2011-12-13 Chung-Lin Tang <cltang@codesourcery.com>
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
30
31 /* This file handles functionality common to the different MIPS ABI's. */
32
33 #include "sysdep.h"
34 #include "bfd.h"
35 #include "libbfd.h"
36 #include "libiberty.h"
37 #include "elf-bfd.h"
38 #include "elfxx-mips.h"
39 #include "elf/mips.h"
40 #include "elf-vxworks.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* This structure is used to hold information about one GOT entry.
51 There are three types of entry:
52
53 (1) absolute addresses
54 (abfd == NULL)
55 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
56 (abfd != NULL, symndx >= 0)
57 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
58 (abfd != NULL, symndx == -1)
59
60 Type (3) entries are treated differently for different types of GOT.
61 In the "master" GOT -- i.e. the one that describes every GOT
62 reference needed in the link -- the mips_got_entry is keyed on both
63 the symbol and the input bfd that references it. If it turns out
64 that we need multiple GOTs, we can then use this information to
65 create separate GOTs for each input bfd.
66
67 However, we want each of these separate GOTs to have at most one
68 entry for a given symbol, so their type (3) entries are keyed only
69 on the symbol. The input bfd given by the "abfd" field is somewhat
70 arbitrary in this case.
71
72 This means that when there are multiple GOTs, each GOT has a unique
73 mips_got_entry for every symbol within it. We can therefore use the
74 mips_got_entry fields (tls_type and gotidx) to track the symbol's
75 GOT index.
76
77 However, if it turns out that we need only a single GOT, we continue
78 to use the master GOT to describe it. There may therefore be several
79 mips_got_entries for the same symbol, each with a different input bfd.
80 We want to make sure that each symbol gets a unique GOT entry, so when
81 there's a single GOT, we use the symbol's hash entry, not the
82 mips_got_entry fields, to track a symbol's GOT index. */
83 struct mips_got_entry
84 {
85 /* The input bfd in which the symbol is defined. */
86 bfd *abfd;
87 /* The index of the symbol, as stored in the relocation r_info, if
88 we have a local symbol; -1 otherwise. */
89 long symndx;
90 union
91 {
92 /* If abfd == NULL, an address that must be stored in the got. */
93 bfd_vma address;
94 /* If abfd != NULL && symndx != -1, the addend of the relocation
95 that should be added to the symbol value. */
96 bfd_vma addend;
97 /* If abfd != NULL && symndx == -1, the hash table entry
98 corresponding to symbol in the GOT. The symbol's entry
99 is in the local area if h->global_got_area is GGA_NONE,
100 otherwise it is in the global area. */
101 struct mips_elf_link_hash_entry *h;
102 } d;
103
104 /* The TLS types included in this GOT entry (specifically, GD and
105 IE). The GD and IE flags can be added as we encounter new
106 relocations. LDM can also be set; it will always be alone, not
107 combined with any GD or IE flags. An LDM GOT entry will be
108 a local symbol entry with r_symndx == 0. */
109 unsigned char tls_type;
110
111 /* The offset from the beginning of the .got section to the entry
112 corresponding to this symbol+addend. If it's a global symbol
113 whose offset is yet to be decided, it's going to be -1. */
114 long gotidx;
115 };
116
117 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
118 The structures form a non-overlapping list that is sorted by increasing
119 MIN_ADDEND. */
120 struct mips_got_page_range
121 {
122 struct mips_got_page_range *next;
123 bfd_signed_vma min_addend;
124 bfd_signed_vma max_addend;
125 };
126
127 /* This structure describes the range of addends that are applied to page
128 relocations against a given symbol. */
129 struct mips_got_page_entry
130 {
131 /* The input bfd in which the symbol is defined. */
132 bfd *abfd;
133 /* The index of the symbol, as stored in the relocation r_info. */
134 long symndx;
135 /* The ranges for this page entry. */
136 struct mips_got_page_range *ranges;
137 /* The maximum number of page entries needed for RANGES. */
138 bfd_vma num_pages;
139 };
140
141 /* This structure is used to hold .got information when linking. */
142
143 struct mips_got_info
144 {
145 /* The global symbol in the GOT with the lowest index in the dynamic
146 symbol table. */
147 struct elf_link_hash_entry *global_gotsym;
148 /* The number of global .got entries. */
149 unsigned int global_gotno;
150 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
151 unsigned int reloc_only_gotno;
152 /* The number of .got slots used for TLS. */
153 unsigned int tls_gotno;
154 /* The first unused TLS .got entry. Used only during
155 mips_elf_initialize_tls_index. */
156 unsigned int tls_assigned_gotno;
157 /* The number of local .got entries, eventually including page entries. */
158 unsigned int local_gotno;
159 /* The maximum number of page entries needed. */
160 unsigned int page_gotno;
161 /* The number of local .got entries we have used. */
162 unsigned int assigned_gotno;
163 /* A hash table holding members of the got. */
164 struct htab *got_entries;
165 /* A hash table of mips_got_page_entry structures. */
166 struct htab *got_page_entries;
167 /* A hash table mapping input bfds to other mips_got_info. NULL
168 unless multi-got was necessary. */
169 struct htab *bfd2got;
170 /* In multi-got links, a pointer to the next got (err, rather, most
171 of the time, it points to the previous got). */
172 struct mips_got_info *next;
173 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
174 for none, or MINUS_TWO for not yet assigned. This is needed
175 because a single-GOT link may have multiple hash table entries
176 for the LDM. It does not get initialized in multi-GOT mode. */
177 bfd_vma tls_ldm_offset;
178 };
179
180 /* Map an input bfd to a got in a multi-got link. */
181
182 struct mips_elf_bfd2got_hash
183 {
184 bfd *bfd;
185 struct mips_got_info *g;
186 };
187
188 /* Structure passed when traversing the bfd2got hash table, used to
189 create and merge bfd's gots. */
190
191 struct mips_elf_got_per_bfd_arg
192 {
193 /* A hashtable that maps bfds to gots. */
194 htab_t bfd2got;
195 /* The output bfd. */
196 bfd *obfd;
197 /* The link information. */
198 struct bfd_link_info *info;
199 /* A pointer to the primary got, i.e., the one that's going to get
200 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
201 DT_MIPS_GOTSYM. */
202 struct mips_got_info *primary;
203 /* A non-primary got we're trying to merge with other input bfd's
204 gots. */
205 struct mips_got_info *current;
206 /* The maximum number of got entries that can be addressed with a
207 16-bit offset. */
208 unsigned int max_count;
209 /* The maximum number of page entries needed by each got. */
210 unsigned int max_pages;
211 /* The total number of global entries which will live in the
212 primary got and be automatically relocated. This includes
213 those not referenced by the primary GOT but included in
214 the "master" GOT. */
215 unsigned int global_count;
216 };
217
218 /* Another structure used to pass arguments for got entries traversal. */
219
220 struct mips_elf_set_global_got_offset_arg
221 {
222 struct mips_got_info *g;
223 int value;
224 unsigned int needed_relocs;
225 struct bfd_link_info *info;
226 };
227
228 /* A structure used to count TLS relocations or GOT entries, for GOT
229 entry or ELF symbol table traversal. */
230
231 struct mips_elf_count_tls_arg
232 {
233 struct bfd_link_info *info;
234 unsigned int needed;
235 };
236
237 struct _mips_elf_section_data
238 {
239 struct bfd_elf_section_data elf;
240 union
241 {
242 bfd_byte *tdata;
243 } u;
244 };
245
246 #define mips_elf_section_data(sec) \
247 ((struct _mips_elf_section_data *) elf_section_data (sec))
248
249 #define is_mips_elf(bfd) \
250 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
251 && elf_tdata (bfd) != NULL \
252 && elf_object_id (bfd) == MIPS_ELF_DATA)
253
254 /* The ABI says that every symbol used by dynamic relocations must have
255 a global GOT entry. Among other things, this provides the dynamic
256 linker with a free, directly-indexed cache. The GOT can therefore
257 contain symbols that are not referenced by GOT relocations themselves
258 (in other words, it may have symbols that are not referenced by things
259 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
260
261 GOT relocations are less likely to overflow if we put the associated
262 GOT entries towards the beginning. We therefore divide the global
263 GOT entries into two areas: "normal" and "reloc-only". Entries in
264 the first area can be used for both dynamic relocations and GP-relative
265 accesses, while those in the "reloc-only" area are for dynamic
266 relocations only.
267
268 These GGA_* ("Global GOT Area") values are organised so that lower
269 values are more general than higher values. Also, non-GGA_NONE
270 values are ordered by the position of the area in the GOT. */
271 #define GGA_NORMAL 0
272 #define GGA_RELOC_ONLY 1
273 #define GGA_NONE 2
274
275 /* Information about a non-PIC interface to a PIC function. There are
276 two ways of creating these interfaces. The first is to add:
277
278 lui $25,%hi(func)
279 addiu $25,$25,%lo(func)
280
281 immediately before a PIC function "func". The second is to add:
282
283 lui $25,%hi(func)
284 j func
285 addiu $25,$25,%lo(func)
286
287 to a separate trampoline section.
288
289 Stubs of the first kind go in a new section immediately before the
290 target function. Stubs of the second kind go in a single section
291 pointed to by the hash table's "strampoline" field. */
292 struct mips_elf_la25_stub {
293 /* The generated section that contains this stub. */
294 asection *stub_section;
295
296 /* The offset of the stub from the start of STUB_SECTION. */
297 bfd_vma offset;
298
299 /* One symbol for the original function. Its location is available
300 in H->root.root.u.def. */
301 struct mips_elf_link_hash_entry *h;
302 };
303
304 /* Macros for populating a mips_elf_la25_stub. */
305
306 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
307 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
308 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
309 #define LA25_LUI_MICROMIPS_1(VAL) (0x41b9) /* lui t9,VAL */
310 #define LA25_LUI_MICROMIPS_2(VAL) (VAL)
311 #define LA25_J_MICROMIPS_1(VAL) (0xd400 | (((VAL) >> 17) & 0x3ff)) /* j VAL */
312 #define LA25_J_MICROMIPS_2(VAL) ((VAL) >> 1)
313 #define LA25_ADDIU_MICROMIPS_1(VAL) (0x3339) /* addiu t9,t9,VAL */
314 #define LA25_ADDIU_MICROMIPS_2(VAL) (VAL)
315
316 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
317 the dynamic symbols. */
318
319 struct mips_elf_hash_sort_data
320 {
321 /* The symbol in the global GOT with the lowest dynamic symbol table
322 index. */
323 struct elf_link_hash_entry *low;
324 /* The least dynamic symbol table index corresponding to a non-TLS
325 symbol with a GOT entry. */
326 long min_got_dynindx;
327 /* The greatest dynamic symbol table index corresponding to a symbol
328 with a GOT entry that is not referenced (e.g., a dynamic symbol
329 with dynamic relocations pointing to it from non-primary GOTs). */
330 long max_unref_got_dynindx;
331 /* The greatest dynamic symbol table index not corresponding to a
332 symbol without a GOT entry. */
333 long max_non_got_dynindx;
334 };
335
336 /* The MIPS ELF linker needs additional information for each symbol in
337 the global hash table. */
338
339 struct mips_elf_link_hash_entry
340 {
341 struct elf_link_hash_entry root;
342
343 /* External symbol information. */
344 EXTR esym;
345
346 /* The la25 stub we have created for ths symbol, if any. */
347 struct mips_elf_la25_stub *la25_stub;
348
349 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
350 this symbol. */
351 unsigned int possibly_dynamic_relocs;
352
353 /* If there is a stub that 32 bit functions should use to call this
354 16 bit function, this points to the section containing the stub. */
355 asection *fn_stub;
356
357 /* If there is a stub that 16 bit functions should use to call this
358 32 bit function, this points to the section containing the stub. */
359 asection *call_stub;
360
361 /* This is like the call_stub field, but it is used if the function
362 being called returns a floating point value. */
363 asection *call_fp_stub;
364
365 #define GOT_NORMAL 0
366 #define GOT_TLS_GD 1
367 #define GOT_TLS_LDM 2
368 #define GOT_TLS_IE 4
369 #define GOT_TLS_OFFSET_DONE 0x40
370 #define GOT_TLS_DONE 0x80
371 unsigned char tls_type;
372
373 /* This is only used in single-GOT mode; in multi-GOT mode there
374 is one mips_got_entry per GOT entry, so the offset is stored
375 there. In single-GOT mode there may be many mips_got_entry
376 structures all referring to the same GOT slot. It might be
377 possible to use root.got.offset instead, but that field is
378 overloaded already. */
379 bfd_vma tls_got_offset;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423 #if 0
424 /* We no longer use this. */
425 /* String section indices for the dynamic section symbols. */
426 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
427 #endif
428
429 /* The number of .rtproc entries. */
430 bfd_size_type procedure_count;
431
432 /* The size of the .compact_rel section (if SGI_COMPAT). */
433 bfd_size_type compact_rel_size;
434
435 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
436 entry is set to the address of __rld_obj_head as in IRIX5. */
437 bfd_boolean use_rld_obj_head;
438
439 /* The __rld_map or __rld_obj_head symbol. */
440 struct elf_link_hash_entry *rld_symbol;
441
442 /* This is set if we see any mips16 stub sections. */
443 bfd_boolean mips16_stubs_seen;
444
445 /* True if we can generate copy relocs and PLTs. */
446 bfd_boolean use_plts_and_copy_relocs;
447
448 /* True if we're generating code for VxWorks. */
449 bfd_boolean is_vxworks;
450
451 /* True if we already reported the small-data section overflow. */
452 bfd_boolean small_data_overflow_reported;
453
454 /* Shortcuts to some dynamic sections, or NULL if they are not
455 being used. */
456 asection *srelbss;
457 asection *sdynbss;
458 asection *srelplt;
459 asection *srelplt2;
460 asection *sgotplt;
461 asection *splt;
462 asection *sstubs;
463 asection *sgot;
464
465 /* The master GOT information. */
466 struct mips_got_info *got_info;
467
468 /* The size of the PLT header in bytes. */
469 bfd_vma plt_header_size;
470
471 /* The size of a PLT entry in bytes. */
472 bfd_vma plt_entry_size;
473
474 /* The number of functions that need a lazy-binding stub. */
475 bfd_vma lazy_stub_count;
476
477 /* The size of a function stub entry in bytes. */
478 bfd_vma function_stub_size;
479
480 /* The number of reserved entries at the beginning of the GOT. */
481 unsigned int reserved_gotno;
482
483 /* The section used for mips_elf_la25_stub trampolines.
484 See the comment above that structure for details. */
485 asection *strampoline;
486
487 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
488 pairs. */
489 htab_t la25_stubs;
490
491 /* A function FN (NAME, IS, OS) that creates a new input section
492 called NAME and links it to output section OS. If IS is nonnull,
493 the new section should go immediately before it, otherwise it
494 should go at the (current) beginning of OS.
495
496 The function returns the new section on success, otherwise it
497 returns null. */
498 asection *(*add_stub_section) (const char *, asection *, asection *);
499 };
500
501 /* Get the MIPS ELF linker hash table from a link_info structure. */
502
503 #define mips_elf_hash_table(p) \
504 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
505 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
506
507 /* A structure used to communicate with htab_traverse callbacks. */
508 struct mips_htab_traverse_info
509 {
510 /* The usual link-wide information. */
511 struct bfd_link_info *info;
512 bfd *output_bfd;
513
514 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
515 bfd_boolean error;
516 };
517
518 #define TLS_RELOC_P(r_type) \
519 (r_type == R_MIPS_TLS_DTPMOD32 \
520 || r_type == R_MIPS_TLS_DTPMOD64 \
521 || r_type == R_MIPS_TLS_DTPREL32 \
522 || r_type == R_MIPS_TLS_DTPREL64 \
523 || r_type == R_MIPS_TLS_GD \
524 || r_type == R_MIPS_TLS_LDM \
525 || r_type == R_MIPS_TLS_DTPREL_HI16 \
526 || r_type == R_MIPS_TLS_DTPREL_LO16 \
527 || r_type == R_MIPS_TLS_GOTTPREL \
528 || r_type == R_MIPS_TLS_TPREL32 \
529 || r_type == R_MIPS_TLS_TPREL64 \
530 || r_type == R_MIPS_TLS_TPREL_HI16 \
531 || r_type == R_MIPS_TLS_TPREL_LO16 \
532 || r_type == R_MICROMIPS_TLS_GD \
533 || r_type == R_MICROMIPS_TLS_LDM \
534 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
535 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
536 || r_type == R_MICROMIPS_TLS_GOTTPREL \
537 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
538 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
539
540 /* Structure used to pass information to mips_elf_output_extsym. */
541
542 struct extsym_info
543 {
544 bfd *abfd;
545 struct bfd_link_info *info;
546 struct ecoff_debug_info *debug;
547 const struct ecoff_debug_swap *swap;
548 bfd_boolean failed;
549 };
550
551 /* The names of the runtime procedure table symbols used on IRIX5. */
552
553 static const char * const mips_elf_dynsym_rtproc_names[] =
554 {
555 "_procedure_table",
556 "_procedure_string_table",
557 "_procedure_table_size",
558 NULL
559 };
560
561 /* These structures are used to generate the .compact_rel section on
562 IRIX5. */
563
564 typedef struct
565 {
566 unsigned long id1; /* Always one? */
567 unsigned long num; /* Number of compact relocation entries. */
568 unsigned long id2; /* Always two? */
569 unsigned long offset; /* The file offset of the first relocation. */
570 unsigned long reserved0; /* Zero? */
571 unsigned long reserved1; /* Zero? */
572 } Elf32_compact_rel;
573
574 typedef struct
575 {
576 bfd_byte id1[4];
577 bfd_byte num[4];
578 bfd_byte id2[4];
579 bfd_byte offset[4];
580 bfd_byte reserved0[4];
581 bfd_byte reserved1[4];
582 } Elf32_External_compact_rel;
583
584 typedef struct
585 {
586 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
587 unsigned int rtype : 4; /* Relocation types. See below. */
588 unsigned int dist2to : 8;
589 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
590 unsigned long konst; /* KONST field. See below. */
591 unsigned long vaddr; /* VADDR to be relocated. */
592 } Elf32_crinfo;
593
594 typedef struct
595 {
596 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
597 unsigned int rtype : 4; /* Relocation types. See below. */
598 unsigned int dist2to : 8;
599 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
600 unsigned long konst; /* KONST field. See below. */
601 } Elf32_crinfo2;
602
603 typedef struct
604 {
605 bfd_byte info[4];
606 bfd_byte konst[4];
607 bfd_byte vaddr[4];
608 } Elf32_External_crinfo;
609
610 typedef struct
611 {
612 bfd_byte info[4];
613 bfd_byte konst[4];
614 } Elf32_External_crinfo2;
615
616 /* These are the constants used to swap the bitfields in a crinfo. */
617
618 #define CRINFO_CTYPE (0x1)
619 #define CRINFO_CTYPE_SH (31)
620 #define CRINFO_RTYPE (0xf)
621 #define CRINFO_RTYPE_SH (27)
622 #define CRINFO_DIST2TO (0xff)
623 #define CRINFO_DIST2TO_SH (19)
624 #define CRINFO_RELVADDR (0x7ffff)
625 #define CRINFO_RELVADDR_SH (0)
626
627 /* A compact relocation info has long (3 words) or short (2 words)
628 formats. A short format doesn't have VADDR field and relvaddr
629 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
630 #define CRF_MIPS_LONG 1
631 #define CRF_MIPS_SHORT 0
632
633 /* There are 4 types of compact relocation at least. The value KONST
634 has different meaning for each type:
635
636 (type) (konst)
637 CT_MIPS_REL32 Address in data
638 CT_MIPS_WORD Address in word (XXX)
639 CT_MIPS_GPHI_LO GP - vaddr
640 CT_MIPS_JMPAD Address to jump
641 */
642
643 #define CRT_MIPS_REL32 0xa
644 #define CRT_MIPS_WORD 0xb
645 #define CRT_MIPS_GPHI_LO 0xc
646 #define CRT_MIPS_JMPAD 0xd
647
648 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
649 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
650 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
651 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
652 \f
653 /* The structure of the runtime procedure descriptor created by the
654 loader for use by the static exception system. */
655
656 typedef struct runtime_pdr {
657 bfd_vma adr; /* Memory address of start of procedure. */
658 long regmask; /* Save register mask. */
659 long regoffset; /* Save register offset. */
660 long fregmask; /* Save floating point register mask. */
661 long fregoffset; /* Save floating point register offset. */
662 long frameoffset; /* Frame size. */
663 short framereg; /* Frame pointer register. */
664 short pcreg; /* Offset or reg of return pc. */
665 long irpss; /* Index into the runtime string table. */
666 long reserved;
667 struct exception_info *exception_info;/* Pointer to exception array. */
668 } RPDR, *pRPDR;
669 #define cbRPDR sizeof (RPDR)
670 #define rpdNil ((pRPDR) 0)
671 \f
672 static struct mips_got_entry *mips_elf_create_local_got_entry
673 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
674 struct mips_elf_link_hash_entry *, int);
675 static bfd_boolean mips_elf_sort_hash_table_f
676 (struct mips_elf_link_hash_entry *, void *);
677 static bfd_vma mips_elf_high
678 (bfd_vma);
679 static bfd_boolean mips_elf_create_dynamic_relocation
680 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
681 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
682 bfd_vma *, asection *);
683 static hashval_t mips_elf_got_entry_hash
684 (const void *);
685 static bfd_vma mips_elf_adjust_gp
686 (bfd *, struct mips_got_info *, bfd *);
687 static struct mips_got_info *mips_elf_got_for_ibfd
688 (struct mips_got_info *, bfd *);
689
690 /* This will be used when we sort the dynamic relocation records. */
691 static bfd *reldyn_sorting_bfd;
692
693 /* True if ABFD is for CPUs with load interlocking that include
694 non-MIPS1 CPUs and R3900. */
695 #define LOAD_INTERLOCKS_P(abfd) \
696 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
697 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
698
699 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
700 This should be safe for all architectures. We enable this predicate
701 for RM9000 for now. */
702 #define JAL_TO_BAL_P(abfd) \
703 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
704
705 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
706 This should be safe for all architectures. We enable this predicate for
707 all CPUs. */
708 #define JALR_TO_BAL_P(abfd) 1
709
710 /* True if ABFD is for CPUs that are faster if JR is converted to B.
711 This should be safe for all architectures. We enable this predicate for
712 all CPUs. */
713 #define JR_TO_B_P(abfd) 1
714
715 /* True if ABFD is a PIC object. */
716 #define PIC_OBJECT_P(abfd) \
717 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
718
719 /* Nonzero if ABFD is using the N32 ABI. */
720 #define ABI_N32_P(abfd) \
721 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
722
723 /* Nonzero if ABFD is using the N64 ABI. */
724 #define ABI_64_P(abfd) \
725 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
726
727 /* Nonzero if ABFD is using NewABI conventions. */
728 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
729
730 /* The IRIX compatibility level we are striving for. */
731 #define IRIX_COMPAT(abfd) \
732 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
733
734 /* Whether we are trying to be compatible with IRIX at all. */
735 #define SGI_COMPAT(abfd) \
736 (IRIX_COMPAT (abfd) != ict_none)
737
738 /* The name of the options section. */
739 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
740 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
741
742 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
743 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
744 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
745 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
746
747 /* Whether the section is readonly. */
748 #define MIPS_ELF_READONLY_SECTION(sec) \
749 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
750 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
751
752 /* The name of the stub section. */
753 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
754
755 /* The size of an external REL relocation. */
756 #define MIPS_ELF_REL_SIZE(abfd) \
757 (get_elf_backend_data (abfd)->s->sizeof_rel)
758
759 /* The size of an external RELA relocation. */
760 #define MIPS_ELF_RELA_SIZE(abfd) \
761 (get_elf_backend_data (abfd)->s->sizeof_rela)
762
763 /* The size of an external dynamic table entry. */
764 #define MIPS_ELF_DYN_SIZE(abfd) \
765 (get_elf_backend_data (abfd)->s->sizeof_dyn)
766
767 /* The size of a GOT entry. */
768 #define MIPS_ELF_GOT_SIZE(abfd) \
769 (get_elf_backend_data (abfd)->s->arch_size / 8)
770
771 /* The size of the .rld_map section. */
772 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
773 (get_elf_backend_data (abfd)->s->arch_size / 8)
774
775 /* The size of a symbol-table entry. */
776 #define MIPS_ELF_SYM_SIZE(abfd) \
777 (get_elf_backend_data (abfd)->s->sizeof_sym)
778
779 /* The default alignment for sections, as a power of two. */
780 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
781 (get_elf_backend_data (abfd)->s->log_file_align)
782
783 /* Get word-sized data. */
784 #define MIPS_ELF_GET_WORD(abfd, ptr) \
785 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
786
787 /* Put out word-sized data. */
788 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
789 (ABI_64_P (abfd) \
790 ? bfd_put_64 (abfd, val, ptr) \
791 : bfd_put_32 (abfd, val, ptr))
792
793 /* The opcode for word-sized loads (LW or LD). */
794 #define MIPS_ELF_LOAD_WORD(abfd) \
795 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
796
797 /* Add a dynamic symbol table-entry. */
798 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
799 _bfd_elf_add_dynamic_entry (info, tag, val)
800
801 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
802 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
803
804 /* The name of the dynamic relocation section. */
805 #define MIPS_ELF_REL_DYN_NAME(INFO) \
806 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
807
808 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
809 from smaller values. Start with zero, widen, *then* decrement. */
810 #define MINUS_ONE (((bfd_vma)0) - 1)
811 #define MINUS_TWO (((bfd_vma)0) - 2)
812
813 /* The value to write into got[1] for SVR4 targets, to identify it is
814 a GNU object. The dynamic linker can then use got[1] to store the
815 module pointer. */
816 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
817 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
818
819 /* The offset of $gp from the beginning of the .got section. */
820 #define ELF_MIPS_GP_OFFSET(INFO) \
821 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
822
823 /* The maximum size of the GOT for it to be addressable using 16-bit
824 offsets from $gp. */
825 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
826
827 /* Instructions which appear in a stub. */
828 #define STUB_LW(abfd) \
829 ((ABI_64_P (abfd) \
830 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
831 : 0x8f998010)) /* lw t9,0x8010(gp) */
832 #define STUB_MOVE(abfd) \
833 ((ABI_64_P (abfd) \
834 ? 0x03e0782d /* daddu t7,ra */ \
835 : 0x03e07821)) /* addu t7,ra */
836 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
837 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
838 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
839 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
840 #define STUB_LI16S(abfd, VAL) \
841 ((ABI_64_P (abfd) \
842 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
843 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
844
845 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
846 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
847
848 /* The name of the dynamic interpreter. This is put in the .interp
849 section. */
850
851 #define ELF_DYNAMIC_INTERPRETER(abfd) \
852 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
853 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
854 : "/usr/lib/libc.so.1")
855
856 #ifdef BFD64
857 #define MNAME(bfd,pre,pos) \
858 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
859 #define ELF_R_SYM(bfd, i) \
860 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
861 #define ELF_R_TYPE(bfd, i) \
862 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
863 #define ELF_R_INFO(bfd, s, t) \
864 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
865 #else
866 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
867 #define ELF_R_SYM(bfd, i) \
868 (ELF32_R_SYM (i))
869 #define ELF_R_TYPE(bfd, i) \
870 (ELF32_R_TYPE (i))
871 #define ELF_R_INFO(bfd, s, t) \
872 (ELF32_R_INFO (s, t))
873 #endif
874 \f
875 /* The mips16 compiler uses a couple of special sections to handle
876 floating point arguments.
877
878 Section names that look like .mips16.fn.FNNAME contain stubs that
879 copy floating point arguments from the fp regs to the gp regs and
880 then jump to FNNAME. If any 32 bit function calls FNNAME, the
881 call should be redirected to the stub instead. If no 32 bit
882 function calls FNNAME, the stub should be discarded. We need to
883 consider any reference to the function, not just a call, because
884 if the address of the function is taken we will need the stub,
885 since the address might be passed to a 32 bit function.
886
887 Section names that look like .mips16.call.FNNAME contain stubs
888 that copy floating point arguments from the gp regs to the fp
889 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
890 then any 16 bit function that calls FNNAME should be redirected
891 to the stub instead. If FNNAME is not a 32 bit function, the
892 stub should be discarded.
893
894 .mips16.call.fp.FNNAME sections are similar, but contain stubs
895 which call FNNAME and then copy the return value from the fp regs
896 to the gp regs. These stubs store the return value in $18 while
897 calling FNNAME; any function which might call one of these stubs
898 must arrange to save $18 around the call. (This case is not
899 needed for 32 bit functions that call 16 bit functions, because
900 16 bit functions always return floating point values in both
901 $f0/$f1 and $2/$3.)
902
903 Note that in all cases FNNAME might be defined statically.
904 Therefore, FNNAME is not used literally. Instead, the relocation
905 information will indicate which symbol the section is for.
906
907 We record any stubs that we find in the symbol table. */
908
909 #define FN_STUB ".mips16.fn."
910 #define CALL_STUB ".mips16.call."
911 #define CALL_FP_STUB ".mips16.call.fp."
912
913 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
914 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
915 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
916 \f
917 /* The format of the first PLT entry in an O32 executable. */
918 static const bfd_vma mips_o32_exec_plt0_entry[] =
919 {
920 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
921 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
922 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
923 0x031cc023, /* subu $24, $24, $28 */
924 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
925 0x0018c082, /* srl $24, $24, 2 */
926 0x0320f809, /* jalr $25 */
927 0x2718fffe /* subu $24, $24, 2 */
928 };
929
930 /* The format of the first PLT entry in an N32 executable. Different
931 because gp ($28) is not available; we use t2 ($14) instead. */
932 static const bfd_vma mips_n32_exec_plt0_entry[] =
933 {
934 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
935 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
936 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
937 0x030ec023, /* subu $24, $24, $14 */
938 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
939 0x0018c082, /* srl $24, $24, 2 */
940 0x0320f809, /* jalr $25 */
941 0x2718fffe /* subu $24, $24, 2 */
942 };
943
944 /* The format of the first PLT entry in an N64 executable. Different
945 from N32 because of the increased size of GOT entries. */
946 static const bfd_vma mips_n64_exec_plt0_entry[] =
947 {
948 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
949 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
950 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
951 0x030ec023, /* subu $24, $24, $14 */
952 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
953 0x0018c0c2, /* srl $24, $24, 3 */
954 0x0320f809, /* jalr $25 */
955 0x2718fffe /* subu $24, $24, 2 */
956 };
957
958 /* The format of subsequent PLT entries. */
959 static const bfd_vma mips_exec_plt_entry[] =
960 {
961 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
962 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
963 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
964 0x03200008 /* jr $25 */
965 };
966
967 /* The format of the first PLT entry in a VxWorks executable. */
968 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
969 {
970 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
971 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
972 0x8f390008, /* lw t9, 8(t9) */
973 0x00000000, /* nop */
974 0x03200008, /* jr t9 */
975 0x00000000 /* nop */
976 };
977
978 /* The format of subsequent PLT entries. */
979 static const bfd_vma mips_vxworks_exec_plt_entry[] =
980 {
981 0x10000000, /* b .PLT_resolver */
982 0x24180000, /* li t8, <pltindex> */
983 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
984 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
985 0x8f390000, /* lw t9, 0(t9) */
986 0x00000000, /* nop */
987 0x03200008, /* jr t9 */
988 0x00000000 /* nop */
989 };
990
991 /* The format of the first PLT entry in a VxWorks shared object. */
992 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
993 {
994 0x8f990008, /* lw t9, 8(gp) */
995 0x00000000, /* nop */
996 0x03200008, /* jr t9 */
997 0x00000000, /* nop */
998 0x00000000, /* nop */
999 0x00000000 /* nop */
1000 };
1001
1002 /* The format of subsequent PLT entries. */
1003 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1004 {
1005 0x10000000, /* b .PLT_resolver */
1006 0x24180000 /* li t8, <pltindex> */
1007 };
1008 \f
1009 /* Look up an entry in a MIPS ELF linker hash table. */
1010
1011 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1012 ((struct mips_elf_link_hash_entry *) \
1013 elf_link_hash_lookup (&(table)->root, (string), (create), \
1014 (copy), (follow)))
1015
1016 /* Traverse a MIPS ELF linker hash table. */
1017
1018 #define mips_elf_link_hash_traverse(table, func, info) \
1019 (elf_link_hash_traverse \
1020 (&(table)->root, \
1021 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1022 (info)))
1023
1024 /* Find the base offsets for thread-local storage in this object,
1025 for GD/LD and IE/LE respectively. */
1026
1027 #define TP_OFFSET 0x7000
1028 #define DTP_OFFSET 0x8000
1029
1030 static bfd_vma
1031 dtprel_base (struct bfd_link_info *info)
1032 {
1033 /* If tls_sec is NULL, we should have signalled an error already. */
1034 if (elf_hash_table (info)->tls_sec == NULL)
1035 return 0;
1036 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1037 }
1038
1039 static bfd_vma
1040 tprel_base (struct bfd_link_info *info)
1041 {
1042 /* If tls_sec is NULL, we should have signalled an error already. */
1043 if (elf_hash_table (info)->tls_sec == NULL)
1044 return 0;
1045 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1046 }
1047
1048 /* Create an entry in a MIPS ELF linker hash table. */
1049
1050 static struct bfd_hash_entry *
1051 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1052 struct bfd_hash_table *table, const char *string)
1053 {
1054 struct mips_elf_link_hash_entry *ret =
1055 (struct mips_elf_link_hash_entry *) entry;
1056
1057 /* Allocate the structure if it has not already been allocated by a
1058 subclass. */
1059 if (ret == NULL)
1060 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1061 if (ret == NULL)
1062 return (struct bfd_hash_entry *) ret;
1063
1064 /* Call the allocation method of the superclass. */
1065 ret = ((struct mips_elf_link_hash_entry *)
1066 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1067 table, string));
1068 if (ret != NULL)
1069 {
1070 /* Set local fields. */
1071 memset (&ret->esym, 0, sizeof (EXTR));
1072 /* We use -2 as a marker to indicate that the information has
1073 not been set. -1 means there is no associated ifd. */
1074 ret->esym.ifd = -2;
1075 ret->la25_stub = 0;
1076 ret->possibly_dynamic_relocs = 0;
1077 ret->fn_stub = NULL;
1078 ret->call_stub = NULL;
1079 ret->call_fp_stub = NULL;
1080 ret->tls_type = GOT_NORMAL;
1081 ret->global_got_area = GGA_NONE;
1082 ret->got_only_for_calls = TRUE;
1083 ret->readonly_reloc = FALSE;
1084 ret->has_static_relocs = FALSE;
1085 ret->no_fn_stub = FALSE;
1086 ret->need_fn_stub = FALSE;
1087 ret->has_nonpic_branches = FALSE;
1088 ret->needs_lazy_stub = FALSE;
1089 }
1090
1091 return (struct bfd_hash_entry *) ret;
1092 }
1093
1094 bfd_boolean
1095 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1096 {
1097 if (!sec->used_by_bfd)
1098 {
1099 struct _mips_elf_section_data *sdata;
1100 bfd_size_type amt = sizeof (*sdata);
1101
1102 sdata = bfd_zalloc (abfd, amt);
1103 if (sdata == NULL)
1104 return FALSE;
1105 sec->used_by_bfd = sdata;
1106 }
1107
1108 return _bfd_elf_new_section_hook (abfd, sec);
1109 }
1110 \f
1111 /* Read ECOFF debugging information from a .mdebug section into a
1112 ecoff_debug_info structure. */
1113
1114 bfd_boolean
1115 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1116 struct ecoff_debug_info *debug)
1117 {
1118 HDRR *symhdr;
1119 const struct ecoff_debug_swap *swap;
1120 char *ext_hdr;
1121
1122 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1123 memset (debug, 0, sizeof (*debug));
1124
1125 ext_hdr = bfd_malloc (swap->external_hdr_size);
1126 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1127 goto error_return;
1128
1129 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1130 swap->external_hdr_size))
1131 goto error_return;
1132
1133 symhdr = &debug->symbolic_header;
1134 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1135
1136 /* The symbolic header contains absolute file offsets and sizes to
1137 read. */
1138 #define READ(ptr, offset, count, size, type) \
1139 if (symhdr->count == 0) \
1140 debug->ptr = NULL; \
1141 else \
1142 { \
1143 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1144 debug->ptr = bfd_malloc (amt); \
1145 if (debug->ptr == NULL) \
1146 goto error_return; \
1147 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1148 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1149 goto error_return; \
1150 }
1151
1152 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1153 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1154 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1155 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1156 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1157 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1158 union aux_ext *);
1159 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1160 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1161 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1162 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1163 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1164 #undef READ
1165
1166 debug->fdr = NULL;
1167
1168 return TRUE;
1169
1170 error_return:
1171 if (ext_hdr != NULL)
1172 free (ext_hdr);
1173 if (debug->line != NULL)
1174 free (debug->line);
1175 if (debug->external_dnr != NULL)
1176 free (debug->external_dnr);
1177 if (debug->external_pdr != NULL)
1178 free (debug->external_pdr);
1179 if (debug->external_sym != NULL)
1180 free (debug->external_sym);
1181 if (debug->external_opt != NULL)
1182 free (debug->external_opt);
1183 if (debug->external_aux != NULL)
1184 free (debug->external_aux);
1185 if (debug->ss != NULL)
1186 free (debug->ss);
1187 if (debug->ssext != NULL)
1188 free (debug->ssext);
1189 if (debug->external_fdr != NULL)
1190 free (debug->external_fdr);
1191 if (debug->external_rfd != NULL)
1192 free (debug->external_rfd);
1193 if (debug->external_ext != NULL)
1194 free (debug->external_ext);
1195 return FALSE;
1196 }
1197 \f
1198 /* Swap RPDR (runtime procedure table entry) for output. */
1199
1200 static void
1201 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1202 {
1203 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1204 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1205 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1206 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1207 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1208 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1209
1210 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1211 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1212
1213 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1214 }
1215
1216 /* Create a runtime procedure table from the .mdebug section. */
1217
1218 static bfd_boolean
1219 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1220 struct bfd_link_info *info, asection *s,
1221 struct ecoff_debug_info *debug)
1222 {
1223 const struct ecoff_debug_swap *swap;
1224 HDRR *hdr = &debug->symbolic_header;
1225 RPDR *rpdr, *rp;
1226 struct rpdr_ext *erp;
1227 void *rtproc;
1228 struct pdr_ext *epdr;
1229 struct sym_ext *esym;
1230 char *ss, **sv;
1231 char *str;
1232 bfd_size_type size;
1233 bfd_size_type count;
1234 unsigned long sindex;
1235 unsigned long i;
1236 PDR pdr;
1237 SYMR sym;
1238 const char *no_name_func = _("static procedure (no name)");
1239
1240 epdr = NULL;
1241 rpdr = NULL;
1242 esym = NULL;
1243 ss = NULL;
1244 sv = NULL;
1245
1246 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1247
1248 sindex = strlen (no_name_func) + 1;
1249 count = hdr->ipdMax;
1250 if (count > 0)
1251 {
1252 size = swap->external_pdr_size;
1253
1254 epdr = bfd_malloc (size * count);
1255 if (epdr == NULL)
1256 goto error_return;
1257
1258 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1259 goto error_return;
1260
1261 size = sizeof (RPDR);
1262 rp = rpdr = bfd_malloc (size * count);
1263 if (rpdr == NULL)
1264 goto error_return;
1265
1266 size = sizeof (char *);
1267 sv = bfd_malloc (size * count);
1268 if (sv == NULL)
1269 goto error_return;
1270
1271 count = hdr->isymMax;
1272 size = swap->external_sym_size;
1273 esym = bfd_malloc (size * count);
1274 if (esym == NULL)
1275 goto error_return;
1276
1277 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1278 goto error_return;
1279
1280 count = hdr->issMax;
1281 ss = bfd_malloc (count);
1282 if (ss == NULL)
1283 goto error_return;
1284 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1285 goto error_return;
1286
1287 count = hdr->ipdMax;
1288 for (i = 0; i < (unsigned long) count; i++, rp++)
1289 {
1290 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1291 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1292 rp->adr = sym.value;
1293 rp->regmask = pdr.regmask;
1294 rp->regoffset = pdr.regoffset;
1295 rp->fregmask = pdr.fregmask;
1296 rp->fregoffset = pdr.fregoffset;
1297 rp->frameoffset = pdr.frameoffset;
1298 rp->framereg = pdr.framereg;
1299 rp->pcreg = pdr.pcreg;
1300 rp->irpss = sindex;
1301 sv[i] = ss + sym.iss;
1302 sindex += strlen (sv[i]) + 1;
1303 }
1304 }
1305
1306 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1307 size = BFD_ALIGN (size, 16);
1308 rtproc = bfd_alloc (abfd, size);
1309 if (rtproc == NULL)
1310 {
1311 mips_elf_hash_table (info)->procedure_count = 0;
1312 goto error_return;
1313 }
1314
1315 mips_elf_hash_table (info)->procedure_count = count + 2;
1316
1317 erp = rtproc;
1318 memset (erp, 0, sizeof (struct rpdr_ext));
1319 erp++;
1320 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1321 strcpy (str, no_name_func);
1322 str += strlen (no_name_func) + 1;
1323 for (i = 0; i < count; i++)
1324 {
1325 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1326 strcpy (str, sv[i]);
1327 str += strlen (sv[i]) + 1;
1328 }
1329 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1330
1331 /* Set the size and contents of .rtproc section. */
1332 s->size = size;
1333 s->contents = rtproc;
1334
1335 /* Skip this section later on (I don't think this currently
1336 matters, but someday it might). */
1337 s->map_head.link_order = NULL;
1338
1339 if (epdr != NULL)
1340 free (epdr);
1341 if (rpdr != NULL)
1342 free (rpdr);
1343 if (esym != NULL)
1344 free (esym);
1345 if (ss != NULL)
1346 free (ss);
1347 if (sv != NULL)
1348 free (sv);
1349
1350 return TRUE;
1351
1352 error_return:
1353 if (epdr != NULL)
1354 free (epdr);
1355 if (rpdr != NULL)
1356 free (rpdr);
1357 if (esym != NULL)
1358 free (esym);
1359 if (ss != NULL)
1360 free (ss);
1361 if (sv != NULL)
1362 free (sv);
1363 return FALSE;
1364 }
1365 \f
1366 /* We're going to create a stub for H. Create a symbol for the stub's
1367 value and size, to help make the disassembly easier to read. */
1368
1369 static bfd_boolean
1370 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1371 struct mips_elf_link_hash_entry *h,
1372 const char *prefix, asection *s, bfd_vma value,
1373 bfd_vma size)
1374 {
1375 struct bfd_link_hash_entry *bh;
1376 struct elf_link_hash_entry *elfh;
1377 const char *name;
1378
1379 if (ELF_ST_IS_MICROMIPS (h->root.other))
1380 value |= 1;
1381
1382 /* Create a new symbol. */
1383 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1384 bh = NULL;
1385 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1386 BSF_LOCAL, s, value, NULL,
1387 TRUE, FALSE, &bh))
1388 return FALSE;
1389
1390 /* Make it a local function. */
1391 elfh = (struct elf_link_hash_entry *) bh;
1392 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1393 elfh->size = size;
1394 elfh->forced_local = 1;
1395 return TRUE;
1396 }
1397
1398 /* We're about to redefine H. Create a symbol to represent H's
1399 current value and size, to help make the disassembly easier
1400 to read. */
1401
1402 static bfd_boolean
1403 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1404 struct mips_elf_link_hash_entry *h,
1405 const char *prefix)
1406 {
1407 struct bfd_link_hash_entry *bh;
1408 struct elf_link_hash_entry *elfh;
1409 const char *name;
1410 asection *s;
1411 bfd_vma value;
1412
1413 /* Read the symbol's value. */
1414 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1415 || h->root.root.type == bfd_link_hash_defweak);
1416 s = h->root.root.u.def.section;
1417 value = h->root.root.u.def.value;
1418
1419 /* Create a new symbol. */
1420 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1421 bh = NULL;
1422 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1423 BSF_LOCAL, s, value, NULL,
1424 TRUE, FALSE, &bh))
1425 return FALSE;
1426
1427 /* Make it local and copy the other attributes from H. */
1428 elfh = (struct elf_link_hash_entry *) bh;
1429 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1430 elfh->other = h->root.other;
1431 elfh->size = h->root.size;
1432 elfh->forced_local = 1;
1433 return TRUE;
1434 }
1435
1436 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1437 function rather than to a hard-float stub. */
1438
1439 static bfd_boolean
1440 section_allows_mips16_refs_p (asection *section)
1441 {
1442 const char *name;
1443
1444 name = bfd_get_section_name (section->owner, section);
1445 return (FN_STUB_P (name)
1446 || CALL_STUB_P (name)
1447 || CALL_FP_STUB_P (name)
1448 || strcmp (name, ".pdr") == 0);
1449 }
1450
1451 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1452 stub section of some kind. Return the R_SYMNDX of the target
1453 function, or 0 if we can't decide which function that is. */
1454
1455 static unsigned long
1456 mips16_stub_symndx (asection *sec ATTRIBUTE_UNUSED,
1457 const Elf_Internal_Rela *relocs,
1458 const Elf_Internal_Rela *relend)
1459 {
1460 const Elf_Internal_Rela *rel;
1461
1462 /* Trust the first R_MIPS_NONE relocation, if any. */
1463 for (rel = relocs; rel < relend; rel++)
1464 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1465 return ELF_R_SYM (sec->owner, rel->r_info);
1466
1467 /* Otherwise trust the first relocation, whatever its kind. This is
1468 the traditional behavior. */
1469 if (relocs < relend)
1470 return ELF_R_SYM (sec->owner, relocs->r_info);
1471
1472 return 0;
1473 }
1474
1475 /* Check the mips16 stubs for a particular symbol, and see if we can
1476 discard them. */
1477
1478 static void
1479 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1480 struct mips_elf_link_hash_entry *h)
1481 {
1482 /* Dynamic symbols must use the standard call interface, in case other
1483 objects try to call them. */
1484 if (h->fn_stub != NULL
1485 && h->root.dynindx != -1)
1486 {
1487 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1488 h->need_fn_stub = TRUE;
1489 }
1490
1491 if (h->fn_stub != NULL
1492 && ! h->need_fn_stub)
1493 {
1494 /* We don't need the fn_stub; the only references to this symbol
1495 are 16 bit calls. Clobber the size to 0 to prevent it from
1496 being included in the link. */
1497 h->fn_stub->size = 0;
1498 h->fn_stub->flags &= ~SEC_RELOC;
1499 h->fn_stub->reloc_count = 0;
1500 h->fn_stub->flags |= SEC_EXCLUDE;
1501 }
1502
1503 if (h->call_stub != NULL
1504 && ELF_ST_IS_MIPS16 (h->root.other))
1505 {
1506 /* We don't need the call_stub; this is a 16 bit function, so
1507 calls from other 16 bit functions are OK. Clobber the size
1508 to 0 to prevent it from being included in the link. */
1509 h->call_stub->size = 0;
1510 h->call_stub->flags &= ~SEC_RELOC;
1511 h->call_stub->reloc_count = 0;
1512 h->call_stub->flags |= SEC_EXCLUDE;
1513 }
1514
1515 if (h->call_fp_stub != NULL
1516 && ELF_ST_IS_MIPS16 (h->root.other))
1517 {
1518 /* We don't need the call_stub; this is a 16 bit function, so
1519 calls from other 16 bit functions are OK. Clobber the size
1520 to 0 to prevent it from being included in the link. */
1521 h->call_fp_stub->size = 0;
1522 h->call_fp_stub->flags &= ~SEC_RELOC;
1523 h->call_fp_stub->reloc_count = 0;
1524 h->call_fp_stub->flags |= SEC_EXCLUDE;
1525 }
1526 }
1527
1528 /* Hashtable callbacks for mips_elf_la25_stubs. */
1529
1530 static hashval_t
1531 mips_elf_la25_stub_hash (const void *entry_)
1532 {
1533 const struct mips_elf_la25_stub *entry;
1534
1535 entry = (struct mips_elf_la25_stub *) entry_;
1536 return entry->h->root.root.u.def.section->id
1537 + entry->h->root.root.u.def.value;
1538 }
1539
1540 static int
1541 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1542 {
1543 const struct mips_elf_la25_stub *entry1, *entry2;
1544
1545 entry1 = (struct mips_elf_la25_stub *) entry1_;
1546 entry2 = (struct mips_elf_la25_stub *) entry2_;
1547 return ((entry1->h->root.root.u.def.section
1548 == entry2->h->root.root.u.def.section)
1549 && (entry1->h->root.root.u.def.value
1550 == entry2->h->root.root.u.def.value));
1551 }
1552
1553 /* Called by the linker to set up the la25 stub-creation code. FN is
1554 the linker's implementation of add_stub_function. Return true on
1555 success. */
1556
1557 bfd_boolean
1558 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1559 asection *(*fn) (const char *, asection *,
1560 asection *))
1561 {
1562 struct mips_elf_link_hash_table *htab;
1563
1564 htab = mips_elf_hash_table (info);
1565 if (htab == NULL)
1566 return FALSE;
1567
1568 htab->add_stub_section = fn;
1569 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1570 mips_elf_la25_stub_eq, NULL);
1571 if (htab->la25_stubs == NULL)
1572 return FALSE;
1573
1574 return TRUE;
1575 }
1576
1577 /* Return true if H is a locally-defined PIC function, in the sense
1578 that it might need $25 to be valid on entry. Note that MIPS16
1579 functions never need $25 to be valid on entry; they set up $gp
1580 using PC-relative instructions instead. */
1581
1582 static bfd_boolean
1583 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1584 {
1585 return ((h->root.root.type == bfd_link_hash_defined
1586 || h->root.root.type == bfd_link_hash_defweak)
1587 && h->root.def_regular
1588 && !bfd_is_abs_section (h->root.root.u.def.section)
1589 && !ELF_ST_IS_MIPS16 (h->root.other)
1590 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1591 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1592 }
1593
1594 /* STUB describes an la25 stub that we have decided to implement
1595 by inserting an LUI/ADDIU pair before the target function.
1596 Create the section and redirect the function symbol to it. */
1597
1598 static bfd_boolean
1599 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1600 struct bfd_link_info *info)
1601 {
1602 struct mips_elf_link_hash_table *htab;
1603 char *name;
1604 asection *s, *input_section;
1605 unsigned int align;
1606
1607 htab = mips_elf_hash_table (info);
1608 if (htab == NULL)
1609 return FALSE;
1610
1611 /* Create a unique name for the new section. */
1612 name = bfd_malloc (11 + sizeof (".text.stub."));
1613 if (name == NULL)
1614 return FALSE;
1615 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1616
1617 /* Create the section. */
1618 input_section = stub->h->root.root.u.def.section;
1619 s = htab->add_stub_section (name, input_section,
1620 input_section->output_section);
1621 if (s == NULL)
1622 return FALSE;
1623
1624 /* Make sure that any padding goes before the stub. */
1625 align = input_section->alignment_power;
1626 if (!bfd_set_section_alignment (s->owner, s, align))
1627 return FALSE;
1628 if (align > 3)
1629 s->size = (1 << align) - 8;
1630
1631 /* Create a symbol for the stub. */
1632 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1633 stub->stub_section = s;
1634 stub->offset = s->size;
1635
1636 /* Allocate room for it. */
1637 s->size += 8;
1638 return TRUE;
1639 }
1640
1641 /* STUB describes an la25 stub that we have decided to implement
1642 with a separate trampoline. Allocate room for it and redirect
1643 the function symbol to it. */
1644
1645 static bfd_boolean
1646 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1647 struct bfd_link_info *info)
1648 {
1649 struct mips_elf_link_hash_table *htab;
1650 asection *s;
1651
1652 htab = mips_elf_hash_table (info);
1653 if (htab == NULL)
1654 return FALSE;
1655
1656 /* Create a trampoline section, if we haven't already. */
1657 s = htab->strampoline;
1658 if (s == NULL)
1659 {
1660 asection *input_section = stub->h->root.root.u.def.section;
1661 s = htab->add_stub_section (".text", NULL,
1662 input_section->output_section);
1663 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1664 return FALSE;
1665 htab->strampoline = s;
1666 }
1667
1668 /* Create a symbol for the stub. */
1669 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1670 stub->stub_section = s;
1671 stub->offset = s->size;
1672
1673 /* Allocate room for it. */
1674 s->size += 16;
1675 return TRUE;
1676 }
1677
1678 /* H describes a symbol that needs an la25 stub. Make sure that an
1679 appropriate stub exists and point H at it. */
1680
1681 static bfd_boolean
1682 mips_elf_add_la25_stub (struct bfd_link_info *info,
1683 struct mips_elf_link_hash_entry *h)
1684 {
1685 struct mips_elf_link_hash_table *htab;
1686 struct mips_elf_la25_stub search, *stub;
1687 bfd_boolean use_trampoline_p;
1688 asection *s;
1689 bfd_vma value;
1690 void **slot;
1691
1692 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1693 of the section and if we would need no more than 2 nops. */
1694 s = h->root.root.u.def.section;
1695 value = h->root.root.u.def.value;
1696 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1697
1698 /* Describe the stub we want. */
1699 search.stub_section = NULL;
1700 search.offset = 0;
1701 search.h = h;
1702
1703 /* See if we've already created an equivalent stub. */
1704 htab = mips_elf_hash_table (info);
1705 if (htab == NULL)
1706 return FALSE;
1707
1708 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1709 if (slot == NULL)
1710 return FALSE;
1711
1712 stub = (struct mips_elf_la25_stub *) *slot;
1713 if (stub != NULL)
1714 {
1715 /* We can reuse the existing stub. */
1716 h->la25_stub = stub;
1717 return TRUE;
1718 }
1719
1720 /* Create a permanent copy of ENTRY and add it to the hash table. */
1721 stub = bfd_malloc (sizeof (search));
1722 if (stub == NULL)
1723 return FALSE;
1724 *stub = search;
1725 *slot = stub;
1726
1727 h->la25_stub = stub;
1728 return (use_trampoline_p
1729 ? mips_elf_add_la25_trampoline (stub, info)
1730 : mips_elf_add_la25_intro (stub, info));
1731 }
1732
1733 /* A mips_elf_link_hash_traverse callback that is called before sizing
1734 sections. DATA points to a mips_htab_traverse_info structure. */
1735
1736 static bfd_boolean
1737 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1738 {
1739 struct mips_htab_traverse_info *hti;
1740
1741 hti = (struct mips_htab_traverse_info *) data;
1742 if (!hti->info->relocatable)
1743 mips_elf_check_mips16_stubs (hti->info, h);
1744
1745 if (mips_elf_local_pic_function_p (h))
1746 {
1747 /* PR 12845: If H is in a section that has been garbage
1748 collected it will have its output section set to *ABS*. */
1749 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1750 return TRUE;
1751
1752 /* H is a function that might need $25 to be valid on entry.
