2011-12-10 David Daney <david.daney@cavium.com>
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
30
31 /* This file handles functionality common to the different MIPS ABI's. */
32
33 #include "sysdep.h"
34 #include "bfd.h"
35 #include "libbfd.h"
36 #include "libiberty.h"
37 #include "elf-bfd.h"
38 #include "elfxx-mips.h"
39 #include "elf/mips.h"
40 #include "elf-vxworks.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* This structure is used to hold information about one GOT entry.
51 There are three types of entry:
52
53 (1) absolute addresses
54 (abfd == NULL)
55 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
56 (abfd != NULL, symndx >= 0)
57 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
58 (abfd != NULL, symndx == -1)
59
60 Type (3) entries are treated differently for different types of GOT.
61 In the "master" GOT -- i.e. the one that describes every GOT
62 reference needed in the link -- the mips_got_entry is keyed on both
63 the symbol and the input bfd that references it. If it turns out
64 that we need multiple GOTs, we can then use this information to
65 create separate GOTs for each input bfd.
66
67 However, we want each of these separate GOTs to have at most one
68 entry for a given symbol, so their type (3) entries are keyed only
69 on the symbol. The input bfd given by the "abfd" field is somewhat
70 arbitrary in this case.
71
72 This means that when there are multiple GOTs, each GOT has a unique
73 mips_got_entry for every symbol within it. We can therefore use the
74 mips_got_entry fields (tls_type and gotidx) to track the symbol's
75 GOT index.
76
77 However, if it turns out that we need only a single GOT, we continue
78 to use the master GOT to describe it. There may therefore be several
79 mips_got_entries for the same symbol, each with a different input bfd.
80 We want to make sure that each symbol gets a unique GOT entry, so when
81 there's a single GOT, we use the symbol's hash entry, not the
82 mips_got_entry fields, to track a symbol's GOT index. */
83 struct mips_got_entry
84 {
85 /* The input bfd in which the symbol is defined. */
86 bfd *abfd;
87 /* The index of the symbol, as stored in the relocation r_info, if
88 we have a local symbol; -1 otherwise. */
89 long symndx;
90 union
91 {
92 /* If abfd == NULL, an address that must be stored in the got. */
93 bfd_vma address;
94 /* If abfd != NULL && symndx != -1, the addend of the relocation
95 that should be added to the symbol value. */
96 bfd_vma addend;
97 /* If abfd != NULL && symndx == -1, the hash table entry
98 corresponding to symbol in the GOT. The symbol's entry
99 is in the local area if h->global_got_area is GGA_NONE,
100 otherwise it is in the global area. */
101 struct mips_elf_link_hash_entry *h;
102 } d;
103
104 /* The TLS types included in this GOT entry (specifically, GD and
105 IE). The GD and IE flags can be added as we encounter new
106 relocations. LDM can also be set; it will always be alone, not
107 combined with any GD or IE flags. An LDM GOT entry will be
108 a local symbol entry with r_symndx == 0. */
109 unsigned char tls_type;
110
111 /* The offset from the beginning of the .got section to the entry
112 corresponding to this symbol+addend. If it's a global symbol
113 whose offset is yet to be decided, it's going to be -1. */
114 long gotidx;
115 };
116
117 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
118 The structures form a non-overlapping list that is sorted by increasing
119 MIN_ADDEND. */
120 struct mips_got_page_range
121 {
122 struct mips_got_page_range *next;
123 bfd_signed_vma min_addend;
124 bfd_signed_vma max_addend;
125 };
126
127 /* This structure describes the range of addends that are applied to page
128 relocations against a given symbol. */
129 struct mips_got_page_entry
130 {
131 /* The input bfd in which the symbol is defined. */
132 bfd *abfd;
133 /* The index of the symbol, as stored in the relocation r_info. */
134 long symndx;
135 /* The ranges for this page entry. */
136 struct mips_got_page_range *ranges;
137 /* The maximum number of page entries needed for RANGES. */
138 bfd_vma num_pages;
139 };
140
141 /* This structure is used to hold .got information when linking. */
142
143 struct mips_got_info
144 {
145 /* The global symbol in the GOT with the lowest index in the dynamic
146 symbol table. */
147 struct elf_link_hash_entry *global_gotsym;
148 /* The number of global .got entries. */
149 unsigned int global_gotno;
150 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
151 unsigned int reloc_only_gotno;
152 /* The number of .got slots used for TLS. */
153 unsigned int tls_gotno;
154 /* The first unused TLS .got entry. Used only during
155 mips_elf_initialize_tls_index. */
156 unsigned int tls_assigned_gotno;
157 /* The number of local .got entries, eventually including page entries. */
158 unsigned int local_gotno;
159 /* The maximum number of page entries needed. */
160 unsigned int page_gotno;
161 /* The number of local .got entries we have used. */
162 unsigned int assigned_gotno;
163 /* A hash table holding members of the got. */
164 struct htab *got_entries;
165 /* A hash table of mips_got_page_entry structures. */
166 struct htab *got_page_entries;
167 /* A hash table mapping input bfds to other mips_got_info. NULL
168 unless multi-got was necessary. */
169 struct htab *bfd2got;
170 /* In multi-got links, a pointer to the next got (err, rather, most
171 of the time, it points to the previous got). */
172 struct mips_got_info *next;
173 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
174 for none, or MINUS_TWO for not yet assigned. This is needed
175 because a single-GOT link may have multiple hash table entries
176 for the LDM. It does not get initialized in multi-GOT mode. */
177 bfd_vma tls_ldm_offset;
178 };
179
180 /* Map an input bfd to a got in a multi-got link. */
181
182 struct mips_elf_bfd2got_hash
183 {
184 bfd *bfd;
185 struct mips_got_info *g;
186 };
187
188 /* Structure passed when traversing the bfd2got hash table, used to
189 create and merge bfd's gots. */
190
191 struct mips_elf_got_per_bfd_arg
192 {
193 /* A hashtable that maps bfds to gots. */
194 htab_t bfd2got;
195 /* The output bfd. */
196 bfd *obfd;
197 /* The link information. */
198 struct bfd_link_info *info;
199 /* A pointer to the primary got, i.e., the one that's going to get
200 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
201 DT_MIPS_GOTSYM. */
202 struct mips_got_info *primary;
203 /* A non-primary got we're trying to merge with other input bfd's
204 gots. */
205 struct mips_got_info *current;
206 /* The maximum number of got entries that can be addressed with a
207 16-bit offset. */
208 unsigned int max_count;
209 /* The maximum number of page entries needed by each got. */
210 unsigned int max_pages;
211 /* The total number of global entries which will live in the
212 primary got and be automatically relocated. This includes
213 those not referenced by the primary GOT but included in
214 the "master" GOT. */
215 unsigned int global_count;
216 };
217
218 /* Another structure used to pass arguments for got entries traversal. */
219
220 struct mips_elf_set_global_got_offset_arg
221 {
222 struct mips_got_info *g;
223 int value;
224 unsigned int needed_relocs;
225 struct bfd_link_info *info;
226 };
227
228 /* A structure used to count TLS relocations or GOT entries, for GOT
229 entry or ELF symbol table traversal. */
230
231 struct mips_elf_count_tls_arg
232 {
233 struct bfd_link_info *info;
234 unsigned int needed;
235 };
236
237 struct _mips_elf_section_data
238 {
239 struct bfd_elf_section_data elf;
240 union
241 {
242 bfd_byte *tdata;
243 } u;
244 };
245
246 #define mips_elf_section_data(sec) \
247 ((struct _mips_elf_section_data *) elf_section_data (sec))
248
249 #define is_mips_elf(bfd) \
250 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
251 && elf_tdata (bfd) != NULL \
252 && elf_object_id (bfd) == MIPS_ELF_DATA)
253
254 /* The ABI says that every symbol used by dynamic relocations must have
255 a global GOT entry. Among other things, this provides the dynamic
256 linker with a free, directly-indexed cache. The GOT can therefore
257 contain symbols that are not referenced by GOT relocations themselves
258 (in other words, it may have symbols that are not referenced by things
259 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
260
261 GOT relocations are less likely to overflow if we put the associated
262 GOT entries towards the beginning. We therefore divide the global
263 GOT entries into two areas: "normal" and "reloc-only". Entries in
264 the first area can be used for both dynamic relocations and GP-relative
265 accesses, while those in the "reloc-only" area are for dynamic
266 relocations only.
267
268 These GGA_* ("Global GOT Area") values are organised so that lower
269 values are more general than higher values. Also, non-GGA_NONE
270 values are ordered by the position of the area in the GOT. */
271 #define GGA_NORMAL 0
272 #define GGA_RELOC_ONLY 1
273 #define GGA_NONE 2
274
275 /* Information about a non-PIC interface to a PIC function. There are
276 two ways of creating these interfaces. The first is to add:
277
278 lui $25,%hi(func)
279 addiu $25,$25,%lo(func)
280
281 immediately before a PIC function "func". The second is to add:
282
283 lui $25,%hi(func)
284 j func
285 addiu $25,$25,%lo(func)
286
287 to a separate trampoline section.
288
289 Stubs of the first kind go in a new section immediately before the
290 target function. Stubs of the second kind go in a single section
291 pointed to by the hash table's "strampoline" field. */
292 struct mips_elf_la25_stub {
293 /* The generated section that contains this stub. */
294 asection *stub_section;
295
296 /* The offset of the stub from the start of STUB_SECTION. */
297 bfd_vma offset;
298
299 /* One symbol for the original function. Its location is available
300 in H->root.root.u.def. */
301 struct mips_elf_link_hash_entry *h;
302 };
303
304 /* Macros for populating a mips_elf_la25_stub. */
305
306 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
307 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
308 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
309 #define LA25_LUI_MICROMIPS_1(VAL) (0x41b9) /* lui t9,VAL */
310 #define LA25_LUI_MICROMIPS_2(VAL) (VAL)
311 #define LA25_J_MICROMIPS_1(VAL) (0xd400 | (((VAL) >> 17) & 0x3ff)) /* j VAL */
312 #define LA25_J_MICROMIPS_2(VAL) ((VAL) >> 1)
313 #define LA25_ADDIU_MICROMIPS_1(VAL) (0x3339) /* addiu t9,t9,VAL */
314 #define LA25_ADDIU_MICROMIPS_2(VAL) (VAL)
315
316 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
317 the dynamic symbols. */
318
319 struct mips_elf_hash_sort_data
320 {
321 /* The symbol in the global GOT with the lowest dynamic symbol table
322 index. */
323 struct elf_link_hash_entry *low;
324 /* The least dynamic symbol table index corresponding to a non-TLS
325 symbol with a GOT entry. */
326 long min_got_dynindx;
327 /* The greatest dynamic symbol table index corresponding to a symbol
328 with a GOT entry that is not referenced (e.g., a dynamic symbol
329 with dynamic relocations pointing to it from non-primary GOTs). */
330 long max_unref_got_dynindx;
331 /* The greatest dynamic symbol table index not corresponding to a
332 symbol without a GOT entry. */
333 long max_non_got_dynindx;
334 };
335
336 /* The MIPS ELF linker needs additional information for each symbol in
337 the global hash table. */
338
339 struct mips_elf_link_hash_entry
340 {
341 struct elf_link_hash_entry root;
342
343 /* External symbol information. */
344 EXTR esym;
345
346 /* The la25 stub we have created for ths symbol, if any. */
347 struct mips_elf_la25_stub *la25_stub;
348
349 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
350 this symbol. */
351 unsigned int possibly_dynamic_relocs;
352
353 /* If there is a stub that 32 bit functions should use to call this
354 16 bit function, this points to the section containing the stub. */
355 asection *fn_stub;
356
357 /* If there is a stub that 16 bit functions should use to call this
358 32 bit function, this points to the section containing the stub. */
359 asection *call_stub;
360
361 /* This is like the call_stub field, but it is used if the function
362 being called returns a floating point value. */
363 asection *call_fp_stub;
364
365 #define GOT_NORMAL 0
366 #define GOT_TLS_GD 1
367 #define GOT_TLS_LDM 2
368 #define GOT_TLS_IE 4
369 #define GOT_TLS_OFFSET_DONE 0x40
370 #define GOT_TLS_DONE 0x80
371 unsigned char tls_type;
372
373 /* This is only used in single-GOT mode; in multi-GOT mode there
374 is one mips_got_entry per GOT entry, so the offset is stored
375 there. In single-GOT mode there may be many mips_got_entry
376 structures all referring to the same GOT slot. It might be
377 possible to use root.got.offset instead, but that field is
378 overloaded already. */
379 bfd_vma tls_got_offset;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423 #if 0
424 /* We no longer use this. */
425 /* String section indices for the dynamic section symbols. */
426 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
427 #endif
428
429 /* The number of .rtproc entries. */
430 bfd_size_type procedure_count;
431
432 /* The size of the .compact_rel section (if SGI_COMPAT). */
433 bfd_size_type compact_rel_size;
434
435 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
436 entry is set to the address of __rld_obj_head as in IRIX5. */
437 bfd_boolean use_rld_obj_head;
438
439 /* The __rld_map or __rld_obj_head symbol. */
440 struct elf_link_hash_entry *rld_symbol;
441
442 /* This is set if we see any mips16 stub sections. */
443 bfd_boolean mips16_stubs_seen;
444
445 /* True if we can generate copy relocs and PLTs. */
446 bfd_boolean use_plts_and_copy_relocs;
447
448 /* True if we're generating code for VxWorks. */
449 bfd_boolean is_vxworks;
450
451 /* True if we already reported the small-data section overflow. */
452 bfd_boolean small_data_overflow_reported;
453
454 /* Shortcuts to some dynamic sections, or NULL if they are not
455 being used. */
456 asection *srelbss;
457 asection *sdynbss;
458 asection *srelplt;
459 asection *srelplt2;
460 asection *sgotplt;
461 asection *splt;
462 asection *sstubs;
463 asection *sgot;
464
465 /* The master GOT information. */
466 struct mips_got_info *got_info;
467
468 /* The size of the PLT header in bytes. */
469 bfd_vma plt_header_size;
470
471 /* The size of a PLT entry in bytes. */
472 bfd_vma plt_entry_size;
473
474 /* The number of functions that need a lazy-binding stub. */
475 bfd_vma lazy_stub_count;
476
477 /* The size of a function stub entry in bytes. */
478 bfd_vma function_stub_size;
479
480 /* The number of reserved entries at the beginning of the GOT. */
481 unsigned int reserved_gotno;
482
483 /* The section used for mips_elf_la25_stub trampolines.
484 See the comment above that structure for details. */
485 asection *strampoline;
486
487 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
488 pairs. */
489 htab_t la25_stubs;
490
491 /* A function FN (NAME, IS, OS) that creates a new input section
492 called NAME and links it to output section OS. If IS is nonnull,
493 the new section should go immediately before it, otherwise it
494 should go at the (current) beginning of OS.
495
496 The function returns the new section on success, otherwise it
497 returns null. */
498 asection *(*add_stub_section) (const char *, asection *, asection *);
499 };
500
501 /* Get the MIPS ELF linker hash table from a link_info structure. */
502
503 #define mips_elf_hash_table(p) \
504 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
505 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
506
507 /* A structure used to communicate with htab_traverse callbacks. */
508 struct mips_htab_traverse_info
509 {
510 /* The usual link-wide information. */
511 struct bfd_link_info *info;
512 bfd *output_bfd;
513
514 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
515 bfd_boolean error;
516 };
517
518 #define TLS_RELOC_P(r_type) \
519 (r_type == R_MIPS_TLS_DTPMOD32 \
520 || r_type == R_MIPS_TLS_DTPMOD64 \
521 || r_type == R_MIPS_TLS_DTPREL32 \
522 || r_type == R_MIPS_TLS_DTPREL64 \
523 || r_type == R_MIPS_TLS_GD \
524 || r_type == R_MIPS_TLS_LDM \
525 || r_type == R_MIPS_TLS_DTPREL_HI16 \
526 || r_type == R_MIPS_TLS_DTPREL_LO16 \
527 || r_type == R_MIPS_TLS_GOTTPREL \
528 || r_type == R_MIPS_TLS_TPREL32 \
529 || r_type == R_MIPS_TLS_TPREL64 \
530 || r_type == R_MIPS_TLS_TPREL_HI16 \
531 || r_type == R_MIPS_TLS_TPREL_LO16 \
532 || r_type == R_MICROMIPS_TLS_GD \
533 || r_type == R_MICROMIPS_TLS_LDM \
534 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
535 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
536 || r_type == R_MICROMIPS_TLS_GOTTPREL \
537 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
538 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
539
540 /* Structure used to pass information to mips_elf_output_extsym. */
541
542 struct extsym_info
543 {
544 bfd *abfd;
545 struct bfd_link_info *info;
546 struct ecoff_debug_info *debug;
547 const struct ecoff_debug_swap *swap;
548 bfd_boolean failed;
549 };
550
551 /* The names of the runtime procedure table symbols used on IRIX5. */
552
553 static const char * const mips_elf_dynsym_rtproc_names[] =
554 {
555 "_procedure_table",
556 "_procedure_string_table",
557 "_procedure_table_size",
558 NULL
559 };
560
561 /* These structures are used to generate the .compact_rel section on
562 IRIX5. */
563
564 typedef struct
565 {
566 unsigned long id1; /* Always one? */
567 unsigned long num; /* Number of compact relocation entries. */
568 unsigned long id2; /* Always two? */
569 unsigned long offset; /* The file offset of the first relocation. */
570 unsigned long reserved0; /* Zero? */
571 unsigned long reserved1; /* Zero? */
572 } Elf32_compact_rel;
573
574 typedef struct
575 {
576 bfd_byte id1[4];
577 bfd_byte num[4];
578 bfd_byte id2[4];
579 bfd_byte offset[4];
580 bfd_byte reserved0[4];
581 bfd_byte reserved1[4];
582 } Elf32_External_compact_rel;
583
584 typedef struct
585 {
586 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
587 unsigned int rtype : 4; /* Relocation types. See below. */
588 unsigned int dist2to : 8;
589 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
590 unsigned long konst; /* KONST field. See below. */
591 unsigned long vaddr; /* VADDR to be relocated. */
592 } Elf32_crinfo;
593
594 typedef struct
595 {
596 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
597 unsigned int rtype : 4; /* Relocation types. See below. */
598 unsigned int dist2to : 8;
599 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
600 unsigned long konst; /* KONST field. See below. */
601 } Elf32_crinfo2;
602
603 typedef struct
604 {
605 bfd_byte info[4];
606 bfd_byte konst[4];
607 bfd_byte vaddr[4];
608 } Elf32_External_crinfo;
609
610 typedef struct
611 {
612 bfd_byte info[4];
613 bfd_byte konst[4];
614 } Elf32_External_crinfo2;
615
616 /* These are the constants used to swap the bitfields in a crinfo. */
617
618 #define CRINFO_CTYPE (0x1)
619 #define CRINFO_CTYPE_SH (31)
620 #define CRINFO_RTYPE (0xf)
621 #define CRINFO_RTYPE_SH (27)
622 #define CRINFO_DIST2TO (0xff)
623 #define CRINFO_DIST2TO_SH (19)
624 #define CRINFO_RELVADDR (0x7ffff)
625 #define CRINFO_RELVADDR_SH (0)
626
627 /* A compact relocation info has long (3 words) or short (2 words)
628 formats. A short format doesn't have VADDR field and relvaddr
629 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
630 #define CRF_MIPS_LONG 1
631 #define CRF_MIPS_SHORT 0
632
633 /* There are 4 types of compact relocation at least. The value KONST
634 has different meaning for each type:
635
636 (type) (konst)
637 CT_MIPS_REL32 Address in data
638 CT_MIPS_WORD Address in word (XXX)
639 CT_MIPS_GPHI_LO GP - vaddr
640 CT_MIPS_JMPAD Address to jump
641 */
642
643 #define CRT_MIPS_REL32 0xa
644 #define CRT_MIPS_WORD 0xb
645 #define CRT_MIPS_GPHI_LO 0xc
646 #define CRT_MIPS_JMPAD 0xd
647
648 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
649 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
650 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
651 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
652 \f
653 /* The structure of the runtime procedure descriptor created by the
654 loader for use by the static exception system. */
655
656 typedef struct runtime_pdr {
657 bfd_vma adr; /* Memory address of start of procedure. */
658 long regmask; /* Save register mask. */
659 long regoffset; /* Save register offset. */
660 long fregmask; /* Save floating point register mask. */
661 long fregoffset; /* Save floating point register offset. */
662 long frameoffset; /* Frame size. */
663 short framereg; /* Frame pointer register. */
664 short pcreg; /* Offset or reg of return pc. */
665 long irpss; /* Index into the runtime string table. */
666 long reserved;
667 struct exception_info *exception_info;/* Pointer to exception array. */
668 } RPDR, *pRPDR;
669 #define cbRPDR sizeof (RPDR)
670 #define rpdNil ((pRPDR) 0)
671 \f
672 static struct mips_got_entry *mips_elf_create_local_got_entry
673 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
674 struct mips_elf_link_hash_entry *, int);
675 static bfd_boolean mips_elf_sort_hash_table_f
676 (struct mips_elf_link_hash_entry *, void *);
677 static bfd_vma mips_elf_high
678 (bfd_vma);
679 static bfd_boolean mips_elf_create_dynamic_relocation
680 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
681 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
682 bfd_vma *, asection *);
683 static hashval_t mips_elf_got_entry_hash
684 (const void *);
685 static bfd_vma mips_elf_adjust_gp
686 (bfd *, struct mips_got_info *, bfd *);
687 static struct mips_got_info *mips_elf_got_for_ibfd
688 (struct mips_got_info *, bfd *);
689
690 /* This will be used when we sort the dynamic relocation records. */
691 static bfd *reldyn_sorting_bfd;
692
693 /* True if ABFD is for CPUs with load interlocking that include
694 non-MIPS1 CPUs and R3900. */
695 #define LOAD_INTERLOCKS_P(abfd) \
696 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
697 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
698
699 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
700 This should be safe for all architectures. We enable this predicate
701 for RM9000 for now. */
702 #define JAL_TO_BAL_P(abfd) \
703 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
704
705 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
706 This should be safe for all architectures. We enable this predicate for
707 all CPUs. */
708 #define JALR_TO_BAL_P(abfd) 1
709
710 /* True if ABFD is for CPUs that are faster if JR is converted to B.
711 This should be safe for all architectures. We enable this predicate for
712 all CPUs. */
713 #define JR_TO_B_P(abfd) 1
714
715 /* True if ABFD is a PIC object. */
716 #define PIC_OBJECT_P(abfd) \
717 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
718
719 /* Nonzero if ABFD is using the N32 ABI. */
720 #define ABI_N32_P(abfd) \
721 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
722
723 /* Nonzero if ABFD is using the N64 ABI. */
724 #define ABI_64_P(abfd) \
725 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
726
727 /* Nonzero if ABFD is using NewABI conventions. */
728 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
729
730 /* The IRIX compatibility level we are striving for. */
731 #define IRIX_COMPAT(abfd) \
732 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
733
734 /* Whether we are trying to be compatible with IRIX at all. */
735 #define SGI_COMPAT(abfd) \
736 (IRIX_COMPAT (abfd) != ict_none)
737
738 /* The name of the options section. */
739 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
740 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
741
742 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
743 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
744 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
745 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
746
747 /* Whether the section is readonly. */
748 #define MIPS_ELF_READONLY_SECTION(sec) \
749 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
750 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
751
752 /* The name of the stub section. */
753 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
754
755 /* The size of an external REL relocation. */
756 #define MIPS_ELF_REL_SIZE(abfd) \
757 (get_elf_backend_data (abfd)->s->sizeof_rel)
758
759 /* The size of an external RELA relocation. */
760 #define MIPS_ELF_RELA_SIZE(abfd) \
761 (get_elf_backend_data (abfd)->s->sizeof_rela)
762
763 /* The size of an external dynamic table entry. */
764 #define MIPS_ELF_DYN_SIZE(abfd) \
765 (get_elf_backend_data (abfd)->s->sizeof_dyn)
766
767 /* The size of a GOT entry. */
768 #define MIPS_ELF_GOT_SIZE(abfd) \
769 (get_elf_backend_data (abfd)->s->arch_size / 8)
770
771 /* The size of the .rld_map section. */
772 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
773 (get_elf_backend_data (abfd)->s->arch_size / 8)
774
775 /* The size of a symbol-table entry. */
776 #define MIPS_ELF_SYM_SIZE(abfd) \
777 (get_elf_backend_data (abfd)->s->sizeof_sym)
778
779 /* The default alignment for sections, as a power of two. */
780 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
781 (get_elf_backend_data (abfd)->s->log_file_align)
782
783 /* Get word-sized data. */
784 #define MIPS_ELF_GET_WORD(abfd, ptr) \
785 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
786
787 /* Put out word-sized data. */
788 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
789 (ABI_64_P (abfd) \
790 ? bfd_put_64 (abfd, val, ptr) \
791 : bfd_put_32 (abfd, val, ptr))
792
793 /* The opcode for word-sized loads (LW or LD). */
794 #define MIPS_ELF_LOAD_WORD(abfd) \
795 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
796
797 /* Add a dynamic symbol table-entry. */
798 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
799 _bfd_elf_add_dynamic_entry (info, tag, val)
800
801 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
802 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
803
804 /* The name of the dynamic relocation section. */
805 #define MIPS_ELF_REL_DYN_NAME(INFO) \
806 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
807
808 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
809 from smaller values. Start with zero, widen, *then* decrement. */
810 #define MINUS_ONE (((bfd_vma)0) - 1)
811 #define MINUS_TWO (((bfd_vma)0) - 2)
812
813 /* The value to write into got[1] for SVR4 targets, to identify it is
814 a GNU object. The dynamic linker can then use got[1] to store the
815 module pointer. */
816 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
817 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
818
819 /* The offset of $gp from the beginning of the .got section. */
820 #define ELF_MIPS_GP_OFFSET(INFO) \
821 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
822
823 /* The maximum size of the GOT for it to be addressable using 16-bit
824 offsets from $gp. */
825 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
826
827 /* Instructions which appear in a stub. */
828 #define STUB_LW(abfd) \
829 ((ABI_64_P (abfd) \
830 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
831 : 0x8f998010)) /* lw t9,0x8010(gp) */
832 #define STUB_MOVE(abfd) \
833 ((ABI_64_P (abfd) \
834 ? 0x03e0782d /* daddu t7,ra */ \
835 : 0x03e07821)) /* addu t7,ra */
836 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
837 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
838 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
839 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
840 #define STUB_LI16S(abfd, VAL) \
841 ((ABI_64_P (abfd) \
842 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
843 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
844
845 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
846 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
847
848 /* The name of the dynamic interpreter. This is put in the .interp
849 section. */
850
851 #define ELF_DYNAMIC_INTERPRETER(abfd) \
852 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
853 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
854 : "/usr/lib/libc.so.1")
855
856 #ifdef BFD64
857 #define MNAME(bfd,pre,pos) \
858 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
859 #define ELF_R_SYM(bfd, i) \
860 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
861 #define ELF_R_TYPE(bfd, i) \
862 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
863 #define ELF_R_INFO(bfd, s, t) \
864 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
865 #else
866 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
867 #define ELF_R_SYM(bfd, i) \
868 (ELF32_R_SYM (i))
869 #define ELF_R_TYPE(bfd, i) \
870 (ELF32_R_TYPE (i))
871 #define ELF_R_INFO(bfd, s, t) \
872 (ELF32_R_INFO (s, t))
873 #endif
874 \f
875 /* The mips16 compiler uses a couple of special sections to handle
876 floating point arguments.
877
878 Section names that look like .mips16.fn.FNNAME contain stubs that
879 copy floating point arguments from the fp regs to the gp regs and
880 then jump to FNNAME. If any 32 bit function calls FNNAME, the
881 call should be redirected to the stub instead. If no 32 bit
882 function calls FNNAME, the stub should be discarded. We need to
883 consider any reference to the function, not just a call, because
884 if the address of the function is taken we will need the stub,
885 since the address might be passed to a 32 bit function.
886
887 Section names that look like .mips16.call.FNNAME contain stubs
888 that copy floating point arguments from the gp regs to the fp
889 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
890 then any 16 bit function that calls FNNAME should be redirected
891 to the stub instead. If FNNAME is not a 32 bit function, the
892 stub should be discarded.
893
894 .mips16.call.fp.FNNAME sections are similar, but contain stubs
895 which call FNNAME and then copy the return value from the fp regs
896 to the gp regs. These stubs store the return value in $18 while
897 calling FNNAME; any function which might call one of these stubs
898 must arrange to save $18 around the call. (This case is not
899 needed for 32 bit functions that call 16 bit functions, because
900 16 bit functions always return floating point values in both
901 $f0/$f1 and $2/$3.)
902
903 Note that in all cases FNNAME might be defined statically.
904 Therefore, FNNAME is not used literally. Instead, the relocation
905 information will indicate which symbol the section is for.
906
907 We record any stubs that we find in the symbol table. */
908
909 #define FN_STUB ".mips16.fn."
910 #define CALL_STUB ".mips16.call."
911 #define CALL_FP_STUB ".mips16.call.fp."
912
913 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
914 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
915 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
916 \f
917 /* The format of the first PLT entry in an O32 executable. */
918 static const bfd_vma mips_o32_exec_plt0_entry[] =
919 {
920 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
921 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
922 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
923 0x031cc023, /* subu $24, $24, $28 */
924 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
925 0x0018c082, /* srl $24, $24, 2 */
926 0x0320f809, /* jalr $25 */
927 0x2718fffe /* subu $24, $24, 2 */
928 };
929
930 /* The format of the first PLT entry in an N32 executable. Different
931 because gp ($28) is not available; we use t2 ($14) instead. */
932 static const bfd_vma mips_n32_exec_plt0_entry[] =
933 {
934 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
935 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
936 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
937 0x030ec023, /* subu $24, $24, $14 */
938 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
939 0x0018c082, /* srl $24, $24, 2 */
940 0x0320f809, /* jalr $25 */
941 0x2718fffe /* subu $24, $24, 2 */
942 };
943
944 /* The format of the first PLT entry in an N64 executable. Different
945 from N32 because of the increased size of GOT entries. */
946 static const bfd_vma mips_n64_exec_plt0_entry[] =
947 {
948 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
949 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
950 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
951 0x030ec023, /* subu $24, $24, $14 */
952 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
953 0x0018c0c2, /* srl $24, $24, 3 */
954 0x0320f809, /* jalr $25 */
955 0x2718fffe /* subu $24, $24, 2 */
956 };
957
958 /* The format of subsequent PLT entries. */
959 static const bfd_vma mips_exec_plt_entry[] =
960 {
961 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
962 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
963 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
964 0x03200008 /* jr $25 */
965 };
966
967 /* The format of the first PLT entry in a VxWorks executable. */
968 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
969 {
970 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
971 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
972 0x8f390008, /* lw t9, 8(t9) */
973 0x00000000, /* nop */
974 0x03200008, /* jr t9 */
975 0x00000000 /* nop */
976 };
977
978 /* The format of subsequent PLT entries. */
979 static const bfd_vma mips_vxworks_exec_plt_entry[] =
980 {
981 0x10000000, /* b .PLT_resolver */
982 0x24180000, /* li t8, <pltindex> */
983 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
984 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
985 0x8f390000, /* lw t9, 0(t9) */
986 0x00000000, /* nop */
987 0x03200008, /* jr t9 */
988 0x00000000 /* nop */
989 };
990
991 /* The format of the first PLT entry in a VxWorks shared object. */
992 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
993 {
994 0x8f990008, /* lw t9, 8(gp) */
995 0x00000000, /* nop */
996 0x03200008, /* jr t9 */
997 0x00000000, /* nop */
998 0x00000000, /* nop */
999 0x00000000 /* nop */
1000 };
1001
1002 /* The format of subsequent PLT entries. */
1003 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1004 {
1005 0x10000000, /* b .PLT_resolver */
1006 0x24180000 /* li t8, <pltindex> */
1007 };
1008 \f
1009 /* Look up an entry in a MIPS ELF linker hash table. */
1010
1011 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1012 ((struct mips_elf_link_hash_entry *) \
1013 elf_link_hash_lookup (&(table)->root, (string), (create), \
1014 (copy), (follow)))
1015
1016 /* Traverse a MIPS ELF linker hash table. */
1017
1018 #define mips_elf_link_hash_traverse(table, func, info) \
1019 (elf_link_hash_traverse \
1020 (&(table)->root, \
1021 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1022 (info)))
1023
1024 /* Find the base offsets for thread-local storage in this object,
1025 for GD/LD and IE/LE respectively. */
1026
1027 #define TP_OFFSET 0x7000
1028 #define DTP_OFFSET 0x8000
1029
1030 static bfd_vma
1031 dtprel_base (struct bfd_link_info *info)
1032 {
1033 /* If tls_sec is NULL, we should have signalled an error already. */
1034 if (elf_hash_table (info)->tls_sec == NULL)
1035 return 0;
1036 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1037 }
1038
1039 static bfd_vma
1040 tprel_base (struct bfd_link_info *info)
1041 {
1042 /* If tls_sec is NULL, we should have signalled an error already. */
1043 if (elf_hash_table (info)->tls_sec == NULL)
1044 return 0;
1045 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1046 }
1047
1048 /* Create an entry in a MIPS ELF linker hash table. */
1049
1050 static struct bfd_hash_entry *
1051 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1052 struct bfd_hash_table *table, const char *string)
1053 {
1054 struct mips_elf_link_hash_entry *ret =
1055 (struct mips_elf_link_hash_entry *) entry;
1056
1057 /* Allocate the structure if it has not already been allocated by a
1058 subclass. */
1059 if (ret == NULL)
1060 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1061 if (ret == NULL)
1062 return (struct bfd_hash_entry *) ret;
1063
1064 /* Call the allocation method of the superclass. */
1065 ret = ((struct mips_elf_link_hash_entry *)
1066 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1067 table, string));
1068 if (ret != NULL)
1069 {
1070 /* Set local fields. */
1071 memset (&ret->esym, 0, sizeof (EXTR));
1072 /* We use -2 as a marker to indicate that the information has
1073 not been set. -1 means there is no associated ifd. */
1074 ret->esym.ifd = -2;
1075 ret->la25_stub = 0;
1076 ret->possibly_dynamic_relocs = 0;
1077 ret->fn_stub = NULL;
1078 ret->call_stub = NULL;
1079 ret->call_fp_stub = NULL;
1080 ret->tls_type = GOT_NORMAL;
1081 ret->global_got_area = GGA_NONE;
1082 ret->got_only_for_calls = TRUE;
1083 ret->readonly_reloc = FALSE;
1084 ret->has_static_relocs = FALSE;
1085 ret->no_fn_stub = FALSE;
1086 ret->need_fn_stub = FALSE;
1087 ret->has_nonpic_branches = FALSE;
1088 ret->needs_lazy_stub = FALSE;
1089 }
1090
1091 return (struct bfd_hash_entry *) ret;
1092 }
1093
1094 bfd_boolean
1095 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1096 {
1097 if (!sec->used_by_bfd)
1098 {
1099 struct _mips_elf_section_data *sdata;
1100 bfd_size_type amt = sizeof (*sdata);
1101
1102 sdata = bfd_zalloc (abfd, amt);
1103 if (sdata == NULL)
1104 return FALSE;
1105 sec->used_by_bfd = sdata;
1106 }
1107
1108 return _bfd_elf_new_section_hook (abfd, sec);
1109 }
1110 \f
1111 /* Read ECOFF debugging information from a .mdebug section into a
1112 ecoff_debug_info structure. */
1113
1114 bfd_boolean
1115 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1116 struct ecoff_debug_info *debug)
1117 {
1118 HDRR *symhdr;
1119 const struct ecoff_debug_swap *swap;
1120 char *ext_hdr;
1121
1122 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1123 memset (debug, 0, sizeof (*debug));
1124
1125 ext_hdr = bfd_malloc (swap->external_hdr_size);
1126 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1127 goto error_return;
1128
1129 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1130 swap->external_hdr_size))
1131 goto error_return;
1132
1133 symhdr = &debug->symbolic_header;
1134 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1135
1136 /* The symbolic header contains absolute file offsets and sizes to
1137 read. */
1138 #define READ(ptr, offset, count, size, type) \
1139 if (symhdr->count == 0) \
1140 debug->ptr = NULL; \
1141 else \
1142 { \
1143 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1144 debug->ptr = bfd_malloc (amt); \
1145 if (debug->ptr == NULL) \
1146 goto error_return; \
1147 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1148 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1149 goto error_return; \
1150 }
1151
1152 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1153 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1154 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1155 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1156 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1157 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1158 union aux_ext *);
1159 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1160 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1161 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1162 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1163 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1164 #undef READ
1165
1166 debug->fdr = NULL;
1167
1168 return TRUE;
1169
1170 error_return:
1171 if (ext_hdr != NULL)
1172 free (ext_hdr);
1173 if (debug->line != NULL)
1174 free (debug->line);
1175 if (debug->external_dnr != NULL)
1176 free (debug->external_dnr);
1177 if (debug->external_pdr != NULL)
1178 free (debug->external_pdr);
1179 if (debug->external_sym != NULL)
1180 free (debug->external_sym);
1181 if (debug->external_opt != NULL)
1182 free (debug->external_opt);
1183 if (debug->external_aux != NULL)
1184 free (debug->external_aux);
1185 if (debug->ss != NULL)
1186 free (debug->ss);
1187 if (debug->ssext != NULL)
1188 free (debug->ssext);
1189 if (debug->external_fdr != NULL)
1190 free (debug->external_fdr);
1191 if (debug->external_rfd != NULL)
1192 free (debug->external_rfd);
1193 if (debug->external_ext != NULL)
1194 free (debug->external_ext);
1195 return FALSE;
1196 }
1197 \f
1198 /* Swap RPDR (runtime procedure table entry) for output. */
1199
1200 static void
1201 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1202 {
1203 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1204 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1205 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1206 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1207 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1208 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1209
1210 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1211 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1212
1213 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1214 }
1215
1216 /* Create a runtime procedure table from the .mdebug section. */
1217
1218 static bfd_boolean
1219 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1220 struct bfd_link_info *info, asection *s,
1221 struct ecoff_debug_info *debug)
1222 {
1223 const struct ecoff_debug_swap *swap;
1224 HDRR *hdr = &debug->symbolic_header;
1225 RPDR *rpdr, *rp;
1226 struct rpdr_ext *erp;
1227 void *rtproc;
1228 struct pdr_ext *epdr;
1229 struct sym_ext *esym;
1230 char *ss, **sv;
1231 char *str;
1232 bfd_size_type size;
1233 bfd_size_type count;
1234 unsigned long sindex;
1235 unsigned long i;
1236 PDR pdr;
1237 SYMR sym;
1238 const char *no_name_func = _("static procedure (no name)");
1239
1240 epdr = NULL;
1241 rpdr = NULL;
1242 esym = NULL;
1243 ss = NULL;
1244 sv = NULL;
1245
1246 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1247
1248 sindex = strlen (no_name_func) + 1;
1249 count = hdr->ipdMax;
1250 if (count > 0)
1251 {
1252 size = swap->external_pdr_size;
1253
1254 epdr = bfd_malloc (size * count);
1255 if (epdr == NULL)
1256 goto error_return;
1257
1258 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1259 goto error_return;
1260
1261 size = sizeof (RPDR);
1262 rp = rpdr = bfd_malloc (size * count);
1263 if (rpdr == NULL)
1264 goto error_return;
1265
1266 size = sizeof (char *);
1267 sv = bfd_malloc (size * count);
1268 if (sv == NULL)
1269 goto error_return;
1270
1271 count = hdr->isymMax;
1272 size = swap->external_sym_size;
1273 esym = bfd_malloc (size * count);
1274 if (esym == NULL)
1275 goto error_return;
1276
1277 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1278 goto error_return;
1279
1280 count = hdr->issMax;
1281 ss = bfd_malloc (count);
1282 if (ss == NULL)
1283 goto error_return;
1284 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1285 goto error_return;
1286
1287 count = hdr->ipdMax;
1288 for (i = 0; i < (unsigned long) count; i++, rp++)
1289 {
1290 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1291 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1292 rp->adr = sym.value;
1293 rp->regmask = pdr.regmask;
1294 rp->regoffset = pdr.regoffset;
1295 rp->fregmask = pdr.fregmask;
1296 rp->fregoffset = pdr.fregoffset;
1297 rp->frameoffset = pdr.frameoffset;
1298 rp->framereg = pdr.framereg;
1299 rp->pcreg = pdr.pcreg;
1300 rp->irpss = sindex;
1301 sv[i] = ss + sym.iss;
1302 sindex += strlen (sv[i]) + 1;
1303 }
1304 }
1305
1306 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1307 size = BFD_ALIGN (size, 16);
1308 rtproc = bfd_alloc (abfd, size);
1309 if (rtproc == NULL)
1310 {
1311 mips_elf_hash_table (info)->procedure_count = 0;
1312 goto error_return;
1313 }
1314
1315 mips_elf_hash_table (info)->procedure_count = count + 2;
1316
1317 erp = rtproc;
1318 memset (erp, 0, sizeof (struct rpdr_ext));
1319 erp++;
1320 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1321 strcpy (str, no_name_func);
1322 str += strlen (no_name_func) + 1;
1323 for (i = 0; i < count; i++)
1324 {
1325 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1326 strcpy (str, sv[i]);
1327 str += strlen (sv[i]) + 1;
1328 }
1329 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1330
1331 /* Set the size and contents of .rtproc section. */
1332 s->size = size;
1333 s->contents = rtproc;
1334
1335 /* Skip this section later on (I don't think this currently
1336 matters, but someday it might). */
1337 s->map_head.link_order = NULL;
1338
1339 if (epdr != NULL)
1340 free (epdr);
1341 if (rpdr != NULL)
1342 free (rpdr);
1343 if (esym != NULL)
1344 free (esym);
1345 if (ss != NULL)
1346 free (ss);
1347 if (sv != NULL)
1348 free (sv);
1349
1350 return TRUE;
1351
1352 error_return:
1353 if (epdr != NULL)
1354 free (epdr);
1355 if (rpdr != NULL)
1356 free (rpdr);
1357 if (esym != NULL)
1358 free (esym);
1359 if (ss != NULL)
1360 free (ss);
1361 if (sv != NULL)
1362 free (sv);
1363 return FALSE;
1364 }
1365 \f
1366 /* We're going to create a stub for H. Create a symbol for the stub's
1367 value and size, to help make the disassembly easier to read. */
1368
1369 static bfd_boolean
1370 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1371 struct mips_elf_link_hash_entry *h,
1372 const char *prefix, asection *s, bfd_vma value,
1373 bfd_vma size)
1374 {
1375 struct bfd_link_hash_entry *bh;
1376 struct elf_link_hash_entry *elfh;
1377 const char *name;
1378
1379 if (ELF_ST_IS_MICROMIPS (h->root.other))
1380 value |= 1;
1381
1382 /* Create a new symbol. */
1383 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1384 bh = NULL;
1385 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1386 BSF_LOCAL, s, value, NULL,
1387 TRUE, FALSE, &bh))
1388 return FALSE;
1389
1390 /* Make it a local function. */
1391 elfh = (struct elf_link_hash_entry *) bh;
1392 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1393 elfh->size = size;
1394 elfh->forced_local = 1;
1395 return TRUE;
1396 }
1397
1398 /* We're about to redefine H. Create a symbol to represent H's
1399 current value and size, to help make the disassembly easier
1400 to read. */
1401
1402 static bfd_boolean
1403 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1404 struct mips_elf_link_hash_entry *h,
1405 const char *prefix)
1406 {
1407 struct bfd_link_hash_entry *bh;
1408 struct elf_link_hash_entry *elfh;
1409 const char *name;
1410 asection *s;
1411 bfd_vma value;
1412
1413 /* Read the symbol's value. */
1414 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1415 || h->root.root.type == bfd_link_hash_defweak);
1416 s = h->root.root.u.def.section;
1417 value = h->root.root.u.def.value;
1418
1419 /* Create a new symbol. */
1420 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1421 bh = NULL;
1422 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1423 BSF_LOCAL, s, value, NULL,
1424 TRUE, FALSE, &bh))
1425 return FALSE;
1426
1427 /* Make it local and copy the other attributes from H. */
1428 elfh = (struct elf_link_hash_entry *) bh;
1429 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1430 elfh->other = h->root.other;
1431 elfh->size = h->root.size;
1432 elfh->forced_local = 1;
1433 return TRUE;
1434 }
1435
1436 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1437 function rather than to a hard-float stub. */
1438
1439 static bfd_boolean
1440 section_allows_mips16_refs_p (asection *section)
1441 {
1442 const char *name;
1443
1444 name = bfd_get_section_name (section->owner, section);
1445 return (FN_STUB_P (name)
1446 || CALL_STUB_P (name)
1447 || CALL_FP_STUB_P (name)
1448 || strcmp (name, ".pdr") == 0);
1449 }
1450
1451 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1452 stub section of some kind. Return the R_SYMNDX of the target
1453 function, or 0 if we can't decide which function that is. */
1454
1455 static unsigned long
1456 mips16_stub_symndx (asection *sec ATTRIBUTE_UNUSED,
1457 const Elf_Internal_Rela *relocs,
1458 const Elf_Internal_Rela *relend)
1459 {
1460 const Elf_Internal_Rela *rel;
1461
1462 /* Trust the first R_MIPS_NONE relocation, if any. */
1463 for (rel = relocs; rel < relend; rel++)
1464 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1465 return ELF_R_SYM (sec->owner, rel->r_info);
1466
1467 /* Otherwise trust the first relocation, whatever its kind. This is
1468 the traditional behavior. */
1469 if (relocs < relend)
1470 return ELF_R_SYM (sec->owner, relocs->r_info);
1471
1472 return 0;
1473 }
1474
1475 /* Check the mips16 stubs for a particular symbol, and see if we can
1476 discard them. */
1477
1478 static void
1479 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1480 struct mips_elf_link_hash_entry *h)
1481 {
1482 /* Dynamic symbols must use the standard call interface, in case other
1483 objects try to call them. */
1484 if (h->fn_stub != NULL
1485 && h->root.dynindx != -1)
1486 {
1487 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1488 h->need_fn_stub = TRUE;
1489 }
1490
1491 if (h->fn_stub != NULL
1492 && ! h->need_fn_stub)
1493 {
1494 /* We don't need the fn_stub; the only references to this symbol
1495 are 16 bit calls. Clobber the size to 0 to prevent it from
1496 being included in the link. */
1497 h->fn_stub->size = 0;
1498 h->fn_stub->flags &= ~SEC_RELOC;
1499 h->fn_stub->reloc_count = 0;
1500 h->fn_stub->flags |= SEC_EXCLUDE;
1501 }
1502
1503 if (h->call_stub != NULL
1504 && ELF_ST_IS_MIPS16 (h->root.other))
1505 {
1506 /* We don't need the call_stub; this is a 16 bit function, so
1507 calls from other 16 bit functions are OK. Clobber the size
1508 to 0 to prevent it from being included in the link. */
1509 h->call_stub->size = 0;
1510 h->call_stub->flags &= ~SEC_RELOC;
1511 h->call_stub->reloc_count = 0;
1512 h->call_stub->flags |= SEC_EXCLUDE;
1513 }
1514
1515 if (h->call_fp_stub != NULL
1516 && ELF_ST_IS_MIPS16 (h->root.other))
1517 {
1518 /* We don't need the call_stub; this is a 16 bit function, so
1519 calls from other 16 bit functions are OK. Clobber the size
1520 to 0 to prevent it from being included in the link. */
1521 h->call_fp_stub->size = 0;
1522 h->call_fp_stub->flags &= ~SEC_RELOC;
1523 h->call_fp_stub->reloc_count = 0;
1524 h->call_fp_stub->flags |= SEC_EXCLUDE;
1525 }
1526 }
1527
1528 /* Hashtable callbacks for mips_elf_la25_stubs. */
1529
1530 static hashval_t
1531 mips_elf_la25_stub_hash (const void *entry_)
1532 {
1533 const struct mips_elf_la25_stub *entry;
1534
1535 entry = (struct mips_elf_la25_stub *) entry_;
1536 return entry->h->root.root.u.def.section->id
1537 + entry->h->root.root.u.def.value;
1538 }
1539
1540 static int
1541 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1542 {
1543 const struct mips_elf_la25_stub *entry1, *entry2;
1544
1545 entry1 = (struct mips_elf_la25_stub *) entry1_;
1546 entry2 = (struct mips_elf_la25_stub *) entry2_;
1547 return ((entry1->h->root.root.u.def.section
1548 == entry2->h->root.root.u.def.section)
1549 && (entry1->h->root.root.u.def.value
1550 == entry2->h->root.root.u.def.value));
1551 }
1552
1553 /* Called by the linker to set up the la25 stub-creation code. FN is
1554 the linker's implementation of add_stub_function. Return true on
1555 success. */
1556
1557 bfd_boolean
1558 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1559 asection *(*fn) (const char *, asection *,
1560 asection *))
1561 {
1562 struct mips_elf_link_hash_table *htab;
1563
1564 htab = mips_elf_hash_table (info);
1565 if (htab == NULL)
1566 return FALSE;
1567
1568 htab->add_stub_section = fn;
1569 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1570 mips_elf_la25_stub_eq, NULL);
1571 if (htab->la25_stubs == NULL)
1572 return FALSE;
1573
1574 return TRUE;
1575 }
1576
1577 /* Return true if H is a locally-defined PIC function, in the sense
1578 that it might need $25 to be valid on entry. Note that MIPS16
1579 functions never need $25 to be valid on entry; they set up $gp
1580 using PC-relative instructions instead. */
1581
1582 static bfd_boolean
1583 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1584 {
1585 return ((h->root.root.type == bfd_link_hash_defined
1586 || h->root.root.type == bfd_link_hash_defweak)
1587 && h->root.def_regular
1588 && !bfd_is_abs_section (h->root.root.u.def.section)
1589 && !ELF_ST_IS_MIPS16 (h->root.other)
1590 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1591 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1592 }
1593
1594 /* STUB describes an la25 stub that we have decided to implement
1595 by inserting an LUI/ADDIU pair before the target function.
1596 Create the section and redirect the function symbol to it. */
1597
1598 static bfd_boolean
1599 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1600 struct bfd_link_info *info)
1601 {
1602 struct mips_elf_link_hash_table *htab;
1603 char *name;
1604 asection *s, *input_section;
1605 unsigned int align;
1606
1607 htab = mips_elf_hash_table (info);
1608 if (htab == NULL)
1609 return FALSE;
1610
1611 /* Create a unique name for the new section. */
1612 name = bfd_malloc (11 + sizeof (".text.stub."));
1613 if (name == NULL)
1614 return FALSE;
1615 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1616
1617 /* Create the section. */
1618 input_section = stub->h->root.root.u.def.section;
1619 s = htab->add_stub_section (name, input_section,
1620 input_section->output_section);
1621 if (s == NULL)
1622 return FALSE;
1623
1624 /* Make sure that any padding goes before the stub. */
1625 align = input_section->alignment_power;
1626 if (!bfd_set_section_alignment (s->owner, s, align))
1627 return FALSE;
1628 if (align > 3)
1629 s->size = (1 << align) - 8;
1630
1631 /* Create a symbol for the stub. */
1632 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1633 stub->stub_section = s;
1634 stub->offset = s->size;
1635
1636 /* Allocate room for it. */
1637 s->size += 8;
1638 return TRUE;
1639 }
1640
1641 /* STUB describes an la25 stub that we have decided to implement
1642 with a separate trampoline. Allocate room for it and redirect
1643 the function symbol to it. */
1644
1645 static bfd_boolean
1646 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1647 struct bfd_link_info *info)
1648 {
1649 struct mips_elf_link_hash_table *htab;
1650 asection *s;
1651
1652 htab = mips_elf_hash_table (info);
1653 if (htab == NULL)
1654 return FALSE;
1655
1656 /* Create a trampoline section, if we haven't already. */
1657 s = htab->strampoline;
1658 if (s == NULL)
1659 {
1660 asection *input_section = stub->h->root.root.u.def.section;
1661 s = htab->add_stub_section (".text", NULL,
1662 input_section->output_section);
1663 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1664 return FALSE;
1665 htab->strampoline = s;
1666 }
1667
1668 /* Create a symbol for the stub. */
1669 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1670 stub->stub_section = s;
1671 stub->offset = s->size;
1672
1673 /* Allocate room for it. */
1674 s->size += 16;
1675 return TRUE;
1676 }
1677
1678 /* H describes a symbol that needs an la25 stub. Make sure that an
1679 appropriate stub exists and point H at it. */
1680
1681 static bfd_boolean
1682 mips_elf_add_la25_stub (struct bfd_link_info *info,
1683 struct mips_elf_link_hash_entry *h)
1684 {
1685 struct mips_elf_link_hash_table *htab;
1686 struct mips_elf_la25_stub search, *stub;
1687 bfd_boolean use_trampoline_p;
1688 asection *s;
1689 bfd_vma value;
1690 void **slot;
1691
1692 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1693 of the section and if we would need no more than 2 nops. */
1694 s = h->root.root.u.def.section;
1695 value = h->root.root.u.def.value;
1696 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1697
1698 /* Describe the stub we want. */
1699 search.stub_section = NULL;
1700 search.offset = 0;
1701 search.h = h;
1702
1703 /* See if we've already created an equivalent stub. */
1704 htab = mips_elf_hash_table (info);
1705 if (htab == NULL)
1706 return FALSE;
1707
1708 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1709 if (slot == NULL)
1710 return FALSE;
1711
1712 stub = (struct mips_elf_la25_stub *) *slot;
1713 if (stub != NULL)
1714 {
1715 /* We can reuse the existing stub. */
1716 h->la25_stub = stub;
1717 return TRUE;
1718 }
1719
1720 /* Create a permanent copy of ENTRY and add it to the hash table. */
1721 stub = bfd_malloc (sizeof (search));
1722 if (stub == NULL)
1723 return FALSE;
1724 *stub = search;
1725 *slot = stub;
1726
1727 h->la25_stub = stub;
1728 return (use_trampoline_p
1729 ? mips_elf_add_la25_trampoline (stub, info)
1730 : mips_elf_add_la25_intro (stub, info));
1731 }
1732
1733 /* A mips_elf_link_hash_traverse callback that is called before sizing
1734 sections. DATA points to a mips_htab_traverse_info structure. */
1735
1736 static bfd_boolean
1737 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1738 {
1739 struct mips_htab_traverse_info *hti;
1740
1741 hti = (struct mips_htab_traverse_info *) data;
1742 if (!hti->info->relocatable)
1743 mips_elf_check_mips16_stubs (hti->info, h);
1744
1745 if (mips_elf_local_pic_function_p (h))
1746 {
1747 /* PR 12845: If H is in a section that has been garbage
1748 collected it will have its output section set to *ABS*. */
1749 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1750 return TRUE;
1751
1752 /* H is a function that might need $25 to be valid on entry.
