arg.primary == NULL)
2574 {
2575 g->next = (struct mips_got_info *)
2576 bfd_alloc (abfd, sizeof (struct mips_got_info));
2577 if (g->next == NULL)
2578 return FALSE;
2579
2580 g->next->global_gotsym = NULL;
2581 g->next->global_gotno = 0;
2582 g->next->local_gotno = 0;
2583 g->next->assigned_gotno = 0;
2584 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2585 mips_elf_multi_got_entry_eq,
2586 NULL);
2587 if (g->next->got_entries == NULL)
2588 return FALSE;
2589 g->next->bfd2got = NULL;
2590 }
2591 else
2592 g->next = got_per_bfd_arg.primary;
2593 g->next->next = got_per_bfd_arg.current;
2594
2595 /* GG is now the master GOT, and G is the primary GOT. */
2596 gg = g;
2597 g = g->next;
2598
2599 /* Map the output bfd to the primary got. That's what we're going
2600 to use for bfds that use GOT16 or GOT_PAGE relocations that we
2601 didn't mark in check_relocs, and we want a quick way to find it.
2602 We can't just use gg->next because we're going to reverse the
2603 list. */
2604 {
2605 struct mips_elf_bfd2got_hash *bfdgot;
2606 void **bfdgotp;
2607
2608 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2609 (abfd, sizeof (struct mips_elf_bfd2got_hash));
2610
2611 if (bfdgot == NULL)
2612 return FALSE;
2613
2614 bfdgot->bfd = abfd;
2615 bfdgot->g = g;
2616 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
2617
2618 BFD_ASSERT (*bfdgotp == NULL);
2619 *bfdgotp = bfdgot;
2620 }
2621
2622 /* The IRIX dynamic linker requires every symbol that is referenced
2623 in a dynamic relocation to be present in the primary GOT, so
2624 arrange for them to appear after those that are actually
2625 referenced.
2626
2627 GNU/Linux could very well do without it, but it would slow down
2628 the dynamic linker, since it would have to resolve every dynamic
2629 symbol referenced in other GOTs more than once, without help from
2630 the cache. Also, knowing that every external symbol has a GOT
2631 helps speed up the resolution of local symbols too, so GNU/Linux
2632 follows IRIX's practice.
2633
2634 The number 2 is used by mips_elf_sort_hash_table_f to count
2635 global GOT symbols that are unreferenced in the primary GOT, with
2636 an initial dynamic index computed from gg->assigned_gotno, where
2637 the number of unreferenced global entries in the primary GOT is
2638 preserved. */
2639 if (1)
2640 {
2641 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
2642 g->global_gotno = gg->global_gotno;
2643 set_got_offset_arg.value = 2;
2644 }
2645 else
2646 {
2647 /* This could be used for dynamic linkers that don't optimize
2648 symbol resolution while applying relocations so as to use
2649 primary GOT entries or assuming the symbol is locally-defined.
2650 With this code, we assign lower dynamic indices to global
2651 symbols that are not referenced in the primary GOT, so that
2652 their entries can be omitted. */
2653 gg->assigned_gotno = 0;
2654 set_got_offset_arg.value = -1;
2655 }
2656
2657 /* Reorder dynamic symbols as described above (which behavior
2658 depends on the setting of VALUE). */
2659 set_got_offset_arg.g = NULL;
2660 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
2661 &set_got_offset_arg);
2662 set_got_offset_arg.value = 1;
2663 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
2664 &set_got_offset_arg);
2665 if (! mips_elf_sort_hash_table (info, 1))
2666 return FALSE;
2667
2668 /* Now go through the GOTs assigning them offset ranges.
2669 [assigned_gotno, local_gotno[ will be set to the range of local
2670 entries in each GOT. We can then compute the end of a GOT by
2671 adding local_gotno to global_gotno. We reverse the list and make
2672 it circular since then we'll be able to quickly compute the
2673 beginning of a GOT, by computing the end of its predecessor. To
2674 avoid special cases for the primary GOT, while still preserving
2675 assertions that are valid for both single- and multi-got links,
2676 we arrange for the main got struct to have the right number of
2677 global entries, but set its local_gotno such that the initial
2678 offset of the primary GOT is zero. Remember that the primary GOT
2679 will become the last item in the circular linked list, so it
2680 points back to the master GOT. */
2681 gg->local_gotno = -g->global_gotno;
2682 gg->global_gotno = g->global_gotno;
2683 assign = 0;
2684 gg->next = gg;
2685
2686 do
2687 {
2688 struct mips_got_info *gn;
2689
2690 assign += MIPS_RESERVED_GOTNO;
2691 g->assigned_gotno = assign;
2692 g->local_gotno += assign + pages;
2693 assign = g->local_gotno + g->global_gotno;
2694
2695 /* Take g out of the direct list, and push it onto the reversed
2696 list that gg points to. */
2697 gn = g->next;
2698 g->next = gg->next;
2699 gg->next = g;
2700 g = gn;
2701
2702 /* Mark global symbols in every non-primary GOT as ineligible for
2703 stubs. */
2704 if (g)
2705 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
2706 }
2707 while (g);
2708
2709 got->_raw_size = (gg->next->local_gotno
2710 + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd);
2711
2712 return TRUE;
2713 }
2714
2715 \f
2716 /* Returns the first relocation of type r_type found, beginning with
2717 RELOCATION. RELEND is one-past-the-end of the relocation table. */
2718
2719 static const Elf_Internal_Rela *
2720 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
2721 const Elf_Internal_Rela *relocation,
2722 const Elf_Internal_Rela *relend)
2723 {
2724 while (relocation < relend)
2725 {
2726 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
2727 return relocation;
2728
2729 ++relocation;
2730 }
2731
2732 /* We didn't find it. */
2733 bfd_set_error (bfd_error_bad_value);
2734 return NULL;
2735 }
2736
2737 /* Return whether a relocation is against a local symbol. */
2738
2739 static bfd_boolean
2740 mips_elf_local_relocation_p (bfd *input_bfd,
2741 const Elf_Internal_Rela *relocation,
2742 asection **local_sections,
2743 bfd_boolean check_forced)
2744 {
2745 unsigned long r_symndx;
2746 Elf_Internal_Shdr *symtab_hdr;
2747 struct mips_elf_link_hash_entry *h;
2748 size_t extsymoff;
2749
2750 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
2751 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2752 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
2753
2754 if (r_symndx < extsymoff)
2755 return TRUE;
2756 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
2757 return TRUE;
2758
2759 if (check_forced)
2760 {
2761 /* Look up the hash table to check whether the symbol
2762 was forced local. */
2763 h = (struct mips_elf_link_hash_entry *)
2764 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
2765 /* Find the real hash-table entry for this symbol. */
2766 while (h->root.root.type == bfd_link_hash_indirect
2767 || h->root.root.type == bfd_link_hash_warning)
2768 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2769 if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
2770 return TRUE;
2771 }
2772
2773 return FALSE;
2774 }
2775 \f
2776 /* Sign-extend VALUE, which has the indicated number of BITS. */
2777
2778 bfd_vma
2779 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
2780 {
2781 if (value & ((bfd_vma) 1 << (bits - 1)))
2782 /* VALUE is negative. */
2783 value |= ((bfd_vma) - 1) << bits;
2784
2785 return value;
2786 }
2787
2788 /* Return non-zero if the indicated VALUE has overflowed the maximum
2789 range expressible by a signed number with the indicated number of
2790 BITS. */
2791
2792 static bfd_boolean
2793 mips_elf_overflow_p (bfd_vma value, int bits)
2794 {
2795 bfd_signed_vma svalue = (bfd_signed_vma) value;
2796
2797 if (svalue > (1 << (bits - 1)) - 1)
2798 /* The value is too big. */
2799 return TRUE;
2800 else if (svalue < -(1 << (bits - 1)))
2801 /* The value is too small. */
2802 return TRUE;
2803
2804 /* All is well. */
2805 return FALSE;
2806 }
2807
2808 /* Calculate the %high function. */
2809
2810 static bfd_vma
2811 mips_elf_high (bfd_vma value)
2812 {
2813 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
2814 }
2815
2816 /* Calculate the %higher function. */
2817
2818 static bfd_vma
2819 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
2820 {
2821 #ifdef BFD64
2822 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
2823 #else
2824 abort ();
2825 return (bfd_vma) -1;
2826 #endif
2827 }
2828
2829 /* Calculate the %highest function. */
2830
2831 static bfd_vma
2832 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
2833 {
2834 #ifdef BFD64
2835 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
2836 #else
2837 abort ();
2838 return (bfd_vma) -1;
2839 #endif
2840 }
2841 \f
2842 /* Create the .compact_rel section. */
2843
2844 static bfd_boolean
2845 mips_elf_create_compact_rel_section
2846 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
2847 {
2848 flagword flags;
2849 register asection *s;
2850
2851 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
2852 {
2853 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
2854 | SEC_READONLY);
2855
2856 s = bfd_make_section (abfd, ".compact_rel");
2857 if (s == NULL
2858 || ! bfd_set_section_flags (abfd, s, flags)
2859 || ! bfd_set_section_alignment (abfd, s,
2860 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
2861 return FALSE;
2862
2863 s->_raw_size = sizeof (Elf32_External_compact_rel);
2864 }
2865
2866 return TRUE;
2867 }
2868
2869 /* Create the .got section to hold the global offset table. */
2870
2871 static bfd_boolean
2872 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
2873 bfd_boolean maybe_exclude)
2874 {
2875 flagword flags;
2876 register asection *s;
2877 struct elf_link_hash_entry *h;
2878 struct bfd_link_hash_entry *bh;
2879 struct mips_got_info *g;
2880 bfd_size_type amt;
2881
2882 /* This function may be called more than once. */
2883 s = mips_elf_got_section (abfd, TRUE);
2884 if (s)
2885 {
2886 if (! maybe_exclude)
2887 s->flags &= ~SEC_EXCLUDE;
2888 return TRUE;
2889 }
2890
2891 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2892 | SEC_LINKER_CREATED);
2893
2894 if (maybe_exclude)
2895 flags |= SEC_EXCLUDE;
2896
2897 /* We have to use an alignment of 2**4 here because this is hardcoded
2898 in the function stub generation and in the linker script. */
2899 s = bfd_make_section (abfd, ".got");
2900 if (s == NULL
2901 || ! bfd_set_section_flags (abfd, s, flags)
2902 || ! bfd_set_section_alignment (abfd, s, 4))
2903 return FALSE;
2904
2905 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
2906 linker script because we don't want to define the symbol if we
2907 are not creating a global offset table. */
2908 bh = NULL;
2909 if (! (_bfd_generic_link_add_one_symbol
2910 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
2911 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
2912 return FALSE;
2913
2914 h = (struct elf_link_hash_entry *) bh;
2915 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
2916 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2917 h->type = STT_OBJECT;
2918
2919 if (info->shared
2920 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2921 return FALSE;
2922
2923 amt = sizeof (struct mips_got_info);
2924 g = bfd_alloc (abfd, amt);
2925 if (g == NULL)
2926 return FALSE;
2927 g->global_gotsym = NULL;
2928 g->global_gotno = 0;
2929 g->local_gotno = MIPS_RESERVED_GOTNO;
2930 g->assigned_gotno = MIPS_RESERVED_GOTNO;
2931 g->bfd2got = NULL;
2932 g->next = NULL;
2933 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2934 mips_elf_got_entry_eq, NULL);
2935 if (g->got_entries == NULL)
2936 return FALSE;
2937 mips_elf_section_data (s)->u.got_info = g;
2938 mips_elf_section_data (s)->elf.this_hdr.sh_flags
2939 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
2940
2941 return TRUE;
2942 }
2943 \f
2944 /* Calculate the value produced by the RELOCATION (which comes from
2945 the INPUT_BFD). The ADDEND is the addend to use for this
2946 RELOCATION; RELOCATION->R_ADDEND is ignored.
2947
2948 The result of the relocation calculation is stored in VALUEP.
2949 REQUIRE_JALXP indicates whether or not the opcode used with this
2950 relocation must be JALX.
2951
2952 This function returns bfd_reloc_continue if the caller need take no
2953 further action regarding this relocation, bfd_reloc_notsupported if
2954 something goes dramatically wrong, bfd_reloc_overflow if an
2955 overflow occurs, and bfd_reloc_ok to indicate success. */
2956
2957 static bfd_reloc_status_type
2958 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
2959 asection *input_section,
2960 struct bfd_link_info *info,
2961 const Elf_Internal_Rela *relocation,
2962 bfd_vma addend, reloc_howto_type *howto,
2963 Elf_Internal_Sym *local_syms,
2964 asection **local_sections, bfd_vma *valuep,
2965 const char **namep, bfd_boolean *require_jalxp,
2966 bfd_boolean save_addend)
2967 {
2968 /* The eventual value we will return. */
2969 bfd_vma value;
2970 /* The address of the symbol against which the relocation is
2971 occurring. */
2972 bfd_vma symbol = 0;
2973 /* The final GP value to be used for the relocatable, executable, or
2974 shared object file being produced. */
2975 bfd_vma gp = MINUS_ONE;
2976 /* The place (section offset or address) of the storage unit being
2977 relocated. */
2978 bfd_vma p;
2979 /* The value of GP used to create the relocatable object. */
2980 bfd_vma gp0 = MINUS_ONE;
2981 /* The offset into the global offset table at which the address of
2982 the relocation entry symbol, adjusted by the addend, resides
2983 during execution. */
2984 bfd_vma g = MINUS_ONE;
2985 /* The section in which the symbol referenced by the relocation is
2986 located. */
2987 asection *sec = NULL;
2988 struct mips_elf_link_hash_entry *h = NULL;
2989 /* TRUE if the symbol referred to by this relocation is a local
2990 symbol. */
2991 bfd_boolean local_p, was_local_p;
2992 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
2993 bfd_boolean gp_disp_p = FALSE;
2994 Elf_Internal_Shdr *symtab_hdr;
2995 size_t extsymoff;
2996 unsigned long r_symndx;
2997 int r_type;
2998 /* TRUE if overflow occurred during the calculation of the
2999 relocation value. */
3000 bfd_boolean overflowed_p;
3001 /* TRUE if this relocation refers to a MIPS16 function. */
3002 bfd_boolean target_is_16_bit_code_p = FALSE;
3003
3004 /* Parse the relocation. */
3005 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3006 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3007 p = (input_section->output_section->vma
3008 + input_section->output_offset
3009 + relocation->r_offset);
3010
3011 /* Assume that there will be no overflow. */
3012 overflowed_p = FALSE;
3013
3014 /* Figure out whether or not the symbol is local, and get the offset
3015 used in the array of hash table entries. */
3016 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3017 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3018 local_sections, FALSE);
3019 was_local_p = local_p;
3020 if (! elf_bad_symtab (input_bfd))
3021 extsymoff = symtab_hdr->sh_info;
3022 else
3023 {
3024 /* The symbol table does not follow the rule that local symbols
3025 must come before globals. */
3026 extsymoff = 0;
3027 }
3028
3029 /* Figure out the value of the symbol. */
3030 if (local_p)
3031 {
3032 Elf_Internal_Sym *sym;
3033
3034 sym = local_syms + r_symndx;
3035 sec = local_sections[r_symndx];
3036
3037 symbol = sec->output_section->vma + sec->output_offset;
3038 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3039 || (sec->flags & SEC_MERGE))
3040 symbol += sym->st_value;
3041 if ((sec->flags & SEC_MERGE)
3042 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3043 {
3044 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3045 addend -= symbol;
3046 addend += sec->output_section->vma + sec->output_offset;
3047 }
3048
3049 /* MIPS16 text labels should be treated as odd. */
3050 if (sym->st_other == STO_MIPS16)
3051 ++symbol;
3052
3053 /* Record the name of this symbol, for our caller. */
3054 *namep = bfd_elf_string_from_elf_section (input_bfd,
3055 symtab_hdr->sh_link,
3056 sym->st_name);
3057 if (*namep == '\0')
3058 *namep = bfd_section_name (input_bfd, sec);
3059
3060 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3061 }
3062 else
3063 {
3064 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3065
3066 /* For global symbols we look up the symbol in the hash-table. */
3067 h = ((struct mips_elf_link_hash_entry *)
3068 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3069 /* Find the real hash-table entry for this symbol. */
3070 while (h->root.root.type == bfd_link_hash_indirect
3071 || h->root.root.type == bfd_link_hash_warning)
3072 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3073
3074 /* Record the name of this symbol, for our caller. */
3075 *namep = h->root.root.root.string;
3076
3077 /* See if this is the special _gp_disp symbol. Note that such a
3078 symbol must always be a global symbol. */
3079 if (strcmp (*namep, "_gp_disp") == 0
3080 && ! NEWABI_P (input_bfd))
3081 {
3082 /* Relocations against _gp_disp are permitted only with
3083 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3084 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16)
3085 return bfd_reloc_notsupported;
3086
3087 gp_disp_p = TRUE;
3088 }
3089 /* If this symbol is defined, calculate its address. Note that
3090 _gp_disp is a magic symbol, always implicitly defined by the
3091 linker, so it's inappropriate to check to see whether or not
3092 its defined. */
3093 else if ((h->root.root.type == bfd_link_hash_defined
3094 || h->root.root.type == bfd_link_hash_defweak)
3095 && h->root.root.u.def.section)
3096 {
3097 sec = h->root.root.u.def.section;
3098 if (sec->output_section)
3099 symbol = (h->root.root.u.def.value
3100 + sec->output_section->vma
3101 + sec->output_offset);
3102 else
3103 symbol = h->root.root.u.def.value;
3104 }
3105 else if (h->root.root.type == bfd_link_hash_undefweak)
3106 /* We allow relocations against undefined weak symbols, giving
3107 it the value zero, so that you can undefined weak functions
3108 and check to see if they exist by looking at their
3109 addresses. */
3110 symbol = 0;
3111 else if (info->unresolved_syms_in_objects == RM_IGNORE
3112 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3113 symbol = 0;
3114 else if (strcmp (*namep, "_DYNAMIC_LINK") == 0 ||
3115 strcmp (*namep, "_DYNAMIC_LINKING") == 0)
3116 {
3117 /* If this is a dynamic link, we should have created a
3118 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3119 in in _bfd_mips_elf_create_dynamic_sections.
3120 Otherwise, we should define the symbol with a value of 0.
3121 FIXME: It should probably get into the symbol table
3122 somehow as well. */
3123 BFD_ASSERT (! info->shared);
3124 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3125 symbol = 0;
3126 }
3127 else
3128 {
3129 if (! ((*info->callbacks->undefined_symbol)
3130 (info, h->root.root.root.string, input_bfd,
3131 input_section, relocation->r_offset,
3132 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
3133 || ELF_ST_VISIBILITY (h->root.other))))
3134 return bfd_reloc_undefined;
3135 symbol = 0;
3136 }
3137
3138 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3139 }
3140
3141 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3142 need to redirect the call to the stub, unless we're already *in*
3143 a stub. */
3144 if (r_type != R_MIPS16_26 && !info->relocatable
3145 && ((h != NULL && h->fn_stub != NULL)
3146 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3147 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3148 && !mips_elf_stub_section_p (input_bfd, input_section))
3149 {
3150 /* This is a 32- or 64-bit call to a 16-bit function. We should
3151 have already noticed that we were going to need the
3152 stub. */
3153 if (local_p)
3154 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3155 else
3156 {
3157 BFD_ASSERT (h->need_fn_stub);
3158 sec = h->fn_stub;
3159 }
3160
3161 symbol = sec->output_section->vma + sec->output_offset;
3162 }
3163 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3164 need to redirect the call to the stub. */
3165 else if (r_type == R_MIPS16_26 && !info->relocatable
3166 && h != NULL
3167 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3168 && !target_is_16_bit_code_p)
3169 {
3170 /* If both call_stub and call_fp_stub are defined, we can figure
3171 out which one to use by seeing which one appears in the input
3172 file. */
3173 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3174 {
3175 asection *o;
3176
3177 sec = NULL;
3178 for (o = input_bfd->sections; o != NULL; o = o->next)
3179 {
3180 if (strncmp (bfd_get_section_name (input_bfd, o),
3181 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3182 {
3183 sec = h->call_fp_stub;
3184 break;
3185 }
3186 }
3187 if (sec == NULL)
3188 sec = h->call_stub;
3189 }
3190 else if (h->call_stub != NULL)
3191 sec = h->call_stub;
3192 else
3193 sec = h->call_fp_stub;
3194
3195 BFD_ASSERT (sec->_raw_size > 0);
3196 symbol = sec->output_section->vma + sec->output_offset;
3197 }
3198
3199 /* Calls from 16-bit code to 32-bit code and vice versa require the
3200 special jalx instruction. */
3201 *require_jalxp = (!info->relocatable
3202 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3203 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3204
3205 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3206 local_sections, TRUE);
3207
3208 /* If we haven't already determined the GOT offset, or the GP value,
3209 and we're going to need it, get it now. */
3210 switch (r_type)
3211 {
3212 case R_MIPS_GOT_PAGE:
3213 case R_MIPS_GOT_OFST:
3214 /* We need to decay to GOT_DISP/addend if the symbol doesn't
3215 bind locally. */
3216 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
3217 if (local_p || r_type == R_MIPS_GOT_OFST)
3218 break;
3219 /* Fall through. */
3220
3221 case R_MIPS_CALL16:
3222 case R_MIPS_GOT16:
3223 case R_MIPS_GOT_DISP:
3224 case R_MIPS_GOT_HI16:
3225 case R_MIPS_CALL_HI16:
3226 case R_MIPS_GOT_LO16:
3227 case R_MIPS_CALL_LO16:
3228 /* Find the index into the GOT where this value is located. */
3229 if (!local_p)
3230 {
3231 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3232 GOT_PAGE relocation that decays to GOT_DISP because the
3233 symbol turns out to be global. The addend is then added
3234 as GOT_OFST. */
3235 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
3236 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
3237 input_bfd,
3238 (struct elf_link_hash_entry *) h);
3239 if (! elf_hash_table(info)->dynamic_sections_created
3240 || (info->shared
3241 && (info->symbolic || h->root.dynindx == -1)
3242 && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
3243 {
3244 /* This is a static link or a -Bsymbolic link. The
3245 symbol is defined locally, or was forced to be local.
3246 We must initialize this entry in the GOT. */
3247 bfd *tmpbfd = elf_hash_table (info)->dynobj;
3248 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
3249 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
3250 }
3251 }
3252 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3253 /* There's no need to create a local GOT entry here; the
3254 calculation for a local GOT16 entry does not involve G. */
3255 break;
3256 else
3257 {
3258 g = mips_elf_local_got_index (abfd, input_bfd,
3259 info, symbol + addend);
3260 if (g == MINUS_ONE)
3261 return bfd_reloc_outofrange;
3262 }
3263
3264 /* Convert GOT indices to actual offsets. */
3265 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3266 abfd, input_bfd, g);
3267 break;
3268
3269 case R_MIPS_HI16:
3270 case R_MIPS_LO16:
3271 case R_MIPS16_GPREL:
3272 case R_MIPS_GPREL16:
3273 case R_MIPS_GPREL32:
3274 case R_MIPS_LITERAL:
3275 gp0 = _bfd_get_gp_value (input_bfd);
3276 gp = _bfd_get_gp_value (abfd);
3277 if (elf_hash_table (info)->dynobj)
3278 gp += mips_elf_adjust_gp (abfd,
3279 mips_elf_got_info
3280 (elf_hash_table (info)->dynobj, NULL),
3281 input_bfd);
3282 break;
3283
3284 default:
3285 break;
3286 }
3287
3288 /* Figure out what kind of relocation is being performed. */
3289 switch (r_type)
3290 {
3291 case R_MIPS_NONE:
3292 return bfd_reloc_continue;
3293
3294 case R_MIPS_16:
3295 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
3296 overflowed_p = mips_elf_overflow_p (value, 16);
3297 break;
3298
3299 case R_MIPS_32:
3300 case R_MIPS_REL32:
3301 case R_MIPS_64:
3302 if ((info->shared
3303 || (elf_hash_table (info)->dynamic_sections_created
3304 && h != NULL
3305 && ((h->root.elf_link_hash_flags
3306 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
3307 && ((h->root.elf_link_hash_flags
3308 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
3309 && r_symndx != 0
3310 && (input_section->flags & SEC_ALLOC) != 0)
3311 {
3312 /* If we're creating a shared library, or this relocation is
3313 against a symbol in a shared library, then we can't know
3314 where the symbol will end up. So, we create a relocation
3315 record in the output, and leave the job up to the dynamic
3316 linker. */
3317 value = addend;
3318 if (!mips_elf_create_dynamic_relocation (abfd,
3319 info,
3320 relocation,
3321 h,
3322 sec,
3323 symbol,
3324 &value,
3325 input_section))
3326 return bfd_reloc_undefined;
3327 }
3328 else
3329 {
3330 if (r_type != R_MIPS_REL32)
3331 value = symbol + addend;
3332 else
3333 value = addend;
3334 }
3335 value &= howto->dst_mask;
3336 break;
3337
3338 case R_MIPS_GNU_REL16_S2:
3339 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
3340 overflowed_p = mips_elf_overflow_p (value, 18);
3341 value = (value >> 2) & howto->dst_mask;
3342 break;
3343
3344 case R_MIPS16_26:
3345 /* The calculation for R_MIPS16_26 is just the same as for an
3346 R_MIPS_26. It's only the storage of the relocated field into
3347 the output file that's different. That's handled in
3348 mips_elf_perform_relocation. So, we just fall through to the
3349 R_MIPS_26 case here. */
3350 case R_MIPS_26:
3351 if (local_p)
3352 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
3353 else
3354 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
3355 value &= howto->dst_mask;
3356 break;
3357
3358 case R_MIPS_HI16:
3359 if (!gp_disp_p)
3360 {
3361 value = mips_elf_high (addend + symbol);
3362 value &= howto->dst_mask;
3363 }
3364 else
3365 {
3366 value = mips_elf_high (addend + gp - p);
3367 overflowed_p = mips_elf_overflow_p (value, 16);
3368 }
3369 break;
3370
3371 case R_MIPS_LO16:
3372 if (!gp_disp_p)
3373 value = (symbol + addend) & howto->dst_mask;
3374 else
3375 {
3376 value = addend + gp - p + 4;
3377 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
3378 for overflow. But, on, say, IRIX5, relocations against
3379 _gp_disp are normally generated from the .cpload
3380 pseudo-op. It generates code that normally looks like
3381 this:
3382
3383 lui $gp,%hi(_gp_disp)
3384 addiu $gp,$gp,%lo(_gp_disp)
3385 addu $gp,$gp,$t9
3386
3387 Here $t9 holds the address of the function being called,
3388 as required by the MIPS ELF ABI. The R_MIPS_LO16
3389 relocation can easily overflow in this situation, but the
3390 R_MIPS_HI16 relocation will handle the overflow.
3391 Therefore, we consider this a bug in the MIPS ABI, and do
3392 not check for overflow here. */
3393 }
3394 break;
3395
3396 case R_MIPS_LITERAL:
3397 /* Because we don't merge literal sections, we can handle this
3398 just like R_MIPS_GPREL16. In the long run, we should merge
3399 shared literals, and then we will need to additional work
3400 here. */
3401
3402 /* Fall through. */
3403
3404 case R_MIPS16_GPREL:
3405 /* The R_MIPS16_GPREL performs the same calculation as
3406 R_MIPS_GPREL16, but stores the relocated bits in a different
3407 order. We don't need to do anything special here; the
3408 differences are handled in mips_elf_perform_relocation. */
3409 case R_MIPS_GPREL16:
3410 /* Only sign-extend the addend if it was extracted from the
3411 instruction. If the addend was separate, leave it alone,
3412 otherwise we may lose significant bits. */
3413 if (howto->partial_inplace)
3414 addend = _bfd_mips_elf_sign_extend (addend, 16);
3415 value = symbol + addend - gp;
3416 /* If the symbol was local, any earlier relocatable links will
3417 have adjusted its addend with the gp offset, so compensate
3418 for that now. Don't do it for symbols forced local in this
3419 link, though, since they won't have had the gp offset applied
3420 to them before. */
3421 if (was_local_p)
3422 value += gp0;
3423 overflowed_p = mips_elf_overflow_p (value, 16);
3424 break;
3425
3426 case R_MIPS_GOT16:
3427 case R_MIPS_CALL16:
3428 if (local_p)
3429 {
3430 bfd_boolean forced;
3431
3432 /* The special case is when the symbol is forced to be local. We
3433 need the full address in the GOT since no R_MIPS_LO16 relocation
3434 follows. */
3435 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
3436 local_sections, FALSE);
3437 value = mips_elf_got16_entry (abfd, input_bfd, info,
3438 symbol + addend, forced);
3439 if (value == MINUS_ONE)
3440 return bfd_reloc_outofrange;
3441 value
3442 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3443 abfd, input_bfd, value);
3444 overflowed_p = mips_elf_overflow_p (value, 16);
3445 break;
3446 }
3447
3448 /* Fall through. */
3449
3450 case R_MIPS_GOT_DISP:
3451 got_disp:
3452 value = g;
3453 overflowed_p = mips_elf_overflow_p (value, 16);
3454 break;
3455
3456 case R_MIPS_GPREL32:
3457 value = (addend + symbol + gp0 - gp);
3458 if (!save_addend)
3459 value &= howto->dst_mask;
3460 break;
3461
3462 case R_MIPS_PC16:
3463 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
3464 overflowed_p = mips_elf_overflow_p (value, 16);
3465 break;
3466
3467 case R_MIPS_GOT_HI16:
3468 case R_MIPS_CALL_HI16:
3469 /* We're allowed to handle these two relocations identically.
