* mips-tdep.c (mips_skip_mips16_trampoline_code): Sign-extend
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
30
31 /* This file handles functionality common to the different MIPS ABI's. */
32
33 #include "sysdep.h"
34 #include "bfd.h"
35 #include "libbfd.h"
36 #include "libiberty.h"
37 #include "elf-bfd.h"
38 #include "elfxx-mips.h"
39 #include "elf/mips.h"
40 #include "elf-vxworks.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* This structure is used to hold information about one GOT entry.
51 There are three types of entry:
52
53 (1) absolute addresses
54 (abfd == NULL)
55 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
56 (abfd != NULL, symndx >= 0)
57 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
58 (abfd != NULL, symndx == -1)
59
60 Type (3) entries are treated differently for different types of GOT.
61 In the "master" GOT -- i.e. the one that describes every GOT
62 reference needed in the link -- the mips_got_entry is keyed on both
63 the symbol and the input bfd that references it. If it turns out
64 that we need multiple GOTs, we can then use this information to
65 create separate GOTs for each input bfd.
66
67 However, we want each of these separate GOTs to have at most one
68 entry for a given symbol, so their type (3) entries are keyed only
69 on the symbol. The input bfd given by the "abfd" field is somewhat
70 arbitrary in this case.
71
72 This means that when there are multiple GOTs, each GOT has a unique
73 mips_got_entry for every symbol within it. We can therefore use the
74 mips_got_entry fields (tls_type and gotidx) to track the symbol's
75 GOT index.
76
77 However, if it turns out that we need only a single GOT, we continue
78 to use the master GOT to describe it. There may therefore be several
79 mips_got_entries for the same symbol, each with a different input bfd.
80 We want to make sure that each symbol gets a unique GOT entry, so when
81 there's a single GOT, we use the symbol's hash entry, not the
82 mips_got_entry fields, to track a symbol's GOT index. */
83 struct mips_got_entry
84 {
85 /* The input bfd in which the symbol is defined. */
86 bfd *abfd;
87 /* The index of the symbol, as stored in the relocation r_info, if
88 we have a local symbol; -1 otherwise. */
89 long symndx;
90 union
91 {
92 /* If abfd == NULL, an address that must be stored in the got. */
93 bfd_vma address;
94 /* If abfd != NULL && symndx != -1, the addend of the relocation
95 that should be added to the symbol value. */
96 bfd_vma addend;
97 /* If abfd != NULL && symndx == -1, the hash table entry
98 corresponding to symbol in the GOT. The symbol's entry
99 is in the local area if h->global_got_area is GGA_NONE,
100 otherwise it is in the global area. */
101 struct mips_elf_link_hash_entry *h;
102 } d;
103
104 /* The TLS types included in this GOT entry (specifically, GD and
105 IE). The GD and IE flags can be added as we encounter new
106 relocations. LDM can also be set; it will always be alone, not
107 combined with any GD or IE flags. An LDM GOT entry will be
108 a local symbol entry with r_symndx == 0. */
109 unsigned char tls_type;
110
111 /* The offset from the beginning of the .got section to the entry
112 corresponding to this symbol+addend. If it's a global symbol
113 whose offset is yet to be decided, it's going to be -1. */
114 long gotidx;
115 };
116
117 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
118 The structures form a non-overlapping list that is sorted by increasing
119 MIN_ADDEND. */
120 struct mips_got_page_range
121 {
122 struct mips_got_page_range *next;
123 bfd_signed_vma min_addend;
124 bfd_signed_vma max_addend;
125 };
126
127 /* This structure describes the range of addends that are applied to page
128 relocations against a given symbol. */
129 struct mips_got_page_entry
130 {
131 /* The input bfd in which the symbol is defined. */
132 bfd *abfd;
133 /* The index of the symbol, as stored in the relocation r_info. */
134 long symndx;
135 /* The ranges for this page entry. */
136 struct mips_got_page_range *ranges;
137 /* The maximum number of page entries needed for RANGES. */
138 bfd_vma num_pages;
139 };
140
141 /* This structure is used to hold .got information when linking. */
142
143 struct mips_got_info
144 {
145 /* The global symbol in the GOT with the lowest index in the dynamic
146 symbol table. */
147 struct elf_link_hash_entry *global_gotsym;
148 /* The number of global .got entries. */
149 unsigned int global_gotno;
150 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
151 unsigned int reloc_only_gotno;
152 /* The number of .got slots used for TLS. */
153 unsigned int tls_gotno;
154 /* The first unused TLS .got entry. Used only during
155 mips_elf_initialize_tls_index. */
156 unsigned int tls_assigned_gotno;
157 /* The number of local .got entries, eventually including page entries. */
158 unsigned int local_gotno;
159 /* The maximum number of page entries needed. */
160 unsigned int page_gotno;
161 /* The number of local .got entries we have used. */
162 unsigned int assigned_gotno;
163 /* A hash table holding members of the got. */
164 struct htab *got_entries;
165 /* A hash table of mips_got_page_entry structures. */
166 struct htab *got_page_entries;
167 /* A hash table mapping input bfds to other mips_got_info. NULL
168 unless multi-got was necessary. */
169 struct htab *bfd2got;
170 /* In multi-got links, a pointer to the next got (err, rather, most
171 of the time, it points to the previous got). */
172 struct mips_got_info *next;
173 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
174 for none, or MINUS_TWO for not yet assigned. This is needed
175 because a single-GOT link may have multiple hash table entries
176 for the LDM. It does not get initialized in multi-GOT mode. */
177 bfd_vma tls_ldm_offset;
178 };
179
180 /* Map an input bfd to a got in a multi-got link. */
181
182 struct mips_elf_bfd2got_hash
183 {
184 bfd *bfd;
185 struct mips_got_info *g;
186 };
187
188 /* Structure passed when traversing the bfd2got hash table, used to
189 create and merge bfd's gots. */
190
191 struct mips_elf_got_per_bfd_arg
192 {
193 /* A hashtable that maps bfds to gots. */
194 htab_t bfd2got;
195 /* The output bfd. */
196 bfd *obfd;
197 /* The link information. */
198 struct bfd_link_info *info;
199 /* A pointer to the primary got, i.e., the one that's going to get
200 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
201 DT_MIPS_GOTSYM. */
202 struct mips_got_info *primary;
203 /* A non-primary got we're trying to merge with other input bfd's
204 gots. */
205 struct mips_got_info *current;
206 /* The maximum number of got entries that can be addressed with a
207 16-bit offset. */
208 unsigned int max_count;
209 /* The maximum number of page entries needed by each got. */
210 unsigned int max_pages;
211 /* The total number of global entries which will live in the
212 primary got and be automatically relocated. This includes
213 those not referenced by the primary GOT but included in
214 the "master" GOT. */
215 unsigned int global_count;
216 };
217
218 /* Another structure used to pass arguments for got entries traversal. */
219
220 struct mips_elf_set_global_got_offset_arg
221 {
222 struct mips_got_info *g;
223 int value;
224 unsigned int needed_relocs;
225 struct bfd_link_info *info;
226 };
227
228 /* A structure used to count TLS relocations or GOT entries, for GOT
229 entry or ELF symbol table traversal. */
230
231 struct mips_elf_count_tls_arg
232 {
233 struct bfd_link_info *info;
234 unsigned int needed;
235 };
236
237 struct _mips_elf_section_data
238 {
239 struct bfd_elf_section_data elf;
240 union
241 {
242 bfd_byte *tdata;
243 } u;
244 };
245
246 #define mips_elf_section_data(sec) \
247 ((struct _mips_elf_section_data *) elf_section_data (sec))
248
249 #define is_mips_elf(bfd) \
250 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
251 && elf_tdata (bfd) != NULL \
252 && elf_object_id (bfd) == MIPS_ELF_DATA)
253
254 /* The ABI says that every symbol used by dynamic relocations must have
255 a global GOT entry. Among other things, this provides the dynamic
256 linker with a free, directly-indexed cache. The GOT can therefore
257 contain symbols that are not referenced by GOT relocations themselves
258 (in other words, it may have symbols that are not referenced by things
259 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
260
261 GOT relocations are less likely to overflow if we put the associated
262 GOT entries towards the beginning. We therefore divide the global
263 GOT entries into two areas: "normal" and "reloc-only". Entries in
264 the first area can be used for both dynamic relocations and GP-relative
265 accesses, while those in the "reloc-only" area are for dynamic
266 relocations only.
267
268 These GGA_* ("Global GOT Area") values are organised so that lower
269 values are more general than higher values. Also, non-GGA_NONE
270 values are ordered by the position of the area in the GOT. */
271 #define GGA_NORMAL 0
272 #define GGA_RELOC_ONLY 1
273 #define GGA_NONE 2
274
275 /* Information about a non-PIC interface to a PIC function. There are
276 two ways of creating these interfaces. The first is to add:
277
278 lui $25,%hi(func)
279 addiu $25,$25,%lo(func)
280
281 immediately before a PIC function "func". The second is to add:
282
283 lui $25,%hi(func)
284 j func
285 addiu $25,$25,%lo(func)
286
287 to a separate trampoline section.
288
289 Stubs of the first kind go in a new section immediately before the
290 target function. Stubs of the second kind go in a single section
291 pointed to by the hash table's "strampoline" field. */
292 struct mips_elf_la25_stub {
293 /* The generated section that contains this stub. */
294 asection *stub_section;
295
296 /* The offset of the stub from the start of STUB_SECTION. */
297 bfd_vma offset;
298
299 /* One symbol for the original function. Its location is available
300 in H->root.root.u.def. */
301 struct mips_elf_link_hash_entry *h;
302 };
303
304 /* Macros for populating a mips_elf_la25_stub. */
305
306 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
307 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
308 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
309 #define LA25_LUI_MICROMIPS_1(VAL) (0x41b9) /* lui t9,VAL */
310 #define LA25_LUI_MICROMIPS_2(VAL) (VAL)
311 #define LA25_J_MICROMIPS_1(VAL) (0xd400 | (((VAL) >> 17) & 0x3ff)) /* j VAL */
312 #define LA25_J_MICROMIPS_2(VAL) ((VAL) >> 1)
313 #define LA25_ADDIU_MICROMIPS_1(VAL) (0x3339) /* addiu t9,t9,VAL */
314 #define LA25_ADDIU_MICROMIPS_2(VAL) (VAL)
315
316 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
317 the dynamic symbols. */
318
319 struct mips_elf_hash_sort_data
320 {
321 /* The symbol in the global GOT with the lowest dynamic symbol table
322 index. */
323 struct elf_link_hash_entry *low;
324 /* The least dynamic symbol table index corresponding to a non-TLS
325 symbol with a GOT entry. */
326 long min_got_dynindx;
327 /* The greatest dynamic symbol table index corresponding to a symbol
328 with a GOT entry that is not referenced (e.g., a dynamic symbol
329 with dynamic relocations pointing to it from non-primary GOTs). */
330 long max_unref_got_dynindx;
331 /* The greatest dynamic symbol table index not corresponding to a
332 symbol without a GOT entry. */
333 long max_non_got_dynindx;
334 };
335
336 /* The MIPS ELF linker needs additional information for each symbol in
337 the global hash table. */
338
339 struct mips_elf_link_hash_entry
340 {
341 struct elf_link_hash_entry root;
342
343 /* External symbol information. */
344 EXTR esym;
345
346 /* The la25 stub we have created for ths symbol, if any. */
347 struct mips_elf_la25_stub *la25_stub;
348
349 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
350 this symbol. */
351 unsigned int possibly_dynamic_relocs;
352
353 /* If there is a stub that 32 bit functions should use to call this
354 16 bit function, this points to the section containing the stub. */
355 asection *fn_stub;
356
357 /* If there is a stub that 16 bit functions should use to call this
358 32 bit function, this points to the section containing the stub. */
359 asection *call_stub;
360
361 /* This is like the call_stub field, but it is used if the function
362 being called returns a floating point value. */
363 asection *call_fp_stub;
364
365 #define GOT_NORMAL 0
366 #define GOT_TLS_GD 1
367 #define GOT_TLS_LDM 2
368 #define GOT_TLS_IE 4
369 #define GOT_TLS_OFFSET_DONE 0x40
370 #define GOT_TLS_DONE 0x80
371 unsigned char tls_type;
372
373 /* This is only used in single-GOT mode; in multi-GOT mode there
374 is one mips_got_entry per GOT entry, so the offset is stored
375 there. In single-GOT mode there may be many mips_got_entry
376 structures all referring to the same GOT slot. It might be
377 possible to use root.got.offset instead, but that field is
378 overloaded already. */
379 bfd_vma tls_got_offset;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423 #if 0
424 /* We no longer use this. */
425 /* String section indices for the dynamic section symbols. */
426 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
427 #endif
428
429 /* The number of .rtproc entries. */
430 bfd_size_type procedure_count;
431
432 /* The size of the .compact_rel section (if SGI_COMPAT). */
433 bfd_size_type compact_rel_size;
434
435 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
436 entry is set to the address of __rld_obj_head as in IRIX5. */
437 bfd_boolean use_rld_obj_head;
438
439 /* This is the value of the __rld_map or __rld_obj_head symbol. */
440 bfd_vma rld_value;
441
442 /* This is set if we see any mips16 stub sections. */
443 bfd_boolean mips16_stubs_seen;
444
445 /* True if we can generate copy relocs and PLTs. */
446 bfd_boolean use_plts_and_copy_relocs;
447
448 /* True if we're generating code for VxWorks. */
449 bfd_boolean is_vxworks;
450
451 /* True if we already reported the small-data section overflow. */
452 bfd_boolean small_data_overflow_reported;
453
454 /* Shortcuts to some dynamic sections, or NULL if they are not
455 being used. */
456 asection *srelbss;
457 asection *sdynbss;
458 asection *srelplt;
459 asection *srelplt2;
460 asection *sgotplt;
461 asection *splt;
462 asection *sstubs;
463 asection *sgot;
464
465 /* The master GOT information. */
466 struct mips_got_info *got_info;
467
468 /* The size of the PLT header in bytes. */
469 bfd_vma plt_header_size;
470
471 /* The size of a PLT entry in bytes. */
472 bfd_vma plt_entry_size;
473
474 /* The number of functions that need a lazy-binding stub. */
475 bfd_vma lazy_stub_count;
476
477 /* The size of a function stub entry in bytes. */
478 bfd_vma function_stub_size;
479
480 /* The number of reserved entries at the beginning of the GOT. */
481 unsigned int reserved_gotno;
482
483 /* The section used for mips_elf_la25_stub trampolines.
484 See the comment above that structure for details. */
485 asection *strampoline;
486
487 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
488 pairs. */
489 htab_t la25_stubs;
490
491 /* A function FN (NAME, IS, OS) that creates a new input section
492 called NAME and links it to output section OS. If IS is nonnull,
493 the new section should go immediately before it, otherwise it
494 should go at the (current) beginning of OS.
495
496 The function returns the new section on success, otherwise it
497 returns null. */
498 asection *(*add_stub_section) (const char *, asection *, asection *);
499 };
500
501 /* Get the MIPS ELF linker hash table from a link_info structure. */
502
503 #define mips_elf_hash_table(p) \
504 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
505 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
506
507 /* A structure used to communicate with htab_traverse callbacks. */
508 struct mips_htab_traverse_info
509 {
510 /* The usual link-wide information. */
511 struct bfd_link_info *info;
512 bfd *output_bfd;
513
514 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
515 bfd_boolean error;
516 };
517
518 #define TLS_RELOC_P(r_type) \
519 (r_type == R_MIPS_TLS_DTPMOD32 \
520 || r_type == R_MIPS_TLS_DTPMOD64 \
521 || r_type == R_MIPS_TLS_DTPREL32 \
522 || r_type == R_MIPS_TLS_DTPREL64 \
523 || r_type == R_MIPS_TLS_GD \
524 || r_type == R_MIPS_TLS_LDM \
525 || r_type == R_MIPS_TLS_DTPREL_HI16 \
526 || r_type == R_MIPS_TLS_DTPREL_LO16 \
527 || r_type == R_MIPS_TLS_GOTTPREL \
528 || r_type == R_MIPS_TLS_TPREL32 \
529 || r_type == R_MIPS_TLS_TPREL64 \
530 || r_type == R_MIPS_TLS_TPREL_HI16 \
531 || r_type == R_MIPS_TLS_TPREL_LO16 \
532 || r_type == R_MICROMIPS_TLS_GD \
533 || r_type == R_MICROMIPS_TLS_LDM \
534 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
535 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
536 || r_type == R_MICROMIPS_TLS_GOTTPREL \
537 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
538 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
539
540 /* Structure used to pass information to mips_elf_output_extsym. */
541
542 struct extsym_info
543 {
544 bfd *abfd;
545 struct bfd_link_info *info;
546 struct ecoff_debug_info *debug;
547 const struct ecoff_debug_swap *swap;
548 bfd_boolean failed;
549 };
550
551 /* The names of the runtime procedure table symbols used on IRIX5. */
552
553 static const char * const mips_elf_dynsym_rtproc_names[] =
554 {
555 "_procedure_table",
556 "_procedure_string_table",
557 "_procedure_table_size",
558 NULL
559 };
560
561 /* These structures are used to generate the .compact_rel section on
562 IRIX5. */
563
564 typedef struct
565 {
566 unsigned long id1; /* Always one? */
567 unsigned long num; /* Number of compact relocation entries. */
568 unsigned long id2; /* Always two? */
569 unsigned long offset; /* The file offset of the first relocation. */
570 unsigned long reserved0; /* Zero? */
571 unsigned long reserved1; /* Zero? */
572 } Elf32_compact_rel;
573
574 typedef struct
575 {
576 bfd_byte id1[4];
577 bfd_byte num[4];
578 bfd_byte id2[4];
579 bfd_byte offset[4];
580 bfd_byte reserved0[4];
581 bfd_byte reserved1[4];
582 } Elf32_External_compact_rel;
583
584 typedef struct
585 {
586 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
587 unsigned int rtype : 4; /* Relocation types. See below. */
588 unsigned int dist2to : 8;
589 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
590 unsigned long konst; /* KONST field. See below. */
591 unsigned long vaddr; /* VADDR to be relocated. */
592 } Elf32_crinfo;
593
594 typedef struct
595 {
596 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
597 unsigned int rtype : 4; /* Relocation types. See below. */
598 unsigned int dist2to : 8;
599 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
600 unsigned long konst; /* KONST field. See below. */
601 } Elf32_crinfo2;
602
603 typedef struct
604 {
605 bfd_byte info[4];
606 bfd_byte konst[4];
607 bfd_byte vaddr[4];
608 } Elf32_External_crinfo;
609
610 typedef struct
611 {
612 bfd_byte info[4];
613 bfd_byte konst[4];
614 } Elf32_External_crinfo2;
615
616 /* These are the constants used to swap the bitfields in a crinfo. */
617
618 #define CRINFO_CTYPE (0x1)
619 #define CRINFO_CTYPE_SH (31)
620 #define CRINFO_RTYPE (0xf)
621 #define CRINFO_RTYPE_SH (27)
622 #define CRINFO_DIST2TO (0xff)
623 #define CRINFO_DIST2TO_SH (19)
624 #define CRINFO_RELVADDR (0x7ffff)
625 #define CRINFO_RELVADDR_SH (0)
626
627 /* A compact relocation info has long (3 words) or short (2 words)
628 formats. A short format doesn't have VADDR field and relvaddr
629 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
630 #define CRF_MIPS_LONG 1
631 #define CRF_MIPS_SHORT 0
632
633 /* There are 4 types of compact relocation at least. The value KONST
634 has different meaning for each type:
635
636 (type) (konst)
637 CT_MIPS_REL32 Address in data
638 CT_MIPS_WORD Address in word (XXX)
639 CT_MIPS_GPHI_LO GP - vaddr
640 CT_MIPS_JMPAD Address to jump
641 */
642
643 #define CRT_MIPS_REL32 0xa
644 #define CRT_MIPS_WORD 0xb
645 #define CRT_MIPS_GPHI_LO 0xc
646 #define CRT_MIPS_JMPAD 0xd
647
648 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
649 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
650 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
651 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
652 \f
653 /* The structure of the runtime procedure descriptor created by the
654 loader for use by the static exception system. */
655
656 typedef struct runtime_pdr {
657 bfd_vma adr; /* Memory address of start of procedure. */
658 long regmask; /* Save register mask. */
659 long regoffset; /* Save register offset. */
660 long fregmask; /* Save floating point register mask. */
661 long fregoffset; /* Save floating point register offset. */
662 long frameoffset; /* Frame size. */
663 short framereg; /* Frame pointer register. */
664 short pcreg; /* Offset or reg of return pc. */
665 long irpss; /* Index into the runtime string table. */
666 long reserved;
667 struct exception_info *exception_info;/* Pointer to exception array. */
668 } RPDR, *pRPDR;
669 #define cbRPDR sizeof (RPDR)
670 #define rpdNil ((pRPDR) 0)
671 \f
672 static struct mips_got_entry *mips_elf_create_local_got_entry
673 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
674 struct mips_elf_link_hash_entry *, int);
675 static bfd_boolean mips_elf_sort_hash_table_f
676 (struct mips_elf_link_hash_entry *, void *);
677 static bfd_vma mips_elf_high
678 (bfd_vma);
679 static bfd_boolean mips_elf_create_dynamic_relocation
680 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
681 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
682 bfd_vma *, asection *);
683 static hashval_t mips_elf_got_entry_hash
684 (const void *);
685 static bfd_vma mips_elf_adjust_gp
686 (bfd *, struct mips_got_info *, bfd *);
687 static struct mips_got_info *mips_elf_got_for_ibfd
688 (struct mips_got_info *, bfd *);
689
690 /* This will be used when we sort the dynamic relocation records. */
691 static bfd *reldyn_sorting_bfd;
692
693 /* True if ABFD is for CPUs with load interlocking that include
694 non-MIPS1 CPUs and R3900. */
695 #define LOAD_INTERLOCKS_P(abfd) \
696 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
697 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
698
699 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
700 This should be safe for all architectures. We enable this predicate
701 for RM9000 for now. */
702 #define JAL_TO_BAL_P(abfd) \
703 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
704
705 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
706 This should be safe for all architectures. We enable this predicate for
707 all CPUs. */
708 #define JALR_TO_BAL_P(abfd) 1
709
710 /* True if ABFD is for CPUs that are faster if JR is converted to B.
711 This should be safe for all architectures. We enable this predicate for
712 all CPUs. */
713 #define JR_TO_B_P(abfd) 1
714
715 /* True if ABFD is a PIC object. */
716 #define PIC_OBJECT_P(abfd) \
717 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
718
719 /* Nonzero if ABFD is using the N32 ABI. */
720 #define ABI_N32_P(abfd) \
721 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
722
723 /* Nonzero if ABFD is using the N64 ABI. */
724 #define ABI_64_P(abfd) \
725 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
726
727 /* Nonzero if ABFD is using NewABI conventions. */
728 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
729
730 /* The IRIX compatibility level we are striving for. */
731 #define IRIX_COMPAT(abfd) \
732 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
733
734 /* Whether we are trying to be compatible with IRIX at all. */
735 #define SGI_COMPAT(abfd) \
736 (IRIX_COMPAT (abfd) != ict_none)
737
738 /* The name of the options section. */
739 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
740 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
741
742 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
743 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
744 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
745 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
746
747 /* Whether the section is readonly. */
748 #define MIPS_ELF_READONLY_SECTION(sec) \
749 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
750 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
751
752 /* The name of the stub section. */
753 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
754
755 /* The size of an external REL relocation. */
756 #define MIPS_ELF_REL_SIZE(abfd) \
757 (get_elf_backend_data (abfd)->s->sizeof_rel)
758
759 /* The size of an external RELA relocation. */
760 #define MIPS_ELF_RELA_SIZE(abfd) \
761 (get_elf_backend_data (abfd)->s->sizeof_rela)
762
763 /* The size of an external dynamic table entry. */
764 #define MIPS_ELF_DYN_SIZE(abfd) \
765 (get_elf_backend_data (abfd)->s->sizeof_dyn)
766
767 /* The size of a GOT entry. */
768 #define MIPS_ELF_GOT_SIZE(abfd) \
769 (get_elf_backend_data (abfd)->s->arch_size / 8)
770
771 /* The size of a symbol-table entry. */
772 #define MIPS_ELF_SYM_SIZE(abfd) \
773 (get_elf_backend_data (abfd)->s->sizeof_sym)
774
775 /* The default alignment for sections, as a power of two. */
776 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
777 (get_elf_backend_data (abfd)->s->log_file_align)
778
779 /* Get word-sized data. */
780 #define MIPS_ELF_GET_WORD(abfd, ptr) \
781 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
782
783 /* Put out word-sized data. */
784 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
785 (ABI_64_P (abfd) \
786 ? bfd_put_64 (abfd, val, ptr) \
787 : bfd_put_32 (abfd, val, ptr))
788
789 /* The opcode for word-sized loads (LW or LD). */
790 #define MIPS_ELF_LOAD_WORD(abfd) \
791 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
792
793 /* Add a dynamic symbol table-entry. */
794 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
795 _bfd_elf_add_dynamic_entry (info, tag, val)
796
797 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
798 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
799
800 /* The name of the dynamic relocation section. */
801 #define MIPS_ELF_REL_DYN_NAME(INFO) \
802 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
803
804 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
805 from smaller values. Start with zero, widen, *then* decrement. */
806 #define MINUS_ONE (((bfd_vma)0) - 1)
807 #define MINUS_TWO (((bfd_vma)0) - 2)
808
809 /* The value to write into got[1] for SVR4 targets, to identify it is
810 a GNU object. The dynamic linker can then use got[1] to store the
811 module pointer. */
812 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
813 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
814
815 /* The offset of $gp from the beginning of the .got section. */
816 #define ELF_MIPS_GP_OFFSET(INFO) \
817 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
818
819 /* The maximum size of the GOT for it to be addressable using 16-bit
820 offsets from $gp. */
821 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
822
823 /* Instructions which appear in a stub. */
824 #define STUB_LW(abfd) \
825 ((ABI_64_P (abfd) \
826 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
827 : 0x8f998010)) /* lw t9,0x8010(gp) */
828 #define STUB_MOVE(abfd) \
829 ((ABI_64_P (abfd) \
830 ? 0x03e0782d /* daddu t7,ra */ \
831 : 0x03e07821)) /* addu t7,ra */
832 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
833 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
834 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
835 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
836 #define STUB_LI16S(abfd, VAL) \
837 ((ABI_64_P (abfd) \
838 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
839 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
840
841 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
842 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
843
844 /* The name of the dynamic interpreter. This is put in the .interp
845 section. */
846
847 #define ELF_DYNAMIC_INTERPRETER(abfd) \
848 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
849 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
850 : "/usr/lib/libc.so.1")
851
852 #ifdef BFD64
853 #define MNAME(bfd,pre,pos) \
854 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
855 #define ELF_R_SYM(bfd, i) \
856 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
857 #define ELF_R_TYPE(bfd, i) \
858 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
859 #define ELF_R_INFO(bfd, s, t) \
860 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
861 #else
862 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
863 #define ELF_R_SYM(bfd, i) \
864 (ELF32_R_SYM (i))
865 #define ELF_R_TYPE(bfd, i) \
866 (ELF32_R_TYPE (i))
867 #define ELF_R_INFO(bfd, s, t) \
868 (ELF32_R_INFO (s, t))
869 #endif
870 \f
871 /* The mips16 compiler uses a couple of special sections to handle
872 floating point arguments.
873
874 Section names that look like .mips16.fn.FNNAME contain stubs that
875 copy floating point arguments from the fp regs to the gp regs and
876 then jump to FNNAME. If any 32 bit function calls FNNAME, the
877 call should be redirected to the stub instead. If no 32 bit
878 function calls FNNAME, the stub should be discarded. We need to
879 consider any reference to the function, not just a call, because
880 if the address of the function is taken we will need the stub,
881 since the address might be passed to a 32 bit function.
882
883 Section names that look like .mips16.call.FNNAME contain stubs
884 that copy floating point arguments from the gp regs to the fp
885 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
886 then any 16 bit function that calls FNNAME should be redirected
887 to the stub instead. If FNNAME is not a 32 bit function, the
888 stub should be discarded.
889
890 .mips16.call.fp.FNNAME sections are similar, but contain stubs
891 which call FNNAME and then copy the return value from the fp regs
892 to the gp regs. These stubs store the return value in $18 while
893 calling FNNAME; any function which might call one of these stubs
894 must arrange to save $18 around the call. (This case is not
895 needed for 32 bit functions that call 16 bit functions, because
896 16 bit functions always return floating point values in both
897 $f0/$f1 and $2/$3.)
898
899 Note that in all cases FNNAME might be defined statically.
900 Therefore, FNNAME is not used literally. Instead, the relocation
901 information will indicate which symbol the section is for.
902
903 We record any stubs that we find in the symbol table. */
904
905 #define FN_STUB ".mips16.fn."
906 #define CALL_STUB ".mips16.call."
907 #define CALL_FP_STUB ".mips16.call.fp."
908
909 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
910 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
911 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
912 \f
913 /* The format of the first PLT entry in an O32 executable. */
914 static const bfd_vma mips_o32_exec_plt0_entry[] =
915 {
916 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
917 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
918 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
919 0x031cc023, /* subu $24, $24, $28 */
920 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
921 0x0018c082, /* srl $24, $24, 2 */
922 0x0320f809, /* jalr $25 */
923 0x2718fffe /* subu $24, $24, 2 */
924 };
925
926 /* The format of the first PLT entry in an N32 executable. Different
927 because gp ($28) is not available; we use t2 ($14) instead. */
928 static const bfd_vma mips_n32_exec_plt0_entry[] =
929 {
930 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
931 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
932 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
933 0x030ec023, /* subu $24, $24, $14 */
934 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
935 0x0018c082, /* srl $24, $24, 2 */
936 0x0320f809, /* jalr $25 */
937 0x2718fffe /* subu $24, $24, 2 */
938 };
939
940 /* The format of the first PLT entry in an N64 executable. Different
941 from N32 because of the increased size of GOT entries. */
942 static const bfd_vma mips_n64_exec_plt0_entry[] =
943 {
944 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
945 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
946 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
947 0x030ec023, /* subu $24, $24, $14 */
948 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
949 0x0018c0c2, /* srl $24, $24, 3 */
950 0x0320f809, /* jalr $25 */
951 0x2718fffe /* subu $24, $24, 2 */
952 };
953
954 /* The format of subsequent PLT entries. */
955 static const bfd_vma mips_exec_plt_entry[] =
956 {
957 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
958 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
959 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
960 0x03200008 /* jr $25 */
961 };
962
963 /* The format of the first PLT entry in a VxWorks executable. */
964 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
965 {
966 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
967 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
968 0x8f390008, /* lw t9, 8(t9) */
969 0x00000000, /* nop */
970 0x03200008, /* jr t9 */
971 0x00000000 /* nop */
972 };
973
974 /* The format of subsequent PLT entries. */
975 static const bfd_vma mips_vxworks_exec_plt_entry[] =
976 {
977 0x10000000, /* b .PLT_resolver */
978 0x24180000, /* li t8, <pltindex> */
979 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
980 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
981 0x8f390000, /* lw t9, 0(t9) */
982 0x00000000, /* nop */
983 0x03200008, /* jr t9 */
984 0x00000000 /* nop */
985 };
986
987 /* The format of the first PLT entry in a VxWorks shared object. */
988 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
989 {
990 0x8f990008, /* lw t9, 8(gp) */
991 0x00000000, /* nop */
992 0x03200008, /* jr t9 */
993 0x00000000, /* nop */
994 0x00000000, /* nop */
995 0x00000000 /* nop */
996 };
997
998 /* The format of subsequent PLT entries. */
999 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1000 {
1001 0x10000000, /* b .PLT_resolver */
1002 0x24180000 /* li t8, <pltindex> */
1003 };
1004 \f
1005 /* Look up an entry in a MIPS ELF linker hash table. */
1006
1007 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1008 ((struct mips_elf_link_hash_entry *) \
1009 elf_link_hash_lookup (&(table)->root, (string), (create), \
1010 (copy), (follow)))
1011
1012 /* Traverse a MIPS ELF linker hash table. */
1013
1014 #define mips_elf_link_hash_traverse(table, func, info) \
1015 (elf_link_hash_traverse \
1016 (&(table)->root, \
1017 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1018 (info)))
1019
1020 /* Find the base offsets for thread-local storage in this object,
1021 for GD/LD and IE/LE respectively. */
1022
1023 #define TP_OFFSET 0x7000
1024 #define DTP_OFFSET 0x8000
1025
1026 static bfd_vma
1027 dtprel_base (struct bfd_link_info *info)
1028 {
1029 /* If tls_sec is NULL, we should have signalled an error already. */
1030 if (elf_hash_table (info)->tls_sec == NULL)
1031 return 0;
1032 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1033 }
1034
1035 static bfd_vma
1036 tprel_base (struct bfd_link_info *info)
1037 {
1038 /* If tls_sec is NULL, we should have signalled an error already. */
1039 if (elf_hash_table (info)->tls_sec == NULL)
1040 return 0;
1041 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1042 }
1043
1044 /* Create an entry in a MIPS ELF linker hash table. */
1045
1046 static struct bfd_hash_entry *
1047 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1048 struct bfd_hash_table *table, const char *string)
1049 {
1050 struct mips_elf_link_hash_entry *ret =
1051 (struct mips_elf_link_hash_entry *) entry;
1052
1053 /* Allocate the structure if it has not already been allocated by a
1054 subclass. */
1055 if (ret == NULL)
1056 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1057 if (ret == NULL)
1058 return (struct bfd_hash_entry *) ret;
1059
1060 /* Call the allocation method of the superclass. */
1061 ret = ((struct mips_elf_link_hash_entry *)
1062 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1063 table, string));
1064 if (ret != NULL)
1065 {
1066 /* Set local fields. */
1067 memset (&ret->esym, 0, sizeof (EXTR));
1068 /* We use -2 as a marker to indicate that the information has
1069 not been set. -1 means there is no associated ifd. */
1070 ret->esym.ifd = -2;
1071 ret->la25_stub = 0;
1072 ret->possibly_dynamic_relocs = 0;
1073 ret->fn_stub = NULL;
1074 ret->call_stub = NULL;
1075 ret->call_fp_stub = NULL;
1076 ret->tls_type = GOT_NORMAL;
1077 ret->global_got_area = GGA_NONE;
1078 ret->got_only_for_calls = TRUE;
1079 ret->readonly_reloc = FALSE;
1080 ret->has_static_relocs = FALSE;
1081 ret->no_fn_stub = FALSE;
1082 ret->need_fn_stub = FALSE;
1083 ret->has_nonpic_branches = FALSE;
1084 ret->needs_lazy_stub = FALSE;
1085 }
1086
1087 return (struct bfd_hash_entry *) ret;
1088 }
1089
1090 bfd_boolean
1091 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1092 {
1093 if (!sec->used_by_bfd)
1094 {
1095 struct _mips_elf_section_data *sdata;
1096 bfd_size_type amt = sizeof (*sdata);
1097
1098 sdata = bfd_zalloc (abfd, amt);
1099 if (sdata == NULL)
1100 return FALSE;
1101 sec->used_by_bfd = sdata;
1102 }
1103
1104 return _bfd_elf_new_section_hook (abfd, sec);
1105 }
1106 \f
1107 /* Read ECOFF debugging information from a .mdebug section into a
1108 ecoff_debug_info structure. */
1109
1110 bfd_boolean
1111 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1112 struct ecoff_debug_info *debug)
1113 {
1114 HDRR *symhdr;
1115 const struct ecoff_debug_swap *swap;
1116 char *ext_hdr;
1117
1118 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1119 memset (debug, 0, sizeof (*debug));
1120
1121 ext_hdr = bfd_malloc (swap->external_hdr_size);
1122 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1123 goto error_return;
1124
1125 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1126 swap->external_hdr_size))
1127 goto error_return;
1128
1129 symhdr = &debug->symbolic_header;
1130 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1131
1132 /* The symbolic header contains absolute file offsets and sizes to
1133 read. */
1134 #define READ(ptr, offset, count, size, type) \
1135 if (symhdr->count == 0) \
1136 debug->ptr = NULL; \
1137 else \
1138 { \
1139 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1140 debug->ptr = bfd_malloc (amt); \
1141 if (debug->ptr == NULL) \
1142 goto error_return; \
1143 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1144 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1145 goto error_return; \
1146 }
1147
1148 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1149 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1150 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1151 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1152 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1153 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1154 union aux_ext *);
1155 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1156 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1157 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1158 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1159 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1160 #undef READ
1161
1162 debug->fdr = NULL;
1163
1164 return TRUE;
1165
1166 error_return:
1167 if (ext_hdr != NULL)
1168 free (ext_hdr);
1169 if (debug->line != NULL)
1170 free (debug->line);
1171 if (debug->external_dnr != NULL)
1172 free (debug->external_dnr);
1173 if (debug->external_pdr != NULL)
1174 free (debug->external_pdr);
1175 if (debug->external_sym != NULL)
1176 free (debug->external_sym);
1177 if (debug->external_opt != NULL)
1178 free (debug->external_opt);
1179 if (debug->external_aux != NULL)
1180 free (debug->external_aux);
1181 if (debug->ss != NULL)
1182 free (debug->ss);
1183 if (debug->ssext != NULL)
1184 free (debug->ssext);
1185 if (debug->external_fdr != NULL)
1186 free (debug->external_fdr);
1187 if (debug->external_rfd != NULL)
1188 free (debug->external_rfd);
1189 if (debug->external_ext != NULL)
1190 free (debug->external_ext);
1191 return FALSE;
1192 }
1193 \f
1194 /* Swap RPDR (runtime procedure table entry) for output. */
1195
1196 static void
1197 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1198 {
1199 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1200 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1201 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1202 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1203 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1204 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1205
1206 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1207 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1208
1209 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1210 }
1211
1212 /* Create a runtime procedure table from the .mdebug section. */
1213
1214 static bfd_boolean
1215 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1216 struct bfd_link_info *info, asection *s,
1217 struct ecoff_debug_info *debug)
1218 {
1219 const struct ecoff_debug_swap *swap;
1220 HDRR *hdr = &debug->symbolic_header;
1221 RPDR *rpdr, *rp;
1222 struct rpdr_ext *erp;
1223 void *rtproc;
1224 struct pdr_ext *epdr;
1225 struct sym_ext *esym;
1226 char *ss, **sv;
1227 char *str;
1228 bfd_size_type size;
1229 bfd_size_type count;
1230 unsigned long sindex;
1231 unsigned long i;
1232 PDR pdr;
1233 SYMR sym;
1234 const char *no_name_func = _("static procedure (no name)");
1235
1236 epdr = NULL;
1237 rpdr = NULL;
1238 esym = NULL;
1239 ss = NULL;
1240 sv = NULL;
1241
1242 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1243
1244 sindex = strlen (no_name_func) + 1;
1245 count = hdr->ipdMax;
1246 if (count > 0)
1247 {
1248 size = swap->external_pdr_size;
1249
1250 epdr = bfd_malloc (size * count);
1251 if (epdr == NULL)
1252 goto error_return;
1253
1254 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1255 goto error_return;
1256
1257 size = sizeof (RPDR);
1258 rp = rpdr = bfd_malloc (size * count);
1259 if (rpdr == NULL)
1260 goto error_return;
1261
1262 size = sizeof (char *);
1263 sv = bfd_malloc (size * count);
1264 if (sv == NULL)
1265 goto error_return;
1266
1267 count = hdr->isymMax;
1268 size = swap->external_sym_size;
1269 esym = bfd_malloc (size * count);
1270 if (esym == NULL)
1271 goto error_return;
1272
1273 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1274 goto error_return;
1275
1276 count = hdr->issMax;
1277 ss = bfd_malloc (count);
1278 if (ss == NULL)
1279 goto error_return;
1280 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1281 goto error_return;
1282
1283 count = hdr->ipdMax;
1284 for (i = 0; i < (unsigned long) count; i++, rp++)
1285 {
1286 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1287 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1288 rp->adr = sym.value;
1289 rp->regmask = pdr.regmask;
1290 rp->regoffset = pdr.regoffset;
1291 rp->fregmask = pdr.fregmask;
1292 rp->fregoffset = pdr.fregoffset;
1293 rp->frameoffset = pdr.frameoffset;
1294 rp->framereg = pdr.framereg;
1295 rp->pcreg = pdr.pcreg;
1296 rp->irpss = sindex;
1297 sv[i] = ss + sym.iss;
1298 sindex += strlen (sv[i]) + 1;
1299 }
1300 }
1301
1302 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1303 size = BFD_ALIGN (size, 16);
1304 rtproc = bfd_alloc (abfd, size);
1305 if (rtproc == NULL)
1306 {
1307 mips_elf_hash_table (info)->procedure_count = 0;
1308 goto error_return;
1309 }
1310
1311 mips_elf_hash_table (info)->procedure_count = count + 2;
1312
1313 erp = rtproc;
1314 memset (erp, 0, sizeof (struct rpdr_ext));
1315 erp++;
1316 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1317 strcpy (str, no_name_func);
1318 str += strlen (no_name_func) + 1;
1319 for (i = 0; i < count; i++)
1320 {
1321 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1322 strcpy (str, sv[i]);
1323 str += strlen (sv[i]) + 1;
1324 }
1325 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1326
1327 /* Set the size and contents of .rtproc section. */
1328 s->size = size;
1329 s->contents = rtproc;
1330
1331 /* Skip this section later on (I don't think this currently
1332 matters, but someday it might). */
1333 s->map_head.link_order = NULL;
1334
1335 if (epdr != NULL)
1336 free (epdr);
1337 if (rpdr != NULL)
1338 free (rpdr);
1339 if (esym != NULL)
1340 free (esym);
1341 if (ss != NULL)
1342 free (ss);
1343 if (sv != NULL)
1344 free (sv);
1345
1346 return TRUE;
1347
1348 error_return:
1349 if (epdr != NULL)
1350 free (epdr);
1351 if (rpdr != NULL)
1352 free (rpdr);
1353 if (esym != NULL)
1354 free (esym);
1355 if (ss != NULL)
1356 free (ss);
1357 if (sv != NULL)
1358 free (sv);
1359 return FALSE;
1360 }
1361 \f
1362 /* We're going to create a stub for H. Create a symbol for the stub's
1363 value and size, to help make the disassembly easier to read. */
1364
1365 static bfd_boolean
1366 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1367 struct mips_elf_link_hash_entry *h,
1368 const char *prefix, asection *s, bfd_vma value,
1369 bfd_vma size)
1370 {
1371 struct bfd_link_hash_entry *bh;
1372 struct elf_link_hash_entry *elfh;
1373 const char *name;
1374
1375 if (ELF_ST_IS_MICROMIPS (h->root.other))
1376 value |= 1;
1377
1378 /* Create a new symbol. */
1379 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1380 bh = NULL;
1381 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1382 BSF_LOCAL, s, value, NULL,
1383 TRUE, FALSE, &bh))
1384 return FALSE;
1385
1386 /* Make it a local function. */
1387 elfh = (struct elf_link_hash_entry *) bh;
1388 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1389 elfh->size = size;
1390 elfh->forced_local = 1;
1391 return TRUE;
1392 }
1393
1394 /* We're about to redefine H. Create a symbol to represent H's
1395 current value and size, to help make the disassembly easier
1396 to read. */
1397
1398 static bfd_boolean
1399 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1400 struct mips_elf_link_hash_entry *h,
1401 const char *prefix)
1402 {
1403 struct bfd_link_hash_entry *bh;
1404 struct elf_link_hash_entry *elfh;
1405 const char *name;
1406 asection *s;
1407 bfd_vma value;
1408
1409 /* Read the symbol's value. */
1410 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1411 || h->root.root.type == bfd_link_hash_defweak);
1412 s = h->root.root.u.def.section;
1413 value = h->root.root.u.def.value;
1414
1415 /* Create a new symbol. */
1416 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1417 bh = NULL;
1418 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1419 BSF_LOCAL, s, value, NULL,
1420 TRUE, FALSE, &bh))
1421 return FALSE;
1422
1423 /* Make it local and copy the other attributes from H. */
1424 elfh = (struct elf_link_hash_entry *) bh;
1425 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1426 elfh->other = h->root.other;
1427 elfh->size = h->root.size;
1428 elfh->forced_local = 1;
1429 return TRUE;
1430 }
1431
1432 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1433 function rather than to a hard-float stub. */
1434
1435 static bfd_boolean
1436 section_allows_mips16_refs_p (asection *section)
1437 {
1438 const char *name;
1439
1440 name = bfd_get_section_name (section->owner, section);
1441 return (FN_STUB_P (name)
1442 || CALL_STUB_P (name)
1443 || CALL_FP_STUB_P (name)
1444 || strcmp (name, ".pdr") == 0);
1445 }
1446
1447 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1448 stub section of some kind. Return the R_SYMNDX of the target
1449 function, or 0 if we can't decide which function that is. */
1450
1451 static unsigned long
1452 mips16_stub_symndx (asection *sec ATTRIBUTE_UNUSED,
1453 const Elf_Internal_Rela *relocs,
1454 const Elf_Internal_Rela *relend)
1455 {
1456 const Elf_Internal_Rela *rel;
1457
1458 /* Trust the first R_MIPS_NONE relocation, if any. */
1459 for (rel = relocs; rel < relend; rel++)
1460 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1461 return ELF_R_SYM (sec->owner, rel->r_info);
1462
1463 /* Otherwise trust the first relocation, whatever its kind. This is
1464 the traditional behavior. */
1465 if (relocs < relend)
1466 return ELF_R_SYM (sec->owner, relocs->r_info);
1467
1468 return 0;
1469 }
1470
1471 /* Check the mips16 stubs for a particular symbol, and see if we can
1472 discard them. */
1473
1474 static void
1475 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1476 struct mips_elf_link_hash_entry *h)
1477 {
1478 /* Dynamic symbols must use the standard call interface, in case other
1479 objects try to call them. */
1480 if (h->fn_stub != NULL
1481 && h->root.dynindx != -1)
1482 {
1483 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1484 h->need_fn_stub = TRUE;
1485 }
1486
1487 if (h->fn_stub != NULL
1488 && ! h->need_fn_stub)
1489 {
1490 /* We don't need the fn_stub; the only references to this symbol
1491 are 16 bit calls. Clobber the size to 0 to prevent it from
1492 being included in the link. */
1493 h->fn_stub->size = 0;
1494 h->fn_stub->flags &= ~SEC_RELOC;
1495 h->fn_stub->reloc_count = 0;
1496 h->fn_stub->flags |= SEC_EXCLUDE;
1497 }
1498
1499 if (h->call_stub != NULL
1500 && ELF_ST_IS_MIPS16 (h->root.other))
1501 {
1502 /* We don't need the call_stub; this is a 16 bit function, so
1503 calls from other 16 bit functions are OK. Clobber the size
1504 to 0 to prevent it from being included in the link. */
1505 h->call_stub->size = 0;
1506 h->call_stub->flags &= ~SEC_RELOC;
1507 h->call_stub->reloc_count = 0;
1508 h->call_stub->flags |= SEC_EXCLUDE;
1509 }
1510
1511 if (h->call_fp_stub != NULL
1512 && ELF_ST_IS_MIPS16 (h->root.other))
1513 {
1514 /* We don't need the call_stub; this is a 16 bit function, so
1515 calls from other 16 bit functions are OK. Clobber the size
1516 to 0 to prevent it from being included in the link. */
1517 h->call_fp_stub->size = 0;
1518 h->call_fp_stub->flags &= ~SEC_RELOC;
1519 h->call_fp_stub->reloc_count = 0;
1520 h->call_fp_stub->flags |= SEC_EXCLUDE;
1521 }
1522 }
1523
1524 /* Hashtable callbacks for mips_elf_la25_stubs. */
1525
1526 static hashval_t
1527 mips_elf_la25_stub_hash (const void *entry_)
1528 {
1529 const struct mips_elf_la25_stub *entry;
1530
1531 entry = (struct mips_elf_la25_stub *) entry_;
1532 return entry->h->root.root.u.def.section->id
1533 + entry->h->root.root.u.def.value;
1534 }
1535
1536 static int
1537 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1538 {
1539 const struct mips_elf_la25_stub *entry1, *entry2;
1540
1541 entry1 = (struct mips_elf_la25_stub *) entry1_;
1542 entry2 = (struct mips_elf_la25_stub *) entry2_;
1543 return ((entry1->h->root.root.u.def.section
1544 == entry2->h->root.root.u.def.section)
1545 && (entry1->h->root.root.u.def.value
1546 == entry2->h->root.root.u.def.value));
1547 }
1548
1549 /* Called by the linker to set up the la25 stub-creation code. FN is
1550 the linker's implementation of add_stub_function. Return true on
1551 success. */
1552
1553 bfd_boolean
1554 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1555 asection *(*fn) (const char *, asection *,
1556 asection *))
1557 {
1558 struct mips_elf_link_hash_table *htab;
1559
1560 htab = mips_elf_hash_table (info);
1561 if (htab == NULL)
1562 return FALSE;
1563
1564 htab->add_stub_section = fn;
1565 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1566 mips_elf_la25_stub_eq, NULL);
1567 if (htab->la25_stubs == NULL)
1568 return FALSE;
1569
1570 return TRUE;
1571 }
1572
1573 /* Return true if H is a locally-defined PIC function, in the sense
1574 that it might need $25 to be valid on entry. Note that MIPS16
1575 functions never need $25 to be valid on entry; they set up $gp
1576 using PC-relative instructions instead. */
1577
1578 static bfd_boolean
1579 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1580 {
1581 return ((h->root.root.type == bfd_link_hash_defined
1582 || h->root.root.type == bfd_link_hash_defweak)
1583 && h->root.def_regular
1584 && !bfd_is_abs_section (h->root.root.u.def.section)
1585 && !ELF_ST_IS_MIPS16 (h->root.other)
1586 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1587 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1588 }
1589
1590 /* STUB describes an la25 stub that we have decided to implement
1591 by inserting an LUI/ADDIU pair before the target function.
1592 Create the section and redirect the function symbol to it. */
1593
1594 static bfd_boolean
1595 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1596 struct bfd_link_info *info)
1597 {
1598 struct mips_elf_link_hash_table *htab;
1599 char *name;
1600 asection *s, *input_section;
1601 unsigned int align;
1602
1603 htab = mips_elf_hash_table (info);
1604 if (htab == NULL)
1605 return FALSE;
1606
1607 /* Create a unique name for the new section. */
1608 name = bfd_malloc (11 + sizeof (".text.stub."));
1609 if (name == NULL)
1610 return FALSE;
1611 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1612
1613 /* Create the section. */
1614 input_section = stub->h->root.root.u.def.section;
1615 s = htab->add_stub_section (name, input_section,
1616 input_section->output_section);
1617 if (s == NULL)
1618 return FALSE;
1619
1620 /* Make sure that any padding goes before the stub. */
1621 align = input_section->alignment_power;
1622 if (!bfd_set_section_alignment (s->owner, s, align))
1623 return FALSE;
1624 if (align > 3)
1625 s->size = (1 << align) - 8;
1626
1627 /* Create a symbol for the stub. */
1628 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1629 stub->stub_section = s;
1630 stub->offset = s->size;
1631
1632 /* Allocate room for it. */
1633 s->size += 8;
1634 return TRUE;
1635 }
1636
1637 /* STUB describes an la25 stub that we have decided to implement
1638 with a separate trampoline. Allocate room for it and redirect
1639 the function symbol to it. */
1640
1641 static bfd_boolean
1642 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1643 struct bfd_link_info *info)
1644 {
1645 struct mips_elf_link_hash_table *htab;
1646 asection *s;
1647
1648 htab = mips_elf_hash_table (info);
1649 if (htab == NULL)
1650 return FALSE;
1651
1652 /* Create a trampoline section, if we haven't already. */
1653 s = htab->strampoline;
1654 if (s == NULL)
1655 {
1656 asection *input_section = stub->h->root.root.u.def.section;
1657 s = htab->add_stub_section (".text", NULL,
1658 input_section->output_section);
1659 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1660 return FALSE;
1661 htab->strampoline = s;
1662 }
1663
1664 /* Create a symbol for the stub. */
1665 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1666 stub->stub_section = s;
1667 stub->offset = s->size;
1668
1669 /* Allocate room for it. */
1670 s->size += 16;
1671 return TRUE;
1672 }
1673
1674 /* H describes a symbol that needs an la25 stub. Make sure that an
1675 appropriate stub exists and point H at it. */
1676
1677 static bfd_boolean
1678 mips_elf_add_la25_stub (struct bfd_link_info *info,
1679 struct mips_elf_link_hash_entry *h)
1680 {
1681 struct mips_elf_link_hash_table *htab;
1682 struct mips_elf_la25_stub search, *stub;
1683 bfd_boolean use_trampoline_p;
1684 asection *s;
1685 bfd_vma value;
1686 void **slot;
1687
1688 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1689 of the section and if we would need no more than 2 nops. */
1690 s = h->root.root.u.def.section;
1691 value = h->root.root.u.def.value;
1692 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1693
1694 /* Describe the stub we want. */
1695 search.stub_section = NULL;
1696 search.offset = 0;
1697 search.h = h;
1698
1699 /* See if we've already created an equivalent stub. */
1700 htab = mips_elf_hash_table (info);
1701 if (htab == NULL)
1702 return FALSE;
1703
1704 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1705 if (slot == NULL)
1706 return FALSE;
1707
1708 stub = (struct mips_elf_la25_stub *) *slot;
1709 if (stub != NULL)
1710 {
1711 /* We can reuse the existing stub. */
1712 h->la25_stub = stub;
1713 return TRUE;
1714 }
1715
1716 /* Create a permanent copy of ENTRY and add it to the hash table. */
1717 stub = bfd_malloc (sizeof (search));
1718 if (stub == NULL)
1719 return FALSE;
1720 *stub = search;
1721 *slot = stub;
1722
1723 h->la25_stub = stub;
1724 return (use_trampoline_p
1725 ? mips_elf_add_la25_trampoline (stub, info)
1726 : mips_elf_add_la25_intro (stub, info));
1727 }
1728
1729 /* A mips_elf_link_hash_traverse callback that is called before sizing
1730 sections. DATA points to a mips_htab_traverse_info structure. */
1731
1732 static bfd_boolean
1733 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1734 {
1735 struct mips_htab_traverse_info *hti;
1736
1737 hti = (struct mips_htab_traverse_info *) data;
1738 if (!hti->info->relocatable)
1739 mips_elf_check_mips16_stubs (hti->info, h);
1740
1741 if (mips_elf_local_pic_function_p (h))
1742 {
1743 /* PR 12845: If H is in a section that has been garbage
1744 collected it will have its output section set to *ABS*. */
1745 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1746 return TRUE;
1747
1748 /* H is a function that might need $25 to be valid on entry.
