Return void from linker callbacks
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 long min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 long max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index not corresponding to a
319 symbol without a GOT entry. */
320 long max_non_got_dynindx;
321 };
322
323 /* We make up to two PLT entries if needed, one for standard MIPS code
324 and one for compressed code, either a MIPS16 or microMIPS one. We
325 keep a separate record of traditional lazy-binding stubs, for easier
326 processing. */
327
328 struct plt_entry
329 {
330 /* Traditional SVR4 stub offset, or -1 if none. */
331 bfd_vma stub_offset;
332
333 /* Standard PLT entry offset, or -1 if none. */
334 bfd_vma mips_offset;
335
336 /* Compressed PLT entry offset, or -1 if none. */
337 bfd_vma comp_offset;
338
339 /* The corresponding .got.plt index, or -1 if none. */
340 bfd_vma gotplt_index;
341
342 /* Whether we need a standard PLT entry. */
343 unsigned int need_mips : 1;
344
345 /* Whether we need a compressed PLT entry. */
346 unsigned int need_comp : 1;
347 };
348
349 /* The MIPS ELF linker needs additional information for each symbol in
350 the global hash table. */
351
352 struct mips_elf_link_hash_entry
353 {
354 struct elf_link_hash_entry root;
355
356 /* External symbol information. */
357 EXTR esym;
358
359 /* The la25 stub we have created for ths symbol, if any. */
360 struct mips_elf_la25_stub *la25_stub;
361
362 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
363 this symbol. */
364 unsigned int possibly_dynamic_relocs;
365
366 /* If there is a stub that 32 bit functions should use to call this
367 16 bit function, this points to the section containing the stub. */
368 asection *fn_stub;
369
370 /* If there is a stub that 16 bit functions should use to call this
371 32 bit function, this points to the section containing the stub. */
372 asection *call_stub;
373
374 /* This is like the call_stub field, but it is used if the function
375 being called returns a floating point value. */
376 asection *call_fp_stub;
377
378 /* The highest GGA_* value that satisfies all references to this symbol. */
379 unsigned int global_got_area : 2;
380
381 /* True if all GOT relocations against this symbol are for calls. This is
382 a looser condition than no_fn_stub below, because there may be other
383 non-call non-GOT relocations against the symbol. */
384 unsigned int got_only_for_calls : 1;
385
386 /* True if one of the relocations described by possibly_dynamic_relocs
387 is against a readonly section. */
388 unsigned int readonly_reloc : 1;
389
390 /* True if there is a relocation against this symbol that must be
391 resolved by the static linker (in other words, if the relocation
392 cannot possibly be made dynamic). */
393 unsigned int has_static_relocs : 1;
394
395 /* True if we must not create a .MIPS.stubs entry for this symbol.
396 This is set, for example, if there are relocations related to
397 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
398 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
399 unsigned int no_fn_stub : 1;
400
401 /* Whether we need the fn_stub; this is true if this symbol appears
402 in any relocs other than a 16 bit call. */
403 unsigned int need_fn_stub : 1;
404
405 /* True if this symbol is referenced by branch relocations from
406 any non-PIC input file. This is used to determine whether an
407 la25 stub is required. */
408 unsigned int has_nonpic_branches : 1;
409
410 /* Does this symbol need a traditional MIPS lazy-binding stub
411 (as opposed to a PLT entry)? */
412 unsigned int needs_lazy_stub : 1;
413
414 /* Does this symbol resolve to a PLT entry? */
415 unsigned int use_plt_entry : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423
424 /* The number of .rtproc entries. */
425 bfd_size_type procedure_count;
426
427 /* The size of the .compact_rel section (if SGI_COMPAT). */
428 bfd_size_type compact_rel_size;
429
430 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
431 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
432 bfd_boolean use_rld_obj_head;
433
434 /* The __rld_map or __rld_obj_head symbol. */
435 struct elf_link_hash_entry *rld_symbol;
436
437 /* This is set if we see any mips16 stub sections. */
438 bfd_boolean mips16_stubs_seen;
439
440 /* True if we can generate copy relocs and PLTs. */
441 bfd_boolean use_plts_and_copy_relocs;
442
443 /* True if we can only use 32-bit microMIPS instructions. */
444 bfd_boolean insn32;
445
446 /* True if we're generating code for VxWorks. */
447 bfd_boolean is_vxworks;
448
449 /* True if we already reported the small-data section overflow. */
450 bfd_boolean small_data_overflow_reported;
451
452 /* Shortcuts to some dynamic sections, or NULL if they are not
453 being used. */
454 asection *srelbss;
455 asection *sdynbss;
456 asection *srelplt;
457 asection *srelplt2;
458 asection *sgotplt;
459 asection *splt;
460 asection *sstubs;
461 asection *sgot;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519 };
520
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
522
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
529 {
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536 };
537
538 /* MIPS ELF private object data. */
539
540 struct mips_elf_obj_tdata
541 {
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573 };
574
575 /* Get MIPS ELF private object data from BFD's tdata. */
576
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609 /* Structure used to pass information to mips_elf_output_extsym. */
610
611 struct extsym_info
612 {
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618 };
619
620 /* The names of the runtime procedure table symbols used on IRIX5. */
621
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628 };
629
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633 typedef struct
634 {
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
642
643 typedef struct
644 {
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652
653 typedef struct
654 {
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
671
672 typedef struct
673 {
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678
679 typedef struct
680 {
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684
685 /* These are the constants used to swap the bitfields in a crinfo. */
686
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
701
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
716
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721 \f
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 \f
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
757
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
774
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
779
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
894
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112 };
1113
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126 };
1127
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136 };
1137
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145 };
1146
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156 };
1157
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180 };
1181
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187 };
1188 \f
1189 /* microMIPS 32-bit opcode helper installer. */
1190
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196 }
1197
1198 /* microMIPS 32-bit opcode helper retriever. */
1199
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 \f
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1207
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213 /* Traverse a MIPS ELF linker hash table. */
1214
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244
1245 /* Create an entry in a MIPS ELF linker hash table. */
1246
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250 {
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289 }
1290
1291 /* Allocate MIPS ELF private object data. */
1292
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298 }
1299
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 \f
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323 {
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402 }
1403 \f
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1405
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421
1422 /* Create a runtime procedure table from the .mdebug section. */
1423
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428 {
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570 }
1571 \f
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580 {
1581 struct bfd_link_hash_entry *bh;
1582 struct elf_link_hash_entry *elfh;
1583 char *name;
1584 bfd_boolean res;
1585
1586 if (ELF_ST_IS_MICROMIPS (h->root.other))
1587 value |= 1;
1588
1589 /* Create a new symbol. */
1590 name = concat (prefix, h->root.root.root.string, NULL);
1591 bh = NULL;
1592 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1593 BSF_LOCAL, s, value, NULL,
1594 TRUE, FALSE, &bh);
1595 free (name);
1596 if (! res)
1597 return FALSE;
1598
1599 /* Make it a local function. */
1600 elfh = (struct elf_link_hash_entry *) bh;
1601 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1602 elfh->size = size;
1603 elfh->forced_local = 1;
1604 return TRUE;
1605 }
1606
1607 /* We're about to redefine H. Create a symbol to represent H's
1608 current value and size, to help make the disassembly easier
1609 to read. */
1610
1611 static bfd_boolean
1612 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1613 struct mips_elf_link_hash_entry *h,
1614 const char *prefix)
1615 {
1616 struct bfd_link_hash_entry *bh;
1617 struct elf_link_hash_entry *elfh;
1618 char *name;
1619 asection *s;
1620 bfd_vma value;
1621 bfd_boolean res;
1622
1623 /* Read the symbol's value. */
1624 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1625 || h->root.root.type == bfd_link_hash_defweak);
1626 s = h->root.root.u.def.section;
1627 value = h->root.root.u.def.value;
1628
1629 /* Create a new symbol. */
1630 name = concat (prefix, h->root.root.root.string, NULL);
1631 bh = NULL;
1632 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1633 BSF_LOCAL, s, value, NULL,
1634 TRUE, FALSE, &bh);
1635 free (name);
1636 if (! res)
1637 return FALSE;
1638
1639 /* Make it local and copy the other attributes from H. */
1640 elfh = (struct elf_link_hash_entry *) bh;
1641 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1642 elfh->other = h->root.other;
1643 elfh->size = h->root.size;
1644 elfh->forced_local = 1;
1645 return TRUE;
1646 }
1647
1648 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1649 function rather than to a hard-float stub. */
1650
1651 static bfd_boolean
1652 section_allows_mips16_refs_p (asection *section)
1653 {
1654 const char *name;
1655
1656 name = bfd_get_section_name (section->owner, section);
1657 return (FN_STUB_P (name)
1658 || CALL_STUB_P (name)
1659 || CALL_FP_STUB_P (name)
1660 || strcmp (name, ".pdr") == 0);
1661 }
1662
1663 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1664 stub section of some kind. Return the R_SYMNDX of the target
1665 function, or 0 if we can't decide which function that is. */
1666
1667 static unsigned long
1668 mips16_stub_symndx (const struct elf_backend_data *bed,
1669 asection *sec ATTRIBUTE_UNUSED,
1670 const Elf_Internal_Rela *relocs,
1671 const Elf_Internal_Rela *relend)
1672 {
1673 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1674 const Elf_Internal_Rela *rel;
1675
1676 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1677 one in a compound relocation. */
1678 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1679 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1680 return ELF_R_SYM (sec->owner, rel->r_info);
1681
1682 /* Otherwise trust the first relocation, whatever its kind. This is
1683 the traditional behavior. */
1684 if (relocs < relend)
1685 return ELF_R_SYM (sec->owner, relocs->r_info);
1686
1687 return 0;
1688 }
1689
1690 /* Check the mips16 stubs for a particular symbol, and see if we can
1691 discard them. */
1692
1693 static void
1694 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1695 struct mips_elf_link_hash_entry *h)
1696 {
1697 /* Dynamic symbols must use the standard call interface, in case other
1698 objects try to call them. */
1699 if (h->fn_stub != NULL
1700 && h->root.dynindx != -1)
1701 {
1702 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1703 h->need_fn_stub = TRUE;
1704 }
1705
1706 if (h->fn_stub != NULL
1707 && ! h->need_fn_stub)
1708 {
1709 /* We don't need the fn_stub; the only references to this symbol
1710 are 16 bit calls. Clobber the size to 0 to prevent it from
1711 being included in the link. */
1712 h->fn_stub->size = 0;
1713 h->fn_stub->flags &= ~SEC_RELOC;
1714 h->fn_stub->reloc_count = 0;
1715 h->fn_stub->flags |= SEC_EXCLUDE;
1716 h->fn_stub->output_section = bfd_abs_section_ptr;
1717 }
1718
1719 if (h->call_stub != NULL
1720 && ELF_ST_IS_MIPS16 (h->root.other))
1721 {
1722 /* We don't need the call_stub; this is a 16 bit function, so
1723 calls from other 16 bit functions are OK. Clobber the size
1724 to 0 to prevent it from being included in the link. */
1725 h->call_stub->size = 0;
1726 h->call_stub->flags &= ~SEC_RELOC;
1727 h->call_stub->reloc_count = 0;
1728 h->call_stub->flags |= SEC_EXCLUDE;
1729 h->call_stub->output_section = bfd_abs_section_ptr;
1730 }
1731
1732 if (h->call_fp_stub != NULL
1733 && ELF_ST_IS_MIPS16 (h->root.other))
1734 {
1735 /* We don't need the call_stub; this is a 16 bit function, so
1736 calls from other 16 bit functions are OK. Clobber the size
1737 to 0 to prevent it from being included in the link. */
1738 h->call_fp_stub->size = 0;
1739 h->call_fp_stub->flags &= ~SEC_RELOC;
1740 h->call_fp_stub->reloc_count = 0;
1741 h->call_fp_stub->flags |= SEC_EXCLUDE;
1742 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1743 }
1744 }
1745
1746 /* Hashtable callbacks for mips_elf_la25_stubs. */
1747
1748 static hashval_t
1749 mips_elf_la25_stub_hash (const void *entry_)
1750 {
1751 const struct mips_elf_la25_stub *entry;
1752
1753 entry = (struct mips_elf_la25_stub *) entry_;
1754 return entry->h->root.root.u.def.section->id
1755 + entry->h->root.root.u.def.value;
1756 }
1757
1758 static int
1759 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1760 {
1761 const struct mips_elf_la25_stub *entry1, *entry2;
1762
1763 entry1 = (struct mips_elf_la25_stub *) entry1_;
1764 entry2 = (struct mips_elf_la25_stub *) entry2_;
1765 return ((entry1->h->root.root.u.def.section
1766 == entry2->h->root.root.u.def.section)
1767 && (entry1->h->root.root.u.def.value
1768 == entry2->h->root.root.u.def.value));
1769 }
1770
1771 /* Called by the linker to set up the la25 stub-creation code. FN is
1772 the linker's implementation of add_stub_function. Return true on
1773 success. */
1774
1775 bfd_boolean
1776 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1777 asection *(*fn) (const char *, asection *,
1778 asection *))
1779 {
1780 struct mips_elf_link_hash_table *htab;
1781
1782 htab = mips_elf_hash_table (info);
1783 if (htab == NULL)
1784 return FALSE;
1785
1786 htab->add_stub_section = fn;
1787 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1788 mips_elf_la25_stub_eq, NULL);
1789 if (htab->la25_stubs == NULL)
1790 return FALSE;
1791
1792 return TRUE;
1793 }
1794
1795 /* Return true if H is a locally-defined PIC function, in the sense
1796 that it or its fn_stub might need $25 to be valid on entry.
1797 Note that MIPS16 functions set up $gp using PC-relative instructions,
1798 so they themselves never need $25 to be valid. Only non-MIPS16
1799 entry points are of interest here. */
1800
1801 static bfd_boolean
1802 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1803 {
1804 return ((h->root.root.type == bfd_link_hash_defined
1805 || h->root.root.type == bfd_link_hash_defweak)
1806 && h->root.def_regular
1807 && !bfd_is_abs_section (h->root.root.u.def.section)
1808 && (!ELF_ST_IS_MIPS16 (h->root.other)
1809 || (h->fn_stub && h->need_fn_stub))
1810 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1811 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1812 }
1813
1814 /* Set *SEC to the input section that contains the target of STUB.
1815 Return the offset of the target from the start of that section. */
1816
1817 static bfd_vma
1818 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1819 asection **sec)
1820 {
1821 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1822 {
1823 BFD_ASSERT (stub->h->need_fn_stub);
1824 *sec = stub->h->fn_stub;
1825 return 0;
1826 }
1827 else
1828 {
1829 *sec = stub->h->root.root.u.def.section;
1830 return stub->h->root.root.u.def.value;
1831 }
1832 }
1833
1834 /* STUB describes an la25 stub that we have decided to implement
1835 by inserting an LUI/ADDIU pair before the target function.
1836 Create the section and redirect the function symbol to it. */
1837
1838 static bfd_boolean
1839 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1840 struct bfd_link_info *info)
1841 {
1842 struct mips_elf_link_hash_table *htab;
1843 char *name;
1844 asection *s, *input_section;
1845 unsigned int align;
1846
1847 htab = mips_elf_hash_table (info);
1848 if (htab == NULL)
1849 return FALSE;
1850
1851 /* Create a unique name for the new section. */
1852 name = bfd_malloc (11 + sizeof (".text.stub."));
1853 if (name == NULL)
1854 return FALSE;
1855 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1856
1857 /* Create the section. */
1858 mips_elf_get_la25_target (stub, &input_section);
1859 s = htab->add_stub_section (name, input_section,
1860 input_section->output_section);
1861 if (s == NULL)
1862 return FALSE;
1863
1864 /* Make sure that any padding goes before the stub. */
1865 align = input_section->alignment_power;
1866 if (!bfd_set_section_alignment (s->owner, s, align))
1867 return FALSE;
1868 if (align > 3)
1869 s->size = (1 << align) - 8;
1870
1871 /* Create a symbol for the stub. */
1872 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1873 stub->stub_section = s;
1874 stub->offset = s->size;
1875
1876 /* Allocate room for it. */
1877 s->size += 8;
1878 return TRUE;
1879 }
1880
1881 /* STUB describes an la25 stub that we have decided to implement
1882 with a separate trampoline. Allocate room for it and redirect
1883 the function symbol to it. */
1884
1885 static bfd_boolean
1886 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1887 struct bfd_link_info *info)
1888 {
1889 struct mips_elf_link_hash_table *htab;
1890 asection *s;
1891
1892 htab = mips_elf_hash_table (info);
1893 if (htab == NULL)
1894 return FALSE;
1895
1896 /* Create a trampoline section, if we haven't already. */
1897 s = htab->strampoline;
1898 if (s == NULL)
1899 {
1900 asection *input_section = stub->h->root.root.u.def.section;
1901 s = htab->add_stub_section (".text", NULL,
1902 input_section->output_section);
1903 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1904 return FALSE;
1905 htab->strampoline = s;
1906 }
1907
1908 /* Create a symbol for the stub. */
1909 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1910 stub->stub_section = s;
1911 stub->offset = s->size;
1912
1913 /* Allocate room for it. */
1914 s->size += 16;
1915 return TRUE;
1916 }
1917
1918 /* H describes a symbol that needs an la25 stub. Make sure that an
1919 appropriate stub exists and point H at it. */
1920
1921 static bfd_boolean
1922 mips_elf_add_la25_stub (struct bfd_link_info *info,
1923 struct mips_elf_link_hash_entry *h)
1924 {
1925 struct mips_elf_link_hash_table *htab;
1926 struct mips_elf_la25_stub search, *stub;
1927 bfd_boolean use_trampoline_p;
1928 asection *s;
1929 bfd_vma value;
1930 void **slot;
1931
1932 /* Describe the stub we want. */
1933 search.stub_section = NULL;
1934 search.offset = 0;
1935 search.h = h;
1936
1937 /* See if we've already created an equivalent stub. */
1938 htab = mips_elf_hash_table (info);
1939 if (htab == NULL)
1940 return FALSE;
1941
1942 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1943 if (slot == NULL)
1944 return FALSE;
1945
1946 stub = (struct mips_elf_la25_stub *) *slot;
1947 if (stub != NULL)
1948 {
1949 /* We can reuse the existing stub. */
1950 h->la25_stub = stub;
1951 return TRUE;
1952 }
1953
1954 /* Create a permanent copy of ENTRY and add it to the hash table. */
1955 stub = bfd_malloc (sizeof (search));
1956 if (stub == NULL)
1957 return FALSE;
1958 *stub = search;
1959 *slot = stub;
1960
1961 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1962 of the section and if we would need no more than 2 nops. */
1963 value = mips_elf_get_la25_target (stub, &s);
1964 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1965
1966 h->la25_stub = stub;
1967 return (use_trampoline_p
1968 ? mips_elf_add_la25_trampoline (stub, info)
1969 : mips_elf_add_la25_intro (stub, info));
1970 }
1971
1972 /* A mips_elf_link_hash_traverse callback that is called before sizing
1973 sections. DATA points to a mips_htab_traverse_info structure. */
1974
1975 static bfd_boolean
1976 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1977 {
1978 struct mips_htab_traverse_info *hti;
1979
1980 hti = (struct mips_htab_traverse_info *) data;
1981 if (!bfd_link_relocatable (hti->info))
1982 mips_elf_check_mips16_stubs (hti->info, h);
1983
1984 if (mips_elf_local_pic_function_p (h))
1985 {
1986 /* PR 12845: If H is in a section that has been garbage
1987 collected it will have its output section set to *ABS*. */
1988 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1989 return TRUE;
1990
1991 /* H is a function that might need $25 to be valid on entry.
1992 If we're creating a non-PIC relocatable object, mark H as
1993 being PIC. If we're creating a non-relocatable object with
1994 non-PIC branches and jumps to H, make sure that H has an la25
1995 stub. */
1996 if (bfd_link_relocatable (hti->info))
1997 {
1998 if (!PIC_OBJECT_P (hti->output_bfd))
1999 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2000 }
2001 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2002 {
2003 hti->error = TRUE;
2004 return FALSE;
2005 }
2006 }
2007 return TRUE;
2008 }
2009 \f
2010 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2011 Most mips16 instructions are 16 bits, but these instructions
2012 are 32 bits.
2013
2014 The format of these instructions is:
2015
2016 +--------------+--------------------------------+
2017 | JALX | X| Imm 20:16 | Imm 25:21 |
2018 +--------------+--------------------------------+
2019 | Immediate 15:0 |
2020 +-----------------------------------------------+
2021
2022 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2023 Note that the immediate value in the first word is swapped.
2024
2025 When producing a relocatable object file, R_MIPS16_26 is
2026 handled mostly like R_MIPS_26. In particular, the addend is
2027 stored as a straight 26-bit value in a 32-bit instruction.
2028 (gas makes life simpler for itself by never adjusting a
2029 R_MIPS16_26 reloc to be against a section, so the addend is
2030 always zero). However, the 32 bit instruction is stored as 2
2031 16-bit values, rather than a single 32-bit value. In a
2032 big-endian file, the result is the same; in a little-endian
2033 file, the two 16-bit halves of the 32 bit value are swapped.
2034 This is so that a disassembler can recognize the jal
2035 instruction.
2036
2037 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2038 instruction stored as two 16-bit values. The addend A is the
2039 contents of the targ26 field. The calculation is the same as
2040 R_MIPS_26. When storing the calculated value, reorder the
2041 immediate value as shown above, and don't forget to store the
2042 value as two 16-bit values.
2043
2044 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2045 defined as
2046
2047 big-endian:
2048 +--------+----------------------+
2049 | | |
2050 | | targ26-16 |
2051 |31 26|25 0|
2052 +--------+----------------------+
2053
2054 little-endian:
2055 +----------+------+-------------+
2056 | | | |
2057 | sub1 | | sub2 |
2058 |0 9|10 15|16 31|
2059 +----------+--------------------+
2060 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2061 ((sub1 << 16) | sub2)).
2062
2063 When producing a relocatable object file, the calculation is
2064 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2065 When producing a fully linked file, the calculation is
2066 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2067 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2068
2069 The table below lists the other MIPS16 instruction relocations.
2070 Each one is calculated in the same way as the non-MIPS16 relocation
2071 given on the right, but using the extended MIPS16 layout of 16-bit
2072 immediate fields:
2073
2074 R_MIPS16_GPREL R_MIPS_GPREL16
2075 R_MIPS16_GOT16 R_MIPS_GOT16
2076 R_MIPS16_CALL16 R_MIPS_CALL16
2077 R_MIPS16_HI16 R_MIPS_HI16
2078 R_MIPS16_LO16 R_MIPS_LO16
2079
2080 A typical instruction will have a format like this:
2081
2082 +--------------+--------------------------------+
2083 | EXTEND | Imm 10:5 | Imm 15:11 |
2084 +--------------+--------------------------------+
2085 | Major | rx | ry | Imm 4:0 |
2086 +--------------+--------------------------------+
2087
2088 EXTEND is the five bit value 11110. Major is the instruction
2089 opcode.
2090
2091 All we need to do here is shuffle the bits appropriately.
2092 As above, the two 16-bit halves must be swapped on a
2093 little-endian system. */
2094
2095 static inline bfd_boolean
2096 mips16_reloc_p (int r_type)
2097 {
2098 switch (r_type)
2099 {
2100 case R_MIPS16_26:
2101 case R_MIPS16_GPREL:
2102 case R_MIPS16_GOT16:
2103 case R_MIPS16_CALL16:
2104 case R_MIPS16_HI16:
2105 case R_MIPS16_LO16:
2106 case R_MIPS16_TLS_GD:
2107 case R_MIPS16_TLS_LDM:
2108 case R_MIPS16_TLS_DTPREL_HI16:
2109 case R_MIPS16_TLS_DTPREL_LO16:
2110 case R_MIPS16_TLS_GOTTPREL:
2111 case R_MIPS16_TLS_TPREL_HI16:
2112 case R_MIPS16_TLS_TPREL_LO16:
2113 return TRUE;
2114
2115 default:
2116 return FALSE;
2117 }
2118 }
2119
2120 /* Check if a microMIPS reloc. */
2121
2122 static inline bfd_boolean
2123 micromips_reloc_p (unsigned int r_type)
2124 {
2125 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2126 }
2127
2128 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2129 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2130 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2131
2132 static inline bfd_boolean
2133 micromips_reloc_shuffle_p (unsigned int r_type)
2134 {
2135 return (micromips_reloc_p (r_type)
2136 && r_type != R_MICROMIPS_PC7_S1
2137 && r_type != R_MICROMIPS_PC10_S1);
2138 }
2139
2140 static inline bfd_boolean
2141 got16_reloc_p (int r_type)
2142 {
2143 return (r_type == R_MIPS_GOT16
2144 || r_type == R_MIPS16_GOT16
2145 || r_type == R_MICROMIPS_GOT16);
2146 }
2147
2148 static inline bfd_boolean
2149 call16_reloc_p (int r_type)
2150 {
2151 return (r_type == R_MIPS_CALL16
2152 || r_type == R_MIPS16_CALL16
2153 || r_type == R_MICROMIPS_CALL16);
2154 }
2155
2156 static inline bfd_boolean
2157 got_disp_reloc_p (unsigned int r_type)
2158 {
2159 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2160 }
2161
2162 static inline bfd_boolean
2163 got_page_reloc_p (unsigned int r_type)
2164 {
2165 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2166 }
2167
2168 static inline bfd_boolean
2169 got_lo16_reloc_p (unsigned int r_type)
2170 {
2171 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2172 }
2173
2174 static inline bfd_boolean
2175 call_hi16_reloc_p (unsigned int r_type)
2176 {
2177 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2178 }
2179
2180 static inline bfd_boolean
2181 call_lo16_reloc_p (unsigned int r_type)
2182 {
2183 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2184 }
2185
2186 static inline bfd_boolean
2187 hi16_reloc_p (int r_type)
2188 {
2189 return (r_type == R_MIPS_HI16
2190 || r_type == R_MIPS16_HI16
2191 || r_type == R_MICROMIPS_HI16
2192 || r_type == R_MIPS_PCHI16);
2193 }
2194
2195 static inline bfd_boolean
2196 lo16_reloc_p (int r_type)
2197 {
2198 return (r_type == R_MIPS_LO16
2199 || r_type == R_MIPS16_LO16
2200 || r_type == R_MICROMIPS_LO16
2201 || r_type == R_MIPS_PCLO16);
2202 }
2203
2204 static inline bfd_boolean
2205 mips16_call_reloc_p (int r_type)
2206 {
2207 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2208 }
2209
2210 static inline bfd_boolean
2211 jal_reloc_p (int r_type)
2212 {
2213 return (r_type == R_MIPS_26
2214 || r_type == R_MIPS16_26
2215 || r_type == R_MICROMIPS_26_S1);
2216 }
2217
2218 static inline bfd_boolean
2219 aligned_pcrel_reloc_p (int r_type)
2220 {
2221 return (r_type == R_MIPS_PC18_S3
2222 || r_type == R_MIPS_PC19_S2);
2223 }
2224
2225 static inline bfd_boolean
2226 micromips_branch_reloc_p (int r_type)
2227 {
2228 return (r_type == R_MICROMIPS_26_S1
2229 || r_type == R_MICROMIPS_PC16_S1
2230 || r_type == R_MICROMIPS_PC10_S1
2231 || r_type == R_MICROMIPS_PC7_S1);
2232 }
2233
2234 static inline bfd_boolean
2235 tls_gd_reloc_p (unsigned int r_type)
2236 {
2237 return (r_type == R_MIPS_TLS_GD
2238 || r_type == R_MIPS16_TLS_GD
2239 || r_type == R_MICROMIPS_TLS_GD);
2240 }
2241
2242 static inline bfd_boolean
2243 tls_ldm_reloc_p (unsigned int r_type)
2244 {
2245 return (r_type == R_MIPS_TLS_LDM
2246 || r_type == R_MIPS16_TLS_LDM
2247 || r_type == R_MICROMIPS_TLS_LDM);
2248 }
2249
2250 static inline bfd_boolean
2251 tls_gottprel_reloc_p (unsigned int r_type)
2252 {
2253 return (r_type == R_MIPS_TLS_GOTTPREL
2254 || r_type == R_MIPS16_TLS_GOTTPREL
2255 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2256 }
2257
2258 void
2259 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2260 bfd_boolean jal_shuffle, bfd_byte *data)
2261 {
2262 bfd_vma first, second, val;
2263
2264 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2265 return;
2266
2267 /* Pick up the first and second halfwords of the instruction. */
2268 first = bfd_get_16 (abfd, data);
2269 second = bfd_get_16 (abfd, data + 2);
2270 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2271 val = first << 16 | second;
2272 else if (r_type != R_MIPS16_26)
2273 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2274 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2275 else
2276 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2277 | ((first & 0x1f) << 21) | second);
2278 bfd_put_32 (abfd, val, data);
2279 }
2280
2281 void
2282 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2283 bfd_boolean jal_shuffle, bfd_byte *data)
2284 {
2285 bfd_vma first, second, val;
2286
2287 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2288 return;
2289
2290 val = bfd_get_32 (abfd, data);
2291 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2292 {
2293 second = val & 0xffff;
2294 first = val >> 16;
2295 }
2296 else if (r_type != R_MIPS16_26)
2297 {
2298 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2299 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2300 }
2301 else
2302 {
2303 second = val & 0xffff;
2304 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2305 | ((val >> 21) & 0x1f);
2306 }
2307 bfd_put_16 (abfd, second, data + 2);
2308 bfd_put_16 (abfd, first, data);
2309 }
2310
2311 bfd_reloc_status_type
2312 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2313 arelent *reloc_entry, asection *input_section,
2314 bfd_boolean relocatable, void *data, bfd_vma gp)
2315 {
2316 bfd_vma relocation;
2317 bfd_signed_vma val;
2318 bfd_reloc_status_type status;
2319
2320 if (bfd_is_com_section (symbol->section))
2321 relocation = 0;
2322 else
2323 relocation = symbol->value;
2324
2325 relocation += symbol->section->output_section->vma;
2326 relocation += symbol->section->output_offset;
2327
2328 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2329 return bfd_reloc_outofrange;
2330
2331 /* Set val to the offset into the section or symbol. */
2332 val = reloc_entry->addend;
2333
2334 _bfd_mips_elf_sign_extend (val, 16);
2335
2336 /* Adjust val for the final section location and GP value. If we
2337 are producing relocatable output, we don't want to do this for
2338 an external symbol. */
2339 if (! relocatable
2340 || (symbol->flags & BSF_SECTION_SYM) != 0)
2341 val += relocation - gp;
2342
2343 if (reloc_entry->howto->partial_inplace)
2344 {
2345 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2346 (bfd_byte *) data
2347 + reloc_entry->address);
2348 if (status != bfd_reloc_ok)
2349 return status;
2350 }
2351 else
2352 reloc_entry->addend = val;
2353
2354 if (relocatable)
2355 reloc_entry->address += input_section->output_offset;
2356
2357 return bfd_reloc_ok;
2358 }
2359
2360 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2361 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2362 that contains the relocation field and DATA points to the start of
2363 INPUT_SECTION. */
2364
2365 struct mips_hi16
2366 {
2367 struct mips_hi16 *next;
2368 bfd_byte *data;
2369 asection *input_section;
2370 arelent rel;
2371 };
2372
2373 /* FIXME: This should not be a static variable. */
2374
2375 static struct mips_hi16 *mips_hi16_list;
2376
2377 /* A howto special_function for REL *HI16 relocations. We can only
2378 calculate the correct value once we've seen the partnering
2379 *LO16 relocation, so just save the information for later.
2380
2381 The ABI requires that the *LO16 immediately follow the *HI16.
2382 However, as a GNU extension, we permit an arbitrary number of
2383 *HI16s to be associated with a single *LO16. This significantly
2384 simplies the relocation handling in gcc. */
2385
2386 bfd_reloc_status_type
2387 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2388 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2389 asection *input_section, bfd *output_bfd,
2390 char **error_message ATTRIBUTE_UNUSED)
2391 {
2392 struct mips_hi16 *n;
2393
2394 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2395 return bfd_reloc_outofrange;
2396
2397 n = bfd_malloc (sizeof *n);
2398 if (n == NULL)
2399 return bfd_reloc_outofrange;
2400
2401 n->next = mips_hi16_list;
2402 n->data = data;
2403 n->input_section = input_section;
2404 n->rel = *reloc_entry;
2405 mips_hi16_list = n;
2406
2407 if (output_bfd != NULL)
2408 reloc_entry->address += input_section->output_offset;
2409
2410 return bfd_reloc_ok;
2411 }
2412
2413 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2414 like any other 16-bit relocation when applied to global symbols, but is
2415 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2416
2417 bfd_reloc_status_type
2418 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2419 void *data, asection *input_section,
2420 bfd *output_bfd, char **error_message)
2421 {
2422 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2423 || bfd_is_und_section (bfd_get_section (symbol))
2424 || bfd_is_com_section (bfd_get_section (symbol)))
2425 /* The relocation is against a global symbol. */
2426 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2427 input_section, output_bfd,
2428 error_message);
2429
2430 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2431 input_section, output_bfd, error_message);
2432 }
2433
2434 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2435 is a straightforward 16 bit inplace relocation, but we must deal with
2436 any partnering high-part relocations as well. */
2437
2438 bfd_reloc_status_type
2439 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2440 void *data, asection *input_section,
2441 bfd *output_bfd, char **error_message)
2442 {
2443 bfd_vma vallo;
2444 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2445
2446 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2447 return bfd_reloc_outofrange;
2448
2449 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2450 location);
2451 vallo = bfd_get_32 (abfd, location);
2452 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2453 location);
2454
2455 while (mips_hi16_list != NULL)
2456 {
2457 bfd_reloc_status_type ret;
2458 struct mips_hi16 *hi;
2459
2460 hi = mips_hi16_list;
2461
2462 /* R_MIPS*_GOT16 relocations are something of a special case. We
2463 want to install the addend in the same way as for a R_MIPS*_HI16
2464 relocation (with a rightshift of 16). However, since GOT16
2465 relocations can also be used with global symbols, their howto
2466 has a rightshift of 0. */
2467 if (hi->rel.howto->type == R_MIPS_GOT16)
2468 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2469 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2470 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2471 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2472 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2473
2474 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2475 carry or borrow will induce a change of +1 or -1 in the high part. */
2476 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2477
2478 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2479 hi->input_section, output_bfd,
2480 error_message);
2481 if (ret != bfd_reloc_ok)
2482 return ret;
2483
2484 mips_hi16_list = hi->next;
2485 free (hi);
2486 }
2487
2488 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2489 input_section, output_bfd,
2490 error_message);
2491 }
2492
2493 /* A generic howto special_function. This calculates and installs the
2494 relocation itself, thus avoiding the oft-discussed problems in
2495 bfd_perform_relocation and bfd_install_relocation. */
2496
2497 bfd_reloc_status_type
2498 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2499 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2500 asection *input_section, bfd *output_bfd,
2501 char **error_message ATTRIBUTE_UNUSED)
2502 {
2503 bfd_signed_vma val;
2504 bfd_reloc_status_type status;
2505 bfd_boolean relocatable;
2506
2507 relocatable = (output_bfd != NULL);
2508
2509 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2510 return bfd_reloc_outofrange;
2511
2512 /* Build up the field adjustment in VAL. */
2513 val = 0;
2514 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2515 {
2516 /* Either we're calculating the final field value or we have a
2517 relocation against a section symbol. Add in the section's
2518 offset or address. */
2519 val += symbol->section->output_section->vma;
2520 val += symbol->section->output_offset;
2521 }
2522
2523 if (!relocatable)
2524 {
2525 /* We're calculating the final field value. Add in the symbol's value
2526 and, if pc-relative, subtract the address of the field itself. */
2527 val += symbol->value;
2528 if (reloc_entry->howto->pc_relative)
2529 {
2530 val -= input_section->output_section->vma;
2531 val -= input_section->output_offset;
2532 val -= reloc_entry->address;
2533 }
2534 }
2535
2536 /* VAL is now the final adjustment. If we're keeping this relocation
2537 in the output file, and if the relocation uses a separate addend,
2538 we just need to add VAL to that addend. Otherwise we need to add
2539 VAL to the relocation field itself. */
2540 if (relocatable && !reloc_entry->howto->partial_inplace)
2541 reloc_entry->addend += val;
2542 else
2543 {
2544 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2545
2546 /* Add in the separate addend, if any. */
2547 val += reloc_entry->addend;
2548
2549 /* Add VAL to the relocation field. */
2550 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2551 location);
2552 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2553 location);
2554 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2555 location);
2556
2557 if (status != bfd_reloc_ok)
2558 return status;
2559 }
2560
2561 if (relocatable)
2562 reloc_entry->address += input_section->output_offset;
2563
2564 return bfd_reloc_ok;
2565 }
2566 \f
2567 /* Swap an entry in a .gptab section. Note that these routines rely
2568 on the equivalence of the two elements of the union. */
2569
2570 static void
2571 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2572 Elf32_gptab *in)
2573 {
2574 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2575 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2576 }
2577
2578 static void
2579 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2580 Elf32_External_gptab *ex)
2581 {
2582 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2583 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2584 }
2585
2586 static void
2587 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2588 Elf32_External_compact_rel *ex)
2589 {
2590 H_PUT_32 (abfd, in->id1, ex->id1);
2591 H_PUT_32 (abfd, in->num, ex->num);
2592 H_PUT_32 (abfd, in->id2, ex->id2);
2593 H_PUT_32 (abfd, in->offset, ex->offset);
2594 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2595 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2596 }
2597
2598 static void
2599 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2600 Elf32_External_crinfo *ex)
2601 {
2602 unsigned long l;
2603
2604 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2605 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2606 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2607 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2608 H_PUT_32 (abfd, l, ex->info);
2609 H_PUT_32 (abfd, in->konst, ex->konst);
2610 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2611 }
2612 \f
2613 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2614 routines swap this structure in and out. They are used outside of
2615 BFD, so they are globally visible. */
2616
2617 void
2618 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2619 Elf32_RegInfo *in)
2620 {
2621 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2622 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2623 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2624 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2625 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2626 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2627 }
2628
2629 void
2630 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2631 Elf32_External_RegInfo *ex)
2632 {
2633 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2634 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2635 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2636 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2637 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2638 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2639 }
2640
2641 /* In the 64 bit ABI, the .MIPS.options section holds register
2642 information in an Elf64_Reginfo structure. These routines swap
2643 them in and out. They are globally visible because they are used
2644 outside of BFD. These routines are here so that gas can call them
2645 without worrying about whether the 64 bit ABI has been included. */
2646
2647 void
2648 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2649 Elf64_Internal_RegInfo *in)
2650 {
2651 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2652 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2653 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2654 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2655 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2656 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2657 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2658 }
2659
2660 void
2661 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2662 Elf64_External_RegInfo *ex)
2663 {
2664 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2665 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2666 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2667 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2668 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2669 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2670 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2671 }
2672
2673 /* Swap in an options header. */
2674
2675 void
2676 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2677 Elf_Internal_Options *in)
2678 {
2679 in->kind = H_GET_8 (abfd, ex->kind);
2680 in->size = H_GET_8 (abfd, ex->size);
2681 in->section = H_GET_16 (abfd, ex->section);
2682 in->info = H_GET_32 (abfd, ex->info);
2683 }
2684
2685 /* Swap out an options header. */
2686
2687 void
2688 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2689 Elf_External_Options *ex)
2690 {
2691 H_PUT_8 (abfd, in->kind, ex->kind);
2692 H_PUT_8 (abfd, in->size, ex->size);
2693 H_PUT_16 (abfd, in->section, ex->section);
2694 H_PUT_32 (abfd, in->info, ex->info);
2695 }
2696
2697 /* Swap in an abiflags structure. */
2698
2699 void
2700 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2701 const Elf_External_ABIFlags_v0 *ex,
2702 Elf_Internal_ABIFlags_v0 *in)
2703 {
2704 in->version = H_GET_16 (abfd, ex->version);
2705 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2706 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2707 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2708 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2709 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2710 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2711 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2712 in->ases = H_GET_32 (abfd, ex->ases);
2713 in->flags1 = H_GET_32 (abfd, ex->flags1);
2714 in->flags2 = H_GET_32 (abfd, ex->flags2);
2715 }
2716
2717 /* Swap out an abiflags structure. */
2718
2719 void
2720 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2721 const Elf_Internal_ABIFlags_v0 *in,
2722 Elf_External_ABIFlags_v0 *ex)
2723 {
2724 H_PUT_16 (abfd, in->version, ex->version);
2725 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2726 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2727 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2728 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2729 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2730 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2731 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2732 H_PUT_32 (abfd, in->ases, ex->ases);
2733 H_PUT_32 (abfd, in->flags1, ex->flags1);
2734 H_PUT_32 (abfd, in->flags2, ex->flags2);
2735 }
2736 \f
2737 /* This function is called via qsort() to sort the dynamic relocation
2738 entries by increasing r_symndx value. */
2739
2740 static int
2741 sort_dynamic_relocs (const void *arg1, const void *arg2)
2742 {
2743 Elf_Internal_Rela int_reloc1;
2744 Elf_Internal_Rela int_reloc2;
2745 int diff;
2746
2747 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2748 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2749
2750 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2751 if (diff != 0)
2752 return diff;
2753
2754 if (int_reloc1.r_offset < int_reloc2.r_offset)
2755 return -1;
2756 if (int_reloc1.r_offset > int_reloc2.r_offset)
2757 return 1;
2758 return 0;
2759 }
2760
2761 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2762
2763 static int
2764 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2765 const void *arg2 ATTRIBUTE_UNUSED)
2766 {
2767 #ifdef BFD64
2768 Elf_Internal_Rela int_reloc1[3];
2769 Elf_Internal_Rela int_reloc2[3];
2770
2771 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2772 (reldyn_sorting_bfd, arg1, int_reloc1);
2773 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2774 (reldyn_sorting_bfd, arg2, int_reloc2);
2775
2776 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2777 return -1;
2778 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2779 return 1;
2780
2781 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2782 return -1;
2783 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2784 return 1;
2785 return 0;
2786 #else
2787 abort ();
2788 #endif
2789 }
2790
2791
2792 /* This routine is used to write out ECOFF debugging external symbol
2793 information. It is called via mips_elf_link_hash_traverse. The
2794 ECOFF external symbol information must match the ELF external
2795 symbol information. Unfortunately, at this point we don't know
2796 whether a symbol is required by reloc information, so the two
2797 tables may wind up being different. We must sort out the external
2798 symbol information before we can set the final size of the .mdebug
2799 section, and we must set the size of the .mdebug section before we
2800 can relocate any sections, and we can't know which symbols are
2801 required by relocation until we relocate the sections.