3470 The dynamic linker is allowed to handle the CALL relocations
3471 differently by creating a lazy evaluation stub. */
3472 value = g;
3473 value = mips_elf_high (value);
3474 value &= howto->dst_mask;
3475 break;
3476
3477 case R_MIPS_GOT_LO16:
3478 case R_MIPS_CALL_LO16:
3479 value = g & howto->dst_mask;
3480 break;
3481
3482 case R_MIPS_GOT_PAGE:
3483 /* GOT_PAGE relocations that reference non-local symbols decay
3484 to GOT_DISP. The corresponding GOT_OFST relocation decays to
3485 0. */
3486 if (! local_p)
3487 goto got_disp;
3488 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
3489 if (value == MINUS_ONE)
3490 return bfd_reloc_outofrange;
3491 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3492 abfd, input_bfd, value);
3493 overflowed_p = mips_elf_overflow_p (value, 16);
3494 break;
3495
3496 case R_MIPS_GOT_OFST:
3497 if (local_p)
3498 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
3499 else
3500 value = addend;
3501 overflowed_p = mips_elf_overflow_p (value, 16);
3502 break;
3503
3504 case R_MIPS_SUB:
3505 value = symbol - addend;
3506 value &= howto->dst_mask;
3507 break;
3508
3509 case R_MIPS_HIGHER:
3510 value = mips_elf_higher (addend + symbol);
3511 value &= howto->dst_mask;
3512 break;
3513
3514 case R_MIPS_HIGHEST:
3515 value = mips_elf_highest (addend + symbol);
3516 value &= howto->dst_mask;
3517 break;
3518
3519 case R_MIPS_SCN_DISP:
3520 value = symbol + addend - sec->output_offset;
3521 value &= howto->dst_mask;
3522 break;
3523
3524 case R_MIPS_PJUMP:
3525 case R_MIPS_JALR:
3526 /* Both of these may be ignored. R_MIPS_JALR is an optimization
3527 hint; we could improve performance by honoring that hint. */
3528 return bfd_reloc_continue;
3529
3530 case R_MIPS_GNU_VTINHERIT:
3531 case R_MIPS_GNU_VTENTRY:
3532 /* We don't do anything with these at present. */
3533 return bfd_reloc_continue;
3534
3535 default:
3536 /* An unrecognized relocation type. */
3537 return bfd_reloc_notsupported;
3538 }
3539
3540 /* Store the VALUE for our caller. */
3541 *valuep = value;
3542 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
3543 }
3544
3545 /* Obtain the field relocated by RELOCATION. */
3546
3547 static bfd_vma
3548 mips_elf_obtain_contents (reloc_howto_type *howto,
3549 const Elf_Internal_Rela *relocation,
3550 bfd *input_bfd, bfd_byte *contents)
3551 {
3552 bfd_vma x;
3553 bfd_byte *location = contents + relocation->r_offset;
3554
3555 /* Obtain the bytes. */
3556 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
3557
3558 if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26
3559 || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL)
3560 && bfd_little_endian (input_bfd))
3561 /* The two 16-bit words will be reversed on a little-endian system.
3562 See mips_elf_perform_relocation for more details. */
3563 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3564
3565 return x;
3566 }
3567
3568 /* It has been determined that the result of the RELOCATION is the
3569 VALUE. Use HOWTO to place VALUE into the output file at the
3570 appropriate position. The SECTION is the section to which the
3571 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
3572 for the relocation must be either JAL or JALX, and it is
3573 unconditionally converted to JALX.
3574
3575 Returns FALSE if anything goes wrong. */
3576
3577 static bfd_boolean
3578 mips_elf_perform_relocation (struct bfd_link_info *info,
3579 reloc_howto_type *howto,
3580 const Elf_Internal_Rela *relocation,
3581 bfd_vma value, bfd *input_bfd,
3582 asection *input_section, bfd_byte *contents,
3583 bfd_boolean require_jalx)
3584 {
3585 bfd_vma x;
3586 bfd_byte *location;
3587 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3588
3589 /* Figure out where the relocation is occurring. */
3590 location = contents + relocation->r_offset;
3591
3592 /* Obtain the current value. */
3593 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
3594
3595 /* Clear the field we are setting. */
3596 x &= ~howto->dst_mask;
3597
3598 /* If this is the R_MIPS16_26 relocation, we must store the
3599 value in a funny way. */
3600 if (r_type == R_MIPS16_26)
3601 {
3602 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3603 Most mips16 instructions are 16 bits, but these instructions
3604 are 32 bits.
3605
3606 The format of these instructions is:
3607
3608 +--------------+--------------------------------+
3609 ! JALX ! X! Imm 20:16 ! Imm 25:21 !
3610 +--------------+--------------------------------+
3611 ! Immediate 15:0 !
3612 +-----------------------------------------------+
3613
3614 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3615 Note that the immediate value in the first word is swapped.
3616
3617 When producing a relocatable object file, R_MIPS16_26 is
3618 handled mostly like R_MIPS_26. In particular, the addend is
3619 stored as a straight 26-bit value in a 32-bit instruction.
3620 (gas makes life simpler for itself by never adjusting a
3621 R_MIPS16_26 reloc to be against a section, so the addend is
3622 always zero). However, the 32 bit instruction is stored as 2
3623 16-bit values, rather than a single 32-bit value. In a
3624 big-endian file, the result is the same; in a little-endian
3625 file, the two 16-bit halves of the 32 bit value are swapped.
3626 This is so that a disassembler can recognize the jal
3627 instruction.
3628
3629 When doing a final link, R_MIPS16_26 is treated as a 32 bit
3630 instruction stored as two 16-bit values. The addend A is the
3631 contents of the targ26 field. The calculation is the same as
3632 R_MIPS_26. When storing the calculated value, reorder the
3633 immediate value as shown above, and don't forget to store the
3634 value as two 16-bit values.
3635
3636 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3637 defined as
3638
3639 big-endian:
3640 +--------+----------------------+
3641 | | |
3642 | | targ26-16 |
3643 |31 26|25 0|
3644 +--------+----------------------+
3645
3646 little-endian:
3647 +----------+------+-------------+
3648 | | | |
3649 | sub1 | | sub2 |
3650 |0 9|10 15|16 31|
3651 +----------+--------------------+
3652 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3653 ((sub1 << 16) | sub2)).
3654
3655 When producing a relocatable object file, the calculation is
3656 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3657 When producing a fully linked file, the calculation is
3658 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3659 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */
3660
3661 if (!info->relocatable)
3662 /* Shuffle the bits according to the formula above. */
3663 value = (((value & 0x1f0000) << 5)
3664 | ((value & 0x3e00000) >> 5)
3665 | (value & 0xffff));
3666 }
3667 else if (r_type == R_MIPS16_GPREL)
3668 {
3669 /* R_MIPS16_GPREL is used for GP-relative addressing in mips16
3670 mode. A typical instruction will have a format like this:
3671
3672 +--------------+--------------------------------+
3673 ! EXTEND ! Imm 10:5 ! Imm 15:11 !
3674 +--------------+--------------------------------+
3675 ! Major ! rx ! ry ! Imm 4:0 !
3676 +--------------+--------------------------------+
3677
3678 EXTEND is the five bit value 11110. Major is the instruction
3679 opcode.
3680
3681 This is handled exactly like R_MIPS_GPREL16, except that the
3682 addend is retrieved and stored as shown in this diagram; that
3683 is, the Imm fields above replace the V-rel16 field.
3684
3685 All we need to do here is shuffle the bits appropriately. As
3686 above, the two 16-bit halves must be swapped on a
3687 little-endian system. */
3688 value = (((value & 0x7e0) << 16)
3689 | ((value & 0xf800) << 5)
3690 | (value & 0x1f));
3691 }
3692
3693 /* Set the field. */
3694 x |= (value & howto->dst_mask);
3695
3696 /* If required, turn JAL into JALX. */
3697 if (require_jalx)
3698 {
3699 bfd_boolean ok;
3700 bfd_vma opcode = x >> 26;
3701 bfd_vma jalx_opcode;
3702
3703 /* Check to see if the opcode is already JAL or JALX. */
3704 if (r_type == R_MIPS16_26)
3705 {
3706 ok = ((opcode == 0x6) || (opcode == 0x7));
3707 jalx_opcode = 0x7;
3708 }
3709 else
3710 {
3711 ok = ((opcode == 0x3) || (opcode == 0x1d));
3712 jalx_opcode = 0x1d;
3713 }
3714
3715 /* If the opcode is not JAL or JALX, there's a problem. */
3716 if (!ok)
3717 {
3718 (*_bfd_error_handler)
3719 (_("%s: %s+0x%lx: jump to stub routine which is not jal"),
3720 bfd_archive_filename (input_bfd),
3721 input_section->name,
3722 (unsigned long) relocation->r_offset);
3723 bfd_set_error (bfd_error_bad_value);
3724 return FALSE;
3725 }
3726
3727 /* Make this the JALX opcode. */
3728 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
3729 }
3730
3731 /* Swap the high- and low-order 16 bits on little-endian systems
3732 when doing a MIPS16 relocation. */
3733 if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26)
3734 && bfd_little_endian (input_bfd))
3735 x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16));
3736
3737 /* Put the value into the output. */
3738 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
3739 return TRUE;
3740 }
3741
3742 /* Returns TRUE if SECTION is a MIPS16 stub section. */
3743
3744 static bfd_boolean
3745 mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
3746 {
3747 const char *name = bfd_get_section_name (abfd, section);
3748
3749 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
3750 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
3751 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
3752 }
3753 \f
3754 /* Add room for N relocations to the .rel.dyn section in ABFD. */
3755
3756 static void
3757 mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n)
3758 {
3759 asection *s;
3760
3761 s = mips_elf_rel_dyn_section (abfd, FALSE);
3762 BFD_ASSERT (s != NULL);
3763
3764 if (s->_raw_size == 0)
3765 {
3766 /* Make room for a null element. */
3767 s->_raw_size += MIPS_ELF_REL_SIZE (abfd);
3768 ++s->reloc_count;
3769 }
3770 s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd);
3771 }
3772
3773 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
3774 is the original relocation, which is now being transformed into a
3775 dynamic relocation. The ADDENDP is adjusted if necessary; the
3776 caller should store the result in place of the original addend. */
3777
3778 static bfd_boolean
3779 mips_elf_create_dynamic_relocation (bfd *output_bfd,
3780 struct bfd_link_info *info,
3781 const Elf_Internal_Rela *rel,
3782 struct mips_elf_link_hash_entry *h,
3783 asection *sec, bfd_vma symbol,
3784 bfd_vma *addendp, asection *input_section)
3785 {
3786 Elf_Internal_Rela outrel[3];
3787 bfd_boolean skip;
3788 asection *sreloc;
3789 bfd *dynobj;
3790 int r_type;
3791
3792 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
3793 dynobj = elf_hash_table (info)->dynobj;
3794 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
3795 BFD_ASSERT (sreloc != NULL);
3796 BFD_ASSERT (sreloc->contents != NULL);
3797 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
3798 < sreloc->_raw_size);
3799
3800 skip = FALSE;
3801 outrel[0].r_offset =
3802 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
3803 outrel[1].r_offset =
3804 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
3805 outrel[2].r_offset =
3806 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
3807
3808 #if 0
3809 /* We begin by assuming that the offset for the dynamic relocation
3810 is the same as for the original relocation. We'll adjust this
3811 later to reflect the correct output offsets. */
3812 if (input_section->sec_info_type != ELF_INFO_TYPE_STABS)
3813 {
3814 outrel[1].r_offset = rel[1].r_offset;
3815 outrel[2].r_offset = rel[2].r_offset;
3816 }
3817 else
3818 {
3819 /* Except that in a stab section things are more complex.
3820 Because we compress stab information, the offset given in the
3821 relocation may not be the one we want; we must let the stabs
3822 machinery tell us the offset. */
3823 outrel[1].r_offset = outrel[0].r_offset;
3824 outrel[2].r_offset = outrel[0].r_offset;
3825 /* If we didn't need the relocation at all, this value will be
3826 -1. */
3827 if (outrel[0].r_offset == (bfd_vma) -1)
3828 skip = TRUE;
3829 }
3830 #endif
3831
3832 if (outrel[0].r_offset == (bfd_vma) -1)
3833 /* The relocation field has been deleted. */
3834 skip = TRUE;
3835 else if (outrel[0].r_offset == (bfd_vma) -2)
3836 {
3837 /* The relocation field has been converted into a relative value of
3838 some sort. Functions like _bfd_elf_write_section_eh_frame expect
3839 the field to be fully relocated, so add in the symbol's value. */
3840 skip = TRUE;
3841 *addendp += symbol;
3842 }
3843
3844 /* If we've decided to skip this relocation, just output an empty
3845 record. Note that R_MIPS_NONE == 0, so that this call to memset
3846 is a way of setting R_TYPE to R_MIPS_NONE. */
3847 if (skip)
3848 memset (outrel, 0, sizeof (Elf_Internal_Rela) * 3);
3849 else
3850 {
3851 long indx;
3852 bfd_boolean defined_p;
3853
3854 /* We must now calculate the dynamic symbol table index to use
3855 in the relocation. */
3856 if (h != NULL
3857 && (! info->symbolic || (h->root.elf_link_hash_flags
3858 & ELF_LINK_HASH_DEF_REGULAR) == 0)
3859 /* h->root.dynindx may be -1 if this symbol was marked to
3860 become local. */
3861 && h->root.dynindx != -1)
3862 {
3863 indx = h->root.dynindx;
3864 if (SGI_COMPAT (output_bfd))
3865 defined_p = ((h->root.elf_link_hash_flags
3866 & ELF_LINK_HASH_DEF_REGULAR) != 0);
3867 else
3868 /* ??? glibc's ld.so just adds the final GOT entry to the
3869 relocation field. It therefore treats relocs against
3870 defined symbols in the same way as relocs against
3871 undefined symbols. */
3872 defined_p = FALSE;
3873 }
3874 else
3875 {
3876 if (sec != NULL && bfd_is_abs_section (sec))
3877 indx = 0;
3878 else if (sec == NULL || sec->owner == NULL)
3879 {
3880 bfd_set_error (bfd_error_bad_value);
3881 return FALSE;
3882 }
3883 else
3884 {
3885 indx = elf_section_data (sec->output_section)->dynindx;
3886 if (indx == 0)
3887 abort ();
3888 }
3889
3890 /* Instead of generating a relocation using the section
3891 symbol, we may as well make it a fully relative
3892 relocation. We want to avoid generating relocations to
3893 local symbols because we used to generate them
3894 incorrectly, without adding the original symbol value,
3895 which is mandated by the ABI for section symbols. In
3896 order to give dynamic loaders and applications time to
3897 phase out the incorrect use, we refrain from emitting
3898 section-relative relocations. It's not like they're
3899 useful, after all. This should be a bit more efficient
3900 as well. */
3901 /* ??? Although this behavior is compatible with glibc's ld.so,
3902 the ABI says that relocations against STN_UNDEF should have
3903 a symbol value of 0. Irix rld honors this, so relocations
3904 against STN_UNDEF have no effect. */
3905 if (!SGI_COMPAT (output_bfd))
3906 indx = 0;
3907 defined_p = TRUE;
3908 }
3909
3910 /* If the relocation was previously an absolute relocation and
3911 this symbol will not be referred to by the relocation, we must
3912 adjust it by the value we give it in the dynamic symbol table.
3913 Otherwise leave the job up to the dynamic linker. */
3914 if (defined_p && r_type != R_MIPS_REL32)
3915 *addendp += symbol;
3916
3917 /* The relocation is always an REL32 relocation because we don't
3918 know where the shared library will wind up at load-time. */
3919 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
3920 R_MIPS_REL32);
3921 /* For strict adherence to the ABI specification, we should
3922 generate a R_MIPS_64 relocation record by itself before the
3923 _REL32/_64 record as well, such that the addend is read in as
3924 a 64-bit value (REL32 is a 32-bit relocation, after all).
3925 However, since none of the existing ELF64 MIPS dynamic
3926 loaders seems to care, we don't waste space with these
3927 artificial relocations. If this turns out to not be true,
3928 mips_elf_allocate_dynamic_relocation() should be tweaked so
3929 as to make room for a pair of dynamic relocations per
3930 invocation if ABI_64_P, and here we should generate an
3931 additional relocation record with R_MIPS_64 by itself for a
3932 NULL symbol before this relocation record. */
3933 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
3934 ABI_64_P (output_bfd)
3935 ? R_MIPS_64
3936 : R_MIPS_NONE);
3937 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
3938
3939 /* Adjust the output offset of the relocation to reference the
3940 correct location in the output file. */
3941 outrel[0].r_offset += (input_section->output_section->vma
3942 + input_section->output_offset);
3943 outrel[1].r_offset += (input_section->output_section->vma
3944 + input_section->output_offset);
3945 outrel[2].r_offset += (input_section->output_section->vma
3946 + input_section->output_offset);
3947 }
3948
3949 /* Put the relocation back out. We have to use the special
3950 relocation outputter in the 64-bit case since the 64-bit
3951 relocation format is non-standard. */
3952 if (ABI_64_P (output_bfd))
3953 {
3954 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3955 (output_bfd, &outrel[0],
3956 (sreloc->contents
3957 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
3958 }
3959 else
3960 bfd_elf32_swap_reloc_out
3961 (output_bfd, &outrel[0],
3962 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
3963
3964 /* We've now added another relocation. */
3965 ++sreloc->reloc_count;
3966
3967 /* Make sure the output section is writable. The dynamic linker
3968 will be writing to it. */
3969 elf_section_data (input_section->output_section)->this_hdr.sh_flags
3970 |= SHF_WRITE;
3971
3972 /* On IRIX5, make an entry of compact relocation info. */
3973 if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5)
3974 {
3975 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
3976 bfd_byte *cr;
3977
3978 if (scpt)
3979 {
3980 Elf32_crinfo cptrel;
3981
3982 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
3983 cptrel.vaddr = (rel->r_offset
3984 + input_section->output_section->vma
3985 + input_section->output_offset);
3986 if (r_type == R_MIPS_REL32)
3987 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
3988 else
3989 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
3990 mips_elf_set_cr_dist2to (cptrel, 0);
3991 cptrel.konst = *addendp;
3992
3993 cr = (scpt->contents
3994 + sizeof (Elf32_External_compact_rel));
3995 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
3996 ((Elf32_External_crinfo *) cr
3997 + scpt->reloc_count));
3998 ++scpt->reloc_count;
3999 }
4000 }
4001
4002 return TRUE;
4003 }
4004 \f
4005 /* Return the MACH for a MIPS e_flags value. */
4006
4007 unsigned long
4008 _bfd_elf_mips_mach (flagword flags)
4009 {
4010 switch (flags & EF_MIPS_MACH)
4011 {
4012 case E_MIPS_MACH_3900:
4013 return bfd_mach_mips3900;
4014
4015 case E_MIPS_MACH_4010:
4016 return bfd_mach_mips4010;
4017
4018 case E_MIPS_MACH_4100:
4019 return bfd_mach_mips4100;
4020
4021 case E_MIPS_MACH_4111:
4022 return bfd_mach_mips4111;
4023
4024 case E_MIPS_MACH_4120:
4025 return bfd_mach_mips4120;
4026
4027 case E_MIPS_MACH_4650:
4028 return bfd_mach_mips4650;
4029
4030 case E_MIPS_MACH_5400:
4031 return bfd_mach_mips5400;
4032
4033 case E_MIPS_MACH_5500:
4034 return bfd_mach_mips5500;
4035
4036 case E_MIPS_MACH_SB1:
4037 return bfd_mach_mips_sb1;
4038
4039 default:
4040 switch (flags & EF_MIPS_ARCH)
4041 {
4042 default:
4043 case E_MIPS_ARCH_1:
4044 return bfd_mach_mips3000;
4045 break;
4046
4047 case E_MIPS_ARCH_2:
4048 return bfd_mach_mips6000;
4049 break;
4050
4051 case E_MIPS_ARCH_3:
4052 return bfd_mach_mips4000;
4053 break;
4054
4055 case E_MIPS_ARCH_4:
4056 return bfd_mach_mips8000;
4057 break;
4058
4059 case E_MIPS_ARCH_5:
4060 return bfd_mach_mips5;
4061 break;
4062
4063 case E_MIPS_ARCH_32:
4064 return bfd_mach_mipsisa32;
4065 break;
4066
4067 case E_MIPS_ARCH_64:
4068 return bfd_mach_mipsisa64;
4069 break;
4070
4071 case E_MIPS_ARCH_32R2:
4072 return bfd_mach_mipsisa32r2;
4073 break;
4074
4075 case E_MIPS_ARCH_64R2:
4076 return bfd_mach_mipsisa64r2;
4077 break;
4078 }
4079 }
4080
4081 return 0;
4082 }
4083
4084 /* Return printable name for ABI. */
4085
4086 static INLINE char *
4087 elf_mips_abi_name (bfd *abfd)
4088 {
4089 flagword flags;
4090
4091 flags = elf_elfheader (abfd)->e_flags;
4092 switch (flags & EF_MIPS_ABI)
4093 {
4094 case 0:
4095 if (ABI_N32_P (abfd))
4096 return "N32";
4097 else if (ABI_64_P (abfd))
4098 return "64";
4099 else
4100 return "none";
4101 case E_MIPS_ABI_O32:
4102 return "O32";
4103 case E_MIPS_ABI_O64:
4104 return "O64";
4105 case E_MIPS_ABI_EABI32:
4106 return "EABI32";
4107 case E_MIPS_ABI_EABI64:
4108 return "EABI64";
4109 default:
4110 return "unknown abi";
4111 }
4112 }
4113 \f
4114 /* MIPS ELF uses two common sections. One is the usual one, and the
4115 other is for small objects. All the small objects are kept
4116 together, and then referenced via the gp pointer, which yields
4117 faster assembler code. This is what we use for the small common
4118 section. This approach is copied from ecoff.c. */
4119 static asection mips_elf_scom_section;
4120 static asymbol mips_elf_scom_symbol;
4121 static asymbol *mips_elf_scom_symbol_ptr;
4122
4123 /* MIPS ELF also uses an acommon section, which represents an
4124 allocated common symbol which may be overridden by a
4125 definition in a shared library. */
4126 static asection mips_elf_acom_section;
4127 static asymbol mips_elf_acom_symbol;
4128 static asymbol *mips_elf_acom_symbol_ptr;
4129
4130 /* Handle the special MIPS section numbers that a symbol may use.
4131 This is used for both the 32-bit and the 64-bit ABI. */
4132
4133 void
4134 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
4135 {
4136 elf_symbol_type *elfsym;
4137
4138 elfsym = (elf_symbol_type *) asym;
4139 switch (elfsym->internal_elf_sym.st_shndx)
4140 {
4141 case SHN_MIPS_ACOMMON:
4142 /* This section is used in a dynamically linked executable file.
