2007-08-04 Michael Snyder <msnyder@access-company.com>
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29
30 /* This file handles functionality common to the different MIPS ABI's. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libbfd.h"
35 #include "libiberty.h"
36 #include "elf-bfd.h"
37 #include "elfxx-mips.h"
38 #include "elf/mips.h"
39 #include "elf-vxworks.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
51
52 (1) absolute addresses
53 (abfd == NULL)
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) global and forced-local symbols
57 (abfd != NULL, symndx == -1)
58
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
65
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
70
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
74 GOT index.
75
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
82 struct mips_got_entry
83 {
84 /* The input bfd in which the symbol is defined. */
85 bfd *abfd;
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
88 long symndx;
89 union
90 {
91 /* If abfd == NULL, an address that must be stored in the got. */
92 bfd_vma address;
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
95 bfd_vma addend;
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to a global symbol in the got (or, local, if
98 h->forced_local). */
99 struct mips_elf_link_hash_entry *h;
100 } d;
101
102 /* The TLS types included in this GOT entry (specifically, GD and
103 IE). The GD and IE flags can be added as we encounter new
104 relocations. LDM can also be set; it will always be alone, not
105 combined with any GD or IE flags. An LDM GOT entry will be
106 a local symbol entry with r_symndx == 0. */
107 unsigned char tls_type;
108
109 /* The offset from the beginning of the .got section to the entry
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
112 long gotidx;
113 };
114
115 /* This structure is used to hold .got information when linking. */
116
117 struct mips_got_info
118 {
119 /* The global symbol in the GOT with the lowest index in the dynamic
120 symbol table. */
121 struct elf_link_hash_entry *global_gotsym;
122 /* The number of global .got entries. */
123 unsigned int global_gotno;
124 /* The number of .got slots used for TLS. */
125 unsigned int tls_gotno;
126 /* The first unused TLS .got entry. Used only during
127 mips_elf_initialize_tls_index. */
128 unsigned int tls_assigned_gotno;
129 /* The number of local .got entries. */
130 unsigned int local_gotno;
131 /* The number of local .got entries we have used. */
132 unsigned int assigned_gotno;
133 /* A hash table holding members of the got. */
134 struct htab *got_entries;
135 /* A hash table mapping input bfds to other mips_got_info. NULL
136 unless multi-got was necessary. */
137 struct htab *bfd2got;
138 /* In multi-got links, a pointer to the next got (err, rather, most
139 of the time, it points to the previous got). */
140 struct mips_got_info *next;
141 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
142 for none, or MINUS_TWO for not yet assigned. This is needed
143 because a single-GOT link may have multiple hash table entries
144 for the LDM. It does not get initialized in multi-GOT mode. */
145 bfd_vma tls_ldm_offset;
146 };
147
148 /* Map an input bfd to a got in a multi-got link. */
149
150 struct mips_elf_bfd2got_hash {
151 bfd *bfd;
152 struct mips_got_info *g;
153 };
154
155 /* Structure passed when traversing the bfd2got hash table, used to
156 create and merge bfd's gots. */
157
158 struct mips_elf_got_per_bfd_arg
159 {
160 /* A hashtable that maps bfds to gots. */
161 htab_t bfd2got;
162 /* The output bfd. */
163 bfd *obfd;
164 /* The link information. */
165 struct bfd_link_info *info;
166 /* A pointer to the primary got, i.e., the one that's going to get
167 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
168 DT_MIPS_GOTSYM. */
169 struct mips_got_info *primary;
170 /* A non-primary got we're trying to merge with other input bfd's
171 gots. */
172 struct mips_got_info *current;
173 /* The maximum number of got entries that can be addressed with a
174 16-bit offset. */
175 unsigned int max_count;
176 /* The number of local and global entries in the primary got. */
177 unsigned int primary_count;
178 /* The number of local and global entries in the current got. */
179 unsigned int current_count;
180 /* The total number of global entries which will live in the
181 primary got and be automatically relocated. This includes
182 those not referenced by the primary GOT but included in
183 the "master" GOT. */
184 unsigned int global_count;
185 };
186
187 /* Another structure used to pass arguments for got entries traversal. */
188
189 struct mips_elf_set_global_got_offset_arg
190 {
191 struct mips_got_info *g;
192 int value;
193 unsigned int needed_relocs;
194 struct bfd_link_info *info;
195 };
196
197 /* A structure used to count TLS relocations or GOT entries, for GOT
198 entry or ELF symbol table traversal. */
199
200 struct mips_elf_count_tls_arg
201 {
202 struct bfd_link_info *info;
203 unsigned int needed;
204 };
205
206 struct _mips_elf_section_data
207 {
208 struct bfd_elf_section_data elf;
209 union
210 {
211 struct mips_got_info *got_info;
212 bfd_byte *tdata;
213 } u;
214 };
215
216 #define mips_elf_section_data(sec) \
217 ((struct _mips_elf_section_data *) elf_section_data (sec))
218
219 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
220 the dynamic symbols. */
221
222 struct mips_elf_hash_sort_data
223 {
224 /* The symbol in the global GOT with the lowest dynamic symbol table
225 index. */
226 struct elf_link_hash_entry *low;
227 /* The least dynamic symbol table index corresponding to a non-TLS
228 symbol with a GOT entry. */
229 long min_got_dynindx;
230 /* The greatest dynamic symbol table index corresponding to a symbol
231 with a GOT entry that is not referenced (e.g., a dynamic symbol
232 with dynamic relocations pointing to it from non-primary GOTs). */
233 long max_unref_got_dynindx;
234 /* The greatest dynamic symbol table index not corresponding to a
235 symbol without a GOT entry. */
236 long max_non_got_dynindx;
237 };
238
239 /* The MIPS ELF linker needs additional information for each symbol in
240 the global hash table. */
241
242 struct mips_elf_link_hash_entry
243 {
244 struct elf_link_hash_entry root;
245
246 /* External symbol information. */
247 EXTR esym;
248
249 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
250 this symbol. */
251 unsigned int possibly_dynamic_relocs;
252
253 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
254 a readonly section. */
255 bfd_boolean readonly_reloc;
256
257 /* We must not create a stub for a symbol that has relocations
258 related to taking the function's address, i.e. any but
259 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
260 p. 4-20. */
261 bfd_boolean no_fn_stub;
262
263 /* If there is a stub that 32 bit functions should use to call this
264 16 bit function, this points to the section containing the stub. */
265 asection *fn_stub;
266
267 /* Whether we need the fn_stub; this is set if this symbol appears
268 in any relocs other than a 16 bit call. */
269 bfd_boolean need_fn_stub;
270
271 /* If there is a stub that 16 bit functions should use to call this
272 32 bit function, this points to the section containing the stub. */
273 asection *call_stub;
274
275 /* This is like the call_stub field, but it is used if the function
276 being called returns a floating point value. */
277 asection *call_fp_stub;
278
279 /* Are we forced local? This will only be set if we have converted
280 the initial global GOT entry to a local GOT entry. */
281 bfd_boolean forced_local;
282
283 /* Are we referenced by some kind of relocation? */
284 bfd_boolean is_relocation_target;
285
286 /* Are we referenced by branch relocations? */
287 bfd_boolean is_branch_target;
288
289 #define GOT_NORMAL 0
290 #define GOT_TLS_GD 1
291 #define GOT_TLS_LDM 2
292 #define GOT_TLS_IE 4
293 #define GOT_TLS_OFFSET_DONE 0x40
294 #define GOT_TLS_DONE 0x80
295 unsigned char tls_type;
296 /* This is only used in single-GOT mode; in multi-GOT mode there
297 is one mips_got_entry per GOT entry, so the offset is stored
298 there. In single-GOT mode there may be many mips_got_entry
299 structures all referring to the same GOT slot. It might be
300 possible to use root.got.offset instead, but that field is
301 overloaded already. */
302 bfd_vma tls_got_offset;
303 };
304
305 /* MIPS ELF linker hash table. */
306
307 struct mips_elf_link_hash_table
308 {
309 struct elf_link_hash_table root;
310 #if 0
311 /* We no longer use this. */
312 /* String section indices for the dynamic section symbols. */
313 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
314 #endif
315 /* The number of .rtproc entries. */
316 bfd_size_type procedure_count;
317 /* The size of the .compact_rel section (if SGI_COMPAT). */
318 bfd_size_type compact_rel_size;
319 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
320 entry is set to the address of __rld_obj_head as in IRIX5. */
321 bfd_boolean use_rld_obj_head;
322 /* This is the value of the __rld_map or __rld_obj_head symbol. */
323 bfd_vma rld_value;
324 /* This is set if we see any mips16 stub sections. */
325 bfd_boolean mips16_stubs_seen;
326 /* True if we're generating code for VxWorks. */
327 bfd_boolean is_vxworks;
328 /* True if we already reported the small-data section overflow. */
329 bfd_boolean small_data_overflow_reported;
330 /* Shortcuts to some dynamic sections, or NULL if they are not
331 being used. */
332 asection *srelbss;
333 asection *sdynbss;
334 asection *srelplt;
335 asection *srelplt2;
336 asection *sgotplt;
337 asection *splt;
338 /* The size of the PLT header in bytes (VxWorks only). */
339 bfd_vma plt_header_size;
340 /* The size of a PLT entry in bytes (VxWorks only). */
341 bfd_vma plt_entry_size;
342 /* The size of a function stub entry in bytes. */
343 bfd_vma function_stub_size;
344 };
345
346 #define TLS_RELOC_P(r_type) \
347 (r_type == R_MIPS_TLS_DTPMOD32 \
348 || r_type == R_MIPS_TLS_DTPMOD64 \
349 || r_type == R_MIPS_TLS_DTPREL32 \
350 || r_type == R_MIPS_TLS_DTPREL64 \
351 || r_type == R_MIPS_TLS_GD \
352 || r_type == R_MIPS_TLS_LDM \
353 || r_type == R_MIPS_TLS_DTPREL_HI16 \
354 || r_type == R_MIPS_TLS_DTPREL_LO16 \
355 || r_type == R_MIPS_TLS_GOTTPREL \
356 || r_type == R_MIPS_TLS_TPREL32 \
357 || r_type == R_MIPS_TLS_TPREL64 \
358 || r_type == R_MIPS_TLS_TPREL_HI16 \
359 || r_type == R_MIPS_TLS_TPREL_LO16)
360
361 /* Structure used to pass information to mips_elf_output_extsym. */
362
363 struct extsym_info
364 {
365 bfd *abfd;
366 struct bfd_link_info *info;
367 struct ecoff_debug_info *debug;
368 const struct ecoff_debug_swap *swap;
369 bfd_boolean failed;
370 };
371
372 /* The names of the runtime procedure table symbols used on IRIX5. */
373
374 static const char * const mips_elf_dynsym_rtproc_names[] =
375 {
376 "_procedure_table",
377 "_procedure_string_table",
378 "_procedure_table_size",
379 NULL
380 };
381
382 /* These structures are used to generate the .compact_rel section on
383 IRIX5. */
384
385 typedef struct
386 {
387 unsigned long id1; /* Always one? */
388 unsigned long num; /* Number of compact relocation entries. */
389 unsigned long id2; /* Always two? */
390 unsigned long offset; /* The file offset of the first relocation. */
391 unsigned long reserved0; /* Zero? */
392 unsigned long reserved1; /* Zero? */
393 } Elf32_compact_rel;
394
395 typedef struct
396 {
397 bfd_byte id1[4];
398 bfd_byte num[4];
399 bfd_byte id2[4];
400 bfd_byte offset[4];
401 bfd_byte reserved0[4];
402 bfd_byte reserved1[4];
403 } Elf32_External_compact_rel;
404
405 typedef struct
406 {
407 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
408 unsigned int rtype : 4; /* Relocation types. See below. */
409 unsigned int dist2to : 8;
410 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
411 unsigned long konst; /* KONST field. See below. */
412 unsigned long vaddr; /* VADDR to be relocated. */
413 } Elf32_crinfo;
414
415 typedef struct
416 {
417 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
418 unsigned int rtype : 4; /* Relocation types. See below. */
419 unsigned int dist2to : 8;
420 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
421 unsigned long konst; /* KONST field. See below. */
422 } Elf32_crinfo2;
423
424 typedef struct
425 {
426 bfd_byte info[4];
427 bfd_byte konst[4];
428 bfd_byte vaddr[4];
429 } Elf32_External_crinfo;
430
431 typedef struct
432 {
433 bfd_byte info[4];
434 bfd_byte konst[4];
435 } Elf32_External_crinfo2;
436
437 /* These are the constants used to swap the bitfields in a crinfo. */
438
439 #define CRINFO_CTYPE (0x1)
440 #define CRINFO_CTYPE_SH (31)
441 #define CRINFO_RTYPE (0xf)
442 #define CRINFO_RTYPE_SH (27)
443 #define CRINFO_DIST2TO (0xff)
444 #define CRINFO_DIST2TO_SH (19)
445 #define CRINFO_RELVADDR (0x7ffff)
446 #define CRINFO_RELVADDR_SH (0)
447
448 /* A compact relocation info has long (3 words) or short (2 words)
449 formats. A short format doesn't have VADDR field and relvaddr
450 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
451 #define CRF_MIPS_LONG 1
452 #define CRF_MIPS_SHORT 0
453
454 /* There are 4 types of compact relocation at least. The value KONST
455 has different meaning for each type:
456
457 (type) (konst)
458 CT_MIPS_REL32 Address in data
459 CT_MIPS_WORD Address in word (XXX)
460 CT_MIPS_GPHI_LO GP - vaddr
461 CT_MIPS_JMPAD Address to jump
462 */
463
464 #define CRT_MIPS_REL32 0xa
465 #define CRT_MIPS_WORD 0xb
466 #define CRT_MIPS_GPHI_LO 0xc
467 #define CRT_MIPS_JMPAD 0xd
468
469 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
470 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
471 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
472 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
473 \f
474 /* The structure of the runtime procedure descriptor created by the
475 loader for use by the static exception system. */
476
477 typedef struct runtime_pdr {
478 bfd_vma adr; /* Memory address of start of procedure. */
479 long regmask; /* Save register mask. */
480 long regoffset; /* Save register offset. */
481 long fregmask; /* Save floating point register mask. */
482 long fregoffset; /* Save floating point register offset. */
483 long frameoffset; /* Frame size. */
484 short framereg; /* Frame pointer register. */
485 short pcreg; /* Offset or reg of return pc. */
486 long irpss; /* Index into the runtime string table. */
487 long reserved;
488 struct exception_info *exception_info;/* Pointer to exception array. */
489 } RPDR, *pRPDR;
490 #define cbRPDR sizeof (RPDR)
491 #define rpdNil ((pRPDR) 0)
492 \f
493 static struct mips_got_entry *mips_elf_create_local_got_entry
494 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
495 bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
496 static bfd_boolean mips_elf_sort_hash_table_f
497 (struct mips_elf_link_hash_entry *, void *);
498 static bfd_vma mips_elf_high
499 (bfd_vma);
500 static bfd_boolean mips16_stub_section_p
501 (bfd *, asection *);
502 static bfd_boolean mips_elf_create_dynamic_relocation
503 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
504 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
505 bfd_vma *, asection *);
506 static hashval_t mips_elf_got_entry_hash
507 (const void *);
508 static bfd_vma mips_elf_adjust_gp
509 (bfd *, struct mips_got_info *, bfd *);
510 static struct mips_got_info *mips_elf_got_for_ibfd
511 (struct mips_got_info *, bfd *);
512
513 /* This will be used when we sort the dynamic relocation records. */
514 static bfd *reldyn_sorting_bfd;
515
516 /* Nonzero if ABFD is using the N32 ABI. */
517 #define ABI_N32_P(abfd) \
518 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
519
520 /* Nonzero if ABFD is using the N64 ABI. */
521 #define ABI_64_P(abfd) \
522 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
523
524 /* Nonzero if ABFD is using NewABI conventions. */
525 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
526
527 /* The IRIX compatibility level we are striving for. */
528 #define IRIX_COMPAT(abfd) \
529 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
530
531 /* Whether we are trying to be compatible with IRIX at all. */
532 #define SGI_COMPAT(abfd) \
533 (IRIX_COMPAT (abfd) != ict_none)
534
535 /* The name of the options section. */
536 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
537 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
538
539 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
540 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
541 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
542 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
543
544 /* Whether the section is readonly. */
545 #define MIPS_ELF_READONLY_SECTION(sec) \
546 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
547 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
548
549 /* The name of the stub section. */
550 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
551
552 /* The size of an external REL relocation. */
553 #define MIPS_ELF_REL_SIZE(abfd) \
554 (get_elf_backend_data (abfd)->s->sizeof_rel)
555
556 /* The size of an external RELA relocation. */
557 #define MIPS_ELF_RELA_SIZE(abfd) \
558 (get_elf_backend_data (abfd)->s->sizeof_rela)
559
560 /* The size of an external dynamic table entry. */
561 #define MIPS_ELF_DYN_SIZE(abfd) \
562 (get_elf_backend_data (abfd)->s->sizeof_dyn)
563
564 /* The size of a GOT entry. */
565 #define MIPS_ELF_GOT_SIZE(abfd) \
566 (get_elf_backend_data (abfd)->s->arch_size / 8)
567
568 /* The size of a symbol-table entry. */
569 #define MIPS_ELF_SYM_SIZE(abfd) \
570 (get_elf_backend_data (abfd)->s->sizeof_sym)
571
572 /* The default alignment for sections, as a power of two. */
573 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
574 (get_elf_backend_data (abfd)->s->log_file_align)
575
576 /* Get word-sized data. */
577 #define MIPS_ELF_GET_WORD(abfd, ptr) \
578 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
579
580 /* Put out word-sized data. */
581 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
582 (ABI_64_P (abfd) \
583 ? bfd_put_64 (abfd, val, ptr) \
584 : bfd_put_32 (abfd, val, ptr))
585
586 /* Add a dynamic symbol table-entry. */
587 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
588 _bfd_elf_add_dynamic_entry (info, tag, val)
589
590 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
591 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
592
593 /* Determine whether the internal relocation of index REL_IDX is REL
594 (zero) or RELA (non-zero). The assumption is that, if there are
595 two relocation sections for this section, one of them is REL and
596 the other is RELA. If the index of the relocation we're testing is
597 in range for the first relocation section, check that the external
598 relocation size is that for RELA. It is also assumed that, if
599 rel_idx is not in range for the first section, and this first
600 section contains REL relocs, then the relocation is in the second
601 section, that is RELA. */
602 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
603 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
604 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
605 > (bfd_vma)(rel_idx)) \
606 == (elf_section_data (sec)->rel_hdr.sh_entsize \
607 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
608 : sizeof (Elf32_External_Rela))))
609
610 /* The name of the dynamic relocation section. */
611 #define MIPS_ELF_REL_DYN_NAME(INFO) \
612 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
613
614 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
615 from smaller values. Start with zero, widen, *then* decrement. */
616 #define MINUS_ONE (((bfd_vma)0) - 1)
617 #define MINUS_TWO (((bfd_vma)0) - 2)
618
619 /* The number of local .got entries we reserve. */
620 #define MIPS_RESERVED_GOTNO(INFO) \
621 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
622
623 /* The offset of $gp from the beginning of the .got section. */
624 #define ELF_MIPS_GP_OFFSET(INFO) \
625 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
626
627 /* The maximum size of the GOT for it to be addressable using 16-bit
628 offsets from $gp. */
629 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
630
631 /* Instructions which appear in a stub. */
632 #define STUB_LW(abfd) \
633 ((ABI_64_P (abfd) \
634 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
635 : 0x8f998010)) /* lw t9,0x8010(gp) */
636 #define STUB_MOVE(abfd) \
637 ((ABI_64_P (abfd) \
638 ? 0x03e0782d /* daddu t7,ra */ \
639 : 0x03e07821)) /* addu t7,ra */
640 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
641 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
642 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
643 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
644 #define STUB_LI16S(abfd, VAL) \
645 ((ABI_64_P (abfd) \
646 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
647 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
648
649 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
650 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
651
652 /* The name of the dynamic interpreter. This is put in the .interp
653 section. */
654
655 #define ELF_DYNAMIC_INTERPRETER(abfd) \
656 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
657 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
658 : "/usr/lib/libc.so.1")
659
660 #ifdef BFD64
661 #define MNAME(bfd,pre,pos) \
662 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
663 #define ELF_R_SYM(bfd, i) \
664 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
665 #define ELF_R_TYPE(bfd, i) \
666 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
667 #define ELF_R_INFO(bfd, s, t) \
668 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
669 #else
670 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
671 #define ELF_R_SYM(bfd, i) \
672 (ELF32_R_SYM (i))
673 #define ELF_R_TYPE(bfd, i) \
674 (ELF32_R_TYPE (i))
675 #define ELF_R_INFO(bfd, s, t) \
676 (ELF32_R_INFO (s, t))
677 #endif
678 \f
679 /* The mips16 compiler uses a couple of special sections to handle
680 floating point arguments.
681
682 Section names that look like .mips16.fn.FNNAME contain stubs that
683 copy floating point arguments from the fp regs to the gp regs and
684 then jump to FNNAME. If any 32 bit function calls FNNAME, the
685 call should be redirected to the stub instead. If no 32 bit
686 function calls FNNAME, the stub should be discarded. We need to
687 consider any reference to the function, not just a call, because
688 if the address of the function is taken we will need the stub,
689 since the address might be passed to a 32 bit function.
690
691 Section names that look like .mips16.call.FNNAME contain stubs
692 that copy floating point arguments from the gp regs to the fp
693 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
694 then any 16 bit function that calls FNNAME should be redirected
695 to the stub instead. If FNNAME is not a 32 bit function, the
696 stub should be discarded.
697
698 .mips16.call.fp.FNNAME sections are similar, but contain stubs
699 which call FNNAME and then copy the return value from the fp regs
700 to the gp regs. These stubs store the return value in $18 while
701 calling FNNAME; any function which might call one of these stubs
702 must arrange to save $18 around the call. (This case is not
703 needed for 32 bit functions that call 16 bit functions, because
704 16 bit functions always return floating point values in both
705 $f0/$f1 and $2/$3.)
706
707 Note that in all cases FNNAME might be defined statically.
708 Therefore, FNNAME is not used literally. Instead, the relocation
709 information will indicate which symbol the section is for.
710
711 We record any stubs that we find in the symbol table. */
712
713 #define FN_STUB ".mips16.fn."
714 #define CALL_STUB ".mips16.call."
715 #define CALL_FP_STUB ".mips16.call.fp."
716
717 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
718 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
719 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
720 \f
721 /* The format of the first PLT entry in a VxWorks executable. */
722 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
723 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
724 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
725 0x8f390008, /* lw t9, 8(t9) */
726 0x00000000, /* nop */
727 0x03200008, /* jr t9 */
728 0x00000000 /* nop */
729 };
730
731 /* The format of subsequent PLT entries. */
732 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
733 0x10000000, /* b .PLT_resolver */
734 0x24180000, /* li t8, <pltindex> */
735 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
736 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
737 0x8f390000, /* lw t9, 0(t9) */
738 0x00000000, /* nop */
739 0x03200008, /* jr t9 */
740 0x00000000 /* nop */
741 };
742
743 /* The format of the first PLT entry in a VxWorks shared object. */
744 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
745 0x8f990008, /* lw t9, 8(gp) */
746 0x00000000, /* nop */
747 0x03200008, /* jr t9 */
748 0x00000000, /* nop */
749 0x00000000, /* nop */
750 0x00000000 /* nop */
751 };
752
753 /* The format of subsequent PLT entries. */
754 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
755 0x10000000, /* b .PLT_resolver */
756 0x24180000 /* li t8, <pltindex> */
757 };
758 \f
759 /* Look up an entry in a MIPS ELF linker hash table. */
760
761 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
762 ((struct mips_elf_link_hash_entry *) \
763 elf_link_hash_lookup (&(table)->root, (string), (create), \
764 (copy), (follow)))
765
766 /* Traverse a MIPS ELF linker hash table. */
767
768 #define mips_elf_link_hash_traverse(table, func, info) \
769 (elf_link_hash_traverse \
770 (&(table)->root, \
771 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
772 (info)))
773
774 /* Get the MIPS ELF linker hash table from a link_info structure. */
775
776 #define mips_elf_hash_table(p) \
777 ((struct mips_elf_link_hash_table *) ((p)->hash))
778
779 /* Find the base offsets for thread-local storage in this object,
780 for GD/LD and IE/LE respectively. */
781
782 #define TP_OFFSET 0x7000
783 #define DTP_OFFSET 0x8000
784
785 static bfd_vma
786 dtprel_base (struct bfd_link_info *info)
787 {
788 /* If tls_sec is NULL, we should have signalled an error already. */
789 if (elf_hash_table (info)->tls_sec == NULL)
790 return 0;
791 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
792 }
793
794 static bfd_vma
795 tprel_base (struct bfd_link_info *info)
796 {
797 /* If tls_sec is NULL, we should have signalled an error already. */
798 if (elf_hash_table (info)->tls_sec == NULL)
799 return 0;
800 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
801 }
802
803 /* Create an entry in a MIPS ELF linker hash table. */
804
805 static struct bfd_hash_entry *
806 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
807 struct bfd_hash_table *table, const char *string)
808 {
809 struct mips_elf_link_hash_entry *ret =
810 (struct mips_elf_link_hash_entry *) entry;
811
812 /* Allocate the structure if it has not already been allocated by a
813 subclass. */
814 if (ret == NULL)
815 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
816 if (ret == NULL)
817 return (struct bfd_hash_entry *) ret;
818
819 /* Call the allocation method of the superclass. */
820 ret = ((struct mips_elf_link_hash_entry *)
821 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
822 table, string));
823 if (ret != NULL)
824 {
825 /* Set local fields. */
826 memset (&ret->esym, 0, sizeof (EXTR));
827 /* We use -2 as a marker to indicate that the information has
828 not been set. -1 means there is no associated ifd. */
829 ret->esym.ifd = -2;
830 ret->possibly_dynamic_relocs = 0;
831 ret->readonly_reloc = FALSE;
832 ret->no_fn_stub = FALSE;
833 ret->fn_stub = NULL;
834 ret->need_fn_stub = FALSE;
835 ret->call_stub = NULL;
836 ret->call_fp_stub = NULL;
837 ret->forced_local = FALSE;
838 ret->is_branch_target = FALSE;
839 ret->is_relocation_target = FALSE;
840 ret->tls_type = GOT_NORMAL;
841 }
842
843 return (struct bfd_hash_entry *) ret;
844 }
845
846 bfd_boolean
847 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
848 {
849 if (!sec->used_by_bfd)
850 {
851 struct _mips_elf_section_data *sdata;
852 bfd_size_type amt = sizeof (*sdata);
853
854 sdata = bfd_zalloc (abfd, amt);
855 if (sdata == NULL)
856 return FALSE;
857 sec->used_by_bfd = sdata;
858 }
859
860 return _bfd_elf_new_section_hook (abfd, sec);
861 }
862 \f
863 /* Read ECOFF debugging information from a .mdebug section into a
864 ecoff_debug_info structure. */
865
866 bfd_boolean
867 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
868 struct ecoff_debug_info *debug)
869 {
870 HDRR *symhdr;
871 const struct ecoff_debug_swap *swap;
872 char *ext_hdr;
873
874 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
875 memset (debug, 0, sizeof (*debug));
876
877 ext_hdr = bfd_malloc (swap->external_hdr_size);
878 if (ext_hdr == NULL && swap->external_hdr_size != 0)
879 goto error_return;
880
881 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
882 swap->external_hdr_size))
883 goto error_return;
884
885 symhdr = &debug->symbolic_header;
886 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
887
888 /* The symbolic header contains absolute file offsets and sizes to
889 read. */
890 #define READ(ptr, offset, count, size, type) \
891 if (symhdr->count == 0) \
892 debug->ptr = NULL; \
893 else \
894 { \
895 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
896 debug->ptr = bfd_malloc (amt); \
897 if (debug->ptr == NULL) \
898 goto error_return; \
899 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
900 || bfd_bread (debug->ptr, amt, abfd) != amt) \
901 goto error_return; \
902 }
903
904 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
905 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
906 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
907 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
908 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
909 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
910 union aux_ext *);
911 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
912 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
913 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
914 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
915 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
916 #undef READ
917
918 debug->fdr = NULL;
919
920 return TRUE;
921
922 error_return:
923 if (ext_hdr != NULL)
924 free (ext_hdr);
925 if (debug->line != NULL)
926 free (debug->line);
927 if (debug->external_dnr != NULL)
928 free (debug->external_dnr);
929 if (debug->external_pdr != NULL)
930 free (debug->external_pdr);
931 if (debug->external_sym != NULL)
932 free (debug->external_sym);
933 if (debug->external_opt != NULL)
934 free (debug->external_opt);
935 if (debug->external_aux != NULL)
936 free (debug->external_aux);
937 if (debug->ss != NULL)
938 free (debug->ss);
939 if (debug->ssext != NULL)
940 free (debug->ssext);
941 if (debug->external_fdr != NULL)
942 free (debug->external_fdr);
943 if (debug->external_rfd != NULL)
944 free (debug->external_rfd);
945 if (debug->external_ext != NULL)
946 free (debug->external_ext);
947 return FALSE;
948 }
949 \f
950 /* Swap RPDR (runtime procedure table entry) for output. */
951
952 static void
953 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
954 {
955 H_PUT_S32 (abfd, in->adr, ex->p_adr);
956 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
957 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
958 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
959 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
960 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
961
962 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
963 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
964
965 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
966 }
967
968 /* Create a runtime procedure table from the .mdebug section. */
969
970 static bfd_boolean
971 mips_elf_create_procedure_table (void *handle, bfd *abfd,
972 struct bfd_link_info *info, asection *s,
973 struct ecoff_debug_info *debug)
974 {
975 const struct ecoff_debug_swap *swap;
976 HDRR *hdr = &debug->symbolic_header;
977 RPDR *rpdr, *rp;
978 struct rpdr_ext *erp;
979 void *rtproc;
980 struct pdr_ext *epdr;
981 struct sym_ext *esym;
982 char *ss, **sv;
983 char *str;
984 bfd_size_type size;
985 bfd_size_type count;
986 unsigned long sindex;
987 unsigned long i;
988 PDR pdr;
989 SYMR sym;
990 const char *no_name_func = _("static procedure (no name)");
991
992 epdr = NULL;
993 rpdr = NULL;
994 esym = NULL;
995 ss = NULL;
996 sv = NULL;
997
998 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
999
1000 sindex = strlen (no_name_func) + 1;
1001 count = hdr->ipdMax;
1002 if (count > 0)
1003 {
1004 size = swap->external_pdr_size;
1005
1006 epdr = bfd_malloc (size * count);
1007 if (epdr == NULL)
1008 goto error_return;
1009
1010 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1011 goto error_return;
1012
1013 size = sizeof (RPDR);
1014 rp = rpdr = bfd_malloc (size * count);
1015 if (rpdr == NULL)
1016 goto error_return;
1017
1018 size = sizeof (char *);
1019 sv = bfd_malloc (size * count);
1020 if (sv == NULL)
1021 goto error_return;
1022
1023 count = hdr->isymMax;
1024 size = swap->external_sym_size;
1025 esym = bfd_malloc (size * count);
1026 if (esym == NULL)
1027 goto error_return;
1028
1029 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1030 goto error_return;
1031
1032 count = hdr->issMax;
1033 ss = bfd_malloc (count);
1034 if (ss == NULL)
1035 goto error_return;
1036 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1037 goto error_return;
1038
1039 count = hdr->ipdMax;
1040 for (i = 0; i < (unsigned long) count; i++, rp++)
1041 {
1042 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1043 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1044 rp->adr = sym.value;
1045 rp->regmask = pdr.regmask;
1046 rp->regoffset = pdr.regoffset;
1047 rp->fregmask = pdr.fregmask;
1048 rp->fregoffset = pdr.fregoffset;
1049 rp->frameoffset = pdr.frameoffset;
1050 rp->framereg = pdr.framereg;
1051 rp->pcreg = pdr.pcreg;
1052 rp->irpss = sindex;
1053 sv[i] = ss + sym.iss;
1054 sindex += strlen (sv[i]) + 1;
1055 }
1056 }
1057
1058 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1059 size = BFD_ALIGN (size, 16);
1060 rtproc = bfd_alloc (abfd, size);
1061 if (rtproc == NULL)
1062 {
1063 mips_elf_hash_table (info)->procedure_count = 0;
1064 goto error_return;
1065 }
1066
1067 mips_elf_hash_table (info)->procedure_count = count + 2;
1068
1069 erp = rtproc;
1070 memset (erp, 0, sizeof (struct rpdr_ext));
1071 erp++;
1072 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1073 strcpy (str, no_name_func);
1074 str += strlen (no_name_func) + 1;
1075 for (i = 0; i < count; i++)
1076 {
1077 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1078 strcpy (str, sv[i]);
1079 str += strlen (sv[i]) + 1;
1080 }
1081 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1082
1083 /* Set the size and contents of .rtproc section. */
1084 s->size = size;
1085 s->contents = rtproc;
1086
1087 /* Skip this section later on (I don't think this currently
1088 matters, but someday it might). */
1089 s->map_head.link_order = NULL;
1090
1091 if (epdr != NULL)
1092 free (epdr);
1093 if (rpdr != NULL)
1094 free (rpdr);
1095 if (esym != NULL)
1096 free (esym);
1097 if (ss != NULL)
1098 free (ss);
1099 if (sv != NULL)
1100 free (sv);
1101
1102 return TRUE;
1103
1104 error_return:
1105 if (epdr != NULL)
1106 free (epdr);
1107 if (rpdr != NULL)
1108 free (rpdr);
1109 if (esym != NULL)
1110 free (esym);
1111 if (ss != NULL)
1112 free (ss);
1113 if (sv != NULL)
1114 free (sv);
1115 return FALSE;
1116 }
1117
1118 /* Check the mips16 stubs for a particular symbol, and see if we can
1119 discard them. */
1120
1121 static bfd_boolean
1122 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1123 void *data ATTRIBUTE_UNUSED)
1124 {
1125 if (h->root.root.type == bfd_link_hash_warning)
1126 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1127
1128 if (h->fn_stub != NULL
1129 && ! h->need_fn_stub)
1130 {
1131 /* We don't need the fn_stub; the only references to this symbol
1132 are 16 bit calls. Clobber the size to 0 to prevent it from
1133 being included in the link. */
1134 h->fn_stub->size = 0;
1135 h->fn_stub->flags &= ~SEC_RELOC;
1136 h->fn_stub->reloc_count = 0;
1137 h->fn_stub->flags |= SEC_EXCLUDE;
1138 }
1139
1140 if (h->call_stub != NULL
1141 && h->root.other == STO_MIPS16)
1142 {
1143 /* We don't need the call_stub; this is a 16 bit function, so
1144 calls from other 16 bit functions are OK. Clobber the size
1145 to 0 to prevent it from being included in the link. */
1146 h->call_stub->size = 0;
1147 h->call_stub->flags &= ~SEC_RELOC;
1148 h->call_stub->reloc_count = 0;
1149 h->call_stub->flags |= SEC_EXCLUDE;
1150 }
1151
1152 if (h->call_fp_stub != NULL
1153 && h->root.other == STO_MIPS16)
1154 {
1155 /* We don't need the call_stub; this is a 16 bit function, so
1156 calls from other 16 bit functions are OK. Clobber the size
1157 to 0 to prevent it from being included in the link. */
1158 h->call_fp_stub->size = 0;
1159 h->call_fp_stub->flags &= ~SEC_RELOC;
1160 h->call_fp_stub->reloc_count = 0;
1161 h->call_fp_stub->flags |= SEC_EXCLUDE;
1162 }
1163
1164 return TRUE;
1165 }
1166 \f
1167 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1168 Most mips16 instructions are 16 bits, but these instructions
1169 are 32 bits.
1170
1171 The format of these instructions is:
1172
1173 +--------------+--------------------------------+
1174 | JALX | X| Imm 20:16 | Imm 25:21 |
1175 +--------------+--------------------------------+
1176 | Immediate 15:0 |
1177 +-----------------------------------------------+
1178
1179 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1180 Note that the immediate value in the first word is swapped.
1181
1182 When producing a relocatable object file, R_MIPS16_26 is
1183 handled mostly like R_MIPS_26. In particular, the addend is
1184 stored as a straight 26-bit value in a 32-bit instruction.
1185 (gas makes life simpler for itself by never adjusting a
1186 R_MIPS16_26 reloc to be against a section, so the addend is
1187 always zero). However, the 32 bit instruction is stored as 2
1188 16-bit values, rather than a single 32-bit value. In a
1189 big-endian file, the result is the same; in a little-endian
1190 file, the two 16-bit halves of the 32 bit value are swapped.
1191 This is so that a disassembler can recognize the jal
1192 instruction.
1193
1194 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1195 instruction stored as two 16-bit values. The addend A is the
1196 contents of the targ26 field. The calculation is the same as
1197 R_MIPS_26. When storing the calculated value, reorder the
1198 immediate value as shown above, and don't forget to store the
1199 value as two 16-bit values.
1200
1201 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1202 defined as
1203
1204 big-endian:
1205 +--------+----------------------+
1206 | | |
1207 | | targ26-16 |
1208 |31 26|25 0|
1209 +--------+----------------------+
1210
1211 little-endian:
1212 +----------+------+-------------+
1213 | | | |
1214 | sub1 | | sub2 |
1215 |0 9|10 15|16 31|
1216 +----------+--------------------+
1217 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1218 ((sub1 << 16) | sub2)).
1219
1220 When producing a relocatable object file, the calculation is
1221 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1222 When producing a fully linked file, the calculation is
1223 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1224 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1225
1226 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1227 mode. A typical instruction will have a format like this:
1228
1229 +--------------+--------------------------------+
1230 | EXTEND | Imm 10:5 | Imm 15:11 |
1231 +--------------+--------------------------------+
1232 | Major | rx | ry | Imm 4:0 |
1233 +--------------+--------------------------------+
1234
1235 EXTEND is the five bit value 11110. Major is the instruction
1236 opcode.
1237
1238 This is handled exactly like R_MIPS_GPREL16, except that the
1239 addend is retrieved and stored as shown in this diagram; that
1240 is, the Imm fields above replace the V-rel16 field.
1241
1242 All we need to do here is shuffle the bits appropriately. As
1243 above, the two 16-bit halves must be swapped on a
1244 little-endian system.
1245
1246 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1247 access data when neither GP-relative nor PC-relative addressing
1248 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1249 except that the addend is retrieved and stored as shown above
1250 for R_MIPS16_GPREL.
1251 */
1252 void
1253 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1254 bfd_boolean jal_shuffle, bfd_byte *data)
1255 {
1256 bfd_vma extend, insn, val;
1257
1258 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1259 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1260 return;
1261
1262 /* Pick up the mips16 extend instruction and the real instruction. */
1263 extend = bfd_get_16 (abfd, data);
1264 insn = bfd_get_16 (abfd, data + 2);
1265 if (r_type == R_MIPS16_26)
1266 {
1267 if (jal_shuffle)
1268 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1269 | ((extend & 0x1f) << 21) | insn;
1270 else
1271 val = extend << 16 | insn;
1272 }
1273 else
1274 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1275 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1276 bfd_put_32 (abfd, val, data);
1277 }
1278
1279 void
1280 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1281 bfd_boolean jal_shuffle, bfd_byte *data)
1282 {
1283 bfd_vma extend, insn, val;
1284
1285 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1286 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1287 return;
1288
1289 val = bfd_get_32 (abfd, data);
1290 if (r_type == R_MIPS16_26)
1291 {
1292 if (jal_shuffle)
1293 {
1294 insn = val & 0xffff;
1295 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1296 | ((val >> 21) & 0x1f);
1297 }
1298 else
1299 {
1300 insn = val & 0xffff;
1301 extend = val >> 16;
1302 }
1303 }
1304 else
1305 {
1306 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1307 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1308 }
1309 bfd_put_16 (abfd, insn, data + 2);
1310 bfd_put_16 (abfd, extend, data);
1311 }
1312
1313 bfd_reloc_status_type
1314 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1315 arelent *reloc_entry, asection *input_section,
1316 bfd_boolean relocatable, void *data, bfd_vma gp)
1317 {
1318 bfd_vma relocation;
1319 bfd_signed_vma val;
1320 bfd_reloc_status_type status;
1321
1322 if (bfd_is_com_section (symbol->section))
1323 relocation = 0;
1324 else
1325 relocation = symbol->value;
1326
1327 relocation += symbol->section->output_section->vma;
1328 relocation += symbol->section->output_offset;
1329
1330 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1331 return bfd_reloc_outofrange;
1332
1333 /* Set val to the offset into the section or symbol. */
1334 val = reloc_entry->addend;
1335
1336 _bfd_mips_elf_sign_extend (val, 16);
1337
1338 /* Adjust val for the final section location and GP value. If we
1339 are producing relocatable output, we don't want to do this for
1340 an external symbol. */
1341 if (! relocatable
1342 || (symbol->flags & BSF_SECTION_SYM) != 0)
1343 val += relocation - gp;
1344
1345 if (reloc_entry->howto->partial_inplace)
1346 {
1347 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1348 (bfd_byte *) data
1349 + reloc_entry->address);
1350 if (status != bfd_reloc_ok)
1351 return status;
1352 }
1353 else
1354 reloc_entry->addend = val;
1355
1356 if (relocatable)
1357 reloc_entry->address += input_section->output_offset;
1358
1359 return bfd_reloc_ok;
1360 }
1361
1362 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1363 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1364 that contains the relocation field and DATA points to the start of
1365 INPUT_SECTION. */
1366
1367 struct mips_hi16
1368 {
1369 struct mips_hi16 *next;
1370 bfd_byte *data;
1371 asection *input_section;
1372 arelent rel;
1373 };
1374
1375 /* FIXME: This should not be a static variable. */
1376
1377 static struct mips_hi16 *mips_hi16_list;
1378
1379 /* A howto special_function for REL *HI16 relocations. We can only
1380 calculate the correct value once we've seen the partnering
1381 *LO16 relocation, so just save the information for later.
