bfd/
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29
30 /* This file handles functionality common to the different MIPS ABI's. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libbfd.h"
35 #include "libiberty.h"
36 #include "elf-bfd.h"
37 #include "elfxx-mips.h"
38 #include "elf/mips.h"
39 #include "elf-vxworks.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
51
52 (1) absolute addresses
53 (abfd == NULL)
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) global and forced-local symbols
57 (abfd != NULL, symndx == -1)
58
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
65
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
70
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
74 GOT index.
75
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
82 struct mips_got_entry
83 {
84 /* The input bfd in which the symbol is defined. */
85 bfd *abfd;
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
88 long symndx;
89 union
90 {
91 /* If abfd == NULL, an address that must be stored in the got. */
92 bfd_vma address;
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
95 bfd_vma addend;
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to a global symbol in the got (or, local, if
98 h->forced_local). */
99 struct mips_elf_link_hash_entry *h;
100 } d;
101
102 /* The TLS types included in this GOT entry (specifically, GD and
103 IE). The GD and IE flags can be added as we encounter new
104 relocations. LDM can also be set; it will always be alone, not
105 combined with any GD or IE flags. An LDM GOT entry will be
106 a local symbol entry with r_symndx == 0. */
107 unsigned char tls_type;
108
109 /* The offset from the beginning of the .got section to the entry
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
112 long gotidx;
113 };
114
115 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
116 The structures form a non-overlapping list that is sorted by increasing
117 MIN_ADDEND. */
118 struct mips_got_page_range
119 {
120 struct mips_got_page_range *next;
121 bfd_signed_vma min_addend;
122 bfd_signed_vma max_addend;
123 };
124
125 /* This structure describes the range of addends that are applied to page
126 relocations against a given symbol. */
127 struct mips_got_page_entry
128 {
129 /* The input bfd in which the symbol is defined. */
130 bfd *abfd;
131 /* The index of the symbol, as stored in the relocation r_info. */
132 long symndx;
133 /* The ranges for this page entry. */
134 struct mips_got_page_range *ranges;
135 /* The maximum number of page entries needed for RANGES. */
136 bfd_vma num_pages;
137 };
138
139 /* This structure is used to hold .got information when linking. */
140
141 struct mips_got_info
142 {
143 /* The global symbol in the GOT with the lowest index in the dynamic
144 symbol table. */
145 struct elf_link_hash_entry *global_gotsym;
146 /* The number of global .got entries. */
147 unsigned int global_gotno;
148 /* The number of .got slots used for TLS. */
149 unsigned int tls_gotno;
150 /* The first unused TLS .got entry. Used only during
151 mips_elf_initialize_tls_index. */
152 unsigned int tls_assigned_gotno;
153 /* The number of local .got entries, eventually including page entries. */
154 unsigned int local_gotno;
155 /* The maximum number of page entries needed. */
156 unsigned int page_gotno;
157 /* The number of local .got entries we have used. */
158 unsigned int assigned_gotno;
159 /* A hash table holding members of the got. */
160 struct htab *got_entries;
161 /* A hash table of mips_got_page_entry structures. */
162 struct htab *got_page_entries;
163 /* A hash table mapping input bfds to other mips_got_info. NULL
164 unless multi-got was necessary. */
165 struct htab *bfd2got;
166 /* In multi-got links, a pointer to the next got (err, rather, most
167 of the time, it points to the previous got). */
168 struct mips_got_info *next;
169 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
170 for none, or MINUS_TWO for not yet assigned. This is needed
171 because a single-GOT link may have multiple hash table entries
172 for the LDM. It does not get initialized in multi-GOT mode. */
173 bfd_vma tls_ldm_offset;
174 };
175
176 /* Map an input bfd to a got in a multi-got link. */
177
178 struct mips_elf_bfd2got_hash {
179 bfd *bfd;
180 struct mips_got_info *g;
181 };
182
183 /* Structure passed when traversing the bfd2got hash table, used to
184 create and merge bfd's gots. */
185
186 struct mips_elf_got_per_bfd_arg
187 {
188 /* A hashtable that maps bfds to gots. */
189 htab_t bfd2got;
190 /* The output bfd. */
191 bfd *obfd;
192 /* The link information. */
193 struct bfd_link_info *info;
194 /* A pointer to the primary got, i.e., the one that's going to get
195 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
196 DT_MIPS_GOTSYM. */
197 struct mips_got_info *primary;
198 /* A non-primary got we're trying to merge with other input bfd's
199 gots. */
200 struct mips_got_info *current;
201 /* The maximum number of got entries that can be addressed with a
202 16-bit offset. */
203 unsigned int max_count;
204 /* The maximum number of page entries needed by each got. */
205 unsigned int max_pages;
206 /* The total number of global entries which will live in the
207 primary got and be automatically relocated. This includes
208 those not referenced by the primary GOT but included in
209 the "master" GOT. */
210 unsigned int global_count;
211 };
212
213 /* Another structure used to pass arguments for got entries traversal. */
214
215 struct mips_elf_set_global_got_offset_arg
216 {
217 struct mips_got_info *g;
218 int value;
219 unsigned int needed_relocs;
220 struct bfd_link_info *info;
221 };
222
223 /* A structure used to count TLS relocations or GOT entries, for GOT
224 entry or ELF symbol table traversal. */
225
226 struct mips_elf_count_tls_arg
227 {
228 struct bfd_link_info *info;
229 unsigned int needed;
230 };
231
232 struct _mips_elf_section_data
233 {
234 struct bfd_elf_section_data elf;
235 union
236 {
237 bfd_byte *tdata;
238 } u;
239 };
240
241 #define mips_elf_section_data(sec) \
242 ((struct _mips_elf_section_data *) elf_section_data (sec))
243
244 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
245 the dynamic symbols. */
246
247 struct mips_elf_hash_sort_data
248 {
249 /* The symbol in the global GOT with the lowest dynamic symbol table
250 index. */
251 struct elf_link_hash_entry *low;
252 /* The least dynamic symbol table index corresponding to a non-TLS
253 symbol with a GOT entry. */
254 long min_got_dynindx;
255 /* The greatest dynamic symbol table index corresponding to a symbol
256 with a GOT entry that is not referenced (e.g., a dynamic symbol
257 with dynamic relocations pointing to it from non-primary GOTs). */
258 long max_unref_got_dynindx;
259 /* The greatest dynamic symbol table index not corresponding to a
260 symbol without a GOT entry. */
261 long max_non_got_dynindx;
262 };
263
264 /* The MIPS ELF linker needs additional information for each symbol in
265 the global hash table. */
266
267 struct mips_elf_link_hash_entry
268 {
269 struct elf_link_hash_entry root;
270
271 /* External symbol information. */
272 EXTR esym;
273
274 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
275 this symbol. */
276 unsigned int possibly_dynamic_relocs;
277
278 /* If there is a stub that 32 bit functions should use to call this
279 16 bit function, this points to the section containing the stub. */
280 asection *fn_stub;
281
282 /* If there is a stub that 16 bit functions should use to call this
283 32 bit function, this points to the section containing the stub. */
284 asection *call_stub;
285
286 /* This is like the call_stub field, but it is used if the function
287 being called returns a floating point value. */
288 asection *call_fp_stub;
289
290 #define GOT_NORMAL 0
291 #define GOT_TLS_GD 1
292 #define GOT_TLS_LDM 2
293 #define GOT_TLS_IE 4
294 #define GOT_TLS_OFFSET_DONE 0x40
295 #define GOT_TLS_DONE 0x80
296 unsigned char tls_type;
297
298 /* This is only used in single-GOT mode; in multi-GOT mode there
299 is one mips_got_entry per GOT entry, so the offset is stored
300 there. In single-GOT mode there may be many mips_got_entry
301 structures all referring to the same GOT slot. It might be
302 possible to use root.got.offset instead, but that field is
303 overloaded already. */
304 bfd_vma tls_got_offset;
305
306 /* True if one of the relocations described by possibly_dynamic_relocs
307 is against a readonly section. */
308 unsigned int readonly_reloc : 1;
309
310 /* True if we must not create a .MIPS.stubs entry for this symbol.
311 This is set, for example, if there are relocations related to
312 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
313 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
314 unsigned int no_fn_stub : 1;
315
316 /* Whether we need the fn_stub; this is true if this symbol appears
317 in any relocs other than a 16 bit call. */
318 unsigned int need_fn_stub : 1;
319
320 /* Are we referenced by some kind of relocation? */
321 unsigned int is_relocation_target : 1;
322
323 /* Are we referenced by branch relocations? */
324 unsigned int is_branch_target : 1;
325
326 /* Does this symbol need a traditional MIPS lazy-binding stub
327 (as opposed to a PLT entry)? */
328 unsigned int needs_lazy_stub : 1;
329 };
330
331 /* MIPS ELF linker hash table. */
332
333 struct mips_elf_link_hash_table
334 {
335 struct elf_link_hash_table root;
336 #if 0
337 /* We no longer use this. */
338 /* String section indices for the dynamic section symbols. */
339 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
340 #endif
341 /* The number of .rtproc entries. */
342 bfd_size_type procedure_count;
343 /* The size of the .compact_rel section (if SGI_COMPAT). */
344 bfd_size_type compact_rel_size;
345 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
346 entry is set to the address of __rld_obj_head as in IRIX5. */
347 bfd_boolean use_rld_obj_head;
348 /* This is the value of the __rld_map or __rld_obj_head symbol. */
349 bfd_vma rld_value;
350 /* This is set if we see any mips16 stub sections. */
351 bfd_boolean mips16_stubs_seen;
352 /* True if we're generating code for VxWorks. */
353 bfd_boolean is_vxworks;
354 /* True if we already reported the small-data section overflow. */
355 bfd_boolean small_data_overflow_reported;
356 /* Shortcuts to some dynamic sections, or NULL if they are not
357 being used. */
358 asection *srelbss;
359 asection *sdynbss;
360 asection *srelplt;
361 asection *srelplt2;
362 asection *sgotplt;
363 asection *splt;
364 asection *sstubs;
365 asection *sgot;
366 /* The master GOT information. */
367 struct mips_got_info *got_info;
368 /* The size of the PLT header in bytes (VxWorks only). */
369 bfd_vma plt_header_size;
370 /* The size of a PLT entry in bytes (VxWorks only). */
371 bfd_vma plt_entry_size;
372 /* The number of functions that need a lazy-binding stub. */
373 bfd_vma lazy_stub_count;
374 /* The size of a function stub entry in bytes. */
375 bfd_vma function_stub_size;
376 };
377
378 #define TLS_RELOC_P(r_type) \
379 (r_type == R_MIPS_TLS_DTPMOD32 \
380 || r_type == R_MIPS_TLS_DTPMOD64 \
381 || r_type == R_MIPS_TLS_DTPREL32 \
382 || r_type == R_MIPS_TLS_DTPREL64 \
383 || r_type == R_MIPS_TLS_GD \
384 || r_type == R_MIPS_TLS_LDM \
385 || r_type == R_MIPS_TLS_DTPREL_HI16 \
386 || r_type == R_MIPS_TLS_DTPREL_LO16 \
387 || r_type == R_MIPS_TLS_GOTTPREL \
388 || r_type == R_MIPS_TLS_TPREL32 \
389 || r_type == R_MIPS_TLS_TPREL64 \
390 || r_type == R_MIPS_TLS_TPREL_HI16 \
391 || r_type == R_MIPS_TLS_TPREL_LO16)
392
393 /* Structure used to pass information to mips_elf_output_extsym. */
394
395 struct extsym_info
396 {
397 bfd *abfd;
398 struct bfd_link_info *info;
399 struct ecoff_debug_info *debug;
400 const struct ecoff_debug_swap *swap;
401 bfd_boolean failed;
402 };
403
404 /* The names of the runtime procedure table symbols used on IRIX5. */
405
406 static const char * const mips_elf_dynsym_rtproc_names[] =
407 {
408 "_procedure_table",
409 "_procedure_string_table",
410 "_procedure_table_size",
411 NULL
412 };
413
414 /* These structures are used to generate the .compact_rel section on
415 IRIX5. */
416
417 typedef struct
418 {
419 unsigned long id1; /* Always one? */
420 unsigned long num; /* Number of compact relocation entries. */
421 unsigned long id2; /* Always two? */
422 unsigned long offset; /* The file offset of the first relocation. */
423 unsigned long reserved0; /* Zero? */
424 unsigned long reserved1; /* Zero? */
425 } Elf32_compact_rel;
426
427 typedef struct
428 {
429 bfd_byte id1[4];
430 bfd_byte num[4];
431 bfd_byte id2[4];
432 bfd_byte offset[4];
433 bfd_byte reserved0[4];
434 bfd_byte reserved1[4];
435 } Elf32_External_compact_rel;
436
437 typedef struct
438 {
439 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
440 unsigned int rtype : 4; /* Relocation types. See below. */
441 unsigned int dist2to : 8;
442 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
443 unsigned long konst; /* KONST field. See below. */
444 unsigned long vaddr; /* VADDR to be relocated. */
445 } Elf32_crinfo;
446
447 typedef struct
448 {
449 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
450 unsigned int rtype : 4; /* Relocation types. See below. */
451 unsigned int dist2to : 8;
452 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
453 unsigned long konst; /* KONST field. See below. */
454 } Elf32_crinfo2;
455
456 typedef struct
457 {
458 bfd_byte info[4];
459 bfd_byte konst[4];
460 bfd_byte vaddr[4];
461 } Elf32_External_crinfo;
462
463 typedef struct
464 {
465 bfd_byte info[4];
466 bfd_byte konst[4];
467 } Elf32_External_crinfo2;
468
469 /* These are the constants used to swap the bitfields in a crinfo. */
470
471 #define CRINFO_CTYPE (0x1)
472 #define CRINFO_CTYPE_SH (31)
473 #define CRINFO_RTYPE (0xf)
474 #define CRINFO_RTYPE_SH (27)
475 #define CRINFO_DIST2TO (0xff)
476 #define CRINFO_DIST2TO_SH (19)
477 #define CRINFO_RELVADDR (0x7ffff)
478 #define CRINFO_RELVADDR_SH (0)
479
480 /* A compact relocation info has long (3 words) or short (2 words)
481 formats. A short format doesn't have VADDR field and relvaddr
482 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
483 #define CRF_MIPS_LONG 1
484 #define CRF_MIPS_SHORT 0
485
486 /* There are 4 types of compact relocation at least. The value KONST
487 has different meaning for each type:
488
489 (type) (konst)
490 CT_MIPS_REL32 Address in data
491 CT_MIPS_WORD Address in word (XXX)
492 CT_MIPS_GPHI_LO GP - vaddr
493 CT_MIPS_JMPAD Address to jump
494 */
495
496 #define CRT_MIPS_REL32 0xa
497 #define CRT_MIPS_WORD 0xb
498 #define CRT_MIPS_GPHI_LO 0xc
499 #define CRT_MIPS_JMPAD 0xd
500
501 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
502 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
503 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
504 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
505 \f
506 /* The structure of the runtime procedure descriptor created by the
507 loader for use by the static exception system. */
508
509 typedef struct runtime_pdr {
510 bfd_vma adr; /* Memory address of start of procedure. */
511 long regmask; /* Save register mask. */
512 long regoffset; /* Save register offset. */
513 long fregmask; /* Save floating point register mask. */
514 long fregoffset; /* Save floating point register offset. */
515 long frameoffset; /* Frame size. */
516 short framereg; /* Frame pointer register. */
517 short pcreg; /* Offset or reg of return pc. */
518 long irpss; /* Index into the runtime string table. */
519 long reserved;
520 struct exception_info *exception_info;/* Pointer to exception array. */
521 } RPDR, *pRPDR;
522 #define cbRPDR sizeof (RPDR)
523 #define rpdNil ((pRPDR) 0)
524 \f
525 static struct mips_got_entry *mips_elf_create_local_got_entry
526 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
527 struct mips_elf_link_hash_entry *, int);
528 static bfd_boolean mips_elf_sort_hash_table_f
529 (struct mips_elf_link_hash_entry *, void *);
530 static bfd_vma mips_elf_high
531 (bfd_vma);
532 static bfd_boolean mips_elf_create_dynamic_relocation
533 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
534 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
535 bfd_vma *, asection *);
536 static hashval_t mips_elf_got_entry_hash
537 (const void *);
538 static bfd_vma mips_elf_adjust_gp
539 (bfd *, struct mips_got_info *, bfd *);
540 static struct mips_got_info *mips_elf_got_for_ibfd
541 (struct mips_got_info *, bfd *);
542
543 /* This will be used when we sort the dynamic relocation records. */
544 static bfd *reldyn_sorting_bfd;
545
546 /* Nonzero if ABFD is using the N32 ABI. */
547 #define ABI_N32_P(abfd) \
548 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
549
550 /* Nonzero if ABFD is using the N64 ABI. */
551 #define ABI_64_P(abfd) \
552 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
553
554 /* Nonzero if ABFD is using NewABI conventions. */
555 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
556
557 /* The IRIX compatibility level we are striving for. */
558 #define IRIX_COMPAT(abfd) \
559 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
560
561 /* Whether we are trying to be compatible with IRIX at all. */
562 #define SGI_COMPAT(abfd) \
563 (IRIX_COMPAT (abfd) != ict_none)
564
565 /* The name of the options section. */
566 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
567 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
568
569 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
570 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
571 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
572 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
573
574 /* Whether the section is readonly. */
575 #define MIPS_ELF_READONLY_SECTION(sec) \
576 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
577 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
578
579 /* The name of the stub section. */
580 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
581
582 /* The size of an external REL relocation. */
583 #define MIPS_ELF_REL_SIZE(abfd) \
584 (get_elf_backend_data (abfd)->s->sizeof_rel)
585
586 /* The size of an external RELA relocation. */
587 #define MIPS_ELF_RELA_SIZE(abfd) \
588 (get_elf_backend_data (abfd)->s->sizeof_rela)
589
590 /* The size of an external dynamic table entry. */
591 #define MIPS_ELF_DYN_SIZE(abfd) \
592 (get_elf_backend_data (abfd)->s->sizeof_dyn)
593
594 /* The size of a GOT entry. */
595 #define MIPS_ELF_GOT_SIZE(abfd) \
596 (get_elf_backend_data (abfd)->s->arch_size / 8)
597
598 /* The size of a symbol-table entry. */
599 #define MIPS_ELF_SYM_SIZE(abfd) \
600 (get_elf_backend_data (abfd)->s->sizeof_sym)
601
602 /* The default alignment for sections, as a power of two. */
603 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
604 (get_elf_backend_data (abfd)->s->log_file_align)
605
606 /* Get word-sized data. */
607 #define MIPS_ELF_GET_WORD(abfd, ptr) \
608 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
609
610 /* Put out word-sized data. */
611 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
612 (ABI_64_P (abfd) \
613 ? bfd_put_64 (abfd, val, ptr) \
614 : bfd_put_32 (abfd, val, ptr))
615
616 /* Add a dynamic symbol table-entry. */
617 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
618 _bfd_elf_add_dynamic_entry (info, tag, val)
619
620 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
621 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
622
623 /* Determine whether the internal relocation of index REL_IDX is REL
624 (zero) or RELA (non-zero). The assumption is that, if there are
625 two relocation sections for this section, one of them is REL and
626 the other is RELA. If the index of the relocation we're testing is
627 in range for the first relocation section, check that the external
628 relocation size is that for RELA. It is also assumed that, if
629 rel_idx is not in range for the first section, and this first
630 section contains REL relocs, then the relocation is in the second
631 section, that is RELA. */
632 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
633 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
634 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
635 > (bfd_vma)(rel_idx)) \
636 == (elf_section_data (sec)->rel_hdr.sh_entsize \
637 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
638 : sizeof (Elf32_External_Rela))))
639
640 /* The name of the dynamic relocation section. */
641 #define MIPS_ELF_REL_DYN_NAME(INFO) \
642 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
643
644 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
645 from smaller values. Start with zero, widen, *then* decrement. */
646 #define MINUS_ONE (((bfd_vma)0) - 1)
647 #define MINUS_TWO (((bfd_vma)0) - 2)
648
649 /* The number of local .got entries we reserve. */
650 #define MIPS_RESERVED_GOTNO(INFO) \
651 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
652
653 /* The value to write into got[1] for SVR4 targets, to identify it is
654 a GNU object. The dynamic linker can then use got[1] to store the
655 module pointer. */
656 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
657 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
658
659 /* The offset of $gp from the beginning of the .got section. */
660 #define ELF_MIPS_GP_OFFSET(INFO) \
661 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
662
663 /* The maximum size of the GOT for it to be addressable using 16-bit
664 offsets from $gp. */
665 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
666
667 /* Instructions which appear in a stub. */
668 #define STUB_LW(abfd) \
669 ((ABI_64_P (abfd) \
670 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
671 : 0x8f998010)) /* lw t9,0x8010(gp) */
672 #define STUB_MOVE(abfd) \
673 ((ABI_64_P (abfd) \
674 ? 0x03e0782d /* daddu t7,ra */ \
675 : 0x03e07821)) /* addu t7,ra */
676 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
677 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
678 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
679 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
680 #define STUB_LI16S(abfd, VAL) \
681 ((ABI_64_P (abfd) \
682 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
683 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
684
685 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
686 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
687
688 /* The name of the dynamic interpreter. This is put in the .interp
689 section. */
690
691 #define ELF_DYNAMIC_INTERPRETER(abfd) \
692 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
693 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
694 : "/usr/lib/libc.so.1")
695
696 #ifdef BFD64
697 #define MNAME(bfd,pre,pos) \
698 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
699 #define ELF_R_SYM(bfd, i) \
700 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
701 #define ELF_R_TYPE(bfd, i) \
702 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
703 #define ELF_R_INFO(bfd, s, t) \
704 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
705 #else
706 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
707 #define ELF_R_SYM(bfd, i) \
708 (ELF32_R_SYM (i))
709 #define ELF_R_TYPE(bfd, i) \
710 (ELF32_R_TYPE (i))
711 #define ELF_R_INFO(bfd, s, t) \
712 (ELF32_R_INFO (s, t))
713 #endif
714 \f
715 /* The mips16 compiler uses a couple of special sections to handle
716 floating point arguments.
717
718 Section names that look like .mips16.fn.FNNAME contain stubs that
719 copy floating point arguments from the fp regs to the gp regs and
720 then jump to FNNAME. If any 32 bit function calls FNNAME, the
721 call should be redirected to the stub instead. If no 32 bit
722 function calls FNNAME, the stub should be discarded. We need to
723 consider any reference to the function, not just a call, because
724 if the address of the function is taken we will need the stub,
725 since the address might be passed to a 32 bit function.
726
727 Section names that look like .mips16.call.FNNAME contain stubs
728 that copy floating point arguments from the gp regs to the fp
729 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
730 then any 16 bit function that calls FNNAME should be redirected
731 to the stub instead. If FNNAME is not a 32 bit function, the
732 stub should be discarded.
733
734 .mips16.call.fp.FNNAME sections are similar, but contain stubs
735 which call FNNAME and then copy the return value from the fp regs
736 to the gp regs. These stubs store the return value in $18 while
737 calling FNNAME; any function which might call one of these stubs
738 must arrange to save $18 around the call. (This case is not
739 needed for 32 bit functions that call 16 bit functions, because
740 16 bit functions always return floating point values in both
741 $f0/$f1 and $2/$3.)
742
743 Note that in all cases FNNAME might be defined statically.
744 Therefore, FNNAME is not used literally. Instead, the relocation
745 information will indicate which symbol the section is for.
746
747 We record any stubs that we find in the symbol table. */
748
749 #define FN_STUB ".mips16.fn."
750 #define CALL_STUB ".mips16.call."
751 #define CALL_FP_STUB ".mips16.call.fp."
752
753 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
754 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
755 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
756 \f
757 /* The format of the first PLT entry in a VxWorks executable. */
758 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
759 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
760 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
761 0x8f390008, /* lw t9, 8(t9) */
762 0x00000000, /* nop */
763 0x03200008, /* jr t9 */
764 0x00000000 /* nop */
765 };
766
767 /* The format of subsequent PLT entries. */
768 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
769 0x10000000, /* b .PLT_resolver */
770 0x24180000, /* li t8, <pltindex> */
771 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
772 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
773 0x8f390000, /* lw t9, 0(t9) */
774 0x00000000, /* nop */
775 0x03200008, /* jr t9 */
776 0x00000000 /* nop */
777 };
778
779 /* The format of the first PLT entry in a VxWorks shared object. */
780 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
781 0x8f990008, /* lw t9, 8(gp) */
782 0x00000000, /* nop */
783 0x03200008, /* jr t9 */
784 0x00000000, /* nop */
785 0x00000000, /* nop */
786 0x00000000 /* nop */
787 };
788
789 /* The format of subsequent PLT entries. */
790 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
791 0x10000000, /* b .PLT_resolver */
792 0x24180000 /* li t8, <pltindex> */
793 };
794 \f
795 /* Look up an entry in a MIPS ELF linker hash table. */
796
797 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
798 ((struct mips_elf_link_hash_entry *) \
799 elf_link_hash_lookup (&(table)->root, (string), (create), \
800 (copy), (follow)))
801
802 /* Traverse a MIPS ELF linker hash table. */
803
804 #define mips_elf_link_hash_traverse(table, func, info) \
805 (elf_link_hash_traverse \
806 (&(table)->root, \
807 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
808 (info)))
809
810 /* Get the MIPS ELF linker hash table from a link_info structure. */
811
812 #define mips_elf_hash_table(p) \
813 ((struct mips_elf_link_hash_table *) ((p)->hash))
814
815 /* Find the base offsets for thread-local storage in this object,
816 for GD/LD and IE/LE respectively. */
817
818 #define TP_OFFSET 0x7000
819 #define DTP_OFFSET 0x8000
820
821 static bfd_vma
822 dtprel_base (struct bfd_link_info *info)
823 {
824 /* If tls_sec is NULL, we should have signalled an error already. */
825 if (elf_hash_table (info)->tls_sec == NULL)
826 return 0;
827 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
828 }
829
830 static bfd_vma
831 tprel_base (struct bfd_link_info *info)
832 {
833 /* If tls_sec is NULL, we should have signalled an error already. */
834 if (elf_hash_table (info)->tls_sec == NULL)
835 return 0;
836 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
837 }
838
839 /* Create an entry in a MIPS ELF linker hash table. */
840
841 static struct bfd_hash_entry *
842 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
843 struct bfd_hash_table *table, const char *string)
844 {
845 struct mips_elf_link_hash_entry *ret =
846 (struct mips_elf_link_hash_entry *) entry;
847
848 /* Allocate the structure if it has not already been allocated by a
849 subclass. */
850 if (ret == NULL)
851 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
852 if (ret == NULL)
853 return (struct bfd_hash_entry *) ret;
854
855 /* Call the allocation method of the superclass. */
856 ret = ((struct mips_elf_link_hash_entry *)
857 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
858 table, string));
859 if (ret != NULL)
860 {
861 /* Set local fields. */
862 memset (&ret->esym, 0, sizeof (EXTR));
863 /* We use -2 as a marker to indicate that the information has
864 not been set. -1 means there is no associated ifd. */
865 ret->esym.ifd = -2;
866 ret->possibly_dynamic_relocs = 0;
867 ret->fn_stub = NULL;
868 ret->call_stub = NULL;
869 ret->call_fp_stub = NULL;
870 ret->tls_type = GOT_NORMAL;
871 ret->readonly_reloc = FALSE;
872 ret->no_fn_stub = FALSE;
873 ret->need_fn_stub = FALSE;
874 ret->is_relocation_target = FALSE;
875 ret->is_branch_target = FALSE;
876 ret->needs_lazy_stub = FALSE;
877 }
878
879 return (struct bfd_hash_entry *) ret;
880 }
881
882 bfd_boolean
883 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
884 {
885 if (!sec->used_by_bfd)
886 {
887 struct _mips_elf_section_data *sdata;
888 bfd_size_type amt = sizeof (*sdata);
889
890 sdata = bfd_zalloc (abfd, amt);
891 if (sdata == NULL)
892 return FALSE;
893 sec->used_by_bfd = sdata;
894 }
895
896 return _bfd_elf_new_section_hook (abfd, sec);
897 }
898 \f
899 /* Read ECOFF debugging information from a .mdebug section into a
900 ecoff_debug_info structure. */
901
902 bfd_boolean
903 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
904 struct ecoff_debug_info *debug)
905 {
906 HDRR *symhdr;
907 const struct ecoff_debug_swap *swap;
908 char *ext_hdr;
909
910 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
911 memset (debug, 0, sizeof (*debug));
912
913 ext_hdr = bfd_malloc (swap->external_hdr_size);
914 if (ext_hdr == NULL && swap->external_hdr_size != 0)
915 goto error_return;
916
917 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
918 swap->external_hdr_size))
919 goto error_return;
920
921 symhdr = &debug->symbolic_header;
922 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
923
924 /* The symbolic header contains absolute file offsets and sizes to
925 read. */
926 #define READ(ptr, offset, count, size, type) \
927 if (symhdr->count == 0) \
928 debug->ptr = NULL; \
929 else \
930 { \
931 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
932 debug->ptr = bfd_malloc (amt); \
933 if (debug->ptr == NULL) \
934 goto error_return; \
935 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
936 || bfd_bread (debug->ptr, amt, abfd) != amt) \
937 goto error_return; \
938 }
939
940 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
941 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
942 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
943 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
944 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
945 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
946 union aux_ext *);
947 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
948 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
949 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
950 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
951 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
952 #undef READ
953
954 debug->fdr = NULL;
955
956 return TRUE;
957
958 error_return:
959 if (ext_hdr != NULL)
960 free (ext_hdr);
961 if (debug->line != NULL)
962 free (debug->line);
963 if (debug->external_dnr != NULL)
964 free (debug->external_dnr);
965 if (debug->external_pdr != NULL)
966 free (debug->external_pdr);
967 if (debug->external_sym != NULL)
968 free (debug->external_sym);
969 if (debug->external_opt != NULL)
970 free (debug->external_opt);
971 if (debug->external_aux != NULL)
972 free (debug->external_aux);
973 if (debug->ss != NULL)
974 free (debug->ss);
975 if (debug->ssext != NULL)
976 free (debug->ssext);
977 if (debug->external_fdr != NULL)
978 free (debug->external_fdr);
979 if (debug->external_rfd != NULL)
980 free (debug->external_rfd);
981 if (debug->external_ext != NULL)
982 free (debug->external_ext);
983 return FALSE;
984 }
985 \f
986 /* Swap RPDR (runtime procedure table entry) for output. */
987
988 static void
989 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
990 {
991 H_PUT_S32 (abfd, in->adr, ex->p_adr);
992 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
993 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
994 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
995 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
996 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
997
998 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
999 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1000
1001 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1002 }
1003
1004 /* Create a runtime procedure table from the .mdebug section. */
1005
1006 static bfd_boolean
1007 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1008 struct bfd_link_info *info, asection *s,
1009 struct ecoff_debug_info *debug)
1010 {
1011 const struct ecoff_debug_swap *swap;
1012 HDRR *hdr = &debug->symbolic_header;
1013 RPDR *rpdr, *rp;
1014 struct rpdr_ext *erp;
1015 void *rtproc;
1016 struct pdr_ext *epdr;
1017 struct sym_ext *esym;
1018 char *ss, **sv;
1019 char *str;
1020 bfd_size_type size;
1021 bfd_size_type count;
1022 unsigned long sindex;
1023 unsigned long i;
1024 PDR pdr;
1025 SYMR sym;
1026 const char *no_name_func = _("static procedure (no name)");
1027
1028 epdr = NULL;
1029 rpdr = NULL;
1030 esym = NULL;
1031 ss = NULL;
1032 sv = NULL;
1033
1034 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1035
1036 sindex = strlen (no_name_func) + 1;
1037 count = hdr->ipdMax;
1038 if (count > 0)
1039 {
1040 size = swap->external_pdr_size;
1041
1042 epdr = bfd_malloc (size * count);
1043 if (epdr == NULL)
1044 goto error_return;
1045
1046 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1047 goto error_return;
1048
1049 size = sizeof (RPDR);
1050 rp = rpdr = bfd_malloc (size * count);
1051 if (rpdr == NULL)
1052 goto error_return;
1053
1054 size = sizeof (char *);
1055 sv = bfd_malloc (size * count);
1056 if (sv == NULL)
1057 goto error_return;
1058
1059 count = hdr->isymMax;
1060 size = swap->external_sym_size;
1061 esym = bfd_malloc (size * count);
1062 if (esym == NULL)
1063 goto error_return;
1064
1065 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1066 goto error_return;
1067
1068 count = hdr->issMax;
1069 ss = bfd_malloc (count);
1070 if (ss == NULL)
1071 goto error_return;
1072 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1073 goto error_return;
1074
1075 count = hdr->ipdMax;
1076 for (i = 0; i < (unsigned long) count; i++, rp++)
1077 {
1078 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1079 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1080 rp->adr = sym.value;
1081 rp->regmask = pdr.regmask;
1082 rp->regoffset = pdr.regoffset;
1083 rp->fregmask = pdr.fregmask;
1084 rp->fregoffset = pdr.fregoffset;
1085 rp->frameoffset = pdr.frameoffset;
1086 rp->framereg = pdr.framereg;
1087 rp->pcreg = pdr.pcreg;
1088 rp->irpss = sindex;
1089 sv[i] = ss + sym.iss;
1090 sindex += strlen (sv[i]) + 1;
1091 }
1092 }
1093
1094 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1095 size = BFD_ALIGN (size, 16);
1096 rtproc = bfd_alloc (abfd, size);
1097 if (rtproc == NULL)
1098 {
1099 mips_elf_hash_table (info)->procedure_count = 0;
1100 goto error_return;
1101 }
1102
1103 mips_elf_hash_table (info)->procedure_count = count + 2;
1104
1105 erp = rtproc;
1106 memset (erp, 0, sizeof (struct rpdr_ext));
1107 erp++;
1108 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1109 strcpy (str, no_name_func);
1110 str += strlen (no_name_func) + 1;
1111 for (i = 0; i < count; i++)
1112 {
1113 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1114 strcpy (str, sv[i]);
1115 str += strlen (sv[i]) + 1;
1116 }
1117 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1118
1119 /* Set the size and contents of .rtproc section. */
1120 s->size = size;
1121 s->contents = rtproc;
1122
1123 /* Skip this section later on (I don't think this currently
1124 matters, but someday it might). */
1125 s->map_head.link_order = NULL;
1126
1127 if (epdr != NULL)
1128 free (epdr);
1129 if (rpdr != NULL)
1130 free (rpdr);
1131 if (esym != NULL)
1132 free (esym);
1133 if (ss != NULL)
1134 free (ss);
1135 if (sv != NULL)
1136 free (sv);
1137
1138 return TRUE;
1139
1140 error_return:
1141 if (epdr != NULL)
1142 free (epdr);
1143 if (rpdr != NULL)
1144 free (rpdr);
1145 if (esym != NULL)
1146 free (esym);
1147 if (ss != NULL)
1148 free (ss);
1149 if (sv != NULL)
1150 free (sv);
1151 return FALSE;
1152 }
1153 \f
1154 /* We're about to redefine H. Create a symbol to represent H's
1155 current value and size, to help make the disassembly easier
1156 to read. */
1157
1158 static bfd_boolean
1159 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1160 struct mips_elf_link_hash_entry *h,
1161 const char *prefix)
1162 {
1163 struct bfd_link_hash_entry *bh;
1164 struct elf_link_hash_entry *elfh;
1165 const char *name;
1166 asection *s;
1167 bfd_vma value;
1168
1169 /* Read the symbol's value. */
1170 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1171 || h->root.root.type == bfd_link_hash_defweak);
1172 s = h->root.root.u.def.section;
1173 value = h->root.root.u.def.value;
1174
1175 /* Create a new symbol. */
1176 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1177 bh = NULL;
1178 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1179 BSF_LOCAL, s, value, NULL,
1180 TRUE, FALSE, &bh))
1181 return FALSE;
1182
1183 /* Make it local and copy the other attributes from H. */
1184 elfh = (struct elf_link_hash_entry *) bh;
1185 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1186 elfh->other = h->root.other;
1187 elfh->size = h->root.size;
1188 elfh->forced_local = 1;
1189 return TRUE;
1190 }
1191
1192 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1193 function rather than to a hard-float stub. */
1194
1195 static bfd_boolean
1196 section_allows_mips16_refs_p (asection *section)
1197 {
1198 const char *name;
1199
1200 name = bfd_get_section_name (section->owner, section);
1201 return (FN_STUB_P (name)
1202 || CALL_STUB_P (name)
1203 || CALL_FP_STUB_P (name)
1204 || strcmp (name, ".pdr") == 0);
1205 }
1206
1207 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1208 stub section of some kind. Return the R_SYMNDX of the target
1209 function, or 0 if we can't decide which function that is. */
1210
1211 static unsigned long
1212 mips16_stub_symndx (asection *sec, const Elf_Internal_Rela *relocs,
1213 const Elf_Internal_Rela *relend)
1214 {
1215 const Elf_Internal_Rela *rel;
1216
1217 /* Trust the first R_MIPS_NONE relocation, if any. */
1218 for (rel = relocs; rel < relend; rel++)
1219 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1220 return ELF_R_SYM (sec->owner, rel->r_info);
1221
1222 /* Otherwise trust the first relocation, whatever its kind. This is
1223 the traditional behavior. */
1224 if (relocs < relend)
1225 return ELF_R_SYM (sec->owner, relocs->r_info);
1226
1227 return 0;
1228 }
1229
1230 /* Check the mips16 stubs for a particular symbol, and see if we can
1231 discard them. */
1232
1233 static bfd_boolean
1234 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h, void *data)
1235 {
1236 struct bfd_link_info *info;
1237
1238 info = (struct bfd_link_info *) data;
1239 if (h->root.root.type == bfd_link_hash_warning)
1240 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1241
1242 /* Dynamic symbols must use the standard call interface, in case other
1243 objects try to call them. */
1244 if (h->fn_stub != NULL
1245 && h->root.dynindx != -1)
1246 {
1247 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1248 h->need_fn_stub = TRUE;
1249 }
1250
1251 if (h->fn_stub != NULL
1252 && ! h->need_fn_stub)
1253 {
1254 /* We don't need the fn_stub; the only references to this symbol
1255 are 16 bit calls. Clobber the size to 0 to prevent it from
1256 being included in the link. */
1257 h->fn_stub->size = 0;
1258 h->fn_stub->flags &= ~SEC_RELOC;
1259 h->fn_stub->reloc_count = 0;
1260 h->fn_stub->flags |= SEC_EXCLUDE;
1261 }
1262
1263 if (h->call_stub != NULL
1264 && ELF_ST_IS_MIPS16 (h->root.other))
1265 {
1266 /* We don't need the call_stub; this is a 16 bit function, so
1267 calls from other 16 bit functions are OK. Clobber the size
1268 to 0 to prevent it from being included in the link. */
1269 h->call_stub->size = 0;
1270 h->call_stub->flags &= ~SEC_RELOC;
1271 h->call_stub->reloc_count = 0;
1272 h->call_stub->flags |= SEC_EXCLUDE;
1273 }
1274
1275 if (h->call_fp_stub != NULL
1276 && ELF_ST_IS_MIPS16 (h->root.other))
1277 {
1278 /* We don't need the call_stub; this is a 16 bit function, so
1279 calls from other 16 bit functions are OK. Clobber the size
1280 to 0 to prevent it from being included in the link. */
1281 h->call_fp_stub->size = 0;
1282 h->call_fp_stub->flags &= ~SEC_RELOC;
1283 h->call_fp_stub->reloc_count = 0;
1284 h->call_fp_stub->flags |= SEC_EXCLUDE;
1285 }
1286
1287 return TRUE;
1288 }
1289 \f
1290 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1291 Most mips16 instructions are 16 bits, but these instructions
1292 are 32 bits.
1293
1294 The format of these instructions is:
1295
1296 +--------------+--------------------------------+
1297 | JALX | X| Imm 20:16 | Imm 25:21 |
1298 +--------------+--------------------------------+
1299 | Immediate 15:0 |
1300 +-----------------------------------------------+
1301
1302 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1303 Note that the immediate value in the first word is swapped.
1304
1305 When producing a relocatable object file, R_MIPS16_26 is
1306 handled mostly like R_MIPS_26. In particular, the addend is
1307 stored as a straight 26-bit value in a 32-bit instruction.
1308 (gas makes life simpler for itself by never adjusting a
1309 R_MIPS16_26 reloc to be against a section, so the addend is
1310 always zero). However, the 32 bit instruction is stored as 2
1311 16-bit values, rather than a single 32-bit value. In a
1312 big-endian file, the result is the same; in a little-endian
1313 file, the two 16-bit halves of the 32 bit value are swapped.
1314 This is so that a disassembler can recognize the jal
1315 instruction.
1316
1317 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1318 instruction stored as two 16-bit values. The addend A is the
1319 contents of the targ26 field. The calculation is the same as
1320 R_MIPS_26. When storing the calculated value, reorder the
1321 immediate value as shown above, and don't forget to store the
1322 value as two 16-bit values.
1323
1324 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1325 defined as
1326
1327 big-endian:
1328 +--------+----------------------+
1329 | | |
1330 | | targ26-16 |
1331 |31 26|25 0|
1332 +--------+----------------------+
1333
1334 little-endian:
1335 +----------+------+-------------+
1336 | | | |
1337 | sub1 | | sub2 |
1338 |0 9|10 15|16 31|
1339 +----------+--------------------+
1340 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1341 ((sub1 << 16) | sub2)).
1342
1343 When producing a relocatable object file, the calculation is
1344 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1345 When producing a fully linked file, the calculation is
1346 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1347 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1348
1349 The table below lists the other MIPS16 instruction relocations.
1350 Each one is calculated in the same way as the non-MIPS16 relocation
1351 given on the right, but using the extended MIPS16 layout of 16-bit
1352 immediate fields:
1353
1354 R_MIPS16_GPREL R_MIPS_GPREL16
1355 R_MIPS16_GOT16 R_MIPS_GOT16
1356 R_MIPS16_CALL16 R_MIPS_CALL16
1357 R_MIPS16_HI16 R_MIPS_HI16
1358 R_MIPS16_LO16 R_MIPS_LO16
1359
1360 A typical instruction will have a format like this:
1361
1362 +--------------+--------------------------------+
1363 | EXTEND | Imm 10:5 | Imm 15:11 |
1364 +--------------+--------------------------------+
1365 | Major | rx | ry | Imm 4:0 |
1366 +--------------+--------------------------------+
1367
1368 EXTEND is the five bit value 11110. Major is the instruction
1369 opcode.
1370
1371 All we need to do here is shuffle the bits appropriately.
1372 As above, the two 16-bit halves must be swapped on a
1373 little-endian system. */
1374
1375 static inline bfd_boolean
1376 mips16_reloc_p (int r_type)
1377 {
1378 switch (r_type)
1379 {
1380 case R_MIPS16_26:
1381 case R_MIPS16_GPREL:
1382 case R_MIPS16_GOT16:
1383 case R_MIPS16_CALL16:
1384 case R_MIPS16_HI16:
1385 case R_MIPS16_LO16:
1386 return TRUE;
1387
1388 default:
1389 return FALSE;
1390 }
1391 }
1392
1393 static inline bfd_boolean
1394 got16_reloc_p (int r_type)
1395 {
1396 return r_type == R_MIPS_GOT16 || r_type == R_MIPS16_GOT16;
1397 }
1398
1399 static inline bfd_boolean
1400 call16_reloc_p (int r_type)
1401 {
1402 return r_type == R_MIPS_CALL16 || r_type == R_MIPS16_CALL16;
1403 }
1404
1405 static inline bfd_boolean
1406 hi16_reloc_p (int r_type)
1407 {
1408 return r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16;
1409 }
1410
1411 static inline bfd_boolean
1412 lo16_reloc_p (int r_type)
1413 {
1414 return r_type == R_MIPS_LO16 || r_type == R_MIPS16_LO16;
1415 }
1416
1417 static inline bfd_boolean
1418 mips16_call_reloc_p (int r_type)
1419 {
1420 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
1421 }
1422
1423 void
1424 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1425 bfd_boolean jal_shuffle, bfd_byte *data)
1426 {
1427 bfd_vma extend, insn, val;
1428
1429 if (!mips16_reloc_p (r_type))
1430 return;
1431
1432 /* Pick up the mips16 extend instruction and the real instruction. */
1433 extend = bfd_get_16 (abfd, data);
1434 insn = bfd_get_16 (abfd, data + 2);
1435 if (r_type == R_MIPS16_26)
1436 {
1437 if (jal_shuffle)
1438 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1439 | ((extend & 0x1f) << 21) | insn;
1440 else
1441 val = extend << 16 | insn;
1442 }
1443 else
1444 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1445 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1446 bfd_put_32 (abfd, val, data);
1447 }
1448
1449 void
1450 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1451 bfd_boolean jal_shuffle, bfd_byte *data)
1452 {
1453 bfd_vma extend, insn, val;
1454
1455 if (!mips16_reloc_p (r_type))
1456 return;
1457
1458 val = bfd_get_32 (abfd, data);
1459 if (r_type == R_MIPS16_26)
1460 {
1461 if (jal_shuffle)
1462 {
1463 insn = val & 0xffff;
1464 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1465 | ((val >> 21) & 0x1f);
1466 }
1467 else
1468 {
1469 insn = val & 0xffff;
1470 extend = val >> 16;
1471 }
1472 }
1473 else
1474 {
1475 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1476 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1477 }
1478 bfd_put_16 (abfd, insn, data + 2);
1479 bfd_put_16 (abfd, extend, data);
1480 }
1481
1482 bfd_reloc_status_type
1483 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1484 arelent *reloc_entry, asection *input_section,
1485 bfd_boolean relocatable, void *data, bfd_vma gp)
1486 {
1487 bfd_vma relocation;
1488 bfd_signed_vma val;
1489 bfd_reloc_status_type status;
1490
1491 if (bfd_is_com_section (symbol->section))
1492 relocation = 0;
1493 else
1494 relocation = symbol->value;
1495
1496 relocation += symbol->section->output_section->vma;
1497 relocation += symbol->section->output_offset;
1498
1499 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1500 return bfd_reloc_outofrange;
1501
1502 /* Set val to the offset into the section or symbol. */
1503 val = reloc_entry->addend;
1504
1505 _bfd_mips_elf_sign_extend (val, 16);
1506
1507 /* Adjust val for the final section location and GP value. If we
1508 are producing relocatable output, we don't want to do this for
1509 an external symbol. */
1510 if (! relocatable
1511 || (symbol->flags & BSF_SECTION_SYM) != 0)
1512 val += relocation - gp;
1513
1514 if (reloc_entry->howto->partial_inplace)
1515 {
1516 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1517 (bfd_byte *) data
1518 + reloc_entry->address);
1519 if (status != bfd_reloc_ok)
1520 return status;
1521 }
1522 else
1523 reloc_entry->addend = val;
1524
1525 if (relocatable)
1526 reloc_entry->address += input_section->output_offset;
1527
1528 return bfd_reloc_ok;
1529 }
1530
1531 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1532 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1533 that contains the relocation field and DATA points to the start of
1534 INPUT_SECTION. */
1535
1536 struct mips_hi16
1537 {
1538 struct mips_hi16 *next;
1539 bfd_byte *data;
1540 asection *input_section;
1541 arelent rel;
1542 };
1543
1544 /* FIXME: This should not be a static variable. */
1545
1546 static struct mips_hi16 *mips_hi16_list;
1547
1548 /* A howto special_function for REL *HI16 relocations. We can only
1549 calculate the correct value once we've seen the partnering
1550 *LO16 relocation, so just save the information for later.