1753 If we're creating a non-PIC relocatable object, mark H as
1754 being PIC. If we're creating a non-relocatable object with
1755 non-PIC branches and jumps to H, make sure that H has an la25
1756 stub. */
1757 if (hti->info->relocatable)
1758 {
1759 if (!PIC_OBJECT_P (hti->output_bfd))
1760 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1761 }
1762 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1763 {
1764 hti->error = TRUE;
1765 return FALSE;
1766 }
1767 }
1768 return TRUE;
1769 }
1770 \f
1771 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1772 Most mips16 instructions are 16 bits, but these instructions
1773 are 32 bits.
1774
1775 The format of these instructions is:
1776
1777 +--------------+--------------------------------+
1778 | JALX | X| Imm 20:16 | Imm 25:21 |
1779 +--------------+--------------------------------+
1780 | Immediate 15:0 |
1781 +-----------------------------------------------+
1782
1783 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1784 Note that the immediate value in the first word is swapped.
1785
1786 When producing a relocatable object file, R_MIPS16_26 is
1787 handled mostly like R_MIPS_26. In particular, the addend is
1788 stored as a straight 26-bit value in a 32-bit instruction.
1789 (gas makes life simpler for itself by never adjusting a
1790 R_MIPS16_26 reloc to be against a section, so the addend is
1791 always zero). However, the 32 bit instruction is stored as 2
1792 16-bit values, rather than a single 32-bit value. In a
1793 big-endian file, the result is the same; in a little-endian
1794 file, the two 16-bit halves of the 32 bit value are swapped.
1795 This is so that a disassembler can recognize the jal
1796 instruction.
1797
1798 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1799 instruction stored as two 16-bit values. The addend A is the
1800 contents of the targ26 field. The calculation is the same as
1801 R_MIPS_26. When storing the calculated value, reorder the
1802 immediate value as shown above, and don't forget to store the
1803 value as two 16-bit values.
1804
1805 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1806 defined as
1807
1808 big-endian:
1809 +--------+----------------------+
1810 | | |
1811 | | targ26-16 |
1812 |31 26|25 0|
1813 +--------+----------------------+
1814
1815 little-endian:
1816 +----------+------+-------------+
1817 | | | |
1818 | sub1 | | sub2 |
1819 |0 9|10 15|16 31|
1820 +----------+--------------------+
1821 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1822 ((sub1 << 16) | sub2)).
1823
1824 When producing a relocatable object file, the calculation is
1825 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1826 When producing a fully linked file, the calculation is
1827 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1828 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1829
1830 The table below lists the other MIPS16 instruction relocations.
1831 Each one is calculated in the same way as the non-MIPS16 relocation
1832 given on the right, but using the extended MIPS16 layout of 16-bit
1833 immediate fields:
1834
1835 R_MIPS16_GPREL R_MIPS_GPREL16
1836 R_MIPS16_GOT16 R_MIPS_GOT16
1837 R_MIPS16_CALL16 R_MIPS_CALL16
1838 R_MIPS16_HI16 R_MIPS_HI16
1839 R_MIPS16_LO16 R_MIPS_LO16
1840
1841 A typical instruction will have a format like this:
1842
1843 +--------------+--------------------------------+
1844 | EXTEND | Imm 10:5 | Imm 15:11 |
1845 +--------------+--------------------------------+
1846 | Major | rx | ry | Imm 4:0 |
1847 +--------------+--------------------------------+
1848
1849 EXTEND is the five bit value 11110. Major is the instruction
1850 opcode.
1851
1852 All we need to do here is shuffle the bits appropriately.
1853 As above, the two 16-bit halves must be swapped on a
1854 little-endian system. */
1855
1856 static inline bfd_boolean
1857 mips16_reloc_p (int r_type)
1858 {
1859 switch (r_type)
1860 {
1861 case R_MIPS16_26:
1862 case R_MIPS16_GPREL:
1863 case R_MIPS16_GOT16:
1864 case R_MIPS16_CALL16:
1865 case R_MIPS16_HI16:
1866 case R_MIPS16_LO16:
1867 return TRUE;
1868
1869 default:
1870 return FALSE;
1871 }
1872 }
1873
1874 /* Check if a microMIPS reloc. */
1875
1876 static inline bfd_boolean
1877 micromips_reloc_p (unsigned int r_type)
1878 {
1879 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1880 }
1881
1882 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1883 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1884 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1885
1886 static inline bfd_boolean
1887 micromips_reloc_shuffle_p (unsigned int r_type)
1888 {
1889 return (micromips_reloc_p (r_type)
1890 && r_type != R_MICROMIPS_PC7_S1
1891 && r_type != R_MICROMIPS_PC10_S1);
1892 }
1893
1894 static inline bfd_boolean
1895 got16_reloc_p (int r_type)
1896 {
1897 return (r_type == R_MIPS_GOT16
1898 || r_type == R_MIPS16_GOT16
1899 || r_type == R_MICROMIPS_GOT16);
1900 }
1901
1902 static inline bfd_boolean
1903 call16_reloc_p (int r_type)
1904 {
1905 return (r_type == R_MIPS_CALL16
1906 || r_type == R_MIPS16_CALL16
1907 || r_type == R_MICROMIPS_CALL16);
1908 }
1909
1910 static inline bfd_boolean
1911 got_disp_reloc_p (unsigned int r_type)
1912 {
1913 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1914 }
1915
1916 static inline bfd_boolean
1917 got_page_reloc_p (unsigned int r_type)
1918 {
1919 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1920 }
1921
1922 static inline bfd_boolean
1923 got_ofst_reloc_p (unsigned int r_type)
1924 {
1925 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1926 }
1927
1928 static inline bfd_boolean
1929 got_hi16_reloc_p (unsigned int r_type)
1930 {
1931 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
1932 }
1933
1934 static inline bfd_boolean
1935 got_lo16_reloc_p (unsigned int r_type)
1936 {
1937 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
1938 }
1939
1940 static inline bfd_boolean
1941 call_hi16_reloc_p (unsigned int r_type)
1942 {
1943 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
1944 }
1945
1946 static inline bfd_boolean
1947 call_lo16_reloc_p (unsigned int r_type)
1948 {
1949 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
1950 }
1951
1952 static inline bfd_boolean
1953 hi16_reloc_p (int r_type)
1954 {
1955 return (r_type == R_MIPS_HI16
1956 || r_type == R_MIPS16_HI16
1957 || r_type == R_MICROMIPS_HI16);
1958 }
1959
1960 static inline bfd_boolean
1961 lo16_reloc_p (int r_type)
1962 {
1963 return (r_type == R_MIPS_LO16
1964 || r_type == R_MIPS16_LO16
1965 || r_type == R_MICROMIPS_LO16);
1966 }
1967
1968 static inline bfd_boolean
1969 mips16_call_reloc_p (int r_type)
1970 {
1971 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
1972 }
1973
1974 static inline bfd_boolean
1975 jal_reloc_p (int r_type)
1976 {
1977 return (r_type == R_MIPS_26
1978 || r_type == R_MIPS16_26
1979 || r_type == R_MICROMIPS_26_S1);
1980 }
1981
1982 static inline bfd_boolean
1983 micromips_branch_reloc_p (int r_type)
1984 {
1985 return (r_type == R_MICROMIPS_26_S1
1986 || r_type == R_MICROMIPS_PC16_S1
1987 || r_type == R_MICROMIPS_PC10_S1
1988 || r_type == R_MICROMIPS_PC7_S1);
1989 }
1990
1991 static inline bfd_boolean
1992 tls_gd_reloc_p (unsigned int r_type)
1993 {
1994 return r_type == R_MIPS_TLS_GD || r_type == R_MICROMIPS_TLS_GD;
1995 }
1996
1997 static inline bfd_boolean
1998 tls_ldm_reloc_p (unsigned int r_type)
1999 {
2000 return r_type == R_MIPS_TLS_LDM || r_type == R_MICROMIPS_TLS_LDM;
2001 }
2002
2003 static inline bfd_boolean
2004 tls_gottprel_reloc_p (unsigned int r_type)
2005 {
2006 return r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MICROMIPS_TLS_GOTTPREL;
2007 }
2008
2009 void
2010 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2011 bfd_boolean jal_shuffle, bfd_byte *data)
2012 {
2013 bfd_vma first, second, val;
2014
2015 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2016 return;
2017
2018 /* Pick up the first and second halfwords of the instruction. */
2019 first = bfd_get_16 (abfd, data);
2020 second = bfd_get_16 (abfd, data + 2);
2021 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2022 val = first << 16 | second;
2023 else if (r_type != R_MIPS16_26)
2024 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2025 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2026 else
2027 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2028 | ((first & 0x1f) << 21) | second);
2029 bfd_put_32 (abfd, val, data);
2030 }
2031
2032 void
2033 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2034 bfd_boolean jal_shuffle, bfd_byte *data)
2035 {
2036 bfd_vma first, second, val;
2037
2038 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2039 return;
2040
2041 val = bfd_get_32 (abfd, data);
2042 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2043 {
2044 second = val & 0xffff;
2045 first = val >> 16;
2046 }
2047 else if (r_type != R_MIPS16_26)
2048 {
2049 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2050 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2051 }
2052 else
2053 {
2054 second = val & 0xffff;
2055 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2056 | ((val >> 21) & 0x1f);
2057 }
2058 bfd_put_16 (abfd, second, data + 2);
2059 bfd_put_16 (abfd, first, data);
2060 }
2061
2062 bfd_reloc_status_type
2063 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2064 arelent *reloc_entry, asection *input_section,
2065 bfd_boolean relocatable, void *data, bfd_vma gp)
2066 {
2067 bfd_vma relocation;
2068 bfd_signed_vma val;
2069 bfd_reloc_status_type status;
2070
2071 if (bfd_is_com_section (symbol->section))
2072 relocation = 0;
2073 else
2074 relocation = symbol->value;
2075
2076 relocation += symbol->section->output_section->vma;
2077 relocation += symbol->section->output_offset;
2078
2079 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2080 return bfd_reloc_outofrange;
2081
2082 /* Set val to the offset into the section or symbol. */
2083 val = reloc_entry->addend;
2084
2085 _bfd_mips_elf_sign_extend (val, 16);
2086
2087 /* Adjust val for the final section location and GP value. If we
2088 are producing relocatable output, we don't want to do this for
2089 an external symbol. */
2090 if (! relocatable
2091 || (symbol->flags & BSF_SECTION_SYM) != 0)
2092 val += relocation - gp;
2093
2094 if (reloc_entry->howto->partial_inplace)
2095 {
2096 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2097 (bfd_byte *) data
2098 + reloc_entry->address);
2099 if (status != bfd_reloc_ok)
2100 return status;
2101 }
2102 else
2103 reloc_entry->addend = val;
2104
2105 if (relocatable)
2106 reloc_entry->address += input_section->output_offset;
2107
2108 return bfd_reloc_ok;
2109 }
2110
2111 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2112 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2113 that contains the relocation field and DATA points to the start of
2114 INPUT_SECTION. */
2115
2116 struct mips_hi16
2117 {
2118 struct mips_hi16 *next;
2119 bfd_byte *data;
2120 asection *input_section;
2121 arelent rel;
2122 };
2123
2124 /* FIXME: This should not be a static variable. */
2125
2126 static struct mips_hi16 *mips_hi16_list;
2127
2128 /* A howto special_function for REL *HI16 relocations. We can only
2129 calculate the correct value once we've seen the partnering
2130 *LO16 relocation, so just save the information for later.
2131
2132 The ABI requires that the *LO16 immediately follow the *HI16.
2133 However, as a GNU extension, we permit an arbitrary number of
2134 *HI16s to be associated with a single *LO16. This significantly
2135 simplies the relocation handling in gcc. */
2136
2137 bfd_reloc_status_type
2138 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2139 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2140 asection *input_section, bfd *output_bfd,
2141 char **error_message ATTRIBUTE_UNUSED)
2142 {
2143 struct mips_hi16 *n;
2144
2145 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2146 return bfd_reloc_outofrange;
2147
2148 n = bfd_malloc (sizeof *n);
2149 if (n == NULL)
2150 return bfd_reloc_outofrange;
2151
2152 n->next = mips_hi16_list;
2153 n->data = data;
2154 n->input_section = input_section;
2155 n->rel = *reloc_entry;
2156 mips_hi16_list = n;
2157
2158 if (output_bfd != NULL)
2159 reloc_entry->address += input_section->output_offset;
2160
2161 return bfd_reloc_ok;
2162 }
2163
2164 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2165 like any other 16-bit relocation when applied to global symbols, but is
2166 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2167
2168 bfd_reloc_status_type
2169 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2170 void *data, asection *input_section,
2171 bfd *output_bfd, char **error_message)
2172 {
2173 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2174 || bfd_is_und_section (bfd_get_section (symbol))
2175 || bfd_is_com_section (bfd_get_section (symbol)))
2176 /* The relocation is against a global symbol. */
2177 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2178 input_section, output_bfd,
2179 error_message);
2180
2181 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2182 input_section, output_bfd, error_message);
2183 }
2184
2185 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2186 is a straightforward 16 bit inplace relocation, but we must deal with
2187 any partnering high-part relocations as well. */
2188
2189 bfd_reloc_status_type
2190 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2191 void *data, asection *input_section,
2192 bfd *output_bfd, char **error_message)
2193 {
2194 bfd_vma vallo;
2195 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2196
2197 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2198 return bfd_reloc_outofrange;
2199
2200 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2201 location);
2202 vallo = bfd_get_32 (abfd, location);
2203 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2204 location);
2205
2206 while (mips_hi16_list != NULL)
2207 {
2208 bfd_reloc_status_type ret;
2209 struct mips_hi16 *hi;
2210
2211 hi = mips_hi16_list;
2212
2213 /* R_MIPS*_GOT16 relocations are something of a special case. We
2214 want to install the addend in the same way as for a R_MIPS*_HI16
2215 relocation (with a rightshift of 16). However, since GOT16
2216 relocations can also be used with global symbols, their howto
2217 has a rightshift of 0. */
2218 if (hi->rel.howto->type == R_MIPS_GOT16)
2219 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2220 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2221 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2222 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2223 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2224
2225 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2226 carry or borrow will induce a change of +1 or -1 in the high part. */
2227 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2228
2229 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2230 hi->input_section, output_bfd,
2231 error_message);
2232 if (ret != bfd_reloc_ok)
2233 return ret;
2234
2235 mips_hi16_list = hi->next;
2236 free (hi);
2237 }
2238
2239 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2240 input_section, output_bfd,
2241 error_message);
2242 }
2243
2244 /* A generic howto special_function. This calculates and installs the
2245 relocation itself, thus avoiding the oft-discussed problems in
2246 bfd_perform_relocation and bfd_install_relocation. */
2247
2248 bfd_reloc_status_type
2249 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2250 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2251 asection *input_section, bfd *output_bfd,
2252 char **error_message ATTRIBUTE_UNUSED)
2253 {
2254 bfd_signed_vma val;
2255 bfd_reloc_status_type status;
2256 bfd_boolean relocatable;
2257
2258 relocatable = (output_bfd != NULL);
2259
2260 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2261 return bfd_reloc_outofrange;
2262
2263 /* Build up the field adjustment in VAL. */
2264 val = 0;
2265 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2266 {
2267 /* Either we're calculating the final field value or we have a
2268 relocation against a section symbol. Add in the section's
2269 offset or address. */
2270 val += symbol->section->output_section->vma;
2271 val += symbol->section->output_offset;
2272 }
2273
2274 if (!relocatable)
2275 {
2276 /* We're calculating the final field value. Add in the symbol's value
2277 and, if pc-relative, subtract the address of the field itself. */
2278 val += symbol->value;
2279 if (reloc_entry->howto->pc_relative)
2280 {
2281 val -= input_section->output_section->vma;
2282 val -= input_section->output_offset;
2283 val -= reloc_entry->address;
2284 }
2285 }
2286
2287 /* VAL is now the final adjustment. If we're keeping this relocation
2288 in the output file, and if the relocation uses a separate addend,
2289 we just need to add VAL to that addend. Otherwise we need to add
2290 VAL to the relocation field itself. */
2291 if (relocatable && !reloc_entry->howto->partial_inplace)
2292 reloc_entry->addend += val;
2293 else
2294 {
2295 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2296
2297 /* Add in the separate addend, if any. */
2298 val += reloc_entry->addend;
2299
2300 /* Add VAL to the relocation field. */
2301 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2302 location);
2303 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2304 location);
2305 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2306 location);
2307
2308 if (status != bfd_reloc_ok)
2309 return status;
2310 }
2311
2312 if (relocatable)
2313 reloc_entry->address += input_section->output_offset;
2314
2315 return bfd_reloc_ok;
2316 }
2317 \f
2318 /* Swap an entry in a .gptab section. Note that these routines rely
2319 on the equivalence of the two elements of the union. */
2320
2321 static void
2322 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2323 Elf32_gptab *in)
2324 {
2325 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2326 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2327 }
2328
2329 static void
2330 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2331 Elf32_External_gptab *ex)
2332 {
2333 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2334 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2335 }
2336
2337 static void
2338 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2339 Elf32_External_compact_rel *ex)
2340 {
2341 H_PUT_32 (abfd, in->id1, ex->id1);
2342 H_PUT_32 (abfd, in->num, ex->num);
2343 H_PUT_32 (abfd, in->id2, ex->id2);
2344 H_PUT_32 (abfd, in->offset, ex->offset);
2345 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2346 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2347 }
2348
2349 static void
2350 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2351 Elf32_External_crinfo *ex)
2352 {
2353 unsigned long l;
2354
2355 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2356 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2357 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2358 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2359 H_PUT_32 (abfd, l, ex->info);
2360 H_PUT_32 (abfd, in->konst, ex->konst);
2361 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2362 }
2363 \f
2364 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2365 routines swap this structure in and out. They are used outside of
2366 BFD, so they are globally visible. */
2367
2368 void
2369 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2370 Elf32_RegInfo *in)
2371 {
2372 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2373 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2374 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2375 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2376 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2377 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2378 }
2379
2380 void
2381 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2382 Elf32_External_RegInfo *ex)
2383 {
2384 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2385 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2386 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2387 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2388 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2389 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2390 }
2391
2392 /* In the 64 bit ABI, the .MIPS.options section holds register
2393 information in an Elf64_Reginfo structure. These routines swap
2394 them in and out. They are globally visible because they are used
2395 outside of BFD. These routines are here so that gas can call them
2396 without worrying about whether the 64 bit ABI has been included. */
2397
2398 void
2399 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2400 Elf64_Internal_RegInfo *in)
2401 {
2402 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2403 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2404 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2405 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2406 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2407 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2408 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2409 }
2410
2411 void
2412 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2413 Elf64_External_RegInfo *ex)
2414 {
2415 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2416 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2417 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2418 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2419 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2420 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2421 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2422 }
2423
2424 /* Swap in an options header. */
2425
2426 void
2427 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2428 Elf_Internal_Options *in)
2429 {
2430 in->kind = H_GET_8 (abfd, ex->kind);
2431 in->size = H_GET_8 (abfd, ex->size);
2432 in->section = H_GET_16 (abfd, ex->section);
2433 in->info = H_GET_32 (abfd, ex->info);
2434 }
2435
2436 /* Swap out an options header. */
2437
2438 void
2439 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2440 Elf_External_Options *ex)
2441 {
2442 H_PUT_8 (abfd, in->kind, ex->kind);
2443 H_PUT_8 (abfd, in->size, ex->size);
2444 H_PUT_16 (abfd, in->section, ex->section);
2445 H_PUT_32 (abfd, in->info, ex->info);
2446 }
2447 \f
2448 /* This function is called via qsort() to sort the dynamic relocation
2449 entries by increasing r_symndx value. */
2450
2451 static int
2452 sort_dynamic_relocs (const void *arg1, const void *arg2)
2453 {
2454 Elf_Internal_Rela int_reloc1;
2455 Elf_Internal_Rela int_reloc2;
2456 int diff;
2457
2458 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2459 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2460
2461 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2462 if (diff != 0)
2463 return diff;
2464
2465 if (int_reloc1.r_offset < int_reloc2.r_offset)
2466 return -1;
2467 if (int_reloc1.r_offset > int_reloc2.r_offset)
2468 return 1;
2469 return 0;
2470 }
2471
2472 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2473
2474 static int
2475 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2476 const void *arg2 ATTRIBUTE_UNUSED)
2477 {
2478 #ifdef BFD64
2479 Elf_Internal_Rela int_reloc1[3];
2480 Elf_Internal_Rela int_reloc2[3];
2481
2482 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2483 (reldyn_sorting_bfd, arg1, int_reloc1);
2484 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2485 (reldyn_sorting_bfd, arg2, int_reloc2);
2486
2487 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2488 return -1;
2489 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2490 return 1;
2491
2492 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2493 return -1;
2494 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2495 return 1;
2496 return 0;
2497 #else
2498 abort ();
2499 #endif
2500 }
2501
2502
2503 /* This routine is used to write out ECOFF debugging external symbol
2504 information. It is called via mips_elf_link_hash_traverse. The
2505 ECOFF external symbol information must match the ELF external
2506 symbol information. Unfortunately, at this point we don't know
2507 whether a symbol is required by reloc information, so the two
2508 tables may wind up being different. We must sort out the external
2509 symbol information before we can set the final size of the .mdebug
2510 section, and we must set the size of the .mdebug section before we
2511 can relocate any sections, and we can't know which symbols are
2512 required by relocation until we relocate the sections.
2513 Fortunately, it is relatively unlikely that any symbol will be
2514 stripped but required by a reloc. In particular, it can not happen
2515 when generating a final executable. */
2516
2517 static bfd_boolean
2518 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2519 {
2520 struct extsym_info *einfo = data;
2521 bfd_boolean strip;
2522 asection *sec, *output_section;
2523
2524 if (h->root.indx == -2)
2525 strip = FALSE;
2526 else if ((h->root.def_dynamic
2527 || h->root.ref_dynamic
2528 || h->root.type == bfd_link_hash_new)
2529 && !h->root.def_regular
2530 && !h->root.ref_regular)
2531 strip = TRUE;
2532 else if (einfo->info->strip == strip_all
2533 || (einfo->info->strip == strip_some
2534 && bfd_hash_lookup (einfo->info->keep_hash,
2535 h->root.root.root.string,
2536 FALSE, FALSE) == NULL))
2537 strip = TRUE;
2538 else
2539 strip = FALSE;
2540
2541 if (strip)
2542 return TRUE;
2543
2544 if (h->esym.ifd == -2)
2545 {
2546 h->esym.jmptbl = 0;
2547 h->esym.cobol_main = 0;
2548 h->esym.weakext = 0;
2549 h->esym.reserved = 0;
2550 h->esym.ifd = ifdNil;
2551 h->esym.asym.value = 0;
2552 h->esym.asym.st = stGlobal;
2553
2554 if (h->root.root.type == bfd_link_hash_undefined
2555 || h->root.root.type == bfd_link_hash_undefweak)
2556 {
2557 const char *name;
2558
2559 /* Use undefined class. Also, set class and type for some
2560 special symbols. */
2561 name = h->root.root.root.string;
2562 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2563 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2564 {
2565 h->esym.asym.sc = scData;
2566 h->esym.asym.st = stLabel;
2567 h->esym.asym.value = 0;
2568 }
2569 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2570 {
2571 h->esym.asym.sc = scAbs;
2572 h->esym.asym.st = stLabel;
2573 h->esym.asym.value =
2574 mips_elf_hash_table (einfo->info)->procedure_count;
2575 }
2576 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2577 {
2578 h->esym.asym.sc = scAbs;
2579 h->esym.asym.st = stLabel;
2580 h->esym.asym.value = elf_gp (einfo->abfd);
2581 }
2582 else
2583 h->esym.asym.sc = scUndefined;
2584 }
2585 else if (h->root.root.type != bfd_link_hash_defined
2586 && h->root.root.type != bfd_link_hash_defweak)
2587 h->esym.asym.sc = scAbs;
2588 else
2589 {
2590 const char *name;
2591
2592 sec = h->root.root.u.def.section;
2593 output_section = sec->output_section;
2594
2595 /* When making a shared library and symbol h is the one from
2596 the another shared library, OUTPUT_SECTION may be null. */
2597 if (output_section == NULL)
2598 h->esym.asym.sc = scUndefined;
2599 else
2600 {
2601 name = bfd_section_name (output_section->owner, output_section);
2602
2603 if (strcmp (name, ".text") == 0)
2604 h->esym.asym.sc = scText;
2605 else if (strcmp (name, ".data") == 0)
2606 h->esym.asym.sc = scData;
2607 else if (strcmp (name, ".sdata") == 0)
2608 h->esym.asym.sc = scSData;
2609 else if (strcmp (name, ".rodata") == 0
2610 || strcmp (name, ".rdata") == 0)
2611 h->esym.asym.sc = scRData;
2612 else if (strcmp (name, ".bss") == 0)
2613 h->esym.asym.sc = scBss;
2614 else if (strcmp (name, ".sbss") == 0)
2615 h->esym.asym.sc = scSBss;
2616 else if (strcmp (name, ".init") == 0)
2617 h->esym.asym.sc = scInit;
2618 else if (strcmp (name, ".fini") == 0)
2619 h->esym.asym.sc = scFini;
2620 else
2621 h->esym.asym.sc = scAbs;
2622 }
2623 }
2624
2625 h->esym.asym.reserved = 0;
2626 h->esym.asym.index = indexNil;
2627 }
2628
2629 if (h->root.root.type == bfd_link_hash_common)
2630 h->esym.asym.value = h->root.root.u.c.size;
2631 else if (h->root.root.type == bfd_link_hash_defined
2632 || h->root.root.type == bfd_link_hash_defweak)
2633 {
2634 if (h->esym.asym.sc == scCommon)
2635 h->esym.asym.sc = scBss;
2636 else if (h->esym.asym.sc == scSCommon)
2637 h->esym.asym.sc = scSBss;
2638
2639 sec = h->root.root.u.def.section;
2640 output_section = sec->output_section;
2641 if (output_section != NULL)
2642 h->esym.asym.value = (h->root.root.u.def.value
2643 + sec->output_offset
2644 + output_section->vma);
2645 else
2646 h->esym.asym.value = 0;
2647 }
2648 else
2649 {
2650 struct mips_elf_link_hash_entry *hd = h;
2651
2652 while (hd->root.root.type == bfd_link_hash_indirect)
2653 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2654
2655 if (hd->needs_lazy_stub)
2656 {
2657 /* Set type and value for a symbol with a function stub. */
2658 h->esym.asym.st = stProc;
2659 sec = hd->root.root.u.def.section;
2660 if (sec == NULL)
2661 h->esym.asym.value = 0;
2662 else
2663 {
2664 output_section = sec->output_section;
2665 if (output_section != NULL)
2666 h->esym.asym.value = (hd->root.plt.offset
2667 + sec->output_offset
2668 + output_section->vma);
2669 else
2670 h->esym.asym.value = 0;
2671 }
2672 }
2673 }
2674
2675 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2676 h->root.root.root.string,
2677 &h->esym))
2678 {
2679 einfo->failed = TRUE;
2680 return FALSE;
2681 }
2682
2683 return TRUE;
2684 }
2685
2686 /* A comparison routine used to sort .gptab entries. */
2687
2688 static int
2689 gptab_compare (const void *p1, const void *p2)
2690 {
2691 const Elf32_gptab *a1 = p1;
2692 const Elf32_gptab *a2 = p2;
2693
2694 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2695 }
2696 \f
2697 /* Functions to manage the got entry hash table. */
2698
2699 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2700 hash number. */
2701
2702 static INLINE hashval_t
2703 mips_elf_hash_bfd_vma (bfd_vma addr)
2704 {
2705 #ifdef BFD64
2706 return addr + (addr >> 32);
2707 #else
2708 return addr;
2709 #endif
2710 }
2711
2712 /* got_entries only match if they're identical, except for gotidx, so
2713 use all fields to compute the hash, and compare the appropriate
2714 union members. */
2715
2716 static hashval_t
2717 mips_elf_got_entry_hash (const void *entry_)
2718 {
2719 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2720
2721 return entry->symndx
2722 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2723 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2724 : entry->abfd->id
2725 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2726 : entry->d.h->root.root.root.hash));
2727 }
2728
2729 static int
2730 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2731 {
2732 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2733 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2734
2735 /* An LDM entry can only match another LDM entry. */
2736 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2737 return 0;
2738
2739 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2740 && (! e1->abfd ? e1->d.address == e2->d.address
2741 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2742 : e1->d.h == e2->d.h);
2743 }
2744
2745 /* multi_got_entries are still a match in the case of global objects,
2746 even if the input bfd in which they're referenced differs, so the
2747 hash computation and compare functions are adjusted
2748 accordingly. */
2749
2750 static hashval_t
2751 mips_elf_multi_got_entry_hash (const void *entry_)
2752 {
2753 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2754
2755 return entry->symndx
2756 + (! entry->abfd
2757 ? mips_elf_hash_bfd_vma (entry->d.address)
2758 : entry->symndx >= 0
2759 ? ((entry->tls_type & GOT_TLS_LDM)
2760 ? (GOT_TLS_LDM << 17)
2761 : (entry->abfd->id
2762 + mips_elf_hash_bfd_vma (entry->d.addend)))
2763 : entry->d.h->root.root.root.hash);
2764 }
2765
2766 static int
2767 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2768 {
2769 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2770 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2771
2772 /* Any two LDM entries match. */
2773 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2774 return 1;
2775
2776 /* Nothing else matches an LDM entry. */
2777 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2778 return 0;
2779
2780 return e1->symndx == e2->symndx
2781 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2782 : e1->abfd == NULL || e2->abfd == NULL
2783 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2784 : e1->d.h == e2->d.h);
2785 }
2786
2787 static hashval_t
2788 mips_got_page_entry_hash (const void *entry_)
2789 {
2790 const struct mips_got_page_entry *entry;
2791
2792 entry = (const struct mips_got_page_entry *) entry_;
2793 return entry->abfd->id + entry->symndx;
2794 }
2795
2796 static int
2797 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2798 {
2799 const struct mips_got_page_entry *entry1, *entry2;
2800
2801 entry1 = (const struct mips_got_page_entry *) entry1_;
2802 entry2 = (const struct mips_got_page_entry *) entry2_;
2803 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2804 }
2805 \f
2806 /* Return the dynamic relocation section. If it doesn't exist, try to
2807 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2808 if creation fails. */
2809
2810 static asection *
2811 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2812 {
2813 const char *dname;
2814 asection *sreloc;
2815 bfd *dynobj;
2816
2817 dname = MIPS_ELF_REL_DYN_NAME (info);
2818 dynobj = elf_hash_table (info)->dynobj;
2819 sreloc = bfd_get_section_by_name (dynobj, dname);
2820 if (sreloc == NULL && create_p)
2821 {
2822 sreloc = bfd_make_section_with_flags (dynobj, dname,
2823 (SEC_ALLOC
2824 | SEC_LOAD
2825 | SEC_HAS_CONTENTS
2826 | SEC_IN_MEMORY
2827 | SEC_LINKER_CREATED
2828 | SEC_READONLY));
2829 if (sreloc == NULL
2830 || ! bfd_set_section_alignment (dynobj, sreloc,
2831 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2832 return NULL;
2833 }
2834 return sreloc;
2835 }
2836
2837 /* Count the number of relocations needed for a TLS GOT entry, with
2838 access types from TLS_TYPE, and symbol H (or a local symbol if H
2839 is NULL). */
2840
2841 static int
2842 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2843 struct elf_link_hash_entry *h)
2844 {
2845 int indx = 0;
2846 int ret = 0;
2847 bfd_boolean need_relocs = FALSE;
2848 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2849
2850 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2851 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2852 indx = h->dynindx;
2853
2854 if ((info->shared || indx != 0)
2855 && (h == NULL
2856 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2857 || h->root.type != bfd_link_hash_undefweak))
2858 need_relocs = TRUE;
2859
2860 if (!need_relocs)
2861 return FALSE;
2862
2863 if (tls_type & GOT_TLS_GD)
2864 {
2865 ret++;
2866 if (indx != 0)
2867 ret++;
2868 }
2869
2870 if (tls_type & GOT_TLS_IE)
2871 ret++;
2872
2873 if ((tls_type & GOT_TLS_LDM) && info->shared)
2874 ret++;
2875
2876 return ret;
2877 }
2878
2879 /* Count the number of TLS relocations required for the GOT entry in
2880 ARG1, if it describes a local symbol. */
2881
2882 static int
2883 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2884 {
2885 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2886 struct mips_elf_count_tls_arg *arg = arg2;
2887
2888 if (entry->abfd != NULL && entry->symndx != -1)
2889 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2890
2891 return 1;
2892 }
2893
2894 /* Count the number of TLS GOT entries required for the global (or
2895 forced-local) symbol in ARG1. */
2896
2897 static int
2898 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2899 {
2900 struct mips_elf_link_hash_entry *hm
2901 = (struct mips_elf_link_hash_entry *) arg1;
2902 struct mips_elf_count_tls_arg *arg = arg2;
2903
2904 if (hm->tls_type & GOT_TLS_GD)
2905 arg->needed += 2;
2906 if (hm->tls_type & GOT_TLS_IE)
2907 arg->needed += 1;
2908
2909 return 1;
2910 }
2911
2912 /* Count the number of TLS relocations required for the global (or
2913 forced-local) symbol in ARG1. */
2914
2915 static int
2916 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2917 {
2918 struct mips_elf_link_hash_entry *hm
2919 = (struct mips_elf_link_hash_entry *) arg1;
2920 struct mips_elf_count_tls_arg *arg = arg2;
2921
2922 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2923
2924 return 1;
2925 }
2926
2927 /* Output a simple dynamic relocation into SRELOC. */
2928
2929 static void
2930 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2931 asection *sreloc,
2932 unsigned long reloc_index,
2933 unsigned long indx,
2934 int r_type,
2935 bfd_vma offset)
2936 {
2937 Elf_Internal_Rela rel[3];
2938
2939 memset (rel, 0, sizeof (rel));
2940
2941 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2942 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2943
2944 if (ABI_64_P (output_bfd))
2945 {
2946 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2947 (output_bfd, &rel[0],
2948 (sreloc->contents
2949 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
2950 }
2951 else
2952 bfd_elf32_swap_reloc_out
2953 (output_bfd, &rel[0],
2954 (sreloc->contents
2955 + reloc_index * sizeof (Elf32_External_Rel)));
2956 }
2957
2958 /* Initialize a set of TLS GOT entries for one symbol. */
2959
2960 static void
2961 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2962 unsigned char *tls_type_p,
2963 struct bfd_link_info *info,
2964 struct mips_elf_link_hash_entry *h,
2965 bfd_vma value)
2966 {
2967 struct mips_elf_link_hash_table *htab;
2968 int indx;
2969 asection *sreloc, *sgot;
2970 bfd_vma offset, offset2;
2971 bfd_boolean need_relocs = FALSE;
2972
2973 htab = mips_elf_hash_table (info);
2974 if (htab == NULL)
2975 return;
2976
2977 sgot = htab->sgot;
2978
2979 indx = 0;
2980 if (h != NULL)
2981 {
2982 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2983
2984 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2985 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2986 indx = h->root.dynindx;
2987 }
2988
2989 if (*tls_type_p & GOT_TLS_DONE)
2990 return;
2991
2992 if ((info->shared || indx != 0)
2993 && (h == NULL
2994 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2995 || h->root.type != bfd_link_hash_undefweak))
2996 need_relocs = TRUE;
2997
2998 /* MINUS_ONE means the symbol is not defined in this object. It may not
2999 be defined at all; assume that the value doesn't matter in that
3000 case. Otherwise complain if we would use the value. */
3001 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3002 || h->root.root.type == bfd_link_hash_undefweak);
3003
3004 /* Emit necessary relocations. */
3005 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3006
3007 /* General Dynamic. */
3008 if (*tls_type_p & GOT_TLS_GD)
3009 {
3010 offset = got_offset;
3011 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
3012
3013 if (need_relocs)
3014 {
3015 mips_elf_output_dynamic_relocation
3016 (abfd, sreloc, sreloc->reloc_count++, indx,
3017 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3018 sgot->output_offset + sgot->output_section->vma + offset);
3019
3020 if (indx)
3021 mips_elf_output_dynamic_relocation
3022 (abfd, sreloc, sreloc->reloc_count++, indx,
3023 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3024 sgot->output_offset + sgot->output_section->vma + offset2);
3025 else
3026 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3027 sgot->contents + offset2);
3028 }
3029 else
3030 {
3031 MIPS_ELF_PUT_WORD (abfd, 1,
3032 sgot->contents + offset);
3033 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3034 sgot->contents + offset2);
3035 }
3036
3037 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
3038 }
3039
3040 /* Initial Exec model. */
3041 if (*tls_type_p & GOT_TLS_IE)
3042 {
3043 offset = got_offset;
3044
3045 if (need_relocs)
3046 {
3047 if (indx == 0)
3048 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3049 sgot->contents + offset);
3050 else
3051 MIPS_ELF_PUT_WORD (abfd, 0,
3052 sgot->contents + offset);
3053
3054 mips_elf_output_dynamic_relocation
3055 (abfd, sreloc, sreloc->reloc_count++, indx,
3056 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3057 sgot->output_offset + sgot->output_section->vma + offset);
3058 }
3059 else
3060 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3061 sgot->contents + offset);
3062 }
3063
3064 if (*tls_type_p & GOT_TLS_LDM)
3065 {
3066 /* The initial offset is zero, and the LD offsets will include the
3067 bias by DTP_OFFSET. */
3068 MIPS_ELF_PUT_WORD (abfd, 0,
3069 sgot->contents + got_offset
3070 + MIPS_ELF_GOT_SIZE (abfd));
3071
3072 if (!info->shared)
3073 MIPS_ELF_PUT_WORD (abfd, 1,
3074 sgot->contents + got_offset);
3075 else
3076 mips_elf_output_dynamic_relocation
3077 (abfd, sreloc, sreloc->reloc_count++, indx,
3078 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3079 sgot->output_offset + sgot->output_section->vma + got_offset);
3080 }
3081
3082 *tls_type_p |= GOT_TLS_DONE;
3083 }
3084
3085 /* Return the GOT index to use for a relocation of type R_TYPE against
3086 a symbol accessed using TLS_TYPE models. The GOT entries for this
3087 symbol in this GOT start at GOT_INDEX. This function initializes the
3088 GOT entries and corresponding relocations. */
3089
3090 static bfd_vma
3091 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
3092 int r_type, struct bfd_link_info *info,
3093 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3094 {
3095 BFD_ASSERT (tls_gottprel_reloc_p (r_type)
3096 || tls_gd_reloc_p (r_type)
3097 || tls_ldm_reloc_p (r_type));
3098
3099 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
3100
3101 if (tls_gottprel_reloc_p (r_type))
3102 {
3103 BFD_ASSERT (*tls_type & GOT_TLS_IE);
3104 if (*tls_type & GOT_TLS_GD)
3105 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
3106 else
3107 return got_index;
3108 }
3109
3110 if (tls_gd_reloc_p (r_type))
3111 {
3112 BFD_ASSERT (*tls_type & GOT_TLS_GD);
3113 return got_index;
3114 }
3115
3116 if (tls_ldm_reloc_p (r_type))
3117 {
3118 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3119 return got_index;
3120 }
3121
3122 return got_index;
3123 }
3124
3125 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3126 for global symbol H. .got.plt comes before the GOT, so the offset
3127 will be negative. */
3128
3129 static bfd_vma
3130 mips_elf_gotplt_index (struct bfd_link_info *info,
3131 struct elf_link_hash_entry *h)
3132 {
3133 bfd_vma plt_index, got_address, got_value;
3134 struct mips_elf_link_hash_table *htab;
3135
3136 htab = mips_elf_hash_table (info);
3137 BFD_ASSERT (htab != NULL);
3138
3139 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3140
3141 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3142 section starts with reserved entries. */
3143 BFD_ASSERT (htab->is_vxworks);
3144
3145 /* Calculate the index of the symbol's PLT entry. */
3146 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3147
3148 /* Calculate the address of the associated .got.plt entry. */
3149 got_address = (htab->sgotplt->output_section->vma
3150 + htab->sgotplt->output_offset
3151 + plt_index * 4);
3152
3153 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3154 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3155 + htab->root.hgot->root.u.def.section->output_offset
3156 + htab->root.hgot->root.u.def.value);
3157
3158 return got_address - got_value;
3159 }
3160
3161 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3162 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3163 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3164 offset can be found. */
3165
3166 static bfd_vma
3167 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3168 bfd_vma value, unsigned long r_symndx,
3169 struct mips_elf_link_hash_entry *h, int r_type)
3170 {
3171 struct mips_elf_link_hash_table *htab;
3172 struct mips_got_entry *entry;
3173
3174 htab = mips_elf_hash_table (info);
3175 BFD_ASSERT (htab != NULL);
3176
3177 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3178 r_symndx, h, r_type);
3179 if (!entry)
3180 return MINUS_ONE;
3181
3182 if (TLS_RELOC_P (r_type))
3183 {
3184 if (entry->symndx == -1 && htab->got_info->next == NULL)
3185 /* A type (3) entry in the single-GOT case. We use the symbol's
3186 hash table entry to track the index. */
3187 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3188 r_type, info, h, value);
3189 else
3190 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3191 r_type, info, h, value);
3192 }
3193 else
3194 return entry->gotidx;
3195 }
3196
3197 /* Returns the GOT index for the global symbol indicated by H. */
3198
3199 static bfd_vma
3200 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3201 int r_type, struct bfd_link_info *info)
3202 {
3203 struct mips_elf_link_hash_table *htab;
3204 bfd_vma got_index;
3205 struct mips_got_info *g, *gg;
3206 long global_got_dynindx = 0;
3207
3208 htab = mips_elf_hash_table (info);
3209 BFD_ASSERT (htab != NULL);
3210
3211 gg = g = htab->got_info;
3212 if (g->bfd2got && ibfd)
3213 {
3214 struct mips_got_entry e, *p;
3215
3216 BFD_ASSERT (h->dynindx >= 0);
3217
3218 g = mips_elf_got_for_ibfd (g, ibfd);
3219 if (g->next != gg || TLS_RELOC_P (r_type))
3220 {
3221 e.abfd = ibfd;
3222 e.symndx = -1;
3223 e.d.h = (struct mips_elf_link_hash_entry *)h;
3224 e.tls_type = 0;
3225
3226 p = htab_find (g->got_entries, &e);
3227
3228 BFD_ASSERT (p->gotidx > 0);
3229
3230 if (TLS_RELOC_P (r_type))
3231 {
3232 bfd_vma value = MINUS_ONE;
3233 if ((h->root.type == bfd_link_hash_defined
3234 || h->root.type == bfd_link_hash_defweak)
3235 && h->root.u.def.section->output_section)
3236 value = (h->root.u.def.value
3237 + h->root.u.def.section->output_offset
3238 + h->root.u.def.section->output_section->vma);
3239
3240 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3241 info, e.d.h, value);
3242 }
3243 else
3244 return p->gotidx;
3245 }
3246 }
3247
3248 if (gg->global_gotsym != NULL)
3249 global_got_dynindx = gg->global_gotsym->dynindx;
3250
3251 if (TLS_RELOC_P (r_type))
3252 {
3253 struct mips_elf_link_hash_entry *hm
3254 = (struct mips_elf_link_hash_entry *) h;
3255 bfd_vma value = MINUS_ONE;
3256
3257 if ((h->root.type == bfd_link_hash_defined
3258 || h->root.type == bfd_link_hash_defweak)
3259 && h->root.u.def.section->output_section)
3260 value = (h->root.u.def.value
3261 + h->root.u.def.section->output_offset
3262 + h->root.u.def.section->output_section->vma);
3263
3264 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3265 r_type, info, hm, value);
3266 }
3267 else
3268 {
3269 /* Once we determine the global GOT entry with the lowest dynamic
3270 symbol table index, we must put all dynamic symbols with greater
3271 indices into the GOT. That makes it easy to calculate the GOT
3272 offset. */
3273 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3274 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3275 * MIPS_ELF_GOT_SIZE (abfd));
3276 }
3277 BFD_ASSERT (got_index < htab->sgot->size);
3278
3279 return got_index;
3280 }
3281
3282 /* Find a GOT page entry that points to within 32KB of VALUE. These
3283 entries are supposed to be placed at small offsets in the GOT, i.e.,
3284 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3285 entry could be created. If OFFSETP is nonnull, use it to return the
3286 offset of the GOT entry from VALUE. */
3287
3288 static bfd_vma
3289 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3290 bfd_vma value, bfd_vma *offsetp)
3291 {
3292 bfd_vma page, got_index;
3293 struct mips_got_entry *entry;
3294
3295 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3296 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3297 NULL, R_MIPS_GOT_PAGE);
3298
3299 if (!entry)
3300 return MINUS_ONE;
3301
3302 got_index = entry->gotidx;
3303
3304 if (offsetp)
3305 *offsetp = value - entry->d.address;
3306
3307 return got_index;
3308 }
3309
3310 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3311 EXTERNAL is true if the relocation was originally against a global
3312 symbol that binds locally. */
3313
3314 static bfd_vma
3315 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3316 bfd_vma value, bfd_boolean external)
3317 {
3318 struct mips_got_entry *entry;
3319
3320 /* GOT16 relocations against local symbols are followed by a LO16
3321 relocation; those against global symbols are not. Thus if the
3322 symbol was originally local, the GOT16 relocation should load the
3323 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3324 if (! external)
3325 value = mips_elf_high (value) << 16;
3326
3327 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3328 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3329 same in all cases. */
3330 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3331 NULL, R_MIPS_GOT16);
3332 if (entry)
3333 return entry->gotidx;
3334 else
3335 return MINUS_ONE;
3336 }
3337
3338 /* Returns the offset for the entry at the INDEXth position
3339 in the GOT. */
3340
3341 static bfd_vma
3342 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3343 bfd *input_bfd, bfd_vma got_index)
3344 {
3345 struct mips_elf_link_hash_table *htab;
3346 asection *sgot;
3347 bfd_vma gp;
3348
3349 htab = mips_elf_hash_table (info);
3350 BFD_ASSERT (htab != NULL);
3351
3352 sgot = htab->sgot;
3353 gp = _bfd_get_gp_value (output_bfd)
3354 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3355
3356 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3357 }
3358
3359 /* Create and return a local GOT entry for VALUE, which was calculated
3360 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3361 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3362 instead. */
3363
3364 static struct mips_got_entry *
3365 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3366 bfd *ibfd, bfd_vma value,
3367 unsigned long r_symndx,
3368 struct mips_elf_link_hash_entry *h,
3369 int r_type)
3370 {
3371 struct mips_got_entry entry, **loc;
3372 struct mips_got_info *g;
3373 struct mips_elf_link_hash_table *htab;
3374
3375 htab = mips_elf_hash_table (info);
3376 BFD_ASSERT (htab != NULL);
3377
3378 entry.abfd = NULL;
3379 entry.symndx = -1;
3380 entry.d.address = value;
3381 entry.tls_type = 0;
3382
3383 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3384 if (g == NULL)
3385 {
3386 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3387 BFD_ASSERT (g != NULL);
3388 }
3389
3390 /* This function shouldn't be called for symbols that live in the global
3391 area of the GOT. */
3392 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3393 if (TLS_RELOC_P (r_type))
3394 {
3395 struct mips_got_entry *p;
3396
3397 entry.abfd = ibfd;
3398 if (tls_ldm_reloc_p (r_type))
3399 {
3400 entry.tls_type = GOT_TLS_LDM;
3401 entry.symndx = 0;
3402 entry.d.addend = 0;
3403 }
3404 else if (h == NULL)
3405 {
3406 entry.symndx = r_symndx;
3407 entry.d.addend = 0;
3408 }
3409 else
3410 entry.d.h = h;
3411
3412 p = (struct mips_got_entry *)
3413 htab_find (g->got_entries, &entry);
3414
3415 BFD_ASSERT (p);
3416 return p;
3417 }
3418
3419 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3420 INSERT);
3421 if (*loc)
3422 return *loc;
3423
3424 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3425 entry.tls_type = 0;
3426
3427 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3428
3429 if (! *loc)
3430 return NULL;
3431
3432 memcpy (*loc, &entry, sizeof entry);
3433
3434 if (g->assigned_gotno > g->local_gotno)
3435 {
3436 (*loc)->gotidx = -1;
3437 /* We didn't allocate enough space in the GOT. */
3438 (*_bfd_error_handler)
3439 (_("not enough GOT space for local GOT entries"));
3440 bfd_set_error (bfd_error_bad_value);
3441 return NULL;
3442 }
3443
3444 MIPS_ELF_PUT_WORD (abfd, value,
3445 (htab->sgot->contents + entry.gotidx));
3446
3447 /* These GOT entries need a dynamic relocation on VxWorks. */
3448 if (htab->is_vxworks)
3449 {
3450 Elf_Internal_Rela outrel;
3451 asection *s;
3452 bfd_byte *rloc;
3453 bfd_vma got_address;
3454
3455 s = mips_elf_rel_dyn_section (info, FALSE);
3456 got_address = (htab->sgot->output_section->vma
3457 + htab->sgot->output_offset
3458 + entry.gotidx);
3459
3460 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3461 outrel.r_offset = got_address;
3462 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3463 outrel.r_addend = value;
3464 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3465 }
3466
3467 return *loc;
3468 }
3469
3470 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3471 The number might be exact or a worst-case estimate, depending on how
3472 much information is available to elf_backend_omit_section_dynsym at
3473 the current linking stage. */
3474
3475 static bfd_size_type
3476 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3477 {
3478 bfd_size_type count;
3479
3480 count = 0;
3481 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3482 {
3483 asection *p;
3484 const struct elf_backend_data *bed;
3485
3486 bed = get_elf_backend_data (output_bfd);
3487 for (p = output_bfd->sections; p ; p = p->next)
3488 if ((p->flags & SEC_EXCLUDE) == 0
3489 && (p->flags & SEC_ALLOC) != 0
3490 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3491 ++count;
3492 }
3493 return count;
3494 }
3495
3496 /* Sort the dynamic symbol table so that symbols that need GOT entries
3497 appear towards the end. */
3498
3499 static bfd_boolean
3500 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3501 {
3502 struct mips_elf_link_hash_table *htab;
3503 struct mips_elf_hash_sort_data hsd;
3504 struct mips_got_info *g;
3505
3506 if (elf_hash_table (info)->dynsymcount == 0)
3507 return TRUE;
3508
3509 htab = mips_elf_hash_table (info);
3510 BFD_ASSERT (htab != NULL);
3511
3512 g = htab->got_info;
3513 if (g == NULL)
3514 return TRUE;
3515
3516 hsd.low = NULL;
3517 hsd.max_unref_got_dynindx
3518 = hsd.min_got_dynindx
3519 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3520 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3521 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3522 elf_hash_table (info)),
3523 mips_elf_sort_hash_table_f,
3524 &hsd);
3525
3526 /* There should have been enough room in the symbol table to
3527 accommodate both the GOT and non-GOT symbols. */
3528 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3529 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3530 == elf_hash_table (info)->dynsymcount);
3531 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3532 == g->global_gotno);
3533
3534 /* Now we know which dynamic symbol has the lowest dynamic symbol
3535 table index in the GOT. */
3536 g->global_gotsym = hsd.low;
3537
3538 return TRUE;
3539 }
3540
3541 /* If H needs a GOT entry, assign it the highest available dynamic
3542 index. Otherwise, assign it the lowest available dynamic
3543 index. */
3544
3545 static bfd_boolean
3546 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3547 {
3548 struct mips_elf_hash_sort_data *hsd = data;
3549
3550 /* Symbols without dynamic symbol table entries aren't interesting
3551 at all. */
3552 if (h->root.dynindx == -1)
3553 return TRUE;
3554
3555 switch (h->global_got_area)
3556 {
3557 case GGA_NONE:
3558 h->root.dynindx = hsd->max_non_got_dynindx++;
3559 break;
3560
3561 case GGA_NORMAL:
3562 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3563
3564 h->root.dynindx = --hsd->min_got_dynindx;
3565 hsd->low = (struct elf_link_hash_entry *) h;
3566 break;
3567
3568 case GGA_RELOC_ONLY:
3569 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3570
3571 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3572 hsd->low = (struct elf_link_hash_entry *) h;
3573 h->root.dynindx = hsd->max_unref_got_dynindx++;
3574 break;
3575 }
3576
3577 return TRUE;
3578 }
3579
3580 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3581 symbol table index lower than any we've seen to date, record it for
3582 posterity. FOR_CALL is true if the caller is only interested in
3583 using the GOT entry for calls. */
3584
3585 static bfd_boolean
3586 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3587 bfd *abfd, struct bfd_link_info *info,
3588 bfd_boolean for_call,
3589 unsigned char tls_flag)
3590 {
3591 struct mips_elf_link_hash_table *htab;
3592 struct mips_elf_link_hash_entry *hmips;
3593 struct mips_got_entry entry, **loc;
3594 struct mips_got_info *g;
3595
3596 htab = mips_elf_hash_table (info);
3597 BFD_ASSERT (htab != NULL);
3598
3599 hmips = (struct mips_elf_link_hash_entry *) h;
3600 if (!for_call)
3601 hmips->got_only_for_calls = FALSE;
3602
3603 /* A global symbol in the GOT must also be in the dynamic symbol
3604 table. */
3605 if (h->dynindx == -1)
3606 {
3607 switch (ELF_ST_VISIBILITY (h->other))
3608 {
3609 case STV_INTERNAL:
3610 case STV_HIDDEN:
3611 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3612 break;
3613 }
3614 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3615 return FALSE;
3616 }
3617
3618 /* Make sure we have a GOT to put this entry into. */
3619 g = htab->got_info;
3620 BFD_ASSERT (g != NULL);
3621
3622 entry.abfd = abfd;
3623 entry.symndx = -1;
3624 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3625 entry.tls_type = 0;
3626
3627 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3628 INSERT);
3629
3630 /* If we've already marked this entry as needing GOT space, we don't
3631 need to do it again. */
3632 if (*loc)
3633 {
3634 (*loc)->tls_type |= tls_flag;
3635 return TRUE;
3636 }
3637
3638 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3639
3640 if (! *loc)
3641 return FALSE;
3642
3643 entry.gotidx = -1;
3644 entry.tls_type = tls_flag;
3645
3646 memcpy (*loc, &entry, sizeof entry);
3647
3648 if (tls_flag == 0)
3649 hmips->global_got_area = GGA_NORMAL;
3650
3651 return TRUE;
3652 }
3653
3654 /* Reserve space in G for a GOT entry containing the value of symbol
3655 SYMNDX in input bfd ABDF, plus ADDEND. */
3656
3657 static bfd_boolean
3658 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3659 struct bfd_link_info *info,
3660 unsigned char tls_flag)
3661 {
3662 struct mips_elf_link_hash_table *htab;
3663 struct mips_got_info *g;
3664 struct mips_got_entry entry, **loc;
3665
3666 htab = mips_elf_hash_table (info);
3667 BFD_ASSERT (htab != NULL);
3668
3669 g = htab->got_info;
3670 BFD_ASSERT (g != NULL);
3671
3672 entry.abfd = abfd;
3673 entry.symndx = symndx;
3674 entry.d.addend = addend;
3675 entry.tls_type = tls_flag;
3676 loc = (struct mips_got_entry **)
3677 htab_find_slot (g->got_entries, &entry, INSERT);
3678
3679 if (*loc)
3680 {
3681 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3682 {
3683 g->tls_gotno += 2;
3684 (*loc)->tls_type |= tls_flag;
3685 }
3686 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3687 {
3688 g->tls_gotno += 1;
3689 (*loc)->tls_type |= tls_flag;
3690 }
3691 return TRUE;
3692 }
3693
3694 if (tls_flag != 0)
3695 {
3696 entry.gotidx = -1;
3697 entry.tls_type = tls_flag;
3698 if (tls_flag == GOT_TLS_IE)
3699 g->tls_gotno += 1;
3700 else if (tls_flag == GOT_TLS_GD)
3701 g->tls_gotno += 2;
3702 else if (g->tls_ldm_offset == MINUS_ONE)
3703 {
3704 g->tls_ldm_offset = MINUS_TWO;
3705 g->tls_gotno += 2;
3706 }
3707 }
3708 else
3709 {
3710 entry.gotidx = g->local_gotno++;
3711 entry.tls_type = 0;
3712 }
3713
3714 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3715
3716 if (! *loc)
3717 return FALSE;
3718
3719 memcpy (*loc, &entry, sizeof entry);
3720
3721 return TRUE;
3722 }
3723
3724 /* Return the maximum number of GOT page entries required for RANGE. */
3725
3726 static bfd_vma
3727 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3728 {
3729 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3730 }
3731
3732 /* Record that ABFD has a page relocation against symbol SYMNDX and
3733 that ADDEND is the addend for that relocation.
