MIPS/LD: Reject tprel_hi and tprel_lo relocations in shared library
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2019 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */
296 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
297 #define LA25_LUI_MICROMIPS(VAL) \
298 (0x41b90000 | (VAL)) /* lui t9,VAL */
299 #define LA25_J_MICROMIPS(VAL) \
300 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
301 #define LA25_ADDIU_MICROMIPS(VAL) \
302 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
303
304 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
305 the dynamic symbols. */
306
307 struct mips_elf_hash_sort_data
308 {
309 /* The symbol in the global GOT with the lowest dynamic symbol table
310 index. */
311 struct elf_link_hash_entry *low;
312 /* The least dynamic symbol table index corresponding to a non-TLS
313 symbol with a GOT entry. */
314 bfd_size_type min_got_dynindx;
315 /* The greatest dynamic symbol table index corresponding to a symbol
316 with a GOT entry that is not referenced (e.g., a dynamic symbol
317 with dynamic relocations pointing to it from non-primary GOTs). */
318 bfd_size_type max_unref_got_dynindx;
319 /* The greatest dynamic symbol table index corresponding to a local
320 symbol. */
321 bfd_size_type max_local_dynindx;
322 /* The greatest dynamic symbol table index corresponding to an external
323 symbol without a GOT entry. */
324 bfd_size_type max_non_got_dynindx;
325 };
326
327 /* We make up to two PLT entries if needed, one for standard MIPS code
328 and one for compressed code, either a MIPS16 or microMIPS one. We
329 keep a separate record of traditional lazy-binding stubs, for easier
330 processing. */
331
332 struct plt_entry
333 {
334 /* Traditional SVR4 stub offset, or -1 if none. */
335 bfd_vma stub_offset;
336
337 /* Standard PLT entry offset, or -1 if none. */
338 bfd_vma mips_offset;
339
340 /* Compressed PLT entry offset, or -1 if none. */
341 bfd_vma comp_offset;
342
343 /* The corresponding .got.plt index, or -1 if none. */
344 bfd_vma gotplt_index;
345
346 /* Whether we need a standard PLT entry. */
347 unsigned int need_mips : 1;
348
349 /* Whether we need a compressed PLT entry. */
350 unsigned int need_comp : 1;
351 };
352
353 /* The MIPS ELF linker needs additional information for each symbol in
354 the global hash table. */
355
356 struct mips_elf_link_hash_entry
357 {
358 struct elf_link_hash_entry root;
359
360 /* External symbol information. */
361 EXTR esym;
362
363 /* The la25 stub we have created for ths symbol, if any. */
364 struct mips_elf_la25_stub *la25_stub;
365
366 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
367 this symbol. */
368 unsigned int possibly_dynamic_relocs;
369
370 /* If there is a stub that 32 bit functions should use to call this
371 16 bit function, this points to the section containing the stub. */
372 asection *fn_stub;
373
374 /* If there is a stub that 16 bit functions should use to call this
375 32 bit function, this points to the section containing the stub. */
376 asection *call_stub;
377
378 /* This is like the call_stub field, but it is used if the function
379 being called returns a floating point value. */
380 asection *call_fp_stub;
381
382 /* The highest GGA_* value that satisfies all references to this symbol. */
383 unsigned int global_got_area : 2;
384
385 /* True if all GOT relocations against this symbol are for calls. This is
386 a looser condition than no_fn_stub below, because there may be other
387 non-call non-GOT relocations against the symbol. */
388 unsigned int got_only_for_calls : 1;
389
390 /* True if one of the relocations described by possibly_dynamic_relocs
391 is against a readonly section. */
392 unsigned int readonly_reloc : 1;
393
394 /* True if there is a relocation against this symbol that must be
395 resolved by the static linker (in other words, if the relocation
396 cannot possibly be made dynamic). */
397 unsigned int has_static_relocs : 1;
398
399 /* True if we must not create a .MIPS.stubs entry for this symbol.
400 This is set, for example, if there are relocations related to
401 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
402 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
403 unsigned int no_fn_stub : 1;
404
405 /* Whether we need the fn_stub; this is true if this symbol appears
406 in any relocs other than a 16 bit call. */
407 unsigned int need_fn_stub : 1;
408
409 /* True if this symbol is referenced by branch relocations from
410 any non-PIC input file. This is used to determine whether an
411 la25 stub is required. */
412 unsigned int has_nonpic_branches : 1;
413
414 /* Does this symbol need a traditional MIPS lazy-binding stub
415 (as opposed to a PLT entry)? */
416 unsigned int needs_lazy_stub : 1;
417
418 /* Does this symbol resolve to a PLT entry? */
419 unsigned int use_plt_entry : 1;
420 };
421
422 /* MIPS ELF linker hash table. */
423
424 struct mips_elf_link_hash_table
425 {
426 struct elf_link_hash_table root;
427
428 /* The number of .rtproc entries. */
429 bfd_size_type procedure_count;
430
431 /* The size of the .compact_rel section (if SGI_COMPAT). */
432 bfd_size_type compact_rel_size;
433
434 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
435 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
436 bfd_boolean use_rld_obj_head;
437
438 /* The __rld_map or __rld_obj_head symbol. */
439 struct elf_link_hash_entry *rld_symbol;
440
441 /* This is set if we see any mips16 stub sections. */
442 bfd_boolean mips16_stubs_seen;
443
444 /* True if we can generate copy relocs and PLTs. */
445 bfd_boolean use_plts_and_copy_relocs;
446
447 /* True if we can only use 32-bit microMIPS instructions. */
448 bfd_boolean insn32;
449
450 /* True if we suppress checks for invalid branches between ISA modes. */
451 bfd_boolean ignore_branch_isa;
452
453 /* True if we are targetting R6 compact branches. */
454 bfd_boolean compact_branches;
455
456 /* True if we're generating code for VxWorks. */
457 bfd_boolean is_vxworks;
458
459 /* True if we already reported the small-data section overflow. */
460 bfd_boolean small_data_overflow_reported;
461
462 /* True if we use the special `__gnu_absolute_zero' symbol. */
463 bfd_boolean use_absolute_zero;
464
465 /* True if we have been configured for a GNU target. */
466 bfd_boolean gnu_target;
467
468 /* Shortcuts to some dynamic sections, or NULL if they are not
469 being used. */
470 asection *srelplt2;
471 asection *sstubs;
472
473 /* The master GOT information. */
474 struct mips_got_info *got_info;
475
476 /* The global symbol in the GOT with the lowest index in the dynamic
477 symbol table. */
478 struct elf_link_hash_entry *global_gotsym;
479
480 /* The size of the PLT header in bytes. */
481 bfd_vma plt_header_size;
482
483 /* The size of a standard PLT entry in bytes. */
484 bfd_vma plt_mips_entry_size;
485
486 /* The size of a compressed PLT entry in bytes. */
487 bfd_vma plt_comp_entry_size;
488
489 /* The offset of the next standard PLT entry to create. */
490 bfd_vma plt_mips_offset;
491
492 /* The offset of the next compressed PLT entry to create. */
493 bfd_vma plt_comp_offset;
494
495 /* The index of the next .got.plt entry to create. */
496 bfd_vma plt_got_index;
497
498 /* The number of functions that need a lazy-binding stub. */
499 bfd_vma lazy_stub_count;
500
501 /* The size of a function stub entry in bytes. */
502 bfd_vma function_stub_size;
503
504 /* The number of reserved entries at the beginning of the GOT. */
505 unsigned int reserved_gotno;
506
507 /* The section used for mips_elf_la25_stub trampolines.
508 See the comment above that structure for details. */
509 asection *strampoline;
510
511 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
512 pairs. */
513 htab_t la25_stubs;
514
515 /* A function FN (NAME, IS, OS) that creates a new input section
516 called NAME and links it to output section OS. If IS is nonnull,
517 the new section should go immediately before it, otherwise it
518 should go at the (current) beginning of OS.
519
520 The function returns the new section on success, otherwise it
521 returns null. */
522 asection *(*add_stub_section) (const char *, asection *, asection *);
523
524 /* Small local sym cache. */
525 struct sym_cache sym_cache;
526
527 /* Is the PLT header compressed? */
528 unsigned int plt_header_is_comp : 1;
529 };
530
531 /* Get the MIPS ELF linker hash table from a link_info structure. */
532
533 #define mips_elf_hash_table(p) \
534 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
535 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
536
537 /* A structure used to communicate with htab_traverse callbacks. */
538 struct mips_htab_traverse_info
539 {
540 /* The usual link-wide information. */
541 struct bfd_link_info *info;
542 bfd *output_bfd;
543
544 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
545 bfd_boolean error;
546 };
547
548 /* MIPS ELF private object data. */
549
550 struct mips_elf_obj_tdata
551 {
552 /* Generic ELF private object data. */
553 struct elf_obj_tdata root;
554
555 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
556 bfd *abi_fp_bfd;
557
558 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
559 bfd *abi_msa_bfd;
560
561 /* The abiflags for this object. */
562 Elf_Internal_ABIFlags_v0 abiflags;
563 bfd_boolean abiflags_valid;
564
565 /* The GOT requirements of input bfds. */
566 struct mips_got_info *got;
567
568 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
569 included directly in this one, but there's no point to wasting
570 the memory just for the infrequently called find_nearest_line. */
571 struct mips_elf_find_line *find_line_info;
572
573 /* An array of stub sections indexed by symbol number. */
574 asection **local_stubs;
575 asection **local_call_stubs;
576
577 /* The Irix 5 support uses two virtual sections, which represent
578 text/data symbols defined in dynamic objects. */
579 asymbol *elf_data_symbol;
580 asymbol *elf_text_symbol;
581 asection *elf_data_section;
582 asection *elf_text_section;
583 };
584
585 /* Get MIPS ELF private object data from BFD's tdata. */
586
587 #define mips_elf_tdata(bfd) \
588 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
589
590 #define TLS_RELOC_P(r_type) \
591 (r_type == R_MIPS_TLS_DTPMOD32 \
592 || r_type == R_MIPS_TLS_DTPMOD64 \
593 || r_type == R_MIPS_TLS_DTPREL32 \
594 || r_type == R_MIPS_TLS_DTPREL64 \
595 || r_type == R_MIPS_TLS_GD \
596 || r_type == R_MIPS_TLS_LDM \
597 || r_type == R_MIPS_TLS_DTPREL_HI16 \
598 || r_type == R_MIPS_TLS_DTPREL_LO16 \
599 || r_type == R_MIPS_TLS_GOTTPREL \
600 || r_type == R_MIPS_TLS_TPREL32 \
601 || r_type == R_MIPS_TLS_TPREL64 \
602 || r_type == R_MIPS_TLS_TPREL_HI16 \
603 || r_type == R_MIPS_TLS_TPREL_LO16 \
604 || r_type == R_MIPS16_TLS_GD \
605 || r_type == R_MIPS16_TLS_LDM \
606 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
607 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
608 || r_type == R_MIPS16_TLS_GOTTPREL \
609 || r_type == R_MIPS16_TLS_TPREL_HI16 \
610 || r_type == R_MIPS16_TLS_TPREL_LO16 \
611 || r_type == R_MICROMIPS_TLS_GD \
612 || r_type == R_MICROMIPS_TLS_LDM \
613 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
614 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
615 || r_type == R_MICROMIPS_TLS_GOTTPREL \
616 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
617 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
618
619 /* Structure used to pass information to mips_elf_output_extsym. */
620
621 struct extsym_info
622 {
623 bfd *abfd;
624 struct bfd_link_info *info;
625 struct ecoff_debug_info *debug;
626 const struct ecoff_debug_swap *swap;
627 bfd_boolean failed;
628 };
629
630 /* The names of the runtime procedure table symbols used on IRIX5. */
631
632 static const char * const mips_elf_dynsym_rtproc_names[] =
633 {
634 "_procedure_table",
635 "_procedure_string_table",
636 "_procedure_table_size",
637 NULL
638 };
639
640 /* These structures are used to generate the .compact_rel section on
641 IRIX5. */
642
643 typedef struct
644 {
645 unsigned long id1; /* Always one? */
646 unsigned long num; /* Number of compact relocation entries. */
647 unsigned long id2; /* Always two? */
648 unsigned long offset; /* The file offset of the first relocation. */
649 unsigned long reserved0; /* Zero? */
650 unsigned long reserved1; /* Zero? */
651 } Elf32_compact_rel;
652
653 typedef struct
654 {
655 bfd_byte id1[4];
656 bfd_byte num[4];
657 bfd_byte id2[4];
658 bfd_byte offset[4];
659 bfd_byte reserved0[4];
660 bfd_byte reserved1[4];
661 } Elf32_External_compact_rel;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 unsigned long vaddr; /* VADDR to be relocated. */
671 } Elf32_crinfo;
672
673 typedef struct
674 {
675 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
676 unsigned int rtype : 4; /* Relocation types. See below. */
677 unsigned int dist2to : 8;
678 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
679 unsigned long konst; /* KONST field. See below. */
680 } Elf32_crinfo2;
681
682 typedef struct
683 {
684 bfd_byte info[4];
685 bfd_byte konst[4];
686 bfd_byte vaddr[4];
687 } Elf32_External_crinfo;
688
689 typedef struct
690 {
691 bfd_byte info[4];
692 bfd_byte konst[4];
693 } Elf32_External_crinfo2;
694
695 /* These are the constants used to swap the bitfields in a crinfo. */
696
697 #define CRINFO_CTYPE (0x1)
698 #define CRINFO_CTYPE_SH (31)
699 #define CRINFO_RTYPE (0xf)
700 #define CRINFO_RTYPE_SH (27)
701 #define CRINFO_DIST2TO (0xff)
702 #define CRINFO_DIST2TO_SH (19)
703 #define CRINFO_RELVADDR (0x7ffff)
704 #define CRINFO_RELVADDR_SH (0)
705
706 /* A compact relocation info has long (3 words) or short (2 words)
707 formats. A short format doesn't have VADDR field and relvaddr
708 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
709 #define CRF_MIPS_LONG 1
710 #define CRF_MIPS_SHORT 0
711
712 /* There are 4 types of compact relocation at least. The value KONST
713 has different meaning for each type:
714
715 (type) (konst)
716 CT_MIPS_REL32 Address in data
717 CT_MIPS_WORD Address in word (XXX)
718 CT_MIPS_GPHI_LO GP - vaddr
719 CT_MIPS_JMPAD Address to jump
720 */
721
722 #define CRT_MIPS_REL32 0xa
723 #define CRT_MIPS_WORD 0xb
724 #define CRT_MIPS_GPHI_LO 0xc
725 #define CRT_MIPS_JMPAD 0xd
726
727 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
728 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
729 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
730 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
731 \f
732 /* The structure of the runtime procedure descriptor created by the
733 loader for use by the static exception system. */
734
735 typedef struct runtime_pdr {
736 bfd_vma adr; /* Memory address of start of procedure. */
737 long regmask; /* Save register mask. */
738 long regoffset; /* Save register offset. */
739 long fregmask; /* Save floating point register mask. */
740 long fregoffset; /* Save floating point register offset. */
741 long frameoffset; /* Frame size. */
742 short framereg; /* Frame pointer register. */
743 short pcreg; /* Offset or reg of return pc. */
744 long irpss; /* Index into the runtime string table. */
745 long reserved;
746 struct exception_info *exception_info;/* Pointer to exception array. */
747 } RPDR, *pRPDR;
748 #define cbRPDR sizeof (RPDR)
749 #define rpdNil ((pRPDR) 0)
750 \f
751 static struct mips_got_entry *mips_elf_create_local_got_entry
752 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
753 struct mips_elf_link_hash_entry *, int);
754 static bfd_boolean mips_elf_sort_hash_table_f
755 (struct mips_elf_link_hash_entry *, void *);
756 static bfd_vma mips_elf_high
757 (bfd_vma);
758 static bfd_boolean mips_elf_create_dynamic_relocation
759 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
760 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
761 bfd_vma *, asection *);
762 static bfd_vma mips_elf_adjust_gp
763 (bfd *, struct mips_got_info *, bfd *);
764
765 /* This will be used when we sort the dynamic relocation records. */
766 static bfd *reldyn_sorting_bfd;
767
768 /* True if ABFD is for CPUs with load interlocking that include
769 non-MIPS1 CPUs and R3900. */
770 #define LOAD_INTERLOCKS_P(abfd) \
771 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
772 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
773
774 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
775 This should be safe for all architectures. We enable this predicate
776 for RM9000 for now. */
777 #define JAL_TO_BAL_P(abfd) \
778 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
779
780 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
781 This should be safe for all architectures. We enable this predicate for
782 all CPUs. */
783 #define JALR_TO_BAL_P(abfd) 1
784
785 /* True if ABFD is for CPUs that are faster if JR is converted to B.
786 This should be safe for all architectures. We enable this predicate for
787 all CPUs. */
788 #define JR_TO_B_P(abfd) 1
789
790 /* True if ABFD is a PIC object. */
791 #define PIC_OBJECT_P(abfd) \
792 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
793
794 /* Nonzero if ABFD is using the O32 ABI. */
795 #define ABI_O32_P(abfd) \
796 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
797
798 /* Nonzero if ABFD is using the N32 ABI. */
799 #define ABI_N32_P(abfd) \
800 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
801
802 /* Nonzero if ABFD is using the N64 ABI. */
803 #define ABI_64_P(abfd) \
804 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
805
806 /* Nonzero if ABFD is using NewABI conventions. */
807 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
808
809 /* Nonzero if ABFD has microMIPS code. */
810 #define MICROMIPS_P(abfd) \
811 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
812
813 /* Nonzero if ABFD is MIPS R6. */
814 #define MIPSR6_P(abfd) \
815 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
816 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
817
818 /* The IRIX compatibility level we are striving for. */
819 #define IRIX_COMPAT(abfd) \
820 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
821
822 /* Whether we are trying to be compatible with IRIX at all. */
823 #define SGI_COMPAT(abfd) \
824 (IRIX_COMPAT (abfd) != ict_none)
825
826 /* The name of the options section. */
827 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
828 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
829
830 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
831 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
832 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
833 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
834
835 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
836 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
837 (strcmp (NAME, ".MIPS.abiflags") == 0)
838
839 /* Whether the section is readonly. */
840 #define MIPS_ELF_READONLY_SECTION(sec) \
841 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
842 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
843
844 /* The name of the stub section. */
845 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
846
847 /* The size of an external REL relocation. */
848 #define MIPS_ELF_REL_SIZE(abfd) \
849 (get_elf_backend_data (abfd)->s->sizeof_rel)
850
851 /* The size of an external RELA relocation. */
852 #define MIPS_ELF_RELA_SIZE(abfd) \
853 (get_elf_backend_data (abfd)->s->sizeof_rela)
854
855 /* The size of an external dynamic table entry. */
856 #define MIPS_ELF_DYN_SIZE(abfd) \
857 (get_elf_backend_data (abfd)->s->sizeof_dyn)
858
859 /* The size of a GOT entry. */
860 #define MIPS_ELF_GOT_SIZE(abfd) \
861 (get_elf_backend_data (abfd)->s->arch_size / 8)
862
863 /* The size of the .rld_map section. */
864 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
865 (get_elf_backend_data (abfd)->s->arch_size / 8)
866
867 /* The size of a symbol-table entry. */
868 #define MIPS_ELF_SYM_SIZE(abfd) \
869 (get_elf_backend_data (abfd)->s->sizeof_sym)
870
871 /* The default alignment for sections, as a power of two. */
872 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
873 (get_elf_backend_data (abfd)->s->log_file_align)
874
875 /* Get word-sized data. */
876 #define MIPS_ELF_GET_WORD(abfd, ptr) \
877 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
878
879 /* Put out word-sized data. */
880 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
881 (ABI_64_P (abfd) \
882 ? bfd_put_64 (abfd, val, ptr) \
883 : bfd_put_32 (abfd, val, ptr))
884
885 /* The opcode for word-sized loads (LW or LD). */
886 #define MIPS_ELF_LOAD_WORD(abfd) \
887 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
888
889 /* Add a dynamic symbol table-entry. */
890 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
891 _bfd_elf_add_dynamic_entry (info, tag, val)
892
893 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
894 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
895
896 /* The name of the dynamic relocation section. */
897 #define MIPS_ELF_REL_DYN_NAME(INFO) \
898 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
899
900 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
901 from smaller values. Start with zero, widen, *then* decrement. */
902 #define MINUS_ONE (((bfd_vma)0) - 1)
903 #define MINUS_TWO (((bfd_vma)0) - 2)
904
905 /* The value to write into got[1] for SVR4 targets, to identify it is
906 a GNU object. The dynamic linker can then use got[1] to store the
907 module pointer. */
908 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
909 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
910
911 /* The offset of $gp from the beginning of the .got section. */
912 #define ELF_MIPS_GP_OFFSET(INFO) \
913 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
914
915 /* The maximum size of the GOT for it to be addressable using 16-bit
916 offsets from $gp. */
917 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
918
919 /* Instructions which appear in a stub. */
920 #define STUB_LW(abfd) \
921 ((ABI_64_P (abfd) \
922 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
923 : 0x8f998010)) /* lw t9,0x8010(gp) */
924 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
925 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
926 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
927 #define STUB_JALRC 0xf8190000 /* jalrc ra,t9 */
928 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
929 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
930 #define STUB_LI16S(abfd, VAL) \
931 ((ABI_64_P (abfd) \
932 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
933 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
934
935 /* Likewise for the microMIPS ASE. */
936 #define STUB_LW_MICROMIPS(abfd) \
937 (ABI_64_P (abfd) \
938 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
939 : 0xff3c8010) /* lw t9,0x8010(gp) */
940 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
941 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
942 #define STUB_LUI_MICROMIPS(VAL) \
943 (0x41b80000 + (VAL)) /* lui t8,VAL */
944 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
945 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
946 #define STUB_ORI_MICROMIPS(VAL) \
947 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
948 #define STUB_LI16U_MICROMIPS(VAL) \
949 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
950 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
951 (ABI_64_P (abfd) \
952 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
953 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
954
955 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
956 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
957 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
958 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
959 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
960 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
961
962 /* The name of the dynamic interpreter. This is put in the .interp
963 section. */
964
965 #define ELF_DYNAMIC_INTERPRETER(abfd) \
966 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
967 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
968 : "/usr/lib/libc.so.1")
969
970 #ifdef BFD64
971 #define MNAME(bfd,pre,pos) \
972 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
973 #define ELF_R_SYM(bfd, i) \
974 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
975 #define ELF_R_TYPE(bfd, i) \
976 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
977 #define ELF_R_INFO(bfd, s, t) \
978 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
979 #else
980 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
981 #define ELF_R_SYM(bfd, i) \
982 (ELF32_R_SYM (i))
983 #define ELF_R_TYPE(bfd, i) \
984 (ELF32_R_TYPE (i))
985 #define ELF_R_INFO(bfd, s, t) \
986 (ELF32_R_INFO (s, t))
987 #endif
988 \f
989 /* The mips16 compiler uses a couple of special sections to handle
990 floating point arguments.
991
992 Section names that look like .mips16.fn.FNNAME contain stubs that
993 copy floating point arguments from the fp regs to the gp regs and
994 then jump to FNNAME. If any 32 bit function calls FNNAME, the
995 call should be redirected to the stub instead. If no 32 bit
996 function calls FNNAME, the stub should be discarded. We need to
997 consider any reference to the function, not just a call, because
998 if the address of the function is taken we will need the stub,
999 since the address might be passed to a 32 bit function.
1000
1001 Section names that look like .mips16.call.FNNAME contain stubs
1002 that copy floating point arguments from the gp regs to the fp
1003 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1004 then any 16 bit function that calls FNNAME should be redirected
1005 to the stub instead. If FNNAME is not a 32 bit function, the
1006 stub should be discarded.
1007
1008 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1009 which call FNNAME and then copy the return value from the fp regs
1010 to the gp regs. These stubs store the return value in $18 while
1011 calling FNNAME; any function which might call one of these stubs
1012 must arrange to save $18 around the call. (This case is not
1013 needed for 32 bit functions that call 16 bit functions, because
1014 16 bit functions always return floating point values in both
1015 $f0/$f1 and $2/$3.)
1016
1017 Note that in all cases FNNAME might be defined statically.
1018 Therefore, FNNAME is not used literally. Instead, the relocation
1019 information will indicate which symbol the section is for.
1020
1021 We record any stubs that we find in the symbol table. */
1022
1023 #define FN_STUB ".mips16.fn."
1024 #define CALL_STUB ".mips16.call."
1025 #define CALL_FP_STUB ".mips16.call.fp."
1026
1027 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1028 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1029 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1030 \f
1031 /* The format of the first PLT entry in an O32 executable. */
1032 static const bfd_vma mips_o32_exec_plt0_entry[] =
1033 {
1034 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1035 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1036 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1037 0x031cc023, /* subu $24, $24, $28 */
1038 0x03e07825, /* or t7, ra, zero */
1039 0x0018c082, /* srl $24, $24, 2 */
1040 0x0320f809, /* jalr $25 */
1041 0x2718fffe /* subu $24, $24, 2 */
1042 };
1043
1044 /* The format of the first PLT entry in an O32 executable using compact
1045 jumps. */
1046 static const bfd_vma mipsr6_o32_exec_plt0_entry_compact[] =
1047 {
1048 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1049 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1050 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1051 0x031cc023, /* subu $24, $24, $28 */
1052 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1053 0x0018c082, /* srl $24, $24, 2 */
1054 0x2718fffe, /* subu $24, $24, 2 */
1055 0xf8190000 /* jalrc $25 */
1056 };
1057
1058 /* The format of the first PLT entry in an N32 executable. Different
1059 because gp ($28) is not available; we use t2 ($14) instead. */
1060 static const bfd_vma mips_n32_exec_plt0_entry[] =
1061 {
1062 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1063 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1064 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1065 0x030ec023, /* subu $24, $24, $14 */
1066 0x03e07825, /* or t7, ra, zero */
1067 0x0018c082, /* srl $24, $24, 2 */
1068 0x0320f809, /* jalr $25 */
1069 0x2718fffe /* subu $24, $24, 2 */
1070 };
1071
1072 /* The format of the first PLT entry in an N32 executable using compact
1073 jumps. Different because gp ($28) is not available; we use t2 ($14)
1074 instead. */
1075 static const bfd_vma mipsr6_n32_exec_plt0_entry_compact[] =
1076 {
1077 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1078 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1079 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1080 0x030ec023, /* subu $24, $24, $14 */
1081 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1082 0x0018c082, /* srl $24, $24, 2 */
1083 0x2718fffe, /* subu $24, $24, 2 */
1084 0xf8190000 /* jalrc $25 */
1085 };
1086
1087 /* The format of the first PLT entry in an N64 executable. Different
1088 from N32 because of the increased size of GOT entries. */
1089 static const bfd_vma mips_n64_exec_plt0_entry[] =
1090 {
1091 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1092 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1093 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1094 0x030ec023, /* subu $24, $24, $14 */
1095 0x03e07825, /* or t7, ra, zero */
1096 0x0018c0c2, /* srl $24, $24, 3 */
1097 0x0320f809, /* jalr $25 */
1098 0x2718fffe /* subu $24, $24, 2 */
1099 };
1100
1101 /* The format of the first PLT entry in an N64 executable using compact
1102 jumps. Different from N32 because of the increased size of GOT
1103 entries. */
1104 static const bfd_vma mipsr6_n64_exec_plt0_entry_compact[] =
1105 {
1106 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1107 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1108 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1109 0x030ec023, /* subu $24, $24, $14 */
1110 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1111 0x0018c0c2, /* srl $24, $24, 3 */
1112 0x2718fffe, /* subu $24, $24, 2 */
1113 0xf8190000 /* jalrc $25 */
1114 };
1115
1116
1117 /* The format of the microMIPS first PLT entry in an O32 executable.
1118 We rely on v0 ($2) rather than t8 ($24) to contain the address
1119 of the GOTPLT entry handled, so this stub may only be used when
1120 all the subsequent PLT entries are microMIPS code too.
1121
1122 The trailing NOP is for alignment and correct disassembly only. */
1123 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1124 {
1125 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1126 0xff23, 0x0000, /* lw $25, 0($3) */
1127 0x0535, /* subu $2, $2, $3 */
1128 0x2525, /* srl $2, $2, 2 */
1129 0x3302, 0xfffe, /* subu $24, $2, 2 */
1130 0x0dff, /* move $15, $31 */
1131 0x45f9, /* jalrs $25 */
1132 0x0f83, /* move $28, $3 */
1133 0x0c00 /* nop */
1134 };
1135
1136 /* The format of the microMIPS first PLT entry in an O32 executable
1137 in the insn32 mode. */
1138 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1139 {
1140 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1141 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1142 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1143 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1144 0x001f, 0x7a90, /* or $15, $31, zero */
1145 0x0318, 0x1040, /* srl $24, $24, 2 */
1146 0x03f9, 0x0f3c, /* jalr $25 */
1147 0x3318, 0xfffe /* subu $24, $24, 2 */
1148 };
1149
1150 /* The format of subsequent standard PLT entries. */
1151 static const bfd_vma mips_exec_plt_entry[] =
1152 {
1153 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1154 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1155 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1156 0x03200008 /* jr $25 */
1157 };
1158
1159 static const bfd_vma mipsr6_exec_plt_entry[] =
1160 {
1161 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1162 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1163 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1164 0x03200009 /* jr $25 */
1165 };
1166
1167 static const bfd_vma mipsr6_exec_plt_entry_compact[] =
1168 {
1169 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1170 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1171 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1172 0xd8190000 /* jic $25, 0 */
1173 };
1174
1175 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1176 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1177 directly addressable. */
1178 static const bfd_vma mips16_o32_exec_plt_entry[] =
1179 {
1180 0xb203, /* lw $2, 12($pc) */
1181 0x9a60, /* lw $3, 0($2) */
1182 0x651a, /* move $24, $2 */
1183 0xeb00, /* jr $3 */
1184 0x653b, /* move $25, $3 */
1185 0x6500, /* nop */
1186 0x0000, 0x0000 /* .word (.got.plt entry) */
1187 };
1188
1189 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1190 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1191 static const bfd_vma micromips_o32_exec_plt_entry[] =
1192 {
1193 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1194 0xff22, 0x0000, /* lw $25, 0($2) */
1195 0x4599, /* jr $25 */
1196 0x0f02 /* move $24, $2 */
1197 };
1198
1199 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1200 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1201 {
1202 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1203 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1204 0x0019, 0x0f3c, /* jr $25 */
1205 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1206 };
1207
1208 /* The format of the first PLT entry in a VxWorks executable. */
1209 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1210 {
1211 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1212 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1213 0x8f390008, /* lw t9, 8(t9) */
1214 0x00000000, /* nop */
1215 0x03200008, /* jr t9 */
1216 0x00000000 /* nop */
1217 };
1218
1219 /* The format of subsequent PLT entries. */
1220 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1221 {
1222 0x10000000, /* b .PLT_resolver */
1223 0x24180000, /* li t8, <pltindex> */
1224 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1225 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1226 0x8f390000, /* lw t9, 0(t9) */
1227 0x00000000, /* nop */
1228 0x03200008, /* jr t9 */
1229 0x00000000 /* nop */
1230 };
1231
1232 /* The format of the first PLT entry in a VxWorks shared object. */
1233 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1234 {
1235 0x8f990008, /* lw t9, 8(gp) */
1236 0x00000000, /* nop */
1237 0x03200008, /* jr t9 */
1238 0x00000000, /* nop */
1239 0x00000000, /* nop */
1240 0x00000000 /* nop */
1241 };
1242
1243 /* The format of subsequent PLT entries. */
1244 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1245 {
1246 0x10000000, /* b .PLT_resolver */
1247 0x24180000 /* li t8, <pltindex> */
1248 };
1249 \f
1250 /* microMIPS 32-bit opcode helper installer. */
1251
1252 static void
1253 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1254 {
1255 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1256 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1257 }
1258
1259 /* microMIPS 32-bit opcode helper retriever. */
1260
1261 static bfd_vma
1262 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1263 {
1264 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1265 }
1266 \f
1267 /* Look up an entry in a MIPS ELF linker hash table. */
1268
1269 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1270 ((struct mips_elf_link_hash_entry *) \
1271 elf_link_hash_lookup (&(table)->root, (string), (create), \
1272 (copy), (follow)))
1273
1274 /* Traverse a MIPS ELF linker hash table. */
1275
1276 #define mips_elf_link_hash_traverse(table, func, info) \
1277 (elf_link_hash_traverse \
1278 (&(table)->root, \
1279 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1280 (info)))
1281
1282 /* Find the base offsets for thread-local storage in this object,
1283 for GD/LD and IE/LE respectively. */
1284
1285 #define TP_OFFSET 0x7000
1286 #define DTP_OFFSET 0x8000
1287
1288 static bfd_vma
1289 dtprel_base (struct bfd_link_info *info)
1290 {
1291 /* If tls_sec is NULL, we should have signalled an error already. */
1292 if (elf_hash_table (info)->tls_sec == NULL)
1293 return 0;
1294 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1295 }
1296
1297 static bfd_vma
1298 tprel_base (struct bfd_link_info *info)
1299 {
1300 /* If tls_sec is NULL, we should have signalled an error already. */
1301 if (elf_hash_table (info)->tls_sec == NULL)
1302 return 0;
1303 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1304 }
1305
1306 /* Create an entry in a MIPS ELF linker hash table. */
1307
1308 static struct bfd_hash_entry *
1309 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1310 struct bfd_hash_table *table, const char *string)
1311 {
1312 struct mips_elf_link_hash_entry *ret =
1313 (struct mips_elf_link_hash_entry *) entry;
1314
1315 /* Allocate the structure if it has not already been allocated by a
1316 subclass. */
1317 if (ret == NULL)
1318 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1319 if (ret == NULL)
1320 return (struct bfd_hash_entry *) ret;
1321
1322 /* Call the allocation method of the superclass. */
1323 ret = ((struct mips_elf_link_hash_entry *)
1324 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1325 table, string));
1326 if (ret != NULL)
1327 {
1328 /* Set local fields. */
1329 memset (&ret->esym, 0, sizeof (EXTR));
1330 /* We use -2 as a marker to indicate that the information has
1331 not been set. -1 means there is no associated ifd. */
1332 ret->esym.ifd = -2;
1333 ret->la25_stub = 0;
1334 ret->possibly_dynamic_relocs = 0;
1335 ret->fn_stub = NULL;
1336 ret->call_stub = NULL;
1337 ret->call_fp_stub = NULL;
1338 ret->global_got_area = GGA_NONE;
1339 ret->got_only_for_calls = TRUE;
1340 ret->readonly_reloc = FALSE;
1341 ret->has_static_relocs = FALSE;
1342 ret->no_fn_stub = FALSE;
1343 ret->need_fn_stub = FALSE;
1344 ret->has_nonpic_branches = FALSE;
1345 ret->needs_lazy_stub = FALSE;
1346 ret->use_plt_entry = FALSE;
1347 }
1348
1349 return (struct bfd_hash_entry *) ret;
1350 }
1351
1352 /* Allocate MIPS ELF private object data. */
1353
1354 bfd_boolean
1355 _bfd_mips_elf_mkobject (bfd *abfd)
1356 {
1357 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1358 MIPS_ELF_DATA);
1359 }
1360
1361 bfd_boolean
1362 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1363 {
1364 if (!sec->used_by_bfd)
1365 {
1366 struct _mips_elf_section_data *sdata;
1367 bfd_size_type amt = sizeof (*sdata);
1368
1369 sdata = bfd_zalloc (abfd, amt);
1370 if (sdata == NULL)
1371 return FALSE;
1372 sec->used_by_bfd = sdata;
1373 }
1374
1375 return _bfd_elf_new_section_hook (abfd, sec);
1376 }
1377 \f
1378 /* Read ECOFF debugging information from a .mdebug section into a
1379 ecoff_debug_info structure. */
1380
1381 bfd_boolean
1382 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1383 struct ecoff_debug_info *debug)
1384 {
1385 HDRR *symhdr;
1386 const struct ecoff_debug_swap *swap;
1387 char *ext_hdr;
1388
1389 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1390 memset (debug, 0, sizeof (*debug));
1391
1392 ext_hdr = bfd_malloc (swap->external_hdr_size);
1393 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1394 goto error_return;
1395
1396 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1397 swap->external_hdr_size))
1398 goto error_return;
1399
1400 symhdr = &debug->symbolic_header;
1401 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1402
1403 /* The symbolic header contains absolute file offsets and sizes to
1404 read. */
1405 #define READ(ptr, offset, count, size, type) \
1406 if (symhdr->count == 0) \
1407 debug->ptr = NULL; \
1408 else \
1409 { \
1410 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1411 debug->ptr = bfd_malloc (amt); \
1412 if (debug->ptr == NULL) \
1413 goto error_return; \
1414 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1415 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1416 goto error_return; \
1417 }
1418
1419 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1420 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1421 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1422 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1423 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1424 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1425 union aux_ext *);
1426 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1427 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1428 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1429 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1430 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1431 #undef READ
1432
1433 debug->fdr = NULL;
1434
1435 return TRUE;
1436
1437 error_return:
1438 if (ext_hdr != NULL)
1439 free (ext_hdr);
1440 if (debug->line != NULL)
1441 free (debug->line);
1442 if (debug->external_dnr != NULL)
1443 free (debug->external_dnr);
1444 if (debug->external_pdr != NULL)
1445 free (debug->external_pdr);
1446 if (debug->external_sym != NULL)
1447 free (debug->external_sym);
1448 if (debug->external_opt != NULL)
1449 free (debug->external_opt);
1450 if (debug->external_aux != NULL)
1451 free (debug->external_aux);
1452 if (debug->ss != NULL)
1453 free (debug->ss);
1454 if (debug->ssext != NULL)
1455 free (debug->ssext);
1456 if (debug->external_fdr != NULL)
1457 free (debug->external_fdr);
1458 if (debug->external_rfd != NULL)
1459 free (debug->external_rfd);
1460 if (debug->external_ext != NULL)
1461 free (debug->external_ext);
1462 return FALSE;
1463 }
1464 \f
1465 /* Swap RPDR (runtime procedure table entry) for output. */
1466
1467 static void
1468 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1469 {
1470 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1471 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1472 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1473 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1474 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1475 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1476
1477 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1478 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1479
1480 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1481 }
1482
1483 /* Create a runtime procedure table from the .mdebug section. */
1484
1485 static bfd_boolean
1486 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1487 struct bfd_link_info *info, asection *s,
1488 struct ecoff_debug_info *debug)
1489 {
1490 const struct ecoff_debug_swap *swap;
1491 HDRR *hdr = &debug->symbolic_header;
1492 RPDR *rpdr, *rp;
1493 struct rpdr_ext *erp;
1494 void *rtproc;
1495 struct pdr_ext *epdr;
1496 struct sym_ext *esym;
1497 char *ss, **sv;
1498 char *str;
1499 bfd_size_type size;
1500 bfd_size_type count;
1501 unsigned long sindex;
1502 unsigned long i;
1503 PDR pdr;
1504 SYMR sym;
1505 const char *no_name_func = _("static procedure (no name)");
1506
1507 epdr = NULL;
1508 rpdr = NULL;
1509 esym = NULL;
1510 ss = NULL;
1511 sv = NULL;
1512
1513 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1514
1515 sindex = strlen (no_name_func) + 1;
1516 count = hdr->ipdMax;
1517 if (count > 0)
1518 {
1519 size = swap->external_pdr_size;
1520
1521 epdr = bfd_malloc (size * count);
1522 if (epdr == NULL)
1523 goto error_return;
1524
1525 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1526 goto error_return;
1527
1528 size = sizeof (RPDR);
1529 rp = rpdr = bfd_malloc (size * count);
1530 if (rpdr == NULL)
1531 goto error_return;
1532
1533 size = sizeof (char *);
1534 sv = bfd_malloc (size * count);
1535 if (sv == NULL)
1536 goto error_return;
1537
1538 count = hdr->isymMax;
1539 size = swap->external_sym_size;
1540 esym = bfd_malloc (size * count);
1541 if (esym == NULL)
1542 goto error_return;
1543
1544 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1545 goto error_return;
1546
1547 count = hdr->issMax;
1548 ss = bfd_malloc (count);
1549 if (ss == NULL)
1550 goto error_return;
1551 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1552 goto error_return;
1553
1554 count = hdr->ipdMax;
1555 for (i = 0; i < (unsigned long) count; i++, rp++)
1556 {
1557 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1558 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1559 rp->adr = sym.value;
1560 rp->regmask = pdr.regmask;
1561 rp->regoffset = pdr.regoffset;
1562 rp->fregmask = pdr.fregmask;
1563 rp->fregoffset = pdr.fregoffset;
1564 rp->frameoffset = pdr.frameoffset;
1565 rp->framereg = pdr.framereg;
1566 rp->pcreg = pdr.pcreg;
1567 rp->irpss = sindex;
1568 sv[i] = ss + sym.iss;
1569 sindex += strlen (sv[i]) + 1;
1570 }
1571 }
1572
1573 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1574 size = BFD_ALIGN (size, 16);
1575 rtproc = bfd_alloc (abfd, size);
1576 if (rtproc == NULL)
1577 {
1578 mips_elf_hash_table (info)->procedure_count = 0;
1579 goto error_return;
1580 }
1581
1582 mips_elf_hash_table (info)->procedure_count = count + 2;
1583
1584 erp = rtproc;
1585 memset (erp, 0, sizeof (struct rpdr_ext));
1586 erp++;
1587 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1588 strcpy (str, no_name_func);
1589 str += strlen (no_name_func) + 1;
1590 for (i = 0; i < count; i++)
1591 {
1592 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1593 strcpy (str, sv[i]);
1594 str += strlen (sv[i]) + 1;
1595 }
1596 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1597
1598 /* Set the size and contents of .rtproc section. */
1599 s->size = size;
1600 s->contents = rtproc;
1601
1602 /* Skip this section later on (I don't think this currently
1603 matters, but someday it might). */
1604 s->map_head.link_order = NULL;
1605
1606 if (epdr != NULL)
1607 free (epdr);
1608 if (rpdr != NULL)
1609 free (rpdr);
1610 if (esym != NULL)
1611 free (esym);
1612 if (ss != NULL)
1613 free (ss);
1614 if (sv != NULL)
1615 free (sv);
1616
1617 return TRUE;
1618
1619 error_return:
1620 if (epdr != NULL)
1621 free (epdr);
1622 if (rpdr != NULL)
1623 free (rpdr);
1624 if (esym != NULL)
1625 free (esym);
1626 if (ss != NULL)
1627 free (ss);
1628 if (sv != NULL)
1629 free (sv);
1630 return FALSE;
1631 }
1632 \f
1633 /* We're going to create a stub for H. Create a symbol for the stub's
1634 value and size, to help make the disassembly easier to read. */
1635
1636 static bfd_boolean
1637 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1638 struct mips_elf_link_hash_entry *h,
1639 const char *prefix, asection *s, bfd_vma value,
1640 bfd_vma size)
1641 {
1642 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1643 struct bfd_link_hash_entry *bh;
1644 struct elf_link_hash_entry *elfh;
1645 char *name;
1646 bfd_boolean res;
1647
1648 if (micromips_p)
1649 value |= 1;
1650
1651 /* Create a new symbol. */
1652 name = concat (prefix, h->root.root.root.string, NULL);
1653 bh = NULL;
1654 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1655 BSF_LOCAL, s, value, NULL,
1656 TRUE, FALSE, &bh);
1657 free (name);
1658 if (! res)
1659 return FALSE;
1660
1661 /* Make it a local function. */
1662 elfh = (struct elf_link_hash_entry *) bh;
1663 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1664 elfh->size = size;
1665 elfh->forced_local = 1;
1666 if (micromips_p)
1667 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1668 return TRUE;
1669 }
1670
1671 /* We're about to redefine H. Create a symbol to represent H's
1672 current value and size, to help make the disassembly easier
1673 to read. */
1674
1675 static bfd_boolean
1676 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1677 struct mips_elf_link_hash_entry *h,
1678 const char *prefix)
1679 {
1680 struct bfd_link_hash_entry *bh;
1681 struct elf_link_hash_entry *elfh;
1682 char *name;
1683 asection *s;
1684 bfd_vma value;
1685 bfd_boolean res;
1686
1687 /* Read the symbol's value. */
1688 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1689 || h->root.root.type == bfd_link_hash_defweak);
1690 s = h->root.root.u.def.section;
1691 value = h->root.root.u.def.value;
1692
1693 /* Create a new symbol. */
1694 name = concat (prefix, h->root.root.root.string, NULL);
1695 bh = NULL;
1696 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1697 BSF_LOCAL, s, value, NULL,
1698 TRUE, FALSE, &bh);
1699 free (name);
1700 if (! res)
1701 return FALSE;
1702
1703 /* Make it local and copy the other attributes from H. */
1704 elfh = (struct elf_link_hash_entry *) bh;
1705 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1706 elfh->other = h->root.other;
1707 elfh->size = h->root.size;
1708 elfh->forced_local = 1;
1709 return TRUE;
1710 }
1711
1712 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1713 function rather than to a hard-float stub. */
1714
1715 static bfd_boolean
1716 section_allows_mips16_refs_p (asection *section)
1717 {
1718 const char *name;
1719
1720 name = bfd_get_section_name (section->owner, section);
1721 return (FN_STUB_P (name)
1722 || CALL_STUB_P (name)
1723 || CALL_FP_STUB_P (name)
1724 || strcmp (name, ".pdr") == 0);
1725 }
1726
1727 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1728 stub section of some kind. Return the R_SYMNDX of the target
1729 function, or 0 if we can't decide which function that is. */
1730
1731 static unsigned long
1732 mips16_stub_symndx (const struct elf_backend_data *bed,
1733 asection *sec ATTRIBUTE_UNUSED,
1734 const Elf_Internal_Rela *relocs,
1735 const Elf_Internal_Rela *relend)
1736 {
1737 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1738 const Elf_Internal_Rela *rel;
1739
1740 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1741 one in a compound relocation. */
1742 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1743 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1744 return ELF_R_SYM (sec->owner, rel->r_info);
1745
1746 /* Otherwise trust the first relocation, whatever its kind. This is
1747 the traditional behavior. */
1748 if (relocs < relend)
1749 return ELF_R_SYM (sec->owner, relocs->r_info);
1750
1751 return 0;
1752 }
1753
1754 /* Check the mips16 stubs for a particular symbol, and see if we can
1755 discard them. */
1756
1757 static void
1758 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1759 struct mips_elf_link_hash_entry *h)
1760 {
1761 /* Dynamic symbols must use the standard call interface, in case other
1762 objects try to call them. */
1763 if (h->fn_stub != NULL
1764 && h->root.dynindx != -1)
1765 {
1766 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1767 h->need_fn_stub = TRUE;
1768 }
1769
1770 if (h->fn_stub != NULL
1771 && ! h->need_fn_stub)
1772 {
1773 /* We don't need the fn_stub; the only references to this symbol
1774 are 16 bit calls. Clobber the size to 0 to prevent it from
1775 being included in the link. */
1776 h->fn_stub->size = 0;
1777 h->fn_stub->flags &= ~SEC_RELOC;
1778 h->fn_stub->reloc_count = 0;
1779 h->fn_stub->flags |= SEC_EXCLUDE;
1780 h->fn_stub->output_section = bfd_abs_section_ptr;
1781 }
1782
1783 if (h->call_stub != NULL
1784 && ELF_ST_IS_MIPS16 (h->root.other))
1785 {
1786 /* We don't need the call_stub; this is a 16 bit function, so
1787 calls from other 16 bit functions are OK. Clobber the size
1788 to 0 to prevent it from being included in the link. */
1789 h->call_stub->size = 0;
1790 h->call_stub->flags &= ~SEC_RELOC;
1791 h->call_stub->reloc_count = 0;
1792 h->call_stub->flags |= SEC_EXCLUDE;
1793 h->call_stub->output_section = bfd_abs_section_ptr;
1794 }
1795
1796 if (h->call_fp_stub != NULL
1797 && ELF_ST_IS_MIPS16 (h->root.other))
1798 {
1799 /* We don't need the call_stub; this is a 16 bit function, so
1800 calls from other 16 bit functions are OK. Clobber the size
1801 to 0 to prevent it from being included in the link. */
1802 h->call_fp_stub->size = 0;
1803 h->call_fp_stub->flags &= ~SEC_RELOC;
1804 h->call_fp_stub->reloc_count = 0;
1805 h->call_fp_stub->flags |= SEC_EXCLUDE;
1806 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1807 }
1808 }
1809
1810 /* Hashtable callbacks for mips_elf_la25_stubs. */
1811
1812 static hashval_t
1813 mips_elf_la25_stub_hash (const void *entry_)
1814 {
1815 const struct mips_elf_la25_stub *entry;
1816
1817 entry = (struct mips_elf_la25_stub *) entry_;
1818 return entry->h->root.root.u.def.section->id
1819 + entry->h->root.root.u.def.value;
1820 }
1821
1822 static int
1823 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1824 {
1825 const struct mips_elf_la25_stub *entry1, *entry2;
1826
1827 entry1 = (struct mips_elf_la25_stub *) entry1_;
1828 entry2 = (struct mips_elf_la25_stub *) entry2_;
1829 return ((entry1->h->root.root.u.def.section
1830 == entry2->h->root.root.u.def.section)
1831 && (entry1->h->root.root.u.def.value
1832 == entry2->h->root.root.u.def.value));
1833 }
1834
1835 /* Called by the linker to set up the la25 stub-creation code. FN is
1836 the linker's implementation of add_stub_function. Return true on
1837 success. */
1838
1839 bfd_boolean
1840 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1841 asection *(*fn) (const char *, asection *,
1842 asection *))
1843 {
1844 struct mips_elf_link_hash_table *htab;
1845
1846 htab = mips_elf_hash_table (info);
1847 if (htab == NULL)
1848 return FALSE;
1849
1850 htab->add_stub_section = fn;
1851 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1852 mips_elf_la25_stub_eq, NULL);
1853 if (htab->la25_stubs == NULL)
1854 return FALSE;
1855
1856 return TRUE;
1857 }
1858
1859 /* Return true if H is a locally-defined PIC function, in the sense
1860 that it or its fn_stub might need $25 to be valid on entry.