2802 Fortunately, it is relatively unlikely that any symbol will be
2803 stripped but required by a reloc. In particular, it can not happen
2804 when generating a final executable. */
2805
2806 static bfd_boolean
2807 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2808 {
2809 struct extsym_info *einfo = data;
2810 bfd_boolean strip;
2811 asection *sec, *output_section;
2812
2813 if (h->root.indx == -2)
2814 strip = FALSE;
2815 else if ((h->root.def_dynamic
2816 || h->root.ref_dynamic
2817 || h->root.type == bfd_link_hash_new)
2818 && !h->root.def_regular
2819 && !h->root.ref_regular)
2820 strip = TRUE;
2821 else if (einfo->info->strip == strip_all
2822 || (einfo->info->strip == strip_some
2823 && bfd_hash_lookup (einfo->info->keep_hash,
2824 h->root.root.root.string,
2825 FALSE, FALSE) == NULL))
2826 strip = TRUE;
2827 else
2828 strip = FALSE;
2829
2830 if (strip)
2831 return TRUE;
2832
2833 if (h->esym.ifd == -2)
2834 {
2835 h->esym.jmptbl = 0;
2836 h->esym.cobol_main = 0;
2837 h->esym.weakext = 0;
2838 h->esym.reserved = 0;
2839 h->esym.ifd = ifdNil;
2840 h->esym.asym.value = 0;
2841 h->esym.asym.st = stGlobal;
2842
2843 if (h->root.root.type == bfd_link_hash_undefined
2844 || h->root.root.type == bfd_link_hash_undefweak)
2845 {
2846 const char *name;
2847
2848 /* Use undefined class. Also, set class and type for some
2849 special symbols. */
2850 name = h->root.root.root.string;
2851 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2852 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2853 {
2854 h->esym.asym.sc = scData;
2855 h->esym.asym.st = stLabel;
2856 h->esym.asym.value = 0;
2857 }
2858 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2859 {
2860 h->esym.asym.sc = scAbs;
2861 h->esym.asym.st = stLabel;
2862 h->esym.asym.value =
2863 mips_elf_hash_table (einfo->info)->procedure_count;
2864 }
2865 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2866 {
2867 h->esym.asym.sc = scAbs;
2868 h->esym.asym.st = stLabel;
2869 h->esym.asym.value = elf_gp (einfo->abfd);
2870 }
2871 else
2872 h->esym.asym.sc = scUndefined;
2873 }
2874 else if (h->root.root.type != bfd_link_hash_defined
2875 && h->root.root.type != bfd_link_hash_defweak)
2876 h->esym.asym.sc = scAbs;
2877 else
2878 {
2879 const char *name;
2880
2881 sec = h->root.root.u.def.section;
2882 output_section = sec->output_section;
2883
2884 /* When making a shared library and symbol h is the one from
2885 the another shared library, OUTPUT_SECTION may be null. */
2886 if (output_section == NULL)
2887 h->esym.asym.sc = scUndefined;
2888 else
2889 {
2890 name = bfd_section_name (output_section->owner, output_section);
2891
2892 if (strcmp (name, ".text") == 0)
2893 h->esym.asym.sc = scText;
2894 else if (strcmp (name, ".data") == 0)
2895 h->esym.asym.sc = scData;
2896 else if (strcmp (name, ".sdata") == 0)
2897 h->esym.asym.sc = scSData;
2898 else if (strcmp (name, ".rodata") == 0
2899 || strcmp (name, ".rdata") == 0)
2900 h->esym.asym.sc = scRData;
2901 else if (strcmp (name, ".bss") == 0)
2902 h->esym.asym.sc = scBss;
2903 else if (strcmp (name, ".sbss") == 0)
2904 h->esym.asym.sc = scSBss;
2905 else if (strcmp (name, ".init") == 0)
2906 h->esym.asym.sc = scInit;
2907 else if (strcmp (name, ".fini") == 0)
2908 h->esym.asym.sc = scFini;
2909 else
2910 h->esym.asym.sc = scAbs;
2911 }
2912 }
2913
2914 h->esym.asym.reserved = 0;
2915 h->esym.asym.index = indexNil;
2916 }
2917
2918 if (h->root.root.type == bfd_link_hash_common)
2919 h->esym.asym.value = h->root.root.u.c.size;
2920 else if (h->root.root.type == bfd_link_hash_defined
2921 || h->root.root.type == bfd_link_hash_defweak)
2922 {
2923 if (h->esym.asym.sc == scCommon)
2924 h->esym.asym.sc = scBss;
2925 else if (h->esym.asym.sc == scSCommon)
2926 h->esym.asym.sc = scSBss;
2927
2928 sec = h->root.root.u.def.section;
2929 output_section = sec->output_section;
2930 if (output_section != NULL)
2931 h->esym.asym.value = (h->root.root.u.def.value
2932 + sec->output_offset
2933 + output_section->vma);
2934 else
2935 h->esym.asym.value = 0;
2936 }
2937 else
2938 {
2939 struct mips_elf_link_hash_entry *hd = h;
2940
2941 while (hd->root.root.type == bfd_link_hash_indirect)
2942 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2943
2944 if (hd->needs_lazy_stub)
2945 {
2946 BFD_ASSERT (hd->root.plt.plist != NULL);
2947 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2948 /* Set type and value for a symbol with a function stub. */
2949 h->esym.asym.st = stProc;
2950 sec = hd->root.root.u.def.section;
2951 if (sec == NULL)
2952 h->esym.asym.value = 0;
2953 else
2954 {
2955 output_section = sec->output_section;
2956 if (output_section != NULL)
2957 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2958 + sec->output_offset
2959 + output_section->vma);
2960 else
2961 h->esym.asym.value = 0;
2962 }
2963 }
2964 }
2965
2966 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2967 h->root.root.root.string,
2968 &h->esym))
2969 {
2970 einfo->failed = TRUE;
2971 return FALSE;
2972 }
2973
2974 return TRUE;
2975 }
2976
2977 /* A comparison routine used to sort .gptab entries. */
2978
2979 static int
2980 gptab_compare (const void *p1, const void *p2)
2981 {
2982 const Elf32_gptab *a1 = p1;
2983 const Elf32_gptab *a2 = p2;
2984
2985 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2986 }
2987 \f
2988 /* Functions to manage the got entry hash table. */
2989
2990 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2991 hash number. */
2992
2993 static INLINE hashval_t
2994 mips_elf_hash_bfd_vma (bfd_vma addr)
2995 {
2996 #ifdef BFD64
2997 return addr + (addr >> 32);
2998 #else
2999 return addr;
3000 #endif
3001 }
3002
3003 static hashval_t
3004 mips_elf_got_entry_hash (const void *entry_)
3005 {
3006 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3007
3008 return (entry->symndx
3009 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3010 + (entry->tls_type == GOT_TLS_LDM ? 0
3011 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3012 : entry->symndx >= 0 ? (entry->abfd->id
3013 + mips_elf_hash_bfd_vma (entry->d.addend))
3014 : entry->d.h->root.root.root.hash));
3015 }
3016
3017 static int
3018 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3019 {
3020 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3021 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3022
3023 return (e1->symndx == e2->symndx
3024 && e1->tls_type == e2->tls_type
3025 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3026 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3027 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3028 && e1->d.addend == e2->d.addend)
3029 : e2->abfd && e1->d.h == e2->d.h));
3030 }
3031
3032 static hashval_t
3033 mips_got_page_ref_hash (const void *ref_)
3034 {
3035 const struct mips_got_page_ref *ref;
3036
3037 ref = (const struct mips_got_page_ref *) ref_;
3038 return ((ref->symndx >= 0
3039 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3040 : ref->u.h->root.root.root.hash)
3041 + mips_elf_hash_bfd_vma (ref->addend));
3042 }
3043
3044 static int
3045 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3046 {
3047 const struct mips_got_page_ref *ref1, *ref2;
3048
3049 ref1 = (const struct mips_got_page_ref *) ref1_;
3050 ref2 = (const struct mips_got_page_ref *) ref2_;
3051 return (ref1->symndx == ref2->symndx
3052 && (ref1->symndx < 0
3053 ? ref1->u.h == ref2->u.h
3054 : ref1->u.abfd == ref2->u.abfd)
3055 && ref1->addend == ref2->addend);
3056 }
3057
3058 static hashval_t
3059 mips_got_page_entry_hash (const void *entry_)
3060 {
3061 const struct mips_got_page_entry *entry;
3062
3063 entry = (const struct mips_got_page_entry *) entry_;
3064 return entry->sec->id;
3065 }
3066
3067 static int
3068 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3069 {
3070 const struct mips_got_page_entry *entry1, *entry2;
3071
3072 entry1 = (const struct mips_got_page_entry *) entry1_;
3073 entry2 = (const struct mips_got_page_entry *) entry2_;
3074 return entry1->sec == entry2->sec;
3075 }
3076 \f
3077 /* Create and return a new mips_got_info structure. */
3078
3079 static struct mips_got_info *
3080 mips_elf_create_got_info (bfd *abfd)
3081 {
3082 struct mips_got_info *g;
3083
3084 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3085 if (g == NULL)
3086 return NULL;
3087
3088 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3089 mips_elf_got_entry_eq, NULL);
3090 if (g->got_entries == NULL)
3091 return NULL;
3092
3093 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3094 mips_got_page_ref_eq, NULL);
3095 if (g->got_page_refs == NULL)
3096 return NULL;
3097
3098 return g;
3099 }
3100
3101 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3102 CREATE_P and if ABFD doesn't already have a GOT. */
3103
3104 static struct mips_got_info *
3105 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3106 {
3107 struct mips_elf_obj_tdata *tdata;
3108
3109 if (!is_mips_elf (abfd))
3110 return NULL;
3111
3112 tdata = mips_elf_tdata (abfd);
3113 if (!tdata->got && create_p)
3114 tdata->got = mips_elf_create_got_info (abfd);
3115 return tdata->got;
3116 }
3117
3118 /* Record that ABFD should use output GOT G. */
3119
3120 static void
3121 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3122 {
3123 struct mips_elf_obj_tdata *tdata;
3124
3125 BFD_ASSERT (is_mips_elf (abfd));
3126 tdata = mips_elf_tdata (abfd);
3127 if (tdata->got)
3128 {
3129 /* The GOT structure itself and the hash table entries are
3130 allocated to a bfd, but the hash tables aren't. */
3131 htab_delete (tdata->got->got_entries);
3132 htab_delete (tdata->got->got_page_refs);
3133 if (tdata->got->got_page_entries)
3134 htab_delete (tdata->got->got_page_entries);
3135 }
3136 tdata->got = g;
3137 }
3138
3139 /* Return the dynamic relocation section. If it doesn't exist, try to
3140 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3141 if creation fails. */
3142
3143 static asection *
3144 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3145 {
3146 const char *dname;
3147 asection *sreloc;
3148 bfd *dynobj;
3149
3150 dname = MIPS_ELF_REL_DYN_NAME (info);
3151 dynobj = elf_hash_table (info)->dynobj;
3152 sreloc = bfd_get_linker_section (dynobj, dname);
3153 if (sreloc == NULL && create_p)
3154 {
3155 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3156 (SEC_ALLOC
3157 | SEC_LOAD
3158 | SEC_HAS_CONTENTS
3159 | SEC_IN_MEMORY
3160 | SEC_LINKER_CREATED
3161 | SEC_READONLY));
3162 if (sreloc == NULL
3163 || ! bfd_set_section_alignment (dynobj, sreloc,
3164 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3165 return NULL;
3166 }
3167 return sreloc;
3168 }
3169
3170 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3171
3172 static int
3173 mips_elf_reloc_tls_type (unsigned int r_type)
3174 {
3175 if (tls_gd_reloc_p (r_type))
3176 return GOT_TLS_GD;
3177
3178 if (tls_ldm_reloc_p (r_type))
3179 return GOT_TLS_LDM;
3180
3181 if (tls_gottprel_reloc_p (r_type))
3182 return GOT_TLS_IE;
3183
3184 return GOT_TLS_NONE;
3185 }
3186
3187 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3188
3189 static int
3190 mips_tls_got_entries (unsigned int type)
3191 {
3192 switch (type)
3193 {
3194 case GOT_TLS_GD:
3195 case GOT_TLS_LDM:
3196 return 2;
3197
3198 case GOT_TLS_IE:
3199 return 1;
3200
3201 case GOT_TLS_NONE:
3202 return 0;
3203 }
3204 abort ();
3205 }
3206
3207 /* Count the number of relocations needed for a TLS GOT entry, with
3208 access types from TLS_TYPE, and symbol H (or a local symbol if H
3209 is NULL). */
3210
3211 static int
3212 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3213 struct elf_link_hash_entry *h)
3214 {
3215 int indx = 0;
3216 bfd_boolean need_relocs = FALSE;
3217 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3218
3219 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3220 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3221 indx = h->dynindx;
3222
3223 if ((bfd_link_pic (info) || indx != 0)
3224 && (h == NULL
3225 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3226 || h->root.type != bfd_link_hash_undefweak))
3227 need_relocs = TRUE;
3228
3229 if (!need_relocs)
3230 return 0;
3231
3232 switch (tls_type)
3233 {
3234 case GOT_TLS_GD:
3235 return indx != 0 ? 2 : 1;
3236
3237 case GOT_TLS_IE:
3238 return 1;
3239
3240 case GOT_TLS_LDM:
3241 return bfd_link_pic (info) ? 1 : 0;
3242
3243 default:
3244 return 0;
3245 }
3246 }
3247
3248 /* Add the number of GOT entries and TLS relocations required by ENTRY
3249 to G. */
3250
3251 static void
3252 mips_elf_count_got_entry (struct bfd_link_info *info,
3253 struct mips_got_info *g,
3254 struct mips_got_entry *entry)
3255 {
3256 if (entry->tls_type)
3257 {
3258 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3259 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3260 entry->symndx < 0
3261 ? &entry->d.h->root : NULL);
3262 }
3263 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3264 g->local_gotno += 1;
3265 else
3266 g->global_gotno += 1;
3267 }
3268
3269 /* Output a simple dynamic relocation into SRELOC. */
3270
3271 static void
3272 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3273 asection *sreloc,
3274 unsigned long reloc_index,
3275 unsigned long indx,
3276 int r_type,
3277 bfd_vma offset)
3278 {
3279 Elf_Internal_Rela rel[3];
3280
3281 memset (rel, 0, sizeof (rel));
3282
3283 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3284 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3285
3286 if (ABI_64_P (output_bfd))
3287 {
3288 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3289 (output_bfd, &rel[0],
3290 (sreloc->contents
3291 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3292 }
3293 else
3294 bfd_elf32_swap_reloc_out
3295 (output_bfd, &rel[0],
3296 (sreloc->contents
3297 + reloc_index * sizeof (Elf32_External_Rel)));
3298 }
3299
3300 /* Initialize a set of TLS GOT entries for one symbol. */
3301
3302 static void
3303 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3304 struct mips_got_entry *entry,
3305 struct mips_elf_link_hash_entry *h,
3306 bfd_vma value)
3307 {
3308 struct mips_elf_link_hash_table *htab;
3309 int indx;
3310 asection *sreloc, *sgot;
3311 bfd_vma got_offset, got_offset2;
3312 bfd_boolean need_relocs = FALSE;
3313
3314 htab = mips_elf_hash_table (info);
3315 if (htab == NULL)
3316 return;
3317
3318 sgot = htab->sgot;
3319
3320 indx = 0;
3321 if (h != NULL)
3322 {
3323 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3324
3325 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3326 &h->root)
3327 && (!bfd_link_pic (info)
3328 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3329 indx = h->root.dynindx;
3330 }
3331
3332 if (entry->tls_initialized)
3333 return;
3334
3335 if ((bfd_link_pic (info) || indx != 0)
3336 && (h == NULL
3337 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3338 || h->root.type != bfd_link_hash_undefweak))
3339 need_relocs = TRUE;
3340
3341 /* MINUS_ONE means the symbol is not defined in this object. It may not
3342 be defined at all; assume that the value doesn't matter in that
3343 case. Otherwise complain if we would use the value. */
3344 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3345 || h->root.root.type == bfd_link_hash_undefweak);
3346
3347 /* Emit necessary relocations. */
3348 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3349 got_offset = entry->gotidx;
3350
3351 switch (entry->tls_type)
3352 {
3353 case GOT_TLS_GD:
3354 /* General Dynamic. */
3355 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3356
3357 if (need_relocs)
3358 {
3359 mips_elf_output_dynamic_relocation
3360 (abfd, sreloc, sreloc->reloc_count++, indx,
3361 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3362 sgot->output_offset + sgot->output_section->vma + got_offset);
3363
3364 if (indx)
3365 mips_elf_output_dynamic_relocation
3366 (abfd, sreloc, sreloc->reloc_count++, indx,
3367 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3368 sgot->output_offset + sgot->output_section->vma + got_offset2);
3369 else
3370 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3371 sgot->contents + got_offset2);
3372 }
3373 else
3374 {
3375 MIPS_ELF_PUT_WORD (abfd, 1,
3376 sgot->contents + got_offset);
3377 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3378 sgot->contents + got_offset2);
3379 }
3380 break;
3381
3382 case GOT_TLS_IE:
3383 /* Initial Exec model. */
3384 if (need_relocs)
3385 {
3386 if (indx == 0)
3387 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3388 sgot->contents + got_offset);
3389 else
3390 MIPS_ELF_PUT_WORD (abfd, 0,
3391 sgot->contents + got_offset);
3392
3393 mips_elf_output_dynamic_relocation
3394 (abfd, sreloc, sreloc->reloc_count++, indx,
3395 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3396 sgot->output_offset + sgot->output_section->vma + got_offset);
3397 }
3398 else
3399 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3400 sgot->contents + got_offset);
3401 break;
3402
3403 case GOT_TLS_LDM:
3404 /* The initial offset is zero, and the LD offsets will include the
3405 bias by DTP_OFFSET. */
3406 MIPS_ELF_PUT_WORD (abfd, 0,
3407 sgot->contents + got_offset
3408 + MIPS_ELF_GOT_SIZE (abfd));
3409
3410 if (!bfd_link_pic (info))
3411 MIPS_ELF_PUT_WORD (abfd, 1,
3412 sgot->contents + got_offset);
3413 else
3414 mips_elf_output_dynamic_relocation
3415 (abfd, sreloc, sreloc->reloc_count++, indx,
3416 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3417 sgot->output_offset + sgot->output_section->vma + got_offset);
3418 break;
3419
3420 default:
3421 abort ();
3422 }
3423
3424 entry->tls_initialized = TRUE;
3425 }
3426
3427 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3428 for global symbol H. .got.plt comes before the GOT, so the offset
3429 will be negative. */
3430
3431 static bfd_vma
3432 mips_elf_gotplt_index (struct bfd_link_info *info,
3433 struct elf_link_hash_entry *h)
3434 {
3435 bfd_vma got_address, got_value;
3436 struct mips_elf_link_hash_table *htab;
3437
3438 htab = mips_elf_hash_table (info);
3439 BFD_ASSERT (htab != NULL);
3440
3441 BFD_ASSERT (h->plt.plist != NULL);
3442 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3443
3444 /* Calculate the address of the associated .got.plt entry. */
3445 got_address = (htab->sgotplt->output_section->vma
3446 + htab->sgotplt->output_offset
3447 + (h->plt.plist->gotplt_index
3448 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3449
3450 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3451 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3452 + htab->root.hgot->root.u.def.section->output_offset
3453 + htab->root.hgot->root.u.def.value);
3454
3455 return got_address - got_value;
3456 }
3457
3458 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3459 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3460 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3461 offset can be found. */
3462
3463 static bfd_vma
3464 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3465 bfd_vma value, unsigned long r_symndx,
3466 struct mips_elf_link_hash_entry *h, int r_type)
3467 {
3468 struct mips_elf_link_hash_table *htab;
3469 struct mips_got_entry *entry;
3470
3471 htab = mips_elf_hash_table (info);
3472 BFD_ASSERT (htab != NULL);
3473
3474 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3475 r_symndx, h, r_type);
3476 if (!entry)
3477 return MINUS_ONE;
3478
3479 if (entry->tls_type)
3480 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3481 return entry->gotidx;
3482 }
3483
3484 /* Return the GOT index of global symbol H in the primary GOT. */
3485
3486 static bfd_vma
3487 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3488 struct elf_link_hash_entry *h)
3489 {
3490 struct mips_elf_link_hash_table *htab;
3491 long global_got_dynindx;
3492 struct mips_got_info *g;
3493 bfd_vma got_index;
3494
3495 htab = mips_elf_hash_table (info);
3496 BFD_ASSERT (htab != NULL);
3497
3498 global_got_dynindx = 0;
3499 if (htab->global_gotsym != NULL)
3500 global_got_dynindx = htab->global_gotsym->dynindx;
3501
3502 /* Once we determine the global GOT entry with the lowest dynamic
3503 symbol table index, we must put all dynamic symbols with greater
3504 indices into the primary GOT. That makes it easy to calculate the
3505 GOT offset. */
3506 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3507 g = mips_elf_bfd_got (obfd, FALSE);
3508 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3509 * MIPS_ELF_GOT_SIZE (obfd));
3510 BFD_ASSERT (got_index < htab->sgot->size);
3511
3512 return got_index;
3513 }
3514
3515 /* Return the GOT index for the global symbol indicated by H, which is
3516 referenced by a relocation of type R_TYPE in IBFD. */
3517
3518 static bfd_vma
3519 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3520 struct elf_link_hash_entry *h, int r_type)
3521 {
3522 struct mips_elf_link_hash_table *htab;
3523 struct mips_got_info *g;
3524 struct mips_got_entry lookup, *entry;
3525 bfd_vma gotidx;
3526
3527 htab = mips_elf_hash_table (info);
3528 BFD_ASSERT (htab != NULL);
3529
3530 g = mips_elf_bfd_got (ibfd, FALSE);
3531 BFD_ASSERT (g);
3532
3533 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3534 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3535 return mips_elf_primary_global_got_index (obfd, info, h);
3536
3537 lookup.abfd = ibfd;
3538 lookup.symndx = -1;
3539 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3540 entry = htab_find (g->got_entries, &lookup);
3541 BFD_ASSERT (entry);
3542
3543 gotidx = entry->gotidx;
3544 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3545
3546 if (lookup.tls_type)
3547 {
3548 bfd_vma value = MINUS_ONE;
3549
3550 if ((h->root.type == bfd_link_hash_defined
3551 || h->root.type == bfd_link_hash_defweak)
3552 && h->root.u.def.section->output_section)
3553 value = (h->root.u.def.value
3554 + h->root.u.def.section->output_offset
3555 + h->root.u.def.section->output_section->vma);
3556
3557 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3558 }
3559 return gotidx;
3560 }
3561
3562 /* Find a GOT page entry that points to within 32KB of VALUE. These
3563 entries are supposed to be placed at small offsets in the GOT, i.e.,
3564 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3565 entry could be created. If OFFSETP is nonnull, use it to return the
3566 offset of the GOT entry from VALUE. */
3567
3568 static bfd_vma
3569 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3570 bfd_vma value, bfd_vma *offsetp)
3571 {
3572 bfd_vma page, got_index;
3573 struct mips_got_entry *entry;
3574
3575 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3576 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3577 NULL, R_MIPS_GOT_PAGE);
3578
3579 if (!entry)
3580 return MINUS_ONE;
3581
3582 got_index = entry->gotidx;
3583
3584 if (offsetp)
3585 *offsetp = value - entry->d.address;
3586
3587 return got_index;
3588 }
3589
3590 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3591 EXTERNAL is true if the relocation was originally against a global
3592 symbol that binds locally. */
3593
3594 static bfd_vma
3595 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3596 bfd_vma value, bfd_boolean external)
3597 {
3598 struct mips_got_entry *entry;
3599
3600 /* GOT16 relocations against local symbols are followed by a LO16
3601 relocation; those against global symbols are not. Thus if the
3602 symbol was originally local, the GOT16 relocation should load the
3603 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3604 if (! external)
3605 value = mips_elf_high (value) << 16;
3606
3607 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3608 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3609 same in all cases. */
3610 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3611 NULL, R_MIPS_GOT16);
3612 if (entry)
3613 return entry->gotidx;
3614 else
3615 return MINUS_ONE;
3616 }
3617
3618 /* Returns the offset for the entry at the INDEXth position
3619 in the GOT. */
3620
3621 static bfd_vma
3622 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3623 bfd *input_bfd, bfd_vma got_index)
3624 {
3625 struct mips_elf_link_hash_table *htab;
3626 asection *sgot;
3627 bfd_vma gp;
3628
3629 htab = mips_elf_hash_table (info);
3630 BFD_ASSERT (htab != NULL);
3631
3632 sgot = htab->sgot;
3633 gp = _bfd_get_gp_value (output_bfd)
3634 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3635
3636 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3637 }
3638
3639 /* Create and return a local GOT entry for VALUE, which was calculated
3640 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3641 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3642 instead. */
3643
3644 static struct mips_got_entry *
3645 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3646 bfd *ibfd, bfd_vma value,
3647 unsigned long r_symndx,
3648 struct mips_elf_link_hash_entry *h,
3649 int r_type)
3650 {
3651 struct mips_got_entry lookup, *entry;
3652 void **loc;
3653 struct mips_got_info *g;
3654 struct mips_elf_link_hash_table *htab;
3655 bfd_vma gotidx;
3656
3657 htab = mips_elf_hash_table (info);
3658 BFD_ASSERT (htab != NULL);
3659
3660 g = mips_elf_bfd_got (ibfd, FALSE);
3661 if (g == NULL)
3662 {
3663 g = mips_elf_bfd_got (abfd, FALSE);
3664 BFD_ASSERT (g != NULL);
3665 }
3666
3667 /* This function shouldn't be called for symbols that live in the global
3668 area of the GOT. */
3669 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3670
3671 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3672 if (lookup.tls_type)
3673 {
3674 lookup.abfd = ibfd;
3675 if (tls_ldm_reloc_p (r_type))
3676 {
3677 lookup.symndx = 0;
3678 lookup.d.addend = 0;
3679 }
3680 else if (h == NULL)
3681 {
3682 lookup.symndx = r_symndx;
3683 lookup.d.addend = 0;
3684 }
3685 else
3686 {
3687 lookup.symndx = -1;
3688 lookup.d.h = h;
3689 }
3690
3691 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3692 BFD_ASSERT (entry);
3693
3694 gotidx = entry->gotidx;
3695 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3696
3697 return entry;
3698 }
3699
3700 lookup.abfd = NULL;
3701 lookup.symndx = -1;
3702 lookup.d.address = value;
3703 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3704 if (!loc)
3705 return NULL;
3706
3707 entry = (struct mips_got_entry *) *loc;
3708 if (entry)
3709 return entry;
3710
3711 if (g->assigned_low_gotno > g->assigned_high_gotno)
3712 {
3713 /* We didn't allocate enough space in the GOT. */
3714 (*_bfd_error_handler)
3715 (_("not enough GOT space for local GOT entries"));
3716 bfd_set_error (bfd_error_bad_value);
3717 return NULL;
3718 }
3719
3720 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3721 if (!entry)
3722 return NULL;
3723
3724 if (got16_reloc_p (r_type)
3725 || call16_reloc_p (r_type)
3726 || got_page_reloc_p (r_type)
3727 || got_disp_reloc_p (r_type))
3728 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3729 else
3730 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3731
3732 *entry = lookup;
3733 *loc = entry;
3734
3735 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3736
3737 /* These GOT entries need a dynamic relocation on VxWorks. */
3738 if (htab->is_vxworks)
3739 {
3740 Elf_Internal_Rela outrel;
3741 asection *s;
3742 bfd_byte *rloc;
3743 bfd_vma got_address;
3744
3745 s = mips_elf_rel_dyn_section (info, FALSE);
3746 got_address = (htab->sgot->output_section->vma
3747 + htab->sgot->output_offset
3748 + entry->gotidx);
3749
3750 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3751 outrel.r_offset = got_address;
3752 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3753 outrel.r_addend = value;
3754 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3755 }
3756
3757 return entry;
3758 }
3759
3760 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3761 The number might be exact or a worst-case estimate, depending on how
3762 much information is available to elf_backend_omit_section_dynsym at
3763 the current linking stage. */
3764
3765 static bfd_size_type
3766 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3767 {
3768 bfd_size_type count;
3769
3770 count = 0;
3771 if (bfd_link_pic (info)
3772 || elf_hash_table (info)->is_relocatable_executable)
3773 {
3774 asection *p;
3775 const struct elf_backend_data *bed;
3776
3777 bed = get_elf_backend_data (output_bfd);
3778 for (p = output_bfd->sections; p ; p = p->next)
3779 if ((p->flags & SEC_EXCLUDE) == 0
3780 && (p->flags & SEC_ALLOC) != 0
3781 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3782 ++count;
3783 }
3784 return count;
3785 }
3786
3787 /* Sort the dynamic symbol table so that symbols that need GOT entries
3788 appear towards the end. */
3789
3790 static bfd_boolean
3791 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3792 {
3793 struct mips_elf_link_hash_table *htab;
3794 struct mips_elf_hash_sort_data hsd;
3795 struct mips_got_info *g;
3796
3797 if (elf_hash_table (info)->dynsymcount == 0)
3798 return TRUE;
3799
3800 htab = mips_elf_hash_table (info);
3801 BFD_ASSERT (htab != NULL);
3802
3803 g = htab->got_info;
3804 if (g == NULL)
3805 return TRUE;
3806
3807 hsd.low = NULL;
3808 hsd.max_unref_got_dynindx
3809 = hsd.min_got_dynindx
3810 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3811 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3812 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3813 elf_hash_table (info)),
3814 mips_elf_sort_hash_table_f,
3815 &hsd);
3816
3817 /* There should have been enough room in the symbol table to
3818 accommodate both the GOT and non-GOT symbols. */
3819 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3820 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3821 == elf_hash_table (info)->dynsymcount);
3822 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3823 == g->global_gotno);
3824
3825 /* Now we know which dynamic symbol has the lowest dynamic symbol
3826 table index in the GOT. */
3827 htab->global_gotsym = hsd.low;
3828
3829 return TRUE;
3830 }
3831
3832 /* If H needs a GOT entry, assign it the highest available dynamic
3833 index. Otherwise, assign it the lowest available dynamic
3834 index. */
3835
3836 static bfd_boolean
3837 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3838 {
3839 struct mips_elf_hash_sort_data *hsd = data;
3840
3841 /* Symbols without dynamic symbol table entries aren't interesting
3842 at all. */
3843 if (h->root.dynindx == -1)
3844 return TRUE;
3845
3846 switch (h->global_got_area)
3847 {
3848 case GGA_NONE:
3849 h->root.dynindx = hsd->max_non_got_dynindx++;
3850 break;
3851
3852 case GGA_NORMAL:
3853 h->root.dynindx = --hsd->min_got_dynindx;
3854 hsd->low = (struct elf_link_hash_entry *) h;
3855 break;
3856
3857 case GGA_RELOC_ONLY:
3858 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3859 hsd->low = (struct elf_link_hash_entry *) h;
3860 h->root.dynindx = hsd->max_unref_got_dynindx++;
3861 break;
3862 }
3863
3864 return TRUE;
3865 }
3866
3867 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3868 (which is owned by the caller and shouldn't be added to the
3869 hash table directly). */
3870
3871 static bfd_boolean
3872 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3873 struct mips_got_entry *lookup)
3874 {
3875 struct mips_elf_link_hash_table *htab;
3876 struct mips_got_entry *entry;
3877 struct mips_got_info *g;
3878 void **loc, **bfd_loc;
3879
3880 /* Make sure there's a slot for this entry in the master GOT. */
3881 htab = mips_elf_hash_table (info);
3882 g = htab->got_info;
3883 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3884 if (!loc)
3885 return FALSE;
3886
3887 /* Populate the entry if it isn't already. */
3888 entry = (struct mips_got_entry *) *loc;
3889 if (!entry)
3890 {
3891 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3892 if (!entry)
3893 return FALSE;
3894
3895 lookup->tls_initialized = FALSE;
3896 lookup->gotidx = -1;
3897 *entry = *lookup;
3898 *loc = entry;
3899 }
3900
3901 /* Reuse the same GOT entry for the BFD's GOT. */
3902 g = mips_elf_bfd_got (abfd, TRUE);
3903 if (!g)
3904 return FALSE;
3905
3906 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3907 if (!bfd_loc)
3908 return FALSE;
3909
3910 if (!*bfd_loc)
3911 *bfd_loc = entry;
3912 return TRUE;
3913 }
3914
3915 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3916 entry for it. FOR_CALL is true if the caller is only interested in
3917 using the GOT entry for calls. */
3918
3919 static bfd_boolean
3920 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3921 bfd *abfd, struct bfd_link_info *info,
3922 bfd_boolean for_call, int r_type)
3923 {
3924 struct mips_elf_link_hash_table *htab;
3925 struct mips_elf_link_hash_entry *hmips;
3926 struct mips_got_entry entry;
3927 unsigned char tls_type;
3928
3929 htab = mips_elf_hash_table (info);
3930 BFD_ASSERT (htab != NULL);
3931
3932 hmips = (struct mips_elf_link_hash_entry *) h;
3933 if (!for_call)
3934 hmips->got_only_for_calls = FALSE;
3935
3936 /* A global symbol in the GOT must also be in the dynamic symbol
3937 table. */
3938 if (h->dynindx == -1)
3939 {
3940 switch (ELF_ST_VISIBILITY (h->other))
3941 {
3942 case STV_INTERNAL:
3943 case STV_HIDDEN:
3944 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3945 break;
3946 }
3947 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3948 return FALSE;
3949 }
3950
3951 tls_type = mips_elf_reloc_tls_type (r_type);
3952 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3953 hmips->global_got_area = GGA_NORMAL;
3954
3955 entry.abfd = abfd;
3956 entry.symndx = -1;
3957 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3958 entry.tls_type = tls_type;
3959 return mips_elf_record_got_entry (info, abfd, &entry);
3960 }
3961
3962 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3963 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3964
3965 static bfd_boolean
3966 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3967 struct bfd_link_info *info, int r_type)
3968 {
3969 struct mips_elf_link_hash_table *htab;
3970 struct mips_got_info *g;
3971 struct mips_got_entry entry;
3972
3973 htab = mips_elf_hash_table (info);
3974 BFD_ASSERT (htab != NULL);
3975
3976 g = htab->got_info;
3977 BFD_ASSERT (g != NULL);
3978
3979 entry.abfd = abfd;
3980 entry.symndx = symndx;
3981 entry.d.addend = addend;
3982 entry.tls_type = mips_elf_reloc_tls_type (r_type);
3983 return mips_elf_record_got_entry (info, abfd, &entry);
3984 }
3985
3986 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
3987 H is the symbol's hash table entry, or null if SYMNDX is local
3988 to ABFD. */
3989
3990 static bfd_boolean
3991 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
3992 long symndx, struct elf_link_hash_entry *h,
3993 bfd_signed_vma addend)
3994 {
3995 struct mips_elf_link_hash_table *htab;
3996 struct mips_got_info *g1, *g2;
3997 struct mips_got_page_ref lookup, *entry;
3998 void **loc, **bfd_loc;
3999
4000 htab = mips_elf_hash_table (info);
4001 BFD_ASSERT (htab != NULL);
4002
4003 g1 = htab->got_info;
4004 BFD_ASSERT (g1 != NULL);
4005
4006 if (h)
4007 {
4008 lookup.symndx = -1;
4009 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4010 }
4011 else
4012 {
4013 lookup.symndx = symndx;
4014 lookup.u.abfd = abfd;
4015 }
4016 lookup.addend = addend;
4017 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4018 if (loc == NULL)
4019 return FALSE;
4020
4021 entry = (struct mips_got_page_ref *) *loc;
4022 if (!entry)
4023 {
4024 entry = bfd_alloc (abfd, sizeof (*entry));
4025 if (!entry)
4026 return FALSE;
4027
4028 *entry = lookup;
4029 *loc = entry;
4030 }
4031
4032 /* Add the same entry to the BFD's GOT. */
4033 g2 = mips_elf_bfd_got (abfd, TRUE);
4034 if (!g2)
4035 return FALSE;
4036
4037 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4038 if (!bfd_loc)
4039 return FALSE;
4040
4041 if (!*bfd_loc)
4042 *bfd_loc = entry;
4043
4044 return TRUE;
4045 }
4046
4047 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4048
4049 static void
4050 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4051 unsigned int n)
4052 {
4053 asection *s;
4054 struct mips_elf_link_hash_table *htab;
4055
4056 htab = mips_elf_hash_table (info);
4057 BFD_ASSERT (htab != NULL);
4058
4059 s = mips_elf_rel_dyn_section (info, FALSE);
4060 BFD_ASSERT (s != NULL);
4061
4062 if (htab->is_vxworks)
4063 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4064 else
4065 {
4066 if (s->size == 0)
4067 {
4068 /* Make room for a null element. */
4069 s->size += MIPS_ELF_REL_SIZE (abfd);
4070 ++s->reloc_count;
4071 }
4072 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4073 }
4074 }
4075 \f
4076 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4077 mips_elf_traverse_got_arg structure. Count the number of GOT
4078 entries and TLS relocs. Set DATA->value to true if we need
4079 to resolve indirect or warning symbols and then recreate the GOT. */
4080
4081 static int
4082 mips_elf_check_recreate_got (void **entryp, void *data)
4083 {
4084 struct mips_got_entry *entry;
4085 struct mips_elf_traverse_got_arg *arg;
4086
4087 entry = (struct mips_got_entry *) *entryp;
4088 arg = (struct mips_elf_traverse_got_arg *) data;
4089 if (entry->abfd != NULL && entry->symndx == -1)
4090 {
4091 struct mips_elf_link_hash_entry *h;
4092
4093 h = entry->d.h;
4094 if (h->root.root.type == bfd_link_hash_indirect
4095 || h->root.root.type == bfd_link_hash_warning)
4096 {
4097 arg->value = TRUE;
4098 return 0;
4099 }
4100 }
4101 mips_elf_count_got_entry (arg->info, arg->g, entry);
4102 return 1;
4103 }
4104
4105 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4106 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4107 converting entries for indirect and warning symbols into entries
4108 for the target symbol. Set DATA->g to null on error. */
4109
4110 static int
4111 mips_elf_recreate_got (void **entryp, void *data)
4112 {
4113 struct mips_got_entry new_entry, *entry;
4114 struct mips_elf_traverse_got_arg *arg;
4115 void **slot;
4116
4117 entry = (struct mips_got_entry *) *entryp;
4118 arg = (struct mips_elf_traverse_got_arg *) data;
4119 if (entry->abfd != NULL
4120 && entry->symndx == -1
4121 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4122 || entry->d.h->root.root.type == bfd_link_hash_warning))
4123 {
4124 struct mips_elf_link_hash_entry *h;
4125
4126 new_entry = *entry;
4127 entry = &new_entry;
4128 h = entry->d.h;
4129 do
4130 {
4131 BFD_ASSERT (h->global_got_area == GGA_NONE);
4132 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4133 }
4134 while (h->root.root.type == bfd_link_hash_indirect
4135 || h->root.root.type == bfd_link_hash_warning);
4136 entry->d.h = h;
4137 }
4138 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4139 if (slot == NULL)
4140 {
4141 arg->g = NULL;
4142 return 0;
4143 }
4144 if (*slot == NULL)
4145 {
4146 if (entry == &new_entry)
4147 {
4148 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4149 if (!entry)
4150 {
4151 arg->g = NULL;
4152 return 0;
4153 }
4154 *entry = new_entry;
4155 }
4156 *slot = entry;
4157 mips_elf_count_got_entry (arg->info, arg->g, entry);
4158 }
4159 return 1;
4160 }
4161
4162 /* Return the maximum number of GOT page entries required for RANGE. */
4163
4164 static bfd_vma
4165 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4166 {
4167 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4168 }
4169
4170 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4171
4172 static bfd_boolean
4173 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4174 asection *sec, bfd_signed_vma addend)
4175 {
4176 struct mips_got_info *g = arg->g;
4177 struct mips_got_page_entry lookup, *entry;
4178 struct mips_got_page_range **range_ptr, *range;
4179 bfd_vma old_pages, new_pages;
4180 void **loc;
4181
4182 /* Find the mips_got_page_entry hash table entry for this section. */
4183 lookup.sec = sec;
4184 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4185 if (loc == NULL)
4186 return FALSE;
4187
4188 /* Create a mips_got_page_entry if this is the first time we've
4189 seen the section. */
4190 entry = (struct mips_got_page_entry *) *loc;
4191 if (!entry)
4192 {
4193 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4194 if (!entry)
4195 return FALSE;
4196
4197 entry->sec = sec;
4198 *loc = entry;
4199 }
4200
4201 /* Skip over ranges whose maximum extent cannot share a page entry
4202 with ADDEND. */
4203 range_ptr = &entry->ranges;
4204 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4205 range_ptr = &(*range_ptr)->next;
4206
4207 /* If we scanned to the end of the list, or found a range whose
4208 minimum extent cannot share a page entry with ADDEND, create
4209 a new singleton range. */
4210 range = *range_ptr;
4211 if (!range || addend < range->min_addend - 0xffff)
4212 {
4213 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4214 if (!range)
4215 return FALSE;
4216
4217 range->next = *range_ptr;
4218 range->min_addend = addend;
4219 range->max_addend = addend;
4220
4221 *range_ptr = range;
4222 entry->num_pages++;
4223 g->page_gotno++;
4224 return TRUE;
4225 }
4226
4227 /* Remember how many pages the old range contributed. */
4228 old_pages = mips_elf_pages_for_range (range);
4229
4230 /* Update the ranges. */
4231 if (addend < range->min_addend)
4232 range->min_addend = addend;
4233 else if (addend > range->max_addend)
4234 {
4235 if (range->next && addend >= range->next->min_addend - 0xffff)
4236 {
4237 old_pages += mips_elf_pages_for_range (range->next);
4238 range->max_addend = range->next->max_addend;
4239 range->next = range->next->next;
4240 }
4241 else
4242 range->max_addend = addend;
4243 }
4244
4245 /* Record any change in the total estimate. */
4246 new_pages = mips_elf_pages_for_range (range);
4247 if (old_pages != new_pages)
4248 {
4249 entry->num_pages += new_pages - old_pages;
4250 g->page_gotno += new_pages - old_pages;
4251 }
4252
4253 return TRUE;
4254 }
4255
4256 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4257 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4258 whether the page reference described by *REFP needs a GOT page entry,
4259 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4260
4261 static bfd_boolean
4262 mips_elf_resolve_got_page_ref (void **refp, void *data)
4263 {
4264 struct mips_got_page_ref *ref;
4265 struct mips_elf_traverse_got_arg *arg;
4266 struct mips_elf_link_hash_table *htab;
4267 asection *sec;
4268 bfd_vma addend;
4269
4270 ref = (struct mips_got_page_ref *) *refp;
4271 arg = (struct mips_elf_traverse_got_arg *) data;
4272 htab = mips_elf_hash_table (arg->info);
4273
4274 if (ref->symndx < 0)
4275 {
4276 struct mips_elf_link_hash_entry *h;
4277
4278 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4279 h = ref->u.h;
4280 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4281 return 1;
4282
4283 /* Ignore undefined symbols; we'll issue an error later if
4284 appropriate. */
4285 if (!((h->root.root.type == bfd_link_hash_defined
4286 || h->root.root.type == bfd_link_hash_defweak)
4287 && h->root.root.u.def.section))
4288 return 1;
4289
4290 sec = h->root.root.u.def.section;
4291 addend = h->root.root.u.def.value + ref->addend;
4292 }
4293 else
4294 {
4295 Elf_Internal_Sym *isym;
4296
4297 /* Read in the symbol. */
4298 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4299 ref->symndx);
4300 if (isym == NULL)
4301 {
4302 arg->g = NULL;
4303 return 0;
4304 }
4305
4306 /* Get the associated input section. */
4307 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4308 if (sec == NULL)
4309 {
4310 arg->g = NULL;
4311 return 0;
4312 }
4313
4314 /* If this is a mergable section, work out the section and offset
4315 of the merged data. For section symbols, the addend specifies
4316 of the offset _of_ the first byte in the data, otherwise it
4317 specifies the offset _from_ the first byte. */
4318 if (sec->flags & SEC_MERGE)
4319 {
4320 void *secinfo;
4321
4322 secinfo = elf_section_data (sec)->sec_info;
4323 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4324 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4325 isym->st_value + ref->addend);
4326 else
4327 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4328 isym->st_value) + ref->addend;
4329 }
4330 else
4331 addend = isym->st_value + ref->addend;
4332 }
4333 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4334 {
4335 arg->g = NULL;
4336 return 0;
4337 }
4338 return 1;
4339 }
4340
4341 /* If any entries in G->got_entries are for indirect or warning symbols,
4342 replace them with entries for the target symbol. Convert g->got_page_refs
4343 into got_page_entry structures and estimate the number of page entries
4344 that they require. */
4345
4346 static bfd_boolean
4347 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4348 struct mips_got_info *g)
4349 {
4350 struct mips_elf_traverse_got_arg tga;
4351 struct mips_got_info oldg;
4352
4353 oldg = *g;
4354
4355 tga.info = info;
4356 tga.g = g;
4357 tga.value = FALSE;
4358 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4359 if (tga.value)
4360 {
4361 *g = oldg;
4362 g->got_entries = htab_create (htab_size (oldg.got_entries),
4363 mips_elf_got_entry_hash,
4364 mips_elf_got_entry_eq, NULL);
4365 if (!g->got_entries)
4366 return FALSE;
4367
4368 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4369 if (!tga.g)
4370 return FALSE;
4371
4372 htab_delete (oldg.got_entries);
4373 }
4374
4375 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4376 mips_got_page_entry_eq, NULL);
4377 if (g->got_page_entries == NULL)
4378 return FALSE;
4379
4380 tga.info = info;
4381 tga.g = g;
4382 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4383
4384 return TRUE;
4385 }
4386
4387 /* Return true if a GOT entry for H should live in the local rather than
4388 global GOT area. */
4389
4390 static bfd_boolean
4391 mips_use_local_got_p (struct bfd_link_info *info,
4392 struct mips_elf_link_hash_entry *h)
4393 {
4394 /* Symbols that aren't in the dynamic symbol table must live in the
4395 local GOT. This includes symbols that are completely undefined
4396 and which therefore don't bind locally. We'll report undefined
4397 symbols later if appropriate. */
4398 if (h->root.dynindx == -1)
4399 return TRUE;
4400
4401 /* Symbols that bind locally can (and in the case of forced-local
4402 symbols, must) live in the local GOT. */
4403 if (h->got_only_for_calls
4404 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4405 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4406 return TRUE;
4407
4408 /* If this is an executable that must provide a definition of the symbol,
4409 either though PLTs or copy relocations, then that address should go in
4410 the local rather than global GOT. */
4411 if (bfd_link_executable (info) && h->has_static_relocs)
4412 return TRUE;
4413
4414 return FALSE;
4415 }
4416
4417 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4418 link_info structure. Decide whether the hash entry needs an entry in
4419 the global part of the primary GOT, setting global_got_area accordingly.
4420 Count the number of global symbols that are in the primary GOT only
4421 because they have relocations against them (reloc_only_gotno). */
4422
4423 static int
4424 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4425 {
4426 struct bfd_link_info *info;
4427 struct mips_elf_link_hash_table *htab;
4428 struct mips_got_info *g;
4429
4430 info = (struct bfd_link_info *) data;
4431 htab = mips_elf_hash_table (info);
4432 g = htab->got_info;
4433 if (h->global_got_area != GGA_NONE)
4434 {
4435 /* Make a final decision about whether the symbol belongs in the
4436 local or global GOT. */
4437 if (mips_use_local_got_p (info, h))
4438 /* The symbol belongs in the local GOT. We no longer need this
4439 entry if it was only used for relocations; those relocations
4440 will be against the null or section symbol instead of H. */
4441 h->global_got_area = GGA_NONE;
4442 else if (htab->is_vxworks
4443 && h->got_only_for_calls
4444 && h->root.plt.plist->mips_offset != MINUS_ONE)
4445 /* On VxWorks, calls can refer directly to the .got.plt entry;
4446 they don't need entries in the regular GOT. .got.plt entries
4447 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4448 h->global_got_area = GGA_NONE;
4449 else if (h->global_got_area == GGA_RELOC_ONLY)
4450 {
4451 g->reloc_only_gotno++;
4452 g->global_gotno++;
4453 }
4454 }
4455 return 1;
4456 }
4457 \f
4458 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4459 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4460
4461 static int
4462 mips_elf_add_got_entry (void **entryp, void *data)
4463 {
4464 struct mips_got_entry *entry;
4465 struct mips_elf_traverse_got_arg *arg;
4466 void **slot;
4467
4468 entry = (struct mips_got_entry *) *entryp;
4469 arg = (struct mips_elf_traverse_got_arg *) data;
4470 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4471 if (!slot)
4472 {
4473 arg->g = NULL;
4474 return 0;
4475 }
4476 if (!*slot)
4477 {
4478 *slot = entry;
4479 mips_elf_count_got_entry (arg->info, arg->g, entry);
4480 }
4481 return 1;
4482 }
4483
4484 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4485 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4486
4487 static int
4488 mips_elf_add_got_page_entry (void **entryp, void *data)
4489 {
4490 struct mips_got_page_entry *entry;
4491 struct mips_elf_traverse_got_arg *arg;
4492 void **slot;
4493
4494 entry = (struct mips_got_page_entry *) *entryp;
4495 arg = (struct mips_elf_traverse_got_arg *) data;
4496 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4497 if (!slot)
4498 {
4499 arg->g = NULL;
4500 return 0;
4501 }
4502 if (!*slot)
4503 {
4504 *slot = entry;
4505 arg->g->page_gotno += entry->num_pages;
4506 }
4507 return 1;
4508 }
4509
4510 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4511 this would lead to overflow, 1 if they were merged successfully,
4512 and 0 if a merge failed due to lack of memory. (These values are chosen
4513 so that nonnegative return values can be returned by a htab_traverse
4514 callback.) */
4515
4516 static int
4517 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4518 struct mips_got_info *to,
4519 struct mips_elf_got_per_bfd_arg *arg)
4520 {
4521 struct mips_elf_traverse_got_arg tga;
4522 unsigned int estimate;
4523
4524 /* Work out how many page entries we would need for the combined GOT. */
4525 estimate = arg->max_pages;
4526 if (estimate >= from->page_gotno + to->page_gotno)
4527 estimate = from->page_gotno + to->page_gotno;
4528
4529 /* And conservatively estimate how many local and TLS entries
4530 would be needed. */
4531 estimate += from->local_gotno + to->local_gotno;
4532 estimate += from->tls_gotno + to->tls_gotno;
4533
4534 /* If we're merging with the primary got, any TLS relocations will
4535 come after the full set of global entries. Otherwise estimate those
4536 conservatively as well. */
4537 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4538 estimate += arg->global_count;
4539 else
4540 estimate += from->global_gotno + to->global_gotno;
4541
4542 /* Bail out if the combined GOT might be too big. */
4543 if (estimate > arg->max_count)
4544 return -1;
4545
4546 /* Transfer the bfd's got information from FROM to TO. */
4547 tga.info = arg->info;
4548 tga.g = to;
4549 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4550 if (!tga.g)
4551 return 0;
4552
4553 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4554 if (!tga.g)
4555 return 0;
4556
4557 mips_elf_replace_bfd_got (abfd, to);
4558 return 1;
4559 }
4560
4561 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4562 as possible of the primary got, since it doesn't require explicit
4563 dynamic relocations, but don't use bfds that would reference global
4564 symbols out of the addressable range. Failing the primary got,
4565 attempt to merge with the current got, or finish the current got
4566 and then make make the new got current. */
4567
4568 static bfd_boolean
4569 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4570 struct mips_elf_got_per_bfd_arg *arg)
4571 {
4572 unsigned int estimate;
4573 int result;
4574
4575 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4576 return FALSE;
4577
4578 /* Work out the number of page, local and TLS entries. */
4579 estimate = arg->max_pages;
4580 if (estimate > g->page_gotno)
4581 estimate = g->page_gotno;
4582 estimate += g->local_gotno + g->tls_gotno;
4583
4584 /* We place TLS GOT entries after both locals and globals. The globals
4585 for the primary GOT may overflow the normal GOT size limit, so be
4586 sure not to merge a GOT which requires TLS with the primary GOT in that
4587 case. This doesn't affect non-primary GOTs. */
4588 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4589
4590 if (estimate <= arg->max_count)
4591 {
4592 /* If we don't have a primary GOT, use it as
4593 a starting point for the primary GOT. */
4594 if (!arg->primary)
4595 {
4596 arg->primary = g;
4597 return TRUE;
4598 }
4599
4600 /* Try merging with the primary GOT. */
4601 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4602 if (result >= 0)
4603 return result;
4604 }
4605
4606 /* If we can merge with the last-created got, do it. */
4607 if (arg->current)
4608 {
4609 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4610 if (result >= 0)
4611 return result;
4612 }
4613
4614 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4615 fits; if it turns out that it doesn't, we'll get relocation
4616 overflows anyway. */
4617 g->next = arg->current;
4618 arg->current = g;
4619
4620 return TRUE;
4621 }
4622
4623 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4624 to GOTIDX, duplicating the entry if it has already been assigned
4625 an index in a different GOT. */
4626
4627 static bfd_boolean
4628 mips_elf_set_gotidx (void **entryp, long gotidx)
4629 {
4630 struct mips_got_entry *entry;
4631
4632 entry = (struct mips_got_entry *) *entryp;
4633 if (entry->gotidx > 0)
4634 {
4635 struct mips_got_entry *new_entry;
4636
4637 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4638 if (!new_entry)
4639 return FALSE;
4640
4641 *new_entry = *entry;
4642 *entryp = new_entry;
4643 entry = new_entry;
4644 }
4645 entry->gotidx = gotidx;
4646 return TRUE;
4647 }
4648
4649 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4650 mips_elf_traverse_got_arg in which DATA->value is the size of one
4651 GOT entry. Set DATA->g to null on failure. */
4652
4653 static int
4654 mips_elf_initialize_tls_index (void **entryp, void *data)
4655 {
4656 struct mips_got_entry *entry;
4657 struct mips_elf_traverse_got_arg *arg;
4658
4659 /* We're only interested in TLS symbols. */
4660 entry = (struct mips_got_entry *) *entryp;
4661 if (entry->tls_type == GOT_TLS_NONE)
4662 return 1;
4663
4664 arg = (struct mips_elf_traverse_got_arg *) data;
4665 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4666 {
4667 arg->g = NULL;
4668 return 0;
4669 }
4670
4671 /* Account for the entries we've just allocated. */
4672 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4673 return 1;
4674 }
4675
4676 /* A htab_traverse callback for GOT entries, where DATA points to a
4677 mips_elf_traverse_got_arg. Set the global_got_area of each global
4678 symbol to DATA->value. */
4679
4680 static int
4681 mips_elf_set_global_got_area (void **entryp, void *data)
4682 {
4683 struct mips_got_entry *entry;
4684 struct mips_elf_traverse_got_arg *arg;
4685
4686 entry = (struct mips_got_entry *) *entryp;
4687 arg = (struct mips_elf_traverse_got_arg *) data;
4688 if (entry->abfd != NULL
4689 && entry->symndx == -1
4690 && entry->d.h->global_got_area != GGA_NONE)
4691 entry->d.h->global_got_area = arg->value;
4692 return 1;
4693 }
4694
4695 /* A htab_traverse callback for secondary GOT entries, where DATA points
4696 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4697 and record the number of relocations they require. DATA->value is
4698 the size of one GOT entry. Set DATA->g to null on failure. */
4699
4700 static int
4701 mips_elf_set_global_gotidx (void **entryp, void *data)
4702 {
4703 struct mips_got_entry *entry;
4704 struct mips_elf_traverse_got_arg *arg;
4705
4706 entry = (struct mips_got_entry *) *entryp;
4707 arg = (struct mips_elf_traverse_got_arg *) data;
4708 if (entry->abfd != NULL
4709 && entry->symndx == -1
4710 && entry->d.h->global_got_area != GGA_NONE)
4711 {
4712 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4713 {
4714 arg->g = NULL;
4715 return 0;
4716 }
4717 arg->g->assigned_low_gotno += 1;
4718
4719 if (bfd_link_pic (arg->info)
4720 || (elf_hash_table (arg->info)->dynamic_sections_created
4721 && entry->d.h->root.def_dynamic
4722 && !entry->d.h->root.def_regular))
4723 arg->g->relocs += 1;
4724 }
4725
4726 return 1;
4727 }
4728
4729 /* A htab_traverse callback for GOT entries for which DATA is the
4730 bfd_link_info. Forbid any global symbols from having traditional
4731 lazy-binding stubs. */
4732
4733 static int
4734 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4735 {
4736 struct bfd_link_info *info;
4737 struct mips_elf_link_hash_table *htab;
4738 struct mips_got_entry *entry;
4739
4740 entry = (struct mips_got_entry *) *entryp;
4741 info = (struct bfd_link_info *) data;
4742 htab = mips_elf_hash_table (info);
4743 BFD_ASSERT (htab != NULL);
4744
4745 if (entry->abfd != NULL
4746 && entry->symndx == -1
4747 && entry->d.h->needs_lazy_stub)
4748 {
4749 entry->d.h->needs_lazy_stub = FALSE;
4750 htab->lazy_stub_count--;
4751 }
4752
4753 return 1;
4754 }
4755
4756 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4757 the primary GOT. */
4758 static bfd_vma
4759 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4760 {
4761 if (!g->next)
4762 return 0;
4763
4764 g = mips_elf_bfd_got (ibfd, FALSE);
4765 if (! g)
4766 return 0;
4767
4768 BFD_ASSERT (g->next);
4769
4770 g = g->next;
4771
4772 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4773 * MIPS_ELF_GOT_SIZE (abfd);
4774 }
4775
4776 /* Turn a single GOT that is too big for 16-bit addressing into
4777 a sequence of GOTs, each one 16-bit addressable. */
4778
4779 static bfd_boolean
4780 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4781 asection *got, bfd_size_type pages)
4782 {
4783 struct mips_elf_link_hash_table *htab;
4784 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4785 struct mips_elf_traverse_got_arg tga;
4786 struct mips_got_info *g, *gg;
4787 unsigned int assign, needed_relocs;
4788 bfd *dynobj, *ibfd;
4789
4790 dynobj = elf_hash_table (info)->dynobj;
4791 htab = mips_elf_hash_table (info);
4792 BFD_ASSERT (htab != NULL);
4793
4794 g = htab->got_info;
4795
4796 got_per_bfd_arg.obfd = abfd;
4797 got_per_bfd_arg.info = info;
4798 got_per_bfd_arg.current = NULL;
4799 got_per_bfd_arg.primary = NULL;
4800 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4801 / MIPS_ELF_GOT_SIZE (abfd))
4802 - htab->reserved_gotno);
4803 got_per_bfd_arg.max_pages = pages;
4804 /* The number of globals that will be included in the primary GOT.
4805 See the calls to mips_elf_set_global_got_area below for more
4806 information. */
4807 got_per_bfd_arg.global_count = g->global_gotno;
4808
4809 /* Try to merge the GOTs of input bfds together, as long as they
4810 don't seem to exceed the maximum GOT size, choosing one of them
4811 to be the primary GOT. */
4812 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4813 {
4814 gg = mips_elf_bfd_got (ibfd, FALSE);
4815 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4816 return FALSE;
4817 }
4818
4819 /* If we do not find any suitable primary GOT, create an empty one. */
4820 if (got_per_bfd_arg.primary == NULL)
4821 g->next = mips_elf_create_got_info (abfd);
4822 else
4823 g->next = got_per_bfd_arg.primary;
4824 g->next->next = got_per_bfd_arg.current;
4825
4826 /* GG is now the master GOT, and G is the primary GOT. */
4827 gg = g;
4828 g = g->next;
4829
4830 /* Map the output bfd to the primary got. That's what we're going
4831 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4832 didn't mark in check_relocs, and we want a quick way to find it.
4833 We can't just use gg->next because we're going to reverse the
4834 list. */
4835 mips_elf_replace_bfd_got (abfd, g);
4836
4837 /* Every symbol that is referenced in a dynamic relocation must be
4838 present in the primary GOT, so arrange for them to appear after
4839 those that are actually referenced. */
4840 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4841 g->global_gotno = gg->global_gotno;
4842
4843 tga.info = info;
4844 tga.value = GGA_RELOC_ONLY;
4845 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4846 tga.value = GGA_NORMAL;
4847 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4848
4849 /* Now go through the GOTs assigning them offset ranges.
4850 [assigned_low_gotno, local_gotno[ will be set to the range of local
4851 entries in each GOT. We can then compute the end of a GOT by
4852 adding local_gotno to global_gotno. We reverse the list and make
4853 it circular since then we'll be able to quickly compute the
4854 beginning of a GOT, by computing the end of its predecessor. To
4855 avoid special cases for the primary GOT, while still preserving
4856 assertions that are valid for both single- and multi-got links,
4857 we arrange for the main got struct to have the right number of
4858 global entries, but set its local_gotno such that the initial
4859 offset of the primary GOT is zero. Remember that the primary GOT
4860 will become the last item in the circular linked list, so it
4861 points back to the master GOT. */
4862 gg->local_gotno = -g->global_gotno;
4863 gg->global_gotno = g->global_gotno;
4864 gg->tls_gotno = 0;
4865 assign = 0;
4866 gg->next = gg;
4867
4868 do
4869 {
4870 struct mips_got_info *gn;
4871
4872 assign += htab->reserved_gotno;
4873 g->assigned_low_gotno = assign;
4874 g->local_gotno += assign;
4875 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4876 g->assigned_high_gotno = g->local_gotno - 1;
4877 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4878
4879 /* Take g out of the direct list, and push it onto the reversed
4880 list that gg points to. g->next is guaranteed to be nonnull after
4881 this operation, as required by mips_elf_initialize_tls_index. */
4882 gn = g->next;
4883 g->next = gg->next;
4884 gg->next = g;
4885
4886 /* Set up any TLS entries. We always place the TLS entries after
4887 all non-TLS entries. */
4888 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4889 tga.g = g;
4890 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4891 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4892 if (!tga.g)
4893 return FALSE;
4894 BFD_ASSERT (g->tls_assigned_gotno == assign);
4895
4896 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4897 g = gn;
4898
4899 /* Forbid global symbols in every non-primary GOT from having
4900 lazy-binding stubs. */
4901 if (g)
4902 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4903 }
4904 while (g);
4905
4906 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4907
4908 needed_relocs = 0;
4909 for (g = gg->next; g && g->next != gg; g = g->next)
4910 {
4911 unsigned int save_assign;
4912
4913 /* Assign offsets to global GOT entries and count how many
4914 relocations they need. */
4915 save_assign = g->assigned_low_gotno;
4916 g->assigned_low_gotno = g->local_gotno;
4917 tga.info = info;
4918 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4919 tga.g = g;
4920 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4921 if (!tga.g)
4922 return FALSE;
4923 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4924 g->assigned_low_gotno = save_assign;
4925
4926 if (bfd_link_pic (info))
4927 {
4928 g->relocs += g->local_gotno - g->assigned_low_gotno;
4929 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4930 + g->next->global_gotno
4931 + g->next->tls_gotno
4932 + htab->reserved_gotno);
4933 }
4934 needed_relocs += g->relocs;
4935 }
4936 needed_relocs += g->relocs;
4937
4938 if (needed_relocs)
4939 mips_elf_allocate_dynamic_relocations (dynobj, info,
4940 needed_relocs);
4941
4942 return TRUE;
4943 }
4944
4945 \f
4946 /* Returns the first relocation of type r_type found, beginning with
4947 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4948
4949 static const Elf_Internal_Rela *
4950 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4951 const Elf_Internal_Rela *relocation,
4952 const Elf_Internal_Rela *relend)
4953 {
4954 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4955
4956 while (relocation < relend)
4957 {
4958 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4959 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4960 return relocation;
4961
4962 ++relocation;
4963 }
4964
4965 /* We didn't find it. */
4966 return NULL;
4967 }
4968
4969 /* Return whether an input relocation is against a local symbol. */
4970
4971 static bfd_boolean
4972 mips_elf_local_relocation_p (bfd *input_bfd,
4973 const Elf_Internal_Rela *relocation,
4974 asection **local_sections)
4975 {
4976 unsigned long r_symndx;
4977 Elf_Internal_Shdr *symtab_hdr;
4978 size_t extsymoff;
4979
4980 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4981 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4982 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4983
4984 if (r_symndx < extsymoff)
4985 return TRUE;
4986 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4987 return TRUE;
4988
4989 return FALSE;
4990 }
4991 \f
4992 /* Sign-extend VALUE, which has the indicated number of BITS. */
4993
4994 bfd_vma
4995 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4996 {
4997 if (value & ((bfd_vma) 1 << (bits - 1)))
4998 /* VALUE is negative. */
4999 value |= ((bfd_vma) - 1) << bits;
5000
5001 return value;
5002 }
5003
5004 /* Return non-zero if the indicated VALUE has overflowed the maximum
5005 range expressible by a signed number with the indicated number of
5006 BITS. */
5007
5008 static bfd_boolean
5009 mips_elf_overflow_p (bfd_vma value, int bits)
5010 {
5011 bfd_signed_vma svalue = (bfd_signed_vma) value;
5012
5013 if (svalue > (1 << (bits - 1)) - 1)
5014 /* The value is too big. */
5015 return TRUE;
5016 else if (svalue < -(1 << (bits - 1)))
5017 /* The value is too small. */
5018 return TRUE;
5019
5020 /* All is well. */
5021 return FALSE;
5022 }
5023
5024 /* Calculate the %high function. */
5025
5026 static bfd_vma
5027 mips_elf_high (bfd_vma value)
5028 {
5029 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5030 }
5031
5032 /* Calculate the %higher function. */
5033
5034 static bfd_vma
5035 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5036 {
5037 #ifdef BFD64
5038 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5039 #else
5040 abort ();
5041 return MINUS_ONE;
5042 #endif
5043 }
5044
5045 /* Calculate the %highest function. */
5046
5047 static bfd_vma
5048 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5049 {
5050 #ifdef BFD64
5051 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5052 #else
5053 abort ();
5054 return MINUS_ONE;
5055 #endif
5056 }
5057 \f
5058 /* Create the .compact_rel section. */
5059
5060 static bfd_boolean
5061 mips_elf_create_compact_rel_section
5062 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5063 {
5064 flagword flags;
5065 register asection *s;
5066
5067 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5068 {
5069 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5070 | SEC_READONLY);
5071
5072 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5073 if (s == NULL
5074 || ! bfd_set_section_alignment (abfd, s,
5075 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5076 return FALSE;
5077
5078 s->size = sizeof (Elf32_External_compact_rel);
5079 }
5080
5081 return TRUE;
5082 }
5083
5084 /* Create the .got section to hold the global offset table. */
5085
5086 static bfd_boolean
5087 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5088 {
5089 flagword flags;
5090 register asection *s;
5091 struct elf_link_hash_entry *h;
5092 struct bfd_link_hash_entry *bh;
5093 struct mips_elf_link_hash_table *htab;
5094
5095 htab = mips_elf_hash_table (info);
5096 BFD_ASSERT (htab != NULL);
5097
5098 /* This function may be called more than once. */
5099 if (htab->sgot)
5100 return TRUE;
5101
5102 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5103 | SEC_LINKER_CREATED);
5104
5105 /* We have to use an alignment of 2**4 here because this is hardcoded
5106 in the function stub generation and in the linker script. */
5107 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5108 if (s == NULL
5109 || ! bfd_set_section_alignment (abfd, s, 4))
5110 return FALSE;
5111 htab->sgot = s;
5112
5113 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5114 linker script because we don't want to define the symbol if we
5115 are not creating a global offset table. */
5116 bh = NULL;
5117 if (! (_bfd_generic_link_add_one_symbol
5118 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5119 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5120 return FALSE;
5121
5122 h = (struct elf_link_hash_entry *) bh;
5123 h->non_elf = 0;
5124 h->def_regular = 1;
5125 h->type = STT_OBJECT;
5126 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5127 elf_hash_table (info)->hgot = h;
5128
5129 if (bfd_link_pic (info)
5130 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5131 return FALSE;
5132
5133 htab->got_info = mips_elf_create_got_info (abfd);
5134 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5135 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5136
5137 /* We also need a .got.plt section when generating PLTs. */
5138 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5139 SEC_ALLOC | SEC_LOAD
5140 | SEC_HAS_CONTENTS
5141 | SEC_IN_MEMORY
5142 | SEC_LINKER_CREATED);
5143 if (s == NULL)
5144 return FALSE;
5145 htab->sgotplt = s;
5146
5147 return TRUE;
5148 }
5149 \f
5150 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5151 __GOTT_INDEX__ symbols. These symbols are only special for
5152 shared objects; they are not used in executables. */
5153
5154 static bfd_boolean
5155 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5156 {
5157 return (mips_elf_hash_table (info)->is_vxworks
5158 && bfd_link_pic (info)
5159 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5160 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5161 }
5162
5163 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5164 require an la25 stub. See also mips_elf_local_pic_function_p,
5165 which determines whether the destination function ever requires a
5166 stub. */
5167
5168 static bfd_boolean
5169 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5170 bfd_boolean target_is_16_bit_code_p)
5171 {
5172 /* We specifically ignore branches and jumps from EF_PIC objects,
5173 where the onus is on the compiler or programmer to perform any
5174 necessary initialization of $25. Sometimes such initialization
5175 is unnecessary; for example, -mno-shared functions do not use
5176 the incoming value of $25, and may therefore be called directly. */
5177 if (PIC_OBJECT_P (input_bfd))
5178 return FALSE;
5179
5180 switch (r_type)
5181 {
5182 case R_MIPS_26:
5183 case R_MIPS_PC16:
5184 case R_MIPS_PC21_S2:
5185 case R_MIPS_PC26_S2:
5186 case R_MICROMIPS_26_S1:
5187 case R_MICROMIPS_PC7_S1:
5188 case R_MICROMIPS_PC10_S1:
5189 case R_MICROMIPS_PC16_S1:
5190 case R_MICROMIPS_PC23_S2:
5191 return TRUE;
5192
5193 case R_MIPS16_26:
5194 return !target_is_16_bit_code_p;
5195
5196 default:
5197 return FALSE;
5198 }
5199 }
5200 \f
5201 /* Calculate the value produced by the RELOCATION (which comes from
5202 the INPUT_BFD). The ADDEND is the addend to use for this
5203 RELOCATION; RELOCATION->R_ADDEND is ignored.
5204
5205 The result of the relocation calculation is stored in VALUEP.
5206 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5207 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5208
5209 This function returns bfd_reloc_continue if the caller need take no
5210 further action regarding this relocation, bfd_reloc_notsupported if
5211 something goes dramatically wrong, bfd_reloc_overflow if an
5212 overflow occurs, and bfd_reloc_ok to indicate success. */
5213
5214 static bfd_reloc_status_type
5215 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5216 asection *input_section,
5217 struct bfd_link_info *info,
5218 const Elf_Internal_Rela *relocation,
5219 bfd_vma addend, reloc_howto_type *howto,
5220 Elf_Internal_Sym *local_syms,
5221 asection **local_sections, bfd_vma *valuep,
5222 const char **namep,
5223 bfd_boolean *cross_mode_jump_p,
5224 bfd_boolean save_addend)
5225 {
5226 /* The eventual value we will return. */
5227 bfd_vma value;
5228 /* The address of the symbol against which the relocation is
5229 occurring. */
5230 bfd_vma symbol = 0;
5231 /* The final GP value to be used for the relocatable, executable, or
5232 shared object file being produced. */
5233 bfd_vma gp;
5234 /* The place (section offset or address) of the storage unit being
5235 relocated. */
5236 bfd_vma p;
5237 /* The value of GP used to create the relocatable object. */
5238 bfd_vma gp0;
5239 /* The offset into the global offset table at which the address of
5240 the relocation entry symbol, adjusted by the addend, resides
5241 during execution. */
5242 bfd_vma g = MINUS_ONE;
5243 /* The section in which the symbol referenced by the relocation is
5244 located. */
5245 asection *sec = NULL;
5246 struct mips_elf_link_hash_entry *h = NULL;
5247 /* TRUE if the symbol referred to by this relocation is a local
5248 symbol. */
5249 bfd_boolean local_p, was_local_p;
5250 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5251 bfd_boolean gp_disp_p = FALSE;
5252 /* TRUE if the symbol referred to by this relocation is
5253 "__gnu_local_gp". */
5254 bfd_boolean gnu_local_gp_p = FALSE;
5255 Elf_Internal_Shdr *symtab_hdr;
5256 size_t extsymoff;
5257 unsigned long r_symndx;
5258 int r_type;
5259 /* TRUE if overflow occurred during the calculation of the
5260 relocation value. */
5261 bfd_boolean overflowed_p;
5262 /* TRUE if this relocation refers to a MIPS16 function. */
5263 bfd_boolean target_is_16_bit_code_p = FALSE;
5264 bfd_boolean target_is_micromips_code_p = FALSE;
5265 struct mips_elf_link_hash_table *htab;
5266 bfd *dynobj;
5267
5268 dynobj = elf_hash_table (info)->dynobj;
5269 htab = mips_elf_hash_table (info);
5270 BFD_ASSERT (htab != NULL);
5271
5272 /* Parse the relocation. */
5273 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5274 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5275 p = (input_section->output_section->vma
5276 + input_section->output_offset
5277 + relocation->r_offset);
5278
5279 /* Assume that there will be no overflow. */
5280 overflowed_p = FALSE;
5281
5282 /* Figure out whether or not the symbol is local, and get the offset
5283 used in the array of hash table entries. */
5284 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5285 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5286 local_sections);
5287 was_local_p = local_p;
5288 if (! elf_bad_symtab (input_bfd))
5289 extsymoff = symtab_hdr->sh_info;
5290 else
5291 {
5292 /* The symbol table does not follow the rule that local symbols
5293 must come before globals. */
5294 extsymoff = 0;
5295 }
5296
5297 /* Figure out the value of the symbol. */
5298 if (local_p)
5299 {
5300 Elf_Internal_Sym *sym;
5301
5302 sym = local_syms + r_symndx;
5303 sec = local_sections[r_symndx];
5304
5305 symbol = sec->output_section->vma + sec->output_offset;
5306 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5307 || (sec->flags & SEC_MERGE))
5308 symbol += sym->st_value;
5309 if ((sec->flags & SEC_MERGE)
5310 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5311 {
5312 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5313 addend -= symbol;
5314 addend += sec->output_section->vma + sec->output_offset;
5315 }
5316
5317 /* MIPS16/microMIPS text labels should be treated as odd. */
5318 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5319 ++symbol;
5320
5321 /* Record the name of this symbol, for our caller. */
5322 *namep = bfd_elf_string_from_elf_section (input_bfd,
5323 symtab_hdr->sh_link,
5324 sym->st_name);
5325 if (*namep == NULL || **namep == '\0')
5326 *namep = bfd_section_name (input_bfd, sec);
5327
5328 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5329 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5330 }
5331 else
5332 {
5333 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5334
5335 /* For global symbols we look up the symbol in the hash-table. */
5336 h = ((struct mips_elf_link_hash_entry *)
5337 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5338 /* Find the real hash-table entry for this symbol. */
5339 while (h->root.root.type == bfd_link_hash_indirect
5340 || h->root.root.type == bfd_link_hash_warning)
5341 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5342
5343 /* Record the name of this symbol, for our caller. */
5344 *namep = h->root.root.root.string;
5345
5346 /* See if this is the special _gp_disp symbol. Note that such a
5347 symbol must always be a global symbol. */
5348 if (strcmp (*namep, "_gp_disp") == 0
5349 && ! NEWABI_P (input_bfd))
5350 {
5351 /* Relocations against _gp_disp are permitted only with
5352 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5353 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5354 return bfd_reloc_notsupported;
5355
5356 gp_disp_p = TRUE;
5357 }
5358 /* See if this is the special _gp symbol. Note that such a
5359 symbol must always be a global symbol. */
5360 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5361 gnu_local_gp_p = TRUE;
5362
5363
5364 /* If this symbol is defined, calculate its address. Note that
5365 _gp_disp is a magic symbol, always implicitly defined by the
5366 linker, so it's inappropriate to check to see whether or not
5367 its defined. */
5368 else if ((h->root.root.type == bfd_link_hash_defined
5369 || h->root.root.type == bfd_link_hash_defweak)
5370 && h->root.root.u.def.section)
5371 {
5372 sec = h->root.root.u.def.section;
5373 if (sec->output_section)
5374 symbol = (h->root.root.u.def.value
5375 + sec->output_section->vma
5376 + sec->output_offset);
5377 else
5378 symbol = h->root.root.u.def.value;
5379 }
5380 else if (h->root.root.type == bfd_link_hash_undefweak)
5381 /* We allow relocations against undefined weak symbols, giving
5382 it the value zero, so that you can undefined weak functions
5383 and check to see if they exist by looking at their
5384 addresses. */
5385 symbol = 0;
5386 else if (info->unresolved_syms_in_objects == RM_IGNORE
5387 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5388 symbol = 0;
5389 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5390 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5391 {
5392 /* If this is a dynamic link, we should have created a
5393 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5394 in in _bfd_mips_elf_create_dynamic_sections.