1382
1383 The ABI requires that the *LO16 immediately follow the *HI16.
1384 However, as a GNU extension, we permit an arbitrary number of
1385 *HI16s to be associated with a single *LO16. This significantly
1386 simplies the relocation handling in gcc. */
1387
1388 bfd_reloc_status_type
1389 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1390 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1391 asection *input_section, bfd *output_bfd,
1392 char **error_message ATTRIBUTE_UNUSED)
1393 {
1394 struct mips_hi16 *n;
1395
1396 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1397 return bfd_reloc_outofrange;
1398
1399 n = bfd_malloc (sizeof *n);
1400 if (n == NULL)
1401 return bfd_reloc_outofrange;
1402
1403 n->next = mips_hi16_list;
1404 n->data = data;
1405 n->input_section = input_section;
1406 n->rel = *reloc_entry;
1407 mips_hi16_list = n;
1408
1409 if (output_bfd != NULL)
1410 reloc_entry->address += input_section->output_offset;
1411
1412 return bfd_reloc_ok;
1413 }
1414
1415 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1416 like any other 16-bit relocation when applied to global symbols, but is
1417 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1418
1419 bfd_reloc_status_type
1420 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1421 void *data, asection *input_section,
1422 bfd *output_bfd, char **error_message)
1423 {
1424 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1425 || bfd_is_und_section (bfd_get_section (symbol))
1426 || bfd_is_com_section (bfd_get_section (symbol)))
1427 /* The relocation is against a global symbol. */
1428 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1429 input_section, output_bfd,
1430 error_message);
1431
1432 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1433 input_section, output_bfd, error_message);
1434 }
1435
1436 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1437 is a straightforward 16 bit inplace relocation, but we must deal with
1438 any partnering high-part relocations as well. */
1439
1440 bfd_reloc_status_type
1441 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1442 void *data, asection *input_section,
1443 bfd *output_bfd, char **error_message)
1444 {
1445 bfd_vma vallo;
1446 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1447
1448 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1449 return bfd_reloc_outofrange;
1450
1451 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1452 location);
1453 vallo = bfd_get_32 (abfd, location);
1454 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1455 location);
1456
1457 while (mips_hi16_list != NULL)
1458 {
1459 bfd_reloc_status_type ret;
1460 struct mips_hi16 *hi;
1461
1462 hi = mips_hi16_list;
1463
1464 /* R_MIPS_GOT16 relocations are something of a special case. We
1465 want to install the addend in the same way as for a R_MIPS_HI16
1466 relocation (with a rightshift of 16). However, since GOT16
1467 relocations can also be used with global symbols, their howto
1468 has a rightshift of 0. */
1469 if (hi->rel.howto->type == R_MIPS_GOT16)
1470 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1471
1472 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1473 carry or borrow will induce a change of +1 or -1 in the high part. */
1474 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1475
1476 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1477 hi->input_section, output_bfd,
1478 error_message);
1479 if (ret != bfd_reloc_ok)
1480 return ret;
1481
1482 mips_hi16_list = hi->next;
1483 free (hi);
1484 }
1485
1486 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1487 input_section, output_bfd,
1488 error_message);
1489 }
1490
1491 /* A generic howto special_function. This calculates and installs the
1492 relocation itself, thus avoiding the oft-discussed problems in
1493 bfd_perform_relocation and bfd_install_relocation. */
1494
1495 bfd_reloc_status_type
1496 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1497 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1498 asection *input_section, bfd *output_bfd,
1499 char **error_message ATTRIBUTE_UNUSED)
1500 {
1501 bfd_signed_vma val;
1502 bfd_reloc_status_type status;
1503 bfd_boolean relocatable;
1504
1505 relocatable = (output_bfd != NULL);
1506
1507 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1508 return bfd_reloc_outofrange;
1509
1510 /* Build up the field adjustment in VAL. */
1511 val = 0;
1512 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1513 {
1514 /* Either we're calculating the final field value or we have a
1515 relocation against a section symbol. Add in the section's
1516 offset or address. */
1517 val += symbol->section->output_section->vma;
1518 val += symbol->section->output_offset;
1519 }
1520
1521 if (!relocatable)
1522 {
1523 /* We're calculating the final field value. Add in the symbol's value
1524 and, if pc-relative, subtract the address of the field itself. */
1525 val += symbol->value;
1526 if (reloc_entry->howto->pc_relative)
1527 {
1528 val -= input_section->output_section->vma;
1529 val -= input_section->output_offset;
1530 val -= reloc_entry->address;
1531 }
1532 }
1533
1534 /* VAL is now the final adjustment. If we're keeping this relocation
1535 in the output file, and if the relocation uses a separate addend,
1536 we just need to add VAL to that addend. Otherwise we need to add
1537 VAL to the relocation field itself. */
1538 if (relocatable && !reloc_entry->howto->partial_inplace)
1539 reloc_entry->addend += val;
1540 else
1541 {
1542 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1543
1544 /* Add in the separate addend, if any. */
1545 val += reloc_entry->addend;
1546
1547 /* Add VAL to the relocation field. */
1548 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1549 location);
1550 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1551 location);
1552 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1553 location);
1554
1555 if (status != bfd_reloc_ok)
1556 return status;
1557 }
1558
1559 if (relocatable)
1560 reloc_entry->address += input_section->output_offset;
1561
1562 return bfd_reloc_ok;
1563 }
1564 \f
1565 /* Swap an entry in a .gptab section. Note that these routines rely
1566 on the equivalence of the two elements of the union. */
1567
1568 static void
1569 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1570 Elf32_gptab *in)
1571 {
1572 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1573 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1574 }
1575
1576 static void
1577 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1578 Elf32_External_gptab *ex)
1579 {
1580 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1581 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1582 }
1583
1584 static void
1585 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1586 Elf32_External_compact_rel *ex)
1587 {
1588 H_PUT_32 (abfd, in->id1, ex->id1);
1589 H_PUT_32 (abfd, in->num, ex->num);
1590 H_PUT_32 (abfd, in->id2, ex->id2);
1591 H_PUT_32 (abfd, in->offset, ex->offset);
1592 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1593 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1594 }
1595
1596 static void
1597 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1598 Elf32_External_crinfo *ex)
1599 {
1600 unsigned long l;
1601
1602 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1603 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1604 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1605 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1606 H_PUT_32 (abfd, l, ex->info);
1607 H_PUT_32 (abfd, in->konst, ex->konst);
1608 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1609 }
1610 \f
1611 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1612 routines swap this structure in and out. They are used outside of
1613 BFD, so they are globally visible. */
1614
1615 void
1616 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1617 Elf32_RegInfo *in)
1618 {
1619 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1620 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1621 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1622 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1623 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1624 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1625 }
1626
1627 void
1628 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1629 Elf32_External_RegInfo *ex)
1630 {
1631 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1632 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1633 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1634 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1635 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1636 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1637 }
1638
1639 /* In the 64 bit ABI, the .MIPS.options section holds register
1640 information in an Elf64_Reginfo structure. These routines swap
1641 them in and out. They are globally visible because they are used
1642 outside of BFD. These routines are here so that gas can call them
1643 without worrying about whether the 64 bit ABI has been included. */
1644
1645 void
1646 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1647 Elf64_Internal_RegInfo *in)
1648 {
1649 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1650 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1651 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1652 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1653 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1654 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1655 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1656 }
1657
1658 void
1659 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1660 Elf64_External_RegInfo *ex)
1661 {
1662 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1663 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1664 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1665 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1666 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1667 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1668 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1669 }
1670
1671 /* Swap in an options header. */
1672
1673 void
1674 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1675 Elf_Internal_Options *in)
1676 {
1677 in->kind = H_GET_8 (abfd, ex->kind);
1678 in->size = H_GET_8 (abfd, ex->size);
1679 in->section = H_GET_16 (abfd, ex->section);
1680 in->info = H_GET_32 (abfd, ex->info);
1681 }
1682
1683 /* Swap out an options header. */
1684
1685 void
1686 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1687 Elf_External_Options *ex)
1688 {
1689 H_PUT_8 (abfd, in->kind, ex->kind);
1690 H_PUT_8 (abfd, in->size, ex->size);
1691 H_PUT_16 (abfd, in->section, ex->section);
1692 H_PUT_32 (abfd, in->info, ex->info);
1693 }
1694 \f
1695 /* This function is called via qsort() to sort the dynamic relocation
1696 entries by increasing r_symndx value. */
1697
1698 static int
1699 sort_dynamic_relocs (const void *arg1, const void *arg2)
1700 {
1701 Elf_Internal_Rela int_reloc1;
1702 Elf_Internal_Rela int_reloc2;
1703 int diff;
1704
1705 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1706 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1707
1708 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1709 if (diff != 0)
1710 return diff;
1711
1712 if (int_reloc1.r_offset < int_reloc2.r_offset)
1713 return -1;
1714 if (int_reloc1.r_offset > int_reloc2.r_offset)
1715 return 1;
1716 return 0;
1717 }
1718
1719 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1720
1721 static int
1722 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1723 const void *arg2 ATTRIBUTE_UNUSED)
1724 {
1725 #ifdef BFD64
1726 Elf_Internal_Rela int_reloc1[3];
1727 Elf_Internal_Rela int_reloc2[3];
1728
1729 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1730 (reldyn_sorting_bfd, arg1, int_reloc1);
1731 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1732 (reldyn_sorting_bfd, arg2, int_reloc2);
1733
1734 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1735 return -1;
1736 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1737 return 1;
1738
1739 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1740 return -1;
1741 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1742 return 1;
1743 return 0;
1744 #else
1745 abort ();
1746 #endif
1747 }
1748
1749
1750 /* This routine is used to write out ECOFF debugging external symbol
1751 information. It is called via mips_elf_link_hash_traverse. The
1752 ECOFF external symbol information must match the ELF external
1753 symbol information. Unfortunately, at this point we don't know
1754 whether a symbol is required by reloc information, so the two
1755 tables may wind up being different. We must sort out the external
1756 symbol information before we can set the final size of the .mdebug
1757 section, and we must set the size of the .mdebug section before we
1758 can relocate any sections, and we can't know which symbols are
1759 required by relocation until we relocate the sections.
1760 Fortunately, it is relatively unlikely that any symbol will be
1761 stripped but required by a reloc. In particular, it can not happen
1762 when generating a final executable. */
1763
1764 static bfd_boolean
1765 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1766 {
1767 struct extsym_info *einfo = data;
1768 bfd_boolean strip;
1769 asection *sec, *output_section;
1770
1771 if (h->root.root.type == bfd_link_hash_warning)
1772 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1773
1774 if (h->root.indx == -2)
1775 strip = FALSE;
1776 else if ((h->root.def_dynamic
1777 || h->root.ref_dynamic
1778 || h->root.type == bfd_link_hash_new)
1779 && !h->root.def_regular
1780 && !h->root.ref_regular)
1781 strip = TRUE;
1782 else if (einfo->info->strip == strip_all
1783 || (einfo->info->strip == strip_some
1784 && bfd_hash_lookup (einfo->info->keep_hash,
1785 h->root.root.root.string,
1786 FALSE, FALSE) == NULL))
1787 strip = TRUE;
1788 else
1789 strip = FALSE;
1790
1791 if (strip)
1792 return TRUE;
1793
1794 if (h->esym.ifd == -2)
1795 {
1796 h->esym.jmptbl = 0;
1797 h->esym.cobol_main = 0;
1798 h->esym.weakext = 0;
1799 h->esym.reserved = 0;
1800 h->esym.ifd = ifdNil;
1801 h->esym.asym.value = 0;
1802 h->esym.asym.st = stGlobal;
1803
1804 if (h->root.root.type == bfd_link_hash_undefined
1805 || h->root.root.type == bfd_link_hash_undefweak)
1806 {
1807 const char *name;
1808
1809 /* Use undefined class. Also, set class and type for some
1810 special symbols. */
1811 name = h->root.root.root.string;
1812 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1813 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1814 {
1815 h->esym.asym.sc = scData;
1816 h->esym.asym.st = stLabel;
1817 h->esym.asym.value = 0;
1818 }
1819 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1820 {
1821 h->esym.asym.sc = scAbs;
1822 h->esym.asym.st = stLabel;
1823 h->esym.asym.value =
1824 mips_elf_hash_table (einfo->info)->procedure_count;
1825 }
1826 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1827 {
1828 h->esym.asym.sc = scAbs;
1829 h->esym.asym.st = stLabel;
1830 h->esym.asym.value = elf_gp (einfo->abfd);
1831 }
1832 else
1833 h->esym.asym.sc = scUndefined;
1834 }
1835 else if (h->root.root.type != bfd_link_hash_defined
1836 && h->root.root.type != bfd_link_hash_defweak)
1837 h->esym.asym.sc = scAbs;
1838 else
1839 {
1840 const char *name;
1841
1842 sec = h->root.root.u.def.section;
1843 output_section = sec->output_section;
1844
1845 /* When making a shared library and symbol h is the one from
1846 the another shared library, OUTPUT_SECTION may be null. */
1847 if (output_section == NULL)
1848 h->esym.asym.sc = scUndefined;
1849 else
1850 {
1851 name = bfd_section_name (output_section->owner, output_section);
1852
1853 if (strcmp (name, ".text") == 0)
1854 h->esym.asym.sc = scText;
1855 else if (strcmp (name, ".data") == 0)
1856 h->esym.asym.sc = scData;
1857 else if (strcmp (name, ".sdata") == 0)
1858 h->esym.asym.sc = scSData;
1859 else if (strcmp (name, ".rodata") == 0
1860 || strcmp (name, ".rdata") == 0)
1861 h->esym.asym.sc = scRData;
1862 else if (strcmp (name, ".bss") == 0)
1863 h->esym.asym.sc = scBss;
1864 else if (strcmp (name, ".sbss") == 0)
1865 h->esym.asym.sc = scSBss;
1866 else if (strcmp (name, ".init") == 0)
1867 h->esym.asym.sc = scInit;
1868 else if (strcmp (name, ".fini") == 0)
1869 h->esym.asym.sc = scFini;
1870 else
1871 h->esym.asym.sc = scAbs;
1872 }
1873 }
1874
1875 h->esym.asym.reserved = 0;
1876 h->esym.asym.index = indexNil;
1877 }
1878
1879 if (h->root.root.type == bfd_link_hash_common)
1880 h->esym.asym.value = h->root.root.u.c.size;
1881 else if (h->root.root.type == bfd_link_hash_defined
1882 || h->root.root.type == bfd_link_hash_defweak)
1883 {
1884 if (h->esym.asym.sc == scCommon)
1885 h->esym.asym.sc = scBss;
1886 else if (h->esym.asym.sc == scSCommon)
1887 h->esym.asym.sc = scSBss;
1888
1889 sec = h->root.root.u.def.section;
1890 output_section = sec->output_section;
1891 if (output_section != NULL)
1892 h->esym.asym.value = (h->root.root.u.def.value
1893 + sec->output_offset
1894 + output_section->vma);
1895 else
1896 h->esym.asym.value = 0;
1897 }
1898 else if (h->root.needs_plt)
1899 {
1900 struct mips_elf_link_hash_entry *hd = h;
1901 bfd_boolean no_fn_stub = h->no_fn_stub;
1902
1903 while (hd->root.root.type == bfd_link_hash_indirect)
1904 {
1905 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1906 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1907 }
1908
1909 if (!no_fn_stub)
1910 {
1911 /* Set type and value for a symbol with a function stub. */
1912 h->esym.asym.st = stProc;
1913 sec = hd->root.root.u.def.section;
1914 if (sec == NULL)
1915 h->esym.asym.value = 0;
1916 else
1917 {
1918 output_section = sec->output_section;
1919 if (output_section != NULL)
1920 h->esym.asym.value = (hd->root.plt.offset
1921 + sec->output_offset
1922 + output_section->vma);
1923 else
1924 h->esym.asym.value = 0;
1925 }
1926 }
1927 }
1928
1929 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1930 h->root.root.root.string,
1931 &h->esym))
1932 {
1933 einfo->failed = TRUE;
1934 return FALSE;
1935 }
1936
1937 return TRUE;
1938 }
1939
1940 /* A comparison routine used to sort .gptab entries. */
1941
1942 static int
1943 gptab_compare (const void *p1, const void *p2)
1944 {
1945 const Elf32_gptab *a1 = p1;
1946 const Elf32_gptab *a2 = p2;
1947
1948 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1949 }
1950 \f
1951 /* Functions to manage the got entry hash table. */
1952
1953 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1954 hash number. */
1955
1956 static INLINE hashval_t
1957 mips_elf_hash_bfd_vma (bfd_vma addr)
1958 {
1959 #ifdef BFD64
1960 return addr + (addr >> 32);
1961 #else
1962 return addr;
1963 #endif
1964 }
1965
1966 /* got_entries only match if they're identical, except for gotidx, so
1967 use all fields to compute the hash, and compare the appropriate
1968 union members. */
1969
1970 static hashval_t
1971 mips_elf_got_entry_hash (const void *entry_)
1972 {
1973 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1974
1975 return entry->symndx
1976 + ((entry->tls_type & GOT_TLS_LDM) << 17)
1977 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1978 : entry->abfd->id
1979 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1980 : entry->d.h->root.root.root.hash));
1981 }
1982
1983 static int
1984 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1985 {
1986 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1987 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1988
1989 /* An LDM entry can only match another LDM entry. */
1990 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1991 return 0;
1992
1993 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1994 && (! e1->abfd ? e1->d.address == e2->d.address
1995 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1996 : e1->d.h == e2->d.h);
1997 }
1998
1999 /* multi_got_entries are still a match in the case of global objects,
2000 even if the input bfd in which they're referenced differs, so the
2001 hash computation and compare functions are adjusted
2002 accordingly. */
2003
2004 static hashval_t
2005 mips_elf_multi_got_entry_hash (const void *entry_)
2006 {
2007 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2008
2009 return entry->symndx
2010 + (! entry->abfd
2011 ? mips_elf_hash_bfd_vma (entry->d.address)
2012 : entry->symndx >= 0
2013 ? ((entry->tls_type & GOT_TLS_LDM)
2014 ? (GOT_TLS_LDM << 17)
2015 : (entry->abfd->id
2016 + mips_elf_hash_bfd_vma (entry->d.addend)))
2017 : entry->d.h->root.root.root.hash);
2018 }
2019
2020 static int
2021 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2022 {
2023 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2024 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2025
2026 /* Any two LDM entries match. */
2027 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2028 return 1;
2029
2030 /* Nothing else matches an LDM entry. */
2031 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2032 return 0;
2033
2034 return e1->symndx == e2->symndx
2035 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2036 : e1->abfd == NULL || e2->abfd == NULL
2037 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2038 : e1->d.h == e2->d.h);
2039 }
2040 \f
2041 /* Return the dynamic relocation section. If it doesn't exist, try to
2042 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2043 if creation fails. */
2044
2045 static asection *
2046 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2047 {
2048 const char *dname;
2049 asection *sreloc;
2050 bfd *dynobj;
2051
2052 dname = MIPS_ELF_REL_DYN_NAME (info);
2053 dynobj = elf_hash_table (info)->dynobj;
2054 sreloc = bfd_get_section_by_name (dynobj, dname);
2055 if (sreloc == NULL && create_p)
2056 {
2057 sreloc = bfd_make_section_with_flags (dynobj, dname,
2058 (SEC_ALLOC
2059 | SEC_LOAD
2060 | SEC_HAS_CONTENTS
2061 | SEC_IN_MEMORY
2062 | SEC_LINKER_CREATED
2063 | SEC_READONLY));
2064 if (sreloc == NULL
2065 || ! bfd_set_section_alignment (dynobj, sreloc,
2066 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2067 return NULL;
2068 }
2069 return sreloc;
2070 }
2071
2072 /* Returns the GOT section for ABFD. */
2073
2074 static asection *
2075 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
2076 {
2077 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2078 if (sgot == NULL
2079 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2080 return NULL;
2081 return sgot;
2082 }
2083
2084 /* Returns the GOT information associated with the link indicated by
2085 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2086 section. */
2087
2088 static struct mips_got_info *
2089 mips_elf_got_info (bfd *abfd, asection **sgotp)
2090 {
2091 asection *sgot;
2092 struct mips_got_info *g;
2093
2094 sgot = mips_elf_got_section (abfd, TRUE);
2095 BFD_ASSERT (sgot != NULL);
2096 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2097 g = mips_elf_section_data (sgot)->u.got_info;
2098 BFD_ASSERT (g != NULL);
2099
2100 if (sgotp)
2101 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2102
2103 return g;
2104 }
2105
2106 /* Count the number of relocations needed for a TLS GOT entry, with
2107 access types from TLS_TYPE, and symbol H (or a local symbol if H
2108 is NULL). */
2109
2110 static int
2111 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2112 struct elf_link_hash_entry *h)
2113 {
2114 int indx = 0;
2115 int ret = 0;
2116 bfd_boolean need_relocs = FALSE;
2117 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2118
2119 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2120 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2121 indx = h->dynindx;
2122
2123 if ((info->shared || indx != 0)
2124 && (h == NULL
2125 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2126 || h->root.type != bfd_link_hash_undefweak))
2127 need_relocs = TRUE;
2128
2129 if (!need_relocs)
2130 return FALSE;
2131
2132 if (tls_type & GOT_TLS_GD)
2133 {
2134 ret++;
2135 if (indx != 0)
2136 ret++;
2137 }
2138
2139 if (tls_type & GOT_TLS_IE)
2140 ret++;
2141
2142 if ((tls_type & GOT_TLS_LDM) && info->shared)
2143 ret++;
2144
2145 return ret;
2146 }
2147
2148 /* Count the number of TLS relocations required for the GOT entry in
2149 ARG1, if it describes a local symbol. */
2150
2151 static int
2152 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2153 {
2154 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2155 struct mips_elf_count_tls_arg *arg = arg2;
2156
2157 if (entry->abfd != NULL && entry->symndx != -1)
2158 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2159
2160 return 1;
2161 }
2162
2163 /* Count the number of TLS GOT entries required for the global (or
2164 forced-local) symbol in ARG1. */
2165
2166 static int
2167 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2168 {
2169 struct mips_elf_link_hash_entry *hm
2170 = (struct mips_elf_link_hash_entry *) arg1;
2171 struct mips_elf_count_tls_arg *arg = arg2;
2172
2173 if (hm->tls_type & GOT_TLS_GD)
2174 arg->needed += 2;
2175 if (hm->tls_type & GOT_TLS_IE)
2176 arg->needed += 1;
2177
2178 return 1;
2179 }
2180
2181 /* Count the number of TLS relocations required for the global (or
2182 forced-local) symbol in ARG1. */
2183
2184 static int
2185 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2186 {
2187 struct mips_elf_link_hash_entry *hm
2188 = (struct mips_elf_link_hash_entry *) arg1;
2189 struct mips_elf_count_tls_arg *arg = arg2;
2190
2191 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2192
2193 return 1;
2194 }
2195
2196 /* Output a simple dynamic relocation into SRELOC. */
2197
2198 static void
2199 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2200 asection *sreloc,
2201 unsigned long indx,
2202 int r_type,
2203 bfd_vma offset)
2204 {
2205 Elf_Internal_Rela rel[3];
2206
2207 memset (rel, 0, sizeof (rel));
2208
2209 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2210 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2211
2212 if (ABI_64_P (output_bfd))
2213 {
2214 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2215 (output_bfd, &rel[0],
2216 (sreloc->contents
2217 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2218 }
2219 else
2220 bfd_elf32_swap_reloc_out
2221 (output_bfd, &rel[0],
2222 (sreloc->contents
2223 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2224 ++sreloc->reloc_count;
2225 }
2226
2227 /* Initialize a set of TLS GOT entries for one symbol. */
2228
2229 static void
2230 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2231 unsigned char *tls_type_p,
2232 struct bfd_link_info *info,
2233 struct mips_elf_link_hash_entry *h,
2234 bfd_vma value)
2235 {
2236 int indx;
2237 asection *sreloc, *sgot;
2238 bfd_vma offset, offset2;
2239 bfd *dynobj;
2240 bfd_boolean need_relocs = FALSE;
2241
2242 dynobj = elf_hash_table (info)->dynobj;
2243 sgot = mips_elf_got_section (dynobj, FALSE);
2244
2245 indx = 0;
2246 if (h != NULL)
2247 {
2248 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2249
2250 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2251 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2252 indx = h->root.dynindx;
2253 }
2254
2255 if (*tls_type_p & GOT_TLS_DONE)
2256 return;
2257
2258 if ((info->shared || indx != 0)
2259 && (h == NULL
2260 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2261 || h->root.type != bfd_link_hash_undefweak))
2262 need_relocs = TRUE;
2263
2264 /* MINUS_ONE means the symbol is not defined in this object. It may not
2265 be defined at all; assume that the value doesn't matter in that
2266 case. Otherwise complain if we would use the value. */
2267 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2268 || h->root.root.type == bfd_link_hash_undefweak);
2269
2270 /* Emit necessary relocations. */
2271 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2272
2273 /* General Dynamic. */
2274 if (*tls_type_p & GOT_TLS_GD)
2275 {
2276 offset = got_offset;
2277 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2278
2279 if (need_relocs)
2280 {
2281 mips_elf_output_dynamic_relocation
2282 (abfd, sreloc, indx,
2283 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2284 sgot->output_offset + sgot->output_section->vma + offset);
2285
2286 if (indx)
2287 mips_elf_output_dynamic_relocation
2288 (abfd, sreloc, indx,
2289 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2290 sgot->output_offset + sgot->output_section->vma + offset2);
2291 else
2292 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2293 sgot->contents + offset2);
2294 }
2295 else
2296 {
2297 MIPS_ELF_PUT_WORD (abfd, 1,
2298 sgot->contents + offset);
2299 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2300 sgot->contents + offset2);
2301 }
2302
2303 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2304 }
2305
2306 /* Initial Exec model. */
2307 if (*tls_type_p & GOT_TLS_IE)
2308 {
2309 offset = got_offset;
2310
2311 if (need_relocs)
2312 {
2313 if (indx == 0)
2314 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2315 sgot->contents + offset);
2316 else
2317 MIPS_ELF_PUT_WORD (abfd, 0,
2318 sgot->contents + offset);
2319
2320 mips_elf_output_dynamic_relocation
2321 (abfd, sreloc, indx,
2322 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2323 sgot->output_offset + sgot->output_section->vma + offset);
2324 }
2325 else
2326 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2327 sgot->contents + offset);
2328 }
2329
2330 if (*tls_type_p & GOT_TLS_LDM)
2331 {
2332 /* The initial offset is zero, and the LD offsets will include the
2333 bias by DTP_OFFSET. */
2334 MIPS_ELF_PUT_WORD (abfd, 0,
2335 sgot->contents + got_offset
2336 + MIPS_ELF_GOT_SIZE (abfd));
2337
2338 if (!info->shared)
2339 MIPS_ELF_PUT_WORD (abfd, 1,
2340 sgot->contents + got_offset);
2341 else
2342 mips_elf_output_dynamic_relocation
2343 (abfd, sreloc, indx,
2344 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2345 sgot->output_offset + sgot->output_section->vma + got_offset);
2346 }
2347
2348 *tls_type_p |= GOT_TLS_DONE;
2349 }
2350
2351 /* Return the GOT index to use for a relocation of type R_TYPE against
2352 a symbol accessed using TLS_TYPE models. The GOT entries for this
2353 symbol in this GOT start at GOT_INDEX. This function initializes the
2354 GOT entries and corresponding relocations. */
2355
2356 static bfd_vma
2357 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2358 int r_type, struct bfd_link_info *info,
2359 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2360 {
2361 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2362 || r_type == R_MIPS_TLS_LDM);
2363
2364 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2365
2366 if (r_type == R_MIPS_TLS_GOTTPREL)
2367 {
2368 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2369 if (*tls_type & GOT_TLS_GD)
2370 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2371 else
2372 return got_index;
2373 }
2374
2375 if (r_type == R_MIPS_TLS_GD)
2376 {
2377 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2378 return got_index;
2379 }
2380
2381 if (r_type == R_MIPS_TLS_LDM)
2382 {
2383 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2384 return got_index;
2385 }
2386
2387 return got_index;
2388 }
2389
2390 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2391 for global symbol H. .got.plt comes before the GOT, so the offset
2392 will be negative. */
2393
2394 static bfd_vma
2395 mips_elf_gotplt_index (struct bfd_link_info *info,
2396 struct elf_link_hash_entry *h)
2397 {
2398 bfd_vma plt_index, got_address, got_value;
2399 struct mips_elf_link_hash_table *htab;
2400
2401 htab = mips_elf_hash_table (info);
2402 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2403
2404 /* Calculate the index of the symbol's PLT entry. */
2405 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2406
2407 /* Calculate the address of the associated .got.plt entry. */
2408 got_address = (htab->sgotplt->output_section->vma
2409 + htab->sgotplt->output_offset
2410 + plt_index * 4);
2411
2412 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2413 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2414 + htab->root.hgot->root.u.def.section->output_offset
2415 + htab->root.hgot->root.u.def.value);
2416
2417 return got_address - got_value;
2418 }
2419
2420 /* Return the GOT offset for address VALUE. If there is not yet a GOT
2421 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2422 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2423 offset can be found. */
2424
2425 static bfd_vma
2426 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2427 bfd_vma value, unsigned long r_symndx,
2428 struct mips_elf_link_hash_entry *h, int r_type)
2429 {
2430 asection *sgot;
2431 struct mips_got_info *g;
2432 struct mips_got_entry *entry;
2433
2434 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2435
2436 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2437 value, r_symndx, h, r_type);
2438 if (!entry)
2439 return MINUS_ONE;
2440
2441 if (TLS_RELOC_P (r_type))
2442 {
2443 if (entry->symndx == -1 && g->next == NULL)
2444 /* A type (3) entry in the single-GOT case. We use the symbol's
2445 hash table entry to track the index. */
2446 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2447 r_type, info, h, value);
2448 else
2449 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2450 r_type, info, h, value);
2451 }
2452 else
2453 return entry->gotidx;
2454 }
2455
2456 /* Returns the GOT index for the global symbol indicated by H. */
2457
2458 static bfd_vma
2459 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2460 int r_type, struct bfd_link_info *info)
2461 {
2462 bfd_vma index;
2463 asection *sgot;
2464 struct mips_got_info *g, *gg;
2465 long global_got_dynindx = 0;
2466
2467 gg = g = mips_elf_got_info (abfd, &sgot);
2468 if (g->bfd2got && ibfd)
2469 {
2470 struct mips_got_entry e, *p;
2471
2472 BFD_ASSERT (h->dynindx >= 0);
2473
2474 g = mips_elf_got_for_ibfd (g, ibfd);
2475 if (g->next != gg || TLS_RELOC_P (r_type))
2476 {
2477 e.abfd = ibfd;
2478 e.symndx = -1;
2479 e.d.h = (struct mips_elf_link_hash_entry *)h;
2480 e.tls_type = 0;
2481
2482 p = htab_find (g->got_entries, &e);
2483
2484 BFD_ASSERT (p->gotidx > 0);
2485
2486 if (TLS_RELOC_P (r_type))
2487 {
2488 bfd_vma value = MINUS_ONE;
2489 if ((h->root.type == bfd_link_hash_defined
2490 || h->root.type == bfd_link_hash_defweak)
2491 && h->root.u.def.section->output_section)
2492 value = (h->root.u.def.value
2493 + h->root.u.def.section->output_offset
2494 + h->root.u.def.section->output_section->vma);
2495
2496 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2497 info, e.d.h, value);
2498 }
2499 else
2500 return p->gotidx;
2501 }
2502 }
2503
2504 if (gg->global_gotsym != NULL)
2505 global_got_dynindx = gg->global_gotsym->dynindx;
2506
2507 if (TLS_RELOC_P (r_type))
2508 {
2509 struct mips_elf_link_hash_entry *hm
2510 = (struct mips_elf_link_hash_entry *) h;
2511 bfd_vma value = MINUS_ONE;
2512
2513 if ((h->root.type == bfd_link_hash_defined
2514 || h->root.type == bfd_link_hash_defweak)
2515 && h->root.u.def.section->output_section)
2516 value = (h->root.u.def.value
2517 + h->root.u.def.section->output_offset
2518 + h->root.u.def.section->output_section->vma);
2519
2520 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2521 r_type, info, hm, value);
2522 }
2523 else
2524 {
2525 /* Once we determine the global GOT entry with the lowest dynamic
2526 symbol table index, we must put all dynamic symbols with greater
2527 indices into the GOT. That makes it easy to calculate the GOT
2528 offset. */
2529 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2530 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2531 * MIPS_ELF_GOT_SIZE (abfd));
2532 }
2533 BFD_ASSERT (index < sgot->size);
2534
2535 return index;
2536 }
2537
2538 /* Find a GOT page entry that points to within 32KB of VALUE. These
2539 entries are supposed to be placed at small offsets in the GOT, i.e.,
2540 within 32KB of GP. Return the index of the GOT entry, or -1 if no
2541 entry could be created. If OFFSETP is nonnull, use it to return the
2542 offset of the GOT entry from VALUE. */
2543
2544 static bfd_vma
2545 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2546 bfd_vma value, bfd_vma *offsetp)
2547 {
2548 asection *sgot;
2549 struct mips_got_info *g;
2550 bfd_vma page, index;
2551 struct mips_got_entry *entry;
2552
2553 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2554
2555 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2556 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2557 page, 0, NULL, R_MIPS_GOT_PAGE);
2558
2559 if (!entry)
2560 return MINUS_ONE;
2561
2562 index = entry->gotidx;
2563
2564 if (offsetp)
2565 *offsetp = value - entry->d.address;
2566
2567 return index;
2568 }
2569
2570 /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE.
2571 EXTERNAL is true if the relocation was against a global symbol
2572 that has been forced local. */
2573
2574 static bfd_vma
2575 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2576 bfd_vma value, bfd_boolean external)
2577 {
2578 asection *sgot;
2579 struct mips_got_info *g;
2580 struct mips_got_entry *entry;
2581
2582 /* GOT16 relocations against local symbols are followed by a LO16
2583 relocation; those against global symbols are not. Thus if the
2584 symbol was originally local, the GOT16 relocation should load the
2585 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2586 if (! external)
2587 value = mips_elf_high (value) << 16;
2588
2589 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2590
2591 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2592 value, 0, NULL, R_MIPS_GOT16);
2593 if (entry)
2594 return entry->gotidx;
2595 else
2596 return MINUS_ONE;
2597 }
2598
2599 /* Returns the offset for the entry at the INDEXth position
2600 in the GOT. */
2601
2602 static bfd_vma
2603 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2604 bfd *input_bfd, bfd_vma index)
2605 {
2606 asection *sgot;
2607 bfd_vma gp;
2608 struct mips_got_info *g;
2609
2610 g = mips_elf_got_info (dynobj, &sgot);
2611 gp = _bfd_get_gp_value (output_bfd)
2612 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2613
2614 return sgot->output_section->vma + sgot->output_offset + index - gp;
2615 }
2616
2617 /* Create and return a local GOT entry for VALUE, which was calculated
2618 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2619 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2620 instead. */
2621
2622 static struct mips_got_entry *
2623 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2624 bfd *ibfd, struct mips_got_info *gg,
2625 asection *sgot, bfd_vma value,
2626 unsigned long r_symndx,
2627 struct mips_elf_link_hash_entry *h,
2628 int r_type)
2629 {
2630 struct mips_got_entry entry, **loc;
2631 struct mips_got_info *g;
2632 struct mips_elf_link_hash_table *htab;
2633
2634 htab = mips_elf_hash_table (info);
2635
2636 entry.abfd = NULL;
2637 entry.symndx = -1;
2638 entry.d.address = value;
2639 entry.tls_type = 0;
2640
2641 g = mips_elf_got_for_ibfd (gg, ibfd);
2642 if (g == NULL)
2643 {
2644 g = mips_elf_got_for_ibfd (gg, abfd);
2645 BFD_ASSERT (g != NULL);
2646 }
2647
2648 /* We might have a symbol, H, if it has been forced local. Use the
2649 global entry then. It doesn't matter whether an entry is local
2650 or global for TLS, since the dynamic linker does not
2651 automatically relocate TLS GOT entries. */
2652 BFD_ASSERT (h == NULL || h->root.forced_local);
2653 if (TLS_RELOC_P (r_type))
2654 {
2655 struct mips_got_entry *p;
2656
2657 entry.abfd = ibfd;
2658 if (r_type == R_MIPS_TLS_LDM)
2659 {
2660 entry.tls_type = GOT_TLS_LDM;
2661 entry.symndx = 0;
2662 entry.d.addend = 0;
2663 }
2664 else if (h == NULL)
2665 {
2666 entry.symndx = r_symndx;
2667 entry.d.addend = 0;
2668 }
2669 else
2670 entry.d.h = h;
2671
2672 p = (struct mips_got_entry *)
2673 htab_find (g->got_entries, &entry);
2674
2675 BFD_ASSERT (p);
2676 return p;
2677 }
2678
2679 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2680 INSERT);
2681 if (*loc)
2682 return *loc;
2683
2684 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2685 entry.tls_type = 0;
2686
2687 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2688
2689 if (! *loc)
2690 return NULL;
2691
2692 memcpy (*loc, &entry, sizeof entry);
2693
2694 if (g->assigned_gotno >= g->local_gotno)
2695 {
2696 (*loc)->gotidx = -1;
2697 /* We didn't allocate enough space in the GOT. */
2698 (*_bfd_error_handler)
2699 (_("not enough GOT space for local GOT entries"));
2700 bfd_set_error (bfd_error_bad_value);
2701 return NULL;
2702 }
2703
2704 MIPS_ELF_PUT_WORD (abfd, value,
2705 (sgot->contents + entry.gotidx));
2706
2707 /* These GOT entries need a dynamic relocation on VxWorks. */
2708 if (htab->is_vxworks)
2709 {
2710 Elf_Internal_Rela outrel;
2711 asection *s;
2712 bfd_byte *loc;
2713 bfd_vma got_address;
2714
2715 s = mips_elf_rel_dyn_section (info, FALSE);
2716 got_address = (sgot->output_section->vma
2717 + sgot->output_offset
2718 + entry.gotidx);
2719
2720 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2721 outrel.r_offset = got_address;
2722 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
2723 outrel.r_addend = value;
2724 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2725 }
2726
2727 return *loc;
2728 }
2729
2730 /* Sort the dynamic symbol table so that symbols that need GOT entries
2731 appear towards the end. This reduces the amount of GOT space
2732 required. MAX_LOCAL is used to set the number of local symbols
2733 known to be in the dynamic symbol table. During
2734 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2735 section symbols are added and the count is higher. */
2736
2737 static bfd_boolean
2738 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2739 {
2740 struct mips_elf_hash_sort_data hsd;
2741 struct mips_got_info *g;
2742 bfd *dynobj;
2743
2744 dynobj = elf_hash_table (info)->dynobj;
2745
2746 g = mips_elf_got_info (dynobj, NULL);
2747
2748 hsd.low = NULL;
2749 hsd.max_unref_got_dynindx =
2750 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2751 /* In the multi-got case, assigned_gotno of the master got_info
2752 indicate the number of entries that aren't referenced in the
2753 primary GOT, but that must have entries because there are
2754 dynamic relocations that reference it. Since they aren't
2755 referenced, we move them to the end of the GOT, so that they
2756 don't prevent other entries that are referenced from getting
2757 too large offsets. */
2758 - (g->next ? g->assigned_gotno : 0);
2759 hsd.max_non_got_dynindx = max_local;
2760 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2761 elf_hash_table (info)),
2762 mips_elf_sort_hash_table_f,
2763 &hsd);
2764
2765 /* There should have been enough room in the symbol table to
2766 accommodate both the GOT and non-GOT symbols. */
2767 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2768 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2769 <= elf_hash_table (info)->dynsymcount);
2770
2771 /* Now we know which dynamic symbol has the lowest dynamic symbol
2772 table index in the GOT. */
2773 g->global_gotsym = hsd.low;
2774
2775 return TRUE;
2776 }
2777
2778 /* If H needs a GOT entry, assign it the highest available dynamic
2779 index. Otherwise, assign it the lowest available dynamic
2780 index. */
2781
2782 static bfd_boolean
2783 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2784 {
2785 struct mips_elf_hash_sort_data *hsd = data;
2786
2787 if (h->root.root.type == bfd_link_hash_warning)
2788 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2789
2790 /* Symbols without dynamic symbol table entries aren't interesting
2791 at all. */
2792 if (h->root.dynindx == -1)
2793 return TRUE;
2794
2795 /* Global symbols that need GOT entries that are not explicitly
2796 referenced are marked with got offset 2. Those that are
2797 referenced get a 1, and those that don't need GOT entries get
2798 -1. */
2799 if (h->root.got.offset == 2)
2800 {
2801 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2802
2803 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2804 hsd->low = (struct elf_link_hash_entry *) h;
2805 h->root.dynindx = hsd->max_unref_got_dynindx++;
2806 }
2807 else if (h->root.got.offset != 1)
2808 h->root.dynindx = hsd->max_non_got_dynindx++;
2809 else
2810 {
2811 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2812
2813 h->root.dynindx = --hsd->min_got_dynindx;
2814 hsd->low = (struct elf_link_hash_entry *) h;
2815 }
2816
2817 return TRUE;
2818 }
2819
2820 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2821 symbol table index lower than any we've seen to date, record it for
2822 posterity. */
2823
2824 static bfd_boolean
2825 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2826 bfd *abfd, struct bfd_link_info *info,
2827 struct mips_got_info *g,
2828 unsigned char tls_flag)
2829 {
2830 struct mips_got_entry entry, **loc;
2831
2832 /* A global symbol in the GOT must also be in the dynamic symbol
2833 table. */
2834 if (h->dynindx == -1)
2835 {
2836 switch (ELF_ST_VISIBILITY (h->other))
2837 {
2838 case STV_INTERNAL:
2839 case STV_HIDDEN:
2840 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2841 break;
2842 }
2843 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2844 return FALSE;
2845 }
2846
2847 /* Make sure we have a GOT to put this entry into. */
2848 BFD_ASSERT (g != NULL);
2849
2850 entry.abfd = abfd;
2851 entry.symndx = -1;
2852 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2853 entry.tls_type = 0;
2854
2855 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2856 INSERT);
2857
2858 /* If we've already marked this entry as needing GOT space, we don't
2859 need to do it again. */
2860 if (*loc)
2861 {
2862 (*loc)->tls_type |= tls_flag;
2863 return TRUE;
2864 }
2865
2866 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2867
2868 if (! *loc)
2869 return FALSE;
2870
2871 entry.gotidx = -1;
2872 entry.tls_type = tls_flag;
2873
2874 memcpy (*loc, &entry, sizeof entry);
2875
2876 if (h->got.offset != MINUS_ONE)
2877 return TRUE;
2878
2879 /* By setting this to a value other than -1, we are indicating that
2880 there needs to be a GOT entry for H. Avoid using zero, as the
2881 generic ELF copy_indirect_symbol tests for <= 0. */
2882 if (tls_flag == 0)
2883 h->got.offset = 1;
2884
2885 return TRUE;
2886 }
2887
2888 /* Reserve space in G for a GOT entry containing the value of symbol
2889 SYMNDX in input bfd ABDF, plus ADDEND. */
2890
2891 static bfd_boolean
2892 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2893 struct mips_got_info *g,
2894 unsigned char tls_flag)
2895 {
2896 struct mips_got_entry entry, **loc;
2897
2898 entry.abfd = abfd;
2899 entry.symndx = symndx;
2900 entry.d.addend = addend;
2901 entry.tls_type = tls_flag;
2902 loc = (struct mips_got_entry **)
2903 htab_find_slot (g->got_entries, &entry, INSERT);
2904
2905 if (*loc)
2906 {
2907 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2908 {
2909 g->tls_gotno += 2;
2910 (*loc)->tls_type |= tls_flag;
2911 }
2912 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2913 {
2914 g->tls_gotno += 1;
2915 (*loc)->tls_type |= tls_flag;
2916 }
2917 return TRUE;
2918 }
2919
2920 if (tls_flag != 0)
2921 {
2922 entry.gotidx = -1;
2923 entry.tls_type = tls_flag;
2924 if (tls_flag == GOT_TLS_IE)
2925 g->tls_gotno += 1;
2926 else if (tls_flag == GOT_TLS_GD)
2927 g->tls_gotno += 2;
2928 else if (g->tls_ldm_offset == MINUS_ONE)
2929 {
2930 g->tls_ldm_offset = MINUS_TWO;
2931 g->tls_gotno += 2;
2932 }
2933 }
2934 else
2935 {
2936 entry.gotidx = g->local_gotno++;
2937 entry.tls_type = 0;
2938 }
2939
2940 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2941
2942 if (! *loc)
2943 return FALSE;
2944
2945 memcpy (*loc, &entry, sizeof entry);
2946
2947 return TRUE;
2948 }
2949 \f
2950 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2951
2952 static hashval_t
2953 mips_elf_bfd2got_entry_hash (const void *entry_)
2954 {
2955 const struct mips_elf_bfd2got_hash *entry
2956 = (struct mips_elf_bfd2got_hash *)entry_;
2957
2958 return entry->bfd->id;
2959 }
2960
2961 /* Check whether two hash entries have the same bfd. */
2962
2963 static int
2964 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2965 {
2966 const struct mips_elf_bfd2got_hash *e1
2967 = (const struct mips_elf_bfd2got_hash *)entry1;
2968 const struct mips_elf_bfd2got_hash *e2
2969 = (const struct mips_elf_bfd2got_hash *)entry2;
2970
2971 return e1->bfd == e2->bfd;
2972 }
2973
2974 /* In a multi-got link, determine the GOT to be used for IBFD. G must
2975 be the master GOT data. */
2976
2977 static struct mips_got_info *
2978 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2979 {
2980 struct mips_elf_bfd2got_hash e, *p;
2981
2982 if (! g->bfd2got)
2983 return g;
2984
2985 e.bfd = ibfd;
2986 p = htab_find (g->bfd2got, &e);
2987 return p ? p->g : NULL;
2988 }
2989
2990 /* Create one separate got for each bfd that has entries in the global
2991 got, such that we can tell how many local and global entries each
2992 bfd requires. */
2993
2994 static int
2995 mips_elf_make_got_per_bfd (void **entryp, void *p)
2996 {
2997 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2998 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2999 htab_t bfd2got = arg->bfd2got;
3000 struct mips_got_info *g;
3001 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3002 void **bfdgotp;
3003
3004 /* Find the got_info for this GOT entry's input bfd. Create one if
3005 none exists. */
3006 bfdgot_entry.bfd = entry->abfd;
3007 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3008 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
3009
3010 if (bfdgot != NULL)
3011 g = bfdgot->g;
3012 else
3013 {
3014 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3015 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3016
3017 if (bfdgot == NULL)
3018 {
3019 arg->obfd = 0;
3020 return 0;
3021 }
3022
3023 *bfdgotp = bfdgot;
3024
3025 bfdgot->bfd = entry->abfd;
3026 bfdgot->g = g = (struct mips_got_info *)
3027 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3028 if (g == NULL)
3029 {
3030 arg->obfd = 0;
3031 return 0;
3032 }
3033
3034 g->global_gotsym = NULL;
3035 g->global_gotno = 0;
3036 g->local_gotno = 0;
3037 g->assigned_gotno = -1;
3038 g->tls_gotno = 0;
3039 g->tls_assigned_gotno = 0;
3040 g->tls_ldm_offset = MINUS_ONE;
3041 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3042 mips_elf_multi_got_entry_eq, NULL);
3043 if (g->got_entries == NULL)
3044 {
3045 arg->obfd = 0;
3046 return 0;
3047 }
3048
3049 g->bfd2got = NULL;
3050 g->next = NULL;
3051 }
3052
3053 /* Insert the GOT entry in the bfd's got entry hash table. */
3054 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3055 if (*entryp != NULL)
3056 return 1;
3057
3058 *entryp = entry;
3059
3060 if (entry->tls_type)
3061 {
3062 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3063 g->tls_gotno += 2;
3064 if (entry->tls_type & GOT_TLS_IE)
3065 g->tls_gotno += 1;
3066 }
3067 else if (entry->symndx >= 0 || entry->d.h->forced_local)
3068 ++g->local_gotno;
3069 else
3070 ++g->global_gotno;
3071
3072 return 1;
3073 }
3074
3075 /* Attempt to merge gots of different input bfds. Try to use as much
3076 as possible of the primary got, since it doesn't require explicit
3077 dynamic relocations, but don't use bfds that would reference global
3078 symbols out of the addressable range. Failing the primary got,
3079 attempt to merge with the current got, or finish the current got
3080 and then make make the new got current. */
3081
3082 static int
3083 mips_elf_merge_gots (void **bfd2got_, void *p)
3084 {
3085 struct mips_elf_bfd2got_hash *bfd2got
3086 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3087 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3088 unsigned int lcount = bfd2got->g->local_gotno;
3089 unsigned int gcount = bfd2got->g->global_gotno;
3090 unsigned int tcount = bfd2got->g->tls_gotno;
3091 unsigned int maxcnt = arg->max_count;
3092 bfd_boolean too_many_for_tls = FALSE;
3093
3094 /* We place TLS GOT entries after both locals and globals. The globals
3095 for the primary GOT may overflow the normal GOT size limit, so be
3096 sure not to merge a GOT which requires TLS with the primary GOT in that
3097 case. This doesn't affect non-primary GOTs. */
3098 if (tcount > 0)
3099 {
3100 unsigned int primary_total = lcount + tcount + arg->global_count;
3101 if (primary_total > maxcnt)
3102 too_many_for_tls = TRUE;
3103 }
3104
3105 /* If we don't have a primary GOT and this is not too big, use it as
3106 a starting point for the primary GOT. */
3107 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3108 && ! too_many_for_tls)
3109 {
3110 arg->primary = bfd2got->g;
3111 arg->primary_count = lcount + gcount;
3112 }
3113 /* If it looks like we can merge this bfd's entries with those of
3114 the primary, merge them. The heuristics is conservative, but we
3115 don't have to squeeze it too hard. */
3116 else if (arg->primary && ! too_many_for_tls
3117 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
3118 {
3119 struct mips_got_info *g = bfd2got->g;
3120 int old_lcount = arg->primary->local_gotno;
3121 int old_gcount = arg->primary->global_gotno;
3122 int old_tcount = arg->primary->tls_gotno;
3123
3124 bfd2got->g = arg->primary;
3125
3126 htab_traverse (g->got_entries,
3127 mips_elf_make_got_per_bfd,
3128 arg);
3129 if (arg->obfd == NULL)
3130 return 0;
3131
3132 htab_delete (g->got_entries);
3133 /* We don't have to worry about releasing memory of the actual
3134 got entries, since they're all in the master got_entries hash
3135 table anyway. */
3136
3137 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
3138 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
3139 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
3140
3141 arg->primary_count = arg->primary->local_gotno
3142 + arg->primary->global_gotno + arg->primary->tls_gotno;
3143 }
3144 /* If we can merge with the last-created got, do it. */
3145 else if (arg->current
3146 && arg->current_count + lcount + gcount + tcount <= maxcnt)
3147 {
3148 struct mips_got_info *g = bfd2got->g;
3149 int old_lcount = arg->current->local_gotno;
3150 int old_gcount = arg->current->global_gotno;
3151 int old_tcount = arg->current->tls_gotno;
3152
3153 bfd2got->g = arg->current;
3154
3155 htab_traverse (g->got_entries,
3156 mips_elf_make_got_per_bfd,
3157 arg);
3158 if (arg->obfd == NULL)
3159 return 0;
3160
3161 htab_delete (g->got_entries);
3162
3163 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
3164 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
3165 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
3166
3167 arg->current_count = arg->current->local_gotno
3168 + arg->current->global_gotno + arg->current->tls_gotno;
3169 }
3170 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3171 fits; if it turns out that it doesn't, we'll get relocation
3172 overflows anyway. */
3173 else
3174 {
3175 bfd2got->g->next = arg->current;
3176 arg->current = bfd2got->g;
3177
3178 arg->current_count = lcount + gcount + 2 * tcount;
3179 }
3180
3181 return 1;
3182 }
3183
3184 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3185 is null iff there is just a single GOT. */
3186
3187 static int
3188 mips_elf_initialize_tls_index (void **entryp, void *p)
3189 {
3190 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3191 struct mips_got_info *g = p;
3192 bfd_vma next_index;
3193 unsigned char tls_type;
3194
3195 /* We're only interested in TLS symbols. */
3196 if (entry->tls_type == 0)
3197 return 1;
3198
3199 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3200
3201 if (entry->symndx == -1 && g->next == NULL)
3202 {
3203 /* A type (3) got entry in the single-GOT case. We use the symbol's
3204 hash table entry to track its index. */
3205 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3206 return 1;
3207 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3208 entry->d.h->tls_got_offset = next_index;
3209 tls_type = entry->d.h->tls_type;
3210 }
3211 else
3212 {
3213 if (entry->tls_type & GOT_TLS_LDM)
3214 {
3215 /* There are separate mips_got_entry objects for each input bfd
3216 that requires an LDM entry. Make sure that all LDM entries in
3217 a GOT resolve to the same index. */
3218 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3219 {
3220 entry->gotidx = g->tls_ldm_offset;
3221 return 1;
3222 }
3223 g->tls_ldm_offset = next_index;
3224 }
3225 entry->gotidx = next_index;
3226 tls_type = entry->tls_type;
3227 }
3228
3229 /* Account for the entries we've just allocated. */
3230 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3231 g->tls_assigned_gotno += 2;
3232 if (tls_type & GOT_TLS_IE)
3233 g->tls_assigned_gotno += 1;
3234
3235 return 1;
3236 }
3237
3238 /* If passed a NULL mips_got_info in the argument, set the marker used
3239 to tell whether a global symbol needs a got entry (in the primary
3240 got) to the given VALUE.