4143 It is an allocated common section. The dynamic linker can
4144 either resolve these symbols to something in a shared
4145 library, or it can just leave them here. For our purposes,
4146 we can consider these symbols to be in a new section. */
4147 if (mips_elf_acom_section.name == NULL)
4148 {
4149 /* Initialize the acommon section. */
4150 mips_elf_acom_section.name = ".acommon";
4151 mips_elf_acom_section.flags = SEC_ALLOC;
4152 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4153 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4154 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4155 mips_elf_acom_symbol.name = ".acommon";
4156 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4157 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4158 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4159 }
4160 asym->section = &mips_elf_acom_section;
4161 break;
4162
4163 case SHN_COMMON:
4164 /* Common symbols less than the GP size are automatically
4165 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4166 if (asym->value > elf_gp_size (abfd)
4167 || IRIX_COMPAT (abfd) == ict_irix6)
4168 break;
4169 /* Fall through. */
4170 case SHN_MIPS_SCOMMON:
4171 if (mips_elf_scom_section.name == NULL)
4172 {
4173 /* Initialize the small common section. */
4174 mips_elf_scom_section.name = ".scommon";
4175 mips_elf_scom_section.flags = SEC_IS_COMMON;
4176 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4177 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4178 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4179 mips_elf_scom_symbol.name = ".scommon";
4180 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4181 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4182 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4183 }
4184 asym->section = &mips_elf_scom_section;
4185 asym->value = elfsym->internal_elf_sym.st_size;
4186 break;
4187
4188 case SHN_MIPS_SUNDEFINED:
4189 asym->section = bfd_und_section_ptr;
4190 break;
4191
4192 #if 0 /* for SGI_COMPAT */
4193 case SHN_MIPS_TEXT:
4194 asym->section = mips_elf_text_section_ptr;
4195 break;
4196
4197 case SHN_MIPS_DATA:
4198 asym->section = mips_elf_data_section_ptr;
4199 break;
4200 #endif
4201 }
4202 }
4203 \f
4204 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
4205 relocations against two unnamed section symbols to resolve to the
4206 same address. For example, if we have code like:
4207
4208 lw $4,%got_disp(.data)($gp)
4209 lw $25,%got_disp(.text)($gp)
4210 jalr $25
4211
4212 then the linker will resolve both relocations to .data and the program
4213 will jump there rather than to .text.
4214
4215 We can work around this problem by giving names to local section symbols.
4216 This is also what the MIPSpro tools do. */
4217
4218 bfd_boolean
4219 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
4220 {
4221 return SGI_COMPAT (abfd);
4222 }
4223 \f
4224 /* Work over a section just before writing it out. This routine is
4225 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4226 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4227 a better way. */
4228
4229 bfd_boolean
4230 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
4231 {
4232 if (hdr->sh_type == SHT_MIPS_REGINFO
4233 && hdr->sh_size > 0)
4234 {
4235 bfd_byte buf[4];
4236
4237 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4238 BFD_ASSERT (hdr->contents == NULL);
4239
4240 if (bfd_seek (abfd,
4241 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4242 SEEK_SET) != 0)
4243 return FALSE;
4244 H_PUT_32 (abfd, elf_gp (abfd), buf);
4245 if (bfd_bwrite (buf, 4, abfd) != 4)
4246 return FALSE;
4247 }
4248
4249 if (hdr->sh_type == SHT_MIPS_OPTIONS
4250 && hdr->bfd_section != NULL
4251 && mips_elf_section_data (hdr->bfd_section) != NULL
4252 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
4253 {
4254 bfd_byte *contents, *l, *lend;
4255
4256 /* We stored the section contents in the tdata field in the
4257 set_section_contents routine. We save the section contents
4258 so that we don't have to read them again.
4259 At this point we know that elf_gp is set, so we can look
4260 through the section contents to see if there is an
4261 ODK_REGINFO structure. */
4262
4263 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
4264 l = contents;
4265 lend = contents + hdr->sh_size;
4266 while (l + sizeof (Elf_External_Options) <= lend)
4267 {
4268 Elf_Internal_Options intopt;
4269
4270 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4271 &intopt);
4272 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4273 {
4274 bfd_byte buf[8];
4275
4276 if (bfd_seek (abfd,
4277 (hdr->sh_offset
4278 + (l - contents)
4279 + sizeof (Elf_External_Options)
4280 + (sizeof (Elf64_External_RegInfo) - 8)),
4281 SEEK_SET) != 0)
4282 return FALSE;
4283 H_PUT_64 (abfd, elf_gp (abfd), buf);
4284 if (bfd_bwrite (buf, 8, abfd) != 8)
4285 return FALSE;
4286 }
4287 else if (intopt.kind == ODK_REGINFO)
4288 {
4289 bfd_byte buf[4];
4290
4291 if (bfd_seek (abfd,
4292 (hdr->sh_offset
4293 + (l - contents)
4294 + sizeof (Elf_External_Options)
4295 + (sizeof (Elf32_External_RegInfo) - 4)),
4296 SEEK_SET) != 0)
4297 return FALSE;
4298 H_PUT_32 (abfd, elf_gp (abfd), buf);
4299 if (bfd_bwrite (buf, 4, abfd) != 4)
4300 return FALSE;
4301 }
4302 l += intopt.size;
4303 }
4304 }
4305
4306 if (hdr->bfd_section != NULL)
4307 {
4308 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
4309
4310 if (strcmp (name, ".sdata") == 0
4311 || strcmp (name, ".lit8") == 0
4312 || strcmp (name, ".lit4") == 0)
4313 {
4314 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4315 hdr->sh_type = SHT_PROGBITS;
4316 }
4317 else if (strcmp (name, ".sbss") == 0)
4318 {
4319 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4320 hdr->sh_type = SHT_NOBITS;
4321 }
4322 else if (strcmp (name, ".srdata") == 0)
4323 {
4324 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
4325 hdr->sh_type = SHT_PROGBITS;
4326 }
4327 else if (strcmp (name, ".compact_rel") == 0)
4328 {
4329 hdr->sh_flags = 0;
4330 hdr->sh_type = SHT_PROGBITS;
4331 }
4332 else if (strcmp (name, ".rtproc") == 0)
4333 {
4334 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
4335 {
4336 unsigned int adjust;
4337
4338 adjust = hdr->sh_size % hdr->sh_addralign;
4339 if (adjust != 0)
4340 hdr->sh_size += hdr->sh_addralign - adjust;
4341 }
4342 }
4343 }
4344
4345 return TRUE;
4346 }
4347
4348 /* Handle a MIPS specific section when reading an object file. This
4349 is called when elfcode.h finds a section with an unknown type.
4350 This routine supports both the 32-bit and 64-bit ELF ABI.
4351
4352 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
4353 how to. */
4354
4355 bfd_boolean
4356 _bfd_mips_elf_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
4357 const char *name)
4358 {
4359 flagword flags = 0;
4360
4361 /* There ought to be a place to keep ELF backend specific flags, but
4362 at the moment there isn't one. We just keep track of the
4363 sections by their name, instead. Fortunately, the ABI gives
4364 suggested names for all the MIPS specific sections, so we will
4365 probably get away with this. */
4366 switch (hdr->sh_type)
4367 {
4368 case SHT_MIPS_LIBLIST:
4369 if (strcmp (name, ".liblist") != 0)
4370 return FALSE;
4371 break;
4372 case SHT_MIPS_MSYM:
4373 if (strcmp (name, ".msym") != 0)
4374 return FALSE;
4375 break;
4376 case SHT_MIPS_CONFLICT:
4377 if (strcmp (name, ".conflict") != 0)
4378 return FALSE;
4379 break;
4380 case SHT_MIPS_GPTAB:
4381 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
4382 return FALSE;
4383 break;
4384 case SHT_MIPS_UCODE:
4385 if (strcmp (name, ".ucode") != 0)
4386 return FALSE;
4387 break;
4388 case SHT_MIPS_DEBUG:
4389 if (strcmp (name, ".mdebug") != 0)
4390 return FALSE;
4391 flags = SEC_DEBUGGING;
4392 break;
4393 case SHT_MIPS_REGINFO:
4394 if (strcmp (name, ".reginfo") != 0
4395 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
4396 return FALSE;
4397 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
4398 break;
4399 case SHT_MIPS_IFACE:
4400 if (strcmp (name, ".MIPS.interfaces") != 0)
4401 return FALSE;
4402 break;
4403 case SHT_MIPS_CONTENT:
4404 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
4405 return FALSE;
4406 break;
4407 case SHT_MIPS_OPTIONS:
4408 if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0)
4409 return FALSE;
4410 break;
4411 case SHT_MIPS_DWARF:
4412 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
4413 return FALSE;
4414 break;
4415 case SHT_MIPS_SYMBOL_LIB:
4416 if (strcmp (name, ".MIPS.symlib") != 0)
4417 return FALSE;
4418 break;
4419 case SHT_MIPS_EVENTS:
4420 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
4421 && strncmp (name, ".MIPS.post_rel",
4422 sizeof ".MIPS.post_rel" - 1) != 0)
4423 return FALSE;
4424 break;
4425 default:
4426 return FALSE;
4427 }
4428
4429 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
4430 return FALSE;
4431
4432 if (flags)
4433 {
4434 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
4435 (bfd_get_section_flags (abfd,
4436 hdr->bfd_section)
4437 | flags)))
4438 return FALSE;
4439 }
4440
4441 /* FIXME: We should record sh_info for a .gptab section. */
4442
4443 /* For a .reginfo section, set the gp value in the tdata information
4444 from the contents of this section. We need the gp value while
4445 processing relocs, so we just get it now. The .reginfo section
4446 is not used in the 64-bit MIPS ELF ABI. */
4447 if (hdr->sh_type == SHT_MIPS_REGINFO)
4448 {
4449 Elf32_External_RegInfo ext;
4450 Elf32_RegInfo s;
4451
4452 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
4453 &ext, 0, sizeof ext))
4454 return FALSE;
4455 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
4456 elf_gp (abfd) = s.ri_gp_value;
4457 }
4458
4459 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
4460 set the gp value based on what we find. We may see both
4461 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
4462 they should agree. */
4463 if (hdr->sh_type == SHT_MIPS_OPTIONS)
4464 {
4465 bfd_byte *contents, *l, *lend;
4466
4467 contents = bfd_malloc (hdr->sh_size);
4468 if (contents == NULL)
4469 return FALSE;
4470 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
4471 0, hdr->sh_size))
4472 {
4473 free (contents);
4474 return FALSE;
4475 }
4476 l = contents;
4477 lend = contents + hdr->sh_size;
4478 while (l + sizeof (Elf_External_Options) <= lend)
4479 {
4480 Elf_Internal_Options intopt;
4481
4482 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4483 &intopt);
4484 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4485 {
4486 Elf64_Internal_RegInfo intreg;
4487
4488 bfd_mips_elf64_swap_reginfo_in
4489 (abfd,
4490 ((Elf64_External_RegInfo *)
4491 (l + sizeof (Elf_External_Options))),
4492 &intreg);
4493 elf_gp (abfd) = intreg.ri_gp_value;
4494 }
4495 else if (intopt.kind == ODK_REGINFO)
4496 {
4497 Elf32_RegInfo intreg;
4498
4499 bfd_mips_elf32_swap_reginfo_in
4500 (abfd,
4501 ((Elf32_External_RegInfo *)
4502 (l + sizeof (Elf_External_Options))),
4503 &intreg);
4504 elf_gp (abfd) = intreg.ri_gp_value;
4505 }
4506 l += intopt.size;
4507 }
4508 free (contents);
4509 }
4510
4511 return TRUE;
4512 }
4513
4514 /* Set the correct type for a MIPS ELF section. We do this by the
4515 section name, which is a hack, but ought to work. This routine is
4516 used by both the 32-bit and the 64-bit ABI. */
4517
4518 bfd_boolean
4519 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
4520 {
4521 register const char *name;
4522
4523 name = bfd_get_section_name (abfd, sec);
4524
4525 if (strcmp (name, ".liblist") == 0)
4526 {
4527 hdr->sh_type = SHT_MIPS_LIBLIST;
4528 hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib);
4529 /* The sh_link field is set in final_write_processing. */
4530 }
4531 else if (strcmp (name, ".conflict") == 0)
4532 hdr->sh_type = SHT_MIPS_CONFLICT;
4533 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
4534 {
4535 hdr->sh_type = SHT_MIPS_GPTAB;
4536 hdr->sh_entsize = sizeof (Elf32_External_gptab);
4537 /* The sh_info field is set in final_write_processing. */
4538 }
4539 else if (strcmp (name, ".ucode") == 0)
4540 hdr->sh_type = SHT_MIPS_UCODE;
4541 else if (strcmp (name, ".mdebug") == 0)
4542 {
4543 hdr->sh_type = SHT_MIPS_DEBUG;
4544 /* In a shared object on IRIX 5.3, the .mdebug section has an
4545 entsize of 0. FIXME: Does this matter? */
4546 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
4547 hdr->sh_entsize = 0;
4548 else
4549 hdr->sh_entsize = 1;
4550 }
4551 else if (strcmp (name, ".reginfo") == 0)
4552 {
4553 hdr->sh_type = SHT_MIPS_REGINFO;
4554 /* In a shared object on IRIX 5.3, the .reginfo section has an
4555 entsize of 0x18. FIXME: Does this matter? */
4556 if (SGI_COMPAT (abfd))
4557 {
4558 if ((abfd->flags & DYNAMIC) != 0)
4559 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4560 else
4561 hdr->sh_entsize = 1;
4562 }
4563 else
4564 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
4565 }
4566 else if (SGI_COMPAT (abfd)
4567 && (strcmp (name, ".hash") == 0
4568 || strcmp (name, ".dynamic") == 0
4569 || strcmp (name, ".dynstr") == 0))
4570 {
4571 if (SGI_COMPAT (abfd))
4572 hdr->sh_entsize = 0;
4573 #if 0
4574 /* This isn't how the IRIX6 linker behaves. */
4575 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
4576 #endif
4577 }
4578 else if (strcmp (name, ".got") == 0
4579 || strcmp (name, ".srdata") == 0
4580 || strcmp (name, ".sdata") == 0
4581 || strcmp (name, ".sbss") == 0
4582 || strcmp (name, ".lit4") == 0
4583 || strcmp (name, ".lit8") == 0)
4584 hdr->sh_flags |= SHF_MIPS_GPREL;
4585 else if (strcmp (name, ".MIPS.interfaces") == 0)
4586 {
4587 hdr->sh_type = SHT_MIPS_IFACE;
4588 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4589 }
4590 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
4591 {
4592 hdr->sh_type = SHT_MIPS_CONTENT;
4593 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4594 /* The sh_info field is set in final_write_processing. */
4595 }
4596 else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
4597 {
4598 hdr->sh_type = SHT_MIPS_OPTIONS;
4599 hdr->sh_entsize = 1;
4600 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4601 }
4602 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
4603 hdr->sh_type = SHT_MIPS_DWARF;
4604 else if (strcmp (name, ".MIPS.symlib") == 0)
4605 {
4606 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
4607 /* The sh_link and sh_info fields are set in
4608 final_write_processing. */
4609 }
4610 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
4611 || strncmp (name, ".MIPS.post_rel",
4612 sizeof ".MIPS.post_rel" - 1) == 0)
4613 {
4614 hdr->sh_type = SHT_MIPS_EVENTS;
4615 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
4616 /* The sh_link field is set in final_write_processing. */
4617 }
4618 else if (strcmp (name, ".msym") == 0)
4619 {
4620 hdr->sh_type = SHT_MIPS_MSYM;
4621 hdr->sh_flags |= SHF_ALLOC;
4622 hdr->sh_entsize = 8;
4623 }
4624
4625 /* The generic elf_fake_sections will set up REL_HDR using the default
4626 kind of relocations. We used to set up a second header for the
4627 non-default kind of relocations here, but only NewABI would use
4628 these, and the IRIX ld doesn't like resulting empty RELA sections.
4629 Thus we create those header only on demand now. */
4630
4631 return TRUE;
4632 }
4633
4634 /* Given a BFD section, try to locate the corresponding ELF section
4635 index. This is used by both the 32-bit and the 64-bit ABI.
4636 Actually, it's not clear to me that the 64-bit ABI supports these,
4637 but for non-PIC objects we will certainly want support for at least
4638 the .scommon section. */
4639
4640 bfd_boolean
4641 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
4642 asection *sec, int *retval)
4643 {
4644 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
4645 {
4646 *retval = SHN_MIPS_SCOMMON;
4647 return TRUE;
4648 }
4649 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
4650 {
4651 *retval = SHN_MIPS_ACOMMON;
4652 return TRUE;
4653 }
4654 return FALSE;
4655 }
4656 \f
4657 /* Hook called by the linker routine which adds symbols from an object
4658 file. We must handle the special MIPS section numbers here. */
4659
4660 bfd_boolean
4661 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
4662 Elf_Internal_Sym *sym, const char **namep,
4663 flagword *flagsp ATTRIBUTE_UNUSED,
4664 asection **secp, bfd_vma *valp)
4665 {
4666 if (SGI_COMPAT (abfd)
4667 && (abfd->flags & DYNAMIC) != 0
4668 && strcmp (*namep, "_rld_new_interface") == 0)
4669 {
4670 /* Skip IRIX5 rld entry name. */
4671 *namep = NULL;
4672 return TRUE;
4673 }
4674
4675 switch (sym->st_shndx)
4676 {
4677 case SHN_COMMON:
4678 /* Common symbols less than the GP size are automatically
4679 treated as SHN_MIPS_SCOMMON symbols. */
4680 if (sym->st_size > elf_gp_size (abfd)
4681 || IRIX_COMPAT (abfd) == ict_irix6)
4682 break;
4683 /* Fall through. */
4684 case SHN_MIPS_SCOMMON:
4685 *secp = bfd_make_section_old_way (abfd, ".scommon");
4686 (*secp)->flags |= SEC_IS_COMMON;
4687 *valp = sym->st_size;
4688 break;
4689
4690 case SHN_MIPS_TEXT:
4691 /* This section is used in a shared object. */
4692 if (elf_tdata (abfd)->elf_text_section == NULL)
4693 {
4694 asymbol *elf_text_symbol;
4695 asection *elf_text_section;
4696 bfd_size_type amt = sizeof (asection);
4697
4698 elf_text_section = bfd_zalloc (abfd, amt);
4699 if (elf_text_section == NULL)
4700 return FALSE;
4701
4702 amt = sizeof (asymbol);
4703 elf_text_symbol = bfd_zalloc (abfd, amt);
4704 if (elf_text_symbol == NULL)
4705 return FALSE;
4706
4707 /* Initialize the section. */
4708
4709 elf_tdata (abfd)->elf_text_section = elf_text_section;
4710 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
4711
4712 elf_text_section->symbol = elf_text_symbol;
4713 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
4714
4715 elf_text_section->name = ".text";
4716 elf_text_section->flags = SEC_NO_FLAGS;
4717 elf_text_section->output_section = NULL;
4718 elf_text_section->owner = abfd;
4719 elf_text_symbol->name = ".text";
4720 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4721 elf_text_symbol->section = elf_text_section;
4722 }
4723 /* This code used to do *secp = bfd_und_section_ptr if
4724 info->shared. I don't know why, and that doesn't make sense,
4725 so I took it out. */
4726 *secp = elf_tdata (abfd)->elf_text_section;
4727 break;
4728
4729 case SHN_MIPS_ACOMMON:
4730 /* Fall through. XXX Can we treat this as allocated data? */
4731 case SHN_MIPS_DATA:
4732 /* This section is used in a shared object. */
4733 if (elf_tdata (abfd)->elf_data_section == NULL)
4734 {
4735 asymbol *elf_data_symbol;
4736 asection *elf_data_section;
4737 bfd_size_type amt = sizeof (asection);
4738
4739 elf_data_section = bfd_zalloc (abfd, amt);
4740 if (elf_data_section == NULL)
4741 return FALSE;
4742
4743 amt = sizeof (asymbol);
4744 elf_data_symbol = bfd_zalloc (abfd, amt);
4745 if (elf_data_symbol == NULL)
4746 return FALSE;
4747
4748 /* Initialize the section. */
4749
4750 elf_tdata (abfd)->elf_data_section = elf_data_section;
4751 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
4752
4753 elf_data_section->symbol = elf_data_symbol;
4754 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
4755
4756 elf_data_section->name = ".data";
4757 elf_data_section->flags = SEC_NO_FLAGS;
4758 elf_data_section->output_section = NULL;
4759 elf_data_section->owner = abfd;
4760 elf_data_symbol->name = ".data";
4761 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
4762 elf_data_symbol->section = elf_data_section;
4763 }
4764 /* This code used to do *secp = bfd_und_section_ptr if
4765 info->shared. I don't know why, and that doesn't make sense,
4766 so I took it out. */
4767 *secp = elf_tdata (abfd)->elf_data_section;
4768 break;
4769
4770 case SHN_MIPS_SUNDEFINED:
4771 *secp = bfd_und_section_ptr;
4772 break;
4773 }
4774
4775 if (SGI_COMPAT (abfd)
4776 && ! info->shared
4777 && info->hash->creator == abfd->xvec
4778 && strcmp (*namep, "__rld_obj_head") == 0)
4779 {
4780 struct elf_link_hash_entry *h;
4781 struct bfd_link_hash_entry *bh;
4782
4783 /* Mark __rld_obj_head as dynamic. */
4784 bh = NULL;
4785 if (! (_bfd_generic_link_add_one_symbol
4786 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
4787 get_elf_backend_data (abfd)->collect, &bh)))
4788 return FALSE;
4789
4790 h = (struct elf_link_hash_entry *) bh;
4791 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4792 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4793 h->type = STT_OBJECT;
4794
4795 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4796 return FALSE;
4797
4798 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
4799 }
4800
4801 /* If this is a mips16 text symbol, add 1 to the value to make it
4802 odd. This will cause something like .word SYM to come up with
4803 the right value when it is loaded into the PC. */
4804 if (sym->st_other == STO_MIPS16)
4805 ++*valp;
4806
4807 return TRUE;
4808 }
4809
4810 /* This hook function is called before the linker writes out a global
4811 symbol. We mark symbols as small common if appropriate. This is
4812 also where we undo the increment of the value for a mips16 symbol. */
4813
4814 bfd_boolean
4815 _bfd_mips_elf_link_output_symbol_hook
4816 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
4817 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
4818 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
4819 {
4820 /* If we see a common symbol, which implies a relocatable link, then
4821 if a symbol was small common in an input file, mark it as small
4822 common in the output file. */
4823 if (sym->st_shndx == SHN_COMMON
4824 && strcmp (input_sec->name, ".scommon") == 0)
4825 sym->st_shndx = SHN_MIPS_SCOMMON;
4826
4827 if (sym->st_other == STO_MIPS16)
4828 sym->st_value &= ~1;
4829
4830 return TRUE;
4831 }
4832 \f
4833 /* Functions for the dynamic linker. */
4834
4835 /* Create dynamic sections when linking against a dynamic object. */
4836
4837 bfd_boolean
4838 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
4839 {
4840 struct elf_link_hash_entry *h;
4841 struct bfd_link_hash_entry *bh;
4842 flagword flags;
4843 register asection *s;
4844 const char * const *namep;
4845
4846 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4847 | SEC_LINKER_CREATED | SEC_READONLY);
4848
4849 /* Mips ABI requests the .dynamic section to be read only. */
4850 s = bfd_get_section_by_name (abfd, ".dynamic");
4851 if (s != NULL)
4852 {
4853 if (! bfd_set_section_flags (abfd, s, flags))
4854 return FALSE;
4855 }
4856
4857 /* We need to create .got section. */
4858 if (! mips_elf_create_got_section (abfd, info, FALSE))
4859 return FALSE;
4860
4861 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
4862 return FALSE;
4863
4864 /* Create .stub section. */
4865 if (bfd_get_section_by_name (abfd,
4866 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
4867 {
4868 s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd));
4869 if (s == NULL
4870 || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE)
4871 || ! bfd_set_section_alignment (abfd, s,
4872 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4873 return FALSE;
4874 }
4875
4876 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
4877 && !info->shared
4878 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
4879 {
4880 s = bfd_make_section (abfd, ".rld_map");
4881 if (s == NULL
4882 || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY)
4883 || ! bfd_set_section_alignment (abfd, s,
4884 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4885 return FALSE;
4886 }
4887
4888 /* On IRIX5, we adjust add some additional symbols and change the
4889 alignments of several sections. There is no ABI documentation
4890 indicating that this is necessary on IRIX6, nor any evidence that
4891 the linker takes such action. */
4892 if (IRIX_COMPAT (abfd) == ict_irix5)
4893 {
4894 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
4895 {
4896 bh = NULL;
4897 if (! (_bfd_generic_link_add_one_symbol
4898 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
4899 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4900 return FALSE;
4901
4902 h = (struct elf_link_hash_entry *) bh;
4903 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4904 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4905 h->type = STT_SECTION;
4906
4907 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4908 return FALSE;
4909 }
4910
4911 /* We need to create a .compact_rel section. */
4912 if (SGI_COMPAT (abfd))
4913 {
4914 if (!mips_elf_create_compact_rel_section (abfd, info))
4915 return FALSE;
4916 }
4917
4918 /* Change alignments of some sections. */
4919 s = bfd_get_section_by_name (abfd, ".hash");
4920 if (s != NULL)
4921 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4922 s = bfd_get_section_by_name (abfd, ".dynsym");
4923 if (s != NULL)
4924 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4925 s = bfd_get_section_by_name (abfd, ".dynstr");
4926 if (s != NULL)
4927 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4928 s = bfd_get_section_by_name (abfd, ".reginfo");
4929 if (s != NULL)
4930 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4931 s = bfd_get_section_by_name (abfd, ".dynamic");
4932 if (s != NULL)
4933 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
4934 }
4935
4936 if (!info->shared)
4937 {
4938 const char *name;
4939
4940 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
4941 bh = NULL;
4942 if (!(_bfd_generic_link_add_one_symbol
4943 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
4944 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4945 return FALSE;
4946
4947 h = (struct elf_link_hash_entry *) bh;
4948 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4949 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4950 h->type = STT_SECTION;
4951
4952 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4953 return FALSE;
4954
4955 if (! mips_elf_hash_table (info)->use_rld_obj_head)
4956 {
4957 /* __rld_map is a four byte word located in the .data section
4958 and is filled in by the rtld to contain a pointer to
4959 the _r_debug structure. Its symbol value will be set in
4960 _bfd_mips_elf_finish_dynamic_symbol. */
4961 s = bfd_get_section_by_name (abfd, ".rld_map");
4962 BFD_ASSERT (s != NULL);
4963
4964 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
4965 bh = NULL;
4966 if (!(_bfd_generic_link_add_one_symbol
4967 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
4968 get_elf_backend_data (abfd)->collect, &bh)))
4969 return FALSE;
4970
4971 h = (struct elf_link_hash_entry *) bh;
4972 h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
4973 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
4974 h->type = STT_OBJECT;
4975
4976 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4977 return FALSE;
4978 }
4979 }
4980
4981 return TRUE;
4982 }
4983 \f
4984 /* Look through the relocs for a section during the first phase, and
4985 allocate space in the global offset table. */
4986
4987 bfd_boolean
4988 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4989 asection *sec, const Elf_Internal_Rela *relocs)
4990 {
4991 const char *name;
4992 bfd *dynobj;
4993 Elf_Internal_Shdr *symtab_hdr;
4994 struct elf_link_hash_entry **sym_hashes;
4995 struct mips_got_info *g;
4996 size_t extsymoff;
4997 const Elf_Internal_Rela *rel;
4998 const Elf_Internal_Rela *rel_end;
4999 asection *sgot;
5000 asection *sreloc;
5001 const struct elf_backend_data *bed;
5002
5003 if (info->relocatable)
5004 return TRUE;
5005
5006 dynobj = elf_hash_table (info)->dynobj;
5007 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5008 sym_hashes = elf_sym_hashes (abfd);
5009 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5010
5011 /* Check for the mips16 stub sections. */
5012
5013 name = bfd_get_section_name (abfd, sec);
5014 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5015 {
5016 unsigned long r_symndx;
5017
5018 /* Look at the relocation information to figure out which symbol
5019 this is for. */
5020
5021 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5022
5023 if (r_symndx < extsymoff
5024 || sym_hashes[r_symndx - extsymoff] == NULL)
5025 {
5026 asection *o;
5027
5028 /* This stub is for a local symbol. This stub will only be
5029 needed if there is some relocation in this BFD, other
5030 than a 16 bit function call, which refers to this symbol. */
5031 for (o = abfd->sections; o != NULL; o = o->next)
5032 {
5033 Elf_Internal_Rela *sec_relocs;
5034 const Elf_Internal_Rela *r, *rend;
5035
5036 /* We can ignore stub sections when looking for relocs. */
5037 if ((o->flags & SEC_RELOC) == 0
5038 || o->reloc_count == 0
5039 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5040 sizeof FN_STUB - 1) == 0
5041 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5042 sizeof CALL_STUB - 1) == 0
5043 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5044 sizeof CALL_FP_STUB - 1) == 0)
5045 continue;
5046
5047 sec_relocs
5048 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
5049 info->keep_memory);
5050 if (sec_relocs == NULL)
5051 return FALSE;
5052
5053 rend = sec_relocs + o->reloc_count;
5054 for (r = sec_relocs; r < rend; r++)
5055 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5056 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5057 break;
5058
5059 if (elf_section_data (o)->relocs != sec_relocs)
5060 free (sec_relocs);
5061
5062 if (r < rend)
5063 break;
5064 }
5065
5066 if (o == NULL)
5067 {
5068 /* There is no non-call reloc for this stub, so we do
5069 not need it. Since this function is called before
5070 the linker maps input sections to output sections, we
5071 can easily discard it by setting the SEC_EXCLUDE
5072 flag. */
5073 sec->flags |= SEC_EXCLUDE;
5074 return TRUE;
5075 }
5076
5077 /* Record this stub in an array of local symbol stubs for
5078 this BFD. */
5079 if (elf_tdata (abfd)->local_stubs == NULL)
5080 {
5081 unsigned long symcount;
5082 asection **n;
5083 bfd_size_type amt;
5084
5085 if (elf_bad_symtab (abfd))
5086 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5087 else
5088 symcount = symtab_hdr->sh_info;
5089 amt = symcount * sizeof (asection *);
5090 n = bfd_zalloc (abfd, amt);
5091 if (n == NULL)
5092 return FALSE;
5093 elf_tdata (abfd)->local_stubs = n;
5094 }
5095
5096 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5097
5098 /* We don't need to set mips16_stubs_seen in this case.