3734
3735 This function creates an upper bound on the number of GOT slots
3736 required; no attempt is made to combine references to non-overridable
3737 global symbols across multiple input files. */
3738
3739 static bfd_boolean
3740 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3741 long symndx, bfd_signed_vma addend)
3742 {
3743 struct mips_elf_link_hash_table *htab;
3744 struct mips_got_info *g;
3745 struct mips_got_page_entry lookup, *entry;
3746 struct mips_got_page_range **range_ptr, *range;
3747 bfd_vma old_pages, new_pages;
3748 void **loc;
3749
3750 htab = mips_elf_hash_table (info);
3751 BFD_ASSERT (htab != NULL);
3752
3753 g = htab->got_info;
3754 BFD_ASSERT (g != NULL);
3755
3756 /* Find the mips_got_page_entry hash table entry for this symbol. */
3757 lookup.abfd = abfd;
3758 lookup.symndx = symndx;
3759 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3760 if (loc == NULL)
3761 return FALSE;
3762
3763 /* Create a mips_got_page_entry if this is the first time we've
3764 seen the symbol. */
3765 entry = (struct mips_got_page_entry *) *loc;
3766 if (!entry)
3767 {
3768 entry = bfd_alloc (abfd, sizeof (*entry));
3769 if (!entry)
3770 return FALSE;
3771
3772 entry->abfd = abfd;
3773 entry->symndx = symndx;
3774 entry->ranges = NULL;
3775 entry->num_pages = 0;
3776 *loc = entry;
3777 }
3778
3779 /* Skip over ranges whose maximum extent cannot share a page entry
3780 with ADDEND. */
3781 range_ptr = &entry->ranges;
3782 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3783 range_ptr = &(*range_ptr)->next;
3784
3785 /* If we scanned to the end of the list, or found a range whose
3786 minimum extent cannot share a page entry with ADDEND, create
3787 a new singleton range. */
3788 range = *range_ptr;
3789 if (!range || addend < range->min_addend - 0xffff)
3790 {
3791 range = bfd_alloc (abfd, sizeof (*range));
3792 if (!range)
3793 return FALSE;
3794
3795 range->next = *range_ptr;
3796 range->min_addend = addend;
3797 range->max_addend = addend;
3798
3799 *range_ptr = range;
3800 entry->num_pages++;
3801 g->page_gotno++;
3802 return TRUE;
3803 }
3804
3805 /* Remember how many pages the old range contributed. */
3806 old_pages = mips_elf_pages_for_range (range);
3807
3808 /* Update the ranges. */
3809 if (addend < range->min_addend)
3810 range->min_addend = addend;
3811 else if (addend > range->max_addend)
3812 {
3813 if (range->next && addend >= range->next->min_addend - 0xffff)
3814 {
3815 old_pages += mips_elf_pages_for_range (range->next);
3816 range->max_addend = range->next->max_addend;
3817 range->next = range->next->next;
3818 }
3819 else
3820 range->max_addend = addend;
3821 }
3822
3823 /* Record any change in the total estimate. */
3824 new_pages = mips_elf_pages_for_range (range);
3825 if (old_pages != new_pages)
3826 {
3827 entry->num_pages += new_pages - old_pages;
3828 g->page_gotno += new_pages - old_pages;
3829 }
3830
3831 return TRUE;
3832 }
3833
3834 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3835
3836 static void
3837 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3838 unsigned int n)
3839 {
3840 asection *s;
3841 struct mips_elf_link_hash_table *htab;
3842
3843 htab = mips_elf_hash_table (info);
3844 BFD_ASSERT (htab != NULL);
3845
3846 s = mips_elf_rel_dyn_section (info, FALSE);
3847 BFD_ASSERT (s != NULL);
3848
3849 if (htab->is_vxworks)
3850 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3851 else
3852 {
3853 if (s->size == 0)
3854 {
3855 /* Make room for a null element. */
3856 s->size += MIPS_ELF_REL_SIZE (abfd);
3857 ++s->reloc_count;
3858 }
3859 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3860 }
3861 }
3862 \f
3863 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3864 if the GOT entry is for an indirect or warning symbol. */
3865
3866 static int
3867 mips_elf_check_recreate_got (void **entryp, void *data)
3868 {
3869 struct mips_got_entry *entry;
3870 bfd_boolean *must_recreate;
3871
3872 entry = (struct mips_got_entry *) *entryp;
3873 must_recreate = (bfd_boolean *) data;
3874 if (entry->abfd != NULL && entry->symndx == -1)
3875 {
3876 struct mips_elf_link_hash_entry *h;
3877
3878 h = entry->d.h;
3879 if (h->root.root.type == bfd_link_hash_indirect
3880 || h->root.root.type == bfd_link_hash_warning)
3881 {
3882 *must_recreate = TRUE;
3883 return 0;
3884 }
3885 }
3886 return 1;
3887 }
3888
3889 /* A htab_traverse callback for GOT entries. Add all entries to
3890 hash table *DATA, converting entries for indirect and warning
3891 symbols into entries for the target symbol. Set *DATA to null
3892 on error. */
3893
3894 static int
3895 mips_elf_recreate_got (void **entryp, void *data)
3896 {
3897 htab_t *new_got;
3898 struct mips_got_entry *entry;
3899 void **slot;
3900
3901 new_got = (htab_t *) data;
3902 entry = (struct mips_got_entry *) *entryp;
3903 if (entry->abfd != NULL && entry->symndx == -1)
3904 {
3905 struct mips_elf_link_hash_entry *h;
3906
3907 h = entry->d.h;
3908 while (h->root.root.type == bfd_link_hash_indirect
3909 || h->root.root.type == bfd_link_hash_warning)
3910 {
3911 BFD_ASSERT (h->global_got_area == GGA_NONE);
3912 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3913 }
3914 entry->d.h = h;
3915 }
3916 slot = htab_find_slot (*new_got, entry, INSERT);
3917 if (slot == NULL)
3918 {
3919 *new_got = NULL;
3920 return 0;
3921 }
3922 if (*slot == NULL)
3923 *slot = entry;
3924 else
3925 free (entry);
3926 return 1;
3927 }
3928
3929 /* If any entries in G->got_entries are for indirect or warning symbols,
3930 replace them with entries for the target symbol. */
3931
3932 static bfd_boolean
3933 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3934 {
3935 bfd_boolean must_recreate;
3936 htab_t new_got;
3937
3938 must_recreate = FALSE;
3939 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3940 if (must_recreate)
3941 {
3942 new_got = htab_create (htab_size (g->got_entries),
3943 mips_elf_got_entry_hash,
3944 mips_elf_got_entry_eq, NULL);
3945 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3946 if (new_got == NULL)
3947 return FALSE;
3948
3949 /* Each entry in g->got_entries has either been copied to new_got
3950 or freed. Now delete the hash table itself. */
3951 htab_delete (g->got_entries);
3952 g->got_entries = new_got;
3953 }
3954 return TRUE;
3955 }
3956
3957 /* A mips_elf_link_hash_traverse callback for which DATA points
3958 to the link_info structure. Count the number of type (3) entries
3959 in the master GOT. */
3960
3961 static int
3962 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
3963 {
3964 struct bfd_link_info *info;
3965 struct mips_elf_link_hash_table *htab;
3966 struct mips_got_info *g;
3967
3968 info = (struct bfd_link_info *) data;
3969 htab = mips_elf_hash_table (info);
3970 g = htab->got_info;
3971 if (h->global_got_area != GGA_NONE)
3972 {
3973 /* Make a final decision about whether the symbol belongs in the
3974 local or global GOT. Symbols that bind locally can (and in the
3975 case of forced-local symbols, must) live in the local GOT.
3976 Those that are aren't in the dynamic symbol table must also
3977 live in the local GOT.
3978
3979 Note that the former condition does not always imply the
3980 latter: symbols do not bind locally if they are completely
3981 undefined. We'll report undefined symbols later if appropriate. */
3982 if (h->root.dynindx == -1
3983 || (h->got_only_for_calls
3984 ? SYMBOL_CALLS_LOCAL (info, &h->root)
3985 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3986 {
3987 /* The symbol belongs in the local GOT. We no longer need this
3988 entry if it was only used for relocations; those relocations
3989 will be against the null or section symbol instead of H. */
3990 if (h->global_got_area != GGA_RELOC_ONLY)
3991 g->local_gotno++;
3992 h->global_got_area = GGA_NONE;
3993 }
3994 else if (htab->is_vxworks
3995 && h->got_only_for_calls
3996 && h->root.plt.offset != MINUS_ONE)
3997 /* On VxWorks, calls can refer directly to the .got.plt entry;
3998 they don't need entries in the regular GOT. .got.plt entries
3999 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4000 h->global_got_area = GGA_NONE;
4001 else
4002 {
4003 g->global_gotno++;
4004 if (h->global_got_area == GGA_RELOC_ONLY)
4005 g->reloc_only_gotno++;
4006 }
4007 }
4008 return 1;
4009 }
4010 \f
4011 /* Compute the hash value of the bfd in a bfd2got hash entry. */
4012
4013 static hashval_t
4014 mips_elf_bfd2got_entry_hash (const void *entry_)
4015 {
4016 const struct mips_elf_bfd2got_hash *entry
4017 = (struct mips_elf_bfd2got_hash *)entry_;
4018
4019 return entry->bfd->id;
4020 }
4021
4022 /* Check whether two hash entries have the same bfd. */
4023
4024 static int
4025 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
4026 {
4027 const struct mips_elf_bfd2got_hash *e1
4028 = (const struct mips_elf_bfd2got_hash *)entry1;
4029 const struct mips_elf_bfd2got_hash *e2
4030 = (const struct mips_elf_bfd2got_hash *)entry2;
4031
4032 return e1->bfd == e2->bfd;
4033 }
4034
4035 /* In a multi-got link, determine the GOT to be used for IBFD. G must
4036 be the master GOT data. */
4037
4038 static struct mips_got_info *
4039 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
4040 {
4041 struct mips_elf_bfd2got_hash e, *p;
4042
4043 if (! g->bfd2got)
4044 return g;
4045
4046 e.bfd = ibfd;
4047 p = htab_find (g->bfd2got, &e);
4048 return p ? p->g : NULL;
4049 }
4050
4051 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
4052 Return NULL if an error occured. */
4053
4054 static struct mips_got_info *
4055 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
4056 bfd *input_bfd)
4057 {
4058 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
4059 struct mips_got_info *g;
4060 void **bfdgotp;
4061
4062 bfdgot_entry.bfd = input_bfd;
4063 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
4064 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
4065
4066 if (bfdgot == NULL)
4067 {
4068 bfdgot = ((struct mips_elf_bfd2got_hash *)
4069 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
4070 if (bfdgot == NULL)
4071 return NULL;
4072
4073 *bfdgotp = bfdgot;
4074
4075 g = ((struct mips_got_info *)
4076 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
4077 if (g == NULL)
4078 return NULL;
4079
4080 bfdgot->bfd = input_bfd;
4081 bfdgot->g = g;
4082
4083 g->global_gotsym = NULL;
4084 g->global_gotno = 0;
4085 g->reloc_only_gotno = 0;
4086 g->local_gotno = 0;
4087 g->page_gotno = 0;
4088 g->assigned_gotno = -1;
4089 g->tls_gotno = 0;
4090 g->tls_assigned_gotno = 0;
4091 g->tls_ldm_offset = MINUS_ONE;
4092 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4093 mips_elf_multi_got_entry_eq, NULL);
4094 if (g->got_entries == NULL)
4095 return NULL;
4096
4097 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4098 mips_got_page_entry_eq, NULL);
4099 if (g->got_page_entries == NULL)
4100 return NULL;
4101
4102 g->bfd2got = NULL;
4103 g->next = NULL;
4104 }
4105
4106 return bfdgot->g;
4107 }
4108
4109 /* A htab_traverse callback for the entries in the master got.
4110 Create one separate got for each bfd that has entries in the global
4111 got, such that we can tell how many local and global entries each
4112 bfd requires. */
4113
4114 static int
4115 mips_elf_make_got_per_bfd (void **entryp, void *p)
4116 {
4117 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4118 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4119 struct mips_got_info *g;
4120
4121 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4122 if (g == NULL)
4123 {
4124 arg->obfd = NULL;
4125 return 0;
4126 }
4127
4128 /* Insert the GOT entry in the bfd's got entry hash table. */
4129 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4130 if (*entryp != NULL)
4131 return 1;
4132
4133 *entryp = entry;
4134
4135 if (entry->tls_type)
4136 {
4137 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4138 g->tls_gotno += 2;
4139 if (entry->tls_type & GOT_TLS_IE)
4140 g->tls_gotno += 1;
4141 }
4142 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
4143 ++g->local_gotno;
4144 else
4145 ++g->global_gotno;
4146
4147 return 1;
4148 }
4149
4150 /* A htab_traverse callback for the page entries in the master got.
4151 Associate each page entry with the bfd's got. */
4152
4153 static int
4154 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4155 {
4156 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4157 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4158 struct mips_got_info *g;
4159
4160 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4161 if (g == NULL)
4162 {
4163 arg->obfd = NULL;
4164 return 0;
4165 }
4166
4167 /* Insert the GOT entry in the bfd's got entry hash table. */
4168 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4169 if (*entryp != NULL)
4170 return 1;
4171
4172 *entryp = entry;
4173 g->page_gotno += entry->num_pages;
4174 return 1;
4175 }
4176
4177 /* Consider merging the got described by BFD2GOT with TO, using the
4178 information given by ARG. Return -1 if this would lead to overflow,
4179 1 if they were merged successfully, and 0 if a merge failed due to
4180 lack of memory. (These values are chosen so that nonnegative return
4181 values can be returned by a htab_traverse callback.) */
4182
4183 static int
4184 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4185 struct mips_got_info *to,
4186 struct mips_elf_got_per_bfd_arg *arg)
4187 {
4188 struct mips_got_info *from = bfd2got->g;
4189 unsigned int estimate;
4190
4191 /* Work out how many page entries we would need for the combined GOT. */
4192 estimate = arg->max_pages;
4193 if (estimate >= from->page_gotno + to->page_gotno)
4194 estimate = from->page_gotno + to->page_gotno;
4195
4196 /* And conservatively estimate how many local and TLS entries
4197 would be needed. */
4198 estimate += from->local_gotno + to->local_gotno;
4199 estimate += from->tls_gotno + to->tls_gotno;
4200
4201 /* If we're merging with the primary got, we will always have
4202 the full set of global entries. Otherwise estimate those
4203 conservatively as well. */
4204 if (to == arg->primary)
4205 estimate += arg->global_count;
4206 else
4207 estimate += from->global_gotno + to->global_gotno;
4208
4209 /* Bail out if the combined GOT might be too big. */
4210 if (estimate > arg->max_count)
4211 return -1;
4212
4213 /* Commit to the merge. Record that TO is now the bfd for this got. */
4214 bfd2got->g = to;
4215
4216 /* Transfer the bfd's got information from FROM to TO. */
4217 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4218 if (arg->obfd == NULL)
4219 return 0;
4220
4221 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4222 if (arg->obfd == NULL)
4223 return 0;
4224
4225 /* We don't have to worry about releasing memory of the actual
4226 got entries, since they're all in the master got_entries hash
4227 table anyway. */
4228 htab_delete (from->got_entries);
4229 htab_delete (from->got_page_entries);
4230 return 1;
4231 }
4232
4233 /* Attempt to merge gots of different input bfds. Try to use as much
4234 as possible of the primary got, since it doesn't require explicit
4235 dynamic relocations, but don't use bfds that would reference global
4236 symbols out of the addressable range. Failing the primary got,
4237 attempt to merge with the current got, or finish the current got
4238 and then make make the new got current. */
4239
4240 static int
4241 mips_elf_merge_gots (void **bfd2got_, void *p)
4242 {
4243 struct mips_elf_bfd2got_hash *bfd2got
4244 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4245 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4246 struct mips_got_info *g;
4247 unsigned int estimate;
4248 int result;
4249
4250 g = bfd2got->g;
4251
4252 /* Work out the number of page, local and TLS entries. */
4253 estimate = arg->max_pages;
4254 if (estimate > g->page_gotno)
4255 estimate = g->page_gotno;
4256 estimate += g->local_gotno + g->tls_gotno;
4257
4258 /* We place TLS GOT entries after both locals and globals. The globals
4259 for the primary GOT may overflow the normal GOT size limit, so be
4260 sure not to merge a GOT which requires TLS with the primary GOT in that
4261 case. This doesn't affect non-primary GOTs. */
4262 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4263
4264 if (estimate <= arg->max_count)
4265 {
4266 /* If we don't have a primary GOT, use it as
4267 a starting point for the primary GOT. */
4268 if (!arg->primary)
4269 {
4270 arg->primary = bfd2got->g;
4271 return 1;
4272 }
4273
4274 /* Try merging with the primary GOT. */
4275 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4276 if (result >= 0)
4277 return result;
4278 }
4279
4280 /* If we can merge with the last-created got, do it. */
4281 if (arg->current)
4282 {
4283 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4284 if (result >= 0)
4285 return result;
4286 }
4287
4288 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4289 fits; if it turns out that it doesn't, we'll get relocation
4290 overflows anyway. */
4291 g->next = arg->current;
4292 arg->current = g;
4293
4294 return 1;
4295 }
4296
4297 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4298 is null iff there is just a single GOT. */
4299
4300 static int
4301 mips_elf_initialize_tls_index (void **entryp, void *p)
4302 {
4303 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4304 struct mips_got_info *g = p;
4305 bfd_vma next_index;
4306 unsigned char tls_type;
4307
4308 /* We're only interested in TLS symbols. */
4309 if (entry->tls_type == 0)
4310 return 1;
4311
4312 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4313
4314 if (entry->symndx == -1 && g->next == NULL)
4315 {
4316 /* A type (3) got entry in the single-GOT case. We use the symbol's
4317 hash table entry to track its index. */
4318 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4319 return 1;
4320 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4321 entry->d.h->tls_got_offset = next_index;
4322 tls_type = entry->d.h->tls_type;
4323 }
4324 else
4325 {
4326 if (entry->tls_type & GOT_TLS_LDM)
4327 {
4328 /* There are separate mips_got_entry objects for each input bfd
4329 that requires an LDM entry. Make sure that all LDM entries in
4330 a GOT resolve to the same index. */
4331 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4332 {
4333 entry->gotidx = g->tls_ldm_offset;
4334 return 1;
4335 }
4336 g->tls_ldm_offset = next_index;
4337 }
4338 entry->gotidx = next_index;
4339 tls_type = entry->tls_type;
4340 }
4341
4342 /* Account for the entries we've just allocated. */
4343 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4344 g->tls_assigned_gotno += 2;
4345 if (tls_type & GOT_TLS_IE)
4346 g->tls_assigned_gotno += 1;
4347
4348 return 1;
4349 }
4350
4351 /* If passed a NULL mips_got_info in the argument, set the marker used
4352 to tell whether a global symbol needs a got entry (in the primary
4353 got) to the given VALUE.
4354
4355 If passed a pointer G to a mips_got_info in the argument (it must
4356 not be the primary GOT), compute the offset from the beginning of
4357 the (primary) GOT section to the entry in G corresponding to the
4358 global symbol. G's assigned_gotno must contain the index of the
4359 first available global GOT entry in G. VALUE must contain the size
4360 of a GOT entry in bytes. For each global GOT entry that requires a
4361 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4362 marked as not eligible for lazy resolution through a function
4363 stub. */
4364 static int
4365 mips_elf_set_global_got_offset (void **entryp, void *p)
4366 {
4367 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4368 struct mips_elf_set_global_got_offset_arg *arg
4369 = (struct mips_elf_set_global_got_offset_arg *)p;
4370 struct mips_got_info *g = arg->g;
4371
4372 if (g && entry->tls_type != GOT_NORMAL)
4373 arg->needed_relocs +=
4374 mips_tls_got_relocs (arg->info, entry->tls_type,
4375 entry->symndx == -1 ? &entry->d.h->root : NULL);
4376
4377 if (entry->abfd != NULL
4378 && entry->symndx == -1
4379 && entry->d.h->global_got_area != GGA_NONE)
4380 {
4381 if (g)
4382 {
4383 BFD_ASSERT (g->global_gotsym == NULL);
4384
4385 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4386 if (arg->info->shared
4387 || (elf_hash_table (arg->info)->dynamic_sections_created
4388 && entry->d.h->root.def_dynamic
4389 && !entry->d.h->root.def_regular))
4390 ++arg->needed_relocs;
4391 }
4392 else
4393 entry->d.h->global_got_area = arg->value;
4394 }
4395
4396 return 1;
4397 }
4398
4399 /* A htab_traverse callback for GOT entries for which DATA is the
4400 bfd_link_info. Forbid any global symbols from having traditional
4401 lazy-binding stubs. */
4402
4403 static int
4404 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4405 {
4406 struct bfd_link_info *info;
4407 struct mips_elf_link_hash_table *htab;
4408 struct mips_got_entry *entry;
4409
4410 entry = (struct mips_got_entry *) *entryp;
4411 info = (struct bfd_link_info *) data;
4412 htab = mips_elf_hash_table (info);
4413 BFD_ASSERT (htab != NULL);
4414
4415 if (entry->abfd != NULL
4416 && entry->symndx == -1
4417 && entry->d.h->needs_lazy_stub)
4418 {
4419 entry->d.h->needs_lazy_stub = FALSE;
4420 htab->lazy_stub_count--;
4421 }
4422
4423 return 1;
4424 }
4425
4426 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4427 the primary GOT. */
4428 static bfd_vma
4429 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4430 {
4431 if (g->bfd2got == NULL)
4432 return 0;
4433
4434 g = mips_elf_got_for_ibfd (g, ibfd);
4435 if (! g)
4436 return 0;
4437
4438 BFD_ASSERT (g->next);
4439
4440 g = g->next;
4441
4442 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4443 * MIPS_ELF_GOT_SIZE (abfd);
4444 }
4445
4446 /* Turn a single GOT that is too big for 16-bit addressing into
4447 a sequence of GOTs, each one 16-bit addressable. */
4448
4449 static bfd_boolean
4450 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4451 asection *got, bfd_size_type pages)
4452 {
4453 struct mips_elf_link_hash_table *htab;
4454 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4455 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4456 struct mips_got_info *g, *gg;
4457 unsigned int assign, needed_relocs;
4458 bfd *dynobj;
4459
4460 dynobj = elf_hash_table (info)->dynobj;
4461 htab = mips_elf_hash_table (info);
4462 BFD_ASSERT (htab != NULL);
4463
4464 g = htab->got_info;
4465 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4466 mips_elf_bfd2got_entry_eq, NULL);
4467 if (g->bfd2got == NULL)
4468 return FALSE;
4469
4470 got_per_bfd_arg.bfd2got = g->bfd2got;
4471 got_per_bfd_arg.obfd = abfd;
4472 got_per_bfd_arg.info = info;
4473
4474 /* Count how many GOT entries each input bfd requires, creating a
4475 map from bfd to got info while at that. */
4476 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4477 if (got_per_bfd_arg.obfd == NULL)
4478 return FALSE;
4479
4480 /* Also count how many page entries each input bfd requires. */
4481 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4482 &got_per_bfd_arg);
4483 if (got_per_bfd_arg.obfd == NULL)
4484 return FALSE;
4485
4486 got_per_bfd_arg.current = NULL;
4487 got_per_bfd_arg.primary = NULL;
4488 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4489 / MIPS_ELF_GOT_SIZE (abfd))
4490 - htab->reserved_gotno);
4491 got_per_bfd_arg.max_pages = pages;
4492 /* The number of globals that will be included in the primary GOT.
4493 See the calls to mips_elf_set_global_got_offset below for more
4494 information. */
4495 got_per_bfd_arg.global_count = g->global_gotno;
4496
4497 /* Try to merge the GOTs of input bfds together, as long as they
4498 don't seem to exceed the maximum GOT size, choosing one of them
4499 to be the primary GOT. */
4500 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4501 if (got_per_bfd_arg.obfd == NULL)
4502 return FALSE;
4503
4504 /* If we do not find any suitable primary GOT, create an empty one. */
4505 if (got_per_bfd_arg.primary == NULL)
4506 {
4507 g->next = (struct mips_got_info *)
4508 bfd_alloc (abfd, sizeof (struct mips_got_info));
4509 if (g->next == NULL)
4510 return FALSE;
4511
4512 g->next->global_gotsym = NULL;
4513 g->next->global_gotno = 0;
4514 g->next->reloc_only_gotno = 0;
4515 g->next->local_gotno = 0;
4516 g->next->page_gotno = 0;
4517 g->next->tls_gotno = 0;
4518 g->next->assigned_gotno = 0;
4519 g->next->tls_assigned_gotno = 0;
4520 g->next->tls_ldm_offset = MINUS_ONE;
4521 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4522 mips_elf_multi_got_entry_eq,
4523 NULL);
4524 if (g->next->got_entries == NULL)
4525 return FALSE;
4526 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4527 mips_got_page_entry_eq,
4528 NULL);
4529 if (g->next->got_page_entries == NULL)
4530 return FALSE;
4531 g->next->bfd2got = NULL;
4532 }
4533 else
4534 g->next = got_per_bfd_arg.primary;
4535 g->next->next = got_per_bfd_arg.current;
4536
4537 /* GG is now the master GOT, and G is the primary GOT. */
4538 gg = g;
4539 g = g->next;
4540
4541 /* Map the output bfd to the primary got. That's what we're going
4542 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4543 didn't mark in check_relocs, and we want a quick way to find it.
4544 We can't just use gg->next because we're going to reverse the
4545 list. */
4546 {
4547 struct mips_elf_bfd2got_hash *bfdgot;
4548 void **bfdgotp;
4549
4550 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4551 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4552
4553 if (bfdgot == NULL)
4554 return FALSE;
4555
4556 bfdgot->bfd = abfd;
4557 bfdgot->g = g;
4558 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4559
4560 BFD_ASSERT (*bfdgotp == NULL);
4561 *bfdgotp = bfdgot;
4562 }
4563
4564 /* Every symbol that is referenced in a dynamic relocation must be
4565 present in the primary GOT, so arrange for them to appear after
4566 those that are actually referenced. */
4567 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4568 g->global_gotno = gg->global_gotno;
4569
4570 set_got_offset_arg.g = NULL;
4571 set_got_offset_arg.value = GGA_RELOC_ONLY;
4572 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4573 &set_got_offset_arg);
4574 set_got_offset_arg.value = GGA_NORMAL;
4575 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4576 &set_got_offset_arg);
4577
4578 /* Now go through the GOTs assigning them offset ranges.
4579 [assigned_gotno, local_gotno[ will be set to the range of local
4580 entries in each GOT. We can then compute the end of a GOT by
4581 adding local_gotno to global_gotno. We reverse the list and make
4582 it circular since then we'll be able to quickly compute the
4583 beginning of a GOT, by computing the end of its predecessor. To
4584 avoid special cases for the primary GOT, while still preserving
4585 assertions that are valid for both single- and multi-got links,
4586 we arrange for the main got struct to have the right number of
4587 global entries, but set its local_gotno such that the initial
4588 offset of the primary GOT is zero. Remember that the primary GOT
4589 will become the last item in the circular linked list, so it
4590 points back to the master GOT. */
4591 gg->local_gotno = -g->global_gotno;
4592 gg->global_gotno = g->global_gotno;
4593 gg->tls_gotno = 0;
4594 assign = 0;
4595 gg->next = gg;
4596
4597 do
4598 {
4599 struct mips_got_info *gn;
4600
4601 assign += htab->reserved_gotno;
4602 g->assigned_gotno = assign;
4603 g->local_gotno += assign;
4604 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4605 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4606
4607 /* Take g out of the direct list, and push it onto the reversed
4608 list that gg points to. g->next is guaranteed to be nonnull after
4609 this operation, as required by mips_elf_initialize_tls_index. */
4610 gn = g->next;
4611 g->next = gg->next;
4612 gg->next = g;
4613
4614 /* Set up any TLS entries. We always place the TLS entries after
4615 all non-TLS entries. */
4616 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4617 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4618
4619 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4620 g = gn;
4621
4622 /* Forbid global symbols in every non-primary GOT from having
4623 lazy-binding stubs. */
4624 if (g)
4625 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4626 }
4627 while (g);
4628
4629 got->size = (gg->next->local_gotno
4630 + gg->next->global_gotno
4631 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4632
4633 needed_relocs = 0;
4634 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4635 set_got_offset_arg.info = info;
4636 for (g = gg->next; g && g->next != gg; g = g->next)
4637 {
4638 unsigned int save_assign;
4639
4640 /* Assign offsets to global GOT entries. */
4641 save_assign = g->assigned_gotno;
4642 g->assigned_gotno = g->local_gotno;
4643 set_got_offset_arg.g = g;
4644 set_got_offset_arg.needed_relocs = 0;
4645 htab_traverse (g->got_entries,
4646 mips_elf_set_global_got_offset,
4647 &set_got_offset_arg);
4648 needed_relocs += set_got_offset_arg.needed_relocs;
4649 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4650
4651 g->assigned_gotno = save_assign;
4652 if (info->shared)
4653 {
4654 needed_relocs += g->local_gotno - g->assigned_gotno;
4655 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4656 + g->next->global_gotno
4657 + g->next->tls_gotno
4658 + htab->reserved_gotno);
4659 }
4660 }
4661
4662 if (needed_relocs)
4663 mips_elf_allocate_dynamic_relocations (dynobj, info,
4664 needed_relocs);
4665
4666 return TRUE;
4667 }
4668
4669 \f
4670 /* Returns the first relocation of type r_type found, beginning with
4671 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4672
4673 static const Elf_Internal_Rela *
4674 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4675 const Elf_Internal_Rela *relocation,
4676 const Elf_Internal_Rela *relend)
4677 {
4678 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4679
4680 while (relocation < relend)
4681 {
4682 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4683 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4684 return relocation;
4685
4686 ++relocation;
4687 }
4688
4689 /* We didn't find it. */
4690 return NULL;
4691 }
4692
4693 /* Return whether an input relocation is against a local symbol. */
4694
4695 static bfd_boolean
4696 mips_elf_local_relocation_p (bfd *input_bfd,
4697 const Elf_Internal_Rela *relocation,
4698 asection **local_sections)
4699 {
4700 unsigned long r_symndx;
4701 Elf_Internal_Shdr *symtab_hdr;
4702 size_t extsymoff;
4703
4704 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4705 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4706 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4707
4708 if (r_symndx < extsymoff)
4709 return TRUE;
4710 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4711 return TRUE;
4712
4713 return FALSE;
4714 }
4715 \f
4716 /* Sign-extend VALUE, which has the indicated number of BITS. */
4717
4718 bfd_vma
4719 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4720 {
4721 if (value & ((bfd_vma) 1 << (bits - 1)))
4722 /* VALUE is negative. */
4723 value |= ((bfd_vma) - 1) << bits;
4724
4725 return value;
4726 }
4727
4728 /* Return non-zero if the indicated VALUE has overflowed the maximum
4729 range expressible by a signed number with the indicated number of
4730 BITS. */
4731
4732 static bfd_boolean
4733 mips_elf_overflow_p (bfd_vma value, int bits)
4734 {
4735 bfd_signed_vma svalue = (bfd_signed_vma) value;
4736
4737 if (svalue > (1 << (bits - 1)) - 1)
4738 /* The value is too big. */
4739 return TRUE;
4740 else if (svalue < -(1 << (bits - 1)))
4741 /* The value is too small. */
4742 return TRUE;
4743
4744 /* All is well. */
4745 return FALSE;
4746 }
4747
4748 /* Calculate the %high function. */
4749
4750 static bfd_vma
4751 mips_elf_high (bfd_vma value)
4752 {
4753 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4754 }
4755
4756 /* Calculate the %higher function. */
4757
4758 static bfd_vma
4759 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4760 {
4761 #ifdef BFD64
4762 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4763 #else
4764 abort ();
4765 return MINUS_ONE;
4766 #endif
4767 }
4768
4769 /* Calculate the %highest function. */
4770
4771 static bfd_vma
4772 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4773 {
4774 #ifdef BFD64
4775 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4776 #else
4777 abort ();
4778 return MINUS_ONE;
4779 #endif
4780 }
4781 \f
4782 /* Create the .compact_rel section. */
4783
4784 static bfd_boolean
4785 mips_elf_create_compact_rel_section
4786 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4787 {
4788 flagword flags;
4789 register asection *s;
4790
4791 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4792 {
4793 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4794 | SEC_READONLY);
4795
4796 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
4797 if (s == NULL
4798 || ! bfd_set_section_alignment (abfd, s,
4799 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4800 return FALSE;
4801
4802 s->size = sizeof (Elf32_External_compact_rel);
4803 }
4804
4805 return TRUE;
4806 }
4807
4808 /* Create the .got section to hold the global offset table. */
4809
4810 static bfd_boolean
4811 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4812 {
4813 flagword flags;
4814 register asection *s;
4815 struct elf_link_hash_entry *h;
4816 struct bfd_link_hash_entry *bh;
4817 struct mips_got_info *g;
4818 bfd_size_type amt;
4819 struct mips_elf_link_hash_table *htab;
4820
4821 htab = mips_elf_hash_table (info);
4822 BFD_ASSERT (htab != NULL);
4823
4824 /* This function may be called more than once. */
4825 if (htab->sgot)
4826 return TRUE;
4827
4828 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4829 | SEC_LINKER_CREATED);
4830
4831 /* We have to use an alignment of 2**4 here because this is hardcoded
4832 in the function stub generation and in the linker script. */
4833 s = bfd_make_section_with_flags (abfd, ".got", flags);
4834 if (s == NULL
4835 || ! bfd_set_section_alignment (abfd, s, 4))
4836 return FALSE;
4837 htab->sgot = s;
4838
4839 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4840 linker script because we don't want to define the symbol if we
4841 are not creating a global offset table. */
4842 bh = NULL;
4843 if (! (_bfd_generic_link_add_one_symbol
4844 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4845 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4846 return FALSE;
4847
4848 h = (struct elf_link_hash_entry *) bh;
4849 h->non_elf = 0;
4850 h->def_regular = 1;
4851 h->type = STT_OBJECT;
4852 elf_hash_table (info)->hgot = h;
4853
4854 if (info->shared
4855 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4856 return FALSE;
4857
4858 amt = sizeof (struct mips_got_info);
4859 g = bfd_alloc (abfd, amt);
4860 if (g == NULL)
4861 return FALSE;
4862 g->global_gotsym = NULL;
4863 g->global_gotno = 0;
4864 g->reloc_only_gotno = 0;
4865 g->tls_gotno = 0;
4866 g->local_gotno = 0;
4867 g->page_gotno = 0;
4868 g->assigned_gotno = 0;
4869 g->bfd2got = NULL;
4870 g->next = NULL;
4871 g->tls_ldm_offset = MINUS_ONE;
4872 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4873 mips_elf_got_entry_eq, NULL);
4874 if (g->got_entries == NULL)
4875 return FALSE;
4876 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4877 mips_got_page_entry_eq, NULL);
4878 if (g->got_page_entries == NULL)
4879 return FALSE;
4880 htab->got_info = g;
4881 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4882 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4883
4884 /* We also need a .got.plt section when generating PLTs. */
4885 s = bfd_make_section_with_flags (abfd, ".got.plt",
4886 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4887 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4888 if (s == NULL)
4889 return FALSE;
4890 htab->sgotplt = s;
4891
4892 return TRUE;
4893 }
4894 \f
4895 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4896 __GOTT_INDEX__ symbols. These symbols are only special for
4897 shared objects; they are not used in executables. */
4898
4899 static bfd_boolean
4900 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4901 {
4902 return (mips_elf_hash_table (info)->is_vxworks
4903 && info->shared
4904 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4905 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4906 }
4907
4908 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4909 require an la25 stub. See also mips_elf_local_pic_function_p,
4910 which determines whether the destination function ever requires a
4911 stub. */
4912
4913 static bfd_boolean
4914 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type)
4915 {
4916 /* We specifically ignore branches and jumps from EF_PIC objects,
4917 where the onus is on the compiler or programmer to perform any
4918 necessary initialization of $25. Sometimes such initialization
4919 is unnecessary; for example, -mno-shared functions do not use
4920 the incoming value of $25, and may therefore be called directly. */
4921 if (PIC_OBJECT_P (input_bfd))
4922 return FALSE;
4923
4924 switch (r_type)
4925 {
4926 case R_MIPS_26:
4927 case R_MIPS_PC16:
4928 case R_MIPS16_26:
4929 case R_MICROMIPS_26_S1:
4930 case R_MICROMIPS_PC7_S1:
4931 case R_MICROMIPS_PC10_S1:
4932 case R_MICROMIPS_PC16_S1:
4933 case R_MICROMIPS_PC23_S2:
4934 return TRUE;
4935
4936 default:
4937 return FALSE;
4938 }
4939 }
4940 \f
4941 /* Calculate the value produced by the RELOCATION (which comes from
4942 the INPUT_BFD). The ADDEND is the addend to use for this
4943 RELOCATION; RELOCATION->R_ADDEND is ignored.
4944
4945 The result of the relocation calculation is stored in VALUEP.
4946 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4947 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
4948
4949 This function returns bfd_reloc_continue if the caller need take no
4950 further action regarding this relocation, bfd_reloc_notsupported if
4951 something goes dramatically wrong, bfd_reloc_overflow if an
4952 overflow occurs, and bfd_reloc_ok to indicate success. */
4953
4954 static bfd_reloc_status_type
4955 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4956 asection *input_section,
4957 struct bfd_link_info *info,
4958 const Elf_Internal_Rela *relocation,
4959 bfd_vma addend, reloc_howto_type *howto,
4960 Elf_Internal_Sym *local_syms,
4961 asection **local_sections, bfd_vma *valuep,
4962 const char **namep,
4963 bfd_boolean *cross_mode_jump_p,
4964 bfd_boolean save_addend)
4965 {
4966 /* The eventual value we will return. */
4967 bfd_vma value;
4968 /* The address of the symbol against which the relocation is
4969 occurring. */
4970 bfd_vma symbol = 0;
4971 /* The final GP value to be used for the relocatable, executable, or
4972 shared object file being produced. */
4973 bfd_vma gp;
4974 /* The place (section offset or address) of the storage unit being
4975 relocated. */
4976 bfd_vma p;
4977 /* The value of GP used to create the relocatable object. */
4978 bfd_vma gp0;
4979 /* The offset into the global offset table at which the address of
4980 the relocation entry symbol, adjusted by the addend, resides
4981 during execution. */
4982 bfd_vma g = MINUS_ONE;
4983 /* The section in which the symbol referenced by the relocation is
4984 located. */
4985 asection *sec = NULL;
4986 struct mips_elf_link_hash_entry *h = NULL;
4987 /* TRUE if the symbol referred to by this relocation is a local
4988 symbol. */
4989 bfd_boolean local_p, was_local_p;
4990 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4991 bfd_boolean gp_disp_p = FALSE;
4992 /* TRUE if the symbol referred to by this relocation is
4993 "__gnu_local_gp". */
4994 bfd_boolean gnu_local_gp_p = FALSE;
4995 Elf_Internal_Shdr *symtab_hdr;
4996 size_t extsymoff;
4997 unsigned long r_symndx;
4998 int r_type;
4999 /* TRUE if overflow occurred during the calculation of the
5000 relocation value. */
5001 bfd_boolean overflowed_p;
5002 /* TRUE if this relocation refers to a MIPS16 function. */
5003 bfd_boolean target_is_16_bit_code_p = FALSE;
5004 bfd_boolean target_is_micromips_code_p = FALSE;
5005 struct mips_elf_link_hash_table *htab;
5006 bfd *dynobj;
5007
5008 dynobj = elf_hash_table (info)->dynobj;
5009 htab = mips_elf_hash_table (info);
5010 BFD_ASSERT (htab != NULL);
5011
5012 /* Parse the relocation. */
5013 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5014 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5015 p = (input_section->output_section->vma
5016 + input_section->output_offset
5017 + relocation->r_offset);
5018
5019 /* Assume that there will be no overflow. */
5020 overflowed_p = FALSE;
5021
5022 /* Figure out whether or not the symbol is local, and get the offset
5023 used in the array of hash table entries. */
5024 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5025 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5026 local_sections);
5027 was_local_p = local_p;
5028 if (! elf_bad_symtab (input_bfd))
5029 extsymoff = symtab_hdr->sh_info;
5030 else
5031 {
5032 /* The symbol table does not follow the rule that local symbols
5033 must come before globals. */
5034 extsymoff = 0;
5035 }
5036
5037 /* Figure out the value of the symbol. */
5038 if (local_p)
5039 {
5040 Elf_Internal_Sym *sym;
5041
5042 sym = local_syms + r_symndx;
5043 sec = local_sections[r_symndx];
5044
5045 symbol = sec->output_section->vma + sec->output_offset;
5046 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5047 || (sec->flags & SEC_MERGE))
5048 symbol += sym->st_value;
5049 if ((sec->flags & SEC_MERGE)
5050 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5051 {
5052 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5053 addend -= symbol;
5054 addend += sec->output_section->vma + sec->output_offset;
5055 }
5056
5057 /* MIPS16/microMIPS text labels should be treated as odd. */
5058 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5059 ++symbol;
5060
5061 /* Record the name of this symbol, for our caller. */
5062 *namep = bfd_elf_string_from_elf_section (input_bfd,
5063 symtab_hdr->sh_link,
5064 sym->st_name);
5065 if (*namep == '\0')
5066 *namep = bfd_section_name (input_bfd, sec);
5067
5068 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5069 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5070 }
5071 else
5072 {
5073 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5074
5075 /* For global symbols we look up the symbol in the hash-table. */
5076 h = ((struct mips_elf_link_hash_entry *)
5077 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5078 /* Find the real hash-table entry for this symbol. */
5079 while (h->root.root.type == bfd_link_hash_indirect
5080 || h->root.root.type == bfd_link_hash_warning)
5081 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5082
5083 /* Record the name of this symbol, for our caller. */
5084 *namep = h->root.root.root.string;
5085
5086 /* See if this is the special _gp_disp symbol. Note that such a
5087 symbol must always be a global symbol. */
5088 if (strcmp (*namep, "_gp_disp") == 0
5089 && ! NEWABI_P (input_bfd))
5090 {
5091 /* Relocations against _gp_disp are permitted only with
5092 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5093 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5094 return bfd_reloc_notsupported;
5095
5096 gp_disp_p = TRUE;
5097 }
5098 /* See if this is the special _gp symbol. Note that such a
5099 symbol must always be a global symbol. */
5100 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5101 gnu_local_gp_p = TRUE;
5102
5103
5104 /* If this symbol is defined, calculate its address. Note that
5105 _gp_disp is a magic symbol, always implicitly defined by the
5106 linker, so it's inappropriate to check to see whether or not
5107 its defined. */
5108 else if ((h->root.root.type == bfd_link_hash_defined
5109 || h->root.root.type == bfd_link_hash_defweak)
5110 && h->root.root.u.def.section)
5111 {
5112 sec = h->root.root.u.def.section;
5113 if (sec->output_section)
5114 symbol = (h->root.root.u.def.value
5115 + sec->output_section->vma
5116 + sec->output_offset);
5117 else
5118 symbol = h->root.root.u.def.value;
5119 }
5120 else if (h->root.root.type == bfd_link_hash_undefweak)
5121 /* We allow relocations against undefined weak symbols, giving
5122 it the value zero, so that you can undefined weak functions
5123 and check to see if they exist by looking at their
5124 addresses. */
5125 symbol = 0;
5126 else if (info->unresolved_syms_in_objects == RM_IGNORE
5127 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5128 symbol = 0;
5129 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5130 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5131 {
5132 /* If this is a dynamic link, we should have created a
5133 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5134 in in _bfd_mips_elf_create_dynamic_sections.
5135 Otherwise, we should define the symbol with a value of 0.
5136 FIXME: It should probably get into the symbol table
5137 somehow as well. */
5138 BFD_ASSERT (! info->shared);
5139 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5140 symbol = 0;
5141 }
5142 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5143 {
5144 /* This is an optional symbol - an Irix specific extension to the
5145 ELF spec. Ignore it for now.
5146 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5147 than simply ignoring them, but we do not handle this for now.
5148 For information see the "64-bit ELF Object File Specification"
5149 which is available from here:
5150 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5151 symbol = 0;
5152 }
5153 else if ((*info->callbacks->undefined_symbol)
5154 (info, h->root.root.root.string, input_bfd,
5155 input_section, relocation->r_offset,
5156 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5157 || ELF_ST_VISIBILITY (h->root.other)))
5158 {
5159 return bfd_reloc_undefined;
5160 }
5161 else
5162 {
5163 return bfd_reloc_notsupported;
5164 }
5165
5166 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5167 /* If the output section is the PLT section,
5168 then the target is not microMIPS. */
5169 target_is_micromips_code_p = (htab->splt != sec
5170 && ELF_ST_IS_MICROMIPS (h->root.other));
5171 }
5172
5173 /* If this is a reference to a 16-bit function with a stub, we need
5174 to redirect the relocation to the stub unless:
5175
5176 (a) the relocation is for a MIPS16 JAL;
5177
5178 (b) the relocation is for a MIPS16 PIC call, and there are no
5179 non-MIPS16 uses of the GOT slot; or
5180
5181 (c) the section allows direct references to MIPS16 functions. */
5182 if (r_type != R_MIPS16_26
5183 && !info->relocatable
5184 && ((h != NULL
5185 && h->fn_stub != NULL
5186 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5187 || (local_p
5188 && elf_tdata (input_bfd)->local_stubs != NULL
5189 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5190 && !section_allows_mips16_refs_p (input_section))
5191 {
5192 /* This is a 32- or 64-bit call to a 16-bit function. We should
5193 have already noticed that we were going to need the
5194 stub. */
5195 if (local_p)
5196 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5197 else
5198 {
5199 BFD_ASSERT (h->need_fn_stub);
5200 sec = h->fn_stub;
5201 }
5202
5203 symbol = sec->output_section->vma + sec->output_offset;
5204 /* The target is 16-bit, but the stub isn't. */
5205 target_is_16_bit_code_p = FALSE;
5206 }
5207 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5208 need to redirect the call to the stub. Note that we specifically
5209 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5210 use an indirect stub instead. */
5211 else if (r_type == R_MIPS16_26 && !info->relocatable
5212 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5213 || (local_p
5214 && elf_tdata (input_bfd)->local_call_stubs != NULL
5215 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5216 && !target_is_16_bit_code_p)
5217 {
5218 if (local_p)
5219 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5220 else
5221 {
5222 /* If both call_stub and call_fp_stub are defined, we can figure
5223 out which one to use by checking which one appears in the input
5224 file. */
5225 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5226 {
5227 asection *o;
5228
5229 sec = NULL;
5230 for (o = input_bfd->sections; o != NULL; o = o->next)
5231 {
5232 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5233 {
5234 sec = h->call_fp_stub;
5235 break;
5236 }
5237 }
5238 if (sec == NULL)
5239 sec = h->call_stub;
5240 }
5241 else if (h->call_stub != NULL)
5242 sec = h->call_stub;
5243 else
5244 sec = h->call_fp_stub;
5245 }
5246
5247 BFD_ASSERT (sec->size > 0);
5248 symbol = sec->output_section->vma + sec->output_offset;
5249 }
5250 /* If this is a direct call to a PIC function, redirect to the
5251 non-PIC stub. */
5252 else if (h != NULL && h->la25_stub
5253 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type))
5254 symbol = (h->la25_stub->stub_section->output_section->vma
5255 + h->la25_stub->stub_section->output_offset
5256 + h->la25_stub->offset);
5257
5258 /* Make sure MIPS16 and microMIPS are not used together. */
5259 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5260 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5261 {
5262 (*_bfd_error_handler)
5263 (_("MIPS16 and microMIPS functions cannot call each other"));
5264 return bfd_reloc_notsupported;
5265 }
5266
5267 /* Calls from 16-bit code to 32-bit code and vice versa require the
5268 mode change. However, we can ignore calls to undefined weak symbols,
5269 which should never be executed at runtime. This exception is important
5270 because the assembly writer may have "known" that any definition of the
5271 symbol would be 16-bit code, and that direct jumps were therefore
5272 acceptable. */
5273 *cross_mode_jump_p = (!info->relocatable
5274 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5275 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5276 || (r_type == R_MICROMIPS_26_S1
5277 && !target_is_micromips_code_p)
5278 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5279 && (target_is_16_bit_code_p
5280 || target_is_micromips_code_p))));
5281
5282 local_p = h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->root);
5283
5284 gp0 = _bfd_get_gp_value (input_bfd);
5285 gp = _bfd_get_gp_value (abfd);
5286 if (htab->got_info)
5287 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5288
5289 if (gnu_local_gp_p)
5290 symbol = gp;
5291
5292 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5293 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5294 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5295 if (got_page_reloc_p (r_type) && !local_p)
5296 {
5297 r_type = (micromips_reloc_p (r_type)
5298 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5299 addend = 0;
5300 }
5301
5302 /* If we haven't already determined the GOT offset, and we're going
5303 to need it, get it now. */
5304 switch (r_type)
5305 {
5306 case R_MIPS16_CALL16:
5307 case R_MIPS16_GOT16:
5308 case R_MIPS_CALL16:
5309 case R_MIPS_GOT16:
5310 case R_MIPS_GOT_DISP:
5311 case R_MIPS_GOT_HI16:
5312 case R_MIPS_CALL_HI16:
5313 case R_MIPS_GOT_LO16:
5314 case R_MIPS_CALL_LO16:
5315 case R_MICROMIPS_CALL16:
5316 case R_MICROMIPS_GOT16:
5317 case R_MICROMIPS_GOT_DISP:
5318 case R_MICROMIPS_GOT_HI16:
5319 case R_MICROMIPS_CALL_HI16:
5320 case R_MICROMIPS_GOT_LO16:
5321 case R_MICROMIPS_CALL_LO16:
5322 case R_MIPS_TLS_GD:
5323 case R_MIPS_TLS_GOTTPREL:
5324 case R_MIPS_TLS_LDM:
5325 case R_MICROMIPS_TLS_GD:
5326 case R_MICROMIPS_TLS_GOTTPREL:
5327 case R_MICROMIPS_TLS_LDM:
5328 /* Find the index into the GOT where this value is located. */
5329 if (tls_ldm_reloc_p (r_type))
5330 {
5331 g = mips_elf_local_got_index (abfd, input_bfd, info,
5332 0, 0, NULL, r_type);
5333 if (g == MINUS_ONE)
5334 return bfd_reloc_outofrange;
5335 }
5336 else if (!local_p)
5337 {
5338 /* On VxWorks, CALL relocations should refer to the .got.plt
5339 entry, which is initialized to point at the PLT stub. */
5340 if (htab->is_vxworks
5341 && (call_hi16_reloc_p (r_type)
5342 || call_lo16_reloc_p (r_type)
5343 || call16_reloc_p (r_type)))
5344 {
5345 BFD_ASSERT (addend == 0);
5346 BFD_ASSERT (h->root.needs_plt);
5347 g = mips_elf_gotplt_index (info, &h->root);
5348 }
5349 else
5350 {
5351 BFD_ASSERT (addend == 0);
5352 g = mips_elf_global_got_index (dynobj, input_bfd,
5353 &h->root, r_type, info);
5354 if (h->tls_type == GOT_NORMAL
5355 && !elf_hash_table (info)->dynamic_sections_created)
5356 /* This is a static link. We must initialize the GOT entry. */
5357 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5358 }
5359 }
5360 else if (!htab->is_vxworks
5361 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5362 /* The calculation below does not involve "g". */
5363 break;
5364 else
5365 {
5366 g = mips_elf_local_got_index (abfd, input_bfd, info,
5367 symbol + addend, r_symndx, h, r_type);
5368 if (g == MINUS_ONE)
5369 return bfd_reloc_outofrange;
5370 }
5371
5372 /* Convert GOT indices to actual offsets. */
5373 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5374 break;
5375 }
5376
5377 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5378 symbols are resolved by the loader. Add them to .rela.dyn. */
5379 if (h != NULL && is_gott_symbol (info, &h->root))
5380 {
5381 Elf_Internal_Rela outrel;
5382 bfd_byte *loc;
5383 asection *s;
5384
5385 s = mips_elf_rel_dyn_section (info, FALSE);
5386 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5387
5388 outrel.r_offset = (input_section->output_section->vma
5389 + input_section->output_offset
5390 + relocation->r_offset);
5391 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5392 outrel.r_addend = addend;
5393 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5394
5395 /* If we've written this relocation for a readonly section,
5396 we need to set DF_TEXTREL again, so that we do not delete the
5397 DT_TEXTREL tag. */
5398 if (MIPS_ELF_READONLY_SECTION (input_section))
5399 info->flags |= DF_TEXTREL;
5400
5401 *valuep = 0;
5402 return bfd_reloc_ok;
5403 }
5404
5405 /* Figure out what kind of relocation is being performed. */
5406 switch (r_type)
5407 {
5408 case R_MIPS_NONE:
5409 return bfd_reloc_continue;
5410
5411 case R_MIPS_16:
5412 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5413 overflowed_p = mips_elf_overflow_p (value, 16);
5414 break;
5415
5416 case R_MIPS_32:
5417 case R_MIPS_REL32:
5418 case R_MIPS_64:
5419 if ((info->shared
5420 || (htab->root.dynamic_sections_created
5421 && h != NULL
5422 && h->root.def_dynamic
5423 && !h->root.def_regular
5424 && !h->has_static_relocs))
5425 && r_symndx != STN_UNDEF
5426 && (h == NULL
5427 || h->root.root.type != bfd_link_hash_undefweak
5428 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5429 && (input_section->flags & SEC_ALLOC) != 0)
5430 {
5431 /* If we're creating a shared library, then we can't know
5432 where the symbol will end up. So, we create a relocation
5433 record in the output, and leave the job up to the dynamic
5434 linker. We must do the same for executable references to
5435 shared library symbols, unless we've decided to use copy
5436 relocs or PLTs instead. */
5437 value = addend;
5438 if (!mips_elf_create_dynamic_relocation (abfd,
5439 info,
5440 relocation,
5441 h,
5442 sec,
5443 symbol,
5444 &value,
5445 input_section))
5446 return bfd_reloc_undefined;
5447 }
5448 else
5449 {
5450 if (r_type != R_MIPS_REL32)
5451 value = symbol + addend;
5452 else
5453 value = addend;
5454 }
5455 value &= howto->dst_mask;
5456 break;
5457
5458 case R_MIPS_PC32:
5459 value = symbol + addend - p;
5460 value &= howto->dst_mask;
5461 break;
5462
5463 case R_MIPS16_26:
5464 /* The calculation for R_MIPS16_26 is just the same as for an
5465 R_MIPS_26. It's only the storage of the relocated field into
5466 the output file that's different. That's handled in
5467 mips_elf_perform_relocation. So, we just fall through to the
5468 R_MIPS_26 case here. */
5469 case R_MIPS_26:
5470 case R_MICROMIPS_26_S1:
5471 {
5472 unsigned int shift;
5473
5474 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5475 the correct ISA mode selector and bit 1 must be 0. */
5476 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5477 return bfd_reloc_outofrange;
5478
5479 /* Shift is 2, unusually, for microMIPS JALX. */
5480 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5481
5482 if (was_local_p)
5483 value = addend | ((p + 4) & (0xfc000000 << shift));
5484 else
5485 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5486 value = (value + symbol) >> shift;
5487 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5488 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5489 value &= howto->dst_mask;
5490 }
5491 break;
5492
5493 case R_MIPS_TLS_DTPREL_HI16:
5494 case R_MICROMIPS_TLS_DTPREL_HI16:
5495 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5496 & howto->dst_mask);
5497 break;
5498
5499 case R_MIPS_TLS_DTPREL_LO16:
5500 case R_MIPS_TLS_DTPREL32:
5501 case R_MIPS_TLS_DTPREL64:
5502 case R_MICROMIPS_TLS_DTPREL_LO16:
5503 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5504 break;
5505
5506 case R_MIPS_TLS_TPREL_HI16:
5507 case R_MICROMIPS_TLS_TPREL_HI16:
5508 value = (mips_elf_high (addend + symbol - tprel_base (info))
5509 & howto->dst_mask);
5510 break;
5511
5512 case R_MIPS_TLS_TPREL_LO16:
5513 case R_MICROMIPS_TLS_TPREL_LO16:
5514 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5515 break;
5516
5517 case R_MIPS_HI16:
5518 case R_MIPS16_HI16:
5519 case R_MICROMIPS_HI16:
5520 if (!gp_disp_p)
5521 {
5522 value = mips_elf_high (addend + symbol);
5523 value &= howto->dst_mask;
5524 }
5525 else
5526 {
5527 /* For MIPS16 ABI code we generate this sequence
5528 0: li $v0,%hi(_gp_disp)
5529 4: addiupc $v1,%lo(_gp_disp)
5530 8: sll $v0,16
5531 12: addu $v0,$v1
5532 14: move $gp,$v0
5533 So the offsets of hi and lo relocs are the same, but the
5534 $pc is four higher than $t9 would be, so reduce
5535 both reloc addends by 4. */
5536 if (r_type == R_MIPS16_HI16)
5537 value = mips_elf_high (addend + gp - p - 4);
5538 /* The microMIPS .cpload sequence uses the same assembly
5539 instructions as the traditional psABI version, but the
5540 incoming $t9 has the low bit set. */
5541 else if (r_type == R_MICROMIPS_HI16)
5542 value = mips_elf_high (addend + gp - p - 1);
5543 else
5544 value = mips_elf_high (addend + gp - p);
5545 overflowed_p = mips_elf_overflow_p (value, 16);
5546 }
5547 break;
5548
5549 case R_MIPS_LO16:
5550 case R_MIPS16_LO16:
5551 case R_MICROMIPS_LO16:
5552 case R_MICROMIPS_HI0_LO16:
5553 if (!gp_disp_p)
5554 value = (symbol + addend) & howto->dst_mask;
5555 else
5556 {
5557 /* See the comment for R_MIPS16_HI16 above for the reason
5558 for this conditional. */
5559 if (r_type == R_MIPS16_LO16)
5560 value = addend + gp - p;
5561 else if (r_type == R_MICROMIPS_LO16
5562 || r_type == R_MICROMIPS_HI0_LO16)
5563 value = addend + gp - p + 3;
5564 else
5565 value = addend + gp - p + 4;
5566 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5567 for overflow. But, on, say, IRIX5, relocations against
5568 _gp_disp are normally generated from the .cpload
5569 pseudo-op. It generates code that normally looks like
5570 this:
5571
5572 lui $gp,%hi(_gp_disp)
5573 addiu $gp,$gp,%lo(_gp_disp)
