2005-05-28 David Daney <ddaney@avtrex.com>
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37
38 /* Get the ECOFF swapping routines. */
39 #include "coff/sym.h"
40 #include "coff/symconst.h"
41 #include "coff/ecoff.h"
42 #include "coff/mips.h"
43
44 #include "hashtab.h"
45
46 /* This structure is used to hold .got entries while estimating got
47 sizes. */
48 struct mips_got_entry
49 {
50 /* The input bfd in which the symbol is defined. */
51 bfd *abfd;
52 /* The index of the symbol, as stored in the relocation r_info, if
53 we have a local symbol; -1 otherwise. */
54 long symndx;
55 union
56 {
57 /* If abfd == NULL, an address that must be stored in the got. */
58 bfd_vma address;
59 /* If abfd != NULL && symndx != -1, the addend of the relocation
60 that should be added to the symbol value. */
61 bfd_vma addend;
62 /* If abfd != NULL && symndx == -1, the hash table entry
63 corresponding to a global symbol in the got (or, local, if
64 h->forced_local). */
65 struct mips_elf_link_hash_entry *h;
66 } d;
67
68 /* The TLS types included in this GOT entry (specifically, GD and
69 IE). The GD and IE flags can be added as we encounter new
70 relocations. LDM can also be set; it will always be alone, not
71 combined with any GD or IE flags. An LDM GOT entry will be
72 a local symbol entry with r_symndx == 0. */
73 unsigned char tls_type;
74
75 /* The offset from the beginning of the .got section to the entry
76 corresponding to this symbol+addend. If it's a global symbol
77 whose offset is yet to be decided, it's going to be -1. */
78 long gotidx;
79 };
80
81 /* This structure is used to hold .got information when linking. */
82
83 struct mips_got_info
84 {
85 /* The global symbol in the GOT with the lowest index in the dynamic
86 symbol table. */
87 struct elf_link_hash_entry *global_gotsym;
88 /* The number of global .got entries. */
89 unsigned int global_gotno;
90 /* The number of .got slots used for TLS. */
91 unsigned int tls_gotno;
92 /* The first unused TLS .got entry. Used only during
93 mips_elf_initialize_tls_index. */
94 unsigned int tls_assigned_gotno;
95 /* The number of local .got entries. */
96 unsigned int local_gotno;
97 /* The number of local .got entries we have used. */
98 unsigned int assigned_gotno;
99 /* A hash table holding members of the got. */
100 struct htab *got_entries;
101 /* A hash table mapping input bfds to other mips_got_info. NULL
102 unless multi-got was necessary. */
103 struct htab *bfd2got;
104 /* In multi-got links, a pointer to the next got (err, rather, most
105 of the time, it points to the previous got). */
106 struct mips_got_info *next;
107 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
108 for none, or MINUS_TWO for not yet assigned. This is needed
109 because a single-GOT link may have multiple hash table entries
110 for the LDM. It does not get initialized in multi-GOT mode. */
111 bfd_vma tls_ldm_offset;
112 };
113
114 /* Map an input bfd to a got in a multi-got link. */
115
116 struct mips_elf_bfd2got_hash {
117 bfd *bfd;
118 struct mips_got_info *g;
119 };
120
121 /* Structure passed when traversing the bfd2got hash table, used to
122 create and merge bfd's gots. */
123
124 struct mips_elf_got_per_bfd_arg
125 {
126 /* A hashtable that maps bfds to gots. */
127 htab_t bfd2got;
128 /* The output bfd. */
129 bfd *obfd;
130 /* The link information. */
131 struct bfd_link_info *info;
132 /* A pointer to the primary got, i.e., the one that's going to get
133 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
134 DT_MIPS_GOTSYM. */
135 struct mips_got_info *primary;
136 /* A non-primary got we're trying to merge with other input bfd's
137 gots. */
138 struct mips_got_info *current;
139 /* The maximum number of got entries that can be addressed with a
140 16-bit offset. */
141 unsigned int max_count;
142 /* The number of local and global entries in the primary got. */
143 unsigned int primary_count;
144 /* The number of local and global entries in the current got. */
145 unsigned int current_count;
146 /* The total number of global entries which will live in the
147 primary got and be automatically relocated. This includes
148 those not referenced by the primary GOT but included in
149 the "master" GOT. */
150 unsigned int global_count;
151 };
152
153 /* Another structure used to pass arguments for got entries traversal. */
154
155 struct mips_elf_set_global_got_offset_arg
156 {
157 struct mips_got_info *g;
158 int value;
159 unsigned int needed_relocs;
160 struct bfd_link_info *info;
161 };
162
163 /* A structure used to count TLS relocations or GOT entries, for GOT
164 entry or ELF symbol table traversal. */
165
166 struct mips_elf_count_tls_arg
167 {
168 struct bfd_link_info *info;
169 unsigned int needed;
170 };
171
172 struct _mips_elf_section_data
173 {
174 struct bfd_elf_section_data elf;
175 union
176 {
177 struct mips_got_info *got_info;
178 bfd_byte *tdata;
179 } u;
180 };
181
182 #define mips_elf_section_data(sec) \
183 ((struct _mips_elf_section_data *) elf_section_data (sec))
184
185 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
186 the dynamic symbols. */
187
188 struct mips_elf_hash_sort_data
189 {
190 /* The symbol in the global GOT with the lowest dynamic symbol table
191 index. */
192 struct elf_link_hash_entry *low;
193 /* The least dynamic symbol table index corresponding to a non-TLS
194 symbol with a GOT entry. */
195 long min_got_dynindx;
196 /* The greatest dynamic symbol table index corresponding to a symbol
197 with a GOT entry that is not referenced (e.g., a dynamic symbol
198 with dynamic relocations pointing to it from non-primary GOTs). */
199 long max_unref_got_dynindx;
200 /* The greatest dynamic symbol table index not corresponding to a
201 symbol without a GOT entry. */
202 long max_non_got_dynindx;
203 };
204
205 /* The MIPS ELF linker needs additional information for each symbol in
206 the global hash table. */
207
208 struct mips_elf_link_hash_entry
209 {
210 struct elf_link_hash_entry root;
211
212 /* External symbol information. */
213 EXTR esym;
214
215 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
216 this symbol. */
217 unsigned int possibly_dynamic_relocs;
218
219 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
220 a readonly section. */
221 bfd_boolean readonly_reloc;
222
223 /* We must not create a stub for a symbol that has relocations
224 related to taking the function's address, i.e. any but
225 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
226 p. 4-20. */
227 bfd_boolean no_fn_stub;
228
229 /* If there is a stub that 32 bit functions should use to call this
230 16 bit function, this points to the section containing the stub. */
231 asection *fn_stub;
232
233 /* Whether we need the fn_stub; this is set if this symbol appears
234 in any relocs other than a 16 bit call. */
235 bfd_boolean need_fn_stub;
236
237 /* If there is a stub that 16 bit functions should use to call this
238 32 bit function, this points to the section containing the stub. */
239 asection *call_stub;
240
241 /* This is like the call_stub field, but it is used if the function
242 being called returns a floating point value. */
243 asection *call_fp_stub;
244
245 /* Are we forced local? This will only be set if we have converted
246 the initial global GOT entry to a local GOT entry. */
247 bfd_boolean forced_local;
248
249 #define GOT_NORMAL 0
250 #define GOT_TLS_GD 1
251 #define GOT_TLS_LDM 2
252 #define GOT_TLS_IE 4
253 #define GOT_TLS_OFFSET_DONE 0x40
254 #define GOT_TLS_DONE 0x80
255 unsigned char tls_type;
256 /* This is only used in single-GOT mode; in multi-GOT mode there
257 is one mips_got_entry per GOT entry, so the offset is stored
258 there. In single-GOT mode there may be many mips_got_entry
259 structures all referring to the same GOT slot. It might be
260 possible to use root.got.offset instead, but that field is
261 overloaded already. */
262 bfd_vma tls_got_offset;
263 };
264
265 /* MIPS ELF linker hash table. */
266
267 struct mips_elf_link_hash_table
268 {
269 struct elf_link_hash_table root;
270 #if 0
271 /* We no longer use this. */
272 /* String section indices for the dynamic section symbols. */
273 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
274 #endif
275 /* The number of .rtproc entries. */
276 bfd_size_type procedure_count;
277 /* The size of the .compact_rel section (if SGI_COMPAT). */
278 bfd_size_type compact_rel_size;
279 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
280 entry is set to the address of __rld_obj_head as in IRIX5. */
281 bfd_boolean use_rld_obj_head;
282 /* This is the value of the __rld_map or __rld_obj_head symbol. */
283 bfd_vma rld_value;
284 /* This is set if we see any mips16 stub sections. */
285 bfd_boolean mips16_stubs_seen;
286 };
287
288 #define TLS_RELOC_P(r_type) \
289 (r_type == R_MIPS_TLS_DTPMOD32 \
290 || r_type == R_MIPS_TLS_DTPMOD64 \
291 || r_type == R_MIPS_TLS_DTPREL32 \
292 || r_type == R_MIPS_TLS_DTPREL64 \
293 || r_type == R_MIPS_TLS_GD \
294 || r_type == R_MIPS_TLS_LDM \
295 || r_type == R_MIPS_TLS_DTPREL_HI16 \
296 || r_type == R_MIPS_TLS_DTPREL_LO16 \
297 || r_type == R_MIPS_TLS_GOTTPREL \
298 || r_type == R_MIPS_TLS_TPREL32 \
299 || r_type == R_MIPS_TLS_TPREL64 \
300 || r_type == R_MIPS_TLS_TPREL_HI16 \
301 || r_type == R_MIPS_TLS_TPREL_LO16)
302
303 /* Structure used to pass information to mips_elf_output_extsym. */
304
305 struct extsym_info
306 {
307 bfd *abfd;
308 struct bfd_link_info *info;
309 struct ecoff_debug_info *debug;
310 const struct ecoff_debug_swap *swap;
311 bfd_boolean failed;
312 };
313
314 /* The names of the runtime procedure table symbols used on IRIX5. */
315
316 static const char * const mips_elf_dynsym_rtproc_names[] =
317 {
318 "_procedure_table",
319 "_procedure_string_table",
320 "_procedure_table_size",
321 NULL
322 };
323
324 /* These structures are used to generate the .compact_rel section on
325 IRIX5. */
326
327 typedef struct
328 {
329 unsigned long id1; /* Always one? */
330 unsigned long num; /* Number of compact relocation entries. */
331 unsigned long id2; /* Always two? */
332 unsigned long offset; /* The file offset of the first relocation. */
333 unsigned long reserved0; /* Zero? */
334 unsigned long reserved1; /* Zero? */
335 } Elf32_compact_rel;
336
337 typedef struct
338 {
339 bfd_byte id1[4];
340 bfd_byte num[4];
341 bfd_byte id2[4];
342 bfd_byte offset[4];
343 bfd_byte reserved0[4];
344 bfd_byte reserved1[4];
345 } Elf32_External_compact_rel;
346
347 typedef struct
348 {
349 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
350 unsigned int rtype : 4; /* Relocation types. See below. */
351 unsigned int dist2to : 8;
352 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
353 unsigned long konst; /* KONST field. See below. */
354 unsigned long vaddr; /* VADDR to be relocated. */
355 } Elf32_crinfo;
356
357 typedef struct
358 {
359 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
360 unsigned int rtype : 4; /* Relocation types. See below. */
361 unsigned int dist2to : 8;
362 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
363 unsigned long konst; /* KONST field. See below. */
364 } Elf32_crinfo2;
365
366 typedef struct
367 {
368 bfd_byte info[4];
369 bfd_byte konst[4];
370 bfd_byte vaddr[4];
371 } Elf32_External_crinfo;
372
373 typedef struct
374 {
375 bfd_byte info[4];
376 bfd_byte konst[4];
377 } Elf32_External_crinfo2;
378
379 /* These are the constants used to swap the bitfields in a crinfo. */
380
381 #define CRINFO_CTYPE (0x1)
382 #define CRINFO_CTYPE_SH (31)
383 #define CRINFO_RTYPE (0xf)
384 #define CRINFO_RTYPE_SH (27)
385 #define CRINFO_DIST2TO (0xff)
386 #define CRINFO_DIST2TO_SH (19)
387 #define CRINFO_RELVADDR (0x7ffff)
388 #define CRINFO_RELVADDR_SH (0)
389
390 /* A compact relocation info has long (3 words) or short (2 words)
391 formats. A short format doesn't have VADDR field and relvaddr
392 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
393 #define CRF_MIPS_LONG 1
394 #define CRF_MIPS_SHORT 0
395
396 /* There are 4 types of compact relocation at least. The value KONST
397 has different meaning for each type:
398
399 (type) (konst)
400 CT_MIPS_REL32 Address in data
401 CT_MIPS_WORD Address in word (XXX)
402 CT_MIPS_GPHI_LO GP - vaddr
403 CT_MIPS_JMPAD Address to jump
404 */
405
406 #define CRT_MIPS_REL32 0xa
407 #define CRT_MIPS_WORD 0xb
408 #define CRT_MIPS_GPHI_LO 0xc
409 #define CRT_MIPS_JMPAD 0xd
410
411 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
412 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
413 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
414 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
415 \f
416 /* The structure of the runtime procedure descriptor created by the
417 loader for use by the static exception system. */
418
419 typedef struct runtime_pdr {
420 bfd_vma adr; /* Memory address of start of procedure. */
421 long regmask; /* Save register mask. */
422 long regoffset; /* Save register offset. */
423 long fregmask; /* Save floating point register mask. */
424 long fregoffset; /* Save floating point register offset. */
425 long frameoffset; /* Frame size. */
426 short framereg; /* Frame pointer register. */
427 short pcreg; /* Offset or reg of return pc. */
428 long irpss; /* Index into the runtime string table. */
429 long reserved;
430 struct exception_info *exception_info;/* Pointer to exception array. */
431 } RPDR, *pRPDR;
432 #define cbRPDR sizeof (RPDR)
433 #define rpdNil ((pRPDR) 0)
434 \f
435 static struct mips_got_entry *mips_elf_create_local_got_entry
436 (bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma, unsigned long,
437 struct mips_elf_link_hash_entry *, int);
438 static bfd_boolean mips_elf_sort_hash_table_f
439 (struct mips_elf_link_hash_entry *, void *);
440 static bfd_vma mips_elf_high
441 (bfd_vma);
442 static bfd_boolean mips_elf_stub_section_p
443 (bfd *, asection *);
444 static bfd_boolean mips_elf_create_dynamic_relocation
445 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
446 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
447 bfd_vma *, asection *);
448 static hashval_t mips_elf_got_entry_hash
449 (const void *);
450 static bfd_vma mips_elf_adjust_gp
451 (bfd *, struct mips_got_info *, bfd *);
452 static struct mips_got_info *mips_elf_got_for_ibfd
453 (struct mips_got_info *, bfd *);
454
455 /* This will be used when we sort the dynamic relocation records. */
456 static bfd *reldyn_sorting_bfd;
457
458 /* Nonzero if ABFD is using the N32 ABI. */
459
460 #define ABI_N32_P(abfd) \
461 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
462
463 /* Nonzero if ABFD is using the N64 ABI. */
464 #define ABI_64_P(abfd) \
465 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
466
467 /* Nonzero if ABFD is using NewABI conventions. */
468 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
469
470 /* The IRIX compatibility level we are striving for. */
471 #define IRIX_COMPAT(abfd) \
472 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
473
474 /* Whether we are trying to be compatible with IRIX at all. */
475 #define SGI_COMPAT(abfd) \
476 (IRIX_COMPAT (abfd) != ict_none)
477
478 /* The name of the options section. */
479 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
480 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
481
482 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
483 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
484 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
485 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
486
487 /* The name of the stub section. */
488 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
489
490 /* The size of an external REL relocation. */
491 #define MIPS_ELF_REL_SIZE(abfd) \
492 (get_elf_backend_data (abfd)->s->sizeof_rel)
493
494 /* The size of an external dynamic table entry. */
495 #define MIPS_ELF_DYN_SIZE(abfd) \
496 (get_elf_backend_data (abfd)->s->sizeof_dyn)
497
498 /* The size of a GOT entry. */
499 #define MIPS_ELF_GOT_SIZE(abfd) \
500 (get_elf_backend_data (abfd)->s->arch_size / 8)
501
502 /* The size of a symbol-table entry. */
503 #define MIPS_ELF_SYM_SIZE(abfd) \
504 (get_elf_backend_data (abfd)->s->sizeof_sym)
505
506 /* The default alignment for sections, as a power of two. */
507 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
508 (get_elf_backend_data (abfd)->s->log_file_align)
509
510 /* Get word-sized data. */
511 #define MIPS_ELF_GET_WORD(abfd, ptr) \
512 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
513
514 /* Put out word-sized data. */
515 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
516 (ABI_64_P (abfd) \
517 ? bfd_put_64 (abfd, val, ptr) \
518 : bfd_put_32 (abfd, val, ptr))
519
520 /* Add a dynamic symbol table-entry. */
521 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
522 _bfd_elf_add_dynamic_entry (info, tag, val)
523
524 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
526
527 /* Determine whether the internal relocation of index REL_IDX is REL
528 (zero) or RELA (non-zero). The assumption is that, if there are
529 two relocation sections for this section, one of them is REL and
530 the other is RELA. If the index of the relocation we're testing is
531 in range for the first relocation section, check that the external
532 relocation size is that for RELA. It is also assumed that, if
533 rel_idx is not in range for the first section, and this first
534 section contains REL relocs, then the relocation is in the second
535 section, that is RELA. */
536 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
537 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
538 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
539 > (bfd_vma)(rel_idx)) \
540 == (elf_section_data (sec)->rel_hdr.sh_entsize \
541 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
542 : sizeof (Elf32_External_Rela))))
543
544 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
545 from smaller values. Start with zero, widen, *then* decrement. */
546 #define MINUS_ONE (((bfd_vma)0) - 1)
547 #define MINUS_TWO (((bfd_vma)0) - 2)
548
549 /* The number of local .got entries we reserve. */
550 #define MIPS_RESERVED_GOTNO (2)
551
552 /* The offset of $gp from the beginning of the .got section. */
553 #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0)
554
555 /* The maximum size of the GOT for it to be addressable using 16-bit
556 offsets from $gp. */
557 #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff)
558
559 /* Instructions which appear in a stub. */
560 #define STUB_LW(abfd) \
561 ((ABI_64_P (abfd) \
562 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
563 : 0x8f998010)) /* lw t9,0x8010(gp) */
564 #define STUB_MOVE(abfd) \
565 ((ABI_64_P (abfd) \
566 ? 0x03e0782d /* daddu t7,ra */ \
567 : 0x03e07821)) /* addu t7,ra */
568 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
569 #define STUB_LI16(abfd) \
570 ((ABI_64_P (abfd) \
571 ? 0x64180000 /* daddiu t8,zero,0 */ \
572 : 0x24180000)) /* addiu t8,zero,0 */
573 #define MIPS_FUNCTION_STUB_SIZE (16)
574
575 /* The name of the dynamic interpreter. This is put in the .interp
576 section. */
577
578 #define ELF_DYNAMIC_INTERPRETER(abfd) \
579 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
580 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
581 : "/usr/lib/libc.so.1")
582
583 #ifdef BFD64
584 #define MNAME(bfd,pre,pos) \
585 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
586 #define ELF_R_SYM(bfd, i) \
587 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
588 #define ELF_R_TYPE(bfd, i) \
589 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
590 #define ELF_R_INFO(bfd, s, t) \
591 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
592 #else
593 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
594 #define ELF_R_SYM(bfd, i) \
595 (ELF32_R_SYM (i))
596 #define ELF_R_TYPE(bfd, i) \
597 (ELF32_R_TYPE (i))
598 #define ELF_R_INFO(bfd, s, t) \
599 (ELF32_R_INFO (s, t))
600 #endif
601 \f
602 /* The mips16 compiler uses a couple of special sections to handle
603 floating point arguments.
604
605 Section names that look like .mips16.fn.FNNAME contain stubs that
606 copy floating point arguments from the fp regs to the gp regs and
607 then jump to FNNAME. If any 32 bit function calls FNNAME, the
608 call should be redirected to the stub instead. If no 32 bit
609 function calls FNNAME, the stub should be discarded. We need to
610 consider any reference to the function, not just a call, because
611 if the address of the function is taken we will need the stub,
612 since the address might be passed to a 32 bit function.
613
614 Section names that look like .mips16.call.FNNAME contain stubs
615 that copy floating point arguments from the gp regs to the fp
616 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
617 then any 16 bit function that calls FNNAME should be redirected
618 to the stub instead. If FNNAME is not a 32 bit function, the
619 stub should be discarded.
620
621 .mips16.call.fp.FNNAME sections are similar, but contain stubs
622 which call FNNAME and then copy the return value from the fp regs
623 to the gp regs. These stubs store the return value in $18 while
624 calling FNNAME; any function which might call one of these stubs
625 must arrange to save $18 around the call. (This case is not
626 needed for 32 bit functions that call 16 bit functions, because
627 16 bit functions always return floating point values in both
628 $f0/$f1 and $2/$3.)
629
630 Note that in all cases FNNAME might be defined statically.
631 Therefore, FNNAME is not used literally. Instead, the relocation
632 information will indicate which symbol the section is for.
633
634 We record any stubs that we find in the symbol table. */
635
636 #define FN_STUB ".mips16.fn."
637 #define CALL_STUB ".mips16.call."
638 #define CALL_FP_STUB ".mips16.call.fp."
639 \f
640 /* Look up an entry in a MIPS ELF linker hash table. */
641
642 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
643 ((struct mips_elf_link_hash_entry *) \
644 elf_link_hash_lookup (&(table)->root, (string), (create), \
645 (copy), (follow)))
646
647 /* Traverse a MIPS ELF linker hash table. */
648
649 #define mips_elf_link_hash_traverse(table, func, info) \
650 (elf_link_hash_traverse \
651 (&(table)->root, \
652 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
653 (info)))
654
655 /* Get the MIPS ELF linker hash table from a link_info structure. */
656
657 #define mips_elf_hash_table(p) \
658 ((struct mips_elf_link_hash_table *) ((p)->hash))
659
660 /* Find the base offsets for thread-local storage in this object,
661 for GD/LD and IE/LE respectively. */
662
663 #define TP_OFFSET 0x7000
664 #define DTP_OFFSET 0x8000
665
666 static bfd_vma
667 dtprel_base (struct bfd_link_info *info)
668 {
669 /* If tls_sec is NULL, we should have signalled an error already. */
670 if (elf_hash_table (info)->tls_sec == NULL)
671 return 0;
672 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
673 }
674
675 static bfd_vma
676 tprel_base (struct bfd_link_info *info)
677 {
678 /* If tls_sec is NULL, we should have signalled an error already. */
679 if (elf_hash_table (info)->tls_sec == NULL)
680 return 0;
681 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
682 }
683
684 /* Create an entry in a MIPS ELF linker hash table. */
685
686 static struct bfd_hash_entry *
687 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
688 struct bfd_hash_table *table, const char *string)
689 {
690 struct mips_elf_link_hash_entry *ret =
691 (struct mips_elf_link_hash_entry *) entry;
692
693 /* Allocate the structure if it has not already been allocated by a
694 subclass. */
695 if (ret == NULL)
696 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
697 if (ret == NULL)
698 return (struct bfd_hash_entry *) ret;
699
700 /* Call the allocation method of the superclass. */
701 ret = ((struct mips_elf_link_hash_entry *)
702 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
703 table, string));
704 if (ret != NULL)
705 {
706 /* Set local fields. */
707 memset (&ret->esym, 0, sizeof (EXTR));
708 /* We use -2 as a marker to indicate that the information has
709 not been set. -1 means there is no associated ifd. */
710 ret->esym.ifd = -2;
711 ret->possibly_dynamic_relocs = 0;
712 ret->readonly_reloc = FALSE;
713 ret->no_fn_stub = FALSE;
714 ret->fn_stub = NULL;
715 ret->need_fn_stub = FALSE;
716 ret->call_stub = NULL;
717 ret->call_fp_stub = NULL;
718 ret->forced_local = FALSE;
719 ret->tls_type = GOT_NORMAL;
720 }
721
722 return (struct bfd_hash_entry *) ret;
723 }
724
725 bfd_boolean
726 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
727 {
728 struct _mips_elf_section_data *sdata;
729 bfd_size_type amt = sizeof (*sdata);
730
731 sdata = bfd_zalloc (abfd, amt);
732 if (sdata == NULL)
733 return FALSE;
734 sec->used_by_bfd = sdata;
735
736 return _bfd_elf_new_section_hook (abfd, sec);
737 }
738 \f
739 /* Read ECOFF debugging information from a .mdebug section into a
740 ecoff_debug_info structure. */
741
742 bfd_boolean
743 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
744 struct ecoff_debug_info *debug)
745 {
746 HDRR *symhdr;
747 const struct ecoff_debug_swap *swap;
748 char *ext_hdr;
749
750 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
751 memset (debug, 0, sizeof (*debug));
752
753 ext_hdr = bfd_malloc (swap->external_hdr_size);
754 if (ext_hdr == NULL && swap->external_hdr_size != 0)
755 goto error_return;
756
757 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
758 swap->external_hdr_size))
759 goto error_return;
760
761 symhdr = &debug->symbolic_header;
762 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
763
764 /* The symbolic header contains absolute file offsets and sizes to
765 read. */
766 #define READ(ptr, offset, count, size, type) \
767 if (symhdr->count == 0) \
768 debug->ptr = NULL; \
769 else \
770 { \
771 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
772 debug->ptr = bfd_malloc (amt); \
773 if (debug->ptr == NULL) \
774 goto error_return; \
775 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
776 || bfd_bread (debug->ptr, amt, abfd) != amt) \
777 goto error_return; \
778 }
779
780 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
781 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
782 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
783 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
784 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
785 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
786 union aux_ext *);
787 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
788 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
789 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
790 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
791 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
792 #undef READ
793
794 debug->fdr = NULL;
795
796 return TRUE;
797
798 error_return:
799 if (ext_hdr != NULL)
800 free (ext_hdr);
801 if (debug->line != NULL)
802 free (debug->line);
803 if (debug->external_dnr != NULL)
804 free (debug->external_dnr);
805 if (debug->external_pdr != NULL)
806 free (debug->external_pdr);
807 if (debug->external_sym != NULL)
808 free (debug->external_sym);
809 if (debug->external_opt != NULL)
810 free (debug->external_opt);
811 if (debug->external_aux != NULL)
812 free (debug->external_aux);
813 if (debug->ss != NULL)
814 free (debug->ss);
815 if (debug->ssext != NULL)
816 free (debug->ssext);
817 if (debug->external_fdr != NULL)
818 free (debug->external_fdr);
819 if (debug->external_rfd != NULL)
820 free (debug->external_rfd);
821 if (debug->external_ext != NULL)
822 free (debug->external_ext);
823 return FALSE;
824 }
825 \f
826 /* Swap RPDR (runtime procedure table entry) for output. */
827
828 static void
829 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
830 {
831 H_PUT_S32 (abfd, in->adr, ex->p_adr);
832 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
833 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
834 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
835 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
836 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
837
838 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
839 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
840
841 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
842 }
843
844 /* Create a runtime procedure table from the .mdebug section. */
845
846 static bfd_boolean
847 mips_elf_create_procedure_table (void *handle, bfd *abfd,
848 struct bfd_link_info *info, asection *s,
849 struct ecoff_debug_info *debug)
850 {
851 const struct ecoff_debug_swap *swap;
852 HDRR *hdr = &debug->symbolic_header;
853 RPDR *rpdr, *rp;
854 struct rpdr_ext *erp;
855 void *rtproc;
856 struct pdr_ext *epdr;
857 struct sym_ext *esym;
858 char *ss, **sv;
859 char *str;
860 bfd_size_type size;
861 bfd_size_type count;
862 unsigned long sindex;
863 unsigned long i;
864 PDR pdr;
865 SYMR sym;
866 const char *no_name_func = _("static procedure (no name)");
867
868 epdr = NULL;
869 rpdr = NULL;
870 esym = NULL;
871 ss = NULL;
872 sv = NULL;
873
874 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
875
876 sindex = strlen (no_name_func) + 1;
877 count = hdr->ipdMax;
878 if (count > 0)
879 {
880 size = swap->external_pdr_size;
881
882 epdr = bfd_malloc (size * count);
883 if (epdr == NULL)
884 goto error_return;
885
886 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
887 goto error_return;
888
889 size = sizeof (RPDR);
890 rp = rpdr = bfd_malloc (size * count);
891 if (rpdr == NULL)
892 goto error_return;
893
894 size = sizeof (char *);
895 sv = bfd_malloc (size * count);
896 if (sv == NULL)
897 goto error_return;
898
899 count = hdr->isymMax;
900 size = swap->external_sym_size;
901 esym = bfd_malloc (size * count);
902 if (esym == NULL)
903 goto error_return;
904
905 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
906 goto error_return;
907
908 count = hdr->issMax;
909 ss = bfd_malloc (count);
910 if (ss == NULL)
911 goto error_return;
912 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
913 goto error_return;
914
915 count = hdr->ipdMax;
916 for (i = 0; i < (unsigned long) count; i++, rp++)
917 {
918 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
919 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
920 rp->adr = sym.value;
921 rp->regmask = pdr.regmask;
922 rp->regoffset = pdr.regoffset;
923 rp->fregmask = pdr.fregmask;
924 rp->fregoffset = pdr.fregoffset;
925 rp->frameoffset = pdr.frameoffset;
926 rp->framereg = pdr.framereg;
927 rp->pcreg = pdr.pcreg;
928 rp->irpss = sindex;
929 sv[i] = ss + sym.iss;
930 sindex += strlen (sv[i]) + 1;
931 }
932 }
933
934 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
935 size = BFD_ALIGN (size, 16);
936 rtproc = bfd_alloc (abfd, size);
937 if (rtproc == NULL)
938 {
939 mips_elf_hash_table (info)->procedure_count = 0;
940 goto error_return;
941 }
942
943 mips_elf_hash_table (info)->procedure_count = count + 2;
944
945 erp = rtproc;
946 memset (erp, 0, sizeof (struct rpdr_ext));
947 erp++;
948 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
949 strcpy (str, no_name_func);
950 str += strlen (no_name_func) + 1;
951 for (i = 0; i < count; i++)
952 {
953 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
954 strcpy (str, sv[i]);
955 str += strlen (sv[i]) + 1;
956 }
957 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
958
959 /* Set the size and contents of .rtproc section. */
960 s->size = size;
961 s->contents = rtproc;
962
963 /* Skip this section later on (I don't think this currently
964 matters, but someday it might). */
965 s->map_head.link_order = NULL;
966
967 if (epdr != NULL)
968 free (epdr);
969 if (rpdr != NULL)
970 free (rpdr);
971 if (esym != NULL)
972 free (esym);
973 if (ss != NULL)
974 free (ss);
975 if (sv != NULL)
976 free (sv);
977
978 return TRUE;
979
980 error_return:
981 if (epdr != NULL)
982 free (epdr);
983 if (rpdr != NULL)
984 free (rpdr);
985 if (esym != NULL)
986 free (esym);
987 if (ss != NULL)
988 free (ss);
989 if (sv != NULL)
990 free (sv);
991 return FALSE;
992 }
993
994 /* Check the mips16 stubs for a particular symbol, and see if we can
995 discard them. */
996
997 static bfd_boolean
998 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
999 void *data ATTRIBUTE_UNUSED)
1000 {
1001 if (h->root.root.type == bfd_link_hash_warning)
1002 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1003
1004 if (h->fn_stub != NULL
1005 && ! h->need_fn_stub)
1006 {
1007 /* We don't need the fn_stub; the only references to this symbol
1008 are 16 bit calls. Clobber the size to 0 to prevent it from
1009 being included in the link. */
1010 h->fn_stub->size = 0;
1011 h->fn_stub->flags &= ~SEC_RELOC;
1012 h->fn_stub->reloc_count = 0;
1013 h->fn_stub->flags |= SEC_EXCLUDE;
1014 }
1015
1016 if (h->call_stub != NULL
1017 && h->root.other == STO_MIPS16)
1018 {
1019 /* We don't need the call_stub; this is a 16 bit function, so
1020 calls from other 16 bit functions are OK. Clobber the size
1021 to 0 to prevent it from being included in the link. */
1022 h->call_stub->size = 0;
1023 h->call_stub->flags &= ~SEC_RELOC;
1024 h->call_stub->reloc_count = 0;
1025 h->call_stub->flags |= SEC_EXCLUDE;
1026 }
1027
1028 if (h->call_fp_stub != NULL
1029 && h->root.other == STO_MIPS16)
1030 {
1031 /* We don't need the call_stub; this is a 16 bit function, so
1032 calls from other 16 bit functions are OK. Clobber the size
1033 to 0 to prevent it from being included in the link. */
1034 h->call_fp_stub->size = 0;
1035 h->call_fp_stub->flags &= ~SEC_RELOC;
1036 h->call_fp_stub->reloc_count = 0;
1037 h->call_fp_stub->flags |= SEC_EXCLUDE;
1038 }
1039
1040 return TRUE;
1041 }
1042 \f
1043 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1044 Most mips16 instructions are 16 bits, but these instructions
1045 are 32 bits.
1046
1047 The format of these instructions is:
1048
1049 +--------------+--------------------------------+
1050 | JALX | X| Imm 20:16 | Imm 25:21 |
1051 +--------------+--------------------------------+
1052 | Immediate 15:0 |
1053 +-----------------------------------------------+
1054
1055 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1056 Note that the immediate value in the first word is swapped.
1057
1058 When producing a relocatable object file, R_MIPS16_26 is
1059 handled mostly like R_MIPS_26. In particular, the addend is
1060 stored as a straight 26-bit value in a 32-bit instruction.
1061 (gas makes life simpler for itself by never adjusting a
1062 R_MIPS16_26 reloc to be against a section, so the addend is
1063 always zero). However, the 32 bit instruction is stored as 2
1064 16-bit values, rather than a single 32-bit value. In a
1065 big-endian file, the result is the same; in a little-endian
1066 file, the two 16-bit halves of the 32 bit value are swapped.
1067 This is so that a disassembler can recognize the jal
1068 instruction.
1069
1070 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1071 instruction stored as two 16-bit values. The addend A is the
1072 contents of the targ26 field. The calculation is the same as
1073 R_MIPS_26. When storing the calculated value, reorder the
1074 immediate value as shown above, and don't forget to store the
1075 value as two 16-bit values.
1076
1077 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1078 defined as
1079
1080 big-endian:
1081 +--------+----------------------+
1082 | | |
1083 | | targ26-16 |
1084 |31 26|25 0|
1085 +--------+----------------------+
1086
1087 little-endian:
1088 +----------+------+-------------+
1089 | | | |
1090 | sub1 | | sub2 |
1091 |0 9|10 15|16 31|
1092 +----------+--------------------+
1093 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1094 ((sub1 << 16) | sub2)).
1095
1096 When producing a relocatable object file, the calculation is
1097 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1098 When producing a fully linked file, the calculation is
1099 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1100 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1101
1102 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1103 mode. A typical instruction will have a format like this:
1104
1105 +--------------+--------------------------------+
1106 | EXTEND | Imm 10:5 | Imm 15:11 |
1107 +--------------+--------------------------------+
1108 | Major | rx | ry | Imm 4:0 |
1109 +--------------+--------------------------------+
1110
1111 EXTEND is the five bit value 11110. Major is the instruction
1112 opcode.
1113
1114 This is handled exactly like R_MIPS_GPREL16, except that the
1115 addend is retrieved and stored as shown in this diagram; that
1116 is, the Imm fields above replace the V-rel16 field.
1117
1118 All we need to do here is shuffle the bits appropriately. As
1119 above, the two 16-bit halves must be swapped on a
1120 little-endian system.
1121
1122 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1123 access data when neither GP-relative nor PC-relative addressing
1124 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1125 except that the addend is retrieved and stored as shown above
1126 for R_MIPS16_GPREL.
1127 */
1128 void
1129 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1130 bfd_boolean jal_shuffle, bfd_byte *data)
1131 {
1132 bfd_vma extend, insn, val;
1133
1134 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1135 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1136 return;
1137
1138 /* Pick up the mips16 extend instruction and the real instruction. */
1139 extend = bfd_get_16 (abfd, data);
1140 insn = bfd_get_16 (abfd, data + 2);
1141 if (r_type == R_MIPS16_26)
1142 {
1143 if (jal_shuffle)
1144 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1145 | ((extend & 0x1f) << 21) | insn;
1146 else
1147 val = extend << 16 | insn;
1148 }
1149 else
1150 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1151 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1152 bfd_put_32 (abfd, val, data);
1153 }
1154
1155 void
1156 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1157 bfd_boolean jal_shuffle, bfd_byte *data)
1158 {
1159 bfd_vma extend, insn, val;
1160
1161 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1162 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1163 return;
1164
1165 val = bfd_get_32 (abfd, data);
1166 if (r_type == R_MIPS16_26)
1167 {
1168 if (jal_shuffle)
1169 {
1170 insn = val & 0xffff;
1171 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1172 | ((val >> 21) & 0x1f);
1173 }
1174 else
1175 {
1176 insn = val & 0xffff;
1177 extend = val >> 16;
1178 }
1179 }
1180 else
1181 {
1182 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1183 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1184 }
1185 bfd_put_16 (abfd, insn, data + 2);
1186 bfd_put_16 (abfd, extend, data);
1187 }
1188
1189 bfd_reloc_status_type
1190 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1191 arelent *reloc_entry, asection *input_section,
1192 bfd_boolean relocatable, void *data, bfd_vma gp)
1193 {
1194 bfd_vma relocation;
1195 bfd_signed_vma val;
1196 bfd_reloc_status_type status;
1197
1198 if (bfd_is_com_section (symbol->section))
1199 relocation = 0;
1200 else
1201 relocation = symbol->value;
1202
1203 relocation += symbol->section->output_section->vma;
1204 relocation += symbol->section->output_offset;
1205
1206 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1207 return bfd_reloc_outofrange;
1208
1209 /* Set val to the offset into the section or symbol. */
1210 val = reloc_entry->addend;
1211
1212 _bfd_mips_elf_sign_extend (val, 16);
1213
1214 /* Adjust val for the final section location and GP value. If we
1215 are producing relocatable output, we don't want to do this for
1216 an external symbol. */
1217 if (! relocatable
1218 || (symbol->flags & BSF_SECTION_SYM) != 0)
1219 val += relocation - gp;
1220
1221 if (reloc_entry->howto->partial_inplace)
1222 {
1223 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1224 (bfd_byte *) data
1225 + reloc_entry->address);
1226 if (status != bfd_reloc_ok)
1227 return status;
1228 }
1229 else
1230 reloc_entry->addend = val;
1231
1232 if (relocatable)
1233 reloc_entry->address += input_section->output_offset;
1234
1235 return bfd_reloc_ok;
1236 }
1237
1238 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1239 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1240 that contains the relocation field and DATA points to the start of
1241 INPUT_SECTION. */
1242
1243 struct mips_hi16
1244 {
1245 struct mips_hi16 *next;
1246 bfd_byte *data;
1247 asection *input_section;
1248 arelent rel;
1249 };
1250
1251 /* FIXME: This should not be a static variable. */
1252
1253 static struct mips_hi16 *mips_hi16_list;
1254
1255 /* A howto special_function for REL *HI16 relocations. We can only
1256 calculate the correct value once we've seen the partnering
1257 *LO16 relocation, so just save the information for later.