1753 If we're creating a non-PIC relocatable object, mark H as
1754 being PIC. If we're creating a non-relocatable object with
1755 non-PIC branches and jumps to H, make sure that H has an la25
1756 stub. */
1757 if (hti->info->relocatable)
1758 {
1759 if (!PIC_OBJECT_P (hti->output_bfd))
1760 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1761 }
1762 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1763 {
1764 hti->error = TRUE;
1765 return FALSE;
1766 }
1767 }
1768 return TRUE;
1769 }
1770 \f
1771 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1772 Most mips16 instructions are 16 bits, but these instructions
1773 are 32 bits.
1774
1775 The format of these instructions is:
1776
1777 +--------------+--------------------------------+
1778 | JALX | X| Imm 20:16 | Imm 25:21 |
1779 +--------------+--------------------------------+
1780 | Immediate 15:0 |
1781 +-----------------------------------------------+
1782
1783 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1784 Note that the immediate value in the first word is swapped.
1785
1786 When producing a relocatable object file, R_MIPS16_26 is
1787 handled mostly like R_MIPS_26. In particular, the addend is
1788 stored as a straight 26-bit value in a 32-bit instruction.
1789 (gas makes life simpler for itself by never adjusting a
1790 R_MIPS16_26 reloc to be against a section, so the addend is
1791 always zero). However, the 32 bit instruction is stored as 2
1792 16-bit values, rather than a single 32-bit value. In a
1793 big-endian file, the result is the same; in a little-endian
1794 file, the two 16-bit halves of the 32 bit value are swapped.
1795 This is so that a disassembler can recognize the jal
1796 instruction.
1797
1798 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1799 instruction stored as two 16-bit values. The addend A is the
1800 contents of the targ26 field. The calculation is the same as
1801 R_MIPS_26. When storing the calculated value, reorder the
1802 immediate value as shown above, and don't forget to store the
1803 value as two 16-bit values.
1804
1805 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1806 defined as
1807
1808 big-endian:
1809 +--------+----------------------+
1810 | | |
1811 | | targ26-16 |
1812 |31 26|25 0|
1813 +--------+----------------------+
1814
1815 little-endian:
1816 +----------+------+-------------+
1817 | | | |
1818 | sub1 | | sub2 |
1819 |0 9|10 15|16 31|
1820 +----------+--------------------+
1821 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1822 ((sub1 << 16) | sub2)).
1823
1824 When producing a relocatable object file, the calculation is
1825 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1826 When producing a fully linked file, the calculation is
1827 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1828 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1829
1830 The table below lists the other MIPS16 instruction relocations.
1831 Each one is calculated in the same way as the non-MIPS16 relocation
1832 given on the right, but using the extended MIPS16 layout of 16-bit
1833 immediate fields:
1834
1835 R_MIPS16_GPREL R_MIPS_GPREL16
1836 R_MIPS16_GOT16 R_MIPS_GOT16
1837 R_MIPS16_CALL16 R_MIPS_CALL16
1838 R_MIPS16_HI16 R_MIPS_HI16
1839 R_MIPS16_LO16 R_MIPS_LO16
1840
1841 A typical instruction will have a format like this:
1842
1843 +--------------+--------------------------------+
1844 | EXTEND | Imm 10:5 | Imm 15:11 |
1845 +--------------+--------------------------------+
1846 | Major | rx | ry | Imm 4:0 |
1847 +--------------+--------------------------------+
1848
1849 EXTEND is the five bit value 11110. Major is the instruction
1850 opcode.
1851
1852 All we need to do here is shuffle the bits appropriately.
1853 As above, the two 16-bit halves must be swapped on a
1854 little-endian system. */
1855
1856 static inline bfd_boolean
1857 mips16_reloc_p (int r_type)
1858 {
1859 switch (r_type)
1860 {
1861 case R_MIPS16_26:
1862 case R_MIPS16_GPREL:
1863 case R_MIPS16_GOT16:
1864 case R_MIPS16_CALL16:
1865 case R_MIPS16_HI16:
1866 case R_MIPS16_LO16:
1867 return TRUE;
1868
1869 default:
1870 return FALSE;
1871 }
1872 }
1873
1874 /* Check if a microMIPS reloc. */
1875
1876 static inline bfd_boolean
1877 micromips_reloc_p (unsigned int r_type)
1878 {
1879 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1880 }
1881
1882 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1883 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1884 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1885
1886 static inline bfd_boolean
1887 micromips_reloc_shuffle_p (unsigned int r_type)
1888 {
1889 return (micromips_reloc_p (r_type)
1890 && r_type != R_MICROMIPS_PC7_S1
1891 && r_type != R_MICROMIPS_PC10_S1);
1892 }
1893
1894 static inline bfd_boolean
1895 got16_reloc_p (int r_type)
1896 {
1897 return (r_type == R_MIPS_GOT16
1898 || r_type == R_MIPS16_GOT16
1899 || r_type == R_MICROMIPS_GOT16);
1900 }
1901
1902 static inline bfd_boolean
1903 call16_reloc_p (int r_type)
1904 {
1905 return (r_type == R_MIPS_CALL16
1906 || r_type == R_MIPS16_CALL16
1907 || r_type == R_MICROMIPS_CALL16);
1908 }
1909
1910 static inline bfd_boolean
1911 got_disp_reloc_p (unsigned int r_type)
1912 {
1913 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1914 }
1915
1916 static inline bfd_boolean
1917 got_page_reloc_p (unsigned int r_type)
1918 {
1919 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1920 }
1921
1922 static inline bfd_boolean
1923 got_ofst_reloc_p (unsigned int r_type)
1924 {
1925 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1926 }
1927
1928 static inline bfd_boolean
1929 got_hi16_reloc_p (unsigned int r_type)
1930 {
1931 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
1932 }
1933
1934 static inline bfd_boolean
1935 got_lo16_reloc_p (unsigned int r_type)
1936 {
1937 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
1938 }
1939
1940 static inline bfd_boolean
1941 call_hi16_reloc_p (unsigned int r_type)
1942 {
1943 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
1944 }
1945
1946 static inline bfd_boolean
1947 call_lo16_reloc_p (unsigned int r_type)
1948 {
1949 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
1950 }
1951
1952 static inline bfd_boolean
1953 hi16_reloc_p (int r_type)
1954 {
1955 return (r_type == R_MIPS_HI16
1956 || r_type == R_MIPS16_HI16
1957 || r_type == R_MICROMIPS_HI16);
1958 }
1959
1960 static inline bfd_boolean
1961 lo16_reloc_p (int r_type)
1962 {
1963 return (r_type == R_MIPS_LO16
1964 || r_type == R_MIPS16_LO16
1965 || r_type == R_MICROMIPS_LO16);
1966 }
1967
1968 static inline bfd_boolean
1969 mips16_call_reloc_p (int r_type)
1970 {
1971 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
1972 }
1973
1974 static inline bfd_boolean
1975 jal_reloc_p (int r_type)
1976 {
1977 return (r_type == R_MIPS_26
1978 || r_type == R_MIPS16_26
1979 || r_type == R_MICROMIPS_26_S1);
1980 }
1981
1982 static inline bfd_boolean
1983 micromips_branch_reloc_p (int r_type)
1984 {
1985 return (r_type == R_MICROMIPS_26_S1
1986 || r_type == R_MICROMIPS_PC16_S1
1987 || r_type == R_MICROMIPS_PC10_S1
1988 || r_type == R_MICROMIPS_PC7_S1);
1989 }
1990
1991 static inline bfd_boolean
1992 tls_gd_reloc_p (unsigned int r_type)
1993 {
1994 return r_type == R_MIPS_TLS_GD || r_type == R_MICROMIPS_TLS_GD;
1995 }
1996
1997 static inline bfd_boolean
1998 tls_ldm_reloc_p (unsigned int r_type)
1999 {
2000 return r_type == R_MIPS_TLS_LDM || r_type == R_MICROMIPS_TLS_LDM;
2001 }
2002
2003 static inline bfd_boolean
2004 tls_gottprel_reloc_p (unsigned int r_type)
2005 {
2006 return r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MICROMIPS_TLS_GOTTPREL;
2007 }
2008
2009 void
2010 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2011 bfd_boolean jal_shuffle, bfd_byte *data)
2012 {
2013 bfd_vma first, second, val;
2014
2015 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2016 return;
2017
2018 /* Pick up the first and second halfwords of the instruction. */
2019 first = bfd_get_16 (abfd, data);
2020 second = bfd_get_16 (abfd, data + 2);
2021 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2022 val = first << 16 | second;
2023 else if (r_type != R_MIPS16_26)
2024 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2025 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2026 else
2027 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2028 | ((first & 0x1f) << 21) | second);
2029 bfd_put_32 (abfd, val, data);
2030 }
2031
2032 void
2033 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2034 bfd_boolean jal_shuffle, bfd_byte *data)
2035 {
2036 bfd_vma first, second, val;
2037
2038 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2039 return;
2040
2041 val = bfd_get_32 (abfd, data);
2042 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2043 {
2044 second = val & 0xffff;
2045 first = val >> 16;
2046 }
2047 else if (r_type != R_MIPS16_26)
2048 {
2049 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2050 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2051 }
2052 else
2053 {
2054 second = val & 0xffff;
2055 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2056 | ((val >> 21) & 0x1f);
2057 }
2058 bfd_put_16 (abfd, second, data + 2);
2059 bfd_put_16 (abfd, first, data);
2060 }
2061
2062 bfd_reloc_status_type
2063 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2064 arelent *reloc_entry, asection *input_section,
2065 bfd_boolean relocatable, void *data, bfd_vma gp)
2066 {
2067 bfd_vma relocation;
2068 bfd_signed_vma val;
2069 bfd_reloc_status_type status;
2070
2071 if (bfd_is_com_section (symbol->section))
2072 relocation = 0;
2073 else
2074 relocation = symbol->value;
2075
2076 relocation += symbol->section->output_section->vma;
2077 relocation += symbol->section->output_offset;
2078
2079 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2080 return bfd_reloc_outofrange;
2081
2082 /* Set val to the offset into the section or symbol. */
2083 val = reloc_entry->addend;
2084
2085 _bfd_mips_elf_sign_extend (val, 16);
2086
2087 /* Adjust val for the final section location and GP value. If we
2088 are producing relocatable output, we don't want to do this for
2089 an external symbol. */
2090 if (! relocatable
2091 || (symbol->flags & BSF_SECTION_SYM) != 0)
2092 val += relocation - gp;
2093
2094 if (reloc_entry->howto->partial_inplace)
2095 {
2096 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2097 (bfd_byte *) data
2098 + reloc_entry->address);
2099 if (status != bfd_reloc_ok)
2100 return status;
2101 }
2102 else
2103 reloc_entry->addend = val;
2104
2105 if (relocatable)
2106 reloc_entry->address += input_section->output_offset;
2107
2108 return bfd_reloc_ok;
2109 }
2110
2111 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2112 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2113 that contains the relocation field and DATA points to the start of
2114 INPUT_SECTION. */
2115
2116 struct mips_hi16
2117 {
2118 struct mips_hi16 *next;
2119 bfd_byte *data;
2120 asection *input_section;
2121 arelent rel;
2122 };
2123
2124 /* FIXME: This should not be a static variable. */
2125
2126 static struct mips_hi16 *mips_hi16_list;
2127
2128 /* A howto special_function for REL *HI16 relocations. We can only
2129 calculate the correct value once we've seen the partnering
2130 *LO16 relocation, so just save the information for later.
2131
2132 The ABI requires that the *LO16 immediately follow the *HI16.
2133 However, as a GNU extension, we permit an arbitrary number of
2134 *HI16s to be associated with a single *LO16. This significantly
2135 simplies the relocation handling in gcc. */
2136
2137 bfd_reloc_status_type
2138 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2139 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2140 asection *input_section, bfd *output_bfd,
2141 char **error_message ATTRIBUTE_UNUSED)
2142 {
2143 struct mips_hi16 *n;
2144
2145 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2146 return bfd_reloc_outofrange;
2147
2148 n = bfd_malloc (sizeof *n);
2149 if (n == NULL)
2150 return bfd_reloc_outofrange;
2151
2152 n->next = mips_hi16_list;
2153 n->data = data;
2154 n->input_section = input_section;
2155 n->rel = *reloc_entry;
2156 mips_hi16_list = n;
2157
2158 if (output_bfd != NULL)
2159 reloc_entry->address += input_section->output_offset;
2160
2161 return bfd_reloc_ok;
2162 }
2163
2164 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2165 like any other 16-bit relocation when applied to global symbols, but is
2166 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2167
2168 bfd_reloc_status_type
2169 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2170 void *data, asection *input_section,
2171 bfd *output_bfd, char **error_message)
2172 {
2173 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2174 || bfd_is_und_section (bfd_get_section (symbol))
2175 || bfd_is_com_section (bfd_get_section (symbol)))
2176 /* The relocation is against a global symbol. */
2177 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2178 input_section, output_bfd,
2179 error_message);
2180
2181 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2182 input_section, output_bfd, error_message);
2183 }
2184
2185 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2186 is a straightforward 16 bit inplace relocation, but we must deal with
2187 any partnering high-part relocations as well. */
2188
2189 bfd_reloc_status_type
2190 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2191 void *data, asection *input_section,
2192 bfd *output_bfd, char **error_message)
2193 {
2194 bfd_vma vallo;
2195 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2196
2197 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2198 return bfd_reloc_outofrange;
2199
2200 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2201 location);
2202 vallo = bfd_get_32 (abfd, location);
2203 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2204 location);
2205
2206 while (mips_hi16_list != NULL)
2207 {
2208 bfd_reloc_status_type ret;
2209 struct mips_hi16 *hi;
2210
2211 hi = mips_hi16_list;
2212
2213 /* R_MIPS*_GOT16 relocations are something of a special case. We
2214 want to install the addend in the same way as for a R_MIPS*_HI16
2215 relocation (with a rightshift of 16). However, since GOT16
2216 relocations can also be used with global symbols, their howto
2217 has a rightshift of 0. */
2218 if (hi->rel.howto->type == R_MIPS_GOT16)
2219 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2220 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2221 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2222 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2223 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2224
2225 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2226 carry or borrow will induce a change of +1 or -1 in the high part. */
2227 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2228
2229 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2230 hi->input_section, output_bfd,
2231 error_message);
2232 if (ret != bfd_reloc_ok)
2233 return ret;
2234
2235 mips_hi16_list = hi->next;
2236 free (hi);
2237 }
2238
2239 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2240 input_section, output_bfd,
2241 error_message);
2242 }
2243
2244 /* A generic howto special_function. This calculates and installs the
2245 relocation itself, thus avoiding the oft-discussed problems in
2246 bfd_perform_relocation and bfd_install_relocation. */
2247
2248 bfd_reloc_status_type
2249 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2250 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2251 asection *input_section, bfd *output_bfd,
2252 char **error_message ATTRIBUTE_UNUSED)
2253 {
2254 bfd_signed_vma val;
2255 bfd_reloc_status_type status;
2256 bfd_boolean relocatable;
2257
2258 relocatable = (output_bfd != NULL);
2259
2260 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2261 return bfd_reloc_outofrange;
2262
2263 /* Build up the field adjustment in VAL. */
2264 val = 0;
2265 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2266 {
2267 /* Either we're calculating the final field value or we have a
2268 relocation against a section symbol. Add in the section's
2269 offset or address. */
2270 val += symbol->section->output_section->vma;
2271 val += symbol->section->output_offset;
2272 }
2273
2274 if (!relocatable)
2275 {
2276 /* We're calculating the final field value. Add in the symbol's value
2277 and, if pc-relative, subtract the address of the field itself. */
2278 val += symbol->value;
2279 if (reloc_entry->howto->pc_relative)
2280 {
2281 val -= input_section->output_section->vma;
2282 val -= input_section->output_offset;
2283 val -= reloc_entry->address;
2284 }
2285 }
2286
2287 /* VAL is now the final adjustment. If we're keeping this relocation
2288 in the output file, and if the relocation uses a separate addend,
2289 we just need to add VAL to that addend. Otherwise we need to add
2290 VAL to the relocation field itself. */
2291 if (relocatable && !reloc_entry->howto->partial_inplace)
2292 reloc_entry->addend += val;
2293 else
2294 {
2295 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2296
2297 /* Add in the separate addend, if any. */
2298 val += reloc_entry->addend;
2299
2300 /* Add VAL to the relocation field. */
2301 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2302 location);
2303 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2304 location);
2305 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2306 location);
2307
2308 if (status != bfd_reloc_ok)
2309 return status;
2310 }
2311
2312 if (relocatable)
2313 reloc_entry->address += input_section->output_offset;
2314
2315 return bfd_reloc_ok;
2316 }
2317 \f
2318 /* Swap an entry in a .gptab section. Note that these routines rely
2319 on the equivalence of the two elements of the union. */
2320
2321 static void
2322 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2323 Elf32_gptab *in)
2324 {
2325 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2326 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2327 }
2328
2329 static void
2330 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2331 Elf32_External_gptab *ex)
2332 {
2333 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2334 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2335 }
2336
2337 static void
2338 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2339 Elf32_External_compact_rel *ex)
2340 {
2341 H_PUT_32 (abfd, in->id1, ex->id1);
2342 H_PUT_32 (abfd, in->num, ex->num);
2343 H_PUT_32 (abfd, in->id2, ex->id2);
2344 H_PUT_32 (abfd, in->offset, ex->offset);
2345 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2346 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2347 }
2348
2349 static void
2350 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2351 Elf32_External_crinfo *ex)
2352 {
2353 unsigned long l;
2354
2355 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2356 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2357 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2358 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2359 H_PUT_32 (abfd, l, ex->info);
2360 H_PUT_32 (abfd, in->konst, ex->konst);
2361 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2362 }
2363 \f
2364 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2365 routines swap this structure in and out. They are used outside of
2366 BFD, so they are globally visible. */
2367
2368 void
2369 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2370 Elf32_RegInfo *in)
2371 {
2372 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2373 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2374 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2375 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2376 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2377 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2378 }
2379
2380 void
2381 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2382 Elf32_External_RegInfo *ex)
2383 {
2384 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2385 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2386 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2387 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2388 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2389 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2390 }
2391
2392 /* In the 64 bit ABI, the .MIPS.options section holds register
2393 information in an Elf64_Reginfo structure. These routines swap
2394 them in and out. They are globally visible because they are used
2395 outside of BFD. These routines are here so that gas can call them
2396 without worrying about whether the 64 bit ABI has been included. */
2397
2398 void
2399 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2400 Elf64_Internal_RegInfo *in)
2401 {
2402 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2403 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2404 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2405 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2406 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2407 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2408 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2409 }
2410
2411 void
2412 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2413 Elf64_External_RegInfo *ex)
2414 {
2415 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2416 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2417 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2418 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2419 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2420 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2421 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2422 }
2423
2424 /* Swap in an options header. */
2425
2426 void
2427 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2428 Elf_Internal_Options *in)
2429 {
2430 in->kind = H_GET_8 (abfd, ex->kind);
2431 in->size = H_GET_8 (abfd, ex->size);
2432 in->section = H_GET_16 (abfd, ex->section);
2433 in->info = H_GET_32 (abfd, ex->info);
2434 }
2435
2436 /* Swap out an options header. */
2437
2438 void
2439 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2440 Elf_External_Options *ex)
2441 {
2442 H_PUT_8 (abfd, in->kind, ex->kind);
2443 H_PUT_8 (abfd, in->size, ex->size);
2444 H_PUT_16 (abfd, in->section, ex->section);
2445 H_PUT_32 (abfd, in->info, ex->info);
2446 }
2447 \f
2448 /* This function is called via qsort() to sort the dynamic relocation
2449 entries by increasing r_symndx value. */
2450
2451 static int
2452 sort_dynamic_relocs (const void *arg1, const void *arg2)
2453 {
2454 Elf_Internal_Rela int_reloc1;
2455 Elf_Internal_Rela int_reloc2;
2456 int diff;
2457
2458 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2459 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2460
2461 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2462 if (diff != 0)
2463 return diff;
2464
2465 if (int_reloc1.r_offset < int_reloc2.r_offset)
2466 return -1;
2467 if (int_reloc1.r_offset > int_reloc2.r_offset)
2468 return 1;
2469 return 0;
2470 }
2471
2472 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2473
2474 static int
2475 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2476 const void *arg2 ATTRIBUTE_UNUSED)
2477 {
2478 #ifdef BFD64
2479 Elf_Internal_Rela int_reloc1[3];
2480 Elf_Internal_Rela int_reloc2[3];
2481
2482 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2483 (reldyn_sorting_bfd, arg1, int_reloc1);
2484 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2485 (reldyn_sorting_bfd, arg2, int_reloc2);
2486
2487 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2488 return -1;
2489 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2490 return 1;
2491
2492 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2493 return -1;
2494 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2495 return 1;
2496 return 0;
2497 #else
2498 abort ();
2499 #endif
2500 }
2501
2502
2503 /* This routine is used to write out ECOFF debugging external symbol
2504 information. It is called via mips_elf_link_hash_traverse. The
2505 ECOFF external symbol information must match the ELF external
2506 symbol information. Unfortunately, at this point we don't know
2507 whether a symbol is required by reloc information, so the two
2508 tables may wind up being different. We must sort out the external
2509 symbol information before we can set the final size of the .mdebug
2510 section, and we must set the size of the .mdebug section before we
2511 can relocate any sections, and we can't know which symbols are
2512 required by relocation until we relocate the sections.
2513 Fortunately, it is relatively unlikely that any symbol will be
2514 stripped but required by a reloc. In particular, it can not happen
2515 when generating a final executable. */
2516
2517 static bfd_boolean
2518 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2519 {
2520 struct extsym_info *einfo = data;
2521 bfd_boolean strip;
2522 asection *sec, *output_section;
2523
2524 if (h->root.indx == -2)
2525 strip = FALSE;
2526 else if ((h->root.def_dynamic
2527 || h->root.ref_dynamic
2528 || h->root.type == bfd_link_hash_new)
2529 && !h->root.def_regular
2530 && !h->root.ref_regular)
2531 strip = TRUE;
2532 else if (einfo->info->strip == strip_all
2533 || (einfo->info->strip == strip_some
2534 && bfd_hash_lookup (einfo->info->keep_hash,
2535 h->root.root.root.string,
2536 FALSE, FALSE) == NULL))
2537 strip = TRUE;
2538 else
2539 strip = FALSE;
2540
2541 if (strip)
2542 return TRUE;
2543
2544 if (h->esym.ifd == -2)
2545 {
2546 h->esym.jmptbl = 0;
2547 h->esym.cobol_main = 0;
2548 h->esym.weakext = 0;
2549 h->esym.reserved = 0;
2550 h->esym.ifd = ifdNil;
2551 h->esym.asym.value = 0;
2552 h->esym.asym.st = stGlobal;
2553
2554 if (h->root.root.type == bfd_link_hash_undefined
2555 || h->root.root.type == bfd_link_hash_undefweak)
2556 {
2557 const char *name;
2558
2559 /* Use undefined class. Also, set class and type for some
2560 special symbols. */
2561 name = h->root.root.root.string;
2562 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2563 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2564 {
2565 h->esym.asym.sc = scData;
2566 h->esym.asym.st = stLabel;
2567 h->esym.asym.value = 0;
2568 }
2569 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2570 {
2571 h->esym.asym.sc = scAbs;
2572 h->esym.asym.st = stLabel;
2573 h->esym.asym.value =
2574 mips_elf_hash_table (einfo->info)->procedure_count;
2575 }
2576 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2577 {
2578 h->esym.asym.sc = scAbs;
2579 h->esym.asym.st = stLabel;
2580 h->esym.asym.value = elf_gp (einfo->abfd);
2581 }
2582 else
2583 h->esym.asym.sc = scUndefined;
2584 }
2585 else if (h->root.root.type != bfd_link_hash_defined
2586 && h->root.root.type != bfd_link_hash_defweak)
2587 h->esym.asym.sc = scAbs;
2588 else
2589 {
2590 const char *name;
2591
2592 sec = h->root.root.u.def.section;
2593 output_section = sec->output_section;
2594
2595 /* When making a shared library and symbol h is the one from
2596 the another shared library, OUTPUT_SECTION may be null. */
2597 if (output_section == NULL)
2598 h->esym.asym.sc = scUndefined;
2599 else
2600 {
2601 name = bfd_section_name (output_section->owner, output_section);
2602
2603 if (strcmp (name, ".text") == 0)
2604 h->esym.asym.sc = scText;
2605 else if (strcmp (name, ".data") == 0)
2606 h->esym.asym.sc = scData;
2607 else if (strcmp (name, ".sdata") == 0)
2608 h->esym.asym.sc = scSData;
2609 else if (strcmp (name, ".rodata") == 0
2610 || strcmp (name, ".rdata") == 0)
2611 h->esym.asym.sc = scRData;
2612 else if (strcmp (name, ".bss") == 0)
2613 h->esym.asym.sc = scBss;
2614 else if (strcmp (name, ".sbss") == 0)
2615 h->esym.asym.sc = scSBss;
2616 else if (strcmp (name, ".init") == 0)
2617 h->esym.asym.sc = scInit;
2618 else if (strcmp (name, ".fini") == 0)
2619 h->esym.asym.sc = scFini;
2620 else
2621 h->esym.asym.sc = scAbs;
2622 }
2623 }
2624
2625 h->esym.asym.reserved = 0;
2626 h->esym.asym.index = indexNil;
2627 }
2628
2629 if (h->root.root.type == bfd_link_hash_common)
2630 h->esym.asym.value = h->root.root.u.c.size;
2631 else if (h->root.root.type == bfd_link_hash_defined
2632 || h->root.root.type == bfd_link_hash_defweak)
2633 {
2634 if (h->esym.asym.sc == scCommon)
2635 h->esym.asym.sc = scBss;
2636 else if (h->esym.asym.sc == scSCommon)
2637 h->esym.asym.sc = scSBss;
2638
2639 sec = h->root.root.u.def.section;
2640 output_section = sec->output_section;
2641 if (output_section != NULL)
2642 h->esym.asym.value = (h->root.root.u.def.value
2643 + sec->output_offset
2644 + output_section->vma);
2645 else
2646 h->esym.asym.value = 0;
2647 }
2648 else
2649 {
2650 struct mips_elf_link_hash_entry *hd = h;
2651
2652 while (hd->root.root.type == bfd_link_hash_indirect)
2653 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2654
2655 if (hd->needs_lazy_stub)
2656 {
2657 /* Set type and value for a symbol with a function stub. */
2658 h->esym.asym.st = stProc;
2659 sec = hd->root.root.u.def.section;
2660 if (sec == NULL)
2661 h->esym.asym.value = 0;
2662 else
2663 {
2664 output_section = sec->output_section;
2665 if (output_section != NULL)
2666 h->esym.asym.value = (hd->root.plt.offset
2667 + sec->output_offset
2668 + output_section->vma);
2669 else
2670 h->esym.asym.value = 0;
2671 }
2672 }
2673 }
2674
2675 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2676 h->root.root.root.string,
2677 &h->esym))
2678 {
2679 einfo->failed = TRUE;
2680 return FALSE;
2681 }
2682
2683 return TRUE;
2684 }
2685
2686 /* A comparison routine used to sort .gptab entries. */
2687
2688 static int
2689 gptab_compare (const void *p1, const void *p2)
2690 {
2691 const Elf32_gptab *a1 = p1;
2692 const Elf32_gptab *a2 = p2;
2693
2694 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2695 }
2696 \f
2697 /* Functions to manage the got entry hash table. */
2698
2699 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2700 hash number. */
2701
2702 static INLINE hashval_t
2703 mips_elf_hash_bfd_vma (bfd_vma addr)
2704 {
2705 #ifdef BFD64
2706 return addr + (addr >> 32);
2707 #else
2708 return addr;
2709 #endif
2710 }
2711
2712 /* got_entries only match if they're identical, except for gotidx, so
2713 use all fields to compute the hash, and compare the appropriate
2714 union members. */
2715
2716 static hashval_t
2717 mips_elf_got_entry_hash (const void *entry_)
2718 {
2719 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2720
2721 return entry->symndx
2722 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2723 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2724 : entry->abfd->id
2725 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2726 : entry->d.h->root.root.root.hash));
2727 }
2728
2729 static int
2730 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2731 {
2732 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2733 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2734
2735 /* An LDM entry can only match another LDM entry. */
2736 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2737 return 0;
2738
2739 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2740 && (! e1->abfd ? e1->d.address == e2->d.address
2741 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2742 : e1->d.h == e2->d.h);
2743 }
2744
2745 /* multi_got_entries are still a match in the case of global objects,
2746 even if the input bfd in which they're referenced differs, so the
2747 hash computation and compare functions are adjusted
2748 accordingly. */
2749
2750 static hashval_t
2751 mips_elf_multi_got_entry_hash (const void *entry_)
2752 {
2753 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2754
2755 return entry->symndx
2756 + (! entry->abfd
2757 ? mips_elf_hash_bfd_vma (entry->d.address)
2758 : entry->symndx >= 0
2759 ? ((entry->tls_type & GOT_TLS_LDM)
2760 ? (GOT_TLS_LDM << 17)
2761 : (entry->abfd->id
2762 + mips_elf_hash_bfd_vma (entry->d.addend)))
2763 : entry->d.h->root.root.root.hash);
2764 }
2765
2766 static int
2767 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2768 {
2769 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2770 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2771
2772 /* Any two LDM entries match. */
2773 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2774 return 1;
2775
2776 /* Nothing else matches an LDM entry. */
2777 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2778 return 0;
2779
2780 return e1->symndx == e2->symndx
2781 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2782 : e1->abfd == NULL || e2->abfd == NULL
2783 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2784 : e1->d.h == e2->d.h);
2785 }
2786
2787 static hashval_t
2788 mips_got_page_entry_hash (const void *entry_)
2789 {
2790 const struct mips_got_page_entry *entry;
2791
2792 entry = (const struct mips_got_page_entry *) entry_;
2793 return entry->abfd->id + entry->symndx;
2794 }
2795
2796 static int
2797 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2798 {
2799 const struct mips_got_page_entry *entry1, *entry2;
2800
2801 entry1 = (const struct mips_got_page_entry *) entry1_;
2802 entry2 = (const struct mips_got_page_entry *) entry2_;
2803 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2804 }
2805 \f
2806 /* Return the dynamic relocation section. If it doesn't exist, try to
2807 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2808 if creation fails. */
2809
2810 static asection *
2811 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2812 {
2813 const char *dname;
2814 asection *sreloc;
2815 bfd *dynobj;
2816
2817 dname = MIPS_ELF_REL_DYN_NAME (info);
2818 dynobj = elf_hash_table (info)->dynobj;
2819 sreloc = bfd_get_section_by_name (dynobj, dname);
2820 if (sreloc == NULL && create_p)
2821 {
2822 sreloc = bfd_make_section_with_flags (dynobj, dname,
2823 (SEC_ALLOC
2824 | SEC_LOAD
2825 | SEC_HAS_CONTENTS
2826 | SEC_IN_MEMORY
2827 | SEC_LINKER_CREATED
2828 | SEC_READONLY));
2829 if (sreloc == NULL
2830 || ! bfd_set_section_alignment (dynobj, sreloc,
2831 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2832 return NULL;
2833 }
2834 return sreloc;
2835 }
2836
2837 /* Count the number of relocations needed for a TLS GOT entry, with
2838 access types from TLS_TYPE, and symbol H (or a local symbol if H
2839 is NULL). */
2840
2841 static int
2842 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2843 struct elf_link_hash_entry *h)
2844 {
2845 int indx = 0;
2846 int ret = 0;
2847 bfd_boolean need_relocs = FALSE;
2848 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2849
2850 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2851 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2852 indx = h->dynindx;
2853
2854 if ((info->shared || indx != 0)
2855 && (h == NULL
2856 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2857 || h->root.type != bfd_link_hash_undefweak))
2858 need_relocs = TRUE;
2859
2860 if (!need_relocs)
2861 return FALSE;
2862
2863 if (tls_type & GOT_TLS_GD)
2864 {
2865 ret++;
2866 if (indx != 0)
2867 ret++;
2868 }
2869
2870 if (tls_type & GOT_TLS_IE)
2871 ret++;
2872
2873 if ((tls_type & GOT_TLS_LDM) && info->shared)
2874 ret++;
2875
2876 return ret;
2877 }
2878
2879 /* Count the number of TLS relocations required for the GOT entry in
2880 ARG1, if it describes a local symbol. */
2881
2882 static int
2883 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2884 {
2885 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2886 struct mips_elf_count_tls_arg *arg = arg2;
2887
2888 if (entry->abfd != NULL && entry->symndx != -1)
2889 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2890
2891 return 1;
2892 }
2893
2894 /* Count the number of TLS GOT entries required for the global (or
2895 forced-local) symbol in ARG1. */
2896
2897 static int
2898 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2899 {
2900 struct mips_elf_link_hash_entry *hm
2901 = (struct mips_elf_link_hash_entry *) arg1;
2902 struct mips_elf_count_tls_arg *arg = arg2;
2903
2904 if (hm->tls_type & GOT_TLS_GD)
2905 arg->needed += 2;
2906 if (hm->tls_type & GOT_TLS_IE)
2907 arg->needed += 1;
2908
2909 return 1;
2910 }
2911
2912 /* Count the number of TLS relocations required for the global (or
2913 forced-local) symbol in ARG1. */
2914
2915 static int
2916 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2917 {
2918 struct mips_elf_link_hash_entry *hm
2919 = (struct mips_elf_link_hash_entry *) arg1;
2920 struct mips_elf_count_tls_arg *arg = arg2;
2921
2922 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2923
2924 return 1;
2925 }
2926
2927 /* Output a simple dynamic relocation into SRELOC. */
2928
2929 static void
2930 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2931 asection *sreloc,
2932 unsigned long reloc_index,
2933 unsigned long indx,
2934 int r_type,
2935 bfd_vma offset)
2936 {
2937 Elf_Internal_Rela rel[3];
2938
2939 memset (rel, 0, sizeof (rel));
2940
2941 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2942 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2943
2944 if (ABI_64_P (output_bfd))
2945 {
2946 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2947 (output_bfd, &rel[0],
2948 (sreloc->contents
2949 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
2950 }
2951 else
2952 bfd_elf32_swap_reloc_out
2953 (output_bfd, &rel[0],
2954 (sreloc->contents
2955 + reloc_index * sizeof (Elf32_External_Rel)));
2956 }
2957
2958 /* Initialize a set of TLS GOT entries for one symbol. */
2959
2960 static void
2961 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2962 unsigned char *tls_type_p,
2963 struct bfd_link_info *info,
2964 struct mips_elf_link_hash_entry *h,
2965 bfd_vma value)
2966 {
2967 struct mips_elf_link_hash_table *htab;
2968 int indx;
2969 asection *sreloc, *sgot;
2970 bfd_vma offset, offset2;
2971 bfd_boolean need_relocs = FALSE;
2972
2973 htab = mips_elf_hash_table (info);
2974 if (htab == NULL)
2975 return;
2976
2977 sgot = htab->sgot;
2978
2979 indx = 0;
2980 if (h != NULL)
2981 {
2982 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2983
2984 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2985 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2986 indx = h->root.dynindx;
2987 }
2988
2989 if (*tls_type_p & GOT_TLS_DONE)
2990 return;
2991
2992 if ((info->shared || indx != 0)
2993 && (h == NULL
2994 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2995 || h->root.type != bfd_link_hash_undefweak))
2996 need_relocs = TRUE;
2997
2998 /* MINUS_ONE means the symbol is not defined in this object. It may not
2999 be defined at all; assume that the value doesn't matter in that
3000 case. Otherwise complain if we would use the value. */
3001 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3002 || h->root.root.type == bfd_link_hash_undefweak);
3003
3004 /* Emit necessary relocations. */
3005 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3006
3007 /* General Dynamic. */
3008 if (*tls_type_p & GOT_TLS_GD)
3009 {
3010 offset = got_offset;
3011 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
3012
3013 if (need_relocs)
3014 {
3015 mips_elf_output_dynamic_relocation
3016 (abfd, sreloc, sreloc->reloc_count++, indx,
3017 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3018 sgot->output_offset + sgot->output_section->vma + offset);
3019
3020 if (indx)
3021 mips_elf_output_dynamic_relocation
3022 (abfd, sreloc, sreloc->reloc_count++, indx,
3023 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3024 sgot->output_offset + sgot->output_section->vma + offset2);
3025 else
3026 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3027 sgot->contents + offset2);
3028 }
3029 else
3030 {
3031 MIPS_ELF_PUT_WORD (abfd, 1,
3032 sgot->contents + offset);
3033 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3034 sgot->contents + offset2);
3035 }
3036
3037 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
3038 }
3039
3040 /* Initial Exec model. */
3041 if (*tls_type_p & GOT_TLS_IE)
3042 {
3043 offset = got_offset;
3044
3045 if (need_relocs)
3046 {
3047 if (indx == 0)
3048 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3049 sgot->contents + offset);
3050 else
3051 MIPS_ELF_PUT_WORD (abfd, 0,
3052 sgot->contents + offset);
3053
3054 mips_elf_output_dynamic_relocation
3055 (abfd, sreloc, sreloc->reloc_count++, indx,
3056 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3057 sgot->output_offset + sgot->output_section->vma + offset);
3058 }
3059 else
3060 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3061 sgot->contents + offset);
3062 }
3063
3064 if (*tls_type_p & GOT_TLS_LDM)
3065 {
3066 /* The initial offset is zero, and the LD offsets will include the
3067 bias by DTP_OFFSET. */
3068 MIPS_ELF_PUT_WORD (abfd, 0,
3069 sgot->contents + got_offset
3070 + MIPS_ELF_GOT_SIZE (abfd));
3071
3072 if (!info->shared)
3073 MIPS_ELF_PUT_WORD (abfd, 1,
3074 sgot->contents + got_offset);
3075 else
3076 mips_elf_output_dynamic_relocation
3077 (abfd, sreloc, sreloc->reloc_count++, indx,
3078 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3079 sgot->output_offset + sgot->output_section->vma + got_offset);
3080 }
3081
3082 *tls_type_p |= GOT_TLS_DONE;
3083 }
3084
3085 /* Return the GOT index to use for a relocation of type R_TYPE against
3086 a symbol accessed using TLS_TYPE models. The GOT entries for this
3087 symbol in this GOT start at GOT_INDEX. This function initializes the
3088 GOT entries and corresponding relocations. */
3089
3090 static bfd_vma
3091 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
3092 int r_type, struct bfd_link_info *info,
3093 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3094 {
3095 BFD_ASSERT (tls_gottprel_reloc_p (r_type)
3096 || tls_gd_reloc_p (r_type)
3097 || tls_ldm_reloc_p (r_type));
3098
3099 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
3100
3101 if (tls_gottprel_reloc_p (r_type))
3102 {
3103 BFD_ASSERT (*tls_type & GOT_TLS_IE);
3104 if (*tls_type & GOT_TLS_GD)
3105 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
3106 else
3107 return got_index;
3108 }
3109
3110 if (tls_gd_reloc_p (r_type))
3111 {
3112 BFD_ASSERT (*tls_type & GOT_TLS_GD);
3113 return got_index;
3114 }
3115
3116 if (tls_ldm_reloc_p (r_type))
3117 {
3118 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3119 return got_index;
3120 }
3121
3122 return got_index;
3123 }
3124
3125 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3126 for global symbol H. .got.plt comes before the GOT, so the offset
3127 will be negative. */
3128
3129 static bfd_vma
3130 mips_elf_gotplt_index (struct bfd_link_info *info,
3131 struct elf_link_hash_entry *h)
3132 {
3133 bfd_vma plt_index, got_address, got_value;
3134 struct mips_elf_link_hash_table *htab;
3135
3136 htab = mips_elf_hash_table (info);
3137 BFD_ASSERT (htab != NULL);
3138
3139 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3140
3141 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3142 section starts with reserved entries. */
3143 BFD_ASSERT (htab->is_vxworks);
3144
3145 /* Calculate the index of the symbol's PLT entry. */
3146 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3147
3148 /* Calculate the address of the associated .got.plt entry. */
3149 got_address = (htab->sgotplt->output_section->vma
3150 + htab->sgotplt->output_offset
3151 + plt_index * 4);
3152
3153 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3154 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3155 + htab->root.hgot->root.u.def.section->output_offset
3156 + htab->root.hgot->root.u.def.value);
3157
3158 return got_address - got_value;
3159 }
3160
3161 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3162 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3163 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3164 offset can be found. */
3165
3166 static bfd_vma
3167 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3168 bfd_vma value, unsigned long r_symndx,
3169 struct mips_elf_link_hash_entry *h, int r_type)
3170 {
3171 struct mips_elf_link_hash_table *htab;
3172 struct mips_got_entry *entry;
3173
3174 htab = mips_elf_hash_table (info);
3175 BFD_ASSERT (htab != NULL);
3176
3177 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3178 r_symndx, h, r_type);
3179 if (!entry)
3180 return MINUS_ONE;
3181
3182 if (TLS_RELOC_P (r_type))
3183 {
3184 if (entry->symndx == -1 && htab->got_info->next == NULL)
3185 /* A type (3) entry in the single-GOT case. We use the symbol's
3186 hash table entry to track the index. */
3187 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3188 r_type, info, h, value);
3189 else
3190 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3191 r_type, info, h, value);
3192 }
3193 else
3194 return entry->gotidx;
3195 }
3196
3197 /* Returns the GOT index for the global symbol indicated by H. */
3198
3199 static bfd_vma
3200 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3201 int r_type, struct bfd_link_info *info)
3202 {
3203 struct mips_elf_link_hash_table *htab;
3204 bfd_vma got_index;
3205 struct mips_got_info *g, *gg;
3206 long global_got_dynindx = 0;
3207
3208 htab = mips_elf_hash_table (info);
3209 BFD_ASSERT (htab != NULL);
3210
3211 gg = g = htab->got_info;
3212 if (g->bfd2got && ibfd)
3213 {
3214 struct mips_got_entry e, *p;
3215
3216 BFD_ASSERT (h->dynindx >= 0);
3217
3218 g = mips_elf_got_for_ibfd (g, ibfd);
3219 if (g->next != gg || TLS_RELOC_P (r_type))
3220 {
3221 e.abfd = ibfd;
3222 e.symndx = -1;
3223 e.d.h = (struct mips_elf_link_hash_entry *)h;
3224 e.tls_type = 0;
3225
3226 p = htab_find (g->got_entries, &e);
3227
3228 BFD_ASSERT (p->gotidx > 0);
3229
3230 if (TLS_RELOC_P (r_type))
3231 {
3232 bfd_vma value = MINUS_ONE;
3233 if ((h->root.type == bfd_link_hash_defined
3234 || h->root.type == bfd_link_hash_defweak)
3235 && h->root.u.def.section->output_section)
3236 value = (h->root.u.def.value
3237 + h->root.u.def.section->output_offset
3238 + h->root.u.def.section->output_section->vma);
3239
3240 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3241 info, e.d.h, value);
3242 }
3243 else
3244 return p->gotidx;
3245 }
3246 }
3247
3248 if (gg->global_gotsym != NULL)
3249 global_got_dynindx = gg->global_gotsym->dynindx;
3250
3251 if (TLS_RELOC_P (r_type))
3252 {
3253 struct mips_elf_link_hash_entry *hm
3254 = (struct mips_elf_link_hash_entry *) h;
3255 bfd_vma value = MINUS_ONE;
3256
3257 if ((h->root.type == bfd_link_hash_defined
3258 || h->root.type == bfd_link_hash_defweak)
3259 && h->root.u.def.section->output_section)
3260 value = (h->root.u.def.value
3261 + h->root.u.def.section->output_offset
3262 + h->root.u.def.section->output_section->vma);
3263
3264 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3265 r_type, info, hm, value);
3266 }
3267 else
3268 {
3269 /* Once we determine the global GOT entry with the lowest dynamic
3270 symbol table index, we must put all dynamic symbols with greater
3271 indices into the GOT. That makes it easy to calculate the GOT
3272 offset. */
3273 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3274 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3275 * MIPS_ELF_GOT_SIZE (abfd));
3276 }
3277 BFD_ASSERT (got_index < htab->sgot->size);
3278
3279 return got_index;
3280 }
3281
3282 /* Find a GOT page entry that points to within 32KB of VALUE. These
3283 entries are supposed to be placed at small offsets in the GOT, i.e.,
3284 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3285 entry could be created. If OFFSETP is nonnull, use it to return the
3286 offset of the GOT entry from VALUE. */
3287
3288 static bfd_vma
3289 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3290 bfd_vma value, bfd_vma *offsetp)
3291 {
3292 bfd_vma page, got_index;
3293 struct mips_got_entry *entry;
3294
3295 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3296 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3297 NULL, R_MIPS_GOT_PAGE);
3298
3299 if (!entry)
3300 return MINUS_ONE;
3301
3302 got_index = entry->gotidx;
3303
3304 if (offsetp)
3305 *offsetp = value - entry->d.address;
3306
3307 return got_index;
3308 }
3309
3310 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3311 EXTERNAL is true if the relocation was originally against a global
3312 symbol that binds locally. */
3313
3314 static bfd_vma
3315 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3316 bfd_vma value, bfd_boolean external)
3317 {
3318 struct mips_got_entry *entry;
3319
3320 /* GOT16 relocations against local symbols are followed by a LO16
3321 relocation; those against global symbols are not. Thus if the
3322 symbol was originally local, the GOT16 relocation should load the
3323 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3324 if (! external)
3325 value = mips_elf_high (value) << 16;
3326
3327 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3328 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3329 same in all cases. */
3330 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3331 NULL, R_MIPS_GOT16);
3332 if (entry)
3333 return entry->gotidx;
3334 else
3335 return MINUS_ONE;
3336 }
3337
3338 /* Returns the offset for the entry at the INDEXth position
3339 in the GOT. */
3340
3341 static bfd_vma
3342 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3343 bfd *input_bfd, bfd_vma got_index)
3344 {
3345 struct mips_elf_link_hash_table *htab;
3346 asection *sgot;
3347 bfd_vma gp;
3348
3349 htab = mips_elf_hash_table (info);
3350 BFD_ASSERT (htab != NULL);
3351
3352 sgot = htab->sgot;
3353 gp = _bfd_get_gp_value (output_bfd)
3354 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3355
3356 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3357 }
3358
3359 /* Create and return a local GOT entry for VALUE, which was calculated
3360 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3361 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3362 instead. */
3363
3364 static struct mips_got_entry *
3365 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3366 bfd *ibfd, bfd_vma value,
3367 unsigned long r_symndx,
3368 struct mips_elf_link_hash_entry *h,
3369 int r_type)
3370 {
3371 struct mips_got_entry entry, **loc;
3372 struct mips_got_info *g;
3373 struct mips_elf_link_hash_table *htab;
3374
3375 htab = mips_elf_hash_table (info);
3376 BFD_ASSERT (htab != NULL);
3377
3378 entry.abfd = NULL;
3379 entry.symndx = -1;
3380 entry.d.address = value;
3381 entry.tls_type = 0;
3382
3383 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3384 if (g == NULL)
3385 {
3386 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3387 BFD_ASSERT (g != NULL);
3388 }
3389
3390 /* This function shouldn't be called for symbols that live in the global
3391 area of the GOT. */
3392 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3393 if (TLS_RELOC_P (r_type))
3394 {
3395 struct mips_got_entry *p;
3396
3397 entry.abfd = ibfd;
3398 if (tls_ldm_reloc_p (r_type))
3399 {
3400 entry.tls_type = GOT_TLS_LDM;
3401 entry.symndx = 0;
3402 entry.d.addend = 0;
3403 }
3404 else if (h == NULL)
3405 {
3406 entry.symndx = r_symndx;
3407 entry.d.addend = 0;
3408 }
3409 else
3410 entry.d.h = h;
3411
3412 p = (struct mips_got_entry *)
3413 htab_find (g->got_entries, &entry);
3414
3415 BFD_ASSERT (p);
3416 return p;
3417 }
3418
3419 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3420 INSERT);
3421 if (*loc)
3422 return *loc;
3423
3424 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3425 entry.tls_type = 0;
3426
3427 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3428
3429 if (! *loc)
3430 return NULL;
3431
3432 memcpy (*loc, &entry, sizeof entry);
3433
3434 if (g->assigned_gotno > g->local_gotno)
3435 {
3436 (*loc)->gotidx = -1;
3437 /* We didn't allocate enough space in the GOT. */
3438 (*_bfd_error_handler)
3439 (_("not enough GOT space for local GOT entries"));
3440 bfd_set_error (bfd_error_bad_value);
3441 return NULL;
3442 }
3443
3444 MIPS_ELF_PUT_WORD (abfd, value,
3445 (htab->sgot->contents + entry.gotidx));
3446
3447 /* These GOT entries need a dynamic relocation on VxWorks. */
3448 if (htab->is_vxworks)
3449 {
3450 Elf_Internal_Rela outrel;
3451 asection *s;
3452 bfd_byte *rloc;
3453 bfd_vma got_address;
3454
3455 s = mips_elf_rel_dyn_section (info, FALSE);
3456 got_address = (htab->sgot->output_section->vma
3457 + htab->sgot->output_offset
3458 + entry.gotidx);
3459
3460 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3461 outrel.r_offset = got_address;
3462 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3463 outrel.r_addend = value;
3464 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3465 }
3466
3467 return *loc;
3468 }
3469
3470 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3471 The number might be exact or a worst-case estimate, depending on how
3472 much information is available to elf_backend_omit_section_dynsym at
3473 the current linking stage. */
3474
3475 static bfd_size_type
3476 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3477 {
3478 bfd_size_type count;
3479
3480 count = 0;
3481 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3482 {
3483 asection *p;
3484 const struct elf_backend_data *bed;
3485
3486 bed = get_elf_backend_data (output_bfd);
3487 for (p = output_bfd->sections; p ; p = p->next)
3488 if ((p->flags & SEC_EXCLUDE) == 0
3489 && (p->flags & SEC_ALLOC) != 0
3490 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3491 ++count;
3492 }
3493 return count;
3494 }
3495
3496 /* Sort the dynamic symbol table so that symbols that need GOT entries
3497 appear towards the end. */
3498
3499 static bfd_boolean
3500 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3501 {
3502 struct mips_elf_link_hash_table *htab;
3503 struct mips_elf_hash_sort_data hsd;
3504 struct mips_got_info *g;
3505
3506 if (elf_hash_table (info)->dynsymcount == 0)
3507 return TRUE;
3508
3509 htab = mips_elf_hash_table (info);
3510 BFD_ASSERT (htab != NULL);
3511
3512 g = htab->got_info;
3513 if (g == NULL)
3514 return TRUE;
3515
3516 hsd.low = NULL;
3517 hsd.max_unref_got_dynindx
3518 = hsd.min_got_dynindx
3519 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3520 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3521 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3522 elf_hash_table (info)),
3523 mips_elf_sort_hash_table_f,
3524 &hsd);
3525
3526 /* There should have been enough room in the symbol table to
3527 accommodate both the GOT and non-GOT symbols. */
3528 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3529 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3530 == elf_hash_table (info)->dynsymcount);
3531 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3532 == g->global_gotno);
3533
3534 /* Now we know which dynamic symbol has the lowest dynamic symbol
3535 table index in the GOT. */
3536 g->global_gotsym = hsd.low;
3537
3538 return TRUE;
3539 }
3540
3541 /* If H needs a GOT entry, assign it the highest available dynamic
3542 index. Otherwise, assign it the lowest available dynamic
3543 index. */
3544
3545 static bfd_boolean
3546 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3547 {
3548 struct mips_elf_hash_sort_data *hsd = data;
3549
3550 /* Symbols without dynamic symbol table entries aren't interesting
3551 at all. */
3552 if (h->root.dynindx == -1)
3553 return TRUE;
3554
3555 switch (h->global_got_area)
3556 {
3557 case GGA_NONE:
3558 h->root.dynindx = hsd->max_non_got_dynindx++;
3559 break;
3560
3561 case GGA_NORMAL:
3562 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3563
3564 h->root.dynindx = --hsd->min_got_dynindx;
3565 hsd->low = (struct elf_link_hash_entry *) h;
3566 break;
3567
3568 case GGA_RELOC_ONLY:
3569 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3570
3571 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3572 hsd->low = (struct elf_link_hash_entry *) h;
3573 h->root.dynindx = hsd->max_unref_got_dynindx++;
3574 break;
3575 }
3576
3577 return TRUE;
3578 }
3579
3580 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3581 symbol table index lower than any we've seen to date, record it for
3582 posterity. FOR_CALL is true if the caller is only interested in
3583 using the GOT entry for calls. */
3584
3585 static bfd_boolean
3586 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3587 bfd *abfd, struct bfd_link_info *info,
3588 bfd_boolean for_call,
3589 unsigned char tls_flag)
3590 {
3591 struct mips_elf_link_hash_table *htab;
3592 struct mips_elf_link_hash_entry *hmips;
3593 struct mips_got_entry entry, **loc;
3594 struct mips_got_info *g;
3595
3596 htab = mips_elf_hash_table (info);
3597 BFD_ASSERT (htab != NULL);
3598
3599 hmips = (struct mips_elf_link_hash_entry *) h;
3600 if (!for_call)
3601 hmips->got_only_for_calls = FALSE;
3602
3603 /* A global symbol in the GOT must also be in the dynamic symbol
3604 table. */
3605 if (h->dynindx == -1)
3606 {
3607 switch (ELF_ST_VISIBILITY (h->other))
3608 {
3609 case STV_INTERNAL:
3610 case STV_HIDDEN:
3611 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3612 break;
3613 }
3614 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3615 return FALSE;
3616 }
3617
3618 /* Make sure we have a GOT to put this entry into. */
3619 g = htab->got_info;
3620 BFD_ASSERT (g != NULL);
3621
3622 entry.abfd = abfd;
3623 entry.symndx = -1;
3624 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3625 entry.tls_type = 0;
3626
3627 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3628 INSERT);
3629
3630 /* If we've already marked this entry as needing GOT space, we don't
3631 need to do it again. */
3632 if (*loc)
3633 {
3634 (*loc)->tls_type |= tls_flag;
3635 return TRUE;
3636 }
3637
3638 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3639
3640 if (! *loc)
3641 return FALSE;
3642
3643 entry.gotidx = -1;
3644 entry.tls_type = tls_flag;
3645
3646 memcpy (*loc, &entry, sizeof entry);
3647
3648 if (tls_flag == 0)
3649 hmips->global_got_area = GGA_NORMAL;
3650
3651 return TRUE;
3652 }
3653
3654 /* Reserve space in G for a GOT entry containing the value of symbol
3655 SYMNDX in input bfd ABDF, plus ADDEND. */
3656
3657 static bfd_boolean
3658 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3659 struct bfd_link_info *info,
3660 unsigned char tls_flag)
3661 {
3662 struct mips_elf_link_hash_table *htab;
3663 struct mips_got_info *g;
3664 struct mips_got_entry entry, **loc;
3665
3666 htab = mips_elf_hash_table (info);
3667 BFD_ASSERT (htab != NULL);
3668
3669 g = htab->got_info;
3670 BFD_ASSERT (g != NULL);
3671
3672 entry.abfd = abfd;
3673 entry.symndx = symndx;
3674 entry.d.addend = addend;
3675 entry.tls_type = tls_flag;
3676 loc = (struct mips_got_entry **)
3677 htab_find_slot (g->got_entries, &entry, INSERT);
3678
3679 if (*loc)
3680 {
3681 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3682 {
3683 g->tls_gotno += 2;
3684 (*loc)->tls_type |= tls_flag;
3685 }
3686 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3687 {
3688 g->tls_gotno += 1;
3689 (*loc)->tls_type |= tls_flag;
3690 }
3691 return TRUE;
3692 }
3693
3694 if (tls_flag != 0)
3695 {
3696 entry.gotidx = -1;
3697 entry.tls_type = tls_flag;
3698 if (tls_flag == GOT_TLS_IE)
3699 g->tls_gotno += 1;
3700 else if (tls_flag == GOT_TLS_GD)
3701 g->tls_gotno += 2;
3702 else if (g->tls_ldm_offset == MINUS_ONE)
3703 {
3704 g->tls_ldm_offset = MINUS_TWO;
3705 g->tls_gotno += 2;
3706 }
3707 }
3708 else
3709 {
3710 entry.gotidx = g->local_gotno++;
3711 entry.tls_type = 0;
3712 }
3713
3714 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3715
3716 if (! *loc)
3717 return FALSE;
3718
3719 memcpy (*loc, &entry, sizeof entry);
3720
3721 return TRUE;
3722 }
3723
3724 /* Return the maximum number of GOT page entries required for RANGE. */
3725
3726 static bfd_vma
3727 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3728 {
3729 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3730 }
3731
3732 /* Record that ABFD has a page relocation against symbol SYMNDX and
3733 that ADDEND is the addend for that relocation.