1749 If we're creating a non-PIC relocatable object, mark H as
1750 being PIC. If we're creating a non-relocatable object with
1751 non-PIC branches and jumps to H, make sure that H has an la25
1752 stub. */
1753 if (hti->info->relocatable)
1754 {
1755 if (!PIC_OBJECT_P (hti->output_bfd))
1756 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1757 }
1758 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1759 {
1760 hti->error = TRUE;
1761 return FALSE;
1762 }
1763 }
1764 return TRUE;
1765 }
1766 \f
1767 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1768 Most mips16 instructions are 16 bits, but these instructions
1769 are 32 bits.
1770
1771 The format of these instructions is:
1772
1773 +--------------+--------------------------------+
1774 | JALX | X| Imm 20:16 | Imm 25:21 |
1775 +--------------+--------------------------------+
1776 | Immediate 15:0 |
1777 +-----------------------------------------------+
1778
1779 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1780 Note that the immediate value in the first word is swapped.
1781
1782 When producing a relocatable object file, R_MIPS16_26 is
1783 handled mostly like R_MIPS_26. In particular, the addend is
1784 stored as a straight 26-bit value in a 32-bit instruction.
1785 (gas makes life simpler for itself by never adjusting a
1786 R_MIPS16_26 reloc to be against a section, so the addend is
1787 always zero). However, the 32 bit instruction is stored as 2
1788 16-bit values, rather than a single 32-bit value. In a
1789 big-endian file, the result is the same; in a little-endian
1790 file, the two 16-bit halves of the 32 bit value are swapped.
1791 This is so that a disassembler can recognize the jal
1792 instruction.
1793
1794 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1795 instruction stored as two 16-bit values. The addend A is the
1796 contents of the targ26 field. The calculation is the same as
1797 R_MIPS_26. When storing the calculated value, reorder the
1798 immediate value as shown above, and don't forget to store the
1799 value as two 16-bit values.
1800
1801 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1802 defined as
1803
1804 big-endian:
1805 +--------+----------------------+
1806 | | |
1807 | | targ26-16 |
1808 |31 26|25 0|
1809 +--------+----------------------+
1810
1811 little-endian:
1812 +----------+------+-------------+
1813 | | | |
1814 | sub1 | | sub2 |
1815 |0 9|10 15|16 31|
1816 +----------+--------------------+
1817 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1818 ((sub1 << 16) | sub2)).
1819
1820 When producing a relocatable object file, the calculation is
1821 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1822 When producing a fully linked file, the calculation is
1823 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1824 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1825
1826 The table below lists the other MIPS16 instruction relocations.
1827 Each one is calculated in the same way as the non-MIPS16 relocation
1828 given on the right, but using the extended MIPS16 layout of 16-bit
1829 immediate fields:
1830
1831 R_MIPS16_GPREL R_MIPS_GPREL16
1832 R_MIPS16_GOT16 R_MIPS_GOT16
1833 R_MIPS16_CALL16 R_MIPS_CALL16
1834 R_MIPS16_HI16 R_MIPS_HI16
1835 R_MIPS16_LO16 R_MIPS_LO16
1836
1837 A typical instruction will have a format like this:
1838
1839 +--------------+--------------------------------+
1840 | EXTEND | Imm 10:5 | Imm 15:11 |
1841 +--------------+--------------------------------+
1842 | Major | rx | ry | Imm 4:0 |
1843 +--------------+--------------------------------+
1844
1845 EXTEND is the five bit value 11110. Major is the instruction
1846 opcode.
1847
1848 All we need to do here is shuffle the bits appropriately.
1849 As above, the two 16-bit halves must be swapped on a
1850 little-endian system. */
1851
1852 static inline bfd_boolean
1853 mips16_reloc_p (int r_type)
1854 {
1855 switch (r_type)
1856 {
1857 case R_MIPS16_26:
1858 case R_MIPS16_GPREL:
1859 case R_MIPS16_GOT16:
1860 case R_MIPS16_CALL16:
1861 case R_MIPS16_HI16:
1862 case R_MIPS16_LO16:
1863 return TRUE;
1864
1865 default:
1866 return FALSE;
1867 }
1868 }
1869
1870 /* Check if a microMIPS reloc. */
1871
1872 static inline bfd_boolean
1873 micromips_reloc_p (unsigned int r_type)
1874 {
1875 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1876 }
1877
1878 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1879 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1880 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1881
1882 static inline bfd_boolean
1883 micromips_reloc_shuffle_p (unsigned int r_type)
1884 {
1885 return (micromips_reloc_p (r_type)
1886 && r_type != R_MICROMIPS_PC7_S1
1887 && r_type != R_MICROMIPS_PC10_S1);
1888 }
1889
1890 static inline bfd_boolean
1891 got16_reloc_p (int r_type)
1892 {
1893 return (r_type == R_MIPS_GOT16
1894 || r_type == R_MIPS16_GOT16
1895 || r_type == R_MICROMIPS_GOT16);
1896 }
1897
1898 static inline bfd_boolean
1899 call16_reloc_p (int r_type)
1900 {
1901 return (r_type == R_MIPS_CALL16
1902 || r_type == R_MIPS16_CALL16
1903 || r_type == R_MICROMIPS_CALL16);
1904 }
1905
1906 static inline bfd_boolean
1907 got_disp_reloc_p (unsigned int r_type)
1908 {
1909 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1910 }
1911
1912 static inline bfd_boolean
1913 got_page_reloc_p (unsigned int r_type)
1914 {
1915 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1916 }
1917
1918 static inline bfd_boolean
1919 got_ofst_reloc_p (unsigned int r_type)
1920 {
1921 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1922 }
1923
1924 static inline bfd_boolean
1925 got_hi16_reloc_p (unsigned int r_type)
1926 {
1927 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
1928 }
1929
1930 static inline bfd_boolean
1931 got_lo16_reloc_p (unsigned int r_type)
1932 {
1933 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
1934 }
1935
1936 static inline bfd_boolean
1937 call_hi16_reloc_p (unsigned int r_type)
1938 {
1939 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
1940 }
1941
1942 static inline bfd_boolean
1943 call_lo16_reloc_p (unsigned int r_type)
1944 {
1945 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
1946 }
1947
1948 static inline bfd_boolean
1949 hi16_reloc_p (int r_type)
1950 {
1951 return (r_type == R_MIPS_HI16
1952 || r_type == R_MIPS16_HI16
1953 || r_type == R_MICROMIPS_HI16);
1954 }
1955
1956 static inline bfd_boolean
1957 lo16_reloc_p (int r_type)
1958 {
1959 return (r_type == R_MIPS_LO16
1960 || r_type == R_MIPS16_LO16
1961 || r_type == R_MICROMIPS_LO16);
1962 }
1963
1964 static inline bfd_boolean
1965 mips16_call_reloc_p (int r_type)
1966 {
1967 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
1968 }
1969
1970 static inline bfd_boolean
1971 jal_reloc_p (int r_type)
1972 {
1973 return (r_type == R_MIPS_26
1974 || r_type == R_MIPS16_26
1975 || r_type == R_MICROMIPS_26_S1);
1976 }
1977
1978 static inline bfd_boolean
1979 micromips_branch_reloc_p (int r_type)
1980 {
1981 return (r_type == R_MICROMIPS_26_S1
1982 || r_type == R_MICROMIPS_PC16_S1
1983 || r_type == R_MICROMIPS_PC10_S1
1984 || r_type == R_MICROMIPS_PC7_S1);
1985 }
1986
1987 static inline bfd_boolean
1988 tls_gd_reloc_p (unsigned int r_type)
1989 {
1990 return r_type == R_MIPS_TLS_GD || r_type == R_MICROMIPS_TLS_GD;
1991 }
1992
1993 static inline bfd_boolean
1994 tls_ldm_reloc_p (unsigned int r_type)
1995 {
1996 return r_type == R_MIPS_TLS_LDM || r_type == R_MICROMIPS_TLS_LDM;
1997 }
1998
1999 static inline bfd_boolean
2000 tls_gottprel_reloc_p (unsigned int r_type)
2001 {
2002 return r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MICROMIPS_TLS_GOTTPREL;
2003 }
2004
2005 void
2006 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2007 bfd_boolean jal_shuffle, bfd_byte *data)
2008 {
2009 bfd_vma first, second, val;
2010
2011 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2012 return;
2013
2014 /* Pick up the first and second halfwords of the instruction. */
2015 first = bfd_get_16 (abfd, data);
2016 second = bfd_get_16 (abfd, data + 2);
2017 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2018 val = first << 16 | second;
2019 else if (r_type != R_MIPS16_26)
2020 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2021 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2022 else
2023 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2024 | ((first & 0x1f) << 21) | second);
2025 bfd_put_32 (abfd, val, data);
2026 }
2027
2028 void
2029 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2030 bfd_boolean jal_shuffle, bfd_byte *data)
2031 {
2032 bfd_vma first, second, val;
2033
2034 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2035 return;
2036
2037 val = bfd_get_32 (abfd, data);
2038 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2039 {
2040 second = val & 0xffff;
2041 first = val >> 16;
2042 }
2043 else if (r_type != R_MIPS16_26)
2044 {
2045 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2046 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2047 }
2048 else
2049 {
2050 second = val & 0xffff;
2051 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2052 | ((val >> 21) & 0x1f);
2053 }
2054 bfd_put_16 (abfd, second, data + 2);
2055 bfd_put_16 (abfd, first, data);
2056 }
2057
2058 bfd_reloc_status_type
2059 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2060 arelent *reloc_entry, asection *input_section,
2061 bfd_boolean relocatable, void *data, bfd_vma gp)
2062 {
2063 bfd_vma relocation;
2064 bfd_signed_vma val;
2065 bfd_reloc_status_type status;
2066
2067 if (bfd_is_com_section (symbol->section))
2068 relocation = 0;
2069 else
2070 relocation = symbol->value;
2071
2072 relocation += symbol->section->output_section->vma;
2073 relocation += symbol->section->output_offset;
2074
2075 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2076 return bfd_reloc_outofrange;
2077
2078 /* Set val to the offset into the section or symbol. */
2079 val = reloc_entry->addend;
2080
2081 _bfd_mips_elf_sign_extend (val, 16);
2082
2083 /* Adjust val for the final section location and GP value. If we
2084 are producing relocatable output, we don't want to do this for
2085 an external symbol. */
2086 if (! relocatable
2087 || (symbol->flags & BSF_SECTION_SYM) != 0)
2088 val += relocation - gp;
2089
2090 if (reloc_entry->howto->partial_inplace)
2091 {
2092 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2093 (bfd_byte *) data
2094 + reloc_entry->address);
2095 if (status != bfd_reloc_ok)
2096 return status;
2097 }
2098 else
2099 reloc_entry->addend = val;
2100
2101 if (relocatable)
2102 reloc_entry->address += input_section->output_offset;
2103
2104 return bfd_reloc_ok;
2105 }
2106
2107 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2108 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2109 that contains the relocation field and DATA points to the start of
2110 INPUT_SECTION. */
2111
2112 struct mips_hi16
2113 {
2114 struct mips_hi16 *next;
2115 bfd_byte *data;
2116 asection *input_section;
2117 arelent rel;
2118 };
2119
2120 /* FIXME: This should not be a static variable. */
2121
2122 static struct mips_hi16 *mips_hi16_list;
2123
2124 /* A howto special_function for REL *HI16 relocations. We can only
2125 calculate the correct value once we've seen the partnering
2126 *LO16 relocation, so just save the information for later.
2127
2128 The ABI requires that the *LO16 immediately follow the *HI16.
2129 However, as a GNU extension, we permit an arbitrary number of
2130 *HI16s to be associated with a single *LO16. This significantly
2131 simplies the relocation handling in gcc. */
2132
2133 bfd_reloc_status_type
2134 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2135 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2136 asection *input_section, bfd *output_bfd,
2137 char **error_message ATTRIBUTE_UNUSED)
2138 {
2139 struct mips_hi16 *n;
2140
2141 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2142 return bfd_reloc_outofrange;
2143
2144 n = bfd_malloc (sizeof *n);
2145 if (n == NULL)
2146 return bfd_reloc_outofrange;
2147
2148 n->next = mips_hi16_list;
2149 n->data = data;
2150 n->input_section = input_section;
2151 n->rel = *reloc_entry;
2152 mips_hi16_list = n;
2153
2154 if (output_bfd != NULL)
2155 reloc_entry->address += input_section->output_offset;
2156
2157 return bfd_reloc_ok;
2158 }
2159
2160 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2161 like any other 16-bit relocation when applied to global symbols, but is
2162 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2163
2164 bfd_reloc_status_type
2165 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2166 void *data, asection *input_section,
2167 bfd *output_bfd, char **error_message)
2168 {
2169 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2170 || bfd_is_und_section (bfd_get_section (symbol))
2171 || bfd_is_com_section (bfd_get_section (symbol)))
2172 /* The relocation is against a global symbol. */
2173 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2174 input_section, output_bfd,
2175 error_message);
2176
2177 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2178 input_section, output_bfd, error_message);
2179 }
2180
2181 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2182 is a straightforward 16 bit inplace relocation, but we must deal with
2183 any partnering high-part relocations as well. */
2184
2185 bfd_reloc_status_type
2186 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2187 void *data, asection *input_section,
2188 bfd *output_bfd, char **error_message)
2189 {
2190 bfd_vma vallo;
2191 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2192
2193 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2194 return bfd_reloc_outofrange;
2195
2196 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2197 location);
2198 vallo = bfd_get_32 (abfd, location);
2199 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2200 location);
2201
2202 while (mips_hi16_list != NULL)
2203 {
2204 bfd_reloc_status_type ret;
2205 struct mips_hi16 *hi;
2206
2207 hi = mips_hi16_list;
2208
2209 /* R_MIPS*_GOT16 relocations are something of a special case. We
2210 want to install the addend in the same way as for a R_MIPS*_HI16
2211 relocation (with a rightshift of 16). However, since GOT16
2212 relocations can also be used with global symbols, their howto
2213 has a rightshift of 0. */
2214 if (hi->rel.howto->type == R_MIPS_GOT16)
2215 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2216 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2217 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2218 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2219 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2220
2221 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2222 carry or borrow will induce a change of +1 or -1 in the high part. */
2223 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2224
2225 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2226 hi->input_section, output_bfd,
2227 error_message);
2228 if (ret != bfd_reloc_ok)
2229 return ret;
2230
2231 mips_hi16_list = hi->next;
2232 free (hi);
2233 }
2234
2235 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2236 input_section, output_bfd,
2237 error_message);
2238 }
2239
2240 /* A generic howto special_function. This calculates and installs the
2241 relocation itself, thus avoiding the oft-discussed problems in
2242 bfd_perform_relocation and bfd_install_relocation. */
2243
2244 bfd_reloc_status_type
2245 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2246 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2247 asection *input_section, bfd *output_bfd,
2248 char **error_message ATTRIBUTE_UNUSED)
2249 {
2250 bfd_signed_vma val;
2251 bfd_reloc_status_type status;
2252 bfd_boolean relocatable;
2253
2254 relocatable = (output_bfd != NULL);
2255
2256 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2257 return bfd_reloc_outofrange;
2258
2259 /* Build up the field adjustment in VAL. */
2260 val = 0;
2261 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2262 {
2263 /* Either we're calculating the final field value or we have a
2264 relocation against a section symbol. Add in the section's
2265 offset or address. */
2266 val += symbol->section->output_section->vma;
2267 val += symbol->section->output_offset;
2268 }
2269
2270 if (!relocatable)
2271 {
2272 /* We're calculating the final field value. Add in the symbol's value
2273 and, if pc-relative, subtract the address of the field itself. */
2274 val += symbol->value;
2275 if (reloc_entry->howto->pc_relative)
2276 {
2277 val -= input_section->output_section->vma;
2278 val -= input_section->output_offset;
2279 val -= reloc_entry->address;
2280 }
2281 }
2282
2283 /* VAL is now the final adjustment. If we're keeping this relocation
2284 in the output file, and if the relocation uses a separate addend,
2285 we just need to add VAL to that addend. Otherwise we need to add
2286 VAL to the relocation field itself. */
2287 if (relocatable && !reloc_entry->howto->partial_inplace)
2288 reloc_entry->addend += val;
2289 else
2290 {
2291 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2292
2293 /* Add in the separate addend, if any. */
2294 val += reloc_entry->addend;
2295
2296 /* Add VAL to the relocation field. */
2297 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2298 location);
2299 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2300 location);
2301 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2302 location);
2303
2304 if (status != bfd_reloc_ok)
2305 return status;
2306 }
2307
2308 if (relocatable)
2309 reloc_entry->address += input_section->output_offset;
2310
2311 return bfd_reloc_ok;
2312 }
2313 \f
2314 /* Swap an entry in a .gptab section. Note that these routines rely
2315 on the equivalence of the two elements of the union. */
2316
2317 static void
2318 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2319 Elf32_gptab *in)
2320 {
2321 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2322 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2323 }
2324
2325 static void
2326 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2327 Elf32_External_gptab *ex)
2328 {
2329 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2330 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2331 }
2332
2333 static void
2334 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2335 Elf32_External_compact_rel *ex)
2336 {
2337 H_PUT_32 (abfd, in->id1, ex->id1);
2338 H_PUT_32 (abfd, in->num, ex->num);
2339 H_PUT_32 (abfd, in->id2, ex->id2);
2340 H_PUT_32 (abfd, in->offset, ex->offset);
2341 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2342 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2343 }
2344
2345 static void
2346 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2347 Elf32_External_crinfo *ex)
2348 {
2349 unsigned long l;
2350
2351 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2352 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2353 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2354 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2355 H_PUT_32 (abfd, l, ex->info);
2356 H_PUT_32 (abfd, in->konst, ex->konst);
2357 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2358 }
2359 \f
2360 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2361 routines swap this structure in and out. They are used outside of
2362 BFD, so they are globally visible. */
2363
2364 void
2365 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2366 Elf32_RegInfo *in)
2367 {
2368 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2369 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2370 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2371 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2372 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2373 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2374 }
2375
2376 void
2377 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2378 Elf32_External_RegInfo *ex)
2379 {
2380 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2381 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2382 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2383 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2384 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2385 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2386 }
2387
2388 /* In the 64 bit ABI, the .MIPS.options section holds register
2389 information in an Elf64_Reginfo structure. These routines swap
2390 them in and out. They are globally visible because they are used
2391 outside of BFD. These routines are here so that gas can call them
2392 without worrying about whether the 64 bit ABI has been included. */
2393
2394 void
2395 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2396 Elf64_Internal_RegInfo *in)
2397 {
2398 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2399 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2400 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2401 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2402 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2403 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2404 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2405 }
2406
2407 void
2408 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2409 Elf64_External_RegInfo *ex)
2410 {
2411 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2412 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2413 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2414 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2415 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2416 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2417 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2418 }
2419
2420 /* Swap in an options header. */
2421
2422 void
2423 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2424 Elf_Internal_Options *in)
2425 {
2426 in->kind = H_GET_8 (abfd, ex->kind);
2427 in->size = H_GET_8 (abfd, ex->size);
2428 in->section = H_GET_16 (abfd, ex->section);
2429 in->info = H_GET_32 (abfd, ex->info);
2430 }
2431
2432 /* Swap out an options header. */
2433
2434 void
2435 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2436 Elf_External_Options *ex)
2437 {
2438 H_PUT_8 (abfd, in->kind, ex->kind);
2439 H_PUT_8 (abfd, in->size, ex->size);
2440 H_PUT_16 (abfd, in->section, ex->section);
2441 H_PUT_32 (abfd, in->info, ex->info);
2442 }
2443 \f
2444 /* This function is called via qsort() to sort the dynamic relocation
2445 entries by increasing r_symndx value. */
2446
2447 static int
2448 sort_dynamic_relocs (const void *arg1, const void *arg2)
2449 {
2450 Elf_Internal_Rela int_reloc1;
2451 Elf_Internal_Rela int_reloc2;
2452 int diff;
2453
2454 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2455 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2456
2457 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2458 if (diff != 0)
2459 return diff;
2460
2461 if (int_reloc1.r_offset < int_reloc2.r_offset)
2462 return -1;
2463 if (int_reloc1.r_offset > int_reloc2.r_offset)
2464 return 1;
2465 return 0;
2466 }
2467
2468 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2469
2470 static int
2471 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2472 const void *arg2 ATTRIBUTE_UNUSED)
2473 {
2474 #ifdef BFD64
2475 Elf_Internal_Rela int_reloc1[3];
2476 Elf_Internal_Rela int_reloc2[3];
2477
2478 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2479 (reldyn_sorting_bfd, arg1, int_reloc1);
2480 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2481 (reldyn_sorting_bfd, arg2, int_reloc2);
2482
2483 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2484 return -1;
2485 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2486 return 1;
2487
2488 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2489 return -1;
2490 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2491 return 1;
2492 return 0;
2493 #else
2494 abort ();
2495 #endif
2496 }
2497
2498
2499 /* This routine is used to write out ECOFF debugging external symbol
2500 information. It is called via mips_elf_link_hash_traverse. The
2501 ECOFF external symbol information must match the ELF external
2502 symbol information. Unfortunately, at this point we don't know
2503 whether a symbol is required by reloc information, so the two
2504 tables may wind up being different. We must sort out the external
2505 symbol information before we can set the final size of the .mdebug
2506 section, and we must set the size of the .mdebug section before we
2507 can relocate any sections, and we can't know which symbols are
2508 required by relocation until we relocate the sections.
2509 Fortunately, it is relatively unlikely that any symbol will be
2510 stripped but required by a reloc. In particular, it can not happen
2511 when generating a final executable. */
2512
2513 static bfd_boolean
2514 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2515 {
2516 struct extsym_info *einfo = data;
2517 bfd_boolean strip;
2518 asection *sec, *output_section;
2519
2520 if (h->root.indx == -2)
2521 strip = FALSE;
2522 else if ((h->root.def_dynamic
2523 || h->root.ref_dynamic
2524 || h->root.type == bfd_link_hash_new)
2525 && !h->root.def_regular
2526 && !h->root.ref_regular)
2527 strip = TRUE;
2528 else if (einfo->info->strip == strip_all
2529 || (einfo->info->strip == strip_some
2530 && bfd_hash_lookup (einfo->info->keep_hash,
2531 h->root.root.root.string,
2532 FALSE, FALSE) == NULL))
2533 strip = TRUE;
2534 else
2535 strip = FALSE;
2536
2537 if (strip)
2538 return TRUE;
2539
2540 if (h->esym.ifd == -2)
2541 {
2542 h->esym.jmptbl = 0;
2543 h->esym.cobol_main = 0;
2544 h->esym.weakext = 0;
2545 h->esym.reserved = 0;
2546 h->esym.ifd = ifdNil;
2547 h->esym.asym.value = 0;
2548 h->esym.asym.st = stGlobal;
2549
2550 if (h->root.root.type == bfd_link_hash_undefined
2551 || h->root.root.type == bfd_link_hash_undefweak)
2552 {
2553 const char *name;
2554
2555 /* Use undefined class. Also, set class and type for some
2556 special symbols. */
2557 name = h->root.root.root.string;
2558 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2559 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2560 {
2561 h->esym.asym.sc = scData;
2562 h->esym.asym.st = stLabel;
2563 h->esym.asym.value = 0;
2564 }
2565 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2566 {
2567 h->esym.asym.sc = scAbs;
2568 h->esym.asym.st = stLabel;
2569 h->esym.asym.value =
2570 mips_elf_hash_table (einfo->info)->procedure_count;
2571 }
2572 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2573 {
2574 h->esym.asym.sc = scAbs;
2575 h->esym.asym.st = stLabel;
2576 h->esym.asym.value = elf_gp (einfo->abfd);
2577 }
2578 else
2579 h->esym.asym.sc = scUndefined;
2580 }
2581 else if (h->root.root.type != bfd_link_hash_defined
2582 && h->root.root.type != bfd_link_hash_defweak)
2583 h->esym.asym.sc = scAbs;
2584 else
2585 {
2586 const char *name;
2587
2588 sec = h->root.root.u.def.section;
2589 output_section = sec->output_section;
2590
2591 /* When making a shared library and symbol h is the one from
2592 the another shared library, OUTPUT_SECTION may be null. */
2593 if (output_section == NULL)
2594 h->esym.asym.sc = scUndefined;
2595 else
2596 {
2597 name = bfd_section_name (output_section->owner, output_section);
2598
2599 if (strcmp (name, ".text") == 0)
2600 h->esym.asym.sc = scText;
2601 else if (strcmp (name, ".data") == 0)
2602 h->esym.asym.sc = scData;
2603 else if (strcmp (name, ".sdata") == 0)
2604 h->esym.asym.sc = scSData;
2605 else if (strcmp (name, ".rodata") == 0
2606 || strcmp (name, ".rdata") == 0)
2607 h->esym.asym.sc = scRData;
2608 else if (strcmp (name, ".bss") == 0)
2609 h->esym.asym.sc = scBss;
2610 else if (strcmp (name, ".sbss") == 0)
2611 h->esym.asym.sc = scSBss;
2612 else if (strcmp (name, ".init") == 0)
2613 h->esym.asym.sc = scInit;
2614 else if (strcmp (name, ".fini") == 0)
2615 h->esym.asym.sc = scFini;
2616 else
2617 h->esym.asym.sc = scAbs;
2618 }
2619 }
2620
2621 h->esym.asym.reserved = 0;
2622 h->esym.asym.index = indexNil;
2623 }
2624
2625 if (h->root.root.type == bfd_link_hash_common)
2626 h->esym.asym.value = h->root.root.u.c.size;
2627 else if (h->root.root.type == bfd_link_hash_defined
2628 || h->root.root.type == bfd_link_hash_defweak)
2629 {
2630 if (h->esym.asym.sc == scCommon)
2631 h->esym.asym.sc = scBss;
2632 else if (h->esym.asym.sc == scSCommon)
2633 h->esym.asym.sc = scSBss;
2634
2635 sec = h->root.root.u.def.section;
2636 output_section = sec->output_section;
2637 if (output_section != NULL)
2638 h->esym.asym.value = (h->root.root.u.def.value
2639 + sec->output_offset
2640 + output_section->vma);
2641 else
2642 h->esym.asym.value = 0;
2643 }
2644 else
2645 {
2646 struct mips_elf_link_hash_entry *hd = h;
2647
2648 while (hd->root.root.type == bfd_link_hash_indirect)
2649 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2650
2651 if (hd->needs_lazy_stub)
2652 {
2653 /* Set type and value for a symbol with a function stub. */
2654 h->esym.asym.st = stProc;
2655 sec = hd->root.root.u.def.section;
2656 if (sec == NULL)
2657 h->esym.asym.value = 0;
2658 else
2659 {
2660 output_section = sec->output_section;
2661 if (output_section != NULL)
2662 h->esym.asym.value = (hd->root.plt.offset
2663 + sec->output_offset
2664 + output_section->vma);
2665 else
2666 h->esym.asym.value = 0;
2667 }
2668 }
2669 }
2670
2671 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2672 h->root.root.root.string,
2673 &h->esym))
2674 {
2675 einfo->failed = TRUE;
2676 return FALSE;
2677 }
2678
2679 return TRUE;
2680 }
2681
2682 /* A comparison routine used to sort .gptab entries. */
2683
2684 static int
2685 gptab_compare (const void *p1, const void *p2)
2686 {
2687 const Elf32_gptab *a1 = p1;
2688 const Elf32_gptab *a2 = p2;
2689
2690 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2691 }
2692 \f
2693 /* Functions to manage the got entry hash table. */
2694
2695 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2696 hash number. */
2697
2698 static INLINE hashval_t
2699 mips_elf_hash_bfd_vma (bfd_vma addr)
2700 {
2701 #ifdef BFD64
2702 return addr + (addr >> 32);
2703 #else
2704 return addr;
2705 #endif
2706 }
2707
2708 /* got_entries only match if they're identical, except for gotidx, so
2709 use all fields to compute the hash, and compare the appropriate
2710 union members. */
2711
2712 static hashval_t
2713 mips_elf_got_entry_hash (const void *entry_)
2714 {
2715 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2716
2717 return entry->symndx
2718 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2719 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2720 : entry->abfd->id
2721 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2722 : entry->d.h->root.root.root.hash));
2723 }
2724
2725 static int
2726 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2727 {
2728 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2729 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2730
2731 /* An LDM entry can only match another LDM entry. */
2732 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2733 return 0;
2734
2735 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2736 && (! e1->abfd ? e1->d.address == e2->d.address
2737 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2738 : e1->d.h == e2->d.h);
2739 }
2740
2741 /* multi_got_entries are still a match in the case of global objects,
2742 even if the input bfd in which they're referenced differs, so the
2743 hash computation and compare functions are adjusted
2744 accordingly. */
2745
2746 static hashval_t
2747 mips_elf_multi_got_entry_hash (const void *entry_)
2748 {
2749 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2750
2751 return entry->symndx
2752 + (! entry->abfd
2753 ? mips_elf_hash_bfd_vma (entry->d.address)
2754 : entry->symndx >= 0
2755 ? ((entry->tls_type & GOT_TLS_LDM)
2756 ? (GOT_TLS_LDM << 17)
2757 : (entry->abfd->id
2758 + mips_elf_hash_bfd_vma (entry->d.addend)))
2759 : entry->d.h->root.root.root.hash);
2760 }
2761
2762 static int
2763 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2764 {
2765 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2766 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2767
2768 /* Any two LDM entries match. */
2769 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2770 return 1;
2771
2772 /* Nothing else matches an LDM entry. */
2773 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2774 return 0;
2775
2776 return e1->symndx == e2->symndx
2777 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2778 : e1->abfd == NULL || e2->abfd == NULL
2779 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2780 : e1->d.h == e2->d.h);
2781 }
2782
2783 static hashval_t
2784 mips_got_page_entry_hash (const void *entry_)
2785 {
2786 const struct mips_got_page_entry *entry;
2787
2788 entry = (const struct mips_got_page_entry *) entry_;
2789 return entry->abfd->id + entry->symndx;
2790 }
2791
2792 static int
2793 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2794 {
2795 const struct mips_got_page_entry *entry1, *entry2;
2796
2797 entry1 = (const struct mips_got_page_entry *) entry1_;
2798 entry2 = (const struct mips_got_page_entry *) entry2_;
2799 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2800 }
2801 \f
2802 /* Return the dynamic relocation section. If it doesn't exist, try to
2803 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2804 if creation fails. */
2805
2806 static asection *
2807 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2808 {
2809 const char *dname;
2810 asection *sreloc;
2811 bfd *dynobj;
2812
2813 dname = MIPS_ELF_REL_DYN_NAME (info);
2814 dynobj = elf_hash_table (info)->dynobj;
2815 sreloc = bfd_get_section_by_name (dynobj, dname);
2816 if (sreloc == NULL && create_p)
2817 {
2818 sreloc = bfd_make_section_with_flags (dynobj, dname,
2819 (SEC_ALLOC
2820 | SEC_LOAD
2821 | SEC_HAS_CONTENTS
2822 | SEC_IN_MEMORY
2823 | SEC_LINKER_CREATED
2824 | SEC_READONLY));
2825 if (sreloc == NULL
2826 || ! bfd_set_section_alignment (dynobj, sreloc,
2827 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2828 return NULL;
2829 }
2830 return sreloc;
2831 }
2832
2833 /* Count the number of relocations needed for a TLS GOT entry, with
2834 access types from TLS_TYPE, and symbol H (or a local symbol if H
2835 is NULL). */
2836
2837 static int
2838 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2839 struct elf_link_hash_entry *h)
2840 {
2841 int indx = 0;
2842 int ret = 0;
2843 bfd_boolean need_relocs = FALSE;
2844 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2845
2846 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2847 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2848 indx = h->dynindx;
2849
2850 if ((info->shared || indx != 0)
2851 && (h == NULL
2852 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2853 || h->root.type != bfd_link_hash_undefweak))
2854 need_relocs = TRUE;
2855
2856 if (!need_relocs)
2857 return FALSE;
2858
2859 if (tls_type & GOT_TLS_GD)
2860 {
2861 ret++;
2862 if (indx != 0)
2863 ret++;
2864 }
2865
2866 if (tls_type & GOT_TLS_IE)
2867 ret++;
2868
2869 if ((tls_type & GOT_TLS_LDM) && info->shared)
2870 ret++;
2871
2872 return ret;
2873 }
2874
2875 /* Count the number of TLS relocations required for the GOT entry in
2876 ARG1, if it describes a local symbol. */
2877
2878 static int
2879 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2880 {
2881 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2882 struct mips_elf_count_tls_arg *arg = arg2;
2883
2884 if (entry->abfd != NULL && entry->symndx != -1)
2885 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2886
2887 return 1;
2888 }
2889
2890 /* Count the number of TLS GOT entries required for the global (or
2891 forced-local) symbol in ARG1. */
2892
2893 static int
2894 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2895 {
2896 struct mips_elf_link_hash_entry *hm
2897 = (struct mips_elf_link_hash_entry *) arg1;
2898 struct mips_elf_count_tls_arg *arg = arg2;
2899
2900 if (hm->tls_type & GOT_TLS_GD)
2901 arg->needed += 2;
2902 if (hm->tls_type & GOT_TLS_IE)
2903 arg->needed += 1;
2904
2905 return 1;
2906 }
2907
2908 /* Count the number of TLS relocations required for the global (or
2909 forced-local) symbol in ARG1. */
2910
2911 static int
2912 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2913 {
2914 struct mips_elf_link_hash_entry *hm
2915 = (struct mips_elf_link_hash_entry *) arg1;
2916 struct mips_elf_count_tls_arg *arg = arg2;
2917
2918 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2919
2920 return 1;
2921 }
2922
2923 /* Output a simple dynamic relocation into SRELOC. */
2924
2925 static void
2926 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2927 asection *sreloc,
2928 unsigned long reloc_index,
2929 unsigned long indx,
2930 int r_type,
2931 bfd_vma offset)
2932 {
2933 Elf_Internal_Rela rel[3];
2934
2935 memset (rel, 0, sizeof (rel));
2936
2937 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2938 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2939
2940 if (ABI_64_P (output_bfd))
2941 {
2942 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2943 (output_bfd, &rel[0],
2944 (sreloc->contents
2945 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
2946 }
2947 else
2948 bfd_elf32_swap_reloc_out
2949 (output_bfd, &rel[0],
2950 (sreloc->contents
2951 + reloc_index * sizeof (Elf32_External_Rel)));
2952 }
2953
2954 /* Initialize a set of TLS GOT entries for one symbol. */
2955
2956 static void
2957 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2958 unsigned char *tls_type_p,
2959 struct bfd_link_info *info,
2960 struct mips_elf_link_hash_entry *h,
2961 bfd_vma value)
2962 {
2963 struct mips_elf_link_hash_table *htab;
2964 int indx;
2965 asection *sreloc, *sgot;
2966 bfd_vma offset, offset2;
2967 bfd_boolean need_relocs = FALSE;
2968
2969 htab = mips_elf_hash_table (info);
2970 if (htab == NULL)
2971 return;
2972
2973 sgot = htab->sgot;
2974
2975 indx = 0;
2976 if (h != NULL)
2977 {
2978 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2979
2980 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2981 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2982 indx = h->root.dynindx;
2983 }
2984
2985 if (*tls_type_p & GOT_TLS_DONE)
2986 return;
2987
2988 if ((info->shared || indx != 0)
2989 && (h == NULL
2990 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2991 || h->root.type != bfd_link_hash_undefweak))
2992 need_relocs = TRUE;
2993
2994 /* MINUS_ONE means the symbol is not defined in this object. It may not
2995 be defined at all; assume that the value doesn't matter in that
2996 case. Otherwise complain if we would use the value. */
2997 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2998 || h->root.root.type == bfd_link_hash_undefweak);
2999
3000 /* Emit necessary relocations. */
3001 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3002
3003 /* General Dynamic. */
3004 if (*tls_type_p & GOT_TLS_GD)
3005 {
3006 offset = got_offset;
3007 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
3008
3009 if (need_relocs)
3010 {
3011 mips_elf_output_dynamic_relocation
3012 (abfd, sreloc, sreloc->reloc_count++, indx,
3013 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3014 sgot->output_offset + sgot->output_section->vma + offset);
3015
3016 if (indx)
3017 mips_elf_output_dynamic_relocation
3018 (abfd, sreloc, sreloc->reloc_count++, indx,
3019 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3020 sgot->output_offset + sgot->output_section->vma + offset2);
3021 else
3022 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3023 sgot->contents + offset2);
3024 }
3025 else
3026 {
3027 MIPS_ELF_PUT_WORD (abfd, 1,
3028 sgot->contents + offset);
3029 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3030 sgot->contents + offset2);
3031 }
3032
3033 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
3034 }
3035
3036 /* Initial Exec model. */
3037 if (*tls_type_p & GOT_TLS_IE)
3038 {
3039 offset = got_offset;
3040
3041 if (need_relocs)
3042 {
3043 if (indx == 0)
3044 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3045 sgot->contents + offset);
3046 else
3047 MIPS_ELF_PUT_WORD (abfd, 0,
3048 sgot->contents + offset);
3049
3050 mips_elf_output_dynamic_relocation
3051 (abfd, sreloc, sreloc->reloc_count++, indx,
3052 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3053 sgot->output_offset + sgot->output_section->vma + offset);
3054 }
3055 else
3056 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3057 sgot->contents + offset);
3058 }
3059
3060 if (*tls_type_p & GOT_TLS_LDM)
3061 {
3062 /* The initial offset is zero, and the LD offsets will include the
3063 bias by DTP_OFFSET. */
3064 MIPS_ELF_PUT_WORD (abfd, 0,
3065 sgot->contents + got_offset
3066 + MIPS_ELF_GOT_SIZE (abfd));
3067
3068 if (!info->shared)
3069 MIPS_ELF_PUT_WORD (abfd, 1,
3070 sgot->contents + got_offset);
3071 else
3072 mips_elf_output_dynamic_relocation
3073 (abfd, sreloc, sreloc->reloc_count++, indx,
3074 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3075 sgot->output_offset + sgot->output_section->vma + got_offset);
3076 }
3077
3078 *tls_type_p |= GOT_TLS_DONE;
3079 }
3080
3081 /* Return the GOT index to use for a relocation of type R_TYPE against
3082 a symbol accessed using TLS_TYPE models. The GOT entries for this
3083 symbol in this GOT start at GOT_INDEX. This function initializes the
3084 GOT entries and corresponding relocations. */
3085
3086 static bfd_vma
3087 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
3088 int r_type, struct bfd_link_info *info,
3089 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3090 {
3091 BFD_ASSERT (tls_gottprel_reloc_p (r_type)
3092 || tls_gd_reloc_p (r_type)
3093 || tls_ldm_reloc_p (r_type));
3094
3095 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
3096
3097 if (tls_gottprel_reloc_p (r_type))
3098 {
3099 BFD_ASSERT (*tls_type & GOT_TLS_IE);
3100 if (*tls_type & GOT_TLS_GD)
3101 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
3102 else
3103 return got_index;
3104 }
3105
3106 if (tls_gd_reloc_p (r_type))
3107 {
3108 BFD_ASSERT (*tls_type & GOT_TLS_GD);
3109 return got_index;
3110 }
3111
3112 if (tls_ldm_reloc_p (r_type))
3113 {
3114 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3115 return got_index;
3116 }
3117
3118 return got_index;
3119 }
3120
3121 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3122 for global symbol H. .got.plt comes before the GOT, so the offset
3123 will be negative. */
3124
3125 static bfd_vma
3126 mips_elf_gotplt_index (struct bfd_link_info *info,
3127 struct elf_link_hash_entry *h)
3128 {
3129 bfd_vma plt_index, got_address, got_value;
3130 struct mips_elf_link_hash_table *htab;
3131
3132 htab = mips_elf_hash_table (info);
3133 BFD_ASSERT (htab != NULL);
3134
3135 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3136
3137 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3138 section starts with reserved entries. */
3139 BFD_ASSERT (htab->is_vxworks);
3140
3141 /* Calculate the index of the symbol's PLT entry. */
3142 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3143
3144 /* Calculate the address of the associated .got.plt entry. */
3145 got_address = (htab->sgotplt->output_section->vma
3146 + htab->sgotplt->output_offset
3147 + plt_index * 4);
3148
3149 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3150 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3151 + htab->root.hgot->root.u.def.section->output_offset
3152 + htab->root.hgot->root.u.def.value);
3153
3154 return got_address - got_value;
3155 }
3156
3157 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3158 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3159 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3160 offset can be found. */
3161
3162 static bfd_vma
3163 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3164 bfd_vma value, unsigned long r_symndx,
3165 struct mips_elf_link_hash_entry *h, int r_type)
3166 {
3167 struct mips_elf_link_hash_table *htab;
3168 struct mips_got_entry *entry;
3169
3170 htab = mips_elf_hash_table (info);
3171 BFD_ASSERT (htab != NULL);
3172
3173 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3174 r_symndx, h, r_type);
3175 if (!entry)
3176 return MINUS_ONE;
3177
3178 if (TLS_RELOC_P (r_type))
3179 {
3180 if (entry->symndx == -1 && htab->got_info->next == NULL)
3181 /* A type (3) entry in the single-GOT case. We use the symbol's
3182 hash table entry to track the index. */
3183 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3184 r_type, info, h, value);
3185 else
3186 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3187 r_type, info, h, value);
3188 }
3189 else
3190 return entry->gotidx;
3191 }
3192
3193 /* Returns the GOT index for the global symbol indicated by H. */
3194
3195 static bfd_vma
3196 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3197 int r_type, struct bfd_link_info *info)
3198 {
3199 struct mips_elf_link_hash_table *htab;
3200 bfd_vma got_index;
3201 struct mips_got_info *g, *gg;
3202 long global_got_dynindx = 0;
3203
3204 htab = mips_elf_hash_table (info);
3205 BFD_ASSERT (htab != NULL);
3206
3207 gg = g = htab->got_info;
3208 if (g->bfd2got && ibfd)
3209 {
3210 struct mips_got_entry e, *p;
3211
3212 BFD_ASSERT (h->dynindx >= 0);
3213
3214 g = mips_elf_got_for_ibfd (g, ibfd);
3215 if (g->next != gg || TLS_RELOC_P (r_type))
3216 {
3217 e.abfd = ibfd;
3218 e.symndx = -1;
3219 e.d.h = (struct mips_elf_link_hash_entry *)h;
3220 e.tls_type = 0;
3221
3222 p = htab_find (g->got_entries, &e);
3223
3224 BFD_ASSERT (p->gotidx > 0);
3225
3226 if (TLS_RELOC_P (r_type))
3227 {
3228 bfd_vma value = MINUS_ONE;
3229 if ((h->root.type == bfd_link_hash_defined
3230 || h->root.type == bfd_link_hash_defweak)
3231 && h->root.u.def.section->output_section)
3232 value = (h->root.u.def.value
3233 + h->root.u.def.section->output_offset
3234 + h->root.u.def.section->output_section->vma);
3235
3236 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3237 info, e.d.h, value);
3238 }
3239 else
3240 return p->gotidx;
3241 }
3242 }
3243
3244 if (gg->global_gotsym != NULL)
3245 global_got_dynindx = gg->global_gotsym->dynindx;
3246
3247 if (TLS_RELOC_P (r_type))
3248 {
3249 struct mips_elf_link_hash_entry *hm
3250 = (struct mips_elf_link_hash_entry *) h;
3251 bfd_vma value = MINUS_ONE;
3252
3253 if ((h->root.type == bfd_link_hash_defined
3254 || h->root.type == bfd_link_hash_defweak)
3255 && h->root.u.def.section->output_section)
3256 value = (h->root.u.def.value
3257 + h->root.u.def.section->output_offset
3258 + h->root.u.def.section->output_section->vma);
3259
3260 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3261 r_type, info, hm, value);
3262 }
3263 else
3264 {
3265 /* Once we determine the global GOT entry with the lowest dynamic
3266 symbol table index, we must put all dynamic symbols with greater
3267 indices into the GOT. That makes it easy to calculate the GOT
3268 offset. */
3269 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3270 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3271 * MIPS_ELF_GOT_SIZE (abfd));
3272 }
3273 BFD_ASSERT (got_index < htab->sgot->size);
3274
3275 return got_index;
3276 }
3277
3278 /* Find a GOT page entry that points to within 32KB of VALUE. These
3279 entries are supposed to be placed at small offsets in the GOT, i.e.,
3280 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3281 entry could be created. If OFFSETP is nonnull, use it to return the
3282 offset of the GOT entry from VALUE. */
3283
3284 static bfd_vma
3285 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3286 bfd_vma value, bfd_vma *offsetp)
3287 {
3288 bfd_vma page, got_index;
3289 struct mips_got_entry *entry;
3290
3291 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3292 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3293 NULL, R_MIPS_GOT_PAGE);
3294
3295 if (!entry)
3296 return MINUS_ONE;
3297
3298 got_index = entry->gotidx;
3299
3300 if (offsetp)
3301 *offsetp = value - entry->d.address;
3302
3303 return got_index;
3304 }
3305
3306 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3307 EXTERNAL is true if the relocation was originally against a global
3308 symbol that binds locally. */
3309
3310 static bfd_vma
3311 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3312 bfd_vma value, bfd_boolean external)
3313 {
3314 struct mips_got_entry *entry;
3315
3316 /* GOT16 relocations against local symbols are followed by a LO16
3317 relocation; those against global symbols are not. Thus if the
3318 symbol was originally local, the GOT16 relocation should load the
3319 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3320 if (! external)
3321 value = mips_elf_high (value) << 16;
3322
3323 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3324 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3325 same in all cases. */
3326 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3327 NULL, R_MIPS_GOT16);
3328 if (entry)
3329 return entry->gotidx;
3330 else
3331 return MINUS_ONE;
3332 }
3333
3334 /* Returns the offset for the entry at the INDEXth position
3335 in the GOT. */
3336
3337 static bfd_vma
3338 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3339 bfd *input_bfd, bfd_vma got_index)
3340 {
3341 struct mips_elf_link_hash_table *htab;
3342 asection *sgot;
3343 bfd_vma gp;
3344
3345 htab = mips_elf_hash_table (info);
3346 BFD_ASSERT (htab != NULL);
3347
3348 sgot = htab->sgot;
3349 gp = _bfd_get_gp_value (output_bfd)
3350 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3351
3352 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3353 }
3354
3355 /* Create and return a local GOT entry for VALUE, which was calculated
3356 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3357 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3358 instead. */
3359
3360 static struct mips_got_entry *
3361 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3362 bfd *ibfd, bfd_vma value,
3363 unsigned long r_symndx,
3364 struct mips_elf_link_hash_entry *h,
3365 int r_type)
3366 {
3367 struct mips_got_entry entry, **loc;
3368 struct mips_got_info *g;
3369 struct mips_elf_link_hash_table *htab;
3370
3371 htab = mips_elf_hash_table (info);
3372 BFD_ASSERT (htab != NULL);
3373
3374 entry.abfd = NULL;
3375 entry.symndx = -1;
3376 entry.d.address = value;
3377 entry.tls_type = 0;
3378
3379 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3380 if (g == NULL)
3381 {
3382 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3383 BFD_ASSERT (g != NULL);
3384 }
3385
3386 /* This function shouldn't be called for symbols that live in the global
3387 area of the GOT. */
3388 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3389 if (TLS_RELOC_P (r_type))
3390 {
3391 struct mips_got_entry *p;
3392
3393 entry.abfd = ibfd;
3394 if (tls_ldm_reloc_p (r_type))
3395 {
3396 entry.tls_type = GOT_TLS_LDM;
3397 entry.symndx = 0;
3398 entry.d.addend = 0;
3399 }
3400 else if (h == NULL)
3401 {
3402 entry.symndx = r_symndx;
3403 entry.d.addend = 0;
3404 }
3405 else
3406 entry.d.h = h;
3407
3408 p = (struct mips_got_entry *)
3409 htab_find (g->got_entries, &entry);
3410
3411 BFD_ASSERT (p);
3412 return p;
3413 }
3414
3415 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3416 INSERT);
3417 if (*loc)
3418 return *loc;
3419
3420 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3421 entry.tls_type = 0;
3422
3423 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3424
3425 if (! *loc)
3426 return NULL;
3427
3428 memcpy (*loc, &entry, sizeof entry);
3429
3430 if (g->assigned_gotno > g->local_gotno)
3431 {
3432 (*loc)->gotidx = -1;
3433 /* We didn't allocate enough space in the GOT. */
3434 (*_bfd_error_handler)
3435 (_("not enough GOT space for local GOT entries"));
3436 bfd_set_error (bfd_error_bad_value);
3437 return NULL;
3438 }
3439
3440 MIPS_ELF_PUT_WORD (abfd, value,
3441 (htab->sgot->contents + entry.gotidx));
3442
3443 /* These GOT entries need a dynamic relocation on VxWorks. */
3444 if (htab->is_vxworks)
3445 {
3446 Elf_Internal_Rela outrel;
3447 asection *s;
3448 bfd_byte *rloc;
3449 bfd_vma got_address;
3450
3451 s = mips_elf_rel_dyn_section (info, FALSE);
3452 got_address = (htab->sgot->output_section->vma
3453 + htab->sgot->output_offset
3454 + entry.gotidx);
3455
3456 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3457 outrel.r_offset = got_address;
3458 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3459 outrel.r_addend = value;
3460 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3461 }
3462
3463 return *loc;
3464 }
3465
3466 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3467 The number might be exact or a worst-case estimate, depending on how
3468 much information is available to elf_backend_omit_section_dynsym at
3469 the current linking stage. */
3470
3471 static bfd_size_type
3472 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3473 {
3474 bfd_size_type count;
3475
3476 count = 0;
3477 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3478 {
3479 asection *p;
3480 const struct elf_backend_data *bed;
3481
3482 bed = get_elf_backend_data (output_bfd);
3483 for (p = output_bfd->sections; p ; p = p->next)
3484 if ((p->flags & SEC_EXCLUDE) == 0
3485 && (p->flags & SEC_ALLOC) != 0
3486 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3487 ++count;
3488 }
3489 return count;
3490 }
3491
3492 /* Sort the dynamic symbol table so that symbols that need GOT entries
3493 appear towards the end. */
3494
3495 static bfd_boolean
3496 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3497 {
3498 struct mips_elf_link_hash_table *htab;
3499 struct mips_elf_hash_sort_data hsd;
3500 struct mips_got_info *g;
3501
3502 if (elf_hash_table (info)->dynsymcount == 0)
3503 return TRUE;
3504
3505 htab = mips_elf_hash_table (info);
3506 BFD_ASSERT (htab != NULL);
3507
3508 g = htab->got_info;
3509 if (g == NULL)
3510 return TRUE;
3511
3512 hsd.low = NULL;
3513 hsd.max_unref_got_dynindx
3514 = hsd.min_got_dynindx
3515 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3516 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3517 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3518 elf_hash_table (info)),
3519 mips_elf_sort_hash_table_f,
3520 &hsd);
3521
3522 /* There should have been enough room in the symbol table to
3523 accommodate both the GOT and non-GOT symbols. */
3524 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3525 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3526 == elf_hash_table (info)->dynsymcount);
3527 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3528 == g->global_gotno);
3529
3530 /* Now we know which dynamic symbol has the lowest dynamic symbol
3531 table index in the GOT. */
3532 g->global_gotsym = hsd.low;
3533
3534 return TRUE;
3535 }
3536
3537 /* If H needs a GOT entry, assign it the highest available dynamic
3538 index. Otherwise, assign it the lowest available dynamic
3539 index. */
3540
3541 static bfd_boolean
3542 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3543 {
3544 struct mips_elf_hash_sort_data *hsd = data;
3545
3546 /* Symbols without dynamic symbol table entries aren't interesting
3547 at all. */
3548 if (h->root.dynindx == -1)
3549 return TRUE;
3550
3551 switch (h->global_got_area)
3552 {
3553 case GGA_NONE:
3554 h->root.dynindx = hsd->max_non_got_dynindx++;
3555 break;
3556
3557 case GGA_NORMAL:
3558 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3559
3560 h->root.dynindx = --hsd->min_got_dynindx;
3561 hsd->low = (struct elf_link_hash_entry *) h;
3562 break;
3563
3564 case GGA_RELOC_ONLY:
3565 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3566
3567 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3568 hsd->low = (struct elf_link_hash_entry *) h;
3569 h->root.dynindx = hsd->max_unref_got_dynindx++;
3570 break;
3571 }
3572
3573 return TRUE;
3574 }
3575
3576 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3577 symbol table index lower than any we've seen to date, record it for
3578 posterity. FOR_CALL is true if the caller is only interested in
3579 using the GOT entry for calls. */
3580
3581 static bfd_boolean
3582 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3583 bfd *abfd, struct bfd_link_info *info,
3584 bfd_boolean for_call,
3585 unsigned char tls_flag)
3586 {
3587 struct mips_elf_link_hash_table *htab;
3588 struct mips_elf_link_hash_entry *hmips;
3589 struct mips_got_entry entry, **loc;
3590 struct mips_got_info *g;
3591
3592 htab = mips_elf_hash_table (info);
3593 BFD_ASSERT (htab != NULL);
3594
3595 hmips = (struct mips_elf_link_hash_entry *) h;
3596 if (!for_call)
3597 hmips->got_only_for_calls = FALSE;
3598
3599 /* A global symbol in the GOT must also be in the dynamic symbol
3600 table. */
3601 if (h->dynindx == -1)
3602 {
3603 switch (ELF_ST_VISIBILITY (h->other))
3604 {
3605 case STV_INTERNAL:
3606 case STV_HIDDEN:
3607 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3608 break;
3609 }
3610 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3611 return FALSE;
3612 }
3613
3614 /* Make sure we have a GOT to put this entry into. */
3615 g = htab->got_info;
3616 BFD_ASSERT (g != NULL);
3617
3618 entry.abfd = abfd;
3619 entry.symndx = -1;
3620 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3621 entry.tls_type = 0;
3622
3623 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3624 INSERT);
3625
3626 /* If we've already marked this entry as needing GOT space, we don't
3627 need to do it again. */
3628 if (*loc)
3629 {
3630 (*loc)->tls_type |= tls_flag;
3631 return TRUE;
3632 }
3633
3634 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3635
3636 if (! *loc)
3637 return FALSE;
3638
3639 entry.gotidx = -1;
3640 entry.tls_type = tls_flag;
3641
3642 memcpy (*loc, &entry, sizeof entry);
3643
3644 if (tls_flag == 0)
3645 hmips->global_got_area = GGA_NORMAL;
3646
3647 return TRUE;
3648 }
3649
3650 /* Reserve space in G for a GOT entry containing the value of symbol
3651 SYMNDX in input bfd ABDF, plus ADDEND. */
3652
3653 static bfd_boolean
3654 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3655 struct bfd_link_info *info,
3656 unsigned char tls_flag)
3657 {
3658 struct mips_elf_link_hash_table *htab;
3659 struct mips_got_info *g;
3660 struct mips_got_entry entry, **loc;
3661
3662 htab = mips_elf_hash_table (info);
3663 BFD_ASSERT (htab != NULL);
3664
3665 g = htab->got_info;
3666 BFD_ASSERT (g != NULL);
3667
3668 entry.abfd = abfd;
3669 entry.symndx = symndx;
3670 entry.d.addend = addend;
3671 entry.tls_type = tls_flag;
3672 loc = (struct mips_got_entry **)
3673 htab_find_slot (g->got_entries, &entry, INSERT);
3674
3675 if (*loc)
3676 {
3677 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3678 {
3679 g->tls_gotno += 2;
3680 (*loc)->tls_type |= tls_flag;
3681 }
3682 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3683 {
3684 g->tls_gotno += 1;
3685 (*loc)->tls_type |= tls_flag;
3686 }
3687 return TRUE;
3688 }
3689
3690 if (tls_flag != 0)
3691 {
3692 entry.gotidx = -1;
3693 entry.tls_type = tls_flag;
3694 if (tls_flag == GOT_TLS_IE)
3695 g->tls_gotno += 1;
3696 else if (tls_flag == GOT_TLS_GD)
3697 g->tls_gotno += 2;
3698 else if (g->tls_ldm_offset == MINUS_ONE)
3699 {
3700 g->tls_ldm_offset = MINUS_TWO;
3701 g->tls_gotno += 2;
3702 }
3703 }
3704 else
3705 {
3706 entry.gotidx = g->local_gotno++;
3707 entry.tls_type = 0;
3708 }
3709
3710 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3711
3712 if (! *loc)
3713 return FALSE;
3714
3715 memcpy (*loc, &entry, sizeof entry);
3716
3717 return TRUE;
3718 }
3719
3720 /* Return the maximum number of GOT page entries required for RANGE. */
3721
3722 static bfd_vma
3723 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3724 {
3725 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3726 }
3727
3728 /* Record that ABFD has a page relocation against symbol SYMNDX and
3729 that ADDEND is the addend for that relocation.