1258
1259 The ABI requires that the *LO16 immediately follow the *HI16.
1260 However, as a GNU extension, we permit an arbitrary number of
1261 *HI16s to be associated with a single *LO16. This significantly
1262 simplies the relocation handling in gcc. */
1263
1264 bfd_reloc_status_type
1265 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1266 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1267 asection *input_section, bfd *output_bfd,
1268 char **error_message ATTRIBUTE_UNUSED)
1269 {
1270 struct mips_hi16 *n;
1271
1272 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1273 return bfd_reloc_outofrange;
1274
1275 n = bfd_malloc (sizeof *n);
1276 if (n == NULL)
1277 return bfd_reloc_outofrange;
1278
1279 n->next = mips_hi16_list;
1280 n->data = data;
1281 n->input_section = input_section;
1282 n->rel = *reloc_entry;
1283 mips_hi16_list = n;
1284
1285 if (output_bfd != NULL)
1286 reloc_entry->address += input_section->output_offset;
1287
1288 return bfd_reloc_ok;
1289 }
1290
1291 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1292 like any other 16-bit relocation when applied to global symbols, but is
1293 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1294
1295 bfd_reloc_status_type
1296 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1297 void *data, asection *input_section,
1298 bfd *output_bfd, char **error_message)
1299 {
1300 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1301 || bfd_is_und_section (bfd_get_section (symbol))
1302 || bfd_is_com_section (bfd_get_section (symbol)))
1303 /* The relocation is against a global symbol. */
1304 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1305 input_section, output_bfd,
1306 error_message);
1307
1308 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1309 input_section, output_bfd, error_message);
1310 }
1311
1312 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1313 is a straightforward 16 bit inplace relocation, but we must deal with
1314 any partnering high-part relocations as well. */
1315
1316 bfd_reloc_status_type
1317 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1318 void *data, asection *input_section,
1319 bfd *output_bfd, char **error_message)
1320 {
1321 bfd_vma vallo;
1322 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1323
1324 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1325 return bfd_reloc_outofrange;
1326
1327 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1328 location);
1329 vallo = bfd_get_32 (abfd, location);
1330 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1331 location);
1332
1333 while (mips_hi16_list != NULL)
1334 {
1335 bfd_reloc_status_type ret;
1336 struct mips_hi16 *hi;
1337
1338 hi = mips_hi16_list;
1339
1340 /* R_MIPS_GOT16 relocations are something of a special case. We
1341 want to install the addend in the same way as for a R_MIPS_HI16
1342 relocation (with a rightshift of 16). However, since GOT16
1343 relocations can also be used with global symbols, their howto
1344 has a rightshift of 0. */
1345 if (hi->rel.howto->type == R_MIPS_GOT16)
1346 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1347
1348 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1349 carry or borrow will induce a change of +1 or -1 in the high part. */
1350 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1351
1352 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1353 hi->input_section, output_bfd,
1354 error_message);
1355 if (ret != bfd_reloc_ok)
1356 return ret;
1357
1358 mips_hi16_list = hi->next;
1359 free (hi);
1360 }
1361
1362 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1363 input_section, output_bfd,
1364 error_message);
1365 }
1366
1367 /* A generic howto special_function. This calculates and installs the
1368 relocation itself, thus avoiding the oft-discussed problems in
1369 bfd_perform_relocation and bfd_install_relocation. */
1370
1371 bfd_reloc_status_type
1372 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1373 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1374 asection *input_section, bfd *output_bfd,
1375 char **error_message ATTRIBUTE_UNUSED)
1376 {
1377 bfd_signed_vma val;
1378 bfd_reloc_status_type status;
1379 bfd_boolean relocatable;
1380
1381 relocatable = (output_bfd != NULL);
1382
1383 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1384 return bfd_reloc_outofrange;
1385
1386 /* Build up the field adjustment in VAL. */
1387 val = 0;
1388 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1389 {
1390 /* Either we're calculating the final field value or we have a
1391 relocation against a section symbol. Add in the section's
1392 offset or address. */
1393 val += symbol->section->output_section->vma;
1394 val += symbol->section->output_offset;
1395 }
1396
1397 if (!relocatable)
1398 {
1399 /* We're calculating the final field value. Add in the symbol's value
1400 and, if pc-relative, subtract the address of the field itself. */
1401 val += symbol->value;
1402 if (reloc_entry->howto->pc_relative)
1403 {
1404 val -= input_section->output_section->vma;
1405 val -= input_section->output_offset;
1406 val -= reloc_entry->address;
1407 }
1408 }
1409
1410 /* VAL is now the final adjustment. If we're keeping this relocation
1411 in the output file, and if the relocation uses a separate addend,
1412 we just need to add VAL to that addend. Otherwise we need to add
1413 VAL to the relocation field itself. */
1414 if (relocatable && !reloc_entry->howto->partial_inplace)
1415 reloc_entry->addend += val;
1416 else
1417 {
1418 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1419
1420 /* Add in the separate addend, if any. */
1421 val += reloc_entry->addend;
1422
1423 /* Add VAL to the relocation field. */
1424 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1425 location);
1426 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1427 location);
1428 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1429 location);
1430
1431 if (status != bfd_reloc_ok)
1432 return status;
1433 }
1434
1435 if (relocatable)
1436 reloc_entry->address += input_section->output_offset;
1437
1438 return bfd_reloc_ok;
1439 }
1440 \f
1441 /* Swap an entry in a .gptab section. Note that these routines rely
1442 on the equivalence of the two elements of the union. */
1443
1444 static void
1445 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1446 Elf32_gptab *in)
1447 {
1448 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1449 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1450 }
1451
1452 static void
1453 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1454 Elf32_External_gptab *ex)
1455 {
1456 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1457 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1458 }
1459
1460 static void
1461 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1462 Elf32_External_compact_rel *ex)
1463 {
1464 H_PUT_32 (abfd, in->id1, ex->id1);
1465 H_PUT_32 (abfd, in->num, ex->num);
1466 H_PUT_32 (abfd, in->id2, ex->id2);
1467 H_PUT_32 (abfd, in->offset, ex->offset);
1468 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1469 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1470 }
1471
1472 static void
1473 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1474 Elf32_External_crinfo *ex)
1475 {
1476 unsigned long l;
1477
1478 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1479 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1480 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1481 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1482 H_PUT_32 (abfd, l, ex->info);
1483 H_PUT_32 (abfd, in->konst, ex->konst);
1484 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1485 }
1486 \f
1487 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1488 routines swap this structure in and out. They are used outside of
1489 BFD, so they are globally visible. */
1490
1491 void
1492 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1493 Elf32_RegInfo *in)
1494 {
1495 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1496 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1497 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1498 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1499 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1500 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1501 }
1502
1503 void
1504 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1505 Elf32_External_RegInfo *ex)
1506 {
1507 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1508 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1509 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1510 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1511 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1512 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1513 }
1514
1515 /* In the 64 bit ABI, the .MIPS.options section holds register
1516 information in an Elf64_Reginfo structure. These routines swap
1517 them in and out. They are globally visible because they are used
1518 outside of BFD. These routines are here so that gas can call them
1519 without worrying about whether the 64 bit ABI has been included. */
1520
1521 void
1522 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1523 Elf64_Internal_RegInfo *in)
1524 {
1525 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1526 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1527 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1528 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1529 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1530 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1531 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1532 }
1533
1534 void
1535 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1536 Elf64_External_RegInfo *ex)
1537 {
1538 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1539 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1540 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1541 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1542 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1543 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1544 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1545 }
1546
1547 /* Swap in an options header. */
1548
1549 void
1550 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1551 Elf_Internal_Options *in)
1552 {
1553 in->kind = H_GET_8 (abfd, ex->kind);
1554 in->size = H_GET_8 (abfd, ex->size);
1555 in->section = H_GET_16 (abfd, ex->section);
1556 in->info = H_GET_32 (abfd, ex->info);
1557 }
1558
1559 /* Swap out an options header. */
1560
1561 void
1562 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1563 Elf_External_Options *ex)
1564 {
1565 H_PUT_8 (abfd, in->kind, ex->kind);
1566 H_PUT_8 (abfd, in->size, ex->size);
1567 H_PUT_16 (abfd, in->section, ex->section);
1568 H_PUT_32 (abfd, in->info, ex->info);
1569 }
1570 \f
1571 /* This function is called via qsort() to sort the dynamic relocation
1572 entries by increasing r_symndx value. */
1573
1574 static int
1575 sort_dynamic_relocs (const void *arg1, const void *arg2)
1576 {
1577 Elf_Internal_Rela int_reloc1;
1578 Elf_Internal_Rela int_reloc2;
1579
1580 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1581 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1582
1583 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1584 }
1585
1586 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1587
1588 static int
1589 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1590 const void *arg2 ATTRIBUTE_UNUSED)
1591 {
1592 #ifdef BFD64
1593 Elf_Internal_Rela int_reloc1[3];
1594 Elf_Internal_Rela int_reloc2[3];
1595
1596 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1597 (reldyn_sorting_bfd, arg1, int_reloc1);
1598 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1599 (reldyn_sorting_bfd, arg2, int_reloc2);
1600
1601 return (ELF64_R_SYM (int_reloc1[0].r_info)
1602 - ELF64_R_SYM (int_reloc2[0].r_info));
1603 #else
1604 abort ();
1605 #endif
1606 }
1607
1608
1609 /* This routine is used to write out ECOFF debugging external symbol
1610 information. It is called via mips_elf_link_hash_traverse. The
1611 ECOFF external symbol information must match the ELF external
1612 symbol information. Unfortunately, at this point we don't know
1613 whether a symbol is required by reloc information, so the two
1614 tables may wind up being different. We must sort out the external
1615 symbol information before we can set the final size of the .mdebug
1616 section, and we must set the size of the .mdebug section before we
1617 can relocate any sections, and we can't know which symbols are
1618 required by relocation until we relocate the sections.
1619 Fortunately, it is relatively unlikely that any symbol will be
1620 stripped but required by a reloc. In particular, it can not happen
1621 when generating a final executable. */
1622
1623 static bfd_boolean
1624 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1625 {
1626 struct extsym_info *einfo = data;
1627 bfd_boolean strip;
1628 asection *sec, *output_section;
1629
1630 if (h->root.root.type == bfd_link_hash_warning)
1631 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1632
1633 if (h->root.indx == -2)
1634 strip = FALSE;
1635 else if ((h->root.def_dynamic
1636 || h->root.ref_dynamic
1637 || h->root.type == bfd_link_hash_new)
1638 && !h->root.def_regular
1639 && !h->root.ref_regular)
1640 strip = TRUE;
1641 else if (einfo->info->strip == strip_all
1642 || (einfo->info->strip == strip_some
1643 && bfd_hash_lookup (einfo->info->keep_hash,
1644 h->root.root.root.string,
1645 FALSE, FALSE) == NULL))
1646 strip = TRUE;
1647 else
1648 strip = FALSE;
1649
1650 if (strip)
1651 return TRUE;
1652
1653 if (h->esym.ifd == -2)
1654 {
1655 h->esym.jmptbl = 0;
1656 h->esym.cobol_main = 0;
1657 h->esym.weakext = 0;
1658 h->esym.reserved = 0;
1659 h->esym.ifd = ifdNil;
1660 h->esym.asym.value = 0;
1661 h->esym.asym.st = stGlobal;
1662
1663 if (h->root.root.type == bfd_link_hash_undefined
1664 || h->root.root.type == bfd_link_hash_undefweak)
1665 {
1666 const char *name;
1667
1668 /* Use undefined class. Also, set class and type for some
1669 special symbols. */
1670 name = h->root.root.root.string;
1671 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1672 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1673 {
1674 h->esym.asym.sc = scData;
1675 h->esym.asym.st = stLabel;
1676 h->esym.asym.value = 0;
1677 }
1678 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1679 {
1680 h->esym.asym.sc = scAbs;
1681 h->esym.asym.st = stLabel;
1682 h->esym.asym.value =
1683 mips_elf_hash_table (einfo->info)->procedure_count;
1684 }
1685 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1686 {
1687 h->esym.asym.sc = scAbs;
1688 h->esym.asym.st = stLabel;
1689 h->esym.asym.value = elf_gp (einfo->abfd);
1690 }
1691 else
1692 h->esym.asym.sc = scUndefined;
1693 }
1694 else if (h->root.root.type != bfd_link_hash_defined
1695 && h->root.root.type != bfd_link_hash_defweak)
1696 h->esym.asym.sc = scAbs;
1697 else
1698 {
1699 const char *name;
1700
1701 sec = h->root.root.u.def.section;
1702 output_section = sec->output_section;
1703
1704 /* When making a shared library and symbol h is the one from
1705 the another shared library, OUTPUT_SECTION may be null. */
1706 if (output_section == NULL)
1707 h->esym.asym.sc = scUndefined;
1708 else
1709 {
1710 name = bfd_section_name (output_section->owner, output_section);
1711
1712 if (strcmp (name, ".text") == 0)
1713 h->esym.asym.sc = scText;
1714 else if (strcmp (name, ".data") == 0)
1715 h->esym.asym.sc = scData;
1716 else if (strcmp (name, ".sdata") == 0)
1717 h->esym.asym.sc = scSData;
1718 else if (strcmp (name, ".rodata") == 0
1719 || strcmp (name, ".rdata") == 0)
1720 h->esym.asym.sc = scRData;
1721 else if (strcmp (name, ".bss") == 0)
1722 h->esym.asym.sc = scBss;
1723 else if (strcmp (name, ".sbss") == 0)
1724 h->esym.asym.sc = scSBss;
1725 else if (strcmp (name, ".init") == 0)
1726 h->esym.asym.sc = scInit;
1727 else if (strcmp (name, ".fini") == 0)
1728 h->esym.asym.sc = scFini;
1729 else
1730 h->esym.asym.sc = scAbs;
1731 }
1732 }
1733
1734 h->esym.asym.reserved = 0;
1735 h->esym.asym.index = indexNil;
1736 }
1737
1738 if (h->root.root.type == bfd_link_hash_common)
1739 h->esym.asym.value = h->root.root.u.c.size;
1740 else if (h->root.root.type == bfd_link_hash_defined
1741 || h->root.root.type == bfd_link_hash_defweak)
1742 {
1743 if (h->esym.asym.sc == scCommon)
1744 h->esym.asym.sc = scBss;
1745 else if (h->esym.asym.sc == scSCommon)
1746 h->esym.asym.sc = scSBss;
1747
1748 sec = h->root.root.u.def.section;
1749 output_section = sec->output_section;
1750 if (output_section != NULL)
1751 h->esym.asym.value = (h->root.root.u.def.value
1752 + sec->output_offset
1753 + output_section->vma);
1754 else
1755 h->esym.asym.value = 0;
1756 }
1757 else if (h->root.needs_plt)
1758 {
1759 struct mips_elf_link_hash_entry *hd = h;
1760 bfd_boolean no_fn_stub = h->no_fn_stub;
1761
1762 while (hd->root.root.type == bfd_link_hash_indirect)
1763 {
1764 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1765 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1766 }
1767
1768 if (!no_fn_stub)
1769 {
1770 /* Set type and value for a symbol with a function stub. */
1771 h->esym.asym.st = stProc;
1772 sec = hd->root.root.u.def.section;
1773 if (sec == NULL)
1774 h->esym.asym.value = 0;
1775 else
1776 {
1777 output_section = sec->output_section;
1778 if (output_section != NULL)
1779 h->esym.asym.value = (hd->root.plt.offset
1780 + sec->output_offset
1781 + output_section->vma);
1782 else
1783 h->esym.asym.value = 0;
1784 }
1785 }
1786 }
1787
1788 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1789 h->root.root.root.string,
1790 &h->esym))
1791 {
1792 einfo->failed = TRUE;
1793 return FALSE;
1794 }
1795
1796 return TRUE;
1797 }
1798
1799 /* A comparison routine used to sort .gptab entries. */
1800
1801 static int
1802 gptab_compare (const void *p1, const void *p2)
1803 {
1804 const Elf32_gptab *a1 = p1;
1805 const Elf32_gptab *a2 = p2;
1806
1807 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1808 }
1809 \f
1810 /* Functions to manage the got entry hash table. */
1811
1812 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1813 hash number. */
1814
1815 static INLINE hashval_t
1816 mips_elf_hash_bfd_vma (bfd_vma addr)
1817 {
1818 #ifdef BFD64
1819 return addr + (addr >> 32);
1820 #else
1821 return addr;
1822 #endif
1823 }
1824
1825 /* got_entries only match if they're identical, except for gotidx, so
1826 use all fields to compute the hash, and compare the appropriate
1827 union members. */
1828
1829 static hashval_t
1830 mips_elf_got_entry_hash (const void *entry_)
1831 {
1832 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1833
1834 return entry->symndx
1835 + ((entry->tls_type & GOT_TLS_LDM) << 17)
1836 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1837 : entry->abfd->id
1838 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1839 : entry->d.h->root.root.root.hash));
1840 }
1841
1842 static int
1843 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1844 {
1845 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1846 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1847
1848 /* An LDM entry can only match another LDM entry. */
1849 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1850 return 0;
1851
1852 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1853 && (! e1->abfd ? e1->d.address == e2->d.address
1854 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1855 : e1->d.h == e2->d.h);
1856 }
1857
1858 /* multi_got_entries are still a match in the case of global objects,
1859 even if the input bfd in which they're referenced differs, so the
1860 hash computation and compare functions are adjusted
1861 accordingly. */
1862
1863 static hashval_t
1864 mips_elf_multi_got_entry_hash (const void *entry_)
1865 {
1866 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1867
1868 return entry->symndx
1869 + (! entry->abfd
1870 ? mips_elf_hash_bfd_vma (entry->d.address)
1871 : entry->symndx >= 0
1872 ? ((entry->tls_type & GOT_TLS_LDM)
1873 ? (GOT_TLS_LDM << 17)
1874 : (entry->abfd->id
1875 + mips_elf_hash_bfd_vma (entry->d.addend)))
1876 : entry->d.h->root.root.root.hash);
1877 }
1878
1879 static int
1880 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
1881 {
1882 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1883 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1884
1885 /* Any two LDM entries match. */
1886 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
1887 return 1;
1888
1889 /* Nothing else matches an LDM entry. */
1890 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1891 return 0;
1892
1893 return e1->symndx == e2->symndx
1894 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1895 : e1->abfd == NULL || e2->abfd == NULL
1896 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1897 : e1->d.h == e2->d.h);
1898 }
1899 \f
1900 /* Returns the dynamic relocation section for DYNOBJ. */
1901
1902 static asection *
1903 mips_elf_rel_dyn_section (bfd *dynobj, bfd_boolean create_p)
1904 {
1905 static const char dname[] = ".rel.dyn";
1906 asection *sreloc;
1907
1908 sreloc = bfd_get_section_by_name (dynobj, dname);
1909 if (sreloc == NULL && create_p)
1910 {
1911 sreloc = bfd_make_section_with_flags (dynobj, dname,
1912 (SEC_ALLOC
1913 | SEC_LOAD
1914 | SEC_HAS_CONTENTS
1915 | SEC_IN_MEMORY
1916 | SEC_LINKER_CREATED
1917 | SEC_READONLY));
1918 if (sreloc == NULL
1919 || ! bfd_set_section_alignment (dynobj, sreloc,
1920 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
1921 return NULL;
1922 }
1923 return sreloc;
1924 }
1925
1926 /* Returns the GOT section for ABFD. */
1927
1928 static asection *
1929 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
1930 {
1931 asection *sgot = bfd_get_section_by_name (abfd, ".got");
1932 if (sgot == NULL
1933 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
1934 return NULL;
1935 return sgot;
1936 }
1937
1938 /* Returns the GOT information associated with the link indicated by
1939 INFO. If SGOTP is non-NULL, it is filled in with the GOT
1940 section. */
1941
1942 static struct mips_got_info *
1943 mips_elf_got_info (bfd *abfd, asection **sgotp)
1944 {
1945 asection *sgot;
1946 struct mips_got_info *g;
1947
1948 sgot = mips_elf_got_section (abfd, TRUE);
1949 BFD_ASSERT (sgot != NULL);
1950 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
1951 g = mips_elf_section_data (sgot)->u.got_info;
1952 BFD_ASSERT (g != NULL);
1953
1954 if (sgotp)
1955 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
1956
1957 return g;
1958 }
1959
1960 /* Count the number of relocations needed for a TLS GOT entry, with
1961 access types from TLS_TYPE, and symbol H (or a local symbol if H
1962 is NULL). */
1963
1964 static int
1965 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
1966 struct elf_link_hash_entry *h)
1967 {
1968 int indx = 0;
1969 int ret = 0;
1970 bfd_boolean need_relocs = FALSE;
1971 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
1972
1973 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
1974 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
1975 indx = h->dynindx;
1976
1977 if ((info->shared || indx != 0)
1978 && (h == NULL
1979 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1980 || h->root.type != bfd_link_hash_undefweak))
1981 need_relocs = TRUE;
1982
1983 if (!need_relocs)
1984 return FALSE;
1985
1986 if (tls_type & GOT_TLS_GD)
1987 {
1988 ret++;
1989 if (indx != 0)
1990 ret++;
1991 }
1992
1993 if (tls_type & GOT_TLS_IE)
1994 ret++;
1995
1996 if ((tls_type & GOT_TLS_LDM) && info->shared)
1997 ret++;
1998
1999 return ret;
2000 }
2001
2002 /* Count the number of TLS relocations required for the GOT entry in
2003 ARG1, if it describes a local symbol. */
2004
2005 static int
2006 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2007 {
2008 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2009 struct mips_elf_count_tls_arg *arg = arg2;
2010
2011 if (entry->abfd != NULL && entry->symndx != -1)
2012 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2013
2014 return 1;
2015 }
2016
2017 /* Count the number of TLS GOT entries required for the global (or
2018 forced-local) symbol in ARG1. */
2019
2020 static int
2021 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2022 {
2023 struct mips_elf_link_hash_entry *hm
2024 = (struct mips_elf_link_hash_entry *) arg1;
2025 struct mips_elf_count_tls_arg *arg = arg2;
2026
2027 if (hm->tls_type & GOT_TLS_GD)
2028 arg->needed += 2;
2029 if (hm->tls_type & GOT_TLS_IE)
2030 arg->needed += 1;
2031
2032 return 1;
2033 }
2034
2035 /* Count the number of TLS relocations required for the global (or
2036 forced-local) symbol in ARG1. */
2037
2038 static int
2039 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2040 {
2041 struct mips_elf_link_hash_entry *hm
2042 = (struct mips_elf_link_hash_entry *) arg1;
2043 struct mips_elf_count_tls_arg *arg = arg2;
2044
2045 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2046
2047 return 1;
2048 }
2049
2050 /* Output a simple dynamic relocation into SRELOC. */
2051
2052 static void
2053 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2054 asection *sreloc,
2055 unsigned long indx,
2056 int r_type,
2057 bfd_vma offset)
2058 {
2059 Elf_Internal_Rela rel[3];
2060
2061 memset (rel, 0, sizeof (rel));
2062
2063 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2064 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2065
2066 if (ABI_64_P (output_bfd))
2067 {
2068 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2069 (output_bfd, &rel[0],
2070 (sreloc->contents
2071 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2072 }
2073 else
2074 bfd_elf32_swap_reloc_out
2075 (output_bfd, &rel[0],
2076 (sreloc->contents
2077 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2078 ++sreloc->reloc_count;
2079 }
2080
2081 /* Initialize a set of TLS GOT entries for one symbol. */
2082
2083 static void
2084 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2085 unsigned char *tls_type_p,
2086 struct bfd_link_info *info,
2087 struct mips_elf_link_hash_entry *h,
2088 bfd_vma value)
2089 {
2090 int indx;
2091 asection *sreloc, *sgot;
2092 bfd_vma offset, offset2;
2093 bfd *dynobj;
2094 bfd_boolean need_relocs = FALSE;
2095
2096 dynobj = elf_hash_table (info)->dynobj;
2097 sgot = mips_elf_got_section (dynobj, FALSE);
2098
2099 indx = 0;
2100 if (h != NULL)
2101 {
2102 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2103
2104 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2105 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2106 indx = h->root.dynindx;
2107 }
2108
2109 if (*tls_type_p & GOT_TLS_DONE)
2110 return;
2111
2112 if ((info->shared || indx != 0)
2113 && (h == NULL
2114 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2115 || h->root.type != bfd_link_hash_undefweak))
2116 need_relocs = TRUE;
2117
2118 /* MINUS_ONE means the symbol is not defined in this object. It may not
2119 be defined at all; assume that the value doesn't matter in that
2120 case. Otherwise complain if we would use the value. */
2121 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2122 || h->root.root.type == bfd_link_hash_undefweak);
2123
2124 /* Emit necessary relocations. */
2125 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
2126
2127 /* General Dynamic. */
2128 if (*tls_type_p & GOT_TLS_GD)
2129 {
2130 offset = got_offset;
2131 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2132
2133 if (need_relocs)
2134 {
2135 mips_elf_output_dynamic_relocation
2136 (abfd, sreloc, indx,
2137 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2138 sgot->output_offset + sgot->output_section->vma + offset);
2139
2140 if (indx)
2141 mips_elf_output_dynamic_relocation
2142 (abfd, sreloc, indx,
2143 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2144 sgot->output_offset + sgot->output_section->vma + offset2);
2145 else
2146 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2147 sgot->contents + offset2);
2148 }
2149 else
2150 {
2151 MIPS_ELF_PUT_WORD (abfd, 1,
2152 sgot->contents + offset);
2153 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2154 sgot->contents + offset2);
2155 }
2156
2157 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2158 }
2159
2160 /* Initial Exec model. */
2161 if (*tls_type_p & GOT_TLS_IE)
2162 {
2163 offset = got_offset;
2164
2165 if (need_relocs)
2166 {
2167 if (indx == 0)
2168 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2169 sgot->contents + offset);
2170 else
2171 MIPS_ELF_PUT_WORD (abfd, 0,
2172 sgot->contents + offset);
2173
2174 mips_elf_output_dynamic_relocation
2175 (abfd, sreloc, indx,
2176 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2177 sgot->output_offset + sgot->output_section->vma + offset);
2178 }
2179 else
2180 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2181 sgot->contents + offset);
2182 }
2183
2184 if (*tls_type_p & GOT_TLS_LDM)
2185 {
2186 /* The initial offset is zero, and the LD offsets will include the
2187 bias by DTP_OFFSET. */
2188 MIPS_ELF_PUT_WORD (abfd, 0,
2189 sgot->contents + got_offset
2190 + MIPS_ELF_GOT_SIZE (abfd));
2191
2192 if (!info->shared)
2193 MIPS_ELF_PUT_WORD (abfd, 1,
2194 sgot->contents + got_offset);
2195 else
2196 mips_elf_output_dynamic_relocation
2197 (abfd, sreloc, indx,
2198 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2199 sgot->output_offset + sgot->output_section->vma + got_offset);
2200 }
2201
2202 *tls_type_p |= GOT_TLS_DONE;
2203 }
2204
2205 /* Return the GOT index to use for a relocation of type R_TYPE against
2206 a symbol accessed using TLS_TYPE models. The GOT entries for this
2207 symbol in this GOT start at GOT_INDEX. This function initializes the
2208 GOT entries and corresponding relocations. */
2209
2210 static bfd_vma
2211 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2212 int r_type, struct bfd_link_info *info,
2213 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2214 {
2215 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2216 || r_type == R_MIPS_TLS_LDM);
2217
2218 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2219
2220 if (r_type == R_MIPS_TLS_GOTTPREL)
2221 {
2222 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2223 if (*tls_type & GOT_TLS_GD)
2224 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2225 else
2226 return got_index;
2227 }
2228
2229 if (r_type == R_MIPS_TLS_GD)
2230 {
2231 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2232 return got_index;
2233 }
2234
2235 if (r_type == R_MIPS_TLS_LDM)
2236 {
2237 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2238 return got_index;
2239 }
2240
2241 return got_index;
2242 }
2243
2244 /* Returns the GOT offset at which the indicated address can be found.