1861 Note that MIPS16 functions set up $gp using PC-relative instructions,
1862 so they themselves never need $25 to be valid. Only non-MIPS16
1863 entry points are of interest here. */
1864
1865 static bfd_boolean
1866 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1867 {
1868 return ((h->root.root.type == bfd_link_hash_defined
1869 || h->root.root.type == bfd_link_hash_defweak)
1870 && h->root.def_regular
1871 && !bfd_is_abs_section (h->root.root.u.def.section)
1872 && !bfd_is_und_section (h->root.root.u.def.section)
1873 && (!ELF_ST_IS_MIPS16 (h->root.other)
1874 || (h->fn_stub && h->need_fn_stub))
1875 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1876 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1877 }
1878
1879 /* Set *SEC to the input section that contains the target of STUB.
1880 Return the offset of the target from the start of that section. */
1881
1882 static bfd_vma
1883 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1884 asection **sec)
1885 {
1886 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1887 {
1888 BFD_ASSERT (stub->h->need_fn_stub);
1889 *sec = stub->h->fn_stub;
1890 return 0;
1891 }
1892 else
1893 {
1894 *sec = stub->h->root.root.u.def.section;
1895 return stub->h->root.root.u.def.value;
1896 }
1897 }
1898
1899 /* STUB describes an la25 stub that we have decided to implement
1900 by inserting an LUI/ADDIU pair before the target function.
1901 Create the section and redirect the function symbol to it. */
1902
1903 static bfd_boolean
1904 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1905 struct bfd_link_info *info)
1906 {
1907 struct mips_elf_link_hash_table *htab;
1908 char *name;
1909 asection *s, *input_section;
1910 unsigned int align;
1911
1912 htab = mips_elf_hash_table (info);
1913 if (htab == NULL)
1914 return FALSE;
1915
1916 /* Create a unique name for the new section. */
1917 name = bfd_malloc (11 + sizeof (".text.stub."));
1918 if (name == NULL)
1919 return FALSE;
1920 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1921
1922 /* Create the section. */
1923 mips_elf_get_la25_target (stub, &input_section);
1924 s = htab->add_stub_section (name, input_section,
1925 input_section->output_section);
1926 if (s == NULL)
1927 return FALSE;
1928
1929 /* Make sure that any padding goes before the stub. */
1930 align = input_section->alignment_power;
1931 if (!bfd_set_section_alignment (s->owner, s, align))
1932 return FALSE;
1933 if (align > 3)
1934 s->size = (1 << align) - 8;
1935
1936 /* Create a symbol for the stub. */
1937 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1938 stub->stub_section = s;
1939 stub->offset = s->size;
1940
1941 /* Allocate room for it. */
1942 s->size += 8;
1943 return TRUE;
1944 }
1945
1946 /* STUB describes an la25 stub that we have decided to implement
1947 with a separate trampoline. Allocate room for it and redirect
1948 the function symbol to it. */
1949
1950 static bfd_boolean
1951 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1952 struct bfd_link_info *info)
1953 {
1954 struct mips_elf_link_hash_table *htab;
1955 asection *s;
1956
1957 htab = mips_elf_hash_table (info);
1958 if (htab == NULL)
1959 return FALSE;
1960
1961 /* Create a trampoline section, if we haven't already. */
1962 s = htab->strampoline;
1963 if (s == NULL)
1964 {
1965 asection *input_section = stub->h->root.root.u.def.section;
1966 s = htab->add_stub_section (".text", NULL,
1967 input_section->output_section);
1968 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1969 return FALSE;
1970 htab->strampoline = s;
1971 }
1972
1973 /* Create a symbol for the stub. */
1974 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1975 stub->stub_section = s;
1976 stub->offset = s->size;
1977
1978 /* Allocate room for it. */
1979 s->size += 16;
1980 return TRUE;
1981 }
1982
1983 /* H describes a symbol that needs an la25 stub. Make sure that an
1984 appropriate stub exists and point H at it. */
1985
1986 static bfd_boolean
1987 mips_elf_add_la25_stub (struct bfd_link_info *info,
1988 struct mips_elf_link_hash_entry *h)
1989 {
1990 struct mips_elf_link_hash_table *htab;
1991 struct mips_elf_la25_stub search, *stub;
1992 bfd_boolean use_trampoline_p;
1993 asection *s;
1994 bfd_vma value;
1995 void **slot;
1996
1997 /* Describe the stub we want. */
1998 search.stub_section = NULL;
1999 search.offset = 0;
2000 search.h = h;
2001
2002 /* See if we've already created an equivalent stub. */
2003 htab = mips_elf_hash_table (info);
2004 if (htab == NULL)
2005 return FALSE;
2006
2007 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
2008 if (slot == NULL)
2009 return FALSE;
2010
2011 stub = (struct mips_elf_la25_stub *) *slot;
2012 if (stub != NULL)
2013 {
2014 /* We can reuse the existing stub. */
2015 h->la25_stub = stub;
2016 return TRUE;
2017 }
2018
2019 /* Create a permanent copy of ENTRY and add it to the hash table. */
2020 stub = bfd_malloc (sizeof (search));
2021 if (stub == NULL)
2022 return FALSE;
2023 *stub = search;
2024 *slot = stub;
2025
2026 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
2027 of the section and if we would need no more than 2 nops. */
2028 value = mips_elf_get_la25_target (stub, &s);
2029 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
2030 value &= ~1;
2031 use_trampoline_p = (value != 0 || s->alignment_power > 4);
2032
2033 h->la25_stub = stub;
2034 return (use_trampoline_p
2035 ? mips_elf_add_la25_trampoline (stub, info)
2036 : mips_elf_add_la25_intro (stub, info));
2037 }
2038
2039 /* A mips_elf_link_hash_traverse callback that is called before sizing
2040 sections. DATA points to a mips_htab_traverse_info structure. */
2041
2042 static bfd_boolean
2043 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
2044 {
2045 struct mips_htab_traverse_info *hti;
2046
2047 hti = (struct mips_htab_traverse_info *) data;
2048 if (!bfd_link_relocatable (hti->info))
2049 mips_elf_check_mips16_stubs (hti->info, h);
2050
2051 if (mips_elf_local_pic_function_p (h))
2052 {
2053 /* PR 12845: If H is in a section that has been garbage
2054 collected it will have its output section set to *ABS*. */
2055 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
2056 return TRUE;
2057
2058 /* H is a function that might need $25 to be valid on entry.
2059 If we're creating a non-PIC relocatable object, mark H as
2060 being PIC. If we're creating a non-relocatable object with
2061 non-PIC branches and jumps to H, make sure that H has an la25
2062 stub. */
2063 if (bfd_link_relocatable (hti->info))
2064 {
2065 if (!PIC_OBJECT_P (hti->output_bfd))
2066 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2067 }
2068 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2069 {
2070 hti->error = TRUE;
2071 return FALSE;
2072 }
2073 }
2074 return TRUE;
2075 }
2076 \f
2077 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2078 Most mips16 instructions are 16 bits, but these instructions
2079 are 32 bits.
2080
2081 The format of these instructions is:
2082
2083 +--------------+--------------------------------+
2084 | JALX | X| Imm 20:16 | Imm 25:21 |
2085 +--------------+--------------------------------+
2086 | Immediate 15:0 |
2087 +-----------------------------------------------+
2088
2089 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2090 Note that the immediate value in the first word is swapped.
2091
2092 When producing a relocatable object file, R_MIPS16_26 is
2093 handled mostly like R_MIPS_26. In particular, the addend is
2094 stored as a straight 26-bit value in a 32-bit instruction.
2095 (gas makes life simpler for itself by never adjusting a
2096 R_MIPS16_26 reloc to be against a section, so the addend is
2097 always zero). However, the 32 bit instruction is stored as 2
2098 16-bit values, rather than a single 32-bit value. In a
2099 big-endian file, the result is the same; in a little-endian
2100 file, the two 16-bit halves of the 32 bit value are swapped.
2101 This is so that a disassembler can recognize the jal
2102 instruction.
2103
2104 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2105 instruction stored as two 16-bit values. The addend A is the
2106 contents of the targ26 field. The calculation is the same as
2107 R_MIPS_26. When storing the calculated value, reorder the
2108 immediate value as shown above, and don't forget to store the
2109 value as two 16-bit values.
2110
2111 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2112 defined as
2113
2114 big-endian:
2115 +--------+----------------------+
2116 | | |
2117 | | targ26-16 |
2118 |31 26|25 0|
2119 +--------+----------------------+
2120
2121 little-endian:
2122 +----------+------+-------------+
2123 | | | |
2124 | sub1 | | sub2 |
2125 |0 9|10 15|16 31|
2126 +----------+--------------------+
2127 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2128 ((sub1 << 16) | sub2)).
2129
2130 When producing a relocatable object file, the calculation is
2131 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2132 When producing a fully linked file, the calculation is
2133 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2134 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2135
2136 The table below lists the other MIPS16 instruction relocations.
2137 Each one is calculated in the same way as the non-MIPS16 relocation
2138 given on the right, but using the extended MIPS16 layout of 16-bit
2139 immediate fields:
2140
2141 R_MIPS16_GPREL R_MIPS_GPREL16
2142 R_MIPS16_GOT16 R_MIPS_GOT16
2143 R_MIPS16_CALL16 R_MIPS_CALL16
2144 R_MIPS16_HI16 R_MIPS_HI16
2145 R_MIPS16_LO16 R_MIPS_LO16
2146
2147 A typical instruction will have a format like this:
2148
2149 +--------------+--------------------------------+
2150 | EXTEND | Imm 10:5 | Imm 15:11 |
2151 +--------------+--------------------------------+
2152 | Major | rx | ry | Imm 4:0 |
2153 +--------------+--------------------------------+
2154
2155 EXTEND is the five bit value 11110. Major is the instruction
2156 opcode.
2157
2158 All we need to do here is shuffle the bits appropriately.
2159 As above, the two 16-bit halves must be swapped on a
2160 little-endian system.
2161
2162 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2163 relocatable field is shifted by 1 rather than 2 and the same bit
2164 shuffling is done as with the relocations above. */
2165
2166 static inline bfd_boolean
2167 mips16_reloc_p (int r_type)
2168 {
2169 switch (r_type)
2170 {
2171 case R_MIPS16_26:
2172 case R_MIPS16_GPREL:
2173 case R_MIPS16_GOT16:
2174 case R_MIPS16_CALL16:
2175 case R_MIPS16_HI16:
2176 case R_MIPS16_LO16:
2177 case R_MIPS16_TLS_GD:
2178 case R_MIPS16_TLS_LDM:
2179 case R_MIPS16_TLS_DTPREL_HI16:
2180 case R_MIPS16_TLS_DTPREL_LO16:
2181 case R_MIPS16_TLS_GOTTPREL:
2182 case R_MIPS16_TLS_TPREL_HI16:
2183 case R_MIPS16_TLS_TPREL_LO16:
2184 case R_MIPS16_PC16_S1:
2185 return TRUE;
2186
2187 default:
2188 return FALSE;
2189 }
2190 }
2191
2192 /* Check if a microMIPS reloc. */
2193
2194 static inline bfd_boolean
2195 micromips_reloc_p (unsigned int r_type)
2196 {
2197 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2198 }
2199
2200 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2201 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2202 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2203
2204 static inline bfd_boolean
2205 micromips_reloc_shuffle_p (unsigned int r_type)
2206 {
2207 return (micromips_reloc_p (r_type)
2208 && r_type != R_MICROMIPS_PC7_S1
2209 && r_type != R_MICROMIPS_PC10_S1);
2210 }
2211
2212 static inline bfd_boolean
2213 got16_reloc_p (int r_type)
2214 {
2215 return (r_type == R_MIPS_GOT16
2216 || r_type == R_MIPS16_GOT16
2217 || r_type == R_MICROMIPS_GOT16);
2218 }
2219
2220 static inline bfd_boolean
2221 call16_reloc_p (int r_type)
2222 {
2223 return (r_type == R_MIPS_CALL16
2224 || r_type == R_MIPS16_CALL16
2225 || r_type == R_MICROMIPS_CALL16);
2226 }
2227
2228 static inline bfd_boolean
2229 got_disp_reloc_p (unsigned int r_type)
2230 {
2231 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2232 }
2233
2234 static inline bfd_boolean
2235 got_page_reloc_p (unsigned int r_type)
2236 {
2237 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2238 }
2239
2240 static inline bfd_boolean
2241 got_lo16_reloc_p (unsigned int r_type)
2242 {
2243 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2244 }
2245
2246 static inline bfd_boolean
2247 call_hi16_reloc_p (unsigned int r_type)
2248 {
2249 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2250 }
2251
2252 static inline bfd_boolean
2253 call_lo16_reloc_p (unsigned int r_type)
2254 {
2255 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2256 }
2257
2258 static inline bfd_boolean
2259 hi16_reloc_p (int r_type)
2260 {
2261 return (r_type == R_MIPS_HI16
2262 || r_type == R_MIPS16_HI16
2263 || r_type == R_MICROMIPS_HI16
2264 || r_type == R_MIPS_PCHI16);
2265 }
2266
2267 static inline bfd_boolean
2268 lo16_reloc_p (int r_type)
2269 {
2270 return (r_type == R_MIPS_LO16
2271 || r_type == R_MIPS16_LO16
2272 || r_type == R_MICROMIPS_LO16
2273 || r_type == R_MIPS_PCLO16);
2274 }
2275
2276 static inline bfd_boolean
2277 mips16_call_reloc_p (int r_type)
2278 {
2279 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2280 }
2281
2282 static inline bfd_boolean
2283 jal_reloc_p (int r_type)
2284 {
2285 return (r_type == R_MIPS_26
2286 || r_type == R_MIPS16_26
2287 || r_type == R_MICROMIPS_26_S1);
2288 }
2289
2290 static inline bfd_boolean
2291 b_reloc_p (int r_type)
2292 {
2293 return (r_type == R_MIPS_PC26_S2
2294 || r_type == R_MIPS_PC21_S2
2295 || r_type == R_MIPS_PC16
2296 || r_type == R_MIPS_GNU_REL16_S2
2297 || r_type == R_MIPS16_PC16_S1
2298 || r_type == R_MICROMIPS_PC16_S1
2299 || r_type == R_MICROMIPS_PC10_S1
2300 || r_type == R_MICROMIPS_PC7_S1);
2301 }
2302
2303 static inline bfd_boolean
2304 aligned_pcrel_reloc_p (int r_type)
2305 {
2306 return (r_type == R_MIPS_PC18_S3
2307 || r_type == R_MIPS_PC19_S2);
2308 }
2309
2310 static inline bfd_boolean
2311 branch_reloc_p (int r_type)
2312 {
2313 return (r_type == R_MIPS_26
2314 || r_type == R_MIPS_PC26_S2
2315 || r_type == R_MIPS_PC21_S2
2316 || r_type == R_MIPS_PC16
2317 || r_type == R_MIPS_GNU_REL16_S2);
2318 }
2319
2320 static inline bfd_boolean
2321 mips16_branch_reloc_p (int r_type)
2322 {
2323 return (r_type == R_MIPS16_26
2324 || r_type == R_MIPS16_PC16_S1);
2325 }
2326
2327 static inline bfd_boolean
2328 micromips_branch_reloc_p (int r_type)
2329 {
2330 return (r_type == R_MICROMIPS_26_S1
2331 || r_type == R_MICROMIPS_PC16_S1
2332 || r_type == R_MICROMIPS_PC10_S1
2333 || r_type == R_MICROMIPS_PC7_S1);
2334 }
2335
2336 static inline bfd_boolean
2337 tls_gd_reloc_p (unsigned int r_type)
2338 {
2339 return (r_type == R_MIPS_TLS_GD
2340 || r_type == R_MIPS16_TLS_GD
2341 || r_type == R_MICROMIPS_TLS_GD);
2342 }
2343
2344 static inline bfd_boolean
2345 tls_ldm_reloc_p (unsigned int r_type)
2346 {
2347 return (r_type == R_MIPS_TLS_LDM
2348 || r_type == R_MIPS16_TLS_LDM
2349 || r_type == R_MICROMIPS_TLS_LDM);
2350 }
2351
2352 static inline bfd_boolean
2353 tls_gottprel_reloc_p (unsigned int r_type)
2354 {
2355 return (r_type == R_MIPS_TLS_GOTTPREL
2356 || r_type == R_MIPS16_TLS_GOTTPREL
2357 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2358 }
2359
2360 void
2361 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2362 bfd_boolean jal_shuffle, bfd_byte *data)
2363 {
2364 bfd_vma first, second, val;
2365
2366 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2367 return;
2368
2369 /* Pick up the first and second halfwords of the instruction. */
2370 first = bfd_get_16 (abfd, data);
2371 second = bfd_get_16 (abfd, data + 2);
2372 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2373 val = first << 16 | second;
2374 else if (r_type != R_MIPS16_26)
2375 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2376 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2377 else
2378 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2379 | ((first & 0x1f) << 21) | second);
2380 bfd_put_32 (abfd, val, data);
2381 }
2382
2383 void
2384 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2385 bfd_boolean jal_shuffle, bfd_byte *data)
2386 {
2387 bfd_vma first, second, val;
2388
2389 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2390 return;
2391
2392 val = bfd_get_32 (abfd, data);
2393 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2394 {
2395 second = val & 0xffff;
2396 first = val >> 16;
2397 }
2398 else if (r_type != R_MIPS16_26)
2399 {
2400 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2401 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2402 }
2403 else
2404 {
2405 second = val & 0xffff;
2406 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2407 | ((val >> 21) & 0x1f);
2408 }
2409 bfd_put_16 (abfd, second, data + 2);
2410 bfd_put_16 (abfd, first, data);
2411 }
2412
2413 bfd_reloc_status_type
2414 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2415 arelent *reloc_entry, asection *input_section,
2416 bfd_boolean relocatable, void *data, bfd_vma gp)
2417 {
2418 bfd_vma relocation;
2419 bfd_signed_vma val;
2420 bfd_reloc_status_type status;
2421
2422 if (bfd_is_com_section (symbol->section))
2423 relocation = 0;
2424 else
2425 relocation = symbol->value;
2426
2427 relocation += symbol->section->output_section->vma;
2428 relocation += symbol->section->output_offset;
2429
2430 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2431 return bfd_reloc_outofrange;
2432
2433 /* Set val to the offset into the section or symbol. */
2434 val = reloc_entry->addend;
2435
2436 _bfd_mips_elf_sign_extend (val, 16);
2437
2438 /* Adjust val for the final section location and GP value. If we
2439 are producing relocatable output, we don't want to do this for
2440 an external symbol. */
2441 if (! relocatable
2442 || (symbol->flags & BSF_SECTION_SYM) != 0)
2443 val += relocation - gp;
2444
2445 if (reloc_entry->howto->partial_inplace)
2446 {
2447 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2448 (bfd_byte *) data
2449 + reloc_entry->address);
2450 if (status != bfd_reloc_ok)
2451 return status;
2452 }
2453 else
2454 reloc_entry->addend = val;
2455
2456 if (relocatable)
2457 reloc_entry->address += input_section->output_offset;
2458
2459 return bfd_reloc_ok;
2460 }
2461
2462 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2463 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2464 that contains the relocation field and DATA points to the start of
2465 INPUT_SECTION. */
2466
2467 struct mips_hi16
2468 {
2469 struct mips_hi16 *next;
2470 bfd_byte *data;
2471 asection *input_section;
2472 arelent rel;
2473 };
2474
2475 /* FIXME: This should not be a static variable. */
2476
2477 static struct mips_hi16 *mips_hi16_list;
2478
2479 /* A howto special_function for REL *HI16 relocations. We can only
2480 calculate the correct value once we've seen the partnering
2481 *LO16 relocation, so just save the information for later.
2482
2483 The ABI requires that the *LO16 immediately follow the *HI16.
2484 However, as a GNU extension, we permit an arbitrary number of
2485 *HI16s to be associated with a single *LO16. This significantly
2486 simplies the relocation handling in gcc. */
2487
2488 bfd_reloc_status_type
2489 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2490 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2491 asection *input_section, bfd *output_bfd,
2492 char **error_message ATTRIBUTE_UNUSED)
2493 {
2494 struct mips_hi16 *n;
2495
2496 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2497 return bfd_reloc_outofrange;
2498
2499 n = bfd_malloc (sizeof *n);
2500 if (n == NULL)
2501 return bfd_reloc_outofrange;
2502
2503 n->next = mips_hi16_list;
2504 n->data = data;
2505 n->input_section = input_section;
2506 n->rel = *reloc_entry;
2507 mips_hi16_list = n;
2508
2509 if (output_bfd != NULL)
2510 reloc_entry->address += input_section->output_offset;
2511
2512 return bfd_reloc_ok;
2513 }
2514
2515 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2516 like any other 16-bit relocation when applied to global symbols, but is
2517 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2518
2519 bfd_reloc_status_type
2520 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2521 void *data, asection *input_section,
2522 bfd *output_bfd, char **error_message)
2523 {
2524 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2525 || bfd_is_und_section (bfd_get_section (symbol))
2526 || bfd_is_com_section (bfd_get_section (symbol)))
2527 /* The relocation is against a global symbol. */
2528 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2529 input_section, output_bfd,
2530 error_message);
2531
2532 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2533 input_section, output_bfd, error_message);
2534 }
2535
2536 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2537 is a straightforward 16 bit inplace relocation, but we must deal with
2538 any partnering high-part relocations as well. */
2539
2540 bfd_reloc_status_type
2541 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2542 void *data, asection *input_section,
2543 bfd *output_bfd, char **error_message)
2544 {
2545 bfd_vma vallo;
2546 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2547
2548 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2549 return bfd_reloc_outofrange;
2550
2551 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2552 location);
2553 vallo = bfd_get_32 (abfd, location);
2554 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2555 location);
2556
2557 while (mips_hi16_list != NULL)
2558 {
2559 bfd_reloc_status_type ret;
2560 struct mips_hi16 *hi;
2561
2562 hi = mips_hi16_list;
2563
2564 /* R_MIPS*_GOT16 relocations are something of a special case. We
2565 want to install the addend in the same way as for a R_MIPS*_HI16
2566 relocation (with a rightshift of 16). However, since GOT16
2567 relocations can also be used with global symbols, their howto
2568 has a rightshift of 0. */
2569 if (hi->rel.howto->type == R_MIPS_GOT16)
2570 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2571 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2572 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2573 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2574 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2575
2576 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2577 carry or borrow will induce a change of +1 or -1 in the high part. */
2578 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2579
2580 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2581 hi->input_section, output_bfd,
2582 error_message);
2583 if (ret != bfd_reloc_ok)
2584 return ret;
2585
2586 mips_hi16_list = hi->next;
2587 free (hi);
2588 }
2589
2590 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2591 input_section, output_bfd,
2592 error_message);
2593 }
2594
2595 /* A generic howto special_function. This calculates and installs the
2596 relocation itself, thus avoiding the oft-discussed problems in
2597 bfd_perform_relocation and bfd_install_relocation. */
2598
2599 bfd_reloc_status_type
2600 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2601 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2602 asection *input_section, bfd *output_bfd,
2603 char **error_message ATTRIBUTE_UNUSED)
2604 {
2605 bfd_signed_vma val;
2606 bfd_reloc_status_type status;
2607 bfd_boolean relocatable;
2608
2609 relocatable = (output_bfd != NULL);
2610
2611 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2612 return bfd_reloc_outofrange;
2613
2614 /* Build up the field adjustment in VAL. */
2615 val = 0;
2616 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2617 {
2618 /* Either we're calculating the final field value or we have a
2619 relocation against a section symbol. Add in the section's
2620 offset or address. */
2621 val += symbol->section->output_section->vma;
2622 val += symbol->section->output_offset;
2623 }
2624
2625 if (!relocatable)
2626 {
2627 /* We're calculating the final field value. Add in the symbol's value
2628 and, if pc-relative, subtract the address of the field itself. */
2629 val += symbol->value;
2630 if (reloc_entry->howto->pc_relative)
2631 {
2632 val -= input_section->output_section->vma;
2633 val -= input_section->output_offset;
2634 val -= reloc_entry->address;
2635 }
2636 }
2637
2638 /* VAL is now the final adjustment. If we're keeping this relocation
2639 in the output file, and if the relocation uses a separate addend,
2640 we just need to add VAL to that addend. Otherwise we need to add
2641 VAL to the relocation field itself. */
2642 if (relocatable && !reloc_entry->howto->partial_inplace)
2643 reloc_entry->addend += val;
2644 else
2645 {
2646 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2647
2648 /* Add in the separate addend, if any. */
2649 val += reloc_entry->addend;
2650
2651 /* Add VAL to the relocation field. */
2652 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2653 location);
2654 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2655 location);
2656 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2657 location);
2658
2659 if (status != bfd_reloc_ok)
2660 return status;
2661 }
2662
2663 if (relocatable)
2664 reloc_entry->address += input_section->output_offset;
2665
2666 return bfd_reloc_ok;
2667 }
2668 \f
2669 /* Swap an entry in a .gptab section. Note that these routines rely
2670 on the equivalence of the two elements of the union. */
2671
2672 static void
2673 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2674 Elf32_gptab *in)
2675 {
2676 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2677 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2678 }
2679
2680 static void
2681 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2682 Elf32_External_gptab *ex)
2683 {
2684 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2685 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2686 }
2687
2688 static void
2689 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2690 Elf32_External_compact_rel *ex)
2691 {
2692 H_PUT_32 (abfd, in->id1, ex->id1);
2693 H_PUT_32 (abfd, in->num, ex->num);
2694 H_PUT_32 (abfd, in->id2, ex->id2);
2695 H_PUT_32 (abfd, in->offset, ex->offset);
2696 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2697 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2698 }
2699
2700 static void
2701 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2702 Elf32_External_crinfo *ex)
2703 {
2704 unsigned long l;
2705
2706 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2707 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2708 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2709 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2710 H_PUT_32 (abfd, l, ex->info);
2711 H_PUT_32 (abfd, in->konst, ex->konst);
2712 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2713 }
2714 \f
2715 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2716 routines swap this structure in and out. They are used outside of
2717 BFD, so they are globally visible. */
2718
2719 void
2720 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2721 Elf32_RegInfo *in)
2722 {
2723 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2724 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2725 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2726 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2727 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2728 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2729 }
2730
2731 void
2732 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2733 Elf32_External_RegInfo *ex)
2734 {
2735 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2736 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2737 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2738 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2739 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2740 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2741 }
2742
2743 /* In the 64 bit ABI, the .MIPS.options section holds register
2744 information in an Elf64_Reginfo structure. These routines swap
2745 them in and out. They are globally visible because they are used
2746 outside of BFD. These routines are here so that gas can call them
2747 without worrying about whether the 64 bit ABI has been included. */
2748
2749 void
2750 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2751 Elf64_Internal_RegInfo *in)
2752 {
2753 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2754 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2755 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2756 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2757 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2758 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2759 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2760 }
2761
2762 void
2763 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2764 Elf64_External_RegInfo *ex)
2765 {
2766 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2767 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2768 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2769 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2770 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2771 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2772 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2773 }
2774
2775 /* Swap in an options header. */
2776
2777 void
2778 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2779 Elf_Internal_Options *in)
2780 {
2781 in->kind = H_GET_8 (abfd, ex->kind);
2782 in->size = H_GET_8 (abfd, ex->size);
2783 in->section = H_GET_16 (abfd, ex->section);
2784 in->info = H_GET_32 (abfd, ex->info);
2785 }
2786
2787 /* Swap out an options header. */
2788
2789 void
2790 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2791 Elf_External_Options *ex)
2792 {
2793 H_PUT_8 (abfd, in->kind, ex->kind);
2794 H_PUT_8 (abfd, in->size, ex->size);
2795 H_PUT_16 (abfd, in->section, ex->section);
2796 H_PUT_32 (abfd, in->info, ex->info);
2797 }
2798
2799 /* Swap in an abiflags structure. */
2800
2801 void
2802 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2803 const Elf_External_ABIFlags_v0 *ex,
2804 Elf_Internal_ABIFlags_v0 *in)
2805 {
2806 in->version = H_GET_16 (abfd, ex->version);
2807 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2808 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2809 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2810 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2811 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2812 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2813 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2814 in->ases = H_GET_32 (abfd, ex->ases);
2815 in->flags1 = H_GET_32 (abfd, ex->flags1);
2816 in->flags2 = H_GET_32 (abfd, ex->flags2);
2817 }
2818
2819 /* Swap out an abiflags structure. */
2820
2821 void
2822 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2823 const Elf_Internal_ABIFlags_v0 *in,
2824 Elf_External_ABIFlags_v0 *ex)
2825 {
2826 H_PUT_16 (abfd, in->version, ex->version);
2827 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2828 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2829 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2830 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2831 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2832 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2833 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2834 H_PUT_32 (abfd, in->ases, ex->ases);
2835 H_PUT_32 (abfd, in->flags1, ex->flags1);
2836 H_PUT_32 (abfd, in->flags2, ex->flags2);
2837 }
2838 \f
2839 /* This function is called via qsort() to sort the dynamic relocation
2840 entries by increasing r_symndx value. */
2841
2842 static int
2843 sort_dynamic_relocs (const void *arg1, const void *arg2)
2844 {
2845 Elf_Internal_Rela int_reloc1;
2846 Elf_Internal_Rela int_reloc2;
2847 int diff;
2848
2849 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2850 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2851
2852 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2853 if (diff != 0)
2854 return diff;
2855
2856 if (int_reloc1.r_offset < int_reloc2.r_offset)
2857 return -1;
2858 if (int_reloc1.r_offset > int_reloc2.r_offset)
2859 return 1;
2860 return 0;
2861 }
2862
2863 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2864
2865 static int
2866 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2867 const void *arg2 ATTRIBUTE_UNUSED)
2868 {
2869 #ifdef BFD64
2870 Elf_Internal_Rela int_reloc1[3];
2871 Elf_Internal_Rela int_reloc2[3];
2872
2873 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2874 (reldyn_sorting_bfd, arg1, int_reloc1);
2875 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2876 (reldyn_sorting_bfd, arg2, int_reloc2);
2877
2878 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2879 return -1;
2880 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2881 return 1;
2882
2883 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2884 return -1;
2885 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2886 return 1;
2887 return 0;
2888 #else
2889 abort ();
2890 #endif
2891 }
2892
2893
2894 /* This routine is used to write out ECOFF debugging external symbol
2895 information. It is called via mips_elf_link_hash_traverse. The
2896 ECOFF external symbol information must match the ELF external
2897 symbol information. Unfortunately, at this point we don't know
2898 whether a symbol is required by reloc information, so the two
2899 tables may wind up being different. We must sort out the external
2900 symbol information before we can set the final size of the .mdebug
2901 section, and we must set the size of the .mdebug section before we
2902 can relocate any sections, and we can't know which symbols are
2903 required by relocation until we relocate the sections.
2904 Fortunately, it is relatively unlikely that any symbol will be
2905 stripped but required by a reloc. In particular, it can not happen
2906 when generating a final executable. */
2907
2908 static bfd_boolean
2909 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2910 {
2911 struct extsym_info *einfo = data;
2912 bfd_boolean strip;
2913 asection *sec, *output_section;
2914
2915 if (h->root.indx == -2)
2916 strip = FALSE;
2917 else if ((h->root.def_dynamic
2918 || h->root.ref_dynamic
2919 || h->root.type == bfd_link_hash_new)
2920 && !h->root.def_regular
2921 && !h->root.ref_regular)
2922 strip = TRUE;
2923 else if (einfo->info->strip == strip_all
2924 || (einfo->info->strip == strip_some
2925 && bfd_hash_lookup (einfo->info->keep_hash,
2926 h->root.root.root.string,
2927 FALSE, FALSE) == NULL))
2928 strip = TRUE;
2929 else
2930 strip = FALSE;
2931
2932 if (strip)
2933 return TRUE;
2934
2935 if (h->esym.ifd == -2)
2936 {
2937 h->esym.jmptbl = 0;
2938 h->esym.cobol_main = 0;
2939 h->esym.weakext = 0;
2940 h->esym.reserved = 0;
2941 h->esym.ifd = ifdNil;
2942 h->esym.asym.value = 0;
2943 h->esym.asym.st = stGlobal;
2944
2945 if (h->root.root.type == bfd_link_hash_undefined
2946 || h->root.root.type == bfd_link_hash_undefweak)
2947 {
2948 const char *name;
2949
2950 /* Use undefined class. Also, set class and type for some
2951 special symbols. */
2952 name = h->root.root.root.string;
2953 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2954 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2955 {
2956 h->esym.asym.sc = scData;
2957 h->esym.asym.st = stLabel;
2958 h->esym.asym.value = 0;
2959 }
2960 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2961 {
2962 h->esym.asym.sc = scAbs;
2963 h->esym.asym.st = stLabel;
2964 h->esym.asym.value =
2965 mips_elf_hash_table (einfo->info)->procedure_count;
2966 }
2967 else
2968 h->esym.asym.sc = scUndefined;
2969 }
2970 else if (h->root.root.type != bfd_link_hash_defined
2971 && h->root.root.type != bfd_link_hash_defweak)
2972 h->esym.asym.sc = scAbs;
2973 else
2974 {
2975 const char *name;
2976
2977 sec = h->root.root.u.def.section;
2978 output_section = sec->output_section;
2979
2980 /* When making a shared library and symbol h is the one from
2981 the another shared library, OUTPUT_SECTION may be null. */
2982 if (output_section == NULL)
2983 h->esym.asym.sc = scUndefined;
2984 else
2985 {
2986 name = bfd_section_name (output_section->owner, output_section);
2987
2988 if (strcmp (name, ".text") == 0)
2989 h->esym.asym.sc = scText;
2990 else if (strcmp (name, ".data") == 0)
2991 h->esym.asym.sc = scData;
2992 else if (strcmp (name, ".sdata") == 0)
2993 h->esym.asym.sc = scSData;
2994 else if (strcmp (name, ".rodata") == 0
2995 || strcmp (name, ".rdata") == 0)
2996 h->esym.asym.sc = scRData;
2997 else if (strcmp (name, ".bss") == 0)
2998 h->esym.asym.sc = scBss;
2999 else if (strcmp (name, ".sbss") == 0)
3000 h->esym.asym.sc = scSBss;
3001 else if (strcmp (name, ".init") == 0)
3002 h->esym.asym.sc = scInit;
3003 else if (strcmp (name, ".fini") == 0)
3004 h->esym.asym.sc = scFini;
3005 else
3006 h->esym.asym.sc = scAbs;
3007 }
3008 }
3009
3010 h->esym.asym.reserved = 0;
3011 h->esym.asym.index = indexNil;
3012 }
3013
3014 if (h->root.root.type == bfd_link_hash_common)
3015 h->esym.asym.value = h->root.root.u.c.size;
3016 else if (h->root.root.type == bfd_link_hash_defined
3017 || h->root.root.type == bfd_link_hash_defweak)
3018 {
3019 if (h->esym.asym.sc == scCommon)
3020 h->esym.asym.sc = scBss;
3021 else if (h->esym.asym.sc == scSCommon)
3022 h->esym.asym.sc = scSBss;
3023
3024 sec = h->root.root.u.def.section;
3025 output_section = sec->output_section;
3026 if (output_section != NULL)
3027 h->esym.asym.value = (h->root.root.u.def.value
3028 + sec->output_offset
3029 + output_section->vma);
3030 else
3031 h->esym.asym.value = 0;
3032 }
3033 else
3034 {
3035 struct mips_elf_link_hash_entry *hd = h;
3036
3037 while (hd->root.root.type == bfd_link_hash_indirect)
3038 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
3039
3040 if (hd->needs_lazy_stub)
3041 {
3042 BFD_ASSERT (hd->root.plt.plist != NULL);
3043 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
3044 /* Set type and value for a symbol with a function stub. */
3045 h->esym.asym.st = stProc;
3046 sec = hd->root.root.u.def.section;
3047 if (sec == NULL)
3048 h->esym.asym.value = 0;
3049 else
3050 {
3051 output_section = sec->output_section;
3052 if (output_section != NULL)
3053 h->esym.asym.value = (hd->root.plt.plist->stub_offset
3054 + sec->output_offset
3055 + output_section->vma);
3056 else
3057 h->esym.asym.value = 0;
3058 }
3059 }
3060 }
3061
3062 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3063 h->root.root.root.string,
3064 &h->esym))
3065 {
3066 einfo->failed = TRUE;
3067 return FALSE;
3068 }
3069
3070 return TRUE;
3071 }
3072
3073 /* A comparison routine used to sort .gptab entries. */
3074
3075 static int
3076 gptab_compare (const void *p1, const void *p2)
3077 {
3078 const Elf32_gptab *a1 = p1;
3079 const Elf32_gptab *a2 = p2;
3080
3081 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3082 }
3083 \f
3084 /* Functions to manage the got entry hash table. */
3085
3086 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3087 hash number. */
3088
3089 static INLINE hashval_t
3090 mips_elf_hash_bfd_vma (bfd_vma addr)
3091 {
3092 #ifdef BFD64
3093 return addr + (addr >> 32);
3094 #else
3095 return addr;
3096 #endif
3097 }
3098
3099 static hashval_t
3100 mips_elf_got_entry_hash (const void *entry_)
3101 {
3102 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3103
3104 return (entry->symndx
3105 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3106 + (entry->tls_type == GOT_TLS_LDM ? 0
3107 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3108 : entry->symndx >= 0 ? (entry->abfd->id
3109 + mips_elf_hash_bfd_vma (entry->d.addend))
3110 : entry->d.h->root.root.root.hash));
3111 }
3112
3113 static int
3114 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3115 {
3116 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3117 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3118
3119 return (e1->symndx == e2->symndx
3120 && e1->tls_type == e2->tls_type
3121 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3122 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3123 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3124 && e1->d.addend == e2->d.addend)
3125 : e2->abfd && e1->d.h == e2->d.h));
3126 }
3127
3128 static hashval_t
3129 mips_got_page_ref_hash (const void *ref_)
3130 {
3131 const struct mips_got_page_ref *ref;
3132
3133 ref = (const struct mips_got_page_ref *) ref_;
3134 return ((ref->symndx >= 0
3135 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3136 : ref->u.h->root.root.root.hash)
3137 + mips_elf_hash_bfd_vma (ref->addend));
3138 }
3139
3140 static int
3141 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3142 {
3143 const struct mips_got_page_ref *ref1, *ref2;
3144
3145 ref1 = (const struct mips_got_page_ref *) ref1_;
3146 ref2 = (const struct mips_got_page_ref *) ref2_;
3147 return (ref1->symndx == ref2->symndx
3148 && (ref1->symndx < 0
3149 ? ref1->u.h == ref2->u.h
3150 : ref1->u.abfd == ref2->u.abfd)
3151 && ref1->addend == ref2->addend);
3152 }
3153
3154 static hashval_t
3155 mips_got_page_entry_hash (const void *entry_)
3156 {
3157 const struct mips_got_page_entry *entry;
3158
3159 entry = (const struct mips_got_page_entry *) entry_;
3160 return entry->sec->id;
3161 }
3162
3163 static int
3164 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3165 {
3166 const struct mips_got_page_entry *entry1, *entry2;
3167
3168 entry1 = (const struct mips_got_page_entry *) entry1_;
3169 entry2 = (const struct mips_got_page_entry *) entry2_;
3170 return entry1->sec == entry2->sec;
3171 }
3172 \f
3173 /* Create and return a new mips_got_info structure. */
3174
3175 static struct mips_got_info *
3176 mips_elf_create_got_info (bfd *abfd)
3177 {
3178 struct mips_got_info *g;
3179
3180 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3181 if (g == NULL)
3182 return NULL;
3183
3184 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3185 mips_elf_got_entry_eq, NULL);
3186 if (g->got_entries == NULL)
3187 return NULL;
3188
3189 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3190 mips_got_page_ref_eq, NULL);
3191 if (g->got_page_refs == NULL)
3192 return NULL;
3193
3194 return g;
3195 }
3196
3197 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3198 CREATE_P and if ABFD doesn't already have a GOT. */
3199
3200 static struct mips_got_info *
3201 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3202 {
3203 struct mips_elf_obj_tdata *tdata;
3204
3205 if (!is_mips_elf (abfd))
3206 return NULL;
3207
3208 tdata = mips_elf_tdata (abfd);
3209 if (!tdata->got && create_p)
3210 tdata->got = mips_elf_create_got_info (abfd);
3211 return tdata->got;
3212 }
3213
3214 /* Record that ABFD should use output GOT G. */
3215
3216 static void
3217 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3218 {
3219 struct mips_elf_obj_tdata *tdata;
3220
3221 BFD_ASSERT (is_mips_elf (abfd));
3222 tdata = mips_elf_tdata (abfd);
3223 if (tdata->got)
3224 {
3225 /* The GOT structure itself and the hash table entries are
3226 allocated to a bfd, but the hash tables aren't. */
3227 htab_delete (tdata->got->got_entries);
3228 htab_delete (tdata->got->got_page_refs);
3229 if (tdata->got->got_page_entries)
3230 htab_delete (tdata->got->got_page_entries);
3231 }
3232 tdata->got = g;
3233 }
3234
3235 /* Return the dynamic relocation section. If it doesn't exist, try to
3236 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3237 if creation fails. */
3238
3239 static asection *
3240 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3241 {
3242 const char *dname;
3243 asection *sreloc;
3244 bfd *dynobj;
3245
3246 dname = MIPS_ELF_REL_DYN_NAME (info);
3247 dynobj = elf_hash_table (info)->dynobj;
3248 sreloc = bfd_get_linker_section (dynobj, dname);
3249 if (sreloc == NULL && create_p)
3250 {
3251 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3252 (SEC_ALLOC
3253 | SEC_LOAD
3254 | SEC_HAS_CONTENTS
3255 | SEC_IN_MEMORY
3256 | SEC_LINKER_CREATED
3257 | SEC_READONLY));
3258 if (sreloc == NULL
3259 || ! bfd_set_section_alignment (dynobj, sreloc,
3260 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3261 return NULL;
3262 }
3263 return sreloc;
3264 }
3265
3266 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3267
3268 static int
3269 mips_elf_reloc_tls_type (unsigned int r_type)
3270 {
3271 if (tls_gd_reloc_p (r_type))
3272 return GOT_TLS_GD;
3273
3274 if (tls_ldm_reloc_p (r_type))
3275 return GOT_TLS_LDM;
3276
3277 if (tls_gottprel_reloc_p (r_type))
3278 return GOT_TLS_IE;
3279
3280 return GOT_TLS_NONE;
3281 }
3282
3283 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3284
3285 static int
3286 mips_tls_got_entries (unsigned int type)
3287 {
3288 switch (type)
3289 {
3290 case GOT_TLS_GD:
3291 case GOT_TLS_LDM:
3292 return 2;
3293
3294 case GOT_TLS_IE:
3295 return 1;
3296
3297 case GOT_TLS_NONE:
3298 return 0;
3299 }
3300 abort ();
3301 }
3302
3303 /* Count the number of relocations needed for a TLS GOT entry, with
3304 access types from TLS_TYPE, and symbol H (or a local symbol if H
3305 is NULL). */
3306
3307 static int
3308 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3309 struct elf_link_hash_entry *h)
3310 {
3311 int indx = 0;
3312 bfd_boolean need_relocs = FALSE;
3313 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3314
3315 if (h != NULL
3316 && h->dynindx != -1
3317 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3318 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3319 indx = h->dynindx;
3320
3321 if ((bfd_link_dll (info) || indx != 0)
3322 && (h == NULL
3323 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3324 || h->root.type != bfd_link_hash_undefweak))
3325 need_relocs = TRUE;
3326
3327 if (!need_relocs)
3328 return 0;
3329
3330 switch (tls_type)
3331 {
3332 case GOT_TLS_GD:
3333 return indx != 0 ? 2 : 1;
3334
3335 case GOT_TLS_IE:
3336 return 1;
3337
3338 case GOT_TLS_LDM:
3339 return bfd_link_dll (info) ? 1 : 0;
3340
3341 default:
3342 return 0;
3343 }
3344 }
3345
3346 /* Add the number of GOT entries and TLS relocations required by ENTRY
3347 to G. */
3348
3349 static void
3350 mips_elf_count_got_entry (struct bfd_link_info *info,
3351 struct mips_got_info *g,
3352 struct mips_got_entry *entry)
3353 {
3354 if (entry->tls_type)
3355 {
3356 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3357 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3358 entry->symndx < 0
3359 ? &entry->d.h->root : NULL);
3360 }
3361 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3362 g->local_gotno += 1;
3363 else
3364 g->global_gotno += 1;
3365 }
3366
3367 /* Output a simple dynamic relocation into SRELOC. */
3368
3369 static void
3370 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3371 asection *sreloc,
3372 unsigned long reloc_index,
3373 unsigned long indx,
3374 int r_type,
3375 bfd_vma offset)
3376 {
3377 Elf_Internal_Rela rel[3];
3378
3379 memset (rel, 0, sizeof (rel));
3380
3381 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3382 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3383
3384 if (ABI_64_P (output_bfd))
3385 {
3386 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3387 (output_bfd, &rel[0],
3388 (sreloc->contents
3389 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3390 }
3391 else
3392 bfd_elf32_swap_reloc_out
3393 (output_bfd, &rel[0],
3394 (sreloc->contents
3395 + reloc_index * sizeof (Elf32_External_Rel)));
3396 }
3397
3398 /* Initialize a set of TLS GOT entries for one symbol. */
3399
3400 static void
3401 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3402 struct mips_got_entry *entry,
3403 struct mips_elf_link_hash_entry *h,
3404 bfd_vma value)
3405 {
3406 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3407 struct mips_elf_link_hash_table *htab;
3408 int indx;
3409 asection *sreloc, *sgot;
3410 bfd_vma got_offset, got_offset2;
3411 bfd_boolean need_relocs = FALSE;
3412
3413 htab = mips_elf_hash_table (info);
3414 if (htab == NULL)
3415 return;
3416
3417 sgot = htab->root.sgot;
3418
3419 indx = 0;
3420 if (h != NULL
3421 && h->root.dynindx != -1
3422 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3423 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3424 indx = h->root.dynindx;
3425
3426 if (entry->tls_initialized)
3427 return;
3428
3429 if ((bfd_link_dll (info) || indx != 0)
3430 && (h == NULL
3431 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3432 || h->root.type != bfd_link_hash_undefweak))
3433 need_relocs = TRUE;
3434
3435 /* MINUS_ONE means the symbol is not defined in this object. It may not
3436 be defined at all; assume that the value doesn't matter in that
3437 case. Otherwise complain if we would use the value. */
3438 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3439 || h->root.root.type == bfd_link_hash_undefweak);
3440
3441 /* Emit necessary relocations. */
3442 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3443 got_offset = entry->gotidx;
3444
3445 switch (entry->tls_type)
3446 {
3447 case GOT_TLS_GD:
3448 /* General Dynamic. */
3449 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3450
3451 if (need_relocs)
3452 {
3453 mips_elf_output_dynamic_relocation
3454 (abfd, sreloc, sreloc->reloc_count++, indx,
3455 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3456 sgot->output_offset + sgot->output_section->vma + got_offset);
3457
3458 if (indx)
3459 mips_elf_output_dynamic_relocation
3460 (abfd, sreloc, sreloc->reloc_count++, indx,
3461 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3462 sgot->output_offset + sgot->output_section->vma + got_offset2);
3463 else
3464 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3465 sgot->contents + got_offset2);
3466 }
3467 else
3468 {
3469 MIPS_ELF_PUT_WORD (abfd, 1,
3470 sgot->contents + got_offset);
3471 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3472 sgot->contents + got_offset2);
3473 }
3474 break;
3475
3476 case GOT_TLS_IE:
3477 /* Initial Exec model. */
3478 if (need_relocs)
3479 {
3480 if (indx == 0)
3481 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3482 sgot->contents + got_offset);
3483 else
3484 MIPS_ELF_PUT_WORD (abfd, 0,
3485 sgot->contents + got_offset);
3486
3487 mips_elf_output_dynamic_relocation
3488 (abfd, sreloc, sreloc->reloc_count++, indx,
3489 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3490 sgot->output_offset + sgot->output_section->vma + got_offset);
3491 }
3492 else
3493 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3494 sgot->contents + got_offset);
3495 break;
3496
3497 case GOT_TLS_LDM:
3498 /* The initial offset is zero, and the LD offsets will include the
3499 bias by DTP_OFFSET. */
3500 MIPS_ELF_PUT_WORD (abfd, 0,
3501 sgot->contents + got_offset
3502 + MIPS_ELF_GOT_SIZE (abfd));
3503
3504 if (!bfd_link_dll (info))
3505 MIPS_ELF_PUT_WORD (abfd, 1,
3506 sgot->contents + got_offset);
3507 else
3508 mips_elf_output_dynamic_relocation
3509 (abfd, sreloc, sreloc->reloc_count++, indx,
3510 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3511 sgot->output_offset + sgot->output_section->vma + got_offset);
3512 break;
3513
3514 default:
3515 abort ();
3516 }
3517
3518 entry->tls_initialized = TRUE;
3519 }
3520
3521 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3522 for global symbol H. .got.plt comes before the GOT, so the offset
3523 will be negative. */
3524
3525 static bfd_vma
3526 mips_elf_gotplt_index (struct bfd_link_info *info,
3527 struct elf_link_hash_entry *h)
3528 {
3529 bfd_vma got_address, got_value;
3530 struct mips_elf_link_hash_table *htab;
3531
3532 htab = mips_elf_hash_table (info);
3533 BFD_ASSERT (htab != NULL);
3534
3535 BFD_ASSERT (h->plt.plist != NULL);
3536 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3537
3538 /* Calculate the address of the associated .got.plt entry. */
3539 got_address = (htab->root.sgotplt->output_section->vma
3540 + htab->root.sgotplt->output_offset
3541 + (h->plt.plist->gotplt_index
3542 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3543
3544 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3545 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3546 + htab->root.hgot->root.u.def.section->output_offset
3547 + htab->root.hgot->root.u.def.value);
3548
3549 return got_address - got_value;
3550 }
3551
3552 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3553 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3554 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3555 offset can be found. */
3556
3557 static bfd_vma
3558 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3559 bfd_vma value, unsigned long r_symndx,
3560 struct mips_elf_link_hash_entry *h, int r_type)
3561 {
3562 struct mips_elf_link_hash_table *htab;
3563 struct mips_got_entry *entry;
3564
3565 htab = mips_elf_hash_table (info);
3566 BFD_ASSERT (htab != NULL);
3567
3568 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3569 r_symndx, h, r_type);
3570 if (!entry)
3571 return MINUS_ONE;
3572
3573 if (entry->tls_type)
3574 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3575 return entry->gotidx;
3576 }
3577
3578 /* Return the GOT index of global symbol H in the primary GOT. */
3579
3580 static bfd_vma
3581 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3582 struct elf_link_hash_entry *h)