3730
3731 This function creates an upper bound on the number of GOT slots
3732 required; no attempt is made to combine references to non-overridable
3733 global symbols across multiple input files. */
3734
3735 static bfd_boolean
3736 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3737 long symndx, bfd_signed_vma addend)
3738 {
3739 struct mips_elf_link_hash_table *htab;
3740 struct mips_got_info *g;
3741 struct mips_got_page_entry lookup, *entry;
3742 struct mips_got_page_range **range_ptr, *range;
3743 bfd_vma old_pages, new_pages;
3744 void **loc;
3745
3746 htab = mips_elf_hash_table (info);
3747 BFD_ASSERT (htab != NULL);
3748
3749 g = htab->got_info;
3750 BFD_ASSERT (g != NULL);
3751
3752 /* Find the mips_got_page_entry hash table entry for this symbol. */
3753 lookup.abfd = abfd;
3754 lookup.symndx = symndx;
3755 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3756 if (loc == NULL)
3757 return FALSE;
3758
3759 /* Create a mips_got_page_entry if this is the first time we've
3760 seen the symbol. */
3761 entry = (struct mips_got_page_entry *) *loc;
3762 if (!entry)
3763 {
3764 entry = bfd_alloc (abfd, sizeof (*entry));
3765 if (!entry)
3766 return FALSE;
3767
3768 entry->abfd = abfd;
3769 entry->symndx = symndx;
3770 entry->ranges = NULL;
3771 entry->num_pages = 0;
3772 *loc = entry;
3773 }
3774
3775 /* Skip over ranges whose maximum extent cannot share a page entry
3776 with ADDEND. */
3777 range_ptr = &entry->ranges;
3778 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3779 range_ptr = &(*range_ptr)->next;
3780
3781 /* If we scanned to the end of the list, or found a range whose
3782 minimum extent cannot share a page entry with ADDEND, create
3783 a new singleton range. */
3784 range = *range_ptr;
3785 if (!range || addend < range->min_addend - 0xffff)
3786 {
3787 range = bfd_alloc (abfd, sizeof (*range));
3788 if (!range)
3789 return FALSE;
3790
3791 range->next = *range_ptr;
3792 range->min_addend = addend;
3793 range->max_addend = addend;
3794
3795 *range_ptr = range;
3796 entry->num_pages++;
3797 g->page_gotno++;
3798 return TRUE;
3799 }
3800
3801 /* Remember how many pages the old range contributed. */
3802 old_pages = mips_elf_pages_for_range (range);
3803
3804 /* Update the ranges. */
3805 if (addend < range->min_addend)
3806 range->min_addend = addend;
3807 else if (addend > range->max_addend)
3808 {
3809 if (range->next && addend >= range->next->min_addend - 0xffff)
3810 {
3811 old_pages += mips_elf_pages_for_range (range->next);
3812 range->max_addend = range->next->max_addend;
3813 range->next = range->next->next;
3814 }
3815 else
3816 range->max_addend = addend;
3817 }
3818
3819 /* Record any change in the total estimate. */
3820 new_pages = mips_elf_pages_for_range (range);
3821 if (old_pages != new_pages)
3822 {
3823 entry->num_pages += new_pages - old_pages;
3824 g->page_gotno += new_pages - old_pages;
3825 }
3826
3827 return TRUE;
3828 }
3829
3830 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3831
3832 static void
3833 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3834 unsigned int n)
3835 {
3836 asection *s;
3837 struct mips_elf_link_hash_table *htab;
3838
3839 htab = mips_elf_hash_table (info);
3840 BFD_ASSERT (htab != NULL);
3841
3842 s = mips_elf_rel_dyn_section (info, FALSE);
3843 BFD_ASSERT (s != NULL);
3844
3845 if (htab->is_vxworks)
3846 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3847 else
3848 {
3849 if (s->size == 0)
3850 {
3851 /* Make room for a null element. */
3852 s->size += MIPS_ELF_REL_SIZE (abfd);
3853 ++s->reloc_count;
3854 }
3855 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3856 }
3857 }
3858 \f
3859 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3860 if the GOT entry is for an indirect or warning symbol. */
3861
3862 static int
3863 mips_elf_check_recreate_got (void **entryp, void *data)
3864 {
3865 struct mips_got_entry *entry;
3866 bfd_boolean *must_recreate;
3867
3868 entry = (struct mips_got_entry *) *entryp;
3869 must_recreate = (bfd_boolean *) data;
3870 if (entry->abfd != NULL && entry->symndx == -1)
3871 {
3872 struct mips_elf_link_hash_entry *h;
3873
3874 h = entry->d.h;
3875 if (h->root.root.type == bfd_link_hash_indirect
3876 || h->root.root.type == bfd_link_hash_warning)
3877 {
3878 *must_recreate = TRUE;
3879 return 0;
3880 }
3881 }
3882 return 1;
3883 }
3884
3885 /* A htab_traverse callback for GOT entries. Add all entries to
3886 hash table *DATA, converting entries for indirect and warning
3887 symbols into entries for the target symbol. Set *DATA to null
3888 on error. */
3889
3890 static int
3891 mips_elf_recreate_got (void **entryp, void *data)
3892 {
3893 htab_t *new_got;
3894 struct mips_got_entry *entry;
3895 void **slot;
3896
3897 new_got = (htab_t *) data;
3898 entry = (struct mips_got_entry *) *entryp;
3899 if (entry->abfd != NULL && entry->symndx == -1)
3900 {
3901 struct mips_elf_link_hash_entry *h;
3902
3903 h = entry->d.h;
3904 while (h->root.root.type == bfd_link_hash_indirect
3905 || h->root.root.type == bfd_link_hash_warning)
3906 {
3907 BFD_ASSERT (h->global_got_area == GGA_NONE);
3908 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3909 }
3910 entry->d.h = h;
3911 }
3912 slot = htab_find_slot (*new_got, entry, INSERT);
3913 if (slot == NULL)
3914 {
3915 *new_got = NULL;
3916 return 0;
3917 }
3918 if (*slot == NULL)
3919 *slot = entry;
3920 else
3921 free (entry);
3922 return 1;
3923 }
3924
3925 /* If any entries in G->got_entries are for indirect or warning symbols,
3926 replace them with entries for the target symbol. */
3927
3928 static bfd_boolean
3929 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3930 {
3931 bfd_boolean must_recreate;
3932 htab_t new_got;
3933
3934 must_recreate = FALSE;
3935 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3936 if (must_recreate)
3937 {
3938 new_got = htab_create (htab_size (g->got_entries),
3939 mips_elf_got_entry_hash,
3940 mips_elf_got_entry_eq, NULL);
3941 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3942 if (new_got == NULL)
3943 return FALSE;
3944
3945 /* Each entry in g->got_entries has either been copied to new_got
3946 or freed. Now delete the hash table itself. */
3947 htab_delete (g->got_entries);
3948 g->got_entries = new_got;
3949 }
3950 return TRUE;
3951 }
3952
3953 /* A mips_elf_link_hash_traverse callback for which DATA points
3954 to the link_info structure. Count the number of type (3) entries
3955 in the master GOT. */
3956
3957 static int
3958 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
3959 {
3960 struct bfd_link_info *info;
3961 struct mips_elf_link_hash_table *htab;
3962 struct mips_got_info *g;
3963
3964 info = (struct bfd_link_info *) data;
3965 htab = mips_elf_hash_table (info);
3966 g = htab->got_info;
3967 if (h->global_got_area != GGA_NONE)
3968 {
3969 /* Make a final decision about whether the symbol belongs in the
3970 local or global GOT. Symbols that bind locally can (and in the
3971 case of forced-local symbols, must) live in the local GOT.
3972 Those that are aren't in the dynamic symbol table must also
3973 live in the local GOT.
3974
3975 Note that the former condition does not always imply the
3976 latter: symbols do not bind locally if they are completely
3977 undefined. We'll report undefined symbols later if appropriate. */
3978 if (h->root.dynindx == -1
3979 || (h->got_only_for_calls
3980 ? SYMBOL_CALLS_LOCAL (info, &h->root)
3981 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3982 {
3983 /* The symbol belongs in the local GOT. We no longer need this
3984 entry if it was only used for relocations; those relocations
3985 will be against the null or section symbol instead of H. */
3986 if (h->global_got_area != GGA_RELOC_ONLY)
3987 g->local_gotno++;
3988 h->global_got_area = GGA_NONE;
3989 }
3990 else if (htab->is_vxworks
3991 && h->got_only_for_calls
3992 && h->root.plt.offset != MINUS_ONE)
3993 /* On VxWorks, calls can refer directly to the .got.plt entry;
3994 they don't need entries in the regular GOT. .got.plt entries
3995 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
3996 h->global_got_area = GGA_NONE;
3997 else
3998 {
3999 g->global_gotno++;
4000 if (h->global_got_area == GGA_RELOC_ONLY)
4001 g->reloc_only_gotno++;
4002 }
4003 }
4004 return 1;
4005 }
4006 \f
4007 /* Compute the hash value of the bfd in a bfd2got hash entry. */
4008
4009 static hashval_t
4010 mips_elf_bfd2got_entry_hash (const void *entry_)
4011 {
4012 const struct mips_elf_bfd2got_hash *entry
4013 = (struct mips_elf_bfd2got_hash *)entry_;
4014
4015 return entry->bfd->id;
4016 }
4017
4018 /* Check whether two hash entries have the same bfd. */
4019
4020 static int
4021 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
4022 {
4023 const struct mips_elf_bfd2got_hash *e1
4024 = (const struct mips_elf_bfd2got_hash *)entry1;
4025 const struct mips_elf_bfd2got_hash *e2
4026 = (const struct mips_elf_bfd2got_hash *)entry2;
4027
4028 return e1->bfd == e2->bfd;
4029 }
4030
4031 /* In a multi-got link, determine the GOT to be used for IBFD. G must
4032 be the master GOT data. */
4033
4034 static struct mips_got_info *
4035 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
4036 {
4037 struct mips_elf_bfd2got_hash e, *p;
4038
4039 if (! g->bfd2got)
4040 return g;
4041
4042 e.bfd = ibfd;
4043 p = htab_find (g->bfd2got, &e);
4044 return p ? p->g : NULL;
4045 }
4046
4047 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
4048 Return NULL if an error occured. */
4049
4050 static struct mips_got_info *
4051 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
4052 bfd *input_bfd)
4053 {
4054 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
4055 struct mips_got_info *g;
4056 void **bfdgotp;
4057
4058 bfdgot_entry.bfd = input_bfd;
4059 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
4060 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
4061
4062 if (bfdgot == NULL)
4063 {
4064 bfdgot = ((struct mips_elf_bfd2got_hash *)
4065 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
4066 if (bfdgot == NULL)
4067 return NULL;
4068
4069 *bfdgotp = bfdgot;
4070
4071 g = ((struct mips_got_info *)
4072 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
4073 if (g == NULL)
4074 return NULL;
4075
4076 bfdgot->bfd = input_bfd;
4077 bfdgot->g = g;
4078
4079 g->global_gotsym = NULL;
4080 g->global_gotno = 0;
4081 g->reloc_only_gotno = 0;
4082 g->local_gotno = 0;
4083 g->page_gotno = 0;
4084 g->assigned_gotno = -1;
4085 g->tls_gotno = 0;
4086 g->tls_assigned_gotno = 0;
4087 g->tls_ldm_offset = MINUS_ONE;
4088 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4089 mips_elf_multi_got_entry_eq, NULL);
4090 if (g->got_entries == NULL)
4091 return NULL;
4092
4093 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4094 mips_got_page_entry_eq, NULL);
4095 if (g->got_page_entries == NULL)
4096 return NULL;
4097
4098 g->bfd2got = NULL;
4099 g->next = NULL;
4100 }
4101
4102 return bfdgot->g;
4103 }
4104
4105 /* A htab_traverse callback for the entries in the master got.
4106 Create one separate got for each bfd that has entries in the global
4107 got, such that we can tell how many local and global entries each
4108 bfd requires. */
4109
4110 static int
4111 mips_elf_make_got_per_bfd (void **entryp, void *p)
4112 {
4113 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4114 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4115 struct mips_got_info *g;
4116
4117 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4118 if (g == NULL)
4119 {
4120 arg->obfd = NULL;
4121 return 0;
4122 }
4123
4124 /* Insert the GOT entry in the bfd's got entry hash table. */
4125 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4126 if (*entryp != NULL)
4127 return 1;
4128
4129 *entryp = entry;
4130
4131 if (entry->tls_type)
4132 {
4133 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4134 g->tls_gotno += 2;
4135 if (entry->tls_type & GOT_TLS_IE)
4136 g->tls_gotno += 1;
4137 }
4138 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
4139 ++g->local_gotno;
4140 else
4141 ++g->global_gotno;
4142
4143 return 1;
4144 }
4145
4146 /* A htab_traverse callback for the page entries in the master got.
4147 Associate each page entry with the bfd's got. */
4148
4149 static int
4150 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4151 {
4152 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4153 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4154 struct mips_got_info *g;
4155
4156 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4157 if (g == NULL)
4158 {
4159 arg->obfd = NULL;
4160 return 0;
4161 }
4162
4163 /* Insert the GOT entry in the bfd's got entry hash table. */
4164 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4165 if (*entryp != NULL)
4166 return 1;
4167
4168 *entryp = entry;
4169 g->page_gotno += entry->num_pages;
4170 return 1;
4171 }
4172
4173 /* Consider merging the got described by BFD2GOT with TO, using the
4174 information given by ARG. Return -1 if this would lead to overflow,
4175 1 if they were merged successfully, and 0 if a merge failed due to
4176 lack of memory. (These values are chosen so that nonnegative return
4177 values can be returned by a htab_traverse callback.) */
4178
4179 static int
4180 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4181 struct mips_got_info *to,
4182 struct mips_elf_got_per_bfd_arg *arg)
4183 {
4184 struct mips_got_info *from = bfd2got->g;
4185 unsigned int estimate;
4186
4187 /* Work out how many page entries we would need for the combined GOT. */
4188 estimate = arg->max_pages;
4189 if (estimate >= from->page_gotno + to->page_gotno)
4190 estimate = from->page_gotno + to->page_gotno;
4191
4192 /* And conservatively estimate how many local and TLS entries
4193 would be needed. */
4194 estimate += from->local_gotno + to->local_gotno;
4195 estimate += from->tls_gotno + to->tls_gotno;
4196
4197 /* If we're merging with the primary got, we will always have
4198 the full set of global entries. Otherwise estimate those
4199 conservatively as well. */
4200 if (to == arg->primary)
4201 estimate += arg->global_count;
4202 else
4203 estimate += from->global_gotno + to->global_gotno;
4204
4205 /* Bail out if the combined GOT might be too big. */
4206 if (estimate > arg->max_count)
4207 return -1;
4208
4209 /* Commit to the merge. Record that TO is now the bfd for this got. */
4210 bfd2got->g = to;
4211
4212 /* Transfer the bfd's got information from FROM to TO. */
4213 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4214 if (arg->obfd == NULL)
4215 return 0;
4216
4217 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4218 if (arg->obfd == NULL)
4219 return 0;
4220
4221 /* We don't have to worry about releasing memory of the actual
4222 got entries, since they're all in the master got_entries hash
4223 table anyway. */
4224 htab_delete (from->got_entries);
4225 htab_delete (from->got_page_entries);
4226 return 1;
4227 }
4228
4229 /* Attempt to merge gots of different input bfds. Try to use as much
4230 as possible of the primary got, since it doesn't require explicit
4231 dynamic relocations, but don't use bfds that would reference global
4232 symbols out of the addressable range. Failing the primary got,
4233 attempt to merge with the current got, or finish the current got
4234 and then make make the new got current. */
4235
4236 static int
4237 mips_elf_merge_gots (void **bfd2got_, void *p)
4238 {
4239 struct mips_elf_bfd2got_hash *bfd2got
4240 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4241 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4242 struct mips_got_info *g;
4243 unsigned int estimate;
4244 int result;
4245
4246 g = bfd2got->g;
4247
4248 /* Work out the number of page, local and TLS entries. */
4249 estimate = arg->max_pages;
4250 if (estimate > g->page_gotno)
4251 estimate = g->page_gotno;
4252 estimate += g->local_gotno + g->tls_gotno;
4253
4254 /* We place TLS GOT entries after both locals and globals. The globals
4255 for the primary GOT may overflow the normal GOT size limit, so be
4256 sure not to merge a GOT which requires TLS with the primary GOT in that
4257 case. This doesn't affect non-primary GOTs. */
4258 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4259
4260 if (estimate <= arg->max_count)
4261 {
4262 /* If we don't have a primary GOT, use it as
4263 a starting point for the primary GOT. */
4264 if (!arg->primary)
4265 {
4266 arg->primary = bfd2got->g;
4267 return 1;
4268 }
4269
4270 /* Try merging with the primary GOT. */
4271 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4272 if (result >= 0)
4273 return result;
4274 }
4275
4276 /* If we can merge with the last-created got, do it. */
4277 if (arg->current)
4278 {
4279 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4280 if (result >= 0)
4281 return result;
4282 }
4283
4284 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4285 fits; if it turns out that it doesn't, we'll get relocation
4286 overflows anyway. */
4287 g->next = arg->current;
4288 arg->current = g;
4289
4290 return 1;
4291 }
4292
4293 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4294 is null iff there is just a single GOT. */
4295
4296 static int
4297 mips_elf_initialize_tls_index (void **entryp, void *p)
4298 {
4299 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4300 struct mips_got_info *g = p;
4301 bfd_vma next_index;
4302 unsigned char tls_type;
4303
4304 /* We're only interested in TLS symbols. */
4305 if (entry->tls_type == 0)
4306 return 1;
4307
4308 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4309
4310 if (entry->symndx == -1 && g->next == NULL)
4311 {
4312 /* A type (3) got entry in the single-GOT case. We use the symbol's
4313 hash table entry to track its index. */
4314 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4315 return 1;
4316 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4317 entry->d.h->tls_got_offset = next_index;
4318 tls_type = entry->d.h->tls_type;
4319 }
4320 else
4321 {
4322 if (entry->tls_type & GOT_TLS_LDM)
4323 {
4324 /* There are separate mips_got_entry objects for each input bfd
4325 that requires an LDM entry. Make sure that all LDM entries in
4326 a GOT resolve to the same index. */
4327 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4328 {
4329 entry->gotidx = g->tls_ldm_offset;
4330 return 1;
4331 }
4332 g->tls_ldm_offset = next_index;
4333 }
4334 entry->gotidx = next_index;
4335 tls_type = entry->tls_type;
4336 }
4337
4338 /* Account for the entries we've just allocated. */
4339 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4340 g->tls_assigned_gotno += 2;
4341 if (tls_type & GOT_TLS_IE)
4342 g->tls_assigned_gotno += 1;
4343
4344 return 1;
4345 }
4346
4347 /* If passed a NULL mips_got_info in the argument, set the marker used
4348 to tell whether a global symbol needs a got entry (in the primary
4349 got) to the given VALUE.
4350
4351 If passed a pointer G to a mips_got_info in the argument (it must
4352 not be the primary GOT), compute the offset from the beginning of
4353 the (primary) GOT section to the entry in G corresponding to the
4354 global symbol. G's assigned_gotno must contain the index of the
4355 first available global GOT entry in G. VALUE must contain the size
4356 of a GOT entry in bytes. For each global GOT entry that requires a
4357 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4358 marked as not eligible for lazy resolution through a function
4359 stub. */
4360 static int
4361 mips_elf_set_global_got_offset (void **entryp, void *p)
4362 {
4363 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4364 struct mips_elf_set_global_got_offset_arg *arg
4365 = (struct mips_elf_set_global_got_offset_arg *)p;
4366 struct mips_got_info *g = arg->g;
4367
4368 if (g && entry->tls_type != GOT_NORMAL)
4369 arg->needed_relocs +=
4370 mips_tls_got_relocs (arg->info, entry->tls_type,
4371 entry->symndx == -1 ? &entry->d.h->root : NULL);
4372
4373 if (entry->abfd != NULL
4374 && entry->symndx == -1
4375 && entry->d.h->global_got_area != GGA_NONE)
4376 {
4377 if (g)
4378 {
4379 BFD_ASSERT (g->global_gotsym == NULL);
4380
4381 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4382 if (arg->info->shared
4383 || (elf_hash_table (arg->info)->dynamic_sections_created
4384 && entry->d.h->root.def_dynamic
4385 && !entry->d.h->root.def_regular))
4386 ++arg->needed_relocs;
4387 }
4388 else
4389 entry->d.h->global_got_area = arg->value;
4390 }
4391
4392 return 1;
4393 }
4394
4395 /* A htab_traverse callback for GOT entries for which DATA is the
4396 bfd_link_info. Forbid any global symbols from having traditional
4397 lazy-binding stubs. */
4398
4399 static int
4400 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4401 {
4402 struct bfd_link_info *info;
4403 struct mips_elf_link_hash_table *htab;
4404 struct mips_got_entry *entry;
4405
4406 entry = (struct mips_got_entry *) *entryp;
4407 info = (struct bfd_link_info *) data;
4408 htab = mips_elf_hash_table (info);
4409 BFD_ASSERT (htab != NULL);
4410
4411 if (entry->abfd != NULL
4412 && entry->symndx == -1
4413 && entry->d.h->needs_lazy_stub)
4414 {
4415 entry->d.h->needs_lazy_stub = FALSE;
4416 htab->lazy_stub_count--;
4417 }
4418
4419 return 1;
4420 }
4421
4422 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4423 the primary GOT. */
4424 static bfd_vma
4425 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4426 {
4427 if (g->bfd2got == NULL)
4428 return 0;
4429
4430 g = mips_elf_got_for_ibfd (g, ibfd);
4431 if (! g)
4432 return 0;
4433
4434 BFD_ASSERT (g->next);
4435
4436 g = g->next;
4437
4438 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4439 * MIPS_ELF_GOT_SIZE (abfd);
4440 }
4441
4442 /* Turn a single GOT that is too big for 16-bit addressing into
4443 a sequence of GOTs, each one 16-bit addressable. */
4444
4445 static bfd_boolean
4446 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4447 asection *got, bfd_size_type pages)
4448 {
4449 struct mips_elf_link_hash_table *htab;
4450 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4451 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4452 struct mips_got_info *g, *gg;
4453 unsigned int assign, needed_relocs;
4454 bfd *dynobj;
4455
4456 dynobj = elf_hash_table (info)->dynobj;
4457 htab = mips_elf_hash_table (info);
4458 BFD_ASSERT (htab != NULL);
4459
4460 g = htab->got_info;
4461 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4462 mips_elf_bfd2got_entry_eq, NULL);
4463 if (g->bfd2got == NULL)
4464 return FALSE;
4465
4466 got_per_bfd_arg.bfd2got = g->bfd2got;
4467 got_per_bfd_arg.obfd = abfd;
4468 got_per_bfd_arg.info = info;
4469
4470 /* Count how many GOT entries each input bfd requires, creating a
4471 map from bfd to got info while at that. */
4472 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4473 if (got_per_bfd_arg.obfd == NULL)
4474 return FALSE;
4475
4476 /* Also count how many page entries each input bfd requires. */
4477 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4478 &got_per_bfd_arg);
4479 if (got_per_bfd_arg.obfd == NULL)
4480 return FALSE;
4481
4482 got_per_bfd_arg.current = NULL;
4483 got_per_bfd_arg.primary = NULL;
4484 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4485 / MIPS_ELF_GOT_SIZE (abfd))
4486 - htab->reserved_gotno);
4487 got_per_bfd_arg.max_pages = pages;
4488 /* The number of globals that will be included in the primary GOT.
4489 See the calls to mips_elf_set_global_got_offset below for more
4490 information. */
4491 got_per_bfd_arg.global_count = g->global_gotno;
4492
4493 /* Try to merge the GOTs of input bfds together, as long as they
4494 don't seem to exceed the maximum GOT size, choosing one of them
4495 to be the primary GOT. */
4496 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4497 if (got_per_bfd_arg.obfd == NULL)
4498 return FALSE;
4499
4500 /* If we do not find any suitable primary GOT, create an empty one. */
4501 if (got_per_bfd_arg.primary == NULL)
4502 {
4503 g->next = (struct mips_got_info *)
4504 bfd_alloc (abfd, sizeof (struct mips_got_info));
4505 if (g->next == NULL)
4506 return FALSE;
4507
4508 g->next->global_gotsym = NULL;
4509 g->next->global_gotno = 0;
4510 g->next->reloc_only_gotno = 0;
4511 g->next->local_gotno = 0;
4512 g->next->page_gotno = 0;
4513 g->next->tls_gotno = 0;
4514 g->next->assigned_gotno = 0;
4515 g->next->tls_assigned_gotno = 0;
4516 g->next->tls_ldm_offset = MINUS_ONE;
4517 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4518 mips_elf_multi_got_entry_eq,
4519 NULL);
4520 if (g->next->got_entries == NULL)
4521 return FALSE;
4522 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4523 mips_got_page_entry_eq,
4524 NULL);
4525 if (g->next->got_page_entries == NULL)
4526 return FALSE;
4527 g->next->bfd2got = NULL;
4528 }
4529 else
4530 g->next = got_per_bfd_arg.primary;
4531 g->next->next = got_per_bfd_arg.current;
4532
4533 /* GG is now the master GOT, and G is the primary GOT. */
4534 gg = g;
4535 g = g->next;
4536
4537 /* Map the output bfd to the primary got. That's what we're going
4538 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4539 didn't mark in check_relocs, and we want a quick way to find it.
4540 We can't just use gg->next because we're going to reverse the
4541 list. */
4542 {
4543 struct mips_elf_bfd2got_hash *bfdgot;
4544 void **bfdgotp;
4545
4546 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4547 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4548
4549 if (bfdgot == NULL)
4550 return FALSE;
4551
4552 bfdgot->bfd = abfd;
4553 bfdgot->g = g;
4554 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4555
4556 BFD_ASSERT (*bfdgotp == NULL);
4557 *bfdgotp = bfdgot;
4558 }
4559
4560 /* Every symbol that is referenced in a dynamic relocation must be
4561 present in the primary GOT, so arrange for them to appear after
4562 those that are actually referenced. */
4563 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4564 g->global_gotno = gg->global_gotno;
4565
4566 set_got_offset_arg.g = NULL;
4567 set_got_offset_arg.value = GGA_RELOC_ONLY;
4568 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4569 &set_got_offset_arg);
4570 set_got_offset_arg.value = GGA_NORMAL;
4571 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4572 &set_got_offset_arg);
4573
4574 /* Now go through the GOTs assigning them offset ranges.
4575 [assigned_gotno, local_gotno[ will be set to the range of local
4576 entries in each GOT. We can then compute the end of a GOT by
4577 adding local_gotno to global_gotno. We reverse the list and make
4578 it circular since then we'll be able to quickly compute the
4579 beginning of a GOT, by computing the end of its predecessor. To
4580 avoid special cases for the primary GOT, while still preserving
4581 assertions that are valid for both single- and multi-got links,
4582 we arrange for the main got struct to have the right number of
4583 global entries, but set its local_gotno such that the initial
4584 offset of the primary GOT is zero. Remember that the primary GOT
4585 will become the last item in the circular linked list, so it
4586 points back to the master GOT. */
4587 gg->local_gotno = -g->global_gotno;
4588 gg->global_gotno = g->global_gotno;
4589 gg->tls_gotno = 0;
4590 assign = 0;
4591 gg->next = gg;
4592
4593 do
4594 {
4595 struct mips_got_info *gn;
4596
4597 assign += htab->reserved_gotno;
4598 g->assigned_gotno = assign;
4599 g->local_gotno += assign;
4600 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4601 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4602
4603 /* Take g out of the direct list, and push it onto the reversed
4604 list that gg points to. g->next is guaranteed to be nonnull after
4605 this operation, as required by mips_elf_initialize_tls_index. */
4606 gn = g->next;
4607 g->next = gg->next;
4608 gg->next = g;
4609
4610 /* Set up any TLS entries. We always place the TLS entries after
4611 all non-TLS entries. */
4612 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4613 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4614
4615 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4616 g = gn;
4617
4618 /* Forbid global symbols in every non-primary GOT from having
4619 lazy-binding stubs. */
4620 if (g)
4621 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4622 }
4623 while (g);
4624
4625 got->size = (gg->next->local_gotno
4626 + gg->next->global_gotno
4627 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4628
4629 needed_relocs = 0;
4630 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4631 set_got_offset_arg.info = info;
4632 for (g = gg->next; g && g->next != gg; g = g->next)
4633 {
4634 unsigned int save_assign;
4635
4636 /* Assign offsets to global GOT entries. */
4637 save_assign = g->assigned_gotno;
4638 g->assigned_gotno = g->local_gotno;
4639 set_got_offset_arg.g = g;
4640 set_got_offset_arg.needed_relocs = 0;
4641 htab_traverse (g->got_entries,
4642 mips_elf_set_global_got_offset,
4643 &set_got_offset_arg);
4644 needed_relocs += set_got_offset_arg.needed_relocs;
4645 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4646
4647 g->assigned_gotno = save_assign;
4648 if (info->shared)
4649 {
4650 needed_relocs += g->local_gotno - g->assigned_gotno;
4651 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4652 + g->next->global_gotno
4653 + g->next->tls_gotno
4654 + htab->reserved_gotno);
4655 }
4656 }
4657
4658 if (needed_relocs)
4659 mips_elf_allocate_dynamic_relocations (dynobj, info,
4660 needed_relocs);
4661
4662 return TRUE;
4663 }
4664
4665 \f
4666 /* Returns the first relocation of type r_type found, beginning with
4667 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4668
4669 static const Elf_Internal_Rela *
4670 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4671 const Elf_Internal_Rela *relocation,
4672 const Elf_Internal_Rela *relend)
4673 {
4674 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4675
4676 while (relocation < relend)
4677 {
4678 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4679 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4680 return relocation;
4681
4682 ++relocation;
4683 }
4684
4685 /* We didn't find it. */
4686 return NULL;
4687 }
4688
4689 /* Return whether an input relocation is against a local symbol. */
4690
4691 static bfd_boolean
4692 mips_elf_local_relocation_p (bfd *input_bfd,
4693 const Elf_Internal_Rela *relocation,
4694 asection **local_sections)
4695 {
4696 unsigned long r_symndx;
4697 Elf_Internal_Shdr *symtab_hdr;
4698 size_t extsymoff;
4699
4700 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4701 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4702 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4703
4704 if (r_symndx < extsymoff)
4705 return TRUE;
4706 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4707 return TRUE;
4708
4709 return FALSE;
4710 }
4711 \f
4712 /* Sign-extend VALUE, which has the indicated number of BITS. */
4713
4714 bfd_vma
4715 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4716 {
4717 if (value & ((bfd_vma) 1 << (bits - 1)))
4718 /* VALUE is negative. */
4719 value |= ((bfd_vma) - 1) << bits;
4720
4721 return value;
4722 }
4723
4724 /* Return non-zero if the indicated VALUE has overflowed the maximum
4725 range expressible by a signed number with the indicated number of
4726 BITS. */
4727
4728 static bfd_boolean
4729 mips_elf_overflow_p (bfd_vma value, int bits)
4730 {
4731 bfd_signed_vma svalue = (bfd_signed_vma) value;
4732
4733 if (svalue > (1 << (bits - 1)) - 1)
4734 /* The value is too big. */
4735 return TRUE;
4736 else if (svalue < -(1 << (bits - 1)))
4737 /* The value is too small. */
4738 return TRUE;
4739
4740 /* All is well. */
4741 return FALSE;
4742 }
4743
4744 /* Calculate the %high function. */
4745
4746 static bfd_vma
4747 mips_elf_high (bfd_vma value)
4748 {
4749 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4750 }
4751
4752 /* Calculate the %higher function. */
4753
4754 static bfd_vma
4755 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4756 {
4757 #ifdef BFD64
4758 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4759 #else
4760 abort ();
4761 return MINUS_ONE;
4762 #endif
4763 }
4764
4765 /* Calculate the %highest function. */
4766
4767 static bfd_vma
4768 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4769 {
4770 #ifdef BFD64
4771 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4772 #else
4773 abort ();
4774 return MINUS_ONE;
4775 #endif
4776 }
4777 \f
4778 /* Create the .compact_rel section. */
4779
4780 static bfd_boolean
4781 mips_elf_create_compact_rel_section
4782 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4783 {
4784 flagword flags;
4785 register asection *s;
4786
4787 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4788 {
4789 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4790 | SEC_READONLY);
4791
4792 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
4793 if (s == NULL
4794 || ! bfd_set_section_alignment (abfd, s,
4795 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4796 return FALSE;
4797
4798 s->size = sizeof (Elf32_External_compact_rel);
4799 }
4800
4801 return TRUE;
4802 }
4803
4804 /* Create the .got section to hold the global offset table. */
4805
4806 static bfd_boolean
4807 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4808 {
4809 flagword flags;
4810 register asection *s;
4811 struct elf_link_hash_entry *h;
4812 struct bfd_link_hash_entry *bh;
4813 struct mips_got_info *g;
4814 bfd_size_type amt;
4815 struct mips_elf_link_hash_table *htab;
4816
4817 htab = mips_elf_hash_table (info);
4818 BFD_ASSERT (htab != NULL);
4819
4820 /* This function may be called more than once. */
4821 if (htab->sgot)
4822 return TRUE;
4823
4824 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4825 | SEC_LINKER_CREATED);
4826
4827 /* We have to use an alignment of 2**4 here because this is hardcoded
4828 in the function stub generation and in the linker script. */
4829 s = bfd_make_section_with_flags (abfd, ".got", flags);
4830 if (s == NULL
4831 || ! bfd_set_section_alignment (abfd, s, 4))
4832 return FALSE;
4833 htab->sgot = s;
4834
4835 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4836 linker script because we don't want to define the symbol if we
4837 are not creating a global offset table. */
4838 bh = NULL;
4839 if (! (_bfd_generic_link_add_one_symbol
4840 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4841 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4842 return FALSE;
4843
4844 h = (struct elf_link_hash_entry *) bh;
4845 h->non_elf = 0;
4846 h->def_regular = 1;
4847 h->type = STT_OBJECT;
4848 elf_hash_table (info)->hgot = h;
4849
4850 if (info->shared
4851 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4852 return FALSE;
4853
4854 amt = sizeof (struct mips_got_info);
4855 g = bfd_alloc (abfd, amt);
4856 if (g == NULL)
4857 return FALSE;
4858 g->global_gotsym = NULL;
4859 g->global_gotno = 0;
4860 g->reloc_only_gotno = 0;
4861 g->tls_gotno = 0;
4862 g->local_gotno = 0;
4863 g->page_gotno = 0;
4864 g->assigned_gotno = 0;
4865 g->bfd2got = NULL;
4866 g->next = NULL;
4867 g->tls_ldm_offset = MINUS_ONE;
4868 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4869 mips_elf_got_entry_eq, NULL);
4870 if (g->got_entries == NULL)
4871 return FALSE;
4872 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4873 mips_got_page_entry_eq, NULL);
4874 if (g->got_page_entries == NULL)
4875 return FALSE;
4876 htab->got_info = g;
4877 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4878 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4879
4880 /* We also need a .got.plt section when generating PLTs. */
4881 s = bfd_make_section_with_flags (abfd, ".got.plt",
4882 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4883 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4884 if (s == NULL)
4885 return FALSE;
4886 htab->sgotplt = s;
4887
4888 return TRUE;
4889 }
4890 \f
4891 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4892 __GOTT_INDEX__ symbols. These symbols are only special for
4893 shared objects; they are not used in executables. */
4894
4895 static bfd_boolean
4896 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4897 {
4898 return (mips_elf_hash_table (info)->is_vxworks
4899 && info->shared
4900 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4901 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4902 }
4903
4904 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4905 require an la25 stub. See also mips_elf_local_pic_function_p,
4906 which determines whether the destination function ever requires a
4907 stub. */
4908
4909 static bfd_boolean
4910 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type)
4911 {
4912 /* We specifically ignore branches and jumps from EF_PIC objects,
4913 where the onus is on the compiler or programmer to perform any
4914 necessary initialization of $25. Sometimes such initialization
4915 is unnecessary; for example, -mno-shared functions do not use
4916 the incoming value of $25, and may therefore be called directly. */
4917 if (PIC_OBJECT_P (input_bfd))
4918 return FALSE;
4919
4920 switch (r_type)
4921 {
4922 case R_MIPS_26:
4923 case R_MIPS_PC16:
4924 case R_MIPS16_26:
4925 case R_MICROMIPS_26_S1:
4926 case R_MICROMIPS_PC7_S1:
4927 case R_MICROMIPS_PC10_S1:
4928 case R_MICROMIPS_PC16_S1:
4929 case R_MICROMIPS_PC23_S2:
4930 return TRUE;
4931
4932 default:
4933 return FALSE;
4934 }
4935 }
4936 \f
4937 /* Calculate the value produced by the RELOCATION (which comes from
4938 the INPUT_BFD). The ADDEND is the addend to use for this
4939 RELOCATION; RELOCATION->R_ADDEND is ignored.
4940
4941 The result of the relocation calculation is stored in VALUEP.
4942 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4943 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
4944
4945 This function returns bfd_reloc_continue if the caller need take no
4946 further action regarding this relocation, bfd_reloc_notsupported if
4947 something goes dramatically wrong, bfd_reloc_overflow if an
4948 overflow occurs, and bfd_reloc_ok to indicate success. */
4949
4950 static bfd_reloc_status_type
4951 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4952 asection *input_section,
4953 struct bfd_link_info *info,
4954 const Elf_Internal_Rela *relocation,
4955 bfd_vma addend, reloc_howto_type *howto,
4956 Elf_Internal_Sym *local_syms,
4957 asection **local_sections, bfd_vma *valuep,
4958 const char **namep,
4959 bfd_boolean *cross_mode_jump_p,
4960 bfd_boolean save_addend)
4961 {
4962 /* The eventual value we will return. */
4963 bfd_vma value;
4964 /* The address of the symbol against which the relocation is
4965 occurring. */
4966 bfd_vma symbol = 0;
4967 /* The final GP value to be used for the relocatable, executable, or
4968 shared object file being produced. */
4969 bfd_vma gp;
4970 /* The place (section offset or address) of the storage unit being
4971 relocated. */
4972 bfd_vma p;
4973 /* The value of GP used to create the relocatable object. */
4974 bfd_vma gp0;
4975 /* The offset into the global offset table at which the address of
4976 the relocation entry symbol, adjusted by the addend, resides
4977 during execution. */
4978 bfd_vma g = MINUS_ONE;
4979 /* The section in which the symbol referenced by the relocation is
4980 located. */
4981 asection *sec = NULL;
4982 struct mips_elf_link_hash_entry *h = NULL;
4983 /* TRUE if the symbol referred to by this relocation is a local
4984 symbol. */
4985 bfd_boolean local_p, was_local_p;
4986 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4987 bfd_boolean gp_disp_p = FALSE;
4988 /* TRUE if the symbol referred to by this relocation is
4989 "__gnu_local_gp". */
4990 bfd_boolean gnu_local_gp_p = FALSE;
4991 Elf_Internal_Shdr *symtab_hdr;
4992 size_t extsymoff;
4993 unsigned long r_symndx;
4994 int r_type;
4995 /* TRUE if overflow occurred during the calculation of the
4996 relocation value. */
4997 bfd_boolean overflowed_p;
4998 /* TRUE if this relocation refers to a MIPS16 function. */
4999 bfd_boolean target_is_16_bit_code_p = FALSE;
5000 bfd_boolean target_is_micromips_code_p = FALSE;
5001 struct mips_elf_link_hash_table *htab;
5002 bfd *dynobj;
5003
5004 dynobj = elf_hash_table (info)->dynobj;
5005 htab = mips_elf_hash_table (info);
5006 BFD_ASSERT (htab != NULL);
5007
5008 /* Parse the relocation. */
5009 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5010 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5011 p = (input_section->output_section->vma
5012 + input_section->output_offset
5013 + relocation->r_offset);
5014
5015 /* Assume that there will be no overflow. */
5016 overflowed_p = FALSE;
5017
5018 /* Figure out whether or not the symbol is local, and get the offset
5019 used in the array of hash table entries. */
5020 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5021 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5022 local_sections);
5023 was_local_p = local_p;
5024 if (! elf_bad_symtab (input_bfd))
5025 extsymoff = symtab_hdr->sh_info;
5026 else
5027 {
5028 /* The symbol table does not follow the rule that local symbols
5029 must come before globals. */
5030 extsymoff = 0;
5031 }
5032
5033 /* Figure out the value of the symbol. */
5034 if (local_p)
5035 {
5036 Elf_Internal_Sym *sym;
5037
5038 sym = local_syms + r_symndx;
5039 sec = local_sections[r_symndx];
5040
5041 symbol = sec->output_section->vma + sec->output_offset;
5042 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5043 || (sec->flags & SEC_MERGE))
5044 symbol += sym->st_value;
5045 if ((sec->flags & SEC_MERGE)
5046 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5047 {
5048 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5049 addend -= symbol;
5050 addend += sec->output_section->vma + sec->output_offset;
5051 }
5052
5053 /* MIPS16/microMIPS text labels should be treated as odd. */
5054 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5055 ++symbol;
5056
5057 /* Record the name of this symbol, for our caller. */
5058 *namep = bfd_elf_string_from_elf_section (input_bfd,
5059 symtab_hdr->sh_link,
5060 sym->st_name);
5061 if (*namep == '\0')
5062 *namep = bfd_section_name (input_bfd, sec);
5063
5064 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5065 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5066 }
5067 else
5068 {
5069 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5070
5071 /* For global symbols we look up the symbol in the hash-table. */
5072 h = ((struct mips_elf_link_hash_entry *)
5073 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5074 /* Find the real hash-table entry for this symbol. */
5075 while (h->root.root.type == bfd_link_hash_indirect
5076 || h->root.root.type == bfd_link_hash_warning)
5077 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5078
5079 /* Record the name of this symbol, for our caller. */
5080 *namep = h->root.root.root.string;
5081
5082 /* See if this is the special _gp_disp symbol. Note that such a
5083 symbol must always be a global symbol. */
5084 if (strcmp (*namep, "_gp_disp") == 0
5085 && ! NEWABI_P (input_bfd))
5086 {
5087 /* Relocations against _gp_disp are permitted only with
5088 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5089 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5090 return bfd_reloc_notsupported;
5091
5092 gp_disp_p = TRUE;
5093 }
5094 /* See if this is the special _gp symbol. Note that such a
5095 symbol must always be a global symbol. */
5096 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5097 gnu_local_gp_p = TRUE;
5098
5099
5100 /* If this symbol is defined, calculate its address. Note that
5101 _gp_disp is a magic symbol, always implicitly defined by the
5102 linker, so it's inappropriate to check to see whether or not
5103 its defined. */
5104 else if ((h->root.root.type == bfd_link_hash_defined
5105 || h->root.root.type == bfd_link_hash_defweak)
5106 && h->root.root.u.def.section)
5107 {
5108 sec = h->root.root.u.def.section;
5109 if (sec->output_section)
5110 symbol = (h->root.root.u.def.value
5111 + sec->output_section->vma
5112 + sec->output_offset);
5113 else
5114 symbol = h->root.root.u.def.value;
5115 }
5116 else if (h->root.root.type == bfd_link_hash_undefweak)
5117 /* We allow relocations against undefined weak symbols, giving
5118 it the value zero, so that you can undefined weak functions
5119 and check to see if they exist by looking at their
5120 addresses. */
5121 symbol = 0;
5122 else if (info->unresolved_syms_in_objects == RM_IGNORE
5123 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5124 symbol = 0;
5125 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5126 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5127 {
5128 /* If this is a dynamic link, we should have created a
5129 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5130 in in _bfd_mips_elf_create_dynamic_sections.
5131 Otherwise, we should define the symbol with a value of 0.
5132 FIXME: It should probably get into the symbol table
5133 somehow as well. */
5134 BFD_ASSERT (! info->shared);
5135 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5136 symbol = 0;
5137 }
5138 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5139 {
5140 /* This is an optional symbol - an Irix specific extension to the
5141 ELF spec. Ignore it for now.
5142 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5143 than simply ignoring them, but we do not handle this for now.
5144 For information see the "64-bit ELF Object File Specification"
5145 which is available from here:
5146 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5147 symbol = 0;
5148 }
5149 else if ((*info->callbacks->undefined_symbol)
5150 (info, h->root.root.root.string, input_bfd,
5151 input_section, relocation->r_offset,
5152 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5153 || ELF_ST_VISIBILITY (h->root.other)))
5154 {
5155 return bfd_reloc_undefined;
5156 }
5157 else
5158 {
5159 return bfd_reloc_notsupported;
5160 }
5161
5162 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5163 /* If the output section is the PLT section,
5164 then the target is not microMIPS. */
5165 target_is_micromips_code_p = (htab->splt != sec
5166 && ELF_ST_IS_MICROMIPS (h->root.other));
5167 }
5168
5169 /* If this is a reference to a 16-bit function with a stub, we need
5170 to redirect the relocation to the stub unless:
5171
5172 (a) the relocation is for a MIPS16 JAL;
5173
5174 (b) the relocation is for a MIPS16 PIC call, and there are no
5175 non-MIPS16 uses of the GOT slot; or
5176
5177 (c) the section allows direct references to MIPS16 functions. */
5178 if (r_type != R_MIPS16_26
5179 && !info->relocatable
5180 && ((h != NULL
5181 && h->fn_stub != NULL
5182 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5183 || (local_p
5184 && elf_tdata (input_bfd)->local_stubs != NULL
5185 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5186 && !section_allows_mips16_refs_p (input_section))
5187 {
5188 /* This is a 32- or 64-bit call to a 16-bit function. We should
5189 have already noticed that we were going to need the
5190 stub. */
5191 if (local_p)
5192 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5193 else
5194 {
5195 BFD_ASSERT (h->need_fn_stub);
5196 sec = h->fn_stub;
5197 }
5198
5199 symbol = sec->output_section->vma + sec->output_offset;
5200 /* The target is 16-bit, but the stub isn't. */
5201 target_is_16_bit_code_p = FALSE;
5202 }
5203 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5204 need to redirect the call to the stub. Note that we specifically
5205 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5206 use an indirect stub instead. */
5207 else if (r_type == R_MIPS16_26 && !info->relocatable
5208 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5209 || (local_p
5210 && elf_tdata (input_bfd)->local_call_stubs != NULL
5211 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5212 && !target_is_16_bit_code_p)
5213 {
5214 if (local_p)
5215 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5216 else
5217 {
5218 /* If both call_stub and call_fp_stub are defined, we can figure
5219 out which one to use by checking which one appears in the input
5220 file. */
5221 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5222 {
5223 asection *o;
5224
5225 sec = NULL;
5226 for (o = input_bfd->sections; o != NULL; o = o->next)
5227 {
5228 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5229 {
5230 sec = h->call_fp_stub;
5231 break;
5232 }
5233 }
5234 if (sec == NULL)
5235 sec = h->call_stub;
5236 }
5237 else if (h->call_stub != NULL)
5238 sec = h->call_stub;
5239 else
5240 sec = h->call_fp_stub;
5241 }
5242
5243 BFD_ASSERT (sec->size > 0);
5244 symbol = sec->output_section->vma + sec->output_offset;
5245 }
5246 /* If this is a direct call to a PIC function, redirect to the
5247 non-PIC stub. */
5248 else if (h != NULL && h->la25_stub
5249 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type))
5250 symbol = (h->la25_stub->stub_section->output_section->vma
5251 + h->la25_stub->stub_section->output_offset
5252 + h->la25_stub->offset);
5253
5254 /* Make sure MIPS16 and microMIPS are not used together. */
5255 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5256 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5257 {
5258 (*_bfd_error_handler)
5259 (_("MIPS16 and microMIPS functions cannot call each other"));
5260 return bfd_reloc_notsupported;
5261 }
5262
5263 /* Calls from 16-bit code to 32-bit code and vice versa require the
5264 mode change. However, we can ignore calls to undefined weak symbols,
5265 which should never be executed at runtime. This exception is important
5266 because the assembly writer may have "known" that any definition of the
5267 symbol would be 16-bit code, and that direct jumps were therefore
5268 acceptable. */
5269 *cross_mode_jump_p = (!info->relocatable
5270 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5271 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5272 || (r_type == R_MICROMIPS_26_S1
5273 && !target_is_micromips_code_p)
5274 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5275 && (target_is_16_bit_code_p
5276 || target_is_micromips_code_p))));
5277
5278 local_p = h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->root);
5279
5280 gp0 = _bfd_get_gp_value (input_bfd);
5281 gp = _bfd_get_gp_value (abfd);
5282 if (htab->got_info)
5283 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5284
5285 if (gnu_local_gp_p)
5286 symbol = gp;
5287
5288 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5289 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5290 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5291 if (got_page_reloc_p (r_type) && !local_p)
5292 {
5293 r_type = (micromips_reloc_p (r_type)
5294 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5295 addend = 0;
5296 }
5297
5298 /* If we haven't already determined the GOT offset, and we're going
5299 to need it, get it now. */
5300 switch (r_type)
5301 {
5302 case R_MIPS16_CALL16:
5303 case R_MIPS16_GOT16:
5304 case R_MIPS_CALL16:
5305 case R_MIPS_GOT16:
5306 case R_MIPS_GOT_DISP:
5307 case R_MIPS_GOT_HI16:
5308 case R_MIPS_CALL_HI16:
5309 case R_MIPS_GOT_LO16:
5310 case R_MIPS_CALL_LO16:
5311 case R_MICROMIPS_CALL16:
5312 case R_MICROMIPS_GOT16:
5313 case R_MICROMIPS_GOT_DISP:
5314 case R_MICROMIPS_GOT_HI16:
5315 case R_MICROMIPS_CALL_HI16:
5316 case R_MICROMIPS_GOT_LO16:
5317 case R_MICROMIPS_CALL_LO16:
5318 case R_MIPS_TLS_GD:
5319 case R_MIPS_TLS_GOTTPREL:
5320 case R_MIPS_TLS_LDM:
5321 case R_MICROMIPS_TLS_GD:
5322 case R_MICROMIPS_TLS_GOTTPREL:
5323 case R_MICROMIPS_TLS_LDM:
5324 /* Find the index into the GOT where this value is located. */
5325 if (tls_ldm_reloc_p (r_type))
5326 {
5327 g = mips_elf_local_got_index (abfd, input_bfd, info,
5328 0, 0, NULL, r_type);
5329 if (g == MINUS_ONE)
5330 return bfd_reloc_outofrange;
5331 }
5332 else if (!local_p)
5333 {
5334 /* On VxWorks, CALL relocations should refer to the .got.plt
5335 entry, which is initialized to point at the PLT stub. */
5336 if (htab->is_vxworks
5337 && (call_hi16_reloc_p (r_type)
5338 || call_lo16_reloc_p (r_type)
5339 || call16_reloc_p (r_type)))
5340 {
5341 BFD_ASSERT (addend == 0);
5342 BFD_ASSERT (h->root.needs_plt);
5343 g = mips_elf_gotplt_index (info, &h->root);
5344 }
5345 else
5346 {
5347 BFD_ASSERT (addend == 0);
5348 g = mips_elf_global_got_index (dynobj, input_bfd,
5349 &h->root, r_type, info);
5350 if (h->tls_type == GOT_NORMAL
5351 && !elf_hash_table (info)->dynamic_sections_created)
5352 /* This is a static link. We must initialize the GOT entry. */
5353 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5354 }
5355 }
5356 else if (!htab->is_vxworks
5357 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5358 /* The calculation below does not involve "g". */
5359 break;
5360 else
5361 {
5362 g = mips_elf_local_got_index (abfd, input_bfd, info,
5363 symbol + addend, r_symndx, h, r_type);
5364 if (g == MINUS_ONE)
5365 return bfd_reloc_outofrange;
5366 }
5367
5368 /* Convert GOT indices to actual offsets. */
5369 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5370 break;
5371 }
5372
5373 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5374 symbols are resolved by the loader. Add them to .rela.dyn. */
5375 if (h != NULL && is_gott_symbol (info, &h->root))
5376 {
5377 Elf_Internal_Rela outrel;
5378 bfd_byte *loc;
5379 asection *s;
5380
5381 s = mips_elf_rel_dyn_section (info, FALSE);
5382 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5383
5384 outrel.r_offset = (input_section->output_section->vma
5385 + input_section->output_offset
5386 + relocation->r_offset);
5387 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5388 outrel.r_addend = addend;
5389 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5390
5391 /* If we've written this relocation for a readonly section,
5392 we need to set DF_TEXTREL again, so that we do not delete the
5393 DT_TEXTREL tag. */
5394 if (MIPS_ELF_READONLY_SECTION (input_section))
5395 info->flags |= DF_TEXTREL;
5396
5397 *valuep = 0;
5398 return bfd_reloc_ok;
5399 }
5400
5401 /* Figure out what kind of relocation is being performed. */
5402 switch (r_type)
5403 {
5404 case R_MIPS_NONE:
5405 return bfd_reloc_continue;
5406
5407 case R_MIPS_16:
5408 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5409 overflowed_p = mips_elf_overflow_p (value, 16);
5410 break;
5411
5412 case R_MIPS_32:
5413 case R_MIPS_REL32:
5414 case R_MIPS_64:
5415 if ((info->shared
5416 || (htab->root.dynamic_sections_created
5417 && h != NULL
5418 && h->root.def_dynamic
5419 && !h->root.def_regular
5420 && !h->has_static_relocs))
5421 && r_symndx != STN_UNDEF
5422 && (h == NULL
5423 || h->root.root.type != bfd_link_hash_undefweak
5424 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5425 && (input_section->flags & SEC_ALLOC) != 0)
5426 {
5427 /* If we're creating a shared library, then we can't know
5428 where the symbol will end up. So, we create a relocation
5429 record in the output, and leave the job up to the dynamic
5430 linker. We must do the same for executable references to
5431 shared library symbols, unless we've decided to use copy
5432 relocs or PLTs instead. */
5433 value = addend;
5434 if (!mips_elf_create_dynamic_relocation (abfd,
5435 info,
5436 relocation,
5437 h,
5438 sec,
5439 symbol,
5440 &value,
5441 input_section))
5442 return bfd_reloc_undefined;
5443 }
5444 else
5445 {
5446 if (r_type != R_MIPS_REL32)
5447 value = symbol + addend;
5448 else
5449 value = addend;
5450 }
5451 value &= howto->dst_mask;
5452 break;
5453
5454 case R_MIPS_PC32:
5455 value = symbol + addend - p;
5456 value &= howto->dst_mask;
5457 break;
5458
5459 case R_MIPS16_26:
5460 /* The calculation for R_MIPS16_26 is just the same as for an
5461 R_MIPS_26. It's only the storage of the relocated field into
5462 the output file that's different. That's handled in
5463 mips_elf_perform_relocation. So, we just fall through to the
5464 R_MIPS_26 case here. */
5465 case R_MIPS_26:
5466 case R_MICROMIPS_26_S1:
5467 {
5468 unsigned int shift;
5469
5470 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5471 the correct ISA mode selector and bit 1 must be 0. */
5472 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5473 return bfd_reloc_outofrange;
5474
5475 /* Shift is 2, unusually, for microMIPS JALX. */
5476 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5477
5478 if (was_local_p)
5479 value = addend | ((p + 4) & (0xfc000000 << shift));
5480 else
5481 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5482 value = (value + symbol) >> shift;
5483 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5484 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5485 value &= howto->dst_mask;
5486 }
5487 break;
5488
5489 case R_MIPS_TLS_DTPREL_HI16:
5490 case R_MICROMIPS_TLS_DTPREL_HI16:
5491 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5492 & howto->dst_mask);
5493 break;
5494
5495 case R_MIPS_TLS_DTPREL_LO16:
5496 case R_MIPS_TLS_DTPREL32:
5497 case R_MIPS_TLS_DTPREL64:
5498 case R_MICROMIPS_TLS_DTPREL_LO16:
5499 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5500 break;
5501
5502 case R_MIPS_TLS_TPREL_HI16:
5503 case R_MICROMIPS_TLS_TPREL_HI16:
5504 value = (mips_elf_high (addend + symbol - tprel_base (info))
5505 & howto->dst_mask);
5506 break;
5507
5508 case R_MIPS_TLS_TPREL_LO16:
5509 case R_MICROMIPS_TLS_TPREL_LO16:
5510 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5511 break;
5512
5513 case R_MIPS_HI16:
5514 case R_MIPS16_HI16:
5515 case R_MICROMIPS_HI16:
5516 if (!gp_disp_p)
5517 {
5518 value = mips_elf_high (addend + symbol);
5519 value &= howto->dst_mask;
5520 }
5521 else
5522 {
5523 /* For MIPS16 ABI code we generate this sequence
5524 0: li $v0,%hi(_gp_disp)
5525 4: addiupc $v1,%lo(_gp_disp)
5526 8: sll $v0,16
5527 12: addu $v0,$v1
5528 14: move $gp,$v0
5529 So the offsets of hi and lo relocs are the same, but the
5530 $pc is four higher than $t9 would be, so reduce
5531 both reloc addends by 4. */
5532 if (r_type == R_MIPS16_HI16)
5533 value = mips_elf_high (addend + gp - p - 4);
5534 /* The microMIPS .cpload sequence uses the same assembly
5535 instructions as the traditional psABI version, but the
5536 incoming $t9 has the low bit set. */
5537 else if (r_type == R_MICROMIPS_HI16)
5538 value = mips_elf_high (addend + gp - p - 1);
5539 else
5540 value = mips_elf_high (addend + gp - p);
5541 overflowed_p = mips_elf_overflow_p (value, 16);
5542 }
5543 break;
5544
5545 case R_MIPS_LO16:
5546 case R_MIPS16_LO16:
5547 case R_MICROMIPS_LO16:
5548 case R_MICROMIPS_HI0_LO16:
5549 if (!gp_disp_p)
5550 value = (symbol + addend) & howto->dst_mask;
5551 else
5552 {
5553 /* See the comment for R_MIPS16_HI16 above for the reason
5554 for this conditional. */
5555 if (r_type == R_MIPS16_LO16)
5556 value = addend + gp - p;
5557 else if (r_type == R_MICROMIPS_LO16
5558 || r_type == R_MICROMIPS_HI0_LO16)
5559 value = addend + gp - p + 3;
5560 else
5561 value = addend + gp - p + 4;
5562 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5563 for overflow. But, on, say, IRIX5, relocations against
5564 _gp_disp are normally generated from the .cpload
5565 pseudo-op. It generates code that normally looks like
5566 this:
5567
5568 lui $gp,%hi(_gp_disp)
5569 addiu $gp,$gp,%lo(_gp_disp)