3241
3242 If passed a pointer G to a mips_got_info in the argument (it must
3243 not be the primary GOT), compute the offset from the beginning of
3244 the (primary) GOT section to the entry in G corresponding to the
3245 global symbol. G's assigned_gotno must contain the index of the
3246 first available global GOT entry in G. VALUE must contain the size
3247 of a GOT entry in bytes. For each global GOT entry that requires a
3248 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3249 marked as not eligible for lazy resolution through a function
3250 stub. */
3251 static int
3252 mips_elf_set_global_got_offset (void **entryp, void *p)
3253 {
3254 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3255 struct mips_elf_set_global_got_offset_arg *arg
3256 = (struct mips_elf_set_global_got_offset_arg *)p;
3257 struct mips_got_info *g = arg->g;
3258
3259 if (g && entry->tls_type != GOT_NORMAL)
3260 arg->needed_relocs +=
3261 mips_tls_got_relocs (arg->info, entry->tls_type,
3262 entry->symndx == -1 ? &entry->d.h->root : NULL);
3263
3264 if (entry->abfd != NULL && entry->symndx == -1
3265 && entry->d.h->root.dynindx != -1
3266 && entry->d.h->tls_type == GOT_NORMAL)
3267 {
3268 if (g)
3269 {
3270 BFD_ASSERT (g->global_gotsym == NULL);
3271
3272 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3273 if (arg->info->shared
3274 || (elf_hash_table (arg->info)->dynamic_sections_created
3275 && entry->d.h->root.def_dynamic
3276 && !entry->d.h->root.def_regular))
3277 ++arg->needed_relocs;
3278 }
3279 else
3280 entry->d.h->root.got.offset = arg->value;
3281 }
3282
3283 return 1;
3284 }
3285
3286 /* Mark any global symbols referenced in the GOT we are iterating over
3287 as inelligible for lazy resolution stubs. */
3288 static int
3289 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3290 {
3291 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3292
3293 if (entry->abfd != NULL
3294 && entry->symndx == -1
3295 && entry->d.h->root.dynindx != -1)
3296 entry->d.h->no_fn_stub = TRUE;
3297
3298 return 1;
3299 }
3300
3301 /* Follow indirect and warning hash entries so that each got entry
3302 points to the final symbol definition. P must point to a pointer
3303 to the hash table we're traversing. Since this traversal may
3304 modify the hash table, we set this pointer to NULL to indicate
3305 we've made a potentially-destructive change to the hash table, so
3306 the traversal must be restarted. */
3307 static int
3308 mips_elf_resolve_final_got_entry (void **entryp, void *p)
3309 {
3310 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3311 htab_t got_entries = *(htab_t *)p;
3312
3313 if (entry->abfd != NULL && entry->symndx == -1)
3314 {
3315 struct mips_elf_link_hash_entry *h = entry->d.h;
3316
3317 while (h->root.root.type == bfd_link_hash_indirect
3318 || h->root.root.type == bfd_link_hash_warning)
3319 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3320
3321 if (entry->d.h == h)
3322 return 1;
3323
3324 entry->d.h = h;
3325
3326 /* If we can't find this entry with the new bfd hash, re-insert
3327 it, and get the traversal restarted. */
3328 if (! htab_find (got_entries, entry))
3329 {
3330 htab_clear_slot (got_entries, entryp);
3331 entryp = htab_find_slot (got_entries, entry, INSERT);
3332 if (! *entryp)
3333 *entryp = entry;
3334 /* Abort the traversal, since the whole table may have
3335 moved, and leave it up to the parent to restart the
3336 process. */
3337 *(htab_t *)p = NULL;
3338 return 0;
3339 }
3340 /* We might want to decrement the global_gotno count, but it's
3341 either too early or too late for that at this point. */
3342 }
3343
3344 return 1;
3345 }
3346
3347 /* Turn indirect got entries in a got_entries table into their final
3348 locations. */
3349 static void
3350 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3351 {
3352 htab_t got_entries;
3353
3354 do
3355 {
3356 got_entries = g->got_entries;
3357
3358 htab_traverse (got_entries,
3359 mips_elf_resolve_final_got_entry,
3360 &got_entries);
3361 }
3362 while (got_entries == NULL);
3363 }
3364
3365 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3366 the primary GOT. */
3367 static bfd_vma
3368 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3369 {
3370 if (g->bfd2got == NULL)
3371 return 0;
3372
3373 g = mips_elf_got_for_ibfd (g, ibfd);
3374 if (! g)
3375 return 0;
3376
3377 BFD_ASSERT (g->next);
3378
3379 g = g->next;
3380
3381 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3382 * MIPS_ELF_GOT_SIZE (abfd);
3383 }
3384
3385 /* Turn a single GOT that is too big for 16-bit addressing into
3386 a sequence of GOTs, each one 16-bit addressable. */
3387
3388 static bfd_boolean
3389 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3390 struct mips_got_info *g, asection *got,
3391 bfd_size_type pages)
3392 {
3393 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3394 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3395 struct mips_got_info *gg;
3396 unsigned int assign;
3397
3398 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3399 mips_elf_bfd2got_entry_eq, NULL);
3400 if (g->bfd2got == NULL)
3401 return FALSE;
3402
3403 got_per_bfd_arg.bfd2got = g->bfd2got;
3404 got_per_bfd_arg.obfd = abfd;
3405 got_per_bfd_arg.info = info;
3406
3407 /* Count how many GOT entries each input bfd requires, creating a
3408 map from bfd to got info while at that. */
3409 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3410 if (got_per_bfd_arg.obfd == NULL)
3411 return FALSE;
3412
3413 got_per_bfd_arg.current = NULL;
3414 got_per_bfd_arg.primary = NULL;
3415 /* Taking out PAGES entries is a worst-case estimate. We could
3416 compute the maximum number of pages that each separate input bfd
3417 uses, but it's probably not worth it. */
3418 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
3419 / MIPS_ELF_GOT_SIZE (abfd))
3420 - MIPS_RESERVED_GOTNO (info) - pages);
3421 /* The number of globals that will be included in the primary GOT.
3422 See the calls to mips_elf_set_global_got_offset below for more
3423 information. */
3424 got_per_bfd_arg.global_count = g->global_gotno;
3425
3426 /* Try to merge the GOTs of input bfds together, as long as they
3427 don't seem to exceed the maximum GOT size, choosing one of them
3428 to be the primary GOT. */
3429 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3430 if (got_per_bfd_arg.obfd == NULL)
3431 return FALSE;
3432
3433 /* If we do not find any suitable primary GOT, create an empty one. */
3434 if (got_per_bfd_arg.primary == NULL)
3435 {
3436 g->next = (struct mips_got_info *)
3437 bfd_alloc (abfd, sizeof (struct mips_got_info));
3438 if (g->next == NULL)
3439 return FALSE;
3440
3441 g->next->global_gotsym = NULL;
3442 g->next->global_gotno = 0;
3443 g->next->local_gotno = 0;
3444 g->next->tls_gotno = 0;
3445 g->next->assigned_gotno = 0;
3446 g->next->tls_assigned_gotno = 0;
3447 g->next->tls_ldm_offset = MINUS_ONE;
3448 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3449 mips_elf_multi_got_entry_eq,
3450 NULL);
3451 if (g->next->got_entries == NULL)
3452 return FALSE;
3453 g->next->bfd2got = NULL;
3454 }
3455 else
3456 g->next = got_per_bfd_arg.primary;
3457 g->next->next = got_per_bfd_arg.current;
3458
3459 /* GG is now the master GOT, and G is the primary GOT. */
3460 gg = g;
3461 g = g->next;
3462
3463 /* Map the output bfd to the primary got. That's what we're going
3464 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3465 didn't mark in check_relocs, and we want a quick way to find it.
3466 We can't just use gg->next because we're going to reverse the
3467 list. */
3468 {
3469 struct mips_elf_bfd2got_hash *bfdgot;
3470 void **bfdgotp;
3471
3472 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3473 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3474
3475 if (bfdgot == NULL)
3476 return FALSE;
3477
3478 bfdgot->bfd = abfd;
3479 bfdgot->g = g;
3480 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3481
3482 BFD_ASSERT (*bfdgotp == NULL);
3483 *bfdgotp = bfdgot;
3484 }
3485
3486 /* The IRIX dynamic linker requires every symbol that is referenced
3487 in a dynamic relocation to be present in the primary GOT, so
3488 arrange for them to appear after those that are actually
3489 referenced.
3490
3491 GNU/Linux could very well do without it, but it would slow down
3492 the dynamic linker, since it would have to resolve every dynamic
3493 symbol referenced in other GOTs more than once, without help from
3494 the cache. Also, knowing that every external symbol has a GOT
3495 helps speed up the resolution of local symbols too, so GNU/Linux
3496 follows IRIX's practice.
3497
3498 The number 2 is used by mips_elf_sort_hash_table_f to count
3499 global GOT symbols that are unreferenced in the primary GOT, with
3500 an initial dynamic index computed from gg->assigned_gotno, where
3501 the number of unreferenced global entries in the primary GOT is
3502 preserved. */
3503 if (1)
3504 {
3505 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3506 g->global_gotno = gg->global_gotno;
3507 set_got_offset_arg.value = 2;
3508 }
3509 else
3510 {
3511 /* This could be used for dynamic linkers that don't optimize
3512 symbol resolution while applying relocations so as to use
3513 primary GOT entries or assuming the symbol is locally-defined.
3514 With this code, we assign lower dynamic indices to global
3515 symbols that are not referenced in the primary GOT, so that
3516 their entries can be omitted. */
3517 gg->assigned_gotno = 0;
3518 set_got_offset_arg.value = -1;
3519 }
3520
3521 /* Reorder dynamic symbols as described above (which behavior
3522 depends on the setting of VALUE). */
3523 set_got_offset_arg.g = NULL;
3524 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3525 &set_got_offset_arg);
3526 set_got_offset_arg.value = 1;
3527 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3528 &set_got_offset_arg);
3529 if (! mips_elf_sort_hash_table (info, 1))
3530 return FALSE;
3531
3532 /* Now go through the GOTs assigning them offset ranges.
3533 [assigned_gotno, local_gotno[ will be set to the range of local
3534 entries in each GOT. We can then compute the end of a GOT by
3535 adding local_gotno to global_gotno. We reverse the list and make
3536 it circular since then we'll be able to quickly compute the
3537 beginning of a GOT, by computing the end of its predecessor. To
3538 avoid special cases for the primary GOT, while still preserving
3539 assertions that are valid for both single- and multi-got links,
3540 we arrange for the main got struct to have the right number of
3541 global entries, but set its local_gotno such that the initial
3542 offset of the primary GOT is zero. Remember that the primary GOT
3543 will become the last item in the circular linked list, so it
3544 points back to the master GOT. */
3545 gg->local_gotno = -g->global_gotno;
3546 gg->global_gotno = g->global_gotno;
3547 gg->tls_gotno = 0;
3548 assign = 0;
3549 gg->next = gg;
3550
3551 do
3552 {
3553 struct mips_got_info *gn;
3554
3555 assign += MIPS_RESERVED_GOTNO (info);
3556 g->assigned_gotno = assign;
3557 g->local_gotno += assign + pages;
3558 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3559
3560 /* Take g out of the direct list, and push it onto the reversed
3561 list that gg points to. g->next is guaranteed to be nonnull after
3562 this operation, as required by mips_elf_initialize_tls_index. */
3563 gn = g->next;
3564 g->next = gg->next;
3565 gg->next = g;
3566
3567 /* Set up any TLS entries. We always place the TLS entries after
3568 all non-TLS entries. */
3569 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3570 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3571
3572 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3573 g = gn;
3574
3575 /* Mark global symbols in every non-primary GOT as ineligible for
3576 stubs. */
3577 if (g)
3578 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3579 }
3580 while (g);
3581
3582 got->size = (gg->next->local_gotno
3583 + gg->next->global_gotno
3584 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3585
3586 return TRUE;
3587 }
3588
3589 \f
3590 /* Returns the first relocation of type r_type found, beginning with
3591 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3592
3593 static const Elf_Internal_Rela *
3594 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3595 const Elf_Internal_Rela *relocation,
3596 const Elf_Internal_Rela *relend)
3597 {
3598 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3599
3600 while (relocation < relend)
3601 {
3602 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3603 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
3604 return relocation;
3605
3606 ++relocation;
3607 }
3608
3609 /* We didn't find it. */
3610 return NULL;
3611 }
3612
3613 /* Return whether a relocation is against a local symbol. */
3614
3615 static bfd_boolean
3616 mips_elf_local_relocation_p (bfd *input_bfd,
3617 const Elf_Internal_Rela *relocation,
3618 asection **local_sections,
3619 bfd_boolean check_forced)
3620 {
3621 unsigned long r_symndx;
3622 Elf_Internal_Shdr *symtab_hdr;
3623 struct mips_elf_link_hash_entry *h;
3624 size_t extsymoff;
3625
3626 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3627 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3628 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3629
3630 if (r_symndx < extsymoff)
3631 return TRUE;
3632 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3633 return TRUE;
3634
3635 if (check_forced)
3636 {
3637 /* Look up the hash table to check whether the symbol
3638 was forced local. */
3639 h = (struct mips_elf_link_hash_entry *)
3640 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3641 /* Find the real hash-table entry for this symbol. */
3642 while (h->root.root.type == bfd_link_hash_indirect
3643 || h->root.root.type == bfd_link_hash_warning)
3644 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3645 if (h->root.forced_local)
3646 return TRUE;
3647 }
3648
3649 return FALSE;
3650 }
3651 \f
3652 /* Sign-extend VALUE, which has the indicated number of BITS. */
3653
3654 bfd_vma
3655 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
3656 {
3657 if (value & ((bfd_vma) 1 << (bits - 1)))
3658 /* VALUE is negative. */
3659 value |= ((bfd_vma) - 1) << bits;
3660
3661 return value;
3662 }
3663
3664 /* Return non-zero if the indicated VALUE has overflowed the maximum
3665 range expressible by a signed number with the indicated number of
3666 BITS. */
3667
3668 static bfd_boolean
3669 mips_elf_overflow_p (bfd_vma value, int bits)
3670 {
3671 bfd_signed_vma svalue = (bfd_signed_vma) value;
3672
3673 if (svalue > (1 << (bits - 1)) - 1)
3674 /* The value is too big. */
3675 return TRUE;
3676 else if (svalue < -(1 << (bits - 1)))
3677 /* The value is too small. */
3678 return TRUE;
3679
3680 /* All is well. */
3681 return FALSE;
3682 }
3683
3684 /* Calculate the %high function. */
3685
3686 static bfd_vma
3687 mips_elf_high (bfd_vma value)
3688 {
3689 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3690 }
3691
3692 /* Calculate the %higher function. */
3693
3694 static bfd_vma
3695 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
3696 {
3697 #ifdef BFD64
3698 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3699 #else
3700 abort ();
3701 return MINUS_ONE;
3702 #endif
3703 }
3704
3705 /* Calculate the %highest function. */
3706
3707 static bfd_vma
3708 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
3709 {
3710 #ifdef BFD64
3711 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3712 #else
3713 abort ();
3714 return MINUS_ONE;
3715 #endif
3716 }
3717 \f
3718 /* Create the .compact_rel section. */
3719
3720 static bfd_boolean
3721 mips_elf_create_compact_rel_section
3722 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
3723 {
3724 flagword flags;
3725 register asection *s;
3726
3727 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3728 {
3729 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3730 | SEC_READONLY);
3731
3732 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
3733 if (s == NULL
3734 || ! bfd_set_section_alignment (abfd, s,
3735 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3736 return FALSE;
3737
3738 s->size = sizeof (Elf32_External_compact_rel);
3739 }
3740
3741 return TRUE;
3742 }
3743
3744 /* Create the .got section to hold the global offset table. */
3745
3746 static bfd_boolean
3747 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3748 bfd_boolean maybe_exclude)
3749 {
3750 flagword flags;
3751 register asection *s;
3752 struct elf_link_hash_entry *h;
3753 struct bfd_link_hash_entry *bh;
3754 struct mips_got_info *g;
3755 bfd_size_type amt;
3756 struct mips_elf_link_hash_table *htab;
3757
3758 htab = mips_elf_hash_table (info);
3759
3760 /* This function may be called more than once. */
3761 s = mips_elf_got_section (abfd, TRUE);
3762 if (s)
3763 {
3764 if (! maybe_exclude)
3765 s->flags &= ~SEC_EXCLUDE;
3766 return TRUE;
3767 }
3768
3769 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3770 | SEC_LINKER_CREATED);
3771
3772 if (maybe_exclude)
3773 flags |= SEC_EXCLUDE;
3774
3775 /* We have to use an alignment of 2**4 here because this is hardcoded
3776 in the function stub generation and in the linker script. */
3777 s = bfd_make_section_with_flags (abfd, ".got", flags);
3778 if (s == NULL
3779 || ! bfd_set_section_alignment (abfd, s, 4))
3780 return FALSE;
3781
3782 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3783 linker script because we don't want to define the symbol if we
3784 are not creating a global offset table. */
3785 bh = NULL;
3786 if (! (_bfd_generic_link_add_one_symbol
3787 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
3788 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
3789 return FALSE;
3790
3791 h = (struct elf_link_hash_entry *) bh;
3792 h->non_elf = 0;
3793 h->def_regular = 1;
3794 h->type = STT_OBJECT;
3795 elf_hash_table (info)->hgot = h;
3796
3797 if (info->shared
3798 && ! bfd_elf_link_record_dynamic_symbol (info, h))
3799 return FALSE;
3800
3801 amt = sizeof (struct mips_got_info);
3802 g = bfd_alloc (abfd, amt);
3803 if (g == NULL)
3804 return FALSE;
3805 g->global_gotsym = NULL;
3806 g->global_gotno = 0;
3807 g->tls_gotno = 0;
3808 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3809 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
3810 g->bfd2got = NULL;
3811 g->next = NULL;
3812 g->tls_ldm_offset = MINUS_ONE;
3813 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3814 mips_elf_got_entry_eq, NULL);
3815 if (g->got_entries == NULL)
3816 return FALSE;
3817 mips_elf_section_data (s)->u.got_info = g;
3818 mips_elf_section_data (s)->elf.this_hdr.sh_flags
3819 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3820
3821 /* VxWorks also needs a .got.plt section. */
3822 if (htab->is_vxworks)
3823 {
3824 s = bfd_make_section_with_flags (abfd, ".got.plt",
3825 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3826 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3827 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3828 return FALSE;
3829
3830 htab->sgotplt = s;
3831 }
3832 return TRUE;
3833 }
3834 \f
3835 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3836 __GOTT_INDEX__ symbols. These symbols are only special for
3837 shared objects; they are not used in executables. */
3838
3839 static bfd_boolean
3840 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3841 {
3842 return (mips_elf_hash_table (info)->is_vxworks
3843 && info->shared
3844 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3845 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3846 }
3847 \f
3848 /* Calculate the value produced by the RELOCATION (which comes from
3849 the INPUT_BFD). The ADDEND is the addend to use for this
3850 RELOCATION; RELOCATION->R_ADDEND is ignored.
3851
3852 The result of the relocation calculation is stored in VALUEP.
3853 REQUIRE_JALXP indicates whether or not the opcode used with this
3854 relocation must be JALX.
3855
3856 This function returns bfd_reloc_continue if the caller need take no
3857 further action regarding this relocation, bfd_reloc_notsupported if
3858 something goes dramatically wrong, bfd_reloc_overflow if an
3859 overflow occurs, and bfd_reloc_ok to indicate success. */
3860
3861 static bfd_reloc_status_type
3862 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3863 asection *input_section,
3864 struct bfd_link_info *info,
3865 const Elf_Internal_Rela *relocation,
3866 bfd_vma addend, reloc_howto_type *howto,
3867 Elf_Internal_Sym *local_syms,
3868 asection **local_sections, bfd_vma *valuep,
3869 const char **namep, bfd_boolean *require_jalxp,
3870 bfd_boolean save_addend)
3871 {
3872 /* The eventual value we will return. */
3873 bfd_vma value;
3874 /* The address of the symbol against which the relocation is
3875 occurring. */
3876 bfd_vma symbol = 0;
3877 /* The final GP value to be used for the relocatable, executable, or
3878 shared object file being produced. */
3879 bfd_vma gp = MINUS_ONE;
3880 /* The place (section offset or address) of the storage unit being
3881 relocated. */
3882 bfd_vma p;
3883 /* The value of GP used to create the relocatable object. */
3884 bfd_vma gp0 = MINUS_ONE;
3885 /* The offset into the global offset table at which the address of
3886 the relocation entry symbol, adjusted by the addend, resides
3887 during execution. */
3888 bfd_vma g = MINUS_ONE;
3889 /* The section in which the symbol referenced by the relocation is
3890 located. */
3891 asection *sec = NULL;
3892 struct mips_elf_link_hash_entry *h = NULL;
3893 /* TRUE if the symbol referred to by this relocation is a local
3894 symbol. */
3895 bfd_boolean local_p, was_local_p;
3896 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3897 bfd_boolean gp_disp_p = FALSE;
3898 /* TRUE if the symbol referred to by this relocation is
3899 "__gnu_local_gp". */
3900 bfd_boolean gnu_local_gp_p = FALSE;
3901 Elf_Internal_Shdr *symtab_hdr;
3902 size_t extsymoff;
3903 unsigned long r_symndx;
3904 int r_type;
3905 /* TRUE if overflow occurred during the calculation of the
3906 relocation value. */
3907 bfd_boolean overflowed_p;
3908 /* TRUE if this relocation refers to a MIPS16 function. */
3909 bfd_boolean target_is_16_bit_code_p = FALSE;
3910 struct mips_elf_link_hash_table *htab;
3911 bfd *dynobj;
3912
3913 dynobj = elf_hash_table (info)->dynobj;
3914 htab = mips_elf_hash_table (info);
3915
3916 /* Parse the relocation. */
3917 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3918 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3919 p = (input_section->output_section->vma
3920 + input_section->output_offset
3921 + relocation->r_offset);
3922
3923 /* Assume that there will be no overflow. */
3924 overflowed_p = FALSE;
3925
3926 /* Figure out whether or not the symbol is local, and get the offset
3927 used in the array of hash table entries. */
3928 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3929 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3930 local_sections, FALSE);
3931 was_local_p = local_p;
3932 if (! elf_bad_symtab (input_bfd))
3933 extsymoff = symtab_hdr->sh_info;
3934 else
3935 {
3936 /* The symbol table does not follow the rule that local symbols
3937 must come before globals. */
3938 extsymoff = 0;
3939 }
3940
3941 /* Figure out the value of the symbol. */
3942 if (local_p)
3943 {
3944 Elf_Internal_Sym *sym;
3945
3946 sym = local_syms + r_symndx;
3947 sec = local_sections[r_symndx];
3948
3949 symbol = sec->output_section->vma + sec->output_offset;
3950 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3951 || (sec->flags & SEC_MERGE))
3952 symbol += sym->st_value;
3953 if ((sec->flags & SEC_MERGE)
3954 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3955 {
3956 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3957 addend -= symbol;
3958 addend += sec->output_section->vma + sec->output_offset;
3959 }
3960
3961 /* MIPS16 text labels should be treated as odd. */
3962 if (sym->st_other == STO_MIPS16)
3963 ++symbol;
3964
3965 /* Record the name of this symbol, for our caller. */
3966 *namep = bfd_elf_string_from_elf_section (input_bfd,
3967 symtab_hdr->sh_link,
3968 sym->st_name);
3969 if (*namep == '\0')
3970 *namep = bfd_section_name (input_bfd, sec);
3971
3972 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3973 }
3974 else
3975 {
3976 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3977
3978 /* For global symbols we look up the symbol in the hash-table. */
3979 h = ((struct mips_elf_link_hash_entry *)
3980 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3981 /* Find the real hash-table entry for this symbol. */
3982 while (h->root.root.type == bfd_link_hash_indirect
3983 || h->root.root.type == bfd_link_hash_warning)
3984 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3985
3986 /* Record the name of this symbol, for our caller. */
3987 *namep = h->root.root.root.string;
3988
3989 /* See if this is the special _gp_disp symbol. Note that such a
3990 symbol must always be a global symbol. */
3991 if (strcmp (*namep, "_gp_disp") == 0
3992 && ! NEWABI_P (input_bfd))
3993 {
3994 /* Relocations against _gp_disp are permitted only with
3995 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3996 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3997 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
3998 return bfd_reloc_notsupported;
3999
4000 gp_disp_p = TRUE;
4001 }
4002 /* See if this is the special _gp symbol. Note that such a
4003 symbol must always be a global symbol. */
4004 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4005 gnu_local_gp_p = TRUE;
4006
4007
4008 /* If this symbol is defined, calculate its address. Note that
4009 _gp_disp is a magic symbol, always implicitly defined by the
4010 linker, so it's inappropriate to check to see whether or not
4011 its defined. */
4012 else if ((h->root.root.type == bfd_link_hash_defined
4013 || h->root.root.type == bfd_link_hash_defweak)
4014 && h->root.root.u.def.section)
4015 {
4016 sec = h->root.root.u.def.section;
4017 if (sec->output_section)
4018 symbol = (h->root.root.u.def.value
4019 + sec->output_section->vma
4020 + sec->output_offset);
4021 else
4022 symbol = h->root.root.u.def.value;
4023 }
4024 else if (h->root.root.type == bfd_link_hash_undefweak)
4025 /* We allow relocations against undefined weak symbols, giving
4026 it the value zero, so that you can undefined weak functions
4027 and check to see if they exist by looking at their
4028 addresses. */
4029 symbol = 0;
4030 else if (info->unresolved_syms_in_objects == RM_IGNORE
4031 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4032 symbol = 0;
4033 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4034 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4035 {
4036 /* If this is a dynamic link, we should have created a
4037 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4038 in in _bfd_mips_elf_create_dynamic_sections.
4039 Otherwise, we should define the symbol with a value of 0.
4040 FIXME: It should probably get into the symbol table
4041 somehow as well. */
4042 BFD_ASSERT (! info->shared);
4043 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4044 symbol = 0;
4045 }
4046 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4047 {
4048 /* This is an optional symbol - an Irix specific extension to the
4049 ELF spec. Ignore it for now.
4050 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4051 than simply ignoring them, but we do not handle this for now.
4052 For information see the "64-bit ELF Object File Specification"
4053 which is available from here:
4054 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4055 symbol = 0;
4056 }
4057 else
4058 {
4059 if (! ((*info->callbacks->undefined_symbol)
4060 (info, h->root.root.root.string, input_bfd,
4061 input_section, relocation->r_offset,
4062 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4063 || ELF_ST_VISIBILITY (h->root.other))))
4064 return bfd_reloc_undefined;
4065 symbol = 0;
4066 }
4067
4068 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4069 }
4070
4071 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4072 need to redirect the call to the stub, unless we're already *in*
4073 a stub. */
4074 if (r_type != R_MIPS16_26 && !info->relocatable
4075 && ((h != NULL && h->fn_stub != NULL)
4076 || (local_p
4077 && elf_tdata (input_bfd)->local_stubs != NULL
4078 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4079 && !mips16_stub_section_p (input_bfd, input_section))
4080 {
4081 /* This is a 32- or 64-bit call to a 16-bit function. We should
4082 have already noticed that we were going to need the
4083 stub. */
4084 if (local_p)
4085 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4086 else
4087 {
4088 BFD_ASSERT (h->need_fn_stub);
4089 sec = h->fn_stub;
4090 }
4091
4092 symbol = sec->output_section->vma + sec->output_offset;
4093 /* The target is 16-bit, but the stub isn't. */
4094 target_is_16_bit_code_p = FALSE;
4095 }
4096 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4097 need to redirect the call to the stub. */
4098 else if (r_type == R_MIPS16_26 && !info->relocatable
4099 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
4100 || (local_p
4101 && elf_tdata (input_bfd)->local_call_stubs != NULL
4102 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
4103 && !target_is_16_bit_code_p)
4104 {
4105 if (local_p)
4106 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4107 else
4108 {
4109 /* If both call_stub and call_fp_stub are defined, we can figure
4110 out which one to use by checking which one appears in the input
4111 file. */
4112 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4113 {
4114 asection *o;
4115
4116 sec = NULL;
4117 for (o = input_bfd->sections; o != NULL; o = o->next)
4118 {
4119 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4120 {
4121 sec = h->call_fp_stub;
4122 break;
4123 }
4124 }
4125 if (sec == NULL)
4126 sec = h->call_stub;
4127 }
4128 else if (h->call_stub != NULL)
4129 sec = h->call_stub;
4130 else
4131 sec = h->call_fp_stub;
4132 }
4133
4134 BFD_ASSERT (sec->size > 0);
4135 symbol = sec->output_section->vma + sec->output_offset;
4136 }
4137
4138 /* Calls from 16-bit code to 32-bit code and vice versa require the
4139 special jalx instruction. */
4140 *require_jalxp = (!info->relocatable
4141 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4142 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4143
4144 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4145 local_sections, TRUE);
4146
4147 /* If we haven't already determined the GOT offset, or the GP value,
4148 and we're going to need it, get it now. */
4149 switch (r_type)
4150 {
4151 case R_MIPS_GOT_PAGE:
4152 case R_MIPS_GOT_OFST:
4153 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4154 bind locally. */
4155 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
4156 if (local_p || r_type == R_MIPS_GOT_OFST)
4157 break;
4158 /* Fall through. */
4159
4160 case R_MIPS_CALL16:
4161 case R_MIPS_GOT16:
4162 case R_MIPS_GOT_DISP:
4163 case R_MIPS_GOT_HI16:
4164 case R_MIPS_CALL_HI16:
4165 case R_MIPS_GOT_LO16:
4166 case R_MIPS_CALL_LO16:
4167 case R_MIPS_TLS_GD:
4168 case R_MIPS_TLS_GOTTPREL:
4169 case R_MIPS_TLS_LDM:
4170 /* Find the index into the GOT where this value is located. */
4171 if (r_type == R_MIPS_TLS_LDM)
4172 {
4173 g = mips_elf_local_got_index (abfd, input_bfd, info,
4174 0, 0, NULL, r_type);
4175 if (g == MINUS_ONE)
4176 return bfd_reloc_outofrange;
4177 }
4178 else if (!local_p)
4179 {
4180 /* On VxWorks, CALL relocations should refer to the .got.plt
4181 entry, which is initialized to point at the PLT stub. */
4182 if (htab->is_vxworks
4183 && (r_type == R_MIPS_CALL_HI16
4184 || r_type == R_MIPS_CALL_LO16
4185 || r_type == R_MIPS_CALL16))
4186 {
4187 BFD_ASSERT (addend == 0);
4188 BFD_ASSERT (h->root.needs_plt);
4189 g = mips_elf_gotplt_index (info, &h->root);
4190 }
4191 else
4192 {
4193 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4194 GOT_PAGE relocation that decays to GOT_DISP because the
4195 symbol turns out to be global. The addend is then added
4196 as GOT_OFST. */
4197 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4198 g = mips_elf_global_got_index (dynobj, input_bfd,
4199 &h->root, r_type, info);
4200 if (h->tls_type == GOT_NORMAL
4201 && (! elf_hash_table(info)->dynamic_sections_created
4202 || (info->shared
4203 && (info->symbolic || h->root.forced_local)
4204 && h->root.def_regular)))
4205 {
4206 /* This is a static link or a -Bsymbolic link. The
4207 symbol is defined locally, or was forced to be local.
4208 We must initialize this entry in the GOT. */
4209 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4210 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4211 }
4212 }
4213 }
4214 else if (!htab->is_vxworks
4215 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4216 /* The calculation below does not involve "g". */
4217 break;
4218 else
4219 {
4220 g = mips_elf_local_got_index (abfd, input_bfd, info,
4221 symbol + addend, r_symndx, h, r_type);
4222 if (g == MINUS_ONE)
4223 return bfd_reloc_outofrange;
4224 }
4225
4226 /* Convert GOT indices to actual offsets. */
4227 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
4228 break;
4229
4230 case R_MIPS_HI16:
4231 case R_MIPS_LO16:
4232 case R_MIPS_GPREL16:
4233 case R_MIPS_GPREL32:
4234 case R_MIPS_LITERAL:
4235 case R_MIPS16_HI16:
4236 case R_MIPS16_LO16:
4237 case R_MIPS16_GPREL:
4238 gp0 = _bfd_get_gp_value (input_bfd);
4239 gp = _bfd_get_gp_value (abfd);
4240 if (dynobj)
4241 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
4242 input_bfd);
4243 break;
4244
4245 default:
4246 break;
4247 }
4248
4249 if (gnu_local_gp_p)
4250 symbol = gp;
4251
4252 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4253 symbols are resolved by the loader. Add them to .rela.dyn. */
4254 if (h != NULL && is_gott_symbol (info, &h->root))
4255 {
4256 Elf_Internal_Rela outrel;
4257 bfd_byte *loc;
4258 asection *s;
4259
4260 s = mips_elf_rel_dyn_section (info, FALSE);
4261 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4262
4263 outrel.r_offset = (input_section->output_section->vma
4264 + input_section->output_offset
4265 + relocation->r_offset);
4266 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4267 outrel.r_addend = addend;
4268 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4269
4270 /* If we've written this relocation for a readonly section,
4271 we need to set DF_TEXTREL again, so that we do not delete the
4272 DT_TEXTREL tag. */
4273 if (MIPS_ELF_READONLY_SECTION (input_section))
4274 info->flags |= DF_TEXTREL;
4275
4276 *valuep = 0;
4277 return bfd_reloc_ok;
4278 }
4279
4280 /* Figure out what kind of relocation is being performed. */
4281 switch (r_type)
4282 {
4283 case R_MIPS_NONE:
4284 return bfd_reloc_continue;
4285
4286 case R_MIPS_16:
4287 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
4288 overflowed_p = mips_elf_overflow_p (value, 16);
4289 break;
4290
4291 case R_MIPS_32:
4292 case R_MIPS_REL32:
4293 case R_MIPS_64:
4294 if ((info->shared
4295 || (!htab->is_vxworks
4296 && htab->root.dynamic_sections_created
4297 && h != NULL
4298 && h->root.def_dynamic
4299 && !h->root.def_regular))
4300 && r_symndx != 0
4301 && (input_section->flags & SEC_ALLOC) != 0)
4302 {
4303 /* If we're creating a shared library, or this relocation is
4304 against a symbol in a shared library, then we can't know
4305 where the symbol will end up. So, we create a relocation
4306 record in the output, and leave the job up to the dynamic
4307 linker.