3583 {
3584 struct mips_elf_link_hash_table *htab;
3585 long global_got_dynindx;
3586 struct mips_got_info *g;
3587 bfd_vma got_index;
3588
3589 htab = mips_elf_hash_table (info);
3590 BFD_ASSERT (htab != NULL);
3591
3592 global_got_dynindx = 0;
3593 if (htab->global_gotsym != NULL)
3594 global_got_dynindx = htab->global_gotsym->dynindx;
3595
3596 /* Once we determine the global GOT entry with the lowest dynamic
3597 symbol table index, we must put all dynamic symbols with greater
3598 indices into the primary GOT. That makes it easy to calculate the
3599 GOT offset. */
3600 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3601 g = mips_elf_bfd_got (obfd, FALSE);
3602 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3603 * MIPS_ELF_GOT_SIZE (obfd));
3604 BFD_ASSERT (got_index < htab->root.sgot->size);
3605
3606 return got_index;
3607 }
3608
3609 /* Return the GOT index for the global symbol indicated by H, which is
3610 referenced by a relocation of type R_TYPE in IBFD. */
3611
3612 static bfd_vma
3613 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3614 struct elf_link_hash_entry *h, int r_type)
3615 {
3616 struct mips_elf_link_hash_table *htab;
3617 struct mips_got_info *g;
3618 struct mips_got_entry lookup, *entry;
3619 bfd_vma gotidx;
3620
3621 htab = mips_elf_hash_table (info);
3622 BFD_ASSERT (htab != NULL);
3623
3624 g = mips_elf_bfd_got (ibfd, FALSE);
3625 BFD_ASSERT (g);
3626
3627 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3628 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3629 return mips_elf_primary_global_got_index (obfd, info, h);
3630
3631 lookup.abfd = ibfd;
3632 lookup.symndx = -1;
3633 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3634 entry = htab_find (g->got_entries, &lookup);
3635 BFD_ASSERT (entry);
3636
3637 gotidx = entry->gotidx;
3638 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3639
3640 if (lookup.tls_type)
3641 {
3642 bfd_vma value = MINUS_ONE;
3643
3644 if ((h->root.type == bfd_link_hash_defined
3645 || h->root.type == bfd_link_hash_defweak)
3646 && h->root.u.def.section->output_section)
3647 value = (h->root.u.def.value
3648 + h->root.u.def.section->output_offset
3649 + h->root.u.def.section->output_section->vma);
3650
3651 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3652 }
3653 return gotidx;
3654 }
3655
3656 /* Find a GOT page entry that points to within 32KB of VALUE. These
3657 entries are supposed to be placed at small offsets in the GOT, i.e.,
3658 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3659 entry could be created. If OFFSETP is nonnull, use it to return the
3660 offset of the GOT entry from VALUE. */
3661
3662 static bfd_vma
3663 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3664 bfd_vma value, bfd_vma *offsetp)
3665 {
3666 bfd_vma page, got_index;
3667 struct mips_got_entry *entry;
3668
3669 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3670 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3671 NULL, R_MIPS_GOT_PAGE);
3672
3673 if (!entry)
3674 return MINUS_ONE;
3675
3676 got_index = entry->gotidx;
3677
3678 if (offsetp)
3679 *offsetp = value - entry->d.address;
3680
3681 return got_index;
3682 }
3683
3684 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3685 EXTERNAL is true if the relocation was originally against a global
3686 symbol that binds locally. */
3687
3688 static bfd_vma
3689 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3690 bfd_vma value, bfd_boolean external)
3691 {
3692 struct mips_got_entry *entry;
3693
3694 /* GOT16 relocations against local symbols are followed by a LO16
3695 relocation; those against global symbols are not. Thus if the
3696 symbol was originally local, the GOT16 relocation should load the
3697 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3698 if (! external)
3699 value = mips_elf_high (value) << 16;
3700
3701 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3702 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3703 same in all cases. */
3704 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3705 NULL, R_MIPS_GOT16);
3706 if (entry)
3707 return entry->gotidx;
3708 else
3709 return MINUS_ONE;
3710 }
3711
3712 /* Returns the offset for the entry at the INDEXth position
3713 in the GOT. */
3714
3715 static bfd_vma
3716 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3717 bfd *input_bfd, bfd_vma got_index)
3718 {
3719 struct mips_elf_link_hash_table *htab;
3720 asection *sgot;
3721 bfd_vma gp;
3722
3723 htab = mips_elf_hash_table (info);
3724 BFD_ASSERT (htab != NULL);
3725
3726 sgot = htab->root.sgot;
3727 gp = _bfd_get_gp_value (output_bfd)
3728 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3729
3730 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3731 }
3732
3733 /* Create and return a local GOT entry for VALUE, which was calculated
3734 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3735 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3736 instead. */
3737
3738 static struct mips_got_entry *
3739 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3740 bfd *ibfd, bfd_vma value,
3741 unsigned long r_symndx,
3742 struct mips_elf_link_hash_entry *h,
3743 int r_type)
3744 {
3745 struct mips_got_entry lookup, *entry;
3746 void **loc;
3747 struct mips_got_info *g;
3748 struct mips_elf_link_hash_table *htab;
3749 bfd_vma gotidx;
3750
3751 htab = mips_elf_hash_table (info);
3752 BFD_ASSERT (htab != NULL);
3753
3754 g = mips_elf_bfd_got (ibfd, FALSE);
3755 if (g == NULL)
3756 {
3757 g = mips_elf_bfd_got (abfd, FALSE);
3758 BFD_ASSERT (g != NULL);
3759 }
3760
3761 /* This function shouldn't be called for symbols that live in the global
3762 area of the GOT. */
3763 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3764
3765 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3766 if (lookup.tls_type)
3767 {
3768 lookup.abfd = ibfd;
3769 if (tls_ldm_reloc_p (r_type))
3770 {
3771 lookup.symndx = 0;
3772 lookup.d.addend = 0;
3773 }
3774 else if (h == NULL)
3775 {
3776 lookup.symndx = r_symndx;
3777 lookup.d.addend = 0;
3778 }
3779 else
3780 {
3781 lookup.symndx = -1;
3782 lookup.d.h = h;
3783 }
3784
3785 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3786 BFD_ASSERT (entry);
3787
3788 gotidx = entry->gotidx;
3789 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3790
3791 return entry;
3792 }
3793
3794 lookup.abfd = NULL;
3795 lookup.symndx = -1;
3796 lookup.d.address = value;
3797 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3798 if (!loc)
3799 return NULL;
3800
3801 entry = (struct mips_got_entry *) *loc;
3802 if (entry)
3803 return entry;
3804
3805 if (g->assigned_low_gotno > g->assigned_high_gotno)
3806 {
3807 /* We didn't allocate enough space in the GOT. */
3808 _bfd_error_handler
3809 (_("not enough GOT space for local GOT entries"));
3810 bfd_set_error (bfd_error_bad_value);
3811 return NULL;
3812 }
3813
3814 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3815 if (!entry)
3816 return NULL;
3817
3818 if (got16_reloc_p (r_type)
3819 || call16_reloc_p (r_type)
3820 || got_page_reloc_p (r_type)
3821 || got_disp_reloc_p (r_type))
3822 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3823 else
3824 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3825
3826 *entry = lookup;
3827 *loc = entry;
3828
3829 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3830
3831 /* These GOT entries need a dynamic relocation on VxWorks. */
3832 if (htab->is_vxworks)
3833 {
3834 Elf_Internal_Rela outrel;
3835 asection *s;
3836 bfd_byte *rloc;
3837 bfd_vma got_address;
3838
3839 s = mips_elf_rel_dyn_section (info, FALSE);
3840 got_address = (htab->root.sgot->output_section->vma
3841 + htab->root.sgot->output_offset
3842 + entry->gotidx);
3843
3844 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3845 outrel.r_offset = got_address;
3846 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3847 outrel.r_addend = value;
3848 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3849 }
3850
3851 return entry;
3852 }
3853
3854 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3855 The number might be exact or a worst-case estimate, depending on how
3856 much information is available to elf_backend_omit_section_dynsym at
3857 the current linking stage. */
3858
3859 static bfd_size_type
3860 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3861 {
3862 bfd_size_type count;
3863
3864 count = 0;
3865 if (bfd_link_pic (info)
3866 || elf_hash_table (info)->is_relocatable_executable)
3867 {
3868 asection *p;
3869 const struct elf_backend_data *bed;
3870
3871 bed = get_elf_backend_data (output_bfd);
3872 for (p = output_bfd->sections; p ; p = p->next)
3873 if ((p->flags & SEC_EXCLUDE) == 0
3874 && (p->flags & SEC_ALLOC) != 0
3875 && elf_hash_table (info)->dynamic_relocs
3876 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3877 ++count;
3878 }
3879 return count;
3880 }
3881
3882 /* Sort the dynamic symbol table so that symbols that need GOT entries
3883 appear towards the end. */
3884
3885 static bfd_boolean
3886 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3887 {
3888 struct mips_elf_link_hash_table *htab;
3889 struct mips_elf_hash_sort_data hsd;
3890 struct mips_got_info *g;
3891
3892 htab = mips_elf_hash_table (info);
3893 BFD_ASSERT (htab != NULL);
3894
3895 if (htab->root.dynsymcount == 0)
3896 return TRUE;
3897
3898 g = htab->got_info;
3899 if (g == NULL)
3900 return TRUE;
3901
3902 hsd.low = NULL;
3903 hsd.max_unref_got_dynindx
3904 = hsd.min_got_dynindx
3905 = (htab->root.dynsymcount - g->reloc_only_gotno);
3906 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3907 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3908 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3909 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3910 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3911
3912 /* There should have been enough room in the symbol table to
3913 accommodate both the GOT and non-GOT symbols. */
3914 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3915 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3916 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3917 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3918
3919 /* Now we know which dynamic symbol has the lowest dynamic symbol
3920 table index in the GOT. */
3921 htab->global_gotsym = hsd.low;
3922
3923 return TRUE;
3924 }
3925
3926 /* If H needs a GOT entry, assign it the highest available dynamic
3927 index. Otherwise, assign it the lowest available dynamic
3928 index. */
3929
3930 static bfd_boolean
3931 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3932 {
3933 struct mips_elf_hash_sort_data *hsd = data;
3934
3935 /* Symbols without dynamic symbol table entries aren't interesting
3936 at all. */
3937 if (h->root.dynindx == -1)
3938 return TRUE;
3939
3940 switch (h->global_got_area)
3941 {
3942 case GGA_NONE:
3943 if (h->root.forced_local)
3944 h->root.dynindx = hsd->max_local_dynindx++;
3945 else
3946 h->root.dynindx = hsd->max_non_got_dynindx++;
3947 break;
3948
3949 case GGA_NORMAL:
3950 h->root.dynindx = --hsd->min_got_dynindx;
3951 hsd->low = (struct elf_link_hash_entry *) h;
3952 break;
3953
3954 case GGA_RELOC_ONLY:
3955 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3956 hsd->low = (struct elf_link_hash_entry *) h;
3957 h->root.dynindx = hsd->max_unref_got_dynindx++;
3958 break;
3959 }
3960
3961 return TRUE;
3962 }
3963
3964 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3965 (which is owned by the caller and shouldn't be added to the
3966 hash table directly). */
3967
3968 static bfd_boolean
3969 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3970 struct mips_got_entry *lookup)
3971 {
3972 struct mips_elf_link_hash_table *htab;
3973 struct mips_got_entry *entry;
3974 struct mips_got_info *g;
3975 void **loc, **bfd_loc;
3976
3977 /* Make sure there's a slot for this entry in the master GOT. */
3978 htab = mips_elf_hash_table (info);
3979 g = htab->got_info;
3980 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3981 if (!loc)
3982 return FALSE;
3983
3984 /* Populate the entry if it isn't already. */
3985 entry = (struct mips_got_entry *) *loc;
3986 if (!entry)
3987 {
3988 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3989 if (!entry)
3990 return FALSE;
3991
3992 lookup->tls_initialized = FALSE;
3993 lookup->gotidx = -1;
3994 *entry = *lookup;
3995 *loc = entry;
3996 }
3997
3998 /* Reuse the same GOT entry for the BFD's GOT. */
3999 g = mips_elf_bfd_got (abfd, TRUE);
4000 if (!g)
4001 return FALSE;
4002
4003 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
4004 if (!bfd_loc)
4005 return FALSE;
4006
4007 if (!*bfd_loc)
4008 *bfd_loc = entry;
4009 return TRUE;
4010 }
4011
4012 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
4013 entry for it. FOR_CALL is true if the caller is only interested in
4014 using the GOT entry for calls. */
4015
4016 static bfd_boolean
4017 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
4018 bfd *abfd, struct bfd_link_info *info,
4019 bfd_boolean for_call, int r_type)
4020 {
4021 struct mips_elf_link_hash_table *htab;
4022 struct mips_elf_link_hash_entry *hmips;
4023 struct mips_got_entry entry;
4024 unsigned char tls_type;
4025
4026 htab = mips_elf_hash_table (info);
4027 BFD_ASSERT (htab != NULL);
4028
4029 hmips = (struct mips_elf_link_hash_entry *) h;
4030 if (!for_call)
4031 hmips->got_only_for_calls = FALSE;
4032
4033 /* A global symbol in the GOT must also be in the dynamic symbol
4034 table. */
4035 if (h->dynindx == -1)
4036 {
4037 switch (ELF_ST_VISIBILITY (h->other))
4038 {
4039 case STV_INTERNAL:
4040 case STV_HIDDEN:
4041 _bfd_mips_elf_hide_symbol (info, h, TRUE);
4042 break;
4043 }
4044 if (!bfd_elf_link_record_dynamic_symbol (info, h))
4045 return FALSE;
4046 }
4047
4048 tls_type = mips_elf_reloc_tls_type (r_type);
4049 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
4050 hmips->global_got_area = GGA_NORMAL;
4051
4052 entry.abfd = abfd;
4053 entry.symndx = -1;
4054 entry.d.h = (struct mips_elf_link_hash_entry *) h;
4055 entry.tls_type = tls_type;
4056 return mips_elf_record_got_entry (info, abfd, &entry);
4057 }
4058
4059 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4060 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4061
4062 static bfd_boolean
4063 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4064 struct bfd_link_info *info, int r_type)
4065 {
4066 struct mips_elf_link_hash_table *htab;
4067 struct mips_got_info *g;
4068 struct mips_got_entry entry;
4069
4070 htab = mips_elf_hash_table (info);
4071 BFD_ASSERT (htab != NULL);
4072
4073 g = htab->got_info;
4074 BFD_ASSERT (g != NULL);
4075
4076 entry.abfd = abfd;
4077 entry.symndx = symndx;
4078 entry.d.addend = addend;
4079 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4080 return mips_elf_record_got_entry (info, abfd, &entry);
4081 }
4082
4083 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4084 H is the symbol's hash table entry, or null if SYMNDX is local
4085 to ABFD. */
4086
4087 static bfd_boolean
4088 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4089 long symndx, struct elf_link_hash_entry *h,
4090 bfd_signed_vma addend)
4091 {
4092 struct mips_elf_link_hash_table *htab;
4093 struct mips_got_info *g1, *g2;
4094 struct mips_got_page_ref lookup, *entry;
4095 void **loc, **bfd_loc;
4096
4097 htab = mips_elf_hash_table (info);
4098 BFD_ASSERT (htab != NULL);
4099
4100 g1 = htab->got_info;
4101 BFD_ASSERT (g1 != NULL);
4102
4103 if (h)
4104 {
4105 lookup.symndx = -1;
4106 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4107 }
4108 else
4109 {
4110 lookup.symndx = symndx;
4111 lookup.u.abfd = abfd;
4112 }
4113 lookup.addend = addend;
4114 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4115 if (loc == NULL)
4116 return FALSE;
4117
4118 entry = (struct mips_got_page_ref *) *loc;
4119 if (!entry)
4120 {
4121 entry = bfd_alloc (abfd, sizeof (*entry));
4122 if (!entry)
4123 return FALSE;
4124
4125 *entry = lookup;
4126 *loc = entry;
4127 }
4128
4129 /* Add the same entry to the BFD's GOT. */
4130 g2 = mips_elf_bfd_got (abfd, TRUE);
4131 if (!g2)
4132 return FALSE;
4133
4134 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4135 if (!bfd_loc)
4136 return FALSE;
4137
4138 if (!*bfd_loc)
4139 *bfd_loc = entry;
4140
4141 return TRUE;
4142 }
4143
4144 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4145
4146 static void
4147 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4148 unsigned int n)
4149 {
4150 asection *s;
4151 struct mips_elf_link_hash_table *htab;
4152
4153 htab = mips_elf_hash_table (info);
4154 BFD_ASSERT (htab != NULL);
4155
4156 s = mips_elf_rel_dyn_section (info, FALSE);
4157 BFD_ASSERT (s != NULL);
4158
4159 if (htab->is_vxworks)
4160 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4161 else
4162 {
4163 if (s->size == 0)
4164 {
4165 /* Make room for a null element. */
4166 s->size += MIPS_ELF_REL_SIZE (abfd);
4167 ++s->reloc_count;
4168 }
4169 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4170 }
4171 }
4172 \f
4173 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4174 mips_elf_traverse_got_arg structure. Count the number of GOT
4175 entries and TLS relocs. Set DATA->value to true if we need
4176 to resolve indirect or warning symbols and then recreate the GOT. */
4177
4178 static int
4179 mips_elf_check_recreate_got (void **entryp, void *data)
4180 {
4181 struct mips_got_entry *entry;
4182 struct mips_elf_traverse_got_arg *arg;
4183
4184 entry = (struct mips_got_entry *) *entryp;
4185 arg = (struct mips_elf_traverse_got_arg *) data;
4186 if (entry->abfd != NULL && entry->symndx == -1)
4187 {
4188 struct mips_elf_link_hash_entry *h;
4189
4190 h = entry->d.h;
4191 if (h->root.root.type == bfd_link_hash_indirect
4192 || h->root.root.type == bfd_link_hash_warning)
4193 {
4194 arg->value = TRUE;
4195 return 0;
4196 }
4197 }
4198 mips_elf_count_got_entry (arg->info, arg->g, entry);
4199 return 1;
4200 }
4201
4202 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4203 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4204 converting entries for indirect and warning symbols into entries
4205 for the target symbol. Set DATA->g to null on error. */
4206
4207 static int
4208 mips_elf_recreate_got (void **entryp, void *data)
4209 {
4210 struct mips_got_entry new_entry, *entry;
4211 struct mips_elf_traverse_got_arg *arg;
4212 void **slot;
4213
4214 entry = (struct mips_got_entry *) *entryp;
4215 arg = (struct mips_elf_traverse_got_arg *) data;
4216 if (entry->abfd != NULL
4217 && entry->symndx == -1
4218 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4219 || entry->d.h->root.root.type == bfd_link_hash_warning))
4220 {
4221 struct mips_elf_link_hash_entry *h;
4222
4223 new_entry = *entry;
4224 entry = &new_entry;
4225 h = entry->d.h;
4226 do
4227 {
4228 BFD_ASSERT (h->global_got_area == GGA_NONE);
4229 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4230 }
4231 while (h->root.root.type == bfd_link_hash_indirect
4232 || h->root.root.type == bfd_link_hash_warning);
4233 entry->d.h = h;
4234 }
4235 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4236 if (slot == NULL)
4237 {
4238 arg->g = NULL;
4239 return 0;
4240 }
4241 if (*slot == NULL)
4242 {
4243 if (entry == &new_entry)
4244 {
4245 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4246 if (!entry)
4247 {
4248 arg->g = NULL;
4249 return 0;
4250 }
4251 *entry = new_entry;
4252 }
4253 *slot = entry;
4254 mips_elf_count_got_entry (arg->info, arg->g, entry);
4255 }
4256 return 1;
4257 }
4258
4259 /* Return the maximum number of GOT page entries required for RANGE. */
4260
4261 static bfd_vma
4262 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4263 {
4264 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4265 }
4266
4267 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4268
4269 static bfd_boolean
4270 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4271 asection *sec, bfd_signed_vma addend)
4272 {
4273 struct mips_got_info *g = arg->g;
4274 struct mips_got_page_entry lookup, *entry;
4275 struct mips_got_page_range **range_ptr, *range;
4276 bfd_vma old_pages, new_pages;
4277 void **loc;
4278
4279 /* Find the mips_got_page_entry hash table entry for this section. */
4280 lookup.sec = sec;
4281 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4282 if (loc == NULL)
4283 return FALSE;
4284
4285 /* Create a mips_got_page_entry if this is the first time we've
4286 seen the section. */
4287 entry = (struct mips_got_page_entry *) *loc;
4288 if (!entry)
4289 {
4290 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4291 if (!entry)
4292 return FALSE;
4293
4294 entry->sec = sec;
4295 *loc = entry;
4296 }
4297
4298 /* Skip over ranges whose maximum extent cannot share a page entry
4299 with ADDEND. */
4300 range_ptr = &entry->ranges;
4301 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4302 range_ptr = &(*range_ptr)->next;
4303
4304 /* If we scanned to the end of the list, or found a range whose
4305 minimum extent cannot share a page entry with ADDEND, create
4306 a new singleton range. */
4307 range = *range_ptr;
4308 if (!range || addend < range->min_addend - 0xffff)
4309 {
4310 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4311 if (!range)
4312 return FALSE;
4313
4314 range->next = *range_ptr;
4315 range->min_addend = addend;
4316 range->max_addend = addend;
4317
4318 *range_ptr = range;
4319 entry->num_pages++;
4320 g->page_gotno++;
4321 return TRUE;
4322 }
4323
4324 /* Remember how many pages the old range contributed. */
4325 old_pages = mips_elf_pages_for_range (range);
4326
4327 /* Update the ranges. */
4328 if (addend < range->min_addend)
4329 range->min_addend = addend;
4330 else if (addend > range->max_addend)
4331 {
4332 if (range->next && addend >= range->next->min_addend - 0xffff)
4333 {
4334 old_pages += mips_elf_pages_for_range (range->next);
4335 range->max_addend = range->next->max_addend;
4336 range->next = range->next->next;
4337 }
4338 else
4339 range->max_addend = addend;
4340 }
4341
4342 /* Record any change in the total estimate. */
4343 new_pages = mips_elf_pages_for_range (range);
4344 if (old_pages != new_pages)
4345 {
4346 entry->num_pages += new_pages - old_pages;
4347 g->page_gotno += new_pages - old_pages;
4348 }
4349
4350 return TRUE;
4351 }
4352
4353 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4354 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4355 whether the page reference described by *REFP needs a GOT page entry,
4356 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4357
4358 static bfd_boolean
4359 mips_elf_resolve_got_page_ref (void **refp, void *data)
4360 {
4361 struct mips_got_page_ref *ref;
4362 struct mips_elf_traverse_got_arg *arg;
4363 struct mips_elf_link_hash_table *htab;
4364 asection *sec;
4365 bfd_vma addend;
4366
4367 ref = (struct mips_got_page_ref *) *refp;
4368 arg = (struct mips_elf_traverse_got_arg *) data;
4369 htab = mips_elf_hash_table (arg->info);
4370
4371 if (ref->symndx < 0)
4372 {
4373 struct mips_elf_link_hash_entry *h;
4374
4375 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4376 h = ref->u.h;
4377 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4378 return 1;
4379
4380 /* Ignore undefined symbols; we'll issue an error later if
4381 appropriate. */
4382 if (!((h->root.root.type == bfd_link_hash_defined
4383 || h->root.root.type == bfd_link_hash_defweak)
4384 && h->root.root.u.def.section))
4385 return 1;
4386
4387 sec = h->root.root.u.def.section;
4388 addend = h->root.root.u.def.value + ref->addend;
4389 }
4390 else
4391 {
4392 Elf_Internal_Sym *isym;
4393
4394 /* Read in the symbol. */
4395 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4396 ref->symndx);
4397 if (isym == NULL)
4398 {
4399 arg->g = NULL;
4400 return 0;
4401 }
4402
4403 /* Get the associated input section. */
4404 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4405 if (sec == NULL)
4406 {
4407 arg->g = NULL;
4408 return 0;
4409 }
4410
4411 /* If this is a mergable section, work out the section and offset
4412 of the merged data. For section symbols, the addend specifies
4413 of the offset _of_ the first byte in the data, otherwise it
4414 specifies the offset _from_ the first byte. */
4415 if (sec->flags & SEC_MERGE)
4416 {
4417 void *secinfo;
4418
4419 secinfo = elf_section_data (sec)->sec_info;
4420 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4421 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4422 isym->st_value + ref->addend);
4423 else
4424 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4425 isym->st_value) + ref->addend;
4426 }
4427 else
4428 addend = isym->st_value + ref->addend;
4429 }
4430 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4431 {
4432 arg->g = NULL;
4433 return 0;
4434 }
4435 return 1;
4436 }
4437
4438 /* If any entries in G->got_entries are for indirect or warning symbols,
4439 replace them with entries for the target symbol. Convert g->got_page_refs
4440 into got_page_entry structures and estimate the number of page entries
4441 that they require. */
4442
4443 static bfd_boolean
4444 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4445 struct mips_got_info *g)
4446 {
4447 struct mips_elf_traverse_got_arg tga;
4448 struct mips_got_info oldg;
4449
4450 oldg = *g;
4451
4452 tga.info = info;
4453 tga.g = g;
4454 tga.value = FALSE;
4455 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4456 if (tga.value)
4457 {
4458 *g = oldg;
4459 g->got_entries = htab_create (htab_size (oldg.got_entries),
4460 mips_elf_got_entry_hash,
4461 mips_elf_got_entry_eq, NULL);
4462 if (!g->got_entries)
4463 return FALSE;
4464
4465 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4466 if (!tga.g)
4467 return FALSE;
4468
4469 htab_delete (oldg.got_entries);
4470 }
4471
4472 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4473 mips_got_page_entry_eq, NULL);
4474 if (g->got_page_entries == NULL)
4475 return FALSE;
4476
4477 tga.info = info;
4478 tga.g = g;
4479 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4480
4481 return TRUE;
4482 }
4483
4484 /* Return true if a GOT entry for H should live in the local rather than
4485 global GOT area. */
4486
4487 static bfd_boolean
4488 mips_use_local_got_p (struct bfd_link_info *info,
4489 struct mips_elf_link_hash_entry *h)
4490 {
4491 /* Symbols that aren't in the dynamic symbol table must live in the
4492 local GOT. This includes symbols that are completely undefined
4493 and which therefore don't bind locally. We'll report undefined
4494 symbols later if appropriate. */
4495 if (h->root.dynindx == -1)
4496 return TRUE;
4497
4498 /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4499 to the local GOT, as they would be implicitly relocated by the
4500 base address by the dynamic loader. */
4501 if (bfd_is_abs_symbol (&h->root.root))
4502 return FALSE;
4503
4504 /* Symbols that bind locally can (and in the case of forced-local
4505 symbols, must) live in the local GOT. */
4506 if (h->got_only_for_calls
4507 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4508 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4509 return TRUE;
4510
4511 /* If this is an executable that must provide a definition of the symbol,
4512 either though PLTs or copy relocations, then that address should go in
4513 the local rather than global GOT. */
4514 if (bfd_link_executable (info) && h->has_static_relocs)
4515 return TRUE;
4516
4517 return FALSE;
4518 }
4519
4520 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4521 link_info structure. Decide whether the hash entry needs an entry in
4522 the global part of the primary GOT, setting global_got_area accordingly.
4523 Count the number of global symbols that are in the primary GOT only
4524 because they have relocations against them (reloc_only_gotno). */
4525
4526 static int
4527 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4528 {
4529 struct bfd_link_info *info;
4530 struct mips_elf_link_hash_table *htab;
4531 struct mips_got_info *g;
4532
4533 info = (struct bfd_link_info *) data;
4534 htab = mips_elf_hash_table (info);
4535 g = htab->got_info;
4536 if (h->global_got_area != GGA_NONE)
4537 {
4538 /* Make a final decision about whether the symbol belongs in the
4539 local or global GOT. */
4540 if (mips_use_local_got_p (info, h))
4541 /* The symbol belongs in the local GOT. We no longer need this
4542 entry if it was only used for relocations; those relocations
4543 will be against the null or section symbol instead of H. */
4544 h->global_got_area = GGA_NONE;
4545 else if (htab->is_vxworks
4546 && h->got_only_for_calls
4547 && h->root.plt.plist->mips_offset != MINUS_ONE)
4548 /* On VxWorks, calls can refer directly to the .got.plt entry;
4549 they don't need entries in the regular GOT. .got.plt entries
4550 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4551 h->global_got_area = GGA_NONE;
4552 else if (h->global_got_area == GGA_RELOC_ONLY)
4553 {
4554 g->reloc_only_gotno++;
4555 g->global_gotno++;
4556 }
4557 }
4558 return 1;
4559 }
4560 \f
4561 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4562 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4563
4564 static int
4565 mips_elf_add_got_entry (void **entryp, void *data)
4566 {
4567 struct mips_got_entry *entry;
4568 struct mips_elf_traverse_got_arg *arg;
4569 void **slot;
4570
4571 entry = (struct mips_got_entry *) *entryp;
4572 arg = (struct mips_elf_traverse_got_arg *) data;
4573 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4574 if (!slot)
4575 {
4576 arg->g = NULL;
4577 return 0;
4578 }
4579 if (!*slot)
4580 {
4581 *slot = entry;
4582 mips_elf_count_got_entry (arg->info, arg->g, entry);
4583 }
4584 return 1;
4585 }
4586
4587 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4588 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4589
4590 static int
4591 mips_elf_add_got_page_entry (void **entryp, void *data)
4592 {
4593 struct mips_got_page_entry *entry;
4594 struct mips_elf_traverse_got_arg *arg;
4595 void **slot;
4596
4597 entry = (struct mips_got_page_entry *) *entryp;
4598 arg = (struct mips_elf_traverse_got_arg *) data;
4599 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4600 if (!slot)
4601 {
4602 arg->g = NULL;
4603 return 0;
4604 }
4605 if (!*slot)
4606 {
4607 *slot = entry;
4608 arg->g->page_gotno += entry->num_pages;
4609 }
4610 return 1;
4611 }
4612
4613 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4614 this would lead to overflow, 1 if they were merged successfully,
4615 and 0 if a merge failed due to lack of memory. (These values are chosen
4616 so that nonnegative return values can be returned by a htab_traverse
4617 callback.) */
4618
4619 static int
4620 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4621 struct mips_got_info *to,
4622 struct mips_elf_got_per_bfd_arg *arg)
4623 {
4624 struct mips_elf_traverse_got_arg tga;
4625 unsigned int estimate;
4626
4627 /* Work out how many page entries we would need for the combined GOT. */
4628 estimate = arg->max_pages;
4629 if (estimate >= from->page_gotno + to->page_gotno)
4630 estimate = from->page_gotno + to->page_gotno;
4631
4632 /* And conservatively estimate how many local and TLS entries
4633 would be needed. */
4634 estimate += from->local_gotno + to->local_gotno;
4635 estimate += from->tls_gotno + to->tls_gotno;
4636
4637 /* If we're merging with the primary got, any TLS relocations will
4638 come after the full set of global entries. Otherwise estimate those
4639 conservatively as well. */
4640 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4641 estimate += arg->global_count;
4642 else
4643 estimate += from->global_gotno + to->global_gotno;
4644
4645 /* Bail out if the combined GOT might be too big. */
4646 if (estimate > arg->max_count)
4647 return -1;
4648
4649 /* Transfer the bfd's got information from FROM to TO. */
4650 tga.info = arg->info;
4651 tga.g = to;
4652 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4653 if (!tga.g)
4654 return 0;
4655
4656 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4657 if (!tga.g)
4658 return 0;
4659
4660 mips_elf_replace_bfd_got (abfd, to);
4661 return 1;
4662 }
4663
4664 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4665 as possible of the primary got, since it doesn't require explicit
4666 dynamic relocations, but don't use bfds that would reference global
4667 symbols out of the addressable range. Failing the primary got,
4668 attempt to merge with the current got, or finish the current got
4669 and then make make the new got current. */
4670
4671 static bfd_boolean
4672 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4673 struct mips_elf_got_per_bfd_arg *arg)
4674 {
4675 unsigned int estimate;
4676 int result;
4677
4678 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4679 return FALSE;
4680
4681 /* Work out the number of page, local and TLS entries. */
4682 estimate = arg->max_pages;
4683 if (estimate > g->page_gotno)
4684 estimate = g->page_gotno;
4685 estimate += g->local_gotno + g->tls_gotno;
4686
4687 /* We place TLS GOT entries after both locals and globals. The globals
4688 for the primary GOT may overflow the normal GOT size limit, so be
4689 sure not to merge a GOT which requires TLS with the primary GOT in that
4690 case. This doesn't affect non-primary GOTs. */
4691 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4692
4693 if (estimate <= arg->max_count)
4694 {
4695 /* If we don't have a primary GOT, use it as
4696 a starting point for the primary GOT. */
4697 if (!arg->primary)
4698 {
4699 arg->primary = g;
4700 return TRUE;
4701 }
4702
4703 /* Try merging with the primary GOT. */
4704 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4705 if (result >= 0)
4706 return result;
4707 }
4708
4709 /* If we can merge with the last-created got, do it. */
4710 if (arg->current)
4711 {
4712 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4713 if (result >= 0)
4714 return result;
4715 }
4716
4717 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4718 fits; if it turns out that it doesn't, we'll get relocation
4719 overflows anyway. */
4720 g->next = arg->current;
4721 arg->current = g;
4722
4723 return TRUE;
4724 }
4725
4726 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4727 to GOTIDX, duplicating the entry if it has already been assigned
4728 an index in a different GOT. */
4729
4730 static bfd_boolean
4731 mips_elf_set_gotidx (void **entryp, long gotidx)
4732 {
4733 struct mips_got_entry *entry;
4734
4735 entry = (struct mips_got_entry *) *entryp;
4736 if (entry->gotidx > 0)
4737 {
4738 struct mips_got_entry *new_entry;
4739
4740 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4741 if (!new_entry)
4742 return FALSE;
4743
4744 *new_entry = *entry;
4745 *entryp = new_entry;
4746 entry = new_entry;
4747 }
4748 entry->gotidx = gotidx;
4749 return TRUE;
4750 }
4751
4752 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4753 mips_elf_traverse_got_arg in which DATA->value is the size of one
4754 GOT entry. Set DATA->g to null on failure. */
4755
4756 static int
4757 mips_elf_initialize_tls_index (void **entryp, void *data)
4758 {
4759 struct mips_got_entry *entry;
4760 struct mips_elf_traverse_got_arg *arg;
4761
4762 /* We're only interested in TLS symbols. */
4763 entry = (struct mips_got_entry *) *entryp;
4764 if (entry->tls_type == GOT_TLS_NONE)
4765 return 1;
4766
4767 arg = (struct mips_elf_traverse_got_arg *) data;
4768 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4769 {
4770 arg->g = NULL;
4771 return 0;
4772 }
4773
4774 /* Account for the entries we've just allocated. */
4775 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4776 return 1;
4777 }
4778
4779 /* A htab_traverse callback for GOT entries, where DATA points to a
4780 mips_elf_traverse_got_arg. Set the global_got_area of each global
4781 symbol to DATA->value. */
4782
4783 static int
4784 mips_elf_set_global_got_area (void **entryp, void *data)
4785 {
4786 struct mips_got_entry *entry;
4787 struct mips_elf_traverse_got_arg *arg;
4788
4789 entry = (struct mips_got_entry *) *entryp;
4790 arg = (struct mips_elf_traverse_got_arg *) data;
4791 if (entry->abfd != NULL
4792 && entry->symndx == -1
4793 && entry->d.h->global_got_area != GGA_NONE)
4794 entry->d.h->global_got_area = arg->value;
4795 return 1;
4796 }
4797
4798 /* A htab_traverse callback for secondary GOT entries, where DATA points
4799 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4800 and record the number of relocations they require. DATA->value is
4801 the size of one GOT entry. Set DATA->g to null on failure. */
4802
4803 static int
4804 mips_elf_set_global_gotidx (void **entryp, void *data)
4805 {
4806 struct mips_got_entry *entry;
4807 struct mips_elf_traverse_got_arg *arg;
4808
4809 entry = (struct mips_got_entry *) *entryp;
4810 arg = (struct mips_elf_traverse_got_arg *) data;
4811 if (entry->abfd != NULL
4812 && entry->symndx == -1
4813 && entry->d.h->global_got_area != GGA_NONE)
4814 {
4815 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4816 {
4817 arg->g = NULL;
4818 return 0;
4819 }
4820 arg->g->assigned_low_gotno += 1;
4821
4822 if (bfd_link_pic (arg->info)
4823 || (elf_hash_table (arg->info)->dynamic_sections_created
4824 && entry->d.h->root.def_dynamic
4825 && !entry->d.h->root.def_regular))
4826 arg->g->relocs += 1;
4827 }
4828
4829 return 1;
4830 }
4831
4832 /* A htab_traverse callback for GOT entries for which DATA is the
4833 bfd_link_info. Forbid any global symbols from having traditional
4834 lazy-binding stubs. */
4835
4836 static int
4837 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4838 {
4839 struct bfd_link_info *info;
4840 struct mips_elf_link_hash_table *htab;
4841 struct mips_got_entry *entry;
4842
4843 entry = (struct mips_got_entry *) *entryp;
4844 info = (struct bfd_link_info *) data;
4845 htab = mips_elf_hash_table (info);
4846 BFD_ASSERT (htab != NULL);
4847
4848 if (entry->abfd != NULL
4849 && entry->symndx == -1
4850 && entry->d.h->needs_lazy_stub)
4851 {
4852 entry->d.h->needs_lazy_stub = FALSE;
4853 htab->lazy_stub_count--;
4854 }
4855
4856 return 1;
4857 }
4858
4859 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4860 the primary GOT. */
4861 static bfd_vma
4862 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4863 {
4864 if (!g->next)
4865 return 0;
4866
4867 g = mips_elf_bfd_got (ibfd, FALSE);
4868 if (! g)
4869 return 0;
4870
4871 BFD_ASSERT (g->next);
4872
4873 g = g->next;
4874
4875 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4876 * MIPS_ELF_GOT_SIZE (abfd);
4877 }
4878
4879 /* Turn a single GOT that is too big for 16-bit addressing into
4880 a sequence of GOTs, each one 16-bit addressable. */
4881
4882 static bfd_boolean
4883 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4884 asection *got, bfd_size_type pages)
4885 {
4886 struct mips_elf_link_hash_table *htab;
4887 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4888 struct mips_elf_traverse_got_arg tga;
4889 struct mips_got_info *g, *gg;
4890 unsigned int assign, needed_relocs;
4891 bfd *dynobj, *ibfd;
4892
4893 dynobj = elf_hash_table (info)->dynobj;
4894 htab = mips_elf_hash_table (info);
4895 BFD_ASSERT (htab != NULL);
4896
4897 g = htab->got_info;
4898
4899 got_per_bfd_arg.obfd = abfd;
4900 got_per_bfd_arg.info = info;
4901 got_per_bfd_arg.current = NULL;
4902 got_per_bfd_arg.primary = NULL;
4903 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4904 / MIPS_ELF_GOT_SIZE (abfd))
4905 - htab->reserved_gotno);
4906 got_per_bfd_arg.max_pages = pages;
4907 /* The number of globals that will be included in the primary GOT.
4908 See the calls to mips_elf_set_global_got_area below for more
4909 information. */
4910 got_per_bfd_arg.global_count = g->global_gotno;
4911
4912 /* Try to merge the GOTs of input bfds together, as long as they
4913 don't seem to exceed the maximum GOT size, choosing one of them
4914 to be the primary GOT. */
4915 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4916 {
4917 gg = mips_elf_bfd_got (ibfd, FALSE);
4918 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4919 return FALSE;
4920 }
4921
4922 /* If we do not find any suitable primary GOT, create an empty one. */
4923 if (got_per_bfd_arg.primary == NULL)
4924 g->next = mips_elf_create_got_info (abfd);
4925 else
4926 g->next = got_per_bfd_arg.primary;
4927 g->next->next = got_per_bfd_arg.current;
4928
4929 /* GG is now the master GOT, and G is the primary GOT. */
4930 gg = g;
4931 g = g->next;
4932
4933 /* Map the output bfd to the primary got. That's what we're going
4934 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4935 didn't mark in check_relocs, and we want a quick way to find it.
4936 We can't just use gg->next because we're going to reverse the
4937 list. */
4938 mips_elf_replace_bfd_got (abfd, g);
4939
4940 /* Every symbol that is referenced in a dynamic relocation must be
4941 present in the primary GOT, so arrange for them to appear after
4942 those that are actually referenced. */
4943 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4944 g->global_gotno = gg->global_gotno;
4945
4946 tga.info = info;
4947 tga.value = GGA_RELOC_ONLY;
4948 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4949 tga.value = GGA_NORMAL;
4950 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4951
4952 /* Now go through the GOTs assigning them offset ranges.
4953 [assigned_low_gotno, local_gotno[ will be set to the range of local
4954 entries in each GOT. We can then compute the end of a GOT by
4955 adding local_gotno to global_gotno. We reverse the list and make
4956 it circular since then we'll be able to quickly compute the
4957 beginning of a GOT, by computing the end of its predecessor. To
4958 avoid special cases for the primary GOT, while still preserving
4959 assertions that are valid for both single- and multi-got links,
4960 we arrange for the main got struct to have the right number of
4961 global entries, but set its local_gotno such that the initial
4962 offset of the primary GOT is zero. Remember that the primary GOT
4963 will become the last item in the circular linked list, so it
4964 points back to the master GOT. */
4965 gg->local_gotno = -g->global_gotno;
4966 gg->global_gotno = g->global_gotno;
4967 gg->tls_gotno = 0;
4968 assign = 0;
4969 gg->next = gg;
4970
4971 do
4972 {
4973 struct mips_got_info *gn;
4974
4975 assign += htab->reserved_gotno;
4976 g->assigned_low_gotno = assign;
4977 g->local_gotno += assign;
4978 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4979 g->assigned_high_gotno = g->local_gotno - 1;
4980 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4981
4982 /* Take g out of the direct list, and push it onto the reversed
4983 list that gg points to. g->next is guaranteed to be nonnull after
4984 this operation, as required by mips_elf_initialize_tls_index. */
4985 gn = g->next;
4986 g->next = gg->next;
4987 gg->next = g;
4988
4989 /* Set up any TLS entries. We always place the TLS entries after
4990 all non-TLS entries. */
4991 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4992 tga.g = g;
4993 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4994 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4995 if (!tga.g)
4996 return FALSE;
4997 BFD_ASSERT (g->tls_assigned_gotno == assign);
4998
4999 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
5000 g = gn;
5001
5002 /* Forbid global symbols in every non-primary GOT from having
5003 lazy-binding stubs. */
5004 if (g)
5005 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
5006 }
5007 while (g);
5008
5009 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
5010
5011 needed_relocs = 0;
5012 for (g = gg->next; g && g->next != gg; g = g->next)
5013 {
5014 unsigned int save_assign;
5015
5016 /* Assign offsets to global GOT entries and count how many
5017 relocations they need. */
5018 save_assign = g->assigned_low_gotno;
5019 g->assigned_low_gotno = g->local_gotno;
5020 tga.info = info;
5021 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5022 tga.g = g;
5023 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
5024 if (!tga.g)
5025 return FALSE;
5026 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
5027 g->assigned_low_gotno = save_assign;
5028
5029 if (bfd_link_pic (info))
5030 {
5031 g->relocs += g->local_gotno - g->assigned_low_gotno;
5032 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
5033 + g->next->global_gotno
5034 + g->next->tls_gotno
5035 + htab->reserved_gotno);
5036 }
5037 needed_relocs += g->relocs;
5038 }
5039 needed_relocs += g->relocs;
5040
5041 if (needed_relocs)
5042 mips_elf_allocate_dynamic_relocations (dynobj, info,
5043 needed_relocs);
5044
5045 return TRUE;
5046 }
5047
5048 \f
5049 /* Returns the first relocation of type r_type found, beginning with
5050 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5051
5052 static const Elf_Internal_Rela *
5053 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
5054 const Elf_Internal_Rela *relocation,
5055 const Elf_Internal_Rela *relend)
5056 {
5057 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
5058
5059 while (relocation < relend)
5060 {
5061 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5062 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5063 return relocation;
5064
5065 ++relocation;
5066 }
5067
5068 /* We didn't find it. */
5069 return NULL;
5070 }
5071
5072 /* Return whether an input relocation is against a local symbol. */
5073
5074 static bfd_boolean
5075 mips_elf_local_relocation_p (bfd *input_bfd,
5076 const Elf_Internal_Rela *relocation,
5077 asection **local_sections)
5078 {
5079 unsigned long r_symndx;
5080 Elf_Internal_Shdr *symtab_hdr;
5081 size_t extsymoff;
5082
5083 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5084 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5085 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5086
5087 if (r_symndx < extsymoff)
5088 return TRUE;
5089 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5090 return TRUE;
5091
5092 return FALSE;
5093 }
5094 \f
5095 /* Sign-extend VALUE, which has the indicated number of BITS. */
5096
5097 bfd_vma
5098 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5099 {
5100 if (value & ((bfd_vma) 1 << (bits - 1)))
5101 /* VALUE is negative. */
5102 value |= ((bfd_vma) - 1) << bits;
5103
5104 return value;
5105 }
5106
5107 /* Return non-zero if the indicated VALUE has overflowed the maximum
5108 range expressible by a signed number with the indicated number of
5109 BITS. */
5110
5111 static bfd_boolean
5112 mips_elf_overflow_p (bfd_vma value, int bits)
5113 {
5114 bfd_signed_vma svalue = (bfd_signed_vma) value;
5115
5116 if (svalue > (1 << (bits - 1)) - 1)
5117 /* The value is too big. */
5118 return TRUE;
5119 else if (svalue < -(1 << (bits - 1)))
5120 /* The value is too small. */
5121 return TRUE;
5122
5123 /* All is well. */
5124 return FALSE;
5125 }
5126
5127 /* Calculate the %high function. */
5128
5129 static bfd_vma
5130 mips_elf_high (bfd_vma value)
5131 {
5132 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5133 }
5134
5135 /* Calculate the %higher function. */
5136
5137 static bfd_vma
5138 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5139 {
5140 #ifdef BFD64
5141 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5142 #else
5143 abort ();
5144 return MINUS_ONE;
5145 #endif
5146 }
5147
5148 /* Calculate the %highest function. */
5149
5150 static bfd_vma
5151 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5152 {
5153 #ifdef BFD64
5154 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5155 #else
5156 abort ();
5157 return MINUS_ONE;
5158 #endif
5159 }
5160 \f
5161 /* Create the .compact_rel section. */
5162
5163 static bfd_boolean
5164 mips_elf_create_compact_rel_section
5165 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5166 {
5167 flagword flags;
5168 register asection *s;
5169
5170 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5171 {
5172 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5173 | SEC_READONLY);
5174
5175 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5176 if (s == NULL
5177 || ! bfd_set_section_alignment (abfd, s,
5178 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5179 return FALSE;
5180
5181 s->size = sizeof (Elf32_External_compact_rel);
5182 }
5183
5184 return TRUE;
5185 }
5186
5187 /* Create the .got section to hold the global offset table. */
5188
5189 static bfd_boolean
5190 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5191 {
5192 flagword flags;
5193 register asection *s;
5194 struct elf_link_hash_entry *h;
5195 struct bfd_link_hash_entry *bh;
5196 struct mips_elf_link_hash_table *htab;
5197
5198 htab = mips_elf_hash_table (info);
5199 BFD_ASSERT (htab != NULL);
5200
5201 /* This function may be called more than once. */
5202 if (htab->root.sgot)
5203 return TRUE;
5204
5205 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5206 | SEC_LINKER_CREATED);
5207
5208 /* We have to use an alignment of 2**4 here because this is hardcoded
5209 in the function stub generation and in the linker script. */
5210 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5211 if (s == NULL
5212 || ! bfd_set_section_alignment (abfd, s, 4))
5213 return FALSE;
5214 htab->root.sgot = s;
5215
5216 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5217 linker script because we don't want to define the symbol if we
5218 are not creating a global offset table. */
5219 bh = NULL;
5220 if (! (_bfd_generic_link_add_one_symbol
5221 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5222 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5223 return FALSE;
5224
5225 h = (struct elf_link_hash_entry *) bh;
5226 h->non_elf = 0;
5227 h->def_regular = 1;
5228 h->type = STT_OBJECT;
5229 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5230 elf_hash_table (info)->hgot = h;
5231
5232 if (bfd_link_pic (info)
5233 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5234 return FALSE;
5235
5236 htab->got_info = mips_elf_create_got_info (abfd);
5237 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5238 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5239
5240 /* We also need a .got.plt section when generating PLTs. */
5241 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5242 SEC_ALLOC | SEC_LOAD
5243 | SEC_HAS_CONTENTS
5244 | SEC_IN_MEMORY
5245 | SEC_LINKER_CREATED);
5246 if (s == NULL)
5247 return FALSE;
5248 htab->root.sgotplt = s;
5249
5250 return TRUE;
5251 }
5252 \f
5253 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5254 __GOTT_INDEX__ symbols. These symbols are only special for
5255 shared objects; they are not used in executables. */
5256
5257 static bfd_boolean
5258 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5259 {
5260 return (mips_elf_hash_table (info)->is_vxworks
5261 && bfd_link_pic (info)
5262 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5263 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5264 }
5265
5266 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5267 require an la25 stub. See also mips_elf_local_pic_function_p,
5268 which determines whether the destination function ever requires a
5269 stub. */
5270
5271 static bfd_boolean
5272 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5273 bfd_boolean target_is_16_bit_code_p)
5274 {
5275 /* We specifically ignore branches and jumps from EF_PIC objects,
5276 where the onus is on the compiler or programmer to perform any
5277 necessary initialization of $25. Sometimes such initialization
5278 is unnecessary; for example, -mno-shared functions do not use
5279 the incoming value of $25, and may therefore be called directly. */
5280 if (PIC_OBJECT_P (input_bfd))
5281 return FALSE;
5282
5283 switch (r_type)
5284 {
5285 case R_MIPS_26:
5286 case R_MIPS_PC16:
5287 case R_MIPS_PC21_S2:
5288 case R_MIPS_PC26_S2:
5289 case R_MICROMIPS_26_S1:
5290 case R_MICROMIPS_PC7_S1:
5291 case R_MICROMIPS_PC10_S1:
5292 case R_MICROMIPS_PC16_S1:
5293 case R_MICROMIPS_PC23_S2:
5294 return TRUE;
5295
5296 case R_MIPS16_26:
5297 return !target_is_16_bit_code_p;
5298
5299 default:
5300 return FALSE;
5301 }
5302 }
5303 \f
5304 /* Obtain the field relocated by RELOCATION. */
5305
5306 static bfd_vma
5307 mips_elf_obtain_contents (reloc_howto_type *howto,
5308 const Elf_Internal_Rela *relocation,
5309 bfd *input_bfd, bfd_byte *contents)
5310 {
5311 bfd_vma x = 0;
5312 bfd_byte *location = contents + relocation->r_offset;
5313 unsigned int size = bfd_get_reloc_size (howto);
5314
5315 /* Obtain the bytes. */
5316 if (size != 0)
5317 x = bfd_get (8 * size, input_bfd, location);
5318
5319 return x;
5320 }
5321
5322 /* Store the field relocated by RELOCATION. */
5323
5324 static void
5325 mips_elf_store_contents (reloc_howto_type *howto,
5326 const Elf_Internal_Rela *relocation,
5327 bfd *input_bfd, bfd_byte *contents, bfd_vma x)
5328 {
5329 bfd_byte *location = contents + relocation->r_offset;
5330 unsigned int size = bfd_get_reloc_size (howto);
5331
5332 /* Put the value into the output. */
5333 if (size != 0)
5334 bfd_put (8 * size, input_bfd, x, location);
5335 }
5336
5337 /* Try to patch a load from GOT instruction in CONTENTS pointed to by
5338 RELOCATION described by HOWTO, with a move of 0 to the load target
5339 register, returning TRUE if that is successful and FALSE otherwise.