1551
1552 The ABI requires that the *LO16 immediately follow the *HI16.
1553 However, as a GNU extension, we permit an arbitrary number of
1554 *HI16s to be associated with a single *LO16. This significantly
1555 simplies the relocation handling in gcc. */
1556
1557 bfd_reloc_status_type
1558 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1559 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1560 asection *input_section, bfd *output_bfd,
1561 char **error_message ATTRIBUTE_UNUSED)
1562 {
1563 struct mips_hi16 *n;
1564
1565 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1566 return bfd_reloc_outofrange;
1567
1568 n = bfd_malloc (sizeof *n);
1569 if (n == NULL)
1570 return bfd_reloc_outofrange;
1571
1572 n->next = mips_hi16_list;
1573 n->data = data;
1574 n->input_section = input_section;
1575 n->rel = *reloc_entry;
1576 mips_hi16_list = n;
1577
1578 if (output_bfd != NULL)
1579 reloc_entry->address += input_section->output_offset;
1580
1581 return bfd_reloc_ok;
1582 }
1583
1584 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
1585 like any other 16-bit relocation when applied to global symbols, but is
1586 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1587
1588 bfd_reloc_status_type
1589 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1590 void *data, asection *input_section,
1591 bfd *output_bfd, char **error_message)
1592 {
1593 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1594 || bfd_is_und_section (bfd_get_section (symbol))
1595 || bfd_is_com_section (bfd_get_section (symbol)))
1596 /* The relocation is against a global symbol. */
1597 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1598 input_section, output_bfd,
1599 error_message);
1600
1601 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1602 input_section, output_bfd, error_message);
1603 }
1604
1605 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1606 is a straightforward 16 bit inplace relocation, but we must deal with
1607 any partnering high-part relocations as well. */
1608
1609 bfd_reloc_status_type
1610 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1611 void *data, asection *input_section,
1612 bfd *output_bfd, char **error_message)
1613 {
1614 bfd_vma vallo;
1615 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1616
1617 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1618 return bfd_reloc_outofrange;
1619
1620 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1621 location);
1622 vallo = bfd_get_32 (abfd, location);
1623 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1624 location);
1625
1626 while (mips_hi16_list != NULL)
1627 {
1628 bfd_reloc_status_type ret;
1629 struct mips_hi16 *hi;
1630
1631 hi = mips_hi16_list;
1632
1633 /* R_MIPS*_GOT16 relocations are something of a special case. We
1634 want to install the addend in the same way as for a R_MIPS*_HI16
1635 relocation (with a rightshift of 16). However, since GOT16
1636 relocations can also be used with global symbols, their howto
1637 has a rightshift of 0. */
1638 if (hi->rel.howto->type == R_MIPS_GOT16)
1639 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1640 else if (hi->rel.howto->type == R_MIPS16_GOT16)
1641 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
1642
1643 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1644 carry or borrow will induce a change of +1 or -1 in the high part. */
1645 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1646
1647 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1648 hi->input_section, output_bfd,
1649 error_message);
1650 if (ret != bfd_reloc_ok)
1651 return ret;
1652
1653 mips_hi16_list = hi->next;
1654 free (hi);
1655 }
1656
1657 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1658 input_section, output_bfd,
1659 error_message);
1660 }
1661
1662 /* A generic howto special_function. This calculates and installs the
1663 relocation itself, thus avoiding the oft-discussed problems in
1664 bfd_perform_relocation and bfd_install_relocation. */
1665
1666 bfd_reloc_status_type
1667 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1668 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1669 asection *input_section, bfd *output_bfd,
1670 char **error_message ATTRIBUTE_UNUSED)
1671 {
1672 bfd_signed_vma val;
1673 bfd_reloc_status_type status;
1674 bfd_boolean relocatable;
1675
1676 relocatable = (output_bfd != NULL);
1677
1678 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1679 return bfd_reloc_outofrange;
1680
1681 /* Build up the field adjustment in VAL. */
1682 val = 0;
1683 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1684 {
1685 /* Either we're calculating the final field value or we have a
1686 relocation against a section symbol. Add in the section's
1687 offset or address. */
1688 val += symbol->section->output_section->vma;
1689 val += symbol->section->output_offset;
1690 }
1691
1692 if (!relocatable)
1693 {
1694 /* We're calculating the final field value. Add in the symbol's value
1695 and, if pc-relative, subtract the address of the field itself. */
1696 val += symbol->value;
1697 if (reloc_entry->howto->pc_relative)
1698 {
1699 val -= input_section->output_section->vma;
1700 val -= input_section->output_offset;
1701 val -= reloc_entry->address;
1702 }
1703 }
1704
1705 /* VAL is now the final adjustment. If we're keeping this relocation
1706 in the output file, and if the relocation uses a separate addend,
1707 we just need to add VAL to that addend. Otherwise we need to add
1708 VAL to the relocation field itself. */
1709 if (relocatable && !reloc_entry->howto->partial_inplace)
1710 reloc_entry->addend += val;
1711 else
1712 {
1713 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1714
1715 /* Add in the separate addend, if any. */
1716 val += reloc_entry->addend;
1717
1718 /* Add VAL to the relocation field. */
1719 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1720 location);
1721 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1722 location);
1723 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1724 location);
1725
1726 if (status != bfd_reloc_ok)
1727 return status;
1728 }
1729
1730 if (relocatable)
1731 reloc_entry->address += input_section->output_offset;
1732
1733 return bfd_reloc_ok;
1734 }
1735 \f
1736 /* Swap an entry in a .gptab section. Note that these routines rely
1737 on the equivalence of the two elements of the union. */
1738
1739 static void
1740 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1741 Elf32_gptab *in)
1742 {
1743 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1744 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1745 }
1746
1747 static void
1748 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1749 Elf32_External_gptab *ex)
1750 {
1751 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1752 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1753 }
1754
1755 static void
1756 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1757 Elf32_External_compact_rel *ex)
1758 {
1759 H_PUT_32 (abfd, in->id1, ex->id1);
1760 H_PUT_32 (abfd, in->num, ex->num);
1761 H_PUT_32 (abfd, in->id2, ex->id2);
1762 H_PUT_32 (abfd, in->offset, ex->offset);
1763 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1764 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1765 }
1766
1767 static void
1768 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1769 Elf32_External_crinfo *ex)
1770 {
1771 unsigned long l;
1772
1773 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1774 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1775 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1776 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1777 H_PUT_32 (abfd, l, ex->info);
1778 H_PUT_32 (abfd, in->konst, ex->konst);
1779 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1780 }
1781 \f
1782 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1783 routines swap this structure in and out. They are used outside of
1784 BFD, so they are globally visible. */
1785
1786 void
1787 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1788 Elf32_RegInfo *in)
1789 {
1790 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1791 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1792 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1793 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1794 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1795 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1796 }
1797
1798 void
1799 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1800 Elf32_External_RegInfo *ex)
1801 {
1802 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1803 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1804 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1805 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1806 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1807 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1808 }
1809
1810 /* In the 64 bit ABI, the .MIPS.options section holds register
1811 information in an Elf64_Reginfo structure. These routines swap
1812 them in and out. They are globally visible because they are used
1813 outside of BFD. These routines are here so that gas can call them
1814 without worrying about whether the 64 bit ABI has been included. */
1815
1816 void
1817 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1818 Elf64_Internal_RegInfo *in)
1819 {
1820 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1821 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1822 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1823 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1824 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1825 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1826 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1827 }
1828
1829 void
1830 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1831 Elf64_External_RegInfo *ex)
1832 {
1833 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1834 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1835 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1836 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1837 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1838 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1839 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1840 }
1841
1842 /* Swap in an options header. */
1843
1844 void
1845 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1846 Elf_Internal_Options *in)
1847 {
1848 in->kind = H_GET_8 (abfd, ex->kind);
1849 in->size = H_GET_8 (abfd, ex->size);
1850 in->section = H_GET_16 (abfd, ex->section);
1851 in->info = H_GET_32 (abfd, ex->info);
1852 }
1853
1854 /* Swap out an options header. */
1855
1856 void
1857 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1858 Elf_External_Options *ex)
1859 {
1860 H_PUT_8 (abfd, in->kind, ex->kind);
1861 H_PUT_8 (abfd, in->size, ex->size);
1862 H_PUT_16 (abfd, in->section, ex->section);
1863 H_PUT_32 (abfd, in->info, ex->info);
1864 }
1865 \f
1866 /* This function is called via qsort() to sort the dynamic relocation
1867 entries by increasing r_symndx value. */
1868
1869 static int
1870 sort_dynamic_relocs (const void *arg1, const void *arg2)
1871 {
1872 Elf_Internal_Rela int_reloc1;
1873 Elf_Internal_Rela int_reloc2;
1874 int diff;
1875
1876 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1877 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1878
1879 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1880 if (diff != 0)
1881 return diff;
1882
1883 if (int_reloc1.r_offset < int_reloc2.r_offset)
1884 return -1;
1885 if (int_reloc1.r_offset > int_reloc2.r_offset)
1886 return 1;
1887 return 0;
1888 }
1889
1890 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1891
1892 static int
1893 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1894 const void *arg2 ATTRIBUTE_UNUSED)
1895 {
1896 #ifdef BFD64
1897 Elf_Internal_Rela int_reloc1[3];
1898 Elf_Internal_Rela int_reloc2[3];
1899
1900 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1901 (reldyn_sorting_bfd, arg1, int_reloc1);
1902 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1903 (reldyn_sorting_bfd, arg2, int_reloc2);
1904
1905 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
1906 return -1;
1907 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
1908 return 1;
1909
1910 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
1911 return -1;
1912 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
1913 return 1;
1914 return 0;
1915 #else
1916 abort ();
1917 #endif
1918 }
1919
1920
1921 /* This routine is used to write out ECOFF debugging external symbol
1922 information. It is called via mips_elf_link_hash_traverse. The
1923 ECOFF external symbol information must match the ELF external
1924 symbol information. Unfortunately, at this point we don't know
1925 whether a symbol is required by reloc information, so the two
1926 tables may wind up being different. We must sort out the external
1927 symbol information before we can set the final size of the .mdebug
1928 section, and we must set the size of the .mdebug section before we
1929 can relocate any sections, and we can't know which symbols are
1930 required by relocation until we relocate the sections.
1931 Fortunately, it is relatively unlikely that any symbol will be
1932 stripped but required by a reloc. In particular, it can not happen
1933 when generating a final executable. */
1934
1935 static bfd_boolean
1936 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1937 {
1938 struct extsym_info *einfo = data;
1939 bfd_boolean strip;
1940 asection *sec, *output_section;
1941
1942 if (h->root.root.type == bfd_link_hash_warning)
1943 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1944
1945 if (h->root.indx == -2)
1946 strip = FALSE;
1947 else if ((h->root.def_dynamic
1948 || h->root.ref_dynamic
1949 || h->root.type == bfd_link_hash_new)
1950 && !h->root.def_regular
1951 && !h->root.ref_regular)
1952 strip = TRUE;
1953 else if (einfo->info->strip == strip_all
1954 || (einfo->info->strip == strip_some
1955 && bfd_hash_lookup (einfo->info->keep_hash,
1956 h->root.root.root.string,
1957 FALSE, FALSE) == NULL))
1958 strip = TRUE;
1959 else
1960 strip = FALSE;
1961
1962 if (strip)
1963 return TRUE;
1964
1965 if (h->esym.ifd == -2)
1966 {
1967 h->esym.jmptbl = 0;
1968 h->esym.cobol_main = 0;
1969 h->esym.weakext = 0;
1970 h->esym.reserved = 0;
1971 h->esym.ifd = ifdNil;
1972 h->esym.asym.value = 0;
1973 h->esym.asym.st = stGlobal;
1974
1975 if (h->root.root.type == bfd_link_hash_undefined
1976 || h->root.root.type == bfd_link_hash_undefweak)
1977 {
1978 const char *name;
1979
1980 /* Use undefined class. Also, set class and type for some
1981 special symbols. */
1982 name = h->root.root.root.string;
1983 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1984 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1985 {
1986 h->esym.asym.sc = scData;
1987 h->esym.asym.st = stLabel;
1988 h->esym.asym.value = 0;
1989 }
1990 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1991 {
1992 h->esym.asym.sc = scAbs;
1993 h->esym.asym.st = stLabel;
1994 h->esym.asym.value =
1995 mips_elf_hash_table (einfo->info)->procedure_count;
1996 }
1997 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1998 {
1999 h->esym.asym.sc = scAbs;
2000 h->esym.asym.st = stLabel;
2001 h->esym.asym.value = elf_gp (einfo->abfd);
2002 }
2003 else
2004 h->esym.asym.sc = scUndefined;
2005 }
2006 else if (h->root.root.type != bfd_link_hash_defined
2007 && h->root.root.type != bfd_link_hash_defweak)
2008 h->esym.asym.sc = scAbs;
2009 else
2010 {
2011 const char *name;
2012
2013 sec = h->root.root.u.def.section;
2014 output_section = sec->output_section;
2015
2016 /* When making a shared library and symbol h is the one from
2017 the another shared library, OUTPUT_SECTION may be null. */
2018 if (output_section == NULL)
2019 h->esym.asym.sc = scUndefined;
2020 else
2021 {
2022 name = bfd_section_name (output_section->owner, output_section);
2023
2024 if (strcmp (name, ".text") == 0)
2025 h->esym.asym.sc = scText;
2026 else if (strcmp (name, ".data") == 0)
2027 h->esym.asym.sc = scData;
2028 else if (strcmp (name, ".sdata") == 0)
2029 h->esym.asym.sc = scSData;
2030 else if (strcmp (name, ".rodata") == 0
2031 || strcmp (name, ".rdata") == 0)
2032 h->esym.asym.sc = scRData;
2033 else if (strcmp (name, ".bss") == 0)
2034 h->esym.asym.sc = scBss;
2035 else if (strcmp (name, ".sbss") == 0)
2036 h->esym.asym.sc = scSBss;
2037 else if (strcmp (name, ".init") == 0)
2038 h->esym.asym.sc = scInit;
2039 else if (strcmp (name, ".fini") == 0)
2040 h->esym.asym.sc = scFini;
2041 else
2042 h->esym.asym.sc = scAbs;
2043 }
2044 }
2045
2046 h->esym.asym.reserved = 0;
2047 h->esym.asym.index = indexNil;
2048 }
2049
2050 if (h->root.root.type == bfd_link_hash_common)
2051 h->esym.asym.value = h->root.root.u.c.size;
2052 else if (h->root.root.type == bfd_link_hash_defined
2053 || h->root.root.type == bfd_link_hash_defweak)
2054 {
2055 if (h->esym.asym.sc == scCommon)
2056 h->esym.asym.sc = scBss;
2057 else if (h->esym.asym.sc == scSCommon)
2058 h->esym.asym.sc = scSBss;
2059
2060 sec = h->root.root.u.def.section;
2061 output_section = sec->output_section;
2062 if (output_section != NULL)
2063 h->esym.asym.value = (h->root.root.u.def.value
2064 + sec->output_offset
2065 + output_section->vma);
2066 else
2067 h->esym.asym.value = 0;
2068 }
2069 else
2070 {
2071 struct mips_elf_link_hash_entry *hd = h;
2072
2073 while (hd->root.root.type == bfd_link_hash_indirect)
2074 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2075
2076 if (hd->needs_lazy_stub)
2077 {
2078 /* Set type and value for a symbol with a function stub. */
2079 h->esym.asym.st = stProc;
2080 sec = hd->root.root.u.def.section;
2081 if (sec == NULL)
2082 h->esym.asym.value = 0;
2083 else
2084 {
2085 output_section = sec->output_section;
2086 if (output_section != NULL)
2087 h->esym.asym.value = (hd->root.plt.offset
2088 + sec->output_offset
2089 + output_section->vma);
2090 else
2091 h->esym.asym.value = 0;
2092 }
2093 }
2094 }
2095
2096 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2097 h->root.root.root.string,
2098 &h->esym))
2099 {
2100 einfo->failed = TRUE;
2101 return FALSE;
2102 }
2103
2104 return TRUE;
2105 }
2106
2107 /* A comparison routine used to sort .gptab entries. */
2108
2109 static int
2110 gptab_compare (const void *p1, const void *p2)
2111 {
2112 const Elf32_gptab *a1 = p1;
2113 const Elf32_gptab *a2 = p2;
2114
2115 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2116 }
2117 \f
2118 /* Functions to manage the got entry hash table. */
2119
2120 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2121 hash number. */
2122
2123 static INLINE hashval_t
2124 mips_elf_hash_bfd_vma (bfd_vma addr)
2125 {
2126 #ifdef BFD64
2127 return addr + (addr >> 32);
2128 #else
2129 return addr;
2130 #endif
2131 }
2132
2133 /* got_entries only match if they're identical, except for gotidx, so
2134 use all fields to compute the hash, and compare the appropriate
2135 union members. */
2136
2137 static hashval_t
2138 mips_elf_got_entry_hash (const void *entry_)
2139 {
2140 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2141
2142 return entry->symndx
2143 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2144 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2145 : entry->abfd->id
2146 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2147 : entry->d.h->root.root.root.hash));
2148 }
2149
2150 static int
2151 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2152 {
2153 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2154 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2155
2156 /* An LDM entry can only match another LDM entry. */
2157 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2158 return 0;
2159
2160 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2161 && (! e1->abfd ? e1->d.address == e2->d.address
2162 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2163 : e1->d.h == e2->d.h);
2164 }
2165
2166 /* multi_got_entries are still a match in the case of global objects,
2167 even if the input bfd in which they're referenced differs, so the
2168 hash computation and compare functions are adjusted
2169 accordingly. */
2170
2171 static hashval_t
2172 mips_elf_multi_got_entry_hash (const void *entry_)
2173 {
2174 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2175
2176 return entry->symndx
2177 + (! entry->abfd
2178 ? mips_elf_hash_bfd_vma (entry->d.address)
2179 : entry->symndx >= 0
2180 ? ((entry->tls_type & GOT_TLS_LDM)
2181 ? (GOT_TLS_LDM << 17)
2182 : (entry->abfd->id
2183 + mips_elf_hash_bfd_vma (entry->d.addend)))
2184 : entry->d.h->root.root.root.hash);
2185 }
2186
2187 static int
2188 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2189 {
2190 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2191 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2192
2193 /* Any two LDM entries match. */
2194 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2195 return 1;
2196
2197 /* Nothing else matches an LDM entry. */
2198 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2199 return 0;
2200
2201 return e1->symndx == e2->symndx
2202 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2203 : e1->abfd == NULL || e2->abfd == NULL
2204 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2205 : e1->d.h == e2->d.h);
2206 }
2207
2208 static hashval_t
2209 mips_got_page_entry_hash (const void *entry_)
2210 {
2211 const struct mips_got_page_entry *entry;
2212
2213 entry = (const struct mips_got_page_entry *) entry_;
2214 return entry->abfd->id + entry->symndx;
2215 }
2216
2217 static int
2218 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2219 {
2220 const struct mips_got_page_entry *entry1, *entry2;
2221
2222 entry1 = (const struct mips_got_page_entry *) entry1_;
2223 entry2 = (const struct mips_got_page_entry *) entry2_;
2224 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2225 }
2226 \f
2227 /* Return the dynamic relocation section. If it doesn't exist, try to
2228 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2229 if creation fails. */
2230
2231 static asection *
2232 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2233 {
2234 const char *dname;
2235 asection *sreloc;
2236 bfd *dynobj;
2237
2238 dname = MIPS_ELF_REL_DYN_NAME (info);
2239 dynobj = elf_hash_table (info)->dynobj;
2240 sreloc = bfd_get_section_by_name (dynobj, dname);
2241 if (sreloc == NULL && create_p)
2242 {
2243 sreloc = bfd_make_section_with_flags (dynobj, dname,
2244 (SEC_ALLOC
2245 | SEC_LOAD
2246 | SEC_HAS_CONTENTS
2247 | SEC_IN_MEMORY
2248 | SEC_LINKER_CREATED
2249 | SEC_READONLY));
2250 if (sreloc == NULL
2251 || ! bfd_set_section_alignment (dynobj, sreloc,
2252 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2253 return NULL;
2254 }
2255 return sreloc;
2256 }
2257
2258 /* Returns the GOT section, if it hasn't been excluded. */
2259
2260 static asection *
2261 mips_elf_got_section (struct bfd_link_info *info)
2262 {
2263 struct mips_elf_link_hash_table *htab;
2264
2265 htab = mips_elf_hash_table (info);
2266 if (htab->sgot == NULL || (htab->sgot->flags & SEC_EXCLUDE) != 0)
2267 return NULL;
2268 return htab->sgot;
2269 }
2270
2271 /* Count the number of relocations needed for a TLS GOT entry, with
2272 access types from TLS_TYPE, and symbol H (or a local symbol if H
2273 is NULL). */
2274
2275 static int
2276 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2277 struct elf_link_hash_entry *h)
2278 {
2279 int indx = 0;
2280 int ret = 0;
2281 bfd_boolean need_relocs = FALSE;
2282 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2283
2284 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2285 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2286 indx = h->dynindx;
2287
2288 if ((info->shared || indx != 0)
2289 && (h == NULL
2290 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2291 || h->root.type != bfd_link_hash_undefweak))
2292 need_relocs = TRUE;
2293
2294 if (!need_relocs)
2295 return FALSE;
2296
2297 if (tls_type & GOT_TLS_GD)
2298 {
2299 ret++;
2300 if (indx != 0)
2301 ret++;
2302 }
2303
2304 if (tls_type & GOT_TLS_IE)
2305 ret++;
2306
2307 if ((tls_type & GOT_TLS_LDM) && info->shared)
2308 ret++;
2309
2310 return ret;
2311 }
2312
2313 /* Count the number of TLS relocations required for the GOT entry in
2314 ARG1, if it describes a local symbol. */
2315
2316 static int
2317 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2318 {
2319 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2320 struct mips_elf_count_tls_arg *arg = arg2;
2321
2322 if (entry->abfd != NULL && entry->symndx != -1)
2323 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2324
2325 return 1;
2326 }
2327
2328 /* Count the number of TLS GOT entries required for the global (or
2329 forced-local) symbol in ARG1. */
2330
2331 static int
2332 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2333 {
2334 struct mips_elf_link_hash_entry *hm
2335 = (struct mips_elf_link_hash_entry *) arg1;
2336 struct mips_elf_count_tls_arg *arg = arg2;
2337
2338 if (hm->tls_type & GOT_TLS_GD)
2339 arg->needed += 2;
2340 if (hm->tls_type & GOT_TLS_IE)
2341 arg->needed += 1;
2342
2343 return 1;
2344 }
2345
2346 /* Count the number of TLS relocations required for the global (or
2347 forced-local) symbol in ARG1. */
2348
2349 static int
2350 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2351 {
2352 struct mips_elf_link_hash_entry *hm
2353 = (struct mips_elf_link_hash_entry *) arg1;
2354 struct mips_elf_count_tls_arg *arg = arg2;
2355
2356 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2357
2358 return 1;
2359 }
2360
2361 /* Output a simple dynamic relocation into SRELOC. */
2362
2363 static void
2364 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2365 asection *sreloc,
2366 unsigned long indx,
2367 int r_type,
2368 bfd_vma offset)
2369 {
2370 Elf_Internal_Rela rel[3];
2371
2372 memset (rel, 0, sizeof (rel));
2373
2374 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2375 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2376
2377 if (ABI_64_P (output_bfd))
2378 {
2379 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2380 (output_bfd, &rel[0],
2381 (sreloc->contents
2382 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2383 }
2384 else
2385 bfd_elf32_swap_reloc_out
2386 (output_bfd, &rel[0],
2387 (sreloc->contents
2388 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2389 ++sreloc->reloc_count;
2390 }
2391
2392 /* Initialize a set of TLS GOT entries for one symbol. */
2393
2394 static void
2395 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2396 unsigned char *tls_type_p,
2397 struct bfd_link_info *info,
2398 struct mips_elf_link_hash_entry *h,
2399 bfd_vma value)
2400 {
2401 int indx;
2402 asection *sreloc, *sgot;
2403 bfd_vma offset, offset2;
2404 bfd_boolean need_relocs = FALSE;
2405
2406 sgot = mips_elf_got_section (info);
2407
2408 indx = 0;
2409 if (h != NULL)
2410 {
2411 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2412
2413 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2414 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2415 indx = h->root.dynindx;
2416 }
2417
2418 if (*tls_type_p & GOT_TLS_DONE)
2419 return;
2420
2421 if ((info->shared || indx != 0)
2422 && (h == NULL
2423 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2424 || h->root.type != bfd_link_hash_undefweak))
2425 need_relocs = TRUE;
2426
2427 /* MINUS_ONE means the symbol is not defined in this object. It may not
2428 be defined at all; assume that the value doesn't matter in that
2429 case. Otherwise complain if we would use the value. */
2430 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2431 || h->root.root.type == bfd_link_hash_undefweak);
2432
2433 /* Emit necessary relocations. */
2434 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2435
2436 /* General Dynamic. */
2437 if (*tls_type_p & GOT_TLS_GD)
2438 {
2439 offset = got_offset;
2440 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2441
2442 if (need_relocs)
2443 {
2444 mips_elf_output_dynamic_relocation
2445 (abfd, sreloc, indx,
2446 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2447 sgot->output_offset + sgot->output_section->vma + offset);
2448
2449 if (indx)
2450 mips_elf_output_dynamic_relocation
2451 (abfd, sreloc, indx,
2452 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2453 sgot->output_offset + sgot->output_section->vma + offset2);
2454 else
2455 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2456 sgot->contents + offset2);
2457 }
2458 else
2459 {
2460 MIPS_ELF_PUT_WORD (abfd, 1,
2461 sgot->contents + offset);
2462 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2463 sgot->contents + offset2);
2464 }
2465
2466 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2467 }
2468
2469 /* Initial Exec model. */
2470 if (*tls_type_p & GOT_TLS_IE)
2471 {
2472 offset = got_offset;
2473
2474 if (need_relocs)
2475 {
2476 if (indx == 0)
2477 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2478 sgot->contents + offset);
2479 else
2480 MIPS_ELF_PUT_WORD (abfd, 0,
2481 sgot->contents + offset);
2482
2483 mips_elf_output_dynamic_relocation
2484 (abfd, sreloc, indx,
2485 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2486 sgot->output_offset + sgot->output_section->vma + offset);
2487 }
2488 else
2489 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2490 sgot->contents + offset);
2491 }
2492
2493 if (*tls_type_p & GOT_TLS_LDM)
2494 {
2495 /* The initial offset is zero, and the LD offsets will include the
2496 bias by DTP_OFFSET. */
2497 MIPS_ELF_PUT_WORD (abfd, 0,
2498 sgot->contents + got_offset
2499 + MIPS_ELF_GOT_SIZE (abfd));
2500
2501 if (!info->shared)
2502 MIPS_ELF_PUT_WORD (abfd, 1,
2503 sgot->contents + got_offset);
2504 else
2505 mips_elf_output_dynamic_relocation
2506 (abfd, sreloc, indx,
2507 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2508 sgot->output_offset + sgot->output_section->vma + got_offset);
2509 }
2510
2511 *tls_type_p |= GOT_TLS_DONE;
2512 }
2513
2514 /* Return the GOT index to use for a relocation of type R_TYPE against
2515 a symbol accessed using TLS_TYPE models. The GOT entries for this
2516 symbol in this GOT start at GOT_INDEX. This function initializes the
2517 GOT entries and corresponding relocations. */
2518
2519 static bfd_vma
2520 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2521 int r_type, struct bfd_link_info *info,
2522 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2523 {
2524 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2525 || r_type == R_MIPS_TLS_LDM);
2526
2527 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2528
2529 if (r_type == R_MIPS_TLS_GOTTPREL)
2530 {
2531 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2532 if (*tls_type & GOT_TLS_GD)
2533 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2534 else
2535 return got_index;
2536 }
2537
2538 if (r_type == R_MIPS_TLS_GD)
2539 {
2540 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2541 return got_index;
2542 }
2543
2544 if (r_type == R_MIPS_TLS_LDM)
2545 {
2546 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2547 return got_index;
2548 }
2549
2550 return got_index;
2551 }
2552
2553 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2554 for global symbol H. .got.plt comes before the GOT, so the offset
2555 will be negative. */
2556
2557 static bfd_vma
2558 mips_elf_gotplt_index (struct bfd_link_info *info,
2559 struct elf_link_hash_entry *h)
2560 {
2561 bfd_vma plt_index, got_address, got_value;
2562 struct mips_elf_link_hash_table *htab;
2563
2564 htab = mips_elf_hash_table (info);
2565 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2566
2567 /* Calculate the index of the symbol's PLT entry. */
2568 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2569
2570 /* Calculate the address of the associated .got.plt entry. */
2571 got_address = (htab->sgotplt->output_section->vma
2572 + htab->sgotplt->output_offset
2573 + plt_index * 4);
2574
2575 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2576 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2577 + htab->root.hgot->root.u.def.section->output_offset
2578 + htab->root.hgot->root.u.def.value);
2579
2580 return got_address - got_value;
2581 }
2582
2583 /* Return the GOT offset for address VALUE. If there is not yet a GOT
2584 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2585 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2586 offset can be found. */
2587
2588 static bfd_vma
2589 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2590 bfd_vma value, unsigned long r_symndx,
2591 struct mips_elf_link_hash_entry *h, int r_type)
2592 {
2593 struct mips_elf_link_hash_table *htab;
2594 struct mips_got_entry *entry;
2595
2596 htab = mips_elf_hash_table (info);
2597 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
2598 r_symndx, h, r_type);
2599 if (!entry)
2600 return MINUS_ONE;
2601
2602 if (TLS_RELOC_P (r_type))
2603 {
2604 if (entry->symndx == -1 && htab->got_info->next == NULL)
2605 /* A type (3) entry in the single-GOT case. We use the symbol's
2606 hash table entry to track the index. */
2607 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2608 r_type, info, h, value);
2609 else
2610 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2611 r_type, info, h, value);
2612 }
2613 else
2614 return entry->gotidx;
2615 }
2616
2617 /* Returns the GOT index for the global symbol indicated by H. */
2618
2619 static bfd_vma
2620 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2621 int r_type, struct bfd_link_info *info)
2622 {
2623 struct mips_elf_link_hash_table *htab;
2624 bfd_vma index;
2625 struct mips_got_info *g, *gg;
2626 long global_got_dynindx = 0;
2627
2628 htab = mips_elf_hash_table (info);
2629 gg = g = htab->got_info;
2630 if (g->bfd2got && ibfd)
2631 {
2632 struct mips_got_entry e, *p;
2633
2634 BFD_ASSERT (h->dynindx >= 0);
2635
2636 g = mips_elf_got_for_ibfd (g, ibfd);
2637 if (g->next != gg || TLS_RELOC_P (r_type))
2638 {
2639 e.abfd = ibfd;
2640 e.symndx = -1;
2641 e.d.h = (struct mips_elf_link_hash_entry *)h;
2642 e.tls_type = 0;
2643
2644 p = htab_find (g->got_entries, &e);
2645
2646 BFD_ASSERT (p->gotidx > 0);
2647
2648 if (TLS_RELOC_P (r_type))
2649 {
2650 bfd_vma value = MINUS_ONE;
2651 if ((h->root.type == bfd_link_hash_defined
2652 || h->root.type == bfd_link_hash_defweak)
2653 && h->root.u.def.section->output_section)
2654 value = (h->root.u.def.value
2655 + h->root.u.def.section->output_offset
2656 + h->root.u.def.section->output_section->vma);
2657
2658 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2659 info, e.d.h, value);
2660 }
2661 else
2662 return p->gotidx;
2663 }
2664 }
2665
2666 if (gg->global_gotsym != NULL)
2667 global_got_dynindx = gg->global_gotsym->dynindx;
2668
2669 if (TLS_RELOC_P (r_type))
2670 {
2671 struct mips_elf_link_hash_entry *hm
2672 = (struct mips_elf_link_hash_entry *) h;
2673 bfd_vma value = MINUS_ONE;
2674
2675 if ((h->root.type == bfd_link_hash_defined
2676 || h->root.type == bfd_link_hash_defweak)
2677 && h->root.u.def.section->output_section)
2678 value = (h->root.u.def.value
2679 + h->root.u.def.section->output_offset
2680 + h->root.u.def.section->output_section->vma);
2681
2682 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2683 r_type, info, hm, value);
2684 }
2685 else
2686 {
2687 /* Once we determine the global GOT entry with the lowest dynamic
2688 symbol table index, we must put all dynamic symbols with greater
2689 indices into the GOT. That makes it easy to calculate the GOT
2690 offset. */
2691 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2692 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2693 * MIPS_ELF_GOT_SIZE (abfd));
2694 }
2695 BFD_ASSERT (index < htab->sgot->size);
2696
2697 return index;
2698 }
2699
2700 /* Find a GOT page entry that points to within 32KB of VALUE. These
2701 entries are supposed to be placed at small offsets in the GOT, i.e.,
2702 within 32KB of GP. Return the index of the GOT entry, or -1 if no
2703 entry could be created. If OFFSETP is nonnull, use it to return the
2704 offset of the GOT entry from VALUE. */
2705
2706 static bfd_vma
2707 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2708 bfd_vma value, bfd_vma *offsetp)
2709 {
2710 bfd_vma page, index;
2711 struct mips_got_entry *entry;
2712
2713 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2714 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
2715 NULL, R_MIPS_GOT_PAGE);
2716
2717 if (!entry)
2718 return MINUS_ONE;
2719
2720 index = entry->gotidx;
2721
2722 if (offsetp)
2723 *offsetp = value - entry->d.address;
2724
2725 return index;
2726 }
2727
2728 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
2729 EXTERNAL is true if the relocation was against a global symbol
2730 that has been forced local. */
2731
2732 static bfd_vma
2733 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2734 bfd_vma value, bfd_boolean external)
2735 {
2736 struct mips_got_entry *entry;
2737
2738 /* GOT16 relocations against local symbols are followed by a LO16
2739 relocation; those against global symbols are not. Thus if the
2740 symbol was originally local, the GOT16 relocation should load the
2741 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2742 if (! external)
2743 value = mips_elf_high (value) << 16;
2744
2745 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
2746 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
2747 same in all cases. */
2748 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
2749 NULL, R_MIPS_GOT16);
2750 if (entry)
2751 return entry->gotidx;
2752 else
2753 return MINUS_ONE;
2754 }
2755
2756 /* Returns the offset for the entry at the INDEXth position
2757 in the GOT. */
2758
2759 static bfd_vma
2760 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
2761 bfd *input_bfd, bfd_vma index)
2762 {
2763 struct mips_elf_link_hash_table *htab;
2764 asection *sgot;
2765 bfd_vma gp;
2766
2767 htab = mips_elf_hash_table (info);
2768 sgot = htab->sgot;
2769 gp = _bfd_get_gp_value (output_bfd)
2770 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
2771
2772 return sgot->output_section->vma + sgot->output_offset + index - gp;
2773 }
2774
2775 /* Create and return a local GOT entry for VALUE, which was calculated
2776 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2777 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2778 instead. */
2779
2780 static struct mips_got_entry *
2781 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2782 bfd *ibfd, bfd_vma value,
2783 unsigned long r_symndx,
2784 struct mips_elf_link_hash_entry *h,
2785 int r_type)
2786 {
2787 struct mips_got_entry entry, **loc;
2788 struct mips_got_info *g;
2789 struct mips_elf_link_hash_table *htab;
2790
2791 htab = mips_elf_hash_table (info);
2792
2793 entry.abfd = NULL;
2794 entry.symndx = -1;
2795 entry.d.address = value;
2796 entry.tls_type = 0;
2797
2798 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
2799 if (g == NULL)
2800 {
2801 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
2802 BFD_ASSERT (g != NULL);
2803 }
2804
2805 /* We might have a symbol, H, if it has been forced local. Use the
2806 global entry then. It doesn't matter whether an entry is local
2807 or global for TLS, since the dynamic linker does not
2808 automatically relocate TLS GOT entries. */
2809 BFD_ASSERT (h == NULL || h->root.forced_local);
2810 if (TLS_RELOC_P (r_type))
2811 {
2812 struct mips_got_entry *p;
2813
2814 entry.abfd = ibfd;
2815 if (r_type == R_MIPS_TLS_LDM)
2816 {
2817 entry.tls_type = GOT_TLS_LDM;
2818 entry.symndx = 0;
2819 entry.d.addend = 0;
2820 }
2821 else if (h == NULL)
2822 {
2823 entry.symndx = r_symndx;
2824 entry.d.addend = 0;
2825 }
2826 else
2827 entry.d.h = h;
2828
2829 p = (struct mips_got_entry *)
2830 htab_find (g->got_entries, &entry);
2831
2832 BFD_ASSERT (p);
2833 return p;
2834 }
2835
2836 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2837 INSERT);
2838 if (*loc)
2839 return *loc;
2840
2841 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2842 entry.tls_type = 0;
2843
2844 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2845
2846 if (! *loc)
2847 return NULL;
2848
2849 memcpy (*loc, &entry, sizeof entry);
2850
2851 if (g->assigned_gotno > g->local_gotno)
2852 {
2853 (*loc)->gotidx = -1;
2854 /* We didn't allocate enough space in the GOT. */
2855 (*_bfd_error_handler)
2856 (_("not enough GOT space for local GOT entries"));
2857 bfd_set_error (bfd_error_bad_value);
2858 return NULL;
2859 }
2860
2861 MIPS_ELF_PUT_WORD (abfd, value,
2862 (htab->sgot->contents + entry.gotidx));
2863
2864 /* These GOT entries need a dynamic relocation on VxWorks. */
2865 if (htab->is_vxworks)
2866 {
2867 Elf_Internal_Rela outrel;
2868 asection *s;
2869 bfd_byte *loc;
2870 bfd_vma got_address;
2871
2872 s = mips_elf_rel_dyn_section (info, FALSE);
2873 got_address = (htab->sgot->output_section->vma
2874 + htab->sgot->output_offset
2875 + entry.gotidx);
2876
2877 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2878 outrel.r_offset = got_address;
2879 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
2880 outrel.r_addend = value;
2881 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2882 }
2883
2884 return *loc;
2885 }
2886
2887 /* Sort the dynamic symbol table so that symbols that need GOT entries
2888 appear towards the end. This reduces the amount of GOT space
2889 required. MAX_LOCAL is used to set the number of local symbols
2890 known to be in the dynamic symbol table. During
2891 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2892 section symbols are added and the count is higher. */
2893
2894 static bfd_boolean
2895 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2896 {
2897 struct mips_elf_link_hash_table *htab;
2898 struct mips_elf_hash_sort_data hsd;
2899 struct mips_got_info *g;
2900
2901 htab = mips_elf_hash_table (info);
2902 g = htab->got_info;
2903
2904 hsd.low = NULL;
2905 hsd.max_unref_got_dynindx =
2906 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2907 /* In the multi-got case, assigned_gotno of the master got_info
2908 indicate the number of entries that aren't referenced in the
2909 primary GOT, but that must have entries because there are
2910 dynamic relocations that reference it. Since they aren't
2911 referenced, we move them to the end of the GOT, so that they
2912 don't prevent other entries that are referenced from getting
2913 too large offsets. */
2914 - (g->next ? g->assigned_gotno : 0);
2915 hsd.max_non_got_dynindx = max_local;
2916 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2917 elf_hash_table (info)),
2918 mips_elf_sort_hash_table_f,
2919 &hsd);
2920
2921 /* There should have been enough room in the symbol table to
2922 accommodate both the GOT and non-GOT symbols. */
2923 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2924 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2925 <= elf_hash_table (info)->dynsymcount);
2926
2927 /* Now we know which dynamic symbol has the lowest dynamic symbol
2928 table index in the GOT. */
2929 g->global_gotsym = hsd.low;
2930
2931 return TRUE;
2932 }
2933
2934 /* If H needs a GOT entry, assign it the highest available dynamic
2935 index. Otherwise, assign it the lowest available dynamic
2936 index. */
2937
2938 static bfd_boolean
2939 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2940 {
2941 struct mips_elf_hash_sort_data *hsd = data;
2942
2943 if (h->root.root.type == bfd_link_hash_warning)
2944 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2945
2946 /* Symbols without dynamic symbol table entries aren't interesting
2947 at all. */
2948 if (h->root.dynindx == -1)
2949 return TRUE;
2950
2951 /* Global symbols that need GOT entries that are not explicitly
2952 referenced are marked with got offset 2. Those that are
2953 referenced get a 1, and those that don't need GOT entries get
2954 -1. Forced local symbols may also be marked with got offset 1,
2955 but are never given global GOT entries. */
2956 if (h->root.got.offset == 2)
2957 {
2958 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2959
2960 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2961 hsd->low = (struct elf_link_hash_entry *) h;
2962 h->root.dynindx = hsd->max_unref_got_dynindx++;
2963 }
2964 else if (h->root.got.offset != 1 || h->root.forced_local)
2965 h->root.dynindx = hsd->max_non_got_dynindx++;
2966 else
2967 {
2968 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2969
2970 h->root.dynindx = --hsd->min_got_dynindx;
2971 hsd->low = (struct elf_link_hash_entry *) h;
2972 }
2973
2974 return TRUE;
2975 }
2976
2977 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2978 symbol table index lower than any we've seen to date, record it for
2979 posterity. */
2980
2981 static bfd_boolean
2982 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2983 bfd *abfd, struct bfd_link_info *info,
2984 unsigned char tls_flag)
2985 {
2986 struct mips_elf_link_hash_table *htab;
2987 struct mips_got_entry entry, **loc;
2988 struct mips_got_info *g;
2989
2990 htab = mips_elf_hash_table (info);
2991
2992 /* A global symbol in the GOT must also be in the dynamic symbol
2993 table. */
2994 if (h->dynindx == -1)
2995 {
2996 switch (ELF_ST_VISIBILITY (h->other))
2997 {
2998 case STV_INTERNAL:
2999 case STV_HIDDEN:
3000 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3001 break;
3002 }
3003 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3004 return FALSE;
3005 }
3006
3007 /* Make sure we have a GOT to put this entry into. */
3008 g = htab->got_info;
3009 BFD_ASSERT (g != NULL);
3010
3011 entry.abfd = abfd;
3012 entry.symndx = -1;
3013 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3014 entry.tls_type = 0;
3015
3016 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3017 INSERT);
3018
3019 /* If we've already marked this entry as needing GOT space, we don't
3020 need to do it again. */
3021 if (*loc)
3022 {
3023 (*loc)->tls_type |= tls_flag;
3024 return TRUE;
3025 }
3026
3027 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3028
3029 if (! *loc)
3030 return FALSE;
3031
3032 entry.gotidx = -1;
3033 entry.tls_type = tls_flag;
3034
3035 memcpy (*loc, &entry, sizeof entry);
3036
3037 if (h->got.offset != MINUS_ONE)
3038 return TRUE;
3039
3040 if (tls_flag == 0)
3041 /* By setting this to a value other than -1, we are indicating that
3042 there needs to be a GOT entry for H. Avoid using zero, as the
3043 generic ELF copy_indirect_symbol tests for <= 0. */
3044 h->got.offset = 1;
3045
3046 return TRUE;
3047 }
3048
3049 /* Reserve space in G for a GOT entry containing the value of symbol
3050 SYMNDX in input bfd ABDF, plus ADDEND. */
3051
3052 static bfd_boolean
3053 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3054 struct bfd_link_info *info,
3055 unsigned char tls_flag)
3056 {
3057 struct mips_elf_link_hash_table *htab;
3058 struct mips_got_info *g;
3059 struct mips_got_entry entry, **loc;
3060
3061 htab = mips_elf_hash_table (info);
3062 g = htab->got_info;
3063 BFD_ASSERT (g != NULL);
3064
3065 entry.abfd = abfd;
3066 entry.symndx = symndx;
3067 entry.d.addend = addend;
3068 entry.tls_type = tls_flag;
3069 loc = (struct mips_got_entry **)
3070 htab_find_slot (g->got_entries, &entry, INSERT);
3071
3072 if (*loc)
3073 {
3074 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3075 {
3076 g->tls_gotno += 2;
3077 (*loc)->tls_type |= tls_flag;
3078 }
3079 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3080 {
3081 g->tls_gotno += 1;
3082 (*loc)->tls_type |= tls_flag;
3083 }
3084 return TRUE;
3085 }
3086
3087 if (tls_flag != 0)
3088 {
3089 entry.gotidx = -1;
3090 entry.tls_type = tls_flag;
3091 if (tls_flag == GOT_TLS_IE)
3092 g->tls_gotno += 1;
3093 else if (tls_flag == GOT_TLS_GD)
3094 g->tls_gotno += 2;
3095 else if (g->tls_ldm_offset == MINUS_ONE)
3096 {
3097 g->tls_ldm_offset = MINUS_TWO;
3098 g->tls_gotno += 2;
3099 }
3100 }
3101 else
3102 {
3103 entry.gotidx = g->local_gotno++;
3104 entry.tls_type = 0;
3105 }
3106
3107 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3108
3109 if (! *loc)
3110 return FALSE;
3111
3112 memcpy (*loc, &entry, sizeof entry);
3113
3114 return TRUE;
3115 }
3116
3117 /* Return the maximum number of GOT page entries required for RANGE. */
3118
3119 static bfd_vma
3120 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3121 {
3122 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3123 }
3124
3125 /* Record that ABFD has a page relocation against symbol SYMNDX and
3126 that ADDEND is the addend for that relocation.
