* elflink.c (_bfd_elf_gc_mark_hook): New function.
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37 #include "elf-vxworks.h"
38
39 /* Get the ECOFF swapping routines. */
40 #include "coff/sym.h"
41 #include "coff/symconst.h"
42 #include "coff/ecoff.h"
43 #include "coff/mips.h"
44
45 #include "hashtab.h"
46
47 /* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
49
50 (1) absolute addresses
51 (abfd == NULL)
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
56
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
63
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
68
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
72 GOT index.
73
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
80 struct mips_got_entry
81 {
82 /* The input bfd in which the symbol is defined. */
83 bfd *abfd;
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
86 long symndx;
87 union
88 {
89 /* If abfd == NULL, an address that must be stored in the got. */
90 bfd_vma address;
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
93 bfd_vma addend;
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
96 h->forced_local). */
97 struct mips_elf_link_hash_entry *h;
98 } d;
99
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type;
106
107 /* The offset from the beginning of the .got section to the entry
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
110 long gotidx;
111 };
112
113 /* This structure is used to hold .got information when linking. */
114
115 struct mips_got_info
116 {
117 /* The global symbol in the GOT with the lowest index in the dynamic
118 symbol table. */
119 struct elf_link_hash_entry *global_gotsym;
120 /* The number of global .got entries. */
121 unsigned int global_gotno;
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno;
127 /* The number of local .got entries. */
128 unsigned int local_gotno;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno;
131 /* A hash table holding members of the got. */
132 struct htab *got_entries;
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab *bfd2got;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info *next;
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset;
144 };
145
146 /* Map an input bfd to a got in a multi-got link. */
147
148 struct mips_elf_bfd2got_hash {
149 bfd *bfd;
150 struct mips_got_info *g;
151 };
152
153 /* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
155
156 struct mips_elf_got_per_bfd_arg
157 {
158 /* A hashtable that maps bfds to gots. */
159 htab_t bfd2got;
160 /* The output bfd. */
161 bfd *obfd;
162 /* The link information. */
163 struct bfd_link_info *info;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
166 DT_MIPS_GOTSYM. */
167 struct mips_got_info *primary;
168 /* A non-primary got we're trying to merge with other input bfd's
169 gots. */
170 struct mips_got_info *current;
171 /* The maximum number of got entries that can be addressed with a
172 16-bit offset. */
173 unsigned int max_count;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count;
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
181 the "master" GOT. */
182 unsigned int global_count;
183 };
184
185 /* Another structure used to pass arguments for got entries traversal. */
186
187 struct mips_elf_set_global_got_offset_arg
188 {
189 struct mips_got_info *g;
190 int value;
191 unsigned int needed_relocs;
192 struct bfd_link_info *info;
193 };
194
195 /* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
197
198 struct mips_elf_count_tls_arg
199 {
200 struct bfd_link_info *info;
201 unsigned int needed;
202 };
203
204 struct _mips_elf_section_data
205 {
206 struct bfd_elf_section_data elf;
207 union
208 {
209 struct mips_got_info *got_info;
210 bfd_byte *tdata;
211 } u;
212 };
213
214 #define mips_elf_section_data(sec) \
215 ((struct _mips_elf_section_data *) elf_section_data (sec))
216
217 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
219
220 struct mips_elf_hash_sort_data
221 {
222 /* The symbol in the global GOT with the lowest dynamic symbol table
223 index. */
224 struct elf_link_hash_entry *low;
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
227 long min_got_dynindx;
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
230 with dynamic relocations pointing to it from non-primary GOTs). */
231 long max_unref_got_dynindx;
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx;
235 };
236
237 /* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
239
240 struct mips_elf_link_hash_entry
241 {
242 struct elf_link_hash_entry root;
243
244 /* External symbol information. */
245 EXTR esym;
246
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
248 this symbol. */
249 unsigned int possibly_dynamic_relocs;
250
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
253 bfd_boolean readonly_reloc;
254
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
258 p. 4-20. */
259 bfd_boolean no_fn_stub;
260
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
263 asection *fn_stub;
264
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
267 bfd_boolean need_fn_stub;
268
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
271 asection *call_stub;
272
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection *call_fp_stub;
276
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
279 bfd_boolean forced_local;
280
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target;
283
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target;
286
287 #define GOT_NORMAL 0
288 #define GOT_TLS_GD 1
289 #define GOT_TLS_LDM 2
290 #define GOT_TLS_IE 4
291 #define GOT_TLS_OFFSET_DONE 0x40
292 #define GOT_TLS_DONE 0x80
293 unsigned char tls_type;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset;
301 };
302
303 /* MIPS ELF linker hash table. */
304
305 struct mips_elf_link_hash_table
306 {
307 struct elf_link_hash_table root;
308 #if 0
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
312 #endif
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
318 entry is set to the address of __rld_obj_head as in IRIX5. */
319 bfd_boolean use_rld_obj_head;
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
321 bfd_vma rld_value;
322 /* This is set if we see any mips16 stub sections. */
323 bfd_boolean mips16_stubs_seen;
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
327 being used. */
328 asection *srelbss;
329 asection *sdynbss;
330 asection *srelplt;
331 asection *srelplt2;
332 asection *sgotplt;
333 asection *splt;
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size;
338 /* The size of a function stub entry in bytes. */
339 bfd_vma function_stub_size;
340 };
341
342 #define TLS_RELOC_P(r_type) \
343 (r_type == R_MIPS_TLS_DTPMOD32 \
344 || r_type == R_MIPS_TLS_DTPMOD64 \
345 || r_type == R_MIPS_TLS_DTPREL32 \
346 || r_type == R_MIPS_TLS_DTPREL64 \
347 || r_type == R_MIPS_TLS_GD \
348 || r_type == R_MIPS_TLS_LDM \
349 || r_type == R_MIPS_TLS_DTPREL_HI16 \
350 || r_type == R_MIPS_TLS_DTPREL_LO16 \
351 || r_type == R_MIPS_TLS_GOTTPREL \
352 || r_type == R_MIPS_TLS_TPREL32 \
353 || r_type == R_MIPS_TLS_TPREL64 \
354 || r_type == R_MIPS_TLS_TPREL_HI16 \
355 || r_type == R_MIPS_TLS_TPREL_LO16)
356
357 /* Structure used to pass information to mips_elf_output_extsym. */
358
359 struct extsym_info
360 {
361 bfd *abfd;
362 struct bfd_link_info *info;
363 struct ecoff_debug_info *debug;
364 const struct ecoff_debug_swap *swap;
365 bfd_boolean failed;
366 };
367
368 /* The names of the runtime procedure table symbols used on IRIX5. */
369
370 static const char * const mips_elf_dynsym_rtproc_names[] =
371 {
372 "_procedure_table",
373 "_procedure_string_table",
374 "_procedure_table_size",
375 NULL
376 };
377
378 /* These structures are used to generate the .compact_rel section on
379 IRIX5. */
380
381 typedef struct
382 {
383 unsigned long id1; /* Always one? */
384 unsigned long num; /* Number of compact relocation entries. */
385 unsigned long id2; /* Always two? */
386 unsigned long offset; /* The file offset of the first relocation. */
387 unsigned long reserved0; /* Zero? */
388 unsigned long reserved1; /* Zero? */
389 } Elf32_compact_rel;
390
391 typedef struct
392 {
393 bfd_byte id1[4];
394 bfd_byte num[4];
395 bfd_byte id2[4];
396 bfd_byte offset[4];
397 bfd_byte reserved0[4];
398 bfd_byte reserved1[4];
399 } Elf32_External_compact_rel;
400
401 typedef struct
402 {
403 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
404 unsigned int rtype : 4; /* Relocation types. See below. */
405 unsigned int dist2to : 8;
406 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
407 unsigned long konst; /* KONST field. See below. */
408 unsigned long vaddr; /* VADDR to be relocated. */
409 } Elf32_crinfo;
410
411 typedef struct
412 {
413 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
414 unsigned int rtype : 4; /* Relocation types. See below. */
415 unsigned int dist2to : 8;
416 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
417 unsigned long konst; /* KONST field. See below. */
418 } Elf32_crinfo2;
419
420 typedef struct
421 {
422 bfd_byte info[4];
423 bfd_byte konst[4];
424 bfd_byte vaddr[4];
425 } Elf32_External_crinfo;
426
427 typedef struct
428 {
429 bfd_byte info[4];
430 bfd_byte konst[4];
431 } Elf32_External_crinfo2;
432
433 /* These are the constants used to swap the bitfields in a crinfo. */
434
435 #define CRINFO_CTYPE (0x1)
436 #define CRINFO_CTYPE_SH (31)
437 #define CRINFO_RTYPE (0xf)
438 #define CRINFO_RTYPE_SH (27)
439 #define CRINFO_DIST2TO (0xff)
440 #define CRINFO_DIST2TO_SH (19)
441 #define CRINFO_RELVADDR (0x7ffff)
442 #define CRINFO_RELVADDR_SH (0)
443
444 /* A compact relocation info has long (3 words) or short (2 words)
445 formats. A short format doesn't have VADDR field and relvaddr
446 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
447 #define CRF_MIPS_LONG 1
448 #define CRF_MIPS_SHORT 0
449
450 /* There are 4 types of compact relocation at least. The value KONST
451 has different meaning for each type:
452
453 (type) (konst)
454 CT_MIPS_REL32 Address in data
455 CT_MIPS_WORD Address in word (XXX)
456 CT_MIPS_GPHI_LO GP - vaddr
457 CT_MIPS_JMPAD Address to jump
458 */
459
460 #define CRT_MIPS_REL32 0xa
461 #define CRT_MIPS_WORD 0xb
462 #define CRT_MIPS_GPHI_LO 0xc
463 #define CRT_MIPS_JMPAD 0xd
464
465 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
466 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
467 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
468 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
469 \f
470 /* The structure of the runtime procedure descriptor created by the
471 loader for use by the static exception system. */
472
473 typedef struct runtime_pdr {
474 bfd_vma adr; /* Memory address of start of procedure. */
475 long regmask; /* Save register mask. */
476 long regoffset; /* Save register offset. */
477 long fregmask; /* Save floating point register mask. */
478 long fregoffset; /* Save floating point register offset. */
479 long frameoffset; /* Frame size. */
480 short framereg; /* Frame pointer register. */
481 short pcreg; /* Offset or reg of return pc. */
482 long irpss; /* Index into the runtime string table. */
483 long reserved;
484 struct exception_info *exception_info;/* Pointer to exception array. */
485 } RPDR, *pRPDR;
486 #define cbRPDR sizeof (RPDR)
487 #define rpdNil ((pRPDR) 0)
488 \f
489 static struct mips_got_entry *mips_elf_create_local_got_entry
490 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
491 asection *, bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
492 static bfd_boolean mips_elf_sort_hash_table_f
493 (struct mips_elf_link_hash_entry *, void *);
494 static bfd_vma mips_elf_high
495 (bfd_vma);
496 static bfd_boolean mips_elf_stub_section_p
497 (bfd *, asection *);
498 static bfd_boolean mips_elf_create_dynamic_relocation
499 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
500 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
501 bfd_vma *, asection *);
502 static hashval_t mips_elf_got_entry_hash
503 (const void *);
504 static bfd_vma mips_elf_adjust_gp
505 (bfd *, struct mips_got_info *, bfd *);
506 static struct mips_got_info *mips_elf_got_for_ibfd
507 (struct mips_got_info *, bfd *);
508
509 /* This will be used when we sort the dynamic relocation records. */
510 static bfd *reldyn_sorting_bfd;
511
512 /* Nonzero if ABFD is using the N32 ABI. */
513 #define ABI_N32_P(abfd) \
514 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
515
516 /* Nonzero if ABFD is using the N64 ABI. */
517 #define ABI_64_P(abfd) \
518 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
519
520 /* Nonzero if ABFD is using NewABI conventions. */
521 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
522
523 /* The IRIX compatibility level we are striving for. */
524 #define IRIX_COMPAT(abfd) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
526
527 /* Whether we are trying to be compatible with IRIX at all. */
528 #define SGI_COMPAT(abfd) \
529 (IRIX_COMPAT (abfd) != ict_none)
530
531 /* The name of the options section. */
532 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
533 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
534
535 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
536 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
537 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
538 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
539
540 /* Whether the section is readonly. */
541 #define MIPS_ELF_READONLY_SECTION(sec) \
542 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
543 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
544
545 /* The name of the stub section. */
546 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
547
548 /* The size of an external REL relocation. */
549 #define MIPS_ELF_REL_SIZE(abfd) \
550 (get_elf_backend_data (abfd)->s->sizeof_rel)
551
552 /* The size of an external RELA relocation. */
553 #define MIPS_ELF_RELA_SIZE(abfd) \
554 (get_elf_backend_data (abfd)->s->sizeof_rela)
555
556 /* The size of an external dynamic table entry. */
557 #define MIPS_ELF_DYN_SIZE(abfd) \
558 (get_elf_backend_data (abfd)->s->sizeof_dyn)
559
560 /* The size of a GOT entry. */
561 #define MIPS_ELF_GOT_SIZE(abfd) \
562 (get_elf_backend_data (abfd)->s->arch_size / 8)
563
564 /* The size of a symbol-table entry. */
565 #define MIPS_ELF_SYM_SIZE(abfd) \
566 (get_elf_backend_data (abfd)->s->sizeof_sym)
567
568 /* The default alignment for sections, as a power of two. */
569 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
570 (get_elf_backend_data (abfd)->s->log_file_align)
571
572 /* Get word-sized data. */
573 #define MIPS_ELF_GET_WORD(abfd, ptr) \
574 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
575
576 /* Put out word-sized data. */
577 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
578 (ABI_64_P (abfd) \
579 ? bfd_put_64 (abfd, val, ptr) \
580 : bfd_put_32 (abfd, val, ptr))
581
582 /* Add a dynamic symbol table-entry. */
583 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
584 _bfd_elf_add_dynamic_entry (info, tag, val)
585
586 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
587 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
588
589 /* Determine whether the internal relocation of index REL_IDX is REL
590 (zero) or RELA (non-zero). The assumption is that, if there are
591 two relocation sections for this section, one of them is REL and
592 the other is RELA. If the index of the relocation we're testing is
593 in range for the first relocation section, check that the external
594 relocation size is that for RELA. It is also assumed that, if
595 rel_idx is not in range for the first section, and this first
596 section contains REL relocs, then the relocation is in the second
597 section, that is RELA. */
598 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
599 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
600 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
601 > (bfd_vma)(rel_idx)) \
602 == (elf_section_data (sec)->rel_hdr.sh_entsize \
603 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
604 : sizeof (Elf32_External_Rela))))
605
606 /* The name of the dynamic relocation section. */
607 #define MIPS_ELF_REL_DYN_NAME(INFO) \
608 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
609
610 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
611 from smaller values. Start with zero, widen, *then* decrement. */
612 #define MINUS_ONE (((bfd_vma)0) - 1)
613 #define MINUS_TWO (((bfd_vma)0) - 2)
614
615 /* The number of local .got entries we reserve. */
616 #define MIPS_RESERVED_GOTNO(INFO) \
617 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
618
619 /* The offset of $gp from the beginning of the .got section. */
620 #define ELF_MIPS_GP_OFFSET(INFO) \
621 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
622
623 /* The maximum size of the GOT for it to be addressable using 16-bit
624 offsets from $gp. */
625 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
626
627 /* Instructions which appear in a stub. */
628 #define STUB_LW(abfd) \
629 ((ABI_64_P (abfd) \
630 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
631 : 0x8f998010)) /* lw t9,0x8010(gp) */
632 #define STUB_MOVE(abfd) \
633 ((ABI_64_P (abfd) \
634 ? 0x03e0782d /* daddu t7,ra */ \
635 : 0x03e07821)) /* addu t7,ra */
636 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
637 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
638 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
639 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
640 #define STUB_LI16S(abfd, VAL) \
641 ((ABI_64_P (abfd) \
642 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
643 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
644
645 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
646 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
647
648 /* The name of the dynamic interpreter. This is put in the .interp
649 section. */
650
651 #define ELF_DYNAMIC_INTERPRETER(abfd) \
652 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
653 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
654 : "/usr/lib/libc.so.1")
655
656 #ifdef BFD64
657 #define MNAME(bfd,pre,pos) \
658 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
659 #define ELF_R_SYM(bfd, i) \
660 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
661 #define ELF_R_TYPE(bfd, i) \
662 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
663 #define ELF_R_INFO(bfd, s, t) \
664 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
665 #else
666 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
667 #define ELF_R_SYM(bfd, i) \
668 (ELF32_R_SYM (i))
669 #define ELF_R_TYPE(bfd, i) \
670 (ELF32_R_TYPE (i))
671 #define ELF_R_INFO(bfd, s, t) \
672 (ELF32_R_INFO (s, t))
673 #endif
674 \f
675 /* The mips16 compiler uses a couple of special sections to handle
676 floating point arguments.
677
678 Section names that look like .mips16.fn.FNNAME contain stubs that
679 copy floating point arguments from the fp regs to the gp regs and
680 then jump to FNNAME. If any 32 bit function calls FNNAME, the
681 call should be redirected to the stub instead. If no 32 bit
682 function calls FNNAME, the stub should be discarded. We need to
683 consider any reference to the function, not just a call, because
684 if the address of the function is taken we will need the stub,
685 since the address might be passed to a 32 bit function.
686
687 Section names that look like .mips16.call.FNNAME contain stubs
688 that copy floating point arguments from the gp regs to the fp
689 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
690 then any 16 bit function that calls FNNAME should be redirected
691 to the stub instead. If FNNAME is not a 32 bit function, the
692 stub should be discarded.
693
694 .mips16.call.fp.FNNAME sections are similar, but contain stubs
695 which call FNNAME and then copy the return value from the fp regs
696 to the gp regs. These stubs store the return value in $18 while
697 calling FNNAME; any function which might call one of these stubs
698 must arrange to save $18 around the call. (This case is not
699 needed for 32 bit functions that call 16 bit functions, because
700 16 bit functions always return floating point values in both
701 $f0/$f1 and $2/$3.)
702
703 Note that in all cases FNNAME might be defined statically.
704 Therefore, FNNAME is not used literally. Instead, the relocation
705 information will indicate which symbol the section is for.
706
707 We record any stubs that we find in the symbol table. */
708
709 #define FN_STUB ".mips16.fn."
710 #define CALL_STUB ".mips16.call."
711 #define CALL_FP_STUB ".mips16.call.fp."
712 \f
713 /* The format of the first PLT entry in a VxWorks executable. */
714 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
715 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
716 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
717 0x8f390008, /* lw t9, 8(t9) */
718 0x00000000, /* nop */
719 0x03200008, /* jr t9 */
720 0x00000000 /* nop */
721 };
722
723 /* The format of subsequent PLT entries. */
724 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
725 0x10000000, /* b .PLT_resolver */
726 0x24180000, /* li t8, <pltindex> */
727 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
728 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
729 0x8f390000, /* lw t9, 0(t9) */
730 0x00000000, /* nop */
731 0x03200008, /* jr t9 */
732 0x00000000 /* nop */
733 };
734
735 /* The format of the first PLT entry in a VxWorks shared object. */
736 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
737 0x8f990008, /* lw t9, 8(gp) */
738 0x00000000, /* nop */
739 0x03200008, /* jr t9 */
740 0x00000000, /* nop */
741 0x00000000, /* nop */
742 0x00000000 /* nop */
743 };
744
745 /* The format of subsequent PLT entries. */
746 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
747 0x10000000, /* b .PLT_resolver */
748 0x24180000 /* li t8, <pltindex> */
749 };
750 \f
751 /* Look up an entry in a MIPS ELF linker hash table. */
752
753 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
754 ((struct mips_elf_link_hash_entry *) \
755 elf_link_hash_lookup (&(table)->root, (string), (create), \
756 (copy), (follow)))
757
758 /* Traverse a MIPS ELF linker hash table. */
759
760 #define mips_elf_link_hash_traverse(table, func, info) \
761 (elf_link_hash_traverse \
762 (&(table)->root, \
763 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
764 (info)))
765
766 /* Get the MIPS ELF linker hash table from a link_info structure. */
767
768 #define mips_elf_hash_table(p) \
769 ((struct mips_elf_link_hash_table *) ((p)->hash))
770
771 /* Find the base offsets for thread-local storage in this object,
772 for GD/LD and IE/LE respectively. */
773
774 #define TP_OFFSET 0x7000
775 #define DTP_OFFSET 0x8000
776
777 static bfd_vma
778 dtprel_base (struct bfd_link_info *info)
779 {
780 /* If tls_sec is NULL, we should have signalled an error already. */
781 if (elf_hash_table (info)->tls_sec == NULL)
782 return 0;
783 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
784 }
785
786 static bfd_vma
787 tprel_base (struct bfd_link_info *info)
788 {
789 /* If tls_sec is NULL, we should have signalled an error already. */
790 if (elf_hash_table (info)->tls_sec == NULL)
791 return 0;
792 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
793 }
794
795 /* Create an entry in a MIPS ELF linker hash table. */
796
797 static struct bfd_hash_entry *
798 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
799 struct bfd_hash_table *table, const char *string)
800 {
801 struct mips_elf_link_hash_entry *ret =
802 (struct mips_elf_link_hash_entry *) entry;
803
804 /* Allocate the structure if it has not already been allocated by a
805 subclass. */
806 if (ret == NULL)
807 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
808 if (ret == NULL)
809 return (struct bfd_hash_entry *) ret;
810
811 /* Call the allocation method of the superclass. */
812 ret = ((struct mips_elf_link_hash_entry *)
813 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
814 table, string));
815 if (ret != NULL)
816 {
817 /* Set local fields. */
818 memset (&ret->esym, 0, sizeof (EXTR));
819 /* We use -2 as a marker to indicate that the information has
820 not been set. -1 means there is no associated ifd. */
821 ret->esym.ifd = -2;
822 ret->possibly_dynamic_relocs = 0;
823 ret->readonly_reloc = FALSE;
824 ret->no_fn_stub = FALSE;
825 ret->fn_stub = NULL;
826 ret->need_fn_stub = FALSE;
827 ret->call_stub = NULL;
828 ret->call_fp_stub = NULL;
829 ret->forced_local = FALSE;
830 ret->is_branch_target = FALSE;
831 ret->is_relocation_target = FALSE;
832 ret->tls_type = GOT_NORMAL;
833 }
834
835 return (struct bfd_hash_entry *) ret;
836 }
837
838 bfd_boolean
839 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
840 {
841 if (!sec->used_by_bfd)
842 {
843 struct _mips_elf_section_data *sdata;
844 bfd_size_type amt = sizeof (*sdata);
845
846 sdata = bfd_zalloc (abfd, amt);
847 if (sdata == NULL)
848 return FALSE;
849 sec->used_by_bfd = sdata;
850 }
851
852 return _bfd_elf_new_section_hook (abfd, sec);
853 }
854 \f
855 /* Read ECOFF debugging information from a .mdebug section into a
856 ecoff_debug_info structure. */
857
858 bfd_boolean
859 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
860 struct ecoff_debug_info *debug)
861 {
862 HDRR *symhdr;
863 const struct ecoff_debug_swap *swap;
864 char *ext_hdr;
865
866 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
867 memset (debug, 0, sizeof (*debug));
868
869 ext_hdr = bfd_malloc (swap->external_hdr_size);
870 if (ext_hdr == NULL && swap->external_hdr_size != 0)
871 goto error_return;
872
873 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
874 swap->external_hdr_size))
875 goto error_return;
876
877 symhdr = &debug->symbolic_header;
878 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
879
880 /* The symbolic header contains absolute file offsets and sizes to
881 read. */
882 #define READ(ptr, offset, count, size, type) \
883 if (symhdr->count == 0) \
884 debug->ptr = NULL; \
885 else \
886 { \
887 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
888 debug->ptr = bfd_malloc (amt); \
889 if (debug->ptr == NULL) \
890 goto error_return; \
891 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
892 || bfd_bread (debug->ptr, amt, abfd) != amt) \
893 goto error_return; \
894 }
895
896 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
897 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
898 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
899 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
900 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
901 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
902 union aux_ext *);
903 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
904 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
905 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
906 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
907 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
908 #undef READ
909
910 debug->fdr = NULL;
911
912 return TRUE;
913
914 error_return:
915 if (ext_hdr != NULL)
916 free (ext_hdr);
917 if (debug->line != NULL)
918 free (debug->line);
919 if (debug->external_dnr != NULL)
920 free (debug->external_dnr);
921 if (debug->external_pdr != NULL)
922 free (debug->external_pdr);
923 if (debug->external_sym != NULL)
924 free (debug->external_sym);
925 if (debug->external_opt != NULL)
926 free (debug->external_opt);
927 if (debug->external_aux != NULL)
928 free (debug->external_aux);
929 if (debug->ss != NULL)
930 free (debug->ss);
931 if (debug->ssext != NULL)
932 free (debug->ssext);
933 if (debug->external_fdr != NULL)
934 free (debug->external_fdr);
935 if (debug->external_rfd != NULL)
936 free (debug->external_rfd);
937 if (debug->external_ext != NULL)
938 free (debug->external_ext);
939 return FALSE;
940 }
941 \f
942 /* Swap RPDR (runtime procedure table entry) for output. */
943
944 static void
945 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
946 {
947 H_PUT_S32 (abfd, in->adr, ex->p_adr);
948 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
949 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
950 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
951 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
952 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
953
954 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
955 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
956
957 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
958 }
959
960 /* Create a runtime procedure table from the .mdebug section. */
961
962 static bfd_boolean
963 mips_elf_create_procedure_table (void *handle, bfd *abfd,
964 struct bfd_link_info *info, asection *s,
965 struct ecoff_debug_info *debug)
966 {
967 const struct ecoff_debug_swap *swap;
968 HDRR *hdr = &debug->symbolic_header;
969 RPDR *rpdr, *rp;
970 struct rpdr_ext *erp;
971 void *rtproc;
972 struct pdr_ext *epdr;
973 struct sym_ext *esym;
974 char *ss, **sv;
975 char *str;
976 bfd_size_type size;
977 bfd_size_type count;
978 unsigned long sindex;
979 unsigned long i;
980 PDR pdr;
981 SYMR sym;
982 const char *no_name_func = _("static procedure (no name)");
983
984 epdr = NULL;
985 rpdr = NULL;
986 esym = NULL;
987 ss = NULL;
988 sv = NULL;
989
990 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
991
992 sindex = strlen (no_name_func) + 1;
993 count = hdr->ipdMax;
994 if (count > 0)
995 {
996 size = swap->external_pdr_size;
997
998 epdr = bfd_malloc (size * count);
999 if (epdr == NULL)
1000 goto error_return;
1001
1002 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1003 goto error_return;
1004
1005 size = sizeof (RPDR);
1006 rp = rpdr = bfd_malloc (size * count);
1007 if (rpdr == NULL)
1008 goto error_return;
1009
1010 size = sizeof (char *);
1011 sv = bfd_malloc (size * count);
1012 if (sv == NULL)
1013 goto error_return;
1014
1015 count = hdr->isymMax;
1016 size = swap->external_sym_size;
1017 esym = bfd_malloc (size * count);
1018 if (esym == NULL)
1019 goto error_return;
1020
1021 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1022 goto error_return;
1023
1024 count = hdr->issMax;
1025 ss = bfd_malloc (count);
1026 if (ss == NULL)
1027 goto error_return;
1028 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1029 goto error_return;
1030
1031 count = hdr->ipdMax;
1032 for (i = 0; i < (unsigned long) count; i++, rp++)
1033 {
1034 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1035 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1036 rp->adr = sym.value;
1037 rp->regmask = pdr.regmask;
1038 rp->regoffset = pdr.regoffset;
1039 rp->fregmask = pdr.fregmask;
1040 rp->fregoffset = pdr.fregoffset;
1041 rp->frameoffset = pdr.frameoffset;
1042 rp->framereg = pdr.framereg;
1043 rp->pcreg = pdr.pcreg;
1044 rp->irpss = sindex;
1045 sv[i] = ss + sym.iss;
1046 sindex += strlen (sv[i]) + 1;
1047 }
1048 }
1049
1050 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1051 size = BFD_ALIGN (size, 16);
1052 rtproc = bfd_alloc (abfd, size);
1053 if (rtproc == NULL)
1054 {
1055 mips_elf_hash_table (info)->procedure_count = 0;
1056 goto error_return;
1057 }
1058
1059 mips_elf_hash_table (info)->procedure_count = count + 2;
1060
1061 erp = rtproc;
1062 memset (erp, 0, sizeof (struct rpdr_ext));
1063 erp++;
1064 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1065 strcpy (str, no_name_func);
1066 str += strlen (no_name_func) + 1;
1067 for (i = 0; i < count; i++)
1068 {
1069 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1070 strcpy (str, sv[i]);
1071 str += strlen (sv[i]) + 1;
1072 }
1073 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1074
1075 /* Set the size and contents of .rtproc section. */
1076 s->size = size;
1077 s->contents = rtproc;
1078
1079 /* Skip this section later on (I don't think this currently
1080 matters, but someday it might). */
1081 s->map_head.link_order = NULL;
1082
1083 if (epdr != NULL)
1084 free (epdr);
1085 if (rpdr != NULL)
1086 free (rpdr);
1087 if (esym != NULL)
1088 free (esym);
1089 if (ss != NULL)
1090 free (ss);
1091 if (sv != NULL)
1092 free (sv);
1093
1094 return TRUE;
1095
1096 error_return:
1097 if (epdr != NULL)
1098 free (epdr);
1099 if (rpdr != NULL)
1100 free (rpdr);
1101 if (esym != NULL)
1102 free (esym);
1103 if (ss != NULL)
1104 free (ss);
1105 if (sv != NULL)
1106 free (sv);
1107 return FALSE;
1108 }
1109
1110 /* Check the mips16 stubs for a particular symbol, and see if we can
1111 discard them. */
1112
1113 static bfd_boolean
1114 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1115 void *data ATTRIBUTE_UNUSED)
1116 {
1117 if (h->root.root.type == bfd_link_hash_warning)
1118 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1119
1120 if (h->fn_stub != NULL
1121 && ! h->need_fn_stub)
1122 {
1123 /* We don't need the fn_stub; the only references to this symbol
1124 are 16 bit calls. Clobber the size to 0 to prevent it from
1125 being included in the link. */
1126 h->fn_stub->size = 0;
1127 h->fn_stub->flags &= ~SEC_RELOC;
1128 h->fn_stub->reloc_count = 0;
1129 h->fn_stub->flags |= SEC_EXCLUDE;
1130 }
1131
1132 if (h->call_stub != NULL
1133 && h->root.other == STO_MIPS16)
1134 {
1135 /* We don't need the call_stub; this is a 16 bit function, so
1136 calls from other 16 bit functions are OK. Clobber the size
1137 to 0 to prevent it from being included in the link. */
1138 h->call_stub->size = 0;
1139 h->call_stub->flags &= ~SEC_RELOC;
1140 h->call_stub->reloc_count = 0;
1141 h->call_stub->flags |= SEC_EXCLUDE;
1142 }
1143
1144 if (h->call_fp_stub != NULL
1145 && h->root.other == STO_MIPS16)
1146 {
1147 /* We don't need the call_stub; this is a 16 bit function, so
1148 calls from other 16 bit functions are OK. Clobber the size
1149 to 0 to prevent it from being included in the link. */
1150 h->call_fp_stub->size = 0;
1151 h->call_fp_stub->flags &= ~SEC_RELOC;
1152 h->call_fp_stub->reloc_count = 0;
1153 h->call_fp_stub->flags |= SEC_EXCLUDE;
1154 }
1155
1156 return TRUE;
1157 }
1158 \f
1159 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1160 Most mips16 instructions are 16 bits, but these instructions
1161 are 32 bits.
1162
1163 The format of these instructions is:
1164
1165 +--------------+--------------------------------+
1166 | JALX | X| Imm 20:16 | Imm 25:21 |
1167 +--------------+--------------------------------+
1168 | Immediate 15:0 |
1169 +-----------------------------------------------+
1170
1171 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1172 Note that the immediate value in the first word is swapped.
1173
1174 When producing a relocatable object file, R_MIPS16_26 is
1175 handled mostly like R_MIPS_26. In particular, the addend is
1176 stored as a straight 26-bit value in a 32-bit instruction.
1177 (gas makes life simpler for itself by never adjusting a
1178 R_MIPS16_26 reloc to be against a section, so the addend is
1179 always zero). However, the 32 bit instruction is stored as 2
1180 16-bit values, rather than a single 32-bit value. In a
1181 big-endian file, the result is the same; in a little-endian
1182 file, the two 16-bit halves of the 32 bit value are swapped.
1183 This is so that a disassembler can recognize the jal
1184 instruction.
1185
1186 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1187 instruction stored as two 16-bit values. The addend A is the
1188 contents of the targ26 field. The calculation is the same as
1189 R_MIPS_26. When storing the calculated value, reorder the
1190 immediate value as shown above, and don't forget to store the
1191 value as two 16-bit values.
1192
1193 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1194 defined as
1195
1196 big-endian:
1197 +--------+----------------------+
1198 | | |
1199 | | targ26-16 |
1200 |31 26|25 0|
1201 +--------+----------------------+
1202
1203 little-endian:
1204 +----------+------+-------------+
1205 | | | |
1206 | sub1 | | sub2 |
1207 |0 9|10 15|16 31|
1208 +----------+--------------------+
1209 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1210 ((sub1 << 16) | sub2)).
1211
1212 When producing a relocatable object file, the calculation is
1213 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1214 When producing a fully linked file, the calculation is
1215 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1216 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1217
1218 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1219 mode. A typical instruction will have a format like this:
1220
1221 +--------------+--------------------------------+
1222 | EXTEND | Imm 10:5 | Imm 15:11 |
1223 +--------------+--------------------------------+
1224 | Major | rx | ry | Imm 4:0 |
1225 +--------------+--------------------------------+
1226
1227 EXTEND is the five bit value 11110. Major is the instruction
1228 opcode.
1229
1230 This is handled exactly like R_MIPS_GPREL16, except that the
1231 addend is retrieved and stored as shown in this diagram; that
1232 is, the Imm fields above replace the V-rel16 field.
1233
1234 All we need to do here is shuffle the bits appropriately. As
1235 above, the two 16-bit halves must be swapped on a
1236 little-endian system.
1237
1238 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1239 access data when neither GP-relative nor PC-relative addressing
1240 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1241 except that the addend is retrieved and stored as shown above
1242 for R_MIPS16_GPREL.
1243 */
1244 void
1245 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1246 bfd_boolean jal_shuffle, bfd_byte *data)
1247 {
1248 bfd_vma extend, insn, val;
1249
1250 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1251 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1252 return;
1253
1254 /* Pick up the mips16 extend instruction and the real instruction. */
1255 extend = bfd_get_16 (abfd, data);
1256 insn = bfd_get_16 (abfd, data + 2);
1257 if (r_type == R_MIPS16_26)
1258 {
1259 if (jal_shuffle)
1260 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1261 | ((extend & 0x1f) << 21) | insn;
1262 else
1263 val = extend << 16 | insn;
1264 }
1265 else
1266 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1267 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1268 bfd_put_32 (abfd, val, data);
1269 }
1270
1271 void
1272 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1273 bfd_boolean jal_shuffle, bfd_byte *data)
1274 {
1275 bfd_vma extend, insn, val;
1276
1277 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1278 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1279 return;
1280
1281 val = bfd_get_32 (abfd, data);
1282 if (r_type == R_MIPS16_26)
1283 {
1284 if (jal_shuffle)
1285 {
1286 insn = val & 0xffff;
1287 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1288 | ((val >> 21) & 0x1f);
1289 }
1290 else
1291 {
1292 insn = val & 0xffff;
1293 extend = val >> 16;
1294 }
1295 }
1296 else
1297 {
1298 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1299 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1300 }
1301 bfd_put_16 (abfd, insn, data + 2);
1302 bfd_put_16 (abfd, extend, data);
1303 }
1304
1305 bfd_reloc_status_type
1306 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1307 arelent *reloc_entry, asection *input_section,
1308 bfd_boolean relocatable, void *data, bfd_vma gp)
1309 {
1310 bfd_vma relocation;
1311 bfd_signed_vma val;
1312 bfd_reloc_status_type status;
1313
1314 if (bfd_is_com_section (symbol->section))
1315 relocation = 0;
1316 else
1317 relocation = symbol->value;
1318
1319 relocation += symbol->section->output_section->vma;
1320 relocation += symbol->section->output_offset;
1321
1322 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1323 return bfd_reloc_outofrange;
1324
1325 /* Set val to the offset into the section or symbol. */
1326 val = reloc_entry->addend;
1327
1328 _bfd_mips_elf_sign_extend (val, 16);
1329
1330 /* Adjust val for the final section location and GP value. If we
1331 are producing relocatable output, we don't want to do this for
1332 an external symbol. */
1333 if (! relocatable
1334 || (symbol->flags & BSF_SECTION_SYM) != 0)
1335 val += relocation - gp;
1336
1337 if (reloc_entry->howto->partial_inplace)
1338 {
1339 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1340 (bfd_byte *) data
1341 + reloc_entry->address);
1342 if (status != bfd_reloc_ok)
1343 return status;
1344 }
1345 else
1346 reloc_entry->addend = val;
1347
1348 if (relocatable)
1349 reloc_entry->address += input_section->output_offset;
1350
1351 return bfd_reloc_ok;
1352 }
1353
1354 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1355 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1356 that contains the relocation field and DATA points to the start of
1357 INPUT_SECTION. */
1358
1359 struct mips_hi16
1360 {
1361 struct mips_hi16 *next;
1362 bfd_byte *data;
1363 asection *input_section;
1364 arelent rel;
1365 };
1366
1367 /* FIXME: This should not be a static variable. */
1368
1369 static struct mips_hi16 *mips_hi16_list;
1370
1371 /* A howto special_function for REL *HI16 relocations. We can only
1372 calculate the correct value once we've seen the partnering
1373 *LO16 relocation, so just save the information for later.