5340 If DOIT is FALSE, then only determine it patching is possible and
5341 return status without actually changing CONTENTS.
5342 */
5343
5344 static bfd_boolean
5345 mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents,
5346 const Elf_Internal_Rela *relocation,
5347 reloc_howto_type *howto, bfd_boolean doit)
5348 {
5349 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5350 bfd_byte *location = contents + relocation->r_offset;
5351 bfd_boolean nullified = TRUE;
5352 bfd_vma x;
5353
5354 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5355
5356 /* Obtain the current value. */
5357 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5358
5359 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5360 while RY is at bits [18:16] of the combined 32-bit instruction word. */
5361 if (mips16_reloc_p (r_type)
5362 && (((x >> 22) & 0x3ff) == 0x3d3 /* LW */
5363 || ((x >> 22) & 0x3ff) == 0x3c7)) /* LD */
5364 x = (0x3cd << 22) | (x & (7 << 16)) << 3; /* LI */
5365 else if (micromips_reloc_p (r_type)
5366 && ((x >> 26) & 0x37) == 0x37) /* LW/LD */
5367 x = (0xc << 26) | (x & (0x1f << 21)); /* ADDIU */
5368 else if (((x >> 26) & 0x3f) == 0x23 /* LW */
5369 || ((x >> 26) & 0x3f) == 0x37) /* LD */
5370 x = (0x9 << 26) | (x & (0x1f << 16)); /* ADDIU */
5371 else
5372 nullified = FALSE;
5373
5374 /* Put the value into the output. */
5375 if (doit && nullified)
5376 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
5377
5378 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, FALSE, location);
5379
5380 return nullified;
5381 }
5382
5383 /* Calculate the value produced by the RELOCATION (which comes from
5384 the INPUT_BFD). The ADDEND is the addend to use for this
5385 RELOCATION; RELOCATION->R_ADDEND is ignored.
5386
5387 The result of the relocation calculation is stored in VALUEP.
5388 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5389 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5390
5391 This function returns bfd_reloc_continue if the caller need take no
5392 further action regarding this relocation, bfd_reloc_notsupported if
5393 something goes dramatically wrong, bfd_reloc_overflow if an
5394 overflow occurs, and bfd_reloc_ok to indicate success. */
5395
5396 static bfd_reloc_status_type
5397 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5398 asection *input_section, bfd_byte *contents,
5399 struct bfd_link_info *info,
5400 const Elf_Internal_Rela *relocation,
5401 bfd_vma addend, reloc_howto_type *howto,
5402 Elf_Internal_Sym *local_syms,
5403 asection **local_sections, bfd_vma *valuep,
5404 const char **namep,
5405 bfd_boolean *cross_mode_jump_p,
5406 bfd_boolean save_addend)
5407 {
5408 /* The eventual value we will return. */
5409 bfd_vma value;
5410 /* The address of the symbol against which the relocation is
5411 occurring. */
5412 bfd_vma symbol = 0;
5413 /* The final GP value to be used for the relocatable, executable, or
5414 shared object file being produced. */
5415 bfd_vma gp;
5416 /* The place (section offset or address) of the storage unit being
5417 relocated. */
5418 bfd_vma p;
5419 /* The value of GP used to create the relocatable object. */
5420 bfd_vma gp0;
5421 /* The offset into the global offset table at which the address of
5422 the relocation entry symbol, adjusted by the addend, resides
5423 during execution. */
5424 bfd_vma g = MINUS_ONE;
5425 /* The section in which the symbol referenced by the relocation is
5426 located. */
5427 asection *sec = NULL;
5428 struct mips_elf_link_hash_entry *h = NULL;
5429 /* TRUE if the symbol referred to by this relocation is a local
5430 symbol. */
5431 bfd_boolean local_p, was_local_p;
5432 /* TRUE if the symbol referred to by this relocation is a section
5433 symbol. */
5434 bfd_boolean section_p = FALSE;
5435 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5436 bfd_boolean gp_disp_p = FALSE;
5437 /* TRUE if the symbol referred to by this relocation is
5438 "__gnu_local_gp". */
5439 bfd_boolean gnu_local_gp_p = FALSE;
5440 Elf_Internal_Shdr *symtab_hdr;
5441 size_t extsymoff;
5442 unsigned long r_symndx;
5443 int r_type;
5444 /* TRUE if overflow occurred during the calculation of the
5445 relocation value. */
5446 bfd_boolean overflowed_p;
5447 /* TRUE if this relocation refers to a MIPS16 function. */
5448 bfd_boolean target_is_16_bit_code_p = FALSE;
5449 bfd_boolean target_is_micromips_code_p = FALSE;
5450 struct mips_elf_link_hash_table *htab;
5451 bfd *dynobj;
5452 bfd_boolean resolved_to_zero;
5453
5454 dynobj = elf_hash_table (info)->dynobj;
5455 htab = mips_elf_hash_table (info);
5456 BFD_ASSERT (htab != NULL);
5457
5458 /* Parse the relocation. */
5459 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5460 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5461 p = (input_section->output_section->vma
5462 + input_section->output_offset
5463 + relocation->r_offset);
5464
5465 /* Assume that there will be no overflow. */
5466 overflowed_p = FALSE;
5467
5468 /* Figure out whether or not the symbol is local, and get the offset
5469 used in the array of hash table entries. */
5470 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5471 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5472 local_sections);
5473 was_local_p = local_p;
5474 if (! elf_bad_symtab (input_bfd))
5475 extsymoff = symtab_hdr->sh_info;
5476 else
5477 {
5478 /* The symbol table does not follow the rule that local symbols
5479 must come before globals. */
5480 extsymoff = 0;
5481 }
5482
5483 /* Figure out the value of the symbol. */
5484 if (local_p)
5485 {
5486 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5487 Elf_Internal_Sym *sym;
5488
5489 sym = local_syms + r_symndx;
5490 sec = local_sections[r_symndx];
5491
5492 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5493
5494 symbol = sec->output_section->vma + sec->output_offset;
5495 if (!section_p || (sec->flags & SEC_MERGE))
5496 symbol += sym->st_value;
5497 if ((sec->flags & SEC_MERGE) && section_p)
5498 {
5499 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5500 addend -= symbol;
5501 addend += sec->output_section->vma + sec->output_offset;
5502 }
5503
5504 /* MIPS16/microMIPS text labels should be treated as odd. */
5505 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5506 ++symbol;
5507
5508 /* Record the name of this symbol, for our caller. */
5509 *namep = bfd_elf_string_from_elf_section (input_bfd,
5510 symtab_hdr->sh_link,
5511 sym->st_name);
5512 if (*namep == NULL || **namep == '\0')
5513 *namep = bfd_section_name (input_bfd, sec);
5514
5515 /* For relocations against a section symbol and ones against no
5516 symbol (absolute relocations) infer the ISA mode from the addend. */
5517 if (section_p || r_symndx == STN_UNDEF)
5518 {
5519 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5520 target_is_micromips_code_p = (addend & 1) && micromips_p;
5521 }
5522 /* For relocations against an absolute symbol infer the ISA mode
5523 from the value of the symbol plus addend. */
5524 else if (bfd_is_abs_section (sec))
5525 {
5526 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5527 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5528 }
5529 /* Otherwise just use the regular symbol annotation available. */
5530 else
5531 {
5532 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5533 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5534 }
5535 }
5536 else
5537 {
5538 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5539
5540 /* For global symbols we look up the symbol in the hash-table. */
5541 h = ((struct mips_elf_link_hash_entry *)
5542 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5543 /* Find the real hash-table entry for this symbol. */
5544 while (h->root.root.type == bfd_link_hash_indirect
5545 || h->root.root.type == bfd_link_hash_warning)
5546 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5547
5548 /* Record the name of this symbol, for our caller. */
5549 *namep = h->root.root.root.string;
5550
5551 /* See if this is the special _gp_disp symbol. Note that such a
5552 symbol must always be a global symbol. */
5553 if (strcmp (*namep, "_gp_disp") == 0
5554 && ! NEWABI_P (input_bfd))
5555 {
5556 /* Relocations against _gp_disp are permitted only with
5557 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5558 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5559 return bfd_reloc_notsupported;
5560
5561 gp_disp_p = TRUE;
5562 }
5563 /* See if this is the special _gp symbol. Note that such a
5564 symbol must always be a global symbol. */
5565 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5566 gnu_local_gp_p = TRUE;
5567
5568
5569 /* If this symbol is defined, calculate its address. Note that
5570 _gp_disp is a magic symbol, always implicitly defined by the
5571 linker, so it's inappropriate to check to see whether or not
5572 its defined. */
5573 else if ((h->root.root.type == bfd_link_hash_defined
5574 || h->root.root.type == bfd_link_hash_defweak)
5575 && h->root.root.u.def.section)
5576 {
5577 sec = h->root.root.u.def.section;
5578 if (sec->output_section)
5579 symbol = (h->root.root.u.def.value
5580 + sec->output_section->vma
5581 + sec->output_offset);
5582 else
5583 symbol = h->root.root.u.def.value;
5584 }
5585 else if (h->root.root.type == bfd_link_hash_undefweak)
5586 /* We allow relocations against undefined weak symbols, giving
5587 it the value zero, so that you can undefined weak functions
5588 and check to see if they exist by looking at their
5589 addresses. */
5590 symbol = 0;
5591 else if (info->unresolved_syms_in_objects == RM_IGNORE
5592 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5593 symbol = 0;
5594 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5595 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5596 {
5597 /* If this is a dynamic link, we should have created a
5598 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5599 in _bfd_mips_elf_create_dynamic_sections.
5600 Otherwise, we should define the symbol with a value of 0.
5601 FIXME: It should probably get into the symbol table
5602 somehow as well. */
5603 BFD_ASSERT (! bfd_link_pic (info));
5604 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5605 symbol = 0;
5606 }
5607 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5608 {
5609 /* This is an optional symbol - an Irix specific extension to the
5610 ELF spec. Ignore it for now.
5611 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5612 than simply ignoring them, but we do not handle this for now.
5613 For information see the "64-bit ELF Object File Specification"
5614 which is available from here:
5615 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5616 symbol = 0;
5617 }
5618 else
5619 {
5620 bfd_boolean reject_undefined
5621 = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
5622 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5623
5624 (*info->callbacks->undefined_symbol)
5625 (info, h->root.root.root.string, input_bfd,
5626 input_section, relocation->r_offset, reject_undefined);
5627
5628 if (reject_undefined)
5629 return bfd_reloc_undefined;
5630
5631 symbol = 0;
5632 }
5633
5634 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5635 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5636 }
5637
5638 /* If this is a reference to a 16-bit function with a stub, we need
5639 to redirect the relocation to the stub unless:
5640
5641 (a) the relocation is for a MIPS16 JAL;
5642
5643 (b) the relocation is for a MIPS16 PIC call, and there are no
5644 non-MIPS16 uses of the GOT slot; or
5645
5646 (c) the section allows direct references to MIPS16 functions. */
5647 if (r_type != R_MIPS16_26
5648 && !bfd_link_relocatable (info)
5649 && ((h != NULL
5650 && h->fn_stub != NULL
5651 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5652 || (local_p
5653 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5654 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5655 && !section_allows_mips16_refs_p (input_section))
5656 {
5657 /* This is a 32- or 64-bit call to a 16-bit function. We should
5658 have already noticed that we were going to need the
5659 stub. */
5660 if (local_p)
5661 {
5662 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5663 value = 0;
5664 }
5665 else
5666 {
5667 BFD_ASSERT (h->need_fn_stub);
5668 if (h->la25_stub)
5669 {
5670 /* If a LA25 header for the stub itself exists, point to the
5671 prepended LUI/ADDIU sequence. */
5672 sec = h->la25_stub->stub_section;
5673 value = h->la25_stub->offset;
5674 }
5675 else
5676 {
5677 sec = h->fn_stub;
5678 value = 0;
5679 }
5680 }
5681
5682 symbol = sec->output_section->vma + sec->output_offset + value;
5683 /* The target is 16-bit, but the stub isn't. */
5684 target_is_16_bit_code_p = FALSE;
5685 }
5686 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5687 to a standard MIPS function, we need to redirect the call to the stub.
5688 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5689 indirect calls should use an indirect stub instead. */
5690 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5691 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5692 || (local_p
5693 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5694 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5695 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5696 {
5697 if (local_p)
5698 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5699 else
5700 {
5701 /* If both call_stub and call_fp_stub are defined, we can figure
5702 out which one to use by checking which one appears in the input
5703 file. */
5704 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5705 {
5706 asection *o;
5707
5708 sec = NULL;
5709 for (o = input_bfd->sections; o != NULL; o = o->next)
5710 {
5711 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5712 {
5713 sec = h->call_fp_stub;
5714 break;
5715 }
5716 }
5717 if (sec == NULL)
5718 sec = h->call_stub;
5719 }
5720 else if (h->call_stub != NULL)
5721 sec = h->call_stub;
5722 else
5723 sec = h->call_fp_stub;
5724 }
5725
5726 BFD_ASSERT (sec->size > 0);
5727 symbol = sec->output_section->vma + sec->output_offset;
5728 }
5729 /* If this is a direct call to a PIC function, redirect to the
5730 non-PIC stub. */
5731 else if (h != NULL && h->la25_stub
5732 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5733 target_is_16_bit_code_p))
5734 {
5735 symbol = (h->la25_stub->stub_section->output_section->vma
5736 + h->la25_stub->stub_section->output_offset
5737 + h->la25_stub->offset);
5738 if (ELF_ST_IS_MICROMIPS (h->root.other))
5739 symbol |= 1;
5740 }
5741 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5742 entry is used if a standard PLT entry has also been made. In this
5743 case the symbol will have been set by mips_elf_set_plt_sym_value
5744 to point to the standard PLT entry, so redirect to the compressed
5745 one. */
5746 else if ((mips16_branch_reloc_p (r_type)
5747 || micromips_branch_reloc_p (r_type))
5748 && !bfd_link_relocatable (info)
5749 && h != NULL
5750 && h->use_plt_entry
5751 && h->root.plt.plist->comp_offset != MINUS_ONE
5752 && h->root.plt.plist->mips_offset != MINUS_ONE)
5753 {
5754 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5755
5756 sec = htab->root.splt;
5757 symbol = (sec->output_section->vma
5758 + sec->output_offset
5759 + htab->plt_header_size
5760 + htab->plt_mips_offset
5761 + h->root.plt.plist->comp_offset
5762 + 1);
5763
5764 target_is_16_bit_code_p = !micromips_p;
5765 target_is_micromips_code_p = micromips_p;
5766 }
5767
5768 /* Make sure MIPS16 and microMIPS are not used together. */
5769 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5770 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5771 {
5772 _bfd_error_handler
5773 (_("MIPS16 and microMIPS functions cannot call each other"));
5774 return bfd_reloc_notsupported;
5775 }
5776
5777 /* Calls from 16-bit code to 32-bit code and vice versa require the
5778 mode change. However, we can ignore calls to undefined weak symbols,
5779 which should never be executed at runtime. This exception is important
5780 because the assembly writer may have "known" that any definition of the
5781 symbol would be 16-bit code, and that direct jumps were therefore
5782 acceptable. */
5783 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5784 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5785 && ((mips16_branch_reloc_p (r_type)
5786 && !target_is_16_bit_code_p)
5787 || (micromips_branch_reloc_p (r_type)
5788 && !target_is_micromips_code_p)
5789 || ((branch_reloc_p (r_type)
5790 || r_type == R_MIPS_JALR)
5791 && (target_is_16_bit_code_p
5792 || target_is_micromips_code_p))));
5793
5794 resolved_to_zero = (h != NULL
5795 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root));
5796
5797 switch (r_type)
5798 {
5799 case R_MIPS16_CALL16:
5800 case R_MIPS16_GOT16:
5801 case R_MIPS_CALL16:
5802 case R_MIPS_GOT16:
5803 case R_MIPS_GOT_PAGE:
5804 case R_MIPS_GOT_DISP:
5805 case R_MIPS_GOT_LO16:
5806 case R_MIPS_CALL_LO16:
5807 case R_MICROMIPS_CALL16:
5808 case R_MICROMIPS_GOT16:
5809 case R_MICROMIPS_GOT_PAGE:
5810 case R_MICROMIPS_GOT_DISP:
5811 case R_MICROMIPS_GOT_LO16:
5812 case R_MICROMIPS_CALL_LO16:
5813 if (resolved_to_zero
5814 && !bfd_link_relocatable (info)
5815 && mips_elf_nullify_got_load (input_bfd, contents,
5816 relocation, howto, TRUE))
5817 return bfd_reloc_continue;
5818
5819 /* Fall through. */
5820 case R_MIPS_GOT_HI16:
5821 case R_MIPS_CALL_HI16:
5822 case R_MICROMIPS_GOT_HI16:
5823 case R_MICROMIPS_CALL_HI16:
5824 if (resolved_to_zero
5825 && htab->use_absolute_zero
5826 && bfd_link_pic (info))
5827 {
5828 /* Redirect to the special `__gnu_absolute_zero' symbol. */
5829 h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero",
5830 FALSE, FALSE, FALSE);
5831 BFD_ASSERT (h != NULL);
5832 }
5833 break;
5834 }
5835
5836 local_p = (h == NULL || mips_use_local_got_p (info, h));
5837
5838 gp0 = _bfd_get_gp_value (input_bfd);
5839 gp = _bfd_get_gp_value (abfd);
5840 if (htab->got_info)
5841 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5842
5843 if (gnu_local_gp_p)
5844 symbol = gp;
5845
5846 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5847 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5848 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5849 if (got_page_reloc_p (r_type) && !local_p)
5850 {
5851 r_type = (micromips_reloc_p (r_type)
5852 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5853 addend = 0;
5854 }
5855
5856 /* If we haven't already determined the GOT offset, and we're going
5857 to need it, get it now. */
5858 switch (r_type)
5859 {
5860 case R_MIPS16_CALL16:
5861 case R_MIPS16_GOT16:
5862 case R_MIPS_CALL16:
5863 case R_MIPS_GOT16:
5864 case R_MIPS_GOT_DISP:
5865 case R_MIPS_GOT_HI16:
5866 case R_MIPS_CALL_HI16:
5867 case R_MIPS_GOT_LO16:
5868 case R_MIPS_CALL_LO16:
5869 case R_MICROMIPS_CALL16:
5870 case R_MICROMIPS_GOT16:
5871 case R_MICROMIPS_GOT_DISP:
5872 case R_MICROMIPS_GOT_HI16:
5873 case R_MICROMIPS_CALL_HI16:
5874 case R_MICROMIPS_GOT_LO16:
5875 case R_MICROMIPS_CALL_LO16:
5876 case R_MIPS_TLS_GD:
5877 case R_MIPS_TLS_GOTTPREL:
5878 case R_MIPS_TLS_LDM:
5879 case R_MIPS16_TLS_GD:
5880 case R_MIPS16_TLS_GOTTPREL:
5881 case R_MIPS16_TLS_LDM:
5882 case R_MICROMIPS_TLS_GD:
5883 case R_MICROMIPS_TLS_GOTTPREL:
5884 case R_MICROMIPS_TLS_LDM:
5885 /* Find the index into the GOT where this value is located. */
5886 if (tls_ldm_reloc_p (r_type))
5887 {
5888 g = mips_elf_local_got_index (abfd, input_bfd, info,
5889 0, 0, NULL, r_type);
5890 if (g == MINUS_ONE)
5891 return bfd_reloc_outofrange;
5892 }
5893 else if (!local_p)
5894 {
5895 /* On VxWorks, CALL relocations should refer to the .got.plt
5896 entry, which is initialized to point at the PLT stub. */
5897 if (htab->is_vxworks
5898 && (call_hi16_reloc_p (r_type)
5899 || call_lo16_reloc_p (r_type)
5900 || call16_reloc_p (r_type)))
5901 {
5902 BFD_ASSERT (addend == 0);
5903 BFD_ASSERT (h->root.needs_plt);
5904 g = mips_elf_gotplt_index (info, &h->root);
5905 }
5906 else
5907 {
5908 BFD_ASSERT (addend == 0);
5909 g = mips_elf_global_got_index (abfd, info, input_bfd,
5910 &h->root, r_type);
5911 if (!TLS_RELOC_P (r_type)
5912 && !elf_hash_table (info)->dynamic_sections_created)
5913 /* This is a static link. We must initialize the GOT entry. */
5914 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5915 }
5916 }
5917 else if (!htab->is_vxworks
5918 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5919 /* The calculation below does not involve "g". */
5920 break;
5921 else
5922 {
5923 g = mips_elf_local_got_index (abfd, input_bfd, info,
5924 symbol + addend, r_symndx, h, r_type);
5925 if (g == MINUS_ONE)
5926 return bfd_reloc_outofrange;
5927 }
5928
5929 /* Convert GOT indices to actual offsets. */
5930 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5931 break;
5932 }
5933
5934 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5935 symbols are resolved by the loader. Add them to .rela.dyn. */
5936 if (h != NULL && is_gott_symbol (info, &h->root))
5937 {
5938 Elf_Internal_Rela outrel;
5939 bfd_byte *loc;
5940 asection *s;
5941
5942 s = mips_elf_rel_dyn_section (info, FALSE);
5943 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5944
5945 outrel.r_offset = (input_section->output_section->vma
5946 + input_section->output_offset
5947 + relocation->r_offset);
5948 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5949 outrel.r_addend = addend;
5950 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5951
5952 /* If we've written this relocation for a readonly section,
5953 we need to set DF_TEXTREL again, so that we do not delete the
5954 DT_TEXTREL tag. */
5955 if (MIPS_ELF_READONLY_SECTION (input_section))
5956 info->flags |= DF_TEXTREL;
5957
5958 *valuep = 0;
5959 return bfd_reloc_ok;
5960 }
5961
5962 /* Figure out what kind of relocation is being performed. */
5963 switch (r_type)
5964 {
5965 case R_MIPS_NONE:
5966 return bfd_reloc_continue;
5967
5968 case R_MIPS_16:
5969 if (howto->partial_inplace)
5970 addend = _bfd_mips_elf_sign_extend (addend, 16);
5971 value = symbol + addend;
5972 overflowed_p = mips_elf_overflow_p (value, 16);
5973 break;
5974
5975 case R_MIPS_32:
5976 case R_MIPS_REL32:
5977 case R_MIPS_64:
5978 if ((bfd_link_pic (info)
5979 || (htab->root.dynamic_sections_created
5980 && h != NULL
5981 && h->root.def_dynamic
5982 && !h->root.def_regular
5983 && !h->has_static_relocs))
5984 && r_symndx != STN_UNDEF
5985 && (h == NULL
5986 || h->root.root.type != bfd_link_hash_undefweak
5987 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5988 && !resolved_to_zero))
5989 && (input_section->flags & SEC_ALLOC) != 0)
5990 {
5991 /* If we're creating a shared library, then we can't know
5992 where the symbol will end up. So, we create a relocation
5993 record in the output, and leave the job up to the dynamic
5994 linker. We must do the same for executable references to
5995 shared library symbols, unless we've decided to use copy
5996 relocs or PLTs instead. */
5997 value = addend;
5998 if (!mips_elf_create_dynamic_relocation (abfd,
5999 info,
6000 relocation,
6001 h,
6002 sec,
6003 symbol,
6004 &value,
6005 input_section))
6006 return bfd_reloc_undefined;
6007 }
6008 else
6009 {
6010 if (r_type != R_MIPS_REL32)
6011 value = symbol + addend;
6012 else
6013 value = addend;
6014 }
6015 value &= howto->dst_mask;
6016 break;
6017
6018 case R_MIPS_PC32:
6019 value = symbol + addend - p;
6020 value &= howto->dst_mask;
6021 break;
6022
6023 case R_MIPS16_26:
6024 /* The calculation for R_MIPS16_26 is just the same as for an
6025 R_MIPS_26. It's only the storage of the relocated field into
6026 the output file that's different. That's handled in
6027 mips_elf_perform_relocation. So, we just fall through to the
6028 R_MIPS_26 case here. */
6029 case R_MIPS_26:
6030 case R_MICROMIPS_26_S1:
6031 {
6032 unsigned int shift;
6033
6034 /* Shift is 2, unusually, for microMIPS JALX. */
6035 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
6036
6037 if (howto->partial_inplace && !section_p)
6038 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
6039 else
6040 value = addend;
6041 value += symbol;
6042
6043 /* Make sure the target of a jump is suitably aligned. Bit 0 must
6044 be the correct ISA mode selector except for weak undefined
6045 symbols. */
6046 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6047 && (*cross_mode_jump_p
6048 ? (value & 3) != (r_type == R_MIPS_26)
6049 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
6050 return bfd_reloc_outofrange;
6051
6052 value >>= shift;
6053 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6054 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
6055 value &= howto->dst_mask;
6056 }
6057 break;
6058
6059 case R_MIPS_TLS_DTPREL_HI16:
6060 case R_MIPS16_TLS_DTPREL_HI16:
6061 case R_MICROMIPS_TLS_DTPREL_HI16:
6062 value = (mips_elf_high (addend + symbol - dtprel_base (info))
6063 & howto->dst_mask);
6064 break;
6065
6066 case R_MIPS_TLS_DTPREL_LO16:
6067 case R_MIPS_TLS_DTPREL32:
6068 case R_MIPS_TLS_DTPREL64:
6069 case R_MIPS16_TLS_DTPREL_LO16:
6070 case R_MICROMIPS_TLS_DTPREL_LO16:
6071 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
6072 break;
6073
6074 case R_MIPS_TLS_TPREL_HI16:
6075 case R_MIPS16_TLS_TPREL_HI16:
6076 case R_MICROMIPS_TLS_TPREL_HI16:
6077 value = (mips_elf_high (addend + symbol - tprel_base (info))
6078 & howto->dst_mask);
6079 break;
6080
6081 case R_MIPS_TLS_TPREL_LO16:
6082 case R_MIPS_TLS_TPREL32:
6083 case R_MIPS_TLS_TPREL64:
6084 case R_MIPS16_TLS_TPREL_LO16:
6085 case R_MICROMIPS_TLS_TPREL_LO16:
6086 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
6087 break;
6088
6089 case R_MIPS_HI16:
6090 case R_MIPS16_HI16:
6091 case R_MICROMIPS_HI16:
6092 if (!gp_disp_p)
6093 {
6094 value = mips_elf_high (addend + symbol);
6095 value &= howto->dst_mask;
6096 }
6097 else
6098 {
6099 /* For MIPS16 ABI code we generate this sequence
6100 0: li $v0,%hi(_gp_disp)
6101 4: addiupc $v1,%lo(_gp_disp)
6102 8: sll $v0,16
6103 12: addu $v0,$v1
6104 14: move $gp,$v0
6105 So the offsets of hi and lo relocs are the same, but the
6106 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6107 ADDIUPC clears the low two bits of the instruction address,
6108 so the base is ($t9 + 4) & ~3. */
6109 if (r_type == R_MIPS16_HI16)
6110 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
6111 /* The microMIPS .cpload sequence uses the same assembly
6112 instructions as the traditional psABI version, but the
6113 incoming $t9 has the low bit set. */
6114 else if (r_type == R_MICROMIPS_HI16)
6115 value = mips_elf_high (addend + gp - p - 1);
6116 else
6117 value = mips_elf_high (addend + gp - p);
6118 }
6119 break;
6120
6121 case R_MIPS_LO16:
6122 case R_MIPS16_LO16:
6123 case R_MICROMIPS_LO16:
6124 case R_MICROMIPS_HI0_LO16:
6125 if (!gp_disp_p)
6126 value = (symbol + addend) & howto->dst_mask;
6127 else
6128 {
6129 /* See the comment for R_MIPS16_HI16 above for the reason
6130 for this conditional. */
6131 if (r_type == R_MIPS16_LO16)
6132 value = addend + gp - (p & ~(bfd_vma) 0x3);
6133 else if (r_type == R_MICROMIPS_LO16
6134 || r_type == R_MICROMIPS_HI0_LO16)
6135 value = addend + gp - p + 3;
6136 else
6137 value = addend + gp - p + 4;
6138 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6139 for overflow. But, on, say, IRIX5, relocations against
6140 _gp_disp are normally generated from the .cpload
6141 pseudo-op. It generates code that normally looks like
6142 this:
6143
6144 lui $gp,%hi(_gp_disp)
6145 addiu $gp,$gp,%lo(_gp_disp)
6146 addu $gp,$gp,$t9
6147
6148 Here $t9 holds the address of the function being called,
6149 as required by the MIPS ELF ABI. The R_MIPS_LO16
6150 relocation can easily overflow in this situation, but the
6151 R_MIPS_HI16 relocation will handle the overflow.
6152 Therefore, we consider this a bug in the MIPS ABI, and do
6153 not check for overflow here. */
6154 }
6155 break;
6156
6157 case R_MIPS_LITERAL:
6158 case R_MICROMIPS_LITERAL:
6159 /* Because we don't merge literal sections, we can handle this
6160 just like R_MIPS_GPREL16. In the long run, we should merge
6161 shared literals, and then we will need to additional work
6162 here. */
6163
6164 /* Fall through. */
6165
6166 case R_MIPS16_GPREL:
6167 /* The R_MIPS16_GPREL performs the same calculation as
6168 R_MIPS_GPREL16, but stores the relocated bits in a different
6169 order. We don't need to do anything special here; the
6170 differences are handled in mips_elf_perform_relocation. */
6171 case R_MIPS_GPREL16:
6172 case R_MICROMIPS_GPREL7_S2:
6173 case R_MICROMIPS_GPREL16:
6174 /* Only sign-extend the addend if it was extracted from the
6175 instruction. If the addend was separate, leave it alone,
6176 otherwise we may lose significant bits. */
6177 if (howto->partial_inplace)
6178 addend = _bfd_mips_elf_sign_extend (addend, 16);
6179 value = symbol + addend - gp;
6180 /* If the symbol was local, any earlier relocatable links will
6181 have adjusted its addend with the gp offset, so compensate
6182 for that now. Don't do it for symbols forced local in this
6183 link, though, since they won't have had the gp offset applied
6184 to them before. */
6185 if (was_local_p)
6186 value += gp0;
6187 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6188 overflowed_p = mips_elf_overflow_p (value, 16);
6189 break;
6190
6191 case R_MIPS16_GOT16:
6192 case R_MIPS16_CALL16:
6193 case R_MIPS_GOT16:
6194 case R_MIPS_CALL16:
6195 case R_MICROMIPS_GOT16:
6196 case R_MICROMIPS_CALL16:
6197 /* VxWorks does not have separate local and global semantics for
6198 R_MIPS*_GOT16; every relocation evaluates to "G". */
6199 if (!htab->is_vxworks && local_p)
6200 {
6201 value = mips_elf_got16_entry (abfd, input_bfd, info,
6202 symbol + addend, !was_local_p);
6203 if (value == MINUS_ONE)
6204 return bfd_reloc_outofrange;
6205 value
6206 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6207 overflowed_p = mips_elf_overflow_p (value, 16);
6208 break;
6209 }
6210
6211 /* Fall through. */
6212
6213 case R_MIPS_TLS_GD:
6214 case R_MIPS_TLS_GOTTPREL:
6215 case R_MIPS_TLS_LDM:
6216 case R_MIPS_GOT_DISP:
6217 case R_MIPS16_TLS_GD:
6218 case R_MIPS16_TLS_GOTTPREL:
6219 case R_MIPS16_TLS_LDM:
6220 case R_MICROMIPS_TLS_GD:
6221 case R_MICROMIPS_TLS_GOTTPREL:
6222 case R_MICROMIPS_TLS_LDM:
6223 case R_MICROMIPS_GOT_DISP:
6224 value = g;
6225 overflowed_p = mips_elf_overflow_p (value, 16);
6226 break;
6227
6228 case R_MIPS_GPREL32:
6229 value = (addend + symbol + gp0 - gp);
6230 if (!save_addend)
6231 value &= howto->dst_mask;
6232 break;
6233
6234 case R_MIPS_PC16:
6235 case R_MIPS_GNU_REL16_S2:
6236 if (howto->partial_inplace)
6237 addend = _bfd_mips_elf_sign_extend (addend, 18);
6238
6239 /* No need to exclude weak undefined symbols here as they resolve
6240 to 0 and never set `*cross_mode_jump_p', so this alignment check
6241 will never trigger for them. */
6242 if (*cross_mode_jump_p
6243 ? ((symbol + addend) & 3) != 1
6244 : ((symbol + addend) & 3) != 0)
6245 return bfd_reloc_outofrange;
6246
6247 value = symbol + addend - p;
6248 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6249 overflowed_p = mips_elf_overflow_p (value, 18);
6250 value >>= howto->rightshift;
6251 value &= howto->dst_mask;
6252 break;
6253
6254 case R_MIPS16_PC16_S1:
6255 if (howto->partial_inplace)
6256 addend = _bfd_mips_elf_sign_extend (addend, 17);
6257
6258 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6259 && (*cross_mode_jump_p
6260 ? ((symbol + addend) & 3) != 0
6261 : ((symbol + addend) & 1) == 0))
6262 return bfd_reloc_outofrange;
6263
6264 value = symbol + addend - p;
6265 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6266 overflowed_p = mips_elf_overflow_p (value, 17);
6267 value >>= howto->rightshift;
6268 value &= howto->dst_mask;
6269 break;
6270
6271 case R_MIPS_PC21_S2:
6272 if (howto->partial_inplace)
6273 addend = _bfd_mips_elf_sign_extend (addend, 23);
6274
6275 if ((symbol + addend) & 3)
6276 return bfd_reloc_outofrange;
6277
6278 value = symbol + addend - p;
6279 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6280 overflowed_p = mips_elf_overflow_p (value, 23);
6281 value >>= howto->rightshift;
6282 value &= howto->dst_mask;
6283 break;
6284
6285 case R_MIPS_PC26_S2:
6286 if (howto->partial_inplace)
6287 addend = _bfd_mips_elf_sign_extend (addend, 28);
6288
6289 if ((symbol + addend) & 3)
6290 return bfd_reloc_outofrange;
6291
6292 value = symbol + addend - p;
6293 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6294 overflowed_p = mips_elf_overflow_p (value, 28);
6295 value >>= howto->rightshift;
6296 value &= howto->dst_mask;
6297 break;
6298
6299 case R_MIPS_PC18_S3:
6300 if (howto->partial_inplace)
6301 addend = _bfd_mips_elf_sign_extend (addend, 21);
6302
6303 if ((symbol + addend) & 7)
6304 return bfd_reloc_outofrange;
6305
6306 value = symbol + addend - ((p | 7) ^ 7);
6307 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6308 overflowed_p = mips_elf_overflow_p (value, 21);
6309 value >>= howto->rightshift;
6310 value &= howto->dst_mask;
6311 break;
6312
6313 case R_MIPS_PC19_S2:
6314 if (howto->partial_inplace)
6315 addend = _bfd_mips_elf_sign_extend (addend, 21);
6316
6317 if ((symbol + addend) & 3)
6318 return bfd_reloc_outofrange;
6319
6320 value = symbol + addend - p;
6321 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6322 overflowed_p = mips_elf_overflow_p (value, 21);
6323 value >>= howto->rightshift;
6324 value &= howto->dst_mask;
6325 break;
6326
6327 case R_MIPS_PCHI16:
6328 value = mips_elf_high (symbol + addend - p);
6329 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6330 overflowed_p = mips_elf_overflow_p (value, 16);
6331 value &= howto->dst_mask;
6332 break;
6333
6334 case R_MIPS_PCLO16:
6335 if (howto->partial_inplace)
6336 addend = _bfd_mips_elf_sign_extend (addend, 16);
6337 value = symbol + addend - p;
6338 value &= howto->dst_mask;
6339 break;
6340
6341 case R_MICROMIPS_PC7_S1:
6342 if (howto->partial_inplace)
6343 addend = _bfd_mips_elf_sign_extend (addend, 8);
6344
6345 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6346 && (*cross_mode_jump_p
6347 ? ((symbol + addend + 2) & 3) != 0
6348 : ((symbol + addend + 2) & 1) == 0))
6349 return bfd_reloc_outofrange;
6350
6351 value = symbol + addend - p;
6352 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6353 overflowed_p = mips_elf_overflow_p (value, 8);
6354 value >>= howto->rightshift;
6355 value &= howto->dst_mask;
6356 break;
6357
6358 case R_MICROMIPS_PC10_S1:
6359 if (howto->partial_inplace)
6360 addend = _bfd_mips_elf_sign_extend (addend, 11);
6361
6362 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6363 && (*cross_mode_jump_p
6364 ? ((symbol + addend + 2) & 3) != 0
6365 : ((symbol + addend + 2) & 1) == 0))
6366 return bfd_reloc_outofrange;
6367
6368 value = symbol + addend - p;
6369 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6370 overflowed_p = mips_elf_overflow_p (value, 11);
6371 value >>= howto->rightshift;
6372 value &= howto->dst_mask;
6373 break;
6374
6375 case R_MICROMIPS_PC16_S1:
6376 if (howto->partial_inplace)
6377 addend = _bfd_mips_elf_sign_extend (addend, 17);
6378
6379 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6380 && (*cross_mode_jump_p
6381 ? ((symbol + addend) & 3) != 0
6382 : ((symbol + addend) & 1) == 0))
6383 return bfd_reloc_outofrange;
6384
6385 value = symbol + addend - p;
6386 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6387 overflowed_p = mips_elf_overflow_p (value, 17);
6388 value >>= howto->rightshift;
6389 value &= howto->dst_mask;
6390 break;
6391
6392 case R_MICROMIPS_PC23_S2:
6393 if (howto->partial_inplace)
6394 addend = _bfd_mips_elf_sign_extend (addend, 25);
6395 value = symbol + addend - ((p | 3) ^ 3);
6396 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6397 overflowed_p = mips_elf_overflow_p (value, 25);
6398 value >>= howto->rightshift;
6399 value &= howto->dst_mask;
6400 break;
6401
6402 case R_MIPS_GOT_HI16:
6403 case R_MIPS_CALL_HI16:
6404 case R_MICROMIPS_GOT_HI16:
6405 case R_MICROMIPS_CALL_HI16:
6406 /* We're allowed to handle these two relocations identically.
6407 The dynamic linker is allowed to handle the CALL relocations
6408 differently by creating a lazy evaluation stub. */
6409 value = g;
6410 value = mips_elf_high (value);
6411 value &= howto->dst_mask;
6412 break;
6413
6414 case R_MIPS_GOT_LO16:
6415 case R_MIPS_CALL_LO16:
6416 case R_MICROMIPS_GOT_LO16:
6417 case R_MICROMIPS_CALL_LO16:
6418 value = g & howto->dst_mask;
6419 break;
6420
6421 case R_MIPS_GOT_PAGE:
6422 case R_MICROMIPS_GOT_PAGE:
6423 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6424 if (value == MINUS_ONE)
6425 return bfd_reloc_outofrange;
6426 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6427 overflowed_p = mips_elf_overflow_p (value, 16);
6428 break;
6429
6430 case R_MIPS_GOT_OFST:
6431 case R_MICROMIPS_GOT_OFST:
6432 if (local_p)
6433 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6434 else
6435 value = addend;
6436 overflowed_p = mips_elf_overflow_p (value, 16);
6437 break;
6438
6439 case R_MIPS_SUB:
6440 case R_MICROMIPS_SUB:
6441 value = symbol - addend;
6442 value &= howto->dst_mask;
6443 break;
6444
6445 case R_MIPS_HIGHER:
6446 case R_MICROMIPS_HIGHER:
6447 value = mips_elf_higher (addend + symbol);
6448 value &= howto->dst_mask;
6449 break;
6450
6451 case R_MIPS_HIGHEST:
6452 case R_MICROMIPS_HIGHEST:
6453 value = mips_elf_highest (addend + symbol);
6454 value &= howto->dst_mask;
6455 break;
6456
6457 case R_MIPS_SCN_DISP:
6458 case R_MICROMIPS_SCN_DISP:
6459 value = symbol + addend - sec->output_offset;
6460 value &= howto->dst_mask;
6461 break;
6462
6463 case R_MIPS_JALR:
6464 case R_MICROMIPS_JALR:
6465 /* This relocation is only a hint. In some cases, we optimize
6466 it into a bal instruction. But we don't try to optimize
6467 when the symbol does not resolve locally. */
6468 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6469 return bfd_reloc_continue;
6470 /* We can't optimize cross-mode jumps either. */
6471 if (*cross_mode_jump_p)
6472 return bfd_reloc_continue;
6473 value = symbol + addend;
6474 /* Neither we can non-instruction-aligned targets. */
6475 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6476 return bfd_reloc_continue;
6477 break;
6478
6479 case R_MIPS_PJUMP:
6480 case R_MIPS_GNU_VTINHERIT:
6481 case R_MIPS_GNU_VTENTRY:
6482 /* We don't do anything with these at present. */
6483 return bfd_reloc_continue;
6484
6485 default:
6486 /* An unrecognized relocation type. */
6487 return bfd_reloc_notsupported;
6488 }
6489
6490 /* Store the VALUE for our caller. */
6491 *valuep = value;
6492 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6493 }
6494
6495 /* It has been determined that the result of the RELOCATION is the
6496 VALUE. Use HOWTO to place VALUE into the output file at the
6497 appropriate position. The SECTION is the section to which the
6498 relocation applies.
6499 CROSS_MODE_JUMP_P is true if the relocation field
6500 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6501
6502 Returns FALSE if anything goes wrong. */
6503
6504 static bfd_boolean
6505 mips_elf_perform_relocation (struct bfd_link_info *info,
6506 reloc_howto_type *howto,
6507 const Elf_Internal_Rela *relocation,
6508 bfd_vma value, bfd *input_bfd,
6509 asection *input_section, bfd_byte *contents,
6510 bfd_boolean cross_mode_jump_p)
6511 {
6512 bfd_vma x;
6513 bfd_byte *location;
6514 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6515
6516 /* Figure out where the relocation is occurring. */
6517 location = contents + relocation->r_offset;
6518
6519 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6520
6521 /* Obtain the current value. */
6522 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6523
6524 /* Clear the field we are setting. */
6525 x &= ~howto->dst_mask;
6526
6527 /* Set the field. */
6528 x |= (value & howto->dst_mask);
6529
6530 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6531 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6532 {
6533 bfd_vma opcode = x >> 26;
6534
6535 if (r_type == R_MIPS16_26 ? opcode == 0x7
6536 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6537 : opcode == 0x1d)
6538 {
6539 info->callbacks->einfo
6540 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6541 input_bfd, input_section, relocation->r_offset);
6542 return TRUE;
6543 }
6544 }
6545 if (cross_mode_jump_p && jal_reloc_p (r_type))
6546 {
6547 bfd_boolean ok;
6548 bfd_vma opcode = x >> 26;
6549 bfd_vma jalx_opcode;
6550
6551 /* Check to see if the opcode is already JAL or JALX. */
6552 if (r_type == R_MIPS16_26)
6553 {
6554 ok = ((opcode == 0x6) || (opcode == 0x7));
6555 jalx_opcode = 0x7;
6556 }
6557 else if (r_type == R_MICROMIPS_26_S1)
6558 {
6559 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6560 jalx_opcode = 0x3c;
6561 }
6562 else
6563 {
6564 ok = ((opcode == 0x3) || (opcode == 0x1d));
6565 jalx_opcode = 0x1d;
6566 }
6567
6568 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6569 convert J or JALS to JALX. */
6570 if (!ok)
6571 {
6572 info->callbacks->einfo
6573 (_("%X%H: unsupported jump between ISA modes; "
6574 "consider recompiling with interlinking enabled\n"),
6575 input_bfd, input_section, relocation->r_offset);
6576 return TRUE;
6577 }
6578
6579 /* Make this the JALX opcode. */
6580 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6581 }
6582 else if (cross_mode_jump_p && b_reloc_p (r_type))
6583 {
6584 bfd_boolean ok = FALSE;
6585 bfd_vma opcode = x >> 16;
6586 bfd_vma jalx_opcode = 0;
6587 bfd_vma sign_bit = 0;
6588 bfd_vma addr;
6589 bfd_vma dest;
6590
6591 if (r_type == R_MICROMIPS_PC16_S1)
6592 {
6593 ok = opcode == 0x4060;
6594 jalx_opcode = 0x3c;
6595 sign_bit = 0x10000;
6596 value <<= 1;
6597 }
6598 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6599 {
6600 ok = opcode == 0x411;
6601 jalx_opcode = 0x1d;
6602 sign_bit = 0x20000;
6603 value <<= 2;
6604 }
6605
6606 if (ok && !bfd_link_pic (info))
6607 {
6608 addr = (input_section->output_section->vma
6609 + input_section->output_offset
6610 + relocation->r_offset
6611 + 4);
6612 dest = (addr
6613 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6614
6615 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6616 {
6617 info->callbacks->einfo
6618 (_("%X%H: cannot convert branch between ISA modes "
6619 "to JALX: relocation out of range\n"),
6620 input_bfd, input_section, relocation->r_offset);
6621 return TRUE;
6622 }
6623
6624 /* Make this the JALX opcode. */
6625 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6626 }
6627 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6628 {
6629 info->callbacks->einfo
6630 (_("%X%H: unsupported branch between ISA modes\n"),
6631 input_bfd, input_section, relocation->r_offset);
6632 return TRUE;
6633 }
6634 }
6635
6636 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6637 range. */
6638 if (!bfd_link_relocatable (info)
6639 && !cross_mode_jump_p
6640 && ((JAL_TO_BAL_P (input_bfd)
6641 && r_type == R_MIPS_26
6642 && (x >> 26) == 0x3) /* jal addr */
6643 || (JALR_TO_BAL_P (input_bfd)
6644 && r_type == R_MIPS_JALR
6645 && x == 0x0320f809) /* jalr t9 */
6646 || (JR_TO_B_P (input_bfd)
6647 && r_type == R_MIPS_JALR
6648 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6649 {
6650 bfd_vma addr;
6651 bfd_vma dest;
6652 bfd_signed_vma off;
6653
6654 addr = (input_section->output_section->vma
6655 + input_section->output_offset
6656 + relocation->r_offset
6657 + 4);
6658 if (r_type == R_MIPS_26)
6659 dest = (value << 2) | ((addr >> 28) << 28);
6660 else
6661 dest = value;
6662 off = dest - addr;
6663 if (off <= 0x1ffff && off >= -0x20000)
6664 {
6665 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6666 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6667 else
6668 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6669 }
6670 }
6671
6672 /* Put the value into the output. */
6673 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
6674
6675 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6676 location);
6677
6678 return TRUE;
6679 }
6680 \f
6681 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6682 is the original relocation, which is now being transformed into a
6683 dynamic relocation. The ADDENDP is adjusted if necessary; the
6684 caller should store the result in place of the original addend. */
6685
6686 static bfd_boolean
6687 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6688 struct bfd_link_info *info,
6689 const Elf_Internal_Rela *rel,
6690 struct mips_elf_link_hash_entry *h,
6691 asection *sec, bfd_vma symbol,
6692 bfd_vma *addendp, asection *input_section)
6693 {
6694 Elf_Internal_Rela outrel[3];
6695 asection *sreloc;
6696 bfd *dynobj;
6697 int r_type;
6698 long indx;
6699 bfd_boolean defined_p;
6700 struct mips_elf_link_hash_table *htab;
6701
6702 htab = mips_elf_hash_table (info);
6703 BFD_ASSERT (htab != NULL);
6704
6705 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6706 dynobj = elf_hash_table (info)->dynobj;
6707 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6708 BFD_ASSERT (sreloc != NULL);
6709 BFD_ASSERT (sreloc->contents != NULL);
6710 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6711 < sreloc->size);
6712
6713 outrel[0].r_offset =
6714 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6715 if (ABI_64_P (output_bfd))
6716 {
6717 outrel[1].r_offset =
6718 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6719 outrel[2].r_offset =
6720 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6721 }
6722
6723 if (outrel[0].r_offset == MINUS_ONE)
6724 /* The relocation field has been deleted. */
6725 return TRUE;
6726
6727 if (outrel[0].r_offset == MINUS_TWO)
6728 {
6729 /* The relocation field has been converted into a relative value of
6730 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6731 the field to be fully relocated, so add in the symbol's value. */
6732 *addendp += symbol;
6733 return TRUE;
6734 }
6735
6736 /* We must now calculate the dynamic symbol table index to use
6737 in the relocation. */
6738 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6739 {
6740 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6741 indx = h->root.dynindx;
6742 if (SGI_COMPAT (output_bfd))
6743 defined_p = h->root.def_regular;
6744 else
6745 /* ??? glibc's ld.so just adds the final GOT entry to the
6746 relocation field. It therefore treats relocs against
6747 defined symbols in the same way as relocs against
6748 undefined symbols. */
6749 defined_p = FALSE;
6750 }
6751 else
6752 {
6753 if (sec != NULL && bfd_is_abs_section (sec))
6754 indx = 0;
6755 else if (sec == NULL || sec->owner == NULL)
6756 {
6757 bfd_set_error (bfd_error_bad_value);
6758 return FALSE;
6759 }
6760 else
6761 {
6762 indx = elf_section_data (sec->output_section)->dynindx;
6763 if (indx == 0)
6764 {
6765 asection *osec = htab->root.text_index_section;
6766 indx = elf_section_data (osec)->dynindx;
6767 }
6768 if (indx == 0)
6769 abort ();
6770 }
6771
6772 /* Instead of generating a relocation using the section
6773 symbol, we may as well make it a fully relative
6774 relocation. We want to avoid generating relocations to
6775 local symbols because we used to generate them
6776 incorrectly, without adding the original symbol value,
6777 which is mandated by the ABI for section symbols. In
6778 order to give dynamic loaders and applications time to
6779 phase out the incorrect use, we refrain from emitting
6780 section-relative relocations. It's not like they're
6781 useful, after all. This should be a bit more efficient
6782 as well. */
6783 /* ??? Although this behavior is compatible with glibc's ld.so,
6784 the ABI says that relocations against STN_UNDEF should have
6785 a symbol value of 0. Irix rld honors this, so relocations
6786 against STN_UNDEF have no effect. */
6787 if (!SGI_COMPAT (output_bfd))
6788 indx = 0;
6789 defined_p = TRUE;
6790 }
6791
6792 /* If the relocation was previously an absolute relocation and
6793 this symbol will not be referred to by the relocation, we must
6794 adjust it by the value we give it in the dynamic symbol table.