5395 Otherwise, we should define the symbol with a value of 0.
5396 FIXME: It should probably get into the symbol table
5397 somehow as well. */
5398 BFD_ASSERT (! bfd_link_pic (info));
5399 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5400 symbol = 0;
5401 }
5402 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5403 {
5404 /* This is an optional symbol - an Irix specific extension to the
5405 ELF spec. Ignore it for now.
5406 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5407 than simply ignoring them, but we do not handle this for now.
5408 For information see the "64-bit ELF Object File Specification"
5409 which is available from here:
5410 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5411 symbol = 0;
5412 }
5413 else
5414 {
5415 (*info->callbacks->undefined_symbol)
5416 (info, h->root.root.root.string, input_bfd,
5417 input_section, relocation->r_offset,
5418 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5419 || ELF_ST_VISIBILITY (h->root.other));
5420 return bfd_reloc_undefined;
5421 }
5422
5423 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5424 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5425 }
5426
5427 /* If this is a reference to a 16-bit function with a stub, we need
5428 to redirect the relocation to the stub unless:
5429
5430 (a) the relocation is for a MIPS16 JAL;
5431
5432 (b) the relocation is for a MIPS16 PIC call, and there are no
5433 non-MIPS16 uses of the GOT slot; or
5434
5435 (c) the section allows direct references to MIPS16 functions. */
5436 if (r_type != R_MIPS16_26
5437 && !bfd_link_relocatable (info)
5438 && ((h != NULL
5439 && h->fn_stub != NULL
5440 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5441 || (local_p
5442 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5443 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5444 && !section_allows_mips16_refs_p (input_section))
5445 {
5446 /* This is a 32- or 64-bit call to a 16-bit function. We should
5447 have already noticed that we were going to need the
5448 stub. */
5449 if (local_p)
5450 {
5451 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5452 value = 0;
5453 }
5454 else
5455 {
5456 BFD_ASSERT (h->need_fn_stub);
5457 if (h->la25_stub)
5458 {
5459 /* If a LA25 header for the stub itself exists, point to the
5460 prepended LUI/ADDIU sequence. */
5461 sec = h->la25_stub->stub_section;
5462 value = h->la25_stub->offset;
5463 }
5464 else
5465 {
5466 sec = h->fn_stub;
5467 value = 0;
5468 }
5469 }
5470
5471 symbol = sec->output_section->vma + sec->output_offset + value;
5472 /* The target is 16-bit, but the stub isn't. */
5473 target_is_16_bit_code_p = FALSE;
5474 }
5475 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5476 to a standard MIPS function, we need to redirect the call to the stub.
5477 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5478 indirect calls should use an indirect stub instead. */
5479 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5480 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5481 || (local_p
5482 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5483 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5484 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5485 {
5486 if (local_p)
5487 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5488 else
5489 {
5490 /* If both call_stub and call_fp_stub are defined, we can figure
5491 out which one to use by checking which one appears in the input
5492 file. */
5493 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5494 {
5495 asection *o;
5496
5497 sec = NULL;
5498 for (o = input_bfd->sections; o != NULL; o = o->next)
5499 {
5500 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5501 {
5502 sec = h->call_fp_stub;
5503 break;
5504 }
5505 }
5506 if (sec == NULL)
5507 sec = h->call_stub;
5508 }
5509 else if (h->call_stub != NULL)
5510 sec = h->call_stub;
5511 else
5512 sec = h->call_fp_stub;
5513 }
5514
5515 BFD_ASSERT (sec->size > 0);
5516 symbol = sec->output_section->vma + sec->output_offset;
5517 }
5518 /* If this is a direct call to a PIC function, redirect to the
5519 non-PIC stub. */
5520 else if (h != NULL && h->la25_stub
5521 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5522 target_is_16_bit_code_p))
5523 symbol = (h->la25_stub->stub_section->output_section->vma
5524 + h->la25_stub->stub_section->output_offset
5525 + h->la25_stub->offset);
5526 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5527 entry is used if a standard PLT entry has also been made. In this
5528 case the symbol will have been set by mips_elf_set_plt_sym_value
5529 to point to the standard PLT entry, so redirect to the compressed
5530 one. */
5531 else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1)
5532 && !bfd_link_relocatable (info)
5533 && h != NULL
5534 && h->use_plt_entry
5535 && h->root.plt.plist->comp_offset != MINUS_ONE
5536 && h->root.plt.plist->mips_offset != MINUS_ONE)
5537 {
5538 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5539
5540 sec = htab->splt;
5541 symbol = (sec->output_section->vma
5542 + sec->output_offset
5543 + htab->plt_header_size
5544 + htab->plt_mips_offset
5545 + h->root.plt.plist->comp_offset
5546 + 1);
5547
5548 target_is_16_bit_code_p = !micromips_p;
5549 target_is_micromips_code_p = micromips_p;
5550 }
5551
5552 /* Make sure MIPS16 and microMIPS are not used together. */
5553 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5554 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5555 {
5556 (*_bfd_error_handler)
5557 (_("MIPS16 and microMIPS functions cannot call each other"));
5558 return bfd_reloc_notsupported;
5559 }
5560
5561 /* Calls from 16-bit code to 32-bit code and vice versa require the
5562 mode change. However, we can ignore calls to undefined weak symbols,
5563 which should never be executed at runtime. This exception is important
5564 because the assembly writer may have "known" that any definition of the
5565 symbol would be 16-bit code, and that direct jumps were therefore
5566 acceptable. */
5567 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5568 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5569 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5570 || (r_type == R_MICROMIPS_26_S1
5571 && !target_is_micromips_code_p)
5572 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5573 && (target_is_16_bit_code_p
5574 || target_is_micromips_code_p))));
5575
5576 local_p = (h == NULL || mips_use_local_got_p (info, h));
5577
5578 gp0 = _bfd_get_gp_value (input_bfd);
5579 gp = _bfd_get_gp_value (abfd);
5580 if (htab->got_info)
5581 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5582
5583 if (gnu_local_gp_p)
5584 symbol = gp;
5585
5586 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5587 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5588 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5589 if (got_page_reloc_p (r_type) && !local_p)
5590 {
5591 r_type = (micromips_reloc_p (r_type)
5592 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5593 addend = 0;
5594 }
5595
5596 /* If we haven't already determined the GOT offset, and we're going
5597 to need it, get it now. */
5598 switch (r_type)
5599 {
5600 case R_MIPS16_CALL16:
5601 case R_MIPS16_GOT16:
5602 case R_MIPS_CALL16:
5603 case R_MIPS_GOT16:
5604 case R_MIPS_GOT_DISP:
5605 case R_MIPS_GOT_HI16:
5606 case R_MIPS_CALL_HI16:
5607 case R_MIPS_GOT_LO16:
5608 case R_MIPS_CALL_LO16:
5609 case R_MICROMIPS_CALL16:
5610 case R_MICROMIPS_GOT16:
5611 case R_MICROMIPS_GOT_DISP:
5612 case R_MICROMIPS_GOT_HI16:
5613 case R_MICROMIPS_CALL_HI16:
5614 case R_MICROMIPS_GOT_LO16:
5615 case R_MICROMIPS_CALL_LO16:
5616 case R_MIPS_TLS_GD:
5617 case R_MIPS_TLS_GOTTPREL:
5618 case R_MIPS_TLS_LDM:
5619 case R_MIPS16_TLS_GD:
5620 case R_MIPS16_TLS_GOTTPREL:
5621 case R_MIPS16_TLS_LDM:
5622 case R_MICROMIPS_TLS_GD:
5623 case R_MICROMIPS_TLS_GOTTPREL:
5624 case R_MICROMIPS_TLS_LDM:
5625 /* Find the index into the GOT where this value is located. */
5626 if (tls_ldm_reloc_p (r_type))
5627 {
5628 g = mips_elf_local_got_index (abfd, input_bfd, info,
5629 0, 0, NULL, r_type);
5630 if (g == MINUS_ONE)
5631 return bfd_reloc_outofrange;
5632 }
5633 else if (!local_p)
5634 {
5635 /* On VxWorks, CALL relocations should refer to the .got.plt
5636 entry, which is initialized to point at the PLT stub. */
5637 if (htab->is_vxworks
5638 && (call_hi16_reloc_p (r_type)
5639 || call_lo16_reloc_p (r_type)
5640 || call16_reloc_p (r_type)))
5641 {
5642 BFD_ASSERT (addend == 0);
5643 BFD_ASSERT (h->root.needs_plt);
5644 g = mips_elf_gotplt_index (info, &h->root);
5645 }
5646 else
5647 {
5648 BFD_ASSERT (addend == 0);
5649 g = mips_elf_global_got_index (abfd, info, input_bfd,
5650 &h->root, r_type);
5651 if (!TLS_RELOC_P (r_type)
5652 && !elf_hash_table (info)->dynamic_sections_created)
5653 /* This is a static link. We must initialize the GOT entry. */
5654 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5655 }
5656 }
5657 else if (!htab->is_vxworks
5658 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5659 /* The calculation below does not involve "g". */
5660 break;
5661 else
5662 {
5663 g = mips_elf_local_got_index (abfd, input_bfd, info,
5664 symbol + addend, r_symndx, h, r_type);
5665 if (g == MINUS_ONE)
5666 return bfd_reloc_outofrange;
5667 }
5668
5669 /* Convert GOT indices to actual offsets. */
5670 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5671 break;
5672 }
5673
5674 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5675 symbols are resolved by the loader. Add them to .rela.dyn. */
5676 if (h != NULL && is_gott_symbol (info, &h->root))
5677 {
5678 Elf_Internal_Rela outrel;
5679 bfd_byte *loc;
5680 asection *s;
5681
5682 s = mips_elf_rel_dyn_section (info, FALSE);
5683 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5684
5685 outrel.r_offset = (input_section->output_section->vma
5686 + input_section->output_offset
5687 + relocation->r_offset);
5688 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5689 outrel.r_addend = addend;
5690 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5691
5692 /* If we've written this relocation for a readonly section,
5693 we need to set DF_TEXTREL again, so that we do not delete the
5694 DT_TEXTREL tag. */
5695 if (MIPS_ELF_READONLY_SECTION (input_section))
5696 info->flags |= DF_TEXTREL;
5697
5698 *valuep = 0;
5699 return bfd_reloc_ok;
5700 }
5701
5702 /* Figure out what kind of relocation is being performed. */
5703 switch (r_type)
5704 {
5705 case R_MIPS_NONE:
5706 return bfd_reloc_continue;
5707
5708 case R_MIPS_16:
5709 if (howto->partial_inplace)
5710 addend = _bfd_mips_elf_sign_extend (addend, 16);
5711 value = symbol + addend;
5712 overflowed_p = mips_elf_overflow_p (value, 16);
5713 break;
5714
5715 case R_MIPS_32:
5716 case R_MIPS_REL32:
5717 case R_MIPS_64:
5718 if ((bfd_link_pic (info)
5719 || (htab->root.dynamic_sections_created
5720 && h != NULL
5721 && h->root.def_dynamic
5722 && !h->root.def_regular
5723 && !h->has_static_relocs))
5724 && r_symndx != STN_UNDEF
5725 && (h == NULL
5726 || h->root.root.type != bfd_link_hash_undefweak
5727 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5728 && (input_section->flags & SEC_ALLOC) != 0)
5729 {
5730 /* If we're creating a shared library, then we can't know
5731 where the symbol will end up. So, we create a relocation
5732 record in the output, and leave the job up to the dynamic
5733 linker. We must do the same for executable references to
5734 shared library symbols, unless we've decided to use copy
5735 relocs or PLTs instead. */
5736 value = addend;
5737 if (!mips_elf_create_dynamic_relocation (abfd,
5738 info,
5739 relocation,
5740 h,
5741 sec,
5742 symbol,
5743 &value,
5744 input_section))
5745 return bfd_reloc_undefined;
5746 }
5747 else
5748 {
5749 if (r_type != R_MIPS_REL32)
5750 value = symbol + addend;
5751 else
5752 value = addend;
5753 }
5754 value &= howto->dst_mask;
5755 break;
5756
5757 case R_MIPS_PC32:
5758 value = symbol + addend - p;
5759 value &= howto->dst_mask;
5760 break;
5761
5762 case R_MIPS16_26:
5763 /* The calculation for R_MIPS16_26 is just the same as for an
5764 R_MIPS_26. It's only the storage of the relocated field into
5765 the output file that's different. That's handled in
5766 mips_elf_perform_relocation. So, we just fall through to the
5767 R_MIPS_26 case here. */
5768 case R_MIPS_26:
5769 case R_MICROMIPS_26_S1:
5770 {
5771 unsigned int shift;
5772
5773 /* Shift is 2, unusually, for microMIPS JALX. */
5774 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5775
5776 if (was_local_p)
5777 value = addend | ((p + 4) & (0xfc000000 << shift));
5778 else if (howto->partial_inplace)
5779 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5780 else
5781 value = addend;
5782 value += symbol;
5783
5784 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5785 the correct ISA mode selector and bit 1 must be 0. */
5786 if (*cross_mode_jump_p && (value & 3) != (r_type == R_MIPS_26))
5787 return bfd_reloc_outofrange;
5788
5789 value >>= shift;
5790 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5791 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5792 value &= howto->dst_mask;
5793 }
5794 break;
5795
5796 case R_MIPS_TLS_DTPREL_HI16:
5797 case R_MIPS16_TLS_DTPREL_HI16:
5798 case R_MICROMIPS_TLS_DTPREL_HI16:
5799 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5800 & howto->dst_mask);
5801 break;
5802
5803 case R_MIPS_TLS_DTPREL_LO16:
5804 case R_MIPS_TLS_DTPREL32:
5805 case R_MIPS_TLS_DTPREL64:
5806 case R_MIPS16_TLS_DTPREL_LO16:
5807 case R_MICROMIPS_TLS_DTPREL_LO16:
5808 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5809 break;
5810
5811 case R_MIPS_TLS_TPREL_HI16:
5812 case R_MIPS16_TLS_TPREL_HI16:
5813 case R_MICROMIPS_TLS_TPREL_HI16:
5814 value = (mips_elf_high (addend + symbol - tprel_base (info))
5815 & howto->dst_mask);
5816 break;
5817
5818 case R_MIPS_TLS_TPREL_LO16:
5819 case R_MIPS_TLS_TPREL32:
5820 case R_MIPS_TLS_TPREL64:
5821 case R_MIPS16_TLS_TPREL_LO16:
5822 case R_MICROMIPS_TLS_TPREL_LO16:
5823 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5824 break;
5825
5826 case R_MIPS_HI16:
5827 case R_MIPS16_HI16:
5828 case R_MICROMIPS_HI16:
5829 if (!gp_disp_p)
5830 {
5831 value = mips_elf_high (addend + symbol);
5832 value &= howto->dst_mask;
5833 }
5834 else
5835 {
5836 /* For MIPS16 ABI code we generate this sequence
5837 0: li $v0,%hi(_gp_disp)
5838 4: addiupc $v1,%lo(_gp_disp)
5839 8: sll $v0,16
5840 12: addu $v0,$v1
5841 14: move $gp,$v0
5842 So the offsets of hi and lo relocs are the same, but the
5843 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5844 ADDIUPC clears the low two bits of the instruction address,
5845 so the base is ($t9 + 4) & ~3. */
5846 if (r_type == R_MIPS16_HI16)
5847 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5848 /* The microMIPS .cpload sequence uses the same assembly
5849 instructions as the traditional psABI version, but the
5850 incoming $t9 has the low bit set. */
5851 else if (r_type == R_MICROMIPS_HI16)
5852 value = mips_elf_high (addend + gp - p - 1);
5853 else
5854 value = mips_elf_high (addend + gp - p);
5855 overflowed_p = mips_elf_overflow_p (value, 16);
5856 }
5857 break;
5858
5859 case R_MIPS_LO16:
5860 case R_MIPS16_LO16:
5861 case R_MICROMIPS_LO16:
5862 case R_MICROMIPS_HI0_LO16:
5863 if (!gp_disp_p)
5864 value = (symbol + addend) & howto->dst_mask;
5865 else
5866 {
5867 /* See the comment for R_MIPS16_HI16 above for the reason
5868 for this conditional. */
5869 if (r_type == R_MIPS16_LO16)
5870 value = addend + gp - (p & ~(bfd_vma) 0x3);
5871 else if (r_type == R_MICROMIPS_LO16
5872 || r_type == R_MICROMIPS_HI0_LO16)
5873 value = addend + gp - p + 3;
5874 else
5875 value = addend + gp - p + 4;
5876 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5877 for overflow. But, on, say, IRIX5, relocations against
5878 _gp_disp are normally generated from the .cpload
5879 pseudo-op. It generates code that normally looks like
5880 this:
5881
5882 lui $gp,%hi(_gp_disp)
5883 addiu $gp,$gp,%lo(_gp_disp)
5884 addu $gp,$gp,$t9
5885
5886 Here $t9 holds the address of the function being called,
5887 as required by the MIPS ELF ABI. The R_MIPS_LO16
5888 relocation can easily overflow in this situation, but the
5889 R_MIPS_HI16 relocation will handle the overflow.
5890 Therefore, we consider this a bug in the MIPS ABI, and do
5891 not check for overflow here. */
5892 }
5893 break;
5894
5895 case R_MIPS_LITERAL:
5896 case R_MICROMIPS_LITERAL:
5897 /* Because we don't merge literal sections, we can handle this
5898 just like R_MIPS_GPREL16. In the long run, we should merge
5899 shared literals, and then we will need to additional work
5900 here. */
5901
5902 /* Fall through. */
5903
5904 case R_MIPS16_GPREL:
5905 /* The R_MIPS16_GPREL performs the same calculation as
5906 R_MIPS_GPREL16, but stores the relocated bits in a different
5907 order. We don't need to do anything special here; the
5908 differences are handled in mips_elf_perform_relocation. */
5909 case R_MIPS_GPREL16:
5910 case R_MICROMIPS_GPREL7_S2:
5911 case R_MICROMIPS_GPREL16:
5912 /* Only sign-extend the addend if it was extracted from the
5913 instruction. If the addend was separate, leave it alone,
5914 otherwise we may lose significant bits. */
5915 if (howto->partial_inplace)
5916 addend = _bfd_mips_elf_sign_extend (addend, 16);
5917 value = symbol + addend - gp;
5918 /* If the symbol was local, any earlier relocatable links will
5919 have adjusted its addend with the gp offset, so compensate
5920 for that now. Don't do it for symbols forced local in this
5921 link, though, since they won't have had the gp offset applied
5922 to them before. */
5923 if (was_local_p)
5924 value += gp0;
5925 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5926 overflowed_p = mips_elf_overflow_p (value, 16);
5927 break;
5928
5929 case R_MIPS16_GOT16:
5930 case R_MIPS16_CALL16:
5931 case R_MIPS_GOT16:
5932 case R_MIPS_CALL16:
5933 case R_MICROMIPS_GOT16:
5934 case R_MICROMIPS_CALL16:
5935 /* VxWorks does not have separate local and global semantics for
5936 R_MIPS*_GOT16; every relocation evaluates to "G". */
5937 if (!htab->is_vxworks && local_p)
5938 {
5939 value = mips_elf_got16_entry (abfd, input_bfd, info,
5940 symbol + addend, !was_local_p);
5941 if (value == MINUS_ONE)
5942 return bfd_reloc_outofrange;
5943 value
5944 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5945 overflowed_p = mips_elf_overflow_p (value, 16);
5946 break;
5947 }
5948
5949 /* Fall through. */
5950
5951 case R_MIPS_TLS_GD:
5952 case R_MIPS_TLS_GOTTPREL:
5953 case R_MIPS_TLS_LDM:
5954 case R_MIPS_GOT_DISP:
5955 case R_MIPS16_TLS_GD:
5956 case R_MIPS16_TLS_GOTTPREL:
5957 case R_MIPS16_TLS_LDM:
5958 case R_MICROMIPS_TLS_GD:
5959 case R_MICROMIPS_TLS_GOTTPREL:
5960 case R_MICROMIPS_TLS_LDM:
5961 case R_MICROMIPS_GOT_DISP:
5962 value = g;
5963 overflowed_p = mips_elf_overflow_p (value, 16);
5964 break;
5965
5966 case R_MIPS_GPREL32:
5967 value = (addend + symbol + gp0 - gp);
5968 if (!save_addend)
5969 value &= howto->dst_mask;
5970 break;
5971
5972 case R_MIPS_PC16:
5973 case R_MIPS_GNU_REL16_S2:
5974 if (howto->partial_inplace)
5975 addend = _bfd_mips_elf_sign_extend (addend, 18);
5976
5977 if ((symbol + addend) & 3)
5978 return bfd_reloc_outofrange;
5979
5980 value = symbol + addend - p;
5981 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5982 overflowed_p = mips_elf_overflow_p (value, 18);
5983 value >>= howto->rightshift;
5984 value &= howto->dst_mask;
5985 break;
5986
5987 case R_MIPS_PC21_S2:
5988 if (howto->partial_inplace)
5989 addend = _bfd_mips_elf_sign_extend (addend, 23);
5990
5991 if ((symbol + addend) & 3)
5992 return bfd_reloc_outofrange;
5993
5994 value = symbol + addend - p;
5995 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5996 overflowed_p = mips_elf_overflow_p (value, 23);
5997 value >>= howto->rightshift;
5998 value &= howto->dst_mask;
5999 break;
6000
6001 case R_MIPS_PC26_S2:
6002 if (howto->partial_inplace)
6003 addend = _bfd_mips_elf_sign_extend (addend, 28);
6004
6005 if ((symbol + addend) & 3)
6006 return bfd_reloc_outofrange;
6007
6008 value = symbol + addend - p;
6009 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6010 overflowed_p = mips_elf_overflow_p (value, 28);
6011 value >>= howto->rightshift;
6012 value &= howto->dst_mask;
6013 break;
6014
6015 case R_MIPS_PC18_S3:
6016 if (howto->partial_inplace)
6017 addend = _bfd_mips_elf_sign_extend (addend, 21);
6018
6019 if ((symbol + addend) & 7)
6020 return bfd_reloc_outofrange;
6021
6022 value = symbol + addend - ((p | 7) ^ 7);
6023 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6024 overflowed_p = mips_elf_overflow_p (value, 21);
6025 value >>= howto->rightshift;
6026 value &= howto->dst_mask;
6027 break;
6028
6029 case R_MIPS_PC19_S2:
6030 if (howto->partial_inplace)
6031 addend = _bfd_mips_elf_sign_extend (addend, 21);
6032
6033 if ((symbol + addend) & 3)
6034 return bfd_reloc_outofrange;
6035
6036 value = symbol + addend - p;
6037 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6038 overflowed_p = mips_elf_overflow_p (value, 21);
6039 value >>= howto->rightshift;
6040 value &= howto->dst_mask;
6041 break;
6042
6043 case R_MIPS_PCHI16:
6044 value = mips_elf_high (symbol + addend - p);
6045 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6046 overflowed_p = mips_elf_overflow_p (value, 16);
6047 value &= howto->dst_mask;
6048 break;
6049
6050 case R_MIPS_PCLO16:
6051 if (howto->partial_inplace)
6052 addend = _bfd_mips_elf_sign_extend (addend, 16);
6053 value = symbol + addend - p;
6054 value &= howto->dst_mask;
6055 break;
6056
6057 case R_MICROMIPS_PC7_S1:
6058 if (howto->partial_inplace)
6059 addend = _bfd_mips_elf_sign_extend (addend, 8);
6060 value = symbol + addend - p;
6061 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6062 overflowed_p = mips_elf_overflow_p (value, 8);
6063 value >>= howto->rightshift;
6064 value &= howto->dst_mask;
6065 break;
6066
6067 case R_MICROMIPS_PC10_S1:
6068 if (howto->partial_inplace)
6069 addend = _bfd_mips_elf_sign_extend (addend, 11);
6070 value = symbol + addend - p;
6071 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6072 overflowed_p = mips_elf_overflow_p (value, 11);
6073 value >>= howto->rightshift;
6074 value &= howto->dst_mask;
6075 break;
6076
6077 case R_MICROMIPS_PC16_S1:
6078 if (howto->partial_inplace)
6079 addend = _bfd_mips_elf_sign_extend (addend, 17);
6080 value = symbol + addend - p;
6081 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6082 overflowed_p = mips_elf_overflow_p (value, 17);
6083 value >>= howto->rightshift;
6084 value &= howto->dst_mask;
6085 break;
6086
6087 case R_MICROMIPS_PC23_S2:
6088 if (howto->partial_inplace)
6089 addend = _bfd_mips_elf_sign_extend (addend, 25);
6090 value = symbol + addend - ((p | 3) ^ 3);
6091 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6092 overflowed_p = mips_elf_overflow_p (value, 25);
6093 value >>= howto->rightshift;
6094 value &= howto->dst_mask;
6095 break;
6096
6097 case R_MIPS_GOT_HI16:
6098 case R_MIPS_CALL_HI16:
6099 case R_MICROMIPS_GOT_HI16:
6100 case R_MICROMIPS_CALL_HI16:
6101 /* We're allowed to handle these two relocations identically.
6102 The dynamic linker is allowed to handle the CALL relocations
6103 differently by creating a lazy evaluation stub. */
6104 value = g;
6105 value = mips_elf_high (value);
6106 value &= howto->dst_mask;
6107 break;
6108
6109 case R_MIPS_GOT_LO16:
6110 case R_MIPS_CALL_LO16:
6111 case R_MICROMIPS_GOT_LO16:
6112 case R_MICROMIPS_CALL_LO16:
6113 value = g & howto->dst_mask;
6114 break;
6115
6116 case R_MIPS_GOT_PAGE:
6117 case R_MICROMIPS_GOT_PAGE:
6118 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6119 if (value == MINUS_ONE)
6120 return bfd_reloc_outofrange;
6121 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6122 overflowed_p = mips_elf_overflow_p (value, 16);
6123 break;
6124
6125 case R_MIPS_GOT_OFST:
6126 case R_MICROMIPS_GOT_OFST:
6127 if (local_p)
6128 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6129 else
6130 value = addend;
6131 overflowed_p = mips_elf_overflow_p (value, 16);
6132 break;
6133
6134 case R_MIPS_SUB:
6135 case R_MICROMIPS_SUB:
6136 value = symbol - addend;
6137 value &= howto->dst_mask;
6138 break;
6139
6140 case R_MIPS_HIGHER:
6141 case R_MICROMIPS_HIGHER:
6142 value = mips_elf_higher (addend + symbol);
6143 value &= howto->dst_mask;
6144 break;
6145
6146 case R_MIPS_HIGHEST:
6147 case R_MICROMIPS_HIGHEST:
6148 value = mips_elf_highest (addend + symbol);
6149 value &= howto->dst_mask;
6150 break;
6151
6152 case R_MIPS_SCN_DISP:
6153 case R_MICROMIPS_SCN_DISP:
6154 value = symbol + addend - sec->output_offset;
6155 value &= howto->dst_mask;
6156 break;
6157
6158 case R_MIPS_JALR:
6159 case R_MICROMIPS_JALR:
6160 /* This relocation is only a hint. In some cases, we optimize
6161 it into a bal instruction. But we don't try to optimize
6162 when the symbol does not resolve locally. */
6163 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6164 return bfd_reloc_continue;
6165 value = symbol + addend;
6166 break;
6167
6168 case R_MIPS_PJUMP:
6169 case R_MIPS_GNU_VTINHERIT:
6170 case R_MIPS_GNU_VTENTRY:
6171 /* We don't do anything with these at present. */
6172 return bfd_reloc_continue;
6173
6174 default:
6175 /* An unrecognized relocation type. */
6176 return bfd_reloc_notsupported;
6177 }
6178
6179 /* Store the VALUE for our caller. */
6180 *valuep = value;
6181 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6182 }
6183
6184 /* Obtain the field relocated by RELOCATION. */
6185
6186 static bfd_vma
6187 mips_elf_obtain_contents (reloc_howto_type *howto,
6188 const Elf_Internal_Rela *relocation,
6189 bfd *input_bfd, bfd_byte *contents)
6190 {
6191 bfd_vma x = 0;
6192 bfd_byte *location = contents + relocation->r_offset;
6193 unsigned int size = bfd_get_reloc_size (howto);
6194
6195 /* Obtain the bytes. */
6196 if (size != 0)
6197 x = bfd_get (8 * size, input_bfd, location);
6198
6199 return x;
6200 }
6201
6202 /* It has been determined that the result of the RELOCATION is the
6203 VALUE. Use HOWTO to place VALUE into the output file at the
6204 appropriate position. The SECTION is the section to which the
6205 relocation applies.
6206 CROSS_MODE_JUMP_P is true if the relocation field
6207 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6208
6209 Returns FALSE if anything goes wrong. */
6210
6211 static bfd_boolean
6212 mips_elf_perform_relocation (struct bfd_link_info *info,
6213 reloc_howto_type *howto,
6214 const Elf_Internal_Rela *relocation,
6215 bfd_vma value, bfd *input_bfd,
6216 asection *input_section, bfd_byte *contents,
6217 bfd_boolean cross_mode_jump_p)
6218 {
6219 bfd_vma x;
6220 bfd_byte *location;
6221 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6222 unsigned int size;
6223
6224 /* Figure out where the relocation is occurring. */
6225 location = contents + relocation->r_offset;
6226
6227 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6228
6229 /* Obtain the current value. */
6230 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6231
6232 /* Clear the field we are setting. */
6233 x &= ~howto->dst_mask;
6234
6235 /* Set the field. */
6236 x |= (value & howto->dst_mask);
6237
6238 /* If required, turn JAL into JALX. */
6239 if (cross_mode_jump_p && jal_reloc_p (r_type))
6240 {
6241 bfd_boolean ok;
6242 bfd_vma opcode = x >> 26;
6243 bfd_vma jalx_opcode;
6244
6245 /* Check to see if the opcode is already JAL or JALX. */
6246 if (r_type == R_MIPS16_26)
6247 {
6248 ok = ((opcode == 0x6) || (opcode == 0x7));
6249 jalx_opcode = 0x7;
6250 }
6251 else if (r_type == R_MICROMIPS_26_S1)
6252 {
6253 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6254 jalx_opcode = 0x3c;
6255 }
6256 else
6257 {
6258 ok = ((opcode == 0x3) || (opcode == 0x1d));
6259 jalx_opcode = 0x1d;
6260 }
6261
6262 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6263 convert J or JALS to JALX. */
6264 if (!ok)
6265 {
6266 (*_bfd_error_handler)
6267 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
6268 input_bfd,
6269 input_section,
6270 (unsigned long) relocation->r_offset);
6271 bfd_set_error (bfd_error_bad_value);
6272 return FALSE;
6273 }
6274
6275 /* Make this the JALX opcode. */
6276 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6277 }
6278
6279 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6280 range. */
6281 if (!bfd_link_relocatable (info)
6282 && !cross_mode_jump_p
6283 && ((JAL_TO_BAL_P (input_bfd)
6284 && r_type == R_MIPS_26
6285 && (x >> 26) == 0x3) /* jal addr */
6286 || (JALR_TO_BAL_P (input_bfd)
6287 && r_type == R_MIPS_JALR
6288 && x == 0x0320f809) /* jalr t9 */
6289 || (JR_TO_B_P (input_bfd)
6290 && r_type == R_MIPS_JALR
6291 && x == 0x03200008))) /* jr t9 */
6292 {
6293 bfd_vma addr;
6294 bfd_vma dest;
6295 bfd_signed_vma off;
6296
6297 addr = (input_section->output_section->vma
6298 + input_section->output_offset
6299 + relocation->r_offset
6300 + 4);
6301 if (r_type == R_MIPS_26)
6302 dest = (value << 2) | ((addr >> 28) << 28);
6303 else
6304 dest = value;
6305 off = dest - addr;
6306 if (off <= 0x1ffff && off >= -0x20000)
6307 {
6308 if (x == 0x03200008) /* jr t9 */
6309 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6310 else
6311 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6312 }
6313 }
6314
6315 /* Put the value into the output. */
6316 size = bfd_get_reloc_size (howto);
6317 if (size != 0)
6318 bfd_put (8 * size, input_bfd, x, location);
6319
6320 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6321 location);
6322
6323 return TRUE;
6324 }
6325 \f
6326 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6327 is the original relocation, which is now being transformed into a
6328 dynamic relocation. The ADDENDP is adjusted if necessary; the
6329 caller should store the result in place of the original addend. */
6330
6331 static bfd_boolean
6332 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6333 struct bfd_link_info *info,
6334 const Elf_Internal_Rela *rel,
6335 struct mips_elf_link_hash_entry *h,
6336 asection *sec, bfd_vma symbol,
6337 bfd_vma *addendp, asection *input_section)
6338 {
6339 Elf_Internal_Rela outrel[3];
6340 asection *sreloc;
6341 bfd *dynobj;
6342 int r_type;
6343 long indx;
6344 bfd_boolean defined_p;
6345 struct mips_elf_link_hash_table *htab;
6346
6347 htab = mips_elf_hash_table (info);
6348 BFD_ASSERT (htab != NULL);
6349
6350 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6351 dynobj = elf_hash_table (info)->dynobj;
6352 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6353 BFD_ASSERT (sreloc != NULL);
6354 BFD_ASSERT (sreloc->contents != NULL);
6355 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6356 < sreloc->size);
6357
6358 outrel[0].r_offset =
6359 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6360 if (ABI_64_P (output_bfd))
6361 {
6362 outrel[1].r_offset =
6363 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6364 outrel[2].r_offset =
6365 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6366 }
6367
6368 if (outrel[0].r_offset == MINUS_ONE)
6369 /* The relocation field has been deleted. */
6370 return TRUE;
6371
6372 if (outrel[0].r_offset == MINUS_TWO)
6373 {
6374 /* The relocation field has been converted into a relative value of
6375 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6376 the field to be fully relocated, so add in the symbol's value. */
6377 *addendp += symbol;
6378 return TRUE;
6379 }
6380
6381 /* We must now calculate the dynamic symbol table index to use
6382 in the relocation. */
6383 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6384 {
6385 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6386 indx = h->root.dynindx;
6387 if (SGI_COMPAT (output_bfd))
6388 defined_p = h->root.def_regular;
6389 else
6390 /* ??? glibc's ld.so just adds the final GOT entry to the
6391 relocation field. It therefore treats relocs against
6392 defined symbols in the same way as relocs against
6393 undefined symbols. */
6394 defined_p = FALSE;
6395 }
6396 else
6397 {
6398 if (sec != NULL && bfd_is_abs_section (sec))
6399 indx = 0;
6400 else if (sec == NULL || sec->owner == NULL)
6401 {
6402 bfd_set_error (bfd_error_bad_value);
6403 return FALSE;
6404 }
6405 else
6406 {
6407 indx = elf_section_data (sec->output_section)->dynindx;
6408 if (indx == 0)
6409 {
6410 asection *osec = htab->root.text_index_section;
6411 indx = elf_section_data (osec)->dynindx;
6412 }
6413 if (indx == 0)
6414 abort ();
6415 }
6416
6417 /* Instead of generating a relocation using the section
6418 symbol, we may as well make it a fully relative
6419 relocation. We want to avoid generating relocations to
6420 local symbols because we used to generate them
6421 incorrectly, without adding the original symbol value,
6422 which is mandated by the ABI for section symbols. In
6423 order to give dynamic loaders and applications time to
6424 phase out the incorrect use, we refrain from emitting
6425 section-relative relocations. It's not like they're
6426 useful, after all. This should be a bit more efficient
6427 as well. */
6428 /* ??? Although this behavior is compatible with glibc's ld.so,
6429 the ABI says that relocations against STN_UNDEF should have
6430 a symbol value of 0. Irix rld honors this, so relocations
6431 against STN_UNDEF have no effect. */
6432 if (!SGI_COMPAT (output_bfd))
6433 indx = 0;
6434 defined_p = TRUE;
6435 }
6436
6437 /* If the relocation was previously an absolute relocation and
6438 this symbol will not be referred to by the relocation, we must
6439 adjust it by the value we give it in the dynamic symbol table.
6440 Otherwise leave the job up to the dynamic linker. */
6441 if (defined_p && r_type != R_MIPS_REL32)
6442 *addendp += symbol;
6443
6444 if (htab->is_vxworks)
6445 /* VxWorks uses non-relative relocations for this. */
6446 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6447 else
6448 /* The relocation is always an REL32 relocation because we don't
6449 know where the shared library will wind up at load-time. */
6450 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6451 R_MIPS_REL32);
6452
6453 /* For strict adherence to the ABI specification, we should
6454 generate a R_MIPS_64 relocation record by itself before the
6455 _REL32/_64 record as well, such that the addend is read in as
6456 a 64-bit value (REL32 is a 32-bit relocation, after all).
6457 However, since none of the existing ELF64 MIPS dynamic
6458 loaders seems to care, we don't waste space with these
6459 artificial relocations. If this turns out to not be true,
6460 mips_elf_allocate_dynamic_relocation() should be tweaked so
6461 as to make room for a pair of dynamic relocations per
6462 invocation if ABI_64_P, and here we should generate an
6463 additional relocation record with R_MIPS_64 by itself for a
6464 NULL symbol before this relocation record. */
6465 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6466 ABI_64_P (output_bfd)
6467 ? R_MIPS_64
6468 : R_MIPS_NONE);
6469 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6470
6471 /* Adjust the output offset of the relocation to reference the
6472 correct location in the output file. */
6473 outrel[0].r_offset += (input_section->output_section->vma
6474 + input_section->output_offset);
6475 outrel[1].r_offset += (input_section->output_section->vma
6476 + input_section->output_offset);
6477 outrel[2].r_offset += (input_section->output_section->vma
6478 + input_section->output_offset);
6479
6480 /* Put the relocation back out. We have to use the special
6481 relocation outputter in the 64-bit case since the 64-bit
6482 relocation format is non-standard. */
6483 if (ABI_64_P (output_bfd))
6484 {
6485 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6486 (output_bfd, &outrel[0],
6487 (sreloc->contents
6488 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6489 }
6490 else if (htab->is_vxworks)
6491 {
6492 /* VxWorks uses RELA rather than REL dynamic relocations. */
6493 outrel[0].r_addend = *addendp;
6494 bfd_elf32_swap_reloca_out
6495 (output_bfd, &outrel[0],
6496 (sreloc->contents
6497 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6498 }
6499 else
6500 bfd_elf32_swap_reloc_out
6501 (output_bfd, &outrel[0],
6502 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6503
6504 /* We've now added another relocation. */
6505 ++sreloc->reloc_count;
6506
6507 /* Make sure the output section is writable. The dynamic linker
6508 will be writing to it. */
6509 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6510 |= SHF_WRITE;
6511
6512 /* On IRIX5, make an entry of compact relocation info. */
6513 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6514 {
6515 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6516 bfd_byte *cr;
6517
6518 if (scpt)
6519 {
6520 Elf32_crinfo cptrel;
6521
6522 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6523 cptrel.vaddr = (rel->r_offset
6524 + input_section->output_section->vma
6525 + input_section->output_offset);
6526 if (r_type == R_MIPS_REL32)
6527 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6528 else
6529 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6530 mips_elf_set_cr_dist2to (cptrel, 0);
6531 cptrel.konst = *addendp;
6532
6533 cr = (scpt->contents
6534 + sizeof (Elf32_External_compact_rel));
6535 mips_elf_set_cr_relvaddr (cptrel, 0);
6536 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6537 ((Elf32_External_crinfo *) cr
6538 + scpt->reloc_count));
6539 ++scpt->reloc_count;
6540 }
6541 }
6542
6543 /* If we've written this relocation for a readonly section,
6544 we need to set DF_TEXTREL again, so that we do not delete the
6545 DT_TEXTREL tag. */
6546 if (MIPS_ELF_READONLY_SECTION (input_section))
6547 info->flags |= DF_TEXTREL;
6548
6549 return TRUE;
6550 }
6551 \f
6552 /* Return the MACH for a MIPS e_flags value. */
6553
6554 unsigned long
6555 _bfd_elf_mips_mach (flagword flags)
6556 {
6557 switch (flags & EF_MIPS_MACH)
6558 {
6559 case E_MIPS_MACH_3900:
6560 return bfd_mach_mips3900;
6561
6562 case E_MIPS_MACH_4010:
6563 return bfd_mach_mips4010;
6564
6565 case E_MIPS_MACH_4100:
6566 return bfd_mach_mips4100;
6567
6568 case E_MIPS_MACH_4111:
6569 return bfd_mach_mips4111;
6570
6571 case E_MIPS_MACH_4120:
6572 return bfd_mach_mips4120;
6573
6574 case E_MIPS_MACH_4650:
6575 return bfd_mach_mips4650;
6576
6577 case E_MIPS_MACH_5400:
6578 return bfd_mach_mips5400;
6579
6580 case E_MIPS_MACH_5500:
6581 return bfd_mach_mips5500;
6582
6583 case E_MIPS_MACH_5900:
6584 return bfd_mach_mips5900;
6585
6586 case E_MIPS_MACH_9000:
6587 return bfd_mach_mips9000;
6588
6589 case E_MIPS_MACH_SB1:
6590 return bfd_mach_mips_sb1;
6591
6592 case E_MIPS_MACH_LS2E:
6593 return bfd_mach_mips_loongson_2e;
6594
6595 case E_MIPS_MACH_LS2F:
6596 return bfd_mach_mips_loongson_2f;
6597
6598 case E_MIPS_MACH_LS3A:
6599 return bfd_mach_mips_loongson_3a;
6600
6601 case E_MIPS_MACH_OCTEON3:
6602 return bfd_mach_mips_octeon3;
6603
6604 case E_MIPS_MACH_OCTEON2:
6605 return bfd_mach_mips_octeon2;
6606
6607 case E_MIPS_MACH_OCTEON:
6608 return bfd_mach_mips_octeon;
6609
6610 case E_MIPS_MACH_XLR:
6611 return bfd_mach_mips_xlr;
6612
6613 default:
6614 switch (flags & EF_MIPS_ARCH)
6615 {
6616 default:
6617 case E_MIPS_ARCH_1:
6618 return bfd_mach_mips3000;
6619
6620 case E_MIPS_ARCH_2:
6621 return bfd_mach_mips6000;
6622
6623 case E_MIPS_ARCH_3:
6624 return bfd_mach_mips4000;
6625
6626 case E_MIPS_ARCH_4:
6627 return bfd_mach_mips8000;
6628
6629 case E_MIPS_ARCH_5:
6630 return bfd_mach_mips5;
6631
6632 case E_MIPS_ARCH_32:
6633 return bfd_mach_mipsisa32;
6634
6635 case E_MIPS_ARCH_64:
6636 return bfd_mach_mipsisa64;
6637
6638 case E_MIPS_ARCH_32R2:
6639 return bfd_mach_mipsisa32r2;
6640
6641 case E_MIPS_ARCH_64R2:
6642 return bfd_mach_mipsisa64r2;
6643
6644 case E_MIPS_ARCH_32R6:
6645 return bfd_mach_mipsisa32r6;
6646
6647 case E_MIPS_ARCH_64R6:
6648 return bfd_mach_mipsisa64r6;
6649 }
6650 }
6651
6652 return 0;
6653 }
6654
6655 /* Return printable name for ABI. */
6656
6657 static INLINE char *
6658 elf_mips_abi_name (bfd *abfd)
6659 {
6660 flagword flags;
6661
6662 flags = elf_elfheader (abfd)->e_flags;
6663 switch (flags & EF_MIPS_ABI)
6664 {
6665 case 0:
6666 if (ABI_N32_P (abfd))
6667 return "N32";
6668 else if (ABI_64_P (abfd))
6669 return "64";
6670 else
6671 return "none";
6672 case E_MIPS_ABI_O32:
6673 return "O32";
6674 case E_MIPS_ABI_O64:
6675 return "O64";
6676 case E_MIPS_ABI_EABI32:
6677 return "EABI32";
6678 case E_MIPS_ABI_EABI64:
6679 return "EABI64";
6680 default:
6681 return "unknown abi";
6682 }
6683 }
6684 \f
6685 /* MIPS ELF uses two common sections. One is the usual one, and the
6686 other is for small objects. All the small objects are kept
6687 together, and then referenced via the gp pointer, which yields
6688 faster assembler code. This is what we use for the small common
6689 section. This approach is copied from ecoff.c. */
6690 static asection mips_elf_scom_section;
6691 static asymbol mips_elf_scom_symbol;
6692 static asymbol *mips_elf_scom_symbol_ptr;
6693
6694 /* MIPS ELF also uses an acommon section, which represents an
6695 allocated common symbol which may be overridden by a
6696 definition in a shared library. */
6697 static asection mips_elf_acom_section;
6698 static asymbol mips_elf_acom_symbol;
6699 static asymbol *mips_elf_acom_symbol_ptr;
6700
6701 /* This is used for both the 32-bit and the 64-bit ABI. */
6702
6703 void
6704 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6705 {
6706 elf_symbol_type *elfsym;
6707
6708 /* Handle the special MIPS section numbers that a symbol may use. */
6709 elfsym = (elf_symbol_type *) asym;
6710 switch (elfsym->internal_elf_sym.st_shndx)
6711 {
6712 case SHN_MIPS_ACOMMON:
6713 /* This section is used in a dynamically linked executable file.
6714 It is an allocated common section. The dynamic linker can
6715 either resolve these symbols to something in a shared
6716 library, or it can just leave them here. For our purposes,
6717 we can consider these symbols to be in a new section. */
6718 if (mips_elf_acom_section.name == NULL)
6719 {
6720 /* Initialize the acommon section. */
6721 mips_elf_acom_section.name = ".acommon";
6722 mips_elf_acom_section.flags = SEC_ALLOC;
6723 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6724 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6725 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6726 mips_elf_acom_symbol.name = ".acommon";
6727 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6728 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6729 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6730 }
6731 asym->section = &mips_elf_acom_section;
6732 break;
6733
6734 case SHN_COMMON:
6735 /* Common symbols less than the GP size are automatically
6736 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6737 if (asym->value > elf_gp_size (abfd)
6738 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6739 || IRIX_COMPAT (abfd) == ict_irix6)
6740 break;
6741 /* Fall through. */
6742 case SHN_MIPS_SCOMMON:
6743 if (mips_elf_scom_section.name == NULL)
6744 {
6745 /* Initialize the small common section. */
6746 mips_elf_scom_section.name = ".scommon";
6747 mips_elf_scom_section.flags = SEC_IS_COMMON;
6748 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6749 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6750 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6751 mips_elf_scom_symbol.name = ".scommon";
6752 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6753 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6754 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6755 }
6756 asym->section = &mips_elf_scom_section;
6757 asym->value = elfsym->internal_elf_sym.st_size;
6758 break;
6759
6760 case SHN_MIPS_SUNDEFINED:
6761 asym->section = bfd_und_section_ptr;
6762 break;
6763
6764 case SHN_MIPS_TEXT:
6765 {
6766 asection *section = bfd_get_section_by_name (abfd, ".text");
6767
6768 if (section != NULL)
6769 {
6770 asym->section = section;
6771 /* MIPS_TEXT is a bit special, the address is not an offset
6772 to the base of the .text section. So substract the section
6773 base address to make it an offset. */
6774 asym->value -= section->vma;
6775 }
6776 }
6777 break;
6778
6779 case SHN_MIPS_DATA:
6780 {
6781 asection *section = bfd_get_section_by_name (abfd, ".data");
6782
6783 if (section != NULL)
6784 {
6785 asym->section = section;
6786 /* MIPS_DATA is a bit special, the address is not an offset
6787 to the base of the .data section. So substract the section
6788 base address to make it an offset. */
6789 asym->value -= section->vma;
6790 }
6791 }
6792 break;
6793 }
6794
6795 /* If this is an odd-valued function symbol, assume it's a MIPS16
6796 or microMIPS one. */
6797 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6798 && (asym->value & 1) != 0)
6799 {
6800 asym->value--;
6801 if (MICROMIPS_P (abfd))
6802 elfsym->internal_elf_sym.st_other
6803 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6804 else
6805 elfsym->internal_elf_sym.st_other
6806 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6807 }
6808 }
6809 \f
6810 /* Implement elf_backend_eh_frame_address_size. This differs from
6811 the default in the way it handles EABI64.
6812
6813 EABI64 was originally specified as an LP64 ABI, and that is what
6814 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6815 historically accepted the combination of -mabi=eabi and -mlong32,
6816 and this ILP32 variation has become semi-official over time.
6817 Both forms use elf32 and have pointer-sized FDE addresses.
6818
6819 If an EABI object was generated by GCC 4.0 or above, it will have
6820 an empty .gcc_compiled_longXX section, where XX is the size of longs
6821 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6822 have no special marking to distinguish them from LP64 objects.
6823
6824 We don't want users of the official LP64 ABI to be punished for the
6825 existence of the ILP32 variant, but at the same time, we don't want
6826 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6827 We therefore take the following approach:
6828
6829 - If ABFD contains a .gcc_compiled_longXX section, use it to
6830 determine the pointer size.
6831
6832 - Otherwise check the type of the first relocation. Assume that
6833 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6834
6835 - Otherwise punt.
6836
6837 The second check is enough to detect LP64 objects generated by pre-4.0
6838 compilers because, in the kind of output generated by those compilers,
6839 the first relocation will be associated with either a CIE personality
6840 routine or an FDE start address. Furthermore, the compilers never
6841 used a special (non-pointer) encoding for this ABI.