1374
1375 The ABI requires that the *LO16 immediately follow the *HI16.
1376 However, as a GNU extension, we permit an arbitrary number of
1377 *HI16s to be associated with a single *LO16. This significantly
1378 simplies the relocation handling in gcc. */
1379
1380 bfd_reloc_status_type
1381 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1382 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1383 asection *input_section, bfd *output_bfd,
1384 char **error_message ATTRIBUTE_UNUSED)
1385 {
1386 struct mips_hi16 *n;
1387
1388 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1389 return bfd_reloc_outofrange;
1390
1391 n = bfd_malloc (sizeof *n);
1392 if (n == NULL)
1393 return bfd_reloc_outofrange;
1394
1395 n->next = mips_hi16_list;
1396 n->data = data;
1397 n->input_section = input_section;
1398 n->rel = *reloc_entry;
1399 mips_hi16_list = n;
1400
1401 if (output_bfd != NULL)
1402 reloc_entry->address += input_section->output_offset;
1403
1404 return bfd_reloc_ok;
1405 }
1406
1407 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1408 like any other 16-bit relocation when applied to global symbols, but is
1409 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1410
1411 bfd_reloc_status_type
1412 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1413 void *data, asection *input_section,
1414 bfd *output_bfd, char **error_message)
1415 {
1416 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1417 || bfd_is_und_section (bfd_get_section (symbol))
1418 || bfd_is_com_section (bfd_get_section (symbol)))
1419 /* The relocation is against a global symbol. */
1420 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1421 input_section, output_bfd,
1422 error_message);
1423
1424 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1425 input_section, output_bfd, error_message);
1426 }
1427
1428 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1429 is a straightforward 16 bit inplace relocation, but we must deal with
1430 any partnering high-part relocations as well. */
1431
1432 bfd_reloc_status_type
1433 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1434 void *data, asection *input_section,
1435 bfd *output_bfd, char **error_message)
1436 {
1437 bfd_vma vallo;
1438 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1439
1440 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1441 return bfd_reloc_outofrange;
1442
1443 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1444 location);
1445 vallo = bfd_get_32 (abfd, location);
1446 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1447 location);
1448
1449 while (mips_hi16_list != NULL)
1450 {
1451 bfd_reloc_status_type ret;
1452 struct mips_hi16 *hi;
1453
1454 hi = mips_hi16_list;
1455
1456 /* R_MIPS_GOT16 relocations are something of a special case. We
1457 want to install the addend in the same way as for a R_MIPS_HI16
1458 relocation (with a rightshift of 16). However, since GOT16
1459 relocations can also be used with global symbols, their howto
1460 has a rightshift of 0. */
1461 if (hi->rel.howto->type == R_MIPS_GOT16)
1462 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1463
1464 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1465 carry or borrow will induce a change of +1 or -1 in the high part. */
1466 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1467
1468 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1469 hi->input_section, output_bfd,
1470 error_message);
1471 if (ret != bfd_reloc_ok)
1472 return ret;
1473
1474 mips_hi16_list = hi->next;
1475 free (hi);
1476 }
1477
1478 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1479 input_section, output_bfd,
1480 error_message);
1481 }
1482
1483 /* A generic howto special_function. This calculates and installs the
1484 relocation itself, thus avoiding the oft-discussed problems in
1485 bfd_perform_relocation and bfd_install_relocation. */
1486
1487 bfd_reloc_status_type
1488 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1489 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1490 asection *input_section, bfd *output_bfd,
1491 char **error_message ATTRIBUTE_UNUSED)
1492 {
1493 bfd_signed_vma val;
1494 bfd_reloc_status_type status;
1495 bfd_boolean relocatable;
1496
1497 relocatable = (output_bfd != NULL);
1498
1499 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1500 return bfd_reloc_outofrange;
1501
1502 /* Build up the field adjustment in VAL. */
1503 val = 0;
1504 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1505 {
1506 /* Either we're calculating the final field value or we have a
1507 relocation against a section symbol. Add in the section's
1508 offset or address. */
1509 val += symbol->section->output_section->vma;
1510 val += symbol->section->output_offset;
1511 }
1512
1513 if (!relocatable)
1514 {
1515 /* We're calculating the final field value. Add in the symbol's value
1516 and, if pc-relative, subtract the address of the field itself. */
1517 val += symbol->value;
1518 if (reloc_entry->howto->pc_relative)
1519 {
1520 val -= input_section->output_section->vma;
1521 val -= input_section->output_offset;
1522 val -= reloc_entry->address;
1523 }
1524 }
1525
1526 /* VAL is now the final adjustment. If we're keeping this relocation
1527 in the output file, and if the relocation uses a separate addend,
1528 we just need to add VAL to that addend. Otherwise we need to add
1529 VAL to the relocation field itself. */
1530 if (relocatable && !reloc_entry->howto->partial_inplace)
1531 reloc_entry->addend += val;
1532 else
1533 {
1534 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1535
1536 /* Add in the separate addend, if any. */
1537 val += reloc_entry->addend;
1538
1539 /* Add VAL to the relocation field. */
1540 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1541 location);
1542 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1543 location);
1544 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1545 location);
1546
1547 if (status != bfd_reloc_ok)
1548 return status;
1549 }
1550
1551 if (relocatable)
1552 reloc_entry->address += input_section->output_offset;
1553
1554 return bfd_reloc_ok;
1555 }
1556 \f
1557 /* Swap an entry in a .gptab section. Note that these routines rely
1558 on the equivalence of the two elements of the union. */
1559
1560 static void
1561 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1562 Elf32_gptab *in)
1563 {
1564 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1565 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1566 }
1567
1568 static void
1569 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1570 Elf32_External_gptab *ex)
1571 {
1572 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1573 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1574 }
1575
1576 static void
1577 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1578 Elf32_External_compact_rel *ex)
1579 {
1580 H_PUT_32 (abfd, in->id1, ex->id1);
1581 H_PUT_32 (abfd, in->num, ex->num);
1582 H_PUT_32 (abfd, in->id2, ex->id2);
1583 H_PUT_32 (abfd, in->offset, ex->offset);
1584 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1585 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1586 }
1587
1588 static void
1589 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1590 Elf32_External_crinfo *ex)
1591 {
1592 unsigned long l;
1593
1594 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1595 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1596 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1597 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1598 H_PUT_32 (abfd, l, ex->info);
1599 H_PUT_32 (abfd, in->konst, ex->konst);
1600 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1601 }
1602 \f
1603 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1604 routines swap this structure in and out. They are used outside of
1605 BFD, so they are globally visible. */
1606
1607 void
1608 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1609 Elf32_RegInfo *in)
1610 {
1611 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1612 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1613 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1614 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1615 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1616 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1617 }
1618
1619 void
1620 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1621 Elf32_External_RegInfo *ex)
1622 {
1623 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1624 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1625 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1626 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1627 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1628 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1629 }
1630
1631 /* In the 64 bit ABI, the .MIPS.options section holds register
1632 information in an Elf64_Reginfo structure. These routines swap
1633 them in and out. They are globally visible because they are used
1634 outside of BFD. These routines are here so that gas can call them
1635 without worrying about whether the 64 bit ABI has been included. */
1636
1637 void
1638 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1639 Elf64_Internal_RegInfo *in)
1640 {
1641 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1642 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1643 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1644 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1645 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1646 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1647 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1648 }
1649
1650 void
1651 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1652 Elf64_External_RegInfo *ex)
1653 {
1654 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1655 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1656 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1657 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1658 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1659 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1660 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1661 }
1662
1663 /* Swap in an options header. */
1664
1665 void
1666 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1667 Elf_Internal_Options *in)
1668 {
1669 in->kind = H_GET_8 (abfd, ex->kind);
1670 in->size = H_GET_8 (abfd, ex->size);
1671 in->section = H_GET_16 (abfd, ex->section);
1672 in->info = H_GET_32 (abfd, ex->info);
1673 }
1674
1675 /* Swap out an options header. */
1676
1677 void
1678 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1679 Elf_External_Options *ex)
1680 {
1681 H_PUT_8 (abfd, in->kind, ex->kind);
1682 H_PUT_8 (abfd, in->size, ex->size);
1683 H_PUT_16 (abfd, in->section, ex->section);
1684 H_PUT_32 (abfd, in->info, ex->info);
1685 }
1686 \f
1687 /* This function is called via qsort() to sort the dynamic relocation
1688 entries by increasing r_symndx value. */
1689
1690 static int
1691 sort_dynamic_relocs (const void *arg1, const void *arg2)
1692 {
1693 Elf_Internal_Rela int_reloc1;
1694 Elf_Internal_Rela int_reloc2;
1695
1696 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1697 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1698
1699 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1700 }
1701
1702 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1703
1704 static int
1705 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1706 const void *arg2 ATTRIBUTE_UNUSED)
1707 {
1708 #ifdef BFD64
1709 Elf_Internal_Rela int_reloc1[3];
1710 Elf_Internal_Rela int_reloc2[3];
1711
1712 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1713 (reldyn_sorting_bfd, arg1, int_reloc1);
1714 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1715 (reldyn_sorting_bfd, arg2, int_reloc2);
1716
1717 return (ELF64_R_SYM (int_reloc1[0].r_info)
1718 - ELF64_R_SYM (int_reloc2[0].r_info));
1719 #else
1720 abort ();
1721 #endif
1722 }
1723
1724
1725 /* This routine is used to write out ECOFF debugging external symbol
1726 information. It is called via mips_elf_link_hash_traverse. The
1727 ECOFF external symbol information must match the ELF external
1728 symbol information. Unfortunately, at this point we don't know
1729 whether a symbol is required by reloc information, so the two
1730 tables may wind up being different. We must sort out the external
1731 symbol information before we can set the final size of the .mdebug
1732 section, and we must set the size of the .mdebug section before we
1733 can relocate any sections, and we can't know which symbols are
1734 required by relocation until we relocate the sections.
1735 Fortunately, it is relatively unlikely that any symbol will be
1736 stripped but required by a reloc. In particular, it can not happen
1737 when generating a final executable. */
1738
1739 static bfd_boolean
1740 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1741 {
1742 struct extsym_info *einfo = data;
1743 bfd_boolean strip;
1744 asection *sec, *output_section;
1745
1746 if (h->root.root.type == bfd_link_hash_warning)
1747 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1748
1749 if (h->root.indx == -2)
1750 strip = FALSE;
1751 else if ((h->root.def_dynamic
1752 || h->root.ref_dynamic
1753 || h->root.type == bfd_link_hash_new)
1754 && !h->root.def_regular
1755 && !h->root.ref_regular)
1756 strip = TRUE;
1757 else if (einfo->info->strip == strip_all
1758 || (einfo->info->strip == strip_some
1759 && bfd_hash_lookup (einfo->info->keep_hash,
1760 h->root.root.root.string,
1761 FALSE, FALSE) == NULL))
1762 strip = TRUE;
1763 else
1764 strip = FALSE;
1765
1766 if (strip)
1767 return TRUE;
1768
1769 if (h->esym.ifd == -2)
1770 {
1771 h->esym.jmptbl = 0;
1772 h->esym.cobol_main = 0;
1773 h->esym.weakext = 0;
1774 h->esym.reserved = 0;
1775 h->esym.ifd = ifdNil;
1776 h->esym.asym.value = 0;
1777 h->esym.asym.st = stGlobal;
1778
1779 if (h->root.root.type == bfd_link_hash_undefined
1780 || h->root.root.type == bfd_link_hash_undefweak)
1781 {
1782 const char *name;
1783
1784 /* Use undefined class. Also, set class and type for some
1785 special symbols. */
1786 name = h->root.root.root.string;
1787 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1788 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1789 {
1790 h->esym.asym.sc = scData;
1791 h->esym.asym.st = stLabel;
1792 h->esym.asym.value = 0;
1793 }
1794 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1795 {
1796 h->esym.asym.sc = scAbs;
1797 h->esym.asym.st = stLabel;
1798 h->esym.asym.value =
1799 mips_elf_hash_table (einfo->info)->procedure_count;
1800 }
1801 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1802 {
1803 h->esym.asym.sc = scAbs;
1804 h->esym.asym.st = stLabel;
1805 h->esym.asym.value = elf_gp (einfo->abfd);
1806 }
1807 else
1808 h->esym.asym.sc = scUndefined;
1809 }
1810 else if (h->root.root.type != bfd_link_hash_defined
1811 && h->root.root.type != bfd_link_hash_defweak)
1812 h->esym.asym.sc = scAbs;
1813 else
1814 {
1815 const char *name;
1816
1817 sec = h->root.root.u.def.section;
1818 output_section = sec->output_section;
1819
1820 /* When making a shared library and symbol h is the one from
1821 the another shared library, OUTPUT_SECTION may be null. */
1822 if (output_section == NULL)
1823 h->esym.asym.sc = scUndefined;
1824 else
1825 {
1826 name = bfd_section_name (output_section->owner, output_section);
1827
1828 if (strcmp (name, ".text") == 0)
1829 h->esym.asym.sc = scText;
1830 else if (strcmp (name, ".data") == 0)
1831 h->esym.asym.sc = scData;
1832 else if (strcmp (name, ".sdata") == 0)
1833 h->esym.asym.sc = scSData;
1834 else if (strcmp (name, ".rodata") == 0
1835 || strcmp (name, ".rdata") == 0)
1836 h->esym.asym.sc = scRData;
1837 else if (strcmp (name, ".bss") == 0)
1838 h->esym.asym.sc = scBss;
1839 else if (strcmp (name, ".sbss") == 0)
1840 h->esym.asym.sc = scSBss;
1841 else if (strcmp (name, ".init") == 0)
1842 h->esym.asym.sc = scInit;
1843 else if (strcmp (name, ".fini") == 0)
1844 h->esym.asym.sc = scFini;
1845 else
1846 h->esym.asym.sc = scAbs;
1847 }
1848 }
1849
1850 h->esym.asym.reserved = 0;
1851 h->esym.asym.index = indexNil;
1852 }
1853
1854 if (h->root.root.type == bfd_link_hash_common)
1855 h->esym.asym.value = h->root.root.u.c.size;
1856 else if (h->root.root.type == bfd_link_hash_defined
1857 || h->root.root.type == bfd_link_hash_defweak)
1858 {
1859 if (h->esym.asym.sc == scCommon)
1860 h->esym.asym.sc = scBss;
1861 else if (h->esym.asym.sc == scSCommon)
1862 h->esym.asym.sc = scSBss;
1863
1864 sec = h->root.root.u.def.section;
1865 output_section = sec->output_section;
1866 if (output_section != NULL)
1867 h->esym.asym.value = (h->root.root.u.def.value
1868 + sec->output_offset
1869 + output_section->vma);
1870 else
1871 h->esym.asym.value = 0;
1872 }
1873 else if (h->root.needs_plt)
1874 {
1875 struct mips_elf_link_hash_entry *hd = h;
1876 bfd_boolean no_fn_stub = h->no_fn_stub;
1877
1878 while (hd->root.root.type == bfd_link_hash_indirect)
1879 {
1880 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1881 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1882 }
1883
1884 if (!no_fn_stub)
1885 {
1886 /* Set type and value for a symbol with a function stub. */
1887 h->esym.asym.st = stProc;
1888 sec = hd->root.root.u.def.section;
1889 if (sec == NULL)
1890 h->esym.asym.value = 0;
1891 else
1892 {
1893 output_section = sec->output_section;
1894 if (output_section != NULL)
1895 h->esym.asym.value = (hd->root.plt.offset
1896 + sec->output_offset
1897 + output_section->vma);
1898 else
1899 h->esym.asym.value = 0;
1900 }
1901 }
1902 }
1903
1904 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1905 h->root.root.root.string,
1906 &h->esym))
1907 {
1908 einfo->failed = TRUE;
1909 return FALSE;
1910 }
1911
1912 return TRUE;
1913 }
1914
1915 /* A comparison routine used to sort .gptab entries. */
1916
1917 static int
1918 gptab_compare (const void *p1, const void *p2)
1919 {
1920 const Elf32_gptab *a1 = p1;
1921 const Elf32_gptab *a2 = p2;
1922
1923 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1924 }
1925 \f
1926 /* Functions to manage the got entry hash table. */
1927
1928 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1929 hash number. */
1930
1931 static INLINE hashval_t
1932 mips_elf_hash_bfd_vma (bfd_vma addr)
1933 {
1934 #ifdef BFD64
1935 return addr + (addr >> 32);
1936 #else
1937 return addr;
1938 #endif
1939 }
1940
1941 /* got_entries only match if they're identical, except for gotidx, so
1942 use all fields to compute the hash, and compare the appropriate
1943 union members. */
1944
1945 static hashval_t
1946 mips_elf_got_entry_hash (const void *entry_)
1947 {
1948 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1949
1950 return entry->symndx
1951 + ((entry->tls_type & GOT_TLS_LDM) << 17)
1952 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1953 : entry->abfd->id
1954 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1955 : entry->d.h->root.root.root.hash));
1956 }
1957
1958 static int
1959 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1960 {
1961 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1962 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1963
1964 /* An LDM entry can only match another LDM entry. */
1965 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1966 return 0;
1967
1968 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1969 && (! e1->abfd ? e1->d.address == e2->d.address
1970 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1971 : e1->d.h == e2->d.h);
1972 }
1973
1974 /* multi_got_entries are still a match in the case of global objects,
1975 even if the input bfd in which they're referenced differs, so the
1976 hash computation and compare functions are adjusted
1977 accordingly. */
1978
1979 static hashval_t
1980 mips_elf_multi_got_entry_hash (const void *entry_)
1981 {
1982 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1983
1984 return entry->symndx
1985 + (! entry->abfd
1986 ? mips_elf_hash_bfd_vma (entry->d.address)
1987 : entry->symndx >= 0
1988 ? ((entry->tls_type & GOT_TLS_LDM)
1989 ? (GOT_TLS_LDM << 17)
1990 : (entry->abfd->id
1991 + mips_elf_hash_bfd_vma (entry->d.addend)))
1992 : entry->d.h->root.root.root.hash);
1993 }
1994
1995 static int
1996 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
1997 {
1998 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1999 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2000
2001 /* Any two LDM entries match. */
2002 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2003 return 1;
2004
2005 /* Nothing else matches an LDM entry. */
2006 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2007 return 0;
2008
2009 return e1->symndx == e2->symndx
2010 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2011 : e1->abfd == NULL || e2->abfd == NULL
2012 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2013 : e1->d.h == e2->d.h);
2014 }
2015 \f
2016 /* Return the dynamic relocation section. If it doesn't exist, try to
2017 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2018 if creation fails. */
2019
2020 static asection *
2021 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2022 {
2023 const char *dname;
2024 asection *sreloc;
2025 bfd *dynobj;
2026
2027 dname = MIPS_ELF_REL_DYN_NAME (info);
2028 dynobj = elf_hash_table (info)->dynobj;
2029 sreloc = bfd_get_section_by_name (dynobj, dname);
2030 if (sreloc == NULL && create_p)
2031 {
2032 sreloc = bfd_make_section_with_flags (dynobj, dname,
2033 (SEC_ALLOC
2034 | SEC_LOAD
2035 | SEC_HAS_CONTENTS
2036 | SEC_IN_MEMORY
2037 | SEC_LINKER_CREATED
2038 | SEC_READONLY));
2039 if (sreloc == NULL
2040 || ! bfd_set_section_alignment (dynobj, sreloc,
2041 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2042 return NULL;
2043 }
2044 return sreloc;
2045 }
2046
2047 /* Returns the GOT section for ABFD. */
2048
2049 static asection *
2050 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
2051 {
2052 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2053 if (sgot == NULL
2054 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2055 return NULL;
2056 return sgot;
2057 }
2058
2059 /* Returns the GOT information associated with the link indicated by
2060 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2061 section. */
2062
2063 static struct mips_got_info *
2064 mips_elf_got_info (bfd *abfd, asection **sgotp)
2065 {
2066 asection *sgot;
2067 struct mips_got_info *g;
2068
2069 sgot = mips_elf_got_section (abfd, TRUE);
2070 BFD_ASSERT (sgot != NULL);
2071 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2072 g = mips_elf_section_data (sgot)->u.got_info;
2073 BFD_ASSERT (g != NULL);
2074
2075 if (sgotp)
2076 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2077
2078 return g;
2079 }
2080
2081 /* Count the number of relocations needed for a TLS GOT entry, with
2082 access types from TLS_TYPE, and symbol H (or a local symbol if H
2083 is NULL). */
2084
2085 static int
2086 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2087 struct elf_link_hash_entry *h)
2088 {
2089 int indx = 0;
2090 int ret = 0;
2091 bfd_boolean need_relocs = FALSE;
2092 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2093
2094 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2095 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2096 indx = h->dynindx;
2097
2098 if ((info->shared || indx != 0)
2099 && (h == NULL
2100 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2101 || h->root.type != bfd_link_hash_undefweak))
2102 need_relocs = TRUE;
2103
2104 if (!need_relocs)
2105 return FALSE;
2106
2107 if (tls_type & GOT_TLS_GD)
2108 {
2109 ret++;
2110 if (indx != 0)
2111 ret++;
2112 }
2113
2114 if (tls_type & GOT_TLS_IE)
2115 ret++;
2116
2117 if ((tls_type & GOT_TLS_LDM) && info->shared)
2118 ret++;
2119
2120 return ret;
2121 }
2122
2123 /* Count the number of TLS relocations required for the GOT entry in
2124 ARG1, if it describes a local symbol. */
2125
2126 static int
2127 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2128 {
2129 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2130 struct mips_elf_count_tls_arg *arg = arg2;
2131
2132 if (entry->abfd != NULL && entry->symndx != -1)
2133 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2134
2135 return 1;
2136 }
2137
2138 /* Count the number of TLS GOT entries required for the global (or
2139 forced-local) symbol in ARG1. */
2140
2141 static int
2142 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2143 {
2144 struct mips_elf_link_hash_entry *hm
2145 = (struct mips_elf_link_hash_entry *) arg1;
2146 struct mips_elf_count_tls_arg *arg = arg2;
2147
2148 if (hm->tls_type & GOT_TLS_GD)
2149 arg->needed += 2;
2150 if (hm->tls_type & GOT_TLS_IE)
2151 arg->needed += 1;
2152
2153 return 1;
2154 }
2155
2156 /* Count the number of TLS relocations required for the global (or
2157 forced-local) symbol in ARG1. */
2158
2159 static int
2160 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2161 {
2162 struct mips_elf_link_hash_entry *hm
2163 = (struct mips_elf_link_hash_entry *) arg1;
2164 struct mips_elf_count_tls_arg *arg = arg2;
2165
2166 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2167
2168 return 1;
2169 }
2170
2171 /* Output a simple dynamic relocation into SRELOC. */
2172
2173 static void
2174 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2175 asection *sreloc,
2176 unsigned long indx,
2177 int r_type,
2178 bfd_vma offset)
2179 {
2180 Elf_Internal_Rela rel[3];
2181
2182 memset (rel, 0, sizeof (rel));
2183
2184 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2185 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2186
2187 if (ABI_64_P (output_bfd))
2188 {
2189 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2190 (output_bfd, &rel[0],
2191 (sreloc->contents
2192 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2193 }
2194 else
2195 bfd_elf32_swap_reloc_out
2196 (output_bfd, &rel[0],
2197 (sreloc->contents
2198 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2199 ++sreloc->reloc_count;
2200 }
2201
2202 /* Initialize a set of TLS GOT entries for one symbol. */
2203
2204 static void
2205 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2206 unsigned char *tls_type_p,
2207 struct bfd_link_info *info,
2208 struct mips_elf_link_hash_entry *h,
2209 bfd_vma value)
2210 {
2211 int indx;
2212 asection *sreloc, *sgot;
2213 bfd_vma offset, offset2;
2214 bfd *dynobj;
2215 bfd_boolean need_relocs = FALSE;
2216
2217 dynobj = elf_hash_table (info)->dynobj;
2218 sgot = mips_elf_got_section (dynobj, FALSE);
2219
2220 indx = 0;
2221 if (h != NULL)
2222 {
2223 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2224
2225 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2226 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2227 indx = h->root.dynindx;
2228 }
2229
2230 if (*tls_type_p & GOT_TLS_DONE)
2231 return;
2232
2233 if ((info->shared || indx != 0)
2234 && (h == NULL
2235 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2236 || h->root.type != bfd_link_hash_undefweak))
2237 need_relocs = TRUE;
2238
2239 /* MINUS_ONE means the symbol is not defined in this object. It may not
2240 be defined at all; assume that the value doesn't matter in that
2241 case. Otherwise complain if we would use the value. */
2242 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2243 || h->root.root.type == bfd_link_hash_undefweak);
2244
2245 /* Emit necessary relocations. */
2246 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2247
2248 /* General Dynamic. */
2249 if (*tls_type_p & GOT_TLS_GD)
2250 {
2251 offset = got_offset;
2252 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2253
2254 if (need_relocs)
2255 {
2256 mips_elf_output_dynamic_relocation
2257 (abfd, sreloc, indx,
2258 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2259 sgot->output_offset + sgot->output_section->vma + offset);
2260
2261 if (indx)
2262 mips_elf_output_dynamic_relocation
2263 (abfd, sreloc, indx,
2264 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2265 sgot->output_offset + sgot->output_section->vma + offset2);
2266 else
2267 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2268 sgot->contents + offset2);
2269 }
2270 else
2271 {
2272 MIPS_ELF_PUT_WORD (abfd, 1,
2273 sgot->contents + offset);
2274 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2275 sgot->contents + offset2);
2276 }
2277
2278 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2279 }
2280
2281 /* Initial Exec model. */
2282 if (*tls_type_p & GOT_TLS_IE)
2283 {
2284 offset = got_offset;
2285
2286 if (need_relocs)
2287 {
2288 if (indx == 0)
2289 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2290 sgot->contents + offset);
2291 else
2292 MIPS_ELF_PUT_WORD (abfd, 0,
2293 sgot->contents + offset);
2294
2295 mips_elf_output_dynamic_relocation
2296 (abfd, sreloc, indx,
2297 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2298 sgot->output_offset + sgot->output_section->vma + offset);
2299 }
2300 else
2301 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2302 sgot->contents + offset);
2303 }
2304
2305 if (*tls_type_p & GOT_TLS_LDM)
2306 {
2307 /* The initial offset is zero, and the LD offsets will include the
2308 bias by DTP_OFFSET. */
2309 MIPS_ELF_PUT_WORD (abfd, 0,
2310 sgot->contents + got_offset
2311 + MIPS_ELF_GOT_SIZE (abfd));
2312
2313 if (!info->shared)
2314 MIPS_ELF_PUT_WORD (abfd, 1,
2315 sgot->contents + got_offset);
2316 else
2317 mips_elf_output_dynamic_relocation
2318 (abfd, sreloc, indx,
2319 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2320 sgot->output_offset + sgot->output_section->vma + got_offset);
2321 }
2322
2323 *tls_type_p |= GOT_TLS_DONE;
2324 }
2325
2326 /* Return the GOT index to use for a relocation of type R_TYPE against
2327 a symbol accessed using TLS_TYPE models. The GOT entries for this
2328 symbol in this GOT start at GOT_INDEX. This function initializes the
2329 GOT entries and corresponding relocations. */
2330
2331 static bfd_vma
2332 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2333 int r_type, struct bfd_link_info *info,
2334 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2335 {
2336 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2337 || r_type == R_MIPS_TLS_LDM);
2338
2339 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2340
2341 if (r_type == R_MIPS_TLS_GOTTPREL)
2342 {
2343 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2344 if (*tls_type & GOT_TLS_GD)
2345 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2346 else
2347 return got_index;
2348 }
2349
2350 if (r_type == R_MIPS_TLS_GD)
2351 {
2352 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2353 return got_index;
2354 }
2355
2356 if (r_type == R_MIPS_TLS_LDM)
2357 {
2358 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2359 return got_index;
2360 }
2361
2362 return got_index;
2363 }
2364
2365 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2366 for global symbol H. .got.plt comes before the GOT, so the offset
2367 will be negative. */
2368
2369 static bfd_vma
2370 mips_elf_gotplt_index (struct bfd_link_info *info,
2371 struct elf_link_hash_entry *h)
2372 {
2373 bfd_vma plt_index, got_address, got_value;
2374 struct mips_elf_link_hash_table *htab;
2375
2376 htab = mips_elf_hash_table (info);
2377 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2378
2379 /* Calculate the index of the symbol's PLT entry. */
2380 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2381
2382 /* Calculate the address of the associated .got.plt entry. */
2383 got_address = (htab->sgotplt->output_section->vma
2384 + htab->sgotplt->output_offset
2385 + plt_index * 4);
2386
2387 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2388 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2389 + htab->root.hgot->root.u.def.section->output_offset
2390 + htab->root.hgot->root.u.def.value);
2391
2392 return got_address - got_value;
2393 }
2394
2395 /* Return the GOT offset for address VALUE, which was derived from
2396 a symbol belonging to INPUT_SECTION. If there is not yet a GOT
2397 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2398 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2399 offset can be found. */
2400
2401 static bfd_vma
2402 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2403 asection *input_section, bfd_vma value,
2404 unsigned long r_symndx,
2405 struct mips_elf_link_hash_entry *h, int r_type)
2406 {
2407 asection *sgot;
2408 struct mips_got_info *g;
2409 struct mips_got_entry *entry;
2410
2411 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2412
2413 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2414 input_section, value,
2415 r_symndx, h, r_type);
2416 if (!entry)
2417 return MINUS_ONE;
2418
2419 if (TLS_RELOC_P (r_type))
2420 {
2421 if (entry->symndx == -1 && g->next == NULL)
2422 /* A type (3) entry in the single-GOT case. We use the symbol's
2423 hash table entry to track the index. */
2424 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2425 r_type, info, h, value);
2426 else
2427 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2428 r_type, info, h, value);
2429 }
2430 else
2431 return entry->gotidx;
2432 }
2433
2434 /* Returns the GOT index for the global symbol indicated by H. */
2435
2436 static bfd_vma
2437 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2438 int r_type, struct bfd_link_info *info)
2439 {
2440 bfd_vma index;
2441 asection *sgot;
2442 struct mips_got_info *g, *gg;
2443 long global_got_dynindx = 0;
2444
2445 gg = g = mips_elf_got_info (abfd, &sgot);
2446 if (g->bfd2got && ibfd)
2447 {
2448 struct mips_got_entry e, *p;
2449
2450 BFD_ASSERT (h->dynindx >= 0);
2451
2452 g = mips_elf_got_for_ibfd (g, ibfd);
2453 if (g->next != gg || TLS_RELOC_P (r_type))
2454 {
2455 e.abfd = ibfd;
2456 e.symndx = -1;
2457 e.d.h = (struct mips_elf_link_hash_entry *)h;
2458 e.tls_type = 0;
2459
2460 p = htab_find (g->got_entries, &e);
2461
2462 BFD_ASSERT (p->gotidx > 0);
2463
2464 if (TLS_RELOC_P (r_type))
2465 {
2466 bfd_vma value = MINUS_ONE;
2467 if ((h->root.type == bfd_link_hash_defined
2468 || h->root.type == bfd_link_hash_defweak)
2469 && h->root.u.def.section->output_section)
2470 value = (h->root.u.def.value
2471 + h->root.u.def.section->output_offset
2472 + h->root.u.def.section->output_section->vma);
2473
2474 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2475 info, e.d.h, value);
2476 }
2477 else
2478 return p->gotidx;
2479 }
2480 }
2481
2482 if (gg->global_gotsym != NULL)
2483 global_got_dynindx = gg->global_gotsym->dynindx;
2484
2485 if (TLS_RELOC_P (r_type))
2486 {
2487 struct mips_elf_link_hash_entry *hm
2488 = (struct mips_elf_link_hash_entry *) h;
2489 bfd_vma value = MINUS_ONE;
2490
2491 if ((h->root.type == bfd_link_hash_defined
2492 || h->root.type == bfd_link_hash_defweak)
2493 && h->root.u.def.section->output_section)
2494 value = (h->root.u.def.value
2495 + h->root.u.def.section->output_offset
2496 + h->root.u.def.section->output_section->vma);
2497
2498 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2499 r_type, info, hm, value);
2500 }
2501 else
2502 {
2503 /* Once we determine the global GOT entry with the lowest dynamic
2504 symbol table index, we must put all dynamic symbols with greater
2505 indices into the GOT. That makes it easy to calculate the GOT
2506 offset. */
2507 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2508 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2509 * MIPS_ELF_GOT_SIZE (abfd));
2510 }
2511 BFD_ASSERT (index < sgot->size);
2512
2513 return index;
2514 }
2515
2516 /* Find a GOT page entry that points to within 32KB of VALUE, which was
2517 calculated from a symbol belonging to INPUT_SECTION. These entries
2518 are supposed to be placed at small offsets in the GOT, i.e., within
2519 32KB of GP. Return the index of the GOT entry, or -1 if no entry
2520 could be created. If OFFSETP is nonnull, use it to return the
2521 offset of the GOT entry from VALUE. */
2522
2523 static bfd_vma
2524 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2525 asection *input_section, bfd_vma value, bfd_vma *offsetp)
2526 {
2527 asection *sgot;
2528 struct mips_got_info *g;
2529 bfd_vma page, index;
2530 struct mips_got_entry *entry;
2531
2532 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2533
2534 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2535 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2536 input_section, page, 0,
2537 NULL, R_MIPS_GOT_PAGE);
2538
2539 if (!entry)
2540 return MINUS_ONE;
2541
2542 index = entry->gotidx;
2543
2544 if (offsetp)
2545 *offsetp = value - entry->d.address;
2546
2547 return index;
2548 }
2549
2550 /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE,
2551 which was calculated from a symbol belonging to INPUT_SECTION.
2552 EXTERNAL is true if the relocation was against a global symbol
2553 that has been forced local. */
2554
2555 static bfd_vma
2556 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2557 asection *input_section, bfd_vma value,
2558 bfd_boolean external)
2559 {
2560 asection *sgot;
2561 struct mips_got_info *g;
2562 struct mips_got_entry *entry;
2563
2564 /* GOT16 relocations against local symbols are followed by a LO16
2565 relocation; those against global symbols are not. Thus if the
2566 symbol was originally local, the GOT16 relocation should load the
2567 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2568 if (! external)
2569 value = mips_elf_high (value) << 16;
2570
2571 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2572
2573 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2574 input_section, value, 0,
2575 NULL, R_MIPS_GOT16);
2576 if (entry)
2577 return entry->gotidx;
2578 else
2579 return MINUS_ONE;
2580 }
2581
2582 /* Returns the offset for the entry at the INDEXth position
2583 in the GOT. */
2584
2585 static bfd_vma
2586 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2587 bfd *input_bfd, bfd_vma index)
2588 {
2589 asection *sgot;
2590 bfd_vma gp;
2591 struct mips_got_info *g;
2592
2593 g = mips_elf_got_info (dynobj, &sgot);
2594 gp = _bfd_get_gp_value (output_bfd)
2595 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2596
2597 return sgot->output_section->vma + sgot->output_offset + index - gp;
2598 }
2599
2600 /* Create and return a local GOT entry for VALUE, which was calculated
2601 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2602 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2603 instead. */
2604
2605 static struct mips_got_entry *
2606 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2607 bfd *ibfd, struct mips_got_info *gg,
2608 asection *sgot, asection *input_section,
2609 bfd_vma value, unsigned long r_symndx,
2610 struct mips_elf_link_hash_entry *h,
2611 int r_type)
2612 {
2613 struct mips_got_entry entry, **loc;
2614 struct mips_got_info *g;
2615 struct mips_elf_link_hash_table *htab;
2616
2617 htab = mips_elf_hash_table (info);
2618
2619 entry.abfd = NULL;
2620 entry.symndx = -1;
2621 entry.d.address = value;
2622 entry.tls_type = 0;
2623
2624 g = mips_elf_got_for_ibfd (gg, ibfd);
2625 if (g == NULL)
2626 {
2627 g = mips_elf_got_for_ibfd (gg, abfd);
2628 BFD_ASSERT (g != NULL);
2629 }
2630
2631 /* We might have a symbol, H, if it has been forced local. Use the
2632 global entry then. It doesn't matter whether an entry is local
2633 or global for TLS, since the dynamic linker does not
2634 automatically relocate TLS GOT entries. */
2635 BFD_ASSERT (h == NULL || h->root.forced_local);
2636 if (TLS_RELOC_P (r_type))
2637 {
2638 struct mips_got_entry *p;
2639
2640 entry.abfd = ibfd;
2641 if (r_type == R_MIPS_TLS_LDM)
2642 {
2643 entry.tls_type = GOT_TLS_LDM;
2644 entry.symndx = 0;
2645 entry.d.addend = 0;
2646 }
2647 else if (h == NULL)
2648 {
2649 entry.symndx = r_symndx;
2650 entry.d.addend = 0;
2651 }
2652 else
2653 entry.d.h = h;
2654
2655 p = (struct mips_got_entry *)
2656 htab_find (g->got_entries, &entry);
2657
2658 BFD_ASSERT (p);
2659 return p;
2660 }
2661
2662 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2663 INSERT);
2664 if (*loc)
2665 return *loc;
2666
2667 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2668 entry.tls_type = 0;
2669
2670 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2671
2672 if (! *loc)
2673 return NULL;
2674
2675 memcpy (*loc, &entry, sizeof entry);
2676
2677 if (g->assigned_gotno >= g->local_gotno)
2678 {
2679 (*loc)->gotidx = -1;
2680 /* We didn't allocate enough space in the GOT. */
2681 (*_bfd_error_handler)
2682 (_("not enough GOT space for local GOT entries"));
2683 bfd_set_error (bfd_error_bad_value);
2684 return NULL;
2685 }
2686
2687 MIPS_ELF_PUT_WORD (abfd, value,
2688 (sgot->contents + entry.gotidx));
2689
2690 /* These GOT entries need a dynamic relocation on VxWorks. Because
2691 the offset between segments is not fixed, the relocation must be
2692 against a symbol in the same segment as the original symbol.
2693 The easiest way to do this is to take INPUT_SECTION's output
2694 section and emit a relocation against its section symbol. */
2695 if (htab->is_vxworks)
2696 {
2697 Elf_Internal_Rela outrel;
2698 asection *s, *output_section;
2699 bfd_byte *loc;
2700 bfd_vma got_address;
2701 int dynindx;
2702
2703 s = mips_elf_rel_dyn_section (info, FALSE);
2704 output_section = input_section->output_section;
2705 dynindx = elf_section_data (output_section)->dynindx;
2706 got_address = (sgot->output_section->vma
2707 + sgot->output_offset
2708 + entry.gotidx);
2709
2710 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2711 outrel.r_offset = got_address;
2712 outrel.r_info = ELF32_R_INFO (dynindx, R_MIPS_32);
2713 outrel.r_addend = value - output_section->vma;
2714 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2715 }
2716
2717 return *loc;
2718 }
2719
2720 /* Sort the dynamic symbol table so that symbols that need GOT entries
2721 appear towards the end. This reduces the amount of GOT space
2722 required. MAX_LOCAL is used to set the number of local symbols
2723 known to be in the dynamic symbol table. During
2724 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2725 section symbols are added and the count is higher. */
2726
2727 static bfd_boolean
2728 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2729 {
2730 struct mips_elf_hash_sort_data hsd;
2731 struct mips_got_info *g;
2732 bfd *dynobj;
2733
2734 dynobj = elf_hash_table (info)->dynobj;
2735
2736 g = mips_elf_got_info (dynobj, NULL);
2737
2738 hsd.low = NULL;
2739 hsd.max_unref_got_dynindx =
2740 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2741 /* In the multi-got case, assigned_gotno of the master got_info
2742 indicate the number of entries that aren't referenced in the
2743 primary GOT, but that must have entries because there are
2744 dynamic relocations that reference it. Since they aren't
2745 referenced, we move them to the end of the GOT, so that they
2746 don't prevent other entries that are referenced from getting
2747 too large offsets. */
2748 - (g->next ? g->assigned_gotno : 0);
2749 hsd.max_non_got_dynindx = max_local;
2750 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2751 elf_hash_table (info)),
2752 mips_elf_sort_hash_table_f,
2753 &hsd);
2754
2755 /* There should have been enough room in the symbol table to
2756 accommodate both the GOT and non-GOT symbols. */
2757 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2758 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2759 <= elf_hash_table (info)->dynsymcount);
2760
2761 /* Now we know which dynamic symbol has the lowest dynamic symbol
2762 table index in the GOT. */
2763 g->global_gotsym = hsd.low;
2764
2765 return TRUE;
2766 }
2767
2768 /* If H needs a GOT entry, assign it the highest available dynamic
2769 index. Otherwise, assign it the lowest available dynamic
2770 index. */
2771
2772 static bfd_boolean
2773 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2774 {
2775 struct mips_elf_hash_sort_data *hsd = data;
2776
2777 if (h->root.root.type == bfd_link_hash_warning)
2778 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2779
2780 /* Symbols without dynamic symbol table entries aren't interesting
2781 at all. */
2782 if (h->root.dynindx == -1)
2783 return TRUE;
2784
2785 /* Global symbols that need GOT entries that are not explicitly
2786 referenced are marked with got offset 2. Those that are
2787 referenced get a 1, and those that don't need GOT entries get
2788 -1. */
2789 if (h->root.got.offset == 2)
2790 {
2791 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2792
2793 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2794 hsd->low = (struct elf_link_hash_entry *) h;
2795 h->root.dynindx = hsd->max_unref_got_dynindx++;
2796 }
2797 else if (h->root.got.offset != 1)
2798 h->root.dynindx = hsd->max_non_got_dynindx++;
2799 else
2800 {
2801 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2802
2803 h->root.dynindx = --hsd->min_got_dynindx;
2804 hsd->low = (struct elf_link_hash_entry *) h;
2805 }
2806
2807 return TRUE;
2808 }
2809
2810 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2811 symbol table index lower than any we've seen to date, record it for
2812 posterity. */
2813
2814 static bfd_boolean
2815 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2816 bfd *abfd, struct bfd_link_info *info,
2817 struct mips_got_info *g,
2818 unsigned char tls_flag)
2819 {
2820 struct mips_got_entry entry, **loc;
2821
2822 /* A global symbol in the GOT must also be in the dynamic symbol
2823 table. */
2824 if (h->dynindx == -1)
2825 {
2826 switch (ELF_ST_VISIBILITY (h->other))
2827 {
2828 case STV_INTERNAL:
2829 case STV_HIDDEN:
2830 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2831 break;
2832 }
2833 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2834 return FALSE;
2835 }
2836
2837 /* Make sure we have a GOT to put this entry into. */
2838 BFD_ASSERT (g != NULL);
2839
2840 entry.abfd = abfd;
2841 entry.symndx = -1;
2842 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2843 entry.tls_type = 0;
2844
2845 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2846 INSERT);
2847
2848 /* If we've already marked this entry as needing GOT space, we don't
2849 need to do it again. */
2850 if (*loc)
2851 {
2852 (*loc)->tls_type |= tls_flag;
2853 return TRUE;
2854 }
2855
2856 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2857
2858 if (! *loc)
2859 return FALSE;
2860
2861 entry.gotidx = -1;
2862 entry.tls_type = tls_flag;
2863
2864 memcpy (*loc, &entry, sizeof entry);
2865
2866 if (h->got.offset != MINUS_ONE)
2867 return TRUE;
2868
2869 /* By setting this to a value other than -1, we are indicating that
2870 there needs to be a GOT entry for H. Avoid using zero, as the
2871 generic ELF copy_indirect_symbol tests for <= 0. */
2872 if (tls_flag == 0)
2873 h->got.offset = 1;
2874
2875 return TRUE;
2876 }
2877
2878 /* Reserve space in G for a GOT entry containing the value of symbol
2879 SYMNDX in input bfd ABDF, plus ADDEND. */
2880
2881 static bfd_boolean
2882 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2883 struct mips_got_info *g,
2884 unsigned char tls_flag)
2885 {
2886 struct mips_got_entry entry, **loc;
2887
2888 entry.abfd = abfd;
2889 entry.symndx = symndx;
2890 entry.d.addend = addend;
2891 entry.tls_type = tls_flag;
2892 loc = (struct mips_got_entry **)
2893 htab_find_slot (g->got_entries, &entry, INSERT);
2894
2895 if (*loc)
2896 {
2897 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2898 {
2899 g->tls_gotno += 2;
2900 (*loc)->tls_type |= tls_flag;
2901 }
2902 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2903 {
2904 g->tls_gotno += 1;
2905 (*loc)->tls_type |= tls_flag;
2906 }
2907 return TRUE;
2908 }
2909
2910 if (tls_flag != 0)
2911 {
2912 entry.gotidx = -1;
2913 entry.tls_type = tls_flag;
2914 if (tls_flag == GOT_TLS_IE)
2915 g->tls_gotno += 1;
2916 else if (tls_flag == GOT_TLS_GD)
2917 g->tls_gotno += 2;
2918 else if (g->tls_ldm_offset == MINUS_ONE)
2919 {
2920 g->tls_ldm_offset = MINUS_TWO;
2921 g->tls_gotno += 2;
2922 }
2923 }
2924 else
2925 {
2926 entry.gotidx = g->local_gotno++;
2927 entry.tls_type = 0;
2928 }
2929
2930 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2931
2932 if (! *loc)
2933 return FALSE;
2934
2935 memcpy (*loc, &entry, sizeof entry);
2936
2937 return TRUE;
2938 }
2939 \f
2940 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2941
2942 static hashval_t
2943 mips_elf_bfd2got_entry_hash (const void *entry_)
2944 {
2945 const struct mips_elf_bfd2got_hash *entry
2946 = (struct mips_elf_bfd2got_hash *)entry_;
2947
2948 return entry->bfd->id;
2949 }
2950
2951 /* Check whether two hash entries have the same bfd. */
2952
2953 static int
2954 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2955 {
2956 const struct mips_elf_bfd2got_hash *e1
2957 = (const struct mips_elf_bfd2got_hash *)entry1;
2958 const struct mips_elf_bfd2got_hash *e2
2959 = (const struct mips_elf_bfd2got_hash *)entry2;
2960
2961 return e1->bfd == e2->bfd;
2962 }
2963
2964 /* In a multi-got link, determine the GOT to be used for IBFD. G must
2965 be the master GOT data. */
2966
2967 static struct mips_got_info *
2968 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2969 {
2970 struct mips_elf_bfd2got_hash e, *p;
2971
2972 if (! g->bfd2got)
2973 return g;
2974
2975 e.bfd = ibfd;
2976 p = htab_find (g->bfd2got, &e);
2977 return p ? p->g : NULL;
2978 }
2979
2980 /* Create one separate got for each bfd that has entries in the global
2981 got, such that we can tell how many local and global entries each
2982 bfd requires. */
2983
2984 static int
2985 mips_elf_make_got_per_bfd (void **entryp, void *p)
2986 {
2987 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2988 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2989 htab_t bfd2got = arg->bfd2got;
2990 struct mips_got_info *g;
2991 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2992 void **bfdgotp;
2993
2994 /* Find the got_info for this GOT entry's input bfd. Create one if
2995 none exists. */
2996 bfdgot_entry.bfd = entry->abfd;
2997 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2998 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2999
3000 if (bfdgot != NULL)
3001 g = bfdgot->g;
3002 else
3003 {
3004 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3005 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3006
3007 if (bfdgot == NULL)
3008 {
3009 arg->obfd = 0;
3010 return 0;
3011 }
3012
3013 *bfdgotp = bfdgot;
3014
3015 bfdgot->bfd = entry->abfd;
3016 bfdgot->g = g = (struct mips_got_info *)
3017 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3018 if (g == NULL)
3019 {
3020 arg->obfd = 0;
3021 return 0;
3022 }
3023
3024 g->global_gotsym = NULL;
3025 g->global_gotno = 0;
3026 g->local_gotno = 0;
3027 g->assigned_gotno = -1;
3028 g->tls_gotno = 0;
3029 g->tls_assigned_gotno = 0;
3030 g->tls_ldm_offset = MINUS_ONE;
3031 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3032 mips_elf_multi_got_entry_eq, NULL);
3033 if (g->got_entries == NULL)
3034 {
3035 arg->obfd = 0;
3036 return 0;
3037 }
3038
3039 g->bfd2got = NULL;
3040 g->next = NULL;
3041 }
3042
3043 /* Insert the GOT entry in the bfd's got entry hash table. */
3044 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3045 if (*entryp != NULL)
3046 return 1;
3047
3048 *entryp = entry;
3049
3050 if (entry->tls_type)
3051 {
3052 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3053 g->tls_gotno += 2;
3054 if (entry->tls_type & GOT_TLS_IE)
3055 g->tls_gotno += 1;
3056 }
3057 else if (entry->symndx >= 0 || entry->d.h->forced_local)
3058 ++g->local_gotno;
3059 else
3060 ++g->global_gotno;
3061
3062 return 1;
3063 }
3064
3065 /* Attempt to merge gots of different input bfds. Try to use as much
3066 as possible of the primary got, since it doesn't require explicit
3067 dynamic relocations, but don't use bfds that would reference global
3068 symbols out of the addressable range. Failing the primary got,
3069 attempt to merge with the current got, or finish the current got
3070 and then make make the new got current. */
3071
3072 static int
3073 mips_elf_merge_gots (void **bfd2got_, void *p)
3074 {
3075 struct mips_elf_bfd2got_hash *bfd2got
3076 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3077 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3078 unsigned int lcount = bfd2got->g->local_gotno;
3079 unsigned int gcount = bfd2got->g->global_gotno;
3080 unsigned int tcount = bfd2got->g->tls_gotno;
3081 unsigned int maxcnt = arg->max_count;
3082 bfd_boolean too_many_for_tls = FALSE;
3083
3084 /* We place TLS GOT entries after both locals and globals. The globals
3085 for the primary GOT may overflow the normal GOT size limit, so be
3086 sure not to merge a GOT which requires TLS with the primary GOT in that
3087 case. This doesn't affect non-primary GOTs. */
3088 if (tcount > 0)
3089 {
3090 unsigned int primary_total = lcount + tcount + arg->global_count;
3091 if (primary_total * MIPS_ELF_GOT_SIZE (bfd2got->bfd)
3092 >= MIPS_ELF_GOT_MAX_SIZE (arg->info))
3093 too_many_for_tls = TRUE;
3094 }
3095
3096 /* If we don't have a primary GOT and this is not too big, use it as
3097 a starting point for the primary GOT. */
3098 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3099 && ! too_many_for_tls)
3100 {
3101 arg->primary = bfd2got->g;
3102 arg->primary_count = lcount + gcount;
3103 }
3104 /* If it looks like we can merge this bfd's entries with those of
3105 the primary, merge them. The heuristics is conservative, but we
3106 don't have to squeeze it too hard. */
3107 else if (arg->primary && ! too_many_for_tls
3108 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
3109 {
3110 struct mips_got_info *g = bfd2got->g;
3111 int old_lcount = arg->primary->local_gotno;
3112 int old_gcount = arg->primary->global_gotno;
3113 int old_tcount = arg->primary->tls_gotno;
3114
3115 bfd2got->g = arg->primary;
3116
3117 htab_traverse (g->got_entries,
3118 mips_elf_make_got_per_bfd,
3119 arg);
3120 if (arg->obfd == NULL)
3121 return 0;
3122
3123 htab_delete (g->got_entries);
3124 /* We don't have to worry about releasing memory of the actual
3125 got entries, since they're all in the master got_entries hash
3126 table anyway. */
3127
3128 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
3129 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
3130 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
3131
3132 arg->primary_count = arg->primary->local_gotno
3133 + arg->primary->global_gotno + arg->primary->tls_gotno;
3134 }
3135 /* If we can merge with the last-created got, do it. */
3136 else if (arg->current
3137 && arg->current_count + lcount + gcount + tcount <= maxcnt)
3138 {
3139 struct mips_got_info *g = bfd2got->g;
3140 int old_lcount = arg->current->local_gotno;
3141 int old_gcount = arg->current->global_gotno;
3142 int old_tcount = arg->current->tls_gotno;
3143
3144 bfd2got->g = arg->current;
3145
3146 htab_traverse (g->got_entries,
3147 mips_elf_make_got_per_bfd,
3148 arg);
3149 if (arg->obfd == NULL)
3150 return 0;
3151
3152 htab_delete (g->got_entries);
3153
3154 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
3155 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
3156 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
3157
3158 arg->current_count = arg->current->local_gotno
3159 + arg->current->global_gotno + arg->current->tls_gotno;
3160 }
3161 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3162 fits; if it turns out that it doesn't, we'll get relocation
3163 overflows anyway. */
3164 else
3165 {
3166 bfd2got->g->next = arg->current;
3167 arg->current = bfd2got->g;
3168
3169 arg->current_count = lcount + gcount + 2 * tcount;
3170 }
3171
3172 return 1;
3173 }
3174
3175 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3176 is null iff there is just a single GOT. */
3177
3178 static int
3179 mips_elf_initialize_tls_index (void **entryp, void *p)
3180 {
3181 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3182 struct mips_got_info *g = p;
3183 bfd_vma next_index;
3184
3185 /* We're only interested in TLS symbols. */
3186 if (entry->tls_type == 0)
3187 return 1;
3188
3189 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3190
3191 if (entry->symndx == -1 && g->next == NULL)
3192 {
3193 /* A type (3) got entry in the single-GOT case. We use the symbol's
3194 hash table entry to track its index. */
3195 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3196 return 1;
3197 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3198 entry->d.h->tls_got_offset = next_index;
3199 }
3200 else
3201 {
3202 if (entry->tls_type & GOT_TLS_LDM)
3203 {
3204 /* There are separate mips_got_entry objects for each input bfd
3205 that requires an LDM entry. Make sure that all LDM entries in
3206 a GOT resolve to the same index. */
3207 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3208 {
3209 entry->gotidx = g->tls_ldm_offset;
3210 return 1;
3211 }
3212 g->tls_ldm_offset = next_index;
3213 }
3214 entry->gotidx = next_index;
3215 }
3216
3217 /* Account for the entries we've just allocated. */
3218 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3219 g->tls_assigned_gotno += 2;
3220 if (entry->tls_type & GOT_TLS_IE)
3221 g->tls_assigned_gotno += 1;
3222
3223 return 1;
3224 }
3225
3226 /* If passed a NULL mips_got_info in the argument, set the marker used
3227 to tell whether a global symbol needs a got entry (in the primary
3228 got) to the given VALUE.