4308
4309 In VxWorks executables, references to external symbols
4310 are handled using copy relocs or PLT stubs, so there's
4311 no need to add a dynamic relocation here. */
4312 value = addend;
4313 if (!mips_elf_create_dynamic_relocation (abfd,
4314 info,
4315 relocation,
4316 h,
4317 sec,
4318 symbol,
4319 &value,
4320 input_section))
4321 return bfd_reloc_undefined;
4322 }
4323 else
4324 {
4325 if (r_type != R_MIPS_REL32)
4326 value = symbol + addend;
4327 else
4328 value = addend;
4329 }
4330 value &= howto->dst_mask;
4331 break;
4332
4333 case R_MIPS_PC32:
4334 value = symbol + addend - p;
4335 value &= howto->dst_mask;
4336 break;
4337
4338 case R_MIPS16_26:
4339 /* The calculation for R_MIPS16_26 is just the same as for an
4340 R_MIPS_26. It's only the storage of the relocated field into
4341 the output file that's different. That's handled in
4342 mips_elf_perform_relocation. So, we just fall through to the
4343 R_MIPS_26 case here. */
4344 case R_MIPS_26:
4345 if (local_p)
4346 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4347 else
4348 {
4349 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4350 if (h->root.root.type != bfd_link_hash_undefweak)
4351 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4352 }
4353 value &= howto->dst_mask;
4354 break;
4355
4356 case R_MIPS_TLS_DTPREL_HI16:
4357 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4358 & howto->dst_mask);
4359 break;
4360
4361 case R_MIPS_TLS_DTPREL_LO16:
4362 case R_MIPS_TLS_DTPREL32:
4363 case R_MIPS_TLS_DTPREL64:
4364 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4365 break;
4366
4367 case R_MIPS_TLS_TPREL_HI16:
4368 value = (mips_elf_high (addend + symbol - tprel_base (info))
4369 & howto->dst_mask);
4370 break;
4371
4372 case R_MIPS_TLS_TPREL_LO16:
4373 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4374 break;
4375
4376 case R_MIPS_HI16:
4377 case R_MIPS16_HI16:
4378 if (!gp_disp_p)
4379 {
4380 value = mips_elf_high (addend + symbol);
4381 value &= howto->dst_mask;
4382 }
4383 else
4384 {
4385 /* For MIPS16 ABI code we generate this sequence
4386 0: li $v0,%hi(_gp_disp)
4387 4: addiupc $v1,%lo(_gp_disp)
4388 8: sll $v0,16
4389 12: addu $v0,$v1
4390 14: move $gp,$v0
4391 So the offsets of hi and lo relocs are the same, but the
4392 $pc is four higher than $t9 would be, so reduce
4393 both reloc addends by 4. */
4394 if (r_type == R_MIPS16_HI16)
4395 value = mips_elf_high (addend + gp - p - 4);
4396 else
4397 value = mips_elf_high (addend + gp - p);
4398 overflowed_p = mips_elf_overflow_p (value, 16);
4399 }
4400 break;
4401
4402 case R_MIPS_LO16:
4403 case R_MIPS16_LO16:
4404 if (!gp_disp_p)
4405 value = (symbol + addend) & howto->dst_mask;
4406 else
4407 {
4408 /* See the comment for R_MIPS16_HI16 above for the reason
4409 for this conditional. */
4410 if (r_type == R_MIPS16_LO16)
4411 value = addend + gp - p;
4412 else
4413 value = addend + gp - p + 4;
4414 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4415 for overflow. But, on, say, IRIX5, relocations against
4416 _gp_disp are normally generated from the .cpload
4417 pseudo-op. It generates code that normally looks like
4418 this:
4419
4420 lui $gp,%hi(_gp_disp)
4421 addiu $gp,$gp,%lo(_gp_disp)
4422 addu $gp,$gp,$t9
4423
4424 Here $t9 holds the address of the function being called,
4425 as required by the MIPS ELF ABI. The R_MIPS_LO16
4426 relocation can easily overflow in this situation, but the
4427 R_MIPS_HI16 relocation will handle the overflow.
4428 Therefore, we consider this a bug in the MIPS ABI, and do
4429 not check for overflow here. */
4430 }
4431 break;
4432
4433 case R_MIPS_LITERAL:
4434 /* Because we don't merge literal sections, we can handle this
4435 just like R_MIPS_GPREL16. In the long run, we should merge
4436 shared literals, and then we will need to additional work
4437 here. */
4438
4439 /* Fall through. */
4440
4441 case R_MIPS16_GPREL:
4442 /* The R_MIPS16_GPREL performs the same calculation as
4443 R_MIPS_GPREL16, but stores the relocated bits in a different
4444 order. We don't need to do anything special here; the
4445 differences are handled in mips_elf_perform_relocation. */
4446 case R_MIPS_GPREL16:
4447 /* Only sign-extend the addend if it was extracted from the
4448 instruction. If the addend was separate, leave it alone,
4449 otherwise we may lose significant bits. */
4450 if (howto->partial_inplace)
4451 addend = _bfd_mips_elf_sign_extend (addend, 16);
4452 value = symbol + addend - gp;
4453 /* If the symbol was local, any earlier relocatable links will
4454 have adjusted its addend with the gp offset, so compensate
4455 for that now. Don't do it for symbols forced local in this
4456 link, though, since they won't have had the gp offset applied
4457 to them before. */
4458 if (was_local_p)
4459 value += gp0;
4460 overflowed_p = mips_elf_overflow_p (value, 16);
4461 break;
4462
4463 case R_MIPS_GOT16:
4464 case R_MIPS_CALL16:
4465 /* VxWorks does not have separate local and global semantics for
4466 R_MIPS_GOT16; every relocation evaluates to "G". */
4467 if (!htab->is_vxworks && local_p)
4468 {
4469 bfd_boolean forced;
4470
4471 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4472 local_sections, FALSE);
4473 value = mips_elf_got16_entry (abfd, input_bfd, info,
4474 symbol + addend, forced);
4475 if (value == MINUS_ONE)
4476 return bfd_reloc_outofrange;
4477 value
4478 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4479 overflowed_p = mips_elf_overflow_p (value, 16);
4480 break;
4481 }
4482
4483 /* Fall through. */
4484
4485 case R_MIPS_TLS_GD:
4486 case R_MIPS_TLS_GOTTPREL:
4487 case R_MIPS_TLS_LDM:
4488 case R_MIPS_GOT_DISP:
4489 got_disp:
4490 value = g;
4491 overflowed_p = mips_elf_overflow_p (value, 16);
4492 break;
4493
4494 case R_MIPS_GPREL32:
4495 value = (addend + symbol + gp0 - gp);
4496 if (!save_addend)
4497 value &= howto->dst_mask;
4498 break;
4499
4500 case R_MIPS_PC16:
4501 case R_MIPS_GNU_REL16_S2:
4502 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4503 overflowed_p = mips_elf_overflow_p (value, 18);
4504 value >>= howto->rightshift;
4505 value &= howto->dst_mask;
4506 break;
4507
4508 case R_MIPS_GOT_HI16:
4509 case R_MIPS_CALL_HI16:
4510 /* We're allowed to handle these two relocations identically.
4511 The dynamic linker is allowed to handle the CALL relocations
4512 differently by creating a lazy evaluation stub. */
4513 value = g;
4514 value = mips_elf_high (value);
4515 value &= howto->dst_mask;
4516 break;
4517
4518 case R_MIPS_GOT_LO16:
4519 case R_MIPS_CALL_LO16:
4520 value = g & howto->dst_mask;
4521 break;
4522
4523 case R_MIPS_GOT_PAGE:
4524 /* GOT_PAGE relocations that reference non-local symbols decay
4525 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4526 0. */
4527 if (! local_p)
4528 goto got_disp;
4529 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
4530 if (value == MINUS_ONE)
4531 return bfd_reloc_outofrange;
4532 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4533 overflowed_p = mips_elf_overflow_p (value, 16);
4534 break;
4535
4536 case R_MIPS_GOT_OFST:
4537 if (local_p)
4538 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
4539 else
4540 value = addend;
4541 overflowed_p = mips_elf_overflow_p (value, 16);
4542 break;
4543
4544 case R_MIPS_SUB:
4545 value = symbol - addend;
4546 value &= howto->dst_mask;
4547 break;
4548
4549 case R_MIPS_HIGHER:
4550 value = mips_elf_higher (addend + symbol);
4551 value &= howto->dst_mask;
4552 break;
4553
4554 case R_MIPS_HIGHEST:
4555 value = mips_elf_highest (addend + symbol);
4556 value &= howto->dst_mask;
4557 break;
4558
4559 case R_MIPS_SCN_DISP:
4560 value = symbol + addend - sec->output_offset;
4561 value &= howto->dst_mask;
4562 break;
4563
4564 case R_MIPS_JALR:
4565 /* This relocation is only a hint. In some cases, we optimize
4566 it into a bal instruction. But we don't try to optimize
4567 branches to the PLT; that will wind up wasting time. */
4568 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4569 return bfd_reloc_continue;
4570 value = symbol + addend;
4571 break;
4572
4573 case R_MIPS_PJUMP:
4574 case R_MIPS_GNU_VTINHERIT:
4575 case R_MIPS_GNU_VTENTRY:
4576 /* We don't do anything with these at present. */
4577 return bfd_reloc_continue;
4578
4579 default:
4580 /* An unrecognized relocation type. */
4581 return bfd_reloc_notsupported;
4582 }
4583
4584 /* Store the VALUE for our caller. */
4585 *valuep = value;
4586 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4587 }
4588
4589 /* Obtain the field relocated by RELOCATION. */
4590
4591 static bfd_vma
4592 mips_elf_obtain_contents (reloc_howto_type *howto,
4593 const Elf_Internal_Rela *relocation,
4594 bfd *input_bfd, bfd_byte *contents)
4595 {
4596 bfd_vma x;
4597 bfd_byte *location = contents + relocation->r_offset;
4598
4599 /* Obtain the bytes. */
4600 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4601
4602 return x;
4603 }
4604
4605 /* It has been determined that the result of the RELOCATION is the
4606 VALUE. Use HOWTO to place VALUE into the output file at the
4607 appropriate position. The SECTION is the section to which the
4608 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4609 for the relocation must be either JAL or JALX, and it is
4610 unconditionally converted to JALX.
4611
4612 Returns FALSE if anything goes wrong. */
4613
4614 static bfd_boolean
4615 mips_elf_perform_relocation (struct bfd_link_info *info,
4616 reloc_howto_type *howto,
4617 const Elf_Internal_Rela *relocation,
4618 bfd_vma value, bfd *input_bfd,
4619 asection *input_section, bfd_byte *contents,
4620 bfd_boolean require_jalx)
4621 {
4622 bfd_vma x;
4623 bfd_byte *location;
4624 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4625
4626 /* Figure out where the relocation is occurring. */
4627 location = contents + relocation->r_offset;
4628
4629 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4630
4631 /* Obtain the current value. */
4632 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4633
4634 /* Clear the field we are setting. */
4635 x &= ~howto->dst_mask;
4636
4637 /* Set the field. */
4638 x |= (value & howto->dst_mask);
4639
4640 /* If required, turn JAL into JALX. */
4641 if (require_jalx)
4642 {
4643 bfd_boolean ok;
4644 bfd_vma opcode = x >> 26;
4645 bfd_vma jalx_opcode;
4646
4647 /* Check to see if the opcode is already JAL or JALX. */
4648 if (r_type == R_MIPS16_26)
4649 {
4650 ok = ((opcode == 0x6) || (opcode == 0x7));
4651 jalx_opcode = 0x7;
4652 }
4653 else
4654 {
4655 ok = ((opcode == 0x3) || (opcode == 0x1d));
4656 jalx_opcode = 0x1d;
4657 }
4658
4659 /* If the opcode is not JAL or JALX, there's a problem. */
4660 if (!ok)
4661 {
4662 (*_bfd_error_handler)
4663 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4664 input_bfd,
4665 input_section,
4666 (unsigned long) relocation->r_offset);
4667 bfd_set_error (bfd_error_bad_value);
4668 return FALSE;
4669 }
4670
4671 /* Make this the JALX opcode. */
4672 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4673 }
4674
4675 /* On the RM9000, bal is faster than jal, because bal uses branch
4676 prediction hardware. If we are linking for the RM9000, and we
4677 see jal, and bal fits, use it instead. Note that this
4678 transformation should be safe for all architectures. */
4679 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4680 && !info->relocatable
4681 && !require_jalx
4682 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4683 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4684 {
4685 bfd_vma addr;
4686 bfd_vma dest;
4687 bfd_signed_vma off;
4688
4689 addr = (input_section->output_section->vma
4690 + input_section->output_offset
4691 + relocation->r_offset
4692 + 4);
4693 if (r_type == R_MIPS_26)
4694 dest = (value << 2) | ((addr >> 28) << 28);
4695 else
4696 dest = value;
4697 off = dest - addr;
4698 if (off <= 0x1ffff && off >= -0x20000)
4699 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4700 }
4701
4702 /* Put the value into the output. */
4703 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
4704
4705 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4706 location);
4707
4708 return TRUE;
4709 }
4710
4711 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4712
4713 static bfd_boolean
4714 mips16_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
4715 {
4716 const char *name = bfd_get_section_name (abfd, section);
4717
4718 return FN_STUB_P (name) || CALL_STUB_P (name) || CALL_FP_STUB_P (name);
4719 }
4720 \f
4721 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4722
4723 static void
4724 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4725 unsigned int n)
4726 {
4727 asection *s;
4728 struct mips_elf_link_hash_table *htab;
4729
4730 htab = mips_elf_hash_table (info);
4731 s = mips_elf_rel_dyn_section (info, FALSE);
4732 BFD_ASSERT (s != NULL);
4733
4734 if (htab->is_vxworks)
4735 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4736 else
4737 {
4738 if (s->size == 0)
4739 {
4740 /* Make room for a null element. */
4741 s->size += MIPS_ELF_REL_SIZE (abfd);
4742 ++s->reloc_count;
4743 }
4744 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4745 }
4746 }
4747
4748 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4749 is the original relocation, which is now being transformed into a
4750 dynamic relocation. The ADDENDP is adjusted if necessary; the
4751 caller should store the result in place of the original addend. */
4752
4753 static bfd_boolean
4754 mips_elf_create_dynamic_relocation (bfd *output_bfd,
4755 struct bfd_link_info *info,
4756 const Elf_Internal_Rela *rel,
4757 struct mips_elf_link_hash_entry *h,
4758 asection *sec, bfd_vma symbol,
4759 bfd_vma *addendp, asection *input_section)
4760 {
4761 Elf_Internal_Rela outrel[3];
4762 asection *sreloc;
4763 bfd *dynobj;
4764 int r_type;
4765 long indx;
4766 bfd_boolean defined_p;
4767 struct mips_elf_link_hash_table *htab;
4768
4769 htab = mips_elf_hash_table (info);
4770 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4771 dynobj = elf_hash_table (info)->dynobj;
4772 sreloc = mips_elf_rel_dyn_section (info, FALSE);
4773 BFD_ASSERT (sreloc != NULL);
4774 BFD_ASSERT (sreloc->contents != NULL);
4775 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
4776 < sreloc->size);
4777
4778 outrel[0].r_offset =
4779 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4780 if (ABI_64_P (output_bfd))
4781 {
4782 outrel[1].r_offset =
4783 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4784 outrel[2].r_offset =
4785 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4786 }
4787
4788 if (outrel[0].r_offset == MINUS_ONE)
4789 /* The relocation field has been deleted. */
4790 return TRUE;
4791
4792 if (outrel[0].r_offset == MINUS_TWO)
4793 {
4794 /* The relocation field has been converted into a relative value of
4795 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4796 the field to be fully relocated, so add in the symbol's value. */
4797 *addendp += symbol;
4798 return TRUE;
4799 }
4800
4801 /* We must now calculate the dynamic symbol table index to use
4802 in the relocation. */
4803 if (h != NULL
4804 && (!h->root.def_regular
4805 || (info->shared && !info->symbolic && !h->root.forced_local)))
4806 {
4807 indx = h->root.dynindx;
4808 if (SGI_COMPAT (output_bfd))
4809 defined_p = h->root.def_regular;
4810 else
4811 /* ??? glibc's ld.so just adds the final GOT entry to the
4812 relocation field. It therefore treats relocs against
4813 defined symbols in the same way as relocs against
4814 undefined symbols. */
4815 defined_p = FALSE;
4816 }
4817 else
4818 {
4819 if (sec != NULL && bfd_is_abs_section (sec))
4820 indx = 0;
4821 else if (sec == NULL || sec->owner == NULL)
4822 {
4823 bfd_set_error (bfd_error_bad_value);
4824 return FALSE;
4825 }
4826 else
4827 {
4828 indx = elf_section_data (sec->output_section)->dynindx;
4829 if (indx == 0)
4830 {
4831 asection *osec = htab->root.text_index_section;
4832 indx = elf_section_data (osec)->dynindx;
4833 }
4834 if (indx == 0)
4835 abort ();
4836 }
4837
4838 /* Instead of generating a relocation using the section
4839 symbol, we may as well make it a fully relative
4840 relocation. We want to avoid generating relocations to
4841 local symbols because we used to generate them
4842 incorrectly, without adding the original symbol value,
4843 which is mandated by the ABI for section symbols. In
4844 order to give dynamic loaders and applications time to
4845 phase out the incorrect use, we refrain from emitting
4846 section-relative relocations. It's not like they're
4847 useful, after all. This should be a bit more efficient
4848 as well. */
4849 /* ??? Although this behavior is compatible with glibc's ld.so,
4850 the ABI says that relocations against STN_UNDEF should have
4851 a symbol value of 0. Irix rld honors this, so relocations
4852 against STN_UNDEF have no effect. */
4853 if (!SGI_COMPAT (output_bfd))
4854 indx = 0;
4855 defined_p = TRUE;
4856 }
4857
4858 /* If the relocation was previously an absolute relocation and
4859 this symbol will not be referred to by the relocation, we must
4860 adjust it by the value we give it in the dynamic symbol table.
4861 Otherwise leave the job up to the dynamic linker. */
4862 if (defined_p && r_type != R_MIPS_REL32)
4863 *addendp += symbol;
4864
4865 if (htab->is_vxworks)
4866 /* VxWorks uses non-relative relocations for this. */
4867 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4868 else
4869 /* The relocation is always an REL32 relocation because we don't
4870 know where the shared library will wind up at load-time. */
4871 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4872 R_MIPS_REL32);
4873
4874 /* For strict adherence to the ABI specification, we should
4875 generate a R_MIPS_64 relocation record by itself before the
4876 _REL32/_64 record as well, such that the addend is read in as
4877 a 64-bit value (REL32 is a 32-bit relocation, after all).
4878 However, since none of the existing ELF64 MIPS dynamic
4879 loaders seems to care, we don't waste space with these
4880 artificial relocations. If this turns out to not be true,
4881 mips_elf_allocate_dynamic_relocation() should be tweaked so
4882 as to make room for a pair of dynamic relocations per
4883 invocation if ABI_64_P, and here we should generate an
4884 additional relocation record with R_MIPS_64 by itself for a
4885 NULL symbol before this relocation record. */
4886 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4887 ABI_64_P (output_bfd)
4888 ? R_MIPS_64
4889 : R_MIPS_NONE);
4890 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4891
4892 /* Adjust the output offset of the relocation to reference the
4893 correct location in the output file. */
4894 outrel[0].r_offset += (input_section->output_section->vma
4895 + input_section->output_offset);
4896 outrel[1].r_offset += (input_section->output_section->vma
4897 + input_section->output_offset);
4898 outrel[2].r_offset += (input_section->output_section->vma
4899 + input_section->output_offset);
4900
4901 /* Put the relocation back out. We have to use the special
4902 relocation outputter in the 64-bit case since the 64-bit
4903 relocation format is non-standard. */
4904 if (ABI_64_P (output_bfd))
4905 {
4906 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4907 (output_bfd, &outrel[0],
4908 (sreloc->contents
4909 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4910 }
4911 else if (htab->is_vxworks)
4912 {
4913 /* VxWorks uses RELA rather than REL dynamic relocations. */
4914 outrel[0].r_addend = *addendp;
4915 bfd_elf32_swap_reloca_out
4916 (output_bfd, &outrel[0],
4917 (sreloc->contents
4918 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4919 }
4920 else
4921 bfd_elf32_swap_reloc_out
4922 (output_bfd, &outrel[0],
4923 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4924
4925 /* We've now added another relocation. */
4926 ++sreloc->reloc_count;
4927
4928 /* Make sure the output section is writable. The dynamic linker
4929 will be writing to it. */
4930 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4931 |= SHF_WRITE;
4932
4933 /* On IRIX5, make an entry of compact relocation info. */
4934 if (IRIX_COMPAT (output_bfd) == ict_irix5)
4935 {
4936 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4937 bfd_byte *cr;
4938
4939 if (scpt)
4940 {
4941 Elf32_crinfo cptrel;
4942
4943 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4944 cptrel.vaddr = (rel->r_offset
4945 + input_section->output_section->vma
4946 + input_section->output_offset);
4947 if (r_type == R_MIPS_REL32)
4948 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4949 else
4950 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4951 mips_elf_set_cr_dist2to (cptrel, 0);
4952 cptrel.konst = *addendp;
4953
4954 cr = (scpt->contents
4955 + sizeof (Elf32_External_compact_rel));
4956 mips_elf_set_cr_relvaddr (cptrel, 0);
4957 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4958 ((Elf32_External_crinfo *) cr
4959 + scpt->reloc_count));
4960 ++scpt->reloc_count;
4961 }
4962 }
4963
4964 /* If we've written this relocation for a readonly section,
4965 we need to set DF_TEXTREL again, so that we do not delete the
4966 DT_TEXTREL tag. */
4967 if (MIPS_ELF_READONLY_SECTION (input_section))
4968 info->flags |= DF_TEXTREL;
4969
4970 return TRUE;
4971 }
4972 \f
4973 /* Return the MACH for a MIPS e_flags value. */
4974
4975 unsigned long
4976 _bfd_elf_mips_mach (flagword flags)
4977 {
4978 switch (flags & EF_MIPS_MACH)
4979 {
4980 case E_MIPS_MACH_3900:
4981 return bfd_mach_mips3900;
4982
4983 case E_MIPS_MACH_4010:
4984 return bfd_mach_mips4010;
4985
4986 case E_MIPS_MACH_4100:
4987 return bfd_mach_mips4100;
4988
4989 case E_MIPS_MACH_4111:
4990 return bfd_mach_mips4111;
4991
4992 case E_MIPS_MACH_4120:
4993 return bfd_mach_mips4120;
4994
4995 case E_MIPS_MACH_4650:
4996 return bfd_mach_mips4650;
4997
4998 case E_MIPS_MACH_5400:
4999 return bfd_mach_mips5400;
5000
5001 case E_MIPS_MACH_5500:
5002 return bfd_mach_mips5500;
5003
5004 case E_MIPS_MACH_9000:
5005 return bfd_mach_mips9000;
5006
5007 case E_MIPS_MACH_SB1:
5008 return bfd_mach_mips_sb1;
5009
5010 default:
5011 switch (flags & EF_MIPS_ARCH)
5012 {
5013 default:
5014 case E_MIPS_ARCH_1:
5015 return bfd_mach_mips3000;
5016
5017 case E_MIPS_ARCH_2:
5018 return bfd_mach_mips6000;
5019
5020 case E_MIPS_ARCH_3:
5021 return bfd_mach_mips4000;
5022
5023 case E_MIPS_ARCH_4:
5024 return bfd_mach_mips8000;
5025
5026 case E_MIPS_ARCH_5:
5027 return bfd_mach_mips5;
5028
5029 case E_MIPS_ARCH_32:
5030 return bfd_mach_mipsisa32;
5031
5032 case E_MIPS_ARCH_64:
5033 return bfd_mach_mipsisa64;
5034
5035 case E_MIPS_ARCH_32R2:
5036 return bfd_mach_mipsisa32r2;
5037
5038 case E_MIPS_ARCH_64R2:
5039 return bfd_mach_mipsisa64r2;
5040 }
5041 }
5042
5043 return 0;
5044 }
5045
5046 /* Return printable name for ABI. */
5047
5048 static INLINE char *
5049 elf_mips_abi_name (bfd *abfd)
5050 {
5051 flagword flags;
5052
5053 flags = elf_elfheader (abfd)->e_flags;
5054 switch (flags & EF_MIPS_ABI)
5055 {
5056 case 0:
5057 if (ABI_N32_P (abfd))
5058 return "N32";
5059 else if (ABI_64_P (abfd))
5060 return "64";
5061 else
5062 return "none";
5063 case E_MIPS_ABI_O32:
5064 return "O32";
5065 case E_MIPS_ABI_O64:
5066 return "O64";
5067 case E_MIPS_ABI_EABI32:
5068 return "EABI32";
5069 case E_MIPS_ABI_EABI64:
5070 return "EABI64";
5071 default:
5072 return "unknown abi";
5073 }
5074 }
5075 \f
5076 /* MIPS ELF uses two common sections. One is the usual one, and the
5077 other is for small objects. All the small objects are kept
5078 together, and then referenced via the gp pointer, which yields
5079 faster assembler code. This is what we use for the small common
5080 section. This approach is copied from ecoff.c. */
5081 static asection mips_elf_scom_section;
5082 static asymbol mips_elf_scom_symbol;
5083 static asymbol *mips_elf_scom_symbol_ptr;
5084
5085 /* MIPS ELF also uses an acommon section, which represents an
5086 allocated common symbol which may be overridden by a
5087 definition in a shared library. */
5088 static asection mips_elf_acom_section;
5089 static asymbol mips_elf_acom_symbol;
5090 static asymbol *mips_elf_acom_symbol_ptr;
5091
5092 /* Handle the special MIPS section numbers that a symbol may use.
5093 This is used for both the 32-bit and the 64-bit ABI. */
5094
5095 void
5096 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5097 {
5098 elf_symbol_type *elfsym;
5099
5100 elfsym = (elf_symbol_type *) asym;
5101 switch (elfsym->internal_elf_sym.st_shndx)
5102 {
5103 case SHN_MIPS_ACOMMON:
5104 /* This section is used in a dynamically linked executable file.
5105 It is an allocated common section. The dynamic linker can
5106 either resolve these symbols to something in a shared
5107 library, or it can just leave them here. For our purposes,
5108 we can consider these symbols to be in a new section. */
5109 if (mips_elf_acom_section.name == NULL)
5110 {
5111 /* Initialize the acommon section. */
5112 mips_elf_acom_section.name = ".acommon";
5113 mips_elf_acom_section.flags = SEC_ALLOC;
5114 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5115 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5116 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5117 mips_elf_acom_symbol.name = ".acommon";
5118 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5119 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5120 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5121 }
5122 asym->section = &mips_elf_acom_section;
5123 break;
5124
5125 case SHN_COMMON:
5126 /* Common symbols less than the GP size are automatically
5127 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5128 if (asym->value > elf_gp_size (abfd)
5129 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
5130 || IRIX_COMPAT (abfd) == ict_irix6)
5131 break;
5132 /* Fall through. */
5133 case SHN_MIPS_SCOMMON:
5134 if (mips_elf_scom_section.name == NULL)
5135 {
5136 /* Initialize the small common section. */
5137 mips_elf_scom_section.name = ".scommon";
5138 mips_elf_scom_section.flags = SEC_IS_COMMON;
5139 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5140 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5141 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5142 mips_elf_scom_symbol.name = ".scommon";
5143 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5144 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5145 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5146 }
5147 asym->section = &mips_elf_scom_section;
5148 asym->value = elfsym->internal_elf_sym.st_size;
5149 break;
5150
5151 case SHN_MIPS_SUNDEFINED:
5152 asym->section = bfd_und_section_ptr;
5153 break;
5154
5155 case SHN_MIPS_TEXT:
5156 {
5157 asection *section = bfd_get_section_by_name (abfd, ".text");
5158
5159 BFD_ASSERT (SGI_COMPAT (abfd));
5160 if (section != NULL)
5161 {
5162 asym->section = section;
5163 /* MIPS_TEXT is a bit special, the address is not an offset
5164 to the base of the .text section. So substract the section
5165 base address to make it an offset. */
5166 asym->value -= section->vma;
5167 }
5168 }
5169 break;
5170
5171 case SHN_MIPS_DATA:
5172 {
5173 asection *section = bfd_get_section_by_name (abfd, ".data");
5174
5175 BFD_ASSERT (SGI_COMPAT (abfd));
5176 if (section != NULL)
5177 {
5178 asym->section = section;
5179 /* MIPS_DATA is a bit special, the address is not an offset
5180 to the base of the .data section. So substract the section
5181 base address to make it an offset. */
5182 asym->value -= section->vma;
5183 }
5184 }
5185 break;
5186 }
5187 }
5188 \f
5189 /* Implement elf_backend_eh_frame_address_size. This differs from
5190 the default in the way it handles EABI64.
5191
5192 EABI64 was originally specified as an LP64 ABI, and that is what
5193 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5194 historically accepted the combination of -mabi=eabi and -mlong32,
5195 and this ILP32 variation has become semi-official over time.
5196 Both forms use elf32 and have pointer-sized FDE addresses.
5197
5198 If an EABI object was generated by GCC 4.0 or above, it will have
5199 an empty .gcc_compiled_longXX section, where XX is the size of longs
5200 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5201 have no special marking to distinguish them from LP64 objects.
5202
5203 We don't want users of the official LP64 ABI to be punished for the
5204 existence of the ILP32 variant, but at the same time, we don't want
5205 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5206 We therefore take the following approach:
5207
5208 - If ABFD contains a .gcc_compiled_longXX section, use it to
5209 determine the pointer size.
5210
5211 - Otherwise check the type of the first relocation. Assume that
5212 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5213
5214 - Otherwise punt.
5215
5216 The second check is enough to detect LP64 objects generated by pre-4.0
5217 compilers because, in the kind of output generated by those compilers,
5218 the first relocation will be associated with either a CIE personality
5219 routine or an FDE start address. Furthermore, the compilers never
5220 used a special (non-pointer) encoding for this ABI.
5221
5222 Checking the relocation type should also be safe because there is no
5223 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5224 did so. */
5225
5226 unsigned int
5227 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5228 {
5229 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5230 return 8;
5231 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5232 {
5233 bfd_boolean long32_p, long64_p;
5234
5235 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5236 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5237 if (long32_p && long64_p)
5238 return 0;
5239 if (long32_p)
5240 return 4;
5241 if (long64_p)
5242 return 8;
5243
5244 if (sec->reloc_count > 0
5245 && elf_section_data (sec)->relocs != NULL
5246 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5247 == R_MIPS_64))
5248 return 8;
5249
5250 return 0;
5251 }
5252 return 4;
5253 }
5254 \f
5255 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5256 relocations against two unnamed section symbols to resolve to the
5257 same address. For example, if we have code like:
5258
5259 lw $4,%got_disp(.data)($gp)
5260 lw $25,%got_disp(.text)($gp)
5261 jalr $25
5262
5263 then the linker will resolve both relocations to .data and the program
5264 will jump there rather than to .text.
5265
5266 We can work around this problem by giving names to local section symbols.
5267 This is also what the MIPSpro tools do. */
5268
5269 bfd_boolean
5270 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5271 {
5272 return SGI_COMPAT (abfd);
5273 }
5274 \f
5275 /* Work over a section just before writing it out. This routine is
5276 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5277 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5278 a better way. */
5279
5280 bfd_boolean
5281 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
5282 {
5283 if (hdr->sh_type == SHT_MIPS_REGINFO
5284 && hdr->sh_size > 0)
5285 {
5286 bfd_byte buf[4];
5287
5288 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5289 BFD_ASSERT (hdr->contents == NULL);
5290
5291 if (bfd_seek (abfd,
5292 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5293 SEEK_SET) != 0)
5294 return FALSE;
5295 H_PUT_32 (abfd, elf_gp (abfd), buf);
5296 if (bfd_bwrite (buf, 4, abfd) != 4)
5297 return FALSE;
5298 }
5299
5300 if (hdr->sh_type == SHT_MIPS_OPTIONS
5301 && hdr->bfd_section != NULL
5302 && mips_elf_section_data (hdr->bfd_section) != NULL
5303 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
5304 {
5305 bfd_byte *contents, *l, *lend;
5306
5307 /* We stored the section contents in the tdata field in the
5308 set_section_contents routine. We save the section contents
5309 so that we don't have to read them again.
5310 At this point we know that elf_gp is set, so we can look
5311 through the section contents to see if there is an
5312 ODK_REGINFO structure. */
5313
5314 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
5315 l = contents;
5316 lend = contents + hdr->sh_size;
5317 while (l + sizeof (Elf_External_Options) <= lend)
5318 {
5319 Elf_Internal_Options intopt;
5320
5321 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5322 &intopt);
5323 if (intopt.size < sizeof (Elf_External_Options))
5324 {
5325 (*_bfd_error_handler)
5326 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5327 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5328 break;
5329 }
5330 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5331 {
5332 bfd_byte buf[8];
5333
5334 if (bfd_seek (abfd,
5335 (hdr->sh_offset
5336 + (l - contents)
5337 + sizeof (Elf_External_Options)
5338 + (sizeof (Elf64_External_RegInfo) - 8)),
5339 SEEK_SET) != 0)
5340 return FALSE;
5341 H_PUT_64 (abfd, elf_gp (abfd), buf);
5342 if (bfd_bwrite (buf, 8, abfd) != 8)
5343 return FALSE;
5344 }
5345 else if (intopt.kind == ODK_REGINFO)
5346 {
5347 bfd_byte buf[4];
5348
5349 if (bfd_seek (abfd,
5350 (hdr->sh_offset
5351 + (l - contents)
5352 + sizeof (Elf_External_Options)
5353 + (sizeof (Elf32_External_RegInfo) - 4)),
5354 SEEK_SET) != 0)
5355 return FALSE;
5356 H_PUT_32 (abfd, elf_gp (abfd), buf);
5357 if (bfd_bwrite (buf, 4, abfd) != 4)
5358 return FALSE;
5359 }
5360 l += intopt.size;
5361 }
5362 }
5363
5364 if (hdr->bfd_section != NULL)
5365 {
5366 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5367
5368 if (strcmp (name, ".sdata") == 0
5369 || strcmp (name, ".lit8") == 0
5370 || strcmp (name, ".lit4") == 0)
5371 {
5372 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5373 hdr->sh_type = SHT_PROGBITS;
5374 }
5375 else if (strcmp (name, ".sbss") == 0)
5376 {
5377 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5378 hdr->sh_type = SHT_NOBITS;
5379 }
5380 else if (strcmp (name, ".srdata") == 0)
5381 {
5382 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5383 hdr->sh_type = SHT_PROGBITS;
5384 }
5385 else if (strcmp (name, ".compact_rel") == 0)
5386 {
5387 hdr->sh_flags = 0;
5388 hdr->sh_type = SHT_PROGBITS;
5389 }
5390 else if (strcmp (name, ".rtproc") == 0)
5391 {
5392 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5393 {
5394 unsigned int adjust;
5395
5396 adjust = hdr->sh_size % hdr->sh_addralign;
5397 if (adjust != 0)
5398 hdr->sh_size += hdr->sh_addralign - adjust;
5399 }
5400 }
5401 }
5402
5403 return TRUE;
5404 }
5405
5406 /* Handle a MIPS specific section when reading an object file. This
5407 is called when elfcode.h finds a section with an unknown type.
5408 This routine supports both the 32-bit and 64-bit ELF ABI.
5409
5410 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5411 how to. */
5412
5413 bfd_boolean
5414 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5415 Elf_Internal_Shdr *hdr,
5416 const char *name,
5417 int shindex)
5418 {
5419 flagword flags = 0;
5420
5421 /* There ought to be a place to keep ELF backend specific flags, but
5422 at the moment there isn't one. We just keep track of the
5423 sections by their name, instead. Fortunately, the ABI gives
5424 suggested names for all the MIPS specific sections, so we will
5425 probably get away with this. */
5426 switch (hdr->sh_type)
5427 {
5428 case SHT_MIPS_LIBLIST:
5429 if (strcmp (name, ".liblist") != 0)
5430 return FALSE;
5431 break;
5432 case SHT_MIPS_MSYM:
5433 if (strcmp (name, ".msym") != 0)
5434 return FALSE;
5435 break;
5436 case SHT_MIPS_CONFLICT:
5437 if (strcmp (name, ".conflict") != 0)
5438 return FALSE;
5439 break;
5440 case SHT_MIPS_GPTAB:
5441 if (! CONST_STRNEQ (name, ".gptab."))
5442 return FALSE;
5443 break;
5444 case SHT_MIPS_UCODE:
5445 if (strcmp (name, ".ucode") != 0)
5446 return FALSE;
5447 break;
5448 case SHT_MIPS_DEBUG:
5449 if (strcmp (name, ".mdebug") != 0)
5450 return FALSE;
5451 flags = SEC_DEBUGGING;
5452 break;
5453 case SHT_MIPS_REGINFO:
5454 if (strcmp (name, ".reginfo") != 0
5455 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5456 return FALSE;
5457 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5458 break;
5459 case SHT_MIPS_IFACE:
5460 if (strcmp (name, ".MIPS.interfaces") != 0)
5461 return FALSE;
5462 break;
5463 case SHT_MIPS_CONTENT:
5464 if (! CONST_STRNEQ (name, ".MIPS.content"))
5465 return FALSE;
5466 break;
5467 case SHT_MIPS_OPTIONS:
5468 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5469 return FALSE;
5470 break;
5471 case SHT_MIPS_DWARF:
5472 if (! CONST_STRNEQ (name, ".debug_"))
5473 return FALSE;
5474 break;
5475 case SHT_MIPS_SYMBOL_LIB:
5476 if (strcmp (name, ".MIPS.symlib") != 0)
5477 return FALSE;
5478 break;
5479 case SHT_MIPS_EVENTS:
5480 if (! CONST_STRNEQ (name, ".MIPS.events")
5481 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
5482 return FALSE;
5483 break;
5484 default:
5485 break;
5486 }
5487
5488 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5489 return FALSE;
5490
5491 if (flags)
5492 {
5493 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5494 (bfd_get_section_flags (abfd,
5495 hdr->bfd_section)
5496 | flags)))
5497 return FALSE;
5498 }
5499
5500 /* FIXME: We should record sh_info for a .gptab section. */
5501
5502 /* For a .reginfo section, set the gp value in the tdata information
5503 from the contents of this section. We need the gp value while
5504 processing relocs, so we just get it now. The .reginfo section
5505 is not used in the 64-bit MIPS ELF ABI. */
5506 if (hdr->sh_type == SHT_MIPS_REGINFO)
5507 {
5508 Elf32_External_RegInfo ext;
5509 Elf32_RegInfo s;
5510
5511 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5512 &ext, 0, sizeof ext))
5513 return FALSE;
5514 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5515 elf_gp (abfd) = s.ri_gp_value;
5516 }
5517
5518 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5519 set the gp value based on what we find. We may see both
5520 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5521 they should agree. */
5522 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5523 {
5524 bfd_byte *contents, *l, *lend;
5525
5526 contents = bfd_malloc (hdr->sh_size);
5527 if (contents == NULL)
5528 return FALSE;
5529 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5530 0, hdr->sh_size))
5531 {
5532 free (contents);
5533 return FALSE;
5534 }
5535 l = contents;
5536 lend = contents + hdr->sh_size;
5537 while (l + sizeof (Elf_External_Options) <= lend)
5538 {
5539 Elf_Internal_Options intopt;
5540
5541 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5542 &intopt);
5543 if (intopt.size < sizeof (Elf_External_Options))
5544 {
5545 (*_bfd_error_handler)
5546 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5547 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5548 break;
5549 }
5550 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5551 {
5552 Elf64_Internal_RegInfo intreg;
5553
5554 bfd_mips_elf64_swap_reginfo_in
5555 (abfd,
5556 ((Elf64_External_RegInfo *)
5557 (l + sizeof (Elf_External_Options))),
5558 &intreg);
5559 elf_gp (abfd) = intreg.ri_gp_value;
5560 }
5561 else if (intopt.kind == ODK_REGINFO)
5562 {
5563 Elf32_RegInfo intreg;
5564
5565 bfd_mips_elf32_swap_reginfo_in
5566 (abfd,
5567 ((Elf32_External_RegInfo *)
5568 (l + sizeof (Elf_External_Options))),
5569 &intreg);
5570 elf_gp (abfd) = intreg.ri_gp_value;
5571 }
5572 l += intopt.size;
5573 }
5574 free (contents);
5575 }
5576
5577 return TRUE;
5578 }
5579
5580 /* Set the correct type for a MIPS ELF section. We do this by the
5581 section name, which is a hack, but ought to work. This routine is
5582 used by both the 32-bit and the 64-bit ABI. */
5583
5584 bfd_boolean
5585 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5586 {
5587 const char *name = bfd_get_section_name (abfd, sec);
5588
5589 if (strcmp (name, ".liblist") == 0)
5590 {
5591 hdr->sh_type = SHT_MIPS_LIBLIST;
5592 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5593 /* The sh_link field is set in final_write_processing. */
5594 }
5595 else if (strcmp (name, ".conflict") == 0)
5596 hdr->sh_type = SHT_MIPS_CONFLICT;
5597 else if (CONST_STRNEQ (name, ".gptab."))
5598 {
5599 hdr->sh_type = SHT_MIPS_GPTAB;
5600 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5601 /* The sh_info field is set in final_write_processing. */
5602 }
5603 else if (strcmp (name, ".ucode") == 0)
5604 hdr->sh_type = SHT_MIPS_UCODE;
5605 else if (strcmp (name, ".mdebug") == 0)
5606 {
5607 hdr->sh_type = SHT_MIPS_DEBUG;
5608 /* In a shared object on IRIX 5.3, the .mdebug section has an
5609 entsize of 0. FIXME: Does this matter? */
5610 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5611 hdr->sh_entsize = 0;
5612 else
5613 hdr->sh_entsize = 1;
5614 }
5615 else if (strcmp (name, ".reginfo") == 0)
5616 {
5617 hdr->sh_type = SHT_MIPS_REGINFO;
5618 /* In a shared object on IRIX 5.3, the .reginfo section has an
5619 entsize of 0x18. FIXME: Does this matter? */
5620 if (SGI_COMPAT (abfd))
5621 {
5622 if ((abfd->flags & DYNAMIC) != 0)
5623 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5624 else
5625 hdr->sh_entsize = 1;
5626 }
5627 else
5628 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5629 }
5630 else if (SGI_COMPAT (abfd)
5631 && (strcmp (name, ".hash") == 0
5632 || strcmp (name, ".dynamic") == 0
5633 || strcmp (name, ".dynstr") == 0))
5634 {
5635 if (SGI_COMPAT (abfd))
5636 hdr->sh_entsize = 0;
5637 #if 0
5638 /* This isn't how the IRIX6 linker behaves. */
5639 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5640 #endif
5641 }
5642 else if (strcmp (name, ".got") == 0
5643 || strcmp (name, ".srdata") == 0
5644 || strcmp (name, ".sdata") == 0
5645 || strcmp (name, ".sbss") == 0
5646 || strcmp (name, ".lit4") == 0
5647 || strcmp (name, ".lit8") == 0)
5648 hdr->sh_flags |= SHF_MIPS_GPREL;
5649 else if (strcmp (name, ".MIPS.interfaces") == 0)
5650 {
5651 hdr->sh_type = SHT_MIPS_IFACE;
5652 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5653 }
5654 else if (CONST_STRNEQ (name, ".MIPS.content"))
5655 {
5656 hdr->sh_type = SHT_MIPS_CONTENT;
5657 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5658 /* The sh_info field is set in final_write_processing. */
5659 }
5660 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5661 {
5662 hdr->sh_type = SHT_MIPS_OPTIONS;
5663 hdr->sh_entsize = 1;
5664 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5665 }
5666 else if (CONST_STRNEQ (name, ".debug_"))
5667 hdr->sh_type = SHT_MIPS_DWARF;
5668 else if (strcmp (name, ".MIPS.symlib") == 0)
5669 {
5670 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5671 /* The sh_link and sh_info fields are set in
5672 final_write_processing. */
5673 }
5674 else if (CONST_STRNEQ (name, ".MIPS.events")
5675 || CONST_STRNEQ (name, ".MIPS.post_rel"))
5676 {
5677 hdr->sh_type = SHT_MIPS_EVENTS;
5678 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5679 /* The sh_link field is set in final_write_processing. */
5680 }
5681 else if (strcmp (name, ".msym") == 0)
5682 {
5683 hdr->sh_type = SHT_MIPS_MSYM;
5684 hdr->sh_flags |= SHF_ALLOC;
5685 hdr->sh_entsize = 8;
5686 }
5687
5688 /* The generic elf_fake_sections will set up REL_HDR using the default
5689 kind of relocations. We used to set up a second header for the
5690 non-default kind of relocations here, but only NewABI would use
5691 these, and the IRIX ld doesn't like resulting empty RELA sections.