6842
6843 Checking the relocation type should also be safe because there is no
6844 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6845 did so. */
6846
6847 unsigned int
6848 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6849 {
6850 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6851 return 8;
6852 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6853 {
6854 bfd_boolean long32_p, long64_p;
6855
6856 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6857 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6858 if (long32_p && long64_p)
6859 return 0;
6860 if (long32_p)
6861 return 4;
6862 if (long64_p)
6863 return 8;
6864
6865 if (sec->reloc_count > 0
6866 && elf_section_data (sec)->relocs != NULL
6867 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6868 == R_MIPS_64))
6869 return 8;
6870
6871 return 0;
6872 }
6873 return 4;
6874 }
6875 \f
6876 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6877 relocations against two unnamed section symbols to resolve to the
6878 same address. For example, if we have code like:
6879
6880 lw $4,%got_disp(.data)($gp)
6881 lw $25,%got_disp(.text)($gp)
6882 jalr $25
6883
6884 then the linker will resolve both relocations to .data and the program
6885 will jump there rather than to .text.
6886
6887 We can work around this problem by giving names to local section symbols.
6888 This is also what the MIPSpro tools do. */
6889
6890 bfd_boolean
6891 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6892 {
6893 return SGI_COMPAT (abfd);
6894 }
6895 \f
6896 /* Work over a section just before writing it out. This routine is
6897 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6898 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6899 a better way. */
6900
6901 bfd_boolean
6902 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6903 {
6904 if (hdr->sh_type == SHT_MIPS_REGINFO
6905 && hdr->sh_size > 0)
6906 {
6907 bfd_byte buf[4];
6908
6909 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6910 BFD_ASSERT (hdr->contents == NULL);
6911
6912 if (bfd_seek (abfd,
6913 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6914 SEEK_SET) != 0)
6915 return FALSE;
6916 H_PUT_32 (abfd, elf_gp (abfd), buf);
6917 if (bfd_bwrite (buf, 4, abfd) != 4)
6918 return FALSE;
6919 }
6920
6921 if (hdr->sh_type == SHT_MIPS_OPTIONS
6922 && hdr->bfd_section != NULL
6923 && mips_elf_section_data (hdr->bfd_section) != NULL
6924 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6925 {
6926 bfd_byte *contents, *l, *lend;
6927
6928 /* We stored the section contents in the tdata field in the
6929 set_section_contents routine. We save the section contents
6930 so that we don't have to read them again.
6931 At this point we know that elf_gp is set, so we can look
6932 through the section contents to see if there is an
6933 ODK_REGINFO structure. */
6934
6935 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6936 l = contents;
6937 lend = contents + hdr->sh_size;
6938 while (l + sizeof (Elf_External_Options) <= lend)
6939 {
6940 Elf_Internal_Options intopt;
6941
6942 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6943 &intopt);
6944 if (intopt.size < sizeof (Elf_External_Options))
6945 {
6946 (*_bfd_error_handler)
6947 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6948 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6949 break;
6950 }
6951 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6952 {
6953 bfd_byte buf[8];
6954
6955 if (bfd_seek (abfd,
6956 (hdr->sh_offset
6957 + (l - contents)
6958 + sizeof (Elf_External_Options)
6959 + (sizeof (Elf64_External_RegInfo) - 8)),
6960 SEEK_SET) != 0)
6961 return FALSE;
6962 H_PUT_64 (abfd, elf_gp (abfd), buf);
6963 if (bfd_bwrite (buf, 8, abfd) != 8)
6964 return FALSE;
6965 }
6966 else if (intopt.kind == ODK_REGINFO)
6967 {
6968 bfd_byte buf[4];
6969
6970 if (bfd_seek (abfd,
6971 (hdr->sh_offset
6972 + (l - contents)
6973 + sizeof (Elf_External_Options)
6974 + (sizeof (Elf32_External_RegInfo) - 4)),
6975 SEEK_SET) != 0)
6976 return FALSE;
6977 H_PUT_32 (abfd, elf_gp (abfd), buf);
6978 if (bfd_bwrite (buf, 4, abfd) != 4)
6979 return FALSE;
6980 }
6981 l += intopt.size;
6982 }
6983 }
6984
6985 if (hdr->bfd_section != NULL)
6986 {
6987 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6988
6989 /* .sbss is not handled specially here because the GNU/Linux
6990 prelinker can convert .sbss from NOBITS to PROGBITS and
6991 changing it back to NOBITS breaks the binary. The entry in
6992 _bfd_mips_elf_special_sections will ensure the correct flags
6993 are set on .sbss if BFD creates it without reading it from an
6994 input file, and without special handling here the flags set
6995 on it in an input file will be followed. */
6996 if (strcmp (name, ".sdata") == 0
6997 || strcmp (name, ".lit8") == 0
6998 || strcmp (name, ".lit4") == 0)
6999 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7000 else if (strcmp (name, ".srdata") == 0)
7001 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7002 else if (strcmp (name, ".compact_rel") == 0)
7003 hdr->sh_flags = 0;
7004 else if (strcmp (name, ".rtproc") == 0)
7005 {
7006 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7007 {
7008 unsigned int adjust;
7009
7010 adjust = hdr->sh_size % hdr->sh_addralign;
7011 if (adjust != 0)
7012 hdr->sh_size += hdr->sh_addralign - adjust;
7013 }
7014 }
7015 }
7016
7017 return TRUE;
7018 }
7019
7020 /* Handle a MIPS specific section when reading an object file. This
7021 is called when elfcode.h finds a section with an unknown type.
7022 This routine supports both the 32-bit and 64-bit ELF ABI.
7023
7024 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7025 how to. */
7026
7027 bfd_boolean
7028 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7029 Elf_Internal_Shdr *hdr,
7030 const char *name,
7031 int shindex)
7032 {
7033 flagword flags = 0;
7034
7035 /* There ought to be a place to keep ELF backend specific flags, but
7036 at the moment there isn't one. We just keep track of the
7037 sections by their name, instead. Fortunately, the ABI gives
7038 suggested names for all the MIPS specific sections, so we will
7039 probably get away with this. */
7040 switch (hdr->sh_type)
7041 {
7042 case SHT_MIPS_LIBLIST:
7043 if (strcmp (name, ".liblist") != 0)
7044 return FALSE;
7045 break;
7046 case SHT_MIPS_MSYM:
7047 if (strcmp (name, ".msym") != 0)
7048 return FALSE;
7049 break;
7050 case SHT_MIPS_CONFLICT:
7051 if (strcmp (name, ".conflict") != 0)
7052 return FALSE;
7053 break;
7054 case SHT_MIPS_GPTAB:
7055 if (! CONST_STRNEQ (name, ".gptab."))
7056 return FALSE;
7057 break;
7058 case SHT_MIPS_UCODE:
7059 if (strcmp (name, ".ucode") != 0)
7060 return FALSE;
7061 break;
7062 case SHT_MIPS_DEBUG:
7063 if (strcmp (name, ".mdebug") != 0)
7064 return FALSE;
7065 flags = SEC_DEBUGGING;
7066 break;
7067 case SHT_MIPS_REGINFO:
7068 if (strcmp (name, ".reginfo") != 0
7069 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7070 return FALSE;
7071 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7072 break;
7073 case SHT_MIPS_IFACE:
7074 if (strcmp (name, ".MIPS.interfaces") != 0)
7075 return FALSE;
7076 break;
7077 case SHT_MIPS_CONTENT:
7078 if (! CONST_STRNEQ (name, ".MIPS.content"))
7079 return FALSE;
7080 break;
7081 case SHT_MIPS_OPTIONS:
7082 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7083 return FALSE;
7084 break;
7085 case SHT_MIPS_ABIFLAGS:
7086 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7087 return FALSE;
7088 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7089 break;
7090 case SHT_MIPS_DWARF:
7091 if (! CONST_STRNEQ (name, ".debug_")
7092 && ! CONST_STRNEQ (name, ".zdebug_"))
7093 return FALSE;
7094 break;
7095 case SHT_MIPS_SYMBOL_LIB:
7096 if (strcmp (name, ".MIPS.symlib") != 0)
7097 return FALSE;
7098 break;
7099 case SHT_MIPS_EVENTS:
7100 if (! CONST_STRNEQ (name, ".MIPS.events")
7101 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7102 return FALSE;
7103 break;
7104 default:
7105 break;
7106 }
7107
7108 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7109 return FALSE;
7110
7111 if (flags)
7112 {
7113 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7114 (bfd_get_section_flags (abfd,
7115 hdr->bfd_section)
7116 | flags)))
7117 return FALSE;
7118 }
7119
7120 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7121 {
7122 Elf_External_ABIFlags_v0 ext;
7123
7124 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7125 &ext, 0, sizeof ext))
7126 return FALSE;
7127 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7128 &mips_elf_tdata (abfd)->abiflags);
7129 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7130 return FALSE;
7131 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7132 }
7133
7134 /* FIXME: We should record sh_info for a .gptab section. */
7135
7136 /* For a .reginfo section, set the gp value in the tdata information
7137 from the contents of this section. We need the gp value while
7138 processing relocs, so we just get it now. The .reginfo section
7139 is not used in the 64-bit MIPS ELF ABI. */
7140 if (hdr->sh_type == SHT_MIPS_REGINFO)
7141 {
7142 Elf32_External_RegInfo ext;
7143 Elf32_RegInfo s;
7144
7145 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7146 &ext, 0, sizeof ext))
7147 return FALSE;
7148 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7149 elf_gp (abfd) = s.ri_gp_value;
7150 }
7151
7152 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7153 set the gp value based on what we find. We may see both
7154 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7155 they should agree. */
7156 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7157 {
7158 bfd_byte *contents, *l, *lend;
7159
7160 contents = bfd_malloc (hdr->sh_size);
7161 if (contents == NULL)
7162 return FALSE;
7163 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7164 0, hdr->sh_size))
7165 {
7166 free (contents);
7167 return FALSE;
7168 }
7169 l = contents;
7170 lend = contents + hdr->sh_size;
7171 while (l + sizeof (Elf_External_Options) <= lend)
7172 {
7173 Elf_Internal_Options intopt;
7174
7175 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7176 &intopt);
7177 if (intopt.size < sizeof (Elf_External_Options))
7178 {
7179 (*_bfd_error_handler)
7180 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
7181 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7182 break;
7183 }
7184 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7185 {
7186 Elf64_Internal_RegInfo intreg;
7187
7188 bfd_mips_elf64_swap_reginfo_in
7189 (abfd,
7190 ((Elf64_External_RegInfo *)
7191 (l + sizeof (Elf_External_Options))),
7192 &intreg);
7193 elf_gp (abfd) = intreg.ri_gp_value;
7194 }
7195 else if (intopt.kind == ODK_REGINFO)
7196 {
7197 Elf32_RegInfo intreg;
7198
7199 bfd_mips_elf32_swap_reginfo_in
7200 (abfd,
7201 ((Elf32_External_RegInfo *)
7202 (l + sizeof (Elf_External_Options))),
7203 &intreg);
7204 elf_gp (abfd) = intreg.ri_gp_value;
7205 }
7206 l += intopt.size;
7207 }
7208 free (contents);
7209 }
7210
7211 return TRUE;
7212 }
7213
7214 /* Set the correct type for a MIPS ELF section. We do this by the
7215 section name, which is a hack, but ought to work. This routine is
7216 used by both the 32-bit and the 64-bit ABI. */
7217
7218 bfd_boolean
7219 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7220 {
7221 const char *name = bfd_get_section_name (abfd, sec);
7222
7223 if (strcmp (name, ".liblist") == 0)
7224 {
7225 hdr->sh_type = SHT_MIPS_LIBLIST;
7226 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7227 /* The sh_link field is set in final_write_processing. */
7228 }
7229 else if (strcmp (name, ".conflict") == 0)
7230 hdr->sh_type = SHT_MIPS_CONFLICT;
7231 else if (CONST_STRNEQ (name, ".gptab."))
7232 {
7233 hdr->sh_type = SHT_MIPS_GPTAB;
7234 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7235 /* The sh_info field is set in final_write_processing. */
7236 }
7237 else if (strcmp (name, ".ucode") == 0)
7238 hdr->sh_type = SHT_MIPS_UCODE;
7239 else if (strcmp (name, ".mdebug") == 0)
7240 {
7241 hdr->sh_type = SHT_MIPS_DEBUG;
7242 /* In a shared object on IRIX 5.3, the .mdebug section has an
7243 entsize of 0. FIXME: Does this matter? */
7244 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7245 hdr->sh_entsize = 0;
7246 else
7247 hdr->sh_entsize = 1;
7248 }
7249 else if (strcmp (name, ".reginfo") == 0)
7250 {
7251 hdr->sh_type = SHT_MIPS_REGINFO;
7252 /* In a shared object on IRIX 5.3, the .reginfo section has an
7253 entsize of 0x18. FIXME: Does this matter? */
7254 if (SGI_COMPAT (abfd))
7255 {
7256 if ((abfd->flags & DYNAMIC) != 0)
7257 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7258 else
7259 hdr->sh_entsize = 1;
7260 }
7261 else
7262 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7263 }
7264 else if (SGI_COMPAT (abfd)
7265 && (strcmp (name, ".hash") == 0
7266 || strcmp (name, ".dynamic") == 0
7267 || strcmp (name, ".dynstr") == 0))
7268 {
7269 if (SGI_COMPAT (abfd))
7270 hdr->sh_entsize = 0;
7271 #if 0
7272 /* This isn't how the IRIX6 linker behaves. */
7273 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7274 #endif
7275 }
7276 else if (strcmp (name, ".got") == 0
7277 || strcmp (name, ".srdata") == 0
7278 || strcmp (name, ".sdata") == 0
7279 || strcmp (name, ".sbss") == 0
7280 || strcmp (name, ".lit4") == 0
7281 || strcmp (name, ".lit8") == 0)
7282 hdr->sh_flags |= SHF_MIPS_GPREL;
7283 else if (strcmp (name, ".MIPS.interfaces") == 0)
7284 {
7285 hdr->sh_type = SHT_MIPS_IFACE;
7286 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7287 }
7288 else if (CONST_STRNEQ (name, ".MIPS.content"))
7289 {
7290 hdr->sh_type = SHT_MIPS_CONTENT;
7291 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7292 /* The sh_info field is set in final_write_processing. */
7293 }
7294 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7295 {
7296 hdr->sh_type = SHT_MIPS_OPTIONS;
7297 hdr->sh_entsize = 1;
7298 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7299 }
7300 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7301 {
7302 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7303 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7304 }
7305 else if (CONST_STRNEQ (name, ".debug_")
7306 || CONST_STRNEQ (name, ".zdebug_"))
7307 {
7308 hdr->sh_type = SHT_MIPS_DWARF;
7309
7310 /* Irix facilities such as libexc expect a single .debug_frame
7311 per executable, the system ones have NOSTRIP set and the linker
7312 doesn't merge sections with different flags so ... */
7313 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7314 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7315 }
7316 else if (strcmp (name, ".MIPS.symlib") == 0)
7317 {
7318 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7319 /* The sh_link and sh_info fields are set in
7320 final_write_processing. */
7321 }
7322 else if (CONST_STRNEQ (name, ".MIPS.events")
7323 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7324 {
7325 hdr->sh_type = SHT_MIPS_EVENTS;
7326 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7327 /* The sh_link field is set in final_write_processing. */
7328 }
7329 else if (strcmp (name, ".msym") == 0)
7330 {
7331 hdr->sh_type = SHT_MIPS_MSYM;
7332 hdr->sh_flags |= SHF_ALLOC;
7333 hdr->sh_entsize = 8;
7334 }
7335
7336 /* The generic elf_fake_sections will set up REL_HDR using the default
7337 kind of relocations. We used to set up a second header for the
7338 non-default kind of relocations here, but only NewABI would use
7339 these, and the IRIX ld doesn't like resulting empty RELA sections.
7340 Thus we create those header only on demand now. */
7341
7342 return TRUE;
7343 }
7344
7345 /* Given a BFD section, try to locate the corresponding ELF section
7346 index. This is used by both the 32-bit and the 64-bit ABI.
7347 Actually, it's not clear to me that the 64-bit ABI supports these,
7348 but for non-PIC objects we will certainly want support for at least
7349 the .scommon section. */
7350
7351 bfd_boolean
7352 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7353 asection *sec, int *retval)
7354 {
7355 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7356 {
7357 *retval = SHN_MIPS_SCOMMON;
7358 return TRUE;
7359 }
7360 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7361 {
7362 *retval = SHN_MIPS_ACOMMON;
7363 return TRUE;
7364 }
7365 return FALSE;
7366 }
7367 \f
7368 /* Hook called by the linker routine which adds symbols from an object
7369 file. We must handle the special MIPS section numbers here. */
7370
7371 bfd_boolean
7372 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7373 Elf_Internal_Sym *sym, const char **namep,
7374 flagword *flagsp ATTRIBUTE_UNUSED,
7375 asection **secp, bfd_vma *valp)
7376 {
7377 if (SGI_COMPAT (abfd)
7378 && (abfd->flags & DYNAMIC) != 0
7379 && strcmp (*namep, "_rld_new_interface") == 0)
7380 {
7381 /* Skip IRIX5 rld entry name. */
7382 *namep = NULL;
7383 return TRUE;
7384 }
7385
7386 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7387 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7388 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7389 a magic symbol resolved by the linker, we ignore this bogus definition
7390 of _gp_disp. New ABI objects do not suffer from this problem so this
7391 is not done for them. */
7392 if (!NEWABI_P(abfd)
7393 && (sym->st_shndx == SHN_ABS)
7394 && (strcmp (*namep, "_gp_disp") == 0))
7395 {
7396 *namep = NULL;
7397 return TRUE;
7398 }
7399
7400 switch (sym->st_shndx)
7401 {
7402 case SHN_COMMON:
7403 /* Common symbols less than the GP size are automatically
7404 treated as SHN_MIPS_SCOMMON symbols. */
7405 if (sym->st_size > elf_gp_size (abfd)
7406 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7407 || IRIX_COMPAT (abfd) == ict_irix6)
7408 break;
7409 /* Fall through. */
7410 case SHN_MIPS_SCOMMON:
7411 *secp = bfd_make_section_old_way (abfd, ".scommon");
7412 (*secp)->flags |= SEC_IS_COMMON;
7413 *valp = sym->st_size;
7414 break;
7415
7416 case SHN_MIPS_TEXT:
7417 /* This section is used in a shared object. */
7418 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7419 {
7420 asymbol *elf_text_symbol;
7421 asection *elf_text_section;
7422 bfd_size_type amt = sizeof (asection);
7423
7424 elf_text_section = bfd_zalloc (abfd, amt);
7425 if (elf_text_section == NULL)
7426 return FALSE;
7427
7428 amt = sizeof (asymbol);
7429 elf_text_symbol = bfd_zalloc (abfd, amt);
7430 if (elf_text_symbol == NULL)
7431 return FALSE;
7432
7433 /* Initialize the section. */
7434
7435 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7436 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7437
7438 elf_text_section->symbol = elf_text_symbol;
7439 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7440
7441 elf_text_section->name = ".text";
7442 elf_text_section->flags = SEC_NO_FLAGS;
7443 elf_text_section->output_section = NULL;
7444 elf_text_section->owner = abfd;
7445 elf_text_symbol->name = ".text";
7446 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7447 elf_text_symbol->section = elf_text_section;
7448 }
7449 /* This code used to do *secp = bfd_und_section_ptr if
7450 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7451 so I took it out. */
7452 *secp = mips_elf_tdata (abfd)->elf_text_section;
7453 break;
7454
7455 case SHN_MIPS_ACOMMON:
7456 /* Fall through. XXX Can we treat this as allocated data? */
7457 case SHN_MIPS_DATA:
7458 /* This section is used in a shared object. */
7459 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7460 {
7461 asymbol *elf_data_symbol;
7462 asection *elf_data_section;
7463 bfd_size_type amt = sizeof (asection);
7464
7465 elf_data_section = bfd_zalloc (abfd, amt);
7466 if (elf_data_section == NULL)
7467 return FALSE;
7468
7469 amt = sizeof (asymbol);
7470 elf_data_symbol = bfd_zalloc (abfd, amt);
7471 if (elf_data_symbol == NULL)
7472 return FALSE;
7473
7474 /* Initialize the section. */
7475
7476 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7477 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7478
7479 elf_data_section->symbol = elf_data_symbol;
7480 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7481
7482 elf_data_section->name = ".data";
7483 elf_data_section->flags = SEC_NO_FLAGS;
7484 elf_data_section->output_section = NULL;
7485 elf_data_section->owner = abfd;
7486 elf_data_symbol->name = ".data";
7487 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7488 elf_data_symbol->section = elf_data_section;
7489 }
7490 /* This code used to do *secp = bfd_und_section_ptr if
7491 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7492 so I took it out. */
7493 *secp = mips_elf_tdata (abfd)->elf_data_section;
7494 break;
7495
7496 case SHN_MIPS_SUNDEFINED:
7497 *secp = bfd_und_section_ptr;
7498 break;
7499 }
7500
7501 if (SGI_COMPAT (abfd)
7502 && ! bfd_link_pic (info)
7503 && info->output_bfd->xvec == abfd->xvec
7504 && strcmp (*namep, "__rld_obj_head") == 0)
7505 {
7506 struct elf_link_hash_entry *h;
7507 struct bfd_link_hash_entry *bh;
7508
7509 /* Mark __rld_obj_head as dynamic. */
7510 bh = NULL;
7511 if (! (_bfd_generic_link_add_one_symbol
7512 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7513 get_elf_backend_data (abfd)->collect, &bh)))
7514 return FALSE;
7515
7516 h = (struct elf_link_hash_entry *) bh;
7517 h->non_elf = 0;
7518 h->def_regular = 1;
7519 h->type = STT_OBJECT;
7520
7521 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7522 return FALSE;
7523
7524 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7525 mips_elf_hash_table (info)->rld_symbol = h;
7526 }
7527
7528 /* If this is a mips16 text symbol, add 1 to the value to make it
7529 odd. This will cause something like .word SYM to come up with
7530 the right value when it is loaded into the PC. */
7531 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7532 ++*valp;
7533
7534 return TRUE;
7535 }
7536
7537 /* This hook function is called before the linker writes out a global
7538 symbol. We mark symbols as small common if appropriate. This is
7539 also where we undo the increment of the value for a mips16 symbol. */
7540
7541 int
7542 _bfd_mips_elf_link_output_symbol_hook
7543 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7544 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7545 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7546 {
7547 /* If we see a common symbol, which implies a relocatable link, then
7548 if a symbol was small common in an input file, mark it as small
7549 common in the output file. */
7550 if (sym->st_shndx == SHN_COMMON
7551 && strcmp (input_sec->name, ".scommon") == 0)
7552 sym->st_shndx = SHN_MIPS_SCOMMON;
7553
7554 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7555 sym->st_value &= ~1;
7556
7557 return 1;
7558 }
7559 \f
7560 /* Functions for the dynamic linker. */
7561
7562 /* Create dynamic sections when linking against a dynamic object. */
7563
7564 bfd_boolean
7565 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7566 {
7567 struct elf_link_hash_entry *h;
7568 struct bfd_link_hash_entry *bh;
7569 flagword flags;
7570 register asection *s;
7571 const char * const *namep;
7572 struct mips_elf_link_hash_table *htab;
7573
7574 htab = mips_elf_hash_table (info);
7575 BFD_ASSERT (htab != NULL);
7576
7577 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7578 | SEC_LINKER_CREATED | SEC_READONLY);
7579
7580 /* The psABI requires a read-only .dynamic section, but the VxWorks
7581 EABI doesn't. */
7582 if (!htab->is_vxworks)
7583 {
7584 s = bfd_get_linker_section (abfd, ".dynamic");
7585 if (s != NULL)
7586 {
7587 if (! bfd_set_section_flags (abfd, s, flags))
7588 return FALSE;
7589 }
7590 }
7591
7592 /* We need to create .got section. */
7593 if (!mips_elf_create_got_section (abfd, info))
7594 return FALSE;
7595
7596 if (! mips_elf_rel_dyn_section (info, TRUE))
7597 return FALSE;
7598
7599 /* Create .stub section. */
7600 s = bfd_make_section_anyway_with_flags (abfd,
7601 MIPS_ELF_STUB_SECTION_NAME (abfd),
7602 flags | SEC_CODE);
7603 if (s == NULL
7604 || ! bfd_set_section_alignment (abfd, s,
7605 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7606 return FALSE;
7607 htab->sstubs = s;
7608
7609 if (!mips_elf_hash_table (info)->use_rld_obj_head
7610 && bfd_link_executable (info)
7611 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7612 {
7613 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7614 flags &~ (flagword) SEC_READONLY);
7615 if (s == NULL
7616 || ! bfd_set_section_alignment (abfd, s,
7617 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7618 return FALSE;
7619 }
7620
7621 /* On IRIX5, we adjust add some additional symbols and change the
7622 alignments of several sections. There is no ABI documentation
7623 indicating that this is necessary on IRIX6, nor any evidence that
7624 the linker takes such action. */
7625 if (IRIX_COMPAT (abfd) == ict_irix5)
7626 {
7627 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7628 {
7629 bh = NULL;
7630 if (! (_bfd_generic_link_add_one_symbol
7631 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7632 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7633 return FALSE;
7634
7635 h = (struct elf_link_hash_entry *) bh;
7636 h->non_elf = 0;
7637 h->def_regular = 1;
7638 h->type = STT_SECTION;
7639
7640 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7641 return FALSE;
7642 }
7643
7644 /* We need to create a .compact_rel section. */
7645 if (SGI_COMPAT (abfd))
7646 {
7647 if (!mips_elf_create_compact_rel_section (abfd, info))
7648 return FALSE;
7649 }
7650
7651 /* Change alignments of some sections. */
7652 s = bfd_get_linker_section (abfd, ".hash");
7653 if (s != NULL)
7654 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7655
7656 s = bfd_get_linker_section (abfd, ".dynsym");
7657 if (s != NULL)
7658 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7659
7660 s = bfd_get_linker_section (abfd, ".dynstr");
7661 if (s != NULL)
7662 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7663
7664 /* ??? */
7665 s = bfd_get_section_by_name (abfd, ".reginfo");
7666 if (s != NULL)
7667 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7668
7669 s = bfd_get_linker_section (abfd, ".dynamic");
7670 if (s != NULL)
7671 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7672 }
7673
7674 if (bfd_link_executable (info))
7675 {
7676 const char *name;
7677
7678 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7679 bh = NULL;
7680 if (!(_bfd_generic_link_add_one_symbol
7681 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7682 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7683 return FALSE;
7684
7685 h = (struct elf_link_hash_entry *) bh;
7686 h->non_elf = 0;
7687 h->def_regular = 1;
7688 h->type = STT_SECTION;
7689
7690 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7691 return FALSE;
7692
7693 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7694 {
7695 /* __rld_map is a four byte word located in the .data section
7696 and is filled in by the rtld to contain a pointer to
7697 the _r_debug structure. Its symbol value will be set in
7698 _bfd_mips_elf_finish_dynamic_symbol. */
7699 s = bfd_get_linker_section (abfd, ".rld_map");
7700 BFD_ASSERT (s != NULL);
7701
7702 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7703 bh = NULL;
7704 if (!(_bfd_generic_link_add_one_symbol
7705 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7706 get_elf_backend_data (abfd)->collect, &bh)))
7707 return FALSE;
7708
7709 h = (struct elf_link_hash_entry *) bh;
7710 h->non_elf = 0;
7711 h->def_regular = 1;
7712 h->type = STT_OBJECT;
7713
7714 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7715 return FALSE;
7716 mips_elf_hash_table (info)->rld_symbol = h;
7717 }
7718 }
7719
7720 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7721 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7722 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7723 return FALSE;
7724
7725 /* Cache the sections created above. */
7726 htab->splt = bfd_get_linker_section (abfd, ".plt");
7727 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7728 if (htab->is_vxworks)
7729 {
7730 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7731 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7732 }
7733 else
7734 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7735 if (!htab->sdynbss
7736 || (htab->is_vxworks && !htab->srelbss && !bfd_link_pic (info))
7737 || !htab->srelplt
7738 || !htab->splt)
7739 abort ();
7740
7741 /* Do the usual VxWorks handling. */
7742 if (htab->is_vxworks
7743 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7744 return FALSE;
7745
7746 return TRUE;
7747 }
7748 \f
7749 /* Return true if relocation REL against section SEC is a REL rather than
7750 RELA relocation. RELOCS is the first relocation in the section and
7751 ABFD is the bfd that contains SEC. */
7752
7753 static bfd_boolean
7754 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7755 const Elf_Internal_Rela *relocs,
7756 const Elf_Internal_Rela *rel)
7757 {
7758 Elf_Internal_Shdr *rel_hdr;
7759 const struct elf_backend_data *bed;
7760
7761 /* To determine which flavor of relocation this is, we depend on the
7762 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7763 rel_hdr = elf_section_data (sec)->rel.hdr;
7764 if (rel_hdr == NULL)
7765 return FALSE;
7766 bed = get_elf_backend_data (abfd);
7767 return ((size_t) (rel - relocs)
7768 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7769 }
7770
7771 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7772 HOWTO is the relocation's howto and CONTENTS points to the contents
7773 of the section that REL is against. */
7774
7775 static bfd_vma
7776 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7777 reloc_howto_type *howto, bfd_byte *contents)
7778 {
7779 bfd_byte *location;
7780 unsigned int r_type;
7781 bfd_vma addend;
7782 bfd_vma bytes;
7783
7784 r_type = ELF_R_TYPE (abfd, rel->r_info);
7785 location = contents + rel->r_offset;
7786
7787 /* Get the addend, which is stored in the input file. */
7788 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7789 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7790 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7791
7792 addend = bytes & howto->src_mask;
7793
7794 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7795 accordingly. */
7796 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7797 addend <<= 1;
7798
7799 return addend;
7800 }
7801
7802 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7803 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7804 and update *ADDEND with the final addend. Return true on success
7805 or false if the LO16 could not be found. RELEND is the exclusive
7806 upper bound on the relocations for REL's section. */
7807
7808 static bfd_boolean
7809 mips_elf_add_lo16_rel_addend (bfd *abfd,
7810 const Elf_Internal_Rela *rel,
7811 const Elf_Internal_Rela *relend,
7812 bfd_byte *contents, bfd_vma *addend)
7813 {
7814 unsigned int r_type, lo16_type;
7815 const Elf_Internal_Rela *lo16_relocation;
7816 reloc_howto_type *lo16_howto;
7817 bfd_vma l;
7818
7819 r_type = ELF_R_TYPE (abfd, rel->r_info);
7820 if (mips16_reloc_p (r_type))
7821 lo16_type = R_MIPS16_LO16;
7822 else if (micromips_reloc_p (r_type))
7823 lo16_type = R_MICROMIPS_LO16;
7824 else if (r_type == R_MIPS_PCHI16)
7825 lo16_type = R_MIPS_PCLO16;
7826 else
7827 lo16_type = R_MIPS_LO16;
7828
7829 /* The combined value is the sum of the HI16 addend, left-shifted by
7830 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7831 code does a `lui' of the HI16 value, and then an `addiu' of the
7832 LO16 value.)
7833
7834 Scan ahead to find a matching LO16 relocation.
7835
7836 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7837 be immediately following. However, for the IRIX6 ABI, the next
7838 relocation may be a composed relocation consisting of several
7839 relocations for the same address. In that case, the R_MIPS_LO16
7840 relocation may occur as one of these. We permit a similar
7841 extension in general, as that is useful for GCC.
7842
7843 In some cases GCC dead code elimination removes the LO16 but keeps
7844 the corresponding HI16. This is strictly speaking a violation of
7845 the ABI but not immediately harmful. */
7846 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7847 if (lo16_relocation == NULL)
7848 return FALSE;
7849
7850 /* Obtain the addend kept there. */
7851 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7852 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7853
7854 l <<= lo16_howto->rightshift;
7855 l = _bfd_mips_elf_sign_extend (l, 16);
7856
7857 *addend <<= 16;
7858 *addend += l;
7859 return TRUE;
7860 }
7861
7862 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7863 store the contents in *CONTENTS on success. Assume that *CONTENTS
7864 already holds the contents if it is nonull on entry. */
7865
7866 static bfd_boolean
7867 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7868 {
7869 if (*contents)
7870 return TRUE;
7871
7872 /* Get cached copy if it exists. */
7873 if (elf_section_data (sec)->this_hdr.contents != NULL)
7874 {
7875 *contents = elf_section_data (sec)->this_hdr.contents;
7876 return TRUE;
7877 }
7878
7879 return bfd_malloc_and_get_section (abfd, sec, contents);
7880 }
7881
7882 /* Make a new PLT record to keep internal data. */
7883
7884 static struct plt_entry *
7885 mips_elf_make_plt_record (bfd *abfd)
7886 {
7887 struct plt_entry *entry;
7888
7889 entry = bfd_zalloc (abfd, sizeof (*entry));
7890 if (entry == NULL)
7891 return NULL;
7892
7893 entry->stub_offset = MINUS_ONE;
7894 entry->mips_offset = MINUS_ONE;
7895 entry->comp_offset = MINUS_ONE;
7896 entry->gotplt_index = MINUS_ONE;
7897 return entry;
7898 }
7899
7900 /* Look through the relocs for a section during the first phase, and
7901 allocate space in the global offset table and record the need for
7902 standard MIPS and compressed procedure linkage table entries. */
7903
7904 bfd_boolean
7905 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7906 asection *sec, const Elf_Internal_Rela *relocs)
7907 {
7908 const char *name;
7909 bfd *dynobj;
7910 Elf_Internal_Shdr *symtab_hdr;
7911 struct elf_link_hash_entry **sym_hashes;
7912 size_t extsymoff;
7913 const Elf_Internal_Rela *rel;
7914 const Elf_Internal_Rela *rel_end;
7915 asection *sreloc;
7916 const struct elf_backend_data *bed;
7917 struct mips_elf_link_hash_table *htab;
7918 bfd_byte *contents;
7919 bfd_vma addend;
7920 reloc_howto_type *howto;
7921
7922 if (bfd_link_relocatable (info))
7923 return TRUE;
7924
7925 htab = mips_elf_hash_table (info);
7926 BFD_ASSERT (htab != NULL);
7927
7928 dynobj = elf_hash_table (info)->dynobj;
7929 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7930 sym_hashes = elf_sym_hashes (abfd);
7931 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7932
7933 bed = get_elf_backend_data (abfd);
7934 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7935
7936 /* Check for the mips16 stub sections. */
7937
7938 name = bfd_get_section_name (abfd, sec);
7939 if (FN_STUB_P (name))
7940 {
7941 unsigned long r_symndx;
7942
7943 /* Look at the relocation information to figure out which symbol
7944 this is for. */
7945
7946 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7947 if (r_symndx == 0)
7948 {
7949 (*_bfd_error_handler)
7950 (_("%B: Warning: cannot determine the target function for"
7951 " stub section `%s'"),
7952 abfd, name);
7953 bfd_set_error (bfd_error_bad_value);
7954 return FALSE;
7955 }
7956
7957 if (r_symndx < extsymoff
7958 || sym_hashes[r_symndx - extsymoff] == NULL)
7959 {
7960 asection *o;
7961
7962 /* This stub is for a local symbol. This stub will only be
7963 needed if there is some relocation in this BFD, other
7964 than a 16 bit function call, which refers to this symbol. */
7965 for (o = abfd->sections; o != NULL; o = o->next)
7966 {
7967 Elf_Internal_Rela *sec_relocs;
7968 const Elf_Internal_Rela *r, *rend;
7969
7970 /* We can ignore stub sections when looking for relocs. */
7971 if ((o->flags & SEC_RELOC) == 0
7972 || o->reloc_count == 0
7973 || section_allows_mips16_refs_p (o))
7974 continue;
7975
7976 sec_relocs
7977 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7978 info->keep_memory);
7979 if (sec_relocs == NULL)
7980 return FALSE;
7981
7982 rend = sec_relocs + o->reloc_count;
7983 for (r = sec_relocs; r < rend; r++)
7984 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7985 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7986 break;
7987
7988 if (elf_section_data (o)->relocs != sec_relocs)
7989 free (sec_relocs);
7990
7991 if (r < rend)
7992 break;
7993 }
7994
7995 if (o == NULL)
7996 {
7997 /* There is no non-call reloc for this stub, so we do
7998 not need it. Since this function is called before
7999 the linker maps input sections to output sections, we
8000 can easily discard it by setting the SEC_EXCLUDE
8001 flag. */
8002 sec->flags |= SEC_EXCLUDE;
8003 return TRUE;
8004 }
8005
8006 /* Record this stub in an array of local symbol stubs for
8007 this BFD. */
8008 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8009 {
8010 unsigned long symcount;
8011 asection **n;
8012 bfd_size_type amt;
8013
8014 if (elf_bad_symtab (abfd))
8015 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8016 else
8017 symcount = symtab_hdr->sh_info;
8018 amt = symcount * sizeof (asection *);
8019 n = bfd_zalloc (abfd, amt);
8020 if (n == NULL)
8021 return FALSE;
8022 mips_elf_tdata (abfd)->local_stubs = n;
8023 }
8024
8025 sec->flags |= SEC_KEEP;
8026 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8027
8028 /* We don't need to set mips16_stubs_seen in this case.
8029 That flag is used to see whether we need to look through
8030 the global symbol table for stubs. We don't need to set
8031 it here, because we just have a local stub. */
8032 }
8033 else
8034 {
8035 struct mips_elf_link_hash_entry *h;
8036
8037 h = ((struct mips_elf_link_hash_entry *)
8038 sym_hashes[r_symndx - extsymoff]);
8039
8040 while (h->root.root.type == bfd_link_hash_indirect
8041 || h->root.root.type == bfd_link_hash_warning)
8042 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8043
8044 /* H is the symbol this stub is for. */
8045
8046 /* If we already have an appropriate stub for this function, we
8047 don't need another one, so we can discard this one. Since
8048 this function is called before the linker maps input sections
8049 to output sections, we can easily discard it by setting the
8050 SEC_EXCLUDE flag. */
8051 if (h->fn_stub != NULL)
8052 {
8053 sec->flags |= SEC_EXCLUDE;
8054 return TRUE;
8055 }
8056
8057 sec->flags |= SEC_KEEP;
8058 h->fn_stub = sec;
8059 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8060 }
8061 }
8062 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8063 {
8064 unsigned long r_symndx;
8065 struct mips_elf_link_hash_entry *h;
8066 asection **loc;
8067
8068 /* Look at the relocation information to figure out which symbol
8069 this is for. */
8070
8071 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8072 if (r_symndx == 0)
8073 {
8074 (*_bfd_error_handler)
8075 (_("%B: Warning: cannot determine the target function for"
8076 " stub section `%s'"),
8077 abfd, name);
8078 bfd_set_error (bfd_error_bad_value);
8079 return FALSE;
8080 }
8081
8082 if (r_symndx < extsymoff
8083 || sym_hashes[r_symndx - extsymoff] == NULL)
8084 {
8085 asection *o;
8086
8087 /* This stub is for a local symbol. This stub will only be
8088 needed if there is some relocation (R_MIPS16_26) in this BFD
8089 that refers to this symbol. */
8090 for (o = abfd->sections; o != NULL; o = o->next)
8091 {
8092 Elf_Internal_Rela *sec_relocs;
8093 const Elf_Internal_Rela *r, *rend;
8094
8095 /* We can ignore stub sections when looking for relocs. */
8096 if ((o->flags & SEC_RELOC) == 0
8097 || o->reloc_count == 0
8098 || section_allows_mips16_refs_p (o))
8099 continue;
8100
8101 sec_relocs
8102 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8103 info->keep_memory);
8104 if (sec_relocs == NULL)
8105 return FALSE;
8106
8107 rend = sec_relocs + o->reloc_count;
8108 for (r = sec_relocs; r < rend; r++)
8109 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8110 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8111 break;
8112
8113 if (elf_section_data (o)->relocs != sec_relocs)
8114 free (sec_relocs);
8115
8116 if (r < rend)
8117 break;
8118 }
8119
8120 if (o == NULL)
8121 {
8122 /* There is no non-call reloc for this stub, so we do
8123 not need it. Since this function is called before
8124 the linker maps input sections to output sections, we
8125 can easily discard it by setting the SEC_EXCLUDE
8126 flag. */
8127 sec->flags |= SEC_EXCLUDE;
8128 return TRUE;
8129 }
8130
8131 /* Record this stub in an array of local symbol call_stubs for
8132 this BFD. */
8133 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8134 {
8135 unsigned long symcount;
8136 asection **n;
8137 bfd_size_type amt;
8138
8139 if (elf_bad_symtab (abfd))
8140 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8141 else
8142 symcount = symtab_hdr->sh_info;
8143 amt = symcount * sizeof (asection *);
8144 n = bfd_zalloc (abfd, amt);
8145 if (n == NULL)
8146 return FALSE;
8147 mips_elf_tdata (abfd)->local_call_stubs = n;
8148 }
8149
8150 sec->flags |= SEC_KEEP;
8151 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8152
8153 /* We don't need to set mips16_stubs_seen in this case.
8154 That flag is used to see whether we need to look through
8155 the global symbol table for stubs. We don't need to set
8156 it here, because we just have a local stub. */
8157 }
8158 else
8159 {
8160 h = ((struct mips_elf_link_hash_entry *)
8161 sym_hashes[r_symndx - extsymoff]);
8162
8163 /* H is the symbol this stub is for. */
8164
8165 if (CALL_FP_STUB_P (name))
8166 loc = &h->call_fp_stub;
8167 else
8168 loc = &h->call_stub;
8169
8170 /* If we already have an appropriate stub for this function, we
8171 don't need another one, so we can discard this one. Since
8172 this function is called before the linker maps input sections
8173 to output sections, we can easily discard it by setting the
8174 SEC_EXCLUDE flag. */
8175 if (*loc != NULL)
8176 {
8177 sec->flags |= SEC_EXCLUDE;
8178 return TRUE;
8179 }
8180
8181 sec->flags |= SEC_KEEP;
8182 *loc = sec;
8183 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8184 }
8185 }
8186
8187 sreloc = NULL;
8188 contents = NULL;
8189 for (rel = relocs; rel < rel_end; ++rel)
8190 {
8191 unsigned long r_symndx;
8192 unsigned int r_type;
8193 struct elf_link_hash_entry *h;
8194 bfd_boolean can_make_dynamic_p;
8195 bfd_boolean call_reloc_p;
8196 bfd_boolean constrain_symbol_p;
8197
8198 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8199 r_type = ELF_R_TYPE (abfd, rel->r_info);
8200
8201 if (r_symndx < extsymoff)
8202 h = NULL;
8203 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8204 {
8205 (*_bfd_error_handler)
8206 (_("%B: Malformed reloc detected for section %s"),
8207 abfd, name);
8208 bfd_set_error (bfd_error_bad_value);
8209 return FALSE;
8210 }
8211 else
8212 {
8213 h = sym_hashes[r_symndx - extsymoff];
8214 if (h != NULL)
8215 {
8216 while (h->root.type == bfd_link_hash_indirect
8217 || h->root.type == bfd_link_hash_warning)
8218 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8219
8220 /* PR15323, ref flags aren't set for references in the
8221 same object. */
8222 h->root.non_ir_ref = 1;
8223 }
8224 }
8225
8226 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8227 relocation into a dynamic one. */
8228 can_make_dynamic_p = FALSE;
8229
8230 /* Set CALL_RELOC_P to true if the relocation is for a call,
8231 and if pointer equality therefore doesn't matter. */
8232 call_reloc_p = FALSE;
8233
8234 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8235 into account when deciding how to define the symbol.
8236 Relocations in nonallocatable sections such as .pdr and
8237 .debug* should have no effect. */
8238 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8239
8240 switch (r_type)
8241 {
8242 case R_MIPS_CALL16:
8243 case R_MIPS_CALL_HI16:
8244 case R_MIPS_CALL_LO16:
8245 case R_MIPS16_CALL16:
8246 case R_MICROMIPS_CALL16:
8247 case R_MICROMIPS_CALL_HI16:
8248 case R_MICROMIPS_CALL_LO16:
8249 call_reloc_p = TRUE;
8250 /* Fall through. */
8251
8252 case R_MIPS_GOT16:
8253 case R_MIPS_GOT_HI16:
8254 case R_MIPS_GOT_LO16:
8255 case R_MIPS_GOT_PAGE:
8256 case R_MIPS_GOT_OFST:
8257 case R_MIPS_GOT_DISP:
8258 case R_MIPS_TLS_GOTTPREL:
8259 case R_MIPS_TLS_GD:
8260 case R_MIPS_TLS_LDM:
8261 case R_MIPS16_GOT16:
8262 case R_MIPS16_TLS_GOTTPREL:
8263 case R_MIPS16_TLS_GD:
8264 case R_MIPS16_TLS_LDM:
8265 case R_MICROMIPS_GOT16:
8266 case R_MICROMIPS_GOT_HI16:
8267 case R_MICROMIPS_GOT_LO16:
8268 case R_MICROMIPS_GOT_PAGE:
8269 case R_MICROMIPS_GOT_OFST:
8270 case R_MICROMIPS_GOT_DISP:
8271 case R_MICROMIPS_TLS_GOTTPREL:
8272 case R_MICROMIPS_TLS_GD:
8273 case R_MICROMIPS_TLS_LDM:
8274 if (dynobj == NULL)
8275 elf_hash_table (info)->dynobj = dynobj = abfd;
8276 if (!mips_elf_create_got_section (dynobj, info))
8277 return FALSE;
8278 if (htab->is_vxworks && !bfd_link_pic (info))
8279 {
8280 (*_bfd_error_handler)
8281 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8282 abfd, (unsigned long) rel->r_offset);
8283 bfd_set_error (bfd_error_bad_value);
8284 return FALSE;
8285 }
8286 can_make_dynamic_p = TRUE;
8287 break;
8288
8289 case R_MIPS_NONE:
8290 case R_MIPS_JALR:
8291 case R_MICROMIPS_JALR:
8292 /* These relocations have empty fields and are purely there to
8293 provide link information. The symbol value doesn't matter. */
8294 constrain_symbol_p = FALSE;
8295 break;
8296
8297 case R_MIPS_GPREL16:
8298 case R_MIPS_GPREL32:
8299 case R_MIPS16_GPREL:
8300 case R_MICROMIPS_GPREL16:
8301 /* GP-relative relocations always resolve to a definition in a
8302 regular input file, ignoring the one-definition rule. This is
8303 important for the GP setup sequence in NewABI code, which
8304 always resolves to a local function even if other relocations
8305 against the symbol wouldn't. */
8306 constrain_symbol_p = FALSE;
8307 break;
8308
8309 case R_MIPS_32:
8310 case R_MIPS_REL32:
8311 case R_MIPS_64:
8312 /* In VxWorks executables, references to external symbols
8313 must be handled using copy relocs or PLT entries; it is not
8314 possible to convert this relocation into a dynamic one.
8315
8316 For executables that use PLTs and copy-relocs, we have a
8317 choice between converting the relocation into a dynamic
8318 one or using copy relocations or PLT entries. It is
8319 usually better to do the former, unless the relocation is
8320 against a read-only section. */
8321 if ((bfd_link_pic (info)
8322 || (h != NULL
8323 && !htab->is_vxworks
8324 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8325 && !(!info->nocopyreloc
8326 && !PIC_OBJECT_P (abfd)
8327 && MIPS_ELF_READONLY_SECTION (sec))))
8328 && (sec->flags & SEC_ALLOC) != 0)
8329 {
8330 can_make_dynamic_p = TRUE;
8331 if (dynobj == NULL)
8332 elf_hash_table (info)->dynobj = dynobj = abfd;
8333 }
8334 break;
8335
8336 case R_MIPS_26:
8337 case R_MIPS_PC16:
8338 case R_MIPS_PC21_S2:
8339 case R_MIPS_PC26_S2:
8340 case R_MIPS16_26:
8341 case R_MICROMIPS_26_S1:
8342 case R_MICROMIPS_PC7_S1:
8343 case R_MICROMIPS_PC10_S1:
8344 case R_MICROMIPS_PC16_S1:
8345 case R_MICROMIPS_PC23_S2:
8346 call_reloc_p = TRUE;
8347 break;
8348 }
8349
8350 if (h)
8351 {
8352 if (constrain_symbol_p)
8353 {
8354 if (!can_make_dynamic_p)
8355 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8356
8357 if (!call_reloc_p)
8358 h->pointer_equality_needed = 1;
8359
8360 /* We must not create a stub for a symbol that has
8361 relocations related to taking the function's address.
8362 This doesn't apply to VxWorks, where CALL relocs refer
8363 to a .got.plt entry instead of a normal .got entry. */
8364 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8365 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8366 }
8367
8368 /* Relocations against the special VxWorks __GOTT_BASE__ and
8369 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8370 room for them in .rela.dyn. */
8371 if (is_gott_symbol (info, h))
8372 {
8373 if (sreloc == NULL)
8374 {
8375 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8376 if (sreloc == NULL)
8377 return FALSE;
8378 }
8379 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8380 if (MIPS_ELF_READONLY_SECTION (sec))
8381 /* We tell the dynamic linker that there are
8382 relocations against the text segment. */
8383 info->flags |= DF_TEXTREL;
8384 }
8385 }
8386 else if (call_lo16_reloc_p (r_type)
8387 || got_lo16_reloc_p (r_type)
8388 || got_disp_reloc_p (r_type)
8389 || (got16_reloc_p (r_type) && htab->is_vxworks))
8390 {
8391 /* We may need a local GOT entry for this relocation. We
8392 don't count R_MIPS_GOT_PAGE because we can estimate the
8393 maximum number of pages needed by looking at the size of
8394 the segment. Similar comments apply to R_MIPS*_GOT16 and
8395 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8396 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8397 R_MIPS_CALL_HI16 because these are always followed by an
8398 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8399 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8400 rel->r_addend, info, r_type))
8401 return FALSE;
8402 }
8403
8404 if (h != NULL
8405 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8406 ELF_ST_IS_MIPS16 (h->other)))
8407 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8408
8409 switch (r_type)
8410 {
8411 case R_MIPS_CALL16:
8412 case R_MIPS16_CALL16:
8413 case R_MICROMIPS_CALL16:
8414 if (h == NULL)
8415 {
8416 (*_bfd_error_handler)
8417 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8418 abfd, (unsigned long) rel->r_offset);
8419 bfd_set_error (bfd_error_bad_value);
8420 return FALSE;
8421 }
8422 /* Fall through. */
8423
8424 case R_MIPS_CALL_HI16:
8425 case R_MIPS_CALL_LO16:
8426 case R_MICROMIPS_CALL_HI16:
8427 case R_MICROMIPS_CALL_LO16:
8428 if (h != NULL)
8429 {
8430 /* Make sure there is room in the regular GOT to hold the
8431 function's address. We may eliminate it in favour of
8432 a .got.plt entry later; see mips_elf_count_got_symbols. */
8433 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8434 r_type))
8435 return FALSE;
8436
8437 /* We need a stub, not a plt entry for the undefined
8438 function. But we record it as if it needs plt. See
8439 _bfd_elf_adjust_dynamic_symbol. */
8440 h->needs_plt = 1;
8441 h->type = STT_FUNC;
8442 }
8443 break;
8444
8445 case R_MIPS_GOT_PAGE:
8446 case R_MICROMIPS_GOT_PAGE:
8447 case R_MIPS16_GOT16:
8448 case R_MIPS_GOT16:
8449 case R_MIPS_GOT_HI16:
8450 case R_MIPS_GOT_LO16:
8451 case R_MICROMIPS_GOT16:
8452 case R_MICROMIPS_GOT_HI16:
8453 case R_MICROMIPS_GOT_LO16:
8454 if (!h || got_page_reloc_p (r_type))
8455 {
8456 /* This relocation needs (or may need, if h != NULL) a
8457 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8458 know for sure until we know whether the symbol is
8459 preemptible. */
8460 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8461 {
8462 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8463 return FALSE;
8464 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8465 addend = mips_elf_read_rel_addend (abfd, rel,
8466 howto, contents);
8467 if (got16_reloc_p (r_type))
8468 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8469 contents, &addend);
8470 else
8471 addend <<= howto->rightshift;
8472 }
8473 else
8474 addend = rel->r_addend;
8475 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8476 h, addend))
8477 return FALSE;
8478
8479 if (h)
8480 {
8481 struct mips_elf_link_hash_entry *hmips =
8482 (struct mips_elf_link_hash_entry *) h;
8483
8484 /* This symbol is definitely not overridable. */
8485 if (hmips->root.def_regular
8486 && ! (bfd_link_pic (info) && ! info->symbolic
8487 && ! hmips->root.forced_local))
8488 h = NULL;
8489 }
8490 }
8491 /* If this is a global, overridable symbol, GOT_PAGE will
8492 decay to GOT_DISP, so we'll need a GOT entry for it. */
8493 /* Fall through. */
8494
8495 case R_MIPS_GOT_DISP:
8496 case R_MICROMIPS_GOT_DISP:
8497 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8498 FALSE, r_type))
8499 return FALSE;
8500 break;
8501
8502 case R_MIPS_TLS_GOTTPREL:
8503 case R_MIPS16_TLS_GOTTPREL:
8504 case R_MICROMIPS_TLS_GOTTPREL:
8505 if (bfd_link_pic (info))
8506 info->flags |= DF_STATIC_TLS;
8507 /* Fall through */
8508
8509 case R_MIPS_TLS_LDM:
8510 case R_MIPS16_TLS_LDM:
8511 case R_MICROMIPS_TLS_LDM:
8512 if (tls_ldm_reloc_p (r_type))
8513 {
8514 r_symndx = STN_UNDEF;
8515 h = NULL;
8516 }
8517 /* Fall through */
8518
8519 case R_MIPS_TLS_GD:
8520 case R_MIPS16_TLS_GD:
8521 case R_MICROMIPS_TLS_GD:
8522 /* This symbol requires a global offset table entry, or two
8523 for TLS GD relocations. */
8524 if (h != NULL)
8525 {
8526 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8527 FALSE, r_type))
8528 return FALSE;
8529 }
8530 else
8531 {
8532 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8533 rel->r_addend,
8534 info, r_type))
8535 return FALSE;
8536 }
8537 break;
8538
8539 case R_MIPS_32:
8540 case R_MIPS_REL32:
8541 case R_MIPS_64:
8542 /* In VxWorks executables, references to external symbols
8543 are handled using copy relocs or PLT stubs, so there's
8544 no need to add a .rela.dyn entry for this relocation. */
8545 if (can_make_dynamic_p)
8546 {
8547 if (sreloc == NULL)
8548 {
8549 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8550 if (sreloc == NULL)
8551 return FALSE;
8552 }
8553 if (bfd_link_pic (info) && h == NULL)
8554 {
8555 /* When creating a shared object, we must copy these
8556 reloc types into the output file as R_MIPS_REL32
8557 relocs. Make room for this reloc in .rel(a).dyn. */
8558 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8559 if (MIPS_ELF_READONLY_SECTION (sec))
8560 /* We tell the dynamic linker that there are
8561 relocations against the text segment. */
8562 info->flags |= DF_TEXTREL;
8563 }
8564 else
8565 {
8566 struct mips_elf_link_hash_entry *hmips;
8567
8568 /* For a shared object, we must copy this relocation
8569 unless the symbol turns out to be undefined and
8570 weak with non-default visibility, in which case
8571 it will be left as zero.
8572
8573 We could elide R_MIPS_REL32 for locally binding symbols
8574 in shared libraries, but do not yet do so.
8575
8576 For an executable, we only need to copy this
8577 reloc if the symbol is defined in a dynamic
8578 object. */
8579 hmips = (struct mips_elf_link_hash_entry *) h;
8580 ++hmips->possibly_dynamic_relocs;
8581 if (MIPS_ELF_READONLY_SECTION (sec))
8582 /* We need it to tell the dynamic linker if there
8583 are relocations against the text segment. */
8584 hmips->readonly_reloc = TRUE;
8585 }
8586 }
8587
8588 if (SGI_COMPAT (abfd))
8589 mips_elf_hash_table (info)->compact_rel_size +=
8590 sizeof (Elf32_External_crinfo);
8591 break;
8592
8593 case R_MIPS_26:
8594 case R_MIPS_GPREL16:
8595 case R_MIPS_LITERAL:
8596 case R_MIPS_GPREL32:
8597 case R_MICROMIPS_26_S1:
8598 case R_MICROMIPS_GPREL16:
8599 case R_MICROMIPS_LITERAL:
8600 case R_MICROMIPS_GPREL7_S2:
8601 if (SGI_COMPAT (abfd))
8602 mips_elf_hash_table (info)->compact_rel_size +=
8603 sizeof (Elf32_External_crinfo);
8604 break;
8605
8606 /* This relocation describes the C++ object vtable hierarchy.