2245 If there is not yet a GOT entry for this value, create one. If
2246 R_SYMNDX refers to a TLS symbol, create a TLS GOT entry instead.
2247 Returns -1 if no satisfactory GOT offset can be found. */
2248
2249 static bfd_vma
2250 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2251 bfd_vma value, unsigned long r_symndx,
2252 struct mips_elf_link_hash_entry *h, int r_type)
2253 {
2254 asection *sgot;
2255 struct mips_got_info *g;
2256 struct mips_got_entry *entry;
2257
2258 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2259
2260 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value,
2261 r_symndx, h, r_type);
2262 if (!entry)
2263 return MINUS_ONE;
2264
2265 if (TLS_RELOC_P (r_type))
2266 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type, r_type,
2267 info, h, value);
2268 else
2269 return entry->gotidx;
2270 }
2271
2272 /* Returns the GOT index for the global symbol indicated by H. */
2273
2274 static bfd_vma
2275 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2276 int r_type, struct bfd_link_info *info)
2277 {
2278 bfd_vma index;
2279 asection *sgot;
2280 struct mips_got_info *g, *gg;
2281 long global_got_dynindx = 0;
2282
2283 gg = g = mips_elf_got_info (abfd, &sgot);
2284 if (g->bfd2got && ibfd)
2285 {
2286 struct mips_got_entry e, *p;
2287
2288 BFD_ASSERT (h->dynindx >= 0);
2289
2290 g = mips_elf_got_for_ibfd (g, ibfd);
2291 if (g->next != gg || TLS_RELOC_P (r_type))
2292 {
2293 e.abfd = ibfd;
2294 e.symndx = -1;
2295 e.d.h = (struct mips_elf_link_hash_entry *)h;
2296 e.tls_type = 0;
2297
2298 p = htab_find (g->got_entries, &e);
2299
2300 BFD_ASSERT (p->gotidx > 0);
2301
2302 if (TLS_RELOC_P (r_type))
2303 {
2304 bfd_vma value = MINUS_ONE;
2305 if ((h->root.type == bfd_link_hash_defined
2306 || h->root.type == bfd_link_hash_defweak)
2307 && h->root.u.def.section->output_section)
2308 value = (h->root.u.def.value
2309 + h->root.u.def.section->output_offset
2310 + h->root.u.def.section->output_section->vma);
2311
2312 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2313 info, e.d.h, value);
2314 }
2315 else
2316 return p->gotidx;
2317 }
2318 }
2319
2320 if (gg->global_gotsym != NULL)
2321 global_got_dynindx = gg->global_gotsym->dynindx;
2322
2323 if (TLS_RELOC_P (r_type))
2324 {
2325 struct mips_elf_link_hash_entry *hm
2326 = (struct mips_elf_link_hash_entry *) h;
2327 bfd_vma value = MINUS_ONE;
2328
2329 if ((h->root.type == bfd_link_hash_defined
2330 || h->root.type == bfd_link_hash_defweak)
2331 && h->root.u.def.section->output_section)
2332 value = (h->root.u.def.value
2333 + h->root.u.def.section->output_offset
2334 + h->root.u.def.section->output_section->vma);
2335
2336 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2337 r_type, info, hm, value);
2338 }
2339 else
2340 {
2341 /* Once we determine the global GOT entry with the lowest dynamic
2342 symbol table index, we must put all dynamic symbols with greater
2343 indices into the GOT. That makes it easy to calculate the GOT
2344 offset. */
2345 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2346 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2347 * MIPS_ELF_GOT_SIZE (abfd));
2348 }
2349 BFD_ASSERT (index < sgot->size);
2350
2351 return index;
2352 }
2353
2354 /* Find a GOT entry that is within 32KB of the VALUE. These entries
2355 are supposed to be placed at small offsets in the GOT, i.e.,
2356 within 32KB of GP. Return the index into the GOT for this page,
2357 and store the offset from this entry to the desired address in
2358 OFFSETP, if it is non-NULL. */
2359
2360 static bfd_vma
2361 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2362 bfd_vma value, bfd_vma *offsetp)
2363 {
2364 asection *sgot;
2365 struct mips_got_info *g;
2366 bfd_vma index;
2367 struct mips_got_entry *entry;
2368
2369 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2370
2371 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot,
2372 (value + 0x8000)
2373 & (~(bfd_vma)0xffff), 0,
2374 NULL, R_MIPS_GOT_PAGE);
2375
2376 if (!entry)
2377 return MINUS_ONE;
2378
2379 index = entry->gotidx;
2380
2381 if (offsetp)
2382 *offsetp = value - entry->d.address;
2383
2384 return index;
2385 }
2386
2387 /* Find a GOT entry whose higher-order 16 bits are the same as those
2388 for value. Return the index into the GOT for this entry. */
2389
2390 static bfd_vma
2391 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2392 bfd_vma value, bfd_boolean external)
2393 {
2394 asection *sgot;
2395 struct mips_got_info *g;
2396 struct mips_got_entry *entry;
2397
2398 if (! external)
2399 {
2400 /* Although the ABI says that it is "the high-order 16 bits" that we
2401 want, it is really the %high value. The complete value is
2402 calculated with a `addiu' of a LO16 relocation, just as with a
2403 HI16/LO16 pair. */
2404 value = mips_elf_high (value) << 16;
2405 }
2406
2407 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2408
2409 entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value, 0, NULL,
2410 R_MIPS_GOT16);
2411 if (entry)
2412 return entry->gotidx;
2413 else
2414 return MINUS_ONE;
2415 }
2416
2417 /* Returns the offset for the entry at the INDEXth position
2418 in the GOT. */
2419
2420 static bfd_vma
2421 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2422 bfd *input_bfd, bfd_vma index)
2423 {
2424 asection *sgot;
2425 bfd_vma gp;
2426 struct mips_got_info *g;
2427
2428 g = mips_elf_got_info (dynobj, &sgot);
2429 gp = _bfd_get_gp_value (output_bfd)
2430 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2431
2432 return sgot->output_section->vma + sgot->output_offset + index - gp;
2433 }
2434
2435 /* Create a local GOT entry for VALUE. Return the index of the entry,
2436 or -1 if it could not be created. If R_SYMNDX refers to a TLS symbol,
2437 create a TLS entry instead. */
2438
2439 static struct mips_got_entry *
2440 mips_elf_create_local_got_entry (bfd *abfd, bfd *ibfd,
2441 struct mips_got_info *gg,
2442 asection *sgot, bfd_vma value,
2443 unsigned long r_symndx,
2444 struct mips_elf_link_hash_entry *h,
2445 int r_type)
2446 {
2447 struct mips_got_entry entry, **loc;
2448 struct mips_got_info *g;
2449
2450 entry.abfd = NULL;
2451 entry.symndx = -1;
2452 entry.d.address = value;
2453 entry.tls_type = 0;
2454
2455 g = mips_elf_got_for_ibfd (gg, ibfd);
2456 if (g == NULL)
2457 {
2458 g = mips_elf_got_for_ibfd (gg, abfd);
2459 BFD_ASSERT (g != NULL);
2460 }
2461
2462 /* We might have a symbol, H, if it has been forced local. Use the
2463 global entry then. It doesn't matter whether an entry is local
2464 or global for TLS, since the dynamic linker does not
2465 automatically relocate TLS GOT entries. */
2466 BFD_ASSERT (h == NULL || h->root.forced_local);
2467 if (TLS_RELOC_P (r_type))
2468 {
2469 struct mips_got_entry *p;
2470
2471 entry.abfd = ibfd;
2472 if (r_type == R_MIPS_TLS_LDM)
2473 {
2474 entry.tls_type = GOT_TLS_LDM;
2475 entry.symndx = 0;
2476 entry.d.addend = 0;
2477 }
2478 else if (h == NULL)
2479 {
2480 entry.symndx = r_symndx;
2481 entry.d.addend = 0;
2482 }
2483 else
2484 entry.d.h = h;
2485
2486 p = (struct mips_got_entry *)
2487 htab_find (g->got_entries, &entry);
2488
2489 BFD_ASSERT (p);
2490 return p;
2491 }
2492
2493 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2494 INSERT);
2495 if (*loc)
2496 return *loc;
2497
2498 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2499 entry.tls_type = 0;
2500
2501 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2502
2503 if (! *loc)
2504 return NULL;
2505
2506 memcpy (*loc, &entry, sizeof entry);
2507
2508 if (g->assigned_gotno >= g->local_gotno)
2509 {
2510 (*loc)->gotidx = -1;
2511 /* We didn't allocate enough space in the GOT. */
2512 (*_bfd_error_handler)
2513 (_("not enough GOT space for local GOT entries"));
2514 bfd_set_error (bfd_error_bad_value);
2515 return NULL;
2516 }
2517
2518 MIPS_ELF_PUT_WORD (abfd, value,
2519 (sgot->contents + entry.gotidx));
2520
2521 return *loc;
2522 }
2523
2524 /* Sort the dynamic symbol table so that symbols that need GOT entries
2525 appear towards the end. This reduces the amount of GOT space
2526 required. MAX_LOCAL is used to set the number of local symbols
2527 known to be in the dynamic symbol table. During
2528 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2529 section symbols are added and the count is higher. */
2530
2531 static bfd_boolean
2532 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2533 {
2534 struct mips_elf_hash_sort_data hsd;
2535 struct mips_got_info *g;
2536 bfd *dynobj;
2537
2538 dynobj = elf_hash_table (info)->dynobj;
2539
2540 g = mips_elf_got_info (dynobj, NULL);
2541
2542 hsd.low = NULL;
2543 hsd.max_unref_got_dynindx =
2544 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2545 /* In the multi-got case, assigned_gotno of the master got_info
2546 indicate the number of entries that aren't referenced in the
2547 primary GOT, but that must have entries because there are
2548 dynamic relocations that reference it. Since they aren't
2549 referenced, we move them to the end of the GOT, so that they
2550 don't prevent other entries that are referenced from getting
2551 too large offsets. */
2552 - (g->next ? g->assigned_gotno : 0);
2553 hsd.max_non_got_dynindx = max_local;
2554 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2555 elf_hash_table (info)),
2556 mips_elf_sort_hash_table_f,
2557 &hsd);
2558
2559 /* There should have been enough room in the symbol table to
2560 accommodate both the GOT and non-GOT symbols. */
2561 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2562 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2563 <= elf_hash_table (info)->dynsymcount);
2564
2565 /* Now we know which dynamic symbol has the lowest dynamic symbol
2566 table index in the GOT. */
2567 g->global_gotsym = hsd.low;
2568
2569 return TRUE;
2570 }
2571
2572 /* If H needs a GOT entry, assign it the highest available dynamic
2573 index. Otherwise, assign it the lowest available dynamic
2574 index. */
2575
2576 static bfd_boolean
2577 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2578 {
2579 struct mips_elf_hash_sort_data *hsd = data;
2580
2581 if (h->root.root.type == bfd_link_hash_warning)
2582 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2583
2584 /* Symbols without dynamic symbol table entries aren't interesting
2585 at all. */
2586 if (h->root.dynindx == -1)
2587 return TRUE;
2588
2589 /* Global symbols that need GOT entries that are not explicitly
2590 referenced are marked with got offset 2. Those that are
2591 referenced get a 1, and those that don't need GOT entries get
2592 -1. */
2593 if (h->root.got.offset == 2)
2594 {
2595 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2596
2597 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2598 hsd->low = (struct elf_link_hash_entry *) h;
2599 h->root.dynindx = hsd->max_unref_got_dynindx++;
2600 }
2601 else if (h->root.got.offset != 1)
2602 h->root.dynindx = hsd->max_non_got_dynindx++;
2603 else
2604 {
2605 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2606
2607 h->root.dynindx = --hsd->min_got_dynindx;
2608 hsd->low = (struct elf_link_hash_entry *) h;
2609 }
2610
2611 return TRUE;
2612 }
2613
2614 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2615 symbol table index lower than any we've seen to date, record it for
2616 posterity. */
2617
2618 static bfd_boolean
2619 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2620 bfd *abfd, struct bfd_link_info *info,
2621 struct mips_got_info *g,
2622 unsigned char tls_flag)
2623 {
2624 struct mips_got_entry entry, **loc;
2625
2626 /* A global symbol in the GOT must also be in the dynamic symbol
2627 table. */
2628 if (h->dynindx == -1)
2629 {
2630 switch (ELF_ST_VISIBILITY (h->other))
2631 {
2632 case STV_INTERNAL:
2633 case STV_HIDDEN:
2634 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2635 break;
2636 }
2637 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2638 return FALSE;
2639 }
2640
2641 entry.abfd = abfd;
2642 entry.symndx = -1;
2643 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2644 entry.tls_type = 0;
2645
2646 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2647 INSERT);
2648
2649 /* If we've already marked this entry as needing GOT space, we don't
2650 need to do it again. */
2651 if (*loc)
2652 {
2653 (*loc)->tls_type |= tls_flag;
2654 return TRUE;
2655 }
2656
2657 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2658
2659 if (! *loc)
2660 return FALSE;
2661
2662 entry.gotidx = -1;
2663 entry.tls_type = tls_flag;
2664
2665 memcpy (*loc, &entry, sizeof entry);
2666
2667 if (h->got.offset != MINUS_ONE)
2668 return TRUE;
2669
2670 /* By setting this to a value other than -1, we are indicating that
2671 there needs to be a GOT entry for H. Avoid using zero, as the
2672 generic ELF copy_indirect_symbol tests for <= 0. */
2673 if (tls_flag == 0)
2674 h->got.offset = 1;
2675
2676 return TRUE;
2677 }
2678
2679 /* Reserve space in G for a GOT entry containing the value of symbol
2680 SYMNDX in input bfd ABDF, plus ADDEND. */
2681
2682 static bfd_boolean
2683 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2684 struct mips_got_info *g,
2685 unsigned char tls_flag)
2686 {
2687 struct mips_got_entry entry, **loc;
2688
2689 entry.abfd = abfd;
2690 entry.symndx = symndx;
2691 entry.d.addend = addend;
2692 entry.tls_type = tls_flag;
2693 loc = (struct mips_got_entry **)
2694 htab_find_slot (g->got_entries, &entry, INSERT);
2695
2696 if (*loc)
2697 {
2698 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2699 {
2700 g->tls_gotno += 2;
2701 (*loc)->tls_type |= tls_flag;
2702 }
2703 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2704 {
2705 g->tls_gotno += 1;
2706 (*loc)->tls_type |= tls_flag;
2707 }
2708 return TRUE;
2709 }
2710
2711 if (tls_flag != 0)
2712 {
2713 entry.gotidx = -1;
2714 entry.tls_type = tls_flag;
2715 if (tls_flag == GOT_TLS_IE)
2716 g->tls_gotno += 1;
2717 else if (tls_flag == GOT_TLS_GD)
2718 g->tls_gotno += 2;
2719 else if (g->tls_ldm_offset == MINUS_ONE)
2720 {
2721 g->tls_ldm_offset = MINUS_TWO;
2722 g->tls_gotno += 2;
2723 }
2724 }
2725 else
2726 {
2727 entry.gotidx = g->local_gotno++;
2728 entry.tls_type = 0;
2729 }
2730
2731 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2732
2733 if (! *loc)
2734 return FALSE;
2735
2736 memcpy (*loc, &entry, sizeof entry);
2737
2738 return TRUE;
2739 }
2740 \f
2741 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2742
2743 static hashval_t
2744 mips_elf_bfd2got_entry_hash (const void *entry_)
2745 {
2746 const struct mips_elf_bfd2got_hash *entry
2747 = (struct mips_elf_bfd2got_hash *)entry_;
2748
2749 return entry->bfd->id;
2750 }
2751
2752 /* Check whether two hash entries have the same bfd. */
2753
2754 static int
2755 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2756 {
2757 const struct mips_elf_bfd2got_hash *e1
2758 = (const struct mips_elf_bfd2got_hash *)entry1;
2759 const struct mips_elf_bfd2got_hash *e2
2760 = (const struct mips_elf_bfd2got_hash *)entry2;
2761
2762 return e1->bfd == e2->bfd;
2763 }
2764
2765 /* In a multi-got link, determine the GOT to be used for IBDF. G must
2766 be the master GOT data. */
2767
2768 static struct mips_got_info *
2769 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2770 {
2771 struct mips_elf_bfd2got_hash e, *p;
2772
2773 if (! g->bfd2got)
2774 return g;
2775
2776 e.bfd = ibfd;
2777 p = htab_find (g->bfd2got, &e);
2778 return p ? p->g : NULL;
2779 }
2780
2781 /* Create one separate got for each bfd that has entries in the global
2782 got, such that we can tell how many local and global entries each
2783 bfd requires. */
2784
2785 static int
2786 mips_elf_make_got_per_bfd (void **entryp, void *p)
2787 {
2788 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2789 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2790 htab_t bfd2got = arg->bfd2got;
2791 struct mips_got_info *g;
2792 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2793 void **bfdgotp;
2794
2795 /* Find the got_info for this GOT entry's input bfd. Create one if
2796 none exists. */
2797 bfdgot_entry.bfd = entry->abfd;
2798 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2799 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2800
2801 if (bfdgot != NULL)
2802 g = bfdgot->g;
2803 else
2804 {
2805 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2806 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2807
2808 if (bfdgot == NULL)
2809 {
2810 arg->obfd = 0;
2811 return 0;
2812 }
2813
2814 *bfdgotp = bfdgot;
2815
2816 bfdgot->bfd = entry->abfd;
2817 bfdgot->g = g = (struct mips_got_info *)
2818 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
2819 if (g == NULL)
2820 {
2821 arg->obfd = 0;
2822 return 0;
2823 }
2824
2825 g->global_gotsym = NULL;
2826 g->global_gotno = 0;
2827 g->local_gotno = 0;
2828 g->assigned_gotno = -1;
2829 g->tls_gotno = 0;
2830 g->tls_assigned_gotno = 0;
2831 g->tls_ldm_offset = MINUS_ONE;
2832 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
2833 mips_elf_multi_got_entry_eq, NULL);
2834 if (g->got_entries == NULL)
2835 {
2836 arg->obfd = 0;
2837 return 0;
2838 }
2839
2840 g->bfd2got = NULL;
2841 g->next = NULL;
2842 }
2843
2844 /* Insert the GOT entry in the bfd's got entry hash table. */
2845 entryp = htab_find_slot (g->got_entries, entry, INSERT);
2846 if (*entryp != NULL)
2847 return 1;
2848
2849 *entryp = entry;
2850
2851 if (entry->tls_type)
2852 {
2853 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
2854 g->tls_gotno += 2;
2855 if (entry->tls_type & GOT_TLS_IE)
2856 g->tls_gotno += 1;
2857 }
2858 else if (entry->symndx >= 0 || entry->d.h->forced_local)
2859 ++g->local_gotno;
2860 else
2861 ++g->global_gotno;
2862
2863 return 1;
2864 }
2865
2866 /* Attempt to merge gots of different input bfds. Try to use as much
2867 as possible of the primary got, since it doesn't require explicit
2868 dynamic relocations, but don't use bfds that would reference global
2869 symbols out of the addressable range. Failing the primary got,
2870 attempt to merge with the current got, or finish the current got
2871 and then make make the new got current. */
2872
2873 static int
2874 mips_elf_merge_gots (void **bfd2got_, void *p)
2875 {
2876 struct mips_elf_bfd2got_hash *bfd2got
2877 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
2878 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2879 unsigned int lcount = bfd2got->g->local_gotno;
2880 unsigned int gcount = bfd2got->g->global_gotno;
2881 unsigned int tcount = bfd2got->g->tls_gotno;
2882 unsigned int maxcnt = arg->max_count;
2883 bfd_boolean too_many_for_tls = FALSE;
2884
2885 /* We place TLS GOT entries after both locals and globals. The globals
2886 for the primary GOT may overflow the normal GOT size limit, so be
2887 sure not to merge a GOT which requires TLS with the primary GOT in that
2888 case. This doesn't affect non-primary GOTs. */
2889 if (tcount > 0)
2890 {
2891 unsigned int primary_total = lcount + tcount + arg->global_count;
2892 if (primary_total * MIPS_ELF_GOT_SIZE (bfd2got->bfd)
2893 >= MIPS_ELF_GOT_MAX_SIZE (bfd2got->bfd))
2894 too_many_for_tls = TRUE;
2895 }
2896
2897 /* If we don't have a primary GOT and this is not too big, use it as
2898 a starting point for the primary GOT. */
2899 if (! arg->primary && lcount + gcount + tcount <= maxcnt
2900 && ! too_many_for_tls)
2901 {
2902 arg->primary = bfd2got->g;
2903 arg->primary_count = lcount + gcount;
2904 }
2905 /* If it looks like we can merge this bfd's entries with those of
2906 the primary, merge them. The heuristics is conservative, but we
2907 don't have to squeeze it too hard. */
2908 else if (arg->primary && ! too_many_for_tls
2909 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
2910 {
2911 struct mips_got_info *g = bfd2got->g;
2912 int old_lcount = arg->primary->local_gotno;
2913 int old_gcount = arg->primary->global_gotno;
2914 int old_tcount = arg->primary->tls_gotno;
2915
2916 bfd2got->g = arg->primary;
2917
2918 htab_traverse (g->got_entries,
2919 mips_elf_make_got_per_bfd,
2920 arg);
2921 if (arg->obfd == NULL)
2922 return 0;
2923
2924 htab_delete (g->got_entries);
2925 /* We don't have to worry about releasing memory of the actual
2926 got entries, since they're all in the master got_entries hash
2927 table anyway. */
2928
2929 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
2930 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
2931 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
2932
2933 arg->primary_count = arg->primary->local_gotno
2934 + arg->primary->global_gotno + arg->primary->tls_gotno;
2935 }
2936 /* If we can merge with the last-created got, do it. */
2937 else if (arg->current
2938 && arg->current_count + lcount + gcount + tcount <= maxcnt)
2939 {
2940 struct mips_got_info *g = bfd2got->g;
2941 int old_lcount = arg->current->local_gotno;
2942 int old_gcount = arg->current->global_gotno;
2943 int old_tcount = arg->current->tls_gotno;
2944
2945 bfd2got->g = arg->current;
2946
2947 htab_traverse (g->got_entries,
2948 mips_elf_make_got_per_bfd,
2949 arg);
2950 if (arg->obfd == NULL)
2951 return 0;
2952
2953 htab_delete (g->got_entries);
2954
2955 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
2956 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
2957 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
2958
2959 arg->current_count = arg->current->local_gotno
2960 + arg->current->global_gotno + arg->current->tls_gotno;
2961 }
2962 /* Well, we couldn't merge, so create a new GOT. Don't check if it
2963 fits; if it turns out that it doesn't, we'll get relocation
2964 overflows anyway. */
2965 else
2966 {
2967 bfd2got->g->next = arg->current;
2968 arg->current = bfd2got->g;
2969
2970 arg->current_count = lcount + gcount + 2 * tcount;
2971 }
2972
2973 return 1;
2974 }
2975
2976 /* Set the TLS GOT index for the GOT entry in ENTRYP. */
2977
2978 static int
2979 mips_elf_initialize_tls_index (void **entryp, void *p)
2980 {
2981 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2982 struct mips_got_info *g = p;
2983
2984 /* We're only interested in TLS symbols. */
2985 if (entry->tls_type == 0)
2986 return 1;
2987
2988 if (entry->symndx == -1)
2989 {
2990 /* There may be multiple mips_got_entry structs for a global variable
2991 if there is just one GOT. Just do this once. */
2992 if (g->next == NULL)
2993 {
2994 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
2995 return 1;
2996 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
2997 }
2998 }
2999 else if (entry->tls_type & GOT_TLS_LDM)
3000 {
3001 /* Similarly, there may be multiple structs for the LDM entry. */
3002 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3003 {
3004 entry->gotidx = g->tls_ldm_offset;
3005 return 1;
3006 }
3007 }
3008
3009 /* Initialize the GOT offset. */
3010 entry->gotidx = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3011 if (g->next == NULL && entry->symndx == -1)
3012 entry->d.h->tls_got_offset = entry->gotidx;
3013
3014 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3015 g->tls_assigned_gotno += 2;
3016 if (entry->tls_type & GOT_TLS_IE)
3017 g->tls_assigned_gotno += 1;
3018
3019 if (entry->tls_type & GOT_TLS_LDM)
3020 g->tls_ldm_offset = entry->gotidx;
3021
3022 return 1;
3023 }
3024
3025 /* If passed a NULL mips_got_info in the argument, set the marker used
3026 to tell whether a global symbol needs a got entry (in the primary
3027 got) to the given VALUE.
3028
3029 If passed a pointer G to a mips_got_info in the argument (it must
3030 not be the primary GOT), compute the offset from the beginning of
3031 the (primary) GOT section to the entry in G corresponding to the
3032 global symbol. G's assigned_gotno must contain the index of the
3033 first available global GOT entry in G. VALUE must contain the size
3034 of a GOT entry in bytes. For each global GOT entry that requires a
3035 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3036 marked as not eligible for lazy resolution through a function
3037 stub. */
3038 static int
3039 mips_elf_set_global_got_offset (void **entryp, void *p)
3040 {
3041 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3042 struct mips_elf_set_global_got_offset_arg *arg
3043 = (struct mips_elf_set_global_got_offset_arg *)p;
3044 struct mips_got_info *g = arg->g;
3045
3046 if (g && entry->tls_type != GOT_NORMAL)
3047 arg->needed_relocs +=
3048 mips_tls_got_relocs (arg->info, entry->tls_type,
3049 entry->symndx == -1 ? &entry->d.h->root : NULL);
3050
3051 if (entry->abfd != NULL && entry->symndx == -1
3052 && entry->d.h->root.dynindx != -1
3053 && entry->d.h->tls_type == GOT_NORMAL)
3054 {
3055 if (g)
3056 {
3057 BFD_ASSERT (g->global_gotsym == NULL);
3058
3059 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3060 if (arg->info->shared
3061 || (elf_hash_table (arg->info)->dynamic_sections_created
3062 && entry->d.h->root.def_dynamic
3063 && !entry->d.h->root.def_regular))
3064 ++arg->needed_relocs;
3065 }
3066 else
3067 entry->d.h->root.got.offset = arg->value;
3068 }
3069
3070 return 1;
3071 }
3072
3073 /* Mark any global symbols referenced in the GOT we are iterating over
3074 as inelligible for lazy resolution stubs. */
3075 static int
3076 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3077 {
3078 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3079
3080 if (entry->abfd != NULL
3081 && entry->symndx == -1
3082 && entry->d.h->root.dynindx != -1)
3083 entry->d.h->no_fn_stub = TRUE;
3084
3085 return 1;
3086 }
3087
3088 /* Follow indirect and warning hash entries so that each got entry
3089 points to the final symbol definition. P must point to a pointer
3090 to the hash table we're traversing. Since this traversal may
3091 modify the hash table, we set this pointer to NULL to indicate
3092 we've made a potentially-destructive change to the hash table, so
3093 the traversal must be restarted. */
3094 static int
3095 mips_elf_resolve_final_got_entry (void **entryp, void *p)
3096 {
3097 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3098 htab_t got_entries = *(htab_t *)p;
3099
3100 if (entry->abfd != NULL && entry->symndx == -1)
3101 {
3102 struct mips_elf_link_hash_entry *h = entry->d.h;
3103
3104 while (h->root.root.type == bfd_link_hash_indirect
3105 || h->root.root.type == bfd_link_hash_warning)
3106 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3107
3108 if (entry->d.h == h)
3109 return 1;
3110
3111 entry->d.h = h;
3112
3113 /* If we can't find this entry with the new bfd hash, re-insert
3114 it, and get the traversal restarted. */
3115 if (! htab_find (got_entries, entry))
3116 {
3117 htab_clear_slot (got_entries, entryp);
3118 entryp = htab_find_slot (got_entries, entry, INSERT);
3119 if (! *entryp)
3120 *entryp = entry;
3121 /* Abort the traversal, since the whole table may have
3122 moved, and leave it up to the parent to restart the
3123 process. */
3124 *(htab_t *)p = NULL;
3125 return 0;
3126 }
3127 /* We might want to decrement the global_gotno count, but it's
3128 either too early or too late for that at this point. */
3129 }
3130
3131 return 1;
3132 }
3133
3134 /* Turn indirect got entries in a got_entries table into their final
3135 locations. */
3136 static void
3137 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3138 {
3139 htab_t got_entries;
3140
3141 do
3142 {
3143 got_entries = g->got_entries;
3144
3145 htab_traverse (got_entries,
3146 mips_elf_resolve_final_got_entry,
3147 &got_entries);
3148 }
3149 while (got_entries == NULL);
3150 }
3151
3152 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3153 the primary GOT. */
3154 static bfd_vma
3155 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3156 {
3157 if (g->bfd2got == NULL)
3158 return 0;
3159
3160 g = mips_elf_got_for_ibfd (g, ibfd);
3161 if (! g)
3162 return 0;
3163
3164 BFD_ASSERT (g->next);
3165
3166 g = g->next;
3167
3168 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3169 * MIPS_ELF_GOT_SIZE (abfd);
3170 }
3171
3172 /* Turn a single GOT that is too big for 16-bit addressing into
3173 a sequence of GOTs, each one 16-bit addressable. */
3174
3175 static bfd_boolean
3176 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3177 struct mips_got_info *g, asection *got,
3178 bfd_size_type pages)
3179 {
3180 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3181 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3182 struct mips_got_info *gg;
3183 unsigned int assign;
3184
3185 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3186 mips_elf_bfd2got_entry_eq, NULL);
3187 if (g->bfd2got == NULL)
3188 return FALSE;
3189
3190 got_per_bfd_arg.bfd2got = g->bfd2got;
3191 got_per_bfd_arg.obfd = abfd;
3192 got_per_bfd_arg.info = info;
3193
3194 /* Count how many GOT entries each input bfd requires, creating a
3195 map from bfd to got info while at that. */
3196 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3197 if (got_per_bfd_arg.obfd == NULL)
3198 return FALSE;
3199
3200 got_per_bfd_arg.current = NULL;
3201 got_per_bfd_arg.primary = NULL;
3202 /* Taking out PAGES entries is a worst-case estimate. We could
3203 compute the maximum number of pages that each separate input bfd
3204 uses, but it's probably not worth it. */
3205 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd)
3206 / MIPS_ELF_GOT_SIZE (abfd))
3207 - MIPS_RESERVED_GOTNO - pages);
3208 /* The number of globals that will be included in the primary GOT.
3209 See the calls to mips_elf_set_global_got_offset below for more
3210 information. */
3211 got_per_bfd_arg.global_count = g->global_gotno;
3212
3213 /* Try to merge the GOTs of input bfds together, as long as they
3214 don't seem to exceed the maximum GOT size, choosing one of them
3215 to be the primary GOT. */
3216 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3217 if (got_per_bfd_arg.obfd == NULL)
3218 return FALSE;
3219
3220 /* If we do not find any suitable primary GOT, create an empty one. */
3221 if (got_per_bfd_arg.primary == NULL)
3222 {
3223 g->next = (struct mips_got_info *)
3224 bfd_alloc (abfd, sizeof (struct mips_got_info));
3225 if (g->next == NULL)
3226 return FALSE;
3227
3228 g->next->global_gotsym = NULL;
3229 g->next->global_gotno = 0;
3230 g->next->local_gotno = 0;
3231 g->next->tls_gotno = 0;
3232 g->next->assigned_gotno = 0;
3233 g->next->tls_assigned_gotno = 0;
3234 g->next->tls_ldm_offset = MINUS_ONE;
3235 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3236 mips_elf_multi_got_entry_eq,
3237 NULL);
3238 if (g->next->got_entries == NULL)
3239 return FALSE;
3240 g->next->bfd2got = NULL;
3241 }
3242 else
3243 g->next = got_per_bfd_arg.primary;
3244 g->next->next = got_per_bfd_arg.current;
3245
3246 /* GG is now the master GOT, and G is the primary GOT. */
3247 gg = g;
3248 g = g->next;
3249
3250 /* Map the output bfd to the primary got. That's what we're going
3251 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3252 didn't mark in check_relocs, and we want a quick way to find it.
3253 We can't just use gg->next because we're going to reverse the
3254 list. */
3255 {
3256 struct mips_elf_bfd2got_hash *bfdgot;
3257 void **bfdgotp;
3258
3259 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3260 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3261
3262 if (bfdgot == NULL)
3263 return FALSE;
3264
3265 bfdgot->bfd = abfd;
3266 bfdgot->g = g;
3267 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3268
3269 BFD_ASSERT (*bfdgotp == NULL);
3270 *bfdgotp = bfdgot;
3271 }
3272
3273 /* The IRIX dynamic linker requires every symbol that is referenced
3274 in a dynamic relocation to be present in the primary GOT, so
3275 arrange for them to appear after those that are actually
3276 referenced.
3277
3278 GNU/Linux could very well do without it, but it would slow down
3279 the dynamic linker, since it would have to resolve every dynamic
3280 symbol referenced in other GOTs more than once, without help from
3281 the cache. Also, knowing that every external symbol has a GOT
3282 helps speed up the resolution of local symbols too, so GNU/Linux
3283 follows IRIX's practice.
3284
3285 The number 2 is used by mips_elf_sort_hash_table_f to count
3286 global GOT symbols that are unreferenced in the primary GOT, with
3287 an initial dynamic index computed from gg->assigned_gotno, where
3288 the number of unreferenced global entries in the primary GOT is
3289 preserved. */
3290 if (1)
3291 {
3292 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3293 g->global_gotno = gg->global_gotno;
3294 set_got_offset_arg.value = 2;
3295 }
3296 else
3297 {
3298 /* This could be used for dynamic linkers that don't optimize
3299 symbol resolution while applying relocations so as to use
3300 primary GOT entries or assuming the symbol is locally-defined.
3301 With this code, we assign lower dynamic indices to global
3302 symbols that are not referenced in the primary GOT, so that
3303 their entries can be omitted. */
3304 gg->assigned_gotno = 0;
3305 set_got_offset_arg.value = -1;
3306 }
3307
3308 /* Reorder dynamic symbols as described above (which behavior
3309 depends on the setting of VALUE). */
3310 set_got_offset_arg.g = NULL;
3311 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3312 &set_got_offset_arg);
3313 set_got_offset_arg.value = 1;
3314 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3315 &set_got_offset_arg);
3316 if (! mips_elf_sort_hash_table (info, 1))
3317 return FALSE;
3318
3319 /* Now go through the GOTs assigning them offset ranges.
3320 [assigned_gotno, local_gotno[ will be set to the range of local
3321 entries in each GOT. We can then compute the end of a GOT by
3322 adding local_gotno to global_gotno. We reverse the list and make
3323 it circular since then we'll be able to quickly compute the
3324 beginning of a GOT, by computing the end of its predecessor. To
3325 avoid special cases for the primary GOT, while still preserving
3326 assertions that are valid for both single- and multi-got links,
3327 we arrange for the main got struct to have the right number of
3328 global entries, but set its local_gotno such that the initial
3329 offset of the primary GOT is zero. Remember that the primary GOT
3330 will become the last item in the circular linked list, so it
3331 points back to the master GOT. */
3332 gg->local_gotno = -g->global_gotno;
3333 gg->global_gotno = g->global_gotno;
3334 gg->tls_gotno = 0;
3335 assign = 0;
3336 gg->next = gg;
3337
3338 do
3339 {
3340 struct mips_got_info *gn;
3341
3342 assign += MIPS_RESERVED_GOTNO;
3343 g->assigned_gotno = assign;
3344 g->local_gotno += assign + pages;
3345 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3346
3347 /* Set up any TLS entries. We always place the TLS entries after
3348 all non-TLS entries. */
3349 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3350 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3351
3352 /* Take g out of the direct list, and push it onto the reversed
3353 list that gg points to. */
3354 gn = g->next;
3355 g->next = gg->next;
3356 gg->next = g;
3357 g = gn;
3358
3359 /* Mark global symbols in every non-primary GOT as ineligible for
3360 stubs. */
3361 if (g)
3362 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3363 }
3364 while (g);
3365
3366 got->size = (gg->next->local_gotno
3367 + gg->next->global_gotno
3368 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3369
3370 return TRUE;
3371 }
3372
3373 \f
3374 /* Returns the first relocation of type r_type found, beginning with
3375 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3376
3377 static const Elf_Internal_Rela *
3378 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3379 const Elf_Internal_Rela *relocation,
3380 const Elf_Internal_Rela *relend)
3381 {
3382 while (relocation < relend)
3383 {
3384 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
3385 return relocation;
3386
3387 ++relocation;
3388 }
3389
3390 /* We didn't find it. */
3391 bfd_set_error (bfd_error_bad_value);
3392 return NULL;
3393 }
3394
3395 /* Return whether a relocation is against a local symbol. */
3396
3397 static bfd_boolean
3398 mips_elf_local_relocation_p (bfd *input_bfd,
3399 const Elf_Internal_Rela *relocation,
3400 asection **local_sections,
3401 bfd_boolean check_forced)
3402 {
3403 unsigned long r_symndx;
3404 Elf_Internal_Shdr *symtab_hdr;
3405 struct mips_elf_link_hash_entry *h;
3406 size_t extsymoff;
3407
3408 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3409 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3410 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3411
3412 if (r_symndx < extsymoff)
3413 return TRUE;
3414 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3415 return TRUE;
3416
3417 if (check_forced)
3418 {
3419 /* Look up the hash table to check whether the symbol
3420 was forced local. */
3421 h = (struct mips_elf_link_hash_entry *)
3422 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3423 /* Find the real hash-table entry for this symbol. */
3424 while (h->root.root.type == bfd_link_hash_indirect
3425 || h->root.root.type == bfd_link_hash_warning)
3426 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3427 if (h->root.forced_local)
3428 return TRUE;
3429 }
3430
3431 return FALSE;
3432 }
3433 \f
3434 /* Sign-extend VALUE, which has the indicated number of BITS. */
3435
3436 bfd_vma
3437 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
3438 {
3439 if (value & ((bfd_vma) 1 << (bits - 1)))
3440 /* VALUE is negative. */
3441 value |= ((bfd_vma) - 1) << bits;
3442
3443 return value;
3444 }
3445
3446 /* Return non-zero if the indicated VALUE has overflowed the maximum
3447 range expressible by a signed number with the indicated number of
3448 BITS. */
3449
3450 static bfd_boolean
3451 mips_elf_overflow_p (bfd_vma value, int bits)
3452 {
3453 bfd_signed_vma svalue = (bfd_signed_vma) value;
3454
3455 if (svalue > (1 << (bits - 1)) - 1)
3456 /* The value is too big. */
3457 return TRUE;
3458 else if (svalue < -(1 << (bits - 1)))
3459 /* The value is too small. */
3460 return TRUE;
3461
3462 /* All is well. */
3463 return FALSE;
3464 }
3465
3466 /* Calculate the %high function. */
3467
3468 static bfd_vma
3469 mips_elf_high (bfd_vma value)
3470 {
3471 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3472 }
3473
3474 /* Calculate the %higher function. */
3475
3476 static bfd_vma
3477 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
3478 {
3479 #ifdef BFD64
3480 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3481 #else
3482 abort ();
3483 return MINUS_ONE;
3484 #endif
3485 }
3486
3487 /* Calculate the %highest function. */
3488
3489 static bfd_vma
3490 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
3491 {
3492 #ifdef BFD64
3493 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3494 #else
3495 abort ();
3496 return MINUS_ONE;
3497 #endif
3498 }
3499 \f
3500 /* Create the .compact_rel section. */
3501
3502 static bfd_boolean
3503 mips_elf_create_compact_rel_section
3504 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
3505 {
3506 flagword flags;
3507 register asection *s;
3508
3509 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3510 {
3511 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3512 | SEC_READONLY);
3513
3514 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
3515 if (s == NULL
3516 || ! bfd_set_section_alignment (abfd, s,
3517 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3518 return FALSE;
3519
3520 s->size = sizeof (Elf32_External_compact_rel);
3521 }
3522
3523 return TRUE;
3524 }
3525
3526 /* Create the .got section to hold the global offset table. */
3527
3528 static bfd_boolean
3529 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3530 bfd_boolean maybe_exclude)
3531 {
3532 flagword flags;
3533 register asection *s;
3534 struct elf_link_hash_entry *h;
3535 struct bfd_link_hash_entry *bh;
3536 struct mips_got_info *g;
3537 bfd_size_type amt;
3538
3539 /* This function may be called more than once. */
3540 s = mips_elf_got_section (abfd, TRUE);
3541 if (s)
3542 {
3543 if (! maybe_exclude)
3544 s->flags &= ~SEC_EXCLUDE;
3545 return TRUE;
3546 }
3547
3548 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3549 | SEC_LINKER_CREATED);
3550
3551 if (maybe_exclude)
3552 flags |= SEC_EXCLUDE;
3553
3554 /* We have to use an alignment of 2**4 here because this is hardcoded
3555 in the function stub generation and in the linker script. */
3556 s = bfd_make_section_with_flags (abfd, ".got", flags);
3557 if (s == NULL
3558 || ! bfd_set_section_alignment (abfd, s, 4))
3559 return FALSE;
3560
3561 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3562 linker script because we don't want to define the symbol if we
3563 are not creating a global offset table. */
3564 bh = NULL;
3565 if (! (_bfd_generic_link_add_one_symbol
3566 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
3567 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
3568 return FALSE;
3569
3570 h = (struct elf_link_hash_entry *) bh;
3571 h->non_elf = 0;
3572 h->def_regular = 1;
3573 h->type = STT_OBJECT;
3574
3575 if (info->shared
3576 && ! bfd_elf_link_record_dynamic_symbol (info, h))
3577 return FALSE;
3578
3579 amt = sizeof (struct mips_got_info);
3580 g = bfd_alloc (abfd, amt);
3581 if (g == NULL)
3582 return FALSE;
3583 g->global_gotsym = NULL;
3584 g->global_gotno = 0;
3585 g->tls_gotno = 0;
3586 g->local_gotno = MIPS_RESERVED_GOTNO;
3587 g->assigned_gotno = MIPS_RESERVED_GOTNO;
3588 g->bfd2got = NULL;
3589 g->next = NULL;
3590 g->tls_ldm_offset = MINUS_ONE;
3591 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3592 mips_elf_got_entry_eq, NULL);
3593 if (g->got_entries == NULL)
3594 return FALSE;
3595 mips_elf_section_data (s)->u.got_info = g;
3596 mips_elf_section_data (s)->elf.this_hdr.sh_flags
3597 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3598
3599 return TRUE;
3600 }
3601 \f
3602 /* Calculate the value produced by the RELOCATION (which comes from
3603 the INPUT_BFD). The ADDEND is the addend to use for this
3604 RELOCATION; RELOCATION->R_ADDEND is ignored.
3605
3606 The result of the relocation calculation is stored in VALUEP.
3607 REQUIRE_JALXP indicates whether or not the opcode used with this
3608 relocation must be JALX.
3609
3610 This function returns bfd_reloc_continue if the caller need take no
3611 further action regarding this relocation, bfd_reloc_notsupported if
3612 something goes dramatically wrong, bfd_reloc_overflow if an
3613 overflow occurs, and bfd_reloc_ok to indicate success. */
3614
3615 static bfd_reloc_status_type
3616 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3617 asection *input_section,
3618 struct bfd_link_info *info,
3619 const Elf_Internal_Rela *relocation,
3620 bfd_vma addend, reloc_howto_type *howto,
3621 Elf_Internal_Sym *local_syms,
3622 asection **local_sections, bfd_vma *valuep,
3623 const char **namep, bfd_boolean *require_jalxp,
3624 bfd_boolean save_addend)
3625 {
3626 /* The eventual value we will return. */
3627 bfd_vma value;
3628 /* The address of the symbol against which the relocation is
3629 occurring. */
3630 bfd_vma symbol = 0;
3631 /* The final GP value to be used for the relocatable, executable, or
3632 shared object file being produced. */
3633 bfd_vma gp = MINUS_ONE;
3634 /* The place (section offset or address) of the storage unit being
3635 relocated. */
3636 bfd_vma p;
3637 /* The value of GP used to create the relocatable object. */
3638 bfd_vma gp0 = MINUS_ONE;
3639 /* The offset into the global offset table at which the address of
3640 the relocation entry symbol, adjusted by the addend, resides
3641 during execution. */
3642 bfd_vma g = MINUS_ONE;
3643 /* The section in which the symbol referenced by the relocation is
3644 located. */
3645 asection *sec = NULL;
3646 struct mips_elf_link_hash_entry *h = NULL;
3647 /* TRUE if the symbol referred to by this relocation is a local
3648 symbol. */
3649 bfd_boolean local_p, was_local_p;
3650 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3651 bfd_boolean gp_disp_p = FALSE;
3652 /* TRUE if the symbol referred to by this relocation is
3653 "__gnu_local_gp". */
3654 bfd_boolean gnu_local_gp_p = FALSE;
3655 Elf_Internal_Shdr *symtab_hdr;
3656 size_t extsymoff;
3657 unsigned long r_symndx;
3658 int r_type;
3659 /* TRUE if overflow occurred during the calculation of the
3660 relocation value. */
3661 bfd_boolean overflowed_p;
3662 /* TRUE if this relocation refers to a MIPS16 function. */
3663 bfd_boolean target_is_16_bit_code_p = FALSE;
3664
3665 /* Parse the relocation. */
3666 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3667 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3668 p = (input_section->output_section->vma
3669 + input_section->output_offset
3670 + relocation->r_offset);
3671
3672 /* Assume that there will be no overflow. */
3673 overflowed_p = FALSE;
3674
3675 /* Figure out whether or not the symbol is local, and get the offset
3676 used in the array of hash table entries. */
3677 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3678 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3679 local_sections, FALSE);
3680 was_local_p = local_p;
3681 if (! elf_bad_symtab (input_bfd))
3682 extsymoff = symtab_hdr->sh_info;
3683 else
3684 {
3685 /* The symbol table does not follow the rule that local symbols
3686 must come before globals. */
3687 extsymoff = 0;
3688 }
3689
3690 /* Figure out the value of the symbol. */
3691 if (local_p)
3692 {
3693 Elf_Internal_Sym *sym;
3694
3695 sym = local_syms + r_symndx;
3696 sec = local_sections[r_symndx];
3697
3698 symbol = sec->output_section->vma + sec->output_offset;
3699 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3700 || (sec->flags & SEC_MERGE))
3701 symbol += sym->st_value;
3702 if ((sec->flags & SEC_MERGE)
3703 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3704 {
3705 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3706 addend -= symbol;
3707 addend += sec->output_section->vma + sec->output_offset;
3708 }
3709
3710 /* MIPS16 text labels should be treated as odd. */
3711 if (sym->st_other == STO_MIPS16)
3712 ++symbol;
3713
3714 /* Record the name of this symbol, for our caller. */
3715 *namep = bfd_elf_string_from_elf_section (input_bfd,
3716 symtab_hdr->sh_link,
3717 sym->st_name);
3718 if (*namep == '\0')
3719 *namep = bfd_section_name (input_bfd, sec);
3720
3721 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3722 }
3723 else
3724 {
3725 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3726
3727 /* For global symbols we look up the symbol in the hash-table. */
3728 h = ((struct mips_elf_link_hash_entry *)
3729 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3730 /* Find the real hash-table entry for this symbol. */
3731 while (h->root.root.type == bfd_link_hash_indirect
3732 || h->root.root.type == bfd_link_hash_warning)
3733 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3734
3735 /* Record the name of this symbol, for our caller. */
3736 *namep = h->root.root.root.string;
3737
3738 /* See if this is the special _gp_disp symbol. Note that such a
3739 symbol must always be a global symbol. */
3740 if (strcmp (*namep, "_gp_disp") == 0
3741 && ! NEWABI_P (input_bfd))
3742 {
3743 /* Relocations against _gp_disp are permitted only with
3744 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3745 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3746 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
3747 return bfd_reloc_notsupported;
3748
3749 gp_disp_p = TRUE;
3750 }
3751 /* See if this is the special _gp symbol. Note that such a
3752 symbol must always be a global symbol. */
3753 else if (strcmp (*namep, "__gnu_local_gp") == 0)
3754 gnu_local_gp_p = TRUE;
3755
3756
3757 /* If this symbol is defined, calculate its address. Note that
3758 _gp_disp is a magic symbol, always implicitly defined by the
3759 linker, so it's inappropriate to check to see whether or not
3760 its defined. */
3761 else if ((h->root.root.type == bfd_link_hash_defined
3762 || h->root.root.type == bfd_link_hash_defweak)
3763 && h->root.root.u.def.section)
3764 {
3765 sec = h->root.root.u.def.section;
3766 if (sec->output_section)
3767 symbol = (h->root.root.u.def.value
3768 + sec->output_section->vma
3769 + sec->output_offset);
3770 else
3771 symbol = h->root.root.u.def.value;
3772 }
3773 else if (h->root.root.type == bfd_link_hash_undefweak)
3774 /* We allow relocations against undefined weak symbols, giving
3775 it the value zero, so that you can undefined weak functions
3776 and check to see if they exist by looking at their
3777 addresses. */
3778 symbol = 0;
3779 else if (info->unresolved_syms_in_objects == RM_IGNORE
3780 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
3781 symbol = 0;
3782 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
3783 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
3784 {
3785 /* If this is a dynamic link, we should have created a
3786 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
3787 in in _bfd_mips_elf_create_dynamic_sections.