3127
3128 This function creates an upper bound on the number of GOT slots
3129 required; no attempt is made to combine references to non-overridable
3130 global symbols across multiple input files. */
3131
3132 static bfd_boolean
3133 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3134 long symndx, bfd_signed_vma addend)
3135 {
3136 struct mips_elf_link_hash_table *htab;
3137 struct mips_got_info *g;
3138 struct mips_got_page_entry lookup, *entry;
3139 struct mips_got_page_range **range_ptr, *range;
3140 bfd_vma old_pages, new_pages;
3141 void **loc;
3142
3143 htab = mips_elf_hash_table (info);
3144 g = htab->got_info;
3145 BFD_ASSERT (g != NULL);
3146
3147 /* Find the mips_got_page_entry hash table entry for this symbol. */
3148 lookup.abfd = abfd;
3149 lookup.symndx = symndx;
3150 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3151 if (loc == NULL)
3152 return FALSE;
3153
3154 /* Create a mips_got_page_entry if this is the first time we've
3155 seen the symbol. */
3156 entry = (struct mips_got_page_entry *) *loc;
3157 if (!entry)
3158 {
3159 entry = bfd_alloc (abfd, sizeof (*entry));
3160 if (!entry)
3161 return FALSE;
3162
3163 entry->abfd = abfd;
3164 entry->symndx = symndx;
3165 entry->ranges = NULL;
3166 entry->num_pages = 0;
3167 *loc = entry;
3168 }
3169
3170 /* Skip over ranges whose maximum extent cannot share a page entry
3171 with ADDEND. */
3172 range_ptr = &entry->ranges;
3173 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3174 range_ptr = &(*range_ptr)->next;
3175
3176 /* If we scanned to the end of the list, or found a range whose
3177 minimum extent cannot share a page entry with ADDEND, create
3178 a new singleton range. */
3179 range = *range_ptr;
3180 if (!range || addend < range->min_addend - 0xffff)
3181 {
3182 range = bfd_alloc (abfd, sizeof (*range));
3183 if (!range)
3184 return FALSE;
3185
3186 range->next = *range_ptr;
3187 range->min_addend = addend;
3188 range->max_addend = addend;
3189
3190 *range_ptr = range;
3191 entry->num_pages++;
3192 g->page_gotno++;
3193 return TRUE;
3194 }
3195
3196 /* Remember how many pages the old range contributed. */
3197 old_pages = mips_elf_pages_for_range (range);
3198
3199 /* Update the ranges. */
3200 if (addend < range->min_addend)
3201 range->min_addend = addend;
3202 else if (addend > range->max_addend)
3203 {
3204 if (range->next && addend >= range->next->min_addend - 0xffff)
3205 {
3206 old_pages += mips_elf_pages_for_range (range->next);
3207 range->max_addend = range->next->max_addend;
3208 range->next = range->next->next;
3209 }
3210 else
3211 range->max_addend = addend;
3212 }
3213
3214 /* Record any change in the total estimate. */
3215 new_pages = mips_elf_pages_for_range (range);
3216 if (old_pages != new_pages)
3217 {
3218 entry->num_pages += new_pages - old_pages;
3219 g->page_gotno += new_pages - old_pages;
3220 }
3221
3222 return TRUE;
3223 }
3224
3225 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3226
3227 static void
3228 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3229 unsigned int n)
3230 {
3231 asection *s;
3232 struct mips_elf_link_hash_table *htab;
3233
3234 htab = mips_elf_hash_table (info);
3235 s = mips_elf_rel_dyn_section (info, FALSE);
3236 BFD_ASSERT (s != NULL);
3237
3238 if (htab->is_vxworks)
3239 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3240 else
3241 {
3242 if (s->size == 0)
3243 {
3244 /* Make room for a null element. */
3245 s->size += MIPS_ELF_REL_SIZE (abfd);
3246 ++s->reloc_count;
3247 }
3248 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3249 }
3250 }
3251 \f
3252 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3253 if the GOT entry is for an indirect or warning symbol. */
3254
3255 static int
3256 mips_elf_check_recreate_got (void **entryp, void *data)
3257 {
3258 struct mips_got_entry *entry;
3259 bfd_boolean *must_recreate;
3260
3261 entry = (struct mips_got_entry *) *entryp;
3262 must_recreate = (bfd_boolean *) data;
3263 if (entry->abfd != NULL && entry->symndx == -1)
3264 {
3265 struct mips_elf_link_hash_entry *h;
3266
3267 h = entry->d.h;
3268 if (h->root.root.type == bfd_link_hash_indirect
3269 || h->root.root.type == bfd_link_hash_warning)
3270 {
3271 *must_recreate = TRUE;
3272 return 0;
3273 }
3274 }
3275 return 1;
3276 }
3277
3278 /* A htab_traverse callback for GOT entries. Add all entries to
3279 hash table *DATA, converting entries for indirect and warning
3280 symbols into entries for the target symbol. Set *DATA to null
3281 on error. */
3282
3283 static int
3284 mips_elf_recreate_got (void **entryp, void *data)
3285 {
3286 htab_t *new_got;
3287 struct mips_got_entry *entry;
3288 void **slot;
3289
3290 new_got = (htab_t *) data;
3291 entry = (struct mips_got_entry *) *entryp;
3292 if (entry->abfd != NULL && entry->symndx == -1)
3293 {
3294 struct mips_elf_link_hash_entry *h;
3295
3296 h = entry->d.h;
3297 while (h->root.root.type == bfd_link_hash_indirect
3298 || h->root.root.type == bfd_link_hash_warning)
3299 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3300 entry->d.h = h;
3301 }
3302 slot = htab_find_slot (*new_got, entry, INSERT);
3303 if (slot == NULL)
3304 {
3305 *new_got = NULL;
3306 return 0;
3307 }
3308 if (*slot == NULL)
3309 *slot = entry;
3310 else
3311 free (entry);
3312 return 1;
3313 }
3314
3315 /* If any entries in G->got_entries are for indirect or warning symbols,
3316 replace them with entries for the target symbol. */
3317
3318 static bfd_boolean
3319 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3320 {
3321 bfd_boolean must_recreate;
3322 htab_t new_got;
3323
3324 must_recreate = FALSE;
3325 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3326 if (must_recreate)
3327 {
3328 new_got = htab_create (htab_size (g->got_entries),
3329 mips_elf_got_entry_hash,
3330 mips_elf_got_entry_eq, NULL);
3331 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3332 if (new_got == NULL)
3333 return FALSE;
3334
3335 /* Each entry in g->got_entries has either been copied to new_got
3336 or freed. Now delete the hash table itself. */
3337 htab_delete (g->got_entries);
3338 g->got_entries = new_got;
3339 }
3340 return TRUE;
3341 }
3342
3343 /* An elf_link_hash_traverse callback for which DATA points to a mips_got_info.
3344 Add each forced-local GOT symbol to DATA's local_gotno field. */
3345
3346 static int
3347 mips_elf_count_forced_local_got_symbols (struct elf_link_hash_entry *h,
3348 void *data)
3349 {
3350 struct mips_got_info *g;
3351
3352 g = (struct mips_got_info *) data;
3353 if (h->got.offset != MINUS_ONE
3354 && (h->forced_local || h->dynindx == -1))
3355 {
3356 /* We no longer need this entry if it was only used for
3357 relocations; those relocations will be against the
3358 null or section symbol instead of H. */
3359 if (h->got.offset == 2)
3360 h->got.offset = MINUS_ONE;
3361 else
3362 g->local_gotno++;
3363 }
3364 return 1;
3365 }
3366 \f
3367 /* Compute the hash value of the bfd in a bfd2got hash entry. */
3368
3369 static hashval_t
3370 mips_elf_bfd2got_entry_hash (const void *entry_)
3371 {
3372 const struct mips_elf_bfd2got_hash *entry
3373 = (struct mips_elf_bfd2got_hash *)entry_;
3374
3375 return entry->bfd->id;
3376 }
3377
3378 /* Check whether two hash entries have the same bfd. */
3379
3380 static int
3381 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
3382 {
3383 const struct mips_elf_bfd2got_hash *e1
3384 = (const struct mips_elf_bfd2got_hash *)entry1;
3385 const struct mips_elf_bfd2got_hash *e2
3386 = (const struct mips_elf_bfd2got_hash *)entry2;
3387
3388 return e1->bfd == e2->bfd;
3389 }
3390
3391 /* In a multi-got link, determine the GOT to be used for IBFD. G must
3392 be the master GOT data. */
3393
3394 static struct mips_got_info *
3395 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
3396 {
3397 struct mips_elf_bfd2got_hash e, *p;
3398
3399 if (! g->bfd2got)
3400 return g;
3401
3402 e.bfd = ibfd;
3403 p = htab_find (g->bfd2got, &e);
3404 return p ? p->g : NULL;
3405 }
3406
3407 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
3408 Return NULL if an error occured. */
3409
3410 static struct mips_got_info *
3411 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
3412 bfd *input_bfd)
3413 {
3414 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3415 struct mips_got_info *g;
3416 void **bfdgotp;
3417
3418 bfdgot_entry.bfd = input_bfd;
3419 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3420 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
3421
3422 if (bfdgot == NULL)
3423 {
3424 bfdgot = ((struct mips_elf_bfd2got_hash *)
3425 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
3426 if (bfdgot == NULL)
3427 return NULL;
3428
3429 *bfdgotp = bfdgot;
3430
3431 g = ((struct mips_got_info *)
3432 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
3433 if (g == NULL)
3434 return NULL;
3435
3436 bfdgot->bfd = input_bfd;
3437 bfdgot->g = g;
3438
3439 g->global_gotsym = NULL;
3440 g->global_gotno = 0;
3441 g->local_gotno = 0;
3442 g->page_gotno = 0;
3443 g->assigned_gotno = -1;
3444 g->tls_gotno = 0;
3445 g->tls_assigned_gotno = 0;
3446 g->tls_ldm_offset = MINUS_ONE;
3447 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3448 mips_elf_multi_got_entry_eq, NULL);
3449 if (g->got_entries == NULL)
3450 return NULL;
3451
3452 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3453 mips_got_page_entry_eq, NULL);
3454 if (g->got_page_entries == NULL)
3455 return NULL;
3456
3457 g->bfd2got = NULL;
3458 g->next = NULL;
3459 }
3460
3461 return bfdgot->g;
3462 }
3463
3464 /* A htab_traverse callback for the entries in the master got.
3465 Create one separate got for each bfd that has entries in the global
3466 got, such that we can tell how many local and global entries each
3467 bfd requires. */
3468
3469 static int
3470 mips_elf_make_got_per_bfd (void **entryp, void *p)
3471 {
3472 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3473 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3474 struct mips_got_info *g;
3475
3476 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3477 if (g == NULL)
3478 {
3479 arg->obfd = NULL;
3480 return 0;
3481 }
3482
3483 /* Insert the GOT entry in the bfd's got entry hash table. */
3484 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3485 if (*entryp != NULL)
3486 return 1;
3487
3488 *entryp = entry;
3489
3490 if (entry->tls_type)
3491 {
3492 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3493 g->tls_gotno += 2;
3494 if (entry->tls_type & GOT_TLS_IE)
3495 g->tls_gotno += 1;
3496 }
3497 else if (entry->symndx >= 0 || entry->d.h->root.forced_local)
3498 ++g->local_gotno;
3499 else
3500 ++g->global_gotno;
3501
3502 return 1;
3503 }
3504
3505 /* A htab_traverse callback for the page entries in the master got.
3506 Associate each page entry with the bfd's got. */
3507
3508 static int
3509 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
3510 {
3511 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
3512 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
3513 struct mips_got_info *g;
3514
3515 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3516 if (g == NULL)
3517 {
3518 arg->obfd = NULL;
3519 return 0;
3520 }
3521
3522 /* Insert the GOT entry in the bfd's got entry hash table. */
3523 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
3524 if (*entryp != NULL)
3525 return 1;
3526
3527 *entryp = entry;
3528 g->page_gotno += entry->num_pages;
3529 return 1;
3530 }
3531
3532 /* Consider merging the got described by BFD2GOT with TO, using the
3533 information given by ARG. Return -1 if this would lead to overflow,
3534 1 if they were merged successfully, and 0 if a merge failed due to
3535 lack of memory. (These values are chosen so that nonnegative return
3536 values can be returned by a htab_traverse callback.) */
3537
3538 static int
3539 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
3540 struct mips_got_info *to,
3541 struct mips_elf_got_per_bfd_arg *arg)
3542 {
3543 struct mips_got_info *from = bfd2got->g;
3544 unsigned int estimate;
3545
3546 /* Work out how many page entries we would need for the combined GOT. */
3547 estimate = arg->max_pages;
3548 if (estimate >= from->page_gotno + to->page_gotno)
3549 estimate = from->page_gotno + to->page_gotno;
3550
3551 /* And conservatively estimate how many local, global and TLS entries
3552 would be needed. */
3553 estimate += (from->local_gotno
3554 + from->global_gotno
3555 + from->tls_gotno
3556 + to->local_gotno
3557 + to->global_gotno
3558 + to->tls_gotno);
3559
3560 /* Bail out if the combined GOT might be too big. */
3561 if (estimate > arg->max_count)
3562 return -1;
3563
3564 /* Commit to the merge. Record that TO is now the bfd for this got. */
3565 bfd2got->g = to;
3566
3567 /* Transfer the bfd's got information from FROM to TO. */
3568 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
3569 if (arg->obfd == NULL)
3570 return 0;
3571
3572 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
3573 if (arg->obfd == NULL)
3574 return 0;
3575
3576 /* We don't have to worry about releasing memory of the actual
3577 got entries, since they're all in the master got_entries hash
3578 table anyway. */
3579 htab_delete (from->got_entries);
3580 htab_delete (from->got_page_entries);
3581 return 1;
3582 }
3583
3584 /* Attempt to merge gots of different input bfds. Try to use as much
3585 as possible of the primary got, since it doesn't require explicit
3586 dynamic relocations, but don't use bfds that would reference global
3587 symbols out of the addressable range. Failing the primary got,
3588 attempt to merge with the current got, or finish the current got
3589 and then make make the new got current. */
3590
3591 static int
3592 mips_elf_merge_gots (void **bfd2got_, void *p)
3593 {
3594 struct mips_elf_bfd2got_hash *bfd2got
3595 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3596 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3597 struct mips_got_info *g;
3598 unsigned int estimate;
3599 int result;
3600
3601 g = bfd2got->g;
3602
3603 /* Work out the number of page, local and TLS entries. */
3604 estimate = arg->max_pages;
3605 if (estimate > g->page_gotno)
3606 estimate = g->page_gotno;
3607 estimate += g->local_gotno + g->tls_gotno;
3608
3609 /* We place TLS GOT entries after both locals and globals. The globals
3610 for the primary GOT may overflow the normal GOT size limit, so be
3611 sure not to merge a GOT which requires TLS with the primary GOT in that
3612 case. This doesn't affect non-primary GOTs. */
3613 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
3614
3615 if (estimate <= arg->max_count)
3616 {
3617 /* If we don't have a primary GOT, use it as
3618 a starting point for the primary GOT. */
3619 if (!arg->primary)
3620 {
3621 arg->primary = bfd2got->g;
3622 return 1;
3623 }
3624
3625 /* Try merging with the primary GOT. */
3626 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
3627 if (result >= 0)
3628 return result;
3629 }
3630
3631 /* If we can merge with the last-created got, do it. */
3632 if (arg->current)
3633 {
3634 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
3635 if (result >= 0)
3636 return result;
3637 }
3638
3639 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3640 fits; if it turns out that it doesn't, we'll get relocation
3641 overflows anyway. */
3642 g->next = arg->current;
3643 arg->current = g;
3644
3645 return 1;
3646 }
3647
3648 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3649 is null iff there is just a single GOT. */
3650
3651 static int
3652 mips_elf_initialize_tls_index (void **entryp, void *p)
3653 {
3654 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3655 struct mips_got_info *g = p;
3656 bfd_vma next_index;
3657 unsigned char tls_type;
3658
3659 /* We're only interested in TLS symbols. */
3660 if (entry->tls_type == 0)
3661 return 1;
3662
3663 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3664
3665 if (entry->symndx == -1 && g->next == NULL)
3666 {
3667 /* A type (3) got entry in the single-GOT case. We use the symbol's
3668 hash table entry to track its index. */
3669 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3670 return 1;
3671 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3672 entry->d.h->tls_got_offset = next_index;
3673 tls_type = entry->d.h->tls_type;
3674 }
3675 else
3676 {
3677 if (entry->tls_type & GOT_TLS_LDM)
3678 {
3679 /* There are separate mips_got_entry objects for each input bfd
3680 that requires an LDM entry. Make sure that all LDM entries in
3681 a GOT resolve to the same index. */
3682 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3683 {
3684 entry->gotidx = g->tls_ldm_offset;
3685 return 1;
3686 }
3687 g->tls_ldm_offset = next_index;
3688 }
3689 entry->gotidx = next_index;
3690 tls_type = entry->tls_type;
3691 }
3692
3693 /* Account for the entries we've just allocated. */
3694 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3695 g->tls_assigned_gotno += 2;
3696 if (tls_type & GOT_TLS_IE)
3697 g->tls_assigned_gotno += 1;
3698
3699 return 1;
3700 }
3701
3702 /* If passed a NULL mips_got_info in the argument, set the marker used
3703 to tell whether a global symbol needs a got entry (in the primary
3704 got) to the given VALUE.
3705
3706 If passed a pointer G to a mips_got_info in the argument (it must
3707 not be the primary GOT), compute the offset from the beginning of
3708 the (primary) GOT section to the entry in G corresponding to the
3709 global symbol. G's assigned_gotno must contain the index of the
3710 first available global GOT entry in G. VALUE must contain the size
3711 of a GOT entry in bytes. For each global GOT entry that requires a
3712 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3713 marked as not eligible for lazy resolution through a function
3714 stub. */
3715 static int
3716 mips_elf_set_global_got_offset (void **entryp, void *p)
3717 {
3718 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3719 struct mips_elf_set_global_got_offset_arg *arg
3720 = (struct mips_elf_set_global_got_offset_arg *)p;
3721 struct mips_got_info *g = arg->g;
3722
3723 if (g && entry->tls_type != GOT_NORMAL)
3724 arg->needed_relocs +=
3725 mips_tls_got_relocs (arg->info, entry->tls_type,
3726 entry->symndx == -1 ? &entry->d.h->root : NULL);
3727
3728 if (entry->abfd != NULL && entry->symndx == -1
3729 && entry->d.h->root.dynindx != -1
3730 && !entry->d.h->root.forced_local
3731 && entry->d.h->tls_type == GOT_NORMAL)
3732 {
3733 if (g)
3734 {
3735 BFD_ASSERT (g->global_gotsym == NULL);
3736
3737 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3738 if (arg->info->shared
3739 || (elf_hash_table (arg->info)->dynamic_sections_created
3740 && entry->d.h->root.def_dynamic
3741 && !entry->d.h->root.def_regular))
3742 ++arg->needed_relocs;
3743 }
3744 else
3745 entry->d.h->root.got.offset = arg->value;
3746 }
3747
3748 return 1;
3749 }
3750
3751 /* A htab_traverse callback for GOT entries for which DATA is the
3752 bfd_link_info. Forbid any global symbols from having traditional
3753 lazy-binding stubs. */
3754
3755 static int
3756 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
3757 {
3758 struct bfd_link_info *info;
3759 struct mips_elf_link_hash_table *htab;
3760 struct mips_got_entry *entry;
3761
3762 entry = (struct mips_got_entry *) *entryp;
3763 info = (struct bfd_link_info *) data;
3764 htab = mips_elf_hash_table (info);
3765 if (entry->abfd != NULL
3766 && entry->symndx == -1
3767 && entry->d.h->needs_lazy_stub)
3768 {
3769 entry->d.h->needs_lazy_stub = FALSE;
3770 htab->lazy_stub_count--;
3771 }
3772
3773 return 1;
3774 }
3775
3776 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3777 the primary GOT. */
3778 static bfd_vma
3779 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3780 {
3781 if (g->bfd2got == NULL)
3782 return 0;
3783
3784 g = mips_elf_got_for_ibfd (g, ibfd);
3785 if (! g)
3786 return 0;
3787
3788 BFD_ASSERT (g->next);
3789
3790 g = g->next;
3791
3792 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3793 * MIPS_ELF_GOT_SIZE (abfd);
3794 }
3795
3796 /* Turn a single GOT that is too big for 16-bit addressing into
3797 a sequence of GOTs, each one 16-bit addressable. */
3798
3799 static bfd_boolean
3800 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3801 asection *got, bfd_size_type pages)
3802 {
3803 struct mips_elf_link_hash_table *htab;
3804 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3805 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3806 struct mips_got_info *g, *gg;
3807 unsigned int assign, needed_relocs;
3808 bfd *dynobj;
3809
3810 dynobj = elf_hash_table (info)->dynobj;
3811 htab = mips_elf_hash_table (info);
3812 g = htab->got_info;
3813 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3814 mips_elf_bfd2got_entry_eq, NULL);
3815 if (g->bfd2got == NULL)
3816 return FALSE;
3817
3818 got_per_bfd_arg.bfd2got = g->bfd2got;
3819 got_per_bfd_arg.obfd = abfd;
3820 got_per_bfd_arg.info = info;
3821
3822 /* Count how many GOT entries each input bfd requires, creating a
3823 map from bfd to got info while at that. */
3824 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3825 if (got_per_bfd_arg.obfd == NULL)
3826 return FALSE;
3827
3828 /* Also count how many page entries each input bfd requires. */
3829 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
3830 &got_per_bfd_arg);
3831 if (got_per_bfd_arg.obfd == NULL)
3832 return FALSE;
3833
3834 got_per_bfd_arg.current = NULL;
3835 got_per_bfd_arg.primary = NULL;
3836 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
3837 / MIPS_ELF_GOT_SIZE (abfd))
3838 - MIPS_RESERVED_GOTNO (info));
3839 got_per_bfd_arg.max_pages = pages;
3840 /* The number of globals that will be included in the primary GOT.
3841 See the calls to mips_elf_set_global_got_offset below for more
3842 information. */
3843 got_per_bfd_arg.global_count = g->global_gotno;
3844
3845 /* Try to merge the GOTs of input bfds together, as long as they
3846 don't seem to exceed the maximum GOT size, choosing one of them
3847 to be the primary GOT. */
3848 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3849 if (got_per_bfd_arg.obfd == NULL)
3850 return FALSE;
3851
3852 /* If we do not find any suitable primary GOT, create an empty one. */
3853 if (got_per_bfd_arg.primary == NULL)
3854 {
3855 g->next = (struct mips_got_info *)
3856 bfd_alloc (abfd, sizeof (struct mips_got_info));
3857 if (g->next == NULL)
3858 return FALSE;
3859
3860 g->next->global_gotsym = NULL;
3861 g->next->global_gotno = 0;
3862 g->next->local_gotno = 0;
3863 g->next->page_gotno = 0;
3864 g->next->tls_gotno = 0;
3865 g->next->assigned_gotno = 0;
3866 g->next->tls_assigned_gotno = 0;
3867 g->next->tls_ldm_offset = MINUS_ONE;
3868 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3869 mips_elf_multi_got_entry_eq,
3870 NULL);
3871 if (g->next->got_entries == NULL)
3872 return FALSE;
3873 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3874 mips_got_page_entry_eq,
3875 NULL);
3876 if (g->next->got_page_entries == NULL)
3877 return FALSE;
3878 g->next->bfd2got = NULL;
3879 }
3880 else
3881 g->next = got_per_bfd_arg.primary;
3882 g->next->next = got_per_bfd_arg.current;
3883
3884 /* GG is now the master GOT, and G is the primary GOT. */
3885 gg = g;
3886 g = g->next;
3887
3888 /* Map the output bfd to the primary got. That's what we're going
3889 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3890 didn't mark in check_relocs, and we want a quick way to find it.
3891 We can't just use gg->next because we're going to reverse the
3892 list. */
3893 {
3894 struct mips_elf_bfd2got_hash *bfdgot;
3895 void **bfdgotp;
3896
3897 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3898 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3899
3900 if (bfdgot == NULL)
3901 return FALSE;
3902
3903 bfdgot->bfd = abfd;
3904 bfdgot->g = g;
3905 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3906
3907 BFD_ASSERT (*bfdgotp == NULL);
3908 *bfdgotp = bfdgot;
3909 }
3910
3911 /* The IRIX dynamic linker requires every symbol that is referenced
3912 in a dynamic relocation to be present in the primary GOT, so
3913 arrange for them to appear after those that are actually
3914 referenced.
3915
3916 GNU/Linux could very well do without it, but it would slow down
3917 the dynamic linker, since it would have to resolve every dynamic
3918 symbol referenced in other GOTs more than once, without help from
3919 the cache. Also, knowing that every external symbol has a GOT
3920 helps speed up the resolution of local symbols too, so GNU/Linux
3921 follows IRIX's practice.
3922
3923 The number 2 is used by mips_elf_sort_hash_table_f to count
3924 global GOT symbols that are unreferenced in the primary GOT, with
3925 an initial dynamic index computed from gg->assigned_gotno, where
3926 the number of unreferenced global entries in the primary GOT is
3927 preserved. */
3928 if (1)
3929 {
3930 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3931 g->global_gotno = gg->global_gotno;
3932 set_got_offset_arg.value = 2;
3933 }
3934 else
3935 {
3936 /* This could be used for dynamic linkers that don't optimize
3937 symbol resolution while applying relocations so as to use
3938 primary GOT entries or assuming the symbol is locally-defined.
3939 With this code, we assign lower dynamic indices to global
3940 symbols that are not referenced in the primary GOT, so that
3941 their entries can be omitted. */
3942 gg->assigned_gotno = 0;
3943 set_got_offset_arg.value = -1;
3944 }
3945
3946 /* Reorder dynamic symbols as described above (which behavior
3947 depends on the setting of VALUE). */
3948 set_got_offset_arg.g = NULL;
3949 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3950 &set_got_offset_arg);
3951 set_got_offset_arg.value = 1;
3952 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3953 &set_got_offset_arg);
3954 if (! mips_elf_sort_hash_table (info, 1))
3955 return FALSE;
3956
3957 /* Now go through the GOTs assigning them offset ranges.
3958 [assigned_gotno, local_gotno[ will be set to the range of local
3959 entries in each GOT. We can then compute the end of a GOT by
3960 adding local_gotno to global_gotno. We reverse the list and make
3961 it circular since then we'll be able to quickly compute the
3962 beginning of a GOT, by computing the end of its predecessor. To
3963 avoid special cases for the primary GOT, while still preserving
3964 assertions that are valid for both single- and multi-got links,
3965 we arrange for the main got struct to have the right number of
3966 global entries, but set its local_gotno such that the initial
3967 offset of the primary GOT is zero. Remember that the primary GOT
3968 will become the last item in the circular linked list, so it
3969 points back to the master GOT. */
3970 gg->local_gotno = -g->global_gotno;
3971 gg->global_gotno = g->global_gotno;
3972 gg->tls_gotno = 0;
3973 assign = 0;
3974 gg->next = gg;
3975
3976 do
3977 {
3978 struct mips_got_info *gn;
3979
3980 assign += MIPS_RESERVED_GOTNO (info);
3981 g->assigned_gotno = assign;
3982 g->local_gotno += assign;
3983 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
3984 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3985
3986 /* Take g out of the direct list, and push it onto the reversed
3987 list that gg points to. g->next is guaranteed to be nonnull after
3988 this operation, as required by mips_elf_initialize_tls_index. */
3989 gn = g->next;
3990 g->next = gg->next;
3991 gg->next = g;
3992
3993 /* Set up any TLS entries. We always place the TLS entries after
3994 all non-TLS entries. */
3995 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3996 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3997
3998 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3999 g = gn;
4000
4001 /* Forbid global symbols in every non-primary GOT from having
4002 lazy-binding stubs. */
4003 if (g)
4004 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4005 }
4006 while (g);
4007
4008 got->size = (gg->next->local_gotno
4009 + gg->next->global_gotno
4010 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4011
4012 needed_relocs = 0;
4013 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4014 set_got_offset_arg.info = info;
4015 for (g = gg->next; g && g->next != gg; g = g->next)
4016 {
4017 unsigned int save_assign;
4018
4019 /* Assign offsets to global GOT entries. */
4020 save_assign = g->assigned_gotno;
4021 g->assigned_gotno = g->local_gotno;
4022 set_got_offset_arg.g = g;
4023 set_got_offset_arg.needed_relocs = 0;
4024 htab_traverse (g->got_entries,
4025 mips_elf_set_global_got_offset,
4026 &set_got_offset_arg);
4027 needed_relocs += set_got_offset_arg.needed_relocs;
4028 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4029
4030 g->assigned_gotno = save_assign;
4031 if (info->shared)
4032 {
4033 needed_relocs += g->local_gotno - g->assigned_gotno;
4034 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4035 + g->next->global_gotno
4036 + g->next->tls_gotno
4037 + MIPS_RESERVED_GOTNO (info));
4038 }
4039 }
4040
4041 if (needed_relocs)
4042 mips_elf_allocate_dynamic_relocations (dynobj, info,
4043 needed_relocs);
4044
4045 return TRUE;
4046 }
4047
4048 \f
4049 /* Returns the first relocation of type r_type found, beginning with
4050 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4051
4052 static const Elf_Internal_Rela *
4053 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4054 const Elf_Internal_Rela *relocation,
4055 const Elf_Internal_Rela *relend)
4056 {
4057 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4058
4059 while (relocation < relend)
4060 {
4061 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4062 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4063 return relocation;
4064
4065 ++relocation;
4066 }
4067
4068 /* We didn't find it. */
4069 return NULL;
4070 }
4071
4072 /* Return whether a relocation is against a local symbol. */
4073
4074 static bfd_boolean
4075 mips_elf_local_relocation_p (bfd *input_bfd,
4076 const Elf_Internal_Rela *relocation,
4077 asection **local_sections,
4078 bfd_boolean check_forced)
4079 {
4080 unsigned long r_symndx;
4081 Elf_Internal_Shdr *symtab_hdr;
4082 struct mips_elf_link_hash_entry *h;
4083 size_t extsymoff;
4084
4085 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4086 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4087 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4088
4089 if (r_symndx < extsymoff)
4090 return TRUE;
4091 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4092 return TRUE;
4093
4094 if (check_forced)
4095 {
4096 /* Look up the hash table to check whether the symbol
4097 was forced local. */
4098 h = (struct mips_elf_link_hash_entry *)
4099 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
4100 /* Find the real hash-table entry for this symbol. */
4101 while (h->root.root.type == bfd_link_hash_indirect
4102 || h->root.root.type == bfd_link_hash_warning)
4103 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4104 if (h->root.forced_local)
4105 return TRUE;
4106 }
4107
4108 return FALSE;
4109 }
4110 \f
4111 /* Sign-extend VALUE, which has the indicated number of BITS. */
4112
4113 bfd_vma
4114 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4115 {
4116 if (value & ((bfd_vma) 1 << (bits - 1)))
4117 /* VALUE is negative. */
4118 value |= ((bfd_vma) - 1) << bits;
4119
4120 return value;
4121 }
4122
4123 /* Return non-zero if the indicated VALUE has overflowed the maximum
4124 range expressible by a signed number with the indicated number of
4125 BITS. */
4126
4127 static bfd_boolean
4128 mips_elf_overflow_p (bfd_vma value, int bits)
4129 {
4130 bfd_signed_vma svalue = (bfd_signed_vma) value;
4131
4132 if (svalue > (1 << (bits - 1)) - 1)
4133 /* The value is too big. */
4134 return TRUE;
4135 else if (svalue < -(1 << (bits - 1)))
4136 /* The value is too small. */
4137 return TRUE;
4138
4139 /* All is well. */
4140 return FALSE;
4141 }
4142
4143 /* Calculate the %high function. */
4144
4145 static bfd_vma
4146 mips_elf_high (bfd_vma value)
4147 {
4148 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4149 }
4150
4151 /* Calculate the %higher function. */
4152
4153 static bfd_vma
4154 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4155 {
4156 #ifdef BFD64
4157 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4158 #else
4159 abort ();
4160 return MINUS_ONE;
4161 #endif
4162 }
4163
4164 /* Calculate the %highest function. */
4165
4166 static bfd_vma
4167 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4168 {
4169 #ifdef BFD64
4170 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4171 #else
4172 abort ();
4173 return MINUS_ONE;
4174 #endif
4175 }
4176 \f
4177 /* Create the .compact_rel section. */
4178
4179 static bfd_boolean
4180 mips_elf_create_compact_rel_section
4181 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4182 {
4183 flagword flags;
4184 register asection *s;
4185
4186 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4187 {
4188 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4189 | SEC_READONLY);
4190
4191 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
4192 if (s == NULL
4193 || ! bfd_set_section_alignment (abfd, s,
4194 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4195 return FALSE;
4196
4197 s->size = sizeof (Elf32_External_compact_rel);
4198 }
4199
4200 return TRUE;
4201 }
4202
4203 /* Create the .got section to hold the global offset table. */
4204
4205 static bfd_boolean
4206 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
4207 bfd_boolean maybe_exclude)
4208 {
4209 flagword flags;
4210 register asection *s;
4211 struct elf_link_hash_entry *h;
4212 struct bfd_link_hash_entry *bh;
4213 struct mips_got_info *g;
4214 bfd_size_type amt;
4215 struct mips_elf_link_hash_table *htab;
4216
4217 htab = mips_elf_hash_table (info);
4218
4219 /* This function may be called more than once. */
4220 s = htab->sgot;
4221 if (s)
4222 {
4223 if (! maybe_exclude)
4224 s->flags &= ~SEC_EXCLUDE;
4225 return TRUE;
4226 }
4227
4228 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4229 | SEC_LINKER_CREATED);
4230
4231 if (maybe_exclude)
4232 flags |= SEC_EXCLUDE;
4233
4234 /* We have to use an alignment of 2**4 here because this is hardcoded
4235 in the function stub generation and in the linker script. */
4236 s = bfd_make_section_with_flags (abfd, ".got", flags);
4237 if (s == NULL
4238 || ! bfd_set_section_alignment (abfd, s, 4))
4239 return FALSE;
4240 htab->sgot = s;
4241
4242 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4243 linker script because we don't want to define the symbol if we
4244 are not creating a global offset table. */
4245 bh = NULL;
4246 if (! (_bfd_generic_link_add_one_symbol
4247 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4248 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4249 return FALSE;
4250
4251 h = (struct elf_link_hash_entry *) bh;
4252 h->non_elf = 0;
4253 h->def_regular = 1;
4254 h->type = STT_OBJECT;
4255 elf_hash_table (info)->hgot = h;
4256
4257 if (info->shared
4258 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4259 return FALSE;
4260
4261 amt = sizeof (struct mips_got_info);
4262 g = bfd_alloc (abfd, amt);
4263 if (g == NULL)
4264 return FALSE;
4265 g->global_gotsym = NULL;
4266 g->global_gotno = 0;
4267 g->tls_gotno = 0;
4268 g->local_gotno = MIPS_RESERVED_GOTNO (info);
4269 g->page_gotno = 0;
4270 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
4271 g->bfd2got = NULL;
4272 g->next = NULL;
4273 g->tls_ldm_offset = MINUS_ONE;
4274 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4275 mips_elf_got_entry_eq, NULL);
4276 if (g->got_entries == NULL)
4277 return FALSE;
4278 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4279 mips_got_page_entry_eq, NULL);
4280 if (g->got_page_entries == NULL)
4281 return FALSE;
4282 htab->got_info = g;
4283 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4284 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4285
4286 /* VxWorks also needs a .got.plt section. */
4287 if (htab->is_vxworks)
4288 {
4289 s = bfd_make_section_with_flags (abfd, ".got.plt",
4290 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4291 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4292 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
4293 return FALSE;
4294
4295 htab->sgotplt = s;
4296 }
4297 return TRUE;
4298 }
4299 \f
4300 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4301 __GOTT_INDEX__ symbols. These symbols are only special for
4302 shared objects; they are not used in executables. */
4303
4304 static bfd_boolean
4305 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4306 {
4307 return (mips_elf_hash_table (info)->is_vxworks
4308 && info->shared
4309 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4310 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4311 }
4312 \f
4313 /* Calculate the value produced by the RELOCATION (which comes from
4314 the INPUT_BFD). The ADDEND is the addend to use for this
4315 RELOCATION; RELOCATION->R_ADDEND is ignored.
4316
4317 The result of the relocation calculation is stored in VALUEP.
4318 REQUIRE_JALXP indicates whether or not the opcode used with this
4319 relocation must be JALX.
4320
4321 This function returns bfd_reloc_continue if the caller need take no
4322 further action regarding this relocation, bfd_reloc_notsupported if
4323 something goes dramatically wrong, bfd_reloc_overflow if an
4324 overflow occurs, and bfd_reloc_ok to indicate success. */
4325
4326 static bfd_reloc_status_type
4327 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4328 asection *input_section,
4329 struct bfd_link_info *info,
4330 const Elf_Internal_Rela *relocation,
4331 bfd_vma addend, reloc_howto_type *howto,
4332 Elf_Internal_Sym *local_syms,
4333 asection **local_sections, bfd_vma *valuep,
4334 const char **namep, bfd_boolean *require_jalxp,
4335 bfd_boolean save_addend)
4336 {
4337 /* The eventual value we will return. */
4338 bfd_vma value;
4339 /* The address of the symbol against which the relocation is
4340 occurring. */
4341 bfd_vma symbol = 0;
4342 /* The final GP value to be used for the relocatable, executable, or
4343 shared object file being produced. */
4344 bfd_vma gp;
4345 /* The place (section offset or address) of the storage unit being
4346 relocated. */
4347 bfd_vma p;
4348 /* The value of GP used to create the relocatable object. */
4349 bfd_vma gp0;
4350 /* The offset into the global offset table at which the address of
4351 the relocation entry symbol, adjusted by the addend, resides
4352 during execution. */
4353 bfd_vma g = MINUS_ONE;
4354 /* The section in which the symbol referenced by the relocation is
4355 located. */
4356 asection *sec = NULL;
4357 struct mips_elf_link_hash_entry *h = NULL;
4358 /* TRUE if the symbol referred to by this relocation is a local
4359 symbol. */
4360 bfd_boolean local_p, was_local_p;
4361 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4362 bfd_boolean gp_disp_p = FALSE;
4363 /* TRUE if the symbol referred to by this relocation is
4364 "__gnu_local_gp". */
4365 bfd_boolean gnu_local_gp_p = FALSE;
4366 Elf_Internal_Shdr *symtab_hdr;
4367 size_t extsymoff;
4368 unsigned long r_symndx;
4369 int r_type;
4370 /* TRUE if overflow occurred during the calculation of the
4371 relocation value. */
4372 bfd_boolean overflowed_p;
4373 /* TRUE if this relocation refers to a MIPS16 function. */
4374 bfd_boolean target_is_16_bit_code_p = FALSE;
4375 struct mips_elf_link_hash_table *htab;
4376 bfd *dynobj;
4377
4378 dynobj = elf_hash_table (info)->dynobj;
4379 htab = mips_elf_hash_table (info);
4380
4381 /* Parse the relocation. */
4382 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4383 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4384 p = (input_section->output_section->vma
4385 + input_section->output_offset
4386 + relocation->r_offset);
4387
4388 /* Assume that there will be no overflow. */
4389 overflowed_p = FALSE;
4390
4391 /* Figure out whether or not the symbol is local, and get the offset
4392 used in the array of hash table entries. */
4393 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4394 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4395 local_sections, FALSE);
4396 was_local_p = local_p;
4397 if (! elf_bad_symtab (input_bfd))
4398 extsymoff = symtab_hdr->sh_info;
4399 else
4400 {
4401 /* The symbol table does not follow the rule that local symbols
4402 must come before globals. */
4403 extsymoff = 0;
4404 }
4405
4406 /* Figure out the value of the symbol. */
4407 if (local_p)
4408 {
4409 Elf_Internal_Sym *sym;
4410
4411 sym = local_syms + r_symndx;
4412 sec = local_sections[r_symndx];
4413
4414 symbol = sec->output_section->vma + sec->output_offset;
4415 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
4416 || (sec->flags & SEC_MERGE))
4417 symbol += sym->st_value;
4418 if ((sec->flags & SEC_MERGE)
4419 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4420 {
4421 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
4422 addend -= symbol;
4423 addend += sec->output_section->vma + sec->output_offset;
4424 }
4425
4426 /* MIPS16 text labels should be treated as odd. */
4427 if (ELF_ST_IS_MIPS16 (sym->st_other))
4428 ++symbol;
4429
4430 /* Record the name of this symbol, for our caller. */
4431 *namep = bfd_elf_string_from_elf_section (input_bfd,
4432 symtab_hdr->sh_link,
4433 sym->st_name);
4434 if (*namep == '\0')
4435 *namep = bfd_section_name (input_bfd, sec);
4436
4437 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
4438 }
4439 else
4440 {
4441 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
4442
4443 /* For global symbols we look up the symbol in the hash-table. */
4444 h = ((struct mips_elf_link_hash_entry *)
4445 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
4446 /* Find the real hash-table entry for this symbol. */
4447 while (h->root.root.type == bfd_link_hash_indirect
4448 || h->root.root.type == bfd_link_hash_warning)
4449 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4450
4451 /* Record the name of this symbol, for our caller. */
4452 *namep = h->root.root.root.string;
4453
4454 /* See if this is the special _gp_disp symbol. Note that such a
4455 symbol must always be a global symbol. */
4456 if (strcmp (*namep, "_gp_disp") == 0
4457 && ! NEWABI_P (input_bfd))
4458 {
4459 /* Relocations against _gp_disp are permitted only with
4460 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4461 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
4462 return bfd_reloc_notsupported;
4463
4464 gp_disp_p = TRUE;
4465 }
4466 /* See if this is the special _gp symbol. Note that such a
4467 symbol must always be a global symbol. */
4468 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4469 gnu_local_gp_p = TRUE;
4470
4471
4472 /* If this symbol is defined, calculate its address. Note that
4473 _gp_disp is a magic symbol, always implicitly defined by the
4474 linker, so it's inappropriate to check to see whether or not
4475 its defined. */
4476 else if ((h->root.root.type == bfd_link_hash_defined
4477 || h->root.root.type == bfd_link_hash_defweak)
4478 && h->root.root.u.def.section)
4479 {
4480 sec = h->root.root.u.def.section;
4481 if (sec->output_section)
4482 symbol = (h->root.root.u.def.value
4483 + sec->output_section->vma
4484 + sec->output_offset);
4485 else
4486 symbol = h->root.root.u.def.value;
4487 }
4488 else if (h->root.root.type == bfd_link_hash_undefweak)
4489 /* We allow relocations against undefined weak symbols, giving
4490 it the value zero, so that you can undefined weak functions
4491 and check to see if they exist by looking at their
4492 addresses. */
4493 symbol = 0;
4494 else if (info->unresolved_syms_in_objects == RM_IGNORE
4495 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4496 symbol = 0;
4497 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4498 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4499 {
4500 /* If this is a dynamic link, we should have created a
4501 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4502 in in _bfd_mips_elf_create_dynamic_sections.
4503 Otherwise, we should define the symbol with a value of 0.
4504 FIXME: It should probably get into the symbol table
4505 somehow as well. */
4506 BFD_ASSERT (! info->shared);
4507 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4508 symbol = 0;
4509 }
4510 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4511 {
4512 /* This is an optional symbol - an Irix specific extension to the
4513 ELF spec. Ignore it for now.
4514 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4515 than simply ignoring them, but we do not handle this for now.
4516 For information see the "64-bit ELF Object File Specification"
4517 which is available from here:
4518 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4519 symbol = 0;
4520 }
4521 else
4522 {
4523 if (! ((*info->callbacks->undefined_symbol)
4524 (info, h->root.root.root.string, input_bfd,
4525 input_section, relocation->r_offset,
4526 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4527 || ELF_ST_VISIBILITY (h->root.other))))
4528 return bfd_reloc_undefined;
4529 symbol = 0;
4530 }
4531
4532 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
4533 }
4534
4535 /* If this is a reference to a 16-bit function with a stub, we need
4536 to redirect the relocation to the stub unless:
4537
4538 (a) the relocation is for a MIPS16 JAL;
4539
4540 (b) the relocation is for a MIPS16 PIC call, and there are no
4541 non-MIPS16 uses of the GOT slot; or
4542
4543 (c) the section allows direct references to MIPS16 functions. */
4544 if (r_type != R_MIPS16_26
4545 && !info->relocatable
4546 && ((h != NULL
4547 && h->fn_stub != NULL
4548 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
4549 || (local_p
4550 && elf_tdata (input_bfd)->local_stubs != NULL
4551 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4552 && !section_allows_mips16_refs_p (input_section))
4553 {
4554 /* This is a 32- or 64-bit call to a 16-bit function. We should
4555 have already noticed that we were going to need the
4556 stub. */
4557 if (local_p)
4558 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4559 else
4560 {
4561 BFD_ASSERT (h->need_fn_stub);
4562 sec = h->fn_stub;
4563 }
4564
4565 symbol = sec->output_section->vma + sec->output_offset;
4566 /* The target is 16-bit, but the stub isn't. */
4567 target_is_16_bit_code_p = FALSE;
4568 }
4569 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4570 need to redirect the call to the stub. Note that we specifically
4571 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
4572 use an indirect stub instead. */
4573 else if (r_type == R_MIPS16_26 && !info->relocatable
4574 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
4575 || (local_p
4576 && elf_tdata (input_bfd)->local_call_stubs != NULL
4577 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
4578 && !target_is_16_bit_code_p)
4579 {
4580 if (local_p)
4581 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
4582 else
4583 {
4584 /* If both call_stub and call_fp_stub are defined, we can figure
4585 out which one to use by checking which one appears in the input
4586 file. */
4587 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4588 {
4589 asection *o;
4590
4591 sec = NULL;
4592 for (o = input_bfd->sections; o != NULL; o = o->next)
4593 {
4594 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
4595 {
4596 sec = h->call_fp_stub;
4597 break;
4598 }
4599 }
4600 if (sec == NULL)
4601 sec = h->call_stub;
4602 }
4603 else if (h->call_stub != NULL)
4604 sec = h->call_stub;
4605 else
4606 sec = h->call_fp_stub;
4607 }
4608
4609 BFD_ASSERT (sec->size > 0);
4610 symbol = sec->output_section->vma + sec->output_offset;
4611 }
4612
4613 /* Calls from 16-bit code to 32-bit code and vice versa require the
4614 special jalx instruction. */
4615 *require_jalxp = (!info->relocatable
4616 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4617 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4618
4619 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4620 local_sections, TRUE);
4621
4622 gp0 = _bfd_get_gp_value (input_bfd);
4623 gp = _bfd_get_gp_value (abfd);
4624 if (dynobj)
4625 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
4626
4627 if (gnu_local_gp_p)
4628 symbol = gp;
4629
4630 /* If we haven't already determined the GOT offset, oand we're going
4631 to need it, get it now. */
4632 switch (r_type)
4633 {
4634 case R_MIPS_GOT_PAGE:
4635 case R_MIPS_GOT_OFST:
4636 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4637 bind locally. */
4638 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
4639 if (local_p || r_type == R_MIPS_GOT_OFST)
4640 break;
4641 /* Fall through. */
4642
4643 case R_MIPS16_CALL16:
4644 case R_MIPS16_GOT16:
4645 case R_MIPS_CALL16:
4646 case R_MIPS_GOT16:
4647 case R_MIPS_GOT_DISP:
4648 case R_MIPS_GOT_HI16:
4649 case R_MIPS_CALL_HI16:
4650 case R_MIPS_GOT_LO16:
4651 case R_MIPS_CALL_LO16:
4652 case R_MIPS_TLS_GD:
4653 case R_MIPS_TLS_GOTTPREL:
4654 case R_MIPS_TLS_LDM:
4655 /* Find the index into the GOT where this value is located. */
4656 if (r_type == R_MIPS_TLS_LDM)
4657 {
4658 g = mips_elf_local_got_index (abfd, input_bfd, info,
4659 0, 0, NULL, r_type);
4660 if (g == MINUS_ONE)
4661 return bfd_reloc_outofrange;
4662 }
4663 else if (!local_p)
4664 {
4665 /* On VxWorks, CALL relocations should refer to the .got.plt
4666 entry, which is initialized to point at the PLT stub. */
4667 if (htab->is_vxworks
4668 && (r_type == R_MIPS_CALL_HI16
4669 || r_type == R_MIPS_CALL_LO16
4670 || call16_reloc_p (r_type)))
4671 {
4672 BFD_ASSERT (addend == 0);
4673 BFD_ASSERT (h->root.needs_plt);
4674 g = mips_elf_gotplt_index (info, &h->root);
4675 }
4676 else
4677 {
4678 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4679 GOT_PAGE relocation that decays to GOT_DISP because the
4680 symbol turns out to be global. The addend is then added
4681 as GOT_OFST. */
4682 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4683 g = mips_elf_global_got_index (dynobj, input_bfd,
4684 &h->root, r_type, info);
4685 if (h->tls_type == GOT_NORMAL
4686 && (! elf_hash_table(info)->dynamic_sections_created
4687 || (info->shared
4688 && (info->symbolic || h->root.forced_local)
4689 && h->root.def_regular)))
4690 /* This is a static link or a -Bsymbolic link. The
4691 symbol is defined locally, or was forced to be local.