3229
3230 If passed a pointer G to a mips_got_info in the argument (it must
3231 not be the primary GOT), compute the offset from the beginning of
3232 the (primary) GOT section to the entry in G corresponding to the
3233 global symbol. G's assigned_gotno must contain the index of the
3234 first available global GOT entry in G. VALUE must contain the size
3235 of a GOT entry in bytes. For each global GOT entry that requires a
3236 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3237 marked as not eligible for lazy resolution through a function
3238 stub. */
3239 static int
3240 mips_elf_set_global_got_offset (void **entryp, void *p)
3241 {
3242 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3243 struct mips_elf_set_global_got_offset_arg *arg
3244 = (struct mips_elf_set_global_got_offset_arg *)p;
3245 struct mips_got_info *g = arg->g;
3246
3247 if (g && entry->tls_type != GOT_NORMAL)
3248 arg->needed_relocs +=
3249 mips_tls_got_relocs (arg->info, entry->tls_type,
3250 entry->symndx == -1 ? &entry->d.h->root : NULL);
3251
3252 if (entry->abfd != NULL && entry->symndx == -1
3253 && entry->d.h->root.dynindx != -1
3254 && entry->d.h->tls_type == GOT_NORMAL)
3255 {
3256 if (g)
3257 {
3258 BFD_ASSERT (g->global_gotsym == NULL);
3259
3260 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3261 if (arg->info->shared
3262 || (elf_hash_table (arg->info)->dynamic_sections_created
3263 && entry->d.h->root.def_dynamic
3264 && !entry->d.h->root.def_regular))
3265 ++arg->needed_relocs;
3266 }
3267 else
3268 entry->d.h->root.got.offset = arg->value;
3269 }
3270
3271 return 1;
3272 }
3273
3274 /* Mark any global symbols referenced in the GOT we are iterating over
3275 as inelligible for lazy resolution stubs. */
3276 static int
3277 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3278 {
3279 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3280
3281 if (entry->abfd != NULL
3282 && entry->symndx == -1
3283 && entry->d.h->root.dynindx != -1)
3284 entry->d.h->no_fn_stub = TRUE;
3285
3286 return 1;
3287 }
3288
3289 /* Follow indirect and warning hash entries so that each got entry
3290 points to the final symbol definition. P must point to a pointer
3291 to the hash table we're traversing. Since this traversal may
3292 modify the hash table, we set this pointer to NULL to indicate
3293 we've made a potentially-destructive change to the hash table, so
3294 the traversal must be restarted. */
3295 static int
3296 mips_elf_resolve_final_got_entry (void **entryp, void *p)
3297 {
3298 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3299 htab_t got_entries = *(htab_t *)p;
3300
3301 if (entry->abfd != NULL && entry->symndx == -1)
3302 {
3303 struct mips_elf_link_hash_entry *h = entry->d.h;
3304
3305 while (h->root.root.type == bfd_link_hash_indirect
3306 || h->root.root.type == bfd_link_hash_warning)
3307 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3308
3309 if (entry->d.h == h)
3310 return 1;
3311
3312 entry->d.h = h;
3313
3314 /* If we can't find this entry with the new bfd hash, re-insert
3315 it, and get the traversal restarted. */
3316 if (! htab_find (got_entries, entry))
3317 {
3318 htab_clear_slot (got_entries, entryp);
3319 entryp = htab_find_slot (got_entries, entry, INSERT);
3320 if (! *entryp)
3321 *entryp = entry;
3322 /* Abort the traversal, since the whole table may have
3323 moved, and leave it up to the parent to restart the
3324 process. */
3325 *(htab_t *)p = NULL;
3326 return 0;
3327 }
3328 /* We might want to decrement the global_gotno count, but it's
3329 either too early or too late for that at this point. */
3330 }
3331
3332 return 1;
3333 }
3334
3335 /* Turn indirect got entries in a got_entries table into their final
3336 locations. */
3337 static void
3338 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3339 {
3340 htab_t got_entries;
3341
3342 do
3343 {
3344 got_entries = g->got_entries;
3345
3346 htab_traverse (got_entries,
3347 mips_elf_resolve_final_got_entry,
3348 &got_entries);
3349 }
3350 while (got_entries == NULL);
3351 }
3352
3353 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3354 the primary GOT. */
3355 static bfd_vma
3356 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3357 {
3358 if (g->bfd2got == NULL)
3359 return 0;
3360
3361 g = mips_elf_got_for_ibfd (g, ibfd);
3362 if (! g)
3363 return 0;
3364
3365 BFD_ASSERT (g->next);
3366
3367 g = g->next;
3368
3369 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3370 * MIPS_ELF_GOT_SIZE (abfd);
3371 }
3372
3373 /* Turn a single GOT that is too big for 16-bit addressing into
3374 a sequence of GOTs, each one 16-bit addressable. */
3375
3376 static bfd_boolean
3377 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3378 struct mips_got_info *g, asection *got,
3379 bfd_size_type pages)
3380 {
3381 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3382 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3383 struct mips_got_info *gg;
3384 unsigned int assign;
3385
3386 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3387 mips_elf_bfd2got_entry_eq, NULL);
3388 if (g->bfd2got == NULL)
3389 return FALSE;
3390
3391 got_per_bfd_arg.bfd2got = g->bfd2got;
3392 got_per_bfd_arg.obfd = abfd;
3393 got_per_bfd_arg.info = info;
3394
3395 /* Count how many GOT entries each input bfd requires, creating a
3396 map from bfd to got info while at that. */
3397 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3398 if (got_per_bfd_arg.obfd == NULL)
3399 return FALSE;
3400
3401 got_per_bfd_arg.current = NULL;
3402 got_per_bfd_arg.primary = NULL;
3403 /* Taking out PAGES entries is a worst-case estimate. We could
3404 compute the maximum number of pages that each separate input bfd
3405 uses, but it's probably not worth it. */
3406 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
3407 / MIPS_ELF_GOT_SIZE (abfd))
3408 - MIPS_RESERVED_GOTNO (info) - pages);
3409 /* The number of globals that will be included in the primary GOT.
3410 See the calls to mips_elf_set_global_got_offset below for more
3411 information. */
3412 got_per_bfd_arg.global_count = g->global_gotno;
3413
3414 /* Try to merge the GOTs of input bfds together, as long as they
3415 don't seem to exceed the maximum GOT size, choosing one of them
3416 to be the primary GOT. */
3417 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3418 if (got_per_bfd_arg.obfd == NULL)
3419 return FALSE;
3420
3421 /* If we do not find any suitable primary GOT, create an empty one. */
3422 if (got_per_bfd_arg.primary == NULL)
3423 {
3424 g->next = (struct mips_got_info *)
3425 bfd_alloc (abfd, sizeof (struct mips_got_info));
3426 if (g->next == NULL)
3427 return FALSE;
3428
3429 g->next->global_gotsym = NULL;
3430 g->next->global_gotno = 0;
3431 g->next->local_gotno = 0;
3432 g->next->tls_gotno = 0;
3433 g->next->assigned_gotno = 0;
3434 g->next->tls_assigned_gotno = 0;
3435 g->next->tls_ldm_offset = MINUS_ONE;
3436 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3437 mips_elf_multi_got_entry_eq,
3438 NULL);
3439 if (g->next->got_entries == NULL)
3440 return FALSE;
3441 g->next->bfd2got = NULL;
3442 }
3443 else
3444 g->next = got_per_bfd_arg.primary;
3445 g->next->next = got_per_bfd_arg.current;
3446
3447 /* GG is now the master GOT, and G is the primary GOT. */
3448 gg = g;
3449 g = g->next;
3450
3451 /* Map the output bfd to the primary got. That's what we're going
3452 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3453 didn't mark in check_relocs, and we want a quick way to find it.
3454 We can't just use gg->next because we're going to reverse the
3455 list. */
3456 {
3457 struct mips_elf_bfd2got_hash *bfdgot;
3458 void **bfdgotp;
3459
3460 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3461 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3462
3463 if (bfdgot == NULL)
3464 return FALSE;
3465
3466 bfdgot->bfd = abfd;
3467 bfdgot->g = g;
3468 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3469
3470 BFD_ASSERT (*bfdgotp == NULL);
3471 *bfdgotp = bfdgot;
3472 }
3473
3474 /* The IRIX dynamic linker requires every symbol that is referenced
3475 in a dynamic relocation to be present in the primary GOT, so
3476 arrange for them to appear after those that are actually
3477 referenced.
3478
3479 GNU/Linux could very well do without it, but it would slow down
3480 the dynamic linker, since it would have to resolve every dynamic
3481 symbol referenced in other GOTs more than once, without help from
3482 the cache. Also, knowing that every external symbol has a GOT
3483 helps speed up the resolution of local symbols too, so GNU/Linux
3484 follows IRIX's practice.
3485
3486 The number 2 is used by mips_elf_sort_hash_table_f to count
3487 global GOT symbols that are unreferenced in the primary GOT, with
3488 an initial dynamic index computed from gg->assigned_gotno, where
3489 the number of unreferenced global entries in the primary GOT is
3490 preserved. */
3491 if (1)
3492 {
3493 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3494 g->global_gotno = gg->global_gotno;
3495 set_got_offset_arg.value = 2;
3496 }
3497 else
3498 {
3499 /* This could be used for dynamic linkers that don't optimize
3500 symbol resolution while applying relocations so as to use
3501 primary GOT entries or assuming the symbol is locally-defined.
3502 With this code, we assign lower dynamic indices to global
3503 symbols that are not referenced in the primary GOT, so that
3504 their entries can be omitted. */
3505 gg->assigned_gotno = 0;
3506 set_got_offset_arg.value = -1;
3507 }
3508
3509 /* Reorder dynamic symbols as described above (which behavior
3510 depends on the setting of VALUE). */
3511 set_got_offset_arg.g = NULL;
3512 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3513 &set_got_offset_arg);
3514 set_got_offset_arg.value = 1;
3515 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3516 &set_got_offset_arg);
3517 if (! mips_elf_sort_hash_table (info, 1))
3518 return FALSE;
3519
3520 /* Now go through the GOTs assigning them offset ranges.
3521 [assigned_gotno, local_gotno[ will be set to the range of local
3522 entries in each GOT. We can then compute the end of a GOT by
3523 adding local_gotno to global_gotno. We reverse the list and make
3524 it circular since then we'll be able to quickly compute the
3525 beginning of a GOT, by computing the end of its predecessor. To
3526 avoid special cases for the primary GOT, while still preserving
3527 assertions that are valid for both single- and multi-got links,
3528 we arrange for the main got struct to have the right number of
3529 global entries, but set its local_gotno such that the initial
3530 offset of the primary GOT is zero. Remember that the primary GOT
3531 will become the last item in the circular linked list, so it
3532 points back to the master GOT. */
3533 gg->local_gotno = -g->global_gotno;
3534 gg->global_gotno = g->global_gotno;
3535 gg->tls_gotno = 0;
3536 assign = 0;
3537 gg->next = gg;
3538
3539 do
3540 {
3541 struct mips_got_info *gn;
3542
3543 assign += MIPS_RESERVED_GOTNO (info);
3544 g->assigned_gotno = assign;
3545 g->local_gotno += assign + pages;
3546 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3547
3548 /* Take g out of the direct list, and push it onto the reversed
3549 list that gg points to. g->next is guaranteed to be nonnull after
3550 this operation, as required by mips_elf_initialize_tls_index. */
3551 gn = g->next;
3552 g->next = gg->next;
3553 gg->next = g;
3554
3555 /* Set up any TLS entries. We always place the TLS entries after
3556 all non-TLS entries. */
3557 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3558 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3559
3560 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3561 g = gn;
3562
3563 /* Mark global symbols in every non-primary GOT as ineligible for
3564 stubs. */
3565 if (g)
3566 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3567 }
3568 while (g);
3569
3570 got->size = (gg->next->local_gotno
3571 + gg->next->global_gotno
3572 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3573
3574 return TRUE;
3575 }
3576
3577 \f
3578 /* Returns the first relocation of type r_type found, beginning with
3579 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3580
3581 static const Elf_Internal_Rela *
3582 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3583 const Elf_Internal_Rela *relocation,
3584 const Elf_Internal_Rela *relend)
3585 {
3586 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3587
3588 while (relocation < relend)
3589 {
3590 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3591 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
3592 return relocation;
3593
3594 ++relocation;
3595 }
3596
3597 /* We didn't find it. */
3598 bfd_set_error (bfd_error_bad_value);
3599 return NULL;
3600 }
3601
3602 /* Return whether a relocation is against a local symbol. */
3603
3604 static bfd_boolean
3605 mips_elf_local_relocation_p (bfd *input_bfd,
3606 const Elf_Internal_Rela *relocation,
3607 asection **local_sections,
3608 bfd_boolean check_forced)
3609 {
3610 unsigned long r_symndx;
3611 Elf_Internal_Shdr *symtab_hdr;
3612 struct mips_elf_link_hash_entry *h;
3613 size_t extsymoff;
3614
3615 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3616 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3617 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3618
3619 if (r_symndx < extsymoff)
3620 return TRUE;
3621 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3622 return TRUE;
3623
3624 if (check_forced)
3625 {
3626 /* Look up the hash table to check whether the symbol
3627 was forced local. */
3628 h = (struct mips_elf_link_hash_entry *)
3629 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3630 /* Find the real hash-table entry for this symbol. */
3631 while (h->root.root.type == bfd_link_hash_indirect
3632 || h->root.root.type == bfd_link_hash_warning)
3633 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3634 if (h->root.forced_local)
3635 return TRUE;
3636 }
3637
3638 return FALSE;
3639 }
3640 \f
3641 /* Sign-extend VALUE, which has the indicated number of BITS. */
3642
3643 bfd_vma
3644 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
3645 {
3646 if (value & ((bfd_vma) 1 << (bits - 1)))
3647 /* VALUE is negative. */
3648 value |= ((bfd_vma) - 1) << bits;
3649
3650 return value;
3651 }
3652
3653 /* Return non-zero if the indicated VALUE has overflowed the maximum
3654 range expressible by a signed number with the indicated number of
3655 BITS. */
3656
3657 static bfd_boolean
3658 mips_elf_overflow_p (bfd_vma value, int bits)
3659 {
3660 bfd_signed_vma svalue = (bfd_signed_vma) value;
3661
3662 if (svalue > (1 << (bits - 1)) - 1)
3663 /* The value is too big. */
3664 return TRUE;
3665 else if (svalue < -(1 << (bits - 1)))
3666 /* The value is too small. */
3667 return TRUE;
3668
3669 /* All is well. */
3670 return FALSE;
3671 }
3672
3673 /* Calculate the %high function. */
3674
3675 static bfd_vma
3676 mips_elf_high (bfd_vma value)
3677 {
3678 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3679 }
3680
3681 /* Calculate the %higher function. */
3682
3683 static bfd_vma
3684 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
3685 {
3686 #ifdef BFD64
3687 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3688 #else
3689 abort ();
3690 return MINUS_ONE;
3691 #endif
3692 }
3693
3694 /* Calculate the %highest function. */
3695
3696 static bfd_vma
3697 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
3698 {
3699 #ifdef BFD64
3700 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3701 #else
3702 abort ();
3703 return MINUS_ONE;
3704 #endif
3705 }
3706 \f
3707 /* Create the .compact_rel section. */
3708
3709 static bfd_boolean
3710 mips_elf_create_compact_rel_section
3711 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
3712 {
3713 flagword flags;
3714 register asection *s;
3715
3716 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3717 {
3718 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3719 | SEC_READONLY);
3720
3721 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
3722 if (s == NULL
3723 || ! bfd_set_section_alignment (abfd, s,
3724 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3725 return FALSE;
3726
3727 s->size = sizeof (Elf32_External_compact_rel);
3728 }
3729
3730 return TRUE;
3731 }
3732
3733 /* Create the .got section to hold the global offset table. */
3734
3735 static bfd_boolean
3736 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3737 bfd_boolean maybe_exclude)
3738 {
3739 flagword flags;
3740 register asection *s;
3741 struct elf_link_hash_entry *h;
3742 struct bfd_link_hash_entry *bh;
3743 struct mips_got_info *g;
3744 bfd_size_type amt;
3745 struct mips_elf_link_hash_table *htab;
3746
3747 htab = mips_elf_hash_table (info);
3748
3749 /* This function may be called more than once. */
3750 s = mips_elf_got_section (abfd, TRUE);
3751 if (s)
3752 {
3753 if (! maybe_exclude)
3754 s->flags &= ~SEC_EXCLUDE;
3755 return TRUE;
3756 }
3757
3758 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3759 | SEC_LINKER_CREATED);
3760
3761 if (maybe_exclude)
3762 flags |= SEC_EXCLUDE;
3763
3764 /* We have to use an alignment of 2**4 here because this is hardcoded
3765 in the function stub generation and in the linker script. */
3766 s = bfd_make_section_with_flags (abfd, ".got", flags);
3767 if (s == NULL
3768 || ! bfd_set_section_alignment (abfd, s, 4))
3769 return FALSE;
3770
3771 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3772 linker script because we don't want to define the symbol if we
3773 are not creating a global offset table. */
3774 bh = NULL;
3775 if (! (_bfd_generic_link_add_one_symbol
3776 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
3777 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
3778 return FALSE;
3779
3780 h = (struct elf_link_hash_entry *) bh;
3781 h->non_elf = 0;
3782 h->def_regular = 1;
3783 h->type = STT_OBJECT;
3784 elf_hash_table (info)->hgot = h;
3785
3786 if (info->shared
3787 && ! bfd_elf_link_record_dynamic_symbol (info, h))
3788 return FALSE;
3789
3790 amt = sizeof (struct mips_got_info);
3791 g = bfd_alloc (abfd, amt);
3792 if (g == NULL)
3793 return FALSE;
3794 g->global_gotsym = NULL;
3795 g->global_gotno = 0;
3796 g->tls_gotno = 0;
3797 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3798 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
3799 g->bfd2got = NULL;
3800 g->next = NULL;
3801 g->tls_ldm_offset = MINUS_ONE;
3802 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3803 mips_elf_got_entry_eq, NULL);
3804 if (g->got_entries == NULL)
3805 return FALSE;
3806 mips_elf_section_data (s)->u.got_info = g;
3807 mips_elf_section_data (s)->elf.this_hdr.sh_flags
3808 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3809
3810 /* VxWorks also needs a .got.plt section. */
3811 if (htab->is_vxworks)
3812 {
3813 s = bfd_make_section_with_flags (abfd, ".got.plt",
3814 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3815 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3816 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3817 return FALSE;
3818
3819 htab->sgotplt = s;
3820 }
3821 return TRUE;
3822 }
3823 \f
3824 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3825 __GOTT_INDEX__ symbols. These symbols are only special for
3826 shared objects; they are not used in executables. */
3827
3828 static bfd_boolean
3829 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3830 {
3831 return (mips_elf_hash_table (info)->is_vxworks
3832 && info->shared
3833 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3834 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3835 }
3836 \f
3837 /* Calculate the value produced by the RELOCATION (which comes from
3838 the INPUT_BFD). The ADDEND is the addend to use for this
3839 RELOCATION; RELOCATION->R_ADDEND is ignored.
3840
3841 The result of the relocation calculation is stored in VALUEP.
3842 REQUIRE_JALXP indicates whether or not the opcode used with this
3843 relocation must be JALX.
3844
3845 This function returns bfd_reloc_continue if the caller need take no
3846 further action regarding this relocation, bfd_reloc_notsupported if
3847 something goes dramatically wrong, bfd_reloc_overflow if an
3848 overflow occurs, and bfd_reloc_ok to indicate success. */
3849
3850 static bfd_reloc_status_type
3851 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3852 asection *input_section,
3853 struct bfd_link_info *info,
3854 const Elf_Internal_Rela *relocation,
3855 bfd_vma addend, reloc_howto_type *howto,
3856 Elf_Internal_Sym *local_syms,
3857 asection **local_sections, bfd_vma *valuep,
3858 const char **namep, bfd_boolean *require_jalxp,
3859 bfd_boolean save_addend)
3860 {
3861 /* The eventual value we will return. */
3862 bfd_vma value;
3863 /* The address of the symbol against which the relocation is
3864 occurring. */
3865 bfd_vma symbol = 0;
3866 /* The final GP value to be used for the relocatable, executable, or
3867 shared object file being produced. */
3868 bfd_vma gp = MINUS_ONE;
3869 /* The place (section offset or address) of the storage unit being
3870 relocated. */
3871 bfd_vma p;
3872 /* The value of GP used to create the relocatable object. */
3873 bfd_vma gp0 = MINUS_ONE;
3874 /* The offset into the global offset table at which the address of
3875 the relocation entry symbol, adjusted by the addend, resides
3876 during execution. */
3877 bfd_vma g = MINUS_ONE;
3878 /* The section in which the symbol referenced by the relocation is
3879 located. */
3880 asection *sec = NULL;
3881 struct mips_elf_link_hash_entry *h = NULL;
3882 /* TRUE if the symbol referred to by this relocation is a local
3883 symbol. */
3884 bfd_boolean local_p, was_local_p;
3885 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3886 bfd_boolean gp_disp_p = FALSE;
3887 /* TRUE if the symbol referred to by this relocation is
3888 "__gnu_local_gp". */
3889 bfd_boolean gnu_local_gp_p = FALSE;
3890 Elf_Internal_Shdr *symtab_hdr;
3891 size_t extsymoff;
3892 unsigned long r_symndx;
3893 int r_type;
3894 /* TRUE if overflow occurred during the calculation of the
3895 relocation value. */
3896 bfd_boolean overflowed_p;
3897 /* TRUE if this relocation refers to a MIPS16 function. */
3898 bfd_boolean target_is_16_bit_code_p = FALSE;
3899 struct mips_elf_link_hash_table *htab;
3900 bfd *dynobj;
3901
3902 dynobj = elf_hash_table (info)->dynobj;
3903 htab = mips_elf_hash_table (info);
3904
3905 /* Parse the relocation. */
3906 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3907 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3908 p = (input_section->output_section->vma
3909 + input_section->output_offset
3910 + relocation->r_offset);
3911
3912 /* Assume that there will be no overflow. */
3913 overflowed_p = FALSE;
3914
3915 /* Figure out whether or not the symbol is local, and get the offset
3916 used in the array of hash table entries. */
3917 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3918 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3919 local_sections, FALSE);
3920 was_local_p = local_p;
3921 if (! elf_bad_symtab (input_bfd))
3922 extsymoff = symtab_hdr->sh_info;
3923 else
3924 {
3925 /* The symbol table does not follow the rule that local symbols
3926 must come before globals. */
3927 extsymoff = 0;
3928 }
3929
3930 /* Figure out the value of the symbol. */
3931 if (local_p)
3932 {
3933 Elf_Internal_Sym *sym;
3934
3935 sym = local_syms + r_symndx;
3936 sec = local_sections[r_symndx];
3937
3938 symbol = sec->output_section->vma + sec->output_offset;
3939 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3940 || (sec->flags & SEC_MERGE))
3941 symbol += sym->st_value;
3942 if ((sec->flags & SEC_MERGE)
3943 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3944 {
3945 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3946 addend -= symbol;
3947 addend += sec->output_section->vma + sec->output_offset;
3948 }
3949
3950 /* MIPS16 text labels should be treated as odd. */
3951 if (sym->st_other == STO_MIPS16)
3952 ++symbol;
3953
3954 /* Record the name of this symbol, for our caller. */
3955 *namep = bfd_elf_string_from_elf_section (input_bfd,
3956 symtab_hdr->sh_link,
3957 sym->st_name);
3958 if (*namep == '\0')
3959 *namep = bfd_section_name (input_bfd, sec);
3960
3961 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3962 }
3963 else
3964 {
3965 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3966
3967 /* For global symbols we look up the symbol in the hash-table. */
3968 h = ((struct mips_elf_link_hash_entry *)
3969 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3970 /* Find the real hash-table entry for this symbol. */
3971 while (h->root.root.type == bfd_link_hash_indirect
3972 || h->root.root.type == bfd_link_hash_warning)
3973 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3974
3975 /* Record the name of this symbol, for our caller. */
3976 *namep = h->root.root.root.string;
3977
3978 /* See if this is the special _gp_disp symbol. Note that such a
3979 symbol must always be a global symbol. */
3980 if (strcmp (*namep, "_gp_disp") == 0
3981 && ! NEWABI_P (input_bfd))
3982 {
3983 /* Relocations against _gp_disp are permitted only with
3984 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3985 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3986 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
3987 return bfd_reloc_notsupported;
3988
3989 gp_disp_p = TRUE;
3990 }
3991 /* See if this is the special _gp symbol. Note that such a
3992 symbol must always be a global symbol. */
3993 else if (strcmp (*namep, "__gnu_local_gp") == 0)
3994 gnu_local_gp_p = TRUE;
3995
3996
3997 /* If this symbol is defined, calculate its address. Note that
3998 _gp_disp is a magic symbol, always implicitly defined by the
3999 linker, so it's inappropriate to check to see whether or not
4000 its defined. */
4001 else if ((h->root.root.type == bfd_link_hash_defined
4002 || h->root.root.type == bfd_link_hash_defweak)
4003 && h->root.root.u.def.section)
4004 {
4005 sec = h->root.root.u.def.section;
4006 if (sec->output_section)
4007 symbol = (h->root.root.u.def.value
4008 + sec->output_section->vma
4009 + sec->output_offset);
4010 else
4011 symbol = h->root.root.u.def.value;
4012 }
4013 else if (h->root.root.type == bfd_link_hash_undefweak)
4014 /* We allow relocations against undefined weak symbols, giving
4015 it the value zero, so that you can undefined weak functions
4016 and check to see if they exist by looking at their
4017 addresses. */
4018 symbol = 0;
4019 else if (info->unresolved_syms_in_objects == RM_IGNORE
4020 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4021 symbol = 0;
4022 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4023 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4024 {
4025 /* If this is a dynamic link, we should have created a
4026 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4027 in in _bfd_mips_elf_create_dynamic_sections.
4028 Otherwise, we should define the symbol with a value of 0.
4029 FIXME: It should probably get into the symbol table
4030 somehow as well. */
4031 BFD_ASSERT (! info->shared);
4032 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4033 symbol = 0;
4034 }
4035 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4036 {
4037 /* This is an optional symbol - an Irix specific extension to the
4038 ELF spec. Ignore it for now.
4039 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4040 than simply ignoring them, but we do not handle this for now.
4041 For information see the "64-bit ELF Object File Specification"
4042 which is available from here:
4043 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4044 symbol = 0;
4045 }
4046 else
4047 {
4048 if (! ((*info->callbacks->undefined_symbol)
4049 (info, h->root.root.root.string, input_bfd,
4050 input_section, relocation->r_offset,
4051 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4052 || ELF_ST_VISIBILITY (h->root.other))))
4053 return bfd_reloc_undefined;
4054 symbol = 0;
4055 }
4056
4057 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4058 }
4059
4060 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4061 need to redirect the call to the stub, unless we're already *in*
4062 a stub. */
4063 if (r_type != R_MIPS16_26 && !info->relocatable
4064 && ((h != NULL && h->fn_stub != NULL)
4065 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
4066 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4067 && !mips_elf_stub_section_p (input_bfd, input_section))
4068 {
4069 /* This is a 32- or 64-bit call to a 16-bit function. We should
4070 have already noticed that we were going to need the
4071 stub. */
4072 if (local_p)
4073 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4074 else
4075 {
4076 BFD_ASSERT (h->need_fn_stub);
4077 sec = h->fn_stub;
4078 }
4079
4080 symbol = sec->output_section->vma + sec->output_offset;
4081 /* The target is 16-bit, but the stub isn't. */
4082 target_is_16_bit_code_p = FALSE;
4083 }
4084 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4085 need to redirect the call to the stub. */
4086 else if (r_type == R_MIPS16_26 && !info->relocatable
4087 && h != NULL
4088 && (h->call_stub != NULL || h->call_fp_stub != NULL)
4089 && !target_is_16_bit_code_p)
4090 {
4091 /* If both call_stub and call_fp_stub are defined, we can figure
4092 out which one to use by seeing which one appears in the input
4093 file. */
4094 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4095 {
4096 asection *o;
4097
4098 sec = NULL;
4099 for (o = input_bfd->sections; o != NULL; o = o->next)
4100 {
4101 if (CONST_STRNEQ (bfd_get_section_name (input_bfd, o),
4102 CALL_FP_STUB))
4103 {
4104 sec = h->call_fp_stub;
4105 break;
4106 }
4107 }
4108 if (sec == NULL)
4109 sec = h->call_stub;
4110 }
4111 else if (h->call_stub != NULL)
4112 sec = h->call_stub;
4113 else
4114 sec = h->call_fp_stub;
4115
4116 BFD_ASSERT (sec->size > 0);
4117 symbol = sec->output_section->vma + sec->output_offset;
4118 }
4119
4120 /* Calls from 16-bit code to 32-bit code and vice versa require the
4121 special jalx instruction. */
4122 *require_jalxp = (!info->relocatable
4123 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4124 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4125
4126 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4127 local_sections, TRUE);
4128
4129 /* If we haven't already determined the GOT offset, or the GP value,
4130 and we're going to need it, get it now. */
4131 switch (r_type)
4132 {
4133 case R_MIPS_GOT_PAGE:
4134 case R_MIPS_GOT_OFST:
4135 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4136 bind locally. */
4137 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
4138 if (local_p || r_type == R_MIPS_GOT_OFST)
4139 break;
4140 /* Fall through. */
4141
4142 case R_MIPS_CALL16:
4143 case R_MIPS_GOT16:
4144 case R_MIPS_GOT_DISP:
4145 case R_MIPS_GOT_HI16:
4146 case R_MIPS_CALL_HI16:
4147 case R_MIPS_GOT_LO16:
4148 case R_MIPS_CALL_LO16:
4149 case R_MIPS_TLS_GD:
4150 case R_MIPS_TLS_GOTTPREL:
4151 case R_MIPS_TLS_LDM:
4152 /* Find the index into the GOT where this value is located. */
4153 if (r_type == R_MIPS_TLS_LDM)
4154 {
4155 g = mips_elf_local_got_index (abfd, input_bfd, info,
4156 sec, 0, 0, NULL, r_type);
4157 if (g == MINUS_ONE)
4158 return bfd_reloc_outofrange;
4159 }
4160 else if (!local_p)
4161 {
4162 /* On VxWorks, CALL relocations should refer to the .got.plt
4163 entry, which is initialized to point at the PLT stub. */
4164 if (htab->is_vxworks
4165 && (r_type == R_MIPS_CALL_HI16
4166 || r_type == R_MIPS_CALL_LO16
4167 || r_type == R_MIPS_CALL16))
4168 {
4169 BFD_ASSERT (addend == 0);
4170 BFD_ASSERT (h->root.needs_plt);
4171 g = mips_elf_gotplt_index (info, &h->root);
4172 }
4173 else
4174 {
4175 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4176 GOT_PAGE relocation that decays to GOT_DISP because the
4177 symbol turns out to be global. The addend is then added
4178 as GOT_OFST. */
4179 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4180 g = mips_elf_global_got_index (dynobj, input_bfd,
4181 &h->root, r_type, info);
4182 if (h->tls_type == GOT_NORMAL
4183 && (! elf_hash_table(info)->dynamic_sections_created
4184 || (info->shared
4185 && (info->symbolic || h->root.forced_local)
4186 && h->root.def_regular)))
4187 {
4188 /* This is a static link or a -Bsymbolic link. The
4189 symbol is defined locally, or was forced to be local.
4190 We must initialize this entry in the GOT. */
4191 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4192 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4193 }
4194 }
4195 }
4196 else if (!htab->is_vxworks
4197 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4198 /* The calculation below does not involve "g". */
4199 break;
4200 else
4201 {
4202 g = mips_elf_local_got_index (abfd, input_bfd, info, sec,
4203 symbol + addend, r_symndx, h, r_type);
4204 if (g == MINUS_ONE)
4205 return bfd_reloc_outofrange;
4206 }
4207
4208 /* Convert GOT indices to actual offsets. */
4209 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
4210 break;
4211
4212 case R_MIPS_HI16:
4213 case R_MIPS_LO16:
4214 case R_MIPS_GPREL16:
4215 case R_MIPS_GPREL32:
4216 case R_MIPS_LITERAL:
4217 case R_MIPS16_HI16:
4218 case R_MIPS16_LO16:
4219 case R_MIPS16_GPREL:
4220 gp0 = _bfd_get_gp_value (input_bfd);
4221 gp = _bfd_get_gp_value (abfd);
4222 if (dynobj)
4223 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
4224 input_bfd);
4225 break;
4226
4227 default:
4228 break;
4229 }
4230
4231 if (gnu_local_gp_p)
4232 symbol = gp;
4233
4234 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4235 symbols are resolved by the loader. Add them to .rela.dyn. */
4236 if (h != NULL && is_gott_symbol (info, &h->root))
4237 {
4238 Elf_Internal_Rela outrel;
4239 bfd_byte *loc;
4240 asection *s;
4241
4242 s = mips_elf_rel_dyn_section (info, FALSE);
4243 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4244
4245 outrel.r_offset = (input_section->output_section->vma
4246 + input_section->output_offset
4247 + relocation->r_offset);
4248 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4249 outrel.r_addend = addend;
4250 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4251 *valuep = 0;
4252 return bfd_reloc_ok;
4253 }
4254
4255 /* Figure out what kind of relocation is being performed. */
4256 switch (r_type)
4257 {
4258 case R_MIPS_NONE:
4259 return bfd_reloc_continue;
4260
4261 case R_MIPS_16:
4262 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
4263 overflowed_p = mips_elf_overflow_p (value, 16);
4264 break;
4265
4266 case R_MIPS_32:
4267 case R_MIPS_REL32:
4268 case R_MIPS_64:
4269 if ((info->shared
4270 || (!htab->is_vxworks
4271 && htab->root.dynamic_sections_created
4272 && h != NULL
4273 && h->root.def_dynamic
4274 && !h->root.def_regular))
4275 && r_symndx != 0
4276 && (input_section->flags & SEC_ALLOC) != 0)
4277 {
4278 /* If we're creating a shared library, or this relocation is
4279 against a symbol in a shared library, then we can't know
4280 where the symbol will end up. So, we create a relocation
4281 record in the output, and leave the job up to the dynamic
4282 linker.