3788 Otherwise, we should define the symbol with a value of 0.
3789 FIXME: It should probably get into the symbol table
3790 somehow as well. */
3791 BFD_ASSERT (! info->shared);
3792 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
3793 symbol = 0;
3794 }
3795 else
3796 {
3797 if (! ((*info->callbacks->undefined_symbol)
3798 (info, h->root.root.root.string, input_bfd,
3799 input_section, relocation->r_offset,
3800 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
3801 || ELF_ST_VISIBILITY (h->root.other))))
3802 return bfd_reloc_undefined;
3803 symbol = 0;
3804 }
3805
3806 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
3807 }
3808
3809 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
3810 need to redirect the call to the stub, unless we're already *in*
3811 a stub. */
3812 if (r_type != R_MIPS16_26 && !info->relocatable
3813 && ((h != NULL && h->fn_stub != NULL)
3814 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
3815 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
3816 && !mips_elf_stub_section_p (input_bfd, input_section))
3817 {
3818 /* This is a 32- or 64-bit call to a 16-bit function. We should
3819 have already noticed that we were going to need the
3820 stub. */
3821 if (local_p)
3822 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
3823 else
3824 {
3825 BFD_ASSERT (h->need_fn_stub);
3826 sec = h->fn_stub;
3827 }
3828
3829 symbol = sec->output_section->vma + sec->output_offset;
3830 }
3831 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
3832 need to redirect the call to the stub. */
3833 else if (r_type == R_MIPS16_26 && !info->relocatable
3834 && h != NULL
3835 && (h->call_stub != NULL || h->call_fp_stub != NULL)
3836 && !target_is_16_bit_code_p)
3837 {
3838 /* If both call_stub and call_fp_stub are defined, we can figure
3839 out which one to use by seeing which one appears in the input
3840 file. */
3841 if (h->call_stub != NULL && h->call_fp_stub != NULL)
3842 {
3843 asection *o;
3844
3845 sec = NULL;
3846 for (o = input_bfd->sections; o != NULL; o = o->next)
3847 {
3848 if (strncmp (bfd_get_section_name (input_bfd, o),
3849 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
3850 {
3851 sec = h->call_fp_stub;
3852 break;
3853 }
3854 }
3855 if (sec == NULL)
3856 sec = h->call_stub;
3857 }
3858 else if (h->call_stub != NULL)
3859 sec = h->call_stub;
3860 else
3861 sec = h->call_fp_stub;
3862
3863 BFD_ASSERT (sec->size > 0);
3864 symbol = sec->output_section->vma + sec->output_offset;
3865 }
3866
3867 /* Calls from 16-bit code to 32-bit code and vice versa require the
3868 special jalx instruction. */
3869 *require_jalxp = (!info->relocatable
3870 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
3871 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
3872
3873 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3874 local_sections, TRUE);
3875
3876 /* If we haven't already determined the GOT offset, or the GP value,
3877 and we're going to need it, get it now. */
3878 switch (r_type)
3879 {
3880 case R_MIPS_GOT_PAGE:
3881 case R_MIPS_GOT_OFST:
3882 /* We need to decay to GOT_DISP/addend if the symbol doesn't
3883 bind locally. */
3884 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
3885 if (local_p || r_type == R_MIPS_GOT_OFST)
3886 break;
3887 /* Fall through. */
3888
3889 case R_MIPS_CALL16:
3890 case R_MIPS_GOT16:
3891 case R_MIPS_GOT_DISP:
3892 case R_MIPS_GOT_HI16:
3893 case R_MIPS_CALL_HI16:
3894 case R_MIPS_GOT_LO16:
3895 case R_MIPS_CALL_LO16:
3896 case R_MIPS_TLS_GD:
3897 case R_MIPS_TLS_GOTTPREL:
3898 case R_MIPS_TLS_LDM:
3899 /* Find the index into the GOT where this value is located. */
3900 if (r_type == R_MIPS_TLS_LDM)
3901 {
3902 g = mips_elf_local_got_index (abfd, input_bfd, info, 0, 0, NULL,
3903 r_type);
3904 if (g == MINUS_ONE)
3905 return bfd_reloc_outofrange;
3906 }
3907 else if (!local_p)
3908 {
3909 /* GOT_PAGE may take a non-zero addend, that is ignored in a
3910 GOT_PAGE relocation that decays to GOT_DISP because the
3911 symbol turns out to be global. The addend is then added
3912 as GOT_OFST. */
3913 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
3914 g = mips_elf_global_got_index (elf_hash_table (info)->dynobj,
3915 input_bfd,
3916 (struct elf_link_hash_entry *) h,
3917 r_type, info);
3918 if (h->tls_type == GOT_NORMAL
3919 && (! elf_hash_table(info)->dynamic_sections_created
3920 || (info->shared
3921 && (info->symbolic || h->root.dynindx == -1)
3922 && h->root.def_regular)))
3923 {
3924 /* This is a static link or a -Bsymbolic link. The
3925 symbol is defined locally, or was forced to be local.
3926 We must initialize this entry in the GOT. */
3927 bfd *tmpbfd = elf_hash_table (info)->dynobj;
3928 asection *sgot = mips_elf_got_section (tmpbfd, FALSE);
3929 MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g);
3930 }
3931 }
3932 else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16)
3933 /* There's no need to create a local GOT entry here; the
3934 calculation for a local GOT16 entry does not involve G. */
3935 break;
3936 else
3937 {
3938 g = mips_elf_local_got_index (abfd, input_bfd,
3939 info, symbol + addend, r_symndx, h,
3940 r_type);
3941 if (g == MINUS_ONE)
3942 return bfd_reloc_outofrange;
3943 }
3944
3945 /* Convert GOT indices to actual offsets. */
3946 g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
3947 abfd, input_bfd, g);
3948 break;
3949
3950 case R_MIPS_HI16:
3951 case R_MIPS_LO16:
3952 case R_MIPS_GPREL16:
3953 case R_MIPS_GPREL32:
3954 case R_MIPS_LITERAL:
3955 case R_MIPS16_HI16:
3956 case R_MIPS16_LO16:
3957 case R_MIPS16_GPREL:
3958 gp0 = _bfd_get_gp_value (input_bfd);
3959 gp = _bfd_get_gp_value (abfd);
3960 if (elf_hash_table (info)->dynobj)
3961 gp += mips_elf_adjust_gp (abfd,
3962 mips_elf_got_info
3963 (elf_hash_table (info)->dynobj, NULL),
3964 input_bfd);
3965 break;
3966
3967 default:
3968 break;
3969 }
3970
3971 if (gnu_local_gp_p)
3972 symbol = gp;
3973
3974 /* Figure out what kind of relocation is being performed. */
3975 switch (r_type)
3976 {
3977 case R_MIPS_NONE:
3978 return bfd_reloc_continue;
3979
3980 case R_MIPS_16:
3981 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
3982 overflowed_p = mips_elf_overflow_p (value, 16);
3983 break;
3984
3985 case R_MIPS_32:
3986 case R_MIPS_REL32:
3987 case R_MIPS_64:
3988 if ((info->shared
3989 || (elf_hash_table (info)->dynamic_sections_created
3990 && h != NULL
3991 && h->root.def_dynamic
3992 && !h->root.def_regular))
3993 && r_symndx != 0
3994 && (input_section->flags & SEC_ALLOC) != 0)
3995 {
3996 /* If we're creating a shared library, or this relocation is
3997 against a symbol in a shared library, then we can't know
3998 where the symbol will end up. So, we create a relocation
3999 record in the output, and leave the job up to the dynamic
4000 linker. */
4001 value = addend;
4002 if (!mips_elf_create_dynamic_relocation (abfd,
4003 info,
4004 relocation,
4005 h,
4006 sec,
4007 symbol,
4008 &value,
4009 input_section))
4010 return bfd_reloc_undefined;
4011 }
4012 else
4013 {
4014 if (r_type != R_MIPS_REL32)
4015 value = symbol + addend;
4016 else
4017 value = addend;
4018 }
4019 value &= howto->dst_mask;
4020 break;
4021
4022 case R_MIPS_PC32:
4023 value = symbol + addend - p;
4024 value &= howto->dst_mask;
4025 break;
4026
4027 case R_MIPS_GNU_REL16_S2:
4028 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4029 overflowed_p = mips_elf_overflow_p (value, 18);
4030 value = (value >> 2) & howto->dst_mask;
4031 break;
4032
4033 case R_MIPS16_26:
4034 /* The calculation for R_MIPS16_26 is just the same as for an
4035 R_MIPS_26. It's only the storage of the relocated field into
4036 the output file that's different. That's handled in
4037 mips_elf_perform_relocation. So, we just fall through to the
4038 R_MIPS_26 case here. */
4039 case R_MIPS_26:
4040 if (local_p)
4041 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4042 else
4043 {
4044 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4045 if (h->root.root.type != bfd_link_hash_undefweak)
4046 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4047 }
4048 value &= howto->dst_mask;
4049 break;
4050
4051 case R_MIPS_TLS_DTPREL_HI16:
4052 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4053 & howto->dst_mask);
4054 break;
4055
4056 case R_MIPS_TLS_DTPREL_LO16:
4057 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4058 break;
4059
4060 case R_MIPS_TLS_TPREL_HI16:
4061 value = (mips_elf_high (addend + symbol - tprel_base (info))
4062 & howto->dst_mask);
4063 break;
4064
4065 case R_MIPS_TLS_TPREL_LO16:
4066 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4067 break;
4068
4069 case R_MIPS_HI16:
4070 case R_MIPS16_HI16:
4071 if (!gp_disp_p)
4072 {
4073 value = mips_elf_high (addend + symbol);
4074 value &= howto->dst_mask;
4075 }
4076 else
4077 {
4078 /* For MIPS16 ABI code we generate this sequence
4079 0: li $v0,%hi(_gp_disp)
4080 4: addiupc $v1,%lo(_gp_disp)
4081 8: sll $v0,16
4082 12: addu $v0,$v1
4083 14: move $gp,$v0
4084 So the offsets of hi and lo relocs are the same, but the
4085 $pc is four higher than $t9 would be, so reduce
4086 both reloc addends by 4. */
4087 if (r_type == R_MIPS16_HI16)
4088 value = mips_elf_high (addend + gp - p - 4);
4089 else
4090 value = mips_elf_high (addend + gp - p);
4091 overflowed_p = mips_elf_overflow_p (value, 16);
4092 }
4093 break;
4094
4095 case R_MIPS_LO16:
4096 case R_MIPS16_LO16:
4097 if (!gp_disp_p)
4098 value = (symbol + addend) & howto->dst_mask;
4099 else
4100 {
4101 /* See the comment for R_MIPS16_HI16 above for the reason
4102 for this conditional. */
4103 if (r_type == R_MIPS16_LO16)
4104 value = addend + gp - p;
4105 else
4106 value = addend + gp - p + 4;
4107 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4108 for overflow. But, on, say, IRIX5, relocations against
4109 _gp_disp are normally generated from the .cpload
4110 pseudo-op. It generates code that normally looks like
4111 this:
4112
4113 lui $gp,%hi(_gp_disp)
4114 addiu $gp,$gp,%lo(_gp_disp)
4115 addu $gp,$gp,$t9
4116
4117 Here $t9 holds the address of the function being called,
4118 as required by the MIPS ELF ABI. The R_MIPS_LO16
4119 relocation can easily overflow in this situation, but the
4120 R_MIPS_HI16 relocation will handle the overflow.
4121 Therefore, we consider this a bug in the MIPS ABI, and do
4122 not check for overflow here. */
4123 }
4124 break;
4125
4126 case R_MIPS_LITERAL:
4127 /* Because we don't merge literal sections, we can handle this
4128 just like R_MIPS_GPREL16. In the long run, we should merge
4129 shared literals, and then we will need to additional work
4130 here. */
4131
4132 /* Fall through. */
4133
4134 case R_MIPS16_GPREL:
4135 /* The R_MIPS16_GPREL performs the same calculation as
4136 R_MIPS_GPREL16, but stores the relocated bits in a different
4137 order. We don't need to do anything special here; the
4138 differences are handled in mips_elf_perform_relocation. */
4139 case R_MIPS_GPREL16:
4140 /* Only sign-extend the addend if it was extracted from the
4141 instruction. If the addend was separate, leave it alone,
4142 otherwise we may lose significant bits. */
4143 if (howto->partial_inplace)
4144 addend = _bfd_mips_elf_sign_extend (addend, 16);
4145 value = symbol + addend - gp;
4146 /* If the symbol was local, any earlier relocatable links will
4147 have adjusted its addend with the gp offset, so compensate
4148 for that now. Don't do it for symbols forced local in this
4149 link, though, since they won't have had the gp offset applied
4150 to them before. */
4151 if (was_local_p)
4152 value += gp0;
4153 overflowed_p = mips_elf_overflow_p (value, 16);
4154 break;
4155
4156 case R_MIPS_GOT16:
4157 case R_MIPS_CALL16:
4158 if (local_p)
4159 {
4160 bfd_boolean forced;
4161
4162 /* The special case is when the symbol is forced to be local. We
4163 need the full address in the GOT since no R_MIPS_LO16 relocation
4164 follows. */
4165 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4166 local_sections, FALSE);
4167 value = mips_elf_got16_entry (abfd, input_bfd, info,
4168 symbol + addend, forced);
4169 if (value == MINUS_ONE)
4170 return bfd_reloc_outofrange;
4171 value
4172 = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
4173 abfd, input_bfd, value);
4174 overflowed_p = mips_elf_overflow_p (value, 16);
4175 break;
4176 }
4177
4178 /* Fall through. */
4179
4180 case R_MIPS_TLS_GD:
4181 case R_MIPS_TLS_GOTTPREL:
4182 case R_MIPS_TLS_LDM:
4183 case R_MIPS_GOT_DISP:
4184 got_disp:
4185 value = g;
4186 overflowed_p = mips_elf_overflow_p (value, 16);
4187 break;
4188
4189 case R_MIPS_GPREL32:
4190 value = (addend + symbol + gp0 - gp);
4191 if (!save_addend)
4192 value &= howto->dst_mask;
4193 break;
4194
4195 case R_MIPS_PC16:
4196 value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p;
4197 overflowed_p = mips_elf_overflow_p (value, 16);
4198 break;
4199
4200 case R_MIPS_GOT_HI16:
4201 case R_MIPS_CALL_HI16:
4202 /* We're allowed to handle these two relocations identically.
4203 The dynamic linker is allowed to handle the CALL relocations
4204 differently by creating a lazy evaluation stub. */
4205 value = g;
4206 value = mips_elf_high (value);
4207 value &= howto->dst_mask;
4208 break;
4209
4210 case R_MIPS_GOT_LO16:
4211 case R_MIPS_CALL_LO16:
4212 value = g & howto->dst_mask;
4213 break;
4214
4215 case R_MIPS_GOT_PAGE:
4216 /* GOT_PAGE relocations that reference non-local symbols decay
4217 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4218 0. */
4219 if (! local_p)
4220 goto got_disp;
4221 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
4222 if (value == MINUS_ONE)
4223 return bfd_reloc_outofrange;
4224 value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj,
4225 abfd, input_bfd, value);
4226 overflowed_p = mips_elf_overflow_p (value, 16);
4227 break;
4228
4229 case R_MIPS_GOT_OFST:
4230 if (local_p)
4231 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
4232 else
4233 value = addend;
4234 overflowed_p = mips_elf_overflow_p (value, 16);
4235 break;
4236
4237 case R_MIPS_SUB:
4238 value = symbol - addend;
4239 value &= howto->dst_mask;
4240 break;
4241
4242 case R_MIPS_HIGHER:
4243 value = mips_elf_higher (addend + symbol);
4244 value &= howto->dst_mask;
4245 break;
4246
4247 case R_MIPS_HIGHEST:
4248 value = mips_elf_highest (addend + symbol);
4249 value &= howto->dst_mask;
4250 break;
4251
4252 case R_MIPS_SCN_DISP:
4253 value = symbol + addend - sec->output_offset;
4254 value &= howto->dst_mask;
4255 break;
4256
4257 case R_MIPS_JALR:
4258 /* This relocation is only a hint. In some cases, we optimize
4259 it into a bal instruction. But we don't try to optimize
4260 branches to the PLT; that will wind up wasting time. */
4261 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4262 return bfd_reloc_continue;
4263 value = symbol + addend;
4264 break;
4265
4266 case R_MIPS_PJUMP:
4267 case R_MIPS_GNU_VTINHERIT:
4268 case R_MIPS_GNU_VTENTRY:
4269 /* We don't do anything with these at present. */
4270 return bfd_reloc_continue;
4271
4272 default:
4273 /* An unrecognized relocation type. */
4274 return bfd_reloc_notsupported;
4275 }
4276
4277 /* Store the VALUE for our caller. */
4278 *valuep = value;
4279 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4280 }
4281
4282 /* Obtain the field relocated by RELOCATION. */
4283
4284 static bfd_vma
4285 mips_elf_obtain_contents (reloc_howto_type *howto,
4286 const Elf_Internal_Rela *relocation,
4287 bfd *input_bfd, bfd_byte *contents)
4288 {
4289 bfd_vma x;
4290 bfd_byte *location = contents + relocation->r_offset;
4291
4292 /* Obtain the bytes. */
4293 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4294
4295 return x;
4296 }
4297
4298 /* It has been determined that the result of the RELOCATION is the
4299 VALUE. Use HOWTO to place VALUE into the output file at the
4300 appropriate position. The SECTION is the section to which the
4301 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4302 for the relocation must be either JAL or JALX, and it is
4303 unconditionally converted to JALX.
4304
4305 Returns FALSE if anything goes wrong. */
4306
4307 static bfd_boolean
4308 mips_elf_perform_relocation (struct bfd_link_info *info,
4309 reloc_howto_type *howto,
4310 const Elf_Internal_Rela *relocation,
4311 bfd_vma value, bfd *input_bfd,
4312 asection *input_section, bfd_byte *contents,
4313 bfd_boolean require_jalx)
4314 {
4315 bfd_vma x;
4316 bfd_byte *location;
4317 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4318
4319 /* Figure out where the relocation is occurring. */
4320 location = contents + relocation->r_offset;
4321
4322 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4323
4324 /* Obtain the current value. */
4325 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4326
4327 /* Clear the field we are setting. */
4328 x &= ~howto->dst_mask;
4329
4330 /* Set the field. */
4331 x |= (value & howto->dst_mask);
4332
4333 /* If required, turn JAL into JALX. */
4334 if (require_jalx)
4335 {
4336 bfd_boolean ok;
4337 bfd_vma opcode = x >> 26;
4338 bfd_vma jalx_opcode;
4339
4340 /* Check to see if the opcode is already JAL or JALX. */
4341 if (r_type == R_MIPS16_26)
4342 {
4343 ok = ((opcode == 0x6) || (opcode == 0x7));
4344 jalx_opcode = 0x7;
4345 }
4346 else
4347 {
4348 ok = ((opcode == 0x3) || (opcode == 0x1d));
4349 jalx_opcode = 0x1d;
4350 }
4351
4352 /* If the opcode is not JAL or JALX, there's a problem. */
4353 if (!ok)
4354 {
4355 (*_bfd_error_handler)
4356 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4357 input_bfd,
4358 input_section,
4359 (unsigned long) relocation->r_offset);
4360 bfd_set_error (bfd_error_bad_value);
4361 return FALSE;
4362 }
4363
4364 /* Make this the JALX opcode. */
4365 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4366 }
4367
4368 /* On the RM9000, bal is faster than jal, because bal uses branch
4369 prediction hardware. If we are linking for the RM9000, and we
4370 see jal, and bal fits, use it instead. Note that this
4371 transformation should be safe for all architectures. */
4372 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4373 && !info->relocatable
4374 && !require_jalx
4375 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4376 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4377 {
4378 bfd_vma addr;
4379 bfd_vma dest;
4380 bfd_signed_vma off;
4381
4382 addr = (input_section->output_section->vma
4383 + input_section->output_offset
4384 + relocation->r_offset
4385 + 4);
4386 if (r_type == R_MIPS_26)
4387 dest = (value << 2) | ((addr >> 28) << 28);
4388 else
4389 dest = value;
4390 off = dest - addr;
4391 if (off <= 0x1ffff && off >= -0x20000)
4392 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4393 }
4394
4395 /* Put the value into the output. */
4396 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
4397
4398 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4399 location);
4400
4401 return TRUE;
4402 }
4403
4404 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4405
4406 static bfd_boolean
4407 mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
4408 {
4409 const char *name = bfd_get_section_name (abfd, section);
4410
4411 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
4412 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
4413 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
4414 }
4415 \f
4416 /* Add room for N relocations to the .rel.dyn section in ABFD. */
4417
4418 static void
4419 mips_elf_allocate_dynamic_relocations (bfd *abfd, unsigned int n)
4420 {
4421 asection *s;
4422
4423 s = mips_elf_rel_dyn_section (abfd, FALSE);
4424 BFD_ASSERT (s != NULL);
4425
4426 if (s->size == 0)
4427 {
4428 /* Make room for a null element. */
4429 s->size += MIPS_ELF_REL_SIZE (abfd);
4430 ++s->reloc_count;
4431 }
4432 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4433 }
4434
4435 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4436 is the original relocation, which is now being transformed into a
4437 dynamic relocation. The ADDENDP is adjusted if necessary; the
4438 caller should store the result in place of the original addend. */
4439
4440 static bfd_boolean
4441 mips_elf_create_dynamic_relocation (bfd *output_bfd,
4442 struct bfd_link_info *info,
4443 const Elf_Internal_Rela *rel,
4444 struct mips_elf_link_hash_entry *h,
4445 asection *sec, bfd_vma symbol,
4446 bfd_vma *addendp, asection *input_section)
4447 {
4448 Elf_Internal_Rela outrel[3];
4449 asection *sreloc;
4450 bfd *dynobj;
4451 int r_type;
4452 long indx;
4453 bfd_boolean defined_p;
4454
4455 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4456 dynobj = elf_hash_table (info)->dynobj;
4457 sreloc = mips_elf_rel_dyn_section (dynobj, FALSE);
4458 BFD_ASSERT (sreloc != NULL);
4459 BFD_ASSERT (sreloc->contents != NULL);
4460 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
4461 < sreloc->size);
4462
4463 outrel[0].r_offset =
4464 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4465 outrel[1].r_offset =
4466 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4467 outrel[2].r_offset =
4468 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4469
4470 if (outrel[0].r_offset == MINUS_ONE)
4471 /* The relocation field has been deleted. */
4472 return TRUE;
4473
4474 if (outrel[0].r_offset == MINUS_TWO)
4475 {
4476 /* The relocation field has been converted into a relative value of
4477 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4478 the field to be fully relocated, so add in the symbol's value. */
4479 *addendp += symbol;
4480 return TRUE;
4481 }
4482
4483 /* We must now calculate the dynamic symbol table index to use
4484 in the relocation. */
4485 if (h != NULL
4486 && (! info->symbolic || !h->root.def_regular)
4487 /* h->root.dynindx may be -1 if this symbol was marked to
4488 become local. */
4489 && h->root.dynindx != -1)
4490 {
4491 indx = h->root.dynindx;
4492 if (SGI_COMPAT (output_bfd))
4493 defined_p = h->root.def_regular;
4494 else
4495 /* ??? glibc's ld.so just adds the final GOT entry to the
4496 relocation field. It therefore treats relocs against
4497 defined symbols in the same way as relocs against
4498 undefined symbols. */
4499 defined_p = FALSE;
4500 }
4501 else
4502 {
4503 if (sec != NULL && bfd_is_abs_section (sec))
4504 indx = 0;
4505 else if (sec == NULL || sec->owner == NULL)
4506 {
4507 bfd_set_error (bfd_error_bad_value);
4508 return FALSE;
4509 }
4510 else
4511 {
4512 indx = elf_section_data (sec->output_section)->dynindx;
4513 if (indx == 0)
4514 abort ();
4515 }
4516
4517 /* Instead of generating a relocation using the section
4518 symbol, we may as well make it a fully relative
4519 relocation. We want to avoid generating relocations to
4520 local symbols because we used to generate them
4521 incorrectly, without adding the original symbol value,
4522 which is mandated by the ABI for section symbols. In
4523 order to give dynamic loaders and applications time to
4524 phase out the incorrect use, we refrain from emitting
4525 section-relative relocations. It's not like they're
4526 useful, after all. This should be a bit more efficient
4527 as well. */
4528 /* ??? Although this behavior is compatible with glibc's ld.so,
4529 the ABI says that relocations against STN_UNDEF should have
4530 a symbol value of 0. Irix rld honors this, so relocations
4531 against STN_UNDEF have no effect. */
4532 if (!SGI_COMPAT (output_bfd))
4533 indx = 0;
4534 defined_p = TRUE;
4535 }
4536
4537 /* If the relocation was previously an absolute relocation and
4538 this symbol will not be referred to by the relocation, we must
4539 adjust it by the value we give it in the dynamic symbol table.
4540 Otherwise leave the job up to the dynamic linker. */
4541 if (defined_p && r_type != R_MIPS_REL32)
4542 *addendp += symbol;
4543
4544 /* The relocation is always an REL32 relocation because we don't
4545 know where the shared library will wind up at load-time. */
4546 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4547 R_MIPS_REL32);
4548 /* For strict adherence to the ABI specification, we should
4549 generate a R_MIPS_64 relocation record by itself before the
4550 _REL32/_64 record as well, such that the addend is read in as
4551 a 64-bit value (REL32 is a 32-bit relocation, after all).
4552 However, since none of the existing ELF64 MIPS dynamic
4553 loaders seems to care, we don't waste space with these
4554 artificial relocations. If this turns out to not be true,
4555 mips_elf_allocate_dynamic_relocation() should be tweaked so
4556 as to make room for a pair of dynamic relocations per
4557 invocation if ABI_64_P, and here we should generate an
4558 additional relocation record with R_MIPS_64 by itself for a
4559 NULL symbol before this relocation record. */
4560 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4561 ABI_64_P (output_bfd)
4562 ? R_MIPS_64
4563 : R_MIPS_NONE);
4564 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4565
4566 /* Adjust the output offset of the relocation to reference the
4567 correct location in the output file. */
4568 outrel[0].r_offset += (input_section->output_section->vma
4569 + input_section->output_offset);
4570 outrel[1].r_offset += (input_section->output_section->vma
4571 + input_section->output_offset);
4572 outrel[2].r_offset += (input_section->output_section->vma
4573 + input_section->output_offset);
4574
4575 /* Put the relocation back out. We have to use the special
4576 relocation outputter in the 64-bit case since the 64-bit
4577 relocation format is non-standard. */
4578 if (ABI_64_P (output_bfd))
4579 {
4580 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4581 (output_bfd, &outrel[0],
4582 (sreloc->contents
4583 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4584 }
4585 else
4586 bfd_elf32_swap_reloc_out
4587 (output_bfd, &outrel[0],
4588 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4589
4590 /* We've now added another relocation. */
4591 ++sreloc->reloc_count;
4592
4593 /* Make sure the output section is writable. The dynamic linker
4594 will be writing to it. */
4595 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4596 |= SHF_WRITE;
4597
4598 /* On IRIX5, make an entry of compact relocation info. */
4599 if (IRIX_COMPAT (output_bfd) == ict_irix5)
4600 {
4601 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4602 bfd_byte *cr;
4603
4604 if (scpt)
4605 {
4606 Elf32_crinfo cptrel;
4607
4608 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4609 cptrel.vaddr = (rel->r_offset
4610 + input_section->output_section->vma
4611 + input_section->output_offset);
4612 if (r_type == R_MIPS_REL32)
4613 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4614 else
4615 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4616 mips_elf_set_cr_dist2to (cptrel, 0);
4617 cptrel.konst = *addendp;
4618
4619 cr = (scpt->contents
4620 + sizeof (Elf32_External_compact_rel));
4621 mips_elf_set_cr_relvaddr (cptrel, 0);
4622 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4623 ((Elf32_External_crinfo *) cr
4624 + scpt->reloc_count));
4625 ++scpt->reloc_count;
4626 }
4627 }
4628
4629 return TRUE;
4630 }
4631 \f
4632 /* Return the MACH for a MIPS e_flags value. */
4633
4634 unsigned long
4635 _bfd_elf_mips_mach (flagword flags)
4636 {
4637 switch (flags & EF_MIPS_MACH)
4638 {
4639 case E_MIPS_MACH_3900:
4640 return bfd_mach_mips3900;
4641
4642 case E_MIPS_MACH_4010:
4643 return bfd_mach_mips4010;
4644
4645 case E_MIPS_MACH_4100:
4646 return bfd_mach_mips4100;
4647
4648 case E_MIPS_MACH_4111:
4649 return bfd_mach_mips4111;
4650
4651 case E_MIPS_MACH_4120:
4652 return bfd_mach_mips4120;
4653
4654 case E_MIPS_MACH_4650:
4655 return bfd_mach_mips4650;
4656
4657 case E_MIPS_MACH_5400:
4658 return bfd_mach_mips5400;
4659
4660 case E_MIPS_MACH_5500:
4661 return bfd_mach_mips5500;
4662
4663 case E_MIPS_MACH_9000:
4664 return bfd_mach_mips9000;
4665
4666 case E_MIPS_MACH_SB1:
4667 return bfd_mach_mips_sb1;
4668
4669 default:
4670 switch (flags & EF_MIPS_ARCH)
4671 {
4672 default:
4673 case E_MIPS_ARCH_1:
4674 return bfd_mach_mips3000;
4675 break;
4676
4677 case E_MIPS_ARCH_2:
4678 return bfd_mach_mips6000;
4679 break;
4680
4681 case E_MIPS_ARCH_3:
4682 return bfd_mach_mips4000;
4683 break;
4684
4685 case E_MIPS_ARCH_4:
4686 return bfd_mach_mips8000;
4687 break;
4688
4689 case E_MIPS_ARCH_5:
4690 return bfd_mach_mips5;
4691 break;
4692
4693 case E_MIPS_ARCH_32:
4694 return bfd_mach_mipsisa32;
4695 break;
4696
4697 case E_MIPS_ARCH_64:
4698 return bfd_mach_mipsisa64;
4699 break;
4700
4701 case E_MIPS_ARCH_32R2:
4702 return bfd_mach_mipsisa32r2;
4703 break;
4704
4705 case E_MIPS_ARCH_64R2:
4706 return bfd_mach_mipsisa64r2;
4707 break;
4708 }
4709 }
4710
4711 return 0;
4712 }
4713
4714 /* Return printable name for ABI. */
4715
4716 static INLINE char *
4717 elf_mips_abi_name (bfd *abfd)
4718 {
4719 flagword flags;
4720
4721 flags = elf_elfheader (abfd)->e_flags;
4722 switch (flags & EF_MIPS_ABI)
4723 {
4724 case 0:
4725 if (ABI_N32_P (abfd))
4726 return "N32";
4727 else if (ABI_64_P (abfd))
4728 return "64";
4729 else
4730 return "none";
4731 case E_MIPS_ABI_O32:
4732 return "O32";
4733 case E_MIPS_ABI_O64:
4734 return "O64";
4735 case E_MIPS_ABI_EABI32:
4736 return "EABI32";
4737 case E_MIPS_ABI_EABI64:
4738 return "EABI64";
4739 default:
4740 return "unknown abi";
4741 }
4742 }
4743 \f
4744 /* MIPS ELF uses two common sections. One is the usual one, and the
4745 other is for small objects. All the small objects are kept
4746 together, and then referenced via the gp pointer, which yields
4747 faster assembler code. This is what we use for the small common
4748 section. This approach is copied from ecoff.c. */
4749 static asection mips_elf_scom_section;
4750 static asymbol mips_elf_scom_symbol;
4751 static asymbol *mips_elf_scom_symbol_ptr;
4752
4753 /* MIPS ELF also uses an acommon section, which represents an
4754 allocated common symbol which may be overridden by a
4755 definition in a shared library. */
4756 static asection mips_elf_acom_section;
4757 static asymbol mips_elf_acom_symbol;
4758 static asymbol *mips_elf_acom_symbol_ptr;
4759
4760 /* Handle the special MIPS section numbers that a symbol may use.
4761 This is used for both the 32-bit and the 64-bit ABI. */
4762
4763 void
4764 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
4765 {
4766 elf_symbol_type *elfsym;
4767
4768 elfsym = (elf_symbol_type *) asym;
4769 switch (elfsym->internal_elf_sym.st_shndx)
4770 {
4771 case SHN_MIPS_ACOMMON:
4772 /* This section is used in a dynamically linked executable file.
4773 It is an allocated common section. The dynamic linker can
4774 either resolve these symbols to something in a shared
4775 library, or it can just leave them here. For our purposes,
4776 we can consider these symbols to be in a new section. */
4777 if (mips_elf_acom_section.name == NULL)
4778 {
4779 /* Initialize the acommon section. */
4780 mips_elf_acom_section.name = ".acommon";
4781 mips_elf_acom_section.flags = SEC_ALLOC;
4782 mips_elf_acom_section.output_section = &mips_elf_acom_section;
4783 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
4784 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
4785 mips_elf_acom_symbol.name = ".acommon";
4786 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
4787 mips_elf_acom_symbol.section = &mips_elf_acom_section;
4788 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
4789 }
4790 asym->section = &mips_elf_acom_section;
4791 break;
4792
4793 case SHN_COMMON:
4794 /* Common symbols less than the GP size are automatically
4795 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
4796 if (asym->value > elf_gp_size (abfd)
4797 || IRIX_COMPAT (abfd) == ict_irix6)
4798 break;
4799 /* Fall through. */
4800 case SHN_MIPS_SCOMMON:
4801 if (mips_elf_scom_section.name == NULL)
4802 {
4803 /* Initialize the small common section. */
4804 mips_elf_scom_section.name = ".scommon";
4805 mips_elf_scom_section.flags = SEC_IS_COMMON;
4806 mips_elf_scom_section.output_section = &mips_elf_scom_section;
4807 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
4808 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
4809 mips_elf_scom_symbol.name = ".scommon";
4810 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
4811 mips_elf_scom_symbol.section = &mips_elf_scom_section;
4812 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
4813 }
4814 asym->section = &mips_elf_scom_section;
4815 asym->value = elfsym->internal_elf_sym.st_size;
4816 break;
4817
4818 case SHN_MIPS_SUNDEFINED:
4819 asym->section = bfd_und_section_ptr;
4820 break;
4821
4822 case SHN_MIPS_TEXT:
4823 {
4824 asection *section = bfd_get_section_by_name (abfd, ".text");
4825
4826 BFD_ASSERT (SGI_COMPAT (abfd));
4827 if (section != NULL)
4828 {
4829 asym->section = section;
4830 /* MIPS_TEXT is a bit special, the address is not an offset
4831 to the base of the .text section. So substract the section
4832 base address to make it an offset. */
4833 asym->value -= section->vma;
4834 }
4835 }
4836 break;
4837
4838 case SHN_MIPS_DATA:
4839 {
4840 asection *section = bfd_get_section_by_name (abfd, ".data");
4841
4842 BFD_ASSERT (SGI_COMPAT (abfd));
4843 if (section != NULL)
4844 {
4845 asym->section = section;
4846 /* MIPS_DATA is a bit special, the address is not an offset
4847 to the base of the .data section. So substract the section
4848 base address to make it an offset. */
4849 asym->value -= section->vma;
4850 }
4851 }
4852 break;
4853 }
4854 }
4855 \f
4856 /* Implement elf_backend_eh_frame_address_size. This differs from
4857 the default in the way it handles EABI64.
4858
4859 EABI64 was originally specified as an LP64 ABI, and that is what
4860 -mabi=eabi normally gives on a 64-bit target. However, gcc has
4861 historically accepted the combination of -mabi=eabi and -mlong32,
4862 and this ILP32 variation has become semi-official over time.
4863 Both forms use elf32 and have pointer-sized FDE addresses.
4864
4865 If an EABI object was generated by GCC 4.0 or above, it will have
4866 an empty .gcc_compiled_longXX section, where XX is the size of longs
4867 in bits. Unfortunately, ILP32 objects generated by earlier compilers
4868 have no special marking to distinguish them from LP64 objects.
4869
4870 We don't want users of the official LP64 ABI to be punished for the
4871 existence of the ILP32 variant, but at the same time, we don't want
4872 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
4873 We therefore take the following approach:
4874
4875 - If ABFD contains a .gcc_compiled_longXX section, use it to
4876 determine the pointer size.
4877
4878 - Otherwise check the type of the first relocation. Assume that
4879 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
4880
4881 - Otherwise punt.
4882
4883 The second check is enough to detect LP64 objects generated by pre-4.0
4884 compilers because, in the kind of output generated by those compilers,
4885 the first relocation will be associated with either a CIE personality
4886 routine or an FDE start address. Furthermore, the compilers never
4887 used a special (non-pointer) encoding for this ABI.
4888
4889 Checking the relocation type should also be safe because there is no
4890 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
4891 did so. */
4892
4893 unsigned int
4894 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
4895 {
4896 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4897 return 8;
4898 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
4899 {
4900 bfd_boolean long32_p, long64_p;
4901
4902 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
4903 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
4904 if (long32_p && long64_p)
4905 return 0;
4906 if (long32_p)
4907 return 4;
4908 if (long64_p)
4909 return 8;
4910
4911 if (sec->reloc_count > 0
4912 && elf_section_data (sec)->relocs != NULL
4913 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
4914 == R_MIPS_64))
4915 return 8;
4916
4917 return 0;
4918 }
4919 return 4;
4920 }
4921 \f
4922 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
4923 relocations against two unnamed section symbols to resolve to the
4924 same address. For example, if we have code like:
4925
4926 lw $4,%got_disp(.data)($gp)
4927 lw $25,%got_disp(.text)($gp)
4928 jalr $25
4929
4930 then the linker will resolve both relocations to .data and the program
4931 will jump there rather than to .text.
4932
4933 We can work around this problem by giving names to local section symbols.
4934 This is also what the MIPSpro tools do. */
4935
4936 bfd_boolean
4937 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
4938 {
4939 return SGI_COMPAT (abfd);
4940 }
4941 \f
4942 /* Work over a section just before writing it out. This routine is
4943 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
4944 sections that need the SHF_MIPS_GPREL flag by name; there has to be
4945 a better way. */
4946
4947 bfd_boolean
4948 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
4949 {
4950 if (hdr->sh_type == SHT_MIPS_REGINFO
4951 && hdr->sh_size > 0)
4952 {
4953 bfd_byte buf[4];
4954
4955 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
4956 BFD_ASSERT (hdr->contents == NULL);
4957
4958 if (bfd_seek (abfd,
4959 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
4960 SEEK_SET) != 0)
4961 return FALSE;
4962 H_PUT_32 (abfd, elf_gp (abfd), buf);
4963 if (bfd_bwrite (buf, 4, abfd) != 4)
4964 return FALSE;
4965 }
4966
4967 if (hdr->sh_type == SHT_MIPS_OPTIONS
4968 && hdr->bfd_section != NULL
4969 && mips_elf_section_data (hdr->bfd_section) != NULL
4970 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
4971 {
4972 bfd_byte *contents, *l, *lend;
4973
4974 /* We stored the section contents in the tdata field in the
4975 set_section_contents routine. We save the section contents
4976 so that we don't have to read them again.