4692 We must initialize this entry in the GOT. */
4693 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
4694 }
4695 }
4696 else if (!htab->is_vxworks
4697 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
4698 /* The calculation below does not involve "g". */
4699 break;
4700 else
4701 {
4702 g = mips_elf_local_got_index (abfd, input_bfd, info,
4703 symbol + addend, r_symndx, h, r_type);
4704 if (g == MINUS_ONE)
4705 return bfd_reloc_outofrange;
4706 }
4707
4708 /* Convert GOT indices to actual offsets. */
4709 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
4710 break;
4711 }
4712
4713 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4714 symbols are resolved by the loader. Add them to .rela.dyn. */
4715 if (h != NULL && is_gott_symbol (info, &h->root))
4716 {
4717 Elf_Internal_Rela outrel;
4718 bfd_byte *loc;
4719 asection *s;
4720
4721 s = mips_elf_rel_dyn_section (info, FALSE);
4722 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4723
4724 outrel.r_offset = (input_section->output_section->vma
4725 + input_section->output_offset
4726 + relocation->r_offset);
4727 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4728 outrel.r_addend = addend;
4729 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4730
4731 /* If we've written this relocation for a readonly section,
4732 we need to set DF_TEXTREL again, so that we do not delete the
4733 DT_TEXTREL tag. */
4734 if (MIPS_ELF_READONLY_SECTION (input_section))
4735 info->flags |= DF_TEXTREL;
4736
4737 *valuep = 0;
4738 return bfd_reloc_ok;
4739 }
4740
4741 /* Figure out what kind of relocation is being performed. */
4742 switch (r_type)
4743 {
4744 case R_MIPS_NONE:
4745 return bfd_reloc_continue;
4746
4747 case R_MIPS_16:
4748 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
4749 overflowed_p = mips_elf_overflow_p (value, 16);
4750 break;
4751
4752 case R_MIPS_32:
4753 case R_MIPS_REL32:
4754 case R_MIPS_64:
4755 if ((info->shared
4756 || (!htab->is_vxworks
4757 && htab->root.dynamic_sections_created
4758 && h != NULL
4759 && h->root.def_dynamic
4760 && !h->root.def_regular))
4761 && r_symndx != 0
4762 && (h == NULL
4763 || h->root.root.type != bfd_link_hash_undefweak
4764 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4765 && (input_section->flags & SEC_ALLOC) != 0)
4766 {
4767 /* If we're creating a shared library, or this relocation is
4768 against a symbol in a shared library, then we can't know
4769 where the symbol will end up. So, we create a relocation
4770 record in the output, and leave the job up to the dynamic
4771 linker.
4772
4773 In VxWorks executables, references to external symbols
4774 are handled using copy relocs or PLT stubs, so there's
4775 no need to add a dynamic relocation here. */
4776 value = addend;
4777 if (!mips_elf_create_dynamic_relocation (abfd,
4778 info,
4779 relocation,
4780 h,
4781 sec,
4782 symbol,
4783 &value,
4784 input_section))
4785 return bfd_reloc_undefined;
4786 }
4787 else
4788 {
4789 if (r_type != R_MIPS_REL32)
4790 value = symbol + addend;
4791 else
4792 value = addend;
4793 }
4794 value &= howto->dst_mask;
4795 break;
4796
4797 case R_MIPS_PC32:
4798 value = symbol + addend - p;
4799 value &= howto->dst_mask;
4800 break;
4801
4802 case R_MIPS16_26:
4803 /* The calculation for R_MIPS16_26 is just the same as for an
4804 R_MIPS_26. It's only the storage of the relocated field into
4805 the output file that's different. That's handled in
4806 mips_elf_perform_relocation. So, we just fall through to the
4807 R_MIPS_26 case here. */
4808 case R_MIPS_26:
4809 if (local_p)
4810 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4811 else
4812 {
4813 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4814 if (h->root.root.type != bfd_link_hash_undefweak)
4815 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4816 }
4817 value &= howto->dst_mask;
4818 break;
4819
4820 case R_MIPS_TLS_DTPREL_HI16:
4821 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4822 & howto->dst_mask);
4823 break;
4824
4825 case R_MIPS_TLS_DTPREL_LO16:
4826 case R_MIPS_TLS_DTPREL32:
4827 case R_MIPS_TLS_DTPREL64:
4828 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4829 break;
4830
4831 case R_MIPS_TLS_TPREL_HI16:
4832 value = (mips_elf_high (addend + symbol - tprel_base (info))
4833 & howto->dst_mask);
4834 break;
4835
4836 case R_MIPS_TLS_TPREL_LO16:
4837 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4838 break;
4839
4840 case R_MIPS_HI16:
4841 case R_MIPS16_HI16:
4842 if (!gp_disp_p)
4843 {
4844 value = mips_elf_high (addend + symbol);
4845 value &= howto->dst_mask;
4846 }
4847 else
4848 {
4849 /* For MIPS16 ABI code we generate this sequence
4850 0: li $v0,%hi(_gp_disp)
4851 4: addiupc $v1,%lo(_gp_disp)
4852 8: sll $v0,16
4853 12: addu $v0,$v1
4854 14: move $gp,$v0
4855 So the offsets of hi and lo relocs are the same, but the
4856 $pc is four higher than $t9 would be, so reduce
4857 both reloc addends by 4. */
4858 if (r_type == R_MIPS16_HI16)
4859 value = mips_elf_high (addend + gp - p - 4);
4860 else
4861 value = mips_elf_high (addend + gp - p);
4862 overflowed_p = mips_elf_overflow_p (value, 16);
4863 }
4864 break;
4865
4866 case R_MIPS_LO16:
4867 case R_MIPS16_LO16:
4868 if (!gp_disp_p)
4869 value = (symbol + addend) & howto->dst_mask;
4870 else
4871 {
4872 /* See the comment for R_MIPS16_HI16 above for the reason
4873 for this conditional. */
4874 if (r_type == R_MIPS16_LO16)
4875 value = addend + gp - p;
4876 else
4877 value = addend + gp - p + 4;
4878 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4879 for overflow. But, on, say, IRIX5, relocations against
4880 _gp_disp are normally generated from the .cpload
4881 pseudo-op. It generates code that normally looks like
4882 this:
4883
4884 lui $gp,%hi(_gp_disp)
4885 addiu $gp,$gp,%lo(_gp_disp)
4886 addu $gp,$gp,$t9
4887
4888 Here $t9 holds the address of the function being called,
4889 as required by the MIPS ELF ABI. The R_MIPS_LO16
4890 relocation can easily overflow in this situation, but the
4891 R_MIPS_HI16 relocation will handle the overflow.
4892 Therefore, we consider this a bug in the MIPS ABI, and do
4893 not check for overflow here. */
4894 }
4895 break;
4896
4897 case R_MIPS_LITERAL:
4898 /* Because we don't merge literal sections, we can handle this
4899 just like R_MIPS_GPREL16. In the long run, we should merge
4900 shared literals, and then we will need to additional work
4901 here. */
4902
4903 /* Fall through. */
4904
4905 case R_MIPS16_GPREL:
4906 /* The R_MIPS16_GPREL performs the same calculation as
4907 R_MIPS_GPREL16, but stores the relocated bits in a different
4908 order. We don't need to do anything special here; the
4909 differences are handled in mips_elf_perform_relocation. */
4910 case R_MIPS_GPREL16:
4911 /* Only sign-extend the addend if it was extracted from the
4912 instruction. If the addend was separate, leave it alone,
4913 otherwise we may lose significant bits. */
4914 if (howto->partial_inplace)
4915 addend = _bfd_mips_elf_sign_extend (addend, 16);
4916 value = symbol + addend - gp;
4917 /* If the symbol was local, any earlier relocatable links will
4918 have adjusted its addend with the gp offset, so compensate
4919 for that now. Don't do it for symbols forced local in this
4920 link, though, since they won't have had the gp offset applied
4921 to them before. */
4922 if (was_local_p)
4923 value += gp0;
4924 overflowed_p = mips_elf_overflow_p (value, 16);
4925 break;
4926
4927 case R_MIPS16_GOT16:
4928 case R_MIPS16_CALL16:
4929 case R_MIPS_GOT16:
4930 case R_MIPS_CALL16:
4931 /* VxWorks does not have separate local and global semantics for
4932 R_MIPS*_GOT16; every relocation evaluates to "G". */
4933 if (!htab->is_vxworks && local_p)
4934 {
4935 bfd_boolean forced;
4936
4937 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4938 local_sections, FALSE);
4939 value = mips_elf_got16_entry (abfd, input_bfd, info,
4940 symbol + addend, forced);
4941 if (value == MINUS_ONE)
4942 return bfd_reloc_outofrange;
4943 value
4944 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
4945 overflowed_p = mips_elf_overflow_p (value, 16);
4946 break;
4947 }
4948
4949 /* Fall through. */
4950
4951 case R_MIPS_TLS_GD:
4952 case R_MIPS_TLS_GOTTPREL:
4953 case R_MIPS_TLS_LDM:
4954 case R_MIPS_GOT_DISP:
4955 got_disp:
4956 value = g;
4957 overflowed_p = mips_elf_overflow_p (value, 16);
4958 break;
4959
4960 case R_MIPS_GPREL32:
4961 value = (addend + symbol + gp0 - gp);
4962 if (!save_addend)
4963 value &= howto->dst_mask;
4964 break;
4965
4966 case R_MIPS_PC16:
4967 case R_MIPS_GNU_REL16_S2:
4968 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4969 overflowed_p = mips_elf_overflow_p (value, 18);
4970 value >>= howto->rightshift;
4971 value &= howto->dst_mask;
4972 break;
4973
4974 case R_MIPS_GOT_HI16:
4975 case R_MIPS_CALL_HI16:
4976 /* We're allowed to handle these two relocations identically.
4977 The dynamic linker is allowed to handle the CALL relocations
4978 differently by creating a lazy evaluation stub. */
4979 value = g;
4980 value = mips_elf_high (value);
4981 value &= howto->dst_mask;
4982 break;
4983
4984 case R_MIPS_GOT_LO16:
4985 case R_MIPS_CALL_LO16:
4986 value = g & howto->dst_mask;
4987 break;
4988
4989 case R_MIPS_GOT_PAGE:
4990 /* GOT_PAGE relocations that reference non-local symbols decay
4991 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4992 0. */
4993 if (! local_p)
4994 goto got_disp;
4995 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
4996 if (value == MINUS_ONE)
4997 return bfd_reloc_outofrange;
4998 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
4999 overflowed_p = mips_elf_overflow_p (value, 16);
5000 break;
5001
5002 case R_MIPS_GOT_OFST:
5003 if (local_p)
5004 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5005 else
5006 value = addend;
5007 overflowed_p = mips_elf_overflow_p (value, 16);
5008 break;
5009
5010 case R_MIPS_SUB:
5011 value = symbol - addend;
5012 value &= howto->dst_mask;
5013 break;
5014
5015 case R_MIPS_HIGHER:
5016 value = mips_elf_higher (addend + symbol);
5017 value &= howto->dst_mask;
5018 break;
5019
5020 case R_MIPS_HIGHEST:
5021 value = mips_elf_highest (addend + symbol);
5022 value &= howto->dst_mask;
5023 break;
5024
5025 case R_MIPS_SCN_DISP:
5026 value = symbol + addend - sec->output_offset;
5027 value &= howto->dst_mask;
5028 break;
5029
5030 case R_MIPS_JALR:
5031 /* This relocation is only a hint. In some cases, we optimize
5032 it into a bal instruction. But we don't try to optimize
5033 branches to the PLT; that will wind up wasting time. */
5034 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
5035 return bfd_reloc_continue;
5036 value = symbol + addend;
5037 break;
5038
5039 case R_MIPS_PJUMP:
5040 case R_MIPS_GNU_VTINHERIT:
5041 case R_MIPS_GNU_VTENTRY:
5042 /* We don't do anything with these at present. */
5043 return bfd_reloc_continue;
5044
5045 default:
5046 /* An unrecognized relocation type. */
5047 return bfd_reloc_notsupported;
5048 }
5049
5050 /* Store the VALUE for our caller. */
5051 *valuep = value;
5052 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5053 }
5054
5055 /* Obtain the field relocated by RELOCATION. */
5056
5057 static bfd_vma
5058 mips_elf_obtain_contents (reloc_howto_type *howto,
5059 const Elf_Internal_Rela *relocation,
5060 bfd *input_bfd, bfd_byte *contents)
5061 {
5062 bfd_vma x;
5063 bfd_byte *location = contents + relocation->r_offset;
5064
5065 /* Obtain the bytes. */
5066 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5067
5068 return x;
5069 }
5070
5071 /* It has been determined that the result of the RELOCATION is the
5072 VALUE. Use HOWTO to place VALUE into the output file at the
5073 appropriate position. The SECTION is the section to which the
5074 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
5075 for the relocation must be either JAL or JALX, and it is
5076 unconditionally converted to JALX.
5077
5078 Returns FALSE if anything goes wrong. */
5079
5080 static bfd_boolean
5081 mips_elf_perform_relocation (struct bfd_link_info *info,
5082 reloc_howto_type *howto,
5083 const Elf_Internal_Rela *relocation,
5084 bfd_vma value, bfd *input_bfd,
5085 asection *input_section, bfd_byte *contents,
5086 bfd_boolean require_jalx)
5087 {
5088 bfd_vma x;
5089 bfd_byte *location;
5090 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5091
5092 /* Figure out where the relocation is occurring. */
5093 location = contents + relocation->r_offset;
5094
5095 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5096
5097 /* Obtain the current value. */
5098 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5099
5100 /* Clear the field we are setting. */
5101 x &= ~howto->dst_mask;
5102
5103 /* Set the field. */
5104 x |= (value & howto->dst_mask);
5105
5106 /* If required, turn JAL into JALX. */
5107 if (require_jalx)
5108 {
5109 bfd_boolean ok;
5110 bfd_vma opcode = x >> 26;
5111 bfd_vma jalx_opcode;
5112
5113 /* Check to see if the opcode is already JAL or JALX. */
5114 if (r_type == R_MIPS16_26)
5115 {
5116 ok = ((opcode == 0x6) || (opcode == 0x7));
5117 jalx_opcode = 0x7;
5118 }
5119 else
5120 {
5121 ok = ((opcode == 0x3) || (opcode == 0x1d));
5122 jalx_opcode = 0x1d;
5123 }
5124
5125 /* If the opcode is not JAL or JALX, there's a problem. */
5126 if (!ok)
5127 {
5128 (*_bfd_error_handler)
5129 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
5130 input_bfd,
5131 input_section,
5132 (unsigned long) relocation->r_offset);
5133 bfd_set_error (bfd_error_bad_value);
5134 return FALSE;
5135 }
5136
5137 /* Make this the JALX opcode. */
5138 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5139 }
5140
5141 /* On the RM9000, bal is faster than jal, because bal uses branch
5142 prediction hardware. If we are linking for the RM9000, and we
5143 see jal, and bal fits, use it instead. Note that this
5144 transformation should be safe for all architectures. */
5145 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
5146 && !info->relocatable
5147 && !require_jalx
5148 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
5149 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
5150 {
5151 bfd_vma addr;
5152 bfd_vma dest;
5153 bfd_signed_vma off;
5154
5155 addr = (input_section->output_section->vma
5156 + input_section->output_offset
5157 + relocation->r_offset
5158 + 4);
5159 if (r_type == R_MIPS_26)
5160 dest = (value << 2) | ((addr >> 28) << 28);
5161 else
5162 dest = value;
5163 off = dest - addr;
5164 if (off <= 0x1ffff && off >= -0x20000)
5165 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5166 }
5167
5168 /* Put the value into the output. */
5169 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5170
5171 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
5172 location);
5173
5174 return TRUE;
5175 }
5176 \f
5177 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5178 is the original relocation, which is now being transformed into a
5179 dynamic relocation. The ADDENDP is adjusted if necessary; the
5180 caller should store the result in place of the original addend. */
5181
5182 static bfd_boolean
5183 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5184 struct bfd_link_info *info,
5185 const Elf_Internal_Rela *rel,
5186 struct mips_elf_link_hash_entry *h,
5187 asection *sec, bfd_vma symbol,
5188 bfd_vma *addendp, asection *input_section)
5189 {
5190 Elf_Internal_Rela outrel[3];
5191 asection *sreloc;
5192 bfd *dynobj;
5193 int r_type;
5194 long indx;
5195 bfd_boolean defined_p;
5196 struct mips_elf_link_hash_table *htab;
5197
5198 htab = mips_elf_hash_table (info);
5199 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5200 dynobj = elf_hash_table (info)->dynobj;
5201 sreloc = mips_elf_rel_dyn_section (info, FALSE);
5202 BFD_ASSERT (sreloc != NULL);
5203 BFD_ASSERT (sreloc->contents != NULL);
5204 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5205 < sreloc->size);
5206
5207 outrel[0].r_offset =
5208 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5209 if (ABI_64_P (output_bfd))
5210 {
5211 outrel[1].r_offset =
5212 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5213 outrel[2].r_offset =
5214 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5215 }
5216
5217 if (outrel[0].r_offset == MINUS_ONE)
5218 /* The relocation field has been deleted. */
5219 return TRUE;
5220
5221 if (outrel[0].r_offset == MINUS_TWO)
5222 {
5223 /* The relocation field has been converted into a relative value of
5224 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5225 the field to be fully relocated, so add in the symbol's value. */
5226 *addendp += symbol;
5227 return TRUE;
5228 }
5229
5230 /* We must now calculate the dynamic symbol table index to use
5231 in the relocation. */
5232 if (h != NULL
5233 && (!h->root.def_regular
5234 || (info->shared && !info->symbolic && !h->root.forced_local)))
5235 {
5236 indx = h->root.dynindx;
5237 if (SGI_COMPAT (output_bfd))
5238 defined_p = h->root.def_regular;
5239 else
5240 /* ??? glibc's ld.so just adds the final GOT entry to the
5241 relocation field. It therefore treats relocs against
5242 defined symbols in the same way as relocs against
5243 undefined symbols. */
5244 defined_p = FALSE;
5245 }
5246 else
5247 {
5248 if (sec != NULL && bfd_is_abs_section (sec))
5249 indx = 0;
5250 else if (sec == NULL || sec->owner == NULL)
5251 {
5252 bfd_set_error (bfd_error_bad_value);
5253 return FALSE;
5254 }
5255 else
5256 {
5257 indx = elf_section_data (sec->output_section)->dynindx;
5258 if (indx == 0)
5259 {
5260 asection *osec = htab->root.text_index_section;
5261 indx = elf_section_data (osec)->dynindx;
5262 }
5263 if (indx == 0)
5264 abort ();
5265 }
5266
5267 /* Instead of generating a relocation using the section
5268 symbol, we may as well make it a fully relative
5269 relocation. We want to avoid generating relocations to
5270 local symbols because we used to generate them
5271 incorrectly, without adding the original symbol value,
5272 which is mandated by the ABI for section symbols. In
5273 order to give dynamic loaders and applications time to
5274 phase out the incorrect use, we refrain from emitting
5275 section-relative relocations. It's not like they're
5276 useful, after all. This should be a bit more efficient
5277 as well. */
5278 /* ??? Although this behavior is compatible with glibc's ld.so,
5279 the ABI says that relocations against STN_UNDEF should have
5280 a symbol value of 0. Irix rld honors this, so relocations
5281 against STN_UNDEF have no effect. */
5282 if (!SGI_COMPAT (output_bfd))
5283 indx = 0;
5284 defined_p = TRUE;
5285 }
5286
5287 /* If the relocation was previously an absolute relocation and
5288 this symbol will not be referred to by the relocation, we must
5289 adjust it by the value we give it in the dynamic symbol table.
5290 Otherwise leave the job up to the dynamic linker. */
5291 if (defined_p && r_type != R_MIPS_REL32)
5292 *addendp += symbol;
5293
5294 if (htab->is_vxworks)
5295 /* VxWorks uses non-relative relocations for this. */
5296 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
5297 else
5298 /* The relocation is always an REL32 relocation because we don't
5299 know where the shared library will wind up at load-time. */
5300 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
5301 R_MIPS_REL32);
5302
5303 /* For strict adherence to the ABI specification, we should
5304 generate a R_MIPS_64 relocation record by itself before the
5305 _REL32/_64 record as well, such that the addend is read in as
5306 a 64-bit value (REL32 is a 32-bit relocation, after all).
5307 However, since none of the existing ELF64 MIPS dynamic
5308 loaders seems to care, we don't waste space with these
5309 artificial relocations. If this turns out to not be true,
5310 mips_elf_allocate_dynamic_relocation() should be tweaked so
5311 as to make room for a pair of dynamic relocations per
5312 invocation if ABI_64_P, and here we should generate an
5313 additional relocation record with R_MIPS_64 by itself for a
5314 NULL symbol before this relocation record. */
5315 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
5316 ABI_64_P (output_bfd)
5317 ? R_MIPS_64
5318 : R_MIPS_NONE);
5319 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
5320
5321 /* Adjust the output offset of the relocation to reference the
5322 correct location in the output file. */
5323 outrel[0].r_offset += (input_section->output_section->vma
5324 + input_section->output_offset);
5325 outrel[1].r_offset += (input_section->output_section->vma
5326 + input_section->output_offset);
5327 outrel[2].r_offset += (input_section->output_section->vma
5328 + input_section->output_offset);
5329
5330 /* Put the relocation back out. We have to use the special
5331 relocation outputter in the 64-bit case since the 64-bit
5332 relocation format is non-standard. */
5333 if (ABI_64_P (output_bfd))
5334 {
5335 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5336 (output_bfd, &outrel[0],
5337 (sreloc->contents
5338 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5339 }
5340 else if (htab->is_vxworks)
5341 {
5342 /* VxWorks uses RELA rather than REL dynamic relocations. */
5343 outrel[0].r_addend = *addendp;
5344 bfd_elf32_swap_reloca_out
5345 (output_bfd, &outrel[0],
5346 (sreloc->contents
5347 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
5348 }
5349 else
5350 bfd_elf32_swap_reloc_out
5351 (output_bfd, &outrel[0],
5352 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
5353
5354 /* We've now added another relocation. */
5355 ++sreloc->reloc_count;
5356
5357 /* Make sure the output section is writable. The dynamic linker
5358 will be writing to it. */
5359 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5360 |= SHF_WRITE;
5361
5362 /* On IRIX5, make an entry of compact relocation info. */
5363 if (IRIX_COMPAT (output_bfd) == ict_irix5)
5364 {
5365 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5366 bfd_byte *cr;
5367
5368 if (scpt)
5369 {
5370 Elf32_crinfo cptrel;
5371
5372 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5373 cptrel.vaddr = (rel->r_offset
5374 + input_section->output_section->vma
5375 + input_section->output_offset);
5376 if (r_type == R_MIPS_REL32)
5377 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5378 else
5379 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5380 mips_elf_set_cr_dist2to (cptrel, 0);
5381 cptrel.konst = *addendp;
5382
5383 cr = (scpt->contents
5384 + sizeof (Elf32_External_compact_rel));
5385 mips_elf_set_cr_relvaddr (cptrel, 0);
5386 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5387 ((Elf32_External_crinfo *) cr
5388 + scpt->reloc_count));
5389 ++scpt->reloc_count;
5390 }
5391 }
5392
5393 /* If we've written this relocation for a readonly section,
5394 we need to set DF_TEXTREL again, so that we do not delete the
5395 DT_TEXTREL tag. */
5396 if (MIPS_ELF_READONLY_SECTION (input_section))
5397 info->flags |= DF_TEXTREL;
5398
5399 return TRUE;
5400 }
5401 \f
5402 /* Return the MACH for a MIPS e_flags value. */
5403
5404 unsigned long
5405 _bfd_elf_mips_mach (flagword flags)
5406 {
5407 switch (flags & EF_MIPS_MACH)
5408 {
5409 case E_MIPS_MACH_3900:
5410 return bfd_mach_mips3900;
5411
5412 case E_MIPS_MACH_4010:
5413 return bfd_mach_mips4010;
5414
5415 case E_MIPS_MACH_4100:
5416 return bfd_mach_mips4100;
5417
5418 case E_MIPS_MACH_4111:
5419 return bfd_mach_mips4111;
5420
5421 case E_MIPS_MACH_4120:
5422 return bfd_mach_mips4120;
5423
5424 case E_MIPS_MACH_4650:
5425 return bfd_mach_mips4650;
5426
5427 case E_MIPS_MACH_5400:
5428 return bfd_mach_mips5400;
5429
5430 case E_MIPS_MACH_5500:
5431 return bfd_mach_mips5500;
5432
5433 case E_MIPS_MACH_9000:
5434 return bfd_mach_mips9000;
5435
5436 case E_MIPS_MACH_SB1:
5437 return bfd_mach_mips_sb1;
5438
5439 case E_MIPS_MACH_LS2E:
5440 return bfd_mach_mips_loongson_2e;
5441
5442 case E_MIPS_MACH_LS2F:
5443 return bfd_mach_mips_loongson_2f;
5444
5445 case E_MIPS_MACH_OCTEON:
5446 return bfd_mach_mips_octeon;
5447
5448 default:
5449 switch (flags & EF_MIPS_ARCH)
5450 {
5451 default:
5452 case E_MIPS_ARCH_1:
5453 return bfd_mach_mips3000;
5454
5455 case E_MIPS_ARCH_2:
5456 return bfd_mach_mips6000;
5457
5458 case E_MIPS_ARCH_3:
5459 return bfd_mach_mips4000;
5460
5461 case E_MIPS_ARCH_4:
5462 return bfd_mach_mips8000;
5463
5464 case E_MIPS_ARCH_5:
5465 return bfd_mach_mips5;
5466
5467 case E_MIPS_ARCH_32:
5468 return bfd_mach_mipsisa32;
5469
5470 case E_MIPS_ARCH_64:
5471 return bfd_mach_mipsisa64;
5472
5473 case E_MIPS_ARCH_32R2:
5474 return bfd_mach_mipsisa32r2;
5475
5476 case E_MIPS_ARCH_64R2:
5477 return bfd_mach_mipsisa64r2;
5478 }
5479 }
5480
5481 return 0;
5482 }
5483
5484 /* Return printable name for ABI. */
5485
5486 static INLINE char *
5487 elf_mips_abi_name (bfd *abfd)
5488 {
5489 flagword flags;
5490
5491 flags = elf_elfheader (abfd)->e_flags;
5492 switch (flags & EF_MIPS_ABI)
5493 {
5494 case 0:
5495 if (ABI_N32_P (abfd))
5496 return "N32";
5497 else if (ABI_64_P (abfd))
5498 return "64";
5499 else
5500 return "none";
5501 case E_MIPS_ABI_O32:
5502 return "O32";
5503 case E_MIPS_ABI_O64:
5504 return "O64";
5505 case E_MIPS_ABI_EABI32:
5506 return "EABI32";
5507 case E_MIPS_ABI_EABI64:
5508 return "EABI64";
5509 default:
5510 return "unknown abi";
5511 }
5512 }
5513 \f
5514 /* MIPS ELF uses two common sections. One is the usual one, and the
5515 other is for small objects. All the small objects are kept
5516 together, and then referenced via the gp pointer, which yields
5517 faster assembler code. This is what we use for the small common
5518 section. This approach is copied from ecoff.c. */
5519 static asection mips_elf_scom_section;
5520 static asymbol mips_elf_scom_symbol;
5521 static asymbol *mips_elf_scom_symbol_ptr;
5522
5523 /* MIPS ELF also uses an acommon section, which represents an
5524 allocated common symbol which may be overridden by a
5525 definition in a shared library. */
5526 static asection mips_elf_acom_section;
5527 static asymbol mips_elf_acom_symbol;
5528 static asymbol *mips_elf_acom_symbol_ptr;
5529
5530 /* This is used for both the 32-bit and the 64-bit ABI. */
5531
5532 void
5533 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5534 {
5535 elf_symbol_type *elfsym;
5536
5537 /* Handle the special MIPS section numbers that a symbol may use. */
5538 elfsym = (elf_symbol_type *) asym;
5539 switch (elfsym->internal_elf_sym.st_shndx)
5540 {
5541 case SHN_MIPS_ACOMMON:
5542 /* This section is used in a dynamically linked executable file.
5543 It is an allocated common section. The dynamic linker can
5544 either resolve these symbols to something in a shared
5545 library, or it can just leave them here. For our purposes,
5546 we can consider these symbols to be in a new section. */
5547 if (mips_elf_acom_section.name == NULL)
5548 {
5549 /* Initialize the acommon section. */
5550 mips_elf_acom_section.name = ".acommon";
5551 mips_elf_acom_section.flags = SEC_ALLOC;
5552 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5553 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5554 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5555 mips_elf_acom_symbol.name = ".acommon";
5556 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5557 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5558 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5559 }
5560 asym->section = &mips_elf_acom_section;
5561 break;
5562
5563 case SHN_COMMON:
5564 /* Common symbols less than the GP size are automatically
5565 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5566 if (asym->value > elf_gp_size (abfd)
5567 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
5568 || IRIX_COMPAT (abfd) == ict_irix6)
5569 break;
5570 /* Fall through. */
5571 case SHN_MIPS_SCOMMON:
5572 if (mips_elf_scom_section.name == NULL)
5573 {
5574 /* Initialize the small common section. */
5575 mips_elf_scom_section.name = ".scommon";
5576 mips_elf_scom_section.flags = SEC_IS_COMMON;
5577 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5578 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5579 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5580 mips_elf_scom_symbol.name = ".scommon";
5581 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5582 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5583 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5584 }
5585 asym->section = &mips_elf_scom_section;
5586 asym->value = elfsym->internal_elf_sym.st_size;
5587 break;
5588
5589 case SHN_MIPS_SUNDEFINED:
5590 asym->section = bfd_und_section_ptr;
5591 break;
5592
5593 case SHN_MIPS_TEXT:
5594 {
5595 asection *section = bfd_get_section_by_name (abfd, ".text");
5596
5597 BFD_ASSERT (SGI_COMPAT (abfd));
5598 if (section != NULL)
5599 {
5600 asym->section = section;
5601 /* MIPS_TEXT is a bit special, the address is not an offset
5602 to the base of the .text section. So substract the section
5603 base address to make it an offset. */
5604 asym->value -= section->vma;
5605 }
5606 }
5607 break;
5608
5609 case SHN_MIPS_DATA:
5610 {
5611 asection *section = bfd_get_section_by_name (abfd, ".data");
5612
5613 BFD_ASSERT (SGI_COMPAT (abfd));
5614 if (section != NULL)
5615 {
5616 asym->section = section;
5617 /* MIPS_DATA is a bit special, the address is not an offset
5618 to the base of the .data section. So substract the section
5619 base address to make it an offset. */
5620 asym->value -= section->vma;
5621 }
5622 }
5623 break;
5624 }
5625
5626 /* If this is an odd-valued function symbol, assume it's a MIPS16 one. */
5627 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
5628 && (asym->value & 1) != 0)
5629 {
5630 asym->value--;
5631 elfsym->internal_elf_sym.st_other
5632 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
5633 }
5634 }
5635 \f
5636 /* Implement elf_backend_eh_frame_address_size. This differs from
5637 the default in the way it handles EABI64.
5638
5639 EABI64 was originally specified as an LP64 ABI, and that is what
5640 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5641 historically accepted the combination of -mabi=eabi and -mlong32,
5642 and this ILP32 variation has become semi-official over time.
5643 Both forms use elf32 and have pointer-sized FDE addresses.
5644
5645 If an EABI object was generated by GCC 4.0 or above, it will have
5646 an empty .gcc_compiled_longXX section, where XX is the size of longs
5647 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5648 have no special marking to distinguish them from LP64 objects.
5649
5650 We don't want users of the official LP64 ABI to be punished for the
5651 existence of the ILP32 variant, but at the same time, we don't want
5652 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5653 We therefore take the following approach:
5654
5655 - If ABFD contains a .gcc_compiled_longXX section, use it to
5656 determine the pointer size.
5657
5658 - Otherwise check the type of the first relocation. Assume that
5659 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5660
5661 - Otherwise punt.
5662
5663 The second check is enough to detect LP64 objects generated by pre-4.0
5664 compilers because, in the kind of output generated by those compilers,
5665 the first relocation will be associated with either a CIE personality
5666 routine or an FDE start address. Furthermore, the compilers never
5667 used a special (non-pointer) encoding for this ABI.
5668
5669 Checking the relocation type should also be safe because there is no
5670 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5671 did so. */
5672
5673 unsigned int
5674 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5675 {
5676 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5677 return 8;
5678 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5679 {
5680 bfd_boolean long32_p, long64_p;
5681
5682 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5683 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5684 if (long32_p && long64_p)
5685 return 0;
5686 if (long32_p)
5687 return 4;
5688 if (long64_p)
5689 return 8;
5690
5691 if (sec->reloc_count > 0
5692 && elf_section_data (sec)->relocs != NULL
5693 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5694 == R_MIPS_64))
5695 return 8;
5696
5697 return 0;
5698 }
5699 return 4;
5700 }
5701 \f
5702 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5703 relocations against two unnamed section symbols to resolve to the
5704 same address. For example, if we have code like:
5705
5706 lw $4,%got_disp(.data)($gp)
5707 lw $25,%got_disp(.text)($gp)
5708 jalr $25
5709
5710 then the linker will resolve both relocations to .data and the program
5711 will jump there rather than to .text.
5712
5713 We can work around this problem by giving names to local section symbols.
5714 This is also what the MIPSpro tools do. */
5715
5716 bfd_boolean
5717 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5718 {
5719 return SGI_COMPAT (abfd);
5720 }
5721 \f
5722 /* Work over a section just before writing it out. This routine is
5723 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5724 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5725 a better way. */
5726
5727 bfd_boolean
5728 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
5729 {
5730 if (hdr->sh_type == SHT_MIPS_REGINFO
5731 && hdr->sh_size > 0)
5732 {
5733 bfd_byte buf[4];
5734
5735 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5736 BFD_ASSERT (hdr->contents == NULL);
5737
5738 if (bfd_seek (abfd,
5739 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5740 SEEK_SET) != 0)
5741 return FALSE;
5742 H_PUT_32 (abfd, elf_gp (abfd), buf);
5743 if (bfd_bwrite (buf, 4, abfd) != 4)
5744 return FALSE;
5745 }
5746
5747 if (hdr->sh_type == SHT_MIPS_OPTIONS
5748 && hdr->bfd_section != NULL
5749 && mips_elf_section_data (hdr->bfd_section) != NULL
5750 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
5751 {
5752 bfd_byte *contents, *l, *lend;
5753
5754 /* We stored the section contents in the tdata field in the
5755 set_section_contents routine. We save the section contents
5756 so that we don't have to read them again.
5757 At this point we know that elf_gp is set, so we can look
5758 through the section contents to see if there is an
5759 ODK_REGINFO structure. */
5760
5761 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
5762 l = contents;
5763 lend = contents + hdr->sh_size;
5764 while (l + sizeof (Elf_External_Options) <= lend)
5765 {
5766 Elf_Internal_Options intopt;
5767
5768 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5769 &intopt);
5770 if (intopt.size < sizeof (Elf_External_Options))
5771 {
5772 (*_bfd_error_handler)
5773 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5774 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5775 break;
5776 }
5777 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5778 {
5779 bfd_byte buf[8];
5780
5781 if (bfd_seek (abfd,
5782 (hdr->sh_offset
5783 + (l - contents)
5784 + sizeof (Elf_External_Options)
5785 + (sizeof (Elf64_External_RegInfo) - 8)),
5786 SEEK_SET) != 0)
5787 return FALSE;
5788 H_PUT_64 (abfd, elf_gp (abfd), buf);
5789 if (bfd_bwrite (buf, 8, abfd) != 8)
5790 return FALSE;
5791 }
5792 else if (intopt.kind == ODK_REGINFO)
5793 {
5794 bfd_byte buf[4];
5795
5796 if (bfd_seek (abfd,
5797 (hdr->sh_offset
5798 + (l - contents)
5799 + sizeof (Elf_External_Options)
5800 + (sizeof (Elf32_External_RegInfo) - 4)),
5801 SEEK_SET) != 0)
5802 return FALSE;
5803 H_PUT_32 (abfd, elf_gp (abfd), buf);
5804 if (bfd_bwrite (buf, 4, abfd) != 4)
5805 return FALSE;
5806 }
5807 l += intopt.size;
5808 }
5809 }
5810
5811 if (hdr->bfd_section != NULL)
5812 {
5813 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5814
5815 if (strcmp (name, ".sdata") == 0
5816 || strcmp (name, ".lit8") == 0
5817 || strcmp (name, ".lit4") == 0)
5818 {
5819 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5820 hdr->sh_type = SHT_PROGBITS;
5821 }
5822 else if (strcmp (name, ".sbss") == 0)
5823 {
5824 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5825 hdr->sh_type = SHT_NOBITS;
5826 }
5827 else if (strcmp (name, ".srdata") == 0)
5828 {
5829 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5830 hdr->sh_type = SHT_PROGBITS;
5831 }
5832 else if (strcmp (name, ".compact_rel") == 0)
5833 {
5834 hdr->sh_flags = 0;
5835 hdr->sh_type = SHT_PROGBITS;
5836 }
5837 else if (strcmp (name, ".rtproc") == 0)
5838 {
5839 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5840 {
5841 unsigned int adjust;
5842
5843 adjust = hdr->sh_size % hdr->sh_addralign;
5844 if (adjust != 0)
5845 hdr->sh_size += hdr->sh_addralign - adjust;
5846 }
5847 }
5848 }
5849
5850 return TRUE;
5851 }
5852
5853 /* Handle a MIPS specific section when reading an object file. This
5854 is called when elfcode.h finds a section with an unknown type.
5855 This routine supports both the 32-bit and 64-bit ELF ABI.
5856
5857 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5858 how to. */
5859
5860 bfd_boolean
5861 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5862 Elf_Internal_Shdr *hdr,
5863 const char *name,
5864 int shindex)
5865 {
5866 flagword flags = 0;
5867
5868 /* There ought to be a place to keep ELF backend specific flags, but
5869 at the moment there isn't one. We just keep track of the
5870 sections by their name, instead. Fortunately, the ABI gives
5871 suggested names for all the MIPS specific sections, so we will
5872 probably get away with this. */
5873 switch (hdr->sh_type)
5874 {
5875 case SHT_MIPS_LIBLIST:
5876 if (strcmp (name, ".liblist") != 0)
5877 return FALSE;
5878 break;
5879 case SHT_MIPS_MSYM:
5880 if (strcmp (name, ".msym") != 0)
5881 return FALSE;
5882 break;
5883 case SHT_MIPS_CONFLICT:
5884 if (strcmp (name, ".conflict") != 0)
5885 return FALSE;
5886 break;
5887 case SHT_MIPS_GPTAB:
5888 if (! CONST_STRNEQ (name, ".gptab."))
5889 return FALSE;
5890 break;
5891 case SHT_MIPS_UCODE:
5892 if (strcmp (name, ".ucode") != 0)
5893 return FALSE;
5894 break;
5895 case SHT_MIPS_DEBUG:
5896 if (strcmp (name, ".mdebug") != 0)
5897 return FALSE;
5898 flags = SEC_DEBUGGING;
5899 break;
5900 case SHT_MIPS_REGINFO:
5901 if (strcmp (name, ".reginfo") != 0
5902 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5903 return FALSE;
5904 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5905 break;
5906 case SHT_MIPS_IFACE:
5907 if (strcmp (name, ".MIPS.interfaces") != 0)
5908 return FALSE;
5909 break;
5910 case SHT_MIPS_CONTENT:
5911 if (! CONST_STRNEQ (name, ".MIPS.content"))
5912 return FALSE;
5913 break;
5914 case SHT_MIPS_OPTIONS:
5915 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5916 return FALSE;
5917 break;
5918 case SHT_MIPS_DWARF:
5919 if (! CONST_STRNEQ (name, ".debug_")
5920 && ! CONST_STRNEQ (name, ".zdebug_"))
5921 return FALSE;
5922 break;
5923 case SHT_MIPS_SYMBOL_LIB:
5924 if (strcmp (name, ".MIPS.symlib") != 0)
5925 return FALSE;
5926 break;
5927 case SHT_MIPS_EVENTS:
5928 if (! CONST_STRNEQ (name, ".MIPS.events")
5929 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
5930 return FALSE;
5931 break;
5932 default:
5933 break;
5934 }
5935
5936 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5937 return FALSE;
5938
5939 if (flags)
5940 {
5941 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5942 (bfd_get_section_flags (abfd,
5943 hdr->bfd_section)
5944 | flags)))
5945 return FALSE;
5946 }
5947
5948 /* FIXME: We should record sh_info for a .gptab section. */
5949
5950 /* For a .reginfo section, set the gp value in the tdata information
5951 from the contents of this section. We need the gp value while
5952 processing relocs, so we just get it now. The .reginfo section
5953 is not used in the 64-bit MIPS ELF ABI. */
5954 if (hdr->sh_type == SHT_MIPS_REGINFO)
5955 {
5956 Elf32_External_RegInfo ext;
5957 Elf32_RegInfo s;
5958
5959 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5960 &ext, 0, sizeof ext))
5961 return FALSE;
5962 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5963 elf_gp (abfd) = s.ri_gp_value;
5964 }
5965
5966 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5967 set the gp value based on what we find. We may see both
5968 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5969 they should agree. */
5970 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5971 {
5972 bfd_byte *contents, *l, *lend;
5973
5974 contents = bfd_malloc (hdr->sh_size);
5975 if (contents == NULL)
5976 return FALSE;
5977 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5978 0, hdr->sh_size))
5979 {
5980 free (contents);
5981 return FALSE;
5982 }
5983 l = contents;
5984 lend = contents + hdr->sh_size;
5985 while (l + sizeof (Elf_External_Options) <= lend)
5986 {
5987 Elf_Internal_Options intopt;
5988
5989 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5990 &intopt);
5991 if (intopt.size < sizeof (Elf_External_Options))
5992 {
5993 (*_bfd_error_handler)
5994 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5995 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5996 break;
5997 }
5998 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5999 {
6000 Elf64_Internal_RegInfo intreg;
6001
6002 bfd_mips_elf64_swap_reginfo_in
6003 (abfd,
6004 ((Elf64_External_RegInfo *)
6005 (l + sizeof (Elf_External_Options))),
6006 &intreg);
6007 elf_gp (abfd) = intreg.ri_gp_value;
6008 }
6009 else if (intopt.kind == ODK_REGINFO)
6010 {
6011 Elf32_RegInfo intreg;
6012
6013 bfd_mips_elf32_swap_reginfo_in
6014 (abfd,
6015 ((Elf32_External_RegInfo *)
6016 (l + sizeof (Elf_External_Options))),
6017 &intreg);
6018 elf_gp (abfd) = intreg.ri_gp_value;
6019 }
6020 l += intopt.size;
6021 }
6022 free (contents);
6023 }
6024
6025 return TRUE;
6026 }
6027
6028 /* Set the correct type for a MIPS ELF section. We do this by the
6029 section name, which is a hack, but ought to work. This routine is
6030 used by both the 32-bit and the 64-bit ABI. */
6031
6032 bfd_boolean
6033 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6034 {
6035 const char *name = bfd_get_section_name (abfd, sec);
6036
6037 if (strcmp (name, ".liblist") == 0)
6038 {
6039 hdr->sh_type = SHT_MIPS_LIBLIST;
6040 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6041 /* The sh_link field is set in final_write_processing. */
6042 }
6043 else if (strcmp (name, ".conflict") == 0)
6044 hdr->sh_type = SHT_MIPS_CONFLICT;
6045 else if (CONST_STRNEQ (name, ".gptab."))