5099 That flag is used to see whether we need to look through
5100 the global symbol table for stubs. We don't need to set
5101 it here, because we just have a local stub. */
5102 }
5103 else
5104 {
5105 struct mips_elf_link_hash_entry *h;
5106
5107 h = ((struct mips_elf_link_hash_entry *)
5108 sym_hashes[r_symndx - extsymoff]);
5109
5110 /* H is the symbol this stub is for. */
5111
5112 h->fn_stub = sec;
5113 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5114 }
5115 }
5116 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5117 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5118 {
5119 unsigned long r_symndx;
5120 struct mips_elf_link_hash_entry *h;
5121 asection **loc;
5122
5123 /* Look at the relocation information to figure out which symbol
5124 this is for. */
5125
5126 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5127
5128 if (r_symndx < extsymoff
5129 || sym_hashes[r_symndx - extsymoff] == NULL)
5130 {
5131 /* This stub was actually built for a static symbol defined
5132 in the same file. We assume that all static symbols in
5133 mips16 code are themselves mips16, so we can simply
5134 discard this stub. Since this function is called before
5135 the linker maps input sections to output sections, we can
5136 easily discard it by setting the SEC_EXCLUDE flag. */
5137 sec->flags |= SEC_EXCLUDE;
5138 return TRUE;
5139 }
5140
5141 h = ((struct mips_elf_link_hash_entry *)
5142 sym_hashes[r_symndx - extsymoff]);
5143
5144 /* H is the symbol this stub is for. */
5145
5146 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5147 loc = &h->call_fp_stub;
5148 else
5149 loc = &h->call_stub;
5150
5151 /* If we already have an appropriate stub for this function, we
5152 don't need another one, so we can discard this one. Since
5153 this function is called before the linker maps input sections
5154 to output sections, we can easily discard it by setting the
5155 SEC_EXCLUDE flag. We can also discard this section if we
5156 happen to already know that this is a mips16 function; it is
5157 not necessary to check this here, as it is checked later, but
5158 it is slightly faster to check now. */
5159 if (*loc != NULL || h->root.other == STO_MIPS16)
5160 {
5161 sec->flags |= SEC_EXCLUDE;
5162 return TRUE;
5163 }
5164
5165 *loc = sec;
5166 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5167 }
5168
5169 if (dynobj == NULL)
5170 {
5171 sgot = NULL;
5172 g = NULL;
5173 }
5174 else
5175 {
5176 sgot = mips_elf_got_section (dynobj, FALSE);
5177 if (sgot == NULL)
5178 g = NULL;
5179 else
5180 {
5181 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5182 g = mips_elf_section_data (sgot)->u.got_info;
5183 BFD_ASSERT (g != NULL);
5184 }
5185 }
5186
5187 sreloc = NULL;
5188 bed = get_elf_backend_data (abfd);
5189 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5190 for (rel = relocs; rel < rel_end; ++rel)
5191 {
5192 unsigned long r_symndx;
5193 unsigned int r_type;
5194 struct elf_link_hash_entry *h;
5195
5196 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5197 r_type = ELF_R_TYPE (abfd, rel->r_info);
5198
5199 if (r_symndx < extsymoff)
5200 h = NULL;
5201 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5202 {
5203 (*_bfd_error_handler)
5204 (_("%s: Malformed reloc detected for section %s"),
5205 bfd_archive_filename (abfd), name);
5206 bfd_set_error (bfd_error_bad_value);
5207 return FALSE;
5208 }
5209 else
5210 {
5211 h = sym_hashes[r_symndx - extsymoff];
5212
5213 /* This may be an indirect symbol created because of a version. */
5214 if (h != NULL)
5215 {
5216 while (h->root.type == bfd_link_hash_indirect)
5217 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5218 }
5219 }
5220
5221 /* Some relocs require a global offset table. */
5222 if (dynobj == NULL || sgot == NULL)
5223 {
5224 switch (r_type)
5225 {
5226 case R_MIPS_GOT16:
5227 case R_MIPS_CALL16:
5228 case R_MIPS_CALL_HI16:
5229 case R_MIPS_CALL_LO16:
5230 case R_MIPS_GOT_HI16:
5231 case R_MIPS_GOT_LO16:
5232 case R_MIPS_GOT_PAGE:
5233 case R_MIPS_GOT_OFST:
5234 case R_MIPS_GOT_DISP:
5235 if (dynobj == NULL)
5236 elf_hash_table (info)->dynobj = dynobj = abfd;
5237 if (! mips_elf_create_got_section (dynobj, info, FALSE))
5238 return FALSE;
5239 g = mips_elf_got_info (dynobj, &sgot);
5240 break;
5241
5242 case R_MIPS_32:
5243 case R_MIPS_REL32:
5244 case R_MIPS_64:
5245 if (dynobj == NULL
5246 && (info->shared || h != NULL)
5247 && (sec->flags & SEC_ALLOC) != 0)
5248 elf_hash_table (info)->dynobj = dynobj = abfd;
5249 break;
5250
5251 default:
5252 break;
5253 }
5254 }
5255
5256 if (!h && (r_type == R_MIPS_CALL_LO16
5257 || r_type == R_MIPS_GOT_LO16
5258 || r_type == R_MIPS_GOT_DISP))
5259 {
5260 /* We may need a local GOT entry for this relocation. We
5261 don't count R_MIPS_GOT_PAGE because we can estimate the
5262 maximum number of pages needed by looking at the size of
5263 the segment. Similar comments apply to R_MIPS_GOT16 and
5264 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
5265 R_MIPS_CALL_HI16 because these are always followed by an
5266 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
5267 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
5268 rel->r_addend, g))
5269 return FALSE;
5270 }
5271
5272 switch (r_type)
5273 {
5274 case R_MIPS_CALL16:
5275 if (h == NULL)
5276 {
5277 (*_bfd_error_handler)
5278 (_("%s: CALL16 reloc at 0x%lx not against global symbol"),
5279 bfd_archive_filename (abfd), (unsigned long) rel->r_offset);
5280 bfd_set_error (bfd_error_bad_value);
5281 return FALSE;
5282 }
5283 /* Fall through. */
5284
5285 case R_MIPS_CALL_HI16:
5286 case R_MIPS_CALL_LO16:
5287 if (h != NULL)
5288 {
5289 /* This symbol requires a global offset table entry. */
5290 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5291 return FALSE;
5292
5293 /* We need a stub, not a plt entry for the undefined
5294 function. But we record it as if it needs plt. See
5295 _bfd_elf_adjust_dynamic_symbol. */
5296 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
5297 h->type = STT_FUNC;
5298 }
5299 break;
5300
5301 case R_MIPS_GOT_PAGE:
5302 /* If this is a global, overridable symbol, GOT_PAGE will
5303 decay to GOT_DISP, so we'll need a GOT entry for it. */
5304 if (h == NULL)
5305 break;
5306 else
5307 {
5308 struct mips_elf_link_hash_entry *hmips =
5309 (struct mips_elf_link_hash_entry *) h;
5310
5311 while (hmips->root.root.type == bfd_link_hash_indirect
5312 || hmips->root.root.type == bfd_link_hash_warning)
5313 hmips = (struct mips_elf_link_hash_entry *)
5314 hmips->root.root.u.i.link;
5315
5316 if ((hmips->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
5317 && ! (info->shared && ! info->symbolic
5318 && ! (hmips->root.elf_link_hash_flags
5319 & ELF_LINK_FORCED_LOCAL)))
5320 break;
5321 }
5322 /* Fall through. */
5323
5324 case R_MIPS_GOT16:
5325 case R_MIPS_GOT_HI16:
5326 case R_MIPS_GOT_LO16:
5327 case R_MIPS_GOT_DISP:
5328 /* This symbol requires a global offset table entry. */
5329 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g))
5330 return FALSE;
5331 break;
5332
5333 case R_MIPS_32:
5334 case R_MIPS_REL32:
5335 case R_MIPS_64:
5336 if ((info->shared || h != NULL)
5337 && (sec->flags & SEC_ALLOC) != 0)
5338 {
5339 if (sreloc == NULL)
5340 {
5341 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
5342 if (sreloc == NULL)
5343 return FALSE;
5344 }
5345 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
5346 if (info->shared)
5347 {
5348 /* When creating a shared object, we must copy these
5349 reloc types into the output file as R_MIPS_REL32
5350 relocs. We make room for this reloc in the
5351 .rel.dyn reloc section. */
5352 mips_elf_allocate_dynamic_relocations (dynobj, 1);
5353 if ((sec->flags & MIPS_READONLY_SECTION)
5354 == MIPS_READONLY_SECTION)
5355 /* We tell the dynamic linker that there are
5356 relocations against the text segment. */
5357 info->flags |= DF_TEXTREL;
5358 }
5359 else
5360 {
5361 struct mips_elf_link_hash_entry *hmips;
5362
5363 /* We only need to copy this reloc if the symbol is
5364 defined in a dynamic object. */
5365 hmips = (struct mips_elf_link_hash_entry *) h;
5366 ++hmips->possibly_dynamic_relocs;
5367 if ((sec->flags & MIPS_READONLY_SECTION)
5368 == MIPS_READONLY_SECTION)
5369 /* We need it to tell the dynamic linker if there
5370 are relocations against the text segment. */
5371 hmips->readonly_reloc = TRUE;
5372 }
5373
5374 /* Even though we don't directly need a GOT entry for
5375 this symbol, a symbol must have a dynamic symbol
5376 table index greater that DT_MIPS_GOTSYM if there are
5377 dynamic relocations against it. */
5378 if (h != NULL)
5379 {
5380 if (dynobj == NULL)
5381 elf_hash_table (info)->dynobj = dynobj = abfd;
5382 if (! mips_elf_create_got_section (dynobj, info, TRUE))
5383 return FALSE;
5384 g = mips_elf_got_info (dynobj, &sgot);
5385 if (! mips_elf_record_global_got_symbol (h, abfd, info, g))
5386 return FALSE;
5387 }
5388 }
5389
5390 if (SGI_COMPAT (abfd))
5391 mips_elf_hash_table (info)->compact_rel_size +=
5392 sizeof (Elf32_External_crinfo);
5393 break;
5394
5395 case R_MIPS_26:
5396 case R_MIPS_GPREL16:
5397 case R_MIPS_LITERAL:
5398 case R_MIPS_GPREL32:
5399 if (SGI_COMPAT (abfd))
5400 mips_elf_hash_table (info)->compact_rel_size +=
5401 sizeof (Elf32_External_crinfo);
5402 break;
5403
5404 /* This relocation describes the C++ object vtable hierarchy.
5405 Reconstruct it for later use during GC. */
5406 case R_MIPS_GNU_VTINHERIT:
5407 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5408 return FALSE;
5409 break;
5410
5411 /* This relocation describes which C++ vtable entries are actually
5412 used. Record for later use during GC. */
5413 case R_MIPS_GNU_VTENTRY:
5414 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
5415 return FALSE;
5416 break;
5417
5418 default:
5419 break;
5420 }
5421
5422 /* We must not create a stub for a symbol that has relocations
5423 related to taking the function's address. */
5424 switch (r_type)
5425 {
5426 default:
5427 if (h != NULL)
5428 {
5429 struct mips_elf_link_hash_entry *mh;
5430
5431 mh = (struct mips_elf_link_hash_entry *) h;
5432 mh->no_fn_stub = TRUE;
5433 }
5434 break;
5435 case R_MIPS_CALL16:
5436 case R_MIPS_CALL_HI16:
5437 case R_MIPS_CALL_LO16:
5438 case R_MIPS_JALR:
5439 break;
5440 }
5441
5442 /* If this reloc is not a 16 bit call, and it has a global
5443 symbol, then we will need the fn_stub if there is one.
5444 References from a stub section do not count. */
5445 if (h != NULL
5446 && r_type != R_MIPS16_26
5447 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
5448 sizeof FN_STUB - 1) != 0
5449 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
5450 sizeof CALL_STUB - 1) != 0
5451 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
5452 sizeof CALL_FP_STUB - 1) != 0)
5453 {
5454 struct mips_elf_link_hash_entry *mh;
5455
5456 mh = (struct mips_elf_link_hash_entry *) h;
5457 mh->need_fn_stub = TRUE;
5458 }
5459 }
5460
5461 return TRUE;
5462 }
5463 \f
5464 bfd_boolean
5465 _bfd_mips_relax_section (bfd *abfd, asection *sec,
5466 struct bfd_link_info *link_info,
5467 bfd_boolean *again)
5468 {
5469 Elf_Internal_Rela *internal_relocs;
5470 Elf_Internal_Rela *irel, *irelend;
5471 Elf_Internal_Shdr *symtab_hdr;
5472 bfd_byte *contents = NULL;
5473 bfd_byte *free_contents = NULL;
5474 size_t extsymoff;
5475 bfd_boolean changed_contents = FALSE;
5476 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
5477 Elf_Internal_Sym *isymbuf = NULL;
5478
5479 /* We are not currently changing any sizes, so only one pass. */
5480 *again = FALSE;
5481
5482 if (link_info->relocatable)
5483 return TRUE;
5484
5485 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
5486 link_info->keep_memory);
5487 if (internal_relocs == NULL)
5488 return TRUE;
5489
5490 irelend = internal_relocs + sec->reloc_count
5491 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
5492 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5493 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5494
5495 for (irel = internal_relocs; irel < irelend; irel++)
5496 {
5497 bfd_vma symval;
5498 bfd_signed_vma sym_offset;
5499 unsigned int r_type;
5500 unsigned long r_symndx;
5501 asection *sym_sec;
5502 unsigned long instruction;
5503
5504 /* Turn jalr into bgezal, and jr into beq, if they're marked
5505 with a JALR relocation, that indicate where they jump to.
5506 This saves some pipeline bubbles. */
5507 r_type = ELF_R_TYPE (abfd, irel->r_info);
5508 if (r_type != R_MIPS_JALR)
5509 continue;
5510
5511 r_symndx = ELF_R_SYM (abfd, irel->r_info);
5512 /* Compute the address of the jump target. */
5513 if (r_symndx >= extsymoff)
5514 {
5515 struct mips_elf_link_hash_entry *h
5516 = ((struct mips_elf_link_hash_entry *)
5517 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
5518
5519 while (h->root.root.type == bfd_link_hash_indirect
5520 || h->root.root.type == bfd_link_hash_warning)
5521 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5522
5523 /* If a symbol is undefined, or if it may be overridden,
5524 skip it. */
5525 if (! ((h->root.root.type == bfd_link_hash_defined
5526 || h->root.root.type == bfd_link_hash_defweak)
5527 && h->root.root.u.def.section)
5528 || (link_info->shared && ! link_info->symbolic
5529 && ! (h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL)))
5530 continue;
5531
5532 sym_sec = h->root.root.u.def.section;
5533 if (sym_sec->output_section)
5534 symval = (h->root.root.u.def.value
5535 + sym_sec->output_section->vma
5536 + sym_sec->output_offset);
5537 else
5538 symval = h->root.root.u.def.value;
5539 }
5540 else
5541 {
5542 Elf_Internal_Sym *isym;
5543
5544 /* Read this BFD's symbols if we haven't done so already. */
5545 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
5546 {
5547 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5548 if (isymbuf == NULL)
5549 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
5550 symtab_hdr->sh_info, 0,
5551 NULL, NULL, NULL);
5552 if (isymbuf == NULL)
5553 goto relax_return;
5554 }
5555
5556 isym = isymbuf + r_symndx;
5557 if (isym->st_shndx == SHN_UNDEF)
5558 continue;
5559 else if (isym->st_shndx == SHN_ABS)
5560 sym_sec = bfd_abs_section_ptr;
5561 else if (isym->st_shndx == SHN_COMMON)
5562 sym_sec = bfd_com_section_ptr;
5563 else
5564 sym_sec
5565 = bfd_section_from_elf_index (abfd, isym->st_shndx);
5566 symval = isym->st_value
5567 + sym_sec->output_section->vma
5568 + sym_sec->output_offset;
5569 }
5570
5571 /* Compute branch offset, from delay slot of the jump to the
5572 branch target. */
5573 sym_offset = (symval + irel->r_addend)
5574 - (sec_start + irel->r_offset + 4);
5575
5576 /* Branch offset must be properly aligned. */
5577 if ((sym_offset & 3) != 0)
5578 continue;
5579
5580 sym_offset >>= 2;
5581
5582 /* Check that it's in range. */
5583 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
5584 continue;
5585
5586 /* Get the section contents if we haven't done so already. */
5587 if (contents == NULL)
5588 {
5589 /* Get cached copy if it exists. */
5590 if (elf_section_data (sec)->this_hdr.contents != NULL)
5591 contents = elf_section_data (sec)->this_hdr.contents;
5592 else
5593 {
5594 contents = bfd_malloc (sec->_raw_size);
5595 if (contents == NULL)
5596 goto relax_return;
5597
5598 free_contents = contents;
5599 if (! bfd_get_section_contents (abfd, sec, contents,
5600 0, sec->_raw_size))
5601 goto relax_return;
5602 }
5603 }
5604
5605 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
5606
5607 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
5608 if ((instruction & 0xfc1fffff) == 0x0000f809)
5609 instruction = 0x04110000;
5610 /* If it was jr <reg>, turn it into b <target>. */
5611 else if ((instruction & 0xfc1fffff) == 0x00000008)
5612 instruction = 0x10000000;
5613 else
5614 continue;
5615
5616 instruction |= (sym_offset & 0xffff);
5617 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
5618 changed_contents = TRUE;
5619 }
5620
5621 if (contents != NULL
5622 && elf_section_data (sec)->this_hdr.contents != contents)
5623 {
5624 if (!changed_contents && !link_info->keep_memory)
5625 free (contents);
5626 else
5627 {
5628 /* Cache the section contents for elf_link_input_bfd. */
5629 elf_section_data (sec)->this_hdr.contents = contents;
5630 }
5631 }
5632 return TRUE;
5633
5634 relax_return:
5635 if (free_contents != NULL)
5636 free (free_contents);
5637 return FALSE;
5638 }
5639 \f
5640 /* Adjust a symbol defined by a dynamic object and referenced by a
5641 regular object. The current definition is in some section of the
5642 dynamic object, but we're not including those sections. We have to
5643 change the definition to something the rest of the link can
5644 understand. */
5645
5646 bfd_boolean
5647 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5648 struct elf_link_hash_entry *h)
5649 {
5650 bfd *dynobj;
5651 struct mips_elf_link_hash_entry *hmips;
5652 asection *s;
5653
5654 dynobj = elf_hash_table (info)->dynobj;
5655
5656 /* Make sure we know what is going on here. */
5657 BFD_ASSERT (dynobj != NULL
5658 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
5659 || h->weakdef != NULL
5660 || ((h->elf_link_hash_flags
5661 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
5662 && (h->elf_link_hash_flags
5663 & ELF_LINK_HASH_REF_REGULAR) != 0
5664 && (h->elf_link_hash_flags
5665 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
5666
5667 /* If this symbol is defined in a dynamic object, we need to copy
5668 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
5669 file. */
5670 hmips = (struct mips_elf_link_hash_entry *) h;
5671 if (! info->relocatable
5672 && hmips->possibly_dynamic_relocs != 0
5673 && (h->root.type == bfd_link_hash_defweak
5674 || (h->elf_link_hash_flags
5675 & ELF_LINK_HASH_DEF_REGULAR) == 0))
5676 {
5677 mips_elf_allocate_dynamic_relocations (dynobj,
5678 hmips->possibly_dynamic_relocs);
5679 if (hmips->readonly_reloc)
5680 /* We tell the dynamic linker that there are relocations
5681 against the text segment. */
5682 info->flags |= DF_TEXTREL;
5683 }
5684
5685 /* For a function, create a stub, if allowed. */
5686 if (! hmips->no_fn_stub
5687 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
5688 {
5689 if (! elf_hash_table (info)->dynamic_sections_created)
5690 return TRUE;
5691
5692 /* If this symbol is not defined in a regular file, then set
5693 the symbol to the stub location. This is required to make
5694 function pointers compare as equal between the normal
5695 executable and the shared library. */
5696 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
5697 {
5698 /* We need .stub section. */
5699 s = bfd_get_section_by_name (dynobj,
5700 MIPS_ELF_STUB_SECTION_NAME (dynobj));
5701 BFD_ASSERT (s != NULL);
5702
5703 h->root.u.def.section = s;
5704 h->root.u.def.value = s->_raw_size;
5705
5706 /* XXX Write this stub address somewhere. */
5707 h->plt.offset = s->_raw_size;
5708
5709 /* Make room for this stub code. */
5710 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5711
5712 /* The last half word of the stub will be filled with the index
5713 of this symbol in .dynsym section. */
5714 return TRUE;
5715 }
5716 }
5717 else if ((h->type == STT_FUNC)
5718 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
5719 {
5720 /* This will set the entry for this symbol in the GOT to 0, and
5721 the dynamic linker will take care of this. */
5722 h->root.u.def.value = 0;
5723 return TRUE;
5724 }
5725
5726 /* If this is a weak symbol, and there is a real definition, the
5727 processor independent code will have arranged for us to see the
5728 real definition first, and we can just use the same value. */
5729 if (h->weakdef != NULL)
5730 {
5731 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
5732 || h->weakdef->root.type == bfd_link_hash_defweak);
5733 h->root.u.def.section = h->weakdef->root.u.def.section;
5734 h->root.u.def.value = h->weakdef->root.u.def.value;
5735 return TRUE;
5736 }
5737
5738 /* This is a reference to a symbol defined by a dynamic object which
5739 is not a function. */
5740
5741 return TRUE;
5742 }
5743 \f
5744 /* This function is called after all the input files have been read,
5745 and the input sections have been assigned to output sections. We
5746 check for any mips16 stub sections that we can discard. */
5747
5748 bfd_boolean
5749 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
5750 struct bfd_link_info *info)
5751 {
5752 asection *ri;
5753
5754 bfd *dynobj;
5755 asection *s;
5756 struct mips_got_info *g;
5757 int i;
5758 bfd_size_type loadable_size = 0;
5759 bfd_size_type local_gotno;
5760 bfd *sub;
5761
5762 /* The .reginfo section has a fixed size. */
5763 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
5764 if (ri != NULL)
5765 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
5766
5767 if (! (info->relocatable
5768 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
5769 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
5770 mips_elf_check_mips16_stubs, NULL);
5771
5772 dynobj = elf_hash_table (info)->dynobj;
5773 if (dynobj == NULL)
5774 /* Relocatable links don't have it. */
5775 return TRUE;
5776
5777 g = mips_elf_got_info (dynobj, &s);
5778 if (s == NULL)
5779 return TRUE;
5780
5781 /* Calculate the total loadable size of the output. That
5782 will give us the maximum number of GOT_PAGE entries
5783 required. */
5784 for (sub = info->input_bfds; sub; sub = sub->link_next)
5785 {
5786 asection *subsection;
5787
5788 for (subsection = sub->sections;
5789 subsection;
5790 subsection = subsection->next)
5791 {
5792 if ((subsection->flags & SEC_ALLOC) == 0)
5793 continue;
5794 loadable_size += ((subsection->_raw_size + 0xf)
5795 &~ (bfd_size_type) 0xf);
5796 }
5797 }
5798
5799 /* There has to be a global GOT entry for every symbol with
5800 a dynamic symbol table index of DT_MIPS_GOTSYM or
5801 higher. Therefore, it make sense to put those symbols
5802 that need GOT entries at the end of the symbol table. We
5803 do that here. */
5804 if (! mips_elf_sort_hash_table (info, 1))
5805 return FALSE;
5806
5807 if (g->global_gotsym != NULL)
5808 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
5809 else
5810 /* If there are no global symbols, or none requiring
5811 relocations, then GLOBAL_GOTSYM will be NULL. */
5812 i = 0;
5813
5814 /* In the worst case, we'll get one stub per dynamic symbol, plus
5815 one to account for the dummy entry at the end required by IRIX
5816 rld. */
5817 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
5818
5819 /* Assume there are two loadable segments consisting of
5820 contiguous sections. Is 5 enough? */
5821 local_gotno = (loadable_size >> 16) + 5;
5822
5823 g->local_gotno += local_gotno;
5824 s->_raw_size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
5825
5826 g->global_gotno = i;
5827 s->_raw_size += i * MIPS_ELF_GOT_SIZE (output_bfd);
5828
5829 if (s->_raw_size > MIPS_ELF_GOT_MAX_SIZE (output_bfd)
5830 && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
5831 return FALSE;
5832
5833 return TRUE;
5834 }
5835
5836 /* Set the sizes of the dynamic sections. */
5837
5838 bfd_boolean
5839 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
5840 struct bfd_link_info *info)
5841 {
5842 bfd *dynobj;
5843 asection *s;
5844 bfd_boolean reltext;
5845
5846 dynobj = elf_hash_table (info)->dynobj;
5847 BFD_ASSERT (dynobj != NULL);
5848
5849 if (elf_hash_table (info)->dynamic_sections_created)
5850 {
5851 /* Set the contents of the .interp section to the interpreter. */
5852 if (info->executable)
5853 {
5854 s = bfd_get_section_by_name (dynobj, ".interp");
5855 BFD_ASSERT (s != NULL);
5856 s->_raw_size
5857 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
5858 s->contents
5859 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
5860 }
5861 }
5862
5863 /* The check_relocs and adjust_dynamic_symbol entry points have
5864 determined the sizes of the various dynamic sections. Allocate
5865 memory for them. */
5866 reltext = FALSE;
5867 for (s = dynobj->sections; s != NULL; s = s->next)
5868 {
5869 const char *name;
5870 bfd_boolean strip;
5871
5872 /* It's OK to base decisions on the section name, because none
5873 of the dynobj section names depend upon the input files. */
5874 name = bfd_get_section_name (dynobj, s);
5875
5876 if ((s->flags & SEC_LINKER_CREATED) == 0)
5877 continue;
5878
5879 strip = FALSE;
5880
5881 if (strncmp (name, ".rel", 4) == 0)
5882 {
5883 if (s->_raw_size == 0)
5884 {
5885 /* We only strip the section if the output section name
5886 has the same name. Otherwise, there might be several
5887 input sections for this output section. FIXME: This
5888 code is probably not needed these days anyhow, since
5889 the linker now does not create empty output sections. */
5890 if (s->output_section != NULL
5891 && strcmp (name,
5892 bfd_get_section_name (s->output_section->owner,
5893 s->output_section)) == 0)
5894 strip = TRUE;
5895 }
5896 else
5897 {
5898 const char *outname;
5899 asection *target;
5900
5901 /* If this relocation section applies to a read only
5902 section, then we probably need a DT_TEXTREL entry.