4977 At this point we know that elf_gp is set, so we can look
4978 through the section contents to see if there is an
4979 ODK_REGINFO structure. */
4980
4981 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
4982 l = contents;
4983 lend = contents + hdr->sh_size;
4984 while (l + sizeof (Elf_External_Options) <= lend)
4985 {
4986 Elf_Internal_Options intopt;
4987
4988 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
4989 &intopt);
4990 if (intopt.size < sizeof (Elf_External_Options))
4991 {
4992 (*_bfd_error_handler)
4993 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
4994 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
4995 break;
4996 }
4997 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
4998 {
4999 bfd_byte buf[8];
5000
5001 if (bfd_seek (abfd,
5002 (hdr->sh_offset
5003 + (l - contents)
5004 + sizeof (Elf_External_Options)
5005 + (sizeof (Elf64_External_RegInfo) - 8)),
5006 SEEK_SET) != 0)
5007 return FALSE;
5008 H_PUT_64 (abfd, elf_gp (abfd), buf);
5009 if (bfd_bwrite (buf, 8, abfd) != 8)
5010 return FALSE;
5011 }
5012 else if (intopt.kind == ODK_REGINFO)
5013 {
5014 bfd_byte buf[4];
5015
5016 if (bfd_seek (abfd,
5017 (hdr->sh_offset
5018 + (l - contents)
5019 + sizeof (Elf_External_Options)
5020 + (sizeof (Elf32_External_RegInfo) - 4)),
5021 SEEK_SET) != 0)
5022 return FALSE;
5023 H_PUT_32 (abfd, elf_gp (abfd), buf);
5024 if (bfd_bwrite (buf, 4, abfd) != 4)
5025 return FALSE;
5026 }
5027 l += intopt.size;
5028 }
5029 }
5030
5031 if (hdr->bfd_section != NULL)
5032 {
5033 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5034
5035 if (strcmp (name, ".sdata") == 0
5036 || strcmp (name, ".lit8") == 0
5037 || strcmp (name, ".lit4") == 0)
5038 {
5039 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5040 hdr->sh_type = SHT_PROGBITS;
5041 }
5042 else if (strcmp (name, ".sbss") == 0)
5043 {
5044 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5045 hdr->sh_type = SHT_NOBITS;
5046 }
5047 else if (strcmp (name, ".srdata") == 0)
5048 {
5049 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5050 hdr->sh_type = SHT_PROGBITS;
5051 }
5052 else if (strcmp (name, ".compact_rel") == 0)
5053 {
5054 hdr->sh_flags = 0;
5055 hdr->sh_type = SHT_PROGBITS;
5056 }
5057 else if (strcmp (name, ".rtproc") == 0)
5058 {
5059 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5060 {
5061 unsigned int adjust;
5062
5063 adjust = hdr->sh_size % hdr->sh_addralign;
5064 if (adjust != 0)
5065 hdr->sh_size += hdr->sh_addralign - adjust;
5066 }
5067 }
5068 }
5069
5070 return TRUE;
5071 }
5072
5073 /* Handle a MIPS specific section when reading an object file. This
5074 is called when elfcode.h finds a section with an unknown type.
5075 This routine supports both the 32-bit and 64-bit ELF ABI.
5076
5077 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5078 how to. */
5079
5080 bfd_boolean
5081 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5082 Elf_Internal_Shdr *hdr,
5083 const char *name,
5084 int shindex)
5085 {
5086 flagword flags = 0;
5087
5088 /* There ought to be a place to keep ELF backend specific flags, but
5089 at the moment there isn't one. We just keep track of the
5090 sections by their name, instead. Fortunately, the ABI gives
5091 suggested names for all the MIPS specific sections, so we will
5092 probably get away with this. */
5093 switch (hdr->sh_type)
5094 {
5095 case SHT_MIPS_LIBLIST:
5096 if (strcmp (name, ".liblist") != 0)
5097 return FALSE;
5098 break;
5099 case SHT_MIPS_MSYM:
5100 if (strcmp (name, ".msym") != 0)
5101 return FALSE;
5102 break;
5103 case SHT_MIPS_CONFLICT:
5104 if (strcmp (name, ".conflict") != 0)
5105 return FALSE;
5106 break;
5107 case SHT_MIPS_GPTAB:
5108 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
5109 return FALSE;
5110 break;
5111 case SHT_MIPS_UCODE:
5112 if (strcmp (name, ".ucode") != 0)
5113 return FALSE;
5114 break;
5115 case SHT_MIPS_DEBUG:
5116 if (strcmp (name, ".mdebug") != 0)
5117 return FALSE;
5118 flags = SEC_DEBUGGING;
5119 break;
5120 case SHT_MIPS_REGINFO:
5121 if (strcmp (name, ".reginfo") != 0
5122 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5123 return FALSE;
5124 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5125 break;
5126 case SHT_MIPS_IFACE:
5127 if (strcmp (name, ".MIPS.interfaces") != 0)
5128 return FALSE;
5129 break;
5130 case SHT_MIPS_CONTENT:
5131 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
5132 return FALSE;
5133 break;
5134 case SHT_MIPS_OPTIONS:
5135 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5136 return FALSE;
5137 break;
5138 case SHT_MIPS_DWARF:
5139 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
5140 return FALSE;
5141 break;
5142 case SHT_MIPS_SYMBOL_LIB:
5143 if (strcmp (name, ".MIPS.symlib") != 0)
5144 return FALSE;
5145 break;
5146 case SHT_MIPS_EVENTS:
5147 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
5148 && strncmp (name, ".MIPS.post_rel",
5149 sizeof ".MIPS.post_rel" - 1) != 0)
5150 return FALSE;
5151 break;
5152 default:
5153 break;
5154 }
5155
5156 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5157 return FALSE;
5158
5159 if (flags)
5160 {
5161 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5162 (bfd_get_section_flags (abfd,
5163 hdr->bfd_section)
5164 | flags)))
5165 return FALSE;
5166 }
5167
5168 /* FIXME: We should record sh_info for a .gptab section. */
5169
5170 /* For a .reginfo section, set the gp value in the tdata information
5171 from the contents of this section. We need the gp value while
5172 processing relocs, so we just get it now. The .reginfo section
5173 is not used in the 64-bit MIPS ELF ABI. */
5174 if (hdr->sh_type == SHT_MIPS_REGINFO)
5175 {
5176 Elf32_External_RegInfo ext;
5177 Elf32_RegInfo s;
5178
5179 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5180 &ext, 0, sizeof ext))
5181 return FALSE;
5182 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5183 elf_gp (abfd) = s.ri_gp_value;
5184 }
5185
5186 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5187 set the gp value based on what we find. We may see both
5188 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5189 they should agree. */
5190 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5191 {
5192 bfd_byte *contents, *l, *lend;
5193
5194 contents = bfd_malloc (hdr->sh_size);
5195 if (contents == NULL)
5196 return FALSE;
5197 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5198 0, hdr->sh_size))
5199 {
5200 free (contents);
5201 return FALSE;
5202 }
5203 l = contents;
5204 lend = contents + hdr->sh_size;
5205 while (l + sizeof (Elf_External_Options) <= lend)
5206 {
5207 Elf_Internal_Options intopt;
5208
5209 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5210 &intopt);
5211 if (intopt.size < sizeof (Elf_External_Options))
5212 {
5213 (*_bfd_error_handler)
5214 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5215 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5216 break;
5217 }
5218 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5219 {
5220 Elf64_Internal_RegInfo intreg;
5221
5222 bfd_mips_elf64_swap_reginfo_in
5223 (abfd,
5224 ((Elf64_External_RegInfo *)
5225 (l + sizeof (Elf_External_Options))),
5226 &intreg);
5227 elf_gp (abfd) = intreg.ri_gp_value;
5228 }
5229 else if (intopt.kind == ODK_REGINFO)
5230 {
5231 Elf32_RegInfo intreg;
5232
5233 bfd_mips_elf32_swap_reginfo_in
5234 (abfd,
5235 ((Elf32_External_RegInfo *)
5236 (l + sizeof (Elf_External_Options))),
5237 &intreg);
5238 elf_gp (abfd) = intreg.ri_gp_value;
5239 }
5240 l += intopt.size;
5241 }
5242 free (contents);
5243 }
5244
5245 return TRUE;
5246 }
5247
5248 /* Set the correct type for a MIPS ELF section. We do this by the
5249 section name, which is a hack, but ought to work. This routine is
5250 used by both the 32-bit and the 64-bit ABI. */
5251
5252 bfd_boolean
5253 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5254 {
5255 register const char *name;
5256 unsigned int sh_type;
5257
5258 name = bfd_get_section_name (abfd, sec);
5259 sh_type = hdr->sh_type;
5260
5261 if (strcmp (name, ".liblist") == 0)
5262 {
5263 hdr->sh_type = SHT_MIPS_LIBLIST;
5264 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5265 /* The sh_link field is set in final_write_processing. */
5266 }
5267 else if (strcmp (name, ".conflict") == 0)
5268 hdr->sh_type = SHT_MIPS_CONFLICT;
5269 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
5270 {
5271 hdr->sh_type = SHT_MIPS_GPTAB;
5272 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5273 /* The sh_info field is set in final_write_processing. */
5274 }
5275 else if (strcmp (name, ".ucode") == 0)
5276 hdr->sh_type = SHT_MIPS_UCODE;
5277 else if (strcmp (name, ".mdebug") == 0)
5278 {
5279 hdr->sh_type = SHT_MIPS_DEBUG;
5280 /* In a shared object on IRIX 5.3, the .mdebug section has an
5281 entsize of 0. FIXME: Does this matter? */
5282 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5283 hdr->sh_entsize = 0;
5284 else
5285 hdr->sh_entsize = 1;
5286 }
5287 else if (strcmp (name, ".reginfo") == 0)
5288 {
5289 hdr->sh_type = SHT_MIPS_REGINFO;
5290 /* In a shared object on IRIX 5.3, the .reginfo section has an
5291 entsize of 0x18. FIXME: Does this matter? */
5292 if (SGI_COMPAT (abfd))
5293 {
5294 if ((abfd->flags & DYNAMIC) != 0)
5295 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5296 else
5297 hdr->sh_entsize = 1;
5298 }
5299 else
5300 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5301 }
5302 else if (SGI_COMPAT (abfd)
5303 && (strcmp (name, ".hash") == 0
5304 || strcmp (name, ".dynamic") == 0
5305 || strcmp (name, ".dynstr") == 0))
5306 {
5307 if (SGI_COMPAT (abfd))
5308 hdr->sh_entsize = 0;
5309 #if 0
5310 /* This isn't how the IRIX6 linker behaves. */
5311 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5312 #endif
5313 }
5314 else if (strcmp (name, ".got") == 0
5315 || strcmp (name, ".srdata") == 0
5316 || strcmp (name, ".sdata") == 0
5317 || strcmp (name, ".sbss") == 0
5318 || strcmp (name, ".lit4") == 0
5319 || strcmp (name, ".lit8") == 0)
5320 hdr->sh_flags |= SHF_MIPS_GPREL;
5321 else if (strcmp (name, ".MIPS.interfaces") == 0)
5322 {
5323 hdr->sh_type = SHT_MIPS_IFACE;
5324 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5325 }
5326 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
5327 {
5328 hdr->sh_type = SHT_MIPS_CONTENT;
5329 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5330 /* The sh_info field is set in final_write_processing. */
5331 }
5332 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5333 {
5334 hdr->sh_type = SHT_MIPS_OPTIONS;
5335 hdr->sh_entsize = 1;
5336 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5337 }
5338 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
5339 hdr->sh_type = SHT_MIPS_DWARF;
5340 else if (strcmp (name, ".MIPS.symlib") == 0)
5341 {
5342 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5343 /* The sh_link and sh_info fields are set in
5344 final_write_processing. */
5345 }
5346 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
5347 || strncmp (name, ".MIPS.post_rel",
5348 sizeof ".MIPS.post_rel" - 1) == 0)
5349 {
5350 hdr->sh_type = SHT_MIPS_EVENTS;
5351 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5352 /* The sh_link field is set in final_write_processing. */
5353 }
5354 else if (strcmp (name, ".msym") == 0)
5355 {
5356 hdr->sh_type = SHT_MIPS_MSYM;
5357 hdr->sh_flags |= SHF_ALLOC;
5358 hdr->sh_entsize = 8;
5359 }
5360
5361 /* In the unlikely event a special section is empty it has to lose its
5362 special meaning. This may happen e.g. when using `strip' with the
5363 "--only-keep-debug" option. */
5364 if (sec->size > 0 && !(sec->flags & SEC_HAS_CONTENTS))
5365 hdr->sh_type = sh_type;
5366
5367 /* The generic elf_fake_sections will set up REL_HDR using the default
5368 kind of relocations. We used to set up a second header for the
5369 non-default kind of relocations here, but only NewABI would use
5370 these, and the IRIX ld doesn't like resulting empty RELA sections.
5371 Thus we create those header only on demand now. */
5372
5373 return TRUE;
5374 }
5375
5376 /* Given a BFD section, try to locate the corresponding ELF section
5377 index. This is used by both the 32-bit and the 64-bit ABI.
5378 Actually, it's not clear to me that the 64-bit ABI supports these,
5379 but for non-PIC objects we will certainly want support for at least
5380 the .scommon section. */
5381
5382 bfd_boolean
5383 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5384 asection *sec, int *retval)
5385 {
5386 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5387 {
5388 *retval = SHN_MIPS_SCOMMON;
5389 return TRUE;
5390 }
5391 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5392 {
5393 *retval = SHN_MIPS_ACOMMON;
5394 return TRUE;
5395 }
5396 return FALSE;
5397 }
5398 \f
5399 /* Hook called by the linker routine which adds symbols from an object
5400 file. We must handle the special MIPS section numbers here. */
5401
5402 bfd_boolean
5403 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
5404 Elf_Internal_Sym *sym, const char **namep,
5405 flagword *flagsp ATTRIBUTE_UNUSED,
5406 asection **secp, bfd_vma *valp)
5407 {
5408 if (SGI_COMPAT (abfd)
5409 && (abfd->flags & DYNAMIC) != 0
5410 && strcmp (*namep, "_rld_new_interface") == 0)
5411 {
5412 /* Skip IRIX5 rld entry name. */
5413 *namep = NULL;
5414 return TRUE;
5415 }
5416
5417 switch (sym->st_shndx)
5418 {
5419 case SHN_COMMON:
5420 /* Common symbols less than the GP size are automatically
5421 treated as SHN_MIPS_SCOMMON symbols. */
5422 if (sym->st_size > elf_gp_size (abfd)
5423 || IRIX_COMPAT (abfd) == ict_irix6)
5424 break;
5425 /* Fall through. */
5426 case SHN_MIPS_SCOMMON:
5427 *secp = bfd_make_section_old_way (abfd, ".scommon");
5428 (*secp)->flags |= SEC_IS_COMMON;
5429 *valp = sym->st_size;
5430 break;
5431
5432 case SHN_MIPS_TEXT:
5433 /* This section is used in a shared object. */
5434 if (elf_tdata (abfd)->elf_text_section == NULL)
5435 {
5436 asymbol *elf_text_symbol;
5437 asection *elf_text_section;
5438 bfd_size_type amt = sizeof (asection);
5439
5440 elf_text_section = bfd_zalloc (abfd, amt);
5441 if (elf_text_section == NULL)
5442 return FALSE;
5443
5444 amt = sizeof (asymbol);
5445 elf_text_symbol = bfd_zalloc (abfd, amt);
5446 if (elf_text_symbol == NULL)
5447 return FALSE;
5448
5449 /* Initialize the section. */
5450
5451 elf_tdata (abfd)->elf_text_section = elf_text_section;
5452 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5453
5454 elf_text_section->symbol = elf_text_symbol;
5455 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5456
5457 elf_text_section->name = ".text";
5458 elf_text_section->flags = SEC_NO_FLAGS;
5459 elf_text_section->output_section = NULL;
5460 elf_text_section->owner = abfd;
5461 elf_text_symbol->name = ".text";
5462 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5463 elf_text_symbol->section = elf_text_section;
5464 }
5465 /* This code used to do *secp = bfd_und_section_ptr if
5466 info->shared. I don't know why, and that doesn't make sense,
5467 so I took it out. */
5468 *secp = elf_tdata (abfd)->elf_text_section;
5469 break;
5470
5471 case SHN_MIPS_ACOMMON:
5472 /* Fall through. XXX Can we treat this as allocated data? */
5473 case SHN_MIPS_DATA:
5474 /* This section is used in a shared object. */
5475 if (elf_tdata (abfd)->elf_data_section == NULL)
5476 {
5477 asymbol *elf_data_symbol;
5478 asection *elf_data_section;
5479 bfd_size_type amt = sizeof (asection);
5480
5481 elf_data_section = bfd_zalloc (abfd, amt);
5482 if (elf_data_section == NULL)
5483 return FALSE;
5484
5485 amt = sizeof (asymbol);
5486 elf_data_symbol = bfd_zalloc (abfd, amt);
5487 if (elf_data_symbol == NULL)
5488 return FALSE;
5489
5490 /* Initialize the section. */
5491
5492 elf_tdata (abfd)->elf_data_section = elf_data_section;
5493 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5494
5495 elf_data_section->symbol = elf_data_symbol;
5496 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5497
5498 elf_data_section->name = ".data";
5499 elf_data_section->flags = SEC_NO_FLAGS;
5500 elf_data_section->output_section = NULL;
5501 elf_data_section->owner = abfd;
5502 elf_data_symbol->name = ".data";
5503 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5504 elf_data_symbol->section = elf_data_section;
5505 }
5506 /* This code used to do *secp = bfd_und_section_ptr if
5507 info->shared. I don't know why, and that doesn't make sense,
5508 so I took it out. */
5509 *secp = elf_tdata (abfd)->elf_data_section;
5510 break;
5511
5512 case SHN_MIPS_SUNDEFINED:
5513 *secp = bfd_und_section_ptr;
5514 break;
5515 }
5516
5517 if (SGI_COMPAT (abfd)
5518 && ! info->shared
5519 && info->hash->creator == abfd->xvec
5520 && strcmp (*namep, "__rld_obj_head") == 0)
5521 {
5522 struct elf_link_hash_entry *h;
5523 struct bfd_link_hash_entry *bh;
5524
5525 /* Mark __rld_obj_head as dynamic. */
5526 bh = NULL;
5527 if (! (_bfd_generic_link_add_one_symbol
5528 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
5529 get_elf_backend_data (abfd)->collect, &bh)))
5530 return FALSE;
5531
5532 h = (struct elf_link_hash_entry *) bh;
5533 h->non_elf = 0;
5534 h->def_regular = 1;
5535 h->type = STT_OBJECT;
5536
5537 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5538 return FALSE;
5539
5540 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
5541 }
5542
5543 /* If this is a mips16 text symbol, add 1 to the value to make it
5544 odd. This will cause something like .word SYM to come up with
5545 the right value when it is loaded into the PC. */
5546 if (sym->st_other == STO_MIPS16)
5547 ++*valp;
5548
5549 return TRUE;
5550 }
5551
5552 /* This hook function is called before the linker writes out a global
5553 symbol. We mark symbols as small common if appropriate. This is
5554 also where we undo the increment of the value for a mips16 symbol. */
5555
5556 bfd_boolean
5557 _bfd_mips_elf_link_output_symbol_hook
5558 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5559 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5560 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
5561 {
5562 /* If we see a common symbol, which implies a relocatable link, then
5563 if a symbol was small common in an input file, mark it as small
5564 common in the output file. */
5565 if (sym->st_shndx == SHN_COMMON
5566 && strcmp (input_sec->name, ".scommon") == 0)
5567 sym->st_shndx = SHN_MIPS_SCOMMON;
5568
5569 if (sym->st_other == STO_MIPS16)
5570 sym->st_value &= ~1;
5571
5572 return TRUE;
5573 }
5574 \f
5575 /* Functions for the dynamic linker. */
5576
5577 /* Create dynamic sections when linking against a dynamic object. */
5578
5579 bfd_boolean
5580 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
5581 {
5582 struct elf_link_hash_entry *h;
5583 struct bfd_link_hash_entry *bh;
5584 flagword flags;
5585 register asection *s;
5586 const char * const *namep;
5587
5588 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5589 | SEC_LINKER_CREATED | SEC_READONLY);
5590
5591 /* Mips ABI requests the .dynamic section to be read only. */
5592 s = bfd_get_section_by_name (abfd, ".dynamic");
5593 if (s != NULL)
5594 {
5595 if (! bfd_set_section_flags (abfd, s, flags))
5596 return FALSE;
5597 }
5598
5599 /* We need to create .got section. */
5600 if (! mips_elf_create_got_section (abfd, info, FALSE))
5601 return FALSE;
5602
5603 if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE))
5604 return FALSE;
5605
5606 /* Create .stub section. */
5607 if (bfd_get_section_by_name (abfd,
5608 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5609 {
5610 s = bfd_make_section_with_flags (abfd,
5611 MIPS_ELF_STUB_SECTION_NAME (abfd),
5612 flags | SEC_CODE);
5613 if (s == NULL
5614 || ! bfd_set_section_alignment (abfd, s,
5615 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5616 return FALSE;
5617 }
5618
5619 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5620 && !info->shared
5621 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5622 {
5623 s = bfd_make_section_with_flags (abfd, ".rld_map",
5624 flags &~ (flagword) SEC_READONLY);
5625 if (s == NULL
5626 || ! bfd_set_section_alignment (abfd, s,
5627 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5628 return FALSE;
5629 }
5630
5631 /* On IRIX5, we adjust add some additional symbols and change the
5632 alignments of several sections. There is no ABI documentation
5633 indicating that this is necessary on IRIX6, nor any evidence that
5634 the linker takes such action. */
5635 if (IRIX_COMPAT (abfd) == ict_irix5)
5636 {
5637 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5638 {
5639 bh = NULL;
5640 if (! (_bfd_generic_link_add_one_symbol
5641 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5642 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5643 return FALSE;
5644
5645 h = (struct elf_link_hash_entry *) bh;
5646 h->non_elf = 0;
5647 h->def_regular = 1;
5648 h->type = STT_SECTION;
5649
5650 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5651 return FALSE;
5652 }
5653
5654 /* We need to create a .compact_rel section. */
5655 if (SGI_COMPAT (abfd))
5656 {
5657 if (!mips_elf_create_compact_rel_section (abfd, info))
5658 return FALSE;
5659 }
5660
5661 /* Change alignments of some sections. */
5662 s = bfd_get_section_by_name (abfd, ".hash");
5663 if (s != NULL)
5664 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5665 s = bfd_get_section_by_name (abfd, ".dynsym");
5666 if (s != NULL)
5667 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5668 s = bfd_get_section_by_name (abfd, ".dynstr");
5669 if (s != NULL)
5670 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5671 s = bfd_get_section_by_name (abfd, ".reginfo");
5672 if (s != NULL)
5673 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5674 s = bfd_get_section_by_name (abfd, ".dynamic");
5675 if (s != NULL)
5676 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5677 }
5678
5679 if (!info->shared)
5680 {
5681 const char *name;
5682
5683 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
5684 bh = NULL;
5685 if (!(_bfd_generic_link_add_one_symbol
5686 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
5687 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5688 return FALSE;
5689
5690 h = (struct elf_link_hash_entry *) bh;
5691 h->non_elf = 0;
5692 h->def_regular = 1;
5693 h->type = STT_SECTION;
5694
5695 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5696 return FALSE;
5697
5698 if (! mips_elf_hash_table (info)->use_rld_obj_head)
5699 {
5700 /* __rld_map is a four byte word located in the .data section
5701 and is filled in by the rtld to contain a pointer to
5702 the _r_debug structure. Its symbol value will be set in
5703 _bfd_mips_elf_finish_dynamic_symbol. */
5704 s = bfd_get_section_by_name (abfd, ".rld_map");
5705 BFD_ASSERT (s != NULL);
5706
5707 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
5708 bh = NULL;
5709 if (!(_bfd_generic_link_add_one_symbol
5710 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
5711 get_elf_backend_data (abfd)->collect, &bh)))
5712 return FALSE;
5713
5714 h = (struct elf_link_hash_entry *) bh;
5715 h->non_elf = 0;
5716 h->def_regular = 1;
5717 h->type = STT_OBJECT;
5718
5719 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5720 return FALSE;
5721 }
5722 }
5723
5724 return TRUE;
5725 }
5726 \f
5727 /* Look through the relocs for a section during the first phase, and
5728 allocate space in the global offset table. */
5729
5730 bfd_boolean
5731 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
5732 asection *sec, const Elf_Internal_Rela *relocs)
5733 {
5734 const char *name;
5735 bfd *dynobj;
5736 Elf_Internal_Shdr *symtab_hdr;
5737 struct elf_link_hash_entry **sym_hashes;
5738 struct mips_got_info *g;
5739 size_t extsymoff;
5740 const Elf_Internal_Rela *rel;
5741 const Elf_Internal_Rela *rel_end;
5742 asection *sgot;
5743 asection *sreloc;
5744 const struct elf_backend_data *bed;
5745
5746 if (info->relocatable)
5747 return TRUE;
5748
5749 dynobj = elf_hash_table (info)->dynobj;
5750 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5751 sym_hashes = elf_sym_hashes (abfd);
5752 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
5753
5754 /* Check for the mips16 stub sections. */
5755
5756 name = bfd_get_section_name (abfd, sec);
5757 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
5758 {
5759 unsigned long r_symndx;
5760
5761 /* Look at the relocation information to figure out which symbol
5762 this is for. */
5763
5764 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5765
5766 if (r_symndx < extsymoff
5767 || sym_hashes[r_symndx - extsymoff] == NULL)
5768 {
5769 asection *o;
5770
5771 /* This stub is for a local symbol. This stub will only be
5772 needed if there is some relocation in this BFD, other
5773 than a 16 bit function call, which refers to this symbol. */
5774 for (o = abfd->sections; o != NULL; o = o->next)
5775 {
5776 Elf_Internal_Rela *sec_relocs;
5777 const Elf_Internal_Rela *r, *rend;
5778
5779 /* We can ignore stub sections when looking for relocs. */
5780 if ((o->flags & SEC_RELOC) == 0
5781 || o->reloc_count == 0
5782 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
5783 sizeof FN_STUB - 1) == 0
5784 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
5785 sizeof CALL_STUB - 1) == 0
5786 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
5787 sizeof CALL_FP_STUB - 1) == 0)
5788 continue;
5789
5790 sec_relocs
5791 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
5792 info->keep_memory);
5793 if (sec_relocs == NULL)
5794 return FALSE;
5795
5796 rend = sec_relocs + o->reloc_count;
5797 for (r = sec_relocs; r < rend; r++)
5798 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
5799 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
5800 break;
5801
5802 if (elf_section_data (o)->relocs != sec_relocs)
5803 free (sec_relocs);
5804
5805 if (r < rend)
5806 break;
5807 }
5808
5809 if (o == NULL)
5810 {
5811 /* There is no non-call reloc for this stub, so we do
5812 not need it. Since this function is called before
5813 the linker maps input sections to output sections, we
5814 can easily discard it by setting the SEC_EXCLUDE
5815 flag. */
5816 sec->flags |= SEC_EXCLUDE;
5817 return TRUE;
5818 }
5819
5820 /* Record this stub in an array of local symbol stubs for
5821 this BFD. */
5822 if (elf_tdata (abfd)->local_stubs == NULL)
5823 {
5824 unsigned long symcount;
5825 asection **n;
5826 bfd_size_type amt;
5827
5828 if (elf_bad_symtab (abfd))
5829 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
5830 else
5831 symcount = symtab_hdr->sh_info;
5832 amt = symcount * sizeof (asection *);
5833 n = bfd_zalloc (abfd, amt);
5834 if (n == NULL)
5835 return FALSE;
5836 elf_tdata (abfd)->local_stubs = n;
5837 }
5838
5839 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
5840
5841 /* We don't need to set mips16_stubs_seen in this case.
5842 That flag is used to see whether we need to look through
5843 the global symbol table for stubs. We don't need to set
5844 it here, because we just have a local stub. */
5845 }
5846 else
5847 {
5848 struct mips_elf_link_hash_entry *h;
5849
5850 h = ((struct mips_elf_link_hash_entry *)
5851 sym_hashes[r_symndx - extsymoff]);
5852
5853 /* H is the symbol this stub is for. */
5854
5855 h->fn_stub = sec;
5856 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5857 }
5858 }
5859 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
5860 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5861 {
5862 unsigned long r_symndx;
5863 struct mips_elf_link_hash_entry *h;
5864 asection **loc;
5865
5866 /* Look at the relocation information to figure out which symbol
5867 this is for. */
5868
5869 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
5870
5871 if (r_symndx < extsymoff
5872 || sym_hashes[r_symndx - extsymoff] == NULL)
5873 {
5874 /* This stub was actually built for a static symbol defined
5875 in the same file. We assume that all static symbols in
5876 mips16 code are themselves mips16, so we can simply
5877 discard this stub. Since this function is called before
5878 the linker maps input sections to output sections, we can
5879 easily discard it by setting the SEC_EXCLUDE flag. */
5880 sec->flags |= SEC_EXCLUDE;
5881 return TRUE;
5882 }
5883
5884 h = ((struct mips_elf_link_hash_entry *)
5885 sym_hashes[r_symndx - extsymoff]);
5886
5887 /* H is the symbol this stub is for. */
5888
5889 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
5890 loc = &h->call_fp_stub;
5891 else
5892 loc = &h->call_stub;
5893
5894 /* If we already have an appropriate stub for this function, we
5895 don't need another one, so we can discard this one. Since
5896 this function is called before the linker maps input sections
5897 to output sections, we can easily discard it by setting the
5898 SEC_EXCLUDE flag. We can also discard this section if we
5899 happen to already know that this is a mips16 function; it is
5900 not necessary to check this here, as it is checked later, but
5901 it is slightly faster to check now. */
5902 if (*loc != NULL || h->root.other == STO_MIPS16)
5903 {
5904 sec->flags |= SEC_EXCLUDE;
5905 return TRUE;
5906 }
5907
5908 *loc = sec;
5909 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
5910 }
5911
5912 if (dynobj == NULL)
5913 {
5914 sgot = NULL;
5915 g = NULL;
5916 }
5917 else
5918 {
5919 sgot = mips_elf_got_section (dynobj, FALSE);
5920 if (sgot == NULL)
5921 g = NULL;
5922 else
5923 {
5924 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
5925 g = mips_elf_section_data (sgot)->u.got_info;
5926 BFD_ASSERT (g != NULL);
5927 }
5928 }
5929
5930 sreloc = NULL;
5931 bed = get_elf_backend_data (abfd);
5932 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
5933 for (rel = relocs; rel < rel_end; ++rel)
5934 {
5935 unsigned long r_symndx;
5936 unsigned int r_type;
5937 struct elf_link_hash_entry *h;
5938
5939 r_symndx = ELF_R_SYM (abfd, rel->r_info);
5940 r_type = ELF_R_TYPE (abfd, rel->r_info);
5941
5942 if (r_symndx < extsymoff)
5943 h = NULL;
5944 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
5945 {
5946 (*_bfd_error_handler)
5947 (_("%B: Malformed reloc detected for section %s"),
5948 abfd, name);
5949 bfd_set_error (bfd_error_bad_value);
5950 return FALSE;
5951 }
5952 else
5953 {
5954 h = sym_hashes[r_symndx - extsymoff];
5955
5956 /* This may be an indirect symbol created because of a version. */
5957 if (h != NULL)
5958 {
5959 while (h->root.type == bfd_link_hash_indirect)
5960 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5961 }
5962 }
5963
5964 /* Some relocs require a global offset table. */
5965 if (dynobj == NULL || sgot == NULL)
5966 {
5967 switch (r_type)
5968 {
5969 case R_MIPS_GOT16:
5970 case R_MIPS_CALL16:
5971 case R_MIPS_CALL_HI16:
5972 case R_MIPS_CALL_LO16:
5973 case R_MIPS_GOT_HI16:
5974 case R_MIPS_GOT_LO16:
5975 case R_MIPS_GOT_PAGE:
5976 case R_MIPS_GOT_OFST:
5977 case R_MIPS_GOT_DISP:
5978 case R_MIPS_TLS_GD:
5979 case R_MIPS_TLS_LDM:
5980 if (dynobj == NULL)
5981 elf_hash_table (info)->dynobj = dynobj = abfd;
5982 if (! mips_elf_create_got_section (dynobj, info, FALSE))
5983 return FALSE;
5984 g = mips_elf_got_info (dynobj, &sgot);
5985 break;
5986
5987 case R_MIPS_32:
5988 case R_MIPS_REL32:
5989 case R_MIPS_64:
5990 if (dynobj == NULL
5991 && (info->shared || h != NULL)
5992 && (sec->flags & SEC_ALLOC) != 0)
5993 elf_hash_table (info)->dynobj = dynobj = abfd;
5994 break;
5995
5996 default:
5997 break;
5998 }
5999 }
6000
6001 if (!h && (r_type == R_MIPS_CALL_LO16
6002 || r_type == R_MIPS_GOT_LO16
6003 || r_type == R_MIPS_GOT_DISP))
6004 {
6005 /* We may need a local GOT entry for this relocation. We
6006 don't count R_MIPS_GOT_PAGE because we can estimate the
6007 maximum number of pages needed by looking at the size of
6008 the segment. Similar comments apply to R_MIPS_GOT16 and
6009 R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or
6010 R_MIPS_CALL_HI16 because these are always followed by an
6011 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6012 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6013 rel->r_addend, g, 0))
6014 return FALSE;
6015 }
6016
6017 switch (r_type)
6018 {
6019 case R_MIPS_CALL16:
6020 if (h == NULL)
6021 {
6022 (*_bfd_error_handler)
6023 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6024 abfd, (unsigned long) rel->r_offset);
6025 bfd_set_error (bfd_error_bad_value);
6026 return FALSE;
6027 }
6028 /* Fall through. */
6029
6030 case R_MIPS_CALL_HI16:
6031 case R_MIPS_CALL_LO16:
6032 if (h != NULL)
6033 {
6034 /* This symbol requires a global offset table entry. */
6035 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6036 return FALSE;
6037
6038 /* We need a stub, not a plt entry for the undefined
6039 function. But we record it as if it needs plt. See
6040 _bfd_elf_adjust_dynamic_symbol. */
6041 h->needs_plt = 1;
6042 h->type = STT_FUNC;
6043 }
6044 break;
6045
6046 case R_MIPS_GOT_PAGE:
6047 /* If this is a global, overridable symbol, GOT_PAGE will
6048 decay to GOT_DISP, so we'll need a GOT entry for it. */
6049 if (h == NULL)
6050 break;
6051 else
6052 {
6053 struct mips_elf_link_hash_entry *hmips =
6054 (struct mips_elf_link_hash_entry *) h;
6055
6056 while (hmips->root.root.type == bfd_link_hash_indirect
6057 || hmips->root.root.type == bfd_link_hash_warning)
6058 hmips = (struct mips_elf_link_hash_entry *)
6059 hmips->root.root.u.i.link;
6060
6061 if (hmips->root.def_regular
6062 && ! (info->shared && ! info->symbolic
6063 && ! hmips->root.forced_local))
6064 break;
6065 }
6066 /* Fall through. */
6067
6068 case R_MIPS_GOT16:
6069 case R_MIPS_GOT_HI16:
6070 case R_MIPS_GOT_LO16:
6071 case R_MIPS_GOT_DISP:
6072 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6073 return FALSE;
6074 break;
6075
6076 case R_MIPS_TLS_GOTTPREL:
6077 if (info->shared)
6078 info->flags |= DF_STATIC_TLS;
6079 /* Fall through */
6080
6081 case R_MIPS_TLS_LDM:
6082 if (r_type == R_MIPS_TLS_LDM)
6083 {
6084 r_symndx = 0;
6085 h = NULL;
6086 }
6087 /* Fall through */
6088
6089 case R_MIPS_TLS_GD:
6090 /* This symbol requires a global offset table entry, or two
6091 for TLS GD relocations. */
6092 {
6093 unsigned char flag = (r_type == R_MIPS_TLS_GD
6094 ? GOT_TLS_GD
6095 : r_type == R_MIPS_TLS_LDM
6096 ? GOT_TLS_LDM
6097 : GOT_TLS_IE);
6098 if (h != NULL)
6099 {
6100 struct mips_elf_link_hash_entry *hmips =
6101 (struct mips_elf_link_hash_entry *) h;
6102 hmips->tls_type |= flag;
6103
6104 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6105 return FALSE;
6106 }
6107 else
6108 {
6109 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6110
6111 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6112 rel->r_addend, g, flag))
6113 return FALSE;
6114 }
6115 }
6116 break;
6117
6118 case R_MIPS_32:
6119 case R_MIPS_REL32:
6120 case R_MIPS_64:
6121 if ((info->shared || h != NULL)
6122 && (sec->flags & SEC_ALLOC) != 0)
6123 {
6124 if (sreloc == NULL)
6125 {
6126 sreloc = mips_elf_rel_dyn_section (dynobj, TRUE);
6127 if (sreloc == NULL)
6128 return FALSE;
6129 }
6130 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
6131 if (info->shared)
6132 {
6133 /* When creating a shared object, we must copy these
6134 reloc types into the output file as R_MIPS_REL32
6135 relocs. We make room for this reloc in the
6136 .rel.dyn reloc section. */
6137 mips_elf_allocate_dynamic_relocations (dynobj, 1);
6138 if ((sec->flags & MIPS_READONLY_SECTION)
6139 == MIPS_READONLY_SECTION)
6140 /* We tell the dynamic linker that there are
6141 relocations against the text segment. */
6142 info->flags |= DF_TEXTREL;
6143 }
6144 else
6145 {
6146 struct mips_elf_link_hash_entry *hmips;
6147
6148 /* We only need to copy this reloc if the symbol is
6149 defined in a dynamic object. */
6150 hmips = (struct mips_elf_link_hash_entry *) h;
6151 ++hmips->possibly_dynamic_relocs;
6152 if ((sec->flags & MIPS_READONLY_SECTION)
6153 == MIPS_READONLY_SECTION)
6154 /* We need it to tell the dynamic linker if there
6155 are relocations against the text segment. */
6156 hmips->readonly_reloc = TRUE;
6157 }
6158
6159 /* Even though we don't directly need a GOT entry for
6160 this symbol, a symbol must have a dynamic symbol
6161 table index greater that DT_MIPS_GOTSYM if there are
6162 dynamic relocations against it. */
6163 if (h != NULL)
6164 {
6165 if (dynobj == NULL)
6166 elf_hash_table (info)->dynobj = dynobj = abfd;
6167 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6168 return FALSE;
6169 g = mips_elf_got_info (dynobj, &sgot);
6170 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6171 return FALSE;
6172 }
6173 }
6174
6175 if (SGI_COMPAT (abfd))
6176 mips_elf_hash_table (info)->compact_rel_size +=
6177 sizeof (Elf32_External_crinfo);
6178 break;
6179
6180 case R_MIPS_26:
6181 case R_MIPS_GPREL16:
6182 case R_MIPS_LITERAL:
6183 case R_MIPS_GPREL32:
6184 if (SGI_COMPAT (abfd))
6185 mips_elf_hash_table (info)->compact_rel_size +=
6186 sizeof (Elf32_External_crinfo);
6187 break;
6188
6189 /* This relocation describes the C++ object vtable hierarchy.
6190 Reconstruct it for later use during GC. */
6191 case R_MIPS_GNU_VTINHERIT:
6192 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
6193 return FALSE;
6194 break;
6195
6196 /* This relocation describes which C++ vtable entries are actually
6197 used. Record for later use during GC. */
6198 case R_MIPS_GNU_VTENTRY:
6199 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
6200 return FALSE;
6201 break;
6202
6203 default:
6204 break;
6205 }
6206
6207 /* We must not create a stub for a symbol that has relocations
6208 related to taking the function's address. */
6209 switch (r_type)
6210 {
6211 default:
6212 if (h != NULL)
6213 {
6214 struct mips_elf_link_hash_entry *mh;
6215
6216 mh = (struct mips_elf_link_hash_entry *) h;
6217 mh->no_fn_stub = TRUE;
6218 }
6219 break;
6220 case R_MIPS_CALL16:
6221 case R_MIPS_CALL_HI16:
6222 case R_MIPS_CALL_LO16:
6223 case R_MIPS_JALR:
6224 break;
6225 }
6226
6227 /* If this reloc is not a 16 bit call, and it has a global
6228 symbol, then we will need the fn_stub if there is one.