6795 Otherwise leave the job up to the dynamic linker. */
6796 if (defined_p && r_type != R_MIPS_REL32)
6797 *addendp += symbol;
6798
6799 if (htab->is_vxworks)
6800 /* VxWorks uses non-relative relocations for this. */
6801 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6802 else
6803 /* The relocation is always an REL32 relocation because we don't
6804 know where the shared library will wind up at load-time. */
6805 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6806 R_MIPS_REL32);
6807
6808 /* For strict adherence to the ABI specification, we should
6809 generate a R_MIPS_64 relocation record by itself before the
6810 _REL32/_64 record as well, such that the addend is read in as
6811 a 64-bit value (REL32 is a 32-bit relocation, after all).
6812 However, since none of the existing ELF64 MIPS dynamic
6813 loaders seems to care, we don't waste space with these
6814 artificial relocations. If this turns out to not be true,
6815 mips_elf_allocate_dynamic_relocation() should be tweaked so
6816 as to make room for a pair of dynamic relocations per
6817 invocation if ABI_64_P, and here we should generate an
6818 additional relocation record with R_MIPS_64 by itself for a
6819 NULL symbol before this relocation record. */
6820 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6821 ABI_64_P (output_bfd)
6822 ? R_MIPS_64
6823 : R_MIPS_NONE);
6824 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6825
6826 /* Adjust the output offset of the relocation to reference the
6827 correct location in the output file. */
6828 outrel[0].r_offset += (input_section->output_section->vma
6829 + input_section->output_offset);
6830 outrel[1].r_offset += (input_section->output_section->vma
6831 + input_section->output_offset);
6832 outrel[2].r_offset += (input_section->output_section->vma
6833 + input_section->output_offset);
6834
6835 /* Put the relocation back out. We have to use the special
6836 relocation outputter in the 64-bit case since the 64-bit
6837 relocation format is non-standard. */
6838 if (ABI_64_P (output_bfd))
6839 {
6840 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6841 (output_bfd, &outrel[0],
6842 (sreloc->contents
6843 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6844 }
6845 else if (htab->is_vxworks)
6846 {
6847 /* VxWorks uses RELA rather than REL dynamic relocations. */
6848 outrel[0].r_addend = *addendp;
6849 bfd_elf32_swap_reloca_out
6850 (output_bfd, &outrel[0],
6851 (sreloc->contents
6852 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6853 }
6854 else
6855 bfd_elf32_swap_reloc_out
6856 (output_bfd, &outrel[0],
6857 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6858
6859 /* We've now added another relocation. */
6860 ++sreloc->reloc_count;
6861
6862 /* Make sure the output section is writable. The dynamic linker
6863 will be writing to it. */
6864 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6865 |= SHF_WRITE;
6866
6867 /* On IRIX5, make an entry of compact relocation info. */
6868 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6869 {
6870 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6871 bfd_byte *cr;
6872
6873 if (scpt)
6874 {
6875 Elf32_crinfo cptrel;
6876
6877 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6878 cptrel.vaddr = (rel->r_offset
6879 + input_section->output_section->vma
6880 + input_section->output_offset);
6881 if (r_type == R_MIPS_REL32)
6882 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6883 else
6884 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6885 mips_elf_set_cr_dist2to (cptrel, 0);
6886 cptrel.konst = *addendp;
6887
6888 cr = (scpt->contents
6889 + sizeof (Elf32_External_compact_rel));
6890 mips_elf_set_cr_relvaddr (cptrel, 0);
6891 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6892 ((Elf32_External_crinfo *) cr
6893 + scpt->reloc_count));
6894 ++scpt->reloc_count;
6895 }
6896 }
6897
6898 /* If we've written this relocation for a readonly section,
6899 we need to set DF_TEXTREL again, so that we do not delete the
6900 DT_TEXTREL tag. */
6901 if (MIPS_ELF_READONLY_SECTION (input_section))
6902 info->flags |= DF_TEXTREL;
6903
6904 return TRUE;
6905 }
6906 \f
6907 /* Return the MACH for a MIPS e_flags value. */
6908
6909 unsigned long
6910 _bfd_elf_mips_mach (flagword flags)
6911 {
6912 switch (flags & EF_MIPS_MACH)
6913 {
6914 case E_MIPS_MACH_3900:
6915 return bfd_mach_mips3900;
6916
6917 case E_MIPS_MACH_4010:
6918 return bfd_mach_mips4010;
6919
6920 case E_MIPS_MACH_4100:
6921 return bfd_mach_mips4100;
6922
6923 case E_MIPS_MACH_4111:
6924 return bfd_mach_mips4111;
6925
6926 case E_MIPS_MACH_4120:
6927 return bfd_mach_mips4120;
6928
6929 case E_MIPS_MACH_4650:
6930 return bfd_mach_mips4650;
6931
6932 case E_MIPS_MACH_5400:
6933 return bfd_mach_mips5400;
6934
6935 case E_MIPS_MACH_5500:
6936 return bfd_mach_mips5500;
6937
6938 case E_MIPS_MACH_5900:
6939 return bfd_mach_mips5900;
6940
6941 case E_MIPS_MACH_9000:
6942 return bfd_mach_mips9000;
6943
6944 case E_MIPS_MACH_SB1:
6945 return bfd_mach_mips_sb1;
6946
6947 case E_MIPS_MACH_LS2E:
6948 return bfd_mach_mips_loongson_2e;
6949
6950 case E_MIPS_MACH_LS2F:
6951 return bfd_mach_mips_loongson_2f;
6952
6953 case E_MIPS_MACH_GS464:
6954 return bfd_mach_mips_gs464;
6955
6956 case E_MIPS_MACH_GS464E:
6957 return bfd_mach_mips_gs464e;
6958
6959 case E_MIPS_MACH_GS264E:
6960 return bfd_mach_mips_gs264e;
6961
6962 case E_MIPS_MACH_OCTEON3:
6963 return bfd_mach_mips_octeon3;
6964
6965 case E_MIPS_MACH_OCTEON2:
6966 return bfd_mach_mips_octeon2;
6967
6968 case E_MIPS_MACH_OCTEON:
6969 return bfd_mach_mips_octeon;
6970
6971 case E_MIPS_MACH_XLR:
6972 return bfd_mach_mips_xlr;
6973
6974 case E_MIPS_MACH_IAMR2:
6975 return bfd_mach_mips_interaptiv_mr2;
6976
6977 default:
6978 switch (flags & EF_MIPS_ARCH)
6979 {
6980 default:
6981 case E_MIPS_ARCH_1:
6982 return bfd_mach_mips3000;
6983
6984 case E_MIPS_ARCH_2:
6985 return bfd_mach_mips6000;
6986
6987 case E_MIPS_ARCH_3:
6988 return bfd_mach_mips4000;
6989
6990 case E_MIPS_ARCH_4:
6991 return bfd_mach_mips8000;
6992
6993 case E_MIPS_ARCH_5:
6994 return bfd_mach_mips5;
6995
6996 case E_MIPS_ARCH_32:
6997 return bfd_mach_mipsisa32;
6998
6999 case E_MIPS_ARCH_64:
7000 return bfd_mach_mipsisa64;
7001
7002 case E_MIPS_ARCH_32R2:
7003 return bfd_mach_mipsisa32r2;
7004
7005 case E_MIPS_ARCH_64R2:
7006 return bfd_mach_mipsisa64r2;
7007
7008 case E_MIPS_ARCH_32R6:
7009 return bfd_mach_mipsisa32r6;
7010
7011 case E_MIPS_ARCH_64R6:
7012 return bfd_mach_mipsisa64r6;
7013 }
7014 }
7015
7016 return 0;
7017 }
7018
7019 /* Return printable name for ABI. */
7020
7021 static INLINE char *
7022 elf_mips_abi_name (bfd *abfd)
7023 {
7024 flagword flags;
7025
7026 flags = elf_elfheader (abfd)->e_flags;
7027 switch (flags & EF_MIPS_ABI)
7028 {
7029 case 0:
7030 if (ABI_N32_P (abfd))
7031 return "N32";
7032 else if (ABI_64_P (abfd))
7033 return "64";
7034 else
7035 return "none";
7036 case E_MIPS_ABI_O32:
7037 return "O32";
7038 case E_MIPS_ABI_O64:
7039 return "O64";
7040 case E_MIPS_ABI_EABI32:
7041 return "EABI32";
7042 case E_MIPS_ABI_EABI64:
7043 return "EABI64";
7044 default:
7045 return "unknown abi";
7046 }
7047 }
7048 \f
7049 /* MIPS ELF uses two common sections. One is the usual one, and the
7050 other is for small objects. All the small objects are kept
7051 together, and then referenced via the gp pointer, which yields
7052 faster assembler code. This is what we use for the small common
7053 section. This approach is copied from ecoff.c. */
7054 static asection mips_elf_scom_section;
7055 static asymbol mips_elf_scom_symbol;
7056 static asymbol *mips_elf_scom_symbol_ptr;
7057
7058 /* MIPS ELF also uses an acommon section, which represents an
7059 allocated common symbol which may be overridden by a
7060 definition in a shared library. */
7061 static asection mips_elf_acom_section;
7062 static asymbol mips_elf_acom_symbol;
7063 static asymbol *mips_elf_acom_symbol_ptr;
7064
7065 /* This is used for both the 32-bit and the 64-bit ABI. */
7066
7067 void
7068 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
7069 {
7070 elf_symbol_type *elfsym;
7071
7072 /* Handle the special MIPS section numbers that a symbol may use. */
7073 elfsym = (elf_symbol_type *) asym;
7074 switch (elfsym->internal_elf_sym.st_shndx)
7075 {
7076 case SHN_MIPS_ACOMMON:
7077 /* This section is used in a dynamically linked executable file.
7078 It is an allocated common section. The dynamic linker can
7079 either resolve these symbols to something in a shared
7080 library, or it can just leave them here. For our purposes,
7081 we can consider these symbols to be in a new section. */
7082 if (mips_elf_acom_section.name == NULL)
7083 {
7084 /* Initialize the acommon section. */
7085 mips_elf_acom_section.name = ".acommon";
7086 mips_elf_acom_section.flags = SEC_ALLOC;
7087 mips_elf_acom_section.output_section = &mips_elf_acom_section;
7088 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
7089 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
7090 mips_elf_acom_symbol.name = ".acommon";
7091 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
7092 mips_elf_acom_symbol.section = &mips_elf_acom_section;
7093 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
7094 }
7095 asym->section = &mips_elf_acom_section;
7096 break;
7097
7098 case SHN_COMMON:
7099 /* Common symbols less than the GP size are automatically
7100 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
7101 if (asym->value > elf_gp_size (abfd)
7102 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
7103 || IRIX_COMPAT (abfd) == ict_irix6)
7104 break;
7105 /* Fall through. */
7106 case SHN_MIPS_SCOMMON:
7107 if (mips_elf_scom_section.name == NULL)
7108 {
7109 /* Initialize the small common section. */
7110 mips_elf_scom_section.name = ".scommon";
7111 mips_elf_scom_section.flags = SEC_IS_COMMON;
7112 mips_elf_scom_section.output_section = &mips_elf_scom_section;
7113 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
7114 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
7115 mips_elf_scom_symbol.name = ".scommon";
7116 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
7117 mips_elf_scom_symbol.section = &mips_elf_scom_section;
7118 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
7119 }
7120 asym->section = &mips_elf_scom_section;
7121 asym->value = elfsym->internal_elf_sym.st_size;
7122 break;
7123
7124 case SHN_MIPS_SUNDEFINED:
7125 asym->section = bfd_und_section_ptr;
7126 break;
7127
7128 case SHN_MIPS_TEXT:
7129 {
7130 asection *section = bfd_get_section_by_name (abfd, ".text");
7131
7132 if (section != NULL)
7133 {
7134 asym->section = section;
7135 /* MIPS_TEXT is a bit special, the address is not an offset
7136 to the base of the .text section. So subtract the section
7137 base address to make it an offset. */
7138 asym->value -= section->vma;
7139 }
7140 }
7141 break;
7142
7143 case SHN_MIPS_DATA:
7144 {
7145 asection *section = bfd_get_section_by_name (abfd, ".data");
7146
7147 if (section != NULL)
7148 {
7149 asym->section = section;
7150 /* MIPS_DATA is a bit special, the address is not an offset
7151 to the base of the .data section. So subtract the section
7152 base address to make it an offset. */
7153 asym->value -= section->vma;
7154 }
7155 }
7156 break;
7157 }
7158
7159 /* If this is an odd-valued function symbol, assume it's a MIPS16
7160 or microMIPS one. */
7161 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
7162 && (asym->value & 1) != 0)
7163 {
7164 asym->value--;
7165 if (MICROMIPS_P (abfd))
7166 elfsym->internal_elf_sym.st_other
7167 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7168 else
7169 elfsym->internal_elf_sym.st_other
7170 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7171 }
7172 }
7173 \f
7174 /* Implement elf_backend_eh_frame_address_size. This differs from
7175 the default in the way it handles EABI64.
7176
7177 EABI64 was originally specified as an LP64 ABI, and that is what
7178 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7179 historically accepted the combination of -mabi=eabi and -mlong32,
7180 and this ILP32 variation has become semi-official over time.
7181 Both forms use elf32 and have pointer-sized FDE addresses.
7182
7183 If an EABI object was generated by GCC 4.0 or above, it will have
7184 an empty .gcc_compiled_longXX section, where XX is the size of longs
7185 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7186 have no special marking to distinguish them from LP64 objects.
7187
7188 We don't want users of the official LP64 ABI to be punished for the
7189 existence of the ILP32 variant, but at the same time, we don't want
7190 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7191 We therefore take the following approach:
7192
7193 - If ABFD contains a .gcc_compiled_longXX section, use it to
7194 determine the pointer size.
7195
7196 - Otherwise check the type of the first relocation. Assume that
7197 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7198
7199 - Otherwise punt.
7200
7201 The second check is enough to detect LP64 objects generated by pre-4.0
7202 compilers because, in the kind of output generated by those compilers,
7203 the first relocation will be associated with either a CIE personality
7204 routine or an FDE start address. Furthermore, the compilers never
7205 used a special (non-pointer) encoding for this ABI.
7206
7207 Checking the relocation type should also be safe because there is no
7208 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7209 did so. */
7210
7211 unsigned int
7212 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7213 {
7214 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7215 return 8;
7216 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7217 {
7218 bfd_boolean long32_p, long64_p;
7219
7220 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7221 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7222 if (long32_p && long64_p)
7223 return 0;
7224 if (long32_p)
7225 return 4;
7226 if (long64_p)
7227 return 8;
7228
7229 if (sec->reloc_count > 0
7230 && elf_section_data (sec)->relocs != NULL
7231 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7232 == R_MIPS_64))
7233 return 8;
7234
7235 return 0;
7236 }
7237 return 4;
7238 }
7239 \f
7240 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7241 relocations against two unnamed section symbols to resolve to the
7242 same address. For example, if we have code like:
7243
7244 lw $4,%got_disp(.data)($gp)
7245 lw $25,%got_disp(.text)($gp)
7246 jalr $25
7247
7248 then the linker will resolve both relocations to .data and the program
7249 will jump there rather than to .text.
7250
7251 We can work around this problem by giving names to local section symbols.
7252 This is also what the MIPSpro tools do. */
7253
7254 bfd_boolean
7255 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7256 {
7257 return SGI_COMPAT (abfd);
7258 }
7259 \f
7260 /* Work over a section just before writing it out. This routine is
7261 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7262 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7263 a better way. */
7264
7265 bfd_boolean
7266 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7267 {
7268 if (hdr->sh_type == SHT_MIPS_REGINFO
7269 && hdr->sh_size > 0)
7270 {
7271 bfd_byte buf[4];
7272
7273 BFD_ASSERT (hdr->contents == NULL);
7274
7275 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7276 {
7277 _bfd_error_handler
7278 (_("%pB: incorrect `.reginfo' section size; "
7279 "expected %" PRIu64 ", got %" PRIu64),
7280 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7281 (uint64_t) hdr->sh_size);
7282 bfd_set_error (bfd_error_bad_value);
7283 return FALSE;
7284 }
7285
7286 if (bfd_seek (abfd,
7287 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7288 SEEK_SET) != 0)
7289 return FALSE;
7290 H_PUT_32 (abfd, elf_gp (abfd), buf);
7291 if (bfd_bwrite (buf, 4, abfd) != 4)
7292 return FALSE;
7293 }
7294
7295 if (hdr->sh_type == SHT_MIPS_OPTIONS
7296 && hdr->bfd_section != NULL
7297 && mips_elf_section_data (hdr->bfd_section) != NULL
7298 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7299 {
7300 bfd_byte *contents, *l, *lend;
7301
7302 /* We stored the section contents in the tdata field in the
7303 set_section_contents routine. We save the section contents
7304 so that we don't have to read them again.
7305 At this point we know that elf_gp is set, so we can look
7306 through the section contents to see if there is an
7307 ODK_REGINFO structure. */
7308
7309 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7310 l = contents;
7311 lend = contents + hdr->sh_size;
7312 while (l + sizeof (Elf_External_Options) <= lend)
7313 {
7314 Elf_Internal_Options intopt;
7315
7316 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7317 &intopt);
7318 if (intopt.size < sizeof (Elf_External_Options))
7319 {
7320 _bfd_error_handler
7321 /* xgettext:c-format */
7322 (_("%pB: warning: bad `%s' option size %u smaller than"
7323 " its header"),
7324 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7325 break;
7326 }
7327 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7328 {
7329 bfd_byte buf[8];
7330
7331 if (bfd_seek (abfd,
7332 (hdr->sh_offset
7333 + (l - contents)
7334 + sizeof (Elf_External_Options)
7335 + (sizeof (Elf64_External_RegInfo) - 8)),
7336 SEEK_SET) != 0)
7337 return FALSE;
7338 H_PUT_64 (abfd, elf_gp (abfd), buf);
7339 if (bfd_bwrite (buf, 8, abfd) != 8)
7340 return FALSE;
7341 }
7342 else if (intopt.kind == ODK_REGINFO)
7343 {
7344 bfd_byte buf[4];
7345
7346 if (bfd_seek (abfd,
7347 (hdr->sh_offset
7348 + (l - contents)
7349 + sizeof (Elf_External_Options)
7350 + (sizeof (Elf32_External_RegInfo) - 4)),
7351 SEEK_SET) != 0)
7352 return FALSE;
7353 H_PUT_32 (abfd, elf_gp (abfd), buf);
7354 if (bfd_bwrite (buf, 4, abfd) != 4)
7355 return FALSE;
7356 }
7357 l += intopt.size;
7358 }
7359 }
7360
7361 if (hdr->bfd_section != NULL)
7362 {
7363 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7364
7365 /* .sbss is not handled specially here because the GNU/Linux
7366 prelinker can convert .sbss from NOBITS to PROGBITS and
7367 changing it back to NOBITS breaks the binary. The entry in
7368 _bfd_mips_elf_special_sections will ensure the correct flags
7369 are set on .sbss if BFD creates it without reading it from an
7370 input file, and without special handling here the flags set
7371 on it in an input file will be followed. */
7372 if (strcmp (name, ".sdata") == 0
7373 || strcmp (name, ".lit8") == 0
7374 || strcmp (name, ".lit4") == 0)
7375 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7376 else if (strcmp (name, ".srdata") == 0)
7377 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7378 else if (strcmp (name, ".compact_rel") == 0)
7379 hdr->sh_flags = 0;
7380 else if (strcmp (name, ".rtproc") == 0)
7381 {
7382 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7383 {
7384 unsigned int adjust;
7385
7386 adjust = hdr->sh_size % hdr->sh_addralign;
7387 if (adjust != 0)
7388 hdr->sh_size += hdr->sh_addralign - adjust;
7389 }
7390 }
7391 }
7392
7393 return TRUE;
7394 }
7395
7396 /* Handle a MIPS specific section when reading an object file. This
7397 is called when elfcode.h finds a section with an unknown type.
7398 This routine supports both the 32-bit and 64-bit ELF ABI.
7399
7400 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7401 how to. */
7402
7403 bfd_boolean
7404 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7405 Elf_Internal_Shdr *hdr,
7406 const char *name,
7407 int shindex)
7408 {
7409 flagword flags = 0;
7410
7411 /* There ought to be a place to keep ELF backend specific flags, but
7412 at the moment there isn't one. We just keep track of the
7413 sections by their name, instead. Fortunately, the ABI gives
7414 suggested names for all the MIPS specific sections, so we will
7415 probably get away with this. */
7416 switch (hdr->sh_type)
7417 {
7418 case SHT_MIPS_LIBLIST:
7419 if (strcmp (name, ".liblist") != 0)
7420 return FALSE;
7421 break;
7422 case SHT_MIPS_MSYM:
7423 if (strcmp (name, ".msym") != 0)
7424 return FALSE;
7425 break;
7426 case SHT_MIPS_CONFLICT:
7427 if (strcmp (name, ".conflict") != 0)
7428 return FALSE;
7429 break;
7430 case SHT_MIPS_GPTAB:
7431 if (! CONST_STRNEQ (name, ".gptab."))
7432 return FALSE;
7433 break;
7434 case SHT_MIPS_UCODE:
7435 if (strcmp (name, ".ucode") != 0)
7436 return FALSE;
7437 break;
7438 case SHT_MIPS_DEBUG:
7439 if (strcmp (name, ".mdebug") != 0)
7440 return FALSE;
7441 flags = SEC_DEBUGGING;
7442 break;
7443 case SHT_MIPS_REGINFO:
7444 if (strcmp (name, ".reginfo") != 0
7445 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7446 return FALSE;
7447 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7448 break;
7449 case SHT_MIPS_IFACE:
7450 if (strcmp (name, ".MIPS.interfaces") != 0)
7451 return FALSE;
7452 break;
7453 case SHT_MIPS_CONTENT:
7454 if (! CONST_STRNEQ (name, ".MIPS.content"))
7455 return FALSE;
7456 break;
7457 case SHT_MIPS_OPTIONS:
7458 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7459 return FALSE;
7460 break;
7461 case SHT_MIPS_ABIFLAGS:
7462 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7463 return FALSE;
7464 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7465 break;
7466 case SHT_MIPS_DWARF:
7467 if (! CONST_STRNEQ (name, ".debug_")
7468 && ! CONST_STRNEQ (name, ".zdebug_"))
7469 return FALSE;
7470 break;
7471 case SHT_MIPS_SYMBOL_LIB:
7472 if (strcmp (name, ".MIPS.symlib") != 0)
7473 return FALSE;
7474 break;
7475 case SHT_MIPS_EVENTS:
7476 if (! CONST_STRNEQ (name, ".MIPS.events")
7477 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7478 return FALSE;
7479 break;
7480 default:
7481 break;
7482 }
7483
7484 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7485 return FALSE;
7486
7487 if (flags)
7488 {
7489 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7490 (bfd_get_section_flags (abfd,
7491 hdr->bfd_section)
7492 | flags)))
7493 return FALSE;
7494 }
7495
7496 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7497 {
7498 Elf_External_ABIFlags_v0 ext;
7499
7500 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7501 &ext, 0, sizeof ext))
7502 return FALSE;
7503 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7504 &mips_elf_tdata (abfd)->abiflags);
7505 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7506 return FALSE;
7507 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7508 }
7509
7510 /* FIXME: We should record sh_info for a .gptab section. */
7511
7512 /* For a .reginfo section, set the gp value in the tdata information
7513 from the contents of this section. We need the gp value while
7514 processing relocs, so we just get it now. The .reginfo section
7515 is not used in the 64-bit MIPS ELF ABI. */
7516 if (hdr->sh_type == SHT_MIPS_REGINFO)
7517 {
7518 Elf32_External_RegInfo ext;
7519 Elf32_RegInfo s;
7520
7521 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7522 &ext, 0, sizeof ext))
7523 return FALSE;
7524 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7525 elf_gp (abfd) = s.ri_gp_value;
7526 }
7527
7528 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7529 set the gp value based on what we find. We may see both
7530 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7531 they should agree. */
7532 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7533 {
7534 bfd_byte *contents, *l, *lend;
7535
7536 contents = bfd_malloc (hdr->sh_size);
7537 if (contents == NULL)
7538 return FALSE;
7539 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7540 0, hdr->sh_size))
7541 {
7542 free (contents);
7543 return FALSE;
7544 }
7545 l = contents;
7546 lend = contents + hdr->sh_size;
7547 while (l + sizeof (Elf_External_Options) <= lend)
7548 {
7549 Elf_Internal_Options intopt;
7550
7551 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7552 &intopt);
7553 if (intopt.size < sizeof (Elf_External_Options))
7554 {
7555 _bfd_error_handler
7556 /* xgettext:c-format */
7557 (_("%pB: warning: bad `%s' option size %u smaller than"
7558 " its header"),
7559 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7560 break;
7561 }
7562 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7563 {
7564 Elf64_Internal_RegInfo intreg;
7565
7566 bfd_mips_elf64_swap_reginfo_in
7567 (abfd,
7568 ((Elf64_External_RegInfo *)
7569 (l + sizeof (Elf_External_Options))),
7570 &intreg);
7571 elf_gp (abfd) = intreg.ri_gp_value;
7572 }
7573 else if (intopt.kind == ODK_REGINFO)
7574 {
7575 Elf32_RegInfo intreg;
7576
7577 bfd_mips_elf32_swap_reginfo_in
7578 (abfd,
7579 ((Elf32_External_RegInfo *)
7580 (l + sizeof (Elf_External_Options))),
7581 &intreg);
7582 elf_gp (abfd) = intreg.ri_gp_value;
7583 }
7584 l += intopt.size;
7585 }
7586 free (contents);
7587 }
7588
7589 return TRUE;
7590 }
7591
7592 /* Set the correct type for a MIPS ELF section. We do this by the
7593 section name, which is a hack, but ought to work. This routine is
7594 used by both the 32-bit and the 64-bit ABI. */
7595
7596 bfd_boolean
7597 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7598 {
7599 const char *name = bfd_get_section_name (abfd, sec);
7600
7601 if (strcmp (name, ".liblist") == 0)
7602 {
7603 hdr->sh_type = SHT_MIPS_LIBLIST;
7604 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7605 /* The sh_link field is set in final_write_processing. */
7606 }
7607 else if (strcmp (name, ".conflict") == 0)
7608 hdr->sh_type = SHT_MIPS_CONFLICT;
7609 else if (CONST_STRNEQ (name, ".gptab."))
7610 {
7611 hdr->sh_type = SHT_MIPS_GPTAB;
7612 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7613 /* The sh_info field is set in final_write_processing. */
7614 }
7615 else if (strcmp (name, ".ucode") == 0)
7616 hdr->sh_type = SHT_MIPS_UCODE;
7617 else if (strcmp (name, ".mdebug") == 0)
7618 {
7619 hdr->sh_type = SHT_MIPS_DEBUG;
7620 /* In a shared object on IRIX 5.3, the .mdebug section has an
7621 entsize of 0. FIXME: Does this matter? */
7622 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7623 hdr->sh_entsize = 0;
7624 else
7625 hdr->sh_entsize = 1;
7626 }
7627 else if (strcmp (name, ".reginfo") == 0)
7628 {
7629 hdr->sh_type = SHT_MIPS_REGINFO;
7630 /* In a shared object on IRIX 5.3, the .reginfo section has an
7631 entsize of 0x18. FIXME: Does this matter? */
7632 if (SGI_COMPAT (abfd))
7633 {
7634 if ((abfd->flags & DYNAMIC) != 0)
7635 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7636 else
7637 hdr->sh_entsize = 1;
7638 }
7639 else
7640 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7641 }
7642 else if (SGI_COMPAT (abfd)
7643 && (strcmp (name, ".hash") == 0
7644 || strcmp (name, ".dynamic") == 0
7645 || strcmp (name, ".dynstr") == 0))
7646 {
7647 if (SGI_COMPAT (abfd))
7648 hdr->sh_entsize = 0;
7649 #if 0
7650 /* This isn't how the IRIX6 linker behaves. */
7651 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7652 #endif
7653 }
7654 else if (strcmp (name, ".got") == 0
7655 || strcmp (name, ".srdata") == 0
7656 || strcmp (name, ".sdata") == 0
7657 || strcmp (name, ".sbss") == 0
7658 || strcmp (name, ".lit4") == 0
7659 || strcmp (name, ".lit8") == 0)
7660 hdr->sh_flags |= SHF_MIPS_GPREL;
7661 else if (strcmp (name, ".MIPS.interfaces") == 0)
7662 {
7663 hdr->sh_type = SHT_MIPS_IFACE;
7664 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7665 }
7666 else if (CONST_STRNEQ (name, ".MIPS.content"))
7667 {
7668 hdr->sh_type = SHT_MIPS_CONTENT;
7669 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7670 /* The sh_info field is set in final_write_processing. */
7671 }
7672 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7673 {
7674 hdr->sh_type = SHT_MIPS_OPTIONS;
7675 hdr->sh_entsize = 1;
7676 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7677 }
7678 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7679 {
7680 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7681 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7682 }
7683 else if (CONST_STRNEQ (name, ".debug_")
7684 || CONST_STRNEQ (name, ".zdebug_"))
7685 {
7686 hdr->sh_type = SHT_MIPS_DWARF;
7687
7688 /* Irix facilities such as libexc expect a single .debug_frame
7689 per executable, the system ones have NOSTRIP set and the linker
7690 doesn't merge sections with different flags so ... */
7691 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7692 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7693 }
7694 else if (strcmp (name, ".MIPS.symlib") == 0)
7695 {
7696 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7697 /* The sh_link and sh_info fields are set in
7698 final_write_processing. */
7699 }
7700 else if (CONST_STRNEQ (name, ".MIPS.events")
7701 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7702 {
7703 hdr->sh_type = SHT_MIPS_EVENTS;
7704 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7705 /* The sh_link field is set in final_write_processing. */
7706 }
7707 else if (strcmp (name, ".msym") == 0)
7708 {
7709 hdr->sh_type = SHT_MIPS_MSYM;
7710 hdr->sh_flags |= SHF_ALLOC;
7711 hdr->sh_entsize = 8;
7712 }
7713
7714 /* The generic elf_fake_sections will set up REL_HDR using the default
7715 kind of relocations. We used to set up a second header for the
7716 non-default kind of relocations here, but only NewABI would use
7717 these, and the IRIX ld doesn't like resulting empty RELA sections.
7718 Thus we create those header only on demand now. */
7719
7720 return TRUE;
7721 }
7722
7723 /* Given a BFD section, try to locate the corresponding ELF section
7724 index. This is used by both the 32-bit and the 64-bit ABI.
7725 Actually, it's not clear to me that the 64-bit ABI supports these,
7726 but for non-PIC objects we will certainly want support for at least
7727 the .scommon section. */
7728
7729 bfd_boolean
7730 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7731 asection *sec, int *retval)
7732 {
7733 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7734 {
7735 *retval = SHN_MIPS_SCOMMON;
7736 return TRUE;
7737 }
7738 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7739 {
7740 *retval = SHN_MIPS_ACOMMON;
7741 return TRUE;
7742 }
7743 return FALSE;
7744 }
7745 \f
7746 /* Hook called by the linker routine which adds symbols from an object
7747 file. We must handle the special MIPS section numbers here. */
7748
7749 bfd_boolean
7750 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7751 Elf_Internal_Sym *sym, const char **namep,
7752 flagword *flagsp ATTRIBUTE_UNUSED,
7753 asection **secp, bfd_vma *valp)
7754 {
7755 if (SGI_COMPAT (abfd)
7756 && (abfd->flags & DYNAMIC) != 0
7757 && strcmp (*namep, "_rld_new_interface") == 0)
7758 {
7759 /* Skip IRIX5 rld entry name. */
7760 *namep = NULL;
7761 return TRUE;
7762 }
7763
7764 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7765 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7766 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7767 a magic symbol resolved by the linker, we ignore this bogus definition
7768 of _gp_disp. New ABI objects do not suffer from this problem so this
7769 is not done for them. */
7770 if (!NEWABI_P(abfd)
7771 && (sym->st_shndx == SHN_ABS)
7772 && (strcmp (*namep, "_gp_disp") == 0))
7773 {
7774 *namep = NULL;
7775 return TRUE;
7776 }
7777
7778 switch (sym->st_shndx)
7779 {
7780 case SHN_COMMON:
7781 /* Common symbols less than the GP size are automatically
7782 treated as SHN_MIPS_SCOMMON symbols. */
7783 if (sym->st_size > elf_gp_size (abfd)
7784 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7785 || IRIX_COMPAT (abfd) == ict_irix6)
7786 break;
7787 /* Fall through. */
7788 case SHN_MIPS_SCOMMON:
7789 *secp = bfd_make_section_old_way (abfd, ".scommon");
7790 (*secp)->flags |= SEC_IS_COMMON;
7791 *valp = sym->st_size;
7792 break;
7793
7794 case SHN_MIPS_TEXT:
7795 /* This section is used in a shared object. */
7796 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7797 {
7798 asymbol *elf_text_symbol;
7799 asection *elf_text_section;
7800 bfd_size_type amt = sizeof (asection);
7801
7802 elf_text_section = bfd_zalloc (abfd, amt);
7803 if (elf_text_section == NULL)
7804 return FALSE;
7805
7806 amt = sizeof (asymbol);
7807 elf_text_symbol = bfd_zalloc (abfd, amt);
7808 if (elf_text_symbol == NULL)
7809 return FALSE;
7810
7811 /* Initialize the section. */
7812
7813 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7814 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7815
7816 elf_text_section->symbol = elf_text_symbol;
7817 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7818
7819 elf_text_section->name = ".text";
7820 elf_text_section->flags = SEC_NO_FLAGS;
7821 elf_text_section->output_section = NULL;
7822 elf_text_section->owner = abfd;
7823 elf_text_symbol->name = ".text";
7824 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7825 elf_text_symbol->section = elf_text_section;
7826 }
7827 /* This code used to do *secp = bfd_und_section_ptr if
7828 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7829 so I took it out. */
7830 *secp = mips_elf_tdata (abfd)->elf_text_section;
7831 break;
7832
7833 case SHN_MIPS_ACOMMON:
7834 /* Fall through. XXX Can we treat this as allocated data? */
7835 case SHN_MIPS_DATA:
7836 /* This section is used in a shared object. */
7837 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7838 {
7839 asymbol *elf_data_symbol;
7840 asection *elf_data_section;
7841 bfd_size_type amt = sizeof (asection);
7842
7843 elf_data_section = bfd_zalloc (abfd, amt);
7844 if (elf_data_section == NULL)
7845 return FALSE;
7846
7847 amt = sizeof (asymbol);
7848 elf_data_symbol = bfd_zalloc (abfd, amt);
7849 if (elf_data_symbol == NULL)
7850 return FALSE;
7851
7852 /* Initialize the section. */
7853
7854 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7855 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7856
7857 elf_data_section->symbol = elf_data_symbol;
7858 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7859
7860 elf_data_section->name = ".data";
7861 elf_data_section->flags = SEC_NO_FLAGS;
7862 elf_data_section->output_section = NULL;
7863 elf_data_section->owner = abfd;
7864 elf_data_symbol->name = ".data";
7865 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7866 elf_data_symbol->section = elf_data_section;
7867 }
7868 /* This code used to do *secp = bfd_und_section_ptr if
7869 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7870 so I took it out. */
7871 *secp = mips_elf_tdata (abfd)->elf_data_section;
7872 break;
7873
7874 case SHN_MIPS_SUNDEFINED:
7875 *secp = bfd_und_section_ptr;
7876 break;
7877 }
7878
7879 if (SGI_COMPAT (abfd)
7880 && ! bfd_link_pic (info)
7881 && info->output_bfd->xvec == abfd->xvec
7882 && strcmp (*namep, "__rld_obj_head") == 0)
7883 {
7884 struct elf_link_hash_entry *h;
7885 struct bfd_link_hash_entry *bh;
7886
7887 /* Mark __rld_obj_head as dynamic. */
7888 bh = NULL;
7889 if (! (_bfd_generic_link_add_one_symbol
7890 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7891 get_elf_backend_data (abfd)->collect, &bh)))
7892 return FALSE;
7893
7894 h = (struct elf_link_hash_entry *) bh;
7895 h->non_elf = 0;
7896 h->def_regular = 1;
7897 h->type = STT_OBJECT;
7898
7899 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7900 return FALSE;
7901
7902 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7903 mips_elf_hash_table (info)->rld_symbol = h;
7904 }
7905
7906 /* If this is a mips16 text symbol, add 1 to the value to make it
7907 odd. This will cause something like .word SYM to come up with
7908 the right value when it is loaded into the PC. */
7909 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7910 ++*valp;
7911
7912 return TRUE;
7913 }
7914
7915 /* This hook function is called before the linker writes out a global
7916 symbol. We mark symbols as small common if appropriate. This is
7917 also where we undo the increment of the value for a mips16 symbol. */
7918
7919 int
7920 _bfd_mips_elf_link_output_symbol_hook
7921 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7922 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7923 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7924 {
7925 /* If we see a common symbol, which implies a relocatable link, then
7926 if a symbol was small common in an input file, mark it as small
7927 common in the output file. */
7928 if (sym->st_shndx == SHN_COMMON
7929 && strcmp (input_sec->name, ".scommon") == 0)
7930 sym->st_shndx = SHN_MIPS_SCOMMON;
7931
7932 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7933 sym->st_value &= ~1;
7934
7935 return 1;
7936 }
7937 \f
7938 /* Functions for the dynamic linker. */
7939
7940 /* Create dynamic sections when linking against a dynamic object. */
7941
7942 bfd_boolean
7943 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7944 {
7945 struct elf_link_hash_entry *h;
7946 struct bfd_link_hash_entry *bh;
7947 flagword flags;
7948 register asection *s;
7949 const char * const *namep;
7950 struct mips_elf_link_hash_table *htab;
7951
7952 htab = mips_elf_hash_table (info);
7953 BFD_ASSERT (htab != NULL);
7954
7955 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7956 | SEC_LINKER_CREATED | SEC_READONLY);
7957
7958 /* The psABI requires a read-only .dynamic section, but the VxWorks
7959 EABI doesn't. */
7960 if (!htab->is_vxworks)
7961 {
7962 s = bfd_get_linker_section (abfd, ".dynamic");
7963 if (s != NULL)
7964 {
7965 if (! bfd_set_section_flags (abfd, s, flags))
7966 return FALSE;
7967 }
7968 }
7969
7970 /* We need to create .got section. */
7971 if (!mips_elf_create_got_section (abfd, info))
7972 return FALSE;
7973
7974 if (! mips_elf_rel_dyn_section (info, TRUE))
7975 return FALSE;
7976
7977 /* Create .stub section. */
7978 s = bfd_make_section_anyway_with_flags (abfd,
7979 MIPS_ELF_STUB_SECTION_NAME (abfd),
7980 flags | SEC_CODE);
7981 if (s == NULL
7982 || ! bfd_set_section_alignment (abfd, s,
7983 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7984 return FALSE;
7985 htab->sstubs = s;
7986
7987 if (!mips_elf_hash_table (info)->use_rld_obj_head
7988 && bfd_link_executable (info)
7989 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7990 {
7991 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7992 flags &~ (flagword) SEC_READONLY);
7993 if (s == NULL
7994 || ! bfd_set_section_alignment (abfd, s,
7995 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7996 return FALSE;
7997 }
7998
7999 /* On IRIX5, we adjust add some additional symbols and change the
8000 alignments of several sections. There is no ABI documentation
8001 indicating that this is necessary on IRIX6, nor any evidence that
8002 the linker takes such action. */
8003 if (IRIX_COMPAT (abfd) == ict_irix5)
8004 {
8005 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
8006 {
8007 bh = NULL;
8008 if (! (_bfd_generic_link_add_one_symbol
8009 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
8010 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
8011 return FALSE;
8012
8013 h = (struct elf_link_hash_entry *) bh;
8014 h->mark = 1;
8015 h->non_elf = 0;
8016 h->def_regular = 1;
8017 h->type = STT_SECTION;
8018
8019 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8020 return FALSE;
8021 }
8022
8023 /* We need to create a .compact_rel section. */
8024 if (SGI_COMPAT (abfd))
8025 {
8026 if (!mips_elf_create_compact_rel_section (abfd, info))
8027 return FALSE;
8028 }
8029
8030 /* Change alignments of some sections. */
8031 s = bfd_get_linker_section (abfd, ".hash");
8032 if (s != NULL)
8033 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8034
8035 s = bfd_get_linker_section (abfd, ".dynsym");
8036 if (s != NULL)
8037 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8038
8039 s = bfd_get_linker_section (abfd, ".dynstr");
8040 if (s != NULL)
8041 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8042
8043 /* ??? */
8044 s = bfd_get_section_by_name (abfd, ".reginfo");
8045 if (s != NULL)
8046 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8047
8048 s = bfd_get_linker_section (abfd, ".dynamic");
8049 if (s != NULL)
8050 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8051 }
8052
8053 if (bfd_link_executable (info))
8054 {
8055 const char *name;
8056
8057 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8058 bh = NULL;
8059 if (!(_bfd_generic_link_add_one_symbol
8060 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
8061 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
8062 return FALSE;
8063
8064 h = (struct elf_link_hash_entry *) bh;
8065 h->non_elf = 0;
8066 h->def_regular = 1;
8067 h->type = STT_SECTION;
8068
8069 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8070 return FALSE;
8071
8072 if (! mips_elf_hash_table (info)->use_rld_obj_head)
8073 {
8074 /* __rld_map is a four byte word located in the .data section
8075 and is filled in by the rtld to contain a pointer to
8076 the _r_debug structure. Its symbol value will be set in
8077 _bfd_mips_elf_finish_dynamic_symbol. */
8078 s = bfd_get_linker_section (abfd, ".rld_map");
8079 BFD_ASSERT (s != NULL);
8080
8081 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
8082 bh = NULL;
8083 if (!(_bfd_generic_link_add_one_symbol
8084 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
8085 get_elf_backend_data (abfd)->collect, &bh)))
8086 return FALSE;
8087
8088 h = (struct elf_link_hash_entry *) bh;
8089 h->non_elf = 0;
8090 h->def_regular = 1;
8091 h->type = STT_OBJECT;
8092
8093 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8094 return FALSE;
8095 mips_elf_hash_table (info)->rld_symbol = h;
8096 }
8097 }
8098
8099 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
8100 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
8101 if (!_bfd_elf_create_dynamic_sections (abfd, info))
8102 return FALSE;
8103
8104 /* Do the usual VxWorks handling. */
8105 if (htab->is_vxworks
8106 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
8107 return FALSE;
8108
8109 return TRUE;
8110 }
8111 \f
8112 /* Return true if relocation REL against section SEC is a REL rather than
8113 RELA relocation. RELOCS is the first relocation in the section and
8114 ABFD is the bfd that contains SEC. */
8115
8116 static bfd_boolean
8117 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
8118 const Elf_Internal_Rela *relocs,
8119 const Elf_Internal_Rela *rel)
8120 {
8121 Elf_Internal_Shdr *rel_hdr;
8122 const struct elf_backend_data *bed;
8123
8124 /* To determine which flavor of relocation this is, we depend on the
8125 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
8126 rel_hdr = elf_section_data (sec)->rel.hdr;
8127 if (rel_hdr == NULL)
8128 return FALSE;
8129 bed = get_elf_backend_data (abfd);
8130 return ((size_t) (rel - relocs)
8131 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
8132 }
8133
8134 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8135 HOWTO is the relocation's howto and CONTENTS points to the contents
8136 of the section that REL is against. */
8137
8138 static bfd_vma
8139 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
8140 reloc_howto_type *howto, bfd_byte *contents)
8141 {
8142 bfd_byte *location;
8143 unsigned int r_type;
8144 bfd_vma addend;
8145 bfd_vma bytes;
8146
8147 r_type = ELF_R_TYPE (abfd, rel->r_info);
8148 location = contents + rel->r_offset;
8149
8150 /* Get the addend, which is stored in the input file. */
8151 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
8152 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
8153 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
8154
8155 addend = bytes & howto->src_mask;
8156
8157 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8158 accordingly. */
8159 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
8160 addend <<= 1;
8161
8162 return addend;
8163 }
8164
8165 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
8166 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8167 and update *ADDEND with the final addend. Return true on success
8168 or false if the LO16 could not be found. RELEND is the exclusive
8169 upper bound on the relocations for REL's section. */
8170
8171 static bfd_boolean
8172 mips_elf_add_lo16_rel_addend (bfd *abfd,
8173 const Elf_Internal_Rela *rel,
8174 const Elf_Internal_Rela *relend,
8175 bfd_byte *contents, bfd_vma *addend)
8176 {
8177 unsigned int r_type, lo16_type;
8178 const Elf_Internal_Rela *lo16_relocation;
8179 reloc_howto_type *lo16_howto;
8180 bfd_vma l;
8181
8182 r_type = ELF_R_TYPE (abfd, rel->r_info);
8183 if (mips16_reloc_p (r_type))
8184 lo16_type = R_MIPS16_LO16;
8185 else if (micromips_reloc_p (r_type))
8186 lo16_type = R_MICROMIPS_LO16;
8187 else if (r_type == R_MIPS_PCHI16)
8188 lo16_type = R_MIPS_PCLO16;
8189 else
8190 lo16_type = R_MIPS_LO16;
8191
8192 /* The combined value is the sum of the HI16 addend, left-shifted by
8193 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8194 code does a `lui' of the HI16 value, and then an `addiu' of the
8195 LO16 value.)
8196
8197 Scan ahead to find a matching LO16 relocation.
8198
8199 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8200 be immediately following. However, for the IRIX6 ABI, the next
8201 relocation may be a composed relocation consisting of several
8202 relocations for the same address. In that case, the R_MIPS_LO16
8203 relocation may occur as one of these. We permit a similar
8204 extension in general, as that is useful for GCC.