5903 If the relocation section is .rel.dyn, we always
5904 assert a DT_TEXTREL entry rather than testing whether
5905 there exists a relocation to a read only section or
5906 not. */
5907 outname = bfd_get_section_name (output_bfd,
5908 s->output_section);
5909 target = bfd_get_section_by_name (output_bfd, outname + 4);
5910 if ((target != NULL
5911 && (target->flags & SEC_READONLY) != 0
5912 && (target->flags & SEC_ALLOC) != 0)
5913 || strcmp (outname, ".rel.dyn") == 0)
5914 reltext = TRUE;
5915
5916 /* We use the reloc_count field as a counter if we need
5917 to copy relocs into the output file. */
5918 if (strcmp (name, ".rel.dyn") != 0)
5919 s->reloc_count = 0;
5920
5921 /* If combreloc is enabled, elf_link_sort_relocs() will
5922 sort relocations, but in a different way than we do,
5923 and before we're done creating relocations. Also, it
5924 will move them around between input sections'
5925 relocation's contents, so our sorting would be
5926 broken, so don't let it run. */
5927 info->combreloc = 0;
5928 }
5929 }
5930 else if (strncmp (name, ".got", 4) == 0)
5931 {
5932 /* _bfd_mips_elf_always_size_sections() has already done
5933 most of the work, but some symbols may have been mapped
5934 to versions that we must now resolve in the got_entries
5935 hash tables. */
5936 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
5937 struct mips_got_info *g = gg;
5938 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
5939 unsigned int needed_relocs = 0;
5940
5941 if (gg->next)
5942 {
5943 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
5944 set_got_offset_arg.info = info;
5945
5946 mips_elf_resolve_final_got_entries (gg);
5947 for (g = gg->next; g && g->next != gg; g = g->next)
5948 {
5949 unsigned int save_assign;
5950
5951 mips_elf_resolve_final_got_entries (g);
5952
5953 /* Assign offsets to global GOT entries. */
5954 save_assign = g->assigned_gotno;
5955 g->assigned_gotno = g->local_gotno;
5956 set_got_offset_arg.g = g;
5957 set_got_offset_arg.needed_relocs = 0;
5958 htab_traverse (g->got_entries,
5959 mips_elf_set_global_got_offset,
5960 &set_got_offset_arg);
5961 needed_relocs += set_got_offset_arg.needed_relocs;
5962 BFD_ASSERT (g->assigned_gotno - g->local_gotno
5963 <= g->global_gotno);
5964
5965 g->assigned_gotno = save_assign;
5966 if (info->shared)
5967 {
5968 needed_relocs += g->local_gotno - g->assigned_gotno;
5969 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
5970 + g->next->global_gotno
5971 + MIPS_RESERVED_GOTNO);
5972 }
5973 }
5974
5975 if (needed_relocs)
5976 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
5977 }
5978 }
5979 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
5980 {
5981 /* IRIX rld assumes that the function stub isn't at the end
5982 of .text section. So put a dummy. XXX */
5983 s->_raw_size += MIPS_FUNCTION_STUB_SIZE;
5984 }
5985 else if (! info->shared
5986 && ! mips_elf_hash_table (info)->use_rld_obj_head
5987 && strncmp (name, ".rld_map", 8) == 0)
5988 {
5989 /* We add a room for __rld_map. It will be filled in by the
5990 rtld to contain a pointer to the _r_debug structure. */
5991 s->_raw_size += 4;
5992 }
5993 else if (SGI_COMPAT (output_bfd)
5994 && strncmp (name, ".compact_rel", 12) == 0)
5995 s->_raw_size += mips_elf_hash_table (info)->compact_rel_size;
5996 else if (strncmp (name, ".init", 5) != 0)
5997 {
5998 /* It's not one of our sections, so don't allocate space. */
5999 continue;
6000 }
6001
6002 if (strip)
6003 {
6004 _bfd_strip_section_from_output (info, s);
6005 continue;
6006 }
6007
6008 /* Allocate memory for the section contents. */
6009 s->contents = bfd_zalloc (dynobj, s->_raw_size);
6010 if (s->contents == NULL && s->_raw_size != 0)
6011 {
6012 bfd_set_error (bfd_error_no_memory);
6013 return FALSE;
6014 }
6015 }
6016
6017 if (elf_hash_table (info)->dynamic_sections_created)
6018 {
6019 /* Add some entries to the .dynamic section. We fill in the
6020 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6021 must add the entries now so that we get the correct size for
6022 the .dynamic section. The DT_DEBUG entry is filled in by the
6023 dynamic linker and used by the debugger. */
6024 if (! info->shared)
6025 {
6026 /* SGI object has the equivalence of DT_DEBUG in the
6027 DT_MIPS_RLD_MAP entry. */
6028 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
6029 return FALSE;
6030 if (!SGI_COMPAT (output_bfd))
6031 {
6032 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6033 return FALSE;
6034 }
6035 }
6036 else
6037 {
6038 /* Shared libraries on traditional mips have DT_DEBUG. */
6039 if (!SGI_COMPAT (output_bfd))
6040 {
6041 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6042 return FALSE;
6043 }
6044 }
6045
6046 if (reltext && SGI_COMPAT (output_bfd))
6047 info->flags |= DF_TEXTREL;
6048
6049 if ((info->flags & DF_TEXTREL) != 0)
6050 {
6051 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
6052 return FALSE;
6053 }
6054
6055 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
6056 return FALSE;
6057
6058 if (mips_elf_rel_dyn_section (dynobj, FALSE))
6059 {
6060 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
6061 return FALSE;
6062
6063 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
6064 return FALSE;
6065
6066 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
6067 return FALSE;
6068 }
6069
6070 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
6071 return FALSE;
6072
6073 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
6074 return FALSE;
6075
6076 #if 0
6077 /* Time stamps in executable files are a bad idea. */
6078 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0))
6079 return FALSE;
6080 #endif
6081
6082 #if 0 /* FIXME */
6083 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0))
6084 return FALSE;
6085 #endif
6086
6087 #if 0 /* FIXME */
6088 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0))
6089 return FALSE;
6090 #endif
6091
6092 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
6093 return FALSE;
6094
6095 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
6096 return FALSE;
6097
6098 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
6099 return FALSE;
6100
6101 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
6102 return FALSE;
6103
6104 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
6105 return FALSE;
6106
6107 if (IRIX_COMPAT (dynobj) == ict_irix5
6108 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
6109 return FALSE;
6110
6111 if (IRIX_COMPAT (dynobj) == ict_irix6
6112 && (bfd_get_section_by_name
6113 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6114 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
6115 return FALSE;
6116 }
6117
6118 return TRUE;
6119 }
6120 \f
6121 /* Relocate a MIPS ELF section. */
6122
6123 bfd_boolean
6124 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
6125 bfd *input_bfd, asection *input_section,
6126 bfd_byte *contents, Elf_Internal_Rela *relocs,
6127 Elf_Internal_Sym *local_syms,
6128 asection **local_sections)
6129 {
6130 Elf_Internal_Rela *rel;
6131 const Elf_Internal_Rela *relend;
6132 bfd_vma addend = 0;
6133 bfd_boolean use_saved_addend_p = FALSE;
6134 const struct elf_backend_data *bed;
6135
6136 bed = get_elf_backend_data (output_bfd);
6137 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6138 for (rel = relocs; rel < relend; ++rel)
6139 {
6140 const char *name;
6141 bfd_vma value;
6142 reloc_howto_type *howto;
6143 bfd_boolean require_jalx;
6144 /* TRUE if the relocation is a RELA relocation, rather than a
6145 REL relocation. */
6146 bfd_boolean rela_relocation_p = TRUE;
6147 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6148 const char *msg;
6149
6150 /* Find the relocation howto for this relocation. */
6151 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
6152 {
6153 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6154 64-bit code, but make sure all their addresses are in the
6155 lowermost or uppermost 32-bit section of the 64-bit address
6156 space. Thus, when they use an R_MIPS_64 they mean what is
6157 usually meant by R_MIPS_32, with the exception that the
6158 stored value is sign-extended to 64 bits. */
6159 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
6160
6161 /* On big-endian systems, we need to lie about the position
6162 of the reloc. */
6163 if (bfd_big_endian (input_bfd))
6164 rel->r_offset += 4;
6165 }
6166 else
6167 /* NewABI defaults to RELA relocations. */
6168 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
6169 NEWABI_P (input_bfd)
6170 && (MIPS_RELOC_RELA_P
6171 (input_bfd, input_section,
6172 rel - relocs)));
6173
6174 if (!use_saved_addend_p)
6175 {
6176 Elf_Internal_Shdr *rel_hdr;
6177
6178 /* If these relocations were originally of the REL variety,
6179 we must pull the addend out of the field that will be
6180 relocated. Otherwise, we simply use the contents of the
6181 RELA relocation. To determine which flavor or relocation
6182 this is, we depend on the fact that the INPUT_SECTION's
6183 REL_HDR is read before its REL_HDR2. */
6184 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6185 if ((size_t) (rel - relocs)
6186 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6187 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6188 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6189 {
6190 /* Note that this is a REL relocation. */
6191 rela_relocation_p = FALSE;
6192
6193 /* Get the addend, which is stored in the input file. */
6194 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6195 contents);
6196 addend &= howto->src_mask;
6197
6198 /* For some kinds of relocations, the ADDEND is a
6199 combination of the addend stored in two different
6200 relocations. */
6201 if (r_type == R_MIPS_HI16
6202 || (r_type == R_MIPS_GOT16
6203 && mips_elf_local_relocation_p (input_bfd, rel,
6204 local_sections, FALSE)))
6205 {
6206 bfd_vma l;
6207 const Elf_Internal_Rela *lo16_relocation;
6208 reloc_howto_type *lo16_howto;
6209
6210 /* The combined value is the sum of the HI16 addend,
6211 left-shifted by sixteen bits, and the LO16
6212 addend, sign extended. (Usually, the code does
6213 a `lui' of the HI16 value, and then an `addiu' of
6214 the LO16 value.)
6215
6216 Scan ahead to find a matching LO16 relocation.
6217
6218 According to the MIPS ELF ABI, the R_MIPS_LO16
6219 relocation must be immediately following.
6220 However, for the IRIX6 ABI, the next relocation
6221 may be a composed relocation consisting of
6222 several relocations for the same address. In
6223 that case, the R_MIPS_LO16 relocation may occur
6224 as one of these. We permit a similar extension
6225 in general, as that is useful for GCC. */
6226 lo16_relocation = mips_elf_next_relocation (input_bfd,
6227 R_MIPS_LO16,
6228 rel, relend);
6229 if (lo16_relocation == NULL)
6230 return FALSE;
6231
6232 /* Obtain the addend kept there. */
6233 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
6234 R_MIPS_LO16, FALSE);
6235 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
6236 input_bfd, contents);
6237 l &= lo16_howto->src_mask;
6238 l <<= lo16_howto->rightshift;
6239 l = _bfd_mips_elf_sign_extend (l, 16);
6240
6241 addend <<= 16;
6242
6243 /* Compute the combined addend. */
6244 addend += l;
6245 }
6246 else if (r_type == R_MIPS16_GPREL)
6247 {
6248 /* The addend is scrambled in the object file. See
6249 mips_elf_perform_relocation for details on the
6250 format. */
6251 addend = (((addend & 0x1f0000) >> 5)
6252 | ((addend & 0x7e00000) >> 16)
6253 | (addend & 0x1f));
6254 }
6255 else
6256 addend <<= howto->rightshift;
6257 }
6258 else
6259 addend = rel->r_addend;
6260 }
6261
6262 if (info->relocatable)
6263 {
6264 Elf_Internal_Sym *sym;
6265 unsigned long r_symndx;
6266
6267 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
6268 && bfd_big_endian (input_bfd))
6269 rel->r_offset -= 4;
6270
6271 /* Since we're just relocating, all we need to do is copy
6272 the relocations back out to the object file, unless
6273 they're against a section symbol, in which case we need
6274 to adjust by the section offset, or unless they're GP
6275 relative in which case we need to adjust by the amount
6276 that we're adjusting GP in this relocatable object. */
6277
6278 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
6279 FALSE))
6280 /* There's nothing to do for non-local relocations. */
6281 continue;
6282
6283 if (r_type == R_MIPS16_GPREL
6284 || r_type == R_MIPS_GPREL16
6285 || r_type == R_MIPS_GPREL32
6286 || r_type == R_MIPS_LITERAL)
6287 addend -= (_bfd_get_gp_value (output_bfd)
6288 - _bfd_get_gp_value (input_bfd));
6289
6290 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
6291 sym = local_syms + r_symndx;
6292 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6293 /* Adjust the addend appropriately. */
6294 addend += local_sections[r_symndx]->output_offset;
6295
6296 if (rela_relocation_p)
6297 /* If this is a RELA relocation, just update the addend. */
6298 rel->r_addend = addend;
6299 else
6300 {
6301 if (r_type == R_MIPS_HI16
6302 || r_type == R_MIPS_GOT16)
6303 addend = mips_elf_high (addend);
6304 else if (r_type == R_MIPS_HIGHER)
6305 addend = mips_elf_higher (addend);
6306 else if (r_type == R_MIPS_HIGHEST)
6307 addend = mips_elf_highest (addend);
6308 else
6309 addend >>= howto->rightshift;
6310
6311 /* We use the source mask, rather than the destination
6312 mask because the place to which we are writing will be
6313 source of the addend in the final link. */
6314 addend &= howto->src_mask;
6315
6316 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6317 /* See the comment above about using R_MIPS_64 in the 32-bit
6318 ABI. Here, we need to update the addend. It would be
6319 possible to get away with just using the R_MIPS_32 reloc
6320 but for endianness. */
6321 {
6322 bfd_vma sign_bits;
6323 bfd_vma low_bits;
6324 bfd_vma high_bits;
6325
6326 if (addend & ((bfd_vma) 1 << 31))
6327 #ifdef BFD64
6328 sign_bits = ((bfd_vma) 1 << 32) - 1;
6329 #else
6330 sign_bits = -1;
6331 #endif
6332 else
6333 sign_bits = 0;
6334
6335 /* If we don't know that we have a 64-bit type,
6336 do two separate stores. */
6337 if (bfd_big_endian (input_bfd))
6338 {
6339 /* Store the sign-bits (which are most significant)
6340 first. */
6341 low_bits = sign_bits;
6342 high_bits = addend;
6343 }
6344 else
6345 {
6346 low_bits = addend;
6347 high_bits = sign_bits;
6348 }
6349 bfd_put_32 (input_bfd, low_bits,
6350 contents + rel->r_offset);
6351 bfd_put_32 (input_bfd, high_bits,
6352 contents + rel->r_offset + 4);
6353 continue;
6354 }
6355
6356 if (! mips_elf_perform_relocation (info, howto, rel, addend,
6357 input_bfd, input_section,
6358 contents, FALSE))
6359 return FALSE;
6360 }
6361
6362 /* Go on to the next relocation. */
6363 continue;
6364 }
6365
6366 /* In the N32 and 64-bit ABIs there may be multiple consecutive
6367 relocations for the same offset. In that case we are
6368 supposed to treat the output of each relocation as the addend
6369 for the next. */
6370 if (rel + 1 < relend
6371 && rel->r_offset == rel[1].r_offset
6372 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
6373 use_saved_addend_p = TRUE;
6374 else
6375 use_saved_addend_p = FALSE;
6376
6377 /* Figure out what value we are supposed to relocate. */
6378 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
6379 input_section, info, rel,
6380 addend, howto, local_syms,
6381 local_sections, &value,
6382 &name, &require_jalx,
6383 use_saved_addend_p))
6384 {
6385 case bfd_reloc_continue:
6386 /* There's nothing to do. */
6387 continue;
6388
6389 case bfd_reloc_undefined:
6390 /* mips_elf_calculate_relocation already called the
6391 undefined_symbol callback. There's no real point in
6392 trying to perform the relocation at this point, so we
6393 just skip ahead to the next relocation. */
6394 continue;
6395
6396 case bfd_reloc_notsupported:
6397 msg = _("internal error: unsupported relocation error");
6398 info->callbacks->warning
6399 (info, msg, name, input_bfd, input_section, rel->r_offset);
6400 return FALSE;
6401
6402 case bfd_reloc_overflow:
6403 if (use_saved_addend_p)
6404 /* Ignore overflow until we reach the last relocation for
6405 a given location. */
6406 ;
6407 else
6408 {
6409 BFD_ASSERT (name != NULL);
6410 if (! ((*info->callbacks->reloc_overflow)
6411 (info, name, howto->name, 0,
6412 input_bfd, input_section, rel->r_offset)))
6413 return FALSE;
6414 }
6415 break;
6416
6417 case bfd_reloc_ok:
6418 break;
6419
6420 default:
6421 abort ();
6422 break;
6423 }
6424
6425 /* If we've got another relocation for the address, keep going
6426 until we reach the last one. */
6427 if (use_saved_addend_p)
6428 {
6429 addend = value;
6430 continue;
6431 }
6432
6433 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
6434 /* See the comment above about using R_MIPS_64 in the 32-bit
6435 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
6436 that calculated the right value. Now, however, we
6437 sign-extend the 32-bit result to 64-bits, and store it as a
6438 64-bit value. We are especially generous here in that we
6439 go to extreme lengths to support this usage on systems with
6440 only a 32-bit VMA. */
6441 {
6442 bfd_vma sign_bits;
6443 bfd_vma low_bits;
6444 bfd_vma high_bits;
6445
6446 if (value & ((bfd_vma) 1 << 31))
6447 #ifdef BFD64
6448 sign_bits = ((bfd_vma) 1 << 32) - 1;
6449 #else
6450 sign_bits = -1;
6451 #endif
6452 else
6453 sign_bits = 0;
6454
6455 /* If we don't know that we have a 64-bit type,
6456 do two separate stores. */
6457 if (bfd_big_endian (input_bfd))
6458 {
6459 /* Undo what we did above. */
6460 rel->r_offset -= 4;
6461 /* Store the sign-bits (which are most significant)
6462 first. */
6463 low_bits = sign_bits;
6464 high_bits = value;
6465 }
6466 else
6467 {
6468 low_bits = value;
6469 high_bits = sign_bits;
6470 }
6471 bfd_put_32 (input_bfd, low_bits,
6472 contents + rel->r_offset);
6473 bfd_put_32 (input_bfd, high_bits,
6474 contents + rel->r_offset + 4);
6475 continue;
6476 }
6477
6478 /* Actually perform the relocation. */
6479 if (! mips_elf_perform_relocation (info, howto, rel, value,
6480 input_bfd, input_section,
6481 contents, require_jalx))
6482 return FALSE;
6483 }
6484
6485 return TRUE;
6486 }
6487 \f
6488 /* If NAME is one of the special IRIX6 symbols defined by the linker,
6489 adjust it appropriately now. */
6490
6491 static void
6492 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
6493 const char *name, Elf_Internal_Sym *sym)
6494 {
6495 /* The linker script takes care of providing names and values for
6496 these, but we must place them into the right sections. */
6497 static const char* const text_section_symbols[] = {
6498 "_ftext",
6499 "_etext",
6500 "__dso_displacement",
6501 "__elf_header",
6502 "__program_header_table",
6503 NULL
6504 };
6505
6506 static const char* const data_section_symbols[] = {
6507 "_fdata",
6508 "_edata",
6509 "_end",
6510 "_fbss",
6511 NULL
6512 };
6513
6514 const char* const *p;
6515 int i;
6516
6517 for (i = 0; i < 2; ++i)
6518 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
6519 *p;
6520 ++p)
6521 if (strcmp (*p, name) == 0)
6522 {
6523 /* All of these symbols are given type STT_SECTION by the
6524 IRIX6 linker. */
6525 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6526 sym->st_other = STO_PROTECTED;
6527
6528 /* The IRIX linker puts these symbols in special sections. */
6529 if (i == 0)
6530 sym->st_shndx = SHN_MIPS_TEXT;
6531 else
6532 sym->st_shndx = SHN_MIPS_DATA;
6533
6534 break;
6535 }
6536 }
6537
6538 /* Finish up dynamic symbol handling. We set the contents of various
6539 dynamic sections here. */
6540
6541 bfd_boolean
6542 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
6543 struct bfd_link_info *info,
6544 struct elf_link_hash_entry *h,
6545 Elf_Internal_Sym *sym)
6546 {
6547 bfd *dynobj;
6548 bfd_vma gval;
6549 asection *sgot;
6550 struct mips_got_info *g, *gg;
6551 const char *name;
6552
6553 dynobj = elf_hash_table (info)->dynobj;
6554 gval = sym->st_value;
6555
6556 if (h->plt.offset != (bfd_vma) -1)
6557 {
6558 asection *s;
6559 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
6560
6561 /* This symbol has a stub. Set it up. */
6562
6563 BFD_ASSERT (h->dynindx != -1);
6564
6565 s = bfd_get_section_by_name (dynobj,
6566 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6567 BFD_ASSERT (s != NULL);
6568
6569 /* FIXME: Can h->dynindex be more than 64K? */
6570 if (h->dynindx & 0xffff0000)
6571 return FALSE;
6572
6573 /* Fill the stub. */
6574 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
6575 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
6576 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
6577 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
6578
6579 BFD_ASSERT (h->plt.offset <= s->_raw_size);
6580 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
6581
6582 /* Mark the symbol as undefined. plt.offset != -1 occurs
6583 only for the referenced symbol. */
6584 sym->st_shndx = SHN_UNDEF;
6585
6586 /* The run-time linker uses the st_value field of the symbol
6587 to reset the global offset table entry for this external
6588 to its stub address when unlinking a shared object. */
6589 gval = s->output_section->vma + s->output_offset + h->plt.offset;
6590 sym->st_value = gval;
6591 }
6592
6593 BFD_ASSERT (h->dynindx != -1
6594 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0);
6595
6596 sgot = mips_elf_got_section (dynobj, FALSE);
6597 BFD_ASSERT (sgot != NULL);
6598 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6599 g = mips_elf_section_data (sgot)->u.got_info;
6600 BFD_ASSERT (g != NULL);
6601
6602 /* Run through the global symbol table, creating GOT entries for all
6603 the symbols that need them. */
6604 if (g->global_gotsym != NULL
6605 && h->dynindx >= g->global_gotsym->dynindx)
6606 {
6607 bfd_vma offset;
6608 bfd_vma value;
6609
6610 value = sym->st_value;
6611 offset = mips_elf_global_got_index (dynobj, output_bfd, h);
6612 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
6613 }
6614
6615 if (g->next && h->dynindx != -1)
6616 {
6617 struct mips_got_entry e, *p;
6618 bfd_vma entry;
6619 bfd_vma offset;
6620
6621 gg = g;
6622
6623 e.abfd = output_bfd;
6624 e.symndx = -1;
6625 e.d.h = (struct mips_elf_link_hash_entry *)h;
6626
6627 for (g = g->next; g->next != gg; g = g->next)
6628 {
6629 if (g->got_entries
6630 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
6631 &e)))
6632 {
6633 offset = p->gotidx;
6634 if (info->shared
6635 || (elf_hash_table (info)->dynamic_sections_created
6636 && p->d.h != NULL
6637 && ((p->d.h->root.elf_link_hash_flags
6638 & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
6639 && ((p->d.h->root.elf_link_hash_flags
6640 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
6641 {