6046 {
6047 hdr->sh_type = SHT_MIPS_GPTAB;
6048 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6049 /* The sh_info field is set in final_write_processing. */
6050 }
6051 else if (strcmp (name, ".ucode") == 0)
6052 hdr->sh_type = SHT_MIPS_UCODE;
6053 else if (strcmp (name, ".mdebug") == 0)
6054 {
6055 hdr->sh_type = SHT_MIPS_DEBUG;
6056 /* In a shared object on IRIX 5.3, the .mdebug section has an
6057 entsize of 0. FIXME: Does this matter? */
6058 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6059 hdr->sh_entsize = 0;
6060 else
6061 hdr->sh_entsize = 1;
6062 }
6063 else if (strcmp (name, ".reginfo") == 0)
6064 {
6065 hdr->sh_type = SHT_MIPS_REGINFO;
6066 /* In a shared object on IRIX 5.3, the .reginfo section has an
6067 entsize of 0x18. FIXME: Does this matter? */
6068 if (SGI_COMPAT (abfd))
6069 {
6070 if ((abfd->flags & DYNAMIC) != 0)
6071 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6072 else
6073 hdr->sh_entsize = 1;
6074 }
6075 else
6076 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6077 }
6078 else if (SGI_COMPAT (abfd)
6079 && (strcmp (name, ".hash") == 0
6080 || strcmp (name, ".dynamic") == 0
6081 || strcmp (name, ".dynstr") == 0))
6082 {
6083 if (SGI_COMPAT (abfd))
6084 hdr->sh_entsize = 0;
6085 #if 0
6086 /* This isn't how the IRIX6 linker behaves. */
6087 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6088 #endif
6089 }
6090 else if (strcmp (name, ".got") == 0
6091 || strcmp (name, ".srdata") == 0
6092 || strcmp (name, ".sdata") == 0
6093 || strcmp (name, ".sbss") == 0
6094 || strcmp (name, ".lit4") == 0
6095 || strcmp (name, ".lit8") == 0)
6096 hdr->sh_flags |= SHF_MIPS_GPREL;
6097 else if (strcmp (name, ".MIPS.interfaces") == 0)
6098 {
6099 hdr->sh_type = SHT_MIPS_IFACE;
6100 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6101 }
6102 else if (CONST_STRNEQ (name, ".MIPS.content"))
6103 {
6104 hdr->sh_type = SHT_MIPS_CONTENT;
6105 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6106 /* The sh_info field is set in final_write_processing. */
6107 }
6108 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6109 {
6110 hdr->sh_type = SHT_MIPS_OPTIONS;
6111 hdr->sh_entsize = 1;
6112 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6113 }
6114 else if (CONST_STRNEQ (name, ".debug_")
6115 || CONST_STRNEQ (name, ".zdebug_"))
6116 {
6117 hdr->sh_type = SHT_MIPS_DWARF;
6118
6119 /* Irix facilities such as libexc expect a single .debug_frame
6120 per executable, the system ones have NOSTRIP set and the linker
6121 doesn't merge sections with different flags so ... */
6122 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6123 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6124 }
6125 else if (strcmp (name, ".MIPS.symlib") == 0)
6126 {
6127 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6128 /* The sh_link and sh_info fields are set in
6129 final_write_processing. */
6130 }
6131 else if (CONST_STRNEQ (name, ".MIPS.events")
6132 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6133 {
6134 hdr->sh_type = SHT_MIPS_EVENTS;
6135 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6136 /* The sh_link field is set in final_write_processing. */
6137 }
6138 else if (strcmp (name, ".msym") == 0)
6139 {
6140 hdr->sh_type = SHT_MIPS_MSYM;
6141 hdr->sh_flags |= SHF_ALLOC;
6142 hdr->sh_entsize = 8;
6143 }
6144
6145 /* The generic elf_fake_sections will set up REL_HDR using the default
6146 kind of relocations. We used to set up a second header for the
6147 non-default kind of relocations here, but only NewABI would use
6148 these, and the IRIX ld doesn't like resulting empty RELA sections.
6149 Thus we create those header only on demand now. */
6150
6151 return TRUE;
6152 }
6153
6154 /* Given a BFD section, try to locate the corresponding ELF section
6155 index. This is used by both the 32-bit and the 64-bit ABI.
6156 Actually, it's not clear to me that the 64-bit ABI supports these,
6157 but for non-PIC objects we will certainly want support for at least
6158 the .scommon section. */
6159
6160 bfd_boolean
6161 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6162 asection *sec, int *retval)
6163 {
6164 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6165 {
6166 *retval = SHN_MIPS_SCOMMON;
6167 return TRUE;
6168 }
6169 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6170 {
6171 *retval = SHN_MIPS_ACOMMON;
6172 return TRUE;
6173 }
6174 return FALSE;
6175 }
6176 \f
6177 /* Hook called by the linker routine which adds symbols from an object
6178 file. We must handle the special MIPS section numbers here. */
6179
6180 bfd_boolean
6181 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6182 Elf_Internal_Sym *sym, const char **namep,
6183 flagword *flagsp ATTRIBUTE_UNUSED,
6184 asection **secp, bfd_vma *valp)
6185 {
6186 if (SGI_COMPAT (abfd)
6187 && (abfd->flags & DYNAMIC) != 0
6188 && strcmp (*namep, "_rld_new_interface") == 0)
6189 {
6190 /* Skip IRIX5 rld entry name. */
6191 *namep = NULL;
6192 return TRUE;
6193 }
6194
6195 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6196 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6197 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6198 a magic symbol resolved by the linker, we ignore this bogus definition
6199 of _gp_disp. New ABI objects do not suffer from this problem so this
6200 is not done for them. */
6201 if (!NEWABI_P(abfd)
6202 && (sym->st_shndx == SHN_ABS)
6203 && (strcmp (*namep, "_gp_disp") == 0))
6204 {
6205 *namep = NULL;
6206 return TRUE;
6207 }
6208
6209 switch (sym->st_shndx)
6210 {
6211 case SHN_COMMON:
6212 /* Common symbols less than the GP size are automatically
6213 treated as SHN_MIPS_SCOMMON symbols. */
6214 if (sym->st_size > elf_gp_size (abfd)
6215 || ELF_ST_TYPE (sym->st_info) == STT_TLS
6216 || IRIX_COMPAT (abfd) == ict_irix6)
6217 break;
6218 /* Fall through. */
6219 case SHN_MIPS_SCOMMON:
6220 *secp = bfd_make_section_old_way (abfd, ".scommon");
6221 (*secp)->flags |= SEC_IS_COMMON;
6222 *valp = sym->st_size;
6223 break;
6224
6225 case SHN_MIPS_TEXT:
6226 /* This section is used in a shared object. */
6227 if (elf_tdata (abfd)->elf_text_section == NULL)
6228 {
6229 asymbol *elf_text_symbol;
6230 asection *elf_text_section;
6231 bfd_size_type amt = sizeof (asection);
6232
6233 elf_text_section = bfd_zalloc (abfd, amt);
6234 if (elf_text_section == NULL)
6235 return FALSE;
6236
6237 amt = sizeof (asymbol);
6238 elf_text_symbol = bfd_zalloc (abfd, amt);
6239 if (elf_text_symbol == NULL)
6240 return FALSE;
6241
6242 /* Initialize the section. */
6243
6244 elf_tdata (abfd)->elf_text_section = elf_text_section;
6245 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6246
6247 elf_text_section->symbol = elf_text_symbol;
6248 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
6249
6250 elf_text_section->name = ".text";
6251 elf_text_section->flags = SEC_NO_FLAGS;
6252 elf_text_section->output_section = NULL;
6253 elf_text_section->owner = abfd;
6254 elf_text_symbol->name = ".text";
6255 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6256 elf_text_symbol->section = elf_text_section;
6257 }
6258 /* This code used to do *secp = bfd_und_section_ptr if
6259 info->shared. I don't know why, and that doesn't make sense,
6260 so I took it out. */
6261 *secp = elf_tdata (abfd)->elf_text_section;
6262 break;
6263
6264 case SHN_MIPS_ACOMMON:
6265 /* Fall through. XXX Can we treat this as allocated data? */
6266 case SHN_MIPS_DATA:
6267 /* This section is used in a shared object. */
6268 if (elf_tdata (abfd)->elf_data_section == NULL)
6269 {
6270 asymbol *elf_data_symbol;
6271 asection *elf_data_section;
6272 bfd_size_type amt = sizeof (asection);
6273
6274 elf_data_section = bfd_zalloc (abfd, amt);
6275 if (elf_data_section == NULL)
6276 return FALSE;
6277
6278 amt = sizeof (asymbol);
6279 elf_data_symbol = bfd_zalloc (abfd, amt);
6280 if (elf_data_symbol == NULL)
6281 return FALSE;
6282
6283 /* Initialize the section. */
6284
6285 elf_tdata (abfd)->elf_data_section = elf_data_section;
6286 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
6287
6288 elf_data_section->symbol = elf_data_symbol;
6289 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
6290
6291 elf_data_section->name = ".data";
6292 elf_data_section->flags = SEC_NO_FLAGS;
6293 elf_data_section->output_section = NULL;
6294 elf_data_section->owner = abfd;
6295 elf_data_symbol->name = ".data";
6296 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6297 elf_data_symbol->section = elf_data_section;
6298 }
6299 /* This code used to do *secp = bfd_und_section_ptr if
6300 info->shared. I don't know why, and that doesn't make sense,
6301 so I took it out. */
6302 *secp = elf_tdata (abfd)->elf_data_section;
6303 break;
6304
6305 case SHN_MIPS_SUNDEFINED:
6306 *secp = bfd_und_section_ptr;
6307 break;
6308 }
6309
6310 if (SGI_COMPAT (abfd)
6311 && ! info->shared
6312 && info->output_bfd->xvec == abfd->xvec
6313 && strcmp (*namep, "__rld_obj_head") == 0)
6314 {
6315 struct elf_link_hash_entry *h;
6316 struct bfd_link_hash_entry *bh;
6317
6318 /* Mark __rld_obj_head as dynamic. */
6319 bh = NULL;
6320 if (! (_bfd_generic_link_add_one_symbol
6321 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
6322 get_elf_backend_data (abfd)->collect, &bh)))
6323 return FALSE;
6324
6325 h = (struct elf_link_hash_entry *) bh;
6326 h->non_elf = 0;
6327 h->def_regular = 1;
6328 h->type = STT_OBJECT;
6329
6330 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6331 return FALSE;
6332
6333 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
6334 }
6335
6336 /* If this is a mips16 text symbol, add 1 to the value to make it
6337 odd. This will cause something like .word SYM to come up with
6338 the right value when it is loaded into the PC. */
6339 if (ELF_ST_IS_MIPS16 (sym->st_other))
6340 ++*valp;
6341
6342 return TRUE;
6343 }
6344
6345 /* This hook function is called before the linker writes out a global
6346 symbol. We mark symbols as small common if appropriate. This is
6347 also where we undo the increment of the value for a mips16 symbol. */
6348
6349 bfd_boolean
6350 _bfd_mips_elf_link_output_symbol_hook
6351 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6352 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
6353 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
6354 {
6355 /* If we see a common symbol, which implies a relocatable link, then
6356 if a symbol was small common in an input file, mark it as small
6357 common in the output file. */
6358 if (sym->st_shndx == SHN_COMMON
6359 && strcmp (input_sec->name, ".scommon") == 0)
6360 sym->st_shndx = SHN_MIPS_SCOMMON;
6361
6362 if (ELF_ST_IS_MIPS16 (sym->st_other))
6363 sym->st_value &= ~1;
6364
6365 return TRUE;
6366 }
6367 \f
6368 /* Functions for the dynamic linker. */
6369
6370 /* Create dynamic sections when linking against a dynamic object. */
6371
6372 bfd_boolean
6373 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
6374 {
6375 struct elf_link_hash_entry *h;
6376 struct bfd_link_hash_entry *bh;
6377 flagword flags;
6378 register asection *s;
6379 const char * const *namep;
6380 struct mips_elf_link_hash_table *htab;
6381
6382 htab = mips_elf_hash_table (info);
6383 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6384 | SEC_LINKER_CREATED | SEC_READONLY);
6385
6386 /* The psABI requires a read-only .dynamic section, but the VxWorks
6387 EABI doesn't. */
6388 if (!htab->is_vxworks)
6389 {
6390 s = bfd_get_section_by_name (abfd, ".dynamic");
6391 if (s != NULL)
6392 {
6393 if (! bfd_set_section_flags (abfd, s, flags))
6394 return FALSE;
6395 }
6396 }
6397
6398 /* We need to create .got section. */
6399 if (! mips_elf_create_got_section (abfd, info, FALSE))
6400 return FALSE;
6401
6402 if (! mips_elf_rel_dyn_section (info, TRUE))
6403 return FALSE;
6404
6405 /* Create .stub section. */
6406 s = bfd_make_section_with_flags (abfd,
6407 MIPS_ELF_STUB_SECTION_NAME (abfd),
6408 flags | SEC_CODE);
6409 if (s == NULL
6410 || ! bfd_set_section_alignment (abfd, s,
6411 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6412 return FALSE;
6413 htab->sstubs = s;
6414
6415 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
6416 && !info->shared
6417 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
6418 {
6419 s = bfd_make_section_with_flags (abfd, ".rld_map",
6420 flags &~ (flagword) SEC_READONLY);
6421 if (s == NULL
6422 || ! bfd_set_section_alignment (abfd, s,
6423 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6424 return FALSE;
6425 }
6426
6427 /* On IRIX5, we adjust add some additional symbols and change the
6428 alignments of several sections. There is no ABI documentation
6429 indicating that this is necessary on IRIX6, nor any evidence that
6430 the linker takes such action. */
6431 if (IRIX_COMPAT (abfd) == ict_irix5)
6432 {
6433 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
6434 {
6435 bh = NULL;
6436 if (! (_bfd_generic_link_add_one_symbol
6437 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
6438 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6439 return FALSE;
6440
6441 h = (struct elf_link_hash_entry *) bh;
6442 h->non_elf = 0;
6443 h->def_regular = 1;
6444 h->type = STT_SECTION;
6445
6446 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6447 return FALSE;
6448 }
6449
6450 /* We need to create a .compact_rel section. */
6451 if (SGI_COMPAT (abfd))
6452 {
6453 if (!mips_elf_create_compact_rel_section (abfd, info))
6454 return FALSE;
6455 }
6456
6457 /* Change alignments of some sections. */
6458 s = bfd_get_section_by_name (abfd, ".hash");
6459 if (s != NULL)
6460 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6461 s = bfd_get_section_by_name (abfd, ".dynsym");
6462 if (s != NULL)
6463 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6464 s = bfd_get_section_by_name (abfd, ".dynstr");
6465 if (s != NULL)
6466 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6467 s = bfd_get_section_by_name (abfd, ".reginfo");
6468 if (s != NULL)
6469 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6470 s = bfd_get_section_by_name (abfd, ".dynamic");
6471 if (s != NULL)
6472 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6473 }
6474
6475 if (!info->shared)
6476 {
6477 const char *name;
6478
6479 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6480 bh = NULL;
6481 if (!(_bfd_generic_link_add_one_symbol
6482 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6483 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6484 return FALSE;
6485
6486 h = (struct elf_link_hash_entry *) bh;
6487 h->non_elf = 0;
6488 h->def_regular = 1;
6489 h->type = STT_SECTION;
6490
6491 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6492 return FALSE;
6493
6494 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6495 {
6496 /* __rld_map is a four byte word located in the .data section
6497 and is filled in by the rtld to contain a pointer to
6498 the _r_debug structure. Its symbol value will be set in
6499 _bfd_mips_elf_finish_dynamic_symbol. */
6500 s = bfd_get_section_by_name (abfd, ".rld_map");
6501 BFD_ASSERT (s != NULL);
6502
6503 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6504 bh = NULL;
6505 if (!(_bfd_generic_link_add_one_symbol
6506 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6507 get_elf_backend_data (abfd)->collect, &bh)))
6508 return FALSE;
6509
6510 h = (struct elf_link_hash_entry *) bh;
6511 h->non_elf = 0;
6512 h->def_regular = 1;
6513 h->type = STT_OBJECT;
6514
6515 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6516 return FALSE;
6517 }
6518 }
6519
6520 if (htab->is_vxworks)
6521 {
6522 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6523 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6524 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6525 return FALSE;
6526
6527 /* Cache the sections created above. */
6528 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6529 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6530 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6531 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6532 if (!htab->sdynbss
6533 || (!htab->srelbss && !info->shared)
6534 || !htab->srelplt
6535 || !htab->splt)
6536 abort ();
6537
6538 /* Do the usual VxWorks handling. */
6539 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6540 return FALSE;
6541
6542 /* Work out the PLT sizes. */
6543 if (info->shared)
6544 {
6545 htab->plt_header_size
6546 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6547 htab->plt_entry_size
6548 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6549 }
6550 else
6551 {
6552 htab->plt_header_size
6553 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6554 htab->plt_entry_size
6555 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6556 }
6557 }
6558
6559 return TRUE;
6560 }
6561 \f
6562 /* Return true if relocation REL against section SEC is a REL rather than
6563 RELA relocation. RELOCS is the first relocation in the section and
6564 ABFD is the bfd that contains SEC. */
6565
6566 static bfd_boolean
6567 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
6568 const Elf_Internal_Rela *relocs,
6569 const Elf_Internal_Rela *rel)
6570 {
6571 Elf_Internal_Shdr *rel_hdr;
6572 const struct elf_backend_data *bed;
6573
6574 /* To determine which flavor or relocation this is, we depend on the
6575 fact that the INPUT_SECTION's REL_HDR is read before its REL_HDR2. */
6576 rel_hdr = &elf_section_data (sec)->rel_hdr;
6577 bed = get_elf_backend_data (abfd);
6578 if ((size_t) (rel - relocs)
6579 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
6580 rel_hdr = elf_section_data (sec)->rel_hdr2;
6581 return rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (abfd);
6582 }
6583
6584 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
6585 HOWTO is the relocation's howto and CONTENTS points to the contents
6586 of the section that REL is against. */
6587
6588 static bfd_vma
6589 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
6590 reloc_howto_type *howto, bfd_byte *contents)
6591 {
6592 bfd_byte *location;
6593 unsigned int r_type;
6594 bfd_vma addend;
6595
6596 r_type = ELF_R_TYPE (abfd, rel->r_info);
6597 location = contents + rel->r_offset;
6598
6599 /* Get the addend, which is stored in the input file. */
6600 _bfd_mips16_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
6601 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
6602 _bfd_mips16_elf_reloc_shuffle (abfd, r_type, FALSE, location);
6603
6604 return addend & howto->src_mask;
6605 }
6606
6607 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
6608 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
6609 and update *ADDEND with the final addend. Return true on success
6610 or false if the LO16 could not be found. RELEND is the exclusive
6611 upper bound on the relocations for REL's section. */
6612
6613 static bfd_boolean
6614 mips_elf_add_lo16_rel_addend (bfd *abfd,
6615 const Elf_Internal_Rela *rel,
6616 const Elf_Internal_Rela *relend,
6617 bfd_byte *contents, bfd_vma *addend)
6618 {
6619 unsigned int r_type, lo16_type;
6620 const Elf_Internal_Rela *lo16_relocation;
6621 reloc_howto_type *lo16_howto;
6622 bfd_vma l;
6623
6624 r_type = ELF_R_TYPE (abfd, rel->r_info);
6625 if (mips16_reloc_p (r_type))
6626 lo16_type = R_MIPS16_LO16;
6627 else
6628 lo16_type = R_MIPS_LO16;
6629
6630 /* The combined value is the sum of the HI16 addend, left-shifted by
6631 sixteen bits, and the LO16 addend, sign extended. (Usually, the
6632 code does a `lui' of the HI16 value, and then an `addiu' of the
6633 LO16 value.)
6634
6635 Scan ahead to find a matching LO16 relocation.
6636
6637 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
6638 be immediately following. However, for the IRIX6 ABI, the next
6639 relocation may be a composed relocation consisting of several
6640 relocations for the same address. In that case, the R_MIPS_LO16
6641 relocation may occur as one of these. We permit a similar
6642 extension in general, as that is useful for GCC.
6643
6644 In some cases GCC dead code elimination removes the LO16 but keeps
6645 the corresponding HI16. This is strictly speaking a violation of
6646 the ABI but not immediately harmful. */
6647 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
6648 if (lo16_relocation == NULL)
6649 return FALSE;
6650
6651 /* Obtain the addend kept there. */
6652 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
6653 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
6654
6655 l <<= lo16_howto->rightshift;
6656 l = _bfd_mips_elf_sign_extend (l, 16);
6657
6658 *addend <<= 16;
6659 *addend += l;
6660 return TRUE;
6661 }
6662
6663 /* Try to read the contents of section SEC in bfd ABFD. Return true and
6664 store the contents in *CONTENTS on success. Assume that *CONTENTS
6665 already holds the contents if it is nonull on entry. */
6666
6667 static bfd_boolean
6668 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
6669 {
6670 if (*contents)
6671 return TRUE;
6672
6673 /* Get cached copy if it exists. */
6674 if (elf_section_data (sec)->this_hdr.contents != NULL)
6675 {
6676 *contents = elf_section_data (sec)->this_hdr.contents;
6677 return TRUE;
6678 }
6679
6680 return bfd_malloc_and_get_section (abfd, sec, contents);
6681 }
6682
6683 /* Look through the relocs for a section during the first phase, and
6684 allocate space in the global offset table. */
6685
6686 bfd_boolean
6687 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6688 asection *sec, const Elf_Internal_Rela *relocs)
6689 {
6690 const char *name;
6691 bfd *dynobj;
6692 Elf_Internal_Shdr *symtab_hdr;
6693 struct elf_link_hash_entry **sym_hashes;
6694 size_t extsymoff;
6695 const Elf_Internal_Rela *rel;
6696 const Elf_Internal_Rela *rel_end;
6697 asection *sreloc;
6698 const struct elf_backend_data *bed;
6699 struct mips_elf_link_hash_table *htab;
6700 bfd_byte *contents;
6701 bfd_vma addend;
6702 reloc_howto_type *howto;
6703
6704 if (info->relocatable)
6705 return TRUE;
6706
6707 htab = mips_elf_hash_table (info);
6708 dynobj = elf_hash_table (info)->dynobj;
6709 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6710 sym_hashes = elf_sym_hashes (abfd);
6711 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6712
6713 bed = get_elf_backend_data (abfd);
6714 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6715
6716 /* Check for the mips16 stub sections. */
6717
6718 name = bfd_get_section_name (abfd, sec);
6719 if (FN_STUB_P (name))
6720 {
6721 unsigned long r_symndx;
6722
6723 /* Look at the relocation information to figure out which symbol
6724 this is for. */
6725
6726 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
6727 if (r_symndx == 0)
6728 {
6729 (*_bfd_error_handler)
6730 (_("%B: Warning: cannot determine the target function for"
6731 " stub section `%s'"),
6732 abfd, name);
6733 bfd_set_error (bfd_error_bad_value);
6734 return FALSE;
6735 }
6736
6737 if (r_symndx < extsymoff
6738 || sym_hashes[r_symndx - extsymoff] == NULL)
6739 {
6740 asection *o;
6741
6742 /* This stub is for a local symbol. This stub will only be
6743 needed if there is some relocation in this BFD, other
6744 than a 16 bit function call, which refers to this symbol. */
6745 for (o = abfd->sections; o != NULL; o = o->next)
6746 {
6747 Elf_Internal_Rela *sec_relocs;
6748 const Elf_Internal_Rela *r, *rend;
6749
6750 /* We can ignore stub sections when looking for relocs. */
6751 if ((o->flags & SEC_RELOC) == 0
6752 || o->reloc_count == 0
6753 || section_allows_mips16_refs_p (o))
6754 continue;
6755
6756 sec_relocs
6757 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6758 info->keep_memory);
6759 if (sec_relocs == NULL)
6760 return FALSE;
6761
6762 rend = sec_relocs + o->reloc_count;
6763 for (r = sec_relocs; r < rend; r++)
6764 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6765 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
6766 break;
6767
6768 if (elf_section_data (o)->relocs != sec_relocs)
6769 free (sec_relocs);
6770
6771 if (r < rend)
6772 break;
6773 }
6774
6775 if (o == NULL)
6776 {
6777 /* There is no non-call reloc for this stub, so we do
6778 not need it. Since this function is called before
6779 the linker maps input sections to output sections, we
6780 can easily discard it by setting the SEC_EXCLUDE
6781 flag. */
6782 sec->flags |= SEC_EXCLUDE;
6783 return TRUE;
6784 }
6785
6786 /* Record this stub in an array of local symbol stubs for
6787 this BFD. */
6788 if (elf_tdata (abfd)->local_stubs == NULL)
6789 {
6790 unsigned long symcount;
6791 asection **n;
6792 bfd_size_type amt;
6793
6794 if (elf_bad_symtab (abfd))
6795 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6796 else
6797 symcount = symtab_hdr->sh_info;
6798 amt = symcount * sizeof (asection *);
6799 n = bfd_zalloc (abfd, amt);
6800 if (n == NULL)
6801 return FALSE;
6802 elf_tdata (abfd)->local_stubs = n;
6803 }
6804
6805 sec->flags |= SEC_KEEP;
6806 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6807
6808 /* We don't need to set mips16_stubs_seen in this case.
6809 That flag is used to see whether we need to look through
6810 the global symbol table for stubs. We don't need to set
6811 it here, because we just have a local stub. */
6812 }
6813 else
6814 {
6815 struct mips_elf_link_hash_entry *h;
6816
6817 h = ((struct mips_elf_link_hash_entry *)
6818 sym_hashes[r_symndx - extsymoff]);
6819
6820 while (h->root.root.type == bfd_link_hash_indirect
6821 || h->root.root.type == bfd_link_hash_warning)
6822 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6823
6824 /* H is the symbol this stub is for. */
6825
6826 /* If we already have an appropriate stub for this function, we
6827 don't need another one, so we can discard this one. Since
6828 this function is called before the linker maps input sections
6829 to output sections, we can easily discard it by setting the
6830 SEC_EXCLUDE flag. */
6831 if (h->fn_stub != NULL)
6832 {
6833 sec->flags |= SEC_EXCLUDE;
6834 return TRUE;
6835 }
6836
6837 sec->flags |= SEC_KEEP;
6838 h->fn_stub = sec;
6839 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6840 }
6841 }
6842 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
6843 {
6844 unsigned long r_symndx;
6845 struct mips_elf_link_hash_entry *h;
6846 asection **loc;
6847
6848 /* Look at the relocation information to figure out which symbol
6849 this is for. */
6850
6851 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
6852 if (r_symndx == 0)
6853 {
6854 (*_bfd_error_handler)
6855 (_("%B: Warning: cannot determine the target function for"
6856 " stub section `%s'"),
6857 abfd, name);
6858 bfd_set_error (bfd_error_bad_value);
6859 return FALSE;
6860 }
6861
6862 if (r_symndx < extsymoff
6863 || sym_hashes[r_symndx - extsymoff] == NULL)
6864 {
6865 asection *o;
6866
6867 /* This stub is for a local symbol. This stub will only be
6868 needed if there is some relocation (R_MIPS16_26) in this BFD
6869 that refers to this symbol. */
6870 for (o = abfd->sections; o != NULL; o = o->next)
6871 {
6872 Elf_Internal_Rela *sec_relocs;
6873 const Elf_Internal_Rela *r, *rend;
6874
6875 /* We can ignore stub sections when looking for relocs. */
6876 if ((o->flags & SEC_RELOC) == 0
6877 || o->reloc_count == 0
6878 || section_allows_mips16_refs_p (o))
6879 continue;
6880
6881 sec_relocs
6882 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6883 info->keep_memory);
6884 if (sec_relocs == NULL)
6885 return FALSE;
6886
6887 rend = sec_relocs + o->reloc_count;
6888 for (r = sec_relocs; r < rend; r++)
6889 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6890 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
6891 break;
6892
6893 if (elf_section_data (o)->relocs != sec_relocs)
6894 free (sec_relocs);
6895
6896 if (r < rend)
6897 break;
6898 }
6899
6900 if (o == NULL)
6901 {
6902 /* There is no non-call reloc for this stub, so we do
6903 not need it. Since this function is called before
6904 the linker maps input sections to output sections, we
6905 can easily discard it by setting the SEC_EXCLUDE
6906 flag. */
6907 sec->flags |= SEC_EXCLUDE;
6908 return TRUE;
6909 }
6910
6911 /* Record this stub in an array of local symbol call_stubs for
6912 this BFD. */
6913 if (elf_tdata (abfd)->local_call_stubs == NULL)
6914 {
6915 unsigned long symcount;
6916 asection **n;
6917 bfd_size_type amt;
6918
6919 if (elf_bad_symtab (abfd))
6920 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6921 else
6922 symcount = symtab_hdr->sh_info;
6923 amt = symcount * sizeof (asection *);
6924 n = bfd_zalloc (abfd, amt);
6925 if (n == NULL)
6926 return FALSE;
6927 elf_tdata (abfd)->local_call_stubs = n;
6928 }
6929
6930 sec->flags |= SEC_KEEP;
6931 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
6932
6933 /* We don't need to set mips16_stubs_seen in this case.
6934 That flag is used to see whether we need to look through
6935 the global symbol table for stubs. We don't need to set
6936 it here, because we just have a local stub. */
6937 }
6938 else
6939 {
6940 h = ((struct mips_elf_link_hash_entry *)
6941 sym_hashes[r_symndx - extsymoff]);
6942
6943 /* H is the symbol this stub is for. */
6944
6945 if (CALL_FP_STUB_P (name))
6946 loc = &h->call_fp_stub;
6947 else
6948 loc = &h->call_stub;
6949
6950 /* If we already have an appropriate stub for this function, we
6951 don't need another one, so we can discard this one. Since
6952 this function is called before the linker maps input sections
6953 to output sections, we can easily discard it by setting the
6954 SEC_EXCLUDE flag. */
6955 if (*loc != NULL)
6956 {
6957 sec->flags |= SEC_EXCLUDE;
6958 return TRUE;
6959 }
6960
6961 sec->flags |= SEC_KEEP;
6962 *loc = sec;
6963 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6964 }
6965 }
6966
6967 sreloc = NULL;
6968 contents = NULL;
6969 for (rel = relocs; rel < rel_end; ++rel)
6970 {
6971 unsigned long r_symndx;
6972 unsigned int r_type;
6973 struct elf_link_hash_entry *h;
6974
6975 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6976 r_type = ELF_R_TYPE (abfd, rel->r_info);
6977
6978 if (r_symndx < extsymoff)
6979 h = NULL;
6980 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6981 {
6982 (*_bfd_error_handler)
6983 (_("%B: Malformed reloc detected for section %s"),
6984 abfd, name);
6985 bfd_set_error (bfd_error_bad_value);
6986 return FALSE;
6987 }
6988 else
6989 {
6990 h = sym_hashes[r_symndx - extsymoff];
6991
6992 /* This may be an indirect symbol created because of a version. */
6993 if (h != NULL)
6994 {
6995 while (h->root.type == bfd_link_hash_indirect)
6996 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6997 }
6998 }
6999
7000 /* Some relocs require a global offset table. */
7001 if (dynobj == NULL || htab->sgot == NULL)
7002 {
7003 switch (r_type)
7004 {
7005 case R_MIPS16_GOT16:
7006 case R_MIPS16_CALL16:
7007 case R_MIPS_GOT16:
7008 case R_MIPS_CALL16:
7009 case R_MIPS_CALL_HI16:
7010 case R_MIPS_CALL_LO16:
7011 case R_MIPS_GOT_HI16:
7012 case R_MIPS_GOT_LO16:
7013 case R_MIPS_GOT_PAGE:
7014 case R_MIPS_GOT_OFST:
7015 case R_MIPS_GOT_DISP:
7016 case R_MIPS_TLS_GOTTPREL:
7017 case R_MIPS_TLS_GD:
7018 case R_MIPS_TLS_LDM:
7019 if (dynobj == NULL)
7020 elf_hash_table (info)->dynobj = dynobj = abfd;
7021 if (! mips_elf_create_got_section (dynobj, info, FALSE))
7022 return FALSE;
7023 if (htab->is_vxworks && !info->shared)
7024 {
7025 (*_bfd_error_handler)
7026 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7027 abfd, (unsigned long) rel->r_offset);
7028 bfd_set_error (bfd_error_bad_value);
7029 return FALSE;
7030 }
7031 break;
7032
7033 case R_MIPS_32:
7034 case R_MIPS_REL32:
7035 case R_MIPS_64:
7036 /* In VxWorks executables, references to external symbols
7037 are handled using copy relocs or PLT stubs, so there's
7038 no need to add a dynamic relocation here. */
7039 if (dynobj == NULL
7040 && (info->shared || (h != NULL && !htab->is_vxworks))
7041 && (sec->flags & SEC_ALLOC) != 0)
7042 elf_hash_table (info)->dynobj = dynobj = abfd;
7043 break;
7044
7045 default:
7046 break;
7047 }
7048 }
7049
7050 if (h)
7051 {
7052 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
7053
7054 /* Relocations against the special VxWorks __GOTT_BASE__ and
7055 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7056 room for them in .rela.dyn. */
7057 if (is_gott_symbol (info, h))
7058 {
7059 if (sreloc == NULL)
7060 {
7061 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7062 if (sreloc == NULL)
7063 return FALSE;
7064 }
7065 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7066 if (MIPS_ELF_READONLY_SECTION (sec))
7067 /* We tell the dynamic linker that there are
7068 relocations against the text segment. */
7069 info->flags |= DF_TEXTREL;
7070 }
7071 }
7072 else if (r_type == R_MIPS_CALL_LO16
7073 || r_type == R_MIPS_GOT_LO16
7074 || r_type == R_MIPS_GOT_DISP
7075 || (got16_reloc_p (r_type) && htab->is_vxworks))
7076 {
7077 /* We may need a local GOT entry for this relocation. We
7078 don't count R_MIPS_GOT_PAGE because we can estimate the
7079 maximum number of pages needed by looking at the size of
7080 the segment. Similar comments apply to R_MIPS*_GOT16 and
7081 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7082 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7083 R_MIPS_CALL_HI16 because these are always followed by an
7084 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7085 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7086 rel->r_addend, info, 0))
7087 return FALSE;
7088 }
7089
7090 switch (r_type)
7091 {
7092 case R_MIPS_CALL16:
7093 case R_MIPS16_CALL16:
7094 if (h == NULL)
7095 {
7096 (*_bfd_error_handler)
7097 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7098 abfd, (unsigned long) rel->r_offset);
7099 bfd_set_error (bfd_error_bad_value);
7100 return FALSE;
7101 }
7102 /* Fall through. */
7103
7104 case R_MIPS_CALL_HI16:
7105 case R_MIPS_CALL_LO16:
7106 if (h != NULL)
7107 {
7108 /* VxWorks call relocations point the function's .got.plt
7109 entry, which will be allocated by adjust_dynamic_symbol.
7110 Otherwise, this symbol requires a global GOT entry. */
7111 if ((!htab->is_vxworks || h->forced_local)
7112 && !mips_elf_record_global_got_symbol (h, abfd, info, 0))
7113 return FALSE;
7114
7115 /* We need a stub, not a plt entry for the undefined
7116 function. But we record it as if it needs plt. See
7117 _bfd_elf_adjust_dynamic_symbol. */
7118 h->needs_plt = 1;
7119 h->type = STT_FUNC;
7120 }
7121 break;
7122
7123 case R_MIPS_GOT_PAGE:
7124 /* If this is a global, overridable symbol, GOT_PAGE will
7125 decay to GOT_DISP, so we'll need a GOT entry for it. */
7126 if (h)
7127 {
7128 struct mips_elf_link_hash_entry *hmips =
7129 (struct mips_elf_link_hash_entry *) h;
7130
7131 while (hmips->root.root.type == bfd_link_hash_indirect
7132 || hmips->root.root.type == bfd_link_hash_warning)
7133 hmips = (struct mips_elf_link_hash_entry *)
7134 hmips->root.root.u.i.link;
7135
7136 /* This symbol is definitely not overridable. */
7137 if (hmips->root.def_regular
7138 && ! (info->shared && ! info->symbolic
7139 && ! hmips->root.forced_local))
7140 h = NULL;
7141 }
7142 /* Fall through. */
7143
7144 case R_MIPS16_GOT16:
7145 case R_MIPS_GOT16:
7146 case R_MIPS_GOT_HI16:
7147 case R_MIPS_GOT_LO16:
7148 if (!h || r_type == R_MIPS_GOT_PAGE)
7149 {
7150 /* This relocation needs (or may need, if h != NULL) a
7151 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7152 know for sure until we know whether the symbol is
7153 preemptible. */
7154 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
7155 {
7156 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7157 return FALSE;
7158 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7159 addend = mips_elf_read_rel_addend (abfd, rel,
7160 howto, contents);
7161 if (r_type == R_MIPS_GOT16)
7162 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
7163 contents, &addend);
7164 else
7165 addend <<= howto->rightshift;
7166 }
7167 else
7168 addend = rel->r_addend;
7169 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
7170 addend))
7171 return FALSE;
7172 break;
7173 }
7174 /* Fall through. */
7175
7176 case R_MIPS_GOT_DISP:
7177 if (h && !mips_elf_record_global_got_symbol (h, abfd, info, 0))
7178 return FALSE;
7179 break;
7180
7181 case R_MIPS_TLS_GOTTPREL:
7182 if (info->shared)
7183 info->flags |= DF_STATIC_TLS;
7184 /* Fall through */
7185
7186 case R_MIPS_TLS_LDM:
7187 if (r_type == R_MIPS_TLS_LDM)
7188 {
7189 r_symndx = 0;
7190 h = NULL;
7191 }
7192 /* Fall through */
7193
7194 case R_MIPS_TLS_GD:
7195 /* This symbol requires a global offset table entry, or two
7196 for TLS GD relocations. */
7197 {
7198 unsigned char flag = (r_type == R_MIPS_TLS_GD
7199 ? GOT_TLS_GD
7200 : r_type == R_MIPS_TLS_LDM
7201 ? GOT_TLS_LDM
7202 : GOT_TLS_IE);
7203 if (h != NULL)
7204 {
7205 struct mips_elf_link_hash_entry *hmips =
7206 (struct mips_elf_link_hash_entry *) h;
7207 hmips->tls_type |= flag;
7208
7209 if (h && !mips_elf_record_global_got_symbol (h, abfd,
7210 info, flag))
7211 return FALSE;
7212 }
7213 else
7214 {
7215 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
7216
7217 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7218 rel->r_addend,
7219 info, flag))
7220 return FALSE;
7221 }
7222 }
7223 break;
7224
7225 case R_MIPS_32:
7226 case R_MIPS_REL32:
7227 case R_MIPS_64:
7228 /* In VxWorks executables, references to external symbols
7229 are handled using copy relocs or PLT stubs, so there's
7230 no need to add a .rela.dyn entry for this relocation. */
7231 if ((info->shared || (h != NULL && !htab->is_vxworks))
7232 && !(h && strcmp (h->root.root.string, "__gnu_local_gp") == 0)
7233 && (sec->flags & SEC_ALLOC) != 0)
7234 {
7235 if (sreloc == NULL)
7236 {
7237 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7238 if (sreloc == NULL)
7239 return FALSE;
7240 }
7241 if (info->shared && h == NULL)
7242 {
7243 /* When creating a shared object, we must copy these
7244 reloc types into the output file as R_MIPS_REL32
7245 relocs. Make room for this reloc in .rel(a).dyn. */
7246 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7247 if (MIPS_ELF_READONLY_SECTION (sec))
7248 /* We tell the dynamic linker that there are
7249 relocations against the text segment. */
7250 info->flags |= DF_TEXTREL;
7251 }
7252 else
7253 {
7254 struct mips_elf_link_hash_entry *hmips;
7255
7256 /* For a shared object, we must copy this relocation
7257 unless the symbol turns out to be undefined and
7258 weak with non-default visibility, in which case
7259 it will be left as zero.
7260
7261 We could elide R_MIPS_REL32 for locally binding symbols
7262 in shared libraries, but do not yet do so.
7263
7264 For an executable, we only need to copy this
7265 reloc if the symbol is defined in a dynamic
7266 object. */
7267 hmips = (struct mips_elf_link_hash_entry *) h;
7268 ++hmips->possibly_dynamic_relocs;
7269 if (MIPS_ELF_READONLY_SECTION (sec))
7270 /* We need it to tell the dynamic linker if there
7271 are relocations against the text segment. */
7272 hmips->readonly_reloc = TRUE;
7273 }
7274
7275 /* Even though we don't directly need a GOT entry for
7276 this symbol, a symbol must have a dynamic symbol
7277 table index greater that DT_MIPS_GOTSYM if there are
7278 dynamic relocations against it. This does not apply
7279 to VxWorks, which does not have the usual coupling
7280 between global GOT entries and .dynsym entries. */
7281 if (h != NULL && !htab->is_vxworks)
7282 {
7283 if (dynobj == NULL)
7284 elf_hash_table (info)->dynobj = dynobj = abfd;
7285 if (! mips_elf_create_got_section (dynobj, info, TRUE))
7286 return FALSE;
7287 if (!mips_elf_record_global_got_symbol (h, abfd, info, 0))
7288 return FALSE;
7289 }
7290 }
7291
7292 if (SGI_COMPAT (abfd))
7293 mips_elf_hash_table (info)->compact_rel_size +=
7294 sizeof (Elf32_External_crinfo);
7295 break;
7296
7297 case R_MIPS_PC16:
7298 if (h)
7299 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
7300 break;
7301
7302 case R_MIPS_26:
7303 if (h)
7304 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
7305 /* Fall through. */
7306
7307 case R_MIPS_GPREL16:
7308 case R_MIPS_LITERAL:
7309 case R_MIPS_GPREL32:
7310 if (SGI_COMPAT (abfd))
7311 mips_elf_hash_table (info)->compact_rel_size +=
7312 sizeof (Elf32_External_crinfo);
7313 break;
7314
7315 /* This relocation describes the C++ object vtable hierarchy.
7316 Reconstruct it for later use during GC. */
7317 case R_MIPS_GNU_VTINHERIT:
7318 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7319 return FALSE;
7320 break;
7321
7322 /* This relocation describes which C++ vtable entries are actually
7323 used. Record for later use during GC. */
7324 case R_MIPS_GNU_VTENTRY:
7325 BFD_ASSERT (h != NULL);
7326 if (h != NULL
7327 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7328 return FALSE;
7329 break;
7330
7331 default:
7332 break;
7333 }
7334
7335 /* We must not create a stub for a symbol that has relocations
7336 related to taking the function's address. This doesn't apply to
7337 VxWorks, where CALL relocs refer to a .got.plt entry instead of
7338 a normal .got entry. */
7339 if (!htab->is_vxworks && h != NULL)
7340 switch (r_type)
7341 {
7342 default:
7343 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
7344 break;
7345 case R_MIPS16_CALL16:
7346 case R_MIPS_CALL16:
7347 case R_MIPS_CALL_HI16:
7348 case R_MIPS_CALL_LO16:
7349 case R_MIPS_JALR:
7350 break;
7351 }
7352
7353 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
7354 if there is one. We only need to handle global symbols here;
7355 we decide whether to keep or delete stubs for local symbols
7356 when processing the stub's relocations. */
7357 if (h != NULL
7358 && !mips16_call_reloc_p (r_type)
7359 && !section_allows_mips16_refs_p (sec))
7360 {
7361 struct mips_elf_link_hash_entry *mh;
7362
7363 mh = (struct mips_elf_link_hash_entry *) h;
7364 mh->need_fn_stub = TRUE;
7365 }
7366 }
7367
7368 return TRUE;
7369 }
7370 \f
7371 bfd_boolean
7372 _bfd_mips_relax_section (bfd *abfd, asection *sec,
7373 struct bfd_link_info *link_info,
7374 bfd_boolean *again)
7375 {
7376 Elf_Internal_Rela *internal_relocs;
7377 Elf_Internal_Rela *irel, *irelend;
7378 Elf_Internal_Shdr *symtab_hdr;
7379 bfd_byte *contents = NULL;
7380 size_t extsymoff;
7381 bfd_boolean changed_contents = FALSE;
7382 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
7383 Elf_Internal_Sym *isymbuf = NULL;
7384
7385 /* We are not currently changing any sizes, so only one pass. */
7386 *again = FALSE;
7387
7388 if (link_info->relocatable)
7389 return TRUE;
7390
7391 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7392 link_info->keep_memory);
7393 if (internal_relocs == NULL)
7394 return TRUE;
7395
7396 irelend = internal_relocs + sec->reloc_count
7397 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
7398 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7399 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7400
7401 for (irel = internal_relocs; irel < irelend; irel++)
7402 {
7403 bfd_vma symval;
7404 bfd_signed_vma sym_offset;
7405 unsigned int r_type;
7406 unsigned long r_symndx;
7407 asection *sym_sec;
7408 unsigned long instruction;
7409
7410 /* Turn jalr into bgezal, and jr into beq, if they're marked
7411 with a JALR relocation, that indicate where they jump to.