8607 Reconstruct it for later use during GC. */
8608 case R_MIPS_GNU_VTINHERIT:
8609 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8610 return FALSE;
8611 break;
8612
8613 /* This relocation describes which C++ vtable entries are actually
8614 used. Record for later use during GC. */
8615 case R_MIPS_GNU_VTENTRY:
8616 BFD_ASSERT (h != NULL);
8617 if (h != NULL
8618 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8619 return FALSE;
8620 break;
8621
8622 default:
8623 break;
8624 }
8625
8626 /* Record the need for a PLT entry. At this point we don't know
8627 yet if we are going to create a PLT in the first place, but
8628 we only record whether the relocation requires a standard MIPS
8629 or a compressed code entry anyway. If we don't make a PLT after
8630 all, then we'll just ignore these arrangements. Likewise if
8631 a PLT entry is not created because the symbol is satisfied
8632 locally. */
8633 if (h != NULL
8634 && jal_reloc_p (r_type)
8635 && !SYMBOL_CALLS_LOCAL (info, h))
8636 {
8637 if (h->plt.plist == NULL)
8638 h->plt.plist = mips_elf_make_plt_record (abfd);
8639 if (h->plt.plist == NULL)
8640 return FALSE;
8641
8642 if (r_type == R_MIPS_26)
8643 h->plt.plist->need_mips = TRUE;
8644 else
8645 h->plt.plist->need_comp = TRUE;
8646 }
8647
8648 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8649 if there is one. We only need to handle global symbols here;
8650 we decide whether to keep or delete stubs for local symbols
8651 when processing the stub's relocations. */
8652 if (h != NULL
8653 && !mips16_call_reloc_p (r_type)
8654 && !section_allows_mips16_refs_p (sec))
8655 {
8656 struct mips_elf_link_hash_entry *mh;
8657
8658 mh = (struct mips_elf_link_hash_entry *) h;
8659 mh->need_fn_stub = TRUE;
8660 }
8661
8662 /* Refuse some position-dependent relocations when creating a
8663 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8664 not PIC, but we can create dynamic relocations and the result
8665 will be fine. Also do not refuse R_MIPS_LO16, which can be
8666 combined with R_MIPS_GOT16. */
8667 if (bfd_link_pic (info))
8668 {
8669 switch (r_type)
8670 {
8671 case R_MIPS16_HI16:
8672 case R_MIPS_HI16:
8673 case R_MIPS_HIGHER:
8674 case R_MIPS_HIGHEST:
8675 case R_MICROMIPS_HI16:
8676 case R_MICROMIPS_HIGHER:
8677 case R_MICROMIPS_HIGHEST:
8678 /* Don't refuse a high part relocation if it's against
8679 no symbol (e.g. part of a compound relocation). */
8680 if (r_symndx == STN_UNDEF)
8681 break;
8682
8683 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8684 and has a special meaning. */
8685 if (!NEWABI_P (abfd) && h != NULL
8686 && strcmp (h->root.root.string, "_gp_disp") == 0)
8687 break;
8688
8689 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8690 if (is_gott_symbol (info, h))
8691 break;
8692
8693 /* FALLTHROUGH */
8694
8695 case R_MIPS16_26:
8696 case R_MIPS_26:
8697 case R_MICROMIPS_26_S1:
8698 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8699 (*_bfd_error_handler)
8700 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8701 abfd, howto->name,
8702 (h) ? h->root.root.string : "a local symbol");
8703 bfd_set_error (bfd_error_bad_value);
8704 return FALSE;
8705 default:
8706 break;
8707 }
8708 }
8709 }
8710
8711 return TRUE;
8712 }
8713 \f
8714 bfd_boolean
8715 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8716 struct bfd_link_info *link_info,
8717 bfd_boolean *again)
8718 {
8719 Elf_Internal_Rela *internal_relocs;
8720 Elf_Internal_Rela *irel, *irelend;
8721 Elf_Internal_Shdr *symtab_hdr;
8722 bfd_byte *contents = NULL;
8723 size_t extsymoff;
8724 bfd_boolean changed_contents = FALSE;
8725 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8726 Elf_Internal_Sym *isymbuf = NULL;
8727
8728 /* We are not currently changing any sizes, so only one pass. */
8729 *again = FALSE;
8730
8731 if (bfd_link_relocatable (link_info))
8732 return TRUE;
8733
8734 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8735 link_info->keep_memory);
8736 if (internal_relocs == NULL)
8737 return TRUE;
8738
8739 irelend = internal_relocs + sec->reloc_count
8740 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8741 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8742 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8743
8744 for (irel = internal_relocs; irel < irelend; irel++)
8745 {
8746 bfd_vma symval;
8747 bfd_signed_vma sym_offset;
8748 unsigned int r_type;
8749 unsigned long r_symndx;
8750 asection *sym_sec;
8751 unsigned long instruction;
8752
8753 /* Turn jalr into bgezal, and jr into beq, if they're marked
8754 with a JALR relocation, that indicate where they jump to.
8755 This saves some pipeline bubbles. */
8756 r_type = ELF_R_TYPE (abfd, irel->r_info);
8757 if (r_type != R_MIPS_JALR)
8758 continue;
8759
8760 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8761 /* Compute the address of the jump target. */
8762 if (r_symndx >= extsymoff)
8763 {
8764 struct mips_elf_link_hash_entry *h
8765 = ((struct mips_elf_link_hash_entry *)
8766 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8767
8768 while (h->root.root.type == bfd_link_hash_indirect
8769 || h->root.root.type == bfd_link_hash_warning)
8770 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8771
8772 /* If a symbol is undefined, or if it may be overridden,
8773 skip it. */
8774 if (! ((h->root.root.type == bfd_link_hash_defined
8775 || h->root.root.type == bfd_link_hash_defweak)
8776 && h->root.root.u.def.section)
8777 || (bfd_link_pic (link_info) && ! link_info->symbolic
8778 && !h->root.forced_local))
8779 continue;
8780
8781 sym_sec = h->root.root.u.def.section;
8782 if (sym_sec->output_section)
8783 symval = (h->root.root.u.def.value
8784 + sym_sec->output_section->vma
8785 + sym_sec->output_offset);
8786 else
8787 symval = h->root.root.u.def.value;
8788 }
8789 else
8790 {
8791 Elf_Internal_Sym *isym;
8792
8793 /* Read this BFD's symbols if we haven't done so already. */
8794 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8795 {
8796 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8797 if (isymbuf == NULL)
8798 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8799 symtab_hdr->sh_info, 0,
8800 NULL, NULL, NULL);
8801 if (isymbuf == NULL)
8802 goto relax_return;
8803 }
8804
8805 isym = isymbuf + r_symndx;
8806 if (isym->st_shndx == SHN_UNDEF)
8807 continue;
8808 else if (isym->st_shndx == SHN_ABS)
8809 sym_sec = bfd_abs_section_ptr;
8810 else if (isym->st_shndx == SHN_COMMON)
8811 sym_sec = bfd_com_section_ptr;
8812 else
8813 sym_sec
8814 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8815 symval = isym->st_value
8816 + sym_sec->output_section->vma
8817 + sym_sec->output_offset;
8818 }
8819
8820 /* Compute branch offset, from delay slot of the jump to the
8821 branch target. */
8822 sym_offset = (symval + irel->r_addend)
8823 - (sec_start + irel->r_offset + 4);
8824
8825 /* Branch offset must be properly aligned. */
8826 if ((sym_offset & 3) != 0)
8827 continue;
8828
8829 sym_offset >>= 2;
8830
8831 /* Check that it's in range. */
8832 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8833 continue;
8834
8835 /* Get the section contents if we haven't done so already. */
8836 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8837 goto relax_return;
8838
8839 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8840
8841 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8842 if ((instruction & 0xfc1fffff) == 0x0000f809)
8843 instruction = 0x04110000;
8844 /* If it was jr <reg>, turn it into b <target>. */
8845 else if ((instruction & 0xfc1fffff) == 0x00000008)
8846 instruction = 0x10000000;
8847 else
8848 continue;
8849
8850 instruction |= (sym_offset & 0xffff);
8851 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8852 changed_contents = TRUE;
8853 }
8854
8855 if (contents != NULL
8856 && elf_section_data (sec)->this_hdr.contents != contents)
8857 {
8858 if (!changed_contents && !link_info->keep_memory)
8859 free (contents);
8860 else
8861 {
8862 /* Cache the section contents for elf_link_input_bfd. */
8863 elf_section_data (sec)->this_hdr.contents = contents;
8864 }
8865 }
8866 return TRUE;
8867
8868 relax_return:
8869 if (contents != NULL
8870 && elf_section_data (sec)->this_hdr.contents != contents)
8871 free (contents);
8872 return FALSE;
8873 }
8874 \f
8875 /* Allocate space for global sym dynamic relocs. */
8876
8877 static bfd_boolean
8878 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8879 {
8880 struct bfd_link_info *info = inf;
8881 bfd *dynobj;
8882 struct mips_elf_link_hash_entry *hmips;
8883 struct mips_elf_link_hash_table *htab;
8884
8885 htab = mips_elf_hash_table (info);
8886 BFD_ASSERT (htab != NULL);
8887
8888 dynobj = elf_hash_table (info)->dynobj;
8889 hmips = (struct mips_elf_link_hash_entry *) h;
8890
8891 /* VxWorks executables are handled elsewhere; we only need to
8892 allocate relocations in shared objects. */
8893 if (htab->is_vxworks && !bfd_link_pic (info))
8894 return TRUE;
8895
8896 /* Ignore indirect symbols. All relocations against such symbols
8897 will be redirected to the target symbol. */
8898 if (h->root.type == bfd_link_hash_indirect)
8899 return TRUE;
8900
8901 /* If this symbol is defined in a dynamic object, or we are creating
8902 a shared library, we will need to copy any R_MIPS_32 or
8903 R_MIPS_REL32 relocs against it into the output file. */
8904 if (! bfd_link_relocatable (info)
8905 && hmips->possibly_dynamic_relocs != 0
8906 && (h->root.type == bfd_link_hash_defweak
8907 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8908 || bfd_link_pic (info)))
8909 {
8910 bfd_boolean do_copy = TRUE;
8911
8912 if (h->root.type == bfd_link_hash_undefweak)
8913 {
8914 /* Do not copy relocations for undefined weak symbols with
8915 non-default visibility. */
8916 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8917 do_copy = FALSE;
8918
8919 /* Make sure undefined weak symbols are output as a dynamic
8920 symbol in PIEs. */
8921 else if (h->dynindx == -1 && !h->forced_local)
8922 {
8923 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8924 return FALSE;
8925 }
8926 }
8927
8928 if (do_copy)
8929 {
8930 /* Even though we don't directly need a GOT entry for this symbol,
8931 the SVR4 psABI requires it to have a dynamic symbol table
8932 index greater that DT_MIPS_GOTSYM if there are dynamic
8933 relocations against it.
8934
8935 VxWorks does not enforce the same mapping between the GOT
8936 and the symbol table, so the same requirement does not
8937 apply there. */
8938 if (!htab->is_vxworks)
8939 {
8940 if (hmips->global_got_area > GGA_RELOC_ONLY)
8941 hmips->global_got_area = GGA_RELOC_ONLY;
8942 hmips->got_only_for_calls = FALSE;
8943 }
8944
8945 mips_elf_allocate_dynamic_relocations
8946 (dynobj, info, hmips->possibly_dynamic_relocs);
8947 if (hmips->readonly_reloc)
8948 /* We tell the dynamic linker that there are relocations
8949 against the text segment. */
8950 info->flags |= DF_TEXTREL;
8951 }
8952 }
8953
8954 return TRUE;
8955 }
8956
8957 /* Adjust a symbol defined by a dynamic object and referenced by a
8958 regular object. The current definition is in some section of the
8959 dynamic object, but we're not including those sections. We have to
8960 change the definition to something the rest of the link can
8961 understand. */
8962
8963 bfd_boolean
8964 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8965 struct elf_link_hash_entry *h)
8966 {
8967 bfd *dynobj;
8968 struct mips_elf_link_hash_entry *hmips;
8969 struct mips_elf_link_hash_table *htab;
8970
8971 htab = mips_elf_hash_table (info);
8972 BFD_ASSERT (htab != NULL);
8973
8974 dynobj = elf_hash_table (info)->dynobj;
8975 hmips = (struct mips_elf_link_hash_entry *) h;
8976
8977 /* Make sure we know what is going on here. */
8978 BFD_ASSERT (dynobj != NULL
8979 && (h->needs_plt
8980 || h->u.weakdef != NULL
8981 || (h->def_dynamic
8982 && h->ref_regular
8983 && !h->def_regular)));
8984
8985 hmips = (struct mips_elf_link_hash_entry *) h;
8986
8987 /* If there are call relocations against an externally-defined symbol,
8988 see whether we can create a MIPS lazy-binding stub for it. We can
8989 only do this if all references to the function are through call
8990 relocations, and in that case, the traditional lazy-binding stubs
8991 are much more efficient than PLT entries.
8992
8993 Traditional stubs are only available on SVR4 psABI-based systems;
8994 VxWorks always uses PLTs instead. */
8995 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8996 {
8997 if (! elf_hash_table (info)->dynamic_sections_created)
8998 return TRUE;
8999
9000 /* If this symbol is not defined in a regular file, then set
9001 the symbol to the stub location. This is required to make
9002 function pointers compare as equal between the normal
9003 executable and the shared library. */
9004 if (!h->def_regular)
9005 {
9006 hmips->needs_lazy_stub = TRUE;
9007 htab->lazy_stub_count++;
9008 return TRUE;
9009 }
9010 }
9011 /* As above, VxWorks requires PLT entries for externally-defined
9012 functions that are only accessed through call relocations.
9013
9014 Both VxWorks and non-VxWorks targets also need PLT entries if there
9015 are static-only relocations against an externally-defined function.
9016 This can technically occur for shared libraries if there are
9017 branches to the symbol, although it is unlikely that this will be
9018 used in practice due to the short ranges involved. It can occur
9019 for any relative or absolute relocation in executables; in that
9020 case, the PLT entry becomes the function's canonical address. */
9021 else if (((h->needs_plt && !hmips->no_fn_stub)
9022 || (h->type == STT_FUNC && hmips->has_static_relocs))
9023 && htab->use_plts_and_copy_relocs
9024 && !SYMBOL_CALLS_LOCAL (info, h)
9025 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9026 && h->root.type == bfd_link_hash_undefweak))
9027 {
9028 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9029 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9030
9031 /* If this is the first symbol to need a PLT entry, then make some
9032 basic setup. Also work out PLT entry sizes. We'll need them
9033 for PLT offset calculations. */
9034 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9035 {
9036 BFD_ASSERT (htab->sgotplt->size == 0);
9037 BFD_ASSERT (htab->plt_got_index == 0);
9038
9039 /* If we're using the PLT additions to the psABI, each PLT
9040 entry is 16 bytes and the PLT0 entry is 32 bytes.
9041 Encourage better cache usage by aligning. We do this
9042 lazily to avoid pessimizing traditional objects. */
9043 if (!htab->is_vxworks
9044 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
9045 return FALSE;
9046
9047 /* Make sure that .got.plt is word-aligned. We do this lazily
9048 for the same reason as above. */
9049 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
9050 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9051 return FALSE;
9052
9053 /* On non-VxWorks targets, the first two entries in .got.plt
9054 are reserved. */
9055 if (!htab->is_vxworks)
9056 htab->plt_got_index
9057 += (get_elf_backend_data (dynobj)->got_header_size
9058 / MIPS_ELF_GOT_SIZE (dynobj));
9059
9060 /* On VxWorks, also allocate room for the header's
9061 .rela.plt.unloaded entries. */
9062 if (htab->is_vxworks && !bfd_link_pic (info))
9063 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9064
9065 /* Now work out the sizes of individual PLT entries. */
9066 if (htab->is_vxworks && bfd_link_pic (info))
9067 htab->plt_mips_entry_size
9068 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9069 else if (htab->is_vxworks)
9070 htab->plt_mips_entry_size
9071 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9072 else if (newabi_p)
9073 htab->plt_mips_entry_size
9074 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9075 else if (!micromips_p)
9076 {
9077 htab->plt_mips_entry_size
9078 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9079 htab->plt_comp_entry_size
9080 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9081 }
9082 else if (htab->insn32)
9083 {
9084 htab->plt_mips_entry_size
9085 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9086 htab->plt_comp_entry_size
9087 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9088 }
9089 else
9090 {
9091 htab->plt_mips_entry_size
9092 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9093 htab->plt_comp_entry_size
9094 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9095 }
9096 }
9097
9098 if (h->plt.plist == NULL)
9099 h->plt.plist = mips_elf_make_plt_record (dynobj);
9100 if (h->plt.plist == NULL)
9101 return FALSE;
9102
9103 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9104 n32 or n64, so always use a standard entry there.
9105
9106 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9107 all MIPS16 calls will go via that stub, and there is no benefit
9108 to having a MIPS16 entry. And in the case of call_stub a
9109 standard entry actually has to be used as the stub ends with a J
9110 instruction. */
9111 if (newabi_p
9112 || htab->is_vxworks
9113 || hmips->call_stub
9114 || hmips->call_fp_stub)
9115 {
9116 h->plt.plist->need_mips = TRUE;
9117 h->plt.plist->need_comp = FALSE;
9118 }
9119
9120 /* Otherwise, if there are no direct calls to the function, we
9121 have a free choice of whether to use standard or compressed
9122 entries. Prefer microMIPS entries if the object is known to
9123 contain microMIPS code, so that it becomes possible to create
9124 pure microMIPS binaries. Prefer standard entries otherwise,
9125 because MIPS16 ones are no smaller and are usually slower. */
9126 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9127 {
9128 if (micromips_p)
9129 h->plt.plist->need_comp = TRUE;
9130 else
9131 h->plt.plist->need_mips = TRUE;
9132 }
9133
9134 if (h->plt.plist->need_mips)
9135 {
9136 h->plt.plist->mips_offset = htab->plt_mips_offset;
9137 htab->plt_mips_offset += htab->plt_mips_entry_size;
9138 }
9139 if (h->plt.plist->need_comp)
9140 {
9141 h->plt.plist->comp_offset = htab->plt_comp_offset;
9142 htab->plt_comp_offset += htab->plt_comp_entry_size;
9143 }
9144
9145 /* Reserve the corresponding .got.plt entry now too. */
9146 h->plt.plist->gotplt_index = htab->plt_got_index++;
9147
9148 /* If the output file has no definition of the symbol, set the
9149 symbol's value to the address of the stub. */
9150 if (!bfd_link_pic (info) && !h->def_regular)
9151 hmips->use_plt_entry = TRUE;
9152
9153 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9154 htab->srelplt->size += (htab->is_vxworks
9155 ? MIPS_ELF_RELA_SIZE (dynobj)
9156 : MIPS_ELF_REL_SIZE (dynobj));
9157
9158 /* Make room for the .rela.plt.unloaded relocations. */
9159 if (htab->is_vxworks && !bfd_link_pic (info))
9160 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9161
9162 /* All relocations against this symbol that could have been made
9163 dynamic will now refer to the PLT entry instead. */
9164 hmips->possibly_dynamic_relocs = 0;
9165
9166 return TRUE;
9167 }
9168
9169 /* If this is a weak symbol, and there is a real definition, the
9170 processor independent code will have arranged for us to see the
9171 real definition first, and we can just use the same value. */
9172 if (h->u.weakdef != NULL)
9173 {
9174 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9175 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9176 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9177 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9178 return TRUE;
9179 }
9180
9181 /* Otherwise, there is nothing further to do for symbols defined
9182 in regular objects. */
9183 if (h->def_regular)
9184 return TRUE;
9185
9186 /* There's also nothing more to do if we'll convert all relocations
9187 against this symbol into dynamic relocations. */
9188 if (!hmips->has_static_relocs)
9189 return TRUE;
9190
9191 /* We're now relying on copy relocations. Complain if we have
9192 some that we can't convert. */
9193 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9194 {
9195 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
9196 "dynamic symbol %s"),
9197 h->root.root.string);
9198 bfd_set_error (bfd_error_bad_value);
9199 return FALSE;
9200 }
9201
9202 /* We must allocate the symbol in our .dynbss section, which will
9203 become part of the .bss section of the executable. There will be
9204 an entry for this symbol in the .dynsym section. The dynamic
9205 object will contain position independent code, so all references
9206 from the dynamic object to this symbol will go through the global
9207 offset table. The dynamic linker will use the .dynsym entry to
9208 determine the address it must put in the global offset table, so
9209 both the dynamic object and the regular object will refer to the
9210 same memory location for the variable. */
9211
9212 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9213 {
9214 if (htab->is_vxworks)
9215 htab->srelbss->size += sizeof (Elf32_External_Rela);
9216 else
9217 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9218 h->needs_copy = 1;
9219 }
9220
9221 /* All relocations against this symbol that could have been made
9222 dynamic will now refer to the local copy instead. */
9223 hmips->possibly_dynamic_relocs = 0;
9224
9225 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss);
9226 }
9227 \f
9228 /* This function is called after all the input files have been read,
9229 and the input sections have been assigned to output sections. We
9230 check for any mips16 stub sections that we can discard. */
9231
9232 bfd_boolean
9233 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9234 struct bfd_link_info *info)
9235 {
9236 asection *sect;
9237 struct mips_elf_link_hash_table *htab;
9238 struct mips_htab_traverse_info hti;
9239
9240 htab = mips_elf_hash_table (info);
9241 BFD_ASSERT (htab != NULL);
9242
9243 /* The .reginfo section has a fixed size. */
9244 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9245 if (sect != NULL)
9246 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9247
9248 /* The .MIPS.abiflags section has a fixed size. */
9249 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9250 if (sect != NULL)
9251 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9252
9253 hti.info = info;
9254 hti.output_bfd = output_bfd;
9255 hti.error = FALSE;
9256 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9257 mips_elf_check_symbols, &hti);
9258 if (hti.error)
9259 return FALSE;
9260
9261 return TRUE;
9262 }
9263
9264 /* If the link uses a GOT, lay it out and work out its size. */
9265
9266 static bfd_boolean
9267 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9268 {
9269 bfd *dynobj;
9270 asection *s;
9271 struct mips_got_info *g;
9272 bfd_size_type loadable_size = 0;
9273 bfd_size_type page_gotno;
9274 bfd *ibfd;
9275 struct mips_elf_traverse_got_arg tga;
9276 struct mips_elf_link_hash_table *htab;
9277
9278 htab = mips_elf_hash_table (info);
9279 BFD_ASSERT (htab != NULL);
9280
9281 s = htab->sgot;
9282 if (s == NULL)
9283 return TRUE;
9284
9285 dynobj = elf_hash_table (info)->dynobj;
9286 g = htab->got_info;
9287
9288 /* Allocate room for the reserved entries. VxWorks always reserves
9289 3 entries; other objects only reserve 2 entries. */
9290 BFD_ASSERT (g->assigned_low_gotno == 0);
9291 if (htab->is_vxworks)
9292 htab->reserved_gotno = 3;
9293 else
9294 htab->reserved_gotno = 2;
9295 g->local_gotno += htab->reserved_gotno;
9296 g->assigned_low_gotno = htab->reserved_gotno;
9297
9298 /* Decide which symbols need to go in the global part of the GOT and
9299 count the number of reloc-only GOT symbols. */
9300 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9301
9302 if (!mips_elf_resolve_final_got_entries (info, g))
9303 return FALSE;
9304
9305 /* Calculate the total loadable size of the output. That
9306 will give us the maximum number of GOT_PAGE entries
9307 required. */
9308 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9309 {
9310 asection *subsection;
9311
9312 for (subsection = ibfd->sections;
9313 subsection;
9314 subsection = subsection->next)
9315 {
9316 if ((subsection->flags & SEC_ALLOC) == 0)
9317 continue;
9318 loadable_size += ((subsection->size + 0xf)
9319 &~ (bfd_size_type) 0xf);
9320 }
9321 }
9322
9323 if (htab->is_vxworks)
9324 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9325 relocations against local symbols evaluate to "G", and the EABI does
9326 not include R_MIPS_GOT_PAGE. */
9327 page_gotno = 0;
9328 else
9329 /* Assume there are two loadable segments consisting of contiguous
9330 sections. Is 5 enough? */
9331 page_gotno = (loadable_size >> 16) + 5;
9332
9333 /* Choose the smaller of the two page estimates; both are intended to be
9334 conservative. */
9335 if (page_gotno > g->page_gotno)
9336 page_gotno = g->page_gotno;
9337
9338 g->local_gotno += page_gotno;
9339 g->assigned_high_gotno = g->local_gotno - 1;
9340
9341 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9342 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9343 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9344
9345 /* VxWorks does not support multiple GOTs. It initializes $gp to
9346 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9347 dynamic loader. */
9348 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9349 {
9350 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9351 return FALSE;
9352 }
9353 else
9354 {
9355 /* Record that all bfds use G. This also has the effect of freeing
9356 the per-bfd GOTs, which we no longer need. */
9357 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9358 if (mips_elf_bfd_got (ibfd, FALSE))
9359 mips_elf_replace_bfd_got (ibfd, g);
9360 mips_elf_replace_bfd_got (output_bfd, g);
9361
9362 /* Set up TLS entries. */
9363 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9364 tga.info = info;
9365 tga.g = g;
9366 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9367 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9368 if (!tga.g)
9369 return FALSE;
9370 BFD_ASSERT (g->tls_assigned_gotno
9371 == g->global_gotno + g->local_gotno + g->tls_gotno);
9372
9373 /* Each VxWorks GOT entry needs an explicit relocation. */
9374 if (htab->is_vxworks && bfd_link_pic (info))
9375 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9376
9377 /* Allocate room for the TLS relocations. */
9378 if (g->relocs)
9379 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9380 }
9381
9382 return TRUE;
9383 }
9384
9385 /* Estimate the size of the .MIPS.stubs section. */
9386
9387 static void
9388 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9389 {
9390 struct mips_elf_link_hash_table *htab;
9391 bfd_size_type dynsymcount;
9392
9393 htab = mips_elf_hash_table (info);
9394 BFD_ASSERT (htab != NULL);
9395
9396 if (htab->lazy_stub_count == 0)
9397 return;
9398
9399 /* IRIX rld assumes that a function stub isn't at the end of the .text
9400 section, so add a dummy entry to the end. */
9401 htab->lazy_stub_count++;
9402
9403 /* Get a worst-case estimate of the number of dynamic symbols needed.
9404 At this point, dynsymcount does not account for section symbols
9405 and count_section_dynsyms may overestimate the number that will
9406 be needed. */
9407 dynsymcount = (elf_hash_table (info)->dynsymcount
9408 + count_section_dynsyms (output_bfd, info));
9409
9410 /* Determine the size of one stub entry. There's no disadvantage
9411 from using microMIPS code here, so for the sake of pure-microMIPS
9412 binaries we prefer it whenever there's any microMIPS code in
9413 output produced at all. This has a benefit of stubs being
9414 shorter by 4 bytes each too, unless in the insn32 mode. */
9415 if (!MICROMIPS_P (output_bfd))
9416 htab->function_stub_size = (dynsymcount > 0x10000
9417 ? MIPS_FUNCTION_STUB_BIG_SIZE
9418 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9419 else if (htab->insn32)
9420 htab->function_stub_size = (dynsymcount > 0x10000
9421 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9422 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9423 else
9424 htab->function_stub_size = (dynsymcount > 0x10000
9425 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9426 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9427
9428 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9429 }
9430
9431 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9432 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9433 stub, allocate an entry in the stubs section. */
9434
9435 static bfd_boolean
9436 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9437 {
9438 struct mips_htab_traverse_info *hti = data;
9439 struct mips_elf_link_hash_table *htab;
9440 struct bfd_link_info *info;
9441 bfd *output_bfd;
9442
9443 info = hti->info;
9444 output_bfd = hti->output_bfd;
9445 htab = mips_elf_hash_table (info);
9446 BFD_ASSERT (htab != NULL);
9447
9448 if (h->needs_lazy_stub)
9449 {
9450 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9451 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9452 bfd_vma isa_bit = micromips_p;
9453
9454 BFD_ASSERT (htab->root.dynobj != NULL);
9455 if (h->root.plt.plist == NULL)
9456 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9457 if (h->root.plt.plist == NULL)
9458 {
9459 hti->error = TRUE;
9460 return FALSE;
9461 }
9462 h->root.root.u.def.section = htab->sstubs;
9463 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9464 h->root.plt.plist->stub_offset = htab->sstubs->size;
9465 h->root.other = other;
9466 htab->sstubs->size += htab->function_stub_size;
9467 }
9468 return TRUE;
9469 }
9470
9471 /* Allocate offsets in the stubs section to each symbol that needs one.
9472 Set the final size of the .MIPS.stub section. */
9473
9474 static bfd_boolean
9475 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9476 {
9477 bfd *output_bfd = info->output_bfd;
9478 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9479 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9480 bfd_vma isa_bit = micromips_p;
9481 struct mips_elf_link_hash_table *htab;
9482 struct mips_htab_traverse_info hti;
9483 struct elf_link_hash_entry *h;
9484 bfd *dynobj;
9485
9486 htab = mips_elf_hash_table (info);
9487 BFD_ASSERT (htab != NULL);
9488
9489 if (htab->lazy_stub_count == 0)
9490 return TRUE;
9491
9492 htab->sstubs->size = 0;
9493 hti.info = info;
9494 hti.output_bfd = output_bfd;
9495 hti.error = FALSE;
9496 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9497 if (hti.error)
9498 return FALSE;
9499 htab->sstubs->size += htab->function_stub_size;
9500 BFD_ASSERT (htab->sstubs->size
9501 == htab->lazy_stub_count * htab->function_stub_size);
9502
9503 dynobj = elf_hash_table (info)->dynobj;
9504 BFD_ASSERT (dynobj != NULL);
9505 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9506 if (h == NULL)
9507 return FALSE;
9508 h->root.u.def.value = isa_bit;
9509 h->other = other;
9510 h->type = STT_FUNC;
9511
9512 return TRUE;
9513 }
9514
9515 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9516 bfd_link_info. If H uses the address of a PLT entry as the value
9517 of the symbol, then set the entry in the symbol table now. Prefer
9518 a standard MIPS PLT entry. */
9519
9520 static bfd_boolean
9521 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9522 {
9523 struct bfd_link_info *info = data;
9524 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9525 struct mips_elf_link_hash_table *htab;
9526 unsigned int other;
9527 bfd_vma isa_bit;
9528 bfd_vma val;
9529
9530 htab = mips_elf_hash_table (info);
9531 BFD_ASSERT (htab != NULL);
9532
9533 if (h->use_plt_entry)
9534 {
9535 BFD_ASSERT (h->root.plt.plist != NULL);
9536 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9537 || h->root.plt.plist->comp_offset != MINUS_ONE);
9538
9539 val = htab->plt_header_size;
9540 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9541 {
9542 isa_bit = 0;
9543 val += h->root.plt.plist->mips_offset;
9544 other = 0;
9545 }
9546 else
9547 {
9548 isa_bit = 1;
9549 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9550 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9551 }
9552 val += isa_bit;
9553 /* For VxWorks, point at the PLT load stub rather than the lazy
9554 resolution stub; this stub will become the canonical function
9555 address. */
9556 if (htab->is_vxworks)
9557 val += 8;
9558
9559 h->root.root.u.def.section = htab->splt;
9560 h->root.root.u.def.value = val;
9561 h->root.other = other;
9562 }
9563
9564 return TRUE;
9565 }
9566
9567 /* Set the sizes of the dynamic sections. */
9568
9569 bfd_boolean
9570 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9571 struct bfd_link_info *info)
9572 {
9573 bfd *dynobj;
9574 asection *s, *sreldyn;
9575 bfd_boolean reltext;
9576 struct mips_elf_link_hash_table *htab;
9577
9578 htab = mips_elf_hash_table (info);
9579 BFD_ASSERT (htab != NULL);
9580 dynobj = elf_hash_table (info)->dynobj;
9581 BFD_ASSERT (dynobj != NULL);
9582
9583 if (elf_hash_table (info)->dynamic_sections_created)
9584 {
9585 /* Set the contents of the .interp section to the interpreter. */
9586 if (bfd_link_executable (info) && !info->nointerp)
9587 {
9588 s = bfd_get_linker_section (dynobj, ".interp");
9589 BFD_ASSERT (s != NULL);
9590 s->size
9591 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9592 s->contents
9593 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9594 }
9595
9596 /* Figure out the size of the PLT header if we know that we
9597 are using it. For the sake of cache alignment always use
9598 a standard header whenever any standard entries are present
9599 even if microMIPS entries are present as well. This also
9600 lets the microMIPS header rely on the value of $v0 only set
9601 by microMIPS entries, for a small size reduction.
9602
9603 Set symbol table entry values for symbols that use the
9604 address of their PLT entry now that we can calculate it.
9605
9606 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9607 haven't already in _bfd_elf_create_dynamic_sections. */
9608 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9609 {
9610 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9611 && !htab->plt_mips_offset);
9612 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9613 bfd_vma isa_bit = micromips_p;
9614 struct elf_link_hash_entry *h;
9615 bfd_vma size;
9616
9617 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9618 BFD_ASSERT (htab->sgotplt->size == 0);
9619 BFD_ASSERT (htab->splt->size == 0);
9620
9621 if (htab->is_vxworks && bfd_link_pic (info))
9622 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9623 else if (htab->is_vxworks)
9624 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9625 else if (ABI_64_P (output_bfd))
9626 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9627 else if (ABI_N32_P (output_bfd))
9628 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9629 else if (!micromips_p)
9630 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9631 else if (htab->insn32)
9632 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9633 else
9634 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9635
9636 htab->plt_header_is_comp = micromips_p;
9637 htab->plt_header_size = size;
9638 htab->splt->size = (size
9639 + htab->plt_mips_offset
9640 + htab->plt_comp_offset);
9641 htab->sgotplt->size = (htab->plt_got_index
9642 * MIPS_ELF_GOT_SIZE (dynobj));
9643
9644 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9645
9646 if (htab->root.hplt == NULL)
9647 {
9648 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9649 "_PROCEDURE_LINKAGE_TABLE_");
9650 htab->root.hplt = h;
9651 if (h == NULL)
9652 return FALSE;
9653 }
9654
9655 h = htab->root.hplt;
9656 h->root.u.def.value = isa_bit;
9657 h->other = other;
9658 h->type = STT_FUNC;
9659 }
9660 }
9661
9662 /* Allocate space for global sym dynamic relocs. */
9663 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9664
9665 mips_elf_estimate_stub_size (output_bfd, info);
9666
9667 if (!mips_elf_lay_out_got (output_bfd, info))
9668 return FALSE;
9669
9670 mips_elf_lay_out_lazy_stubs (info);
9671
9672 /* The check_relocs and adjust_dynamic_symbol entry points have
9673 determined the sizes of the various dynamic sections. Allocate
9674 memory for them. */
9675 reltext = FALSE;
9676 for (s = dynobj->sections; s != NULL; s = s->next)
9677 {
9678 const char *name;
9679
9680 /* It's OK to base decisions on the section name, because none
9681 of the dynobj section names depend upon the input files. */
9682 name = bfd_get_section_name (dynobj, s);
9683
9684 if ((s->flags & SEC_LINKER_CREATED) == 0)
9685 continue;
9686
9687 if (CONST_STRNEQ (name, ".rel"))
9688 {
9689 if (s->size != 0)
9690 {
9691 const char *outname;
9692 asection *target;
9693
9694 /* If this relocation section applies to a read only
9695 section, then we probably need a DT_TEXTREL entry.
9696 If the relocation section is .rel(a).dyn, we always
9697 assert a DT_TEXTREL entry rather than testing whether
9698 there exists a relocation to a read only section or
9699 not. */
9700 outname = bfd_get_section_name (output_bfd,
9701 s->output_section);
9702 target = bfd_get_section_by_name (output_bfd, outname + 4);
9703 if ((target != NULL
9704 && (target->flags & SEC_READONLY) != 0
9705 && (target->flags & SEC_ALLOC) != 0)
9706 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9707 reltext = TRUE;
9708
9709 /* We use the reloc_count field as a counter if we need
9710 to copy relocs into the output file. */
9711 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9712 s->reloc_count = 0;
9713
9714 /* If combreloc is enabled, elf_link_sort_relocs() will
9715 sort relocations, but in a different way than we do,
9716 and before we're done creating relocations. Also, it
9717 will move them around between input sections'
9718 relocation's contents, so our sorting would be
9719 broken, so don't let it run. */
9720 info->combreloc = 0;
9721 }
9722 }
9723 else if (bfd_link_executable (info)
9724 && ! mips_elf_hash_table (info)->use_rld_obj_head
9725 && CONST_STRNEQ (name, ".rld_map"))
9726 {
9727 /* We add a room for __rld_map. It will be filled in by the
9728 rtld to contain a pointer to the _r_debug structure. */
9729 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9730 }
9731 else if (SGI_COMPAT (output_bfd)
9732 && CONST_STRNEQ (name, ".compact_rel"))
9733 s->size += mips_elf_hash_table (info)->compact_rel_size;
9734 else if (s == htab->splt)
9735 {
9736 /* If the last PLT entry has a branch delay slot, allocate
9737 room for an extra nop to fill the delay slot. This is
9738 for CPUs without load interlocking. */
9739 if (! LOAD_INTERLOCKS_P (output_bfd)
9740 && ! htab->is_vxworks && s->size > 0)
9741 s->size += 4;
9742 }
9743 else if (! CONST_STRNEQ (name, ".init")
9744 && s != htab->sgot
9745 && s != htab->sgotplt
9746 && s != htab->sstubs
9747 && s != htab->sdynbss)
9748 {
9749 /* It's not one of our sections, so don't allocate space. */
9750 continue;
9751 }
9752
9753 if (s->size == 0)
9754 {
9755 s->flags |= SEC_EXCLUDE;
9756 continue;
9757 }
9758
9759 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9760 continue;
9761
9762 /* Allocate memory for the section contents. */
9763 s->contents = bfd_zalloc (dynobj, s->size);
9764 if (s->contents == NULL)
9765 {
9766 bfd_set_error (bfd_error_no_memory);
9767 return FALSE;
9768 }
9769 }
9770
9771 if (elf_hash_table (info)->dynamic_sections_created)
9772 {
9773 /* Add some entries to the .dynamic section. We fill in the
9774 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9775 must add the entries now so that we get the correct size for
9776 the .dynamic section. */
9777
9778 /* SGI object has the equivalence of DT_DEBUG in the
9779 DT_MIPS_RLD_MAP entry. This must come first because glibc
9780 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9781 may only look at the first one they see. */
9782 if (!bfd_link_pic (info)
9783 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9784 return FALSE;
9785
9786 if (bfd_link_executable (info)
9787 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9788 return FALSE;
9789
9790 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9791 used by the debugger. */
9792 if (bfd_link_executable (info)
9793 && !SGI_COMPAT (output_bfd)
9794 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9795 return FALSE;
9796
9797 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9798 info->flags |= DF_TEXTREL;
9799
9800 if ((info->flags & DF_TEXTREL) != 0)
9801 {
9802 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9803 return FALSE;
9804
9805 /* Clear the DF_TEXTREL flag. It will be set again if we
9806 write out an actual text relocation; we may not, because
9807 at this point we do not know whether e.g. any .eh_frame
9808 absolute relocations have been converted to PC-relative. */
9809 info->flags &= ~DF_TEXTREL;
9810 }
9811
9812 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9813 return FALSE;
9814
9815 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9816 if (htab->is_vxworks)
9817 {
9818 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9819 use any of the DT_MIPS_* tags. */
9820 if (sreldyn && sreldyn->size > 0)
9821 {
9822 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9823 return FALSE;
9824
9825 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9826 return FALSE;
9827
9828 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9829 return FALSE;
9830 }
9831 }
9832 else
9833 {
9834 if (sreldyn && sreldyn->size > 0)
9835 {
9836 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9837 return FALSE;
9838
9839 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9840 return FALSE;
9841
9842 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9843 return FALSE;
9844 }
9845
9846 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9847 return FALSE;
9848
9849 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9850 return FALSE;
9851
9852 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9853 return FALSE;
9854
9855 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9856 return FALSE;
9857
9858 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9859 return FALSE;
9860
9861 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9862 return FALSE;
9863
9864 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9865 return FALSE;
9866
9867 if (IRIX_COMPAT (dynobj) == ict_irix5
9868 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9869 return FALSE;
9870
9871 if (IRIX_COMPAT (dynobj) == ict_irix6
9872 && (bfd_get_section_by_name
9873 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9874 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9875 return FALSE;
9876 }
9877 if (htab->splt->size > 0)
9878 {
9879 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9880 return FALSE;
9881
9882 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9883 return FALSE;
9884
9885 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9886 return FALSE;
9887
9888 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9889 return FALSE;
9890 }
9891 if (htab->is_vxworks
9892 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9893 return FALSE;
9894 }
9895
9896 return TRUE;
9897 }
9898 \f
9899 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9900 Adjust its R_ADDEND field so that it is correct for the output file.