6642 /* Create an R_MIPS_REL32 relocation for this entry. Due to
6643 the various compatibility problems, it's easier to mock
6644 up an R_MIPS_32 or R_MIPS_64 relocation and leave
6645 mips_elf_create_dynamic_relocation to calculate the
6646 appropriate addend. */
6647 Elf_Internal_Rela rel[3];
6648
6649 memset (rel, 0, sizeof (rel));
6650 if (ABI_64_P (output_bfd))
6651 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
6652 else
6653 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
6654 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
6655
6656 entry = 0;
6657 if (! (mips_elf_create_dynamic_relocation
6658 (output_bfd, info, rel,
6659 e.d.h, NULL, sym->st_value, &entry, sgot)))
6660 return FALSE;
6661 }
6662 else
6663 entry = sym->st_value;
6664 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
6665 }
6666 }
6667 }
6668
6669 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
6670 name = h->root.root.string;
6671 if (strcmp (name, "_DYNAMIC") == 0
6672 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
6673 sym->st_shndx = SHN_ABS;
6674 else if (strcmp (name, "_DYNAMIC_LINK") == 0
6675 || strcmp (name, "_DYNAMIC_LINKING") == 0)
6676 {
6677 sym->st_shndx = SHN_ABS;
6678 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6679 sym->st_value = 1;
6680 }
6681 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
6682 {
6683 sym->st_shndx = SHN_ABS;
6684 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6685 sym->st_value = elf_gp (output_bfd);
6686 }
6687 else if (SGI_COMPAT (output_bfd))
6688 {
6689 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
6690 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
6691 {
6692 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6693 sym->st_other = STO_PROTECTED;
6694 sym->st_value = 0;
6695 sym->st_shndx = SHN_MIPS_DATA;
6696 }
6697 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
6698 {
6699 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6700 sym->st_other = STO_PROTECTED;
6701 sym->st_value = mips_elf_hash_table (info)->procedure_count;
6702 sym->st_shndx = SHN_ABS;
6703 }
6704 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
6705 {
6706 if (h->type == STT_FUNC)
6707 sym->st_shndx = SHN_MIPS_TEXT;
6708 else if (h->type == STT_OBJECT)
6709 sym->st_shndx = SHN_MIPS_DATA;
6710 }
6711 }
6712
6713 /* Handle the IRIX6-specific symbols. */
6714 if (IRIX_COMPAT (output_bfd) == ict_irix6)
6715 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
6716
6717 if (! info->shared)
6718 {
6719 if (! mips_elf_hash_table (info)->use_rld_obj_head
6720 && (strcmp (name, "__rld_map") == 0
6721 || strcmp (name, "__RLD_MAP") == 0))
6722 {
6723 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
6724 BFD_ASSERT (s != NULL);
6725 sym->st_value = s->output_section->vma + s->output_offset;
6726 bfd_put_32 (output_bfd, 0, s->contents);
6727 if (mips_elf_hash_table (info)->rld_value == 0)
6728 mips_elf_hash_table (info)->rld_value = sym->st_value;
6729 }
6730 else if (mips_elf_hash_table (info)->use_rld_obj_head
6731 && strcmp (name, "__rld_obj_head") == 0)
6732 {
6733 /* IRIX6 does not use a .rld_map section. */
6734 if (IRIX_COMPAT (output_bfd) == ict_irix5
6735 || IRIX_COMPAT (output_bfd) == ict_none)
6736 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
6737 != NULL);
6738 mips_elf_hash_table (info)->rld_value = sym->st_value;
6739 }
6740 }
6741
6742 /* If this is a mips16 symbol, force the value to be even. */
6743 if (sym->st_other == STO_MIPS16)
6744 sym->st_value &= ~1;
6745
6746 return TRUE;
6747 }
6748
6749 /* Finish up the dynamic sections. */
6750
6751 bfd_boolean
6752 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
6753 struct bfd_link_info *info)
6754 {
6755 bfd *dynobj;
6756 asection *sdyn;
6757 asection *sgot;
6758 struct mips_got_info *gg, *g;
6759
6760 dynobj = elf_hash_table (info)->dynobj;
6761
6762 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
6763
6764 sgot = mips_elf_got_section (dynobj, FALSE);
6765 if (sgot == NULL)
6766 gg = g = NULL;
6767 else
6768 {
6769 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6770 gg = mips_elf_section_data (sgot)->u.got_info;
6771 BFD_ASSERT (gg != NULL);
6772 g = mips_elf_got_for_ibfd (gg, output_bfd);
6773 BFD_ASSERT (g != NULL);
6774 }
6775
6776 if (elf_hash_table (info)->dynamic_sections_created)
6777 {
6778 bfd_byte *b;
6779
6780 BFD_ASSERT (sdyn != NULL);
6781 BFD_ASSERT (g != NULL);
6782
6783 for (b = sdyn->contents;
6784 b < sdyn->contents + sdyn->_raw_size;
6785 b += MIPS_ELF_DYN_SIZE (dynobj))
6786 {
6787 Elf_Internal_Dyn dyn;
6788 const char *name;
6789 size_t elemsize;
6790 asection *s;
6791 bfd_boolean swap_out_p;
6792
6793 /* Read in the current dynamic entry. */
6794 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
6795
6796 /* Assume that we're going to modify it and write it out. */
6797 swap_out_p = TRUE;
6798
6799 switch (dyn.d_tag)
6800 {
6801 case DT_RELENT:
6802 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6803 BFD_ASSERT (s != NULL);
6804 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
6805 break;
6806
6807 case DT_STRSZ:
6808 /* Rewrite DT_STRSZ. */
6809 dyn.d_un.d_val =
6810 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6811 break;
6812
6813 case DT_PLTGOT:
6814 name = ".got";
6815 s = bfd_get_section_by_name (output_bfd, name);
6816 BFD_ASSERT (s != NULL);
6817 dyn.d_un.d_ptr = s->vma;
6818 break;
6819
6820 case DT_MIPS_RLD_VERSION:
6821 dyn.d_un.d_val = 1; /* XXX */
6822 break;
6823
6824 case DT_MIPS_FLAGS:
6825 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
6826 break;
6827
6828 case DT_MIPS_TIME_STAMP:
6829 time ((time_t *) &dyn.d_un.d_val);
6830 break;
6831
6832 case DT_MIPS_ICHECKSUM:
6833 /* XXX FIXME: */
6834 swap_out_p = FALSE;
6835 break;
6836
6837 case DT_MIPS_IVERSION:
6838 /* XXX FIXME: */
6839 swap_out_p = FALSE;
6840 break;
6841
6842 case DT_MIPS_BASE_ADDRESS:
6843 s = output_bfd->sections;
6844 BFD_ASSERT (s != NULL);
6845 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
6846 break;
6847
6848 case DT_MIPS_LOCAL_GOTNO:
6849 dyn.d_un.d_val = g->local_gotno;
6850 break;
6851
6852 case DT_MIPS_UNREFEXTNO:
6853 /* The index into the dynamic symbol table which is the
6854 entry of the first external symbol that is not
6855 referenced within the same object. */
6856 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
6857 break;
6858
6859 case DT_MIPS_GOTSYM:
6860 if (gg->global_gotsym)
6861 {
6862 dyn.d_un.d_val = gg->global_gotsym->dynindx;
6863 break;
6864 }
6865 /* In case if we don't have global got symbols we default
6866 to setting DT_MIPS_GOTSYM to the same value as
6867 DT_MIPS_SYMTABNO, so we just fall through. */
6868
6869 case DT_MIPS_SYMTABNO:
6870 name = ".dynsym";
6871 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
6872 s = bfd_get_section_by_name (output_bfd, name);
6873 BFD_ASSERT (s != NULL);
6874
6875 if (s->_cooked_size != 0)
6876 dyn.d_un.d_val = s->_cooked_size / elemsize;
6877 else
6878 dyn.d_un.d_val = s->_raw_size / elemsize;
6879 break;
6880
6881 case DT_MIPS_HIPAGENO:
6882 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
6883 break;
6884
6885 case DT_MIPS_RLD_MAP:
6886 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
6887 break;
6888
6889 case DT_MIPS_OPTIONS:
6890 s = (bfd_get_section_by_name
6891 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
6892 dyn.d_un.d_ptr = s->vma;
6893 break;
6894
6895 case DT_RELSZ:
6896 /* Reduce DT_RELSZ to account for any relocations we
6897 decided not to make. This is for the n64 irix rld,
6898 which doesn't seem to apply any relocations if there
6899 are trailing null entries. */
6900 s = mips_elf_rel_dyn_section (dynobj, FALSE);
6901 dyn.d_un.d_val = (s->reloc_count
6902 * (ABI_64_P (output_bfd)
6903 ? sizeof (Elf64_Mips_External_Rel)
6904 : sizeof (Elf32_External_Rel)));
6905 break;
6906
6907 default:
6908 swap_out_p = FALSE;
6909 break;
6910 }
6911
6912 if (swap_out_p)
6913 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
6914 (dynobj, &dyn, b);
6915 }
6916 }
6917
6918 /* The first entry of the global offset table will be filled at
6919 runtime. The second entry will be used by some runtime loaders.
6920 This isn't the case of IRIX rld. */
6921 if (sgot != NULL && sgot->_raw_size > 0)
6922 {
6923 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents);
6924 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000,
6925 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
6926 }
6927
6928 if (sgot != NULL)
6929 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
6930 = MIPS_ELF_GOT_SIZE (output_bfd);
6931
6932 /* Generate dynamic relocations for the non-primary gots. */
6933 if (gg != NULL && gg->next)
6934 {
6935 Elf_Internal_Rela rel[3];
6936 bfd_vma addend = 0;
6937
6938 memset (rel, 0, sizeof (rel));
6939 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
6940
6941 for (g = gg->next; g->next != gg; g = g->next)
6942 {
6943 bfd_vma index = g->next->local_gotno + g->next->global_gotno;
6944
6945 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
6946 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6947 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
6948 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
6949
6950 if (! info->shared)
6951 continue;
6952
6953 while (index < g->assigned_gotno)
6954 {
6955 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
6956 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
6957 if (!(mips_elf_create_dynamic_relocation
6958 (output_bfd, info, rel, NULL,
6959 bfd_abs_section_ptr,
6960 0, &addend, sgot)))
6961 return FALSE;
6962 BFD_ASSERT (addend == 0);
6963 }
6964 }
6965 }
6966
6967 {
6968 asection *s;
6969 Elf32_compact_rel cpt;
6970
6971 if (SGI_COMPAT (output_bfd))
6972 {
6973 /* Write .compact_rel section out. */
6974 s = bfd_get_section_by_name (dynobj, ".compact_rel");
6975 if (s != NULL)
6976 {
6977 cpt.id1 = 1;
6978 cpt.num = s->reloc_count;
6979 cpt.id2 = 2;
6980 cpt.offset = (s->output_section->filepos
6981 + sizeof (Elf32_External_compact_rel));
6982 cpt.reserved0 = 0;
6983 cpt.reserved1 = 0;
6984 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
6985 ((Elf32_External_compact_rel *)
6986 s->contents));
6987
6988 /* Clean up a dummy stub function entry in .text. */
6989 s = bfd_get_section_by_name (dynobj,
6990 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6991 if (s != NULL)
6992 {
6993 file_ptr dummy_offset;
6994
6995 BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE);
6996 dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE;
6997 memset (s->contents + dummy_offset, 0,
6998 MIPS_FUNCTION_STUB_SIZE);
6999 }
7000 }
7001 }
7002
7003 /* We need to sort the entries of the dynamic relocation section. */
7004
7005 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7006
7007 if (s != NULL
7008 && s->_raw_size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
7009 {
7010 reldyn_sorting_bfd = output_bfd;
7011
7012 if (ABI_64_P (output_bfd))
7013 qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1,
7014 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7015 else
7016 qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1,
7017 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
7018 }
7019 }
7020
7021 return TRUE;
7022 }
7023
7024
7025 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7026
7027 static void
7028 mips_set_isa_flags (bfd *abfd)
7029 {
7030 flagword val;
7031
7032 switch (bfd_get_mach (abfd))
7033 {
7034 default:
7035 case bfd_mach_mips3000:
7036 val = E_MIPS_ARCH_1;
7037 break;
7038
7039 case bfd_mach_mips3900:
7040 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7041 break;
7042
7043 case bfd_mach_mips6000:
7044 val = E_MIPS_ARCH_2;
7045 break;
7046
7047 case bfd_mach_mips4000:
7048 case bfd_mach_mips4300:
7049 case bfd_mach_mips4400:
7050 case bfd_mach_mips4600:
7051 val = E_MIPS_ARCH_3;
7052 break;
7053
7054 case bfd_mach_mips4010:
7055 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7056 break;
7057
7058 case bfd_mach_mips4100:
7059 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7060 break;
7061
7062 case bfd_mach_mips4111:
7063 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7064 break;
7065
7066 case bfd_mach_mips4120:
7067 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7068 break;
7069
7070 case bfd_mach_mips4650:
7071 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7072 break;
7073
7074 case bfd_mach_mips5400:
7075 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7076 break;
7077
7078 case bfd_mach_mips5500:
7079 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7080 break;
7081
7082 case bfd_mach_mips5000:
7083 case bfd_mach_mips7000:
7084 case bfd_mach_mips8000:
7085 case bfd_mach_mips10000:
7086 case bfd_mach_mips12000:
7087 val = E_MIPS_ARCH_4;
7088 break;
7089
7090 case bfd_mach_mips5:
7091 val = E_MIPS_ARCH_5;
7092 break;
7093
7094 case bfd_mach_mips_sb1:
7095 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7096 break;
7097
7098 case bfd_mach_mipsisa32:
7099 val = E_MIPS_ARCH_32;
7100 break;
7101
7102 case bfd_mach_mipsisa64:
7103 val = E_MIPS_ARCH_64;
7104 break;
7105
7106 case bfd_mach_mipsisa32r2:
7107 val = E_MIPS_ARCH_32R2;
7108 break;
7109
7110 case bfd_mach_mipsisa64r2:
7111 val = E_MIPS_ARCH_64R2;
7112 break;
7113 }
7114 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7115 elf_elfheader (abfd)->e_flags |= val;
7116
7117 }
7118
7119
7120 /* The final processing done just before writing out a MIPS ELF object
7121 file. This gets the MIPS architecture right based on the machine
7122 number. This is used by both the 32-bit and the 64-bit ABI. */
7123
7124 void
7125 _bfd_mips_elf_final_write_processing (bfd *abfd,
7126 bfd_boolean linker ATTRIBUTE_UNUSED)
7127 {
7128 unsigned int i;
7129 Elf_Internal_Shdr **hdrpp;
7130 const char *name;
7131 asection *sec;
7132
7133 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7134 is nonzero. This is for compatibility with old objects, which used
7135 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7136 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7137 mips_set_isa_flags (abfd);
7138
7139 /* Set the sh_info field for .gptab sections and other appropriate
7140 info for each special section. */
7141 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7142 i < elf_numsections (abfd);
7143 i++, hdrpp++)
7144 {
7145 switch ((*hdrpp)->sh_type)
7146 {
7147 case SHT_MIPS_MSYM:
7148 case SHT_MIPS_LIBLIST:
7149 sec = bfd_get_section_by_name (abfd, ".dynstr");
7150 if (sec != NULL)
7151 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7152 break;
7153
7154 case SHT_MIPS_GPTAB:
7155 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7156 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7157 BFD_ASSERT (name != NULL
7158 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
7159 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
7160 BFD_ASSERT (sec != NULL);
7161 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7162 break;
7163
7164 case SHT_MIPS_CONTENT:
7165 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7166 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7167 BFD_ASSERT (name != NULL
7168 && strncmp (name, ".MIPS.content",
7169 sizeof ".MIPS.content" - 1) == 0);
7170 sec = bfd_get_section_by_name (abfd,
7171 name + sizeof ".MIPS.content" - 1);
7172 BFD_ASSERT (sec != NULL);
7173 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7174 break;
7175
7176 case SHT_MIPS_SYMBOL_LIB:
7177 sec = bfd_get_section_by_name (abfd, ".dynsym");
7178 if (sec != NULL)
7179 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7180 sec = bfd_get_section_by_name (abfd, ".liblist");
7181 if (sec != NULL)
7182 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
7183 break;
7184
7185 case SHT_MIPS_EVENTS:
7186 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
7187 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
7188 BFD_ASSERT (name != NULL);
7189 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
7190 sec = bfd_get_section_by_name (abfd,
7191 name + sizeof ".MIPS.events" - 1);
7192 else
7193 {
7194 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
7195 sizeof ".MIPS.post_rel" - 1) == 0);
7196 sec = bfd_get_section_by_name (abfd,
7197 (name
7198 + sizeof ".MIPS.post_rel" - 1));
7199 }
7200 BFD_ASSERT (sec != NULL);
7201 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7202 break;
7203
7204 }
7205 }
7206 }
7207 \f
7208 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
7209 segments. */
7210
7211 int
7212 _bfd_mips_elf_additional_program_headers (bfd *abfd)
7213 {
7214 asection *s;
7215 int ret = 0;
7216
7217 /* See if we need a PT_MIPS_REGINFO segment. */
7218 s = bfd_get_section_by_name (abfd, ".reginfo");
7219 if (s && (s->flags & SEC_LOAD))
7220 ++ret;
7221
7222 /* See if we need a PT_MIPS_OPTIONS segment. */
7223 if (IRIX_COMPAT (abfd) == ict_irix6
7224 && bfd_get_section_by_name (abfd,
7225 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
7226 ++ret;
7227
7228 /* See if we need a PT_MIPS_RTPROC segment. */
7229 if (IRIX_COMPAT (abfd) == ict_irix5
7230 && bfd_get_section_by_name (abfd, ".dynamic")
7231 && bfd_get_section_by_name (abfd, ".mdebug"))
7232 ++ret;
7233
7234 return ret;
7235 }
7236
7237 /* Modify the segment map for an IRIX5 executable. */
7238
7239 bfd_boolean
7240 _bfd_mips_elf_modify_segment_map (bfd *abfd,
7241 struct bfd_link_info *info ATTRIBUTE_UNUSED)
7242 {
7243 asection *s;
7244 struct elf_segment_map *m, **pm;
7245 bfd_size_type amt;
7246
7247 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
7248 segment. */
7249 s = bfd_get_section_by_name (abfd, ".reginfo");
7250 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7251 {
7252 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7253 if (m->p_type == PT_MIPS_REGINFO)
7254 break;
7255 if (m == NULL)
7256 {
7257 amt = sizeof *m;
7258 m = bfd_zalloc (abfd, amt);
7259 if (m == NULL)
7260 return FALSE;
7261
7262 m->p_type = PT_MIPS_REGINFO;
7263 m->count = 1;
7264 m->sections[0] = s;
7265
7266 /* We want to put it after the PHDR and INTERP segments. */
7267 pm = &elf_tdata (abfd)->segment_map;
7268 while (*pm != NULL
7269 && ((*pm)->p_type == PT_PHDR
7270 || (*pm)->p_type == PT_INTERP))
7271 pm = &(*pm)->next;
7272
7273 m->next = *pm;
7274 *pm = m;
7275 }
7276 }
7277
7278 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
7279 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
7280 PT_MIPS_OPTIONS segment immediately following the program header
7281 table. */
7282 if (NEWABI_P (abfd)
7283 /* On non-IRIX6 new abi, we'll have already created a segment
7284 for this section, so don't create another. I'm not sure this
7285 is not also the case for IRIX 6, but I can't test it right
7286 now. */
7287 && IRIX_COMPAT (abfd) == ict_irix6)
7288 {
7289 for (s = abfd->sections; s; s = s->next)
7290 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
7291 break;
7292
7293 if (s)
7294 {
7295 struct elf_segment_map *options_segment;
7296
7297 pm = &elf_tdata (abfd)->segment_map;
7298 while (*pm != NULL
7299 && ((*pm)->p_type == PT_PHDR
7300 || (*pm)->p_type == PT_INTERP))
7301 pm = &(*pm)->next;
7302
7303 amt = sizeof (struct elf_segment_map);
7304 options_segment = bfd_zalloc (abfd, amt);
7305 options_segment->next = *pm;
7306 options_segment->p_type = PT_MIPS_OPTIONS;
7307 options_segment->p_flags = PF_R;
7308 options_segment->p_flags_valid = TRUE;
7309 options_segment->count = 1;
7310 options_segment->sections[0] = s;
7311 *pm = options_segment;
7312 }
7313 }
7314 else
7315 {
7316 if (IRIX_COMPAT (abfd) == ict_irix5)
7317 {
7318 /* If there are .dynamic and .mdebug sections, we make a room
7319 for the RTPROC header. FIXME: Rewrite without section names. */
7320 if (bfd_get_section_by_name (abfd, ".interp") == NULL
7321 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
7322 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
7323 {
7324 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7325 if (m->p_type == PT_MIPS_RTPROC)
7326 break;
7327 if (m == NULL)
7328 {
7329 amt = sizeof *m;
7330 m = bfd_zalloc (abfd, amt);
7331 if (m == NULL)
7332 return FALSE;
7333
7334 m->p_type = PT_MIPS_RTPROC;
7335
7336 s = bfd_get_section_by_name (abfd, ".rtproc");
7337 if (s == NULL)
7338 {
7339 m->count = 0;
7340 m->p_flags = 0;
7341 m->p_flags_valid = 1;
7342 }
7343 else
7344 {
7345 m->count = 1;
7346 m->sections[0] = s;
7347 }
7348
7349 /* We want to put it after the DYNAMIC segment. */
7350 pm = &elf_tdata (abfd)->segment_map;
7351 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
7352 pm = &(*pm)->next;
7353 if (*pm != NULL)
7354 pm = &(*pm)->next;
7355
7356 m->next = *pm;
7357 *pm = m;
7358 }
7359 }
7360 }
7361 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
7362 .dynstr, .dynsym, and .hash sections, and everything in
7363 between. */
7364 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
7365 pm = &(*pm)->next)
7366 if ((*pm)->p_type == PT_DYNAMIC)
7367 break;
7368 m = *pm;
7369 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
7370 {
7371 /* For a normal mips executable the permissions for the PT_DYNAMIC
7372 segment are read, write and execute. We do that here since
7373 the code in elf.c sets only the read permission. This matters
7374 sometimes for the dynamic linker. */
7375 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
7376 {
7377 m->p_flags = PF_R | PF_W | PF_X;
7378 m->p_flags_valid = 1;
7379 }
7380 }
7381 if (m != NULL
7382 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
7383 {
7384 static const char *sec_names[] =
7385 {
7386 ".dynamic", ".dynstr", ".dynsym", ".hash"
7387 };
7388 bfd_vma low, high;
7389 unsigned int i, c;
7390 struct elf_segment_map *n;
7391
7392 low = ~(bfd_vma) 0;
7393 high = 0;
7394 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
7395 {
7396 s = bfd_get_section_by_name (abfd, sec_names[i]);
7397 if (s != NULL && (s->flags & SEC_LOAD) != 0)
7398 {
7399 bfd_size_type sz;
7400
7401 if (low > s->vma)
7402 low = s->vma;
7403 sz = s->_cooked_size;
7404 if (sz == 0)
7405 sz = s->_raw_size;
7406 if (high < s->vma + sz)
7407 high = s->vma + sz;
7408 }
7409 }
7410
7411 c = 0;
7412 for (s = abfd->sections; s != NULL; s = s->next)
7413 if ((s->flags & SEC_LOAD) != 0
7414 && s->vma >= low
7415 && ((s->vma
7416 + (s->_cooked_size !=
7417 0 ? s->_cooked_size : s->_raw_size)) <= high))
7418 ++c;
7419
7420 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
7421 n = bfd_zalloc (abfd, amt);
7422 if (n == NULL)
7423 return FALSE;
7424 *n = *m;
7425 n->count = c;
7426
7427 i = 0;
7428 for (s = abfd->sections; s != NULL; s = s->next)
7429 {
7430 if ((s->flags & SEC_LOAD) != 0
7431 && s->vma >= low
7432 && ((s->vma
7433 + (s->_cooked_size != 0 ?