4283
4284 In VxWorks executables, references to external symbols
4285 are handled using copy relocs or PLT stubs, so there's
4286 no need to add a dynamic relocation here. */
4287 value = addend;
4288 if (!mips_elf_create_dynamic_relocation (abfd,
4289 info,
4290 relocation,
4291 h,
4292 sec,
4293 symbol,
4294 &value,
4295 input_section))
4296 return bfd_reloc_undefined;
4297 }
4298 else
4299 {
4300 if (r_type != R_MIPS_REL32)
4301 value = symbol + addend;
4302 else
4303 value = addend;
4304 }
4305 value &= howto->dst_mask;
4306 break;
4307
4308 case R_MIPS_PC32:
4309 value = symbol + addend - p;
4310 value &= howto->dst_mask;
4311 break;
4312
4313 case R_MIPS16_26:
4314 /* The calculation for R_MIPS16_26 is just the same as for an
4315 R_MIPS_26. It's only the storage of the relocated field into
4316 the output file that's different. That's handled in
4317 mips_elf_perform_relocation. So, we just fall through to the
4318 R_MIPS_26 case here. */
4319 case R_MIPS_26:
4320 if (local_p)
4321 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4322 else
4323 {
4324 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4325 if (h->root.root.type != bfd_link_hash_undefweak)
4326 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4327 }
4328 value &= howto->dst_mask;
4329 break;
4330
4331 case R_MIPS_TLS_DTPREL_HI16:
4332 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4333 & howto->dst_mask);
4334 break;
4335
4336 case R_MIPS_TLS_DTPREL_LO16:
4337 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4338 break;
4339
4340 case R_MIPS_TLS_TPREL_HI16:
4341 value = (mips_elf_high (addend + symbol - tprel_base (info))
4342 & howto->dst_mask);
4343 break;
4344
4345 case R_MIPS_TLS_TPREL_LO16:
4346 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4347 break;
4348
4349 case R_MIPS_HI16:
4350 case R_MIPS16_HI16:
4351 if (!gp_disp_p)
4352 {
4353 value = mips_elf_high (addend + symbol);
4354 value &= howto->dst_mask;
4355 }
4356 else
4357 {
4358 /* For MIPS16 ABI code we generate this sequence
4359 0: li $v0,%hi(_gp_disp)
4360 4: addiupc $v1,%lo(_gp_disp)
4361 8: sll $v0,16
4362 12: addu $v0,$v1
4363 14: move $gp,$v0
4364 So the offsets of hi and lo relocs are the same, but the
4365 $pc is four higher than $t9 would be, so reduce
4366 both reloc addends by 4. */
4367 if (r_type == R_MIPS16_HI16)
4368 value = mips_elf_high (addend + gp - p - 4);
4369 else
4370 value = mips_elf_high (addend + gp - p);
4371 overflowed_p = mips_elf_overflow_p (value, 16);
4372 }
4373 break;
4374
4375 case R_MIPS_LO16:
4376 case R_MIPS16_LO16:
4377 if (!gp_disp_p)
4378 value = (symbol + addend) & howto->dst_mask;
4379 else
4380 {
4381 /* See the comment for R_MIPS16_HI16 above for the reason
4382 for this conditional. */
4383 if (r_type == R_MIPS16_LO16)
4384 value = addend + gp - p;
4385 else
4386 value = addend + gp - p + 4;
4387 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4388 for overflow. But, on, say, IRIX5, relocations against
4389 _gp_disp are normally generated from the .cpload
4390 pseudo-op. It generates code that normally looks like
4391 this:
4392
4393 lui $gp,%hi(_gp_disp)
4394 addiu $gp,$gp,%lo(_gp_disp)
4395 addu $gp,$gp,$t9
4396
4397 Here $t9 holds the address of the function being called,
4398 as required by the MIPS ELF ABI. The R_MIPS_LO16
4399 relocation can easily overflow in this situation, but the
4400 R_MIPS_HI16 relocation will handle the overflow.
4401 Therefore, we consider this a bug in the MIPS ABI, and do
4402 not check for overflow here. */
4403 }
4404 break;
4405
4406 case R_MIPS_LITERAL:
4407 /* Because we don't merge literal sections, we can handle this
4408 just like R_MIPS_GPREL16. In the long run, we should merge
4409 shared literals, and then we will need to additional work
4410 here. */
4411
4412 /* Fall through. */
4413
4414 case R_MIPS16_GPREL:
4415 /* The R_MIPS16_GPREL performs the same calculation as
4416 R_MIPS_GPREL16, but stores the relocated bits in a different
4417 order. We don't need to do anything special here; the
4418 differences are handled in mips_elf_perform_relocation. */
4419 case R_MIPS_GPREL16:
4420 /* Only sign-extend the addend if it was extracted from the
4421 instruction. If the addend was separate, leave it alone,
4422 otherwise we may lose significant bits. */
4423 if (howto->partial_inplace)
4424 addend = _bfd_mips_elf_sign_extend (addend, 16);
4425 value = symbol + addend - gp;
4426 /* If the symbol was local, any earlier relocatable links will
4427 have adjusted its addend with the gp offset, so compensate
4428 for that now. Don't do it for symbols forced local in this
4429 link, though, since they won't have had the gp offset applied
4430 to them before. */
4431 if (was_local_p)
4432 value += gp0;
4433 overflowed_p = mips_elf_overflow_p (value, 16);
4434 break;
4435
4436 case R_MIPS_GOT16:
4437 case R_MIPS_CALL16:
4438 /* VxWorks does not have separate local and global semantics for
4439 R_MIPS_GOT16; every relocation evaluates to "G". */
4440 if (!htab->is_vxworks && local_p)
4441 {
4442 bfd_boolean forced;
4443
4444 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4445 local_sections, FALSE);
4446 value = mips_elf_got16_entry (abfd, input_bfd, info, sec,
4447 symbol + addend, forced);
4448 if (value == MINUS_ONE)
4449 return bfd_reloc_outofrange;
4450 value
4451 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4452 overflowed_p = mips_elf_overflow_p (value, 16);
4453 break;
4454 }
4455
4456 /* Fall through. */
4457
4458 case R_MIPS_TLS_GD:
4459 case R_MIPS_TLS_GOTTPREL:
4460 case R_MIPS_TLS_LDM:
4461 case R_MIPS_GOT_DISP:
4462 got_disp:
4463 value = g;
4464 overflowed_p = mips_elf_overflow_p (value, 16);
4465 break;
4466
4467 case R_MIPS_GPREL32:
4468 value = (addend + symbol + gp0 - gp);
4469 if (!save_addend)
4470 value &= howto->dst_mask;
4471 break;
4472
4473 case R_MIPS_PC16:
4474 case R_MIPS_GNU_REL16_S2:
4475 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4476 overflowed_p = mips_elf_overflow_p (value, 18);
4477 value >>= howto->rightshift;
4478 value &= howto->dst_mask;
4479 break;
4480
4481 case R_MIPS_GOT_HI16:
4482 case R_MIPS_CALL_HI16:
4483 /* We're allowed to handle these two relocations identically.
4484 The dynamic linker is allowed to handle the CALL relocations
4485 differently by creating a lazy evaluation stub. */
4486 value = g;
4487 value = mips_elf_high (value);
4488 value &= howto->dst_mask;
4489 break;
4490
4491 case R_MIPS_GOT_LO16:
4492 case R_MIPS_CALL_LO16:
4493 value = g & howto->dst_mask;
4494 break;
4495
4496 case R_MIPS_GOT_PAGE:
4497 /* GOT_PAGE relocations that reference non-local symbols decay
4498 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4499 0. */
4500 if (! local_p)
4501 goto got_disp;
4502 value = mips_elf_got_page (abfd, input_bfd, info, sec,
4503 symbol + addend, NULL);
4504 if (value == MINUS_ONE)
4505 return bfd_reloc_outofrange;
4506 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4507 overflowed_p = mips_elf_overflow_p (value, 16);
4508 break;
4509
4510 case R_MIPS_GOT_OFST:
4511 if (local_p)
4512 mips_elf_got_page (abfd, input_bfd, info, sec,
4513 symbol + addend, &value);
4514 else
4515 value = addend;
4516 overflowed_p = mips_elf_overflow_p (value, 16);
4517 break;
4518
4519 case R_MIPS_SUB:
4520 value = symbol - addend;
4521 value &= howto->dst_mask;
4522 break;
4523
4524 case R_MIPS_HIGHER:
4525 value = mips_elf_higher (addend + symbol);
4526 value &= howto->dst_mask;
4527 break;
4528
4529 case R_MIPS_HIGHEST:
4530 value = mips_elf_highest (addend + symbol);
4531 value &= howto->dst_mask;
4532 break;
4533
4534 case R_MIPS_SCN_DISP:
4535 value = symbol + addend - sec->output_offset;
4536 value &= howto->dst_mask;
4537 break;
4538
4539 case R_MIPS_JALR:
4540 /* This relocation is only a hint. In some cases, we optimize
4541 it into a bal instruction. But we don't try to optimize
4542 branches to the PLT; that will wind up wasting time. */
4543 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4544 return bfd_reloc_continue;
4545 value = symbol + addend;
4546 break;
4547
4548 case R_MIPS_PJUMP:
4549 case R_MIPS_GNU_VTINHERIT:
4550 case R_MIPS_GNU_VTENTRY:
4551 /* We don't do anything with these at present. */
4552 return bfd_reloc_continue;
4553
4554 default:
4555 /* An unrecognized relocation type. */
4556 return bfd_reloc_notsupported;
4557 }
4558
4559 /* Store the VALUE for our caller. */
4560 *valuep = value;
4561 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4562 }
4563
4564 /* Obtain the field relocated by RELOCATION. */
4565
4566 static bfd_vma
4567 mips_elf_obtain_contents (reloc_howto_type *howto,
4568 const Elf_Internal_Rela *relocation,
4569 bfd *input_bfd, bfd_byte *contents)
4570 {
4571 bfd_vma x;
4572 bfd_byte *location = contents + relocation->r_offset;
4573
4574 /* Obtain the bytes. */
4575 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4576
4577 return x;
4578 }
4579
4580 /* It has been determined that the result of the RELOCATION is the
4581 VALUE. Use HOWTO to place VALUE into the output file at the
4582 appropriate position. The SECTION is the section to which the
4583 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4584 for the relocation must be either JAL or JALX, and it is
4585 unconditionally converted to JALX.
4586
4587 Returns FALSE if anything goes wrong. */
4588
4589 static bfd_boolean
4590 mips_elf_perform_relocation (struct bfd_link_info *info,
4591 reloc_howto_type *howto,
4592 const Elf_Internal_Rela *relocation,
4593 bfd_vma value, bfd *input_bfd,
4594 asection *input_section, bfd_byte *contents,
4595 bfd_boolean require_jalx)
4596 {
4597 bfd_vma x;
4598 bfd_byte *location;
4599 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4600
4601 /* Figure out where the relocation is occurring. */
4602 location = contents + relocation->r_offset;
4603
4604 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4605
4606 /* Obtain the current value. */
4607 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4608
4609 /* Clear the field we are setting. */
4610 x &= ~howto->dst_mask;
4611
4612 /* Set the field. */
4613 x |= (value & howto->dst_mask);
4614
4615 /* If required, turn JAL into JALX. */
4616 if (require_jalx)
4617 {
4618 bfd_boolean ok;
4619 bfd_vma opcode = x >> 26;
4620 bfd_vma jalx_opcode;
4621
4622 /* Check to see if the opcode is already JAL or JALX. */
4623 if (r_type == R_MIPS16_26)
4624 {
4625 ok = ((opcode == 0x6) || (opcode == 0x7));
4626 jalx_opcode = 0x7;
4627 }
4628 else
4629 {
4630 ok = ((opcode == 0x3) || (opcode == 0x1d));
4631 jalx_opcode = 0x1d;
4632 }
4633
4634 /* If the opcode is not JAL or JALX, there's a problem. */
4635 if (!ok)
4636 {
4637 (*_bfd_error_handler)
4638 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4639 input_bfd,
4640 input_section,
4641 (unsigned long) relocation->r_offset);
4642 bfd_set_error (bfd_error_bad_value);
4643 return FALSE;
4644 }
4645
4646 /* Make this the JALX opcode. */
4647 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4648 }
4649
4650 /* On the RM9000, bal is faster than jal, because bal uses branch
4651 prediction hardware. If we are linking for the RM9000, and we
4652 see jal, and bal fits, use it instead. Note that this
4653 transformation should be safe for all architectures. */
4654 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4655 && !info->relocatable
4656 && !require_jalx
4657 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4658 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4659 {
4660 bfd_vma addr;
4661 bfd_vma dest;
4662 bfd_signed_vma off;
4663
4664 addr = (input_section->output_section->vma
4665 + input_section->output_offset
4666 + relocation->r_offset
4667 + 4);
4668 if (r_type == R_MIPS_26)
4669 dest = (value << 2) | ((addr >> 28) << 28);
4670 else
4671 dest = value;
4672 off = dest - addr;
4673 if (off <= 0x1ffff && off >= -0x20000)
4674 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4675 }
4676
4677 /* Put the value into the output. */
4678 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
4679
4680 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4681 location);
4682
4683 return TRUE;
4684 }
4685
4686 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4687
4688 static bfd_boolean
4689 mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
4690 {
4691 const char *name = bfd_get_section_name (abfd, section);
4692
4693 return (CONST_STRNEQ (name, FN_STUB)
4694 || CONST_STRNEQ (name, CALL_STUB)
4695 || CONST_STRNEQ (name, CALL_FP_STUB));
4696 }
4697 \f
4698 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4699
4700 static void
4701 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4702 unsigned int n)
4703 {
4704 asection *s;
4705 struct mips_elf_link_hash_table *htab;
4706
4707 htab = mips_elf_hash_table (info);
4708 s = mips_elf_rel_dyn_section (info, FALSE);
4709 BFD_ASSERT (s != NULL);
4710
4711 if (htab->is_vxworks)
4712 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4713 else
4714 {
4715 if (s->size == 0)
4716 {
4717 /* Make room for a null element. */
4718 s->size += MIPS_ELF_REL_SIZE (abfd);
4719 ++s->reloc_count;
4720 }
4721 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4722 }
4723 }
4724
4725 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4726 is the original relocation, which is now being transformed into a
4727 dynamic relocation. The ADDENDP is adjusted if necessary; the
4728 caller should store the result in place of the original addend. */
4729
4730 static bfd_boolean
4731 mips_elf_create_dynamic_relocation (bfd *output_bfd,
4732 struct bfd_link_info *info,
4733 const Elf_Internal_Rela *rel,
4734 struct mips_elf_link_hash_entry *h,
4735 asection *sec, bfd_vma symbol,
4736 bfd_vma *addendp, asection *input_section)
4737 {
4738 Elf_Internal_Rela outrel[3];
4739 asection *sreloc;
4740 bfd *dynobj;
4741 int r_type;
4742 long indx;
4743 bfd_boolean defined_p;
4744 struct mips_elf_link_hash_table *htab;
4745
4746 htab = mips_elf_hash_table (info);
4747 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4748 dynobj = elf_hash_table (info)->dynobj;
4749 sreloc = mips_elf_rel_dyn_section (info, FALSE);
4750 BFD_ASSERT (sreloc != NULL);
4751 BFD_ASSERT (sreloc->contents != NULL);
4752 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
4753 < sreloc->size);
4754
4755 outrel[0].r_offset =
4756 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4757 outrel[1].r_offset =
4758 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4759 outrel[2].r_offset =
4760 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4761
4762 if (outrel[0].r_offset == MINUS_ONE)
4763 /* The relocation field has been deleted. */
4764 return TRUE;
4765
4766 if (outrel[0].r_offset == MINUS_TWO)
4767 {
4768 /* The relocation field has been converted into a relative value of
4769 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4770 the field to be fully relocated, so add in the symbol's value. */
4771 *addendp += symbol;
4772 return TRUE;
4773 }
4774
4775 /* We must now calculate the dynamic symbol table index to use
4776 in the relocation. */
4777 if (h != NULL
4778 && (!h->root.def_regular
4779 || (info->shared && !info->symbolic && !h->root.forced_local)))
4780 {
4781 indx = h->root.dynindx;
4782 if (SGI_COMPAT (output_bfd))
4783 defined_p = h->root.def_regular;
4784 else
4785 /* ??? glibc's ld.so just adds the final GOT entry to the
4786 relocation field. It therefore treats relocs against
4787 defined symbols in the same way as relocs against
4788 undefined symbols. */
4789 defined_p = FALSE;
4790 }
4791 else
4792 {
4793 if (sec != NULL && bfd_is_abs_section (sec))
4794 indx = 0;
4795 else if (sec == NULL || sec->owner == NULL)
4796 {
4797 bfd_set_error (bfd_error_bad_value);
4798 return FALSE;
4799 }
4800 else
4801 {
4802 indx = elf_section_data (sec->output_section)->dynindx;
4803 if (indx == 0)
4804 abort ();
4805 }
4806
4807 /* Instead of generating a relocation using the section
4808 symbol, we may as well make it a fully relative
4809 relocation. We want to avoid generating relocations to
4810 local symbols because we used to generate them
4811 incorrectly, without adding the original symbol value,
4812 which is mandated by the ABI for section symbols. In
4813 order to give dynamic loaders and applications time to
4814 phase out the incorrect use, we refrain from emitting
4815 section-relative relocations. It's not like they're
4816 useful, after all. This should be a bit more efficient
4817 as well. */
4818 /* ??? Although this behavior is compatible with glibc's ld.so,
4819 the ABI says that relocations against STN_UNDEF should have
4820 a symbol value of 0. Irix rld honors this, so relocations
4821 against STN_UNDEF have no effect. */
4822 if (!SGI_COMPAT (output_bfd))
4823 indx = 0;
4824 defined_p = TRUE;
4825 }
4826
4827 /* If the relocation was previously an absolute relocation and
4828 this symbol will not be referred to by the relocation, we must
4829 adjust it by the value we give it in the dynamic symbol table.
4830 Otherwise leave the job up to the dynamic linker. */
4831 if (defined_p && r_type != R_MIPS_REL32)
4832 *addendp += symbol;
4833
4834 if (htab->is_vxworks)
4835 /* VxWorks uses non-relative relocations for this. */
4836 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4837 else
4838 /* The relocation is always an REL32 relocation because we don't
4839 know where the shared library will wind up at load-time. */
4840 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4841 R_MIPS_REL32);
4842
4843 /* For strict adherence to the ABI specification, we should
4844 generate a R_MIPS_64 relocation record by itself before the
4845 _REL32/_64 record as well, such that the addend is read in as
4846 a 64-bit value (REL32 is a 32-bit relocation, after all).
4847 However, since none of the existing ELF64 MIPS dynamic
4848 loaders seems to care, we don't waste space with these
4849 artificial relocations. If this turns out to not be true,
4850 mips_elf_allocate_dynamic_relocation() should be tweaked so
4851 as to make room for a pair of dynamic relocations per
4852 invocation if ABI_64_P, and here we should generate an
4853 additional relocation record with R_MIPS_64 by itself for a
4854 NULL symbol before this relocation record. */
4855 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4856 ABI_64_P (output_bfd)
4857 ? R_MIPS_64
4858 : R_MIPS_NONE);
4859 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4860
4861 /* Adjust the output offset of the relocation to reference the
4862 correct location in the output file. */
4863 outrel[0].r_offset += (input_section->output_section->vma
4864 + input_section->output_offset);
4865 outrel[1].r_offset += (input_section->output_section->vma
4866 + input_section->output_offset);
4867 outrel[2].r_offset += (input_section->output_section->vma
4868 + input_section->output_offset);
4869
4870 /* Put the relocation back out. We have to use the special
4871 relocation outputter in the 64-bit case since the 64-bit
4872 relocation format is non-standard. */
4873 if (ABI_64_P (output_bfd))
4874 {
4875 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4876 (output_bfd, &outrel[0],
4877 (sreloc->contents
4878 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4879 }
4880 else if (htab->is_vxworks)
4881 {
4882 /* VxWorks uses RELA rather than REL dynamic relocations. */
4883 outrel[0].r_addend = *addendp;
4884 bfd_elf32_swap_reloca_out
4885 (output_bfd, &outrel[0],
4886 (sreloc->contents
4887 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4888 }
4889 else
4890 bfd_elf32_swap_reloc_out
4891 (output_bfd, &outrel[0],
4892 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4893
4894 /* We've now added another relocation. */
4895 ++sreloc->reloc_count;
4896
4897 /* Make sure the output section is writable. The dynamic linker
4898 will be writing to it. */
4899 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4900 |= SHF_WRITE;
4901
4902 /* On IRIX5, make an entry of compact relocation info. */
4903 if (IRIX_COMPAT (output_bfd) == ict_irix5)
4904 {
4905 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4906 bfd_byte *cr;
4907
4908 if (scpt)
4909 {
4910 Elf32_crinfo cptrel;
4911
4912 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4913 cptrel.vaddr = (rel->r_offset
4914 + input_section->output_section->vma
4915 + input_section->output_offset);
4916 if (r_type == R_MIPS_REL32)
4917 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4918 else
4919 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4920 mips_elf_set_cr_dist2to (cptrel, 0);
4921 cptrel.konst = *addendp;
4922
4923 cr = (scpt->contents
4924 + sizeof (Elf32_External_compact_rel));
4925 mips_elf_set_cr_relvaddr (cptrel, 0);
4926 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4927 ((Elf32_External_crinfo *) cr
4928 + scpt->reloc_count));
4929 ++scpt->reloc_count;
4930 }
4931 }
4932
4933 /* If we've written this relocation for a readonly section,
4934 we need to set DF_TEXTREL again, so that we do not delete the
4935 DT_TEXTREL tag. */
4936 if (MIPS_ELF_READONLY_SECTION (input_section))
4937 info->flags |= DF_TEXTREL;
4938
4939 return TRUE;
4940 }
4941 \f
4942 /* Return the MACH for a MIPS e_flags value. */
4943
4944 unsigned long
4945 _bfd_elf_mips_mach (flagword flags)
4946 {
4947 switch (flags & EF_MIPS_MACH)
4948 {
4949 case E_MIPS_MACH_3900:
4950 return bfd_mach_mips3900;
4951
4952 case E_MIPS_MACH_4010:
4953 return bfd_mach_mips4010;
4954
4955 case E_MIPS_MACH_4100:
4956 return bfd_mach_mips4100;
4957
4958 case E_MIPS_MACH_4111:
4959 return bfd_mach_mips4111;
4960
4961 case E_MIPS_MACH_4120:
4962 return bfd_mach_mips4120;
4963
4964 case E_MIPS_MACH_4650:
4965 return bfd_mach_mips4650;
4966
4967 case E_MIPS_MACH_5400:
4968 return bfd_mach_mips5400;
4969
4970 case E_MIPS_MACH_5500:
4971 return bfd_mach_mips5500;
4972
4973 case E_MIPS_MACH_9000:
4974 return bfd_mach_mips9000;
4975
4976 case E_MIPS_MACH_SB1:
4977 return bfd_mach_mips_sb1;
4978
4979 default:
4980 switch (flags & EF_MIPS_ARCH)
4981 {
4982 default:
4983 case E_MIPS_ARCH_1:
4984 return bfd_mach_mips3000;
4985
4986 case E_MIPS_ARCH_2:
4987 return bfd_mach_mips6000;
4988
4989 case E_MIPS_ARCH_3:
4990 return bfd_mach_mips4000;
4991
4992 case E_MIPS_ARCH_4:
4993 return bfd_mach_mips8000;
4994
4995 case E_MIPS_ARCH_5:
4996 return bfd_mach_mips5;
4997
4998 case E_MIPS_ARCH_32:
4999 return bfd_mach_mipsisa32;
5000
5001 case E_MIPS_ARCH_64:
5002 return bfd_mach_mipsisa64;
5003
5004 case E_MIPS_ARCH_32R2:
5005 return bfd_mach_mipsisa32r2;
5006
5007 case E_MIPS_ARCH_64R2:
5008 return bfd_mach_mipsisa64r2;
5009 }
5010 }
5011
5012 return 0;
5013 }
5014
5015 /* Return printable name for ABI. */
5016
5017 static INLINE char *
5018 elf_mips_abi_name (bfd *abfd)
5019 {
5020 flagword flags;
5021
5022 flags = elf_elfheader (abfd)->e_flags;
5023 switch (flags & EF_MIPS_ABI)
5024 {
5025 case 0:
5026 if (ABI_N32_P (abfd))
5027 return "N32";
5028 else if (ABI_64_P (abfd))
5029 return "64";
5030 else
5031 return "none";
5032 case E_MIPS_ABI_O32:
5033 return "O32";
5034 case E_MIPS_ABI_O64:
5035 return "O64";
5036 case E_MIPS_ABI_EABI32:
5037 return "EABI32";
5038 case E_MIPS_ABI_EABI64:
5039 return "EABI64";
5040 default:
5041 return "unknown abi";
5042 }
5043 }
5044 \f
5045 /* MIPS ELF uses two common sections. One is the usual one, and the
5046 other is for small objects. All the small objects are kept
5047 together, and then referenced via the gp pointer, which yields
5048 faster assembler code. This is what we use for the small common
5049 section. This approach is copied from ecoff.c. */
5050 static asection mips_elf_scom_section;
5051 static asymbol mips_elf_scom_symbol;
5052 static asymbol *mips_elf_scom_symbol_ptr;
5053
5054 /* MIPS ELF also uses an acommon section, which represents an
5055 allocated common symbol which may be overridden by a
5056 definition in a shared library. */
5057 static asection mips_elf_acom_section;
5058 static asymbol mips_elf_acom_symbol;
5059 static asymbol *mips_elf_acom_symbol_ptr;
5060
5061 /* Handle the special MIPS section numbers that a symbol may use.
5062 This is used for both the 32-bit and the 64-bit ABI. */
5063
5064 void
5065 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5066 {
5067 elf_symbol_type *elfsym;
5068
5069 elfsym = (elf_symbol_type *) asym;
5070 switch (elfsym->internal_elf_sym.st_shndx)
5071 {
5072 case SHN_MIPS_ACOMMON:
5073 /* This section is used in a dynamically linked executable file.
5074 It is an allocated common section. The dynamic linker can
5075 either resolve these symbols to something in a shared
5076 library, or it can just leave them here. For our purposes,
5077 we can consider these symbols to be in a new section. */
5078 if (mips_elf_acom_section.name == NULL)
5079 {
5080 /* Initialize the acommon section. */
5081 mips_elf_acom_section.name = ".acommon";
5082 mips_elf_acom_section.flags = SEC_ALLOC;
5083 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5084 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5085 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5086 mips_elf_acom_symbol.name = ".acommon";
5087 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5088 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5089 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5090 }
5091 asym->section = &mips_elf_acom_section;
5092 break;
5093
5094 case SHN_COMMON:
5095 /* Common symbols less than the GP size are automatically
5096 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5097 if (asym->value > elf_gp_size (abfd)
5098 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
5099 || IRIX_COMPAT (abfd) == ict_irix6)
5100 break;
5101 /* Fall through. */
5102 case SHN_MIPS_SCOMMON:
5103 if (mips_elf_scom_section.name == NULL)
5104 {
5105 /* Initialize the small common section. */
5106 mips_elf_scom_section.name = ".scommon";
5107 mips_elf_scom_section.flags = SEC_IS_COMMON;
5108 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5109 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5110 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5111 mips_elf_scom_symbol.name = ".scommon";
5112 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5113 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5114 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5115 }
5116 asym->section = &mips_elf_scom_section;
5117 asym->value = elfsym->internal_elf_sym.st_size;
5118 break;
5119
5120 case SHN_MIPS_SUNDEFINED:
5121 asym->section = bfd_und_section_ptr;
5122 break;
5123
5124 case SHN_MIPS_TEXT:
5125 {
5126 asection *section = bfd_get_section_by_name (abfd, ".text");
5127
5128 BFD_ASSERT (SGI_COMPAT (abfd));
5129 if (section != NULL)
5130 {
5131 asym->section = section;
5132 /* MIPS_TEXT is a bit special, the address is not an offset
5133 to the base of the .text section. So substract the section
5134 base address to make it an offset. */
5135 asym->value -= section->vma;
5136 }
5137 }
5138 break;
5139
5140 case SHN_MIPS_DATA:
5141 {
5142 asection *section = bfd_get_section_by_name (abfd, ".data");
5143
5144 BFD_ASSERT (SGI_COMPAT (abfd));
5145 if (section != NULL)
5146 {
5147 asym->section = section;
5148 /* MIPS_DATA is a bit special, the address is not an offset
5149 to the base of the .data section. So substract the section
5150 base address to make it an offset. */
5151 asym->value -= section->vma;
5152 }
5153 }
5154 break;
5155 }
5156 }
5157 \f
5158 /* Implement elf_backend_eh_frame_address_size. This differs from
5159 the default in the way it handles EABI64.
5160
5161 EABI64 was originally specified as an LP64 ABI, and that is what
5162 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5163 historically accepted the combination of -mabi=eabi and -mlong32,
5164 and this ILP32 variation has become semi-official over time.
5165 Both forms use elf32 and have pointer-sized FDE addresses.
5166
5167 If an EABI object was generated by GCC 4.0 or above, it will have
5168 an empty .gcc_compiled_longXX section, where XX is the size of longs
5169 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5170 have no special marking to distinguish them from LP64 objects.
5171
5172 We don't want users of the official LP64 ABI to be punished for the
5173 existence of the ILP32 variant, but at the same time, we don't want
5174 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5175 We therefore take the following approach:
5176
5177 - If ABFD contains a .gcc_compiled_longXX section, use it to
5178 determine the pointer size.
5179
5180 - Otherwise check the type of the first relocation. Assume that
5181 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5182
5183 - Otherwise punt.
5184
5185 The second check is enough to detect LP64 objects generated by pre-4.0
5186 compilers because, in the kind of output generated by those compilers,
5187 the first relocation will be associated with either a CIE personality
5188 routine or an FDE start address. Furthermore, the compilers never
5189 used a special (non-pointer) encoding for this ABI.
5190
5191 Checking the relocation type should also be safe because there is no
5192 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5193 did so. */
5194
5195 unsigned int
5196 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5197 {
5198 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5199 return 8;
5200 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5201 {
5202 bfd_boolean long32_p, long64_p;
5203
5204 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5205 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5206 if (long32_p && long64_p)
5207 return 0;
5208 if (long32_p)
5209 return 4;
5210 if (long64_p)
5211 return 8;
5212
5213 if (sec->reloc_count > 0
5214 && elf_section_data (sec)->relocs != NULL
5215 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5216 == R_MIPS_64))
5217 return 8;
5218
5219 return 0;
5220 }
5221 return 4;
5222 }
5223 \f
5224 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5225 relocations against two unnamed section symbols to resolve to the
5226 same address. For example, if we have code like:
5227
5228 lw $4,%got_disp(.data)($gp)
5229 lw $25,%got_disp(.text)($gp)
5230 jalr $25
5231
5232 then the linker will resolve both relocations to .data and the program
5233 will jump there rather than to .text.
5234
5235 We can work around this problem by giving names to local section symbols.
5236 This is also what the MIPSpro tools do. */
5237
5238 bfd_boolean
5239 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5240 {
5241 return SGI_COMPAT (abfd);
5242 }
5243 \f
5244 /* Work over a section just before writing it out. This routine is
5245 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5246 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5247 a better way. */
5248
5249 bfd_boolean
5250 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
5251 {
5252 if (hdr->sh_type == SHT_MIPS_REGINFO
5253 && hdr->sh_size > 0)
5254 {
5255 bfd_byte buf[4];
5256
5257 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5258 BFD_ASSERT (hdr->contents == NULL);
5259
5260 if (bfd_seek (abfd,
5261 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5262 SEEK_SET) != 0)
5263 return FALSE;
5264 H_PUT_32 (abfd, elf_gp (abfd), buf);
5265 if (bfd_bwrite (buf, 4, abfd) != 4)
5266 return FALSE;
5267 }
5268
5269 if (hdr->sh_type == SHT_MIPS_OPTIONS
5270 && hdr->bfd_section != NULL
5271 && mips_elf_section_data (hdr->bfd_section) != NULL
5272 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
5273 {
5274 bfd_byte *contents, *l, *lend;
5275
5276 /* We stored the section contents in the tdata field in the
5277 set_section_contents routine. We save the section contents
5278 so that we don't have to read them again.
5279 At this point we know that elf_gp is set, so we can look
5280 through the section contents to see if there is an
5281 ODK_REGINFO structure. */
5282
5283 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
5284 l = contents;
5285 lend = contents + hdr->sh_size;
5286 while (l + sizeof (Elf_External_Options) <= lend)
5287 {
5288 Elf_Internal_Options intopt;
5289
5290 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5291 &intopt);
5292 if (intopt.size < sizeof (Elf_External_Options))
5293 {
5294 (*_bfd_error_handler)
5295 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5296 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5297 break;
5298 }
5299 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5300 {
5301 bfd_byte buf[8];
5302
5303 if (bfd_seek (abfd,
5304 (hdr->sh_offset
5305 + (l - contents)
5306 + sizeof (Elf_External_Options)
5307 + (sizeof (Elf64_External_RegInfo) - 8)),
5308 SEEK_SET) != 0)
5309 return FALSE;
5310 H_PUT_64 (abfd, elf_gp (abfd), buf);
5311 if (bfd_bwrite (buf, 8, abfd) != 8)
5312 return FALSE;
5313 }
5314 else if (intopt.kind == ODK_REGINFO)
5315 {
5316 bfd_byte buf[4];
5317
5318 if (bfd_seek (abfd,
5319 (hdr->sh_offset
5320 + (l - contents)
5321 + sizeof (Elf_External_Options)
5322 + (sizeof (Elf32_External_RegInfo) - 4)),
5323 SEEK_SET) != 0)
5324 return FALSE;
5325 H_PUT_32 (abfd, elf_gp (abfd), buf);
5326 if (bfd_bwrite (buf, 4, abfd) != 4)
5327 return FALSE;
5328 }
5329 l += intopt.size;
5330 }
5331 }
5332
5333 if (hdr->bfd_section != NULL)
5334 {
5335 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5336
5337 if (strcmp (name, ".sdata") == 0
5338 || strcmp (name, ".lit8") == 0
5339 || strcmp (name, ".lit4") == 0)
5340 {
5341 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5342 hdr->sh_type = SHT_PROGBITS;
5343 }
5344 else if (strcmp (name, ".sbss") == 0)
5345 {
5346 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5347 hdr->sh_type = SHT_NOBITS;
5348 }
5349 else if (strcmp (name, ".srdata") == 0)
5350 {
5351 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5352 hdr->sh_type = SHT_PROGBITS;
5353 }
5354 else if (strcmp (name, ".compact_rel") == 0)
5355 {
5356 hdr->sh_flags = 0;
5357 hdr->sh_type = SHT_PROGBITS;
5358 }
5359 else if (strcmp (name, ".rtproc") == 0)
5360 {
5361 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5362 {
5363 unsigned int adjust;
5364
5365 adjust = hdr->sh_size % hdr->sh_addralign;
5366 if (adjust != 0)
5367 hdr->sh_size += hdr->sh_addralign - adjust;
5368 }
5369 }
5370 }
5371
5372 return TRUE;
5373 }
5374
5375 /* Handle a MIPS specific section when reading an object file. This
5376 is called when elfcode.h finds a section with an unknown type.
5377 This routine supports both the 32-bit and 64-bit ELF ABI.
5378
5379 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5380 how to. */
5381
5382 bfd_boolean
5383 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5384 Elf_Internal_Shdr *hdr,
5385 const char *name,
5386 int shindex)
5387 {
5388 flagword flags = 0;
5389
5390 /* There ought to be a place to keep ELF backend specific flags, but
5391 at the moment there isn't one. We just keep track of the
5392 sections by their name, instead. Fortunately, the ABI gives
5393 suggested names for all the MIPS specific sections, so we will
5394 probably get away with this. */
5395 switch (hdr->sh_type)
5396 {
5397 case SHT_MIPS_LIBLIST:
5398 if (strcmp (name, ".liblist") != 0)
5399 return FALSE;
5400 break;
5401 case SHT_MIPS_MSYM:
5402 if (strcmp (name, ".msym") != 0)
5403 return FALSE;
5404 break;
5405 case SHT_MIPS_CONFLICT:
5406 if (strcmp (name, ".conflict") != 0)
5407 return FALSE;
5408 break;
5409 case SHT_MIPS_GPTAB:
5410 if (! CONST_STRNEQ (name, ".gptab."))
5411 return FALSE;
5412 break;
5413 case SHT_MIPS_UCODE:
5414 if (strcmp (name, ".ucode") != 0)
5415 return FALSE;
5416 break;
5417 case SHT_MIPS_DEBUG:
5418 if (strcmp (name, ".mdebug") != 0)
5419 return FALSE;
5420 flags = SEC_DEBUGGING;
5421 break;
5422 case SHT_MIPS_REGINFO:
5423 if (strcmp (name, ".reginfo") != 0
5424 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5425 return FALSE;
5426 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5427 break;
5428 case SHT_MIPS_IFACE:
5429 if (strcmp (name, ".MIPS.interfaces") != 0)
5430 return FALSE;
5431 break;
5432 case SHT_MIPS_CONTENT:
5433 if (! CONST_STRNEQ (name, ".MIPS.content"))
5434 return FALSE;
5435 break;
5436 case SHT_MIPS_OPTIONS:
5437 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5438 return FALSE;
5439 break;
5440 case SHT_MIPS_DWARF:
5441 if (! CONST_STRNEQ (name, ".debug_"))
5442 return FALSE;
5443 break;
5444 case SHT_MIPS_SYMBOL_LIB:
5445 if (strcmp (name, ".MIPS.symlib") != 0)
5446 return FALSE;
5447 break;
5448 case SHT_MIPS_EVENTS:
5449 if (! CONST_STRNEQ (name, ".MIPS.events")
5450 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
5451 return FALSE;
5452 break;
5453 default:
5454 break;
5455 }
5456
5457 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5458 return FALSE;
5459
5460 if (flags)
5461 {
5462 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5463 (bfd_get_section_flags (abfd,
5464 hdr->bfd_section)
5465 | flags)))
5466 return FALSE;
5467 }
5468
5469 /* FIXME: We should record sh_info for a .gptab section. */
5470
5471 /* For a .reginfo section, set the gp value in the tdata information
5472 from the contents of this section. We need the gp value while
5473 processing relocs, so we just get it now. The .reginfo section
5474 is not used in the 64-bit MIPS ELF ABI. */
5475 if (hdr->sh_type == SHT_MIPS_REGINFO)
5476 {
5477 Elf32_External_RegInfo ext;
5478 Elf32_RegInfo s;
5479
5480 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5481 &ext, 0, sizeof ext))
5482 return FALSE;
5483 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5484 elf_gp (abfd) = s.ri_gp_value;
5485 }
5486
5487 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5488 set the gp value based on what we find. We may see both
5489 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5490 they should agree. */
5491 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5492 {
5493 bfd_byte *contents, *l, *lend;
5494
5495 contents = bfd_malloc (hdr->sh_size);
5496 if (contents == NULL)
5497 return FALSE;
5498 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5499 0, hdr->sh_size))
5500 {
5501 free (contents);
5502 return FALSE;
5503 }
5504 l = contents;
5505 lend = contents + hdr->sh_size;
5506 while (l + sizeof (Elf_External_Options) <= lend)
5507 {
5508 Elf_Internal_Options intopt;
5509
5510 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5511 &intopt);
5512 if (intopt.size < sizeof (Elf_External_Options))
5513 {
5514 (*_bfd_error_handler)
5515 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5516 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5517 break;
5518 }
5519 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5520 {
5521 Elf64_Internal_RegInfo intreg;
5522
5523 bfd_mips_elf64_swap_reginfo_in
5524 (abfd,
5525 ((Elf64_External_RegInfo *)
5526 (l + sizeof (Elf_External_Options))),
5527 &intreg);
5528 elf_gp (abfd) = intreg.ri_gp_value;
5529 }
5530 else if (intopt.kind == ODK_REGINFO)
5531 {
5532 Elf32_RegInfo intreg;
5533
5534 bfd_mips_elf32_swap_reginfo_in
5535 (abfd,
5536 ((Elf32_External_RegInfo *)
5537 (l + sizeof (Elf_External_Options))),
5538 &intreg);
5539 elf_gp (abfd) = intreg.ri_gp_value;
5540 }
5541 l += intopt.size;
5542 }
5543 free (contents);
5544 }
5545
5546 return TRUE;
5547 }
5548
5549 /* Set the correct type for a MIPS ELF section. We do this by the
5550 section name, which is a hack, but ought to work. This routine is
5551 used by both the 32-bit and the 64-bit ABI. */
5552
5553 bfd_boolean
5554 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5555 {
5556 register const char *name;
5557 unsigned int sh_type;
5558
5559 name = bfd_get_section_name (abfd, sec);
5560 sh_type = hdr->sh_type;
5561
5562 if (strcmp (name, ".liblist") == 0)
5563 {
5564 hdr->sh_type = SHT_MIPS_LIBLIST;
5565 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5566 /* The sh_link field is set in final_write_processing. */
5567 }
5568 else if (strcmp (name, ".conflict") == 0)
5569 hdr->sh_type = SHT_MIPS_CONFLICT;
5570 else if (CONST_STRNEQ (name, ".gptab."))