8205
8206 In some cases GCC dead code elimination removes the LO16 but keeps
8207 the corresponding HI16. This is strictly speaking a violation of
8208 the ABI but not immediately harmful. */
8209 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8210 if (lo16_relocation == NULL)
8211 return FALSE;
8212
8213 /* Obtain the addend kept there. */
8214 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8215 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8216
8217 l <<= lo16_howto->rightshift;
8218 l = _bfd_mips_elf_sign_extend (l, 16);
8219
8220 *addend <<= 16;
8221 *addend += l;
8222 return TRUE;
8223 }
8224
8225 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8226 store the contents in *CONTENTS on success. Assume that *CONTENTS
8227 already holds the contents if it is nonull on entry. */
8228
8229 static bfd_boolean
8230 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8231 {
8232 if (*contents)
8233 return TRUE;
8234
8235 /* Get cached copy if it exists. */
8236 if (elf_section_data (sec)->this_hdr.contents != NULL)
8237 {
8238 *contents = elf_section_data (sec)->this_hdr.contents;
8239 return TRUE;
8240 }
8241
8242 return bfd_malloc_and_get_section (abfd, sec, contents);
8243 }
8244
8245 /* Make a new PLT record to keep internal data. */
8246
8247 static struct plt_entry *
8248 mips_elf_make_plt_record (bfd *abfd)
8249 {
8250 struct plt_entry *entry;
8251
8252 entry = bfd_zalloc (abfd, sizeof (*entry));
8253 if (entry == NULL)
8254 return NULL;
8255
8256 entry->stub_offset = MINUS_ONE;
8257 entry->mips_offset = MINUS_ONE;
8258 entry->comp_offset = MINUS_ONE;
8259 entry->gotplt_index = MINUS_ONE;
8260 return entry;
8261 }
8262
8263 /* Define the special `__gnu_absolute_zero' symbol. We only need this
8264 for PIC code, as otherwise there is no load-time relocation involved
8265 and local GOT entries whose value is zero at static link time will
8266 retain their value at load time. */
8267
8268 static bfd_boolean
8269 mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info,
8270 struct mips_elf_link_hash_table *htab,
8271 unsigned int r_type)
8272 {
8273 union
8274 {
8275 struct elf_link_hash_entry *eh;
8276 struct bfd_link_hash_entry *bh;
8277 }
8278 hzero;
8279
8280 BFD_ASSERT (!htab->use_absolute_zero);
8281 BFD_ASSERT (bfd_link_pic (info));
8282
8283 hzero.bh = NULL;
8284 if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero",
8285 BSF_GLOBAL, bfd_abs_section_ptr, 0,
8286 NULL, FALSE, FALSE, &hzero.bh))
8287 return FALSE;
8288
8289 BFD_ASSERT (hzero.bh != NULL);
8290 hzero.eh->size = 0;
8291 hzero.eh->type = STT_NOTYPE;
8292 hzero.eh->other = STV_PROTECTED;
8293 hzero.eh->def_regular = 1;
8294 hzero.eh->non_elf = 0;
8295
8296 if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, TRUE, r_type))
8297 return FALSE;
8298
8299 htab->use_absolute_zero = TRUE;
8300
8301 return TRUE;
8302 }
8303
8304 /* Look through the relocs for a section during the first phase, and
8305 allocate space in the global offset table and record the need for
8306 standard MIPS and compressed procedure linkage table entries. */
8307
8308 bfd_boolean
8309 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8310 asection *sec, const Elf_Internal_Rela *relocs)
8311 {
8312 const char *name;
8313 bfd *dynobj;
8314 Elf_Internal_Shdr *symtab_hdr;
8315 struct elf_link_hash_entry **sym_hashes;
8316 size_t extsymoff;
8317 const Elf_Internal_Rela *rel;
8318 const Elf_Internal_Rela *rel_end;
8319 asection *sreloc;
8320 const struct elf_backend_data *bed;
8321 struct mips_elf_link_hash_table *htab;
8322 bfd_byte *contents;
8323 bfd_vma addend;
8324 reloc_howto_type *howto;
8325
8326 if (bfd_link_relocatable (info))
8327 return TRUE;
8328
8329 htab = mips_elf_hash_table (info);
8330 BFD_ASSERT (htab != NULL);
8331
8332 dynobj = elf_hash_table (info)->dynobj;
8333 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8334 sym_hashes = elf_sym_hashes (abfd);
8335 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8336
8337 bed = get_elf_backend_data (abfd);
8338 rel_end = relocs + sec->reloc_count;
8339
8340 /* Check for the mips16 stub sections. */
8341
8342 name = bfd_get_section_name (abfd, sec);
8343 if (FN_STUB_P (name))
8344 {
8345 unsigned long r_symndx;
8346
8347 /* Look at the relocation information to figure out which symbol
8348 this is for. */
8349
8350 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8351 if (r_symndx == 0)
8352 {
8353 _bfd_error_handler
8354 /* xgettext:c-format */
8355 (_("%pB: warning: cannot determine the target function for"
8356 " stub section `%s'"),
8357 abfd, name);
8358 bfd_set_error (bfd_error_bad_value);
8359 return FALSE;
8360 }
8361
8362 if (r_symndx < extsymoff
8363 || sym_hashes[r_symndx - extsymoff] == NULL)
8364 {
8365 asection *o;
8366
8367 /* This stub is for a local symbol. This stub will only be
8368 needed if there is some relocation in this BFD, other
8369 than a 16 bit function call, which refers to this symbol. */
8370 for (o = abfd->sections; o != NULL; o = o->next)
8371 {
8372 Elf_Internal_Rela *sec_relocs;
8373 const Elf_Internal_Rela *r, *rend;
8374
8375 /* We can ignore stub sections when looking for relocs. */
8376 if ((o->flags & SEC_RELOC) == 0
8377 || o->reloc_count == 0
8378 || section_allows_mips16_refs_p (o))
8379 continue;
8380
8381 sec_relocs
8382 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8383 info->keep_memory);
8384 if (sec_relocs == NULL)
8385 return FALSE;
8386
8387 rend = sec_relocs + o->reloc_count;
8388 for (r = sec_relocs; r < rend; r++)
8389 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8390 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8391 break;
8392
8393 if (elf_section_data (o)->relocs != sec_relocs)
8394 free (sec_relocs);
8395
8396 if (r < rend)
8397 break;
8398 }
8399
8400 if (o == NULL)
8401 {
8402 /* There is no non-call reloc for this stub, so we do
8403 not need it. Since this function is called before
8404 the linker maps input sections to output sections, we
8405 can easily discard it by setting the SEC_EXCLUDE
8406 flag. */
8407 sec->flags |= SEC_EXCLUDE;
8408 return TRUE;
8409 }
8410
8411 /* Record this stub in an array of local symbol stubs for
8412 this BFD. */
8413 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8414 {
8415 unsigned long symcount;
8416 asection **n;
8417 bfd_size_type amt;
8418
8419 if (elf_bad_symtab (abfd))
8420 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8421 else
8422 symcount = symtab_hdr->sh_info;
8423 amt = symcount * sizeof (asection *);
8424 n = bfd_zalloc (abfd, amt);
8425 if (n == NULL)
8426 return FALSE;
8427 mips_elf_tdata (abfd)->local_stubs = n;
8428 }
8429
8430 sec->flags |= SEC_KEEP;
8431 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8432
8433 /* We don't need to set mips16_stubs_seen in this case.
8434 That flag is used to see whether we need to look through
8435 the global symbol table for stubs. We don't need to set
8436 it here, because we just have a local stub. */
8437 }
8438 else
8439 {
8440 struct mips_elf_link_hash_entry *h;
8441
8442 h = ((struct mips_elf_link_hash_entry *)
8443 sym_hashes[r_symndx - extsymoff]);
8444
8445 while (h->root.root.type == bfd_link_hash_indirect
8446 || h->root.root.type == bfd_link_hash_warning)
8447 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8448
8449 /* H is the symbol this stub is for. */
8450
8451 /* If we already have an appropriate stub for this function, we
8452 don't need another one, so we can discard this one. Since
8453 this function is called before the linker maps input sections
8454 to output sections, we can easily discard it by setting the
8455 SEC_EXCLUDE flag. */
8456 if (h->fn_stub != NULL)
8457 {
8458 sec->flags |= SEC_EXCLUDE;
8459 return TRUE;
8460 }
8461
8462 sec->flags |= SEC_KEEP;
8463 h->fn_stub = sec;
8464 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8465 }
8466 }
8467 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8468 {
8469 unsigned long r_symndx;
8470 struct mips_elf_link_hash_entry *h;
8471 asection **loc;
8472
8473 /* Look at the relocation information to figure out which symbol
8474 this is for. */
8475
8476 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8477 if (r_symndx == 0)
8478 {
8479 _bfd_error_handler
8480 /* xgettext:c-format */
8481 (_("%pB: warning: cannot determine the target function for"
8482 " stub section `%s'"),
8483 abfd, name);
8484 bfd_set_error (bfd_error_bad_value);
8485 return FALSE;
8486 }
8487
8488 if (r_symndx < extsymoff
8489 || sym_hashes[r_symndx - extsymoff] == NULL)
8490 {
8491 asection *o;
8492
8493 /* This stub is for a local symbol. This stub will only be
8494 needed if there is some relocation (R_MIPS16_26) in this BFD
8495 that refers to this symbol. */
8496 for (o = abfd->sections; o != NULL; o = o->next)
8497 {
8498 Elf_Internal_Rela *sec_relocs;
8499 const Elf_Internal_Rela *r, *rend;
8500
8501 /* We can ignore stub sections when looking for relocs. */
8502 if ((o->flags & SEC_RELOC) == 0
8503 || o->reloc_count == 0
8504 || section_allows_mips16_refs_p (o))
8505 continue;
8506
8507 sec_relocs
8508 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8509 info->keep_memory);
8510 if (sec_relocs == NULL)
8511 return FALSE;
8512
8513 rend = sec_relocs + o->reloc_count;
8514 for (r = sec_relocs; r < rend; r++)
8515 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8516 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8517 break;
8518
8519 if (elf_section_data (o)->relocs != sec_relocs)
8520 free (sec_relocs);
8521
8522 if (r < rend)
8523 break;
8524 }
8525
8526 if (o == NULL)
8527 {
8528 /* There is no non-call reloc for this stub, so we do
8529 not need it. Since this function is called before
8530 the linker maps input sections to output sections, we
8531 can easily discard it by setting the SEC_EXCLUDE
8532 flag. */
8533 sec->flags |= SEC_EXCLUDE;
8534 return TRUE;
8535 }
8536
8537 /* Record this stub in an array of local symbol call_stubs for
8538 this BFD. */
8539 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8540 {
8541 unsigned long symcount;
8542 asection **n;
8543 bfd_size_type amt;
8544
8545 if (elf_bad_symtab (abfd))
8546 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8547 else
8548 symcount = symtab_hdr->sh_info;
8549 amt = symcount * sizeof (asection *);
8550 n = bfd_zalloc (abfd, amt);
8551 if (n == NULL)
8552 return FALSE;
8553 mips_elf_tdata (abfd)->local_call_stubs = n;
8554 }
8555
8556 sec->flags |= SEC_KEEP;
8557 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8558
8559 /* We don't need to set mips16_stubs_seen in this case.
8560 That flag is used to see whether we need to look through
8561 the global symbol table for stubs. We don't need to set
8562 it here, because we just have a local stub. */
8563 }
8564 else
8565 {
8566 h = ((struct mips_elf_link_hash_entry *)
8567 sym_hashes[r_symndx - extsymoff]);
8568
8569 /* H is the symbol this stub is for. */
8570
8571 if (CALL_FP_STUB_P (name))
8572 loc = &h->call_fp_stub;
8573 else
8574 loc = &h->call_stub;
8575
8576 /* If we already have an appropriate stub for this function, we
8577 don't need another one, so we can discard this one. Since
8578 this function is called before the linker maps input sections
8579 to output sections, we can easily discard it by setting the
8580 SEC_EXCLUDE flag. */
8581 if (*loc != NULL)
8582 {
8583 sec->flags |= SEC_EXCLUDE;
8584 return TRUE;
8585 }
8586
8587 sec->flags |= SEC_KEEP;
8588 *loc = sec;
8589 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8590 }
8591 }
8592
8593 sreloc = NULL;
8594 contents = NULL;
8595 for (rel = relocs; rel < rel_end; ++rel)
8596 {
8597 unsigned long r_symndx;
8598 unsigned int r_type;
8599 struct elf_link_hash_entry *h;
8600 bfd_boolean can_make_dynamic_p;
8601 bfd_boolean call_reloc_p;
8602 bfd_boolean constrain_symbol_p;
8603
8604 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8605 r_type = ELF_R_TYPE (abfd, rel->r_info);
8606
8607 if (r_symndx < extsymoff)
8608 h = NULL;
8609 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8610 {
8611 _bfd_error_handler
8612 /* xgettext:c-format */
8613 (_("%pB: malformed reloc detected for section %s"),
8614 abfd, name);
8615 bfd_set_error (bfd_error_bad_value);
8616 return FALSE;
8617 }
8618 else
8619 {
8620 h = sym_hashes[r_symndx - extsymoff];
8621 if (h != NULL)
8622 {
8623 while (h->root.type == bfd_link_hash_indirect
8624 || h->root.type == bfd_link_hash_warning)
8625 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8626 }
8627 }
8628
8629 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8630 relocation into a dynamic one. */
8631 can_make_dynamic_p = FALSE;
8632
8633 /* Set CALL_RELOC_P to true if the relocation is for a call,
8634 and if pointer equality therefore doesn't matter. */
8635 call_reloc_p = FALSE;
8636
8637 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8638 into account when deciding how to define the symbol.
8639 Relocations in nonallocatable sections such as .pdr and
8640 .debug* should have no effect. */
8641 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8642
8643 switch (r_type)
8644 {
8645 case R_MIPS_CALL16:
8646 case R_MIPS_CALL_HI16:
8647 case R_MIPS_CALL_LO16:
8648 case R_MIPS16_CALL16:
8649 case R_MICROMIPS_CALL16:
8650 case R_MICROMIPS_CALL_HI16:
8651 case R_MICROMIPS_CALL_LO16:
8652 call_reloc_p = TRUE;
8653 /* Fall through. */
8654
8655 case R_MIPS_GOT16:
8656 case R_MIPS_GOT_LO16:
8657 case R_MIPS_GOT_PAGE:
8658 case R_MIPS_GOT_DISP:
8659 case R_MIPS16_GOT16:
8660 case R_MICROMIPS_GOT16:
8661 case R_MICROMIPS_GOT_LO16:
8662 case R_MICROMIPS_GOT_PAGE:
8663 case R_MICROMIPS_GOT_DISP:
8664 /* If we have a symbol that will resolve to zero at static link
8665 time and it is used by a GOT relocation applied to code we
8666 cannot relax to an immediate zero load, then we will be using
8667 the special `__gnu_absolute_zero' symbol whose value is zero
8668 at dynamic load time. We ignore HI16-type GOT relocations at
8669 this stage, because their handling will depend entirely on
8670 the corresponding LO16-type GOT relocation. */
8671 if (!call_hi16_reloc_p (r_type)
8672 && h != NULL
8673 && bfd_link_pic (info)
8674 && !htab->use_absolute_zero
8675 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8676 {
8677 bfd_boolean rel_reloc;
8678
8679 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8680 return FALSE;
8681
8682 rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel);
8683 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc);
8684
8685 if (!mips_elf_nullify_got_load (abfd, contents, rel, howto,
8686 FALSE))
8687 if (!mips_elf_define_absolute_zero (abfd, info, htab, r_type))
8688 return FALSE;
8689 }
8690
8691 /* Fall through. */
8692 case R_MIPS_GOT_HI16:
8693 case R_MIPS_GOT_OFST:
8694 case R_MIPS_TLS_GOTTPREL:
8695 case R_MIPS_TLS_GD:
8696 case R_MIPS_TLS_LDM:
8697 case R_MIPS16_TLS_GOTTPREL:
8698 case R_MIPS16_TLS_GD:
8699 case R_MIPS16_TLS_LDM:
8700 case R_MICROMIPS_GOT_HI16:
8701 case R_MICROMIPS_GOT_OFST:
8702 case R_MICROMIPS_TLS_GOTTPREL:
8703 case R_MICROMIPS_TLS_GD:
8704 case R_MICROMIPS_TLS_LDM:
8705 if (dynobj == NULL)
8706 elf_hash_table (info)->dynobj = dynobj = abfd;
8707 if (!mips_elf_create_got_section (dynobj, info))
8708 return FALSE;
8709 if (htab->is_vxworks && !bfd_link_pic (info))
8710 {
8711 _bfd_error_handler
8712 /* xgettext:c-format */
8713 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8714 abfd, (uint64_t) rel->r_offset);
8715 bfd_set_error (bfd_error_bad_value);
8716 return FALSE;
8717 }
8718 can_make_dynamic_p = TRUE;
8719 break;
8720
8721 case R_MIPS_NONE:
8722 case R_MIPS_JALR:
8723 case R_MICROMIPS_JALR:
8724 /* These relocations have empty fields and are purely there to
8725 provide link information. The symbol value doesn't matter. */
8726 constrain_symbol_p = FALSE;
8727 break;
8728
8729 case R_MIPS_GPREL16:
8730 case R_MIPS_GPREL32:
8731 case R_MIPS16_GPREL:
8732 case R_MICROMIPS_GPREL16:
8733 /* GP-relative relocations always resolve to a definition in a
8734 regular input file, ignoring the one-definition rule. This is
8735 important for the GP setup sequence in NewABI code, which
8736 always resolves to a local function even if other relocations
8737 against the symbol wouldn't. */
8738 constrain_symbol_p = FALSE;
8739 break;
8740
8741 case R_MIPS_32:
8742 case R_MIPS_REL32:
8743 case R_MIPS_64:
8744 /* In VxWorks executables, references to external symbols
8745 must be handled using copy relocs or PLT entries; it is not
8746 possible to convert this relocation into a dynamic one.
8747
8748 For executables that use PLTs and copy-relocs, we have a
8749 choice between converting the relocation into a dynamic
8750 one or using copy relocations or PLT entries. It is
8751 usually better to do the former, unless the relocation is
8752 against a read-only section. */
8753 if ((bfd_link_pic (info)
8754 || (h != NULL
8755 && !htab->is_vxworks
8756 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8757 && !(!info->nocopyreloc
8758 && !PIC_OBJECT_P (abfd)
8759 && MIPS_ELF_READONLY_SECTION (sec))))
8760 && (sec->flags & SEC_ALLOC) != 0)
8761 {
8762 can_make_dynamic_p = TRUE;
8763 if (dynobj == NULL)
8764 elf_hash_table (info)->dynobj = dynobj = abfd;
8765 }
8766 break;
8767
8768 case R_MIPS_26:
8769 case R_MIPS_PC16:
8770 case R_MIPS_PC21_S2:
8771 case R_MIPS_PC26_S2:
8772 case R_MIPS16_26:
8773 case R_MIPS16_PC16_S1:
8774 case R_MICROMIPS_26_S1:
8775 case R_MICROMIPS_PC7_S1:
8776 case R_MICROMIPS_PC10_S1:
8777 case R_MICROMIPS_PC16_S1:
8778 case R_MICROMIPS_PC23_S2:
8779 call_reloc_p = TRUE;
8780 break;
8781 }
8782
8783 if (h)
8784 {
8785 if (constrain_symbol_p)
8786 {
8787 if (!can_make_dynamic_p)
8788 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8789
8790 if (!call_reloc_p)
8791 h->pointer_equality_needed = 1;
8792
8793 /* We must not create a stub for a symbol that has
8794 relocations related to taking the function's address.
8795 This doesn't apply to VxWorks, where CALL relocs refer
8796 to a .got.plt entry instead of a normal .got entry. */
8797 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8798 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8799 }
8800
8801 /* Relocations against the special VxWorks __GOTT_BASE__ and
8802 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8803 room for them in .rela.dyn. */
8804 if (is_gott_symbol (info, h))
8805 {
8806 if (sreloc == NULL)
8807 {
8808 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8809 if (sreloc == NULL)
8810 return FALSE;
8811 }
8812 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8813 if (MIPS_ELF_READONLY_SECTION (sec))
8814 /* We tell the dynamic linker that there are
8815 relocations against the text segment. */
8816 info->flags |= DF_TEXTREL;
8817 }
8818 }
8819 else if (call_lo16_reloc_p (r_type)
8820 || got_lo16_reloc_p (r_type)
8821 || got_disp_reloc_p (r_type)
8822 || (got16_reloc_p (r_type) && htab->is_vxworks))
8823 {
8824 /* We may need a local GOT entry for this relocation. We
8825 don't count R_MIPS_GOT_PAGE because we can estimate the
8826 maximum number of pages needed by looking at the size of
8827 the segment. Similar comments apply to R_MIPS*_GOT16 and
8828 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8829 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8830 R_MIPS_CALL_HI16 because these are always followed by an
8831 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8832 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8833 rel->r_addend, info, r_type))
8834 return FALSE;
8835 }
8836
8837 if (h != NULL
8838 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8839 ELF_ST_IS_MIPS16 (h->other)))
8840 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8841
8842 switch (r_type)
8843 {
8844 case R_MIPS_CALL16:
8845 case R_MIPS16_CALL16:
8846 case R_MICROMIPS_CALL16:
8847 if (h == NULL)
8848 {
8849 _bfd_error_handler
8850 /* xgettext:c-format */
8851 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8852 abfd, (uint64_t) rel->r_offset);
8853 bfd_set_error (bfd_error_bad_value);
8854 return FALSE;
8855 }
8856 /* Fall through. */
8857
8858 case R_MIPS_CALL_HI16:
8859 case R_MIPS_CALL_LO16:
8860 case R_MICROMIPS_CALL_HI16:
8861 case R_MICROMIPS_CALL_LO16:
8862 if (h != NULL)
8863 {
8864 /* Make sure there is room in the regular GOT to hold the
8865 function's address. We may eliminate it in favour of
8866 a .got.plt entry later; see mips_elf_count_got_symbols. */
8867 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8868 r_type))
8869 return FALSE;
8870
8871 /* We need a stub, not a plt entry for the undefined
8872 function. But we record it as if it needs plt. See
8873 _bfd_elf_adjust_dynamic_symbol. */
8874 h->needs_plt = 1;
8875 h->type = STT_FUNC;
8876 }
8877 break;
8878
8879 case R_MIPS_GOT_PAGE:
8880 case R_MICROMIPS_GOT_PAGE:
8881 case R_MIPS16_GOT16:
8882 case R_MIPS_GOT16:
8883 case R_MIPS_GOT_HI16:
8884 case R_MIPS_GOT_LO16:
8885 case R_MICROMIPS_GOT16:
8886 case R_MICROMIPS_GOT_HI16:
8887 case R_MICROMIPS_GOT_LO16:
8888 if (!h || got_page_reloc_p (r_type))
8889 {
8890 /* This relocation needs (or may need, if h != NULL) a
8891 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8892 know for sure until we know whether the symbol is
8893 preemptible. */
8894 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8895 {
8896 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8897 return FALSE;
8898 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8899 addend = mips_elf_read_rel_addend (abfd, rel,
8900 howto, contents);
8901 if (got16_reloc_p (r_type))
8902 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8903 contents, &addend);
8904 else
8905 addend <<= howto->rightshift;
8906 }
8907 else
8908 addend = rel->r_addend;
8909 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8910 h, addend))
8911 return FALSE;
8912
8913 if (h)
8914 {
8915 struct mips_elf_link_hash_entry *hmips =
8916 (struct mips_elf_link_hash_entry *) h;
8917
8918 /* This symbol is definitely not overridable. */
8919 if (hmips->root.def_regular
8920 && ! (bfd_link_pic (info) && ! info->symbolic
8921 && ! hmips->root.forced_local))
8922 h = NULL;
8923 }
8924 }
8925 /* If this is a global, overridable symbol, GOT_PAGE will
8926 decay to GOT_DISP, so we'll need a GOT entry for it. */
8927 /* Fall through. */
8928
8929 case R_MIPS_GOT_DISP:
8930 case R_MICROMIPS_GOT_DISP:
8931 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8932 FALSE, r_type))
8933 return FALSE;
8934 break;
8935
8936 case R_MIPS_TLS_GOTTPREL:
8937 case R_MIPS16_TLS_GOTTPREL:
8938 case R_MICROMIPS_TLS_GOTTPREL:
8939 if (bfd_link_pic (info))
8940 info->flags |= DF_STATIC_TLS;
8941 /* Fall through */
8942
8943 case R_MIPS_TLS_LDM:
8944 case R_MIPS16_TLS_LDM:
8945 case R_MICROMIPS_TLS_LDM:
8946 if (tls_ldm_reloc_p (r_type))
8947 {
8948 r_symndx = STN_UNDEF;
8949 h = NULL;
8950 }
8951 /* Fall through */
8952
8953 case R_MIPS_TLS_GD:
8954 case R_MIPS16_TLS_GD:
8955 case R_MICROMIPS_TLS_GD:
8956 /* This symbol requires a global offset table entry, or two
8957 for TLS GD relocations. */
8958 if (h != NULL)
8959 {
8960 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8961 FALSE, r_type))
8962 return FALSE;
8963 }
8964 else
8965 {
8966 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8967 rel->r_addend,
8968 info, r_type))
8969 return FALSE;
8970 }
8971 break;
8972
8973 case R_MIPS_32:
8974 case R_MIPS_REL32:
8975 case R_MIPS_64:
8976 /* In VxWorks executables, references to external symbols
8977 are handled using copy relocs or PLT stubs, so there's
8978 no need to add a .rela.dyn entry for this relocation. */
8979 if (can_make_dynamic_p)
8980 {
8981 if (sreloc == NULL)
8982 {
8983 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8984 if (sreloc == NULL)
8985 return FALSE;
8986 }
8987 if (bfd_link_pic (info) && h == NULL)
8988 {
8989 /* When creating a shared object, we must copy these
8990 reloc types into the output file as R_MIPS_REL32
8991 relocs. Make room for this reloc in .rel(a).dyn. */
8992 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8993 if (MIPS_ELF_READONLY_SECTION (sec))
8994 /* We tell the dynamic linker that there are
8995 relocations against the text segment. */
8996 info->flags |= DF_TEXTREL;
8997 }
8998 else
8999 {
9000 struct mips_elf_link_hash_entry *hmips;
9001
9002 /* For a shared object, we must copy this relocation
9003 unless the symbol turns out to be undefined and
9004 weak with non-default visibility, in which case
9005 it will be left as zero.
9006
9007 We could elide R_MIPS_REL32 for locally binding symbols
9008 in shared libraries, but do not yet do so.
9009
9010 For an executable, we only need to copy this
9011 reloc if the symbol is defined in a dynamic
9012 object. */
9013 hmips = (struct mips_elf_link_hash_entry *) h;
9014 ++hmips->possibly_dynamic_relocs;
9015 if (MIPS_ELF_READONLY_SECTION (sec))
9016 /* We need it to tell the dynamic linker if there
9017 are relocations against the text segment. */
9018 hmips->readonly_reloc = TRUE;
9019 }
9020 }
9021
9022 if (SGI_COMPAT (abfd))
9023 mips_elf_hash_table (info)->compact_rel_size +=
9024 sizeof (Elf32_External_crinfo);
9025 break;
9026
9027 case R_MIPS_26:
9028 case R_MIPS_GPREL16:
9029 case R_MIPS_LITERAL:
9030 case R_MIPS_GPREL32:
9031 case R_MICROMIPS_26_S1:
9032 case R_MICROMIPS_GPREL16:
9033 case R_MICROMIPS_LITERAL:
9034 case R_MICROMIPS_GPREL7_S2:
9035 if (SGI_COMPAT (abfd))
9036 mips_elf_hash_table (info)->compact_rel_size +=
9037 sizeof (Elf32_External_crinfo);
9038 break;
9039
9040 /* This relocation describes the C++ object vtable hierarchy.
9041 Reconstruct it for later use during GC. */
9042 case R_MIPS_GNU_VTINHERIT:
9043 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9044 return FALSE;
9045 break;
9046
9047 /* This relocation describes which C++ vtable entries are actually
9048 used. Record for later use during GC. */
9049 case R_MIPS_GNU_VTENTRY:
9050 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9051 return FALSE;
9052 break;
9053
9054 default:
9055 break;
9056 }
9057
9058 /* Record the need for a PLT entry. At this point we don't know
9059 yet if we are going to create a PLT in the first place, but
9060 we only record whether the relocation requires a standard MIPS
9061 or a compressed code entry anyway. If we don't make a PLT after
9062 all, then we'll just ignore these arrangements. Likewise if
9063 a PLT entry is not created because the symbol is satisfied
9064 locally. */
9065 if (h != NULL
9066 && (branch_reloc_p (r_type)
9067 || mips16_branch_reloc_p (r_type)
9068 || micromips_branch_reloc_p (r_type))
9069 && !SYMBOL_CALLS_LOCAL (info, h))
9070 {
9071 if (h->plt.plist == NULL)
9072 h->plt.plist = mips_elf_make_plt_record (abfd);
9073 if (h->plt.plist == NULL)
9074 return FALSE;
9075
9076 if (branch_reloc_p (r_type))
9077 h->plt.plist->need_mips = TRUE;
9078 else
9079 h->plt.plist->need_comp = TRUE;
9080 }
9081
9082 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9083 if there is one. We only need to handle global symbols here;
9084 we decide whether to keep or delete stubs for local symbols
9085 when processing the stub's relocations. */
9086 if (h != NULL
9087 && !mips16_call_reloc_p (r_type)
9088 && !section_allows_mips16_refs_p (sec))
9089 {
9090 struct mips_elf_link_hash_entry *mh;
9091
9092 mh = (struct mips_elf_link_hash_entry *) h;
9093 mh->need_fn_stub = TRUE;
9094 }
9095
9096 /* Refuse some position-dependent relocations when creating a
9097 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9098 not PIC, but we can create dynamic relocations and the result
9099 will be fine. Also do not refuse R_MIPS_LO16, which can be
9100 combined with R_MIPS_GOT16. */
9101 if (bfd_link_pic (info))
9102 {
9103 switch (r_type)
9104 {
9105 case R_MIPS_TLS_TPREL_HI16:
9106 case R_MIPS16_TLS_TPREL_HI16:
9107 case R_MICROMIPS_TLS_TPREL_HI16:
9108 case R_MIPS_TLS_TPREL_LO16:
9109 case R_MIPS16_TLS_TPREL_LO16:
9110 case R_MICROMIPS_TLS_TPREL_LO16:
9111 /* These are okay in PIE, but not in a shared library. */
9112 if (bfd_link_executable (info))
9113 break;
9114
9115 /* FALLTHROUGH */
9116
9117 case R_MIPS16_HI16:
9118 case R_MIPS_HI16:
9119 case R_MIPS_HIGHER:
9120 case R_MIPS_HIGHEST:
9121 case R_MICROMIPS_HI16:
9122 case R_MICROMIPS_HIGHER:
9123 case R_MICROMIPS_HIGHEST:
9124 /* Don't refuse a high part relocation if it's against
9125 no symbol (e.g. part of a compound relocation). */
9126 if (r_symndx == STN_UNDEF)
9127 break;
9128
9129 /* Likewise an absolute symbol. */
9130 if (h != NULL && bfd_is_abs_symbol (&h->root))
9131 break;
9132
9133 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9134 and has a special meaning. */
9135 if (!NEWABI_P (abfd) && h != NULL
9136 && strcmp (h->root.root.string, "_gp_disp") == 0)
9137 break;
9138
9139 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
9140 if (is_gott_symbol (info, h))
9141 break;
9142
9143 /* FALLTHROUGH */
9144
9145 case R_MIPS16_26:
9146 case R_MIPS_26:
9147 case R_MICROMIPS_26_S1:
9148 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, NEWABI_P (abfd));
9149 /* An error for unsupported relocations is raised as part
9150 of the above search, so we can skip the following. */
9151 if (howto != NULL)
9152 info->callbacks->einfo
9153 /* xgettext:c-format */
9154 (_("%X%H: relocation %s against `%s' cannot be used"
9155 " when making a shared object; recompile with -fPIC\n"),
9156 abfd, sec, rel->r_offset, howto->name,
9157 (h) ? h->root.root.string : "a local symbol");
9158 break;
9159 default:
9160 break;
9161 }
9162 }
9163 }
9164
9165 return TRUE;
9166 }
9167 \f
9168 /* Allocate space for global sym dynamic relocs. */
9169
9170 static bfd_boolean
9171 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9172 {
9173 struct bfd_link_info *info = inf;
9174 bfd *dynobj;
9175 struct mips_elf_link_hash_entry *hmips;
9176 struct mips_elf_link_hash_table *htab;
9177
9178 htab = mips_elf_hash_table (info);
9179 BFD_ASSERT (htab != NULL);
9180
9181 dynobj = elf_hash_table (info)->dynobj;
9182 hmips = (struct mips_elf_link_hash_entry *) h;
9183
9184 /* VxWorks executables are handled elsewhere; we only need to
9185 allocate relocations in shared objects. */
9186 if (htab->is_vxworks && !bfd_link_pic (info))
9187 return TRUE;
9188
9189 /* Ignore indirect symbols. All relocations against such symbols
9190 will be redirected to the target symbol. */
9191 if (h->root.type == bfd_link_hash_indirect)
9192 return TRUE;
9193
9194 /* If this symbol is defined in a dynamic object, or we are creating
9195 a shared library, we will need to copy any R_MIPS_32 or
9196 R_MIPS_REL32 relocs against it into the output file. */
9197 if (! bfd_link_relocatable (info)
9198 && hmips->possibly_dynamic_relocs != 0
9199 && (h->root.type == bfd_link_hash_defweak
9200 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9201 || bfd_link_pic (info)))
9202 {
9203 bfd_boolean do_copy = TRUE;
9204
9205 if (h->root.type == bfd_link_hash_undefweak)
9206 {
9207 /* Do not copy relocations for undefined weak symbols that
9208 we are not going to export. */
9209 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9210 do_copy = FALSE;
9211
9212 /* Make sure undefined weak symbols are output as a dynamic
9213 symbol in PIEs. */
9214 else if (h->dynindx == -1 && !h->forced_local)
9215 {
9216 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9217 return FALSE;
9218 }
9219 }
9220
9221 if (do_copy)
9222 {
9223 /* Even though we don't directly need a GOT entry for this symbol,
9224 the SVR4 psABI requires it to have a dynamic symbol table
9225 index greater that DT_MIPS_GOTSYM if there are dynamic
9226 relocations against it.
9227
9228 VxWorks does not enforce the same mapping between the GOT
9229 and the symbol table, so the same requirement does not
9230 apply there. */
9231 if (!htab->is_vxworks)
9232 {
9233 if (hmips->global_got_area > GGA_RELOC_ONLY)
9234 hmips->global_got_area = GGA_RELOC_ONLY;
9235 hmips->got_only_for_calls = FALSE;
9236 }
9237
9238 mips_elf_allocate_dynamic_relocations
9239 (dynobj, info, hmips->possibly_dynamic_relocs);
9240 if (hmips->readonly_reloc)
9241 /* We tell the dynamic linker that there are relocations
9242 against the text segment. */
9243 info->flags |= DF_TEXTREL;
9244 }
9245 }
9246
9247 return TRUE;
9248 }
9249
9250 /* Adjust a symbol defined by a dynamic object and referenced by a
9251 regular object. The current definition is in some section of the
9252 dynamic object, but we're not including those sections. We have to
9253 change the definition to something the rest of the link can
9254 understand. */
9255
9256 bfd_boolean
9257 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9258 struct elf_link_hash_entry *h)
9259 {
9260 bfd *dynobj;
9261 struct mips_elf_link_hash_entry *hmips;
9262 struct mips_elf_link_hash_table *htab;
9263 asection *s, *srel;
9264
9265 htab = mips_elf_hash_table (info);
9266 BFD_ASSERT (htab != NULL);
9267
9268 dynobj = elf_hash_table (info)->dynobj;
9269 hmips = (struct mips_elf_link_hash_entry *) h;
9270
9271 /* Make sure we know what is going on here. */
9272 BFD_ASSERT (dynobj != NULL
9273 && (h->needs_plt
9274 || h->is_weakalias
9275 || (h->def_dynamic
9276 && h->ref_regular
9277 && !h->def_regular)));
9278
9279 hmips = (struct mips_elf_link_hash_entry *) h;
9280
9281 /* If there are call relocations against an externally-defined symbol,
9282 see whether we can create a MIPS lazy-binding stub for it. We can
9283 only do this if all references to the function are through call
9284 relocations, and in that case, the traditional lazy-binding stubs
9285 are much more efficient than PLT entries.
9286
9287 Traditional stubs are only available on SVR4 psABI-based systems;
9288 VxWorks always uses PLTs instead. */
9289 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9290 {
9291 if (! elf_hash_table (info)->dynamic_sections_created)
9292 return TRUE;
9293
9294 /* If this symbol is not defined in a regular file, then set
9295 the symbol to the stub location. This is required to make
9296 function pointers compare as equal between the normal
9297 executable and the shared library. */
9298 if (!h->def_regular
9299 && !bfd_is_abs_section (htab->sstubs->output_section))
9300 {
9301 hmips->needs_lazy_stub = TRUE;
9302 htab->lazy_stub_count++;
9303 return TRUE;
9304 }
9305 }
9306 /* As above, VxWorks requires PLT entries for externally-defined
9307 functions that are only accessed through call relocations.
9308
9309 Both VxWorks and non-VxWorks targets also need PLT entries if there
9310 are static-only relocations against an externally-defined function.
9311 This can technically occur for shared libraries if there are
9312 branches to the symbol, although it is unlikely that this will be
9313 used in practice due to the short ranges involved. It can occur
9314 for any relative or absolute relocation in executables; in that
9315 case, the PLT entry becomes the function's canonical address. */
9316 else if (((h->needs_plt && !hmips->no_fn_stub)
9317 || (h->type == STT_FUNC && hmips->has_static_relocs))
9318 && htab->use_plts_and_copy_relocs
9319 && !SYMBOL_CALLS_LOCAL (info, h)
9320 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9321 && h->root.type == bfd_link_hash_undefweak))
9322 {
9323 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9324 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9325
9326 /* If this is the first symbol to need a PLT entry, then make some
9327 basic setup. Also work out PLT entry sizes. We'll need them
9328 for PLT offset calculations. */
9329 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9330 {
9331 BFD_ASSERT (htab->root.sgotplt->size == 0);
9332 BFD_ASSERT (htab->plt_got_index == 0);
9333
9334 /* If we're using the PLT additions to the psABI, each PLT
9335 entry is 16 bytes and the PLT0 entry is 32 bytes.
9336 Encourage better cache usage by aligning. We do this
9337 lazily to avoid pessimizing traditional objects. */
9338 if (!htab->is_vxworks
9339 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9340 return FALSE;
9341
9342 /* Make sure that .got.plt is word-aligned. We do this lazily
9343 for the same reason as above. */
9344 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9345 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9346 return FALSE;
9347
9348 /* On non-VxWorks targets, the first two entries in .got.plt
9349 are reserved. */
9350 if (!htab->is_vxworks)
9351 htab->plt_got_index
9352 += (get_elf_backend_data (dynobj)->got_header_size
9353 / MIPS_ELF_GOT_SIZE (dynobj));
9354
9355 /* On VxWorks, also allocate room for the header's
9356 .rela.plt.unloaded entries. */
9357 if (htab->is_vxworks && !bfd_link_pic (info))
9358 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9359
9360 /* Now work out the sizes of individual PLT entries. */
9361 if (htab->is_vxworks && bfd_link_pic (info))
9362 htab->plt_mips_entry_size
9363 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9364 else if (htab->is_vxworks)
9365 htab->plt_mips_entry_size
9366 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9367 else if (newabi_p)
9368 htab->plt_mips_entry_size
9369 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9370 else if (!micromips_p)
9371 {
9372 htab->plt_mips_entry_size
9373 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9374 htab->plt_comp_entry_size
9375 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9376 }
9377 else if (htab->insn32)
9378 {
9379 htab->plt_mips_entry_size
9380 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9381 htab->plt_comp_entry_size
9382 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9383 }
9384 else
9385 {
9386 htab->plt_mips_entry_size
9387 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9388 htab->plt_comp_entry_size
9389 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9390 }
9391 }
9392
9393 if (h->plt.plist == NULL)
9394 h->plt.plist = mips_elf_make_plt_record (dynobj);
9395 if (h->plt.plist == NULL)
9396 return FALSE;
9397
9398 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9399 n32 or n64, so always use a standard entry there.
9400
9401 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9402 all MIPS16 calls will go via that stub, and there is no benefit
9403 to having a MIPS16 entry. And in the case of call_stub a
9404 standard entry actually has to be used as the stub ends with a J
9405 instruction. */
9406 if (newabi_p
9407 || htab->is_vxworks
9408 || hmips->call_stub
9409 || hmips->call_fp_stub)
9410 {
9411 h->plt.plist->need_mips = TRUE;
9412 h->plt.plist->need_comp = FALSE;
9413 }
9414
9415 /* Otherwise, if there are no direct calls to the function, we
9416 have a free choice of whether to use standard or compressed
9417 entries. Prefer microMIPS entries if the object is known to
9418 contain microMIPS code, so that it becomes possible to create
9419 pure microMIPS binaries. Prefer standard entries otherwise,
9420 because MIPS16 ones are no smaller and are usually slower. */
9421 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9422 {
9423 if (micromips_p)
9424 h->plt.plist->need_comp = TRUE;
9425 else
9426 h->plt.plist->need_mips = TRUE;
9427 }
9428
9429 if (h->plt.plist->need_mips)
9430 {
9431 h->plt.plist->mips_offset = htab->plt_mips_offset;
9432 htab->plt_mips_offset += htab->plt_mips_entry_size;
9433 }
9434 if (h->plt.plist->need_comp)
9435 {
9436 h->plt.plist->comp_offset = htab->plt_comp_offset;
9437 htab->plt_comp_offset += htab->plt_comp_entry_size;
9438 }
9439
9440 /* Reserve the corresponding .got.plt entry now too. */
9441 h->plt.plist->gotplt_index = htab->plt_got_index++;
9442
9443 /* If the output file has no definition of the symbol, set the
9444 symbol's value to the address of the stub. */
9445 if (!bfd_link_pic (info) && !h->def_regular)
9446 hmips->use_plt_entry = TRUE;
9447
9448 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9449 htab->root.srelplt->size += (htab->is_vxworks
9450 ? MIPS_ELF_RELA_SIZE (dynobj)
9451 : MIPS_ELF_REL_SIZE (dynobj));
9452
9453 /* Make room for the .rela.plt.unloaded relocations. */
9454 if (htab->is_vxworks && !bfd_link_pic (info))
9455 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9456
9457 /* All relocations against this symbol that could have been made
9458 dynamic will now refer to the PLT entry instead. */
9459 hmips->possibly_dynamic_relocs = 0;
9460
9461 return TRUE;
9462 }
9463
9464 /* If this is a weak symbol, and there is a real definition, the
9465 processor independent code will have arranged for us to see the
9466 real definition first, and we can just use the same value. */
9467 if (h->is_weakalias)
9468 {
9469 struct elf_link_hash_entry *def = weakdef (h);
9470 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9471 h->root.u.def.section = def->root.u.def.section;
9472 h->root.u.def.value = def->root.u.def.value;
9473 return TRUE;
9474 }
9475
9476 /* Otherwise, there is nothing further to do for symbols defined
9477 in regular objects. */
9478 if (h->def_regular)
9479 return TRUE;
9480
9481 /* There's also nothing more to do if we'll convert all relocations
9482 against this symbol into dynamic relocations. */
9483 if (!hmips->has_static_relocs)
9484 return TRUE;
9485
9486 /* We're now relying on copy relocations. Complain if we have
9487 some that we can't convert. */
9488 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9489 {
9490 _bfd_error_handler (_("non-dynamic relocations refer to "
9491 "dynamic symbol %s"),
9492 h->root.root.string);
9493 bfd_set_error (bfd_error_bad_value);
9494 return FALSE;
9495 }
9496
9497 /* We must allocate the symbol in our .dynbss section, which will
9498 become part of the .bss section of the executable. There will be
9499 an entry for this symbol in the .dynsym section. The dynamic
9500 object will contain position independent code, so all references
9501 from the dynamic object to this symbol will go through the global
9502 offset table. The dynamic linker will use the .dynsym entry to
9503 determine the address it must put in the global offset table, so
9504 both the dynamic object and the regular object will refer to the
9505 same memory location for the variable. */
9506
9507 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9508 {
9509 s = htab->root.sdynrelro;
9510 srel = htab->root.sreldynrelro;
9511 }
9512 else
9513 {
9514 s = htab->root.sdynbss;
9515 srel = htab->root.srelbss;
9516 }
9517 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9518 {
9519 if (htab->is_vxworks)
9520 srel->size += sizeof (Elf32_External_Rela);
9521 else
9522 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9523 h->needs_copy = 1;
9524 }
9525
9526 /* All relocations against this symbol that could have been made
9527 dynamic will now refer to the local copy instead. */
9528 hmips->possibly_dynamic_relocs = 0;
9529
9530 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9531 }
9532 \f
9533 /* This function is called after all the input files have been read,
9534 and the input sections have been assigned to output sections. We
9535 check for any mips16 stub sections that we can discard. */
9536
9537 bfd_boolean
9538 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9539 struct bfd_link_info *info)
9540 {
9541 asection *sect;
9542 struct mips_elf_link_hash_table *htab;
9543 struct mips_htab_traverse_info hti;
9544
9545 htab = mips_elf_hash_table (info);
9546 BFD_ASSERT (htab != NULL);
9547
9548 /* The .reginfo section has a fixed size. */
9549 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9550 if (sect != NULL)
9551 {
9552 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9553 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9554 }
9555
9556 /* The .MIPS.abiflags section has a fixed size. */
9557 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9558 if (sect != NULL)
9559 {
9560 bfd_set_section_size (output_bfd, sect,
9561 sizeof (Elf_External_ABIFlags_v0));
9562 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9563 }
9564
9565 hti.info = info;
9566 hti.output_bfd = output_bfd;
9567 hti.error = FALSE;
9568 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9569 mips_elf_check_symbols, &hti);
9570 if (hti.error)
9571 return FALSE;
9572
9573 return TRUE;
9574 }
9575
9576 /* If the link uses a GOT, lay it out and work out its size. */
9577
9578 static bfd_boolean
9579 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9580 {
9581 bfd *dynobj;
9582 asection *s;
9583 struct mips_got_info *g;
9584 bfd_size_type loadable_size = 0;
9585 bfd_size_type page_gotno;
9586 bfd *ibfd;
9587 struct mips_elf_traverse_got_arg tga;
9588 struct mips_elf_link_hash_table *htab;
9589
9590 htab = mips_elf_hash_table (info);
9591 BFD_ASSERT (htab != NULL);
9592
9593 s = htab->root.sgot;
9594 if (s == NULL)
9595 return TRUE;
9596
9597 dynobj = elf_hash_table (info)->dynobj;
9598 g = htab->got_info;
9599
9600 /* Allocate room for the reserved entries. VxWorks always reserves
9601 3 entries; other objects only reserve 2 entries. */
9602 BFD_ASSERT (g->assigned_low_gotno == 0);
9603 if (htab->is_vxworks)
9604 htab->reserved_gotno = 3;
9605 else
9606 htab->reserved_gotno = 2;
9607 g->local_gotno += htab->reserved_gotno;
9608 g->assigned_low_gotno = htab->reserved_gotno;
9609
9610 /* Decide which symbols need to go in the global part of the GOT and
9611 count the number of reloc-only GOT symbols. */
9612 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9613
9614 if (!mips_elf_resolve_final_got_entries (info, g))
9615 return FALSE;
9616
9617 /* Calculate the total loadable size of the output. That
9618 will give us the maximum number of GOT_PAGE entries
9619 required. */
9620 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9621 {
9622 asection *subsection;
9623
9624 for (subsection = ibfd->sections;
9625 subsection;
9626 subsection = subsection->next)
9627 {
9628 if ((subsection->flags & SEC_ALLOC) == 0)
9629 continue;
9630 loadable_size += ((subsection->size + 0xf)
9631 &~ (bfd_size_type) 0xf);
9632 }
9633 }
9634
9635 if (htab->is_vxworks)
9636 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9637 relocations against local symbols evaluate to "G", and the EABI does
9638 not include R_MIPS_GOT_PAGE. */
9639 page_gotno = 0;
9640 else
9641 /* Assume there are two loadable segments consisting of contiguous
9642 sections. Is 5 enough? */
9643 page_gotno = (loadable_size >> 16) + 5;
9644
9645 /* Choose the smaller of the two page estimates; both are intended to be
9646 conservative. */
9647 if (page_gotno > g->page_gotno)
9648 page_gotno = g->page_gotno;
9649
9650 g->local_gotno += page_gotno;
9651 g->assigned_high_gotno = g->local_gotno - 1;
9652
9653 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9654 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9655 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9656
9657 /* VxWorks does not support multiple GOTs. It initializes $gp to
9658 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9659 dynamic loader. */
9660 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9661 {
9662 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9663 return FALSE;
9664 }
9665 else
9666 {
9667 /* Record that all bfds use G. This also has the effect of freeing
9668 the per-bfd GOTs, which we no longer need. */
9669 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9670 if (mips_elf_bfd_got (ibfd, FALSE))
9671 mips_elf_replace_bfd_got (ibfd, g);
9672 mips_elf_replace_bfd_got (output_bfd, g);
9673
9674 /* Set up TLS entries. */
9675 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9676 tga.info = info;
9677 tga.g = g;
9678 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9679 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9680 if (!tga.g)
9681 return FALSE;
9682 BFD_ASSERT (g->tls_assigned_gotno
9683 == g->global_gotno + g->local_gotno + g->tls_gotno);
9684
9685 /* Each VxWorks GOT entry needs an explicit relocation. */
9686 if (htab->is_vxworks && bfd_link_pic (info))
9687 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9688
9689 /* Allocate room for the TLS relocations. */
9690 if (g->relocs)
9691 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9692 }
9693
9694 return TRUE;
9695 }
9696
9697 /* Estimate the size of the .MIPS.stubs section. */
9698
9699 static void
9700 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9701 {
9702 struct mips_elf_link_hash_table *htab;
9703 bfd_size_type dynsymcount;
9704
9705 htab = mips_elf_hash_table (info);
9706 BFD_ASSERT (htab != NULL);
9707
9708 if (htab->lazy_stub_count == 0)
9709 return;
9710
9711 /* IRIX rld assumes that a function stub isn't at the end of the .text
9712 section, so add a dummy entry to the end. */
9713 htab->lazy_stub_count++;
9714
9715 /* Get a worst-case estimate of the number of dynamic symbols needed.