5574 addu $gp,$gp,$t9
5575
5576 Here $t9 holds the address of the function being called,
5577 as required by the MIPS ELF ABI. The R_MIPS_LO16
5578 relocation can easily overflow in this situation, but the
5579 R_MIPS_HI16 relocation will handle the overflow.
5580 Therefore, we consider this a bug in the MIPS ABI, and do
5581 not check for overflow here. */
5582 }
5583 break;
5584
5585 case R_MIPS_LITERAL:
5586 case R_MICROMIPS_LITERAL:
5587 /* Because we don't merge literal sections, we can handle this
5588 just like R_MIPS_GPREL16. In the long run, we should merge
5589 shared literals, and then we will need to additional work
5590 here. */
5591
5592 /* Fall through. */
5593
5594 case R_MIPS16_GPREL:
5595 /* The R_MIPS16_GPREL performs the same calculation as
5596 R_MIPS_GPREL16, but stores the relocated bits in a different
5597 order. We don't need to do anything special here; the
5598 differences are handled in mips_elf_perform_relocation. */
5599 case R_MIPS_GPREL16:
5600 case R_MICROMIPS_GPREL7_S2:
5601 case R_MICROMIPS_GPREL16:
5602 /* Only sign-extend the addend if it was extracted from the
5603 instruction. If the addend was separate, leave it alone,
5604 otherwise we may lose significant bits. */
5605 if (howto->partial_inplace)
5606 addend = _bfd_mips_elf_sign_extend (addend, 16);
5607 value = symbol + addend - gp;
5608 /* If the symbol was local, any earlier relocatable links will
5609 have adjusted its addend with the gp offset, so compensate
5610 for that now. Don't do it for symbols forced local in this
5611 link, though, since they won't have had the gp offset applied
5612 to them before. */
5613 if (was_local_p)
5614 value += gp0;
5615 overflowed_p = mips_elf_overflow_p (value, 16);
5616 break;
5617
5618 case R_MIPS16_GOT16:
5619 case R_MIPS16_CALL16:
5620 case R_MIPS_GOT16:
5621 case R_MIPS_CALL16:
5622 case R_MICROMIPS_GOT16:
5623 case R_MICROMIPS_CALL16:
5624 /* VxWorks does not have separate local and global semantics for
5625 R_MIPS*_GOT16; every relocation evaluates to "G". */
5626 if (!htab->is_vxworks && local_p)
5627 {
5628 value = mips_elf_got16_entry (abfd, input_bfd, info,
5629 symbol + addend, !was_local_p);
5630 if (value == MINUS_ONE)
5631 return bfd_reloc_outofrange;
5632 value
5633 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5634 overflowed_p = mips_elf_overflow_p (value, 16);
5635 break;
5636 }
5637
5638 /* Fall through. */
5639
5640 case R_MIPS_TLS_GD:
5641 case R_MIPS_TLS_GOTTPREL:
5642 case R_MIPS_TLS_LDM:
5643 case R_MIPS_GOT_DISP:
5644 case R_MICROMIPS_TLS_GD:
5645 case R_MICROMIPS_TLS_GOTTPREL:
5646 case R_MICROMIPS_TLS_LDM:
5647 case R_MICROMIPS_GOT_DISP:
5648 value = g;
5649 overflowed_p = mips_elf_overflow_p (value, 16);
5650 break;
5651
5652 case R_MIPS_GPREL32:
5653 value = (addend + symbol + gp0 - gp);
5654 if (!save_addend)
5655 value &= howto->dst_mask;
5656 break;
5657
5658 case R_MIPS_PC16:
5659 case R_MIPS_GNU_REL16_S2:
5660 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5661 overflowed_p = mips_elf_overflow_p (value, 18);
5662 value >>= howto->rightshift;
5663 value &= howto->dst_mask;
5664 break;
5665
5666 case R_MICROMIPS_PC7_S1:
5667 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5668 overflowed_p = mips_elf_overflow_p (value, 8);
5669 value >>= howto->rightshift;
5670 value &= howto->dst_mask;
5671 break;
5672
5673 case R_MICROMIPS_PC10_S1:
5674 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5675 overflowed_p = mips_elf_overflow_p (value, 11);
5676 value >>= howto->rightshift;
5677 value &= howto->dst_mask;
5678 break;
5679
5680 case R_MICROMIPS_PC16_S1:
5681 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5682 overflowed_p = mips_elf_overflow_p (value, 17);
5683 value >>= howto->rightshift;
5684 value &= howto->dst_mask;
5685 break;
5686
5687 case R_MICROMIPS_PC23_S2:
5688 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5689 overflowed_p = mips_elf_overflow_p (value, 25);
5690 value >>= howto->rightshift;
5691 value &= howto->dst_mask;
5692 break;
5693
5694 case R_MIPS_GOT_HI16:
5695 case R_MIPS_CALL_HI16:
5696 case R_MICROMIPS_GOT_HI16:
5697 case R_MICROMIPS_CALL_HI16:
5698 /* We're allowed to handle these two relocations identically.
5699 The dynamic linker is allowed to handle the CALL relocations
5700 differently by creating a lazy evaluation stub. */
5701 value = g;
5702 value = mips_elf_high (value);
5703 value &= howto->dst_mask;
5704 break;
5705
5706 case R_MIPS_GOT_LO16:
5707 case R_MIPS_CALL_LO16:
5708 case R_MICROMIPS_GOT_LO16:
5709 case R_MICROMIPS_CALL_LO16:
5710 value = g & howto->dst_mask;
5711 break;
5712
5713 case R_MIPS_GOT_PAGE:
5714 case R_MICROMIPS_GOT_PAGE:
5715 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5716 if (value == MINUS_ONE)
5717 return bfd_reloc_outofrange;
5718 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5719 overflowed_p = mips_elf_overflow_p (value, 16);
5720 break;
5721
5722 case R_MIPS_GOT_OFST:
5723 case R_MICROMIPS_GOT_OFST:
5724 if (local_p)
5725 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5726 else
5727 value = addend;
5728 overflowed_p = mips_elf_overflow_p (value, 16);
5729 break;
5730
5731 case R_MIPS_SUB:
5732 case R_MICROMIPS_SUB:
5733 value = symbol - addend;
5734 value &= howto->dst_mask;
5735 break;
5736
5737 case R_MIPS_HIGHER:
5738 case R_MICROMIPS_HIGHER:
5739 value = mips_elf_higher (addend + symbol);
5740 value &= howto->dst_mask;
5741 break;
5742
5743 case R_MIPS_HIGHEST:
5744 case R_MICROMIPS_HIGHEST:
5745 value = mips_elf_highest (addend + symbol);
5746 value &= howto->dst_mask;
5747 break;
5748
5749 case R_MIPS_SCN_DISP:
5750 case R_MICROMIPS_SCN_DISP:
5751 value = symbol + addend - sec->output_offset;
5752 value &= howto->dst_mask;
5753 break;
5754
5755 case R_MIPS_JALR:
5756 case R_MICROMIPS_JALR:
5757 /* This relocation is only a hint. In some cases, we optimize
5758 it into a bal instruction. But we don't try to optimize
5759 when the symbol does not resolve locally. */
5760 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5761 return bfd_reloc_continue;
5762 value = symbol + addend;
5763 break;
5764
5765 case R_MIPS_PJUMP:
5766 case R_MIPS_GNU_VTINHERIT:
5767 case R_MIPS_GNU_VTENTRY:
5768 /* We don't do anything with these at present. */
5769 return bfd_reloc_continue;
5770
5771 default:
5772 /* An unrecognized relocation type. */
5773 return bfd_reloc_notsupported;
5774 }
5775
5776 /* Store the VALUE for our caller. */
5777 *valuep = value;
5778 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5779 }
5780
5781 /* Obtain the field relocated by RELOCATION. */
5782
5783 static bfd_vma
5784 mips_elf_obtain_contents (reloc_howto_type *howto,
5785 const Elf_Internal_Rela *relocation,
5786 bfd *input_bfd, bfd_byte *contents)
5787 {
5788 bfd_vma x;
5789 bfd_byte *location = contents + relocation->r_offset;
5790
5791 /* Obtain the bytes. */
5792 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5793
5794 return x;
5795 }
5796
5797 /* It has been determined that the result of the RELOCATION is the
5798 VALUE. Use HOWTO to place VALUE into the output file at the
5799 appropriate position. The SECTION is the section to which the
5800 relocation applies.
5801 CROSS_MODE_JUMP_P is true if the relocation field
5802 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5803
5804 Returns FALSE if anything goes wrong. */
5805
5806 static bfd_boolean
5807 mips_elf_perform_relocation (struct bfd_link_info *info,
5808 reloc_howto_type *howto,
5809 const Elf_Internal_Rela *relocation,
5810 bfd_vma value, bfd *input_bfd,
5811 asection *input_section, bfd_byte *contents,
5812 bfd_boolean cross_mode_jump_p)
5813 {
5814 bfd_vma x;
5815 bfd_byte *location;
5816 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5817
5818 /* Figure out where the relocation is occurring. */
5819 location = contents + relocation->r_offset;
5820
5821 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5822
5823 /* Obtain the current value. */
5824 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5825
5826 /* Clear the field we are setting. */
5827 x &= ~howto->dst_mask;
5828
5829 /* Set the field. */
5830 x |= (value & howto->dst_mask);
5831
5832 /* If required, turn JAL into JALX. */
5833 if (cross_mode_jump_p && jal_reloc_p (r_type))
5834 {
5835 bfd_boolean ok;
5836 bfd_vma opcode = x >> 26;
5837 bfd_vma jalx_opcode;
5838
5839 /* Check to see if the opcode is already JAL or JALX. */
5840 if (r_type == R_MIPS16_26)
5841 {
5842 ok = ((opcode == 0x6) || (opcode == 0x7));
5843 jalx_opcode = 0x7;
5844 }
5845 else if (r_type == R_MICROMIPS_26_S1)
5846 {
5847 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5848 jalx_opcode = 0x3c;
5849 }
5850 else
5851 {
5852 ok = ((opcode == 0x3) || (opcode == 0x1d));
5853 jalx_opcode = 0x1d;
5854 }
5855
5856 /* If the opcode is not JAL or JALX, there's a problem. */
5857 if (!ok)
5858 {
5859 (*_bfd_error_handler)
5860 (_("%B: %A+0x%lx: Direct jumps between ISA modes are not allowed; consider recompiling with interlinking enabled."),
5861 input_bfd,
5862 input_section,
5863 (unsigned long) relocation->r_offset);
5864 bfd_set_error (bfd_error_bad_value);
5865 return FALSE;
5866 }
5867
5868 /* Make this the JALX opcode. */
5869 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5870 }
5871
5872 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5873 range. */
5874 if (!info->relocatable
5875 && !cross_mode_jump_p
5876 && ((JAL_TO_BAL_P (input_bfd)
5877 && r_type == R_MIPS_26
5878 && (x >> 26) == 0x3) /* jal addr */
5879 || (JALR_TO_BAL_P (input_bfd)
5880 && r_type == R_MIPS_JALR
5881 && x == 0x0320f809) /* jalr t9 */
5882 || (JR_TO_B_P (input_bfd)
5883 && r_type == R_MIPS_JALR
5884 && x == 0x03200008))) /* jr t9 */
5885 {
5886 bfd_vma addr;
5887 bfd_vma dest;
5888 bfd_signed_vma off;
5889
5890 addr = (input_section->output_section->vma
5891 + input_section->output_offset
5892 + relocation->r_offset
5893 + 4);
5894 if (r_type == R_MIPS_26)
5895 dest = (value << 2) | ((addr >> 28) << 28);
5896 else
5897 dest = value;
5898 off = dest - addr;
5899 if (off <= 0x1ffff && off >= -0x20000)
5900 {
5901 if (x == 0x03200008) /* jr t9 */
5902 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5903 else
5904 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5905 }
5906 }
5907
5908 /* Put the value into the output. */
5909 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5910
5911 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
5912 location);
5913
5914 return TRUE;
5915 }
5916 \f
5917 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5918 is the original relocation, which is now being transformed into a
5919 dynamic relocation. The ADDENDP is adjusted if necessary; the
5920 caller should store the result in place of the original addend. */
5921
5922 static bfd_boolean
5923 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5924 struct bfd_link_info *info,
5925 const Elf_Internal_Rela *rel,
5926 struct mips_elf_link_hash_entry *h,
5927 asection *sec, bfd_vma symbol,
5928 bfd_vma *addendp, asection *input_section)
5929 {
5930 Elf_Internal_Rela outrel[3];
5931 asection *sreloc;
5932 bfd *dynobj;
5933 int r_type;
5934 long indx;
5935 bfd_boolean defined_p;
5936 struct mips_elf_link_hash_table *htab;
5937
5938 htab = mips_elf_hash_table (info);
5939 BFD_ASSERT (htab != NULL);
5940
5941 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5942 dynobj = elf_hash_table (info)->dynobj;
5943 sreloc = mips_elf_rel_dyn_section (info, FALSE);
5944 BFD_ASSERT (sreloc != NULL);
5945 BFD_ASSERT (sreloc->contents != NULL);
5946 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5947 < sreloc->size);
5948
5949 outrel[0].r_offset =
5950 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5951 if (ABI_64_P (output_bfd))
5952 {
5953 outrel[1].r_offset =
5954 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5955 outrel[2].r_offset =
5956 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5957 }
5958
5959 if (outrel[0].r_offset == MINUS_ONE)
5960 /* The relocation field has been deleted. */
5961 return TRUE;
5962
5963 if (outrel[0].r_offset == MINUS_TWO)
5964 {
5965 /* The relocation field has been converted into a relative value of
5966 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5967 the field to be fully relocated, so add in the symbol's value. */
5968 *addendp += symbol;
5969 return TRUE;
5970 }
5971
5972 /* We must now calculate the dynamic symbol table index to use
5973 in the relocation. */
5974 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5975 {
5976 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5977 indx = h->root.dynindx;
5978 if (SGI_COMPAT (output_bfd))
5979 defined_p = h->root.def_regular;
5980 else
5981 /* ??? glibc's ld.so just adds the final GOT entry to the
5982 relocation field. It therefore treats relocs against
5983 defined symbols in the same way as relocs against
5984 undefined symbols. */
5985 defined_p = FALSE;
5986 }
5987 else
5988 {
5989 if (sec != NULL && bfd_is_abs_section (sec))
5990 indx = 0;
5991 else if (sec == NULL || sec->owner == NULL)
5992 {
5993 bfd_set_error (bfd_error_bad_value);
5994 return FALSE;
5995 }
5996 else
5997 {
5998 indx = elf_section_data (sec->output_section)->dynindx;
5999 if (indx == 0)
6000 {
6001 asection *osec = htab->root.text_index_section;
6002 indx = elf_section_data (osec)->dynindx;
6003 }
6004 if (indx == 0)
6005 abort ();
6006 }
6007
6008 /* Instead of generating a relocation using the section
6009 symbol, we may as well make it a fully relative
6010 relocation. We want to avoid generating relocations to
6011 local symbols because we used to generate them
6012 incorrectly, without adding the original symbol value,
6013 which is mandated by the ABI for section symbols. In
6014 order to give dynamic loaders and applications time to
6015 phase out the incorrect use, we refrain from emitting
6016 section-relative relocations. It's not like they're
6017 useful, after all. This should be a bit more efficient
6018 as well. */
6019 /* ??? Although this behavior is compatible with glibc's ld.so,
6020 the ABI says that relocations against STN_UNDEF should have
6021 a symbol value of 0. Irix rld honors this, so relocations
6022 against STN_UNDEF have no effect. */
6023 if (!SGI_COMPAT (output_bfd))
6024 indx = 0;
6025 defined_p = TRUE;
6026 }
6027
6028 /* If the relocation was previously an absolute relocation and
6029 this symbol will not be referred to by the relocation, we must
6030 adjust it by the value we give it in the dynamic symbol table.
6031 Otherwise leave the job up to the dynamic linker. */
6032 if (defined_p && r_type != R_MIPS_REL32)
6033 *addendp += symbol;
6034
6035 if (htab->is_vxworks)
6036 /* VxWorks uses non-relative relocations for this. */
6037 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6038 else
6039 /* The relocation is always an REL32 relocation because we don't
6040 know where the shared library will wind up at load-time. */
6041 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6042 R_MIPS_REL32);
6043
6044 /* For strict adherence to the ABI specification, we should
6045 generate a R_MIPS_64 relocation record by itself before the
6046 _REL32/_64 record as well, such that the addend is read in as
6047 a 64-bit value (REL32 is a 32-bit relocation, after all).
6048 However, since none of the existing ELF64 MIPS dynamic
6049 loaders seems to care, we don't waste space with these
6050 artificial relocations. If this turns out to not be true,
6051 mips_elf_allocate_dynamic_relocation() should be tweaked so
6052 as to make room for a pair of dynamic relocations per
6053 invocation if ABI_64_P, and here we should generate an
6054 additional relocation record with R_MIPS_64 by itself for a
6055 NULL symbol before this relocation record. */
6056 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6057 ABI_64_P (output_bfd)
6058 ? R_MIPS_64
6059 : R_MIPS_NONE);
6060 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6061
6062 /* Adjust the output offset of the relocation to reference the
6063 correct location in the output file. */
6064 outrel[0].r_offset += (input_section->output_section->vma
6065 + input_section->output_offset);
6066 outrel[1].r_offset += (input_section->output_section->vma
6067 + input_section->output_offset);
6068 outrel[2].r_offset += (input_section->output_section->vma
6069 + input_section->output_offset);
6070
6071 /* Put the relocation back out. We have to use the special
6072 relocation outputter in the 64-bit case since the 64-bit
6073 relocation format is non-standard. */
6074 if (ABI_64_P (output_bfd))
6075 {
6076 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6077 (output_bfd, &outrel[0],
6078 (sreloc->contents
6079 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6080 }
6081 else if (htab->is_vxworks)
6082 {
6083 /* VxWorks uses RELA rather than REL dynamic relocations. */
6084 outrel[0].r_addend = *addendp;
6085 bfd_elf32_swap_reloca_out
6086 (output_bfd, &outrel[0],
6087 (sreloc->contents
6088 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6089 }
6090 else
6091 bfd_elf32_swap_reloc_out
6092 (output_bfd, &outrel[0],
6093 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6094
6095 /* We've now added another relocation. */
6096 ++sreloc->reloc_count;
6097
6098 /* Make sure the output section is writable. The dynamic linker
6099 will be writing to it. */
6100 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6101 |= SHF_WRITE;
6102
6103 /* On IRIX5, make an entry of compact relocation info. */
6104 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6105 {
6106 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
6107 bfd_byte *cr;
6108
6109 if (scpt)
6110 {
6111 Elf32_crinfo cptrel;
6112
6113 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6114 cptrel.vaddr = (rel->r_offset
6115 + input_section->output_section->vma
6116 + input_section->output_offset);
6117 if (r_type == R_MIPS_REL32)
6118 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6119 else
6120 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6121 mips_elf_set_cr_dist2to (cptrel, 0);
6122 cptrel.konst = *addendp;
6123
6124 cr = (scpt->contents
6125 + sizeof (Elf32_External_compact_rel));
6126 mips_elf_set_cr_relvaddr (cptrel, 0);
6127 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6128 ((Elf32_External_crinfo *) cr
6129 + scpt->reloc_count));
6130 ++scpt->reloc_count;
6131 }
6132 }
6133
6134 /* If we've written this relocation for a readonly section,
6135 we need to set DF_TEXTREL again, so that we do not delete the
6136 DT_TEXTREL tag. */
6137 if (MIPS_ELF_READONLY_SECTION (input_section))
6138 info->flags |= DF_TEXTREL;
6139
6140 return TRUE;
6141 }
6142 \f
6143 /* Return the MACH for a MIPS e_flags value. */
6144
6145 unsigned long
6146 _bfd_elf_mips_mach (flagword flags)
6147 {
6148 switch (flags & EF_MIPS_MACH)
6149 {
6150 case E_MIPS_MACH_3900:
6151 return bfd_mach_mips3900;
6152
6153 case E_MIPS_MACH_4010:
6154 return bfd_mach_mips4010;
6155
6156 case E_MIPS_MACH_4100:
6157 return bfd_mach_mips4100;
6158
6159 case E_MIPS_MACH_4111:
6160 return bfd_mach_mips4111;
6161
6162 case E_MIPS_MACH_4120:
6163 return bfd_mach_mips4120;
6164
6165 case E_MIPS_MACH_4650:
6166 return bfd_mach_mips4650;
6167
6168 case E_MIPS_MACH_5400:
6169 return bfd_mach_mips5400;
6170
6171 case E_MIPS_MACH_5500:
6172 return bfd_mach_mips5500;
6173
6174 case E_MIPS_MACH_9000:
6175 return bfd_mach_mips9000;
6176
6177 case E_MIPS_MACH_SB1:
6178 return bfd_mach_mips_sb1;
6179
6180 case E_MIPS_MACH_LS2E:
6181 return bfd_mach_mips_loongson_2e;
6182
6183 case E_MIPS_MACH_LS2F:
6184 return bfd_mach_mips_loongson_2f;
6185
6186 case E_MIPS_MACH_LS3A:
6187 return bfd_mach_mips_loongson_3a;
6188
6189 case E_MIPS_MACH_OCTEON2:
6190 return bfd_mach_mips_octeon2;
6191
6192 case E_MIPS_MACH_OCTEON:
6193 return bfd_mach_mips_octeon;
6194
6195 case E_MIPS_MACH_XLR:
6196 return bfd_mach_mips_xlr;
6197
6198 default:
6199 switch (flags & EF_MIPS_ARCH)
6200 {
6201 default:
6202 case E_MIPS_ARCH_1:
6203 return bfd_mach_mips3000;
6204
6205 case E_MIPS_ARCH_2:
6206 return bfd_mach_mips6000;
6207
6208 case E_MIPS_ARCH_3:
6209 return bfd_mach_mips4000;
6210
6211 case E_MIPS_ARCH_4:
6212 return bfd_mach_mips8000;
6213
6214 case E_MIPS_ARCH_5:
6215 return bfd_mach_mips5;
6216
6217 case E_MIPS_ARCH_32:
6218 return bfd_mach_mipsisa32;
6219
6220 case E_MIPS_ARCH_64:
6221 return bfd_mach_mipsisa64;
6222
6223 case E_MIPS_ARCH_32R2:
6224 return bfd_mach_mipsisa32r2;
6225
6226 case E_MIPS_ARCH_64R2:
6227 return bfd_mach_mipsisa64r2;
6228 }
6229 }
6230
6231 return 0;
6232 }
6233
6234 /* Return printable name for ABI. */
6235
6236 static INLINE char *
6237 elf_mips_abi_name (bfd *abfd)
6238 {
6239 flagword flags;
6240
6241 flags = elf_elfheader (abfd)->e_flags;
6242 switch (flags & EF_MIPS_ABI)
6243 {
6244 case 0:
6245 if (ABI_N32_P (abfd))
6246 return "N32";
6247 else if (ABI_64_P (abfd))
6248 return "64";
6249 else
6250 return "none";
6251 case E_MIPS_ABI_O32:
6252 return "O32";
6253 case E_MIPS_ABI_O64:
6254 return "O64";
6255 case E_MIPS_ABI_EABI32:
6256 return "EABI32";
6257 case E_MIPS_ABI_EABI64:
6258 return "EABI64";
6259 default:
6260 return "unknown abi";
6261 }
6262 }
6263 \f
6264 /* MIPS ELF uses two common sections. One is the usual one, and the
6265 other is for small objects. All the small objects are kept
6266 together, and then referenced via the gp pointer, which yields
6267 faster assembler code. This is what we use for the small common
6268 section. This approach is copied from ecoff.c. */
6269 static asection mips_elf_scom_section;
6270 static asymbol mips_elf_scom_symbol;
6271 static asymbol *mips_elf_scom_symbol_ptr;
6272
6273 /* MIPS ELF also uses an acommon section, which represents an
6274 allocated common symbol which may be overridden by a
6275 definition in a shared library. */
6276 static asection mips_elf_acom_section;
6277 static asymbol mips_elf_acom_symbol;
6278 static asymbol *mips_elf_acom_symbol_ptr;
6279
6280 /* This is used for both the 32-bit and the 64-bit ABI. */
6281
6282 void
6283 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6284 {
6285 elf_symbol_type *elfsym;
6286
6287 /* Handle the special MIPS section numbers that a symbol may use. */
6288 elfsym = (elf_symbol_type *) asym;
6289 switch (elfsym->internal_elf_sym.st_shndx)
6290 {
6291 case SHN_MIPS_ACOMMON:
6292 /* This section is used in a dynamically linked executable file.
6293 It is an allocated common section. The dynamic linker can
6294 either resolve these symbols to something in a shared
6295 library, or it can just leave them here. For our purposes,
6296 we can consider these symbols to be in a new section. */
6297 if (mips_elf_acom_section.name == NULL)
6298 {
6299 /* Initialize the acommon section. */
6300 mips_elf_acom_section.name = ".acommon";
6301 mips_elf_acom_section.flags = SEC_ALLOC;
6302 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6303 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6304 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6305 mips_elf_acom_symbol.name = ".acommon";
6306 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6307 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6308 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6309 }
6310 asym->section = &mips_elf_acom_section;
6311 break;
6312
6313 case SHN_COMMON:
6314 /* Common symbols less than the GP size are automatically
6315 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6316 if (asym->value > elf_gp_size (abfd)
6317 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6318 || IRIX_COMPAT (abfd) == ict_irix6)
6319 break;
6320 /* Fall through. */
6321 case SHN_MIPS_SCOMMON:
6322 if (mips_elf_scom_section.name == NULL)
6323 {
6324 /* Initialize the small common section. */
6325 mips_elf_scom_section.name = ".scommon";
6326 mips_elf_scom_section.flags = SEC_IS_COMMON;
6327 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6328 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6329 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6330 mips_elf_scom_symbol.name = ".scommon";
6331 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6332 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6333 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6334 }
6335 asym->section = &mips_elf_scom_section;
6336 asym->value = elfsym->internal_elf_sym.st_size;
6337 break;
6338
6339 case SHN_MIPS_SUNDEFINED:
6340 asym->section = bfd_und_section_ptr;
6341 break;
6342
6343 case SHN_MIPS_TEXT:
6344 {
6345 asection *section = bfd_get_section_by_name (abfd, ".text");
6346
6347 if (section != NULL)
6348 {
6349 asym->section = section;
6350 /* MIPS_TEXT is a bit special, the address is not an offset
6351 to the base of the .text section. So substract the section
6352 base address to make it an offset. */
6353 asym->value -= section->vma;
6354 }
6355 }
6356 break;
6357
6358 case SHN_MIPS_DATA:
6359 {
6360 asection *section = bfd_get_section_by_name (abfd, ".data");
6361
6362 if (section != NULL)
6363 {
6364 asym->section = section;
6365 /* MIPS_DATA is a bit special, the address is not an offset
6366 to the base of the .data section. So substract the section
6367 base address to make it an offset. */
6368 asym->value -= section->vma;
6369 }
6370 }
6371 break;
6372 }
6373
6374 /* If this is an odd-valued function symbol, assume it's a MIPS16
6375 or microMIPS one. */
6376 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6377 && (asym->value & 1) != 0)
6378 {
6379 asym->value--;
6380 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6381 elfsym->internal_elf_sym.st_other
6382 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6383 else
6384 elfsym->internal_elf_sym.st_other
6385 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6386 }
6387 }
6388 \f
6389 /* Implement elf_backend_eh_frame_address_size. This differs from
6390 the default in the way it handles EABI64.
6391
6392 EABI64 was originally specified as an LP64 ABI, and that is what
6393 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6394 historically accepted the combination of -mabi=eabi and -mlong32,
6395 and this ILP32 variation has become semi-official over time.
6396 Both forms use elf32 and have pointer-sized FDE addresses.
6397
6398 If an EABI object was generated by GCC 4.0 or above, it will have
6399 an empty .gcc_compiled_longXX section, where XX is the size of longs
6400 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6401 have no special marking to distinguish them from LP64 objects.
6402
6403 We don't want users of the official LP64 ABI to be punished for the
6404 existence of the ILP32 variant, but at the same time, we don't want
6405 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6406 We therefore take the following approach:
6407
6408 - If ABFD contains a .gcc_compiled_longXX section, use it to
6409 determine the pointer size.
6410
6411 - Otherwise check the type of the first relocation. Assume that
6412 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6413
6414 - Otherwise punt.
6415
6416 The second check is enough to detect LP64 objects generated by pre-4.0
6417 compilers because, in the kind of output generated by those compilers,
6418 the first relocation will be associated with either a CIE personality
6419 routine or an FDE start address. Furthermore, the compilers never
6420 used a special (non-pointer) encoding for this ABI.
6421
6422 Checking the relocation type should also be safe because there is no
6423 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6424 did so. */
6425
6426 unsigned int
6427 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6428 {
6429 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6430 return 8;
6431 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6432 {
6433 bfd_boolean long32_p, long64_p;
6434
6435 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6436 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6437 if (long32_p && long64_p)
6438 return 0;
6439 if (long32_p)
6440 return 4;
6441 if (long64_p)
6442 return 8;
6443
6444 if (sec->reloc_count > 0
6445 && elf_section_data (sec)->relocs != NULL
6446 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6447 == R_MIPS_64))
6448 return 8;
6449
6450 return 0;
6451 }
6452 return 4;
6453 }
6454 \f
6455 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6456 relocations against two unnamed section symbols to resolve to the
6457 same address. For example, if we have code like:
6458
6459 lw $4,%got_disp(.data)($gp)
6460 lw $25,%got_disp(.text)($gp)
6461 jalr $25
6462
6463 then the linker will resolve both relocations to .data and the program
6464 will jump there rather than to .text.
6465
6466 We can work around this problem by giving names to local section symbols.
6467 This is also what the MIPSpro tools do. */
6468
6469 bfd_boolean
6470 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6471 {
6472 return SGI_COMPAT (abfd);
6473 }
6474 \f
6475 /* Work over a section just before writing it out. This routine is
6476 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6477 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6478 a better way. */
6479
6480 bfd_boolean
6481 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6482 {
6483 if (hdr->sh_type == SHT_MIPS_REGINFO
6484 && hdr->sh_size > 0)
6485 {
6486 bfd_byte buf[4];
6487
6488 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6489 BFD_ASSERT (hdr->contents == NULL);
6490
6491 if (bfd_seek (abfd,
6492 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6493 SEEK_SET) != 0)
6494 return FALSE;
6495 H_PUT_32 (abfd, elf_gp (abfd), buf);
6496 if (bfd_bwrite (buf, 4, abfd) != 4)
6497 return FALSE;
6498 }
6499
6500 if (hdr->sh_type == SHT_MIPS_OPTIONS
6501 && hdr->bfd_section != NULL
6502 && mips_elf_section_data (hdr->bfd_section) != NULL
6503 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6504 {
6505 bfd_byte *contents, *l, *lend;
6506
6507 /* We stored the section contents in the tdata field in the
6508 set_section_contents routine. We save the section contents
6509 so that we don't have to read them again.
6510 At this point we know that elf_gp is set, so we can look
6511 through the section contents to see if there is an
6512 ODK_REGINFO structure. */
6513
6514 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6515 l = contents;
6516 lend = contents + hdr->sh_size;
6517 while (l + sizeof (Elf_External_Options) <= lend)
6518 {
6519 Elf_Internal_Options intopt;
6520
6521 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6522 &intopt);
6523 if (intopt.size < sizeof (Elf_External_Options))
6524 {
6525 (*_bfd_error_handler)
6526 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6527 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6528 break;
6529 }
6530 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6531 {
6532 bfd_byte buf[8];
6533
6534 if (bfd_seek (abfd,
6535 (hdr->sh_offset
6536 + (l - contents)
6537 + sizeof (Elf_External_Options)
6538 + (sizeof (Elf64_External_RegInfo) - 8)),
6539 SEEK_SET) != 0)
6540 return FALSE;
6541 H_PUT_64 (abfd, elf_gp (abfd), buf);
6542 if (bfd_bwrite (buf, 8, abfd) != 8)
6543 return FALSE;
6544 }
6545 else if (intopt.kind == ODK_REGINFO)
6546 {
6547 bfd_byte buf[4];
6548
6549 if (bfd_seek (abfd,
6550 (hdr->sh_offset
6551 + (l - contents)
6552 + sizeof (Elf_External_Options)
6553 + (sizeof (Elf32_External_RegInfo) - 4)),
6554 SEEK_SET) != 0)
6555 return FALSE;
6556 H_PUT_32 (abfd, elf_gp (abfd), buf);
6557 if (bfd_bwrite (buf, 4, abfd) != 4)
6558 return FALSE;
6559 }
6560 l += intopt.size;
6561 }
6562 }
6563
6564 if (hdr->bfd_section != NULL)
6565 {
6566 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6567
6568 /* .sbss is not handled specially here because the GNU/Linux
6569 prelinker can convert .sbss from NOBITS to PROGBITS and
6570 changing it back to NOBITS breaks the binary. The entry in
6571 _bfd_mips_elf_special_sections will ensure the correct flags
6572 are set on .sbss if BFD creates it without reading it from an
6573 input file, and without special handling here the flags set
6574 on it in an input file will be followed. */
6575 if (strcmp (name, ".sdata") == 0
6576 || strcmp (name, ".lit8") == 0
6577 || strcmp (name, ".lit4") == 0)
6578 {
6579 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6580 hdr->sh_type = SHT_PROGBITS;
6581 }
6582 else if (strcmp (name, ".srdata") == 0)
6583 {
6584 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6585 hdr->sh_type = SHT_PROGBITS;
6586 }
6587 else if (strcmp (name, ".compact_rel") == 0)
6588 {
6589 hdr->sh_flags = 0;
6590 hdr->sh_type = SHT_PROGBITS;
6591 }
6592 else if (strcmp (name, ".rtproc") == 0)
6593 {
6594 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6595 {
6596 unsigned int adjust;
6597
6598 adjust = hdr->sh_size % hdr->sh_addralign;
6599 if (adjust != 0)
6600 hdr->sh_size += hdr->sh_addralign - adjust;
6601 }
6602 }
6603 }
6604
6605 return TRUE;
6606 }
6607
6608 /* Handle a MIPS specific section when reading an object file. This
6609 is called when elfcode.h finds a section with an unknown type.
6610 This routine supports both the 32-bit and 64-bit ELF ABI.
6611
6612 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6613 how to. */
6614
6615 bfd_boolean
6616 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6617 Elf_Internal_Shdr *hdr,
6618 const char *name,
6619 int shindex)
6620 {
6621 flagword flags = 0;
6622
6623 /* There ought to be a place to keep ELF backend specific flags, but
6624 at the moment there isn't one. We just keep track of the
6625 sections by their name, instead. Fortunately, the ABI gives
6626 suggested names for all the MIPS specific sections, so we will
6627 probably get away with this. */
6628 switch (hdr->sh_type)
6629 {
6630 case SHT_MIPS_LIBLIST:
6631 if (strcmp (name, ".liblist") != 0)
6632 return FALSE;
6633 break;
6634 case SHT_MIPS_MSYM:
6635 if (strcmp (name, ".msym") != 0)
6636 return FALSE;
6637 break;
6638 case SHT_MIPS_CONFLICT:
6639 if (strcmp (name, ".conflict") != 0)
6640 return FALSE;
6641 break;
6642 case SHT_MIPS_GPTAB:
6643 if (! CONST_STRNEQ (name, ".gptab."))
6644 return FALSE;
6645 break;
6646 case SHT_MIPS_UCODE:
6647 if (strcmp (name, ".ucode") != 0)
6648 return FALSE;
6649 break;
6650 case SHT_MIPS_DEBUG:
6651 if (strcmp (name, ".mdebug") != 0)
6652 return FALSE;
6653 flags = SEC_DEBUGGING;
6654 break;
6655 case SHT_MIPS_REGINFO:
6656 if (strcmp (name, ".reginfo") != 0
6657 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6658 return FALSE;
6659 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6660 break;
6661 case SHT_MIPS_IFACE:
6662 if (strcmp (name, ".MIPS.interfaces") != 0)
6663 return FALSE;
6664 break;
6665 case SHT_MIPS_CONTENT:
6666 if (! CONST_STRNEQ (name, ".MIPS.content"))
6667 return FALSE;
6668 break;
6669 case SHT_MIPS_OPTIONS:
6670 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6671 return FALSE;
6672 break;
6673 case SHT_MIPS_DWARF:
6674 if (! CONST_STRNEQ (name, ".debug_")
6675 && ! CONST_STRNEQ (name, ".zdebug_"))
6676 return FALSE;
6677 break;
6678 case SHT_MIPS_SYMBOL_LIB:
6679 if (strcmp (name, ".MIPS.symlib") != 0)
6680 return FALSE;
6681 break;
6682 case SHT_MIPS_EVENTS:
6683 if (! CONST_STRNEQ (name, ".MIPS.events")
6684 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6685 return FALSE;
6686 break;
6687 default:
6688 break;
6689 }
6690
6691 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6692 return FALSE;
6693
6694 if (flags)
6695 {
6696 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6697 (bfd_get_section_flags (abfd,
6698 hdr->bfd_section)
6699 | flags)))
6700 return FALSE;
6701 }
6702
6703 /* FIXME: We should record sh_info for a .gptab section. */
6704
6705 /* For a .reginfo section, set the gp value in the tdata information
6706 from the contents of this section. We need the gp value while
6707 processing relocs, so we just get it now. The .reginfo section
6708 is not used in the 64-bit MIPS ELF ABI. */
6709 if (hdr->sh_type == SHT_MIPS_REGINFO)
6710 {
6711 Elf32_External_RegInfo ext;
6712 Elf32_RegInfo s;
6713
6714 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6715 &ext, 0, sizeof ext))
6716 return FALSE;
6717 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6718 elf_gp (abfd) = s.ri_gp_value;
6719 }
6720
6721 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6722 set the gp value based on what we find. We may see both
6723 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6724 they should agree. */
6725 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6726 {
6727 bfd_byte *contents, *l, *lend;
6728
6729 contents = bfd_malloc (hdr->sh_size);
6730 if (contents == NULL)
6731 return FALSE;
6732 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6733 0, hdr->sh_size))
6734 {
6735 free (contents);
6736 return FALSE;
6737 }
6738 l = contents;
6739 lend = contents + hdr->sh_size;
6740 while (l + sizeof (Elf_External_Options) <= lend)
6741 {
6742 Elf_Internal_Options intopt;
6743
6744 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6745 &intopt);
6746 if (intopt.size < sizeof (Elf_External_Options))
6747 {
6748 (*_bfd_error_handler)
6749 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6750 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6751 break;
6752 }
6753 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6754 {
6755 Elf64_Internal_RegInfo intreg;
6756
6757 bfd_mips_elf64_swap_reginfo_in
6758 (abfd,
6759 ((Elf64_External_RegInfo *)
6760 (l + sizeof (Elf_External_Options))),
6761 &intreg);
6762 elf_gp (abfd) = intreg.ri_gp_value;
6763 }
6764 else if (intopt.kind == ODK_REGINFO)
6765 {
6766 Elf32_RegInfo intreg;
6767
6768 bfd_mips_elf32_swap_reginfo_in
6769 (abfd,
6770 ((Elf32_External_RegInfo *)
6771 (l + sizeof (Elf_External_Options))),
6772 &intreg);
6773 elf_gp (abfd) = intreg.ri_gp_value;
6774 }
6775 l += intopt.size;
6776 }
6777 free (contents);
6778 }
6779
6780 return TRUE;
6781 }
6782
6783 /* Set the correct type for a MIPS ELF section. We do this by the
6784 section name, which is a hack, but ought to work. This routine is
6785 used by both the 32-bit and the 64-bit ABI. */
6786
6787 bfd_boolean
6788 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6789 {
6790 const char *name = bfd_get_section_name (abfd, sec);
6791
6792 if (strcmp (name, ".liblist") == 0)
6793 {
6794 hdr->sh_type = SHT_MIPS_LIBLIST;
6795 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6796 /* The sh_link field is set in final_write_processing. */
6797 }
6798 else if (strcmp (name, ".conflict") == 0)
6799 hdr->sh_type = SHT_MIPS_CONFLICT;
6800 else if (CONST_STRNEQ (name, ".gptab."))
6801 {
6802 hdr->sh_type = SHT_MIPS_GPTAB;
6803 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6804 /* The sh_info field is set in final_write_processing. */
6805 }
6806 else if (strcmp (name, ".ucode") == 0)
6807 hdr->sh_type = SHT_MIPS_UCODE;
6808 else if (strcmp (name, ".mdebug") == 0)
6809 {
6810 hdr->sh_type = SHT_MIPS_DEBUG;
6811 /* In a shared object on IRIX 5.3, the .mdebug section has an
6812 entsize of 0. FIXME: Does this matter? */
6813 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6814 hdr->sh_entsize = 0;
6815 else
6816 hdr->sh_entsize = 1;
6817 }
6818 else if (strcmp (name, ".reginfo") == 0)
6819 {
6820 hdr->sh_type = SHT_MIPS_REGINFO;
6821 /* In a shared object on IRIX 5.3, the .reginfo section has an
6822 entsize of 0x18. FIXME: Does this matter? */
6823 if (SGI_COMPAT (abfd))
6824 {
6825 if ((abfd->flags & DYNAMIC) != 0)
6826 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6827 else
6828 hdr->sh_entsize = 1;
6829 }
6830 else
6831 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6832 }
6833 else if (SGI_COMPAT (abfd)
6834 && (strcmp (name, ".hash") == 0
6835 || strcmp (name, ".dynamic") == 0
6836 || strcmp (name, ".dynstr") == 0))
6837 {
6838 if (SGI_COMPAT (abfd))
6839 hdr->sh_entsize = 0;
6840 #if 0
6841 /* This isn't how the IRIX6 linker behaves. */
6842 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6843 #endif
6844 }
6845 else if (strcmp (name, ".got") == 0
6846 || strcmp (name, ".srdata") == 0
6847 || strcmp (name, ".sdata") == 0
6848 || strcmp (name, ".sbss") == 0
6849 || strcmp (name, ".lit4") == 0
6850 || strcmp (name, ".lit8") == 0)
6851 hdr->sh_flags |= SHF_MIPS_GPREL;
6852 else if (strcmp (name, ".MIPS.interfaces") == 0)
6853 {
6854 hdr->sh_type = SHT_MIPS_IFACE;
6855 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6856 }
6857 else if (CONST_STRNEQ (name, ".MIPS.content"))
6858 {
6859 hdr->sh_type = SHT_MIPS_CONTENT;
6860 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6861 /* The sh_info field is set in final_write_processing. */
6862 }
6863 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6864 {
6865 hdr->sh_type = SHT_MIPS_OPTIONS;
6866 hdr->sh_entsize = 1;
6867 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6868 }
6869 else if (CONST_STRNEQ (name, ".debug_")
6870 || CONST_STRNEQ (name, ".zdebug_"))
6871 {
6872 hdr->sh_type = SHT_MIPS_DWARF;
6873
6874 /* Irix facilities such as libexc expect a single .debug_frame
6875 per executable, the system ones have NOSTRIP set and the linker
6876 doesn't merge sections with different flags so ... */
6877 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6878 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6879 }
6880 else if (strcmp (name, ".MIPS.symlib") == 0)
6881 {
6882 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6883 /* The sh_link and sh_info fields are set in
6884 final_write_processing. */
6885 }
6886 else if (CONST_STRNEQ (name, ".MIPS.events")
6887 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6888 {
6889 hdr->sh_type = SHT_MIPS_EVENTS;
6890 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6891 /* The sh_link field is set in final_write_processing. */
6892 }
6893 else if (strcmp (name, ".msym") == 0)
6894 {
6895 hdr->sh_type = SHT_MIPS_MSYM;
6896 hdr->sh_flags |= SHF_ALLOC;
6897 hdr->sh_entsize = 8;
6898 }
6899
6900 /* The generic elf_fake_sections will set up REL_HDR using the default
6901 kind of relocations. We used to set up a second header for the
6902 non-default kind of relocations here, but only NewABI would use
6903 these, and the IRIX ld doesn't like resulting empty RELA sections.
6904 Thus we create those header only on demand now. */
6905
6906 return TRUE;
6907 }
6908
6909 /* Given a BFD section, try to locate the corresponding ELF section
6910 index. This is used by both the 32-bit and the 64-bit ABI.