9901 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9902 and sections respectively; both use symbol indexes. */
9903
9904 static void
9905 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9906 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9907 asection **local_sections, Elf_Internal_Rela *rel)
9908 {
9909 unsigned int r_type, r_symndx;
9910 Elf_Internal_Sym *sym;
9911 asection *sec;
9912
9913 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9914 {
9915 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9916 if (gprel16_reloc_p (r_type)
9917 || r_type == R_MIPS_GPREL32
9918 || literal_reloc_p (r_type))
9919 {
9920 rel->r_addend += _bfd_get_gp_value (input_bfd);
9921 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9922 }
9923
9924 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9925 sym = local_syms + r_symndx;
9926
9927 /* Adjust REL's addend to account for section merging. */
9928 if (!bfd_link_relocatable (info))
9929 {
9930 sec = local_sections[r_symndx];
9931 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9932 }
9933
9934 /* This would normally be done by the rela_normal code in elflink.c. */
9935 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9936 rel->r_addend += local_sections[r_symndx]->output_offset;
9937 }
9938 }
9939
9940 /* Handle relocations against symbols from removed linkonce sections,
9941 or sections discarded by a linker script. We use this wrapper around
9942 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9943 on 64-bit ELF targets. In this case for any relocation handled, which
9944 always be the first in a triplet, the remaining two have to be processed
9945 together with the first, even if they are R_MIPS_NONE. It is the symbol
9946 index referred by the first reloc that applies to all the three and the
9947 remaining two never refer to an object symbol. And it is the final
9948 relocation (the last non-null one) that determines the output field of
9949 the whole relocation so retrieve the corresponding howto structure for
9950 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9951
9952 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9953 and therefore requires to be pasted in a loop. It also defines a block
9954 and does not protect any of its arguments, hence the extra brackets. */
9955
9956 static void
9957 mips_reloc_against_discarded_section (bfd *output_bfd,
9958 struct bfd_link_info *info,
9959 bfd *input_bfd, asection *input_section,
9960 Elf_Internal_Rela **rel,
9961 const Elf_Internal_Rela **relend,
9962 bfd_boolean rel_reloc,
9963 reloc_howto_type *howto,
9964 bfd_byte *contents)
9965 {
9966 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9967 int count = bed->s->int_rels_per_ext_rel;
9968 unsigned int r_type;
9969 int i;
9970
9971 for (i = count - 1; i > 0; i--)
9972 {
9973 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9974 if (r_type != R_MIPS_NONE)
9975 {
9976 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9977 break;
9978 }
9979 }
9980 do
9981 {
9982 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9983 (*rel), count, (*relend),
9984 howto, i, contents);
9985 }
9986 while (0);
9987 }
9988
9989 /* Relocate a MIPS ELF section. */
9990
9991 bfd_boolean
9992 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9993 bfd *input_bfd, asection *input_section,
9994 bfd_byte *contents, Elf_Internal_Rela *relocs,
9995 Elf_Internal_Sym *local_syms,
9996 asection **local_sections)
9997 {
9998 Elf_Internal_Rela *rel;
9999 const Elf_Internal_Rela *relend;
10000 bfd_vma addend = 0;
10001 bfd_boolean use_saved_addend_p = FALSE;
10002 const struct elf_backend_data *bed;
10003
10004 bed = get_elf_backend_data (output_bfd);
10005 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10006 for (rel = relocs; rel < relend; ++rel)
10007 {
10008 const char *name;
10009 bfd_vma value = 0;
10010 reloc_howto_type *howto;
10011 bfd_boolean cross_mode_jump_p = FALSE;
10012 /* TRUE if the relocation is a RELA relocation, rather than a
10013 REL relocation. */
10014 bfd_boolean rela_relocation_p = TRUE;
10015 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10016 const char *msg;
10017 unsigned long r_symndx;
10018 asection *sec;
10019 Elf_Internal_Shdr *symtab_hdr;
10020 struct elf_link_hash_entry *h;
10021 bfd_boolean rel_reloc;
10022
10023 rel_reloc = (NEWABI_P (input_bfd)
10024 && mips_elf_rel_relocation_p (input_bfd, input_section,
10025 relocs, rel));
10026 /* Find the relocation howto for this relocation. */
10027 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10028
10029 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10030 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10031 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10032 {
10033 sec = local_sections[r_symndx];
10034 h = NULL;
10035 }
10036 else
10037 {
10038 unsigned long extsymoff;
10039
10040 extsymoff = 0;
10041 if (!elf_bad_symtab (input_bfd))
10042 extsymoff = symtab_hdr->sh_info;
10043 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10044 while (h->root.type == bfd_link_hash_indirect
10045 || h->root.type == bfd_link_hash_warning)
10046 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10047
10048 sec = NULL;
10049 if (h->root.type == bfd_link_hash_defined
10050 || h->root.type == bfd_link_hash_defweak)
10051 sec = h->root.u.def.section;
10052 }
10053
10054 if (sec != NULL && discarded_section (sec))
10055 {
10056 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10057 input_section, &rel, &relend,
10058 rel_reloc, howto, contents);
10059 continue;
10060 }
10061
10062 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10063 {
10064 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10065 64-bit code, but make sure all their addresses are in the
10066 lowermost or uppermost 32-bit section of the 64-bit address
10067 space. Thus, when they use an R_MIPS_64 they mean what is
10068 usually meant by R_MIPS_32, with the exception that the
10069 stored value is sign-extended to 64 bits. */
10070 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10071
10072 /* On big-endian systems, we need to lie about the position
10073 of the reloc. */
10074 if (bfd_big_endian (input_bfd))
10075 rel->r_offset += 4;
10076 }
10077
10078 if (!use_saved_addend_p)
10079 {
10080 /* If these relocations were originally of the REL variety,
10081 we must pull the addend out of the field that will be
10082 relocated. Otherwise, we simply use the contents of the
10083 RELA relocation. */
10084 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10085 relocs, rel))
10086 {
10087 rela_relocation_p = FALSE;
10088 addend = mips_elf_read_rel_addend (input_bfd, rel,
10089 howto, contents);
10090 if (hi16_reloc_p (r_type)
10091 || (got16_reloc_p (r_type)
10092 && mips_elf_local_relocation_p (input_bfd, rel,
10093 local_sections)))
10094 {
10095 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10096 contents, &addend))
10097 {
10098 if (h)
10099 name = h->root.root.string;
10100 else
10101 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10102 local_syms + r_symndx,
10103 sec);
10104 (*_bfd_error_handler)
10105 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
10106 input_bfd, input_section, name, howto->name,
10107 rel->r_offset);
10108 }
10109 }
10110 else
10111 addend <<= howto->rightshift;
10112 }
10113 else
10114 addend = rel->r_addend;
10115 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10116 local_syms, local_sections, rel);
10117 }
10118
10119 if (bfd_link_relocatable (info))
10120 {
10121 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10122 && bfd_big_endian (input_bfd))
10123 rel->r_offset -= 4;
10124
10125 if (!rela_relocation_p && rel->r_addend)
10126 {
10127 addend += rel->r_addend;
10128 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10129 addend = mips_elf_high (addend);
10130 else if (r_type == R_MIPS_HIGHER)
10131 addend = mips_elf_higher (addend);
10132 else if (r_type == R_MIPS_HIGHEST)
10133 addend = mips_elf_highest (addend);
10134 else
10135 addend >>= howto->rightshift;
10136
10137 /* We use the source mask, rather than the destination
10138 mask because the place to which we are writing will be
10139 source of the addend in the final link. */
10140 addend &= howto->src_mask;
10141
10142 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10143 /* See the comment above about using R_MIPS_64 in the 32-bit
10144 ABI. Here, we need to update the addend. It would be
10145 possible to get away with just using the R_MIPS_32 reloc
10146 but for endianness. */
10147 {
10148 bfd_vma sign_bits;
10149 bfd_vma low_bits;
10150 bfd_vma high_bits;
10151
10152 if (addend & ((bfd_vma) 1 << 31))
10153 #ifdef BFD64
10154 sign_bits = ((bfd_vma) 1 << 32) - 1;
10155 #else
10156 sign_bits = -1;
10157 #endif
10158 else
10159 sign_bits = 0;
10160
10161 /* If we don't know that we have a 64-bit type,
10162 do two separate stores. */
10163 if (bfd_big_endian (input_bfd))
10164 {
10165 /* Store the sign-bits (which are most significant)
10166 first. */
10167 low_bits = sign_bits;
10168 high_bits = addend;
10169 }
10170 else
10171 {
10172 low_bits = addend;
10173 high_bits = sign_bits;
10174 }
10175 bfd_put_32 (input_bfd, low_bits,
10176 contents + rel->r_offset);
10177 bfd_put_32 (input_bfd, high_bits,
10178 contents + rel->r_offset + 4);
10179 continue;
10180 }
10181
10182 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10183 input_bfd, input_section,
10184 contents, FALSE))
10185 return FALSE;
10186 }
10187
10188 /* Go on to the next relocation. */
10189 continue;
10190 }
10191
10192 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10193 relocations for the same offset. In that case we are
10194 supposed to treat the output of each relocation as the addend
10195 for the next. */
10196 if (rel + 1 < relend
10197 && rel->r_offset == rel[1].r_offset
10198 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10199 use_saved_addend_p = TRUE;
10200 else
10201 use_saved_addend_p = FALSE;
10202
10203 /* Figure out what value we are supposed to relocate. */
10204 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10205 input_section, info, rel,
10206 addend, howto, local_syms,
10207 local_sections, &value,
10208 &name, &cross_mode_jump_p,
10209 use_saved_addend_p))
10210 {
10211 case bfd_reloc_continue:
10212 /* There's nothing to do. */
10213 continue;
10214
10215 case bfd_reloc_undefined:
10216 /* mips_elf_calculate_relocation already called the
10217 undefined_symbol callback. There's no real point in
10218 trying to perform the relocation at this point, so we
10219 just skip ahead to the next relocation. */
10220 continue;
10221
10222 case bfd_reloc_notsupported:
10223 msg = _("internal error: unsupported relocation error");
10224 info->callbacks->warning
10225 (info, msg, name, input_bfd, input_section, rel->r_offset);
10226 return FALSE;
10227
10228 case bfd_reloc_overflow:
10229 if (use_saved_addend_p)
10230 /* Ignore overflow until we reach the last relocation for
10231 a given location. */
10232 ;
10233 else
10234 {
10235 struct mips_elf_link_hash_table *htab;
10236
10237 htab = mips_elf_hash_table (info);
10238 BFD_ASSERT (htab != NULL);
10239 BFD_ASSERT (name != NULL);
10240 if (!htab->small_data_overflow_reported
10241 && (gprel16_reloc_p (howto->type)
10242 || literal_reloc_p (howto->type)))
10243 {
10244 msg = _("small-data section exceeds 64KB;"
10245 " lower small-data size limit (see option -G)");
10246
10247 htab->small_data_overflow_reported = TRUE;
10248 (*info->callbacks->einfo) ("%P: %s\n", msg);
10249 }
10250 (*info->callbacks->reloc_overflow)
10251 (info, NULL, name, howto->name, (bfd_vma) 0,
10252 input_bfd, input_section, rel->r_offset);
10253 }
10254 break;
10255
10256 case bfd_reloc_ok:
10257 break;
10258
10259 case bfd_reloc_outofrange:
10260 msg = NULL;
10261 if (jal_reloc_p (howto->type))
10262 msg = _("JALX to a non-word-aligned address");
10263 else if (aligned_pcrel_reloc_p (howto->type))
10264 msg = _("PC-relative load from unaligned address");
10265 if (msg)
10266 {
10267 info->callbacks->einfo
10268 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10269 break;
10270 }
10271 /* Fall through. */
10272
10273 default:
10274 abort ();
10275 break;
10276 }
10277
10278 /* If we've got another relocation for the address, keep going
10279 until we reach the last one. */
10280 if (use_saved_addend_p)
10281 {
10282 addend = value;
10283 continue;
10284 }
10285
10286 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10287 /* See the comment above about using R_MIPS_64 in the 32-bit
10288 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10289 that calculated the right value. Now, however, we
10290 sign-extend the 32-bit result to 64-bits, and store it as a
10291 64-bit value. We are especially generous here in that we
10292 go to extreme lengths to support this usage on systems with
10293 only a 32-bit VMA. */
10294 {
10295 bfd_vma sign_bits;
10296 bfd_vma low_bits;
10297 bfd_vma high_bits;
10298
10299 if (value & ((bfd_vma) 1 << 31))
10300 #ifdef BFD64
10301 sign_bits = ((bfd_vma) 1 << 32) - 1;
10302 #else
10303 sign_bits = -1;
10304 #endif
10305 else
10306 sign_bits = 0;
10307
10308 /* If we don't know that we have a 64-bit type,
10309 do two separate stores. */
10310 if (bfd_big_endian (input_bfd))
10311 {
10312 /* Undo what we did above. */
10313 rel->r_offset -= 4;
10314 /* Store the sign-bits (which are most significant)
10315 first. */
10316 low_bits = sign_bits;
10317 high_bits = value;
10318 }
10319 else
10320 {
10321 low_bits = value;
10322 high_bits = sign_bits;
10323 }
10324 bfd_put_32 (input_bfd, low_bits,
10325 contents + rel->r_offset);
10326 bfd_put_32 (input_bfd, high_bits,
10327 contents + rel->r_offset + 4);
10328 continue;
10329 }
10330
10331 /* Actually perform the relocation. */
10332 if (! mips_elf_perform_relocation (info, howto, rel, value,
10333 input_bfd, input_section,
10334 contents, cross_mode_jump_p))
10335 return FALSE;
10336 }
10337
10338 return TRUE;
10339 }
10340 \f
10341 /* A function that iterates over each entry in la25_stubs and fills
10342 in the code for each one. DATA points to a mips_htab_traverse_info. */
10343
10344 static int
10345 mips_elf_create_la25_stub (void **slot, void *data)
10346 {
10347 struct mips_htab_traverse_info *hti;
10348 struct mips_elf_link_hash_table *htab;
10349 struct mips_elf_la25_stub *stub;
10350 asection *s;
10351 bfd_byte *loc;
10352 bfd_vma offset, target, target_high, target_low;
10353
10354 stub = (struct mips_elf_la25_stub *) *slot;
10355 hti = (struct mips_htab_traverse_info *) data;
10356 htab = mips_elf_hash_table (hti->info);
10357 BFD_ASSERT (htab != NULL);
10358
10359 /* Create the section contents, if we haven't already. */
10360 s = stub->stub_section;
10361 loc = s->contents;
10362 if (loc == NULL)
10363 {
10364 loc = bfd_malloc (s->size);
10365 if (loc == NULL)
10366 {
10367 hti->error = TRUE;
10368 return FALSE;
10369 }
10370 s->contents = loc;
10371 }
10372
10373 /* Work out where in the section this stub should go. */
10374 offset = stub->offset;
10375
10376 /* Work out the target address. */
10377 target = mips_elf_get_la25_target (stub, &s);
10378 target += s->output_section->vma + s->output_offset;
10379
10380 target_high = ((target + 0x8000) >> 16) & 0xffff;
10381 target_low = (target & 0xffff);
10382
10383 if (stub->stub_section != htab->strampoline)
10384 {
10385 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10386 of the section and write the two instructions at the end. */
10387 memset (loc, 0, offset);
10388 loc += offset;
10389 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10390 {
10391 bfd_put_micromips_32 (hti->output_bfd,
10392 LA25_LUI_MICROMIPS (target_high),
10393 loc);
10394 bfd_put_micromips_32 (hti->output_bfd,
10395 LA25_ADDIU_MICROMIPS (target_low),
10396 loc + 4);
10397 }
10398 else
10399 {
10400 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10401 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10402 }
10403 }
10404 else
10405 {
10406 /* This is trampoline. */
10407 loc += offset;
10408 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10409 {
10410 bfd_put_micromips_32 (hti->output_bfd,
10411 LA25_LUI_MICROMIPS (target_high), loc);
10412 bfd_put_micromips_32 (hti->output_bfd,
10413 LA25_J_MICROMIPS (target), loc + 4);
10414 bfd_put_micromips_32 (hti->output_bfd,
10415 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10416 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10417 }
10418 else
10419 {
10420 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10421 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10422 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10423 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10424 }
10425 }
10426 return TRUE;
10427 }
10428
10429 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10430 adjust it appropriately now. */
10431
10432 static void
10433 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10434 const char *name, Elf_Internal_Sym *sym)
10435 {
10436 /* The linker script takes care of providing names and values for
10437 these, but we must place them into the right sections. */
10438 static const char* const text_section_symbols[] = {
10439 "_ftext",
10440 "_etext",
10441 "__dso_displacement",
10442 "__elf_header",
10443 "__program_header_table",
10444 NULL
10445 };
10446
10447 static const char* const data_section_symbols[] = {
10448 "_fdata",
10449 "_edata",
10450 "_end",
10451 "_fbss",
10452 NULL
10453 };
10454
10455 const char* const *p;
10456 int i;
10457
10458 for (i = 0; i < 2; ++i)
10459 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10460 *p;
10461 ++p)
10462 if (strcmp (*p, name) == 0)
10463 {
10464 /* All of these symbols are given type STT_SECTION by the
10465 IRIX6 linker. */
10466 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10467 sym->st_other = STO_PROTECTED;
10468
10469 /* The IRIX linker puts these symbols in special sections. */
10470 if (i == 0)
10471 sym->st_shndx = SHN_MIPS_TEXT;
10472 else
10473 sym->st_shndx = SHN_MIPS_DATA;
10474
10475 break;
10476 }
10477 }
10478
10479 /* Finish up dynamic symbol handling. We set the contents of various
10480 dynamic sections here. */
10481
10482 bfd_boolean
10483 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10484 struct bfd_link_info *info,
10485 struct elf_link_hash_entry *h,
10486 Elf_Internal_Sym *sym)
10487 {
10488 bfd *dynobj;
10489 asection *sgot;
10490 struct mips_got_info *g, *gg;
10491 const char *name;
10492 int idx;
10493 struct mips_elf_link_hash_table *htab;
10494 struct mips_elf_link_hash_entry *hmips;
10495
10496 htab = mips_elf_hash_table (info);
10497 BFD_ASSERT (htab != NULL);
10498 dynobj = elf_hash_table (info)->dynobj;
10499 hmips = (struct mips_elf_link_hash_entry *) h;
10500
10501 BFD_ASSERT (!htab->is_vxworks);
10502
10503 if (h->plt.plist != NULL
10504 && (h->plt.plist->mips_offset != MINUS_ONE
10505 || h->plt.plist->comp_offset != MINUS_ONE))
10506 {
10507 /* We've decided to create a PLT entry for this symbol. */
10508 bfd_byte *loc;
10509 bfd_vma header_address, got_address;
10510 bfd_vma got_address_high, got_address_low, load;
10511 bfd_vma got_index;
10512 bfd_vma isa_bit;
10513
10514 got_index = h->plt.plist->gotplt_index;
10515
10516 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10517 BFD_ASSERT (h->dynindx != -1);
10518 BFD_ASSERT (htab->splt != NULL);
10519 BFD_ASSERT (got_index != MINUS_ONE);
10520 BFD_ASSERT (!h->def_regular);
10521
10522 /* Calculate the address of the PLT header. */
10523 isa_bit = htab->plt_header_is_comp;
10524 header_address = (htab->splt->output_section->vma
10525 + htab->splt->output_offset + isa_bit);
10526
10527 /* Calculate the address of the .got.plt entry. */
10528 got_address = (htab->sgotplt->output_section->vma
10529 + htab->sgotplt->output_offset
10530 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10531
10532 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10533 got_address_low = got_address & 0xffff;
10534
10535 /* Initially point the .got.plt entry at the PLT header. */
10536 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10537 if (ABI_64_P (output_bfd))
10538 bfd_put_64 (output_bfd, header_address, loc);
10539 else
10540 bfd_put_32 (output_bfd, header_address, loc);
10541
10542 /* Now handle the PLT itself. First the standard entry (the order
10543 does not matter, we just have to pick one). */
10544 if (h->plt.plist->mips_offset != MINUS_ONE)
10545 {
10546 const bfd_vma *plt_entry;
10547 bfd_vma plt_offset;
10548
10549 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10550
10551 BFD_ASSERT (plt_offset <= htab->splt->size);
10552
10553 /* Find out where the .plt entry should go. */
10554 loc = htab->splt->contents + plt_offset;
10555
10556 /* Pick the load opcode. */
10557 load = MIPS_ELF_LOAD_WORD (output_bfd);
10558
10559 /* Fill in the PLT entry itself. */
10560
10561 if (MIPSR6_P (output_bfd))
10562 plt_entry = mipsr6_exec_plt_entry;
10563 else
10564 plt_entry = mips_exec_plt_entry;
10565 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10566 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10567 loc + 4);
10568
10569 if (! LOAD_INTERLOCKS_P (output_bfd))
10570 {
10571 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10572 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10573 }
10574 else
10575 {
10576 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10577 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10578 loc + 12);
10579 }
10580 }
10581
10582 /* Now the compressed entry. They come after any standard ones. */
10583 if (h->plt.plist->comp_offset != MINUS_ONE)
10584 {
10585 bfd_vma plt_offset;
10586
10587 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10588 + h->plt.plist->comp_offset);
10589
10590 BFD_ASSERT (plt_offset <= htab->splt->size);
10591
10592 /* Find out where the .plt entry should go. */
10593 loc = htab->splt->contents + plt_offset;
10594
10595 /* Fill in the PLT entry itself. */
10596 if (!MICROMIPS_P (output_bfd))
10597 {
10598 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10599
10600 bfd_put_16 (output_bfd, plt_entry[0], loc);
10601 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10602 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10603 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10604 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10605 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10606 bfd_put_32 (output_bfd, got_address, loc + 12);
10607 }
10608 else if (htab->insn32)
10609 {
10610 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10611
10612 bfd_put_16 (output_bfd, plt_entry[0], loc);
10613 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10614 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10615 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10616 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10617 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10618 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10619 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10620 }
10621 else
10622 {
10623 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10624 bfd_signed_vma gotpc_offset;
10625 bfd_vma loc_address;
10626
10627 BFD_ASSERT (got_address % 4 == 0);
10628
10629 loc_address = (htab->splt->output_section->vma
10630 + htab->splt->output_offset + plt_offset);
10631 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10632
10633 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10634 if (gotpc_offset + 0x1000000 >= 0x2000000)
10635 {
10636 (*_bfd_error_handler)
10637 (_("%B: `%A' offset of %ld from `%A' "
10638 "beyond the range of ADDIUPC"),
10639 output_bfd,
10640 htab->sgotplt->output_section,
10641 htab->splt->output_section,
10642 (long) gotpc_offset);
10643 bfd_set_error (bfd_error_no_error);
10644 return FALSE;
10645 }
10646 bfd_put_16 (output_bfd,
10647 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10648 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10649 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10650 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10651 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10652 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10653 }
10654 }
10655
10656 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10657 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
10658 got_index - 2, h->dynindx,
10659 R_MIPS_JUMP_SLOT, got_address);
10660
10661 /* We distinguish between PLT entries and lazy-binding stubs by
10662 giving the former an st_other value of STO_MIPS_PLT. Set the
10663 flag and leave the value if there are any relocations in the
10664 binary where pointer equality matters. */
10665 sym->st_shndx = SHN_UNDEF;
10666 if (h->pointer_equality_needed)
10667 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10668 else
10669 {
10670 sym->st_value = 0;
10671 sym->st_other = 0;
10672 }
10673 }
10674
10675 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10676 {
10677 /* We've decided to create a lazy-binding stub. */
10678 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10679 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10680 bfd_vma stub_size = htab->function_stub_size;
10681 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10682 bfd_vma isa_bit = micromips_p;
10683 bfd_vma stub_big_size;
10684
10685 if (!micromips_p)
10686 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10687 else if (htab->insn32)
10688 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10689 else
10690 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10691
10692 /* This symbol has a stub. Set it up. */
10693
10694 BFD_ASSERT (h->dynindx != -1);
10695
10696 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10697
10698 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10699 sign extension at runtime in the stub, resulting in a negative
10700 index value. */
10701 if (h->dynindx & ~0x7fffffff)
10702 return FALSE;
10703
10704 /* Fill the stub. */
10705 if (micromips_p)
10706 {
10707 idx = 0;
10708 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10709 stub + idx);
10710 idx += 4;
10711 if (htab->insn32)
10712 {
10713 bfd_put_micromips_32 (output_bfd,
10714 STUB_MOVE32_MICROMIPS, stub + idx);
10715 idx += 4;
10716 }
10717 else
10718 {
10719 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10720 idx += 2;
10721 }
10722 if (stub_size == stub_big_size)
10723 {
10724 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10725
10726 bfd_put_micromips_32 (output_bfd,
10727 STUB_LUI_MICROMIPS (dynindx_hi),
10728 stub + idx);
10729 idx += 4;
10730 }
10731 if (htab->insn32)
10732 {
10733 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10734 stub + idx);
10735 idx += 4;
10736 }
10737 else
10738 {
10739 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10740 idx += 2;
10741 }
10742
10743 /* If a large stub is not required and sign extension is not a
10744 problem, then use legacy code in the stub. */
10745 if (stub_size == stub_big_size)
10746 bfd_put_micromips_32 (output_bfd,
10747 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10748 stub + idx);
10749 else if (h->dynindx & ~0x7fff)
10750 bfd_put_micromips_32 (output_bfd,
10751 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10752 stub + idx);
10753 else
10754 bfd_put_micromips_32 (output_bfd,
10755 STUB_LI16S_MICROMIPS (output_bfd,
10756 h->dynindx),
10757 stub + idx);
10758 }
10759 else
10760 {
10761 idx = 0;
10762 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10763 idx += 4;
10764 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10765 idx += 4;
10766 if (stub_size == stub_big_size)
10767 {
10768 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10769 stub + idx);
10770 idx += 4;
10771 }
10772 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10773 idx += 4;
10774
10775 /* If a large stub is not required and sign extension is not a
10776 problem, then use legacy code in the stub. */
10777 if (stub_size == stub_big_size)
10778 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10779 stub + idx);
10780 else if (h->dynindx & ~0x7fff)
10781 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10782 stub + idx);
10783 else
10784 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10785 stub + idx);
10786 }
10787
10788 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10789 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10790 stub, stub_size);
10791
10792 /* Mark the symbol as undefined. stub_offset != -1 occurs
10793 only for the referenced symbol. */
10794 sym->st_shndx = SHN_UNDEF;
10795
10796 /* The run-time linker uses the st_value field of the symbol
10797 to reset the global offset table entry for this external
10798 to its stub address when unlinking a shared object. */
10799 sym->st_value = (htab->sstubs->output_section->vma
10800 + htab->sstubs->output_offset
10801 + h->plt.plist->stub_offset
10802 + isa_bit);
10803 sym->st_other = other;
10804 }
10805
10806 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10807 refer to the stub, since only the stub uses the standard calling
10808 conventions. */
10809 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10810 {
10811 BFD_ASSERT (hmips->need_fn_stub);
10812 sym->st_value = (hmips->fn_stub->output_section->vma
10813 + hmips->fn_stub->output_offset);
10814 sym->st_size = hmips->fn_stub->size;
10815 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10816 }
10817
10818 BFD_ASSERT (h->dynindx != -1
10819 || h->forced_local);
10820
10821 sgot = htab->sgot;
10822 g = htab->got_info;
10823 BFD_ASSERT (g != NULL);
10824
10825 /* Run through the global symbol table, creating GOT entries for all
10826 the symbols that need them. */
10827 if (hmips->global_got_area != GGA_NONE)
10828 {
10829 bfd_vma offset;
10830 bfd_vma value;
10831
10832 value = sym->st_value;
10833 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10834 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10835 }
10836
10837 if (hmips->global_got_area != GGA_NONE && g->next)
10838 {
10839 struct mips_got_entry e, *p;
10840 bfd_vma entry;
10841 bfd_vma offset;
10842
10843 gg = g;
10844
10845 e.abfd = output_bfd;
10846 e.symndx = -1;
10847 e.d.h = hmips;
10848 e.tls_type = GOT_TLS_NONE;
10849
10850 for (g = g->next; g->next != gg; g = g->next)
10851 {
10852 if (g->got_entries
10853 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10854 &e)))
10855 {
10856 offset = p->gotidx;
10857 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
10858 if (bfd_link_pic (info)
10859 || (elf_hash_table (info)->dynamic_sections_created
10860 && p->d.h != NULL
10861 && p->d.h->root.def_dynamic
10862 && !p->d.h->root.def_regular))
10863 {
10864 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10865 the various compatibility problems, it's easier to mock
10866 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10867 mips_elf_create_dynamic_relocation to calculate the
10868 appropriate addend. */
10869 Elf_Internal_Rela rel[3];
10870
10871 memset (rel, 0, sizeof (rel));
10872 if (ABI_64_P (output_bfd))
10873 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10874 else
10875 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10876 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10877
10878 entry = 0;
10879 if (! (mips_elf_create_dynamic_relocation
10880 (output_bfd, info, rel,
10881 e.d.h, NULL, sym->st_value, &entry, sgot)))
10882 return FALSE;
10883 }
10884 else
10885 entry = sym->st_value;
10886 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10887 }
10888 }
10889 }
10890
10891 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10892 name = h->root.root.string;
10893 if (h == elf_hash_table (info)->hdynamic
10894 || h == elf_hash_table (info)->hgot)
10895 sym->st_shndx = SHN_ABS;
10896 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10897 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10898 {
10899 sym->st_shndx = SHN_ABS;
10900 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10901 sym->st_value = 1;
10902 }
10903 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10904 {
10905 sym->st_shndx = SHN_ABS;
10906 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10907 sym->st_value = elf_gp (output_bfd);
10908 }
10909 else if (SGI_COMPAT (output_bfd))
10910 {
10911 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10912 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10913 {
10914 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10915 sym->st_other = STO_PROTECTED;
10916 sym->st_value = 0;
10917 sym->st_shndx = SHN_MIPS_DATA;
10918 }
10919 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10920 {
10921 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10922 sym->st_other = STO_PROTECTED;
10923 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10924 sym->st_shndx = SHN_ABS;
10925 }
10926 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10927 {
10928 if (h->type == STT_FUNC)
10929 sym->st_shndx = SHN_MIPS_TEXT;
10930 else if (h->type == STT_OBJECT)
10931 sym->st_shndx = SHN_MIPS_DATA;
10932 }
10933 }
10934
10935 /* Emit a copy reloc, if needed. */
10936 if (h->needs_copy)
10937 {
10938 asection *s;
10939 bfd_vma symval;
10940
10941 BFD_ASSERT (h->dynindx != -1);
10942 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10943
10944 s = mips_elf_rel_dyn_section (info, FALSE);
10945 symval = (h->root.u.def.section->output_section->vma
10946 + h->root.u.def.section->output_offset
10947 + h->root.u.def.value);
10948 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10949 h->dynindx, R_MIPS_COPY, symval);
10950 }
10951
10952 /* Handle the IRIX6-specific symbols. */
10953 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10954 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10955
10956 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
10957 to treat compressed symbols like any other. */
10958 if (ELF_ST_IS_MIPS16 (sym->st_other))
10959 {
10960 BFD_ASSERT (sym->st_value & 1);
10961 sym->st_other -= STO_MIPS16;
10962 }
10963 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
10964 {
10965 BFD_ASSERT (sym->st_value & 1);
10966 sym->st_other -= STO_MICROMIPS;
10967 }
10968
10969 return TRUE;
10970 }
10971
10972 /* Likewise, for VxWorks. */
10973
10974 bfd_boolean
10975 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10976 struct bfd_link_info *info,
10977 struct elf_link_hash_entry *h,
10978 Elf_Internal_Sym *sym)
10979 {
10980 bfd *dynobj;
10981 asection *sgot;
10982 struct mips_got_info *g;
10983 struct mips_elf_link_hash_table *htab;
10984 struct mips_elf_link_hash_entry *hmips;
10985
10986 htab = mips_elf_hash_table (info);
10987 BFD_ASSERT (htab != NULL);
10988 dynobj = elf_hash_table (info)->dynobj;
10989 hmips = (struct mips_elf_link_hash_entry *) h;
10990
10991 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
10992 {
10993 bfd_byte *loc;
10994 bfd_vma plt_address, got_address, got_offset, branch_offset;
10995 Elf_Internal_Rela rel;
10996 static const bfd_vma *plt_entry;
10997 bfd_vma gotplt_index;
10998 bfd_vma plt_offset;
10999
11000 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11001 gotplt_index = h->plt.plist->gotplt_index;
11002
11003 BFD_ASSERT (h->dynindx != -1);
11004 BFD_ASSERT (htab->splt != NULL);
11005 BFD_ASSERT (gotplt_index != MINUS_ONE);
11006 BFD_ASSERT (plt_offset <= htab->splt->size);
11007
11008 /* Calculate the address of the .plt entry. */
11009 plt_address = (htab->splt->output_section->vma
11010 + htab->splt->output_offset
11011 + plt_offset);
11012
11013 /* Calculate the address of the .got.plt entry. */
11014 got_address = (htab->sgotplt->output_section->vma
11015 + htab->sgotplt->output_offset
11016 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11017
11018 /* Calculate the offset of the .got.plt entry from
11019 _GLOBAL_OFFSET_TABLE_. */
11020 got_offset = mips_elf_gotplt_index (info, h);
11021
11022 /* Calculate the offset for the branch at the start of the PLT
11023 entry. The branch jumps to the beginning of .plt. */
11024 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11025
11026 /* Fill in the initial value of the .got.plt entry. */
11027 bfd_put_32 (output_bfd, plt_address,
11028 (htab->sgotplt->contents
11029 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11030
11031 /* Find out where the .plt entry should go. */
11032 loc = htab->splt->contents + plt_offset;
11033
11034 if (bfd_link_pic (info))
11035 {
11036 plt_entry = mips_vxworks_shared_plt_entry;
11037 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11038 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11039 }
11040 else
11041 {
11042 bfd_vma got_address_high, got_address_low;
11043
11044 plt_entry = mips_vxworks_exec_plt_entry;
11045 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11046 got_address_low = got_address & 0xffff;
11047
11048 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11049 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11050 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11051 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11052 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11053 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11054 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11055 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11056
11057 loc = (htab->srelplt2->contents
11058 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11059
11060 /* Emit a relocation for the .got.plt entry. */
11061 rel.r_offset = got_address;
11062 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11063 rel.r_addend = plt_offset;
11064 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11065
11066 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11067 loc += sizeof (Elf32_External_Rela);
11068 rel.r_offset = plt_address + 8;
11069 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11070 rel.r_addend = got_offset;
11071 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11072
11073 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11074 loc += sizeof (Elf32_External_Rela);
11075 rel.r_offset += 4;
11076 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11077 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11078 }
11079
11080 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11081 loc = (htab->srelplt->contents
11082 + gotplt_index * sizeof (Elf32_External_Rela));
11083 rel.r_offset = got_address;
11084 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11085 rel.r_addend = 0;
11086 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11087
11088 if (!h->def_regular)
11089 sym->st_shndx = SHN_UNDEF;
11090 }
11091
11092 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11093
11094 sgot = htab->sgot;
11095 g = htab->got_info;
11096 BFD_ASSERT (g != NULL);
11097
11098 /* See if this symbol has an entry in the GOT. */
11099 if (hmips->global_got_area != GGA_NONE)
11100 {
11101 bfd_vma offset;
11102 Elf_Internal_Rela outrel;
11103 bfd_byte *loc;
11104 asection *s;
11105
11106 /* Install the symbol value in the GOT. */
11107 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11108 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11109
11110 /* Add a dynamic relocation for it. */
11111 s = mips_elf_rel_dyn_section (info, FALSE);
11112 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11113 outrel.r_offset = (sgot->output_section->vma
11114 + sgot->output_offset
11115 + offset);
11116 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11117 outrel.r_addend = 0;
11118 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11119 }
11120
11121 /* Emit a copy reloc, if needed. */
11122 if (h->needs_copy)
11123 {
11124 Elf_Internal_Rela rel;
11125
11126 BFD_ASSERT (h->dynindx != -1);
11127
11128 rel.r_offset = (h->root.u.def.section->output_section->vma
11129 + h->root.u.def.section->output_offset
11130 + h->root.u.def.value);
11131 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11132 rel.r_addend = 0;
11133 bfd_elf32_swap_reloca_out (output_bfd, &rel,
11134 htab->srelbss->contents
11135 + (htab->srelbss->reloc_count
11136 * sizeof (Elf32_External_Rela)));
11137 ++htab->srelbss->reloc_count;
11138 }
11139
11140 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11141 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11142 sym->st_value &= ~1;
11143
11144 return TRUE;
11145 }
11146
11147 /* Write out a plt0 entry to the beginning of .plt. */
11148
11149 static bfd_boolean
11150 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11151 {
11152 bfd_byte *loc;
11153 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11154 static const bfd_vma *plt_entry;
11155 struct mips_elf_link_hash_table *htab;
11156
11157 htab = mips_elf_hash_table (info);
11158 BFD_ASSERT (htab != NULL);
11159
11160 if (ABI_64_P (output_bfd))
11161 plt_entry = mips_n64_exec_plt0_entry;
11162 else if (ABI_N32_P (output_bfd))
11163 plt_entry = mips_n32_exec_plt0_entry;
11164 else if (!htab->plt_header_is_comp)
11165 plt_entry = mips_o32_exec_plt0_entry;
11166 else if (htab->insn32)
11167 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11168 else
11169 plt_entry = micromips_o32_exec_plt0_entry;
11170
11171 /* Calculate the value of .got.plt. */
11172 gotplt_value = (htab->sgotplt->output_section->vma
11173 + htab->sgotplt->output_offset);
11174 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11175 gotplt_value_low = gotplt_value & 0xffff;
11176
11177 /* The PLT sequence is not safe for N64 if .got.plt's address can
11178 not be loaded in two instructions. */
11179 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11180 || ~(gotplt_value | 0x7fffffff) == 0);
11181
11182 /* Install the PLT header. */
11183 loc = htab->splt->contents;
11184 if (plt_entry == micromips_o32_exec_plt0_entry)
11185 {
11186 bfd_vma gotpc_offset;
11187 bfd_vma loc_address;
11188 size_t i;
11189
11190 BFD_ASSERT (gotplt_value % 4 == 0);
11191
11192 loc_address = (htab->splt->output_section->vma
11193 + htab->splt->output_offset);
11194 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11195
11196 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11197 if (gotpc_offset + 0x1000000 >= 0x2000000)
11198 {
11199 (*_bfd_error_handler)
11200 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11201 output_bfd,
11202 htab->sgotplt->output_section,
11203 htab->splt->output_section,
11204 (long) gotpc_offset);
11205 bfd_set_error (bfd_error_no_error);
11206 return FALSE;
11207 }
11208 bfd_put_16 (output_bfd,
11209 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11210 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11211 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11212 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11213 }
11214 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11215 {
11216 size_t i;
11217
11218 bfd_put_16 (output_bfd, plt_entry[0], loc);
11219 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11220 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11221 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11222 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11223 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11224 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11225 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11226 }
11227 else
11228 {
11229 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11230 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11231 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11232 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11233 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11234 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11235 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11236 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11237 }
11238
11239 return TRUE;
11240 }
11241
11242 /* Install the PLT header for a VxWorks executable and finalize the
11243 contents of .rela.plt.unloaded. */
11244
11245 static void
11246 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11247 {
11248 Elf_Internal_Rela rela;
11249 bfd_byte *loc;
11250 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11251 static const bfd_vma *plt_entry;
11252 struct mips_elf_link_hash_table *htab;
11253
11254 htab = mips_elf_hash_table (info);
11255 BFD_ASSERT (htab != NULL);
11256
11257 plt_entry = mips_vxworks_exec_plt0_entry;
11258
11259 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11260 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11261 + htab->root.hgot->root.u.def.section->output_offset
11262 + htab->root.hgot->root.u.def.value);
11263
11264 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11265 got_value_low = got_value & 0xffff;
11266
11267 /* Calculate the address of the PLT header. */
11268 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11269
11270 /* Install the PLT header. */
11271 loc = htab->splt->contents;
11272 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11273 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11274 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11275 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11276 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11277 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11278
11279 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11280 loc = htab->srelplt2->contents;
11281 rela.r_offset = plt_address;
11282 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11283 rela.r_addend = 0;
11284 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11285 loc += sizeof (Elf32_External_Rela);
11286
11287 /* Output the relocation for the following addiu of
11288 %lo(_GLOBAL_OFFSET_TABLE_). */
11289 rela.r_offset += 4;
11290 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11291 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11292 loc += sizeof (Elf32_External_Rela);
11293
11294 /* Fix up the remaining relocations. They may have the wrong
11295 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11296 in which symbols were output. */
11297 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11298 {
11299 Elf_Internal_Rela rel;
11300
11301 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11302 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11303 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11304 loc += sizeof (Elf32_External_Rela);
11305
11306 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11307 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11308 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11309 loc += sizeof (Elf32_External_Rela);
11310
11311 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11312 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11313 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11314 loc += sizeof (Elf32_External_Rela);
11315 }
11316 }
11317
11318 /* Install the PLT header for a VxWorks shared library. */
11319
11320 static void
11321 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11322 {
11323 unsigned int i;
11324 struct mips_elf_link_hash_table *htab;
11325
11326 htab = mips_elf_hash_table (info);
11327 BFD_ASSERT (htab != NULL);
11328
11329 /* We just need to copy the entry byte-by-byte. */
11330 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11331 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11332 htab->splt->contents + i * 4);
11333 }
11334
11335 /* Finish up the dynamic sections. */
11336
11337 bfd_boolean
11338 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11339 struct bfd_link_info *info)
11340 {
11341 bfd *dynobj;
11342 asection *sdyn;
11343 asection *sgot;
11344 struct mips_got_info *gg, *g;
11345 struct mips_elf_link_hash_table *htab;
11346
11347 htab = mips_elf_hash_table (info);
11348 BFD_ASSERT (htab != NULL);
11349
11350 dynobj = elf_hash_table (info)->dynobj;
11351
11352 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11353
11354 sgot = htab->sgot;
11355 gg = htab->got_info;
11356
11357 if (elf_hash_table (info)->dynamic_sections_created)
11358 {
11359 bfd_byte *b;
11360 int dyn_to_skip = 0, dyn_skipped = 0;
11361
11362 BFD_ASSERT (sdyn != NULL);
11363 BFD_ASSERT (gg != NULL);
11364
11365 g = mips_elf_bfd_got (output_bfd, FALSE);
11366 BFD_ASSERT (g != NULL);
11367
11368 for (b = sdyn->contents;
11369 b < sdyn->contents + sdyn->size;
11370 b += MIPS_ELF_DYN_SIZE (dynobj))
11371 {
11372 Elf_Internal_Dyn dyn;
11373 const char *name;
11374 size_t elemsize;
11375 asection *s;
11376 bfd_boolean swap_out_p;
11377
11378 /* Read in the current dynamic entry. */
11379 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11380
11381 /* Assume that we're going to modify it and write it out. */
11382 swap_out_p = TRUE;
11383
11384 switch (dyn.d_tag)
11385 {
11386 case DT_RELENT:
11387 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11388 break;
11389
11390 case DT_RELAENT:
11391 BFD_ASSERT (htab->is_vxworks);
11392 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11393 break;
11394
11395 case DT_STRSZ:
11396 /* Rewrite DT_STRSZ. */
11397 dyn.d_un.d_val =
11398 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11399 break;
11400
11401 case DT_PLTGOT:
11402 s = htab->sgot;
11403 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11404 break;
11405
11406 case DT_MIPS_PLTGOT:
11407 s = htab->sgotplt;
11408 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11409 break;
11410
11411 case DT_MIPS_RLD_VERSION:
11412 dyn.d_un.d_val = 1; /* XXX */
11413 break;
11414
11415 case DT_MIPS_FLAGS:
11416 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11417 break;
11418
11419 case DT_MIPS_TIME_STAMP:
11420 {
11421 time_t t;
11422 time (&t);
11423 dyn.d_un.d_val = t;
11424 }
11425 break;
11426
11427 case DT_MIPS_ICHECKSUM:
11428 /* XXX FIXME: */
11429 swap_out_p = FALSE;
11430 break;
11431
11432 case DT_MIPS_IVERSION:
11433 /* XXX FIXME: */
11434 swap_out_p = FALSE;
11435 break;
11436
11437 case DT_MIPS_BASE_ADDRESS:
11438 s = output_bfd->sections;
11439 BFD_ASSERT (s != NULL);
11440 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11441 break;
11442
11443 case DT_MIPS_LOCAL_GOTNO:
11444 dyn.d_un.d_val = g->local_gotno;
11445 break;
11446
11447 case DT_MIPS_UNREFEXTNO:
11448 /* The index into the dynamic symbol table which is the
11449 entry of the first external symbol that is not
11450 referenced within the same object. */
11451 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11452 break;
11453
11454 case DT_MIPS_GOTSYM:
11455 if (htab->global_gotsym)
11456 {
11457 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11458 break;
11459 }
11460 /* In case if we don't have global got symbols we default
11461 to setting DT_MIPS_GOTSYM to the same value as
11462 DT_MIPS_SYMTABNO, so we just fall through. */
11463
11464 case DT_MIPS_SYMTABNO:
11465 name = ".dynsym";
11466 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11467 s = bfd_get_linker_section (dynobj, name);
11468
11469 if (s != NULL)
11470 dyn.d_un.d_val = s->size / elemsize;
11471 else
11472 dyn.d_un.d_val = 0;
11473 break;
11474
11475 case DT_MIPS_HIPAGENO:
11476 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11477 break;
11478
11479 case DT_MIPS_RLD_MAP:
11480 {
11481 struct elf_link_hash_entry *h;
11482 h = mips_elf_hash_table (info)->rld_symbol;
11483 if (!h)
11484 {
11485 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11486 swap_out_p = FALSE;
11487 break;
11488 }
11489 s = h->root.u.def.section;
11490
11491 /* The MIPS_RLD_MAP tag stores the absolute address of the
11492 debug pointer. */
11493 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11494 + h->root.u.def.value);
11495 }
11496 break;
11497
11498 case DT_MIPS_RLD_MAP_REL:
11499 {
11500 struct elf_link_hash_entry *h;
11501 bfd_vma dt_addr, rld_addr;
11502 h = mips_elf_hash_table (info)->rld_symbol;
11503 if (!h)
11504 {
11505 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11506 swap_out_p = FALSE;
11507 break;
11508 }
11509 s = h->root.u.def.section;
11510
11511 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11512 pointer, relative to the address of the tag. */
11513 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11514 + (b - sdyn->contents));
11515 rld_addr = (s->output_section->vma + s->output_offset
11516 + h->root.u.def.value);
11517 dyn.d_un.d_ptr = rld_addr - dt_addr;
11518 }
11519 break;
11520
11521 case DT_MIPS_OPTIONS:
11522 s = (bfd_get_section_by_name
11523 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11524 dyn.d_un.d_ptr = s->vma;
11525 break;
11526
11527 case DT_RELASZ:
11528 BFD_ASSERT (htab->is_vxworks);
11529 /* The count does not include the JUMP_SLOT relocations. */
11530 if (htab->srelplt)
11531 dyn.d_un.d_val -= htab->srelplt->size;
11532 break;
11533
11534 case DT_PLTREL:
11535 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11536 if (htab->is_vxworks)
11537 dyn.d_un.d_val = DT_RELA;
11538 else
11539 dyn.d_un.d_val = DT_REL;
11540 break;
11541
11542 case DT_PLTRELSZ:
11543 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11544 dyn.d_un.d_val = htab->srelplt->size;
11545 break;
11546
11547 case DT_JMPREL:
11548 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11549 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
11550 + htab->srelplt->output_offset);
11551 break;
11552
11553 case DT_TEXTREL:
11554 /* If we didn't need any text relocations after all, delete
11555 the dynamic tag. */
11556 if (!(info->flags & DF_TEXTREL))
11557 {
11558 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11559 swap_out_p = FALSE;
11560 }
11561 break;
11562
11563 case DT_FLAGS:
11564 /* If we didn't need any text relocations after all, clear
11565 DF_TEXTREL from DT_FLAGS. */
11566 if (!(info->flags & DF_TEXTREL))
11567 dyn.d_un.d_val &= ~DF_TEXTREL;
11568 else
11569 swap_out_p = FALSE;
11570 break;
11571
11572 default:
11573 swap_out_p = FALSE;
11574 if (htab->is_vxworks
11575 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11576 swap_out_p = TRUE;
11577 break;
11578 }
11579
11580 if (swap_out_p || dyn_skipped)
11581 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11582 (dynobj, &dyn, b - dyn_skipped);
11583
11584 if (dyn_to_skip)
11585 {
11586 dyn_skipped += dyn_to_skip;
11587 dyn_to_skip = 0;
11588 }
11589 }
11590
11591 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11592 if (dyn_skipped > 0)
11593 memset (b - dyn_skipped, 0, dyn_skipped);
11594 }
11595
11596 if (sgot != NULL && sgot->size > 0
11597 && !bfd_is_abs_section (sgot->output_section))
11598 {
11599 if (htab->is_vxworks)
11600 {
11601 /* The first entry of the global offset table points to the
11602 ".dynamic" section. The second is initialized by the
11603 loader and contains the shared library identifier.
11604 The third is also initialized by the loader and points
11605 to the lazy resolution stub. */
11606 MIPS_ELF_PUT_WORD (output_bfd,
11607 sdyn->output_offset + sdyn->output_section->vma,
11608 sgot->contents);
11609 MIPS_ELF_PUT_WORD (output_bfd, 0,
11610 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11611 MIPS_ELF_PUT_WORD (output_bfd, 0,
11612 sgot->contents
11613 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11614 }
11615 else
11616 {
11617 /* The first entry of the global offset table will be filled at
11618 runtime. The second entry will be used by some runtime loaders.
11619 This isn't the case of IRIX rld. */
11620 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11621 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11622 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11623 }
11624
11625 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11626 = MIPS_ELF_GOT_SIZE (output_bfd);
11627 }
11628
11629 /* Generate dynamic relocations for the non-primary gots. */
11630 if (gg != NULL && gg->next)
11631 {
11632 Elf_Internal_Rela rel[3];
11633 bfd_vma addend = 0;
11634
11635 memset (rel, 0, sizeof (rel));
11636 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11637
11638 for (g = gg->next; g->next != gg; g = g->next)
11639 {
11640 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11641 + g->next->tls_gotno;
11642
11643 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11644 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11645 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11646 sgot->contents
11647 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11648
11649 if (! bfd_link_pic (info))
11650 continue;
11651
11652 for (; got_index < g->local_gotno; got_index++)
11653 {
11654 if (got_index >= g->assigned_low_gotno
11655 && got_index <= g->assigned_high_gotno)
11656 continue;
11657
11658 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11659 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11660 if (!(mips_elf_create_dynamic_relocation
11661 (output_bfd, info, rel, NULL,
11662 bfd_abs_section_ptr,
11663 0, &addend, sgot)))
11664 return FALSE;
11665 BFD_ASSERT (addend == 0);
11666 }
11667 }
11668 }
11669
11670 /* The generation of dynamic relocations for the non-primary gots
11671 adds more dynamic relocations. We cannot count them until
11672 here. */
11673
11674 if (elf_hash_table (info)->dynamic_sections_created)
11675 {
11676 bfd_byte *b;
11677 bfd_boolean swap_out_p;
11678
11679 BFD_ASSERT (sdyn != NULL);
11680
11681 for (b = sdyn->contents;
11682 b < sdyn->contents + sdyn->size;
11683 b += MIPS_ELF_DYN_SIZE (dynobj))
11684 {
11685 Elf_Internal_Dyn dyn;
11686 asection *s;
11687
11688 /* Read in the current dynamic entry. */
11689 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11690
11691 /* Assume that we're going to modify it and write it out. */
11692 swap_out_p = TRUE;
11693
11694 switch (dyn.d_tag)
11695 {
11696 case DT_RELSZ:
11697 /* Reduce DT_RELSZ to account for any relocations we
11698 decided not to make. This is for the n64 irix rld,
11699 which doesn't seem to apply any relocations if there
11700 are trailing null entries. */
11701 s = mips_elf_rel_dyn_section (info, FALSE);
11702 dyn.d_un.d_val = (s->reloc_count
11703 * (ABI_64_P (output_bfd)
11704 ? sizeof (Elf64_Mips_External_Rel)
11705 : sizeof (Elf32_External_Rel)));
11706 /* Adjust the section size too. Tools like the prelinker
11707 can reasonably expect the values to the same. */
11708 elf_section_data (s->output_section)->this_hdr.sh_size
11709 = dyn.d_un.d_val;
11710 break;
11711
11712 default:
11713 swap_out_p = FALSE;
11714 break;
11715 }
11716
11717 if (swap_out_p)
11718 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11719 (dynobj, &dyn, b);
11720 }
11721 }
11722
11723 {
11724 asection *s;
11725 Elf32_compact_rel cpt;
11726
11727 if (SGI_COMPAT (output_bfd))
11728 {
11729 /* Write .compact_rel section out. */
11730 s = bfd_get_linker_section (dynobj, ".compact_rel");
11731 if (s != NULL)
11732 {
11733 cpt.id1 = 1;
11734 cpt.num = s->reloc_count;
11735 cpt.id2 = 2;
11736 cpt.offset = (s->output_section->filepos
11737 + sizeof (Elf32_External_compact_rel));
11738 cpt.reserved0 = 0;
11739 cpt.reserved1 = 0;
11740 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11741 ((Elf32_External_compact_rel *)
11742 s->contents));
11743
11744 /* Clean up a dummy stub function entry in .text. */
11745 if (htab->sstubs != NULL)
11746 {
11747 file_ptr dummy_offset;
11748
11749 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11750 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11751 memset (htab->sstubs->contents + dummy_offset, 0,
11752 htab->function_stub_size);
11753 }
11754 }
11755 }
11756
11757 /* The psABI says that the dynamic relocations must be sorted in
11758 increasing order of r_symndx. The VxWorks EABI doesn't require
11759 this, and because the code below handles REL rather than RELA
11760 relocations, using it for VxWorks would be outright harmful. */
11761 if (!htab->is_vxworks)
11762 {
11763 s = mips_elf_rel_dyn_section (info, FALSE);
11764 if (s != NULL
11765 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11766 {
11767 reldyn_sorting_bfd = output_bfd;
11768
11769 if (ABI_64_P (output_bfd))
11770 qsort ((Elf64_External_Rel *) s->contents + 1,
11771 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11772 sort_dynamic_relocs_64);
11773 else
11774 qsort ((Elf32_External_Rel *) s->contents + 1,
11775 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11776 sort_dynamic_relocs);
11777 }
11778 }
11779 }
11780
11781 if (htab->splt && htab->splt->size > 0)
11782 {
11783 if (htab->is_vxworks)
11784 {
11785 if (bfd_link_pic (info))
11786 mips_vxworks_finish_shared_plt (output_bfd, info);
11787 else
11788 mips_vxworks_finish_exec_plt (output_bfd, info);
11789 }
11790 else
11791 {
11792 BFD_ASSERT (!bfd_link_pic (info));
11793 if (!mips_finish_exec_plt (output_bfd, info))
11794 return FALSE;
11795 }
11796 }
11797 return TRUE;
11798 }
11799
11800
11801 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11802
11803 static void
11804 mips_set_isa_flags (bfd *abfd)
11805 {
11806 flagword val;
11807
11808 switch (bfd_get_mach (abfd))
11809 {
11810 default:
11811 case bfd_mach_mips3000:
11812 val = E_MIPS_ARCH_1;
11813 break;
11814
11815 case bfd_mach_mips3900:
11816 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11817 break;
11818
11819 case bfd_mach_mips6000:
11820 val = E_MIPS_ARCH_2;
11821 break;
11822
11823 case bfd_mach_mips4000:
11824 case bfd_mach_mips4300:
11825 case bfd_mach_mips4400:
11826 case bfd_mach_mips4600:
11827 val = E_MIPS_ARCH_3;
11828 break;
11829
11830 case bfd_mach_mips4010:
11831 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11832 break;
11833
11834 case bfd_mach_mips4100:
11835 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11836 break;
11837
11838 case bfd_mach_mips4111:
11839 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11840 break;
11841
11842 case bfd_mach_mips4120:
11843 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11844 break;
11845
11846 case bfd_mach_mips4650:
11847 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11848 break;
11849
11850 case bfd_mach_mips5400:
11851 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11852 break;
11853
11854 case bfd_mach_mips5500:
11855 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11856 break;
11857
11858 case bfd_mach_mips5900:
11859 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11860 break;
11861
11862 case bfd_mach_mips9000:
11863 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11864 break;
11865
11866 case bfd_mach_mips5000:
11867 case bfd_mach_mips7000:
11868 case bfd_mach_mips8000:
11869 case bfd_mach_mips10000:
11870 case bfd_mach_mips12000:
11871 case bfd_mach_mips14000:
11872 case bfd_mach_mips16000:
11873 val = E_MIPS_ARCH_4;
11874 break;
11875
11876 case bfd_mach_mips5:
11877 val = E_MIPS_ARCH_5;
11878 break;
11879
11880 case bfd_mach_mips_loongson_2e:
11881 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11882 break;
11883
11884 case bfd_mach_mips_loongson_2f:
11885 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11886 break;
11887
11888 case bfd_mach_mips_sb1:
11889 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11890 break;
11891
11892 case bfd_mach_mips_loongson_3a:
11893 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11894 break;
11895
11896 case bfd_mach_mips_octeon:
11897 case bfd_mach_mips_octeonp:
11898 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11899 break;
11900
11901 case bfd_mach_mips_octeon3:
11902 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11903 break;
11904
11905 case bfd_mach_mips_xlr:
11906 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11907 break;
11908
11909 case bfd_mach_mips_octeon2:
11910 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11911 break;
11912
11913 case bfd_mach_mipsisa32:
11914 val = E_MIPS_ARCH_32;
11915 break;
11916
11917 case bfd_mach_mipsisa64:
11918 val = E_MIPS_ARCH_64;
11919 break;
11920
11921 case bfd_mach_mipsisa32r2:
11922 case bfd_mach_mipsisa32r3:
11923 case bfd_mach_mipsisa32r5:
11924 val = E_MIPS_ARCH_32R2;
11925 break;
11926
11927 case bfd_mach_mipsisa64r2:
11928 case bfd_mach_mipsisa64r3:
11929 case bfd_mach_mipsisa64r5:
11930 val = E_MIPS_ARCH_64R2;
11931 break;
11932
11933 case bfd_mach_mipsisa32r6:
11934 val = E_MIPS_ARCH_32R6;
11935 break;
11936
11937 case bfd_mach_mipsisa64r6:
11938 val = E_MIPS_ARCH_64R6;
11939 break;
11940 }
11941 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11942 elf_elfheader (abfd)->e_flags |= val;
11943
11944 }
11945
11946
11947 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
11948 Don't do so for code sections. We want to keep ordering of HI16/LO16
11949 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
11950 relocs to be sorted. */
11951
11952 bfd_boolean
11953 _bfd_mips_elf_sort_relocs_p (asection *sec)
11954 {
11955 return (sec->flags & SEC_CODE) == 0;
11956 }
11957
11958
11959 /* The final processing done just before writing out a MIPS ELF object
11960 file. This gets the MIPS architecture right based on the machine
11961 number. This is used by both the 32-bit and the 64-bit ABI. */
11962
11963 void
11964 _bfd_mips_elf_final_write_processing (bfd *abfd,
11965 bfd_boolean linker ATTRIBUTE_UNUSED)
11966 {
11967 unsigned int i;
11968 Elf_Internal_Shdr **hdrpp;
11969 const char *name;
11970 asection *sec;
11971
11972 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11973 is nonzero. This is for compatibility with old objects, which used
11974 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11975 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11976 mips_set_isa_flags (abfd);
11977
11978 /* Set the sh_info field for .gptab sections and other appropriate
11979 info for each special section. */
11980 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11981 i < elf_numsections (abfd);
11982 i++, hdrpp++)
11983 {
11984 switch ((*hdrpp)->sh_type)
11985 {
11986 case SHT_MIPS_MSYM:
11987 case SHT_MIPS_LIBLIST:
11988 sec = bfd_get_section_by_name (abfd, ".dynstr");
11989 if (sec != NULL)
11990 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11991 break;
11992
11993 case SHT_MIPS_GPTAB:
11994 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11995 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11996 BFD_ASSERT (name != NULL
11997 && CONST_STRNEQ (name, ".gptab."));
11998 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11999 BFD_ASSERT (sec != NULL);
12000 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12001 break;
12002
12003 case SHT_MIPS_CONTENT:
12004 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12005 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12006 BFD_ASSERT (name != NULL
12007 && CONST_STRNEQ (name, ".MIPS.content"));
12008 sec = bfd_get_section_by_name (abfd,
12009 name + sizeof ".MIPS.content" - 1);
12010 BFD_ASSERT (sec != NULL);
12011 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12012 break;
12013
12014 case SHT_MIPS_SYMBOL_LIB:
12015 sec = bfd_get_section_by_name (abfd, ".dynsym");
12016 if (sec != NULL)
12017 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12018 sec = bfd_get_section_by_name (abfd, ".liblist");
12019 if (sec != NULL)
12020 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12021 break;
12022
12023 case SHT_MIPS_EVENTS:
12024 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12025 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12026 BFD_ASSERT (name != NULL);
12027 if (CONST_STRNEQ (name, ".MIPS.events"))
12028 sec = bfd_get_section_by_name (abfd,
12029 name + sizeof ".MIPS.events" - 1);
12030 else
12031 {
12032 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12033 sec = bfd_get_section_by_name (abfd,
12034 (name
12035 + sizeof ".MIPS.post_rel" - 1));
12036 }
12037 BFD_ASSERT (sec != NULL);
12038 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12039 break;
12040
12041 }
12042 }
12043 }
12044 \f
12045 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12046 segments. */
12047
12048 int
12049 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12050 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12051 {
12052 asection *s;
12053 int ret = 0;
12054
12055 /* See if we need a PT_MIPS_REGINFO segment. */
12056 s = bfd_get_section_by_name (abfd, ".reginfo");
12057 if (s && (s->flags & SEC_LOAD))
12058 ++ret;
12059
12060 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12061 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12062 ++ret;
12063
12064 /* See if we need a PT_MIPS_OPTIONS segment. */
12065 if (IRIX_COMPAT (abfd) == ict_irix6
12066 && bfd_get_section_by_name (abfd,
12067 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12068 ++ret;
12069
12070 /* See if we need a PT_MIPS_RTPROC segment. */
12071 if (IRIX_COMPAT (abfd) == ict_irix5
12072 && bfd_get_section_by_name (abfd, ".dynamic")
12073 && bfd_get_section_by_name (abfd, ".mdebug"))
12074 ++ret;
12075
12076 /* Allocate a PT_NULL header in dynamic objects. See
12077 _bfd_mips_elf_modify_segment_map for details. */
12078 if (!SGI_COMPAT (abfd)
12079 && bfd_get_section_by_name (abfd, ".dynamic"))
12080 ++ret;
12081
12082 return ret;
12083 }
12084
12085 /* Modify the segment map for an IRIX5 executable. */
12086
12087 bfd_boolean
12088 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12089 struct bfd_link_info *info)
12090 {
12091 asection *s;
12092 struct elf_segment_map *m, **pm;
12093 bfd_size_type amt;
12094
12095 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12096 segment. */
12097 s = bfd_get_section_by_name (abfd, ".reginfo");
12098 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12099 {
12100 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12101 if (m->p_type == PT_MIPS_REGINFO)
12102 break;
12103 if (m == NULL)
12104 {
12105 amt = sizeof *m;
12106 m = bfd_zalloc (abfd, amt);
12107 if (m == NULL)
12108 return FALSE;
12109
12110 m->p_type = PT_MIPS_REGINFO;
12111 m->count = 1;
12112 m->sections[0] = s;
12113
12114 /* We want to put it after the PHDR and INTERP segments. */
12115 pm = &elf_seg_map (abfd);
12116 while (*pm != NULL
12117 && ((*pm)->p_type == PT_PHDR
12118 || (*pm)->p_type == PT_INTERP))
12119 pm = &(*pm)->next;
12120
12121 m->next = *pm;
12122 *pm = m;
12123 }
12124 }
12125
12126 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12127 segment. */
12128 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12129 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12130 {
12131 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12132 if (m->p_type == PT_MIPS_ABIFLAGS)
12133 break;
12134 if (m == NULL)
12135 {
12136 amt = sizeof *m;
12137 m = bfd_zalloc (abfd, amt);
12138 if (m == NULL)
12139 return FALSE;
12140
12141 m->p_type = PT_MIPS_ABIFLAGS;
12142 m->count = 1;
12143 m->sections[0] = s;
12144
12145 /* We want to put it after the PHDR and INTERP segments. */
12146 pm = &elf_seg_map (abfd);
12147 while (*pm != NULL
12148 && ((*pm)->p_type == PT_PHDR
12149 || (*pm)->p_type == PT_INTERP))
12150 pm = &(*pm)->next;
12151
12152 m->next = *pm;
12153 *pm = m;
12154 }
12155 }
12156
12157 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12158 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12159 PT_MIPS_OPTIONS segment immediately following the program header
12160 table. */
12161 if (NEWABI_P (abfd)
12162 /* On non-IRIX6 new abi, we'll have already created a segment
12163 for this section, so don't create another. I'm not sure this
12164 is not also the case for IRIX 6, but I can't test it right
12165 now. */
12166 && IRIX_COMPAT (abfd) == ict_irix6)
12167 {
12168 for (s = abfd->sections; s; s = s->next)
12169 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12170 break;
12171
12172 if (s)
12173 {
12174 struct elf_segment_map *options_segment;
12175
12176 pm = &elf_seg_map (abfd);
12177 while (*pm != NULL
12178 && ((*pm)->p_type == PT_PHDR
12179 || (*pm)->p_type == PT_INTERP))
12180 pm = &(*pm)->next;
12181
12182 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12183 {
12184 amt = sizeof (struct elf_segment_map);
12185 options_segment = bfd_zalloc (abfd, amt);
12186 options_segment->next = *pm;
12187 options_segment->p_type = PT_MIPS_OPTIONS;
12188 options_segment->p_flags = PF_R;
12189 options_segment->p_flags_valid = TRUE;
12190 options_segment->count = 1;
12191 options_segment->sections[0] = s;
12192 *pm = options_segment;
12193 }
12194 }
12195 }
12196 else
12197 {
12198 if (IRIX_COMPAT (abfd) == ict_irix5)
12199 {
12200 /* If there are .dynamic and .mdebug sections, we make a room
12201 for the RTPROC header. FIXME: Rewrite without section names. */
12202 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12203 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12204 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12205 {
12206 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12207 if (m->p_type == PT_MIPS_RTPROC)
12208 break;
12209 if (m == NULL)
12210 {
12211 amt = sizeof *m;
12212 m = bfd_zalloc (abfd, amt);
12213 if (m == NULL)
12214 return FALSE;
12215
12216 m->p_type = PT_MIPS_RTPROC;
12217
12218 s = bfd_get_section_by_name (abfd, ".rtproc");
12219 if (s == NULL)
12220 {
12221 m->count = 0;
12222 m->p_flags = 0;
12223 m->p_flags_valid = 1;
12224 }
12225 else
12226 {
12227 m->count = 1;
12228 m->sections[0] = s;
12229 }
12230
12231 /* We want to put it after the DYNAMIC segment. */
12232 pm = &elf_seg_map (abfd);
12233 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12234 pm = &(*pm)->next;
12235 if (*pm != NULL)
12236 pm = &(*pm)->next;
12237
12238 m->next = *pm;
12239 *pm = m;
12240 }
12241 }
12242 }
12243 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12244 .dynstr, .dynsym, and .hash sections, and everything in
12245 between. */
12246 for (pm = &elf_seg_map (abfd); *pm != NULL;
12247 pm = &(*pm)->next)
12248 if ((*pm)->p_type == PT_DYNAMIC)
12249 break;
12250 m = *pm;
12251 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12252 glibc's dynamic linker has traditionally derived the number of
12253 tags from the p_filesz field, and sometimes allocates stack
12254 arrays of that size. An overly-big PT_DYNAMIC segment can
12255 be actively harmful in such cases. Making PT_DYNAMIC contain
12256 other sections can also make life hard for the prelinker,
12257 which might move one of the other sections to a different
12258 PT_LOAD segment. */
12259 if (SGI_COMPAT (abfd)
12260 && m != NULL
12261 && m->count == 1
12262 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12263 {
12264 static const char *sec_names[] =
12265 {
12266 ".dynamic", ".dynstr", ".dynsym", ".hash"
12267 };
12268 bfd_vma low, high;
12269 unsigned int i, c;
12270 struct elf_segment_map *n;
12271
12272 low = ~(bfd_vma) 0;
12273 high = 0;
12274 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12275 {
12276 s = bfd_get_section_by_name (abfd, sec_names[i]);
12277 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12278 {
12279 bfd_size_type sz;
12280
12281 if (low > s->vma)
12282 low = s->vma;
12283 sz = s->size;
12284 if (high < s->vma + sz)
12285 high = s->vma + sz;
12286 }
12287 }
12288
12289 c = 0;
12290 for (s = abfd->sections; s != NULL; s = s->next)
12291 if ((s->flags & SEC_LOAD) != 0
12292 && s->vma >= low
12293 && s->vma + s->size <= high)
12294 ++c;
12295
12296 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12297 n = bfd_zalloc (abfd, amt);
12298 if (n == NULL)
12299 return FALSE;
12300 *n = *m;
12301 n->count = c;
12302
12303 i = 0;
12304 for (s = abfd->sections; s != NULL; s = s->next)
12305 {
12306 if ((s->flags & SEC_LOAD) != 0
12307 && s->vma >= low
12308 && s->vma + s->size <= high)
12309 {
12310 n->sections[i] = s;
12311 ++i;
12312 }
12313 }
12314
12315 *pm = n;
12316 }
12317 }
12318
12319 /* Allocate a spare program header in dynamic objects so that tools
12320 like the prelinker can add an extra PT_LOAD entry.
12321
12322 If the prelinker needs to make room for a new PT_LOAD entry, its
12323 standard procedure is to move the first (read-only) sections into
12324 the new (writable) segment. However, the MIPS ABI requires
12325 .dynamic to be in a read-only segment, and the section will often
12326 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12327
12328 Although the prelinker could in principle move .dynamic to a
12329 writable segment, it seems better to allocate a spare program
12330 header instead, and avoid the need to move any sections.
12331 There is a long tradition of allocating spare dynamic tags,
12332 so allocating a spare program header seems like a natural
12333 extension.