3734
3735 This function creates an upper bound on the number of GOT slots
3736 required; no attempt is made to combine references to non-overridable
3737 global symbols across multiple input files. */
3738
3739 static bfd_boolean
3740 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3741 long symndx, bfd_signed_vma addend)
3742 {
3743 struct mips_elf_link_hash_table *htab;
3744 struct mips_got_info *g;
3745 struct mips_got_page_entry lookup, *entry;
3746 struct mips_got_page_range **range_ptr, *range;
3747 bfd_vma old_pages, new_pages;
3748 void **loc;
3749
3750 htab = mips_elf_hash_table (info);
3751 BFD_ASSERT (htab != NULL);
3752
3753 g = htab->got_info;
3754 BFD_ASSERT (g != NULL);
3755
3756 /* Find the mips_got_page_entry hash table entry for this symbol. */
3757 lookup.abfd = abfd;
3758 lookup.symndx = symndx;
3759 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3760 if (loc == NULL)
3761 return FALSE;
3762
3763 /* Create a mips_got_page_entry if this is the first time we've
3764 seen the symbol. */
3765 entry = (struct mips_got_page_entry *) *loc;
3766 if (!entry)
3767 {
3768 entry = bfd_alloc (abfd, sizeof (*entry));
3769 if (!entry)
3770 return FALSE;
3771
3772 entry->abfd = abfd;
3773 entry->symndx = symndx;
3774 entry->ranges = NULL;
3775 entry->num_pages = 0;
3776 *loc = entry;
3777 }
3778
3779 /* Skip over ranges whose maximum extent cannot share a page entry
3780 with ADDEND. */
3781 range_ptr = &entry->ranges;
3782 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3783 range_ptr = &(*range_ptr)->next;
3784
3785 /* If we scanned to the end of the list, or found a range whose
3786 minimum extent cannot share a page entry with ADDEND, create
3787 a new singleton range. */
3788 range = *range_ptr;
3789 if (!range || addend < range->min_addend - 0xffff)
3790 {
3791 range = bfd_alloc (abfd, sizeof (*range));
3792 if (!range)
3793 return FALSE;
3794
3795 range->next = *range_ptr;
3796 range->min_addend = addend;
3797 range->max_addend = addend;
3798
3799 *range_ptr = range;
3800 entry->num_pages++;
3801 g->page_gotno++;
3802 return TRUE;
3803 }
3804
3805 /* Remember how many pages the old range contributed. */
3806 old_pages = mips_elf_pages_for_range (range);
3807
3808 /* Update the ranges. */
3809 if (addend < range->min_addend)
3810 range->min_addend = addend;
3811 else if (addend > range->max_addend)
3812 {
3813 if (range->next && addend >= range->next->min_addend - 0xffff)
3814 {
3815 old_pages += mips_elf_pages_for_range (range->next);
3816 range->max_addend = range->next->max_addend;
3817 range->next = range->next->next;
3818 }
3819 else
3820 range->max_addend = addend;
3821 }
3822
3823 /* Record any change in the total estimate. */
3824 new_pages = mips_elf_pages_for_range (range);
3825 if (old_pages != new_pages)
3826 {
3827 entry->num_pages += new_pages - old_pages;
3828 g->page_gotno += new_pages - old_pages;
3829 }
3830
3831 return TRUE;
3832 }
3833
3834 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3835
3836 static void
3837 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3838 unsigned int n)
3839 {
3840 asection *s;
3841 struct mips_elf_link_hash_table *htab;
3842
3843 htab = mips_elf_hash_table (info);
3844 BFD_ASSERT (htab != NULL);
3845
3846 s = mips_elf_rel_dyn_section (info, FALSE);
3847 BFD_ASSERT (s != NULL);
3848
3849 if (htab->is_vxworks)
3850 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3851 else
3852 {
3853 if (s->size == 0)
3854 {
3855 /* Make room for a null element. */
3856 s->size += MIPS_ELF_REL_SIZE (abfd);
3857 ++s->reloc_count;
3858 }
3859 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3860 }
3861 }
3862 \f
3863 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3864 if the GOT entry is for an indirect or warning symbol. */
3865
3866 static int
3867 mips_elf_check_recreate_got (void **entryp, void *data)
3868 {
3869 struct mips_got_entry *entry;
3870 bfd_boolean *must_recreate;
3871
3872 entry = (struct mips_got_entry *) *entryp;
3873 must_recreate = (bfd_boolean *) data;
3874 if (entry->abfd != NULL && entry->symndx == -1)
3875 {
3876 struct mips_elf_link_hash_entry *h;
3877
3878 h = entry->d.h;
3879 if (h->root.root.type == bfd_link_hash_indirect
3880 || h->root.root.type == bfd_link_hash_warning)
3881 {
3882 *must_recreate = TRUE;
3883 return 0;
3884 }
3885 }
3886 return 1;
3887 }
3888
3889 /* A htab_traverse callback for GOT entries. Add all entries to
3890 hash table *DATA, converting entries for indirect and warning
3891 symbols into entries for the target symbol. Set *DATA to null
3892 on error. */
3893
3894 static int
3895 mips_elf_recreate_got (void **entryp, void *data)
3896 {
3897 htab_t *new_got;
3898 struct mips_got_entry *entry;
3899 void **slot;
3900
3901 new_got = (htab_t *) data;
3902 entry = (struct mips_got_entry *) *entryp;
3903 if (entry->abfd != NULL && entry->symndx == -1)
3904 {
3905 struct mips_elf_link_hash_entry *h;
3906
3907 h = entry->d.h;
3908 while (h->root.root.type == bfd_link_hash_indirect
3909 || h->root.root.type == bfd_link_hash_warning)
3910 {
3911 BFD_ASSERT (h->global_got_area == GGA_NONE);
3912 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3913 }
3914 entry->d.h = h;
3915 }
3916 slot = htab_find_slot (*new_got, entry, INSERT);
3917 if (slot == NULL)
3918 {
3919 *new_got = NULL;
3920 return 0;
3921 }
3922 if (*slot == NULL)
3923 *slot = entry;
3924 else
3925 free (entry);
3926 return 1;
3927 }
3928
3929 /* If any entries in G->got_entries are for indirect or warning symbols,
3930 replace them with entries for the target symbol. */
3931
3932 static bfd_boolean
3933 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3934 {
3935 bfd_boolean must_recreate;
3936 htab_t new_got;
3937
3938 must_recreate = FALSE;
3939 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3940 if (must_recreate)
3941 {
3942 new_got = htab_create (htab_size (g->got_entries),
3943 mips_elf_got_entry_hash,
3944 mips_elf_got_entry_eq, NULL);
3945 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3946 if (new_got == NULL)
3947 return FALSE;
3948
3949 /* Each entry in g->got_entries has either been copied to new_got
3950 or freed. Now delete the hash table itself. */
3951 htab_delete (g->got_entries);
3952 g->got_entries = new_got;
3953 }
3954 return TRUE;
3955 }
3956
3957 /* A mips_elf_link_hash_traverse callback for which DATA points
3958 to the link_info structure. Count the number of type (3) entries
3959 in the master GOT. */
3960
3961 static int
3962 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
3963 {
3964 struct bfd_link_info *info;
3965 struct mips_elf_link_hash_table *htab;
3966 struct mips_got_info *g;
3967
3968 info = (struct bfd_link_info *) data;
3969 htab = mips_elf_hash_table (info);
3970 g = htab->got_info;
3971 if (h->global_got_area != GGA_NONE)
3972 {
3973 /* Make a final decision about whether the symbol belongs in the
3974 local or global GOT. Symbols that bind locally can (and in the
3975 case of forced-local symbols, must) live in the local GOT.
3976 Those that are aren't in the dynamic symbol table must also
3977 live in the local GOT.
3978
3979 Note that the former condition does not always imply the
3980 latter: symbols do not bind locally if they are completely
3981 undefined. We'll report undefined symbols later if appropriate. */
3982 if (h->root.dynindx == -1
3983 || (h->got_only_for_calls
3984 ? SYMBOL_CALLS_LOCAL (info, &h->root)
3985 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3986 {
3987 /* The symbol belongs in the local GOT. We no longer need this
3988 entry if it was only used for relocations; those relocations
3989 will be against the null or section symbol instead of H. */
3990 if (h->global_got_area != GGA_RELOC_ONLY)
3991 g->local_gotno++;
3992 h->global_got_area = GGA_NONE;
3993 }
3994 else if (htab->is_vxworks
3995 && h->got_only_for_calls
3996 && h->root.plt.offset != MINUS_ONE)
3997 /* On VxWorks, calls can refer directly to the .got.plt entry;
3998 they don't need entries in the regular GOT. .got.plt entries
3999 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4000 h->global_got_area = GGA_NONE;
4001 else
4002 {
4003 g->global_gotno++;
4004 if (h->global_got_area == GGA_RELOC_ONLY)
4005 g->reloc_only_gotno++;
4006 }
4007 }
4008 return 1;
4009 }
4010 \f
4011 /* Compute the hash value of the bfd in a bfd2got hash entry. */
4012
4013 static hashval_t
4014 mips_elf_bfd2got_entry_hash (const void *entry_)
4015 {
4016 const struct mips_elf_bfd2got_hash *entry
4017 = (struct mips_elf_bfd2got_hash *)entry_;
4018
4019 return entry->bfd->id;
4020 }
4021
4022 /* Check whether two hash entries have the same bfd. */
4023
4024 static int
4025 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
4026 {
4027 const struct mips_elf_bfd2got_hash *e1
4028 = (const struct mips_elf_bfd2got_hash *)entry1;
4029 const struct mips_elf_bfd2got_hash *e2
4030 = (const struct mips_elf_bfd2got_hash *)entry2;
4031
4032 return e1->bfd == e2->bfd;
4033 }
4034
4035 /* In a multi-got link, determine the GOT to be used for IBFD. G must
4036 be the master GOT data. */
4037
4038 static struct mips_got_info *
4039 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
4040 {
4041 struct mips_elf_bfd2got_hash e, *p;
4042
4043 if (! g->bfd2got)
4044 return g;
4045
4046 e.bfd = ibfd;
4047 p = htab_find (g->bfd2got, &e);
4048 return p ? p->g : NULL;
4049 }
4050
4051 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
4052 Return NULL if an error occured. */
4053
4054 static struct mips_got_info *
4055 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
4056 bfd *input_bfd)
4057 {
4058 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
4059 struct mips_got_info *g;
4060 void **bfdgotp;
4061
4062 bfdgot_entry.bfd = input_bfd;
4063 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
4064 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
4065
4066 if (bfdgot == NULL)
4067 {
4068 bfdgot = ((struct mips_elf_bfd2got_hash *)
4069 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
4070 if (bfdgot == NULL)
4071 return NULL;
4072
4073 *bfdgotp = bfdgot;
4074
4075 g = ((struct mips_got_info *)
4076 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
4077 if (g == NULL)
4078 return NULL;
4079
4080 bfdgot->bfd = input_bfd;
4081 bfdgot->g = g;
4082
4083 g->global_gotsym = NULL;
4084 g->global_gotno = 0;
4085 g->reloc_only_gotno = 0;
4086 g->local_gotno = 0;
4087 g->page_gotno = 0;
4088 g->assigned_gotno = -1;
4089 g->tls_gotno = 0;
4090 g->tls_assigned_gotno = 0;
4091 g->tls_ldm_offset = MINUS_ONE;
4092 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4093 mips_elf_multi_got_entry_eq, NULL);
4094 if (g->got_entries == NULL)
4095 return NULL;
4096
4097 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4098 mips_got_page_entry_eq, NULL);
4099 if (g->got_page_entries == NULL)
4100 return NULL;
4101
4102 g->bfd2got = NULL;
4103 g->next = NULL;
4104 }
4105
4106 return bfdgot->g;
4107 }
4108
4109 /* A htab_traverse callback for the entries in the master got.
4110 Create one separate got for each bfd that has entries in the global
4111 got, such that we can tell how many local and global entries each
4112 bfd requires. */
4113
4114 static int
4115 mips_elf_make_got_per_bfd (void **entryp, void *p)
4116 {
4117 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4118 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4119 struct mips_got_info *g;
4120
4121 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4122 if (g == NULL)
4123 {
4124 arg->obfd = NULL;
4125 return 0;
4126 }
4127
4128 /* Insert the GOT entry in the bfd's got entry hash table. */
4129 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4130 if (*entryp != NULL)
4131 return 1;
4132
4133 *entryp = entry;
4134
4135 if (entry->tls_type)
4136 {
4137 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4138 g->tls_gotno += 2;
4139 if (entry->tls_type & GOT_TLS_IE)
4140 g->tls_gotno += 1;
4141 }
4142 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
4143 ++g->local_gotno;
4144 else
4145 ++g->global_gotno;
4146
4147 return 1;
4148 }
4149
4150 /* A htab_traverse callback for the page entries in the master got.
4151 Associate each page entry with the bfd's got. */
4152
4153 static int
4154 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4155 {
4156 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4157 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4158 struct mips_got_info *g;
4159
4160 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4161 if (g == NULL)
4162 {
4163 arg->obfd = NULL;
4164 return 0;
4165 }
4166
4167 /* Insert the GOT entry in the bfd's got entry hash table. */
4168 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4169 if (*entryp != NULL)
4170 return 1;
4171
4172 *entryp = entry;
4173 g->page_gotno += entry->num_pages;
4174 return 1;
4175 }
4176
4177 /* Consider merging the got described by BFD2GOT with TO, using the
4178 information given by ARG. Return -1 if this would lead to overflow,
4179 1 if they were merged successfully, and 0 if a merge failed due to
4180 lack of memory. (These values are chosen so that nonnegative return
4181 values can be returned by a htab_traverse callback.) */
4182
4183 static int
4184 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4185 struct mips_got_info *to,
4186 struct mips_elf_got_per_bfd_arg *arg)
4187 {
4188 struct mips_got_info *from = bfd2got->g;
4189 unsigned int estimate;
4190
4191 /* Work out how many page entries we would need for the combined GOT. */
4192 estimate = arg->max_pages;
4193 if (estimate >= from->page_gotno + to->page_gotno)
4194 estimate = from->page_gotno + to->page_gotno;
4195
4196 /* And conservatively estimate how many local and TLS entries
4197 would be needed. */
4198 estimate += from->local_gotno + to->local_gotno;
4199 estimate += from->tls_gotno + to->tls_gotno;
4200
4201 /* If we're merging with the primary got, we will always have
4202 the full set of global entries. Otherwise estimate those
4203 conservatively as well. */
4204 if (to == arg->primary)
4205 estimate += arg->global_count;
4206 else
4207 estimate += from->global_gotno + to->global_gotno;
4208
4209 /* Bail out if the combined GOT might be too big. */
4210 if (estimate > arg->max_count)
4211 return -1;
4212
4213 /* Commit to the merge. Record that TO is now the bfd for this got. */
4214 bfd2got->g = to;
4215
4216 /* Transfer the bfd's got information from FROM to TO. */
4217 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4218 if (arg->obfd == NULL)
4219 return 0;
4220
4221 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4222 if (arg->obfd == NULL)
4223 return 0;
4224
4225 /* We don't have to worry about releasing memory of the actual
4226 got entries, since they're all in the master got_entries hash
4227 table anyway. */
4228 htab_delete (from->got_entries);
4229 htab_delete (from->got_page_entries);
4230 return 1;
4231 }
4232
4233 /* Attempt to merge gots of different input bfds. Try to use as much
4234 as possible of the primary got, since it doesn't require explicit
4235 dynamic relocations, but don't use bfds that would reference global
4236 symbols out of the addressable range. Failing the primary got,
4237 attempt to merge with the current got, or finish the current got
4238 and then make make the new got current. */
4239
4240 static int
4241 mips_elf_merge_gots (void **bfd2got_, void *p)
4242 {
4243 struct mips_elf_bfd2got_hash *bfd2got
4244 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4245 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4246 struct mips_got_info *g;
4247 unsigned int estimate;
4248 int result;
4249
4250 g = bfd2got->g;
4251
4252 /* Work out the number of page, local and TLS entries. */
4253 estimate = arg->max_pages;
4254 if (estimate > g->page_gotno)
4255 estimate = g->page_gotno;
4256 estimate += g->local_gotno + g->tls_gotno;
4257
4258 /* We place TLS GOT entries after both locals and globals. The globals
4259 for the primary GOT may overflow the normal GOT size limit, so be
4260 sure not to merge a GOT which requires TLS with the primary GOT in that
4261 case. This doesn't affect non-primary GOTs. */
4262 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4263
4264 if (estimate <= arg->max_count)
4265 {
4266 /* If we don't have a primary GOT, use it as
4267 a starting point for the primary GOT. */
4268 if (!arg->primary)
4269 {
4270 arg->primary = bfd2got->g;
4271 return 1;
4272 }
4273
4274 /* Try merging with the primary GOT. */
4275 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4276 if (result >= 0)
4277 return result;
4278 }
4279
4280 /* If we can merge with the last-created got, do it. */
4281 if (arg->current)
4282 {
4283 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4284 if (result >= 0)
4285 return result;
4286 }
4287
4288 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4289 fits; if it turns out that it doesn't, we'll get relocation
4290 overflows anyway. */
4291 g->next = arg->current;
4292 arg->current = g;
4293
4294 return 1;
4295 }
4296
4297 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4298 is null iff there is just a single GOT. */
4299
4300 static int
4301 mips_elf_initialize_tls_index (void **entryp, void *p)
4302 {
4303 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4304 struct mips_got_info *g = p;
4305 bfd_vma next_index;
4306 unsigned char tls_type;
4307
4308 /* We're only interested in TLS symbols. */
4309 if (entry->tls_type == 0)
4310 return 1;
4311
4312 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4313
4314 if (entry->symndx == -1 && g->next == NULL)
4315 {
4316 /* A type (3) got entry in the single-GOT case. We use the symbol's
4317 hash table entry to track its index. */
4318 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4319 return 1;
4320 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4321 entry->d.h->tls_got_offset = next_index;
4322 tls_type = entry->d.h->tls_type;
4323 }
4324 else
4325 {
4326 if (entry->tls_type & GOT_TLS_LDM)
4327 {
4328 /* There are separate mips_got_entry objects for each input bfd
4329 that requires an LDM entry. Make sure that all LDM entries in
4330 a GOT resolve to the same index. */
4331 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4332 {
4333 entry->gotidx = g->tls_ldm_offset;
4334 return 1;
4335 }
4336 g->tls_ldm_offset = next_index;
4337 }
4338 entry->gotidx = next_index;
4339 tls_type = entry->tls_type;
4340 }
4341
4342 /* Account for the entries we've just allocated. */
4343 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4344 g->tls_assigned_gotno += 2;
4345 if (tls_type & GOT_TLS_IE)
4346 g->tls_assigned_gotno += 1;
4347
4348 return 1;
4349 }
4350
4351 /* If passed a NULL mips_got_info in the argument, set the marker used
4352 to tell whether a global symbol needs a got entry (in the primary
4353 got) to the given VALUE.
4354
4355 If passed a pointer G to a mips_got_info in the argument (it must
4356 not be the primary GOT), compute the offset from the beginning of
4357 the (primary) GOT section to the entry in G corresponding to the
4358 global symbol. G's assigned_gotno must contain the index of the
4359 first available global GOT entry in G. VALUE must contain the size
4360 of a GOT entry in bytes. For each global GOT entry that requires a
4361 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4362 marked as not eligible for lazy resolution through a function
4363 stub. */
4364 static int
4365 mips_elf_set_global_got_offset (void **entryp, void *p)
4366 {
4367 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4368 struct mips_elf_set_global_got_offset_arg *arg
4369 = (struct mips_elf_set_global_got_offset_arg *)p;
4370 struct mips_got_info *g = arg->g;
4371
4372 if (g && entry->tls_type != GOT_NORMAL)
4373 arg->needed_relocs +=
4374 mips_tls_got_relocs (arg->info, entry->tls_type,
4375 entry->symndx == -1 ? &entry->d.h->root : NULL);
4376
4377 if (entry->abfd != NULL
4378 && entry->symndx == -1
4379 && entry->d.h->global_got_area != GGA_NONE)
4380 {
4381 if (g)
4382 {
4383 BFD_ASSERT (g->global_gotsym == NULL);
4384
4385 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4386 if (arg->info->shared
4387 || (elf_hash_table (arg->info)->dynamic_sections_created
4388 && entry->d.h->root.def_dynamic
4389 && !entry->d.h->root.def_regular))
4390 ++arg->needed_relocs;
4391 }
4392 else
4393 entry->d.h->global_got_area = arg->value;
4394 }
4395
4396 return 1;
4397 }
4398
4399 /* A htab_traverse callback for GOT entries for which DATA is the
4400 bfd_link_info. Forbid any global symbols from having traditional
4401 lazy-binding stubs. */
4402
4403 static int
4404 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4405 {
4406 struct bfd_link_info *info;
4407 struct mips_elf_link_hash_table *htab;
4408 struct mips_got_entry *entry;
4409
4410 entry = (struct mips_got_entry *) *entryp;
4411 info = (struct bfd_link_info *) data;
4412 htab = mips_elf_hash_table (info);
4413 BFD_ASSERT (htab != NULL);
4414
4415 if (entry->abfd != NULL
4416 && entry->symndx == -1
4417 && entry->d.h->needs_lazy_stub)
4418 {
4419 entry->d.h->needs_lazy_stub = FALSE;
4420 htab->lazy_stub_count--;
4421 }
4422
4423 return 1;
4424 }
4425
4426 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4427 the primary GOT. */
4428 static bfd_vma
4429 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4430 {
4431 if (g->bfd2got == NULL)
4432 return 0;
4433
4434 g = mips_elf_got_for_ibfd (g, ibfd);
4435 if (! g)
4436 return 0;
4437
4438 BFD_ASSERT (g->next);
4439
4440 g = g->next;
4441
4442 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4443 * MIPS_ELF_GOT_SIZE (abfd);
4444 }
4445
4446 /* Turn a single GOT that is too big for 16-bit addressing into
4447 a sequence of GOTs, each one 16-bit addressable. */
4448
4449 static bfd_boolean
4450 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4451 asection *got, bfd_size_type pages)
4452 {
4453 struct mips_elf_link_hash_table *htab;
4454 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4455 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4456 struct mips_got_info *g, *gg;
4457 unsigned int assign, needed_relocs;
4458 bfd *dynobj;
4459
4460 dynobj = elf_hash_table (info)->dynobj;
4461 htab = mips_elf_hash_table (info);
4462 BFD_ASSERT (htab != NULL);
4463
4464 g = htab->got_info;
4465 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4466 mips_elf_bfd2got_entry_eq, NULL);
4467 if (g->bfd2got == NULL)
4468 return FALSE;
4469
4470 got_per_bfd_arg.bfd2got = g->bfd2got;
4471 got_per_bfd_arg.obfd = abfd;
4472 got_per_bfd_arg.info = info;
4473
4474 /* Count how many GOT entries each input bfd requires, creating a
4475 map from bfd to got info while at that. */
4476 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4477 if (got_per_bfd_arg.obfd == NULL)
4478 return FALSE;
4479
4480 /* Also count how many page entries each input bfd requires. */
4481 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4482 &got_per_bfd_arg);
4483 if (got_per_bfd_arg.obfd == NULL)
4484 return FALSE;
4485
4486 got_per_bfd_arg.current = NULL;
4487 got_per_bfd_arg.primary = NULL;
4488 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4489 / MIPS_ELF_GOT_SIZE (abfd))
4490 - htab->reserved_gotno);
4491 got_per_bfd_arg.max_pages = pages;
4492 /* The number of globals that will be included in the primary GOT.
4493 See the calls to mips_elf_set_global_got_offset below for more
4494 information. */
4495 got_per_bfd_arg.global_count = g->global_gotno;
4496
4497 /* Try to merge the GOTs of input bfds together, as long as they
4498 don't seem to exceed the maximum GOT size, choosing one of them
4499 to be the primary GOT. */
4500 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4501 if (got_per_bfd_arg.obfd == NULL)
4502 return FALSE;
4503
4504 /* If we do not find any suitable primary GOT, create an empty one. */
4505 if (got_per_bfd_arg.primary == NULL)
4506 {
4507 g->next = (struct mips_got_info *)
4508 bfd_alloc (abfd, sizeof (struct mips_got_info));
4509 if (g->next == NULL)
4510 return FALSE;
4511
4512 g->next->global_gotsym = NULL;
4513 g->next->global_gotno = 0;
4514 g->next->reloc_only_gotno = 0;
4515 g->next->local_gotno = 0;
4516 g->next->page_gotno = 0;
4517 g->next->tls_gotno = 0;
4518 g->next->assigned_gotno = 0;
4519 g->next->tls_assigned_gotno = 0;
4520 g->next->tls_ldm_offset = MINUS_ONE;
4521 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4522 mips_elf_multi_got_entry_eq,
4523 NULL);
4524 if (g->next->got_entries == NULL)
4525 return FALSE;
4526 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4527 mips_got_page_entry_eq,
4528 NULL);
4529 if (g->next->got_page_entries == NULL)
4530 return FALSE;
4531 g->next->bfd2got = NULL;
4532 }
4533 else
4534 g->next = got_per_bfd_arg.primary;
4535 g->next->next = got_per_bfd_arg.current;
4536
4537 /* GG is now the master GOT, and G is the primary GOT. */
4538 gg = g;
4539 g = g->next;
4540
4541 /* Map the output bfd to the primary got. That's what we're going
4542 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4543 didn't mark in check_relocs, and we want a quick way to find it.
4544 We can't just use gg->next because we're going to reverse the
4545 list. */
4546 {
4547 struct mips_elf_bfd2got_hash *bfdgot;
4548 void **bfdgotp;
4549
4550 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4551 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4552
4553 if (bfdgot == NULL)
4554 return FALSE;
4555
4556 bfdgot->bfd = abfd;
4557 bfdgot->g = g;
4558 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4559
4560 BFD_ASSERT (*bfdgotp == NULL);
4561 *bfdgotp = bfdgot;
4562 }
4563
4564 /* Every symbol that is referenced in a dynamic relocation must be
4565 present in the primary GOT, so arrange for them to appear after
4566 those that are actually referenced. */
4567 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4568 g->global_gotno = gg->global_gotno;
4569
4570 set_got_offset_arg.g = NULL;
4571 set_got_offset_arg.value = GGA_RELOC_ONLY;
4572 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4573 &set_got_offset_arg);
4574 set_got_offset_arg.value = GGA_NORMAL;
4575 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4576 &set_got_offset_arg);
4577
4578 /* Now go through the GOTs assigning them offset ranges.
4579 [assigned_gotno, local_gotno[ will be set to the range of local
4580 entries in each GOT. We can then compute the end of a GOT by
4581 adding local_gotno to global_gotno. We reverse the list and make
4582 it circular since then we'll be able to quickly compute the
4583 beginning of a GOT, by computing the end of its predecessor. To
4584 avoid special cases for the primary GOT, while still preserving
4585 assertions that are valid for both single- and multi-got links,
4586 we arrange for the main got struct to have the right number of
4587 global entries, but set its local_gotno such that the initial
4588 offset of the primary GOT is zero. Remember that the primary GOT
4589 will become the last item in the circular linked list, so it
4590 points back to the master GOT. */
4591 gg->local_gotno = -g->global_gotno;
4592 gg->global_gotno = g->global_gotno;
4593 gg->tls_gotno = 0;
4594 assign = 0;
4595 gg->next = gg;
4596
4597 do
4598 {
4599 struct mips_got_info *gn;
4600
4601 assign += htab->reserved_gotno;
4602 g->assigned_gotno = assign;
4603 g->local_gotno += assign;
4604 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4605 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4606
4607 /* Take g out of the direct list, and push it onto the reversed
4608 list that gg points to. g->next is guaranteed to be nonnull after
4609 this operation, as required by mips_elf_initialize_tls_index. */
4610 gn = g->next;
4611 g->next = gg->next;
4612 gg->next = g;
4613
4614 /* Set up any TLS entries. We always place the TLS entries after
4615 all non-TLS entries. */
4616 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4617 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4618
4619 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4620 g = gn;
4621
4622 /* Forbid global symbols in every non-primary GOT from having
4623 lazy-binding stubs. */
4624 if (g)
4625 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4626 }
4627 while (g);
4628
4629 got->size = (gg->next->local_gotno
4630 + gg->next->global_gotno
4631 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4632
4633 needed_relocs = 0;
4634 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4635 set_got_offset_arg.info = info;
4636 for (g = gg->next; g && g->next != gg; g = g->next)
4637 {
4638 unsigned int save_assign;
4639
4640 /* Assign offsets to global GOT entries. */
4641 save_assign = g->assigned_gotno;
4642 g->assigned_gotno = g->local_gotno;
4643 set_got_offset_arg.g = g;
4644 set_got_offset_arg.needed_relocs = 0;
4645 htab_traverse (g->got_entries,
4646 mips_elf_set_global_got_offset,
4647 &set_got_offset_arg);
4648 needed_relocs += set_got_offset_arg.needed_relocs;
4649 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4650
4651 g->assigned_gotno = save_assign;
4652 if (info->shared)
4653 {
4654 needed_relocs += g->local_gotno - g->assigned_gotno;
4655 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4656 + g->next->global_gotno
4657 + g->next->tls_gotno
4658 + htab->reserved_gotno);
4659 }
4660 }
4661
4662 if (needed_relocs)
4663 mips_elf_allocate_dynamic_relocations (dynobj, info,
4664 needed_relocs);
4665
4666 return TRUE;
4667 }
4668
4669 \f
4670 /* Returns the first relocation of type r_type found, beginning with
4671 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4672
4673 static const Elf_Internal_Rela *
4674 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4675 const Elf_Internal_Rela *relocation,
4676 const Elf_Internal_Rela *relend)
4677 {
4678 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4679
4680 while (relocation < relend)
4681 {
4682 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4683 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4684 return relocation;
4685
4686 ++relocation;
4687 }
4688
4689 /* We didn't find it. */
4690 return NULL;
4691 }
4692
4693 /* Return whether an input relocation is against a local symbol. */
4694
4695 static bfd_boolean
4696 mips_elf_local_relocation_p (bfd *input_bfd,
4697 const Elf_Internal_Rela *relocation,
4698 asection **local_sections)
4699 {
4700 unsigned long r_symndx;
4701 Elf_Internal_Shdr *symtab_hdr;
4702 size_t extsymoff;
4703
4704 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4705 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4706 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4707
4708 if (r_symndx < extsymoff)
4709 return TRUE;
4710 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4711 return TRUE;
4712
4713 return FALSE;
4714 }
4715 \f
4716 /* Sign-extend VALUE, which has the indicated number of BITS. */
4717
4718 bfd_vma
4719 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4720 {
4721 if (value & ((bfd_vma) 1 << (bits - 1)))
4722 /* VALUE is negative. */
4723 value |= ((bfd_vma) - 1) << bits;
4724
4725 return value;
4726 }
4727
4728 /* Return non-zero if the indicated VALUE has overflowed the maximum
4729 range expressible by a signed number with the indicated number of
4730 BITS. */
4731
4732 static bfd_boolean
4733 mips_elf_overflow_p (bfd_vma value, int bits)
4734 {
4735 bfd_signed_vma svalue = (bfd_signed_vma) value;
4736
4737 if (svalue > (1 << (bits - 1)) - 1)
4738 /* The value is too big. */
4739 return TRUE;
4740 else if (svalue < -(1 << (bits - 1)))
4741 /* The value is too small. */
4742 return TRUE;
4743
4744 /* All is well. */
4745 return FALSE;
4746 }
4747
4748 /* Calculate the %high function. */
4749
4750 static bfd_vma
4751 mips_elf_high (bfd_vma value)
4752 {
4753 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4754 }
4755
4756 /* Calculate the %higher function. */
4757
4758 static bfd_vma
4759 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4760 {
4761 #ifdef BFD64
4762 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4763 #else
4764 abort ();
4765 return MINUS_ONE;
4766 #endif
4767 }
4768
4769 /* Calculate the %highest function. */
4770
4771 static bfd_vma
4772 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4773 {
4774 #ifdef BFD64
4775 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4776 #else
4777 abort ();
4778 return MINUS_ONE;
4779 #endif
4780 }
4781 \f
4782 /* Create the .compact_rel section. */
4783
4784 static bfd_boolean
4785 mips_elf_create_compact_rel_section
4786 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4787 {
4788 flagword flags;
4789 register asection *s;
4790
4791 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4792 {
4793 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4794 | SEC_READONLY);
4795
4796 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
4797 if (s == NULL
4798 || ! bfd_set_section_alignment (abfd, s,
4799 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4800 return FALSE;
4801
4802 s->size = sizeof (Elf32_External_compact_rel);
4803 }
4804
4805 return TRUE;
4806 }
4807
4808 /* Create the .got section to hold the global offset table. */
4809
4810 static bfd_boolean
4811 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4812 {
4813 flagword flags;
4814 register asection *s;
4815 struct elf_link_hash_entry *h;
4816 struct bfd_link_hash_entry *bh;
4817 struct mips_got_info *g;
4818 bfd_size_type amt;
4819 struct mips_elf_link_hash_table *htab;
4820
4821 htab = mips_elf_hash_table (info);
4822 BFD_ASSERT (htab != NULL);
4823
4824 /* This function may be called more than once. */
4825 if (htab->sgot)
4826 return TRUE;
4827
4828 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4829 | SEC_LINKER_CREATED);
4830
4831 /* We have to use an alignment of 2**4 here because this is hardcoded
4832 in the function stub generation and in the linker script. */
4833 s = bfd_make_section_with_flags (abfd, ".got", flags);
4834 if (s == NULL
4835 || ! bfd_set_section_alignment (abfd, s, 4))
4836 return FALSE;
4837 htab->sgot = s;
4838
4839 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4840 linker script because we don't want to define the symbol if we
4841 are not creating a global offset table. */
4842 bh = NULL;
4843 if (! (_bfd_generic_link_add_one_symbol
4844 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4845 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4846 return FALSE;
4847
4848 h = (struct elf_link_hash_entry *) bh;
4849 h->non_elf = 0;
4850 h->def_regular = 1;
4851 h->type = STT_OBJECT;
4852 elf_hash_table (info)->hgot = h;
4853
4854 if (info->shared
4855 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4856 return FALSE;
4857
4858 amt = sizeof (struct mips_got_info);
4859 g = bfd_alloc (abfd, amt);
4860 if (g == NULL)
4861 return FALSE;
4862 g->global_gotsym = NULL;
4863 g->global_gotno = 0;
4864 g->reloc_only_gotno = 0;
4865 g->tls_gotno = 0;
4866 g->local_gotno = 0;
4867 g->page_gotno = 0;
4868 g->assigned_gotno = 0;
4869 g->bfd2got = NULL;
4870 g->next = NULL;
4871 g->tls_ldm_offset = MINUS_ONE;
4872 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4873 mips_elf_got_entry_eq, NULL);
4874 if (g->got_entries == NULL)
4875 return FALSE;
4876 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4877 mips_got_page_entry_eq, NULL);
4878 if (g->got_page_entries == NULL)
4879 return FALSE;
4880 htab->got_info = g;
4881 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4882 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4883
4884 /* We also need a .got.plt section when generating PLTs. */
4885 s = bfd_make_section_with_flags (abfd, ".got.plt",
4886 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4887 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4888 if (s == NULL)
4889 return FALSE;
4890 htab->sgotplt = s;
4891
4892 return TRUE;
4893 }
4894 \f
4895 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4896 __GOTT_INDEX__ symbols. These symbols are only special for
4897 shared objects; they are not used in executables. */
4898
4899 static bfd_boolean
4900 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4901 {
4902 return (mips_elf_hash_table (info)->is_vxworks
4903 && info->shared
4904 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4905 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4906 }
4907
4908 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4909 require an la25 stub. See also mips_elf_local_pic_function_p,
4910 which determines whether the destination function ever requires a
4911 stub. */
4912
4913 static bfd_boolean
4914 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type)
4915 {
4916 /* We specifically ignore branches and jumps from EF_PIC objects,
4917 where the onus is on the compiler or programmer to perform any
4918 necessary initialization of $25. Sometimes such initialization
4919 is unnecessary; for example, -mno-shared functions do not use
4920 the incoming value of $25, and may therefore be called directly. */
4921 if (PIC_OBJECT_P (input_bfd))
4922 return FALSE;
4923
4924 switch (r_type)
4925 {
4926 case R_MIPS_26:
4927 case R_MIPS_PC16:
4928 case R_MIPS16_26:
4929 case R_MICROMIPS_26_S1:
4930 case R_MICROMIPS_PC7_S1:
4931 case R_MICROMIPS_PC10_S1:
4932 case R_MICROMIPS_PC16_S1:
4933 case R_MICROMIPS_PC23_S2:
4934 return TRUE;
4935
4936 default:
4937 return FALSE;
4938 }
4939 }
4940 \f
4941 /* Calculate the value produced by the RELOCATION (which comes from
4942 the INPUT_BFD). The ADDEND is the addend to use for this
4943 RELOCATION; RELOCATION->R_ADDEND is ignored.
4944
4945 The result of the relocation calculation is stored in VALUEP.
4946 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4947 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
4948
4949 This function returns bfd_reloc_continue if the caller need take no
4950 further action regarding this relocation, bfd_reloc_notsupported if
4951 something goes dramatically wrong, bfd_reloc_overflow if an
4952 overflow occurs, and bfd_reloc_ok to indicate success. */
4953
4954 static bfd_reloc_status_type
4955 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4956 asection *input_section,
4957 struct bfd_link_info *info,
4958 const Elf_Internal_Rela *relocation,
4959 bfd_vma addend, reloc_howto_type *howto,
4960 Elf_Internal_Sym *local_syms,
4961 asection **local_sections, bfd_vma *valuep,
4962 const char **namep,
4963 bfd_boolean *cross_mode_jump_p,
4964 bfd_boolean save_addend)
4965 {
4966 /* The eventual value we will return. */
4967 bfd_vma value;
4968 /* The address of the symbol against which the relocation is
4969 occurring. */
4970 bfd_vma symbol = 0;
4971 /* The final GP value to be used for the relocatable, executable, or
4972 shared object file being produced. */
4973 bfd_vma gp;
4974 /* The place (section offset or address) of the storage unit being
4975 relocated. */
4976 bfd_vma p;
4977 /* The value of GP used to create the relocatable object. */
4978 bfd_vma gp0;
4979 /* The offset into the global offset table at which the address of
4980 the relocation entry symbol, adjusted by the addend, resides
4981 during execution. */
4982 bfd_vma g = MINUS_ONE;
4983 /* The section in which the symbol referenced by the relocation is
4984 located. */
4985 asection *sec = NULL;
4986 struct mips_elf_link_hash_entry *h = NULL;
4987 /* TRUE if the symbol referred to by this relocation is a local
4988 symbol. */
4989 bfd_boolean local_p, was_local_p;
4990 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4991 bfd_boolean gp_disp_p = FALSE;
4992 /* TRUE if the symbol referred to by this relocation is
4993 "__gnu_local_gp". */
4994 bfd_boolean gnu_local_gp_p = FALSE;
4995 Elf_Internal_Shdr *symtab_hdr;
4996 size_t extsymoff;
4997 unsigned long r_symndx;
4998 int r_type;
4999 /* TRUE if overflow occurred during the calculation of the
5000 relocation value. */
5001 bfd_boolean overflowed_p;
5002 /* TRUE if this relocation refers to a MIPS16 function. */
5003 bfd_boolean target_is_16_bit_code_p = FALSE;
5004 bfd_boolean target_is_micromips_code_p = FALSE;
5005 struct mips_elf_link_hash_table *htab;
5006 bfd *dynobj;
5007
5008 dynobj = elf_hash_table (info)->dynobj;
5009 htab = mips_elf_hash_table (info);
5010 BFD_ASSERT (htab != NULL);
5011
5012 /* Parse the relocation. */
5013 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5014 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5015 p = (input_section->output_section->vma
5016 + input_section->output_offset
5017 + relocation->r_offset);
5018
5019 /* Assume that there will be no overflow. */
5020 overflowed_p = FALSE;
5021
5022 /* Figure out whether or not the symbol is local, and get the offset
5023 used in the array of hash table entries. */
5024 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5025 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5026 local_sections);
5027 was_local_p = local_p;
5028 if (! elf_bad_symtab (input_bfd))
5029 extsymoff = symtab_hdr->sh_info;
5030 else
5031 {
5032 /* The symbol table does not follow the rule that local symbols
5033 must come before globals. */
5034 extsymoff = 0;
5035 }
5036
5037 /* Figure out the value of the symbol. */
5038 if (local_p)
5039 {
5040 Elf_Internal_Sym *sym;
5041
5042 sym = local_syms + r_symndx;
5043 sec = local_sections[r_symndx];
5044
5045 symbol = sec->output_section->vma + sec->output_offset;
5046 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5047 || (sec->flags & SEC_MERGE))
5048 symbol += sym->st_value;
5049 if ((sec->flags & SEC_MERGE)
5050 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5051 {
5052 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5053 addend -= symbol;
5054 addend += sec->output_section->vma + sec->output_offset;
5055 }
5056
5057 /* MIPS16/microMIPS text labels should be treated as odd. */
5058 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5059 ++symbol;
5060
5061 /* Record the name of this symbol, for our caller. */
5062 *namep = bfd_elf_string_from_elf_section (input_bfd,
5063 symtab_hdr->sh_link,
5064 sym->st_name);
5065 if (*namep == '\0')
5066 *namep = bfd_section_name (input_bfd, sec);
5067
5068 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5069 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5070 }
5071 else
5072 {
5073 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5074
5075 /* For global symbols we look up the symbol in the hash-table. */
5076 h = ((struct mips_elf_link_hash_entry *)
5077 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5078 /* Find the real hash-table entry for this symbol. */
5079 while (h->root.root.type == bfd_link_hash_indirect
5080 || h->root.root.type == bfd_link_hash_warning)
5081 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5082
5083 /* Record the name of this symbol, for our caller. */
5084 *namep = h->root.root.root.string;
5085
5086 /* See if this is the special _gp_disp symbol. Note that such a
5087 symbol must always be a global symbol. */
5088 if (strcmp (*namep, "_gp_disp") == 0
5089 && ! NEWABI_P (input_bfd))
5090 {
5091 /* Relocations against _gp_disp are permitted only with
5092 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5093 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5094 return bfd_reloc_notsupported;
5095
5096 gp_disp_p = TRUE;
5097 }
5098 /* See if this is the special _gp symbol. Note that such a
5099 symbol must always be a global symbol. */
5100 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5101 gnu_local_gp_p = TRUE;
5102
5103
5104 /* If this symbol is defined, calculate its address. Note that
5105 _gp_disp is a magic symbol, always implicitly defined by the
5106 linker, so it's inappropriate to check to see whether or not
5107 its defined. */
5108 else if ((h->root.root.type == bfd_link_hash_defined
5109 || h->root.root.type == bfd_link_hash_defweak)
5110 && h->root.root.u.def.section)
5111 {
5112 sec = h->root.root.u.def.section;
5113 if (sec->output_section)
5114 symbol = (h->root.root.u.def.value
5115 + sec->output_section->vma
5116 + sec->output_offset);
5117 else
5118 symbol = h->root.root.u.def.value;
5119 }
5120 else if (h->root.root.type == bfd_link_hash_undefweak)
5121 /* We allow relocations against undefined weak symbols, giving
5122 it the value zero, so that you can undefined weak functions
5123 and check to see if they exist by looking at their
5124 addresses. */
5125 symbol = 0;
5126 else if (info->unresolved_syms_in_objects == RM_IGNORE
5127 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5128 symbol = 0;
5129 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5130 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5131 {
5132 /* If this is a dynamic link, we should have created a
5133 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5134 in in _bfd_mips_elf_create_dynamic_sections.
5135 Otherwise, we should define the symbol with a value of 0.
5136 FIXME: It should probably get into the symbol table
5137 somehow as well. */
5138 BFD_ASSERT (! info->shared);
5139 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5140 symbol = 0;
5141 }
5142 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5143 {
5144 /* This is an optional symbol - an Irix specific extension to the
5145 ELF spec. Ignore it for now.
5146 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5147 than simply ignoring them, but we do not handle this for now.
5148 For information see the "64-bit ELF Object File Specification"
5149 which is available from here:
5150 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5151 symbol = 0;
5152 }
5153 else if ((*info->callbacks->undefined_symbol)
5154 (info, h->root.root.root.string, input_bfd,
5155 input_section, relocation->r_offset,
5156 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5157 || ELF_ST_VISIBILITY (h->root.other)))
5158 {
5159 return bfd_reloc_undefined;
5160 }
5161 else
5162 {
5163 return bfd_reloc_notsupported;
5164 }
5165
5166 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5167 /* If the output section is the PLT section,
5168 then the target is not microMIPS. */
5169 target_is_micromips_code_p = (htab->splt != sec
5170 && ELF_ST_IS_MICROMIPS (h->root.other));
5171 }
5172
5173 /* If this is a reference to a 16-bit function with a stub, we need
5174 to redirect the relocation to the stub unless:
5175
5176 (a) the relocation is for a MIPS16 JAL;
5177
5178 (b) the relocation is for a MIPS16 PIC call, and there are no
5179 non-MIPS16 uses of the GOT slot; or
5180
5181 (c) the section allows direct references to MIPS16 functions. */
5182 if (r_type != R_MIPS16_26
5183 && !info->relocatable
5184 && ((h != NULL
5185 && h->fn_stub != NULL
5186 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5187 || (local_p
5188 && elf_tdata (input_bfd)->local_stubs != NULL
5189 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5190 && !section_allows_mips16_refs_p (input_section))
5191 {
5192 /* This is a 32- or 64-bit call to a 16-bit function. We should
5193 have already noticed that we were going to need the
5194 stub. */
5195 if (local_p)
5196 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5197 else
5198 {
5199 BFD_ASSERT (h->need_fn_stub);
5200 sec = h->fn_stub;
5201 }
5202
5203 symbol = sec->output_section->vma + sec->output_offset;
5204 /* The target is 16-bit, but the stub isn't. */
5205 target_is_16_bit_code_p = FALSE;
5206 }
5207 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5208 need to redirect the call to the stub. Note that we specifically
5209 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5210 use an indirect stub instead. */
5211 else if (r_type == R_MIPS16_26 && !info->relocatable
5212 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5213 || (local_p
5214 && elf_tdata (input_bfd)->local_call_stubs != NULL
5215 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5216 && !target_is_16_bit_code_p)
5217 {
5218 if (local_p)
5219 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5220 else
5221 {
5222 /* If both call_stub and call_fp_stub are defined, we can figure
5223 out which one to use by checking which one appears in the input
5224 file. */
5225 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5226 {
5227 asection *o;
5228
5229 sec = NULL;
5230 for (o = input_bfd->sections; o != NULL; o = o->next)
5231 {
5232 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5233 {
5234 sec = h->call_fp_stub;
5235 break;
5236 }
5237 }
5238 if (sec == NULL)
5239 sec = h->call_stub;
5240 }
5241 else if (h->call_stub != NULL)
5242 sec = h->call_stub;
5243 else
5244 sec = h->call_fp_stub;
5245 }
5246
5247 BFD_ASSERT (sec->size > 0);
5248 symbol = sec->output_section->vma + sec->output_offset;
5249 }
5250 /* If this is a direct call to a PIC function, redirect to the
5251 non-PIC stub. */
5252 else if (h != NULL && h->la25_stub
5253 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type))
5254 symbol = (h->la25_stub->stub_section->output_section->vma
5255 + h->la25_stub->stub_section->output_offset
5256 + h->la25_stub->offset);
5257
5258 /* Make sure MIPS16 and microMIPS are not used together. */
5259 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5260 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5261 {
5262 (*_bfd_error_handler)
5263 (_("MIPS16 and microMIPS functions cannot call each other"));
5264 return bfd_reloc_notsupported;
5265 }
5266
5267 /* Calls from 16-bit code to 32-bit code and vice versa require the
5268 mode change. However, we can ignore calls to undefined weak symbols,
5269 which should never be executed at runtime. This exception is important
5270 because the assembly writer may have "known" that any definition of the
5271 symbol would be 16-bit code, and that direct jumps were therefore
5272 acceptable. */
5273 *cross_mode_jump_p = (!info->relocatable
5274 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5275 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5276 || (r_type == R_MICROMIPS_26_S1
5277 && !target_is_micromips_code_p)
5278 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5279 && (target_is_16_bit_code_p
5280 || target_is_micromips_code_p))));
5281
5282 local_p = h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->root);
5283
5284 gp0 = _bfd_get_gp_value (input_bfd);
5285 gp = _bfd_get_gp_value (abfd);
5286 if (htab->got_info)
5287 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5288
5289 if (gnu_local_gp_p)
5290 symbol = gp;
5291
5292 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5293 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5294 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5295 if (got_page_reloc_p (r_type) && !local_p)
5296 {
5297 r_type = (micromips_reloc_p (r_type)
5298 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5299 addend = 0;
5300 }
5301
5302 /* If we haven't already determined the GOT offset, and we're going
5303 to need it, get it now. */
5304 switch (r_type)
5305 {
5306 case R_MIPS16_CALL16:
5307 case R_MIPS16_GOT16:
5308 case R_MIPS_CALL16:
5309 case R_MIPS_GOT16:
5310 case R_MIPS_GOT_DISP:
5311 case R_MIPS_GOT_HI16:
5312 case R_MIPS_CALL_HI16:
5313 case R_MIPS_GOT_LO16:
5314 case R_MIPS_CALL_LO16:
5315 case R_MICROMIPS_CALL16:
5316 case R_MICROMIPS_GOT16:
5317 case R_MICROMIPS_GOT_DISP:
5318 case R_MICROMIPS_GOT_HI16:
5319 case R_MICROMIPS_CALL_HI16:
5320 case R_MICROMIPS_GOT_LO16:
5321 case R_MICROMIPS_CALL_LO16:
5322 case R_MIPS_TLS_GD:
5323 case R_MIPS_TLS_GOTTPREL:
5324 case R_MIPS_TLS_LDM:
5325 case R_MICROMIPS_TLS_GD:
5326 case R_MICROMIPS_TLS_GOTTPREL:
5327 case R_MICROMIPS_TLS_LDM:
5328 /* Find the index into the GOT where this value is located. */
5329 if (tls_ldm_reloc_p (r_type))
5330 {
5331 g = mips_elf_local_got_index (abfd, input_bfd, info,
5332 0, 0, NULL, r_type);
5333 if (g == MINUS_ONE)
5334 return bfd_reloc_outofrange;
5335 }
5336 else if (!local_p)
5337 {
5338 /* On VxWorks, CALL relocations should refer to the .got.plt
5339 entry, which is initialized to point at the PLT stub. */
5340 if (htab->is_vxworks
5341 && (call_hi16_reloc_p (r_type)
5342 || call_lo16_reloc_p (r_type)
5343 || call16_reloc_p (r_type)))
5344 {
5345 BFD_ASSERT (addend == 0);
5346 BFD_ASSERT (h->root.needs_plt);
5347 g = mips_elf_gotplt_index (info, &h->root);
5348 }
5349 else
5350 {
5351 BFD_ASSERT (addend == 0);
5352 g = mips_elf_global_got_index (dynobj, input_bfd,
5353 &h->root, r_type, info);
5354 if (h->tls_type == GOT_NORMAL
5355 && !elf_hash_table (info)->dynamic_sections_created)
5356 /* This is a static link. We must initialize the GOT entry. */
5357 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5358 }
5359 }
5360 else if (!htab->is_vxworks
5361 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5362 /* The calculation below does not involve "g". */
5363 break;
5364 else
5365 {
5366 g = mips_elf_local_got_index (abfd, input_bfd, info,
5367 symbol + addend, r_symndx, h, r_type);
5368 if (g == MINUS_ONE)
5369 return bfd_reloc_outofrange;
5370 }
5371
5372 /* Convert GOT indices to actual offsets. */
5373 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5374 break;
5375 }
5376
5377 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5378 symbols are resolved by the loader. Add them to .rela.dyn. */
5379 if (h != NULL && is_gott_symbol (info, &h->root))
5380 {
5381 Elf_Internal_Rela outrel;
5382 bfd_byte *loc;
5383 asection *s;
5384
5385 s = mips_elf_rel_dyn_section (info, FALSE);
5386 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5387
5388 outrel.r_offset = (input_section->output_section->vma
5389 + input_section->output_offset
5390 + relocation->r_offset);
5391 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5392 outrel.r_addend = addend;
5393 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5394
5395 /* If we've written this relocation for a readonly section,
5396 we need to set DF_TEXTREL again, so that we do not delete the
5397 DT_TEXTREL tag. */
5398 if (MIPS_ELF_READONLY_SECTION (input_section))
5399 info->flags |= DF_TEXTREL;
5400
5401 *valuep = 0;
5402 return bfd_reloc_ok;
5403 }
5404
5405 /* Figure out what kind of relocation is being performed. */
5406 switch (r_type)
5407 {
5408 case R_MIPS_NONE:
5409 return bfd_reloc_continue;
5410
5411 case R_MIPS_16:
5412 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5413 overflowed_p = mips_elf_overflow_p (value, 16);
5414 break;
5415
5416 case R_MIPS_32:
5417 case R_MIPS_REL32:
5418 case R_MIPS_64:
5419 if ((info->shared
5420 || (htab->root.dynamic_sections_created
5421 && h != NULL
5422 && h->root.def_dynamic
5423 && !h->root.def_regular
5424 && !h->has_static_relocs))
5425 && r_symndx != STN_UNDEF
5426 && (h == NULL
5427 || h->root.root.type != bfd_link_hash_undefweak
5428 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5429 && (input_section->flags & SEC_ALLOC) != 0)
5430 {
5431 /* If we're creating a shared library, then we can't know
5432 where the symbol will end up. So, we create a relocation
5433 record in the output, and leave the job up to the dynamic
5434 linker. We must do the same for executable references to
5435 shared library symbols, unless we've decided to use copy
5436 relocs or PLTs instead. */
5437 value = addend;
5438 if (!mips_elf_create_dynamic_relocation (abfd,
5439 info,
5440 relocation,
5441 h,
5442 sec,
5443 symbol,
5444 &value,
5445 input_section))
5446 return bfd_reloc_undefined;
5447 }
5448 else
5449 {
5450 if (r_type != R_MIPS_REL32)
5451 value = symbol + addend;
5452 else
5453 value = addend;
5454 }
5455 value &= howto->dst_mask;
5456 break;
5457
5458 case R_MIPS_PC32:
5459 value = symbol + addend - p;
5460 value &= howto->dst_mask;
5461 break;
5462
5463 case R_MIPS16_26:
5464 /* The calculation for R_MIPS16_26 is just the same as for an
5465 R_MIPS_26. It's only the storage of the relocated field into
5466 the output file that's different. That's handled in
5467 mips_elf_perform_relocation. So, we just fall through to the
5468 R_MIPS_26 case here. */
5469 case R_MIPS_26:
5470 case R_MICROMIPS_26_S1:
5471 {
5472 unsigned int shift;
5473
5474 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5475 the correct ISA mode selector and bit 1 must be 0. */
5476 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5477 return bfd_reloc_outofrange;
5478
5479 /* Shift is 2, unusually, for microMIPS JALX. */
5480 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5481
5482 if (was_local_p)
5483 value = addend | ((p + 4) & (0xfc000000 << shift));
5484 else
5485 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5486 value = (value + symbol) >> shift;
5487 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5488 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5489 value &= howto->dst_mask;
5490 }
5491 break;
5492
5493 case R_MIPS_TLS_DTPREL_HI16:
5494 case R_MICROMIPS_TLS_DTPREL_HI16:
5495 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5496 & howto->dst_mask);
5497 break;
5498
5499 case R_MIPS_TLS_DTPREL_LO16:
5500 case R_MIPS_TLS_DTPREL32:
5501 case R_MIPS_TLS_DTPREL64:
5502 case R_MICROMIPS_TLS_DTPREL_LO16:
5503 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5504 break;
5505
5506 case R_MIPS_TLS_TPREL_HI16:
5507 case R_MICROMIPS_TLS_TPREL_HI16:
5508 value = (mips_elf_high (addend + symbol - tprel_base (info))
5509 & howto->dst_mask);
5510 break;
5511
5512 case R_MIPS_TLS_TPREL_LO16:
5513 case R_MICROMIPS_TLS_TPREL_LO16:
5514 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5515 break;
5516
5517 case R_MIPS_HI16:
5518 case R_MIPS16_HI16:
5519 case R_MICROMIPS_HI16:
5520 if (!gp_disp_p)
5521 {
5522 value = mips_elf_high (addend + symbol);
5523 value &= howto->dst_mask;
5524 }
5525 else
5526 {
5527 /* For MIPS16 ABI code we generate this sequence
5528 0: li $v0,%hi(_gp_disp)
5529 4: addiupc $v1,%lo(_gp_disp)
5530 8: sll $v0,16
5531 12: addu $v0,$v1
5532 14: move $gp,$v0
5533 So the offsets of hi and lo relocs are the same, but the
5534 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5535 ADDIUPC clears the low two bits of the instruction address,
5536 so the base is ($t9 + 4) & ~3. */
5537 if (r_type == R_MIPS16_HI16)
5538 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5539 /* The microMIPS .cpload sequence uses the same assembly
5540 instructions as the traditional psABI version, but the
5541 incoming $t9 has the low bit set. */
5542 else if (r_type == R_MICROMIPS_HI16)
5543 value = mips_elf_high (addend + gp - p - 1);
5544 else
5545 value = mips_elf_high (addend + gp - p);
5546 overflowed_p = mips_elf_overflow_p (value, 16);
5547 }
5548 break;
5549
5550 case R_MIPS_LO16:
5551 case R_MIPS16_LO16:
5552 case R_MICROMIPS_LO16:
5553 case R_MICROMIPS_HI0_LO16:
5554 if (!gp_disp_p)
5555 value = (symbol + addend) & howto->dst_mask;
5556 else
5557 {
5558 /* See the comment for R_MIPS16_HI16 above for the reason
5559 for this conditional. */
5560 if (r_type == R_MIPS16_LO16)
5561 value = addend + gp - (p & ~(bfd_vma) 0x3);
5562 else if (r_type == R_MICROMIPS_LO16
5563 || r_type == R_MICROMIPS_HI0_LO16)
5564 value = addend + gp - p + 3;
5565 else
5566 value = addend + gp - p + 4;
5567 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5568 for overflow. But, on, say, IRIX5, relocations against
5569 _gp_disp are normally generated from the .cpload
5570 pseudo-op. It generates code that normally looks like
5571 this:
5572
5573 lui $gp,%hi(_gp_disp)
5574 addiu $gp,$gp,%lo(_gp_disp)