6911 Actually, it's not clear to me that the 64-bit ABI supports these,
6912 but for non-PIC objects we will certainly want support for at least
6913 the .scommon section. */
6914
6915 bfd_boolean
6916 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6917 asection *sec, int *retval)
6918 {
6919 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6920 {
6921 *retval = SHN_MIPS_SCOMMON;
6922 return TRUE;
6923 }
6924 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6925 {
6926 *retval = SHN_MIPS_ACOMMON;
6927 return TRUE;
6928 }
6929 return FALSE;
6930 }
6931 \f
6932 /* Hook called by the linker routine which adds symbols from an object
6933 file. We must handle the special MIPS section numbers here. */
6934
6935 bfd_boolean
6936 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6937 Elf_Internal_Sym *sym, const char **namep,
6938 flagword *flagsp ATTRIBUTE_UNUSED,
6939 asection **secp, bfd_vma *valp)
6940 {
6941 if (SGI_COMPAT (abfd)
6942 && (abfd->flags & DYNAMIC) != 0
6943 && strcmp (*namep, "_rld_new_interface") == 0)
6944 {
6945 /* Skip IRIX5 rld entry name. */
6946 *namep = NULL;
6947 return TRUE;
6948 }
6949
6950 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6951 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6952 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6953 a magic symbol resolved by the linker, we ignore this bogus definition
6954 of _gp_disp. New ABI objects do not suffer from this problem so this
6955 is not done for them. */
6956 if (!NEWABI_P(abfd)
6957 && (sym->st_shndx == SHN_ABS)
6958 && (strcmp (*namep, "_gp_disp") == 0))
6959 {
6960 *namep = NULL;
6961 return TRUE;
6962 }
6963
6964 switch (sym->st_shndx)
6965 {
6966 case SHN_COMMON:
6967 /* Common symbols less than the GP size are automatically
6968 treated as SHN_MIPS_SCOMMON symbols. */
6969 if (sym->st_size > elf_gp_size (abfd)
6970 || ELF_ST_TYPE (sym->st_info) == STT_TLS
6971 || IRIX_COMPAT (abfd) == ict_irix6)
6972 break;
6973 /* Fall through. */
6974 case SHN_MIPS_SCOMMON:
6975 *secp = bfd_make_section_old_way (abfd, ".scommon");
6976 (*secp)->flags |= SEC_IS_COMMON;
6977 *valp = sym->st_size;
6978 break;
6979
6980 case SHN_MIPS_TEXT:
6981 /* This section is used in a shared object. */
6982 if (elf_tdata (abfd)->elf_text_section == NULL)
6983 {
6984 asymbol *elf_text_symbol;
6985 asection *elf_text_section;
6986 bfd_size_type amt = sizeof (asection);
6987
6988 elf_text_section = bfd_zalloc (abfd, amt);
6989 if (elf_text_section == NULL)
6990 return FALSE;
6991
6992 amt = sizeof (asymbol);
6993 elf_text_symbol = bfd_zalloc (abfd, amt);
6994 if (elf_text_symbol == NULL)
6995 return FALSE;
6996
6997 /* Initialize the section. */
6998
6999 elf_tdata (abfd)->elf_text_section = elf_text_section;
7000 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7001
7002 elf_text_section->symbol = elf_text_symbol;
7003 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
7004
7005 elf_text_section->name = ".text";
7006 elf_text_section->flags = SEC_NO_FLAGS;
7007 elf_text_section->output_section = NULL;
7008 elf_text_section->owner = abfd;
7009 elf_text_symbol->name = ".text";
7010 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7011 elf_text_symbol->section = elf_text_section;
7012 }
7013 /* This code used to do *secp = bfd_und_section_ptr if
7014 info->shared. I don't know why, and that doesn't make sense,
7015 so I took it out. */
7016 *secp = elf_tdata (abfd)->elf_text_section;
7017 break;
7018
7019 case SHN_MIPS_ACOMMON:
7020 /* Fall through. XXX Can we treat this as allocated data? */
7021 case SHN_MIPS_DATA:
7022 /* This section is used in a shared object. */
7023 if (elf_tdata (abfd)->elf_data_section == NULL)
7024 {
7025 asymbol *elf_data_symbol;
7026 asection *elf_data_section;
7027 bfd_size_type amt = sizeof (asection);
7028
7029 elf_data_section = bfd_zalloc (abfd, amt);
7030 if (elf_data_section == NULL)
7031 return FALSE;
7032
7033 amt = sizeof (asymbol);
7034 elf_data_symbol = bfd_zalloc (abfd, amt);
7035 if (elf_data_symbol == NULL)
7036 return FALSE;
7037
7038 /* Initialize the section. */
7039
7040 elf_tdata (abfd)->elf_data_section = elf_data_section;
7041 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7042
7043 elf_data_section->symbol = elf_data_symbol;
7044 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
7045
7046 elf_data_section->name = ".data";
7047 elf_data_section->flags = SEC_NO_FLAGS;
7048 elf_data_section->output_section = NULL;
7049 elf_data_section->owner = abfd;
7050 elf_data_symbol->name = ".data";
7051 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7052 elf_data_symbol->section = elf_data_section;
7053 }
7054 /* This code used to do *secp = bfd_und_section_ptr if
7055 info->shared. I don't know why, and that doesn't make sense,
7056 so I took it out. */
7057 *secp = elf_tdata (abfd)->elf_data_section;
7058 break;
7059
7060 case SHN_MIPS_SUNDEFINED:
7061 *secp = bfd_und_section_ptr;
7062 break;
7063 }
7064
7065 if (SGI_COMPAT (abfd)
7066 && ! info->shared
7067 && info->output_bfd->xvec == abfd->xvec
7068 && strcmp (*namep, "__rld_obj_head") == 0)
7069 {
7070 struct elf_link_hash_entry *h;
7071 struct bfd_link_hash_entry *bh;
7072
7073 /* Mark __rld_obj_head as dynamic. */
7074 bh = NULL;
7075 if (! (_bfd_generic_link_add_one_symbol
7076 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7077 get_elf_backend_data (abfd)->collect, &bh)))
7078 return FALSE;
7079
7080 h = (struct elf_link_hash_entry *) bh;
7081 h->non_elf = 0;
7082 h->def_regular = 1;
7083 h->type = STT_OBJECT;
7084
7085 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7086 return FALSE;
7087
7088 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7089 mips_elf_hash_table (info)->rld_symbol = h;
7090 }
7091
7092 /* If this is a mips16 text symbol, add 1 to the value to make it
7093 odd. This will cause something like .word SYM to come up with
7094 the right value when it is loaded into the PC. */
7095 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7096 ++*valp;
7097
7098 return TRUE;
7099 }
7100
7101 /* This hook function is called before the linker writes out a global
7102 symbol. We mark symbols as small common if appropriate. This is
7103 also where we undo the increment of the value for a mips16 symbol. */
7104
7105 int
7106 _bfd_mips_elf_link_output_symbol_hook
7107 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7108 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7109 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7110 {
7111 /* If we see a common symbol, which implies a relocatable link, then
7112 if a symbol was small common in an input file, mark it as small
7113 common in the output file. */
7114 if (sym->st_shndx == SHN_COMMON
7115 && strcmp (input_sec->name, ".scommon") == 0)
7116 sym->st_shndx = SHN_MIPS_SCOMMON;
7117
7118 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7119 sym->st_value &= ~1;
7120
7121 return 1;
7122 }
7123 \f
7124 /* Functions for the dynamic linker. */
7125
7126 /* Create dynamic sections when linking against a dynamic object. */
7127
7128 bfd_boolean
7129 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7130 {
7131 struct elf_link_hash_entry *h;
7132 struct bfd_link_hash_entry *bh;
7133 flagword flags;
7134 register asection *s;
7135 const char * const *namep;
7136 struct mips_elf_link_hash_table *htab;
7137
7138 htab = mips_elf_hash_table (info);
7139 BFD_ASSERT (htab != NULL);
7140
7141 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7142 | SEC_LINKER_CREATED | SEC_READONLY);
7143
7144 /* The psABI requires a read-only .dynamic section, but the VxWorks
7145 EABI doesn't. */
7146 if (!htab->is_vxworks)
7147 {
7148 s = bfd_get_section_by_name (abfd, ".dynamic");
7149 if (s != NULL)
7150 {
7151 if (! bfd_set_section_flags (abfd, s, flags))
7152 return FALSE;
7153 }
7154 }
7155
7156 /* We need to create .got section. */
7157 if (!mips_elf_create_got_section (abfd, info))
7158 return FALSE;
7159
7160 if (! mips_elf_rel_dyn_section (info, TRUE))
7161 return FALSE;
7162
7163 /* Create .stub section. */
7164 s = bfd_make_section_with_flags (abfd,
7165 MIPS_ELF_STUB_SECTION_NAME (abfd),
7166 flags | SEC_CODE);
7167 if (s == NULL
7168 || ! bfd_set_section_alignment (abfd, s,
7169 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7170 return FALSE;
7171 htab->sstubs = s;
7172
7173 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
7174 && !info->shared
7175 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
7176 {
7177 s = bfd_make_section_with_flags (abfd, ".rld_map",
7178 flags &~ (flagword) SEC_READONLY);
7179 if (s == NULL
7180 || ! bfd_set_section_alignment (abfd, s,
7181 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7182 return FALSE;
7183 }
7184
7185 /* On IRIX5, we adjust add some additional symbols and change the
7186 alignments of several sections. There is no ABI documentation
7187 indicating that this is necessary on IRIX6, nor any evidence that
7188 the linker takes such action. */
7189 if (IRIX_COMPAT (abfd) == ict_irix5)
7190 {
7191 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7192 {
7193 bh = NULL;
7194 if (! (_bfd_generic_link_add_one_symbol
7195 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7196 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7197 return FALSE;
7198
7199 h = (struct elf_link_hash_entry *) bh;
7200 h->non_elf = 0;
7201 h->def_regular = 1;
7202 h->type = STT_SECTION;
7203
7204 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7205 return FALSE;
7206 }
7207
7208 /* We need to create a .compact_rel section. */
7209 if (SGI_COMPAT (abfd))
7210 {
7211 if (!mips_elf_create_compact_rel_section (abfd, info))
7212 return FALSE;
7213 }
7214
7215 /* Change alignments of some sections. */
7216 s = bfd_get_section_by_name (abfd, ".hash");
7217 if (s != NULL)
7218 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7219 s = bfd_get_section_by_name (abfd, ".dynsym");
7220 if (s != NULL)
7221 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7222 s = bfd_get_section_by_name (abfd, ".dynstr");
7223 if (s != NULL)
7224 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7225 s = bfd_get_section_by_name (abfd, ".reginfo");
7226 if (s != NULL)
7227 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7228 s = bfd_get_section_by_name (abfd, ".dynamic");
7229 if (s != NULL)
7230 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7231 }
7232
7233 if (!info->shared)
7234 {
7235 const char *name;
7236
7237 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7238 bh = NULL;
7239 if (!(_bfd_generic_link_add_one_symbol
7240 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7241 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7242 return FALSE;
7243
7244 h = (struct elf_link_hash_entry *) bh;
7245 h->non_elf = 0;
7246 h->def_regular = 1;
7247 h->type = STT_SECTION;
7248
7249 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7250 return FALSE;
7251
7252 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7253 {
7254 /* __rld_map is a four byte word located in the .data section
7255 and is filled in by the rtld to contain a pointer to
7256 the _r_debug structure. Its symbol value will be set in
7257 _bfd_mips_elf_finish_dynamic_symbol. */
7258 s = bfd_get_section_by_name (abfd, ".rld_map");
7259 BFD_ASSERT (s != NULL);
7260
7261 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7262 bh = NULL;
7263 if (!(_bfd_generic_link_add_one_symbol
7264 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7265 get_elf_backend_data (abfd)->collect, &bh)))
7266 return FALSE;
7267
7268 h = (struct elf_link_hash_entry *) bh;
7269 h->non_elf = 0;
7270 h->def_regular = 1;
7271 h->type = STT_OBJECT;
7272
7273 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7274 return FALSE;
7275 mips_elf_hash_table (info)->rld_symbol = h;
7276 }
7277 }
7278
7279 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7280 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7281 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7282 return FALSE;
7283
7284 /* Cache the sections created above. */
7285 htab->splt = bfd_get_section_by_name (abfd, ".plt");
7286 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
7287 if (htab->is_vxworks)
7288 {
7289 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
7290 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
7291 }
7292 else
7293 htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt");
7294 if (!htab->sdynbss
7295 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7296 || !htab->srelplt
7297 || !htab->splt)
7298 abort ();
7299
7300 if (htab->is_vxworks)
7301 {
7302 /* Do the usual VxWorks handling. */
7303 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7304 return FALSE;
7305
7306 /* Work out the PLT sizes. */
7307 if (info->shared)
7308 {
7309 htab->plt_header_size
7310 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7311 htab->plt_entry_size
7312 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7313 }
7314 else
7315 {
7316 htab->plt_header_size
7317 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7318 htab->plt_entry_size
7319 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7320 }
7321 }
7322 else if (!info->shared)
7323 {
7324 /* All variants of the plt0 entry are the same size. */
7325 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7326 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7327 }
7328
7329 return TRUE;
7330 }
7331 \f
7332 /* Return true if relocation REL against section SEC is a REL rather than
7333 RELA relocation. RELOCS is the first relocation in the section and
7334 ABFD is the bfd that contains SEC. */
7335
7336 static bfd_boolean
7337 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7338 const Elf_Internal_Rela *relocs,
7339 const Elf_Internal_Rela *rel)
7340 {
7341 Elf_Internal_Shdr *rel_hdr;
7342 const struct elf_backend_data *bed;
7343
7344 /* To determine which flavor of relocation this is, we depend on the
7345 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7346 rel_hdr = elf_section_data (sec)->rel.hdr;
7347 if (rel_hdr == NULL)
7348 return FALSE;
7349 bed = get_elf_backend_data (abfd);
7350 return ((size_t) (rel - relocs)
7351 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7352 }
7353
7354 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7355 HOWTO is the relocation's howto and CONTENTS points to the contents
7356 of the section that REL is against. */
7357
7358 static bfd_vma
7359 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7360 reloc_howto_type *howto, bfd_byte *contents)
7361 {
7362 bfd_byte *location;
7363 unsigned int r_type;
7364 bfd_vma addend;
7365
7366 r_type = ELF_R_TYPE (abfd, rel->r_info);
7367 location = contents + rel->r_offset;
7368
7369 /* Get the addend, which is stored in the input file. */
7370 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7371 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7372 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7373
7374 return addend & howto->src_mask;
7375 }
7376
7377 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7378 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7379 and update *ADDEND with the final addend. Return true on success
7380 or false if the LO16 could not be found. RELEND is the exclusive
7381 upper bound on the relocations for REL's section. */
7382
7383 static bfd_boolean
7384 mips_elf_add_lo16_rel_addend (bfd *abfd,
7385 const Elf_Internal_Rela *rel,
7386 const Elf_Internal_Rela *relend,
7387 bfd_byte *contents, bfd_vma *addend)
7388 {
7389 unsigned int r_type, lo16_type;
7390 const Elf_Internal_Rela *lo16_relocation;
7391 reloc_howto_type *lo16_howto;
7392 bfd_vma l;
7393
7394 r_type = ELF_R_TYPE (abfd, rel->r_info);
7395 if (mips16_reloc_p (r_type))
7396 lo16_type = R_MIPS16_LO16;
7397 else if (micromips_reloc_p (r_type))
7398 lo16_type = R_MICROMIPS_LO16;
7399 else
7400 lo16_type = R_MIPS_LO16;
7401
7402 /* The combined value is the sum of the HI16 addend, left-shifted by
7403 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7404 code does a `lui' of the HI16 value, and then an `addiu' of the
7405 LO16 value.)
7406
7407 Scan ahead to find a matching LO16 relocation.
7408
7409 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7410 be immediately following. However, for the IRIX6 ABI, the next
7411 relocation may be a composed relocation consisting of several
7412 relocations for the same address. In that case, the R_MIPS_LO16
7413 relocation may occur as one of these. We permit a similar
7414 extension in general, as that is useful for GCC.
7415
7416 In some cases GCC dead code elimination removes the LO16 but keeps
7417 the corresponding HI16. This is strictly speaking a violation of
7418 the ABI but not immediately harmful. */
7419 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7420 if (lo16_relocation == NULL)
7421 return FALSE;
7422
7423 /* Obtain the addend kept there. */
7424 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7425 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7426
7427 l <<= lo16_howto->rightshift;
7428 l = _bfd_mips_elf_sign_extend (l, 16);
7429
7430 *addend <<= 16;
7431 *addend += l;
7432 return TRUE;
7433 }
7434
7435 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7436 store the contents in *CONTENTS on success. Assume that *CONTENTS
7437 already holds the contents if it is nonull on entry. */
7438
7439 static bfd_boolean
7440 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7441 {
7442 if (*contents)
7443 return TRUE;
7444
7445 /* Get cached copy if it exists. */
7446 if (elf_section_data (sec)->this_hdr.contents != NULL)
7447 {
7448 *contents = elf_section_data (sec)->this_hdr.contents;
7449 return TRUE;
7450 }
7451
7452 return bfd_malloc_and_get_section (abfd, sec, contents);
7453 }
7454
7455 /* Look through the relocs for a section during the first phase, and
7456 allocate space in the global offset table. */
7457
7458 bfd_boolean
7459 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7460 asection *sec, const Elf_Internal_Rela *relocs)
7461 {
7462 const char *name;
7463 bfd *dynobj;
7464 Elf_Internal_Shdr *symtab_hdr;
7465 struct elf_link_hash_entry **sym_hashes;
7466 size_t extsymoff;
7467 const Elf_Internal_Rela *rel;
7468 const Elf_Internal_Rela *rel_end;
7469 asection *sreloc;
7470 const struct elf_backend_data *bed;
7471 struct mips_elf_link_hash_table *htab;
7472 bfd_byte *contents;
7473 bfd_vma addend;
7474 reloc_howto_type *howto;
7475
7476 if (info->relocatable)
7477 return TRUE;
7478
7479 htab = mips_elf_hash_table (info);
7480 BFD_ASSERT (htab != NULL);
7481
7482 dynobj = elf_hash_table (info)->dynobj;
7483 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7484 sym_hashes = elf_sym_hashes (abfd);
7485 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7486
7487 bed = get_elf_backend_data (abfd);
7488 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7489
7490 /* Check for the mips16 stub sections. */
7491
7492 name = bfd_get_section_name (abfd, sec);
7493 if (FN_STUB_P (name))
7494 {
7495 unsigned long r_symndx;
7496
7497 /* Look at the relocation information to figure out which symbol
7498 this is for. */
7499
7500 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7501 if (r_symndx == 0)
7502 {
7503 (*_bfd_error_handler)
7504 (_("%B: Warning: cannot determine the target function for"
7505 " stub section `%s'"),
7506 abfd, name);
7507 bfd_set_error (bfd_error_bad_value);
7508 return FALSE;
7509 }
7510
7511 if (r_symndx < extsymoff
7512 || sym_hashes[r_symndx - extsymoff] == NULL)
7513 {
7514 asection *o;
7515
7516 /* This stub is for a local symbol. This stub will only be
7517 needed if there is some relocation in this BFD, other
7518 than a 16 bit function call, which refers to this symbol. */
7519 for (o = abfd->sections; o != NULL; o = o->next)
7520 {
7521 Elf_Internal_Rela *sec_relocs;
7522 const Elf_Internal_Rela *r, *rend;
7523
7524 /* We can ignore stub sections when looking for relocs. */
7525 if ((o->flags & SEC_RELOC) == 0
7526 || o->reloc_count == 0
7527 || section_allows_mips16_refs_p (o))
7528 continue;
7529
7530 sec_relocs
7531 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7532 info->keep_memory);
7533 if (sec_relocs == NULL)
7534 return FALSE;
7535
7536 rend = sec_relocs + o->reloc_count;
7537 for (r = sec_relocs; r < rend; r++)
7538 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7539 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7540 break;
7541
7542 if (elf_section_data (o)->relocs != sec_relocs)
7543 free (sec_relocs);
7544
7545 if (r < rend)
7546 break;
7547 }
7548
7549 if (o == NULL)
7550 {
7551 /* There is no non-call reloc for this stub, so we do
7552 not need it. Since this function is called before
7553 the linker maps input sections to output sections, we
7554 can easily discard it by setting the SEC_EXCLUDE
7555 flag. */
7556 sec->flags |= SEC_EXCLUDE;
7557 return TRUE;
7558 }
7559
7560 /* Record this stub in an array of local symbol stubs for
7561 this BFD. */
7562 if (elf_tdata (abfd)->local_stubs == NULL)
7563 {
7564 unsigned long symcount;
7565 asection **n;
7566 bfd_size_type amt;
7567
7568 if (elf_bad_symtab (abfd))
7569 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7570 else
7571 symcount = symtab_hdr->sh_info;
7572 amt = symcount * sizeof (asection *);
7573 n = bfd_zalloc (abfd, amt);
7574 if (n == NULL)
7575 return FALSE;
7576 elf_tdata (abfd)->local_stubs = n;
7577 }
7578
7579 sec->flags |= SEC_KEEP;
7580 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7581
7582 /* We don't need to set mips16_stubs_seen in this case.
7583 That flag is used to see whether we need to look through
7584 the global symbol table for stubs. We don't need to set
7585 it here, because we just have a local stub. */
7586 }
7587 else
7588 {
7589 struct mips_elf_link_hash_entry *h;
7590
7591 h = ((struct mips_elf_link_hash_entry *)
7592 sym_hashes[r_symndx - extsymoff]);
7593
7594 while (h->root.root.type == bfd_link_hash_indirect
7595 || h->root.root.type == bfd_link_hash_warning)
7596 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7597
7598 /* H is the symbol this stub is for. */
7599
7600 /* If we already have an appropriate stub for this function, we
7601 don't need another one, so we can discard this one. Since
7602 this function is called before the linker maps input sections
7603 to output sections, we can easily discard it by setting the
7604 SEC_EXCLUDE flag. */
7605 if (h->fn_stub != NULL)
7606 {
7607 sec->flags |= SEC_EXCLUDE;
7608 return TRUE;
7609 }
7610
7611 sec->flags |= SEC_KEEP;
7612 h->fn_stub = sec;
7613 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7614 }
7615 }
7616 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7617 {
7618 unsigned long r_symndx;
7619 struct mips_elf_link_hash_entry *h;
7620 asection **loc;
7621
7622 /* Look at the relocation information to figure out which symbol
7623 this is for. */
7624
7625 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7626 if (r_symndx == 0)
7627 {
7628 (*_bfd_error_handler)
7629 (_("%B: Warning: cannot determine the target function for"
7630 " stub section `%s'"),
7631 abfd, name);
7632 bfd_set_error (bfd_error_bad_value);
7633 return FALSE;
7634 }
7635
7636 if (r_symndx < extsymoff
7637 || sym_hashes[r_symndx - extsymoff] == NULL)
7638 {
7639 asection *o;
7640
7641 /* This stub is for a local symbol. This stub will only be
7642 needed if there is some relocation (R_MIPS16_26) in this BFD
7643 that refers to this symbol. */
7644 for (o = abfd->sections; o != NULL; o = o->next)
7645 {
7646 Elf_Internal_Rela *sec_relocs;
7647 const Elf_Internal_Rela *r, *rend;
7648
7649 /* We can ignore stub sections when looking for relocs. */
7650 if ((o->flags & SEC_RELOC) == 0
7651 || o->reloc_count == 0
7652 || section_allows_mips16_refs_p (o))
7653 continue;
7654
7655 sec_relocs
7656 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7657 info->keep_memory);
7658 if (sec_relocs == NULL)
7659 return FALSE;
7660
7661 rend = sec_relocs + o->reloc_count;
7662 for (r = sec_relocs; r < rend; r++)
7663 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7664 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7665 break;
7666
7667 if (elf_section_data (o)->relocs != sec_relocs)
7668 free (sec_relocs);
7669
7670 if (r < rend)
7671 break;
7672 }
7673
7674 if (o == NULL)
7675 {
7676 /* There is no non-call reloc for this stub, so we do
7677 not need it. Since this function is called before
7678 the linker maps input sections to output sections, we
7679 can easily discard it by setting the SEC_EXCLUDE
7680 flag. */
7681 sec->flags |= SEC_EXCLUDE;
7682 return TRUE;
7683 }
7684
7685 /* Record this stub in an array of local symbol call_stubs for
7686 this BFD. */
7687 if (elf_tdata (abfd)->local_call_stubs == NULL)
7688 {
7689 unsigned long symcount;
7690 asection **n;
7691 bfd_size_type amt;
7692
7693 if (elf_bad_symtab (abfd))
7694 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7695 else
7696 symcount = symtab_hdr->sh_info;
7697 amt = symcount * sizeof (asection *);
7698 n = bfd_zalloc (abfd, amt);
7699 if (n == NULL)
7700 return FALSE;
7701 elf_tdata (abfd)->local_call_stubs = n;
7702 }
7703
7704 sec->flags |= SEC_KEEP;
7705 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7706
7707 /* We don't need to set mips16_stubs_seen in this case.
7708 That flag is used to see whether we need to look through
7709 the global symbol table for stubs. We don't need to set
7710 it here, because we just have a local stub. */
7711 }
7712 else
7713 {
7714 h = ((struct mips_elf_link_hash_entry *)
7715 sym_hashes[r_symndx - extsymoff]);
7716
7717 /* H is the symbol this stub is for. */
7718
7719 if (CALL_FP_STUB_P (name))
7720 loc = &h->call_fp_stub;
7721 else
7722 loc = &h->call_stub;
7723
7724 /* If we already have an appropriate stub for this function, we
7725 don't need another one, so we can discard this one. Since
7726 this function is called before the linker maps input sections
7727 to output sections, we can easily discard it by setting the
7728 SEC_EXCLUDE flag. */
7729 if (*loc != NULL)
7730 {
7731 sec->flags |= SEC_EXCLUDE;
7732 return TRUE;
7733 }
7734
7735 sec->flags |= SEC_KEEP;
7736 *loc = sec;
7737 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7738 }
7739 }
7740
7741 sreloc = NULL;
7742 contents = NULL;
7743 for (rel = relocs; rel < rel_end; ++rel)
7744 {
7745 unsigned long r_symndx;
7746 unsigned int r_type;
7747 struct elf_link_hash_entry *h;
7748 bfd_boolean can_make_dynamic_p;
7749
7750 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7751 r_type = ELF_R_TYPE (abfd, rel->r_info);
7752
7753 if (r_symndx < extsymoff)
7754 h = NULL;
7755 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7756 {
7757 (*_bfd_error_handler)
7758 (_("%B: Malformed reloc detected for section %s"),
7759 abfd, name);
7760 bfd_set_error (bfd_error_bad_value);
7761 return FALSE;
7762 }
7763 else
7764 {
7765 h = sym_hashes[r_symndx - extsymoff];
7766 while (h != NULL
7767 && (h->root.type == bfd_link_hash_indirect
7768 || h->root.type == bfd_link_hash_warning))
7769 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7770 }
7771
7772 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7773 relocation into a dynamic one. */
7774 can_make_dynamic_p = FALSE;
7775 switch (r_type)
7776 {
7777 case R_MIPS16_GOT16:
7778 case R_MIPS16_CALL16:
7779 case R_MIPS_GOT16:
7780 case R_MIPS_CALL16:
7781 case R_MIPS_CALL_HI16:
7782 case R_MIPS_CALL_LO16:
7783 case R_MIPS_GOT_HI16:
7784 case R_MIPS_GOT_LO16:
7785 case R_MIPS_GOT_PAGE:
7786 case R_MIPS_GOT_OFST:
7787 case R_MIPS_GOT_DISP:
7788 case R_MIPS_TLS_GOTTPREL:
7789 case R_MIPS_TLS_GD:
7790 case R_MIPS_TLS_LDM:
7791 case R_MICROMIPS_GOT16:
7792 case R_MICROMIPS_CALL16:
7793 case R_MICROMIPS_CALL_HI16:
7794 case R_MICROMIPS_CALL_LO16:
7795 case R_MICROMIPS_GOT_HI16:
7796 case R_MICROMIPS_GOT_LO16:
7797 case R_MICROMIPS_GOT_PAGE:
7798 case R_MICROMIPS_GOT_OFST:
7799 case R_MICROMIPS_GOT_DISP:
7800 case R_MICROMIPS_TLS_GOTTPREL:
7801 case R_MICROMIPS_TLS_GD:
7802 case R_MICROMIPS_TLS_LDM:
7803 if (dynobj == NULL)
7804 elf_hash_table (info)->dynobj = dynobj = abfd;
7805 if (!mips_elf_create_got_section (dynobj, info))
7806 return FALSE;
7807 if (htab->is_vxworks && !info->shared)
7808 {
7809 (*_bfd_error_handler)
7810 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7811 abfd, (unsigned long) rel->r_offset);
7812 bfd_set_error (bfd_error_bad_value);
7813 return FALSE;
7814 }
7815 break;
7816
7817 /* This is just a hint; it can safely be ignored. Don't set
7818 has_static_relocs for the corresponding symbol. */
7819 case R_MIPS_JALR:
7820 case R_MICROMIPS_JALR:
7821 break;
7822
7823 case R_MIPS_32:
7824 case R_MIPS_REL32:
7825 case R_MIPS_64:
7826 /* In VxWorks executables, references to external symbols
7827 must be handled using copy relocs or PLT entries; it is not
7828 possible to convert this relocation into a dynamic one.
7829
7830 For executables that use PLTs and copy-relocs, we have a
7831 choice between converting the relocation into a dynamic
7832 one or using copy relocations or PLT entries. It is
7833 usually better to do the former, unless the relocation is
7834 against a read-only section. */
7835 if ((info->shared
7836 || (h != NULL
7837 && !htab->is_vxworks
7838 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7839 && !(!info->nocopyreloc
7840 && !PIC_OBJECT_P (abfd)
7841 && MIPS_ELF_READONLY_SECTION (sec))))
7842 && (sec->flags & SEC_ALLOC) != 0)
7843 {
7844 can_make_dynamic_p = TRUE;
7845 if (dynobj == NULL)
7846 elf_hash_table (info)->dynobj = dynobj = abfd;
7847 break;
7848 }
7849 /* For sections that are not SEC_ALLOC a copy reloc would be
7850 output if possible (implying questionable semantics for
7851 read-only data objects) or otherwise the final link would
7852 fail as ld.so will not process them and could not therefore
7853 handle any outstanding dynamic relocations.
7854
7855 For such sections that are also SEC_DEBUGGING, we can avoid
7856 these problems by simply ignoring any relocs as these
7857 sections have a predefined use and we know it is safe to do
7858 so.
7859
7860 This is needed in cases such as a global symbol definition
7861 in a shared library causing a common symbol from an object
7862 file to be converted to an undefined reference. If that
7863 happens, then all the relocations against this symbol from
7864 SEC_DEBUGGING sections in the object file will resolve to
7865 nil. */
7866 if ((sec->flags & SEC_DEBUGGING) != 0)
7867 break;
7868 /* Fall through. */
7869
7870 default:
7871 /* Most static relocations require pointer equality, except
7872 for branches. */
7873 if (h)
7874 h->pointer_equality_needed = TRUE;
7875 /* Fall through. */
7876
7877 case R_MIPS_26:
7878 case R_MIPS_PC16:
7879 case R_MIPS16_26:
7880 case R_MICROMIPS_26_S1:
7881 case R_MICROMIPS_PC7_S1:
7882 case R_MICROMIPS_PC10_S1:
7883 case R_MICROMIPS_PC16_S1:
7884 case R_MICROMIPS_PC23_S2:
7885 if (h)
7886 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7887 break;
7888 }
7889
7890 if (h)
7891 {
7892 /* Relocations against the special VxWorks __GOTT_BASE__ and
7893 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7894 room for them in .rela.dyn. */
7895 if (is_gott_symbol (info, h))
7896 {
7897 if (sreloc == NULL)
7898 {
7899 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7900 if (sreloc == NULL)
7901 return FALSE;
7902 }
7903 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7904 if (MIPS_ELF_READONLY_SECTION (sec))
7905 /* We tell the dynamic linker that there are
7906 relocations against the text segment. */
7907 info->flags |= DF_TEXTREL;
7908 }
7909 }
7910 else if (call_lo16_reloc_p (r_type)
7911 || got_lo16_reloc_p (r_type)
7912 || got_disp_reloc_p (r_type)
7913 || (got16_reloc_p (r_type) && htab->is_vxworks))
7914 {
7915 /* We may need a local GOT entry for this relocation. We
7916 don't count R_MIPS_GOT_PAGE because we can estimate the
7917 maximum number of pages needed by looking at the size of
7918 the segment. Similar comments apply to R_MIPS*_GOT16 and
7919 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7920 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7921 R_MIPS_CALL_HI16 because these are always followed by an
7922 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7923 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7924 rel->r_addend, info, 0))
7925 return FALSE;
7926 }
7927
7928 if (h != NULL && mips_elf_relocation_needs_la25_stub (abfd, r_type))
7929 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7930
7931 switch (r_type)
7932 {
7933 case R_MIPS_CALL16:
7934 case R_MIPS16_CALL16:
7935 case R_MICROMIPS_CALL16:
7936 if (h == NULL)
7937 {
7938 (*_bfd_error_handler)
7939 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7940 abfd, (unsigned long) rel->r_offset);
7941 bfd_set_error (bfd_error_bad_value);
7942 return FALSE;
7943 }
7944 /* Fall through. */
7945
7946 case R_MIPS_CALL_HI16:
7947 case R_MIPS_CALL_LO16:
7948 case R_MICROMIPS_CALL_HI16:
7949 case R_MICROMIPS_CALL_LO16:
7950 if (h != NULL)
7951 {
7952 /* Make sure there is room in the regular GOT to hold the
7953 function's address. We may eliminate it in favour of
7954 a .got.plt entry later; see mips_elf_count_got_symbols. */
7955 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
7956 return FALSE;
7957
7958 /* We need a stub, not a plt entry for the undefined
7959 function. But we record it as if it needs plt. See
7960 _bfd_elf_adjust_dynamic_symbol. */
7961 h->needs_plt = 1;
7962 h->type = STT_FUNC;
7963 }
7964 break;
7965
7966 case R_MIPS_GOT_PAGE:
7967 case R_MICROMIPS_GOT_PAGE:
7968 /* If this is a global, overridable symbol, GOT_PAGE will
7969 decay to GOT_DISP, so we'll need a GOT entry for it. */
7970 if (h)
7971 {
7972 struct mips_elf_link_hash_entry *hmips =
7973 (struct mips_elf_link_hash_entry *) h;
7974
7975 /* This symbol is definitely not overridable. */
7976 if (hmips->root.def_regular
7977 && ! (info->shared && ! info->symbolic
7978 && ! hmips->root.forced_local))
7979 h = NULL;
7980 }
7981 /* Fall through. */
7982
7983 case R_MIPS16_GOT16:
7984 case R_MIPS_GOT16:
7985 case R_MIPS_GOT_HI16:
7986 case R_MIPS_GOT_LO16:
7987 case R_MICROMIPS_GOT16:
7988 case R_MICROMIPS_GOT_HI16:
7989 case R_MICROMIPS_GOT_LO16:
7990 if (!h || got_page_reloc_p (r_type))
7991 {
7992 /* This relocation needs (or may need, if h != NULL) a
7993 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7994 know for sure until we know whether the symbol is
7995 preemptible. */
7996 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
7997 {
7998 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7999 return FALSE;
8000 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8001 addend = mips_elf_read_rel_addend (abfd, rel,
8002 howto, contents);
8003 if (got16_reloc_p (r_type))
8004 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8005 contents, &addend);
8006 else
8007 addend <<= howto->rightshift;
8008 }
8009 else
8010 addend = rel->r_addend;
8011 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
8012 addend))
8013 return FALSE;
8014 }
8015 /* Fall through. */
8016
8017 case R_MIPS_GOT_DISP:
8018 case R_MICROMIPS_GOT_DISP:
8019 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8020 FALSE, 0))
8021 return FALSE;
8022 break;
8023
8024 case R_MIPS_TLS_GOTTPREL:
8025 case R_MICROMIPS_TLS_GOTTPREL:
8026 if (info->shared)
8027 info->flags |= DF_STATIC_TLS;
8028 /* Fall through */
8029
8030 case R_MIPS_TLS_LDM:
8031 case R_MICROMIPS_TLS_LDM:
8032 if (tls_ldm_reloc_p (r_type))
8033 {
8034 r_symndx = STN_UNDEF;
8035 h = NULL;
8036 }
8037 /* Fall through */
8038
8039 case R_MIPS_TLS_GD:
8040 case R_MICROMIPS_TLS_GD:
8041 /* This symbol requires a global offset table entry, or two
8042 for TLS GD relocations. */
8043 {
8044 unsigned char flag;
8045
8046 flag = (tls_gd_reloc_p (r_type)
8047 ? GOT_TLS_GD
8048 : tls_ldm_reloc_p (r_type) ? GOT_TLS_LDM : GOT_TLS_IE);
8049 if (h != NULL)
8050 {
8051 struct mips_elf_link_hash_entry *hmips =
8052 (struct mips_elf_link_hash_entry *) h;
8053 hmips->tls_type |= flag;
8054
8055 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8056 FALSE, flag))
8057 return FALSE;
8058 }
8059 else
8060 {
8061 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
8062
8063 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8064 rel->r_addend,
8065 info, flag))
8066 return FALSE;
8067 }
8068 }
8069 break;
8070
8071 case R_MIPS_32:
8072 case R_MIPS_REL32:
8073 case R_MIPS_64:
8074 /* In VxWorks executables, references to external symbols
8075 are handled using copy relocs or PLT stubs, so there's
8076 no need to add a .rela.dyn entry for this relocation. */
8077 if (can_make_dynamic_p)
8078 {
8079 if (sreloc == NULL)
8080 {
8081 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8082 if (sreloc == NULL)
8083 return FALSE;
8084 }
8085 if (info->shared && h == NULL)
8086 {
8087 /* When creating a shared object, we must copy these
8088 reloc types into the output file as R_MIPS_REL32
8089 relocs. Make room for this reloc in .rel(a).dyn. */
8090 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8091 if (MIPS_ELF_READONLY_SECTION (sec))
8092 /* We tell the dynamic linker that there are
8093 relocations against the text segment. */
8094 info->flags |= DF_TEXTREL;
8095 }
8096 else
8097 {
8098 struct mips_elf_link_hash_entry *hmips;
8099
8100 /* For a shared object, we must copy this relocation
8101 unless the symbol turns out to be undefined and
8102 weak with non-default visibility, in which case
8103 it will be left as zero.
8104
8105 We could elide R_MIPS_REL32 for locally binding symbols
8106 in shared libraries, but do not yet do so.
8107
8108 For an executable, we only need to copy this
8109 reloc if the symbol is defined in a dynamic
8110 object. */
8111 hmips = (struct mips_elf_link_hash_entry *) h;
8112 ++hmips->possibly_dynamic_relocs;
8113 if (MIPS_ELF_READONLY_SECTION (sec))
8114 /* We need it to tell the dynamic linker if there
8115 are relocations against the text segment. */
8116 hmips->readonly_reloc = TRUE;
8117 }
8118 }
8119
8120 if (SGI_COMPAT (abfd))
8121 mips_elf_hash_table (info)->compact_rel_size +=
8122 sizeof (Elf32_External_crinfo);
8123 break;
8124
8125 case R_MIPS_26:
8126 case R_MIPS_GPREL16:
8127 case R_MIPS_LITERAL:
8128 case R_MIPS_GPREL32:
8129 case R_MICROMIPS_26_S1:
8130 case R_MICROMIPS_GPREL16:
8131 case R_MICROMIPS_LITERAL:
8132 case R_MICROMIPS_GPREL7_S2:
8133 if (SGI_COMPAT (abfd))
8134 mips_elf_hash_table (info)->compact_rel_size +=
8135 sizeof (Elf32_External_crinfo);
8136 break;
8137
8138 /* This relocation describes the C++ object vtable hierarchy.
8139 Reconstruct it for later use during GC. */
8140 case R_MIPS_GNU_VTINHERIT:
8141 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8142 return FALSE;
8143 break;
8144
8145 /* This relocation describes which C++ vtable entries are actually
8146 used. Record for later use during GC. */
8147 case R_MIPS_GNU_VTENTRY:
8148 BFD_ASSERT (h != NULL);
8149 if (h != NULL
8150 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8151 return FALSE;
8152 break;
8153
8154 default:
8155 break;
8156 }
8157
8158 /* We must not create a stub for a symbol that has relocations
8159 related to taking the function's address. This doesn't apply to
8160 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8161 a normal .got entry. */
8162 if (!htab->is_vxworks && h != NULL)
8163 switch (r_type)
8164 {
8165 default:
8166 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8167 break;
8168 case R_MIPS16_CALL16:
8169 case R_MIPS_CALL16:
8170 case R_MIPS_CALL_HI16:
8171 case R_MIPS_CALL_LO16:
8172 case R_MIPS_JALR:
8173 case R_MICROMIPS_CALL16:
8174 case R_MICROMIPS_CALL_HI16:
8175 case R_MICROMIPS_CALL_LO16:
8176 case R_MICROMIPS_JALR:
8177 break;
8178 }
8179
8180 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8181 if there is one. We only need to handle global symbols here;
8182 we decide whether to keep or delete stubs for local symbols
8183 when processing the stub's relocations. */
8184 if (h != NULL
8185 && !mips16_call_reloc_p (r_type)
8186 && !section_allows_mips16_refs_p (sec))
8187 {
8188 struct mips_elf_link_hash_entry *mh;
8189
8190 mh = (struct mips_elf_link_hash_entry *) h;
8191 mh->need_fn_stub = TRUE;
8192 }
8193
8194 /* Refuse some position-dependent relocations when creating a
8195 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8196 not PIC, but we can create dynamic relocations and the result
8197 will be fine. Also do not refuse R_MIPS_LO16, which can be
8198 combined with R_MIPS_GOT16. */
8199 if (info->shared)
8200 {
8201 switch (r_type)
8202 {
8203 case R_MIPS16_HI16:
8204 case R_MIPS_HI16:
8205 case R_MIPS_HIGHER:
8206 case R_MIPS_HIGHEST:
8207 case R_MICROMIPS_HI16:
8208 case R_MICROMIPS_HIGHER:
8209 case R_MICROMIPS_HIGHEST:
8210 /* Don't refuse a high part relocation if it's against
8211 no symbol (e.g. part of a compound relocation). */
8212 if (r_symndx == STN_UNDEF)
8213 break;
8214
8215 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8216 and has a special meaning. */
8217 if (!NEWABI_P (abfd) && h != NULL
8218 && strcmp (h->root.root.string, "_gp_disp") == 0)
8219 break;
8220
8221 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8222 if (is_gott_symbol (info, h))
8223 break;
8224
8225 /* FALLTHROUGH */
8226
8227 case R_MIPS16_26:
8228 case R_MIPS_26:
8229 case R_MICROMIPS_26_S1:
8230 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8231 (*_bfd_error_handler)
8232 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8233 abfd, howto->name,
8234 (h) ? h->root.root.string : "a local symbol");
8235 bfd_set_error (bfd_error_bad_value);
8236 return FALSE;
8237 default:
8238 break;
8239 }
8240 }
8241 }
8242
8243 return TRUE;
8244 }
8245 \f
8246 bfd_boolean
8247 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8248 struct bfd_link_info *link_info,
8249 bfd_boolean *again)
8250 {
8251 Elf_Internal_Rela *internal_relocs;
8252 Elf_Internal_Rela *irel, *irelend;
8253 Elf_Internal_Shdr *symtab_hdr;
8254 bfd_byte *contents = NULL;
8255 size_t extsymoff;
8256 bfd_boolean changed_contents = FALSE;
8257 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8258 Elf_Internal_Sym *isymbuf = NULL;
8259
8260 /* We are not currently changing any sizes, so only one pass. */
8261 *again = FALSE;
8262
8263 if (link_info->relocatable)
8264 return TRUE;
8265
8266 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8267 link_info->keep_memory);
8268 if (internal_relocs == NULL)
8269 return TRUE;
8270
8271 irelend = internal_relocs + sec->reloc_count
8272 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8273 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8274 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8275
8276 for (irel = internal_relocs; irel < irelend; irel++)
8277 {
8278 bfd_vma symval;
8279 bfd_signed_vma sym_offset;
8280 unsigned int r_type;
8281 unsigned long r_symndx;
8282 asection *sym_sec;
8283 unsigned long instruction;
8284
8285 /* Turn jalr into bgezal, and jr into beq, if they're marked
8286 with a JALR relocation, that indicate where they jump to.
8287 This saves some pipeline bubbles. */
8288 r_type = ELF_R_TYPE (abfd, irel->r_info);
8289 if (r_type != R_MIPS_JALR)
8290 continue;
8291
8292 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8293 /* Compute the address of the jump target. */
8294 if (r_symndx >= extsymoff)
8295 {
8296 struct mips_elf_link_hash_entry *h
8297 = ((struct mips_elf_link_hash_entry *)
8298 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8299
8300 while (h->root.root.type == bfd_link_hash_indirect
8301 || h->root.root.type == bfd_link_hash_warning)
8302 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8303
8304 /* If a symbol is undefined, or if it may be overridden,
8305 skip it. */
8306 if (! ((h->root.root.type == bfd_link_hash_defined
8307 || h->root.root.type == bfd_link_hash_defweak)
8308 && h->root.root.u.def.section)
8309 || (link_info->shared && ! link_info->symbolic
8310 && !h->root.forced_local))
8311 continue;
8312
8313 sym_sec = h->root.root.u.def.section;
8314 if (sym_sec->output_section)
8315 symval = (h->root.root.u.def.value
8316 + sym_sec->output_section->vma
8317 + sym_sec->output_offset);
8318 else
8319 symval = h->root.root.u.def.value;
8320 }
8321 else
8322 {
8323 Elf_Internal_Sym *isym;
8324
8325 /* Read this BFD's symbols if we haven't done so already. */
8326 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8327 {
8328 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8329 if (isymbuf == NULL)
8330 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8331 symtab_hdr->sh_info, 0,
8332 NULL, NULL, NULL);
8333 if (isymbuf == NULL)
8334 goto relax_return;
8335 }
8336
8337 isym = isymbuf + r_symndx;
8338 if (isym->st_shndx == SHN_UNDEF)
8339 continue;
8340 else if (isym->st_shndx == SHN_ABS)
8341 sym_sec = bfd_abs_section_ptr;
8342 else if (isym->st_shndx == SHN_COMMON)
8343 sym_sec = bfd_com_section_ptr;
8344 else
8345 sym_sec
8346 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8347 symval = isym->st_value
8348 + sym_sec->output_section->vma
8349 + sym_sec->output_offset;
8350 }
8351
8352 /* Compute branch offset, from delay slot of the jump to the
8353 branch target. */
8354 sym_offset = (symval + irel->r_addend)
8355 - (sec_start + irel->r_offset + 4);
8356
8357 /* Branch offset must be properly aligned. */
8358 if ((sym_offset & 3) != 0)
8359 continue;
8360
8361 sym_offset >>= 2;
8362
8363 /* Check that it's in range. */
8364 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8365 continue;
8366
8367 /* Get the section contents if we haven't done so already. */
8368 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8369 goto relax_return;
8370
8371 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8372
8373 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8374 if ((instruction & 0xfc1fffff) == 0x0000f809)
8375 instruction = 0x04110000;
8376 /* If it was jr <reg>, turn it into b <target>. */
8377 else if ((instruction & 0xfc1fffff) == 0x00000008)
8378 instruction = 0x10000000;
8379 else
8380 continue;
8381
8382 instruction |= (sym_offset & 0xffff);
8383 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8384 changed_contents = TRUE;
8385 }
8386
8387 if (contents != NULL
8388 && elf_section_data (sec)->this_hdr.contents != contents)
8389 {
8390 if (!changed_contents && !link_info->keep_memory)
8391 free (contents);
8392 else
8393 {
8394 /* Cache the section contents for elf_link_input_bfd. */
8395 elf_section_data (sec)->this_hdr.contents = contents;
8396 }
8397 }
8398 return TRUE;
8399
8400 relax_return:
8401 if (contents != NULL
8402 && elf_section_data (sec)->this_hdr.contents != contents)
8403 free (contents);
8404 return FALSE;
8405 }
8406 \f
8407 /* Allocate space for global sym dynamic relocs. */
8408
8409 static bfd_boolean
8410 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8411 {
8412 struct bfd_link_info *info = inf;
8413 bfd *dynobj;
8414 struct mips_elf_link_hash_entry *hmips;
8415 struct mips_elf_link_hash_table *htab;
8416
8417 htab = mips_elf_hash_table (info);
8418 BFD_ASSERT (htab != NULL);
8419
8420 dynobj = elf_hash_table (info)->dynobj;
8421 hmips = (struct mips_elf_link_hash_entry *) h;
8422
8423 /* VxWorks executables are handled elsewhere; we only need to
8424 allocate relocations in shared objects. */
8425 if (htab->is_vxworks && !info->shared)
8426 return TRUE;
8427
8428 /* Ignore indirect symbols. All relocations against such symbols
8429 will be redirected to the target symbol. */
8430 if (h->root.type == bfd_link_hash_indirect)
8431 return TRUE;
8432
8433 /* If this symbol is defined in a dynamic object, or we are creating
8434 a shared library, we will need to copy any R_MIPS_32 or
8435 R_MIPS_REL32 relocs against it into the output file. */
8436 if (! info->relocatable
8437 && hmips->possibly_dynamic_relocs != 0
8438 && (h->root.type == bfd_link_hash_defweak
8439 || !h->def_regular
8440 || info->shared))
8441 {
8442 bfd_boolean do_copy = TRUE;
8443
8444 if (h->root.type == bfd_link_hash_undefweak)
8445 {
8446 /* Do not copy relocations for undefined weak symbols with
8447 non-default visibility. */
8448 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8449 do_copy = FALSE;
8450
8451 /* Make sure undefined weak symbols are output as a dynamic
8452 symbol in PIEs. */
8453 else if (h->dynindx == -1 && !h->forced_local)
8454 {
8455 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8456 return FALSE;
8457 }
8458 }
8459
8460 if (do_copy)
8461 {
8462 /* Even though we don't directly need a GOT entry for this symbol,
8463 the SVR4 psABI requires it to have a dynamic symbol table
8464 index greater that DT_MIPS_GOTSYM if there are dynamic
8465 relocations against it.
8466
8467 VxWorks does not enforce the same mapping between the GOT
8468 and the symbol table, so the same requirement does not
8469 apply there. */
8470 if (!htab->is_vxworks)
8471 {
8472 if (hmips->global_got_area > GGA_RELOC_ONLY)
8473 hmips->global_got_area = GGA_RELOC_ONLY;
8474 hmips->got_only_for_calls = FALSE;
8475 }
8476
8477 mips_elf_allocate_dynamic_relocations
8478 (dynobj, info, hmips->possibly_dynamic_relocs);
8479 if (hmips->readonly_reloc)
8480 /* We tell the dynamic linker that there are relocations
8481 against the text segment. */
8482 info->flags |= DF_TEXTREL;
8483 }
8484 }
8485
8486 return TRUE;
8487 }
8488
8489 /* Adjust a symbol defined by a dynamic object and referenced by a
8490 regular object. The current definition is in some section of the
8491 dynamic object, but we're not including those sections. We have to
8492 change the definition to something the rest of the link can
8493 understand. */
8494
8495 bfd_boolean
8496 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8497 struct elf_link_hash_entry *h)
8498 {
8499 bfd *dynobj;
8500 struct mips_elf_link_hash_entry *hmips;
8501 struct mips_elf_link_hash_table *htab;
8502
8503 htab = mips_elf_hash_table (info);
8504 BFD_ASSERT (htab != NULL);
8505
8506 dynobj = elf_hash_table (info)->dynobj;
8507 hmips = (struct mips_elf_link_hash_entry *) h;
8508
8509 /* Make sure we know what is going on here. */
8510 BFD_ASSERT (dynobj != NULL
8511 && (h->needs_plt
8512 || h->u.weakdef != NULL
8513 || (h->def_dynamic
8514 && h->ref_regular
8515 && !h->def_regular)));
8516
8517 hmips = (struct mips_elf_link_hash_entry *) h;
8518
8519 /* If there are call relocations against an externally-defined symbol,
8520 see whether we can create a MIPS lazy-binding stub for it. We can
8521 only do this if all references to the function are through call
8522 relocations, and in that case, the traditional lazy-binding stubs
8523 are much more efficient than PLT entries.
8524
8525 Traditional stubs are only available on SVR4 psABI-based systems;
8526 VxWorks always uses PLTs instead. */
8527 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8528 {
8529 if (! elf_hash_table (info)->dynamic_sections_created)
8530 return TRUE;
8531
8532 /* If this symbol is not defined in a regular file, then set
8533 the symbol to the stub location. This is required to make
8534 function pointers compare as equal between the normal
8535 executable and the shared library. */
8536 if (!h->def_regular)
8537 {
8538 hmips->needs_lazy_stub = TRUE;
8539 htab->lazy_stub_count++;
8540 return TRUE;
8541 }
8542 }
8543 /* As above, VxWorks requires PLT entries for externally-defined
8544 functions that are only accessed through call relocations.
8545
8546 Both VxWorks and non-VxWorks targets also need PLT entries if there
8547 are static-only relocations against an externally-defined function.
8548 This can technically occur for shared libraries if there are
8549 branches to the symbol, although it is unlikely that this will be
8550 used in practice due to the short ranges involved. It can occur
8551 for any relative or absolute relocation in executables; in that
8552 case, the PLT entry becomes the function's canonical address. */
8553 else if (((h->needs_plt && !hmips->no_fn_stub)
8554 || (h->type == STT_FUNC && hmips->has_static_relocs))
8555 && htab->use_plts_and_copy_relocs
8556 && !SYMBOL_CALLS_LOCAL (info, h)
8557 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8558 && h->root.type == bfd_link_hash_undefweak))
8559 {
8560 /* If this is the first symbol to need a PLT entry, allocate room
8561 for the header. */
8562 if (htab->splt->size == 0)
8563 {
8564 BFD_ASSERT (htab->sgotplt->size == 0);
8565
8566 /* If we're using the PLT additions to the psABI, each PLT
8567 entry is 16 bytes and the PLT0 entry is 32 bytes.
8568 Encourage better cache usage by aligning. We do this
8569 lazily to avoid pessimizing traditional objects. */
8570 if (!htab->is_vxworks
8571 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8572 return FALSE;
8573
8574 /* Make sure that .got.plt is word-aligned. We do this lazily
8575 for the same reason as above. */
8576 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8577 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8578 return FALSE;
8579
8580 htab->splt->size += htab->plt_header_size;
8581
8582 /* On non-VxWorks targets, the first two entries in .got.plt
8583 are reserved. */
8584 if (!htab->is_vxworks)
8585 htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj);
8586
8587 /* On VxWorks, also allocate room for the header's
8588 .rela.plt.unloaded entries. */
8589 if (htab->is_vxworks && !info->shared)
8590 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8591 }
8592
8593 /* Assign the next .plt entry to this symbol. */
8594 h->plt.offset = htab->splt->size;
8595 htab->splt->size += htab->plt_entry_size;
8596
8597 /* If the output file has no definition of the symbol, set the
8598 symbol's value to the address of the stub. */
8599 if (!info->shared && !h->def_regular)
8600 {
8601 h->root.u.def.section = htab->splt;
8602 h->root.u.def.value = h->plt.offset;
8603 /* For VxWorks, point at the PLT load stub rather than the
8604 lazy resolution stub; this stub will become the canonical
8605 function address. */
8606 if (htab->is_vxworks)
8607 h->root.u.def.value += 8;
8608 }
8609
8610 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8611 relocation. */
8612 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8613 htab->srelplt->size += (htab->is_vxworks
8614 ? MIPS_ELF_RELA_SIZE (dynobj)
8615 : MIPS_ELF_REL_SIZE (dynobj));
8616
8617 /* Make room for the .rela.plt.unloaded relocations. */
8618 if (htab->is_vxworks && !info->shared)
8619 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8620
8621 /* All relocations against this symbol that could have been made
8622 dynamic will now refer to the PLT entry instead. */
8623 hmips->possibly_dynamic_relocs = 0;
8624
8625 return TRUE;
8626 }
8627
8628 /* If this is a weak symbol, and there is a real definition, the
8629 processor independent code will have arranged for us to see the
8630 real definition first, and we can just use the same value. */
8631 if (h->u.weakdef != NULL)
8632 {
8633 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8634 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8635 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8636 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8637 return TRUE;
8638 }
8639
8640 /* Otherwise, there is nothing further to do for symbols defined
8641 in regular objects. */
8642 if (h->def_regular)
8643 return TRUE;
8644
8645 /* There's also nothing more to do if we'll convert all relocations
8646 against this symbol into dynamic relocations. */
8647 if (!hmips->has_static_relocs)
8648 return TRUE;
8649
8650 /* We're now relying on copy relocations. Complain if we have
8651 some that we can't convert. */
8652 if (!htab->use_plts_and_copy_relocs || info->shared)
8653 {
8654 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8655 "dynamic symbol %s"),
8656 h->root.root.string);
8657 bfd_set_error (bfd_error_bad_value);
8658 return FALSE;
8659 }
8660
8661 /* We must allocate the symbol in our .dynbss section, which will
8662 become part of the .bss section of the executable. There will be
8663 an entry for this symbol in the .dynsym section. The dynamic
8664 object will contain position independent code, so all references
8665 from the dynamic object to this symbol will go through the global
8666 offset table. The dynamic linker will use the .dynsym entry to
8667 determine the address it must put in the global offset table, so
8668 both the dynamic object and the regular object will refer to the
8669 same memory location for the variable. */
8670
8671 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8672 {
8673 if (htab->is_vxworks)
8674 htab->srelbss->size += sizeof (Elf32_External_Rela);
8675 else
8676 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8677 h->needs_copy = 1;
8678 }
8679
8680 /* All relocations against this symbol that could have been made
8681 dynamic will now refer to the local copy instead. */
8682 hmips->possibly_dynamic_relocs = 0;
8683
8684 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8685 }
8686 \f
8687 /* This function is called after all the input files have been read,
8688 and the input sections have been assigned to output sections. We
8689 check for any mips16 stub sections that we can discard. */
8690
8691 bfd_boolean
8692 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8693 struct bfd_link_info *info)
8694 {
8695 asection *ri;
8696 struct mips_elf_link_hash_table *htab;
8697 struct mips_htab_traverse_info hti;
8698
8699 htab = mips_elf_hash_table (info);
8700 BFD_ASSERT (htab != NULL);
8701
8702 /* The .reginfo section has a fixed size. */
8703 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8704 if (ri != NULL)
8705 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8706
8707 hti.info = info;
8708 hti.output_bfd = output_bfd;
8709 hti.error = FALSE;
8710 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8711 mips_elf_check_symbols, &hti);
8712 if (hti.error)
8713 return FALSE;
8714
8715 return TRUE;
8716 }
8717
8718 /* If the link uses a GOT, lay it out and work out its size. */
8719
8720 static bfd_boolean
8721 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8722 {
8723 bfd *dynobj;
8724 asection *s;
8725 struct mips_got_info *g;
8726 bfd_size_type loadable_size = 0;
8727 bfd_size_type page_gotno;
8728 bfd *sub;
8729 struct mips_elf_count_tls_arg count_tls_arg;
8730 struct mips_elf_link_hash_table *htab;
8731
8732 htab = mips_elf_hash_table (info);
8733 BFD_ASSERT (htab != NULL);
8734
8735 s = htab->sgot;
8736 if (s == NULL)
8737 return TRUE;
8738
8739 dynobj = elf_hash_table (info)->dynobj;
8740 g = htab->got_info;
8741
8742 /* Allocate room for the reserved entries. VxWorks always reserves
8743 3 entries; other objects only reserve 2 entries. */
8744 BFD_ASSERT (g->assigned_gotno == 0);
8745 if (htab->is_vxworks)
8746 htab->reserved_gotno = 3;
8747 else
8748 htab->reserved_gotno = 2;
8749 g->local_gotno += htab->reserved_gotno;
8750 g->assigned_gotno = htab->reserved_gotno;
8751
8752 /* Replace entries for indirect and warning symbols with entries for
8753 the target symbol. */
8754 if (!mips_elf_resolve_final_got_entries (g))
8755 return FALSE;
8756
8757 /* Count the number of GOT symbols. */
8758 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8759
8760 /* Calculate the total loadable size of the output. That
8761 will give us the maximum number of GOT_PAGE entries
8762 required. */
8763 for (sub = info->input_bfds; sub; sub = sub->link_next)
8764 {
8765 asection *subsection;
8766
8767 for (subsection = sub->sections;
8768 subsection;
8769 subsection = subsection->next)
8770 {
8771 if ((subsection->flags & SEC_ALLOC) == 0)
8772 continue;
8773 loadable_size += ((subsection->size + 0xf)
8774 &~ (bfd_size_type) 0xf);
8775 }
8776 }
8777
8778 if (htab->is_vxworks)
8779 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8780 relocations against local symbols evaluate to "G", and the EABI does
8781 not include R_MIPS_GOT_PAGE. */
8782 page_gotno = 0;
8783 else
8784 /* Assume there are two loadable segments consisting of contiguous
8785 sections. Is 5 enough? */
8786 page_gotno = (loadable_size >> 16) + 5;
8787
8788 /* Choose the smaller of the two estimates; both are intended to be
8789 conservative. */
8790 if (page_gotno > g->page_gotno)
8791 page_gotno = g->page_gotno;
8792
8793 g->local_gotno += page_gotno;
8794 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8795 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8796
8797 /* We need to calculate tls_gotno for global symbols at this point
8798 instead of building it up earlier, to avoid doublecounting
8799 entries for one global symbol from multiple input files. */
8800 count_tls_arg.info = info;
8801 count_tls_arg.needed = 0;
8802 elf_link_hash_traverse (elf_hash_table (info),
8803 mips_elf_count_global_tls_entries,
8804 &count_tls_arg);
8805 g->tls_gotno += count_tls_arg.needed;
8806 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8807
8808 /* VxWorks does not support multiple GOTs. It initializes $gp to
8809 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8810 dynamic loader. */
8811 if (htab->is_vxworks)
8812 {
8813 /* VxWorks executables do not need a GOT. */
8814 if (info->shared)
8815 {
8816 /* Each VxWorks GOT entry needs an explicit relocation. */
8817 unsigned int count;
8818
8819 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8820 if (count)
8821 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8822 }
8823 }
8824 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8825 {
8826 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8827 return FALSE;
8828 }
8829 else
8830 {
8831 struct mips_elf_count_tls_arg arg;
8832
8833 /* Set up TLS entries. */
8834 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8835 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8836
8837 /* Allocate room for the TLS relocations. */
8838 arg.info = info;
8839 arg.needed = 0;
8840 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8841 elf_link_hash_traverse (elf_hash_table (info),
8842 mips_elf_count_global_tls_relocs,
8843 &arg);
8844 if (arg.needed)
8845 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8846 }
8847
8848 return TRUE;
8849 }
8850
8851 /* Estimate the size of the .MIPS.stubs section. */
8852
8853 static void
8854 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8855 {
8856 struct mips_elf_link_hash_table *htab;
8857 bfd_size_type dynsymcount;
8858
8859 htab = mips_elf_hash_table (info);
8860 BFD_ASSERT (htab != NULL);
8861
8862 if (htab->lazy_stub_count == 0)
8863 return;
8864
8865 /* IRIX rld assumes that a function stub isn't at the end of the .text
8866 section, so add a dummy entry to the end. */
8867 htab->lazy_stub_count++;
8868
8869 /* Get a worst-case estimate of the number of dynamic symbols needed.