5692 Thus we create those header only on demand now. */
5693
5694 return TRUE;
5695 }
5696
5697 /* Given a BFD section, try to locate the corresponding ELF section
5698 index. This is used by both the 32-bit and the 64-bit ABI.
5699 Actually, it's not clear to me that the 64-bit ABI supports these,
5700 but for non-PIC objects we will certainly want support for at least
5701 the .scommon section. */
5702
5703 bfd_boolean
5704 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5705 asection *sec, int *retval)
5706 {
5707 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5708 {
5709 *retval = SHN_MIPS_SCOMMON;
5710 return TRUE;
5711 }
5712 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5713 {
5714 *retval = SHN_MIPS_ACOMMON;
5715 return TRUE;
5716 }
5717 return FALSE;
5718 }
5719 \f
5720 /* Hook called by the linker routine which adds symbols from an object
5721 file. We must handle the special MIPS section numbers here. */
5722
5723 bfd_boolean
5724 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
5725 Elf_Internal_Sym *sym, const char **namep,
5726 flagword *flagsp ATTRIBUTE_UNUSED,
5727 asection **secp, bfd_vma *valp)
5728 {
5729 if (SGI_COMPAT (abfd)
5730 && (abfd->flags & DYNAMIC) != 0
5731 && strcmp (*namep, "_rld_new_interface") == 0)
5732 {
5733 /* Skip IRIX5 rld entry name. */
5734 *namep = NULL;
5735 return TRUE;
5736 }
5737
5738 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5739 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5740 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5741 a magic symbol resolved by the linker, we ignore this bogus definition
5742 of _gp_disp. New ABI objects do not suffer from this problem so this
5743 is not done for them. */
5744 if (!NEWABI_P(abfd)
5745 && (sym->st_shndx == SHN_ABS)
5746 && (strcmp (*namep, "_gp_disp") == 0))
5747 {
5748 *namep = NULL;
5749 return TRUE;
5750 }
5751
5752 switch (sym->st_shndx)
5753 {
5754 case SHN_COMMON:
5755 /* Common symbols less than the GP size are automatically
5756 treated as SHN_MIPS_SCOMMON symbols. */
5757 if (sym->st_size > elf_gp_size (abfd)
5758 || ELF_ST_TYPE (sym->st_info) == STT_TLS
5759 || IRIX_COMPAT (abfd) == ict_irix6)
5760 break;
5761 /* Fall through. */
5762 case SHN_MIPS_SCOMMON:
5763 *secp = bfd_make_section_old_way (abfd, ".scommon");
5764 (*secp)->flags |= SEC_IS_COMMON;
5765 *valp = sym->st_size;
5766 break;
5767
5768 case SHN_MIPS_TEXT:
5769 /* This section is used in a shared object. */
5770 if (elf_tdata (abfd)->elf_text_section == NULL)
5771 {
5772 asymbol *elf_text_symbol;
5773 asection *elf_text_section;
5774 bfd_size_type amt = sizeof (asection);
5775
5776 elf_text_section = bfd_zalloc (abfd, amt);
5777 if (elf_text_section == NULL)
5778 return FALSE;
5779
5780 amt = sizeof (asymbol);
5781 elf_text_symbol = bfd_zalloc (abfd, amt);
5782 if (elf_text_symbol == NULL)
5783 return FALSE;
5784
5785 /* Initialize the section. */
5786
5787 elf_tdata (abfd)->elf_text_section = elf_text_section;
5788 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5789
5790 elf_text_section->symbol = elf_text_symbol;
5791 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5792
5793 elf_text_section->name = ".text";
5794 elf_text_section->flags = SEC_NO_FLAGS;
5795 elf_text_section->output_section = NULL;
5796 elf_text_section->owner = abfd;
5797 elf_text_symbol->name = ".text";
5798 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5799 elf_text_symbol->section = elf_text_section;
5800 }
5801 /* This code used to do *secp = bfd_und_section_ptr if
5802 info->shared. I don't know why, and that doesn't make sense,
5803 so I took it out. */
5804 *secp = elf_tdata (abfd)->elf_text_section;
5805 break;
5806
5807 case SHN_MIPS_ACOMMON:
5808 /* Fall through. XXX Can we treat this as allocated data? */
5809 case SHN_MIPS_DATA:
5810 /* This section is used in a shared object. */
5811 if (elf_tdata (abfd)->elf_data_section == NULL)
5812 {
5813 asymbol *elf_data_symbol;
5814 asection *elf_data_section;
5815 bfd_size_type amt = sizeof (asection);
5816
5817 elf_data_section = bfd_zalloc (abfd, amt);
5818 if (elf_data_section == NULL)
5819 return FALSE;
5820
5821 amt = sizeof (asymbol);
5822 elf_data_symbol = bfd_zalloc (abfd, amt);
5823 if (elf_data_symbol == NULL)
5824 return FALSE;
5825
5826 /* Initialize the section. */
5827
5828 elf_tdata (abfd)->elf_data_section = elf_data_section;
5829 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5830
5831 elf_data_section->symbol = elf_data_symbol;
5832 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5833
5834 elf_data_section->name = ".data";
5835 elf_data_section->flags = SEC_NO_FLAGS;
5836 elf_data_section->output_section = NULL;
5837 elf_data_section->owner = abfd;
5838 elf_data_symbol->name = ".data";
5839 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5840 elf_data_symbol->section = elf_data_section;
5841 }
5842 /* This code used to do *secp = bfd_und_section_ptr if
5843 info->shared. I don't know why, and that doesn't make sense,
5844 so I took it out. */
5845 *secp = elf_tdata (abfd)->elf_data_section;
5846 break;
5847
5848 case SHN_MIPS_SUNDEFINED:
5849 *secp = bfd_und_section_ptr;
5850 break;
5851 }
5852
5853 if (SGI_COMPAT (abfd)
5854 && ! info->shared
5855 && info->hash->creator == abfd->xvec
5856 && strcmp (*namep, "__rld_obj_head") == 0)
5857 {
5858 struct elf_link_hash_entry *h;
5859 struct bfd_link_hash_entry *bh;
5860
5861 /* Mark __rld_obj_head as dynamic. */
5862 bh = NULL;
5863 if (! (_bfd_generic_link_add_one_symbol
5864 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
5865 get_elf_backend_data (abfd)->collect, &bh)))
5866 return FALSE;
5867
5868 h = (struct elf_link_hash_entry *) bh;
5869 h->non_elf = 0;
5870 h->def_regular = 1;
5871 h->type = STT_OBJECT;
5872
5873 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5874 return FALSE;
5875
5876 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
5877 }
5878
5879 /* If this is a mips16 text symbol, add 1 to the value to make it
5880 odd. This will cause something like .word SYM to come up with
5881 the right value when it is loaded into the PC. */
5882 if (sym->st_other == STO_MIPS16)
5883 ++*valp;
5884
5885 return TRUE;
5886 }
5887
5888 /* This hook function is called before the linker writes out a global
5889 symbol. We mark symbols as small common if appropriate. This is
5890 also where we undo the increment of the value for a mips16 symbol. */
5891
5892 bfd_boolean
5893 _bfd_mips_elf_link_output_symbol_hook
5894 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5895 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5896 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
5897 {
5898 /* If we see a common symbol, which implies a relocatable link, then
5899 if a symbol was small common in an input file, mark it as small
5900 common in the output file. */
5901 if (sym->st_shndx == SHN_COMMON
5902 && strcmp (input_sec->name, ".scommon") == 0)
5903 sym->st_shndx = SHN_MIPS_SCOMMON;
5904
5905 if (sym->st_other == STO_MIPS16)
5906 sym->st_value &= ~1;
5907
5908 return TRUE;
5909 }
5910 \f
5911 /* Functions for the dynamic linker. */
5912
5913 /* Create dynamic sections when linking against a dynamic object. */
5914
5915 bfd_boolean
5916 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
5917 {
5918 struct elf_link_hash_entry *h;
5919 struct bfd_link_hash_entry *bh;
5920 flagword flags;
5921 register asection *s;
5922 const char * const *namep;
5923 struct mips_elf_link_hash_table *htab;
5924
5925 htab = mips_elf_hash_table (info);
5926 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5927 | SEC_LINKER_CREATED | SEC_READONLY);
5928
5929 /* The psABI requires a read-only .dynamic section, but the VxWorks
5930 EABI doesn't. */
5931 if (!htab->is_vxworks)
5932 {
5933 s = bfd_get_section_by_name (abfd, ".dynamic");
5934 if (s != NULL)
5935 {
5936 if (! bfd_set_section_flags (abfd, s, flags))
5937 return FALSE;
5938 }
5939 }
5940
5941 /* We need to create .got section. */
5942 if (! mips_elf_create_got_section (abfd, info, FALSE))
5943 return FALSE;
5944
5945 if (! mips_elf_rel_dyn_section (info, TRUE))
5946 return FALSE;
5947
5948 /* Create .stub section. */
5949 if (bfd_get_section_by_name (abfd,
5950 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5951 {
5952 s = bfd_make_section_with_flags (abfd,
5953 MIPS_ELF_STUB_SECTION_NAME (abfd),
5954 flags | SEC_CODE);
5955 if (s == NULL
5956 || ! bfd_set_section_alignment (abfd, s,
5957 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5958 return FALSE;
5959 }
5960
5961 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5962 && !info->shared
5963 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5964 {
5965 s = bfd_make_section_with_flags (abfd, ".rld_map",
5966 flags &~ (flagword) SEC_READONLY);
5967 if (s == NULL
5968 || ! bfd_set_section_alignment (abfd, s,
5969 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5970 return FALSE;
5971 }
5972
5973 /* On IRIX5, we adjust add some additional symbols and change the
5974 alignments of several sections. There is no ABI documentation
5975 indicating that this is necessary on IRIX6, nor any evidence that
5976 the linker takes such action. */
5977 if (IRIX_COMPAT (abfd) == ict_irix5)
5978 {
5979 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5980 {
5981 bh = NULL;
5982 if (! (_bfd_generic_link_add_one_symbol
5983 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5984 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5985 return FALSE;
5986
5987 h = (struct elf_link_hash_entry *) bh;
5988 h->non_elf = 0;
5989 h->def_regular = 1;
5990 h->type = STT_SECTION;
5991
5992 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5993 return FALSE;
5994 }
5995
5996 /* We need to create a .compact_rel section. */
5997 if (SGI_COMPAT (abfd))
5998 {
5999 if (!mips_elf_create_compact_rel_section (abfd, info))
6000 return FALSE;
6001 }
6002
6003 /* Change alignments of some sections. */
6004 s = bfd_get_section_by_name (abfd, ".hash");
6005 if (s != NULL)
6006 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6007 s = bfd_get_section_by_name (abfd, ".dynsym");
6008 if (s != NULL)
6009 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6010 s = bfd_get_section_by_name (abfd, ".dynstr");
6011 if (s != NULL)
6012 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6013 s = bfd_get_section_by_name (abfd, ".reginfo");
6014 if (s != NULL)
6015 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6016 s = bfd_get_section_by_name (abfd, ".dynamic");
6017 if (s != NULL)
6018 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6019 }
6020
6021 if (!info->shared)
6022 {
6023 const char *name;
6024
6025 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6026 bh = NULL;
6027 if (!(_bfd_generic_link_add_one_symbol
6028 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6029 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6030 return FALSE;
6031
6032 h = (struct elf_link_hash_entry *) bh;
6033 h->non_elf = 0;
6034 h->def_regular = 1;
6035 h->type = STT_SECTION;
6036
6037 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6038 return FALSE;
6039
6040 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6041 {
6042 /* __rld_map is a four byte word located in the .data section
6043 and is filled in by the rtld to contain a pointer to
6044 the _r_debug structure. Its symbol value will be set in
6045 _bfd_mips_elf_finish_dynamic_symbol. */
6046 s = bfd_get_section_by_name (abfd, ".rld_map");
6047 BFD_ASSERT (s != NULL);
6048
6049 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6050 bh = NULL;
6051 if (!(_bfd_generic_link_add_one_symbol
6052 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6053 get_elf_backend_data (abfd)->collect, &bh)))
6054 return FALSE;
6055
6056 h = (struct elf_link_hash_entry *) bh;
6057 h->non_elf = 0;
6058 h->def_regular = 1;
6059 h->type = STT_OBJECT;
6060
6061 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6062 return FALSE;
6063 }
6064 }
6065
6066 if (htab->is_vxworks)
6067 {
6068 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6069 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6070 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6071 return FALSE;
6072
6073 /* Cache the sections created above. */
6074 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6075 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6076 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6077 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6078 if (!htab->sdynbss
6079 || (!htab->srelbss && !info->shared)
6080 || !htab->srelplt
6081 || !htab->splt)
6082 abort ();
6083
6084 /* Do the usual VxWorks handling. */
6085 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6086 return FALSE;
6087
6088 /* Work out the PLT sizes. */
6089 if (info->shared)
6090 {
6091 htab->plt_header_size
6092 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6093 htab->plt_entry_size
6094 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6095 }
6096 else
6097 {
6098 htab->plt_header_size
6099 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6100 htab->plt_entry_size
6101 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6102 }
6103 }
6104
6105 return TRUE;
6106 }
6107 \f
6108 /* Look through the relocs for a section during the first phase, and
6109 allocate space in the global offset table. */
6110
6111 bfd_boolean
6112 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6113 asection *sec, const Elf_Internal_Rela *relocs)
6114 {
6115 const char *name;
6116 bfd *dynobj;
6117 Elf_Internal_Shdr *symtab_hdr;
6118 struct elf_link_hash_entry **sym_hashes;
6119 struct mips_got_info *g;
6120 size_t extsymoff;
6121 const Elf_Internal_Rela *rel;
6122 const Elf_Internal_Rela *rel_end;
6123 asection *sgot;
6124 asection *sreloc;
6125 const struct elf_backend_data *bed;
6126 struct mips_elf_link_hash_table *htab;
6127
6128 if (info->relocatable)
6129 return TRUE;
6130
6131 htab = mips_elf_hash_table (info);
6132 dynobj = elf_hash_table (info)->dynobj;
6133 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6134 sym_hashes = elf_sym_hashes (abfd);
6135 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6136
6137 /* Check for the mips16 stub sections. */
6138
6139 name = bfd_get_section_name (abfd, sec);
6140 if (FN_STUB_P (name))
6141 {
6142 unsigned long r_symndx;
6143
6144 /* Look at the relocation information to figure out which symbol
6145 this is for. */
6146
6147 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6148
6149 if (r_symndx < extsymoff
6150 || sym_hashes[r_symndx - extsymoff] == NULL)
6151 {
6152 asection *o;
6153
6154 /* This stub is for a local symbol. This stub will only be
6155 needed if there is some relocation in this BFD, other
6156 than a 16 bit function call, which refers to this symbol. */
6157 for (o = abfd->sections; o != NULL; o = o->next)
6158 {
6159 Elf_Internal_Rela *sec_relocs;
6160 const Elf_Internal_Rela *r, *rend;
6161
6162 /* We can ignore stub sections when looking for relocs. */
6163 if ((o->flags & SEC_RELOC) == 0
6164 || o->reloc_count == 0
6165 || mips16_stub_section_p (abfd, o))
6166 continue;
6167
6168 sec_relocs
6169 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6170 info->keep_memory);
6171 if (sec_relocs == NULL)
6172 return FALSE;
6173
6174 rend = sec_relocs + o->reloc_count;
6175 for (r = sec_relocs; r < rend; r++)
6176 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6177 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6178 break;
6179
6180 if (elf_section_data (o)->relocs != sec_relocs)
6181 free (sec_relocs);
6182
6183 if (r < rend)
6184 break;
6185 }
6186
6187 if (o == NULL)
6188 {
6189 /* There is no non-call reloc for this stub, so we do
6190 not need it. Since this function is called before
6191 the linker maps input sections to output sections, we
6192 can easily discard it by setting the SEC_EXCLUDE
6193 flag. */
6194 sec->flags |= SEC_EXCLUDE;
6195 return TRUE;
6196 }
6197
6198 /* Record this stub in an array of local symbol stubs for
6199 this BFD. */
6200 if (elf_tdata (abfd)->local_stubs == NULL)
6201 {
6202 unsigned long symcount;
6203 asection **n;
6204 bfd_size_type amt;
6205
6206 if (elf_bad_symtab (abfd))
6207 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6208 else
6209 symcount = symtab_hdr->sh_info;
6210 amt = symcount * sizeof (asection *);
6211 n = bfd_zalloc (abfd, amt);
6212 if (n == NULL)
6213 return FALSE;
6214 elf_tdata (abfd)->local_stubs = n;
6215 }
6216
6217 sec->flags |= SEC_KEEP;
6218 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6219
6220 /* We don't need to set mips16_stubs_seen in this case.
6221 That flag is used to see whether we need to look through
6222 the global symbol table for stubs. We don't need to set
6223 it here, because we just have a local stub. */
6224 }
6225 else
6226 {
6227 struct mips_elf_link_hash_entry *h;
6228
6229 h = ((struct mips_elf_link_hash_entry *)
6230 sym_hashes[r_symndx - extsymoff]);
6231
6232 while (h->root.root.type == bfd_link_hash_indirect
6233 || h->root.root.type == bfd_link_hash_warning)
6234 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6235
6236 /* H is the symbol this stub is for. */
6237
6238 /* If we already have an appropriate stub for this function, we
6239 don't need another one, so we can discard this one. Since
6240 this function is called before the linker maps input sections
6241 to output sections, we can easily discard it by setting the
6242 SEC_EXCLUDE flag. */
6243 if (h->fn_stub != NULL)
6244 {
6245 sec->flags |= SEC_EXCLUDE;
6246 return TRUE;
6247 }
6248
6249 sec->flags |= SEC_KEEP;
6250 h->fn_stub = sec;
6251 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6252 }
6253 }
6254 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
6255 {
6256 unsigned long r_symndx;
6257 struct mips_elf_link_hash_entry *h;
6258 asection **loc;
6259
6260 /* Look at the relocation information to figure out which symbol
6261 this is for. */
6262
6263 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6264
6265 if (r_symndx < extsymoff
6266 || sym_hashes[r_symndx - extsymoff] == NULL)
6267 {
6268 asection *o;
6269
6270 /* This stub is for a local symbol. This stub will only be
6271 needed if there is some relocation (R_MIPS16_26) in this BFD
6272 that refers to this symbol. */
6273 for (o = abfd->sections; o != NULL; o = o->next)
6274 {
6275 Elf_Internal_Rela *sec_relocs;
6276 const Elf_Internal_Rela *r, *rend;
6277
6278 /* We can ignore stub sections when looking for relocs. */
6279 if ((o->flags & SEC_RELOC) == 0
6280 || o->reloc_count == 0
6281 || mips16_stub_section_p (abfd, o))
6282 continue;
6283
6284 sec_relocs
6285 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6286 info->keep_memory);
6287 if (sec_relocs == NULL)
6288 return FALSE;
6289
6290 rend = sec_relocs + o->reloc_count;
6291 for (r = sec_relocs; r < rend; r++)
6292 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6293 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6294 break;
6295
6296 if (elf_section_data (o)->relocs != sec_relocs)
6297 free (sec_relocs);
6298
6299 if (r < rend)
6300 break;
6301 }
6302
6303 if (o == NULL)
6304 {
6305 /* There is no non-call reloc for this stub, so we do
6306 not need it. Since this function is called before
6307 the linker maps input sections to output sections, we
6308 can easily discard it by setting the SEC_EXCLUDE
6309 flag. */
6310 sec->flags |= SEC_EXCLUDE;
6311 return TRUE;
6312 }
6313
6314 /* Record this stub in an array of local symbol call_stubs for
6315 this BFD. */
6316 if (elf_tdata (abfd)->local_call_stubs == NULL)
6317 {
6318 unsigned long symcount;
6319 asection **n;
6320 bfd_size_type amt;
6321
6322 if (elf_bad_symtab (abfd))
6323 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6324 else
6325 symcount = symtab_hdr->sh_info;
6326 amt = symcount * sizeof (asection *);
6327 n = bfd_zalloc (abfd, amt);
6328 if (n == NULL)
6329 return FALSE;
6330 elf_tdata (abfd)->local_call_stubs = n;
6331 }
6332
6333 sec->flags |= SEC_KEEP;
6334 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
6335
6336 /* We don't need to set mips16_stubs_seen in this case.
6337 That flag is used to see whether we need to look through
6338 the global symbol table for stubs. We don't need to set
6339 it here, because we just have a local stub. */
6340 }
6341 else
6342 {
6343 h = ((struct mips_elf_link_hash_entry *)
6344 sym_hashes[r_symndx - extsymoff]);
6345
6346 /* H is the symbol this stub is for. */
6347
6348 if (CALL_FP_STUB_P (name))
6349 loc = &h->call_fp_stub;
6350 else
6351 loc = &h->call_stub;
6352
6353 /* If we already have an appropriate stub for this function, we
6354 don't need another one, so we can discard this one. Since
6355 this function is called before the linker maps input sections
6356 to output sections, we can easily discard it by setting the
6357 SEC_EXCLUDE flag. */
6358 if (*loc != NULL)
6359 {
6360 sec->flags |= SEC_EXCLUDE;
6361 return TRUE;
6362 }
6363
6364 sec->flags |= SEC_KEEP;
6365 *loc = sec;
6366 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6367 }
6368 }
6369
6370 if (dynobj == NULL)
6371 {
6372 sgot = NULL;
6373 g = NULL;
6374 }
6375 else
6376 {
6377 sgot = mips_elf_got_section (dynobj, FALSE);
6378 if (sgot == NULL)
6379 g = NULL;
6380 else
6381 {
6382 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6383 g = mips_elf_section_data (sgot)->u.got_info;
6384 BFD_ASSERT (g != NULL);
6385 }
6386 }
6387
6388 sreloc = NULL;
6389 bed = get_elf_backend_data (abfd);
6390 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6391 for (rel = relocs; rel < rel_end; ++rel)
6392 {
6393 unsigned long r_symndx;
6394 unsigned int r_type;
6395 struct elf_link_hash_entry *h;
6396
6397 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6398 r_type = ELF_R_TYPE (abfd, rel->r_info);
6399
6400 if (r_symndx < extsymoff)
6401 h = NULL;
6402 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6403 {
6404 (*_bfd_error_handler)
6405 (_("%B: Malformed reloc detected for section %s"),
6406 abfd, name);
6407 bfd_set_error (bfd_error_bad_value);
6408 return FALSE;
6409 }
6410 else
6411 {
6412 h = sym_hashes[r_symndx - extsymoff];
6413
6414 /* This may be an indirect symbol created because of a version. */
6415 if (h != NULL)
6416 {
6417 while (h->root.type == bfd_link_hash_indirect)
6418 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6419 }
6420 }
6421
6422 /* Some relocs require a global offset table. */
6423 if (dynobj == NULL || sgot == NULL)
6424 {
6425 switch (r_type)
6426 {
6427 case R_MIPS_GOT16:
6428 case R_MIPS_CALL16:
6429 case R_MIPS_CALL_HI16:
6430 case R_MIPS_CALL_LO16:
6431 case R_MIPS_GOT_HI16:
6432 case R_MIPS_GOT_LO16:
6433 case R_MIPS_GOT_PAGE:
6434 case R_MIPS_GOT_OFST:
6435 case R_MIPS_GOT_DISP:
6436 case R_MIPS_TLS_GOTTPREL:
6437 case R_MIPS_TLS_GD:
6438 case R_MIPS_TLS_LDM:
6439 if (dynobj == NULL)
6440 elf_hash_table (info)->dynobj = dynobj = abfd;
6441 if (! mips_elf_create_got_section (dynobj, info, FALSE))
6442 return FALSE;
6443 g = mips_elf_got_info (dynobj, &sgot);
6444 if (htab->is_vxworks && !info->shared)
6445 {
6446 (*_bfd_error_handler)
6447 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6448 abfd, (unsigned long) rel->r_offset);
6449 bfd_set_error (bfd_error_bad_value);
6450 return FALSE;
6451 }
6452 break;
6453
6454 case R_MIPS_32:
6455 case R_MIPS_REL32:
6456 case R_MIPS_64:
6457 /* In VxWorks executables, references to external symbols
6458 are handled using copy relocs or PLT stubs, so there's
6459 no need to add a dynamic relocation here. */
6460 if (dynobj == NULL
6461 && (info->shared || (h != NULL && !htab->is_vxworks))
6462 && (sec->flags & SEC_ALLOC) != 0)
6463 elf_hash_table (info)->dynobj = dynobj = abfd;
6464 break;
6465
6466 default:
6467 break;
6468 }
6469 }
6470
6471 if (h)
6472 {
6473 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6474
6475 /* Relocations against the special VxWorks __GOTT_BASE__ and
6476 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6477 room for them in .rela.dyn. */
6478 if (is_gott_symbol (info, h))
6479 {
6480 if (sreloc == NULL)
6481 {
6482 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6483 if (sreloc == NULL)
6484 return FALSE;
6485 }
6486 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6487 if (MIPS_ELF_READONLY_SECTION (sec))
6488 /* We tell the dynamic linker that there are
6489 relocations against the text segment. */
6490 info->flags |= DF_TEXTREL;
6491 }
6492 }
6493 else if (r_type == R_MIPS_CALL_LO16
6494 || r_type == R_MIPS_GOT_LO16
6495 || r_type == R_MIPS_GOT_DISP
6496 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
6497 {
6498 /* We may need a local GOT entry for this relocation. We
6499 don't count R_MIPS_GOT_PAGE because we can estimate the
6500 maximum number of pages needed by looking at the size of
6501 the segment. Similar comments apply to R_MIPS_GOT16 and
6502 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6503 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
6504 R_MIPS_CALL_HI16 because these are always followed by an
6505 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6506 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6507 rel->r_addend, g, 0))
6508 return FALSE;
6509 }
6510
6511 switch (r_type)
6512 {
6513 case R_MIPS_CALL16:
6514 if (h == NULL)
6515 {
6516 (*_bfd_error_handler)
6517 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6518 abfd, (unsigned long) rel->r_offset);
6519 bfd_set_error (bfd_error_bad_value);
6520 return FALSE;
6521 }
6522 /* Fall through. */
6523
6524 case R_MIPS_CALL_HI16:
6525 case R_MIPS_CALL_LO16:
6526 if (h != NULL)
6527 {
6528 /* VxWorks call relocations point the function's .got.plt
6529 entry, which will be allocated by adjust_dynamic_symbol.
6530 Otherwise, this symbol requires a global GOT entry. */
6531 if (!htab->is_vxworks
6532 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6533 return FALSE;
6534
6535 /* We need a stub, not a plt entry for the undefined
6536 function. But we record it as if it needs plt. See
6537 _bfd_elf_adjust_dynamic_symbol. */
6538 h->needs_plt = 1;
6539 h->type = STT_FUNC;
6540 }
6541 break;
6542
6543 case R_MIPS_GOT_PAGE:
6544 /* If this is a global, overridable symbol, GOT_PAGE will
6545 decay to GOT_DISP, so we'll need a GOT entry for it. */
6546 if (h == NULL)
6547 break;
6548 else
6549 {
6550 struct mips_elf_link_hash_entry *hmips =
6551 (struct mips_elf_link_hash_entry *) h;
6552
6553 while (hmips->root.root.type == bfd_link_hash_indirect
6554 || hmips->root.root.type == bfd_link_hash_warning)
6555 hmips = (struct mips_elf_link_hash_entry *)
6556 hmips->root.root.u.i.link;
6557
6558 if (hmips->root.def_regular
6559 && ! (info->shared && ! info->symbolic
6560 && ! hmips->root.forced_local))
6561 break;
6562 }
6563 /* Fall through. */
6564
6565 case R_MIPS_GOT16:
6566 case R_MIPS_GOT_HI16:
6567 case R_MIPS_GOT_LO16:
6568 case R_MIPS_GOT_DISP:
6569 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6570 return FALSE;
6571 break;
6572
6573 case R_MIPS_TLS_GOTTPREL:
6574 if (info->shared)
6575 info->flags |= DF_STATIC_TLS;
6576 /* Fall through */
6577
6578 case R_MIPS_TLS_LDM:
6579 if (r_type == R_MIPS_TLS_LDM)
6580 {
6581 r_symndx = 0;
6582 h = NULL;
6583 }
6584 /* Fall through */
6585
6586 case R_MIPS_TLS_GD:
6587 /* This symbol requires a global offset table entry, or two
6588 for TLS GD relocations. */
6589 {
6590 unsigned char flag = (r_type == R_MIPS_TLS_GD
6591 ? GOT_TLS_GD
6592 : r_type == R_MIPS_TLS_LDM
6593 ? GOT_TLS_LDM
6594 : GOT_TLS_IE);
6595 if (h != NULL)
6596 {
6597 struct mips_elf_link_hash_entry *hmips =
6598 (struct mips_elf_link_hash_entry *) h;
6599 hmips->tls_type |= flag;
6600
6601 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6602 return FALSE;
6603 }
6604 else
6605 {
6606 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6607
6608 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6609 rel->r_addend, g, flag))
6610 return FALSE;
6611 }
6612 }
6613 break;
6614
6615 case R_MIPS_32:
6616 case R_MIPS_REL32:
6617 case R_MIPS_64:
6618 /* In VxWorks executables, references to external symbols
6619 are handled using copy relocs or PLT stubs, so there's
6620 no need to add a .rela.dyn entry for this relocation. */
6621 if ((info->shared || (h != NULL && !htab->is_vxworks))
6622 && (sec->flags & SEC_ALLOC) != 0)
6623 {
6624 if (sreloc == NULL)
6625 {
6626 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6627 if (sreloc == NULL)
6628 return FALSE;
6629 }
6630 if (info->shared)
6631 {
6632 /* When creating a shared object, we must copy these
6633 reloc types into the output file as R_MIPS_REL32
6634 relocs. Make room for this reloc in .rel(a).dyn. */
6635 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6636 if (MIPS_ELF_READONLY_SECTION (sec))
6637 /* We tell the dynamic linker that there are
6638 relocations against the text segment. */
6639 info->flags |= DF_TEXTREL;
6640 }
6641 else
6642 {
6643 struct mips_elf_link_hash_entry *hmips;
6644
6645 /* We only need to copy this reloc if the symbol is
6646 defined in a dynamic object. */
6647 hmips = (struct mips_elf_link_hash_entry *) h;
6648 ++hmips->possibly_dynamic_relocs;
6649 if (MIPS_ELF_READONLY_SECTION (sec))
6650 /* We need it to tell the dynamic linker if there
6651 are relocations against the text segment. */
6652 hmips->readonly_reloc = TRUE;
6653 }
6654
6655 /* Even though we don't directly need a GOT entry for
6656 this symbol, a symbol must have a dynamic symbol
6657 table index greater that DT_MIPS_GOTSYM if there are
6658 dynamic relocations against it. This does not apply
6659 to VxWorks, which does not have the usual coupling
6660 between global GOT entries and .dynsym entries. */
6661 if (h != NULL && !htab->is_vxworks)
6662 {
6663 if (dynobj == NULL)
6664 elf_hash_table (info)->dynobj = dynobj = abfd;
6665 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6666 return FALSE;
6667 g = mips_elf_got_info (dynobj, &sgot);
6668 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6669 return FALSE;
6670 }
6671 }
6672
6673 if (SGI_COMPAT (abfd))
6674 mips_elf_hash_table (info)->compact_rel_size +=
6675 sizeof (Elf32_External_crinfo);
6676 break;
6677
6678 case R_MIPS_PC16:
6679 if (h)
6680 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6681 break;
6682
6683 case R_MIPS_26:
6684 if (h)
6685 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6686 /* Fall through. */
6687
6688 case R_MIPS_GPREL16:
6689 case R_MIPS_LITERAL:
6690 case R_MIPS_GPREL32:
6691 if (SGI_COMPAT (abfd))
6692 mips_elf_hash_table (info)->compact_rel_size +=
6693 sizeof (Elf32_External_crinfo);
6694 break;
6695
6696 /* This relocation describes the C++ object vtable hierarchy.
6697 Reconstruct it for later use during GC. */
6698 case R_MIPS_GNU_VTINHERIT:
6699 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
6700 return FALSE;
6701 break;
6702
6703 /* This relocation describes which C++ vtable entries are actually
6704 used. Record for later use during GC. */
6705 case R_MIPS_GNU_VTENTRY:
6706 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
6707 return FALSE;
6708 break;
6709
6710 default:
6711 break;
6712 }
6713
6714 /* We must not create a stub for a symbol that has relocations
6715 related to taking the function's address. This doesn't apply to
6716 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6717 a normal .got entry. */
6718 if (!htab->is_vxworks && h != NULL)
6719 switch (r_type)
6720 {
6721 default:
6722 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6723 break;
6724 case R_MIPS_CALL16:
6725 case R_MIPS_CALL_HI16:
6726 case R_MIPS_CALL_LO16:
6727 case R_MIPS_JALR:
6728 break;
6729 }
6730
6731 /* If this reloc is not a 16 bit call, and it has a global
6732 symbol, then we will need the fn_stub if there is one.
6733 References from a stub section do not count. */
6734 if (h != NULL
6735 && r_type != R_MIPS16_26
6736 && !mips16_stub_section_p (abfd, sec))
6737 {
6738 struct mips_elf_link_hash_entry *mh;
6739
6740 mh = (struct mips_elf_link_hash_entry *) h;
6741 mh->need_fn_stub = TRUE;
6742 }
6743 }
6744
6745 return TRUE;
6746 }
6747 \f
6748 bfd_boolean
6749 _bfd_mips_relax_section (bfd *abfd, asection *sec,
6750 struct bfd_link_info *link_info,
6751 bfd_boolean *again)
6752 {
6753 Elf_Internal_Rela *internal_relocs;
6754 Elf_Internal_Rela *irel, *irelend;
6755 Elf_Internal_Shdr *symtab_hdr;
6756 bfd_byte *contents = NULL;
6757 size_t extsymoff;
6758 bfd_boolean changed_contents = FALSE;
6759 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6760 Elf_Internal_Sym *isymbuf = NULL;
6761
6762 /* We are not currently changing any sizes, so only one pass. */
6763 *again = FALSE;
6764
6765 if (link_info->relocatable)
6766 return TRUE;
6767
6768 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
6769 link_info->keep_memory);
6770 if (internal_relocs == NULL)
6771 return TRUE;
6772
6773 irelend = internal_relocs + sec->reloc_count
6774 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6775 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6776 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6777
6778 for (irel = internal_relocs; irel < irelend; irel++)
6779 {
6780 bfd_vma symval;
6781 bfd_signed_vma sym_offset;
6782 unsigned int r_type;
6783 unsigned long r_symndx;
6784 asection *sym_sec;
6785 unsigned long instruction;
6786
6787 /* Turn jalr into bgezal, and jr into beq, if they're marked
6788 with a JALR relocation, that indicate where they jump to.
6789 This saves some pipeline bubbles. */
6790 r_type = ELF_R_TYPE (abfd, irel->r_info);
6791 if (r_type != R_MIPS_JALR)
6792 continue;
6793
6794 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6795 /* Compute the address of the jump target. */
6796 if (r_symndx >= extsymoff)
6797 {
6798 struct mips_elf_link_hash_entry *h
6799 = ((struct mips_elf_link_hash_entry *)
6800 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6801
6802 while (h->root.root.type == bfd_link_hash_indirect
6803 || h->root.root.type == bfd_link_hash_warning)
6804 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6805
6806 /* If a symbol is undefined, or if it may be overridden,
6807 skip it. */
6808 if (! ((h->root.root.type == bfd_link_hash_defined
6809 || h->root.root.type == bfd_link_hash_defweak)
6810 && h->root.root.u.def.section)
6811 || (link_info->shared && ! link_info->symbolic
6812 && !h->root.forced_local))
6813 continue;
6814
6815 sym_sec = h->root.root.u.def.section;
6816 if (sym_sec->output_section)
6817 symval = (h->root.root.u.def.value
6818 + sym_sec->output_section->vma
6819 + sym_sec->output_offset);
6820 else
6821 symval = h->root.root.u.def.value;
6822 }
6823 else
6824 {
6825 Elf_Internal_Sym *isym;
6826
6827 /* Read this BFD's symbols if we haven't done so already. */
6828 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6829 {
6830 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6831 if (isymbuf == NULL)
6832 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6833 symtab_hdr->sh_info, 0,
6834 NULL, NULL, NULL);
6835 if (isymbuf == NULL)
6836 goto relax_return;
6837 }
6838
6839 isym = isymbuf + r_symndx;
6840 if (isym->st_shndx == SHN_UNDEF)
6841 continue;
6842 else if (isym->st_shndx == SHN_ABS)
6843 sym_sec = bfd_abs_section_ptr;
6844 else if (isym->st_shndx == SHN_COMMON)
6845 sym_sec = bfd_com_section_ptr;
6846 else
6847 sym_sec
6848 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6849 symval = isym->st_value
6850 + sym_sec->output_section->vma
6851 + sym_sec->output_offset;
6852 }
6853
6854 /* Compute branch offset, from delay slot of the jump to the
6855 branch target. */
6856 sym_offset = (symval + irel->r_addend)
6857 - (sec_start + irel->r_offset + 4);
6858
6859 /* Branch offset must be properly aligned. */
6860 if ((sym_offset & 3) != 0)
6861 continue;
6862
6863 sym_offset >>= 2;
6864
6865 /* Check that it's in range. */
6866 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6867 continue;
6868
6869 /* Get the section contents if we haven't done so already. */
6870 if (contents == NULL)
6871 {
6872 /* Get cached copy if it exists. */
6873 if (elf_section_data (sec)->this_hdr.contents != NULL)
6874 contents = elf_section_data (sec)->this_hdr.contents;
6875 else
6876 {
6877 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6878 goto relax_return;
6879 }
6880 }
6881
6882 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6883
6884 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6885 if ((instruction & 0xfc1fffff) == 0x0000f809)
6886 instruction = 0x04110000;
6887 /* If it was jr <reg>, turn it into b <target>. */
6888 else if ((instruction & 0xfc1fffff) == 0x00000008)
6889 instruction = 0x10000000;
6890 else
6891 continue;
6892
6893 instruction |= (sym_offset & 0xffff);
6894 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6895 changed_contents = TRUE;
6896 }
6897
6898 if (contents != NULL
6899 && elf_section_data (sec)->this_hdr.contents != contents)
6900 {
6901 if (!changed_contents && !link_info->keep_memory)
6902 free (contents);
6903 else
6904 {
6905 /* Cache the section contents for elf_link_input_bfd. */
6906 elf_section_data (sec)->this_hdr.contents = contents;
6907 }
6908 }
6909 return TRUE;
6910
6911 relax_return:
6912 if (contents != NULL
6913 && elf_section_data (sec)->this_hdr.contents != contents)
6914 free (contents);
6915 return FALSE;
6916 }
6917 \f
6918 /* Adjust a symbol defined by a dynamic object and referenced by a
6919 regular object. The current definition is in some section of the
6920 dynamic object, but we're not including those sections. We have to
6921 change the definition to something the rest of the link can
6922 understand. */
6923
6924 bfd_boolean
6925 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6926 struct elf_link_hash_entry *h)
6927 {
6928 bfd *dynobj;
6929 struct mips_elf_link_hash_entry *hmips;
6930 asection *s;
6931 struct mips_elf_link_hash_table *htab;
6932
6933 htab = mips_elf_hash_table (info);
6934 dynobj = elf_hash_table (info)->dynobj;
6935
6936 /* Make sure we know what is going on here. */
6937 BFD_ASSERT (dynobj != NULL
6938 && (h->needs_plt
6939 || h->u.weakdef != NULL
6940 || (h->def_dynamic
6941 && h->ref_regular
6942 && !h->def_regular)));
6943
6944 /* If this symbol is defined in a dynamic object, we need to copy
6945 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6946 file. */
6947 hmips = (struct mips_elf_link_hash_entry *) h;
6948 if (! info->relocatable
6949 && hmips->possibly_dynamic_relocs != 0
6950 && (h->root.type == bfd_link_hash_defweak
6951 || !h->def_regular))
6952 {
6953 mips_elf_allocate_dynamic_relocations
6954 (dynobj, info, hmips->possibly_dynamic_relocs);
6955 if (hmips->readonly_reloc)
6956 /* We tell the dynamic linker that there are relocations
6957 against the text segment. */
6958 info->flags |= DF_TEXTREL;
6959 }
6960
6961 /* For a function, create a stub, if allowed. */
6962 if (! hmips->no_fn_stub
6963 && h->needs_plt)
6964 {
6965 if (! elf_hash_table (info)->dynamic_sections_created)
6966 return TRUE;
6967
6968 /* If this symbol is not defined in a regular file, then set
6969 the symbol to the stub location. This is required to make
6970 function pointers compare as equal between the normal
6971 executable and the shared library. */
6972 if (!h->def_regular)
6973 {
6974 /* We need .stub section. */
6975 s = bfd_get_section_by_name (dynobj,
6976 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6977 BFD_ASSERT (s != NULL);
6978
6979 h->root.u.def.section = s;
6980 h->root.u.def.value = s->size;
6981
6982 /* XXX Write this stub address somewhere. */
6983 h->plt.offset = s->size;
6984
6985 /* Make room for this stub code. */
6986 s->size += htab->function_stub_size;
6987
6988 /* The last half word of the stub will be filled with the index
6989 of this symbol in .dynsym section. */
6990 return TRUE;
6991 }
6992 }
6993 else if ((h->type == STT_FUNC)
6994 && !h->needs_plt)
6995 {
6996 /* This will set the entry for this symbol in the GOT to 0, and
6997 the dynamic linker will take care of this. */
6998 h->root.u.def.value = 0;
6999 return TRUE;
7000 }
7001
7002 /* If this is a weak symbol, and there is a real definition, the
7003 processor independent code will have arranged for us to see the
7004 real definition first, and we can just use the same value. */
7005 if (h->u.weakdef != NULL)
7006 {
7007 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7008 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7009 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7010 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7011 return TRUE;
7012 }
7013
7014 /* This is a reference to a symbol defined by a dynamic object which
7015 is not a function. */
7016
7017 return TRUE;
7018 }
7019
7020 /* Likewise, for VxWorks. */
7021
7022 bfd_boolean
7023 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7024 struct elf_link_hash_entry *h)
7025 {
7026 bfd *dynobj;
7027 struct mips_elf_link_hash_entry *hmips;
7028 struct mips_elf_link_hash_table *htab;
7029
7030 htab = mips_elf_hash_table (info);
7031 dynobj = elf_hash_table (info)->dynobj;
7032 hmips = (struct mips_elf_link_hash_entry *) h;
7033
7034 /* Make sure we know what is going on here. */
7035 BFD_ASSERT (dynobj != NULL
7036 && (h->needs_plt
7037 || h->needs_copy
7038 || h->u.weakdef != NULL
7039 || (h->def_dynamic
7040 && h->ref_regular
7041 && !h->def_regular)));
7042
7043 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7044 either (a) we want to branch to the symbol or (b) we're linking an
7045 executable that needs a canonical function address. In the latter
7046 case, the canonical address will be the address of the executable's
7047 load stub. */
7048 if ((hmips->is_branch_target
7049 || (!info->shared
7050 && h->type == STT_FUNC
7051 && hmips->is_relocation_target))
7052 && h->def_dynamic
7053 && h->ref_regular
7054 && !h->def_regular
7055 && !h->forced_local)
7056 h->needs_plt = 1;
7057
7058 /* Locally-binding symbols do not need a PLT stub; we can refer to
7059 the functions directly. */
7060 else if (h->needs_plt
7061 && (SYMBOL_CALLS_LOCAL (info, h)
7062 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7063 && h->root.type == bfd_link_hash_undefweak)))
7064 {
7065 h->needs_plt = 0;
7066 return TRUE;
7067 }
7068
7069 if (h->needs_plt)
7070 {
7071 /* If this is the first symbol to need a PLT entry, allocate room
7072 for the header, and for the header's .rela.plt.unloaded entries. */
7073 if (htab->splt->size == 0)
7074 {
7075 htab->splt->size += htab->plt_header_size;
7076 if (!info->shared)
7077 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7078 }
7079
7080 /* Assign the next .plt entry to this symbol. */
7081 h->plt.offset = htab->splt->size;
7082 htab->splt->size += htab->plt_entry_size;
7083
7084 /* If the output file has no definition of the symbol, set the
7085 symbol's value to the address of the stub. For executables,
7086 point at the PLT load stub rather than the lazy resolution stub;
7087 this stub will become the canonical function address. */
7088 if (!h->def_regular)
7089 {
7090 h->root.u.def.section = htab->splt;
7091 h->root.u.def.value = h->plt.offset;
7092 if (!info->shared)
7093 h->root.u.def.value += 8;
7094 }
7095
7096 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7097 htab->sgotplt->size += 4;
7098 htab->srelplt->size += sizeof (Elf32_External_Rela);
7099
7100 /* Make room for the .rela.plt.unloaded relocations. */
7101 if (!info->shared)
7102 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7103
7104 return TRUE;
7105 }
7106
7107 /* If a function symbol is defined by a dynamic object, and we do not
7108 need a PLT stub for it, the symbol's value should be zero. */
7109 if (h->type == STT_FUNC
7110 && h->def_dynamic
7111 && h->ref_regular
7112 && !h->def_regular)
7113 {
7114 h->root.u.def.value = 0;
7115 return TRUE;
7116 }
7117
7118 /* If this is a weak symbol, and there is a real definition, the
7119 processor independent code will have arranged for us to see the
7120 real definition first, and we can just use the same value. */
7121 if (h->u.weakdef != NULL)
7122 {
7123 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7124 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7125 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7126 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7127 return TRUE;
7128 }
7129
7130 /* This is a reference to a symbol defined by a dynamic object which
7131 is not a function. */
7132 if (info->shared)
7133 return TRUE;
7134
7135 /* We must allocate the symbol in our .dynbss section, which will
7136 become part of the .bss section of the executable. There will be
7137 an entry for this symbol in the .dynsym section. The dynamic
7138 object will contain position independent code, so all references
7139 from the dynamic object to this symbol will go through the global
7140 offset table. The dynamic linker will use the .dynsym entry to
7141 determine the address it must put in the global offset table, so
7142 both the dynamic object and the regular object will refer to the
7143 same memory location for the variable. */
7144
7145 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7146 {
7147 htab->srelbss->size += sizeof (Elf32_External_Rela);
7148 h->needs_copy = 1;
7149 }
7150
7151 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
7152 }
7153 \f
7154 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
7155 The number might be exact or a worst-case estimate, depending on how
7156 much information is available to elf_backend_omit_section_dynsym at
7157 the current linking stage. */
7158
7159 static bfd_size_type
7160 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7161 {
7162 bfd_size_type count;
7163
7164 count = 0;
7165 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7166 {
7167 asection *p;
7168 const struct elf_backend_data *bed;
7169
7170 bed = get_elf_backend_data (output_bfd);
7171 for (p = output_bfd->sections; p ; p = p->next)
7172 if ((p->flags & SEC_EXCLUDE) == 0
7173 && (p->flags & SEC_ALLOC) != 0
7174 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7175 ++count;
7176 }
7177 return count;
7178 }
7179
7180 /* This function is called after all the input files have been read,
7181 and the input sections have been assigned to output sections. We
7182 check for any mips16 stub sections that we can discard. */
7183
7184 bfd_boolean
7185 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
7186 struct bfd_link_info *info)
7187 {
7188 asection *ri;
7189
7190 bfd *dynobj;
7191 asection *s;
7192 struct mips_got_info *g;
7193 int i;
7194 bfd_size_type loadable_size = 0;
7195 bfd_size_type local_gotno;
7196 bfd_size_type dynsymcount;
7197 bfd *sub;
7198 struct mips_elf_count_tls_arg count_tls_arg;
7199 struct mips_elf_link_hash_table *htab;
7200
7201 htab = mips_elf_hash_table (info);
7202
7203 /* The .reginfo section has a fixed size. */
7204 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7205 if (ri != NULL)
7206 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7207
7208 if (! (info->relocatable
7209 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7210 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7211 mips_elf_check_mips16_stubs, NULL);
7212
7213 dynobj = elf_hash_table (info)->dynobj;
7214 if (dynobj == NULL)
7215 /* Relocatable links don't have it. */
7216 return TRUE;
7217
7218 g = mips_elf_got_info (dynobj, &s);
7219 if (s == NULL)
7220 return TRUE;
7221
7222 /* Calculate the total loadable size of the output. That
7223 will give us the maximum number of GOT_PAGE entries
7224 required. */
7225 for (sub = info->input_bfds; sub; sub = sub->link_next)
7226 {
7227 asection *subsection;
7228
7229 for (subsection = sub->sections;
7230 subsection;
7231 subsection = subsection->next)
7232 {
7233 if ((subsection->flags & SEC_ALLOC) == 0)
7234 continue;
7235 loadable_size += ((subsection->size + 0xf)
7236 &~ (bfd_size_type) 0xf);
7237 }
7238 }
7239
7240 /* There has to be a global GOT entry for every symbol with
7241 a dynamic symbol table index of DT_MIPS_GOTSYM or
7242 higher. Therefore, it make sense to put those symbols
7243 that need GOT entries at the end of the symbol table. We
7244 do that here. */
7245 if (! mips_elf_sort_hash_table (info, 1))
7246 return FALSE;
7247
7248 if (g->global_gotsym != NULL)
7249 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7250 else
7251 /* If there are no global symbols, or none requiring
7252 relocations, then GLOBAL_GOTSYM will be NULL. */
7253 i = 0;
7254
7255 /* Get a worst-case estimate of the number of dynamic symbols needed.