5570 addu $gp,$gp,$t9
5571
5572 Here $t9 holds the address of the function being called,
5573 as required by the MIPS ELF ABI. The R_MIPS_LO16
5574 relocation can easily overflow in this situation, but the
5575 R_MIPS_HI16 relocation will handle the overflow.
5576 Therefore, we consider this a bug in the MIPS ABI, and do
5577 not check for overflow here. */
5578 }
5579 break;
5580
5581 case R_MIPS_LITERAL:
5582 case R_MICROMIPS_LITERAL:
5583 /* Because we don't merge literal sections, we can handle this
5584 just like R_MIPS_GPREL16. In the long run, we should merge
5585 shared literals, and then we will need to additional work
5586 here. */
5587
5588 /* Fall through. */
5589
5590 case R_MIPS16_GPREL:
5591 /* The R_MIPS16_GPREL performs the same calculation as
5592 R_MIPS_GPREL16, but stores the relocated bits in a different
5593 order. We don't need to do anything special here; the
5594 differences are handled in mips_elf_perform_relocation. */
5595 case R_MIPS_GPREL16:
5596 case R_MICROMIPS_GPREL7_S2:
5597 case R_MICROMIPS_GPREL16:
5598 /* Only sign-extend the addend if it was extracted from the
5599 instruction. If the addend was separate, leave it alone,
5600 otherwise we may lose significant bits. */
5601 if (howto->partial_inplace)
5602 addend = _bfd_mips_elf_sign_extend (addend, 16);
5603 value = symbol + addend - gp;
5604 /* If the symbol was local, any earlier relocatable links will
5605 have adjusted its addend with the gp offset, so compensate
5606 for that now. Don't do it for symbols forced local in this
5607 link, though, since they won't have had the gp offset applied
5608 to them before. */
5609 if (was_local_p)
5610 value += gp0;
5611 overflowed_p = mips_elf_overflow_p (value, 16);
5612 break;
5613
5614 case R_MIPS16_GOT16:
5615 case R_MIPS16_CALL16:
5616 case R_MIPS_GOT16:
5617 case R_MIPS_CALL16:
5618 case R_MICROMIPS_GOT16:
5619 case R_MICROMIPS_CALL16:
5620 /* VxWorks does not have separate local and global semantics for
5621 R_MIPS*_GOT16; every relocation evaluates to "G". */
5622 if (!htab->is_vxworks && local_p)
5623 {
5624 value = mips_elf_got16_entry (abfd, input_bfd, info,
5625 symbol + addend, !was_local_p);
5626 if (value == MINUS_ONE)
5627 return bfd_reloc_outofrange;
5628 value
5629 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5630 overflowed_p = mips_elf_overflow_p (value, 16);
5631 break;
5632 }
5633
5634 /* Fall through. */
5635
5636 case R_MIPS_TLS_GD:
5637 case R_MIPS_TLS_GOTTPREL:
5638 case R_MIPS_TLS_LDM:
5639 case R_MIPS_GOT_DISP:
5640 case R_MICROMIPS_TLS_GD:
5641 case R_MICROMIPS_TLS_GOTTPREL:
5642 case R_MICROMIPS_TLS_LDM:
5643 case R_MICROMIPS_GOT_DISP:
5644 value = g;
5645 overflowed_p = mips_elf_overflow_p (value, 16);
5646 break;
5647
5648 case R_MIPS_GPREL32:
5649 value = (addend + symbol + gp0 - gp);
5650 if (!save_addend)
5651 value &= howto->dst_mask;
5652 break;
5653
5654 case R_MIPS_PC16:
5655 case R_MIPS_GNU_REL16_S2:
5656 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5657 overflowed_p = mips_elf_overflow_p (value, 18);
5658 value >>= howto->rightshift;
5659 value &= howto->dst_mask;
5660 break;
5661
5662 case R_MICROMIPS_PC7_S1:
5663 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5664 overflowed_p = mips_elf_overflow_p (value, 8);
5665 value >>= howto->rightshift;
5666 value &= howto->dst_mask;
5667 break;
5668
5669 case R_MICROMIPS_PC10_S1:
5670 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5671 overflowed_p = mips_elf_overflow_p (value, 11);
5672 value >>= howto->rightshift;
5673 value &= howto->dst_mask;
5674 break;
5675
5676 case R_MICROMIPS_PC16_S1:
5677 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5678 overflowed_p = mips_elf_overflow_p (value, 17);
5679 value >>= howto->rightshift;
5680 value &= howto->dst_mask;
5681 break;
5682
5683 case R_MICROMIPS_PC23_S2:
5684 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5685 overflowed_p = mips_elf_overflow_p (value, 25);
5686 value >>= howto->rightshift;
5687 value &= howto->dst_mask;
5688 break;
5689
5690 case R_MIPS_GOT_HI16:
5691 case R_MIPS_CALL_HI16:
5692 case R_MICROMIPS_GOT_HI16:
5693 case R_MICROMIPS_CALL_HI16:
5694 /* We're allowed to handle these two relocations identically.
5695 The dynamic linker is allowed to handle the CALL relocations
5696 differently by creating a lazy evaluation stub. */
5697 value = g;
5698 value = mips_elf_high (value);
5699 value &= howto->dst_mask;
5700 break;
5701
5702 case R_MIPS_GOT_LO16:
5703 case R_MIPS_CALL_LO16:
5704 case R_MICROMIPS_GOT_LO16:
5705 case R_MICROMIPS_CALL_LO16:
5706 value = g & howto->dst_mask;
5707 break;
5708
5709 case R_MIPS_GOT_PAGE:
5710 case R_MICROMIPS_GOT_PAGE:
5711 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5712 if (value == MINUS_ONE)
5713 return bfd_reloc_outofrange;
5714 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5715 overflowed_p = mips_elf_overflow_p (value, 16);
5716 break;
5717
5718 case R_MIPS_GOT_OFST:
5719 case R_MICROMIPS_GOT_OFST:
5720 if (local_p)
5721 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5722 else
5723 value = addend;
5724 overflowed_p = mips_elf_overflow_p (value, 16);
5725 break;
5726
5727 case R_MIPS_SUB:
5728 case R_MICROMIPS_SUB:
5729 value = symbol - addend;
5730 value &= howto->dst_mask;
5731 break;
5732
5733 case R_MIPS_HIGHER:
5734 case R_MICROMIPS_HIGHER:
5735 value = mips_elf_higher (addend + symbol);
5736 value &= howto->dst_mask;
5737 break;
5738
5739 case R_MIPS_HIGHEST:
5740 case R_MICROMIPS_HIGHEST:
5741 value = mips_elf_highest (addend + symbol);
5742 value &= howto->dst_mask;
5743 break;
5744
5745 case R_MIPS_SCN_DISP:
5746 case R_MICROMIPS_SCN_DISP:
5747 value = symbol + addend - sec->output_offset;
5748 value &= howto->dst_mask;
5749 break;
5750
5751 case R_MIPS_JALR:
5752 case R_MICROMIPS_JALR:
5753 /* This relocation is only a hint. In some cases, we optimize
5754 it into a bal instruction. But we don't try to optimize
5755 when the symbol does not resolve locally. */
5756 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5757 return bfd_reloc_continue;
5758 value = symbol + addend;
5759 break;
5760
5761 case R_MIPS_PJUMP:
5762 case R_MIPS_GNU_VTINHERIT:
5763 case R_MIPS_GNU_VTENTRY:
5764 /* We don't do anything with these at present. */
5765 return bfd_reloc_continue;
5766
5767 default:
5768 /* An unrecognized relocation type. */
5769 return bfd_reloc_notsupported;
5770 }
5771
5772 /* Store the VALUE for our caller. */
5773 *valuep = value;
5774 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5775 }
5776
5777 /* Obtain the field relocated by RELOCATION. */
5778
5779 static bfd_vma
5780 mips_elf_obtain_contents (reloc_howto_type *howto,
5781 const Elf_Internal_Rela *relocation,
5782 bfd *input_bfd, bfd_byte *contents)
5783 {
5784 bfd_vma x;
5785 bfd_byte *location = contents + relocation->r_offset;
5786
5787 /* Obtain the bytes. */
5788 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5789
5790 return x;
5791 }
5792
5793 /* It has been determined that the result of the RELOCATION is the
5794 VALUE. Use HOWTO to place VALUE into the output file at the
5795 appropriate position. The SECTION is the section to which the
5796 relocation applies.
5797 CROSS_MODE_JUMP_P is true if the relocation field
5798 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5799
5800 Returns FALSE if anything goes wrong. */
5801
5802 static bfd_boolean
5803 mips_elf_perform_relocation (struct bfd_link_info *info,
5804 reloc_howto_type *howto,
5805 const Elf_Internal_Rela *relocation,
5806 bfd_vma value, bfd *input_bfd,
5807 asection *input_section, bfd_byte *contents,
5808 bfd_boolean cross_mode_jump_p)
5809 {
5810 bfd_vma x;
5811 bfd_byte *location;
5812 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5813
5814 /* Figure out where the relocation is occurring. */
5815 location = contents + relocation->r_offset;
5816
5817 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5818
5819 /* Obtain the current value. */
5820 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5821
5822 /* Clear the field we are setting. */
5823 x &= ~howto->dst_mask;
5824
5825 /* Set the field. */
5826 x |= (value & howto->dst_mask);
5827
5828 /* If required, turn JAL into JALX. */
5829 if (cross_mode_jump_p && jal_reloc_p (r_type))
5830 {
5831 bfd_boolean ok;
5832 bfd_vma opcode = x >> 26;
5833 bfd_vma jalx_opcode;
5834
5835 /* Check to see if the opcode is already JAL or JALX. */
5836 if (r_type == R_MIPS16_26)
5837 {
5838 ok = ((opcode == 0x6) || (opcode == 0x7));
5839 jalx_opcode = 0x7;
5840 }
5841 else if (r_type == R_MICROMIPS_26_S1)
5842 {
5843 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5844 jalx_opcode = 0x3c;
5845 }
5846 else
5847 {
5848 ok = ((opcode == 0x3) || (opcode == 0x1d));
5849 jalx_opcode = 0x1d;
5850 }
5851
5852 /* If the opcode is not JAL or JALX, there's a problem. */
5853 if (!ok)
5854 {
5855 (*_bfd_error_handler)
5856 (_("%B: %A+0x%lx: Direct jumps between ISA modes are not allowed; consider recompiling with interlinking enabled."),
5857 input_bfd,
5858 input_section,
5859 (unsigned long) relocation->r_offset);
5860 bfd_set_error (bfd_error_bad_value);
5861 return FALSE;
5862 }
5863
5864 /* Make this the JALX opcode. */
5865 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5866 }
5867
5868 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5869 range. */
5870 if (!info->relocatable
5871 && !cross_mode_jump_p
5872 && ((JAL_TO_BAL_P (input_bfd)
5873 && r_type == R_MIPS_26
5874 && (x >> 26) == 0x3) /* jal addr */
5875 || (JALR_TO_BAL_P (input_bfd)
5876 && r_type == R_MIPS_JALR
5877 && x == 0x0320f809) /* jalr t9 */
5878 || (JR_TO_B_P (input_bfd)
5879 && r_type == R_MIPS_JALR
5880 && x == 0x03200008))) /* jr t9 */
5881 {
5882 bfd_vma addr;
5883 bfd_vma dest;
5884 bfd_signed_vma off;
5885
5886 addr = (input_section->output_section->vma
5887 + input_section->output_offset
5888 + relocation->r_offset
5889 + 4);
5890 if (r_type == R_MIPS_26)
5891 dest = (value << 2) | ((addr >> 28) << 28);
5892 else
5893 dest = value;
5894 off = dest - addr;
5895 if (off <= 0x1ffff && off >= -0x20000)
5896 {
5897 if (x == 0x03200008) /* jr t9 */
5898 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5899 else
5900 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5901 }
5902 }
5903
5904 /* Put the value into the output. */
5905 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5906
5907 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
5908 location);
5909
5910 return TRUE;
5911 }
5912 \f
5913 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5914 is the original relocation, which is now being transformed into a
5915 dynamic relocation. The ADDENDP is adjusted if necessary; the
5916 caller should store the result in place of the original addend. */
5917
5918 static bfd_boolean
5919 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5920 struct bfd_link_info *info,
5921 const Elf_Internal_Rela *rel,
5922 struct mips_elf_link_hash_entry *h,
5923 asection *sec, bfd_vma symbol,
5924 bfd_vma *addendp, asection *input_section)
5925 {
5926 Elf_Internal_Rela outrel[3];
5927 asection *sreloc;
5928 bfd *dynobj;
5929 int r_type;
5930 long indx;
5931 bfd_boolean defined_p;
5932 struct mips_elf_link_hash_table *htab;
5933
5934 htab = mips_elf_hash_table (info);
5935 BFD_ASSERT (htab != NULL);
5936
5937 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5938 dynobj = elf_hash_table (info)->dynobj;
5939 sreloc = mips_elf_rel_dyn_section (info, FALSE);
5940 BFD_ASSERT (sreloc != NULL);
5941 BFD_ASSERT (sreloc->contents != NULL);
5942 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5943 < sreloc->size);
5944
5945 outrel[0].r_offset =
5946 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5947 if (ABI_64_P (output_bfd))
5948 {
5949 outrel[1].r_offset =
5950 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5951 outrel[2].r_offset =
5952 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5953 }
5954
5955 if (outrel[0].r_offset == MINUS_ONE)
5956 /* The relocation field has been deleted. */
5957 return TRUE;
5958
5959 if (outrel[0].r_offset == MINUS_TWO)
5960 {
5961 /* The relocation field has been converted into a relative value of
5962 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5963 the field to be fully relocated, so add in the symbol's value. */
5964 *addendp += symbol;
5965 return TRUE;
5966 }
5967
5968 /* We must now calculate the dynamic symbol table index to use
5969 in the relocation. */
5970 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5971 {
5972 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5973 indx = h->root.dynindx;
5974 if (SGI_COMPAT (output_bfd))
5975 defined_p = h->root.def_regular;
5976 else
5977 /* ??? glibc's ld.so just adds the final GOT entry to the
5978 relocation field. It therefore treats relocs against
5979 defined symbols in the same way as relocs against
5980 undefined symbols. */
5981 defined_p = FALSE;
5982 }
5983 else
5984 {
5985 if (sec != NULL && bfd_is_abs_section (sec))
5986 indx = 0;
5987 else if (sec == NULL || sec->owner == NULL)
5988 {
5989 bfd_set_error (bfd_error_bad_value);
5990 return FALSE;
5991 }
5992 else
5993 {
5994 indx = elf_section_data (sec->output_section)->dynindx;
5995 if (indx == 0)
5996 {
5997 asection *osec = htab->root.text_index_section;
5998 indx = elf_section_data (osec)->dynindx;
5999 }
6000 if (indx == 0)
6001 abort ();
6002 }
6003
6004 /* Instead of generating a relocation using the section
6005 symbol, we may as well make it a fully relative
6006 relocation. We want to avoid generating relocations to
6007 local symbols because we used to generate them
6008 incorrectly, without adding the original symbol value,
6009 which is mandated by the ABI for section symbols. In
6010 order to give dynamic loaders and applications time to
6011 phase out the incorrect use, we refrain from emitting
6012 section-relative relocations. It's not like they're
6013 useful, after all. This should be a bit more efficient
6014 as well. */
6015 /* ??? Although this behavior is compatible with glibc's ld.so,
6016 the ABI says that relocations against STN_UNDEF should have
6017 a symbol value of 0. Irix rld honors this, so relocations
6018 against STN_UNDEF have no effect. */
6019 if (!SGI_COMPAT (output_bfd))
6020 indx = 0;
6021 defined_p = TRUE;
6022 }
6023
6024 /* If the relocation was previously an absolute relocation and
6025 this symbol will not be referred to by the relocation, we must
6026 adjust it by the value we give it in the dynamic symbol table.
6027 Otherwise leave the job up to the dynamic linker. */
6028 if (defined_p && r_type != R_MIPS_REL32)
6029 *addendp += symbol;
6030
6031 if (htab->is_vxworks)
6032 /* VxWorks uses non-relative relocations for this. */
6033 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6034 else
6035 /* The relocation is always an REL32 relocation because we don't
6036 know where the shared library will wind up at load-time. */
6037 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6038 R_MIPS_REL32);
6039
6040 /* For strict adherence to the ABI specification, we should
6041 generate a R_MIPS_64 relocation record by itself before the
6042 _REL32/_64 record as well, such that the addend is read in as
6043 a 64-bit value (REL32 is a 32-bit relocation, after all).
6044 However, since none of the existing ELF64 MIPS dynamic
6045 loaders seems to care, we don't waste space with these
6046 artificial relocations. If this turns out to not be true,
6047 mips_elf_allocate_dynamic_relocation() should be tweaked so
6048 as to make room for a pair of dynamic relocations per
6049 invocation if ABI_64_P, and here we should generate an
6050 additional relocation record with R_MIPS_64 by itself for a
6051 NULL symbol before this relocation record. */
6052 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6053 ABI_64_P (output_bfd)
6054 ? R_MIPS_64
6055 : R_MIPS_NONE);
6056 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6057
6058 /* Adjust the output offset of the relocation to reference the
6059 correct location in the output file. */
6060 outrel[0].r_offset += (input_section->output_section->vma
6061 + input_section->output_offset);
6062 outrel[1].r_offset += (input_section->output_section->vma
6063 + input_section->output_offset);
6064 outrel[2].r_offset += (input_section->output_section->vma
6065 + input_section->output_offset);
6066
6067 /* Put the relocation back out. We have to use the special
6068 relocation outputter in the 64-bit case since the 64-bit
6069 relocation format is non-standard. */
6070 if (ABI_64_P (output_bfd))
6071 {
6072 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6073 (output_bfd, &outrel[0],
6074 (sreloc->contents
6075 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6076 }
6077 else if (htab->is_vxworks)
6078 {
6079 /* VxWorks uses RELA rather than REL dynamic relocations. */
6080 outrel[0].r_addend = *addendp;
6081 bfd_elf32_swap_reloca_out
6082 (output_bfd, &outrel[0],
6083 (sreloc->contents
6084 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6085 }
6086 else
6087 bfd_elf32_swap_reloc_out
6088 (output_bfd, &outrel[0],
6089 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6090
6091 /* We've now added another relocation. */
6092 ++sreloc->reloc_count;
6093
6094 /* Make sure the output section is writable. The dynamic linker
6095 will be writing to it. */
6096 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6097 |= SHF_WRITE;
6098
6099 /* On IRIX5, make an entry of compact relocation info. */
6100 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6101 {
6102 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
6103 bfd_byte *cr;
6104
6105 if (scpt)
6106 {
6107 Elf32_crinfo cptrel;
6108
6109 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6110 cptrel.vaddr = (rel->r_offset
6111 + input_section->output_section->vma
6112 + input_section->output_offset);
6113 if (r_type == R_MIPS_REL32)
6114 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6115 else
6116 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6117 mips_elf_set_cr_dist2to (cptrel, 0);
6118 cptrel.konst = *addendp;
6119
6120 cr = (scpt->contents
6121 + sizeof (Elf32_External_compact_rel));
6122 mips_elf_set_cr_relvaddr (cptrel, 0);
6123 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6124 ((Elf32_External_crinfo *) cr
6125 + scpt->reloc_count));
6126 ++scpt->reloc_count;
6127 }
6128 }
6129
6130 /* If we've written this relocation for a readonly section,
6131 we need to set DF_TEXTREL again, so that we do not delete the
6132 DT_TEXTREL tag. */
6133 if (MIPS_ELF_READONLY_SECTION (input_section))
6134 info->flags |= DF_TEXTREL;
6135
6136 return TRUE;
6137 }
6138 \f
6139 /* Return the MACH for a MIPS e_flags value. */
6140
6141 unsigned long
6142 _bfd_elf_mips_mach (flagword flags)
6143 {
6144 switch (flags & EF_MIPS_MACH)
6145 {
6146 case E_MIPS_MACH_3900:
6147 return bfd_mach_mips3900;
6148
6149 case E_MIPS_MACH_4010:
6150 return bfd_mach_mips4010;
6151
6152 case E_MIPS_MACH_4100:
6153 return bfd_mach_mips4100;
6154
6155 case E_MIPS_MACH_4111:
6156 return bfd_mach_mips4111;
6157
6158 case E_MIPS_MACH_4120:
6159 return bfd_mach_mips4120;
6160
6161 case E_MIPS_MACH_4650:
6162 return bfd_mach_mips4650;
6163
6164 case E_MIPS_MACH_5400:
6165 return bfd_mach_mips5400;
6166
6167 case E_MIPS_MACH_5500:
6168 return bfd_mach_mips5500;
6169
6170 case E_MIPS_MACH_9000:
6171 return bfd_mach_mips9000;
6172
6173 case E_MIPS_MACH_SB1:
6174 return bfd_mach_mips_sb1;
6175
6176 case E_MIPS_MACH_LS2E:
6177 return bfd_mach_mips_loongson_2e;
6178
6179 case E_MIPS_MACH_LS2F:
6180 return bfd_mach_mips_loongson_2f;
6181
6182 case E_MIPS_MACH_LS3A:
6183 return bfd_mach_mips_loongson_3a;
6184
6185 case E_MIPS_MACH_OCTEON:
6186 return bfd_mach_mips_octeon;
6187
6188 case E_MIPS_MACH_XLR:
6189 return bfd_mach_mips_xlr;
6190
6191 default:
6192 switch (flags & EF_MIPS_ARCH)
6193 {
6194 default:
6195 case E_MIPS_ARCH_1:
6196 return bfd_mach_mips3000;
6197
6198 case E_MIPS_ARCH_2:
6199 return bfd_mach_mips6000;
6200
6201 case E_MIPS_ARCH_3:
6202 return bfd_mach_mips4000;
6203
6204 case E_MIPS_ARCH_4:
6205 return bfd_mach_mips8000;
6206
6207 case E_MIPS_ARCH_5:
6208 return bfd_mach_mips5;
6209
6210 case E_MIPS_ARCH_32:
6211 return bfd_mach_mipsisa32;
6212
6213 case E_MIPS_ARCH_64:
6214 return bfd_mach_mipsisa64;
6215
6216 case E_MIPS_ARCH_32R2:
6217 return bfd_mach_mipsisa32r2;
6218
6219 case E_MIPS_ARCH_64R2:
6220 return bfd_mach_mipsisa64r2;
6221 }
6222 }
6223
6224 return 0;
6225 }
6226
6227 /* Return printable name for ABI. */
6228
6229 static INLINE char *
6230 elf_mips_abi_name (bfd *abfd)
6231 {
6232 flagword flags;
6233
6234 flags = elf_elfheader (abfd)->e_flags;
6235 switch (flags & EF_MIPS_ABI)
6236 {
6237 case 0:
6238 if (ABI_N32_P (abfd))
6239 return "N32";
6240 else if (ABI_64_P (abfd))
6241 return "64";
6242 else
6243 return "none";
6244 case E_MIPS_ABI_O32:
6245 return "O32";
6246 case E_MIPS_ABI_O64:
6247 return "O64";
6248 case E_MIPS_ABI_EABI32:
6249 return "EABI32";
6250 case E_MIPS_ABI_EABI64:
6251 return "EABI64";
6252 default:
6253 return "unknown abi";
6254 }
6255 }
6256 \f
6257 /* MIPS ELF uses two common sections. One is the usual one, and the
6258 other is for small objects. All the small objects are kept
6259 together, and then referenced via the gp pointer, which yields
6260 faster assembler code. This is what we use for the small common
6261 section. This approach is copied from ecoff.c. */
6262 static asection mips_elf_scom_section;
6263 static asymbol mips_elf_scom_symbol;
6264 static asymbol *mips_elf_scom_symbol_ptr;
6265
6266 /* MIPS ELF also uses an acommon section, which represents an
6267 allocated common symbol which may be overridden by a
6268 definition in a shared library. */
6269 static asection mips_elf_acom_section;
6270 static asymbol mips_elf_acom_symbol;
6271 static asymbol *mips_elf_acom_symbol_ptr;
6272
6273 /* This is used for both the 32-bit and the 64-bit ABI. */
6274
6275 void
6276 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6277 {
6278 elf_symbol_type *elfsym;
6279
6280 /* Handle the special MIPS section numbers that a symbol may use. */
6281 elfsym = (elf_symbol_type *) asym;
6282 switch (elfsym->internal_elf_sym.st_shndx)
6283 {
6284 case SHN_MIPS_ACOMMON:
6285 /* This section is used in a dynamically linked executable file.
6286 It is an allocated common section. The dynamic linker can
6287 either resolve these symbols to something in a shared
6288 library, or it can just leave them here. For our purposes,
6289 we can consider these symbols to be in a new section. */
6290 if (mips_elf_acom_section.name == NULL)
6291 {
6292 /* Initialize the acommon section. */
6293 mips_elf_acom_section.name = ".acommon";
6294 mips_elf_acom_section.flags = SEC_ALLOC;
6295 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6296 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6297 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6298 mips_elf_acom_symbol.name = ".acommon";
6299 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6300 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6301 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6302 }
6303 asym->section = &mips_elf_acom_section;
6304 break;
6305
6306 case SHN_COMMON:
6307 /* Common symbols less than the GP size are automatically
6308 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6309 if (asym->value > elf_gp_size (abfd)
6310 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6311 || IRIX_COMPAT (abfd) == ict_irix6)
6312 break;
6313 /* Fall through. */
6314 case SHN_MIPS_SCOMMON:
6315 if (mips_elf_scom_section.name == NULL)
6316 {
6317 /* Initialize the small common section. */
6318 mips_elf_scom_section.name = ".scommon";
6319 mips_elf_scom_section.flags = SEC_IS_COMMON;
6320 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6321 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6322 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6323 mips_elf_scom_symbol.name = ".scommon";
6324 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6325 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6326 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6327 }
6328 asym->section = &mips_elf_scom_section;
6329 asym->value = elfsym->internal_elf_sym.st_size;
6330 break;
6331
6332 case SHN_MIPS_SUNDEFINED:
6333 asym->section = bfd_und_section_ptr;
6334 break;
6335
6336 case SHN_MIPS_TEXT:
6337 {
6338 asection *section = bfd_get_section_by_name (abfd, ".text");
6339
6340 if (section != NULL)
6341 {
6342 asym->section = section;
6343 /* MIPS_TEXT is a bit special, the address is not an offset
6344 to the base of the .text section. So substract the section
6345 base address to make it an offset. */
6346 asym->value -= section->vma;
6347 }
6348 }
6349 break;
6350
6351 case SHN_MIPS_DATA:
6352 {
6353 asection *section = bfd_get_section_by_name (abfd, ".data");
6354
6355 if (section != NULL)
6356 {
6357 asym->section = section;
6358 /* MIPS_DATA is a bit special, the address is not an offset
6359 to the base of the .data section. So substract the section
6360 base address to make it an offset. */
6361 asym->value -= section->vma;
6362 }
6363 }
6364 break;
6365 }
6366
6367 /* If this is an odd-valued function symbol, assume it's a MIPS16
6368 or microMIPS one. */
6369 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6370 && (asym->value & 1) != 0)
6371 {
6372 asym->value--;
6373 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6374 elfsym->internal_elf_sym.st_other
6375 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6376 else
6377 elfsym->internal_elf_sym.st_other
6378 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6379 }
6380 }
6381 \f
6382 /* Implement elf_backend_eh_frame_address_size. This differs from
6383 the default in the way it handles EABI64.
6384
6385 EABI64 was originally specified as an LP64 ABI, and that is what
6386 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6387 historically accepted the combination of -mabi=eabi and -mlong32,
6388 and this ILP32 variation has become semi-official over time.
6389 Both forms use elf32 and have pointer-sized FDE addresses.
6390
6391 If an EABI object was generated by GCC 4.0 or above, it will have
6392 an empty .gcc_compiled_longXX section, where XX is the size of longs
6393 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6394 have no special marking to distinguish them from LP64 objects.
6395
6396 We don't want users of the official LP64 ABI to be punished for the
6397 existence of the ILP32 variant, but at the same time, we don't want
6398 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6399 We therefore take the following approach:
6400
6401 - If ABFD contains a .gcc_compiled_longXX section, use it to
6402 determine the pointer size.
6403
6404 - Otherwise check the type of the first relocation. Assume that
6405 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6406
6407 - Otherwise punt.
6408
6409 The second check is enough to detect LP64 objects generated by pre-4.0
6410 compilers because, in the kind of output generated by those compilers,
6411 the first relocation will be associated with either a CIE personality
6412 routine or an FDE start address. Furthermore, the compilers never
6413 used a special (non-pointer) encoding for this ABI.
6414
6415 Checking the relocation type should also be safe because there is no
6416 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6417 did so. */
6418
6419 unsigned int
6420 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6421 {
6422 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6423 return 8;
6424 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6425 {
6426 bfd_boolean long32_p, long64_p;
6427
6428 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6429 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6430 if (long32_p && long64_p)
6431 return 0;
6432 if (long32_p)
6433 return 4;
6434 if (long64_p)
6435 return 8;
6436
6437 if (sec->reloc_count > 0
6438 && elf_section_data (sec)->relocs != NULL
6439 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6440 == R_MIPS_64))
6441 return 8;
6442
6443 return 0;
6444 }
6445 return 4;
6446 }
6447 \f
6448 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6449 relocations against two unnamed section symbols to resolve to the
6450 same address. For example, if we have code like:
6451
6452 lw $4,%got_disp(.data)($gp)
6453 lw $25,%got_disp(.text)($gp)
6454 jalr $25
6455
6456 then the linker will resolve both relocations to .data and the program
6457 will jump there rather than to .text.
6458
6459 We can work around this problem by giving names to local section symbols.
6460 This is also what the MIPSpro tools do. */
6461
6462 bfd_boolean
6463 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6464 {
6465 return SGI_COMPAT (abfd);
6466 }
6467 \f
6468 /* Work over a section just before writing it out. This routine is
6469 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6470 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6471 a better way. */
6472
6473 bfd_boolean
6474 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6475 {
6476 if (hdr->sh_type == SHT_MIPS_REGINFO
6477 && hdr->sh_size > 0)
6478 {
6479 bfd_byte buf[4];
6480
6481 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6482 BFD_ASSERT (hdr->contents == NULL);
6483
6484 if (bfd_seek (abfd,
6485 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6486 SEEK_SET) != 0)
6487 return FALSE;
6488 H_PUT_32 (abfd, elf_gp (abfd), buf);
6489 if (bfd_bwrite (buf, 4, abfd) != 4)
6490 return FALSE;
6491 }
6492
6493 if (hdr->sh_type == SHT_MIPS_OPTIONS
6494 && hdr->bfd_section != NULL
6495 && mips_elf_section_data (hdr->bfd_section) != NULL
6496 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6497 {
6498 bfd_byte *contents, *l, *lend;
6499
6500 /* We stored the section contents in the tdata field in the
6501 set_section_contents routine. We save the section contents
6502 so that we don't have to read them again.
6503 At this point we know that elf_gp is set, so we can look
6504 through the section contents to see if there is an
6505 ODK_REGINFO structure. */
6506
6507 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6508 l = contents;
6509 lend = contents + hdr->sh_size;
6510 while (l + sizeof (Elf_External_Options) <= lend)
6511 {
6512 Elf_Internal_Options intopt;
6513
6514 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6515 &intopt);
6516 if (intopt.size < sizeof (Elf_External_Options))
6517 {
6518 (*_bfd_error_handler)
6519 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6520 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6521 break;
6522 }
6523 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6524 {
6525 bfd_byte buf[8];
6526
6527 if (bfd_seek (abfd,
6528 (hdr->sh_offset
6529 + (l - contents)
6530 + sizeof (Elf_External_Options)
6531 + (sizeof (Elf64_External_RegInfo) - 8)),
6532 SEEK_SET) != 0)
6533 return FALSE;
6534 H_PUT_64 (abfd, elf_gp (abfd), buf);
6535 if (bfd_bwrite (buf, 8, abfd) != 8)
6536 return FALSE;
6537 }
6538 else if (intopt.kind == ODK_REGINFO)
6539 {
6540 bfd_byte buf[4];
6541
6542 if (bfd_seek (abfd,
6543 (hdr->sh_offset
6544 + (l - contents)
6545 + sizeof (Elf_External_Options)
6546 + (sizeof (Elf32_External_RegInfo) - 4)),
6547 SEEK_SET) != 0)
6548 return FALSE;
6549 H_PUT_32 (abfd, elf_gp (abfd), buf);
6550 if (bfd_bwrite (buf, 4, abfd) != 4)
6551 return FALSE;
6552 }
6553 l += intopt.size;
6554 }
6555 }
6556
6557 if (hdr->bfd_section != NULL)
6558 {
6559 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6560
6561 /* .sbss is not handled specially here because the GNU/Linux
6562 prelinker can convert .sbss from NOBITS to PROGBITS and
6563 changing it back to NOBITS breaks the binary. The entry in
6564 _bfd_mips_elf_special_sections will ensure the correct flags
6565 are set on .sbss if BFD creates it without reading it from an
6566 input file, and without special handling here the flags set
6567 on it in an input file will be followed. */
6568 if (strcmp (name, ".sdata") == 0
6569 || strcmp (name, ".lit8") == 0
6570 || strcmp (name, ".lit4") == 0)
6571 {
6572 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6573 hdr->sh_type = SHT_PROGBITS;
6574 }
6575 else if (strcmp (name, ".srdata") == 0)
6576 {
6577 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6578 hdr->sh_type = SHT_PROGBITS;
6579 }
6580 else if (strcmp (name, ".compact_rel") == 0)
6581 {
6582 hdr->sh_flags = 0;
6583 hdr->sh_type = SHT_PROGBITS;
6584 }
6585 else if (strcmp (name, ".rtproc") == 0)
6586 {
6587 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6588 {
6589 unsigned int adjust;
6590
6591 adjust = hdr->sh_size % hdr->sh_addralign;
6592 if (adjust != 0)
6593 hdr->sh_size += hdr->sh_addralign - adjust;
6594 }
6595 }
6596 }
6597
6598 return TRUE;
6599 }
6600
6601 /* Handle a MIPS specific section when reading an object file. This
6602 is called when elfcode.h finds a section with an unknown type.
6603 This routine supports both the 32-bit and 64-bit ELF ABI.
6604
6605 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6606 how to. */
6607
6608 bfd_boolean
6609 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6610 Elf_Internal_Shdr *hdr,
6611 const char *name,
6612 int shindex)
6613 {
6614 flagword flags = 0;
6615
6616 /* There ought to be a place to keep ELF backend specific flags, but
6617 at the moment there isn't one. We just keep track of the
6618 sections by their name, instead. Fortunately, the ABI gives
6619 suggested names for all the MIPS specific sections, so we will
6620 probably get away with this. */
6621 switch (hdr->sh_type)
6622 {
6623 case SHT_MIPS_LIBLIST:
6624 if (strcmp (name, ".liblist") != 0)
6625 return FALSE;
6626 break;
6627 case SHT_MIPS_MSYM:
6628 if (strcmp (name, ".msym") != 0)
6629 return FALSE;
6630 break;
6631 case SHT_MIPS_CONFLICT:
6632 if (strcmp (name, ".conflict") != 0)
6633 return FALSE;
6634 break;
6635 case SHT_MIPS_GPTAB:
6636 if (! CONST_STRNEQ (name, ".gptab."))
6637 return FALSE;
6638 break;
6639 case SHT_MIPS_UCODE:
6640 if (strcmp (name, ".ucode") != 0)
6641 return FALSE;
6642 break;
6643 case SHT_MIPS_DEBUG:
6644 if (strcmp (name, ".mdebug") != 0)
6645 return FALSE;
6646 flags = SEC_DEBUGGING;
6647 break;
6648 case SHT_MIPS_REGINFO:
6649 if (strcmp (name, ".reginfo") != 0
6650 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6651 return FALSE;
6652 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6653 break;
6654 case SHT_MIPS_IFACE:
6655 if (strcmp (name, ".MIPS.interfaces") != 0)
6656 return FALSE;
6657 break;
6658 case SHT_MIPS_CONTENT:
6659 if (! CONST_STRNEQ (name, ".MIPS.content"))
6660 return FALSE;
6661 break;
6662 case SHT_MIPS_OPTIONS:
6663 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6664 return FALSE;
6665 break;
6666 case SHT_MIPS_DWARF:
6667 if (! CONST_STRNEQ (name, ".debug_")
6668 && ! CONST_STRNEQ (name, ".zdebug_"))
6669 return FALSE;
6670 break;
6671 case SHT_MIPS_SYMBOL_LIB:
6672 if (strcmp (name, ".MIPS.symlib") != 0)
6673 return FALSE;
6674 break;
6675 case SHT_MIPS_EVENTS:
6676 if (! CONST_STRNEQ (name, ".MIPS.events")
6677 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6678 return FALSE;
6679 break;
6680 default:
6681 break;
6682 }
6683
6684 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6685 return FALSE;
6686
6687 if (flags)
6688 {
6689 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6690 (bfd_get_section_flags (abfd,
6691 hdr->bfd_section)
6692 | flags)))
6693 return FALSE;
6694 }
6695
6696 /* FIXME: We should record sh_info for a .gptab section. */
6697
6698 /* For a .reginfo section, set the gp value in the tdata information
6699 from the contents of this section. We need the gp value while
6700 processing relocs, so we just get it now. The .reginfo section
6701 is not used in the 64-bit MIPS ELF ABI. */
6702 if (hdr->sh_type == SHT_MIPS_REGINFO)
6703 {
6704 Elf32_External_RegInfo ext;
6705 Elf32_RegInfo s;
6706
6707 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6708 &ext, 0, sizeof ext))
6709 return FALSE;
6710 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6711 elf_gp (abfd) = s.ri_gp_value;
6712 }
6713
6714 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6715 set the gp value based on what we find. We may see both
6716 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6717 they should agree. */
6718 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6719 {
6720 bfd_byte *contents, *l, *lend;
6721
6722 contents = bfd_malloc (hdr->sh_size);
6723 if (contents == NULL)
6724 return FALSE;
6725 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6726 0, hdr->sh_size))
6727 {
6728 free (contents);
6729 return FALSE;
6730 }
6731 l = contents;
6732 lend = contents + hdr->sh_size;
6733 while (l + sizeof (Elf_External_Options) <= lend)
6734 {
6735 Elf_Internal_Options intopt;
6736
6737 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6738 &intopt);
6739 if (intopt.size < sizeof (Elf_External_Options))
6740 {
6741 (*_bfd_error_handler)
6742 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6743 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6744 break;
6745 }
6746 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6747 {
6748 Elf64_Internal_RegInfo intreg;
6749
6750 bfd_mips_elf64_swap_reginfo_in
6751 (abfd,
6752 ((Elf64_External_RegInfo *)
6753 (l + sizeof (Elf_External_Options))),
6754 &intreg);
6755 elf_gp (abfd) = intreg.ri_gp_value;
6756 }
6757 else if (intopt.kind == ODK_REGINFO)
6758 {
6759 Elf32_RegInfo intreg;
6760
6761 bfd_mips_elf32_swap_reginfo_in
6762 (abfd,
6763 ((Elf32_External_RegInfo *)
6764 (l + sizeof (Elf_External_Options))),
6765 &intreg);
6766 elf_gp (abfd) = intreg.ri_gp_value;
6767 }
6768 l += intopt.size;
6769 }
6770 free (contents);
6771 }
6772
6773 return TRUE;
6774 }
6775
6776 /* Set the correct type for a MIPS ELF section. We do this by the
6777 section name, which is a hack, but ought to work. This routine is
6778 used by both the 32-bit and the 64-bit ABI. */
6779
6780 bfd_boolean
6781 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6782 {
6783 const char *name = bfd_get_section_name (abfd, sec);
6784
6785 if (strcmp (name, ".liblist") == 0)
6786 {
6787 hdr->sh_type = SHT_MIPS_LIBLIST;
6788 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6789 /* The sh_link field is set in final_write_processing. */
6790 }
6791 else if (strcmp (name, ".conflict") == 0)
6792 hdr->sh_type = SHT_MIPS_CONFLICT;
6793 else if (CONST_STRNEQ (name, ".gptab."))
6794 {
6795 hdr->sh_type = SHT_MIPS_GPTAB;
6796 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6797 /* The sh_info field is set in final_write_processing. */
6798 }
6799 else if (strcmp (name, ".ucode") == 0)
6800 hdr->sh_type = SHT_MIPS_UCODE;
6801 else if (strcmp (name, ".mdebug") == 0)
6802 {
6803 hdr->sh_type = SHT_MIPS_DEBUG;
6804 /* In a shared object on IRIX 5.3, the .mdebug section has an
6805 entsize of 0. FIXME: Does this matter? */
6806 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6807 hdr->sh_entsize = 0;
6808 else
6809 hdr->sh_entsize = 1;
6810 }
6811 else if (strcmp (name, ".reginfo") == 0)
6812 {
6813 hdr->sh_type = SHT_MIPS_REGINFO;
6814 /* In a shared object on IRIX 5.3, the .reginfo section has an
6815 entsize of 0x18. FIXME: Does this matter? */
6816 if (SGI_COMPAT (abfd))
6817 {
6818 if ((abfd->flags & DYNAMIC) != 0)
6819 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6820 else
6821 hdr->sh_entsize = 1;
6822 }
6823 else
6824 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6825 }
6826 else if (SGI_COMPAT (abfd)
6827 && (strcmp (name, ".hash") == 0
6828 || strcmp (name, ".dynamic") == 0
6829 || strcmp (name, ".dynstr") == 0))
6830 {
6831 if (SGI_COMPAT (abfd))
6832 hdr->sh_entsize = 0;
6833 #if 0
6834 /* This isn't how the IRIX6 linker behaves. */
6835 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6836 #endif
6837 }
6838 else if (strcmp (name, ".got") == 0
6839 || strcmp (name, ".srdata") == 0
6840 || strcmp (name, ".sdata") == 0
6841 || strcmp (name, ".sbss") == 0
6842 || strcmp (name, ".lit4") == 0
6843 || strcmp (name, ".lit8") == 0)
6844 hdr->sh_flags |= SHF_MIPS_GPREL;
6845 else if (strcmp (name, ".MIPS.interfaces") == 0)
6846 {
6847 hdr->sh_type = SHT_MIPS_IFACE;
6848 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6849 }
6850 else if (CONST_STRNEQ (name, ".MIPS.content"))
6851 {
6852 hdr->sh_type = SHT_MIPS_CONTENT;
6853 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6854 /* The sh_info field is set in final_write_processing. */
6855 }
6856 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6857 {
6858 hdr->sh_type = SHT_MIPS_OPTIONS;
6859 hdr->sh_entsize = 1;
6860 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6861 }
6862 else if (CONST_STRNEQ (name, ".debug_")
6863 || CONST_STRNEQ (name, ".zdebug_"))
6864 {
6865 hdr->sh_type = SHT_MIPS_DWARF;
6866
6867 /* Irix facilities such as libexc expect a single .debug_frame
6868 per executable, the system ones have NOSTRIP set and the linker
6869 doesn't merge sections with different flags so ... */
6870 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6871 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6872 }
6873 else if (strcmp (name, ".MIPS.symlib") == 0)
6874 {
6875 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6876 /* The sh_link and sh_info fields are set in
6877 final_write_processing. */
6878 }
6879 else if (CONST_STRNEQ (name, ".MIPS.events")
6880 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6881 {
6882 hdr->sh_type = SHT_MIPS_EVENTS;
6883 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6884 /* The sh_link field is set in final_write_processing. */
6885 }
6886 else if (strcmp (name, ".msym") == 0)
6887 {
6888 hdr->sh_type = SHT_MIPS_MSYM;
6889 hdr->sh_flags |= SHF_ALLOC;
6890 hdr->sh_entsize = 8;
6891 }
6892
6893 /* The generic elf_fake_sections will set up REL_HDR using the default
6894 kind of relocations. We used to set up a second header for the
6895 non-default kind of relocations here, but only NewABI would use
6896 these, and the IRIX ld doesn't like resulting empty RELA sections.
6897 Thus we create those header only on demand now. */
6898
6899 return TRUE;
6900 }
6901
6902 /* Given a BFD section, try to locate the corresponding ELF section
6903 index. This is used by both the 32-bit and the 64-bit ABI.