5575 addu $gp,$gp,$t9
5576
5577 Here $t9 holds the address of the function being called,
5578 as required by the MIPS ELF ABI. The R_MIPS_LO16
5579 relocation can easily overflow in this situation, but the
5580 R_MIPS_HI16 relocation will handle the overflow.
5581 Therefore, we consider this a bug in the MIPS ABI, and do
5582 not check for overflow here. */
5583 }
5584 break;
5585
5586 case R_MIPS_LITERAL:
5587 case R_MICROMIPS_LITERAL:
5588 /* Because we don't merge literal sections, we can handle this
5589 just like R_MIPS_GPREL16. In the long run, we should merge
5590 shared literals, and then we will need to additional work
5591 here. */
5592
5593 /* Fall through. */
5594
5595 case R_MIPS16_GPREL:
5596 /* The R_MIPS16_GPREL performs the same calculation as
5597 R_MIPS_GPREL16, but stores the relocated bits in a different
5598 order. We don't need to do anything special here; the
5599 differences are handled in mips_elf_perform_relocation. */
5600 case R_MIPS_GPREL16:
5601 case R_MICROMIPS_GPREL7_S2:
5602 case R_MICROMIPS_GPREL16:
5603 /* Only sign-extend the addend if it was extracted from the
5604 instruction. If the addend was separate, leave it alone,
5605 otherwise we may lose significant bits. */
5606 if (howto->partial_inplace)
5607 addend = _bfd_mips_elf_sign_extend (addend, 16);
5608 value = symbol + addend - gp;
5609 /* If the symbol was local, any earlier relocatable links will
5610 have adjusted its addend with the gp offset, so compensate
5611 for that now. Don't do it for symbols forced local in this
5612 link, though, since they won't have had the gp offset applied
5613 to them before. */
5614 if (was_local_p)
5615 value += gp0;
5616 overflowed_p = mips_elf_overflow_p (value, 16);
5617 break;
5618
5619 case R_MIPS16_GOT16:
5620 case R_MIPS16_CALL16:
5621 case R_MIPS_GOT16:
5622 case R_MIPS_CALL16:
5623 case R_MICROMIPS_GOT16:
5624 case R_MICROMIPS_CALL16:
5625 /* VxWorks does not have separate local and global semantics for
5626 R_MIPS*_GOT16; every relocation evaluates to "G". */
5627 if (!htab->is_vxworks && local_p)
5628 {
5629 value = mips_elf_got16_entry (abfd, input_bfd, info,
5630 symbol + addend, !was_local_p);
5631 if (value == MINUS_ONE)
5632 return bfd_reloc_outofrange;
5633 value
5634 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5635 overflowed_p = mips_elf_overflow_p (value, 16);
5636 break;
5637 }
5638
5639 /* Fall through. */
5640
5641 case R_MIPS_TLS_GD:
5642 case R_MIPS_TLS_GOTTPREL:
5643 case R_MIPS_TLS_LDM:
5644 case R_MIPS_GOT_DISP:
5645 case R_MICROMIPS_TLS_GD:
5646 case R_MICROMIPS_TLS_GOTTPREL:
5647 case R_MICROMIPS_TLS_LDM:
5648 case R_MICROMIPS_GOT_DISP:
5649 value = g;
5650 overflowed_p = mips_elf_overflow_p (value, 16);
5651 break;
5652
5653 case R_MIPS_GPREL32:
5654 value = (addend + symbol + gp0 - gp);
5655 if (!save_addend)
5656 value &= howto->dst_mask;
5657 break;
5658
5659 case R_MIPS_PC16:
5660 case R_MIPS_GNU_REL16_S2:
5661 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5662 overflowed_p = mips_elf_overflow_p (value, 18);
5663 value >>= howto->rightshift;
5664 value &= howto->dst_mask;
5665 break;
5666
5667 case R_MICROMIPS_PC7_S1:
5668 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5669 overflowed_p = mips_elf_overflow_p (value, 8);
5670 value >>= howto->rightshift;
5671 value &= howto->dst_mask;
5672 break;
5673
5674 case R_MICROMIPS_PC10_S1:
5675 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5676 overflowed_p = mips_elf_overflow_p (value, 11);
5677 value >>= howto->rightshift;
5678 value &= howto->dst_mask;
5679 break;
5680
5681 case R_MICROMIPS_PC16_S1:
5682 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5683 overflowed_p = mips_elf_overflow_p (value, 17);
5684 value >>= howto->rightshift;
5685 value &= howto->dst_mask;
5686 break;
5687
5688 case R_MICROMIPS_PC23_S2:
5689 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5690 overflowed_p = mips_elf_overflow_p (value, 25);
5691 value >>= howto->rightshift;
5692 value &= howto->dst_mask;
5693 break;
5694
5695 case R_MIPS_GOT_HI16:
5696 case R_MIPS_CALL_HI16:
5697 case R_MICROMIPS_GOT_HI16:
5698 case R_MICROMIPS_CALL_HI16:
5699 /* We're allowed to handle these two relocations identically.
5700 The dynamic linker is allowed to handle the CALL relocations
5701 differently by creating a lazy evaluation stub. */
5702 value = g;
5703 value = mips_elf_high (value);
5704 value &= howto->dst_mask;
5705 break;
5706
5707 case R_MIPS_GOT_LO16:
5708 case R_MIPS_CALL_LO16:
5709 case R_MICROMIPS_GOT_LO16:
5710 case R_MICROMIPS_CALL_LO16:
5711 value = g & howto->dst_mask;
5712 break;
5713
5714 case R_MIPS_GOT_PAGE:
5715 case R_MICROMIPS_GOT_PAGE:
5716 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5717 if (value == MINUS_ONE)
5718 return bfd_reloc_outofrange;
5719 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5720 overflowed_p = mips_elf_overflow_p (value, 16);
5721 break;
5722
5723 case R_MIPS_GOT_OFST:
5724 case R_MICROMIPS_GOT_OFST:
5725 if (local_p)
5726 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5727 else
5728 value = addend;
5729 overflowed_p = mips_elf_overflow_p (value, 16);
5730 break;
5731
5732 case R_MIPS_SUB:
5733 case R_MICROMIPS_SUB:
5734 value = symbol - addend;
5735 value &= howto->dst_mask;
5736 break;
5737
5738 case R_MIPS_HIGHER:
5739 case R_MICROMIPS_HIGHER:
5740 value = mips_elf_higher (addend + symbol);
5741 value &= howto->dst_mask;
5742 break;
5743
5744 case R_MIPS_HIGHEST:
5745 case R_MICROMIPS_HIGHEST:
5746 value = mips_elf_highest (addend + symbol);
5747 value &= howto->dst_mask;
5748 break;
5749
5750 case R_MIPS_SCN_DISP:
5751 case R_MICROMIPS_SCN_DISP:
5752 value = symbol + addend - sec->output_offset;
5753 value &= howto->dst_mask;
5754 break;
5755
5756 case R_MIPS_JALR:
5757 case R_MICROMIPS_JALR:
5758 /* This relocation is only a hint. In some cases, we optimize
5759 it into a bal instruction. But we don't try to optimize
5760 when the symbol does not resolve locally. */
5761 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5762 return bfd_reloc_continue;
5763 value = symbol + addend;
5764 break;
5765
5766 case R_MIPS_PJUMP:
5767 case R_MIPS_GNU_VTINHERIT:
5768 case R_MIPS_GNU_VTENTRY:
5769 /* We don't do anything with these at present. */
5770 return bfd_reloc_continue;
5771
5772 default:
5773 /* An unrecognized relocation type. */
5774 return bfd_reloc_notsupported;
5775 }
5776
5777 /* Store the VALUE for our caller. */
5778 *valuep = value;
5779 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5780 }
5781
5782 /* Obtain the field relocated by RELOCATION. */
5783
5784 static bfd_vma
5785 mips_elf_obtain_contents (reloc_howto_type *howto,
5786 const Elf_Internal_Rela *relocation,
5787 bfd *input_bfd, bfd_byte *contents)
5788 {
5789 bfd_vma x;
5790 bfd_byte *location = contents + relocation->r_offset;
5791
5792 /* Obtain the bytes. */
5793 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5794
5795 return x;
5796 }
5797
5798 /* It has been determined that the result of the RELOCATION is the
5799 VALUE. Use HOWTO to place VALUE into the output file at the
5800 appropriate position. The SECTION is the section to which the
5801 relocation applies.
5802 CROSS_MODE_JUMP_P is true if the relocation field
5803 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5804
5805 Returns FALSE if anything goes wrong. */
5806
5807 static bfd_boolean
5808 mips_elf_perform_relocation (struct bfd_link_info *info,
5809 reloc_howto_type *howto,
5810 const Elf_Internal_Rela *relocation,
5811 bfd_vma value, bfd *input_bfd,
5812 asection *input_section, bfd_byte *contents,
5813 bfd_boolean cross_mode_jump_p)
5814 {
5815 bfd_vma x;
5816 bfd_byte *location;
5817 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5818
5819 /* Figure out where the relocation is occurring. */
5820 location = contents + relocation->r_offset;
5821
5822 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5823
5824 /* Obtain the current value. */
5825 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5826
5827 /* Clear the field we are setting. */
5828 x &= ~howto->dst_mask;
5829
5830 /* Set the field. */
5831 x |= (value & howto->dst_mask);
5832
5833 /* If required, turn JAL into JALX. */
5834 if (cross_mode_jump_p && jal_reloc_p (r_type))
5835 {
5836 bfd_boolean ok;
5837 bfd_vma opcode = x >> 26;
5838 bfd_vma jalx_opcode;
5839
5840 /* Check to see if the opcode is already JAL or JALX. */
5841 if (r_type == R_MIPS16_26)
5842 {
5843 ok = ((opcode == 0x6) || (opcode == 0x7));
5844 jalx_opcode = 0x7;
5845 }
5846 else if (r_type == R_MICROMIPS_26_S1)
5847 {
5848 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5849 jalx_opcode = 0x3c;
5850 }
5851 else
5852 {
5853 ok = ((opcode == 0x3) || (opcode == 0x1d));
5854 jalx_opcode = 0x1d;
5855 }
5856
5857 /* If the opcode is not JAL or JALX, there's a problem. */
5858 if (!ok)
5859 {
5860 (*_bfd_error_handler)
5861 (_("%B: %A+0x%lx: Direct jumps between ISA modes are not allowed; consider recompiling with interlinking enabled."),
5862 input_bfd,
5863 input_section,
5864 (unsigned long) relocation->r_offset);
5865 bfd_set_error (bfd_error_bad_value);
5866 return FALSE;
5867 }
5868
5869 /* Make this the JALX opcode. */
5870 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5871 }
5872
5873 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5874 range. */
5875 if (!info->relocatable
5876 && !cross_mode_jump_p
5877 && ((JAL_TO_BAL_P (input_bfd)
5878 && r_type == R_MIPS_26
5879 && (x >> 26) == 0x3) /* jal addr */
5880 || (JALR_TO_BAL_P (input_bfd)
5881 && r_type == R_MIPS_JALR
5882 && x == 0x0320f809) /* jalr t9 */
5883 || (JR_TO_B_P (input_bfd)
5884 && r_type == R_MIPS_JALR
5885 && x == 0x03200008))) /* jr t9 */
5886 {
5887 bfd_vma addr;
5888 bfd_vma dest;
5889 bfd_signed_vma off;
5890
5891 addr = (input_section->output_section->vma
5892 + input_section->output_offset
5893 + relocation->r_offset
5894 + 4);
5895 if (r_type == R_MIPS_26)
5896 dest = (value << 2) | ((addr >> 28) << 28);
5897 else
5898 dest = value;
5899 off = dest - addr;
5900 if (off <= 0x1ffff && off >= -0x20000)
5901 {
5902 if (x == 0x03200008) /* jr t9 */
5903 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5904 else
5905 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5906 }
5907 }
5908
5909 /* Put the value into the output. */
5910 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5911
5912 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
5913 location);
5914
5915 return TRUE;
5916 }
5917 \f
5918 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5919 is the original relocation, which is now being transformed into a
5920 dynamic relocation. The ADDENDP is adjusted if necessary; the
5921 caller should store the result in place of the original addend. */
5922
5923 static bfd_boolean
5924 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5925 struct bfd_link_info *info,
5926 const Elf_Internal_Rela *rel,
5927 struct mips_elf_link_hash_entry *h,
5928 asection *sec, bfd_vma symbol,
5929 bfd_vma *addendp, asection *input_section)
5930 {
5931 Elf_Internal_Rela outrel[3];
5932 asection *sreloc;
5933 bfd *dynobj;
5934 int r_type;
5935 long indx;
5936 bfd_boolean defined_p;
5937 struct mips_elf_link_hash_table *htab;
5938
5939 htab = mips_elf_hash_table (info);
5940 BFD_ASSERT (htab != NULL);
5941
5942 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5943 dynobj = elf_hash_table (info)->dynobj;
5944 sreloc = mips_elf_rel_dyn_section (info, FALSE);
5945 BFD_ASSERT (sreloc != NULL);
5946 BFD_ASSERT (sreloc->contents != NULL);
5947 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5948 < sreloc->size);
5949
5950 outrel[0].r_offset =
5951 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5952 if (ABI_64_P (output_bfd))
5953 {
5954 outrel[1].r_offset =
5955 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5956 outrel[2].r_offset =
5957 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5958 }
5959
5960 if (outrel[0].r_offset == MINUS_ONE)
5961 /* The relocation field has been deleted. */
5962 return TRUE;
5963
5964 if (outrel[0].r_offset == MINUS_TWO)
5965 {
5966 /* The relocation field has been converted into a relative value of
5967 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5968 the field to be fully relocated, so add in the symbol's value. */
5969 *addendp += symbol;
5970 return TRUE;
5971 }
5972
5973 /* We must now calculate the dynamic symbol table index to use
5974 in the relocation. */
5975 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5976 {
5977 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5978 indx = h->root.dynindx;
5979 if (SGI_COMPAT (output_bfd))
5980 defined_p = h->root.def_regular;
5981 else
5982 /* ??? glibc's ld.so just adds the final GOT entry to the
5983 relocation field. It therefore treats relocs against
5984 defined symbols in the same way as relocs against
5985 undefined symbols. */
5986 defined_p = FALSE;
5987 }
5988 else
5989 {
5990 if (sec != NULL && bfd_is_abs_section (sec))
5991 indx = 0;
5992 else if (sec == NULL || sec->owner == NULL)
5993 {
5994 bfd_set_error (bfd_error_bad_value);
5995 return FALSE;
5996 }
5997 else
5998 {
5999 indx = elf_section_data (sec->output_section)->dynindx;
6000 if (indx == 0)
6001 {
6002 asection *osec = htab->root.text_index_section;
6003 indx = elf_section_data (osec)->dynindx;
6004 }
6005 if (indx == 0)
6006 abort ();
6007 }
6008
6009 /* Instead of generating a relocation using the section
6010 symbol, we may as well make it a fully relative
6011 relocation. We want to avoid generating relocations to
6012 local symbols because we used to generate them
6013 incorrectly, without adding the original symbol value,
6014 which is mandated by the ABI for section symbols. In
6015 order to give dynamic loaders and applications time to
6016 phase out the incorrect use, we refrain from emitting
6017 section-relative relocations. It's not like they're
6018 useful, after all. This should be a bit more efficient
6019 as well. */
6020 /* ??? Although this behavior is compatible with glibc's ld.so,
6021 the ABI says that relocations against STN_UNDEF should have
6022 a symbol value of 0. Irix rld honors this, so relocations
6023 against STN_UNDEF have no effect. */
6024 if (!SGI_COMPAT (output_bfd))
6025 indx = 0;
6026 defined_p = TRUE;
6027 }
6028
6029 /* If the relocation was previously an absolute relocation and
6030 this symbol will not be referred to by the relocation, we must
6031 adjust it by the value we give it in the dynamic symbol table.
6032 Otherwise leave the job up to the dynamic linker. */
6033 if (defined_p && r_type != R_MIPS_REL32)
6034 *addendp += symbol;
6035
6036 if (htab->is_vxworks)
6037 /* VxWorks uses non-relative relocations for this. */
6038 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6039 else
6040 /* The relocation is always an REL32 relocation because we don't
6041 know where the shared library will wind up at load-time. */
6042 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6043 R_MIPS_REL32);
6044
6045 /* For strict adherence to the ABI specification, we should
6046 generate a R_MIPS_64 relocation record by itself before the
6047 _REL32/_64 record as well, such that the addend is read in as
6048 a 64-bit value (REL32 is a 32-bit relocation, after all).
6049 However, since none of the existing ELF64 MIPS dynamic
6050 loaders seems to care, we don't waste space with these
6051 artificial relocations. If this turns out to not be true,
6052 mips_elf_allocate_dynamic_relocation() should be tweaked so
6053 as to make room for a pair of dynamic relocations per
6054 invocation if ABI_64_P, and here we should generate an
6055 additional relocation record with R_MIPS_64 by itself for a
6056 NULL symbol before this relocation record. */
6057 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6058 ABI_64_P (output_bfd)
6059 ? R_MIPS_64
6060 : R_MIPS_NONE);
6061 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6062
6063 /* Adjust the output offset of the relocation to reference the
6064 correct location in the output file. */
6065 outrel[0].r_offset += (input_section->output_section->vma
6066 + input_section->output_offset);
6067 outrel[1].r_offset += (input_section->output_section->vma
6068 + input_section->output_offset);
6069 outrel[2].r_offset += (input_section->output_section->vma
6070 + input_section->output_offset);
6071
6072 /* Put the relocation back out. We have to use the special
6073 relocation outputter in the 64-bit case since the 64-bit
6074 relocation format is non-standard. */
6075 if (ABI_64_P (output_bfd))
6076 {
6077 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6078 (output_bfd, &outrel[0],
6079 (sreloc->contents
6080 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6081 }
6082 else if (htab->is_vxworks)
6083 {
6084 /* VxWorks uses RELA rather than REL dynamic relocations. */
6085 outrel[0].r_addend = *addendp;
6086 bfd_elf32_swap_reloca_out
6087 (output_bfd, &outrel[0],
6088 (sreloc->contents
6089 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6090 }
6091 else
6092 bfd_elf32_swap_reloc_out
6093 (output_bfd, &outrel[0],
6094 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6095
6096 /* We've now added another relocation. */
6097 ++sreloc->reloc_count;
6098
6099 /* Make sure the output section is writable. The dynamic linker
6100 will be writing to it. */
6101 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6102 |= SHF_WRITE;
6103
6104 /* On IRIX5, make an entry of compact relocation info. */
6105 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6106 {
6107 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
6108 bfd_byte *cr;
6109
6110 if (scpt)
6111 {
6112 Elf32_crinfo cptrel;
6113
6114 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6115 cptrel.vaddr = (rel->r_offset
6116 + input_section->output_section->vma
6117 + input_section->output_offset);
6118 if (r_type == R_MIPS_REL32)
6119 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6120 else
6121 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6122 mips_elf_set_cr_dist2to (cptrel, 0);
6123 cptrel.konst = *addendp;
6124
6125 cr = (scpt->contents
6126 + sizeof (Elf32_External_compact_rel));
6127 mips_elf_set_cr_relvaddr (cptrel, 0);
6128 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6129 ((Elf32_External_crinfo *) cr
6130 + scpt->reloc_count));
6131 ++scpt->reloc_count;
6132 }
6133 }
6134
6135 /* If we've written this relocation for a readonly section,
6136 we need to set DF_TEXTREL again, so that we do not delete the
6137 DT_TEXTREL tag. */
6138 if (MIPS_ELF_READONLY_SECTION (input_section))
6139 info->flags |= DF_TEXTREL;
6140
6141 return TRUE;
6142 }
6143 \f
6144 /* Return the MACH for a MIPS e_flags value. */
6145
6146 unsigned long
6147 _bfd_elf_mips_mach (flagword flags)
6148 {
6149 switch (flags & EF_MIPS_MACH)
6150 {
6151 case E_MIPS_MACH_3900:
6152 return bfd_mach_mips3900;
6153
6154 case E_MIPS_MACH_4010:
6155 return bfd_mach_mips4010;
6156
6157 case E_MIPS_MACH_4100:
6158 return bfd_mach_mips4100;
6159
6160 case E_MIPS_MACH_4111:
6161 return bfd_mach_mips4111;
6162
6163 case E_MIPS_MACH_4120:
6164 return bfd_mach_mips4120;
6165
6166 case E_MIPS_MACH_4650:
6167 return bfd_mach_mips4650;
6168
6169 case E_MIPS_MACH_5400:
6170 return bfd_mach_mips5400;
6171
6172 case E_MIPS_MACH_5500:
6173 return bfd_mach_mips5500;
6174
6175 case E_MIPS_MACH_9000:
6176 return bfd_mach_mips9000;
6177
6178 case E_MIPS_MACH_SB1:
6179 return bfd_mach_mips_sb1;
6180
6181 case E_MIPS_MACH_LS2E:
6182 return bfd_mach_mips_loongson_2e;
6183
6184 case E_MIPS_MACH_LS2F:
6185 return bfd_mach_mips_loongson_2f;
6186
6187 case E_MIPS_MACH_LS3A:
6188 return bfd_mach_mips_loongson_3a;
6189
6190 case E_MIPS_MACH_OCTEON2:
6191 return bfd_mach_mips_octeon2;
6192
6193 case E_MIPS_MACH_OCTEON:
6194 return bfd_mach_mips_octeon;
6195
6196 case E_MIPS_MACH_XLR:
6197 return bfd_mach_mips_xlr;
6198
6199 default:
6200 switch (flags & EF_MIPS_ARCH)
6201 {
6202 default:
6203 case E_MIPS_ARCH_1:
6204 return bfd_mach_mips3000;
6205
6206 case E_MIPS_ARCH_2:
6207 return bfd_mach_mips6000;
6208
6209 case E_MIPS_ARCH_3:
6210 return bfd_mach_mips4000;
6211
6212 case E_MIPS_ARCH_4:
6213 return bfd_mach_mips8000;
6214
6215 case E_MIPS_ARCH_5:
6216 return bfd_mach_mips5;
6217
6218 case E_MIPS_ARCH_32:
6219 return bfd_mach_mipsisa32;
6220
6221 case E_MIPS_ARCH_64:
6222 return bfd_mach_mipsisa64;
6223
6224 case E_MIPS_ARCH_32R2:
6225 return bfd_mach_mipsisa32r2;
6226
6227 case E_MIPS_ARCH_64R2:
6228 return bfd_mach_mipsisa64r2;
6229 }
6230 }
6231
6232 return 0;
6233 }
6234
6235 /* Return printable name for ABI. */
6236
6237 static INLINE char *
6238 elf_mips_abi_name (bfd *abfd)
6239 {
6240 flagword flags;
6241
6242 flags = elf_elfheader (abfd)->e_flags;
6243 switch (flags & EF_MIPS_ABI)
6244 {
6245 case 0:
6246 if (ABI_N32_P (abfd))
6247 return "N32";
6248 else if (ABI_64_P (abfd))
6249 return "64";
6250 else
6251 return "none";
6252 case E_MIPS_ABI_O32:
6253 return "O32";
6254 case E_MIPS_ABI_O64:
6255 return "O64";
6256 case E_MIPS_ABI_EABI32:
6257 return "EABI32";
6258 case E_MIPS_ABI_EABI64:
6259 return "EABI64";
6260 default:
6261 return "unknown abi";
6262 }
6263 }
6264 \f
6265 /* MIPS ELF uses two common sections. One is the usual one, and the
6266 other is for small objects. All the small objects are kept
6267 together, and then referenced via the gp pointer, which yields
6268 faster assembler code. This is what we use for the small common
6269 section. This approach is copied from ecoff.c. */
6270 static asection mips_elf_scom_section;
6271 static asymbol mips_elf_scom_symbol;
6272 static asymbol *mips_elf_scom_symbol_ptr;
6273
6274 /* MIPS ELF also uses an acommon section, which represents an
6275 allocated common symbol which may be overridden by a
6276 definition in a shared library. */
6277 static asection mips_elf_acom_section;
6278 static asymbol mips_elf_acom_symbol;
6279 static asymbol *mips_elf_acom_symbol_ptr;
6280
6281 /* This is used for both the 32-bit and the 64-bit ABI. */
6282
6283 void
6284 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6285 {
6286 elf_symbol_type *elfsym;
6287
6288 /* Handle the special MIPS section numbers that a symbol may use. */
6289 elfsym = (elf_symbol_type *) asym;
6290 switch (elfsym->internal_elf_sym.st_shndx)
6291 {
6292 case SHN_MIPS_ACOMMON:
6293 /* This section is used in a dynamically linked executable file.
6294 It is an allocated common section. The dynamic linker can
6295 either resolve these symbols to something in a shared
6296 library, or it can just leave them here. For our purposes,
6297 we can consider these symbols to be in a new section. */
6298 if (mips_elf_acom_section.name == NULL)
6299 {
6300 /* Initialize the acommon section. */
6301 mips_elf_acom_section.name = ".acommon";
6302 mips_elf_acom_section.flags = SEC_ALLOC;
6303 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6304 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6305 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6306 mips_elf_acom_symbol.name = ".acommon";
6307 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6308 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6309 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6310 }
6311 asym->section = &mips_elf_acom_section;
6312 break;
6313
6314 case SHN_COMMON:
6315 /* Common symbols less than the GP size are automatically
6316 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6317 if (asym->value > elf_gp_size (abfd)
6318 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6319 || IRIX_COMPAT (abfd) == ict_irix6)
6320 break;
6321 /* Fall through. */
6322 case SHN_MIPS_SCOMMON:
6323 if (mips_elf_scom_section.name == NULL)
6324 {
6325 /* Initialize the small common section. */
6326 mips_elf_scom_section.name = ".scommon";
6327 mips_elf_scom_section.flags = SEC_IS_COMMON;
6328 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6329 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6330 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6331 mips_elf_scom_symbol.name = ".scommon";
6332 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6333 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6334 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6335 }
6336 asym->section = &mips_elf_scom_section;
6337 asym->value = elfsym->internal_elf_sym.st_size;
6338 break;
6339
6340 case SHN_MIPS_SUNDEFINED:
6341 asym->section = bfd_und_section_ptr;
6342 break;
6343
6344 case SHN_MIPS_TEXT:
6345 {
6346 asection *section = bfd_get_section_by_name (abfd, ".text");
6347
6348 if (section != NULL)
6349 {
6350 asym->section = section;
6351 /* MIPS_TEXT is a bit special, the address is not an offset
6352 to the base of the .text section. So substract the section
6353 base address to make it an offset. */
6354 asym->value -= section->vma;
6355 }
6356 }
6357 break;
6358
6359 case SHN_MIPS_DATA:
6360 {
6361 asection *section = bfd_get_section_by_name (abfd, ".data");
6362
6363 if (section != NULL)
6364 {
6365 asym->section = section;
6366 /* MIPS_DATA is a bit special, the address is not an offset
6367 to the base of the .data section. So substract the section
6368 base address to make it an offset. */
6369 asym->value -= section->vma;
6370 }
6371 }
6372 break;
6373 }
6374
6375 /* If this is an odd-valued function symbol, assume it's a MIPS16
6376 or microMIPS one. */
6377 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6378 && (asym->value & 1) != 0)
6379 {
6380 asym->value--;
6381 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6382 elfsym->internal_elf_sym.st_other
6383 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6384 else
6385 elfsym->internal_elf_sym.st_other
6386 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6387 }
6388 }
6389 \f
6390 /* Implement elf_backend_eh_frame_address_size. This differs from
6391 the default in the way it handles EABI64.
6392
6393 EABI64 was originally specified as an LP64 ABI, and that is what
6394 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6395 historically accepted the combination of -mabi=eabi and -mlong32,
6396 and this ILP32 variation has become semi-official over time.
6397 Both forms use elf32 and have pointer-sized FDE addresses.
6398
6399 If an EABI object was generated by GCC 4.0 or above, it will have
6400 an empty .gcc_compiled_longXX section, where XX is the size of longs
6401 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6402 have no special marking to distinguish them from LP64 objects.
6403
6404 We don't want users of the official LP64 ABI to be punished for the
6405 existence of the ILP32 variant, but at the same time, we don't want
6406 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6407 We therefore take the following approach:
6408
6409 - If ABFD contains a .gcc_compiled_longXX section, use it to
6410 determine the pointer size.
6411
6412 - Otherwise check the type of the first relocation. Assume that
6413 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6414
6415 - Otherwise punt.
6416
6417 The second check is enough to detect LP64 objects generated by pre-4.0
6418 compilers because, in the kind of output generated by those compilers,
6419 the first relocation will be associated with either a CIE personality
6420 routine or an FDE start address. Furthermore, the compilers never
6421 used a special (non-pointer) encoding for this ABI.
6422
6423 Checking the relocation type should also be safe because there is no
6424 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6425 did so. */
6426
6427 unsigned int
6428 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6429 {
6430 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6431 return 8;
6432 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6433 {
6434 bfd_boolean long32_p, long64_p;
6435
6436 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6437 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6438 if (long32_p && long64_p)
6439 return 0;
6440 if (long32_p)
6441 return 4;
6442 if (long64_p)
6443 return 8;
6444
6445 if (sec->reloc_count > 0
6446 && elf_section_data (sec)->relocs != NULL
6447 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6448 == R_MIPS_64))
6449 return 8;
6450
6451 return 0;
6452 }
6453 return 4;
6454 }
6455 \f
6456 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6457 relocations against two unnamed section symbols to resolve to the
6458 same address. For example, if we have code like:
6459
6460 lw $4,%got_disp(.data)($gp)
6461 lw $25,%got_disp(.text)($gp)
6462 jalr $25
6463
6464 then the linker will resolve both relocations to .data and the program
6465 will jump there rather than to .text.
6466
6467 We can work around this problem by giving names to local section symbols.
6468 This is also what the MIPSpro tools do. */
6469
6470 bfd_boolean
6471 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6472 {
6473 return SGI_COMPAT (abfd);
6474 }
6475 \f
6476 /* Work over a section just before writing it out. This routine is
6477 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6478 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6479 a better way. */
6480
6481 bfd_boolean
6482 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6483 {
6484 if (hdr->sh_type == SHT_MIPS_REGINFO
6485 && hdr->sh_size > 0)
6486 {
6487 bfd_byte buf[4];
6488
6489 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6490 BFD_ASSERT (hdr->contents == NULL);
6491
6492 if (bfd_seek (abfd,
6493 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6494 SEEK_SET) != 0)
6495 return FALSE;
6496 H_PUT_32 (abfd, elf_gp (abfd), buf);
6497 if (bfd_bwrite (buf, 4, abfd) != 4)
6498 return FALSE;
6499 }
6500
6501 if (hdr->sh_type == SHT_MIPS_OPTIONS
6502 && hdr->bfd_section != NULL
6503 && mips_elf_section_data (hdr->bfd_section) != NULL
6504 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6505 {
6506 bfd_byte *contents, *l, *lend;
6507
6508 /* We stored the section contents in the tdata field in the
6509 set_section_contents routine. We save the section contents
6510 so that we don't have to read them again.
6511 At this point we know that elf_gp is set, so we can look
6512 through the section contents to see if there is an
6513 ODK_REGINFO structure. */
6514
6515 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6516 l = contents;
6517 lend = contents + hdr->sh_size;
6518 while (l + sizeof (Elf_External_Options) <= lend)
6519 {
6520 Elf_Internal_Options intopt;
6521
6522 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6523 &intopt);
6524 if (intopt.size < sizeof (Elf_External_Options))
6525 {
6526 (*_bfd_error_handler)
6527 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6528 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6529 break;
6530 }
6531 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6532 {
6533 bfd_byte buf[8];
6534
6535 if (bfd_seek (abfd,
6536 (hdr->sh_offset
6537 + (l - contents)
6538 + sizeof (Elf_External_Options)
6539 + (sizeof (Elf64_External_RegInfo) - 8)),
6540 SEEK_SET) != 0)
6541 return FALSE;
6542 H_PUT_64 (abfd, elf_gp (abfd), buf);
6543 if (bfd_bwrite (buf, 8, abfd) != 8)
6544 return FALSE;
6545 }
6546 else if (intopt.kind == ODK_REGINFO)
6547 {
6548 bfd_byte buf[4];
6549
6550 if (bfd_seek (abfd,
6551 (hdr->sh_offset
6552 + (l - contents)
6553 + sizeof (Elf_External_Options)
6554 + (sizeof (Elf32_External_RegInfo) - 4)),
6555 SEEK_SET) != 0)
6556 return FALSE;
6557 H_PUT_32 (abfd, elf_gp (abfd), buf);
6558 if (bfd_bwrite (buf, 4, abfd) != 4)
6559 return FALSE;
6560 }
6561 l += intopt.size;
6562 }
6563 }
6564
6565 if (hdr->bfd_section != NULL)
6566 {
6567 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6568
6569 /* .sbss is not handled specially here because the GNU/Linux
6570 prelinker can convert .sbss from NOBITS to PROGBITS and
6571 changing it back to NOBITS breaks the binary. The entry in
6572 _bfd_mips_elf_special_sections will ensure the correct flags
6573 are set on .sbss if BFD creates it without reading it from an
6574 input file, and without special handling here the flags set
6575 on it in an input file will be followed. */
6576 if (strcmp (name, ".sdata") == 0
6577 || strcmp (name, ".lit8") == 0
6578 || strcmp (name, ".lit4") == 0)
6579 {
6580 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6581 hdr->sh_type = SHT_PROGBITS;
6582 }
6583 else if (strcmp (name, ".srdata") == 0)
6584 {
6585 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6586 hdr->sh_type = SHT_PROGBITS;
6587 }
6588 else if (strcmp (name, ".compact_rel") == 0)
6589 {
6590 hdr->sh_flags = 0;
6591 hdr->sh_type = SHT_PROGBITS;
6592 }
6593 else if (strcmp (name, ".rtproc") == 0)
6594 {
6595 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6596 {
6597 unsigned int adjust;
6598
6599 adjust = hdr->sh_size % hdr->sh_addralign;
6600 if (adjust != 0)
6601 hdr->sh_size += hdr->sh_addralign - adjust;
6602 }
6603 }
6604 }
6605
6606 return TRUE;
6607 }
6608
6609 /* Handle a MIPS specific section when reading an object file. This
6610 is called when elfcode.h finds a section with an unknown type.
6611 This routine supports both the 32-bit and 64-bit ELF ABI.
6612
6613 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6614 how to. */
6615
6616 bfd_boolean
6617 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6618 Elf_Internal_Shdr *hdr,
6619 const char *name,
6620 int shindex)
6621 {
6622 flagword flags = 0;
6623
6624 /* There ought to be a place to keep ELF backend specific flags, but
6625 at the moment there isn't one. We just keep track of the
6626 sections by their name, instead. Fortunately, the ABI gives
6627 suggested names for all the MIPS specific sections, so we will
6628 probably get away with this. */
6629 switch (hdr->sh_type)
6630 {
6631 case SHT_MIPS_LIBLIST:
6632 if (strcmp (name, ".liblist") != 0)
6633 return FALSE;
6634 break;
6635 case SHT_MIPS_MSYM:
6636 if (strcmp (name, ".msym") != 0)
6637 return FALSE;
6638 break;
6639 case SHT_MIPS_CONFLICT:
6640 if (strcmp (name, ".conflict") != 0)
6641 return FALSE;
6642 break;
6643 case SHT_MIPS_GPTAB:
6644 if (! CONST_STRNEQ (name, ".gptab."))
6645 return FALSE;
6646 break;
6647 case SHT_MIPS_UCODE:
6648 if (strcmp (name, ".ucode") != 0)
6649 return FALSE;
6650 break;
6651 case SHT_MIPS_DEBUG:
6652 if (strcmp (name, ".mdebug") != 0)
6653 return FALSE;
6654 flags = SEC_DEBUGGING;
6655 break;
6656 case SHT_MIPS_REGINFO:
6657 if (strcmp (name, ".reginfo") != 0
6658 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6659 return FALSE;
6660 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6661 break;
6662 case SHT_MIPS_IFACE:
6663 if (strcmp (name, ".MIPS.interfaces") != 0)
6664 return FALSE;
6665 break;
6666 case SHT_MIPS_CONTENT:
6667 if (! CONST_STRNEQ (name, ".MIPS.content"))
6668 return FALSE;
6669 break;
6670 case SHT_MIPS_OPTIONS:
6671 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6672 return FALSE;
6673 break;
6674 case SHT_MIPS_DWARF:
6675 if (! CONST_STRNEQ (name, ".debug_")
6676 && ! CONST_STRNEQ (name, ".zdebug_"))
6677 return FALSE;
6678 break;
6679 case SHT_MIPS_SYMBOL_LIB:
6680 if (strcmp (name, ".MIPS.symlib") != 0)
6681 return FALSE;
6682 break;
6683 case SHT_MIPS_EVENTS:
6684 if (! CONST_STRNEQ (name, ".MIPS.events")
6685 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6686 return FALSE;
6687 break;
6688 default:
6689 break;
6690 }
6691
6692 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6693 return FALSE;
6694
6695 if (flags)
6696 {
6697 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6698 (bfd_get_section_flags (abfd,
6699 hdr->bfd_section)
6700 | flags)))
6701 return FALSE;
6702 }
6703
6704 /* FIXME: We should record sh_info for a .gptab section. */
6705
6706 /* For a .reginfo section, set the gp value in the tdata information
6707 from the contents of this section. We need the gp value while
6708 processing relocs, so we just get it now. The .reginfo section
6709 is not used in the 64-bit MIPS ELF ABI. */
6710 if (hdr->sh_type == SHT_MIPS_REGINFO)
6711 {
6712 Elf32_External_RegInfo ext;
6713 Elf32_RegInfo s;
6714
6715 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6716 &ext, 0, sizeof ext))
6717 return FALSE;
6718 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6719 elf_gp (abfd) = s.ri_gp_value;
6720 }
6721
6722 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6723 set the gp value based on what we find. We may see both
6724 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6725 they should agree. */
6726 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6727 {
6728 bfd_byte *contents, *l, *lend;
6729
6730 contents = bfd_malloc (hdr->sh_size);
6731 if (contents == NULL)
6732 return FALSE;
6733 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6734 0, hdr->sh_size))
6735 {
6736 free (contents);
6737 return FALSE;
6738 }
6739 l = contents;
6740 lend = contents + hdr->sh_size;
6741 while (l + sizeof (Elf_External_Options) <= lend)
6742 {
6743 Elf_Internal_Options intopt;
6744
6745 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6746 &intopt);
6747 if (intopt.size < sizeof (Elf_External_Options))
6748 {
6749 (*_bfd_error_handler)
6750 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6751 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6752 break;
6753 }
6754 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6755 {
6756 Elf64_Internal_RegInfo intreg;
6757
6758 bfd_mips_elf64_swap_reginfo_in
6759 (abfd,
6760 ((Elf64_External_RegInfo *)
6761 (l + sizeof (Elf_External_Options))),
6762 &intreg);
6763 elf_gp (abfd) = intreg.ri_gp_value;
6764 }
6765 else if (intopt.kind == ODK_REGINFO)
6766 {
6767 Elf32_RegInfo intreg;
6768
6769 bfd_mips_elf32_swap_reginfo_in
6770 (abfd,
6771 ((Elf32_External_RegInfo *)
6772 (l + sizeof (Elf_External_Options))),
6773 &intreg);
6774 elf_gp (abfd) = intreg.ri_gp_value;
6775 }
6776 l += intopt.size;
6777 }
6778 free (contents);
6779 }
6780
6781 return TRUE;
6782 }
6783
6784 /* Set the correct type for a MIPS ELF section. We do this by the
6785 section name, which is a hack, but ought to work. This routine is
6786 used by both the 32-bit and the 64-bit ABI. */
6787
6788 bfd_boolean
6789 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6790 {
6791 const char *name = bfd_get_section_name (abfd, sec);
6792
6793 if (strcmp (name, ".liblist") == 0)
6794 {
6795 hdr->sh_type = SHT_MIPS_LIBLIST;
6796 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6797 /* The sh_link field is set in final_write_processing. */
6798 }
6799 else if (strcmp (name, ".conflict") == 0)
6800 hdr->sh_type = SHT_MIPS_CONFLICT;
6801 else if (CONST_STRNEQ (name, ".gptab."))
6802 {
6803 hdr->sh_type = SHT_MIPS_GPTAB;
6804 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6805 /* The sh_info field is set in final_write_processing. */
6806 }
6807 else if (strcmp (name, ".ucode") == 0)
6808 hdr->sh_type = SHT_MIPS_UCODE;
6809 else if (strcmp (name, ".mdebug") == 0)
6810 {
6811 hdr->sh_type = SHT_MIPS_DEBUG;
6812 /* In a shared object on IRIX 5.3, the .mdebug section has an
6813 entsize of 0. FIXME: Does this matter? */
6814 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6815 hdr->sh_entsize = 0;
6816 else
6817 hdr->sh_entsize = 1;
6818 }
6819 else if (strcmp (name, ".reginfo") == 0)
6820 {
6821 hdr->sh_type = SHT_MIPS_REGINFO;
6822 /* In a shared object on IRIX 5.3, the .reginfo section has an
6823 entsize of 0x18. FIXME: Does this matter? */
6824 if (SGI_COMPAT (abfd))
6825 {
6826 if ((abfd->flags & DYNAMIC) != 0)
6827 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6828 else
6829 hdr->sh_entsize = 1;
6830 }
6831 else
6832 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6833 }
6834 else if (SGI_COMPAT (abfd)
6835 && (strcmp (name, ".hash") == 0
6836 || strcmp (name, ".dynamic") == 0
6837 || strcmp (name, ".dynstr") == 0))
6838 {
6839 if (SGI_COMPAT (abfd))
6840 hdr->sh_entsize = 0;
6841 #if 0
6842 /* This isn't how the IRIX6 linker behaves. */
6843 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6844 #endif
6845 }
6846 else if (strcmp (name, ".got") == 0
6847 || strcmp (name, ".srdata") == 0
6848 || strcmp (name, ".sdata") == 0
6849 || strcmp (name, ".sbss") == 0
6850 || strcmp (name, ".lit4") == 0
6851 || strcmp (name, ".lit8") == 0)
6852 hdr->sh_flags |= SHF_MIPS_GPREL;
6853 else if (strcmp (name, ".MIPS.interfaces") == 0)
6854 {
6855 hdr->sh_type = SHT_MIPS_IFACE;
6856 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6857 }
6858 else if (CONST_STRNEQ (name, ".MIPS.content"))
6859 {
6860 hdr->sh_type = SHT_MIPS_CONTENT;
6861 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6862 /* The sh_info field is set in final_write_processing. */
6863 }
6864 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6865 {
6866 hdr->sh_type = SHT_MIPS_OPTIONS;
6867 hdr->sh_entsize = 1;
6868 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6869 }
6870 else if (CONST_STRNEQ (name, ".debug_")
6871 || CONST_STRNEQ (name, ".zdebug_"))
6872 {
6873 hdr->sh_type = SHT_MIPS_DWARF;
6874
6875 /* Irix facilities such as libexc expect a single .debug_frame
6876 per executable, the system ones have NOSTRIP set and the linker
6877 doesn't merge sections with different flags so ... */
6878 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6879 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6880 }
6881 else if (strcmp (name, ".MIPS.symlib") == 0)
6882 {
6883 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6884 /* The sh_link and sh_info fields are set in
6885 final_write_processing. */
6886 }
6887 else if (CONST_STRNEQ (name, ".MIPS.events")
6888 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6889 {
6890 hdr->sh_type = SHT_MIPS_EVENTS;
6891 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6892 /* The sh_link field is set in final_write_processing. */
6893 }
6894 else if (strcmp (name, ".msym") == 0)
6895 {
6896 hdr->sh_type = SHT_MIPS_MSYM;
6897 hdr->sh_flags |= SHF_ALLOC;
6898 hdr->sh_entsize = 8;
6899 }
6900
6901 /* The generic elf_fake_sections will set up REL_HDR using the default
6902 kind of relocations. We used to set up a second header for the
6903 non-default kind of relocations here, but only NewABI would use
6904 these, and the IRIX ld doesn't like resulting empty RELA sections.
6905 Thus we create those header only on demand now. */
6906
6907 return TRUE;
6908 }
6909
6910 /* Given a BFD section, try to locate the corresponding ELF section
6911 index. This is used by both the 32-bit and the 64-bit ABI.