5571 {
5572 hdr->sh_type = SHT_MIPS_GPTAB;
5573 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5574 /* The sh_info field is set in final_write_processing. */
5575 }
5576 else if (strcmp (name, ".ucode") == 0)
5577 hdr->sh_type = SHT_MIPS_UCODE;
5578 else if (strcmp (name, ".mdebug") == 0)
5579 {
5580 hdr->sh_type = SHT_MIPS_DEBUG;
5581 /* In a shared object on IRIX 5.3, the .mdebug section has an
5582 entsize of 0. FIXME: Does this matter? */
5583 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5584 hdr->sh_entsize = 0;
5585 else
5586 hdr->sh_entsize = 1;
5587 }
5588 else if (strcmp (name, ".reginfo") == 0)
5589 {
5590 hdr->sh_type = SHT_MIPS_REGINFO;
5591 /* In a shared object on IRIX 5.3, the .reginfo section has an
5592 entsize of 0x18. FIXME: Does this matter? */
5593 if (SGI_COMPAT (abfd))
5594 {
5595 if ((abfd->flags & DYNAMIC) != 0)
5596 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5597 else
5598 hdr->sh_entsize = 1;
5599 }
5600 else
5601 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5602 }
5603 else if (SGI_COMPAT (abfd)
5604 && (strcmp (name, ".hash") == 0
5605 || strcmp (name, ".dynamic") == 0
5606 || strcmp (name, ".dynstr") == 0))
5607 {
5608 if (SGI_COMPAT (abfd))
5609 hdr->sh_entsize = 0;
5610 #if 0
5611 /* This isn't how the IRIX6 linker behaves. */
5612 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5613 #endif
5614 }
5615 else if (strcmp (name, ".got") == 0
5616 || strcmp (name, ".srdata") == 0
5617 || strcmp (name, ".sdata") == 0
5618 || strcmp (name, ".sbss") == 0
5619 || strcmp (name, ".lit4") == 0
5620 || strcmp (name, ".lit8") == 0)
5621 hdr->sh_flags |= SHF_MIPS_GPREL;
5622 else if (strcmp (name, ".MIPS.interfaces") == 0)
5623 {
5624 hdr->sh_type = SHT_MIPS_IFACE;
5625 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5626 }
5627 else if (CONST_STRNEQ (name, ".MIPS.content"))
5628 {
5629 hdr->sh_type = SHT_MIPS_CONTENT;
5630 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5631 /* The sh_info field is set in final_write_processing. */
5632 }
5633 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5634 {
5635 hdr->sh_type = SHT_MIPS_OPTIONS;
5636 hdr->sh_entsize = 1;
5637 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5638 }
5639 else if (CONST_STRNEQ (name, ".debug_"))
5640 hdr->sh_type = SHT_MIPS_DWARF;
5641 else if (strcmp (name, ".MIPS.symlib") == 0)
5642 {
5643 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5644 /* The sh_link and sh_info fields are set in
5645 final_write_processing. */
5646 }
5647 else if (CONST_STRNEQ (name, ".MIPS.events")
5648 || CONST_STRNEQ (name, ".MIPS.post_rel"))
5649 {
5650 hdr->sh_type = SHT_MIPS_EVENTS;
5651 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5652 /* The sh_link field is set in final_write_processing. */
5653 }
5654 else if (strcmp (name, ".msym") == 0)
5655 {
5656 hdr->sh_type = SHT_MIPS_MSYM;
5657 hdr->sh_flags |= SHF_ALLOC;
5658 hdr->sh_entsize = 8;
5659 }
5660
5661 /* In the unlikely event a special section is empty it has to lose its
5662 special meaning. This may happen e.g. when using `strip' with the
5663 "--only-keep-debug" option. */
5664 if (sec->size > 0 && !(sec->flags & SEC_HAS_CONTENTS))
5665 hdr->sh_type = sh_type;
5666
5667 /* The generic elf_fake_sections will set up REL_HDR using the default
5668 kind of relocations. We used to set up a second header for the
5669 non-default kind of relocations here, but only NewABI would use
5670 these, and the IRIX ld doesn't like resulting empty RELA sections.
5671 Thus we create those header only on demand now. */
5672
5673 return TRUE;
5674 }
5675
5676 /* Given a BFD section, try to locate the corresponding ELF section
5677 index. This is used by both the 32-bit and the 64-bit ABI.
5678 Actually, it's not clear to me that the 64-bit ABI supports these,
5679 but for non-PIC objects we will certainly want support for at least
5680 the .scommon section. */
5681
5682 bfd_boolean
5683 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5684 asection *sec, int *retval)
5685 {
5686 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5687 {
5688 *retval = SHN_MIPS_SCOMMON;
5689 return TRUE;
5690 }
5691 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5692 {
5693 *retval = SHN_MIPS_ACOMMON;
5694 return TRUE;
5695 }
5696 return FALSE;
5697 }
5698 \f
5699 /* Hook called by the linker routine which adds symbols from an object
5700 file. We must handle the special MIPS section numbers here. */
5701
5702 bfd_boolean
5703 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
5704 Elf_Internal_Sym *sym, const char **namep,
5705 flagword *flagsp ATTRIBUTE_UNUSED,
5706 asection **secp, bfd_vma *valp)
5707 {
5708 if (SGI_COMPAT (abfd)
5709 && (abfd->flags & DYNAMIC) != 0
5710 && strcmp (*namep, "_rld_new_interface") == 0)
5711 {
5712 /* Skip IRIX5 rld entry name. */
5713 *namep = NULL;
5714 return TRUE;
5715 }
5716
5717 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5718 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5719 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5720 a magic symbol resolved by the linker, we ignore this bogus definition
5721 of _gp_disp. New ABI objects do not suffer from this problem so this
5722 is not done for them. */
5723 if (!NEWABI_P(abfd)
5724 && (sym->st_shndx == SHN_ABS)
5725 && (strcmp (*namep, "_gp_disp") == 0))
5726 {
5727 *namep = NULL;
5728 return TRUE;
5729 }
5730
5731 switch (sym->st_shndx)
5732 {
5733 case SHN_COMMON:
5734 /* Common symbols less than the GP size are automatically
5735 treated as SHN_MIPS_SCOMMON symbols. */
5736 if (sym->st_size > elf_gp_size (abfd)
5737 || ELF_ST_TYPE (sym->st_info) == STT_TLS
5738 || IRIX_COMPAT (abfd) == ict_irix6)
5739 break;
5740 /* Fall through. */
5741 case SHN_MIPS_SCOMMON:
5742 *secp = bfd_make_section_old_way (abfd, ".scommon");
5743 (*secp)->flags |= SEC_IS_COMMON;
5744 *valp = sym->st_size;
5745 break;
5746
5747 case SHN_MIPS_TEXT:
5748 /* This section is used in a shared object. */
5749 if (elf_tdata (abfd)->elf_text_section == NULL)
5750 {
5751 asymbol *elf_text_symbol;
5752 asection *elf_text_section;
5753 bfd_size_type amt = sizeof (asection);
5754
5755 elf_text_section = bfd_zalloc (abfd, amt);
5756 if (elf_text_section == NULL)
5757 return FALSE;
5758
5759 amt = sizeof (asymbol);
5760 elf_text_symbol = bfd_zalloc (abfd, amt);
5761 if (elf_text_symbol == NULL)
5762 return FALSE;
5763
5764 /* Initialize the section. */
5765
5766 elf_tdata (abfd)->elf_text_section = elf_text_section;
5767 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5768
5769 elf_text_section->symbol = elf_text_symbol;
5770 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5771
5772 elf_text_section->name = ".text";
5773 elf_text_section->flags = SEC_NO_FLAGS;
5774 elf_text_section->output_section = NULL;
5775 elf_text_section->owner = abfd;
5776 elf_text_symbol->name = ".text";
5777 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5778 elf_text_symbol->section = elf_text_section;
5779 }
5780 /* This code used to do *secp = bfd_und_section_ptr if
5781 info->shared. I don't know why, and that doesn't make sense,
5782 so I took it out. */
5783 *secp = elf_tdata (abfd)->elf_text_section;
5784 break;
5785
5786 case SHN_MIPS_ACOMMON:
5787 /* Fall through. XXX Can we treat this as allocated data? */
5788 case SHN_MIPS_DATA:
5789 /* This section is used in a shared object. */
5790 if (elf_tdata (abfd)->elf_data_section == NULL)
5791 {
5792 asymbol *elf_data_symbol;
5793 asection *elf_data_section;
5794 bfd_size_type amt = sizeof (asection);
5795
5796 elf_data_section = bfd_zalloc (abfd, amt);
5797 if (elf_data_section == NULL)
5798 return FALSE;
5799
5800 amt = sizeof (asymbol);
5801 elf_data_symbol = bfd_zalloc (abfd, amt);
5802 if (elf_data_symbol == NULL)
5803 return FALSE;
5804
5805 /* Initialize the section. */
5806
5807 elf_tdata (abfd)->elf_data_section = elf_data_section;
5808 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5809
5810 elf_data_section->symbol = elf_data_symbol;
5811 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5812
5813 elf_data_section->name = ".data";
5814 elf_data_section->flags = SEC_NO_FLAGS;
5815 elf_data_section->output_section = NULL;
5816 elf_data_section->owner = abfd;
5817 elf_data_symbol->name = ".data";
5818 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5819 elf_data_symbol->section = elf_data_section;
5820 }
5821 /* This code used to do *secp = bfd_und_section_ptr if
5822 info->shared. I don't know why, and that doesn't make sense,
5823 so I took it out. */
5824 *secp = elf_tdata (abfd)->elf_data_section;
5825 break;
5826
5827 case SHN_MIPS_SUNDEFINED:
5828 *secp = bfd_und_section_ptr;
5829 break;
5830 }
5831
5832 if (SGI_COMPAT (abfd)
5833 && ! info->shared
5834 && info->hash->creator == abfd->xvec
5835 && strcmp (*namep, "__rld_obj_head") == 0)
5836 {
5837 struct elf_link_hash_entry *h;
5838 struct bfd_link_hash_entry *bh;
5839
5840 /* Mark __rld_obj_head as dynamic. */
5841 bh = NULL;
5842 if (! (_bfd_generic_link_add_one_symbol
5843 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
5844 get_elf_backend_data (abfd)->collect, &bh)))
5845 return FALSE;
5846
5847 h = (struct elf_link_hash_entry *) bh;
5848 h->non_elf = 0;
5849 h->def_regular = 1;
5850 h->type = STT_OBJECT;
5851
5852 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5853 return FALSE;
5854
5855 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
5856 }
5857
5858 /* If this is a mips16 text symbol, add 1 to the value to make it
5859 odd. This will cause something like .word SYM to come up with
5860 the right value when it is loaded into the PC. */
5861 if (sym->st_other == STO_MIPS16)
5862 ++*valp;
5863
5864 return TRUE;
5865 }
5866
5867 /* This hook function is called before the linker writes out a global
5868 symbol. We mark symbols as small common if appropriate. This is
5869 also where we undo the increment of the value for a mips16 symbol. */
5870
5871 bfd_boolean
5872 _bfd_mips_elf_link_output_symbol_hook
5873 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5874 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5875 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
5876 {
5877 /* If we see a common symbol, which implies a relocatable link, then
5878 if a symbol was small common in an input file, mark it as small
5879 common in the output file. */
5880 if (sym->st_shndx == SHN_COMMON
5881 && strcmp (input_sec->name, ".scommon") == 0)
5882 sym->st_shndx = SHN_MIPS_SCOMMON;
5883
5884 if (sym->st_other == STO_MIPS16)
5885 sym->st_value &= ~1;
5886
5887 return TRUE;
5888 }
5889 \f
5890 /* Functions for the dynamic linker. */
5891
5892 /* Create dynamic sections when linking against a dynamic object. */
5893
5894 bfd_boolean
5895 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
5896 {
5897 struct elf_link_hash_entry *h;
5898 struct bfd_link_hash_entry *bh;
5899 flagword flags;
5900 register asection *s;
5901 const char * const *namep;
5902 struct mips_elf_link_hash_table *htab;
5903
5904 htab = mips_elf_hash_table (info);
5905 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5906 | SEC_LINKER_CREATED | SEC_READONLY);
5907
5908 /* The psABI requires a read-only .dynamic section, but the VxWorks
5909 EABI doesn't. */
5910 if (!htab->is_vxworks)
5911 {
5912 s = bfd_get_section_by_name (abfd, ".dynamic");
5913 if (s != NULL)
5914 {
5915 if (! bfd_set_section_flags (abfd, s, flags))
5916 return FALSE;
5917 }
5918 }
5919
5920 /* We need to create .got section. */
5921 if (! mips_elf_create_got_section (abfd, info, FALSE))
5922 return FALSE;
5923
5924 if (! mips_elf_rel_dyn_section (info, TRUE))
5925 return FALSE;
5926
5927 /* Create .stub section. */
5928 if (bfd_get_section_by_name (abfd,
5929 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5930 {
5931 s = bfd_make_section_with_flags (abfd,
5932 MIPS_ELF_STUB_SECTION_NAME (abfd),
5933 flags | SEC_CODE);
5934 if (s == NULL
5935 || ! bfd_set_section_alignment (abfd, s,
5936 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5937 return FALSE;
5938 }
5939
5940 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5941 && !info->shared
5942 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5943 {
5944 s = bfd_make_section_with_flags (abfd, ".rld_map",
5945 flags &~ (flagword) SEC_READONLY);
5946 if (s == NULL
5947 || ! bfd_set_section_alignment (abfd, s,
5948 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5949 return FALSE;
5950 }
5951
5952 /* On IRIX5, we adjust add some additional symbols and change the
5953 alignments of several sections. There is no ABI documentation
5954 indicating that this is necessary on IRIX6, nor any evidence that
5955 the linker takes such action. */
5956 if (IRIX_COMPAT (abfd) == ict_irix5)
5957 {
5958 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5959 {
5960 bh = NULL;
5961 if (! (_bfd_generic_link_add_one_symbol
5962 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5963 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5964 return FALSE;
5965
5966 h = (struct elf_link_hash_entry *) bh;
5967 h->non_elf = 0;
5968 h->def_regular = 1;
5969 h->type = STT_SECTION;
5970
5971 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5972 return FALSE;
5973 }
5974
5975 /* We need to create a .compact_rel section. */
5976 if (SGI_COMPAT (abfd))
5977 {
5978 if (!mips_elf_create_compact_rel_section (abfd, info))
5979 return FALSE;
5980 }
5981
5982 /* Change alignments of some sections. */
5983 s = bfd_get_section_by_name (abfd, ".hash");
5984 if (s != NULL)
5985 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5986 s = bfd_get_section_by_name (abfd, ".dynsym");
5987 if (s != NULL)
5988 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5989 s = bfd_get_section_by_name (abfd, ".dynstr");
5990 if (s != NULL)
5991 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5992 s = bfd_get_section_by_name (abfd, ".reginfo");
5993 if (s != NULL)
5994 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5995 s = bfd_get_section_by_name (abfd, ".dynamic");
5996 if (s != NULL)
5997 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5998 }
5999
6000 if (!info->shared)
6001 {
6002 const char *name;
6003
6004 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6005 bh = NULL;
6006 if (!(_bfd_generic_link_add_one_symbol
6007 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6008 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6009 return FALSE;
6010
6011 h = (struct elf_link_hash_entry *) bh;
6012 h->non_elf = 0;
6013 h->def_regular = 1;
6014 h->type = STT_SECTION;
6015
6016 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6017 return FALSE;
6018
6019 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6020 {
6021 /* __rld_map is a four byte word located in the .data section
6022 and is filled in by the rtld to contain a pointer to
6023 the _r_debug structure. Its symbol value will be set in
6024 _bfd_mips_elf_finish_dynamic_symbol. */
6025 s = bfd_get_section_by_name (abfd, ".rld_map");
6026 BFD_ASSERT (s != NULL);
6027
6028 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6029 bh = NULL;
6030 if (!(_bfd_generic_link_add_one_symbol
6031 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6032 get_elf_backend_data (abfd)->collect, &bh)))
6033 return FALSE;
6034
6035 h = (struct elf_link_hash_entry *) bh;
6036 h->non_elf = 0;
6037 h->def_regular = 1;
6038 h->type = STT_OBJECT;
6039
6040 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6041 return FALSE;
6042 }
6043 }
6044
6045 if (htab->is_vxworks)
6046 {
6047 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6048 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6049 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6050 return FALSE;
6051
6052 /* Cache the sections created above. */
6053 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6054 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6055 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6056 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6057 if (!htab->sdynbss
6058 || (!htab->srelbss && !info->shared)
6059 || !htab->srelplt
6060 || !htab->splt)
6061 abort ();
6062
6063 /* Do the usual VxWorks handling. */
6064 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6065 return FALSE;
6066
6067 /* Work out the PLT sizes. */
6068 if (info->shared)
6069 {
6070 htab->plt_header_size
6071 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6072 htab->plt_entry_size
6073 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6074 }
6075 else
6076 {
6077 htab->plt_header_size
6078 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6079 htab->plt_entry_size
6080 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6081 }
6082 }
6083
6084 return TRUE;
6085 }
6086 \f
6087 /* Look through the relocs for a section during the first phase, and
6088 allocate space in the global offset table. */
6089
6090 bfd_boolean
6091 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6092 asection *sec, const Elf_Internal_Rela *relocs)
6093 {
6094 const char *name;
6095 bfd *dynobj;
6096 Elf_Internal_Shdr *symtab_hdr;
6097 struct elf_link_hash_entry **sym_hashes;
6098 struct mips_got_info *g;
6099 size_t extsymoff;
6100 const Elf_Internal_Rela *rel;
6101 const Elf_Internal_Rela *rel_end;
6102 asection *sgot;
6103 asection *sreloc;
6104 const struct elf_backend_data *bed;
6105 struct mips_elf_link_hash_table *htab;
6106
6107 if (info->relocatable)
6108 return TRUE;
6109
6110 htab = mips_elf_hash_table (info);
6111 dynobj = elf_hash_table (info)->dynobj;
6112 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6113 sym_hashes = elf_sym_hashes (abfd);
6114 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6115
6116 /* Check for the mips16 stub sections. */
6117
6118 name = bfd_get_section_name (abfd, sec);
6119 if (CONST_STRNEQ (name, FN_STUB))
6120 {
6121 unsigned long r_symndx;
6122
6123 /* Look at the relocation information to figure out which symbol
6124 this is for. */
6125
6126 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6127
6128 if (r_symndx < extsymoff
6129 || sym_hashes[r_symndx - extsymoff] == NULL)
6130 {
6131 asection *o;
6132
6133 /* This stub is for a local symbol. This stub will only be
6134 needed if there is some relocation in this BFD, other
6135 than a 16 bit function call, which refers to this symbol. */
6136 for (o = abfd->sections; o != NULL; o = o->next)
6137 {
6138 Elf_Internal_Rela *sec_relocs;
6139 const Elf_Internal_Rela *r, *rend;
6140
6141 /* We can ignore stub sections when looking for relocs. */
6142 if ((o->flags & SEC_RELOC) == 0
6143 || o->reloc_count == 0
6144 || CONST_STRNEQ (bfd_get_section_name (abfd, o), FN_STUB)
6145 || CONST_STRNEQ (bfd_get_section_name (abfd, o), CALL_STUB)
6146 || CONST_STRNEQ (bfd_get_section_name (abfd, o), CALL_FP_STUB))
6147 continue;
6148
6149 sec_relocs
6150 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6151 info->keep_memory);
6152 if (sec_relocs == NULL)
6153 return FALSE;
6154
6155 rend = sec_relocs + o->reloc_count;
6156 for (r = sec_relocs; r < rend; r++)
6157 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6158 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6159 break;
6160
6161 if (elf_section_data (o)->relocs != sec_relocs)
6162 free (sec_relocs);
6163
6164 if (r < rend)
6165 break;
6166 }
6167
6168 if (o == NULL)
6169 {
6170 /* There is no non-call reloc for this stub, so we do
6171 not need it. Since this function is called before
6172 the linker maps input sections to output sections, we
6173 can easily discard it by setting the SEC_EXCLUDE
6174 flag. */
6175 sec->flags |= SEC_EXCLUDE;
6176 return TRUE;
6177 }
6178
6179 /* Record this stub in an array of local symbol stubs for
6180 this BFD. */
6181 if (elf_tdata (abfd)->local_stubs == NULL)
6182 {
6183 unsigned long symcount;
6184 asection **n;
6185 bfd_size_type amt;
6186
6187 if (elf_bad_symtab (abfd))
6188 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6189 else
6190 symcount = symtab_hdr->sh_info;
6191 amt = symcount * sizeof (asection *);
6192 n = bfd_zalloc (abfd, amt);
6193 if (n == NULL)
6194 return FALSE;
6195 elf_tdata (abfd)->local_stubs = n;
6196 }
6197
6198 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6199
6200 /* We don't need to set mips16_stubs_seen in this case.
6201 That flag is used to see whether we need to look through
6202 the global symbol table for stubs. We don't need to set
6203 it here, because we just have a local stub. */
6204 }
6205 else
6206 {
6207 struct mips_elf_link_hash_entry *h;
6208
6209 h = ((struct mips_elf_link_hash_entry *)
6210 sym_hashes[r_symndx - extsymoff]);
6211
6212 while (h->root.root.type == bfd_link_hash_indirect
6213 || h->root.root.type == bfd_link_hash_warning)
6214 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6215
6216 /* H is the symbol this stub is for. */
6217
6218 h->fn_stub = sec;
6219 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6220 }
6221 }
6222 else if (CONST_STRNEQ (name, CALL_STUB)
6223 || CONST_STRNEQ (name, CALL_FP_STUB))
6224 {
6225 unsigned long r_symndx;
6226 struct mips_elf_link_hash_entry *h;
6227 asection **loc;
6228
6229 /* Look at the relocation information to figure out which symbol
6230 this is for. */
6231
6232 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6233
6234 if (r_symndx < extsymoff
6235 || sym_hashes[r_symndx - extsymoff] == NULL)
6236 {
6237 /* This stub was actually built for a static symbol defined
6238 in the same file. We assume that all static symbols in
6239 mips16 code are themselves mips16, so we can simply
6240 discard this stub. Since this function is called before
6241 the linker maps input sections to output sections, we can
6242 easily discard it by setting the SEC_EXCLUDE flag. */
6243 sec->flags |= SEC_EXCLUDE;
6244 return TRUE;
6245 }
6246
6247 h = ((struct mips_elf_link_hash_entry *)
6248 sym_hashes[r_symndx - extsymoff]);
6249
6250 /* H is the symbol this stub is for. */
6251
6252 if (CONST_STRNEQ (name, CALL_FP_STUB))
6253 loc = &h->call_fp_stub;
6254 else
6255 loc = &h->call_stub;
6256
6257 /* If we already have an appropriate stub for this function, we
6258 don't need another one, so we can discard this one. Since
6259 this function is called before the linker maps input sections
6260 to output sections, we can easily discard it by setting the
6261 SEC_EXCLUDE flag. We can also discard this section if we
6262 happen to already know that this is a mips16 function; it is
6263 not necessary to check this here, as it is checked later, but
6264 it is slightly faster to check now. */
6265 if (*loc != NULL || h->root.other == STO_MIPS16)
6266 {
6267 sec->flags |= SEC_EXCLUDE;
6268 return TRUE;
6269 }
6270
6271 *loc = sec;
6272 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6273 }
6274
6275 if (dynobj == NULL)
6276 {
6277 sgot = NULL;
6278 g = NULL;
6279 }
6280 else
6281 {
6282 sgot = mips_elf_got_section (dynobj, FALSE);
6283 if (sgot == NULL)
6284 g = NULL;
6285 else
6286 {
6287 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6288 g = mips_elf_section_data (sgot)->u.got_info;
6289 BFD_ASSERT (g != NULL);
6290 }
6291 }
6292
6293 sreloc = NULL;
6294 bed = get_elf_backend_data (abfd);
6295 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6296 for (rel = relocs; rel < rel_end; ++rel)
6297 {
6298 unsigned long r_symndx;
6299 unsigned int r_type;
6300 struct elf_link_hash_entry *h;
6301
6302 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6303 r_type = ELF_R_TYPE (abfd, rel->r_info);
6304
6305 if (r_symndx < extsymoff)
6306 h = NULL;
6307 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6308 {
6309 (*_bfd_error_handler)
6310 (_("%B: Malformed reloc detected for section %s"),
6311 abfd, name);
6312 bfd_set_error (bfd_error_bad_value);
6313 return FALSE;
6314 }
6315 else
6316 {
6317 h = sym_hashes[r_symndx - extsymoff];
6318
6319 /* This may be an indirect symbol created because of a version. */
6320 if (h != NULL)
6321 {
6322 while (h->root.type == bfd_link_hash_indirect)
6323 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6324 }
6325 }
6326
6327 /* Some relocs require a global offset table. */
6328 if (dynobj == NULL || sgot == NULL)
6329 {
6330 switch (r_type)
6331 {
6332 case R_MIPS_GOT16:
6333 case R_MIPS_CALL16:
6334 case R_MIPS_CALL_HI16:
6335 case R_MIPS_CALL_LO16:
6336 case R_MIPS_GOT_HI16:
6337 case R_MIPS_GOT_LO16:
6338 case R_MIPS_GOT_PAGE:
6339 case R_MIPS_GOT_OFST:
6340 case R_MIPS_GOT_DISP:
6341 case R_MIPS_TLS_GOTTPREL:
6342 case R_MIPS_TLS_GD:
6343 case R_MIPS_TLS_LDM:
6344 if (dynobj == NULL)
6345 elf_hash_table (info)->dynobj = dynobj = abfd;
6346 if (! mips_elf_create_got_section (dynobj, info, FALSE))
6347 return FALSE;
6348 g = mips_elf_got_info (dynobj, &sgot);
6349 if (htab->is_vxworks && !info->shared)
6350 {
6351 (*_bfd_error_handler)
6352 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6353 abfd, (unsigned long) rel->r_offset);
6354 bfd_set_error (bfd_error_bad_value);
6355 return FALSE;
6356 }
6357 break;
6358
6359 case R_MIPS_32:
6360 case R_MIPS_REL32:
6361 case R_MIPS_64:
6362 /* In VxWorks executables, references to external symbols
6363 are handled using copy relocs or PLT stubs, so there's
6364 no need to add a dynamic relocation here. */
6365 if (dynobj == NULL
6366 && (info->shared || (h != NULL && !htab->is_vxworks))
6367 && (sec->flags & SEC_ALLOC) != 0)
6368 elf_hash_table (info)->dynobj = dynobj = abfd;
6369 break;
6370
6371 default:
6372 break;
6373 }
6374 }
6375
6376 if (h)
6377 {
6378 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6379
6380 /* Relocations against the special VxWorks __GOTT_BASE__ and
6381 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6382 room for them in .rela.dyn. */
6383 if (is_gott_symbol (info, h))
6384 {
6385 if (sreloc == NULL)
6386 {
6387 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6388 if (sreloc == NULL)
6389 return FALSE;
6390 }
6391 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6392 }
6393 }
6394 else if (r_type == R_MIPS_CALL_LO16
6395 || r_type == R_MIPS_GOT_LO16
6396 || r_type == R_MIPS_GOT_DISP
6397 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
6398 {
6399 /* We may need a local GOT entry for this relocation. We
6400 don't count R_MIPS_GOT_PAGE because we can estimate the
6401 maximum number of pages needed by looking at the size of
6402 the segment. Similar comments apply to R_MIPS_GOT16 and
6403 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6404 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
6405 R_MIPS_CALL_HI16 because these are always followed by an
6406 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6407 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6408 rel->r_addend, g, 0))
6409 return FALSE;
6410 }
6411
6412 switch (r_type)
6413 {
6414 case R_MIPS_CALL16:
6415 if (h == NULL)
6416 {
6417 (*_bfd_error_handler)
6418 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6419 abfd, (unsigned long) rel->r_offset);
6420 bfd_set_error (bfd_error_bad_value);
6421 return FALSE;
6422 }
6423 /* Fall through. */
6424
6425 case R_MIPS_CALL_HI16:
6426 case R_MIPS_CALL_LO16:
6427 if (h != NULL)
6428 {
6429 /* VxWorks call relocations point the function's .got.plt
6430 entry, which will be allocated by adjust_dynamic_symbol.
6431 Otherwise, this symbol requires a global GOT entry. */
6432 if (!htab->is_vxworks
6433 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6434 return FALSE;
6435
6436 /* We need a stub, not a plt entry for the undefined
6437 function. But we record it as if it needs plt. See
6438 _bfd_elf_adjust_dynamic_symbol. */
6439 h->needs_plt = 1;
6440 h->type = STT_FUNC;
6441 }
6442 break;
6443
6444 case R_MIPS_GOT_PAGE:
6445 /* If this is a global, overridable symbol, GOT_PAGE will
6446 decay to GOT_DISP, so we'll need a GOT entry for it. */
6447 if (h == NULL)
6448 break;
6449 else
6450 {
6451 struct mips_elf_link_hash_entry *hmips =
6452 (struct mips_elf_link_hash_entry *) h;
6453
6454 while (hmips->root.root.type == bfd_link_hash_indirect
6455 || hmips->root.root.type == bfd_link_hash_warning)
6456 hmips = (struct mips_elf_link_hash_entry *)
6457 hmips->root.root.u.i.link;
6458
6459 if (hmips->root.def_regular
6460 && ! (info->shared && ! info->symbolic
6461 && ! hmips->root.forced_local))
6462 break;
6463 }
6464 /* Fall through. */
6465
6466 case R_MIPS_GOT16:
6467 case R_MIPS_GOT_HI16:
6468 case R_MIPS_GOT_LO16:
6469 case R_MIPS_GOT_DISP:
6470 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6471 return FALSE;
6472 break;
6473
6474 case R_MIPS_TLS_GOTTPREL:
6475 if (info->shared)
6476 info->flags |= DF_STATIC_TLS;
6477 /* Fall through */
6478
6479 case R_MIPS_TLS_LDM:
6480 if (r_type == R_MIPS_TLS_LDM)
6481 {
6482 r_symndx = 0;
6483 h = NULL;
6484 }
6485 /* Fall through */
6486
6487 case R_MIPS_TLS_GD:
6488 /* This symbol requires a global offset table entry, or two
6489 for TLS GD relocations. */
6490 {
6491 unsigned char flag = (r_type == R_MIPS_TLS_GD
6492 ? GOT_TLS_GD
6493 : r_type == R_MIPS_TLS_LDM
6494 ? GOT_TLS_LDM
6495 : GOT_TLS_IE);
6496 if (h != NULL)
6497 {
6498 struct mips_elf_link_hash_entry *hmips =
6499 (struct mips_elf_link_hash_entry *) h;
6500 hmips->tls_type |= flag;
6501
6502 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6503 return FALSE;
6504 }
6505 else
6506 {
6507 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6508
6509 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6510 rel->r_addend, g, flag))
6511 return FALSE;
6512 }
6513 }
6514 break;
6515
6516 case R_MIPS_32:
6517 case R_MIPS_REL32:
6518 case R_MIPS_64:
6519 /* In VxWorks executables, references to external symbols
6520 are handled using copy relocs or PLT stubs, so there's
6521 no need to add a .rela.dyn entry for this relocation. */
6522 if ((info->shared || (h != NULL && !htab->is_vxworks))
6523 && (sec->flags & SEC_ALLOC) != 0)
6524 {
6525 if (sreloc == NULL)
6526 {
6527 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6528 if (sreloc == NULL)
6529 return FALSE;
6530 }
6531 if (info->shared)
6532 {
6533 /* When creating a shared object, we must copy these
6534 reloc types into the output file as R_MIPS_REL32
6535 relocs. Make room for this reloc in .rel(a).dyn. */
6536 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6537 if (MIPS_ELF_READONLY_SECTION (sec))
6538 /* We tell the dynamic linker that there are
6539 relocations against the text segment. */
6540 info->flags |= DF_TEXTREL;
6541 }
6542 else
6543 {
6544 struct mips_elf_link_hash_entry *hmips;
6545
6546 /* We only need to copy this reloc if the symbol is
6547 defined in a dynamic object. */
6548 hmips = (struct mips_elf_link_hash_entry *) h;
6549 ++hmips->possibly_dynamic_relocs;
6550 if (MIPS_ELF_READONLY_SECTION (sec))
6551 /* We need it to tell the dynamic linker if there
6552 are relocations against the text segment. */
6553 hmips->readonly_reloc = TRUE;
6554 }
6555
6556 /* Even though we don't directly need a GOT entry for
6557 this symbol, a symbol must have a dynamic symbol
6558 table index greater that DT_MIPS_GOTSYM if there are
6559 dynamic relocations against it. This does not apply
6560 to VxWorks, which does not have the usual coupling
6561 between global GOT entries and .dynsym entries. */
6562 if (h != NULL && !htab->is_vxworks)
6563 {
6564 if (dynobj == NULL)
6565 elf_hash_table (info)->dynobj = dynobj = abfd;
6566 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6567 return FALSE;
6568 g = mips_elf_got_info (dynobj, &sgot);
6569 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6570 return FALSE;
6571 }
6572 }
6573
6574 if (SGI_COMPAT (abfd))
6575 mips_elf_hash_table (info)->compact_rel_size +=
6576 sizeof (Elf32_External_crinfo);
6577 break;
6578
6579 case R_MIPS_PC16:
6580 if (h)
6581 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6582 break;
6583
6584 case R_MIPS_26:
6585 if (h)
6586 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6587 /* Fall through. */
6588
6589 case R_MIPS_GPREL16:
6590 case R_MIPS_LITERAL:
6591 case R_MIPS_GPREL32:
6592 if (SGI_COMPAT (abfd))
6593 mips_elf_hash_table (info)->compact_rel_size +=
6594 sizeof (Elf32_External_crinfo);
6595 break;
6596
6597 /* This relocation describes the C++ object vtable hierarchy.
6598 Reconstruct it for later use during GC. */
6599 case R_MIPS_GNU_VTINHERIT:
6600 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
6601 return FALSE;
6602 break;
6603
6604 /* This relocation describes which C++ vtable entries are actually
6605 used. Record for later use during GC. */
6606 case R_MIPS_GNU_VTENTRY:
6607 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
6608 return FALSE;
6609 break;
6610
6611 default:
6612 break;
6613 }
6614
6615 /* We must not create a stub for a symbol that has relocations
6616 related to taking the function's address. This doesn't apply to
6617 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6618 a normal .got entry. */
6619 if (!htab->is_vxworks && h != NULL)
6620 switch (r_type)
6621 {
6622 default:
6623 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6624 break;
6625 case R_MIPS_CALL16:
6626 case R_MIPS_CALL_HI16:
6627 case R_MIPS_CALL_LO16:
6628 case R_MIPS_JALR:
6629 break;
6630 }
6631
6632 /* If this reloc is not a 16 bit call, and it has a global
6633 symbol, then we will need the fn_stub if there is one.
6634 References from a stub section do not count. */
6635 if (h != NULL
6636 && r_type != R_MIPS16_26
6637 && ! CONST_STRNEQ (bfd_get_section_name (abfd, sec), FN_STUB)
6638 && ! CONST_STRNEQ (bfd_get_section_name (abfd, sec), CALL_STUB)
6639 && ! CONST_STRNEQ (bfd_get_section_name (abfd, sec), CALL_FP_STUB))
6640 {
6641 struct mips_elf_link_hash_entry *mh;
6642
6643 mh = (struct mips_elf_link_hash_entry *) h;
6644 mh->need_fn_stub = TRUE;
6645 }
6646 }
6647
6648 return TRUE;
6649 }
6650 \f
6651 bfd_boolean
6652 _bfd_mips_relax_section (bfd *abfd, asection *sec,
6653 struct bfd_link_info *link_info,
6654 bfd_boolean *again)
6655 {
6656 Elf_Internal_Rela *internal_relocs;
6657 Elf_Internal_Rela *irel, *irelend;
6658 Elf_Internal_Shdr *symtab_hdr;
6659 bfd_byte *contents = NULL;
6660 size_t extsymoff;
6661 bfd_boolean changed_contents = FALSE;
6662 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6663 Elf_Internal_Sym *isymbuf = NULL;
6664
6665 /* We are not currently changing any sizes, so only one pass. */
6666 *again = FALSE;
6667
6668 if (link_info->relocatable)
6669 return TRUE;
6670
6671 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
6672 link_info->keep_memory);
6673 if (internal_relocs == NULL)
6674 return TRUE;
6675
6676 irelend = internal_relocs + sec->reloc_count
6677 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6678 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6679 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6680
6681 for (irel = internal_relocs; irel < irelend; irel++)
6682 {
6683 bfd_vma symval;
6684 bfd_signed_vma sym_offset;
6685 unsigned int r_type;
6686 unsigned long r_symndx;
6687 asection *sym_sec;
6688 unsigned long instruction;
6689
6690 /* Turn jalr into bgezal, and jr into beq, if they're marked
6691 with a JALR relocation, that indicate where they jump to.