7256 At this point, dynsymcount does not account for section symbols
7257 and count_section_dynsyms may overestimate the number that will
7258 be needed. */
7259 dynsymcount = (elf_hash_table (info)->dynsymcount
7260 + count_section_dynsyms (output_bfd, info));
7261
7262 /* Determine the size of one stub entry. */
7263 htab->function_stub_size = (dynsymcount > 0x10000
7264 ? MIPS_FUNCTION_STUB_BIG_SIZE
7265 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7266
7267 /* In the worst case, we'll get one stub per dynamic symbol, plus
7268 one to account for the dummy entry at the end required by IRIX
7269 rld. */
7270 loadable_size += htab->function_stub_size * (i + 1);
7271
7272 if (htab->is_vxworks)
7273 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7274 relocations against local symbols evaluate to "G", and the EABI does
7275 not include R_MIPS_GOT_PAGE. */
7276 local_gotno = 0;
7277 else
7278 /* Assume there are two loadable segments consisting of contiguous
7279 sections. Is 5 enough? */
7280 local_gotno = (loadable_size >> 16) + 5;
7281
7282 g->local_gotno += local_gotno;
7283 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7284
7285 g->global_gotno = i;
7286 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
7287
7288 /* We need to calculate tls_gotno for global symbols at this point
7289 instead of building it up earlier, to avoid doublecounting
7290 entries for one global symbol from multiple input files. */
7291 count_tls_arg.info = info;
7292 count_tls_arg.needed = 0;
7293 elf_link_hash_traverse (elf_hash_table (info),
7294 mips_elf_count_global_tls_entries,
7295 &count_tls_arg);
7296 g->tls_gotno += count_tls_arg.needed;
7297 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7298
7299 mips_elf_resolve_final_got_entries (g);
7300
7301 /* VxWorks does not support multiple GOTs. It initializes $gp to
7302 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7303 dynamic loader. */
7304 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
7305 {
7306 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7307 return FALSE;
7308 }
7309 else
7310 {
7311 /* Set up TLS entries for the first GOT. */
7312 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7313 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7314 }
7315
7316 return TRUE;
7317 }
7318
7319 /* Set the sizes of the dynamic sections. */
7320
7321 bfd_boolean
7322 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7323 struct bfd_link_info *info)
7324 {
7325 bfd *dynobj;
7326 asection *s, *sreldyn;
7327 bfd_boolean reltext;
7328 struct mips_elf_link_hash_table *htab;
7329
7330 htab = mips_elf_hash_table (info);
7331 dynobj = elf_hash_table (info)->dynobj;
7332 BFD_ASSERT (dynobj != NULL);
7333
7334 if (elf_hash_table (info)->dynamic_sections_created)
7335 {
7336 /* Set the contents of the .interp section to the interpreter. */
7337 if (info->executable)
7338 {
7339 s = bfd_get_section_by_name (dynobj, ".interp");
7340 BFD_ASSERT (s != NULL);
7341 s->size
7342 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7343 s->contents
7344 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7345 }
7346 }
7347
7348 /* The check_relocs and adjust_dynamic_symbol entry points have
7349 determined the sizes of the various dynamic sections. Allocate
7350 memory for them. */
7351 reltext = FALSE;
7352 sreldyn = NULL;
7353 for (s = dynobj->sections; s != NULL; s = s->next)
7354 {
7355 const char *name;
7356
7357 /* It's OK to base decisions on the section name, because none
7358 of the dynobj section names depend upon the input files. */
7359 name = bfd_get_section_name (dynobj, s);
7360
7361 if ((s->flags & SEC_LINKER_CREATED) == 0)
7362 continue;
7363
7364 if (CONST_STRNEQ (name, ".rel"))
7365 {
7366 if (s->size != 0)
7367 {
7368 const char *outname;
7369 asection *target;
7370
7371 /* If this relocation section applies to a read only
7372 section, then we probably need a DT_TEXTREL entry.
7373 If the relocation section is .rel(a).dyn, we always
7374 assert a DT_TEXTREL entry rather than testing whether
7375 there exists a relocation to a read only section or
7376 not. */
7377 outname = bfd_get_section_name (output_bfd,
7378 s->output_section);
7379 target = bfd_get_section_by_name (output_bfd, outname + 4);
7380 if ((target != NULL
7381 && (target->flags & SEC_READONLY) != 0
7382 && (target->flags & SEC_ALLOC) != 0)
7383 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7384 reltext = TRUE;
7385
7386 /* We use the reloc_count field as a counter if we need
7387 to copy relocs into the output file. */
7388 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
7389 s->reloc_count = 0;
7390
7391 /* If combreloc is enabled, elf_link_sort_relocs() will
7392 sort relocations, but in a different way than we do,
7393 and before we're done creating relocations. Also, it
7394 will move them around between input sections'
7395 relocation's contents, so our sorting would be
7396 broken, so don't let it run. */
7397 info->combreloc = 0;
7398 }
7399 }
7400 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7401 {
7402 /* Executables do not need a GOT. */
7403 if (info->shared)
7404 {
7405 /* Allocate relocations for all but the reserved entries. */
7406 struct mips_got_info *g;
7407 unsigned int count;
7408
7409 g = mips_elf_got_info (dynobj, NULL);
7410 count = (g->global_gotno
7411 + g->local_gotno
7412 - MIPS_RESERVED_GOTNO (info));
7413 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7414 }
7415 }
7416 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
7417 {
7418 /* _bfd_mips_elf_always_size_sections() has already done
7419 most of the work, but some symbols may have been mapped
7420 to versions that we must now resolve in the got_entries
7421 hash tables. */
7422 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7423 struct mips_got_info *g = gg;
7424 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7425 unsigned int needed_relocs = 0;
7426
7427 if (gg->next)
7428 {
7429 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7430 set_got_offset_arg.info = info;
7431
7432 /* NOTE 2005-02-03: How can this call, or the next, ever
7433 find any indirect entries to resolve? They were all
7434 resolved in mips_elf_multi_got. */
7435 mips_elf_resolve_final_got_entries (gg);
7436 for (g = gg->next; g && g->next != gg; g = g->next)
7437 {
7438 unsigned int save_assign;
7439
7440 mips_elf_resolve_final_got_entries (g);
7441
7442 /* Assign offsets to global GOT entries. */
7443 save_assign = g->assigned_gotno;
7444 g->assigned_gotno = g->local_gotno;
7445 set_got_offset_arg.g = g;
7446 set_got_offset_arg.needed_relocs = 0;
7447 htab_traverse (g->got_entries,
7448 mips_elf_set_global_got_offset,
7449 &set_got_offset_arg);
7450 needed_relocs += set_got_offset_arg.needed_relocs;
7451 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7452 <= g->global_gotno);
7453
7454 g->assigned_gotno = save_assign;
7455 if (info->shared)
7456 {
7457 needed_relocs += g->local_gotno - g->assigned_gotno;
7458 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7459 + g->next->global_gotno
7460 + g->next->tls_gotno
7461 + MIPS_RESERVED_GOTNO (info));
7462 }
7463 }
7464 }
7465 else
7466 {
7467 struct mips_elf_count_tls_arg arg;
7468 arg.info = info;
7469 arg.needed = 0;
7470
7471 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7472 &arg);
7473 elf_link_hash_traverse (elf_hash_table (info),
7474 mips_elf_count_global_tls_relocs,
7475 &arg);
7476
7477 needed_relocs += arg.needed;
7478 }
7479
7480 if (needed_relocs)
7481 mips_elf_allocate_dynamic_relocations (dynobj, info,
7482 needed_relocs);
7483 }
7484 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7485 {
7486 /* IRIX rld assumes that the function stub isn't at the end
7487 of .text section. So put a dummy. XXX */
7488 s->size += htab->function_stub_size;
7489 }
7490 else if (! info->shared
7491 && ! mips_elf_hash_table (info)->use_rld_obj_head
7492 && CONST_STRNEQ (name, ".rld_map"))
7493 {
7494 /* We add a room for __rld_map. It will be filled in by the
7495 rtld to contain a pointer to the _r_debug structure. */
7496 s->size += 4;
7497 }
7498 else if (SGI_COMPAT (output_bfd)
7499 && CONST_STRNEQ (name, ".compact_rel"))
7500 s->size += mips_elf_hash_table (info)->compact_rel_size;
7501 else if (! CONST_STRNEQ (name, ".init")
7502 && s != htab->sgotplt
7503 && s != htab->splt)
7504 {
7505 /* It's not one of our sections, so don't allocate space. */
7506 continue;
7507 }
7508
7509 if (s->size == 0)
7510 {
7511 s->flags |= SEC_EXCLUDE;
7512 continue;
7513 }
7514
7515 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7516 continue;
7517
7518 /* Allocate memory for this section last, since we may increase its
7519 size above. */
7520 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7521 {
7522 sreldyn = s;
7523 continue;
7524 }
7525
7526 /* Allocate memory for the section contents. */
7527 s->contents = bfd_zalloc (dynobj, s->size);
7528 if (s->contents == NULL)
7529 {
7530 bfd_set_error (bfd_error_no_memory);
7531 return FALSE;
7532 }
7533 }
7534
7535 /* Allocate memory for the .rel(a).dyn section. */
7536 if (sreldyn != NULL)
7537 {
7538 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7539 if (sreldyn->contents == NULL)
7540 {
7541 bfd_set_error (bfd_error_no_memory);
7542 return FALSE;
7543 }
7544 }
7545
7546 if (elf_hash_table (info)->dynamic_sections_created)
7547 {
7548 /* Add some entries to the .dynamic section. We fill in the
7549 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7550 must add the entries now so that we get the correct size for
7551 the .dynamic section. */
7552
7553 /* SGI object has the equivalence of DT_DEBUG in the
7554 DT_MIPS_RLD_MAP entry. This must come first because glibc
7555 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
7556 looks at the first one it sees. */
7557 if (!info->shared
7558 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7559 return FALSE;
7560
7561 /* The DT_DEBUG entry may be filled in by the dynamic linker and
7562 used by the debugger. */
7563 if (info->executable
7564 && !SGI_COMPAT (output_bfd)
7565 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7566 return FALSE;
7567
7568 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
7569 info->flags |= DF_TEXTREL;
7570
7571 if ((info->flags & DF_TEXTREL) != 0)
7572 {
7573 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
7574 return FALSE;
7575
7576 /* Clear the DF_TEXTREL flag. It will be set again if we
7577 write out an actual text relocation; we may not, because
7578 at this point we do not know whether e.g. any .eh_frame
7579 absolute relocations have been converted to PC-relative. */
7580 info->flags &= ~DF_TEXTREL;
7581 }
7582
7583 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
7584 return FALSE;
7585
7586 if (htab->is_vxworks)
7587 {
7588 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7589 use any of the DT_MIPS_* tags. */
7590 if (mips_elf_rel_dyn_section (info, FALSE))
7591 {
7592 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7593 return FALSE;
7594
7595 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7596 return FALSE;
7597
7598 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7599 return FALSE;
7600 }
7601 if (htab->splt->size > 0)
7602 {
7603 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7604 return FALSE;
7605
7606 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7607 return FALSE;
7608
7609 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7610 return FALSE;
7611 }
7612 }
7613 else
7614 {
7615 if (mips_elf_rel_dyn_section (info, FALSE))
7616 {
7617 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7618 return FALSE;
7619
7620 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7621 return FALSE;
7622
7623 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7624 return FALSE;
7625 }
7626
7627 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7628 return FALSE;
7629
7630 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7631 return FALSE;
7632
7633 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7634 return FALSE;
7635
7636 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7637 return FALSE;
7638
7639 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7640 return FALSE;
7641
7642 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7643 return FALSE;
7644
7645 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7646 return FALSE;
7647
7648 if (IRIX_COMPAT (dynobj) == ict_irix5
7649 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7650 return FALSE;
7651
7652 if (IRIX_COMPAT (dynobj) == ict_irix6
7653 && (bfd_get_section_by_name
7654 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7655 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7656 return FALSE;
7657 }
7658 }
7659
7660 return TRUE;
7661 }
7662 \f
7663 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7664 Adjust its R_ADDEND field so that it is correct for the output file.
7665 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7666 and sections respectively; both use symbol indexes. */
7667
7668 static void
7669 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7670 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7671 asection **local_sections, Elf_Internal_Rela *rel)
7672 {
7673 unsigned int r_type, r_symndx;
7674 Elf_Internal_Sym *sym;
7675 asection *sec;
7676
7677 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7678 {
7679 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7680 if (r_type == R_MIPS16_GPREL
7681 || r_type == R_MIPS_GPREL16
7682 || r_type == R_MIPS_GPREL32
7683 || r_type == R_MIPS_LITERAL)
7684 {
7685 rel->r_addend += _bfd_get_gp_value (input_bfd);
7686 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7687 }
7688
7689 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7690 sym = local_syms + r_symndx;
7691
7692 /* Adjust REL's addend to account for section merging. */
7693 if (!info->relocatable)
7694 {
7695 sec = local_sections[r_symndx];
7696 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7697 }
7698
7699 /* This would normally be done by the rela_normal code in elflink.c. */
7700 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7701 rel->r_addend += local_sections[r_symndx]->output_offset;
7702 }
7703 }
7704
7705 /* Relocate a MIPS ELF section. */
7706
7707 bfd_boolean
7708 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7709 bfd *input_bfd, asection *input_section,
7710 bfd_byte *contents, Elf_Internal_Rela *relocs,
7711 Elf_Internal_Sym *local_syms,
7712 asection **local_sections)
7713 {
7714 Elf_Internal_Rela *rel;
7715 const Elf_Internal_Rela *relend;
7716 bfd_vma addend = 0;
7717 bfd_boolean use_saved_addend_p = FALSE;
7718 const struct elf_backend_data *bed;
7719
7720 bed = get_elf_backend_data (output_bfd);
7721 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7722 for (rel = relocs; rel < relend; ++rel)
7723 {
7724 const char *name;
7725 bfd_vma value = 0;
7726 reloc_howto_type *howto;
7727 bfd_boolean require_jalx;
7728 /* TRUE if the relocation is a RELA relocation, rather than a
7729 REL relocation. */
7730 bfd_boolean rela_relocation_p = TRUE;
7731 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7732 const char *msg;
7733 unsigned long r_symndx;
7734 asection *sec;
7735 Elf_Internal_Shdr *symtab_hdr;
7736 struct elf_link_hash_entry *h;
7737
7738 /* Find the relocation howto for this relocation. */
7739 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7740 NEWABI_P (input_bfd)
7741 && (MIPS_RELOC_RELA_P
7742 (input_bfd, input_section,
7743 rel - relocs)));
7744
7745 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
7746 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
7747 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7748 {
7749 sec = local_sections[r_symndx];
7750 h = NULL;
7751 }
7752 else
7753 {
7754 unsigned long extsymoff;
7755
7756 extsymoff = 0;
7757 if (!elf_bad_symtab (input_bfd))
7758 extsymoff = symtab_hdr->sh_info;
7759 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
7760 while (h->root.type == bfd_link_hash_indirect
7761 || h->root.type == bfd_link_hash_warning)
7762 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7763
7764 sec = NULL;
7765 if (h->root.type == bfd_link_hash_defined
7766 || h->root.type == bfd_link_hash_defweak)
7767 sec = h->root.u.def.section;
7768 }
7769
7770 if (sec != NULL && elf_discarded_section (sec))
7771 {
7772 /* For relocs against symbols from removed linkonce sections,
7773 or sections discarded by a linker script, we just want the
7774 section contents zeroed. Avoid any special processing. */
7775 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7776 rel->r_info = 0;
7777 rel->r_addend = 0;
7778 continue;
7779 }
7780
7781 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
7782 {
7783 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7784 64-bit code, but make sure all their addresses are in the
7785 lowermost or uppermost 32-bit section of the 64-bit address
7786 space. Thus, when they use an R_MIPS_64 they mean what is
7787 usually meant by R_MIPS_32, with the exception that the
7788 stored value is sign-extended to 64 bits. */
7789 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
7790
7791 /* On big-endian systems, we need to lie about the position
7792 of the reloc. */
7793 if (bfd_big_endian (input_bfd))
7794 rel->r_offset += 4;
7795 }
7796
7797 if (!use_saved_addend_p)
7798 {
7799 Elf_Internal_Shdr *rel_hdr;
7800
7801 /* If these relocations were originally of the REL variety,
7802 we must pull the addend out of the field that will be
7803 relocated. Otherwise, we simply use the contents of the
7804 RELA relocation. To determine which flavor or relocation
7805 this is, we depend on the fact that the INPUT_SECTION's
7806 REL_HDR is read before its REL_HDR2. */
7807 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7808 if ((size_t) (rel - relocs)
7809 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7810 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7811 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7812 {
7813 bfd_byte *location = contents + rel->r_offset;
7814
7815 /* Note that this is a REL relocation. */
7816 rela_relocation_p = FALSE;
7817
7818 /* Get the addend, which is stored in the input file. */
7819 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7820 location);
7821 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7822 contents);
7823 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7824 location);
7825
7826 addend &= howto->src_mask;
7827
7828 /* For some kinds of relocations, the ADDEND is a
7829 combination of the addend stored in two different
7830 relocations. */
7831 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
7832 || (r_type == R_MIPS_GOT16
7833 && mips_elf_local_relocation_p (input_bfd, rel,
7834 local_sections, FALSE)))
7835 {
7836 const Elf_Internal_Rela *lo16_relocation;
7837 reloc_howto_type *lo16_howto;
7838 int lo16_type;
7839
7840 if (r_type == R_MIPS16_HI16)
7841 lo16_type = R_MIPS16_LO16;
7842 else
7843 lo16_type = R_MIPS_LO16;
7844
7845 /* The combined value is the sum of the HI16 addend,
7846 left-shifted by sixteen bits, and the LO16
7847 addend, sign extended. (Usually, the code does
7848 a `lui' of the HI16 value, and then an `addiu' of
7849 the LO16 value.)
7850
7851 Scan ahead to find a matching LO16 relocation.
7852
7853 According to the MIPS ELF ABI, the R_MIPS_LO16
7854 relocation must be immediately following.
7855 However, for the IRIX6 ABI, the next relocation
7856 may be a composed relocation consisting of
7857 several relocations for the same address. In
7858 that case, the R_MIPS_LO16 relocation may occur
7859 as one of these. We permit a similar extension
7860 in general, as that is useful for GCC.
7861
7862 In some cases GCC dead code elimination removes
7863 the LO16 but keeps the corresponding HI16. This
7864 is strictly speaking a violation of the ABI but
7865 not immediately harmful. */
7866 lo16_relocation = mips_elf_next_relocation (input_bfd,
7867 lo16_type,
7868 rel, relend);
7869 if (lo16_relocation == NULL)
7870 {
7871 const char *name;
7872
7873 if (h)
7874 name = h->root.root.string;
7875 else
7876 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
7877 local_syms + r_symndx,
7878 sec);
7879 (*_bfd_error_handler)
7880 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
7881 input_bfd, input_section, name, howto->name,
7882 rel->r_offset);
7883 }
7884 else
7885 {
7886 bfd_byte *lo16_location;
7887 bfd_vma l;
7888
7889 lo16_location = contents + lo16_relocation->r_offset;
7890
7891 /* Obtain the addend kept there. */
7892 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7893 lo16_type, FALSE);
7894 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type,
7895 FALSE, lo16_location);
7896 l = mips_elf_obtain_contents (lo16_howto,
7897 lo16_relocation,
7898 input_bfd, contents);
7899 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type,
7900 FALSE, lo16_location);
7901 l &= lo16_howto->src_mask;
7902 l <<= lo16_howto->rightshift;
7903 l = _bfd_mips_elf_sign_extend (l, 16);
7904
7905 addend <<= 16;
7906
7907 /* Compute the combined addend. */
7908 addend += l;
7909 }
7910 }
7911 else
7912 addend <<= howto->rightshift;
7913 }
7914 else
7915 addend = rel->r_addend;
7916 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7917 local_syms, local_sections, rel);
7918 }
7919
7920 if (info->relocatable)
7921 {
7922 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
7923 && bfd_big_endian (input_bfd))
7924 rel->r_offset -= 4;
7925
7926 if (!rela_relocation_p && rel->r_addend)
7927 {
7928 addend += rel->r_addend;
7929 if (r_type == R_MIPS_HI16
7930 || r_type == R_MIPS_GOT16)
7931 addend = mips_elf_high (addend);
7932 else if (r_type == R_MIPS_HIGHER)
7933 addend = mips_elf_higher (addend);
7934 else if (r_type == R_MIPS_HIGHEST)
7935 addend = mips_elf_highest (addend);
7936 else
7937 addend >>= howto->rightshift;
7938
7939 /* We use the source mask, rather than the destination
7940 mask because the place to which we are writing will be
7941 source of the addend in the final link. */
7942 addend &= howto->src_mask;
7943
7944 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7945 /* See the comment above about using R_MIPS_64 in the 32-bit
7946 ABI. Here, we need to update the addend. It would be
7947 possible to get away with just using the R_MIPS_32 reloc
7948 but for endianness. */
7949 {
7950 bfd_vma sign_bits;
7951 bfd_vma low_bits;
7952 bfd_vma high_bits;
7953
7954 if (addend & ((bfd_vma) 1 << 31))
7955 #ifdef BFD64
7956 sign_bits = ((bfd_vma) 1 << 32) - 1;
7957 #else
7958 sign_bits = -1;
7959 #endif
7960 else
7961 sign_bits = 0;
7962
7963 /* If we don't know that we have a 64-bit type,
7964 do two separate stores. */
7965 if (bfd_big_endian (input_bfd))
7966 {
7967 /* Store the sign-bits (which are most significant)
7968 first. */
7969 low_bits = sign_bits;
7970 high_bits = addend;
7971 }
7972 else
7973 {
7974 low_bits = addend;
7975 high_bits = sign_bits;
7976 }
7977 bfd_put_32 (input_bfd, low_bits,
7978 contents + rel->r_offset);
7979 bfd_put_32 (input_bfd, high_bits,
7980 contents + rel->r_offset + 4);
7981 continue;
7982 }
7983
7984 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7985 input_bfd, input_section,
7986 contents, FALSE))
7987 return FALSE;
7988 }
7989
7990 /* Go on to the next relocation. */
7991 continue;
7992 }
7993
7994 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7995 relocations for the same offset. In that case we are
7996 supposed to treat the output of each relocation as the addend
7997 for the next. */
7998 if (rel + 1 < relend
7999 && rel->r_offset == rel[1].r_offset
8000 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
8001 use_saved_addend_p = TRUE;
8002 else
8003 use_saved_addend_p = FALSE;
8004
8005 /* Figure out what value we are supposed to relocate. */
8006 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
8007 input_section, info, rel,
8008 addend, howto, local_syms,
8009 local_sections, &value,
8010 &name, &require_jalx,
8011 use_saved_addend_p))
8012 {
8013 case bfd_reloc_continue:
8014 /* There's nothing to do. */
8015 continue;
8016
8017 case bfd_reloc_undefined:
8018 /* mips_elf_calculate_relocation already called the
8019 undefined_symbol callback. There's no real point in
8020 trying to perform the relocation at this point, so we
8021 just skip ahead to the next relocation. */
8022 continue;
8023
8024 case bfd_reloc_notsupported:
8025 msg = _("internal error: unsupported relocation error");
8026 info->callbacks->warning
8027 (info, msg, name, input_bfd, input_section, rel->r_offset);
8028 return FALSE;
8029
8030 case bfd_reloc_overflow:
8031 if (use_saved_addend_p)
8032 /* Ignore overflow until we reach the last relocation for
8033 a given location. */
8034 ;
8035 else
8036 {
8037 struct mips_elf_link_hash_table *htab;
8038
8039 htab = mips_elf_hash_table (info);
8040 BFD_ASSERT (name != NULL);
8041 if (!htab->small_data_overflow_reported
8042 && (howto->type == R_MIPS_GPREL16
8043 || howto->type == R_MIPS_LITERAL))
8044 {
8045 const char *msg =
8046 _("small-data section exceeds 64KB;"
8047 " lower small-data size limit (see option -G)");
8048
8049 htab->small_data_overflow_reported = TRUE;
8050 (*info->callbacks->einfo) ("%P: %s\n", msg);
8051 }
8052 if (! ((*info->callbacks->reloc_overflow)
8053 (info, NULL, name, howto->name, (bfd_vma) 0,
8054 input_bfd, input_section, rel->r_offset)))
8055 return FALSE;
8056 }
8057 break;
8058
8059 case bfd_reloc_ok:
8060 break;
8061
8062 default:
8063 abort ();
8064 break;
8065 }
8066
8067 /* If we've got another relocation for the address, keep going
8068 until we reach the last one. */
8069 if (use_saved_addend_p)
8070 {
8071 addend = value;
8072 continue;
8073 }
8074
8075 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
8076 /* See the comment above about using R_MIPS_64 in the 32-bit
8077 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8078 that calculated the right value. Now, however, we
8079 sign-extend the 32-bit result to 64-bits, and store it as a
8080 64-bit value. We are especially generous here in that we
8081 go to extreme lengths to support this usage on systems with
8082 only a 32-bit VMA. */
8083 {
8084 bfd_vma sign_bits;
8085 bfd_vma low_bits;
8086 bfd_vma high_bits;
8087
8088 if (value & ((bfd_vma) 1 << 31))
8089 #ifdef BFD64
8090 sign_bits = ((bfd_vma) 1 << 32) - 1;
8091 #else
8092 sign_bits = -1;
8093 #endif
8094 else
8095 sign_bits = 0;
8096
8097 /* If we don't know that we have a 64-bit type,
8098 do two separate stores. */
8099 if (bfd_big_endian (input_bfd))
8100 {
8101 /* Undo what we did above. */
8102 rel->r_offset -= 4;
8103 /* Store the sign-bits (which are most significant)
8104 first. */
8105 low_bits = sign_bits;
8106 high_bits = value;
8107 }
8108 else
8109 {
8110 low_bits = value;
8111 high_bits = sign_bits;
8112 }
8113 bfd_put_32 (input_bfd, low_bits,
8114 contents + rel->r_offset);
8115 bfd_put_32 (input_bfd, high_bits,
8116 contents + rel->r_offset + 4);
8117 continue;
8118 }
8119
8120 /* Actually perform the relocation. */
8121 if (! mips_elf_perform_relocation (info, howto, rel, value,
8122 input_bfd, input_section,
8123 contents, require_jalx))
8124 return FALSE;
8125 }
8126
8127 return TRUE;
8128 }
8129 \f
8130 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8131 adjust it appropriately now. */
8132
8133 static void
8134 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8135 const char *name, Elf_Internal_Sym *sym)
8136 {
8137 /* The linker script takes care of providing names and values for
8138 these, but we must place them into the right sections. */
8139 static const char* const text_section_symbols[] = {
8140 "_ftext",
8141 "_etext",
8142 "__dso_displacement",
8143 "__elf_header",
8144 "__program_header_table",
8145 NULL
8146 };
8147
8148 static const char* const data_section_symbols[] = {
8149 "_fdata",
8150 "_edata",
8151 "_end",
8152 "_fbss",
8153 NULL
8154 };
8155
8156 const char* const *p;
8157 int i;
8158
8159 for (i = 0; i < 2; ++i)
8160 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8161 *p;
8162 ++p)
8163 if (strcmp (*p, name) == 0)
8164 {
8165 /* All of these symbols are given type STT_SECTION by the
8166 IRIX6 linker. */
8167 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8168 sym->st_other = STO_PROTECTED;
8169
8170 /* The IRIX linker puts these symbols in special sections. */
8171 if (i == 0)
8172 sym->st_shndx = SHN_MIPS_TEXT;
8173 else
8174 sym->st_shndx = SHN_MIPS_DATA;
8175
8176 break;
8177 }
8178 }
8179
8180 /* Finish up dynamic symbol handling. We set the contents of various
8181 dynamic sections here. */
8182
8183 bfd_boolean
8184 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8185 struct bfd_link_info *info,
8186 struct elf_link_hash_entry *h,
8187 Elf_Internal_Sym *sym)
8188 {
8189 bfd *dynobj;
8190 asection *sgot;
8191 struct mips_got_info *g, *gg;
8192 const char *name;
8193 int idx;
8194 struct mips_elf_link_hash_table *htab;
8195
8196 htab = mips_elf_hash_table (info);
8197 dynobj = elf_hash_table (info)->dynobj;
8198
8199 if (h->plt.offset != MINUS_ONE)
8200 {
8201 asection *s;
8202 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
8203
8204 /* This symbol has a stub. Set it up. */
8205
8206 BFD_ASSERT (h->dynindx != -1);
8207
8208 s = bfd_get_section_by_name (dynobj,
8209 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8210 BFD_ASSERT (s != NULL);
8211
8212 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8213 || (h->dynindx <= 0xffff));
8214
8215 /* Values up to 2^31 - 1 are allowed. Larger values would cause
8216 sign extension at runtime in the stub, resulting in a negative
8217 index value. */
8218 if (h->dynindx & ~0x7fffffff)
8219 return FALSE;
8220
8221 /* Fill the stub. */
8222 idx = 0;
8223 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8224 idx += 4;
8225 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8226 idx += 4;
8227 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8228 {
8229 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
8230 stub + idx);
8231 idx += 4;
8232 }
8233 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8234 idx += 4;
8235
8236 /* If a large stub is not required and sign extension is not a
8237 problem, then use legacy code in the stub. */
8238 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8239 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8240 else if (h->dynindx & ~0x7fff)
8241 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8242 else
8243 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8244 stub + idx);
8245
8246 BFD_ASSERT (h->plt.offset <= s->size);
8247 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
8248
8249 /* Mark the symbol as undefined. plt.offset != -1 occurs
8250 only for the referenced symbol. */
8251 sym->st_shndx = SHN_UNDEF;
8252
8253 /* The run-time linker uses the st_value field of the symbol
8254 to reset the global offset table entry for this external
8255 to its stub address when unlinking a shared object. */
8256 sym->st_value = (s->output_section->vma + s->output_offset
8257 + h->plt.offset);
8258 }
8259
8260 BFD_ASSERT (h->dynindx != -1
8261 || h->forced_local);
8262
8263 sgot = mips_elf_got_section (dynobj, FALSE);
8264 BFD_ASSERT (sgot != NULL);
8265 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8266 g = mips_elf_section_data (sgot)->u.got_info;
8267 BFD_ASSERT (g != NULL);
8268
8269 /* Run through the global symbol table, creating GOT entries for all
8270 the symbols that need them. */
8271 if (g->global_gotsym != NULL
8272 && h->dynindx >= g->global_gotsym->dynindx)
8273 {
8274 bfd_vma offset;
8275 bfd_vma value;
8276
8277 value = sym->st_value;
8278 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
8279 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8280 }
8281
8282 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
8283 {
8284 struct mips_got_entry e, *p;
8285 bfd_vma entry;
8286 bfd_vma offset;
8287
8288 gg = g;
8289
8290 e.abfd = output_bfd;
8291 e.symndx = -1;
8292 e.d.h = (struct mips_elf_link_hash_entry *)h;
8293 e.tls_type = 0;
8294
8295 for (g = g->next; g->next != gg; g = g->next)
8296 {
8297 if (g->got_entries
8298 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8299 &e)))
8300 {
8301 offset = p->gotidx;
8302 if (info->shared
8303 || (elf_hash_table (info)->dynamic_sections_created
8304 && p->d.h != NULL
8305 && p->d.h->root.def_dynamic
8306 && !p->d.h->root.def_regular))
8307 {
8308 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8309 the various compatibility problems, it's easier to mock
8310 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8311 mips_elf_create_dynamic_relocation to calculate the
8312 appropriate addend. */
8313 Elf_Internal_Rela rel[3];
8314
8315 memset (rel, 0, sizeof (rel));
8316 if (ABI_64_P (output_bfd))
8317 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8318 else
8319 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8320 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8321
8322 entry = 0;
8323 if (! (mips_elf_create_dynamic_relocation
8324 (output_bfd, info, rel,
8325 e.d.h, NULL, sym->st_value, &entry, sgot)))
8326 return FALSE;
8327 }
8328 else
8329 entry = sym->st_value;
8330 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
8331 }
8332 }
8333 }
8334
8335 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8336 name = h->root.root.string;
8337 if (strcmp (name, "_DYNAMIC") == 0
8338 || h == elf_hash_table (info)->hgot)
8339 sym->st_shndx = SHN_ABS;
8340 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8341 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8342 {
8343 sym->st_shndx = SHN_ABS;
8344 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8345 sym->st_value = 1;
8346 }
8347 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
8348 {
8349 sym->st_shndx = SHN_ABS;
8350 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8351 sym->st_value = elf_gp (output_bfd);
8352 }
8353 else if (SGI_COMPAT (output_bfd))
8354 {
8355 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8356 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8357 {
8358 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8359 sym->st_other = STO_PROTECTED;
8360 sym->st_value = 0;
8361 sym->st_shndx = SHN_MIPS_DATA;
8362 }
8363 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8364 {
8365 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8366 sym->st_other = STO_PROTECTED;
8367 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8368 sym->st_shndx = SHN_ABS;
8369 }
8370 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8371 {
8372 if (h->type == STT_FUNC)
8373 sym->st_shndx = SHN_MIPS_TEXT;
8374 else if (h->type == STT_OBJECT)
8375 sym->st_shndx = SHN_MIPS_DATA;
8376 }
8377 }
8378
8379 /* Handle the IRIX6-specific symbols. */
8380 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8381 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8382
8383 if (! info->shared)
8384 {
8385 if (! mips_elf_hash_table (info)->use_rld_obj_head
8386 && (strcmp (name, "__rld_map") == 0
8387 || strcmp (name, "__RLD_MAP") == 0))
8388 {
8389 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8390 BFD_ASSERT (s != NULL);
8391 sym->st_value = s->output_section->vma + s->output_offset;
8392 bfd_put_32 (output_bfd, 0, s->contents);
8393 if (mips_elf_hash_table (info)->rld_value == 0)
8394 mips_elf_hash_table (info)->rld_value = sym->st_value;
8395 }
8396 else if (mips_elf_hash_table (info)->use_rld_obj_head
8397 && strcmp (name, "__rld_obj_head") == 0)
8398 {
8399 /* IRIX6 does not use a .rld_map section. */
8400 if (IRIX_COMPAT (output_bfd) == ict_irix5
8401 || IRIX_COMPAT (output_bfd) == ict_none)
8402 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8403 != NULL);
8404 mips_elf_hash_table (info)->rld_value = sym->st_value;
8405 }
8406 }
8407
8408 /* If this is a mips16 symbol, force the value to be even. */
8409 if (sym->st_other == STO_MIPS16)
8410 sym->st_value &= ~1;
8411
8412 return TRUE;
8413 }
8414
8415 /* Likewise, for VxWorks. */
8416
8417 bfd_boolean
8418 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8419 struct bfd_link_info *info,
8420 struct elf_link_hash_entry *h,
8421 Elf_Internal_Sym *sym)
8422 {
8423 bfd *dynobj;
8424 asection *sgot;
8425 struct mips_got_info *g;
8426 struct mips_elf_link_hash_table *htab;
8427
8428 htab = mips_elf_hash_table (info);
8429 dynobj = elf_hash_table (info)->dynobj;
8430
8431 if (h->plt.offset != (bfd_vma) -1)
8432 {
8433 bfd_byte *loc;
8434 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8435 Elf_Internal_Rela rel;
8436 static const bfd_vma *plt_entry;
8437
8438 BFD_ASSERT (h->dynindx != -1);
8439 BFD_ASSERT (htab->splt != NULL);
8440 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8441
8442 /* Calculate the address of the .plt entry. */
8443 plt_address = (htab->splt->output_section->vma
8444 + htab->splt->output_offset
8445 + h->plt.offset);
8446
8447 /* Calculate the index of the entry. */
8448 plt_index = ((h->plt.offset - htab->plt_header_size)
8449 / htab->plt_entry_size);
8450
8451 /* Calculate the address of the .got.plt entry. */
8452 got_address = (htab->sgotplt->output_section->vma
8453 + htab->sgotplt->output_offset
8454 + plt_index * 4);
8455
8456 /* Calculate the offset of the .got.plt entry from
8457 _GLOBAL_OFFSET_TABLE_. */
8458 got_offset = mips_elf_gotplt_index (info, h);
8459
8460 /* Calculate the offset for the branch at the start of the PLT
8461 entry. The branch jumps to the beginning of .plt. */
8462 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8463
8464 /* Fill in the initial value of the .got.plt entry. */
8465 bfd_put_32 (output_bfd, plt_address,
8466 htab->sgotplt->contents + plt_index * 4);
8467
8468 /* Find out where the .plt entry should go. */
8469 loc = htab->splt->contents + h->plt.offset;
8470
8471 if (info->shared)
8472 {
8473 plt_entry = mips_vxworks_shared_plt_entry;
8474 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8475 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8476 }
8477 else
8478 {
8479 bfd_vma got_address_high, got_address_low;
8480
8481 plt_entry = mips_vxworks_exec_plt_entry;
8482 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8483 got_address_low = got_address & 0xffff;
8484
8485 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8486 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8487 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8488 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8489 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8490 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8491 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8492 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8493
8494 loc = (htab->srelplt2->contents
8495 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8496
8497 /* Emit a relocation for the .got.plt entry. */
8498 rel.r_offset = got_address;
8499 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8500 rel.r_addend = h->plt.offset;
8501 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8502
8503 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8504 loc += sizeof (Elf32_External_Rela);
8505 rel.r_offset = plt_address + 8;
8506 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8507 rel.r_addend = got_offset;
8508 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8509
8510 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8511 loc += sizeof (Elf32_External_Rela);
8512 rel.r_offset += 4;
8513 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8514 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8515 }
8516
8517 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8518 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8519 rel.r_offset = got_address;
8520 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8521 rel.r_addend = 0;
8522 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8523
8524 if (!h->def_regular)
8525 sym->st_shndx = SHN_UNDEF;
8526 }
8527
8528 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8529
8530 sgot = mips_elf_got_section (dynobj, FALSE);
8531 BFD_ASSERT (sgot != NULL);
8532 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8533 g = mips_elf_section_data (sgot)->u.got_info;
8534 BFD_ASSERT (g != NULL);
8535
8536 /* See if this symbol has an entry in the GOT. */
8537 if (g->global_gotsym != NULL
8538 && h->dynindx >= g->global_gotsym->dynindx)
8539 {
8540 bfd_vma offset;
8541 Elf_Internal_Rela outrel;
8542 bfd_byte *loc;
8543 asection *s;
8544
8545 /* Install the symbol value in the GOT. */
8546 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8547 R_MIPS_GOT16, info);
8548 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8549
8550 /* Add a dynamic relocation for it. */
8551 s = mips_elf_rel_dyn_section (info, FALSE);
8552 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8553 outrel.r_offset = (sgot->output_section->vma
8554 + sgot->output_offset
8555 + offset);
8556 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8557 outrel.r_addend = 0;
8558 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8559 }
8560
8561 /* Emit a copy reloc, if needed. */
8562 if (h->needs_copy)
8563 {
8564 Elf_Internal_Rela rel;
8565
8566 BFD_ASSERT (h->dynindx != -1);
8567
8568 rel.r_offset = (h->root.u.def.section->output_section->vma
8569 + h->root.u.def.section->output_offset
8570 + h->root.u.def.value);
8571 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8572 rel.r_addend = 0;
8573 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8574 htab->srelbss->contents
8575 + (htab->srelbss->reloc_count
8576 * sizeof (Elf32_External_Rela)));
8577 ++htab->srelbss->reloc_count;
8578 }
8579
8580 /* If this is a mips16 symbol, force the value to be even. */
8581 if (sym->st_other == STO_MIPS16)
8582 sym->st_value &= ~1;
8583
8584 return TRUE;
8585 }
8586
8587 /* Install the PLT header for a VxWorks executable and finalize the
8588 contents of .rela.plt.unloaded. */
8589
8590 static void
8591 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8592 {
8593 Elf_Internal_Rela rela;
8594 bfd_byte *loc;
8595 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8596 static const bfd_vma *plt_entry;
8597 struct mips_elf_link_hash_table *htab;
8598
8599 htab = mips_elf_hash_table (info);
8600 plt_entry = mips_vxworks_exec_plt0_entry;
8601
8602 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8603 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8604 + htab->root.hgot->root.u.def.section->output_offset
8605 + htab->root.hgot->root.u.def.value);
8606
8607 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8608 got_value_low = got_value & 0xffff;
8609
8610 /* Calculate the address of the PLT header. */
8611 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8612
8613 /* Install the PLT header. */
8614 loc = htab->splt->contents;
8615 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8616 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8617 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8618 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8619 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8620 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8621
8622 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8623 loc = htab->srelplt2->contents;
8624 rela.r_offset = plt_address;
8625 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8626 rela.r_addend = 0;
8627 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8628 loc += sizeof (Elf32_External_Rela);
8629
8630 /* Output the relocation for the following addiu of
8631 %lo(_GLOBAL_OFFSET_TABLE_). */
8632 rela.r_offset += 4;
8633 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8634 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8635 loc += sizeof (Elf32_External_Rela);
8636
8637 /* Fix up the remaining relocations. They may have the wrong
8638 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8639 in which symbols were output. */
8640 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8641 {
8642 Elf_Internal_Rela rel;
8643
8644 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8645 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8646 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8647 loc += sizeof (Elf32_External_Rela);
8648
8649 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8650 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8651 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8652 loc += sizeof (Elf32_External_Rela);
8653
8654 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8655 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8656 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8657 loc += sizeof (Elf32_External_Rela);
8658 }
8659 }
8660
8661 /* Install the PLT header for a VxWorks shared library. */
8662
8663 static void
8664 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8665 {
8666 unsigned int i;
8667 struct mips_elf_link_hash_table *htab;
8668
8669 htab = mips_elf_hash_table (info);
8670
8671 /* We just need to copy the entry byte-by-byte. */
8672 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8673 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8674 htab->splt->contents + i * 4);
8675 }
8676
8677 /* Finish up the dynamic sections. */
8678
8679 bfd_boolean
8680 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8681 struct bfd_link_info *info)
8682 {
8683 bfd *dynobj;
8684 asection *sdyn;
8685 asection *sgot;
8686 struct mips_got_info *gg, *g;
8687 struct mips_elf_link_hash_table *htab;
8688
8689 htab = mips_elf_hash_table (info);
8690 dynobj = elf_hash_table (info)->dynobj;
8691
8692 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8693
8694 sgot = mips_elf_got_section (dynobj, FALSE);
8695 if (sgot == NULL)
8696 gg = g = NULL;
8697 else
8698 {
8699 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8700 gg = mips_elf_section_data (sgot)->u.got_info;
8701 BFD_ASSERT (gg != NULL);
8702 g = mips_elf_got_for_ibfd (gg, output_bfd);
8703 BFD_ASSERT (g != NULL);
8704 }
8705
8706 if (elf_hash_table (info)->dynamic_sections_created)
8707 {
8708 bfd_byte *b;
8709 int dyn_to_skip = 0, dyn_skipped = 0;
8710
8711 BFD_ASSERT (sdyn != NULL);
8712 BFD_ASSERT (g != NULL);
8713
8714 for (b = sdyn->contents;
8715 b < sdyn->contents + sdyn->size;
8716 b += MIPS_ELF_DYN_SIZE (dynobj))
8717 {
8718 Elf_Internal_Dyn dyn;
8719 const char *name;
8720 size_t elemsize;
8721 asection *s;
8722 bfd_boolean swap_out_p;
8723
8724 /* Read in the current dynamic entry. */
8725 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8726
8727 /* Assume that we're going to modify it and write it out. */
8728 swap_out_p = TRUE;
8729
8730 switch (dyn.d_tag)
8731 {
8732 case DT_RELENT:
8733 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8734 break;
8735
8736 case DT_RELAENT:
8737 BFD_ASSERT (htab->is_vxworks);
8738 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8739 break;
8740
8741 case DT_STRSZ:
8742 /* Rewrite DT_STRSZ. */
8743 dyn.d_un.d_val =
8744 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8745 break;
8746
8747 case DT_PLTGOT:
8748 name = ".got";
8749 if (htab->is_vxworks)
8750 {
8751 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8752 of the ".got" section in DYNOBJ. */
8753 s = bfd_get_section_by_name (dynobj, name);
8754 BFD_ASSERT (s != NULL);
8755 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8756 }
8757 else
8758 {
8759 s = bfd_get_section_by_name (output_bfd, name);
8760 BFD_ASSERT (s != NULL);
8761 dyn.d_un.d_ptr = s->vma;
8762 }
8763 break;
8764
8765 case DT_MIPS_RLD_VERSION:
8766 dyn.d_un.d_val = 1; /* XXX */
8767 break;
8768
8769 case DT_MIPS_FLAGS:
8770 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8771 break;
8772
8773 case DT_MIPS_TIME_STAMP:
8774 {
8775 time_t t;
8776 time (&t);
8777 dyn.d_un.d_val = t;
8778 }
8779 break;
8780
8781 case DT_MIPS_ICHECKSUM:
8782 /* XXX FIXME: */
8783 swap_out_p = FALSE;
8784 break;
8785
8786 case DT_MIPS_IVERSION:
8787 /* XXX FIXME: */
8788 swap_out_p = FALSE;
8789 break;
8790
8791 case DT_MIPS_BASE_ADDRESS:
8792 s = output_bfd->sections;
8793 BFD_ASSERT (s != NULL);
8794 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8795 break;
8796
8797 case DT_MIPS_LOCAL_GOTNO:
8798 dyn.d_un.d_val = g->local_gotno;
8799 break;
8800
8801 case DT_MIPS_UNREFEXTNO:
8802 /* The index into the dynamic symbol table which is the
8803 entry of the first external symbol that is not
8804 referenced within the same object. */
8805 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8806 break;
8807
8808 case DT_MIPS_GOTSYM:
8809 if (gg->global_gotsym)
8810 {
8811 dyn.d_un.d_val = gg->global_gotsym->dynindx;
8812 break;
8813 }
8814 /* In case if we don't have global got symbols we default
8815 to setting DT_MIPS_GOTSYM to the same value as
8816 DT_MIPS_SYMTABNO, so we just fall through. */
8817
8818 case DT_MIPS_SYMTABNO:
8819 name = ".dynsym";
8820 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8821 s = bfd_get_section_by_name (output_bfd, name);
8822 BFD_ASSERT (s != NULL);
8823
8824 dyn.d_un.d_val = s->size / elemsize;
8825 break;
8826
8827 case DT_MIPS_HIPAGENO:
8828 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
8829 break;
8830
8831 case DT_MIPS_RLD_MAP:
8832 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8833 break;
8834
8835 case DT_MIPS_OPTIONS:
8836 s = (bfd_get_section_by_name
8837 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8838 dyn.d_un.d_ptr = s->vma;
8839 break;
8840
8841 case DT_RELASZ:
8842 BFD_ASSERT (htab->is_vxworks);
8843 /* The count does not include the JUMP_SLOT relocations. */
8844 if (htab->srelplt)
8845 dyn.d_un.d_val -= htab->srelplt->size;
8846 break;
8847
8848 case DT_PLTREL:
8849 BFD_ASSERT (htab->is_vxworks);
8850 dyn.d_un.d_val = DT_RELA;
8851 break;
8852
8853 case DT_PLTRELSZ:
8854 BFD_ASSERT (htab->is_vxworks);
8855 dyn.d_un.d_val = htab->srelplt->size;
8856 break;
8857
8858 case DT_JMPREL:
8859 BFD_ASSERT (htab->is_vxworks);
8860 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8861 + htab->srelplt->output_offset);
8862 break;
8863
8864 case DT_TEXTREL:
8865 /* If we didn't need any text relocations after all, delete
8866 the dynamic tag. */
8867 if (!(info->flags & DF_TEXTREL))
8868 {
8869 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8870 swap_out_p = FALSE;
8871 }
8872 break;
8873
8874 case DT_FLAGS:
8875 /* If we didn't need any text relocations after all, clear
8876 DF_TEXTREL from DT_FLAGS. */
8877 if (!(info->flags & DF_TEXTREL))
8878 dyn.d_un.d_val &= ~DF_TEXTREL;
8879 else
8880 swap_out_p = FALSE;
8881 break;
8882
8883 default:
8884 swap_out_p = FALSE;
8885 break;
8886 }
8887
8888 if (swap_out_p || dyn_skipped)
8889 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8890 (dynobj, &dyn, b - dyn_skipped);
8891
8892 if (dyn_to_skip)
8893 {
8894 dyn_skipped += dyn_to_skip;
8895 dyn_to_skip = 0;
8896 }
8897 }
8898
8899 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8900 if (dyn_skipped > 0)
8901 memset (b - dyn_skipped, 0, dyn_skipped);
8902 }
8903
8904 if (sgot != NULL && sgot->size > 0)
8905 {
8906 if (htab->is_vxworks)
8907 {
8908 /* The first entry of the global offset table points to the
8909 ".dynamic" section. The second is initialized by the
8910 loader and contains the shared library identifier.