6904 Actually, it's not clear to me that the 64-bit ABI supports these,
6905 but for non-PIC objects we will certainly want support for at least
6906 the .scommon section. */
6907
6908 bfd_boolean
6909 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6910 asection *sec, int *retval)
6911 {
6912 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6913 {
6914 *retval = SHN_MIPS_SCOMMON;
6915 return TRUE;
6916 }
6917 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6918 {
6919 *retval = SHN_MIPS_ACOMMON;
6920 return TRUE;
6921 }
6922 return FALSE;
6923 }
6924 \f
6925 /* Hook called by the linker routine which adds symbols from an object
6926 file. We must handle the special MIPS section numbers here. */
6927
6928 bfd_boolean
6929 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6930 Elf_Internal_Sym *sym, const char **namep,
6931 flagword *flagsp ATTRIBUTE_UNUSED,
6932 asection **secp, bfd_vma *valp)
6933 {
6934 if (SGI_COMPAT (abfd)
6935 && (abfd->flags & DYNAMIC) != 0
6936 && strcmp (*namep, "_rld_new_interface") == 0)
6937 {
6938 /* Skip IRIX5 rld entry name. */
6939 *namep = NULL;
6940 return TRUE;
6941 }
6942
6943 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6944 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6945 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6946 a magic symbol resolved by the linker, we ignore this bogus definition
6947 of _gp_disp. New ABI objects do not suffer from this problem so this
6948 is not done for them. */
6949 if (!NEWABI_P(abfd)
6950 && (sym->st_shndx == SHN_ABS)
6951 && (strcmp (*namep, "_gp_disp") == 0))
6952 {
6953 *namep = NULL;
6954 return TRUE;
6955 }
6956
6957 switch (sym->st_shndx)
6958 {
6959 case SHN_COMMON:
6960 /* Common symbols less than the GP size are automatically
6961 treated as SHN_MIPS_SCOMMON symbols. */
6962 if (sym->st_size > elf_gp_size (abfd)
6963 || ELF_ST_TYPE (sym->st_info) == STT_TLS
6964 || IRIX_COMPAT (abfd) == ict_irix6)
6965 break;
6966 /* Fall through. */
6967 case SHN_MIPS_SCOMMON:
6968 *secp = bfd_make_section_old_way (abfd, ".scommon");
6969 (*secp)->flags |= SEC_IS_COMMON;
6970 *valp = sym->st_size;
6971 break;
6972
6973 case SHN_MIPS_TEXT:
6974 /* This section is used in a shared object. */
6975 if (elf_tdata (abfd)->elf_text_section == NULL)
6976 {
6977 asymbol *elf_text_symbol;
6978 asection *elf_text_section;
6979 bfd_size_type amt = sizeof (asection);
6980
6981 elf_text_section = bfd_zalloc (abfd, amt);
6982 if (elf_text_section == NULL)
6983 return FALSE;
6984
6985 amt = sizeof (asymbol);
6986 elf_text_symbol = bfd_zalloc (abfd, amt);
6987 if (elf_text_symbol == NULL)
6988 return FALSE;
6989
6990 /* Initialize the section. */
6991
6992 elf_tdata (abfd)->elf_text_section = elf_text_section;
6993 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6994
6995 elf_text_section->symbol = elf_text_symbol;
6996 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
6997
6998 elf_text_section->name = ".text";
6999 elf_text_section->flags = SEC_NO_FLAGS;
7000 elf_text_section->output_section = NULL;
7001 elf_text_section->owner = abfd;
7002 elf_text_symbol->name = ".text";
7003 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7004 elf_text_symbol->section = elf_text_section;
7005 }
7006 /* This code used to do *secp = bfd_und_section_ptr if
7007 info->shared. I don't know why, and that doesn't make sense,
7008 so I took it out. */
7009 *secp = elf_tdata (abfd)->elf_text_section;
7010 break;
7011
7012 case SHN_MIPS_ACOMMON:
7013 /* Fall through. XXX Can we treat this as allocated data? */
7014 case SHN_MIPS_DATA:
7015 /* This section is used in a shared object. */
7016 if (elf_tdata (abfd)->elf_data_section == NULL)
7017 {
7018 asymbol *elf_data_symbol;
7019 asection *elf_data_section;
7020 bfd_size_type amt = sizeof (asection);
7021
7022 elf_data_section = bfd_zalloc (abfd, amt);
7023 if (elf_data_section == NULL)
7024 return FALSE;
7025
7026 amt = sizeof (asymbol);
7027 elf_data_symbol = bfd_zalloc (abfd, amt);
7028 if (elf_data_symbol == NULL)
7029 return FALSE;
7030
7031 /* Initialize the section. */
7032
7033 elf_tdata (abfd)->elf_data_section = elf_data_section;
7034 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7035
7036 elf_data_section->symbol = elf_data_symbol;
7037 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
7038
7039 elf_data_section->name = ".data";
7040 elf_data_section->flags = SEC_NO_FLAGS;
7041 elf_data_section->output_section = NULL;
7042 elf_data_section->owner = abfd;
7043 elf_data_symbol->name = ".data";
7044 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7045 elf_data_symbol->section = elf_data_section;
7046 }
7047 /* This code used to do *secp = bfd_und_section_ptr if
7048 info->shared. I don't know why, and that doesn't make sense,
7049 so I took it out. */
7050 *secp = elf_tdata (abfd)->elf_data_section;
7051 break;
7052
7053 case SHN_MIPS_SUNDEFINED:
7054 *secp = bfd_und_section_ptr;
7055 break;
7056 }
7057
7058 if (SGI_COMPAT (abfd)
7059 && ! info->shared
7060 && info->output_bfd->xvec == abfd->xvec
7061 && strcmp (*namep, "__rld_obj_head") == 0)
7062 {
7063 struct elf_link_hash_entry *h;
7064 struct bfd_link_hash_entry *bh;
7065
7066 /* Mark __rld_obj_head as dynamic. */
7067 bh = NULL;
7068 if (! (_bfd_generic_link_add_one_symbol
7069 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7070 get_elf_backend_data (abfd)->collect, &bh)))
7071 return FALSE;
7072
7073 h = (struct elf_link_hash_entry *) bh;
7074 h->non_elf = 0;
7075 h->def_regular = 1;
7076 h->type = STT_OBJECT;
7077
7078 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7079 return FALSE;
7080
7081 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7082 }
7083
7084 /* If this is a mips16 text symbol, add 1 to the value to make it
7085 odd. This will cause something like .word SYM to come up with
7086 the right value when it is loaded into the PC. */
7087 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7088 ++*valp;
7089
7090 return TRUE;
7091 }
7092
7093 /* This hook function is called before the linker writes out a global
7094 symbol. We mark symbols as small common if appropriate. This is
7095 also where we undo the increment of the value for a mips16 symbol. */
7096
7097 int
7098 _bfd_mips_elf_link_output_symbol_hook
7099 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7100 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7101 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7102 {
7103 /* If we see a common symbol, which implies a relocatable link, then
7104 if a symbol was small common in an input file, mark it as small
7105 common in the output file. */
7106 if (sym->st_shndx == SHN_COMMON
7107 && strcmp (input_sec->name, ".scommon") == 0)
7108 sym->st_shndx = SHN_MIPS_SCOMMON;
7109
7110 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7111 sym->st_value &= ~1;
7112
7113 return 1;
7114 }
7115 \f
7116 /* Functions for the dynamic linker. */
7117
7118 /* Create dynamic sections when linking against a dynamic object. */
7119
7120 bfd_boolean
7121 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7122 {
7123 struct elf_link_hash_entry *h;
7124 struct bfd_link_hash_entry *bh;
7125 flagword flags;
7126 register asection *s;
7127 const char * const *namep;
7128 struct mips_elf_link_hash_table *htab;
7129
7130 htab = mips_elf_hash_table (info);
7131 BFD_ASSERT (htab != NULL);
7132
7133 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7134 | SEC_LINKER_CREATED | SEC_READONLY);
7135
7136 /* The psABI requires a read-only .dynamic section, but the VxWorks
7137 EABI doesn't. */
7138 if (!htab->is_vxworks)
7139 {
7140 s = bfd_get_section_by_name (abfd, ".dynamic");
7141 if (s != NULL)
7142 {
7143 if (! bfd_set_section_flags (abfd, s, flags))
7144 return FALSE;
7145 }
7146 }
7147
7148 /* We need to create .got section. */
7149 if (!mips_elf_create_got_section (abfd, info))
7150 return FALSE;
7151
7152 if (! mips_elf_rel_dyn_section (info, TRUE))
7153 return FALSE;
7154
7155 /* Create .stub section. */
7156 s = bfd_make_section_with_flags (abfd,
7157 MIPS_ELF_STUB_SECTION_NAME (abfd),
7158 flags | SEC_CODE);
7159 if (s == NULL
7160 || ! bfd_set_section_alignment (abfd, s,
7161 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7162 return FALSE;
7163 htab->sstubs = s;
7164
7165 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
7166 && !info->shared
7167 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
7168 {
7169 s = bfd_make_section_with_flags (abfd, ".rld_map",
7170 flags &~ (flagword) SEC_READONLY);
7171 if (s == NULL
7172 || ! bfd_set_section_alignment (abfd, s,
7173 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7174 return FALSE;
7175 }
7176
7177 /* On IRIX5, we adjust add some additional symbols and change the
7178 alignments of several sections. There is no ABI documentation
7179 indicating that this is necessary on IRIX6, nor any evidence that
7180 the linker takes such action. */
7181 if (IRIX_COMPAT (abfd) == ict_irix5)
7182 {
7183 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7184 {
7185 bh = NULL;
7186 if (! (_bfd_generic_link_add_one_symbol
7187 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7188 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7189 return FALSE;
7190
7191 h = (struct elf_link_hash_entry *) bh;
7192 h->non_elf = 0;
7193 h->def_regular = 1;
7194 h->type = STT_SECTION;
7195
7196 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7197 return FALSE;
7198 }
7199
7200 /* We need to create a .compact_rel section. */
7201 if (SGI_COMPAT (abfd))
7202 {
7203 if (!mips_elf_create_compact_rel_section (abfd, info))
7204 return FALSE;
7205 }
7206
7207 /* Change alignments of some sections. */
7208 s = bfd_get_section_by_name (abfd, ".hash");
7209 if (s != NULL)
7210 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7211 s = bfd_get_section_by_name (abfd, ".dynsym");
7212 if (s != NULL)
7213 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7214 s = bfd_get_section_by_name (abfd, ".dynstr");
7215 if (s != NULL)
7216 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7217 s = bfd_get_section_by_name (abfd, ".reginfo");
7218 if (s != NULL)
7219 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7220 s = bfd_get_section_by_name (abfd, ".dynamic");
7221 if (s != NULL)
7222 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7223 }
7224
7225 if (!info->shared)
7226 {
7227 const char *name;
7228
7229 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7230 bh = NULL;
7231 if (!(_bfd_generic_link_add_one_symbol
7232 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7233 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7234 return FALSE;
7235
7236 h = (struct elf_link_hash_entry *) bh;
7237 h->non_elf = 0;
7238 h->def_regular = 1;
7239 h->type = STT_SECTION;
7240
7241 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7242 return FALSE;
7243
7244 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7245 {
7246 /* __rld_map is a four byte word located in the .data section
7247 and is filled in by the rtld to contain a pointer to
7248 the _r_debug structure. Its symbol value will be set in
7249 _bfd_mips_elf_finish_dynamic_symbol. */
7250 s = bfd_get_section_by_name (abfd, ".rld_map");
7251 BFD_ASSERT (s != NULL);
7252
7253 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7254 bh = NULL;
7255 if (!(_bfd_generic_link_add_one_symbol
7256 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7257 get_elf_backend_data (abfd)->collect, &bh)))
7258 return FALSE;
7259
7260 h = (struct elf_link_hash_entry *) bh;
7261 h->non_elf = 0;
7262 h->def_regular = 1;
7263 h->type = STT_OBJECT;
7264
7265 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7266 return FALSE;
7267 }
7268 }
7269
7270 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7271 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7272 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7273 return FALSE;
7274
7275 /* Cache the sections created above. */
7276 htab->splt = bfd_get_section_by_name (abfd, ".plt");
7277 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
7278 if (htab->is_vxworks)
7279 {
7280 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
7281 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
7282 }
7283 else
7284 htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt");
7285 if (!htab->sdynbss
7286 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7287 || !htab->srelplt
7288 || !htab->splt)
7289 abort ();
7290
7291 if (htab->is_vxworks)
7292 {
7293 /* Do the usual VxWorks handling. */
7294 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7295 return FALSE;
7296
7297 /* Work out the PLT sizes. */
7298 if (info->shared)
7299 {
7300 htab->plt_header_size
7301 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7302 htab->plt_entry_size
7303 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7304 }
7305 else
7306 {
7307 htab->plt_header_size
7308 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7309 htab->plt_entry_size
7310 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7311 }
7312 }
7313 else if (!info->shared)
7314 {
7315 /* All variants of the plt0 entry are the same size. */
7316 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7317 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7318 }
7319
7320 return TRUE;
7321 }
7322 \f
7323 /* Return true if relocation REL against section SEC is a REL rather than
7324 RELA relocation. RELOCS is the first relocation in the section and
7325 ABFD is the bfd that contains SEC. */
7326
7327 static bfd_boolean
7328 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7329 const Elf_Internal_Rela *relocs,
7330 const Elf_Internal_Rela *rel)
7331 {
7332 Elf_Internal_Shdr *rel_hdr;
7333 const struct elf_backend_data *bed;
7334
7335 /* To determine which flavor of relocation this is, we depend on the
7336 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7337 rel_hdr = elf_section_data (sec)->rel.hdr;
7338 if (rel_hdr == NULL)
7339 return FALSE;
7340 bed = get_elf_backend_data (abfd);
7341 return ((size_t) (rel - relocs)
7342 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7343 }
7344
7345 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7346 HOWTO is the relocation's howto and CONTENTS points to the contents
7347 of the section that REL is against. */
7348
7349 static bfd_vma
7350 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7351 reloc_howto_type *howto, bfd_byte *contents)
7352 {
7353 bfd_byte *location;
7354 unsigned int r_type;
7355 bfd_vma addend;
7356
7357 r_type = ELF_R_TYPE (abfd, rel->r_info);
7358 location = contents + rel->r_offset;
7359
7360 /* Get the addend, which is stored in the input file. */
7361 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7362 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7363 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7364
7365 return addend & howto->src_mask;
7366 }
7367
7368 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7369 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7370 and update *ADDEND with the final addend. Return true on success
7371 or false if the LO16 could not be found. RELEND is the exclusive
7372 upper bound on the relocations for REL's section. */
7373
7374 static bfd_boolean
7375 mips_elf_add_lo16_rel_addend (bfd *abfd,
7376 const Elf_Internal_Rela *rel,
7377 const Elf_Internal_Rela *relend,
7378 bfd_byte *contents, bfd_vma *addend)
7379 {
7380 unsigned int r_type, lo16_type;
7381 const Elf_Internal_Rela *lo16_relocation;
7382 reloc_howto_type *lo16_howto;
7383 bfd_vma l;
7384
7385 r_type = ELF_R_TYPE (abfd, rel->r_info);
7386 if (mips16_reloc_p (r_type))
7387 lo16_type = R_MIPS16_LO16;
7388 else if (micromips_reloc_p (r_type))
7389 lo16_type = R_MICROMIPS_LO16;
7390 else
7391 lo16_type = R_MIPS_LO16;
7392
7393 /* The combined value is the sum of the HI16 addend, left-shifted by
7394 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7395 code does a `lui' of the HI16 value, and then an `addiu' of the
7396 LO16 value.)
7397
7398 Scan ahead to find a matching LO16 relocation.
7399
7400 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7401 be immediately following. However, for the IRIX6 ABI, the next
7402 relocation may be a composed relocation consisting of several
7403 relocations for the same address. In that case, the R_MIPS_LO16
7404 relocation may occur as one of these. We permit a similar
7405 extension in general, as that is useful for GCC.
7406
7407 In some cases GCC dead code elimination removes the LO16 but keeps
7408 the corresponding HI16. This is strictly speaking a violation of
7409 the ABI but not immediately harmful. */
7410 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7411 if (lo16_relocation == NULL)
7412 return FALSE;
7413
7414 /* Obtain the addend kept there. */
7415 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7416 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7417
7418 l <<= lo16_howto->rightshift;
7419 l = _bfd_mips_elf_sign_extend (l, 16);
7420
7421 *addend <<= 16;
7422 *addend += l;
7423 return TRUE;
7424 }
7425
7426 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7427 store the contents in *CONTENTS on success. Assume that *CONTENTS
7428 already holds the contents if it is nonull on entry. */
7429
7430 static bfd_boolean
7431 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7432 {
7433 if (*contents)
7434 return TRUE;
7435
7436 /* Get cached copy if it exists. */
7437 if (elf_section_data (sec)->this_hdr.contents != NULL)
7438 {
7439 *contents = elf_section_data (sec)->this_hdr.contents;
7440 return TRUE;
7441 }
7442
7443 return bfd_malloc_and_get_section (abfd, sec, contents);
7444 }
7445
7446 /* Look through the relocs for a section during the first phase, and
7447 allocate space in the global offset table. */
7448
7449 bfd_boolean
7450 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7451 asection *sec, const Elf_Internal_Rela *relocs)
7452 {
7453 const char *name;
7454 bfd *dynobj;
7455 Elf_Internal_Shdr *symtab_hdr;
7456 struct elf_link_hash_entry **sym_hashes;
7457 size_t extsymoff;
7458 const Elf_Internal_Rela *rel;
7459 const Elf_Internal_Rela *rel_end;
7460 asection *sreloc;
7461 const struct elf_backend_data *bed;
7462 struct mips_elf_link_hash_table *htab;
7463 bfd_byte *contents;
7464 bfd_vma addend;
7465 reloc_howto_type *howto;
7466
7467 if (info->relocatable)
7468 return TRUE;
7469
7470 htab = mips_elf_hash_table (info);
7471 BFD_ASSERT (htab != NULL);
7472
7473 dynobj = elf_hash_table (info)->dynobj;
7474 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7475 sym_hashes = elf_sym_hashes (abfd);
7476 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7477
7478 bed = get_elf_backend_data (abfd);
7479 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7480
7481 /* Check for the mips16 stub sections. */
7482
7483 name = bfd_get_section_name (abfd, sec);
7484 if (FN_STUB_P (name))
7485 {
7486 unsigned long r_symndx;
7487
7488 /* Look at the relocation information to figure out which symbol
7489 this is for. */
7490
7491 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7492 if (r_symndx == 0)
7493 {
7494 (*_bfd_error_handler)
7495 (_("%B: Warning: cannot determine the target function for"
7496 " stub section `%s'"),
7497 abfd, name);
7498 bfd_set_error (bfd_error_bad_value);
7499 return FALSE;
7500 }
7501
7502 if (r_symndx < extsymoff
7503 || sym_hashes[r_symndx - extsymoff] == NULL)
7504 {
7505 asection *o;
7506
7507 /* This stub is for a local symbol. This stub will only be
7508 needed if there is some relocation in this BFD, other
7509 than a 16 bit function call, which refers to this symbol. */
7510 for (o = abfd->sections; o != NULL; o = o->next)
7511 {
7512 Elf_Internal_Rela *sec_relocs;
7513 const Elf_Internal_Rela *r, *rend;
7514
7515 /* We can ignore stub sections when looking for relocs. */
7516 if ((o->flags & SEC_RELOC) == 0
7517 || o->reloc_count == 0
7518 || section_allows_mips16_refs_p (o))
7519 continue;
7520
7521 sec_relocs
7522 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7523 info->keep_memory);
7524 if (sec_relocs == NULL)
7525 return FALSE;
7526
7527 rend = sec_relocs + o->reloc_count;
7528 for (r = sec_relocs; r < rend; r++)
7529 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7530 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7531 break;
7532
7533 if (elf_section_data (o)->relocs != sec_relocs)
7534 free (sec_relocs);
7535
7536 if (r < rend)
7537 break;
7538 }
7539
7540 if (o == NULL)
7541 {
7542 /* There is no non-call reloc for this stub, so we do
7543 not need it. Since this function is called before
7544 the linker maps input sections to output sections, we
7545 can easily discard it by setting the SEC_EXCLUDE
7546 flag. */
7547 sec->flags |= SEC_EXCLUDE;
7548 return TRUE;
7549 }
7550
7551 /* Record this stub in an array of local symbol stubs for
7552 this BFD. */
7553 if (elf_tdata (abfd)->local_stubs == NULL)
7554 {
7555 unsigned long symcount;
7556 asection **n;
7557 bfd_size_type amt;
7558
7559 if (elf_bad_symtab (abfd))
7560 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7561 else
7562 symcount = symtab_hdr->sh_info;
7563 amt = symcount * sizeof (asection *);
7564 n = bfd_zalloc (abfd, amt);
7565 if (n == NULL)
7566 return FALSE;
7567 elf_tdata (abfd)->local_stubs = n;
7568 }
7569
7570 sec->flags |= SEC_KEEP;
7571 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7572
7573 /* We don't need to set mips16_stubs_seen in this case.
7574 That flag is used to see whether we need to look through
7575 the global symbol table for stubs. We don't need to set
7576 it here, because we just have a local stub. */
7577 }
7578 else
7579 {
7580 struct mips_elf_link_hash_entry *h;
7581
7582 h = ((struct mips_elf_link_hash_entry *)
7583 sym_hashes[r_symndx - extsymoff]);
7584
7585 while (h->root.root.type == bfd_link_hash_indirect
7586 || h->root.root.type == bfd_link_hash_warning)
7587 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7588
7589 /* H is the symbol this stub is for. */
7590
7591 /* If we already have an appropriate stub for this function, we
7592 don't need another one, so we can discard this one. Since
7593 this function is called before the linker maps input sections
7594 to output sections, we can easily discard it by setting the
7595 SEC_EXCLUDE flag. */
7596 if (h->fn_stub != NULL)
7597 {
7598 sec->flags |= SEC_EXCLUDE;
7599 return TRUE;
7600 }
7601
7602 sec->flags |= SEC_KEEP;
7603 h->fn_stub = sec;
7604 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7605 }
7606 }
7607 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7608 {
7609 unsigned long r_symndx;
7610 struct mips_elf_link_hash_entry *h;
7611 asection **loc;
7612
7613 /* Look at the relocation information to figure out which symbol
7614 this is for. */
7615
7616 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7617 if (r_symndx == 0)
7618 {
7619 (*_bfd_error_handler)
7620 (_("%B: Warning: cannot determine the target function for"
7621 " stub section `%s'"),
7622 abfd, name);
7623 bfd_set_error (bfd_error_bad_value);
7624 return FALSE;
7625 }
7626
7627 if (r_symndx < extsymoff
7628 || sym_hashes[r_symndx - extsymoff] == NULL)
7629 {
7630 asection *o;
7631
7632 /* This stub is for a local symbol. This stub will only be
7633 needed if there is some relocation (R_MIPS16_26) in this BFD
7634 that refers to this symbol. */
7635 for (o = abfd->sections; o != NULL; o = o->next)
7636 {
7637 Elf_Internal_Rela *sec_relocs;
7638 const Elf_Internal_Rela *r, *rend;
7639
7640 /* We can ignore stub sections when looking for relocs. */
7641 if ((o->flags & SEC_RELOC) == 0
7642 || o->reloc_count == 0
7643 || section_allows_mips16_refs_p (o))
7644 continue;
7645
7646 sec_relocs
7647 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7648 info->keep_memory);
7649 if (sec_relocs == NULL)
7650 return FALSE;
7651
7652 rend = sec_relocs + o->reloc_count;
7653 for (r = sec_relocs; r < rend; r++)
7654 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7655 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7656 break;
7657
7658 if (elf_section_data (o)->relocs != sec_relocs)
7659 free (sec_relocs);
7660
7661 if (r < rend)
7662 break;
7663 }
7664
7665 if (o == NULL)
7666 {
7667 /* There is no non-call reloc for this stub, so we do
7668 not need it. Since this function is called before
7669 the linker maps input sections to output sections, we
7670 can easily discard it by setting the SEC_EXCLUDE
7671 flag. */
7672 sec->flags |= SEC_EXCLUDE;
7673 return TRUE;
7674 }
7675
7676 /* Record this stub in an array of local symbol call_stubs for
7677 this BFD. */
7678 if (elf_tdata (abfd)->local_call_stubs == NULL)
7679 {
7680 unsigned long symcount;
7681 asection **n;
7682 bfd_size_type amt;
7683
7684 if (elf_bad_symtab (abfd))
7685 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7686 else
7687 symcount = symtab_hdr->sh_info;
7688 amt = symcount * sizeof (asection *);
7689 n = bfd_zalloc (abfd, amt);
7690 if (n == NULL)
7691 return FALSE;
7692 elf_tdata (abfd)->local_call_stubs = n;
7693 }
7694
7695 sec->flags |= SEC_KEEP;
7696 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7697
7698 /* We don't need to set mips16_stubs_seen in this case.
7699 That flag is used to see whether we need to look through
7700 the global symbol table for stubs. We don't need to set
7701 it here, because we just have a local stub. */
7702 }
7703 else
7704 {
7705 h = ((struct mips_elf_link_hash_entry *)
7706 sym_hashes[r_symndx - extsymoff]);
7707
7708 /* H is the symbol this stub is for. */
7709
7710 if (CALL_FP_STUB_P (name))
7711 loc = &h->call_fp_stub;
7712 else
7713 loc = &h->call_stub;
7714
7715 /* If we already have an appropriate stub for this function, we
7716 don't need another one, so we can discard this one. Since
7717 this function is called before the linker maps input sections
7718 to output sections, we can easily discard it by setting the
7719 SEC_EXCLUDE flag. */
7720 if (*loc != NULL)
7721 {
7722 sec->flags |= SEC_EXCLUDE;
7723 return TRUE;
7724 }
7725
7726 sec->flags |= SEC_KEEP;
7727 *loc = sec;
7728 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7729 }
7730 }
7731
7732 sreloc = NULL;
7733 contents = NULL;
7734 for (rel = relocs; rel < rel_end; ++rel)
7735 {
7736 unsigned long r_symndx;
7737 unsigned int r_type;
7738 struct elf_link_hash_entry *h;
7739 bfd_boolean can_make_dynamic_p;
7740
7741 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7742 r_type = ELF_R_TYPE (abfd, rel->r_info);
7743
7744 if (r_symndx < extsymoff)
7745 h = NULL;
7746 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7747 {
7748 (*_bfd_error_handler)
7749 (_("%B: Malformed reloc detected for section %s"),
7750 abfd, name);
7751 bfd_set_error (bfd_error_bad_value);
7752 return FALSE;
7753 }
7754 else
7755 {
7756 h = sym_hashes[r_symndx - extsymoff];
7757 while (h != NULL
7758 && (h->root.type == bfd_link_hash_indirect
7759 || h->root.type == bfd_link_hash_warning))
7760 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7761 }
7762
7763 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7764 relocation into a dynamic one. */
7765 can_make_dynamic_p = FALSE;
7766 switch (r_type)
7767 {
7768 case R_MIPS16_GOT16:
7769 case R_MIPS16_CALL16:
7770 case R_MIPS_GOT16:
7771 case R_MIPS_CALL16:
7772 case R_MIPS_CALL_HI16:
7773 case R_MIPS_CALL_LO16:
7774 case R_MIPS_GOT_HI16:
7775 case R_MIPS_GOT_LO16:
7776 case R_MIPS_GOT_PAGE:
7777 case R_MIPS_GOT_OFST:
7778 case R_MIPS_GOT_DISP:
7779 case R_MIPS_TLS_GOTTPREL:
7780 case R_MIPS_TLS_GD:
7781 case R_MIPS_TLS_LDM:
7782 case R_MICROMIPS_GOT16:
7783 case R_MICROMIPS_CALL16:
7784 case R_MICROMIPS_CALL_HI16:
7785 case R_MICROMIPS_CALL_LO16:
7786 case R_MICROMIPS_GOT_HI16:
7787 case R_MICROMIPS_GOT_LO16:
7788 case R_MICROMIPS_GOT_PAGE:
7789 case R_MICROMIPS_GOT_OFST:
7790 case R_MICROMIPS_GOT_DISP:
7791 case R_MICROMIPS_TLS_GOTTPREL:
7792 case R_MICROMIPS_TLS_GD:
7793 case R_MICROMIPS_TLS_LDM:
7794 if (dynobj == NULL)
7795 elf_hash_table (info)->dynobj = dynobj = abfd;
7796 if (!mips_elf_create_got_section (dynobj, info))
7797 return FALSE;
7798 if (htab->is_vxworks && !info->shared)
7799 {
7800 (*_bfd_error_handler)
7801 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7802 abfd, (unsigned long) rel->r_offset);
7803 bfd_set_error (bfd_error_bad_value);
7804 return FALSE;
7805 }
7806 break;
7807
7808 /* This is just a hint; it can safely be ignored. Don't set
7809 has_static_relocs for the corresponding symbol. */
7810 case R_MIPS_JALR:
7811 case R_MICROMIPS_JALR:
7812 break;
7813
7814 case R_MIPS_32:
7815 case R_MIPS_REL32:
7816 case R_MIPS_64:
7817 /* In VxWorks executables, references to external symbols
7818 must be handled using copy relocs or PLT entries; it is not
7819 possible to convert this relocation into a dynamic one.
7820
7821 For executables that use PLTs and copy-relocs, we have a
7822 choice between converting the relocation into a dynamic
7823 one or using copy relocations or PLT entries. It is
7824 usually better to do the former, unless the relocation is
7825 against a read-only section. */
7826 if ((info->shared
7827 || (h != NULL
7828 && !htab->is_vxworks
7829 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7830 && !(!info->nocopyreloc
7831 && !PIC_OBJECT_P (abfd)
7832 && MIPS_ELF_READONLY_SECTION (sec))))
7833 && (sec->flags & SEC_ALLOC) != 0)
7834 {
7835 can_make_dynamic_p = TRUE;
7836 if (dynobj == NULL)
7837 elf_hash_table (info)->dynobj = dynobj = abfd;
7838 break;
7839 }
7840 /* For sections that are not SEC_ALLOC a copy reloc would be
7841 output if possible (implying questionable semantics for
7842 read-only data objects) or otherwise the final link would
7843 fail as ld.so will not process them and could not therefore
7844 handle any outstanding dynamic relocations.
7845
7846 For such sections that are also SEC_DEBUGGING, we can avoid
7847 these problems by simply ignoring any relocs as these
7848 sections have a predefined use and we know it is safe to do
7849 so.
7850
7851 This is needed in cases such as a global symbol definition
7852 in a shared library causing a common symbol from an object
7853 file to be converted to an undefined reference. If that
7854 happens, then all the relocations against this symbol from
7855 SEC_DEBUGGING sections in the object file will resolve to
7856 nil. */
7857 if ((sec->flags & SEC_DEBUGGING) != 0)
7858 break;
7859 /* Fall through. */
7860
7861 default:
7862 /* Most static relocations require pointer equality, except
7863 for branches. */
7864 if (h)
7865 h->pointer_equality_needed = TRUE;
7866 /* Fall through. */
7867
7868 case R_MIPS_26:
7869 case R_MIPS_PC16:
7870 case R_MIPS16_26:
7871 case R_MICROMIPS_26_S1:
7872 case R_MICROMIPS_PC7_S1:
7873 case R_MICROMIPS_PC10_S1:
7874 case R_MICROMIPS_PC16_S1:
7875 case R_MICROMIPS_PC23_S2:
7876 if (h)
7877 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7878 break;
7879 }
7880
7881 if (h)
7882 {
7883 /* Relocations against the special VxWorks __GOTT_BASE__ and
7884 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7885 room for them in .rela.dyn. */
7886 if (is_gott_symbol (info, h))
7887 {
7888 if (sreloc == NULL)
7889 {
7890 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7891 if (sreloc == NULL)
7892 return FALSE;
7893 }
7894 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7895 if (MIPS_ELF_READONLY_SECTION (sec))
7896 /* We tell the dynamic linker that there are
7897 relocations against the text segment. */
7898 info->flags |= DF_TEXTREL;
7899 }
7900 }
7901 else if (call_lo16_reloc_p (r_type)
7902 || got_lo16_reloc_p (r_type)
7903 || got_disp_reloc_p (r_type)
7904 || (got16_reloc_p (r_type) && htab->is_vxworks))
7905 {
7906 /* We may need a local GOT entry for this relocation. We
7907 don't count R_MIPS_GOT_PAGE because we can estimate the
7908 maximum number of pages needed by looking at the size of
7909 the segment. Similar comments apply to R_MIPS*_GOT16 and
7910 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7911 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7912 R_MIPS_CALL_HI16 because these are always followed by an
7913 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7914 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7915 rel->r_addend, info, 0))
7916 return FALSE;
7917 }
7918
7919 if (h != NULL && mips_elf_relocation_needs_la25_stub (abfd, r_type))
7920 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7921
7922 switch (r_type)
7923 {
7924 case R_MIPS_CALL16:
7925 case R_MIPS16_CALL16:
7926 case R_MICROMIPS_CALL16:
7927 if (h == NULL)
7928 {
7929 (*_bfd_error_handler)
7930 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7931 abfd, (unsigned long) rel->r_offset);
7932 bfd_set_error (bfd_error_bad_value);
7933 return FALSE;
7934 }
7935 /* Fall through. */
7936
7937 case R_MIPS_CALL_HI16:
7938 case R_MIPS_CALL_LO16:
7939 case R_MICROMIPS_CALL_HI16:
7940 case R_MICROMIPS_CALL_LO16:
7941 if (h != NULL)
7942 {
7943 /* Make sure there is room in the regular GOT to hold the
7944 function's address. We may eliminate it in favour of
7945 a .got.plt entry later; see mips_elf_count_got_symbols. */
7946 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
7947 return FALSE;
7948
7949 /* We need a stub, not a plt entry for the undefined
7950 function. But we record it as if it needs plt. See
7951 _bfd_elf_adjust_dynamic_symbol. */
7952 h->needs_plt = 1;
7953 h->type = STT_FUNC;
7954 }
7955 break;
7956
7957 case R_MIPS_GOT_PAGE:
7958 case R_MICROMIPS_GOT_PAGE:
7959 /* If this is a global, overridable symbol, GOT_PAGE will
7960 decay to GOT_DISP, so we'll need a GOT entry for it. */
7961 if (h)
7962 {
7963 struct mips_elf_link_hash_entry *hmips =
7964 (struct mips_elf_link_hash_entry *) h;
7965
7966 /* This symbol is definitely not overridable. */
7967 if (hmips->root.def_regular
7968 && ! (info->shared && ! info->symbolic
7969 && ! hmips->root.forced_local))
7970 h = NULL;
7971 }
7972 /* Fall through. */
7973
7974 case R_MIPS16_GOT16:
7975 case R_MIPS_GOT16:
7976 case R_MIPS_GOT_HI16:
7977 case R_MIPS_GOT_LO16:
7978 case R_MICROMIPS_GOT16:
7979 case R_MICROMIPS_GOT_HI16:
7980 case R_MICROMIPS_GOT_LO16:
7981 if (!h || got_page_reloc_p (r_type))
7982 {
7983 /* This relocation needs (or may need, if h != NULL) a
7984 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7985 know for sure until we know whether the symbol is
7986 preemptible. */
7987 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
7988 {
7989 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7990 return FALSE;
7991 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7992 addend = mips_elf_read_rel_addend (abfd, rel,
7993 howto, contents);
7994 if (got16_reloc_p (r_type))
7995 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
7996 contents, &addend);
7997 else
7998 addend <<= howto->rightshift;
7999 }
8000 else
8001 addend = rel->r_addend;
8002 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
8003 addend))
8004 return FALSE;
8005 }
8006 /* Fall through. */
8007
8008 case R_MIPS_GOT_DISP:
8009 case R_MICROMIPS_GOT_DISP:
8010 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8011 FALSE, 0))
8012 return FALSE;
8013 break;
8014
8015 case R_MIPS_TLS_GOTTPREL:
8016 case R_MICROMIPS_TLS_GOTTPREL:
8017 if (info->shared)
8018 info->flags |= DF_STATIC_TLS;
8019 /* Fall through */
8020
8021 case R_MIPS_TLS_LDM:
8022 case R_MICROMIPS_TLS_LDM:
8023 if (tls_ldm_reloc_p (r_type))
8024 {
8025 r_symndx = STN_UNDEF;
8026 h = NULL;
8027 }
8028 /* Fall through */
8029
8030 case R_MIPS_TLS_GD:
8031 case R_MICROMIPS_TLS_GD:
8032 /* This symbol requires a global offset table entry, or two
8033 for TLS GD relocations. */
8034 {
8035 unsigned char flag;
8036
8037 flag = (tls_gd_reloc_p (r_type)
8038 ? GOT_TLS_GD
8039 : tls_ldm_reloc_p (r_type) ? GOT_TLS_LDM : GOT_TLS_IE);
8040 if (h != NULL)
8041 {
8042 struct mips_elf_link_hash_entry *hmips =
8043 (struct mips_elf_link_hash_entry *) h;
8044 hmips->tls_type |= flag;
8045
8046 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8047 FALSE, flag))
8048 return FALSE;
8049 }
8050 else
8051 {
8052 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
8053
8054 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8055 rel->r_addend,
8056 info, flag))
8057 return FALSE;
8058 }
8059 }
8060 break;
8061
8062 case R_MIPS_32:
8063 case R_MIPS_REL32:
8064 case R_MIPS_64:
8065 /* In VxWorks executables, references to external symbols
8066 are handled using copy relocs or PLT stubs, so there's
8067 no need to add a .rela.dyn entry for this relocation. */
8068 if (can_make_dynamic_p)
8069 {
8070 if (sreloc == NULL)
8071 {
8072 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8073 if (sreloc == NULL)
8074 return FALSE;
8075 }
8076 if (info->shared && h == NULL)
8077 {
8078 /* When creating a shared object, we must copy these
8079 reloc types into the output file as R_MIPS_REL32
8080 relocs. Make room for this reloc in .rel(a).dyn. */
8081 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8082 if (MIPS_ELF_READONLY_SECTION (sec))
8083 /* We tell the dynamic linker that there are
8084 relocations against the text segment. */
8085 info->flags |= DF_TEXTREL;
8086 }
8087 else
8088 {
8089 struct mips_elf_link_hash_entry *hmips;
8090
8091 /* For a shared object, we must copy this relocation
8092 unless the symbol turns out to be undefined and
8093 weak with non-default visibility, in which case
8094 it will be left as zero.
8095
8096 We could elide R_MIPS_REL32 for locally binding symbols
8097 in shared libraries, but do not yet do so.
8098
8099 For an executable, we only need to copy this
8100 reloc if the symbol is defined in a dynamic
8101 object. */
8102 hmips = (struct mips_elf_link_hash_entry *) h;
8103 ++hmips->possibly_dynamic_relocs;
8104 if (MIPS_ELF_READONLY_SECTION (sec))
8105 /* We need it to tell the dynamic linker if there
8106 are relocations against the text segment. */
8107 hmips->readonly_reloc = TRUE;
8108 }
8109 }
8110
8111 if (SGI_COMPAT (abfd))
8112 mips_elf_hash_table (info)->compact_rel_size +=
8113 sizeof (Elf32_External_crinfo);
8114 break;
8115
8116 case R_MIPS_26:
8117 case R_MIPS_GPREL16:
8118 case R_MIPS_LITERAL:
8119 case R_MIPS_GPREL32:
8120 case R_MICROMIPS_26_S1:
8121 case R_MICROMIPS_GPREL16:
8122 case R_MICROMIPS_LITERAL:
8123 case R_MICROMIPS_GPREL7_S2:
8124 if (SGI_COMPAT (abfd))
8125 mips_elf_hash_table (info)->compact_rel_size +=
8126 sizeof (Elf32_External_crinfo);
8127 break;
8128
8129 /* This relocation describes the C++ object vtable hierarchy.
8130 Reconstruct it for later use during GC. */
8131 case R_MIPS_GNU_VTINHERIT:
8132 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8133 return FALSE;
8134 break;
8135
8136 /* This relocation describes which C++ vtable entries are actually
8137 used. Record for later use during GC. */
8138 case R_MIPS_GNU_VTENTRY:
8139 BFD_ASSERT (h != NULL);
8140 if (h != NULL
8141 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8142 return FALSE;
8143 break;
8144
8145 default:
8146 break;
8147 }
8148
8149 /* We must not create a stub for a symbol that has relocations
8150 related to taking the function's address. This doesn't apply to
8151 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8152 a normal .got entry. */
8153 if (!htab->is_vxworks && h != NULL)
8154 switch (r_type)
8155 {
8156 default:
8157 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8158 break;
8159 case R_MIPS16_CALL16:
8160 case R_MIPS_CALL16:
8161 case R_MIPS_CALL_HI16:
8162 case R_MIPS_CALL_LO16:
8163 case R_MIPS_JALR:
8164 case R_MICROMIPS_CALL16:
8165 case R_MICROMIPS_CALL_HI16:
8166 case R_MICROMIPS_CALL_LO16:
8167 case R_MICROMIPS_JALR:
8168 break;
8169 }
8170
8171 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8172 if there is one. We only need to handle global symbols here;
8173 we decide whether to keep or delete stubs for local symbols
8174 when processing the stub's relocations. */
8175 if (h != NULL
8176 && !mips16_call_reloc_p (r_type)
8177 && !section_allows_mips16_refs_p (sec))
8178 {
8179 struct mips_elf_link_hash_entry *mh;
8180
8181 mh = (struct mips_elf_link_hash_entry *) h;
8182 mh->need_fn_stub = TRUE;
8183 }
8184
8185 /* Refuse some position-dependent relocations when creating a
8186 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8187 not PIC, but we can create dynamic relocations and the result
8188 will be fine. Also do not refuse R_MIPS_LO16, which can be
8189 combined with R_MIPS_GOT16. */
8190 if (info->shared)
8191 {
8192 switch (r_type)
8193 {
8194 case R_MIPS16_HI16:
8195 case R_MIPS_HI16:
8196 case R_MIPS_HIGHER:
8197 case R_MIPS_HIGHEST:
8198 case R_MICROMIPS_HI16:
8199 case R_MICROMIPS_HIGHER:
8200 case R_MICROMIPS_HIGHEST:
8201 /* Don't refuse a high part relocation if it's against
8202 no symbol (e.g. part of a compound relocation). */
8203 if (r_symndx == STN_UNDEF)
8204 break;
8205
8206 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8207 and has a special meaning. */
8208 if (!NEWABI_P (abfd) && h != NULL
8209 && strcmp (h->root.root.string, "_gp_disp") == 0)
8210 break;
8211
8212 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8213 if (is_gott_symbol (info, h))
8214 break;
8215
8216 /* FALLTHROUGH */
8217
8218 case R_MIPS16_26:
8219 case R_MIPS_26:
8220 case R_MICROMIPS_26_S1:
8221 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8222 (*_bfd_error_handler)
8223 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8224 abfd, howto->name,
8225 (h) ? h->root.root.string : "a local symbol");
8226 bfd_set_error (bfd_error_bad_value);
8227 return FALSE;
8228 default:
8229 break;
8230 }
8231 }
8232 }
8233
8234 return TRUE;
8235 }
8236 \f
8237 bfd_boolean
8238 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8239 struct bfd_link_info *link_info,
8240 bfd_boolean *again)
8241 {
8242 Elf_Internal_Rela *internal_relocs;
8243 Elf_Internal_Rela *irel, *irelend;
8244 Elf_Internal_Shdr *symtab_hdr;
8245 bfd_byte *contents = NULL;
8246 size_t extsymoff;
8247 bfd_boolean changed_contents = FALSE;
8248 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8249 Elf_Internal_Sym *isymbuf = NULL;
8250
8251 /* We are not currently changing any sizes, so only one pass. */
8252 *again = FALSE;
8253
8254 if (link_info->relocatable)
8255 return TRUE;
8256
8257 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8258 link_info->keep_memory);
8259 if (internal_relocs == NULL)
8260 return TRUE;
8261
8262 irelend = internal_relocs + sec->reloc_count
8263 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8264 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8265 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8266
8267 for (irel = internal_relocs; irel < irelend; irel++)
8268 {
8269 bfd_vma symval;
8270 bfd_signed_vma sym_offset;
8271 unsigned int r_type;
8272 unsigned long r_symndx;
8273 asection *sym_sec;
8274 unsigned long instruction;
8275
8276 /* Turn jalr into bgezal, and jr into beq, if they're marked
8277 with a JALR relocation, that indicate where they jump to.
8278 This saves some pipeline bubbles. */
8279 r_type = ELF_R_TYPE (abfd, irel->r_info);
8280 if (r_type != R_MIPS_JALR)
8281 continue;
8282
8283 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8284 /* Compute the address of the jump target. */
8285 if (r_symndx >= extsymoff)
8286 {
8287 struct mips_elf_link_hash_entry *h
8288 = ((struct mips_elf_link_hash_entry *)
8289 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8290
8291 while (h->root.root.type == bfd_link_hash_indirect
8292 || h->root.root.type == bfd_link_hash_warning)
8293 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8294
8295 /* If a symbol is undefined, or if it may be overridden,
8296 skip it. */
8297 if (! ((h->root.root.type == bfd_link_hash_defined
8298 || h->root.root.type == bfd_link_hash_defweak)
8299 && h->root.root.u.def.section)
8300 || (link_info->shared && ! link_info->symbolic
8301 && !h->root.forced_local))
8302 continue;
8303
8304 sym_sec = h->root.root.u.def.section;
8305 if (sym_sec->output_section)
8306 symval = (h->root.root.u.def.value
8307 + sym_sec->output_section->vma
8308 + sym_sec->output_offset);
8309 else
8310 symval = h->root.root.u.def.value;
8311 }
8312 else
8313 {
8314 Elf_Internal_Sym *isym;
8315
8316 /* Read this BFD's symbols if we haven't done so already. */
8317 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8318 {
8319 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8320 if (isymbuf == NULL)
8321 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8322 symtab_hdr->sh_info, 0,
8323 NULL, NULL, NULL);
8324 if (isymbuf == NULL)
8325 goto relax_return;
8326 }
8327
8328 isym = isymbuf + r_symndx;
8329 if (isym->st_shndx == SHN_UNDEF)
8330 continue;
8331 else if (isym->st_shndx == SHN_ABS)
8332 sym_sec = bfd_abs_section_ptr;
8333 else if (isym->st_shndx == SHN_COMMON)
8334 sym_sec = bfd_com_section_ptr;
8335 else
8336 sym_sec
8337 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8338 symval = isym->st_value
8339 + sym_sec->output_section->vma
8340 + sym_sec->output_offset;
8341 }
8342
8343 /* Compute branch offset, from delay slot of the jump to the
8344 branch target. */
8345 sym_offset = (symval + irel->r_addend)
8346 - (sec_start + irel->r_offset + 4);
8347
8348 /* Branch offset must be properly aligned. */
8349 if ((sym_offset & 3) != 0)
8350 continue;
8351
8352 sym_offset >>= 2;
8353
8354 /* Check that it's in range. */
8355 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8356 continue;
8357
8358 /* Get the section contents if we haven't done so already. */
8359 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8360 goto relax_return;
8361
8362 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8363
8364 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8365 if ((instruction & 0xfc1fffff) == 0x0000f809)
8366 instruction = 0x04110000;
8367 /* If it was jr <reg>, turn it into b <target>. */
8368 else if ((instruction & 0xfc1fffff) == 0x00000008)
8369 instruction = 0x10000000;
8370 else
8371 continue;
8372
8373 instruction |= (sym_offset & 0xffff);
8374 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8375 changed_contents = TRUE;
8376 }
8377
8378 if (contents != NULL
8379 && elf_section_data (sec)->this_hdr.contents != contents)
8380 {
8381 if (!changed_contents && !link_info->keep_memory)
8382 free (contents);
8383 else
8384 {
8385 /* Cache the section contents for elf_link_input_bfd. */
8386 elf_section_data (sec)->this_hdr.contents = contents;
8387 }
8388 }
8389 return TRUE;
8390
8391 relax_return:
8392 if (contents != NULL
8393 && elf_section_data (sec)->this_hdr.contents != contents)
8394 free (contents);
8395 return FALSE;
8396 }
8397 \f
8398 /* Allocate space for global sym dynamic relocs. */
8399
8400 static bfd_boolean
8401 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8402 {
8403 struct bfd_link_info *info = inf;
8404 bfd *dynobj;
8405 struct mips_elf_link_hash_entry *hmips;
8406 struct mips_elf_link_hash_table *htab;
8407
8408 htab = mips_elf_hash_table (info);
8409 BFD_ASSERT (htab != NULL);
8410
8411 dynobj = elf_hash_table (info)->dynobj;
8412 hmips = (struct mips_elf_link_hash_entry *) h;
8413
8414 /* VxWorks executables are handled elsewhere; we only need to
8415 allocate relocations in shared objects. */
8416 if (htab->is_vxworks && !info->shared)
8417 return TRUE;
8418
8419 /* Ignore indirect symbols. All relocations against such symbols
8420 will be redirected to the target symbol. */
8421 if (h->root.type == bfd_link_hash_indirect)
8422 return TRUE;
8423
8424 /* If this symbol is defined in a dynamic object, or we are creating
8425 a shared library, we will need to copy any R_MIPS_32 or
8426 R_MIPS_REL32 relocs against it into the output file. */
8427 if (! info->relocatable
8428 && hmips->possibly_dynamic_relocs != 0
8429 && (h->root.type == bfd_link_hash_defweak
8430 || !h->def_regular
8431 || info->shared))
8432 {
8433 bfd_boolean do_copy = TRUE;
8434
8435 if (h->root.type == bfd_link_hash_undefweak)
8436 {
8437 /* Do not copy relocations for undefined weak symbols with
8438 non-default visibility. */
8439 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8440 do_copy = FALSE;
8441
8442 /* Make sure undefined weak symbols are output as a dynamic
8443 symbol in PIEs. */
8444 else if (h->dynindx == -1 && !h->forced_local)
8445 {
8446 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8447 return FALSE;
8448 }
8449 }
8450
8451 if (do_copy)
8452 {
8453 /* Even though we don't directly need a GOT entry for this symbol,
8454 the SVR4 psABI requires it to have a dynamic symbol table
8455 index greater that DT_MIPS_GOTSYM if there are dynamic
8456 relocations against it.
8457
8458 VxWorks does not enforce the same mapping between the GOT
8459 and the symbol table, so the same requirement does not
8460 apply there. */
8461 if (!htab->is_vxworks)
8462 {
8463 if (hmips->global_got_area > GGA_RELOC_ONLY)
8464 hmips->global_got_area = GGA_RELOC_ONLY;
8465 hmips->got_only_for_calls = FALSE;
8466 }
8467
8468 mips_elf_allocate_dynamic_relocations
8469 (dynobj, info, hmips->possibly_dynamic_relocs);
8470 if (hmips->readonly_reloc)
8471 /* We tell the dynamic linker that there are relocations
8472 against the text segment. */
8473 info->flags |= DF_TEXTREL;
8474 }
8475 }
8476
8477 return TRUE;
8478 }
8479
8480 /* Adjust a symbol defined by a dynamic object and referenced by a
8481 regular object. The current definition is in some section of the
8482 dynamic object, but we're not including those sections. We have to
8483 change the definition to something the rest of the link can
8484 understand. */
8485
8486 bfd_boolean
8487 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8488 struct elf_link_hash_entry *h)
8489 {
8490 bfd *dynobj;
8491 struct mips_elf_link_hash_entry *hmips;
8492 struct mips_elf_link_hash_table *htab;
8493
8494 htab = mips_elf_hash_table (info);
8495 BFD_ASSERT (htab != NULL);
8496
8497 dynobj = elf_hash_table (info)->dynobj;
8498 hmips = (struct mips_elf_link_hash_entry *) h;
8499
8500 /* Make sure we know what is going on here. */
8501 BFD_ASSERT (dynobj != NULL
8502 && (h->needs_plt
8503 || h->u.weakdef != NULL
8504 || (h->def_dynamic
8505 && h->ref_regular
8506 && !h->def_regular)));
8507
8508 hmips = (struct mips_elf_link_hash_entry *) h;
8509
8510 /* If there are call relocations against an externally-defined symbol,
8511 see whether we can create a MIPS lazy-binding stub for it. We can
8512 only do this if all references to the function are through call
8513 relocations, and in that case, the traditional lazy-binding stubs
8514 are much more efficient than PLT entries.
8515
8516 Traditional stubs are only available on SVR4 psABI-based systems;
8517 VxWorks always uses PLTs instead. */
8518 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8519 {
8520 if (! elf_hash_table (info)->dynamic_sections_created)
8521 return TRUE;
8522
8523 /* If this symbol is not defined in a regular file, then set
8524 the symbol to the stub location. This is required to make
8525 function pointers compare as equal between the normal
8526 executable and the shared library. */
8527 if (!h->def_regular)
8528 {
8529 hmips->needs_lazy_stub = TRUE;
8530 htab->lazy_stub_count++;
8531 return TRUE;
8532 }
8533 }
8534 /* As above, VxWorks requires PLT entries for externally-defined
8535 functions that are only accessed through call relocations.
8536
8537 Both VxWorks and non-VxWorks targets also need PLT entries if there
8538 are static-only relocations against an externally-defined function.
8539 This can technically occur for shared libraries if there are
8540 branches to the symbol, although it is unlikely that this will be
8541 used in practice due to the short ranges involved. It can occur
8542 for any relative or absolute relocation in executables; in that
8543 case, the PLT entry becomes the function's canonical address. */
8544 else if (((h->needs_plt && !hmips->no_fn_stub)
8545 || (h->type == STT_FUNC && hmips->has_static_relocs))
8546 && htab->use_plts_and_copy_relocs
8547 && !SYMBOL_CALLS_LOCAL (info, h)
8548 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8549 && h->root.type == bfd_link_hash_undefweak))
8550 {
8551 /* If this is the first symbol to need a PLT entry, allocate room
8552 for the header. */
8553 if (htab->splt->size == 0)
8554 {
8555 BFD_ASSERT (htab->sgotplt->size == 0);
8556
8557 /* If we're using the PLT additions to the psABI, each PLT
8558 entry is 16 bytes and the PLT0 entry is 32 bytes.
8559 Encourage better cache usage by aligning. We do this
8560 lazily to avoid pessimizing traditional objects. */
8561 if (!htab->is_vxworks
8562 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8563 return FALSE;
8564
8565 /* Make sure that .got.plt is word-aligned. We do this lazily
8566 for the same reason as above. */
8567 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8568 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8569 return FALSE;
8570
8571 htab->splt->size += htab->plt_header_size;
8572
8573 /* On non-VxWorks targets, the first two entries in .got.plt
8574 are reserved. */
8575 if (!htab->is_vxworks)
8576 htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj);
8577
8578 /* On VxWorks, also allocate room for the header's
8579 .rela.plt.unloaded entries. */
8580 if (htab->is_vxworks && !info->shared)
8581 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8582 }
8583
8584 /* Assign the next .plt entry to this symbol. */
8585 h->plt.offset = htab->splt->size;
8586 htab->splt->size += htab->plt_entry_size;
8587
8588 /* If the output file has no definition of the symbol, set the
8589 symbol's value to the address of the stub. */
8590 if (!info->shared && !h->def_regular)
8591 {
8592 h->root.u.def.section = htab->splt;
8593 h->root.u.def.value = h->plt.offset;
8594 /* For VxWorks, point at the PLT load stub rather than the
8595 lazy resolution stub; this stub will become the canonical
8596 function address. */
8597 if (htab->is_vxworks)
8598 h->root.u.def.value += 8;
8599 }
8600
8601 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8602 relocation. */
8603 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8604 htab->srelplt->size += (htab->is_vxworks
8605 ? MIPS_ELF_RELA_SIZE (dynobj)
8606 : MIPS_ELF_REL_SIZE (dynobj));
8607
8608 /* Make room for the .rela.plt.unloaded relocations. */
8609 if (htab->is_vxworks && !info->shared)
8610 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8611
8612 /* All relocations against this symbol that could have been made
8613 dynamic will now refer to the PLT entry instead. */
8614 hmips->possibly_dynamic_relocs = 0;
8615
8616 return TRUE;
8617 }
8618
8619 /* If this is a weak symbol, and there is a real definition, the
8620 processor independent code will have arranged for us to see the
8621 real definition first, and we can just use the same value. */
8622 if (h->u.weakdef != NULL)
8623 {
8624 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8625 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8626 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8627 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8628 return TRUE;
8629 }
8630
8631 /* Otherwise, there is nothing further to do for symbols defined
8632 in regular objects. */
8633 if (h->def_regular)
8634 return TRUE;
8635
8636 /* There's also nothing more to do if we'll convert all relocations
8637 against this symbol into dynamic relocations. */
8638 if (!hmips->has_static_relocs)
8639 return TRUE;
8640
8641 /* We're now relying on copy relocations. Complain if we have
8642 some that we can't convert. */
8643 if (!htab->use_plts_and_copy_relocs || info->shared)
8644 {
8645 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8646 "dynamic symbol %s"),
8647 h->root.root.string);
8648 bfd_set_error (bfd_error_bad_value);
8649 return FALSE;
8650 }
8651
8652 /* We must allocate the symbol in our .dynbss section, which will
8653 become part of the .bss section of the executable. There will be
8654 an entry for this symbol in the .dynsym section. The dynamic
8655 object will contain position independent code, so all references
8656 from the dynamic object to this symbol will go through the global
8657 offset table. The dynamic linker will use the .dynsym entry to
8658 determine the address it must put in the global offset table, so
8659 both the dynamic object and the regular object will refer to the
8660 same memory location for the variable. */
8661
8662 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8663 {
8664 if (htab->is_vxworks)
8665 htab->srelbss->size += sizeof (Elf32_External_Rela);
8666 else
8667 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8668 h->needs_copy = 1;
8669 }
8670
8671 /* All relocations against this symbol that could have been made
8672 dynamic will now refer to the local copy instead. */
8673 hmips->possibly_dynamic_relocs = 0;
8674
8675 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8676 }
8677 \f
8678 /* This function is called after all the input files have been read,
8679 and the input sections have been assigned to output sections. We
8680 check for any mips16 stub sections that we can discard. */
8681
8682 bfd_boolean
8683 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8684 struct bfd_link_info *info)
8685 {
8686 asection *ri;
8687 struct mips_elf_link_hash_table *htab;
8688 struct mips_htab_traverse_info hti;
8689
8690 htab = mips_elf_hash_table (info);
8691 BFD_ASSERT (htab != NULL);
8692
8693 /* The .reginfo section has a fixed size. */
8694 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8695 if (ri != NULL)
8696 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8697
8698 hti.info = info;
8699 hti.output_bfd = output_bfd;
8700 hti.error = FALSE;
8701 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8702 mips_elf_check_symbols, &hti);
8703 if (hti.error)
8704 return FALSE;
8705
8706 return TRUE;
8707 }
8708
8709 /* If the link uses a GOT, lay it out and work out its size. */
8710
8711 static bfd_boolean
8712 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8713 {
8714 bfd *dynobj;
8715 asection *s;
8716 struct mips_got_info *g;
8717 bfd_size_type loadable_size = 0;
8718 bfd_size_type page_gotno;
8719 bfd *sub;
8720 struct mips_elf_count_tls_arg count_tls_arg;
8721 struct mips_elf_link_hash_table *htab;
8722
8723 htab = mips_elf_hash_table (info);
8724 BFD_ASSERT (htab != NULL);
8725
8726 s = htab->sgot;
8727 if (s == NULL)
8728 return TRUE;
8729
8730 dynobj = elf_hash_table (info)->dynobj;
8731 g = htab->got_info;
8732
8733 /* Allocate room for the reserved entries. VxWorks always reserves
8734 3 entries; other objects only reserve 2 entries. */
8735 BFD_ASSERT (g->assigned_gotno == 0);
8736 if (htab->is_vxworks)
8737 htab->reserved_gotno = 3;
8738 else
8739 htab->reserved_gotno = 2;
8740 g->local_gotno += htab->reserved_gotno;
8741 g->assigned_gotno = htab->reserved_gotno;
8742
8743 /* Replace entries for indirect and warning symbols with entries for
8744 the target symbol. */
8745 if (!mips_elf_resolve_final_got_entries (g))
8746 return FALSE;
8747
8748 /* Count the number of GOT symbols. */
8749 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8750
8751 /* Calculate the total loadable size of the output. That
8752 will give us the maximum number of GOT_PAGE entries
8753 required. */
8754 for (sub = info->input_bfds; sub; sub = sub->link_next)
8755 {
8756 asection *subsection;
8757
8758 for (subsection = sub->sections;
8759 subsection;
8760 subsection = subsection->next)
8761 {
8762 if ((subsection->flags & SEC_ALLOC) == 0)
8763 continue;
8764 loadable_size += ((subsection->size + 0xf)
8765 &~ (bfd_size_type) 0xf);
8766 }
8767 }
8768
8769 if (htab->is_vxworks)
8770 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8771 relocations against local symbols evaluate to "G", and the EABI does
8772 not include R_MIPS_GOT_PAGE. */
8773 page_gotno = 0;
8774 else
8775 /* Assume there are two loadable segments consisting of contiguous
8776 sections. Is 5 enough? */
8777 page_gotno = (loadable_size >> 16) + 5;
8778
8779 /* Choose the smaller of the two estimates; both are intended to be
8780 conservative. */
8781 if (page_gotno > g->page_gotno)
8782 page_gotno = g->page_gotno;
8783
8784 g->local_gotno += page_gotno;
8785 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8786 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8787
8788 /* We need to calculate tls_gotno for global symbols at this point
8789 instead of building it up earlier, to avoid doublecounting
8790 entries for one global symbol from multiple input files. */
8791 count_tls_arg.info = info;
8792 count_tls_arg.needed = 0;
8793 elf_link_hash_traverse (elf_hash_table (info),
8794 mips_elf_count_global_tls_entries,
8795 &count_tls_arg);
8796 g->tls_gotno += count_tls_arg.needed;
8797 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8798
8799 /* VxWorks does not support multiple GOTs. It initializes $gp to
8800 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8801 dynamic loader. */
8802 if (htab->is_vxworks)
8803 {
8804 /* VxWorks executables do not need a GOT. */
8805 if (info->shared)
8806 {
8807 /* Each VxWorks GOT entry needs an explicit relocation. */
8808 unsigned int count;
8809
8810 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8811 if (count)
8812 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8813 }
8814 }
8815 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8816 {
8817 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8818 return FALSE;
8819 }
8820 else
8821 {
8822 struct mips_elf_count_tls_arg arg;
8823
8824 /* Set up TLS entries. */
8825 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8826 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8827
8828 /* Allocate room for the TLS relocations. */
8829 arg.info = info;
8830 arg.needed = 0;
8831 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8832 elf_link_hash_traverse (elf_hash_table (info),
8833 mips_elf_count_global_tls_relocs,
8834 &arg);
8835 if (arg.needed)
8836 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8837 }
8838
8839 return TRUE;
8840 }
8841
8842 /* Estimate the size of the .MIPS.stubs section. */
8843
8844 static void
8845 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8846 {
8847 struct mips_elf_link_hash_table *htab;
8848 bfd_size_type dynsymcount;
8849
8850 htab = mips_elf_hash_table (info);
8851 BFD_ASSERT (htab != NULL);
8852
8853 if (htab->lazy_stub_count == 0)
8854 return;
8855
8856 /* IRIX rld assumes that a function stub isn't at the end of the .text
8857 section, so add a dummy entry to the end. */
8858 htab->lazy_stub_count++;
8859
8860 /* Get a worst-case estimate of the number of dynamic symbols needed.