6692 This saves some pipeline bubbles. */
6693 r_type = ELF_R_TYPE (abfd, irel->r_info);
6694 if (r_type != R_MIPS_JALR)
6695 continue;
6696
6697 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6698 /* Compute the address of the jump target. */
6699 if (r_symndx >= extsymoff)
6700 {
6701 struct mips_elf_link_hash_entry *h
6702 = ((struct mips_elf_link_hash_entry *)
6703 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6704
6705 while (h->root.root.type == bfd_link_hash_indirect
6706 || h->root.root.type == bfd_link_hash_warning)
6707 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6708
6709 /* If a symbol is undefined, or if it may be overridden,
6710 skip it. */
6711 if (! ((h->root.root.type == bfd_link_hash_defined
6712 || h->root.root.type == bfd_link_hash_defweak)
6713 && h->root.root.u.def.section)
6714 || (link_info->shared && ! link_info->symbolic
6715 && !h->root.forced_local))
6716 continue;
6717
6718 sym_sec = h->root.root.u.def.section;
6719 if (sym_sec->output_section)
6720 symval = (h->root.root.u.def.value
6721 + sym_sec->output_section->vma
6722 + sym_sec->output_offset);
6723 else
6724 symval = h->root.root.u.def.value;
6725 }
6726 else
6727 {
6728 Elf_Internal_Sym *isym;
6729
6730 /* Read this BFD's symbols if we haven't done so already. */
6731 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6732 {
6733 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6734 if (isymbuf == NULL)
6735 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6736 symtab_hdr->sh_info, 0,
6737 NULL, NULL, NULL);
6738 if (isymbuf == NULL)
6739 goto relax_return;
6740 }
6741
6742 isym = isymbuf + r_symndx;
6743 if (isym->st_shndx == SHN_UNDEF)
6744 continue;
6745 else if (isym->st_shndx == SHN_ABS)
6746 sym_sec = bfd_abs_section_ptr;
6747 else if (isym->st_shndx == SHN_COMMON)
6748 sym_sec = bfd_com_section_ptr;
6749 else
6750 sym_sec
6751 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6752 symval = isym->st_value
6753 + sym_sec->output_section->vma
6754 + sym_sec->output_offset;
6755 }
6756
6757 /* Compute branch offset, from delay slot of the jump to the
6758 branch target. */
6759 sym_offset = (symval + irel->r_addend)
6760 - (sec_start + irel->r_offset + 4);
6761
6762 /* Branch offset must be properly aligned. */
6763 if ((sym_offset & 3) != 0)
6764 continue;
6765
6766 sym_offset >>= 2;
6767
6768 /* Check that it's in range. */
6769 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6770 continue;
6771
6772 /* Get the section contents if we haven't done so already. */
6773 if (contents == NULL)
6774 {
6775 /* Get cached copy if it exists. */
6776 if (elf_section_data (sec)->this_hdr.contents != NULL)
6777 contents = elf_section_data (sec)->this_hdr.contents;
6778 else
6779 {
6780 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6781 goto relax_return;
6782 }
6783 }
6784
6785 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6786
6787 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6788 if ((instruction & 0xfc1fffff) == 0x0000f809)
6789 instruction = 0x04110000;
6790 /* If it was jr <reg>, turn it into b <target>. */
6791 else if ((instruction & 0xfc1fffff) == 0x00000008)
6792 instruction = 0x10000000;
6793 else
6794 continue;
6795
6796 instruction |= (sym_offset & 0xffff);
6797 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6798 changed_contents = TRUE;
6799 }
6800
6801 if (contents != NULL
6802 && elf_section_data (sec)->this_hdr.contents != contents)
6803 {
6804 if (!changed_contents && !link_info->keep_memory)
6805 free (contents);
6806 else
6807 {
6808 /* Cache the section contents for elf_link_input_bfd. */
6809 elf_section_data (sec)->this_hdr.contents = contents;
6810 }
6811 }
6812 return TRUE;
6813
6814 relax_return:
6815 if (contents != NULL
6816 && elf_section_data (sec)->this_hdr.contents != contents)
6817 free (contents);
6818 return FALSE;
6819 }
6820 \f
6821 /* Adjust a symbol defined by a dynamic object and referenced by a
6822 regular object. The current definition is in some section of the
6823 dynamic object, but we're not including those sections. We have to
6824 change the definition to something the rest of the link can
6825 understand. */
6826
6827 bfd_boolean
6828 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6829 struct elf_link_hash_entry *h)
6830 {
6831 bfd *dynobj;
6832 struct mips_elf_link_hash_entry *hmips;
6833 asection *s;
6834 struct mips_elf_link_hash_table *htab;
6835
6836 htab = mips_elf_hash_table (info);
6837 dynobj = elf_hash_table (info)->dynobj;
6838
6839 /* Make sure we know what is going on here. */
6840 BFD_ASSERT (dynobj != NULL
6841 && (h->needs_plt
6842 || h->u.weakdef != NULL
6843 || (h->def_dynamic
6844 && h->ref_regular
6845 && !h->def_regular)));
6846
6847 /* If this symbol is defined in a dynamic object, we need to copy
6848 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6849 file. */
6850 hmips = (struct mips_elf_link_hash_entry *) h;
6851 if (! info->relocatable
6852 && hmips->possibly_dynamic_relocs != 0
6853 && (h->root.type == bfd_link_hash_defweak
6854 || !h->def_regular))
6855 {
6856 mips_elf_allocate_dynamic_relocations
6857 (dynobj, info, hmips->possibly_dynamic_relocs);
6858 if (hmips->readonly_reloc)
6859 /* We tell the dynamic linker that there are relocations
6860 against the text segment. */
6861 info->flags |= DF_TEXTREL;
6862 }
6863
6864 /* For a function, create a stub, if allowed. */
6865 if (! hmips->no_fn_stub
6866 && h->needs_plt)
6867 {
6868 if (! elf_hash_table (info)->dynamic_sections_created)
6869 return TRUE;
6870
6871 /* If this symbol is not defined in a regular file, then set
6872 the symbol to the stub location. This is required to make
6873 function pointers compare as equal between the normal
6874 executable and the shared library. */
6875 if (!h->def_regular)
6876 {
6877 /* We need .stub section. */
6878 s = bfd_get_section_by_name (dynobj,
6879 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6880 BFD_ASSERT (s != NULL);
6881
6882 h->root.u.def.section = s;
6883 h->root.u.def.value = s->size;
6884
6885 /* XXX Write this stub address somewhere. */
6886 h->plt.offset = s->size;
6887
6888 /* Make room for this stub code. */
6889 s->size += htab->function_stub_size;
6890
6891 /* The last half word of the stub will be filled with the index
6892 of this symbol in .dynsym section. */
6893 return TRUE;
6894 }
6895 }
6896 else if ((h->type == STT_FUNC)
6897 && !h->needs_plt)
6898 {
6899 /* This will set the entry for this symbol in the GOT to 0, and
6900 the dynamic linker will take care of this. */
6901 h->root.u.def.value = 0;
6902 return TRUE;
6903 }
6904
6905 /* If this is a weak symbol, and there is a real definition, the
6906 processor independent code will have arranged for us to see the
6907 real definition first, and we can just use the same value. */
6908 if (h->u.weakdef != NULL)
6909 {
6910 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6911 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6912 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6913 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6914 return TRUE;
6915 }
6916
6917 /* This is a reference to a symbol defined by a dynamic object which
6918 is not a function. */
6919
6920 return TRUE;
6921 }
6922
6923 /* Likewise, for VxWorks. */
6924
6925 bfd_boolean
6926 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
6927 struct elf_link_hash_entry *h)
6928 {
6929 bfd *dynobj;
6930 struct mips_elf_link_hash_entry *hmips;
6931 struct mips_elf_link_hash_table *htab;
6932 unsigned int power_of_two;
6933
6934 htab = mips_elf_hash_table (info);
6935 dynobj = elf_hash_table (info)->dynobj;
6936 hmips = (struct mips_elf_link_hash_entry *) h;
6937
6938 /* Make sure we know what is going on here. */
6939 BFD_ASSERT (dynobj != NULL
6940 && (h->needs_plt
6941 || h->needs_copy
6942 || h->u.weakdef != NULL
6943 || (h->def_dynamic
6944 && h->ref_regular
6945 && !h->def_regular)));
6946
6947 /* If the symbol is defined by a dynamic object, we need a PLT stub if
6948 either (a) we want to branch to the symbol or (b) we're linking an
6949 executable that needs a canonical function address. In the latter
6950 case, the canonical address will be the address of the executable's
6951 load stub. */
6952 if ((hmips->is_branch_target
6953 || (!info->shared
6954 && h->type == STT_FUNC
6955 && hmips->is_relocation_target))
6956 && h->def_dynamic
6957 && h->ref_regular
6958 && !h->def_regular
6959 && !h->forced_local)
6960 h->needs_plt = 1;
6961
6962 /* Locally-binding symbols do not need a PLT stub; we can refer to
6963 the functions directly. */
6964 else if (h->needs_plt
6965 && (SYMBOL_CALLS_LOCAL (info, h)
6966 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6967 && h->root.type == bfd_link_hash_undefweak)))
6968 {
6969 h->needs_plt = 0;
6970 return TRUE;
6971 }
6972
6973 if (h->needs_plt)
6974 {
6975 /* If this is the first symbol to need a PLT entry, allocate room
6976 for the header, and for the header's .rela.plt.unloaded entries. */
6977 if (htab->splt->size == 0)
6978 {
6979 htab->splt->size += htab->plt_header_size;
6980 if (!info->shared)
6981 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
6982 }
6983
6984 /* Assign the next .plt entry to this symbol. */
6985 h->plt.offset = htab->splt->size;
6986 htab->splt->size += htab->plt_entry_size;
6987
6988 /* If the output file has no definition of the symbol, set the
6989 symbol's value to the address of the stub. For executables,
6990 point at the PLT load stub rather than the lazy resolution stub;
6991 this stub will become the canonical function address. */
6992 if (!h->def_regular)
6993 {
6994 h->root.u.def.section = htab->splt;
6995 h->root.u.def.value = h->plt.offset;
6996 if (!info->shared)
6997 h->root.u.def.value += 8;
6998 }
6999
7000 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7001 htab->sgotplt->size += 4;
7002 htab->srelplt->size += sizeof (Elf32_External_Rela);
7003
7004 /* Make room for the .rela.plt.unloaded relocations. */
7005 if (!info->shared)
7006 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7007
7008 return TRUE;
7009 }
7010
7011 /* If a function symbol is defined by a dynamic object, and we do not
7012 need a PLT stub for it, the symbol's value should be zero. */
7013 if (h->type == STT_FUNC
7014 && h->def_dynamic
7015 && h->ref_regular
7016 && !h->def_regular)
7017 {
7018 h->root.u.def.value = 0;
7019 return TRUE;
7020 }
7021
7022 /* If this is a weak symbol, and there is a real definition, the
7023 processor independent code will have arranged for us to see the
7024 real definition first, and we can just use the same value. */
7025 if (h->u.weakdef != NULL)
7026 {
7027 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7028 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7029 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7030 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7031 return TRUE;
7032 }
7033
7034 /* This is a reference to a symbol defined by a dynamic object which
7035 is not a function. */
7036 if (info->shared)
7037 return TRUE;
7038
7039 /* We must allocate the symbol in our .dynbss section, which will
7040 become part of the .bss section of the executable. There will be
7041 an entry for this symbol in the .dynsym section. The dynamic
7042 object will contain position independent code, so all references
7043 from the dynamic object to this symbol will go through the global
7044 offset table. The dynamic linker will use the .dynsym entry to
7045 determine the address it must put in the global offset table, so
7046 both the dynamic object and the regular object will refer to the
7047 same memory location for the variable. */
7048
7049 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7050 {
7051 htab->srelbss->size += sizeof (Elf32_External_Rela);
7052 h->needs_copy = 1;
7053 }
7054
7055 /* We need to figure out the alignment required for this symbol. */
7056 power_of_two = bfd_log2 (h->size);
7057 if (power_of_two > 4)
7058 power_of_two = 4;
7059
7060 /* Apply the required alignment. */
7061 htab->sdynbss->size = BFD_ALIGN (htab->sdynbss->size,
7062 (bfd_size_type) 1 << power_of_two);
7063 if (power_of_two > bfd_get_section_alignment (dynobj, htab->sdynbss)
7064 && !bfd_set_section_alignment (dynobj, htab->sdynbss, power_of_two))
7065 return FALSE;
7066
7067 /* Define the symbol as being at this point in the section. */
7068 h->root.u.def.section = htab->sdynbss;
7069 h->root.u.def.value = htab->sdynbss->size;
7070
7071 /* Increment the section size to make room for the symbol. */
7072 htab->sdynbss->size += h->size;
7073
7074 return TRUE;
7075 }
7076 \f
7077 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
7078 The number might be exact or a worst-case estimate, depending on how
7079 much information is available to elf_backend_omit_section_dynsym at
7080 the current linking stage. */
7081
7082 static bfd_size_type
7083 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7084 {
7085 bfd_size_type count;
7086
7087 count = 0;
7088 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7089 {
7090 asection *p;
7091 const struct elf_backend_data *bed;
7092
7093 bed = get_elf_backend_data (output_bfd);
7094 for (p = output_bfd->sections; p ; p = p->next)
7095 if ((p->flags & SEC_EXCLUDE) == 0
7096 && (p->flags & SEC_ALLOC) != 0
7097 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7098 ++count;
7099 }
7100 return count;
7101 }
7102
7103 /* This function is called after all the input files have been read,
7104 and the input sections have been assigned to output sections. We
7105 check for any mips16 stub sections that we can discard. */
7106
7107 bfd_boolean
7108 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
7109 struct bfd_link_info *info)
7110 {
7111 asection *ri;
7112
7113 bfd *dynobj;
7114 asection *s;
7115 struct mips_got_info *g;
7116 int i;
7117 bfd_size_type loadable_size = 0;
7118 bfd_size_type local_gotno;
7119 bfd_size_type dynsymcount;
7120 bfd *sub;
7121 struct mips_elf_count_tls_arg count_tls_arg;
7122 struct mips_elf_link_hash_table *htab;
7123
7124 htab = mips_elf_hash_table (info);
7125
7126 /* The .reginfo section has a fixed size. */
7127 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7128 if (ri != NULL)
7129 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7130
7131 if (! (info->relocatable
7132 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7133 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7134 mips_elf_check_mips16_stubs, NULL);
7135
7136 dynobj = elf_hash_table (info)->dynobj;
7137 if (dynobj == NULL)
7138 /* Relocatable links don't have it. */
7139 return TRUE;
7140
7141 g = mips_elf_got_info (dynobj, &s);
7142 if (s == NULL)
7143 return TRUE;
7144
7145 /* Calculate the total loadable size of the output. That
7146 will give us the maximum number of GOT_PAGE entries
7147 required. */
7148 for (sub = info->input_bfds; sub; sub = sub->link_next)
7149 {
7150 asection *subsection;
7151
7152 for (subsection = sub->sections;
7153 subsection;
7154 subsection = subsection->next)
7155 {
7156 if ((subsection->flags & SEC_ALLOC) == 0)
7157 continue;
7158 loadable_size += ((subsection->size + 0xf)
7159 &~ (bfd_size_type) 0xf);
7160 }
7161 }
7162
7163 /* There has to be a global GOT entry for every symbol with
7164 a dynamic symbol table index of DT_MIPS_GOTSYM or
7165 higher. Therefore, it make sense to put those symbols
7166 that need GOT entries at the end of the symbol table. We
7167 do that here. */
7168 if (! mips_elf_sort_hash_table (info, 1))
7169 return FALSE;
7170
7171 if (g->global_gotsym != NULL)
7172 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7173 else
7174 /* If there are no global symbols, or none requiring
7175 relocations, then GLOBAL_GOTSYM will be NULL. */
7176 i = 0;
7177
7178 /* Get a worst-case estimate of the number of dynamic symbols needed.
7179 At this point, dynsymcount does not account for section symbols
7180 and count_section_dynsyms may overestimate the number that will
7181 be needed. */
7182 dynsymcount = (elf_hash_table (info)->dynsymcount
7183 + count_section_dynsyms (output_bfd, info));
7184
7185 /* Determine the size of one stub entry. */
7186 htab->function_stub_size = (dynsymcount > 0x10000
7187 ? MIPS_FUNCTION_STUB_BIG_SIZE
7188 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7189
7190 /* In the worst case, we'll get one stub per dynamic symbol, plus
7191 one to account for the dummy entry at the end required by IRIX
7192 rld. */
7193 loadable_size += htab->function_stub_size * (i + 1);
7194
7195 if (htab->is_vxworks)
7196 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7197 relocations against local symbols evaluate to "G", and the EABI does
7198 not include R_MIPS_GOT_PAGE. */
7199 local_gotno = 0;
7200 else
7201 /* Assume there are two loadable segments consisting of contiguous
7202 sections. Is 5 enough? */
7203 local_gotno = (loadable_size >> 16) + 5;
7204
7205 g->local_gotno += local_gotno;
7206 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7207
7208 g->global_gotno = i;
7209 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
7210
7211 /* We need to calculate tls_gotno for global symbols at this point
7212 instead of building it up earlier, to avoid doublecounting
7213 entries for one global symbol from multiple input files. */
7214 count_tls_arg.info = info;
7215 count_tls_arg.needed = 0;
7216 elf_link_hash_traverse (elf_hash_table (info),
7217 mips_elf_count_global_tls_entries,
7218 &count_tls_arg);
7219 g->tls_gotno += count_tls_arg.needed;
7220 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7221
7222 mips_elf_resolve_final_got_entries (g);
7223
7224 /* VxWorks does not support multiple GOTs. It initializes $gp to
7225 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7226 dynamic loader. */
7227 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
7228 {
7229 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7230 return FALSE;
7231 }
7232 else
7233 {
7234 /* Set up TLS entries for the first GOT. */
7235 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7236 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7237 }
7238
7239 return TRUE;
7240 }
7241
7242 /* Set the sizes of the dynamic sections. */
7243
7244 bfd_boolean
7245 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7246 struct bfd_link_info *info)
7247 {
7248 bfd *dynobj;
7249 asection *s, *sreldyn;
7250 bfd_boolean reltext;
7251 struct mips_elf_link_hash_table *htab;
7252
7253 htab = mips_elf_hash_table (info);
7254 dynobj = elf_hash_table (info)->dynobj;
7255 BFD_ASSERT (dynobj != NULL);
7256
7257 if (elf_hash_table (info)->dynamic_sections_created)
7258 {
7259 /* Set the contents of the .interp section to the interpreter. */
7260 if (info->executable)
7261 {
7262 s = bfd_get_section_by_name (dynobj, ".interp");
7263 BFD_ASSERT (s != NULL);
7264 s->size
7265 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7266 s->contents
7267 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7268 }
7269 }
7270
7271 /* The check_relocs and adjust_dynamic_symbol entry points have
7272 determined the sizes of the various dynamic sections. Allocate
7273 memory for them. */
7274 reltext = FALSE;
7275 sreldyn = NULL;
7276 for (s = dynobj->sections; s != NULL; s = s->next)
7277 {
7278 const char *name;
7279
7280 /* It's OK to base decisions on the section name, because none
7281 of the dynobj section names depend upon the input files. */
7282 name = bfd_get_section_name (dynobj, s);
7283
7284 if ((s->flags & SEC_LINKER_CREATED) == 0)
7285 continue;
7286
7287 if (CONST_STRNEQ (name, ".rel"))
7288 {
7289 if (s->size != 0)
7290 {
7291 const char *outname;
7292 asection *target;
7293
7294 /* If this relocation section applies to a read only
7295 section, then we probably need a DT_TEXTREL entry.
7296 If the relocation section is .rel(a).dyn, we always
7297 assert a DT_TEXTREL entry rather than testing whether
7298 there exists a relocation to a read only section or
7299 not. */
7300 outname = bfd_get_section_name (output_bfd,
7301 s->output_section);
7302 target = bfd_get_section_by_name (output_bfd, outname + 4);
7303 if ((target != NULL
7304 && (target->flags & SEC_READONLY) != 0
7305 && (target->flags & SEC_ALLOC) != 0)
7306 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7307 reltext = TRUE;
7308
7309 /* We use the reloc_count field as a counter if we need
7310 to copy relocs into the output file. */
7311 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
7312 s->reloc_count = 0;
7313
7314 /* If combreloc is enabled, elf_link_sort_relocs() will
7315 sort relocations, but in a different way than we do,
7316 and before we're done creating relocations. Also, it
7317 will move them around between input sections'
7318 relocation's contents, so our sorting would be
7319 broken, so don't let it run. */
7320 info->combreloc = 0;
7321 }
7322 }
7323 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7324 {
7325 /* Executables do not need a GOT. */
7326 if (info->shared)
7327 {
7328 /* Allocate relocations for all but the reserved entries. */
7329 struct mips_got_info *g;
7330 unsigned int count;
7331
7332 g = mips_elf_got_info (dynobj, NULL);
7333 count = (g->global_gotno
7334 + g->local_gotno
7335 - MIPS_RESERVED_GOTNO (info));
7336 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7337 }
7338 }
7339 else if (!htab->is_vxworks && CONST_STRNEQ (name, ".got"))
7340 {
7341 /* _bfd_mips_elf_always_size_sections() has already done
7342 most of the work, but some symbols may have been mapped
7343 to versions that we must now resolve in the got_entries
7344 hash tables. */
7345 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7346 struct mips_got_info *g = gg;
7347 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7348 unsigned int needed_relocs = 0;
7349
7350 if (gg->next)
7351 {
7352 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7353 set_got_offset_arg.info = info;
7354
7355 /* NOTE 2005-02-03: How can this call, or the next, ever
7356 find any indirect entries to resolve? They were all
7357 resolved in mips_elf_multi_got. */
7358 mips_elf_resolve_final_got_entries (gg);
7359 for (g = gg->next; g && g->next != gg; g = g->next)
7360 {
7361 unsigned int save_assign;
7362
7363 mips_elf_resolve_final_got_entries (g);
7364
7365 /* Assign offsets to global GOT entries. */
7366 save_assign = g->assigned_gotno;
7367 g->assigned_gotno = g->local_gotno;
7368 set_got_offset_arg.g = g;
7369 set_got_offset_arg.needed_relocs = 0;
7370 htab_traverse (g->got_entries,
7371 mips_elf_set_global_got_offset,
7372 &set_got_offset_arg);
7373 needed_relocs += set_got_offset_arg.needed_relocs;
7374 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7375 <= g->global_gotno);
7376
7377 g->assigned_gotno = save_assign;
7378 if (info->shared)
7379 {
7380 needed_relocs += g->local_gotno - g->assigned_gotno;
7381 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7382 + g->next->global_gotno
7383 + g->next->tls_gotno
7384 + MIPS_RESERVED_GOTNO (info));
7385 }
7386 }
7387 }
7388 else
7389 {
7390 struct mips_elf_count_tls_arg arg;
7391 arg.info = info;
7392 arg.needed = 0;
7393
7394 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7395 &arg);
7396 elf_link_hash_traverse (elf_hash_table (info),
7397 mips_elf_count_global_tls_relocs,
7398 &arg);
7399
7400 needed_relocs += arg.needed;
7401 }
7402
7403 if (needed_relocs)
7404 mips_elf_allocate_dynamic_relocations (dynobj, info,
7405 needed_relocs);
7406 }
7407 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7408 {
7409 /* IRIX rld assumes that the function stub isn't at the end
7410 of .text section. So put a dummy. XXX */
7411 s->size += htab->function_stub_size;
7412 }
7413 else if (! info->shared
7414 && ! mips_elf_hash_table (info)->use_rld_obj_head
7415 && CONST_STRNEQ (name, ".rld_map"))
7416 {
7417 /* We add a room for __rld_map. It will be filled in by the
7418 rtld to contain a pointer to the _r_debug structure. */
7419 s->size += 4;
7420 }
7421 else if (SGI_COMPAT (output_bfd)
7422 && CONST_STRNEQ (name, ".compact_rel"))
7423 s->size += mips_elf_hash_table (info)->compact_rel_size;
7424 else if (! CONST_STRNEQ (name, ".init")
7425 && s != htab->sgotplt
7426 && s != htab->splt)
7427 {
7428 /* It's not one of our sections, so don't allocate space. */
7429 continue;
7430 }
7431
7432 if (s->size == 0)
7433 {
7434 s->flags |= SEC_EXCLUDE;
7435 continue;
7436 }
7437
7438 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7439 continue;
7440
7441 /* Allocate memory for this section last, since we may increase its
7442 size above. */
7443 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7444 {
7445 sreldyn = s;
7446 continue;
7447 }
7448
7449 /* Allocate memory for the section contents. */
7450 s->contents = bfd_zalloc (dynobj, s->size);
7451 if (s->contents == NULL)
7452 {
7453 bfd_set_error (bfd_error_no_memory);
7454 return FALSE;
7455 }
7456 }
7457
7458 /* Allocate memory for the .rel(a).dyn section. */
7459 if (sreldyn != NULL)
7460 {
7461 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7462 if (sreldyn->contents == NULL)
7463 {
7464 bfd_set_error (bfd_error_no_memory);
7465 return FALSE;
7466 }
7467 }
7468
7469 if (elf_hash_table (info)->dynamic_sections_created)
7470 {
7471 /* Add some entries to the .dynamic section. We fill in the
7472 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7473 must add the entries now so that we get the correct size for
7474 the .dynamic section. The DT_DEBUG entry is filled in by the
7475 dynamic linker and used by the debugger. */
7476 if (! info->shared)
7477 {
7478 /* SGI object has the equivalence of DT_DEBUG in the
7479 DT_MIPS_RLD_MAP entry. */
7480 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7481 return FALSE;
7482 if (!SGI_COMPAT (output_bfd))
7483 {
7484 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7485 return FALSE;
7486 }
7487 }
7488 else
7489 {
7490 /* Shared libraries on traditional mips have DT_DEBUG. */
7491 if (!SGI_COMPAT (output_bfd))
7492 {
7493 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7494 return FALSE;
7495 }
7496 }
7497
7498 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
7499 info->flags |= DF_TEXTREL;
7500
7501 if ((info->flags & DF_TEXTREL) != 0)
7502 {
7503 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
7504 return FALSE;
7505
7506 /* Clear the DF_TEXTREL flag. It will be set again if we
7507 write out an actual text relocation; we may not, because
7508 at this point we do not know whether e.g. any .eh_frame
7509 absolute relocations have been converted to PC-relative. */
7510 info->flags &= ~DF_TEXTREL;
7511 }
7512
7513 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
7514 return FALSE;
7515
7516 if (htab->is_vxworks)
7517 {
7518 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7519 use any of the DT_MIPS_* tags. */
7520 if (mips_elf_rel_dyn_section (info, FALSE))
7521 {
7522 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7523 return FALSE;
7524
7525 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7526 return FALSE;
7527
7528 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7529 return FALSE;
7530 }
7531 if (htab->splt->size > 0)
7532 {
7533 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7534 return FALSE;
7535
7536 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7537 return FALSE;
7538
7539 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7540 return FALSE;
7541 }
7542 }
7543 else
7544 {
7545 if (mips_elf_rel_dyn_section (info, FALSE))
7546 {
7547 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7548 return FALSE;
7549
7550 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7551 return FALSE;
7552
7553 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7554 return FALSE;
7555 }
7556
7557 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7558 return FALSE;
7559
7560 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7561 return FALSE;
7562
7563 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7564 return FALSE;
7565
7566 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7567 return FALSE;
7568
7569 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7570 return FALSE;
7571
7572 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7573 return FALSE;
7574
7575 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7576 return FALSE;
7577
7578 if (IRIX_COMPAT (dynobj) == ict_irix5
7579 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7580 return FALSE;
7581
7582 if (IRIX_COMPAT (dynobj) == ict_irix6
7583 && (bfd_get_section_by_name
7584 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7585 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7586 return FALSE;
7587 }
7588 }
7589
7590 return TRUE;
7591 }
7592 \f
7593 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7594 Adjust its R_ADDEND field so that it is correct for the output file.
7595 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7596 and sections respectively; both use symbol indexes. */
7597
7598 static void
7599 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7600 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7601 asection **local_sections, Elf_Internal_Rela *rel)
7602 {
7603 unsigned int r_type, r_symndx;
7604 Elf_Internal_Sym *sym;
7605 asection *sec;
7606
7607 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7608 {
7609 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7610 if (r_type == R_MIPS16_GPREL
7611 || r_type == R_MIPS_GPREL16
7612 || r_type == R_MIPS_GPREL32
7613 || r_type == R_MIPS_LITERAL)
7614 {
7615 rel->r_addend += _bfd_get_gp_value (input_bfd);
7616 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7617 }
7618
7619 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7620 sym = local_syms + r_symndx;
7621
7622 /* Adjust REL's addend to account for section merging. */
7623 if (!info->relocatable)
7624 {
7625 sec = local_sections[r_symndx];
7626 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7627 }
7628
7629 /* This would normally be done by the rela_normal code in elflink.c. */
7630 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7631 rel->r_addend += local_sections[r_symndx]->output_offset;
7632 }
7633 }
7634
7635 /* Relocate a MIPS ELF section. */
7636
7637 bfd_boolean
7638 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7639 bfd *input_bfd, asection *input_section,
7640 bfd_byte *contents, Elf_Internal_Rela *relocs,
7641 Elf_Internal_Sym *local_syms,
7642 asection **local_sections)
7643 {
7644 Elf_Internal_Rela *rel;
7645 const Elf_Internal_Rela *relend;
7646 bfd_vma addend = 0;
7647 bfd_boolean use_saved_addend_p = FALSE;
7648 const struct elf_backend_data *bed;
7649
7650 bed = get_elf_backend_data (output_bfd);
7651 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7652 for (rel = relocs; rel < relend; ++rel)
7653 {
7654 const char *name;
7655 bfd_vma value = 0;
7656 reloc_howto_type *howto;
7657 bfd_boolean require_jalx;
7658 /* TRUE if the relocation is a RELA relocation, rather than a
7659 REL relocation. */
7660 bfd_boolean rela_relocation_p = TRUE;
7661 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7662 const char *msg;
7663
7664 /* Find the relocation howto for this relocation. */
7665 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
7666 {
7667 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7668 64-bit code, but make sure all their addresses are in the
7669 lowermost or uppermost 32-bit section of the 64-bit address
7670 space. Thus, when they use an R_MIPS_64 they mean what is
7671 usually meant by R_MIPS_32, with the exception that the
7672 stored value is sign-extended to 64 bits. */
7673 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
7674
7675 /* On big-endian systems, we need to lie about the position
7676 of the reloc. */
7677 if (bfd_big_endian (input_bfd))
7678 rel->r_offset += 4;
7679 }
7680 else
7681 /* NewABI defaults to RELA relocations. */
7682 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7683 NEWABI_P (input_bfd)
7684 && (MIPS_RELOC_RELA_P
7685 (input_bfd, input_section,
7686 rel - relocs)));
7687
7688 if (!use_saved_addend_p)
7689 {
7690 Elf_Internal_Shdr *rel_hdr;
7691
7692 /* If these relocations were originally of the REL variety,
7693 we must pull the addend out of the field that will be
7694 relocated. Otherwise, we simply use the contents of the
7695 RELA relocation. To determine which flavor or relocation
7696 this is, we depend on the fact that the INPUT_SECTION's
7697 REL_HDR is read before its REL_HDR2. */
7698 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7699 if ((size_t) (rel - relocs)
7700 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7701 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7702 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7703 {
7704 bfd_byte *location = contents + rel->r_offset;
7705
7706 /* Note that this is a REL relocation. */
7707 rela_relocation_p = FALSE;
7708
7709 /* Get the addend, which is stored in the input file. */
7710 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7711 location);
7712 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7713 contents);
7714 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7715 location);
7716
7717 addend &= howto->src_mask;
7718
7719 /* For some kinds of relocations, the ADDEND is a
7720 combination of the addend stored in two different
7721 relocations. */
7722 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
7723 || (r_type == R_MIPS_GOT16
7724 && mips_elf_local_relocation_p (input_bfd, rel,
7725 local_sections, FALSE)))
7726 {
7727 bfd_vma l;
7728 const Elf_Internal_Rela *lo16_relocation;
7729 reloc_howto_type *lo16_howto;
7730 bfd_byte *lo16_location;
7731 int lo16_type;
7732
7733 if (r_type == R_MIPS16_HI16)
7734 lo16_type = R_MIPS16_LO16;
7735 else
7736 lo16_type = R_MIPS_LO16;
7737
7738 /* The combined value is the sum of the HI16 addend,
7739 left-shifted by sixteen bits, and the LO16
7740 addend, sign extended. (Usually, the code does
7741 a `lui' of the HI16 value, and then an `addiu' of
7742 the LO16 value.)
7743
7744 Scan ahead to find a matching LO16 relocation.
7745
7746 According to the MIPS ELF ABI, the R_MIPS_LO16
7747 relocation must be immediately following.
7748 However, for the IRIX6 ABI, the next relocation
7749 may be a composed relocation consisting of
7750 several relocations for the same address. In
7751 that case, the R_MIPS_LO16 relocation may occur
7752 as one of these. We permit a similar extension
7753 in general, as that is useful for GCC. */
7754 lo16_relocation = mips_elf_next_relocation (input_bfd,
7755 lo16_type,
7756 rel, relend);
7757 if (lo16_relocation == NULL)
7758 return FALSE;
7759
7760 lo16_location = contents + lo16_relocation->r_offset;
7761
7762 /* Obtain the addend kept there. */
7763 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7764 lo16_type, FALSE);
7765 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE,
7766 lo16_location);
7767 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
7768 input_bfd, contents);
7769 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE,
7770 lo16_location);
7771 l &= lo16_howto->src_mask;
7772 l <<= lo16_howto->rightshift;
7773 l = _bfd_mips_elf_sign_extend (l, 16);
7774
7775 addend <<= 16;
7776
7777 /* Compute the combined addend. */
7778 addend += l;
7779 }
7780 else
7781 addend <<= howto->rightshift;
7782 }
7783 else
7784 addend = rel->r_addend;
7785 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7786 local_syms, local_sections, rel);
7787 }
7788
7789 if (info->relocatable)
7790 {
7791 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
7792 && bfd_big_endian (input_bfd))
7793 rel->r_offset -= 4;
7794
7795 if (!rela_relocation_p && rel->r_addend)
7796 {
7797 addend += rel->r_addend;
7798 if (r_type == R_MIPS_HI16
7799 || r_type == R_MIPS_GOT16)
7800 addend = mips_elf_high (addend);
7801 else if (r_type == R_MIPS_HIGHER)
7802 addend = mips_elf_higher (addend);
7803 else if (r_type == R_MIPS_HIGHEST)
7804 addend = mips_elf_highest (addend);
7805 else
7806 addend >>= howto->rightshift;
7807
7808 /* We use the source mask, rather than the destination
7809 mask because the place to which we are writing will be
7810 source of the addend in the final link. */
7811 addend &= howto->src_mask;
7812
7813 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7814 /* See the comment above about using R_MIPS_64 in the 32-bit
7815 ABI. Here, we need to update the addend. It would be
7816 possible to get away with just using the R_MIPS_32 reloc
7817 but for endianness. */
7818 {
7819 bfd_vma sign_bits;
7820 bfd_vma low_bits;
7821 bfd_vma high_bits;
7822
7823 if (addend & ((bfd_vma) 1 << 31))
7824 #ifdef BFD64
7825 sign_bits = ((bfd_vma) 1 << 32) - 1;
7826 #else
7827 sign_bits = -1;
7828 #endif
7829 else
7830 sign_bits = 0;
7831
7832 /* If we don't know that we have a 64-bit type,
7833 do two separate stores. */
7834 if (bfd_big_endian (input_bfd))
7835 {
7836 /* Store the sign-bits (which are most significant)
7837 first. */
7838 low_bits = sign_bits;
7839 high_bits = addend;
7840 }
7841 else
7842 {
7843 low_bits = addend;
7844 high_bits = sign_bits;
7845 }
7846 bfd_put_32 (input_bfd, low_bits,
7847 contents + rel->r_offset);
7848 bfd_put_32 (input_bfd, high_bits,
7849 contents + rel->r_offset + 4);
7850 continue;
7851 }
7852
7853 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7854 input_bfd, input_section,
7855 contents, FALSE))
7856 return FALSE;
7857 }
7858
7859 /* Go on to the next relocation. */
7860 continue;
7861 }
7862
7863 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7864 relocations for the same offset. In that case we are
7865 supposed to treat the output of each relocation as the addend
7866 for the next. */
7867 if (rel + 1 < relend
7868 && rel->r_offset == rel[1].r_offset
7869 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
7870 use_saved_addend_p = TRUE;
7871 else
7872 use_saved_addend_p = FALSE;
7873
7874 /* Figure out what value we are supposed to relocate. */
7875 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
7876 input_section, info, rel,
7877 addend, howto, local_syms,
7878 local_sections, &value,
7879 &name, &require_jalx,
7880 use_saved_addend_p))
7881 {
7882 case bfd_reloc_continue:
7883 /* There's nothing to do. */
7884 continue;
7885
7886 case bfd_reloc_undefined:
7887 /* mips_elf_calculate_relocation already called the
7888 undefined_symbol callback. There's no real point in
7889 trying to perform the relocation at this point, so we
7890 just skip ahead to the next relocation. */
7891 continue;
7892
7893 case bfd_reloc_notsupported:
7894 msg = _("internal error: unsupported relocation error");
7895 info->callbacks->warning
7896 (info, msg, name, input_bfd, input_section, rel->r_offset);
7897 return FALSE;
7898
7899 case bfd_reloc_overflow:
7900 if (use_saved_addend_p)
7901 /* Ignore overflow until we reach the last relocation for
7902 a given location. */
7903 ;
7904 else
7905 {
7906 BFD_ASSERT (name != NULL);
7907 if (! ((*info->callbacks->reloc_overflow)
7908 (info, NULL, name, howto->name, (bfd_vma) 0,
7909 input_bfd, input_section, rel->r_offset)))
7910 return FALSE;
7911 }
7912 break;
7913
7914 case bfd_reloc_ok:
7915 break;
7916
7917 default:
7918 abort ();
7919 break;
7920 }
7921
7922 /* If we've got another relocation for the address, keep going
7923 until we reach the last one. */
7924 if (use_saved_addend_p)
7925 {
7926 addend = value;
7927 continue;
7928 }
7929
7930 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7931 /* See the comment above about using R_MIPS_64 in the 32-bit
7932 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7933 that calculated the right value. Now, however, we
7934 sign-extend the 32-bit result to 64-bits, and store it as a
7935 64-bit value. We are especially generous here in that we
7936 go to extreme lengths to support this usage on systems with
7937 only a 32-bit VMA. */
7938 {
7939 bfd_vma sign_bits;
7940 bfd_vma low_bits;
7941 bfd_vma high_bits;
7942
7943 if (value & ((bfd_vma) 1 << 31))
7944 #ifdef BFD64
7945 sign_bits = ((bfd_vma) 1 << 32) - 1;
7946 #else
7947 sign_bits = -1;
7948 #endif
7949 else
7950 sign_bits = 0;
7951
7952 /* If we don't know that we have a 64-bit type,
7953 do two separate stores. */
7954 if (bfd_big_endian (input_bfd))
7955 {
7956 /* Undo what we did above. */
7957 rel->r_offset -= 4;
7958 /* Store the sign-bits (which are most significant)
7959 first. */
7960 low_bits = sign_bits;
7961 high_bits = value;
7962 }
7963 else
7964 {
7965 low_bits = value;
7966 high_bits = sign_bits;
7967 }
7968 bfd_put_32 (input_bfd, low_bits,
7969 contents + rel->r_offset);
7970 bfd_put_32 (input_bfd, high_bits,
7971 contents + rel->r_offset + 4);
7972 continue;
7973 }
7974
7975 /* Actually perform the relocation. */
7976 if (! mips_elf_perform_relocation (info, howto, rel, value,
7977 input_bfd, input_section,
7978 contents, require_jalx))
7979 return FALSE;
7980 }
7981
7982 return TRUE;
7983 }
7984 \f
7985 /* If NAME is one of the special IRIX6 symbols defined by the linker,
7986 adjust it appropriately now. */
7987
7988 static void
7989 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7990 const char *name, Elf_Internal_Sym *sym)
7991 {
7992 /* The linker script takes care of providing names and values for
7993 these, but we must place them into the right sections. */
7994 static const char* const text_section_symbols[] = {
7995 "_ftext",
7996 "_etext",
7997 "__dso_displacement",
7998 "__elf_header",
7999 "__program_header_table",
8000 NULL
8001 };
8002
8003 static const char* const data_section_symbols[] = {
8004 "_fdata",
8005 "_edata",
8006 "_end",
8007 "_fbss",
8008 NULL
8009 };
8010
8011 const char* const *p;
8012 int i;
8013
8014 for (i = 0; i < 2; ++i)
8015 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8016 *p;
8017 ++p)
8018 if (strcmp (*p, name) == 0)
8019 {
8020 /* All of these symbols are given type STT_SECTION by the
8021 IRIX6 linker. */
8022 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8023 sym->st_other = STO_PROTECTED;
8024
8025 /* The IRIX linker puts these symbols in special sections. */
8026 if (i == 0)
8027 sym->st_shndx = SHN_MIPS_TEXT;
8028 else
8029 sym->st_shndx = SHN_MIPS_DATA;
8030
8031 break;
8032 }
8033 }
8034
8035 /* Finish up dynamic symbol handling. We set the contents of various
8036 dynamic sections here. */
8037
8038 bfd_boolean
8039 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8040 struct bfd_link_info *info,
8041 struct elf_link_hash_entry *h,
8042 Elf_Internal_Sym *sym)
8043 {
8044 bfd *dynobj;
8045 asection *sgot;
8046 struct mips_got_info *g, *gg;
8047 const char *name;
8048 int idx;
8049 struct mips_elf_link_hash_table *htab;
8050
8051 htab = mips_elf_hash_table (info);
8052 dynobj = elf_hash_table (info)->dynobj;
8053
8054 if (h->plt.offset != MINUS_ONE)
8055 {
8056 asection *s;
8057 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
8058
8059 /* This symbol has a stub. Set it up. */
8060
8061 BFD_ASSERT (h->dynindx != -1);
8062
8063 s = bfd_get_section_by_name (dynobj,
8064 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8065 BFD_ASSERT (s != NULL);
8066
8067 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8068 || (h->dynindx <= 0xffff));
8069
8070 /* Values up to 2^31 - 1 are allowed. Larger values would cause
8071 sign extension at runtime in the stub, resulting in a negative
8072 index value. */
8073 if (h->dynindx & ~0x7fffffff)
8074 return FALSE;
8075
8076 /* Fill the stub. */
8077 idx = 0;
8078 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8079 idx += 4;
8080 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8081 idx += 4;
8082 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8083 {
8084 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
8085 stub + idx);
8086 idx += 4;
8087 }
8088 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8089 idx += 4;
8090
8091 /* If a large stub is not required and sign extension is not a
8092 problem, then use legacy code in the stub. */
8093 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8094 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8095 else if (h->dynindx & ~0x7fff)
8096 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8097 else
8098 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8099 stub + idx);
8100
8101 BFD_ASSERT (h->plt.offset <= s->size);
8102 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
8103
8104 /* Mark the symbol as undefined. plt.offset != -1 occurs
8105 only for the referenced symbol. */
8106 sym->st_shndx = SHN_UNDEF;
8107
8108 /* The run-time linker uses the st_value field of the symbol
8109 to reset the global offset table entry for this external
8110 to its stub address when unlinking a shared object. */
8111 sym->st_value = (s->output_section->vma + s->output_offset
8112 + h->plt.offset);
8113 }
8114
8115 BFD_ASSERT (h->dynindx != -1
8116 || h->forced_local);
8117
8118 sgot = mips_elf_got_section (dynobj, FALSE);
8119 BFD_ASSERT (sgot != NULL);
8120 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8121 g = mips_elf_section_data (sgot)->u.got_info;
8122 BFD_ASSERT (g != NULL);
8123
8124 /* Run through the global symbol table, creating GOT entries for all
8125 the symbols that need them. */
8126 if (g->global_gotsym != NULL
8127 && h->dynindx >= g->global_gotsym->dynindx)
8128 {
8129 bfd_vma offset;
8130 bfd_vma value;
8131
8132 value = sym->st_value;
8133 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
8134 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8135 }
8136
8137 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
8138 {
8139 struct mips_got_entry e, *p;
8140 bfd_vma entry;
8141 bfd_vma offset;
8142
8143 gg = g;
8144
8145 e.abfd = output_bfd;
8146 e.symndx = -1;
8147 e.d.h = (struct mips_elf_link_hash_entry *)h;
8148 e.tls_type = 0;
8149
8150 for (g = g->next; g->next != gg; g = g->next)
8151 {
8152 if (g->got_entries
8153 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8154 &e)))
8155 {
8156 offset = p->gotidx;
8157 if (info->shared