8911 The third is also initialized by the loader and points
8912 to the lazy resolution stub. */
8913 MIPS_ELF_PUT_WORD (output_bfd,
8914 sdyn->output_offset + sdyn->output_section->vma,
8915 sgot->contents);
8916 MIPS_ELF_PUT_WORD (output_bfd, 0,
8917 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8918 MIPS_ELF_PUT_WORD (output_bfd, 0,
8919 sgot->contents
8920 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8921 }
8922 else
8923 {
8924 /* The first entry of the global offset table will be filled at
8925 runtime. The second entry will be used by some runtime loaders.
8926 This isn't the case of IRIX rld. */
8927 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8928 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8929 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8930 }
8931
8932 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8933 = MIPS_ELF_GOT_SIZE (output_bfd);
8934 }
8935
8936 /* Generate dynamic relocations for the non-primary gots. */
8937 if (gg != NULL && gg->next)
8938 {
8939 Elf_Internal_Rela rel[3];
8940 bfd_vma addend = 0;
8941
8942 memset (rel, 0, sizeof (rel));
8943 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8944
8945 for (g = gg->next; g->next != gg; g = g->next)
8946 {
8947 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8948 + g->next->tls_gotno;
8949
8950 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
8951 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8952 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
8953 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8954
8955 if (! info->shared)
8956 continue;
8957
8958 while (index < g->assigned_gotno)
8959 {
8960 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8961 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8962 if (!(mips_elf_create_dynamic_relocation
8963 (output_bfd, info, rel, NULL,
8964 bfd_abs_section_ptr,
8965 0, &addend, sgot)))
8966 return FALSE;
8967 BFD_ASSERT (addend == 0);
8968 }
8969 }
8970 }
8971
8972 /* The generation of dynamic relocations for the non-primary gots
8973 adds more dynamic relocations. We cannot count them until
8974 here. */
8975
8976 if (elf_hash_table (info)->dynamic_sections_created)
8977 {
8978 bfd_byte *b;
8979 bfd_boolean swap_out_p;
8980
8981 BFD_ASSERT (sdyn != NULL);
8982
8983 for (b = sdyn->contents;
8984 b < sdyn->contents + sdyn->size;
8985 b += MIPS_ELF_DYN_SIZE (dynobj))
8986 {
8987 Elf_Internal_Dyn dyn;
8988 asection *s;
8989
8990 /* Read in the current dynamic entry. */
8991 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8992
8993 /* Assume that we're going to modify it and write it out. */
8994 swap_out_p = TRUE;
8995
8996 switch (dyn.d_tag)
8997 {
8998 case DT_RELSZ:
8999 /* Reduce DT_RELSZ to account for any relocations we
9000 decided not to make. This is for the n64 irix rld,
9001 which doesn't seem to apply any relocations if there
9002 are trailing null entries. */
9003 s = mips_elf_rel_dyn_section (info, FALSE);
9004 dyn.d_un.d_val = (s->reloc_count
9005 * (ABI_64_P (output_bfd)
9006 ? sizeof (Elf64_Mips_External_Rel)
9007 : sizeof (Elf32_External_Rel)));
9008 /* Adjust the section size too. Tools like the prelinker
9009 can reasonably expect the values to the same. */
9010 elf_section_data (s->output_section)->this_hdr.sh_size
9011 = dyn.d_un.d_val;
9012 break;
9013
9014 default:
9015 swap_out_p = FALSE;
9016 break;
9017 }
9018
9019 if (swap_out_p)
9020 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9021 (dynobj, &dyn, b);
9022 }
9023 }
9024
9025 {
9026 asection *s;
9027 Elf32_compact_rel cpt;
9028
9029 if (SGI_COMPAT (output_bfd))
9030 {
9031 /* Write .compact_rel section out. */
9032 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9033 if (s != NULL)
9034 {
9035 cpt.id1 = 1;
9036 cpt.num = s->reloc_count;
9037 cpt.id2 = 2;
9038 cpt.offset = (s->output_section->filepos
9039 + sizeof (Elf32_External_compact_rel));
9040 cpt.reserved0 = 0;
9041 cpt.reserved1 = 0;
9042 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9043 ((Elf32_External_compact_rel *)
9044 s->contents));
9045
9046 /* Clean up a dummy stub function entry in .text. */
9047 s = bfd_get_section_by_name (dynobj,
9048 MIPS_ELF_STUB_SECTION_NAME (dynobj));
9049 if (s != NULL)
9050 {
9051 file_ptr dummy_offset;
9052
9053 BFD_ASSERT (s->size >= htab->function_stub_size);
9054 dummy_offset = s->size - htab->function_stub_size;
9055 memset (s->contents + dummy_offset, 0,
9056 htab->function_stub_size);
9057 }
9058 }
9059 }
9060
9061 /* The psABI says that the dynamic relocations must be sorted in
9062 increasing order of r_symndx. The VxWorks EABI doesn't require
9063 this, and because the code below handles REL rather than RELA
9064 relocations, using it for VxWorks would be outright harmful. */
9065 if (!htab->is_vxworks)
9066 {
9067 s = mips_elf_rel_dyn_section (info, FALSE);
9068 if (s != NULL
9069 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9070 {
9071 reldyn_sorting_bfd = output_bfd;
9072
9073 if (ABI_64_P (output_bfd))
9074 qsort ((Elf64_External_Rel *) s->contents + 1,
9075 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9076 sort_dynamic_relocs_64);
9077 else
9078 qsort ((Elf32_External_Rel *) s->contents + 1,
9079 s->reloc_count - 1, sizeof (Elf32_External_Rel),
9080 sort_dynamic_relocs);
9081 }
9082 }
9083 }
9084
9085 if (htab->is_vxworks && htab->splt->size > 0)
9086 {
9087 if (info->shared)
9088 mips_vxworks_finish_shared_plt (output_bfd, info);
9089 else
9090 mips_vxworks_finish_exec_plt (output_bfd, info);
9091 }
9092 return TRUE;
9093 }
9094
9095
9096 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9097
9098 static void
9099 mips_set_isa_flags (bfd *abfd)
9100 {
9101 flagword val;
9102
9103 switch (bfd_get_mach (abfd))
9104 {
9105 default:
9106 case bfd_mach_mips3000:
9107 val = E_MIPS_ARCH_1;
9108 break;
9109
9110 case bfd_mach_mips3900:
9111 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9112 break;
9113
9114 case bfd_mach_mips6000:
9115 val = E_MIPS_ARCH_2;
9116 break;
9117
9118 case bfd_mach_mips4000:
9119 case bfd_mach_mips4300:
9120 case bfd_mach_mips4400:
9121 case bfd_mach_mips4600:
9122 val = E_MIPS_ARCH_3;
9123 break;
9124
9125 case bfd_mach_mips4010:
9126 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9127 break;
9128
9129 case bfd_mach_mips4100:
9130 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9131 break;
9132
9133 case bfd_mach_mips4111:
9134 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9135 break;
9136
9137 case bfd_mach_mips4120:
9138 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9139 break;
9140
9141 case bfd_mach_mips4650:
9142 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9143 break;
9144
9145 case bfd_mach_mips5400:
9146 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9147 break;
9148
9149 case bfd_mach_mips5500:
9150 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9151 break;
9152
9153 case bfd_mach_mips9000:
9154 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9155 break;
9156
9157 case bfd_mach_mips5000:
9158 case bfd_mach_mips7000:
9159 case bfd_mach_mips8000:
9160 case bfd_mach_mips10000:
9161 case bfd_mach_mips12000:
9162 val = E_MIPS_ARCH_4;
9163 break;
9164
9165 case bfd_mach_mips5:
9166 val = E_MIPS_ARCH_5;
9167 break;
9168
9169 case bfd_mach_mips_sb1:
9170 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9171 break;
9172
9173 case bfd_mach_mipsisa32:
9174 val = E_MIPS_ARCH_32;
9175 break;
9176
9177 case bfd_mach_mipsisa64:
9178 val = E_MIPS_ARCH_64;
9179 break;
9180
9181 case bfd_mach_mipsisa32r2:
9182 val = E_MIPS_ARCH_32R2;
9183 break;
9184
9185 case bfd_mach_mipsisa64r2:
9186 val = E_MIPS_ARCH_64R2;
9187 break;
9188 }
9189 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9190 elf_elfheader (abfd)->e_flags |= val;
9191
9192 }
9193
9194
9195 /* The final processing done just before writing out a MIPS ELF object
9196 file. This gets the MIPS architecture right based on the machine
9197 number. This is used by both the 32-bit and the 64-bit ABI. */
9198
9199 void
9200 _bfd_mips_elf_final_write_processing (bfd *abfd,
9201 bfd_boolean linker ATTRIBUTE_UNUSED)
9202 {
9203 unsigned int i;
9204 Elf_Internal_Shdr **hdrpp;
9205 const char *name;
9206 asection *sec;
9207
9208 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9209 is nonzero. This is for compatibility with old objects, which used
9210 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9211 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9212 mips_set_isa_flags (abfd);
9213
9214 /* Set the sh_info field for .gptab sections and other appropriate
9215 info for each special section. */
9216 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9217 i < elf_numsections (abfd);
9218 i++, hdrpp++)
9219 {
9220 switch ((*hdrpp)->sh_type)
9221 {
9222 case SHT_MIPS_MSYM:
9223 case SHT_MIPS_LIBLIST:
9224 sec = bfd_get_section_by_name (abfd, ".dynstr");
9225 if (sec != NULL)
9226 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9227 break;
9228
9229 case SHT_MIPS_GPTAB:
9230 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9231 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9232 BFD_ASSERT (name != NULL
9233 && CONST_STRNEQ (name, ".gptab."));
9234 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9235 BFD_ASSERT (sec != NULL);
9236 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9237 break;
9238
9239 case SHT_MIPS_CONTENT:
9240 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9241 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9242 BFD_ASSERT (name != NULL
9243 && CONST_STRNEQ (name, ".MIPS.content"));
9244 sec = bfd_get_section_by_name (abfd,
9245 name + sizeof ".MIPS.content" - 1);
9246 BFD_ASSERT (sec != NULL);
9247 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9248 break;
9249
9250 case SHT_MIPS_SYMBOL_LIB:
9251 sec = bfd_get_section_by_name (abfd, ".dynsym");
9252 if (sec != NULL)
9253 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9254 sec = bfd_get_section_by_name (abfd, ".liblist");
9255 if (sec != NULL)
9256 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9257 break;
9258
9259 case SHT_MIPS_EVENTS:
9260 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9261 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9262 BFD_ASSERT (name != NULL);
9263 if (CONST_STRNEQ (name, ".MIPS.events"))
9264 sec = bfd_get_section_by_name (abfd,
9265 name + sizeof ".MIPS.events" - 1);
9266 else
9267 {
9268 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
9269 sec = bfd_get_section_by_name (abfd,
9270 (name
9271 + sizeof ".MIPS.post_rel" - 1));
9272 }
9273 BFD_ASSERT (sec != NULL);
9274 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9275 break;
9276
9277 }
9278 }
9279 }
9280 \f
9281 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9282 segments. */
9283
9284 int
9285 _bfd_mips_elf_additional_program_headers (bfd *abfd,
9286 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9287 {
9288 asection *s;
9289 int ret = 0;
9290
9291 /* See if we need a PT_MIPS_REGINFO segment. */
9292 s = bfd_get_section_by_name (abfd, ".reginfo");
9293 if (s && (s->flags & SEC_LOAD))
9294 ++ret;
9295
9296 /* See if we need a PT_MIPS_OPTIONS segment. */
9297 if (IRIX_COMPAT (abfd) == ict_irix6
9298 && bfd_get_section_by_name (abfd,
9299 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9300 ++ret;
9301
9302 /* See if we need a PT_MIPS_RTPROC segment. */
9303 if (IRIX_COMPAT (abfd) == ict_irix5
9304 && bfd_get_section_by_name (abfd, ".dynamic")
9305 && bfd_get_section_by_name (abfd, ".mdebug"))
9306 ++ret;
9307
9308 /* Allocate a PT_NULL header in dynamic objects. See
9309 _bfd_mips_elf_modify_segment_map for details. */
9310 if (!SGI_COMPAT (abfd)
9311 && bfd_get_section_by_name (abfd, ".dynamic"))
9312 ++ret;
9313
9314 return ret;
9315 }
9316
9317 /* Modify the segment map for an IRIX5 executable. */
9318
9319 bfd_boolean
9320 _bfd_mips_elf_modify_segment_map (bfd *abfd,
9321 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9322 {
9323 asection *s;
9324 struct elf_segment_map *m, **pm;
9325 bfd_size_type amt;
9326
9327 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9328 segment. */
9329 s = bfd_get_section_by_name (abfd, ".reginfo");
9330 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9331 {
9332 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9333 if (m->p_type == PT_MIPS_REGINFO)
9334 break;
9335 if (m == NULL)
9336 {
9337 amt = sizeof *m;
9338 m = bfd_zalloc (abfd, amt);
9339 if (m == NULL)
9340 return FALSE;
9341
9342 m->p_type = PT_MIPS_REGINFO;
9343 m->count = 1;
9344 m->sections[0] = s;
9345
9346 /* We want to put it after the PHDR and INTERP segments. */
9347 pm = &elf_tdata (abfd)->segment_map;
9348 while (*pm != NULL
9349 && ((*pm)->p_type == PT_PHDR
9350 || (*pm)->p_type == PT_INTERP))
9351 pm = &(*pm)->next;
9352
9353 m->next = *pm;
9354 *pm = m;
9355 }
9356 }
9357
9358 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9359 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9360 PT_MIPS_OPTIONS segment immediately following the program header
9361 table. */
9362 if (NEWABI_P (abfd)
9363 /* On non-IRIX6 new abi, we'll have already created a segment
9364 for this section, so don't create another. I'm not sure this
9365 is not also the case for IRIX 6, but I can't test it right
9366 now. */
9367 && IRIX_COMPAT (abfd) == ict_irix6)
9368 {
9369 for (s = abfd->sections; s; s = s->next)
9370 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9371 break;
9372
9373 if (s)
9374 {
9375 struct elf_segment_map *options_segment;
9376
9377 pm = &elf_tdata (abfd)->segment_map;
9378 while (*pm != NULL
9379 && ((*pm)->p_type == PT_PHDR
9380 || (*pm)->p_type == PT_INTERP))
9381 pm = &(*pm)->next;
9382
9383 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9384 {
9385 amt = sizeof (struct elf_segment_map);
9386 options_segment = bfd_zalloc (abfd, amt);
9387 options_segment->next = *pm;
9388 options_segment->p_type = PT_MIPS_OPTIONS;
9389 options_segment->p_flags = PF_R;
9390 options_segment->p_flags_valid = TRUE;
9391 options_segment->count = 1;
9392 options_segment->sections[0] = s;
9393 *pm = options_segment;
9394 }
9395 }
9396 }
9397 else
9398 {
9399 if (IRIX_COMPAT (abfd) == ict_irix5)
9400 {
9401 /* If there are .dynamic and .mdebug sections, we make a room
9402 for the RTPROC header. FIXME: Rewrite without section names. */
9403 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9404 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9405 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9406 {
9407 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9408 if (m->p_type == PT_MIPS_RTPROC)
9409 break;
9410 if (m == NULL)
9411 {
9412 amt = sizeof *m;
9413 m = bfd_zalloc (abfd, amt);
9414 if (m == NULL)
9415 return FALSE;
9416
9417 m->p_type = PT_MIPS_RTPROC;
9418
9419 s = bfd_get_section_by_name (abfd, ".rtproc");
9420 if (s == NULL)
9421 {
9422 m->count = 0;
9423 m->p_flags = 0;
9424 m->p_flags_valid = 1;
9425 }
9426 else
9427 {
9428 m->count = 1;
9429 m->sections[0] = s;
9430 }
9431
9432 /* We want to put it after the DYNAMIC segment. */
9433 pm = &elf_tdata (abfd)->segment_map;
9434 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9435 pm = &(*pm)->next;
9436 if (*pm != NULL)
9437 pm = &(*pm)->next;
9438
9439 m->next = *pm;
9440 *pm = m;
9441 }
9442 }
9443 }
9444 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9445 .dynstr, .dynsym, and .hash sections, and everything in
9446 between. */
9447 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9448 pm = &(*pm)->next)
9449 if ((*pm)->p_type == PT_DYNAMIC)
9450 break;
9451 m = *pm;
9452 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9453 {
9454 /* For a normal mips executable the permissions for the PT_DYNAMIC
9455 segment are read, write and execute. We do that here since
9456 the code in elf.c sets only the read permission. This matters
9457 sometimes for the dynamic linker. */
9458 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9459 {
9460 m->p_flags = PF_R | PF_W | PF_X;
9461 m->p_flags_valid = 1;
9462 }
9463 }
9464 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
9465 glibc's dynamic linker has traditionally derived the number of
9466 tags from the p_filesz field, and sometimes allocates stack
9467 arrays of that size. An overly-big PT_DYNAMIC segment can
9468 be actively harmful in such cases. Making PT_DYNAMIC contain
9469 other sections can also make life hard for the prelinker,
9470 which might move one of the other sections to a different
9471 PT_LOAD segment. */
9472 if (SGI_COMPAT (abfd)
9473 && m != NULL
9474 && m->count == 1
9475 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9476 {
9477 static const char *sec_names[] =
9478 {
9479 ".dynamic", ".dynstr", ".dynsym", ".hash"
9480 };
9481 bfd_vma low, high;
9482 unsigned int i, c;
9483 struct elf_segment_map *n;
9484
9485 low = ~(bfd_vma) 0;
9486 high = 0;
9487 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9488 {
9489 s = bfd_get_section_by_name (abfd, sec_names[i]);
9490 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9491 {
9492 bfd_size_type sz;
9493
9494 if (low > s->vma)
9495 low = s->vma;
9496 sz = s->size;
9497 if (high < s->vma + sz)
9498 high = s->vma + sz;
9499 }
9500 }
9501
9502 c = 0;
9503 for (s = abfd->sections; s != NULL; s = s->next)
9504 if ((s->flags & SEC_LOAD) != 0
9505 && s->vma >= low
9506 && s->vma + s->size <= high)
9507 ++c;
9508
9509 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9510 n = bfd_zalloc (abfd, amt);
9511 if (n == NULL)
9512 return FALSE;
9513 *n = *m;
9514 n->count = c;
9515
9516 i = 0;
9517 for (s = abfd->sections; s != NULL; s = s->next)
9518 {
9519 if ((s->flags & SEC_LOAD) != 0
9520 && s->vma >= low
9521 && s->vma + s->size <= high)
9522 {
9523 n->sections[i] = s;
9524 ++i;
9525 }
9526 }
9527
9528 *pm = n;
9529 }
9530 }
9531
9532 /* Allocate a spare program header in dynamic objects so that tools
9533 like the prelinker can add an extra PT_LOAD entry.
9534
9535 If the prelinker needs to make room for a new PT_LOAD entry, its
9536 standard procedure is to move the first (read-only) sections into
9537 the new (writable) segment. However, the MIPS ABI requires
9538 .dynamic to be in a read-only segment, and the section will often
9539 start within sizeof (ElfNN_Phdr) bytes of the last program header.
9540
9541 Although the prelinker could in principle move .dynamic to a
9542 writable segment, it seems better to allocate a spare program
9543 header instead, and avoid the need to move any sections.
9544 There is a long tradition of allocating spare dynamic tags,
9545 so allocating a spare program header seems like a natural
9546 extension. */
9547 if (!SGI_COMPAT (abfd)
9548 && bfd_get_section_by_name (abfd, ".dynamic"))
9549 {
9550 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
9551 if ((*pm)->p_type == PT_NULL)
9552 break;
9553 if (*pm == NULL)
9554 {
9555 m = bfd_zalloc (abfd, sizeof (*m));
9556 if (m == NULL)
9557 return FALSE;
9558
9559 m->p_type = PT_NULL;
9560 *pm = m;
9561 }
9562 }
9563
9564 return TRUE;
9565 }
9566 \f
9567 /* Return the section that should be marked against GC for a given
9568 relocation. */
9569
9570 asection *
9571 _bfd_mips_elf_gc_mark_hook (asection *sec,
9572 struct bfd_link_info *info,
9573 Elf_Internal_Rela *rel,
9574 struct elf_link_hash_entry *h,
9575 Elf_Internal_Sym *sym)
9576 {
9577 /* ??? Do mips16 stub sections need to be handled special? */
9578
9579 if (h != NULL)
9580 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9581 {
9582 case R_MIPS_GNU_VTINHERIT:
9583 case R_MIPS_GNU_VTENTRY:
9584 return NULL;
9585 }
9586
9587 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
9588 }
9589
9590 /* Update the got entry reference counts for the section being removed. */
9591
9592 bfd_boolean
9593 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9594 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9595 asection *sec ATTRIBUTE_UNUSED,
9596 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
9597 {
9598 #if 0
9599 Elf_Internal_Shdr *symtab_hdr;
9600 struct elf_link_hash_entry **sym_hashes;
9601 bfd_signed_vma *local_got_refcounts;
9602 const Elf_Internal_Rela *rel, *relend;
9603 unsigned long r_symndx;
9604 struct elf_link_hash_entry *h;
9605
9606 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9607 sym_hashes = elf_sym_hashes (abfd);
9608 local_got_refcounts = elf_local_got_refcounts (abfd);
9609
9610 relend = relocs + sec->reloc_count;
9611 for (rel = relocs; rel < relend; rel++)
9612 switch (ELF_R_TYPE (abfd, rel->r_info))
9613 {
9614 case R_MIPS_GOT16:
9615 case R_MIPS_CALL16:
9616 case R_MIPS_CALL_HI16:
9617 case R_MIPS_CALL_LO16:
9618 case R_MIPS_GOT_HI16:
9619 case R_MIPS_GOT_LO16:
9620 case R_MIPS_GOT_DISP:
9621 case R_MIPS_GOT_PAGE:
9622 case R_MIPS_GOT_OFST:
9623 /* ??? It would seem that the existing MIPS code does no sort
9624 of reference counting or whatnot on its GOT and PLT entries,
9625 so it is not possible to garbage collect them at this time. */
9626 break;
9627
9628 default:
9629 break;
9630 }
9631 #endif
9632
9633 return TRUE;
9634 }
9635 \f
9636 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9637 hiding the old indirect symbol. Process additional relocation
9638 information. Also called for weakdefs, in which case we just let
9639 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9640
9641 void
9642 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9643 struct elf_link_hash_entry *dir,
9644 struct elf_link_hash_entry *ind)
9645 {
9646 struct mips_elf_link_hash_entry *dirmips, *indmips;
9647
9648 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
9649
9650 if (ind->root.type != bfd_link_hash_indirect)
9651 return;
9652
9653 dirmips = (struct mips_elf_link_hash_entry *) dir;
9654 indmips = (struct mips_elf_link_hash_entry *) ind;
9655 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9656 if (indmips->readonly_reloc)
9657 dirmips->readonly_reloc = TRUE;
9658 if (indmips->no_fn_stub)
9659 dirmips->no_fn_stub = TRUE;
9660
9661 if (dirmips->tls_type == 0)
9662 dirmips->tls_type = indmips->tls_type;
9663 }
9664
9665 void
9666 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9667 struct elf_link_hash_entry *entry,
9668 bfd_boolean force_local)
9669 {
9670 bfd *dynobj;
9671 asection *got;
9672 struct mips_got_info *g;
9673 struct mips_elf_link_hash_entry *h;
9674
9675 h = (struct mips_elf_link_hash_entry *) entry;
9676 if (h->forced_local)
9677 return;
9678 h->forced_local = force_local;
9679
9680 dynobj = elf_hash_table (info)->dynobj;
9681 if (dynobj != NULL && force_local && h->root.type != STT_TLS
9682 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
9683 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
9684 {
9685 if (g->next)
9686 {
9687 struct mips_got_entry e;
9688 struct mips_got_info *gg = g;
9689
9690 /* Since we're turning what used to be a global symbol into a
9691 local one, bump up the number of local entries of each GOT
9692 that had an entry for it. This will automatically decrease
9693 the number of global entries, since global_gotno is actually
9694 the upper limit of global entries. */
9695 e.abfd = dynobj;
9696 e.symndx = -1;
9697 e.d.h = h;
9698 e.tls_type = 0;
9699
9700 for (g = g->next; g != gg; g = g->next)
9701 if (htab_find (g->got_entries, &e))
9702 {
9703 BFD_ASSERT (g->global_gotno > 0);
9704 g->local_gotno++;
9705 g->global_gotno--;
9706 }
9707
9708 /* If this was a global symbol forced into the primary GOT, we
9709 no longer need an entry for it. We can't release the entry
9710 at this point, but we must at least stop counting it as one
9711 of the symbols that required a forced got entry. */
9712 if (h->root.got.offset == 2)
9713 {
9714 BFD_ASSERT (gg->assigned_gotno > 0);
9715 gg->assigned_gotno--;
9716 }
9717 }
9718 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9719 /* If we haven't got through GOT allocation yet, just bump up the
9720 number of local entries, as this symbol won't be counted as
9721 global. */
9722 g->local_gotno++;
9723 else if (h->root.got.offset == 1)
9724 {
9725 /* If we're past non-multi-GOT allocation and this symbol had
9726 been marked for a global got entry, give it a local entry
9727 instead. */
9728 BFD_ASSERT (g->global_gotno > 0);
9729 g->local_gotno++;
9730 g->global_gotno--;
9731 }
9732 }
9733
9734 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
9735 }
9736 \f
9737 #define PDR_SIZE 32
9738
9739 bfd_boolean
9740 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9741 struct bfd_link_info *info)
9742 {
9743 asection *o;
9744 bfd_boolean ret = FALSE;
9745 unsigned char *tdata;
9746 size_t i, skip;
9747
9748 o = bfd_get_section_by_name (abfd, ".pdr");
9749 if (! o)
9750 return FALSE;
9751 if (o->size == 0)
9752 return FALSE;
9753 if (o->size % PDR_SIZE != 0)
9754 return FALSE;
9755 if (o->output_section != NULL
9756 && bfd_is_abs_section (o->output_section))
9757 return FALSE;
9758
9759 tdata = bfd_zmalloc (o->size / PDR_SIZE);
9760 if (! tdata)
9761 return FALSE;
9762
9763 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
9764 info->keep_memory);
9765 if (!cookie->rels)
9766 {
9767 free (tdata);
9768 return FALSE;
9769 }
9770
9771 cookie->rel = cookie->rels;
9772 cookie->relend = cookie->rels + o->reloc_count;
9773
9774 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
9775 {
9776 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
9777 {
9778 tdata[i] = 1;
9779 skip ++;
9780 }
9781 }
9782
9783 if (skip != 0)
9784 {
9785 mips_elf_section_data (o)->u.tdata = tdata;
9786 o->size -= skip * PDR_SIZE;
9787 ret = TRUE;
9788 }
9789 else
9790 free (tdata);
9791
9792 if (! info->keep_memory)
9793 free (cookie->rels);
9794
9795 return ret;
9796 }
9797
9798 bfd_boolean
9799 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
9800 {
9801 if (strcmp (sec->name, ".pdr") == 0)
9802 return TRUE;
9803 return FALSE;
9804 }
9805
9806 bfd_boolean
9807 _bfd_mips_elf_write_section (bfd *output_bfd,
9808 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
9809 asection *sec, bfd_byte *contents)
9810 {
9811 bfd_byte *to, *from, *end;
9812 int i;
9813
9814 if (strcmp (sec->name, ".pdr") != 0)
9815 return FALSE;
9816
9817 if (mips_elf_section_data (sec)->u.tdata == NULL)
9818 return FALSE;
9819
9820 to = contents;
9821 end = contents + sec->size;
9822 for (from = contents, i = 0;
9823 from < end;
9824 from += PDR_SIZE, i++)
9825 {
9826 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
9827 continue;
9828 if (to != from)
9829 memcpy (to, from, PDR_SIZE);
9830 to += PDR_SIZE;
9831 }
9832 bfd_set_section_contents (output_bfd, sec->output_section, contents,
9833 sec->output_offset, sec->size);
9834 return TRUE;
9835 }
9836 \f
9837 /* MIPS ELF uses a special find_nearest_line routine in order the
9838 handle the ECOFF debugging information. */
9839
9840 struct mips_elf_find_line
9841 {
9842 struct ecoff_debug_info d;
9843 struct ecoff_find_line i;
9844 };
9845
9846 bfd_boolean
9847 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9848 asymbol **symbols, bfd_vma offset,
9849 const char **filename_ptr,
9850 const char **functionname_ptr,
9851 unsigned int *line_ptr)
9852 {
9853 asection *msec;
9854
9855 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9856 filename_ptr, functionname_ptr,
9857 line_ptr))
9858 return TRUE;
9859
9860 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9861 filename_ptr, functionname_ptr,
9862 line_ptr, ABI_64_P (abfd) ? 8 : 0,
9863 &elf_tdata (abfd)->dwarf2_find_line_info))
9864 return TRUE;
9865
9866 msec = bfd_get_section_by_name (abfd, ".mdebug");
9867 if (msec != NULL)
9868 {
9869 flagword origflags;
9870 struct mips_elf_find_line *fi;
9871 const struct ecoff_debug_swap * const swap =
9872 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9873
9874 /* If we are called during a link, mips_elf_final_link may have
9875 cleared the SEC_HAS_CONTENTS field. We force it back on here
9876 if appropriate (which it normally will be). */
9877 origflags = msec->flags;
9878 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9879 msec->flags |= SEC_HAS_CONTENTS;
9880
9881 fi = elf_tdata (abfd)->find_line_info;
9882 if (fi == NULL)
9883 {
9884 bfd_size_type external_fdr_size;
9885 char *fraw_src;
9886 char *fraw_end;
9887 struct fdr *fdr_ptr;
9888 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9889
9890 fi = bfd_zalloc (abfd, amt);
9891 if (fi == NULL)
9892 {
9893 msec->flags = origflags;
9894 return FALSE;
9895 }
9896
9897 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9898 {
9899 msec->flags = origflags;
9900 return FALSE;
9901 }
9902
9903 /* Swap in the FDR information. */
9904 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9905 fi->d.fdr = bfd_alloc (abfd, amt);
9906 if (fi->d.fdr == NULL)
9907 {
9908 msec->flags = origflags;
9909 return FALSE;
9910 }
9911 external_fdr_size = swap->external_fdr_size;
9912 fdr_ptr = fi->d.fdr;
9913 fraw_src = (char *) fi->d.external_fdr;
9914 fraw_end = (fraw_src
9915 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9916 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9917 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
9918
9919 elf_tdata (abfd)->find_line_info = fi;
9920
9921 /* Note that we don't bother to ever free this information.