6912 Actually, it's not clear to me that the 64-bit ABI supports these,
6913 but for non-PIC objects we will certainly want support for at least
6914 the .scommon section. */
6915
6916 bfd_boolean
6917 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6918 asection *sec, int *retval)
6919 {
6920 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6921 {
6922 *retval = SHN_MIPS_SCOMMON;
6923 return TRUE;
6924 }
6925 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6926 {
6927 *retval = SHN_MIPS_ACOMMON;
6928 return TRUE;
6929 }
6930 return FALSE;
6931 }
6932 \f
6933 /* Hook called by the linker routine which adds symbols from an object
6934 file. We must handle the special MIPS section numbers here. */
6935
6936 bfd_boolean
6937 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6938 Elf_Internal_Sym *sym, const char **namep,
6939 flagword *flagsp ATTRIBUTE_UNUSED,
6940 asection **secp, bfd_vma *valp)
6941 {
6942 if (SGI_COMPAT (abfd)
6943 && (abfd->flags & DYNAMIC) != 0
6944 && strcmp (*namep, "_rld_new_interface") == 0)
6945 {
6946 /* Skip IRIX5 rld entry name. */
6947 *namep = NULL;
6948 return TRUE;
6949 }
6950
6951 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6952 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6953 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6954 a magic symbol resolved by the linker, we ignore this bogus definition
6955 of _gp_disp. New ABI objects do not suffer from this problem so this
6956 is not done for them. */
6957 if (!NEWABI_P(abfd)
6958 && (sym->st_shndx == SHN_ABS)
6959 && (strcmp (*namep, "_gp_disp") == 0))
6960 {
6961 *namep = NULL;
6962 return TRUE;
6963 }
6964
6965 switch (sym->st_shndx)
6966 {
6967 case SHN_COMMON:
6968 /* Common symbols less than the GP size are automatically
6969 treated as SHN_MIPS_SCOMMON symbols. */
6970 if (sym->st_size > elf_gp_size (abfd)
6971 || ELF_ST_TYPE (sym->st_info) == STT_TLS
6972 || IRIX_COMPAT (abfd) == ict_irix6)
6973 break;
6974 /* Fall through. */
6975 case SHN_MIPS_SCOMMON:
6976 *secp = bfd_make_section_old_way (abfd, ".scommon");
6977 (*secp)->flags |= SEC_IS_COMMON;
6978 *valp = sym->st_size;
6979 break;
6980
6981 case SHN_MIPS_TEXT:
6982 /* This section is used in a shared object. */
6983 if (elf_tdata (abfd)->elf_text_section == NULL)
6984 {
6985 asymbol *elf_text_symbol;
6986 asection *elf_text_section;
6987 bfd_size_type amt = sizeof (asection);
6988
6989 elf_text_section = bfd_zalloc (abfd, amt);
6990 if (elf_text_section == NULL)
6991 return FALSE;
6992
6993 amt = sizeof (asymbol);
6994 elf_text_symbol = bfd_zalloc (abfd, amt);
6995 if (elf_text_symbol == NULL)
6996 return FALSE;
6997
6998 /* Initialize the section. */
6999
7000 elf_tdata (abfd)->elf_text_section = elf_text_section;
7001 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7002
7003 elf_text_section->symbol = elf_text_symbol;
7004 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
7005
7006 elf_text_section->name = ".text";
7007 elf_text_section->flags = SEC_NO_FLAGS;
7008 elf_text_section->output_section = NULL;
7009 elf_text_section->owner = abfd;
7010 elf_text_symbol->name = ".text";
7011 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7012 elf_text_symbol->section = elf_text_section;
7013 }
7014 /* This code used to do *secp = bfd_und_section_ptr if
7015 info->shared. I don't know why, and that doesn't make sense,
7016 so I took it out. */
7017 *secp = elf_tdata (abfd)->elf_text_section;
7018 break;
7019
7020 case SHN_MIPS_ACOMMON:
7021 /* Fall through. XXX Can we treat this as allocated data? */
7022 case SHN_MIPS_DATA:
7023 /* This section is used in a shared object. */
7024 if (elf_tdata (abfd)->elf_data_section == NULL)
7025 {
7026 asymbol *elf_data_symbol;
7027 asection *elf_data_section;
7028 bfd_size_type amt = sizeof (asection);
7029
7030 elf_data_section = bfd_zalloc (abfd, amt);
7031 if (elf_data_section == NULL)
7032 return FALSE;
7033
7034 amt = sizeof (asymbol);
7035 elf_data_symbol = bfd_zalloc (abfd, amt);
7036 if (elf_data_symbol == NULL)
7037 return FALSE;
7038
7039 /* Initialize the section. */
7040
7041 elf_tdata (abfd)->elf_data_section = elf_data_section;
7042 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7043
7044 elf_data_section->symbol = elf_data_symbol;
7045 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
7046
7047 elf_data_section->name = ".data";
7048 elf_data_section->flags = SEC_NO_FLAGS;
7049 elf_data_section->output_section = NULL;
7050 elf_data_section->owner = abfd;
7051 elf_data_symbol->name = ".data";
7052 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7053 elf_data_symbol->section = elf_data_section;
7054 }
7055 /* This code used to do *secp = bfd_und_section_ptr if
7056 info->shared. I don't know why, and that doesn't make sense,
7057 so I took it out. */
7058 *secp = elf_tdata (abfd)->elf_data_section;
7059 break;
7060
7061 case SHN_MIPS_SUNDEFINED:
7062 *secp = bfd_und_section_ptr;
7063 break;
7064 }
7065
7066 if (SGI_COMPAT (abfd)
7067 && ! info->shared
7068 && info->output_bfd->xvec == abfd->xvec
7069 && strcmp (*namep, "__rld_obj_head") == 0)
7070 {
7071 struct elf_link_hash_entry *h;
7072 struct bfd_link_hash_entry *bh;
7073
7074 /* Mark __rld_obj_head as dynamic. */
7075 bh = NULL;
7076 if (! (_bfd_generic_link_add_one_symbol
7077 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7078 get_elf_backend_data (abfd)->collect, &bh)))
7079 return FALSE;
7080
7081 h = (struct elf_link_hash_entry *) bh;
7082 h->non_elf = 0;
7083 h->def_regular = 1;
7084 h->type = STT_OBJECT;
7085
7086 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7087 return FALSE;
7088
7089 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7090 mips_elf_hash_table (info)->rld_symbol = h;
7091 }
7092
7093 /* If this is a mips16 text symbol, add 1 to the value to make it
7094 odd. This will cause something like .word SYM to come up with
7095 the right value when it is loaded into the PC. */
7096 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7097 ++*valp;
7098
7099 return TRUE;
7100 }
7101
7102 /* This hook function is called before the linker writes out a global
7103 symbol. We mark symbols as small common if appropriate. This is
7104 also where we undo the increment of the value for a mips16 symbol. */
7105
7106 int
7107 _bfd_mips_elf_link_output_symbol_hook
7108 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7109 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7110 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7111 {
7112 /* If we see a common symbol, which implies a relocatable link, then
7113 if a symbol was small common in an input file, mark it as small
7114 common in the output file. */
7115 if (sym->st_shndx == SHN_COMMON
7116 && strcmp (input_sec->name, ".scommon") == 0)
7117 sym->st_shndx = SHN_MIPS_SCOMMON;
7118
7119 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7120 sym->st_value &= ~1;
7121
7122 return 1;
7123 }
7124 \f
7125 /* Functions for the dynamic linker. */
7126
7127 /* Create dynamic sections when linking against a dynamic object. */
7128
7129 bfd_boolean
7130 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7131 {
7132 struct elf_link_hash_entry *h;
7133 struct bfd_link_hash_entry *bh;
7134 flagword flags;
7135 register asection *s;
7136 const char * const *namep;
7137 struct mips_elf_link_hash_table *htab;
7138
7139 htab = mips_elf_hash_table (info);
7140 BFD_ASSERT (htab != NULL);
7141
7142 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7143 | SEC_LINKER_CREATED | SEC_READONLY);
7144
7145 /* The psABI requires a read-only .dynamic section, but the VxWorks
7146 EABI doesn't. */
7147 if (!htab->is_vxworks)
7148 {
7149 s = bfd_get_section_by_name (abfd, ".dynamic");
7150 if (s != NULL)
7151 {
7152 if (! bfd_set_section_flags (abfd, s, flags))
7153 return FALSE;
7154 }
7155 }
7156
7157 /* We need to create .got section. */
7158 if (!mips_elf_create_got_section (abfd, info))
7159 return FALSE;
7160
7161 if (! mips_elf_rel_dyn_section (info, TRUE))
7162 return FALSE;
7163
7164 /* Create .stub section. */
7165 s = bfd_make_section_with_flags (abfd,
7166 MIPS_ELF_STUB_SECTION_NAME (abfd),
7167 flags | SEC_CODE);
7168 if (s == NULL
7169 || ! bfd_set_section_alignment (abfd, s,
7170 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7171 return FALSE;
7172 htab->sstubs = s;
7173
7174 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
7175 && !info->shared
7176 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
7177 {
7178 s = bfd_make_section_with_flags (abfd, ".rld_map",
7179 flags &~ (flagword) SEC_READONLY);
7180 if (s == NULL
7181 || ! bfd_set_section_alignment (abfd, s,
7182 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7183 return FALSE;
7184 }
7185
7186 /* On IRIX5, we adjust add some additional symbols and change the
7187 alignments of several sections. There is no ABI documentation
7188 indicating that this is necessary on IRIX6, nor any evidence that
7189 the linker takes such action. */
7190 if (IRIX_COMPAT (abfd) == ict_irix5)
7191 {
7192 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7193 {
7194 bh = NULL;
7195 if (! (_bfd_generic_link_add_one_symbol
7196 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7197 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7198 return FALSE;
7199
7200 h = (struct elf_link_hash_entry *) bh;
7201 h->non_elf = 0;
7202 h->def_regular = 1;
7203 h->type = STT_SECTION;
7204
7205 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7206 return FALSE;
7207 }
7208
7209 /* We need to create a .compact_rel section. */
7210 if (SGI_COMPAT (abfd))
7211 {
7212 if (!mips_elf_create_compact_rel_section (abfd, info))
7213 return FALSE;
7214 }
7215
7216 /* Change alignments of some sections. */
7217 s = bfd_get_section_by_name (abfd, ".hash");
7218 if (s != NULL)
7219 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7220 s = bfd_get_section_by_name (abfd, ".dynsym");
7221 if (s != NULL)
7222 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7223 s = bfd_get_section_by_name (abfd, ".dynstr");
7224 if (s != NULL)
7225 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7226 s = bfd_get_section_by_name (abfd, ".reginfo");
7227 if (s != NULL)
7228 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7229 s = bfd_get_section_by_name (abfd, ".dynamic");
7230 if (s != NULL)
7231 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7232 }
7233
7234 if (!info->shared)
7235 {
7236 const char *name;
7237
7238 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7239 bh = NULL;
7240 if (!(_bfd_generic_link_add_one_symbol
7241 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7242 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7243 return FALSE;
7244
7245 h = (struct elf_link_hash_entry *) bh;
7246 h->non_elf = 0;
7247 h->def_regular = 1;
7248 h->type = STT_SECTION;
7249
7250 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7251 return FALSE;
7252
7253 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7254 {
7255 /* __rld_map is a four byte word located in the .data section
7256 and is filled in by the rtld to contain a pointer to
7257 the _r_debug structure. Its symbol value will be set in
7258 _bfd_mips_elf_finish_dynamic_symbol. */
7259 s = bfd_get_section_by_name (abfd, ".rld_map");
7260 BFD_ASSERT (s != NULL);
7261
7262 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7263 bh = NULL;
7264 if (!(_bfd_generic_link_add_one_symbol
7265 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7266 get_elf_backend_data (abfd)->collect, &bh)))
7267 return FALSE;
7268
7269 h = (struct elf_link_hash_entry *) bh;
7270 h->non_elf = 0;
7271 h->def_regular = 1;
7272 h->type = STT_OBJECT;
7273
7274 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7275 return FALSE;
7276 mips_elf_hash_table (info)->rld_symbol = h;
7277 }
7278 }
7279
7280 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7281 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7282 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7283 return FALSE;
7284
7285 /* Cache the sections created above. */
7286 htab->splt = bfd_get_section_by_name (abfd, ".plt");
7287 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
7288 if (htab->is_vxworks)
7289 {
7290 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
7291 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
7292 }
7293 else
7294 htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt");
7295 if (!htab->sdynbss
7296 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7297 || !htab->srelplt
7298 || !htab->splt)
7299 abort ();
7300
7301 if (htab->is_vxworks)
7302 {
7303 /* Do the usual VxWorks handling. */
7304 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7305 return FALSE;
7306
7307 /* Work out the PLT sizes. */
7308 if (info->shared)
7309 {
7310 htab->plt_header_size
7311 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7312 htab->plt_entry_size
7313 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7314 }
7315 else
7316 {
7317 htab->plt_header_size
7318 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7319 htab->plt_entry_size
7320 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7321 }
7322 }
7323 else if (!info->shared)
7324 {
7325 /* All variants of the plt0 entry are the same size. */
7326 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7327 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7328 }
7329
7330 return TRUE;
7331 }
7332 \f
7333 /* Return true if relocation REL against section SEC is a REL rather than
7334 RELA relocation. RELOCS is the first relocation in the section and
7335 ABFD is the bfd that contains SEC. */
7336
7337 static bfd_boolean
7338 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7339 const Elf_Internal_Rela *relocs,
7340 const Elf_Internal_Rela *rel)
7341 {
7342 Elf_Internal_Shdr *rel_hdr;
7343 const struct elf_backend_data *bed;
7344
7345 /* To determine which flavor of relocation this is, we depend on the
7346 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7347 rel_hdr = elf_section_data (sec)->rel.hdr;
7348 if (rel_hdr == NULL)
7349 return FALSE;
7350 bed = get_elf_backend_data (abfd);
7351 return ((size_t) (rel - relocs)
7352 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7353 }
7354
7355 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7356 HOWTO is the relocation's howto and CONTENTS points to the contents
7357 of the section that REL is against. */
7358
7359 static bfd_vma
7360 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7361 reloc_howto_type *howto, bfd_byte *contents)
7362 {
7363 bfd_byte *location;
7364 unsigned int r_type;
7365 bfd_vma addend;
7366
7367 r_type = ELF_R_TYPE (abfd, rel->r_info);
7368 location = contents + rel->r_offset;
7369
7370 /* Get the addend, which is stored in the input file. */
7371 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7372 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7373 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7374
7375 return addend & howto->src_mask;
7376 }
7377
7378 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7379 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7380 and update *ADDEND with the final addend. Return true on success
7381 or false if the LO16 could not be found. RELEND is the exclusive
7382 upper bound on the relocations for REL's section. */
7383
7384 static bfd_boolean
7385 mips_elf_add_lo16_rel_addend (bfd *abfd,
7386 const Elf_Internal_Rela *rel,
7387 const Elf_Internal_Rela *relend,
7388 bfd_byte *contents, bfd_vma *addend)
7389 {
7390 unsigned int r_type, lo16_type;
7391 const Elf_Internal_Rela *lo16_relocation;
7392 reloc_howto_type *lo16_howto;
7393 bfd_vma l;
7394
7395 r_type = ELF_R_TYPE (abfd, rel->r_info);
7396 if (mips16_reloc_p (r_type))
7397 lo16_type = R_MIPS16_LO16;
7398 else if (micromips_reloc_p (r_type))
7399 lo16_type = R_MICROMIPS_LO16;
7400 else
7401 lo16_type = R_MIPS_LO16;
7402
7403 /* The combined value is the sum of the HI16 addend, left-shifted by
7404 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7405 code does a `lui' of the HI16 value, and then an `addiu' of the
7406 LO16 value.)
7407
7408 Scan ahead to find a matching LO16 relocation.
7409
7410 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7411 be immediately following. However, for the IRIX6 ABI, the next
7412 relocation may be a composed relocation consisting of several
7413 relocations for the same address. In that case, the R_MIPS_LO16
7414 relocation may occur as one of these. We permit a similar
7415 extension in general, as that is useful for GCC.
7416
7417 In some cases GCC dead code elimination removes the LO16 but keeps
7418 the corresponding HI16. This is strictly speaking a violation of
7419 the ABI but not immediately harmful. */
7420 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7421 if (lo16_relocation == NULL)
7422 return FALSE;
7423
7424 /* Obtain the addend kept there. */
7425 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7426 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7427
7428 l <<= lo16_howto->rightshift;
7429 l = _bfd_mips_elf_sign_extend (l, 16);
7430
7431 *addend <<= 16;
7432 *addend += l;
7433 return TRUE;
7434 }
7435
7436 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7437 store the contents in *CONTENTS on success. Assume that *CONTENTS
7438 already holds the contents if it is nonull on entry. */
7439
7440 static bfd_boolean
7441 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7442 {
7443 if (*contents)
7444 return TRUE;
7445
7446 /* Get cached copy if it exists. */
7447 if (elf_section_data (sec)->this_hdr.contents != NULL)
7448 {
7449 *contents = elf_section_data (sec)->this_hdr.contents;
7450 return TRUE;
7451 }
7452
7453 return bfd_malloc_and_get_section (abfd, sec, contents);
7454 }
7455
7456 /* Look through the relocs for a section during the first phase, and
7457 allocate space in the global offset table. */
7458
7459 bfd_boolean
7460 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7461 asection *sec, const Elf_Internal_Rela *relocs)
7462 {
7463 const char *name;
7464 bfd *dynobj;
7465 Elf_Internal_Shdr *symtab_hdr;
7466 struct elf_link_hash_entry **sym_hashes;
7467 size_t extsymoff;
7468 const Elf_Internal_Rela *rel;
7469 const Elf_Internal_Rela *rel_end;
7470 asection *sreloc;
7471 const struct elf_backend_data *bed;
7472 struct mips_elf_link_hash_table *htab;
7473 bfd_byte *contents;
7474 bfd_vma addend;
7475 reloc_howto_type *howto;
7476
7477 if (info->relocatable)
7478 return TRUE;
7479
7480 htab = mips_elf_hash_table (info);
7481 BFD_ASSERT (htab != NULL);
7482
7483 dynobj = elf_hash_table (info)->dynobj;
7484 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7485 sym_hashes = elf_sym_hashes (abfd);
7486 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7487
7488 bed = get_elf_backend_data (abfd);
7489 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7490
7491 /* Check for the mips16 stub sections. */
7492
7493 name = bfd_get_section_name (abfd, sec);
7494 if (FN_STUB_P (name))
7495 {
7496 unsigned long r_symndx;
7497
7498 /* Look at the relocation information to figure out which symbol
7499 this is for. */
7500
7501 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7502 if (r_symndx == 0)
7503 {
7504 (*_bfd_error_handler)
7505 (_("%B: Warning: cannot determine the target function for"
7506 " stub section `%s'"),
7507 abfd, name);
7508 bfd_set_error (bfd_error_bad_value);
7509 return FALSE;
7510 }
7511
7512 if (r_symndx < extsymoff
7513 || sym_hashes[r_symndx - extsymoff] == NULL)
7514 {
7515 asection *o;
7516
7517 /* This stub is for a local symbol. This stub will only be
7518 needed if there is some relocation in this BFD, other
7519 than a 16 bit function call, which refers to this symbol. */
7520 for (o = abfd->sections; o != NULL; o = o->next)
7521 {
7522 Elf_Internal_Rela *sec_relocs;
7523 const Elf_Internal_Rela *r, *rend;
7524
7525 /* We can ignore stub sections when looking for relocs. */
7526 if ((o->flags & SEC_RELOC) == 0
7527 || o->reloc_count == 0
7528 || section_allows_mips16_refs_p (o))
7529 continue;
7530
7531 sec_relocs
7532 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7533 info->keep_memory);
7534 if (sec_relocs == NULL)
7535 return FALSE;
7536
7537 rend = sec_relocs + o->reloc_count;
7538 for (r = sec_relocs; r < rend; r++)
7539 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7540 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7541 break;
7542
7543 if (elf_section_data (o)->relocs != sec_relocs)
7544 free (sec_relocs);
7545
7546 if (r < rend)
7547 break;
7548 }
7549
7550 if (o == NULL)
7551 {
7552 /* There is no non-call reloc for this stub, so we do
7553 not need it. Since this function is called before
7554 the linker maps input sections to output sections, we
7555 can easily discard it by setting the SEC_EXCLUDE
7556 flag. */
7557 sec->flags |= SEC_EXCLUDE;
7558 return TRUE;
7559 }
7560
7561 /* Record this stub in an array of local symbol stubs for
7562 this BFD. */
7563 if (elf_tdata (abfd)->local_stubs == NULL)
7564 {
7565 unsigned long symcount;
7566 asection **n;
7567 bfd_size_type amt;
7568
7569 if (elf_bad_symtab (abfd))
7570 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7571 else
7572 symcount = symtab_hdr->sh_info;
7573 amt = symcount * sizeof (asection *);
7574 n = bfd_zalloc (abfd, amt);
7575 if (n == NULL)
7576 return FALSE;
7577 elf_tdata (abfd)->local_stubs = n;
7578 }
7579
7580 sec->flags |= SEC_KEEP;
7581 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7582
7583 /* We don't need to set mips16_stubs_seen in this case.
7584 That flag is used to see whether we need to look through
7585 the global symbol table for stubs. We don't need to set
7586 it here, because we just have a local stub. */
7587 }
7588 else
7589 {
7590 struct mips_elf_link_hash_entry *h;
7591
7592 h = ((struct mips_elf_link_hash_entry *)
7593 sym_hashes[r_symndx - extsymoff]);
7594
7595 while (h->root.root.type == bfd_link_hash_indirect
7596 || h->root.root.type == bfd_link_hash_warning)
7597 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7598
7599 /* H is the symbol this stub is for. */
7600
7601 /* If we already have an appropriate stub for this function, we
7602 don't need another one, so we can discard this one. Since
7603 this function is called before the linker maps input sections
7604 to output sections, we can easily discard it by setting the
7605 SEC_EXCLUDE flag. */
7606 if (h->fn_stub != NULL)
7607 {
7608 sec->flags |= SEC_EXCLUDE;
7609 return TRUE;
7610 }
7611
7612 sec->flags |= SEC_KEEP;
7613 h->fn_stub = sec;
7614 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7615 }
7616 }
7617 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7618 {
7619 unsigned long r_symndx;
7620 struct mips_elf_link_hash_entry *h;
7621 asection **loc;
7622
7623 /* Look at the relocation information to figure out which symbol
7624 this is for. */
7625
7626 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7627 if (r_symndx == 0)
7628 {
7629 (*_bfd_error_handler)
7630 (_("%B: Warning: cannot determine the target function for"
7631 " stub section `%s'"),
7632 abfd, name);
7633 bfd_set_error (bfd_error_bad_value);
7634 return FALSE;
7635 }
7636
7637 if (r_symndx < extsymoff
7638 || sym_hashes[r_symndx - extsymoff] == NULL)
7639 {
7640 asection *o;
7641
7642 /* This stub is for a local symbol. This stub will only be
7643 needed if there is some relocation (R_MIPS16_26) in this BFD
7644 that refers to this symbol. */
7645 for (o = abfd->sections; o != NULL; o = o->next)
7646 {
7647 Elf_Internal_Rela *sec_relocs;
7648 const Elf_Internal_Rela *r, *rend;
7649
7650 /* We can ignore stub sections when looking for relocs. */
7651 if ((o->flags & SEC_RELOC) == 0
7652 || o->reloc_count == 0
7653 || section_allows_mips16_refs_p (o))
7654 continue;
7655
7656 sec_relocs
7657 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7658 info->keep_memory);
7659 if (sec_relocs == NULL)
7660 return FALSE;
7661
7662 rend = sec_relocs + o->reloc_count;
7663 for (r = sec_relocs; r < rend; r++)
7664 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7665 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7666 break;
7667
7668 if (elf_section_data (o)->relocs != sec_relocs)
7669 free (sec_relocs);
7670
7671 if (r < rend)
7672 break;
7673 }
7674
7675 if (o == NULL)
7676 {
7677 /* There is no non-call reloc for this stub, so we do
7678 not need it. Since this function is called before
7679 the linker maps input sections to output sections, we
7680 can easily discard it by setting the SEC_EXCLUDE
7681 flag. */
7682 sec->flags |= SEC_EXCLUDE;
7683 return TRUE;
7684 }
7685
7686 /* Record this stub in an array of local symbol call_stubs for
7687 this BFD. */
7688 if (elf_tdata (abfd)->local_call_stubs == NULL)
7689 {
7690 unsigned long symcount;
7691 asection **n;
7692 bfd_size_type amt;
7693
7694 if (elf_bad_symtab (abfd))
7695 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7696 else
7697 symcount = symtab_hdr->sh_info;
7698 amt = symcount * sizeof (asection *);
7699 n = bfd_zalloc (abfd, amt);
7700 if (n == NULL)
7701 return FALSE;
7702 elf_tdata (abfd)->local_call_stubs = n;
7703 }
7704
7705 sec->flags |= SEC_KEEP;
7706 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7707
7708 /* We don't need to set mips16_stubs_seen in this case.
7709 That flag is used to see whether we need to look through
7710 the global symbol table for stubs. We don't need to set
7711 it here, because we just have a local stub. */
7712 }
7713 else
7714 {
7715 h = ((struct mips_elf_link_hash_entry *)
7716 sym_hashes[r_symndx - extsymoff]);
7717
7718 /* H is the symbol this stub is for. */
7719
7720 if (CALL_FP_STUB_P (name))
7721 loc = &h->call_fp_stub;
7722 else
7723 loc = &h->call_stub;
7724
7725 /* If we already have an appropriate stub for this function, we
7726 don't need another one, so we can discard this one. Since
7727 this function is called before the linker maps input sections
7728 to output sections, we can easily discard it by setting the
7729 SEC_EXCLUDE flag. */
7730 if (*loc != NULL)
7731 {
7732 sec->flags |= SEC_EXCLUDE;
7733 return TRUE;
7734 }
7735
7736 sec->flags |= SEC_KEEP;
7737 *loc = sec;
7738 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7739 }
7740 }
7741
7742 sreloc = NULL;
7743 contents = NULL;
7744 for (rel = relocs; rel < rel_end; ++rel)
7745 {
7746 unsigned long r_symndx;
7747 unsigned int r_type;
7748 struct elf_link_hash_entry *h;
7749 bfd_boolean can_make_dynamic_p;
7750
7751 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7752 r_type = ELF_R_TYPE (abfd, rel->r_info);
7753
7754 if (r_symndx < extsymoff)
7755 h = NULL;
7756 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7757 {
7758 (*_bfd_error_handler)
7759 (_("%B: Malformed reloc detected for section %s"),
7760 abfd, name);
7761 bfd_set_error (bfd_error_bad_value);
7762 return FALSE;
7763 }
7764 else
7765 {
7766 h = sym_hashes[r_symndx - extsymoff];
7767 while (h != NULL
7768 && (h->root.type == bfd_link_hash_indirect
7769 || h->root.type == bfd_link_hash_warning))
7770 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7771 }
7772
7773 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7774 relocation into a dynamic one. */
7775 can_make_dynamic_p = FALSE;
7776 switch (r_type)
7777 {
7778 case R_MIPS16_GOT16:
7779 case R_MIPS16_CALL16:
7780 case R_MIPS_GOT16:
7781 case R_MIPS_CALL16:
7782 case R_MIPS_CALL_HI16:
7783 case R_MIPS_CALL_LO16:
7784 case R_MIPS_GOT_HI16:
7785 case R_MIPS_GOT_LO16:
7786 case R_MIPS_GOT_PAGE:
7787 case R_MIPS_GOT_OFST:
7788 case R_MIPS_GOT_DISP:
7789 case R_MIPS_TLS_GOTTPREL:
7790 case R_MIPS_TLS_GD:
7791 case R_MIPS_TLS_LDM:
7792 case R_MICROMIPS_GOT16:
7793 case R_MICROMIPS_CALL16:
7794 case R_MICROMIPS_CALL_HI16:
7795 case R_MICROMIPS_CALL_LO16:
7796 case R_MICROMIPS_GOT_HI16:
7797 case R_MICROMIPS_GOT_LO16:
7798 case R_MICROMIPS_GOT_PAGE:
7799 case R_MICROMIPS_GOT_OFST:
7800 case R_MICROMIPS_GOT_DISP:
7801 case R_MICROMIPS_TLS_GOTTPREL:
7802 case R_MICROMIPS_TLS_GD:
7803 case R_MICROMIPS_TLS_LDM:
7804 if (dynobj == NULL)
7805 elf_hash_table (info)->dynobj = dynobj = abfd;
7806 if (!mips_elf_create_got_section (dynobj, info))
7807 return FALSE;
7808 if (htab->is_vxworks && !info->shared)
7809 {
7810 (*_bfd_error_handler)
7811 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7812 abfd, (unsigned long) rel->r_offset);
7813 bfd_set_error (bfd_error_bad_value);
7814 return FALSE;
7815 }
7816 break;
7817
7818 /* This is just a hint; it can safely be ignored. Don't set
7819 has_static_relocs for the corresponding symbol. */
7820 case R_MIPS_JALR:
7821 case R_MICROMIPS_JALR:
7822 break;
7823
7824 case R_MIPS_32:
7825 case R_MIPS_REL32:
7826 case R_MIPS_64:
7827 /* In VxWorks executables, references to external symbols
7828 must be handled using copy relocs or PLT entries; it is not
7829 possible to convert this relocation into a dynamic one.
7830
7831 For executables that use PLTs and copy-relocs, we have a
7832 choice between converting the relocation into a dynamic
7833 one or using copy relocations or PLT entries. It is
7834 usually better to do the former, unless the relocation is
7835 against a read-only section. */
7836 if ((info->shared
7837 || (h != NULL
7838 && !htab->is_vxworks
7839 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7840 && !(!info->nocopyreloc
7841 && !PIC_OBJECT_P (abfd)
7842 && MIPS_ELF_READONLY_SECTION (sec))))
7843 && (sec->flags & SEC_ALLOC) != 0)
7844 {
7845 can_make_dynamic_p = TRUE;
7846 if (dynobj == NULL)
7847 elf_hash_table (info)->dynobj = dynobj = abfd;
7848 break;
7849 }
7850 /* For sections that are not SEC_ALLOC a copy reloc would be
7851 output if possible (implying questionable semantics for
7852 read-only data objects) or otherwise the final link would
7853 fail as ld.so will not process them and could not therefore
7854 handle any outstanding dynamic relocations.
7855
7856 For such sections that are also SEC_DEBUGGING, we can avoid
7857 these problems by simply ignoring any relocs as these
7858 sections have a predefined use and we know it is safe to do
7859 so.
7860
7861 This is needed in cases such as a global symbol definition
7862 in a shared library causing a common symbol from an object
7863 file to be converted to an undefined reference. If that
7864 happens, then all the relocations against this symbol from
7865 SEC_DEBUGGING sections in the object file will resolve to
7866 nil. */
7867 if ((sec->flags & SEC_DEBUGGING) != 0)
7868 break;
7869 /* Fall through. */
7870
7871 default:
7872 /* Most static relocations require pointer equality, except
7873 for branches. */
7874 if (h)
7875 h->pointer_equality_needed = TRUE;
7876 /* Fall through. */
7877
7878 case R_MIPS_26:
7879 case R_MIPS_PC16:
7880 case R_MIPS16_26:
7881 case R_MICROMIPS_26_S1:
7882 case R_MICROMIPS_PC7_S1:
7883 case R_MICROMIPS_PC10_S1:
7884 case R_MICROMIPS_PC16_S1:
7885 case R_MICROMIPS_PC23_S2:
7886 if (h)
7887 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7888 break;
7889 }
7890
7891 if (h)
7892 {
7893 /* Relocations against the special VxWorks __GOTT_BASE__ and
7894 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7895 room for them in .rela.dyn. */
7896 if (is_gott_symbol (info, h))
7897 {
7898 if (sreloc == NULL)
7899 {
7900 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7901 if (sreloc == NULL)
7902 return FALSE;
7903 }
7904 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7905 if (MIPS_ELF_READONLY_SECTION (sec))
7906 /* We tell the dynamic linker that there are
7907 relocations against the text segment. */
7908 info->flags |= DF_TEXTREL;
7909 }
7910 }
7911 else if (call_lo16_reloc_p (r_type)
7912 || got_lo16_reloc_p (r_type)
7913 || got_disp_reloc_p (r_type)
7914 || (got16_reloc_p (r_type) && htab->is_vxworks))
7915 {
7916 /* We may need a local GOT entry for this relocation. We
7917 don't count R_MIPS_GOT_PAGE because we can estimate the
7918 maximum number of pages needed by looking at the size of
7919 the segment. Similar comments apply to R_MIPS*_GOT16 and
7920 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7921 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7922 R_MIPS_CALL_HI16 because these are always followed by an
7923 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7924 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7925 rel->r_addend, info, 0))
7926 return FALSE;
7927 }
7928
7929 if (h != NULL && mips_elf_relocation_needs_la25_stub (abfd, r_type))
7930 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7931
7932 switch (r_type)
7933 {
7934 case R_MIPS_CALL16:
7935 case R_MIPS16_CALL16:
7936 case R_MICROMIPS_CALL16:
7937 if (h == NULL)
7938 {
7939 (*_bfd_error_handler)
7940 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7941 abfd, (unsigned long) rel->r_offset);
7942 bfd_set_error (bfd_error_bad_value);
7943 return FALSE;
7944 }
7945 /* Fall through. */
7946
7947 case R_MIPS_CALL_HI16:
7948 case R_MIPS_CALL_LO16:
7949 case R_MICROMIPS_CALL_HI16:
7950 case R_MICROMIPS_CALL_LO16:
7951 if (h != NULL)
7952 {
7953 /* Make sure there is room in the regular GOT to hold the
7954 function's address. We may eliminate it in favour of
7955 a .got.plt entry later; see mips_elf_count_got_symbols. */
7956 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
7957 return FALSE;
7958
7959 /* We need a stub, not a plt entry for the undefined
7960 function. But we record it as if it needs plt. See
7961 _bfd_elf_adjust_dynamic_symbol. */
7962 h->needs_plt = 1;
7963 h->type = STT_FUNC;
7964 }
7965 break;
7966
7967 case R_MIPS_GOT_PAGE:
7968 case R_MICROMIPS_GOT_PAGE:
7969 /* If this is a global, overridable symbol, GOT_PAGE will
7970 decay to GOT_DISP, so we'll need a GOT entry for it. */
7971 if (h)
7972 {
7973 struct mips_elf_link_hash_entry *hmips =
7974 (struct mips_elf_link_hash_entry *) h;
7975
7976 /* This symbol is definitely not overridable. */
7977 if (hmips->root.def_regular
7978 && ! (info->shared && ! info->symbolic
7979 && ! hmips->root.forced_local))
7980 h = NULL;
7981 }
7982 /* Fall through. */
7983
7984 case R_MIPS16_GOT16:
7985 case R_MIPS_GOT16:
7986 case R_MIPS_GOT_HI16:
7987 case R_MIPS_GOT_LO16:
7988 case R_MICROMIPS_GOT16:
7989 case R_MICROMIPS_GOT_HI16:
7990 case R_MICROMIPS_GOT_LO16:
7991 if (!h || got_page_reloc_p (r_type))
7992 {
7993 /* This relocation needs (or may need, if h != NULL) a
7994 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7995 know for sure until we know whether the symbol is
7996 preemptible. */
7997 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
7998 {
7999 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8000 return FALSE;
8001 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8002 addend = mips_elf_read_rel_addend (abfd, rel,
8003 howto, contents);
8004 if (got16_reloc_p (r_type))
8005 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8006 contents, &addend);
8007 else
8008 addend <<= howto->rightshift;
8009 }
8010 else
8011 addend = rel->r_addend;
8012 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
8013 addend))
8014 return FALSE;
8015 }
8016 /* Fall through. */
8017
8018 case R_MIPS_GOT_DISP:
8019 case R_MICROMIPS_GOT_DISP:
8020 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8021 FALSE, 0))
8022 return FALSE;
8023 break;
8024
8025 case R_MIPS_TLS_GOTTPREL:
8026 case R_MICROMIPS_TLS_GOTTPREL:
8027 if (info->shared)
8028 info->flags |= DF_STATIC_TLS;
8029 /* Fall through */
8030
8031 case R_MIPS_TLS_LDM:
8032 case R_MICROMIPS_TLS_LDM:
8033 if (tls_ldm_reloc_p (r_type))
8034 {
8035 r_symndx = STN_UNDEF;
8036 h = NULL;
8037 }
8038 /* Fall through */
8039
8040 case R_MIPS_TLS_GD:
8041 case R_MICROMIPS_TLS_GD:
8042 /* This symbol requires a global offset table entry, or two
8043 for TLS GD relocations. */
8044 {
8045 unsigned char flag;
8046
8047 flag = (tls_gd_reloc_p (r_type)
8048 ? GOT_TLS_GD
8049 : tls_ldm_reloc_p (r_type) ? GOT_TLS_LDM : GOT_TLS_IE);
8050 if (h != NULL)
8051 {
8052 struct mips_elf_link_hash_entry *hmips =
8053 (struct mips_elf_link_hash_entry *) h;
8054 hmips->tls_type |= flag;
8055
8056 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8057 FALSE, flag))
8058 return FALSE;
8059 }
8060 else
8061 {
8062 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
8063
8064 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8065 rel->r_addend,
8066 info, flag))
8067 return FALSE;
8068 }
8069 }
8070 break;
8071
8072 case R_MIPS_32:
8073 case R_MIPS_REL32:
8074 case R_MIPS_64:
8075 /* In VxWorks executables, references to external symbols
8076 are handled using copy relocs or PLT stubs, so there's
8077 no need to add a .rela.dyn entry for this relocation. */
8078 if (can_make_dynamic_p)
8079 {
8080 if (sreloc == NULL)
8081 {
8082 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8083 if (sreloc == NULL)
8084 return FALSE;
8085 }
8086 if (info->shared && h == NULL)
8087 {
8088 /* When creating a shared object, we must copy these
8089 reloc types into the output file as R_MIPS_REL32
8090 relocs. Make room for this reloc in .rel(a).dyn. */
8091 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8092 if (MIPS_ELF_READONLY_SECTION (sec))
8093 /* We tell the dynamic linker that there are
8094 relocations against the text segment. */
8095 info->flags |= DF_TEXTREL;
8096 }
8097 else
8098 {
8099 struct mips_elf_link_hash_entry *hmips;
8100
8101 /* For a shared object, we must copy this relocation
8102 unless the symbol turns out to be undefined and
8103 weak with non-default visibility, in which case
8104 it will be left as zero.
8105
8106 We could elide R_MIPS_REL32 for locally binding symbols
8107 in shared libraries, but do not yet do so.
8108
8109 For an executable, we only need to copy this
8110 reloc if the symbol is defined in a dynamic
8111 object. */
8112 hmips = (struct mips_elf_link_hash_entry *) h;
8113 ++hmips->possibly_dynamic_relocs;
8114 if (MIPS_ELF_READONLY_SECTION (sec))
8115 /* We need it to tell the dynamic linker if there
8116 are relocations against the text segment. */
8117 hmips->readonly_reloc = TRUE;
8118 }
8119 }
8120
8121 if (SGI_COMPAT (abfd))
8122 mips_elf_hash_table (info)->compact_rel_size +=
8123 sizeof (Elf32_External_crinfo);
8124 break;
8125
8126 case R_MIPS_26:
8127 case R_MIPS_GPREL16:
8128 case R_MIPS_LITERAL:
8129 case R_MIPS_GPREL32:
8130 case R_MICROMIPS_26_S1:
8131 case R_MICROMIPS_GPREL16:
8132 case R_MICROMIPS_LITERAL:
8133 case R_MICROMIPS_GPREL7_S2:
8134 if (SGI_COMPAT (abfd))
8135 mips_elf_hash_table (info)->compact_rel_size +=
8136 sizeof (Elf32_External_crinfo);
8137 break;
8138
8139 /* This relocation describes the C++ object vtable hierarchy.
8140 Reconstruct it for later use during GC. */
8141 case R_MIPS_GNU_VTINHERIT:
8142 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8143 return FALSE;
8144 break;
8145
8146 /* This relocation describes which C++ vtable entries are actually
8147 used. Record for later use during GC. */
8148 case R_MIPS_GNU_VTENTRY:
8149 BFD_ASSERT (h != NULL);
8150 if (h != NULL
8151 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8152 return FALSE;
8153 break;
8154
8155 default:
8156 break;
8157 }
8158
8159 /* We must not create a stub for a symbol that has relocations
8160 related to taking the function's address. This doesn't apply to
8161 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8162 a normal .got entry. */
8163 if (!htab->is_vxworks && h != NULL)
8164 switch (r_type)
8165 {
8166 default:
8167 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8168 break;
8169 case R_MIPS16_CALL16:
8170 case R_MIPS_CALL16:
8171 case R_MIPS_CALL_HI16:
8172 case R_MIPS_CALL_LO16:
8173 case R_MIPS_JALR:
8174 case R_MICROMIPS_CALL16:
8175 case R_MICROMIPS_CALL_HI16:
8176 case R_MICROMIPS_CALL_LO16:
8177 case R_MICROMIPS_JALR:
8178 break;
8179 }
8180
8181 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8182 if there is one. We only need to handle global symbols here;
8183 we decide whether to keep or delete stubs for local symbols
8184 when processing the stub's relocations. */
8185 if (h != NULL
8186 && !mips16_call_reloc_p (r_type)
8187 && !section_allows_mips16_refs_p (sec))
8188 {
8189 struct mips_elf_link_hash_entry *mh;
8190
8191 mh = (struct mips_elf_link_hash_entry *) h;
8192 mh->need_fn_stub = TRUE;
8193 }
8194
8195 /* Refuse some position-dependent relocations when creating a
8196 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8197 not PIC, but we can create dynamic relocations and the result
8198 will be fine. Also do not refuse R_MIPS_LO16, which can be
8199 combined with R_MIPS_GOT16. */
8200 if (info->shared)
8201 {
8202 switch (r_type)
8203 {
8204 case R_MIPS16_HI16:
8205 case R_MIPS_HI16:
8206 case R_MIPS_HIGHER:
8207 case R_MIPS_HIGHEST:
8208 case R_MICROMIPS_HI16:
8209 case R_MICROMIPS_HIGHER:
8210 case R_MICROMIPS_HIGHEST:
8211 /* Don't refuse a high part relocation if it's against
8212 no symbol (e.g. part of a compound relocation). */
8213 if (r_symndx == STN_UNDEF)
8214 break;
8215
8216 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8217 and has a special meaning. */
8218 if (!NEWABI_P (abfd) && h != NULL
8219 && strcmp (h->root.root.string, "_gp_disp") == 0)
8220 break;
8221
8222 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8223 if (is_gott_symbol (info, h))
8224 break;
8225
8226 /* FALLTHROUGH */
8227
8228 case R_MIPS16_26:
8229 case R_MIPS_26:
8230 case R_MICROMIPS_26_S1:
8231 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8232 (*_bfd_error_handler)
8233 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8234 abfd, howto->name,
8235 (h) ? h->root.root.string : "a local symbol");
8236 bfd_set_error (bfd_error_bad_value);
8237 return FALSE;
8238 default:
8239 break;
8240 }
8241 }
8242 }
8243
8244 return TRUE;
8245 }
8246 \f
8247 bfd_boolean
8248 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8249 struct bfd_link_info *link_info,
8250 bfd_boolean *again)
8251 {
8252 Elf_Internal_Rela *internal_relocs;
8253 Elf_Internal_Rela *irel, *irelend;
8254 Elf_Internal_Shdr *symtab_hdr;
8255 bfd_byte *contents = NULL;
8256 size_t extsymoff;
8257 bfd_boolean changed_contents = FALSE;
8258 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8259 Elf_Internal_Sym *isymbuf = NULL;
8260
8261 /* We are not currently changing any sizes, so only one pass. */
8262 *again = FALSE;
8263
8264 if (link_info->relocatable)
8265 return TRUE;
8266
8267 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8268 link_info->keep_memory);
8269 if (internal_relocs == NULL)
8270 return TRUE;
8271
8272 irelend = internal_relocs + sec->reloc_count
8273 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8274 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8275 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8276
8277 for (irel = internal_relocs; irel < irelend; irel++)
8278 {
8279 bfd_vma symval;
8280 bfd_signed_vma sym_offset;
8281 unsigned int r_type;
8282 unsigned long r_symndx;
8283 asection *sym_sec;
8284 unsigned long instruction;
8285
8286 /* Turn jalr into bgezal, and jr into beq, if they're marked
8287 with a JALR relocation, that indicate where they jump to.
8288 This saves some pipeline bubbles. */
8289 r_type = ELF_R_TYPE (abfd, irel->r_info);
8290 if (r_type != R_MIPS_JALR)
8291 continue;
8292
8293 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8294 /* Compute the address of the jump target. */
8295 if (r_symndx >= extsymoff)
8296 {
8297 struct mips_elf_link_hash_entry *h
8298 = ((struct mips_elf_link_hash_entry *)
8299 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8300
8301 while (h->root.root.type == bfd_link_hash_indirect
8302 || h->root.root.type == bfd_link_hash_warning)
8303 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8304
8305 /* If a symbol is undefined, or if it may be overridden,
8306 skip it. */
8307 if (! ((h->root.root.type == bfd_link_hash_defined
8308 || h->root.root.type == bfd_link_hash_defweak)
8309 && h->root.root.u.def.section)
8310 || (link_info->shared && ! link_info->symbolic
8311 && !h->root.forced_local))
8312 continue;
8313
8314 sym_sec = h->root.root.u.def.section;
8315 if (sym_sec->output_section)
8316 symval = (h->root.root.u.def.value
8317 + sym_sec->output_section->vma
8318 + sym_sec->output_offset);
8319 else
8320 symval = h->root.root.u.def.value;
8321 }
8322 else
8323 {
8324 Elf_Internal_Sym *isym;
8325
8326 /* Read this BFD's symbols if we haven't done so already. */
8327 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8328 {
8329 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8330 if (isymbuf == NULL)
8331 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8332 symtab_hdr->sh_info, 0,
8333 NULL, NULL, NULL);
8334 if (isymbuf == NULL)
8335 goto relax_return;
8336 }
8337
8338 isym = isymbuf + r_symndx;
8339 if (isym->st_shndx == SHN_UNDEF)
8340 continue;
8341 else if (isym->st_shndx == SHN_ABS)
8342 sym_sec = bfd_abs_section_ptr;
8343 else if (isym->st_shndx == SHN_COMMON)
8344 sym_sec = bfd_com_section_ptr;
8345 else
8346 sym_sec
8347 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8348 symval = isym->st_value
8349 + sym_sec->output_section->vma
8350 + sym_sec->output_offset;
8351 }
8352
8353 /* Compute branch offset, from delay slot of the jump to the
8354 branch target. */
8355 sym_offset = (symval + irel->r_addend)
8356 - (sec_start + irel->r_offset + 4);
8357
8358 /* Branch offset must be properly aligned. */
8359 if ((sym_offset & 3) != 0)
8360 continue;
8361
8362 sym_offset >>= 2;
8363
8364 /* Check that it's in range. */
8365 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8366 continue;
8367
8368 /* Get the section contents if we haven't done so already. */
8369 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8370 goto relax_return;
8371
8372 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8373
8374 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8375 if ((instruction & 0xfc1fffff) == 0x0000f809)
8376 instruction = 0x04110000;
8377 /* If it was jr <reg>, turn it into b <target>. */
8378 else if ((instruction & 0xfc1fffff) == 0x00000008)
8379 instruction = 0x10000000;
8380 else
8381 continue;
8382
8383 instruction |= (sym_offset & 0xffff);
8384 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8385 changed_contents = TRUE;
8386 }
8387
8388 if (contents != NULL
8389 && elf_section_data (sec)->this_hdr.contents != contents)
8390 {
8391 if (!changed_contents && !link_info->keep_memory)
8392 free (contents);
8393 else
8394 {
8395 /* Cache the section contents for elf_link_input_bfd. */
8396 elf_section_data (sec)->this_hdr.contents = contents;
8397 }
8398 }
8399 return TRUE;
8400
8401 relax_return:
8402 if (contents != NULL
8403 && elf_section_data (sec)->this_hdr.contents != contents)
8404 free (contents);
8405 return FALSE;
8406 }
8407 \f
8408 /* Allocate space for global sym dynamic relocs. */
8409
8410 static bfd_boolean
8411 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8412 {
8413 struct bfd_link_info *info = inf;
8414 bfd *dynobj;
8415 struct mips_elf_link_hash_entry *hmips;
8416 struct mips_elf_link_hash_table *htab;
8417
8418 htab = mips_elf_hash_table (info);
8419 BFD_ASSERT (htab != NULL);
8420
8421 dynobj = elf_hash_table (info)->dynobj;
8422 hmips = (struct mips_elf_link_hash_entry *) h;
8423
8424 /* VxWorks executables are handled elsewhere; we only need to
8425 allocate relocations in shared objects. */
8426 if (htab->is_vxworks && !info->shared)
8427 return TRUE;
8428
8429 /* Ignore indirect symbols. All relocations against such symbols
8430 will be redirected to the target symbol. */
8431 if (h->root.type == bfd_link_hash_indirect)
8432 return TRUE;
8433
8434 /* If this symbol is defined in a dynamic object, or we are creating
8435 a shared library, we will need to copy any R_MIPS_32 or
8436 R_MIPS_REL32 relocs against it into the output file. */
8437 if (! info->relocatable
8438 && hmips->possibly_dynamic_relocs != 0
8439 && (h->root.type == bfd_link_hash_defweak
8440 || !h->def_regular
8441 || info->shared))
8442 {
8443 bfd_boolean do_copy = TRUE;
8444
8445 if (h->root.type == bfd_link_hash_undefweak)
8446 {
8447 /* Do not copy relocations for undefined weak symbols with
8448 non-default visibility. */
8449 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8450 do_copy = FALSE;
8451
8452 /* Make sure undefined weak symbols are output as a dynamic
8453 symbol in PIEs. */
8454 else if (h->dynindx == -1 && !h->forced_local)
8455 {
8456 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8457 return FALSE;
8458 }
8459 }
8460
8461 if (do_copy)
8462 {
8463 /* Even though we don't directly need a GOT entry for this symbol,
8464 the SVR4 psABI requires it to have a dynamic symbol table
8465 index greater that DT_MIPS_GOTSYM if there are dynamic
8466 relocations against it.
8467
8468 VxWorks does not enforce the same mapping between the GOT
8469 and the symbol table, so the same requirement does not
8470 apply there. */
8471 if (!htab->is_vxworks)
8472 {
8473 if (hmips->global_got_area > GGA_RELOC_ONLY)
8474 hmips->global_got_area = GGA_RELOC_ONLY;
8475 hmips->got_only_for_calls = FALSE;
8476 }
8477
8478 mips_elf_allocate_dynamic_relocations
8479 (dynobj, info, hmips->possibly_dynamic_relocs);
8480 if (hmips->readonly_reloc)
8481 /* We tell the dynamic linker that there are relocations
8482 against the text segment. */
8483 info->flags |= DF_TEXTREL;
8484 }
8485 }
8486
8487 return TRUE;
8488 }
8489
8490 /* Adjust a symbol defined by a dynamic object and referenced by a
8491 regular object. The current definition is in some section of the
8492 dynamic object, but we're not including those sections. We have to
8493 change the definition to something the rest of the link can
8494 understand. */
8495
8496 bfd_boolean
8497 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8498 struct elf_link_hash_entry *h)
8499 {
8500 bfd *dynobj;
8501 struct mips_elf_link_hash_entry *hmips;
8502 struct mips_elf_link_hash_table *htab;
8503
8504 htab = mips_elf_hash_table (info);
8505 BFD_ASSERT (htab != NULL);
8506
8507 dynobj = elf_hash_table (info)->dynobj;
8508 hmips = (struct mips_elf_link_hash_entry *) h;
8509
8510 /* Make sure we know what is going on here. */
8511 BFD_ASSERT (dynobj != NULL
8512 && (h->needs_plt
8513 || h->u.weakdef != NULL
8514 || (h->def_dynamic
8515 && h->ref_regular
8516 && !h->def_regular)));
8517
8518 hmips = (struct mips_elf_link_hash_entry *) h;
8519
8520 /* If there are call relocations against an externally-defined symbol,
8521 see whether we can create a MIPS lazy-binding stub for it. We can
8522 only do this if all references to the function are through call
8523 relocations, and in that case, the traditional lazy-binding stubs
8524 are much more efficient than PLT entries.
8525
8526 Traditional stubs are only available on SVR4 psABI-based systems;
8527 VxWorks always uses PLTs instead. */
8528 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8529 {
8530 if (! elf_hash_table (info)->dynamic_sections_created)
8531 return TRUE;
8532
8533 /* If this symbol is not defined in a regular file, then set
8534 the symbol to the stub location. This is required to make
8535 function pointers compare as equal between the normal
8536 executable and the shared library. */
8537 if (!h->def_regular)
8538 {
8539 hmips->needs_lazy_stub = TRUE;
8540 htab->lazy_stub_count++;
8541 return TRUE;
8542 }
8543 }
8544 /* As above, VxWorks requires PLT entries for externally-defined
8545 functions that are only accessed through call relocations.
8546
8547 Both VxWorks and non-VxWorks targets also need PLT entries if there
8548 are static-only relocations against an externally-defined function.
8549 This can technically occur for shared libraries if there are
8550 branches to the symbol, although it is unlikely that this will be
8551 used in practice due to the short ranges involved. It can occur
8552 for any relative or absolute relocation in executables; in that
8553 case, the PLT entry becomes the function's canonical address. */
8554 else if (((h->needs_plt && !hmips->no_fn_stub)
8555 || (h->type == STT_FUNC && hmips->has_static_relocs))
8556 && htab->use_plts_and_copy_relocs
8557 && !SYMBOL_CALLS_LOCAL (info, h)
8558 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8559 && h->root.type == bfd_link_hash_undefweak))
8560 {
8561 /* If this is the first symbol to need a PLT entry, allocate room
8562 for the header. */
8563 if (htab->splt->size == 0)
8564 {
8565 BFD_ASSERT (htab->sgotplt->size == 0);
8566
8567 /* If we're using the PLT additions to the psABI, each PLT
8568 entry is 16 bytes and the PLT0 entry is 32 bytes.
8569 Encourage better cache usage by aligning. We do this
8570 lazily to avoid pessimizing traditional objects. */
8571 if (!htab->is_vxworks
8572 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8573 return FALSE;
8574
8575 /* Make sure that .got.plt is word-aligned. We do this lazily
8576 for the same reason as above. */
8577 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8578 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8579 return FALSE;
8580
8581 htab->splt->size += htab->plt_header_size;
8582
8583 /* On non-VxWorks targets, the first two entries in .got.plt
8584 are reserved. */
8585 if (!htab->is_vxworks)
8586 htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj);
8587
8588 /* On VxWorks, also allocate room for the header's
8589 .rela.plt.unloaded entries. */
8590 if (htab->is_vxworks && !info->shared)
8591 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8592 }
8593
8594 /* Assign the next .plt entry to this symbol. */
8595 h->plt.offset = htab->splt->size;
8596 htab->splt->size += htab->plt_entry_size;
8597
8598 /* If the output file has no definition of the symbol, set the
8599 symbol's value to the address of the stub. */
8600 if (!info->shared && !h->def_regular)
8601 {
8602 h->root.u.def.section = htab->splt;
8603 h->root.u.def.value = h->plt.offset;
8604 /* For VxWorks, point at the PLT load stub rather than the
8605 lazy resolution stub; this stub will become the canonical
8606 function address. */
8607 if (htab->is_vxworks)
8608 h->root.u.def.value += 8;
8609 }
8610
8611 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8612 relocation. */
8613 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8614 htab->srelplt->size += (htab->is_vxworks
8615 ? MIPS_ELF_RELA_SIZE (dynobj)
8616 : MIPS_ELF_REL_SIZE (dynobj));
8617
8618 /* Make room for the .rela.plt.unloaded relocations. */
8619 if (htab->is_vxworks && !info->shared)
8620 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8621
8622 /* All relocations against this symbol that could have been made
8623 dynamic will now refer to the PLT entry instead. */
8624 hmips->possibly_dynamic_relocs = 0;
8625
8626 return TRUE;
8627 }
8628
8629 /* If this is a weak symbol, and there is a real definition, the
8630 processor independent code will have arranged for us to see the
8631 real definition first, and we can just use the same value. */
8632 if (h->u.weakdef != NULL)
8633 {
8634 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8635 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8636 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8637 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8638 return TRUE;
8639 }
8640
8641 /* Otherwise, there is nothing further to do for symbols defined
8642 in regular objects. */
8643 if (h->def_regular)
8644 return TRUE;
8645
8646 /* There's also nothing more to do if we'll convert all relocations
8647 against this symbol into dynamic relocations. */
8648 if (!hmips->has_static_relocs)
8649 return TRUE;
8650
8651 /* We're now relying on copy relocations. Complain if we have
8652 some that we can't convert. */
8653 if (!htab->use_plts_and_copy_relocs || info->shared)
8654 {
8655 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8656 "dynamic symbol %s"),
8657 h->root.root.string);
8658 bfd_set_error (bfd_error_bad_value);
8659 return FALSE;
8660 }
8661
8662 /* We must allocate the symbol in our .dynbss section, which will
8663 become part of the .bss section of the executable. There will be
8664 an entry for this symbol in the .dynsym section. The dynamic
8665 object will contain position independent code, so all references
8666 from the dynamic object to this symbol will go through the global
8667 offset table. The dynamic linker will use the .dynsym entry to
8668 determine the address it must put in the global offset table, so
8669 both the dynamic object and the regular object will refer to the
8670 same memory location for the variable. */
8671
8672 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8673 {
8674 if (htab->is_vxworks)
8675 htab->srelbss->size += sizeof (Elf32_External_Rela);
8676 else
8677 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8678 h->needs_copy = 1;
8679 }
8680
8681 /* All relocations against this symbol that could have been made
8682 dynamic will now refer to the local copy instead. */
8683 hmips->possibly_dynamic_relocs = 0;
8684
8685 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8686 }
8687 \f
8688 /* This function is called after all the input files have been read,
8689 and the input sections have been assigned to output sections. We
8690 check for any mips16 stub sections that we can discard. */
8691
8692 bfd_boolean
8693 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8694 struct bfd_link_info *info)
8695 {
8696 asection *ri;
8697 struct mips_elf_link_hash_table *htab;
8698 struct mips_htab_traverse_info hti;
8699
8700 htab = mips_elf_hash_table (info);
8701 BFD_ASSERT (htab != NULL);
8702
8703 /* The .reginfo section has a fixed size. */
8704 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8705 if (ri != NULL)
8706 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8707
8708 hti.info = info;
8709 hti.output_bfd = output_bfd;
8710 hti.error = FALSE;
8711 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8712 mips_elf_check_symbols, &hti);
8713 if (hti.error)
8714 return FALSE;
8715
8716 return TRUE;
8717 }
8718
8719 /* If the link uses a GOT, lay it out and work out its size. */
8720
8721 static bfd_boolean
8722 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8723 {
8724 bfd *dynobj;
8725 asection *s;
8726 struct mips_got_info *g;
8727 bfd_size_type loadable_size = 0;
8728 bfd_size_type page_gotno;
8729 bfd *sub;
8730 struct mips_elf_count_tls_arg count_tls_arg;
8731 struct mips_elf_link_hash_table *htab;
8732
8733 htab = mips_elf_hash_table (info);
8734 BFD_ASSERT (htab != NULL);
8735
8736 s = htab->sgot;
8737 if (s == NULL)
8738 return TRUE;
8739
8740 dynobj = elf_hash_table (info)->dynobj;
8741 g = htab->got_info;
8742
8743 /* Allocate room for the reserved entries. VxWorks always reserves
8744 3 entries; other objects only reserve 2 entries. */
8745 BFD_ASSERT (g->assigned_gotno == 0);
8746 if (htab->is_vxworks)
8747 htab->reserved_gotno = 3;
8748 else
8749 htab->reserved_gotno = 2;
8750 g->local_gotno += htab->reserved_gotno;
8751 g->assigned_gotno = htab->reserved_gotno;
8752
8753 /* Replace entries for indirect and warning symbols with entries for
8754 the target symbol. */
8755 if (!mips_elf_resolve_final_got_entries (g))
8756 return FALSE;
8757
8758 /* Count the number of GOT symbols. */
8759 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8760
8761 /* Calculate the total loadable size of the output. That
8762 will give us the maximum number of GOT_PAGE entries
8763 required. */
8764 for (sub = info->input_bfds; sub; sub = sub->link_next)
8765 {
8766 asection *subsection;
8767
8768 for (subsection = sub->sections;
8769 subsection;
8770 subsection = subsection->next)
8771 {
8772 if ((subsection->flags & SEC_ALLOC) == 0)
8773 continue;
8774 loadable_size += ((subsection->size + 0xf)
8775 &~ (bfd_size_type) 0xf);
8776 }
8777 }
8778
8779 if (htab->is_vxworks)
8780 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8781 relocations against local symbols evaluate to "G", and the EABI does
8782 not include R_MIPS_GOT_PAGE. */
8783 page_gotno = 0;
8784 else
8785 /* Assume there are two loadable segments consisting of contiguous
8786 sections. Is 5 enough? */
8787 page_gotno = (loadable_size >> 16) + 5;
8788
8789 /* Choose the smaller of the two estimates; both are intended to be
8790 conservative. */
8791 if (page_gotno > g->page_gotno)
8792 page_gotno = g->page_gotno;
8793
8794 g->local_gotno += page_gotno;
8795 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8796 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8797
8798 /* We need to calculate tls_gotno for global symbols at this point
8799 instead of building it up earlier, to avoid doublecounting
8800 entries for one global symbol from multiple input files. */
8801 count_tls_arg.info = info;
8802 count_tls_arg.needed = 0;
8803 elf_link_hash_traverse (elf_hash_table (info),
8804 mips_elf_count_global_tls_entries,
8805 &count_tls_arg);
8806 g->tls_gotno += count_tls_arg.needed;
8807 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8808
8809 /* VxWorks does not support multiple GOTs. It initializes $gp to
8810 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8811 dynamic loader. */
8812 if (htab->is_vxworks)
8813 {
8814 /* VxWorks executables do not need a GOT. */
8815 if (info->shared)
8816 {
8817 /* Each VxWorks GOT entry needs an explicit relocation. */
8818 unsigned int count;
8819
8820 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8821 if (count)
8822 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8823 }
8824 }
8825 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8826 {
8827 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8828 return FALSE;
8829 }
8830 else
8831 {
8832 struct mips_elf_count_tls_arg arg;
8833
8834 /* Set up TLS entries. */
8835 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8836 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8837
8838 /* Allocate room for the TLS relocations. */
8839 arg.info = info;
8840 arg.needed = 0;
8841 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8842 elf_link_hash_traverse (elf_hash_table (info),
8843 mips_elf_count_global_tls_relocs,
8844 &arg);
8845 if (arg.needed)
8846 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8847 }
8848
8849 return TRUE;
8850 }
8851
8852 /* Estimate the size of the .MIPS.stubs section. */
8853
8854 static void
8855 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8856 {
8857 struct mips_elf_link_hash_table *htab;
8858 bfd_size_type dynsymcount;
8859
8860 htab = mips_elf_hash_table (info);
8861 BFD_ASSERT (htab != NULL);
8862
8863 if (htab->lazy_stub_count == 0)
8864 return;
8865
8866 /* IRIX rld assumes that a function stub isn't at the end of the .text
8867 section, so add a dummy entry to the end. */
8868 htab->lazy_stub_count++;
8869
8870 /* Get a worst-case estimate of the number of dynamic symbols needed.