8158 || (elf_hash_table (info)->dynamic_sections_created
8159 && p->d.h != NULL
8160 && p->d.h->root.def_dynamic
8161 && !p->d.h->root.def_regular))
8162 {
8163 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8164 the various compatibility problems, it's easier to mock
8165 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8166 mips_elf_create_dynamic_relocation to calculate the
8167 appropriate addend. */
8168 Elf_Internal_Rela rel[3];
8169
8170 memset (rel, 0, sizeof (rel));
8171 if (ABI_64_P (output_bfd))
8172 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8173 else
8174 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8175 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8176
8177 entry = 0;
8178 if (! (mips_elf_create_dynamic_relocation
8179 (output_bfd, info, rel,
8180 e.d.h, NULL, sym->st_value, &entry, sgot)))
8181 return FALSE;
8182 }
8183 else
8184 entry = sym->st_value;
8185 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
8186 }
8187 }
8188 }
8189
8190 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8191 name = h->root.root.string;
8192 if (strcmp (name, "_DYNAMIC") == 0
8193 || h == elf_hash_table (info)->hgot)
8194 sym->st_shndx = SHN_ABS;
8195 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8196 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8197 {
8198 sym->st_shndx = SHN_ABS;
8199 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8200 sym->st_value = 1;
8201 }
8202 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
8203 {
8204 sym->st_shndx = SHN_ABS;
8205 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8206 sym->st_value = elf_gp (output_bfd);
8207 }
8208 else if (SGI_COMPAT (output_bfd))
8209 {
8210 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8211 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8212 {
8213 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8214 sym->st_other = STO_PROTECTED;
8215 sym->st_value = 0;
8216 sym->st_shndx = SHN_MIPS_DATA;
8217 }
8218 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8219 {
8220 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8221 sym->st_other = STO_PROTECTED;
8222 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8223 sym->st_shndx = SHN_ABS;
8224 }
8225 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8226 {
8227 if (h->type == STT_FUNC)
8228 sym->st_shndx = SHN_MIPS_TEXT;
8229 else if (h->type == STT_OBJECT)
8230 sym->st_shndx = SHN_MIPS_DATA;
8231 }
8232 }
8233
8234 /* Handle the IRIX6-specific symbols. */
8235 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8236 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8237
8238 if (! info->shared)
8239 {
8240 if (! mips_elf_hash_table (info)->use_rld_obj_head
8241 && (strcmp (name, "__rld_map") == 0
8242 || strcmp (name, "__RLD_MAP") == 0))
8243 {
8244 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8245 BFD_ASSERT (s != NULL);
8246 sym->st_value = s->output_section->vma + s->output_offset;
8247 bfd_put_32 (output_bfd, 0, s->contents);
8248 if (mips_elf_hash_table (info)->rld_value == 0)
8249 mips_elf_hash_table (info)->rld_value = sym->st_value;
8250 }
8251 else if (mips_elf_hash_table (info)->use_rld_obj_head
8252 && strcmp (name, "__rld_obj_head") == 0)
8253 {
8254 /* IRIX6 does not use a .rld_map section. */
8255 if (IRIX_COMPAT (output_bfd) == ict_irix5
8256 || IRIX_COMPAT (output_bfd) == ict_none)
8257 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8258 != NULL);
8259 mips_elf_hash_table (info)->rld_value = sym->st_value;
8260 }
8261 }
8262
8263 /* If this is a mips16 symbol, force the value to be even. */
8264 if (sym->st_other == STO_MIPS16)
8265 sym->st_value &= ~1;
8266
8267 return TRUE;
8268 }
8269
8270 /* Likewise, for VxWorks. */
8271
8272 bfd_boolean
8273 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8274 struct bfd_link_info *info,
8275 struct elf_link_hash_entry *h,
8276 Elf_Internal_Sym *sym)
8277 {
8278 bfd *dynobj;
8279 asection *sgot;
8280 struct mips_got_info *g;
8281 struct mips_elf_link_hash_table *htab;
8282
8283 htab = mips_elf_hash_table (info);
8284 dynobj = elf_hash_table (info)->dynobj;
8285
8286 if (h->plt.offset != (bfd_vma) -1)
8287 {
8288 bfd_byte *loc;
8289 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8290 Elf_Internal_Rela rel;
8291 static const bfd_vma *plt_entry;
8292
8293 BFD_ASSERT (h->dynindx != -1);
8294 BFD_ASSERT (htab->splt != NULL);
8295 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8296
8297 /* Calculate the address of the .plt entry. */
8298 plt_address = (htab->splt->output_section->vma
8299 + htab->splt->output_offset
8300 + h->plt.offset);
8301
8302 /* Calculate the index of the entry. */
8303 plt_index = ((h->plt.offset - htab->plt_header_size)
8304 / htab->plt_entry_size);
8305
8306 /* Calculate the address of the .got.plt entry. */
8307 got_address = (htab->sgotplt->output_section->vma
8308 + htab->sgotplt->output_offset
8309 + plt_index * 4);
8310
8311 /* Calculate the offset of the .got.plt entry from
8312 _GLOBAL_OFFSET_TABLE_. */
8313 got_offset = mips_elf_gotplt_index (info, h);
8314
8315 /* Calculate the offset for the branch at the start of the PLT
8316 entry. The branch jumps to the beginning of .plt. */
8317 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8318
8319 /* Fill in the initial value of the .got.plt entry. */
8320 bfd_put_32 (output_bfd, plt_address,
8321 htab->sgotplt->contents + plt_index * 4);
8322
8323 /* Find out where the .plt entry should go. */
8324 loc = htab->splt->contents + h->plt.offset;
8325
8326 if (info->shared)
8327 {
8328 plt_entry = mips_vxworks_shared_plt_entry;
8329 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8330 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8331 }
8332 else
8333 {
8334 bfd_vma got_address_high, got_address_low;
8335
8336 plt_entry = mips_vxworks_exec_plt_entry;
8337 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8338 got_address_low = got_address & 0xffff;
8339
8340 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8341 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8342 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8343 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8344 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8345 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8346 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8347 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8348
8349 loc = (htab->srelplt2->contents
8350 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8351
8352 /* Emit a relocation for the .got.plt entry. */
8353 rel.r_offset = got_address;
8354 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8355 rel.r_addend = h->plt.offset;
8356 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8357
8358 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8359 loc += sizeof (Elf32_External_Rela);
8360 rel.r_offset = plt_address + 8;
8361 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8362 rel.r_addend = got_offset;
8363 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8364
8365 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8366 loc += sizeof (Elf32_External_Rela);
8367 rel.r_offset += 4;
8368 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8369 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8370 }
8371
8372 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8373 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8374 rel.r_offset = got_address;
8375 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8376 rel.r_addend = 0;
8377 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8378
8379 if (!h->def_regular)
8380 sym->st_shndx = SHN_UNDEF;
8381 }
8382
8383 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8384
8385 sgot = mips_elf_got_section (dynobj, FALSE);
8386 BFD_ASSERT (sgot != NULL);
8387 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8388 g = mips_elf_section_data (sgot)->u.got_info;
8389 BFD_ASSERT (g != NULL);
8390
8391 /* See if this symbol has an entry in the GOT. */
8392 if (g->global_gotsym != NULL
8393 && h->dynindx >= g->global_gotsym->dynindx)
8394 {
8395 bfd_vma offset;
8396 Elf_Internal_Rela outrel;
8397 bfd_byte *loc;
8398 asection *s;
8399
8400 /* Install the symbol value in the GOT. */
8401 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8402 R_MIPS_GOT16, info);
8403 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8404
8405 /* Add a dynamic relocation for it. */
8406 s = mips_elf_rel_dyn_section (info, FALSE);
8407 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8408 outrel.r_offset = (sgot->output_section->vma
8409 + sgot->output_offset
8410 + offset);
8411 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8412 outrel.r_addend = 0;
8413 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8414 }
8415
8416 /* Emit a copy reloc, if needed. */
8417 if (h->needs_copy)
8418 {
8419 Elf_Internal_Rela rel;
8420
8421 BFD_ASSERT (h->dynindx != -1);
8422
8423 rel.r_offset = (h->root.u.def.section->output_section->vma
8424 + h->root.u.def.section->output_offset
8425 + h->root.u.def.value);
8426 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8427 rel.r_addend = 0;
8428 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8429 htab->srelbss->contents
8430 + (htab->srelbss->reloc_count
8431 * sizeof (Elf32_External_Rela)));
8432 ++htab->srelbss->reloc_count;
8433 }
8434
8435 /* If this is a mips16 symbol, force the value to be even. */
8436 if (sym->st_other == STO_MIPS16)
8437 sym->st_value &= ~1;
8438
8439 return TRUE;
8440 }
8441
8442 /* Install the PLT header for a VxWorks executable and finalize the
8443 contents of .rela.plt.unloaded. */
8444
8445 static void
8446 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8447 {
8448 Elf_Internal_Rela rela;
8449 bfd_byte *loc;
8450 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8451 static const bfd_vma *plt_entry;
8452 struct mips_elf_link_hash_table *htab;
8453
8454 htab = mips_elf_hash_table (info);
8455 plt_entry = mips_vxworks_exec_plt0_entry;
8456
8457 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8458 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8459 + htab->root.hgot->root.u.def.section->output_offset
8460 + htab->root.hgot->root.u.def.value);
8461
8462 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8463 got_value_low = got_value & 0xffff;
8464
8465 /* Calculate the address of the PLT header. */
8466 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8467
8468 /* Install the PLT header. */
8469 loc = htab->splt->contents;
8470 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8471 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8472 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8473 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8474 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8475 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8476
8477 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8478 loc = htab->srelplt2->contents;
8479 rela.r_offset = plt_address;
8480 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8481 rela.r_addend = 0;
8482 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8483 loc += sizeof (Elf32_External_Rela);
8484
8485 /* Output the relocation for the following addiu of
8486 %lo(_GLOBAL_OFFSET_TABLE_). */
8487 rela.r_offset += 4;
8488 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8489 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8490 loc += sizeof (Elf32_External_Rela);
8491
8492 /* Fix up the remaining relocations. They may have the wrong
8493 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8494 in which symbols were output. */
8495 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8496 {
8497 Elf_Internal_Rela rel;
8498
8499 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8500 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8501 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8502 loc += sizeof (Elf32_External_Rela);
8503
8504 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8505 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8506 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8507 loc += sizeof (Elf32_External_Rela);
8508
8509 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8510 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8511 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8512 loc += sizeof (Elf32_External_Rela);
8513 }
8514 }
8515
8516 /* Install the PLT header for a VxWorks shared library. */
8517
8518 static void
8519 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8520 {
8521 unsigned int i;
8522 struct mips_elf_link_hash_table *htab;
8523
8524 htab = mips_elf_hash_table (info);
8525
8526 /* We just need to copy the entry byte-by-byte. */
8527 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8528 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8529 htab->splt->contents + i * 4);
8530 }
8531
8532 /* Finish up the dynamic sections. */
8533
8534 bfd_boolean
8535 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8536 struct bfd_link_info *info)
8537 {
8538 bfd *dynobj;
8539 asection *sdyn;
8540 asection *sgot;
8541 struct mips_got_info *gg, *g;
8542 struct mips_elf_link_hash_table *htab;
8543
8544 htab = mips_elf_hash_table (info);
8545 dynobj = elf_hash_table (info)->dynobj;
8546
8547 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8548
8549 sgot = mips_elf_got_section (dynobj, FALSE);
8550 if (sgot == NULL)
8551 gg = g = NULL;
8552 else
8553 {
8554 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8555 gg = mips_elf_section_data (sgot)->u.got_info;
8556 BFD_ASSERT (gg != NULL);
8557 g = mips_elf_got_for_ibfd (gg, output_bfd);
8558 BFD_ASSERT (g != NULL);
8559 }
8560
8561 if (elf_hash_table (info)->dynamic_sections_created)
8562 {
8563 bfd_byte *b;
8564 int dyn_to_skip = 0, dyn_skipped = 0;
8565
8566 BFD_ASSERT (sdyn != NULL);
8567 BFD_ASSERT (g != NULL);
8568
8569 for (b = sdyn->contents;
8570 b < sdyn->contents + sdyn->size;
8571 b += MIPS_ELF_DYN_SIZE (dynobj))
8572 {
8573 Elf_Internal_Dyn dyn;
8574 const char *name;
8575 size_t elemsize;
8576 asection *s;
8577 bfd_boolean swap_out_p;
8578
8579 /* Read in the current dynamic entry. */
8580 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8581
8582 /* Assume that we're going to modify it and write it out. */
8583 swap_out_p = TRUE;
8584
8585 switch (dyn.d_tag)
8586 {
8587 case DT_RELENT:
8588 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8589 break;
8590
8591 case DT_RELAENT:
8592 BFD_ASSERT (htab->is_vxworks);
8593 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8594 break;
8595
8596 case DT_STRSZ:
8597 /* Rewrite DT_STRSZ. */
8598 dyn.d_un.d_val =
8599 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8600 break;
8601
8602 case DT_PLTGOT:
8603 name = ".got";
8604 if (htab->is_vxworks)
8605 {
8606 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8607 of the ".got" section in DYNOBJ. */
8608 s = bfd_get_section_by_name (dynobj, name);
8609 BFD_ASSERT (s != NULL);
8610 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8611 }
8612 else
8613 {
8614 s = bfd_get_section_by_name (output_bfd, name);
8615 BFD_ASSERT (s != NULL);
8616 dyn.d_un.d_ptr = s->vma;
8617 }
8618 break;
8619
8620 case DT_MIPS_RLD_VERSION:
8621 dyn.d_un.d_val = 1; /* XXX */
8622 break;
8623
8624 case DT_MIPS_FLAGS:
8625 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8626 break;
8627
8628 case DT_MIPS_TIME_STAMP:
8629 {
8630 time_t t;
8631 time (&t);
8632 dyn.d_un.d_val = t;
8633 }
8634 break;
8635
8636 case DT_MIPS_ICHECKSUM:
8637 /* XXX FIXME: */
8638 swap_out_p = FALSE;
8639 break;
8640
8641 case DT_MIPS_IVERSION:
8642 /* XXX FIXME: */
8643 swap_out_p = FALSE;
8644 break;
8645
8646 case DT_MIPS_BASE_ADDRESS:
8647 s = output_bfd->sections;
8648 BFD_ASSERT (s != NULL);
8649 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8650 break;
8651
8652 case DT_MIPS_LOCAL_GOTNO:
8653 dyn.d_un.d_val = g->local_gotno;
8654 break;
8655
8656 case DT_MIPS_UNREFEXTNO:
8657 /* The index into the dynamic symbol table which is the
8658 entry of the first external symbol that is not
8659 referenced within the same object. */
8660 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8661 break;
8662
8663 case DT_MIPS_GOTSYM:
8664 if (gg->global_gotsym)
8665 {
8666 dyn.d_un.d_val = gg->global_gotsym->dynindx;
8667 break;
8668 }
8669 /* In case if we don't have global got symbols we default
8670 to setting DT_MIPS_GOTSYM to the same value as
8671 DT_MIPS_SYMTABNO, so we just fall through. */
8672
8673 case DT_MIPS_SYMTABNO:
8674 name = ".dynsym";
8675 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8676 s = bfd_get_section_by_name (output_bfd, name);
8677 BFD_ASSERT (s != NULL);
8678
8679 dyn.d_un.d_val = s->size / elemsize;
8680 break;
8681
8682 case DT_MIPS_HIPAGENO:
8683 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
8684 break;
8685
8686 case DT_MIPS_RLD_MAP:
8687 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8688 break;
8689
8690 case DT_MIPS_OPTIONS:
8691 s = (bfd_get_section_by_name
8692 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8693 dyn.d_un.d_ptr = s->vma;
8694 break;
8695
8696 case DT_RELASZ:
8697 BFD_ASSERT (htab->is_vxworks);
8698 /* The count does not include the JUMP_SLOT relocations. */
8699 if (htab->srelplt)
8700 dyn.d_un.d_val -= htab->srelplt->size;
8701 break;
8702
8703 case DT_PLTREL:
8704 BFD_ASSERT (htab->is_vxworks);
8705 dyn.d_un.d_val = DT_RELA;
8706 break;
8707
8708 case DT_PLTRELSZ:
8709 BFD_ASSERT (htab->is_vxworks);
8710 dyn.d_un.d_val = htab->srelplt->size;
8711 break;
8712
8713 case DT_JMPREL:
8714 BFD_ASSERT (htab->is_vxworks);
8715 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8716 + htab->srelplt->output_offset);
8717 break;
8718
8719 case DT_TEXTREL:
8720 /* If we didn't need any text relocations after all, delete
8721 the dynamic tag. */
8722 if (!(info->flags & DF_TEXTREL))
8723 {
8724 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8725 swap_out_p = FALSE;
8726 }
8727 break;
8728
8729 case DT_FLAGS:
8730 /* If we didn't need any text relocations after all, clear
8731 DF_TEXTREL from DT_FLAGS. */
8732 if (!(info->flags & DF_TEXTREL))
8733 dyn.d_un.d_val &= ~DF_TEXTREL;
8734 else
8735 swap_out_p = FALSE;
8736 break;
8737
8738 default:
8739 swap_out_p = FALSE;
8740 break;
8741 }
8742
8743 if (swap_out_p || dyn_skipped)
8744 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8745 (dynobj, &dyn, b - dyn_skipped);
8746
8747 if (dyn_to_skip)
8748 {
8749 dyn_skipped += dyn_to_skip;
8750 dyn_to_skip = 0;
8751 }
8752 }
8753
8754 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8755 if (dyn_skipped > 0)
8756 memset (b - dyn_skipped, 0, dyn_skipped);
8757 }
8758
8759 if (sgot != NULL && sgot->size > 0)
8760 {
8761 if (htab->is_vxworks)
8762 {
8763 /* The first entry of the global offset table points to the
8764 ".dynamic" section. The second is initialized by the
8765 loader and contains the shared library identifier.
8766 The third is also initialized by the loader and points
8767 to the lazy resolution stub. */
8768 MIPS_ELF_PUT_WORD (output_bfd,
8769 sdyn->output_offset + sdyn->output_section->vma,
8770 sgot->contents);
8771 MIPS_ELF_PUT_WORD (output_bfd, 0,
8772 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8773 MIPS_ELF_PUT_WORD (output_bfd, 0,
8774 sgot->contents
8775 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8776 }
8777 else
8778 {
8779 /* The first entry of the global offset table will be filled at
8780 runtime. The second entry will be used by some runtime loaders.
8781 This isn't the case of IRIX rld. */
8782 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8783 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8784 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8785 }
8786
8787 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8788 = MIPS_ELF_GOT_SIZE (output_bfd);
8789 }
8790
8791 /* Generate dynamic relocations for the non-primary gots. */
8792 if (gg != NULL && gg->next)
8793 {
8794 Elf_Internal_Rela rel[3];
8795 bfd_vma addend = 0;
8796
8797 memset (rel, 0, sizeof (rel));
8798 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8799
8800 for (g = gg->next; g->next != gg; g = g->next)
8801 {
8802 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8803 + g->next->tls_gotno;
8804
8805 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
8806 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8807 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
8808 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8809
8810 if (! info->shared)
8811 continue;
8812
8813 while (index < g->assigned_gotno)
8814 {
8815 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8816 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8817 if (!(mips_elf_create_dynamic_relocation
8818 (output_bfd, info, rel, NULL,
8819 bfd_abs_section_ptr,
8820 0, &addend, sgot)))
8821 return FALSE;
8822 BFD_ASSERT (addend == 0);
8823 }
8824 }
8825 }
8826
8827 /* The generation of dynamic relocations for the non-primary gots
8828 adds more dynamic relocations. We cannot count them until
8829 here. */
8830
8831 if (elf_hash_table (info)->dynamic_sections_created)
8832 {
8833 bfd_byte *b;
8834 bfd_boolean swap_out_p;
8835
8836 BFD_ASSERT (sdyn != NULL);
8837
8838 for (b = sdyn->contents;
8839 b < sdyn->contents + sdyn->size;
8840 b += MIPS_ELF_DYN_SIZE (dynobj))
8841 {
8842 Elf_Internal_Dyn dyn;
8843 asection *s;
8844
8845 /* Read in the current dynamic entry. */
8846 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8847
8848 /* Assume that we're going to modify it and write it out. */
8849 swap_out_p = TRUE;
8850
8851 switch (dyn.d_tag)
8852 {
8853 case DT_RELSZ:
8854 /* Reduce DT_RELSZ to account for any relocations we
8855 decided not to make. This is for the n64 irix rld,
8856 which doesn't seem to apply any relocations if there
8857 are trailing null entries. */
8858 s = mips_elf_rel_dyn_section (info, FALSE);
8859 dyn.d_un.d_val = (s->reloc_count
8860 * (ABI_64_P (output_bfd)
8861 ? sizeof (Elf64_Mips_External_Rel)
8862 : sizeof (Elf32_External_Rel)));
8863 break;
8864
8865 default:
8866 swap_out_p = FALSE;
8867 break;
8868 }
8869
8870 if (swap_out_p)
8871 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8872 (dynobj, &dyn, b);
8873 }
8874 }
8875
8876 {
8877 asection *s;
8878 Elf32_compact_rel cpt;
8879
8880 if (SGI_COMPAT (output_bfd))
8881 {
8882 /* Write .compact_rel section out. */
8883 s = bfd_get_section_by_name (dynobj, ".compact_rel");
8884 if (s != NULL)
8885 {
8886 cpt.id1 = 1;
8887 cpt.num = s->reloc_count;
8888 cpt.id2 = 2;
8889 cpt.offset = (s->output_section->filepos
8890 + sizeof (Elf32_External_compact_rel));
8891 cpt.reserved0 = 0;
8892 cpt.reserved1 = 0;
8893 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
8894 ((Elf32_External_compact_rel *)
8895 s->contents));
8896
8897 /* Clean up a dummy stub function entry in .text. */
8898 s = bfd_get_section_by_name (dynobj,
8899 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8900 if (s != NULL)
8901 {
8902 file_ptr dummy_offset;
8903
8904 BFD_ASSERT (s->size >= htab->function_stub_size);
8905 dummy_offset = s->size - htab->function_stub_size;
8906 memset (s->contents + dummy_offset, 0,
8907 htab->function_stub_size);
8908 }
8909 }
8910 }
8911
8912 /* The psABI says that the dynamic relocations must be sorted in
8913 increasing order of r_symndx. The VxWorks EABI doesn't require
8914 this, and because the code below handles REL rather than RELA
8915 relocations, using it for VxWorks would be outright harmful. */
8916 if (!htab->is_vxworks)
8917 {
8918 s = mips_elf_rel_dyn_section (info, FALSE);
8919 if (s != NULL
8920 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
8921 {
8922 reldyn_sorting_bfd = output_bfd;
8923
8924 if (ABI_64_P (output_bfd))
8925 qsort ((Elf64_External_Rel *) s->contents + 1,
8926 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
8927 sort_dynamic_relocs_64);
8928 else
8929 qsort ((Elf32_External_Rel *) s->contents + 1,
8930 s->reloc_count - 1, sizeof (Elf32_External_Rel),
8931 sort_dynamic_relocs);
8932 }
8933 }
8934 }
8935
8936 if (htab->is_vxworks && htab->splt->size > 0)
8937 {
8938 if (info->shared)
8939 mips_vxworks_finish_shared_plt (output_bfd, info);
8940 else
8941 mips_vxworks_finish_exec_plt (output_bfd, info);
8942 }
8943 return TRUE;
8944 }
8945
8946
8947 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
8948
8949 static void
8950 mips_set_isa_flags (bfd *abfd)
8951 {
8952 flagword val;
8953
8954 switch (bfd_get_mach (abfd))
8955 {
8956 default:
8957 case bfd_mach_mips3000:
8958 val = E_MIPS_ARCH_1;
8959 break;
8960
8961 case bfd_mach_mips3900:
8962 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
8963 break;
8964
8965 case bfd_mach_mips6000:
8966 val = E_MIPS_ARCH_2;
8967 break;
8968
8969 case bfd_mach_mips4000:
8970 case bfd_mach_mips4300:
8971 case bfd_mach_mips4400:
8972 case bfd_mach_mips4600:
8973 val = E_MIPS_ARCH_3;
8974 break;
8975
8976 case bfd_mach_mips4010:
8977 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
8978 break;
8979
8980 case bfd_mach_mips4100:
8981 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
8982 break;
8983
8984 case bfd_mach_mips4111:
8985 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
8986 break;
8987
8988 case bfd_mach_mips4120:
8989 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
8990 break;
8991
8992 case bfd_mach_mips4650:
8993 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
8994 break;
8995
8996 case bfd_mach_mips5400:
8997 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
8998 break;
8999
9000 case bfd_mach_mips5500:
9001 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9002 break;
9003
9004 case bfd_mach_mips9000:
9005 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9006 break;
9007
9008 case bfd_mach_mips5000:
9009 case bfd_mach_mips7000:
9010 case bfd_mach_mips8000:
9011 case bfd_mach_mips10000:
9012 case bfd_mach_mips12000:
9013 val = E_MIPS_ARCH_4;
9014 break;
9015
9016 case bfd_mach_mips5:
9017 val = E_MIPS_ARCH_5;
9018 break;
9019
9020 case bfd_mach_mips_sb1:
9021 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9022 break;
9023
9024 case bfd_mach_mipsisa32:
9025 val = E_MIPS_ARCH_32;
9026 break;
9027
9028 case bfd_mach_mipsisa64:
9029 val = E_MIPS_ARCH_64;
9030 break;
9031
9032 case bfd_mach_mipsisa32r2:
9033 val = E_MIPS_ARCH_32R2;
9034 break;
9035
9036 case bfd_mach_mipsisa64r2:
9037 val = E_MIPS_ARCH_64R2;
9038 break;
9039 }
9040 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9041 elf_elfheader (abfd)->e_flags |= val;
9042
9043 }
9044
9045
9046 /* The final processing done just before writing out a MIPS ELF object
9047 file. This gets the MIPS architecture right based on the machine
9048 number. This is used by both the 32-bit and the 64-bit ABI. */
9049
9050 void
9051 _bfd_mips_elf_final_write_processing (bfd *abfd,
9052 bfd_boolean linker ATTRIBUTE_UNUSED)
9053 {
9054 unsigned int i;
9055 Elf_Internal_Shdr **hdrpp;
9056 const char *name;
9057 asection *sec;
9058
9059 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9060 is nonzero. This is for compatibility with old objects, which used
9061 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9062 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9063 mips_set_isa_flags (abfd);
9064
9065 /* Set the sh_info field for .gptab sections and other appropriate
9066 info for each special section. */
9067 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9068 i < elf_numsections (abfd);
9069 i++, hdrpp++)
9070 {
9071 switch ((*hdrpp)->sh_type)
9072 {
9073 case SHT_MIPS_MSYM:
9074 case SHT_MIPS_LIBLIST:
9075 sec = bfd_get_section_by_name (abfd, ".dynstr");
9076 if (sec != NULL)
9077 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9078 break;
9079
9080 case SHT_MIPS_GPTAB:
9081 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9082 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9083 BFD_ASSERT (name != NULL
9084 && CONST_STRNEQ (name, ".gptab."));
9085 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9086 BFD_ASSERT (sec != NULL);
9087 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9088 break;
9089
9090 case SHT_MIPS_CONTENT:
9091 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9092 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9093 BFD_ASSERT (name != NULL
9094 && CONST_STRNEQ (name, ".MIPS.content"));
9095 sec = bfd_get_section_by_name (abfd,
9096 name + sizeof ".MIPS.content" - 1);
9097 BFD_ASSERT (sec != NULL);
9098 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9099 break;
9100
9101 case SHT_MIPS_SYMBOL_LIB:
9102 sec = bfd_get_section_by_name (abfd, ".dynsym");
9103 if (sec != NULL)
9104 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9105 sec = bfd_get_section_by_name (abfd, ".liblist");
9106 if (sec != NULL)
9107 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9108 break;
9109
9110 case SHT_MIPS_EVENTS:
9111 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9112 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9113 BFD_ASSERT (name != NULL);
9114 if (CONST_STRNEQ (name, ".MIPS.events"))
9115 sec = bfd_get_section_by_name (abfd,
9116 name + sizeof ".MIPS.events" - 1);
9117 else
9118 {
9119 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
9120 sec = bfd_get_section_by_name (abfd,
9121 (name
9122 + sizeof ".MIPS.post_rel" - 1));
9123 }
9124 BFD_ASSERT (sec != NULL);
9125 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9126 break;
9127
9128 }
9129 }
9130 }
9131 \f
9132 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9133 segments. */
9134
9135 int
9136 _bfd_mips_elf_additional_program_headers (bfd *abfd,
9137 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9138 {
9139 asection *s;
9140 int ret = 0;
9141
9142 /* See if we need a PT_MIPS_REGINFO segment. */
9143 s = bfd_get_section_by_name (abfd, ".reginfo");
9144 if (s && (s->flags & SEC_LOAD))
9145 ++ret;
9146
9147 /* See if we need a PT_MIPS_OPTIONS segment. */
9148 if (IRIX_COMPAT (abfd) == ict_irix6
9149 && bfd_get_section_by_name (abfd,
9150 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9151 ++ret;
9152
9153 /* See if we need a PT_MIPS_RTPROC segment. */
9154 if (IRIX_COMPAT (abfd) == ict_irix5
9155 && bfd_get_section_by_name (abfd, ".dynamic")
9156 && bfd_get_section_by_name (abfd, ".mdebug"))
9157 ++ret;
9158
9159 return ret;
9160 }
9161
9162 /* Modify the segment map for an IRIX5 executable. */
9163
9164 bfd_boolean
9165 _bfd_mips_elf_modify_segment_map (bfd *abfd,
9166 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9167 {
9168 asection *s;
9169 struct elf_segment_map *m, **pm;
9170 bfd_size_type amt;
9171
9172 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9173 segment. */
9174 s = bfd_get_section_by_name (abfd, ".reginfo");
9175 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9176 {
9177 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9178 if (m->p_type == PT_MIPS_REGINFO)
9179 break;
9180 if (m == NULL)
9181 {
9182 amt = sizeof *m;
9183 m = bfd_zalloc (abfd, amt);
9184 if (m == NULL)
9185 return FALSE;
9186
9187 m->p_type = PT_MIPS_REGINFO;
9188 m->count = 1;
9189 m->sections[0] = s;
9190
9191 /* We want to put it after the PHDR and INTERP segments. */
9192 pm = &elf_tdata (abfd)->segment_map;
9193 while (*pm != NULL
9194 && ((*pm)->p_type == PT_PHDR
9195 || (*pm)->p_type == PT_INTERP))
9196 pm = &(*pm)->next;
9197
9198 m->next = *pm;
9199 *pm = m;
9200 }
9201 }
9202
9203 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9204 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9205 PT_MIPS_OPTIONS segment immediately following the program header
9206 table. */
9207 if (NEWABI_P (abfd)
9208 /* On non-IRIX6 new abi, we'll have already created a segment
9209 for this section, so don't create another. I'm not sure this
9210 is not also the case for IRIX 6, but I can't test it right
9211 now. */
9212 && IRIX_COMPAT (abfd) == ict_irix6)
9213 {
9214 for (s = abfd->sections; s; s = s->next)
9215 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9216 break;
9217
9218 if (s)
9219 {
9220 struct elf_segment_map *options_segment;
9221
9222 pm = &elf_tdata (abfd)->segment_map;
9223 while (*pm != NULL
9224 && ((*pm)->p_type == PT_PHDR
9225 || (*pm)->p_type == PT_INTERP))
9226 pm = &(*pm)->next;
9227
9228 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9229 {
9230 amt = sizeof (struct elf_segment_map);
9231 options_segment = bfd_zalloc (abfd, amt);
9232 options_segment->next = *pm;
9233 options_segment->p_type = PT_MIPS_OPTIONS;
9234 options_segment->p_flags = PF_R;
9235 options_segment->p_flags_valid = TRUE;
9236 options_segment->count = 1;
9237 options_segment->sections[0] = s;
9238 *pm = options_segment;
9239 }
9240 }
9241 }
9242 else
9243 {
9244 if (IRIX_COMPAT (abfd) == ict_irix5)
9245 {
9246 /* If there are .dynamic and .mdebug sections, we make a room
9247 for the RTPROC header. FIXME: Rewrite without section names. */
9248 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9249 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9250 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9251 {
9252 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9253 if (m->p_type == PT_MIPS_RTPROC)
9254 break;
9255 if (m == NULL)
9256 {
9257 amt = sizeof *m;
9258 m = bfd_zalloc (abfd, amt);
9259 if (m == NULL)
9260 return FALSE;
9261
9262 m->p_type = PT_MIPS_RTPROC;
9263
9264 s = bfd_get_section_by_name (abfd, ".rtproc");
9265 if (s == NULL)
9266 {
9267 m->count = 0;
9268 m->p_flags = 0;
9269 m->p_flags_valid = 1;
9270 }
9271 else
9272 {
9273 m->count = 1;
9274 m->sections[0] = s;
9275 }
9276
9277 /* We want to put it after the DYNAMIC segment. */
9278 pm = &elf_tdata (abfd)->segment_map;
9279 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9280 pm = &(*pm)->next;
9281 if (*pm != NULL)
9282 pm = &(*pm)->next;
9283
9284 m->next = *pm;
9285 *pm = m;
9286 }
9287 }
9288 }
9289 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9290 .dynstr, .dynsym, and .hash sections, and everything in
9291 between. */
9292 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9293 pm = &(*pm)->next)
9294 if ((*pm)->p_type == PT_DYNAMIC)
9295 break;
9296 m = *pm;
9297 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9298 {
9299 /* For a normal mips executable the permissions for the PT_DYNAMIC
9300 segment are read, write and execute. We do that here since
9301 the code in elf.c sets only the read permission. This matters
9302 sometimes for the dynamic linker. */
9303 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9304 {
9305 m->p_flags = PF_R | PF_W | PF_X;
9306 m->p_flags_valid = 1;
9307 }
9308 }
9309 if (m != NULL
9310 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9311 {
9312 static const char *sec_names[] =
9313 {
9314 ".dynamic", ".dynstr", ".dynsym", ".hash"
9315 };
9316 bfd_vma low, high;
9317 unsigned int i, c;
9318 struct elf_segment_map *n;
9319
9320 low = ~(bfd_vma) 0;
9321 high = 0;
9322 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9323 {
9324 s = bfd_get_section_by_name (abfd, sec_names[i]);
9325 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9326 {
9327 bfd_size_type sz;
9328
9329 if (low > s->vma)
9330 low = s->vma;
9331 sz = s->size;
9332 if (high < s->vma + sz)
9333 high = s->vma + sz;
9334 }
9335 }
9336
9337 c = 0;
9338 for (s = abfd->sections; s != NULL; s = s->next)
9339 if ((s->flags & SEC_LOAD) != 0
9340 && s->vma >= low
9341 && s->vma + s->size <= high)
9342 ++c;
9343
9344 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9345 n = bfd_zalloc (abfd, amt);
9346 if (n == NULL)
9347 return FALSE;
9348 *n = *m;
9349 n->count = c;
9350
9351 i = 0;
9352 for (s = abfd->sections; s != NULL; s = s->next)
9353 {
9354 if ((s->flags & SEC_LOAD) != 0
9355 && s->vma >= low
9356 && s->vma + s->size <= high)
9357 {
9358 n->sections[i] = s;
9359 ++i;
9360 }
9361 }
9362
9363 *pm = n;
9364 }
9365 }
9366
9367 return TRUE;
9368 }
9369 \f
9370 /* Return the section that should be marked against GC for a given
9371 relocation. */
9372
9373 asection *
9374 _bfd_mips_elf_gc_mark_hook (asection *sec,
9375 struct bfd_link_info *info,
9376 Elf_Internal_Rela *rel,
9377 struct elf_link_hash_entry *h,
9378 Elf_Internal_Sym *sym)
9379 {
9380 /* ??? Do mips16 stub sections need to be handled special? */
9381
9382 if (h != NULL)
9383 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9384 {
9385 case R_MIPS_GNU_VTINHERIT:
9386 case R_MIPS_GNU_VTENTRY:
9387 return NULL;
9388 }
9389
9390 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
9391 }
9392
9393 /* Update the got entry reference counts for the section being removed. */
9394
9395 bfd_boolean
9396 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9397 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9398 asection *sec ATTRIBUTE_UNUSED,
9399 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
9400 {
9401 #if 0
9402 Elf_Internal_Shdr *symtab_hdr;
9403 struct elf_link_hash_entry **sym_hashes;
9404 bfd_signed_vma *local_got_refcounts;
9405 const Elf_Internal_Rela *rel, *relend;
9406 unsigned long r_symndx;
9407 struct elf_link_hash_entry *h;
9408
9409 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9410 sym_hashes = elf_sym_hashes (abfd);
9411 local_got_refcounts = elf_local_got_refcounts (abfd);
9412
9413 relend = relocs + sec->reloc_count;
9414 for (rel = relocs; rel < relend; rel++)
9415 switch (ELF_R_TYPE (abfd, rel->r_info))
9416 {
9417 case R_MIPS_GOT16:
9418 case R_MIPS_CALL16:
9419 case R_MIPS_CALL_HI16:
9420 case R_MIPS_CALL_LO16:
9421 case R_MIPS_GOT_HI16:
9422 case R_MIPS_GOT_LO16:
9423 case R_MIPS_GOT_DISP:
9424 case R_MIPS_GOT_PAGE:
9425 case R_MIPS_GOT_OFST:
9426 /* ??? It would seem that the existing MIPS code does no sort
9427 of reference counting or whatnot on its GOT and PLT entries,
9428 so it is not possible to garbage collect them at this time. */
9429 break;
9430
9431 default:
9432 break;
9433 }
9434 #endif
9435
9436 return TRUE;
9437 }
9438 \f
9439 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9440 hiding the old indirect symbol. Process additional relocation
9441 information. Also called for weakdefs, in which case we just let
9442 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9443
9444 void
9445 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9446 struct elf_link_hash_entry *dir,
9447 struct elf_link_hash_entry *ind)
9448 {
9449 struct mips_elf_link_hash_entry *dirmips, *indmips;
9450
9451 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
9452
9453 if (ind->root.type != bfd_link_hash_indirect)
9454 return;
9455
9456 dirmips = (struct mips_elf_link_hash_entry *) dir;
9457 indmips = (struct mips_elf_link_hash_entry *) ind;
9458 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9459 if (indmips->readonly_reloc)
9460 dirmips->readonly_reloc = TRUE;
9461 if (indmips->no_fn_stub)
9462 dirmips->no_fn_stub = TRUE;
9463
9464 if (dirmips->tls_type == 0)
9465 dirmips->tls_type = indmips->tls_type;
9466 }
9467
9468 void
9469 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9470 struct elf_link_hash_entry *entry,
9471 bfd_boolean force_local)
9472 {
9473 bfd *dynobj;
9474 asection *got;
9475 struct mips_got_info *g;
9476 struct mips_elf_link_hash_entry *h;
9477
9478 h = (struct mips_elf_link_hash_entry *) entry;
9479 if (h->forced_local)
9480 return;
9481 h->forced_local = force_local;
9482
9483 dynobj = elf_hash_table (info)->dynobj;
9484 if (dynobj != NULL && force_local && h->root.type != STT_TLS
9485 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
9486 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
9487 {
9488 if (g->next)
9489 {
9490 struct mips_got_entry e;
9491 struct mips_got_info *gg = g;
9492
9493 /* Since we're turning what used to be a global symbol into a
9494 local one, bump up the number of local entries of each GOT
9495 that had an entry for it. This will automatically decrease
9496 the number of global entries, since global_gotno is actually
9497 the upper limit of global entries. */
9498 e.abfd = dynobj;
9499 e.symndx = -1;
9500 e.d.h = h;
9501 e.tls_type = 0;
9502
9503 for (g = g->next; g != gg; g = g->next)
9504 if (htab_find (g->got_entries, &e))
9505 {
9506 BFD_ASSERT (g->global_gotno > 0);
9507 g->local_gotno++;
9508 g->global_gotno--;
9509 }
9510
9511 /* If this was a global symbol forced into the primary GOT, we
9512 no longer need an entry for it. We can't release the entry
9513 at this point, but we must at least stop counting it as one
9514 of the symbols that required a forced got entry. */
9515 if (h->root.got.offset == 2)
9516 {
9517 BFD_ASSERT (gg->assigned_gotno > 0);
9518 gg->assigned_gotno--;
9519 }
9520 }
9521 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9522 /* If we haven't got through GOT allocation yet, just bump up the
9523 number of local entries, as this symbol won't be counted as
9524 global. */
9525 g->local_gotno++;
9526 else if (h->root.got.offset == 1)
9527 {
9528 /* If we're past non-multi-GOT allocation and this symbol had
9529 been marked for a global got entry, give it a local entry
9530 instead. */
9531 BFD_ASSERT (g->global_gotno > 0);
9532 g->local_gotno++;
9533 g->global_gotno--;
9534 }
9535 }
9536
9537 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
9538 }
9539 \f
9540 #define PDR_SIZE 32
9541
9542 bfd_boolean
9543 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9544 struct bfd_link_info *info)
9545 {
9546 asection *o;
9547 bfd_boolean ret = FALSE;
9548 unsigned char *tdata;
9549 size_t i, skip;
9550
9551 o = bfd_get_section_by_name (abfd, ".pdr");
9552 if (! o)
9553 return FALSE;
9554 if (o->size == 0)
9555 return FALSE;
9556 if (o->size % PDR_SIZE != 0)
9557 return FALSE;
9558 if (o->output_section != NULL
9559 && bfd_is_abs_section (o->output_section))
9560 return FALSE;
9561
9562 tdata = bfd_zmalloc (o->size / PDR_SIZE);
9563 if (! tdata)
9564 return FALSE;
9565
9566 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
9567 info->keep_memory);
9568 if (!cookie->rels)
9569 {
9570 free (tdata);
9571 return FALSE;
9572 }
9573
9574 cookie->rel = cookie->rels;
9575 cookie->relend = cookie->rels + o->reloc_count;
9576
9577 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
9578 {
9579 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
9580 {
9581 tdata[i] = 1;
9582 skip ++;
9583 }
9584 }
9585
9586 if (skip != 0)
9587 {
9588 mips_elf_section_data (o)->u.tdata = tdata;
9589 o->size -= skip * PDR_SIZE;
9590 ret = TRUE;
9591 }
9592 else
9593 free (tdata);
9594
9595 if (! info->keep_memory)
9596 free (cookie->rels);
9597
9598 return ret;
9599 }
9600
9601 bfd_boolean
9602 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
9603 {
9604 if (strcmp (sec->name, ".pdr") == 0)
9605 return TRUE;
9606 return FALSE;
9607 }
9608
9609 bfd_boolean
9610 _bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
9611 bfd_byte *contents)
9612 {
9613 bfd_byte *to, *from, *end;
9614 int i;
9615
9616 if (strcmp (sec->name, ".pdr") != 0)
9617 return FALSE;
9618
9619 if (mips_elf_section_data (sec)->u.tdata == NULL)
9620 return FALSE;
9621
9622 to = contents;
9623 end = contents + sec->size;
9624 for (from = contents, i = 0;
9625 from < end;
9626 from += PDR_SIZE, i++)
9627 {
9628 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
9629 continue;
9630 if (to != from)
9631 memcpy (to, from, PDR_SIZE);
9632 to += PDR_SIZE;
9633 }
9634 bfd_set_section_contents (output_bfd, sec->output_section, contents,
9635 sec->output_offset, sec->size);
9636 return TRUE;
9637 }
9638 \f
9639 /* MIPS ELF uses a special find_nearest_line routine in order the
9640 handle the ECOFF debugging information. */
9641
9642 struct mips_elf_find_line
9643 {
9644 struct ecoff_debug_info d;
9645 struct ecoff_find_line i;
9646 };
9647
9648 bfd_boolean
9649 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9650 asymbol **symbols, bfd_vma offset,
9651 const char **filename_ptr,
9652 const char **functionname_ptr,
9653 unsigned int *line_ptr)
9654 {
9655 asection *msec;
9656
9657 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9658 filename_ptr, functionname_ptr,
9659 line_ptr))
9660 return TRUE;
9661
9662 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9663 filename_ptr, functionname_ptr,
9664 line_ptr, ABI_64_P (abfd) ? 8 : 0,
9665 &elf_tdata (abfd)->dwarf2_find_line_info))
9666 return TRUE;
9667
9668 msec = bfd_get_section_by_name (abfd, ".mdebug");
9669 if (msec != NULL)
9670 {
9671 flagword origflags;
9672 struct mips_elf_find_line *fi;
9673 const struct ecoff_debug_swap * const swap =
9674 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9675
9676 /* If we are called during a link, mips_elf_final_link may have
9677 cleared the SEC_HAS_CONTENTS field. We force it back on here
9678 if appropriate (which it normally will be). */
9679 origflags = msec->flags;
9680 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9681 msec->flags |= SEC_HAS_CONTENTS;
9682
9683 fi = elf_tdata (abfd)->find_line_info;
9684 if (fi == NULL)
9685 {
9686 bfd_size_type external_fdr_size;
9687 char *fraw_src;
9688 char *fraw_end;
9689 struct fdr *fdr_ptr;
9690 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9691
9692 fi = bfd_zalloc (abfd, amt);
9693 if (fi == NULL)
9694 {
9695 msec->flags = origflags;
9696 return FALSE;
9697 }
9698
9699 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9700 {
9701 msec->flags = origflags;
9702 return FALSE;
9703 }
9704
9705 /* Swap in the FDR information. */
9706 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9707 fi->d.fdr = bfd_alloc (abfd, amt);
9708 if (fi->d.fdr == NULL)
9709 {
9710 msec->flags = origflags;
9711 return FALSE;
9712 }
9713 external_fdr_size = swap->external_fdr_size;
9714 fdr_ptr = fi->d.fdr;
9715 fraw_src = (char *) fi->d.external_fdr;
9716 fraw_end = (fraw_src
9717 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9718 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9719 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
9720
9721 elf_tdata (abfd)->find_line_info = fi;
9722
9723 /* Note that we don't bother to ever free this information.