9922 find_nearest_line is either called all the time, as in
9923 objdump -l, so the information should be saved, or it is
9924 rarely called, as in ld error messages, so the memory
9925 wasted is unimportant. Still, it would probably be a
9926 good idea for free_cached_info to throw it away. */
9927 }
9928
9929 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9930 &fi->i, filename_ptr, functionname_ptr,
9931 line_ptr))
9932 {
9933 msec->flags = origflags;
9934 return TRUE;
9935 }
9936
9937 msec->flags = origflags;
9938 }
9939
9940 /* Fall back on the generic ELF find_nearest_line routine. */
9941
9942 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9943 filename_ptr, functionname_ptr,
9944 line_ptr);
9945 }
9946
9947 bfd_boolean
9948 _bfd_mips_elf_find_inliner_info (bfd *abfd,
9949 const char **filename_ptr,
9950 const char **functionname_ptr,
9951 unsigned int *line_ptr)
9952 {
9953 bfd_boolean found;
9954 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9955 functionname_ptr, line_ptr,
9956 & elf_tdata (abfd)->dwarf2_find_line_info);
9957 return found;
9958 }
9959
9960 \f
9961 /* When are writing out the .options or .MIPS.options section,
9962 remember the bytes we are writing out, so that we can install the
9963 GP value in the section_processing routine. */
9964
9965 bfd_boolean
9966 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9967 const void *location,
9968 file_ptr offset, bfd_size_type count)
9969 {
9970 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
9971 {
9972 bfd_byte *c;
9973
9974 if (elf_section_data (section) == NULL)
9975 {
9976 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9977 section->used_by_bfd = bfd_zalloc (abfd, amt);
9978 if (elf_section_data (section) == NULL)
9979 return FALSE;
9980 }
9981 c = mips_elf_section_data (section)->u.tdata;
9982 if (c == NULL)
9983 {
9984 c = bfd_zalloc (abfd, section->size);
9985 if (c == NULL)
9986 return FALSE;
9987 mips_elf_section_data (section)->u.tdata = c;
9988 }
9989
9990 memcpy (c + offset, location, count);
9991 }
9992
9993 return _bfd_elf_set_section_contents (abfd, section, location, offset,
9994 count);
9995 }
9996
9997 /* This is almost identical to bfd_generic_get_... except that some
9998 MIPS relocations need to be handled specially. Sigh. */
9999
10000 bfd_byte *
10001 _bfd_elf_mips_get_relocated_section_contents
10002 (bfd *abfd,
10003 struct bfd_link_info *link_info,
10004 struct bfd_link_order *link_order,
10005 bfd_byte *data,
10006 bfd_boolean relocatable,
10007 asymbol **symbols)
10008 {
10009 /* Get enough memory to hold the stuff */
10010 bfd *input_bfd = link_order->u.indirect.section->owner;
10011 asection *input_section = link_order->u.indirect.section;
10012 bfd_size_type sz;
10013
10014 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
10015 arelent **reloc_vector = NULL;
10016 long reloc_count;
10017
10018 if (reloc_size < 0)
10019 goto error_return;
10020
10021 reloc_vector = bfd_malloc (reloc_size);
10022 if (reloc_vector == NULL && reloc_size != 0)
10023 goto error_return;
10024
10025 /* read in the section */
10026 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
10027 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
10028 goto error_return;
10029
10030 reloc_count = bfd_canonicalize_reloc (input_bfd,
10031 input_section,
10032 reloc_vector,
10033 symbols);
10034 if (reloc_count < 0)
10035 goto error_return;
10036
10037 if (reloc_count > 0)
10038 {
10039 arelent **parent;
10040 /* for mips */
10041 int gp_found;
10042 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
10043
10044 {
10045 struct bfd_hash_entry *h;
10046 struct bfd_link_hash_entry *lh;
10047 /* Skip all this stuff if we aren't mixing formats. */
10048 if (abfd && input_bfd
10049 && abfd->xvec == input_bfd->xvec)
10050 lh = 0;
10051 else
10052 {
10053 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
10054 lh = (struct bfd_link_hash_entry *) h;
10055 }
10056 lookup:
10057 if (lh)
10058 {
10059 switch (lh->type)
10060 {
10061 case bfd_link_hash_undefined:
10062 case bfd_link_hash_undefweak:
10063 case bfd_link_hash_common:
10064 gp_found = 0;
10065 break;
10066 case bfd_link_hash_defined:
10067 case bfd_link_hash_defweak:
10068 gp_found = 1;
10069 gp = lh->u.def.value;
10070 break;
10071 case bfd_link_hash_indirect:
10072 case bfd_link_hash_warning:
10073 lh = lh->u.i.link;
10074 /* @@FIXME ignoring warning for now */
10075 goto lookup;
10076 case bfd_link_hash_new:
10077 default:
10078 abort ();
10079 }
10080 }
10081 else
10082 gp_found = 0;
10083 }
10084 /* end mips */
10085 for (parent = reloc_vector; *parent != NULL; parent++)
10086 {
10087 char *error_message = NULL;
10088 bfd_reloc_status_type r;
10089
10090 /* Specific to MIPS: Deal with relocation types that require
10091 knowing the gp of the output bfd. */
10092 asymbol *sym = *(*parent)->sym_ptr_ptr;
10093
10094 /* If we've managed to find the gp and have a special
10095 function for the relocation then go ahead, else default
10096 to the generic handling. */
10097 if (gp_found
10098 && (*parent)->howto->special_function
10099 == _bfd_mips_elf32_gprel16_reloc)
10100 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10101 input_section, relocatable,
10102 data, gp);
10103 else
10104 r = bfd_perform_relocation (input_bfd, *parent, data,
10105 input_section,
10106 relocatable ? abfd : NULL,
10107 &error_message);
10108
10109 if (relocatable)
10110 {
10111 asection *os = input_section->output_section;
10112
10113 /* A partial link, so keep the relocs */
10114 os->orelocation[os->reloc_count] = *parent;
10115 os->reloc_count++;
10116 }
10117
10118 if (r != bfd_reloc_ok)
10119 {
10120 switch (r)
10121 {
10122 case bfd_reloc_undefined:
10123 if (!((*link_info->callbacks->undefined_symbol)
10124 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10125 input_bfd, input_section, (*parent)->address, TRUE)))
10126 goto error_return;
10127 break;
10128 case bfd_reloc_dangerous:
10129 BFD_ASSERT (error_message != NULL);
10130 if (!((*link_info->callbacks->reloc_dangerous)
10131 (link_info, error_message, input_bfd, input_section,
10132 (*parent)->address)))
10133 goto error_return;
10134 break;
10135 case bfd_reloc_overflow:
10136 if (!((*link_info->callbacks->reloc_overflow)
10137 (link_info, NULL,
10138 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10139 (*parent)->howto->name, (*parent)->addend,
10140 input_bfd, input_section, (*parent)->address)))
10141 goto error_return;
10142 break;
10143 case bfd_reloc_outofrange:
10144 default:
10145 abort ();
10146 break;
10147 }
10148
10149 }
10150 }
10151 }
10152 if (reloc_vector != NULL)
10153 free (reloc_vector);
10154 return data;
10155
10156 error_return:
10157 if (reloc_vector != NULL)
10158 free (reloc_vector);
10159 return NULL;
10160 }
10161 \f
10162 /* Create a MIPS ELF linker hash table. */
10163
10164 struct bfd_link_hash_table *
10165 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
10166 {
10167 struct mips_elf_link_hash_table *ret;
10168 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10169
10170 ret = bfd_malloc (amt);
10171 if (ret == NULL)
10172 return NULL;
10173
10174 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10175 mips_elf_link_hash_newfunc,
10176 sizeof (struct mips_elf_link_hash_entry)))
10177 {
10178 free (ret);
10179 return NULL;
10180 }
10181
10182 #if 0
10183 /* We no longer use this. */
10184 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10185 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10186 #endif
10187 ret->procedure_count = 0;
10188 ret->compact_rel_size = 0;
10189 ret->use_rld_obj_head = FALSE;
10190 ret->rld_value = 0;
10191 ret->mips16_stubs_seen = FALSE;
10192 ret->is_vxworks = FALSE;
10193 ret->small_data_overflow_reported = FALSE;
10194 ret->srelbss = NULL;
10195 ret->sdynbss = NULL;
10196 ret->srelplt = NULL;
10197 ret->srelplt2 = NULL;
10198 ret->sgotplt = NULL;
10199 ret->splt = NULL;
10200 ret->plt_header_size = 0;
10201 ret->plt_entry_size = 0;
10202 ret->function_stub_size = 0;
10203
10204 return &ret->root.root;
10205 }
10206
10207 /* Likewise, but indicate that the target is VxWorks. */
10208
10209 struct bfd_link_hash_table *
10210 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10211 {
10212 struct bfd_link_hash_table *ret;
10213
10214 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10215 if (ret)
10216 {
10217 struct mips_elf_link_hash_table *htab;
10218
10219 htab = (struct mips_elf_link_hash_table *) ret;
10220 htab->is_vxworks = 1;
10221 }
10222 return ret;
10223 }
10224 \f
10225 /* We need to use a special link routine to handle the .reginfo and
10226 the .mdebug sections. We need to merge all instances of these
10227 sections together, not write them all out sequentially. */
10228
10229 bfd_boolean
10230 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10231 {
10232 asection *o;
10233 struct bfd_link_order *p;
10234 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10235 asection *rtproc_sec;
10236 Elf32_RegInfo reginfo;
10237 struct ecoff_debug_info debug;
10238 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10239 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
10240 HDRR *symhdr = &debug.symbolic_header;
10241 void *mdebug_handle = NULL;
10242 asection *s;
10243 EXTR esym;
10244 unsigned int i;
10245 bfd_size_type amt;
10246 struct mips_elf_link_hash_table *htab;
10247
10248 static const char * const secname[] =
10249 {
10250 ".text", ".init", ".fini", ".data",
10251 ".rodata", ".sdata", ".sbss", ".bss"
10252 };
10253 static const int sc[] =
10254 {
10255 scText, scInit, scFini, scData,
10256 scRData, scSData, scSBss, scBss
10257 };
10258
10259 /* We'd carefully arranged the dynamic symbol indices, and then the
10260 generic size_dynamic_sections renumbered them out from under us.
10261 Rather than trying somehow to prevent the renumbering, just do
10262 the sort again. */
10263 htab = mips_elf_hash_table (info);
10264 if (elf_hash_table (info)->dynamic_sections_created)
10265 {
10266 bfd *dynobj;
10267 asection *got;
10268 struct mips_got_info *g;
10269 bfd_size_type dynsecsymcount;
10270
10271 /* When we resort, we must tell mips_elf_sort_hash_table what
10272 the lowest index it may use is. That's the number of section
10273 symbols we're going to add. The generic ELF linker only
10274 adds these symbols when building a shared object. Note that
10275 we count the sections after (possibly) removing the .options
10276 section above. */
10277
10278 dynsecsymcount = count_section_dynsyms (abfd, info);
10279 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
10280 return FALSE;
10281
10282 /* Make sure we didn't grow the global .got region. */
10283 dynobj = elf_hash_table (info)->dynobj;
10284 got = mips_elf_got_section (dynobj, FALSE);
10285 g = mips_elf_section_data (got)->u.got_info;
10286
10287 if (g->global_gotsym != NULL)
10288 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10289 - g->global_gotsym->dynindx)
10290 <= g->global_gotno);
10291 }
10292
10293 /* Get a value for the GP register. */
10294 if (elf_gp (abfd) == 0)
10295 {
10296 struct bfd_link_hash_entry *h;
10297
10298 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
10299 if (h != NULL && h->type == bfd_link_hash_defined)
10300 elf_gp (abfd) = (h->u.def.value
10301 + h->u.def.section->output_section->vma
10302 + h->u.def.section->output_offset);
10303 else if (htab->is_vxworks
10304 && (h = bfd_link_hash_lookup (info->hash,
10305 "_GLOBAL_OFFSET_TABLE_",
10306 FALSE, FALSE, TRUE))
10307 && h->type == bfd_link_hash_defined)
10308 elf_gp (abfd) = (h->u.def.section->output_section->vma
10309 + h->u.def.section->output_offset
10310 + h->u.def.value);
10311 else if (info->relocatable)
10312 {
10313 bfd_vma lo = MINUS_ONE;
10314
10315 /* Find the GP-relative section with the lowest offset. */
10316 for (o = abfd->sections; o != NULL; o = o->next)
10317 if (o->vma < lo
10318 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10319 lo = o->vma;
10320
10321 /* And calculate GP relative to that. */
10322 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
10323 }
10324 else
10325 {
10326 /* If the relocate_section function needs to do a reloc
10327 involving the GP value, it should make a reloc_dangerous
10328 callback to warn that GP is not defined. */
10329 }
10330 }
10331
10332 /* Go through the sections and collect the .reginfo and .mdebug
10333 information. */
10334 reginfo_sec = NULL;
10335 mdebug_sec = NULL;
10336 gptab_data_sec = NULL;
10337 gptab_bss_sec = NULL;
10338 for (o = abfd->sections; o != NULL; o = o->next)
10339 {
10340 if (strcmp (o->name, ".reginfo") == 0)
10341 {
10342 memset (&reginfo, 0, sizeof reginfo);
10343
10344 /* We have found the .reginfo section in the output file.
10345 Look through all the link_orders comprising it and merge
10346 the information together. */
10347 for (p = o->map_head.link_order; p != NULL; p = p->next)
10348 {
10349 asection *input_section;
10350 bfd *input_bfd;
10351 Elf32_External_RegInfo ext;
10352 Elf32_RegInfo sub;
10353
10354 if (p->type != bfd_indirect_link_order)
10355 {
10356 if (p->type == bfd_data_link_order)
10357 continue;
10358 abort ();
10359 }
10360
10361 input_section = p->u.indirect.section;
10362 input_bfd = input_section->owner;
10363
10364 if (! bfd_get_section_contents (input_bfd, input_section,
10365 &ext, 0, sizeof ext))
10366 return FALSE;
10367
10368 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10369
10370 reginfo.ri_gprmask |= sub.ri_gprmask;
10371 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10372 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10373 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10374 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10375
10376 /* ri_gp_value is set by the function
10377 mips_elf32_section_processing when the section is
10378 finally written out. */
10379
10380 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10381 elf_link_input_bfd ignores this section. */
10382 input_section->flags &= ~SEC_HAS_CONTENTS;
10383 }
10384
10385 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10386 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
10387
10388 /* Skip this section later on (I don't think this currently
10389 matters, but someday it might). */
10390 o->map_head.link_order = NULL;
10391
10392 reginfo_sec = o;
10393 }
10394
10395 if (strcmp (o->name, ".mdebug") == 0)
10396 {
10397 struct extsym_info einfo;
10398 bfd_vma last;
10399
10400 /* We have found the .mdebug section in the output file.
10401 Look through all the link_orders comprising it and merge
10402 the information together. */
10403 symhdr->magic = swap->sym_magic;
10404 /* FIXME: What should the version stamp be? */
10405 symhdr->vstamp = 0;
10406 symhdr->ilineMax = 0;
10407 symhdr->cbLine = 0;
10408 symhdr->idnMax = 0;
10409 symhdr->ipdMax = 0;
10410 symhdr->isymMax = 0;
10411 symhdr->ioptMax = 0;
10412 symhdr->iauxMax = 0;
10413 symhdr->issMax = 0;
10414 symhdr->issExtMax = 0;
10415 symhdr->ifdMax = 0;
10416 symhdr->crfd = 0;
10417 symhdr->iextMax = 0;
10418
10419 /* We accumulate the debugging information itself in the
10420 debug_info structure. */
10421 debug.line = NULL;
10422 debug.external_dnr = NULL;
10423 debug.external_pdr = NULL;
10424 debug.external_sym = NULL;
10425 debug.external_opt = NULL;
10426 debug.external_aux = NULL;
10427 debug.ss = NULL;
10428 debug.ssext = debug.ssext_end = NULL;
10429 debug.external_fdr = NULL;
10430 debug.external_rfd = NULL;
10431 debug.external_ext = debug.external_ext_end = NULL;
10432
10433 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
10434 if (mdebug_handle == NULL)
10435 return FALSE;
10436
10437 esym.jmptbl = 0;
10438 esym.cobol_main = 0;
10439 esym.weakext = 0;
10440 esym.reserved = 0;
10441 esym.ifd = ifdNil;
10442 esym.asym.iss = issNil;
10443 esym.asym.st = stLocal;
10444 esym.asym.reserved = 0;
10445 esym.asym.index = indexNil;
10446 last = 0;
10447 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10448 {
10449 esym.asym.sc = sc[i];
10450 s = bfd_get_section_by_name (abfd, secname[i]);
10451 if (s != NULL)
10452 {
10453 esym.asym.value = s->vma;
10454 last = s->vma + s->size;
10455 }
10456 else
10457 esym.asym.value = last;
10458 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10459 secname[i], &esym))
10460 return FALSE;
10461 }
10462
10463 for (p = o->map_head.link_order; p != NULL; p = p->next)
10464 {
10465 asection *input_section;
10466 bfd *input_bfd;
10467 const struct ecoff_debug_swap *input_swap;
10468 struct ecoff_debug_info input_debug;
10469 char *eraw_src;
10470 char *eraw_end;
10471
10472 if (p->type != bfd_indirect_link_order)
10473 {
10474 if (p->type == bfd_data_link_order)
10475 continue;
10476 abort ();
10477 }
10478
10479 input_section = p->u.indirect.section;
10480 input_bfd = input_section->owner;
10481
10482 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10483 || (get_elf_backend_data (input_bfd)
10484 ->elf_backend_ecoff_debug_swap) == NULL)
10485 {
10486 /* I don't know what a non MIPS ELF bfd would be
10487 doing with a .mdebug section, but I don't really
10488 want to deal with it. */
10489 continue;
10490 }
10491
10492 input_swap = (get_elf_backend_data (input_bfd)
10493 ->elf_backend_ecoff_debug_swap);
10494
10495 BFD_ASSERT (p->size == input_section->size);
10496
10497 /* The ECOFF linking code expects that we have already
10498 read in the debugging information and set up an
10499 ecoff_debug_info structure, so we do that now. */
10500 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10501 &input_debug))
10502 return FALSE;
10503
10504 if (! (bfd_ecoff_debug_accumulate
10505 (mdebug_handle, abfd, &debug, swap, input_bfd,
10506 &input_debug, input_swap, info)))
10507 return FALSE;
10508
10509 /* Loop through the external symbols. For each one with
10510 interesting information, try to find the symbol in
10511 the linker global hash table and save the information
10512 for the output external symbols. */
10513 eraw_src = input_debug.external_ext;
10514 eraw_end = (eraw_src
10515 + (input_debug.symbolic_header.iextMax
10516 * input_swap->external_ext_size));
10517 for (;
10518 eraw_src < eraw_end;
10519 eraw_src += input_swap->external_ext_size)
10520 {
10521 EXTR ext;
10522 const char *name;
10523 struct mips_elf_link_hash_entry *h;
10524
10525 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
10526 if (ext.asym.sc == scNil
10527 || ext.asym.sc == scUndefined
10528 || ext.asym.sc == scSUndefined)
10529 continue;
10530
10531 name = input_debug.ssext + ext.asym.iss;
10532 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
10533 name, FALSE, FALSE, TRUE);
10534 if (h == NULL || h->esym.ifd != -2)
10535 continue;
10536
10537 if (ext.ifd != -1)
10538 {
10539 BFD_ASSERT (ext.ifd
10540 < input_debug.symbolic_header.ifdMax);
10541 ext.ifd = input_debug.ifdmap[ext.ifd];
10542 }
10543
10544 h->esym = ext;
10545 }
10546
10547 /* Free up the information we just read. */
10548 free (input_debug.line);
10549 free (input_debug.external_dnr);
10550 free (input_debug.external_pdr);
10551 free (input_debug.external_sym);
10552 free (input_debug.external_opt);
10553 free (input_debug.external_aux);
10554 free (input_debug.ss);
10555 free (input_debug.ssext);
10556 free (input_debug.external_fdr);
10557 free (input_debug.external_rfd);
10558 free (input_debug.external_ext);
10559
10560 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10561 elf_link_input_bfd ignores this section. */
10562 input_section->flags &= ~SEC_HAS_CONTENTS;
10563 }
10564
10565 if (SGI_COMPAT (abfd) && info->shared)
10566 {
10567 /* Create .rtproc section. */
10568 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10569 if (rtproc_sec == NULL)
10570 {
10571 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10572 | SEC_LINKER_CREATED | SEC_READONLY);
10573
10574 rtproc_sec = bfd_make_section_with_flags (abfd,
10575 ".rtproc",
10576 flags);
10577 if (rtproc_sec == NULL
10578 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
10579 return FALSE;
10580 }
10581
10582 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10583 info, rtproc_sec,
10584 &debug))
10585 return FALSE;
10586 }
10587
10588 /* Build the external symbol information. */
10589 einfo.abfd = abfd;
10590 einfo.info = info;
10591 einfo.debug = &debug;
10592 einfo.swap = swap;
10593 einfo.failed = FALSE;
10594 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
10595 mips_elf_output_extsym, &einfo);
10596 if (einfo.failed)
10597 return FALSE;
10598
10599 /* Set the size of the .mdebug section. */
10600 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
10601
10602 /* Skip this section later on (I don't think this currently
10603 matters, but someday it might). */
10604 o->map_head.link_order = NULL;
10605
10606 mdebug_sec = o;
10607 }
10608
10609 if (CONST_STRNEQ (o->name, ".gptab."))
10610 {
10611 const char *subname;
10612 unsigned int c;
10613 Elf32_gptab *tab;
10614 Elf32_External_gptab *ext_tab;
10615 unsigned int j;
10616
10617 /* The .gptab.sdata and .gptab.sbss sections hold
10618 information describing how the small data area would
10619 change depending upon the -G switch. These sections
10620 not used in executables files. */
10621 if (! info->relocatable)
10622 {
10623 for (p = o->map_head.link_order; p != NULL; p = p->next)
10624 {
10625 asection *input_section;
10626
10627 if (p->type != bfd_indirect_link_order)
10628 {
10629 if (p->type == bfd_data_link_order)
10630 continue;
10631 abort ();
10632 }
10633
10634 input_section = p->u.indirect.section;
10635
10636 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10637 elf_link_input_bfd ignores this section. */
10638 input_section->flags &= ~SEC_HAS_CONTENTS;
10639 }
10640
10641 /* Skip this section later on (I don't think this
10642 currently matters, but someday it might). */
10643 o->map_head.link_order = NULL;
10644
10645 /* Really remove the section. */
10646 bfd_section_list_remove (abfd, o);
10647 --abfd->section_count;
10648
10649 continue;
10650 }
10651
10652 /* There is one gptab for initialized data, and one for
10653 uninitialized data. */
10654 if (strcmp (o->name, ".gptab.sdata") == 0)
10655 gptab_data_sec = o;
10656 else if (strcmp (o->name, ".gptab.sbss") == 0)
10657 gptab_bss_sec = o;
10658 else
10659 {
10660 (*_bfd_error_handler)
10661 (_("%s: illegal section name `%s'"),
10662 bfd_get_filename (abfd), o->name);
10663 bfd_set_error (bfd_error_nonrepresentable_section);
10664 return FALSE;
10665 }
10666
10667 /* The linker script always combines .gptab.data and
10668 .gptab.sdata into .gptab.sdata, and likewise for
10669 .gptab.bss and .gptab.sbss. It is possible that there is
10670 no .sdata or .sbss section in the output file, in which
10671 case we must change the name of the output section. */
10672 subname = o->name + sizeof ".gptab" - 1;
10673 if (bfd_get_section_by_name (abfd, subname) == NULL)
10674 {
10675 if (o == gptab_data_sec)
10676 o->name = ".gptab.data";
10677 else
10678 o->name = ".gptab.bss";
10679 subname = o->name + sizeof ".gptab" - 1;
10680 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10681 }
10682
10683 /* Set up the first entry. */
10684 c = 1;
10685 amt = c * sizeof (Elf32_gptab);
10686 tab = bfd_malloc (amt);
10687 if (tab == NULL)
10688 return FALSE;
10689 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10690 tab[0].gt_header.gt_unused = 0;
10691
10692 /* Combine the input sections. */
10693 for (p = o->map_head.link_order; p != NULL; p = p->next)
10694 {
10695 asection *input_section;
10696 bfd *input_bfd;
10697 bfd_size_type size;
10698 unsigned long last;
10699 bfd_size_type gpentry;
10700
10701 if (p->type != bfd_indirect_link_order)
10702 {
10703 if (p->type == bfd_data_link_order)
10704 continue;
10705 abort ();
10706 }
10707
10708 input_section = p->u.indirect.section;
10709 input_bfd = input_section->owner;
10710
10711 /* Combine the gptab entries for this input section one
10712 by one. We know that the input gptab entries are
10713 sorted by ascending -G value. */
10714 size = input_section->size;
10715 last = 0;
10716 for (gpentry = sizeof (Elf32_External_gptab);
10717 gpentry < size;
10718 gpentry += sizeof (Elf32_External_gptab))
10719 {
10720 Elf32_External_gptab ext_gptab;
10721 Elf32_gptab int_gptab;
10722 unsigned long val;
10723 unsigned long add;
10724 bfd_boolean exact;
10725 unsigned int look;
10726
10727 if (! (bfd_get_section_contents
10728 (input_bfd, input_section, &ext_gptab, gpentry,
10729 sizeof (Elf32_External_gptab))))
10730 {
10731 free (tab);
10732 return FALSE;
10733 }
10734
10735 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10736 &int_gptab);
10737 val = int_gptab.gt_entry.gt_g_value;
10738 add = int_gptab.gt_entry.gt_bytes - last;
10739
10740 exact = FALSE;
10741 for (look = 1; look < c; look++)
10742 {
10743 if (tab[look].gt_entry.gt_g_value >= val)
10744 tab[look].gt_entry.gt_bytes += add;
10745
10746 if (tab[look].gt_entry.gt_g_value == val)
10747 exact = TRUE;
10748 }
10749
10750 if (! exact)
10751 {
10752 Elf32_gptab *new_tab;
10753 unsigned int max;
10754
10755 /* We need a new table entry. */
10756 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
10757 new_tab = bfd_realloc (tab, amt);
10758 if (new_tab == NULL)
10759 {
10760 free (tab);
10761 return FALSE;
10762 }
10763 tab = new_tab;
10764 tab[c].gt_entry.gt_g_value = val;
10765 tab[c].gt_entry.gt_bytes = add;
10766
10767 /* Merge in the size for the next smallest -G
10768 value, since that will be implied by this new
10769 value. */
10770 max = 0;
10771 for (look = 1; look < c; look++)
10772 {
10773 if (tab[look].gt_entry.gt_g_value < val
10774 && (max == 0
10775 || (tab[look].gt_entry.gt_g_value
10776 > tab[max].gt_entry.gt_g_value)))
10777 max = look;
10778 }
10779 if (max != 0)
10780 tab[c].gt_entry.gt_bytes +=
10781 tab[max].gt_entry.gt_bytes;
10782
10783 ++c;
10784 }
10785
10786 last = int_gptab.gt_entry.gt_bytes;
10787 }
10788
10789 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10790 elf_link_input_bfd ignores this section. */
10791 input_section->flags &= ~SEC_HAS_CONTENTS;
10792 }
10793
10794 /* The table must be sorted by -G value. */
10795 if (c > 2)
10796 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10797
10798 /* Swap out the table. */
10799 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
10800 ext_tab = bfd_alloc (abfd, amt);
10801 if (ext_tab == NULL)
10802 {
10803 free (tab);
10804 return FALSE;
10805 }
10806
10807 for (j = 0; j < c; j++)
10808 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10809 free (tab);
10810
10811 o->size = c * sizeof (Elf32_External_gptab);
10812 o->contents = (bfd_byte *) ext_tab;
10813
10814 /* Skip this section later on (I don't think this currently
10815 matters, but someday it might). */
10816 o->map_head.link_order = NULL;
10817 }
10818 }
10819
10820 /* Invoke the regular ELF backend linker to do all the work. */
10821 if (!bfd_elf_final_link (abfd, info))
10822 return FALSE;
10823
10824 /* Now write out the computed sections. */
10825
10826 if (reginfo_sec != NULL)
10827 {
10828 Elf32_External_RegInfo ext;
10829
10830 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
10831 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
10832 return FALSE;
10833 }
10834
10835 if (mdebug_sec != NULL)
10836 {
10837 BFD_ASSERT (abfd->output_has_begun);
10838 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10839 swap, info,
10840 mdebug_sec->filepos))
10841 return FALSE;
10842
10843 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10844 }
10845
10846 if (gptab_data_sec != NULL)
10847 {
10848 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10849 gptab_data_sec->contents,
10850 0, gptab_data_sec->size))
10851 return FALSE;
10852 }
10853
10854 if (gptab_bss_sec != NULL)
10855 {
10856 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10857 gptab_bss_sec->contents,
10858 0, gptab_bss_sec->size))
10859 return FALSE;
10860 }
10861
10862 if (SGI_COMPAT (abfd))
10863 {
10864 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10865 if (rtproc_sec != NULL)
10866 {
10867 if (! bfd_set_section_contents (abfd, rtproc_sec,
10868 rtproc_sec->contents,
10869 0, rtproc_sec->size))
10870 return FALSE;
10871 }
10872 }
10873
10874 return TRUE;
10875 }
10876 \f
10877 /* Structure for saying that BFD machine EXTENSION extends BASE. */
10878
10879 struct mips_mach_extension {
10880 unsigned long extension, base;
10881 };
10882
10883
10884 /* An array describing how BFD machines relate to one another. The entries
10885 are ordered topologically with MIPS I extensions listed last. */
10886
10887 static const struct mips_mach_extension mips_mach_extensions[] = {
10888 /* MIPS64 extensions. */
10889 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
10890 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10891
10892 /* MIPS V extensions. */
10893 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10894
10895 /* R10000 extensions. */
10896 { bfd_mach_mips12000, bfd_mach_mips10000 },
10897
10898 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10899 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10900 better to allow vr5400 and vr5500 code to be merged anyway, since
10901 many libraries will just use the core ISA. Perhaps we could add
10902 some sort of ASE flag if this ever proves a problem. */
10903 { bfd_mach_mips5500, bfd_mach_mips5400 },
10904 { bfd_mach_mips5400, bfd_mach_mips5000 },
10905
10906 /* MIPS IV extensions. */
10907 { bfd_mach_mips5, bfd_mach_mips8000 },
10908 { bfd_mach_mips10000, bfd_mach_mips8000 },
10909 { bfd_mach_mips5000, bfd_mach_mips8000 },
10910 { bfd_mach_mips7000, bfd_mach_mips8000 },
10911 { bfd_mach_mips9000, bfd_mach_mips8000 },
10912
10913 /* VR4100 extensions. */
10914 { bfd_mach_mips4120, bfd_mach_mips4100 },
10915 { bfd_mach_mips4111, bfd_mach_mips4100 },
10916
10917 /* MIPS III extensions. */
10918 { bfd_mach_mips8000, bfd_mach_mips4000 },
10919 { bfd_mach_mips4650, bfd_mach_mips4000 },
10920 { bfd_mach_mips4600, bfd_mach_mips4000 },
10921 { bfd_mach_mips4400, bfd_mach_mips4000 },
10922 { bfd_mach_mips4300, bfd_mach_mips4000 },
10923 { bfd_mach_mips4100, bfd_mach_mips4000 },
10924 { bfd_mach_mips4010, bfd_mach_mips4000 },
10925
10926 /* MIPS32 extensions. */
10927 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10928
10929 /* MIPS II extensions. */
10930 { bfd_mach_mips4000, bfd_mach_mips6000 },
10931 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10932
10933 /* MIPS I extensions. */
10934 { bfd_mach_mips6000, bfd_mach_mips3000 },
10935 { bfd_mach_mips3900, bfd_mach_mips3000 }
10936 };
10937
10938
10939 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10940
10941 static bfd_boolean
10942 mips_mach_extends_p (unsigned long base, unsigned long extension)
10943 {
10944 size_t i;
10945
10946 if (extension == base)
10947 return TRUE;
10948
10949 if (base == bfd_mach_mipsisa32
10950 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10951 return TRUE;
10952
10953 if (base == bfd_mach_mipsisa32r2
10954 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10955 return TRUE;
10956
10957 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
10958 if (extension == mips_mach_extensions[i].extension)
10959 {
10960 extension = mips_mach_extensions[i].base;
10961 if (extension == base)
10962 return TRUE;
10963 }
10964
10965 return FALSE;
10966 }
10967
10968
10969 /* Return true if the given ELF header flags describe a 32-bit binary. */
10970
10971 static bfd_boolean
10972 mips_32bit_flags_p (flagword flags)
10973 {
10974 return ((flags & EF_MIPS_32BITMODE) != 0
10975 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10976 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10977 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10978 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10979 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10980 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
10981 }
10982
10983
10984 /* Merge object attributes from IBFD into OBFD. Raise an error if
10985 there are conflicting attributes. */
10986 static bfd_boolean
10987 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
10988 {
10989 obj_attribute *in_attr;
10990 obj_attribute *out_attr;
10991
10992 if (!elf_known_obj_attributes_proc (obfd)[0].i)
10993 {
10994 /* This is the first object. Copy the attributes. */
10995 _bfd_elf_copy_obj_attributes (ibfd, obfd);
10996
10997 /* Use the Tag_null value to indicate the attributes have been
10998 initialized. */
10999 elf_known_obj_attributes_proc (obfd)[0].i = 1;
11000
11001 return TRUE;
11002 }
11003
11004 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
11005 non-conflicting ones. */
11006 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
11007 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
11008 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
11009 {
11010 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
11011 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11012 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
11013 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11014 ;
11015 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 3)
11016 _bfd_error_handler
11017 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
11018 in_attr[Tag_GNU_MIPS_ABI_FP].i);
11019 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 3)
11020 _bfd_error_handler
11021 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
11022 out_attr[Tag_GNU_MIPS_ABI_FP].i);
11023 else
11024 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
11025 {
11026 case 1:
11027 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11028 {
11029 case 2:
11030 _bfd_error_handler
11031 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11032 obfd, ibfd);
11033
11034 case 3:
11035 _bfd_error_handler
11036 (_("Warning: %B uses hard float, %B uses soft float"),
11037 obfd, ibfd);
11038 break;
11039
11040 default:
11041 abort ();
11042 }
11043 break;
11044
11045 case 2:
11046 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11047 {
11048 case 1:
11049 _bfd_error_handler
11050 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11051 ibfd, obfd);
11052
11053 case 3:
11054 _bfd_error_handler
11055 (_("Warning: %B uses hard float, %B uses soft float"),
11056 obfd, ibfd);
11057 break;
11058
11059 default:
11060 abort ();
11061 }
11062 break;
11063
11064 case 3:
11065 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11066 {
11067 case 1:
11068 case 2:
11069 _bfd_error_handler
11070 (_("Warning: %B uses hard float, %B uses soft float"),
11071 ibfd, obfd);
11072 break;
11073
11074 default:
11075 abort ();
11076 }
11077 break;
11078
11079 default:
11080 abort ();
11081 }
11082 }
11083
11084 /* Merge Tag_compatibility attributes and any common GNU ones. */
11085 _bfd_elf_merge_object_attributes (ibfd, obfd);
11086
11087 return TRUE;
11088 }
11089
11090 /* Merge backend specific data from an object file to the output
11091 object file when linking. */
11092
11093 bfd_boolean
11094 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
11095 {
11096 flagword old_flags;
11097 flagword new_flags;
11098 bfd_boolean ok;
11099 bfd_boolean null_input_bfd = TRUE;
11100 asection *sec;
11101
11102 /* Check if we have the same endianess */
11103 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
11104 {
11105 (*_bfd_error_handler)
11106 (_("%B: endianness incompatible with that of the selected emulation"),
11107 ibfd);
11108 return FALSE;
11109 }
11110
11111 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
11112 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
11113 return TRUE;
11114
11115 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
11116 {
11117 (*_bfd_error_handler)
11118 (_("%B: ABI is incompatible with that of the selected emulation"),
11119 ibfd);
11120 return FALSE;
11121 }
11122
11123 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
11124 return FALSE;
11125
11126 new_flags = elf_elfheader (ibfd)->e_flags;
11127 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
11128 old_flags = elf_elfheader (obfd)->e_flags;
11129
11130 if (! elf_flags_init (obfd))
11131 {
11132 elf_flags_init (obfd) = TRUE;
11133 elf_elfheader (obfd)->e_flags = new_flags;
11134 elf_elfheader (obfd)->e_ident[EI_CLASS]
11135 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
11136
11137 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
11138 && (bfd_get_arch_info (obfd)->the_default
11139 || mips_mach_extends_p (bfd_get_mach (obfd),
11140 bfd_get_mach (ibfd))))
11141 {
11142 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
11143 bfd_get_mach (ibfd)))
11144 return FALSE;
11145 }
11146
11147 return TRUE;
11148 }
11149
11150 /* Check flag compatibility. */
11151
11152 new_flags &= ~EF_MIPS_NOREORDER;
11153 old_flags &= ~EF_MIPS_NOREORDER;
11154
11155 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11156 doesn't seem to matter. */
11157 new_flags &= ~EF_MIPS_XGOT;
11158 old_flags &= ~EF_MIPS_XGOT;
11159
11160 /* MIPSpro generates ucode info in n64 objects. Again, we should
11161 just be able to ignore this. */
11162 new_flags &= ~EF_MIPS_UCODE;
11163 old_flags &= ~EF_MIPS_UCODE;
11164
11165 /* Don't care about the PIC flags from dynamic objects; they are
11166 PIC by design. */
11167 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11168 && (ibfd->flags & DYNAMIC) != 0)
11169 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11170
11171 if (new_flags == old_flags)
11172 return TRUE;
11173
11174 /* Check to see if the input BFD actually contains any sections.
11175 If not, its flags may not have been initialised either, but it cannot
11176 actually cause any incompatibility. */
11177 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11178 {
11179 /* Ignore synthetic sections and empty .text, .data and .bss sections
11180 which are automatically generated by gas. */
11181 if (strcmp (sec->name, ".reginfo")
11182 && strcmp (sec->name, ".mdebug")
11183 && (sec->size != 0
11184 || (strcmp (sec->name, ".text")
11185 && strcmp (sec->name, ".data")
11186 && strcmp (sec->name, ".bss"))))
11187 {
11188 null_input_bfd = FALSE;
11189 break;
11190 }
11191 }
11192 if (null_input_bfd)
11193 return TRUE;
11194
11195 ok = TRUE;
11196
11197 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11198 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
11199 {
11200 (*_bfd_error_handler)
11201 (_("%B: warning: linking PIC files with non-PIC files"),
11202 ibfd);
11203 ok = TRUE;
11204 }
11205
11206 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11207 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11208 if (! (new_flags & EF_MIPS_PIC))
11209 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11210
11211 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11212 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11213
11214 /* Compare the ISAs. */
11215 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
11216 {
11217 (*_bfd_error_handler)
11218 (_("%B: linking 32-bit code with 64-bit code"),
11219 ibfd);
11220 ok = FALSE;
11221 }
11222 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11223 {
11224 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11225 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
11226 {
11227 /* Copy the architecture info from IBFD to OBFD. Also copy
11228 the 32-bit flag (if set) so that we continue to recognise
11229 OBFD as a 32-bit binary. */
11230 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11231 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11232 elf_elfheader (obfd)->e_flags
11233 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11234
11235 /* Copy across the ABI flags if OBFD doesn't use them
11236 and if that was what caused us to treat IBFD as 32-bit. */
11237 if ((old_flags & EF_MIPS_ABI) == 0
11238 && mips_32bit_flags_p (new_flags)
11239 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11240 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
11241 }
11242 else
11243 {
11244 /* The ISAs aren't compatible. */
11245 (*_bfd_error_handler)
11246 (_("%B: linking %s module with previous %s modules"),
11247 ibfd,
11248 bfd_printable_name (ibfd),
11249 bfd_printable_name (obfd));
11250 ok = FALSE;
11251 }
11252 }
11253
11254 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11255 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11256
11257 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
11258 does set EI_CLASS differently from any 32-bit ABI. */
11259 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11260 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11261 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11262 {
11263 /* Only error if both are set (to different values). */
11264 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11265 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11266 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11267 {
11268 (*_bfd_error_handler)
11269 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11270 ibfd,
11271 elf_mips_abi_name (ibfd),
11272 elf_mips_abi_name (obfd));
11273 ok = FALSE;
11274 }
11275 new_flags &= ~EF_MIPS_ABI;
11276 old_flags &= ~EF_MIPS_ABI;
11277 }
11278
11279 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11280 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11281 {
11282 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11283
11284 new_flags &= ~ EF_MIPS_ARCH_ASE;
11285 old_flags &= ~ EF_MIPS_ARCH_ASE;
11286 }
11287
11288 /* Warn about any other mismatches */
11289 if (new_flags != old_flags)
11290 {
11291 (*_bfd_error_handler)
11292 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11293 ibfd, (unsigned long) new_flags,
11294 (unsigned long) old_flags);
11295 ok = FALSE;
11296 }
11297
11298 if (! ok)
11299 {
11300 bfd_set_error (bfd_error_bad_value);
11301 return FALSE;
11302 }
11303
11304 return TRUE;
11305 }
11306
11307 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11308
11309 bfd_boolean
11310 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
11311 {
11312 BFD_ASSERT (!elf_flags_init (abfd)
11313 || elf_elfheader (abfd)->e_flags == flags);
11314
11315 elf_elfheader (abfd)->e_flags = flags;
11316 elf_flags_init (abfd) = TRUE;
11317 return TRUE;
11318 }
11319
11320 bfd_boolean
11321 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
11322 {
11323 FILE *file = ptr;
11324
11325 BFD_ASSERT (abfd != NULL && ptr != NULL);
11326
11327 /* Print normal ELF private data. */
11328 _bfd_elf_print_private_bfd_data (abfd, ptr);
11329
11330 /* xgettext:c-format */
11331 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11332
11333 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11334 fprintf (file, _(" [abi=O32]"));
11335 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11336 fprintf (file, _(" [abi=O64]"));
11337 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11338 fprintf (file, _(" [abi=EABI32]"));
11339 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11340 fprintf (file, _(" [abi=EABI64]"));
11341 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11342 fprintf (file, _(" [abi unknown]"));
11343 else if (ABI_N32_P (abfd))
11344 fprintf (file, _(" [abi=N32]"));
11345 else if (ABI_64_P (abfd))
11346 fprintf (file, _(" [abi=64]"));
11347 else
11348 fprintf (file, _(" [no abi set]"));
11349
11350 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
11351 fprintf (file, " [mips1]");
11352 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
11353 fprintf (file, " [mips2]");
11354 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
11355 fprintf (file, " [mips3]");
11356 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
11357 fprintf (file, " [mips4]");
11358 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
11359 fprintf (file, " [mips5]");
11360 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
11361 fprintf (file, " [mips32]");
11362 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
11363 fprintf (file, " [mips64]");
11364 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
11365 fprintf (file, " [mips32r2]");
11366 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
11367 fprintf (file, " [mips64r2]");
11368 else
11369 fprintf (file, _(" [unknown ISA]"));
11370
11371 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
11372 fprintf (file, " [mdmx]");
11373
11374 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
11375 fprintf (file, " [mips16]");
11376
11377 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
11378 fprintf (file, " [32bitmode]");
11379 else
11380 fprintf (file, _(" [not 32bitmode]"));
11381
11382 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
11383 fprintf (file, " [noreorder]");
11384
11385 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
11386 fprintf (file, " [PIC]");
11387
11388 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
11389 fprintf (file, " [CPIC]");
11390
11391 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
11392 fprintf (file, " [XGOT]");
11393
11394 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
11395 fprintf (file, " [UCODE]");
11396
11397 fputc ('\n', file);
11398
11399 return TRUE;
11400 }
11401
11402 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
11403 {
11404 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11405 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11406 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
11407 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11408 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11409 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
11410 { NULL, 0, 0, 0, 0 }
11411 };
11412
11413 /* Merge non visibility st_other attributes. Ensure that the
11414 STO_OPTIONAL flag is copied into h->other, even if this is not a
11415 definiton of the symbol. */
11416 void
11417 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11418 const Elf_Internal_Sym *isym,
11419 bfd_boolean definition,
11420 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11421 {
11422 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11423 {
11424 unsigned char other;
11425
11426 other = (definition ? isym->st_other : h->other);
11427 other &= ~ELF_ST_VISIBILITY (-1);
11428 h->other = other | ELF_ST_VISIBILITY (h->other);
11429 }
11430
11431 if (!definition
11432 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11433 h->other |= STO_OPTIONAL;
11434 }
11435
11436 /* Decide whether an undefined symbol is special and can be ignored.
11437 This is the case for OPTIONAL symbols on IRIX. */
11438 bfd_boolean
11439 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11440 {
11441 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11442 }
11443
11444 bfd_boolean
11445 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11446 {
11447 return (sym->st_shndx == SHN_COMMON
11448 || sym->st_shndx == SHN_MIPS_ACOMMON
11449 || sym->st_shndx == SHN_MIPS_SCOMMON);
11450 }
This page took 0.319387 seconds and 4 git commands to generate.