8871 At this point, dynsymcount does not account for section symbols
8872 and count_section_dynsyms may overestimate the number that will
8873 be needed. */
8874 dynsymcount = (elf_hash_table (info)->dynsymcount
8875 + count_section_dynsyms (output_bfd, info));
8876
8877 /* Determine the size of one stub entry. */
8878 htab->function_stub_size = (dynsymcount > 0x10000
8879 ? MIPS_FUNCTION_STUB_BIG_SIZE
8880 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8881
8882 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8883 }
8884
8885 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8886 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8887 allocate an entry in the stubs section. */
8888
8889 static bfd_boolean
8890 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8891 {
8892 struct mips_elf_link_hash_table *htab;
8893
8894 htab = (struct mips_elf_link_hash_table *) data;
8895 if (h->needs_lazy_stub)
8896 {
8897 h->root.root.u.def.section = htab->sstubs;
8898 h->root.root.u.def.value = htab->sstubs->size;
8899 h->root.plt.offset = htab->sstubs->size;
8900 htab->sstubs->size += htab->function_stub_size;
8901 }
8902 return TRUE;
8903 }
8904
8905 /* Allocate offsets in the stubs section to each symbol that needs one.
8906 Set the final size of the .MIPS.stub section. */
8907
8908 static void
8909 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8910 {
8911 struct mips_elf_link_hash_table *htab;
8912
8913 htab = mips_elf_hash_table (info);
8914 BFD_ASSERT (htab != NULL);
8915
8916 if (htab->lazy_stub_count == 0)
8917 return;
8918
8919 htab->sstubs->size = 0;
8920 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
8921 htab->sstubs->size += htab->function_stub_size;
8922 BFD_ASSERT (htab->sstubs->size
8923 == htab->lazy_stub_count * htab->function_stub_size);
8924 }
8925
8926 /* Set the sizes of the dynamic sections. */
8927
8928 bfd_boolean
8929 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8930 struct bfd_link_info *info)
8931 {
8932 bfd *dynobj;
8933 asection *s, *sreldyn;
8934 bfd_boolean reltext;
8935 struct mips_elf_link_hash_table *htab;
8936
8937 htab = mips_elf_hash_table (info);
8938 BFD_ASSERT (htab != NULL);
8939 dynobj = elf_hash_table (info)->dynobj;
8940 BFD_ASSERT (dynobj != NULL);
8941
8942 if (elf_hash_table (info)->dynamic_sections_created)
8943 {
8944 /* Set the contents of the .interp section to the interpreter. */
8945 if (info->executable)
8946 {
8947 s = bfd_get_section_by_name (dynobj, ".interp");
8948 BFD_ASSERT (s != NULL);
8949 s->size
8950 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8951 s->contents
8952 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8953 }
8954
8955 /* Create a symbol for the PLT, if we know that we are using it. */
8956 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8957 {
8958 struct elf_link_hash_entry *h;
8959
8960 BFD_ASSERT (htab->use_plts_and_copy_relocs);
8961
8962 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8963 "_PROCEDURE_LINKAGE_TABLE_");
8964 htab->root.hplt = h;
8965 if (h == NULL)
8966 return FALSE;
8967 h->type = STT_FUNC;
8968 }
8969 }
8970
8971 /* Allocate space for global sym dynamic relocs. */
8972 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
8973
8974 mips_elf_estimate_stub_size (output_bfd, info);
8975
8976 if (!mips_elf_lay_out_got (output_bfd, info))
8977 return FALSE;
8978
8979 mips_elf_lay_out_lazy_stubs (info);
8980
8981 /* The check_relocs and adjust_dynamic_symbol entry points have
8982 determined the sizes of the various dynamic sections. Allocate
8983 memory for them. */
8984 reltext = FALSE;
8985 for (s = dynobj->sections; s != NULL; s = s->next)
8986 {
8987 const char *name;
8988
8989 /* It's OK to base decisions on the section name, because none
8990 of the dynobj section names depend upon the input files. */
8991 name = bfd_get_section_name (dynobj, s);
8992
8993 if ((s->flags & SEC_LINKER_CREATED) == 0)
8994 continue;
8995
8996 if (CONST_STRNEQ (name, ".rel"))
8997 {
8998 if (s->size != 0)
8999 {
9000 const char *outname;
9001 asection *target;
9002
9003 /* If this relocation section applies to a read only
9004 section, then we probably need a DT_TEXTREL entry.
9005 If the relocation section is .rel(a).dyn, we always
9006 assert a DT_TEXTREL entry rather than testing whether
9007 there exists a relocation to a read only section or
9008 not. */
9009 outname = bfd_get_section_name (output_bfd,
9010 s->output_section);
9011 target = bfd_get_section_by_name (output_bfd, outname + 4);
9012 if ((target != NULL
9013 && (target->flags & SEC_READONLY) != 0
9014 && (target->flags & SEC_ALLOC) != 0)
9015 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9016 reltext = TRUE;
9017
9018 /* We use the reloc_count field as a counter if we need
9019 to copy relocs into the output file. */
9020 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9021 s->reloc_count = 0;
9022
9023 /* If combreloc is enabled, elf_link_sort_relocs() will
9024 sort relocations, but in a different way than we do,
9025 and before we're done creating relocations. Also, it
9026 will move them around between input sections'
9027 relocation's contents, so our sorting would be
9028 broken, so don't let it run. */
9029 info->combreloc = 0;
9030 }
9031 }
9032 else if (! info->shared
9033 && ! mips_elf_hash_table (info)->use_rld_obj_head
9034 && CONST_STRNEQ (name, ".rld_map"))
9035 {
9036 /* We add a room for __rld_map. It will be filled in by the
9037 rtld to contain a pointer to the _r_debug structure. */
9038 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9039 }
9040 else if (SGI_COMPAT (output_bfd)
9041 && CONST_STRNEQ (name, ".compact_rel"))
9042 s->size += mips_elf_hash_table (info)->compact_rel_size;
9043 else if (s == htab->splt)
9044 {
9045 /* If the last PLT entry has a branch delay slot, allocate
9046 room for an extra nop to fill the delay slot. This is
9047 for CPUs without load interlocking. */
9048 if (! LOAD_INTERLOCKS_P (output_bfd)
9049 && ! htab->is_vxworks && s->size > 0)
9050 s->size += 4;
9051 }
9052 else if (! CONST_STRNEQ (name, ".init")
9053 && s != htab->sgot
9054 && s != htab->sgotplt
9055 && s != htab->sstubs
9056 && s != htab->sdynbss)
9057 {
9058 /* It's not one of our sections, so don't allocate space. */
9059 continue;
9060 }
9061
9062 if (s->size == 0)
9063 {
9064 s->flags |= SEC_EXCLUDE;
9065 continue;
9066 }
9067
9068 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9069 continue;
9070
9071 /* Allocate memory for the section contents. */
9072 s->contents = bfd_zalloc (dynobj, s->size);
9073 if (s->contents == NULL)
9074 {
9075 bfd_set_error (bfd_error_no_memory);
9076 return FALSE;
9077 }
9078 }
9079
9080 if (elf_hash_table (info)->dynamic_sections_created)
9081 {
9082 /* Add some entries to the .dynamic section. We fill in the
9083 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9084 must add the entries now so that we get the correct size for
9085 the .dynamic section. */
9086
9087 /* SGI object has the equivalence of DT_DEBUG in the
9088 DT_MIPS_RLD_MAP entry. This must come first because glibc
9089 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
9090 looks at the first one it sees. */
9091 if (!info->shared
9092 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9093 return FALSE;
9094
9095 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9096 used by the debugger. */
9097 if (info->executable
9098 && !SGI_COMPAT (output_bfd)
9099 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9100 return FALSE;
9101
9102 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9103 info->flags |= DF_TEXTREL;
9104
9105 if ((info->flags & DF_TEXTREL) != 0)
9106 {
9107 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9108 return FALSE;
9109
9110 /* Clear the DF_TEXTREL flag. It will be set again if we
9111 write out an actual text relocation; we may not, because
9112 at this point we do not know whether e.g. any .eh_frame
9113 absolute relocations have been converted to PC-relative. */
9114 info->flags &= ~DF_TEXTREL;
9115 }
9116
9117 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9118 return FALSE;
9119
9120 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9121 if (htab->is_vxworks)
9122 {
9123 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9124 use any of the DT_MIPS_* tags. */
9125 if (sreldyn && sreldyn->size > 0)
9126 {
9127 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9128 return FALSE;
9129
9130 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9131 return FALSE;
9132
9133 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9134 return FALSE;
9135 }
9136 }
9137 else
9138 {
9139 if (sreldyn && sreldyn->size > 0)
9140 {
9141 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9142 return FALSE;
9143
9144 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9145 return FALSE;
9146
9147 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9148 return FALSE;
9149 }
9150
9151 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9152 return FALSE;
9153
9154 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9155 return FALSE;
9156
9157 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9158 return FALSE;
9159
9160 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9161 return FALSE;
9162
9163 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9164 return FALSE;
9165
9166 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9167 return FALSE;
9168
9169 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9170 return FALSE;
9171
9172 if (IRIX_COMPAT (dynobj) == ict_irix5
9173 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9174 return FALSE;
9175
9176 if (IRIX_COMPAT (dynobj) == ict_irix6
9177 && (bfd_get_section_by_name
9178 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9179 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9180 return FALSE;
9181 }
9182 if (htab->splt->size > 0)
9183 {
9184 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9185 return FALSE;
9186
9187 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9188 return FALSE;
9189
9190 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9191 return FALSE;
9192
9193 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9194 return FALSE;
9195 }
9196 if (htab->is_vxworks
9197 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9198 return FALSE;
9199 }
9200
9201 return TRUE;
9202 }
9203 \f
9204 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9205 Adjust its R_ADDEND field so that it is correct for the output file.
9206 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9207 and sections respectively; both use symbol indexes. */
9208
9209 static void
9210 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9211 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9212 asection **local_sections, Elf_Internal_Rela *rel)
9213 {
9214 unsigned int r_type, r_symndx;
9215 Elf_Internal_Sym *sym;
9216 asection *sec;
9217
9218 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9219 {
9220 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9221 if (gprel16_reloc_p (r_type)
9222 || r_type == R_MIPS_GPREL32
9223 || literal_reloc_p (r_type))
9224 {
9225 rel->r_addend += _bfd_get_gp_value (input_bfd);
9226 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9227 }
9228
9229 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9230 sym = local_syms + r_symndx;
9231
9232 /* Adjust REL's addend to account for section merging. */
9233 if (!info->relocatable)
9234 {
9235 sec = local_sections[r_symndx];
9236 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9237 }
9238
9239 /* This would normally be done by the rela_normal code in elflink.c. */
9240 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9241 rel->r_addend += local_sections[r_symndx]->output_offset;
9242 }
9243 }
9244
9245 /* Relocate a MIPS ELF section. */
9246
9247 bfd_boolean
9248 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9249 bfd *input_bfd, asection *input_section,
9250 bfd_byte *contents, Elf_Internal_Rela *relocs,
9251 Elf_Internal_Sym *local_syms,
9252 asection **local_sections)
9253 {
9254 Elf_Internal_Rela *rel;
9255 const Elf_Internal_Rela *relend;
9256 bfd_vma addend = 0;
9257 bfd_boolean use_saved_addend_p = FALSE;
9258 const struct elf_backend_data *bed;
9259
9260 bed = get_elf_backend_data (output_bfd);
9261 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9262 for (rel = relocs; rel < relend; ++rel)
9263 {
9264 const char *name;
9265 bfd_vma value = 0;
9266 reloc_howto_type *howto;
9267 bfd_boolean cross_mode_jump_p;
9268 /* TRUE if the relocation is a RELA relocation, rather than a
9269 REL relocation. */
9270 bfd_boolean rela_relocation_p = TRUE;
9271 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9272 const char *msg;
9273 unsigned long r_symndx;
9274 asection *sec;
9275 Elf_Internal_Shdr *symtab_hdr;
9276 struct elf_link_hash_entry *h;
9277 bfd_boolean rel_reloc;
9278
9279 rel_reloc = (NEWABI_P (input_bfd)
9280 && mips_elf_rel_relocation_p (input_bfd, input_section,
9281 relocs, rel));
9282 /* Find the relocation howto for this relocation. */
9283 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9284
9285 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9286 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9287 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9288 {
9289 sec = local_sections[r_symndx];
9290 h = NULL;
9291 }
9292 else
9293 {
9294 unsigned long extsymoff;
9295
9296 extsymoff = 0;
9297 if (!elf_bad_symtab (input_bfd))
9298 extsymoff = symtab_hdr->sh_info;
9299 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9300 while (h->root.type == bfd_link_hash_indirect
9301 || h->root.type == bfd_link_hash_warning)
9302 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9303
9304 sec = NULL;
9305 if (h->root.type == bfd_link_hash_defined
9306 || h->root.type == bfd_link_hash_defweak)
9307 sec = h->root.u.def.section;
9308 }
9309
9310 if (sec != NULL && elf_discarded_section (sec))
9311 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9312 rel, relend, howto, contents);
9313
9314 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9315 {
9316 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9317 64-bit code, but make sure all their addresses are in the
9318 lowermost or uppermost 32-bit section of the 64-bit address
9319 space. Thus, when they use an R_MIPS_64 they mean what is
9320 usually meant by R_MIPS_32, with the exception that the
9321 stored value is sign-extended to 64 bits. */
9322 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9323
9324 /* On big-endian systems, we need to lie about the position
9325 of the reloc. */
9326 if (bfd_big_endian (input_bfd))
9327 rel->r_offset += 4;
9328 }
9329
9330 if (!use_saved_addend_p)
9331 {
9332 /* If these relocations were originally of the REL variety,
9333 we must pull the addend out of the field that will be
9334 relocated. Otherwise, we simply use the contents of the
9335 RELA relocation. */
9336 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9337 relocs, rel))
9338 {
9339 rela_relocation_p = FALSE;
9340 addend = mips_elf_read_rel_addend (input_bfd, rel,
9341 howto, contents);
9342 if (hi16_reloc_p (r_type)
9343 || (got16_reloc_p (r_type)
9344 && mips_elf_local_relocation_p (input_bfd, rel,
9345 local_sections)))
9346 {
9347 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9348 contents, &addend))
9349 {
9350 if (h)
9351 name = h->root.root.string;
9352 else
9353 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9354 local_syms + r_symndx,
9355 sec);
9356 (*_bfd_error_handler)
9357 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9358 input_bfd, input_section, name, howto->name,
9359 rel->r_offset);
9360 }
9361 }
9362 else
9363 addend <<= howto->rightshift;
9364 }
9365 else
9366 addend = rel->r_addend;
9367 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9368 local_syms, local_sections, rel);
9369 }
9370
9371 if (info->relocatable)
9372 {
9373 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9374 && bfd_big_endian (input_bfd))
9375 rel->r_offset -= 4;
9376
9377 if (!rela_relocation_p && rel->r_addend)
9378 {
9379 addend += rel->r_addend;
9380 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9381 addend = mips_elf_high (addend);
9382 else if (r_type == R_MIPS_HIGHER)
9383 addend = mips_elf_higher (addend);
9384 else if (r_type == R_MIPS_HIGHEST)
9385 addend = mips_elf_highest (addend);
9386 else
9387 addend >>= howto->rightshift;
9388
9389 /* We use the source mask, rather than the destination
9390 mask because the place to which we are writing will be
9391 source of the addend in the final link. */
9392 addend &= howto->src_mask;
9393
9394 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9395 /* See the comment above about using R_MIPS_64 in the 32-bit
9396 ABI. Here, we need to update the addend. It would be
9397 possible to get away with just using the R_MIPS_32 reloc
9398 but for endianness. */
9399 {
9400 bfd_vma sign_bits;
9401 bfd_vma low_bits;
9402 bfd_vma high_bits;
9403
9404 if (addend & ((bfd_vma) 1 << 31))
9405 #ifdef BFD64
9406 sign_bits = ((bfd_vma) 1 << 32) - 1;
9407 #else
9408 sign_bits = -1;
9409 #endif
9410 else
9411 sign_bits = 0;
9412
9413 /* If we don't know that we have a 64-bit type,
9414 do two separate stores. */
9415 if (bfd_big_endian (input_bfd))
9416 {
9417 /* Store the sign-bits (which are most significant)
9418 first. */
9419 low_bits = sign_bits;
9420 high_bits = addend;
9421 }
9422 else
9423 {
9424 low_bits = addend;
9425 high_bits = sign_bits;
9426 }
9427 bfd_put_32 (input_bfd, low_bits,
9428 contents + rel->r_offset);
9429 bfd_put_32 (input_bfd, high_bits,
9430 contents + rel->r_offset + 4);
9431 continue;
9432 }
9433
9434 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9435 input_bfd, input_section,
9436 contents, FALSE))
9437 return FALSE;
9438 }
9439
9440 /* Go on to the next relocation. */
9441 continue;
9442 }
9443
9444 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9445 relocations for the same offset. In that case we are
9446 supposed to treat the output of each relocation as the addend
9447 for the next. */
9448 if (rel + 1 < relend
9449 && rel->r_offset == rel[1].r_offset
9450 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9451 use_saved_addend_p = TRUE;
9452 else
9453 use_saved_addend_p = FALSE;
9454
9455 /* Figure out what value we are supposed to relocate. */
9456 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9457 input_section, info, rel,
9458 addend, howto, local_syms,
9459 local_sections, &value,
9460 &name, &cross_mode_jump_p,
9461 use_saved_addend_p))
9462 {
9463 case bfd_reloc_continue:
9464 /* There's nothing to do. */
9465 continue;
9466
9467 case bfd_reloc_undefined:
9468 /* mips_elf_calculate_relocation already called the
9469 undefined_symbol callback. There's no real point in
9470 trying to perform the relocation at this point, so we
9471 just skip ahead to the next relocation. */
9472 continue;
9473
9474 case bfd_reloc_notsupported:
9475 msg = _("internal error: unsupported relocation error");
9476 info->callbacks->warning
9477 (info, msg, name, input_bfd, input_section, rel->r_offset);
9478 return FALSE;
9479
9480 case bfd_reloc_overflow:
9481 if (use_saved_addend_p)
9482 /* Ignore overflow until we reach the last relocation for
9483 a given location. */
9484 ;
9485 else
9486 {
9487 struct mips_elf_link_hash_table *htab;
9488
9489 htab = mips_elf_hash_table (info);
9490 BFD_ASSERT (htab != NULL);
9491 BFD_ASSERT (name != NULL);
9492 if (!htab->small_data_overflow_reported
9493 && (gprel16_reloc_p (howto->type)
9494 || literal_reloc_p (howto->type)))
9495 {
9496 msg = _("small-data section exceeds 64KB;"
9497 " lower small-data size limit (see option -G)");
9498
9499 htab->small_data_overflow_reported = TRUE;
9500 (*info->callbacks->einfo) ("%P: %s\n", msg);
9501 }
9502 if (! ((*info->callbacks->reloc_overflow)
9503 (info, NULL, name, howto->name, (bfd_vma) 0,
9504 input_bfd, input_section, rel->r_offset)))
9505 return FALSE;
9506 }
9507 break;
9508
9509 case bfd_reloc_ok:
9510 break;
9511
9512 case bfd_reloc_outofrange:
9513 if (jal_reloc_p (howto->type))
9514 {
9515 msg = _("JALX to a non-word-aligned address");
9516 info->callbacks->warning
9517 (info, msg, name, input_bfd, input_section, rel->r_offset);
9518 return FALSE;
9519 }
9520 /* Fall through. */
9521
9522 default:
9523 abort ();
9524 break;
9525 }
9526
9527 /* If we've got another relocation for the address, keep going
9528 until we reach the last one. */
9529 if (use_saved_addend_p)
9530 {
9531 addend = value;
9532 continue;
9533 }
9534
9535 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9536 /* See the comment above about using R_MIPS_64 in the 32-bit
9537 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9538 that calculated the right value. Now, however, we
9539 sign-extend the 32-bit result to 64-bits, and store it as a
9540 64-bit value. We are especially generous here in that we
9541 go to extreme lengths to support this usage on systems with
9542 only a 32-bit VMA. */
9543 {
9544 bfd_vma sign_bits;
9545 bfd_vma low_bits;
9546 bfd_vma high_bits;
9547
9548 if (value & ((bfd_vma) 1 << 31))
9549 #ifdef BFD64
9550 sign_bits = ((bfd_vma) 1 << 32) - 1;
9551 #else
9552 sign_bits = -1;
9553 #endif
9554 else
9555 sign_bits = 0;
9556
9557 /* If we don't know that we have a 64-bit type,
9558 do two separate stores. */
9559 if (bfd_big_endian (input_bfd))
9560 {
9561 /* Undo what we did above. */
9562 rel->r_offset -= 4;
9563 /* Store the sign-bits (which are most significant)
9564 first. */
9565 low_bits = sign_bits;
9566 high_bits = value;
9567 }
9568 else
9569 {
9570 low_bits = value;
9571 high_bits = sign_bits;
9572 }
9573 bfd_put_32 (input_bfd, low_bits,
9574 contents + rel->r_offset);
9575 bfd_put_32 (input_bfd, high_bits,
9576 contents + rel->r_offset + 4);
9577 continue;
9578 }
9579
9580 /* Actually perform the relocation. */
9581 if (! mips_elf_perform_relocation (info, howto, rel, value,
9582 input_bfd, input_section,
9583 contents, cross_mode_jump_p))
9584 return FALSE;
9585 }
9586
9587 return TRUE;
9588 }
9589 \f
9590 /* A function that iterates over each entry in la25_stubs and fills
9591 in the code for each one. DATA points to a mips_htab_traverse_info. */
9592
9593 static int
9594 mips_elf_create_la25_stub (void **slot, void *data)
9595 {
9596 struct mips_htab_traverse_info *hti;
9597 struct mips_elf_link_hash_table *htab;
9598 struct mips_elf_la25_stub *stub;
9599 asection *s;
9600 bfd_byte *loc;
9601 bfd_vma offset, target, target_high, target_low;
9602
9603 stub = (struct mips_elf_la25_stub *) *slot;
9604 hti = (struct mips_htab_traverse_info *) data;
9605 htab = mips_elf_hash_table (hti->info);
9606 BFD_ASSERT (htab != NULL);
9607
9608 /* Create the section contents, if we haven't already. */
9609 s = stub->stub_section;
9610 loc = s->contents;
9611 if (loc == NULL)
9612 {
9613 loc = bfd_malloc (s->size);
9614 if (loc == NULL)
9615 {
9616 hti->error = TRUE;
9617 return FALSE;
9618 }
9619 s->contents = loc;
9620 }
9621
9622 /* Work out where in the section this stub should go. */
9623 offset = stub->offset;
9624
9625 /* Work out the target address. */
9626 target = (stub->h->root.root.u.def.section->output_section->vma
9627 + stub->h->root.root.u.def.section->output_offset
9628 + stub->h->root.root.u.def.value);
9629 target_high = ((target + 0x8000) >> 16) & 0xffff;
9630 target_low = (target & 0xffff);
9631
9632 if (stub->stub_section != htab->strampoline)
9633 {
9634 /* This is a simple LUI/ADDIU stub. Zero out the beginning
9635 of the section and write the two instructions at the end. */
9636 memset (loc, 0, offset);
9637 loc += offset;
9638 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9639 {
9640 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
9641 loc);
9642 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
9643 loc + 2);
9644 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
9645 loc + 4);
9646 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
9647 loc + 6);
9648 }
9649 else
9650 {
9651 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9652 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9653 }
9654 }
9655 else
9656 {
9657 /* This is trampoline. */
9658 loc += offset;
9659 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9660 {
9661 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
9662 loc);
9663 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
9664 loc + 2);
9665 bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_1 (target), loc + 4);
9666 bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_2 (target), loc + 6);
9667 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
9668 loc + 8);
9669 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
9670 loc + 10);
9671 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9672 }
9673 else
9674 {
9675 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9676 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9677 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9678 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9679 }
9680 }
9681 return TRUE;
9682 }
9683
9684 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9685 adjust it appropriately now. */
9686
9687 static void
9688 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9689 const char *name, Elf_Internal_Sym *sym)
9690 {
9691 /* The linker script takes care of providing names and values for
9692 these, but we must place them into the right sections. */
9693 static const char* const text_section_symbols[] = {
9694 "_ftext",
9695 "_etext",
9696 "__dso_displacement",
9697 "__elf_header",
9698 "__program_header_table",
9699 NULL
9700 };
9701
9702 static const char* const data_section_symbols[] = {
9703 "_fdata",
9704 "_edata",
9705 "_end",
9706 "_fbss",
9707 NULL
9708 };
9709
9710 const char* const *p;
9711 int i;
9712
9713 for (i = 0; i < 2; ++i)
9714 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9715 *p;
9716 ++p)
9717 if (strcmp (*p, name) == 0)
9718 {
9719 /* All of these symbols are given type STT_SECTION by the
9720 IRIX6 linker. */
9721 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9722 sym->st_other = STO_PROTECTED;
9723
9724 /* The IRIX linker puts these symbols in special sections. */
9725 if (i == 0)
9726 sym->st_shndx = SHN_MIPS_TEXT;
9727 else
9728 sym->st_shndx = SHN_MIPS_DATA;
9729
9730 break;
9731 }
9732 }
9733
9734 /* Finish up dynamic symbol handling. We set the contents of various
9735 dynamic sections here. */
9736
9737 bfd_boolean
9738 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9739 struct bfd_link_info *info,
9740 struct elf_link_hash_entry *h,
9741 Elf_Internal_Sym *sym)
9742 {
9743 bfd *dynobj;
9744 asection *sgot;
9745 struct mips_got_info *g, *gg;
9746 const char *name;
9747 int idx;
9748 struct mips_elf_link_hash_table *htab;
9749 struct mips_elf_link_hash_entry *hmips;
9750
9751 htab = mips_elf_hash_table (info);
9752 BFD_ASSERT (htab != NULL);
9753 dynobj = elf_hash_table (info)->dynobj;
9754 hmips = (struct mips_elf_link_hash_entry *) h;
9755
9756 BFD_ASSERT (!htab->is_vxworks);
9757
9758 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9759 {
9760 /* We've decided to create a PLT entry for this symbol. */
9761 bfd_byte *loc;
9762 bfd_vma header_address, plt_index, got_address;
9763 bfd_vma got_address_high, got_address_low, load;
9764 const bfd_vma *plt_entry;
9765
9766 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9767 BFD_ASSERT (h->dynindx != -1);
9768 BFD_ASSERT (htab->splt != NULL);
9769 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9770 BFD_ASSERT (!h->def_regular);
9771
9772 /* Calculate the address of the PLT header. */
9773 header_address = (htab->splt->output_section->vma
9774 + htab->splt->output_offset);
9775
9776 /* Calculate the index of the entry. */
9777 plt_index = ((h->plt.offset - htab->plt_header_size)
9778 / htab->plt_entry_size);
9779
9780 /* Calculate the address of the .got.plt entry. */
9781 got_address = (htab->sgotplt->output_section->vma
9782 + htab->sgotplt->output_offset
9783 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9784 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9785 got_address_low = got_address & 0xffff;
9786
9787 /* Initially point the .got.plt entry at the PLT header. */
9788 loc = (htab->sgotplt->contents
9789 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9790 if (ABI_64_P (output_bfd))
9791 bfd_put_64 (output_bfd, header_address, loc);
9792 else
9793 bfd_put_32 (output_bfd, header_address, loc);
9794
9795 /* Find out where the .plt entry should go. */
9796 loc = htab->splt->contents + h->plt.offset;
9797
9798 /* Pick the load opcode. */
9799 load = MIPS_ELF_LOAD_WORD (output_bfd);
9800
9801 /* Fill in the PLT entry itself. */
9802 plt_entry = mips_exec_plt_entry;
9803 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9804 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9805
9806 if (! LOAD_INTERLOCKS_P (output_bfd))
9807 {
9808 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9809 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9810 }
9811 else
9812 {
9813 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9814 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9815 }
9816
9817 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9818 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9819 plt_index, h->dynindx,
9820 R_MIPS_JUMP_SLOT, got_address);
9821
9822 /* We distinguish between PLT entries and lazy-binding stubs by
9823 giving the former an st_other value of STO_MIPS_PLT. Set the
9824 flag and leave the value if there are any relocations in the
9825 binary where pointer equality matters. */
9826 sym->st_shndx = SHN_UNDEF;
9827 if (h->pointer_equality_needed)
9828 sym->st_other = STO_MIPS_PLT;
9829 else
9830 sym->st_value = 0;
9831 }
9832 else if (h->plt.offset != MINUS_ONE)
9833 {
9834 /* We've decided to create a lazy-binding stub. */
9835 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9836
9837 /* This symbol has a stub. Set it up. */
9838
9839 BFD_ASSERT (h->dynindx != -1);
9840
9841 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9842 || (h->dynindx <= 0xffff));
9843
9844 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9845 sign extension at runtime in the stub, resulting in a negative
9846 index value. */
9847 if (h->dynindx & ~0x7fffffff)
9848 return FALSE;
9849
9850 /* Fill the stub. */
9851 idx = 0;
9852 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9853 idx += 4;
9854 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9855 idx += 4;
9856 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9857 {
9858 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9859 stub + idx);
9860 idx += 4;
9861 }
9862 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9863 idx += 4;
9864
9865 /* If a large stub is not required and sign extension is not a
9866 problem, then use legacy code in the stub. */
9867 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9868 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9869 else if (h->dynindx & ~0x7fff)
9870 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9871 else
9872 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9873 stub + idx);
9874
9875 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9876 memcpy (htab->sstubs->contents + h->plt.offset,
9877 stub, htab->function_stub_size);
9878
9879 /* Mark the symbol as undefined. plt.offset != -1 occurs
9880 only for the referenced symbol. */
9881 sym->st_shndx = SHN_UNDEF;
9882
9883 /* The run-time linker uses the st_value field of the symbol
9884 to reset the global offset table entry for this external
9885 to its stub address when unlinking a shared object. */
9886 sym->st_value = (htab->sstubs->output_section->vma
9887 + htab->sstubs->output_offset
9888 + h->plt.offset);
9889 }
9890
9891 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9892 refer to the stub, since only the stub uses the standard calling
9893 conventions. */
9894 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9895 {
9896 BFD_ASSERT (hmips->need_fn_stub);
9897 sym->st_value = (hmips->fn_stub->output_section->vma
9898 + hmips->fn_stub->output_offset);
9899 sym->st_size = hmips->fn_stub->size;
9900 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9901 }
9902
9903 BFD_ASSERT (h->dynindx != -1
9904 || h->forced_local);
9905
9906 sgot = htab->sgot;
9907 g = htab->got_info;
9908 BFD_ASSERT (g != NULL);
9909
9910 /* Run through the global symbol table, creating GOT entries for all
9911 the symbols that need them. */
9912 if (hmips->global_got_area != GGA_NONE)
9913 {
9914 bfd_vma offset;
9915 bfd_vma value;
9916
9917 value = sym->st_value;
9918 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9919 R_MIPS_GOT16, info);
9920 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9921 }
9922
9923 if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
9924 {
9925 struct mips_got_entry e, *p;
9926 bfd_vma entry;
9927 bfd_vma offset;
9928
9929 gg = g;
9930
9931 e.abfd = output_bfd;
9932 e.symndx = -1;
9933 e.d.h = hmips;
9934 e.tls_type = 0;
9935
9936 for (g = g->next; g->next != gg; g = g->next)
9937 {
9938 if (g->got_entries
9939 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
9940 &e)))
9941 {
9942 offset = p->gotidx;
9943 if (info->shared
9944 || (elf_hash_table (info)->dynamic_sections_created
9945 && p->d.h != NULL
9946 && p->d.h->root.def_dynamic
9947 && !p->d.h->root.def_regular))
9948 {
9949 /* Create an R_MIPS_REL32 relocation for this entry. Due to
9950 the various compatibility problems, it's easier to mock
9951 up an R_MIPS_32 or R_MIPS_64 relocation and leave
9952 mips_elf_create_dynamic_relocation to calculate the
9953 appropriate addend. */
9954 Elf_Internal_Rela rel[3];
9955
9956 memset (rel, 0, sizeof (rel));
9957 if (ABI_64_P (output_bfd))
9958 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
9959 else
9960 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
9961 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
9962
9963 entry = 0;
9964 if (! (mips_elf_create_dynamic_relocation
9965 (output_bfd, info, rel,
9966 e.d.h, NULL, sym->st_value, &entry, sgot)))
9967 return FALSE;
9968 }
9969 else
9970 entry = sym->st_value;
9971 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
9972 }
9973 }
9974 }
9975
9976 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9977 name = h->root.root.string;
9978 if (strcmp (name, "_DYNAMIC") == 0
9979 || h == elf_hash_table (info)->hgot)
9980 sym->st_shndx = SHN_ABS;
9981 else if (strcmp (name, "_DYNAMIC_LINK") == 0
9982 || strcmp (name, "_DYNAMIC_LINKING") == 0)
9983 {
9984 sym->st_shndx = SHN_ABS;
9985 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9986 sym->st_value = 1;
9987 }
9988 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
9989 {
9990 sym->st_shndx = SHN_ABS;
9991 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9992 sym->st_value = elf_gp (output_bfd);
9993 }
9994 else if (SGI_COMPAT (output_bfd))
9995 {
9996 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
9997 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
9998 {
9999 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10000 sym->st_other = STO_PROTECTED;
10001 sym->st_value = 0;
10002 sym->st_shndx = SHN_MIPS_DATA;
10003 }
10004 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10005 {
10006 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10007 sym->st_other = STO_PROTECTED;
10008 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10009 sym->st_shndx = SHN_ABS;
10010 }
10011 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10012 {
10013 if (h->type == STT_FUNC)
10014 sym->st_shndx = SHN_MIPS_TEXT;
10015 else if (h->type == STT_OBJECT)
10016 sym->st_shndx = SHN_MIPS_DATA;
10017 }
10018 }
10019
10020 /* Emit a copy reloc, if needed. */
10021 if (h->needs_copy)
10022 {
10023 asection *s;
10024 bfd_vma symval;
10025
10026 BFD_ASSERT (h->dynindx != -1);
10027 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10028
10029 s = mips_elf_rel_dyn_section (info, FALSE);
10030 symval = (h->root.u.def.section->output_section->vma
10031 + h->root.u.def.section->output_offset
10032 + h->root.u.def.value);
10033 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10034 h->dynindx, R_MIPS_COPY, symval);
10035 }
10036
10037 /* Handle the IRIX6-specific symbols. */
10038 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10039 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10040
10041 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10042 treat MIPS16 symbols like any other. */
10043 if (ELF_ST_IS_MIPS16 (sym->st_other))
10044 {
10045 BFD_ASSERT (sym->st_value & 1);
10046 sym->st_other -= STO_MIPS16;
10047 }
10048
10049 return TRUE;
10050 }
10051
10052 /* Likewise, for VxWorks. */
10053
10054 bfd_boolean
10055 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10056 struct bfd_link_info *info,
10057 struct elf_link_hash_entry *h,
10058 Elf_Internal_Sym *sym)
10059 {
10060 bfd *dynobj;
10061 asection *sgot;
10062 struct mips_got_info *g;
10063 struct mips_elf_link_hash_table *htab;
10064 struct mips_elf_link_hash_entry *hmips;
10065
10066 htab = mips_elf_hash_table (info);
10067 BFD_ASSERT (htab != NULL);
10068 dynobj = elf_hash_table (info)->dynobj;
10069 hmips = (struct mips_elf_link_hash_entry *) h;
10070
10071 if (h->plt.offset != (bfd_vma) -1)
10072 {
10073 bfd_byte *loc;
10074 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10075 Elf_Internal_Rela rel;
10076 static const bfd_vma *plt_entry;
10077
10078 BFD_ASSERT (h->dynindx != -1);
10079 BFD_ASSERT (htab->splt != NULL);
10080 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10081
10082 /* Calculate the address of the .plt entry. */
10083 plt_address = (htab->splt->output_section->vma
10084 + htab->splt->output_offset
10085 + h->plt.offset);
10086
10087 /* Calculate the index of the entry. */
10088 plt_index = ((h->plt.offset - htab->plt_header_size)
10089 / htab->plt_entry_size);
10090
10091 /* Calculate the address of the .got.plt entry. */
10092 got_address = (htab->sgotplt->output_section->vma
10093 + htab->sgotplt->output_offset
10094 + plt_index * 4);
10095
10096 /* Calculate the offset of the .got.plt entry from
10097 _GLOBAL_OFFSET_TABLE_. */
10098 got_offset = mips_elf_gotplt_index (info, h);
10099
10100 /* Calculate the offset for the branch at the start of the PLT
10101 entry. The branch jumps to the beginning of .plt. */
10102 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10103
10104 /* Fill in the initial value of the .got.plt entry. */
10105 bfd_put_32 (output_bfd, plt_address,
10106 htab->sgotplt->contents + plt_index * 4);
10107
10108 /* Find out where the .plt entry should go. */
10109 loc = htab->splt->contents + h->plt.offset;
10110
10111 if (info->shared)
10112 {
10113 plt_entry = mips_vxworks_shared_plt_entry;
10114 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10115 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10116 }
10117 else
10118 {
10119 bfd_vma got_address_high, got_address_low;
10120
10121 plt_entry = mips_vxworks_exec_plt_entry;
10122 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10123 got_address_low = got_address & 0xffff;
10124
10125 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10126 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10127 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10128 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10129 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10130 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10131 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10132 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10133
10134 loc = (htab->srelplt2->contents
10135 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10136
10137 /* Emit a relocation for the .got.plt entry. */
10138 rel.r_offset = got_address;
10139 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10140 rel.r_addend = h->plt.offset;
10141 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10142
10143 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10144 loc += sizeof (Elf32_External_Rela);
10145 rel.r_offset = plt_address + 8;
10146 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10147 rel.r_addend = got_offset;
10148 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10149
10150 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10151 loc += sizeof (Elf32_External_Rela);
10152 rel.r_offset += 4;
10153 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10154 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10155 }
10156
10157 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10158 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10159 rel.r_offset = got_address;
10160 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10161 rel.r_addend = 0;
10162 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10163
10164 if (!h->def_regular)
10165 sym->st_shndx = SHN_UNDEF;
10166 }
10167
10168 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10169
10170 sgot = htab->sgot;
10171 g = htab->got_info;
10172 BFD_ASSERT (g != NULL);
10173
10174 /* See if this symbol has an entry in the GOT. */
10175 if (hmips->global_got_area != GGA_NONE)
10176 {
10177 bfd_vma offset;
10178 Elf_Internal_Rela outrel;
10179 bfd_byte *loc;
10180 asection *s;
10181
10182 /* Install the symbol value in the GOT. */
10183 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10184 R_MIPS_GOT16, info);
10185 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10186
10187 /* Add a dynamic relocation for it. */
10188 s = mips_elf_rel_dyn_section (info, FALSE);
10189 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10190 outrel.r_offset = (sgot->output_section->vma
10191 + sgot->output_offset
10192 + offset);
10193 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10194 outrel.r_addend = 0;
10195 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10196 }
10197
10198 /* Emit a copy reloc, if needed. */
10199 if (h->needs_copy)
10200 {
10201 Elf_Internal_Rela rel;
10202
10203 BFD_ASSERT (h->dynindx != -1);
10204
10205 rel.r_offset = (h->root.u.def.section->output_section->vma
10206 + h->root.u.def.section->output_offset
10207 + h->root.u.def.value);
10208 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10209 rel.r_addend = 0;
10210 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10211 htab->srelbss->contents
10212 + (htab->srelbss->reloc_count
10213 * sizeof (Elf32_External_Rela)));
10214 ++htab->srelbss->reloc_count;
10215 }
10216
10217 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10218 if (ELF_ST_IS_COMPRESSED (sym->st_other))
10219 sym->st_value &= ~1;
10220
10221 return TRUE;
10222 }
10223
10224 /* Write out a plt0 entry to the beginning of .plt. */
10225
10226 static void
10227 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10228 {
10229 bfd_byte *loc;
10230 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10231 static const bfd_vma *plt_entry;
10232 struct mips_elf_link_hash_table *htab;
10233
10234 htab = mips_elf_hash_table (info);
10235 BFD_ASSERT (htab != NULL);
10236
10237 if (ABI_64_P (output_bfd))
10238 plt_entry = mips_n64_exec_plt0_entry;
10239 else if (ABI_N32_P (output_bfd))
10240 plt_entry = mips_n32_exec_plt0_entry;
10241 else
10242 plt_entry = mips_o32_exec_plt0_entry;
10243
10244 /* Calculate the value of .got.plt. */
10245 gotplt_value = (htab->sgotplt->output_section->vma
10246 + htab->sgotplt->output_offset);
10247 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10248 gotplt_value_low = gotplt_value & 0xffff;
10249
10250 /* The PLT sequence is not safe for N64 if .got.plt's address can
10251 not be loaded in two instructions. */
10252 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10253 || ~(gotplt_value | 0x7fffffff) == 0);
10254
10255 /* Install the PLT header. */
10256 loc = htab->splt->contents;
10257 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10258 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10259 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10260 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10261 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10262 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10263 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10264 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10265 }
10266
10267 /* Install the PLT header for a VxWorks executable and finalize the
10268 contents of .rela.plt.unloaded. */
10269
10270 static void
10271 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10272 {
10273 Elf_Internal_Rela rela;
10274 bfd_byte *loc;
10275 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10276 static const bfd_vma *plt_entry;
10277 struct mips_elf_link_hash_table *htab;
10278
10279 htab = mips_elf_hash_table (info);
10280 BFD_ASSERT (htab != NULL);
10281
10282 plt_entry = mips_vxworks_exec_plt0_entry;
10283
10284 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10285 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10286 + htab->root.hgot->root.u.def.section->output_offset
10287 + htab->root.hgot->root.u.def.value);
10288
10289 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10290 got_value_low = got_value & 0xffff;
10291
10292 /* Calculate the address of the PLT header. */
10293 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10294
10295 /* Install the PLT header. */
10296 loc = htab->splt->contents;
10297 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10298 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10299 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10300 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10301 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10302 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10303
10304 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10305 loc = htab->srelplt2->contents;
10306 rela.r_offset = plt_address;
10307 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10308 rela.r_addend = 0;
10309 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10310 loc += sizeof (Elf32_External_Rela);
10311
10312 /* Output the relocation for the following addiu of
10313 %lo(_GLOBAL_OFFSET_TABLE_). */
10314 rela.r_offset += 4;
10315 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10316 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10317 loc += sizeof (Elf32_External_Rela);
10318
10319 /* Fix up the remaining relocations. They may have the wrong
10320 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10321 in which symbols were output. */
10322 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10323 {
10324 Elf_Internal_Rela rel;
10325
10326 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10327 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10328 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10329 loc += sizeof (Elf32_External_Rela);
10330
10331 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10332 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10333 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10334 loc += sizeof (Elf32_External_Rela);
10335
10336 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10337 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10338 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10339 loc += sizeof (Elf32_External_Rela);
10340 }
10341 }
10342
10343 /* Install the PLT header for a VxWorks shared library. */
10344
10345 static void
10346 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10347 {
10348 unsigned int i;
10349 struct mips_elf_link_hash_table *htab;
10350
10351 htab = mips_elf_hash_table (info);
10352 BFD_ASSERT (htab != NULL);
10353
10354 /* We just need to copy the entry byte-by-byte. */
10355 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10356 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10357 htab->splt->contents + i * 4);
10358 }
10359
10360 /* Finish up the dynamic sections. */
10361
10362 bfd_boolean
10363 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10364 struct bfd_link_info *info)
10365 {
10366 bfd *dynobj;
10367 asection *sdyn;
10368 asection *sgot;
10369 struct mips_got_info *gg, *g;
10370 struct mips_elf_link_hash_table *htab;
10371
10372 htab = mips_elf_hash_table (info);
10373 BFD_ASSERT (htab != NULL);
10374
10375 dynobj = elf_hash_table (info)->dynobj;
10376
10377 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10378
10379 sgot = htab->sgot;
10380 gg = htab->got_info;
10381
10382 if (elf_hash_table (info)->dynamic_sections_created)
10383 {
10384 bfd_byte *b;
10385 int dyn_to_skip = 0, dyn_skipped = 0;
10386
10387 BFD_ASSERT (sdyn != NULL);
10388 BFD_ASSERT (gg != NULL);
10389
10390 g = mips_elf_got_for_ibfd (gg, output_bfd);
10391 BFD_ASSERT (g != NULL);
10392
10393 for (b = sdyn->contents;
10394 b < sdyn->contents + sdyn->size;
10395 b += MIPS_ELF_DYN_SIZE (dynobj))
10396 {
10397 Elf_Internal_Dyn dyn;
10398 const char *name;
10399 size_t elemsize;
10400 asection *s;
10401 bfd_boolean swap_out_p;
10402
10403 /* Read in the current dynamic entry. */
10404 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10405
10406 /* Assume that we're going to modify it and write it out. */
10407 swap_out_p = TRUE;
10408
10409 switch (dyn.d_tag)
10410 {
10411 case DT_RELENT:
10412 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10413 break;
10414
10415 case DT_RELAENT:
10416 BFD_ASSERT (htab->is_vxworks);
10417 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10418 break;
10419
10420 case DT_STRSZ:
10421 /* Rewrite DT_STRSZ. */
10422 dyn.d_un.d_val =
10423 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10424 break;
10425
10426 case DT_PLTGOT:
10427 s = htab->sgot;
10428 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10429 break;
10430
10431 case DT_MIPS_PLTGOT:
10432 s = htab->sgotplt;
10433 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10434 break;
10435
10436 case DT_MIPS_RLD_VERSION:
10437 dyn.d_un.d_val = 1; /* XXX */
10438 break;
10439
10440 case DT_MIPS_FLAGS:
10441 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10442 break;
10443
10444 case DT_MIPS_TIME_STAMP:
10445 {
10446 time_t t;
10447 time (&t);
10448 dyn.d_un.d_val = t;
10449 }
10450 break;
10451
10452 case DT_MIPS_ICHECKSUM:
10453 /* XXX FIXME: */
10454 swap_out_p = FALSE;
10455 break;
10456
10457 case DT_MIPS_IVERSION:
10458 /* XXX FIXME: */
10459 swap_out_p = FALSE;
10460 break;
10461
10462 case DT_MIPS_BASE_ADDRESS:
10463 s = output_bfd->sections;
10464 BFD_ASSERT (s != NULL);
10465 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10466 break;
10467
10468 case DT_MIPS_LOCAL_GOTNO:
10469 dyn.d_un.d_val = g->local_gotno;
10470 break;
10471
10472 case DT_MIPS_UNREFEXTNO:
10473 /* The index into the dynamic symbol table which is the
10474 entry of the first external symbol that is not
10475 referenced within the same object. */
10476 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10477 break;
10478
10479 case DT_MIPS_GOTSYM:
10480 if (gg->global_gotsym)
10481 {
10482 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10483 break;
10484 }
10485 /* In case if we don't have global got symbols we default
10486 to setting DT_MIPS_GOTSYM to the same value as
10487 DT_MIPS_SYMTABNO, so we just fall through. */
10488
10489 case DT_MIPS_SYMTABNO:
10490 name = ".dynsym";
10491 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10492 s = bfd_get_section_by_name (output_bfd, name);
10493 BFD_ASSERT (s != NULL);
10494
10495 dyn.d_un.d_val = s->size / elemsize;
10496 break;
10497
10498 case DT_MIPS_HIPAGENO:
10499 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10500 break;
10501
10502 case DT_MIPS_RLD_MAP:
10503 {
10504 struct elf_link_hash_entry *h;
10505 h = mips_elf_hash_table (info)->rld_symbol;
10506 if (!h)
10507 {
10508 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10509 swap_out_p = FALSE;
10510 break;
10511 }
10512 s = h->root.u.def.section;
10513 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10514 + h->root.u.def.value);
10515 }
10516 break;
10517
10518 case DT_MIPS_OPTIONS:
10519 s = (bfd_get_section_by_name
10520 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10521 dyn.d_un.d_ptr = s->vma;
10522 break;
10523
10524 case DT_RELASZ:
10525 BFD_ASSERT (htab->is_vxworks);
10526 /* The count does not include the JUMP_SLOT relocations. */
10527 if (htab->srelplt)
10528 dyn.d_un.d_val -= htab->srelplt->size;
10529 break;
10530
10531 case DT_PLTREL:
10532 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10533 if (htab->is_vxworks)
10534 dyn.d_un.d_val = DT_RELA;
10535 else
10536 dyn.d_un.d_val = DT_REL;
10537 break;
10538
10539 case DT_PLTRELSZ:
10540 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10541 dyn.d_un.d_val = htab->srelplt->size;
10542 break;
10543
10544 case DT_JMPREL:
10545 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10546 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10547 + htab->srelplt->output_offset);
10548 break;
10549
10550 case DT_TEXTREL:
10551 /* If we didn't need any text relocations after all, delete
10552 the dynamic tag. */
10553 if (!(info->flags & DF_TEXTREL))
10554 {
10555 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10556 swap_out_p = FALSE;
10557 }
10558 break;
10559
10560 case DT_FLAGS:
10561 /* If we didn't need any text relocations after all, clear
10562 DF_TEXTREL from DT_FLAGS. */
10563 if (!(info->flags & DF_TEXTREL))
10564 dyn.d_un.d_val &= ~DF_TEXTREL;
10565 else
10566 swap_out_p = FALSE;
10567 break;
10568
10569 default:
10570 swap_out_p = FALSE;
10571 if (htab->is_vxworks
10572 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10573 swap_out_p = TRUE;
10574 break;
10575 }
10576
10577 if (swap_out_p || dyn_skipped)
10578 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10579 (dynobj, &dyn, b - dyn_skipped);
10580
10581 if (dyn_to_skip)
10582 {
10583 dyn_skipped += dyn_to_skip;
10584 dyn_to_skip = 0;
10585 }
10586 }
10587
10588 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10589 if (dyn_skipped > 0)
10590 memset (b - dyn_skipped, 0, dyn_skipped);
10591 }
10592
10593 if (sgot != NULL && sgot->size > 0
10594 && !bfd_is_abs_section (sgot->output_section))
10595 {
10596 if (htab->is_vxworks)
10597 {
10598 /* The first entry of the global offset table points to the
10599 ".dynamic" section. The second is initialized by the
10600 loader and contains the shared library identifier.