7434 s->_cooked_size : s->_raw_size)) <= high))
7435 {
7436 n->sections[i] = s;
7437 ++i;
7438 }
7439 }
7440
7441 *pm = n;
7442 }
7443 }
7444
7445 return TRUE;
7446 }
7447 \f
7448 /* Return the section that should be marked against GC for a given
7449 relocation. */
7450
7451 asection *
7452 _bfd_mips_elf_gc_mark_hook (asection *sec,
7453 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7454 Elf_Internal_Rela *rel,
7455 struct elf_link_hash_entry *h,
7456 Elf_Internal_Sym *sym)
7457 {
7458 /* ??? Do mips16 stub sections need to be handled special? */
7459
7460 if (h != NULL)
7461 {
7462 switch (ELF_R_TYPE (sec->owner, rel->r_info))
7463 {
7464 case R_MIPS_GNU_VTINHERIT:
7465 case R_MIPS_GNU_VTENTRY:
7466 break;
7467
7468 default:
7469 switch (h->root.type)
7470 {
7471 case bfd_link_hash_defined:
7472 case bfd_link_hash_defweak:
7473 return h->root.u.def.section;
7474
7475 case bfd_link_hash_common:
7476 return h->root.u.c.p->section;
7477
7478 default:
7479 break;
7480 }
7481 }
7482 }
7483 else
7484 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7485
7486 return NULL;
7487 }
7488
7489 /* Update the got entry reference counts for the section being removed. */
7490
7491 bfd_boolean
7492 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
7493 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7494 asection *sec ATTRIBUTE_UNUSED,
7495 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
7496 {
7497 #if 0
7498 Elf_Internal_Shdr *symtab_hdr;
7499 struct elf_link_hash_entry **sym_hashes;
7500 bfd_signed_vma *local_got_refcounts;
7501 const Elf_Internal_Rela *rel, *relend;
7502 unsigned long r_symndx;
7503 struct elf_link_hash_entry *h;
7504
7505 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7506 sym_hashes = elf_sym_hashes (abfd);
7507 local_got_refcounts = elf_local_got_refcounts (abfd);
7508
7509 relend = relocs + sec->reloc_count;
7510 for (rel = relocs; rel < relend; rel++)
7511 switch (ELF_R_TYPE (abfd, rel->r_info))
7512 {
7513 case R_MIPS_GOT16:
7514 case R_MIPS_CALL16:
7515 case R_MIPS_CALL_HI16:
7516 case R_MIPS_CALL_LO16:
7517 case R_MIPS_GOT_HI16:
7518 case R_MIPS_GOT_LO16:
7519 case R_MIPS_GOT_DISP:
7520 case R_MIPS_GOT_PAGE:
7521 case R_MIPS_GOT_OFST:
7522 /* ??? It would seem that the existing MIPS code does no sort
7523 of reference counting or whatnot on its GOT and PLT entries,
7524 so it is not possible to garbage collect them at this time. */
7525 break;
7526
7527 default:
7528 break;
7529 }
7530 #endif
7531
7532 return TRUE;
7533 }
7534 \f
7535 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
7536 hiding the old indirect symbol. Process additional relocation
7537 information. Also called for weakdefs, in which case we just let
7538 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
7539
7540 void
7541 _bfd_mips_elf_copy_indirect_symbol (const struct elf_backend_data *bed,
7542 struct elf_link_hash_entry *dir,
7543 struct elf_link_hash_entry *ind)
7544 {
7545 struct mips_elf_link_hash_entry *dirmips, *indmips;
7546
7547 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
7548
7549 if (ind->root.type != bfd_link_hash_indirect)
7550 return;
7551
7552 dirmips = (struct mips_elf_link_hash_entry *) dir;
7553 indmips = (struct mips_elf_link_hash_entry *) ind;
7554 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
7555 if (indmips->readonly_reloc)
7556 dirmips->readonly_reloc = TRUE;
7557 if (indmips->no_fn_stub)
7558 dirmips->no_fn_stub = TRUE;
7559 }
7560
7561 void
7562 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
7563 struct elf_link_hash_entry *entry,
7564 bfd_boolean force_local)
7565 {
7566 bfd *dynobj;
7567 asection *got;
7568 struct mips_got_info *g;
7569 struct mips_elf_link_hash_entry *h;
7570
7571 h = (struct mips_elf_link_hash_entry *) entry;
7572 if (h->forced_local)
7573 return;
7574 h->forced_local = force_local;
7575
7576 dynobj = elf_hash_table (info)->dynobj;
7577 if (dynobj != NULL && force_local)
7578 {
7579 got = mips_elf_got_section (dynobj, FALSE);
7580 g = mips_elf_section_data (got)->u.got_info;
7581
7582 if (g->next)
7583 {
7584 struct mips_got_entry e;
7585 struct mips_got_info *gg = g;
7586
7587 /* Since we're turning what used to be a global symbol into a
7588 local one, bump up the number of local entries of each GOT
7589 that had an entry for it. This will automatically decrease
7590 the number of global entries, since global_gotno is actually
7591 the upper limit of global entries. */
7592 e.abfd = dynobj;
7593 e.symndx = -1;
7594 e.d.h = h;
7595
7596 for (g = g->next; g != gg; g = g->next)
7597 if (htab_find (g->got_entries, &e))
7598 {
7599 BFD_ASSERT (g->global_gotno > 0);
7600 g->local_gotno++;
7601 g->global_gotno--;
7602 }
7603
7604 /* If this was a global symbol forced into the primary GOT, we
7605 no longer need an entry for it. We can't release the entry
7606 at this point, but we must at least stop counting it as one
7607 of the symbols that required a forced got entry. */
7608 if (h->root.got.offset == 2)
7609 {
7610 BFD_ASSERT (gg->assigned_gotno > 0);
7611 gg->assigned_gotno--;
7612 }
7613 }
7614 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
7615 /* If we haven't got through GOT allocation yet, just bump up the
7616 number of local entries, as this symbol won't be counted as
7617 global. */
7618 g->local_gotno++;
7619 else if (h->root.got.offset == 1)
7620 {
7621 /* If we're past non-multi-GOT allocation and this symbol had
7622 been marked for a global got entry, give it a local entry
7623 instead. */
7624 BFD_ASSERT (g->global_gotno > 0);
7625 g->local_gotno++;
7626 g->global_gotno--;
7627 }
7628 }
7629
7630 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
7631 }
7632 \f
7633 #define PDR_SIZE 32
7634
7635 bfd_boolean
7636 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
7637 struct bfd_link_info *info)
7638 {
7639 asection *o;
7640 bfd_boolean ret = FALSE;
7641 unsigned char *tdata;
7642 size_t i, skip;
7643
7644 o = bfd_get_section_by_name (abfd, ".pdr");
7645 if (! o)
7646 return FALSE;
7647 if (o->_raw_size == 0)
7648 return FALSE;
7649 if (o->_raw_size % PDR_SIZE != 0)
7650 return FALSE;
7651 if (o->output_section != NULL
7652 && bfd_is_abs_section (o->output_section))
7653 return FALSE;
7654
7655 tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE);
7656 if (! tdata)
7657 return FALSE;
7658
7659 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7660 info->keep_memory);
7661 if (!cookie->rels)
7662 {
7663 free (tdata);
7664 return FALSE;
7665 }
7666
7667 cookie->rel = cookie->rels;
7668 cookie->relend = cookie->rels + o->reloc_count;
7669
7670 for (i = 0, skip = 0; i < o->_raw_size / PDR_SIZE; i ++)
7671 {
7672 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
7673 {
7674 tdata[i] = 1;
7675 skip ++;
7676 }
7677 }
7678
7679 if (skip != 0)
7680 {
7681 mips_elf_section_data (o)->u.tdata = tdata;
7682 o->_cooked_size = o->_raw_size - skip * PDR_SIZE;
7683 ret = TRUE;
7684 }
7685 else
7686 free (tdata);
7687
7688 if (! info->keep_memory)
7689 free (cookie->rels);
7690
7691 return ret;
7692 }
7693
7694 bfd_boolean
7695 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
7696 {
7697 if (strcmp (sec->name, ".pdr") == 0)
7698 return TRUE;
7699 return FALSE;
7700 }
7701
7702 bfd_boolean
7703 _bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
7704 bfd_byte *contents)
7705 {
7706 bfd_byte *to, *from, *end;
7707 int i;
7708
7709 if (strcmp (sec->name, ".pdr") != 0)
7710 return FALSE;
7711
7712 if (mips_elf_section_data (sec)->u.tdata == NULL)
7713 return FALSE;
7714
7715 to = contents;
7716 end = contents + sec->_raw_size;
7717 for (from = contents, i = 0;
7718 from < end;
7719 from += PDR_SIZE, i++)
7720 {
7721 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
7722 continue;
7723 if (to != from)
7724 memcpy (to, from, PDR_SIZE);
7725 to += PDR_SIZE;
7726 }
7727 bfd_set_section_contents (output_bfd, sec->output_section, contents,
7728 sec->output_offset, sec->_cooked_size);
7729 return TRUE;
7730 }
7731 \f
7732 /* MIPS ELF uses a special find_nearest_line routine in order the
7733 handle the ECOFF debugging information. */
7734
7735 struct mips_elf_find_line
7736 {
7737 struct ecoff_debug_info d;
7738 struct ecoff_find_line i;
7739 };
7740
7741 bfd_boolean
7742 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
7743 asymbol **symbols, bfd_vma offset,
7744 const char **filename_ptr,
7745 const char **functionname_ptr,
7746 unsigned int *line_ptr)
7747 {
7748 asection *msec;
7749
7750 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7751 filename_ptr, functionname_ptr,
7752 line_ptr))
7753 return TRUE;
7754
7755 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7756 filename_ptr, functionname_ptr,
7757 line_ptr, ABI_64_P (abfd) ? 8 : 0,
7758 &elf_tdata (abfd)->dwarf2_find_line_info))
7759 return TRUE;
7760
7761 msec = bfd_get_section_by_name (abfd, ".mdebug");
7762 if (msec != NULL)
7763 {
7764 flagword origflags;
7765 struct mips_elf_find_line *fi;
7766 const struct ecoff_debug_swap * const swap =
7767 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
7768
7769 /* If we are called during a link, mips_elf_final_link may have
7770 cleared the SEC_HAS_CONTENTS field. We force it back on here
7771 if appropriate (which it normally will be). */
7772 origflags = msec->flags;
7773 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
7774 msec->flags |= SEC_HAS_CONTENTS;
7775
7776 fi = elf_tdata (abfd)->find_line_info;
7777 if (fi == NULL)
7778 {
7779 bfd_size_type external_fdr_size;
7780 char *fraw_src;
7781 char *fraw_end;
7782 struct fdr *fdr_ptr;
7783 bfd_size_type amt = sizeof (struct mips_elf_find_line);
7784
7785 fi = bfd_zalloc (abfd, amt);
7786 if (fi == NULL)
7787 {
7788 msec->flags = origflags;
7789 return FALSE;
7790 }
7791
7792 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
7793 {
7794 msec->flags = origflags;
7795 return FALSE;
7796 }
7797
7798 /* Swap in the FDR information. */
7799 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
7800 fi->d.fdr = bfd_alloc (abfd, amt);
7801 if (fi->d.fdr == NULL)
7802 {
7803 msec->flags = origflags;
7804 return FALSE;
7805 }
7806 external_fdr_size = swap->external_fdr_size;
7807 fdr_ptr = fi->d.fdr;
7808 fraw_src = (char *) fi->d.external_fdr;
7809 fraw_end = (fraw_src
7810 + fi->d.symbolic_header.ifdMax * external_fdr_size);
7811 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
7812 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
7813
7814 elf_tdata (abfd)->find_line_info = fi;
7815
7816 /* Note that we don't bother to ever free this information.
7817 find_nearest_line is either called all the time, as in
7818 objdump -l, so the information should be saved, or it is
7819 rarely called, as in ld error messages, so the memory
7820 wasted is unimportant. Still, it would probably be a
7821 good idea for free_cached_info to throw it away. */
7822 }
7823
7824 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
7825 &fi->i, filename_ptr, functionname_ptr,
7826 line_ptr))
7827 {
7828 msec->flags = origflags;
7829 return TRUE;
7830 }
7831
7832 msec->flags = origflags;
7833 }
7834
7835 /* Fall back on the generic ELF find_nearest_line routine. */
7836
7837 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
7838 filename_ptr, functionname_ptr,
7839 line_ptr);
7840 }
7841 \f
7842 /* When are writing out the .options or .MIPS.options section,
7843 remember the bytes we are writing out, so that we can install the
7844 GP value in the section_processing routine. */
7845
7846 bfd_boolean
7847 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
7848 const void *location,
7849 file_ptr offset, bfd_size_type count)
7850 {
7851 if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
7852 {
7853 bfd_byte *c;
7854
7855 if (elf_section_data (section) == NULL)
7856 {
7857 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
7858 section->used_by_bfd = bfd_zalloc (abfd, amt);
7859 if (elf_section_data (section) == NULL)
7860 return FALSE;
7861 }
7862 c = mips_elf_section_data (section)->u.tdata;
7863 if (c == NULL)
7864 {
7865 bfd_size_type size;
7866
7867 if (section->_cooked_size != 0)
7868 size = section->_cooked_size;
7869 else
7870 size = section->_raw_size;
7871 c = bfd_zalloc (abfd, size);
7872 if (c == NULL)
7873 return FALSE;
7874 mips_elf_section_data (section)->u.tdata = c;
7875 }
7876
7877 memcpy (c + offset, location, count);
7878 }
7879
7880 return _bfd_elf_set_section_contents (abfd, section, location, offset,
7881 count);
7882 }
7883
7884 /* This is almost identical to bfd_generic_get_... except that some
7885 MIPS relocations need to be handled specially. Sigh. */
7886
7887 bfd_byte *
7888 _bfd_elf_mips_get_relocated_section_contents
7889 (bfd *abfd,
7890 struct bfd_link_info *link_info,
7891 struct bfd_link_order *link_order,
7892 bfd_byte *data,
7893 bfd_boolean relocatable,
7894 asymbol **symbols)
7895 {
7896 /* Get enough memory to hold the stuff */
7897 bfd *input_bfd = link_order->u.indirect.section->owner;
7898 asection *input_section = link_order->u.indirect.section;
7899
7900 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
7901 arelent **reloc_vector = NULL;
7902 long reloc_count;
7903
7904 if (reloc_size < 0)
7905 goto error_return;
7906
7907 reloc_vector = bfd_malloc (reloc_size);
7908 if (reloc_vector == NULL && reloc_size != 0)
7909 goto error_return;
7910
7911 /* read in the section */
7912 if (!bfd_get_section_contents (input_bfd, input_section, data, 0,
7913 input_section->_raw_size))
7914 goto error_return;
7915
7916 /* We're not relaxing the section, so just copy the size info */
7917 input_section->_cooked_size = input_section->_raw_size;
7918 input_section->reloc_done = TRUE;
7919
7920 reloc_count = bfd_canonicalize_reloc (input_bfd,
7921 input_section,
7922 reloc_vector,
7923 symbols);
7924 if (reloc_count < 0)
7925 goto error_return;
7926
7927 if (reloc_count > 0)
7928 {
7929 arelent **parent;
7930 /* for mips */
7931 int gp_found;
7932 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
7933
7934 {
7935 struct bfd_hash_entry *h;
7936 struct bfd_link_hash_entry *lh;
7937 /* Skip all this stuff if we aren't mixing formats. */
7938 if (abfd && input_bfd
7939 && abfd->xvec == input_bfd->xvec)
7940 lh = 0;
7941 else
7942 {
7943 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
7944 lh = (struct bfd_link_hash_entry *) h;
7945 }
7946 lookup:
7947 if (lh)
7948 {
7949 switch (lh->type)
7950 {
7951 case bfd_link_hash_undefined:
7952 case bfd_link_hash_undefweak:
7953 case bfd_link_hash_common:
7954 gp_found = 0;
7955 break;
7956 case bfd_link_hash_defined:
7957 case bfd_link_hash_defweak:
7958 gp_found = 1;
7959 gp = lh->u.def.value;
7960 break;
7961 case bfd_link_hash_indirect:
7962 case bfd_link_hash_warning:
7963 lh = lh->u.i.link;
7964 /* @@FIXME ignoring warning for now */
7965 goto lookup;
7966 case bfd_link_hash_new:
7967 default:
7968 abort ();
7969 }
7970 }
7971 else
7972 gp_found = 0;
7973 }
7974 /* end mips */
7975 for (parent = reloc_vector; *parent != NULL; parent++)
7976 {
7977 char *error_message = NULL;
7978 bfd_reloc_status_type r;
7979
7980 /* Specific to MIPS: Deal with relocation types that require
7981 knowing the gp of the output bfd. */
7982 asymbol *sym = *(*parent)->sym_ptr_ptr;
7983 if (bfd_is_abs_section (sym->section) && abfd)
7984 {
7985 /* The special_function wouldn't get called anyway. */
7986 }
7987 else if (!gp_found)
7988 {
7989 /* The gp isn't there; let the special function code
7990 fall over on its own. */
7991 }
7992 else if ((*parent)->howto->special_function
7993 == _bfd_mips_elf32_gprel16_reloc)
7994 {
7995 /* bypass special_function call */
7996 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
7997 input_section, relocatable,
7998 data, gp);
7999 goto skip_bfd_perform_relocation;
8000 }
8001 /* end mips specific stuff */
8002
8003 r = bfd_perform_relocation (input_bfd, *parent, data, input_section,
8004 relocatable ? abfd : NULL,
8005 &error_message);
8006 skip_bfd_perform_relocation:
8007
8008 if (relocatable)
8009 {
8010 asection *os = input_section->output_section;
8011
8012 /* A partial link, so keep the relocs */
8013 os->orelocation[os->reloc_count] = *parent;
8014 os->reloc_count++;
8015 }
8016
8017 if (r != bfd_reloc_ok)
8018 {
8019 switch (r)
8020 {
8021 case bfd_reloc_undefined:
8022 if (!((*link_info->callbacks->undefined_symbol)
8023 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8024 input_bfd, input_section, (*parent)->address,
8025 TRUE)))
8026 goto error_return;
8027 break;
8028 case bfd_reloc_dangerous:
8029 BFD_ASSERT (error_message != NULL);
8030 if (!((*link_info->callbacks->reloc_dangerous)
8031 (link_info, error_message, input_bfd, input_section,
8032 (*parent)->address)))
8033 goto error_return;
8034 break;
8035 case bfd_reloc_overflow:
8036 if (!((*link_info->callbacks->reloc_overflow)
8037 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8038 (*parent)->howto->name, (*parent)->addend,
8039 input_bfd, input_section, (*parent)->address)))
8040 goto error_return;
8041 break;
8042 case bfd_reloc_outofrange:
8043 default:
8044 abort ();
8045 break;
8046 }
8047
8048 }
8049 }
8050 }
8051 if (reloc_vector != NULL)
8052 free (reloc_vector);
8053 return data;
8054
8055 error_return:
8056 if (reloc_vector != NULL)
8057 free (reloc_vector);
8058 return NULL;
8059 }
8060 \f
8061 /* Create a MIPS ELF linker hash table. */
8062
8063 struct bfd_link_hash_table *
8064 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
8065 {
8066 struct mips_elf_link_hash_table *ret;
8067 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8068
8069 ret = bfd_malloc (amt);
8070 if (ret == NULL)
8071 return NULL;
8072
8073 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8074 mips_elf_link_hash_newfunc))
8075 {
8076 free (ret);
8077 return NULL;
8078 }
8079
8080 #if 0
8081 /* We no longer use this. */
8082 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8083 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8084 #endif
8085 ret->procedure_count = 0;
8086 ret->compact_rel_size = 0;
8087 ret->use_rld_obj_head = FALSE;
8088 ret->rld_value = 0;
8089 ret->mips16_stubs_seen = FALSE;
8090
8091 return &ret->root.root;
8092 }
8093 \f
8094 /* We need to use a special link routine to handle the .reginfo and
8095 the .mdebug sections. We need to merge all instances of these
8096 sections together, not write them all out sequentially. */
8097
8098 bfd_boolean
8099 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
8100 {
8101 asection **secpp;
8102 asection *o;
8103 struct bfd_link_order *p;
8104 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8105 asection *rtproc_sec;
8106 Elf32_RegInfo reginfo;
8107 struct ecoff_debug_info debug;
8108 const struct ecoff_debug_swap *swap
8109 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8110 HDRR *symhdr = &debug.symbolic_header;
8111 void *mdebug_handle = NULL;
8112 asection *s;
8113 EXTR esym;
8114 unsigned int i;
8115 bfd_size_type amt;
8116
8117 static const char * const secname[] =
8118 {
8119 ".text", ".init", ".fini", ".data",
8120 ".rodata", ".sdata", ".sbss", ".bss"
8121 };
8122 static const int sc[] =
8123 {
8124 scText, scInit, scFini, scData,
8125 scRData, scSData, scSBss, scBss
8126 };
8127
8128 /* We'd carefully arranged the dynamic symbol indices, and then the
8129 generic size_dynamic_sections renumbered them out from under us.
8130 Rather than trying somehow to prevent the renumbering, just do
8131 the sort again. */
8132 if (elf_hash_table (info)->dynamic_sections_created)
8133 {
8134 bfd *dynobj;
8135 asection *got;
8136 struct mips_got_info *g;
8137
8138 /* When we resort, we must tell mips_elf_sort_hash_table what
8139 the lowest index it may use is. That's the number of section
8140 symbols we're going to add. The generic ELF linker only
8141 adds these symbols when building a shared object. Note that
8142 we count the sections after (possibly) removing the .options
8143 section above. */
8144 if (! mips_elf_sort_hash_table (info, (info->shared
8145 ? bfd_count_sections (abfd) + 1
8146 : 1)))
8147 return FALSE;
8148
8149 /* Make sure we didn't grow the global .got region. */
8150 dynobj = elf_hash_table (info)->dynobj;
8151 got = mips_elf_got_section (dynobj, FALSE);
8152 g = mips_elf_section_data (got)->u.got_info;
8153
8154 if (g->global_gotsym != NULL)
8155 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
8156 - g->global_gotsym->dynindx)
8157 <= g->global_gotno);
8158 }
8159
8160 #if 0
8161 /* We want to set the GP value for ld -r. */
8162 /* On IRIX5, we omit the .options section. On IRIX6, however, we
8163 include it, even though we don't process it quite right. (Some
8164 entries are supposed to be merged.) Empirically, we seem to be
8165 better off including it then not. */
8166 if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
8167 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8168 {
8169 if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0)
8170 {
8171 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8172 if (p->type == bfd_indirect_link_order)
8173 p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS;
8174 (*secpp)->link_order_head = NULL;
8175 bfd_section_list_remove (abfd, secpp);
8176 --abfd->section_count;
8177
8178 break;
8179 }
8180 }
8181
8182 /* We include .MIPS.options, even though we don't process it quite right.
8183 (Some entries are supposed to be merged.) At IRIX6 empirically we seem
8184 to be better off including it than not. */
8185 for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next)
8186 {
8187 if (strcmp ((*secpp)->name, ".MIPS.options") == 0)
8188 {
8189 for (p = (*secpp)->link_order_head; p != NULL; p = p->next)
8190 if (p->type == bfd_indirect_link_order)
8191 p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS;
8192 (*secpp)->link_order_head = NULL;
8193 bfd_section_list_remove (abfd, secpp);
8194 --abfd->section_count;
8195
8196 break;
8197 }
8198 }
8199 #endif
8200
8201 /* Get a value for the GP register. */
8202 if (elf_gp (abfd) == 0)
8203 {
8204 struct bfd_link_hash_entry *h;
8205
8206 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
8207 if (h != NULL && h->type == bfd_link_hash_defined)
8208 elf_gp (abfd) = (h->u.def.value
8209 + h->u.def.section->output_section->vma
8210 + h->u.def.section->output_offset);
8211 else if (info->relocatable)
8212 {
8213 bfd_vma lo = MINUS_ONE;
8214
8215 /* Find the GP-relative section with the lowest offset. */
8216 for (o = abfd->sections; o != NULL; o = o->next)
8217 if (o->vma < lo
8218 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
8219 lo = o->vma;
8220
8221 /* And calculate GP relative to that. */
8222 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
8223 }
8224 else
8225 {
8226 /* If the relocate_section function needs to do a reloc
8227 involving the GP value, it should make a reloc_dangerous
8228 callback to warn that GP is not defined. */
8229 }
8230 }
8231
8232 /* Go through the sections and collect the .reginfo and .mdebug
8233 information. */
8234 reginfo_sec = NULL;
8235 mdebug_sec = NULL;
8236 gptab_data_sec = NULL;
8237 gptab_bss_sec = NULL;
8238 for (o = abfd->sections; o != NULL; o = o->next)
8239 {
8240 if (strcmp (o->name, ".reginfo") == 0)
8241 {
8242 memset (&reginfo, 0, sizeof reginfo);
8243
8244 /* We have found the .reginfo section in the output file.
8245 Look through all the link_orders comprising it and merge
8246 the information together. */
8247 for (p = o->link_order_head; p != NULL; p = p->next)
8248 {
8249 asection *input_section;
8250 bfd *input_bfd;
8251 Elf32_External_RegInfo ext;
8252 Elf32_RegInfo sub;
8253
8254 if (p->type != bfd_indirect_link_order)
8255 {
8256 if (p->type == bfd_data_link_order)
8257 continue;
8258 abort ();
8259 }
8260
8261 input_section = p->u.indirect.section;
8262 input_bfd = input_section->owner;
8263
8264 /* The linker emulation code has probably clobbered the
8265 size to be zero bytes. */
8266 if (input_section->_raw_size == 0)
8267 input_section->_raw_size = sizeof (Elf32_External_RegInfo);
8268
8269 if (! bfd_get_section_contents (input_bfd, input_section,
8270 &ext, 0, sizeof ext))
8271 return FALSE;
8272
8273 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
8274
8275 reginfo.ri_gprmask |= sub.ri_gprmask;
8276 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
8277 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
8278 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
8279 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
8280
8281 /* ri_gp_value is set by the function
8282 mips_elf32_section_processing when the section is
8283 finally written out. */
8284
8285 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8286 elf_link_input_bfd ignores this section. */
8287 input_section->flags &= ~SEC_HAS_CONTENTS;
8288 }
8289
8290 /* Size has been set in _bfd_mips_elf_always_size_sections. */
8291 BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo));
8292
8293 /* Skip this section later on (I don't think this currently
8294 matters, but someday it might). */
8295 o->link_order_head = NULL;
8296
8297 reginfo_sec = o;
8298 }
8299
8300 if (strcmp (o->name, ".mdebug") == 0)
8301 {
8302 struct extsym_info einfo;
8303 bfd_vma last;
8304
8305 /* We have found the .mdebug section in the output file.