8861 At this point, dynsymcount does not account for section symbols
8862 and count_section_dynsyms may overestimate the number that will
8863 be needed. */
8864 dynsymcount = (elf_hash_table (info)->dynsymcount
8865 + count_section_dynsyms (output_bfd, info));
8866
8867 /* Determine the size of one stub entry. */
8868 htab->function_stub_size = (dynsymcount > 0x10000
8869 ? MIPS_FUNCTION_STUB_BIG_SIZE
8870 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8871
8872 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8873 }
8874
8875 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8876 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8877 allocate an entry in the stubs section. */
8878
8879 static bfd_boolean
8880 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8881 {
8882 struct mips_elf_link_hash_table *htab;
8883
8884 htab = (struct mips_elf_link_hash_table *) data;
8885 if (h->needs_lazy_stub)
8886 {
8887 h->root.root.u.def.section = htab->sstubs;
8888 h->root.root.u.def.value = htab->sstubs->size;
8889 h->root.plt.offset = htab->sstubs->size;
8890 htab->sstubs->size += htab->function_stub_size;
8891 }
8892 return TRUE;
8893 }
8894
8895 /* Allocate offsets in the stubs section to each symbol that needs one.
8896 Set the final size of the .MIPS.stub section. */
8897
8898 static void
8899 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8900 {
8901 struct mips_elf_link_hash_table *htab;
8902
8903 htab = mips_elf_hash_table (info);
8904 BFD_ASSERT (htab != NULL);
8905
8906 if (htab->lazy_stub_count == 0)
8907 return;
8908
8909 htab->sstubs->size = 0;
8910 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
8911 htab->sstubs->size += htab->function_stub_size;
8912 BFD_ASSERT (htab->sstubs->size
8913 == htab->lazy_stub_count * htab->function_stub_size);
8914 }
8915
8916 /* Set the sizes of the dynamic sections. */
8917
8918 bfd_boolean
8919 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8920 struct bfd_link_info *info)
8921 {
8922 bfd *dynobj;
8923 asection *s, *sreldyn;
8924 bfd_boolean reltext;
8925 struct mips_elf_link_hash_table *htab;
8926
8927 htab = mips_elf_hash_table (info);
8928 BFD_ASSERT (htab != NULL);
8929 dynobj = elf_hash_table (info)->dynobj;
8930 BFD_ASSERT (dynobj != NULL);
8931
8932 if (elf_hash_table (info)->dynamic_sections_created)
8933 {
8934 /* Set the contents of the .interp section to the interpreter. */
8935 if (info->executable)
8936 {
8937 s = bfd_get_section_by_name (dynobj, ".interp");
8938 BFD_ASSERT (s != NULL);
8939 s->size
8940 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8941 s->contents
8942 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8943 }
8944
8945 /* Create a symbol for the PLT, if we know that we are using it. */
8946 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8947 {
8948 struct elf_link_hash_entry *h;
8949
8950 BFD_ASSERT (htab->use_plts_and_copy_relocs);
8951
8952 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8953 "_PROCEDURE_LINKAGE_TABLE_");
8954 htab->root.hplt = h;
8955 if (h == NULL)
8956 return FALSE;
8957 h->type = STT_FUNC;
8958 }
8959 }
8960
8961 /* Allocate space for global sym dynamic relocs. */
8962 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
8963
8964 mips_elf_estimate_stub_size (output_bfd, info);
8965
8966 if (!mips_elf_lay_out_got (output_bfd, info))
8967 return FALSE;
8968
8969 mips_elf_lay_out_lazy_stubs (info);
8970
8971 /* The check_relocs and adjust_dynamic_symbol entry points have
8972 determined the sizes of the various dynamic sections. Allocate
8973 memory for them. */
8974 reltext = FALSE;
8975 for (s = dynobj->sections; s != NULL; s = s->next)
8976 {
8977 const char *name;
8978
8979 /* It's OK to base decisions on the section name, because none
8980 of the dynobj section names depend upon the input files. */
8981 name = bfd_get_section_name (dynobj, s);
8982
8983 if ((s->flags & SEC_LINKER_CREATED) == 0)
8984 continue;
8985
8986 if (CONST_STRNEQ (name, ".rel"))
8987 {
8988 if (s->size != 0)
8989 {
8990 const char *outname;
8991 asection *target;
8992
8993 /* If this relocation section applies to a read only
8994 section, then we probably need a DT_TEXTREL entry.
8995 If the relocation section is .rel(a).dyn, we always
8996 assert a DT_TEXTREL entry rather than testing whether
8997 there exists a relocation to a read only section or
8998 not. */
8999 outname = bfd_get_section_name (output_bfd,
9000 s->output_section);
9001 target = bfd_get_section_by_name (output_bfd, outname + 4);
9002 if ((target != NULL
9003 && (target->flags & SEC_READONLY) != 0
9004 && (target->flags & SEC_ALLOC) != 0)
9005 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9006 reltext = TRUE;
9007
9008 /* We use the reloc_count field as a counter if we need
9009 to copy relocs into the output file. */
9010 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9011 s->reloc_count = 0;
9012
9013 /* If combreloc is enabled, elf_link_sort_relocs() will
9014 sort relocations, but in a different way than we do,
9015 and before we're done creating relocations. Also, it
9016 will move them around between input sections'
9017 relocation's contents, so our sorting would be
9018 broken, so don't let it run. */
9019 info->combreloc = 0;
9020 }
9021 }
9022 else if (! info->shared
9023 && ! mips_elf_hash_table (info)->use_rld_obj_head
9024 && CONST_STRNEQ (name, ".rld_map"))
9025 {
9026 /* We add a room for __rld_map. It will be filled in by the
9027 rtld to contain a pointer to the _r_debug structure. */
9028 s->size += 4;
9029 }
9030 else if (SGI_COMPAT (output_bfd)
9031 && CONST_STRNEQ (name, ".compact_rel"))
9032 s->size += mips_elf_hash_table (info)->compact_rel_size;
9033 else if (s == htab->splt)
9034 {
9035 /* If the last PLT entry has a branch delay slot, allocate
9036 room for an extra nop to fill the delay slot. This is
9037 for CPUs without load interlocking. */
9038 if (! LOAD_INTERLOCKS_P (output_bfd)
9039 && ! htab->is_vxworks && s->size > 0)
9040 s->size += 4;
9041 }
9042 else if (! CONST_STRNEQ (name, ".init")
9043 && s != htab->sgot
9044 && s != htab->sgotplt
9045 && s != htab->sstubs
9046 && s != htab->sdynbss)
9047 {
9048 /* It's not one of our sections, so don't allocate space. */
9049 continue;
9050 }
9051
9052 if (s->size == 0)
9053 {
9054 s->flags |= SEC_EXCLUDE;
9055 continue;
9056 }
9057
9058 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9059 continue;
9060
9061 /* Allocate memory for the section contents. */
9062 s->contents = bfd_zalloc (dynobj, s->size);
9063 if (s->contents == NULL)
9064 {
9065 bfd_set_error (bfd_error_no_memory);
9066 return FALSE;
9067 }
9068 }
9069
9070 if (elf_hash_table (info)->dynamic_sections_created)
9071 {
9072 /* Add some entries to the .dynamic section. We fill in the
9073 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9074 must add the entries now so that we get the correct size for
9075 the .dynamic section. */
9076
9077 /* SGI object has the equivalence of DT_DEBUG in the
9078 DT_MIPS_RLD_MAP entry. This must come first because glibc
9079 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
9080 looks at the first one it sees. */
9081 if (!info->shared
9082 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9083 return FALSE;
9084
9085 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9086 used by the debugger. */
9087 if (info->executable
9088 && !SGI_COMPAT (output_bfd)
9089 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9090 return FALSE;
9091
9092 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9093 info->flags |= DF_TEXTREL;
9094
9095 if ((info->flags & DF_TEXTREL) != 0)
9096 {
9097 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9098 return FALSE;
9099
9100 /* Clear the DF_TEXTREL flag. It will be set again if we
9101 write out an actual text relocation; we may not, because
9102 at this point we do not know whether e.g. any .eh_frame
9103 absolute relocations have been converted to PC-relative. */
9104 info->flags &= ~DF_TEXTREL;
9105 }
9106
9107 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9108 return FALSE;
9109
9110 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9111 if (htab->is_vxworks)
9112 {
9113 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9114 use any of the DT_MIPS_* tags. */
9115 if (sreldyn && sreldyn->size > 0)
9116 {
9117 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9118 return FALSE;
9119
9120 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9121 return FALSE;
9122
9123 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9124 return FALSE;
9125 }
9126 }
9127 else
9128 {
9129 if (sreldyn && sreldyn->size > 0)
9130 {
9131 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9132 return FALSE;
9133
9134 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9135 return FALSE;
9136
9137 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9138 return FALSE;
9139 }
9140
9141 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9142 return FALSE;
9143
9144 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9145 return FALSE;
9146
9147 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9148 return FALSE;
9149
9150 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9151 return FALSE;
9152
9153 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9154 return FALSE;
9155
9156 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9157 return FALSE;
9158
9159 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9160 return FALSE;
9161
9162 if (IRIX_COMPAT (dynobj) == ict_irix5
9163 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9164 return FALSE;
9165
9166 if (IRIX_COMPAT (dynobj) == ict_irix6
9167 && (bfd_get_section_by_name
9168 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9169 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9170 return FALSE;
9171 }
9172 if (htab->splt->size > 0)
9173 {
9174 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9175 return FALSE;
9176
9177 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9178 return FALSE;
9179
9180 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9181 return FALSE;
9182
9183 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9184 return FALSE;
9185 }
9186 if (htab->is_vxworks
9187 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9188 return FALSE;
9189 }
9190
9191 return TRUE;
9192 }
9193 \f
9194 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9195 Adjust its R_ADDEND field so that it is correct for the output file.
9196 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9197 and sections respectively; both use symbol indexes. */
9198
9199 static void
9200 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9201 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9202 asection **local_sections, Elf_Internal_Rela *rel)
9203 {
9204 unsigned int r_type, r_symndx;
9205 Elf_Internal_Sym *sym;
9206 asection *sec;
9207
9208 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9209 {
9210 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9211 if (gprel16_reloc_p (r_type)
9212 || r_type == R_MIPS_GPREL32
9213 || literal_reloc_p (r_type))
9214 {
9215 rel->r_addend += _bfd_get_gp_value (input_bfd);
9216 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9217 }
9218
9219 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9220 sym = local_syms + r_symndx;
9221
9222 /* Adjust REL's addend to account for section merging. */
9223 if (!info->relocatable)
9224 {
9225 sec = local_sections[r_symndx];
9226 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9227 }
9228
9229 /* This would normally be done by the rela_normal code in elflink.c. */
9230 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9231 rel->r_addend += local_sections[r_symndx]->output_offset;
9232 }
9233 }
9234
9235 /* Relocate a MIPS ELF section. */
9236
9237 bfd_boolean
9238 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9239 bfd *input_bfd, asection *input_section,
9240 bfd_byte *contents, Elf_Internal_Rela *relocs,
9241 Elf_Internal_Sym *local_syms,
9242 asection **local_sections)
9243 {
9244 Elf_Internal_Rela *rel;
9245 const Elf_Internal_Rela *relend;
9246 bfd_vma addend = 0;
9247 bfd_boolean use_saved_addend_p = FALSE;
9248 const struct elf_backend_data *bed;
9249
9250 bed = get_elf_backend_data (output_bfd);
9251 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9252 for (rel = relocs; rel < relend; ++rel)
9253 {
9254 const char *name;
9255 bfd_vma value = 0;
9256 reloc_howto_type *howto;
9257 bfd_boolean cross_mode_jump_p;
9258 /* TRUE if the relocation is a RELA relocation, rather than a
9259 REL relocation. */
9260 bfd_boolean rela_relocation_p = TRUE;
9261 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9262 const char *msg;
9263 unsigned long r_symndx;
9264 asection *sec;
9265 Elf_Internal_Shdr *symtab_hdr;
9266 struct elf_link_hash_entry *h;
9267 bfd_boolean rel_reloc;
9268
9269 rel_reloc = (NEWABI_P (input_bfd)
9270 && mips_elf_rel_relocation_p (input_bfd, input_section,
9271 relocs, rel));
9272 /* Find the relocation howto for this relocation. */
9273 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9274
9275 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9276 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9277 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9278 {
9279 sec = local_sections[r_symndx];
9280 h = NULL;
9281 }
9282 else
9283 {
9284 unsigned long extsymoff;
9285
9286 extsymoff = 0;
9287 if (!elf_bad_symtab (input_bfd))
9288 extsymoff = symtab_hdr->sh_info;
9289 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9290 while (h->root.type == bfd_link_hash_indirect
9291 || h->root.type == bfd_link_hash_warning)
9292 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9293
9294 sec = NULL;
9295 if (h->root.type == bfd_link_hash_defined
9296 || h->root.type == bfd_link_hash_defweak)
9297 sec = h->root.u.def.section;
9298 }
9299
9300 if (sec != NULL && elf_discarded_section (sec))
9301 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9302 rel, relend, howto, contents);
9303
9304 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9305 {
9306 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9307 64-bit code, but make sure all their addresses are in the
9308 lowermost or uppermost 32-bit section of the 64-bit address
9309 space. Thus, when they use an R_MIPS_64 they mean what is
9310 usually meant by R_MIPS_32, with the exception that the
9311 stored value is sign-extended to 64 bits. */
9312 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9313
9314 /* On big-endian systems, we need to lie about the position
9315 of the reloc. */
9316 if (bfd_big_endian (input_bfd))
9317 rel->r_offset += 4;
9318 }
9319
9320 if (!use_saved_addend_p)
9321 {
9322 /* If these relocations were originally of the REL variety,
9323 we must pull the addend out of the field that will be
9324 relocated. Otherwise, we simply use the contents of the
9325 RELA relocation. */
9326 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9327 relocs, rel))
9328 {
9329 rela_relocation_p = FALSE;
9330 addend = mips_elf_read_rel_addend (input_bfd, rel,
9331 howto, contents);
9332 if (hi16_reloc_p (r_type)
9333 || (got16_reloc_p (r_type)
9334 && mips_elf_local_relocation_p (input_bfd, rel,
9335 local_sections)))
9336 {
9337 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9338 contents, &addend))
9339 {
9340 if (h)
9341 name = h->root.root.string;
9342 else
9343 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9344 local_syms + r_symndx,
9345 sec);
9346 (*_bfd_error_handler)
9347 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9348 input_bfd, input_section, name, howto->name,
9349 rel->r_offset);
9350 }
9351 }
9352 else
9353 addend <<= howto->rightshift;
9354 }
9355 else
9356 addend = rel->r_addend;
9357 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9358 local_syms, local_sections, rel);
9359 }
9360
9361 if (info->relocatable)
9362 {
9363 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9364 && bfd_big_endian (input_bfd))
9365 rel->r_offset -= 4;
9366
9367 if (!rela_relocation_p && rel->r_addend)
9368 {
9369 addend += rel->r_addend;
9370 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9371 addend = mips_elf_high (addend);
9372 else if (r_type == R_MIPS_HIGHER)
9373 addend = mips_elf_higher (addend);
9374 else if (r_type == R_MIPS_HIGHEST)
9375 addend = mips_elf_highest (addend);
9376 else
9377 addend >>= howto->rightshift;
9378
9379 /* We use the source mask, rather than the destination
9380 mask because the place to which we are writing will be
9381 source of the addend in the final link. */
9382 addend &= howto->src_mask;
9383
9384 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9385 /* See the comment above about using R_MIPS_64 in the 32-bit
9386 ABI. Here, we need to update the addend. It would be
9387 possible to get away with just using the R_MIPS_32 reloc
9388 but for endianness. */
9389 {
9390 bfd_vma sign_bits;
9391 bfd_vma low_bits;
9392 bfd_vma high_bits;
9393
9394 if (addend & ((bfd_vma) 1 << 31))
9395 #ifdef BFD64
9396 sign_bits = ((bfd_vma) 1 << 32) - 1;
9397 #else
9398 sign_bits = -1;
9399 #endif
9400 else
9401 sign_bits = 0;
9402
9403 /* If we don't know that we have a 64-bit type,
9404 do two separate stores. */
9405 if (bfd_big_endian (input_bfd))
9406 {
9407 /* Store the sign-bits (which are most significant)
9408 first. */
9409 low_bits = sign_bits;
9410 high_bits = addend;
9411 }
9412 else
9413 {
9414 low_bits = addend;
9415 high_bits = sign_bits;
9416 }
9417 bfd_put_32 (input_bfd, low_bits,
9418 contents + rel->r_offset);
9419 bfd_put_32 (input_bfd, high_bits,
9420 contents + rel->r_offset + 4);
9421 continue;
9422 }
9423
9424 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9425 input_bfd, input_section,
9426 contents, FALSE))
9427 return FALSE;
9428 }
9429
9430 /* Go on to the next relocation. */
9431 continue;
9432 }
9433
9434 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9435 relocations for the same offset. In that case we are
9436 supposed to treat the output of each relocation as the addend
9437 for the next. */
9438 if (rel + 1 < relend
9439 && rel->r_offset == rel[1].r_offset
9440 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9441 use_saved_addend_p = TRUE;
9442 else
9443 use_saved_addend_p = FALSE;
9444
9445 /* Figure out what value we are supposed to relocate. */
9446 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9447 input_section, info, rel,
9448 addend, howto, local_syms,
9449 local_sections, &value,
9450 &name, &cross_mode_jump_p,
9451 use_saved_addend_p))
9452 {
9453 case bfd_reloc_continue:
9454 /* There's nothing to do. */
9455 continue;
9456
9457 case bfd_reloc_undefined:
9458 /* mips_elf_calculate_relocation already called the
9459 undefined_symbol callback. There's no real point in
9460 trying to perform the relocation at this point, so we
9461 just skip ahead to the next relocation. */
9462 continue;
9463
9464 case bfd_reloc_notsupported:
9465 msg = _("internal error: unsupported relocation error");
9466 info->callbacks->warning
9467 (info, msg, name, input_bfd, input_section, rel->r_offset);
9468 return FALSE;
9469
9470 case bfd_reloc_overflow:
9471 if (use_saved_addend_p)
9472 /* Ignore overflow until we reach the last relocation for
9473 a given location. */
9474 ;
9475 else
9476 {
9477 struct mips_elf_link_hash_table *htab;
9478
9479 htab = mips_elf_hash_table (info);
9480 BFD_ASSERT (htab != NULL);
9481 BFD_ASSERT (name != NULL);
9482 if (!htab->small_data_overflow_reported
9483 && (gprel16_reloc_p (howto->type)
9484 || literal_reloc_p (howto->type)))
9485 {
9486 msg = _("small-data section exceeds 64KB;"
9487 " lower small-data size limit (see option -G)");
9488
9489 htab->small_data_overflow_reported = TRUE;
9490 (*info->callbacks->einfo) ("%P: %s\n", msg);
9491 }
9492 if (! ((*info->callbacks->reloc_overflow)
9493 (info, NULL, name, howto->name, (bfd_vma) 0,
9494 input_bfd, input_section, rel->r_offset)))
9495 return FALSE;
9496 }
9497 break;
9498
9499 case bfd_reloc_ok:
9500 break;
9501
9502 case bfd_reloc_outofrange:
9503 if (jal_reloc_p (howto->type))
9504 {
9505 msg = _("JALX to a non-word-aligned address");
9506 info->callbacks->warning
9507 (info, msg, name, input_bfd, input_section, rel->r_offset);
9508 return FALSE;
9509 }
9510 /* Fall through. */
9511
9512 default:
9513 abort ();
9514 break;
9515 }
9516
9517 /* If we've got another relocation for the address, keep going
9518 until we reach the last one. */
9519 if (use_saved_addend_p)
9520 {
9521 addend = value;
9522 continue;
9523 }
9524
9525 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9526 /* See the comment above about using R_MIPS_64 in the 32-bit
9527 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9528 that calculated the right value. Now, however, we
9529 sign-extend the 32-bit result to 64-bits, and store it as a
9530 64-bit value. We are especially generous here in that we
9531 go to extreme lengths to support this usage on systems with
9532 only a 32-bit VMA. */
9533 {
9534 bfd_vma sign_bits;
9535 bfd_vma low_bits;
9536 bfd_vma high_bits;
9537
9538 if (value & ((bfd_vma) 1 << 31))
9539 #ifdef BFD64
9540 sign_bits = ((bfd_vma) 1 << 32) - 1;
9541 #else
9542 sign_bits = -1;
9543 #endif
9544 else
9545 sign_bits = 0;
9546
9547 /* If we don't know that we have a 64-bit type,
9548 do two separate stores. */
9549 if (bfd_big_endian (input_bfd))
9550 {
9551 /* Undo what we did above. */
9552 rel->r_offset -= 4;
9553 /* Store the sign-bits (which are most significant)
9554 first. */
9555 low_bits = sign_bits;
9556 high_bits = value;
9557 }
9558 else
9559 {
9560 low_bits = value;
9561 high_bits = sign_bits;
9562 }
9563 bfd_put_32 (input_bfd, low_bits,
9564 contents + rel->r_offset);
9565 bfd_put_32 (input_bfd, high_bits,
9566 contents + rel->r_offset + 4);
9567 continue;
9568 }
9569
9570 /* Actually perform the relocation. */
9571 if (! mips_elf_perform_relocation (info, howto, rel, value,
9572 input_bfd, input_section,
9573 contents, cross_mode_jump_p))
9574 return FALSE;
9575 }
9576
9577 return TRUE;
9578 }
9579 \f
9580 /* A function that iterates over each entry in la25_stubs and fills
9581 in the code for each one. DATA points to a mips_htab_traverse_info. */
9582
9583 static int
9584 mips_elf_create_la25_stub (void **slot, void *data)
9585 {
9586 struct mips_htab_traverse_info *hti;
9587 struct mips_elf_link_hash_table *htab;
9588 struct mips_elf_la25_stub *stub;
9589 asection *s;
9590 bfd_byte *loc;
9591 bfd_vma offset, target, target_high, target_low;
9592
9593 stub = (struct mips_elf_la25_stub *) *slot;
9594 hti = (struct mips_htab_traverse_info *) data;
9595 htab = mips_elf_hash_table (hti->info);
9596 BFD_ASSERT (htab != NULL);
9597
9598 /* Create the section contents, if we haven't already. */
9599 s = stub->stub_section;
9600 loc = s->contents;
9601 if (loc == NULL)
9602 {
9603 loc = bfd_malloc (s->size);
9604 if (loc == NULL)
9605 {
9606 hti->error = TRUE;
9607 return FALSE;
9608 }
9609 s->contents = loc;
9610 }
9611
9612 /* Work out where in the section this stub should go. */
9613 offset = stub->offset;
9614
9615 /* Work out the target address. */
9616 target = (stub->h->root.root.u.def.section->output_section->vma
9617 + stub->h->root.root.u.def.section->output_offset
9618 + stub->h->root.root.u.def.value);
9619 target_high = ((target + 0x8000) >> 16) & 0xffff;
9620 target_low = (target & 0xffff);
9621
9622 if (stub->stub_section != htab->strampoline)
9623 {
9624 /* This is a simple LUI/ADDIU stub. Zero out the beginning
9625 of the section and write the two instructions at the end. */
9626 memset (loc, 0, offset);
9627 loc += offset;
9628 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9629 {
9630 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
9631 loc);
9632 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
9633 loc + 2);
9634 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
9635 loc + 4);
9636 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
9637 loc + 6);
9638 }
9639 else
9640 {
9641 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9642 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9643 }
9644 }
9645 else
9646 {
9647 /* This is trampoline. */
9648 loc += offset;
9649 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9650 {
9651 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
9652 loc);
9653 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
9654 loc + 2);
9655 bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_1 (target), loc + 4);
9656 bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_2 (target), loc + 6);
9657 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
9658 loc + 8);
9659 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
9660 loc + 10);
9661 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9662 }
9663 else
9664 {
9665 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9666 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9667 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9668 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9669 }
9670 }
9671 return TRUE;
9672 }
9673
9674 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9675 adjust it appropriately now. */
9676
9677 static void
9678 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9679 const char *name, Elf_Internal_Sym *sym)
9680 {
9681 /* The linker script takes care of providing names and values for
9682 these, but we must place them into the right sections. */
9683 static const char* const text_section_symbols[] = {
9684 "_ftext",
9685 "_etext",
9686 "__dso_displacement",
9687 "__elf_header",
9688 "__program_header_table",
9689 NULL
9690 };
9691
9692 static const char* const data_section_symbols[] = {
9693 "_fdata",
9694 "_edata",
9695 "_end",
9696 "_fbss",
9697 NULL
9698 };
9699
9700 const char* const *p;
9701 int i;
9702
9703 for (i = 0; i < 2; ++i)
9704 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9705 *p;
9706 ++p)
9707 if (strcmp (*p, name) == 0)
9708 {
9709 /* All of these symbols are given type STT_SECTION by the
9710 IRIX6 linker. */
9711 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9712 sym->st_other = STO_PROTECTED;
9713
9714 /* The IRIX linker puts these symbols in special sections. */
9715 if (i == 0)
9716 sym->st_shndx = SHN_MIPS_TEXT;
9717 else
9718 sym->st_shndx = SHN_MIPS_DATA;
9719
9720 break;
9721 }
9722 }
9723
9724 /* Finish up dynamic symbol handling. We set the contents of various
9725 dynamic sections here. */
9726
9727 bfd_boolean
9728 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9729 struct bfd_link_info *info,
9730 struct elf_link_hash_entry *h,
9731 Elf_Internal_Sym *sym)
9732 {
9733 bfd *dynobj;
9734 asection *sgot;
9735 struct mips_got_info *g, *gg;
9736 const char *name;
9737 int idx;
9738 struct mips_elf_link_hash_table *htab;
9739 struct mips_elf_link_hash_entry *hmips;
9740
9741 htab = mips_elf_hash_table (info);
9742 BFD_ASSERT (htab != NULL);
9743 dynobj = elf_hash_table (info)->dynobj;
9744 hmips = (struct mips_elf_link_hash_entry *) h;
9745
9746 BFD_ASSERT (!htab->is_vxworks);
9747
9748 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9749 {
9750 /* We've decided to create a PLT entry for this symbol. */
9751 bfd_byte *loc;
9752 bfd_vma header_address, plt_index, got_address;
9753 bfd_vma got_address_high, got_address_low, load;
9754 const bfd_vma *plt_entry;
9755
9756 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9757 BFD_ASSERT (h->dynindx != -1);
9758 BFD_ASSERT (htab->splt != NULL);
9759 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9760 BFD_ASSERT (!h->def_regular);
9761
9762 /* Calculate the address of the PLT header. */
9763 header_address = (htab->splt->output_section->vma
9764 + htab->splt->output_offset);
9765
9766 /* Calculate the index of the entry. */
9767 plt_index = ((h->plt.offset - htab->plt_header_size)
9768 / htab->plt_entry_size);
9769
9770 /* Calculate the address of the .got.plt entry. */
9771 got_address = (htab->sgotplt->output_section->vma
9772 + htab->sgotplt->output_offset
9773 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9774 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9775 got_address_low = got_address & 0xffff;
9776
9777 /* Initially point the .got.plt entry at the PLT header. */
9778 loc = (htab->sgotplt->contents
9779 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9780 if (ABI_64_P (output_bfd))
9781 bfd_put_64 (output_bfd, header_address, loc);
9782 else
9783 bfd_put_32 (output_bfd, header_address, loc);
9784
9785 /* Find out where the .plt entry should go. */
9786 loc = htab->splt->contents + h->plt.offset;
9787
9788 /* Pick the load opcode. */
9789 load = MIPS_ELF_LOAD_WORD (output_bfd);
9790
9791 /* Fill in the PLT entry itself. */
9792 plt_entry = mips_exec_plt_entry;
9793 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9794 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9795
9796 if (! LOAD_INTERLOCKS_P (output_bfd))
9797 {
9798 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9799 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9800 }
9801 else
9802 {
9803 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9804 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9805 }
9806
9807 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9808 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9809 plt_index, h->dynindx,
9810 R_MIPS_JUMP_SLOT, got_address);
9811
9812 /* We distinguish between PLT entries and lazy-binding stubs by
9813 giving the former an st_other value of STO_MIPS_PLT. Set the
9814 flag and leave the value if there are any relocations in the
9815 binary where pointer equality matters. */
9816 sym->st_shndx = SHN_UNDEF;
9817 if (h->pointer_equality_needed)
9818 sym->st_other = STO_MIPS_PLT;
9819 else
9820 sym->st_value = 0;
9821 }
9822 else if (h->plt.offset != MINUS_ONE)
9823 {
9824 /* We've decided to create a lazy-binding stub. */
9825 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9826
9827 /* This symbol has a stub. Set it up. */
9828
9829 BFD_ASSERT (h->dynindx != -1);
9830
9831 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9832 || (h->dynindx <= 0xffff));
9833
9834 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9835 sign extension at runtime in the stub, resulting in a negative
9836 index value. */
9837 if (h->dynindx & ~0x7fffffff)
9838 return FALSE;
9839
9840 /* Fill the stub. */
9841 idx = 0;
9842 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9843 idx += 4;
9844 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9845 idx += 4;
9846 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9847 {
9848 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9849 stub + idx);
9850 idx += 4;
9851 }
9852 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9853 idx += 4;
9854
9855 /* If a large stub is not required and sign extension is not a
9856 problem, then use legacy code in the stub. */
9857 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9858 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9859 else if (h->dynindx & ~0x7fff)
9860 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9861 else
9862 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9863 stub + idx);
9864
9865 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9866 memcpy (htab->sstubs->contents + h->plt.offset,
9867 stub, htab->function_stub_size);
9868
9869 /* Mark the symbol as undefined. plt.offset != -1 occurs
9870 only for the referenced symbol. */
9871 sym->st_shndx = SHN_UNDEF;
9872
9873 /* The run-time linker uses the st_value field of the symbol
9874 to reset the global offset table entry for this external
9875 to its stub address when unlinking a shared object. */
9876 sym->st_value = (htab->sstubs->output_section->vma
9877 + htab->sstubs->output_offset
9878 + h->plt.offset);
9879 }
9880
9881 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9882 refer to the stub, since only the stub uses the standard calling
9883 conventions. */
9884 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9885 {
9886 BFD_ASSERT (hmips->need_fn_stub);
9887 sym->st_value = (hmips->fn_stub->output_section->vma
9888 + hmips->fn_stub->output_offset);
9889 sym->st_size = hmips->fn_stub->size;
9890 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9891 }
9892
9893 BFD_ASSERT (h->dynindx != -1
9894 || h->forced_local);
9895
9896 sgot = htab->sgot;
9897 g = htab->got_info;
9898 BFD_ASSERT (g != NULL);
9899
9900 /* Run through the global symbol table, creating GOT entries for all
9901 the symbols that need them. */
9902 if (hmips->global_got_area != GGA_NONE)
9903 {
9904 bfd_vma offset;
9905 bfd_vma value;
9906
9907 value = sym->st_value;
9908 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9909 R_MIPS_GOT16, info);
9910 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9911 }
9912
9913 if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
9914 {
9915 struct mips_got_entry e, *p;
9916 bfd_vma entry;
9917 bfd_vma offset;
9918
9919 gg = g;
9920
9921 e.abfd = output_bfd;
9922 e.symndx = -1;
9923 e.d.h = hmips;
9924 e.tls_type = 0;
9925
9926 for (g = g->next; g->next != gg; g = g->next)
9927 {
9928 if (g->got_entries
9929 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
9930 &e)))
9931 {
9932 offset = p->gotidx;
9933 if (info->shared
9934 || (elf_hash_table (info)->dynamic_sections_created
9935 && p->d.h != NULL
9936 && p->d.h->root.def_dynamic
9937 && !p->d.h->root.def_regular))
9938 {
9939 /* Create an R_MIPS_REL32 relocation for this entry. Due to
9940 the various compatibility problems, it's easier to mock
9941 up an R_MIPS_32 or R_MIPS_64 relocation and leave
9942 mips_elf_create_dynamic_relocation to calculate the
9943 appropriate addend. */
9944 Elf_Internal_Rela rel[3];
9945
9946 memset (rel, 0, sizeof (rel));
9947 if (ABI_64_P (output_bfd))
9948 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
9949 else
9950 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
9951 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
9952
9953 entry = 0;
9954 if (! (mips_elf_create_dynamic_relocation
9955 (output_bfd, info, rel,
9956 e.d.h, NULL, sym->st_value, &entry, sgot)))
9957 return FALSE;
9958 }
9959 else
9960 entry = sym->st_value;
9961 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
9962 }
9963 }
9964 }
9965
9966 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9967 name = h->root.root.string;
9968 if (strcmp (name, "_DYNAMIC") == 0
9969 || h == elf_hash_table (info)->hgot)
9970 sym->st_shndx = SHN_ABS;
9971 else if (strcmp (name, "_DYNAMIC_LINK") == 0
9972 || strcmp (name, "_DYNAMIC_LINKING") == 0)
9973 {
9974 sym->st_shndx = SHN_ABS;
9975 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9976 sym->st_value = 1;
9977 }
9978 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
9979 {
9980 sym->st_shndx = SHN_ABS;
9981 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9982 sym->st_value = elf_gp (output_bfd);
9983 }
9984 else if (SGI_COMPAT (output_bfd))
9985 {
9986 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
9987 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
9988 {
9989 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9990 sym->st_other = STO_PROTECTED;
9991 sym->st_value = 0;
9992 sym->st_shndx = SHN_MIPS_DATA;
9993 }
9994 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
9995 {
9996 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9997 sym->st_other = STO_PROTECTED;
9998 sym->st_value = mips_elf_hash_table (info)->procedure_count;
9999 sym->st_shndx = SHN_ABS;
10000 }
10001 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10002 {
10003 if (h->type == STT_FUNC)
10004 sym->st_shndx = SHN_MIPS_TEXT;
10005 else if (h->type == STT_OBJECT)
10006 sym->st_shndx = SHN_MIPS_DATA;
10007 }
10008 }
10009
10010 /* Emit a copy reloc, if needed. */
10011 if (h->needs_copy)
10012 {
10013 asection *s;
10014 bfd_vma symval;
10015
10016 BFD_ASSERT (h->dynindx != -1);
10017 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10018
10019 s = mips_elf_rel_dyn_section (info, FALSE);
10020 symval = (h->root.u.def.section->output_section->vma
10021 + h->root.u.def.section->output_offset
10022 + h->root.u.def.value);
10023 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10024 h->dynindx, R_MIPS_COPY, symval);
10025 }
10026
10027 /* Handle the IRIX6-specific symbols. */
10028 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10029 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10030
10031 if (! info->shared)
10032 {
10033 if (! mips_elf_hash_table (info)->use_rld_obj_head
10034 && (strcmp (name, "__rld_map") == 0
10035 || strcmp (name, "__RLD_MAP") == 0))
10036 {
10037 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
10038 BFD_ASSERT (s != NULL);
10039 sym->st_value = s->output_section->vma + s->output_offset;
10040 bfd_put_32 (output_bfd, 0, s->contents);
10041 if (mips_elf_hash_table (info)->rld_value == 0)
10042 mips_elf_hash_table (info)->rld_value = sym->st_value;
10043 }
10044 else if (mips_elf_hash_table (info)->use_rld_obj_head
10045 && strcmp (name, "__rld_obj_head") == 0)
10046 {
10047 /* IRIX6 does not use a .rld_map section. */
10048 if (IRIX_COMPAT (output_bfd) == ict_irix5
10049 || IRIX_COMPAT (output_bfd) == ict_none)
10050 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
10051 != NULL);
10052 mips_elf_hash_table (info)->rld_value = sym->st_value;
10053 }
10054 }
10055
10056 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10057 treat MIPS16 symbols like any other. */
10058 if (ELF_ST_IS_MIPS16 (sym->st_other))
10059 {
10060 BFD_ASSERT (sym->st_value & 1);
10061 sym->st_other -= STO_MIPS16;
10062 }
10063
10064 return TRUE;
10065 }
10066
10067 /* Likewise, for VxWorks. */
10068
10069 bfd_boolean
10070 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10071 struct bfd_link_info *info,
10072 struct elf_link_hash_entry *h,
10073 Elf_Internal_Sym *sym)
10074 {
10075 bfd *dynobj;
10076 asection *sgot;
10077 struct mips_got_info *g;
10078 struct mips_elf_link_hash_table *htab;
10079 struct mips_elf_link_hash_entry *hmips;
10080
10081 htab = mips_elf_hash_table (info);
10082 BFD_ASSERT (htab != NULL);
10083 dynobj = elf_hash_table (info)->dynobj;
10084 hmips = (struct mips_elf_link_hash_entry *) h;
10085
10086 if (h->plt.offset != (bfd_vma) -1)
10087 {
10088 bfd_byte *loc;
10089 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10090 Elf_Internal_Rela rel;
10091 static const bfd_vma *plt_entry;
10092
10093 BFD_ASSERT (h->dynindx != -1);
10094 BFD_ASSERT (htab->splt != NULL);
10095 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10096
10097 /* Calculate the address of the .plt entry. */
10098 plt_address = (htab->splt->output_section->vma
10099 + htab->splt->output_offset
10100 + h->plt.offset);
10101
10102 /* Calculate the index of the entry. */
10103 plt_index = ((h->plt.offset - htab->plt_header_size)
10104 / htab->plt_entry_size);
10105
10106 /* Calculate the address of the .got.plt entry. */
10107 got_address = (htab->sgotplt->output_section->vma
10108 + htab->sgotplt->output_offset
10109 + plt_index * 4);
10110
10111 /* Calculate the offset of the .got.plt entry from
10112 _GLOBAL_OFFSET_TABLE_. */
10113 got_offset = mips_elf_gotplt_index (info, h);
10114
10115 /* Calculate the offset for the branch at the start of the PLT
10116 entry. The branch jumps to the beginning of .plt. */
10117 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10118
10119 /* Fill in the initial value of the .got.plt entry. */
10120 bfd_put_32 (output_bfd, plt_address,
10121 htab->sgotplt->contents + plt_index * 4);
10122
10123 /* Find out where the .plt entry should go. */
10124 loc = htab->splt->contents + h->plt.offset;
10125
10126 if (info->shared)
10127 {
10128 plt_entry = mips_vxworks_shared_plt_entry;
10129 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10130 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10131 }
10132 else
10133 {
10134 bfd_vma got_address_high, got_address_low;
10135
10136 plt_entry = mips_vxworks_exec_plt_entry;
10137 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10138 got_address_low = got_address & 0xffff;
10139
10140 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10141 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10142 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10143 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10144 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10145 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10146 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10147 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10148
10149 loc = (htab->srelplt2->contents
10150 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10151
10152 /* Emit a relocation for the .got.plt entry. */
10153 rel.r_offset = got_address;
10154 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10155 rel.r_addend = h->plt.offset;
10156 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10157
10158 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10159 loc += sizeof (Elf32_External_Rela);
10160 rel.r_offset = plt_address + 8;
10161 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10162 rel.r_addend = got_offset;
10163 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10164
10165 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10166 loc += sizeof (Elf32_External_Rela);
10167 rel.r_offset += 4;
10168 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10169 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10170 }
10171
10172 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10173 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10174 rel.r_offset = got_address;
10175 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10176 rel.r_addend = 0;
10177 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10178
10179 if (!h->def_regular)
10180 sym->st_shndx = SHN_UNDEF;
10181 }
10182
10183 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10184
10185 sgot = htab->sgot;
10186 g = htab->got_info;
10187 BFD_ASSERT (g != NULL);
10188
10189 /* See if this symbol has an entry in the GOT. */
10190 if (hmips->global_got_area != GGA_NONE)
10191 {
10192 bfd_vma offset;
10193 Elf_Internal_Rela outrel;
10194 bfd_byte *loc;
10195 asection *s;
10196
10197 /* Install the symbol value in the GOT. */
10198 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10199 R_MIPS_GOT16, info);
10200 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10201
10202 /* Add a dynamic relocation for it. */
10203 s = mips_elf_rel_dyn_section (info, FALSE);
10204 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10205 outrel.r_offset = (sgot->output_section->vma
10206 + sgot->output_offset
10207 + offset);
10208 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10209 outrel.r_addend = 0;
10210 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10211 }
10212
10213 /* Emit a copy reloc, if needed. */
10214 if (h->needs_copy)
10215 {
10216 Elf_Internal_Rela rel;
10217
10218 BFD_ASSERT (h->dynindx != -1);
10219
10220 rel.r_offset = (h->root.u.def.section->output_section->vma
10221 + h->root.u.def.section->output_offset
10222 + h->root.u.def.value);
10223 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10224 rel.r_addend = 0;
10225 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10226 htab->srelbss->contents
10227 + (htab->srelbss->reloc_count
10228 * sizeof (Elf32_External_Rela)));
10229 ++htab->srelbss->reloc_count;
10230 }
10231
10232 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10233 if (ELF_ST_IS_COMPRESSED (sym->st_other))
10234 sym->st_value &= ~1;
10235
10236 return TRUE;
10237 }
10238
10239 /* Write out a plt0 entry to the beginning of .plt. */
10240
10241 static void
10242 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10243 {
10244 bfd_byte *loc;
10245 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10246 static const bfd_vma *plt_entry;
10247 struct mips_elf_link_hash_table *htab;
10248
10249 htab = mips_elf_hash_table (info);
10250 BFD_ASSERT (htab != NULL);
10251
10252 if (ABI_64_P (output_bfd))
10253 plt_entry = mips_n64_exec_plt0_entry;
10254 else if (ABI_N32_P (output_bfd))
10255 plt_entry = mips_n32_exec_plt0_entry;
10256 else
10257 plt_entry = mips_o32_exec_plt0_entry;
10258
10259 /* Calculate the value of .got.plt. */
10260 gotplt_value = (htab->sgotplt->output_section->vma
10261 + htab->sgotplt->output_offset);
10262 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10263 gotplt_value_low = gotplt_value & 0xffff;
10264
10265 /* The PLT sequence is not safe for N64 if .got.plt's address can
10266 not be loaded in two instructions. */
10267 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10268 || ~(gotplt_value | 0x7fffffff) == 0);
10269
10270 /* Install the PLT header. */
10271 loc = htab->splt->contents;
10272 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10273 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10274 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10275 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10276 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10277 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10278 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10279 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10280 }
10281
10282 /* Install the PLT header for a VxWorks executable and finalize the
10283 contents of .rela.plt.unloaded. */
10284
10285 static void
10286 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10287 {
10288 Elf_Internal_Rela rela;
10289 bfd_byte *loc;
10290 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10291 static const bfd_vma *plt_entry;
10292 struct mips_elf_link_hash_table *htab;
10293
10294 htab = mips_elf_hash_table (info);
10295 BFD_ASSERT (htab != NULL);
10296
10297 plt_entry = mips_vxworks_exec_plt0_entry;
10298
10299 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10300 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10301 + htab->root.hgot->root.u.def.section->output_offset
10302 + htab->root.hgot->root.u.def.value);
10303
10304 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10305 got_value_low = got_value & 0xffff;
10306
10307 /* Calculate the address of the PLT header. */
10308 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10309
10310 /* Install the PLT header. */
10311 loc = htab->splt->contents;
10312 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10313 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10314 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10315 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10316 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10317 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10318
10319 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10320 loc = htab->srelplt2->contents;
10321 rela.r_offset = plt_address;
10322 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10323 rela.r_addend = 0;
10324 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10325 loc += sizeof (Elf32_External_Rela);
10326
10327 /* Output the relocation for the following addiu of
10328 %lo(_GLOBAL_OFFSET_TABLE_). */
10329 rela.r_offset += 4;
10330 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10331 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10332 loc += sizeof (Elf32_External_Rela);
10333
10334 /* Fix up the remaining relocations. They may have the wrong
10335 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10336 in which symbols were output. */
10337 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10338 {
10339 Elf_Internal_Rela rel;
10340
10341 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10342 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10343 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10344 loc += sizeof (Elf32_External_Rela);
10345
10346 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10347 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10348 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10349 loc += sizeof (Elf32_External_Rela);
10350
10351 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10352 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10353 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10354 loc += sizeof (Elf32_External_Rela);
10355 }
10356 }
10357
10358 /* Install the PLT header for a VxWorks shared library. */
10359
10360 static void
10361 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10362 {
10363 unsigned int i;
10364 struct mips_elf_link_hash_table *htab;
10365
10366 htab = mips_elf_hash_table (info);
10367 BFD_ASSERT (htab != NULL);
10368
10369 /* We just need to copy the entry byte-by-byte. */
10370 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10371 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10372 htab->splt->contents + i * 4);
10373 }
10374
10375 /* Finish up the dynamic sections. */
10376
10377 bfd_boolean
10378 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10379 struct bfd_link_info *info)
10380 {
10381 bfd *dynobj;
10382 asection *sdyn;
10383 asection *sgot;
10384 struct mips_got_info *gg, *g;
10385 struct mips_elf_link_hash_table *htab;
10386
10387 htab = mips_elf_hash_table (info);
10388 BFD_ASSERT (htab != NULL);
10389
10390 dynobj = elf_hash_table (info)->dynobj;
10391
10392 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10393
10394 sgot = htab->sgot;
10395 gg = htab->got_info;
10396
10397 if (elf_hash_table (info)->dynamic_sections_created)
10398 {
10399 bfd_byte *b;
10400 int dyn_to_skip = 0, dyn_skipped = 0;
10401
10402 BFD_ASSERT (sdyn != NULL);
10403 BFD_ASSERT (gg != NULL);
10404
10405 g = mips_elf_got_for_ibfd (gg, output_bfd);
10406 BFD_ASSERT (g != NULL);
10407
10408 for (b = sdyn->contents;
10409 b < sdyn->contents + sdyn->size;
10410 b += MIPS_ELF_DYN_SIZE (dynobj))
10411 {
10412 Elf_Internal_Dyn dyn;
10413 const char *name;
10414 size_t elemsize;
10415 asection *s;
10416 bfd_boolean swap_out_p;
10417
10418 /* Read in the current dynamic entry. */
10419 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10420
10421 /* Assume that we're going to modify it and write it out. */
10422 swap_out_p = TRUE;
10423
10424 switch (dyn.d_tag)
10425 {
10426 case DT_RELENT:
10427 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10428 break;
10429
10430 case DT_RELAENT:
10431 BFD_ASSERT (htab->is_vxworks);
10432 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10433 break;
10434
10435 case DT_STRSZ:
10436 /* Rewrite DT_STRSZ. */
10437 dyn.d_un.d_val =
10438 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10439 break;
10440
10441 case DT_PLTGOT:
10442 s = htab->sgot;
10443 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10444 break;
10445
10446 case DT_MIPS_PLTGOT:
10447 s = htab->sgotplt;
10448 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10449 break;
10450
10451 case DT_MIPS_RLD_VERSION:
10452 dyn.d_un.d_val = 1; /* XXX */
10453 break;
10454
10455 case DT_MIPS_FLAGS:
10456 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10457 break;
10458
10459 case DT_MIPS_TIME_STAMP:
10460 {
10461 time_t t;
10462 time (&t);
10463 dyn.d_un.d_val = t;
10464 }
10465 break;
10466
10467 case DT_MIPS_ICHECKSUM:
10468 /* XXX FIXME: */
10469 swap_out_p = FALSE;
10470 break;
10471
10472 case DT_MIPS_IVERSION:
10473 /* XXX FIXME: */
10474 swap_out_p = FALSE;
10475 break;
10476
10477 case DT_MIPS_BASE_ADDRESS:
10478 s = output_bfd->sections;
10479 BFD_ASSERT (s != NULL);
10480 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10481 break;
10482
10483 case DT_MIPS_LOCAL_GOTNO:
10484 dyn.d_un.d_val = g->local_gotno;
10485 break;
10486
10487 case DT_MIPS_UNREFEXTNO:
10488 /* The index into the dynamic symbol table which is the
10489 entry of the first external symbol that is not
10490 referenced within the same object. */
10491 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10492 break;
10493
10494 case DT_MIPS_GOTSYM:
10495 if (gg->global_gotsym)
10496 {
10497 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10498 break;
10499 }
10500 /* In case if we don't have global got symbols we default
10501 to setting DT_MIPS_GOTSYM to the same value as
10502 DT_MIPS_SYMTABNO, so we just fall through. */
10503
10504 case DT_MIPS_SYMTABNO:
10505 name = ".dynsym";
10506 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10507 s = bfd_get_section_by_name (output_bfd, name);
10508 BFD_ASSERT (s != NULL);
10509
10510 dyn.d_un.d_val = s->size / elemsize;
10511 break;
10512
10513 case DT_MIPS_HIPAGENO:
10514 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10515 break;
10516
10517 case DT_MIPS_RLD_MAP:
10518 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
10519 break;
10520
10521 case DT_MIPS_OPTIONS:
10522 s = (bfd_get_section_by_name
10523 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10524 dyn.d_un.d_ptr = s->vma;
10525 break;
10526
10527 case DT_RELASZ:
10528 BFD_ASSERT (htab->is_vxworks);
10529 /* The count does not include the JUMP_SLOT relocations. */
10530 if (htab->srelplt)
10531 dyn.d_un.d_val -= htab->srelplt->size;
10532 break;
10533
10534 case DT_PLTREL:
10535 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10536 if (htab->is_vxworks)
10537 dyn.d_un.d_val = DT_RELA;
10538 else
10539 dyn.d_un.d_val = DT_REL;
10540 break;
10541
10542 case DT_PLTRELSZ:
10543 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10544 dyn.d_un.d_val = htab->srelplt->size;
10545 break;
10546
10547 case DT_JMPREL:
10548 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10549 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10550 + htab->srelplt->output_offset);
10551 break;
10552
10553 case DT_TEXTREL:
10554 /* If we didn't need any text relocations after all, delete
10555 the dynamic tag. */
10556 if (!(info->flags & DF_TEXTREL))
10557 {
10558 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10559 swap_out_p = FALSE;
10560 }
10561 break;
10562
10563 case DT_FLAGS:
10564 /* If we didn't need any text relocations after all, clear
10565 DF_TEXTREL from DT_FLAGS. */
10566 if (!(info->flags & DF_TEXTREL))
10567 dyn.d_un.d_val &= ~DF_TEXTREL;
10568 else
10569 swap_out_p = FALSE;
10570 break;
10571
10572 default:
10573 swap_out_p = FALSE;
10574 if (htab->is_vxworks
10575 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10576 swap_out_p = TRUE;
10577 break;
10578 }
10579
10580 if (swap_out_p || dyn_skipped)
10581 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10582 (dynobj, &dyn, b - dyn_skipped);
10583
10584 if (dyn_to_skip)
10585 {
10586 dyn_skipped += dyn_to_skip;
10587 dyn_to_skip = 0;
10588 }
10589 }
10590
10591 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10592 if (dyn_skipped > 0)
10593 memset (b - dyn_skipped, 0, dyn_skipped);
10594 }
10595
10596 if (sgot != NULL && sgot->size > 0
10597 && !bfd_is_abs_section (sgot->output_section))
10598 {
10599 if (htab->is_vxworks)
10600 {
10601 /* The first entry of the global offset table points to the
10602 ".dynamic" section. The second is initialized by the
10603 loader and contains the shared library identifier.