7412 This saves some pipeline bubbles. */
7413 r_type = ELF_R_TYPE (abfd, irel->r_info);
7414 if (r_type != R_MIPS_JALR)
7415 continue;
7416
7417 r_symndx = ELF_R_SYM (abfd, irel->r_info);
7418 /* Compute the address of the jump target. */
7419 if (r_symndx >= extsymoff)
7420 {
7421 struct mips_elf_link_hash_entry *h
7422 = ((struct mips_elf_link_hash_entry *)
7423 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
7424
7425 while (h->root.root.type == bfd_link_hash_indirect
7426 || h->root.root.type == bfd_link_hash_warning)
7427 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7428
7429 /* If a symbol is undefined, or if it may be overridden,
7430 skip it. */
7431 if (! ((h->root.root.type == bfd_link_hash_defined
7432 || h->root.root.type == bfd_link_hash_defweak)
7433 && h->root.root.u.def.section)
7434 || (link_info->shared && ! link_info->symbolic
7435 && !h->root.forced_local))
7436 continue;
7437
7438 sym_sec = h->root.root.u.def.section;
7439 if (sym_sec->output_section)
7440 symval = (h->root.root.u.def.value
7441 + sym_sec->output_section->vma
7442 + sym_sec->output_offset);
7443 else
7444 symval = h->root.root.u.def.value;
7445 }
7446 else
7447 {
7448 Elf_Internal_Sym *isym;
7449
7450 /* Read this BFD's symbols if we haven't done so already. */
7451 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
7452 {
7453 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
7454 if (isymbuf == NULL)
7455 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
7456 symtab_hdr->sh_info, 0,
7457 NULL, NULL, NULL);
7458 if (isymbuf == NULL)
7459 goto relax_return;
7460 }
7461
7462 isym = isymbuf + r_symndx;
7463 if (isym->st_shndx == SHN_UNDEF)
7464 continue;
7465 else if (isym->st_shndx == SHN_ABS)
7466 sym_sec = bfd_abs_section_ptr;
7467 else if (isym->st_shndx == SHN_COMMON)
7468 sym_sec = bfd_com_section_ptr;
7469 else
7470 sym_sec
7471 = bfd_section_from_elf_index (abfd, isym->st_shndx);
7472 symval = isym->st_value
7473 + sym_sec->output_section->vma
7474 + sym_sec->output_offset;
7475 }
7476
7477 /* Compute branch offset, from delay slot of the jump to the
7478 branch target. */
7479 sym_offset = (symval + irel->r_addend)
7480 - (sec_start + irel->r_offset + 4);
7481
7482 /* Branch offset must be properly aligned. */
7483 if ((sym_offset & 3) != 0)
7484 continue;
7485
7486 sym_offset >>= 2;
7487
7488 /* Check that it's in range. */
7489 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
7490 continue;
7491
7492 /* Get the section contents if we haven't done so already. */
7493 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7494 goto relax_return;
7495
7496 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
7497
7498 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
7499 if ((instruction & 0xfc1fffff) == 0x0000f809)
7500 instruction = 0x04110000;
7501 /* If it was jr <reg>, turn it into b <target>. */
7502 else if ((instruction & 0xfc1fffff) == 0x00000008)
7503 instruction = 0x10000000;
7504 else
7505 continue;
7506
7507 instruction |= (sym_offset & 0xffff);
7508 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
7509 changed_contents = TRUE;
7510 }
7511
7512 if (contents != NULL
7513 && elf_section_data (sec)->this_hdr.contents != contents)
7514 {
7515 if (!changed_contents && !link_info->keep_memory)
7516 free (contents);
7517 else
7518 {
7519 /* Cache the section contents for elf_link_input_bfd. */
7520 elf_section_data (sec)->this_hdr.contents = contents;
7521 }
7522 }
7523 return TRUE;
7524
7525 relax_return:
7526 if (contents != NULL
7527 && elf_section_data (sec)->this_hdr.contents != contents)
7528 free (contents);
7529 return FALSE;
7530 }
7531 \f
7532 /* Allocate space for global sym dynamic relocs. */
7533
7534 static bfd_boolean
7535 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7536 {
7537 struct bfd_link_info *info = inf;
7538 bfd *dynobj;
7539 struct mips_elf_link_hash_entry *hmips;
7540 struct mips_elf_link_hash_table *htab;
7541
7542 htab = mips_elf_hash_table (info);
7543 dynobj = elf_hash_table (info)->dynobj;
7544 hmips = (struct mips_elf_link_hash_entry *) h;
7545
7546 /* VxWorks executables are handled elsewhere; we only need to
7547 allocate relocations in shared objects. */
7548 if (htab->is_vxworks && !info->shared)
7549 return TRUE;
7550
7551 /* Ignore indirect and warning symbols. All relocations against
7552 such symbols will be redirected to the target symbol. */
7553 if (h->root.type == bfd_link_hash_indirect
7554 || h->root.type == bfd_link_hash_warning)
7555 return TRUE;
7556
7557 /* If this symbol is defined in a dynamic object, or we are creating
7558 a shared library, we will need to copy any R_MIPS_32 or
7559 R_MIPS_REL32 relocs against it into the output file. */
7560 if (! info->relocatable
7561 && hmips->possibly_dynamic_relocs != 0
7562 && (h->root.type == bfd_link_hash_defweak
7563 || !h->def_regular
7564 || info->shared))
7565 {
7566 bfd_boolean do_copy = TRUE;
7567
7568 if (h->root.type == bfd_link_hash_undefweak)
7569 {
7570 /* Do not copy relocations for undefined weak symbols with
7571 non-default visibility. */
7572 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
7573 do_copy = FALSE;
7574
7575 /* Make sure undefined weak symbols are output as a dynamic
7576 symbol in PIEs. */
7577 else if (h->dynindx == -1 && !h->forced_local)
7578 {
7579 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7580 return FALSE;
7581 }
7582 }
7583
7584 if (do_copy)
7585 {
7586 mips_elf_allocate_dynamic_relocations
7587 (dynobj, info, hmips->possibly_dynamic_relocs);
7588 if (hmips->readonly_reloc)
7589 /* We tell the dynamic linker that there are relocations
7590 against the text segment. */
7591 info->flags |= DF_TEXTREL;
7592 }
7593 }
7594
7595 return TRUE;
7596 }
7597
7598 /* Adjust a symbol defined by a dynamic object and referenced by a
7599 regular object. The current definition is in some section of the
7600 dynamic object, but we're not including those sections. We have to
7601 change the definition to something the rest of the link can
7602 understand. */
7603
7604 bfd_boolean
7605 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
7606 struct elf_link_hash_entry *h)
7607 {
7608 bfd *dynobj;
7609 struct mips_elf_link_hash_entry *hmips;
7610 struct mips_elf_link_hash_table *htab;
7611
7612 htab = mips_elf_hash_table (info);
7613 dynobj = elf_hash_table (info)->dynobj;
7614
7615 /* Make sure we know what is going on here. */
7616 BFD_ASSERT (dynobj != NULL
7617 && (h->needs_plt
7618 || h->u.weakdef != NULL
7619 || (h->def_dynamic
7620 && h->ref_regular
7621 && !h->def_regular)));
7622
7623 hmips = (struct mips_elf_link_hash_entry *) h;
7624
7625 /* For a function, create a stub, if allowed. */
7626 if (! hmips->no_fn_stub
7627 && h->needs_plt)
7628 {
7629 if (! elf_hash_table (info)->dynamic_sections_created)
7630 return TRUE;
7631
7632 /* If this symbol is not defined in a regular file, then set
7633 the symbol to the stub location. This is required to make
7634 function pointers compare as equal between the normal
7635 executable and the shared library. */
7636 if (!h->def_regular)
7637 {
7638 hmips->needs_lazy_stub = TRUE;
7639 htab->lazy_stub_count++;
7640 return TRUE;
7641 }
7642 }
7643 else if ((h->type == STT_FUNC)
7644 && !h->needs_plt)
7645 {
7646 /* This will set the entry for this symbol in the GOT to 0, and
7647 the dynamic linker will take care of this. */
7648 h->root.u.def.value = 0;
7649 return TRUE;
7650 }
7651
7652 /* If this is a weak symbol, and there is a real definition, the
7653 processor independent code will have arranged for us to see the
7654 real definition first, and we can just use the same value. */
7655 if (h->u.weakdef != NULL)
7656 {
7657 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7658 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7659 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7660 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7661 return TRUE;
7662 }
7663
7664 /* This is a reference to a symbol defined by a dynamic object which
7665 is not a function. */
7666
7667 return TRUE;
7668 }
7669
7670 /* Likewise, for VxWorks. */
7671
7672 bfd_boolean
7673 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
7674 struct elf_link_hash_entry *h)
7675 {
7676 bfd *dynobj;
7677 struct mips_elf_link_hash_entry *hmips;
7678 struct mips_elf_link_hash_table *htab;
7679
7680 htab = mips_elf_hash_table (info);
7681 dynobj = elf_hash_table (info)->dynobj;
7682 hmips = (struct mips_elf_link_hash_entry *) h;
7683
7684 /* Make sure we know what is going on here. */
7685 BFD_ASSERT (dynobj != NULL
7686 && (h->needs_plt
7687 || h->needs_copy
7688 || h->u.weakdef != NULL
7689 || (h->def_dynamic
7690 && h->ref_regular
7691 && !h->def_regular)));
7692
7693 /* If the symbol is defined by a dynamic object, we need a PLT stub if
7694 either (a) we want to branch to the symbol or (b) we're linking an
7695 executable that needs a canonical function address. In the latter
7696 case, the canonical address will be the address of the executable's
7697 load stub. */
7698 if ((hmips->is_branch_target
7699 || (!info->shared
7700 && h->type == STT_FUNC
7701 && hmips->is_relocation_target))
7702 && h->def_dynamic
7703 && h->ref_regular
7704 && !h->def_regular
7705 && !h->forced_local)
7706 h->needs_plt = 1;
7707
7708 /* Locally-binding symbols do not need a PLT stub; we can refer to
7709 the functions directly. */
7710 else if (h->needs_plt
7711 && (SYMBOL_CALLS_LOCAL (info, h)
7712 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7713 && h->root.type == bfd_link_hash_undefweak)))
7714 {
7715 h->needs_plt = 0;
7716 return TRUE;
7717 }
7718
7719 if (h->needs_plt)
7720 {
7721 /* If this is the first symbol to need a PLT entry, allocate room
7722 for the header, and for the header's .rela.plt.unloaded entries. */
7723 if (htab->splt->size == 0)
7724 {
7725 htab->splt->size += htab->plt_header_size;
7726 if (!info->shared)
7727 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
7728 }
7729
7730 /* Assign the next .plt entry to this symbol. */
7731 h->plt.offset = htab->splt->size;
7732 htab->splt->size += htab->plt_entry_size;
7733
7734 /* If the output file has no definition of the symbol, set the
7735 symbol's value to the address of the stub. Point at the PLT
7736 load stub rather than the lazy resolution stub; this stub
7737 will become the canonical function address. */
7738 if (!info->shared && !h->def_regular)
7739 {
7740 h->root.u.def.section = htab->splt;
7741 h->root.u.def.value = h->plt.offset;
7742 h->root.u.def.value += 8;
7743 }
7744
7745 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7746 htab->sgotplt->size += 4;
7747 htab->srelplt->size += sizeof (Elf32_External_Rela);
7748
7749 /* Make room for the .rela.plt.unloaded relocations. */
7750 if (!info->shared)
7751 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7752
7753 return TRUE;
7754 }
7755
7756 /* If a function symbol is defined by a dynamic object, and we do not
7757 need a PLT stub for it, the symbol's value should be zero. */
7758 if (h->type == STT_FUNC
7759 && h->def_dynamic
7760 && h->ref_regular
7761 && !h->def_regular)
7762 {
7763 h->root.u.def.value = 0;
7764 return TRUE;
7765 }
7766
7767 /* If this is a weak symbol, and there is a real definition, the
7768 processor independent code will have arranged for us to see the
7769 real definition first, and we can just use the same value. */
7770 if (h->u.weakdef != NULL)
7771 {
7772 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7773 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7774 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7775 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7776 return TRUE;
7777 }
7778
7779 /* This is a reference to a symbol defined by a dynamic object which
7780 is not a function. */
7781 if (info->shared)
7782 return TRUE;
7783
7784 /* We must allocate the symbol in our .dynbss section, which will
7785 become part of the .bss section of the executable. There will be
7786 an entry for this symbol in the .dynsym section. The dynamic
7787 object will contain position independent code, so all references
7788 from the dynamic object to this symbol will go through the global
7789 offset table. The dynamic linker will use the .dynsym entry to
7790 determine the address it must put in the global offset table, so
7791 both the dynamic object and the regular object will refer to the
7792 same memory location for the variable. */
7793
7794 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7795 {
7796 htab->srelbss->size += sizeof (Elf32_External_Rela);
7797 h->needs_copy = 1;
7798 }
7799
7800 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
7801 }
7802 \f
7803 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
7804 The number might be exact or a worst-case estimate, depending on how
7805 much information is available to elf_backend_omit_section_dynsym at
7806 the current linking stage. */
7807
7808 static bfd_size_type
7809 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7810 {
7811 bfd_size_type count;
7812
7813 count = 0;
7814 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7815 {
7816 asection *p;
7817 const struct elf_backend_data *bed;
7818
7819 bed = get_elf_backend_data (output_bfd);
7820 for (p = output_bfd->sections; p ; p = p->next)
7821 if ((p->flags & SEC_EXCLUDE) == 0
7822 && (p->flags & SEC_ALLOC) != 0
7823 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7824 ++count;
7825 }
7826 return count;
7827 }
7828
7829 /* This function is called after all the input files have been read,
7830 and the input sections have been assigned to output sections. We
7831 check for any mips16 stub sections that we can discard. */
7832
7833 bfd_boolean
7834 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
7835 struct bfd_link_info *info)
7836 {
7837 asection *ri;
7838 struct mips_elf_link_hash_table *htab;
7839
7840 htab = mips_elf_hash_table (info);
7841
7842 /* The .reginfo section has a fixed size. */
7843 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7844 if (ri != NULL)
7845 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7846
7847 if (! (info->relocatable
7848 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7849 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7850 mips_elf_check_mips16_stubs, info);
7851
7852 return TRUE;
7853 }
7854
7855 /* If the link uses a GOT, lay it out and work out its size. */
7856
7857 static bfd_boolean
7858 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
7859 {
7860 bfd *dynobj;
7861 asection *s;
7862 struct mips_got_info *g;
7863 int i;
7864 bfd_size_type loadable_size = 0;
7865 bfd_size_type page_gotno;
7866 bfd *sub;
7867 struct mips_elf_count_tls_arg count_tls_arg;
7868 struct mips_elf_link_hash_table *htab;
7869
7870 htab = mips_elf_hash_table (info);
7871 s = htab->sgot;
7872 if (s == NULL)
7873 return TRUE;
7874
7875 dynobj = elf_hash_table (info)->dynobj;
7876 g = htab->got_info;
7877
7878 /* Replace entries for indirect and warning symbols with entries for
7879 the target symbol. */
7880 if (!mips_elf_resolve_final_got_entries (g))
7881 return FALSE;
7882
7883 /* Count the number of forced-local entries. */
7884 elf_link_hash_traverse (elf_hash_table (info),
7885 mips_elf_count_forced_local_got_symbols, g);
7886
7887 /* There has to be a global GOT entry for every symbol with
7888 a dynamic symbol table index of DT_MIPS_GOTSYM or
7889 higher. Therefore, it make sense to put those symbols
7890 that need GOT entries at the end of the symbol table. We
7891 do that here. */
7892 if (! mips_elf_sort_hash_table (info, 1))
7893 return FALSE;
7894
7895 if (g->global_gotsym != NULL)
7896 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7897 else
7898 /* If there are no global symbols, or none requiring
7899 relocations, then GLOBAL_GOTSYM will be NULL. */
7900 i = 0;
7901
7902 /* Calculate the total loadable size of the output. That
7903 will give us the maximum number of GOT_PAGE entries
7904 required. */
7905 for (sub = info->input_bfds; sub; sub = sub->link_next)
7906 {
7907 asection *subsection;
7908
7909 for (subsection = sub->sections;
7910 subsection;
7911 subsection = subsection->next)
7912 {
7913 if ((subsection->flags & SEC_ALLOC) == 0)
7914 continue;
7915 loadable_size += ((subsection->size + 0xf)
7916 &~ (bfd_size_type) 0xf);
7917 }
7918 }
7919
7920 if (htab->is_vxworks)
7921 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
7922 relocations against local symbols evaluate to "G", and the EABI does
7923 not include R_MIPS_GOT_PAGE. */
7924 page_gotno = 0;
7925 else
7926 /* Assume there are two loadable segments consisting of contiguous
7927 sections. Is 5 enough? */
7928 page_gotno = (loadable_size >> 16) + 5;
7929
7930 /* Choose the smaller of the two estimates; both are intended to be
7931 conservative. */
7932 if (page_gotno > g->page_gotno)
7933 page_gotno = g->page_gotno;
7934
7935 g->local_gotno += page_gotno;
7936 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7937
7938 g->global_gotno = i;
7939 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
7940
7941 /* We need to calculate tls_gotno for global symbols at this point
7942 instead of building it up earlier, to avoid doublecounting
7943 entries for one global symbol from multiple input files. */
7944 count_tls_arg.info = info;
7945 count_tls_arg.needed = 0;
7946 elf_link_hash_traverse (elf_hash_table (info),
7947 mips_elf_count_global_tls_entries,
7948 &count_tls_arg);
7949 g->tls_gotno += count_tls_arg.needed;
7950 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7951
7952 /* VxWorks does not support multiple GOTs. It initializes $gp to
7953 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7954 dynamic loader. */
7955 if (htab->is_vxworks)
7956 {
7957 /* VxWorks executables do not need a GOT. */
7958 if (info->shared)
7959 {
7960 /* Each VxWorks GOT entry needs an explicit relocation. */
7961 unsigned int count;
7962
7963 count = g->global_gotno + g->local_gotno - MIPS_RESERVED_GOTNO (info);
7964 if (count)
7965 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7966 }
7967 }
7968 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
7969 {
7970 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
7971 return FALSE;
7972 }
7973 else
7974 {
7975 struct mips_elf_count_tls_arg arg;
7976
7977 /* Set up TLS entries. */
7978 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7979 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7980
7981 /* Allocate room for the TLS relocations. */
7982 arg.info = info;
7983 arg.needed = 0;
7984 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
7985 elf_link_hash_traverse (elf_hash_table (info),
7986 mips_elf_count_global_tls_relocs,
7987 &arg);
7988 if (arg.needed)
7989 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
7990 }
7991
7992 return TRUE;
7993 }
7994
7995 /* Estimate the size of the .MIPS.stubs section. */
7996
7997 static void
7998 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
7999 {
8000 struct mips_elf_link_hash_table *htab;
8001 bfd_size_type dynsymcount;
8002
8003 htab = mips_elf_hash_table (info);
8004 if (htab->lazy_stub_count == 0)
8005 return;
8006
8007 /* IRIX rld assumes that a function stub isn't at the end of the .text
8008 section, so add a dummy entry to the end. */
8009 htab->lazy_stub_count++;
8010
8011 /* Get a worst-case estimate of the number of dynamic symbols needed.
8012 At this point, dynsymcount does not account for section symbols
8013 and count_section_dynsyms may overestimate the number that will
8014 be needed. */
8015 dynsymcount = (elf_hash_table (info)->dynsymcount
8016 + count_section_dynsyms (output_bfd, info));
8017
8018 /* Determine the size of one stub entry. */
8019 htab->function_stub_size = (dynsymcount > 0x10000
8020 ? MIPS_FUNCTION_STUB_BIG_SIZE
8021 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8022
8023 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8024 }
8025
8026 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8027 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8028 allocate an entry in the stubs section. */
8029
8030 static bfd_boolean
8031 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8032 {
8033 struct mips_elf_link_hash_table *htab;
8034
8035 htab = (struct mips_elf_link_hash_table *) data;
8036 if (h->needs_lazy_stub)
8037 {
8038 h->root.root.u.def.section = htab->sstubs;
8039 h->root.root.u.def.value = htab->sstubs->size;
8040 h->root.plt.offset = htab->sstubs->size;
8041 htab->sstubs->size += htab->function_stub_size;
8042 }
8043 return TRUE;
8044 }
8045
8046 /* Allocate offsets in the stubs section to each symbol that needs one.
8047 Set the final size of the .MIPS.stub section. */
8048
8049 static void
8050 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8051 {
8052 struct mips_elf_link_hash_table *htab;
8053
8054 htab = mips_elf_hash_table (info);
8055 if (htab->lazy_stub_count == 0)
8056 return;
8057
8058 htab->sstubs->size = 0;
8059 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8060 mips_elf_allocate_lazy_stub, htab);
8061 htab->sstubs->size += htab->function_stub_size;
8062 BFD_ASSERT (htab->sstubs->size
8063 == htab->lazy_stub_count * htab->function_stub_size);
8064 }
8065
8066 /* Set the sizes of the dynamic sections. */
8067
8068 bfd_boolean
8069 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8070 struct bfd_link_info *info)
8071 {
8072 bfd *dynobj;
8073 asection *s;
8074 bfd_boolean reltext;
8075 struct mips_elf_link_hash_table *htab;
8076
8077 htab = mips_elf_hash_table (info);
8078 dynobj = elf_hash_table (info)->dynobj;
8079 BFD_ASSERT (dynobj != NULL);
8080
8081 if (elf_hash_table (info)->dynamic_sections_created)
8082 {
8083 /* Set the contents of the .interp section to the interpreter. */
8084 if (info->executable)
8085 {
8086 s = bfd_get_section_by_name (dynobj, ".interp");
8087 BFD_ASSERT (s != NULL);
8088 s->size
8089 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8090 s->contents
8091 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8092 }
8093 }
8094
8095 /* Allocate space for global sym dynamic relocs. */
8096 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
8097
8098 mips_elf_estimate_stub_size (output_bfd, info);
8099
8100 if (!mips_elf_lay_out_got (output_bfd, info))
8101 return FALSE;
8102
8103 mips_elf_lay_out_lazy_stubs (info);
8104
8105 /* The check_relocs and adjust_dynamic_symbol entry points have
8106 determined the sizes of the various dynamic sections. Allocate
8107 memory for them. */
8108 reltext = FALSE;
8109 for (s = dynobj->sections; s != NULL; s = s->next)
8110 {
8111 const char *name;
8112
8113 /* It's OK to base decisions on the section name, because none
8114 of the dynobj section names depend upon the input files. */
8115 name = bfd_get_section_name (dynobj, s);
8116
8117 if ((s->flags & SEC_LINKER_CREATED) == 0)
8118 continue;
8119
8120 if (CONST_STRNEQ (name, ".rel"))
8121 {
8122 if (s->size != 0)
8123 {
8124 const char *outname;
8125 asection *target;
8126
8127 /* If this relocation section applies to a read only
8128 section, then we probably need a DT_TEXTREL entry.
8129 If the relocation section is .rel(a).dyn, we always
8130 assert a DT_TEXTREL entry rather than testing whether
8131 there exists a relocation to a read only section or
8132 not. */
8133 outname = bfd_get_section_name (output_bfd,
8134 s->output_section);
8135 target = bfd_get_section_by_name (output_bfd, outname + 4);
8136 if ((target != NULL
8137 && (target->flags & SEC_READONLY) != 0
8138 && (target->flags & SEC_ALLOC) != 0)
8139 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
8140 reltext = TRUE;
8141
8142 /* We use the reloc_count field as a counter if we need
8143 to copy relocs into the output file. */
8144 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
8145 s->reloc_count = 0;
8146
8147 /* If combreloc is enabled, elf_link_sort_relocs() will
8148 sort relocations, but in a different way than we do,
8149 and before we're done creating relocations. Also, it
8150 will move them around between input sections'
8151 relocation's contents, so our sorting would be
8152 broken, so don't let it run. */
8153 info->combreloc = 0;
8154 }
8155 }
8156 else if (! info->shared
8157 && ! mips_elf_hash_table (info)->use_rld_obj_head
8158 && CONST_STRNEQ (name, ".rld_map"))
8159 {
8160 /* We add a room for __rld_map. It will be filled in by the
8161 rtld to contain a pointer to the _r_debug structure. */
8162 s->size += 4;
8163 }
8164 else if (SGI_COMPAT (output_bfd)
8165 && CONST_STRNEQ (name, ".compact_rel"))
8166 s->size += mips_elf_hash_table (info)->compact_rel_size;
8167 else if (! CONST_STRNEQ (name, ".init")
8168 && s != htab->sgot
8169 && s != htab->sgotplt
8170 && s != htab->splt
8171 && s != htab->sstubs)
8172 {
8173 /* It's not one of our sections, so don't allocate space. */
8174 continue;
8175 }
8176
8177 if (s->size == 0)
8178 {
8179 s->flags |= SEC_EXCLUDE;
8180 continue;
8181 }
8182
8183 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8184 continue;
8185
8186 /* Allocate memory for the section contents. */
8187 s->contents = bfd_zalloc (dynobj, s->size);
8188 if (s->contents == NULL)
8189 {
8190 bfd_set_error (bfd_error_no_memory);
8191 return FALSE;
8192 }
8193 }
8194
8195 if (elf_hash_table (info)->dynamic_sections_created)
8196 {
8197 /* Add some entries to the .dynamic section. We fill in the
8198 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
8199 must add the entries now so that we get the correct size for
8200 the .dynamic section. */
8201
8202 /* SGI object has the equivalence of DT_DEBUG in the
8203 DT_MIPS_RLD_MAP entry. This must come first because glibc
8204 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
8205 looks at the first one it sees. */
8206 if (!info->shared
8207 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8208 return FALSE;
8209
8210 /* The DT_DEBUG entry may be filled in by the dynamic linker and
8211 used by the debugger. */
8212 if (info->executable
8213 && !SGI_COMPAT (output_bfd)
8214 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8215 return FALSE;
8216
8217 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
8218 info->flags |= DF_TEXTREL;
8219
8220 if ((info->flags & DF_TEXTREL) != 0)
8221 {
8222 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
8223 return FALSE;
8224
8225 /* Clear the DF_TEXTREL flag. It will be set again if we
8226 write out an actual text relocation; we may not, because
8227 at this point we do not know whether e.g. any .eh_frame
8228 absolute relocations have been converted to PC-relative. */
8229 info->flags &= ~DF_TEXTREL;
8230 }
8231
8232 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
8233 return FALSE;
8234
8235 if (htab->is_vxworks)
8236 {
8237 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
8238 use any of the DT_MIPS_* tags. */
8239 if (mips_elf_rel_dyn_section (info, FALSE))
8240 {
8241 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
8242 return FALSE;
8243
8244 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
8245 return FALSE;
8246
8247 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
8248 return FALSE;
8249 }
8250 if (htab->splt->size > 0)
8251 {
8252 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
8253 return FALSE;
8254
8255 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
8256 return FALSE;
8257
8258 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
8259 return FALSE;
8260 }
8261 }
8262 else
8263 {
8264 if (mips_elf_rel_dyn_section (info, FALSE))
8265 {
8266 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8267 return FALSE;
8268
8269 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8270 return FALSE;
8271
8272 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8273 return FALSE;
8274 }
8275
8276 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8277 return FALSE;
8278
8279 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8280 return FALSE;
8281
8282 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8283 return FALSE;
8284
8285 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8286 return FALSE;
8287
8288 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8289 return FALSE;
8290
8291 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8292 return FALSE;
8293
8294 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8295 return FALSE;
8296
8297 if (IRIX_COMPAT (dynobj) == ict_irix5
8298 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8299 return FALSE;
8300
8301 if (IRIX_COMPAT (dynobj) == ict_irix6
8302 && (bfd_get_section_by_name
8303 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8304 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8305 return FALSE;
8306 }
8307 if (htab->is_vxworks
8308 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
8309 return FALSE;
8310 }
8311
8312 return TRUE;
8313 }
8314 \f
8315 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
8316 Adjust its R_ADDEND field so that it is correct for the output file.
8317 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
8318 and sections respectively; both use symbol indexes. */
8319
8320 static void
8321 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
8322 bfd *input_bfd, Elf_Internal_Sym *local_syms,
8323 asection **local_sections, Elf_Internal_Rela *rel)
8324 {
8325 unsigned int r_type, r_symndx;
8326 Elf_Internal_Sym *sym;
8327 asection *sec;
8328
8329 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
8330 {
8331 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8332 if (r_type == R_MIPS16_GPREL
8333 || r_type == R_MIPS_GPREL16
8334 || r_type == R_MIPS_GPREL32
8335 || r_type == R_MIPS_LITERAL)
8336 {
8337 rel->r_addend += _bfd_get_gp_value (input_bfd);
8338 rel->r_addend -= _bfd_get_gp_value (output_bfd);
8339 }
8340
8341 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
8342 sym = local_syms + r_symndx;
8343
8344 /* Adjust REL's addend to account for section merging. */
8345 if (!info->relocatable)
8346 {
8347 sec = local_sections[r_symndx];
8348 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8349 }
8350
8351 /* This would normally be done by the rela_normal code in elflink.c. */
8352 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8353 rel->r_addend += local_sections[r_symndx]->output_offset;
8354 }
8355 }
8356
8357 /* Relocate a MIPS ELF section. */
8358
8359 bfd_boolean
8360 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
8361 bfd *input_bfd, asection *input_section,
8362 bfd_byte *contents, Elf_Internal_Rela *relocs,
8363 Elf_Internal_Sym *local_syms,
8364 asection **local_sections)
8365 {
8366 Elf_Internal_Rela *rel;
8367 const Elf_Internal_Rela *relend;
8368 bfd_vma addend = 0;
8369 bfd_boolean use_saved_addend_p = FALSE;
8370 const struct elf_backend_data *bed;
8371
8372 bed = get_elf_backend_data (output_bfd);
8373 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
8374 for (rel = relocs; rel < relend; ++rel)
8375 {
8376 const char *name;
8377 bfd_vma value = 0;
8378 reloc_howto_type *howto;
8379 bfd_boolean require_jalx;
8380 /* TRUE if the relocation is a RELA relocation, rather than a
8381 REL relocation. */
8382 bfd_boolean rela_relocation_p = TRUE;
8383 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8384 const char *msg;
8385 unsigned long r_symndx;
8386 asection *sec;
8387 Elf_Internal_Shdr *symtab_hdr;
8388 struct elf_link_hash_entry *h;
8389
8390 /* Find the relocation howto for this relocation. */
8391 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
8392 NEWABI_P (input_bfd)
8393 && (MIPS_RELOC_RELA_P
8394 (input_bfd, input_section,
8395 rel - relocs)));
8396
8397 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
8398 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8399 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
8400 {
8401 sec = local_sections[r_symndx];
8402 h = NULL;
8403 }
8404 else
8405 {
8406 unsigned long extsymoff;
8407
8408 extsymoff = 0;
8409 if (!elf_bad_symtab (input_bfd))
8410 extsymoff = symtab_hdr->sh_info;
8411 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
8412 while (h->root.type == bfd_link_hash_indirect
8413 || h->root.type == bfd_link_hash_warning)
8414 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8415
8416 sec = NULL;
8417 if (h->root.type == bfd_link_hash_defined
8418 || h->root.type == bfd_link_hash_defweak)
8419 sec = h->root.u.def.section;
8420 }
8421
8422 if (sec != NULL && elf_discarded_section (sec))
8423 {
8424 /* For relocs against symbols from removed linkonce sections,
8425 or sections discarded by a linker script, we just want the
8426 section contents zeroed. Avoid any special processing. */
8427 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
8428 rel->r_info = 0;
8429 rel->r_addend = 0;
8430 continue;
8431 }
8432
8433 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
8434 {
8435 /* Some 32-bit code uses R_MIPS_64. In particular, people use
8436 64-bit code, but make sure all their addresses are in the
8437 lowermost or uppermost 32-bit section of the 64-bit address
8438 space. Thus, when they use an R_MIPS_64 they mean what is
8439 usually meant by R_MIPS_32, with the exception that the
8440 stored value is sign-extended to 64 bits. */
8441 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
8442
8443 /* On big-endian systems, we need to lie about the position
8444 of the reloc. */
8445 if (bfd_big_endian (input_bfd))
8446 rel->r_offset += 4;
8447 }
8448
8449 if (!use_saved_addend_p)
8450 {
8451 /* If these relocations were originally of the REL variety,
8452 we must pull the addend out of the field that will be
8453 relocated. Otherwise, we simply use the contents of the
8454 RELA relocation. */
8455 if (mips_elf_rel_relocation_p (input_bfd, input_section,
8456 relocs, rel))
8457 {
8458 rela_relocation_p = FALSE;
8459 addend = mips_elf_read_rel_addend (input_bfd, rel,
8460 howto, contents);
8461 if (hi16_reloc_p (r_type)
8462 || (got16_reloc_p (r_type)
8463 && mips_elf_local_relocation_p (input_bfd, rel,
8464 local_sections, FALSE)))
8465 {
8466 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
8467 contents, &addend))
8468 {
8469 const char *name;
8470
8471 if (h)
8472 name = h->root.root.string;
8473 else
8474 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
8475 local_syms + r_symndx,
8476 sec);
8477 (*_bfd_error_handler)
8478 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
8479 input_bfd, input_section, name, howto->name,
8480 rel->r_offset);
8481 }
8482 }
8483 else
8484 addend <<= howto->rightshift;
8485 }
8486 else
8487 addend = rel->r_addend;
8488 mips_elf_adjust_addend (output_bfd, info, input_bfd,
8489 local_syms, local_sections, rel);
8490 }
8491
8492 if (info->relocatable)
8493 {
8494 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
8495 && bfd_big_endian (input_bfd))
8496 rel->r_offset -= 4;
8497
8498 if (!rela_relocation_p && rel->r_addend)
8499 {
8500 addend += rel->r_addend;
8501 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
8502 addend = mips_elf_high (addend);
8503 else if (r_type == R_MIPS_HIGHER)
8504 addend = mips_elf_higher (addend);
8505 else if (r_type == R_MIPS_HIGHEST)
8506 addend = mips_elf_highest (addend);
8507 else
8508 addend >>= howto->rightshift;
8509
8510 /* We use the source mask, rather than the destination
8511 mask because the place to which we are writing will be
8512 source of the addend in the final link. */
8513 addend &= howto->src_mask;
8514
8515 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
8516 /* See the comment above about using R_MIPS_64 in the 32-bit
8517 ABI. Here, we need to update the addend. It would be
8518 possible to get away with just using the R_MIPS_32 reloc
8519 but for endianness. */
8520 {
8521 bfd_vma sign_bits;
8522 bfd_vma low_bits;
8523 bfd_vma high_bits;
8524
8525 if (addend & ((bfd_vma) 1 << 31))
8526 #ifdef BFD64
8527 sign_bits = ((bfd_vma) 1 << 32) - 1;
8528 #else
8529 sign_bits = -1;
8530 #endif
8531 else
8532 sign_bits = 0;
8533
8534 /* If we don't know that we have a 64-bit type,
8535 do two separate stores. */
8536 if (bfd_big_endian (input_bfd))
8537 {
8538 /* Store the sign-bits (which are most significant)
8539 first. */
8540 low_bits = sign_bits;
8541 high_bits = addend;
8542 }
8543 else
8544 {
8545 low_bits = addend;
8546 high_bits = sign_bits;
8547 }
8548 bfd_put_32 (input_bfd, low_bits,
8549 contents + rel->r_offset);
8550 bfd_put_32 (input_bfd, high_bits,
8551 contents + rel->r_offset + 4);
8552 continue;
8553 }
8554
8555 if (! mips_elf_perform_relocation (info, howto, rel, addend,
8556 input_bfd, input_section,
8557 contents, FALSE))
8558 return FALSE;
8559 }
8560
8561 /* Go on to the next relocation. */
8562 continue;
8563 }
8564
8565 /* In the N32 and 64-bit ABIs there may be multiple consecutive
8566 relocations for the same offset. In that case we are
8567 supposed to treat the output of each relocation as the addend
8568 for the next. */
8569 if (rel + 1 < relend
8570 && rel->r_offset == rel[1].r_offset
8571 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
8572 use_saved_addend_p = TRUE;
8573 else
8574 use_saved_addend_p = FALSE;
8575
8576 /* Figure out what value we are supposed to relocate. */
8577 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
8578 input_section, info, rel,
8579 addend, howto, local_syms,
8580 local_sections, &value,
8581 &name, &require_jalx,
8582 use_saved_addend_p))
8583 {
8584 case bfd_reloc_continue:
8585 /* There's nothing to do. */
8586 continue;
8587
8588 case bfd_reloc_undefined:
8589 /* mips_elf_calculate_relocation already called the
8590 undefined_symbol callback. There's no real point in
8591 trying to perform the relocation at this point, so we
8592 just skip ahead to the next relocation. */
8593 continue;
8594
8595 case bfd_reloc_notsupported:
8596 msg = _("internal error: unsupported relocation error");
8597 info->callbacks->warning
8598 (info, msg, name, input_bfd, input_section, rel->r_offset);
8599 return FALSE;
8600
8601 case bfd_reloc_overflow:
8602 if (use_saved_addend_p)
8603 /* Ignore overflow until we reach the last relocation for
8604 a given location. */
8605 ;
8606 else
8607 {
8608 struct mips_elf_link_hash_table *htab;
8609
8610 htab = mips_elf_hash_table (info);
8611 BFD_ASSERT (name != NULL);
8612 if (!htab->small_data_overflow_reported
8613 && (howto->type == R_MIPS_GPREL16
8614 || howto->type == R_MIPS_LITERAL))
8615 {
8616 const char *msg =
8617 _("small-data section exceeds 64KB;"
8618 " lower small-data size limit (see option -G)");
8619
8620 htab->small_data_overflow_reported = TRUE;
8621 (*info->callbacks->einfo) ("%P: %s\n", msg);
8622 }
8623 if (! ((*info->callbacks->reloc_overflow)
8624 (info, NULL, name, howto->name, (bfd_vma) 0,
8625 input_bfd, input_section, rel->r_offset)))
8626 return FALSE;
8627 }
8628 break;
8629
8630 case bfd_reloc_ok:
8631 break;
8632
8633 default:
8634 abort ();
8635 break;
8636 }
8637
8638 /* If we've got another relocation for the address, keep going
8639 until we reach the last one. */
8640 if (use_saved_addend_p)
8641 {
8642 addend = value;
8643 continue;
8644 }
8645
8646 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
8647 /* See the comment above about using R_MIPS_64 in the 32-bit
8648 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
8649 that calculated the right value. Now, however, we
8650 sign-extend the 32-bit result to 64-bits, and store it as a
8651 64-bit value. We are especially generous here in that we
8652 go to extreme lengths to support this usage on systems with
8653 only a 32-bit VMA. */
8654 {
8655 bfd_vma sign_bits;
8656 bfd_vma low_bits;
8657 bfd_vma high_bits;
8658
8659 if (value & ((bfd_vma) 1 << 31))
8660 #ifdef BFD64
8661 sign_bits = ((bfd_vma) 1 << 32) - 1;
8662 #else
8663 sign_bits = -1;
8664 #endif
8665 else
8666 sign_bits = 0;
8667
8668 /* If we don't know that we have a 64-bit type,
8669 do two separate stores. */
8670 if (bfd_big_endian (input_bfd))
8671 {
8672 /* Undo what we did above. */
8673 rel->r_offset -= 4;
8674 /* Store the sign-bits (which are most significant)
8675 first. */
8676 low_bits = sign_bits;
8677 high_bits = value;
8678 }
8679 else
8680 {
8681 low_bits = value;
8682 high_bits = sign_bits;
8683 }
8684 bfd_put_32 (input_bfd, low_bits,
8685 contents + rel->r_offset);
8686 bfd_put_32 (input_bfd, high_bits,
8687 contents + rel->r_offset + 4);
8688 continue;
8689 }
8690
8691 /* Actually perform the relocation. */
8692 if (! mips_elf_perform_relocation (info, howto, rel, value,
8693 input_bfd, input_section,
8694 contents, require_jalx))
8695 return FALSE;
8696 }
8697
8698 return TRUE;
8699 }
8700 \f
8701 /* If NAME is one of the special IRIX6 symbols defined by the linker,
8702 adjust it appropriately now. */
8703
8704 static void
8705 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8706 const char *name, Elf_Internal_Sym *sym)
8707 {
8708 /* The linker script takes care of providing names and values for
8709 these, but we must place them into the right sections. */
8710 static const char* const text_section_symbols[] = {
8711 "_ftext",
8712 "_etext",
8713 "__dso_displacement",
8714 "__elf_header",
8715 "__program_header_table",
8716 NULL
8717 };
8718
8719 static const char* const data_section_symbols[] = {
8720 "_fdata",
8721 "_edata",
8722 "_end",
8723 "_fbss",
8724 NULL
8725 };
8726
8727 const char* const *p;
8728 int i;
8729
8730 for (i = 0; i < 2; ++i)
8731 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8732 *p;
8733 ++p)
8734 if (strcmp (*p, name) == 0)
8735 {
8736 /* All of these symbols are given type STT_SECTION by the
8737 IRIX6 linker. */
8738 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8739 sym->st_other = STO_PROTECTED;
8740
8741 /* The IRIX linker puts these symbols in special sections. */
8742 if (i == 0)
8743 sym->st_shndx = SHN_MIPS_TEXT;
8744 else
8745 sym->st_shndx = SHN_MIPS_DATA;
8746
8747 break;
8748 }
8749 }
8750
8751 /* Finish up dynamic symbol handling. We set the contents of various
8752 dynamic sections here. */
8753
8754 bfd_boolean
8755 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8756 struct bfd_link_info *info,
8757 struct elf_link_hash_entry *h,
8758 Elf_Internal_Sym *sym)
8759 {
8760 bfd *dynobj;
8761 asection *sgot;
8762 struct mips_got_info *g, *gg;
8763 const char *name;
8764 int idx;
8765 struct mips_elf_link_hash_table *htab;
8766 struct mips_elf_link_hash_entry *hmips;
8767
8768 htab = mips_elf_hash_table (info);
8769 dynobj = elf_hash_table (info)->dynobj;
8770 hmips = (struct mips_elf_link_hash_entry *) h;
8771
8772 if (h->plt.offset != MINUS_ONE)
8773 {
8774 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
8775
8776 /* This symbol has a stub. Set it up. */
8777
8778 BFD_ASSERT (h->dynindx != -1);
8779
8780 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8781 || (h->dynindx <= 0xffff));
8782
8783 /* Values up to 2^31 - 1 are allowed. Larger values would cause
8784 sign extension at runtime in the stub, resulting in a negative
8785 index value. */
8786 if (h->dynindx & ~0x7fffffff)
8787 return FALSE;
8788
8789 /* Fill the stub. */
8790 idx = 0;
8791 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8792 idx += 4;
8793 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8794 idx += 4;
8795 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8796 {
8797 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
8798 stub + idx);
8799 idx += 4;
8800 }
8801 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8802 idx += 4;
8803
8804 /* If a large stub is not required and sign extension is not a
8805 problem, then use legacy code in the stub. */
8806 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8807 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8808 else if (h->dynindx & ~0x7fff)
8809 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8810 else
8811 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8812 stub + idx);
8813
8814 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
8815 memcpy (htab->sstubs->contents + h->plt.offset,
8816 stub, htab->function_stub_size);
8817
8818 /* Mark the symbol as undefined. plt.offset != -1 occurs
8819 only for the referenced symbol. */
8820 sym->st_shndx = SHN_UNDEF;
8821
8822 /* The run-time linker uses the st_value field of the symbol
8823 to reset the global offset table entry for this external
8824 to its stub address when unlinking a shared object. */
8825 sym->st_value = (htab->sstubs->output_section->vma
8826 + htab->sstubs->output_offset
8827 + h->plt.offset);
8828 }
8829
8830 /* If we have a MIPS16 function with a stub, the dynamic symbol must
8831 refer to the stub, since only the stub uses the standard calling
8832 conventions. */
8833 if (h->dynindx != -1 && hmips->fn_stub != NULL)
8834 {
8835 BFD_ASSERT (hmips->need_fn_stub);
8836 sym->st_value = (hmips->fn_stub->output_section->vma
8837 + hmips->fn_stub->output_offset);
8838 sym->st_size = hmips->fn_stub->size;
8839 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
8840 }
8841
8842 BFD_ASSERT (h->dynindx != -1
8843 || h->forced_local);
8844
8845 sgot = mips_elf_got_section (info);
8846 BFD_ASSERT (sgot != NULL);
8847 g = htab->got_info;
8848 BFD_ASSERT (g != NULL);
8849
8850 /* Run through the global symbol table, creating GOT entries for all
8851 the symbols that need them. */
8852 if (g->global_gotsym != NULL
8853 && h->dynindx >= g->global_gotsym->dynindx)
8854 {
8855 bfd_vma offset;
8856 bfd_vma value;
8857
8858 value = sym->st_value;
8859 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8860 R_MIPS_GOT16, info);
8861 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8862 }
8863
8864 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
8865 {
8866 struct mips_got_entry e, *p;
8867 bfd_vma entry;
8868 bfd_vma offset;
8869
8870 gg = g;
8871
8872 e.abfd = output_bfd;
8873 e.symndx = -1;
8874 e.d.h = hmips;
8875 e.tls_type = 0;
8876
8877 for (g = g->next; g->next != gg; g = g->next)
8878 {
8879 if (g->got_entries
8880 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8881 &e)))
8882 {
8883 offset = p->gotidx;
8884 if (info->shared
8885 || (elf_hash_table (info)->dynamic_sections_created
8886 && p->d.h != NULL
8887 && p->d.h->root.def_dynamic
8888 && !p->d.h->root.def_regular))
8889 {
8890 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8891 the various compatibility problems, it's easier to mock
8892 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8893 mips_elf_create_dynamic_relocation to calculate the
8894 appropriate addend. */
8895 Elf_Internal_Rela rel[3];
8896
8897 memset (rel, 0, sizeof (rel));
8898 if (ABI_64_P (output_bfd))
8899 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8900 else
8901 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8902 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8903
8904 entry = 0;
8905 if (! (mips_elf_create_dynamic_relocation
8906 (output_bfd, info, rel,
8907 e.d.h, NULL, sym->st_value, &entry, sgot)))
8908 return FALSE;
8909 }
8910 else
8911 entry = sym->st_value;
8912 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
8913 }
8914 }
8915 }
8916
8917 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8918 name = h->root.root.string;
8919 if (strcmp (name, "_DYNAMIC") == 0
8920 || h == elf_hash_table (info)->hgot)
8921 sym->st_shndx = SHN_ABS;
8922 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8923 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8924 {
8925 sym->st_shndx = SHN_ABS;
8926 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8927 sym->st_value = 1;
8928 }
8929 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
8930 {
8931 sym->st_shndx = SHN_ABS;
8932 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8933 sym->st_value = elf_gp (output_bfd);
8934 }
8935 else if (SGI_COMPAT (output_bfd))
8936 {
8937 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8938 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8939 {
8940 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8941 sym->st_other = STO_PROTECTED;
8942 sym->st_value = 0;
8943 sym->st_shndx = SHN_MIPS_DATA;
8944 }
8945 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8946 {
8947 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8948 sym->st_other = STO_PROTECTED;
8949 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8950 sym->st_shndx = SHN_ABS;
8951 }
8952 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8953 {
8954 if (h->type == STT_FUNC)
8955 sym->st_shndx = SHN_MIPS_TEXT;
8956 else if (h->type == STT_OBJECT)
8957 sym->st_shndx = SHN_MIPS_DATA;
8958 }
8959 }
8960
8961 /* Handle the IRIX6-specific symbols. */
8962 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8963 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8964
8965 if (! info->shared)
8966 {
8967 if (! mips_elf_hash_table (info)->use_rld_obj_head
8968 && (strcmp (name, "__rld_map") == 0
8969 || strcmp (name, "__RLD_MAP") == 0))
8970 {
8971 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8972 BFD_ASSERT (s != NULL);
8973 sym->st_value = s->output_section->vma + s->output_offset;
8974 bfd_put_32 (output_bfd, 0, s->contents);
8975 if (mips_elf_hash_table (info)->rld_value == 0)
8976 mips_elf_hash_table (info)->rld_value = sym->st_value;
8977 }
8978 else if (mips_elf_hash_table (info)->use_rld_obj_head
8979 && strcmp (name, "__rld_obj_head") == 0)
8980 {
8981 /* IRIX6 does not use a .rld_map section. */
8982 if (IRIX_COMPAT (output_bfd) == ict_irix5
8983 || IRIX_COMPAT (output_bfd) == ict_none)
8984 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8985 != NULL);
8986 mips_elf_hash_table (info)->rld_value = sym->st_value;
8987 }
8988 }
8989
8990 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
8991 treat MIPS16 symbols like any other. */
8992 if (ELF_ST_IS_MIPS16 (sym->st_other))
8993 {
8994 BFD_ASSERT (sym->st_value & 1);
8995 sym->st_other -= STO_MIPS16;
8996 }
8997
8998 return TRUE;
8999 }
9000
9001 /* Likewise, for VxWorks. */
9002
9003 bfd_boolean
9004 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
9005 struct bfd_link_info *info,
9006 struct elf_link_hash_entry *h,
9007 Elf_Internal_Sym *sym)
9008 {
9009 bfd *dynobj;
9010 asection *sgot;
9011 struct mips_got_info *g;
9012 struct mips_elf_link_hash_table *htab;
9013
9014 htab = mips_elf_hash_table (info);
9015 dynobj = elf_hash_table (info)->dynobj;
9016
9017 if (h->plt.offset != (bfd_vma) -1)
9018 {
9019 bfd_byte *loc;
9020 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
9021 Elf_Internal_Rela rel;
9022 static const bfd_vma *plt_entry;
9023
9024 BFD_ASSERT (h->dynindx != -1);
9025 BFD_ASSERT (htab->splt != NULL);
9026 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9027
9028 /* Calculate the address of the .plt entry. */
9029 plt_address = (htab->splt->output_section->vma
9030 + htab->splt->output_offset
9031 + h->plt.offset);
9032
9033 /* Calculate the index of the entry. */
9034 plt_index = ((h->plt.offset - htab->plt_header_size)
9035 / htab->plt_entry_size);
9036
9037 /* Calculate the address of the .got.plt entry. */
9038 got_address = (htab->sgotplt->output_section->vma
9039 + htab->sgotplt->output_offset
9040 + plt_index * 4);
9041
9042 /* Calculate the offset of the .got.plt entry from
9043 _GLOBAL_OFFSET_TABLE_. */
9044 got_offset = mips_elf_gotplt_index (info, h);
9045
9046 /* Calculate the offset for the branch at the start of the PLT
9047 entry. The branch jumps to the beginning of .plt. */
9048 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
9049
9050 /* Fill in the initial value of the .got.plt entry. */
9051 bfd_put_32 (output_bfd, plt_address,
9052 htab->sgotplt->contents + plt_index * 4);
9053
9054 /* Find out where the .plt entry should go. */
9055 loc = htab->splt->contents + h->plt.offset;
9056
9057 if (info->shared)
9058 {
9059 plt_entry = mips_vxworks_shared_plt_entry;
9060 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9061 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9062 }
9063 else
9064 {
9065 bfd_vma got_address_high, got_address_low;
9066
9067 plt_entry = mips_vxworks_exec_plt_entry;
9068 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9069 got_address_low = got_address & 0xffff;
9070
9071 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9072 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9073 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
9074 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
9075 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9076 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9077 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9078 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9079
9080 loc = (htab->srelplt2->contents
9081 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
9082
9083 /* Emit a relocation for the .got.plt entry. */
9084 rel.r_offset = got_address;
9085 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
9086 rel.r_addend = h->plt.offset;
9087 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9088
9089 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
9090 loc += sizeof (Elf32_External_Rela);
9091 rel.r_offset = plt_address + 8;
9092 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9093 rel.r_addend = got_offset;
9094 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9095
9096 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
9097 loc += sizeof (Elf32_External_Rela);
9098 rel.r_offset += 4;
9099 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9100 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9101 }
9102
9103 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9104 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
9105 rel.r_offset = got_address;
9106 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
9107 rel.r_addend = 0;
9108 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9109
9110 if (!h->def_regular)
9111 sym->st_shndx = SHN_UNDEF;
9112 }
9113
9114 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
9115
9116 sgot = mips_elf_got_section (info);
9117 BFD_ASSERT (sgot != NULL);
9118 g = htab->got_info;
9119 BFD_ASSERT (g != NULL);
9120
9121 /* See if this symbol has an entry in the GOT. */
9122 if (g->global_gotsym != NULL
9123 && h->dynindx >= g->global_gotsym->dynindx)
9124 {
9125 bfd_vma offset;
9126 Elf_Internal_Rela outrel;
9127 bfd_byte *loc;
9128 asection *s;
9129
9130 /* Install the symbol value in the GOT. */
9131 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9132 R_MIPS_GOT16, info);
9133 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
9134
9135 /* Add a dynamic relocation for it. */
9136 s = mips_elf_rel_dyn_section (info, FALSE);
9137 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
9138 outrel.r_offset = (sgot->output_section->vma
9139 + sgot->output_offset
9140 + offset);
9141 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
9142 outrel.r_addend = 0;
9143 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
9144 }
9145
9146 /* Emit a copy reloc, if needed. */
9147 if (h->needs_copy)
9148 {
9149 Elf_Internal_Rela rel;
9150
9151 BFD_ASSERT (h->dynindx != -1);
9152
9153 rel.r_offset = (h->root.u.def.section->output_section->vma
9154 + h->root.u.def.section->output_offset
9155 + h->root.u.def.value);
9156 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
9157 rel.r_addend = 0;
9158 bfd_elf32_swap_reloca_out (output_bfd, &rel,
9159 htab->srelbss->contents
9160 + (htab->srelbss->reloc_count
9161 * sizeof (Elf32_External_Rela)));
9162 ++htab->srelbss->reloc_count;
9163 }
9164
9165 /* If this is a mips16 symbol, force the value to be even. */
9166 if (ELF_ST_IS_MIPS16 (sym->st_other))
9167 sym->st_value &= ~1;
9168
9169 return TRUE;
9170 }
9171
9172 /* Install the PLT header for a VxWorks executable and finalize the
9173 contents of .rela.plt.unloaded. */
9174
9175 static void
9176 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9177 {
9178 Elf_Internal_Rela rela;
9179 bfd_byte *loc;
9180 bfd_vma got_value, got_value_high, got_value_low, plt_address;
9181 static const bfd_vma *plt_entry;
9182 struct mips_elf_link_hash_table *htab;
9183
9184 htab = mips_elf_hash_table (info);
9185 plt_entry = mips_vxworks_exec_plt0_entry;
9186
9187 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
9188 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
9189 + htab->root.hgot->root.u.def.section->output_offset
9190 + htab->root.hgot->root.u.def.value);
9191
9192 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
9193 got_value_low = got_value & 0xffff;
9194
9195 /* Calculate the address of the PLT header. */
9196 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
9197
9198 /* Install the PLT header. */
9199 loc = htab->splt->contents;
9200 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
9201 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
9202 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
9203 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9204 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9205 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9206
9207 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
9208 loc = htab->srelplt2->contents;
9209 rela.r_offset = plt_address;
9210 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9211 rela.r_addend = 0;
9212 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
9213 loc += sizeof (Elf32_External_Rela);
9214
9215 /* Output the relocation for the following addiu of
9216 %lo(_GLOBAL_OFFSET_TABLE_). */
9217 rela.r_offset += 4;
9218 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9219 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
9220 loc += sizeof (Elf32_External_Rela);
9221
9222 /* Fix up the remaining relocations. They may have the wrong
9223 symbol index for _G_O_T_ or _P_L_T_ depending on the order
9224 in which symbols were output. */
9225 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
9226 {
9227 Elf_Internal_Rela rel;
9228
9229 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9230 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
9231 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9232 loc += sizeof (Elf32_External_Rela);
9233
9234 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9235 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9236 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9237 loc += sizeof (Elf32_External_Rela);
9238
9239 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9240 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9241 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9242 loc += sizeof (Elf32_External_Rela);
9243 }
9244 }
9245
9246 /* Install the PLT header for a VxWorks shared library. */
9247
9248 static void
9249 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
9250 {
9251 unsigned int i;
9252 struct mips_elf_link_hash_table *htab;
9253
9254 htab = mips_elf_hash_table (info);
9255
9256 /* We just need to copy the entry byte-by-byte. */
9257 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
9258 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
9259 htab->splt->contents + i * 4);
9260 }
9261
9262 /* Finish up the dynamic sections. */
9263
9264 bfd_boolean
9265 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
9266 struct bfd_link_info *info)
9267 {
9268 bfd *dynobj;
9269 asection *sdyn;
9270 asection *sgot;
9271 struct mips_got_info *gg, *g;
9272 struct mips_elf_link_hash_table *htab;
9273
9274 htab = mips_elf_hash_table (info);
9275 dynobj = elf_hash_table (info)->dynobj;
9276
9277 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
9278
9279 sgot = mips_elf_got_section (info);
9280 if (sgot == NULL)
9281 gg = g = NULL;
9282 else
9283 {
9284 gg = htab->got_info;
9285 g = mips_elf_got_for_ibfd (gg, output_bfd);
9286 BFD_ASSERT (g != NULL);
9287 }
9288
9289 if (elf_hash_table (info)->dynamic_sections_created)
9290 {
9291 bfd_byte *b;
9292 int dyn_to_skip = 0, dyn_skipped = 0;
9293
9294 BFD_ASSERT (sdyn != NULL);
9295 BFD_ASSERT (g != NULL);
9296
9297 for (b = sdyn->contents;
9298 b < sdyn->contents + sdyn->size;
9299 b += MIPS_ELF_DYN_SIZE (dynobj))
9300 {
9301 Elf_Internal_Dyn dyn;
9302 const char *name;
9303 size_t elemsize;
9304 asection *s;
9305 bfd_boolean swap_out_p;
9306
9307 /* Read in the current dynamic entry. */
9308 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9309
9310 /* Assume that we're going to modify it and write it out. */
9311 swap_out_p = TRUE;
9312
9313 switch (dyn.d_tag)
9314 {
9315 case DT_RELENT:
9316 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
9317 break;
9318
9319 case DT_RELAENT:
9320 BFD_ASSERT (htab->is_vxworks);
9321 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
9322 break;
9323
9324 case DT_STRSZ:
9325 /* Rewrite DT_STRSZ. */
9326 dyn.d_un.d_val =
9327 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
9328 break;
9329
9330 case DT_PLTGOT:
9331 name = ".got";
9332 if (htab->is_vxworks)
9333 {
9334 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
9335 of the ".got" section in DYNOBJ. */
9336 s = bfd_get_section_by_name (dynobj, name);
9337 BFD_ASSERT (s != NULL);
9338 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9339 }
9340 else
9341 {
9342 s = bfd_get_section_by_name (output_bfd, name);
9343 BFD_ASSERT (s != NULL);
9344 dyn.d_un.d_ptr = s->vma;
9345 }
9346 break;
9347
9348 case DT_MIPS_RLD_VERSION:
9349 dyn.d_un.d_val = 1; /* XXX */
9350 break;
9351
9352 case DT_MIPS_FLAGS:
9353 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
9354 break;
9355
9356 case DT_MIPS_TIME_STAMP:
9357 {
9358 time_t t;
9359 time (&t);
9360 dyn.d_un.d_val = t;
9361 }
9362 break;
9363
9364 case DT_MIPS_ICHECKSUM:
9365 /* XXX FIXME: */
9366 swap_out_p = FALSE;
9367 break;
9368
9369 case DT_MIPS_IVERSION:
9370 /* XXX FIXME: */
9371 swap_out_p = FALSE;
9372 break;
9373
9374 case DT_MIPS_BASE_ADDRESS:
9375 s = output_bfd->sections;
9376 BFD_ASSERT (s != NULL);
9377 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
9378 break;
9379
9380 case DT_MIPS_LOCAL_GOTNO:
9381 dyn.d_un.d_val = g->local_gotno;
9382 break;
9383
9384 case DT_MIPS_UNREFEXTNO:
9385 /* The index into the dynamic symbol table which is the
9386 entry of the first external symbol that is not
9387 referenced within the same object. */
9388 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
9389 break;
9390
9391 case DT_MIPS_GOTSYM:
9392 if (gg->global_gotsym)
9393 {
9394 dyn.d_un.d_val = gg->global_gotsym->dynindx;
9395 break;
9396 }
9397 /* In case if we don't have global got symbols we default
9398 to setting DT_MIPS_GOTSYM to the same value as
9399 DT_MIPS_SYMTABNO, so we just fall through. */
9400
9401 case DT_MIPS_SYMTABNO:
9402 name = ".dynsym";
9403 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
9404 s = bfd_get_section_by_name (output_bfd, name);
9405 BFD_ASSERT (s != NULL);
9406
9407 dyn.d_un.d_val = s->size / elemsize;
9408 break;
9409
9410 case DT_MIPS_HIPAGENO:
9411 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
9412 break;
9413
9414 case DT_MIPS_RLD_MAP:
9415 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
9416 break;
9417
9418 case DT_MIPS_OPTIONS:
9419 s = (bfd_get_section_by_name
9420 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
9421 dyn.d_un.d_ptr = s->vma;
9422 break;
9423
9424 case DT_RELASZ:
9425 BFD_ASSERT (htab->is_vxworks);
9426 /* The count does not include the JUMP_SLOT relocations. */
9427 if (htab->srelplt)
9428 dyn.d_un.d_val -= htab->srelplt->size;
9429 break;
9430
9431 case DT_PLTREL:
9432 BFD_ASSERT (htab->is_vxworks);
9433 dyn.d_un.d_val = DT_RELA;
9434 break;
9435
9436 case DT_PLTRELSZ:
9437 BFD_ASSERT (htab->is_vxworks);
9438 dyn.d_un.d_val = htab->srelplt->size;
9439 break;
9440
9441 case DT_JMPREL:
9442 BFD_ASSERT (htab->is_vxworks);
9443 dyn.d_un.d_val = (htab->srelplt->output_section->vma
9444 + htab->srelplt->output_offset);
9445 break;
9446
9447 case DT_TEXTREL:
9448 /* If we didn't need any text relocations after all, delete
9449 the dynamic tag. */
9450 if (!(info->flags & DF_TEXTREL))
9451 {
9452 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
9453 swap_out_p = FALSE;
9454 }
9455 break;
9456
9457 case DT_FLAGS:
9458 /* If we didn't need any text relocations after all, clear
9459 DF_TEXTREL from DT_FLAGS. */
9460 if (!(info->flags & DF_TEXTREL))
9461 dyn.d_un.d_val &= ~DF_TEXTREL;
9462 else
9463 swap_out_p = FALSE;
9464 break;
9465
9466 default:
9467 swap_out_p = FALSE;
9468 if (htab->is_vxworks
9469 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
9470 swap_out_p = TRUE;
9471 break;
9472 }
9473
9474 if (swap_out_p || dyn_skipped)
9475 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9476 (dynobj, &dyn, b - dyn_skipped);
9477
9478 if (dyn_to_skip)
9479 {
9480 dyn_skipped += dyn_to_skip;
9481 dyn_to_skip = 0;
9482 }
9483 }
9484
9485 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
9486 if (dyn_skipped > 0)
9487 memset (b - dyn_skipped, 0, dyn_skipped);
9488 }
9489
9490 if (sgot != NULL && sgot->size > 0
9491 && !bfd_is_abs_section (sgot->output_section))
9492 {
9493 if (htab->is_vxworks)
9494 {
9495 /* The first entry of the global offset table points to the
9496 ".dynamic" section. The second is initialized by the
9497 loader and contains the shared library identifier.