12334
12335 If INFO is NULL, we may be copying an already prelinked binary
12336 with objcopy or strip, so do not add this header. */
12337 if (info != NULL
12338 && !SGI_COMPAT (abfd)
12339 && bfd_get_section_by_name (abfd, ".dynamic"))
12340 {
12341 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12342 if ((*pm)->p_type == PT_NULL)
12343 break;
12344 if (*pm == NULL)
12345 {
12346 m = bfd_zalloc (abfd, sizeof (*m));
12347 if (m == NULL)
12348 return FALSE;
12349
12350 m->p_type = PT_NULL;
12351 *pm = m;
12352 }
12353 }
12354
12355 return TRUE;
12356 }
12357 \f
12358 /* Return the section that should be marked against GC for a given
12359 relocation. */
12360
12361 asection *
12362 _bfd_mips_elf_gc_mark_hook (asection *sec,
12363 struct bfd_link_info *info,
12364 Elf_Internal_Rela *rel,
12365 struct elf_link_hash_entry *h,
12366 Elf_Internal_Sym *sym)
12367 {
12368 /* ??? Do mips16 stub sections need to be handled special? */
12369
12370 if (h != NULL)
12371 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12372 {
12373 case R_MIPS_GNU_VTINHERIT:
12374 case R_MIPS_GNU_VTENTRY:
12375 return NULL;
12376 }
12377
12378 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12379 }
12380
12381 /* Update the got entry reference counts for the section being removed. */
12382
12383 bfd_boolean
12384 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12385 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12386 asection *sec ATTRIBUTE_UNUSED,
12387 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12388 {
12389 #if 0
12390 Elf_Internal_Shdr *symtab_hdr;
12391 struct elf_link_hash_entry **sym_hashes;
12392 bfd_signed_vma *local_got_refcounts;
12393 const Elf_Internal_Rela *rel, *relend;
12394 unsigned long r_symndx;
12395 struct elf_link_hash_entry *h;
12396
12397 if (bfd_link_relocatable (info))
12398 return TRUE;
12399
12400 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12401 sym_hashes = elf_sym_hashes (abfd);
12402 local_got_refcounts = elf_local_got_refcounts (abfd);
12403
12404 relend = relocs + sec->reloc_count;
12405 for (rel = relocs; rel < relend; rel++)
12406 switch (ELF_R_TYPE (abfd, rel->r_info))
12407 {
12408 case R_MIPS16_GOT16:
12409 case R_MIPS16_CALL16:
12410 case R_MIPS_GOT16:
12411 case R_MIPS_CALL16:
12412 case R_MIPS_CALL_HI16:
12413 case R_MIPS_CALL_LO16:
12414 case R_MIPS_GOT_HI16:
12415 case R_MIPS_GOT_LO16:
12416 case R_MIPS_GOT_DISP:
12417 case R_MIPS_GOT_PAGE:
12418 case R_MIPS_GOT_OFST:
12419 case R_MICROMIPS_GOT16:
12420 case R_MICROMIPS_CALL16:
12421 case R_MICROMIPS_CALL_HI16:
12422 case R_MICROMIPS_CALL_LO16:
12423 case R_MICROMIPS_GOT_HI16:
12424 case R_MICROMIPS_GOT_LO16:
12425 case R_MICROMIPS_GOT_DISP:
12426 case R_MICROMIPS_GOT_PAGE:
12427 case R_MICROMIPS_GOT_OFST:
12428 /* ??? It would seem that the existing MIPS code does no sort
12429 of reference counting or whatnot on its GOT and PLT entries,
12430 so it is not possible to garbage collect them at this time. */
12431 break;
12432
12433 default:
12434 break;
12435 }
12436 #endif
12437
12438 return TRUE;
12439 }
12440
12441 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12442
12443 bfd_boolean
12444 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12445 elf_gc_mark_hook_fn gc_mark_hook)
12446 {
12447 bfd *sub;
12448
12449 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12450
12451 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12452 {
12453 asection *o;
12454
12455 if (! is_mips_elf (sub))
12456 continue;
12457
12458 for (o = sub->sections; o != NULL; o = o->next)
12459 if (!o->gc_mark
12460 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12461 (bfd_get_section_name (sub, o)))
12462 {
12463 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12464 return FALSE;
12465 }
12466 }
12467
12468 return TRUE;
12469 }
12470 \f
12471 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12472 hiding the old indirect symbol. Process additional relocation
12473 information. Also called for weakdefs, in which case we just let
12474 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12475
12476 void
12477 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12478 struct elf_link_hash_entry *dir,
12479 struct elf_link_hash_entry *ind)
12480 {
12481 struct mips_elf_link_hash_entry *dirmips, *indmips;
12482
12483 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12484
12485 dirmips = (struct mips_elf_link_hash_entry *) dir;
12486 indmips = (struct mips_elf_link_hash_entry *) ind;
12487 /* Any absolute non-dynamic relocations against an indirect or weak
12488 definition will be against the target symbol. */
12489 if (indmips->has_static_relocs)
12490 dirmips->has_static_relocs = TRUE;
12491
12492 if (ind->root.type != bfd_link_hash_indirect)
12493 return;
12494
12495 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12496 if (indmips->readonly_reloc)
12497 dirmips->readonly_reloc = TRUE;
12498 if (indmips->no_fn_stub)
12499 dirmips->no_fn_stub = TRUE;
12500 if (indmips->fn_stub)
12501 {
12502 dirmips->fn_stub = indmips->fn_stub;
12503 indmips->fn_stub = NULL;
12504 }
12505 if (indmips->need_fn_stub)
12506 {
12507 dirmips->need_fn_stub = TRUE;
12508 indmips->need_fn_stub = FALSE;
12509 }
12510 if (indmips->call_stub)
12511 {
12512 dirmips->call_stub = indmips->call_stub;
12513 indmips->call_stub = NULL;
12514 }
12515 if (indmips->call_fp_stub)
12516 {
12517 dirmips->call_fp_stub = indmips->call_fp_stub;
12518 indmips->call_fp_stub = NULL;
12519 }
12520 if (indmips->global_got_area < dirmips->global_got_area)
12521 dirmips->global_got_area = indmips->global_got_area;
12522 if (indmips->global_got_area < GGA_NONE)
12523 indmips->global_got_area = GGA_NONE;
12524 if (indmips->has_nonpic_branches)
12525 dirmips->has_nonpic_branches = TRUE;
12526 }
12527 \f
12528 #define PDR_SIZE 32
12529
12530 bfd_boolean
12531 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12532 struct bfd_link_info *info)
12533 {
12534 asection *o;
12535 bfd_boolean ret = FALSE;
12536 unsigned char *tdata;
12537 size_t i, skip;
12538
12539 o = bfd_get_section_by_name (abfd, ".pdr");
12540 if (! o)
12541 return FALSE;
12542 if (o->size == 0)
12543 return FALSE;
12544 if (o->size % PDR_SIZE != 0)
12545 return FALSE;
12546 if (o->output_section != NULL
12547 && bfd_is_abs_section (o->output_section))
12548 return FALSE;
12549
12550 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12551 if (! tdata)
12552 return FALSE;
12553
12554 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12555 info->keep_memory);
12556 if (!cookie->rels)
12557 {
12558 free (tdata);
12559 return FALSE;
12560 }
12561
12562 cookie->rel = cookie->rels;
12563 cookie->relend = cookie->rels + o->reloc_count;
12564
12565 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12566 {
12567 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12568 {
12569 tdata[i] = 1;
12570 skip ++;
12571 }
12572 }
12573
12574 if (skip != 0)
12575 {
12576 mips_elf_section_data (o)->u.tdata = tdata;
12577 if (o->rawsize == 0)
12578 o->rawsize = o->size;
12579 o->size -= skip * PDR_SIZE;
12580 ret = TRUE;
12581 }
12582 else
12583 free (tdata);
12584
12585 if (! info->keep_memory)
12586 free (cookie->rels);
12587
12588 return ret;
12589 }
12590
12591 bfd_boolean
12592 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12593 {
12594 if (strcmp (sec->name, ".pdr") == 0)
12595 return TRUE;
12596 return FALSE;
12597 }
12598
12599 bfd_boolean
12600 _bfd_mips_elf_write_section (bfd *output_bfd,
12601 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12602 asection *sec, bfd_byte *contents)
12603 {
12604 bfd_byte *to, *from, *end;
12605 int i;
12606
12607 if (strcmp (sec->name, ".pdr") != 0)
12608 return FALSE;
12609
12610 if (mips_elf_section_data (sec)->u.tdata == NULL)
12611 return FALSE;
12612
12613 to = contents;
12614 end = contents + sec->size;
12615 for (from = contents, i = 0;
12616 from < end;
12617 from += PDR_SIZE, i++)
12618 {
12619 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12620 continue;
12621 if (to != from)
12622 memcpy (to, from, PDR_SIZE);
12623 to += PDR_SIZE;
12624 }
12625 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12626 sec->output_offset, sec->size);
12627 return TRUE;
12628 }
12629 \f
12630 /* microMIPS code retains local labels for linker relaxation. Omit them
12631 from output by default for clarity. */
12632
12633 bfd_boolean
12634 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12635 {
12636 return _bfd_elf_is_local_label_name (abfd, sym->name);
12637 }
12638
12639 /* MIPS ELF uses a special find_nearest_line routine in order the
12640 handle the ECOFF debugging information. */
12641
12642 struct mips_elf_find_line
12643 {
12644 struct ecoff_debug_info d;
12645 struct ecoff_find_line i;
12646 };
12647
12648 bfd_boolean
12649 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12650 asection *section, bfd_vma offset,
12651 const char **filename_ptr,
12652 const char **functionname_ptr,
12653 unsigned int *line_ptr,
12654 unsigned int *discriminator_ptr)
12655 {
12656 asection *msec;
12657
12658 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12659 filename_ptr, functionname_ptr,
12660 line_ptr, discriminator_ptr,
12661 dwarf_debug_sections,
12662 ABI_64_P (abfd) ? 8 : 0,
12663 &elf_tdata (abfd)->dwarf2_find_line_info))
12664 return TRUE;
12665
12666 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12667 filename_ptr, functionname_ptr,
12668 line_ptr))
12669 return TRUE;
12670
12671 msec = bfd_get_section_by_name (abfd, ".mdebug");
12672 if (msec != NULL)
12673 {
12674 flagword origflags;
12675 struct mips_elf_find_line *fi;
12676 const struct ecoff_debug_swap * const swap =
12677 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12678
12679 /* If we are called during a link, mips_elf_final_link may have
12680 cleared the SEC_HAS_CONTENTS field. We force it back on here
12681 if appropriate (which it normally will be). */
12682 origflags = msec->flags;
12683 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12684 msec->flags |= SEC_HAS_CONTENTS;
12685
12686 fi = mips_elf_tdata (abfd)->find_line_info;
12687 if (fi == NULL)
12688 {
12689 bfd_size_type external_fdr_size;
12690 char *fraw_src;
12691 char *fraw_end;
12692 struct fdr *fdr_ptr;
12693 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12694
12695 fi = bfd_zalloc (abfd, amt);
12696 if (fi == NULL)
12697 {
12698 msec->flags = origflags;
12699 return FALSE;
12700 }
12701
12702 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12703 {
12704 msec->flags = origflags;
12705 return FALSE;
12706 }
12707
12708 /* Swap in the FDR information. */
12709 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12710 fi->d.fdr = bfd_alloc (abfd, amt);
12711 if (fi->d.fdr == NULL)
12712 {
12713 msec->flags = origflags;
12714 return FALSE;
12715 }
12716 external_fdr_size = swap->external_fdr_size;
12717 fdr_ptr = fi->d.fdr;
12718 fraw_src = (char *) fi->d.external_fdr;
12719 fraw_end = (fraw_src
12720 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12721 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12722 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12723
12724 mips_elf_tdata (abfd)->find_line_info = fi;
12725
12726 /* Note that we don't bother to ever free this information.
12727 find_nearest_line is either called all the time, as in
12728 objdump -l, so the information should be saved, or it is
12729 rarely called, as in ld error messages, so the memory
12730 wasted is unimportant. Still, it would probably be a
12731 good idea for free_cached_info to throw it away. */
12732 }
12733
12734 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12735 &fi->i, filename_ptr, functionname_ptr,
12736 line_ptr))
12737 {
12738 msec->flags = origflags;
12739 return TRUE;
12740 }
12741
12742 msec->flags = origflags;
12743 }
12744
12745 /* Fall back on the generic ELF find_nearest_line routine. */
12746
12747 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12748 filename_ptr, functionname_ptr,
12749 line_ptr, discriminator_ptr);
12750 }
12751
12752 bfd_boolean
12753 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12754 const char **filename_ptr,
12755 const char **functionname_ptr,
12756 unsigned int *line_ptr)
12757 {
12758 bfd_boolean found;
12759 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12760 functionname_ptr, line_ptr,
12761 & elf_tdata (abfd)->dwarf2_find_line_info);
12762 return found;
12763 }
12764
12765 \f
12766 /* When are writing out the .options or .MIPS.options section,
12767 remember the bytes we are writing out, so that we can install the
12768 GP value in the section_processing routine. */
12769
12770 bfd_boolean
12771 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12772 const void *location,
12773 file_ptr offset, bfd_size_type count)
12774 {
12775 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12776 {
12777 bfd_byte *c;
12778
12779 if (elf_section_data (section) == NULL)
12780 {
12781 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12782 section->used_by_bfd = bfd_zalloc (abfd, amt);
12783 if (elf_section_data (section) == NULL)
12784 return FALSE;
12785 }
12786 c = mips_elf_section_data (section)->u.tdata;
12787 if (c == NULL)
12788 {
12789 c = bfd_zalloc (abfd, section->size);
12790 if (c == NULL)
12791 return FALSE;
12792 mips_elf_section_data (section)->u.tdata = c;
12793 }
12794
12795 memcpy (c + offset, location, count);
12796 }
12797
12798 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12799 count);
12800 }
12801
12802 /* This is almost identical to bfd_generic_get_... except that some
12803 MIPS relocations need to be handled specially. Sigh. */
12804
12805 bfd_byte *
12806 _bfd_elf_mips_get_relocated_section_contents
12807 (bfd *abfd,
12808 struct bfd_link_info *link_info,
12809 struct bfd_link_order *link_order,
12810 bfd_byte *data,
12811 bfd_boolean relocatable,
12812 asymbol **symbols)
12813 {
12814 /* Get enough memory to hold the stuff */
12815 bfd *input_bfd = link_order->u.indirect.section->owner;
12816 asection *input_section = link_order->u.indirect.section;
12817 bfd_size_type sz;
12818
12819 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12820 arelent **reloc_vector = NULL;
12821 long reloc_count;
12822
12823 if (reloc_size < 0)
12824 goto error_return;
12825
12826 reloc_vector = bfd_malloc (reloc_size);
12827 if (reloc_vector == NULL && reloc_size != 0)
12828 goto error_return;
12829
12830 /* read in the section */
12831 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12832 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12833 goto error_return;
12834
12835 reloc_count = bfd_canonicalize_reloc (input_bfd,
12836 input_section,
12837 reloc_vector,
12838 symbols);
12839 if (reloc_count < 0)
12840 goto error_return;
12841
12842 if (reloc_count > 0)
12843 {
12844 arelent **parent;
12845 /* for mips */
12846 int gp_found;
12847 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12848
12849 {
12850 struct bfd_hash_entry *h;
12851 struct bfd_link_hash_entry *lh;
12852 /* Skip all this stuff if we aren't mixing formats. */
12853 if (abfd && input_bfd
12854 && abfd->xvec == input_bfd->xvec)
12855 lh = 0;
12856 else
12857 {
12858 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12859 lh = (struct bfd_link_hash_entry *) h;
12860 }
12861 lookup:
12862 if (lh)
12863 {
12864 switch (lh->type)
12865 {
12866 case bfd_link_hash_undefined:
12867 case bfd_link_hash_undefweak:
12868 case bfd_link_hash_common:
12869 gp_found = 0;
12870 break;
12871 case bfd_link_hash_defined:
12872 case bfd_link_hash_defweak:
12873 gp_found = 1;
12874 gp = lh->u.def.value;
12875 break;
12876 case bfd_link_hash_indirect:
12877 case bfd_link_hash_warning:
12878 lh = lh->u.i.link;
12879 /* @@FIXME ignoring warning for now */
12880 goto lookup;
12881 case bfd_link_hash_new:
12882 default:
12883 abort ();
12884 }
12885 }
12886 else
12887 gp_found = 0;
12888 }
12889 /* end mips */
12890 for (parent = reloc_vector; *parent != NULL; parent++)
12891 {
12892 char *error_message = NULL;
12893 bfd_reloc_status_type r;
12894
12895 /* Specific to MIPS: Deal with relocation types that require
12896 knowing the gp of the output bfd. */
12897 asymbol *sym = *(*parent)->sym_ptr_ptr;
12898
12899 /* If we've managed to find the gp and have a special
12900 function for the relocation then go ahead, else default
12901 to the generic handling. */
12902 if (gp_found
12903 && (*parent)->howto->special_function
12904 == _bfd_mips_elf32_gprel16_reloc)
12905 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12906 input_section, relocatable,
12907 data, gp);
12908 else
12909 r = bfd_perform_relocation (input_bfd, *parent, data,
12910 input_section,
12911 relocatable ? abfd : NULL,
12912 &error_message);
12913
12914 if (relocatable)
12915 {
12916 asection *os = input_section->output_section;
12917
12918 /* A partial link, so keep the relocs */
12919 os->orelocation[os->reloc_count] = *parent;
12920 os->reloc_count++;
12921 }
12922
12923 if (r != bfd_reloc_ok)
12924 {
12925 switch (r)
12926 {
12927 case bfd_reloc_undefined:
12928 (*link_info->callbacks->undefined_symbol)
12929 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12930 input_bfd, input_section, (*parent)->address, TRUE);
12931 break;
12932 case bfd_reloc_dangerous:
12933 BFD_ASSERT (error_message != NULL);
12934 (*link_info->callbacks->reloc_dangerous)
12935 (link_info, error_message,
12936 input_bfd, input_section, (*parent)->address);
12937 break;
12938 case bfd_reloc_overflow:
12939 (*link_info->callbacks->reloc_overflow)
12940 (link_info, NULL,
12941 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12942 (*parent)->howto->name, (*parent)->addend,
12943 input_bfd, input_section, (*parent)->address);
12944 break;
12945 case bfd_reloc_outofrange:
12946 default:
12947 abort ();
12948 break;
12949 }
12950
12951 }
12952 }
12953 }
12954 if (reloc_vector != NULL)
12955 free (reloc_vector);
12956 return data;
12957
12958 error_return:
12959 if (reloc_vector != NULL)
12960 free (reloc_vector);
12961 return NULL;
12962 }
12963 \f
12964 static bfd_boolean
12965 mips_elf_relax_delete_bytes (bfd *abfd,
12966 asection *sec, bfd_vma addr, int count)
12967 {
12968 Elf_Internal_Shdr *symtab_hdr;
12969 unsigned int sec_shndx;
12970 bfd_byte *contents;
12971 Elf_Internal_Rela *irel, *irelend;
12972 Elf_Internal_Sym *isym;
12973 Elf_Internal_Sym *isymend;
12974 struct elf_link_hash_entry **sym_hashes;
12975 struct elf_link_hash_entry **end_hashes;
12976 struct elf_link_hash_entry **start_hashes;
12977 unsigned int symcount;
12978
12979 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12980 contents = elf_section_data (sec)->this_hdr.contents;
12981
12982 irel = elf_section_data (sec)->relocs;
12983 irelend = irel + sec->reloc_count;
12984
12985 /* Actually delete the bytes. */
12986 memmove (contents + addr, contents + addr + count,
12987 (size_t) (sec->size - addr - count));
12988 sec->size -= count;
12989
12990 /* Adjust all the relocs. */
12991 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12992 {
12993 /* Get the new reloc address. */
12994 if (irel->r_offset > addr)
12995 irel->r_offset -= count;
12996 }
12997
12998 BFD_ASSERT (addr % 2 == 0);
12999 BFD_ASSERT (count % 2 == 0);
13000
13001 /* Adjust the local symbols defined in this section. */
13002 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13003 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13004 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13005 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13006 isym->st_value -= count;
13007
13008 /* Now adjust the global symbols defined in this section. */
13009 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13010 - symtab_hdr->sh_info);
13011 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13012 end_hashes = sym_hashes + symcount;
13013
13014 for (; sym_hashes < end_hashes; sym_hashes++)
13015 {
13016 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13017
13018 if ((sym_hash->root.type == bfd_link_hash_defined
13019 || sym_hash->root.type == bfd_link_hash_defweak)
13020 && sym_hash->root.u.def.section == sec)
13021 {
13022 bfd_vma value = sym_hash->root.u.def.value;
13023
13024 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13025 value &= MINUS_TWO;
13026 if (value > addr)
13027 sym_hash->root.u.def.value -= count;
13028 }
13029 }
13030
13031 return TRUE;
13032 }
13033
13034
13035 /* Opcodes needed for microMIPS relaxation as found in
13036 opcodes/micromips-opc.c. */
13037
13038 struct opcode_descriptor {
13039 unsigned long match;
13040 unsigned long mask;
13041 };
13042
13043 /* The $ra register aka $31. */
13044
13045 #define RA 31
13046
13047 /* 32-bit instruction format register fields. */
13048
13049 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13050 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13051
13052 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13053
13054 #define OP16_VALID_REG(r) \
13055 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13056
13057
13058 /* 32-bit and 16-bit branches. */
13059
13060 static const struct opcode_descriptor b_insns_32[] = {
13061 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13062 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13063 { 0, 0 } /* End marker for find_match(). */
13064 };
13065
13066 static const struct opcode_descriptor bc_insn_32 =
13067 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13068
13069 static const struct opcode_descriptor bz_insn_32 =
13070 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13071
13072 static const struct opcode_descriptor bzal_insn_32 =
13073 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13074
13075 static const struct opcode_descriptor beq_insn_32 =
13076 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13077
13078 static const struct opcode_descriptor b_insn_16 =
13079 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13080
13081 static const struct opcode_descriptor bz_insn_16 =
13082 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13083
13084
13085 /* 32-bit and 16-bit branch EQ and NE zero. */
13086
13087 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13088 eq and second the ne. This convention is used when replacing a
13089 32-bit BEQ/BNE with the 16-bit version. */
13090
13091 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13092
13093 static const struct opcode_descriptor bz_rs_insns_32[] = {
13094 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13095 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13096 { 0, 0 } /* End marker for find_match(). */
13097 };
13098
13099 static const struct opcode_descriptor bz_rt_insns_32[] = {
13100 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13101 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13102 { 0, 0 } /* End marker for find_match(). */
13103 };
13104
13105 static const struct opcode_descriptor bzc_insns_32[] = {
13106 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13107 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13108 { 0, 0 } /* End marker for find_match(). */
13109 };
13110
13111 static const struct opcode_descriptor bz_insns_16[] = {
13112 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13113 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13114 { 0, 0 } /* End marker for find_match(). */
13115 };
13116
13117 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13118
13119 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13120 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13121
13122
13123 /* 32-bit instructions with a delay slot. */
13124
13125 static const struct opcode_descriptor jal_insn_32_bd16 =
13126 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13127
13128 static const struct opcode_descriptor jal_insn_32_bd32 =
13129 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13130
13131 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13132 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13133
13134 static const struct opcode_descriptor j_insn_32 =
13135 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13136
13137 static const struct opcode_descriptor jalr_insn_32 =
13138 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13139
13140 /* This table can be compacted, because no opcode replacement is made. */
13141
13142 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13143 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13144
13145 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13146 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13147
13148 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13149 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13150 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13151 { 0, 0 } /* End marker for find_match(). */
13152 };
13153
13154 /* This table can be compacted, because no opcode replacement is made. */
13155
13156 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13157 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13158
13159 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13160 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13161 { 0, 0 } /* End marker for find_match(). */
13162 };
13163
13164
13165 /* 16-bit instructions with a delay slot. */
13166
13167 static const struct opcode_descriptor jalr_insn_16_bd16 =
13168 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13169
13170 static const struct opcode_descriptor jalr_insn_16_bd32 =
13171 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13172
13173 static const struct opcode_descriptor jr_insn_16 =
13174 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13175
13176 #define JR16_REG(opcode) ((opcode) & 0x1f)
13177
13178 /* This table can be compacted, because no opcode replacement is made. */
13179
13180 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13181 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13182
13183 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13184 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13185 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13186 { 0, 0 } /* End marker for find_match(). */
13187 };
13188
13189
13190 /* LUI instruction. */
13191
13192 static const struct opcode_descriptor lui_insn =
13193 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13194
13195
13196 /* ADDIU instruction. */
13197
13198 static const struct opcode_descriptor addiu_insn =
13199 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13200
13201 static const struct opcode_descriptor addiupc_insn =
13202 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13203
13204 #define ADDIUPC_REG_FIELD(r) \
13205 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13206
13207
13208 /* Relaxable instructions in a JAL delay slot: MOVE. */
13209
13210 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13211 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13212 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13213 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13214
13215 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13216 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13217
13218 static const struct opcode_descriptor move_insns_32[] = {
13219 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13220 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13221 { 0, 0 } /* End marker for find_match(). */
13222 };
13223
13224 static const struct opcode_descriptor move_insn_16 =
13225 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13226
13227
13228 /* NOP instructions. */
13229
13230 static const struct opcode_descriptor nop_insn_32 =
13231 { /* "nop", "", */ 0x00000000, 0xffffffff };
13232
13233 static const struct opcode_descriptor nop_insn_16 =
13234 { /* "nop", "", */ 0x0c00, 0xffff };
13235
13236
13237 /* Instruction match support. */
13238
13239 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13240
13241 static int
13242 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13243 {
13244 unsigned long indx;
13245
13246 for (indx = 0; insn[indx].mask != 0; indx++)
13247 if (MATCH (opcode, insn[indx]))
13248 return indx;
13249
13250 return -1;
13251 }
13252
13253
13254 /* Branch and delay slot decoding support. */
13255
13256 /* If PTR points to what *might* be a 16-bit branch or jump, then
13257 return the minimum length of its delay slot, otherwise return 0.
13258 Non-zero results are not definitive as we might be checking against
13259 the second half of another instruction. */
13260
13261 static int
13262 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13263 {
13264 unsigned long opcode;
13265 int bdsize;
13266
13267 opcode = bfd_get_16 (abfd, ptr);
13268 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13269 /* 16-bit branch/jump with a 32-bit delay slot. */
13270 bdsize = 4;
13271 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13272 || find_match (opcode, ds_insns_16_bd16) >= 0)
13273 /* 16-bit branch/jump with a 16-bit delay slot. */
13274 bdsize = 2;
13275 else
13276 /* No delay slot. */
13277 bdsize = 0;
13278
13279 return bdsize;
13280 }
13281
13282 /* If PTR points to what *might* be a 32-bit branch or jump, then
13283 return the minimum length of its delay slot, otherwise return 0.
13284 Non-zero results are not definitive as we might be checking against
13285 the second half of another instruction. */
13286
13287 static int
13288 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13289 {
13290 unsigned long opcode;
13291 int bdsize;
13292
13293 opcode = bfd_get_micromips_32 (abfd, ptr);
13294 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13295 /* 32-bit branch/jump with a 32-bit delay slot. */
13296 bdsize = 4;
13297 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13298 /* 32-bit branch/jump with a 16-bit delay slot. */
13299 bdsize = 2;
13300 else
13301 /* No delay slot. */
13302 bdsize = 0;
13303
13304 return bdsize;
13305 }
13306
13307 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13308 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13309
13310 static bfd_boolean
13311 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13312 {
13313 unsigned long opcode;
13314
13315 opcode = bfd_get_16 (abfd, ptr);
13316 if (MATCH (opcode, b_insn_16)
13317 /* B16 */
13318 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13319 /* JR16 */
13320 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13321 /* BEQZ16, BNEZ16 */
13322 || (MATCH (opcode, jalr_insn_16_bd32)
13323 /* JALR16 */
13324 && reg != JR16_REG (opcode) && reg != RA))
13325 return TRUE;
13326
13327 return FALSE;
13328 }
13329
13330 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13331 then return TRUE, otherwise FALSE. */
13332
13333 static bfd_boolean
13334 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13335 {
13336 unsigned long opcode;
13337
13338 opcode = bfd_get_micromips_32 (abfd, ptr);
13339 if (MATCH (opcode, j_insn_32)
13340 /* J */
13341 || MATCH (opcode, bc_insn_32)
13342 /* BC1F, BC1T, BC2F, BC2T */
13343 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13344 /* JAL, JALX */
13345 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13346 /* BGEZ, BGTZ, BLEZ, BLTZ */
13347 || (MATCH (opcode, bzal_insn_32)
13348 /* BGEZAL, BLTZAL */
13349 && reg != OP32_SREG (opcode) && reg != RA)
13350 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13351 /* JALR, JALR.HB, BEQ, BNE */
13352 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13353 return TRUE;
13354
13355 return FALSE;
13356 }
13357
13358 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13359 IRELEND) at OFFSET indicate that there must be a compact branch there,
13360 then return TRUE, otherwise FALSE. */
13361
13362 static bfd_boolean
13363 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13364 const Elf_Internal_Rela *internal_relocs,
13365 const Elf_Internal_Rela *irelend)
13366 {
13367 const Elf_Internal_Rela *irel;
13368 unsigned long opcode;
13369
13370 opcode = bfd_get_micromips_32 (abfd, ptr);
13371 if (find_match (opcode, bzc_insns_32) < 0)
13372 return FALSE;
13373
13374 for (irel = internal_relocs; irel < irelend; irel++)
13375 if (irel->r_offset == offset
13376 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13377 return TRUE;
13378
13379 return FALSE;
13380 }
13381
13382 /* Bitsize checking. */
13383 #define IS_BITSIZE(val, N) \
13384 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13385 - (1ULL << ((N) - 1))) == (val))
13386
13387 \f
13388 bfd_boolean
13389 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13390 struct bfd_link_info *link_info,
13391 bfd_boolean *again)
13392 {
13393 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13394 Elf_Internal_Shdr *symtab_hdr;
13395 Elf_Internal_Rela *internal_relocs;
13396 Elf_Internal_Rela *irel, *irelend;
13397 bfd_byte *contents = NULL;
13398 Elf_Internal_Sym *isymbuf = NULL;
13399
13400 /* Assume nothing changes. */
13401 *again = FALSE;
13402
13403 /* We don't have to do anything for a relocatable link, if
13404 this section does not have relocs, or if this is not a
13405 code section. */
13406
13407 if (bfd_link_relocatable (link_info)
13408 || (sec->flags & SEC_RELOC) == 0
13409 || sec->reloc_count == 0
13410 || (sec->flags & SEC_CODE) == 0)
13411 return TRUE;
13412
13413 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13414
13415 /* Get a copy of the native relocations. */
13416 internal_relocs = (_bfd_elf_link_read_relocs
13417 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13418 link_info->keep_memory));
13419 if (internal_relocs == NULL)
13420 goto error_return;
13421
13422 /* Walk through them looking for relaxing opportunities. */
13423 irelend = internal_relocs + sec->reloc_count;
13424 for (irel = internal_relocs; irel < irelend; irel++)
13425 {
13426 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13427 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13428 bfd_boolean target_is_micromips_code_p;
13429 unsigned long opcode;
13430 bfd_vma symval;
13431 bfd_vma pcrval;
13432 bfd_byte *ptr;
13433 int fndopc;
13434
13435 /* The number of bytes to delete for relaxation and from where
13436 to delete these bytes starting at irel->r_offset. */
13437 int delcnt = 0;
13438 int deloff = 0;
13439
13440 /* If this isn't something that can be relaxed, then ignore
13441 this reloc. */
13442 if (r_type != R_MICROMIPS_HI16
13443 && r_type != R_MICROMIPS_PC16_S1
13444 && r_type != R_MICROMIPS_26_S1)
13445 continue;
13446
13447 /* Get the section contents if we haven't done so already. */
13448 if (contents == NULL)
13449 {
13450 /* Get cached copy if it exists. */
13451 if (elf_section_data (sec)->this_hdr.contents != NULL)
13452 contents = elf_section_data (sec)->this_hdr.contents;
13453 /* Go get them off disk. */
13454 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13455 goto error_return;
13456 }
13457 ptr = contents + irel->r_offset;
13458
13459 /* Read this BFD's local symbols if we haven't done so already. */
13460 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13461 {
13462 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13463 if (isymbuf == NULL)
13464 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13465 symtab_hdr->sh_info, 0,
13466 NULL, NULL, NULL);
13467 if (isymbuf == NULL)
13468 goto error_return;
13469 }
13470
13471 /* Get the value of the symbol referred to by the reloc. */
13472 if (r_symndx < symtab_hdr->sh_info)
13473 {
13474 /* A local symbol. */
13475 Elf_Internal_Sym *isym;
13476 asection *sym_sec;
13477
13478 isym = isymbuf + r_symndx;
13479 if (isym->st_shndx == SHN_UNDEF)
13480 sym_sec = bfd_und_section_ptr;
13481 else if (isym->st_shndx == SHN_ABS)
13482 sym_sec = bfd_abs_section_ptr;
13483 else if (isym->st_shndx == SHN_COMMON)
13484 sym_sec = bfd_com_section_ptr;
13485 else
13486 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13487 symval = (isym->st_value
13488 + sym_sec->output_section->vma
13489 + sym_sec->output_offset);
13490 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13491 }
13492 else
13493 {
13494 unsigned long indx;
13495 struct elf_link_hash_entry *h;
13496
13497 /* An external symbol. */
13498 indx = r_symndx - symtab_hdr->sh_info;
13499 h = elf_sym_hashes (abfd)[indx];
13500 BFD_ASSERT (h != NULL);
13501
13502 if (h->root.type != bfd_link_hash_defined
13503 && h->root.type != bfd_link_hash_defweak)
13504 /* This appears to be a reference to an undefined
13505 symbol. Just ignore it -- it will be caught by the
13506 regular reloc processing. */
13507 continue;
13508
13509 symval = (h->root.u.def.value
13510 + h->root.u.def.section->output_section->vma
13511 + h->root.u.def.section->output_offset);
13512 target_is_micromips_code_p = (!h->needs_plt
13513 && ELF_ST_IS_MICROMIPS (h->other));
13514 }
13515
13516
13517 /* For simplicity of coding, we are going to modify the
13518 section contents, the section relocs, and the BFD symbol
13519 table. We must tell the rest of the code not to free up this
13520 information. It would be possible to instead create a table
13521 of changes which have to be made, as is done in coff-mips.c;
13522 that would be more work, but would require less memory when
13523 the linker is run. */
13524
13525 /* Only 32-bit instructions relaxed. */
13526 if (irel->r_offset + 4 > sec->size)
13527 continue;
13528
13529 opcode = bfd_get_micromips_32 (abfd, ptr);
13530
13531 /* This is the pc-relative distance from the instruction the
13532 relocation is applied to, to the symbol referred. */
13533 pcrval = (symval
13534 - (sec->output_section->vma + sec->output_offset)
13535 - irel->r_offset);
13536
13537 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13538 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13539 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13540
13541 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13542
13543 where pcrval has first to be adjusted to apply against the LO16
13544 location (we make the adjustment later on, when we have figured
13545 out the offset). */
13546 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13547 {
13548 bfd_boolean bzc = FALSE;
13549 unsigned long nextopc;
13550 unsigned long reg;
13551 bfd_vma offset;
13552
13553 /* Give up if the previous reloc was a HI16 against this symbol
13554 too. */
13555 if (irel > internal_relocs
13556 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13557 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13558 continue;
13559
13560 /* Or if the next reloc is not a LO16 against this symbol. */
13561 if (irel + 1 >= irelend
13562 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13563 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13564 continue;
13565
13566 /* Or if the second next reloc is a LO16 against this symbol too. */
13567 if (irel + 2 >= irelend
13568 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13569 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13570 continue;
13571
13572 /* See if the LUI instruction *might* be in a branch delay slot.
13573 We check whether what looks like a 16-bit branch or jump is
13574 actually an immediate argument to a compact branch, and let
13575 it through if so. */
13576 if (irel->r_offset >= 2
13577 && check_br16_dslot (abfd, ptr - 2)
13578 && !(irel->r_offset >= 4
13579 && (bzc = check_relocated_bzc (abfd,
13580 ptr - 4, irel->r_offset - 4,
13581 internal_relocs, irelend))))
13582 continue;
13583 if (irel->r_offset >= 4
13584 && !bzc
13585 && check_br32_dslot (abfd, ptr - 4))
13586 continue;
13587
13588 reg = OP32_SREG (opcode);
13589
13590 /* We only relax adjacent instructions or ones separated with
13591 a branch or jump that has a delay slot. The branch or jump
13592 must not fiddle with the register used to hold the address.
13593 Subtract 4 for the LUI itself. */
13594 offset = irel[1].r_offset - irel[0].r_offset;
13595 switch (offset - 4)
13596 {
13597 case 0:
13598 break;
13599 case 2:
13600 if (check_br16 (abfd, ptr + 4, reg))
13601 break;
13602 continue;
13603 case 4:
13604 if (check_br32 (abfd, ptr + 4, reg))
13605 break;
13606 continue;
13607 default:
13608 continue;
13609 }
13610
13611 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13612
13613 /* Give up unless the same register is used with both
13614 relocations. */
13615 if (OP32_SREG (nextopc) != reg)
13616 continue;
13617
13618 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13619 and rounding up to take masking of the two LSBs into account. */
13620 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13621
13622 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13623 if (IS_BITSIZE (symval, 16))
13624 {
13625 /* Fix the relocation's type. */
13626 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13627
13628 /* Instructions using R_MICROMIPS_LO16 have the base or
13629 source register in bits 20:16. This register becomes $0
13630 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13631 nextopc &= ~0x001f0000;
13632 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13633 contents + irel[1].r_offset);
13634 }
13635
13636 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13637 We add 4 to take LUI deletion into account while checking
13638 the PC-relative distance. */
13639 else if (symval % 4 == 0
13640 && IS_BITSIZE (pcrval + 4, 25)
13641 && MATCH (nextopc, addiu_insn)
13642 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13643 && OP16_VALID_REG (OP32_TREG (nextopc)))
13644 {
13645 /* Fix the relocation's type. */
13646 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13647
13648 /* Replace ADDIU with the ADDIUPC version. */
13649 nextopc = (addiupc_insn.match
13650 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13651
13652 bfd_put_micromips_32 (abfd, nextopc,
13653 contents + irel[1].r_offset);
13654 }
13655
13656 /* Can't do anything, give up, sigh... */
13657 else
13658 continue;
13659
13660 /* Fix the relocation's type. */
13661 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13662
13663 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13664 delcnt = 4;
13665 deloff = 0;
13666 }
13667
13668 /* Compact branch relaxation -- due to the multitude of macros
13669 employed by the compiler/assembler, compact branches are not
13670 always generated. Obviously, this can/will be fixed elsewhere,
13671 but there is no drawback in double checking it here. */
13672 else if (r_type == R_MICROMIPS_PC16_S1
13673 && irel->r_offset + 5 < sec->size
13674 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13675 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13676 && ((!insn32
13677 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13678 nop_insn_16) ? 2 : 0))
13679 || (irel->r_offset + 7 < sec->size
13680 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13681 ptr + 4),
13682 nop_insn_32) ? 4 : 0))))
13683 {
13684 unsigned long reg;
13685
13686 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13687
13688 /* Replace BEQZ/BNEZ with the compact version. */
13689 opcode = (bzc_insns_32[fndopc].match
13690 | BZC32_REG_FIELD (reg)
13691 | (opcode & 0xffff)); /* Addend value. */
13692
13693 bfd_put_micromips_32 (abfd, opcode, ptr);
13694
13695 /* Delete the delay slot NOP: two or four bytes from
13696 irel->offset + 4; delcnt has already been set above. */
13697 deloff = 4;
13698 }
13699
13700 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13701 to check the distance from the next instruction, so subtract 2. */
13702 else if (!insn32
13703 && r_type == R_MICROMIPS_PC16_S1
13704 && IS_BITSIZE (pcrval - 2, 11)
13705 && find_match (opcode, b_insns_32) >= 0)
13706 {
13707 /* Fix the relocation's type. */
13708 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13709
13710 /* Replace the 32-bit opcode with a 16-bit opcode. */
13711 bfd_put_16 (abfd,
13712 (b_insn_16.match
13713 | (opcode & 0x3ff)), /* Addend value. */
13714 ptr);
13715
13716 /* Delete 2 bytes from irel->r_offset + 2. */
13717 delcnt = 2;
13718 deloff = 2;
13719 }
13720
13721 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13722 to check the distance from the next instruction, so subtract 2. */
13723 else if (!insn32
13724 && r_type == R_MICROMIPS_PC16_S1
13725 && IS_BITSIZE (pcrval - 2, 8)
13726 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13727 && OP16_VALID_REG (OP32_SREG (opcode)))
13728 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13729 && OP16_VALID_REG (OP32_TREG (opcode)))))
13730 {
13731 unsigned long reg;
13732
13733 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13734
13735 /* Fix the relocation's type. */
13736 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13737
13738 /* Replace the 32-bit opcode with a 16-bit opcode. */
13739 bfd_put_16 (abfd,
13740 (bz_insns_16[fndopc].match
13741 | BZ16_REG_FIELD (reg)
13742 | (opcode & 0x7f)), /* Addend value. */
13743 ptr);
13744
13745 /* Delete 2 bytes from irel->r_offset + 2. */
13746 delcnt = 2;
13747 deloff = 2;
13748 }
13749
13750 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13751 else if (!insn32
13752 && r_type == R_MICROMIPS_26_S1
13753 && target_is_micromips_code_p
13754 && irel->r_offset + 7 < sec->size
13755 && MATCH (opcode, jal_insn_32_bd32))
13756 {
13757 unsigned long n32opc;
13758 bfd_boolean relaxed = FALSE;
13759
13760 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13761
13762 if (MATCH (n32opc, nop_insn_32))
13763 {
13764 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13765 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13766
13767 relaxed = TRUE;
13768 }
13769 else if (find_match (n32opc, move_insns_32) >= 0)
13770 {
13771 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13772 bfd_put_16 (abfd,
13773 (move_insn_16.match
13774 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13775 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13776 ptr + 4);
13777
13778 relaxed = TRUE;
13779 }
13780 /* Other 32-bit instructions relaxable to 16-bit
13781 instructions will be handled here later. */
13782
13783 if (relaxed)
13784 {
13785 /* JAL with 32-bit delay slot that is changed to a JALS
13786 with 16-bit delay slot. */
13787 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13788
13789 /* Delete 2 bytes from irel->r_offset + 6. */
13790 delcnt = 2;
13791 deloff = 6;
13792 }
13793 }
13794
13795 if (delcnt != 0)
13796 {
13797 /* Note that we've changed the relocs, section contents, etc. */
13798 elf_section_data (sec)->relocs = internal_relocs;
13799 elf_section_data (sec)->this_hdr.contents = contents;
13800 symtab_hdr->contents = (unsigned char *) isymbuf;
13801
13802 /* Delete bytes depending on the delcnt and deloff. */
13803 if (!mips_elf_relax_delete_bytes (abfd, sec,
13804 irel->r_offset + deloff, delcnt))
13805 goto error_return;
13806
13807 /* That will change things, so we should relax again.
13808 Note that this is not required, and it may be slow. */
13809 *again = TRUE;
13810 }
13811 }
13812
13813 if (isymbuf != NULL
13814 && symtab_hdr->contents != (unsigned char *) isymbuf)
13815 {
13816 if (! link_info->keep_memory)
13817 free (isymbuf);
13818 else
13819 {
13820 /* Cache the symbols for elf_link_input_bfd. */
13821 symtab_hdr->contents = (unsigned char *) isymbuf;
13822 }
13823 }
13824
13825 if (contents != NULL
13826 && elf_section_data (sec)->this_hdr.contents != contents)
13827 {
13828 if (! link_info->keep_memory)
13829 free (contents);
13830 else
13831 {
13832 /* Cache the section contents for elf_link_input_bfd. */
13833 elf_section_data (sec)->this_hdr.contents = contents;
13834 }
13835 }
13836
13837 if (internal_relocs != NULL
13838 && elf_section_data (sec)->relocs != internal_relocs)
13839 free (internal_relocs);
13840
13841 return TRUE;
13842
13843 error_return:
13844 if (isymbuf != NULL
13845 && symtab_hdr->contents != (unsigned char *) isymbuf)
13846 free (isymbuf);
13847 if (contents != NULL
13848 && elf_section_data (sec)->this_hdr.contents != contents)
13849 free (contents);
13850 if (internal_relocs != NULL
13851 && elf_section_data (sec)->relocs != internal_relocs)
13852 free (internal_relocs);
13853
13854 return FALSE;
13855 }
13856 \f
13857 /* Create a MIPS ELF linker hash table. */
13858
13859 struct bfd_link_hash_table *
13860 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13861 {
13862 struct mips_elf_link_hash_table *ret;
13863 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13864
13865 ret = bfd_zmalloc (amt);
13866 if (ret == NULL)
13867 return NULL;
13868
13869 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13870 mips_elf_link_hash_newfunc,
13871 sizeof (struct mips_elf_link_hash_entry),
13872 MIPS_ELF_DATA))
13873 {
13874 free (ret);
13875 return NULL;
13876 }
13877 ret->root.init_plt_refcount.plist = NULL;
13878 ret->root.init_plt_offset.plist = NULL;
13879
13880 return &ret->root.root;
13881 }
13882
13883 /* Likewise, but indicate that the target is VxWorks. */
13884
13885 struct bfd_link_hash_table *
13886 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13887 {
13888 struct bfd_link_hash_table *ret;
13889
13890 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13891 if (ret)
13892 {
13893 struct mips_elf_link_hash_table *htab;
13894
13895 htab = (struct mips_elf_link_hash_table *) ret;
13896 htab->use_plts_and_copy_relocs = TRUE;
13897 htab->is_vxworks = TRUE;
13898 }
13899 return ret;
13900 }
13901
13902 /* A function that the linker calls if we are allowed to use PLTs
13903 and copy relocs. */
13904
13905 void
13906 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13907 {
13908 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13909 }
13910
13911 /* A function that the linker calls to select between all or only
13912 32-bit microMIPS instructions. */
13913
13914 void
13915 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
13916 {
13917 mips_elf_hash_table (info)->insn32 = on;
13918 }
13919 \f
13920 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13921
13922 struct mips_mach_extension
13923 {
13924 unsigned long extension, base;
13925 };
13926
13927
13928 /* An array describing how BFD machines relate to one another. The entries
13929 are ordered topologically with MIPS I extensions listed last. */
13930
13931 static const struct mips_mach_extension mips_mach_extensions[] =
13932 {
13933 /* MIPS64r2 extensions. */
13934 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13935 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13936 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13937 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13938 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13939
13940 /* MIPS64 extensions. */
13941 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13942 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13943 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13944
13945 /* MIPS V extensions. */
13946 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13947
13948 /* R10000 extensions. */
13949 { bfd_mach_mips12000, bfd_mach_mips10000 },
13950 { bfd_mach_mips14000, bfd_mach_mips10000 },
13951 { bfd_mach_mips16000, bfd_mach_mips10000 },
13952
13953 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13954 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13955 better to allow vr5400 and vr5500 code to be merged anyway, since
13956 many libraries will just use the core ISA. Perhaps we could add
13957 some sort of ASE flag if this ever proves a problem. */
13958 { bfd_mach_mips5500, bfd_mach_mips5400 },
13959 { bfd_mach_mips5400, bfd_mach_mips5000 },
13960
13961 /* MIPS IV extensions. */
13962 { bfd_mach_mips5, bfd_mach_mips8000 },
13963 { bfd_mach_mips10000, bfd_mach_mips8000 },
13964 { bfd_mach_mips5000, bfd_mach_mips8000 },
13965 { bfd_mach_mips7000, bfd_mach_mips8000 },
13966 { bfd_mach_mips9000, bfd_mach_mips8000 },
13967
13968 /* VR4100 extensions. */
13969 { bfd_mach_mips4120, bfd_mach_mips4100 },
13970 { bfd_mach_mips4111, bfd_mach_mips4100 },
13971
13972 /* MIPS III extensions. */
13973 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13974 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13975 { bfd_mach_mips8000, bfd_mach_mips4000 },
13976 { bfd_mach_mips4650, bfd_mach_mips4000 },
13977 { bfd_mach_mips4600, bfd_mach_mips4000 },
13978 { bfd_mach_mips4400, bfd_mach_mips4000 },
13979 { bfd_mach_mips4300, bfd_mach_mips4000 },
13980 { bfd_mach_mips4100, bfd_mach_mips4000 },
13981 { bfd_mach_mips4010, bfd_mach_mips4000 },
13982 { bfd_mach_mips5900, bfd_mach_mips4000 },
13983
13984 /* MIPS32 extensions. */
13985 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13986
13987 /* MIPS II extensions. */
13988 { bfd_mach_mips4000, bfd_mach_mips6000 },
13989 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13990
13991 /* MIPS I extensions. */
13992 { bfd_mach_mips6000, bfd_mach_mips3000 },
13993 { bfd_mach_mips3900, bfd_mach_mips3000 }
13994 };
13995
13996 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13997
13998 static bfd_boolean
13999 mips_mach_extends_p (unsigned long base, unsigned long extension)
14000 {
14001 size_t i;
14002
14003 if (extension == base)
14004 return TRUE;
14005
14006 if (base == bfd_mach_mipsisa32
14007 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14008 return TRUE;
14009
14010 if (base == bfd_mach_mipsisa32r2
14011 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14012 return TRUE;
14013
14014 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14015 if (extension == mips_mach_extensions[i].extension)
14016 {
14017 extension = mips_mach_extensions[i].base;
14018 if (extension == base)
14019 return TRUE;
14020 }
14021
14022 return FALSE;
14023 }
14024
14025 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14026
14027 static unsigned long
14028 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14029 {
14030 switch (isa_ext)
14031 {
14032 case AFL_EXT_3900: return bfd_mach_mips3900;
14033 case AFL_EXT_4010: return bfd_mach_mips4010;
14034 case AFL_EXT_4100: return bfd_mach_mips4100;
14035 case AFL_EXT_4111: return bfd_mach_mips4111;
14036 case AFL_EXT_4120: return bfd_mach_mips4120;
14037 case AFL_EXT_4650: return bfd_mach_mips4650;
14038 case AFL_EXT_5400: return bfd_mach_mips5400;
14039 case AFL_EXT_5500: return bfd_mach_mips5500;
14040 case AFL_EXT_5900: return bfd_mach_mips5900;
14041 case AFL_EXT_10000: return bfd_mach_mips10000;
14042 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14043 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14044 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14045 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14046 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14047 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14048 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14049 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14050 default: return bfd_mach_mips3000;
14051 }
14052 }
14053
14054 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14055
14056 unsigned int
14057 bfd_mips_isa_ext (bfd *abfd)
14058 {
14059 switch (bfd_get_mach (abfd))
14060 {
14061 case bfd_mach_mips3900: return AFL_EXT_3900;
14062 case bfd_mach_mips4010: return AFL_EXT_4010;
14063 case bfd_mach_mips4100: return AFL_EXT_4100;
14064 case bfd_mach_mips4111: return AFL_EXT_4111;
14065 case bfd_mach_mips4120: return AFL_EXT_4120;
14066 case bfd_mach_mips4650: return AFL_EXT_4650;
14067 case bfd_mach_mips5400: return AFL_EXT_5400;
14068 case bfd_mach_mips5500: return AFL_EXT_5500;
14069 case bfd_mach_mips5900: return AFL_EXT_5900;
14070 case bfd_mach_mips10000: return AFL_EXT_10000;
14071 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14072 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14073 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14074 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14075 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14076 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14077 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14078 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14079 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14080 default: return 0;
14081 }
14082 }
14083
14084 /* Encode ISA level and revision as a single value. */
14085 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14086
14087 /* Decode a single value into level and revision. */
14088 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14089 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14090
14091 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14092
14093 static void
14094 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14095 {
14096 int new_isa = 0;
14097 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14098 {
14099 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14100 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14101 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14102 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14103 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14104 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14105 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14106 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14107 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14108 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14109 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14110 default:
14111 (*_bfd_error_handler)
14112 (_("%B: Unknown architecture %s"),
14113 abfd, bfd_printable_name (abfd));
14114 }
14115
14116 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14117 {
14118 abiflags->isa_level = ISA_LEVEL (new_isa);
14119 abiflags->isa_rev = ISA_REV (new_isa);
14120 }
14121
14122 /* Update the isa_ext if ABFD describes a further extension. */
14123 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14124 bfd_get_mach (abfd)))
14125 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14126 }
14127
14128 /* Return true if the given ELF header flags describe a 32-bit binary. */
14129
14130 static bfd_boolean
14131 mips_32bit_flags_p (flagword flags)
14132 {
14133 return ((flags & EF_MIPS_32BITMODE) != 0
14134 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14135 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14136 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14137 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14138 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14139 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14140 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14141 }
14142
14143 /* Infer the content of the ABI flags based on the elf header. */
14144
14145 static void
14146 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14147 {
14148 obj_attribute *in_attr;
14149
14150 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14151 update_mips_abiflags_isa (abfd, abiflags);
14152
14153 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14154 abiflags->gpr_size = AFL_REG_32;
14155 else
14156 abiflags->gpr_size = AFL_REG_64;
14157
14158 abiflags->cpr1_size = AFL_REG_NONE;
14159
14160 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14161 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14162
14163 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14164 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14165 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14166 && abiflags->gpr_size == AFL_REG_32))
14167 abiflags->cpr1_size = AFL_REG_32;
14168 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14169 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14170 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14171 abiflags->cpr1_size = AFL_REG_64;
14172
14173 abiflags->cpr2_size = AFL_REG_NONE;
14174
14175 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14176 abiflags->ases |= AFL_ASE_MDMX;
14177 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14178 abiflags->ases |= AFL_ASE_MIPS16;
14179 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14180 abiflags->ases |= AFL_ASE_MICROMIPS;
14181
14182 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14183 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14184 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14185 && abiflags->isa_level >= 32
14186 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14187 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14188 }
14189
14190 /* We need to use a special link routine to handle the .reginfo and
14191 the .mdebug sections. We need to merge all instances of these
14192 sections together, not write them all out sequentially. */
14193
14194 bfd_boolean
14195 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14196 {
14197 asection *o;
14198 struct bfd_link_order *p;
14199 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14200 asection *rtproc_sec, *abiflags_sec;
14201 Elf32_RegInfo reginfo;
14202 struct ecoff_debug_info debug;
14203 struct mips_htab_traverse_info hti;
14204 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14205 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14206 HDRR *symhdr = &debug.symbolic_header;
14207 void *mdebug_handle = NULL;
14208 asection *s;
14209 EXTR esym;
14210 unsigned int i;
14211 bfd_size_type amt;
14212 struct mips_elf_link_hash_table *htab;
14213
14214 static const char * const secname[] =
14215 {
14216 ".text", ".init", ".fini", ".data",
14217 ".rodata", ".sdata", ".sbss", ".bss"
14218 };
14219 static const int sc[] =
14220 {
14221 scText, scInit, scFini, scData,
14222 scRData, scSData, scSBss, scBss
14223 };
14224
14225 /* Sort the dynamic symbols so that those with GOT entries come after
14226 those without. */
14227 htab = mips_elf_hash_table (info);
14228 BFD_ASSERT (htab != NULL);
14229
14230 if (!mips_elf_sort_hash_table (abfd, info))
14231 return FALSE;
14232
14233 /* Create any scheduled LA25 stubs. */
14234 hti.info = info;
14235 hti.output_bfd = abfd;
14236 hti.error = FALSE;
14237 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14238 if (hti.error)
14239 return FALSE;
14240
14241 /* Get a value for the GP register. */
14242 if (elf_gp (abfd) == 0)
14243 {
14244 struct bfd_link_hash_entry *h;
14245
14246 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14247 if (h != NULL && h->type == bfd_link_hash_defined)
14248 elf_gp (abfd) = (h->u.def.value
14249 + h->u.def.section->output_section->vma
14250 + h->u.def.section->output_offset);
14251 else if (htab->is_vxworks
14252 && (h = bfd_link_hash_lookup (info->hash,
14253 "_GLOBAL_OFFSET_TABLE_",
14254 FALSE, FALSE, TRUE))
14255 && h->type == bfd_link_hash_defined)
14256 elf_gp (abfd) = (h->u.def.section->output_section->vma
14257 + h->u.def.section->output_offset
14258 + h->u.def.value);
14259 else if (bfd_link_relocatable (info))
14260 {
14261 bfd_vma lo = MINUS_ONE;
14262
14263 /* Find the GP-relative section with the lowest offset. */
14264 for (o = abfd->sections; o != NULL; o = o->next)
14265 if (o->vma < lo
14266 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14267 lo = o->vma;
14268
14269 /* And calculate GP relative to that. */
14270 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14271 }
14272 else
14273 {
14274 /* If the relocate_section function needs to do a reloc
14275 involving the GP value, it should make a reloc_dangerous
14276 callback to warn that GP is not defined. */
14277 }
14278 }
14279
14280 /* Go through the sections and collect the .reginfo and .mdebug
14281 information. */
14282 abiflags_sec = NULL;
14283 reginfo_sec = NULL;
14284 mdebug_sec = NULL;
14285 gptab_data_sec = NULL;
14286 gptab_bss_sec = NULL;
14287 for (o = abfd->sections; o != NULL; o = o->next)
14288 {
14289 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14290 {
14291 /* We have found the .MIPS.abiflags section in the output file.
14292 Look through all the link_orders comprising it and remove them.
14293 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14294 for (p = o->map_head.link_order; p != NULL; p = p->next)
14295 {
14296 asection *input_section;
14297
14298 if (p->type != bfd_indirect_link_order)
14299 {
14300 if (p->type == bfd_data_link_order)
14301 continue;
14302 abort ();
14303 }
14304
14305 input_section = p->u.indirect.section;
14306
14307 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14308 elf_link_input_bfd ignores this section. */
14309 input_section->flags &= ~SEC_HAS_CONTENTS;
14310 }
14311
14312 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14313 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14314
14315 /* Skip this section later on (I don't think this currently
14316 matters, but someday it might). */
14317 o->map_head.link_order = NULL;
14318
14319 abiflags_sec = o;
14320 }
14321
14322 if (strcmp (o->name, ".reginfo") == 0)
14323 {
14324 memset (&reginfo, 0, sizeof reginfo);
14325
14326 /* We have found the .reginfo section in the output file.