10604 The third is also initialized by the loader and points
10605 to the lazy resolution stub. */
10606 MIPS_ELF_PUT_WORD (output_bfd,
10607 sdyn->output_offset + sdyn->output_section->vma,
10608 sgot->contents);
10609 MIPS_ELF_PUT_WORD (output_bfd, 0,
10610 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10611 MIPS_ELF_PUT_WORD (output_bfd, 0,
10612 sgot->contents
10613 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10614 }
10615 else
10616 {
10617 /* The first entry of the global offset table will be filled at
10618 runtime. The second entry will be used by some runtime loaders.
10619 This isn't the case of IRIX rld. */
10620 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10621 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10622 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10623 }
10624
10625 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10626 = MIPS_ELF_GOT_SIZE (output_bfd);
10627 }
10628
10629 /* Generate dynamic relocations for the non-primary gots. */
10630 if (gg != NULL && gg->next)
10631 {
10632 Elf_Internal_Rela rel[3];
10633 bfd_vma addend = 0;
10634
10635 memset (rel, 0, sizeof (rel));
10636 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10637
10638 for (g = gg->next; g->next != gg; g = g->next)
10639 {
10640 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10641 + g->next->tls_gotno;
10642
10643 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10644 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10645 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10646 sgot->contents
10647 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10648
10649 if (! info->shared)
10650 continue;
10651
10652 while (got_index < g->assigned_gotno)
10653 {
10654 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10655 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10656 if (!(mips_elf_create_dynamic_relocation
10657 (output_bfd, info, rel, NULL,
10658 bfd_abs_section_ptr,
10659 0, &addend, sgot)))
10660 return FALSE;
10661 BFD_ASSERT (addend == 0);
10662 }
10663 }
10664 }
10665
10666 /* The generation of dynamic relocations for the non-primary gots
10667 adds more dynamic relocations. We cannot count them until
10668 here. */
10669
10670 if (elf_hash_table (info)->dynamic_sections_created)
10671 {
10672 bfd_byte *b;
10673 bfd_boolean swap_out_p;
10674
10675 BFD_ASSERT (sdyn != NULL);
10676
10677 for (b = sdyn->contents;
10678 b < sdyn->contents + sdyn->size;
10679 b += MIPS_ELF_DYN_SIZE (dynobj))
10680 {
10681 Elf_Internal_Dyn dyn;
10682 asection *s;
10683
10684 /* Read in the current dynamic entry. */
10685 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10686
10687 /* Assume that we're going to modify it and write it out. */
10688 swap_out_p = TRUE;
10689
10690 switch (dyn.d_tag)
10691 {
10692 case DT_RELSZ:
10693 /* Reduce DT_RELSZ to account for any relocations we
10694 decided not to make. This is for the n64 irix rld,
10695 which doesn't seem to apply any relocations if there
10696 are trailing null entries. */
10697 s = mips_elf_rel_dyn_section (info, FALSE);
10698 dyn.d_un.d_val = (s->reloc_count
10699 * (ABI_64_P (output_bfd)
10700 ? sizeof (Elf64_Mips_External_Rel)
10701 : sizeof (Elf32_External_Rel)));
10702 /* Adjust the section size too. Tools like the prelinker
10703 can reasonably expect the values to the same. */
10704 elf_section_data (s->output_section)->this_hdr.sh_size
10705 = dyn.d_un.d_val;
10706 break;
10707
10708 default:
10709 swap_out_p = FALSE;
10710 break;
10711 }
10712
10713 if (swap_out_p)
10714 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10715 (dynobj, &dyn, b);
10716 }
10717 }
10718
10719 {
10720 asection *s;
10721 Elf32_compact_rel cpt;
10722
10723 if (SGI_COMPAT (output_bfd))
10724 {
10725 /* Write .compact_rel section out. */
10726 s = bfd_get_section_by_name (dynobj, ".compact_rel");
10727 if (s != NULL)
10728 {
10729 cpt.id1 = 1;
10730 cpt.num = s->reloc_count;
10731 cpt.id2 = 2;
10732 cpt.offset = (s->output_section->filepos
10733 + sizeof (Elf32_External_compact_rel));
10734 cpt.reserved0 = 0;
10735 cpt.reserved1 = 0;
10736 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10737 ((Elf32_External_compact_rel *)
10738 s->contents));
10739
10740 /* Clean up a dummy stub function entry in .text. */
10741 if (htab->sstubs != NULL)
10742 {
10743 file_ptr dummy_offset;
10744
10745 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10746 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10747 memset (htab->sstubs->contents + dummy_offset, 0,
10748 htab->function_stub_size);
10749 }
10750 }
10751 }
10752
10753 /* The psABI says that the dynamic relocations must be sorted in
10754 increasing order of r_symndx. The VxWorks EABI doesn't require
10755 this, and because the code below handles REL rather than RELA
10756 relocations, using it for VxWorks would be outright harmful. */
10757 if (!htab->is_vxworks)
10758 {
10759 s = mips_elf_rel_dyn_section (info, FALSE);
10760 if (s != NULL
10761 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10762 {
10763 reldyn_sorting_bfd = output_bfd;
10764
10765 if (ABI_64_P (output_bfd))
10766 qsort ((Elf64_External_Rel *) s->contents + 1,
10767 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10768 sort_dynamic_relocs_64);
10769 else
10770 qsort ((Elf32_External_Rel *) s->contents + 1,
10771 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10772 sort_dynamic_relocs);
10773 }
10774 }
10775 }
10776
10777 if (htab->splt && htab->splt->size > 0)
10778 {
10779 if (htab->is_vxworks)
10780 {
10781 if (info->shared)
10782 mips_vxworks_finish_shared_plt (output_bfd, info);
10783 else
10784 mips_vxworks_finish_exec_plt (output_bfd, info);
10785 }
10786 else
10787 {
10788 BFD_ASSERT (!info->shared);
10789 mips_finish_exec_plt (output_bfd, info);
10790 }
10791 }
10792 return TRUE;
10793 }
10794
10795
10796 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10797
10798 static void
10799 mips_set_isa_flags (bfd *abfd)
10800 {
10801 flagword val;
10802
10803 switch (bfd_get_mach (abfd))
10804 {
10805 default:
10806 case bfd_mach_mips3000:
10807 val = E_MIPS_ARCH_1;
10808 break;
10809
10810 case bfd_mach_mips3900:
10811 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10812 break;
10813
10814 case bfd_mach_mips6000:
10815 val = E_MIPS_ARCH_2;
10816 break;
10817
10818 case bfd_mach_mips4000:
10819 case bfd_mach_mips4300:
10820 case bfd_mach_mips4400:
10821 case bfd_mach_mips4600:
10822 val = E_MIPS_ARCH_3;
10823 break;
10824
10825 case bfd_mach_mips4010:
10826 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10827 break;
10828
10829 case bfd_mach_mips4100:
10830 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10831 break;
10832
10833 case bfd_mach_mips4111:
10834 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10835 break;
10836
10837 case bfd_mach_mips4120:
10838 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10839 break;
10840
10841 case bfd_mach_mips4650:
10842 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10843 break;
10844
10845 case bfd_mach_mips5400:
10846 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10847 break;
10848
10849 case bfd_mach_mips5500:
10850 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10851 break;
10852
10853 case bfd_mach_mips9000:
10854 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10855 break;
10856
10857 case bfd_mach_mips5000:
10858 case bfd_mach_mips7000:
10859 case bfd_mach_mips8000:
10860 case bfd_mach_mips10000:
10861 case bfd_mach_mips12000:
10862 case bfd_mach_mips14000:
10863 case bfd_mach_mips16000:
10864 val = E_MIPS_ARCH_4;
10865 break;
10866
10867 case bfd_mach_mips5:
10868 val = E_MIPS_ARCH_5;
10869 break;
10870
10871 case bfd_mach_mips_loongson_2e:
10872 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10873 break;
10874
10875 case bfd_mach_mips_loongson_2f:
10876 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10877 break;
10878
10879 case bfd_mach_mips_sb1:
10880 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10881 break;
10882
10883 case bfd_mach_mips_loongson_3a:
10884 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
10885 break;
10886
10887 case bfd_mach_mips_octeon:
10888 case bfd_mach_mips_octeonp:
10889 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10890 break;
10891
10892 case bfd_mach_mips_xlr:
10893 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10894 break;
10895
10896 case bfd_mach_mipsisa32:
10897 val = E_MIPS_ARCH_32;
10898 break;
10899
10900 case bfd_mach_mipsisa64:
10901 val = E_MIPS_ARCH_64;
10902 break;
10903
10904 case bfd_mach_mipsisa32r2:
10905 val = E_MIPS_ARCH_32R2;
10906 break;
10907
10908 case bfd_mach_mipsisa64r2:
10909 val = E_MIPS_ARCH_64R2;
10910 break;
10911 }
10912 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10913 elf_elfheader (abfd)->e_flags |= val;
10914
10915 }
10916
10917
10918 /* The final processing done just before writing out a MIPS ELF object
10919 file. This gets the MIPS architecture right based on the machine
10920 number. This is used by both the 32-bit and the 64-bit ABI. */
10921
10922 void
10923 _bfd_mips_elf_final_write_processing (bfd *abfd,
10924 bfd_boolean linker ATTRIBUTE_UNUSED)
10925 {
10926 unsigned int i;
10927 Elf_Internal_Shdr **hdrpp;
10928 const char *name;
10929 asection *sec;
10930
10931 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10932 is nonzero. This is for compatibility with old objects, which used
10933 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
10934 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
10935 mips_set_isa_flags (abfd);
10936
10937 /* Set the sh_info field for .gptab sections and other appropriate
10938 info for each special section. */
10939 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
10940 i < elf_numsections (abfd);
10941 i++, hdrpp++)
10942 {
10943 switch ((*hdrpp)->sh_type)
10944 {
10945 case SHT_MIPS_MSYM:
10946 case SHT_MIPS_LIBLIST:
10947 sec = bfd_get_section_by_name (abfd, ".dynstr");
10948 if (sec != NULL)
10949 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10950 break;
10951
10952 case SHT_MIPS_GPTAB:
10953 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10954 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10955 BFD_ASSERT (name != NULL
10956 && CONST_STRNEQ (name, ".gptab."));
10957 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
10958 BFD_ASSERT (sec != NULL);
10959 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10960 break;
10961
10962 case SHT_MIPS_CONTENT:
10963 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10964 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10965 BFD_ASSERT (name != NULL
10966 && CONST_STRNEQ (name, ".MIPS.content"));
10967 sec = bfd_get_section_by_name (abfd,
10968 name + sizeof ".MIPS.content" - 1);
10969 BFD_ASSERT (sec != NULL);
10970 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10971 break;
10972
10973 case SHT_MIPS_SYMBOL_LIB:
10974 sec = bfd_get_section_by_name (abfd, ".dynsym");
10975 if (sec != NULL)
10976 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10977 sec = bfd_get_section_by_name (abfd, ".liblist");
10978 if (sec != NULL)
10979 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10980 break;
10981
10982 case SHT_MIPS_EVENTS:
10983 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10984 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10985 BFD_ASSERT (name != NULL);
10986 if (CONST_STRNEQ (name, ".MIPS.events"))
10987 sec = bfd_get_section_by_name (abfd,
10988 name + sizeof ".MIPS.events" - 1);
10989 else
10990 {
10991 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
10992 sec = bfd_get_section_by_name (abfd,
10993 (name
10994 + sizeof ".MIPS.post_rel" - 1));
10995 }
10996 BFD_ASSERT (sec != NULL);
10997 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10998 break;
10999
11000 }
11001 }
11002 }
11003 \f
11004 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11005 segments. */
11006
11007 int
11008 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11009 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11010 {
11011 asection *s;
11012 int ret = 0;
11013
11014 /* See if we need a PT_MIPS_REGINFO segment. */
11015 s = bfd_get_section_by_name (abfd, ".reginfo");
11016 if (s && (s->flags & SEC_LOAD))
11017 ++ret;
11018
11019 /* See if we need a PT_MIPS_OPTIONS segment. */
11020 if (IRIX_COMPAT (abfd) == ict_irix6
11021 && bfd_get_section_by_name (abfd,
11022 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11023 ++ret;
11024
11025 /* See if we need a PT_MIPS_RTPROC segment. */
11026 if (IRIX_COMPAT (abfd) == ict_irix5
11027 && bfd_get_section_by_name (abfd, ".dynamic")
11028 && bfd_get_section_by_name (abfd, ".mdebug"))
11029 ++ret;
11030
11031 /* Allocate a PT_NULL header in dynamic objects. See
11032 _bfd_mips_elf_modify_segment_map for details. */
11033 if (!SGI_COMPAT (abfd)
11034 && bfd_get_section_by_name (abfd, ".dynamic"))
11035 ++ret;
11036
11037 return ret;
11038 }
11039
11040 /* Modify the segment map for an IRIX5 executable. */
11041
11042 bfd_boolean
11043 _bfd_mips_elf_modify_segment_map (bfd *abfd,
11044 struct bfd_link_info *info)
11045 {
11046 asection *s;
11047 struct elf_segment_map *m, **pm;
11048 bfd_size_type amt;
11049
11050 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11051 segment. */
11052 s = bfd_get_section_by_name (abfd, ".reginfo");
11053 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11054 {
11055 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11056 if (m->p_type == PT_MIPS_REGINFO)
11057 break;
11058 if (m == NULL)
11059 {
11060 amt = sizeof *m;
11061 m = bfd_zalloc (abfd, amt);
11062 if (m == NULL)
11063 return FALSE;
11064
11065 m->p_type = PT_MIPS_REGINFO;
11066 m->count = 1;
11067 m->sections[0] = s;
11068
11069 /* We want to put it after the PHDR and INTERP segments. */
11070 pm = &elf_tdata (abfd)->segment_map;
11071 while (*pm != NULL
11072 && ((*pm)->p_type == PT_PHDR
11073 || (*pm)->p_type == PT_INTERP))
11074 pm = &(*pm)->next;
11075
11076 m->next = *pm;
11077 *pm = m;
11078 }
11079 }
11080
11081 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11082 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
11083 PT_MIPS_OPTIONS segment immediately following the program header
11084 table. */
11085 if (NEWABI_P (abfd)
11086 /* On non-IRIX6 new abi, we'll have already created a segment
11087 for this section, so don't create another. I'm not sure this
11088 is not also the case for IRIX 6, but I can't test it right
11089 now. */
11090 && IRIX_COMPAT (abfd) == ict_irix6)
11091 {
11092 for (s = abfd->sections; s; s = s->next)
11093 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11094 break;
11095
11096 if (s)
11097 {
11098 struct elf_segment_map *options_segment;
11099
11100 pm = &elf_tdata (abfd)->segment_map;
11101 while (*pm != NULL
11102 && ((*pm)->p_type == PT_PHDR
11103 || (*pm)->p_type == PT_INTERP))
11104 pm = &(*pm)->next;
11105
11106 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11107 {
11108 amt = sizeof (struct elf_segment_map);
11109 options_segment = bfd_zalloc (abfd, amt);
11110 options_segment->next = *pm;
11111 options_segment->p_type = PT_MIPS_OPTIONS;
11112 options_segment->p_flags = PF_R;
11113 options_segment->p_flags_valid = TRUE;
11114 options_segment->count = 1;
11115 options_segment->sections[0] = s;
11116 *pm = options_segment;
11117 }
11118 }
11119 }
11120 else
11121 {
11122 if (IRIX_COMPAT (abfd) == ict_irix5)
11123 {
11124 /* If there are .dynamic and .mdebug sections, we make a room
11125 for the RTPROC header. FIXME: Rewrite without section names. */
11126 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11127 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11128 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11129 {
11130 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11131 if (m->p_type == PT_MIPS_RTPROC)
11132 break;
11133 if (m == NULL)
11134 {
11135 amt = sizeof *m;
11136 m = bfd_zalloc (abfd, amt);
11137 if (m == NULL)
11138 return FALSE;
11139
11140 m->p_type = PT_MIPS_RTPROC;
11141
11142 s = bfd_get_section_by_name (abfd, ".rtproc");
11143 if (s == NULL)
11144 {
11145 m->count = 0;
11146 m->p_flags = 0;
11147 m->p_flags_valid = 1;
11148 }
11149 else
11150 {
11151 m->count = 1;
11152 m->sections[0] = s;
11153 }
11154
11155 /* We want to put it after the DYNAMIC segment. */
11156 pm = &elf_tdata (abfd)->segment_map;
11157 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11158 pm = &(*pm)->next;
11159 if (*pm != NULL)
11160 pm = &(*pm)->next;
11161
11162 m->next = *pm;
11163 *pm = m;
11164 }
11165 }
11166 }
11167 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11168 .dynstr, .dynsym, and .hash sections, and everything in
11169 between. */
11170 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11171 pm = &(*pm)->next)
11172 if ((*pm)->p_type == PT_DYNAMIC)
11173 break;
11174 m = *pm;
11175 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11176 {
11177 /* For a normal mips executable the permissions for the PT_DYNAMIC
11178 segment are read, write and execute. We do that here since
11179 the code in elf.c sets only the read permission. This matters
11180 sometimes for the dynamic linker. */
11181 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11182 {
11183 m->p_flags = PF_R | PF_W | PF_X;
11184 m->p_flags_valid = 1;
11185 }
11186 }
11187 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11188 glibc's dynamic linker has traditionally derived the number of
11189 tags from the p_filesz field, and sometimes allocates stack
11190 arrays of that size. An overly-big PT_DYNAMIC segment can
11191 be actively harmful in such cases. Making PT_DYNAMIC contain
11192 other sections can also make life hard for the prelinker,
11193 which might move one of the other sections to a different
11194 PT_LOAD segment. */
11195 if (SGI_COMPAT (abfd)
11196 && m != NULL
11197 && m->count == 1
11198 && strcmp (m->sections[0]->name, ".dynamic") == 0)
11199 {
11200 static const char *sec_names[] =
11201 {
11202 ".dynamic", ".dynstr", ".dynsym", ".hash"
11203 };
11204 bfd_vma low, high;
11205 unsigned int i, c;
11206 struct elf_segment_map *n;
11207
11208 low = ~(bfd_vma) 0;
11209 high = 0;
11210 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11211 {
11212 s = bfd_get_section_by_name (abfd, sec_names[i]);
11213 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11214 {
11215 bfd_size_type sz;
11216
11217 if (low > s->vma)
11218 low = s->vma;
11219 sz = s->size;
11220 if (high < s->vma + sz)
11221 high = s->vma + sz;
11222 }
11223 }
11224
11225 c = 0;
11226 for (s = abfd->sections; s != NULL; s = s->next)
11227 if ((s->flags & SEC_LOAD) != 0
11228 && s->vma >= low
11229 && s->vma + s->size <= high)
11230 ++c;
11231
11232 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11233 n = bfd_zalloc (abfd, amt);
11234 if (n == NULL)
11235 return FALSE;
11236 *n = *m;
11237 n->count = c;
11238
11239 i = 0;
11240 for (s = abfd->sections; s != NULL; s = s->next)
11241 {
11242 if ((s->flags & SEC_LOAD) != 0
11243 && s->vma >= low
11244 && s->vma + s->size <= high)
11245 {
11246 n->sections[i] = s;
11247 ++i;
11248 }
11249 }
11250
11251 *pm = n;
11252 }
11253 }
11254
11255 /* Allocate a spare program header in dynamic objects so that tools
11256 like the prelinker can add an extra PT_LOAD entry.
11257
11258 If the prelinker needs to make room for a new PT_LOAD entry, its
11259 standard procedure is to move the first (read-only) sections into
11260 the new (writable) segment. However, the MIPS ABI requires
11261 .dynamic to be in a read-only segment, and the section will often
11262 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11263
11264 Although the prelinker could in principle move .dynamic to a
11265 writable segment, it seems better to allocate a spare program
11266 header instead, and avoid the need to move any sections.
11267 There is a long tradition of allocating spare dynamic tags,
11268 so allocating a spare program header seems like a natural
11269 extension.
11270
11271 If INFO is NULL, we may be copying an already prelinked binary
11272 with objcopy or strip, so do not add this header. */
11273 if (info != NULL
11274 && !SGI_COMPAT (abfd)
11275 && bfd_get_section_by_name (abfd, ".dynamic"))
11276 {
11277 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11278 if ((*pm)->p_type == PT_NULL)
11279 break;
11280 if (*pm == NULL)
11281 {
11282 m = bfd_zalloc (abfd, sizeof (*m));
11283 if (m == NULL)
11284 return FALSE;
11285
11286 m->p_type = PT_NULL;
11287 *pm = m;
11288 }
11289 }
11290
11291 return TRUE;
11292 }
11293 \f
11294 /* Return the section that should be marked against GC for a given
11295 relocation. */
11296
11297 asection *
11298 _bfd_mips_elf_gc_mark_hook (asection *sec,
11299 struct bfd_link_info *info,
11300 Elf_Internal_Rela *rel,
11301 struct elf_link_hash_entry *h,
11302 Elf_Internal_Sym *sym)
11303 {
11304 /* ??? Do mips16 stub sections need to be handled special? */
11305
11306 if (h != NULL)
11307 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11308 {
11309 case R_MIPS_GNU_VTINHERIT:
11310 case R_MIPS_GNU_VTENTRY:
11311 return NULL;
11312 }
11313
11314 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11315 }
11316
11317 /* Update the got entry reference counts for the section being removed. */
11318
11319 bfd_boolean
11320 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11321 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11322 asection *sec ATTRIBUTE_UNUSED,
11323 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11324 {
11325 #if 0
11326 Elf_Internal_Shdr *symtab_hdr;
11327 struct elf_link_hash_entry **sym_hashes;
11328 bfd_signed_vma *local_got_refcounts;
11329 const Elf_Internal_Rela *rel, *relend;
11330 unsigned long r_symndx;
11331 struct elf_link_hash_entry *h;
11332
11333 if (info->relocatable)
11334 return TRUE;
11335
11336 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11337 sym_hashes = elf_sym_hashes (abfd);
11338 local_got_refcounts = elf_local_got_refcounts (abfd);
11339
11340 relend = relocs + sec->reloc_count;
11341 for (rel = relocs; rel < relend; rel++)
11342 switch (ELF_R_TYPE (abfd, rel->r_info))
11343 {
11344 case R_MIPS16_GOT16:
11345 case R_MIPS16_CALL16:
11346 case R_MIPS_GOT16:
11347 case R_MIPS_CALL16:
11348 case R_MIPS_CALL_HI16:
11349 case R_MIPS_CALL_LO16:
11350 case R_MIPS_GOT_HI16:
11351 case R_MIPS_GOT_LO16:
11352 case R_MIPS_GOT_DISP:
11353 case R_MIPS_GOT_PAGE:
11354 case R_MIPS_GOT_OFST:
11355 case R_MICROMIPS_GOT16:
11356 case R_MICROMIPS_CALL16:
11357 case R_MICROMIPS_CALL_HI16:
11358 case R_MICROMIPS_CALL_LO16:
11359 case R_MICROMIPS_GOT_HI16:
11360 case R_MICROMIPS_GOT_LO16:
11361 case R_MICROMIPS_GOT_DISP:
11362 case R_MICROMIPS_GOT_PAGE:
11363 case R_MICROMIPS_GOT_OFST:
11364 /* ??? It would seem that the existing MIPS code does no sort
11365 of reference counting or whatnot on its GOT and PLT entries,
11366 so it is not possible to garbage collect them at this time. */
11367 break;
11368
11369 default:
11370 break;
11371 }
11372 #endif
11373
11374 return TRUE;
11375 }
11376 \f
11377 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11378 hiding the old indirect symbol. Process additional relocation
11379 information. Also called for weakdefs, in which case we just let
11380 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11381
11382 void
11383 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11384 struct elf_link_hash_entry *dir,
11385 struct elf_link_hash_entry *ind)
11386 {
11387 struct mips_elf_link_hash_entry *dirmips, *indmips;
11388
11389 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11390
11391 dirmips = (struct mips_elf_link_hash_entry *) dir;
11392 indmips = (struct mips_elf_link_hash_entry *) ind;
11393 /* Any absolute non-dynamic relocations against an indirect or weak
11394 definition will be against the target symbol. */
11395 if (indmips->has_static_relocs)
11396 dirmips->has_static_relocs = TRUE;
11397
11398 if (ind->root.type != bfd_link_hash_indirect)
11399 return;
11400
11401 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11402 if (indmips->readonly_reloc)
11403 dirmips->readonly_reloc = TRUE;
11404 if (indmips->no_fn_stub)
11405 dirmips->no_fn_stub = TRUE;
11406 if (indmips->fn_stub)
11407 {
11408 dirmips->fn_stub = indmips->fn_stub;
11409 indmips->fn_stub = NULL;
11410 }
11411 if (indmips->need_fn_stub)
11412 {
11413 dirmips->need_fn_stub = TRUE;
11414 indmips->need_fn_stub = FALSE;
11415 }
11416 if (indmips->call_stub)
11417 {
11418 dirmips->call_stub = indmips->call_stub;
11419 indmips->call_stub = NULL;
11420 }
11421 if (indmips->call_fp_stub)
11422 {
11423 dirmips->call_fp_stub = indmips->call_fp_stub;
11424 indmips->call_fp_stub = NULL;
11425 }
11426 if (indmips->global_got_area < dirmips->global_got_area)
11427 dirmips->global_got_area = indmips->global_got_area;
11428 if (indmips->global_got_area < GGA_NONE)
11429 indmips->global_got_area = GGA_NONE;
11430 if (indmips->has_nonpic_branches)
11431 dirmips->has_nonpic_branches = TRUE;
11432
11433 if (dirmips->tls_type == 0)
11434 dirmips->tls_type = indmips->tls_type;
11435 }
11436 \f
11437 #define PDR_SIZE 32
11438
11439 bfd_boolean
11440 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11441 struct bfd_link_info *info)
11442 {
11443 asection *o;
11444 bfd_boolean ret = FALSE;
11445 unsigned char *tdata;
11446 size_t i, skip;
11447
11448 o = bfd_get_section_by_name (abfd, ".pdr");
11449 if (! o)
11450 return FALSE;
11451 if (o->size == 0)
11452 return FALSE;
11453 if (o->size % PDR_SIZE != 0)
11454 return FALSE;
11455 if (o->output_section != NULL
11456 && bfd_is_abs_section (o->output_section))
11457 return FALSE;
11458
11459 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11460 if (! tdata)
11461 return FALSE;
11462
11463 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11464 info->keep_memory);
11465 if (!cookie->rels)
11466 {
11467 free (tdata);
11468 return FALSE;
11469 }
11470
11471 cookie->rel = cookie->rels;
11472 cookie->relend = cookie->rels + o->reloc_count;
11473
11474 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11475 {
11476 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11477 {
11478 tdata[i] = 1;
11479 skip ++;
11480 }
11481 }
11482
11483 if (skip != 0)
11484 {
11485 mips_elf_section_data (o)->u.tdata = tdata;
11486 o->size -= skip * PDR_SIZE;
11487 ret = TRUE;
11488 }
11489 else
11490 free (tdata);
11491
11492 if (! info->keep_memory)
11493 free (cookie->rels);
11494
11495 return ret;
11496 }
11497
11498 bfd_boolean
11499 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11500 {
11501 if (strcmp (sec->name, ".pdr") == 0)
11502 return TRUE;
11503 return FALSE;
11504 }
11505
11506 bfd_boolean
11507 _bfd_mips_elf_write_section (bfd *output_bfd,
11508 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11509 asection *sec, bfd_byte *contents)
11510 {
11511 bfd_byte *to, *from, *end;
11512 int i;
11513
11514 if (strcmp (sec->name, ".pdr") != 0)
11515 return FALSE;
11516
11517 if (mips_elf_section_data (sec)->u.tdata == NULL)
11518 return FALSE;
11519
11520 to = contents;
11521 end = contents + sec->size;
11522 for (from = contents, i = 0;
11523 from < end;
11524 from += PDR_SIZE, i++)
11525 {
11526 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11527 continue;
11528 if (to != from)
11529 memcpy (to, from, PDR_SIZE);
11530 to += PDR_SIZE;
11531 }
11532 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11533 sec->output_offset, sec->size);
11534 return TRUE;
11535 }
11536 \f
11537 /* microMIPS code retains local labels for linker relaxation. Omit them
11538 from output by default for clarity. */
11539
11540 bfd_boolean
11541 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11542 {
11543 return _bfd_elf_is_local_label_name (abfd, sym->name);
11544 }
11545
11546 /* MIPS ELF uses a special find_nearest_line routine in order the
11547 handle the ECOFF debugging information. */
11548
11549 struct mips_elf_find_line
11550 {
11551 struct ecoff_debug_info d;
11552 struct ecoff_find_line i;
11553 };
11554
11555 bfd_boolean
11556 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11557 asymbol **symbols, bfd_vma offset,
11558 const char **filename_ptr,
11559 const char **functionname_ptr,
11560 unsigned int *line_ptr)
11561 {
11562 asection *msec;
11563
11564 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11565 filename_ptr, functionname_ptr,
11566 line_ptr))
11567 return TRUE;
11568
11569 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11570 section, symbols, offset,
11571 filename_ptr, functionname_ptr,
11572 line_ptr, ABI_64_P (abfd) ? 8 : 0,
11573 &elf_tdata (abfd)->dwarf2_find_line_info))
11574 return TRUE;
11575
11576 msec = bfd_get_section_by_name (abfd, ".mdebug");
11577 if (msec != NULL)
11578 {
11579 flagword origflags;
11580 struct mips_elf_find_line *fi;
11581 const struct ecoff_debug_swap * const swap =
11582 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11583
11584 /* If we are called during a link, mips_elf_final_link may have
11585 cleared the SEC_HAS_CONTENTS field. We force it back on here
11586 if appropriate (which it normally will be). */
11587 origflags = msec->flags;
11588 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11589 msec->flags |= SEC_HAS_CONTENTS;
11590
11591 fi = elf_tdata (abfd)->find_line_info;
11592 if (fi == NULL)
11593 {
11594 bfd_size_type external_fdr_size;
11595 char *fraw_src;
11596 char *fraw_end;
11597 struct fdr *fdr_ptr;
11598 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11599
11600 fi = bfd_zalloc (abfd, amt);
11601 if (fi == NULL)
11602 {
11603 msec->flags = origflags;
11604 return FALSE;
11605 }
11606
11607 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11608 {
11609 msec->flags = origflags;
11610 return FALSE;
11611 }
11612
11613 /* Swap in the FDR information. */
11614 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11615 fi->d.fdr = bfd_alloc (abfd, amt);
11616 if (fi->d.fdr == NULL)
11617 {
11618 msec->flags = origflags;
11619 return FALSE;
11620 }
11621 external_fdr_size = swap->external_fdr_size;
11622 fdr_ptr = fi->d.fdr;
11623 fraw_src = (char *) fi->d.external_fdr;
11624 fraw_end = (fraw_src
11625 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11626 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11627 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11628
11629 elf_tdata (abfd)->find_line_info = fi;
11630
11631 /* Note that we don't bother to ever free this information.
11632 find_nearest_line is either called all the time, as in
11633 objdump -l, so the information should be saved, or it is
11634 rarely called, as in ld error messages, so the memory
11635 wasted is unimportant. Still, it would probably be a
11636 good idea for free_cached_info to throw it away. */
11637 }
11638
11639 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11640 &fi->i, filename_ptr, functionname_ptr,
11641 line_ptr))
11642 {
11643 msec->flags = origflags;
11644 return TRUE;
11645 }
11646
11647 msec->flags = origflags;
11648 }
11649
11650 /* Fall back on the generic ELF find_nearest_line routine. */
11651
11652 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11653 filename_ptr, functionname_ptr,
11654 line_ptr);
11655 }
11656
11657 bfd_boolean
11658 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11659 const char **filename_ptr,
11660 const char **functionname_ptr,
11661 unsigned int *line_ptr)
11662 {
11663 bfd_boolean found;
11664 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11665 functionname_ptr, line_ptr,
11666 & elf_tdata (abfd)->dwarf2_find_line_info);
11667 return found;
11668 }
11669
11670 \f
11671 /* When are writing out the .options or .MIPS.options section,
11672 remember the bytes we are writing out, so that we can install the
11673 GP value in the section_processing routine. */
11674
11675 bfd_boolean
11676 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11677 const void *location,
11678 file_ptr offset, bfd_size_type count)
11679 {
11680 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11681 {
11682 bfd_byte *c;
11683
11684 if (elf_section_data (section) == NULL)
11685 {
11686 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11687 section->used_by_bfd = bfd_zalloc (abfd, amt);
11688 if (elf_section_data (section) == NULL)
11689 return FALSE;
11690 }
11691 c = mips_elf_section_data (section)->u.tdata;
11692 if (c == NULL)
11693 {
11694 c = bfd_zalloc (abfd, section->size);
11695 if (c == NULL)
11696 return FALSE;
11697 mips_elf_section_data (section)->u.tdata = c;
11698 }
11699
11700 memcpy (c + offset, location, count);
11701 }
11702
11703 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11704 count);
11705 }
11706
11707 /* This is almost identical to bfd_generic_get_... except that some
11708 MIPS relocations need to be handled specially. Sigh. */
11709
11710 bfd_byte *
11711 _bfd_elf_mips_get_relocated_section_contents
11712 (bfd *abfd,
11713 struct bfd_link_info *link_info,
11714 struct bfd_link_order *link_order,
11715 bfd_byte *data,
11716 bfd_boolean relocatable,
11717 asymbol **symbols)
11718 {
11719 /* Get enough memory to hold the stuff */
11720 bfd *input_bfd = link_order->u.indirect.section->owner;
11721 asection *input_section = link_order->u.indirect.section;
11722 bfd_size_type sz;
11723
11724 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11725 arelent **reloc_vector = NULL;
11726 long reloc_count;
11727
11728 if (reloc_size < 0)
11729 goto error_return;
11730
11731 reloc_vector = bfd_malloc (reloc_size);
11732 if (reloc_vector == NULL && reloc_size != 0)
11733 goto error_return;
11734
11735 /* read in the section */
11736 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11737 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11738 goto error_return;
11739
11740 reloc_count = bfd_canonicalize_reloc (input_bfd,
11741 input_section,
11742 reloc_vector,
11743 symbols);
11744 if (reloc_count < 0)
11745 goto error_return;
11746
11747 if (reloc_count > 0)
11748 {
11749 arelent **parent;
11750 /* for mips */
11751 int gp_found;
11752 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11753
11754 {
11755 struct bfd_hash_entry *h;
11756 struct bfd_link_hash_entry *lh;
11757 /* Skip all this stuff if we aren't mixing formats. */
11758 if (abfd && input_bfd
11759 && abfd->xvec == input_bfd->xvec)
11760 lh = 0;
11761 else
11762 {
11763 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11764 lh = (struct bfd_link_hash_entry *) h;
11765 }
11766 lookup:
11767 if (lh)
11768 {
11769 switch (lh->type)
11770 {
11771 case bfd_link_hash_undefined:
11772 case bfd_link_hash_undefweak:
11773 case bfd_link_hash_common:
11774 gp_found = 0;
11775 break;
11776 case bfd_link_hash_defined:
11777 case bfd_link_hash_defweak:
11778 gp_found = 1;
11779 gp = lh->u.def.value;
11780 break;
11781 case bfd_link_hash_indirect:
11782 case bfd_link_hash_warning:
11783 lh = lh->u.i.link;
11784 /* @@FIXME ignoring warning for now */
11785 goto lookup;
11786 case bfd_link_hash_new:
11787 default:
11788 abort ();
11789 }
11790 }
11791 else
11792 gp_found = 0;
11793 }
11794 /* end mips */
11795 for (parent = reloc_vector; *parent != NULL; parent++)
11796 {
11797 char *error_message = NULL;
11798 bfd_reloc_status_type r;
11799
11800 /* Specific to MIPS: Deal with relocation types that require
11801 knowing the gp of the output bfd. */
11802 asymbol *sym = *(*parent)->sym_ptr_ptr;
11803
11804 /* If we've managed to find the gp and have a special
11805 function for the relocation then go ahead, else default
11806 to the generic handling. */
11807 if (gp_found
11808 && (*parent)->howto->special_function
11809 == _bfd_mips_elf32_gprel16_reloc)
11810 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11811 input_section, relocatable,
11812 data, gp);
11813 else
11814 r = bfd_perform_relocation (input_bfd, *parent, data,
11815 input_section,
11816 relocatable ? abfd : NULL,
11817 &error_message);
11818
11819 if (relocatable)
11820 {
11821 asection *os = input_section->output_section;
11822
11823 /* A partial link, so keep the relocs */
11824 os->orelocation[os->reloc_count] = *parent;
11825 os->reloc_count++;
11826 }
11827
11828 if (r != bfd_reloc_ok)
11829 {
11830 switch (r)
11831 {
11832 case bfd_reloc_undefined:
11833 if (!((*link_info->callbacks->undefined_symbol)
11834 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11835 input_bfd, input_section, (*parent)->address, TRUE)))
11836 goto error_return;
11837 break;
11838 case bfd_reloc_dangerous:
11839 BFD_ASSERT (error_message != NULL);
11840 if (!((*link_info->callbacks->reloc_dangerous)
11841 (link_info, error_message, input_bfd, input_section,
11842 (*parent)->address)))
11843 goto error_return;
11844 break;
11845 case bfd_reloc_overflow:
11846 if (!((*link_info->callbacks->reloc_overflow)
11847 (link_info, NULL,
11848 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11849 (*parent)->howto->name, (*parent)->addend,
11850 input_bfd, input_section, (*parent)->address)))
11851 goto error_return;
11852 break;
11853 case bfd_reloc_outofrange:
11854 default:
11855 abort ();
11856 break;
11857 }
11858
11859 }
11860 }
11861 }
11862 if (reloc_vector != NULL)
11863 free (reloc_vector);
11864 return data;
11865
11866 error_return:
11867 if (reloc_vector != NULL)
11868 free (reloc_vector);
11869 return NULL;
11870 }
11871 \f
11872 static bfd_boolean
11873 mips_elf_relax_delete_bytes (bfd *abfd,
11874 asection *sec, bfd_vma addr, int count)
11875 {
11876 Elf_Internal_Shdr *symtab_hdr;
11877 unsigned int sec_shndx;
11878 bfd_byte *contents;
11879 Elf_Internal_Rela *irel, *irelend;
11880 Elf_Internal_Sym *isym;
11881 Elf_Internal_Sym *isymend;
11882 struct elf_link_hash_entry **sym_hashes;
11883 struct elf_link_hash_entry **end_hashes;
11884 struct elf_link_hash_entry **start_hashes;
11885 unsigned int symcount;
11886
11887 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
11888 contents = elf_section_data (sec)->this_hdr.contents;
11889
11890 irel = elf_section_data (sec)->relocs;
11891 irelend = irel + sec->reloc_count;
11892
11893 /* Actually delete the bytes. */
11894 memmove (contents + addr, contents + addr + count,
11895 (size_t) (sec->size - addr - count));
11896 sec->size -= count;
11897
11898 /* Adjust all the relocs. */
11899 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
11900 {
11901 /* Get the new reloc address. */
11902 if (irel->r_offset > addr)
11903 irel->r_offset -= count;
11904 }
11905
11906 BFD_ASSERT (addr % 2 == 0);
11907 BFD_ASSERT (count % 2 == 0);
11908
11909 /* Adjust the local symbols defined in this section. */
11910 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11911 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
11912 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
11913 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
11914 isym->st_value -= count;
11915
11916 /* Now adjust the global symbols defined in this section. */
11917 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
11918 - symtab_hdr->sh_info);
11919 sym_hashes = start_hashes = elf_sym_hashes (abfd);
11920 end_hashes = sym_hashes + symcount;
11921
11922 for (; sym_hashes < end_hashes; sym_hashes++)
11923 {
11924 struct elf_link_hash_entry *sym_hash = *sym_hashes;
11925
11926 if ((sym_hash->root.type == bfd_link_hash_defined
11927 || sym_hash->root.type == bfd_link_hash_defweak)
11928 && sym_hash->root.u.def.section == sec)
11929 {
11930 bfd_vma value = sym_hash->root.u.def.value;
11931
11932 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
11933 value &= MINUS_TWO;
11934 if (value > addr)
11935 sym_hash->root.u.def.value -= count;
11936 }
11937 }
11938
11939 return TRUE;
11940 }
11941
11942
11943 /* Opcodes needed for microMIPS relaxation as found in
11944 opcodes/micromips-opc.c. */
11945
11946 struct opcode_descriptor {
11947 unsigned long match;
11948 unsigned long mask;
11949 };
11950
11951 /* The $ra register aka $31. */
11952
11953 #define RA 31
11954
11955 /* 32-bit instruction format register fields. */
11956
11957 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
11958 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
11959
11960 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
11961
11962 #define OP16_VALID_REG(r) \
11963 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
11964
11965
11966 /* 32-bit and 16-bit branches. */
11967
11968 static const struct opcode_descriptor b_insns_32[] = {
11969 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
11970 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
11971 { 0, 0 } /* End marker for find_match(). */
11972 };
11973
11974 static const struct opcode_descriptor bc_insn_32 =
11975 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
11976
11977 static const struct opcode_descriptor bz_insn_32 =
11978 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
11979
11980 static const struct opcode_descriptor bzal_insn_32 =
11981 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
11982
11983 static const struct opcode_descriptor beq_insn_32 =
11984 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
11985
11986 static const struct opcode_descriptor b_insn_16 =
11987 { /* "b", "mD", */ 0xcc00, 0xfc00 };
11988
11989 static const struct opcode_descriptor bz_insn_16 =
11990 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
11991
11992
11993 /* 32-bit and 16-bit branch EQ and NE zero. */
11994
11995 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
11996 eq and second the ne. This convention is used when replacing a
11997 32-bit BEQ/BNE with the 16-bit version. */
11998
11999 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12000
12001 static const struct opcode_descriptor bz_rs_insns_32[] = {
12002 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12003 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12004 { 0, 0 } /* End marker for find_match(). */
12005 };
12006
12007 static const struct opcode_descriptor bz_rt_insns_32[] = {
12008 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12009 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12010 { 0, 0 } /* End marker for find_match(). */
12011 };
12012
12013 static const struct opcode_descriptor bzc_insns_32[] = {
12014 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12015 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12016 { 0, 0 } /* End marker for find_match(). */
12017 };
12018
12019 static const struct opcode_descriptor bz_insns_16[] = {
12020 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12021 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12022 { 0, 0 } /* End marker for find_match(). */
12023 };
12024
12025 /* Switch between a 5-bit register index and its 3-bit shorthand. */
12026
12027 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12028 #define BZ16_REG_FIELD(r) \
12029 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12030
12031
12032 /* 32-bit instructions with a delay slot. */
12033
12034 static const struct opcode_descriptor jal_insn_32_bd16 =
12035 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12036
12037 static const struct opcode_descriptor jal_insn_32_bd32 =
12038 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12039
12040 static const struct opcode_descriptor jal_x_insn_32_bd32 =
12041 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12042
12043 static const struct opcode_descriptor j_insn_32 =
12044 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12045
12046 static const struct opcode_descriptor jalr_insn_32 =
12047 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12048
12049 /* This table can be compacted, because no opcode replacement is made. */
12050
12051 static const struct opcode_descriptor ds_insns_32_bd16[] = {
12052 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12053
12054 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12055 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12056
12057 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12058 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12059 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12060 { 0, 0 } /* End marker for find_match(). */
12061 };
12062
12063 /* This table can be compacted, because no opcode replacement is made. */
12064
12065 static const struct opcode_descriptor ds_insns_32_bd32[] = {
12066 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12067
12068 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12069 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12070 { 0, 0 } /* End marker for find_match(). */
12071 };
12072
12073
12074 /* 16-bit instructions with a delay slot. */
12075
12076 static const struct opcode_descriptor jalr_insn_16_bd16 =
12077 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12078
12079 static const struct opcode_descriptor jalr_insn_16_bd32 =
12080 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12081
12082 static const struct opcode_descriptor jr_insn_16 =
12083 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12084
12085 #define JR16_REG(opcode) ((opcode) & 0x1f)
12086
12087 /* This table can be compacted, because no opcode replacement is made. */
12088
12089 static const struct opcode_descriptor ds_insns_16_bd16[] = {
12090 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12091
12092 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12093 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12094 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12095 { 0, 0 } /* End marker for find_match(). */
12096 };
12097
12098
12099 /* LUI instruction. */
12100
12101 static const struct opcode_descriptor lui_insn =
12102 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12103
12104
12105 /* ADDIU instruction. */
12106
12107 static const struct opcode_descriptor addiu_insn =
12108 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12109
12110 static const struct opcode_descriptor addiupc_insn =
12111 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12112
12113 #define ADDIUPC_REG_FIELD(r) \
12114 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12115
12116
12117 /* Relaxable instructions in a JAL delay slot: MOVE. */
12118
12119 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12120 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12121 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12122 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12123
12124 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12125 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12126
12127 static const struct opcode_descriptor move_insns_32[] = {
12128 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12129 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12130 { 0, 0 } /* End marker for find_match(). */
12131 };
12132
12133 static const struct opcode_descriptor move_insn_16 =
12134 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12135
12136
12137 /* NOP instructions. */
12138
12139 static const struct opcode_descriptor nop_insn_32 =
12140 { /* "nop", "", */ 0x00000000, 0xffffffff };
12141
12142 static const struct opcode_descriptor nop_insn_16 =
12143 { /* "nop", "", */ 0x0c00, 0xffff };
12144
12145
12146 /* Instruction match support. */
12147
12148 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12149
12150 static int
12151 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12152 {
12153 unsigned long indx;
12154
12155 for (indx = 0; insn[indx].mask != 0; indx++)
12156 if (MATCH (opcode, insn[indx]))
12157 return indx;
12158
12159 return -1;
12160 }
12161
12162
12163 /* Branch and delay slot decoding support. */
12164
12165 /* If PTR points to what *might* be a 16-bit branch or jump, then
12166 return the minimum length of its delay slot, otherwise return 0.
12167 Non-zero results are not definitive as we might be checking against
12168 the second half of another instruction. */
12169
12170 static int
12171 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12172 {
12173 unsigned long opcode;
12174 int bdsize;
12175
12176 opcode = bfd_get_16 (abfd, ptr);
12177 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12178 /* 16-bit branch/jump with a 32-bit delay slot. */
12179 bdsize = 4;
12180 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12181 || find_match (opcode, ds_insns_16_bd16) >= 0)
12182 /* 16-bit branch/jump with a 16-bit delay slot. */
12183 bdsize = 2;
12184 else
12185 /* No delay slot. */
12186 bdsize = 0;
12187
12188 return bdsize;
12189 }
12190
12191 /* If PTR points to what *might* be a 32-bit branch or jump, then
12192 return the minimum length of its delay slot, otherwise return 0.
12193 Non-zero results are not definitive as we might be checking against
12194 the second half of another instruction. */
12195
12196 static int
12197 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12198 {
12199 unsigned long opcode;
12200 int bdsize;
12201
12202 opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
12203 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12204 /* 32-bit branch/jump with a 32-bit delay slot. */
12205 bdsize = 4;
12206 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12207 /* 32-bit branch/jump with a 16-bit delay slot. */
12208 bdsize = 2;
12209 else
12210 /* No delay slot. */
12211 bdsize = 0;
12212
12213 return bdsize;
12214 }
12215
12216 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12217 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12218
12219 static bfd_boolean
12220 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12221 {
12222 unsigned long opcode;
12223
12224 opcode = bfd_get_16 (abfd, ptr);
12225 if (MATCH (opcode, b_insn_16)
12226 /* B16 */
12227 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12228 /* JR16 */
12229 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12230 /* BEQZ16, BNEZ16 */
12231 || (MATCH (opcode, jalr_insn_16_bd32)
12232 /* JALR16 */
12233 && reg != JR16_REG (opcode) && reg != RA))
12234 return TRUE;
12235
12236 return FALSE;
12237 }
12238
12239 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12240 then return TRUE, otherwise FALSE. */
12241
12242 static bfd_boolean
12243 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12244 {
12245 unsigned long opcode;
12246
12247 opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
12248 if (MATCH (opcode, j_insn_32)
12249 /* J */
12250 || MATCH (opcode, bc_insn_32)
12251 /* BC1F, BC1T, BC2F, BC2T */
12252 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12253 /* JAL, JALX */
12254 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12255 /* BGEZ, BGTZ, BLEZ, BLTZ */
12256 || (MATCH (opcode, bzal_insn_32)
12257 /* BGEZAL, BLTZAL */
12258 && reg != OP32_SREG (opcode) && reg != RA)
12259 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12260 /* JALR, JALR.HB, BEQ, BNE */
12261 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12262 return TRUE;
12263
12264 return FALSE;
12265 }
12266
12267 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12268 IRELEND) at OFFSET indicate that there must be a compact branch there,
12269 then return TRUE, otherwise FALSE. */
12270
12271 static bfd_boolean
12272 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12273 const Elf_Internal_Rela *internal_relocs,
12274 const Elf_Internal_Rela *irelend)
12275 {
12276 const Elf_Internal_Rela *irel;
12277 unsigned long opcode;
12278
12279 opcode = bfd_get_16 (abfd, ptr);
12280 opcode <<= 16;
12281 opcode |= bfd_get_16 (abfd, ptr + 2);
12282 if (find_match (opcode, bzc_insns_32) < 0)
12283 return FALSE;
12284
12285 for (irel = internal_relocs; irel < irelend; irel++)
12286 if (irel->r_offset == offset
12287 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12288 return TRUE;
12289
12290 return FALSE;
12291 }
12292
12293 /* Bitsize checking. */
12294 #define IS_BITSIZE(val, N) \
12295 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12296 - (1ULL << ((N) - 1))) == (val))
12297
12298 \f
12299 bfd_boolean
12300 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12301 struct bfd_link_info *link_info,
12302 bfd_boolean *again)
12303 {
12304 Elf_Internal_Shdr *symtab_hdr;
12305 Elf_Internal_Rela *internal_relocs;
12306 Elf_Internal_Rela *irel, *irelend;
12307 bfd_byte *contents = NULL;
12308 Elf_Internal_Sym *isymbuf = NULL;
12309
12310 /* Assume nothing changes. */
12311 *again = FALSE;
12312
12313 /* We don't have to do anything for a relocatable link, if
12314 this section does not have relocs, or if this is not a
12315 code section. */
12316
12317 if (link_info->relocatable
12318 || (sec->flags & SEC_RELOC) == 0
12319 || sec->reloc_count == 0
12320 || (sec->flags & SEC_CODE) == 0)
12321 return TRUE;
12322
12323 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12324
12325 /* Get a copy of the native relocations. */
12326 internal_relocs = (_bfd_elf_link_read_relocs
12327 (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
12328 link_info->keep_memory));
12329 if (internal_relocs == NULL)
12330 goto error_return;
12331
12332 /* Walk through them looking for relaxing opportunities. */
12333 irelend = internal_relocs + sec->reloc_count;
12334 for (irel = internal_relocs; irel < irelend; irel++)
12335 {
12336 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12337 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12338 bfd_boolean target_is_micromips_code_p;
12339 unsigned long opcode;
12340 bfd_vma symval;
12341 bfd_vma pcrval;
12342 bfd_byte *ptr;
12343 int fndopc;
12344
12345 /* The number of bytes to delete for relaxation and from where
12346 to delete these bytes starting at irel->r_offset. */
12347 int delcnt = 0;
12348 int deloff = 0;
12349
12350 /* If this isn't something that can be relaxed, then ignore
12351 this reloc. */
12352 if (r_type != R_MICROMIPS_HI16
12353 && r_type != R_MICROMIPS_PC16_S1
12354 && r_type != R_MICROMIPS_26_S1)
12355 continue;
12356
12357 /* Get the section contents if we haven't done so already. */
12358 if (contents == NULL)
12359 {
12360 /* Get cached copy if it exists. */
12361 if (elf_section_data (sec)->this_hdr.contents != NULL)
12362 contents = elf_section_data (sec)->this_hdr.contents;
12363 /* Go get them off disk. */
12364 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12365 goto error_return;
12366 }
12367 ptr = contents + irel->r_offset;
12368
12369 /* Read this BFD's local symbols if we haven't done so already. */
12370 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12371 {
12372 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12373 if (isymbuf == NULL)
12374 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12375 symtab_hdr->sh_info, 0,
12376 NULL, NULL, NULL);
12377 if (isymbuf == NULL)
12378 goto error_return;
12379 }
12380
12381 /* Get the value of the symbol referred to by the reloc. */
12382 if (r_symndx < symtab_hdr->sh_info)
12383 {
12384 /* A local symbol. */
12385 Elf_Internal_Sym *isym;
12386 asection *sym_sec;
12387
12388 isym = isymbuf + r_symndx;
12389 if (isym->st_shndx == SHN_UNDEF)
12390 sym_sec = bfd_und_section_ptr;
12391 else if (isym->st_shndx == SHN_ABS)
12392 sym_sec = bfd_abs_section_ptr;
12393 else if (isym->st_shndx == SHN_COMMON)
12394 sym_sec = bfd_com_section_ptr;
12395 else
12396 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12397 symval = (isym->st_value
12398 + sym_sec->output_section->vma
12399 + sym_sec->output_offset);
12400 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12401 }
12402 else
12403 {
12404 unsigned long indx;
12405 struct elf_link_hash_entry *h;
12406
12407 /* An external symbol. */
12408 indx = r_symndx - symtab_hdr->sh_info;
12409 h = elf_sym_hashes (abfd)[indx];
12410 BFD_ASSERT (h != NULL);
12411
12412 if (h->root.type != bfd_link_hash_defined
12413 && h->root.type != bfd_link_hash_defweak)
12414 /* This appears to be a reference to an undefined
12415 symbol. Just ignore it -- it will be caught by the
12416 regular reloc processing. */
12417 continue;
12418
12419 symval = (h->root.u.def.value
12420 + h->root.u.def.section->output_section->vma
12421 + h->root.u.def.section->output_offset);
12422 target_is_micromips_code_p = (!h->needs_plt
12423 && ELF_ST_IS_MICROMIPS (h->other));
12424 }
12425
12426
12427 /* For simplicity of coding, we are going to modify the
12428 section contents, the section relocs, and the BFD symbol
12429 table. We must tell the rest of the code not to free up this
12430 information. It would be possible to instead create a table
12431 of changes which have to be made, as is done in coff-mips.c;
12432 that would be more work, but would require less memory when
12433 the linker is run. */
12434
12435 /* Only 32-bit instructions relaxed. */
12436 if (irel->r_offset + 4 > sec->size)
12437 continue;
12438
12439 opcode = bfd_get_16 (abfd, ptr ) << 16;
12440 opcode |= bfd_get_16 (abfd, ptr + 2);
12441
12442 /* This is the pc-relative distance from the instruction the
12443 relocation is applied to, to the symbol referred. */
12444 pcrval = (symval
12445 - (sec->output_section->vma + sec->output_offset)
12446 - irel->r_offset);
12447
12448 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12449 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12450 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12451
12452 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12453
12454 where pcrval has first to be adjusted to apply against the LO16
12455 location (we make the adjustment later on, when we have figured
12456 out the offset). */
12457 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12458 {
12459 bfd_boolean bzc = FALSE;
12460 unsigned long nextopc;
12461 unsigned long reg;
12462 bfd_vma offset;
12463
12464 /* Give up if the previous reloc was a HI16 against this symbol
12465 too. */
12466 if (irel > internal_relocs
12467 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12468 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12469 continue;
12470
12471 /* Or if the next reloc is not a LO16 against this symbol. */
12472 if (irel + 1 >= irelend
12473 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12474 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12475 continue;
12476
12477 /* Or if the second next reloc is a LO16 against this symbol too. */
12478 if (irel + 2 >= irelend
12479 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12480 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12481 continue;
12482
12483 /* See if the LUI instruction *might* be in a branch delay slot.