6229 References from a stub section do not count. */
6230 if (h != NULL
6231 && r_type != R_MIPS16_26
6232 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
6233 sizeof FN_STUB - 1) != 0
6234 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
6235 sizeof CALL_STUB - 1) != 0
6236 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
6237 sizeof CALL_FP_STUB - 1) != 0)
6238 {
6239 struct mips_elf_link_hash_entry *mh;
6240
6241 mh = (struct mips_elf_link_hash_entry *) h;
6242 mh->need_fn_stub = TRUE;
6243 }
6244 }
6245
6246 return TRUE;
6247 }
6248 \f
6249 bfd_boolean
6250 _bfd_mips_relax_section (bfd *abfd, asection *sec,
6251 struct bfd_link_info *link_info,
6252 bfd_boolean *again)
6253 {
6254 Elf_Internal_Rela *internal_relocs;
6255 Elf_Internal_Rela *irel, *irelend;
6256 Elf_Internal_Shdr *symtab_hdr;
6257 bfd_byte *contents = NULL;
6258 size_t extsymoff;
6259 bfd_boolean changed_contents = FALSE;
6260 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6261 Elf_Internal_Sym *isymbuf = NULL;
6262
6263 /* We are not currently changing any sizes, so only one pass. */
6264 *again = FALSE;
6265
6266 if (link_info->relocatable)
6267 return TRUE;
6268
6269 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
6270 link_info->keep_memory);
6271 if (internal_relocs == NULL)
6272 return TRUE;
6273
6274 irelend = internal_relocs + sec->reloc_count
6275 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6276 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6277 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6278
6279 for (irel = internal_relocs; irel < irelend; irel++)
6280 {
6281 bfd_vma symval;
6282 bfd_signed_vma sym_offset;
6283 unsigned int r_type;
6284 unsigned long r_symndx;
6285 asection *sym_sec;
6286 unsigned long instruction;
6287
6288 /* Turn jalr into bgezal, and jr into beq, if they're marked
6289 with a JALR relocation, that indicate where they jump to.
6290 This saves some pipeline bubbles. */
6291 r_type = ELF_R_TYPE (abfd, irel->r_info);
6292 if (r_type != R_MIPS_JALR)
6293 continue;
6294
6295 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6296 /* Compute the address of the jump target. */
6297 if (r_symndx >= extsymoff)
6298 {
6299 struct mips_elf_link_hash_entry *h
6300 = ((struct mips_elf_link_hash_entry *)
6301 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6302
6303 while (h->root.root.type == bfd_link_hash_indirect
6304 || h->root.root.type == bfd_link_hash_warning)
6305 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6306
6307 /* If a symbol is undefined, or if it may be overridden,
6308 skip it. */
6309 if (! ((h->root.root.type == bfd_link_hash_defined
6310 || h->root.root.type == bfd_link_hash_defweak)
6311 && h->root.root.u.def.section)
6312 || (link_info->shared && ! link_info->symbolic
6313 && !h->root.forced_local))
6314 continue;
6315
6316 sym_sec = h->root.root.u.def.section;
6317 if (sym_sec->output_section)
6318 symval = (h->root.root.u.def.value
6319 + sym_sec->output_section->vma
6320 + sym_sec->output_offset);
6321 else
6322 symval = h->root.root.u.def.value;
6323 }
6324 else
6325 {
6326 Elf_Internal_Sym *isym;
6327
6328 /* Read this BFD's symbols if we haven't done so already. */
6329 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6330 {
6331 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6332 if (isymbuf == NULL)
6333 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6334 symtab_hdr->sh_info, 0,
6335 NULL, NULL, NULL);
6336 if (isymbuf == NULL)
6337 goto relax_return;
6338 }
6339
6340 isym = isymbuf + r_symndx;
6341 if (isym->st_shndx == SHN_UNDEF)
6342 continue;
6343 else if (isym->st_shndx == SHN_ABS)
6344 sym_sec = bfd_abs_section_ptr;
6345 else if (isym->st_shndx == SHN_COMMON)
6346 sym_sec = bfd_com_section_ptr;
6347 else
6348 sym_sec
6349 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6350 symval = isym->st_value
6351 + sym_sec->output_section->vma
6352 + sym_sec->output_offset;
6353 }
6354
6355 /* Compute branch offset, from delay slot of the jump to the
6356 branch target. */
6357 sym_offset = (symval + irel->r_addend)
6358 - (sec_start + irel->r_offset + 4);
6359
6360 /* Branch offset must be properly aligned. */
6361 if ((sym_offset & 3) != 0)
6362 continue;
6363
6364 sym_offset >>= 2;
6365
6366 /* Check that it's in range. */
6367 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6368 continue;
6369
6370 /* Get the section contents if we haven't done so already. */
6371 if (contents == NULL)
6372 {
6373 /* Get cached copy if it exists. */
6374 if (elf_section_data (sec)->this_hdr.contents != NULL)
6375 contents = elf_section_data (sec)->this_hdr.contents;
6376 else
6377 {
6378 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6379 goto relax_return;
6380 }
6381 }
6382
6383 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6384
6385 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6386 if ((instruction & 0xfc1fffff) == 0x0000f809)
6387 instruction = 0x04110000;
6388 /* If it was jr <reg>, turn it into b <target>. */
6389 else if ((instruction & 0xfc1fffff) == 0x00000008)
6390 instruction = 0x10000000;
6391 else
6392 continue;
6393
6394 instruction |= (sym_offset & 0xffff);
6395 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6396 changed_contents = TRUE;
6397 }
6398
6399 if (contents != NULL
6400 && elf_section_data (sec)->this_hdr.contents != contents)
6401 {
6402 if (!changed_contents && !link_info->keep_memory)
6403 free (contents);
6404 else
6405 {
6406 /* Cache the section contents for elf_link_input_bfd. */
6407 elf_section_data (sec)->this_hdr.contents = contents;
6408 }
6409 }
6410 return TRUE;
6411
6412 relax_return:
6413 if (contents != NULL
6414 && elf_section_data (sec)->this_hdr.contents != contents)
6415 free (contents);
6416 return FALSE;
6417 }
6418 \f
6419 /* Adjust a symbol defined by a dynamic object and referenced by a
6420 regular object. The current definition is in some section of the
6421 dynamic object, but we're not including those sections. We have to
6422 change the definition to something the rest of the link can
6423 understand. */
6424
6425 bfd_boolean
6426 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6427 struct elf_link_hash_entry *h)
6428 {
6429 bfd *dynobj;
6430 struct mips_elf_link_hash_entry *hmips;
6431 asection *s;
6432
6433 dynobj = elf_hash_table (info)->dynobj;
6434
6435 /* Make sure we know what is going on here. */
6436 BFD_ASSERT (dynobj != NULL
6437 && (h->needs_plt
6438 || h->u.weakdef != NULL
6439 || (h->def_dynamic
6440 && h->ref_regular
6441 && !h->def_regular)));
6442
6443 /* If this symbol is defined in a dynamic object, we need to copy
6444 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6445 file. */
6446 hmips = (struct mips_elf_link_hash_entry *) h;
6447 if (! info->relocatable
6448 && hmips->possibly_dynamic_relocs != 0
6449 && (h->root.type == bfd_link_hash_defweak
6450 || !h->def_regular))
6451 {
6452 mips_elf_allocate_dynamic_relocations (dynobj,
6453 hmips->possibly_dynamic_relocs);
6454 if (hmips->readonly_reloc)
6455 /* We tell the dynamic linker that there are relocations
6456 against the text segment. */
6457 info->flags |= DF_TEXTREL;
6458 }
6459
6460 /* For a function, create a stub, if allowed. */
6461 if (! hmips->no_fn_stub
6462 && h->needs_plt)
6463 {
6464 if (! elf_hash_table (info)->dynamic_sections_created)
6465 return TRUE;
6466
6467 /* If this symbol is not defined in a regular file, then set
6468 the symbol to the stub location. This is required to make
6469 function pointers compare as equal between the normal
6470 executable and the shared library. */
6471 if (!h->def_regular)
6472 {
6473 /* We need .stub section. */
6474 s = bfd_get_section_by_name (dynobj,
6475 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6476 BFD_ASSERT (s != NULL);
6477
6478 h->root.u.def.section = s;
6479 h->root.u.def.value = s->size;
6480
6481 /* XXX Write this stub address somewhere. */
6482 h->plt.offset = s->size;
6483
6484 /* Make room for this stub code. */
6485 s->size += MIPS_FUNCTION_STUB_SIZE;
6486
6487 /* The last half word of the stub will be filled with the index
6488 of this symbol in .dynsym section. */
6489 return TRUE;
6490 }
6491 }
6492 else if ((h->type == STT_FUNC)
6493 && !h->needs_plt)
6494 {
6495 /* This will set the entry for this symbol in the GOT to 0, and
6496 the dynamic linker will take care of this. */
6497 h->root.u.def.value = 0;
6498 return TRUE;
6499 }
6500
6501 /* If this is a weak symbol, and there is a real definition, the
6502 processor independent code will have arranged for us to see the
6503 real definition first, and we can just use the same value. */
6504 if (h->u.weakdef != NULL)
6505 {
6506 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6507 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6508 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6509 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6510 return TRUE;
6511 }
6512
6513 /* This is a reference to a symbol defined by a dynamic object which
6514 is not a function. */
6515
6516 return TRUE;
6517 }
6518 \f
6519 /* This function is called after all the input files have been read,
6520 and the input sections have been assigned to output sections. We
6521 check for any mips16 stub sections that we can discard. */
6522
6523 bfd_boolean
6524 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
6525 struct bfd_link_info *info)
6526 {
6527 asection *ri;
6528
6529 bfd *dynobj;
6530 asection *s;
6531 struct mips_got_info *g;
6532 int i;
6533 bfd_size_type loadable_size = 0;
6534 bfd_size_type local_gotno;
6535 bfd *sub;
6536 struct mips_elf_count_tls_arg count_tls_arg;
6537
6538 /* The .reginfo section has a fixed size. */
6539 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
6540 if (ri != NULL)
6541 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
6542
6543 if (! (info->relocatable
6544 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
6545 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
6546 mips_elf_check_mips16_stubs, NULL);
6547
6548 dynobj = elf_hash_table (info)->dynobj;
6549 if (dynobj == NULL)
6550 /* Relocatable links don't have it. */
6551 return TRUE;
6552
6553 g = mips_elf_got_info (dynobj, &s);
6554 if (s == NULL)
6555 return TRUE;
6556
6557 /* Calculate the total loadable size of the output. That
6558 will give us the maximum number of GOT_PAGE entries
6559 required. */
6560 for (sub = info->input_bfds; sub; sub = sub->link_next)
6561 {
6562 asection *subsection;
6563
6564 for (subsection = sub->sections;
6565 subsection;
6566 subsection = subsection->next)
6567 {
6568 if ((subsection->flags & SEC_ALLOC) == 0)
6569 continue;
6570 loadable_size += ((subsection->size + 0xf)
6571 &~ (bfd_size_type) 0xf);
6572 }
6573 }
6574
6575 /* There has to be a global GOT entry for every symbol with
6576 a dynamic symbol table index of DT_MIPS_GOTSYM or
6577 higher. Therefore, it make sense to put those symbols
6578 that need GOT entries at the end of the symbol table. We
6579 do that here. */
6580 if (! mips_elf_sort_hash_table (info, 1))
6581 return FALSE;
6582
6583 if (g->global_gotsym != NULL)
6584 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
6585 else
6586 /* If there are no global symbols, or none requiring
6587 relocations, then GLOBAL_GOTSYM will be NULL. */
6588 i = 0;
6589
6590 /* In the worst case, we'll get one stub per dynamic symbol, plus
6591 one to account for the dummy entry at the end required by IRIX
6592 rld. */
6593 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
6594
6595 /* Assume there are two loadable segments consisting of
6596 contiguous sections. Is 5 enough? */
6597 local_gotno = (loadable_size >> 16) + 5;
6598
6599 g->local_gotno += local_gotno;
6600 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
6601
6602 g->global_gotno = i;
6603 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
6604
6605 /* We need to calculate tls_gotno for global symbols at this point
6606 instead of building it up earlier, to avoid doublecounting
6607 entries for one global symbol from multiple input files. */
6608 count_tls_arg.info = info;
6609 count_tls_arg.needed = 0;
6610 elf_link_hash_traverse (elf_hash_table (info),
6611 mips_elf_count_global_tls_entries,
6612 &count_tls_arg);
6613 g->tls_gotno += count_tls_arg.needed;
6614 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
6615
6616 mips_elf_resolve_final_got_entries (g);
6617
6618 if (s->size > MIPS_ELF_GOT_MAX_SIZE (output_bfd))
6619 {
6620 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
6621 return FALSE;
6622 }
6623 else
6624 {
6625 /* Set up TLS entries for the first GOT. */
6626 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
6627 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
6628 }
6629
6630 return TRUE;
6631 }
6632
6633 /* Set the sizes of the dynamic sections. */
6634
6635 bfd_boolean
6636 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
6637 struct bfd_link_info *info)
6638 {
6639 bfd *dynobj;
6640 asection *s;
6641 bfd_boolean reltext;
6642
6643 dynobj = elf_hash_table (info)->dynobj;
6644 BFD_ASSERT (dynobj != NULL);
6645
6646 if (elf_hash_table (info)->dynamic_sections_created)
6647 {
6648 /* Set the contents of the .interp section to the interpreter. */
6649 if (info->executable)
6650 {
6651 s = bfd_get_section_by_name (dynobj, ".interp");
6652 BFD_ASSERT (s != NULL);
6653 s->size
6654 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
6655 s->contents
6656 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
6657 }
6658 }
6659
6660 /* The check_relocs and adjust_dynamic_symbol entry points have
6661 determined the sizes of the various dynamic sections. Allocate
6662 memory for them. */
6663 reltext = FALSE;
6664 for (s = dynobj->sections; s != NULL; s = s->next)
6665 {
6666 const char *name;
6667 bfd_boolean strip;
6668
6669 /* It's OK to base decisions on the section name, because none
6670 of the dynobj section names depend upon the input files. */
6671 name = bfd_get_section_name (dynobj, s);
6672
6673 if ((s->flags & SEC_LINKER_CREATED) == 0)
6674 continue;
6675
6676 strip = FALSE;
6677
6678 if (strncmp (name, ".rel", 4) == 0)
6679 {
6680 if (s->size == 0)
6681 {
6682 /* We only strip the section if the output section name
6683 has the same name. Otherwise, there might be several
6684 input sections for this output section. FIXME: This
6685 code is probably not needed these days anyhow, since
6686 the linker now does not create empty output sections. */
6687 if (s->output_section != NULL
6688 && strcmp (name,
6689 bfd_get_section_name (s->output_section->owner,
6690 s->output_section)) == 0)
6691 strip = TRUE;
6692 }
6693 else
6694 {
6695 const char *outname;
6696 asection *target;
6697
6698 /* If this relocation section applies to a read only
6699 section, then we probably need a DT_TEXTREL entry.
6700 If the relocation section is .rel.dyn, we always
6701 assert a DT_TEXTREL entry rather than testing whether
6702 there exists a relocation to a read only section or
6703 not. */
6704 outname = bfd_get_section_name (output_bfd,
6705 s->output_section);
6706 target = bfd_get_section_by_name (output_bfd, outname + 4);
6707 if ((target != NULL
6708 && (target->flags & SEC_READONLY) != 0
6709 && (target->flags & SEC_ALLOC) != 0)
6710 || strcmp (outname, ".rel.dyn") == 0)
6711 reltext = TRUE;
6712
6713 /* We use the reloc_count field as a counter if we need
6714 to copy relocs into the output file. */
6715 if (strcmp (name, ".rel.dyn") != 0)
6716 s->reloc_count = 0;
6717
6718 /* If combreloc is enabled, elf_link_sort_relocs() will
6719 sort relocations, but in a different way than we do,
6720 and before we're done creating relocations. Also, it
6721 will move them around between input sections'
6722 relocation's contents, so our sorting would be
6723 broken, so don't let it run. */
6724 info->combreloc = 0;
6725 }
6726 }
6727 else if (strncmp (name, ".got", 4) == 0)
6728 {
6729 /* _bfd_mips_elf_always_size_sections() has already done
6730 most of the work, but some symbols may have been mapped
6731 to versions that we must now resolve in the got_entries
6732 hash tables. */
6733 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
6734 struct mips_got_info *g = gg;
6735 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
6736 unsigned int needed_relocs = 0;
6737
6738 if (gg->next)
6739 {
6740 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
6741 set_got_offset_arg.info = info;
6742
6743 /* NOTE 2005-02-03: How can this call, or the next, ever
6744 find any indirect entries to resolve? They were all
6745 resolved in mips_elf_multi_got. */
6746 mips_elf_resolve_final_got_entries (gg);
6747 for (g = gg->next; g && g->next != gg; g = g->next)
6748 {
6749 unsigned int save_assign;
6750
6751 mips_elf_resolve_final_got_entries (g);
6752
6753 /* Assign offsets to global GOT entries. */
6754 save_assign = g->assigned_gotno;
6755 g->assigned_gotno = g->local_gotno;
6756 set_got_offset_arg.g = g;
6757 set_got_offset_arg.needed_relocs = 0;
6758 htab_traverse (g->got_entries,
6759 mips_elf_set_global_got_offset,
6760 &set_got_offset_arg);
6761 needed_relocs += set_got_offset_arg.needed_relocs;
6762 BFD_ASSERT (g->assigned_gotno - g->local_gotno
6763 <= g->global_gotno);
6764
6765 g->assigned_gotno = save_assign;
6766 if (info->shared)
6767 {
6768 needed_relocs += g->local_gotno - g->assigned_gotno;
6769 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
6770 + g->next->global_gotno
6771 + g->next->tls_gotno
6772 + MIPS_RESERVED_GOTNO);
6773 }
6774 }
6775 }
6776 else
6777 {
6778 struct mips_elf_count_tls_arg arg;
6779 arg.info = info;
6780 arg.needed = 0;
6781
6782 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
6783 &arg);
6784 elf_link_hash_traverse (elf_hash_table (info),
6785 mips_elf_count_global_tls_relocs,
6786 &arg);
6787
6788 needed_relocs += arg.needed;
6789 }
6790
6791 if (needed_relocs)
6792 mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs);
6793 }
6794 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
6795 {
6796 /* IRIX rld assumes that the function stub isn't at the end
6797 of .text section. So put a dummy. XXX */
6798 s->size += MIPS_FUNCTION_STUB_SIZE;
6799 }
6800 else if (! info->shared
6801 && ! mips_elf_hash_table (info)->use_rld_obj_head
6802 && strncmp (name, ".rld_map", 8) == 0)
6803 {
6804 /* We add a room for __rld_map. It will be filled in by the
6805 rtld to contain a pointer to the _r_debug structure. */
6806 s->size += 4;
6807 }
6808 else if (SGI_COMPAT (output_bfd)
6809 && strncmp (name, ".compact_rel", 12) == 0)
6810 s->size += mips_elf_hash_table (info)->compact_rel_size;
6811 else if (strncmp (name, ".init", 5) != 0)
6812 {
6813 /* It's not one of our sections, so don't allocate space. */
6814 continue;
6815 }
6816
6817 if (strip)
6818 {
6819 s->flags |= SEC_EXCLUDE;
6820 continue;
6821 }
6822
6823 /* Allocate memory for the section contents. */
6824 s->contents = bfd_zalloc (dynobj, s->size);
6825 if (s->contents == NULL && s->size != 0)
6826 {
6827 bfd_set_error (bfd_error_no_memory);
6828 return FALSE;
6829 }
6830 }
6831
6832 if (elf_hash_table (info)->dynamic_sections_created)
6833 {
6834 /* Add some entries to the .dynamic section. We fill in the
6835 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
6836 must add the entries now so that we get the correct size for
6837 the .dynamic section. The DT_DEBUG entry is filled in by the
6838 dynamic linker and used by the debugger. */
6839 if (! info->shared)
6840 {
6841 /* SGI object has the equivalence of DT_DEBUG in the
6842 DT_MIPS_RLD_MAP entry. */
6843 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
6844 return FALSE;
6845 if (!SGI_COMPAT (output_bfd))
6846 {
6847 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6848 return FALSE;
6849 }
6850 }
6851 else
6852 {
6853 /* Shared libraries on traditional mips have DT_DEBUG. */
6854 if (!SGI_COMPAT (output_bfd))
6855 {
6856 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
6857 return FALSE;
6858 }
6859 }
6860
6861 if (reltext && SGI_COMPAT (output_bfd))
6862 info->flags |= DF_TEXTREL;
6863
6864 if ((info->flags & DF_TEXTREL) != 0)
6865 {
6866 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
6867 return FALSE;
6868 }
6869
6870 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
6871 return FALSE;
6872
6873 if (mips_elf_rel_dyn_section (dynobj, FALSE))
6874 {
6875 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
6876 return FALSE;
6877
6878 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
6879 return FALSE;
6880
6881 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
6882 return FALSE;
6883 }
6884
6885 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
6886 return FALSE;
6887
6888 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
6889 return FALSE;
6890
6891 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
6892 return FALSE;
6893
6894 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
6895 return FALSE;
6896
6897 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
6898 return FALSE;
6899
6900 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
6901 return FALSE;
6902
6903 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
6904 return FALSE;
6905
6906 if (IRIX_COMPAT (dynobj) == ict_irix5
6907 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
6908 return FALSE;
6909
6910 if (IRIX_COMPAT (dynobj) == ict_irix6
6911 && (bfd_get_section_by_name
6912 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
6913 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
6914 return FALSE;
6915 }
6916
6917 return TRUE;
6918 }
6919 \f
6920 /* Relocate a MIPS ELF section. */
6921
6922 bfd_boolean
6923 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
6924 bfd *input_bfd, asection *input_section,
6925 bfd_byte *contents, Elf_Internal_Rela *relocs,
6926 Elf_Internal_Sym *local_syms,
6927 asection **local_sections)
6928 {
6929 Elf_Internal_Rela *rel;
6930 const Elf_Internal_Rela *relend;
6931 bfd_vma addend = 0;
6932 bfd_boolean use_saved_addend_p = FALSE;
6933 const struct elf_backend_data *bed;
6934
6935 bed = get_elf_backend_data (output_bfd);
6936 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
6937 for (rel = relocs; rel < relend; ++rel)
6938 {
6939 const char *name;
6940 bfd_vma value;
6941 reloc_howto_type *howto;
6942 bfd_boolean require_jalx;
6943 /* TRUE if the relocation is a RELA relocation, rather than a
6944 REL relocation. */
6945 bfd_boolean rela_relocation_p = TRUE;
6946 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6947 const char *msg;
6948
6949 /* Find the relocation howto for this relocation. */
6950 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
6951 {
6952 /* Some 32-bit code uses R_MIPS_64. In particular, people use
6953 64-bit code, but make sure all their addresses are in the
6954 lowermost or uppermost 32-bit section of the 64-bit address
6955 space. Thus, when they use an R_MIPS_64 they mean what is
6956 usually meant by R_MIPS_32, with the exception that the
6957 stored value is sign-extended to 64 bits. */
6958 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
6959
6960 /* On big-endian systems, we need to lie about the position
6961 of the reloc. */
6962 if (bfd_big_endian (input_bfd))
6963 rel->r_offset += 4;
6964 }
6965 else
6966 /* NewABI defaults to RELA relocations. */
6967 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
6968 NEWABI_P (input_bfd)
6969 && (MIPS_RELOC_RELA_P
6970 (input_bfd, input_section,
6971 rel - relocs)));
6972
6973 if (!use_saved_addend_p)
6974 {
6975 Elf_Internal_Shdr *rel_hdr;
6976
6977 /* If these relocations were originally of the REL variety,
6978 we must pull the addend out of the field that will be
6979 relocated. Otherwise, we simply use the contents of the
6980 RELA relocation. To determine which flavor or relocation
6981 this is, we depend on the fact that the INPUT_SECTION's
6982 REL_HDR is read before its REL_HDR2. */
6983 rel_hdr = &elf_section_data (input_section)->rel_hdr;
6984 if ((size_t) (rel - relocs)
6985 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6986 rel_hdr = elf_section_data (input_section)->rel_hdr2;
6987 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
6988 {
6989 bfd_byte *location = contents + rel->r_offset;
6990
6991 /* Note that this is a REL relocation. */
6992 rela_relocation_p = FALSE;
6993
6994 /* Get the addend, which is stored in the input file. */
6995 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
6996 location);
6997 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
6998 contents);
6999 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7000 location);
7001
7002 addend &= howto->src_mask;
7003
7004 /* For some kinds of relocations, the ADDEND is a
7005 combination of the addend stored in two different
7006 relocations. */
7007 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
7008 || (r_type == R_MIPS_GOT16
7009 && mips_elf_local_relocation_p (input_bfd, rel,
7010 local_sections, FALSE)))
7011 {
7012 bfd_vma l;
7013 const Elf_Internal_Rela *lo16_relocation;
7014 reloc_howto_type *lo16_howto;
7015 bfd_byte *lo16_location;
7016 int lo16_type;
7017
7018 if (r_type == R_MIPS16_HI16)
7019 lo16_type = R_MIPS16_LO16;
7020 else
7021 lo16_type = R_MIPS_LO16;
7022
7023 /* The combined value is the sum of the HI16 addend,
7024 left-shifted by sixteen bits, and the LO16
7025 addend, sign extended. (Usually, the code does
7026 a `lui' of the HI16 value, and then an `addiu' of
7027 the LO16 value.)
7028
7029 Scan ahead to find a matching LO16 relocation.
7030
7031 According to the MIPS ELF ABI, the R_MIPS_LO16
7032 relocation must be immediately following.
7033 However, for the IRIX6 ABI, the next relocation
7034 may be a composed relocation consisting of
7035 several relocations for the same address. In
7036 that case, the R_MIPS_LO16 relocation may occur
7037 as one of these. We permit a similar extension
7038 in general, as that is useful for GCC. */
7039 lo16_relocation = mips_elf_next_relocation (input_bfd,
7040 lo16_type,
7041 rel, relend);
7042 if (lo16_relocation == NULL)
7043 return FALSE;
7044
7045 lo16_location = contents + lo16_relocation->r_offset;
7046
7047 /* Obtain the addend kept there. */
7048 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7049 lo16_type, FALSE);
7050 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE,
7051 lo16_location);
7052 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
7053 input_bfd, contents);
7054 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE,
7055 lo16_location);
7056 l &= lo16_howto->src_mask;
7057 l <<= lo16_howto->rightshift;
7058 l = _bfd_mips_elf_sign_extend (l, 16);
7059
7060 addend <<= 16;
7061
7062 /* Compute the combined addend. */
7063 addend += l;
7064 }
7065 else
7066 addend <<= howto->rightshift;
7067 }
7068 else
7069 addend = rel->r_addend;
7070 }
7071
7072 if (info->relocatable)
7073 {
7074 Elf_Internal_Sym *sym;
7075 unsigned long r_symndx;
7076
7077 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
7078 && bfd_big_endian (input_bfd))
7079 rel->r_offset -= 4;
7080
7081 /* Since we're just relocating, all we need to do is copy
7082 the relocations back out to the object file, unless
7083 they're against a section symbol, in which case we need
7084 to adjust by the section offset, or unless they're GP
7085 relative in which case we need to adjust by the amount
7086 that we're adjusting GP in this relocatable object. */
7087
7088 if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections,
7089 FALSE))
7090 /* There's nothing to do for non-local relocations. */
7091 continue;
7092
7093 if (r_type == R_MIPS16_GPREL
7094 || r_type == R_MIPS_GPREL16
7095 || r_type == R_MIPS_GPREL32
7096 || r_type == R_MIPS_LITERAL)
7097 addend -= (_bfd_get_gp_value (output_bfd)
7098 - _bfd_get_gp_value (input_bfd));
7099
7100 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7101 sym = local_syms + r_symndx;
7102 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7103 /* Adjust the addend appropriately. */
7104 addend += local_sections[r_symndx]->output_offset;
7105
7106 if (rela_relocation_p)
7107 /* If this is a RELA relocation, just update the addend. */
7108 rel->r_addend = addend;
7109 else
7110 {
7111 if (r_type == R_MIPS_HI16
7112 || r_type == R_MIPS_GOT16)
7113 addend = mips_elf_high (addend);
7114 else if (r_type == R_MIPS_HIGHER)
7115 addend = mips_elf_higher (addend);
7116 else if (r_type == R_MIPS_HIGHEST)
7117 addend = mips_elf_highest (addend);
7118 else
7119 addend >>= howto->rightshift;
7120
7121 /* We use the source mask, rather than the destination
7122 mask because the place to which we are writing will be
7123 source of the addend in the final link. */
7124 addend &= howto->src_mask;
7125
7126 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7127 /* See the comment above about using R_MIPS_64 in the 32-bit
7128 ABI. Here, we need to update the addend. It would be
7129 possible to get away with just using the R_MIPS_32 reloc
7130 but for endianness. */
7131 {
7132 bfd_vma sign_bits;
7133 bfd_vma low_bits;
7134 bfd_vma high_bits;
7135
7136 if (addend & ((bfd_vma) 1 << 31))
7137 #ifdef BFD64
7138 sign_bits = ((bfd_vma) 1 << 32) - 1;
7139 #else
7140 sign_bits = -1;
7141 #endif
7142 else
7143 sign_bits = 0;
7144
7145 /* If we don't know that we have a 64-bit type,
7146 do two separate stores. */
7147 if (bfd_big_endian (input_bfd))
7148 {
7149 /* Store the sign-bits (which are most significant)
7150 first. */
7151 low_bits = sign_bits;
7152 high_bits = addend;
7153 }
7154 else
7155 {
7156 low_bits = addend;
7157 high_bits = sign_bits;
7158 }
7159 bfd_put_32 (input_bfd, low_bits,
7160 contents + rel->r_offset);
7161 bfd_put_32 (input_bfd, high_bits,
7162 contents + rel->r_offset + 4);
7163 continue;
7164 }
7165
7166 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7167 input_bfd, input_section,
7168 contents, FALSE))
7169 return FALSE;
7170 }
7171
7172 /* Go on to the next relocation. */
7173 continue;
7174 }
7175
7176 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7177 relocations for the same offset. In that case we are
7178 supposed to treat the output of each relocation as the addend
7179 for the next. */
7180 if (rel + 1 < relend
7181 && rel->r_offset == rel[1].r_offset
7182 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
7183 use_saved_addend_p = TRUE;
7184 else
7185 use_saved_addend_p = FALSE;
7186
7187 /* Figure out what value we are supposed to relocate. */
7188 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
7189 input_section, info, rel,
7190 addend, howto, local_syms,
7191 local_sections, &value,
7192 &name, &require_jalx,
7193 use_saved_addend_p))
7194 {
7195 case bfd_reloc_continue:
7196 /* There's nothing to do. */
7197 continue;
7198
7199 case bfd_reloc_undefined:
7200 /* mips_elf_calculate_relocation already called the
7201 undefined_symbol callback. There's no real point in
7202 trying to perform the relocation at this point, so we
7203 just skip ahead to the next relocation. */
7204 continue;
7205
7206 case bfd_reloc_notsupported:
7207 msg = _("internal error: unsupported relocation error");
7208 info->callbacks->warning
7209 (info, msg, name, input_bfd, input_section, rel->r_offset);
7210 return FALSE;
7211
7212 case bfd_reloc_overflow:
7213 if (use_saved_addend_p)
7214 /* Ignore overflow until we reach the last relocation for
7215 a given location. */
7216 ;
7217 else
7218 {
7219 BFD_ASSERT (name != NULL);
7220 if (! ((*info->callbacks->reloc_overflow)
7221 (info, NULL, name, howto->name, (bfd_vma) 0,
7222 input_bfd, input_section, rel->r_offset)))
7223 return FALSE;
7224 }
7225 break;
7226
7227 case bfd_reloc_ok:
7228 break;
7229
7230 default:
7231 abort ();
7232 break;
7233 }
7234
7235 /* If we've got another relocation for the address, keep going
7236 until we reach the last one. */
7237 if (use_saved_addend_p)
7238 {
7239 addend = value;
7240 continue;
7241 }
7242
7243 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7244 /* See the comment above about using R_MIPS_64 in the 32-bit
7245 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7246 that calculated the right value. Now, however, we
7247 sign-extend the 32-bit result to 64-bits, and store it as a
7248 64-bit value. We are especially generous here in that we
7249 go to extreme lengths to support this usage on systems with
7250 only a 32-bit VMA. */
7251 {
7252 bfd_vma sign_bits;
7253 bfd_vma low_bits;
7254 bfd_vma high_bits;
7255
7256 if (value & ((bfd_vma) 1 << 31))
7257 #ifdef BFD64
7258 sign_bits = ((bfd_vma) 1 << 32) - 1;
7259 #else
7260 sign_bits = -1;
7261 #endif
7262 else
7263 sign_bits = 0;
7264
7265 /* If we don't know that we have a 64-bit type,
7266 do two separate stores. */
7267 if (bfd_big_endian (input_bfd))
7268 {
7269 /* Undo what we did above. */
7270 rel->r_offset -= 4;
7271 /* Store the sign-bits (which are most significant)
7272 first. */
7273 low_bits = sign_bits;
7274 high_bits = value;
7275 }
7276 else
7277 {
7278 low_bits = value;
7279 high_bits = sign_bits;
7280 }
7281 bfd_put_32 (input_bfd, low_bits,
7282 contents + rel->r_offset);
7283 bfd_put_32 (input_bfd, high_bits,
7284 contents + rel->r_offset + 4);
7285 continue;
7286 }
7287
7288 /* Actually perform the relocation. */
7289 if (! mips_elf_perform_relocation (info, howto, rel, value,
7290 input_bfd, input_section,
7291 contents, require_jalx))
7292 return FALSE;
7293 }
7294
7295 return TRUE;
7296 }
7297 \f
7298 /* If NAME is one of the special IRIX6 symbols defined by the linker,
7299 adjust it appropriately now. */
7300
7301 static void
7302 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7303 const char *name, Elf_Internal_Sym *sym)
7304 {
7305 /* The linker script takes care of providing names and values for
7306 these, but we must place them into the right sections. */
7307 static const char* const text_section_symbols[] = {
7308 "_ftext",
7309 "_etext",
7310 "__dso_displacement",
7311 "__elf_header",
7312 "__program_header_table",
7313 NULL
7314 };
7315
7316 static const char* const data_section_symbols[] = {
7317 "_fdata",
7318 "_edata",
7319 "_end",
7320 "_fbss",
7321 NULL
7322 };
7323
7324 const char* const *p;
7325 int i;
7326
7327 for (i = 0; i < 2; ++i)
7328 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
7329 *p;
7330 ++p)
7331 if (strcmp (*p, name) == 0)
7332 {
7333 /* All of these symbols are given type STT_SECTION by the
7334 IRIX6 linker. */
7335 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7336 sym->st_other = STO_PROTECTED;
7337
7338 /* The IRIX linker puts these symbols in special sections. */
7339 if (i == 0)
7340 sym->st_shndx = SHN_MIPS_TEXT;
7341 else
7342 sym->st_shndx = SHN_MIPS_DATA;
7343
7344 break;
7345 }
7346 }
7347
7348 /* Finish up dynamic symbol handling. We set the contents of various
7349 dynamic sections here. */
7350
7351 bfd_boolean
7352 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
7353 struct bfd_link_info *info,
7354 struct elf_link_hash_entry *h,
7355 Elf_Internal_Sym *sym)
7356 {
7357 bfd *dynobj;
7358 asection *sgot;
7359 struct mips_got_info *g, *gg;
7360 const char *name;
7361
7362 dynobj = elf_hash_table (info)->dynobj;
7363
7364 if (h->plt.offset != MINUS_ONE)
7365 {
7366 asection *s;
7367 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
7368
7369 /* This symbol has a stub. Set it up. */
7370
7371 BFD_ASSERT (h->dynindx != -1);
7372
7373 s = bfd_get_section_by_name (dynobj,
7374 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7375 BFD_ASSERT (s != NULL);
7376
7377 /* FIXME: Can h->dynindex be more than 64K? */
7378 if (h->dynindx & 0xffff0000)
7379 return FALSE;
7380
7381 /* Fill the stub. */
7382 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
7383 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
7384 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
7385 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
7386
7387 BFD_ASSERT (h->plt.offset <= s->size);
7388 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
7389
7390 /* Mark the symbol as undefined. plt.offset != -1 occurs
7391 only for the referenced symbol. */
7392 sym->st_shndx = SHN_UNDEF;
7393
7394 /* The run-time linker uses the st_value field of the symbol
7395 to reset the global offset table entry for this external
7396 to its stub address when unlinking a shared object. */
7397 sym->st_value = (s->output_section->vma + s->output_offset
7398 + h->plt.offset);
7399 }
7400
7401 BFD_ASSERT (h->dynindx != -1
7402 || h->forced_local);
7403
7404 sgot = mips_elf_got_section (dynobj, FALSE);
7405 BFD_ASSERT (sgot != NULL);
7406 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
7407 g = mips_elf_section_data (sgot)->u.got_info;
7408 BFD_ASSERT (g != NULL);
7409
7410 /* Run through the global symbol table, creating GOT entries for all
7411 the symbols that need them. */
7412 if (g->global_gotsym != NULL
7413 && h->dynindx >= g->global_gotsym->dynindx)
7414 {
7415 bfd_vma offset;
7416 bfd_vma value;
7417
7418 value = sym->st_value;
7419 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
7420 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
7421 }
7422
7423 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
7424 {
7425 struct mips_got_entry e, *p;
7426 bfd_vma entry;
7427 bfd_vma offset;
7428
7429 gg = g;
7430
7431 e.abfd = output_bfd;
7432 e.symndx = -1;
7433 e.d.h = (struct mips_elf_link_hash_entry *)h;
7434 e.tls_type = 0;
7435
7436 for (g = g->next; g->next != gg; g = g->next)
7437 {
7438 if (g->got_entries
7439 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
7440 &e)))
7441 {
7442 offset = p->gotidx;
7443 if (info->shared
7444 || (elf_hash_table (info)->dynamic_sections_created
7445 && p->d.h != NULL
7446 && p->d.h->root.def_dynamic
7447 && !p->d.h->root.def_regular))
7448 {
7449 /* Create an R_MIPS_REL32 relocation for this entry. Due to
7450 the various compatibility problems, it's easier to mock
7451 up an R_MIPS_32 or R_MIPS_64 relocation and leave
7452 mips_elf_create_dynamic_relocation to calculate the
7453 appropriate addend. */
7454 Elf_Internal_Rela rel[3];
7455
7456 memset (rel, 0, sizeof (rel));
7457 if (ABI_64_P (output_bfd))
7458 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
7459 else
7460 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
7461 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
7462
7463 entry = 0;
7464 if (! (mips_elf_create_dynamic_relocation
7465 (output_bfd, info, rel,
7466 e.d.h, NULL, sym->st_value, &entry, sgot)))
7467 return FALSE;
7468 }
7469 else
7470 entry = sym->st_value;
7471 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
7472 }
7473 }
7474 }
7475
7476 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
7477 name = h->root.root.string;
7478 if (strcmp (name, "_DYNAMIC") == 0
7479 || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0)
7480 sym->st_shndx = SHN_ABS;
7481 else if (strcmp (name, "_DYNAMIC_LINK") == 0
7482 || strcmp (name, "_DYNAMIC_LINKING") == 0)
7483 {
7484 sym->st_shndx = SHN_ABS;
7485 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7486 sym->st_value = 1;
7487 }
7488 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
7489 {
7490 sym->st_shndx = SHN_ABS;
7491 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7492 sym->st_value = elf_gp (output_bfd);
7493 }
7494 else if (SGI_COMPAT (output_bfd))
7495 {
7496 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
7497 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
7498 {
7499 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7500 sym->st_other = STO_PROTECTED;
7501 sym->st_value = 0;
7502 sym->st_shndx = SHN_MIPS_DATA;
7503 }
7504 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
7505 {
7506 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7507 sym->st_other = STO_PROTECTED;
7508 sym->st_value = mips_elf_hash_table (info)->procedure_count;
7509 sym->st_shndx = SHN_ABS;
7510 }
7511 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
7512 {
7513 if (h->type == STT_FUNC)
7514 sym->st_shndx = SHN_MIPS_TEXT;
7515 else if (h->type == STT_OBJECT)
7516 sym->st_shndx = SHN_MIPS_DATA;
7517 }
7518 }
7519
7520 /* Handle the IRIX6-specific symbols. */
7521 if (IRIX_COMPAT (output_bfd) == ict_irix6)
7522 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
7523
7524 if (! info->shared)
7525 {
7526 if (! mips_elf_hash_table (info)->use_rld_obj_head
7527 && (strcmp (name, "__rld_map") == 0
7528 || strcmp (name, "__RLD_MAP") == 0))
7529 {
7530 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
7531 BFD_ASSERT (s != NULL);
7532 sym->st_value = s->output_section->vma + s->output_offset;
7533 bfd_put_32 (output_bfd, 0, s->contents);
7534 if (mips_elf_hash_table (info)->rld_value == 0)
7535 mips_elf_hash_table (info)->rld_value = sym->st_value;
7536 }
7537 else if (mips_elf_hash_table (info)->use_rld_obj_head
7538 && strcmp (name, "__rld_obj_head") == 0)
7539 {
7540 /* IRIX6 does not use a .rld_map section. */
7541 if (IRIX_COMPAT (output_bfd) == ict_irix5
7542 || IRIX_COMPAT (output_bfd) == ict_none)
7543 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
7544 != NULL);
7545 mips_elf_hash_table (info)->rld_value = sym->st_value;
7546 }
7547 }
7548
7549 /* If this is a mips16 symbol, force the value to be even. */
7550 if (sym->st_other == STO_MIPS16)
7551 sym->st_value &= ~1;
7552
7553 return TRUE;
7554 }
7555
7556 /* Finish up the dynamic sections. */
7557
7558 bfd_boolean
7559 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
7560 struct bfd_link_info *info)
7561 {
7562 bfd *dynobj;
7563 asection *sdyn;
7564 asection *sgot;
7565 struct mips_got_info *gg, *g;
7566
7567 dynobj = elf_hash_table (info)->dynobj;
7568
7569 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
7570
7571 sgot = mips_elf_got_section (dynobj, FALSE);
7572 if (sgot == NULL)
7573 gg = g = NULL;
7574 else
7575 {
7576 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
7577 gg = mips_elf_section_data (sgot)->u.got_info;
7578 BFD_ASSERT (gg != NULL);
7579 g = mips_elf_got_for_ibfd (gg, output_bfd);
7580 BFD_ASSERT (g != NULL);
7581 }
7582
7583 if (elf_hash_table (info)->dynamic_sections_created)
7584 {
7585 bfd_byte *b;
7586
7587 BFD_ASSERT (sdyn != NULL);
7588 BFD_ASSERT (g != NULL);
7589
7590 for (b = sdyn->contents;
7591 b < sdyn->contents + sdyn->size;
7592 b += MIPS_ELF_DYN_SIZE (dynobj))
7593 {
7594 Elf_Internal_Dyn dyn;
7595 const char *name;
7596 size_t elemsize;
7597 asection *s;
7598 bfd_boolean swap_out_p;
7599
7600 /* Read in the current dynamic entry. */
7601 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
7602
7603 /* Assume that we're going to modify it and write it out. */
7604 swap_out_p = TRUE;
7605
7606 switch (dyn.d_tag)
7607 {
7608 case DT_RELENT:
7609 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7610 BFD_ASSERT (s != NULL);
7611 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
7612 break;
7613
7614 case DT_STRSZ:
7615 /* Rewrite DT_STRSZ. */
7616 dyn.d_un.d_val =
7617 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7618 break;
7619
7620 case DT_PLTGOT:
7621 name = ".got";
7622 s = bfd_get_section_by_name (output_bfd, name);
7623 BFD_ASSERT (s != NULL);
7624 dyn.d_un.d_ptr = s->vma;
7625 break;
7626
7627 case DT_MIPS_RLD_VERSION:
7628 dyn.d_un.d_val = 1; /* XXX */
7629 break;
7630
7631 case DT_MIPS_FLAGS:
7632 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
7633 break;
7634
7635 case DT_MIPS_TIME_STAMP:
7636 time ((time_t *) &dyn.d_un.d_val);
7637 break;
7638
7639 case DT_MIPS_ICHECKSUM:
7640 /* XXX FIXME: */
7641 swap_out_p = FALSE;
7642 break;
7643
7644 case DT_MIPS_IVERSION:
7645 /* XXX FIXME: */
7646 swap_out_p = FALSE;
7647 break;
7648
7649 case DT_MIPS_BASE_ADDRESS:
7650 s = output_bfd->sections;
7651 BFD_ASSERT (s != NULL);
7652 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
7653 break;
7654
7655 case DT_MIPS_LOCAL_GOTNO:
7656 dyn.d_un.d_val = g->local_gotno;
7657 break;
7658
7659 case DT_MIPS_UNREFEXTNO:
7660 /* The index into the dynamic symbol table which is the
7661 entry of the first external symbol that is not
7662 referenced within the same object. */
7663 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
7664 break;
7665
7666 case DT_MIPS_GOTSYM:
7667 if (gg->global_gotsym)
7668 {
7669 dyn.d_un.d_val = gg->global_gotsym->dynindx;
7670 break;
7671 }
7672 /* In case if we don't have global got symbols we default
7673 to setting DT_MIPS_GOTSYM to the same value as
7674 DT_MIPS_SYMTABNO, so we just fall through. */
7675
7676 case DT_MIPS_SYMTABNO:
7677 name = ".dynsym";
7678 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
7679 s = bfd_get_section_by_name (output_bfd, name);
7680 BFD_ASSERT (s != NULL);
7681
7682 dyn.d_un.d_val = s->size / elemsize;
7683 break;
7684
7685 case DT_MIPS_HIPAGENO:
7686 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO;
7687 break;
7688
7689 case DT_MIPS_RLD_MAP:
7690 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
7691 break;
7692
7693 case DT_MIPS_OPTIONS:
7694 s = (bfd_get_section_by_name
7695 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
7696 dyn.d_un.d_ptr = s->vma;
7697 break;
7698
7699 default:
7700 swap_out_p = FALSE;
7701 break;
7702 }
7703
7704 if (swap_out_p)
7705 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
7706 (dynobj, &dyn, b);
7707 }
7708 }
7709
7710 /* The first entry of the global offset table will be filled at
7711 runtime. The second entry will be used by some runtime loaders.