9498 The third is also initialized by the loader and points
9499 to the lazy resolution stub. */
9500 MIPS_ELF_PUT_WORD (output_bfd,
9501 sdyn->output_offset + sdyn->output_section->vma,
9502 sgot->contents);
9503 MIPS_ELF_PUT_WORD (output_bfd, 0,
9504 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
9505 MIPS_ELF_PUT_WORD (output_bfd, 0,
9506 sgot->contents
9507 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
9508 }
9509 else
9510 {
9511 /* The first entry of the global offset table will be filled at
9512 runtime. The second entry will be used by some runtime loaders.
9513 This isn't the case of IRIX rld. */
9514 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
9515 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
9516 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
9517 }
9518
9519 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
9520 = MIPS_ELF_GOT_SIZE (output_bfd);
9521 }
9522
9523 /* Generate dynamic relocations for the non-primary gots. */
9524 if (gg != NULL && gg->next)
9525 {
9526 Elf_Internal_Rela rel[3];
9527 bfd_vma addend = 0;
9528
9529 memset (rel, 0, sizeof (rel));
9530 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
9531
9532 for (g = gg->next; g->next != gg; g = g->next)
9533 {
9534 bfd_vma index = g->next->local_gotno + g->next->global_gotno
9535 + g->next->tls_gotno;
9536
9537 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
9538 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9539 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
9540 sgot->contents
9541 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
9542
9543 if (! info->shared)
9544 continue;
9545
9546 while (index < g->assigned_gotno)
9547 {
9548 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
9549 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
9550 if (!(mips_elf_create_dynamic_relocation
9551 (output_bfd, info, rel, NULL,
9552 bfd_abs_section_ptr,
9553 0, &addend, sgot)))
9554 return FALSE;
9555 BFD_ASSERT (addend == 0);
9556 }
9557 }
9558 }
9559
9560 /* The generation of dynamic relocations for the non-primary gots
9561 adds more dynamic relocations. We cannot count them until
9562 here. */
9563
9564 if (elf_hash_table (info)->dynamic_sections_created)
9565 {
9566 bfd_byte *b;
9567 bfd_boolean swap_out_p;
9568
9569 BFD_ASSERT (sdyn != NULL);
9570
9571 for (b = sdyn->contents;
9572 b < sdyn->contents + sdyn->size;
9573 b += MIPS_ELF_DYN_SIZE (dynobj))
9574 {
9575 Elf_Internal_Dyn dyn;
9576 asection *s;
9577
9578 /* Read in the current dynamic entry. */
9579 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
9580
9581 /* Assume that we're going to modify it and write it out. */
9582 swap_out_p = TRUE;
9583
9584 switch (dyn.d_tag)
9585 {
9586 case DT_RELSZ:
9587 /* Reduce DT_RELSZ to account for any relocations we
9588 decided not to make. This is for the n64 irix rld,
9589 which doesn't seem to apply any relocations if there
9590 are trailing null entries. */
9591 s = mips_elf_rel_dyn_section (info, FALSE);
9592 dyn.d_un.d_val = (s->reloc_count
9593 * (ABI_64_P (output_bfd)
9594 ? sizeof (Elf64_Mips_External_Rel)
9595 : sizeof (Elf32_External_Rel)));
9596 /* Adjust the section size too. Tools like the prelinker
9597 can reasonably expect the values to the same. */
9598 elf_section_data (s->output_section)->this_hdr.sh_size
9599 = dyn.d_un.d_val;
9600 break;
9601
9602 default:
9603 swap_out_p = FALSE;
9604 break;
9605 }
9606
9607 if (swap_out_p)
9608 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
9609 (dynobj, &dyn, b);
9610 }
9611 }
9612
9613 {
9614 asection *s;
9615 Elf32_compact_rel cpt;
9616
9617 if (SGI_COMPAT (output_bfd))
9618 {
9619 /* Write .compact_rel section out. */
9620 s = bfd_get_section_by_name (dynobj, ".compact_rel");
9621 if (s != NULL)
9622 {
9623 cpt.id1 = 1;
9624 cpt.num = s->reloc_count;
9625 cpt.id2 = 2;
9626 cpt.offset = (s->output_section->filepos
9627 + sizeof (Elf32_External_compact_rel));
9628 cpt.reserved0 = 0;
9629 cpt.reserved1 = 0;
9630 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
9631 ((Elf32_External_compact_rel *)
9632 s->contents));
9633
9634 /* Clean up a dummy stub function entry in .text. */
9635 if (htab->sstubs != NULL)
9636 {
9637 file_ptr dummy_offset;
9638
9639 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
9640 dummy_offset = htab->sstubs->size - htab->function_stub_size;
9641 memset (htab->sstubs->contents + dummy_offset, 0,
9642 htab->function_stub_size);
9643 }
9644 }
9645 }
9646
9647 /* The psABI says that the dynamic relocations must be sorted in
9648 increasing order of r_symndx. The VxWorks EABI doesn't require
9649 this, and because the code below handles REL rather than RELA
9650 relocations, using it for VxWorks would be outright harmful. */
9651 if (!htab->is_vxworks)
9652 {
9653 s = mips_elf_rel_dyn_section (info, FALSE);
9654 if (s != NULL
9655 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
9656 {
9657 reldyn_sorting_bfd = output_bfd;
9658
9659 if (ABI_64_P (output_bfd))
9660 qsort ((Elf64_External_Rel *) s->contents + 1,
9661 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
9662 sort_dynamic_relocs_64);
9663 else
9664 qsort ((Elf32_External_Rel *) s->contents + 1,
9665 s->reloc_count - 1, sizeof (Elf32_External_Rel),
9666 sort_dynamic_relocs);
9667 }
9668 }
9669 }
9670
9671 if (htab->is_vxworks && htab->splt->size > 0)
9672 {
9673 if (info->shared)
9674 mips_vxworks_finish_shared_plt (output_bfd, info);
9675 else
9676 mips_vxworks_finish_exec_plt (output_bfd, info);
9677 }
9678 return TRUE;
9679 }
9680
9681
9682 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
9683
9684 static void
9685 mips_set_isa_flags (bfd *abfd)
9686 {
9687 flagword val;
9688
9689 switch (bfd_get_mach (abfd))
9690 {
9691 default:
9692 case bfd_mach_mips3000:
9693 val = E_MIPS_ARCH_1;
9694 break;
9695
9696 case bfd_mach_mips3900:
9697 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
9698 break;
9699
9700 case bfd_mach_mips6000:
9701 val = E_MIPS_ARCH_2;
9702 break;
9703
9704 case bfd_mach_mips4000:
9705 case bfd_mach_mips4300:
9706 case bfd_mach_mips4400:
9707 case bfd_mach_mips4600:
9708 val = E_MIPS_ARCH_3;
9709 break;
9710
9711 case bfd_mach_mips4010:
9712 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
9713 break;
9714
9715 case bfd_mach_mips4100:
9716 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
9717 break;
9718
9719 case bfd_mach_mips4111:
9720 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
9721 break;
9722
9723 case bfd_mach_mips4120:
9724 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
9725 break;
9726
9727 case bfd_mach_mips4650:
9728 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9729 break;
9730
9731 case bfd_mach_mips5400:
9732 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9733 break;
9734
9735 case bfd_mach_mips5500:
9736 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9737 break;
9738
9739 case bfd_mach_mips9000:
9740 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9741 break;
9742
9743 case bfd_mach_mips5000:
9744 case bfd_mach_mips7000:
9745 case bfd_mach_mips8000:
9746 case bfd_mach_mips10000:
9747 case bfd_mach_mips12000:
9748 val = E_MIPS_ARCH_4;
9749 break;
9750
9751 case bfd_mach_mips5:
9752 val = E_MIPS_ARCH_5;
9753 break;
9754
9755 case bfd_mach_mips_loongson_2e:
9756 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
9757 break;
9758
9759 case bfd_mach_mips_loongson_2f:
9760 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
9761 break;
9762
9763 case bfd_mach_mips_sb1:
9764 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9765 break;
9766
9767 case bfd_mach_mips_octeon:
9768 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
9769 break;
9770
9771 case bfd_mach_mipsisa32:
9772 val = E_MIPS_ARCH_32;
9773 break;
9774
9775 case bfd_mach_mipsisa64:
9776 val = E_MIPS_ARCH_64;
9777 break;
9778
9779 case bfd_mach_mipsisa32r2:
9780 val = E_MIPS_ARCH_32R2;
9781 break;
9782
9783 case bfd_mach_mipsisa64r2:
9784 val = E_MIPS_ARCH_64R2;
9785 break;
9786 }
9787 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9788 elf_elfheader (abfd)->e_flags |= val;
9789
9790 }
9791
9792
9793 /* The final processing done just before writing out a MIPS ELF object
9794 file. This gets the MIPS architecture right based on the machine
9795 number. This is used by both the 32-bit and the 64-bit ABI. */
9796
9797 void
9798 _bfd_mips_elf_final_write_processing (bfd *abfd,
9799 bfd_boolean linker ATTRIBUTE_UNUSED)
9800 {
9801 unsigned int i;
9802 Elf_Internal_Shdr **hdrpp;
9803 const char *name;
9804 asection *sec;
9805
9806 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9807 is nonzero. This is for compatibility with old objects, which used
9808 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9809 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9810 mips_set_isa_flags (abfd);
9811
9812 /* Set the sh_info field for .gptab sections and other appropriate
9813 info for each special section. */
9814 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9815 i < elf_numsections (abfd);
9816 i++, hdrpp++)
9817 {
9818 switch ((*hdrpp)->sh_type)
9819 {
9820 case SHT_MIPS_MSYM:
9821 case SHT_MIPS_LIBLIST:
9822 sec = bfd_get_section_by_name (abfd, ".dynstr");
9823 if (sec != NULL)
9824 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9825 break;
9826
9827 case SHT_MIPS_GPTAB:
9828 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9829 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9830 BFD_ASSERT (name != NULL
9831 && CONST_STRNEQ (name, ".gptab."));
9832 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9833 BFD_ASSERT (sec != NULL);
9834 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9835 break;
9836
9837 case SHT_MIPS_CONTENT:
9838 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9839 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9840 BFD_ASSERT (name != NULL
9841 && CONST_STRNEQ (name, ".MIPS.content"));
9842 sec = bfd_get_section_by_name (abfd,
9843 name + sizeof ".MIPS.content" - 1);
9844 BFD_ASSERT (sec != NULL);
9845 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9846 break;
9847
9848 case SHT_MIPS_SYMBOL_LIB:
9849 sec = bfd_get_section_by_name (abfd, ".dynsym");
9850 if (sec != NULL)
9851 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9852 sec = bfd_get_section_by_name (abfd, ".liblist");
9853 if (sec != NULL)
9854 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9855 break;
9856
9857 case SHT_MIPS_EVENTS:
9858 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9859 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9860 BFD_ASSERT (name != NULL);
9861 if (CONST_STRNEQ (name, ".MIPS.events"))
9862 sec = bfd_get_section_by_name (abfd,
9863 name + sizeof ".MIPS.events" - 1);
9864 else
9865 {
9866 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
9867 sec = bfd_get_section_by_name (abfd,
9868 (name
9869 + sizeof ".MIPS.post_rel" - 1));
9870 }
9871 BFD_ASSERT (sec != NULL);
9872 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9873 break;
9874
9875 }
9876 }
9877 }
9878 \f
9879 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9880 segments. */
9881
9882 int
9883 _bfd_mips_elf_additional_program_headers (bfd *abfd,
9884 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9885 {
9886 asection *s;
9887 int ret = 0;
9888
9889 /* See if we need a PT_MIPS_REGINFO segment. */
9890 s = bfd_get_section_by_name (abfd, ".reginfo");
9891 if (s && (s->flags & SEC_LOAD))
9892 ++ret;
9893
9894 /* See if we need a PT_MIPS_OPTIONS segment. */
9895 if (IRIX_COMPAT (abfd) == ict_irix6
9896 && bfd_get_section_by_name (abfd,
9897 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9898 ++ret;
9899
9900 /* See if we need a PT_MIPS_RTPROC segment. */
9901 if (IRIX_COMPAT (abfd) == ict_irix5
9902 && bfd_get_section_by_name (abfd, ".dynamic")
9903 && bfd_get_section_by_name (abfd, ".mdebug"))
9904 ++ret;
9905
9906 /* Allocate a PT_NULL header in dynamic objects. See
9907 _bfd_mips_elf_modify_segment_map for details. */
9908 if (!SGI_COMPAT (abfd)
9909 && bfd_get_section_by_name (abfd, ".dynamic"))
9910 ++ret;
9911
9912 return ret;
9913 }
9914
9915 /* Modify the segment map for an IRIX5 executable. */
9916
9917 bfd_boolean
9918 _bfd_mips_elf_modify_segment_map (bfd *abfd,
9919 struct bfd_link_info *info)
9920 {
9921 asection *s;
9922 struct elf_segment_map *m, **pm;
9923 bfd_size_type amt;
9924
9925 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9926 segment. */
9927 s = bfd_get_section_by_name (abfd, ".reginfo");
9928 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9929 {
9930 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9931 if (m->p_type == PT_MIPS_REGINFO)
9932 break;
9933 if (m == NULL)
9934 {
9935 amt = sizeof *m;
9936 m = bfd_zalloc (abfd, amt);
9937 if (m == NULL)
9938 return FALSE;
9939
9940 m->p_type = PT_MIPS_REGINFO;
9941 m->count = 1;
9942 m->sections[0] = s;
9943
9944 /* We want to put it after the PHDR and INTERP segments. */
9945 pm = &elf_tdata (abfd)->segment_map;
9946 while (*pm != NULL
9947 && ((*pm)->p_type == PT_PHDR
9948 || (*pm)->p_type == PT_INTERP))
9949 pm = &(*pm)->next;
9950
9951 m->next = *pm;
9952 *pm = m;
9953 }
9954 }
9955
9956 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9957 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9958 PT_MIPS_OPTIONS segment immediately following the program header
9959 table. */
9960 if (NEWABI_P (abfd)
9961 /* On non-IRIX6 new abi, we'll have already created a segment
9962 for this section, so don't create another. I'm not sure this
9963 is not also the case for IRIX 6, but I can't test it right
9964 now. */
9965 && IRIX_COMPAT (abfd) == ict_irix6)
9966 {
9967 for (s = abfd->sections; s; s = s->next)
9968 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9969 break;
9970
9971 if (s)
9972 {
9973 struct elf_segment_map *options_segment;
9974
9975 pm = &elf_tdata (abfd)->segment_map;
9976 while (*pm != NULL
9977 && ((*pm)->p_type == PT_PHDR
9978 || (*pm)->p_type == PT_INTERP))
9979 pm = &(*pm)->next;
9980
9981 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9982 {
9983 amt = sizeof (struct elf_segment_map);
9984 options_segment = bfd_zalloc (abfd, amt);
9985 options_segment->next = *pm;
9986 options_segment->p_type = PT_MIPS_OPTIONS;
9987 options_segment->p_flags = PF_R;
9988 options_segment->p_flags_valid = TRUE;
9989 options_segment->count = 1;
9990 options_segment->sections[0] = s;
9991 *pm = options_segment;
9992 }
9993 }
9994 }
9995 else
9996 {
9997 if (IRIX_COMPAT (abfd) == ict_irix5)
9998 {
9999 /* If there are .dynamic and .mdebug sections, we make a room
10000 for the RTPROC header. FIXME: Rewrite without section names. */
10001 if (bfd_get_section_by_name (abfd, ".interp") == NULL
10002 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
10003 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
10004 {
10005 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10006 if (m->p_type == PT_MIPS_RTPROC)
10007 break;
10008 if (m == NULL)
10009 {
10010 amt = sizeof *m;
10011 m = bfd_zalloc (abfd, amt);
10012 if (m == NULL)
10013 return FALSE;
10014
10015 m->p_type = PT_MIPS_RTPROC;
10016
10017 s = bfd_get_section_by_name (abfd, ".rtproc");
10018 if (s == NULL)
10019 {
10020 m->count = 0;
10021 m->p_flags = 0;
10022 m->p_flags_valid = 1;
10023 }
10024 else
10025 {
10026 m->count = 1;
10027 m->sections[0] = s;
10028 }
10029
10030 /* We want to put it after the DYNAMIC segment. */
10031 pm = &elf_tdata (abfd)->segment_map;
10032 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
10033 pm = &(*pm)->next;
10034 if (*pm != NULL)
10035 pm = &(*pm)->next;
10036
10037 m->next = *pm;
10038 *pm = m;
10039 }
10040 }
10041 }
10042 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
10043 .dynstr, .dynsym, and .hash sections, and everything in
10044 between. */
10045 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
10046 pm = &(*pm)->next)
10047 if ((*pm)->p_type == PT_DYNAMIC)
10048 break;
10049 m = *pm;
10050 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
10051 {
10052 /* For a normal mips executable the permissions for the PT_DYNAMIC
10053 segment are read, write and execute. We do that here since
10054 the code in elf.c sets only the read permission. This matters
10055 sometimes for the dynamic linker. */
10056 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
10057 {
10058 m->p_flags = PF_R | PF_W | PF_X;
10059 m->p_flags_valid = 1;
10060 }
10061 }
10062 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
10063 glibc's dynamic linker has traditionally derived the number of
10064 tags from the p_filesz field, and sometimes allocates stack
10065 arrays of that size. An overly-big PT_DYNAMIC segment can
10066 be actively harmful in such cases. Making PT_DYNAMIC contain
10067 other sections can also make life hard for the prelinker,
10068 which might move one of the other sections to a different
10069 PT_LOAD segment. */
10070 if (SGI_COMPAT (abfd)
10071 && m != NULL
10072 && m->count == 1
10073 && strcmp (m->sections[0]->name, ".dynamic") == 0)
10074 {
10075 static const char *sec_names[] =
10076 {
10077 ".dynamic", ".dynstr", ".dynsym", ".hash"
10078 };
10079 bfd_vma low, high;
10080 unsigned int i, c;
10081 struct elf_segment_map *n;
10082
10083 low = ~(bfd_vma) 0;
10084 high = 0;
10085 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
10086 {
10087 s = bfd_get_section_by_name (abfd, sec_names[i]);
10088 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10089 {
10090 bfd_size_type sz;
10091
10092 if (low > s->vma)
10093 low = s->vma;
10094 sz = s->size;
10095 if (high < s->vma + sz)
10096 high = s->vma + sz;
10097 }
10098 }
10099
10100 c = 0;
10101 for (s = abfd->sections; s != NULL; s = s->next)
10102 if ((s->flags & SEC_LOAD) != 0
10103 && s->vma >= low
10104 && s->vma + s->size <= high)
10105 ++c;
10106
10107 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
10108 n = bfd_zalloc (abfd, amt);
10109 if (n == NULL)
10110 return FALSE;
10111 *n = *m;
10112 n->count = c;
10113
10114 i = 0;
10115 for (s = abfd->sections; s != NULL; s = s->next)
10116 {
10117 if ((s->flags & SEC_LOAD) != 0
10118 && s->vma >= low
10119 && s->vma + s->size <= high)
10120 {
10121 n->sections[i] = s;
10122 ++i;
10123 }
10124 }
10125
10126 *pm = n;
10127 }
10128 }
10129
10130 /* Allocate a spare program header in dynamic objects so that tools
10131 like the prelinker can add an extra PT_LOAD entry.
10132
10133 If the prelinker needs to make room for a new PT_LOAD entry, its
10134 standard procedure is to move the first (read-only) sections into
10135 the new (writable) segment. However, the MIPS ABI requires
10136 .dynamic to be in a read-only segment, and the section will often
10137 start within sizeof (ElfNN_Phdr) bytes of the last program header.
10138
10139 Although the prelinker could in principle move .dynamic to a
10140 writable segment, it seems better to allocate a spare program
10141 header instead, and avoid the need to move any sections.
10142 There is a long tradition of allocating spare dynamic tags,
10143 so allocating a spare program header seems like a natural
10144 extension.
10145
10146 If INFO is NULL, we may be copying an already prelinked binary
10147 with objcopy or strip, so do not add this header. */
10148 if (info != NULL
10149 && !SGI_COMPAT (abfd)
10150 && bfd_get_section_by_name (abfd, ".dynamic"))
10151 {
10152 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
10153 if ((*pm)->p_type == PT_NULL)
10154 break;
10155 if (*pm == NULL)
10156 {
10157 m = bfd_zalloc (abfd, sizeof (*m));
10158 if (m == NULL)
10159 return FALSE;
10160
10161 m->p_type = PT_NULL;
10162 *pm = m;
10163 }
10164 }
10165
10166 return TRUE;
10167 }
10168 \f
10169 /* Return the section that should be marked against GC for a given
10170 relocation. */
10171
10172 asection *
10173 _bfd_mips_elf_gc_mark_hook (asection *sec,
10174 struct bfd_link_info *info,
10175 Elf_Internal_Rela *rel,
10176 struct elf_link_hash_entry *h,
10177 Elf_Internal_Sym *sym)
10178 {
10179 /* ??? Do mips16 stub sections need to be handled special? */
10180
10181 if (h != NULL)
10182 switch (ELF_R_TYPE (sec->owner, rel->r_info))
10183 {
10184 case R_MIPS_GNU_VTINHERIT:
10185 case R_MIPS_GNU_VTENTRY:
10186 return NULL;
10187 }
10188
10189 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
10190 }
10191
10192 /* Update the got entry reference counts for the section being removed. */
10193
10194 bfd_boolean
10195 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
10196 struct bfd_link_info *info ATTRIBUTE_UNUSED,
10197 asection *sec ATTRIBUTE_UNUSED,
10198 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
10199 {
10200 #if 0
10201 Elf_Internal_Shdr *symtab_hdr;
10202 struct elf_link_hash_entry **sym_hashes;
10203 bfd_signed_vma *local_got_refcounts;
10204 const Elf_Internal_Rela *rel, *relend;
10205 unsigned long r_symndx;
10206 struct elf_link_hash_entry *h;
10207
10208 if (info->relocatable)
10209 return TRUE;
10210
10211 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10212 sym_hashes = elf_sym_hashes (abfd);
10213 local_got_refcounts = elf_local_got_refcounts (abfd);
10214
10215 relend = relocs + sec->reloc_count;
10216 for (rel = relocs; rel < relend; rel++)
10217 switch (ELF_R_TYPE (abfd, rel->r_info))
10218 {
10219 case R_MIPS16_GOT16:
10220 case R_MIPS16_CALL16:
10221 case R_MIPS_GOT16:
10222 case R_MIPS_CALL16:
10223 case R_MIPS_CALL_HI16:
10224 case R_MIPS_CALL_LO16:
10225 case R_MIPS_GOT_HI16:
10226 case R_MIPS_GOT_LO16:
10227 case R_MIPS_GOT_DISP:
10228 case R_MIPS_GOT_PAGE:
10229 case R_MIPS_GOT_OFST:
10230 /* ??? It would seem that the existing MIPS code does no sort
10231 of reference counting or whatnot on its GOT and PLT entries,
10232 so it is not possible to garbage collect them at this time. */
10233 break;
10234
10235 default:
10236 break;
10237 }
10238 #endif
10239
10240 return TRUE;
10241 }
10242 \f
10243 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
10244 hiding the old indirect symbol. Process additional relocation
10245 information. Also called for weakdefs, in which case we just let
10246 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
10247
10248 void
10249 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
10250 struct elf_link_hash_entry *dir,
10251 struct elf_link_hash_entry *ind)
10252 {
10253 struct mips_elf_link_hash_entry *dirmips, *indmips;
10254
10255 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
10256
10257 if (ind->root.type != bfd_link_hash_indirect)
10258 return;
10259
10260 dirmips = (struct mips_elf_link_hash_entry *) dir;
10261 indmips = (struct mips_elf_link_hash_entry *) ind;
10262 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
10263 if (indmips->readonly_reloc)
10264 dirmips->readonly_reloc = TRUE;
10265 if (indmips->no_fn_stub)
10266 dirmips->no_fn_stub = TRUE;
10267
10268 if (dirmips->tls_type == 0)
10269 dirmips->tls_type = indmips->tls_type;
10270 }
10271 \f
10272 #define PDR_SIZE 32
10273
10274 bfd_boolean
10275 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
10276 struct bfd_link_info *info)
10277 {
10278 asection *o;
10279 bfd_boolean ret = FALSE;
10280 unsigned char *tdata;
10281 size_t i, skip;
10282
10283 o = bfd_get_section_by_name (abfd, ".pdr");
10284 if (! o)
10285 return FALSE;
10286 if (o->size == 0)
10287 return FALSE;
10288 if (o->size % PDR_SIZE != 0)
10289 return FALSE;
10290 if (o->output_section != NULL
10291 && bfd_is_abs_section (o->output_section))
10292 return FALSE;
10293
10294 tdata = bfd_zmalloc (o->size / PDR_SIZE);
10295 if (! tdata)
10296 return FALSE;
10297
10298 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
10299 info->keep_memory);
10300 if (!cookie->rels)
10301 {
10302 free (tdata);
10303 return FALSE;
10304 }
10305
10306 cookie->rel = cookie->rels;
10307 cookie->relend = cookie->rels + o->reloc_count;
10308
10309 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
10310 {
10311 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
10312 {
10313 tdata[i] = 1;
10314 skip ++;
10315 }
10316 }
10317
10318 if (skip != 0)
10319 {
10320 mips_elf_section_data (o)->u.tdata = tdata;
10321 o->size -= skip * PDR_SIZE;
10322 ret = TRUE;
10323 }
10324 else
10325 free (tdata);
10326
10327 if (! info->keep_memory)
10328 free (cookie->rels);
10329
10330 return ret;
10331 }
10332
10333 bfd_boolean
10334 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
10335 {
10336 if (strcmp (sec->name, ".pdr") == 0)
10337 return TRUE;
10338 return FALSE;
10339 }
10340
10341 bfd_boolean
10342 _bfd_mips_elf_write_section (bfd *output_bfd,
10343 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
10344 asection *sec, bfd_byte *contents)
10345 {
10346 bfd_byte *to, *from, *end;
10347 int i;
10348
10349 if (strcmp (sec->name, ".pdr") != 0)
10350 return FALSE;
10351
10352 if (mips_elf_section_data (sec)->u.tdata == NULL)
10353 return FALSE;
10354
10355 to = contents;
10356 end = contents + sec->size;
10357 for (from = contents, i = 0;
10358 from < end;
10359 from += PDR_SIZE, i++)
10360 {
10361 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
10362 continue;
10363 if (to != from)
10364 memcpy (to, from, PDR_SIZE);
10365 to += PDR_SIZE;
10366 }
10367 bfd_set_section_contents (output_bfd, sec->output_section, contents,
10368 sec->output_offset, sec->size);
10369 return TRUE;
10370 }
10371 \f
10372 /* MIPS ELF uses a special find_nearest_line routine in order the
10373 handle the ECOFF debugging information. */
10374
10375 struct mips_elf_find_line
10376 {
10377 struct ecoff_debug_info d;
10378 struct ecoff_find_line i;
10379 };
10380
10381 bfd_boolean
10382 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
10383 asymbol **symbols, bfd_vma offset,
10384 const char **filename_ptr,
10385 const char **functionname_ptr,
10386 unsigned int *line_ptr)
10387 {
10388 asection *msec;
10389
10390 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
10391 filename_ptr, functionname_ptr,
10392 line_ptr))
10393 return TRUE;
10394
10395 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
10396 filename_ptr, functionname_ptr,
10397 line_ptr, ABI_64_P (abfd) ? 8 : 0,
10398 &elf_tdata (abfd)->dwarf2_find_line_info))
10399 return TRUE;
10400
10401 msec = bfd_get_section_by_name (abfd, ".mdebug");
10402 if (msec != NULL)
10403 {
10404 flagword origflags;
10405 struct mips_elf_find_line *fi;
10406 const struct ecoff_debug_swap * const swap =
10407 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
10408
10409 /* If we are called during a link, mips_elf_final_link may have
10410 cleared the SEC_HAS_CONTENTS field. We force it back on here
10411 if appropriate (which it normally will be). */
10412 origflags = msec->flags;
10413 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
10414 msec->flags |= SEC_HAS_CONTENTS;
10415
10416 fi = elf_tdata (abfd)->find_line_info;
10417 if (fi == NULL)
10418 {
10419 bfd_size_type external_fdr_size;
10420 char *fraw_src;
10421 char *fraw_end;
10422 struct fdr *fdr_ptr;
10423 bfd_size_type amt = sizeof (struct mips_elf_find_line);
10424
10425 fi = bfd_zalloc (abfd, amt);
10426 if (fi == NULL)
10427 {
10428 msec->flags = origflags;
10429 return FALSE;
10430 }
10431
10432 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
10433 {
10434 msec->flags = origflags;
10435 return FALSE;
10436 }
10437
10438 /* Swap in the FDR information. */
10439 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
10440 fi->d.fdr = bfd_alloc (abfd, amt);
10441 if (fi->d.fdr == NULL)
10442 {
10443 msec->flags = origflags;
10444 return FALSE;
10445 }
10446 external_fdr_size = swap->external_fdr_size;
10447 fdr_ptr = fi->d.fdr;
10448 fraw_src = (char *) fi->d.external_fdr;
10449 fraw_end = (fraw_src
10450 + fi->d.symbolic_header.ifdMax * external_fdr_size);
10451 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
10452 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
10453
10454 elf_tdata (abfd)->find_line_info = fi;
10455
10456 /* Note that we don't bother to ever free this information.