10601 The third is also initialized by the loader and points
10602 to the lazy resolution stub. */
10603 MIPS_ELF_PUT_WORD (output_bfd,
10604 sdyn->output_offset + sdyn->output_section->vma,
10605 sgot->contents);
10606 MIPS_ELF_PUT_WORD (output_bfd, 0,
10607 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10608 MIPS_ELF_PUT_WORD (output_bfd, 0,
10609 sgot->contents
10610 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10611 }
10612 else
10613 {
10614 /* The first entry of the global offset table will be filled at
10615 runtime. The second entry will be used by some runtime loaders.
10616 This isn't the case of IRIX rld. */
10617 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10618 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10619 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10620 }
10621
10622 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10623 = MIPS_ELF_GOT_SIZE (output_bfd);
10624 }
10625
10626 /* Generate dynamic relocations for the non-primary gots. */
10627 if (gg != NULL && gg->next)
10628 {
10629 Elf_Internal_Rela rel[3];
10630 bfd_vma addend = 0;
10631
10632 memset (rel, 0, sizeof (rel));
10633 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10634
10635 for (g = gg->next; g->next != gg; g = g->next)
10636 {
10637 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10638 + g->next->tls_gotno;
10639
10640 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10641 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10642 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10643 sgot->contents
10644 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10645
10646 if (! info->shared)
10647 continue;
10648
10649 while (got_index < g->assigned_gotno)
10650 {
10651 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10652 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10653 if (!(mips_elf_create_dynamic_relocation
10654 (output_bfd, info, rel, NULL,
10655 bfd_abs_section_ptr,
10656 0, &addend, sgot)))
10657 return FALSE;
10658 BFD_ASSERT (addend == 0);
10659 }
10660 }
10661 }
10662
10663 /* The generation of dynamic relocations for the non-primary gots
10664 adds more dynamic relocations. We cannot count them until
10665 here. */
10666
10667 if (elf_hash_table (info)->dynamic_sections_created)
10668 {
10669 bfd_byte *b;
10670 bfd_boolean swap_out_p;
10671
10672 BFD_ASSERT (sdyn != NULL);
10673
10674 for (b = sdyn->contents;
10675 b < sdyn->contents + sdyn->size;
10676 b += MIPS_ELF_DYN_SIZE (dynobj))
10677 {
10678 Elf_Internal_Dyn dyn;
10679 asection *s;
10680
10681 /* Read in the current dynamic entry. */
10682 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10683
10684 /* Assume that we're going to modify it and write it out. */
10685 swap_out_p = TRUE;
10686
10687 switch (dyn.d_tag)
10688 {
10689 case DT_RELSZ:
10690 /* Reduce DT_RELSZ to account for any relocations we
10691 decided not to make. This is for the n64 irix rld,
10692 which doesn't seem to apply any relocations if there
10693 are trailing null entries. */
10694 s = mips_elf_rel_dyn_section (info, FALSE);
10695 dyn.d_un.d_val = (s->reloc_count
10696 * (ABI_64_P (output_bfd)
10697 ? sizeof (Elf64_Mips_External_Rel)
10698 : sizeof (Elf32_External_Rel)));
10699 /* Adjust the section size too. Tools like the prelinker
10700 can reasonably expect the values to the same. */
10701 elf_section_data (s->output_section)->this_hdr.sh_size
10702 = dyn.d_un.d_val;
10703 break;
10704
10705 default:
10706 swap_out_p = FALSE;
10707 break;
10708 }
10709
10710 if (swap_out_p)
10711 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10712 (dynobj, &dyn, b);
10713 }
10714 }
10715
10716 {
10717 asection *s;
10718 Elf32_compact_rel cpt;
10719
10720 if (SGI_COMPAT (output_bfd))
10721 {
10722 /* Write .compact_rel section out. */
10723 s = bfd_get_section_by_name (dynobj, ".compact_rel");
10724 if (s != NULL)
10725 {
10726 cpt.id1 = 1;
10727 cpt.num = s->reloc_count;
10728 cpt.id2 = 2;
10729 cpt.offset = (s->output_section->filepos
10730 + sizeof (Elf32_External_compact_rel));
10731 cpt.reserved0 = 0;
10732 cpt.reserved1 = 0;
10733 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10734 ((Elf32_External_compact_rel *)
10735 s->contents));
10736
10737 /* Clean up a dummy stub function entry in .text. */
10738 if (htab->sstubs != NULL)
10739 {
10740 file_ptr dummy_offset;
10741
10742 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10743 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10744 memset (htab->sstubs->contents + dummy_offset, 0,
10745 htab->function_stub_size);
10746 }
10747 }
10748 }
10749
10750 /* The psABI says that the dynamic relocations must be sorted in
10751 increasing order of r_symndx. The VxWorks EABI doesn't require
10752 this, and because the code below handles REL rather than RELA
10753 relocations, using it for VxWorks would be outright harmful. */
10754 if (!htab->is_vxworks)
10755 {
10756 s = mips_elf_rel_dyn_section (info, FALSE);
10757 if (s != NULL
10758 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10759 {
10760 reldyn_sorting_bfd = output_bfd;
10761
10762 if (ABI_64_P (output_bfd))
10763 qsort ((Elf64_External_Rel *) s->contents + 1,
10764 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10765 sort_dynamic_relocs_64);
10766 else
10767 qsort ((Elf32_External_Rel *) s->contents + 1,
10768 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10769 sort_dynamic_relocs);
10770 }
10771 }
10772 }
10773
10774 if (htab->splt && htab->splt->size > 0)
10775 {
10776 if (htab->is_vxworks)
10777 {
10778 if (info->shared)
10779 mips_vxworks_finish_shared_plt (output_bfd, info);
10780 else
10781 mips_vxworks_finish_exec_plt (output_bfd, info);
10782 }
10783 else
10784 {
10785 BFD_ASSERT (!info->shared);
10786 mips_finish_exec_plt (output_bfd, info);
10787 }
10788 }
10789 return TRUE;
10790 }
10791
10792
10793 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10794
10795 static void
10796 mips_set_isa_flags (bfd *abfd)
10797 {
10798 flagword val;
10799
10800 switch (bfd_get_mach (abfd))
10801 {
10802 default:
10803 case bfd_mach_mips3000:
10804 val = E_MIPS_ARCH_1;
10805 break;
10806
10807 case bfd_mach_mips3900:
10808 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10809 break;
10810
10811 case bfd_mach_mips6000:
10812 val = E_MIPS_ARCH_2;
10813 break;
10814
10815 case bfd_mach_mips4000:
10816 case bfd_mach_mips4300:
10817 case bfd_mach_mips4400:
10818 case bfd_mach_mips4600:
10819 val = E_MIPS_ARCH_3;
10820 break;
10821
10822 case bfd_mach_mips4010:
10823 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10824 break;
10825
10826 case bfd_mach_mips4100:
10827 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10828 break;
10829
10830 case bfd_mach_mips4111:
10831 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10832 break;
10833
10834 case bfd_mach_mips4120:
10835 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10836 break;
10837
10838 case bfd_mach_mips4650:
10839 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10840 break;
10841
10842 case bfd_mach_mips5400:
10843 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10844 break;
10845
10846 case bfd_mach_mips5500:
10847 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10848 break;
10849
10850 case bfd_mach_mips9000:
10851 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10852 break;
10853
10854 case bfd_mach_mips5000:
10855 case bfd_mach_mips7000:
10856 case bfd_mach_mips8000:
10857 case bfd_mach_mips10000:
10858 case bfd_mach_mips12000:
10859 case bfd_mach_mips14000:
10860 case bfd_mach_mips16000:
10861 val = E_MIPS_ARCH_4;
10862 break;
10863
10864 case bfd_mach_mips5:
10865 val = E_MIPS_ARCH_5;
10866 break;
10867
10868 case bfd_mach_mips_loongson_2e:
10869 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10870 break;
10871
10872 case bfd_mach_mips_loongson_2f:
10873 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10874 break;
10875
10876 case bfd_mach_mips_sb1:
10877 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10878 break;
10879
10880 case bfd_mach_mips_loongson_3a:
10881 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
10882 break;
10883
10884 case bfd_mach_mips_octeon:
10885 case bfd_mach_mips_octeonp:
10886 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10887 break;
10888
10889 case bfd_mach_mips_xlr:
10890 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10891 break;
10892
10893 case bfd_mach_mips_octeon2:
10894 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
10895 break;
10896
10897 case bfd_mach_mipsisa32:
10898 val = E_MIPS_ARCH_32;
10899 break;
10900
10901 case bfd_mach_mipsisa64:
10902 val = E_MIPS_ARCH_64;
10903 break;
10904
10905 case bfd_mach_mipsisa32r2:
10906 val = E_MIPS_ARCH_32R2;
10907 break;
10908
10909 case bfd_mach_mipsisa64r2:
10910 val = E_MIPS_ARCH_64R2;
10911 break;
10912 }
10913 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10914 elf_elfheader (abfd)->e_flags |= val;
10915
10916 }
10917
10918
10919 /* The final processing done just before writing out a MIPS ELF object
10920 file. This gets the MIPS architecture right based on the machine
10921 number. This is used by both the 32-bit and the 64-bit ABI. */
10922
10923 void
10924 _bfd_mips_elf_final_write_processing (bfd *abfd,
10925 bfd_boolean linker ATTRIBUTE_UNUSED)
10926 {
10927 unsigned int i;
10928 Elf_Internal_Shdr **hdrpp;
10929 const char *name;
10930 asection *sec;
10931
10932 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10933 is nonzero. This is for compatibility with old objects, which used
10934 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
10935 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
10936 mips_set_isa_flags (abfd);
10937
10938 /* Set the sh_info field for .gptab sections and other appropriate
10939 info for each special section. */
10940 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
10941 i < elf_numsections (abfd);
10942 i++, hdrpp++)
10943 {
10944 switch ((*hdrpp)->sh_type)
10945 {
10946 case SHT_MIPS_MSYM:
10947 case SHT_MIPS_LIBLIST:
10948 sec = bfd_get_section_by_name (abfd, ".dynstr");
10949 if (sec != NULL)
10950 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10951 break;
10952
10953 case SHT_MIPS_GPTAB:
10954 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10955 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10956 BFD_ASSERT (name != NULL
10957 && CONST_STRNEQ (name, ".gptab."));
10958 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
10959 BFD_ASSERT (sec != NULL);
10960 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10961 break;
10962
10963 case SHT_MIPS_CONTENT:
10964 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10965 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10966 BFD_ASSERT (name != NULL
10967 && CONST_STRNEQ (name, ".MIPS.content"));
10968 sec = bfd_get_section_by_name (abfd,
10969 name + sizeof ".MIPS.content" - 1);
10970 BFD_ASSERT (sec != NULL);
10971 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10972 break;
10973
10974 case SHT_MIPS_SYMBOL_LIB:
10975 sec = bfd_get_section_by_name (abfd, ".dynsym");
10976 if (sec != NULL)
10977 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10978 sec = bfd_get_section_by_name (abfd, ".liblist");
10979 if (sec != NULL)
10980 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10981 break;
10982
10983 case SHT_MIPS_EVENTS:
10984 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10985 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10986 BFD_ASSERT (name != NULL);
10987 if (CONST_STRNEQ (name, ".MIPS.events"))
10988 sec = bfd_get_section_by_name (abfd,
10989 name + sizeof ".MIPS.events" - 1);
10990 else
10991 {
10992 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
10993 sec = bfd_get_section_by_name (abfd,
10994 (name
10995 + sizeof ".MIPS.post_rel" - 1));
10996 }
10997 BFD_ASSERT (sec != NULL);
10998 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10999 break;
11000
11001 }
11002 }
11003 }
11004 \f
11005 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11006 segments. */
11007
11008 int
11009 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11010 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11011 {
11012 asection *s;
11013 int ret = 0;
11014
11015 /* See if we need a PT_MIPS_REGINFO segment. */
11016 s = bfd_get_section_by_name (abfd, ".reginfo");
11017 if (s && (s->flags & SEC_LOAD))
11018 ++ret;
11019
11020 /* See if we need a PT_MIPS_OPTIONS segment. */
11021 if (IRIX_COMPAT (abfd) == ict_irix6
11022 && bfd_get_section_by_name (abfd,
11023 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11024 ++ret;
11025
11026 /* See if we need a PT_MIPS_RTPROC segment. */
11027 if (IRIX_COMPAT (abfd) == ict_irix5
11028 && bfd_get_section_by_name (abfd, ".dynamic")
11029 && bfd_get_section_by_name (abfd, ".mdebug"))
11030 ++ret;
11031
11032 /* Allocate a PT_NULL header in dynamic objects. See
11033 _bfd_mips_elf_modify_segment_map for details. */
11034 if (!SGI_COMPAT (abfd)
11035 && bfd_get_section_by_name (abfd, ".dynamic"))
11036 ++ret;
11037
11038 return ret;
11039 }
11040
11041 /* Modify the segment map for an IRIX5 executable. */
11042
11043 bfd_boolean
11044 _bfd_mips_elf_modify_segment_map (bfd *abfd,
11045 struct bfd_link_info *info)
11046 {
11047 asection *s;
11048 struct elf_segment_map *m, **pm;
11049 bfd_size_type amt;
11050
11051 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11052 segment. */
11053 s = bfd_get_section_by_name (abfd, ".reginfo");
11054 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11055 {
11056 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11057 if (m->p_type == PT_MIPS_REGINFO)
11058 break;
11059 if (m == NULL)
11060 {
11061 amt = sizeof *m;
11062 m = bfd_zalloc (abfd, amt);
11063 if (m == NULL)
11064 return FALSE;
11065
11066 m->p_type = PT_MIPS_REGINFO;
11067 m->count = 1;
11068 m->sections[0] = s;
11069
11070 /* We want to put it after the PHDR and INTERP segments. */
11071 pm = &elf_tdata (abfd)->segment_map;
11072 while (*pm != NULL
11073 && ((*pm)->p_type == PT_PHDR
11074 || (*pm)->p_type == PT_INTERP))
11075 pm = &(*pm)->next;
11076
11077 m->next = *pm;
11078 *pm = m;
11079 }
11080 }
11081
11082 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11083 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
11084 PT_MIPS_OPTIONS segment immediately following the program header
11085 table. */
11086 if (NEWABI_P (abfd)
11087 /* On non-IRIX6 new abi, we'll have already created a segment
11088 for this section, so don't create another. I'm not sure this
11089 is not also the case for IRIX 6, but I can't test it right
11090 now. */
11091 && IRIX_COMPAT (abfd) == ict_irix6)
11092 {
11093 for (s = abfd->sections; s; s = s->next)
11094 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11095 break;
11096
11097 if (s)
11098 {
11099 struct elf_segment_map *options_segment;
11100
11101 pm = &elf_tdata (abfd)->segment_map;
11102 while (*pm != NULL
11103 && ((*pm)->p_type == PT_PHDR
11104 || (*pm)->p_type == PT_INTERP))
11105 pm = &(*pm)->next;
11106
11107 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11108 {
11109 amt = sizeof (struct elf_segment_map);
11110 options_segment = bfd_zalloc (abfd, amt);
11111 options_segment->next = *pm;
11112 options_segment->p_type = PT_MIPS_OPTIONS;
11113 options_segment->p_flags = PF_R;
11114 options_segment->p_flags_valid = TRUE;
11115 options_segment->count = 1;
11116 options_segment->sections[0] = s;
11117 *pm = options_segment;
11118 }
11119 }
11120 }
11121 else
11122 {
11123 if (IRIX_COMPAT (abfd) == ict_irix5)
11124 {
11125 /* If there are .dynamic and .mdebug sections, we make a room
11126 for the RTPROC header. FIXME: Rewrite without section names. */
11127 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11128 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11129 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11130 {
11131 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11132 if (m->p_type == PT_MIPS_RTPROC)
11133 break;
11134 if (m == NULL)
11135 {
11136 amt = sizeof *m;
11137 m = bfd_zalloc (abfd, amt);
11138 if (m == NULL)
11139 return FALSE;
11140
11141 m->p_type = PT_MIPS_RTPROC;
11142
11143 s = bfd_get_section_by_name (abfd, ".rtproc");
11144 if (s == NULL)
11145 {
11146 m->count = 0;
11147 m->p_flags = 0;
11148 m->p_flags_valid = 1;
11149 }
11150 else
11151 {
11152 m->count = 1;
11153 m->sections[0] = s;
11154 }
11155
11156 /* We want to put it after the DYNAMIC segment. */
11157 pm = &elf_tdata (abfd)->segment_map;
11158 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11159 pm = &(*pm)->next;
11160 if (*pm != NULL)
11161 pm = &(*pm)->next;
11162
11163 m->next = *pm;
11164 *pm = m;
11165 }
11166 }
11167 }
11168 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11169 .dynstr, .dynsym, and .hash sections, and everything in
11170 between. */
11171 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11172 pm = &(*pm)->next)
11173 if ((*pm)->p_type == PT_DYNAMIC)
11174 break;
11175 m = *pm;
11176 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11177 {
11178 /* For a normal mips executable the permissions for the PT_DYNAMIC
11179 segment are read, write and execute. We do that here since
11180 the code in elf.c sets only the read permission. This matters
11181 sometimes for the dynamic linker. */
11182 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11183 {
11184 m->p_flags = PF_R | PF_W | PF_X;
11185 m->p_flags_valid = 1;
11186 }
11187 }
11188 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11189 glibc's dynamic linker has traditionally derived the number of
11190 tags from the p_filesz field, and sometimes allocates stack
11191 arrays of that size. An overly-big PT_DYNAMIC segment can
11192 be actively harmful in such cases. Making PT_DYNAMIC contain
11193 other sections can also make life hard for the prelinker,
11194 which might move one of the other sections to a different
11195 PT_LOAD segment. */
11196 if (SGI_COMPAT (abfd)
11197 && m != NULL
11198 && m->count == 1
11199 && strcmp (m->sections[0]->name, ".dynamic") == 0)
11200 {
11201 static const char *sec_names[] =
11202 {
11203 ".dynamic", ".dynstr", ".dynsym", ".hash"
11204 };
11205 bfd_vma low, high;
11206 unsigned int i, c;
11207 struct elf_segment_map *n;
11208
11209 low = ~(bfd_vma) 0;
11210 high = 0;
11211 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11212 {
11213 s = bfd_get_section_by_name (abfd, sec_names[i]);
11214 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11215 {
11216 bfd_size_type sz;
11217
11218 if (low > s->vma)
11219 low = s->vma;
11220 sz = s->size;
11221 if (high < s->vma + sz)
11222 high = s->vma + sz;
11223 }
11224 }
11225
11226 c = 0;
11227 for (s = abfd->sections; s != NULL; s = s->next)
11228 if ((s->flags & SEC_LOAD) != 0
11229 && s->vma >= low
11230 && s->vma + s->size <= high)
11231 ++c;
11232
11233 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11234 n = bfd_zalloc (abfd, amt);
11235 if (n == NULL)
11236 return FALSE;
11237 *n = *m;
11238 n->count = c;
11239
11240 i = 0;
11241 for (s = abfd->sections; s != NULL; s = s->next)
11242 {
11243 if ((s->flags & SEC_LOAD) != 0
11244 && s->vma >= low
11245 && s->vma + s->size <= high)
11246 {
11247 n->sections[i] = s;
11248 ++i;
11249 }
11250 }
11251
11252 *pm = n;
11253 }
11254 }
11255
11256 /* Allocate a spare program header in dynamic objects so that tools
11257 like the prelinker can add an extra PT_LOAD entry.
11258
11259 If the prelinker needs to make room for a new PT_LOAD entry, its
11260 standard procedure is to move the first (read-only) sections into
11261 the new (writable) segment. However, the MIPS ABI requires
11262 .dynamic to be in a read-only segment, and the section will often
11263 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11264
11265 Although the prelinker could in principle move .dynamic to a
11266 writable segment, it seems better to allocate a spare program
11267 header instead, and avoid the need to move any sections.
11268 There is a long tradition of allocating spare dynamic tags,
11269 so allocating a spare program header seems like a natural
11270 extension.
11271
11272 If INFO is NULL, we may be copying an already prelinked binary
11273 with objcopy or strip, so do not add this header. */
11274 if (info != NULL
11275 && !SGI_COMPAT (abfd)
11276 && bfd_get_section_by_name (abfd, ".dynamic"))
11277 {
11278 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11279 if ((*pm)->p_type == PT_NULL)
11280 break;
11281 if (*pm == NULL)
11282 {
11283 m = bfd_zalloc (abfd, sizeof (*m));
11284 if (m == NULL)
11285 return FALSE;
11286
11287 m->p_type = PT_NULL;
11288 *pm = m;
11289 }
11290 }
11291
11292 return TRUE;
11293 }
11294 \f
11295 /* Return the section that should be marked against GC for a given
11296 relocation. */
11297
11298 asection *
11299 _bfd_mips_elf_gc_mark_hook (asection *sec,
11300 struct bfd_link_info *info,
11301 Elf_Internal_Rela *rel,
11302 struct elf_link_hash_entry *h,
11303 Elf_Internal_Sym *sym)
11304 {
11305 /* ??? Do mips16 stub sections need to be handled special? */
11306
11307 if (h != NULL)
11308 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11309 {
11310 case R_MIPS_GNU_VTINHERIT:
11311 case R_MIPS_GNU_VTENTRY:
11312 return NULL;
11313 }
11314
11315 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11316 }
11317
11318 /* Update the got entry reference counts for the section being removed. */
11319
11320 bfd_boolean
11321 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11322 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11323 asection *sec ATTRIBUTE_UNUSED,
11324 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11325 {
11326 #if 0
11327 Elf_Internal_Shdr *symtab_hdr;
11328 struct elf_link_hash_entry **sym_hashes;
11329 bfd_signed_vma *local_got_refcounts;
11330 const Elf_Internal_Rela *rel, *relend;
11331 unsigned long r_symndx;
11332 struct elf_link_hash_entry *h;
11333
11334 if (info->relocatable)
11335 return TRUE;
11336
11337 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11338 sym_hashes = elf_sym_hashes (abfd);
11339 local_got_refcounts = elf_local_got_refcounts (abfd);
11340
11341 relend = relocs + sec->reloc_count;
11342 for (rel = relocs; rel < relend; rel++)
11343 switch (ELF_R_TYPE (abfd, rel->r_info))
11344 {
11345 case R_MIPS16_GOT16:
11346 case R_MIPS16_CALL16:
11347 case R_MIPS_GOT16:
11348 case R_MIPS_CALL16:
11349 case R_MIPS_CALL_HI16:
11350 case R_MIPS_CALL_LO16:
11351 case R_MIPS_GOT_HI16:
11352 case R_MIPS_GOT_LO16:
11353 case R_MIPS_GOT_DISP:
11354 case R_MIPS_GOT_PAGE:
11355 case R_MIPS_GOT_OFST:
11356 case R_MICROMIPS_GOT16:
11357 case R_MICROMIPS_CALL16:
11358 case R_MICROMIPS_CALL_HI16:
11359 case R_MICROMIPS_CALL_LO16:
11360 case R_MICROMIPS_GOT_HI16:
11361 case R_MICROMIPS_GOT_LO16:
11362 case R_MICROMIPS_GOT_DISP:
11363 case R_MICROMIPS_GOT_PAGE:
11364 case R_MICROMIPS_GOT_OFST:
11365 /* ??? It would seem that the existing MIPS code does no sort
11366 of reference counting or whatnot on its GOT and PLT entries,
11367 so it is not possible to garbage collect them at this time. */
11368 break;
11369
11370 default:
11371 break;
11372 }
11373 #endif
11374
11375 return TRUE;
11376 }
11377 \f
11378 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11379 hiding the old indirect symbol. Process additional relocation
11380 information. Also called for weakdefs, in which case we just let
11381 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11382
11383 void
11384 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11385 struct elf_link_hash_entry *dir,
11386 struct elf_link_hash_entry *ind)
11387 {
11388 struct mips_elf_link_hash_entry *dirmips, *indmips;
11389
11390 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11391
11392 dirmips = (struct mips_elf_link_hash_entry *) dir;
11393 indmips = (struct mips_elf_link_hash_entry *) ind;
11394 /* Any absolute non-dynamic relocations against an indirect or weak
11395 definition will be against the target symbol. */
11396 if (indmips->has_static_relocs)
11397 dirmips->has_static_relocs = TRUE;
11398
11399 if (ind->root.type != bfd_link_hash_indirect)
11400 return;
11401
11402 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11403 if (indmips->readonly_reloc)
11404 dirmips->readonly_reloc = TRUE;
11405 if (indmips->no_fn_stub)
11406 dirmips->no_fn_stub = TRUE;
11407 if (indmips->fn_stub)
11408 {
11409 dirmips->fn_stub = indmips->fn_stub;
11410 indmips->fn_stub = NULL;
11411 }
11412 if (indmips->need_fn_stub)
11413 {
11414 dirmips->need_fn_stub = TRUE;
11415 indmips->need_fn_stub = FALSE;
11416 }
11417 if (indmips->call_stub)
11418 {
11419 dirmips->call_stub = indmips->call_stub;
11420 indmips->call_stub = NULL;
11421 }
11422 if (indmips->call_fp_stub)
11423 {
11424 dirmips->call_fp_stub = indmips->call_fp_stub;
11425 indmips->call_fp_stub = NULL;
11426 }
11427 if (indmips->global_got_area < dirmips->global_got_area)
11428 dirmips->global_got_area = indmips->global_got_area;
11429 if (indmips->global_got_area < GGA_NONE)
11430 indmips->global_got_area = GGA_NONE;
11431 if (indmips->has_nonpic_branches)
11432 dirmips->has_nonpic_branches = TRUE;
11433
11434 if (dirmips->tls_type == 0)
11435 dirmips->tls_type = indmips->tls_type;
11436 }
11437 \f
11438 #define PDR_SIZE 32
11439
11440 bfd_boolean
11441 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11442 struct bfd_link_info *info)
11443 {
11444 asection *o;
11445 bfd_boolean ret = FALSE;
11446 unsigned char *tdata;
11447 size_t i, skip;
11448
11449 o = bfd_get_section_by_name (abfd, ".pdr");
11450 if (! o)
11451 return FALSE;
11452 if (o->size == 0)
11453 return FALSE;
11454 if (o->size % PDR_SIZE != 0)
11455 return FALSE;
11456 if (o->output_section != NULL
11457 && bfd_is_abs_section (o->output_section))
11458 return FALSE;
11459
11460 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11461 if (! tdata)
11462 return FALSE;
11463
11464 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11465 info->keep_memory);
11466 if (!cookie->rels)
11467 {
11468 free (tdata);
11469 return FALSE;
11470 }
11471
11472 cookie->rel = cookie->rels;
11473 cookie->relend = cookie->rels + o->reloc_count;
11474
11475 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11476 {
11477 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11478 {
11479 tdata[i] = 1;
11480 skip ++;
11481 }
11482 }
11483
11484 if (skip != 0)
11485 {
11486 mips_elf_section_data (o)->u.tdata = tdata;
11487 o->size -= skip * PDR_SIZE;
11488 ret = TRUE;
11489 }
11490 else
11491 free (tdata);
11492
11493 if (! info->keep_memory)
11494 free (cookie->rels);
11495
11496 return ret;
11497 }
11498
11499 bfd_boolean
11500 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11501 {
11502 if (strcmp (sec->name, ".pdr") == 0)
11503 return TRUE;
11504 return FALSE;
11505 }
11506
11507 bfd_boolean
11508 _bfd_mips_elf_write_section (bfd *output_bfd,
11509 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11510 asection *sec, bfd_byte *contents)
11511 {
11512 bfd_byte *to, *from, *end;
11513 int i;
11514
11515 if (strcmp (sec->name, ".pdr") != 0)
11516 return FALSE;
11517
11518 if (mips_elf_section_data (sec)->u.tdata == NULL)
11519 return FALSE;
11520
11521 to = contents;
11522 end = contents + sec->size;
11523 for (from = contents, i = 0;
11524 from < end;
11525 from += PDR_SIZE, i++)
11526 {
11527 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11528 continue;
11529 if (to != from)
11530 memcpy (to, from, PDR_SIZE);
11531 to += PDR_SIZE;
11532 }
11533 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11534 sec->output_offset, sec->size);
11535 return TRUE;
11536 }
11537 \f
11538 /* microMIPS code retains local labels for linker relaxation. Omit them
11539 from output by default for clarity. */
11540
11541 bfd_boolean
11542 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11543 {
11544 return _bfd_elf_is_local_label_name (abfd, sym->name);
11545 }
11546
11547 /* MIPS ELF uses a special find_nearest_line routine in order the
11548 handle the ECOFF debugging information. */
11549
11550 struct mips_elf_find_line
11551 {
11552 struct ecoff_debug_info d;
11553 struct ecoff_find_line i;
11554 };
11555
11556 bfd_boolean
11557 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11558 asymbol **symbols, bfd_vma offset,
11559 const char **filename_ptr,
11560 const char **functionname_ptr,
11561 unsigned int *line_ptr)
11562 {
11563 asection *msec;
11564
11565 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11566 filename_ptr, functionname_ptr,
11567 line_ptr))
11568 return TRUE;
11569
11570 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11571 section, symbols, offset,
11572 filename_ptr, functionname_ptr,
11573 line_ptr, ABI_64_P (abfd) ? 8 : 0,
11574 &elf_tdata (abfd)->dwarf2_find_line_info))
11575 return TRUE;
11576
11577 msec = bfd_get_section_by_name (abfd, ".mdebug");
11578 if (msec != NULL)
11579 {
11580 flagword origflags;
11581 struct mips_elf_find_line *fi;
11582 const struct ecoff_debug_swap * const swap =
11583 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11584
11585 /* If we are called during a link, mips_elf_final_link may have
11586 cleared the SEC_HAS_CONTENTS field. We force it back on here
11587 if appropriate (which it normally will be). */
11588 origflags = msec->flags;
11589 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11590 msec->flags |= SEC_HAS_CONTENTS;
11591
11592 fi = elf_tdata (abfd)->find_line_info;
11593 if (fi == NULL)
11594 {
11595 bfd_size_type external_fdr_size;
11596 char *fraw_src;
11597 char *fraw_end;
11598 struct fdr *fdr_ptr;
11599 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11600
11601 fi = bfd_zalloc (abfd, amt);
11602 if (fi == NULL)
11603 {
11604 msec->flags = origflags;
11605 return FALSE;
11606 }
11607
11608 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11609 {
11610 msec->flags = origflags;
11611 return FALSE;
11612 }
11613
11614 /* Swap in the FDR information. */
11615 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11616 fi->d.fdr = bfd_alloc (abfd, amt);
11617 if (fi->d.fdr == NULL)
11618 {
11619 msec->flags = origflags;
11620 return FALSE;
11621 }
11622 external_fdr_size = swap->external_fdr_size;
11623 fdr_ptr = fi->d.fdr;
11624 fraw_src = (char *) fi->d.external_fdr;
11625 fraw_end = (fraw_src
11626 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11627 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11628 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11629
11630 elf_tdata (abfd)->find_line_info = fi;
11631
11632 /* Note that we don't bother to ever free this information.
11633 find_nearest_line is either called all the time, as in
11634 objdump -l, so the information should be saved, or it is
11635 rarely called, as in ld error messages, so the memory
11636 wasted is unimportant. Still, it would probably be a
11637 good idea for free_cached_info to throw it away. */
11638 }
11639
11640 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11641 &fi->i, filename_ptr, functionname_ptr,
11642 line_ptr))
11643 {
11644 msec->flags = origflags;
11645 return TRUE;
11646 }
11647
11648 msec->flags = origflags;
11649 }
11650
11651 /* Fall back on the generic ELF find_nearest_line routine. */
11652
11653 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11654 filename_ptr, functionname_ptr,
11655 line_ptr);
11656 }
11657
11658 bfd_boolean
11659 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11660 const char **filename_ptr,
11661 const char **functionname_ptr,
11662 unsigned int *line_ptr)
11663 {
11664 bfd_boolean found;
11665 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11666 functionname_ptr, line_ptr,
11667 & elf_tdata (abfd)->dwarf2_find_line_info);
11668 return found;
11669 }
11670
11671 \f
11672 /* When are writing out the .options or .MIPS.options section,
11673 remember the bytes we are writing out, so that we can install the
11674 GP value in the section_processing routine. */
11675
11676 bfd_boolean
11677 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11678 const void *location,
11679 file_ptr offset, bfd_size_type count)
11680 {
11681 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11682 {
11683 bfd_byte *c;
11684
11685 if (elf_section_data (section) == NULL)
11686 {
11687 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11688 section->used_by_bfd = bfd_zalloc (abfd, amt);
11689 if (elf_section_data (section) == NULL)
11690 return FALSE;
11691 }
11692 c = mips_elf_section_data (section)->u.tdata;
11693 if (c == NULL)
11694 {
11695 c = bfd_zalloc (abfd, section->size);
11696 if (c == NULL)
11697 return FALSE;
11698 mips_elf_section_data (section)->u.tdata = c;
11699 }
11700
11701 memcpy (c + offset, location, count);
11702 }
11703
11704 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11705 count);
11706 }
11707
11708 /* This is almost identical to bfd_generic_get_... except that some
11709 MIPS relocations need to be handled specially. Sigh. */
11710
11711 bfd_byte *
11712 _bfd_elf_mips_get_relocated_section_contents
11713 (bfd *abfd,
11714 struct bfd_link_info *link_info,
11715 struct bfd_link_order *link_order,
11716 bfd_byte *data,
11717 bfd_boolean relocatable,
11718 asymbol **symbols)
11719 {
11720 /* Get enough memory to hold the stuff */
11721 bfd *input_bfd = link_order->u.indirect.section->owner;
11722 asection *input_section = link_order->u.indirect.section;
11723 bfd_size_type sz;
11724
11725 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11726 arelent **reloc_vector = NULL;
11727 long reloc_count;
11728
11729 if (reloc_size < 0)
11730 goto error_return;
11731
11732 reloc_vector = bfd_malloc (reloc_size);
11733 if (reloc_vector == NULL && reloc_size != 0)
11734 goto error_return;
11735
11736 /* read in the section */
11737 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11738 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11739 goto error_return;
11740
11741 reloc_count = bfd_canonicalize_reloc (input_bfd,
11742 input_section,
11743 reloc_vector,
11744 symbols);
11745 if (reloc_count < 0)
11746 goto error_return;
11747
11748 if (reloc_count > 0)
11749 {
11750 arelent **parent;
11751 /* for mips */
11752 int gp_found;
11753 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11754
11755 {
11756 struct bfd_hash_entry *h;
11757 struct bfd_link_hash_entry *lh;
11758 /* Skip all this stuff if we aren't mixing formats. */
11759 if (abfd && input_bfd
11760 && abfd->xvec == input_bfd->xvec)
11761 lh = 0;
11762 else
11763 {
11764 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11765 lh = (struct bfd_link_hash_entry *) h;
11766 }
11767 lookup:
11768 if (lh)
11769 {
11770 switch (lh->type)
11771 {
11772 case bfd_link_hash_undefined:
11773 case bfd_link_hash_undefweak:
11774 case bfd_link_hash_common:
11775 gp_found = 0;
11776 break;
11777 case bfd_link_hash_defined:
11778 case bfd_link_hash_defweak:
11779 gp_found = 1;
11780 gp = lh->u.def.value;
11781 break;
11782 case bfd_link_hash_indirect:
11783 case bfd_link_hash_warning:
11784 lh = lh->u.i.link;
11785 /* @@FIXME ignoring warning for now */
11786 goto lookup;
11787 case bfd_link_hash_new:
11788 default:
11789 abort ();
11790 }
11791 }
11792 else
11793 gp_found = 0;
11794 }
11795 /* end mips */
11796 for (parent = reloc_vector; *parent != NULL; parent++)
11797 {
11798 char *error_message = NULL;
11799 bfd_reloc_status_type r;
11800
11801 /* Specific to MIPS: Deal with relocation types that require
11802 knowing the gp of the output bfd. */
11803 asymbol *sym = *(*parent)->sym_ptr_ptr;
11804
11805 /* If we've managed to find the gp and have a special
11806 function for the relocation then go ahead, else default
11807 to the generic handling. */
11808 if (gp_found
11809 && (*parent)->howto->special_function
11810 == _bfd_mips_elf32_gprel16_reloc)
11811 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11812 input_section, relocatable,
11813 data, gp);
11814 else
11815 r = bfd_perform_relocation (input_bfd, *parent, data,
11816 input_section,
11817 relocatable ? abfd : NULL,
11818 &error_message);
11819
11820 if (relocatable)
11821 {
11822 asection *os = input_section->output_section;
11823
11824 /* A partial link, so keep the relocs */
11825 os->orelocation[os->reloc_count] = *parent;
11826 os->reloc_count++;
11827 }
11828
11829 if (r != bfd_reloc_ok)
11830 {
11831 switch (r)
11832 {
11833 case bfd_reloc_undefined:
11834 if (!((*link_info->callbacks->undefined_symbol)
11835 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11836 input_bfd, input_section, (*parent)->address, TRUE)))
11837 goto error_return;
11838 break;
11839 case bfd_reloc_dangerous:
11840 BFD_ASSERT (error_message != NULL);
11841 if (!((*link_info->callbacks->reloc_dangerous)
11842 (link_info, error_message, input_bfd, input_section,
11843 (*parent)->address)))
11844 goto error_return;
11845 break;
11846 case bfd_reloc_overflow:
11847 if (!((*link_info->callbacks->reloc_overflow)
11848 (link_info, NULL,
11849 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11850 (*parent)->howto->name, (*parent)->addend,
11851 input_bfd, input_section, (*parent)->address)))
11852 goto error_return;
11853 break;
11854 case bfd_reloc_outofrange:
11855 default:
11856 abort ();
11857 break;
11858 }
11859
11860 }
11861 }
11862 }
11863 if (reloc_vector != NULL)
11864 free (reloc_vector);
11865 return data;
11866
11867 error_return:
11868 if (reloc_vector != NULL)
11869 free (reloc_vector);
11870 return NULL;
11871 }
11872 \f
11873 static bfd_boolean
11874 mips_elf_relax_delete_bytes (bfd *abfd,
11875 asection *sec, bfd_vma addr, int count)
11876 {
11877 Elf_Internal_Shdr *symtab_hdr;
11878 unsigned int sec_shndx;
11879 bfd_byte *contents;
11880 Elf_Internal_Rela *irel, *irelend;
11881 Elf_Internal_Sym *isym;
11882 Elf_Internal_Sym *isymend;
11883 struct elf_link_hash_entry **sym_hashes;
11884 struct elf_link_hash_entry **end_hashes;
11885 struct elf_link_hash_entry **start_hashes;
11886 unsigned int symcount;
11887
11888 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
11889 contents = elf_section_data (sec)->this_hdr.contents;
11890
11891 irel = elf_section_data (sec)->relocs;
11892 irelend = irel + sec->reloc_count;
11893
11894 /* Actually delete the bytes. */
11895 memmove (contents + addr, contents + addr + count,
11896 (size_t) (sec->size - addr - count));
11897 sec->size -= count;
11898
11899 /* Adjust all the relocs. */
11900 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
11901 {
11902 /* Get the new reloc address. */
11903 if (irel->r_offset > addr)
11904 irel->r_offset -= count;
11905 }
11906
11907 BFD_ASSERT (addr % 2 == 0);
11908 BFD_ASSERT (count % 2 == 0);
11909
11910 /* Adjust the local symbols defined in this section. */
11911 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11912 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
11913 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
11914 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
11915 isym->st_value -= count;
11916
11917 /* Now adjust the global symbols defined in this section. */
11918 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
11919 - symtab_hdr->sh_info);
11920 sym_hashes = start_hashes = elf_sym_hashes (abfd);
11921 end_hashes = sym_hashes + symcount;
11922
11923 for (; sym_hashes < end_hashes; sym_hashes++)
11924 {
11925 struct elf_link_hash_entry *sym_hash = *sym_hashes;
11926
11927 if ((sym_hash->root.type == bfd_link_hash_defined
11928 || sym_hash->root.type == bfd_link_hash_defweak)
11929 && sym_hash->root.u.def.section == sec)
11930 {
11931 bfd_vma value = sym_hash->root.u.def.value;
11932
11933 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
11934 value &= MINUS_TWO;
11935 if (value > addr)
11936 sym_hash->root.u.def.value -= count;
11937 }
11938 }
11939
11940 return TRUE;
11941 }
11942
11943
11944 /* Opcodes needed for microMIPS relaxation as found in
11945 opcodes/micromips-opc.c. */
11946
11947 struct opcode_descriptor {
11948 unsigned long match;
11949 unsigned long mask;
11950 };
11951
11952 /* The $ra register aka $31. */
11953
11954 #define RA 31
11955
11956 /* 32-bit instruction format register fields. */
11957
11958 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
11959 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
11960
11961 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
11962
11963 #define OP16_VALID_REG(r) \
11964 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
11965
11966
11967 /* 32-bit and 16-bit branches. */
11968
11969 static const struct opcode_descriptor b_insns_32[] = {
11970 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
11971 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
11972 { 0, 0 } /* End marker for find_match(). */
11973 };
11974
11975 static const struct opcode_descriptor bc_insn_32 =
11976 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
11977
11978 static const struct opcode_descriptor bz_insn_32 =
11979 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
11980
11981 static const struct opcode_descriptor bzal_insn_32 =
11982 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
11983
11984 static const struct opcode_descriptor beq_insn_32 =
11985 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
11986
11987 static const struct opcode_descriptor b_insn_16 =
11988 { /* "b", "mD", */ 0xcc00, 0xfc00 };
11989
11990 static const struct opcode_descriptor bz_insn_16 =
11991 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
11992
11993
11994 /* 32-bit and 16-bit branch EQ and NE zero. */
11995
11996 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
11997 eq and second the ne. This convention is used when replacing a
11998 32-bit BEQ/BNE with the 16-bit version. */
11999
12000 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12001
12002 static const struct opcode_descriptor bz_rs_insns_32[] = {
12003 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12004 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12005 { 0, 0 } /* End marker for find_match(). */
12006 };
12007
12008 static const struct opcode_descriptor bz_rt_insns_32[] = {
12009 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12010 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12011 { 0, 0 } /* End marker for find_match(). */
12012 };
12013
12014 static const struct opcode_descriptor bzc_insns_32[] = {
12015 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12016 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12017 { 0, 0 } /* End marker for find_match(). */
12018 };
12019
12020 static const struct opcode_descriptor bz_insns_16[] = {
12021 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12022 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12023 { 0, 0 } /* End marker for find_match(). */
12024 };
12025
12026 /* Switch between a 5-bit register index and its 3-bit shorthand. */
12027
12028 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12029 #define BZ16_REG_FIELD(r) \
12030 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12031
12032
12033 /* 32-bit instructions with a delay slot. */
12034
12035 static const struct opcode_descriptor jal_insn_32_bd16 =
12036 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12037
12038 static const struct opcode_descriptor jal_insn_32_bd32 =
12039 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12040
12041 static const struct opcode_descriptor jal_x_insn_32_bd32 =
12042 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12043
12044 static const struct opcode_descriptor j_insn_32 =
12045 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12046
12047 static const struct opcode_descriptor jalr_insn_32 =
12048 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12049
12050 /* This table can be compacted, because no opcode replacement is made. */
12051
12052 static const struct opcode_descriptor ds_insns_32_bd16[] = {
12053 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12054
12055 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12056 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12057
12058 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12059 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12060 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12061 { 0, 0 } /* End marker for find_match(). */
12062 };
12063
12064 /* This table can be compacted, because no opcode replacement is made. */
12065
12066 static const struct opcode_descriptor ds_insns_32_bd32[] = {
12067 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12068
12069 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12070 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12071 { 0, 0 } /* End marker for find_match(). */
12072 };
12073
12074
12075 /* 16-bit instructions with a delay slot. */
12076
12077 static const struct opcode_descriptor jalr_insn_16_bd16 =
12078 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12079
12080 static const struct opcode_descriptor jalr_insn_16_bd32 =
12081 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12082
12083 static const struct opcode_descriptor jr_insn_16 =
12084 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12085
12086 #define JR16_REG(opcode) ((opcode) & 0x1f)
12087
12088 /* This table can be compacted, because no opcode replacement is made. */
12089
12090 static const struct opcode_descriptor ds_insns_16_bd16[] = {
12091 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12092
12093 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12094 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12095 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12096 { 0, 0 } /* End marker for find_match(). */
12097 };
12098
12099
12100 /* LUI instruction. */
12101
12102 static const struct opcode_descriptor lui_insn =
12103 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12104
12105
12106 /* ADDIU instruction. */
12107
12108 static const struct opcode_descriptor addiu_insn =
12109 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12110
12111 static const struct opcode_descriptor addiupc_insn =
12112 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12113
12114 #define ADDIUPC_REG_FIELD(r) \
12115 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12116
12117
12118 /* Relaxable instructions in a JAL delay slot: MOVE. */
12119
12120 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12121 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12122 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12123 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12124
12125 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12126 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12127
12128 static const struct opcode_descriptor move_insns_32[] = {
12129 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12130 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12131 { 0, 0 } /* End marker for find_match(). */
12132 };
12133
12134 static const struct opcode_descriptor move_insn_16 =
12135 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12136
12137
12138 /* NOP instructions. */
12139
12140 static const struct opcode_descriptor nop_insn_32 =
12141 { /* "nop", "", */ 0x00000000, 0xffffffff };
12142
12143 static const struct opcode_descriptor nop_insn_16 =
12144 { /* "nop", "", */ 0x0c00, 0xffff };
12145
12146
12147 /* Instruction match support. */
12148
12149 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12150
12151 static int
12152 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12153 {
12154 unsigned long indx;
12155
12156 for (indx = 0; insn[indx].mask != 0; indx++)
12157 if (MATCH (opcode, insn[indx]))
12158 return indx;
12159
12160 return -1;
12161 }
12162
12163
12164 /* Branch and delay slot decoding support. */
12165
12166 /* If PTR points to what *might* be a 16-bit branch or jump, then
12167 return the minimum length of its delay slot, otherwise return 0.
12168 Non-zero results are not definitive as we might be checking against
12169 the second half of another instruction. */
12170
12171 static int
12172 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12173 {
12174 unsigned long opcode;
12175 int bdsize;
12176
12177 opcode = bfd_get_16 (abfd, ptr);
12178 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12179 /* 16-bit branch/jump with a 32-bit delay slot. */
12180 bdsize = 4;
12181 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12182 || find_match (opcode, ds_insns_16_bd16) >= 0)
12183 /* 16-bit branch/jump with a 16-bit delay slot. */
12184 bdsize = 2;
12185 else
12186 /* No delay slot. */
12187 bdsize = 0;
12188
12189 return bdsize;
12190 }
12191
12192 /* If PTR points to what *might* be a 32-bit branch or jump, then
12193 return the minimum length of its delay slot, otherwise return 0.
12194 Non-zero results are not definitive as we might be checking against
12195 the second half of another instruction. */
12196
12197 static int
12198 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12199 {
12200 unsigned long opcode;
12201 int bdsize;
12202
12203 opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
12204 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12205 /* 32-bit branch/jump with a 32-bit delay slot. */
12206 bdsize = 4;
12207 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12208 /* 32-bit branch/jump with a 16-bit delay slot. */
12209 bdsize = 2;
12210 else
12211 /* No delay slot. */
12212 bdsize = 0;
12213
12214 return bdsize;
12215 }
12216
12217 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12218 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12219
12220 static bfd_boolean
12221 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12222 {
12223 unsigned long opcode;
12224
12225 opcode = bfd_get_16 (abfd, ptr);
12226 if (MATCH (opcode, b_insn_16)
12227 /* B16 */
12228 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12229 /* JR16 */
12230 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12231 /* BEQZ16, BNEZ16 */
12232 || (MATCH (opcode, jalr_insn_16_bd32)
12233 /* JALR16 */
12234 && reg != JR16_REG (opcode) && reg != RA))
12235 return TRUE;
12236
12237 return FALSE;
12238 }
12239
12240 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12241 then return TRUE, otherwise FALSE. */
12242
12243 static bfd_boolean
12244 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12245 {
12246 unsigned long opcode;
12247
12248 opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
12249 if (MATCH (opcode, j_insn_32)
12250 /* J */
12251 || MATCH (opcode, bc_insn_32)
12252 /* BC1F, BC1T, BC2F, BC2T */
12253 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12254 /* JAL, JALX */
12255 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12256 /* BGEZ, BGTZ, BLEZ, BLTZ */
12257 || (MATCH (opcode, bzal_insn_32)
12258 /* BGEZAL, BLTZAL */
12259 && reg != OP32_SREG (opcode) && reg != RA)
12260 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12261 /* JALR, JALR.HB, BEQ, BNE */
12262 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12263 return TRUE;
12264
12265 return FALSE;
12266 }
12267
12268 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12269 IRELEND) at OFFSET indicate that there must be a compact branch there,
12270 then return TRUE, otherwise FALSE. */
12271
12272 static bfd_boolean
12273 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12274 const Elf_Internal_Rela *internal_relocs,
12275 const Elf_Internal_Rela *irelend)
12276 {
12277 const Elf_Internal_Rela *irel;
12278 unsigned long opcode;
12279
12280 opcode = bfd_get_16 (abfd, ptr);
12281 opcode <<= 16;
12282 opcode |= bfd_get_16 (abfd, ptr + 2);
12283 if (find_match (opcode, bzc_insns_32) < 0)
12284 return FALSE;
12285
12286 for (irel = internal_relocs; irel < irelend; irel++)
12287 if (irel->r_offset == offset
12288 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12289 return TRUE;
12290
12291 return FALSE;
12292 }
12293
12294 /* Bitsize checking. */
12295 #define IS_BITSIZE(val, N) \
12296 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12297 - (1ULL << ((N) - 1))) == (val))
12298
12299 \f
12300 bfd_boolean
12301 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12302 struct bfd_link_info *link_info,
12303 bfd_boolean *again)
12304 {
12305 Elf_Internal_Shdr *symtab_hdr;
12306 Elf_Internal_Rela *internal_relocs;
12307 Elf_Internal_Rela *irel, *irelend;
12308 bfd_byte *contents = NULL;
12309 Elf_Internal_Sym *isymbuf = NULL;
12310
12311 /* Assume nothing changes. */
12312 *again = FALSE;
12313
12314 /* We don't have to do anything for a relocatable link, if
12315 this section does not have relocs, or if this is not a
12316 code section. */
12317
12318 if (link_info->relocatable
12319 || (sec->flags & SEC_RELOC) == 0
12320 || sec->reloc_count == 0
12321 || (sec->flags & SEC_CODE) == 0)
12322 return TRUE;
12323
12324 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12325
12326 /* Get a copy of the native relocations. */
12327 internal_relocs = (_bfd_elf_link_read_relocs
12328 (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
12329 link_info->keep_memory));
12330 if (internal_relocs == NULL)
12331 goto error_return;
12332
12333 /* Walk through them looking for relaxing opportunities. */
12334 irelend = internal_relocs + sec->reloc_count;
12335 for (irel = internal_relocs; irel < irelend; irel++)
12336 {
12337 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12338 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12339 bfd_boolean target_is_micromips_code_p;
12340 unsigned long opcode;
12341 bfd_vma symval;
12342 bfd_vma pcrval;
12343 bfd_byte *ptr;
12344 int fndopc;
12345
12346 /* The number of bytes to delete for relaxation and from where
12347 to delete these bytes starting at irel->r_offset. */
12348 int delcnt = 0;
12349 int deloff = 0;
12350
12351 /* If this isn't something that can be relaxed, then ignore
12352 this reloc. */
12353 if (r_type != R_MICROMIPS_HI16
12354 && r_type != R_MICROMIPS_PC16_S1
12355 && r_type != R_MICROMIPS_26_S1)
12356 continue;
12357
12358 /* Get the section contents if we haven't done so already. */
12359 if (contents == NULL)
12360 {
12361 /* Get cached copy if it exists. */
12362 if (elf_section_data (sec)->this_hdr.contents != NULL)
12363 contents = elf_section_data (sec)->this_hdr.contents;
12364 /* Go get them off disk. */
12365 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12366 goto error_return;
12367 }
12368 ptr = contents + irel->r_offset;
12369
12370 /* Read this BFD's local symbols if we haven't done so already. */
12371 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12372 {
12373 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12374 if (isymbuf == NULL)
12375 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12376 symtab_hdr->sh_info, 0,
12377 NULL, NULL, NULL);
12378 if (isymbuf == NULL)
12379 goto error_return;
12380 }
12381
12382 /* Get the value of the symbol referred to by the reloc. */
12383 if (r_symndx < symtab_hdr->sh_info)
12384 {
12385 /* A local symbol. */
12386 Elf_Internal_Sym *isym;
12387 asection *sym_sec;
12388
12389 isym = isymbuf + r_symndx;
12390 if (isym->st_shndx == SHN_UNDEF)
12391 sym_sec = bfd_und_section_ptr;
12392 else if (isym->st_shndx == SHN_ABS)
12393 sym_sec = bfd_abs_section_ptr;
12394 else if (isym->st_shndx == SHN_COMMON)
12395 sym_sec = bfd_com_section_ptr;
12396 else
12397 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12398 symval = (isym->st_value
12399 + sym_sec->output_section->vma
12400 + sym_sec->output_offset);
12401 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12402 }
12403 else
12404 {
12405 unsigned long indx;
12406 struct elf_link_hash_entry *h;
12407
12408 /* An external symbol. */
12409 indx = r_symndx - symtab_hdr->sh_info;
12410 h = elf_sym_hashes (abfd)[indx];
12411 BFD_ASSERT (h != NULL);
12412
12413 if (h->root.type != bfd_link_hash_defined
12414 && h->root.type != bfd_link_hash_defweak)
12415 /* This appears to be a reference to an undefined
12416 symbol. Just ignore it -- it will be caught by the
12417 regular reloc processing. */
12418 continue;
12419
12420 symval = (h->root.u.def.value
12421 + h->root.u.def.section->output_section->vma
12422 + h->root.u.def.section->output_offset);
12423 target_is_micromips_code_p = (!h->needs_plt
12424 && ELF_ST_IS_MICROMIPS (h->other));
12425 }
12426
12427
12428 /* For simplicity of coding, we are going to modify the
12429 section contents, the section relocs, and the BFD symbol
12430 table. We must tell the rest of the code not to free up this
12431 information. It would be possible to instead create a table
12432 of changes which have to be made, as is done in coff-mips.c;
12433 that would be more work, but would require less memory when
12434 the linker is run. */
12435
12436 /* Only 32-bit instructions relaxed. */
12437 if (irel->r_offset + 4 > sec->size)
12438 continue;
12439
12440 opcode = bfd_get_16 (abfd, ptr ) << 16;
12441 opcode |= bfd_get_16 (abfd, ptr + 2);
12442
12443 /* This is the pc-relative distance from the instruction the
12444 relocation is applied to, to the symbol referred. */
12445 pcrval = (symval
12446 - (sec->output_section->vma + sec->output_offset)
12447 - irel->r_offset);
12448
12449 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12450 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12451 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12452
12453 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12454
12455 where pcrval has first to be adjusted to apply against the LO16
12456 location (we make the adjustment later on, when we have figured
12457 out the offset). */
12458 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12459 {
12460 bfd_boolean bzc = FALSE;
12461 unsigned long nextopc;
12462 unsigned long reg;
12463 bfd_vma offset;
12464
12465 /* Give up if the previous reloc was a HI16 against this symbol
12466 too. */
12467 if (irel > internal_relocs
12468 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12469 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12470 continue;
12471
12472 /* Or if the next reloc is not a LO16 against this symbol. */
12473 if (irel + 1 >= irelend
12474 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12475 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12476 continue;
12477
12478 /* Or if the second next reloc is a LO16 against this symbol too. */
12479 if (irel + 2 >= irelend
12480 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12481 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12482 continue;
12483
12484 /* See if the LUI instruction *might* be in a branch delay slot.