8306 Look through all the link_orders comprising it and merge
8307 the information together. */
8308 symhdr->magic = swap->sym_magic;
8309 /* FIXME: What should the version stamp be? */
8310 symhdr->vstamp = 0;
8311 symhdr->ilineMax = 0;
8312 symhdr->cbLine = 0;
8313 symhdr->idnMax = 0;
8314 symhdr->ipdMax = 0;
8315 symhdr->isymMax = 0;
8316 symhdr->ioptMax = 0;
8317 symhdr->iauxMax = 0;
8318 symhdr->issMax = 0;
8319 symhdr->issExtMax = 0;
8320 symhdr->ifdMax = 0;
8321 symhdr->crfd = 0;
8322 symhdr->iextMax = 0;
8323
8324 /* We accumulate the debugging information itself in the
8325 debug_info structure. */
8326 debug.line = NULL;
8327 debug.external_dnr = NULL;
8328 debug.external_pdr = NULL;
8329 debug.external_sym = NULL;
8330 debug.external_opt = NULL;
8331 debug.external_aux = NULL;
8332 debug.ss = NULL;
8333 debug.ssext = debug.ssext_end = NULL;
8334 debug.external_fdr = NULL;
8335 debug.external_rfd = NULL;
8336 debug.external_ext = debug.external_ext_end = NULL;
8337
8338 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
8339 if (mdebug_handle == NULL)
8340 return FALSE;
8341
8342 esym.jmptbl = 0;
8343 esym.cobol_main = 0;
8344 esym.weakext = 0;
8345 esym.reserved = 0;
8346 esym.ifd = ifdNil;
8347 esym.asym.iss = issNil;
8348 esym.asym.st = stLocal;
8349 esym.asym.reserved = 0;
8350 esym.asym.index = indexNil;
8351 last = 0;
8352 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
8353 {
8354 esym.asym.sc = sc[i];
8355 s = bfd_get_section_by_name (abfd, secname[i]);
8356 if (s != NULL)
8357 {
8358 esym.asym.value = s->vma;
8359 last = s->vma + s->_raw_size;
8360 }
8361 else
8362 esym.asym.value = last;
8363 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
8364 secname[i], &esym))
8365 return FALSE;
8366 }
8367
8368 for (p = o->link_order_head; p != NULL; p = p->next)
8369 {
8370 asection *input_section;
8371 bfd *input_bfd;
8372 const struct ecoff_debug_swap *input_swap;
8373 struct ecoff_debug_info input_debug;
8374 char *eraw_src;
8375 char *eraw_end;
8376
8377 if (p->type != bfd_indirect_link_order)
8378 {
8379 if (p->type == bfd_data_link_order)
8380 continue;
8381 abort ();
8382 }
8383
8384 input_section = p->u.indirect.section;
8385 input_bfd = input_section->owner;
8386
8387 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
8388 || (get_elf_backend_data (input_bfd)
8389 ->elf_backend_ecoff_debug_swap) == NULL)
8390 {
8391 /* I don't know what a non MIPS ELF bfd would be
8392 doing with a .mdebug section, but I don't really
8393 want to deal with it. */
8394 continue;
8395 }
8396
8397 input_swap = (get_elf_backend_data (input_bfd)
8398 ->elf_backend_ecoff_debug_swap);
8399
8400 BFD_ASSERT (p->size == input_section->_raw_size);
8401
8402 /* The ECOFF linking code expects that we have already
8403 read in the debugging information and set up an
8404 ecoff_debug_info structure, so we do that now. */
8405 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
8406 &input_debug))
8407 return FALSE;
8408
8409 if (! (bfd_ecoff_debug_accumulate
8410 (mdebug_handle, abfd, &debug, swap, input_bfd,
8411 &input_debug, input_swap, info)))
8412 return FALSE;
8413
8414 /* Loop through the external symbols. For each one with
8415 interesting information, try to find the symbol in
8416 the linker global hash table and save the information
8417 for the output external symbols. */
8418 eraw_src = input_debug.external_ext;
8419 eraw_end = (eraw_src
8420 + (input_debug.symbolic_header.iextMax
8421 * input_swap->external_ext_size));
8422 for (;
8423 eraw_src < eraw_end;
8424 eraw_src += input_swap->external_ext_size)
8425 {
8426 EXTR ext;
8427 const char *name;
8428 struct mips_elf_link_hash_entry *h;
8429
8430 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
8431 if (ext.asym.sc == scNil
8432 || ext.asym.sc == scUndefined
8433 || ext.asym.sc == scSUndefined)
8434 continue;
8435
8436 name = input_debug.ssext + ext.asym.iss;
8437 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
8438 name, FALSE, FALSE, TRUE);
8439 if (h == NULL || h->esym.ifd != -2)
8440 continue;
8441
8442 if (ext.ifd != -1)
8443 {
8444 BFD_ASSERT (ext.ifd
8445 < input_debug.symbolic_header.ifdMax);
8446 ext.ifd = input_debug.ifdmap[ext.ifd];
8447 }
8448
8449 h->esym = ext;
8450 }
8451
8452 /* Free up the information we just read. */
8453 free (input_debug.line);
8454 free (input_debug.external_dnr);
8455 free (input_debug.external_pdr);
8456 free (input_debug.external_sym);
8457 free (input_debug.external_opt);
8458 free (input_debug.external_aux);
8459 free (input_debug.ss);
8460 free (input_debug.ssext);
8461 free (input_debug.external_fdr);
8462 free (input_debug.external_rfd);
8463 free (input_debug.external_ext);
8464
8465 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8466 elf_link_input_bfd ignores this section. */
8467 input_section->flags &= ~SEC_HAS_CONTENTS;
8468 }
8469
8470 if (SGI_COMPAT (abfd) && info->shared)
8471 {
8472 /* Create .rtproc section. */
8473 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8474 if (rtproc_sec == NULL)
8475 {
8476 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
8477 | SEC_LINKER_CREATED | SEC_READONLY);
8478
8479 rtproc_sec = bfd_make_section (abfd, ".rtproc");
8480 if (rtproc_sec == NULL
8481 || ! bfd_set_section_flags (abfd, rtproc_sec, flags)
8482 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
8483 return FALSE;
8484 }
8485
8486 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
8487 info, rtproc_sec,
8488 &debug))
8489 return FALSE;
8490 }
8491
8492 /* Build the external symbol information. */
8493 einfo.abfd = abfd;
8494 einfo.info = info;
8495 einfo.debug = &debug;
8496 einfo.swap = swap;
8497 einfo.failed = FALSE;
8498 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8499 mips_elf_output_extsym, &einfo);
8500 if (einfo.failed)
8501 return FALSE;
8502
8503 /* Set the size of the .mdebug section. */
8504 o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap);
8505
8506 /* Skip this section later on (I don't think this currently
8507 matters, but someday it might). */
8508 o->link_order_head = NULL;
8509
8510 mdebug_sec = o;
8511 }
8512
8513 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
8514 {
8515 const char *subname;
8516 unsigned int c;
8517 Elf32_gptab *tab;
8518 Elf32_External_gptab *ext_tab;
8519 unsigned int j;
8520
8521 /* The .gptab.sdata and .gptab.sbss sections hold
8522 information describing how the small data area would
8523 change depending upon the -G switch. These sections
8524 not used in executables files. */
8525 if (! info->relocatable)
8526 {
8527 for (p = o->link_order_head; p != NULL; p = p->next)
8528 {
8529 asection *input_section;
8530
8531 if (p->type != bfd_indirect_link_order)
8532 {
8533 if (p->type == bfd_data_link_order)
8534 continue;
8535 abort ();
8536 }
8537
8538 input_section = p->u.indirect.section;
8539
8540 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8541 elf_link_input_bfd ignores this section. */
8542 input_section->flags &= ~SEC_HAS_CONTENTS;
8543 }
8544
8545 /* Skip this section later on (I don't think this
8546 currently matters, but someday it might). */
8547 o->link_order_head = NULL;
8548
8549 /* Really remove the section. */
8550 for (secpp = &abfd->sections;
8551 *secpp != o;
8552 secpp = &(*secpp)->next)
8553 ;
8554 bfd_section_list_remove (abfd, secpp);
8555 --abfd->section_count;
8556
8557 continue;
8558 }
8559
8560 /* There is one gptab for initialized data, and one for
8561 uninitialized data. */
8562 if (strcmp (o->name, ".gptab.sdata") == 0)
8563 gptab_data_sec = o;
8564 else if (strcmp (o->name, ".gptab.sbss") == 0)
8565 gptab_bss_sec = o;
8566 else
8567 {
8568 (*_bfd_error_handler)
8569 (_("%s: illegal section name `%s'"),
8570 bfd_get_filename (abfd), o->name);
8571 bfd_set_error (bfd_error_nonrepresentable_section);
8572 return FALSE;
8573 }
8574
8575 /* The linker script always combines .gptab.data and
8576 .gptab.sdata into .gptab.sdata, and likewise for
8577 .gptab.bss and .gptab.sbss. It is possible that there is
8578 no .sdata or .sbss section in the output file, in which
8579 case we must change the name of the output section. */
8580 subname = o->name + sizeof ".gptab" - 1;
8581 if (bfd_get_section_by_name (abfd, subname) == NULL)
8582 {
8583 if (o == gptab_data_sec)
8584 o->name = ".gptab.data";
8585 else
8586 o->name = ".gptab.bss";
8587 subname = o->name + sizeof ".gptab" - 1;
8588 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
8589 }
8590
8591 /* Set up the first entry. */
8592 c = 1;
8593 amt = c * sizeof (Elf32_gptab);
8594 tab = bfd_malloc (amt);
8595 if (tab == NULL)
8596 return FALSE;
8597 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
8598 tab[0].gt_header.gt_unused = 0;
8599
8600 /* Combine the input sections. */
8601 for (p = o->link_order_head; p != NULL; p = p->next)
8602 {
8603 asection *input_section;
8604 bfd *input_bfd;
8605 bfd_size_type size;
8606 unsigned long last;
8607 bfd_size_type gpentry;
8608
8609 if (p->type != bfd_indirect_link_order)
8610 {
8611 if (p->type == bfd_data_link_order)
8612 continue;
8613 abort ();
8614 }
8615
8616 input_section = p->u.indirect.section;
8617 input_bfd = input_section->owner;
8618
8619 /* Combine the gptab entries for this input section one
8620 by one. We know that the input gptab entries are
8621 sorted by ascending -G value. */
8622 size = bfd_section_size (input_bfd, input_section);
8623 last = 0;
8624 for (gpentry = sizeof (Elf32_External_gptab);
8625 gpentry < size;
8626 gpentry += sizeof (Elf32_External_gptab))
8627 {
8628 Elf32_External_gptab ext_gptab;
8629 Elf32_gptab int_gptab;
8630 unsigned long val;
8631 unsigned long add;
8632 bfd_boolean exact;
8633 unsigned int look;
8634
8635 if (! (bfd_get_section_contents
8636 (input_bfd, input_section, &ext_gptab, gpentry,
8637 sizeof (Elf32_External_gptab))))
8638 {
8639 free (tab);
8640 return FALSE;
8641 }
8642
8643 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
8644 &int_gptab);
8645 val = int_gptab.gt_entry.gt_g_value;
8646 add = int_gptab.gt_entry.gt_bytes - last;
8647
8648 exact = FALSE;
8649 for (look = 1; look < c; look++)
8650 {
8651 if (tab[look].gt_entry.gt_g_value >= val)
8652 tab[look].gt_entry.gt_bytes += add;
8653
8654 if (tab[look].gt_entry.gt_g_value == val)
8655 exact = TRUE;
8656 }
8657
8658 if (! exact)
8659 {
8660 Elf32_gptab *new_tab;
8661 unsigned int max;
8662
8663 /* We need a new table entry. */
8664 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
8665 new_tab = bfd_realloc (tab, amt);
8666 if (new_tab == NULL)
8667 {
8668 free (tab);
8669 return FALSE;
8670 }
8671 tab = new_tab;
8672 tab[c].gt_entry.gt_g_value = val;
8673 tab[c].gt_entry.gt_bytes = add;
8674
8675 /* Merge in the size for the next smallest -G
8676 value, since that will be implied by this new
8677 value. */
8678 max = 0;
8679 for (look = 1; look < c; look++)
8680 {
8681 if (tab[look].gt_entry.gt_g_value < val
8682 && (max == 0
8683 || (tab[look].gt_entry.gt_g_value
8684 > tab[max].gt_entry.gt_g_value)))
8685 max = look;
8686 }
8687 if (max != 0)
8688 tab[c].gt_entry.gt_bytes +=
8689 tab[max].gt_entry.gt_bytes;
8690
8691 ++c;
8692 }
8693
8694 last = int_gptab.gt_entry.gt_bytes;
8695 }
8696
8697 /* Hack: reset the SEC_HAS_CONTENTS flag so that
8698 elf_link_input_bfd ignores this section. */
8699 input_section->flags &= ~SEC_HAS_CONTENTS;
8700 }
8701
8702 /* The table must be sorted by -G value. */
8703 if (c > 2)
8704 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
8705
8706 /* Swap out the table. */
8707 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
8708 ext_tab = bfd_alloc (abfd, amt);
8709 if (ext_tab == NULL)
8710 {
8711 free (tab);
8712 return FALSE;
8713 }
8714
8715 for (j = 0; j < c; j++)
8716 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
8717 free (tab);
8718
8719 o->_raw_size = c * sizeof (Elf32_External_gptab);
8720 o->contents = (bfd_byte *) ext_tab;
8721
8722 /* Skip this section later on (I don't think this currently
8723 matters, but someday it might). */
8724 o->link_order_head = NULL;
8725 }
8726 }
8727
8728 /* Invoke the regular ELF backend linker to do all the work. */
8729 if (!bfd_elf_final_link (abfd, info))
8730 return FALSE;
8731
8732 /* Now write out the computed sections. */
8733
8734 if (reginfo_sec != NULL)
8735 {
8736 Elf32_External_RegInfo ext;
8737
8738 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
8739 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
8740 return FALSE;
8741 }
8742
8743 if (mdebug_sec != NULL)
8744 {
8745 BFD_ASSERT (abfd->output_has_begun);
8746 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
8747 swap, info,
8748 mdebug_sec->filepos))
8749 return FALSE;
8750
8751 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
8752 }
8753
8754 if (gptab_data_sec != NULL)
8755 {
8756 if (! bfd_set_section_contents (abfd, gptab_data_sec,
8757 gptab_data_sec->contents,
8758 0, gptab_data_sec->_raw_size))
8759 return FALSE;
8760 }
8761
8762 if (gptab_bss_sec != NULL)
8763 {
8764 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
8765 gptab_bss_sec->contents,
8766 0, gptab_bss_sec->_raw_size))
8767 return FALSE;
8768 }
8769
8770 if (SGI_COMPAT (abfd))
8771 {
8772 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
8773 if (rtproc_sec != NULL)
8774 {
8775 if (! bfd_set_section_contents (abfd, rtproc_sec,
8776 rtproc_sec->contents,
8777 0, rtproc_sec->_raw_size))
8778 return FALSE;
8779 }
8780 }
8781
8782 return TRUE;
8783 }
8784 \f
8785 /* Structure for saying that BFD machine EXTENSION extends BASE. */
8786
8787 struct mips_mach_extension {
8788 unsigned long extension, base;
8789 };
8790
8791
8792 /* An array describing how BFD machines relate to one another. The entries
8793 are ordered topologically with MIPS I extensions listed last. */
8794
8795 static const struct mips_mach_extension mips_mach_extensions[] = {
8796 /* MIPS64 extensions. */
8797 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
8798 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
8799
8800 /* MIPS V extensions. */
8801 { bfd_mach_mipsisa64, bfd_mach_mips5 },
8802
8803 /* R10000 extensions. */
8804 { bfd_mach_mips12000, bfd_mach_mips10000 },
8805
8806 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
8807 vr5400 ISA, but doesn't include the multimedia stuff. It seems
8808 better to allow vr5400 and vr5500 code to be merged anyway, since
8809 many libraries will just use the core ISA. Perhaps we could add
8810 some sort of ASE flag if this ever proves a problem. */
8811 { bfd_mach_mips5500, bfd_mach_mips5400 },
8812 { bfd_mach_mips5400, bfd_mach_mips5000 },
8813
8814 /* MIPS IV extensions. */
8815 { bfd_mach_mips5, bfd_mach_mips8000 },
8816 { bfd_mach_mips10000, bfd_mach_mips8000 },
8817 { bfd_mach_mips5000, bfd_mach_mips8000 },
8818 { bfd_mach_mips7000, bfd_mach_mips8000 },
8819
8820 /* VR4100 extensions. */
8821 { bfd_mach_mips4120, bfd_mach_mips4100 },
8822 { bfd_mach_mips4111, bfd_mach_mips4100 },
8823
8824 /* MIPS III extensions. */
8825 { bfd_mach_mips8000, bfd_mach_mips4000 },
8826 { bfd_mach_mips4650, bfd_mach_mips4000 },
8827 { bfd_mach_mips4600, bfd_mach_mips4000 },
8828 { bfd_mach_mips4400, bfd_mach_mips4000 },
8829 { bfd_mach_mips4300, bfd_mach_mips4000 },
8830 { bfd_mach_mips4100, bfd_mach_mips4000 },
8831 { bfd_mach_mips4010, bfd_mach_mips4000 },
8832
8833 /* MIPS32 extensions. */
8834 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
8835
8836 /* MIPS II extensions. */
8837 { bfd_mach_mips4000, bfd_mach_mips6000 },
8838 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
8839
8840 /* MIPS I extensions. */
8841 { bfd_mach_mips6000, bfd_mach_mips3000 },
8842 { bfd_mach_mips3900, bfd_mach_mips3000 }
8843 };
8844
8845
8846 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
8847
8848 static bfd_boolean
8849 mips_mach_extends_p (unsigned long base, unsigned long extension)
8850 {
8851 size_t i;
8852
8853 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
8854 if (extension == mips_mach_extensions[i].extension)
8855 extension = mips_mach_extensions[i].base;
8856
8857 return extension == base;
8858 }
8859
8860
8861 /* Return true if the given ELF header flags describe a 32-bit binary. */
8862
8863 static bfd_boolean
8864 mips_32bit_flags_p (flagword flags)
8865 {
8866 return ((flags & EF_MIPS_32BITMODE) != 0
8867 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
8868 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
8869 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
8870 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
8871 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
8872 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
8873 }
8874
8875
8876 /* Merge backend specific data from an object file to the output
8877 object file when linking. */
8878
8879 bfd_boolean
8880 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
8881 {
8882 flagword old_flags;
8883 flagword new_flags;
8884 bfd_boolean ok;
8885 bfd_boolean null_input_bfd = TRUE;
8886 asection *sec;
8887
8888 /* Check if we have the same endianess */
8889 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
8890 {
8891 (*_bfd_error_handler)
8892 (_("%s: endianness incompatible with that of the selected emulation"),
8893 bfd_archive_filename (ibfd));
8894 return FALSE;
8895 }
8896
8897 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8898 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8899 return TRUE;
8900
8901 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
8902 {
8903 (*_bfd_error_handler)
8904 (_("%s: ABI is incompatible with that of the selected emulation"),
8905 bfd_archive_filename (ibfd));
8906 return FALSE;
8907 }
8908
8909 new_flags = elf_elfheader (ibfd)->e_flags;
8910 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
8911 old_flags = elf_elfheader (obfd)->e_flags;
8912
8913 if (! elf_flags_init (obfd))
8914 {
8915 elf_flags_init (obfd) = TRUE;
8916 elf_elfheader (obfd)->e_flags = new_flags;
8917 elf_elfheader (obfd)->e_ident[EI_CLASS]
8918 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
8919
8920 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8921 && bfd_get_arch_info (obfd)->the_default)
8922 {
8923 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
8924 bfd_get_mach (ibfd)))
8925 return FALSE;
8926 }
8927
8928 return TRUE;
8929 }
8930
8931 /* Check flag compatibility. */
8932
8933 new_flags &= ~EF_MIPS_NOREORDER;
8934 old_flags &= ~EF_MIPS_NOREORDER;
8935
8936 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
8937 doesn't seem to matter. */
8938 new_flags &= ~EF_MIPS_XGOT;
8939 old_flags &= ~EF_MIPS_XGOT;
8940
8941 /* MIPSpro generates ucode info in n64 objects. Again, we should
8942 just be able to ignore this. */
8943 new_flags &= ~EF_MIPS_UCODE;
8944 old_flags &= ~EF_MIPS_UCODE;
8945
8946 if (new_flags == old_flags)
8947 return TRUE;
8948
8949 /* Check to see if the input BFD actually contains any sections.
8950 If not, its flags may not have been initialised either, but it cannot
8951 actually cause any incompatibility. */
8952 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8953 {
8954 /* Ignore synthetic sections and empty .text, .data and .bss sections
8955 which are automatically generated by gas. */
8956 if (strcmp (sec->name, ".reginfo")
8957 && strcmp (sec->name, ".mdebug")
8958 && (sec->_raw_size != 0
8959 || (strcmp (sec->name, ".text")
8960 && strcmp (sec->name, ".data")
8961 && strcmp (sec->name, ".bss"))))
8962 {
8963 null_input_bfd = FALSE;
8964 break;
8965 }
8966 }
8967 if (null_input_bfd)
8968 return TRUE;
8969
8970 ok = TRUE;
8971
8972 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
8973 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
8974 {
8975 (*_bfd_error_handler)
8976 (_("%s: warning: linking PIC files with non-PIC files"),
8977 bfd_archive_filename (ibfd));
8978 ok = TRUE;
8979 }
8980
8981 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
8982 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
8983 if (! (new_flags & EF_MIPS_PIC))
8984 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
8985
8986 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
8987 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
8988
8989 /* Compare the ISAs. */
8990 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
8991 {
8992 (*_bfd_error_handler)
8993 (_("%s: linking 32-bit code with 64-bit code"),
8994 bfd_archive_filename (ibfd));
8995 ok = FALSE;
8996 }
8997 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
8998 {
8999 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9000 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
9001 {
9002 /* Copy the architecture info from IBFD to OBFD. Also copy
9003 the 32-bit flag (if set) so that we continue to recognise
9004 OBFD as a 32-bit binary. */
9005 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9006 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9007 elf_elfheader (obfd)->e_flags
9008 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9009
9010 /* Copy across the ABI flags if OBFD doesn't use them
9011 and if that was what caused us to treat IBFD as 32-bit. */
9012 if ((old_flags & EF_MIPS_ABI) == 0
9013 && mips_32bit_flags_p (new_flags)
9014 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9015 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
9016 }
9017 else
9018 {
9019 /* The ISAs aren't compatible. */
9020 (*_bfd_error_handler)
9021 (_("%s: linking %s module with previous %s modules"),
9022 bfd_archive_filename (ibfd),
9023 bfd_printable_name (ibfd),
9024 bfd_printable_name (obfd));
9025 ok = FALSE;
9026 }
9027 }
9028
9029 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9030 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9031
9032 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
9033 does set EI_CLASS differently from any 32-bit ABI. */
9034 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9035 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9036 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9037 {
9038 /* Only error if both are set (to different values). */
9039 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9040 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9041 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9042 {
9043 (*_bfd_error_handler)
9044 (_("%s: ABI mismatch: linking %s module with previous %s modules"),
9045 bfd_archive_filename (ibfd),
9046 elf_mips_abi_name (ibfd),
9047 elf_mips_abi_name (obfd));
9048 ok = FALSE;
9049 }
9050 new_flags &= ~EF_MIPS_ABI;
9051 old_flags &= ~EF_MIPS_ABI;
9052 }
9053
9054 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9055 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9056 {
9057 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9058
9059 new_flags &= ~ EF_MIPS_ARCH_ASE;
9060 old_flags &= ~ EF_MIPS_ARCH_ASE;
9061 }
9062
9063 /* Warn about any other mismatches */
9064 if (new_flags != old_flags)
9065 {
9066 (*_bfd_error_handler)
9067 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9068 bfd_archive_filename (ibfd), (unsigned long) new_flags,
9069 (unsigned long) old_flags);
9070 ok = FALSE;
9071 }
9072
9073 if (! ok)
9074 {
9075 bfd_set_error (bfd_error_bad_value);
9076 return FALSE;
9077 }
9078
9079 return TRUE;
9080 }
9081
9082 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9083
9084 bfd_boolean
9085 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
9086 {
9087 BFD_ASSERT (!elf_flags_init (abfd)
9088 || elf_elfheader (abfd)->e_flags == flags);
9089
9090 elf_elfheader (abfd)->e_flags = flags;
9091 elf_flags_init (abfd) = TRUE;
9092 return TRUE;
9093 }
9094
9095 bfd_boolean
9096 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
9097 {
9098 FILE *file = ptr;
9099
9100 BFD_ASSERT (abfd != NULL && ptr != NULL);
9101
9102 /* Print normal ELF private data. */
9103 _bfd_elf_print_private_bfd_data (abfd, ptr);
9104
9105 /* xgettext:c-format */
9106 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9107
9108 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9109 fprintf (file, _(" [abi=O32]"));
9110 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9111 fprintf (file, _(" [abi=O64]"));
9112 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9113 fprintf (file, _(" [abi=EABI32]"));
9114 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9115 fprintf (file, _(" [abi=EABI64]"));
9116 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9117 fprintf (file, _(" [abi unknown]"));
9118 else if (ABI_N32_P (abfd))
9119 fprintf (file, _(" [abi=N32]"));
9120 else if (ABI_64_P (abfd))
9121 fprintf (file, _(" [abi=64]"));
9122 else
9123 fprintf (file, _(" [no abi set]"));
9124
9125 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9126 fprintf (file, _(" [mips1]"));
9127 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9128 fprintf (file, _(" [mips2]"));
9129 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9130 fprintf (file, _(" [mips3]"));
9131 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9132 fprintf (file, _(" [mips4]"));
9133 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9134 fprintf (file, _(" [mips5]"));
9135 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9136 fprintf (file, _(" [mips32]"));
9137 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9138 fprintf (file, _(" [mips64]"));
9139 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9140 fprintf (file, _(" [mips32r2]"));
9141 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
9142 fprintf (file, _(" [mips64r2]"));
9143 else
9144 fprintf (file, _(" [unknown ISA]"));
9145
9146 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9147 fprintf (file, _(" [mdmx]"));
9148
9149 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9150 fprintf (file, _(" [mips16]"));
9151
9152 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9153 fprintf (file, _(" [32bitmode]"));
9154 else
9155 fprintf (file, _(" [not 32bitmode]"));
9156
9157 fputc ('\n', file);
9158
9159 return TRUE;
9160 }
9161
9162 struct bfd_elf_special_section const _bfd_mips_elf_special_sections[]=
9163 {
9164 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9165 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9166 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9167 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9168 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
9169 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
9170 { NULL, 0, 0, 0, 0 }
9171 };
This page took 0.33877 seconds and 4 git commands to generate.