10457 find_nearest_line is either called all the time, as in
10458 objdump -l, so the information should be saved, or it is
10459 rarely called, as in ld error messages, so the memory
10460 wasted is unimportant. Still, it would probably be a
10461 good idea for free_cached_info to throw it away. */
10462 }
10463
10464 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
10465 &fi->i, filename_ptr, functionname_ptr,
10466 line_ptr))
10467 {
10468 msec->flags = origflags;
10469 return TRUE;
10470 }
10471
10472 msec->flags = origflags;
10473 }
10474
10475 /* Fall back on the generic ELF find_nearest_line routine. */
10476
10477 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
10478 filename_ptr, functionname_ptr,
10479 line_ptr);
10480 }
10481
10482 bfd_boolean
10483 _bfd_mips_elf_find_inliner_info (bfd *abfd,
10484 const char **filename_ptr,
10485 const char **functionname_ptr,
10486 unsigned int *line_ptr)
10487 {
10488 bfd_boolean found;
10489 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
10490 functionname_ptr, line_ptr,
10491 & elf_tdata (abfd)->dwarf2_find_line_info);
10492 return found;
10493 }
10494
10495 \f
10496 /* When are writing out the .options or .MIPS.options section,
10497 remember the bytes we are writing out, so that we can install the
10498 GP value in the section_processing routine. */
10499
10500 bfd_boolean
10501 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
10502 const void *location,
10503 file_ptr offset, bfd_size_type count)
10504 {
10505 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
10506 {
10507 bfd_byte *c;
10508
10509 if (elf_section_data (section) == NULL)
10510 {
10511 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
10512 section->used_by_bfd = bfd_zalloc (abfd, amt);
10513 if (elf_section_data (section) == NULL)
10514 return FALSE;
10515 }
10516 c = mips_elf_section_data (section)->u.tdata;
10517 if (c == NULL)
10518 {
10519 c = bfd_zalloc (abfd, section->size);
10520 if (c == NULL)
10521 return FALSE;
10522 mips_elf_section_data (section)->u.tdata = c;
10523 }
10524
10525 memcpy (c + offset, location, count);
10526 }
10527
10528 return _bfd_elf_set_section_contents (abfd, section, location, offset,
10529 count);
10530 }
10531
10532 /* This is almost identical to bfd_generic_get_... except that some
10533 MIPS relocations need to be handled specially. Sigh. */
10534
10535 bfd_byte *
10536 _bfd_elf_mips_get_relocated_section_contents
10537 (bfd *abfd,
10538 struct bfd_link_info *link_info,
10539 struct bfd_link_order *link_order,
10540 bfd_byte *data,
10541 bfd_boolean relocatable,
10542 asymbol **symbols)
10543 {
10544 /* Get enough memory to hold the stuff */
10545 bfd *input_bfd = link_order->u.indirect.section->owner;
10546 asection *input_section = link_order->u.indirect.section;
10547 bfd_size_type sz;
10548
10549 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
10550 arelent **reloc_vector = NULL;
10551 long reloc_count;
10552
10553 if (reloc_size < 0)
10554 goto error_return;
10555
10556 reloc_vector = bfd_malloc (reloc_size);
10557 if (reloc_vector == NULL && reloc_size != 0)
10558 goto error_return;
10559
10560 /* read in the section */
10561 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
10562 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
10563 goto error_return;
10564
10565 reloc_count = bfd_canonicalize_reloc (input_bfd,
10566 input_section,
10567 reloc_vector,
10568 symbols);
10569 if (reloc_count < 0)
10570 goto error_return;
10571
10572 if (reloc_count > 0)
10573 {
10574 arelent **parent;
10575 /* for mips */
10576 int gp_found;
10577 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
10578
10579 {
10580 struct bfd_hash_entry *h;
10581 struct bfd_link_hash_entry *lh;
10582 /* Skip all this stuff if we aren't mixing formats. */
10583 if (abfd && input_bfd
10584 && abfd->xvec == input_bfd->xvec)
10585 lh = 0;
10586 else
10587 {
10588 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
10589 lh = (struct bfd_link_hash_entry *) h;
10590 }
10591 lookup:
10592 if (lh)
10593 {
10594 switch (lh->type)
10595 {
10596 case bfd_link_hash_undefined:
10597 case bfd_link_hash_undefweak:
10598 case bfd_link_hash_common:
10599 gp_found = 0;
10600 break;
10601 case bfd_link_hash_defined:
10602 case bfd_link_hash_defweak:
10603 gp_found = 1;
10604 gp = lh->u.def.value;
10605 break;
10606 case bfd_link_hash_indirect:
10607 case bfd_link_hash_warning:
10608 lh = lh->u.i.link;
10609 /* @@FIXME ignoring warning for now */
10610 goto lookup;
10611 case bfd_link_hash_new:
10612 default:
10613 abort ();
10614 }
10615 }
10616 else
10617 gp_found = 0;
10618 }
10619 /* end mips */
10620 for (parent = reloc_vector; *parent != NULL; parent++)
10621 {
10622 char *error_message = NULL;
10623 bfd_reloc_status_type r;
10624
10625 /* Specific to MIPS: Deal with relocation types that require
10626 knowing the gp of the output bfd. */
10627 asymbol *sym = *(*parent)->sym_ptr_ptr;
10628
10629 /* If we've managed to find the gp and have a special
10630 function for the relocation then go ahead, else default
10631 to the generic handling. */
10632 if (gp_found
10633 && (*parent)->howto->special_function
10634 == _bfd_mips_elf32_gprel16_reloc)
10635 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
10636 input_section, relocatable,
10637 data, gp);
10638 else
10639 r = bfd_perform_relocation (input_bfd, *parent, data,
10640 input_section,
10641 relocatable ? abfd : NULL,
10642 &error_message);
10643
10644 if (relocatable)
10645 {
10646 asection *os = input_section->output_section;
10647
10648 /* A partial link, so keep the relocs */
10649 os->orelocation[os->reloc_count] = *parent;
10650 os->reloc_count++;
10651 }
10652
10653 if (r != bfd_reloc_ok)
10654 {
10655 switch (r)
10656 {
10657 case bfd_reloc_undefined:
10658 if (!((*link_info->callbacks->undefined_symbol)
10659 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10660 input_bfd, input_section, (*parent)->address, TRUE)))
10661 goto error_return;
10662 break;
10663 case bfd_reloc_dangerous:
10664 BFD_ASSERT (error_message != NULL);
10665 if (!((*link_info->callbacks->reloc_dangerous)
10666 (link_info, error_message, input_bfd, input_section,
10667 (*parent)->address)))
10668 goto error_return;
10669 break;
10670 case bfd_reloc_overflow:
10671 if (!((*link_info->callbacks->reloc_overflow)
10672 (link_info, NULL,
10673 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
10674 (*parent)->howto->name, (*parent)->addend,
10675 input_bfd, input_section, (*parent)->address)))
10676 goto error_return;
10677 break;
10678 case bfd_reloc_outofrange:
10679 default:
10680 abort ();
10681 break;
10682 }
10683
10684 }
10685 }
10686 }
10687 if (reloc_vector != NULL)
10688 free (reloc_vector);
10689 return data;
10690
10691 error_return:
10692 if (reloc_vector != NULL)
10693 free (reloc_vector);
10694 return NULL;
10695 }
10696 \f
10697 /* Create a MIPS ELF linker hash table. */
10698
10699 struct bfd_link_hash_table *
10700 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
10701 {
10702 struct mips_elf_link_hash_table *ret;
10703 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
10704
10705 ret = bfd_malloc (amt);
10706 if (ret == NULL)
10707 return NULL;
10708
10709 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10710 mips_elf_link_hash_newfunc,
10711 sizeof (struct mips_elf_link_hash_entry)))
10712 {
10713 free (ret);
10714 return NULL;
10715 }
10716
10717 #if 0
10718 /* We no longer use this. */
10719 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10720 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10721 #endif
10722 ret->procedure_count = 0;
10723 ret->compact_rel_size = 0;
10724 ret->use_rld_obj_head = FALSE;
10725 ret->rld_value = 0;
10726 ret->mips16_stubs_seen = FALSE;
10727 ret->is_vxworks = FALSE;
10728 ret->small_data_overflow_reported = FALSE;
10729 ret->srelbss = NULL;
10730 ret->sdynbss = NULL;
10731 ret->srelplt = NULL;
10732 ret->srelplt2 = NULL;
10733 ret->sgotplt = NULL;
10734 ret->splt = NULL;
10735 ret->sstubs = NULL;
10736 ret->sgot = NULL;
10737 ret->got_info = NULL;
10738 ret->plt_header_size = 0;
10739 ret->plt_entry_size = 0;
10740 ret->lazy_stub_count = 0;
10741 ret->function_stub_size = 0;
10742
10743 return &ret->root.root;
10744 }
10745
10746 /* Likewise, but indicate that the target is VxWorks. */
10747
10748 struct bfd_link_hash_table *
10749 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10750 {
10751 struct bfd_link_hash_table *ret;
10752
10753 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10754 if (ret)
10755 {
10756 struct mips_elf_link_hash_table *htab;
10757
10758 htab = (struct mips_elf_link_hash_table *) ret;
10759 htab->is_vxworks = 1;
10760 }
10761 return ret;
10762 }
10763 \f
10764 /* We need to use a special link routine to handle the .reginfo and
10765 the .mdebug sections. We need to merge all instances of these
10766 sections together, not write them all out sequentially. */
10767
10768 bfd_boolean
10769 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10770 {
10771 asection *o;
10772 struct bfd_link_order *p;
10773 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10774 asection *rtproc_sec;
10775 Elf32_RegInfo reginfo;
10776 struct ecoff_debug_info debug;
10777 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10778 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
10779 HDRR *symhdr = &debug.symbolic_header;
10780 void *mdebug_handle = NULL;
10781 asection *s;
10782 EXTR esym;
10783 unsigned int i;
10784 bfd_size_type amt;
10785 struct mips_elf_link_hash_table *htab;
10786
10787 static const char * const secname[] =
10788 {
10789 ".text", ".init", ".fini", ".data",
10790 ".rodata", ".sdata", ".sbss", ".bss"
10791 };
10792 static const int sc[] =
10793 {
10794 scText, scInit, scFini, scData,
10795 scRData, scSData, scSBss, scBss
10796 };
10797
10798 /* We'd carefully arranged the dynamic symbol indices, and then the
10799 generic size_dynamic_sections renumbered them out from under us.
10800 Rather than trying somehow to prevent the renumbering, just do
10801 the sort again. */
10802 htab = mips_elf_hash_table (info);
10803 if (elf_hash_table (info)->dynamic_sections_created)
10804 {
10805 struct mips_got_info *g;
10806 bfd_size_type dynsecsymcount;
10807
10808 /* When we resort, we must tell mips_elf_sort_hash_table what
10809 the lowest index it may use is. That's the number of section
10810 symbols we're going to add. The generic ELF linker only
10811 adds these symbols when building a shared object. Note that
10812 we count the sections after (possibly) removing the .options
10813 section above. */
10814
10815 dynsecsymcount = count_section_dynsyms (abfd, info);
10816 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
10817 return FALSE;
10818
10819 /* Make sure we didn't grow the global .got region. */
10820 g = htab->got_info;
10821 if (g->global_gotsym != NULL)
10822 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10823 - g->global_gotsym->dynindx)
10824 <= g->global_gotno);
10825 }
10826
10827 /* Get a value for the GP register. */
10828 if (elf_gp (abfd) == 0)
10829 {
10830 struct bfd_link_hash_entry *h;
10831
10832 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
10833 if (h != NULL && h->type == bfd_link_hash_defined)
10834 elf_gp (abfd) = (h->u.def.value
10835 + h->u.def.section->output_section->vma
10836 + h->u.def.section->output_offset);
10837 else if (htab->is_vxworks
10838 && (h = bfd_link_hash_lookup (info->hash,
10839 "_GLOBAL_OFFSET_TABLE_",
10840 FALSE, FALSE, TRUE))
10841 && h->type == bfd_link_hash_defined)
10842 elf_gp (abfd) = (h->u.def.section->output_section->vma
10843 + h->u.def.section->output_offset
10844 + h->u.def.value);
10845 else if (info->relocatable)
10846 {
10847 bfd_vma lo = MINUS_ONE;
10848
10849 /* Find the GP-relative section with the lowest offset. */
10850 for (o = abfd->sections; o != NULL; o = o->next)
10851 if (o->vma < lo
10852 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10853 lo = o->vma;
10854
10855 /* And calculate GP relative to that. */
10856 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
10857 }
10858 else
10859 {
10860 /* If the relocate_section function needs to do a reloc
10861 involving the GP value, it should make a reloc_dangerous
10862 callback to warn that GP is not defined. */
10863 }
10864 }
10865
10866 /* Go through the sections and collect the .reginfo and .mdebug
10867 information. */
10868 reginfo_sec = NULL;
10869 mdebug_sec = NULL;
10870 gptab_data_sec = NULL;
10871 gptab_bss_sec = NULL;
10872 for (o = abfd->sections; o != NULL; o = o->next)
10873 {
10874 if (strcmp (o->name, ".reginfo") == 0)
10875 {
10876 memset (&reginfo, 0, sizeof reginfo);
10877
10878 /* We have found the .reginfo section in the output file.
10879 Look through all the link_orders comprising it and merge
10880 the information together. */
10881 for (p = o->map_head.link_order; p != NULL; p = p->next)
10882 {
10883 asection *input_section;
10884 bfd *input_bfd;
10885 Elf32_External_RegInfo ext;
10886 Elf32_RegInfo sub;
10887
10888 if (p->type != bfd_indirect_link_order)
10889 {
10890 if (p->type == bfd_data_link_order)
10891 continue;
10892 abort ();
10893 }
10894
10895 input_section = p->u.indirect.section;
10896 input_bfd = input_section->owner;
10897
10898 if (! bfd_get_section_contents (input_bfd, input_section,
10899 &ext, 0, sizeof ext))
10900 return FALSE;
10901
10902 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10903
10904 reginfo.ri_gprmask |= sub.ri_gprmask;
10905 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10906 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10907 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10908 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10909
10910 /* ri_gp_value is set by the function
10911 mips_elf32_section_processing when the section is
10912 finally written out. */
10913
10914 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10915 elf_link_input_bfd ignores this section. */
10916 input_section->flags &= ~SEC_HAS_CONTENTS;
10917 }
10918
10919 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10920 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
10921
10922 /* Skip this section later on (I don't think this currently
10923 matters, but someday it might). */
10924 o->map_head.link_order = NULL;
10925
10926 reginfo_sec = o;
10927 }
10928
10929 if (strcmp (o->name, ".mdebug") == 0)
10930 {
10931 struct extsym_info einfo;
10932 bfd_vma last;
10933
10934 /* We have found the .mdebug section in the output file.
10935 Look through all the link_orders comprising it and merge
10936 the information together. */
10937 symhdr->magic = swap->sym_magic;
10938 /* FIXME: What should the version stamp be? */
10939 symhdr->vstamp = 0;
10940 symhdr->ilineMax = 0;
10941 symhdr->cbLine = 0;
10942 symhdr->idnMax = 0;
10943 symhdr->ipdMax = 0;
10944 symhdr->isymMax = 0;
10945 symhdr->ioptMax = 0;
10946 symhdr->iauxMax = 0;
10947 symhdr->issMax = 0;
10948 symhdr->issExtMax = 0;
10949 symhdr->ifdMax = 0;
10950 symhdr->crfd = 0;
10951 symhdr->iextMax = 0;
10952
10953 /* We accumulate the debugging information itself in the
10954 debug_info structure. */
10955 debug.line = NULL;
10956 debug.external_dnr = NULL;
10957 debug.external_pdr = NULL;
10958 debug.external_sym = NULL;
10959 debug.external_opt = NULL;
10960 debug.external_aux = NULL;
10961 debug.ss = NULL;
10962 debug.ssext = debug.ssext_end = NULL;
10963 debug.external_fdr = NULL;
10964 debug.external_rfd = NULL;
10965 debug.external_ext = debug.external_ext_end = NULL;
10966
10967 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
10968 if (mdebug_handle == NULL)
10969 return FALSE;
10970
10971 esym.jmptbl = 0;
10972 esym.cobol_main = 0;
10973 esym.weakext = 0;
10974 esym.reserved = 0;
10975 esym.ifd = ifdNil;
10976 esym.asym.iss = issNil;
10977 esym.asym.st = stLocal;
10978 esym.asym.reserved = 0;
10979 esym.asym.index = indexNil;
10980 last = 0;
10981 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10982 {
10983 esym.asym.sc = sc[i];
10984 s = bfd_get_section_by_name (abfd, secname[i]);
10985 if (s != NULL)
10986 {
10987 esym.asym.value = s->vma;
10988 last = s->vma + s->size;
10989 }
10990 else
10991 esym.asym.value = last;
10992 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10993 secname[i], &esym))
10994 return FALSE;
10995 }
10996
10997 for (p = o->map_head.link_order; p != NULL; p = p->next)
10998 {
10999 asection *input_section;
11000 bfd *input_bfd;
11001 const struct ecoff_debug_swap *input_swap;
11002 struct ecoff_debug_info input_debug;
11003 char *eraw_src;
11004 char *eraw_end;
11005
11006 if (p->type != bfd_indirect_link_order)
11007 {
11008 if (p->type == bfd_data_link_order)
11009 continue;
11010 abort ();
11011 }
11012
11013 input_section = p->u.indirect.section;
11014 input_bfd = input_section->owner;
11015
11016 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
11017 || (get_elf_backend_data (input_bfd)
11018 ->elf_backend_ecoff_debug_swap) == NULL)
11019 {
11020 /* I don't know what a non MIPS ELF bfd would be
11021 doing with a .mdebug section, but I don't really
11022 want to deal with it. */
11023 continue;
11024 }
11025
11026 input_swap = (get_elf_backend_data (input_bfd)
11027 ->elf_backend_ecoff_debug_swap);
11028
11029 BFD_ASSERT (p->size == input_section->size);
11030
11031 /* The ECOFF linking code expects that we have already
11032 read in the debugging information and set up an
11033 ecoff_debug_info structure, so we do that now. */
11034 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
11035 &input_debug))
11036 return FALSE;
11037
11038 if (! (bfd_ecoff_debug_accumulate
11039 (mdebug_handle, abfd, &debug, swap, input_bfd,
11040 &input_debug, input_swap, info)))
11041 return FALSE;
11042
11043 /* Loop through the external symbols. For each one with
11044 interesting information, try to find the symbol in
11045 the linker global hash table and save the information
11046 for the output external symbols. */
11047 eraw_src = input_debug.external_ext;
11048 eraw_end = (eraw_src
11049 + (input_debug.symbolic_header.iextMax
11050 * input_swap->external_ext_size));
11051 for (;
11052 eraw_src < eraw_end;
11053 eraw_src += input_swap->external_ext_size)
11054 {
11055 EXTR ext;
11056 const char *name;
11057 struct mips_elf_link_hash_entry *h;
11058
11059 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
11060 if (ext.asym.sc == scNil
11061 || ext.asym.sc == scUndefined
11062 || ext.asym.sc == scSUndefined)
11063 continue;
11064
11065 name = input_debug.ssext + ext.asym.iss;
11066 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
11067 name, FALSE, FALSE, TRUE);
11068 if (h == NULL || h->esym.ifd != -2)
11069 continue;
11070
11071 if (ext.ifd != -1)
11072 {
11073 BFD_ASSERT (ext.ifd
11074 < input_debug.symbolic_header.ifdMax);
11075 ext.ifd = input_debug.ifdmap[ext.ifd];
11076 }
11077
11078 h->esym = ext;
11079 }
11080
11081 /* Free up the information we just read. */
11082 free (input_debug.line);
11083 free (input_debug.external_dnr);
11084 free (input_debug.external_pdr);
11085 free (input_debug.external_sym);
11086 free (input_debug.external_opt);
11087 free (input_debug.external_aux);
11088 free (input_debug.ss);
11089 free (input_debug.ssext);
11090 free (input_debug.external_fdr);
11091 free (input_debug.external_rfd);
11092 free (input_debug.external_ext);
11093
11094 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11095 elf_link_input_bfd ignores this section. */
11096 input_section->flags &= ~SEC_HAS_CONTENTS;
11097 }
11098
11099 if (SGI_COMPAT (abfd) && info->shared)
11100 {
11101 /* Create .rtproc section. */
11102 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
11103 if (rtproc_sec == NULL)
11104 {
11105 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
11106 | SEC_LINKER_CREATED | SEC_READONLY);
11107
11108 rtproc_sec = bfd_make_section_with_flags (abfd,
11109 ".rtproc",
11110 flags);
11111 if (rtproc_sec == NULL
11112 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
11113 return FALSE;
11114 }
11115
11116 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
11117 info, rtproc_sec,
11118 &debug))
11119 return FALSE;
11120 }
11121
11122 /* Build the external symbol information. */
11123 einfo.abfd = abfd;
11124 einfo.info = info;
11125 einfo.debug = &debug;
11126 einfo.swap = swap;
11127 einfo.failed = FALSE;
11128 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
11129 mips_elf_output_extsym, &einfo);
11130 if (einfo.failed)
11131 return FALSE;
11132
11133 /* Set the size of the .mdebug section. */
11134 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
11135
11136 /* Skip this section later on (I don't think this currently
11137 matters, but someday it might). */
11138 o->map_head.link_order = NULL;
11139
11140 mdebug_sec = o;
11141 }
11142
11143 if (CONST_STRNEQ (o->name, ".gptab."))
11144 {
11145 const char *subname;
11146 unsigned int c;
11147 Elf32_gptab *tab;
11148 Elf32_External_gptab *ext_tab;
11149 unsigned int j;
11150
11151 /* The .gptab.sdata and .gptab.sbss sections hold
11152 information describing how the small data area would
11153 change depending upon the -G switch. These sections
11154 not used in executables files. */
11155 if (! info->relocatable)
11156 {
11157 for (p = o->map_head.link_order; p != NULL; p = p->next)
11158 {
11159 asection *input_section;
11160
11161 if (p->type != bfd_indirect_link_order)
11162 {
11163 if (p->type == bfd_data_link_order)
11164 continue;
11165 abort ();
11166 }
11167
11168 input_section = p->u.indirect.section;
11169
11170 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11171 elf_link_input_bfd ignores this section. */
11172 input_section->flags &= ~SEC_HAS_CONTENTS;
11173 }
11174
11175 /* Skip this section later on (I don't think this
11176 currently matters, but someday it might). */
11177 o->map_head.link_order = NULL;
11178
11179 /* Really remove the section. */
11180 bfd_section_list_remove (abfd, o);
11181 --abfd->section_count;
11182
11183 continue;
11184 }
11185
11186 /* There is one gptab for initialized data, and one for
11187 uninitialized data. */
11188 if (strcmp (o->name, ".gptab.sdata") == 0)
11189 gptab_data_sec = o;
11190 else if (strcmp (o->name, ".gptab.sbss") == 0)
11191 gptab_bss_sec = o;
11192 else
11193 {
11194 (*_bfd_error_handler)
11195 (_("%s: illegal section name `%s'"),
11196 bfd_get_filename (abfd), o->name);
11197 bfd_set_error (bfd_error_nonrepresentable_section);
11198 return FALSE;
11199 }
11200
11201 /* The linker script always combines .gptab.data and
11202 .gptab.sdata into .gptab.sdata, and likewise for
11203 .gptab.bss and .gptab.sbss. It is possible that there is
11204 no .sdata or .sbss section in the output file, in which
11205 case we must change the name of the output section. */
11206 subname = o->name + sizeof ".gptab" - 1;
11207 if (bfd_get_section_by_name (abfd, subname) == NULL)
11208 {
11209 if (o == gptab_data_sec)
11210 o->name = ".gptab.data";
11211 else
11212 o->name = ".gptab.bss";
11213 subname = o->name + sizeof ".gptab" - 1;
11214 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
11215 }
11216
11217 /* Set up the first entry. */
11218 c = 1;
11219 amt = c * sizeof (Elf32_gptab);
11220 tab = bfd_malloc (amt);
11221 if (tab == NULL)
11222 return FALSE;
11223 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
11224 tab[0].gt_header.gt_unused = 0;
11225
11226 /* Combine the input sections. */
11227 for (p = o->map_head.link_order; p != NULL; p = p->next)
11228 {
11229 asection *input_section;
11230 bfd *input_bfd;
11231 bfd_size_type size;
11232 unsigned long last;
11233 bfd_size_type gpentry;
11234
11235 if (p->type != bfd_indirect_link_order)
11236 {
11237 if (p->type == bfd_data_link_order)
11238 continue;
11239 abort ();
11240 }
11241
11242 input_section = p->u.indirect.section;
11243 input_bfd = input_section->owner;
11244
11245 /* Combine the gptab entries for this input section one
11246 by one. We know that the input gptab entries are
11247 sorted by ascending -G value. */
11248 size = input_section->size;
11249 last = 0;
11250 for (gpentry = sizeof (Elf32_External_gptab);
11251 gpentry < size;
11252 gpentry += sizeof (Elf32_External_gptab))
11253 {
11254 Elf32_External_gptab ext_gptab;
11255 Elf32_gptab int_gptab;
11256 unsigned long val;
11257 unsigned long add;
11258 bfd_boolean exact;
11259 unsigned int look;
11260
11261 if (! (bfd_get_section_contents
11262 (input_bfd, input_section, &ext_gptab, gpentry,
11263 sizeof (Elf32_External_gptab))))
11264 {
11265 free (tab);
11266 return FALSE;
11267 }
11268
11269 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
11270 &int_gptab);
11271 val = int_gptab.gt_entry.gt_g_value;
11272 add = int_gptab.gt_entry.gt_bytes - last;
11273
11274 exact = FALSE;
11275 for (look = 1; look < c; look++)
11276 {
11277 if (tab[look].gt_entry.gt_g_value >= val)
11278 tab[look].gt_entry.gt_bytes += add;
11279
11280 if (tab[look].gt_entry.gt_g_value == val)
11281 exact = TRUE;
11282 }
11283
11284 if (! exact)
11285 {
11286 Elf32_gptab *new_tab;
11287 unsigned int max;
11288
11289 /* We need a new table entry. */
11290 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
11291 new_tab = bfd_realloc (tab, amt);
11292 if (new_tab == NULL)
11293 {
11294 free (tab);
11295 return FALSE;
11296 }
11297 tab = new_tab;
11298 tab[c].gt_entry.gt_g_value = val;
11299 tab[c].gt_entry.gt_bytes = add;
11300
11301 /* Merge in the size for the next smallest -G
11302 value, since that will be implied by this new
11303 value. */
11304 max = 0;
11305 for (look = 1; look < c; look++)
11306 {
11307 if (tab[look].gt_entry.gt_g_value < val
11308 && (max == 0
11309 || (tab[look].gt_entry.gt_g_value
11310 > tab[max].gt_entry.gt_g_value)))
11311 max = look;
11312 }
11313 if (max != 0)
11314 tab[c].gt_entry.gt_bytes +=
11315 tab[max].gt_entry.gt_bytes;
11316
11317 ++c;
11318 }
11319
11320 last = int_gptab.gt_entry.gt_bytes;
11321 }
11322
11323 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11324 elf_link_input_bfd ignores this section. */
11325 input_section->flags &= ~SEC_HAS_CONTENTS;
11326 }
11327
11328 /* The table must be sorted by -G value. */
11329 if (c > 2)
11330 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
11331
11332 /* Swap out the table. */
11333 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
11334 ext_tab = bfd_alloc (abfd, amt);
11335 if (ext_tab == NULL)
11336 {
11337 free (tab);
11338 return FALSE;
11339 }
11340
11341 for (j = 0; j < c; j++)
11342 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
11343 free (tab);
11344
11345 o->size = c * sizeof (Elf32_External_gptab);
11346 o->contents = (bfd_byte *) ext_tab;
11347
11348 /* Skip this section later on (I don't think this currently
11349 matters, but someday it might). */
11350 o->map_head.link_order = NULL;
11351 }
11352 }
11353
11354 /* Invoke the regular ELF backend linker to do all the work. */
11355 if (!bfd_elf_final_link (abfd, info))
11356 return FALSE;
11357
11358 /* Now write out the computed sections. */
11359
11360 if (reginfo_sec != NULL)
11361 {
11362 Elf32_External_RegInfo ext;
11363
11364 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
11365 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
11366 return FALSE;
11367 }
11368
11369 if (mdebug_sec != NULL)
11370 {
11371 BFD_ASSERT (abfd->output_has_begun);
11372 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
11373 swap, info,
11374 mdebug_sec->filepos))
11375 return FALSE;
11376
11377 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
11378 }
11379
11380 if (gptab_data_sec != NULL)
11381 {
11382 if (! bfd_set_section_contents (abfd, gptab_data_sec,
11383 gptab_data_sec->contents,
11384 0, gptab_data_sec->size))
11385 return FALSE;
11386 }
11387
11388 if (gptab_bss_sec != NULL)
11389 {
11390 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
11391 gptab_bss_sec->contents,
11392 0, gptab_bss_sec->size))
11393 return FALSE;
11394 }
11395
11396 if (SGI_COMPAT (abfd))
11397 {
11398 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
11399 if (rtproc_sec != NULL)
11400 {
11401 if (! bfd_set_section_contents (abfd, rtproc_sec,
11402 rtproc_sec->contents,
11403 0, rtproc_sec->size))
11404 return FALSE;
11405 }
11406 }
11407
11408 return TRUE;
11409 }
11410 \f
11411 /* Structure for saying that BFD machine EXTENSION extends BASE. */
11412
11413 struct mips_mach_extension {
11414 unsigned long extension, base;
11415 };
11416
11417
11418 /* An array describing how BFD machines relate to one another. The entries
11419 are ordered topologically with MIPS I extensions listed last. */
11420
11421 static const struct mips_mach_extension mips_mach_extensions[] = {
11422 /* MIPS64r2 extensions. */
11423 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
11424
11425 /* MIPS64 extensions. */
11426 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
11427 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
11428
11429 /* MIPS V extensions. */
11430 { bfd_mach_mipsisa64, bfd_mach_mips5 },
11431
11432 /* R10000 extensions. */
11433 { bfd_mach_mips12000, bfd_mach_mips10000 },
11434
11435 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
11436 vr5400 ISA, but doesn't include the multimedia stuff. It seems
11437 better to allow vr5400 and vr5500 code to be merged anyway, since
11438 many libraries will just use the core ISA. Perhaps we could add
11439 some sort of ASE flag if this ever proves a problem. */
11440 { bfd_mach_mips5500, bfd_mach_mips5400 },
11441 { bfd_mach_mips5400, bfd_mach_mips5000 },
11442
11443 /* MIPS IV extensions. */
11444 { bfd_mach_mips5, bfd_mach_mips8000 },
11445 { bfd_mach_mips10000, bfd_mach_mips8000 },
11446 { bfd_mach_mips5000, bfd_mach_mips8000 },
11447 { bfd_mach_mips7000, bfd_mach_mips8000 },
11448 { bfd_mach_mips9000, bfd_mach_mips8000 },
11449
11450 /* VR4100 extensions. */
11451 { bfd_mach_mips4120, bfd_mach_mips4100 },
11452 { bfd_mach_mips4111, bfd_mach_mips4100 },
11453
11454 /* MIPS III extensions. */
11455 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
11456 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
11457 { bfd_mach_mips8000, bfd_mach_mips4000 },
11458 { bfd_mach_mips4650, bfd_mach_mips4000 },
11459 { bfd_mach_mips4600, bfd_mach_mips4000 },
11460 { bfd_mach_mips4400, bfd_mach_mips4000 },
11461 { bfd_mach_mips4300, bfd_mach_mips4000 },
11462 { bfd_mach_mips4100, bfd_mach_mips4000 },
11463 { bfd_mach_mips4010, bfd_mach_mips4000 },
11464
11465 /* MIPS32 extensions. */
11466 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
11467
11468 /* MIPS II extensions. */
11469 { bfd_mach_mips4000, bfd_mach_mips6000 },
11470 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
11471
11472 /* MIPS I extensions. */
11473 { bfd_mach_mips6000, bfd_mach_mips3000 },
11474 { bfd_mach_mips3900, bfd_mach_mips3000 }
11475 };
11476
11477
11478 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
11479
11480 static bfd_boolean
11481 mips_mach_extends_p (unsigned long base, unsigned long extension)
11482 {
11483 size_t i;
11484
11485 if (extension == base)
11486 return TRUE;
11487
11488 if (base == bfd_mach_mipsisa32
11489 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
11490 return TRUE;
11491
11492 if (base == bfd_mach_mipsisa32r2
11493 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
11494 return TRUE;
11495
11496 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
11497 if (extension == mips_mach_extensions[i].extension)
11498 {
11499 extension = mips_mach_extensions[i].base;
11500 if (extension == base)
11501 return TRUE;
11502 }
11503
11504 return FALSE;
11505 }
11506
11507
11508 /* Return true if the given ELF header flags describe a 32-bit binary. */
11509
11510 static bfd_boolean
11511 mips_32bit_flags_p (flagword flags)
11512 {
11513 return ((flags & EF_MIPS_32BITMODE) != 0
11514 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
11515 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
11516 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
11517 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
11518 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
11519 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
11520 }
11521
11522
11523 /* Merge object attributes from IBFD into OBFD. Raise an error if
11524 there are conflicting attributes. */
11525 static bfd_boolean
11526 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
11527 {
11528 obj_attribute *in_attr;
11529 obj_attribute *out_attr;
11530
11531 if (!elf_known_obj_attributes_proc (obfd)[0].i)
11532 {
11533 /* This is the first object. Copy the attributes. */
11534 _bfd_elf_copy_obj_attributes (ibfd, obfd);
11535
11536 /* Use the Tag_null value to indicate the attributes have been
11537 initialized. */
11538 elf_known_obj_attributes_proc (obfd)[0].i = 1;
11539
11540 return TRUE;
11541 }
11542
11543 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
11544 non-conflicting ones. */
11545 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
11546 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
11547 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
11548 {
11549 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
11550 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11551 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
11552 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
11553 ;
11554 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
11555 _bfd_error_handler
11556 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
11557 in_attr[Tag_GNU_MIPS_ABI_FP].i);
11558 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
11559 _bfd_error_handler
11560 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
11561 out_attr[Tag_GNU_MIPS_ABI_FP].i);
11562 else
11563 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
11564 {
11565 case 1:
11566 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11567 {
11568 case 2:
11569 _bfd_error_handler
11570 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11571 obfd, ibfd);
11572 break;
11573
11574 case 3:
11575 _bfd_error_handler
11576 (_("Warning: %B uses hard float, %B uses soft float"),
11577 obfd, ibfd);
11578 break;
11579
11580 case 4:
11581 _bfd_error_handler
11582 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
11583 obfd, ibfd);
11584 break;
11585
11586 default:
11587 abort ();
11588 }
11589 break;
11590
11591 case 2:
11592 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11593 {
11594 case 1:
11595 _bfd_error_handler
11596 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
11597 ibfd, obfd);
11598 break;
11599
11600 case 3:
11601 _bfd_error_handler
11602 (_("Warning: %B uses hard float, %B uses soft float"),
11603 obfd, ibfd);
11604 break;
11605
11606 case 4:
11607 _bfd_error_handler
11608 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
11609 obfd, ibfd);
11610 break;
11611
11612 default:
11613 abort ();
11614 }
11615 break;
11616
11617 case 3:
11618 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11619 {
11620 case 1:
11621 case 2:
11622 case 4:
11623 _bfd_error_handler
11624 (_("Warning: %B uses hard float, %B uses soft float"),
11625 ibfd, obfd);
11626 break;
11627
11628 default:
11629 abort ();
11630 }
11631 break;
11632
11633 case 4:
11634 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
11635 {
11636 case 1:
11637 _bfd_error_handler
11638 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
11639 ibfd, obfd);
11640 break;
11641
11642 case 2:
11643 _bfd_error_handler
11644 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
11645 ibfd, obfd);
11646 break;
11647
11648 case 3:
11649 _bfd_error_handler
11650 (_("Warning: %B uses hard float, %B uses soft float"),
11651 obfd, ibfd);
11652 break;
11653
11654 default:
11655 abort ();
11656 }
11657 break;
11658
11659 default:
11660 abort ();
11661 }
11662 }
11663
11664 /* Merge Tag_compatibility attributes and any common GNU ones. */
11665 _bfd_elf_merge_object_attributes (ibfd, obfd);
11666
11667 return TRUE;
11668 }
11669
11670 /* Merge backend specific data from an object file to the output
11671 object file when linking. */
11672
11673 bfd_boolean
11674 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
11675 {
11676 flagword old_flags;
11677 flagword new_flags;
11678 bfd_boolean ok;
11679 bfd_boolean null_input_bfd = TRUE;
11680 asection *sec;
11681
11682 /* Check if we have the same endianess */
11683 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
11684 {
11685 (*_bfd_error_handler)
11686 (_("%B: endianness incompatible with that of the selected emulation"),
11687 ibfd);
11688 return FALSE;
11689 }
11690
11691 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
11692 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
11693 return TRUE;
11694
11695 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
11696 {
11697 (*_bfd_error_handler)
11698 (_("%B: ABI is incompatible with that of the selected emulation"),
11699 ibfd);
11700 return FALSE;
11701 }
11702
11703 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
11704 return FALSE;
11705
11706 new_flags = elf_elfheader (ibfd)->e_flags;
11707 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
11708 old_flags = elf_elfheader (obfd)->e_flags;
11709
11710 if (! elf_flags_init (obfd))
11711 {
11712 elf_flags_init (obfd) = TRUE;
11713 elf_elfheader (obfd)->e_flags = new_flags;
11714 elf_elfheader (obfd)->e_ident[EI_CLASS]
11715 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
11716
11717 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
11718 && (bfd_get_arch_info (obfd)->the_default
11719 || mips_mach_extends_p (bfd_get_mach (obfd),
11720 bfd_get_mach (ibfd))))
11721 {
11722 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
11723 bfd_get_mach (ibfd)))
11724 return FALSE;
11725 }
11726
11727 return TRUE;
11728 }
11729
11730 /* Check flag compatibility. */
11731
11732 new_flags &= ~EF_MIPS_NOREORDER;
11733 old_flags &= ~EF_MIPS_NOREORDER;
11734
11735 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
11736 doesn't seem to matter. */
11737 new_flags &= ~EF_MIPS_XGOT;
11738 old_flags &= ~EF_MIPS_XGOT;
11739
11740 /* MIPSpro generates ucode info in n64 objects. Again, we should
11741 just be able to ignore this. */
11742 new_flags &= ~EF_MIPS_UCODE;
11743 old_flags &= ~EF_MIPS_UCODE;
11744
11745 /* Don't care about the PIC flags from dynamic objects; they are
11746 PIC by design. */
11747 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
11748 && (ibfd->flags & DYNAMIC) != 0)
11749 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11750
11751 if (new_flags == old_flags)
11752 return TRUE;
11753
11754 /* Check to see if the input BFD actually contains any sections.
11755 If not, its flags may not have been initialised either, but it cannot
11756 actually cause any incompatibility. */
11757 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
11758 {
11759 /* Ignore synthetic sections and empty .text, .data and .bss sections
11760 which are automatically generated by gas. */
11761 if (strcmp (sec->name, ".reginfo")
11762 && strcmp (sec->name, ".mdebug")
11763 && (sec->size != 0
11764 || (strcmp (sec->name, ".text")
11765 && strcmp (sec->name, ".data")
11766 && strcmp (sec->name, ".bss"))))
11767 {
11768 null_input_bfd = FALSE;
11769 break;
11770 }
11771 }
11772 if (null_input_bfd)
11773 return TRUE;
11774
11775 ok = TRUE;
11776
11777 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
11778 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
11779 {
11780 (*_bfd_error_handler)
11781 (_("%B: warning: linking PIC files with non-PIC files"),
11782 ibfd);
11783 ok = TRUE;
11784 }
11785
11786 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
11787 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
11788 if (! (new_flags & EF_MIPS_PIC))
11789 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
11790
11791 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11792 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
11793
11794 /* Compare the ISAs. */
11795 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
11796 {
11797 (*_bfd_error_handler)
11798 (_("%B: linking 32-bit code with 64-bit code"),
11799 ibfd);
11800 ok = FALSE;
11801 }
11802 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
11803 {
11804 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
11805 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
11806 {
11807 /* Copy the architecture info from IBFD to OBFD. Also copy
11808 the 32-bit flag (if set) so that we continue to recognise
11809 OBFD as a 32-bit binary. */
11810 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
11811 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11812 elf_elfheader (obfd)->e_flags
11813 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11814
11815 /* Copy across the ABI flags if OBFD doesn't use them
11816 and if that was what caused us to treat IBFD as 32-bit. */
11817 if ((old_flags & EF_MIPS_ABI) == 0
11818 && mips_32bit_flags_p (new_flags)
11819 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
11820 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
11821 }
11822 else
11823 {
11824 /* The ISAs aren't compatible. */
11825 (*_bfd_error_handler)
11826 (_("%B: linking %s module with previous %s modules"),
11827 ibfd,
11828 bfd_printable_name (ibfd),
11829 bfd_printable_name (obfd));
11830 ok = FALSE;
11831 }
11832 }
11833
11834 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11835 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
11836
11837 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
11838 does set EI_CLASS differently from any 32-bit ABI. */
11839 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
11840 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11841 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11842 {
11843 /* Only error if both are set (to different values). */
11844 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
11845 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
11846 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
11847 {
11848 (*_bfd_error_handler)
11849 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
11850 ibfd,
11851 elf_mips_abi_name (ibfd),
11852 elf_mips_abi_name (obfd));
11853 ok = FALSE;
11854 }
11855 new_flags &= ~EF_MIPS_ABI;
11856 old_flags &= ~EF_MIPS_ABI;
11857 }
11858
11859 /* For now, allow arbitrary mixing of ASEs (retain the union). */
11860 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
11861 {
11862 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11863
11864 new_flags &= ~ EF_MIPS_ARCH_ASE;
11865 old_flags &= ~ EF_MIPS_ARCH_ASE;
11866 }
11867
11868 /* Warn about any other mismatches */
11869 if (new_flags != old_flags)
11870 {
11871 (*_bfd_error_handler)
11872 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11873 ibfd, (unsigned long) new_flags,
11874 (unsigned long) old_flags);
11875 ok = FALSE;
11876 }
11877
11878 if (! ok)
11879 {
11880 bfd_set_error (bfd_error_bad_value);
11881 return FALSE;
11882 }
11883
11884 return TRUE;
11885 }
11886
11887 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11888
11889 bfd_boolean
11890 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
11891 {
11892 BFD_ASSERT (!elf_flags_init (abfd)
11893 || elf_elfheader (abfd)->e_flags == flags);
11894
11895 elf_elfheader (abfd)->e_flags = flags;
11896 elf_flags_init (abfd) = TRUE;
11897 return TRUE;
11898 }
11899
11900 char *
11901 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
11902 {
11903 switch (dtag)
11904 {
11905 default: return "";
11906 case DT_MIPS_RLD_VERSION:
11907 return "MIPS_RLD_VERSION";
11908 case DT_MIPS_TIME_STAMP:
11909 return "MIPS_TIME_STAMP";
11910 case DT_MIPS_ICHECKSUM:
11911 return "MIPS_ICHECKSUM";
11912 case DT_MIPS_IVERSION:
11913 return "MIPS_IVERSION";
11914 case DT_MIPS_FLAGS:
11915 return "MIPS_FLAGS";
11916 case DT_MIPS_BASE_ADDRESS:
11917 return "MIPS_BASE_ADDRESS";
11918 case DT_MIPS_MSYM:
11919 return "MIPS_MSYM";
11920 case DT_MIPS_CONFLICT:
11921 return "MIPS_CONFLICT";
11922 case DT_MIPS_LIBLIST:
11923 return "MIPS_LIBLIST";
11924 case DT_MIPS_LOCAL_GOTNO:
11925 return "MIPS_LOCAL_GOTNO";
11926 case DT_MIPS_CONFLICTNO:
11927 return "MIPS_CONFLICTNO";
11928 case DT_MIPS_LIBLISTNO:
11929 return "MIPS_LIBLISTNO";
11930 case DT_MIPS_SYMTABNO:
11931 return "MIPS_SYMTABNO";
11932 case DT_MIPS_UNREFEXTNO:
11933 return "MIPS_UNREFEXTNO";
11934 case DT_MIPS_GOTSYM:
11935 return "MIPS_GOTSYM";
11936 case DT_MIPS_HIPAGENO:
11937 return "MIPS_HIPAGENO";
11938 case DT_MIPS_RLD_MAP:
11939 return "MIPS_RLD_MAP";
11940 case DT_MIPS_DELTA_CLASS:
11941 return "MIPS_DELTA_CLASS";
11942 case DT_MIPS_DELTA_CLASS_NO:
11943 return "MIPS_DELTA_CLASS_NO";
11944 case DT_MIPS_DELTA_INSTANCE:
11945 return "MIPS_DELTA_INSTANCE";
11946 case DT_MIPS_DELTA_INSTANCE_NO:
11947 return "MIPS_DELTA_INSTANCE_NO";
11948 case DT_MIPS_DELTA_RELOC:
11949 return "MIPS_DELTA_RELOC";
11950 case DT_MIPS_DELTA_RELOC_NO:
11951 return "MIPS_DELTA_RELOC_NO";
11952 case DT_MIPS_DELTA_SYM:
11953 return "MIPS_DELTA_SYM";
11954 case DT_MIPS_DELTA_SYM_NO:
11955 return "MIPS_DELTA_SYM_NO";
11956 case DT_MIPS_DELTA_CLASSSYM:
11957 return "MIPS_DELTA_CLASSSYM";
11958 case DT_MIPS_DELTA_CLASSSYM_NO:
11959 return "MIPS_DELTA_CLASSSYM_NO";
11960 case DT_MIPS_CXX_FLAGS:
11961 return "MIPS_CXX_FLAGS";
11962 case DT_MIPS_PIXIE_INIT:
11963 return "MIPS_PIXIE_INIT";
11964 case DT_MIPS_SYMBOL_LIB:
11965 return "MIPS_SYMBOL_LIB";
11966 case DT_MIPS_LOCALPAGE_GOTIDX:
11967 return "MIPS_LOCALPAGE_GOTIDX";
11968 case DT_MIPS_LOCAL_GOTIDX:
11969 return "MIPS_LOCAL_GOTIDX";
11970 case DT_MIPS_HIDDEN_GOTIDX:
11971 return "MIPS_HIDDEN_GOTIDX";
11972 case DT_MIPS_PROTECTED_GOTIDX:
11973 return "MIPS_PROTECTED_GOT_IDX";
11974 case DT_MIPS_OPTIONS:
11975 return "MIPS_OPTIONS";
11976 case DT_MIPS_INTERFACE:
11977 return "MIPS_INTERFACE";
11978 case DT_MIPS_DYNSTR_ALIGN:
11979 return "DT_MIPS_DYNSTR_ALIGN";
11980 case DT_MIPS_INTERFACE_SIZE:
11981 return "DT_MIPS_INTERFACE_SIZE";
11982 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
11983 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
11984 case DT_MIPS_PERF_SUFFIX:
11985 return "DT_MIPS_PERF_SUFFIX";
11986 case DT_MIPS_COMPACT_SIZE:
11987 return "DT_MIPS_COMPACT_SIZE";
11988 case DT_MIPS_GP_VALUE:
11989 return "DT_MIPS_GP_VALUE";
11990 case DT_MIPS_AUX_DYNAMIC:
11991 return "DT_MIPS_AUX_DYNAMIC";
11992 }
11993 }
11994
11995 bfd_boolean
11996 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
11997 {
11998 FILE *file = ptr;
11999
12000 BFD_ASSERT (abfd != NULL && ptr != NULL);
12001
12002 /* Print normal ELF private data. */
12003 _bfd_elf_print_private_bfd_data (abfd, ptr);
12004
12005 /* xgettext:c-format */
12006 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
12007
12008 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
12009 fprintf (file, _(" [abi=O32]"));
12010 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
12011 fprintf (file, _(" [abi=O64]"));
12012 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
12013 fprintf (file, _(" [abi=EABI32]"));
12014 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
12015 fprintf (file, _(" [abi=EABI64]"));
12016 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
12017 fprintf (file, _(" [abi unknown]"));
12018 else if (ABI_N32_P (abfd))
12019 fprintf (file, _(" [abi=N32]"));
12020 else if (ABI_64_P (abfd))
12021 fprintf (file, _(" [abi=64]"));
12022 else
12023 fprintf (file, _(" [no abi set]"));
12024
12025 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
12026 fprintf (file, " [mips1]");
12027 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
12028 fprintf (file, " [mips2]");
12029 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
12030 fprintf (file, " [mips3]");
12031 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
12032 fprintf (file, " [mips4]");
12033 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
12034 fprintf (file, " [mips5]");
12035 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
12036 fprintf (file, " [mips32]");
12037 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
12038 fprintf (file, " [mips64]");
12039 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
12040 fprintf (file, " [mips32r2]");
12041 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
12042 fprintf (file, " [mips64r2]");
12043 else
12044 fprintf (file, _(" [unknown ISA]"));
12045
12046 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
12047 fprintf (file, " [mdmx]");
12048
12049 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
12050 fprintf (file, " [mips16]");
12051
12052 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
12053 fprintf (file, " [32bitmode]");
12054 else
12055 fprintf (file, _(" [not 32bitmode]"));
12056
12057 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
12058 fprintf (file, " [noreorder]");
12059
12060 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
12061 fprintf (file, " [PIC]");
12062
12063 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
12064 fprintf (file, " [CPIC]");
12065
12066 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
12067 fprintf (file, " [XGOT]");
12068
12069 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
12070 fprintf (file, " [UCODE]");
12071
12072 fputc ('\n', file);
12073
12074 return TRUE;
12075 }
12076
12077 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
12078 {
12079 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12080 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12081 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
12082 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12083 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12084 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
12085 { NULL, 0, 0, 0, 0 }
12086 };
12087
12088 /* Merge non visibility st_other attributes. Ensure that the
12089 STO_OPTIONAL flag is copied into h->other, even if this is not a
12090 definiton of the symbol. */
12091 void
12092 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
12093 const Elf_Internal_Sym *isym,
12094 bfd_boolean definition,
12095 bfd_boolean dynamic ATTRIBUTE_UNUSED)
12096 {
12097 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
12098 {
12099 unsigned char other;
12100
12101 other = (definition ? isym->st_other : h->other);
12102 other &= ~ELF_ST_VISIBILITY (-1);
12103 h->other = other | ELF_ST_VISIBILITY (h->other);
12104 }
12105
12106 if (!definition
12107 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
12108 h->other |= STO_OPTIONAL;
12109 }
12110
12111 /* Decide whether an undefined symbol is special and can be ignored.
12112 This is the case for OPTIONAL symbols on IRIX. */
12113 bfd_boolean
12114 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
12115 {
12116 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
12117 }
12118
12119 bfd_boolean
12120 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
12121 {
12122 return (sym->st_shndx == SHN_COMMON
12123 || sym->st_shndx == SHN_MIPS_ACOMMON
12124 || sym->st_shndx == SHN_MIPS_SCOMMON);
12125 }
This page took 0.450694 seconds and 5 git commands to generate.