9716 At this point, dynsymcount does not account for section symbols
9717 and count_section_dynsyms may overestimate the number that will
9718 be needed. */
9719 dynsymcount = (elf_hash_table (info)->dynsymcount
9720 + count_section_dynsyms (output_bfd, info));
9721
9722 /* Determine the size of one stub entry. There's no disadvantage
9723 from using microMIPS code here, so for the sake of pure-microMIPS
9724 binaries we prefer it whenever there's any microMIPS code in
9725 output produced at all. This has a benefit of stubs being
9726 shorter by 4 bytes each too, unless in the insn32 mode. */
9727 if (!MICROMIPS_P (output_bfd))
9728 htab->function_stub_size = (dynsymcount > 0x10000
9729 ? MIPS_FUNCTION_STUB_BIG_SIZE
9730 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9731 else if (htab->insn32)
9732 htab->function_stub_size = (dynsymcount > 0x10000
9733 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9734 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9735 else
9736 htab->function_stub_size = (dynsymcount > 0x10000
9737 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9738 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9739
9740 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9741 }
9742
9743 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9744 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9745 stub, allocate an entry in the stubs section. */
9746
9747 static bfd_boolean
9748 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9749 {
9750 struct mips_htab_traverse_info *hti = data;
9751 struct mips_elf_link_hash_table *htab;
9752 struct bfd_link_info *info;
9753 bfd *output_bfd;
9754
9755 info = hti->info;
9756 output_bfd = hti->output_bfd;
9757 htab = mips_elf_hash_table (info);
9758 BFD_ASSERT (htab != NULL);
9759
9760 if (h->needs_lazy_stub)
9761 {
9762 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9763 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9764 bfd_vma isa_bit = micromips_p;
9765
9766 BFD_ASSERT (htab->root.dynobj != NULL);
9767 if (h->root.plt.plist == NULL)
9768 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9769 if (h->root.plt.plist == NULL)
9770 {
9771 hti->error = TRUE;
9772 return FALSE;
9773 }
9774 h->root.root.u.def.section = htab->sstubs;
9775 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9776 h->root.plt.plist->stub_offset = htab->sstubs->size;
9777 h->root.other = other;
9778 htab->sstubs->size += htab->function_stub_size;
9779 }
9780 return TRUE;
9781 }
9782
9783 /* Allocate offsets in the stubs section to each symbol that needs one.
9784 Set the final size of the .MIPS.stub section. */
9785
9786 static bfd_boolean
9787 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9788 {
9789 bfd *output_bfd = info->output_bfd;
9790 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9791 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9792 bfd_vma isa_bit = micromips_p;
9793 struct mips_elf_link_hash_table *htab;
9794 struct mips_htab_traverse_info hti;
9795 struct elf_link_hash_entry *h;
9796 bfd *dynobj;
9797
9798 htab = mips_elf_hash_table (info);
9799 BFD_ASSERT (htab != NULL);
9800
9801 if (htab->lazy_stub_count == 0)
9802 return TRUE;
9803
9804 htab->sstubs->size = 0;
9805 hti.info = info;
9806 hti.output_bfd = output_bfd;
9807 hti.error = FALSE;
9808 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9809 if (hti.error)
9810 return FALSE;
9811 htab->sstubs->size += htab->function_stub_size;
9812 BFD_ASSERT (htab->sstubs->size
9813 == htab->lazy_stub_count * htab->function_stub_size);
9814
9815 dynobj = elf_hash_table (info)->dynobj;
9816 BFD_ASSERT (dynobj != NULL);
9817 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9818 if (h == NULL)
9819 return FALSE;
9820 h->root.u.def.value = isa_bit;
9821 h->other = other;
9822 h->type = STT_FUNC;
9823
9824 return TRUE;
9825 }
9826
9827 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9828 bfd_link_info. If H uses the address of a PLT entry as the value
9829 of the symbol, then set the entry in the symbol table now. Prefer
9830 a standard MIPS PLT entry. */
9831
9832 static bfd_boolean
9833 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9834 {
9835 struct bfd_link_info *info = data;
9836 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9837 struct mips_elf_link_hash_table *htab;
9838 unsigned int other;
9839 bfd_vma isa_bit;
9840 bfd_vma val;
9841
9842 htab = mips_elf_hash_table (info);
9843 BFD_ASSERT (htab != NULL);
9844
9845 if (h->use_plt_entry)
9846 {
9847 BFD_ASSERT (h->root.plt.plist != NULL);
9848 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9849 || h->root.plt.plist->comp_offset != MINUS_ONE);
9850
9851 val = htab->plt_header_size;
9852 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9853 {
9854 isa_bit = 0;
9855 val += h->root.plt.plist->mips_offset;
9856 other = 0;
9857 }
9858 else
9859 {
9860 isa_bit = 1;
9861 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9862 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9863 }
9864 val += isa_bit;
9865 /* For VxWorks, point at the PLT load stub rather than the lazy
9866 resolution stub; this stub will become the canonical function
9867 address. */
9868 if (htab->is_vxworks)
9869 val += 8;
9870
9871 h->root.root.u.def.section = htab->root.splt;
9872 h->root.root.u.def.value = val;
9873 h->root.other = other;
9874 }
9875
9876 return TRUE;
9877 }
9878
9879 /* Set the sizes of the dynamic sections. */
9880
9881 bfd_boolean
9882 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9883 struct bfd_link_info *info)
9884 {
9885 bfd *dynobj;
9886 asection *s, *sreldyn;
9887 bfd_boolean reltext;
9888 struct mips_elf_link_hash_table *htab;
9889
9890 htab = mips_elf_hash_table (info);
9891 BFD_ASSERT (htab != NULL);
9892 dynobj = elf_hash_table (info)->dynobj;
9893 BFD_ASSERT (dynobj != NULL);
9894
9895 if (elf_hash_table (info)->dynamic_sections_created)
9896 {
9897 /* Set the contents of the .interp section to the interpreter. */
9898 if (bfd_link_executable (info) && !info->nointerp)
9899 {
9900 s = bfd_get_linker_section (dynobj, ".interp");
9901 BFD_ASSERT (s != NULL);
9902 s->size
9903 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9904 s->contents
9905 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9906 }
9907
9908 /* Figure out the size of the PLT header if we know that we
9909 are using it. For the sake of cache alignment always use
9910 a standard header whenever any standard entries are present
9911 even if microMIPS entries are present as well. This also
9912 lets the microMIPS header rely on the value of $v0 only set
9913 by microMIPS entries, for a small size reduction.
9914
9915 Set symbol table entry values for symbols that use the
9916 address of their PLT entry now that we can calculate it.
9917
9918 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9919 haven't already in _bfd_elf_create_dynamic_sections. */
9920 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9921 {
9922 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9923 && !htab->plt_mips_offset);
9924 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9925 bfd_vma isa_bit = micromips_p;
9926 struct elf_link_hash_entry *h;
9927 bfd_vma size;
9928
9929 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9930 BFD_ASSERT (htab->root.sgotplt->size == 0);
9931 BFD_ASSERT (htab->root.splt->size == 0);
9932
9933 if (htab->is_vxworks && bfd_link_pic (info))
9934 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9935 else if (htab->is_vxworks)
9936 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9937 else if (ABI_64_P (output_bfd))
9938 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9939 else if (ABI_N32_P (output_bfd))
9940 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9941 else if (!micromips_p)
9942 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9943 else if (htab->insn32)
9944 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9945 else
9946 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9947
9948 htab->plt_header_is_comp = micromips_p;
9949 htab->plt_header_size = size;
9950 htab->root.splt->size = (size
9951 + htab->plt_mips_offset
9952 + htab->plt_comp_offset);
9953 htab->root.sgotplt->size = (htab->plt_got_index
9954 * MIPS_ELF_GOT_SIZE (dynobj));
9955
9956 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9957
9958 if (htab->root.hplt == NULL)
9959 {
9960 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9961 "_PROCEDURE_LINKAGE_TABLE_");
9962 htab->root.hplt = h;
9963 if (h == NULL)
9964 return FALSE;
9965 }
9966
9967 h = htab->root.hplt;
9968 h->root.u.def.value = isa_bit;
9969 h->other = other;
9970 h->type = STT_FUNC;
9971 }
9972 }
9973
9974 /* Allocate space for global sym dynamic relocs. */
9975 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9976
9977 mips_elf_estimate_stub_size (output_bfd, info);
9978
9979 if (!mips_elf_lay_out_got (output_bfd, info))
9980 return FALSE;
9981
9982 mips_elf_lay_out_lazy_stubs (info);
9983
9984 /* The check_relocs and adjust_dynamic_symbol entry points have
9985 determined the sizes of the various dynamic sections. Allocate
9986 memory for them. */
9987 reltext = FALSE;
9988 for (s = dynobj->sections; s != NULL; s = s->next)
9989 {
9990 const char *name;
9991
9992 /* It's OK to base decisions on the section name, because none
9993 of the dynobj section names depend upon the input files. */
9994 name = bfd_get_section_name (dynobj, s);
9995
9996 if ((s->flags & SEC_LINKER_CREATED) == 0)
9997 continue;
9998
9999 if (CONST_STRNEQ (name, ".rel"))
10000 {
10001 if (s->size != 0)
10002 {
10003 const char *outname;
10004 asection *target;
10005
10006 /* If this relocation section applies to a read only
10007 section, then we probably need a DT_TEXTREL entry.
10008 If the relocation section is .rel(a).dyn, we always
10009 assert a DT_TEXTREL entry rather than testing whether
10010 there exists a relocation to a read only section or
10011 not. */
10012 outname = bfd_get_section_name (output_bfd,
10013 s->output_section);
10014 target = bfd_get_section_by_name (output_bfd, outname + 4);
10015 if ((target != NULL
10016 && (target->flags & SEC_READONLY) != 0
10017 && (target->flags & SEC_ALLOC) != 0)
10018 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
10019 reltext = TRUE;
10020
10021 /* We use the reloc_count field as a counter if we need
10022 to copy relocs into the output file. */
10023 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
10024 s->reloc_count = 0;
10025
10026 /* If combreloc is enabled, elf_link_sort_relocs() will
10027 sort relocations, but in a different way than we do,
10028 and before we're done creating relocations. Also, it
10029 will move them around between input sections'
10030 relocation's contents, so our sorting would be
10031 broken, so don't let it run. */
10032 info->combreloc = 0;
10033 }
10034 }
10035 else if (bfd_link_executable (info)
10036 && ! mips_elf_hash_table (info)->use_rld_obj_head
10037 && CONST_STRNEQ (name, ".rld_map"))
10038 {
10039 /* We add a room for __rld_map. It will be filled in by the
10040 rtld to contain a pointer to the _r_debug structure. */
10041 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
10042 }
10043 else if (SGI_COMPAT (output_bfd)
10044 && CONST_STRNEQ (name, ".compact_rel"))
10045 s->size += mips_elf_hash_table (info)->compact_rel_size;
10046 else if (s == htab->root.splt)
10047 {
10048 /* If the last PLT entry has a branch delay slot, allocate
10049 room for an extra nop to fill the delay slot. This is
10050 for CPUs without load interlocking. */
10051 if (! LOAD_INTERLOCKS_P (output_bfd)
10052 && ! htab->is_vxworks && s->size > 0)
10053 s->size += 4;
10054 }
10055 else if (! CONST_STRNEQ (name, ".init")
10056 && s != htab->root.sgot
10057 && s != htab->root.sgotplt
10058 && s != htab->sstubs
10059 && s != htab->root.sdynbss
10060 && s != htab->root.sdynrelro)
10061 {
10062 /* It's not one of our sections, so don't allocate space. */
10063 continue;
10064 }
10065
10066 if (s->size == 0)
10067 {
10068 s->flags |= SEC_EXCLUDE;
10069 continue;
10070 }
10071
10072 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10073 continue;
10074
10075 /* Allocate memory for the section contents. */
10076 s->contents = bfd_zalloc (dynobj, s->size);
10077 if (s->contents == NULL)
10078 {
10079 bfd_set_error (bfd_error_no_memory);
10080 return FALSE;
10081 }
10082 }
10083
10084 if (elf_hash_table (info)->dynamic_sections_created)
10085 {
10086 /* Add some entries to the .dynamic section. We fill in the
10087 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10088 must add the entries now so that we get the correct size for
10089 the .dynamic section. */
10090
10091 /* SGI object has the equivalence of DT_DEBUG in the
10092 DT_MIPS_RLD_MAP entry. This must come first because glibc
10093 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10094 may only look at the first one they see. */
10095 if (!bfd_link_pic (info)
10096 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
10097 return FALSE;
10098
10099 if (bfd_link_executable (info)
10100 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
10101 return FALSE;
10102
10103 /* The DT_DEBUG entry may be filled in by the dynamic linker and
10104 used by the debugger. */
10105 if (bfd_link_executable (info)
10106 && !SGI_COMPAT (output_bfd)
10107 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
10108 return FALSE;
10109
10110 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
10111 info->flags |= DF_TEXTREL;
10112
10113 if ((info->flags & DF_TEXTREL) != 0)
10114 {
10115 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
10116 return FALSE;
10117
10118 /* Clear the DF_TEXTREL flag. It will be set again if we
10119 write out an actual text relocation; we may not, because
10120 at this point we do not know whether e.g. any .eh_frame
10121 absolute relocations have been converted to PC-relative. */
10122 info->flags &= ~DF_TEXTREL;
10123 }
10124
10125 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
10126 return FALSE;
10127
10128 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
10129 if (htab->is_vxworks)
10130 {
10131 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10132 use any of the DT_MIPS_* tags. */
10133 if (sreldyn && sreldyn->size > 0)
10134 {
10135 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10136 return FALSE;
10137
10138 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10139 return FALSE;
10140
10141 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10142 return FALSE;
10143 }
10144 }
10145 else
10146 {
10147 if (sreldyn && sreldyn->size > 0
10148 && !bfd_is_abs_section (sreldyn->output_section))
10149 {
10150 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10151 return FALSE;
10152
10153 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10154 return FALSE;
10155
10156 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10157 return FALSE;
10158 }
10159
10160 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10161 return FALSE;
10162
10163 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10164 return FALSE;
10165
10166 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10167 return FALSE;
10168
10169 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10170 return FALSE;
10171
10172 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10173 return FALSE;
10174
10175 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10176 return FALSE;
10177
10178 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10179 return FALSE;
10180
10181 if (IRIX_COMPAT (dynobj) == ict_irix5
10182 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10183 return FALSE;
10184
10185 if (IRIX_COMPAT (dynobj) == ict_irix6
10186 && (bfd_get_section_by_name
10187 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10188 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10189 return FALSE;
10190 }
10191 if (htab->root.splt->size > 0)
10192 {
10193 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10194 return FALSE;
10195
10196 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10197 return FALSE;
10198
10199 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10200 return FALSE;
10201
10202 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10203 return FALSE;
10204 }
10205 if (htab->is_vxworks
10206 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10207 return FALSE;
10208 }
10209
10210 return TRUE;
10211 }
10212 \f
10213 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10214 Adjust its R_ADDEND field so that it is correct for the output file.
10215 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10216 and sections respectively; both use symbol indexes. */
10217
10218 static void
10219 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10220 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10221 asection **local_sections, Elf_Internal_Rela *rel)
10222 {
10223 unsigned int r_type, r_symndx;
10224 Elf_Internal_Sym *sym;
10225 asection *sec;
10226
10227 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10228 {
10229 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10230 if (gprel16_reloc_p (r_type)
10231 || r_type == R_MIPS_GPREL32
10232 || literal_reloc_p (r_type))
10233 {
10234 rel->r_addend += _bfd_get_gp_value (input_bfd);
10235 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10236 }
10237
10238 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10239 sym = local_syms + r_symndx;
10240
10241 /* Adjust REL's addend to account for section merging. */
10242 if (!bfd_link_relocatable (info))
10243 {
10244 sec = local_sections[r_symndx];
10245 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10246 }
10247
10248 /* This would normally be done by the rela_normal code in elflink.c. */
10249 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10250 rel->r_addend += local_sections[r_symndx]->output_offset;
10251 }
10252 }
10253
10254 /* Handle relocations against symbols from removed linkonce sections,
10255 or sections discarded by a linker script. We use this wrapper around
10256 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10257 on 64-bit ELF targets. In this case for any relocation handled, which
10258 always be the first in a triplet, the remaining two have to be processed
10259 together with the first, even if they are R_MIPS_NONE. It is the symbol
10260 index referred by the first reloc that applies to all the three and the
10261 remaining two never refer to an object symbol. And it is the final
10262 relocation (the last non-null one) that determines the output field of
10263 the whole relocation so retrieve the corresponding howto structure for
10264 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10265
10266 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10267 and therefore requires to be pasted in a loop. It also defines a block
10268 and does not protect any of its arguments, hence the extra brackets. */
10269
10270 static void
10271 mips_reloc_against_discarded_section (bfd *output_bfd,
10272 struct bfd_link_info *info,
10273 bfd *input_bfd, asection *input_section,
10274 Elf_Internal_Rela **rel,
10275 const Elf_Internal_Rela **relend,
10276 bfd_boolean rel_reloc,
10277 reloc_howto_type *howto,
10278 bfd_byte *contents)
10279 {
10280 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10281 int count = bed->s->int_rels_per_ext_rel;
10282 unsigned int r_type;
10283 int i;
10284
10285 for (i = count - 1; i > 0; i--)
10286 {
10287 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10288 if (r_type != R_MIPS_NONE)
10289 {
10290 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10291 break;
10292 }
10293 }
10294 do
10295 {
10296 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10297 (*rel), count, (*relend),
10298 howto, i, contents);
10299 }
10300 while (0);
10301 }
10302
10303 /* Relocate a MIPS ELF section. */
10304
10305 bfd_boolean
10306 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10307 bfd *input_bfd, asection *input_section,
10308 bfd_byte *contents, Elf_Internal_Rela *relocs,
10309 Elf_Internal_Sym *local_syms,
10310 asection **local_sections)
10311 {
10312 Elf_Internal_Rela *rel;
10313 const Elf_Internal_Rela *relend;
10314 bfd_vma addend = 0;
10315 bfd_boolean use_saved_addend_p = FALSE;
10316
10317 relend = relocs + input_section->reloc_count;
10318 for (rel = relocs; rel < relend; ++rel)
10319 {
10320 const char *name;
10321 bfd_vma value = 0;
10322 reloc_howto_type *howto;
10323 bfd_boolean cross_mode_jump_p = FALSE;
10324 /* TRUE if the relocation is a RELA relocation, rather than a
10325 REL relocation. */
10326 bfd_boolean rela_relocation_p = TRUE;
10327 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10328 const char *msg;
10329 unsigned long r_symndx;
10330 asection *sec;
10331 Elf_Internal_Shdr *symtab_hdr;
10332 struct elf_link_hash_entry *h;
10333 bfd_boolean rel_reloc;
10334
10335 rel_reloc = (NEWABI_P (input_bfd)
10336 && mips_elf_rel_relocation_p (input_bfd, input_section,
10337 relocs, rel));
10338 /* Find the relocation howto for this relocation. */
10339 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10340
10341 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10342 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10343 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10344 {
10345 sec = local_sections[r_symndx];
10346 h = NULL;
10347 }
10348 else
10349 {
10350 unsigned long extsymoff;
10351
10352 extsymoff = 0;
10353 if (!elf_bad_symtab (input_bfd))
10354 extsymoff = symtab_hdr->sh_info;
10355 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10356 while (h->root.type == bfd_link_hash_indirect
10357 || h->root.type == bfd_link_hash_warning)
10358 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10359
10360 sec = NULL;
10361 if (h->root.type == bfd_link_hash_defined
10362 || h->root.type == bfd_link_hash_defweak)
10363 sec = h->root.u.def.section;
10364 }
10365
10366 if (sec != NULL && discarded_section (sec))
10367 {
10368 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10369 input_section, &rel, &relend,
10370 rel_reloc, howto, contents);
10371 continue;
10372 }
10373
10374 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10375 {
10376 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10377 64-bit code, but make sure all their addresses are in the
10378 lowermost or uppermost 32-bit section of the 64-bit address
10379 space. Thus, when they use an R_MIPS_64 they mean what is
10380 usually meant by R_MIPS_32, with the exception that the
10381 stored value is sign-extended to 64 bits. */
10382 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10383
10384 /* On big-endian systems, we need to lie about the position
10385 of the reloc. */
10386 if (bfd_big_endian (input_bfd))
10387 rel->r_offset += 4;
10388 }
10389
10390 if (!use_saved_addend_p)
10391 {
10392 /* If these relocations were originally of the REL variety,
10393 we must pull the addend out of the field that will be
10394 relocated. Otherwise, we simply use the contents of the
10395 RELA relocation. */
10396 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10397 relocs, rel))
10398 {
10399 rela_relocation_p = FALSE;
10400 addend = mips_elf_read_rel_addend (input_bfd, rel,
10401 howto, contents);
10402 if (hi16_reloc_p (r_type)
10403 || (got16_reloc_p (r_type)
10404 && mips_elf_local_relocation_p (input_bfd, rel,
10405 local_sections)))
10406 {
10407 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10408 contents, &addend))
10409 {
10410 if (h)
10411 name = h->root.root.string;
10412 else
10413 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10414 local_syms + r_symndx,
10415 sec);
10416 _bfd_error_handler
10417 /* xgettext:c-format */
10418 (_("%pB: can't find matching LO16 reloc against `%s'"
10419 " for %s at %#" PRIx64 " in section `%pA'"),
10420 input_bfd, name,
10421 howto->name, (uint64_t) rel->r_offset, input_section);
10422 }
10423 }
10424 else
10425 addend <<= howto->rightshift;
10426 }
10427 else
10428 addend = rel->r_addend;
10429 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10430 local_syms, local_sections, rel);
10431 }
10432
10433 if (bfd_link_relocatable (info))
10434 {
10435 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10436 && bfd_big_endian (input_bfd))
10437 rel->r_offset -= 4;
10438
10439 if (!rela_relocation_p && rel->r_addend)
10440 {
10441 addend += rel->r_addend;
10442 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10443 addend = mips_elf_high (addend);
10444 else if (r_type == R_MIPS_HIGHER)
10445 addend = mips_elf_higher (addend);
10446 else if (r_type == R_MIPS_HIGHEST)
10447 addend = mips_elf_highest (addend);
10448 else
10449 addend >>= howto->rightshift;
10450
10451 /* We use the source mask, rather than the destination
10452 mask because the place to which we are writing will be
10453 source of the addend in the final link. */
10454 addend &= howto->src_mask;
10455
10456 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10457 /* See the comment above about using R_MIPS_64 in the 32-bit
10458 ABI. Here, we need to update the addend. It would be
10459 possible to get away with just using the R_MIPS_32 reloc
10460 but for endianness. */
10461 {
10462 bfd_vma sign_bits;
10463 bfd_vma low_bits;
10464 bfd_vma high_bits;
10465
10466 if (addend & ((bfd_vma) 1 << 31))
10467 #ifdef BFD64
10468 sign_bits = ((bfd_vma) 1 << 32) - 1;
10469 #else
10470 sign_bits = -1;
10471 #endif
10472 else
10473 sign_bits = 0;
10474
10475 /* If we don't know that we have a 64-bit type,
10476 do two separate stores. */
10477 if (bfd_big_endian (input_bfd))
10478 {
10479 /* Store the sign-bits (which are most significant)
10480 first. */
10481 low_bits = sign_bits;
10482 high_bits = addend;
10483 }
10484 else
10485 {
10486 low_bits = addend;
10487 high_bits = sign_bits;
10488 }
10489 bfd_put_32 (input_bfd, low_bits,
10490 contents + rel->r_offset);
10491 bfd_put_32 (input_bfd, high_bits,
10492 contents + rel->r_offset + 4);
10493 continue;
10494 }
10495
10496 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10497 input_bfd, input_section,
10498 contents, FALSE))
10499 return FALSE;
10500 }
10501
10502 /* Go on to the next relocation. */
10503 continue;
10504 }
10505
10506 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10507 relocations for the same offset. In that case we are
10508 supposed to treat the output of each relocation as the addend
10509 for the next. */
10510 if (rel + 1 < relend
10511 && rel->r_offset == rel[1].r_offset
10512 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10513 use_saved_addend_p = TRUE;
10514 else
10515 use_saved_addend_p = FALSE;
10516
10517 /* Figure out what value we are supposed to relocate. */
10518 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10519 input_section, contents,
10520 info, rel, addend, howto,
10521 local_syms, local_sections,
10522 &value, &name, &cross_mode_jump_p,
10523 use_saved_addend_p))
10524 {
10525 case bfd_reloc_continue:
10526 /* There's nothing to do. */
10527 continue;
10528
10529 case bfd_reloc_undefined:
10530 /* mips_elf_calculate_relocation already called the
10531 undefined_symbol callback. There's no real point in
10532 trying to perform the relocation at this point, so we
10533 just skip ahead to the next relocation. */
10534 continue;
10535
10536 case bfd_reloc_notsupported:
10537 msg = _("internal error: unsupported relocation error");
10538 info->callbacks->warning
10539 (info, msg, name, input_bfd, input_section, rel->r_offset);
10540 return FALSE;
10541
10542 case bfd_reloc_overflow:
10543 if (use_saved_addend_p)
10544 /* Ignore overflow until we reach the last relocation for
10545 a given location. */
10546 ;
10547 else
10548 {
10549 struct mips_elf_link_hash_table *htab;
10550
10551 htab = mips_elf_hash_table (info);
10552 BFD_ASSERT (htab != NULL);
10553 BFD_ASSERT (name != NULL);
10554 if (!htab->small_data_overflow_reported
10555 && (gprel16_reloc_p (howto->type)
10556 || literal_reloc_p (howto->type)))
10557 {
10558 msg = _("small-data section exceeds 64KB;"
10559 " lower small-data size limit (see option -G)");
10560
10561 htab->small_data_overflow_reported = TRUE;
10562 (*info->callbacks->einfo) ("%P: %s\n", msg);
10563 }
10564 (*info->callbacks->reloc_overflow)
10565 (info, NULL, name, howto->name, (bfd_vma) 0,
10566 input_bfd, input_section, rel->r_offset);
10567 }
10568 break;
10569
10570 case bfd_reloc_ok:
10571 break;
10572
10573 case bfd_reloc_outofrange:
10574 msg = NULL;
10575 if (jal_reloc_p (howto->type))
10576 msg = (cross_mode_jump_p
10577 ? _("cannot convert a jump to JALX "
10578 "for a non-word-aligned address")
10579 : (howto->type == R_MIPS16_26
10580 ? _("jump to a non-word-aligned address")
10581 : _("jump to a non-instruction-aligned address")));
10582 else if (b_reloc_p (howto->type))
10583 msg = (cross_mode_jump_p
10584 ? _("cannot convert a branch to JALX "
10585 "for a non-word-aligned address")
10586 : _("branch to a non-instruction-aligned address"));
10587 else if (aligned_pcrel_reloc_p (howto->type))
10588 msg = _("PC-relative load from unaligned address");
10589 if (msg)
10590 {
10591 info->callbacks->einfo
10592 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10593 break;
10594 }
10595 /* Fall through. */
10596
10597 default:
10598 abort ();
10599 break;
10600 }
10601
10602 /* If we've got another relocation for the address, keep going
10603 until we reach the last one. */
10604 if (use_saved_addend_p)
10605 {
10606 addend = value;
10607 continue;
10608 }
10609
10610 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10611 /* See the comment above about using R_MIPS_64 in the 32-bit
10612 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10613 that calculated the right value. Now, however, we
10614 sign-extend the 32-bit result to 64-bits, and store it as a
10615 64-bit value. We are especially generous here in that we
10616 go to extreme lengths to support this usage on systems with
10617 only a 32-bit VMA. */
10618 {
10619 bfd_vma sign_bits;
10620 bfd_vma low_bits;
10621 bfd_vma high_bits;
10622
10623 if (value & ((bfd_vma) 1 << 31))
10624 #ifdef BFD64
10625 sign_bits = ((bfd_vma) 1 << 32) - 1;
10626 #else
10627 sign_bits = -1;
10628 #endif
10629 else
10630 sign_bits = 0;
10631
10632 /* If we don't know that we have a 64-bit type,
10633 do two separate stores. */
10634 if (bfd_big_endian (input_bfd))
10635 {
10636 /* Undo what we did above. */
10637 rel->r_offset -= 4;
10638 /* Store the sign-bits (which are most significant)
10639 first. */
10640 low_bits = sign_bits;
10641 high_bits = value;
10642 }
10643 else
10644 {
10645 low_bits = value;
10646 high_bits = sign_bits;
10647 }
10648 bfd_put_32 (input_bfd, low_bits,
10649 contents + rel->r_offset);
10650 bfd_put_32 (input_bfd, high_bits,
10651 contents + rel->r_offset + 4);
10652 continue;
10653 }
10654
10655 /* Actually perform the relocation. */
10656 if (! mips_elf_perform_relocation (info, howto, rel, value,
10657 input_bfd, input_section,
10658 contents, cross_mode_jump_p))
10659 return FALSE;
10660 }
10661
10662 return TRUE;
10663 }
10664 \f
10665 /* A function that iterates over each entry in la25_stubs and fills
10666 in the code for each one. DATA points to a mips_htab_traverse_info. */
10667
10668 static int
10669 mips_elf_create_la25_stub (void **slot, void *data)
10670 {
10671 struct mips_htab_traverse_info *hti;
10672 struct mips_elf_link_hash_table *htab;
10673 struct mips_elf_la25_stub *stub;
10674 asection *s;
10675 bfd_byte *loc;
10676 bfd_vma offset, target, target_high, target_low;
10677 bfd_vma branch_pc;
10678 bfd_signed_vma pcrel_offset = 0;
10679
10680 stub = (struct mips_elf_la25_stub *) *slot;
10681 hti = (struct mips_htab_traverse_info *) data;
10682 htab = mips_elf_hash_table (hti->info);
10683 BFD_ASSERT (htab != NULL);
10684
10685 /* Create the section contents, if we haven't already. */
10686 s = stub->stub_section;
10687 loc = s->contents;
10688 if (loc == NULL)
10689 {
10690 loc = bfd_malloc (s->size);
10691 if (loc == NULL)
10692 {
10693 hti->error = TRUE;
10694 return FALSE;
10695 }
10696 s->contents = loc;
10697 }
10698
10699 /* Work out where in the section this stub should go. */
10700 offset = stub->offset;
10701
10702 /* We add 8 here to account for the LUI/ADDIU instructions
10703 before the branch instruction. This cannot be moved down to
10704 where pcrel_offset is calculated as 's' is updated in
10705 mips_elf_get_la25_target. */
10706 branch_pc = s->output_section->vma + s->output_offset + offset + 8;
10707
10708 /* Work out the target address. */
10709 target = mips_elf_get_la25_target (stub, &s);
10710 target += s->output_section->vma + s->output_offset;
10711
10712 target_high = ((target + 0x8000) >> 16) & 0xffff;
10713 target_low = (target & 0xffff);
10714
10715 /* Calculate the PC of the compact branch instruction (for the case where
10716 compact branches are used for either microMIPSR6 or MIPSR6 with
10717 compact branches. Add 4-bytes to account for BC using the PC of the
10718 next instruction as the base. */
10719 pcrel_offset = target - (branch_pc + 4);
10720
10721 if (stub->stub_section != htab->strampoline)
10722 {
10723 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10724 of the section and write the two instructions at the end. */
10725 memset (loc, 0, offset);
10726 loc += offset;
10727 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10728 {
10729 bfd_put_micromips_32 (hti->output_bfd,
10730 LA25_LUI_MICROMIPS (target_high),
10731 loc);
10732 bfd_put_micromips_32 (hti->output_bfd,
10733 LA25_ADDIU_MICROMIPS (target_low),
10734 loc + 4);
10735 }
10736 else
10737 {
10738 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10739 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10740 }
10741 }
10742 else
10743 {
10744 /* This is trampoline. */
10745 loc += offset;
10746 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10747 {
10748 bfd_put_micromips_32 (hti->output_bfd,
10749 LA25_LUI_MICROMIPS (target_high), loc);
10750 bfd_put_micromips_32 (hti->output_bfd,
10751 LA25_J_MICROMIPS (target), loc + 4);
10752 bfd_put_micromips_32 (hti->output_bfd,
10753 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10754 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10755 }
10756 else
10757 {
10758 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10759 if (MIPSR6_P (hti->output_bfd) && htab->compact_branches)
10760 {
10761 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10762 bfd_put_32 (hti->output_bfd, LA25_BC (pcrel_offset), loc + 8);
10763 }
10764 else
10765 {
10766 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10767 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10768 }
10769 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10770 }
10771 }
10772 return TRUE;
10773 }
10774
10775 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10776 adjust it appropriately now. */
10777
10778 static void
10779 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10780 const char *name, Elf_Internal_Sym *sym)
10781 {
10782 /* The linker script takes care of providing names and values for
10783 these, but we must place them into the right sections. */
10784 static const char* const text_section_symbols[] = {
10785 "_ftext",
10786 "_etext",
10787 "__dso_displacement",
10788 "__elf_header",
10789 "__program_header_table",
10790 NULL
10791 };
10792
10793 static const char* const data_section_symbols[] = {
10794 "_fdata",
10795 "_edata",
10796 "_end",
10797 "_fbss",
10798 NULL
10799 };
10800
10801 const char* const *p;
10802 int i;
10803
10804 for (i = 0; i < 2; ++i)
10805 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10806 *p;
10807 ++p)
10808 if (strcmp (*p, name) == 0)
10809 {
10810 /* All of these symbols are given type STT_SECTION by the
10811 IRIX6 linker. */
10812 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10813 sym->st_other = STO_PROTECTED;
10814
10815 /* The IRIX linker puts these symbols in special sections. */
10816 if (i == 0)
10817 sym->st_shndx = SHN_MIPS_TEXT;
10818 else
10819 sym->st_shndx = SHN_MIPS_DATA;
10820
10821 break;
10822 }
10823 }
10824
10825 /* Finish up dynamic symbol handling. We set the contents of various
10826 dynamic sections here. */
10827
10828 bfd_boolean
10829 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10830 struct bfd_link_info *info,
10831 struct elf_link_hash_entry *h,
10832 Elf_Internal_Sym *sym)
10833 {
10834 bfd *dynobj;
10835 asection *sgot;
10836 struct mips_got_info *g, *gg;
10837 const char *name;
10838 int idx;
10839 struct mips_elf_link_hash_table *htab;
10840 struct mips_elf_link_hash_entry *hmips;
10841
10842 htab = mips_elf_hash_table (info);
10843 BFD_ASSERT (htab != NULL);
10844 dynobj = elf_hash_table (info)->dynobj;
10845 hmips = (struct mips_elf_link_hash_entry *) h;
10846
10847 BFD_ASSERT (!htab->is_vxworks);
10848
10849 if (h->plt.plist != NULL
10850 && (h->plt.plist->mips_offset != MINUS_ONE
10851 || h->plt.plist->comp_offset != MINUS_ONE))
10852 {
10853 /* We've decided to create a PLT entry for this symbol. */
10854 bfd_byte *loc;
10855 bfd_vma header_address, got_address;
10856 bfd_vma got_address_high, got_address_low, load;
10857 bfd_vma got_index;
10858 bfd_vma isa_bit;
10859
10860 got_index = h->plt.plist->gotplt_index;
10861
10862 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10863 BFD_ASSERT (h->dynindx != -1);
10864 BFD_ASSERT (htab->root.splt != NULL);
10865 BFD_ASSERT (got_index != MINUS_ONE);
10866 BFD_ASSERT (!h->def_regular);
10867
10868 /* Calculate the address of the PLT header. */
10869 isa_bit = htab->plt_header_is_comp;
10870 header_address = (htab->root.splt->output_section->vma
10871 + htab->root.splt->output_offset + isa_bit);
10872
10873 /* Calculate the address of the .got.plt entry. */
10874 got_address = (htab->root.sgotplt->output_section->vma
10875 + htab->root.sgotplt->output_offset
10876 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10877
10878 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10879 got_address_low = got_address & 0xffff;
10880
10881 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10882 cannot be loaded in two instructions. */
10883 if (ABI_64_P (output_bfd)
10884 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10885 {
10886 _bfd_error_handler
10887 /* xgettext:c-format */
10888 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10889 "supported; consider using `-Ttext-segment=...'"),
10890 output_bfd,
10891 htab->root.sgotplt->output_section,
10892 (int64_t) got_address);
10893 bfd_set_error (bfd_error_no_error);
10894 return FALSE;
10895 }
10896
10897 /* Initially point the .got.plt entry at the PLT header. */
10898 loc = (htab->root.sgotplt->contents
10899 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10900 if (ABI_64_P (output_bfd))
10901 bfd_put_64 (output_bfd, header_address, loc);
10902 else
10903 bfd_put_32 (output_bfd, header_address, loc);
10904
10905 /* Now handle the PLT itself. First the standard entry (the order
10906 does not matter, we just have to pick one). */
10907 if (h->plt.plist->mips_offset != MINUS_ONE)
10908 {
10909 const bfd_vma *plt_entry;
10910 bfd_vma plt_offset;
10911
10912 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10913
10914 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10915
10916 /* Find out where the .plt entry should go. */
10917 loc = htab->root.splt->contents + plt_offset;
10918
10919 /* Pick the load opcode. */
10920 load = MIPS_ELF_LOAD_WORD (output_bfd);
10921
10922 /* Fill in the PLT entry itself. */
10923
10924 if (MIPSR6_P (output_bfd))
10925 plt_entry = htab->compact_branches ? mipsr6_exec_plt_entry_compact
10926 : mipsr6_exec_plt_entry;
10927 else
10928 plt_entry = mips_exec_plt_entry;
10929 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10930 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10931 loc + 4);
10932
10933 if (! LOAD_INTERLOCKS_P (output_bfd)
10934 || (MIPSR6_P (output_bfd) && htab->compact_branches))
10935 {
10936 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10937 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10938 }
10939 else
10940 {
10941 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10942 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10943 loc + 12);
10944 }
10945 }
10946
10947 /* Now the compressed entry. They come after any standard ones. */
10948 if (h->plt.plist->comp_offset != MINUS_ONE)
10949 {
10950 bfd_vma plt_offset;
10951
10952 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10953 + h->plt.plist->comp_offset);
10954
10955 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10956
10957 /* Find out where the .plt entry should go. */
10958 loc = htab->root.splt->contents + plt_offset;
10959
10960 /* Fill in the PLT entry itself. */
10961 if (!MICROMIPS_P (output_bfd))
10962 {
10963 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10964
10965 bfd_put_16 (output_bfd, plt_entry[0], loc);
10966 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10967 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10968 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10969 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10970 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10971 bfd_put_32 (output_bfd, got_address, loc + 12);
10972 }
10973 else if (htab->insn32)
10974 {
10975 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10976
10977 bfd_put_16 (output_bfd, plt_entry[0], loc);
10978 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10979 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10980 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10981 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10982 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10983 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10984 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10985 }
10986 else
10987 {
10988 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10989 bfd_signed_vma gotpc_offset;
10990 bfd_vma loc_address;
10991
10992 BFD_ASSERT (got_address % 4 == 0);
10993
10994 loc_address = (htab->root.splt->output_section->vma
10995 + htab->root.splt->output_offset + plt_offset);
10996 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10997
10998 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10999 if (gotpc_offset + 0x1000000 >= 0x2000000)
11000 {
11001 _bfd_error_handler
11002 /* xgettext:c-format */
11003 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11004 "beyond the range of ADDIUPC"),
11005 output_bfd,
11006 htab->root.sgotplt->output_section,
11007 (int64_t) gotpc_offset,
11008 htab->root.splt->output_section);
11009 bfd_set_error (bfd_error_no_error);
11010 return FALSE;
11011 }
11012 bfd_put_16 (output_bfd,
11013 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11014 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11015 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11016 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11017 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11018 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11019 }
11020 }
11021
11022 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11023 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
11024 got_index - 2, h->dynindx,
11025 R_MIPS_JUMP_SLOT, got_address);
11026
11027 /* We distinguish between PLT entries and lazy-binding stubs by
11028 giving the former an st_other value of STO_MIPS_PLT. Set the
11029 flag and leave the value if there are any relocations in the
11030 binary where pointer equality matters. */
11031 sym->st_shndx = SHN_UNDEF;
11032 if (h->pointer_equality_needed)
11033 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
11034 else
11035 {
11036 sym->st_value = 0;
11037 sym->st_other = 0;
11038 }
11039 }
11040
11041 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
11042 {
11043 /* We've decided to create a lazy-binding stub. */
11044 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
11045 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
11046 bfd_vma stub_size = htab->function_stub_size;
11047 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
11048 bfd_vma isa_bit = micromips_p;
11049 bfd_vma stub_big_size;
11050
11051 if (!micromips_p)
11052 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
11053 else if (htab->insn32)
11054 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
11055 else
11056 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
11057
11058 /* This symbol has a stub. Set it up. */
11059
11060 BFD_ASSERT (h->dynindx != -1);
11061
11062 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
11063
11064 /* Values up to 2^31 - 1 are allowed. Larger values would cause
11065 sign extension at runtime in the stub, resulting in a negative
11066 index value. */
11067 if (h->dynindx & ~0x7fffffff)
11068 return FALSE;
11069
11070 /* Fill the stub. */
11071 if (micromips_p)
11072 {
11073 idx = 0;
11074 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
11075 stub + idx);
11076 idx += 4;
11077 if (htab->insn32)
11078 {
11079 bfd_put_micromips_32 (output_bfd,
11080 STUB_MOVE32_MICROMIPS, stub + idx);
11081 idx += 4;
11082 }
11083 else
11084 {
11085 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
11086 idx += 2;
11087 }
11088 if (stub_size == stub_big_size)
11089 {
11090 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
11091
11092 bfd_put_micromips_32 (output_bfd,
11093 STUB_LUI_MICROMIPS (dynindx_hi),
11094 stub + idx);
11095 idx += 4;
11096 }
11097 if (htab->insn32)
11098 {
11099 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
11100 stub + idx);
11101 idx += 4;
11102 }
11103 else
11104 {
11105 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
11106 idx += 2;
11107 }
11108
11109 /* If a large stub is not required and sign extension is not a
11110 problem, then use legacy code in the stub. */
11111 if (stub_size == stub_big_size)
11112 bfd_put_micromips_32 (output_bfd,
11113 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
11114 stub + idx);
11115 else if (h->dynindx & ~0x7fff)
11116 bfd_put_micromips_32 (output_bfd,
11117 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
11118 stub + idx);
11119 else
11120 bfd_put_micromips_32 (output_bfd,
11121 STUB_LI16S_MICROMIPS (output_bfd,
11122 h->dynindx),
11123 stub + idx);
11124 }
11125 else
11126 {
11127 idx = 0;
11128 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
11129 idx += 4;
11130 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
11131 idx += 4;
11132 if (stub_size == stub_big_size)
11133 {
11134 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
11135 stub + idx);
11136 idx += 4;
11137 }
11138
11139 if (!(MIPSR6_P (output_bfd) && htab->compact_branches))
11140 {
11141 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
11142 idx += 4;
11143 }
11144
11145 /* If a large stub is not required and sign extension is not a
11146 problem, then use legacy code in the stub. */
11147 if (stub_size == stub_big_size)
11148 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
11149 stub + idx);
11150 else if (h->dynindx & ~0x7fff)
11151 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
11152 stub + idx);
11153 else
11154 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
11155 stub + idx);
11156 idx += 4;
11157
11158 if (MIPSR6_P (output_bfd) && htab->compact_branches)
11159 bfd_put_32 (output_bfd, STUB_JALRC, stub + idx);
11160 }
11161
11162 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
11163 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
11164 stub, stub_size);
11165
11166 /* Mark the symbol as undefined. stub_offset != -1 occurs
11167 only for the referenced symbol. */
11168 sym->st_shndx = SHN_UNDEF;
11169
11170 /* The run-time linker uses the st_value field of the symbol
11171 to reset the global offset table entry for this external
11172 to its stub address when unlinking a shared object. */
11173 sym->st_value = (htab->sstubs->output_section->vma
11174 + htab->sstubs->output_offset
11175 + h->plt.plist->stub_offset
11176 + isa_bit);
11177 sym->st_other = other;
11178 }
11179
11180 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11181 refer to the stub, since only the stub uses the standard calling
11182 conventions. */
11183 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11184 {
11185 BFD_ASSERT (hmips->need_fn_stub);
11186 sym->st_value = (hmips->fn_stub->output_section->vma
11187 + hmips->fn_stub->output_offset);
11188 sym->st_size = hmips->fn_stub->size;
11189 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11190 }
11191
11192 BFD_ASSERT (h->dynindx != -1
11193 || h->forced_local);
11194
11195 sgot = htab->root.sgot;
11196 g = htab->got_info;
11197 BFD_ASSERT (g != NULL);
11198
11199 /* Run through the global symbol table, creating GOT entries for all
11200 the symbols that need them. */
11201 if (hmips->global_got_area != GGA_NONE)
11202 {
11203 bfd_vma offset;
11204 bfd_vma value;
11205
11206 value = sym->st_value;
11207 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11208 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11209 }
11210
11211 if (hmips->global_got_area != GGA_NONE && g->next)
11212 {
11213 struct mips_got_entry e, *p;
11214 bfd_vma entry;
11215 bfd_vma offset;
11216
11217 gg = g;
11218
11219 e.abfd = output_bfd;
11220 e.symndx = -1;
11221 e.d.h = hmips;
11222 e.tls_type = GOT_TLS_NONE;
11223
11224 for (g = g->next; g->next != gg; g = g->next)
11225 {
11226 if (g->got_entries
11227 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11228 &e)))
11229 {
11230 offset = p->gotidx;
11231 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
11232 if (bfd_link_pic (info)
11233 || (elf_hash_table (info)->dynamic_sections_created
11234 && p->d.h != NULL
11235 && p->d.h->root.def_dynamic
11236 && !p->d.h->root.def_regular))
11237 {
11238 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11239 the various compatibility problems, it's easier to mock
11240 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11241 mips_elf_create_dynamic_relocation to calculate the
11242 appropriate addend. */
11243 Elf_Internal_Rela rel[3];
11244
11245 memset (rel, 0, sizeof (rel));
11246 if (ABI_64_P (output_bfd))
11247 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11248 else
11249 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11250 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11251
11252 entry = 0;
11253 if (! (mips_elf_create_dynamic_relocation
11254 (output_bfd, info, rel,
11255 e.d.h, NULL, sym->st_value, &entry, sgot)))
11256 return FALSE;
11257 }
11258 else
11259 entry = sym->st_value;
11260 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11261 }
11262 }
11263 }
11264
11265 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11266 name = h->root.root.string;
11267 if (h == elf_hash_table (info)->hdynamic
11268 || h == elf_hash_table (info)->hgot)
11269 sym->st_shndx = SHN_ABS;
11270 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11271 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11272 {
11273 sym->st_shndx = SHN_ABS;
11274 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11275 sym->st_value = 1;
11276 }
11277 else if (SGI_COMPAT (output_bfd))
11278 {
11279 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11280 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11281 {
11282 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11283 sym->st_other = STO_PROTECTED;
11284 sym->st_value = 0;
11285 sym->st_shndx = SHN_MIPS_DATA;
11286 }
11287 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11288 {
11289 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11290 sym->st_other = STO_PROTECTED;
11291 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11292 sym->st_shndx = SHN_ABS;
11293 }
11294 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11295 {
11296 if (h->type == STT_FUNC)
11297 sym->st_shndx = SHN_MIPS_TEXT;
11298 else if (h->type == STT_OBJECT)
11299 sym->st_shndx = SHN_MIPS_DATA;
11300 }
11301 }
11302
11303 /* Emit a copy reloc, if needed. */
11304 if (h->needs_copy)
11305 {
11306 asection *s;
11307 bfd_vma symval;
11308
11309 BFD_ASSERT (h->dynindx != -1);
11310 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11311
11312 s = mips_elf_rel_dyn_section (info, FALSE);
11313 symval = (h->root.u.def.section->output_section->vma
11314 + h->root.u.def.section->output_offset
11315 + h->root.u.def.value);
11316 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11317 h->dynindx, R_MIPS_COPY, symval);
11318 }
11319
11320 /* Handle the IRIX6-specific symbols. */
11321 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11322 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11323