7712 This isn't the case of IRIX rld. */
7713 if (sgot != NULL && sgot->size > 0)
7714 {
7715 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents);
7716 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000,
7717 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
7718 }
7719
7720 if (sgot != NULL)
7721 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
7722 = MIPS_ELF_GOT_SIZE (output_bfd);
7723
7724 /* Generate dynamic relocations for the non-primary gots. */
7725 if (gg != NULL && gg->next)
7726 {
7727 Elf_Internal_Rela rel[3];
7728 bfd_vma addend = 0;
7729
7730 memset (rel, 0, sizeof (rel));
7731 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
7732
7733 for (g = gg->next; g->next != gg; g = g->next)
7734 {
7735 bfd_vma index = g->next->local_gotno + g->next->global_gotno
7736 + g->next->tls_gotno;
7737
7738 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
7739 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7740 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
7741 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
7742
7743 if (! info->shared)
7744 continue;
7745
7746 while (index < g->assigned_gotno)
7747 {
7748 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
7749 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
7750 if (!(mips_elf_create_dynamic_relocation
7751 (output_bfd, info, rel, NULL,
7752 bfd_abs_section_ptr,
7753 0, &addend, sgot)))
7754 return FALSE;
7755 BFD_ASSERT (addend == 0);
7756 }
7757 }
7758 }
7759
7760 /* The generation of dynamic relocations for the non-primary gots
7761 adds more dynamic relocations. We cannot count them until
7762 here. */
7763
7764 if (elf_hash_table (info)->dynamic_sections_created)
7765 {
7766 bfd_byte *b;
7767 bfd_boolean swap_out_p;
7768
7769 BFD_ASSERT (sdyn != NULL);
7770
7771 for (b = sdyn->contents;
7772 b < sdyn->contents + sdyn->size;
7773 b += MIPS_ELF_DYN_SIZE (dynobj))
7774 {
7775 Elf_Internal_Dyn dyn;
7776 asection *s;
7777
7778 /* Read in the current dynamic entry. */
7779 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
7780
7781 /* Assume that we're going to modify it and write it out. */
7782 swap_out_p = TRUE;
7783
7784 switch (dyn.d_tag)
7785 {
7786 case DT_RELSZ:
7787 /* Reduce DT_RELSZ to account for any relocations we
7788 decided not to make. This is for the n64 irix rld,
7789 which doesn't seem to apply any relocations if there
7790 are trailing null entries. */
7791 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7792 dyn.d_un.d_val = (s->reloc_count
7793 * (ABI_64_P (output_bfd)
7794 ? sizeof (Elf64_Mips_External_Rel)
7795 : sizeof (Elf32_External_Rel)));
7796 break;
7797
7798 default:
7799 swap_out_p = FALSE;
7800 break;
7801 }
7802
7803 if (swap_out_p)
7804 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
7805 (dynobj, &dyn, b);
7806 }
7807 }
7808
7809 {
7810 asection *s;
7811 Elf32_compact_rel cpt;
7812
7813 if (SGI_COMPAT (output_bfd))
7814 {
7815 /* Write .compact_rel section out. */
7816 s = bfd_get_section_by_name (dynobj, ".compact_rel");
7817 if (s != NULL)
7818 {
7819 cpt.id1 = 1;
7820 cpt.num = s->reloc_count;
7821 cpt.id2 = 2;
7822 cpt.offset = (s->output_section->filepos
7823 + sizeof (Elf32_External_compact_rel));
7824 cpt.reserved0 = 0;
7825 cpt.reserved1 = 0;
7826 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
7827 ((Elf32_External_compact_rel *)
7828 s->contents));
7829
7830 /* Clean up a dummy stub function entry in .text. */
7831 s = bfd_get_section_by_name (dynobj,
7832 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7833 if (s != NULL)
7834 {
7835 file_ptr dummy_offset;
7836
7837 BFD_ASSERT (s->size >= MIPS_FUNCTION_STUB_SIZE);
7838 dummy_offset = s->size - MIPS_FUNCTION_STUB_SIZE;
7839 memset (s->contents + dummy_offset, 0,
7840 MIPS_FUNCTION_STUB_SIZE);
7841 }
7842 }
7843 }
7844
7845 /* We need to sort the entries of the dynamic relocation section. */
7846
7847 s = mips_elf_rel_dyn_section (dynobj, FALSE);
7848
7849 if (s != NULL
7850 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
7851 {
7852 reldyn_sorting_bfd = output_bfd;
7853
7854 if (ABI_64_P (output_bfd))
7855 qsort ((Elf64_External_Rel *) s->contents + 1, s->reloc_count - 1,
7856 sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64);
7857 else
7858 qsort ((Elf32_External_Rel *) s->contents + 1, s->reloc_count - 1,
7859 sizeof (Elf32_External_Rel), sort_dynamic_relocs);
7860 }
7861 }
7862
7863 return TRUE;
7864 }
7865
7866
7867 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
7868
7869 static void
7870 mips_set_isa_flags (bfd *abfd)
7871 {
7872 flagword val;
7873
7874 switch (bfd_get_mach (abfd))
7875 {
7876 default:
7877 case bfd_mach_mips3000:
7878 val = E_MIPS_ARCH_1;
7879 break;
7880
7881 case bfd_mach_mips3900:
7882 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
7883 break;
7884
7885 case bfd_mach_mips6000:
7886 val = E_MIPS_ARCH_2;
7887 break;
7888
7889 case bfd_mach_mips4000:
7890 case bfd_mach_mips4300:
7891 case bfd_mach_mips4400:
7892 case bfd_mach_mips4600:
7893 val = E_MIPS_ARCH_3;
7894 break;
7895
7896 case bfd_mach_mips4010:
7897 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
7898 break;
7899
7900 case bfd_mach_mips4100:
7901 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
7902 break;
7903
7904 case bfd_mach_mips4111:
7905 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
7906 break;
7907
7908 case bfd_mach_mips4120:
7909 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
7910 break;
7911
7912 case bfd_mach_mips4650:
7913 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
7914 break;
7915
7916 case bfd_mach_mips5400:
7917 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
7918 break;
7919
7920 case bfd_mach_mips5500:
7921 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
7922 break;
7923
7924 case bfd_mach_mips9000:
7925 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
7926 break;
7927
7928 case bfd_mach_mips5000:
7929 case bfd_mach_mips7000:
7930 case bfd_mach_mips8000:
7931 case bfd_mach_mips10000:
7932 case bfd_mach_mips12000:
7933 val = E_MIPS_ARCH_4;
7934 break;
7935
7936 case bfd_mach_mips5:
7937 val = E_MIPS_ARCH_5;
7938 break;
7939
7940 case bfd_mach_mips_sb1:
7941 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
7942 break;
7943
7944 case bfd_mach_mipsisa32:
7945 val = E_MIPS_ARCH_32;
7946 break;
7947
7948 case bfd_mach_mipsisa64:
7949 val = E_MIPS_ARCH_64;
7950 break;
7951
7952 case bfd_mach_mipsisa32r2:
7953 val = E_MIPS_ARCH_32R2;
7954 break;
7955
7956 case bfd_mach_mipsisa64r2:
7957 val = E_MIPS_ARCH_64R2;
7958 break;
7959 }
7960 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
7961 elf_elfheader (abfd)->e_flags |= val;
7962
7963 }
7964
7965
7966 /* The final processing done just before writing out a MIPS ELF object
7967 file. This gets the MIPS architecture right based on the machine
7968 number. This is used by both the 32-bit and the 64-bit ABI. */
7969
7970 void
7971 _bfd_mips_elf_final_write_processing (bfd *abfd,
7972 bfd_boolean linker ATTRIBUTE_UNUSED)
7973 {
7974 unsigned int i;
7975 Elf_Internal_Shdr **hdrpp;
7976 const char *name;
7977 asection *sec;
7978
7979 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
7980 is nonzero. This is for compatibility with old objects, which used
7981 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
7982 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
7983 mips_set_isa_flags (abfd);
7984
7985 /* Set the sh_info field for .gptab sections and other appropriate
7986 info for each special section. */
7987 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
7988 i < elf_numsections (abfd);
7989 i++, hdrpp++)
7990 {
7991 switch ((*hdrpp)->sh_type)
7992 {
7993 case SHT_MIPS_MSYM:
7994 case SHT_MIPS_LIBLIST:
7995 sec = bfd_get_section_by_name (abfd, ".dynstr");
7996 if (sec != NULL)
7997 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
7998 break;
7999
8000 case SHT_MIPS_GPTAB:
8001 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
8002 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
8003 BFD_ASSERT (name != NULL
8004 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
8005 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
8006 BFD_ASSERT (sec != NULL);
8007 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
8008 break;
8009
8010 case SHT_MIPS_CONTENT:
8011 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
8012 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
8013 BFD_ASSERT (name != NULL
8014 && strncmp (name, ".MIPS.content",
8015 sizeof ".MIPS.content" - 1) == 0);
8016 sec = bfd_get_section_by_name (abfd,
8017 name + sizeof ".MIPS.content" - 1);
8018 BFD_ASSERT (sec != NULL);
8019 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8020 break;
8021
8022 case SHT_MIPS_SYMBOL_LIB:
8023 sec = bfd_get_section_by_name (abfd, ".dynsym");
8024 if (sec != NULL)
8025 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8026 sec = bfd_get_section_by_name (abfd, ".liblist");
8027 if (sec != NULL)
8028 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
8029 break;
8030
8031 case SHT_MIPS_EVENTS:
8032 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
8033 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
8034 BFD_ASSERT (name != NULL);
8035 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
8036 sec = bfd_get_section_by_name (abfd,
8037 name + sizeof ".MIPS.events" - 1);
8038 else
8039 {
8040 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
8041 sizeof ".MIPS.post_rel" - 1) == 0);
8042 sec = bfd_get_section_by_name (abfd,
8043 (name
8044 + sizeof ".MIPS.post_rel" - 1));
8045 }
8046 BFD_ASSERT (sec != NULL);
8047 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8048 break;
8049
8050 }
8051 }
8052 }
8053 \f
8054 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
8055 segments. */
8056
8057 int
8058 _bfd_mips_elf_additional_program_headers (bfd *abfd)
8059 {
8060 asection *s;
8061 int ret = 0;
8062
8063 /* See if we need a PT_MIPS_REGINFO segment. */
8064 s = bfd_get_section_by_name (abfd, ".reginfo");
8065 if (s && (s->flags & SEC_LOAD))
8066 ++ret;
8067
8068 /* See if we need a PT_MIPS_OPTIONS segment. */
8069 if (IRIX_COMPAT (abfd) == ict_irix6
8070 && bfd_get_section_by_name (abfd,
8071 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
8072 ++ret;
8073
8074 /* See if we need a PT_MIPS_RTPROC segment. */
8075 if (IRIX_COMPAT (abfd) == ict_irix5
8076 && bfd_get_section_by_name (abfd, ".dynamic")
8077 && bfd_get_section_by_name (abfd, ".mdebug"))
8078 ++ret;
8079
8080 return ret;
8081 }
8082
8083 /* Modify the segment map for an IRIX5 executable. */
8084
8085 bfd_boolean
8086 _bfd_mips_elf_modify_segment_map (bfd *abfd,
8087 struct bfd_link_info *info ATTRIBUTE_UNUSED)
8088 {
8089 asection *s;
8090 struct elf_segment_map *m, **pm;
8091 bfd_size_type amt;
8092
8093 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
8094 segment. */
8095 s = bfd_get_section_by_name (abfd, ".reginfo");
8096 if (s != NULL && (s->flags & SEC_LOAD) != 0)
8097 {
8098 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
8099 if (m->p_type == PT_MIPS_REGINFO)
8100 break;
8101 if (m == NULL)
8102 {
8103 amt = sizeof *m;
8104 m = bfd_zalloc (abfd, amt);
8105 if (m == NULL)
8106 return FALSE;
8107
8108 m->p_type = PT_MIPS_REGINFO;
8109 m->count = 1;
8110 m->sections[0] = s;
8111
8112 /* We want to put it after the PHDR and INTERP segments. */
8113 pm = &elf_tdata (abfd)->segment_map;
8114 while (*pm != NULL
8115 && ((*pm)->p_type == PT_PHDR
8116 || (*pm)->p_type == PT_INTERP))
8117 pm = &(*pm)->next;
8118
8119 m->next = *pm;
8120 *pm = m;
8121 }
8122 }
8123
8124 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
8125 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
8126 PT_MIPS_OPTIONS segment immediately following the program header
8127 table. */
8128 if (NEWABI_P (abfd)
8129 /* On non-IRIX6 new abi, we'll have already created a segment
8130 for this section, so don't create another. I'm not sure this
8131 is not also the case for IRIX 6, but I can't test it right
8132 now. */
8133 && IRIX_COMPAT (abfd) == ict_irix6)
8134 {
8135 for (s = abfd->sections; s; s = s->next)
8136 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
8137 break;
8138
8139 if (s)
8140 {
8141 struct elf_segment_map *options_segment;
8142
8143 pm = &elf_tdata (abfd)->segment_map;
8144 while (*pm != NULL
8145 && ((*pm)->p_type == PT_PHDR
8146 || (*pm)->p_type == PT_INTERP))
8147 pm = &(*pm)->next;
8148
8149 amt = sizeof (struct elf_segment_map);
8150 options_segment = bfd_zalloc (abfd, amt);
8151 options_segment->next = *pm;
8152 options_segment->p_type = PT_MIPS_OPTIONS;
8153 options_segment->p_flags = PF_R;
8154 options_segment->p_flags_valid = TRUE;
8155 options_segment->count = 1;
8156 options_segment->sections[0] = s;
8157 *pm = options_segment;
8158 }
8159 }
8160 else
8161 {
8162 if (IRIX_COMPAT (abfd) == ict_irix5)
8163 {
8164 /* If there are .dynamic and .mdebug sections, we make a room
8165 for the RTPROC header. FIXME: Rewrite without section names. */
8166 if (bfd_get_section_by_name (abfd, ".interp") == NULL
8167 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
8168 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
8169 {
8170 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
8171 if (m->p_type == PT_MIPS_RTPROC)
8172 break;
8173 if (m == NULL)
8174 {
8175 amt = sizeof *m;
8176 m = bfd_zalloc (abfd, amt);
8177 if (m == NULL)
8178 return FALSE;
8179
8180 m->p_type = PT_MIPS_RTPROC;
8181
8182 s = bfd_get_section_by_name (abfd, ".rtproc");
8183 if (s == NULL)
8184 {
8185 m->count = 0;
8186 m->p_flags = 0;
8187 m->p_flags_valid = 1;
8188 }
8189 else
8190 {
8191 m->count = 1;
8192 m->sections[0] = s;
8193 }
8194
8195 /* We want to put it after the DYNAMIC segment. */
8196 pm = &elf_tdata (abfd)->segment_map;
8197 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
8198 pm = &(*pm)->next;
8199 if (*pm != NULL)
8200 pm = &(*pm)->next;
8201
8202 m->next = *pm;
8203 *pm = m;
8204 }
8205 }
8206 }
8207 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
8208 .dynstr, .dynsym, and .hash sections, and everything in
8209 between. */
8210 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
8211 pm = &(*pm)->next)
8212 if ((*pm)->p_type == PT_DYNAMIC)
8213 break;
8214 m = *pm;
8215 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
8216 {
8217 /* For a normal mips executable the permissions for the PT_DYNAMIC
8218 segment are read, write and execute. We do that here since
8219 the code in elf.c sets only the read permission. This matters
8220 sometimes for the dynamic linker. */
8221 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
8222 {
8223 m->p_flags = PF_R | PF_W | PF_X;
8224 m->p_flags_valid = 1;
8225 }
8226 }
8227 if (m != NULL
8228 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
8229 {
8230 static const char *sec_names[] =
8231 {
8232 ".dynamic", ".dynstr", ".dynsym", ".hash"
8233 };
8234 bfd_vma low, high;
8235 unsigned int i, c;
8236 struct elf_segment_map *n;
8237
8238 low = ~(bfd_vma) 0;
8239 high = 0;
8240 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
8241 {
8242 s = bfd_get_section_by_name (abfd, sec_names[i]);
8243 if (s != NULL && (s->flags & SEC_LOAD) != 0)
8244 {
8245 bfd_size_type sz;
8246
8247 if (low > s->vma)
8248 low = s->vma;
8249 sz = s->size;
8250 if (high < s->vma + sz)
8251 high = s->vma + sz;
8252 }
8253 }
8254
8255 c = 0;
8256 for (s = abfd->sections; s != NULL; s = s->next)
8257 if ((s->flags & SEC_LOAD) != 0
8258 && s->vma >= low
8259 && s->vma + s->size <= high)
8260 ++c;
8261
8262 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
8263 n = bfd_zalloc (abfd, amt);
8264 if (n == NULL)
8265 return FALSE;
8266 *n = *m;
8267 n->count = c;
8268
8269 i = 0;
8270 for (s = abfd->sections; s != NULL; s = s->next)
8271 {
8272 if ((s->flags & SEC_LOAD) != 0
8273 && s->vma >= low
8274 && s->vma + s->size <= high)
8275 {
8276 n->sections[i] = s;
8277 ++i;
8278 }
8279 }
8280
8281 *pm = n;
8282 }
8283 }
8284
8285 return TRUE;
8286 }
8287 \f
8288 /* Return the section that should be marked against GC for a given
8289 relocation. */
8290
8291 asection *
8292 _bfd_mips_elf_gc_mark_hook (asection *sec,
8293 struct bfd_link_info *info ATTRIBUTE_UNUSED,
8294 Elf_Internal_Rela *rel,
8295 struct elf_link_hash_entry *h,
8296 Elf_Internal_Sym *sym)
8297 {
8298 /* ??? Do mips16 stub sections need to be handled special? */
8299
8300 if (h != NULL)
8301 {
8302 switch (ELF_R_TYPE (sec->owner, rel->r_info))
8303 {
8304 case R_MIPS_GNU_VTINHERIT:
8305 case R_MIPS_GNU_VTENTRY:
8306 break;
8307
8308 default:
8309 switch (h->root.type)
8310 {
8311 case bfd_link_hash_defined:
8312 case bfd_link_hash_defweak:
8313 return h->root.u.def.section;
8314
8315 case bfd_link_hash_common:
8316 return h->root.u.c.p->section;
8317
8318 default:
8319 break;
8320 }
8321 }
8322 }
8323 else
8324 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
8325
8326 return NULL;
8327 }
8328
8329 /* Update the got entry reference counts for the section being removed. */
8330
8331 bfd_boolean
8332 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
8333 struct bfd_link_info *info ATTRIBUTE_UNUSED,
8334 asection *sec ATTRIBUTE_UNUSED,
8335 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
8336 {
8337 #if 0
8338 Elf_Internal_Shdr *symtab_hdr;
8339 struct elf_link_hash_entry **sym_hashes;
8340 bfd_signed_vma *local_got_refcounts;
8341 const Elf_Internal_Rela *rel, *relend;
8342 unsigned long r_symndx;
8343 struct elf_link_hash_entry *h;
8344
8345 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8346 sym_hashes = elf_sym_hashes (abfd);
8347 local_got_refcounts = elf_local_got_refcounts (abfd);
8348
8349 relend = relocs + sec->reloc_count;
8350 for (rel = relocs; rel < relend; rel++)
8351 switch (ELF_R_TYPE (abfd, rel->r_info))
8352 {
8353 case R_MIPS_GOT16:
8354 case R_MIPS_CALL16:
8355 case R_MIPS_CALL_HI16:
8356 case R_MIPS_CALL_LO16:
8357 case R_MIPS_GOT_HI16:
8358 case R_MIPS_GOT_LO16:
8359 case R_MIPS_GOT_DISP:
8360 case R_MIPS_GOT_PAGE:
8361 case R_MIPS_GOT_OFST:
8362 /* ??? It would seem that the existing MIPS code does no sort
8363 of reference counting or whatnot on its GOT and PLT entries,
8364 so it is not possible to garbage collect them at this time. */
8365 break;
8366
8367 default:
8368 break;
8369 }
8370 #endif
8371
8372 return TRUE;
8373 }
8374 \f
8375 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
8376 hiding the old indirect symbol. Process additional relocation
8377 information. Also called for weakdefs, in which case we just let
8378 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
8379
8380 void
8381 _bfd_mips_elf_copy_indirect_symbol (const struct elf_backend_data *bed,
8382 struct elf_link_hash_entry *dir,
8383 struct elf_link_hash_entry *ind)
8384 {
8385 struct mips_elf_link_hash_entry *dirmips, *indmips;
8386
8387 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
8388
8389 if (ind->root.type != bfd_link_hash_indirect)
8390 return;
8391
8392 dirmips = (struct mips_elf_link_hash_entry *) dir;
8393 indmips = (struct mips_elf_link_hash_entry *) ind;
8394 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
8395 if (indmips->readonly_reloc)
8396 dirmips->readonly_reloc = TRUE;
8397 if (indmips->no_fn_stub)
8398 dirmips->no_fn_stub = TRUE;
8399
8400 if (dirmips->tls_type == 0)
8401 dirmips->tls_type = indmips->tls_type;
8402 else
8403 BFD_ASSERT (indmips->tls_type == 0);
8404 }
8405
8406 void
8407 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
8408 struct elf_link_hash_entry *entry,
8409 bfd_boolean force_local)
8410 {
8411 bfd *dynobj;
8412 asection *got;
8413 struct mips_got_info *g;
8414 struct mips_elf_link_hash_entry *h;
8415
8416 h = (struct mips_elf_link_hash_entry *) entry;
8417 if (h->forced_local)
8418 return;
8419 h->forced_local = force_local;
8420
8421 dynobj = elf_hash_table (info)->dynobj;
8422 if (dynobj != NULL && force_local && h->root.type != STT_TLS)
8423 {
8424 got = mips_elf_got_section (dynobj, FALSE);
8425 g = mips_elf_section_data (got)->u.got_info;
8426
8427 if (g->next)
8428 {
8429 struct mips_got_entry e;
8430 struct mips_got_info *gg = g;
8431
8432 /* Since we're turning what used to be a global symbol into a
8433 local one, bump up the number of local entries of each GOT
8434 that had an entry for it. This will automatically decrease
8435 the number of global entries, since global_gotno is actually
8436 the upper limit of global entries. */
8437 e.abfd = dynobj;
8438 e.symndx = -1;
8439 e.d.h = h;
8440 e.tls_type = 0;
8441
8442 for (g = g->next; g != gg; g = g->next)
8443 if (htab_find (g->got_entries, &e))
8444 {
8445 BFD_ASSERT (g->global_gotno > 0);
8446 g->local_gotno++;
8447 g->global_gotno--;
8448 }
8449
8450 /* If this was a global symbol forced into the primary GOT, we
8451 no longer need an entry for it. We can't release the entry
8452 at this point, but we must at least stop counting it as one
8453 of the symbols that required a forced got entry. */
8454 if (h->root.got.offset == 2)
8455 {
8456 BFD_ASSERT (gg->assigned_gotno > 0);
8457 gg->assigned_gotno--;
8458 }
8459 }
8460 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
8461 /* If we haven't got through GOT allocation yet, just bump up the
8462 number of local entries, as this symbol won't be counted as
8463 global. */
8464 g->local_gotno++;
8465 else if (h->root.got.offset == 1)
8466 {
8467 /* If we're past non-multi-GOT allocation and this symbol had
8468 been marked for a global got entry, give it a local entry
8469 instead. */
8470 BFD_ASSERT (g->global_gotno > 0);
8471 g->local_gotno++;
8472 g->global_gotno--;
8473 }
8474 }
8475
8476 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
8477 }
8478 \f
8479 #define PDR_SIZE 32
8480
8481 bfd_boolean
8482 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
8483 struct bfd_link_info *info)
8484 {
8485 asection *o;
8486 bfd_boolean ret = FALSE;
8487 unsigned char *tdata;
8488 size_t i, skip;
8489
8490 o = bfd_get_section_by_name (abfd, ".pdr");
8491 if (! o)
8492 return FALSE;
8493 if (o->size == 0)
8494 return FALSE;
8495 if (o->size % PDR_SIZE != 0)
8496 return FALSE;
8497 if (o->output_section != NULL
8498 && bfd_is_abs_section (o->output_section))
8499 return FALSE;
8500
8501 tdata = bfd_zmalloc (o->size / PDR_SIZE);
8502 if (! tdata)
8503 return FALSE;
8504
8505 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8506 info->keep_memory);
8507 if (!cookie->rels)
8508 {
8509 free (tdata);
8510 return FALSE;
8511 }
8512
8513 cookie->rel = cookie->rels;
8514 cookie->relend = cookie->rels + o->reloc_count;
8515
8516 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
8517 {
8518 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
8519 {
8520 tdata[i] = 1;
8521 skip ++;
8522 }
8523 }
8524
8525 if (skip != 0)
8526 {
8527 mips_elf_section_data (o)->u.tdata = tdata;
8528 o->size -= skip * PDR_SIZE;
8529 ret = TRUE;
8530 }
8531 else
8532 free (tdata);
8533
8534 if (! info->keep_memory)
8535 free (cookie->rels);
8536
8537 return ret;
8538 }
8539
8540 bfd_boolean
8541 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
8542 {
8543 if (strcmp (sec->name, ".pdr") == 0)
8544 return TRUE;
8545 return FALSE;
8546 }
8547
8548 bfd_boolean
8549 _bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
8550 bfd_byte *contents)
8551 {
8552 bfd_byte *to, *from, *end;
8553 int i;
8554
8555 if (strcmp (sec->name, ".pdr") != 0)
8556 return FALSE;
8557
8558 if (mips_elf_section_data (sec)->u.tdata == NULL)
8559 return FALSE;
8560
8561 to = contents;
8562 end = contents + sec->size;
8563 for (from = contents, i = 0;
8564 from < end;
8565 from += PDR_SIZE, i++)
8566 {
8567 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
8568 continue;
8569 if (to != from)
8570 memcpy (to, from, PDR_SIZE);
8571 to += PDR_SIZE;
8572 }
8573 bfd_set_section_contents (output_bfd, sec->output_section, contents,
8574 sec->output_offset, sec->size);
8575 return TRUE;
8576 }
8577 \f
8578 /* MIPS ELF uses a special find_nearest_line routine in order the
8579 handle the ECOFF debugging information. */
8580
8581 struct mips_elf_find_line
8582 {
8583 struct ecoff_debug_info d;
8584 struct ecoff_find_line i;
8585 };
8586
8587 bfd_boolean
8588 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
8589 asymbol **symbols, bfd_vma offset,
8590 const char **filename_ptr,
8591 const char **functionname_ptr,
8592 unsigned int *line_ptr)
8593 {
8594 asection *msec;
8595
8596 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
8597 filename_ptr, functionname_ptr,
8598 line_ptr))
8599 return TRUE;
8600
8601 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
8602 filename_ptr, functionname_ptr,
8603 line_ptr, ABI_64_P (abfd) ? 8 : 0,
8604 &elf_tdata (abfd)->dwarf2_find_line_info))
8605 return TRUE;
8606
8607 msec = bfd_get_section_by_name (abfd, ".mdebug");
8608 if (msec != NULL)
8609 {
8610 flagword origflags;
8611 struct mips_elf_find_line *fi;
8612 const struct ecoff_debug_swap * const swap =
8613 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
8614
8615 /* If we are called during a link, mips_elf_final_link may have
8616 cleared the SEC_HAS_CONTENTS field. We force it back on here
8617 if appropriate (which it normally will be). */
8618 origflags = msec->flags;
8619 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
8620 msec->flags |= SEC_HAS_CONTENTS;
8621
8622 fi = elf_tdata (abfd)->find_line_info;
8623 if (fi == NULL)
8624 {
8625 bfd_size_type external_fdr_size;
8626 char *fraw_src;
8627 char *fraw_end;
8628 struct fdr *fdr_ptr;
8629 bfd_size_type amt = sizeof (struct mips_elf_find_line);
8630
8631 fi = bfd_zalloc (abfd, amt);
8632 if (fi == NULL)
8633 {
8634 msec->flags = origflags;
8635 return FALSE;
8636 }
8637
8638 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
8639 {
8640 msec->flags = origflags;
8641 return FALSE;
8642 }
8643
8644 /* Swap in the FDR information. */
8645 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
8646 fi->d.fdr = bfd_alloc (abfd, amt);
8647 if (fi->d.fdr == NULL)
8648 {
8649 msec->flags = origflags;
8650 return FALSE;
8651 }
8652 external_fdr_size = swap->external_fdr_size;
8653 fdr_ptr = fi->d.fdr;
8654 fraw_src = (char *) fi->d.external_fdr;
8655 fraw_end = (fraw_src
8656 + fi->d.symbolic_header.ifdMax * external_fdr_size);
8657 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
8658 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
8659
8660 elf_tdata (abfd)->find_line_info = fi;
8661
8662 /* Note that we don't bother to ever free this information.