8870 At this point, dynsymcount does not account for section symbols
8871 and count_section_dynsyms may overestimate the number that will
8872 be needed. */
8873 dynsymcount = (elf_hash_table (info)->dynsymcount
8874 + count_section_dynsyms (output_bfd, info));
8875
8876 /* Determine the size of one stub entry. */
8877 htab->function_stub_size = (dynsymcount > 0x10000
8878 ? MIPS_FUNCTION_STUB_BIG_SIZE
8879 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8880
8881 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8882 }
8883
8884 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8885 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8886 allocate an entry in the stubs section. */
8887
8888 static bfd_boolean
8889 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8890 {
8891 struct mips_elf_link_hash_table *htab;
8892
8893 htab = (struct mips_elf_link_hash_table *) data;
8894 if (h->needs_lazy_stub)
8895 {
8896 h->root.root.u.def.section = htab->sstubs;
8897 h->root.root.u.def.value = htab->sstubs->size;
8898 h->root.plt.offset = htab->sstubs->size;
8899 htab->sstubs->size += htab->function_stub_size;
8900 }
8901 return TRUE;
8902 }
8903
8904 /* Allocate offsets in the stubs section to each symbol that needs one.
8905 Set the final size of the .MIPS.stub section. */
8906
8907 static void
8908 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8909 {
8910 struct mips_elf_link_hash_table *htab;
8911
8912 htab = mips_elf_hash_table (info);
8913 BFD_ASSERT (htab != NULL);
8914
8915 if (htab->lazy_stub_count == 0)
8916 return;
8917
8918 htab->sstubs->size = 0;
8919 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
8920 htab->sstubs->size += htab->function_stub_size;
8921 BFD_ASSERT (htab->sstubs->size
8922 == htab->lazy_stub_count * htab->function_stub_size);
8923 }
8924
8925 /* Set the sizes of the dynamic sections. */
8926
8927 bfd_boolean
8928 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8929 struct bfd_link_info *info)
8930 {
8931 bfd *dynobj;
8932 asection *s, *sreldyn;
8933 bfd_boolean reltext;
8934 struct mips_elf_link_hash_table *htab;
8935
8936 htab = mips_elf_hash_table (info);
8937 BFD_ASSERT (htab != NULL);
8938 dynobj = elf_hash_table (info)->dynobj;
8939 BFD_ASSERT (dynobj != NULL);
8940
8941 if (elf_hash_table (info)->dynamic_sections_created)
8942 {
8943 /* Set the contents of the .interp section to the interpreter. */
8944 if (info->executable)
8945 {
8946 s = bfd_get_section_by_name (dynobj, ".interp");
8947 BFD_ASSERT (s != NULL);
8948 s->size
8949 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8950 s->contents
8951 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8952 }
8953
8954 /* Create a symbol for the PLT, if we know that we are using it. */
8955 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8956 {
8957 struct elf_link_hash_entry *h;
8958
8959 BFD_ASSERT (htab->use_plts_and_copy_relocs);
8960
8961 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8962 "_PROCEDURE_LINKAGE_TABLE_");
8963 htab->root.hplt = h;
8964 if (h == NULL)
8965 return FALSE;
8966 h->type = STT_FUNC;
8967 }
8968 }
8969
8970 /* Allocate space for global sym dynamic relocs. */
8971 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
8972
8973 mips_elf_estimate_stub_size (output_bfd, info);
8974
8975 if (!mips_elf_lay_out_got (output_bfd, info))
8976 return FALSE;
8977
8978 mips_elf_lay_out_lazy_stubs (info);
8979
8980 /* The check_relocs and adjust_dynamic_symbol entry points have
8981 determined the sizes of the various dynamic sections. Allocate
8982 memory for them. */
8983 reltext = FALSE;
8984 for (s = dynobj->sections; s != NULL; s = s->next)
8985 {
8986 const char *name;
8987
8988 /* It's OK to base decisions on the section name, because none
8989 of the dynobj section names depend upon the input files. */
8990 name = bfd_get_section_name (dynobj, s);
8991
8992 if ((s->flags & SEC_LINKER_CREATED) == 0)
8993 continue;
8994
8995 if (CONST_STRNEQ (name, ".rel"))
8996 {
8997 if (s->size != 0)
8998 {
8999 const char *outname;
9000 asection *target;
9001
9002 /* If this relocation section applies to a read only
9003 section, then we probably need a DT_TEXTREL entry.
9004 If the relocation section is .rel(a).dyn, we always
9005 assert a DT_TEXTREL entry rather than testing whether
9006 there exists a relocation to a read only section or
9007 not. */
9008 outname = bfd_get_section_name (output_bfd,
9009 s->output_section);
9010 target = bfd_get_section_by_name (output_bfd, outname + 4);
9011 if ((target != NULL
9012 && (target->flags & SEC_READONLY) != 0
9013 && (target->flags & SEC_ALLOC) != 0)
9014 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9015 reltext = TRUE;
9016
9017 /* We use the reloc_count field as a counter if we need
9018 to copy relocs into the output file. */
9019 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9020 s->reloc_count = 0;
9021
9022 /* If combreloc is enabled, elf_link_sort_relocs() will
9023 sort relocations, but in a different way than we do,
9024 and before we're done creating relocations. Also, it
9025 will move them around between input sections'
9026 relocation's contents, so our sorting would be
9027 broken, so don't let it run. */
9028 info->combreloc = 0;
9029 }
9030 }
9031 else if (! info->shared
9032 && ! mips_elf_hash_table (info)->use_rld_obj_head
9033 && CONST_STRNEQ (name, ".rld_map"))
9034 {
9035 /* We add a room for __rld_map. It will be filled in by the
9036 rtld to contain a pointer to the _r_debug structure. */
9037 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9038 }
9039 else if (SGI_COMPAT (output_bfd)
9040 && CONST_STRNEQ (name, ".compact_rel"))
9041 s->size += mips_elf_hash_table (info)->compact_rel_size;
9042 else if (s == htab->splt)
9043 {
9044 /* If the last PLT entry has a branch delay slot, allocate
9045 room for an extra nop to fill the delay slot. This is
9046 for CPUs without load interlocking. */
9047 if (! LOAD_INTERLOCKS_P (output_bfd)
9048 && ! htab->is_vxworks && s->size > 0)
9049 s->size += 4;
9050 }
9051 else if (! CONST_STRNEQ (name, ".init")
9052 && s != htab->sgot
9053 && s != htab->sgotplt
9054 && s != htab->sstubs
9055 && s != htab->sdynbss)
9056 {
9057 /* It's not one of our sections, so don't allocate space. */
9058 continue;
9059 }
9060
9061 if (s->size == 0)
9062 {
9063 s->flags |= SEC_EXCLUDE;
9064 continue;
9065 }
9066
9067 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9068 continue;
9069
9070 /* Allocate memory for the section contents. */
9071 s->contents = bfd_zalloc (dynobj, s->size);
9072 if (s->contents == NULL)
9073 {
9074 bfd_set_error (bfd_error_no_memory);
9075 return FALSE;
9076 }
9077 }
9078
9079 if (elf_hash_table (info)->dynamic_sections_created)
9080 {
9081 /* Add some entries to the .dynamic section. We fill in the
9082 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9083 must add the entries now so that we get the correct size for
9084 the .dynamic section. */
9085
9086 /* SGI object has the equivalence of DT_DEBUG in the
9087 DT_MIPS_RLD_MAP entry. This must come first because glibc
9088 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
9089 looks at the first one it sees. */
9090 if (!info->shared
9091 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9092 return FALSE;
9093
9094 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9095 used by the debugger. */
9096 if (info->executable
9097 && !SGI_COMPAT (output_bfd)
9098 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9099 return FALSE;
9100
9101 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9102 info->flags |= DF_TEXTREL;
9103
9104 if ((info->flags & DF_TEXTREL) != 0)
9105 {
9106 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9107 return FALSE;
9108
9109 /* Clear the DF_TEXTREL flag. It will be set again if we
9110 write out an actual text relocation; we may not, because
9111 at this point we do not know whether e.g. any .eh_frame
9112 absolute relocations have been converted to PC-relative. */
9113 info->flags &= ~DF_TEXTREL;
9114 }
9115
9116 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9117 return FALSE;
9118
9119 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9120 if (htab->is_vxworks)
9121 {
9122 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9123 use any of the DT_MIPS_* tags. */
9124 if (sreldyn && sreldyn->size > 0)
9125 {
9126 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9127 return FALSE;
9128
9129 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9130 return FALSE;
9131
9132 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9133 return FALSE;
9134 }
9135 }
9136 else
9137 {
9138 if (sreldyn && sreldyn->size > 0)
9139 {
9140 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9141 return FALSE;
9142
9143 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9144 return FALSE;
9145
9146 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9147 return FALSE;
9148 }
9149
9150 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9151 return FALSE;
9152
9153 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9154 return FALSE;
9155
9156 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9157 return FALSE;
9158
9159 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9160 return FALSE;
9161
9162 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9163 return FALSE;
9164
9165 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9166 return FALSE;
9167
9168 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9169 return FALSE;
9170
9171 if (IRIX_COMPAT (dynobj) == ict_irix5
9172 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9173 return FALSE;
9174
9175 if (IRIX_COMPAT (dynobj) == ict_irix6
9176 && (bfd_get_section_by_name
9177 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9178 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9179 return FALSE;
9180 }
9181 if (htab->splt->size > 0)
9182 {
9183 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9184 return FALSE;
9185
9186 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9187 return FALSE;
9188
9189 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9190 return FALSE;
9191
9192 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9193 return FALSE;
9194 }
9195 if (htab->is_vxworks
9196 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9197 return FALSE;
9198 }
9199
9200 return TRUE;
9201 }
9202 \f
9203 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9204 Adjust its R_ADDEND field so that it is correct for the output file.
9205 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9206 and sections respectively; both use symbol indexes. */
9207
9208 static void
9209 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9210 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9211 asection **local_sections, Elf_Internal_Rela *rel)
9212 {
9213 unsigned int r_type, r_symndx;
9214 Elf_Internal_Sym *sym;
9215 asection *sec;
9216
9217 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9218 {
9219 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9220 if (gprel16_reloc_p (r_type)
9221 || r_type == R_MIPS_GPREL32
9222 || literal_reloc_p (r_type))
9223 {
9224 rel->r_addend += _bfd_get_gp_value (input_bfd);
9225 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9226 }
9227
9228 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9229 sym = local_syms + r_symndx;
9230
9231 /* Adjust REL's addend to account for section merging. */
9232 if (!info->relocatable)
9233 {
9234 sec = local_sections[r_symndx];
9235 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9236 }
9237
9238 /* This would normally be done by the rela_normal code in elflink.c. */
9239 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9240 rel->r_addend += local_sections[r_symndx]->output_offset;
9241 }
9242 }
9243
9244 /* Relocate a MIPS ELF section. */
9245
9246 bfd_boolean
9247 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9248 bfd *input_bfd, asection *input_section,
9249 bfd_byte *contents, Elf_Internal_Rela *relocs,
9250 Elf_Internal_Sym *local_syms,
9251 asection **local_sections)
9252 {
9253 Elf_Internal_Rela *rel;
9254 const Elf_Internal_Rela *relend;
9255 bfd_vma addend = 0;
9256 bfd_boolean use_saved_addend_p = FALSE;
9257 const struct elf_backend_data *bed;
9258
9259 bed = get_elf_backend_data (output_bfd);
9260 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9261 for (rel = relocs; rel < relend; ++rel)
9262 {
9263 const char *name;
9264 bfd_vma value = 0;
9265 reloc_howto_type *howto;
9266 bfd_boolean cross_mode_jump_p;
9267 /* TRUE if the relocation is a RELA relocation, rather than a
9268 REL relocation. */
9269 bfd_boolean rela_relocation_p = TRUE;
9270 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9271 const char *msg;
9272 unsigned long r_symndx;
9273 asection *sec;
9274 Elf_Internal_Shdr *symtab_hdr;
9275 struct elf_link_hash_entry *h;
9276 bfd_boolean rel_reloc;
9277
9278 rel_reloc = (NEWABI_P (input_bfd)
9279 && mips_elf_rel_relocation_p (input_bfd, input_section,
9280 relocs, rel));
9281 /* Find the relocation howto for this relocation. */
9282 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9283
9284 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9285 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9286 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9287 {
9288 sec = local_sections[r_symndx];
9289 h = NULL;
9290 }
9291 else
9292 {
9293 unsigned long extsymoff;
9294
9295 extsymoff = 0;
9296 if (!elf_bad_symtab (input_bfd))
9297 extsymoff = symtab_hdr->sh_info;
9298 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9299 while (h->root.type == bfd_link_hash_indirect
9300 || h->root.type == bfd_link_hash_warning)
9301 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9302
9303 sec = NULL;
9304 if (h->root.type == bfd_link_hash_defined
9305 || h->root.type == bfd_link_hash_defweak)
9306 sec = h->root.u.def.section;
9307 }
9308
9309 if (sec != NULL && elf_discarded_section (sec))
9310 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9311 rel, relend, howto, contents);
9312
9313 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9314 {
9315 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9316 64-bit code, but make sure all their addresses are in the
9317 lowermost or uppermost 32-bit section of the 64-bit address
9318 space. Thus, when they use an R_MIPS_64 they mean what is
9319 usually meant by R_MIPS_32, with the exception that the
9320 stored value is sign-extended to 64 bits. */
9321 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9322
9323 /* On big-endian systems, we need to lie about the position
9324 of the reloc. */
9325 if (bfd_big_endian (input_bfd))
9326 rel->r_offset += 4;
9327 }
9328
9329 if (!use_saved_addend_p)
9330 {
9331 /* If these relocations were originally of the REL variety,
9332 we must pull the addend out of the field that will be
9333 relocated. Otherwise, we simply use the contents of the
9334 RELA relocation. */
9335 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9336 relocs, rel))
9337 {
9338 rela_relocation_p = FALSE;
9339 addend = mips_elf_read_rel_addend (input_bfd, rel,
9340 howto, contents);
9341 if (hi16_reloc_p (r_type)
9342 || (got16_reloc_p (r_type)
9343 && mips_elf_local_relocation_p (input_bfd, rel,
9344 local_sections)))
9345 {
9346 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9347 contents, &addend))
9348 {
9349 if (h)
9350 name = h->root.root.string;
9351 else
9352 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9353 local_syms + r_symndx,
9354 sec);
9355 (*_bfd_error_handler)
9356 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9357 input_bfd, input_section, name, howto->name,
9358 rel->r_offset);
9359 }
9360 }
9361 else
9362 addend <<= howto->rightshift;
9363 }
9364 else
9365 addend = rel->r_addend;
9366 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9367 local_syms, local_sections, rel);
9368 }
9369
9370 if (info->relocatable)
9371 {
9372 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9373 && bfd_big_endian (input_bfd))
9374 rel->r_offset -= 4;
9375
9376 if (!rela_relocation_p && rel->r_addend)
9377 {
9378 addend += rel->r_addend;
9379 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9380 addend = mips_elf_high (addend);
9381 else if (r_type == R_MIPS_HIGHER)
9382 addend = mips_elf_higher (addend);
9383 else if (r_type == R_MIPS_HIGHEST)
9384 addend = mips_elf_highest (addend);
9385 else
9386 addend >>= howto->rightshift;
9387
9388 /* We use the source mask, rather than the destination
9389 mask because the place to which we are writing will be
9390 source of the addend in the final link. */
9391 addend &= howto->src_mask;
9392
9393 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9394 /* See the comment above about using R_MIPS_64 in the 32-bit
9395 ABI. Here, we need to update the addend. It would be
9396 possible to get away with just using the R_MIPS_32 reloc
9397 but for endianness. */
9398 {
9399 bfd_vma sign_bits;
9400 bfd_vma low_bits;
9401 bfd_vma high_bits;
9402
9403 if (addend & ((bfd_vma) 1 << 31))
9404 #ifdef BFD64
9405 sign_bits = ((bfd_vma) 1 << 32) - 1;
9406 #else
9407 sign_bits = -1;
9408 #endif
9409 else
9410 sign_bits = 0;
9411
9412 /* If we don't know that we have a 64-bit type,
9413 do two separate stores. */
9414 if (bfd_big_endian (input_bfd))
9415 {
9416 /* Store the sign-bits (which are most significant)
9417 first. */
9418 low_bits = sign_bits;
9419 high_bits = addend;
9420 }
9421 else
9422 {
9423 low_bits = addend;
9424 high_bits = sign_bits;
9425 }
9426 bfd_put_32 (input_bfd, low_bits,
9427 contents + rel->r_offset);
9428 bfd_put_32 (input_bfd, high_bits,
9429 contents + rel->r_offset + 4);
9430 continue;
9431 }
9432
9433 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9434 input_bfd, input_section,
9435 contents, FALSE))
9436 return FALSE;
9437 }
9438
9439 /* Go on to the next relocation. */
9440 continue;
9441 }
9442
9443 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9444 relocations for the same offset. In that case we are
9445 supposed to treat the output of each relocation as the addend
9446 for the next. */
9447 if (rel + 1 < relend
9448 && rel->r_offset == rel[1].r_offset
9449 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9450 use_saved_addend_p = TRUE;
9451 else
9452 use_saved_addend_p = FALSE;
9453
9454 /* Figure out what value we are supposed to relocate. */
9455 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9456 input_section, info, rel,
9457 addend, howto, local_syms,
9458 local_sections, &value,
9459 &name, &cross_mode_jump_p,
9460 use_saved_addend_p))
9461 {
9462 case bfd_reloc_continue:
9463 /* There's nothing to do. */
9464 continue;
9465
9466 case bfd_reloc_undefined:
9467 /* mips_elf_calculate_relocation already called the
9468 undefined_symbol callback. There's no real point in
9469 trying to perform the relocation at this point, so we
9470 just skip ahead to the next relocation. */
9471 continue;
9472
9473 case bfd_reloc_notsupported:
9474 msg = _("internal error: unsupported relocation error");
9475 info->callbacks->warning
9476 (info, msg, name, input_bfd, input_section, rel->r_offset);
9477 return FALSE;
9478
9479 case bfd_reloc_overflow:
9480 if (use_saved_addend_p)
9481 /* Ignore overflow until we reach the last relocation for
9482 a given location. */
9483 ;
9484 else
9485 {
9486 struct mips_elf_link_hash_table *htab;
9487
9488 htab = mips_elf_hash_table (info);
9489 BFD_ASSERT (htab != NULL);
9490 BFD_ASSERT (name != NULL);
9491 if (!htab->small_data_overflow_reported
9492 && (gprel16_reloc_p (howto->type)
9493 || literal_reloc_p (howto->type)))
9494 {
9495 msg = _("small-data section exceeds 64KB;"
9496 " lower small-data size limit (see option -G)");
9497
9498 htab->small_data_overflow_reported = TRUE;
9499 (*info->callbacks->einfo) ("%P: %s\n", msg);
9500 }
9501 if (! ((*info->callbacks->reloc_overflow)
9502 (info, NULL, name, howto->name, (bfd_vma) 0,
9503 input_bfd, input_section, rel->r_offset)))
9504 return FALSE;
9505 }
9506 break;
9507
9508 case bfd_reloc_ok:
9509 break;
9510
9511 case bfd_reloc_outofrange:
9512 if (jal_reloc_p (howto->type))
9513 {
9514 msg = _("JALX to a non-word-aligned address");
9515 info->callbacks->warning
9516 (info, msg, name, input_bfd, input_section, rel->r_offset);
9517 return FALSE;
9518 }
9519 /* Fall through. */
9520
9521 default:
9522 abort ();
9523 break;
9524 }
9525
9526 /* If we've got another relocation for the address, keep going
9527 until we reach the last one. */
9528 if (use_saved_addend_p)
9529 {
9530 addend = value;
9531 continue;
9532 }
9533
9534 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9535 /* See the comment above about using R_MIPS_64 in the 32-bit
9536 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9537 that calculated the right value. Now, however, we
9538 sign-extend the 32-bit result to 64-bits, and store it as a
9539 64-bit value. We are especially generous here in that we
9540 go to extreme lengths to support this usage on systems with
9541 only a 32-bit VMA. */
9542 {
9543 bfd_vma sign_bits;
9544 bfd_vma low_bits;
9545 bfd_vma high_bits;
9546
9547 if (value & ((bfd_vma) 1 << 31))
9548 #ifdef BFD64
9549 sign_bits = ((bfd_vma) 1 << 32) - 1;
9550 #else
9551 sign_bits = -1;
9552 #endif
9553 else
9554 sign_bits = 0;
9555
9556 /* If we don't know that we have a 64-bit type,
9557 do two separate stores. */
9558 if (bfd_big_endian (input_bfd))
9559 {
9560 /* Undo what we did above. */
9561 rel->r_offset -= 4;
9562 /* Store the sign-bits (which are most significant)
9563 first. */
9564 low_bits = sign_bits;
9565 high_bits = value;
9566 }
9567 else
9568 {
9569 low_bits = value;
9570 high_bits = sign_bits;
9571 }
9572 bfd_put_32 (input_bfd, low_bits,
9573 contents + rel->r_offset);
9574 bfd_put_32 (input_bfd, high_bits,
9575 contents + rel->r_offset + 4);
9576 continue;
9577 }
9578
9579 /* Actually perform the relocation. */
9580 if (! mips_elf_perform_relocation (info, howto, rel, value,
9581 input_bfd, input_section,
9582 contents, cross_mode_jump_p))
9583 return FALSE;
9584 }
9585
9586 return TRUE;
9587 }
9588 \f
9589 /* A function that iterates over each entry in la25_stubs and fills
9590 in the code for each one. DATA points to a mips_htab_traverse_info. */
9591
9592 static int
9593 mips_elf_create_la25_stub (void **slot, void *data)
9594 {
9595 struct mips_htab_traverse_info *hti;
9596 struct mips_elf_link_hash_table *htab;
9597 struct mips_elf_la25_stub *stub;
9598 asection *s;
9599 bfd_byte *loc;
9600 bfd_vma offset, target, target_high, target_low;
9601
9602 stub = (struct mips_elf_la25_stub *) *slot;
9603 hti = (struct mips_htab_traverse_info *) data;
9604 htab = mips_elf_hash_table (hti->info);
9605 BFD_ASSERT (htab != NULL);
9606
9607 /* Create the section contents, if we haven't already. */
9608 s = stub->stub_section;
9609 loc = s->contents;
9610 if (loc == NULL)
9611 {
9612 loc = bfd_malloc (s->size);
9613 if (loc == NULL)
9614 {
9615 hti->error = TRUE;
9616 return FALSE;
9617 }
9618 s->contents = loc;
9619 }
9620
9621 /* Work out where in the section this stub should go. */
9622 offset = stub->offset;
9623
9624 /* Work out the target address. */
9625 target = (stub->h->root.root.u.def.section->output_section->vma
9626 + stub->h->root.root.u.def.section->output_offset
9627 + stub->h->root.root.u.def.value);
9628 target_high = ((target + 0x8000) >> 16) & 0xffff;
9629 target_low = (target & 0xffff);
9630
9631 if (stub->stub_section != htab->strampoline)
9632 {
9633 /* This is a simple LUI/ADDIU stub. Zero out the beginning
9634 of the section and write the two instructions at the end. */
9635 memset (loc, 0, offset);
9636 loc += offset;
9637 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9638 {
9639 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
9640 loc);
9641 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
9642 loc + 2);
9643 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
9644 loc + 4);
9645 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
9646 loc + 6);
9647 }
9648 else
9649 {
9650 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9651 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9652 }
9653 }
9654 else
9655 {
9656 /* This is trampoline. */
9657 loc += offset;
9658 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9659 {
9660 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
9661 loc);
9662 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
9663 loc + 2);
9664 bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_1 (target), loc + 4);
9665 bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_2 (target), loc + 6);
9666 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
9667 loc + 8);
9668 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
9669 loc + 10);
9670 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9671 }
9672 else
9673 {
9674 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9675 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9676 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9677 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9678 }
9679 }
9680 return TRUE;
9681 }
9682
9683 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9684 adjust it appropriately now. */
9685
9686 static void
9687 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9688 const char *name, Elf_Internal_Sym *sym)
9689 {
9690 /* The linker script takes care of providing names and values for
9691 these, but we must place them into the right sections. */
9692 static const char* const text_section_symbols[] = {
9693 "_ftext",
9694 "_etext",
9695 "__dso_displacement",
9696 "__elf_header",
9697 "__program_header_table",
9698 NULL
9699 };
9700
9701 static const char* const data_section_symbols[] = {
9702 "_fdata",
9703 "_edata",
9704 "_end",
9705 "_fbss",
9706 NULL
9707 };
9708
9709 const char* const *p;
9710 int i;
9711
9712 for (i = 0; i < 2; ++i)
9713 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9714 *p;
9715 ++p)
9716 if (strcmp (*p, name) == 0)
9717 {
9718 /* All of these symbols are given type STT_SECTION by the
9719 IRIX6 linker. */
9720 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9721 sym->st_other = STO_PROTECTED;
9722
9723 /* The IRIX linker puts these symbols in special sections. */
9724 if (i == 0)
9725 sym->st_shndx = SHN_MIPS_TEXT;
9726 else
9727 sym->st_shndx = SHN_MIPS_DATA;
9728
9729 break;
9730 }
9731 }
9732
9733 /* Finish up dynamic symbol handling. We set the contents of various
9734 dynamic sections here. */
9735
9736 bfd_boolean
9737 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9738 struct bfd_link_info *info,
9739 struct elf_link_hash_entry *h,
9740 Elf_Internal_Sym *sym)
9741 {
9742 bfd *dynobj;
9743 asection *sgot;
9744 struct mips_got_info *g, *gg;
9745 const char *name;
9746 int idx;
9747 struct mips_elf_link_hash_table *htab;
9748 struct mips_elf_link_hash_entry *hmips;
9749
9750 htab = mips_elf_hash_table (info);
9751 BFD_ASSERT (htab != NULL);
9752 dynobj = elf_hash_table (info)->dynobj;
9753 hmips = (struct mips_elf_link_hash_entry *) h;
9754
9755 BFD_ASSERT (!htab->is_vxworks);
9756
9757 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9758 {
9759 /* We've decided to create a PLT entry for this symbol. */
9760 bfd_byte *loc;
9761 bfd_vma header_address, plt_index, got_address;
9762 bfd_vma got_address_high, got_address_low, load;
9763 const bfd_vma *plt_entry;
9764
9765 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9766 BFD_ASSERT (h->dynindx != -1);
9767 BFD_ASSERT (htab->splt != NULL);
9768 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9769 BFD_ASSERT (!h->def_regular);
9770
9771 /* Calculate the address of the PLT header. */
9772 header_address = (htab->splt->output_section->vma
9773 + htab->splt->output_offset);
9774
9775 /* Calculate the index of the entry. */
9776 plt_index = ((h->plt.offset - htab->plt_header_size)
9777 / htab->plt_entry_size);
9778
9779 /* Calculate the address of the .got.plt entry. */
9780 got_address = (htab->sgotplt->output_section->vma
9781 + htab->sgotplt->output_offset
9782 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9783 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9784 got_address_low = got_address & 0xffff;
9785
9786 /* Initially point the .got.plt entry at the PLT header. */
9787 loc = (htab->sgotplt->contents
9788 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9789 if (ABI_64_P (output_bfd))
9790 bfd_put_64 (output_bfd, header_address, loc);
9791 else
9792 bfd_put_32 (output_bfd, header_address, loc);
9793
9794 /* Find out where the .plt entry should go. */
9795 loc = htab->splt->contents + h->plt.offset;
9796
9797 /* Pick the load opcode. */
9798 load = MIPS_ELF_LOAD_WORD (output_bfd);
9799
9800 /* Fill in the PLT entry itself. */
9801 plt_entry = mips_exec_plt_entry;
9802 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9803 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9804
9805 if (! LOAD_INTERLOCKS_P (output_bfd))
9806 {
9807 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9808 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9809 }
9810 else
9811 {
9812 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9813 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9814 }
9815
9816 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9817 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9818 plt_index, h->dynindx,
9819 R_MIPS_JUMP_SLOT, got_address);
9820
9821 /* We distinguish between PLT entries and lazy-binding stubs by
9822 giving the former an st_other value of STO_MIPS_PLT. Set the
9823 flag and leave the value if there are any relocations in the
9824 binary where pointer equality matters. */
9825 sym->st_shndx = SHN_UNDEF;
9826 if (h->pointer_equality_needed)
9827 sym->st_other = STO_MIPS_PLT;
9828 else
9829 sym->st_value = 0;
9830 }
9831 else if (h->plt.offset != MINUS_ONE)
9832 {
9833 /* We've decided to create a lazy-binding stub. */
9834 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9835
9836 /* This symbol has a stub. Set it up. */
9837
9838 BFD_ASSERT (h->dynindx != -1);
9839
9840 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9841 || (h->dynindx <= 0xffff));
9842
9843 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9844 sign extension at runtime in the stub, resulting in a negative
9845 index value. */
9846 if (h->dynindx & ~0x7fffffff)
9847 return FALSE;
9848
9849 /* Fill the stub. */
9850 idx = 0;
9851 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9852 idx += 4;
9853 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9854 idx += 4;
9855 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9856 {
9857 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9858 stub + idx);
9859 idx += 4;
9860 }
9861 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9862 idx += 4;
9863
9864 /* If a large stub is not required and sign extension is not a
9865 problem, then use legacy code in the stub. */
9866 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9867 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9868 else if (h->dynindx & ~0x7fff)
9869 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9870 else
9871 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9872 stub + idx);
9873
9874 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9875 memcpy (htab->sstubs->contents + h->plt.offset,
9876 stub, htab->function_stub_size);
9877
9878 /* Mark the symbol as undefined. plt.offset != -1 occurs
9879 only for the referenced symbol. */
9880 sym->st_shndx = SHN_UNDEF;
9881
9882 /* The run-time linker uses the st_value field of the symbol
9883 to reset the global offset table entry for this external
9884 to its stub address when unlinking a shared object. */
9885 sym->st_value = (htab->sstubs->output_section->vma
9886 + htab->sstubs->output_offset
9887 + h->plt.offset);
9888 }
9889
9890 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9891 refer to the stub, since only the stub uses the standard calling
9892 conventions. */
9893 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9894 {
9895 BFD_ASSERT (hmips->need_fn_stub);
9896 sym->st_value = (hmips->fn_stub->output_section->vma
9897 + hmips->fn_stub->output_offset);
9898 sym->st_size = hmips->fn_stub->size;
9899 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9900 }
9901
9902 BFD_ASSERT (h->dynindx != -1
9903 || h->forced_local);
9904
9905 sgot = htab->sgot;
9906 g = htab->got_info;
9907 BFD_ASSERT (g != NULL);
9908
9909 /* Run through the global symbol table, creating GOT entries for all
9910 the symbols that need them. */
9911 if (hmips->global_got_area != GGA_NONE)
9912 {
9913 bfd_vma offset;
9914 bfd_vma value;
9915
9916 value = sym->st_value;
9917 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9918 R_MIPS_GOT16, info);
9919 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9920 }
9921
9922 if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
9923 {
9924 struct mips_got_entry e, *p;
9925 bfd_vma entry;
9926 bfd_vma offset;
9927
9928 gg = g;
9929
9930 e.abfd = output_bfd;
9931 e.symndx = -1;
9932 e.d.h = hmips;
9933 e.tls_type = 0;
9934
9935 for (g = g->next; g->next != gg; g = g->next)
9936 {
9937 if (g->got_entries
9938 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
9939 &e)))
9940 {
9941 offset = p->gotidx;
9942 if (info->shared
9943 || (elf_hash_table (info)->dynamic_sections_created
9944 && p->d.h != NULL
9945 && p->d.h->root.def_dynamic
9946 && !p->d.h->root.def_regular))
9947 {
9948 /* Create an R_MIPS_REL32 relocation for this entry. Due to
9949 the various compatibility problems, it's easier to mock
9950 up an R_MIPS_32 or R_MIPS_64 relocation and leave
9951 mips_elf_create_dynamic_relocation to calculate the
9952 appropriate addend. */
9953 Elf_Internal_Rela rel[3];
9954
9955 memset (rel, 0, sizeof (rel));
9956 if (ABI_64_P (output_bfd))
9957 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
9958 else
9959 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
9960 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
9961
9962 entry = 0;
9963 if (! (mips_elf_create_dynamic_relocation
9964 (output_bfd, info, rel,
9965 e.d.h, NULL, sym->st_value, &entry, sgot)))
9966 return FALSE;
9967 }
9968 else
9969 entry = sym->st_value;
9970 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
9971 }
9972 }
9973 }
9974
9975 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9976 name = h->root.root.string;
9977 if (strcmp (name, "_DYNAMIC") == 0
9978 || h == elf_hash_table (info)->hgot)
9979 sym->st_shndx = SHN_ABS;
9980 else if (strcmp (name, "_DYNAMIC_LINK") == 0
9981 || strcmp (name, "_DYNAMIC_LINKING") == 0)
9982 {
9983 sym->st_shndx = SHN_ABS;
9984 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9985 sym->st_value = 1;
9986 }
9987 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
9988 {
9989 sym->st_shndx = SHN_ABS;
9990 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9991 sym->st_value = elf_gp (output_bfd);
9992 }
9993 else if (SGI_COMPAT (output_bfd))
9994 {
9995 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
9996 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
9997 {
9998 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9999 sym->st_other = STO_PROTECTED;
10000 sym->st_value = 0;
10001 sym->st_shndx = SHN_MIPS_DATA;
10002 }
10003 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10004 {
10005 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10006 sym->st_other = STO_PROTECTED;
10007 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10008 sym->st_shndx = SHN_ABS;
10009 }
10010 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10011 {
10012 if (h->type == STT_FUNC)
10013 sym->st_shndx = SHN_MIPS_TEXT;
10014 else if (h->type == STT_OBJECT)
10015 sym->st_shndx = SHN_MIPS_DATA;
10016 }
10017 }
10018
10019 /* Emit a copy reloc, if needed. */
10020 if (h->needs_copy)
10021 {
10022 asection *s;
10023 bfd_vma symval;
10024
10025 BFD_ASSERT (h->dynindx != -1);
10026 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10027
10028 s = mips_elf_rel_dyn_section (info, FALSE);
10029 symval = (h->root.u.def.section->output_section->vma
10030 + h->root.u.def.section->output_offset
10031 + h->root.u.def.value);
10032 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10033 h->dynindx, R_MIPS_COPY, symval);
10034 }
10035
10036 /* Handle the IRIX6-specific symbols. */
10037 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10038 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10039
10040 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10041 treat MIPS16 symbols like any other. */
10042 if (ELF_ST_IS_MIPS16 (sym->st_other))
10043 {
10044 BFD_ASSERT (sym->st_value & 1);
10045 sym->st_other -= STO_MIPS16;
10046 }
10047
10048 return TRUE;
10049 }
10050
10051 /* Likewise, for VxWorks. */
10052
10053 bfd_boolean
10054 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10055 struct bfd_link_info *info,
10056 struct elf_link_hash_entry *h,
10057 Elf_Internal_Sym *sym)
10058 {
10059 bfd *dynobj;
10060 asection *sgot;
10061 struct mips_got_info *g;
10062 struct mips_elf_link_hash_table *htab;
10063 struct mips_elf_link_hash_entry *hmips;
10064
10065 htab = mips_elf_hash_table (info);
10066 BFD_ASSERT (htab != NULL);
10067 dynobj = elf_hash_table (info)->dynobj;
10068 hmips = (struct mips_elf_link_hash_entry *) h;
10069
10070 if (h->plt.offset != (bfd_vma) -1)
10071 {
10072 bfd_byte *loc;
10073 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10074 Elf_Internal_Rela rel;
10075 static const bfd_vma *plt_entry;
10076
10077 BFD_ASSERT (h->dynindx != -1);
10078 BFD_ASSERT (htab->splt != NULL);
10079 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10080
10081 /* Calculate the address of the .plt entry. */
10082 plt_address = (htab->splt->output_section->vma
10083 + htab->splt->output_offset
10084 + h->plt.offset);
10085
10086 /* Calculate the index of the entry. */
10087 plt_index = ((h->plt.offset - htab->plt_header_size)
10088 / htab->plt_entry_size);
10089
10090 /* Calculate the address of the .got.plt entry. */
10091 got_address = (htab->sgotplt->output_section->vma
10092 + htab->sgotplt->output_offset
10093 + plt_index * 4);
10094
10095 /* Calculate the offset of the .got.plt entry from
10096 _GLOBAL_OFFSET_TABLE_. */
10097 got_offset = mips_elf_gotplt_index (info, h);
10098
10099 /* Calculate the offset for the branch at the start of the PLT
10100 entry. The branch jumps to the beginning of .plt. */
10101 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10102
10103 /* Fill in the initial value of the .got.plt entry. */
10104 bfd_put_32 (output_bfd, plt_address,
10105 htab->sgotplt->contents + plt_index * 4);
10106
10107 /* Find out where the .plt entry should go. */
10108 loc = htab->splt->contents + h->plt.offset;
10109
10110 if (info->shared)
10111 {
10112 plt_entry = mips_vxworks_shared_plt_entry;
10113 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10114 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10115 }
10116 else
10117 {
10118 bfd_vma got_address_high, got_address_low;
10119
10120 plt_entry = mips_vxworks_exec_plt_entry;
10121 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10122 got_address_low = got_address & 0xffff;
10123
10124 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10125 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10126 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10127 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10128 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10129 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10130 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10131 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10132
10133 loc = (htab->srelplt2->contents
10134 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10135
10136 /* Emit a relocation for the .got.plt entry. */
10137 rel.r_offset = got_address;
10138 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10139 rel.r_addend = h->plt.offset;
10140 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10141
10142 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10143 loc += sizeof (Elf32_External_Rela);
10144 rel.r_offset = plt_address + 8;
10145 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10146 rel.r_addend = got_offset;
10147 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10148
10149 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10150 loc += sizeof (Elf32_External_Rela);
10151 rel.r_offset += 4;
10152 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10153 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10154 }
10155
10156 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10157 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10158 rel.r_offset = got_address;
10159 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10160 rel.r_addend = 0;
10161 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10162
10163 if (!h->def_regular)
10164 sym->st_shndx = SHN_UNDEF;
10165 }
10166
10167 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10168
10169 sgot = htab->sgot;
10170 g = htab->got_info;
10171 BFD_ASSERT (g != NULL);
10172
10173 /* See if this symbol has an entry in the GOT. */
10174 if (hmips->global_got_area != GGA_NONE)
10175 {
10176 bfd_vma offset;
10177 Elf_Internal_Rela outrel;
10178 bfd_byte *loc;
10179 asection *s;
10180
10181 /* Install the symbol value in the GOT. */
10182 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10183 R_MIPS_GOT16, info);
10184 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10185
10186 /* Add a dynamic relocation for it. */
10187 s = mips_elf_rel_dyn_section (info, FALSE);
10188 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10189 outrel.r_offset = (sgot->output_section->vma
10190 + sgot->output_offset
10191 + offset);
10192 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10193 outrel.r_addend = 0;
10194 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10195 }
10196
10197 /* Emit a copy reloc, if needed. */
10198 if (h->needs_copy)
10199 {
10200 Elf_Internal_Rela rel;
10201
10202 BFD_ASSERT (h->dynindx != -1);
10203
10204 rel.r_offset = (h->root.u.def.section->output_section->vma
10205 + h->root.u.def.section->output_offset
10206 + h->root.u.def.value);
10207 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10208 rel.r_addend = 0;
10209 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10210 htab->srelbss->contents
10211 + (htab->srelbss->reloc_count
10212 * sizeof (Elf32_External_Rela)));
10213 ++htab->srelbss->reloc_count;
10214 }
10215
10216 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10217 if (ELF_ST_IS_COMPRESSED (sym->st_other))
10218 sym->st_value &= ~1;
10219
10220 return TRUE;
10221 }
10222
10223 /* Write out a plt0 entry to the beginning of .plt. */
10224
10225 static void
10226 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10227 {
10228 bfd_byte *loc;
10229 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10230 static const bfd_vma *plt_entry;
10231 struct mips_elf_link_hash_table *htab;
10232
10233 htab = mips_elf_hash_table (info);
10234 BFD_ASSERT (htab != NULL);
10235
10236 if (ABI_64_P (output_bfd))
10237 plt_entry = mips_n64_exec_plt0_entry;
10238 else if (ABI_N32_P (output_bfd))
10239 plt_entry = mips_n32_exec_plt0_entry;
10240 else
10241 plt_entry = mips_o32_exec_plt0_entry;
10242
10243 /* Calculate the value of .got.plt. */
10244 gotplt_value = (htab->sgotplt->output_section->vma
10245 + htab->sgotplt->output_offset);
10246 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10247 gotplt_value_low = gotplt_value & 0xffff;
10248
10249 /* The PLT sequence is not safe for N64 if .got.plt's address can
10250 not be loaded in two instructions. */
10251 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10252 || ~(gotplt_value | 0x7fffffff) == 0);
10253
10254 /* Install the PLT header. */
10255 loc = htab->splt->contents;
10256 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10257 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10258 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10259 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10260 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10261 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10262 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10263 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10264 }
10265
10266 /* Install the PLT header for a VxWorks executable and finalize the
10267 contents of .rela.plt.unloaded. */
10268
10269 static void
10270 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10271 {
10272 Elf_Internal_Rela rela;
10273 bfd_byte *loc;
10274 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10275 static const bfd_vma *plt_entry;
10276 struct mips_elf_link_hash_table *htab;
10277
10278 htab = mips_elf_hash_table (info);
10279 BFD_ASSERT (htab != NULL);
10280
10281 plt_entry = mips_vxworks_exec_plt0_entry;
10282
10283 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10284 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10285 + htab->root.hgot->root.u.def.section->output_offset
10286 + htab->root.hgot->root.u.def.value);
10287
10288 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10289 got_value_low = got_value & 0xffff;
10290
10291 /* Calculate the address of the PLT header. */
10292 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10293
10294 /* Install the PLT header. */
10295 loc = htab->splt->contents;
10296 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10297 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10298 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10299 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10300 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10301 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10302
10303 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10304 loc = htab->srelplt2->contents;
10305 rela.r_offset = plt_address;
10306 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10307 rela.r_addend = 0;
10308 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10309 loc += sizeof (Elf32_External_Rela);
10310
10311 /* Output the relocation for the following addiu of
10312 %lo(_GLOBAL_OFFSET_TABLE_). */
10313 rela.r_offset += 4;
10314 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10315 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10316 loc += sizeof (Elf32_External_Rela);
10317
10318 /* Fix up the remaining relocations. They may have the wrong
10319 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10320 in which symbols were output. */
10321 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10322 {
10323 Elf_Internal_Rela rel;
10324
10325 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10326 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10327 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10328 loc += sizeof (Elf32_External_Rela);
10329
10330 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10331 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10332 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10333 loc += sizeof (Elf32_External_Rela);
10334
10335 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10336 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10337 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10338 loc += sizeof (Elf32_External_Rela);
10339 }
10340 }
10341
10342 /* Install the PLT header for a VxWorks shared library. */
10343
10344 static void
10345 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10346 {
10347 unsigned int i;
10348 struct mips_elf_link_hash_table *htab;
10349
10350 htab = mips_elf_hash_table (info);
10351 BFD_ASSERT (htab != NULL);
10352
10353 /* We just need to copy the entry byte-by-byte. */
10354 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10355 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10356 htab->splt->contents + i * 4);
10357 }
10358
10359 /* Finish up the dynamic sections. */
10360
10361 bfd_boolean
10362 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10363 struct bfd_link_info *info)
10364 {
10365 bfd *dynobj;
10366 asection *sdyn;
10367 asection *sgot;
10368 struct mips_got_info *gg, *g;
10369 struct mips_elf_link_hash_table *htab;
10370
10371 htab = mips_elf_hash_table (info);
10372 BFD_ASSERT (htab != NULL);
10373
10374 dynobj = elf_hash_table (info)->dynobj;
10375
10376 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10377
10378 sgot = htab->sgot;
10379 gg = htab->got_info;
10380
10381 if (elf_hash_table (info)->dynamic_sections_created)
10382 {
10383 bfd_byte *b;
10384 int dyn_to_skip = 0, dyn_skipped = 0;
10385
10386 BFD_ASSERT (sdyn != NULL);
10387 BFD_ASSERT (gg != NULL);
10388
10389 g = mips_elf_got_for_ibfd (gg, output_bfd);
10390 BFD_ASSERT (g != NULL);
10391
10392 for (b = sdyn->contents;
10393 b < sdyn->contents + sdyn->size;
10394 b += MIPS_ELF_DYN_SIZE (dynobj))
10395 {
10396 Elf_Internal_Dyn dyn;
10397 const char *name;
10398 size_t elemsize;
10399 asection *s;
10400 bfd_boolean swap_out_p;
10401
10402 /* Read in the current dynamic entry. */
10403 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10404
10405 /* Assume that we're going to modify it and write it out. */
10406 swap_out_p = TRUE;
10407
10408 switch (dyn.d_tag)
10409 {
10410 case DT_RELENT:
10411 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10412 break;
10413
10414 case DT_RELAENT:
10415 BFD_ASSERT (htab->is_vxworks);
10416 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10417 break;
10418
10419 case DT_STRSZ:
10420 /* Rewrite DT_STRSZ. */
10421 dyn.d_un.d_val =
10422 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10423 break;
10424
10425 case DT_PLTGOT:
10426 s = htab->sgot;
10427 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10428 break;
10429
10430 case DT_MIPS_PLTGOT:
10431 s = htab->sgotplt;
10432 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10433 break;
10434
10435 case DT_MIPS_RLD_VERSION:
10436 dyn.d_un.d_val = 1; /* XXX */
10437 break;
10438
10439 case DT_MIPS_FLAGS:
10440 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10441 break;
10442
10443 case DT_MIPS_TIME_STAMP:
10444 {
10445 time_t t;
10446 time (&t);
10447 dyn.d_un.d_val = t;
10448 }
10449 break;
10450
10451 case DT_MIPS_ICHECKSUM:
10452 /* XXX FIXME: */
10453 swap_out_p = FALSE;
10454 break;
10455
10456 case DT_MIPS_IVERSION:
10457 /* XXX FIXME: */
10458 swap_out_p = FALSE;
10459 break;
10460
10461 case DT_MIPS_BASE_ADDRESS:
10462 s = output_bfd->sections;
10463 BFD_ASSERT (s != NULL);
10464 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10465 break;
10466
10467 case DT_MIPS_LOCAL_GOTNO:
10468 dyn.d_un.d_val = g->local_gotno;
10469 break;
10470
10471 case DT_MIPS_UNREFEXTNO:
10472 /* The index into the dynamic symbol table which is the
10473 entry of the first external symbol that is not
10474 referenced within the same object. */
10475 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10476 break;
10477
10478 case DT_MIPS_GOTSYM:
10479 if (gg->global_gotsym)
10480 {
10481 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10482 break;
10483 }
10484 /* In case if we don't have global got symbols we default
10485 to setting DT_MIPS_GOTSYM to the same value as
10486 DT_MIPS_SYMTABNO, so we just fall through. */
10487
10488 case DT_MIPS_SYMTABNO:
10489 name = ".dynsym";
10490 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10491 s = bfd_get_section_by_name (output_bfd, name);
10492 BFD_ASSERT (s != NULL);
10493
10494 dyn.d_un.d_val = s->size / elemsize;
10495 break;
10496
10497 case DT_MIPS_HIPAGENO:
10498 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10499 break;
10500
10501 case DT_MIPS_RLD_MAP:
10502 {
10503 struct elf_link_hash_entry *h;
10504 h = mips_elf_hash_table (info)->rld_symbol;
10505 if (!h)
10506 {
10507 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10508 swap_out_p = FALSE;
10509 break;
10510 }
10511 s = h->root.u.def.section;
10512 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10513 + h->root.u.def.value);
10514 }
10515 break;
10516
10517 case DT_MIPS_OPTIONS:
10518 s = (bfd_get_section_by_name
10519 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10520 dyn.d_un.d_ptr = s->vma;
10521 break;
10522
10523 case DT_RELASZ:
10524 BFD_ASSERT (htab->is_vxworks);
10525 /* The count does not include the JUMP_SLOT relocations. */
10526 if (htab->srelplt)
10527 dyn.d_un.d_val -= htab->srelplt->size;
10528 break;
10529
10530 case DT_PLTREL:
10531 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10532 if (htab->is_vxworks)
10533 dyn.d_un.d_val = DT_RELA;
10534 else
10535 dyn.d_un.d_val = DT_REL;
10536 break;
10537
10538 case DT_PLTRELSZ:
10539 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10540 dyn.d_un.d_val = htab->srelplt->size;
10541 break;
10542
10543 case DT_JMPREL:
10544 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10545 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10546 + htab->srelplt->output_offset);
10547 break;
10548
10549 case DT_TEXTREL:
10550 /* If we didn't need any text relocations after all, delete
10551 the dynamic tag. */
10552 if (!(info->flags & DF_TEXTREL))
10553 {
10554 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10555 swap_out_p = FALSE;
10556 }
10557 break;
10558
10559 case DT_FLAGS:
10560 /* If we didn't need any text relocations after all, clear
10561 DF_TEXTREL from DT_FLAGS. */
10562 if (!(info->flags & DF_TEXTREL))
10563 dyn.d_un.d_val &= ~DF_TEXTREL;
10564 else
10565 swap_out_p = FALSE;
10566 break;
10567
10568 default:
10569 swap_out_p = FALSE;
10570 if (htab->is_vxworks
10571 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10572 swap_out_p = TRUE;
10573 break;
10574 }
10575
10576 if (swap_out_p || dyn_skipped)
10577 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10578 (dynobj, &dyn, b - dyn_skipped);
10579
10580 if (dyn_to_skip)
10581 {
10582 dyn_skipped += dyn_to_skip;
10583 dyn_to_skip = 0;
10584 }
10585 }
10586
10587 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10588 if (dyn_skipped > 0)
10589 memset (b - dyn_skipped, 0, dyn_skipped);
10590 }
10591
10592 if (sgot != NULL && sgot->size > 0
10593 && !bfd_is_abs_section (sgot->output_section))
10594 {
10595 if (htab->is_vxworks)
10596 {
10597 /* The first entry of the global offset table points to the
10598 ".dynamic" section. The second is initialized by the
10599 loader and contains the shared library identifier.