9724 find_nearest_line is either called all the time, as in
9725 objdump -l, so the information should be saved, or it is
9726 rarely called, as in ld error messages, so the memory
9727 wasted is unimportant. Still, it would probably be a
9728 good idea for free_cached_info to throw it away. */
9729 }
9730
9731 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9732 &fi->i, filename_ptr, functionname_ptr,
9733 line_ptr))
9734 {
9735 msec->flags = origflags;
9736 return TRUE;
9737 }
9738
9739 msec->flags = origflags;
9740 }
9741
9742 /* Fall back on the generic ELF find_nearest_line routine. */
9743
9744 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9745 filename_ptr, functionname_ptr,
9746 line_ptr);
9747 }
9748
9749 bfd_boolean
9750 _bfd_mips_elf_find_inliner_info (bfd *abfd,
9751 const char **filename_ptr,
9752 const char **functionname_ptr,
9753 unsigned int *line_ptr)
9754 {
9755 bfd_boolean found;
9756 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9757 functionname_ptr, line_ptr,
9758 & elf_tdata (abfd)->dwarf2_find_line_info);
9759 return found;
9760 }
9761
9762 \f
9763 /* When are writing out the .options or .MIPS.options section,
9764 remember the bytes we are writing out, so that we can install the
9765 GP value in the section_processing routine. */
9766
9767 bfd_boolean
9768 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9769 const void *location,
9770 file_ptr offset, bfd_size_type count)
9771 {
9772 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
9773 {
9774 bfd_byte *c;
9775
9776 if (elf_section_data (section) == NULL)
9777 {
9778 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9779 section->used_by_bfd = bfd_zalloc (abfd, amt);
9780 if (elf_section_data (section) == NULL)
9781 return FALSE;
9782 }
9783 c = mips_elf_section_data (section)->u.tdata;
9784 if (c == NULL)
9785 {
9786 c = bfd_zalloc (abfd, section->size);
9787 if (c == NULL)
9788 return FALSE;
9789 mips_elf_section_data (section)->u.tdata = c;
9790 }
9791
9792 memcpy (c + offset, location, count);
9793 }
9794
9795 return _bfd_elf_set_section_contents (abfd, section, location, offset,
9796 count);
9797 }
9798
9799 /* This is almost identical to bfd_generic_get_... except that some
9800 MIPS relocations need to be handled specially. Sigh. */
9801
9802 bfd_byte *
9803 _bfd_elf_mips_get_relocated_section_contents
9804 (bfd *abfd,
9805 struct bfd_link_info *link_info,
9806 struct bfd_link_order *link_order,
9807 bfd_byte *data,
9808 bfd_boolean relocatable,
9809 asymbol **symbols)
9810 {
9811 /* Get enough memory to hold the stuff */
9812 bfd *input_bfd = link_order->u.indirect.section->owner;
9813 asection *input_section = link_order->u.indirect.section;
9814 bfd_size_type sz;
9815
9816 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9817 arelent **reloc_vector = NULL;
9818 long reloc_count;
9819
9820 if (reloc_size < 0)
9821 goto error_return;
9822
9823 reloc_vector = bfd_malloc (reloc_size);
9824 if (reloc_vector == NULL && reloc_size != 0)
9825 goto error_return;
9826
9827 /* read in the section */
9828 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
9829 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
9830 goto error_return;
9831
9832 reloc_count = bfd_canonicalize_reloc (input_bfd,
9833 input_section,
9834 reloc_vector,
9835 symbols);
9836 if (reloc_count < 0)
9837 goto error_return;
9838
9839 if (reloc_count > 0)
9840 {
9841 arelent **parent;
9842 /* for mips */
9843 int gp_found;
9844 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
9845
9846 {
9847 struct bfd_hash_entry *h;
9848 struct bfd_link_hash_entry *lh;
9849 /* Skip all this stuff if we aren't mixing formats. */
9850 if (abfd && input_bfd
9851 && abfd->xvec == input_bfd->xvec)
9852 lh = 0;
9853 else
9854 {
9855 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
9856 lh = (struct bfd_link_hash_entry *) h;
9857 }
9858 lookup:
9859 if (lh)
9860 {
9861 switch (lh->type)
9862 {
9863 case bfd_link_hash_undefined:
9864 case bfd_link_hash_undefweak:
9865 case bfd_link_hash_common:
9866 gp_found = 0;
9867 break;
9868 case bfd_link_hash_defined:
9869 case bfd_link_hash_defweak:
9870 gp_found = 1;
9871 gp = lh->u.def.value;
9872 break;
9873 case bfd_link_hash_indirect:
9874 case bfd_link_hash_warning:
9875 lh = lh->u.i.link;
9876 /* @@FIXME ignoring warning for now */
9877 goto lookup;
9878 case bfd_link_hash_new:
9879 default:
9880 abort ();
9881 }
9882 }
9883 else
9884 gp_found = 0;
9885 }
9886 /* end mips */
9887 for (parent = reloc_vector; *parent != NULL; parent++)
9888 {
9889 char *error_message = NULL;
9890 bfd_reloc_status_type r;
9891
9892 /* Specific to MIPS: Deal with relocation types that require
9893 knowing the gp of the output bfd. */
9894 asymbol *sym = *(*parent)->sym_ptr_ptr;
9895
9896 /* If we've managed to find the gp and have a special
9897 function for the relocation then go ahead, else default
9898 to the generic handling. */
9899 if (gp_found
9900 && (*parent)->howto->special_function
9901 == _bfd_mips_elf32_gprel16_reloc)
9902 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
9903 input_section, relocatable,
9904 data, gp);
9905 else
9906 r = bfd_perform_relocation (input_bfd, *parent, data,
9907 input_section,
9908 relocatable ? abfd : NULL,
9909 &error_message);
9910
9911 if (relocatable)
9912 {
9913 asection *os = input_section->output_section;
9914
9915 /* A partial link, so keep the relocs */
9916 os->orelocation[os->reloc_count] = *parent;
9917 os->reloc_count++;
9918 }
9919
9920 if (r != bfd_reloc_ok)
9921 {
9922 switch (r)
9923 {
9924 case bfd_reloc_undefined:
9925 if (!((*link_info->callbacks->undefined_symbol)
9926 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9927 input_bfd, input_section, (*parent)->address, TRUE)))
9928 goto error_return;
9929 break;
9930 case bfd_reloc_dangerous:
9931 BFD_ASSERT (error_message != NULL);
9932 if (!((*link_info->callbacks->reloc_dangerous)
9933 (link_info, error_message, input_bfd, input_section,
9934 (*parent)->address)))
9935 goto error_return;
9936 break;
9937 case bfd_reloc_overflow:
9938 if (!((*link_info->callbacks->reloc_overflow)
9939 (link_info, NULL,
9940 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9941 (*parent)->howto->name, (*parent)->addend,
9942 input_bfd, input_section, (*parent)->address)))
9943 goto error_return;
9944 break;
9945 case bfd_reloc_outofrange:
9946 default:
9947 abort ();
9948 break;
9949 }
9950
9951 }
9952 }
9953 }
9954 if (reloc_vector != NULL)
9955 free (reloc_vector);
9956 return data;
9957
9958 error_return:
9959 if (reloc_vector != NULL)
9960 free (reloc_vector);
9961 return NULL;
9962 }
9963 \f
9964 /* Create a MIPS ELF linker hash table. */
9965
9966 struct bfd_link_hash_table *
9967 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
9968 {
9969 struct mips_elf_link_hash_table *ret;
9970 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
9971
9972 ret = bfd_malloc (amt);
9973 if (ret == NULL)
9974 return NULL;
9975
9976 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
9977 mips_elf_link_hash_newfunc,
9978 sizeof (struct mips_elf_link_hash_entry)))
9979 {
9980 free (ret);
9981 return NULL;
9982 }
9983
9984 #if 0
9985 /* We no longer use this. */
9986 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
9987 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
9988 #endif
9989 ret->procedure_count = 0;
9990 ret->compact_rel_size = 0;
9991 ret->use_rld_obj_head = FALSE;
9992 ret->rld_value = 0;
9993 ret->mips16_stubs_seen = FALSE;
9994 ret->is_vxworks = FALSE;
9995 ret->srelbss = NULL;
9996 ret->sdynbss = NULL;
9997 ret->srelplt = NULL;
9998 ret->srelplt2 = NULL;
9999 ret->sgotplt = NULL;
10000 ret->splt = NULL;
10001 ret->plt_header_size = 0;
10002 ret->plt_entry_size = 0;
10003 ret->function_stub_size = 0;
10004
10005 return &ret->root.root;
10006 }
10007
10008 /* Likewise, but indicate that the target is VxWorks. */
10009
10010 struct bfd_link_hash_table *
10011 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10012 {
10013 struct bfd_link_hash_table *ret;
10014
10015 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10016 if (ret)
10017 {
10018 struct mips_elf_link_hash_table *htab;
10019
10020 htab = (struct mips_elf_link_hash_table *) ret;
10021 htab->is_vxworks = 1;
10022 }
10023 return ret;
10024 }
10025 \f
10026 /* We need to use a special link routine to handle the .reginfo and
10027 the .mdebug sections. We need to merge all instances of these
10028 sections together, not write them all out sequentially. */
10029
10030 bfd_boolean
10031 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10032 {
10033 asection *o;
10034 struct bfd_link_order *p;
10035 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10036 asection *rtproc_sec;
10037 Elf32_RegInfo reginfo;
10038 struct ecoff_debug_info debug;
10039 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10040 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
10041 HDRR *symhdr = &debug.symbolic_header;
10042 void *mdebug_handle = NULL;
10043 asection *s;
10044 EXTR esym;
10045 unsigned int i;
10046 bfd_size_type amt;
10047 struct mips_elf_link_hash_table *htab;
10048
10049 static const char * const secname[] =
10050 {
10051 ".text", ".init", ".fini", ".data",
10052 ".rodata", ".sdata", ".sbss", ".bss"
10053 };
10054 static const int sc[] =
10055 {
10056 scText, scInit, scFini, scData,
10057 scRData, scSData, scSBss, scBss
10058 };
10059
10060 /* We'd carefully arranged the dynamic symbol indices, and then the
10061 generic size_dynamic_sections renumbered them out from under us.
10062 Rather than trying somehow to prevent the renumbering, just do
10063 the sort again. */
10064 htab = mips_elf_hash_table (info);
10065 if (elf_hash_table (info)->dynamic_sections_created)
10066 {
10067 bfd *dynobj;
10068 asection *got;
10069 struct mips_got_info *g;
10070 bfd_size_type dynsecsymcount;
10071
10072 /* When we resort, we must tell mips_elf_sort_hash_table what
10073 the lowest index it may use is. That's the number of section
10074 symbols we're going to add. The generic ELF linker only
10075 adds these symbols when building a shared object. Note that
10076 we count the sections after (possibly) removing the .options
10077 section above. */
10078
10079 dynsecsymcount = count_section_dynsyms (abfd, info);
10080 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
10081 return FALSE;
10082
10083 /* Make sure we didn't grow the global .got region. */
10084 dynobj = elf_hash_table (info)->dynobj;
10085 got = mips_elf_got_section (dynobj, FALSE);
10086 g = mips_elf_section_data (got)->u.got_info;
10087
10088 if (g->global_gotsym != NULL)
10089 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10090 - g->global_gotsym->dynindx)
10091 <= g->global_gotno);
10092 }
10093
10094 /* Get a value for the GP register. */
10095 if (elf_gp (abfd) == 0)
10096 {
10097 struct bfd_link_hash_entry *h;
10098
10099 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
10100 if (h != NULL && h->type == bfd_link_hash_defined)
10101 elf_gp (abfd) = (h->u.def.value
10102 + h->u.def.section->output_section->vma
10103 + h->u.def.section->output_offset);
10104 else if (htab->is_vxworks
10105 && (h = bfd_link_hash_lookup (info->hash,
10106 "_GLOBAL_OFFSET_TABLE_",
10107 FALSE, FALSE, TRUE))
10108 && h->type == bfd_link_hash_defined)
10109 elf_gp (abfd) = (h->u.def.section->output_section->vma
10110 + h->u.def.section->output_offset
10111 + h->u.def.value);
10112 else if (info->relocatable)
10113 {
10114 bfd_vma lo = MINUS_ONE;
10115
10116 /* Find the GP-relative section with the lowest offset. */
10117 for (o = abfd->sections; o != NULL; o = o->next)
10118 if (o->vma < lo
10119 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10120 lo = o->vma;
10121
10122 /* And calculate GP relative to that. */
10123 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
10124 }
10125 else
10126 {
10127 /* If the relocate_section function needs to do a reloc
10128 involving the GP value, it should make a reloc_dangerous
10129 callback to warn that GP is not defined. */
10130 }
10131 }
10132
10133 /* Go through the sections and collect the .reginfo and .mdebug
10134 information. */
10135 reginfo_sec = NULL;
10136 mdebug_sec = NULL;
10137 gptab_data_sec = NULL;
10138 gptab_bss_sec = NULL;
10139 for (o = abfd->sections; o != NULL; o = o->next)
10140 {
10141 if (strcmp (o->name, ".reginfo") == 0)
10142 {
10143 memset (&reginfo, 0, sizeof reginfo);
10144
10145 /* We have found the .reginfo section in the output file.
10146 Look through all the link_orders comprising it and merge
10147 the information together. */
10148 for (p = o->map_head.link_order; p != NULL; p = p->next)
10149 {
10150 asection *input_section;
10151 bfd *input_bfd;
10152 Elf32_External_RegInfo ext;
10153 Elf32_RegInfo sub;
10154
10155 if (p->type != bfd_indirect_link_order)
10156 {
10157 if (p->type == bfd_data_link_order)
10158 continue;
10159 abort ();
10160 }
10161
10162 input_section = p->u.indirect.section;
10163 input_bfd = input_section->owner;
10164
10165 if (! bfd_get_section_contents (input_bfd, input_section,
10166 &ext, 0, sizeof ext))
10167 return FALSE;
10168
10169 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10170
10171 reginfo.ri_gprmask |= sub.ri_gprmask;
10172 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10173 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10174 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10175 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10176
10177 /* ri_gp_value is set by the function
10178 mips_elf32_section_processing when the section is
10179 finally written out. */
10180
10181 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10182 elf_link_input_bfd ignores this section. */
10183 input_section->flags &= ~SEC_HAS_CONTENTS;
10184 }
10185
10186 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10187 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
10188
10189 /* Skip this section later on (I don't think this currently
10190 matters, but someday it might). */
10191 o->map_head.link_order = NULL;
10192
10193 reginfo_sec = o;
10194 }
10195
10196 if (strcmp (o->name, ".mdebug") == 0)
10197 {
10198 struct extsym_info einfo;
10199 bfd_vma last;
10200
10201 /* We have found the .mdebug section in the output file.
10202 Look through all the link_orders comprising it and merge
10203 the information together. */
10204 symhdr->magic = swap->sym_magic;
10205 /* FIXME: What should the version stamp be? */
10206 symhdr->vstamp = 0;
10207 symhdr->ilineMax = 0;
10208 symhdr->cbLine = 0;
10209 symhdr->idnMax = 0;
10210 symhdr->ipdMax = 0;
10211 symhdr->isymMax = 0;
10212 symhdr->ioptMax = 0;
10213 symhdr->iauxMax = 0;
10214 symhdr->issMax = 0;
10215 symhdr->issExtMax = 0;
10216 symhdr->ifdMax = 0;
10217 symhdr->crfd = 0;
10218 symhdr->iextMax = 0;
10219
10220 /* We accumulate the debugging information itself in the
10221 debug_info structure. */
10222 debug.line = NULL;
10223 debug.external_dnr = NULL;
10224 debug.external_pdr = NULL;
10225 debug.external_sym = NULL;
10226 debug.external_opt = NULL;
10227 debug.external_aux = NULL;
10228 debug.ss = NULL;
10229 debug.ssext = debug.ssext_end = NULL;
10230 debug.external_fdr = NULL;
10231 debug.external_rfd = NULL;
10232 debug.external_ext = debug.external_ext_end = NULL;
10233
10234 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
10235 if (mdebug_handle == NULL)
10236 return FALSE;
10237
10238 esym.jmptbl = 0;
10239 esym.cobol_main = 0;
10240 esym.weakext = 0;
10241 esym.reserved = 0;
10242 esym.ifd = ifdNil;
10243 esym.asym.iss = issNil;
10244 esym.asym.st = stLocal;
10245 esym.asym.reserved = 0;
10246 esym.asym.index = indexNil;
10247 last = 0;
10248 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10249 {
10250 esym.asym.sc = sc[i];
10251 s = bfd_get_section_by_name (abfd, secname[i]);
10252 if (s != NULL)
10253 {
10254 esym.asym.value = s->vma;
10255 last = s->vma + s->size;
10256 }
10257 else
10258 esym.asym.value = last;
10259 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10260 secname[i], &esym))
10261 return FALSE;
10262 }
10263
10264 for (p = o->map_head.link_order; p != NULL; p = p->next)
10265 {
10266 asection *input_section;
10267 bfd *input_bfd;
10268 const struct ecoff_debug_swap *input_swap;
10269 struct ecoff_debug_info input_debug;
10270 char *eraw_src;
10271 char *eraw_end;
10272
10273 if (p->type != bfd_indirect_link_order)
10274 {
10275 if (p->type == bfd_data_link_order)
10276 continue;
10277 abort ();
10278 }
10279
10280 input_section = p->u.indirect.section;
10281 input_bfd = input_section->owner;
10282
10283 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10284 || (get_elf_backend_data (input_bfd)
10285 ->elf_backend_ecoff_debug_swap) == NULL)
10286 {
10287 /* I don't know what a non MIPS ELF bfd would be
10288 doing with a .mdebug section, but I don't really
10289 want to deal with it. */
10290 continue;
10291 }
10292
10293 input_swap = (get_elf_backend_data (input_bfd)
10294 ->elf_backend_ecoff_debug_swap);
10295
10296 BFD_ASSERT (p->size == input_section->size);
10297
10298 /* The ECOFF linking code expects that we have already
10299 read in the debugging information and set up an
10300 ecoff_debug_info structure, so we do that now. */
10301 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10302 &input_debug))
10303 return FALSE;
10304
10305 if (! (bfd_ecoff_debug_accumulate
10306 (mdebug_handle, abfd, &debug, swap, input_bfd,
10307 &input_debug, input_swap, info)))
10308 return FALSE;
10309
10310 /* Loop through the external symbols. For each one with
10311 interesting information, try to find the symbol in
10312 the linker global hash table and save the information
10313 for the output external symbols. */
10314 eraw_src = input_debug.external_ext;
10315 eraw_end = (eraw_src
10316 + (input_debug.symbolic_header.iextMax
10317 * input_swap->external_ext_size));
10318 for (;
10319 eraw_src < eraw_end;
10320 eraw_src += input_swap->external_ext_size)
10321 {
10322 EXTR ext;
10323 const char *name;
10324 struct mips_elf_link_hash_entry *h;
10325
10326 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
10327 if (ext.asym.sc == scNil
10328 || ext.asym.sc == scUndefined
10329 || ext.asym.sc == scSUndefined)
10330 continue;
10331
10332 name = input_debug.ssext + ext.asym.iss;
10333 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
10334 name, FALSE, FALSE, TRUE);
10335 if (h == NULL || h->esym.ifd != -2)
10336 continue;
10337
10338 if (ext.ifd != -1)
10339 {
10340 BFD_ASSERT (ext.ifd
10341 < input_debug.symbolic_header.ifdMax);
10342 ext.ifd = input_debug.ifdmap[ext.ifd];
10343 }
10344
10345 h->esym = ext;
10346 }
10347
10348 /* Free up the information we just read. */
10349 free (input_debug.line);
10350 free (input_debug.external_dnr);
10351 free (input_debug.external_pdr);
10352 free (input_debug.external_sym);
10353 free (input_debug.external_opt);
10354 free (input_debug.external_aux);
10355 free (input_debug.ss);
10356 free (input_debug.ssext);
10357 free (input_debug.external_fdr);
10358 free (input_debug.external_rfd);
10359 free (input_debug.external_ext);
10360
10361 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10362 elf_link_input_bfd ignores this section. */
10363 input_section->flags &= ~SEC_HAS_CONTENTS;
10364 }
10365
10366 if (SGI_COMPAT (abfd) && info->shared)
10367 {
10368 /* Create .rtproc section. */
10369 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10370 if (rtproc_sec == NULL)
10371 {
10372 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10373 | SEC_LINKER_CREATED | SEC_READONLY);
10374
10375 rtproc_sec = bfd_make_section_with_flags (abfd,
10376 ".rtproc",
10377 flags);
10378 if (rtproc_sec == NULL
10379 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
10380 return FALSE;
10381 }
10382
10383 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10384 info, rtproc_sec,
10385 &debug))
10386 return FALSE;
10387 }
10388
10389 /* Build the external symbol information. */
10390 einfo.abfd = abfd;
10391 einfo.info = info;
10392 einfo.debug = &debug;
10393 einfo.swap = swap;
10394 einfo.failed = FALSE;
10395 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
10396 mips_elf_output_extsym, &einfo);
10397 if (einfo.failed)
10398 return FALSE;
10399
10400 /* Set the size of the .mdebug section. */
10401 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
10402
10403 /* Skip this section later on (I don't think this currently
10404 matters, but someday it might). */
10405 o->map_head.link_order = NULL;
10406
10407 mdebug_sec = o;
10408 }
10409
10410 if (CONST_STRNEQ (o->name, ".gptab."))
10411 {
10412 const char *subname;
10413 unsigned int c;
10414 Elf32_gptab *tab;
10415 Elf32_External_gptab *ext_tab;
10416 unsigned int j;
10417
10418 /* The .gptab.sdata and .gptab.sbss sections hold
10419 information describing how the small data area would
10420 change depending upon the -G switch. These sections
10421 not used in executables files. */
10422 if (! info->relocatable)
10423 {
10424 for (p = o->map_head.link_order; p != NULL; p = p->next)
10425 {
10426 asection *input_section;
10427
10428 if (p->type != bfd_indirect_link_order)
10429 {
10430 if (p->type == bfd_data_link_order)
10431 continue;
10432 abort ();
10433 }
10434
10435 input_section = p->u.indirect.section;
10436
10437 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10438 elf_link_input_bfd ignores this section. */
10439 input_section->flags &= ~SEC_HAS_CONTENTS;
10440 }
10441
10442 /* Skip this section later on (I don't think this
10443 currently matters, but someday it might). */
10444 o->map_head.link_order = NULL;
10445
10446 /* Really remove the section. */
10447 bfd_section_list_remove (abfd, o);
10448 --abfd->section_count;
10449
10450 continue;
10451 }
10452
10453 /* There is one gptab for initialized data, and one for
10454 uninitialized data. */
10455 if (strcmp (o->name, ".gptab.sdata") == 0)
10456 gptab_data_sec = o;
10457 else if (strcmp (o->name, ".gptab.sbss") == 0)
10458 gptab_bss_sec = o;
10459 else
10460 {
10461 (*_bfd_error_handler)
10462 (_("%s: illegal section name `%s'"),
10463 bfd_get_filename (abfd), o->name);
10464 bfd_set_error (bfd_error_nonrepresentable_section);
10465 return FALSE;
10466 }
10467
10468 /* The linker script always combines .gptab.data and
10469 .gptab.sdata into .gptab.sdata, and likewise for
10470 .gptab.bss and .gptab.sbss. It is possible that there is
10471 no .sdata or .sbss section in the output file, in which
10472 case we must change the name of the output section. */
10473 subname = o->name + sizeof ".gptab" - 1;
10474 if (bfd_get_section_by_name (abfd, subname) == NULL)
10475 {
10476 if (o == gptab_data_sec)
10477 o->name = ".gptab.data";
10478 else
10479 o->name = ".gptab.bss";
10480 subname = o->name + sizeof ".gptab" - 1;
10481 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10482 }
10483
10484 /* Set up the first entry. */
10485 c = 1;
10486 amt = c * sizeof (Elf32_gptab);
10487 tab = bfd_malloc (amt);
10488 if (tab == NULL)
10489 return FALSE;
10490 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10491 tab[0].gt_header.gt_unused = 0;
10492
10493 /* Combine the input sections. */
10494 for (p = o->map_head.link_order; p != NULL; p = p->next)
10495 {
10496 asection *input_section;
10497 bfd *input_bfd;
10498 bfd_size_type size;
10499 unsigned long last;
10500 bfd_size_type gpentry;
10501
10502 if (p->type != bfd_indirect_link_order)
10503 {
10504 if (p->type == bfd_data_link_order)
10505 continue;
10506 abort ();
10507 }
10508
10509 input_section = p->u.indirect.section;
10510 input_bfd = input_section->owner;
10511
10512 /* Combine the gptab entries for this input section one
10513 by one. We know that the input gptab entries are
10514 sorted by ascending -G value. */
10515 size = input_section->size;
10516 last = 0;
10517 for (gpentry = sizeof (Elf32_External_gptab);
10518 gpentry < size;
10519 gpentry += sizeof (Elf32_External_gptab))
10520 {
10521 Elf32_External_gptab ext_gptab;
10522 Elf32_gptab int_gptab;
10523 unsigned long val;
10524 unsigned long add;
10525 bfd_boolean exact;
10526 unsigned int look;
10527
10528 if (! (bfd_get_section_contents
10529 (input_bfd, input_section, &ext_gptab, gpentry,
10530 sizeof (Elf32_External_gptab))))
10531 {
10532 free (tab);
10533 return FALSE;
10534 }
10535
10536 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10537 &int_gptab);
10538 val = int_gptab.gt_entry.gt_g_value;
10539 add = int_gptab.gt_entry.gt_bytes - last;
10540
10541 exact = FALSE;
10542 for (look = 1; look < c; look++)
10543 {
10544 if (tab[look].gt_entry.gt_g_value >= val)
10545 tab[look].gt_entry.gt_bytes += add;
10546
10547 if (tab[look].gt_entry.gt_g_value == val)
10548 exact = TRUE;
10549 }
10550
10551 if (! exact)
10552 {
10553 Elf32_gptab *new_tab;
10554 unsigned int max;
10555
10556 /* We need a new table entry. */
10557 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
10558 new_tab = bfd_realloc (tab, amt);
10559 if (new_tab == NULL)
10560 {
10561 free (tab);
10562 return FALSE;
10563 }
10564 tab = new_tab;
10565 tab[c].gt_entry.gt_g_value = val;
10566 tab[c].gt_entry.gt_bytes = add;
10567
10568 /* Merge in the size for the next smallest -G
10569 value, since that will be implied by this new
10570 value. */
10571 max = 0;
10572 for (look = 1; look < c; look++)
10573 {
10574 if (tab[look].gt_entry.gt_g_value < val
10575 && (max == 0
10576 || (tab[look].gt_entry.gt_g_value
10577 > tab[max].gt_entry.gt_g_value)))
10578 max = look;
10579 }
10580 if (max != 0)
10581 tab[c].gt_entry.gt_bytes +=
10582 tab[max].gt_entry.gt_bytes;
10583
10584 ++c;
10585 }
10586
10587 last = int_gptab.gt_entry.gt_bytes;
10588 }
10589
10590 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10591 elf_link_input_bfd ignores this section. */
10592 input_section->flags &= ~SEC_HAS_CONTENTS;
10593 }
10594
10595 /* The table must be sorted by -G value. */
10596 if (c > 2)
10597 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10598
10599 /* Swap out the table. */
10600 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
10601 ext_tab = bfd_alloc (abfd, amt);
10602 if (ext_tab == NULL)
10603 {
10604 free (tab);
10605 return FALSE;
10606 }
10607
10608 for (j = 0; j < c; j++)
10609 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10610 free (tab);
10611
10612 o->size = c * sizeof (Elf32_External_gptab);
10613 o->contents = (bfd_byte *) ext_tab;
10614
10615 /* Skip this section later on (I don't think this currently
10616 matters, but someday it might). */
10617 o->map_head.link_order = NULL;
10618 }
10619 }
10620
10621 /* Invoke the regular ELF backend linker to do all the work. */
10622 if (!bfd_elf_final_link (abfd, info))
10623 return FALSE;
10624
10625 /* Now write out the computed sections. */
10626
10627 if (reginfo_sec != NULL)
10628 {
10629 Elf32_External_RegInfo ext;
10630
10631 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
10632 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
10633 return FALSE;
10634 }
10635
10636 if (mdebug_sec != NULL)
10637 {
10638 BFD_ASSERT (abfd->output_has_begun);
10639 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10640 swap, info,
10641 mdebug_sec->filepos))
10642 return FALSE;
10643
10644 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10645 }
10646
10647 if (gptab_data_sec != NULL)
10648 {
10649 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10650 gptab_data_sec->contents,
10651 0, gptab_data_sec->size))
10652 return FALSE;
10653 }
10654
10655 if (gptab_bss_sec != NULL)
10656 {
10657 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10658 gptab_bss_sec->contents,
10659 0, gptab_bss_sec->size))
10660 return FALSE;
10661 }
10662
10663 if (SGI_COMPAT (abfd))
10664 {
10665 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10666 if (rtproc_sec != NULL)
10667 {
10668 if (! bfd_set_section_contents (abfd, rtproc_sec,
10669 rtproc_sec->contents,
10670 0, rtproc_sec->size))
10671 return FALSE;
10672 }
10673 }
10674
10675 return TRUE;
10676 }
10677 \f
10678 /* Structure for saying that BFD machine EXTENSION extends BASE. */
10679
10680 struct mips_mach_extension {
10681 unsigned long extension, base;
10682 };
10683
10684
10685 /* An array describing how BFD machines relate to one another. The entries
10686 are ordered topologically with MIPS I extensions listed last. */
10687
10688 static const struct mips_mach_extension mips_mach_extensions[] = {
10689 /* MIPS64 extensions. */
10690 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
10691 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10692
10693 /* MIPS V extensions. */
10694 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10695
10696 /* R10000 extensions. */
10697 { bfd_mach_mips12000, bfd_mach_mips10000 },
10698
10699 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10700 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10701 better to allow vr5400 and vr5500 code to be merged anyway, since
10702 many libraries will just use the core ISA. Perhaps we could add
10703 some sort of ASE flag if this ever proves a problem. */
10704 { bfd_mach_mips5500, bfd_mach_mips5400 },
10705 { bfd_mach_mips5400, bfd_mach_mips5000 },
10706
10707 /* MIPS IV extensions. */
10708 { bfd_mach_mips5, bfd_mach_mips8000 },
10709 { bfd_mach_mips10000, bfd_mach_mips8000 },
10710 { bfd_mach_mips5000, bfd_mach_mips8000 },
10711 { bfd_mach_mips7000, bfd_mach_mips8000 },
10712 { bfd_mach_mips9000, bfd_mach_mips8000 },
10713
10714 /* VR4100 extensions. */
10715 { bfd_mach_mips4120, bfd_mach_mips4100 },
10716 { bfd_mach_mips4111, bfd_mach_mips4100 },
10717
10718 /* MIPS III extensions. */
10719 { bfd_mach_mips8000, bfd_mach_mips4000 },
10720 { bfd_mach_mips4650, bfd_mach_mips4000 },
10721 { bfd_mach_mips4600, bfd_mach_mips4000 },
10722 { bfd_mach_mips4400, bfd_mach_mips4000 },
10723 { bfd_mach_mips4300, bfd_mach_mips4000 },
10724 { bfd_mach_mips4100, bfd_mach_mips4000 },
10725 { bfd_mach_mips4010, bfd_mach_mips4000 },
10726
10727 /* MIPS32 extensions. */
10728 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10729
10730 /* MIPS II extensions. */
10731 { bfd_mach_mips4000, bfd_mach_mips6000 },
10732 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10733
10734 /* MIPS I extensions. */
10735 { bfd_mach_mips6000, bfd_mach_mips3000 },
10736 { bfd_mach_mips3900, bfd_mach_mips3000 }
10737 };
10738
10739
10740 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10741
10742 static bfd_boolean
10743 mips_mach_extends_p (unsigned long base, unsigned long extension)
10744 {
10745 size_t i;
10746
10747 if (extension == base)
10748 return TRUE;
10749
10750 if (base == bfd_mach_mipsisa32
10751 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10752 return TRUE;
10753
10754 if (base == bfd_mach_mipsisa32r2
10755 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10756 return TRUE;
10757
10758 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
10759 if (extension == mips_mach_extensions[i].extension)
10760 {
10761 extension = mips_mach_extensions[i].base;
10762 if (extension == base)
10763 return TRUE;
10764 }
10765
10766 return FALSE;
10767 }
10768
10769
10770 /* Return true if the given ELF header flags describe a 32-bit binary. */
10771
10772 static bfd_boolean
10773 mips_32bit_flags_p (flagword flags)
10774 {
10775 return ((flags & EF_MIPS_32BITMODE) != 0
10776 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10777 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10778 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10779 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10780 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10781 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
10782 }
10783
10784
10785 /* Merge backend specific data from an object file to the output
10786 object file when linking. */
10787
10788 bfd_boolean
10789 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
10790 {
10791 flagword old_flags;
10792 flagword new_flags;
10793 bfd_boolean ok;
10794 bfd_boolean null_input_bfd = TRUE;
10795 asection *sec;
10796
10797 /* Check if we have the same endianess */
10798 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
10799 {
10800 (*_bfd_error_handler)
10801 (_("%B: endianness incompatible with that of the selected emulation"),
10802 ibfd);
10803 return FALSE;
10804 }
10805
10806 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
10807 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
10808 return TRUE;
10809
10810 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
10811 {
10812 (*_bfd_error_handler)
10813 (_("%B: ABI is incompatible with that of the selected emulation"),
10814 ibfd);
10815 return FALSE;
10816 }
10817
10818 new_flags = elf_elfheader (ibfd)->e_flags;
10819 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
10820 old_flags = elf_elfheader (obfd)->e_flags;
10821
10822 if (! elf_flags_init (obfd))
10823 {
10824 elf_flags_init (obfd) = TRUE;
10825 elf_elfheader (obfd)->e_flags = new_flags;
10826 elf_elfheader (obfd)->e_ident[EI_CLASS]
10827 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
10828
10829 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
10830 && (bfd_get_arch_info (obfd)->the_default
10831 || mips_mach_extends_p (bfd_get_mach (obfd),
10832 bfd_get_mach (ibfd))))
10833 {
10834 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
10835 bfd_get_mach (ibfd)))
10836 return FALSE;
10837 }
10838
10839 return TRUE;
10840 }
10841
10842 /* Check flag compatibility. */
10843
10844 new_flags &= ~EF_MIPS_NOREORDER;
10845 old_flags &= ~EF_MIPS_NOREORDER;
10846
10847 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
10848 doesn't seem to matter. */
10849 new_flags &= ~EF_MIPS_XGOT;
10850 old_flags &= ~EF_MIPS_XGOT;
10851
10852 /* MIPSpro generates ucode info in n64 objects. Again, we should
10853 just be able to ignore this. */
10854 new_flags &= ~EF_MIPS_UCODE;
10855 old_flags &= ~EF_MIPS_UCODE;
10856
10857 /* Don't care about the PIC flags from dynamic objects; they are
10858 PIC by design. */
10859 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
10860 && (ibfd->flags & DYNAMIC) != 0)
10861 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10862
10863 if (new_flags == old_flags)
10864 return TRUE;
10865
10866 /* Check to see if the input BFD actually contains any sections.
10867 If not, its flags may not have been initialised either, but it cannot
10868 actually cause any incompatibility. */
10869 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
10870 {
10871 /* Ignore synthetic sections and empty .text, .data and .bss sections
10872 which are automatically generated by gas. */
10873 if (strcmp (sec->name, ".reginfo")
10874 && strcmp (sec->name, ".mdebug")
10875 && (sec->size != 0
10876 || (strcmp (sec->name, ".text")
10877 && strcmp (sec->name, ".data")
10878 && strcmp (sec->name, ".bss"))))
10879 {
10880 null_input_bfd = FALSE;
10881 break;
10882 }
10883 }
10884 if (null_input_bfd)
10885 return TRUE;
10886
10887 ok = TRUE;
10888
10889 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
10890 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
10891 {
10892 (*_bfd_error_handler)
10893 (_("%B: warning: linking PIC files with non-PIC files"),
10894 ibfd);
10895 ok = TRUE;
10896 }
10897
10898 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
10899 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
10900 if (! (new_flags & EF_MIPS_PIC))
10901 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
10902
10903 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10904 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10905
10906 /* Compare the ISAs. */
10907 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
10908 {
10909 (*_bfd_error_handler)
10910 (_("%B: linking 32-bit code with 64-bit code"),
10911 ibfd);
10912 ok = FALSE;
10913 }
10914 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
10915 {
10916 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
10917 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
10918 {
10919 /* Copy the architecture info from IBFD to OBFD. Also copy
10920 the 32-bit flag (if set) so that we continue to recognise
10921 OBFD as a 32-bit binary. */
10922 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
10923 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10924 elf_elfheader (obfd)->e_flags
10925 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10926
10927 /* Copy across the ABI flags if OBFD doesn't use them
10928 and if that was what caused us to treat IBFD as 32-bit. */
10929 if ((old_flags & EF_MIPS_ABI) == 0
10930 && mips_32bit_flags_p (new_flags)
10931 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
10932 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
10933 }
10934 else
10935 {
10936 /* The ISAs aren't compatible. */
10937 (*_bfd_error_handler)
10938 (_("%B: linking %s module with previous %s modules"),
10939 ibfd,
10940 bfd_printable_name (ibfd),
10941 bfd_printable_name (obfd));
10942 ok = FALSE;
10943 }
10944 }
10945
10946 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10947 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10948
10949 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
10950 does set EI_CLASS differently from any 32-bit ABI. */
10951 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
10952 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
10953 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
10954 {
10955 /* Only error if both are set (to different values). */
10956 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
10957 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
10958 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
10959 {
10960 (*_bfd_error_handler)
10961 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
10962 ibfd,
10963 elf_mips_abi_name (ibfd),
10964 elf_mips_abi_name (obfd));
10965 ok = FALSE;
10966 }
10967 new_flags &= ~EF_MIPS_ABI;
10968 old_flags &= ~EF_MIPS_ABI;
10969 }
10970
10971 /* For now, allow arbitrary mixing of ASEs (retain the union). */
10972 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
10973 {
10974 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
10975
10976 new_flags &= ~ EF_MIPS_ARCH_ASE;
10977 old_flags &= ~ EF_MIPS_ARCH_ASE;
10978 }
10979
10980 /* Warn about any other mismatches */
10981 if (new_flags != old_flags)
10982 {
10983 (*_bfd_error_handler)
10984 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
10985 ibfd, (unsigned long) new_flags,
10986 (unsigned long) old_flags);
10987 ok = FALSE;
10988 }
10989
10990 if (! ok)
10991 {
10992 bfd_set_error (bfd_error_bad_value);
10993 return FALSE;
10994 }
10995
10996 return TRUE;
10997 }
10998
10999 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11000
11001 bfd_boolean
11002 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
11003 {
11004 BFD_ASSERT (!elf_flags_init (abfd)
11005 || elf_elfheader (abfd)->e_flags == flags);
11006
11007 elf_elfheader (abfd)->e_flags = flags;
11008 elf_flags_init (abfd) = TRUE;
11009 return TRUE;
11010 }
11011
11012 bfd_boolean
11013 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
11014 {
11015 FILE *file = ptr;
11016
11017 BFD_ASSERT (abfd != NULL && ptr != NULL);
11018
11019 /* Print normal ELF private data. */
11020 _bfd_elf_print_private_bfd_data (abfd, ptr);
11021
11022 /* xgettext:c-format */
11023 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11024
11025 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11026 fprintf (file, _(" [abi=O32]"));
11027 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11028 fprintf (file, _(" [abi=O64]"));
11029 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11030 fprintf (file, _(" [abi=EABI32]"));
11031 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11032 fprintf (file, _(" [abi=EABI64]"));
11033 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11034 fprintf (file, _(" [abi unknown]"));
11035 else if (ABI_N32_P (abfd))
11036 fprintf (file, _(" [abi=N32]"));
11037 else if (ABI_64_P (abfd))
11038 fprintf (file, _(" [abi=64]"));
11039 else
11040 fprintf (file, _(" [no abi set]"));
11041
11042 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
11043 fprintf (file, _(" [mips1]"));
11044 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
11045 fprintf (file, _(" [mips2]"));
11046 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
11047 fprintf (file, _(" [mips3]"));
11048 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
11049 fprintf (file, _(" [mips4]"));
11050 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
11051 fprintf (file, _(" [mips5]"));
11052 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
11053 fprintf (file, _(" [mips32]"));
11054 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
11055 fprintf (file, _(" [mips64]"));
11056 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
11057 fprintf (file, _(" [mips32r2]"));
11058 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
11059 fprintf (file, _(" [mips64r2]"));
11060 else
11061 fprintf (file, _(" [unknown ISA]"));
11062
11063 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
11064 fprintf (file, _(" [mdmx]"));
11065
11066 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
11067 fprintf (file, _(" [mips16]"));
11068
11069 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
11070 fprintf (file, _(" [32bitmode]"));
11071 else
11072 fprintf (file, _(" [not 32bitmode]"));
11073
11074 fputc ('\n', file);
11075
11076 return TRUE;
11077 }
11078
11079 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
11080 {
11081 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11082 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11083 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
11084 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11085 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11086 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
11087 { NULL, 0, 0, 0, 0 }
11088 };
11089
11090 /* Merge non visibility st_other attributes. Ensure that the
11091 STO_OPTIONAL flag is copied into h->other, even if this is not a
11092 definiton of the symbol. */
11093 void
11094 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11095 const Elf_Internal_Sym *isym,
11096 bfd_boolean definition,
11097 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11098 {
11099 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
11100 {
11101 unsigned char other;
11102
11103 other = (definition ? isym->st_other : h->other);
11104 other &= ~ELF_ST_VISIBILITY (-1);
11105 h->other = other | ELF_ST_VISIBILITY (h->other);
11106 }
11107
11108 if (!definition
11109 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11110 h->other |= STO_OPTIONAL;
11111 }
11112
11113 /* Decide whether an undefined symbol is special and can be ignored.
11114 This is the case for OPTIONAL symbols on IRIX. */
11115 bfd_boolean
11116 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11117 {
11118 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11119 }
11120
11121 bfd_boolean
11122 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11123 {
11124 return (sym->st_shndx == SHN_COMMON
11125 || sym->st_shndx == SHN_MIPS_ACOMMON
11126 || sym->st_shndx == SHN_MIPS_SCOMMON);
11127 }
This page took 0.28293 seconds and 5 git commands to generate.