12485 We check whether what looks like a 16-bit branch or jump is
12486 actually an immediate argument to a compact branch, and let
12487 it through if so. */
12488 if (irel->r_offset >= 2
12489 && check_br16_dslot (abfd, ptr - 2)
12490 && !(irel->r_offset >= 4
12491 && (bzc = check_relocated_bzc (abfd,
12492 ptr - 4, irel->r_offset - 4,
12493 internal_relocs, irelend))))
12494 continue;
12495 if (irel->r_offset >= 4
12496 && !bzc
12497 && check_br32_dslot (abfd, ptr - 4))
12498 continue;
12499
12500 reg = OP32_SREG (opcode);
12501
12502 /* We only relax adjacent instructions or ones separated with
12503 a branch or jump that has a delay slot. The branch or jump
12504 must not fiddle with the register used to hold the address.
12505 Subtract 4 for the LUI itself. */
12506 offset = irel[1].r_offset - irel[0].r_offset;
12507 switch (offset - 4)
12508 {
12509 case 0:
12510 break;
12511 case 2:
12512 if (check_br16 (abfd, ptr + 4, reg))
12513 break;
12514 continue;
12515 case 4:
12516 if (check_br32 (abfd, ptr + 4, reg))
12517 break;
12518 continue;
12519 default:
12520 continue;
12521 }
12522
12523 nextopc = bfd_get_16 (abfd, contents + irel[1].r_offset ) << 16;
12524 nextopc |= bfd_get_16 (abfd, contents + irel[1].r_offset + 2);
12525
12526 /* Give up unless the same register is used with both
12527 relocations. */
12528 if (OP32_SREG (nextopc) != reg)
12529 continue;
12530
12531 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12532 and rounding up to take masking of the two LSBs into account. */
12533 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12534
12535 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12536 if (IS_BITSIZE (symval, 16))
12537 {
12538 /* Fix the relocation's type. */
12539 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12540
12541 /* Instructions using R_MICROMIPS_LO16 have the base or
12542 source register in bits 20:16. This register becomes $0
12543 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12544 nextopc &= ~0x001f0000;
12545 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12546 contents + irel[1].r_offset);
12547 }
12548
12549 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12550 We add 4 to take LUI deletion into account while checking
12551 the PC-relative distance. */
12552 else if (symval % 4 == 0
12553 && IS_BITSIZE (pcrval + 4, 25)
12554 && MATCH (nextopc, addiu_insn)
12555 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12556 && OP16_VALID_REG (OP32_TREG (nextopc)))
12557 {
12558 /* Fix the relocation's type. */
12559 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12560
12561 /* Replace ADDIU with the ADDIUPC version. */
12562 nextopc = (addiupc_insn.match
12563 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12564
12565 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12566 contents + irel[1].r_offset);
12567 bfd_put_16 (abfd, nextopc & 0xffff,
12568 contents + irel[1].r_offset + 2);
12569 }
12570
12571 /* Can't do anything, give up, sigh... */
12572 else
12573 continue;
12574
12575 /* Fix the relocation's type. */
12576 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12577
12578 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12579 delcnt = 4;
12580 deloff = 0;
12581 }
12582
12583 /* Compact branch relaxation -- due to the multitude of macros
12584 employed by the compiler/assembler, compact branches are not
12585 always generated. Obviously, this can/will be fixed elsewhere,
12586 but there is no drawback in double checking it here. */
12587 else if (r_type == R_MICROMIPS_PC16_S1
12588 && irel->r_offset + 5 < sec->size
12589 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12590 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
12591 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
12592 {
12593 unsigned long reg;
12594
12595 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12596
12597 /* Replace BEQZ/BNEZ with the compact version. */
12598 opcode = (bzc_insns_32[fndopc].match
12599 | BZC32_REG_FIELD (reg)
12600 | (opcode & 0xffff)); /* Addend value. */
12601
12602 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
12603 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
12604
12605 /* Delete the 16-bit delay slot NOP: two bytes from
12606 irel->offset + 4. */
12607 delcnt = 2;
12608 deloff = 4;
12609 }
12610
12611 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12612 to check the distance from the next instruction, so subtract 2. */
12613 else if (r_type == R_MICROMIPS_PC16_S1
12614 && IS_BITSIZE (pcrval - 2, 11)
12615 && find_match (opcode, b_insns_32) >= 0)
12616 {
12617 /* Fix the relocation's type. */
12618 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12619
12620 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12621 bfd_put_16 (abfd,
12622 (b_insn_16.match
12623 | (opcode & 0x3ff)), /* Addend value. */
12624 ptr);
12625
12626 /* Delete 2 bytes from irel->r_offset + 2. */
12627 delcnt = 2;
12628 deloff = 2;
12629 }
12630
12631 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12632 to check the distance from the next instruction, so subtract 2. */
12633 else if (r_type == R_MICROMIPS_PC16_S1
12634 && IS_BITSIZE (pcrval - 2, 8)
12635 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12636 && OP16_VALID_REG (OP32_SREG (opcode)))
12637 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12638 && OP16_VALID_REG (OP32_TREG (opcode)))))
12639 {
12640 unsigned long reg;
12641
12642 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12643
12644 /* Fix the relocation's type. */
12645 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12646
12647 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12648 bfd_put_16 (abfd,
12649 (bz_insns_16[fndopc].match
12650 | BZ16_REG_FIELD (reg)
12651 | (opcode & 0x7f)), /* Addend value. */
12652 ptr);
12653
12654 /* Delete 2 bytes from irel->r_offset + 2. */
12655 delcnt = 2;
12656 deloff = 2;
12657 }
12658
12659 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12660 else if (r_type == R_MICROMIPS_26_S1
12661 && target_is_micromips_code_p
12662 && irel->r_offset + 7 < sec->size
12663 && MATCH (opcode, jal_insn_32_bd32))
12664 {
12665 unsigned long n32opc;
12666 bfd_boolean relaxed = FALSE;
12667
12668 n32opc = bfd_get_16 (abfd, ptr + 4) << 16;
12669 n32opc |= bfd_get_16 (abfd, ptr + 6);
12670
12671 if (MATCH (n32opc, nop_insn_32))
12672 {
12673 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
12674 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
12675
12676 relaxed = TRUE;
12677 }
12678 else if (find_match (n32opc, move_insns_32) >= 0)
12679 {
12680 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12681 bfd_put_16 (abfd,
12682 (move_insn_16.match
12683 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12684 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
12685 ptr + 4);
12686
12687 relaxed = TRUE;
12688 }
12689 /* Other 32-bit instructions relaxable to 16-bit
12690 instructions will be handled here later. */
12691
12692 if (relaxed)
12693 {
12694 /* JAL with 32-bit delay slot that is changed to a JALS
12695 with 16-bit delay slot. */
12696 bfd_put_16 (abfd, (jal_insn_32_bd16.match >> 16) & 0xffff,
12697 ptr);
12698 bfd_put_16 (abfd, jal_insn_32_bd16.match & 0xffff,
12699 ptr + 2);
12700
12701 /* Delete 2 bytes from irel->r_offset + 6. */
12702 delcnt = 2;
12703 deloff = 6;
12704 }
12705 }
12706
12707 if (delcnt != 0)
12708 {
12709 /* Note that we've changed the relocs, section contents, etc. */
12710 elf_section_data (sec)->relocs = internal_relocs;
12711 elf_section_data (sec)->this_hdr.contents = contents;
12712 symtab_hdr->contents = (unsigned char *) isymbuf;
12713
12714 /* Delete bytes depending on the delcnt and deloff. */
12715 if (!mips_elf_relax_delete_bytes (abfd, sec,
12716 irel->r_offset + deloff, delcnt))
12717 goto error_return;
12718
12719 /* That will change things, so we should relax again.
12720 Note that this is not required, and it may be slow. */
12721 *again = TRUE;
12722 }
12723 }
12724
12725 if (isymbuf != NULL
12726 && symtab_hdr->contents != (unsigned char *) isymbuf)
12727 {
12728 if (! link_info->keep_memory)
12729 free (isymbuf);
12730 else
12731 {
12732 /* Cache the symbols for elf_link_input_bfd. */
12733 symtab_hdr->contents = (unsigned char *) isymbuf;
12734 }
12735 }
12736
12737 if (contents != NULL
12738 && elf_section_data (sec)->this_hdr.contents != contents)
12739 {
12740 if (! link_info->keep_memory)
12741 free (contents);
12742 else
12743 {
12744 /* Cache the section contents for elf_link_input_bfd. */
12745 elf_section_data (sec)->this_hdr.contents = contents;
12746 }
12747 }
12748
12749 if (internal_relocs != NULL
12750 && elf_section_data (sec)->relocs != internal_relocs)
12751 free (internal_relocs);
12752
12753 return TRUE;
12754
12755 error_return:
12756 if (isymbuf != NULL
12757 && symtab_hdr->contents != (unsigned char *) isymbuf)
12758 free (isymbuf);
12759 if (contents != NULL
12760 && elf_section_data (sec)->this_hdr.contents != contents)
12761 free (contents);
12762 if (internal_relocs != NULL
12763 && elf_section_data (sec)->relocs != internal_relocs)
12764 free (internal_relocs);
12765
12766 return FALSE;
12767 }
12768 \f
12769 /* Create a MIPS ELF linker hash table. */
12770
12771 struct bfd_link_hash_table *
12772 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
12773 {
12774 struct mips_elf_link_hash_table *ret;
12775 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12776
12777 ret = bfd_malloc (amt);
12778 if (ret == NULL)
12779 return NULL;
12780
12781 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12782 mips_elf_link_hash_newfunc,
12783 sizeof (struct mips_elf_link_hash_entry),
12784 MIPS_ELF_DATA))
12785 {
12786 free (ret);
12787 return NULL;
12788 }
12789
12790 #if 0
12791 /* We no longer use this. */
12792 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
12793 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
12794 #endif
12795 ret->procedure_count = 0;
12796 ret->compact_rel_size = 0;
12797 ret->use_rld_obj_head = FALSE;
12798 ret->rld_symbol = NULL;
12799 ret->mips16_stubs_seen = FALSE;
12800 ret->use_plts_and_copy_relocs = FALSE;
12801 ret->is_vxworks = FALSE;
12802 ret->small_data_overflow_reported = FALSE;
12803 ret->srelbss = NULL;
12804 ret->sdynbss = NULL;
12805 ret->srelplt = NULL;
12806 ret->srelplt2 = NULL;
12807 ret->sgotplt = NULL;
12808 ret->splt = NULL;
12809 ret->sstubs = NULL;
12810 ret->sgot = NULL;
12811 ret->got_info = NULL;
12812 ret->plt_header_size = 0;
12813 ret->plt_entry_size = 0;
12814 ret->lazy_stub_count = 0;
12815 ret->function_stub_size = 0;
12816 ret->strampoline = NULL;
12817 ret->la25_stubs = NULL;
12818 ret->add_stub_section = NULL;
12819
12820 return &ret->root.root;
12821 }
12822
12823 /* Likewise, but indicate that the target is VxWorks. */
12824
12825 struct bfd_link_hash_table *
12826 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12827 {
12828 struct bfd_link_hash_table *ret;
12829
12830 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12831 if (ret)
12832 {
12833 struct mips_elf_link_hash_table *htab;
12834
12835 htab = (struct mips_elf_link_hash_table *) ret;
12836 htab->use_plts_and_copy_relocs = TRUE;
12837 htab->is_vxworks = TRUE;
12838 }
12839 return ret;
12840 }
12841
12842 /* A function that the linker calls if we are allowed to use PLTs
12843 and copy relocs. */
12844
12845 void
12846 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12847 {
12848 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12849 }
12850 \f
12851 /* We need to use a special link routine to handle the .reginfo and
12852 the .mdebug sections. We need to merge all instances of these
12853 sections together, not write them all out sequentially. */
12854
12855 bfd_boolean
12856 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12857 {
12858 asection *o;
12859 struct bfd_link_order *p;
12860 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
12861 asection *rtproc_sec;
12862 Elf32_RegInfo reginfo;
12863 struct ecoff_debug_info debug;
12864 struct mips_htab_traverse_info hti;
12865 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12866 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
12867 HDRR *symhdr = &debug.symbolic_header;
12868 void *mdebug_handle = NULL;
12869 asection *s;
12870 EXTR esym;
12871 unsigned int i;
12872 bfd_size_type amt;
12873 struct mips_elf_link_hash_table *htab;
12874
12875 static const char * const secname[] =
12876 {
12877 ".text", ".init", ".fini", ".data",
12878 ".rodata", ".sdata", ".sbss", ".bss"
12879 };
12880 static const int sc[] =
12881 {
12882 scText, scInit, scFini, scData,
12883 scRData, scSData, scSBss, scBss
12884 };
12885
12886 /* Sort the dynamic symbols so that those with GOT entries come after
12887 those without. */
12888 htab = mips_elf_hash_table (info);
12889 BFD_ASSERT (htab != NULL);
12890
12891 if (!mips_elf_sort_hash_table (abfd, info))
12892 return FALSE;
12893
12894 /* Create any scheduled LA25 stubs. */
12895 hti.info = info;
12896 hti.output_bfd = abfd;
12897 hti.error = FALSE;
12898 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
12899 if (hti.error)
12900 return FALSE;
12901
12902 /* Get a value for the GP register. */
12903 if (elf_gp (abfd) == 0)
12904 {
12905 struct bfd_link_hash_entry *h;
12906
12907 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
12908 if (h != NULL && h->type == bfd_link_hash_defined)
12909 elf_gp (abfd) = (h->u.def.value
12910 + h->u.def.section->output_section->vma
12911 + h->u.def.section->output_offset);
12912 else if (htab->is_vxworks
12913 && (h = bfd_link_hash_lookup (info->hash,
12914 "_GLOBAL_OFFSET_TABLE_",
12915 FALSE, FALSE, TRUE))
12916 && h->type == bfd_link_hash_defined)
12917 elf_gp (abfd) = (h->u.def.section->output_section->vma
12918 + h->u.def.section->output_offset
12919 + h->u.def.value);
12920 else if (info->relocatable)
12921 {
12922 bfd_vma lo = MINUS_ONE;
12923
12924 /* Find the GP-relative section with the lowest offset. */
12925 for (o = abfd->sections; o != NULL; o = o->next)
12926 if (o->vma < lo
12927 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
12928 lo = o->vma;
12929
12930 /* And calculate GP relative to that. */
12931 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
12932 }
12933 else
12934 {
12935 /* If the relocate_section function needs to do a reloc
12936 involving the GP value, it should make a reloc_dangerous
12937 callback to warn that GP is not defined. */
12938 }
12939 }
12940
12941 /* Go through the sections and collect the .reginfo and .mdebug
12942 information. */
12943 reginfo_sec = NULL;
12944 mdebug_sec = NULL;
12945 gptab_data_sec = NULL;
12946 gptab_bss_sec = NULL;
12947 for (o = abfd->sections; o != NULL; o = o->next)
12948 {
12949 if (strcmp (o->name, ".reginfo") == 0)
12950 {
12951 memset (&reginfo, 0, sizeof reginfo);
12952
12953 /* We have found the .reginfo section in the output file.
12954 Look through all the link_orders comprising it and merge
12955 the information together. */
12956 for (p = o->map_head.link_order; p != NULL; p = p->next)
12957 {
12958 asection *input_section;
12959 bfd *input_bfd;
12960 Elf32_External_RegInfo ext;
12961 Elf32_RegInfo sub;
12962
12963 if (p->type != bfd_indirect_link_order)
12964 {
12965 if (p->type == bfd_data_link_order)
12966 continue;
12967 abort ();
12968 }
12969
12970 input_section = p->u.indirect.section;
12971 input_bfd = input_section->owner;
12972
12973 if (! bfd_get_section_contents (input_bfd, input_section,
12974 &ext, 0, sizeof ext))
12975 return FALSE;
12976
12977 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
12978
12979 reginfo.ri_gprmask |= sub.ri_gprmask;
12980 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
12981 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
12982 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
12983 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
12984
12985 /* ri_gp_value is set by the function
12986 mips_elf32_section_processing when the section is
12987 finally written out. */
12988
12989 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12990 elf_link_input_bfd ignores this section. */
12991 input_section->flags &= ~SEC_HAS_CONTENTS;
12992 }
12993
12994 /* Size has been set in _bfd_mips_elf_always_size_sections. */
12995 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
12996
12997 /* Skip this section later on (I don't think this currently
12998 matters, but someday it might). */
12999 o->map_head.link_order = NULL;
13000
13001 reginfo_sec = o;
13002 }
13003
13004 if (strcmp (o->name, ".mdebug") == 0)
13005 {
13006 struct extsym_info einfo;
13007 bfd_vma last;
13008
13009 /* We have found the .mdebug section in the output file.
13010 Look through all the link_orders comprising it and merge
13011 the information together. */
13012 symhdr->magic = swap->sym_magic;
13013 /* FIXME: What should the version stamp be? */
13014 symhdr->vstamp = 0;
13015 symhdr->ilineMax = 0;
13016 symhdr->cbLine = 0;
13017 symhdr->idnMax = 0;
13018 symhdr->ipdMax = 0;
13019 symhdr->isymMax = 0;
13020 symhdr->ioptMax = 0;
13021 symhdr->iauxMax = 0;
13022 symhdr->issMax = 0;
13023 symhdr->issExtMax = 0;
13024 symhdr->ifdMax = 0;
13025 symhdr->crfd = 0;
13026 symhdr->iextMax = 0;
13027
13028 /* We accumulate the debugging information itself in the
13029 debug_info structure. */
13030 debug.line = NULL;
13031 debug.external_dnr = NULL;
13032 debug.external_pdr = NULL;
13033 debug.external_sym = NULL;
13034 debug.external_opt = NULL;
13035 debug.external_aux = NULL;
13036 debug.ss = NULL;
13037 debug.ssext = debug.ssext_end = NULL;
13038 debug.external_fdr = NULL;
13039 debug.external_rfd = NULL;
13040 debug.external_ext = debug.external_ext_end = NULL;
13041
13042 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
13043 if (mdebug_handle == NULL)
13044 return FALSE;
13045
13046 esym.jmptbl = 0;
13047 esym.cobol_main = 0;
13048 esym.weakext = 0;
13049 esym.reserved = 0;
13050 esym.ifd = ifdNil;
13051 esym.asym.iss = issNil;
13052 esym.asym.st = stLocal;
13053 esym.asym.reserved = 0;
13054 esym.asym.index = indexNil;
13055 last = 0;
13056 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13057 {
13058 esym.asym.sc = sc[i];
13059 s = bfd_get_section_by_name (abfd, secname[i]);
13060 if (s != NULL)
13061 {
13062 esym.asym.value = s->vma;
13063 last = s->vma + s->size;
13064 }
13065 else
13066 esym.asym.value = last;
13067 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13068 secname[i], &esym))
13069 return FALSE;
13070 }
13071
13072 for (p = o->map_head.link_order; p != NULL; p = p->next)
13073 {
13074 asection *input_section;
13075 bfd *input_bfd;
13076 const struct ecoff_debug_swap *input_swap;
13077 struct ecoff_debug_info input_debug;
13078 char *eraw_src;
13079 char *eraw_end;
13080
13081 if (p->type != bfd_indirect_link_order)
13082 {
13083 if (p->type == bfd_data_link_order)
13084 continue;
13085 abort ();
13086 }
13087
13088 input_section = p->u.indirect.section;
13089 input_bfd = input_section->owner;
13090
13091 if (!is_mips_elf (input_bfd))
13092 {
13093 /* I don't know what a non MIPS ELF bfd would be
13094 doing with a .mdebug section, but I don't really
13095 want to deal with it. */
13096 continue;
13097 }
13098
13099 input_swap = (get_elf_backend_data (input_bfd)
13100 ->elf_backend_ecoff_debug_swap);
13101
13102 BFD_ASSERT (p->size == input_section->size);
13103
13104 /* The ECOFF linking code expects that we have already
13105 read in the debugging information and set up an
13106 ecoff_debug_info structure, so we do that now. */
13107 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13108 &input_debug))
13109 return FALSE;
13110
13111 if (! (bfd_ecoff_debug_accumulate
13112 (mdebug_handle, abfd, &debug, swap, input_bfd,
13113 &input_debug, input_swap, info)))
13114 return FALSE;
13115
13116 /* Loop through the external symbols. For each one with
13117 interesting information, try to find the symbol in
13118 the linker global hash table and save the information
13119 for the output external symbols. */
13120 eraw_src = input_debug.external_ext;
13121 eraw_end = (eraw_src
13122 + (input_debug.symbolic_header.iextMax
13123 * input_swap->external_ext_size));
13124 for (;
13125 eraw_src < eraw_end;
13126 eraw_src += input_swap->external_ext_size)
13127 {
13128 EXTR ext;
13129 const char *name;
13130 struct mips_elf_link_hash_entry *h;
13131
13132 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13133 if (ext.asym.sc == scNil
13134 || ext.asym.sc == scUndefined
13135 || ext.asym.sc == scSUndefined)
13136 continue;
13137
13138 name = input_debug.ssext + ext.asym.iss;
13139 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13140 name, FALSE, FALSE, TRUE);
13141 if (h == NULL || h->esym.ifd != -2)
13142 continue;
13143
13144 if (ext.ifd != -1)
13145 {
13146 BFD_ASSERT (ext.ifd
13147 < input_debug.symbolic_header.ifdMax);
13148 ext.ifd = input_debug.ifdmap[ext.ifd];
13149 }
13150
13151 h->esym = ext;
13152 }
13153
13154 /* Free up the information we just read. */
13155 free (input_debug.line);
13156 free (input_debug.external_dnr);
13157 free (input_debug.external_pdr);
13158 free (input_debug.external_sym);
13159 free (input_debug.external_opt);
13160 free (input_debug.external_aux);
13161 free (input_debug.ss);
13162 free (input_debug.ssext);
13163 free (input_debug.external_fdr);
13164 free (input_debug.external_rfd);
13165 free (input_debug.external_ext);
13166
13167 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13168 elf_link_input_bfd ignores this section. */
13169 input_section->flags &= ~SEC_HAS_CONTENTS;
13170 }
13171
13172 if (SGI_COMPAT (abfd) && info->shared)
13173 {
13174 /* Create .rtproc section. */
13175 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13176 if (rtproc_sec == NULL)
13177 {
13178 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13179 | SEC_LINKER_CREATED | SEC_READONLY);
13180
13181 rtproc_sec = bfd_make_section_with_flags (abfd,
13182 ".rtproc",
13183 flags);
13184 if (rtproc_sec == NULL
13185 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13186 return FALSE;
13187 }
13188
13189 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13190 info, rtproc_sec,
13191 &debug))
13192 return FALSE;
13193 }
13194
13195 /* Build the external symbol information. */
13196 einfo.abfd = abfd;
13197 einfo.info = info;
13198 einfo.debug = &debug;
13199 einfo.swap = swap;
13200 einfo.failed = FALSE;
13201 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13202 mips_elf_output_extsym, &einfo);
13203 if (einfo.failed)
13204 return FALSE;
13205
13206 /* Set the size of the .mdebug section. */
13207 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13208
13209 /* Skip this section later on (I don't think this currently
13210 matters, but someday it might). */
13211 o->map_head.link_order = NULL;
13212
13213 mdebug_sec = o;
13214 }
13215
13216 if (CONST_STRNEQ (o->name, ".gptab."))
13217 {
13218 const char *subname;
13219 unsigned int c;
13220 Elf32_gptab *tab;
13221 Elf32_External_gptab *ext_tab;
13222 unsigned int j;
13223
13224 /* The .gptab.sdata and .gptab.sbss sections hold
13225 information describing how the small data area would
13226 change depending upon the -G switch. These sections
13227 not used in executables files. */
13228 if (! info->relocatable)
13229 {
13230 for (p = o->map_head.link_order; p != NULL; p = p->next)
13231 {
13232 asection *input_section;
13233
13234 if (p->type != bfd_indirect_link_order)
13235 {
13236 if (p->type == bfd_data_link_order)
13237 continue;
13238 abort ();
13239 }
13240
13241 input_section = p->u.indirect.section;
13242
13243 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13244 elf_link_input_bfd ignores this section. */
13245 input_section->flags &= ~SEC_HAS_CONTENTS;
13246 }
13247
13248 /* Skip this section later on (I don't think this
13249 currently matters, but someday it might). */
13250 o->map_head.link_order = NULL;
13251
13252 /* Really remove the section. */
13253 bfd_section_list_remove (abfd, o);
13254 --abfd->section_count;
13255
13256 continue;
13257 }
13258
13259 /* There is one gptab for initialized data, and one for
13260 uninitialized data. */
13261 if (strcmp (o->name, ".gptab.sdata") == 0)
13262 gptab_data_sec = o;
13263 else if (strcmp (o->name, ".gptab.sbss") == 0)
13264 gptab_bss_sec = o;
13265 else
13266 {
13267 (*_bfd_error_handler)
13268 (_("%s: illegal section name `%s'"),
13269 bfd_get_filename (abfd), o->name);
13270 bfd_set_error (bfd_error_nonrepresentable_section);
13271 return FALSE;
13272 }
13273
13274 /* The linker script always combines .gptab.data and
13275 .gptab.sdata into .gptab.sdata, and likewise for
13276 .gptab.bss and .gptab.sbss. It is possible that there is
13277 no .sdata or .sbss section in the output file, in which
13278 case we must change the name of the output section. */
13279 subname = o->name + sizeof ".gptab" - 1;
13280 if (bfd_get_section_by_name (abfd, subname) == NULL)
13281 {
13282 if (o == gptab_data_sec)
13283 o->name = ".gptab.data";
13284 else
13285 o->name = ".gptab.bss";
13286 subname = o->name + sizeof ".gptab" - 1;
13287 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13288 }
13289
13290 /* Set up the first entry. */
13291 c = 1;
13292 amt = c * sizeof (Elf32_gptab);
13293 tab = bfd_malloc (amt);
13294 if (tab == NULL)
13295 return FALSE;
13296 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13297 tab[0].gt_header.gt_unused = 0;
13298
13299 /* Combine the input sections. */
13300 for (p = o->map_head.link_order; p != NULL; p = p->next)
13301 {
13302 asection *input_section;
13303 bfd *input_bfd;
13304 bfd_size_type size;
13305 unsigned long last;
13306 bfd_size_type gpentry;
13307
13308 if (p->type != bfd_indirect_link_order)
13309 {
13310 if (p->type == bfd_data_link_order)
13311 continue;
13312 abort ();
13313 }
13314
13315 input_section = p->u.indirect.section;
13316 input_bfd = input_section->owner;
13317
13318 /* Combine the gptab entries for this input section one
13319 by one. We know that the input gptab entries are
13320 sorted by ascending -G value. */
13321 size = input_section->size;
13322 last = 0;
13323 for (gpentry = sizeof (Elf32_External_gptab);
13324 gpentry < size;
13325 gpentry += sizeof (Elf32_External_gptab))
13326 {
13327 Elf32_External_gptab ext_gptab;
13328 Elf32_gptab int_gptab;
13329 unsigned long val;
13330 unsigned long add;
13331 bfd_boolean exact;
13332 unsigned int look;
13333
13334 if (! (bfd_get_section_contents
13335 (input_bfd, input_section, &ext_gptab, gpentry,
13336 sizeof (Elf32_External_gptab))))
13337 {
13338 free (tab);
13339 return FALSE;
13340 }
13341
13342 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13343 &int_gptab);
13344 val = int_gptab.gt_entry.gt_g_value;
13345 add = int_gptab.gt_entry.gt_bytes - last;
13346
13347 exact = FALSE;
13348 for (look = 1; look < c; look++)
13349 {
13350 if (tab[look].gt_entry.gt_g_value >= val)
13351 tab[look].gt_entry.gt_bytes += add;
13352
13353 if (tab[look].gt_entry.gt_g_value == val)
13354 exact = TRUE;
13355 }
13356
13357 if (! exact)
13358 {
13359 Elf32_gptab *new_tab;
13360 unsigned int max;
13361
13362 /* We need a new table entry. */
13363 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
13364 new_tab = bfd_realloc (tab, amt);
13365 if (new_tab == NULL)
13366 {
13367 free (tab);
13368 return FALSE;
13369 }
13370 tab = new_tab;
13371 tab[c].gt_entry.gt_g_value = val;
13372 tab[c].gt_entry.gt_bytes = add;
13373
13374 /* Merge in the size for the next smallest -G
13375 value, since that will be implied by this new
13376 value. */
13377 max = 0;
13378 for (look = 1; look < c; look++)
13379 {
13380 if (tab[look].gt_entry.gt_g_value < val
13381 && (max == 0
13382 || (tab[look].gt_entry.gt_g_value
13383 > tab[max].gt_entry.gt_g_value)))
13384 max = look;
13385 }
13386 if (max != 0)
13387 tab[c].gt_entry.gt_bytes +=
13388 tab[max].gt_entry.gt_bytes;
13389
13390 ++c;
13391 }
13392
13393 last = int_gptab.gt_entry.gt_bytes;
13394 }
13395
13396 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13397 elf_link_input_bfd ignores this section. */
13398 input_section->flags &= ~SEC_HAS_CONTENTS;
13399 }
13400
13401 /* The table must be sorted by -G value. */
13402 if (c > 2)
13403 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13404
13405 /* Swap out the table. */
13406 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
13407 ext_tab = bfd_alloc (abfd, amt);
13408 if (ext_tab == NULL)
13409 {
13410 free (tab);
13411 return FALSE;
13412 }
13413
13414 for (j = 0; j < c; j++)
13415 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13416 free (tab);
13417
13418 o->size = c * sizeof (Elf32_External_gptab);
13419 o->contents = (bfd_byte *) ext_tab;
13420
13421 /* Skip this section later on (I don't think this currently
13422 matters, but someday it might). */
13423 o->map_head.link_order = NULL;
13424 }
13425 }
13426
13427 /* Invoke the regular ELF backend linker to do all the work. */
13428 if (!bfd_elf_final_link (abfd, info))
13429 return FALSE;
13430
13431 /* Now write out the computed sections. */
13432
13433 if (reginfo_sec != NULL)
13434 {
13435 Elf32_External_RegInfo ext;
13436
13437 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
13438 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
13439 return FALSE;
13440 }
13441
13442 if (mdebug_sec != NULL)
13443 {
13444 BFD_ASSERT (abfd->output_has_begun);
13445 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13446 swap, info,
13447 mdebug_sec->filepos))
13448 return FALSE;
13449
13450 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13451 }
13452
13453 if (gptab_data_sec != NULL)
13454 {
13455 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13456 gptab_data_sec->contents,
13457 0, gptab_data_sec->size))
13458 return FALSE;
13459 }
13460
13461 if (gptab_bss_sec != NULL)
13462 {
13463 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13464 gptab_bss_sec->contents,
13465 0, gptab_bss_sec->size))
13466 return FALSE;
13467 }
13468
13469 if (SGI_COMPAT (abfd))
13470 {
13471 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13472 if (rtproc_sec != NULL)
13473 {
13474 if (! bfd_set_section_contents (abfd, rtproc_sec,
13475 rtproc_sec->contents,
13476 0, rtproc_sec->size))
13477 return FALSE;
13478 }
13479 }
13480
13481 return TRUE;
13482 }
13483 \f
13484 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13485
13486 struct mips_mach_extension {
13487 unsigned long extension, base;
13488 };
13489
13490
13491 /* An array describing how BFD machines relate to one another. The entries
13492 are ordered topologically with MIPS I extensions listed last. */
13493
13494 static const struct mips_mach_extension mips_mach_extensions[] = {
13495 /* MIPS64r2 extensions. */
13496 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13497 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13498 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13499
13500 /* MIPS64 extensions. */
13501 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13502 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13503 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13504 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
13505
13506 /* MIPS V extensions. */
13507 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13508
13509 /* R10000 extensions. */
13510 { bfd_mach_mips12000, bfd_mach_mips10000 },
13511 { bfd_mach_mips14000, bfd_mach_mips10000 },
13512 { bfd_mach_mips16000, bfd_mach_mips10000 },
13513
13514 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13515 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13516 better to allow vr5400 and vr5500 code to be merged anyway, since
13517 many libraries will just use the core ISA. Perhaps we could add
13518 some sort of ASE flag if this ever proves a problem. */
13519 { bfd_mach_mips5500, bfd_mach_mips5400 },
13520 { bfd_mach_mips5400, bfd_mach_mips5000 },
13521
13522 /* MIPS IV extensions. */
13523 { bfd_mach_mips5, bfd_mach_mips8000 },
13524 { bfd_mach_mips10000, bfd_mach_mips8000 },
13525 { bfd_mach_mips5000, bfd_mach_mips8000 },
13526 { bfd_mach_mips7000, bfd_mach_mips8000 },
13527 { bfd_mach_mips9000, bfd_mach_mips8000 },
13528
13529 /* VR4100 extensions. */
13530 { bfd_mach_mips4120, bfd_mach_mips4100 },
13531 { bfd_mach_mips4111, bfd_mach_mips4100 },
13532
13533 /* MIPS III extensions. */
13534 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13535 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13536 { bfd_mach_mips8000, bfd_mach_mips4000 },
13537 { bfd_mach_mips4650, bfd_mach_mips4000 },
13538 { bfd_mach_mips4600, bfd_mach_mips4000 },
13539 { bfd_mach_mips4400, bfd_mach_mips4000 },
13540 { bfd_mach_mips4300, bfd_mach_mips4000 },
13541 { bfd_mach_mips4100, bfd_mach_mips4000 },
13542 { bfd_mach_mips4010, bfd_mach_mips4000 },
13543
13544 /* MIPS32 extensions. */
13545 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13546
13547 /* MIPS II extensions. */
13548 { bfd_mach_mips4000, bfd_mach_mips6000 },
13549 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13550
13551 /* MIPS I extensions. */
13552 { bfd_mach_mips6000, bfd_mach_mips3000 },
13553 { bfd_mach_mips3900, bfd_mach_mips3000 }
13554 };
13555
13556
13557 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13558
13559 static bfd_boolean
13560 mips_mach_extends_p (unsigned long base, unsigned long extension)
13561 {
13562 size_t i;
13563
13564 if (extension == base)
13565 return TRUE;
13566
13567 if (base == bfd_mach_mipsisa32
13568 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13569 return TRUE;
13570
13571 if (base == bfd_mach_mipsisa32r2
13572 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13573 return TRUE;
13574
13575 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
13576 if (extension == mips_mach_extensions[i].extension)
13577 {
13578 extension = mips_mach_extensions[i].base;
13579 if (extension == base)
13580 return TRUE;
13581 }
13582
13583 return FALSE;
13584 }
13585
13586
13587 /* Return true if the given ELF header flags describe a 32-bit binary. */
13588
13589 static bfd_boolean
13590 mips_32bit_flags_p (flagword flags)
13591 {
13592 return ((flags & EF_MIPS_32BITMODE) != 0
13593 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13594 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13595 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13596 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13597 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13598 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13599 }
13600
13601
13602 /* Merge object attributes from IBFD into OBFD. Raise an error if
13603 there are conflicting attributes. */
13604 static bfd_boolean
13605 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13606 {
13607 obj_attribute *in_attr;
13608 obj_attribute *out_attr;
13609
13610 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13611 {
13612 /* This is the first object. Copy the attributes. */
13613 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13614
13615 /* Use the Tag_null value to indicate the attributes have been
13616 initialized. */
13617 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13618
13619 return TRUE;
13620 }
13621
13622 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13623 non-conflicting ones. */
13624 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13625 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13626 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13627 {
13628 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13629 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13630 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13631 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13632 ;
13633 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13634 _bfd_error_handler
13635 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
13636 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13637 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13638 _bfd_error_handler
13639 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
13640 out_attr[Tag_GNU_MIPS_ABI_FP].i);
13641 else
13642 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13643 {
13644 case 1:
13645 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13646 {
13647 case 2:
13648 _bfd_error_handler
13649 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13650 obfd, ibfd);
13651 break;
13652
13653 case 3:
13654 _bfd_error_handler
13655 (_("Warning: %B uses hard float, %B uses soft float"),
13656 obfd, ibfd);
13657 break;
13658
13659 case 4:
13660 _bfd_error_handler
13661 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13662 obfd, ibfd);
13663 break;
13664
13665 default:
13666 abort ();
13667 }
13668 break;
13669
13670 case 2:
13671 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13672 {
13673 case 1:
13674 _bfd_error_handler
13675 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13676 ibfd, obfd);
13677 break;
13678
13679 case 3:
13680 _bfd_error_handler
13681 (_("Warning: %B uses hard float, %B uses soft float"),
13682 obfd, ibfd);
13683 break;
13684
13685 case 4:
13686 _bfd_error_handler
13687 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13688 obfd, ibfd);
13689 break;
13690
13691 default:
13692 abort ();
13693 }
13694 break;
13695
13696 case 3:
13697 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13698 {
13699 case 1:
13700 case 2:
13701 case 4:
13702 _bfd_error_handler
13703 (_("Warning: %B uses hard float, %B uses soft float"),
13704 ibfd, obfd);
13705 break;
13706
13707 default:
13708 abort ();
13709 }
13710 break;
13711
13712 case 4:
13713 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13714 {
13715 case 1:
13716 _bfd_error_handler
13717 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13718 ibfd, obfd);
13719 break;
13720
13721 case 2:
13722 _bfd_error_handler
13723 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13724 ibfd, obfd);
13725 break;
13726
13727 case 3:
13728 _bfd_error_handler
13729 (_("Warning: %B uses hard float, %B uses soft float"),
13730 obfd, ibfd);
13731 break;
13732
13733 default:
13734 abort ();
13735 }
13736 break;
13737
13738 default:
13739 abort ();
13740 }
13741 }
13742
13743 /* Merge Tag_compatibility attributes and any common GNU ones. */
13744 _bfd_elf_merge_object_attributes (ibfd, obfd);
13745
13746 return TRUE;
13747 }
13748
13749 /* Merge backend specific data from an object file to the output
13750 object file when linking. */
13751
13752 bfd_boolean
13753 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
13754 {
13755 flagword old_flags;
13756 flagword new_flags;
13757 bfd_boolean ok;
13758 bfd_boolean null_input_bfd = TRUE;
13759 asection *sec;
13760
13761 /* Check if we have the same endianness. */
13762 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13763 {
13764 (*_bfd_error_handler)
13765 (_("%B: endianness incompatible with that of the selected emulation"),
13766 ibfd);
13767 return FALSE;
13768 }
13769
13770 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
13771 return TRUE;
13772
13773 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13774 {
13775 (*_bfd_error_handler)
13776 (_("%B: ABI is incompatible with that of the selected emulation"),
13777 ibfd);
13778 return FALSE;
13779 }
13780
13781 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13782 return FALSE;
13783
13784 new_flags = elf_elfheader (ibfd)->e_flags;
13785 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13786 old_flags = elf_elfheader (obfd)->e_flags;
13787
13788 if (! elf_flags_init (obfd))
13789 {
13790 elf_flags_init (obfd) = TRUE;
13791 elf_elfheader (obfd)->e_flags = new_flags;
13792 elf_elfheader (obfd)->e_ident[EI_CLASS]
13793 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13794
13795 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
13796 && (bfd_get_arch_info (obfd)->the_default
13797 || mips_mach_extends_p (bfd_get_mach (obfd),
13798 bfd_get_mach (ibfd))))
13799 {
13800 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13801 bfd_get_mach (ibfd)))
13802 return FALSE;
13803 }
13804
13805 return TRUE;
13806 }
13807
13808 /* Check flag compatibility. */
13809
13810 new_flags &= ~EF_MIPS_NOREORDER;
13811 old_flags &= ~EF_MIPS_NOREORDER;
13812
13813 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13814 doesn't seem to matter. */
13815 new_flags &= ~EF_MIPS_XGOT;
13816 old_flags &= ~EF_MIPS_XGOT;
13817
13818 /* MIPSpro generates ucode info in n64 objects. Again, we should
13819 just be able to ignore this. */
13820 new_flags &= ~EF_MIPS_UCODE;
13821 old_flags &= ~EF_MIPS_UCODE;
13822
13823 /* DSOs should only be linked with CPIC code. */
13824 if ((ibfd->flags & DYNAMIC) != 0)
13825 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
13826
13827 if (new_flags == old_flags)
13828 return TRUE;
13829
13830 /* Check to see if the input BFD actually contains any sections.
13831 If not, its flags may not have been initialised either, but it cannot
13832 actually cause any incompatibility. */
13833 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13834 {
13835 /* Ignore synthetic sections and empty .text, .data and .bss sections
13836 which are automatically generated by gas. Also ignore fake
13837 (s)common sections, since merely defining a common symbol does
13838 not affect compatibility. */
13839 if ((sec->flags & SEC_IS_COMMON) == 0
13840 && strcmp (sec->name, ".reginfo")
13841 && strcmp (sec->name, ".mdebug")
13842 && (sec->size != 0
13843 || (strcmp (sec->name, ".text")
13844 && strcmp (sec->name, ".data")
13845 && strcmp (sec->name, ".bss"))))
13846 {
13847 null_input_bfd = FALSE;
13848 break;
13849 }
13850 }
13851 if (null_input_bfd)
13852 return TRUE;
13853
13854 ok = TRUE;
13855
13856 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
13857 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
13858 {
13859 (*_bfd_error_handler)
13860 (_("%B: warning: linking abicalls files with non-abicalls files"),
13861 ibfd);
13862 ok = TRUE;
13863 }
13864
13865 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
13866 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
13867 if (! (new_flags & EF_MIPS_PIC))
13868 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
13869
13870 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13871 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13872
13873 /* Compare the ISAs. */
13874 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
13875 {
13876 (*_bfd_error_handler)
13877 (_("%B: linking 32-bit code with 64-bit code"),
13878 ibfd);
13879 ok = FALSE;
13880 }
13881 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
13882 {
13883 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
13884 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
13885 {
13886 /* Copy the architecture info from IBFD to OBFD. Also copy
13887 the 32-bit flag (if set) so that we continue to recognise
13888 OBFD as a 32-bit binary. */
13889 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
13890 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
13891 elf_elfheader (obfd)->e_flags
13892 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13893
13894 /* Copy across the ABI flags if OBFD doesn't use them
13895 and if that was what caused us to treat IBFD as 32-bit. */
13896 if ((old_flags & EF_MIPS_ABI) == 0
13897 && mips_32bit_flags_p (new_flags)
13898 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
13899 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
13900 }
13901 else
13902 {
13903 /* The ISAs aren't compatible. */
13904 (*_bfd_error_handler)
13905 (_("%B: linking %s module with previous %s modules"),
13906 ibfd,
13907 bfd_printable_name (ibfd),
13908 bfd_printable_name (obfd));
13909 ok = FALSE;
13910 }
13911 }
13912
13913 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13914 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13915
13916 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
13917 does set EI_CLASS differently from any 32-bit ABI. */
13918 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
13919 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
13920 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
13921 {
13922 /* Only error if both are set (to different values). */
13923 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
13924 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
13925 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
13926 {
13927 (*_bfd_error_handler)
13928 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
13929 ibfd,
13930 elf_mips_abi_name (ibfd),
13931 elf_mips_abi_name (obfd));
13932 ok = FALSE;
13933 }
13934 new_flags &= ~EF_MIPS_ABI;
13935 old_flags &= ~EF_MIPS_ABI;
13936 }
13937
13938 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
13939 and allow arbitrary mixing of the remaining ASEs (retain the union). */
13940 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
13941 {
13942 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
13943 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
13944 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
13945 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
13946 int micro_mis = old_m16 && new_micro;
13947 int m16_mis = old_micro && new_m16;
13948
13949 if (m16_mis || micro_mis)
13950 {
13951 (*_bfd_error_handler)
13952 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
13953 ibfd,
13954 m16_mis ? "MIPS16" : "microMIPS",
13955 m16_mis ? "microMIPS" : "MIPS16");
13956 ok = FALSE;
13957 }
13958
13959 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
13960
13961 new_flags &= ~ EF_MIPS_ARCH_ASE;
13962 old_flags &= ~ EF_MIPS_ARCH_ASE;
13963 }
13964
13965 /* Warn about any other mismatches */
13966 if (new_flags != old_flags)
13967 {
13968 (*_bfd_error_handler)
13969 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
13970 ibfd, (unsigned long) new_flags,
13971 (unsigned long) old_flags);
13972 ok = FALSE;
13973 }
13974
13975 if (! ok)
13976 {
13977 bfd_set_error (bfd_error_bad_value);
13978 return FALSE;
13979 }
13980
13981 return TRUE;
13982 }
13983
13984 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
13985
13986 bfd_boolean
13987 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
13988 {
13989 BFD_ASSERT (!elf_flags_init (abfd)
13990 || elf_elfheader (abfd)->e_flags == flags);
13991
13992 elf_elfheader (abfd)->e_flags = flags;
13993 elf_flags_init (abfd) = TRUE;
13994 return TRUE;
13995 }
13996
13997 char *
13998 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
13999 {
14000 switch (dtag)
14001 {
14002 default: return "";
14003 case DT_MIPS_RLD_VERSION:
14004 return "MIPS_RLD_VERSION";
14005 case DT_MIPS_TIME_STAMP:
14006 return "MIPS_TIME_STAMP";
14007 case DT_MIPS_ICHECKSUM:
14008 return "MIPS_ICHECKSUM";
14009 case DT_MIPS_IVERSION:
14010 return "MIPS_IVERSION";
14011 case DT_MIPS_FLAGS:
14012 return "MIPS_FLAGS";
14013 case DT_MIPS_BASE_ADDRESS:
14014 return "MIPS_BASE_ADDRESS";
14015 case DT_MIPS_MSYM:
14016 return "MIPS_MSYM";
14017 case DT_MIPS_CONFLICT:
14018 return "MIPS_CONFLICT";
14019 case DT_MIPS_LIBLIST:
14020 return "MIPS_LIBLIST";
14021 case DT_MIPS_LOCAL_GOTNO:
14022 return "MIPS_LOCAL_GOTNO";
14023 case DT_MIPS_CONFLICTNO:
14024 return "MIPS_CONFLICTNO";
14025 case DT_MIPS_LIBLISTNO:
14026 return "MIPS_LIBLISTNO";
14027 case DT_MIPS_SYMTABNO:
14028 return "MIPS_SYMTABNO";
14029 case DT_MIPS_UNREFEXTNO:
14030 return "MIPS_UNREFEXTNO";
14031 case DT_MIPS_GOTSYM:
14032 return "MIPS_GOTSYM";
14033 case DT_MIPS_HIPAGENO:
14034 return "MIPS_HIPAGENO";
14035 case DT_MIPS_RLD_MAP:
14036 return "MIPS_RLD_MAP";
14037 case DT_MIPS_DELTA_CLASS:
14038 return "MIPS_DELTA_CLASS";
14039 case DT_MIPS_DELTA_CLASS_NO:
14040 return "MIPS_DELTA_CLASS_NO";
14041 case DT_MIPS_DELTA_INSTANCE:
14042 return "MIPS_DELTA_INSTANCE";
14043 case DT_MIPS_DELTA_INSTANCE_NO:
14044 return "MIPS_DELTA_INSTANCE_NO";
14045 case DT_MIPS_DELTA_RELOC:
14046 return "MIPS_DELTA_RELOC";
14047 case DT_MIPS_DELTA_RELOC_NO:
14048 return "MIPS_DELTA_RELOC_NO";
14049 case DT_MIPS_DELTA_SYM:
14050 return "MIPS_DELTA_SYM";
14051 case DT_MIPS_DELTA_SYM_NO:
14052 return "MIPS_DELTA_SYM_NO";
14053 case DT_MIPS_DELTA_CLASSSYM:
14054 return "MIPS_DELTA_CLASSSYM";
14055 case DT_MIPS_DELTA_CLASSSYM_NO:
14056 return "MIPS_DELTA_CLASSSYM_NO";
14057 case DT_MIPS_CXX_FLAGS:
14058 return "MIPS_CXX_FLAGS";
14059 case DT_MIPS_PIXIE_INIT:
14060 return "MIPS_PIXIE_INIT";
14061 case DT_MIPS_SYMBOL_LIB:
14062 return "MIPS_SYMBOL_LIB";
14063 case DT_MIPS_LOCALPAGE_GOTIDX:
14064 return "MIPS_LOCALPAGE_GOTIDX";
14065 case DT_MIPS_LOCAL_GOTIDX:
14066 return "MIPS_LOCAL_GOTIDX";
14067 case DT_MIPS_HIDDEN_GOTIDX:
14068 return "MIPS_HIDDEN_GOTIDX";
14069 case DT_MIPS_PROTECTED_GOTIDX:
14070 return "MIPS_PROTECTED_GOT_IDX";
14071 case DT_MIPS_OPTIONS:
14072 return "MIPS_OPTIONS";
14073 case DT_MIPS_INTERFACE:
14074 return "MIPS_INTERFACE";
14075 case DT_MIPS_DYNSTR_ALIGN:
14076 return "DT_MIPS_DYNSTR_ALIGN";
14077 case DT_MIPS_INTERFACE_SIZE:
14078 return "DT_MIPS_INTERFACE_SIZE";
14079 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14080 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14081 case DT_MIPS_PERF_SUFFIX:
14082 return "DT_MIPS_PERF_SUFFIX";
14083 case DT_MIPS_COMPACT_SIZE:
14084 return "DT_MIPS_COMPACT_SIZE";
14085 case DT_MIPS_GP_VALUE:
14086 return "DT_MIPS_GP_VALUE";
14087 case DT_MIPS_AUX_DYNAMIC:
14088 return "DT_MIPS_AUX_DYNAMIC";
14089 case DT_MIPS_PLTGOT:
14090 return "DT_MIPS_PLTGOT";
14091 case DT_MIPS_RWPLT:
14092 return "DT_MIPS_RWPLT";
14093 }
14094 }
14095
14096 bfd_boolean
14097 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14098 {
14099 FILE *file = ptr;
14100
14101 BFD_ASSERT (abfd != NULL && ptr != NULL);
14102
14103 /* Print normal ELF private data. */
14104 _bfd_elf_print_private_bfd_data (abfd, ptr);
14105
14106 /* xgettext:c-format */
14107 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14108
14109 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14110 fprintf (file, _(" [abi=O32]"));
14111 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14112 fprintf (file, _(" [abi=O64]"));
14113 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14114 fprintf (file, _(" [abi=EABI32]"));
14115 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14116 fprintf (file, _(" [abi=EABI64]"));
14117 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14118 fprintf (file, _(" [abi unknown]"));
14119 else if (ABI_N32_P (abfd))
14120 fprintf (file, _(" [abi=N32]"));
14121 else if (ABI_64_P (abfd))
14122 fprintf (file, _(" [abi=64]"));
14123 else
14124 fprintf (file, _(" [no abi set]"));
14125
14126 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14127 fprintf (file, " [mips1]");
14128 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14129 fprintf (file, " [mips2]");
14130 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14131 fprintf (file, " [mips3]");
14132 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14133 fprintf (file, " [mips4]");
14134 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14135 fprintf (file, " [mips5]");
14136 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14137 fprintf (file, " [mips32]");
14138 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14139 fprintf (file, " [mips64]");
14140 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14141 fprintf (file, " [mips32r2]");
14142 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14143 fprintf (file, " [mips64r2]");
14144 else
14145 fprintf (file, _(" [unknown ISA]"));
14146
14147 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14148 fprintf (file, " [mdmx]");
14149
14150 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14151 fprintf (file, " [mips16]");
14152
14153 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14154 fprintf (file, " [micromips]");
14155
14156 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14157 fprintf (file, " [32bitmode]");
14158 else
14159 fprintf (file, _(" [not 32bitmode]"));
14160
14161 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
14162 fprintf (file, " [noreorder]");
14163
14164 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
14165 fprintf (file, " [PIC]");
14166
14167 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
14168 fprintf (file, " [CPIC]");
14169
14170 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
14171 fprintf (file, " [XGOT]");
14172
14173 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
14174 fprintf (file, " [UCODE]");
14175
14176 fputc ('\n', file);
14177
14178 return TRUE;
14179 }
14180
14181 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
14182 {
14183 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14184 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14185 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14186 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14187 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14188 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14189 { NULL, 0, 0, 0, 0 }
14190 };
14191
14192 /* Merge non visibility st_other attributes. Ensure that the
14193 STO_OPTIONAL flag is copied into h->other, even if this is not a
14194 definiton of the symbol. */
14195 void
14196 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14197 const Elf_Internal_Sym *isym,
14198 bfd_boolean definition,
14199 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14200 {
14201 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14202 {
14203 unsigned char other;
14204
14205 other = (definition ? isym->st_other : h->other);
14206 other &= ~ELF_ST_VISIBILITY (-1);
14207 h->other = other | ELF_ST_VISIBILITY (h->other);
14208 }
14209
14210 if (!definition
14211 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14212 h->other |= STO_OPTIONAL;
14213 }
14214
14215 /* Decide whether an undefined symbol is special and can be ignored.
14216 This is the case for OPTIONAL symbols on IRIX. */
14217 bfd_boolean
14218 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14219 {
14220 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14221 }
14222
14223 bfd_boolean
14224 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14225 {
14226 return (sym->st_shndx == SHN_COMMON
14227 || sym->st_shndx == SHN_MIPS_ACOMMON
14228 || sym->st_shndx == SHN_MIPS_SCOMMON);
14229 }
14230
14231 /* Return address for Ith PLT stub in section PLT, for relocation REL
14232 or (bfd_vma) -1 if it should not be included. */
14233
14234 bfd_vma
14235 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14236 const arelent *rel ATTRIBUTE_UNUSED)
14237 {
14238 return (plt->vma
14239 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14240 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14241 }
14242
14243 void
14244 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14245 {
14246 struct mips_elf_link_hash_table *htab;
14247 Elf_Internal_Ehdr *i_ehdrp;
14248
14249 i_ehdrp = elf_elfheader (abfd);
14250 if (link_info)
14251 {
14252 htab = mips_elf_hash_table (link_info);
14253 BFD_ASSERT (htab != NULL);
14254
14255 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14256 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14257 }
14258 }
This page took 0.323304 seconds and 4 git commands to generate.