10600 The third is also initialized by the loader and points
10601 to the lazy resolution stub. */
10602 MIPS_ELF_PUT_WORD (output_bfd,
10603 sdyn->output_offset + sdyn->output_section->vma,
10604 sgot->contents);
10605 MIPS_ELF_PUT_WORD (output_bfd, 0,
10606 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10607 MIPS_ELF_PUT_WORD (output_bfd, 0,
10608 sgot->contents
10609 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10610 }
10611 else
10612 {
10613 /* The first entry of the global offset table will be filled at
10614 runtime. The second entry will be used by some runtime loaders.
10615 This isn't the case of IRIX rld. */
10616 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10617 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10618 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10619 }
10620
10621 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10622 = MIPS_ELF_GOT_SIZE (output_bfd);
10623 }
10624
10625 /* Generate dynamic relocations for the non-primary gots. */
10626 if (gg != NULL && gg->next)
10627 {
10628 Elf_Internal_Rela rel[3];
10629 bfd_vma addend = 0;
10630
10631 memset (rel, 0, sizeof (rel));
10632 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10633
10634 for (g = gg->next; g->next != gg; g = g->next)
10635 {
10636 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10637 + g->next->tls_gotno;
10638
10639 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10640 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10641 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10642 sgot->contents
10643 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10644
10645 if (! info->shared)
10646 continue;
10647
10648 while (got_index < g->assigned_gotno)
10649 {
10650 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10651 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10652 if (!(mips_elf_create_dynamic_relocation
10653 (output_bfd, info, rel, NULL,
10654 bfd_abs_section_ptr,
10655 0, &addend, sgot)))
10656 return FALSE;
10657 BFD_ASSERT (addend == 0);
10658 }
10659 }
10660 }
10661
10662 /* The generation of dynamic relocations for the non-primary gots
10663 adds more dynamic relocations. We cannot count them until
10664 here. */
10665
10666 if (elf_hash_table (info)->dynamic_sections_created)
10667 {
10668 bfd_byte *b;
10669 bfd_boolean swap_out_p;
10670
10671 BFD_ASSERT (sdyn != NULL);
10672
10673 for (b = sdyn->contents;
10674 b < sdyn->contents + sdyn->size;
10675 b += MIPS_ELF_DYN_SIZE (dynobj))
10676 {
10677 Elf_Internal_Dyn dyn;
10678 asection *s;
10679
10680 /* Read in the current dynamic entry. */
10681 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10682
10683 /* Assume that we're going to modify it and write it out. */
10684 swap_out_p = TRUE;
10685
10686 switch (dyn.d_tag)
10687 {
10688 case DT_RELSZ:
10689 /* Reduce DT_RELSZ to account for any relocations we
10690 decided not to make. This is for the n64 irix rld,
10691 which doesn't seem to apply any relocations if there
10692 are trailing null entries. */
10693 s = mips_elf_rel_dyn_section (info, FALSE);
10694 dyn.d_un.d_val = (s->reloc_count
10695 * (ABI_64_P (output_bfd)
10696 ? sizeof (Elf64_Mips_External_Rel)
10697 : sizeof (Elf32_External_Rel)));
10698 /* Adjust the section size too. Tools like the prelinker
10699 can reasonably expect the values to the same. */
10700 elf_section_data (s->output_section)->this_hdr.sh_size
10701 = dyn.d_un.d_val;
10702 break;
10703
10704 default:
10705 swap_out_p = FALSE;
10706 break;
10707 }
10708
10709 if (swap_out_p)
10710 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10711 (dynobj, &dyn, b);
10712 }
10713 }
10714
10715 {
10716 asection *s;
10717 Elf32_compact_rel cpt;
10718
10719 if (SGI_COMPAT (output_bfd))
10720 {
10721 /* Write .compact_rel section out. */
10722 s = bfd_get_section_by_name (dynobj, ".compact_rel");
10723 if (s != NULL)
10724 {
10725 cpt.id1 = 1;
10726 cpt.num = s->reloc_count;
10727 cpt.id2 = 2;
10728 cpt.offset = (s->output_section->filepos
10729 + sizeof (Elf32_External_compact_rel));
10730 cpt.reserved0 = 0;
10731 cpt.reserved1 = 0;
10732 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10733 ((Elf32_External_compact_rel *)
10734 s->contents));
10735
10736 /* Clean up a dummy stub function entry in .text. */
10737 if (htab->sstubs != NULL)
10738 {
10739 file_ptr dummy_offset;
10740
10741 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10742 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10743 memset (htab->sstubs->contents + dummy_offset, 0,
10744 htab->function_stub_size);
10745 }
10746 }
10747 }
10748
10749 /* The psABI says that the dynamic relocations must be sorted in
10750 increasing order of r_symndx. The VxWorks EABI doesn't require
10751 this, and because the code below handles REL rather than RELA
10752 relocations, using it for VxWorks would be outright harmful. */
10753 if (!htab->is_vxworks)
10754 {
10755 s = mips_elf_rel_dyn_section (info, FALSE);
10756 if (s != NULL
10757 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10758 {
10759 reldyn_sorting_bfd = output_bfd;
10760
10761 if (ABI_64_P (output_bfd))
10762 qsort ((Elf64_External_Rel *) s->contents + 1,
10763 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10764 sort_dynamic_relocs_64);
10765 else
10766 qsort ((Elf32_External_Rel *) s->contents + 1,
10767 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10768 sort_dynamic_relocs);
10769 }
10770 }
10771 }
10772
10773 if (htab->splt && htab->splt->size > 0)
10774 {
10775 if (htab->is_vxworks)
10776 {
10777 if (info->shared)
10778 mips_vxworks_finish_shared_plt (output_bfd, info);
10779 else
10780 mips_vxworks_finish_exec_plt (output_bfd, info);
10781 }
10782 else
10783 {
10784 BFD_ASSERT (!info->shared);
10785 mips_finish_exec_plt (output_bfd, info);
10786 }
10787 }
10788 return TRUE;
10789 }
10790
10791
10792 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10793
10794 static void
10795 mips_set_isa_flags (bfd *abfd)
10796 {
10797 flagword val;
10798
10799 switch (bfd_get_mach (abfd))
10800 {
10801 default:
10802 case bfd_mach_mips3000:
10803 val = E_MIPS_ARCH_1;
10804 break;
10805
10806 case bfd_mach_mips3900:
10807 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10808 break;
10809
10810 case bfd_mach_mips6000:
10811 val = E_MIPS_ARCH_2;
10812 break;
10813
10814 case bfd_mach_mips4000:
10815 case bfd_mach_mips4300:
10816 case bfd_mach_mips4400:
10817 case bfd_mach_mips4600:
10818 val = E_MIPS_ARCH_3;
10819 break;
10820
10821 case bfd_mach_mips4010:
10822 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10823 break;
10824
10825 case bfd_mach_mips4100:
10826 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10827 break;
10828
10829 case bfd_mach_mips4111:
10830 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10831 break;
10832
10833 case bfd_mach_mips4120:
10834 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10835 break;
10836
10837 case bfd_mach_mips4650:
10838 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10839 break;
10840
10841 case bfd_mach_mips5400:
10842 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10843 break;
10844
10845 case bfd_mach_mips5500:
10846 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10847 break;
10848
10849 case bfd_mach_mips9000:
10850 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10851 break;
10852
10853 case bfd_mach_mips5000:
10854 case bfd_mach_mips7000:
10855 case bfd_mach_mips8000:
10856 case bfd_mach_mips10000:
10857 case bfd_mach_mips12000:
10858 case bfd_mach_mips14000:
10859 case bfd_mach_mips16000:
10860 val = E_MIPS_ARCH_4;
10861 break;
10862
10863 case bfd_mach_mips5:
10864 val = E_MIPS_ARCH_5;
10865 break;
10866
10867 case bfd_mach_mips_loongson_2e:
10868 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10869 break;
10870
10871 case bfd_mach_mips_loongson_2f:
10872 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10873 break;
10874
10875 case bfd_mach_mips_sb1:
10876 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10877 break;
10878
10879 case bfd_mach_mips_loongson_3a:
10880 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
10881 break;
10882
10883 case bfd_mach_mips_octeon:
10884 case bfd_mach_mips_octeonp:
10885 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10886 break;
10887
10888 case bfd_mach_mips_xlr:
10889 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10890 break;
10891
10892 case bfd_mach_mips_octeon2:
10893 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
10894 break;
10895
10896 case bfd_mach_mipsisa32:
10897 val = E_MIPS_ARCH_32;
10898 break;
10899
10900 case bfd_mach_mipsisa64:
10901 val = E_MIPS_ARCH_64;
10902 break;
10903
10904 case bfd_mach_mipsisa32r2:
10905 val = E_MIPS_ARCH_32R2;
10906 break;
10907
10908 case bfd_mach_mipsisa64r2:
10909 val = E_MIPS_ARCH_64R2;
10910 break;
10911 }
10912 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10913 elf_elfheader (abfd)->e_flags |= val;
10914
10915 }
10916
10917
10918 /* The final processing done just before writing out a MIPS ELF object
10919 file. This gets the MIPS architecture right based on the machine
10920 number. This is used by both the 32-bit and the 64-bit ABI. */
10921
10922 void
10923 _bfd_mips_elf_final_write_processing (bfd *abfd,
10924 bfd_boolean linker ATTRIBUTE_UNUSED)
10925 {
10926 unsigned int i;
10927 Elf_Internal_Shdr **hdrpp;
10928 const char *name;
10929 asection *sec;
10930
10931 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10932 is nonzero. This is for compatibility with old objects, which used
10933 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
10934 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
10935 mips_set_isa_flags (abfd);
10936
10937 /* Set the sh_info field for .gptab sections and other appropriate
10938 info for each special section. */
10939 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
10940 i < elf_numsections (abfd);
10941 i++, hdrpp++)
10942 {
10943 switch ((*hdrpp)->sh_type)
10944 {
10945 case SHT_MIPS_MSYM:
10946 case SHT_MIPS_LIBLIST:
10947 sec = bfd_get_section_by_name (abfd, ".dynstr");
10948 if (sec != NULL)
10949 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10950 break;
10951
10952 case SHT_MIPS_GPTAB:
10953 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10954 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10955 BFD_ASSERT (name != NULL
10956 && CONST_STRNEQ (name, ".gptab."));
10957 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
10958 BFD_ASSERT (sec != NULL);
10959 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10960 break;
10961
10962 case SHT_MIPS_CONTENT:
10963 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10964 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10965 BFD_ASSERT (name != NULL
10966 && CONST_STRNEQ (name, ".MIPS.content"));
10967 sec = bfd_get_section_by_name (abfd,
10968 name + sizeof ".MIPS.content" - 1);
10969 BFD_ASSERT (sec != NULL);
10970 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10971 break;
10972
10973 case SHT_MIPS_SYMBOL_LIB:
10974 sec = bfd_get_section_by_name (abfd, ".dynsym");
10975 if (sec != NULL)
10976 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10977 sec = bfd_get_section_by_name (abfd, ".liblist");
10978 if (sec != NULL)
10979 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10980 break;
10981
10982 case SHT_MIPS_EVENTS:
10983 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10984 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10985 BFD_ASSERT (name != NULL);
10986 if (CONST_STRNEQ (name, ".MIPS.events"))
10987 sec = bfd_get_section_by_name (abfd,
10988 name + sizeof ".MIPS.events" - 1);
10989 else
10990 {
10991 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
10992 sec = bfd_get_section_by_name (abfd,
10993 (name
10994 + sizeof ".MIPS.post_rel" - 1));
10995 }
10996 BFD_ASSERT (sec != NULL);
10997 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10998 break;
10999
11000 }
11001 }
11002 }
11003 \f
11004 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11005 segments. */
11006
11007 int
11008 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11009 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11010 {
11011 asection *s;
11012 int ret = 0;
11013
11014 /* See if we need a PT_MIPS_REGINFO segment. */
11015 s = bfd_get_section_by_name (abfd, ".reginfo");
11016 if (s && (s->flags & SEC_LOAD))
11017 ++ret;
11018
11019 /* See if we need a PT_MIPS_OPTIONS segment. */
11020 if (IRIX_COMPAT (abfd) == ict_irix6
11021 && bfd_get_section_by_name (abfd,
11022 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11023 ++ret;
11024
11025 /* See if we need a PT_MIPS_RTPROC segment. */
11026 if (IRIX_COMPAT (abfd) == ict_irix5
11027 && bfd_get_section_by_name (abfd, ".dynamic")
11028 && bfd_get_section_by_name (abfd, ".mdebug"))
11029 ++ret;
11030
11031 /* Allocate a PT_NULL header in dynamic objects. See
11032 _bfd_mips_elf_modify_segment_map for details. */
11033 if (!SGI_COMPAT (abfd)
11034 && bfd_get_section_by_name (abfd, ".dynamic"))
11035 ++ret;
11036
11037 return ret;
11038 }
11039
11040 /* Modify the segment map for an IRIX5 executable. */
11041
11042 bfd_boolean
11043 _bfd_mips_elf_modify_segment_map (bfd *abfd,
11044 struct bfd_link_info *info)
11045 {
11046 asection *s;
11047 struct elf_segment_map *m, **pm;
11048 bfd_size_type amt;
11049
11050 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11051 segment. */
11052 s = bfd_get_section_by_name (abfd, ".reginfo");
11053 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11054 {
11055 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11056 if (m->p_type == PT_MIPS_REGINFO)
11057 break;
11058 if (m == NULL)
11059 {
11060 amt = sizeof *m;
11061 m = bfd_zalloc (abfd, amt);
11062 if (m == NULL)
11063 return FALSE;
11064
11065 m->p_type = PT_MIPS_REGINFO;
11066 m->count = 1;
11067 m->sections[0] = s;
11068
11069 /* We want to put it after the PHDR and INTERP segments. */
11070 pm = &elf_tdata (abfd)->segment_map;
11071 while (*pm != NULL
11072 && ((*pm)->p_type == PT_PHDR
11073 || (*pm)->p_type == PT_INTERP))
11074 pm = &(*pm)->next;
11075
11076 m->next = *pm;
11077 *pm = m;
11078 }
11079 }
11080
11081 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11082 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
11083 PT_MIPS_OPTIONS segment immediately following the program header
11084 table. */
11085 if (NEWABI_P (abfd)
11086 /* On non-IRIX6 new abi, we'll have already created a segment
11087 for this section, so don't create another. I'm not sure this
11088 is not also the case for IRIX 6, but I can't test it right
11089 now. */
11090 && IRIX_COMPAT (abfd) == ict_irix6)
11091 {
11092 for (s = abfd->sections; s; s = s->next)
11093 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11094 break;
11095
11096 if (s)
11097 {
11098 struct elf_segment_map *options_segment;
11099
11100 pm = &elf_tdata (abfd)->segment_map;
11101 while (*pm != NULL
11102 && ((*pm)->p_type == PT_PHDR
11103 || (*pm)->p_type == PT_INTERP))
11104 pm = &(*pm)->next;
11105
11106 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11107 {
11108 amt = sizeof (struct elf_segment_map);
11109 options_segment = bfd_zalloc (abfd, amt);
11110 options_segment->next = *pm;
11111 options_segment->p_type = PT_MIPS_OPTIONS;
11112 options_segment->p_flags = PF_R;
11113 options_segment->p_flags_valid = TRUE;
11114 options_segment->count = 1;
11115 options_segment->sections[0] = s;
11116 *pm = options_segment;
11117 }
11118 }
11119 }
11120 else
11121 {
11122 if (IRIX_COMPAT (abfd) == ict_irix5)
11123 {
11124 /* If there are .dynamic and .mdebug sections, we make a room
11125 for the RTPROC header. FIXME: Rewrite without section names. */
11126 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11127 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11128 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11129 {
11130 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11131 if (m->p_type == PT_MIPS_RTPROC)
11132 break;
11133 if (m == NULL)
11134 {
11135 amt = sizeof *m;
11136 m = bfd_zalloc (abfd, amt);
11137 if (m == NULL)
11138 return FALSE;
11139
11140 m->p_type = PT_MIPS_RTPROC;
11141
11142 s = bfd_get_section_by_name (abfd, ".rtproc");
11143 if (s == NULL)
11144 {
11145 m->count = 0;
11146 m->p_flags = 0;
11147 m->p_flags_valid = 1;
11148 }
11149 else
11150 {
11151 m->count = 1;
11152 m->sections[0] = s;
11153 }
11154
11155 /* We want to put it after the DYNAMIC segment. */
11156 pm = &elf_tdata (abfd)->segment_map;
11157 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11158 pm = &(*pm)->next;
11159 if (*pm != NULL)
11160 pm = &(*pm)->next;
11161
11162 m->next = *pm;
11163 *pm = m;
11164 }
11165 }
11166 }
11167 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11168 .dynstr, .dynsym, and .hash sections, and everything in
11169 between. */
11170 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11171 pm = &(*pm)->next)
11172 if ((*pm)->p_type == PT_DYNAMIC)
11173 break;
11174 m = *pm;
11175 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11176 {
11177 /* For a normal mips executable the permissions for the PT_DYNAMIC
11178 segment are read, write and execute. We do that here since
11179 the code in elf.c sets only the read permission. This matters
11180 sometimes for the dynamic linker. */
11181 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11182 {
11183 m->p_flags = PF_R | PF_W | PF_X;
11184 m->p_flags_valid = 1;
11185 }
11186 }
11187 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11188 glibc's dynamic linker has traditionally derived the number of
11189 tags from the p_filesz field, and sometimes allocates stack
11190 arrays of that size. An overly-big PT_DYNAMIC segment can
11191 be actively harmful in such cases. Making PT_DYNAMIC contain
11192 other sections can also make life hard for the prelinker,
11193 which might move one of the other sections to a different
11194 PT_LOAD segment. */
11195 if (SGI_COMPAT (abfd)
11196 && m != NULL
11197 && m->count == 1
11198 && strcmp (m->sections[0]->name, ".dynamic") == 0)
11199 {
11200 static const char *sec_names[] =
11201 {
11202 ".dynamic", ".dynstr", ".dynsym", ".hash"
11203 };
11204 bfd_vma low, high;
11205 unsigned int i, c;
11206 struct elf_segment_map *n;
11207
11208 low = ~(bfd_vma) 0;
11209 high = 0;
11210 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11211 {
11212 s = bfd_get_section_by_name (abfd, sec_names[i]);
11213 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11214 {
11215 bfd_size_type sz;
11216
11217 if (low > s->vma)
11218 low = s->vma;
11219 sz = s->size;
11220 if (high < s->vma + sz)
11221 high = s->vma + sz;
11222 }
11223 }
11224
11225 c = 0;
11226 for (s = abfd->sections; s != NULL; s = s->next)
11227 if ((s->flags & SEC_LOAD) != 0
11228 && s->vma >= low
11229 && s->vma + s->size <= high)
11230 ++c;
11231
11232 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11233 n = bfd_zalloc (abfd, amt);
11234 if (n == NULL)
11235 return FALSE;
11236 *n = *m;
11237 n->count = c;
11238
11239 i = 0;
11240 for (s = abfd->sections; s != NULL; s = s->next)
11241 {
11242 if ((s->flags & SEC_LOAD) != 0
11243 && s->vma >= low
11244 && s->vma + s->size <= high)
11245 {
11246 n->sections[i] = s;
11247 ++i;
11248 }
11249 }
11250
11251 *pm = n;
11252 }
11253 }
11254
11255 /* Allocate a spare program header in dynamic objects so that tools
11256 like the prelinker can add an extra PT_LOAD entry.
11257
11258 If the prelinker needs to make room for a new PT_LOAD entry, its
11259 standard procedure is to move the first (read-only) sections into
11260 the new (writable) segment. However, the MIPS ABI requires
11261 .dynamic to be in a read-only segment, and the section will often
11262 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11263
11264 Although the prelinker could in principle move .dynamic to a
11265 writable segment, it seems better to allocate a spare program
11266 header instead, and avoid the need to move any sections.
11267 There is a long tradition of allocating spare dynamic tags,
11268 so allocating a spare program header seems like a natural
11269 extension.
11270
11271 If INFO is NULL, we may be copying an already prelinked binary
11272 with objcopy or strip, so do not add this header. */
11273 if (info != NULL
11274 && !SGI_COMPAT (abfd)
11275 && bfd_get_section_by_name (abfd, ".dynamic"))
11276 {
11277 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11278 if ((*pm)->p_type == PT_NULL)
11279 break;
11280 if (*pm == NULL)
11281 {
11282 m = bfd_zalloc (abfd, sizeof (*m));
11283 if (m == NULL)
11284 return FALSE;
11285
11286 m->p_type = PT_NULL;
11287 *pm = m;
11288 }
11289 }
11290
11291 return TRUE;
11292 }
11293 \f
11294 /* Return the section that should be marked against GC for a given
11295 relocation. */
11296
11297 asection *
11298 _bfd_mips_elf_gc_mark_hook (asection *sec,
11299 struct bfd_link_info *info,
11300 Elf_Internal_Rela *rel,
11301 struct elf_link_hash_entry *h,
11302 Elf_Internal_Sym *sym)
11303 {
11304 /* ??? Do mips16 stub sections need to be handled special? */
11305
11306 if (h != NULL)
11307 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11308 {
11309 case R_MIPS_GNU_VTINHERIT:
11310 case R_MIPS_GNU_VTENTRY:
11311 return NULL;
11312 }
11313
11314 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11315 }
11316
11317 /* Update the got entry reference counts for the section being removed. */
11318
11319 bfd_boolean
11320 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11321 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11322 asection *sec ATTRIBUTE_UNUSED,
11323 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11324 {
11325 #if 0
11326 Elf_Internal_Shdr *symtab_hdr;
11327 struct elf_link_hash_entry **sym_hashes;
11328 bfd_signed_vma *local_got_refcounts;
11329 const Elf_Internal_Rela *rel, *relend;
11330 unsigned long r_symndx;
11331 struct elf_link_hash_entry *h;
11332
11333 if (info->relocatable)
11334 return TRUE;
11335
11336 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11337 sym_hashes = elf_sym_hashes (abfd);
11338 local_got_refcounts = elf_local_got_refcounts (abfd);
11339
11340 relend = relocs + sec->reloc_count;
11341 for (rel = relocs; rel < relend; rel++)
11342 switch (ELF_R_TYPE (abfd, rel->r_info))
11343 {
11344 case R_MIPS16_GOT16:
11345 case R_MIPS16_CALL16:
11346 case R_MIPS_GOT16:
11347 case R_MIPS_CALL16:
11348 case R_MIPS_CALL_HI16:
11349 case R_MIPS_CALL_LO16:
11350 case R_MIPS_GOT_HI16:
11351 case R_MIPS_GOT_LO16:
11352 case R_MIPS_GOT_DISP:
11353 case R_MIPS_GOT_PAGE:
11354 case R_MIPS_GOT_OFST:
11355 case R_MICROMIPS_GOT16:
11356 case R_MICROMIPS_CALL16:
11357 case R_MICROMIPS_CALL_HI16:
11358 case R_MICROMIPS_CALL_LO16:
11359 case R_MICROMIPS_GOT_HI16:
11360 case R_MICROMIPS_GOT_LO16:
11361 case R_MICROMIPS_GOT_DISP:
11362 case R_MICROMIPS_GOT_PAGE:
11363 case R_MICROMIPS_GOT_OFST:
11364 /* ??? It would seem that the existing MIPS code does no sort
11365 of reference counting or whatnot on its GOT and PLT entries,
11366 so it is not possible to garbage collect them at this time. */
11367 break;
11368
11369 default:
11370 break;
11371 }
11372 #endif
11373
11374 return TRUE;
11375 }
11376 \f
11377 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11378 hiding the old indirect symbol. Process additional relocation
11379 information. Also called for weakdefs, in which case we just let
11380 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11381
11382 void
11383 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11384 struct elf_link_hash_entry *dir,
11385 struct elf_link_hash_entry *ind)
11386 {
11387 struct mips_elf_link_hash_entry *dirmips, *indmips;
11388
11389 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11390
11391 dirmips = (struct mips_elf_link_hash_entry *) dir;
11392 indmips = (struct mips_elf_link_hash_entry *) ind;
11393 /* Any absolute non-dynamic relocations against an indirect or weak
11394 definition will be against the target symbol. */
11395 if (indmips->has_static_relocs)
11396 dirmips->has_static_relocs = TRUE;
11397
11398 if (ind->root.type != bfd_link_hash_indirect)
11399 return;
11400
11401 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11402 if (indmips->readonly_reloc)
11403 dirmips->readonly_reloc = TRUE;
11404 if (indmips->no_fn_stub)
11405 dirmips->no_fn_stub = TRUE;
11406 if (indmips->fn_stub)
11407 {
11408 dirmips->fn_stub = indmips->fn_stub;
11409 indmips->fn_stub = NULL;
11410 }
11411 if (indmips->need_fn_stub)
11412 {
11413 dirmips->need_fn_stub = TRUE;
11414 indmips->need_fn_stub = FALSE;
11415 }
11416 if (indmips->call_stub)
11417 {
11418 dirmips->call_stub = indmips->call_stub;
11419 indmips->call_stub = NULL;
11420 }
11421 if (indmips->call_fp_stub)
11422 {
11423 dirmips->call_fp_stub = indmips->call_fp_stub;
11424 indmips->call_fp_stub = NULL;
11425 }
11426 if (indmips->global_got_area < dirmips->global_got_area)
11427 dirmips->global_got_area = indmips->global_got_area;
11428 if (indmips->global_got_area < GGA_NONE)
11429 indmips->global_got_area = GGA_NONE;
11430 if (indmips->has_nonpic_branches)
11431 dirmips->has_nonpic_branches = TRUE;
11432
11433 if (dirmips->tls_type == 0)
11434 dirmips->tls_type = indmips->tls_type;
11435 }
11436 \f
11437 #define PDR_SIZE 32
11438
11439 bfd_boolean
11440 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11441 struct bfd_link_info *info)
11442 {
11443 asection *o;
11444 bfd_boolean ret = FALSE;
11445 unsigned char *tdata;
11446 size_t i, skip;
11447
11448 o = bfd_get_section_by_name (abfd, ".pdr");
11449 if (! o)
11450 return FALSE;
11451 if (o->size == 0)
11452 return FALSE;
11453 if (o->size % PDR_SIZE != 0)
11454 return FALSE;
11455 if (o->output_section != NULL
11456 && bfd_is_abs_section (o->output_section))
11457 return FALSE;
11458
11459 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11460 if (! tdata)
11461 return FALSE;
11462
11463 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11464 info->keep_memory);
11465 if (!cookie->rels)
11466 {
11467 free (tdata);
11468 return FALSE;
11469 }
11470
11471 cookie->rel = cookie->rels;
11472 cookie->relend = cookie->rels + o->reloc_count;
11473
11474 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11475 {
11476 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11477 {
11478 tdata[i] = 1;
11479 skip ++;
11480 }
11481 }
11482
11483 if (skip != 0)
11484 {
11485 mips_elf_section_data (o)->u.tdata = tdata;
11486 o->size -= skip * PDR_SIZE;
11487 ret = TRUE;
11488 }
11489 else
11490 free (tdata);
11491
11492 if (! info->keep_memory)
11493 free (cookie->rels);
11494
11495 return ret;
11496 }
11497
11498 bfd_boolean
11499 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11500 {
11501 if (strcmp (sec->name, ".pdr") == 0)
11502 return TRUE;
11503 return FALSE;
11504 }
11505
11506 bfd_boolean
11507 _bfd_mips_elf_write_section (bfd *output_bfd,
11508 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11509 asection *sec, bfd_byte *contents)
11510 {
11511 bfd_byte *to, *from, *end;
11512 int i;
11513
11514 if (strcmp (sec->name, ".pdr") != 0)
11515 return FALSE;
11516
11517 if (mips_elf_section_data (sec)->u.tdata == NULL)
11518 return FALSE;
11519
11520 to = contents;
11521 end = contents + sec->size;
11522 for (from = contents, i = 0;
11523 from < end;
11524 from += PDR_SIZE, i++)
11525 {
11526 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11527 continue;
11528 if (to != from)
11529 memcpy (to, from, PDR_SIZE);
11530 to += PDR_SIZE;
11531 }
11532 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11533 sec->output_offset, sec->size);
11534 return TRUE;
11535 }
11536 \f
11537 /* microMIPS code retains local labels for linker relaxation. Omit them
11538 from output by default for clarity. */
11539
11540 bfd_boolean
11541 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11542 {
11543 return _bfd_elf_is_local_label_name (abfd, sym->name);
11544 }
11545
11546 /* MIPS ELF uses a special find_nearest_line routine in order the
11547 handle the ECOFF debugging information. */
11548
11549 struct mips_elf_find_line
11550 {
11551 struct ecoff_debug_info d;
11552 struct ecoff_find_line i;
11553 };
11554
11555 bfd_boolean
11556 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11557 asymbol **symbols, bfd_vma offset,
11558 const char **filename_ptr,
11559 const char **functionname_ptr,
11560 unsigned int *line_ptr)
11561 {
11562 asection *msec;
11563
11564 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11565 filename_ptr, functionname_ptr,
11566 line_ptr))
11567 return TRUE;
11568
11569 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11570 section, symbols, offset,
11571 filename_ptr, functionname_ptr,
11572 line_ptr, ABI_64_P (abfd) ? 8 : 0,
11573 &elf_tdata (abfd)->dwarf2_find_line_info))
11574 return TRUE;
11575
11576 msec = bfd_get_section_by_name (abfd, ".mdebug");
11577 if (msec != NULL)
11578 {
11579 flagword origflags;
11580 struct mips_elf_find_line *fi;
11581 const struct ecoff_debug_swap * const swap =
11582 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11583
11584 /* If we are called during a link, mips_elf_final_link may have
11585 cleared the SEC_HAS_CONTENTS field. We force it back on here
11586 if appropriate (which it normally will be). */
11587 origflags = msec->flags;
11588 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11589 msec->flags |= SEC_HAS_CONTENTS;
11590
11591 fi = elf_tdata (abfd)->find_line_info;
11592 if (fi == NULL)
11593 {
11594 bfd_size_type external_fdr_size;
11595 char *fraw_src;
11596 char *fraw_end;
11597 struct fdr *fdr_ptr;
11598 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11599
11600 fi = bfd_zalloc (abfd, amt);
11601 if (fi == NULL)
11602 {
11603 msec->flags = origflags;
11604 return FALSE;
11605 }
11606
11607 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11608 {
11609 msec->flags = origflags;
11610 return FALSE;
11611 }
11612
11613 /* Swap in the FDR information. */
11614 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11615 fi->d.fdr = bfd_alloc (abfd, amt);
11616 if (fi->d.fdr == NULL)
11617 {
11618 msec->flags = origflags;
11619 return FALSE;
11620 }
11621 external_fdr_size = swap->external_fdr_size;
11622 fdr_ptr = fi->d.fdr;
11623 fraw_src = (char *) fi->d.external_fdr;
11624 fraw_end = (fraw_src
11625 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11626 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11627 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11628
11629 elf_tdata (abfd)->find_line_info = fi;
11630
11631 /* Note that we don't bother to ever free this information.
11632 find_nearest_line is either called all the time, as in
11633 objdump -l, so the information should be saved, or it is
11634 rarely called, as in ld error messages, so the memory
11635 wasted is unimportant. Still, it would probably be a
11636 good idea for free_cached_info to throw it away. */
11637 }
11638
11639 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11640 &fi->i, filename_ptr, functionname_ptr,
11641 line_ptr))
11642 {
11643 msec->flags = origflags;
11644 return TRUE;
11645 }
11646
11647 msec->flags = origflags;
11648 }
11649
11650 /* Fall back on the generic ELF find_nearest_line routine. */
11651
11652 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11653 filename_ptr, functionname_ptr,
11654 line_ptr);
11655 }
11656
11657 bfd_boolean
11658 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11659 const char **filename_ptr,
11660 const char **functionname_ptr,
11661 unsigned int *line_ptr)
11662 {
11663 bfd_boolean found;
11664 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11665 functionname_ptr, line_ptr,
11666 & elf_tdata (abfd)->dwarf2_find_line_info);
11667 return found;
11668 }
11669
11670 \f
11671 /* When are writing out the .options or .MIPS.options section,
11672 remember the bytes we are writing out, so that we can install the
11673 GP value in the section_processing routine. */
11674
11675 bfd_boolean
11676 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11677 const void *location,
11678 file_ptr offset, bfd_size_type count)
11679 {
11680 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11681 {
11682 bfd_byte *c;
11683
11684 if (elf_section_data (section) == NULL)
11685 {
11686 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11687 section->used_by_bfd = bfd_zalloc (abfd, amt);
11688 if (elf_section_data (section) == NULL)
11689 return FALSE;
11690 }
11691 c = mips_elf_section_data (section)->u.tdata;
11692 if (c == NULL)
11693 {
11694 c = bfd_zalloc (abfd, section->size);
11695 if (c == NULL)
11696 return FALSE;
11697 mips_elf_section_data (section)->u.tdata = c;
11698 }
11699
11700 memcpy (c + offset, location, count);
11701 }
11702
11703 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11704 count);
11705 }
11706
11707 /* This is almost identical to bfd_generic_get_... except that some
11708 MIPS relocations need to be handled specially. Sigh. */
11709
11710 bfd_byte *
11711 _bfd_elf_mips_get_relocated_section_contents
11712 (bfd *abfd,
11713 struct bfd_link_info *link_info,
11714 struct bfd_link_order *link_order,
11715 bfd_byte *data,
11716 bfd_boolean relocatable,
11717 asymbol **symbols)
11718 {
11719 /* Get enough memory to hold the stuff */
11720 bfd *input_bfd = link_order->u.indirect.section->owner;
11721 asection *input_section = link_order->u.indirect.section;
11722 bfd_size_type sz;
11723
11724 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11725 arelent **reloc_vector = NULL;
11726 long reloc_count;
11727
11728 if (reloc_size < 0)
11729 goto error_return;
11730
11731 reloc_vector = bfd_malloc (reloc_size);
11732 if (reloc_vector == NULL && reloc_size != 0)
11733 goto error_return;
11734
11735 /* read in the section */
11736 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11737 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11738 goto error_return;
11739
11740 reloc_count = bfd_canonicalize_reloc (input_bfd,
11741 input_section,
11742 reloc_vector,
11743 symbols);
11744 if (reloc_count < 0)
11745 goto error_return;
11746
11747 if (reloc_count > 0)
11748 {
11749 arelent **parent;
11750 /* for mips */
11751 int gp_found;
11752 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11753
11754 {
11755 struct bfd_hash_entry *h;
11756 struct bfd_link_hash_entry *lh;
11757 /* Skip all this stuff if we aren't mixing formats. */
11758 if (abfd && input_bfd
11759 && abfd->xvec == input_bfd->xvec)
11760 lh = 0;
11761 else
11762 {
11763 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11764 lh = (struct bfd_link_hash_entry *) h;
11765 }
11766 lookup:
11767 if (lh)
11768 {
11769 switch (lh->type)
11770 {
11771 case bfd_link_hash_undefined:
11772 case bfd_link_hash_undefweak:
11773 case bfd_link_hash_common:
11774 gp_found = 0;
11775 break;
11776 case bfd_link_hash_defined:
11777 case bfd_link_hash_defweak:
11778 gp_found = 1;
11779 gp = lh->u.def.value;
11780 break;
11781 case bfd_link_hash_indirect:
11782 case bfd_link_hash_warning:
11783 lh = lh->u.i.link;
11784 /* @@FIXME ignoring warning for now */
11785 goto lookup;
11786 case bfd_link_hash_new:
11787 default:
11788 abort ();
11789 }
11790 }
11791 else
11792 gp_found = 0;
11793 }
11794 /* end mips */
11795 for (parent = reloc_vector; *parent != NULL; parent++)
11796 {
11797 char *error_message = NULL;
11798 bfd_reloc_status_type r;
11799
11800 /* Specific to MIPS: Deal with relocation types that require
11801 knowing the gp of the output bfd. */
11802 asymbol *sym = *(*parent)->sym_ptr_ptr;
11803
11804 /* If we've managed to find the gp and have a special
11805 function for the relocation then go ahead, else default
11806 to the generic handling. */
11807 if (gp_found
11808 && (*parent)->howto->special_function
11809 == _bfd_mips_elf32_gprel16_reloc)
11810 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11811 input_section, relocatable,
11812 data, gp);
11813 else
11814 r = bfd_perform_relocation (input_bfd, *parent, data,
11815 input_section,
11816 relocatable ? abfd : NULL,
11817 &error_message);
11818
11819 if (relocatable)
11820 {
11821 asection *os = input_section->output_section;
11822
11823 /* A partial link, so keep the relocs */
11824 os->orelocation[os->reloc_count] = *parent;
11825 os->reloc_count++;
11826 }
11827
11828 if (r != bfd_reloc_ok)
11829 {
11830 switch (r)
11831 {
11832 case bfd_reloc_undefined:
11833 if (!((*link_info->callbacks->undefined_symbol)
11834 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11835 input_bfd, input_section, (*parent)->address, TRUE)))
11836 goto error_return;
11837 break;
11838 case bfd_reloc_dangerous:
11839 BFD_ASSERT (error_message != NULL);
11840 if (!((*link_info->callbacks->reloc_dangerous)
11841 (link_info, error_message, input_bfd, input_section,
11842 (*parent)->address)))
11843 goto error_return;
11844 break;
11845 case bfd_reloc_overflow:
11846 if (!((*link_info->callbacks->reloc_overflow)
11847 (link_info, NULL,
11848 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11849 (*parent)->howto->name, (*parent)->addend,
11850 input_bfd, input_section, (*parent)->address)))
11851 goto error_return;
11852 break;
11853 case bfd_reloc_outofrange:
11854 default:
11855 abort ();
11856 break;
11857 }
11858
11859 }
11860 }
11861 }
11862 if (reloc_vector != NULL)
11863 free (reloc_vector);
11864 return data;
11865
11866 error_return:
11867 if (reloc_vector != NULL)
11868 free (reloc_vector);
11869 return NULL;
11870 }
11871 \f
11872 static bfd_boolean
11873 mips_elf_relax_delete_bytes (bfd *abfd,
11874 asection *sec, bfd_vma addr, int count)
11875 {
11876 Elf_Internal_Shdr *symtab_hdr;
11877 unsigned int sec_shndx;
11878 bfd_byte *contents;
11879 Elf_Internal_Rela *irel, *irelend;
11880 Elf_Internal_Sym *isym;
11881 Elf_Internal_Sym *isymend;
11882 struct elf_link_hash_entry **sym_hashes;
11883 struct elf_link_hash_entry **end_hashes;
11884 struct elf_link_hash_entry **start_hashes;
11885 unsigned int symcount;
11886
11887 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
11888 contents = elf_section_data (sec)->this_hdr.contents;
11889
11890 irel = elf_section_data (sec)->relocs;
11891 irelend = irel + sec->reloc_count;
11892
11893 /* Actually delete the bytes. */
11894 memmove (contents + addr, contents + addr + count,
11895 (size_t) (sec->size - addr - count));
11896 sec->size -= count;
11897
11898 /* Adjust all the relocs. */
11899 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
11900 {
11901 /* Get the new reloc address. */
11902 if (irel->r_offset > addr)
11903 irel->r_offset -= count;
11904 }
11905
11906 BFD_ASSERT (addr % 2 == 0);
11907 BFD_ASSERT (count % 2 == 0);
11908
11909 /* Adjust the local symbols defined in this section. */
11910 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11911 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
11912 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
11913 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
11914 isym->st_value -= count;
11915
11916 /* Now adjust the global symbols defined in this section. */
11917 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
11918 - symtab_hdr->sh_info);
11919 sym_hashes = start_hashes = elf_sym_hashes (abfd);
11920 end_hashes = sym_hashes + symcount;
11921
11922 for (; sym_hashes < end_hashes; sym_hashes++)
11923 {
11924 struct elf_link_hash_entry *sym_hash = *sym_hashes;
11925
11926 if ((sym_hash->root.type == bfd_link_hash_defined
11927 || sym_hash->root.type == bfd_link_hash_defweak)
11928 && sym_hash->root.u.def.section == sec)
11929 {
11930 bfd_vma value = sym_hash->root.u.def.value;
11931
11932 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
11933 value &= MINUS_TWO;
11934 if (value > addr)
11935 sym_hash->root.u.def.value -= count;
11936 }
11937 }
11938
11939 return TRUE;
11940 }
11941
11942
11943 /* Opcodes needed for microMIPS relaxation as found in
11944 opcodes/micromips-opc.c. */
11945
11946 struct opcode_descriptor {
11947 unsigned long match;
11948 unsigned long mask;
11949 };
11950
11951 /* The $ra register aka $31. */
11952
11953 #define RA 31
11954
11955 /* 32-bit instruction format register fields. */
11956
11957 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
11958 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
11959
11960 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
11961
11962 #define OP16_VALID_REG(r) \
11963 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
11964
11965
11966 /* 32-bit and 16-bit branches. */
11967
11968 static const struct opcode_descriptor b_insns_32[] = {
11969 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
11970 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
11971 { 0, 0 } /* End marker for find_match(). */
11972 };
11973
11974 static const struct opcode_descriptor bc_insn_32 =
11975 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
11976
11977 static const struct opcode_descriptor bz_insn_32 =
11978 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
11979
11980 static const struct opcode_descriptor bzal_insn_32 =
11981 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
11982
11983 static const struct opcode_descriptor beq_insn_32 =
11984 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
11985
11986 static const struct opcode_descriptor b_insn_16 =
11987 { /* "b", "mD", */ 0xcc00, 0xfc00 };
11988
11989 static const struct opcode_descriptor bz_insn_16 =
11990 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
11991
11992
11993 /* 32-bit and 16-bit branch EQ and NE zero. */
11994
11995 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
11996 eq and second the ne. This convention is used when replacing a
11997 32-bit BEQ/BNE with the 16-bit version. */
11998
11999 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12000
12001 static const struct opcode_descriptor bz_rs_insns_32[] = {
12002 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12003 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12004 { 0, 0 } /* End marker for find_match(). */
12005 };
12006
12007 static const struct opcode_descriptor bz_rt_insns_32[] = {
12008 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12009 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12010 { 0, 0 } /* End marker for find_match(). */
12011 };
12012
12013 static const struct opcode_descriptor bzc_insns_32[] = {
12014 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12015 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12016 { 0, 0 } /* End marker for find_match(). */
12017 };
12018
12019 static const struct opcode_descriptor bz_insns_16[] = {
12020 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12021 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12022 { 0, 0 } /* End marker for find_match(). */
12023 };
12024
12025 /* Switch between a 5-bit register index and its 3-bit shorthand. */
12026
12027 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12028 #define BZ16_REG_FIELD(r) \
12029 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12030
12031
12032 /* 32-bit instructions with a delay slot. */
12033
12034 static const struct opcode_descriptor jal_insn_32_bd16 =
12035 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12036
12037 static const struct opcode_descriptor jal_insn_32_bd32 =
12038 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12039
12040 static const struct opcode_descriptor jal_x_insn_32_bd32 =
12041 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12042
12043 static const struct opcode_descriptor j_insn_32 =
12044 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12045
12046 static const struct opcode_descriptor jalr_insn_32 =
12047 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12048
12049 /* This table can be compacted, because no opcode replacement is made. */
12050
12051 static const struct opcode_descriptor ds_insns_32_bd16[] = {
12052 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12053
12054 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12055 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12056
12057 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12058 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12059 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12060 { 0, 0 } /* End marker for find_match(). */
12061 };
12062
12063 /* This table can be compacted, because no opcode replacement is made. */
12064
12065 static const struct opcode_descriptor ds_insns_32_bd32[] = {
12066 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12067
12068 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12069 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12070 { 0, 0 } /* End marker for find_match(). */
12071 };
12072
12073
12074 /* 16-bit instructions with a delay slot. */
12075
12076 static const struct opcode_descriptor jalr_insn_16_bd16 =
12077 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12078
12079 static const struct opcode_descriptor jalr_insn_16_bd32 =
12080 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12081
12082 static const struct opcode_descriptor jr_insn_16 =
12083 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12084
12085 #define JR16_REG(opcode) ((opcode) & 0x1f)
12086
12087 /* This table can be compacted, because no opcode replacement is made. */
12088
12089 static const struct opcode_descriptor ds_insns_16_bd16[] = {
12090 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12091
12092 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12093 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12094 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12095 { 0, 0 } /* End marker for find_match(). */
12096 };
12097
12098
12099 /* LUI instruction. */
12100
12101 static const struct opcode_descriptor lui_insn =
12102 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12103
12104
12105 /* ADDIU instruction. */
12106
12107 static const struct opcode_descriptor addiu_insn =
12108 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12109
12110 static const struct opcode_descriptor addiupc_insn =
12111 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12112
12113 #define ADDIUPC_REG_FIELD(r) \
12114 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12115
12116
12117 /* Relaxable instructions in a JAL delay slot: MOVE. */
12118
12119 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12120 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12121 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12122 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12123
12124 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12125 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12126
12127 static const struct opcode_descriptor move_insns_32[] = {
12128 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12129 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12130 { 0, 0 } /* End marker for find_match(). */
12131 };
12132
12133 static const struct opcode_descriptor move_insn_16 =
12134 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12135
12136
12137 /* NOP instructions. */
12138
12139 static const struct opcode_descriptor nop_insn_32 =
12140 { /* "nop", "", */ 0x00000000, 0xffffffff };
12141
12142 static const struct opcode_descriptor nop_insn_16 =
12143 { /* "nop", "", */ 0x0c00, 0xffff };
12144
12145
12146 /* Instruction match support. */
12147
12148 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12149
12150 static int
12151 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12152 {
12153 unsigned long indx;
12154
12155 for (indx = 0; insn[indx].mask != 0; indx++)
12156 if (MATCH (opcode, insn[indx]))
12157 return indx;
12158
12159 return -1;
12160 }
12161
12162
12163 /* Branch and delay slot decoding support. */
12164
12165 /* If PTR points to what *might* be a 16-bit branch or jump, then
12166 return the minimum length of its delay slot, otherwise return 0.
12167 Non-zero results are not definitive as we might be checking against
12168 the second half of another instruction. */
12169
12170 static int
12171 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12172 {
12173 unsigned long opcode;
12174 int bdsize;
12175
12176 opcode = bfd_get_16 (abfd, ptr);
12177 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12178 /* 16-bit branch/jump with a 32-bit delay slot. */
12179 bdsize = 4;
12180 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12181 || find_match (opcode, ds_insns_16_bd16) >= 0)
12182 /* 16-bit branch/jump with a 16-bit delay slot. */
12183 bdsize = 2;
12184 else
12185 /* No delay slot. */
12186 bdsize = 0;
12187
12188 return bdsize;
12189 }
12190
12191 /* If PTR points to what *might* be a 32-bit branch or jump, then
12192 return the minimum length of its delay slot, otherwise return 0.
12193 Non-zero results are not definitive as we might be checking against
12194 the second half of another instruction. */
12195
12196 static int
12197 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12198 {
12199 unsigned long opcode;
12200 int bdsize;
12201
12202 opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
12203 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12204 /* 32-bit branch/jump with a 32-bit delay slot. */
12205 bdsize = 4;
12206 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12207 /* 32-bit branch/jump with a 16-bit delay slot. */
12208 bdsize = 2;
12209 else
12210 /* No delay slot. */
12211 bdsize = 0;
12212
12213 return bdsize;
12214 }
12215
12216 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12217 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12218
12219 static bfd_boolean
12220 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12221 {
12222 unsigned long opcode;
12223
12224 opcode = bfd_get_16 (abfd, ptr);
12225 if (MATCH (opcode, b_insn_16)
12226 /* B16 */
12227 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12228 /* JR16 */
12229 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12230 /* BEQZ16, BNEZ16 */
12231 || (MATCH (opcode, jalr_insn_16_bd32)
12232 /* JALR16 */
12233 && reg != JR16_REG (opcode) && reg != RA))
12234 return TRUE;
12235
12236 return FALSE;
12237 }
12238
12239 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12240 then return TRUE, otherwise FALSE. */
12241
12242 static bfd_boolean
12243 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12244 {
12245 unsigned long opcode;
12246
12247 opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
12248 if (MATCH (opcode, j_insn_32)
12249 /* J */
12250 || MATCH (opcode, bc_insn_32)
12251 /* BC1F, BC1T, BC2F, BC2T */
12252 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12253 /* JAL, JALX */
12254 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12255 /* BGEZ, BGTZ, BLEZ, BLTZ */
12256 || (MATCH (opcode, bzal_insn_32)
12257 /* BGEZAL, BLTZAL */
12258 && reg != OP32_SREG (opcode) && reg != RA)
12259 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12260 /* JALR, JALR.HB, BEQ, BNE */
12261 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12262 return TRUE;
12263
12264 return FALSE;
12265 }
12266
12267 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12268 IRELEND) at OFFSET indicate that there must be a compact branch there,
12269 then return TRUE, otherwise FALSE. */
12270
12271 static bfd_boolean
12272 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12273 const Elf_Internal_Rela *internal_relocs,
12274 const Elf_Internal_Rela *irelend)
12275 {
12276 const Elf_Internal_Rela *irel;
12277 unsigned long opcode;
12278
12279 opcode = bfd_get_16 (abfd, ptr);
12280 opcode <<= 16;
12281 opcode |= bfd_get_16 (abfd, ptr + 2);
12282 if (find_match (opcode, bzc_insns_32) < 0)
12283 return FALSE;
12284
12285 for (irel = internal_relocs; irel < irelend; irel++)
12286 if (irel->r_offset == offset
12287 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12288 return TRUE;
12289
12290 return FALSE;
12291 }
12292
12293 /* Bitsize checking. */
12294 #define IS_BITSIZE(val, N) \
12295 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12296 - (1ULL << ((N) - 1))) == (val))
12297
12298 \f
12299 bfd_boolean
12300 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12301 struct bfd_link_info *link_info,
12302 bfd_boolean *again)
12303 {
12304 Elf_Internal_Shdr *symtab_hdr;
12305 Elf_Internal_Rela *internal_relocs;
12306 Elf_Internal_Rela *irel, *irelend;
12307 bfd_byte *contents = NULL;
12308 Elf_Internal_Sym *isymbuf = NULL;
12309
12310 /* Assume nothing changes. */
12311 *again = FALSE;
12312
12313 /* We don't have to do anything for a relocatable link, if
12314 this section does not have relocs, or if this is not a
12315 code section. */
12316
12317 if (link_info->relocatable
12318 || (sec->flags & SEC_RELOC) == 0
12319 || sec->reloc_count == 0
12320 || (sec->flags & SEC_CODE) == 0)
12321 return TRUE;
12322
12323 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12324
12325 /* Get a copy of the native relocations. */
12326 internal_relocs = (_bfd_elf_link_read_relocs
12327 (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
12328 link_info->keep_memory));
12329 if (internal_relocs == NULL)
12330 goto error_return;
12331
12332 /* Walk through them looking for relaxing opportunities. */
12333 irelend = internal_relocs + sec->reloc_count;
12334 for (irel = internal_relocs; irel < irelend; irel++)
12335 {
12336 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12337 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12338 bfd_boolean target_is_micromips_code_p;
12339 unsigned long opcode;
12340 bfd_vma symval;
12341 bfd_vma pcrval;
12342 bfd_byte *ptr;
12343 int fndopc;
12344
12345 /* The number of bytes to delete for relaxation and from where
12346 to delete these bytes starting at irel->r_offset. */
12347 int delcnt = 0;
12348 int deloff = 0;
12349
12350 /* If this isn't something that can be relaxed, then ignore
12351 this reloc. */
12352 if (r_type != R_MICROMIPS_HI16
12353 && r_type != R_MICROMIPS_PC16_S1
12354 && r_type != R_MICROMIPS_26_S1)
12355 continue;
12356
12357 /* Get the section contents if we haven't done so already. */
12358 if (contents == NULL)
12359 {
12360 /* Get cached copy if it exists. */
12361 if (elf_section_data (sec)->this_hdr.contents != NULL)
12362 contents = elf_section_data (sec)->this_hdr.contents;
12363 /* Go get them off disk. */
12364 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12365 goto error_return;
12366 }
12367 ptr = contents + irel->r_offset;
12368
12369 /* Read this BFD's local symbols if we haven't done so already. */
12370 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12371 {
12372 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12373 if (isymbuf == NULL)
12374 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12375 symtab_hdr->sh_info, 0,
12376 NULL, NULL, NULL);
12377 if (isymbuf == NULL)
12378 goto error_return;
12379 }
12380
12381 /* Get the value of the symbol referred to by the reloc. */
12382 if (r_symndx < symtab_hdr->sh_info)
12383 {
12384 /* A local symbol. */
12385 Elf_Internal_Sym *isym;
12386 asection *sym_sec;
12387
12388 isym = isymbuf + r_symndx;
12389 if (isym->st_shndx == SHN_UNDEF)
12390 sym_sec = bfd_und_section_ptr;
12391 else if (isym->st_shndx == SHN_ABS)
12392 sym_sec = bfd_abs_section_ptr;
12393 else if (isym->st_shndx == SHN_COMMON)
12394 sym_sec = bfd_com_section_ptr;
12395 else
12396 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12397 symval = (isym->st_value
12398 + sym_sec->output_section->vma
12399 + sym_sec->output_offset);
12400 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12401 }
12402 else
12403 {
12404 unsigned long indx;
12405 struct elf_link_hash_entry *h;
12406
12407 /* An external symbol. */
12408 indx = r_symndx - symtab_hdr->sh_info;
12409 h = elf_sym_hashes (abfd)[indx];
12410 BFD_ASSERT (h != NULL);
12411
12412 if (h->root.type != bfd_link_hash_defined
12413 && h->root.type != bfd_link_hash_defweak)
12414 /* This appears to be a reference to an undefined
12415 symbol. Just ignore it -- it will be caught by the
12416 regular reloc processing. */
12417 continue;
12418
12419 symval = (h->root.u.def.value
12420 + h->root.u.def.section->output_section->vma
12421 + h->root.u.def.section->output_offset);
12422 target_is_micromips_code_p = (!h->needs_plt
12423 && ELF_ST_IS_MICROMIPS (h->other));
12424 }
12425
12426
12427 /* For simplicity of coding, we are going to modify the
12428 section contents, the section relocs, and the BFD symbol
12429 table. We must tell the rest of the code not to free up this
12430 information. It would be possible to instead create a table
12431 of changes which have to be made, as is done in coff-mips.c;
12432 that would be more work, but would require less memory when
12433 the linker is run. */
12434
12435 /* Only 32-bit instructions relaxed. */
12436 if (irel->r_offset + 4 > sec->size)
12437 continue;
12438
12439 opcode = bfd_get_16 (abfd, ptr ) << 16;
12440 opcode |= bfd_get_16 (abfd, ptr + 2);
12441
12442 /* This is the pc-relative distance from the instruction the
12443 relocation is applied to, to the symbol referred. */
12444 pcrval = (symval
12445 - (sec->output_section->vma + sec->output_offset)
12446 - irel->r_offset);
12447
12448 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12449 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12450 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12451
12452 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12453
12454 where pcrval has first to be adjusted to apply against the LO16
12455 location (we make the adjustment later on, when we have figured
12456 out the offset). */
12457 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12458 {
12459 bfd_boolean bzc = FALSE;
12460 unsigned long nextopc;
12461 unsigned long reg;
12462 bfd_vma offset;
12463
12464 /* Give up if the previous reloc was a HI16 against this symbol
12465 too. */
12466 if (irel > internal_relocs
12467 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12468 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12469 continue;
12470
12471 /* Or if the next reloc is not a LO16 against this symbol. */
12472 if (irel + 1 >= irelend
12473 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12474 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12475 continue;
12476
12477 /* Or if the second next reloc is a LO16 against this symbol too. */
12478 if (irel + 2 >= irelend
12479 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12480 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12481 continue;
12482
12483 /* See if the LUI instruction *might* be in a branch delay slot.