8663 find_nearest_line is either called all the time, as in
8664 objdump -l, so the information should be saved, or it is
8665 rarely called, as in ld error messages, so the memory
8666 wasted is unimportant. Still, it would probably be a
8667 good idea for free_cached_info to throw it away. */
8668 }
8669
8670 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
8671 &fi->i, filename_ptr, functionname_ptr,
8672 line_ptr))
8673 {
8674 msec->flags = origflags;
8675 return TRUE;
8676 }
8677
8678 msec->flags = origflags;
8679 }
8680
8681 /* Fall back on the generic ELF find_nearest_line routine. */
8682
8683 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
8684 filename_ptr, functionname_ptr,
8685 line_ptr);
8686 }
8687
8688 bfd_boolean
8689 _bfd_mips_elf_find_inliner_info (bfd *abfd,
8690 const char **filename_ptr,
8691 const char **functionname_ptr,
8692 unsigned int *line_ptr)
8693 {
8694 bfd_boolean found;
8695 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8696 functionname_ptr, line_ptr,
8697 & elf_tdata (abfd)->dwarf2_find_line_info);
8698 return found;
8699 }
8700
8701 \f
8702 /* When are writing out the .options or .MIPS.options section,
8703 remember the bytes we are writing out, so that we can install the
8704 GP value in the section_processing routine. */
8705
8706 bfd_boolean
8707 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
8708 const void *location,
8709 file_ptr offset, bfd_size_type count)
8710 {
8711 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
8712 {
8713 bfd_byte *c;
8714
8715 if (elf_section_data (section) == NULL)
8716 {
8717 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
8718 section->used_by_bfd = bfd_zalloc (abfd, amt);
8719 if (elf_section_data (section) == NULL)
8720 return FALSE;
8721 }
8722 c = mips_elf_section_data (section)->u.tdata;
8723 if (c == NULL)
8724 {
8725 c = bfd_zalloc (abfd, section->size);
8726 if (c == NULL)
8727 return FALSE;
8728 mips_elf_section_data (section)->u.tdata = c;
8729 }
8730
8731 memcpy (c + offset, location, count);
8732 }
8733
8734 return _bfd_elf_set_section_contents (abfd, section, location, offset,
8735 count);
8736 }
8737
8738 /* This is almost identical to bfd_generic_get_... except that some
8739 MIPS relocations need to be handled specially. Sigh. */
8740
8741 bfd_byte *
8742 _bfd_elf_mips_get_relocated_section_contents
8743 (bfd *abfd,
8744 struct bfd_link_info *link_info,
8745 struct bfd_link_order *link_order,
8746 bfd_byte *data,
8747 bfd_boolean relocatable,
8748 asymbol **symbols)
8749 {
8750 /* Get enough memory to hold the stuff */
8751 bfd *input_bfd = link_order->u.indirect.section->owner;
8752 asection *input_section = link_order->u.indirect.section;
8753 bfd_size_type sz;
8754
8755 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
8756 arelent **reloc_vector = NULL;
8757 long reloc_count;
8758
8759 if (reloc_size < 0)
8760 goto error_return;
8761
8762 reloc_vector = bfd_malloc (reloc_size);
8763 if (reloc_vector == NULL && reloc_size != 0)
8764 goto error_return;
8765
8766 /* read in the section */
8767 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
8768 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
8769 goto error_return;
8770
8771 reloc_count = bfd_canonicalize_reloc (input_bfd,
8772 input_section,
8773 reloc_vector,
8774 symbols);
8775 if (reloc_count < 0)
8776 goto error_return;
8777
8778 if (reloc_count > 0)
8779 {
8780 arelent **parent;
8781 /* for mips */
8782 int gp_found;
8783 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
8784
8785 {
8786 struct bfd_hash_entry *h;
8787 struct bfd_link_hash_entry *lh;
8788 /* Skip all this stuff if we aren't mixing formats. */
8789 if (abfd && input_bfd
8790 && abfd->xvec == input_bfd->xvec)
8791 lh = 0;
8792 else
8793 {
8794 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
8795 lh = (struct bfd_link_hash_entry *) h;
8796 }
8797 lookup:
8798 if (lh)
8799 {
8800 switch (lh->type)
8801 {
8802 case bfd_link_hash_undefined:
8803 case bfd_link_hash_undefweak:
8804 case bfd_link_hash_common:
8805 gp_found = 0;
8806 break;
8807 case bfd_link_hash_defined:
8808 case bfd_link_hash_defweak:
8809 gp_found = 1;
8810 gp = lh->u.def.value;
8811 break;
8812 case bfd_link_hash_indirect:
8813 case bfd_link_hash_warning:
8814 lh = lh->u.i.link;
8815 /* @@FIXME ignoring warning for now */
8816 goto lookup;
8817 case bfd_link_hash_new:
8818 default:
8819 abort ();
8820 }
8821 }
8822 else
8823 gp_found = 0;
8824 }
8825 /* end mips */
8826 for (parent = reloc_vector; *parent != NULL; parent++)
8827 {
8828 char *error_message = NULL;
8829 bfd_reloc_status_type r;
8830
8831 /* Specific to MIPS: Deal with relocation types that require
8832 knowing the gp of the output bfd. */
8833 asymbol *sym = *(*parent)->sym_ptr_ptr;
8834
8835 /* If we've managed to find the gp and have a special
8836 function for the relocation then go ahead, else default
8837 to the generic handling. */
8838 if (gp_found
8839 && (*parent)->howto->special_function
8840 == _bfd_mips_elf32_gprel16_reloc)
8841 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
8842 input_section, relocatable,
8843 data, gp);
8844 else
8845 r = bfd_perform_relocation (input_bfd, *parent, data,
8846 input_section,
8847 relocatable ? abfd : NULL,
8848 &error_message);
8849
8850 if (relocatable)
8851 {
8852 asection *os = input_section->output_section;
8853
8854 /* A partial link, so keep the relocs */
8855 os->orelocation[os->reloc_count] = *parent;
8856 os->reloc_count++;
8857 }
8858
8859 if (r != bfd_reloc_ok)
8860 {
8861 switch (r)
8862 {
8863 case bfd_reloc_undefined:
8864 if (!((*link_info->callbacks->undefined_symbol)
8865 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8866 input_bfd, input_section, (*parent)->address,
8867 TRUE)))
8868 goto error_return;
8869 break;
8870 case bfd_reloc_dangerous:
8871 BFD_ASSERT (error_message != NULL);
8872 if (!((*link_info->callbacks->reloc_dangerous)
8873 (link_info, error_message, input_bfd, input_section,
8874 (*parent)->address)))
8875 goto error_return;
8876 break;
8877 case bfd_reloc_overflow:
8878 if (!((*link_info->callbacks->reloc_overflow)
8879 (link_info, NULL,
8880 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
8881 (*parent)->howto->name, (*parent)->addend,
8882 input_bfd, input_section, (*parent)->address)))
8883 goto error_return;
8884 break;
8885 case bfd_reloc_outofrange:
8886 default:
8887 abort ();
8888 break;
8889 }
8890
8891 }
8892 }
8893 }
8894 if (reloc_vector != NULL)
8895 free (reloc_vector);
8896 return data;
8897
8898 error_return:
8899 if (reloc_vector != NULL)
8900 free (reloc_vector);
8901 return NULL;
8902 }
8903 \f
8904 /* Create a MIPS ELF linker hash table. */
8905
8906 struct bfd_link_hash_table *
8907 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
8908 {
8909 struct mips_elf_link_hash_table *ret;
8910 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
8911
8912 ret = bfd_malloc (amt);
8913 if (ret == NULL)
8914 return NULL;
8915
8916 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
8917 mips_elf_link_hash_newfunc))
8918 {
8919 free (ret);
8920 return NULL;
8921 }
8922
8923 #if 0
8924 /* We no longer use this. */
8925 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
8926 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
8927 #endif
8928 ret->procedure_count = 0;
8929 ret->compact_rel_size = 0;
8930 ret->use_rld_obj_head = FALSE;
8931 ret->rld_value = 0;
8932 ret->mips16_stubs_seen = FALSE;
8933
8934 return &ret->root.root;
8935 }
8936 \f
8937 /* We need to use a special link routine to handle the .reginfo and
8938 the .mdebug sections. We need to merge all instances of these
8939 sections together, not write them all out sequentially. */
8940
8941 bfd_boolean
8942 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
8943 {
8944 asection *o;
8945 struct bfd_link_order *p;
8946 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
8947 asection *rtproc_sec;
8948 Elf32_RegInfo reginfo;
8949 struct ecoff_debug_info debug;
8950 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8951 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
8952 HDRR *symhdr = &debug.symbolic_header;
8953 void *mdebug_handle = NULL;
8954 asection *s;
8955 EXTR esym;
8956 unsigned int i;
8957 bfd_size_type amt;
8958
8959 static const char * const secname[] =
8960 {
8961 ".text", ".init", ".fini", ".data",
8962 ".rodata", ".sdata", ".sbss", ".bss"
8963 };
8964 static const int sc[] =
8965 {
8966 scText, scInit, scFini, scData,
8967 scRData, scSData, scSBss, scBss
8968 };
8969
8970 /* We'd carefully arranged the dynamic symbol indices, and then the
8971 generic size_dynamic_sections renumbered them out from under us.
8972 Rather than trying somehow to prevent the renumbering, just do
8973 the sort again. */
8974 if (elf_hash_table (info)->dynamic_sections_created)
8975 {
8976 bfd *dynobj;
8977 asection *got;
8978 struct mips_got_info *g;
8979 bfd_size_type dynsecsymcount;
8980
8981 /* When we resort, we must tell mips_elf_sort_hash_table what
8982 the lowest index it may use is. That's the number of section
8983 symbols we're going to add. The generic ELF linker only
8984 adds these symbols when building a shared object. Note that
8985 we count the sections after (possibly) removing the .options
8986 section above. */
8987
8988 dynsecsymcount = 0;
8989 if (info->shared)
8990 {
8991 asection * p;
8992
8993 for (p = abfd->sections; p ; p = p->next)
8994 if ((p->flags & SEC_EXCLUDE) == 0
8995 && (p->flags & SEC_ALLOC) != 0
8996 && !(*bed->elf_backend_omit_section_dynsym) (abfd, info, p))
8997 ++ dynsecsymcount;
8998 }
8999
9000 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
9001 return FALSE;
9002
9003 /* Make sure we didn't grow the global .got region. */
9004 dynobj = elf_hash_table (info)->dynobj;
9005 got = mips_elf_got_section (dynobj, FALSE);
9006 g = mips_elf_section_data (got)->u.got_info;
9007
9008 if (g->global_gotsym != NULL)
9009 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
9010 - g->global_gotsym->dynindx)
9011 <= g->global_gotno);
9012 }
9013
9014 /* Get a value for the GP register. */
9015 if (elf_gp (abfd) == 0)
9016 {
9017 struct bfd_link_hash_entry *h;
9018
9019 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
9020 if (h != NULL && h->type == bfd_link_hash_defined)
9021 elf_gp (abfd) = (h->u.def.value
9022 + h->u.def.section->output_section->vma
9023 + h->u.def.section->output_offset);
9024 else if (info->relocatable)
9025 {
9026 bfd_vma lo = MINUS_ONE;
9027
9028 /* Find the GP-relative section with the lowest offset. */
9029 for (o = abfd->sections; o != NULL; o = o->next)
9030 if (o->vma < lo
9031 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
9032 lo = o->vma;
9033
9034 /* And calculate GP relative to that. */
9035 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd);
9036 }
9037 else
9038 {
9039 /* If the relocate_section function needs to do a reloc
9040 involving the GP value, it should make a reloc_dangerous
9041 callback to warn that GP is not defined. */
9042 }
9043 }
9044
9045 /* Go through the sections and collect the .reginfo and .mdebug
9046 information. */
9047 reginfo_sec = NULL;
9048 mdebug_sec = NULL;
9049 gptab_data_sec = NULL;
9050 gptab_bss_sec = NULL;
9051 for (o = abfd->sections; o != NULL; o = o->next)
9052 {
9053 if (strcmp (o->name, ".reginfo") == 0)
9054 {
9055 memset (&reginfo, 0, sizeof reginfo);
9056
9057 /* We have found the .reginfo section in the output file.
9058 Look through all the link_orders comprising it and merge
9059 the information together. */
9060 for (p = o->map_head.link_order; p != NULL; p = p->next)
9061 {
9062 asection *input_section;
9063 bfd *input_bfd;
9064 Elf32_External_RegInfo ext;
9065 Elf32_RegInfo sub;
9066
9067 if (p->type != bfd_indirect_link_order)
9068 {
9069 if (p->type == bfd_data_link_order)
9070 continue;
9071 abort ();
9072 }
9073
9074 input_section = p->u.indirect.section;
9075 input_bfd = input_section->owner;
9076
9077 if (! bfd_get_section_contents (input_bfd, input_section,
9078 &ext, 0, sizeof ext))
9079 return FALSE;
9080
9081 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
9082
9083 reginfo.ri_gprmask |= sub.ri_gprmask;
9084 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
9085 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
9086 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
9087 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
9088
9089 /* ri_gp_value is set by the function
9090 mips_elf32_section_processing when the section is
9091 finally written out. */
9092
9093 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9094 elf_link_input_bfd ignores this section. */
9095 input_section->flags &= ~SEC_HAS_CONTENTS;
9096 }
9097
9098 /* Size has been set in _bfd_mips_elf_always_size_sections. */
9099 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
9100
9101 /* Skip this section later on (I don't think this currently
9102 matters, but someday it might). */
9103 o->map_head.link_order = NULL;
9104
9105 reginfo_sec = o;
9106 }
9107
9108 if (strcmp (o->name, ".mdebug") == 0)
9109 {
9110 struct extsym_info einfo;
9111 bfd_vma last;
9112
9113 /* We have found the .mdebug section in the output file.
9114 Look through all the link_orders comprising it and merge
9115 the information together. */
9116 symhdr->magic = swap->sym_magic;
9117 /* FIXME: What should the version stamp be? */
9118 symhdr->vstamp = 0;
9119 symhdr->ilineMax = 0;
9120 symhdr->cbLine = 0;
9121 symhdr->idnMax = 0;
9122 symhdr->ipdMax = 0;
9123 symhdr->isymMax = 0;
9124 symhdr->ioptMax = 0;
9125 symhdr->iauxMax = 0;
9126 symhdr->issMax = 0;
9127 symhdr->issExtMax = 0;
9128 symhdr->ifdMax = 0;
9129 symhdr->crfd = 0;
9130 symhdr->iextMax = 0;
9131
9132 /* We accumulate the debugging information itself in the
9133 debug_info structure. */
9134 debug.line = NULL;
9135 debug.external_dnr = NULL;
9136 debug.external_pdr = NULL;
9137 debug.external_sym = NULL;
9138 debug.external_opt = NULL;
9139 debug.external_aux = NULL;
9140 debug.ss = NULL;
9141 debug.ssext = debug.ssext_end = NULL;
9142 debug.external_fdr = NULL;
9143 debug.external_rfd = NULL;
9144 debug.external_ext = debug.external_ext_end = NULL;
9145
9146 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
9147 if (mdebug_handle == NULL)
9148 return FALSE;
9149
9150 esym.jmptbl = 0;
9151 esym.cobol_main = 0;
9152 esym.weakext = 0;
9153 esym.reserved = 0;
9154 esym.ifd = ifdNil;
9155 esym.asym.iss = issNil;
9156 esym.asym.st = stLocal;
9157 esym.asym.reserved = 0;
9158 esym.asym.index = indexNil;
9159 last = 0;
9160 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
9161 {
9162 esym.asym.sc = sc[i];
9163 s = bfd_get_section_by_name (abfd, secname[i]);
9164 if (s != NULL)
9165 {
9166 esym.asym.value = s->vma;
9167 last = s->vma + s->size;
9168 }
9169 else
9170 esym.asym.value = last;
9171 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
9172 secname[i], &esym))
9173 return FALSE;
9174 }
9175
9176 for (p = o->map_head.link_order; p != NULL; p = p->next)
9177 {
9178 asection *input_section;
9179 bfd *input_bfd;
9180 const struct ecoff_debug_swap *input_swap;
9181 struct ecoff_debug_info input_debug;
9182 char *eraw_src;
9183 char *eraw_end;
9184
9185 if (p->type != bfd_indirect_link_order)
9186 {
9187 if (p->type == bfd_data_link_order)
9188 continue;
9189 abort ();
9190 }
9191
9192 input_section = p->u.indirect.section;
9193 input_bfd = input_section->owner;
9194
9195 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
9196 || (get_elf_backend_data (input_bfd)
9197 ->elf_backend_ecoff_debug_swap) == NULL)
9198 {
9199 /* I don't know what a non MIPS ELF bfd would be
9200 doing with a .mdebug section, but I don't really
9201 want to deal with it. */
9202 continue;
9203 }
9204
9205 input_swap = (get_elf_backend_data (input_bfd)
9206 ->elf_backend_ecoff_debug_swap);
9207
9208 BFD_ASSERT (p->size == input_section->size);
9209
9210 /* The ECOFF linking code expects that we have already
9211 read in the debugging information and set up an
9212 ecoff_debug_info structure, so we do that now. */
9213 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
9214 &input_debug))
9215 return FALSE;
9216
9217 if (! (bfd_ecoff_debug_accumulate
9218 (mdebug_handle, abfd, &debug, swap, input_bfd,
9219 &input_debug, input_swap, info)))
9220 return FALSE;
9221
9222 /* Loop through the external symbols. For each one with
9223 interesting information, try to find the symbol in
9224 the linker global hash table and save the information
9225 for the output external symbols. */
9226 eraw_src = input_debug.external_ext;
9227 eraw_end = (eraw_src
9228 + (input_debug.symbolic_header.iextMax
9229 * input_swap->external_ext_size));
9230 for (;
9231 eraw_src < eraw_end;
9232 eraw_src += input_swap->external_ext_size)
9233 {
9234 EXTR ext;
9235 const char *name;
9236 struct mips_elf_link_hash_entry *h;
9237
9238 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
9239 if (ext.asym.sc == scNil
9240 || ext.asym.sc == scUndefined
9241 || ext.asym.sc == scSUndefined)
9242 continue;
9243
9244 name = input_debug.ssext + ext.asym.iss;
9245 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
9246 name, FALSE, FALSE, TRUE);
9247 if (h == NULL || h->esym.ifd != -2)
9248 continue;
9249
9250 if (ext.ifd != -1)
9251 {
9252 BFD_ASSERT (ext.ifd
9253 < input_debug.symbolic_header.ifdMax);
9254 ext.ifd = input_debug.ifdmap[ext.ifd];
9255 }
9256
9257 h->esym = ext;
9258 }
9259
9260 /* Free up the information we just read. */
9261 free (input_debug.line);
9262 free (input_debug.external_dnr);
9263 free (input_debug.external_pdr);
9264 free (input_debug.external_sym);
9265 free (input_debug.external_opt);
9266 free (input_debug.external_aux);
9267 free (input_debug.ss);
9268 free (input_debug.ssext);
9269 free (input_debug.external_fdr);
9270 free (input_debug.external_rfd);
9271 free (input_debug.external_ext);
9272
9273 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9274 elf_link_input_bfd ignores this section. */
9275 input_section->flags &= ~SEC_HAS_CONTENTS;
9276 }
9277
9278 if (SGI_COMPAT (abfd) && info->shared)
9279 {
9280 /* Create .rtproc section. */
9281 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
9282 if (rtproc_sec == NULL)
9283 {
9284 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
9285 | SEC_LINKER_CREATED | SEC_READONLY);
9286
9287 rtproc_sec = bfd_make_section_with_flags (abfd,
9288 ".rtproc",
9289 flags);
9290 if (rtproc_sec == NULL
9291 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
9292 return FALSE;
9293 }
9294
9295 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
9296 info, rtproc_sec,
9297 &debug))
9298 return FALSE;
9299 }
9300
9301 /* Build the external symbol information. */
9302 einfo.abfd = abfd;
9303 einfo.info = info;
9304 einfo.debug = &debug;
9305 einfo.swap = swap;
9306 einfo.failed = FALSE;
9307 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9308 mips_elf_output_extsym, &einfo);
9309 if (einfo.failed)
9310 return FALSE;
9311
9312 /* Set the size of the .mdebug section. */
9313 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
9314
9315 /* Skip this section later on (I don't think this currently
9316 matters, but someday it might). */
9317 o->map_head.link_order = NULL;
9318
9319 mdebug_sec = o;
9320 }
9321
9322 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
9323 {
9324 const char *subname;
9325 unsigned int c;
9326 Elf32_gptab *tab;
9327 Elf32_External_gptab *ext_tab;
9328 unsigned int j;
9329
9330 /* The .gptab.sdata and .gptab.sbss sections hold
9331 information describing how the small data area would
9332 change depending upon the -G switch. These sections
9333 not used in executables files. */
9334 if (! info->relocatable)
9335 {
9336 for (p = o->map_head.link_order; p != NULL; p = p->next)
9337 {
9338 asection *input_section;
9339
9340 if (p->type != bfd_indirect_link_order)
9341 {
9342 if (p->type == bfd_data_link_order)
9343 continue;
9344 abort ();
9345 }
9346
9347 input_section = p->u.indirect.section;
9348
9349 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9350 elf_link_input_bfd ignores this section. */
9351 input_section->flags &= ~SEC_HAS_CONTENTS;
9352 }
9353
9354 /* Skip this section later on (I don't think this
9355 currently matters, but someday it might). */
9356 o->map_head.link_order = NULL;
9357
9358 /* Really remove the section. */
9359 bfd_section_list_remove (abfd, o);
9360 --abfd->section_count;
9361
9362 continue;
9363 }
9364
9365 /* There is one gptab for initialized data, and one for
9366 uninitialized data. */
9367 if (strcmp (o->name, ".gptab.sdata") == 0)
9368 gptab_data_sec = o;
9369 else if (strcmp (o->name, ".gptab.sbss") == 0)
9370 gptab_bss_sec = o;
9371 else
9372 {
9373 (*_bfd_error_handler)
9374 (_("%s: illegal section name `%s'"),
9375 bfd_get_filename (abfd), o->name);
9376 bfd_set_error (bfd_error_nonrepresentable_section);
9377 return FALSE;
9378 }
9379
9380 /* The linker script always combines .gptab.data and
9381 .gptab.sdata into .gptab.sdata, and likewise for
9382 .gptab.bss and .gptab.sbss. It is possible that there is
9383 no .sdata or .sbss section in the output file, in which
9384 case we must change the name of the output section. */
9385 subname = o->name + sizeof ".gptab" - 1;
9386 if (bfd_get_section_by_name (abfd, subname) == NULL)
9387 {
9388 if (o == gptab_data_sec)
9389 o->name = ".gptab.data";
9390 else
9391 o->name = ".gptab.bss";
9392 subname = o->name + sizeof ".gptab" - 1;
9393 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
9394 }
9395
9396 /* Set up the first entry. */
9397 c = 1;
9398 amt = c * sizeof (Elf32_gptab);
9399 tab = bfd_malloc (amt);
9400 if (tab == NULL)
9401 return FALSE;
9402 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
9403 tab[0].gt_header.gt_unused = 0;
9404
9405 /* Combine the input sections. */
9406 for (p = o->map_head.link_order; p != NULL; p = p->next)
9407 {
9408 asection *input_section;
9409 bfd *input_bfd;
9410 bfd_size_type size;
9411 unsigned long last;
9412 bfd_size_type gpentry;
9413
9414 if (p->type != bfd_indirect_link_order)
9415 {
9416 if (p->type == bfd_data_link_order)
9417 continue;
9418 abort ();
9419 }
9420
9421 input_section = p->u.indirect.section;
9422 input_bfd = input_section->owner;
9423
9424 /* Combine the gptab entries for this input section one
9425 by one. We know that the input gptab entries are
9426 sorted by ascending -G value. */
9427 size = input_section->size;
9428 last = 0;
9429 for (gpentry = sizeof (Elf32_External_gptab);
9430 gpentry < size;
9431 gpentry += sizeof (Elf32_External_gptab))
9432 {
9433 Elf32_External_gptab ext_gptab;
9434 Elf32_gptab int_gptab;
9435 unsigned long val;
9436 unsigned long add;
9437 bfd_boolean exact;
9438 unsigned int look;
9439
9440 if (! (bfd_get_section_contents
9441 (input_bfd, input_section, &ext_gptab, gpentry,
9442 sizeof (Elf32_External_gptab))))
9443 {
9444 free (tab);
9445 return FALSE;
9446 }
9447
9448 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
9449 &int_gptab);
9450 val = int_gptab.gt_entry.gt_g_value;
9451 add = int_gptab.gt_entry.gt_bytes - last;
9452
9453 exact = FALSE;
9454 for (look = 1; look < c; look++)
9455 {
9456 if (tab[look].gt_entry.gt_g_value >= val)
9457 tab[look].gt_entry.gt_bytes += add;
9458
9459 if (tab[look].gt_entry.gt_g_value == val)
9460 exact = TRUE;
9461 }
9462
9463 if (! exact)
9464 {
9465 Elf32_gptab *new_tab;
9466 unsigned int max;
9467
9468 /* We need a new table entry. */
9469 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
9470 new_tab = bfd_realloc (tab, amt);
9471 if (new_tab == NULL)
9472 {
9473 free (tab);
9474 return FALSE;
9475 }
9476 tab = new_tab;
9477 tab[c].gt_entry.gt_g_value = val;
9478 tab[c].gt_entry.gt_bytes = add;
9479
9480 /* Merge in the size for the next smallest -G
9481 value, since that will be implied by this new
9482 value. */
9483 max = 0;
9484 for (look = 1; look < c; look++)
9485 {
9486 if (tab[look].gt_entry.gt_g_value < val
9487 && (max == 0
9488 || (tab[look].gt_entry.gt_g_value
9489 > tab[max].gt_entry.gt_g_value)))
9490 max = look;
9491 }
9492 if (max != 0)
9493 tab[c].gt_entry.gt_bytes +=
9494 tab[max].gt_entry.gt_bytes;
9495
9496 ++c;
9497 }
9498
9499 last = int_gptab.gt_entry.gt_bytes;
9500 }
9501
9502 /* Hack: reset the SEC_HAS_CONTENTS flag so that
9503 elf_link_input_bfd ignores this section. */
9504 input_section->flags &= ~SEC_HAS_CONTENTS;
9505 }
9506
9507 /* The table must be sorted by -G value. */
9508 if (c > 2)
9509 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
9510
9511 /* Swap out the table. */
9512 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
9513 ext_tab = bfd_alloc (abfd, amt);
9514 if (ext_tab == NULL)
9515 {
9516 free (tab);
9517 return FALSE;
9518 }
9519
9520 for (j = 0; j < c; j++)
9521 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
9522 free (tab);
9523
9524 o->size = c * sizeof (Elf32_External_gptab);
9525 o->contents = (bfd_byte *) ext_tab;
9526
9527 /* Skip this section later on (I don't think this currently
9528 matters, but someday it might). */
9529 o->map_head.link_order = NULL;
9530 }
9531 }
9532
9533 /* Invoke the regular ELF backend linker to do all the work. */
9534 if (!bfd_elf_final_link (abfd, info))
9535 return FALSE;
9536
9537 /* Now write out the computed sections. */
9538
9539 if (reginfo_sec != NULL)
9540 {
9541 Elf32_External_RegInfo ext;
9542
9543 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
9544 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
9545 return FALSE;
9546 }
9547
9548 if (mdebug_sec != NULL)
9549 {
9550 BFD_ASSERT (abfd->output_has_begun);
9551 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
9552 swap, info,
9553 mdebug_sec->filepos))
9554 return FALSE;
9555
9556 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
9557 }
9558
9559 if (gptab_data_sec != NULL)
9560 {
9561 if (! bfd_set_section_contents (abfd, gptab_data_sec,
9562 gptab_data_sec->contents,
9563 0, gptab_data_sec->size))
9564 return FALSE;
9565 }
9566
9567 if (gptab_bss_sec != NULL)
9568 {
9569 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
9570 gptab_bss_sec->contents,
9571 0, gptab_bss_sec->size))
9572 return FALSE;
9573 }
9574
9575 if (SGI_COMPAT (abfd))
9576 {
9577 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
9578 if (rtproc_sec != NULL)
9579 {
9580 if (! bfd_set_section_contents (abfd, rtproc_sec,
9581 rtproc_sec->contents,
9582 0, rtproc_sec->size))
9583 return FALSE;
9584 }
9585 }
9586
9587 return TRUE;
9588 }
9589 \f
9590 /* Structure for saying that BFD machine EXTENSION extends BASE. */
9591
9592 struct mips_mach_extension {
9593 unsigned long extension, base;
9594 };
9595
9596
9597 /* An array describing how BFD machines relate to one another. The entries
9598 are ordered topologically with MIPS I extensions listed last. */
9599
9600 static const struct mips_mach_extension mips_mach_extensions[] = {
9601 /* MIPS64 extensions. */
9602 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
9603 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
9604
9605 /* MIPS V extensions. */
9606 { bfd_mach_mipsisa64, bfd_mach_mips5 },
9607
9608 /* R10000 extensions. */
9609 { bfd_mach_mips12000, bfd_mach_mips10000 },
9610
9611 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
9612 vr5400 ISA, but doesn't include the multimedia stuff. It seems
9613 better to allow vr5400 and vr5500 code to be merged anyway, since
9614 many libraries will just use the core ISA. Perhaps we could add
9615 some sort of ASE flag if this ever proves a problem. */
9616 { bfd_mach_mips5500, bfd_mach_mips5400 },
9617 { bfd_mach_mips5400, bfd_mach_mips5000 },
9618
9619 /* MIPS IV extensions. */
9620 { bfd_mach_mips5, bfd_mach_mips8000 },
9621 { bfd_mach_mips10000, bfd_mach_mips8000 },
9622 { bfd_mach_mips5000, bfd_mach_mips8000 },
9623 { bfd_mach_mips7000, bfd_mach_mips8000 },
9624 { bfd_mach_mips9000, bfd_mach_mips8000 },
9625
9626 /* VR4100 extensions. */
9627 { bfd_mach_mips4120, bfd_mach_mips4100 },
9628 { bfd_mach_mips4111, bfd_mach_mips4100 },
9629
9630 /* MIPS III extensions. */
9631 { bfd_mach_mips8000, bfd_mach_mips4000 },
9632 { bfd_mach_mips4650, bfd_mach_mips4000 },
9633 { bfd_mach_mips4600, bfd_mach_mips4000 },
9634 { bfd_mach_mips4400, bfd_mach_mips4000 },
9635 { bfd_mach_mips4300, bfd_mach_mips4000 },
9636 { bfd_mach_mips4100, bfd_mach_mips4000 },
9637 { bfd_mach_mips4010, bfd_mach_mips4000 },
9638
9639 /* MIPS32 extensions. */
9640 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
9641
9642 /* MIPS II extensions. */
9643 { bfd_mach_mips4000, bfd_mach_mips6000 },
9644 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
9645
9646 /* MIPS I extensions. */
9647 { bfd_mach_mips6000, bfd_mach_mips3000 },
9648 { bfd_mach_mips3900, bfd_mach_mips3000 }
9649 };
9650
9651
9652 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
9653
9654 static bfd_boolean
9655 mips_mach_extends_p (unsigned long base, unsigned long extension)
9656 {
9657 size_t i;
9658
9659 for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++)
9660 if (extension == mips_mach_extensions[i].extension)
9661 extension = mips_mach_extensions[i].base;
9662
9663 return extension == base;
9664 }
9665
9666
9667 /* Return true if the given ELF header flags describe a 32-bit binary. */
9668
9669 static bfd_boolean
9670 mips_32bit_flags_p (flagword flags)
9671 {
9672 return ((flags & EF_MIPS_32BITMODE) != 0
9673 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
9674 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
9675 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
9676 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
9677 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
9678 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
9679 }
9680
9681
9682 /* Merge backend specific data from an object file to the output
9683 object file when linking. */
9684
9685 bfd_boolean
9686 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
9687 {
9688 flagword old_flags;
9689 flagword new_flags;
9690 bfd_boolean ok;
9691 bfd_boolean null_input_bfd = TRUE;
9692 asection *sec;
9693
9694 /* Check if we have the same endianess */
9695 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
9696 {
9697 (*_bfd_error_handler)
9698 (_("%B: endianness incompatible with that of the selected emulation"),
9699 ibfd);
9700 return FALSE;
9701 }
9702
9703 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
9704 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
9705 return TRUE;
9706
9707 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
9708 {
9709 (*_bfd_error_handler)
9710 (_("%B: ABI is incompatible with that of the selected emulation"),
9711 ibfd);
9712 return FALSE;
9713 }
9714
9715 new_flags = elf_elfheader (ibfd)->e_flags;
9716 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
9717 old_flags = elf_elfheader (obfd)->e_flags;
9718
9719 if (! elf_flags_init (obfd))
9720 {
9721 elf_flags_init (obfd) = TRUE;
9722 elf_elfheader (obfd)->e_flags = new_flags;
9723 elf_elfheader (obfd)->e_ident[EI_CLASS]
9724 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
9725
9726 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
9727 && bfd_get_arch_info (obfd)->the_default)
9728 {
9729 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
9730 bfd_get_mach (ibfd)))
9731 return FALSE;
9732 }
9733
9734 return TRUE;
9735 }
9736
9737 /* Check flag compatibility. */
9738
9739 new_flags &= ~EF_MIPS_NOREORDER;
9740 old_flags &= ~EF_MIPS_NOREORDER;
9741
9742 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
9743 doesn't seem to matter. */
9744 new_flags &= ~EF_MIPS_XGOT;
9745 old_flags &= ~EF_MIPS_XGOT;
9746
9747 /* MIPSpro generates ucode info in n64 objects. Again, we should
9748 just be able to ignore this. */
9749 new_flags &= ~EF_MIPS_UCODE;
9750 old_flags &= ~EF_MIPS_UCODE;
9751
9752 if (new_flags == old_flags)
9753 return TRUE;
9754
9755 /* Check to see if the input BFD actually contains any sections.
9756 If not, its flags may not have been initialised either, but it cannot
9757 actually cause any incompatibility. */
9758 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9759 {
9760 /* Ignore synthetic sections and empty .text, .data and .bss sections
9761 which are automatically generated by gas. */
9762 if (strcmp (sec->name, ".reginfo")
9763 && strcmp (sec->name, ".mdebug")
9764 && (sec->size != 0
9765 || (strcmp (sec->name, ".text")
9766 && strcmp (sec->name, ".data")
9767 && strcmp (sec->name, ".bss"))))
9768 {
9769 null_input_bfd = FALSE;
9770 break;
9771 }
9772 }
9773 if (null_input_bfd)
9774 return TRUE;
9775
9776 ok = TRUE;
9777
9778 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
9779 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
9780 {
9781 (*_bfd_error_handler)
9782 (_("%B: warning: linking PIC files with non-PIC files"),
9783 ibfd);
9784 ok = TRUE;
9785 }
9786
9787 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
9788 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
9789 if (! (new_flags & EF_MIPS_PIC))
9790 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
9791
9792 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9793 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
9794
9795 /* Compare the ISAs. */
9796 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
9797 {
9798 (*_bfd_error_handler)
9799 (_("%B: linking 32-bit code with 64-bit code"),
9800 ibfd);
9801 ok = FALSE;
9802 }
9803 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
9804 {
9805 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
9806 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
9807 {
9808 /* Copy the architecture info from IBFD to OBFD. Also copy
9809 the 32-bit flag (if set) so that we continue to recognise
9810 OBFD as a 32-bit binary. */
9811 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
9812 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9813 elf_elfheader (obfd)->e_flags
9814 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9815
9816 /* Copy across the ABI flags if OBFD doesn't use them
9817 and if that was what caused us to treat IBFD as 32-bit. */
9818 if ((old_flags & EF_MIPS_ABI) == 0
9819 && mips_32bit_flags_p (new_flags)
9820 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
9821 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
9822 }
9823 else
9824 {
9825 /* The ISAs aren't compatible. */
9826 (*_bfd_error_handler)
9827 (_("%B: linking %s module with previous %s modules"),
9828 ibfd,
9829 bfd_printable_name (ibfd),
9830 bfd_printable_name (obfd));
9831 ok = FALSE;
9832 }
9833 }
9834
9835 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9836 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
9837
9838 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
9839 does set EI_CLASS differently from any 32-bit ABI. */
9840 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
9841 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9842 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9843 {
9844 /* Only error if both are set (to different values). */
9845 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
9846 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
9847 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
9848 {
9849 (*_bfd_error_handler)
9850 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
9851 ibfd,
9852 elf_mips_abi_name (ibfd),
9853 elf_mips_abi_name (obfd));
9854 ok = FALSE;
9855 }
9856 new_flags &= ~EF_MIPS_ABI;
9857 old_flags &= ~EF_MIPS_ABI;
9858 }
9859
9860 /* For now, allow arbitrary mixing of ASEs (retain the union). */
9861 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
9862 {
9863 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
9864
9865 new_flags &= ~ EF_MIPS_ARCH_ASE;
9866 old_flags &= ~ EF_MIPS_ARCH_ASE;
9867 }
9868
9869 /* Warn about any other mismatches */
9870 if (new_flags != old_flags)
9871 {
9872 (*_bfd_error_handler)
9873 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
9874 ibfd, (unsigned long) new_flags,
9875 (unsigned long) old_flags);
9876 ok = FALSE;
9877 }
9878
9879 if (! ok)
9880 {
9881 bfd_set_error (bfd_error_bad_value);
9882 return FALSE;
9883 }
9884
9885 return TRUE;
9886 }
9887
9888 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
9889
9890 bfd_boolean
9891 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
9892 {
9893 BFD_ASSERT (!elf_flags_init (abfd)
9894 || elf_elfheader (abfd)->e_flags == flags);
9895
9896 elf_elfheader (abfd)->e_flags = flags;
9897 elf_flags_init (abfd) = TRUE;
9898 return TRUE;
9899 }
9900
9901 bfd_boolean
9902 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
9903 {
9904 FILE *file = ptr;
9905
9906 BFD_ASSERT (abfd != NULL && ptr != NULL);
9907
9908 /* Print normal ELF private data. */
9909 _bfd_elf_print_private_bfd_data (abfd, ptr);
9910
9911 /* xgettext:c-format */
9912 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9913
9914 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
9915 fprintf (file, _(" [abi=O32]"));
9916 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
9917 fprintf (file, _(" [abi=O64]"));
9918 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
9919 fprintf (file, _(" [abi=EABI32]"));
9920 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
9921 fprintf (file, _(" [abi=EABI64]"));
9922 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
9923 fprintf (file, _(" [abi unknown]"));
9924 else if (ABI_N32_P (abfd))
9925 fprintf (file, _(" [abi=N32]"));
9926 else if (ABI_64_P (abfd))
9927 fprintf (file, _(" [abi=64]"));
9928 else
9929 fprintf (file, _(" [no abi set]"));
9930
9931 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
9932 fprintf (file, _(" [mips1]"));
9933 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
9934 fprintf (file, _(" [mips2]"));
9935 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
9936 fprintf (file, _(" [mips3]"));
9937 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
9938 fprintf (file, _(" [mips4]"));
9939 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
9940 fprintf (file, _(" [mips5]"));
9941 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
9942 fprintf (file, _(" [mips32]"));
9943 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
9944 fprintf (file, _(" [mips64]"));
9945 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
9946 fprintf (file, _(" [mips32r2]"));
9947 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
9948 fprintf (file, _(" [mips64r2]"));
9949 else
9950 fprintf (file, _(" [unknown ISA]"));
9951
9952 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
9953 fprintf (file, _(" [mdmx]"));
9954
9955 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
9956 fprintf (file, _(" [mips16]"));
9957
9958 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
9959 fprintf (file, _(" [32bitmode]"));
9960 else
9961 fprintf (file, _(" [not 32bitmode]"));
9962
9963 fputc ('\n', file);
9964
9965 return TRUE;
9966 }
9967
9968 static struct bfd_elf_special_section const
9969 mips_special_sections_l[]=
9970 {
9971 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9972 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9973 { NULL, 0, 0, 0, 0 }
9974 };
9975
9976 static struct bfd_elf_special_section const
9977 mips_special_sections_m[]=
9978 {
9979 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
9980 { NULL, 0, 0, 0, 0 }
9981 };
9982
9983 static struct bfd_elf_special_section const
9984 mips_special_sections_s[]=
9985 {
9986 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9987 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
9988 };
9989
9990 static struct bfd_elf_special_section const
9991 mips_special_sections_u[]=
9992 {
9993 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
9994 { NULL, 0, 0, 0, 0 }
9995 };
9996
9997 struct bfd_elf_special_section const *
9998 _bfd_mips_elf_special_sections[27] =
9999 {
10000 NULL, /* 'a' */
10001 NULL, /* 'b' */
10002 NULL, /* 'c' */
10003 NULL, /* 'd' */
10004 NULL, /* 'e' */
10005 NULL, /* 'f' */
10006 NULL, /* 'g' */
10007 NULL, /* 'h' */
10008 NULL, /* 'i' */
10009 NULL, /* 'j' */
10010 NULL, /* 'k' */
10011 mips_special_sections_l, /* 'l' */
10012 mips_special_sections_m, /* 'm' */
10013 NULL, /* 'n' */
10014 NULL, /* 'o' */
10015 NULL, /* 'p' */
10016 NULL, /* 'q' */
10017 NULL, /* 'r' */
10018 mips_special_sections_s, /* 'm' */
10019 NULL, /* 't' */
10020 mips_special_sections_u, /* 'u' */
10021 NULL, /* 'v' */
10022 NULL, /* 'w' */
10023 NULL, /* 'x' */
10024 NULL, /* 'y' */
10025 NULL, /* 'z' */
10026 NULL /* other */
10027 };
This page took 0.225225 seconds and 5 git commands to generate.