14327 Look through all the link_orders comprising it and merge
14328 the information together. */
14329 for (p = o->map_head.link_order; p != NULL; p = p->next)
14330 {
14331 asection *input_section;
14332 bfd *input_bfd;
14333 Elf32_External_RegInfo ext;
14334 Elf32_RegInfo sub;
14335
14336 if (p->type != bfd_indirect_link_order)
14337 {
14338 if (p->type == bfd_data_link_order)
14339 continue;
14340 abort ();
14341 }
14342
14343 input_section = p->u.indirect.section;
14344 input_bfd = input_section->owner;
14345
14346 if (! bfd_get_section_contents (input_bfd, input_section,
14347 &ext, 0, sizeof ext))
14348 return FALSE;
14349
14350 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14351
14352 reginfo.ri_gprmask |= sub.ri_gprmask;
14353 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14354 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14355 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14356 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14357
14358 /* ri_gp_value is set by the function
14359 mips_elf32_section_processing when the section is
14360 finally written out. */
14361
14362 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14363 elf_link_input_bfd ignores this section. */
14364 input_section->flags &= ~SEC_HAS_CONTENTS;
14365 }
14366
14367 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14368 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14369
14370 /* Skip this section later on (I don't think this currently
14371 matters, but someday it might). */
14372 o->map_head.link_order = NULL;
14373
14374 reginfo_sec = o;
14375 }
14376
14377 if (strcmp (o->name, ".mdebug") == 0)
14378 {
14379 struct extsym_info einfo;
14380 bfd_vma last;
14381
14382 /* We have found the .mdebug section in the output file.
14383 Look through all the link_orders comprising it and merge
14384 the information together. */
14385 symhdr->magic = swap->sym_magic;
14386 /* FIXME: What should the version stamp be? */
14387 symhdr->vstamp = 0;
14388 symhdr->ilineMax = 0;
14389 symhdr->cbLine = 0;
14390 symhdr->idnMax = 0;
14391 symhdr->ipdMax = 0;
14392 symhdr->isymMax = 0;
14393 symhdr->ioptMax = 0;
14394 symhdr->iauxMax = 0;
14395 symhdr->issMax = 0;
14396 symhdr->issExtMax = 0;
14397 symhdr->ifdMax = 0;
14398 symhdr->crfd = 0;
14399 symhdr->iextMax = 0;
14400
14401 /* We accumulate the debugging information itself in the
14402 debug_info structure. */
14403 debug.line = NULL;
14404 debug.external_dnr = NULL;
14405 debug.external_pdr = NULL;
14406 debug.external_sym = NULL;
14407 debug.external_opt = NULL;
14408 debug.external_aux = NULL;
14409 debug.ss = NULL;
14410 debug.ssext = debug.ssext_end = NULL;
14411 debug.external_fdr = NULL;
14412 debug.external_rfd = NULL;
14413 debug.external_ext = debug.external_ext_end = NULL;
14414
14415 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14416 if (mdebug_handle == NULL)
14417 return FALSE;
14418
14419 esym.jmptbl = 0;
14420 esym.cobol_main = 0;
14421 esym.weakext = 0;
14422 esym.reserved = 0;
14423 esym.ifd = ifdNil;
14424 esym.asym.iss = issNil;
14425 esym.asym.st = stLocal;
14426 esym.asym.reserved = 0;
14427 esym.asym.index = indexNil;
14428 last = 0;
14429 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14430 {
14431 esym.asym.sc = sc[i];
14432 s = bfd_get_section_by_name (abfd, secname[i]);
14433 if (s != NULL)
14434 {
14435 esym.asym.value = s->vma;
14436 last = s->vma + s->size;
14437 }
14438 else
14439 esym.asym.value = last;
14440 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14441 secname[i], &esym))
14442 return FALSE;
14443 }
14444
14445 for (p = o->map_head.link_order; p != NULL; p = p->next)
14446 {
14447 asection *input_section;
14448 bfd *input_bfd;
14449 const struct ecoff_debug_swap *input_swap;
14450 struct ecoff_debug_info input_debug;
14451 char *eraw_src;
14452 char *eraw_end;
14453
14454 if (p->type != bfd_indirect_link_order)
14455 {
14456 if (p->type == bfd_data_link_order)
14457 continue;
14458 abort ();
14459 }
14460
14461 input_section = p->u.indirect.section;
14462 input_bfd = input_section->owner;
14463
14464 if (!is_mips_elf (input_bfd))
14465 {
14466 /* I don't know what a non MIPS ELF bfd would be
14467 doing with a .mdebug section, but I don't really
14468 want to deal with it. */
14469 continue;
14470 }
14471
14472 input_swap = (get_elf_backend_data (input_bfd)
14473 ->elf_backend_ecoff_debug_swap);
14474
14475 BFD_ASSERT (p->size == input_section->size);
14476
14477 /* The ECOFF linking code expects that we have already
14478 read in the debugging information and set up an
14479 ecoff_debug_info structure, so we do that now. */
14480 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14481 &input_debug))
14482 return FALSE;
14483
14484 if (! (bfd_ecoff_debug_accumulate
14485 (mdebug_handle, abfd, &debug, swap, input_bfd,
14486 &input_debug, input_swap, info)))
14487 return FALSE;
14488
14489 /* Loop through the external symbols. For each one with
14490 interesting information, try to find the symbol in
14491 the linker global hash table and save the information
14492 for the output external symbols. */
14493 eraw_src = input_debug.external_ext;
14494 eraw_end = (eraw_src
14495 + (input_debug.symbolic_header.iextMax
14496 * input_swap->external_ext_size));
14497 for (;
14498 eraw_src < eraw_end;
14499 eraw_src += input_swap->external_ext_size)
14500 {
14501 EXTR ext;
14502 const char *name;
14503 struct mips_elf_link_hash_entry *h;
14504
14505 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14506 if (ext.asym.sc == scNil
14507 || ext.asym.sc == scUndefined
14508 || ext.asym.sc == scSUndefined)
14509 continue;
14510
14511 name = input_debug.ssext + ext.asym.iss;
14512 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14513 name, FALSE, FALSE, TRUE);
14514 if (h == NULL || h->esym.ifd != -2)
14515 continue;
14516
14517 if (ext.ifd != -1)
14518 {
14519 BFD_ASSERT (ext.ifd
14520 < input_debug.symbolic_header.ifdMax);
14521 ext.ifd = input_debug.ifdmap[ext.ifd];
14522 }
14523
14524 h->esym = ext;
14525 }
14526
14527 /* Free up the information we just read. */
14528 free (input_debug.line);
14529 free (input_debug.external_dnr);
14530 free (input_debug.external_pdr);
14531 free (input_debug.external_sym);
14532 free (input_debug.external_opt);
14533 free (input_debug.external_aux);
14534 free (input_debug.ss);
14535 free (input_debug.ssext);
14536 free (input_debug.external_fdr);
14537 free (input_debug.external_rfd);
14538 free (input_debug.external_ext);
14539
14540 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14541 elf_link_input_bfd ignores this section. */
14542 input_section->flags &= ~SEC_HAS_CONTENTS;
14543 }
14544
14545 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14546 {
14547 /* Create .rtproc section. */
14548 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14549 if (rtproc_sec == NULL)
14550 {
14551 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14552 | SEC_LINKER_CREATED | SEC_READONLY);
14553
14554 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14555 ".rtproc",
14556 flags);
14557 if (rtproc_sec == NULL
14558 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14559 return FALSE;
14560 }
14561
14562 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14563 info, rtproc_sec,
14564 &debug))
14565 return FALSE;
14566 }
14567
14568 /* Build the external symbol information. */
14569 einfo.abfd = abfd;
14570 einfo.info = info;
14571 einfo.debug = &debug;
14572 einfo.swap = swap;
14573 einfo.failed = FALSE;
14574 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14575 mips_elf_output_extsym, &einfo);
14576 if (einfo.failed)
14577 return FALSE;
14578
14579 /* Set the size of the .mdebug section. */
14580 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14581
14582 /* Skip this section later on (I don't think this currently
14583 matters, but someday it might). */
14584 o->map_head.link_order = NULL;
14585
14586 mdebug_sec = o;
14587 }
14588
14589 if (CONST_STRNEQ (o->name, ".gptab."))
14590 {
14591 const char *subname;
14592 unsigned int c;
14593 Elf32_gptab *tab;
14594 Elf32_External_gptab *ext_tab;
14595 unsigned int j;
14596
14597 /* The .gptab.sdata and .gptab.sbss sections hold
14598 information describing how the small data area would
14599 change depending upon the -G switch. These sections
14600 not used in executables files. */
14601 if (! bfd_link_relocatable (info))
14602 {
14603 for (p = o->map_head.link_order; p != NULL; p = p->next)
14604 {
14605 asection *input_section;
14606
14607 if (p->type != bfd_indirect_link_order)
14608 {
14609 if (p->type == bfd_data_link_order)
14610 continue;
14611 abort ();
14612 }
14613
14614 input_section = p->u.indirect.section;
14615
14616 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14617 elf_link_input_bfd ignores this section. */
14618 input_section->flags &= ~SEC_HAS_CONTENTS;
14619 }
14620
14621 /* Skip this section later on (I don't think this
14622 currently matters, but someday it might). */
14623 o->map_head.link_order = NULL;
14624
14625 /* Really remove the section. */
14626 bfd_section_list_remove (abfd, o);
14627 --abfd->section_count;
14628
14629 continue;
14630 }
14631
14632 /* There is one gptab for initialized data, and one for
14633 uninitialized data. */
14634 if (strcmp (o->name, ".gptab.sdata") == 0)
14635 gptab_data_sec = o;
14636 else if (strcmp (o->name, ".gptab.sbss") == 0)
14637 gptab_bss_sec = o;
14638 else
14639 {
14640 (*_bfd_error_handler)
14641 (_("%s: illegal section name `%s'"),
14642 bfd_get_filename (abfd), o->name);
14643 bfd_set_error (bfd_error_nonrepresentable_section);
14644 return FALSE;
14645 }
14646
14647 /* The linker script always combines .gptab.data and
14648 .gptab.sdata into .gptab.sdata, and likewise for
14649 .gptab.bss and .gptab.sbss. It is possible that there is
14650 no .sdata or .sbss section in the output file, in which
14651 case we must change the name of the output section. */
14652 subname = o->name + sizeof ".gptab" - 1;
14653 if (bfd_get_section_by_name (abfd, subname) == NULL)
14654 {
14655 if (o == gptab_data_sec)
14656 o->name = ".gptab.data";
14657 else
14658 o->name = ".gptab.bss";
14659 subname = o->name + sizeof ".gptab" - 1;
14660 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14661 }
14662
14663 /* Set up the first entry. */
14664 c = 1;
14665 amt = c * sizeof (Elf32_gptab);
14666 tab = bfd_malloc (amt);
14667 if (tab == NULL)
14668 return FALSE;
14669 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14670 tab[0].gt_header.gt_unused = 0;
14671
14672 /* Combine the input sections. */
14673 for (p = o->map_head.link_order; p != NULL; p = p->next)
14674 {
14675 asection *input_section;
14676 bfd *input_bfd;
14677 bfd_size_type size;
14678 unsigned long last;
14679 bfd_size_type gpentry;
14680
14681 if (p->type != bfd_indirect_link_order)
14682 {
14683 if (p->type == bfd_data_link_order)
14684 continue;
14685 abort ();
14686 }
14687
14688 input_section = p->u.indirect.section;
14689 input_bfd = input_section->owner;
14690
14691 /* Combine the gptab entries for this input section one
14692 by one. We know that the input gptab entries are
14693 sorted by ascending -G value. */
14694 size = input_section->size;
14695 last = 0;
14696 for (gpentry = sizeof (Elf32_External_gptab);
14697 gpentry < size;
14698 gpentry += sizeof (Elf32_External_gptab))
14699 {
14700 Elf32_External_gptab ext_gptab;
14701 Elf32_gptab int_gptab;
14702 unsigned long val;
14703 unsigned long add;
14704 bfd_boolean exact;
14705 unsigned int look;
14706
14707 if (! (bfd_get_section_contents
14708 (input_bfd, input_section, &ext_gptab, gpentry,
14709 sizeof (Elf32_External_gptab))))
14710 {
14711 free (tab);
14712 return FALSE;
14713 }
14714
14715 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14716 &int_gptab);
14717 val = int_gptab.gt_entry.gt_g_value;
14718 add = int_gptab.gt_entry.gt_bytes - last;
14719
14720 exact = FALSE;
14721 for (look = 1; look < c; look++)
14722 {
14723 if (tab[look].gt_entry.gt_g_value >= val)
14724 tab[look].gt_entry.gt_bytes += add;
14725
14726 if (tab[look].gt_entry.gt_g_value == val)
14727 exact = TRUE;
14728 }
14729
14730 if (! exact)
14731 {
14732 Elf32_gptab *new_tab;
14733 unsigned int max;
14734
14735 /* We need a new table entry. */
14736 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14737 new_tab = bfd_realloc (tab, amt);
14738 if (new_tab == NULL)
14739 {
14740 free (tab);
14741 return FALSE;
14742 }
14743 tab = new_tab;
14744 tab[c].gt_entry.gt_g_value = val;
14745 tab[c].gt_entry.gt_bytes = add;
14746
14747 /* Merge in the size for the next smallest -G
14748 value, since that will be implied by this new
14749 value. */
14750 max = 0;
14751 for (look = 1; look < c; look++)
14752 {
14753 if (tab[look].gt_entry.gt_g_value < val
14754 && (max == 0
14755 || (tab[look].gt_entry.gt_g_value
14756 > tab[max].gt_entry.gt_g_value)))
14757 max = look;
14758 }
14759 if (max != 0)
14760 tab[c].gt_entry.gt_bytes +=
14761 tab[max].gt_entry.gt_bytes;
14762
14763 ++c;
14764 }
14765
14766 last = int_gptab.gt_entry.gt_bytes;
14767 }
14768
14769 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14770 elf_link_input_bfd ignores this section. */
14771 input_section->flags &= ~SEC_HAS_CONTENTS;
14772 }
14773
14774 /* The table must be sorted by -G value. */
14775 if (c > 2)
14776 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14777
14778 /* Swap out the table. */
14779 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14780 ext_tab = bfd_alloc (abfd, amt);
14781 if (ext_tab == NULL)
14782 {
14783 free (tab);
14784 return FALSE;
14785 }
14786
14787 for (j = 0; j < c; j++)
14788 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14789 free (tab);
14790
14791 o->size = c * sizeof (Elf32_External_gptab);
14792 o->contents = (bfd_byte *) ext_tab;
14793
14794 /* Skip this section later on (I don't think this currently
14795 matters, but someday it might). */
14796 o->map_head.link_order = NULL;
14797 }
14798 }
14799
14800 /* Invoke the regular ELF backend linker to do all the work. */
14801 if (!bfd_elf_final_link (abfd, info))
14802 return FALSE;
14803
14804 /* Now write out the computed sections. */
14805
14806 if (abiflags_sec != NULL)
14807 {
14808 Elf_External_ABIFlags_v0 ext;
14809 Elf_Internal_ABIFlags_v0 *abiflags;
14810
14811 abiflags = &mips_elf_tdata (abfd)->abiflags;
14812
14813 /* Set up the abiflags if no valid input sections were found. */
14814 if (!mips_elf_tdata (abfd)->abiflags_valid)
14815 {
14816 infer_mips_abiflags (abfd, abiflags);
14817 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14818 }
14819 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14820 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14821 return FALSE;
14822 }
14823
14824 if (reginfo_sec != NULL)
14825 {
14826 Elf32_External_RegInfo ext;
14827
14828 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14829 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14830 return FALSE;
14831 }
14832
14833 if (mdebug_sec != NULL)
14834 {
14835 BFD_ASSERT (abfd->output_has_begun);
14836 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14837 swap, info,
14838 mdebug_sec->filepos))
14839 return FALSE;
14840
14841 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14842 }
14843
14844 if (gptab_data_sec != NULL)
14845 {
14846 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14847 gptab_data_sec->contents,
14848 0, gptab_data_sec->size))
14849 return FALSE;
14850 }
14851
14852 if (gptab_bss_sec != NULL)
14853 {
14854 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14855 gptab_bss_sec->contents,
14856 0, gptab_bss_sec->size))
14857 return FALSE;
14858 }
14859
14860 if (SGI_COMPAT (abfd))
14861 {
14862 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14863 if (rtproc_sec != NULL)
14864 {
14865 if (! bfd_set_section_contents (abfd, rtproc_sec,
14866 rtproc_sec->contents,
14867 0, rtproc_sec->size))
14868 return FALSE;
14869 }
14870 }
14871
14872 return TRUE;
14873 }
14874 \f
14875 /* Merge object file header flags from IBFD into OBFD. Raise an error
14876 if there are conflicting settings. */
14877
14878 static bfd_boolean
14879 mips_elf_merge_obj_e_flags (bfd *ibfd, bfd *obfd)
14880 {
14881 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14882 flagword old_flags;
14883 flagword new_flags;
14884 bfd_boolean ok;
14885
14886 new_flags = elf_elfheader (ibfd)->e_flags;
14887 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14888 old_flags = elf_elfheader (obfd)->e_flags;
14889
14890 /* Check flag compatibility. */
14891
14892 new_flags &= ~EF_MIPS_NOREORDER;
14893 old_flags &= ~EF_MIPS_NOREORDER;
14894
14895 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14896 doesn't seem to matter. */
14897 new_flags &= ~EF_MIPS_XGOT;
14898 old_flags &= ~EF_MIPS_XGOT;
14899
14900 /* MIPSpro generates ucode info in n64 objects. Again, we should
14901 just be able to ignore this. */
14902 new_flags &= ~EF_MIPS_UCODE;
14903 old_flags &= ~EF_MIPS_UCODE;
14904
14905 /* DSOs should only be linked with CPIC code. */
14906 if ((ibfd->flags & DYNAMIC) != 0)
14907 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14908
14909 if (new_flags == old_flags)
14910 return TRUE;
14911
14912 ok = TRUE;
14913
14914 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14915 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14916 {
14917 (*_bfd_error_handler)
14918 (_("%B: warning: linking abicalls files with non-abicalls files"),
14919 ibfd);
14920 ok = TRUE;
14921 }
14922
14923 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14924 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14925 if (! (new_flags & EF_MIPS_PIC))
14926 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14927
14928 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14929 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14930
14931 /* Compare the ISAs. */
14932 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14933 {
14934 (*_bfd_error_handler)
14935 (_("%B: linking 32-bit code with 64-bit code"),
14936 ibfd);
14937 ok = FALSE;
14938 }
14939 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14940 {
14941 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14942 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14943 {
14944 /* Copy the architecture info from IBFD to OBFD. Also copy
14945 the 32-bit flag (if set) so that we continue to recognise
14946 OBFD as a 32-bit binary. */
14947 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14948 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14949 elf_elfheader (obfd)->e_flags
14950 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14951
14952 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
14953 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
14954
14955 /* Copy across the ABI flags if OBFD doesn't use them
14956 and if that was what caused us to treat IBFD as 32-bit. */
14957 if ((old_flags & EF_MIPS_ABI) == 0
14958 && mips_32bit_flags_p (new_flags)
14959 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14960 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
14961 }
14962 else
14963 {
14964 /* The ISAs aren't compatible. */
14965 (*_bfd_error_handler)
14966 (_("%B: linking %s module with previous %s modules"),
14967 ibfd,
14968 bfd_printable_name (ibfd),
14969 bfd_printable_name (obfd));
14970 ok = FALSE;
14971 }
14972 }
14973
14974 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14975 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14976
14977 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
14978 does set EI_CLASS differently from any 32-bit ABI. */
14979 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14980 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14981 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14982 {
14983 /* Only error if both are set (to different values). */
14984 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14985 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14986 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14987 {
14988 (*_bfd_error_handler)
14989 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14990 ibfd,
14991 elf_mips_abi_name (ibfd),
14992 elf_mips_abi_name (obfd));
14993 ok = FALSE;
14994 }
14995 new_flags &= ~EF_MIPS_ABI;
14996 old_flags &= ~EF_MIPS_ABI;
14997 }
14998
14999 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15000 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15001 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15002 {
15003 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15004 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15005 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15006 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15007 int micro_mis = old_m16 && new_micro;
15008 int m16_mis = old_micro && new_m16;
15009
15010 if (m16_mis || micro_mis)
15011 {
15012 (*_bfd_error_handler)
15013 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15014 ibfd,
15015 m16_mis ? "MIPS16" : "microMIPS",
15016 m16_mis ? "microMIPS" : "MIPS16");
15017 ok = FALSE;
15018 }
15019
15020 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15021
15022 new_flags &= ~ EF_MIPS_ARCH_ASE;
15023 old_flags &= ~ EF_MIPS_ARCH_ASE;
15024 }
15025
15026 /* Compare NaN encodings. */
15027 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15028 {
15029 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15030 ibfd,
15031 (new_flags & EF_MIPS_NAN2008
15032 ? "-mnan=2008" : "-mnan=legacy"),
15033 (old_flags & EF_MIPS_NAN2008
15034 ? "-mnan=2008" : "-mnan=legacy"));
15035 ok = FALSE;
15036 new_flags &= ~EF_MIPS_NAN2008;
15037 old_flags &= ~EF_MIPS_NAN2008;
15038 }
15039
15040 /* Compare FP64 state. */
15041 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15042 {
15043 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15044 ibfd,
15045 (new_flags & EF_MIPS_FP64
15046 ? "-mfp64" : "-mfp32"),
15047 (old_flags & EF_MIPS_FP64
15048 ? "-mfp64" : "-mfp32"));
15049 ok = FALSE;
15050 new_flags &= ~EF_MIPS_FP64;
15051 old_flags &= ~EF_MIPS_FP64;
15052 }
15053
15054 /* Warn about any other mismatches */
15055 if (new_flags != old_flags)
15056 {
15057 (*_bfd_error_handler)
15058 (_("%B: uses different e_flags (0x%lx) fields than previous modules "
15059 "(0x%lx)"),
15060 ibfd, (unsigned long) new_flags,
15061 (unsigned long) old_flags);
15062 ok = FALSE;
15063 }
15064
15065 return ok;
15066 }
15067
15068 /* Merge object attributes from IBFD into OBFD. Raise an error if
15069 there are conflicting attributes. */
15070 static bfd_boolean
15071 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
15072 {
15073 obj_attribute *in_attr;
15074 obj_attribute *out_attr;
15075 bfd *abi_fp_bfd;
15076 bfd *abi_msa_bfd;
15077
15078 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15079 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15080 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15081 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15082
15083 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15084 if (!abi_msa_bfd
15085 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15086 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15087
15088 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15089 {
15090 /* This is the first object. Copy the attributes. */
15091 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15092
15093 /* Use the Tag_null value to indicate the attributes have been
15094 initialized. */
15095 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15096
15097 return TRUE;
15098 }
15099
15100 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15101 non-conflicting ones. */
15102 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15103 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15104 {
15105 int out_fp, in_fp;
15106
15107 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15108 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15109 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15110 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15111 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15112 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15113 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15114 || in_fp == Val_GNU_MIPS_ABI_FP_64
15115 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15116 {
15117 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15118 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15119 }
15120 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15121 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15122 || out_fp == Val_GNU_MIPS_ABI_FP_64
15123 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15124 /* Keep the current setting. */;
15125 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15126 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15127 {
15128 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15129 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15130 }
15131 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15132 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15133 /* Keep the current setting. */;
15134 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15135 {
15136 const char *out_string, *in_string;
15137
15138 out_string = _bfd_mips_fp_abi_string (out_fp);
15139 in_string = _bfd_mips_fp_abi_string (in_fp);
15140 /* First warn about cases involving unrecognised ABIs. */
15141 if (!out_string && !in_string)
15142 _bfd_error_handler
15143 (_("Warning: %B uses unknown floating point ABI %d "
15144 "(set by %B), %B uses unknown floating point ABI %d"),
15145 obfd, abi_fp_bfd, ibfd, out_fp, in_fp);
15146 else if (!out_string)
15147 _bfd_error_handler
15148 (_("Warning: %B uses unknown floating point ABI %d "
15149 "(set by %B), %B uses %s"),
15150 obfd, abi_fp_bfd, ibfd, out_fp, in_string);
15151 else if (!in_string)
15152 _bfd_error_handler
15153 (_("Warning: %B uses %s (set by %B), "
15154 "%B uses unknown floating point ABI %d"),
15155 obfd, abi_fp_bfd, ibfd, out_string, in_fp);
15156 else
15157 {
15158 /* If one of the bfds is soft-float, the other must be
15159 hard-float. The exact choice of hard-float ABI isn't
15160 really relevant to the error message. */
15161 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15162 out_string = "-mhard-float";
15163 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15164 in_string = "-mhard-float";
15165 _bfd_error_handler
15166 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15167 obfd, abi_fp_bfd, ibfd, out_string, in_string);
15168 }
15169 }
15170 }
15171
15172 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15173 non-conflicting ones. */
15174 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15175 {
15176 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15177 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15178 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15179 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15180 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15181 {
15182 case Val_GNU_MIPS_ABI_MSA_128:
15183 _bfd_error_handler
15184 (_("Warning: %B uses %s (set by %B), "
15185 "%B uses unknown MSA ABI %d"),
15186 obfd, abi_msa_bfd, ibfd,
15187 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15188 break;
15189
15190 default:
15191 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15192 {
15193 case Val_GNU_MIPS_ABI_MSA_128:
15194 _bfd_error_handler
15195 (_("Warning: %B uses unknown MSA ABI %d "
15196 "(set by %B), %B uses %s"),
15197 obfd, abi_msa_bfd, ibfd,
15198 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
15199 break;
15200
15201 default:
15202 _bfd_error_handler
15203 (_("Warning: %B uses unknown MSA ABI %d "
15204 "(set by %B), %B uses unknown MSA ABI %d"),
15205 obfd, abi_msa_bfd, ibfd,
15206 out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15207 in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15208 break;
15209 }
15210 }
15211 }
15212
15213 /* Merge Tag_compatibility attributes and any common GNU ones. */
15214 return _bfd_elf_merge_object_attributes (ibfd, obfd);
15215 }
15216
15217 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15218 there are conflicting settings. */
15219
15220 static bfd_boolean
15221 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15222 {
15223 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15224 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15225 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15226
15227 /* Update the output abiflags fp_abi using the computed fp_abi. */
15228 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15229
15230 #define max(a, b) ((a) > (b) ? (a) : (b))
15231 /* Merge abiflags. */
15232 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15233 in_tdata->abiflags.isa_level);
15234 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15235 in_tdata->abiflags.isa_rev);
15236 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15237 in_tdata->abiflags.gpr_size);
15238 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15239 in_tdata->abiflags.cpr1_size);
15240 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15241 in_tdata->abiflags.cpr2_size);
15242 #undef max
15243 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15244 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15245
15246 return TRUE;
15247 }
15248
15249 /* Merge backend specific data from an object file to the output
15250 object file when linking. */
15251
15252 bfd_boolean
15253 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
15254 {
15255 struct mips_elf_obj_tdata *out_tdata;
15256 struct mips_elf_obj_tdata *in_tdata;
15257 bfd_boolean null_input_bfd = TRUE;
15258 asection *sec;
15259 bfd_boolean ok;
15260
15261 /* Check if we have the same endianness. */
15262 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15263 {
15264 (*_bfd_error_handler)
15265 (_("%B: endianness incompatible with that of the selected emulation"),
15266 ibfd);
15267 return FALSE;
15268 }
15269
15270 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15271 return TRUE;
15272
15273 in_tdata = mips_elf_tdata (ibfd);
15274 out_tdata = mips_elf_tdata (obfd);
15275
15276 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15277 {
15278 (*_bfd_error_handler)
15279 (_("%B: ABI is incompatible with that of the selected emulation"),
15280 ibfd);
15281 return FALSE;
15282 }
15283
15284 /* Check to see if the input BFD actually contains any sections. If not,
15285 then it has no attributes, and its flags may not have been initialized
15286 either, but it cannot actually cause any incompatibility. */
15287 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15288 {
15289 /* Ignore synthetic sections and empty .text, .data and .bss sections
15290 which are automatically generated by gas. Also ignore fake
15291 (s)common sections, since merely defining a common symbol does
15292 not affect compatibility. */
15293 if ((sec->flags & SEC_IS_COMMON) == 0
15294 && strcmp (sec->name, ".reginfo")
15295 && strcmp (sec->name, ".mdebug")
15296 && (sec->size != 0
15297 || (strcmp (sec->name, ".text")
15298 && strcmp (sec->name, ".data")
15299 && strcmp (sec->name, ".bss"))))
15300 {
15301 null_input_bfd = FALSE;
15302 break;
15303 }
15304 }
15305 if (null_input_bfd)
15306 return TRUE;
15307
15308 /* Populate abiflags using existing information. */
15309 if (in_tdata->abiflags_valid)
15310 {
15311 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15312 Elf_Internal_ABIFlags_v0 in_abiflags;
15313 Elf_Internal_ABIFlags_v0 abiflags;
15314
15315 /* Set up the FP ABI attribute from the abiflags if it is not already
15316 set. */
15317 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15318 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15319
15320 infer_mips_abiflags (ibfd, &abiflags);
15321 in_abiflags = in_tdata->abiflags;
15322
15323 /* It is not possible to infer the correct ISA revision
15324 for R3 or R5 so drop down to R2 for the checks. */
15325 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15326 in_abiflags.isa_rev = 2;
15327
15328 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15329 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15330 (*_bfd_error_handler)
15331 (_("%B: warning: Inconsistent ISA between e_flags and "
15332 ".MIPS.abiflags"), ibfd);
15333 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15334 && in_abiflags.fp_abi != abiflags.fp_abi)
15335 (*_bfd_error_handler)
15336 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
15337 ".MIPS.abiflags"), ibfd);
15338 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15339 (*_bfd_error_handler)
15340 (_("%B: warning: Inconsistent ASEs between e_flags and "
15341 ".MIPS.abiflags"), ibfd);
15342 /* The isa_ext is allowed to be an extension of what can be inferred
15343 from e_flags. */
15344 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15345 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15346 (*_bfd_error_handler)
15347 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15348 ".MIPS.abiflags"), ibfd);
15349 if (in_abiflags.flags2 != 0)
15350 (*_bfd_error_handler)
15351 (_("%B: warning: Unexpected flag in the flags2 field of "
15352 ".MIPS.abiflags (0x%lx)"), ibfd,
15353 (unsigned long) in_abiflags.flags2);
15354 }
15355 else
15356 {
15357 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15358 in_tdata->abiflags_valid = TRUE;
15359 }
15360
15361 if (!out_tdata->abiflags_valid)
15362 {
15363 /* Copy input abiflags if output abiflags are not already valid. */
15364 out_tdata->abiflags = in_tdata->abiflags;
15365 out_tdata->abiflags_valid = TRUE;
15366 }
15367
15368 if (! elf_flags_init (obfd))
15369 {
15370 elf_flags_init (obfd) = TRUE;
15371 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15372 elf_elfheader (obfd)->e_ident[EI_CLASS]
15373 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15374
15375 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15376 && (bfd_get_arch_info (obfd)->the_default
15377 || mips_mach_extends_p (bfd_get_mach (obfd),
15378 bfd_get_mach (ibfd))))
15379 {
15380 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15381 bfd_get_mach (ibfd)))
15382 return FALSE;
15383
15384 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15385 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15386 }
15387
15388 ok = TRUE;
15389 }
15390 else
15391 ok = mips_elf_merge_obj_e_flags (ibfd, obfd);
15392
15393 ok = mips_elf_merge_obj_attributes (ibfd, obfd) && ok;
15394
15395 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15396
15397 if (!ok)
15398 {
15399 bfd_set_error (bfd_error_bad_value);
15400 return FALSE;
15401 }
15402
15403 return TRUE;
15404 }
15405
15406 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15407
15408 bfd_boolean
15409 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15410 {
15411 BFD_ASSERT (!elf_flags_init (abfd)
15412 || elf_elfheader (abfd)->e_flags == flags);
15413
15414 elf_elfheader (abfd)->e_flags = flags;
15415 elf_flags_init (abfd) = TRUE;
15416 return TRUE;
15417 }
15418
15419 char *
15420 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15421 {
15422 switch (dtag)
15423 {
15424 default: return "";
15425 case DT_MIPS_RLD_VERSION:
15426 return "MIPS_RLD_VERSION";
15427 case DT_MIPS_TIME_STAMP:
15428 return "MIPS_TIME_STAMP";
15429 case DT_MIPS_ICHECKSUM:
15430 return "MIPS_ICHECKSUM";
15431 case DT_MIPS_IVERSION:
15432 return "MIPS_IVERSION";
15433 case DT_MIPS_FLAGS:
15434 return "MIPS_FLAGS";
15435 case DT_MIPS_BASE_ADDRESS:
15436 return "MIPS_BASE_ADDRESS";
15437 case DT_MIPS_MSYM:
15438 return "MIPS_MSYM";
15439 case DT_MIPS_CONFLICT:
15440 return "MIPS_CONFLICT";
15441 case DT_MIPS_LIBLIST:
15442 return "MIPS_LIBLIST";
15443 case DT_MIPS_LOCAL_GOTNO:
15444 return "MIPS_LOCAL_GOTNO";
15445 case DT_MIPS_CONFLICTNO:
15446 return "MIPS_CONFLICTNO";
15447 case DT_MIPS_LIBLISTNO:
15448 return "MIPS_LIBLISTNO";
15449 case DT_MIPS_SYMTABNO:
15450 return "MIPS_SYMTABNO";
15451 case DT_MIPS_UNREFEXTNO:
15452 return "MIPS_UNREFEXTNO";
15453 case DT_MIPS_GOTSYM:
15454 return "MIPS_GOTSYM";
15455 case DT_MIPS_HIPAGENO:
15456 return "MIPS_HIPAGENO";
15457 case DT_MIPS_RLD_MAP:
15458 return "MIPS_RLD_MAP";
15459 case DT_MIPS_RLD_MAP_REL:
15460 return "MIPS_RLD_MAP_REL";
15461 case DT_MIPS_DELTA_CLASS:
15462 return "MIPS_DELTA_CLASS";
15463 case DT_MIPS_DELTA_CLASS_NO:
15464 return "MIPS_DELTA_CLASS_NO";
15465 case DT_MIPS_DELTA_INSTANCE:
15466 return "MIPS_DELTA_INSTANCE";
15467 case DT_MIPS_DELTA_INSTANCE_NO:
15468 return "MIPS_DELTA_INSTANCE_NO";
15469 case DT_MIPS_DELTA_RELOC:
15470 return "MIPS_DELTA_RELOC";
15471 case DT_MIPS_DELTA_RELOC_NO:
15472 return "MIPS_DELTA_RELOC_NO";
15473 case DT_MIPS_DELTA_SYM:
15474 return "MIPS_DELTA_SYM";
15475 case DT_MIPS_DELTA_SYM_NO:
15476 return "MIPS_DELTA_SYM_NO";
15477 case DT_MIPS_DELTA_CLASSSYM:
15478 return "MIPS_DELTA_CLASSSYM";
15479 case DT_MIPS_DELTA_CLASSSYM_NO:
15480 return "MIPS_DELTA_CLASSSYM_NO";
15481 case DT_MIPS_CXX_FLAGS:
15482 return "MIPS_CXX_FLAGS";
15483 case DT_MIPS_PIXIE_INIT:
15484 return "MIPS_PIXIE_INIT";
15485 case DT_MIPS_SYMBOL_LIB:
15486 return "MIPS_SYMBOL_LIB";
15487 case DT_MIPS_LOCALPAGE_GOTIDX:
15488 return "MIPS_LOCALPAGE_GOTIDX";
15489 case DT_MIPS_LOCAL_GOTIDX:
15490 return "MIPS_LOCAL_GOTIDX";
15491 case DT_MIPS_HIDDEN_GOTIDX:
15492 return "MIPS_HIDDEN_GOTIDX";
15493 case DT_MIPS_PROTECTED_GOTIDX:
15494 return "MIPS_PROTECTED_GOT_IDX";
15495 case DT_MIPS_OPTIONS:
15496 return "MIPS_OPTIONS";
15497 case DT_MIPS_INTERFACE:
15498 return "MIPS_INTERFACE";
15499 case DT_MIPS_DYNSTR_ALIGN:
15500 return "DT_MIPS_DYNSTR_ALIGN";
15501 case DT_MIPS_INTERFACE_SIZE:
15502 return "DT_MIPS_INTERFACE_SIZE";
15503 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15504 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15505 case DT_MIPS_PERF_SUFFIX:
15506 return "DT_MIPS_PERF_SUFFIX";
15507 case DT_MIPS_COMPACT_SIZE:
15508 return "DT_MIPS_COMPACT_SIZE";
15509 case DT_MIPS_GP_VALUE:
15510 return "DT_MIPS_GP_VALUE";
15511 case DT_MIPS_AUX_DYNAMIC:
15512 return "DT_MIPS_AUX_DYNAMIC";
15513 case DT_MIPS_PLTGOT:
15514 return "DT_MIPS_PLTGOT";
15515 case DT_MIPS_RWPLT:
15516 return "DT_MIPS_RWPLT";
15517 }
15518 }
15519
15520 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15521 not known. */
15522
15523 const char *
15524 _bfd_mips_fp_abi_string (int fp)
15525 {
15526 switch (fp)
15527 {
15528 /* These strings aren't translated because they're simply
15529 option lists. */
15530 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15531 return "-mdouble-float";
15532
15533 case Val_GNU_MIPS_ABI_FP_SINGLE:
15534 return "-msingle-float";
15535
15536 case Val_GNU_MIPS_ABI_FP_SOFT:
15537 return "-msoft-float";
15538
15539 case Val_GNU_MIPS_ABI_FP_OLD_64:
15540 return _("-mips32r2 -mfp64 (12 callee-saved)");
15541
15542 case Val_GNU_MIPS_ABI_FP_XX:
15543 return "-mfpxx";
15544
15545 case Val_GNU_MIPS_ABI_FP_64:
15546 return "-mgp32 -mfp64";
15547
15548 case Val_GNU_MIPS_ABI_FP_64A:
15549 return "-mgp32 -mfp64 -mno-odd-spreg";
15550
15551 default:
15552 return 0;
15553 }
15554 }
15555
15556 static void
15557 print_mips_ases (FILE *file, unsigned int mask)
15558 {
15559 if (mask & AFL_ASE_DSP)
15560 fputs ("\n\tDSP ASE", file);
15561 if (mask & AFL_ASE_DSPR2)
15562 fputs ("\n\tDSP R2 ASE", file);
15563 if (mask & AFL_ASE_DSPR3)
15564 fputs ("\n\tDSP R3 ASE", file);
15565 if (mask & AFL_ASE_EVA)
15566 fputs ("\n\tEnhanced VA Scheme", file);
15567 if (mask & AFL_ASE_MCU)
15568 fputs ("\n\tMCU (MicroController) ASE", file);
15569 if (mask & AFL_ASE_MDMX)
15570 fputs ("\n\tMDMX ASE", file);
15571 if (mask & AFL_ASE_MIPS3D)
15572 fputs ("\n\tMIPS-3D ASE", file);
15573 if (mask & AFL_ASE_MT)
15574 fputs ("\n\tMT ASE", file);
15575 if (mask & AFL_ASE_SMARTMIPS)
15576 fputs ("\n\tSmartMIPS ASE", file);
15577 if (mask & AFL_ASE_VIRT)
15578 fputs ("\n\tVZ ASE", file);
15579 if (mask & AFL_ASE_MSA)
15580 fputs ("\n\tMSA ASE", file);
15581 if (mask & AFL_ASE_MIPS16)
15582 fputs ("\n\tMIPS16 ASE", file);
15583 if (mask & AFL_ASE_MICROMIPS)
15584 fputs ("\n\tMICROMIPS ASE", file);
15585 if (mask & AFL_ASE_XPA)
15586 fputs ("\n\tXPA ASE", file);
15587 if (mask == 0)
15588 fprintf (file, "\n\t%s", _("None"));
15589 else if ((mask & ~AFL_ASE_MASK) != 0)
15590 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15591 }
15592
15593 static void
15594 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15595 {
15596 switch (isa_ext)
15597 {
15598 case 0:
15599 fputs (_("None"), file);
15600 break;
15601 case AFL_EXT_XLR:
15602 fputs ("RMI XLR", file);
15603 break;
15604 case AFL_EXT_OCTEON3:
15605 fputs ("Cavium Networks Octeon3", file);
15606 break;
15607 case AFL_EXT_OCTEON2:
15608 fputs ("Cavium Networks Octeon2", file);
15609 break;
15610 case AFL_EXT_OCTEONP:
15611 fputs ("Cavium Networks OcteonP", file);
15612 break;
15613 case AFL_EXT_LOONGSON_3A:
15614 fputs ("Loongson 3A", file);
15615 break;
15616 case AFL_EXT_OCTEON:
15617 fputs ("Cavium Networks Octeon", file);
15618 break;
15619 case AFL_EXT_5900:
15620 fputs ("Toshiba R5900", file);
15621 break;
15622 case AFL_EXT_4650:
15623 fputs ("MIPS R4650", file);
15624 break;
15625 case AFL_EXT_4010:
15626 fputs ("LSI R4010", file);
15627 break;
15628 case AFL_EXT_4100:
15629 fputs ("NEC VR4100", file);
15630 break;
15631 case AFL_EXT_3900:
15632 fputs ("Toshiba R3900", file);
15633 break;
15634 case AFL_EXT_10000:
15635 fputs ("MIPS R10000", file);
15636 break;
15637 case AFL_EXT_SB1:
15638 fputs ("Broadcom SB-1", file);
15639 break;
15640 case AFL_EXT_4111:
15641 fputs ("NEC VR4111/VR4181", file);
15642 break;
15643 case AFL_EXT_4120:
15644 fputs ("NEC VR4120", file);
15645 break;
15646 case AFL_EXT_5400:
15647 fputs ("NEC VR5400", file);
15648 break;
15649 case AFL_EXT_5500:
15650 fputs ("NEC VR5500", file);
15651 break;
15652 case AFL_EXT_LOONGSON_2E:
15653 fputs ("ST Microelectronics Loongson 2E", file);
15654 break;
15655 case AFL_EXT_LOONGSON_2F:
15656 fputs ("ST Microelectronics Loongson 2F", file);
15657 break;
15658 default:
15659 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15660 break;
15661 }
15662 }
15663
15664 static void
15665 print_mips_fp_abi_value (FILE *file, int val)
15666 {
15667 switch (val)
15668 {
15669 case Val_GNU_MIPS_ABI_FP_ANY:
15670 fprintf (file, _("Hard or soft float\n"));
15671 break;
15672 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15673 fprintf (file, _("Hard float (double precision)\n"));
15674 break;
15675 case Val_GNU_MIPS_ABI_FP_SINGLE:
15676 fprintf (file, _("Hard float (single precision)\n"));
15677 break;
15678 case Val_GNU_MIPS_ABI_FP_SOFT:
15679 fprintf (file, _("Soft float\n"));
15680 break;
15681 case Val_GNU_MIPS_ABI_FP_OLD_64:
15682 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15683 break;
15684 case Val_GNU_MIPS_ABI_FP_XX:
15685 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15686 break;
15687 case Val_GNU_MIPS_ABI_FP_64:
15688 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15689 break;
15690 case Val_GNU_MIPS_ABI_FP_64A:
15691 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15692 break;
15693 default:
15694 fprintf (file, "??? (%d)\n", val);
15695 break;
15696 }
15697 }
15698
15699 static int
15700 get_mips_reg_size (int reg_size)
15701 {
15702 return (reg_size == AFL_REG_NONE) ? 0
15703 : (reg_size == AFL_REG_32) ? 32
15704 : (reg_size == AFL_REG_64) ? 64
15705 : (reg_size == AFL_REG_128) ? 128
15706 : -1;
15707 }
15708
15709 bfd_boolean
15710 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15711 {
15712 FILE *file = ptr;
15713
15714 BFD_ASSERT (abfd != NULL && ptr != NULL);
15715
15716 /* Print normal ELF private data. */
15717 _bfd_elf_print_private_bfd_data (abfd, ptr);
15718
15719 /* xgettext:c-format */
15720 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15721
15722 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15723 fprintf (file, _(" [abi=O32]"));
15724 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15725 fprintf (file, _(" [abi=O64]"));
15726 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15727 fprintf (file, _(" [abi=EABI32]"));
15728 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15729 fprintf (file, _(" [abi=EABI64]"));
15730 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15731 fprintf (file, _(" [abi unknown]"));
15732 else if (ABI_N32_P (abfd))
15733 fprintf (file, _(" [abi=N32]"));
15734 else if (ABI_64_P (abfd))
15735 fprintf (file, _(" [abi=64]"));
15736 else
15737 fprintf (file, _(" [no abi set]"));
15738
15739 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15740 fprintf (file, " [mips1]");
15741 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15742 fprintf (file, " [mips2]");
15743 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15744 fprintf (file, " [mips3]");
15745 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15746 fprintf (file, " [mips4]");
15747 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15748 fprintf (file, " [mips5]");
15749 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15750 fprintf (file, " [mips32]");
15751 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15752 fprintf (file, " [mips64]");
15753 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15754 fprintf (file, " [mips32r2]");
15755 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15756 fprintf (file, " [mips64r2]");
15757 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15758 fprintf (file, " [mips32r6]");
15759 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15760 fprintf (file, " [mips64r6]");
15761 else
15762 fprintf (file, _(" [unknown ISA]"));
15763
15764 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15765 fprintf (file, " [mdmx]");
15766
15767 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15768 fprintf (file, " [mips16]");
15769
15770 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15771 fprintf (file, " [micromips]");
15772
15773 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15774 fprintf (file, " [nan2008]");
15775
15776 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15777 fprintf (file, " [old fp64]");
15778
15779 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15780 fprintf (file, " [32bitmode]");
15781 else
15782 fprintf (file, _(" [not 32bitmode]"));
15783
15784 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15785 fprintf (file, " [noreorder]");
15786
15787 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15788 fprintf (file, " [PIC]");
15789
15790 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15791 fprintf (file, " [CPIC]");
15792
15793 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15794 fprintf (file, " [XGOT]");
15795
15796 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15797 fprintf (file, " [UCODE]");
15798
15799 fputc ('\n', file);
15800
15801 if (mips_elf_tdata (abfd)->abiflags_valid)
15802 {
15803 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15804 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15805 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15806 if (abiflags->isa_rev > 1)
15807 fprintf (file, "r%d", abiflags->isa_rev);
15808 fprintf (file, "\nGPR size: %d",
15809 get_mips_reg_size (abiflags->gpr_size));
15810 fprintf (file, "\nCPR1 size: %d",
15811 get_mips_reg_size (abiflags->cpr1_size));
15812 fprintf (file, "\nCPR2 size: %d",
15813 get_mips_reg_size (abiflags->cpr2_size));
15814 fputs ("\nFP ABI: ", file);
15815 print_mips_fp_abi_value (file, abiflags->fp_abi);
15816 fputs ("ISA Extension: ", file);
15817 print_mips_isa_ext (file, abiflags->isa_ext);
15818 fputs ("\nASEs:", file);
15819 print_mips_ases (file, abiflags->ases);
15820 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15821 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15822 fputc ('\n', file);
15823 }
15824
15825 return TRUE;
15826 }
15827
15828 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15829 {
15830 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15831 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15832 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15833 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15834 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15835 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15836 { NULL, 0, 0, 0, 0 }
15837 };
15838
15839 /* Merge non visibility st_other attributes. Ensure that the
15840 STO_OPTIONAL flag is copied into h->other, even if this is not a
15841 definiton of the symbol. */
15842 void
15843 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15844 const Elf_Internal_Sym *isym,
15845 bfd_boolean definition,
15846 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15847 {
15848 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15849 {
15850 unsigned char other;
15851
15852 other = (definition ? isym->st_other : h->other);
15853 other &= ~ELF_ST_VISIBILITY (-1);
15854 h->other = other | ELF_ST_VISIBILITY (h->other);
15855 }
15856
15857 if (!definition
15858 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15859 h->other |= STO_OPTIONAL;
15860 }
15861
15862 /* Decide whether an undefined symbol is special and can be ignored.
15863 This is the case for OPTIONAL symbols on IRIX. */
15864 bfd_boolean
15865 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15866 {
15867 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15868 }
15869
15870 bfd_boolean
15871 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15872 {
15873 return (sym->st_shndx == SHN_COMMON
15874 || sym->st_shndx == SHN_MIPS_ACOMMON
15875 || sym->st_shndx == SHN_MIPS_SCOMMON);
15876 }
15877
15878 /* Return address for Ith PLT stub in section PLT, for relocation REL
15879 or (bfd_vma) -1 if it should not be included. */
15880
15881 bfd_vma
15882 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15883 const arelent *rel ATTRIBUTE_UNUSED)
15884 {
15885 return (plt->vma
15886 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15887 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15888 }
15889
15890 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15891 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15892 and .got.plt and also the slots may be of a different size each we walk
15893 the PLT manually fetching instructions and matching them against known
15894 patterns. To make things easier standard MIPS slots, if any, always come
15895 first. As we don't create proper ELF symbols we use the UDATA.I member
15896 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15897 with the ST_OTHER member of the ELF symbol. */
15898
15899 long
15900 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15901 long symcount ATTRIBUTE_UNUSED,
15902 asymbol **syms ATTRIBUTE_UNUSED,
15903 long dynsymcount, asymbol **dynsyms,
15904 asymbol **ret)
15905 {
15906 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15907 static const char microsuffix[] = "@micromipsplt";
15908 static const char m16suffix[] = "@mips16plt";
15909 static const char mipssuffix[] = "@plt";
15910
15911 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15912 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15913 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15914 Elf_Internal_Shdr *hdr;
15915 bfd_byte *plt_data;
15916 bfd_vma plt_offset;
15917 unsigned int other;
15918 bfd_vma entry_size;
15919 bfd_vma plt0_size;
15920 asection *relplt;
15921 bfd_vma opcode;
15922 asection *plt;
15923 asymbol *send;
15924 size_t size;
15925 char *names;
15926 long counti;
15927 arelent *p;
15928 asymbol *s;
15929 char *nend;
15930 long count;
15931 long pi;
15932 long i;
15933 long n;
15934
15935 *ret = NULL;
15936
15937 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
15938 return 0;
15939
15940 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
15941 if (relplt == NULL)
15942 return 0;
15943
15944 hdr = &elf_section_data (relplt)->this_hdr;
15945 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
15946 return 0;
15947
15948 plt = bfd_get_section_by_name (abfd, ".plt");
15949 if (plt == NULL)
15950 return 0;
15951
15952 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
15953 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
15954 return -1;
15955 p = relplt->relocation;
15956
15957 /* Calculating the exact amount of space required for symbols would
15958 require two passes over the PLT, so just pessimise assuming two
15959 PLT slots per relocation. */
15960 count = relplt->size / hdr->sh_entsize;
15961 counti = count * bed->s->int_rels_per_ext_rel;
15962 size = 2 * count * sizeof (asymbol);
15963 size += count * (sizeof (mipssuffix) +
15964 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
15965 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
15966 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
15967
15968 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
15969 size += sizeof (asymbol) + sizeof (pltname);
15970
15971 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
15972 return -1;
15973
15974 if (plt->size < 16)
15975 return -1;
15976
15977 s = *ret = bfd_malloc (size);
15978 if (s == NULL)
15979 return -1;
15980 send = s + 2 * count + 1;
15981
15982 names = (char *) send;
15983 nend = (char *) s + size;
15984 n = 0;
15985
15986 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
15987 if (opcode == 0x3302fffe)
15988 {
15989 if (!micromips_p)
15990 return -1;
15991 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
15992 other = STO_MICROMIPS;
15993 }
15994 else if (opcode == 0x0398c1d0)
15995 {
15996 if (!micromips_p)
15997 return -1;
15998 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
15999 other = STO_MICROMIPS;
16000 }
16001 else
16002 {
16003 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16004 other = 0;
16005 }
16006
16007 s->the_bfd = abfd;
16008 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16009 s->section = plt;
16010 s->value = 0;
16011 s->name = names;
16012 s->udata.i = other;
16013 memcpy (names, pltname, sizeof (pltname));
16014 names += sizeof (pltname);
16015 ++s, ++n;
16016
16017 pi = 0;
16018 for (plt_offset = plt0_size;
16019 plt_offset + 8 <= plt->size && s < send;
16020 plt_offset += entry_size)
16021 {
16022 bfd_vma gotplt_addr;
16023 const char *suffix;
16024 bfd_vma gotplt_hi;
16025 bfd_vma gotplt_lo;
16026 size_t suffixlen;
16027
16028 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16029
16030 /* Check if the second word matches the expected MIPS16 instruction. */
16031 if (opcode == 0x651aeb00)
16032 {
16033 if (micromips_p)
16034 return -1;
16035 /* Truncated table??? */
16036 if (plt_offset + 16 > plt->size)
16037 break;
16038 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16039 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16040 suffixlen = sizeof (m16suffix);
16041 suffix = m16suffix;
16042 other = STO_MIPS16;
16043 }
16044 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16045 else if (opcode == 0xff220000)
16046 {
16047 if (!micromips_p)
16048 return -1;
16049 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16050 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16051 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16052 gotplt_lo <<= 2;
16053 gotplt_addr = gotplt_hi + gotplt_lo;
16054 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16055 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16056 suffixlen = sizeof (microsuffix);
16057 suffix = microsuffix;
16058 other = STO_MICROMIPS;
16059 }
16060 /* Likewise the expected microMIPS instruction (insn32 mode). */
16061 else if ((opcode & 0xffff0000) == 0xff2f0000)
16062 {
16063 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16064 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16065 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16066 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16067 gotplt_addr = gotplt_hi + gotplt_lo;
16068 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16069 suffixlen = sizeof (microsuffix);
16070 suffix = microsuffix;
16071 other = STO_MICROMIPS;
16072 }
16073 /* Otherwise assume standard MIPS code. */
16074 else
16075 {
16076 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16077 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16078 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16079 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16080 gotplt_addr = gotplt_hi + gotplt_lo;
16081 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16082 suffixlen = sizeof (mipssuffix);
16083 suffix = mipssuffix;
16084 other = 0;
16085 }
16086 /* Truncated table??? */
16087 if (plt_offset + entry_size > plt->size)
16088 break;
16089
16090 for (i = 0;
16091 i < count && p[pi].address != gotplt_addr;
16092 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16093
16094 if (i < count)
16095 {
16096 size_t namelen;
16097 size_t len;
16098
16099 *s = **p[pi].sym_ptr_ptr;
16100 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16101 we are defining a symbol, ensure one of them is set. */
16102 if ((s->flags & BSF_LOCAL) == 0)
16103 s->flags |= BSF_GLOBAL;
16104 s->flags |= BSF_SYNTHETIC;
16105 s->section = plt;
16106 s->value = plt_offset;
16107 s->name = names;
16108 s->udata.i = other;
16109
16110 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16111 namelen = len + suffixlen;
16112 if (names + namelen > nend)
16113 break;
16114
16115 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16116 names += len;
16117 memcpy (names, suffix, suffixlen);
16118 names += suffixlen;
16119
16120 ++s, ++n;
16121 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16122 }
16123 }
16124
16125 free (plt_data);
16126
16127 return n;
16128 }
16129
16130 void
16131 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16132 {
16133 struct mips_elf_link_hash_table *htab;
16134 Elf_Internal_Ehdr *i_ehdrp;
16135
16136 i_ehdrp = elf_elfheader (abfd);
16137 if (link_info)
16138 {
16139 htab = mips_elf_hash_table (link_info);
16140 BFD_ASSERT (htab != NULL);
16141
16142 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16143 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16144 }
16145
16146 _bfd_elf_post_process_headers (abfd, link_info);
16147
16148 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16149 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16150 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16151
16152 if (elf_stack_flags (abfd) && !(elf_stack_flags (abfd) & PF_X))
16153 i_ehdrp->e_ident[EI_ABIVERSION] = 5;
16154 }
16155
16156 int
16157 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16158 {
16159 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16160 }
16161
16162 /* Return the opcode for can't unwind. */
16163
16164 int
16165 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16166 {
16167 return COMPACT_EH_CANT_UNWIND_OPCODE;
16168 }
This page took 0.530173 seconds and 5 git commands to generate.