12484 We check whether what looks like a 16-bit branch or jump is
12485 actually an immediate argument to a compact branch, and let
12486 it through if so. */
12487 if (irel->r_offset >= 2
12488 && check_br16_dslot (abfd, ptr - 2)
12489 && !(irel->r_offset >= 4
12490 && (bzc = check_relocated_bzc (abfd,
12491 ptr - 4, irel->r_offset - 4,
12492 internal_relocs, irelend))))
12493 continue;
12494 if (irel->r_offset >= 4
12495 && !bzc
12496 && check_br32_dslot (abfd, ptr - 4))
12497 continue;
12498
12499 reg = OP32_SREG (opcode);
12500
12501 /* We only relax adjacent instructions or ones separated with
12502 a branch or jump that has a delay slot. The branch or jump
12503 must not fiddle with the register used to hold the address.
12504 Subtract 4 for the LUI itself. */
12505 offset = irel[1].r_offset - irel[0].r_offset;
12506 switch (offset - 4)
12507 {
12508 case 0:
12509 break;
12510 case 2:
12511 if (check_br16 (abfd, ptr + 4, reg))
12512 break;
12513 continue;
12514 case 4:
12515 if (check_br32 (abfd, ptr + 4, reg))
12516 break;
12517 continue;
12518 default:
12519 continue;
12520 }
12521
12522 nextopc = bfd_get_16 (abfd, contents + irel[1].r_offset ) << 16;
12523 nextopc |= bfd_get_16 (abfd, contents + irel[1].r_offset + 2);
12524
12525 /* Give up unless the same register is used with both
12526 relocations. */
12527 if (OP32_SREG (nextopc) != reg)
12528 continue;
12529
12530 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12531 and rounding up to take masking of the two LSBs into account. */
12532 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12533
12534 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12535 if (IS_BITSIZE (symval, 16))
12536 {
12537 /* Fix the relocation's type. */
12538 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12539
12540 /* Instructions using R_MICROMIPS_LO16 have the base or
12541 source register in bits 20:16. This register becomes $0
12542 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12543 nextopc &= ~0x001f0000;
12544 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12545 contents + irel[1].r_offset);
12546 }
12547
12548 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12549 We add 4 to take LUI deletion into account while checking
12550 the PC-relative distance. */
12551 else if (symval % 4 == 0
12552 && IS_BITSIZE (pcrval + 4, 25)
12553 && MATCH (nextopc, addiu_insn)
12554 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12555 && OP16_VALID_REG (OP32_TREG (nextopc)))
12556 {
12557 /* Fix the relocation's type. */
12558 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12559
12560 /* Replace ADDIU with the ADDIUPC version. */
12561 nextopc = (addiupc_insn.match
12562 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12563
12564 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12565 contents + irel[1].r_offset);
12566 bfd_put_16 (abfd, nextopc & 0xffff,
12567 contents + irel[1].r_offset + 2);
12568 }
12569
12570 /* Can't do anything, give up, sigh... */
12571 else
12572 continue;
12573
12574 /* Fix the relocation's type. */
12575 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12576
12577 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12578 delcnt = 4;
12579 deloff = 0;
12580 }
12581
12582 /* Compact branch relaxation -- due to the multitude of macros
12583 employed by the compiler/assembler, compact branches are not
12584 always generated. Obviously, this can/will be fixed elsewhere,
12585 but there is no drawback in double checking it here. */
12586 else if (r_type == R_MICROMIPS_PC16_S1
12587 && irel->r_offset + 5 < sec->size
12588 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12589 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
12590 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
12591 {
12592 unsigned long reg;
12593
12594 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12595
12596 /* Replace BEQZ/BNEZ with the compact version. */
12597 opcode = (bzc_insns_32[fndopc].match
12598 | BZC32_REG_FIELD (reg)
12599 | (opcode & 0xffff)); /* Addend value. */
12600
12601 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
12602 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
12603
12604 /* Delete the 16-bit delay slot NOP: two bytes from
12605 irel->offset + 4. */
12606 delcnt = 2;
12607 deloff = 4;
12608 }
12609
12610 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12611 to check the distance from the next instruction, so subtract 2. */
12612 else if (r_type == R_MICROMIPS_PC16_S1
12613 && IS_BITSIZE (pcrval - 2, 11)
12614 && find_match (opcode, b_insns_32) >= 0)
12615 {
12616 /* Fix the relocation's type. */
12617 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12618
12619 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12620 bfd_put_16 (abfd,
12621 (b_insn_16.match
12622 | (opcode & 0x3ff)), /* Addend value. */
12623 ptr);
12624
12625 /* Delete 2 bytes from irel->r_offset + 2. */
12626 delcnt = 2;
12627 deloff = 2;
12628 }
12629
12630 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12631 to check the distance from the next instruction, so subtract 2. */
12632 else if (r_type == R_MICROMIPS_PC16_S1
12633 && IS_BITSIZE (pcrval - 2, 8)
12634 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12635 && OP16_VALID_REG (OP32_SREG (opcode)))
12636 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12637 && OP16_VALID_REG (OP32_TREG (opcode)))))
12638 {
12639 unsigned long reg;
12640
12641 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12642
12643 /* Fix the relocation's type. */
12644 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12645
12646 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12647 bfd_put_16 (abfd,
12648 (bz_insns_16[fndopc].match
12649 | BZ16_REG_FIELD (reg)
12650 | (opcode & 0x7f)), /* Addend value. */
12651 ptr);
12652
12653 /* Delete 2 bytes from irel->r_offset + 2. */
12654 delcnt = 2;
12655 deloff = 2;
12656 }
12657
12658 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12659 else if (r_type == R_MICROMIPS_26_S1
12660 && target_is_micromips_code_p
12661 && irel->r_offset + 7 < sec->size
12662 && MATCH (opcode, jal_insn_32_bd32))
12663 {
12664 unsigned long n32opc;
12665 bfd_boolean relaxed = FALSE;
12666
12667 n32opc = bfd_get_16 (abfd, ptr + 4) << 16;
12668 n32opc |= bfd_get_16 (abfd, ptr + 6);
12669
12670 if (MATCH (n32opc, nop_insn_32))
12671 {
12672 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
12673 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
12674
12675 relaxed = TRUE;
12676 }
12677 else if (find_match (n32opc, move_insns_32) >= 0)
12678 {
12679 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12680 bfd_put_16 (abfd,
12681 (move_insn_16.match
12682 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12683 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
12684 ptr + 4);
12685
12686 relaxed = TRUE;
12687 }
12688 /* Other 32-bit instructions relaxable to 16-bit
12689 instructions will be handled here later. */
12690
12691 if (relaxed)
12692 {
12693 /* JAL with 32-bit delay slot that is changed to a JALS
12694 with 16-bit delay slot. */
12695 bfd_put_16 (abfd, (jal_insn_32_bd16.match >> 16) & 0xffff,
12696 ptr);
12697 bfd_put_16 (abfd, jal_insn_32_bd16.match & 0xffff,
12698 ptr + 2);
12699
12700 /* Delete 2 bytes from irel->r_offset + 6. */
12701 delcnt = 2;
12702 deloff = 6;
12703 }
12704 }
12705
12706 if (delcnt != 0)
12707 {
12708 /* Note that we've changed the relocs, section contents, etc. */
12709 elf_section_data (sec)->relocs = internal_relocs;
12710 elf_section_data (sec)->this_hdr.contents = contents;
12711 symtab_hdr->contents = (unsigned char *) isymbuf;
12712
12713 /* Delete bytes depending on the delcnt and deloff. */
12714 if (!mips_elf_relax_delete_bytes (abfd, sec,
12715 irel->r_offset + deloff, delcnt))
12716 goto error_return;
12717
12718 /* That will change things, so we should relax again.
12719 Note that this is not required, and it may be slow. */
12720 *again = TRUE;
12721 }
12722 }
12723
12724 if (isymbuf != NULL
12725 && symtab_hdr->contents != (unsigned char *) isymbuf)
12726 {
12727 if (! link_info->keep_memory)
12728 free (isymbuf);
12729 else
12730 {
12731 /* Cache the symbols for elf_link_input_bfd. */
12732 symtab_hdr->contents = (unsigned char *) isymbuf;
12733 }
12734 }
12735
12736 if (contents != NULL
12737 && elf_section_data (sec)->this_hdr.contents != contents)
12738 {
12739 if (! link_info->keep_memory)
12740 free (contents);
12741 else
12742 {
12743 /* Cache the section contents for elf_link_input_bfd. */
12744 elf_section_data (sec)->this_hdr.contents = contents;
12745 }
12746 }
12747
12748 if (internal_relocs != NULL
12749 && elf_section_data (sec)->relocs != internal_relocs)
12750 free (internal_relocs);
12751
12752 return TRUE;
12753
12754 error_return:
12755 if (isymbuf != NULL
12756 && symtab_hdr->contents != (unsigned char *) isymbuf)
12757 free (isymbuf);
12758 if (contents != NULL
12759 && elf_section_data (sec)->this_hdr.contents != contents)
12760 free (contents);
12761 if (internal_relocs != NULL
12762 && elf_section_data (sec)->relocs != internal_relocs)
12763 free (internal_relocs);
12764
12765 return FALSE;
12766 }
12767 \f
12768 /* Create a MIPS ELF linker hash table. */
12769
12770 struct bfd_link_hash_table *
12771 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
12772 {
12773 struct mips_elf_link_hash_table *ret;
12774 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12775
12776 ret = bfd_malloc (amt);
12777 if (ret == NULL)
12778 return NULL;
12779
12780 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12781 mips_elf_link_hash_newfunc,
12782 sizeof (struct mips_elf_link_hash_entry),
12783 MIPS_ELF_DATA))
12784 {
12785 free (ret);
12786 return NULL;
12787 }
12788
12789 #if 0
12790 /* We no longer use this. */
12791 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
12792 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
12793 #endif
12794 ret->procedure_count = 0;
12795 ret->compact_rel_size = 0;
12796 ret->use_rld_obj_head = FALSE;
12797 ret->rld_symbol = NULL;
12798 ret->mips16_stubs_seen = FALSE;
12799 ret->use_plts_and_copy_relocs = FALSE;
12800 ret->is_vxworks = FALSE;
12801 ret->small_data_overflow_reported = FALSE;
12802 ret->srelbss = NULL;
12803 ret->sdynbss = NULL;
12804 ret->srelplt = NULL;
12805 ret->srelplt2 = NULL;
12806 ret->sgotplt = NULL;
12807 ret->splt = NULL;
12808 ret->sstubs = NULL;
12809 ret->sgot = NULL;
12810 ret->got_info = NULL;
12811 ret->plt_header_size = 0;
12812 ret->plt_entry_size = 0;
12813 ret->lazy_stub_count = 0;
12814 ret->function_stub_size = 0;
12815 ret->strampoline = NULL;
12816 ret->la25_stubs = NULL;
12817 ret->add_stub_section = NULL;
12818
12819 return &ret->root.root;
12820 }
12821
12822 /* Likewise, but indicate that the target is VxWorks. */
12823
12824 struct bfd_link_hash_table *
12825 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12826 {
12827 struct bfd_link_hash_table *ret;
12828
12829 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12830 if (ret)
12831 {
12832 struct mips_elf_link_hash_table *htab;
12833
12834 htab = (struct mips_elf_link_hash_table *) ret;
12835 htab->use_plts_and_copy_relocs = TRUE;
12836 htab->is_vxworks = TRUE;
12837 }
12838 return ret;
12839 }
12840
12841 /* A function that the linker calls if we are allowed to use PLTs
12842 and copy relocs. */
12843
12844 void
12845 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12846 {
12847 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12848 }
12849 \f
12850 /* We need to use a special link routine to handle the .reginfo and
12851 the .mdebug sections. We need to merge all instances of these
12852 sections together, not write them all out sequentially. */
12853
12854 bfd_boolean
12855 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12856 {
12857 asection *o;
12858 struct bfd_link_order *p;
12859 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
12860 asection *rtproc_sec;
12861 Elf32_RegInfo reginfo;
12862 struct ecoff_debug_info debug;
12863 struct mips_htab_traverse_info hti;
12864 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12865 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
12866 HDRR *symhdr = &debug.symbolic_header;
12867 void *mdebug_handle = NULL;
12868 asection *s;
12869 EXTR esym;
12870 unsigned int i;
12871 bfd_size_type amt;
12872 struct mips_elf_link_hash_table *htab;
12873
12874 static const char * const secname[] =
12875 {
12876 ".text", ".init", ".fini", ".data",
12877 ".rodata", ".sdata", ".sbss", ".bss"
12878 };
12879 static const int sc[] =
12880 {
12881 scText, scInit, scFini, scData,
12882 scRData, scSData, scSBss, scBss
12883 };
12884
12885 /* Sort the dynamic symbols so that those with GOT entries come after
12886 those without. */
12887 htab = mips_elf_hash_table (info);
12888 BFD_ASSERT (htab != NULL);
12889
12890 if (!mips_elf_sort_hash_table (abfd, info))
12891 return FALSE;
12892
12893 /* Create any scheduled LA25 stubs. */
12894 hti.info = info;
12895 hti.output_bfd = abfd;
12896 hti.error = FALSE;
12897 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
12898 if (hti.error)
12899 return FALSE;
12900
12901 /* Get a value for the GP register. */
12902 if (elf_gp (abfd) == 0)
12903 {
12904 struct bfd_link_hash_entry *h;
12905
12906 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
12907 if (h != NULL && h->type == bfd_link_hash_defined)
12908 elf_gp (abfd) = (h->u.def.value
12909 + h->u.def.section->output_section->vma
12910 + h->u.def.section->output_offset);
12911 else if (htab->is_vxworks
12912 && (h = bfd_link_hash_lookup (info->hash,
12913 "_GLOBAL_OFFSET_TABLE_",
12914 FALSE, FALSE, TRUE))
12915 && h->type == bfd_link_hash_defined)
12916 elf_gp (abfd) = (h->u.def.section->output_section->vma
12917 + h->u.def.section->output_offset
12918 + h->u.def.value);
12919 else if (info->relocatable)
12920 {
12921 bfd_vma lo = MINUS_ONE;
12922
12923 /* Find the GP-relative section with the lowest offset. */
12924 for (o = abfd->sections; o != NULL; o = o->next)
12925 if (o->vma < lo
12926 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
12927 lo = o->vma;
12928
12929 /* And calculate GP relative to that. */
12930 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
12931 }
12932 else
12933 {
12934 /* If the relocate_section function needs to do a reloc
12935 involving the GP value, it should make a reloc_dangerous
12936 callback to warn that GP is not defined. */
12937 }
12938 }
12939
12940 /* Go through the sections and collect the .reginfo and .mdebug
12941 information. */
12942 reginfo_sec = NULL;
12943 mdebug_sec = NULL;
12944 gptab_data_sec = NULL;
12945 gptab_bss_sec = NULL;
12946 for (o = abfd->sections; o != NULL; o = o->next)
12947 {
12948 if (strcmp (o->name, ".reginfo") == 0)
12949 {
12950 memset (&reginfo, 0, sizeof reginfo);
12951
12952 /* We have found the .reginfo section in the output file.
12953 Look through all the link_orders comprising it and merge
12954 the information together. */
12955 for (p = o->map_head.link_order; p != NULL; p = p->next)
12956 {
12957 asection *input_section;
12958 bfd *input_bfd;
12959 Elf32_External_RegInfo ext;
12960 Elf32_RegInfo sub;
12961
12962 if (p->type != bfd_indirect_link_order)
12963 {
12964 if (p->type == bfd_data_link_order)
12965 continue;
12966 abort ();
12967 }
12968
12969 input_section = p->u.indirect.section;
12970 input_bfd = input_section->owner;
12971
12972 if (! bfd_get_section_contents (input_bfd, input_section,
12973 &ext, 0, sizeof ext))
12974 return FALSE;
12975
12976 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
12977
12978 reginfo.ri_gprmask |= sub.ri_gprmask;
12979 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
12980 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
12981 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
12982 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
12983
12984 /* ri_gp_value is set by the function
12985 mips_elf32_section_processing when the section is
12986 finally written out. */
12987
12988 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12989 elf_link_input_bfd ignores this section. */
12990 input_section->flags &= ~SEC_HAS_CONTENTS;
12991 }
12992
12993 /* Size has been set in _bfd_mips_elf_always_size_sections. */
12994 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
12995
12996 /* Skip this section later on (I don't think this currently
12997 matters, but someday it might). */
12998 o->map_head.link_order = NULL;
12999
13000 reginfo_sec = o;
13001 }
13002
13003 if (strcmp (o->name, ".mdebug") == 0)
13004 {
13005 struct extsym_info einfo;
13006 bfd_vma last;
13007
13008 /* We have found the .mdebug section in the output file.
13009 Look through all the link_orders comprising it and merge
13010 the information together. */
13011 symhdr->magic = swap->sym_magic;
13012 /* FIXME: What should the version stamp be? */
13013 symhdr->vstamp = 0;
13014 symhdr->ilineMax = 0;
13015 symhdr->cbLine = 0;
13016 symhdr->idnMax = 0;
13017 symhdr->ipdMax = 0;
13018 symhdr->isymMax = 0;
13019 symhdr->ioptMax = 0;
13020 symhdr->iauxMax = 0;
13021 symhdr->issMax = 0;
13022 symhdr->issExtMax = 0;
13023 symhdr->ifdMax = 0;
13024 symhdr->crfd = 0;
13025 symhdr->iextMax = 0;
13026
13027 /* We accumulate the debugging information itself in the
13028 debug_info structure. */
13029 debug.line = NULL;
13030 debug.external_dnr = NULL;
13031 debug.external_pdr = NULL;
13032 debug.external_sym = NULL;
13033 debug.external_opt = NULL;
13034 debug.external_aux = NULL;
13035 debug.ss = NULL;
13036 debug.ssext = debug.ssext_end = NULL;
13037 debug.external_fdr = NULL;
13038 debug.external_rfd = NULL;
13039 debug.external_ext = debug.external_ext_end = NULL;
13040
13041 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
13042 if (mdebug_handle == NULL)
13043 return FALSE;
13044
13045 esym.jmptbl = 0;
13046 esym.cobol_main = 0;
13047 esym.weakext = 0;
13048 esym.reserved = 0;
13049 esym.ifd = ifdNil;
13050 esym.asym.iss = issNil;
13051 esym.asym.st = stLocal;
13052 esym.asym.reserved = 0;
13053 esym.asym.index = indexNil;
13054 last = 0;
13055 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13056 {
13057 esym.asym.sc = sc[i];
13058 s = bfd_get_section_by_name (abfd, secname[i]);
13059 if (s != NULL)
13060 {
13061 esym.asym.value = s->vma;
13062 last = s->vma + s->size;
13063 }
13064 else
13065 esym.asym.value = last;
13066 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13067 secname[i], &esym))
13068 return FALSE;
13069 }
13070
13071 for (p = o->map_head.link_order; p != NULL; p = p->next)
13072 {
13073 asection *input_section;
13074 bfd *input_bfd;
13075 const struct ecoff_debug_swap *input_swap;
13076 struct ecoff_debug_info input_debug;
13077 char *eraw_src;
13078 char *eraw_end;
13079
13080 if (p->type != bfd_indirect_link_order)
13081 {
13082 if (p->type == bfd_data_link_order)
13083 continue;
13084 abort ();
13085 }
13086
13087 input_section = p->u.indirect.section;
13088 input_bfd = input_section->owner;
13089
13090 if (!is_mips_elf (input_bfd))
13091 {
13092 /* I don't know what a non MIPS ELF bfd would be
13093 doing with a .mdebug section, but I don't really
13094 want to deal with it. */
13095 continue;
13096 }
13097
13098 input_swap = (get_elf_backend_data (input_bfd)
13099 ->elf_backend_ecoff_debug_swap);
13100
13101 BFD_ASSERT (p->size == input_section->size);
13102
13103 /* The ECOFF linking code expects that we have already
13104 read in the debugging information and set up an
13105 ecoff_debug_info structure, so we do that now. */
13106 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13107 &input_debug))
13108 return FALSE;
13109
13110 if (! (bfd_ecoff_debug_accumulate
13111 (mdebug_handle, abfd, &debug, swap, input_bfd,
13112 &input_debug, input_swap, info)))
13113 return FALSE;
13114
13115 /* Loop through the external symbols. For each one with
13116 interesting information, try to find the symbol in
13117 the linker global hash table and save the information
13118 for the output external symbols. */
13119 eraw_src = input_debug.external_ext;
13120 eraw_end = (eraw_src
13121 + (input_debug.symbolic_header.iextMax
13122 * input_swap->external_ext_size));
13123 for (;
13124 eraw_src < eraw_end;
13125 eraw_src += input_swap->external_ext_size)
13126 {
13127 EXTR ext;
13128 const char *name;
13129 struct mips_elf_link_hash_entry *h;
13130
13131 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13132 if (ext.asym.sc == scNil
13133 || ext.asym.sc == scUndefined
13134 || ext.asym.sc == scSUndefined)
13135 continue;
13136
13137 name = input_debug.ssext + ext.asym.iss;
13138 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13139 name, FALSE, FALSE, TRUE);
13140 if (h == NULL || h->esym.ifd != -2)
13141 continue;
13142
13143 if (ext.ifd != -1)
13144 {
13145 BFD_ASSERT (ext.ifd
13146 < input_debug.symbolic_header.ifdMax);
13147 ext.ifd = input_debug.ifdmap[ext.ifd];
13148 }
13149
13150 h->esym = ext;
13151 }
13152
13153 /* Free up the information we just read. */
13154 free (input_debug.line);
13155 free (input_debug.external_dnr);
13156 free (input_debug.external_pdr);
13157 free (input_debug.external_sym);
13158 free (input_debug.external_opt);
13159 free (input_debug.external_aux);
13160 free (input_debug.ss);
13161 free (input_debug.ssext);
13162 free (input_debug.external_fdr);
13163 free (input_debug.external_rfd);
13164 free (input_debug.external_ext);
13165
13166 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13167 elf_link_input_bfd ignores this section. */
13168 input_section->flags &= ~SEC_HAS_CONTENTS;
13169 }
13170
13171 if (SGI_COMPAT (abfd) && info->shared)
13172 {
13173 /* Create .rtproc section. */
13174 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13175 if (rtproc_sec == NULL)
13176 {
13177 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13178 | SEC_LINKER_CREATED | SEC_READONLY);
13179
13180 rtproc_sec = bfd_make_section_with_flags (abfd,
13181 ".rtproc",
13182 flags);
13183 if (rtproc_sec == NULL
13184 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13185 return FALSE;
13186 }
13187
13188 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13189 info, rtproc_sec,
13190 &debug))
13191 return FALSE;
13192 }
13193
13194 /* Build the external symbol information. */
13195 einfo.abfd = abfd;
13196 einfo.info = info;
13197 einfo.debug = &debug;
13198 einfo.swap = swap;
13199 einfo.failed = FALSE;
13200 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13201 mips_elf_output_extsym, &einfo);
13202 if (einfo.failed)
13203 return FALSE;
13204
13205 /* Set the size of the .mdebug section. */
13206 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13207
13208 /* Skip this section later on (I don't think this currently
13209 matters, but someday it might). */
13210 o->map_head.link_order = NULL;
13211
13212 mdebug_sec = o;
13213 }
13214
13215 if (CONST_STRNEQ (o->name, ".gptab."))
13216 {
13217 const char *subname;
13218 unsigned int c;
13219 Elf32_gptab *tab;
13220 Elf32_External_gptab *ext_tab;
13221 unsigned int j;
13222
13223 /* The .gptab.sdata and .gptab.sbss sections hold
13224 information describing how the small data area would
13225 change depending upon the -G switch. These sections
13226 not used in executables files. */
13227 if (! info->relocatable)
13228 {
13229 for (p = o->map_head.link_order; p != NULL; p = p->next)
13230 {
13231 asection *input_section;
13232
13233 if (p->type != bfd_indirect_link_order)
13234 {
13235 if (p->type == bfd_data_link_order)
13236 continue;
13237 abort ();
13238 }
13239
13240 input_section = p->u.indirect.section;
13241
13242 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13243 elf_link_input_bfd ignores this section. */
13244 input_section->flags &= ~SEC_HAS_CONTENTS;
13245 }
13246
13247 /* Skip this section later on (I don't think this
13248 currently matters, but someday it might). */
13249 o->map_head.link_order = NULL;
13250
13251 /* Really remove the section. */
13252 bfd_section_list_remove (abfd, o);
13253 --abfd->section_count;
13254
13255 continue;
13256 }
13257
13258 /* There is one gptab for initialized data, and one for
13259 uninitialized data. */
13260 if (strcmp (o->name, ".gptab.sdata") == 0)
13261 gptab_data_sec = o;
13262 else if (strcmp (o->name, ".gptab.sbss") == 0)
13263 gptab_bss_sec = o;
13264 else
13265 {
13266 (*_bfd_error_handler)
13267 (_("%s: illegal section name `%s'"),
13268 bfd_get_filename (abfd), o->name);
13269 bfd_set_error (bfd_error_nonrepresentable_section);
13270 return FALSE;
13271 }
13272
13273 /* The linker script always combines .gptab.data and
13274 .gptab.sdata into .gptab.sdata, and likewise for
13275 .gptab.bss and .gptab.sbss. It is possible that there is
13276 no .sdata or .sbss section in the output file, in which
13277 case we must change the name of the output section. */
13278 subname = o->name + sizeof ".gptab" - 1;
13279 if (bfd_get_section_by_name (abfd, subname) == NULL)
13280 {
13281 if (o == gptab_data_sec)
13282 o->name = ".gptab.data";
13283 else
13284 o->name = ".gptab.bss";
13285 subname = o->name + sizeof ".gptab" - 1;
13286 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13287 }
13288
13289 /* Set up the first entry. */
13290 c = 1;
13291 amt = c * sizeof (Elf32_gptab);
13292 tab = bfd_malloc (amt);
13293 if (tab == NULL)
13294 return FALSE;
13295 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13296 tab[0].gt_header.gt_unused = 0;
13297
13298 /* Combine the input sections. */
13299 for (p = o->map_head.link_order; p != NULL; p = p->next)
13300 {
13301 asection *input_section;
13302 bfd *input_bfd;
13303 bfd_size_type size;
13304 unsigned long last;
13305 bfd_size_type gpentry;
13306
13307 if (p->type != bfd_indirect_link_order)
13308 {
13309 if (p->type == bfd_data_link_order)
13310 continue;
13311 abort ();
13312 }
13313
13314 input_section = p->u.indirect.section;
13315 input_bfd = input_section->owner;
13316
13317 /* Combine the gptab entries for this input section one
13318 by one. We know that the input gptab entries are
13319 sorted by ascending -G value. */
13320 size = input_section->size;
13321 last = 0;
13322 for (gpentry = sizeof (Elf32_External_gptab);
13323 gpentry < size;
13324 gpentry += sizeof (Elf32_External_gptab))
13325 {
13326 Elf32_External_gptab ext_gptab;
13327 Elf32_gptab int_gptab;
13328 unsigned long val;
13329 unsigned long add;
13330 bfd_boolean exact;
13331 unsigned int look;
13332
13333 if (! (bfd_get_section_contents
13334 (input_bfd, input_section, &ext_gptab, gpentry,
13335 sizeof (Elf32_External_gptab))))
13336 {
13337 free (tab);
13338 return FALSE;
13339 }
13340
13341 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13342 &int_gptab);
13343 val = int_gptab.gt_entry.gt_g_value;
13344 add = int_gptab.gt_entry.gt_bytes - last;
13345
13346 exact = FALSE;
13347 for (look = 1; look < c; look++)
13348 {
13349 if (tab[look].gt_entry.gt_g_value >= val)
13350 tab[look].gt_entry.gt_bytes += add;
13351
13352 if (tab[look].gt_entry.gt_g_value == val)
13353 exact = TRUE;
13354 }
13355
13356 if (! exact)
13357 {
13358 Elf32_gptab *new_tab;
13359 unsigned int max;
13360
13361 /* We need a new table entry. */
13362 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
13363 new_tab = bfd_realloc (tab, amt);
13364 if (new_tab == NULL)
13365 {
13366 free (tab);
13367 return FALSE;
13368 }
13369 tab = new_tab;
13370 tab[c].gt_entry.gt_g_value = val;
13371 tab[c].gt_entry.gt_bytes = add;
13372
13373 /* Merge in the size for the next smallest -G
13374 value, since that will be implied by this new
13375 value. */
13376 max = 0;
13377 for (look = 1; look < c; look++)
13378 {
13379 if (tab[look].gt_entry.gt_g_value < val
13380 && (max == 0
13381 || (tab[look].gt_entry.gt_g_value
13382 > tab[max].gt_entry.gt_g_value)))
13383 max = look;
13384 }
13385 if (max != 0)
13386 tab[c].gt_entry.gt_bytes +=
13387 tab[max].gt_entry.gt_bytes;
13388
13389 ++c;
13390 }
13391
13392 last = int_gptab.gt_entry.gt_bytes;
13393 }
13394
13395 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13396 elf_link_input_bfd ignores this section. */
13397 input_section->flags &= ~SEC_HAS_CONTENTS;
13398 }
13399
13400 /* The table must be sorted by -G value. */
13401 if (c > 2)
13402 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13403
13404 /* Swap out the table. */
13405 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
13406 ext_tab = bfd_alloc (abfd, amt);
13407 if (ext_tab == NULL)
13408 {
13409 free (tab);
13410 return FALSE;
13411 }
13412
13413 for (j = 0; j < c; j++)
13414 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13415 free (tab);
13416
13417 o->size = c * sizeof (Elf32_External_gptab);
13418 o->contents = (bfd_byte *) ext_tab;
13419
13420 /* Skip this section later on (I don't think this currently
13421 matters, but someday it might). */
13422 o->map_head.link_order = NULL;
13423 }
13424 }
13425
13426 /* Invoke the regular ELF backend linker to do all the work. */
13427 if (!bfd_elf_final_link (abfd, info))
13428 return FALSE;
13429
13430 /* Now write out the computed sections. */
13431
13432 if (reginfo_sec != NULL)
13433 {
13434 Elf32_External_RegInfo ext;
13435
13436 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
13437 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
13438 return FALSE;
13439 }
13440
13441 if (mdebug_sec != NULL)
13442 {
13443 BFD_ASSERT (abfd->output_has_begun);
13444 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13445 swap, info,
13446 mdebug_sec->filepos))
13447 return FALSE;
13448
13449 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13450 }
13451
13452 if (gptab_data_sec != NULL)
13453 {
13454 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13455 gptab_data_sec->contents,
13456 0, gptab_data_sec->size))
13457 return FALSE;
13458 }
13459
13460 if (gptab_bss_sec != NULL)
13461 {
13462 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13463 gptab_bss_sec->contents,
13464 0, gptab_bss_sec->size))
13465 return FALSE;
13466 }
13467
13468 if (SGI_COMPAT (abfd))
13469 {
13470 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13471 if (rtproc_sec != NULL)
13472 {
13473 if (! bfd_set_section_contents (abfd, rtproc_sec,
13474 rtproc_sec->contents,
13475 0, rtproc_sec->size))
13476 return FALSE;
13477 }
13478 }
13479
13480 return TRUE;
13481 }
13482 \f
13483 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13484
13485 struct mips_mach_extension {
13486 unsigned long extension, base;
13487 };
13488
13489
13490 /* An array describing how BFD machines relate to one another. The entries
13491 are ordered topologically with MIPS I extensions listed last. */
13492
13493 static const struct mips_mach_extension mips_mach_extensions[] = {
13494 /* MIPS64r2 extensions. */
13495 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13496 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13497 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13498
13499 /* MIPS64 extensions. */
13500 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13501 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13502 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13503 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
13504
13505 /* MIPS V extensions. */
13506 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13507
13508 /* R10000 extensions. */
13509 { bfd_mach_mips12000, bfd_mach_mips10000 },
13510 { bfd_mach_mips14000, bfd_mach_mips10000 },
13511 { bfd_mach_mips16000, bfd_mach_mips10000 },
13512
13513 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13514 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13515 better to allow vr5400 and vr5500 code to be merged anyway, since
13516 many libraries will just use the core ISA. Perhaps we could add
13517 some sort of ASE flag if this ever proves a problem. */
13518 { bfd_mach_mips5500, bfd_mach_mips5400 },
13519 { bfd_mach_mips5400, bfd_mach_mips5000 },
13520
13521 /* MIPS IV extensions. */
13522 { bfd_mach_mips5, bfd_mach_mips8000 },
13523 { bfd_mach_mips10000, bfd_mach_mips8000 },
13524 { bfd_mach_mips5000, bfd_mach_mips8000 },
13525 { bfd_mach_mips7000, bfd_mach_mips8000 },
13526 { bfd_mach_mips9000, bfd_mach_mips8000 },
13527
13528 /* VR4100 extensions. */
13529 { bfd_mach_mips4120, bfd_mach_mips4100 },
13530 { bfd_mach_mips4111, bfd_mach_mips4100 },
13531
13532 /* MIPS III extensions. */
13533 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13534 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13535 { bfd_mach_mips8000, bfd_mach_mips4000 },
13536 { bfd_mach_mips4650, bfd_mach_mips4000 },
13537 { bfd_mach_mips4600, bfd_mach_mips4000 },
13538 { bfd_mach_mips4400, bfd_mach_mips4000 },
13539 { bfd_mach_mips4300, bfd_mach_mips4000 },
13540 { bfd_mach_mips4100, bfd_mach_mips4000 },
13541 { bfd_mach_mips4010, bfd_mach_mips4000 },
13542
13543 /* MIPS32 extensions. */
13544 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13545
13546 /* MIPS II extensions. */
13547 { bfd_mach_mips4000, bfd_mach_mips6000 },
13548 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13549
13550 /* MIPS I extensions. */
13551 { bfd_mach_mips6000, bfd_mach_mips3000 },
13552 { bfd_mach_mips3900, bfd_mach_mips3000 }
13553 };
13554
13555
13556 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13557
13558 static bfd_boolean
13559 mips_mach_extends_p (unsigned long base, unsigned long extension)
13560 {
13561 size_t i;
13562
13563 if (extension == base)
13564 return TRUE;
13565
13566 if (base == bfd_mach_mipsisa32
13567 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13568 return TRUE;
13569
13570 if (base == bfd_mach_mipsisa32r2
13571 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13572 return TRUE;
13573
13574 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
13575 if (extension == mips_mach_extensions[i].extension)
13576 {
13577 extension = mips_mach_extensions[i].base;
13578 if (extension == base)
13579 return TRUE;
13580 }
13581
13582 return FALSE;
13583 }
13584
13585
13586 /* Return true if the given ELF header flags describe a 32-bit binary. */
13587
13588 static bfd_boolean
13589 mips_32bit_flags_p (flagword flags)
13590 {
13591 return ((flags & EF_MIPS_32BITMODE) != 0
13592 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13593 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13594 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13595 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13596 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13597 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13598 }
13599
13600
13601 /* Merge object attributes from IBFD into OBFD. Raise an error if
13602 there are conflicting attributes. */
13603 static bfd_boolean
13604 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13605 {
13606 obj_attribute *in_attr;
13607 obj_attribute *out_attr;
13608
13609 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13610 {
13611 /* This is the first object. Copy the attributes. */
13612 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13613
13614 /* Use the Tag_null value to indicate the attributes have been
13615 initialized. */
13616 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13617
13618 return TRUE;
13619 }
13620
13621 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13622 non-conflicting ones. */
13623 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13624 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13625 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13626 {
13627 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13628 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13629 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13630 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13631 ;
13632 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13633 _bfd_error_handler
13634 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
13635 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13636 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13637 _bfd_error_handler
13638 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
13639 out_attr[Tag_GNU_MIPS_ABI_FP].i);
13640 else
13641 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13642 {
13643 case 1:
13644 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13645 {
13646 case 2:
13647 _bfd_error_handler
13648 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13649 obfd, ibfd);
13650 break;
13651
13652 case 3:
13653 _bfd_error_handler
13654 (_("Warning: %B uses hard float, %B uses soft float"),
13655 obfd, ibfd);
13656 break;
13657
13658 case 4:
13659 _bfd_error_handler
13660 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13661 obfd, ibfd);
13662 break;
13663
13664 default:
13665 abort ();
13666 }
13667 break;
13668
13669 case 2:
13670 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13671 {
13672 case 1:
13673 _bfd_error_handler
13674 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13675 ibfd, obfd);
13676 break;
13677
13678 case 3:
13679 _bfd_error_handler
13680 (_("Warning: %B uses hard float, %B uses soft float"),
13681 obfd, ibfd);
13682 break;
13683
13684 case 4:
13685 _bfd_error_handler
13686 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13687 obfd, ibfd);
13688 break;
13689
13690 default:
13691 abort ();
13692 }
13693 break;
13694
13695 case 3:
13696 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13697 {
13698 case 1:
13699 case 2:
13700 case 4:
13701 _bfd_error_handler
13702 (_("Warning: %B uses hard float, %B uses soft float"),
13703 ibfd, obfd);
13704 break;
13705
13706 default:
13707 abort ();
13708 }
13709 break;
13710
13711 case 4:
13712 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13713 {
13714 case 1:
13715 _bfd_error_handler
13716 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13717 ibfd, obfd);
13718 break;
13719
13720 case 2:
13721 _bfd_error_handler
13722 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13723 ibfd, obfd);
13724 break;
13725
13726 case 3:
13727 _bfd_error_handler
13728 (_("Warning: %B uses hard float, %B uses soft float"),
13729 obfd, ibfd);
13730 break;
13731
13732 default:
13733 abort ();
13734 }
13735 break;
13736
13737 default:
13738 abort ();
13739 }
13740 }
13741
13742 /* Merge Tag_compatibility attributes and any common GNU ones. */
13743 _bfd_elf_merge_object_attributes (ibfd, obfd);
13744
13745 return TRUE;
13746 }
13747
13748 /* Merge backend specific data from an object file to the output
13749 object file when linking. */
13750
13751 bfd_boolean
13752 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
13753 {
13754 flagword old_flags;
13755 flagword new_flags;
13756 bfd_boolean ok;
13757 bfd_boolean null_input_bfd = TRUE;
13758 asection *sec;
13759
13760 /* Check if we have the same endianness. */
13761 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13762 {
13763 (*_bfd_error_handler)
13764 (_("%B: endianness incompatible with that of the selected emulation"),
13765 ibfd);
13766 return FALSE;
13767 }
13768
13769 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
13770 return TRUE;
13771
13772 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13773 {
13774 (*_bfd_error_handler)
13775 (_("%B: ABI is incompatible with that of the selected emulation"),
13776 ibfd);
13777 return FALSE;
13778 }
13779
13780 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13781 return FALSE;
13782
13783 new_flags = elf_elfheader (ibfd)->e_flags;
13784 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13785 old_flags = elf_elfheader (obfd)->e_flags;
13786
13787 if (! elf_flags_init (obfd))
13788 {
13789 elf_flags_init (obfd) = TRUE;
13790 elf_elfheader (obfd)->e_flags = new_flags;
13791 elf_elfheader (obfd)->e_ident[EI_CLASS]
13792 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13793
13794 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
13795 && (bfd_get_arch_info (obfd)->the_default
13796 || mips_mach_extends_p (bfd_get_mach (obfd),
13797 bfd_get_mach (ibfd))))
13798 {
13799 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13800 bfd_get_mach (ibfd)))
13801 return FALSE;
13802 }
13803
13804 return TRUE;
13805 }
13806
13807 /* Check flag compatibility. */
13808
13809 new_flags &= ~EF_MIPS_NOREORDER;
13810 old_flags &= ~EF_MIPS_NOREORDER;
13811
13812 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13813 doesn't seem to matter. */
13814 new_flags &= ~EF_MIPS_XGOT;
13815 old_flags &= ~EF_MIPS_XGOT;
13816
13817 /* MIPSpro generates ucode info in n64 objects. Again, we should
13818 just be able to ignore this. */
13819 new_flags &= ~EF_MIPS_UCODE;
13820 old_flags &= ~EF_MIPS_UCODE;
13821
13822 /* DSOs should only be linked with CPIC code. */
13823 if ((ibfd->flags & DYNAMIC) != 0)
13824 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
13825
13826 if (new_flags == old_flags)
13827 return TRUE;
13828
13829 /* Check to see if the input BFD actually contains any sections.
13830 If not, its flags may not have been initialised either, but it cannot
13831 actually cause any incompatibility. */
13832 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13833 {
13834 /* Ignore synthetic sections and empty .text, .data and .bss sections
13835 which are automatically generated by gas. Also ignore fake
13836 (s)common sections, since merely defining a common symbol does
13837 not affect compatibility. */
13838 if ((sec->flags & SEC_IS_COMMON) == 0
13839 && strcmp (sec->name, ".reginfo")
13840 && strcmp (sec->name, ".mdebug")
13841 && (sec->size != 0
13842 || (strcmp (sec->name, ".text")
13843 && strcmp (sec->name, ".data")
13844 && strcmp (sec->name, ".bss"))))
13845 {
13846 null_input_bfd = FALSE;
13847 break;
13848 }
13849 }
13850 if (null_input_bfd)
13851 return TRUE;
13852
13853 ok = TRUE;
13854
13855 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
13856 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
13857 {
13858 (*_bfd_error_handler)
13859 (_("%B: warning: linking abicalls files with non-abicalls files"),
13860 ibfd);
13861 ok = TRUE;
13862 }
13863
13864 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
13865 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
13866 if (! (new_flags & EF_MIPS_PIC))
13867 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
13868
13869 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13870 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13871
13872 /* Compare the ISAs. */
13873 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
13874 {
13875 (*_bfd_error_handler)
13876 (_("%B: linking 32-bit code with 64-bit code"),
13877 ibfd);
13878 ok = FALSE;
13879 }
13880 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
13881 {
13882 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
13883 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
13884 {
13885 /* Copy the architecture info from IBFD to OBFD. Also copy
13886 the 32-bit flag (if set) so that we continue to recognise
13887 OBFD as a 32-bit binary. */
13888 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
13889 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
13890 elf_elfheader (obfd)->e_flags
13891 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13892
13893 /* Copy across the ABI flags if OBFD doesn't use them
13894 and if that was what caused us to treat IBFD as 32-bit. */
13895 if ((old_flags & EF_MIPS_ABI) == 0
13896 && mips_32bit_flags_p (new_flags)
13897 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
13898 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
13899 }
13900 else
13901 {
13902 /* The ISAs aren't compatible. */
13903 (*_bfd_error_handler)
13904 (_("%B: linking %s module with previous %s modules"),
13905 ibfd,
13906 bfd_printable_name (ibfd),
13907 bfd_printable_name (obfd));
13908 ok = FALSE;
13909 }
13910 }
13911
13912 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13913 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13914
13915 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
13916 does set EI_CLASS differently from any 32-bit ABI. */
13917 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
13918 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
13919 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
13920 {
13921 /* Only error if both are set (to different values). */
13922 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
13923 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
13924 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
13925 {
13926 (*_bfd_error_handler)
13927 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
13928 ibfd,
13929 elf_mips_abi_name (ibfd),
13930 elf_mips_abi_name (obfd));
13931 ok = FALSE;
13932 }
13933 new_flags &= ~EF_MIPS_ABI;
13934 old_flags &= ~EF_MIPS_ABI;
13935 }
13936
13937 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
13938 and allow arbitrary mixing of the remaining ASEs (retain the union). */
13939 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
13940 {
13941 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
13942 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
13943 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
13944 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
13945 int micro_mis = old_m16 && new_micro;
13946 int m16_mis = old_micro && new_m16;
13947
13948 if (m16_mis || micro_mis)
13949 {
13950 (*_bfd_error_handler)
13951 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
13952 ibfd,
13953 m16_mis ? "MIPS16" : "microMIPS",
13954 m16_mis ? "microMIPS" : "MIPS16");
13955 ok = FALSE;
13956 }
13957
13958 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
13959
13960 new_flags &= ~ EF_MIPS_ARCH_ASE;
13961 old_flags &= ~ EF_MIPS_ARCH_ASE;
13962 }
13963
13964 /* Warn about any other mismatches */
13965 if (new_flags != old_flags)
13966 {
13967 (*_bfd_error_handler)
13968 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
13969 ibfd, (unsigned long) new_flags,
13970 (unsigned long) old_flags);
13971 ok = FALSE;
13972 }
13973
13974 if (! ok)
13975 {
13976 bfd_set_error (bfd_error_bad_value);
13977 return FALSE;
13978 }
13979
13980 return TRUE;
13981 }
13982
13983 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
13984
13985 bfd_boolean
13986 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
13987 {
13988 BFD_ASSERT (!elf_flags_init (abfd)
13989 || elf_elfheader (abfd)->e_flags == flags);
13990
13991 elf_elfheader (abfd)->e_flags = flags;
13992 elf_flags_init (abfd) = TRUE;
13993 return TRUE;
13994 }
13995
13996 char *
13997 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
13998 {
13999 switch (dtag)
14000 {
14001 default: return "";
14002 case DT_MIPS_RLD_VERSION:
14003 return "MIPS_RLD_VERSION";
14004 case DT_MIPS_TIME_STAMP:
14005 return "MIPS_TIME_STAMP";
14006 case DT_MIPS_ICHECKSUM:
14007 return "MIPS_ICHECKSUM";
14008 case DT_MIPS_IVERSION:
14009 return "MIPS_IVERSION";
14010 case DT_MIPS_FLAGS:
14011 return "MIPS_FLAGS";
14012 case DT_MIPS_BASE_ADDRESS:
14013 return "MIPS_BASE_ADDRESS";
14014 case DT_MIPS_MSYM:
14015 return "MIPS_MSYM";
14016 case DT_MIPS_CONFLICT:
14017 return "MIPS_CONFLICT";
14018 case DT_MIPS_LIBLIST:
14019 return "MIPS_LIBLIST";
14020 case DT_MIPS_LOCAL_GOTNO:
14021 return "MIPS_LOCAL_GOTNO";
14022 case DT_MIPS_CONFLICTNO:
14023 return "MIPS_CONFLICTNO";
14024 case DT_MIPS_LIBLISTNO:
14025 return "MIPS_LIBLISTNO";
14026 case DT_MIPS_SYMTABNO:
14027 return "MIPS_SYMTABNO";
14028 case DT_MIPS_UNREFEXTNO:
14029 return "MIPS_UNREFEXTNO";
14030 case DT_MIPS_GOTSYM:
14031 return "MIPS_GOTSYM";
14032 case DT_MIPS_HIPAGENO:
14033 return "MIPS_HIPAGENO";
14034 case DT_MIPS_RLD_MAP:
14035 return "MIPS_RLD_MAP";
14036 case DT_MIPS_DELTA_CLASS:
14037 return "MIPS_DELTA_CLASS";
14038 case DT_MIPS_DELTA_CLASS_NO:
14039 return "MIPS_DELTA_CLASS_NO";
14040 case DT_MIPS_DELTA_INSTANCE:
14041 return "MIPS_DELTA_INSTANCE";
14042 case DT_MIPS_DELTA_INSTANCE_NO:
14043 return "MIPS_DELTA_INSTANCE_NO";
14044 case DT_MIPS_DELTA_RELOC:
14045 return "MIPS_DELTA_RELOC";
14046 case DT_MIPS_DELTA_RELOC_NO:
14047 return "MIPS_DELTA_RELOC_NO";
14048 case DT_MIPS_DELTA_SYM:
14049 return "MIPS_DELTA_SYM";
14050 case DT_MIPS_DELTA_SYM_NO:
14051 return "MIPS_DELTA_SYM_NO";
14052 case DT_MIPS_DELTA_CLASSSYM:
14053 return "MIPS_DELTA_CLASSSYM";
14054 case DT_MIPS_DELTA_CLASSSYM_NO:
14055 return "MIPS_DELTA_CLASSSYM_NO";
14056 case DT_MIPS_CXX_FLAGS:
14057 return "MIPS_CXX_FLAGS";
14058 case DT_MIPS_PIXIE_INIT:
14059 return "MIPS_PIXIE_INIT";
14060 case DT_MIPS_SYMBOL_LIB:
14061 return "MIPS_SYMBOL_LIB";
14062 case DT_MIPS_LOCALPAGE_GOTIDX:
14063 return "MIPS_LOCALPAGE_GOTIDX";
14064 case DT_MIPS_LOCAL_GOTIDX:
14065 return "MIPS_LOCAL_GOTIDX";
14066 case DT_MIPS_HIDDEN_GOTIDX:
14067 return "MIPS_HIDDEN_GOTIDX";
14068 case DT_MIPS_PROTECTED_GOTIDX:
14069 return "MIPS_PROTECTED_GOT_IDX";
14070 case DT_MIPS_OPTIONS:
14071 return "MIPS_OPTIONS";
14072 case DT_MIPS_INTERFACE:
14073 return "MIPS_INTERFACE";
14074 case DT_MIPS_DYNSTR_ALIGN:
14075 return "DT_MIPS_DYNSTR_ALIGN";
14076 case DT_MIPS_INTERFACE_SIZE:
14077 return "DT_MIPS_INTERFACE_SIZE";
14078 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14079 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14080 case DT_MIPS_PERF_SUFFIX:
14081 return "DT_MIPS_PERF_SUFFIX";
14082 case DT_MIPS_COMPACT_SIZE:
14083 return "DT_MIPS_COMPACT_SIZE";
14084 case DT_MIPS_GP_VALUE:
14085 return "DT_MIPS_GP_VALUE";
14086 case DT_MIPS_AUX_DYNAMIC:
14087 return "DT_MIPS_AUX_DYNAMIC";
14088 case DT_MIPS_PLTGOT:
14089 return "DT_MIPS_PLTGOT";
14090 case DT_MIPS_RWPLT:
14091 return "DT_MIPS_RWPLT";
14092 }
14093 }
14094
14095 bfd_boolean
14096 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14097 {
14098 FILE *file = ptr;
14099
14100 BFD_ASSERT (abfd != NULL && ptr != NULL);
14101
14102 /* Print normal ELF private data. */
14103 _bfd_elf_print_private_bfd_data (abfd, ptr);
14104
14105 /* xgettext:c-format */
14106 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14107
14108 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14109 fprintf (file, _(" [abi=O32]"));
14110 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14111 fprintf (file, _(" [abi=O64]"));
14112 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14113 fprintf (file, _(" [abi=EABI32]"));
14114 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14115 fprintf (file, _(" [abi=EABI64]"));
14116 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14117 fprintf (file, _(" [abi unknown]"));
14118 else if (ABI_N32_P (abfd))
14119 fprintf (file, _(" [abi=N32]"));
14120 else if (ABI_64_P (abfd))
14121 fprintf (file, _(" [abi=64]"));
14122 else
14123 fprintf (file, _(" [no abi set]"));
14124
14125 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14126 fprintf (file, " [mips1]");
14127 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14128 fprintf (file, " [mips2]");
14129 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14130 fprintf (file, " [mips3]");
14131 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14132 fprintf (file, " [mips4]");
14133 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14134 fprintf (file, " [mips5]");
14135 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14136 fprintf (file, " [mips32]");
14137 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14138 fprintf (file, " [mips64]");
14139 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14140 fprintf (file, " [mips32r2]");
14141 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14142 fprintf (file, " [mips64r2]");
14143 else
14144 fprintf (file, _(" [unknown ISA]"));
14145
14146 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14147 fprintf (file, " [mdmx]");
14148
14149 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14150 fprintf (file, " [mips16]");
14151
14152 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14153 fprintf (file, " [micromips]");
14154
14155 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14156 fprintf (file, " [32bitmode]");
14157 else
14158 fprintf (file, _(" [not 32bitmode]"));
14159
14160 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
14161 fprintf (file, " [noreorder]");
14162
14163 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
14164 fprintf (file, " [PIC]");
14165
14166 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
14167 fprintf (file, " [CPIC]");
14168
14169 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
14170 fprintf (file, " [XGOT]");
14171
14172 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
14173 fprintf (file, " [UCODE]");
14174
14175 fputc ('\n', file);
14176
14177 return TRUE;
14178 }
14179
14180 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
14181 {
14182 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14183 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14184 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14185 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14186 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14187 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14188 { NULL, 0, 0, 0, 0 }
14189 };
14190
14191 /* Merge non visibility st_other attributes. Ensure that the
14192 STO_OPTIONAL flag is copied into h->other, even if this is not a
14193 definiton of the symbol. */
14194 void
14195 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14196 const Elf_Internal_Sym *isym,
14197 bfd_boolean definition,
14198 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14199 {
14200 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14201 {
14202 unsigned char other;
14203
14204 other = (definition ? isym->st_other : h->other);
14205 other &= ~ELF_ST_VISIBILITY (-1);
14206 h->other = other | ELF_ST_VISIBILITY (h->other);
14207 }
14208
14209 if (!definition
14210 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14211 h->other |= STO_OPTIONAL;
14212 }
14213
14214 /* Decide whether an undefined symbol is special and can be ignored.
14215 This is the case for OPTIONAL symbols on IRIX. */
14216 bfd_boolean
14217 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14218 {
14219 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14220 }
14221
14222 bfd_boolean
14223 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14224 {
14225 return (sym->st_shndx == SHN_COMMON
14226 || sym->st_shndx == SHN_MIPS_ACOMMON
14227 || sym->st_shndx == SHN_MIPS_SCOMMON);
14228 }
14229
14230 /* Return address for Ith PLT stub in section PLT, for relocation REL
14231 or (bfd_vma) -1 if it should not be included. */
14232
14233 bfd_vma
14234 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14235 const arelent *rel ATTRIBUTE_UNUSED)
14236 {
14237 return (plt->vma
14238 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14239 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14240 }
14241
14242 void
14243 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14244 {
14245 struct mips_elf_link_hash_table *htab;
14246 Elf_Internal_Ehdr *i_ehdrp;
14247
14248 i_ehdrp = elf_elfheader (abfd);
14249 if (link_info)
14250 {
14251 htab = mips_elf_hash_table (link_info);
14252 BFD_ASSERT (htab != NULL);
14253
14254 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14255 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14256 }
14257 }
This page took 0.307286 seconds and 5 git commands to generate.