12484 We check whether what looks like a 16-bit branch or jump is
12485 actually an immediate argument to a compact branch, and let
12486 it through if so. */
12487 if (irel->r_offset >= 2
12488 && check_br16_dslot (abfd, ptr - 2)
12489 && !(irel->r_offset >= 4
12490 && (bzc = check_relocated_bzc (abfd,
12491 ptr - 4, irel->r_offset - 4,
12492 internal_relocs, irelend))))
12493 continue;
12494 if (irel->r_offset >= 4
12495 && !bzc
12496 && check_br32_dslot (abfd, ptr - 4))
12497 continue;
12498
12499 reg = OP32_SREG (opcode);
12500
12501 /* We only relax adjacent instructions or ones separated with
12502 a branch or jump that has a delay slot. The branch or jump
12503 must not fiddle with the register used to hold the address.
12504 Subtract 4 for the LUI itself. */
12505 offset = irel[1].r_offset - irel[0].r_offset;
12506 switch (offset - 4)
12507 {
12508 case 0:
12509 break;
12510 case 2:
12511 if (check_br16 (abfd, ptr + 4, reg))
12512 break;
12513 continue;
12514 case 4:
12515 if (check_br32 (abfd, ptr + 4, reg))
12516 break;
12517 continue;
12518 default:
12519 continue;
12520 }
12521
12522 nextopc = bfd_get_16 (abfd, contents + irel[1].r_offset ) << 16;
12523 nextopc |= bfd_get_16 (abfd, contents + irel[1].r_offset + 2);
12524
12525 /* Give up unless the same register is used with both
12526 relocations. */
12527 if (OP32_SREG (nextopc) != reg)
12528 continue;
12529
12530 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12531 and rounding up to take masking of the two LSBs into account. */
12532 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12533
12534 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12535 if (IS_BITSIZE (symval, 16))
12536 {
12537 /* Fix the relocation's type. */
12538 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12539
12540 /* Instructions using R_MICROMIPS_LO16 have the base or
12541 source register in bits 20:16. This register becomes $0
12542 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12543 nextopc &= ~0x001f0000;
12544 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12545 contents + irel[1].r_offset);
12546 }
12547
12548 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12549 We add 4 to take LUI deletion into account while checking
12550 the PC-relative distance. */
12551 else if (symval % 4 == 0
12552 && IS_BITSIZE (pcrval + 4, 25)
12553 && MATCH (nextopc, addiu_insn)
12554 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12555 && OP16_VALID_REG (OP32_TREG (nextopc)))
12556 {
12557 /* Fix the relocation's type. */
12558 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12559
12560 /* Replace ADDIU with the ADDIUPC version. */
12561 nextopc = (addiupc_insn.match
12562 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12563
12564 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12565 contents + irel[1].r_offset);
12566 bfd_put_16 (abfd, nextopc & 0xffff,
12567 contents + irel[1].r_offset + 2);
12568 }
12569
12570 /* Can't do anything, give up, sigh... */
12571 else
12572 continue;
12573
12574 /* Fix the relocation's type. */
12575 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12576
12577 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12578 delcnt = 4;
12579 deloff = 0;
12580 }
12581
12582 /* Compact branch relaxation -- due to the multitude of macros
12583 employed by the compiler/assembler, compact branches are not
12584 always generated. Obviously, this can/will be fixed elsewhere,
12585 but there is no drawback in double checking it here. */
12586 else if (r_type == R_MICROMIPS_PC16_S1
12587 && irel->r_offset + 5 < sec->size
12588 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12589 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
12590 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
12591 {
12592 unsigned long reg;
12593
12594 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12595
12596 /* Replace BEQZ/BNEZ with the compact version. */
12597 opcode = (bzc_insns_32[fndopc].match
12598 | BZC32_REG_FIELD (reg)
12599 | (opcode & 0xffff)); /* Addend value. */
12600
12601 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
12602 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
12603
12604 /* Delete the 16-bit delay slot NOP: two bytes from
12605 irel->offset + 4. */
12606 delcnt = 2;
12607 deloff = 4;
12608 }
12609
12610 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12611 to check the distance from the next instruction, so subtract 2. */
12612 else if (r_type == R_MICROMIPS_PC16_S1
12613 && IS_BITSIZE (pcrval - 2, 11)
12614 && find_match (opcode, b_insns_32) >= 0)
12615 {
12616 /* Fix the relocation's type. */
12617 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12618
12619 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12620 bfd_put_16 (abfd,
12621 (b_insn_16.match
12622 | (opcode & 0x3ff)), /* Addend value. */
12623 ptr);
12624
12625 /* Delete 2 bytes from irel->r_offset + 2. */
12626 delcnt = 2;
12627 deloff = 2;
12628 }
12629
12630 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12631 to check the distance from the next instruction, so subtract 2. */
12632 else if (r_type == R_MICROMIPS_PC16_S1
12633 && IS_BITSIZE (pcrval - 2, 8)
12634 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12635 && OP16_VALID_REG (OP32_SREG (opcode)))
12636 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12637 && OP16_VALID_REG (OP32_TREG (opcode)))))
12638 {
12639 unsigned long reg;
12640
12641 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12642
12643 /* Fix the relocation's type. */
12644 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12645
12646 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12647 bfd_put_16 (abfd,
12648 (bz_insns_16[fndopc].match
12649 | BZ16_REG_FIELD (reg)
12650 | (opcode & 0x7f)), /* Addend value. */
12651 ptr);
12652
12653 /* Delete 2 bytes from irel->r_offset + 2. */
12654 delcnt = 2;
12655 deloff = 2;
12656 }
12657
12658 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12659 else if (r_type == R_MICROMIPS_26_S1
12660 && target_is_micromips_code_p
12661 && irel->r_offset + 7 < sec->size
12662 && MATCH (opcode, jal_insn_32_bd32))
12663 {
12664 unsigned long n32opc;
12665 bfd_boolean relaxed = FALSE;
12666
12667 n32opc = bfd_get_16 (abfd, ptr + 4) << 16;
12668 n32opc |= bfd_get_16 (abfd, ptr + 6);
12669
12670 if (MATCH (n32opc, nop_insn_32))
12671 {
12672 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
12673 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
12674
12675 relaxed = TRUE;
12676 }
12677 else if (find_match (n32opc, move_insns_32) >= 0)
12678 {
12679 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12680 bfd_put_16 (abfd,
12681 (move_insn_16.match
12682 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12683 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
12684 ptr + 4);
12685
12686 relaxed = TRUE;
12687 }
12688 /* Other 32-bit instructions relaxable to 16-bit
12689 instructions will be handled here later. */
12690
12691 if (relaxed)
12692 {
12693 /* JAL with 32-bit delay slot that is changed to a JALS
12694 with 16-bit delay slot. */
12695 bfd_put_16 (abfd, (jal_insn_32_bd16.match >> 16) & 0xffff,
12696 ptr);
12697 bfd_put_16 (abfd, jal_insn_32_bd16.match & 0xffff,
12698 ptr + 2);
12699
12700 /* Delete 2 bytes from irel->r_offset + 6. */
12701 delcnt = 2;
12702 deloff = 6;
12703 }
12704 }
12705
12706 if (delcnt != 0)
12707 {
12708 /* Note that we've changed the relocs, section contents, etc. */
12709 elf_section_data (sec)->relocs = internal_relocs;
12710 elf_section_data (sec)->this_hdr.contents = contents;
12711 symtab_hdr->contents = (unsigned char *) isymbuf;
12712
12713 /* Delete bytes depending on the delcnt and deloff. */
12714 if (!mips_elf_relax_delete_bytes (abfd, sec,
12715 irel->r_offset + deloff, delcnt))
12716 goto error_return;
12717
12718 /* That will change things, so we should relax again.
12719 Note that this is not required, and it may be slow. */
12720 *again = TRUE;
12721 }
12722 }
12723
12724 if (isymbuf != NULL
12725 && symtab_hdr->contents != (unsigned char *) isymbuf)
12726 {
12727 if (! link_info->keep_memory)
12728 free (isymbuf);
12729 else
12730 {
12731 /* Cache the symbols for elf_link_input_bfd. */
12732 symtab_hdr->contents = (unsigned char *) isymbuf;
12733 }
12734 }
12735
12736 if (contents != NULL
12737 && elf_section_data (sec)->this_hdr.contents != contents)
12738 {
12739 if (! link_info->keep_memory)
12740 free (contents);
12741 else
12742 {
12743 /* Cache the section contents for elf_link_input_bfd. */
12744 elf_section_data (sec)->this_hdr.contents = contents;
12745 }
12746 }
12747
12748 if (internal_relocs != NULL
12749 && elf_section_data (sec)->relocs != internal_relocs)
12750 free (internal_relocs);
12751
12752 return TRUE;
12753
12754 error_return:
12755 if (isymbuf != NULL
12756 && symtab_hdr->contents != (unsigned char *) isymbuf)
12757 free (isymbuf);
12758 if (contents != NULL
12759 && elf_section_data (sec)->this_hdr.contents != contents)
12760 free (contents);
12761 if (internal_relocs != NULL
12762 && elf_section_data (sec)->relocs != internal_relocs)
12763 free (internal_relocs);
12764
12765 return FALSE;
12766 }
12767 \f
12768 /* Create a MIPS ELF linker hash table. */
12769
12770 struct bfd_link_hash_table *
12771 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
12772 {
12773 struct mips_elf_link_hash_table *ret;
12774 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12775
12776 ret = bfd_malloc (amt);
12777 if (ret == NULL)
12778 return NULL;
12779
12780 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12781 mips_elf_link_hash_newfunc,
12782 sizeof (struct mips_elf_link_hash_entry),
12783 MIPS_ELF_DATA))
12784 {
12785 free (ret);
12786 return NULL;
12787 }
12788
12789 #if 0
12790 /* We no longer use this. */
12791 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
12792 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
12793 #endif
12794 ret->procedure_count = 0;
12795 ret->compact_rel_size = 0;
12796 ret->use_rld_obj_head = FALSE;
12797 ret->rld_value = 0;
12798 ret->mips16_stubs_seen = FALSE;
12799 ret->use_plts_and_copy_relocs = FALSE;
12800 ret->is_vxworks = FALSE;
12801 ret->small_data_overflow_reported = FALSE;
12802 ret->srelbss = NULL;
12803 ret->sdynbss = NULL;
12804 ret->srelplt = NULL;
12805 ret->srelplt2 = NULL;
12806 ret->sgotplt = NULL;
12807 ret->splt = NULL;
12808 ret->sstubs = NULL;
12809 ret->sgot = NULL;
12810 ret->got_info = NULL;
12811 ret->plt_header_size = 0;
12812 ret->plt_entry_size = 0;
12813 ret->lazy_stub_count = 0;
12814 ret->function_stub_size = 0;
12815 ret->strampoline = NULL;
12816 ret->la25_stubs = NULL;
12817 ret->add_stub_section = NULL;
12818
12819 return &ret->root.root;
12820 }
12821
12822 /* Likewise, but indicate that the target is VxWorks. */
12823
12824 struct bfd_link_hash_table *
12825 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12826 {
12827 struct bfd_link_hash_table *ret;
12828
12829 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12830 if (ret)
12831 {
12832 struct mips_elf_link_hash_table *htab;
12833
12834 htab = (struct mips_elf_link_hash_table *) ret;
12835 htab->use_plts_and_copy_relocs = TRUE;
12836 htab->is_vxworks = TRUE;
12837 }
12838 return ret;
12839 }
12840
12841 /* A function that the linker calls if we are allowed to use PLTs
12842 and copy relocs. */
12843
12844 void
12845 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12846 {
12847 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12848 }
12849 \f
12850 /* We need to use a special link routine to handle the .reginfo and
12851 the .mdebug sections. We need to merge all instances of these
12852 sections together, not write them all out sequentially. */
12853
12854 bfd_boolean
12855 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12856 {
12857 asection *o;
12858 struct bfd_link_order *p;
12859 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
12860 asection *rtproc_sec;
12861 Elf32_RegInfo reginfo;
12862 struct ecoff_debug_info debug;
12863 struct mips_htab_traverse_info hti;
12864 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12865 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
12866 HDRR *symhdr = &debug.symbolic_header;
12867 void *mdebug_handle = NULL;
12868 asection *s;
12869 EXTR esym;
12870 unsigned int i;
12871 bfd_size_type amt;
12872 struct mips_elf_link_hash_table *htab;
12873
12874 static const char * const secname[] =
12875 {
12876 ".text", ".init", ".fini", ".data",
12877 ".rodata", ".sdata", ".sbss", ".bss"
12878 };
12879 static const int sc[] =
12880 {
12881 scText, scInit, scFini, scData,
12882 scRData, scSData, scSBss, scBss
12883 };
12884
12885 /* Sort the dynamic symbols so that those with GOT entries come after
12886 those without. */
12887 htab = mips_elf_hash_table (info);
12888 BFD_ASSERT (htab != NULL);
12889
12890 if (!mips_elf_sort_hash_table (abfd, info))
12891 return FALSE;
12892
12893 /* Create any scheduled LA25 stubs. */
12894 hti.info = info;
12895 hti.output_bfd = abfd;
12896 hti.error = FALSE;
12897 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
12898 if (hti.error)
12899 return FALSE;
12900
12901 /* Get a value for the GP register. */
12902 if (elf_gp (abfd) == 0)
12903 {
12904 struct bfd_link_hash_entry *h;
12905
12906 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
12907 if (h != NULL && h->type == bfd_link_hash_defined)
12908 elf_gp (abfd) = (h->u.def.value
12909 + h->u.def.section->output_section->vma
12910 + h->u.def.section->output_offset);
12911 else if (htab->is_vxworks
12912 && (h = bfd_link_hash_lookup (info->hash,
12913 "_GLOBAL_OFFSET_TABLE_",
12914 FALSE, FALSE, TRUE))
12915 && h->type == bfd_link_hash_defined)
12916 elf_gp (abfd) = (h->u.def.section->output_section->vma
12917 + h->u.def.section->output_offset
12918 + h->u.def.value);
12919 else if (info->relocatable)
12920 {
12921 bfd_vma lo = MINUS_ONE;
12922
12923 /* Find the GP-relative section with the lowest offset. */
12924 for (o = abfd->sections; o != NULL; o = o->next)
12925 if (o->vma < lo
12926 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
12927 lo = o->vma;
12928
12929 /* And calculate GP relative to that. */
12930 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
12931 }
12932 else
12933 {
12934 /* If the relocate_section function needs to do a reloc
12935 involving the GP value, it should make a reloc_dangerous
12936 callback to warn that GP is not defined. */
12937 }
12938 }
12939
12940 /* Go through the sections and collect the .reginfo and .mdebug
12941 information. */
12942 reginfo_sec = NULL;
12943 mdebug_sec = NULL;
12944 gptab_data_sec = NULL;
12945 gptab_bss_sec = NULL;
12946 for (o = abfd->sections; o != NULL; o = o->next)
12947 {
12948 if (strcmp (o->name, ".reginfo") == 0)
12949 {
12950 memset (&reginfo, 0, sizeof reginfo);
12951
12952 /* We have found the .reginfo section in the output file.
12953 Look through all the link_orders comprising it and merge
12954 the information together. */
12955 for (p = o->map_head.link_order; p != NULL; p = p->next)
12956 {
12957 asection *input_section;
12958 bfd *input_bfd;
12959 Elf32_External_RegInfo ext;
12960 Elf32_RegInfo sub;
12961
12962 if (p->type != bfd_indirect_link_order)
12963 {
12964 if (p->type == bfd_data_link_order)
12965 continue;
12966 abort ();
12967 }
12968
12969 input_section = p->u.indirect.section;
12970 input_bfd = input_section->owner;
12971
12972 if (! bfd_get_section_contents (input_bfd, input_section,
12973 &ext, 0, sizeof ext))
12974 return FALSE;
12975
12976 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
12977
12978 reginfo.ri_gprmask |= sub.ri_gprmask;
12979 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
12980 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
12981 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
12982 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
12983
12984 /* ri_gp_value is set by the function
12985 mips_elf32_section_processing when the section is
12986 finally written out. */
12987
12988 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12989 elf_link_input_bfd ignores this section. */
12990 input_section->flags &= ~SEC_HAS_CONTENTS;
12991 }
12992
12993 /* Size has been set in _bfd_mips_elf_always_size_sections. */
12994 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
12995
12996 /* Skip this section later on (I don't think this currently
12997 matters, but someday it might). */
12998 o->map_head.link_order = NULL;
12999
13000 reginfo_sec = o;
13001 }
13002
13003 if (strcmp (o->name, ".mdebug") == 0)
13004 {
13005 struct extsym_info einfo;
13006 bfd_vma last;
13007
13008 /* We have found the .mdebug section in the output file.
13009 Look through all the link_orders comprising it and merge
13010 the information together. */
13011 symhdr->magic = swap->sym_magic;
13012 /* FIXME: What should the version stamp be? */
13013 symhdr->vstamp = 0;
13014 symhdr->ilineMax = 0;
13015 symhdr->cbLine = 0;
13016 symhdr->idnMax = 0;
13017 symhdr->ipdMax = 0;
13018 symhdr->isymMax = 0;
13019 symhdr->ioptMax = 0;
13020 symhdr->iauxMax = 0;
13021 symhdr->issMax = 0;
13022 symhdr->issExtMax = 0;
13023 symhdr->ifdMax = 0;
13024 symhdr->crfd = 0;
13025 symhdr->iextMax = 0;
13026
13027 /* We accumulate the debugging information itself in the
13028 debug_info structure. */
13029 debug.line = NULL;
13030 debug.external_dnr = NULL;
13031 debug.external_pdr = NULL;
13032 debug.external_sym = NULL;
13033 debug.external_opt = NULL;
13034 debug.external_aux = NULL;
13035 debug.ss = NULL;
13036 debug.ssext = debug.ssext_end = NULL;
13037 debug.external_fdr = NULL;
13038 debug.external_rfd = NULL;
13039 debug.external_ext = debug.external_ext_end = NULL;
13040
13041 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
13042 if (mdebug_handle == NULL)
13043 return FALSE;
13044
13045 esym.jmptbl = 0;
13046 esym.cobol_main = 0;
13047 esym.weakext = 0;
13048 esym.reserved = 0;
13049 esym.ifd = ifdNil;
13050 esym.asym.iss = issNil;
13051 esym.asym.st = stLocal;
13052 esym.asym.reserved = 0;
13053 esym.asym.index = indexNil;
13054 last = 0;
13055 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13056 {
13057 esym.asym.sc = sc[i];
13058 s = bfd_get_section_by_name (abfd, secname[i]);
13059 if (s != NULL)
13060 {
13061 esym.asym.value = s->vma;
13062 last = s->vma + s->size;
13063 }
13064 else
13065 esym.asym.value = last;
13066 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13067 secname[i], &esym))
13068 return FALSE;
13069 }
13070
13071 for (p = o->map_head.link_order; p != NULL; p = p->next)
13072 {
13073 asection *input_section;
13074 bfd *input_bfd;
13075 const struct ecoff_debug_swap *input_swap;
13076 struct ecoff_debug_info input_debug;
13077 char *eraw_src;
13078 char *eraw_end;
13079
13080 if (p->type != bfd_indirect_link_order)
13081 {
13082 if (p->type == bfd_data_link_order)
13083 continue;
13084 abort ();
13085 }
13086
13087 input_section = p->u.indirect.section;
13088 input_bfd = input_section->owner;
13089
13090 if (!is_mips_elf (input_bfd))
13091 {
13092 /* I don't know what a non MIPS ELF bfd would be
13093 doing with a .mdebug section, but I don't really
13094 want to deal with it. */
13095 continue;
13096 }
13097
13098 input_swap = (get_elf_backend_data (input_bfd)
13099 ->elf_backend_ecoff_debug_swap);
13100
13101 BFD_ASSERT (p->size == input_section->size);
13102
13103 /* The ECOFF linking code expects that we have already
13104 read in the debugging information and set up an
13105 ecoff_debug_info structure, so we do that now. */
13106 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13107 &input_debug))
13108 return FALSE;
13109
13110 if (! (bfd_ecoff_debug_accumulate
13111 (mdebug_handle, abfd, &debug, swap, input_bfd,
13112 &input_debug, input_swap, info)))
13113 return FALSE;
13114
13115 /* Loop through the external symbols. For each one with
13116 interesting information, try to find the symbol in
13117 the linker global hash table and save the information
13118 for the output external symbols. */
13119 eraw_src = input_debug.external_ext;
13120 eraw_end = (eraw_src
13121 + (input_debug.symbolic_header.iextMax
13122 * input_swap->external_ext_size));
13123 for (;
13124 eraw_src < eraw_end;
13125 eraw_src += input_swap->external_ext_size)
13126 {
13127 EXTR ext;
13128 const char *name;
13129 struct mips_elf_link_hash_entry *h;
13130
13131 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13132 if (ext.asym.sc == scNil
13133 || ext.asym.sc == scUndefined
13134 || ext.asym.sc == scSUndefined)
13135 continue;
13136
13137 name = input_debug.ssext + ext.asym.iss;
13138 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13139 name, FALSE, FALSE, TRUE);
13140 if (h == NULL || h->esym.ifd != -2)
13141 continue;
13142
13143 if (ext.ifd != -1)
13144 {
13145 BFD_ASSERT (ext.ifd
13146 < input_debug.symbolic_header.ifdMax);
13147 ext.ifd = input_debug.ifdmap[ext.ifd];
13148 }
13149
13150 h->esym = ext;
13151 }
13152
13153 /* Free up the information we just read. */
13154 free (input_debug.line);
13155 free (input_debug.external_dnr);
13156 free (input_debug.external_pdr);
13157 free (input_debug.external_sym);
13158 free (input_debug.external_opt);
13159 free (input_debug.external_aux);
13160 free (input_debug.ss);
13161 free (input_debug.ssext);
13162 free (input_debug.external_fdr);
13163 free (input_debug.external_rfd);
13164 free (input_debug.external_ext);
13165
13166 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13167 elf_link_input_bfd ignores this section. */
13168 input_section->flags &= ~SEC_HAS_CONTENTS;
13169 }
13170
13171 if (SGI_COMPAT (abfd) && info->shared)
13172 {
13173 /* Create .rtproc section. */
13174 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13175 if (rtproc_sec == NULL)
13176 {
13177 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13178 | SEC_LINKER_CREATED | SEC_READONLY);
13179
13180 rtproc_sec = bfd_make_section_with_flags (abfd,
13181 ".rtproc",
13182 flags);
13183 if (rtproc_sec == NULL
13184 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13185 return FALSE;
13186 }
13187
13188 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13189 info, rtproc_sec,
13190 &debug))
13191 return FALSE;
13192 }
13193
13194 /* Build the external symbol information. */
13195 einfo.abfd = abfd;
13196 einfo.info = info;
13197 einfo.debug = &debug;
13198 einfo.swap = swap;
13199 einfo.failed = FALSE;
13200 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13201 mips_elf_output_extsym, &einfo);
13202 if (einfo.failed)
13203 return FALSE;
13204
13205 /* Set the size of the .mdebug section. */
13206 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13207
13208 /* Skip this section later on (I don't think this currently
13209 matters, but someday it might). */
13210 o->map_head.link_order = NULL;
13211
13212 mdebug_sec = o;
13213 }
13214
13215 if (CONST_STRNEQ (o->name, ".gptab."))
13216 {
13217 const char *subname;
13218 unsigned int c;
13219 Elf32_gptab *tab;
13220 Elf32_External_gptab *ext_tab;
13221 unsigned int j;
13222
13223 /* The .gptab.sdata and .gptab.sbss sections hold
13224 information describing how the small data area would
13225 change depending upon the -G switch. These sections
13226 not used in executables files. */
13227 if (! info->relocatable)
13228 {
13229 for (p = o->map_head.link_order; p != NULL; p = p->next)
13230 {
13231 asection *input_section;
13232
13233 if (p->type != bfd_indirect_link_order)
13234 {
13235 if (p->type == bfd_data_link_order)
13236 continue;
13237 abort ();
13238 }
13239
13240 input_section = p->u.indirect.section;
13241
13242 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13243 elf_link_input_bfd ignores this section. */
13244 input_section->flags &= ~SEC_HAS_CONTENTS;
13245 }
13246
13247 /* Skip this section later on (I don't think this
13248 currently matters, but someday it might). */
13249 o->map_head.link_order = NULL;
13250
13251 /* Really remove the section. */
13252 bfd_section_list_remove (abfd, o);
13253 --abfd->section_count;
13254
13255 continue;
13256 }
13257
13258 /* There is one gptab for initialized data, and one for
13259 uninitialized data. */
13260 if (strcmp (o->name, ".gptab.sdata") == 0)
13261 gptab_data_sec = o;
13262 else if (strcmp (o->name, ".gptab.sbss") == 0)
13263 gptab_bss_sec = o;
13264 else
13265 {
13266 (*_bfd_error_handler)
13267 (_("%s: illegal section name `%s'"),
13268 bfd_get_filename (abfd), o->name);
13269 bfd_set_error (bfd_error_nonrepresentable_section);
13270 return FALSE;
13271 }
13272
13273 /* The linker script always combines .gptab.data and
13274 .gptab.sdata into .gptab.sdata, and likewise for
13275 .gptab.bss and .gptab.sbss. It is possible that there is
13276 no .sdata or .sbss section in the output file, in which
13277 case we must change the name of the output section. */
13278 subname = o->name + sizeof ".gptab" - 1;
13279 if (bfd_get_section_by_name (abfd, subname) == NULL)
13280 {
13281 if (o == gptab_data_sec)
13282 o->name = ".gptab.data";
13283 else
13284 o->name = ".gptab.bss";
13285 subname = o->name + sizeof ".gptab" - 1;
13286 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13287 }
13288
13289 /* Set up the first entry. */
13290 c = 1;
13291 amt = c * sizeof (Elf32_gptab);
13292 tab = bfd_malloc (amt);
13293 if (tab == NULL)
13294 return FALSE;
13295 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13296 tab[0].gt_header.gt_unused = 0;
13297
13298 /* Combine the input sections. */
13299 for (p = o->map_head.link_order; p != NULL; p = p->next)
13300 {
13301 asection *input_section;
13302 bfd *input_bfd;
13303 bfd_size_type size;
13304 unsigned long last;
13305 bfd_size_type gpentry;
13306
13307 if (p->type != bfd_indirect_link_order)
13308 {
13309 if (p->type == bfd_data_link_order)
13310 continue;
13311 abort ();
13312 }
13313
13314 input_section = p->u.indirect.section;
13315 input_bfd = input_section->owner;
13316
13317 /* Combine the gptab entries for this input section one
13318 by one. We know that the input gptab entries are
13319 sorted by ascending -G value. */
13320 size = input_section->size;
13321 last = 0;
13322 for (gpentry = sizeof (Elf32_External_gptab);
13323 gpentry < size;
13324 gpentry += sizeof (Elf32_External_gptab))
13325 {
13326 Elf32_External_gptab ext_gptab;
13327 Elf32_gptab int_gptab;
13328 unsigned long val;
13329 unsigned long add;
13330 bfd_boolean exact;
13331 unsigned int look;
13332
13333 if (! (bfd_get_section_contents
13334 (input_bfd, input_section, &ext_gptab, gpentry,
13335 sizeof (Elf32_External_gptab))))
13336 {
13337 free (tab);
13338 return FALSE;
13339 }
13340
13341 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13342 &int_gptab);
13343 val = int_gptab.gt_entry.gt_g_value;
13344 add = int_gptab.gt_entry.gt_bytes - last;
13345
13346 exact = FALSE;
13347 for (look = 1; look < c; look++)
13348 {
13349 if (tab[look].gt_entry.gt_g_value >= val)
13350 tab[look].gt_entry.gt_bytes += add;
13351
13352 if (tab[look].gt_entry.gt_g_value == val)
13353 exact = TRUE;
13354 }
13355
13356 if (! exact)
13357 {
13358 Elf32_gptab *new_tab;
13359 unsigned int max;
13360
13361 /* We need a new table entry. */
13362 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
13363 new_tab = bfd_realloc (tab, amt);
13364 if (new_tab == NULL)
13365 {
13366 free (tab);
13367 return FALSE;
13368 }
13369 tab = new_tab;
13370 tab[c].gt_entry.gt_g_value = val;
13371 tab[c].gt_entry.gt_bytes = add;
13372
13373 /* Merge in the size for the next smallest -G
13374 value, since that will be implied by this new
13375 value. */
13376 max = 0;
13377 for (look = 1; look < c; look++)
13378 {
13379 if (tab[look].gt_entry.gt_g_value < val
13380 && (max == 0
13381 || (tab[look].gt_entry.gt_g_value
13382 > tab[max].gt_entry.gt_g_value)))
13383 max = look;
13384 }
13385 if (max != 0)
13386 tab[c].gt_entry.gt_bytes +=
13387 tab[max].gt_entry.gt_bytes;
13388
13389 ++c;
13390 }
13391
13392 last = int_gptab.gt_entry.gt_bytes;
13393 }
13394
13395 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13396 elf_link_input_bfd ignores this section. */
13397 input_section->flags &= ~SEC_HAS_CONTENTS;
13398 }
13399
13400 /* The table must be sorted by -G value. */
13401 if (c > 2)
13402 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13403
13404 /* Swap out the table. */
13405 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
13406 ext_tab = bfd_alloc (abfd, amt);
13407 if (ext_tab == NULL)
13408 {
13409 free (tab);
13410 return FALSE;
13411 }
13412
13413 for (j = 0; j < c; j++)
13414 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13415 free (tab);
13416
13417 o->size = c * sizeof (Elf32_External_gptab);
13418 o->contents = (bfd_byte *) ext_tab;
13419
13420 /* Skip this section later on (I don't think this currently
13421 matters, but someday it might). */
13422 o->map_head.link_order = NULL;
13423 }
13424 }
13425
13426 /* Invoke the regular ELF backend linker to do all the work. */
13427 if (!bfd_elf_final_link (abfd, info))
13428 return FALSE;
13429
13430 /* Now write out the computed sections. */
13431
13432 if (reginfo_sec != NULL)
13433 {
13434 Elf32_External_RegInfo ext;
13435
13436 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
13437 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
13438 return FALSE;
13439 }
13440
13441 if (mdebug_sec != NULL)
13442 {
13443 BFD_ASSERT (abfd->output_has_begun);
13444 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13445 swap, info,
13446 mdebug_sec->filepos))
13447 return FALSE;
13448
13449 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13450 }
13451
13452 if (gptab_data_sec != NULL)
13453 {
13454 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13455 gptab_data_sec->contents,
13456 0, gptab_data_sec->size))
13457 return FALSE;
13458 }
13459
13460 if (gptab_bss_sec != NULL)
13461 {
13462 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13463 gptab_bss_sec->contents,
13464 0, gptab_bss_sec->size))
13465 return FALSE;
13466 }
13467
13468 if (SGI_COMPAT (abfd))
13469 {
13470 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13471 if (rtproc_sec != NULL)
13472 {
13473 if (! bfd_set_section_contents (abfd, rtproc_sec,
13474 rtproc_sec->contents,
13475 0, rtproc_sec->size))
13476 return FALSE;
13477 }
13478 }
13479
13480 return TRUE;
13481 }
13482 \f
13483 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13484
13485 struct mips_mach_extension {
13486 unsigned long extension, base;
13487 };
13488
13489
13490 /* An array describing how BFD machines relate to one another. The entries
13491 are ordered topologically with MIPS I extensions listed last. */
13492
13493 static const struct mips_mach_extension mips_mach_extensions[] = {
13494 /* MIPS64r2 extensions. */
13495 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13496 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13497
13498 /* MIPS64 extensions. */
13499 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13500 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13501 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13502 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
13503
13504 /* MIPS V extensions. */
13505 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13506
13507 /* R10000 extensions. */
13508 { bfd_mach_mips12000, bfd_mach_mips10000 },
13509 { bfd_mach_mips14000, bfd_mach_mips10000 },
13510 { bfd_mach_mips16000, bfd_mach_mips10000 },
13511
13512 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13513 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13514 better to allow vr5400 and vr5500 code to be merged anyway, since
13515 many libraries will just use the core ISA. Perhaps we could add
13516 some sort of ASE flag if this ever proves a problem. */
13517 { bfd_mach_mips5500, bfd_mach_mips5400 },
13518 { bfd_mach_mips5400, bfd_mach_mips5000 },
13519
13520 /* MIPS IV extensions. */
13521 { bfd_mach_mips5, bfd_mach_mips8000 },
13522 { bfd_mach_mips10000, bfd_mach_mips8000 },
13523 { bfd_mach_mips5000, bfd_mach_mips8000 },
13524 { bfd_mach_mips7000, bfd_mach_mips8000 },
13525 { bfd_mach_mips9000, bfd_mach_mips8000 },
13526
13527 /* VR4100 extensions. */
13528 { bfd_mach_mips4120, bfd_mach_mips4100 },
13529 { bfd_mach_mips4111, bfd_mach_mips4100 },
13530
13531 /* MIPS III extensions. */
13532 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13533 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13534 { bfd_mach_mips8000, bfd_mach_mips4000 },
13535 { bfd_mach_mips4650, bfd_mach_mips4000 },
13536 { bfd_mach_mips4600, bfd_mach_mips4000 },
13537 { bfd_mach_mips4400, bfd_mach_mips4000 },
13538 { bfd_mach_mips4300, bfd_mach_mips4000 },
13539 { bfd_mach_mips4100, bfd_mach_mips4000 },
13540 { bfd_mach_mips4010, bfd_mach_mips4000 },
13541
13542 /* MIPS32 extensions. */
13543 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13544
13545 /* MIPS II extensions. */
13546 { bfd_mach_mips4000, bfd_mach_mips6000 },
13547 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13548
13549 /* MIPS I extensions. */
13550 { bfd_mach_mips6000, bfd_mach_mips3000 },
13551 { bfd_mach_mips3900, bfd_mach_mips3000 }
13552 };
13553
13554
13555 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13556
13557 static bfd_boolean
13558 mips_mach_extends_p (unsigned long base, unsigned long extension)
13559 {
13560 size_t i;
13561
13562 if (extension == base)
13563 return TRUE;
13564
13565 if (base == bfd_mach_mipsisa32
13566 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13567 return TRUE;
13568
13569 if (base == bfd_mach_mipsisa32r2
13570 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13571 return TRUE;
13572
13573 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
13574 if (extension == mips_mach_extensions[i].extension)
13575 {
13576 extension = mips_mach_extensions[i].base;
13577 if (extension == base)
13578 return TRUE;
13579 }
13580
13581 return FALSE;
13582 }
13583
13584
13585 /* Return true if the given ELF header flags describe a 32-bit binary. */
13586
13587 static bfd_boolean
13588 mips_32bit_flags_p (flagword flags)
13589 {
13590 return ((flags & EF_MIPS_32BITMODE) != 0
13591 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13592 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13593 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13594 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13595 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13596 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13597 }
13598
13599
13600 /* Merge object attributes from IBFD into OBFD. Raise an error if
13601 there are conflicting attributes. */
13602 static bfd_boolean
13603 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13604 {
13605 obj_attribute *in_attr;
13606 obj_attribute *out_attr;
13607
13608 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13609 {
13610 /* This is the first object. Copy the attributes. */
13611 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13612
13613 /* Use the Tag_null value to indicate the attributes have been
13614 initialized. */
13615 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13616
13617 return TRUE;
13618 }
13619
13620 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13621 non-conflicting ones. */
13622 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13623 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13624 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13625 {
13626 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13627 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13628 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13629 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13630 ;
13631 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13632 _bfd_error_handler
13633 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
13634 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13635 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13636 _bfd_error_handler
13637 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
13638 out_attr[Tag_GNU_MIPS_ABI_FP].i);
13639 else
13640 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13641 {
13642 case 1:
13643 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13644 {
13645 case 2:
13646 _bfd_error_handler
13647 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13648 obfd, ibfd);
13649 break;
13650
13651 case 3:
13652 _bfd_error_handler
13653 (_("Warning: %B uses hard float, %B uses soft float"),
13654 obfd, ibfd);
13655 break;
13656
13657 case 4:
13658 _bfd_error_handler
13659 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13660 obfd, ibfd);
13661 break;
13662
13663 default:
13664 abort ();
13665 }
13666 break;
13667
13668 case 2:
13669 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13670 {
13671 case 1:
13672 _bfd_error_handler
13673 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13674 ibfd, obfd);
13675 break;
13676
13677 case 3:
13678 _bfd_error_handler
13679 (_("Warning: %B uses hard float, %B uses soft float"),
13680 obfd, ibfd);
13681 break;
13682
13683 case 4:
13684 _bfd_error_handler
13685 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13686 obfd, ibfd);
13687 break;
13688
13689 default:
13690 abort ();
13691 }
13692 break;
13693
13694 case 3:
13695 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13696 {
13697 case 1:
13698 case 2:
13699 case 4:
13700 _bfd_error_handler
13701 (_("Warning: %B uses hard float, %B uses soft float"),
13702 ibfd, obfd);
13703 break;
13704
13705 default:
13706 abort ();
13707 }
13708 break;
13709
13710 case 4:
13711 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13712 {
13713 case 1:
13714 _bfd_error_handler
13715 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13716 ibfd, obfd);
13717 break;
13718
13719 case 2:
13720 _bfd_error_handler
13721 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13722 ibfd, obfd);
13723 break;
13724
13725 case 3:
13726 _bfd_error_handler
13727 (_("Warning: %B uses hard float, %B uses soft float"),
13728 obfd, ibfd);
13729 break;
13730
13731 default:
13732 abort ();
13733 }
13734 break;
13735
13736 default:
13737 abort ();
13738 }
13739 }
13740
13741 /* Merge Tag_compatibility attributes and any common GNU ones. */
13742 _bfd_elf_merge_object_attributes (ibfd, obfd);
13743
13744 return TRUE;
13745 }
13746
13747 /* Merge backend specific data from an object file to the output
13748 object file when linking. */
13749
13750 bfd_boolean
13751 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
13752 {
13753 flagword old_flags;
13754 flagword new_flags;
13755 bfd_boolean ok;
13756 bfd_boolean null_input_bfd = TRUE;
13757 asection *sec;
13758
13759 /* Check if we have the same endianness. */
13760 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13761 {
13762 (*_bfd_error_handler)
13763 (_("%B: endianness incompatible with that of the selected emulation"),
13764 ibfd);
13765 return FALSE;
13766 }
13767
13768 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
13769 return TRUE;
13770
13771 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13772 {
13773 (*_bfd_error_handler)
13774 (_("%B: ABI is incompatible with that of the selected emulation"),
13775 ibfd);
13776 return FALSE;
13777 }
13778
13779 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13780 return FALSE;
13781
13782 new_flags = elf_elfheader (ibfd)->e_flags;
13783 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13784 old_flags = elf_elfheader (obfd)->e_flags;
13785
13786 if (! elf_flags_init (obfd))
13787 {
13788 elf_flags_init (obfd) = TRUE;
13789 elf_elfheader (obfd)->e_flags = new_flags;
13790 elf_elfheader (obfd)->e_ident[EI_CLASS]
13791 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13792
13793 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
13794 && (bfd_get_arch_info (obfd)->the_default
13795 || mips_mach_extends_p (bfd_get_mach (obfd),
13796 bfd_get_mach (ibfd))))
13797 {
13798 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13799 bfd_get_mach (ibfd)))
13800 return FALSE;
13801 }
13802
13803 return TRUE;
13804 }
13805
13806 /* Check flag compatibility. */
13807
13808 new_flags &= ~EF_MIPS_NOREORDER;
13809 old_flags &= ~EF_MIPS_NOREORDER;
13810
13811 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13812 doesn't seem to matter. */
13813 new_flags &= ~EF_MIPS_XGOT;
13814 old_flags &= ~EF_MIPS_XGOT;
13815
13816 /* MIPSpro generates ucode info in n64 objects. Again, we should
13817 just be able to ignore this. */
13818 new_flags &= ~EF_MIPS_UCODE;
13819 old_flags &= ~EF_MIPS_UCODE;
13820
13821 /* DSOs should only be linked with CPIC code. */
13822 if ((ibfd->flags & DYNAMIC) != 0)
13823 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
13824
13825 if (new_flags == old_flags)
13826 return TRUE;
13827
13828 /* Check to see if the input BFD actually contains any sections.
13829 If not, its flags may not have been initialised either, but it cannot
13830 actually cause any incompatibility. */
13831 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13832 {
13833 /* Ignore synthetic sections and empty .text, .data and .bss sections
13834 which are automatically generated by gas. Also ignore fake
13835 (s)common sections, since merely defining a common symbol does
13836 not affect compatibility. */
13837 if ((sec->flags & SEC_IS_COMMON) == 0
13838 && strcmp (sec->name, ".reginfo")
13839 && strcmp (sec->name, ".mdebug")
13840 && (sec->size != 0
13841 || (strcmp (sec->name, ".text")
13842 && strcmp (sec->name, ".data")
13843 && strcmp (sec->name, ".bss"))))
13844 {
13845 null_input_bfd = FALSE;
13846 break;
13847 }
13848 }
13849 if (null_input_bfd)
13850 return TRUE;
13851
13852 ok = TRUE;
13853
13854 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
13855 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
13856 {
13857 (*_bfd_error_handler)
13858 (_("%B: warning: linking abicalls files with non-abicalls files"),
13859 ibfd);
13860 ok = TRUE;
13861 }
13862
13863 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
13864 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
13865 if (! (new_flags & EF_MIPS_PIC))
13866 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
13867
13868 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13869 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13870
13871 /* Compare the ISAs. */
13872 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
13873 {
13874 (*_bfd_error_handler)
13875 (_("%B: linking 32-bit code with 64-bit code"),
13876 ibfd);
13877 ok = FALSE;
13878 }
13879 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
13880 {
13881 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
13882 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
13883 {
13884 /* Copy the architecture info from IBFD to OBFD. Also copy
13885 the 32-bit flag (if set) so that we continue to recognise
13886 OBFD as a 32-bit binary. */
13887 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
13888 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
13889 elf_elfheader (obfd)->e_flags
13890 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13891
13892 /* Copy across the ABI flags if OBFD doesn't use them
13893 and if that was what caused us to treat IBFD as 32-bit. */
13894 if ((old_flags & EF_MIPS_ABI) == 0
13895 && mips_32bit_flags_p (new_flags)
13896 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
13897 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
13898 }
13899 else
13900 {
13901 /* The ISAs aren't compatible. */
13902 (*_bfd_error_handler)
13903 (_("%B: linking %s module with previous %s modules"),
13904 ibfd,
13905 bfd_printable_name (ibfd),
13906 bfd_printable_name (obfd));
13907 ok = FALSE;
13908 }
13909 }
13910
13911 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13912 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13913
13914 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
13915 does set EI_CLASS differently from any 32-bit ABI. */
13916 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
13917 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
13918 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
13919 {
13920 /* Only error if both are set (to different values). */
13921 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
13922 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
13923 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
13924 {
13925 (*_bfd_error_handler)
13926 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
13927 ibfd,
13928 elf_mips_abi_name (ibfd),
13929 elf_mips_abi_name (obfd));
13930 ok = FALSE;
13931 }
13932 new_flags &= ~EF_MIPS_ABI;
13933 old_flags &= ~EF_MIPS_ABI;
13934 }
13935
13936 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
13937 and allow arbitrary mixing of the remaining ASEs (retain the union). */
13938 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
13939 {
13940 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
13941 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
13942 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
13943 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
13944 int micro_mis = old_m16 && new_micro;
13945 int m16_mis = old_micro && new_m16;
13946
13947 if (m16_mis || micro_mis)
13948 {
13949 (*_bfd_error_handler)
13950 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
13951 ibfd,
13952 m16_mis ? "MIPS16" : "microMIPS",
13953 m16_mis ? "microMIPS" : "MIPS16");
13954 ok = FALSE;
13955 }
13956
13957 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
13958
13959 new_flags &= ~ EF_MIPS_ARCH_ASE;
13960 old_flags &= ~ EF_MIPS_ARCH_ASE;
13961 }
13962
13963 /* Warn about any other mismatches */
13964 if (new_flags != old_flags)
13965 {
13966 (*_bfd_error_handler)
13967 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
13968 ibfd, (unsigned long) new_flags,
13969 (unsigned long) old_flags);
13970 ok = FALSE;
13971 }
13972
13973 if (! ok)
13974 {
13975 bfd_set_error (bfd_error_bad_value);
13976 return FALSE;
13977 }
13978
13979 return TRUE;
13980 }
13981
13982 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
13983
13984 bfd_boolean
13985 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
13986 {
13987 BFD_ASSERT (!elf_flags_init (abfd)
13988 || elf_elfheader (abfd)->e_flags == flags);
13989
13990 elf_elfheader (abfd)->e_flags = flags;
13991 elf_flags_init (abfd) = TRUE;
13992 return TRUE;
13993 }
13994
13995 char *
13996 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
13997 {
13998 switch (dtag)
13999 {
14000 default: return "";
14001 case DT_MIPS_RLD_VERSION:
14002 return "MIPS_RLD_VERSION";
14003 case DT_MIPS_TIME_STAMP:
14004 return "MIPS_TIME_STAMP";
14005 case DT_MIPS_ICHECKSUM:
14006 return "MIPS_ICHECKSUM";
14007 case DT_MIPS_IVERSION:
14008 return "MIPS_IVERSION";
14009 case DT_MIPS_FLAGS:
14010 return "MIPS_FLAGS";
14011 case DT_MIPS_BASE_ADDRESS:
14012 return "MIPS_BASE_ADDRESS";
14013 case DT_MIPS_MSYM:
14014 return "MIPS_MSYM";
14015 case DT_MIPS_CONFLICT:
14016 return "MIPS_CONFLICT";
14017 case DT_MIPS_LIBLIST:
14018 return "MIPS_LIBLIST";
14019 case DT_MIPS_LOCAL_GOTNO:
14020 return "MIPS_LOCAL_GOTNO";
14021 case DT_MIPS_CONFLICTNO:
14022 return "MIPS_CONFLICTNO";
14023 case DT_MIPS_LIBLISTNO:
14024 return "MIPS_LIBLISTNO";
14025 case DT_MIPS_SYMTABNO:
14026 return "MIPS_SYMTABNO";
14027 case DT_MIPS_UNREFEXTNO:
14028 return "MIPS_UNREFEXTNO";
14029 case DT_MIPS_GOTSYM:
14030 return "MIPS_GOTSYM";
14031 case DT_MIPS_HIPAGENO:
14032 return "MIPS_HIPAGENO";
14033 case DT_MIPS_RLD_MAP:
14034 return "MIPS_RLD_MAP";
14035 case DT_MIPS_DELTA_CLASS:
14036 return "MIPS_DELTA_CLASS";
14037 case DT_MIPS_DELTA_CLASS_NO:
14038 return "MIPS_DELTA_CLASS_NO";
14039 case DT_MIPS_DELTA_INSTANCE:
14040 return "MIPS_DELTA_INSTANCE";
14041 case DT_MIPS_DELTA_INSTANCE_NO:
14042 return "MIPS_DELTA_INSTANCE_NO";
14043 case DT_MIPS_DELTA_RELOC:
14044 return "MIPS_DELTA_RELOC";
14045 case DT_MIPS_DELTA_RELOC_NO:
14046 return "MIPS_DELTA_RELOC_NO";
14047 case DT_MIPS_DELTA_SYM:
14048 return "MIPS_DELTA_SYM";
14049 case DT_MIPS_DELTA_SYM_NO:
14050 return "MIPS_DELTA_SYM_NO";
14051 case DT_MIPS_DELTA_CLASSSYM:
14052 return "MIPS_DELTA_CLASSSYM";
14053 case DT_MIPS_DELTA_CLASSSYM_NO:
14054 return "MIPS_DELTA_CLASSSYM_NO";
14055 case DT_MIPS_CXX_FLAGS:
14056 return "MIPS_CXX_FLAGS";
14057 case DT_MIPS_PIXIE_INIT:
14058 return "MIPS_PIXIE_INIT";
14059 case DT_MIPS_SYMBOL_LIB:
14060 return "MIPS_SYMBOL_LIB";
14061 case DT_MIPS_LOCALPAGE_GOTIDX:
14062 return "MIPS_LOCALPAGE_GOTIDX";
14063 case DT_MIPS_LOCAL_GOTIDX:
14064 return "MIPS_LOCAL_GOTIDX";
14065 case DT_MIPS_HIDDEN_GOTIDX:
14066 return "MIPS_HIDDEN_GOTIDX";
14067 case DT_MIPS_PROTECTED_GOTIDX:
14068 return "MIPS_PROTECTED_GOT_IDX";
14069 case DT_MIPS_OPTIONS:
14070 return "MIPS_OPTIONS";
14071 case DT_MIPS_INTERFACE:
14072 return "MIPS_INTERFACE";
14073 case DT_MIPS_DYNSTR_ALIGN:
14074 return "DT_MIPS_DYNSTR_ALIGN";
14075 case DT_MIPS_INTERFACE_SIZE:
14076 return "DT_MIPS_INTERFACE_SIZE";
14077 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14078 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14079 case DT_MIPS_PERF_SUFFIX:
14080 return "DT_MIPS_PERF_SUFFIX";
14081 case DT_MIPS_COMPACT_SIZE:
14082 return "DT_MIPS_COMPACT_SIZE";
14083 case DT_MIPS_GP_VALUE:
14084 return "DT_MIPS_GP_VALUE";
14085 case DT_MIPS_AUX_DYNAMIC:
14086 return "DT_MIPS_AUX_DYNAMIC";
14087 case DT_MIPS_PLTGOT:
14088 return "DT_MIPS_PLTGOT";
14089 case DT_MIPS_RWPLT:
14090 return "DT_MIPS_RWPLT";
14091 }
14092 }
14093
14094 bfd_boolean
14095 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14096 {
14097 FILE *file = ptr;
14098
14099 BFD_ASSERT (abfd != NULL && ptr != NULL);
14100
14101 /* Print normal ELF private data. */
14102 _bfd_elf_print_private_bfd_data (abfd, ptr);
14103
14104 /* xgettext:c-format */
14105 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14106
14107 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14108 fprintf (file, _(" [abi=O32]"));
14109 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14110 fprintf (file, _(" [abi=O64]"));
14111 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14112 fprintf (file, _(" [abi=EABI32]"));
14113 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14114 fprintf (file, _(" [abi=EABI64]"));
14115 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14116 fprintf (file, _(" [abi unknown]"));
14117 else if (ABI_N32_P (abfd))
14118 fprintf (file, _(" [abi=N32]"));
14119 else if (ABI_64_P (abfd))
14120 fprintf (file, _(" [abi=64]"));
14121 else
14122 fprintf (file, _(" [no abi set]"));
14123
14124 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14125 fprintf (file, " [mips1]");
14126 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14127 fprintf (file, " [mips2]");
14128 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14129 fprintf (file, " [mips3]");
14130 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14131 fprintf (file, " [mips4]");
14132 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14133 fprintf (file, " [mips5]");
14134 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14135 fprintf (file, " [mips32]");
14136 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14137 fprintf (file, " [mips64]");
14138 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14139 fprintf (file, " [mips32r2]");
14140 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14141 fprintf (file, " [mips64r2]");
14142 else
14143 fprintf (file, _(" [unknown ISA]"));
14144
14145 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14146 fprintf (file, " [mdmx]");
14147
14148 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14149 fprintf (file, " [mips16]");
14150
14151 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14152 fprintf (file, " [micromips]");
14153
14154 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14155 fprintf (file, " [32bitmode]");
14156 else
14157 fprintf (file, _(" [not 32bitmode]"));
14158
14159 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
14160 fprintf (file, " [noreorder]");
14161
14162 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
14163 fprintf (file, " [PIC]");
14164
14165 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
14166 fprintf (file, " [CPIC]");
14167
14168 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
14169 fprintf (file, " [XGOT]");
14170
14171 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
14172 fprintf (file, " [UCODE]");
14173
14174 fputc ('\n', file);
14175
14176 return TRUE;
14177 }
14178
14179 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
14180 {
14181 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14182 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14183 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14184 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14185 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14186 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14187 { NULL, 0, 0, 0, 0 }
14188 };
14189
14190 /* Merge non visibility st_other attributes. Ensure that the
14191 STO_OPTIONAL flag is copied into h->other, even if this is not a
14192 definiton of the symbol. */
14193 void
14194 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14195 const Elf_Internal_Sym *isym,
14196 bfd_boolean definition,
14197 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14198 {
14199 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14200 {
14201 unsigned char other;
14202
14203 other = (definition ? isym->st_other : h->other);
14204 other &= ~ELF_ST_VISIBILITY (-1);
14205 h->other = other | ELF_ST_VISIBILITY (h->other);
14206 }
14207
14208 if (!definition
14209 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14210 h->other |= STO_OPTIONAL;
14211 }
14212
14213 /* Decide whether an undefined symbol is special and can be ignored.
14214 This is the case for OPTIONAL symbols on IRIX. */
14215 bfd_boolean
14216 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14217 {
14218 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14219 }
14220
14221 bfd_boolean
14222 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14223 {
14224 return (sym->st_shndx == SHN_COMMON
14225 || sym->st_shndx == SHN_MIPS_ACOMMON
14226 || sym->st_shndx == SHN_MIPS_SCOMMON);
14227 }
14228
14229 /* Return address for Ith PLT stub in section PLT, for relocation REL
14230 or (bfd_vma) -1 if it should not be included. */
14231
14232 bfd_vma
14233 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14234 const arelent *rel ATTRIBUTE_UNUSED)
14235 {
14236 return (plt->vma
14237 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14238 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14239 }
14240
14241 void
14242 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14243 {
14244 struct mips_elf_link_hash_table *htab;
14245 Elf_Internal_Ehdr *i_ehdrp;
14246
14247 i_ehdrp = elf_elfheader (abfd);
14248 if (link_info)
14249 {
14250 htab = mips_elf_hash_table (link_info);
14251 BFD_ASSERT (htab != NULL);
14252
14253 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14254 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14255 }
14256 }
This page took 0.302313 seconds and 5 git commands to generate.