11324 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11325 to treat compressed symbols like any other. */
11326 if (ELF_ST_IS_MIPS16 (sym->st_other))
11327 {
11328 BFD_ASSERT (sym->st_value & 1);
11329 sym->st_other -= STO_MIPS16;
11330 }
11331 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11332 {
11333 BFD_ASSERT (sym->st_value & 1);
11334 sym->st_other -= STO_MICROMIPS;
11335 }
11336
11337 return TRUE;
11338 }
11339
11340 /* Likewise, for VxWorks. */
11341
11342 bfd_boolean
11343 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11344 struct bfd_link_info *info,
11345 struct elf_link_hash_entry *h,
11346 Elf_Internal_Sym *sym)
11347 {
11348 bfd *dynobj;
11349 asection *sgot;
11350 struct mips_got_info *g;
11351 struct mips_elf_link_hash_table *htab;
11352 struct mips_elf_link_hash_entry *hmips;
11353
11354 htab = mips_elf_hash_table (info);
11355 BFD_ASSERT (htab != NULL);
11356 dynobj = elf_hash_table (info)->dynobj;
11357 hmips = (struct mips_elf_link_hash_entry *) h;
11358
11359 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11360 {
11361 bfd_byte *loc;
11362 bfd_vma plt_address, got_address, got_offset, branch_offset;
11363 Elf_Internal_Rela rel;
11364 static const bfd_vma *plt_entry;
11365 bfd_vma gotplt_index;
11366 bfd_vma plt_offset;
11367
11368 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11369 gotplt_index = h->plt.plist->gotplt_index;
11370
11371 BFD_ASSERT (h->dynindx != -1);
11372 BFD_ASSERT (htab->root.splt != NULL);
11373 BFD_ASSERT (gotplt_index != MINUS_ONE);
11374 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11375
11376 /* Calculate the address of the .plt entry. */
11377 plt_address = (htab->root.splt->output_section->vma
11378 + htab->root.splt->output_offset
11379 + plt_offset);
11380
11381 /* Calculate the address of the .got.plt entry. */
11382 got_address = (htab->root.sgotplt->output_section->vma
11383 + htab->root.sgotplt->output_offset
11384 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11385
11386 /* Calculate the offset of the .got.plt entry from
11387 _GLOBAL_OFFSET_TABLE_. */
11388 got_offset = mips_elf_gotplt_index (info, h);
11389
11390 /* Calculate the offset for the branch at the start of the PLT
11391 entry. The branch jumps to the beginning of .plt. */
11392 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11393
11394 /* Fill in the initial value of the .got.plt entry. */
11395 bfd_put_32 (output_bfd, plt_address,
11396 (htab->root.sgotplt->contents
11397 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11398
11399 /* Find out where the .plt entry should go. */
11400 loc = htab->root.splt->contents + plt_offset;
11401
11402 if (bfd_link_pic (info))
11403 {
11404 plt_entry = mips_vxworks_shared_plt_entry;
11405 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11406 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11407 }
11408 else
11409 {
11410 bfd_vma got_address_high, got_address_low;
11411
11412 plt_entry = mips_vxworks_exec_plt_entry;
11413 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11414 got_address_low = got_address & 0xffff;
11415
11416 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11417 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11418 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11419 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11420 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11421 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11422 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11423 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11424
11425 loc = (htab->srelplt2->contents
11426 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11427
11428 /* Emit a relocation for the .got.plt entry. */
11429 rel.r_offset = got_address;
11430 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11431 rel.r_addend = plt_offset;
11432 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11433
11434 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11435 loc += sizeof (Elf32_External_Rela);
11436 rel.r_offset = plt_address + 8;
11437 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11438 rel.r_addend = got_offset;
11439 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11440
11441 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11442 loc += sizeof (Elf32_External_Rela);
11443 rel.r_offset += 4;
11444 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11445 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11446 }
11447
11448 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11449 loc = (htab->root.srelplt->contents
11450 + gotplt_index * sizeof (Elf32_External_Rela));
11451 rel.r_offset = got_address;
11452 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11453 rel.r_addend = 0;
11454 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11455
11456 if (!h->def_regular)
11457 sym->st_shndx = SHN_UNDEF;
11458 }
11459
11460 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11461
11462 sgot = htab->root.sgot;
11463 g = htab->got_info;
11464 BFD_ASSERT (g != NULL);
11465
11466 /* See if this symbol has an entry in the GOT. */
11467 if (hmips->global_got_area != GGA_NONE)
11468 {
11469 bfd_vma offset;
11470 Elf_Internal_Rela outrel;
11471 bfd_byte *loc;
11472 asection *s;
11473
11474 /* Install the symbol value in the GOT. */
11475 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11476 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11477
11478 /* Add a dynamic relocation for it. */
11479 s = mips_elf_rel_dyn_section (info, FALSE);
11480 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11481 outrel.r_offset = (sgot->output_section->vma
11482 + sgot->output_offset
11483 + offset);
11484 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11485 outrel.r_addend = 0;
11486 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11487 }
11488
11489 /* Emit a copy reloc, if needed. */
11490 if (h->needs_copy)
11491 {
11492 Elf_Internal_Rela rel;
11493 asection *srel;
11494 bfd_byte *loc;
11495
11496 BFD_ASSERT (h->dynindx != -1);
11497
11498 rel.r_offset = (h->root.u.def.section->output_section->vma
11499 + h->root.u.def.section->output_offset
11500 + h->root.u.def.value);
11501 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11502 rel.r_addend = 0;
11503 if (h->root.u.def.section == htab->root.sdynrelro)
11504 srel = htab->root.sreldynrelro;
11505 else
11506 srel = htab->root.srelbss;
11507 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11508 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11509 ++srel->reloc_count;
11510 }
11511
11512 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11513 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11514 sym->st_value &= ~1;
11515
11516 return TRUE;
11517 }
11518
11519 /* Write out a plt0 entry to the beginning of .plt. */
11520
11521 static bfd_boolean
11522 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11523 {
11524 bfd_byte *loc;
11525 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11526 static const bfd_vma *plt_entry;
11527 struct mips_elf_link_hash_table *htab;
11528
11529 htab = mips_elf_hash_table (info);
11530 BFD_ASSERT (htab != NULL);
11531
11532 if (ABI_64_P (output_bfd))
11533 plt_entry = (htab->compact_branches
11534 ? mipsr6_n64_exec_plt0_entry_compact
11535 : mips_n64_exec_plt0_entry);
11536 else if (ABI_N32_P (output_bfd))
11537 plt_entry = (htab->compact_branches
11538 ? mipsr6_n32_exec_plt0_entry_compact
11539 : mips_n32_exec_plt0_entry);
11540 else if (!htab->plt_header_is_comp)
11541 plt_entry = (htab->compact_branches
11542 ? mipsr6_o32_exec_plt0_entry_compact
11543 : mips_o32_exec_plt0_entry);
11544 else if (htab->insn32)
11545 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11546 else
11547 plt_entry = micromips_o32_exec_plt0_entry;
11548
11549 /* Calculate the value of .got.plt. */
11550 gotplt_value = (htab->root.sgotplt->output_section->vma
11551 + htab->root.sgotplt->output_offset);
11552 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11553 gotplt_value_low = gotplt_value & 0xffff;
11554
11555 /* The PLT sequence is not safe for N64 if .got.plt's address can
11556 not be loaded in two instructions. */
11557 if (ABI_64_P (output_bfd)
11558 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11559 {
11560 _bfd_error_handler
11561 /* xgettext:c-format */
11562 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11563 "supported; consider using `-Ttext-segment=...'"),
11564 output_bfd,
11565 htab->root.sgotplt->output_section,
11566 (int64_t) gotplt_value);
11567 bfd_set_error (bfd_error_no_error);
11568 return FALSE;
11569 }
11570
11571 /* Install the PLT header. */
11572 loc = htab->root.splt->contents;
11573 if (plt_entry == micromips_o32_exec_plt0_entry)
11574 {
11575 bfd_vma gotpc_offset;
11576 bfd_vma loc_address;
11577 size_t i;
11578
11579 BFD_ASSERT (gotplt_value % 4 == 0);
11580
11581 loc_address = (htab->root.splt->output_section->vma
11582 + htab->root.splt->output_offset);
11583 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11584
11585 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11586 if (gotpc_offset + 0x1000000 >= 0x2000000)
11587 {
11588 _bfd_error_handler
11589 /* xgettext:c-format */
11590 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11591 "beyond the range of ADDIUPC"),
11592 output_bfd,
11593 htab->root.sgotplt->output_section,
11594 (int64_t) gotpc_offset,
11595 htab->root.splt->output_section);
11596 bfd_set_error (bfd_error_no_error);
11597 return FALSE;
11598 }
11599 bfd_put_16 (output_bfd,
11600 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11601 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11602 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11603 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11604 }
11605 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11606 {
11607 size_t i;
11608
11609 bfd_put_16 (output_bfd, plt_entry[0], loc);
11610 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11611 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11612 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11613 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11614 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11615 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11616 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11617 }
11618 else
11619 {
11620 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11621 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11622 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11623 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11624 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11625 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11626 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11627 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11628 }
11629
11630 return TRUE;
11631 }
11632
11633 /* Install the PLT header for a VxWorks executable and finalize the
11634 contents of .rela.plt.unloaded. */
11635
11636 static void
11637 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11638 {
11639 Elf_Internal_Rela rela;
11640 bfd_byte *loc;
11641 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11642 static const bfd_vma *plt_entry;
11643 struct mips_elf_link_hash_table *htab;
11644
11645 htab = mips_elf_hash_table (info);
11646 BFD_ASSERT (htab != NULL);
11647
11648 plt_entry = mips_vxworks_exec_plt0_entry;
11649
11650 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11651 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11652 + htab->root.hgot->root.u.def.section->output_offset
11653 + htab->root.hgot->root.u.def.value);
11654
11655 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11656 got_value_low = got_value & 0xffff;
11657
11658 /* Calculate the address of the PLT header. */
11659 plt_address = (htab->root.splt->output_section->vma
11660 + htab->root.splt->output_offset);
11661
11662 /* Install the PLT header. */
11663 loc = htab->root.splt->contents;
11664 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11665 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11666 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11667 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11668 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11669 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11670
11671 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11672 loc = htab->srelplt2->contents;
11673 rela.r_offset = plt_address;
11674 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11675 rela.r_addend = 0;
11676 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11677 loc += sizeof (Elf32_External_Rela);
11678
11679 /* Output the relocation for the following addiu of
11680 %lo(_GLOBAL_OFFSET_TABLE_). */
11681 rela.r_offset += 4;
11682 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11683 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11684 loc += sizeof (Elf32_External_Rela);
11685
11686 /* Fix up the remaining relocations. They may have the wrong
11687 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11688 in which symbols were output. */
11689 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11690 {
11691 Elf_Internal_Rela rel;
11692
11693 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11694 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11695 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11696 loc += sizeof (Elf32_External_Rela);
11697
11698 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11699 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11700 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11701 loc += sizeof (Elf32_External_Rela);
11702
11703 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11704 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11705 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11706 loc += sizeof (Elf32_External_Rela);
11707 }
11708 }
11709
11710 /* Install the PLT header for a VxWorks shared library. */
11711
11712 static void
11713 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11714 {
11715 unsigned int i;
11716 struct mips_elf_link_hash_table *htab;
11717
11718 htab = mips_elf_hash_table (info);
11719 BFD_ASSERT (htab != NULL);
11720
11721 /* We just need to copy the entry byte-by-byte. */
11722 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11723 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11724 htab->root.splt->contents + i * 4);
11725 }
11726
11727 /* Finish up the dynamic sections. */
11728
11729 bfd_boolean
11730 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11731 struct bfd_link_info *info)
11732 {
11733 bfd *dynobj;
11734 asection *sdyn;
11735 asection *sgot;
11736 struct mips_got_info *gg, *g;
11737 struct mips_elf_link_hash_table *htab;
11738
11739 htab = mips_elf_hash_table (info);
11740 BFD_ASSERT (htab != NULL);
11741
11742 dynobj = elf_hash_table (info)->dynobj;
11743
11744 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11745
11746 sgot = htab->root.sgot;
11747 gg = htab->got_info;
11748
11749 if (elf_hash_table (info)->dynamic_sections_created)
11750 {
11751 bfd_byte *b;
11752 int dyn_to_skip = 0, dyn_skipped = 0;
11753
11754 BFD_ASSERT (sdyn != NULL);
11755 BFD_ASSERT (gg != NULL);
11756
11757 g = mips_elf_bfd_got (output_bfd, FALSE);
11758 BFD_ASSERT (g != NULL);
11759
11760 for (b = sdyn->contents;
11761 b < sdyn->contents + sdyn->size;
11762 b += MIPS_ELF_DYN_SIZE (dynobj))
11763 {
11764 Elf_Internal_Dyn dyn;
11765 const char *name;
11766 size_t elemsize;
11767 asection *s;
11768 bfd_boolean swap_out_p;
11769
11770 /* Read in the current dynamic entry. */
11771 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11772
11773 /* Assume that we're going to modify it and write it out. */
11774 swap_out_p = TRUE;
11775
11776 switch (dyn.d_tag)
11777 {
11778 case DT_RELENT:
11779 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11780 break;
11781
11782 case DT_RELAENT:
11783 BFD_ASSERT (htab->is_vxworks);
11784 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11785 break;
11786
11787 case DT_STRSZ:
11788 /* Rewrite DT_STRSZ. */
11789 dyn.d_un.d_val =
11790 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11791 break;
11792
11793 case DT_PLTGOT:
11794 s = htab->root.sgot;
11795 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11796 break;
11797
11798 case DT_MIPS_PLTGOT:
11799 s = htab->root.sgotplt;
11800 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11801 break;
11802
11803 case DT_MIPS_RLD_VERSION:
11804 dyn.d_un.d_val = 1; /* XXX */
11805 break;
11806
11807 case DT_MIPS_FLAGS:
11808 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11809 break;
11810
11811 case DT_MIPS_TIME_STAMP:
11812 {
11813 time_t t;
11814 time (&t);
11815 dyn.d_un.d_val = t;
11816 }
11817 break;
11818
11819 case DT_MIPS_ICHECKSUM:
11820 /* XXX FIXME: */
11821 swap_out_p = FALSE;
11822 break;
11823
11824 case DT_MIPS_IVERSION:
11825 /* XXX FIXME: */
11826 swap_out_p = FALSE;
11827 break;
11828
11829 case DT_MIPS_BASE_ADDRESS:
11830 s = output_bfd->sections;
11831 BFD_ASSERT (s != NULL);
11832 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11833 break;
11834
11835 case DT_MIPS_LOCAL_GOTNO:
11836 dyn.d_un.d_val = g->local_gotno;
11837 break;
11838
11839 case DT_MIPS_UNREFEXTNO:
11840 /* The index into the dynamic symbol table which is the
11841 entry of the first external symbol that is not
11842 referenced within the same object. */
11843 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11844 break;
11845
11846 case DT_MIPS_GOTSYM:
11847 if (htab->global_gotsym)
11848 {
11849 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11850 break;
11851 }
11852 /* In case if we don't have global got symbols we default
11853 to setting DT_MIPS_GOTSYM to the same value as
11854 DT_MIPS_SYMTABNO. */
11855 /* Fall through. */
11856
11857 case DT_MIPS_SYMTABNO:
11858 name = ".dynsym";
11859 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11860 s = bfd_get_linker_section (dynobj, name);
11861
11862 if (s != NULL)
11863 dyn.d_un.d_val = s->size / elemsize;
11864 else
11865 dyn.d_un.d_val = 0;
11866 break;
11867
11868 case DT_MIPS_HIPAGENO:
11869 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11870 break;
11871
11872 case DT_MIPS_RLD_MAP:
11873 {
11874 struct elf_link_hash_entry *h;
11875 h = mips_elf_hash_table (info)->rld_symbol;
11876 if (!h)
11877 {
11878 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11879 swap_out_p = FALSE;
11880 break;
11881 }
11882 s = h->root.u.def.section;
11883
11884 /* The MIPS_RLD_MAP tag stores the absolute address of the
11885 debug pointer. */
11886 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11887 + h->root.u.def.value);
11888 }
11889 break;
11890
11891 case DT_MIPS_RLD_MAP_REL:
11892 {
11893 struct elf_link_hash_entry *h;
11894 bfd_vma dt_addr, rld_addr;
11895 h = mips_elf_hash_table (info)->rld_symbol;
11896 if (!h)
11897 {
11898 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11899 swap_out_p = FALSE;
11900 break;
11901 }
11902 s = h->root.u.def.section;
11903
11904 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11905 pointer, relative to the address of the tag. */
11906 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11907 + (b - sdyn->contents));
11908 rld_addr = (s->output_section->vma + s->output_offset
11909 + h->root.u.def.value);
11910 dyn.d_un.d_ptr = rld_addr - dt_addr;
11911 }
11912 break;
11913
11914 case DT_MIPS_OPTIONS:
11915 s = (bfd_get_section_by_name
11916 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11917 dyn.d_un.d_ptr = s->vma;
11918 break;
11919
11920 case DT_PLTREL:
11921 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11922 if (htab->is_vxworks)
11923 dyn.d_un.d_val = DT_RELA;
11924 else
11925 dyn.d_un.d_val = DT_REL;
11926 break;
11927
11928 case DT_PLTRELSZ:
11929 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11930 dyn.d_un.d_val = htab->root.srelplt->size;
11931 break;
11932
11933 case DT_JMPREL:
11934 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11935 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11936 + htab->root.srelplt->output_offset);
11937 break;
11938
11939 case DT_TEXTREL:
11940 /* If we didn't need any text relocations after all, delete
11941 the dynamic tag. */
11942 if (!(info->flags & DF_TEXTREL))
11943 {
11944 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11945 swap_out_p = FALSE;
11946 }
11947 break;
11948
11949 case DT_FLAGS:
11950 /* If we didn't need any text relocations after all, clear
11951 DF_TEXTREL from DT_FLAGS. */
11952 if (!(info->flags & DF_TEXTREL))
11953 dyn.d_un.d_val &= ~DF_TEXTREL;
11954 else
11955 swap_out_p = FALSE;
11956 break;
11957
11958 default:
11959 swap_out_p = FALSE;
11960 if (htab->is_vxworks
11961 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11962 swap_out_p = TRUE;
11963 break;
11964 }
11965
11966 if (swap_out_p || dyn_skipped)
11967 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11968 (dynobj, &dyn, b - dyn_skipped);
11969
11970 if (dyn_to_skip)
11971 {
11972 dyn_skipped += dyn_to_skip;
11973 dyn_to_skip = 0;
11974 }
11975 }
11976
11977 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11978 if (dyn_skipped > 0)
11979 memset (b - dyn_skipped, 0, dyn_skipped);
11980 }
11981
11982 if (sgot != NULL && sgot->size > 0
11983 && !bfd_is_abs_section (sgot->output_section))
11984 {
11985 if (htab->is_vxworks)
11986 {
11987 /* The first entry of the global offset table points to the
11988 ".dynamic" section. The second is initialized by the
11989 loader and contains the shared library identifier.
11990 The third is also initialized by the loader and points
11991 to the lazy resolution stub. */
11992 MIPS_ELF_PUT_WORD (output_bfd,
11993 sdyn->output_offset + sdyn->output_section->vma,
11994 sgot->contents);
11995 MIPS_ELF_PUT_WORD (output_bfd, 0,
11996 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11997 MIPS_ELF_PUT_WORD (output_bfd, 0,
11998 sgot->contents
11999 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
12000 }
12001 else
12002 {
12003 /* The first entry of the global offset table will be filled at
12004 runtime. The second entry will be used by some runtime loaders.
12005 This isn't the case of IRIX rld. */
12006 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
12007 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12008 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12009 }
12010
12011 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
12012 = MIPS_ELF_GOT_SIZE (output_bfd);
12013 }
12014
12015 /* Generate dynamic relocations for the non-primary gots. */
12016 if (gg != NULL && gg->next)
12017 {
12018 Elf_Internal_Rela rel[3];
12019 bfd_vma addend = 0;
12020
12021 memset (rel, 0, sizeof (rel));
12022 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
12023
12024 for (g = gg->next; g->next != gg; g = g->next)
12025 {
12026 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
12027 + g->next->tls_gotno;
12028
12029 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
12030 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12031 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12032 sgot->contents
12033 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12034
12035 if (! bfd_link_pic (info))
12036 continue;
12037
12038 for (; got_index < g->local_gotno; got_index++)
12039 {
12040 if (got_index >= g->assigned_low_gotno
12041 && got_index <= g->assigned_high_gotno)
12042 continue;
12043
12044 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
12045 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
12046 if (!(mips_elf_create_dynamic_relocation
12047 (output_bfd, info, rel, NULL,
12048 bfd_abs_section_ptr,
12049 0, &addend, sgot)))
12050 return FALSE;
12051 BFD_ASSERT (addend == 0);
12052 }
12053 }
12054 }
12055
12056 /* The generation of dynamic relocations for the non-primary gots
12057 adds more dynamic relocations. We cannot count them until
12058 here. */
12059
12060 if (elf_hash_table (info)->dynamic_sections_created)
12061 {
12062 bfd_byte *b;
12063 bfd_boolean swap_out_p;
12064
12065 BFD_ASSERT (sdyn != NULL);
12066
12067 for (b = sdyn->contents;
12068 b < sdyn->contents + sdyn->size;
12069 b += MIPS_ELF_DYN_SIZE (dynobj))
12070 {
12071 Elf_Internal_Dyn dyn;
12072 asection *s;
12073
12074 /* Read in the current dynamic entry. */
12075 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
12076
12077 /* Assume that we're going to modify it and write it out. */
12078 swap_out_p = TRUE;
12079
12080 switch (dyn.d_tag)
12081 {
12082 case DT_RELSZ:
12083 /* Reduce DT_RELSZ to account for any relocations we
12084 decided not to make. This is for the n64 irix rld,
12085 which doesn't seem to apply any relocations if there
12086 are trailing null entries. */
12087 s = mips_elf_rel_dyn_section (info, FALSE);
12088 dyn.d_un.d_val = (s->reloc_count
12089 * (ABI_64_P (output_bfd)
12090 ? sizeof (Elf64_Mips_External_Rel)
12091 : sizeof (Elf32_External_Rel)));
12092 /* Adjust the section size too. Tools like the prelinker
12093 can reasonably expect the values to the same. */
12094 BFD_ASSERT (!bfd_is_abs_section (s->output_section));
12095 elf_section_data (s->output_section)->this_hdr.sh_size
12096 = dyn.d_un.d_val;
12097 break;
12098
12099 default:
12100 swap_out_p = FALSE;
12101 break;
12102 }
12103
12104 if (swap_out_p)
12105 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12106 (dynobj, &dyn, b);
12107 }
12108 }
12109
12110 {
12111 asection *s;
12112 Elf32_compact_rel cpt;
12113
12114 if (SGI_COMPAT (output_bfd))
12115 {
12116 /* Write .compact_rel section out. */
12117 s = bfd_get_linker_section (dynobj, ".compact_rel");
12118 if (s != NULL)
12119 {
12120 cpt.id1 = 1;
12121 cpt.num = s->reloc_count;
12122 cpt.id2 = 2;
12123 cpt.offset = (s->output_section->filepos
12124 + sizeof (Elf32_External_compact_rel));
12125 cpt.reserved0 = 0;
12126 cpt.reserved1 = 0;
12127 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
12128 ((Elf32_External_compact_rel *)
12129 s->contents));
12130
12131 /* Clean up a dummy stub function entry in .text. */
12132 if (htab->sstubs != NULL)
12133 {
12134 file_ptr dummy_offset;
12135
12136 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
12137 dummy_offset = htab->sstubs->size - htab->function_stub_size;
12138 memset (htab->sstubs->contents + dummy_offset, 0,
12139 htab->function_stub_size);
12140 }
12141 }
12142 }
12143
12144 /* The psABI says that the dynamic relocations must be sorted in
12145 increasing order of r_symndx. The VxWorks EABI doesn't require
12146 this, and because the code below handles REL rather than RELA
12147 relocations, using it for VxWorks would be outright harmful. */
12148 if (!htab->is_vxworks)
12149 {
12150 s = mips_elf_rel_dyn_section (info, FALSE);
12151 if (s != NULL
12152 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
12153 {
12154 reldyn_sorting_bfd = output_bfd;
12155
12156 if (ABI_64_P (output_bfd))
12157 qsort ((Elf64_External_Rel *) s->contents + 1,
12158 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
12159 sort_dynamic_relocs_64);
12160 else
12161 qsort ((Elf32_External_Rel *) s->contents + 1,
12162 s->reloc_count - 1, sizeof (Elf32_External_Rel),
12163 sort_dynamic_relocs);
12164 }
12165 }
12166 }
12167
12168 if (htab->root.splt && htab->root.splt->size > 0)
12169 {
12170 if (htab->is_vxworks)
12171 {
12172 if (bfd_link_pic (info))
12173 mips_vxworks_finish_shared_plt (output_bfd, info);
12174 else
12175 mips_vxworks_finish_exec_plt (output_bfd, info);
12176 }
12177 else
12178 {
12179 BFD_ASSERT (!bfd_link_pic (info));
12180 if (!mips_finish_exec_plt (output_bfd, info))
12181 return FALSE;
12182 }
12183 }
12184 return TRUE;
12185 }
12186
12187
12188 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12189
12190 static void
12191 mips_set_isa_flags (bfd *abfd)
12192 {
12193 flagword val;
12194
12195 switch (bfd_get_mach (abfd))
12196 {
12197 default:
12198 case bfd_mach_mips3000:
12199 val = E_MIPS_ARCH_1;
12200 break;
12201
12202 case bfd_mach_mips3900:
12203 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12204 break;
12205
12206 case bfd_mach_mips6000:
12207 val = E_MIPS_ARCH_2;
12208 break;
12209
12210 case bfd_mach_mips4010:
12211 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
12212 break;
12213
12214 case bfd_mach_mips4000:
12215 case bfd_mach_mips4300:
12216 case bfd_mach_mips4400:
12217 case bfd_mach_mips4600:
12218 val = E_MIPS_ARCH_3;
12219 break;
12220
12221 case bfd_mach_mips4100:
12222 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12223 break;
12224
12225 case bfd_mach_mips4111:
12226 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12227 break;
12228
12229 case bfd_mach_mips4120:
12230 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12231 break;
12232
12233 case bfd_mach_mips4650:
12234 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12235 break;
12236
12237 case bfd_mach_mips5400:
12238 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12239 break;
12240
12241 case bfd_mach_mips5500:
12242 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12243 break;
12244
12245 case bfd_mach_mips5900:
12246 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12247 break;
12248
12249 case bfd_mach_mips9000:
12250 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12251 break;
12252
12253 case bfd_mach_mips5000:
12254 case bfd_mach_mips7000:
12255 case bfd_mach_mips8000:
12256 case bfd_mach_mips10000:
12257 case bfd_mach_mips12000:
12258 case bfd_mach_mips14000:
12259 case bfd_mach_mips16000:
12260 val = E_MIPS_ARCH_4;
12261 break;
12262
12263 case bfd_mach_mips5:
12264 val = E_MIPS_ARCH_5;
12265 break;
12266
12267 case bfd_mach_mips_loongson_2e:
12268 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12269 break;
12270
12271 case bfd_mach_mips_loongson_2f:
12272 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12273 break;
12274
12275 case bfd_mach_mips_sb1:
12276 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12277 break;
12278
12279 case bfd_mach_mips_gs464:
12280 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
12281 break;
12282
12283 case bfd_mach_mips_gs464e:
12284 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
12285 break;
12286
12287 case bfd_mach_mips_gs264e:
12288 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E;
12289 break;
12290
12291 case bfd_mach_mips_octeon:
12292 case bfd_mach_mips_octeonp:
12293 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12294 break;
12295
12296 case bfd_mach_mips_octeon3:
12297 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12298 break;
12299
12300 case bfd_mach_mips_xlr:
12301 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12302 break;
12303
12304 case bfd_mach_mips_octeon2:
12305 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12306 break;
12307
12308 case bfd_mach_mipsisa32:
12309 val = E_MIPS_ARCH_32;
12310 break;
12311
12312 case bfd_mach_mipsisa64:
12313 val = E_MIPS_ARCH_64;
12314 break;
12315
12316 case bfd_mach_mipsisa32r2:
12317 case bfd_mach_mipsisa32r3:
12318 case bfd_mach_mipsisa32r5:
12319 val = E_MIPS_ARCH_32R2;
12320 break;
12321
12322 case bfd_mach_mips_interaptiv_mr2:
12323 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12324 break;
12325
12326 case bfd_mach_mipsisa64r2:
12327 case bfd_mach_mipsisa64r3:
12328 case bfd_mach_mipsisa64r5:
12329 val = E_MIPS_ARCH_64R2;
12330 break;
12331
12332 case bfd_mach_mipsisa32r6:
12333 val = E_MIPS_ARCH_32R6;
12334 break;
12335
12336 case bfd_mach_mipsisa64r6:
12337 val = E_MIPS_ARCH_64R6;
12338 break;
12339 }
12340 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12341 elf_elfheader (abfd)->e_flags |= val;
12342
12343 }
12344
12345
12346 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12347 Don't do so for code sections. We want to keep ordering of HI16/LO16
12348 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12349 relocs to be sorted. */
12350
12351 bfd_boolean
12352 _bfd_mips_elf_sort_relocs_p (asection *sec)
12353 {
12354 return (sec->flags & SEC_CODE) == 0;
12355 }
12356
12357
12358 /* The final processing done just before writing out a MIPS ELF object
12359 file. This gets the MIPS architecture right based on the machine
12360 number. This is used by both the 32-bit and the 64-bit ABI. */
12361
12362 void
12363 _bfd_mips_elf_final_write_processing (bfd *abfd,
12364 bfd_boolean linker ATTRIBUTE_UNUSED)
12365 {
12366 unsigned int i;
12367 Elf_Internal_Shdr **hdrpp;
12368 const char *name;
12369 asection *sec;
12370
12371 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12372 is nonzero. This is for compatibility with old objects, which used
12373 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12374 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12375 mips_set_isa_flags (abfd);
12376
12377 /* Set the sh_info field for .gptab sections and other appropriate
12378 info for each special section. */
12379 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12380 i < elf_numsections (abfd);
12381 i++, hdrpp++)
12382 {
12383 switch ((*hdrpp)->sh_type)
12384 {
12385 case SHT_MIPS_MSYM:
12386 case SHT_MIPS_LIBLIST:
12387 sec = bfd_get_section_by_name (abfd, ".dynstr");
12388 if (sec != NULL)
12389 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12390 break;
12391
12392 case SHT_MIPS_GPTAB:
12393 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12394 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12395 BFD_ASSERT (name != NULL
12396 && CONST_STRNEQ (name, ".gptab."));
12397 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12398 BFD_ASSERT (sec != NULL);
12399 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12400 break;
12401
12402 case SHT_MIPS_CONTENT:
12403 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12404 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12405 BFD_ASSERT (name != NULL
12406 && CONST_STRNEQ (name, ".MIPS.content"));
12407 sec = bfd_get_section_by_name (abfd,
12408 name + sizeof ".MIPS.content" - 1);
12409 BFD_ASSERT (sec != NULL);
12410 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12411 break;
12412
12413 case SHT_MIPS_SYMBOL_LIB:
12414 sec = bfd_get_section_by_name (abfd, ".dynsym");
12415 if (sec != NULL)
12416 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12417 sec = bfd_get_section_by_name (abfd, ".liblist");
12418 if (sec != NULL)
12419 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12420 break;
12421
12422 case SHT_MIPS_EVENTS:
12423 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12424 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12425 BFD_ASSERT (name != NULL);
12426 if (CONST_STRNEQ (name, ".MIPS.events"))
12427 sec = bfd_get_section_by_name (abfd,
12428 name + sizeof ".MIPS.events" - 1);
12429 else
12430 {
12431 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12432 sec = bfd_get_section_by_name (abfd,
12433 (name
12434 + sizeof ".MIPS.post_rel" - 1));
12435 }
12436 BFD_ASSERT (sec != NULL);
12437 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12438 break;
12439
12440 }
12441 }
12442 }
12443 \f
12444 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12445 segments. */
12446
12447 int
12448 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12449 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12450 {
12451 asection *s;
12452 int ret = 0;
12453
12454 /* See if we need a PT_MIPS_REGINFO segment. */
12455 s = bfd_get_section_by_name (abfd, ".reginfo");
12456 if (s && (s->flags & SEC_LOAD))
12457 ++ret;
12458
12459 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12460 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12461 ++ret;
12462
12463 /* See if we need a PT_MIPS_OPTIONS segment. */
12464 if (IRIX_COMPAT (abfd) == ict_irix6
12465 && bfd_get_section_by_name (abfd,
12466 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12467 ++ret;
12468
12469 /* See if we need a PT_MIPS_RTPROC segment. */
12470 if (IRIX_COMPAT (abfd) == ict_irix5
12471 && bfd_get_section_by_name (abfd, ".dynamic")
12472 && bfd_get_section_by_name (abfd, ".mdebug"))
12473 ++ret;
12474
12475 /* Allocate a PT_NULL header in dynamic objects. See
12476 _bfd_mips_elf_modify_segment_map for details. */
12477 if (!SGI_COMPAT (abfd)
12478 && bfd_get_section_by_name (abfd, ".dynamic"))
12479 ++ret;
12480
12481 return ret;
12482 }
12483
12484 /* Modify the segment map for an IRIX5 executable. */
12485
12486 bfd_boolean
12487 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12488 struct bfd_link_info *info)
12489 {
12490 asection *s;
12491 struct elf_segment_map *m, **pm;
12492 bfd_size_type amt;
12493
12494 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12495 segment. */
12496 s = bfd_get_section_by_name (abfd, ".reginfo");
12497 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12498 {
12499 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12500 if (m->p_type == PT_MIPS_REGINFO)
12501 break;
12502 if (m == NULL)
12503 {
12504 amt = sizeof *m;
12505 m = bfd_zalloc (abfd, amt);
12506 if (m == NULL)
12507 return FALSE;
12508
12509 m->p_type = PT_MIPS_REGINFO;
12510 m->count = 1;
12511 m->sections[0] = s;
12512
12513 /* We want to put it after the PHDR and INTERP segments. */
12514 pm = &elf_seg_map (abfd);
12515 while (*pm != NULL
12516 && ((*pm)->p_type == PT_PHDR
12517 || (*pm)->p_type == PT_INTERP))
12518 pm = &(*pm)->next;
12519
12520 m->next = *pm;
12521 *pm = m;
12522 }
12523 }
12524
12525 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12526 segment. */
12527 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12528 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12529 {
12530 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12531 if (m->p_type == PT_MIPS_ABIFLAGS)
12532 break;
12533 if (m == NULL)
12534 {
12535 amt = sizeof *m;
12536 m = bfd_zalloc (abfd, amt);
12537 if (m == NULL)
12538 return FALSE;
12539
12540 m->p_type = PT_MIPS_ABIFLAGS;
12541 m->count = 1;
12542 m->sections[0] = s;
12543
12544 /* We want to put it after the PHDR and INTERP segments. */
12545 pm = &elf_seg_map (abfd);
12546 while (*pm != NULL
12547 && ((*pm)->p_type == PT_PHDR
12548 || (*pm)->p_type == PT_INTERP))
12549 pm = &(*pm)->next;
12550
12551 m->next = *pm;
12552 *pm = m;
12553 }
12554 }
12555
12556 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12557 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12558 PT_MIPS_OPTIONS segment immediately following the program header
12559 table. */
12560 if (NEWABI_P (abfd)
12561 /* On non-IRIX6 new abi, we'll have already created a segment
12562 for this section, so don't create another. I'm not sure this
12563 is not also the case for IRIX 6, but I can't test it right
12564 now. */
12565 && IRIX_COMPAT (abfd) == ict_irix6)
12566 {
12567 for (s = abfd->sections; s; s = s->next)
12568 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12569 break;
12570
12571 if (s)
12572 {
12573 struct elf_segment_map *options_segment;
12574
12575 pm = &elf_seg_map (abfd);
12576 while (*pm != NULL
12577 && ((*pm)->p_type == PT_PHDR
12578 || (*pm)->p_type == PT_INTERP))
12579 pm = &(*pm)->next;
12580
12581 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12582 {
12583 amt = sizeof (struct elf_segment_map);
12584 options_segment = bfd_zalloc (abfd, amt);
12585 options_segment->next = *pm;
12586 options_segment->p_type = PT_MIPS_OPTIONS;
12587 options_segment->p_flags = PF_R;
12588 options_segment->p_flags_valid = TRUE;
12589 options_segment->count = 1;
12590 options_segment->sections[0] = s;
12591 *pm = options_segment;
12592 }
12593 }
12594 }
12595 else
12596 {
12597 if (IRIX_COMPAT (abfd) == ict_irix5)
12598 {
12599 /* If there are .dynamic and .mdebug sections, we make a room
12600 for the RTPROC header. FIXME: Rewrite without section names. */
12601 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12602 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12603 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12604 {
12605 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12606 if (m->p_type == PT_MIPS_RTPROC)
12607 break;
12608 if (m == NULL)
12609 {
12610 amt = sizeof *m;
12611 m = bfd_zalloc (abfd, amt);
12612 if (m == NULL)
12613 return FALSE;
12614
12615 m->p_type = PT_MIPS_RTPROC;
12616
12617 s = bfd_get_section_by_name (abfd, ".rtproc");
12618 if (s == NULL)
12619 {
12620 m->count = 0;
12621 m->p_flags = 0;
12622 m->p_flags_valid = 1;
12623 }
12624 else
12625 {
12626 m->count = 1;
12627 m->sections[0] = s;
12628 }
12629
12630 /* We want to put it after the DYNAMIC segment. */
12631 pm = &elf_seg_map (abfd);
12632 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12633 pm = &(*pm)->next;
12634 if (*pm != NULL)
12635 pm = &(*pm)->next;
12636
12637 m->next = *pm;
12638 *pm = m;
12639 }
12640 }
12641 }
12642 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12643 .dynstr, .dynsym, and .hash sections, and everything in
12644 between. */
12645 for (pm = &elf_seg_map (abfd); *pm != NULL;
12646 pm = &(*pm)->next)
12647 if ((*pm)->p_type == PT_DYNAMIC)
12648 break;
12649 m = *pm;
12650 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12651 glibc's dynamic linker has traditionally derived the number of
12652 tags from the p_filesz field, and sometimes allocates stack
12653 arrays of that size. An overly-big PT_DYNAMIC segment can
12654 be actively harmful in such cases. Making PT_DYNAMIC contain
12655 other sections can also make life hard for the prelinker,
12656 which might move one of the other sections to a different
12657 PT_LOAD segment. */
12658 if (SGI_COMPAT (abfd)
12659 && m != NULL
12660 && m->count == 1
12661 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12662 {
12663 static const char *sec_names[] =
12664 {
12665 ".dynamic", ".dynstr", ".dynsym", ".hash"
12666 };
12667 bfd_vma low, high;
12668 unsigned int i, c;
12669 struct elf_segment_map *n;
12670
12671 low = ~(bfd_vma) 0;
12672 high = 0;
12673 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12674 {
12675 s = bfd_get_section_by_name (abfd, sec_names[i]);
12676 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12677 {
12678 bfd_size_type sz;
12679
12680 if (low > s->vma)
12681 low = s->vma;
12682 sz = s->size;
12683 if (high < s->vma + sz)
12684 high = s->vma + sz;
12685 }
12686 }
12687
12688 c = 0;
12689 for (s = abfd->sections; s != NULL; s = s->next)
12690 if ((s->flags & SEC_LOAD) != 0
12691 && s->vma >= low
12692 && s->vma + s->size <= high)
12693 ++c;
12694
12695 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12696 n = bfd_zalloc (abfd, amt);
12697 if (n == NULL)
12698 return FALSE;
12699 *n = *m;
12700 n->count = c;
12701
12702 i = 0;
12703 for (s = abfd->sections; s != NULL; s = s->next)
12704 {
12705 if ((s->flags & SEC_LOAD) != 0
12706 && s->vma >= low
12707 && s->vma + s->size <= high)
12708 {
12709 n->sections[i] = s;
12710 ++i;
12711 }
12712 }
12713
12714 *pm = n;
12715 }
12716 }
12717
12718 /* Allocate a spare program header in dynamic objects so that tools
12719 like the prelinker can add an extra PT_LOAD entry.
12720
12721 If the prelinker needs to make room for a new PT_LOAD entry, its
12722 standard procedure is to move the first (read-only) sections into
12723 the new (writable) segment. However, the MIPS ABI requires
12724 .dynamic to be in a read-only segment, and the section will often
12725 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12726
12727 Although the prelinker could in principle move .dynamic to a
12728 writable segment, it seems better to allocate a spare program
12729 header instead, and avoid the need to move any sections.
12730 There is a long tradition of allocating spare dynamic tags,
12731 so allocating a spare program header seems like a natural
12732 extension.
12733
12734 If INFO is NULL, we may be copying an already prelinked binary
12735 with objcopy or strip, so do not add this header. */
12736 if (info != NULL
12737 && !SGI_COMPAT (abfd)
12738 && bfd_get_section_by_name (abfd, ".dynamic"))
12739 {
12740 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12741 if ((*pm)->p_type == PT_NULL)
12742 break;
12743 if (*pm == NULL)
12744 {
12745 m = bfd_zalloc (abfd, sizeof (*m));
12746 if (m == NULL)
12747 return FALSE;
12748
12749 m->p_type = PT_NULL;
12750 *pm = m;
12751 }
12752 }
12753
12754 return TRUE;
12755 }
12756 \f
12757 /* Return the section that should be marked against GC for a given
12758 relocation. */
12759
12760 asection *
12761 _bfd_mips_elf_gc_mark_hook (asection *sec,
12762 struct bfd_link_info *info,
12763 Elf_Internal_Rela *rel,
12764 struct elf_link_hash_entry *h,
12765 Elf_Internal_Sym *sym)
12766 {
12767 /* ??? Do mips16 stub sections need to be handled special? */
12768
12769 if (h != NULL)
12770 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12771 {
12772 case R_MIPS_GNU_VTINHERIT:
12773 case R_MIPS_GNU_VTENTRY:
12774 return NULL;
12775 }
12776
12777 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12778 }
12779
12780 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12781
12782 bfd_boolean
12783 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12784 elf_gc_mark_hook_fn gc_mark_hook)
12785 {
12786 bfd *sub;
12787
12788 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12789
12790 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12791 {
12792 asection *o;
12793
12794 if (! is_mips_elf (sub))
12795 continue;
12796
12797 for (o = sub->sections; o != NULL; o = o->next)
12798 if (!o->gc_mark
12799 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12800 (bfd_get_section_name (sub, o)))
12801 {
12802 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12803 return FALSE;
12804 }
12805 }
12806
12807 return TRUE;
12808 }
12809 \f
12810 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12811 hiding the old indirect symbol. Process additional relocation
12812 information. Also called for weakdefs, in which case we just let
12813 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12814
12815 void
12816 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12817 struct elf_link_hash_entry *dir,
12818 struct elf_link_hash_entry *ind)
12819 {
12820 struct mips_elf_link_hash_entry *dirmips, *indmips;
12821
12822 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12823
12824 dirmips = (struct mips_elf_link_hash_entry *) dir;
12825 indmips = (struct mips_elf_link_hash_entry *) ind;
12826 /* Any absolute non-dynamic relocations against an indirect or weak
12827 definition will be against the target symbol. */
12828 if (indmips->has_static_relocs)
12829 dirmips->has_static_relocs = TRUE;
12830
12831 if (ind->root.type != bfd_link_hash_indirect)
12832 return;
12833
12834 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12835 if (indmips->readonly_reloc)
12836 dirmips->readonly_reloc = TRUE;
12837 if (indmips->no_fn_stub)
12838 dirmips->no_fn_stub = TRUE;
12839 if (indmips->fn_stub)
12840 {
12841 dirmips->fn_stub = indmips->fn_stub;
12842 indmips->fn_stub = NULL;
12843 }
12844 if (indmips->need_fn_stub)
12845 {
12846 dirmips->need_fn_stub = TRUE;
12847 indmips->need_fn_stub = FALSE;
12848 }
12849 if (indmips->call_stub)
12850 {
12851 dirmips->call_stub = indmips->call_stub;
12852 indmips->call_stub = NULL;
12853 }
12854 if (indmips->call_fp_stub)
12855 {
12856 dirmips->call_fp_stub = indmips->call_fp_stub;
12857 indmips->call_fp_stub = NULL;
12858 }
12859 if (indmips->global_got_area < dirmips->global_got_area)
12860 dirmips->global_got_area = indmips->global_got_area;
12861 if (indmips->global_got_area < GGA_NONE)
12862 indmips->global_got_area = GGA_NONE;
12863 if (indmips->has_nonpic_branches)
12864 dirmips->has_nonpic_branches = TRUE;
12865 }
12866
12867 /* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12868 to hide it. It has to remain global (it will also be protected) so as to
12869 be assigned a global GOT entry, which will then remain unchanged at load
12870 time. */
12871
12872 void
12873 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
12874 struct elf_link_hash_entry *entry,
12875 bfd_boolean force_local)
12876 {
12877 struct mips_elf_link_hash_table *htab;
12878
12879 htab = mips_elf_hash_table (info);
12880 BFD_ASSERT (htab != NULL);
12881 if (htab->use_absolute_zero
12882 && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0)
12883 return;
12884
12885 _bfd_elf_link_hash_hide_symbol (info, entry, force_local);
12886 }
12887 \f
12888 #define PDR_SIZE 32
12889
12890 bfd_boolean
12891 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12892 struct bfd_link_info *info)
12893 {
12894 asection *o;
12895 bfd_boolean ret = FALSE;
12896 unsigned char *tdata;
12897 size_t i, skip;
12898
12899 o = bfd_get_section_by_name (abfd, ".pdr");
12900 if (! o)
12901 return FALSE;
12902 if (o->size == 0)
12903 return FALSE;
12904 if (o->size % PDR_SIZE != 0)
12905 return FALSE;
12906 if (o->output_section != NULL
12907 && bfd_is_abs_section (o->output_section))
12908 return FALSE;
12909
12910 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12911 if (! tdata)
12912 return FALSE;
12913
12914 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12915 info->keep_memory);
12916 if (!cookie->rels)
12917 {
12918 free (tdata);
12919 return FALSE;
12920 }
12921
12922 cookie->rel = cookie->rels;
12923 cookie->relend = cookie->rels + o->reloc_count;
12924
12925 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12926 {
12927 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12928 {
12929 tdata[i] = 1;
12930 skip ++;
12931 }
12932 }
12933
12934 if (skip != 0)
12935 {
12936 mips_elf_section_data (o)->u.tdata = tdata;
12937 if (o->rawsize == 0)
12938 o->rawsize = o->size;
12939 o->size -= skip * PDR_SIZE;
12940 ret = TRUE;
12941 }
12942 else
12943 free (tdata);
12944
12945 if (! info->keep_memory)
12946 free (cookie->rels);
12947
12948 return ret;
12949 }
12950
12951 bfd_boolean
12952 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12953 {
12954 if (strcmp (sec->name, ".pdr") == 0)
12955 return TRUE;
12956 return FALSE;
12957 }
12958
12959 bfd_boolean
12960 _bfd_mips_elf_write_section (bfd *output_bfd,
12961 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12962 asection *sec, bfd_byte *contents)
12963 {
12964 bfd_byte *to, *from, *end;
12965 int i;
12966
12967 if (strcmp (sec->name, ".pdr") != 0)
12968 return FALSE;
12969
12970 if (mips_elf_section_data (sec)->u.tdata == NULL)
12971 return FALSE;
12972
12973 to = contents;
12974 end = contents + sec->size;
12975 for (from = contents, i = 0;
12976 from < end;
12977 from += PDR_SIZE, i++)
12978 {
12979 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12980 continue;
12981 if (to != from)
12982 memcpy (to, from, PDR_SIZE);
12983 to += PDR_SIZE;
12984 }
12985 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12986 sec->output_offset, sec->size);
12987 return TRUE;
12988 }
12989 \f
12990 /* microMIPS code retains local labels for linker relaxation. Omit them
12991 from output by default for clarity. */
12992
12993 bfd_boolean
12994 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12995 {
12996 return _bfd_elf_is_local_label_name (abfd, sym->name);
12997 }
12998
12999 /* MIPS ELF uses a special find_nearest_line routine in order the
13000 handle the ECOFF debugging information. */
13001
13002 struct mips_elf_find_line
13003 {
13004 struct ecoff_debug_info d;
13005 struct ecoff_find_line i;
13006 };
13007
13008 bfd_boolean
13009 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
13010 asection *section, bfd_vma offset,
13011 const char **filename_ptr,
13012 const char **functionname_ptr,
13013 unsigned int *line_ptr,
13014 unsigned int *discriminator_ptr)
13015 {
13016 asection *msec;
13017
13018 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
13019 filename_ptr, functionname_ptr,
13020 line_ptr, discriminator_ptr,
13021 dwarf_debug_sections,
13022 ABI_64_P (abfd) ? 8 : 0,
13023 &elf_tdata (abfd)->dwarf2_find_line_info)
13024 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
13025 filename_ptr, functionname_ptr,
13026 line_ptr))
13027 {
13028 /* PR 22789: If the function name or filename was not found through
13029 the debug information, then try an ordinary lookup instead. */
13030 if ((functionname_ptr != NULL && *functionname_ptr == NULL)
13031 || (filename_ptr != NULL && *filename_ptr == NULL))
13032 {
13033 /* Do not override already discovered names. */
13034 if (functionname_ptr != NULL && *functionname_ptr != NULL)
13035 functionname_ptr = NULL;
13036
13037 if (filename_ptr != NULL && *filename_ptr != NULL)
13038 filename_ptr = NULL;
13039
13040 _bfd_elf_find_function (abfd, symbols, section, offset,
13041 filename_ptr, functionname_ptr);
13042 }
13043
13044 return TRUE;
13045 }
13046
13047 msec = bfd_get_section_by_name (abfd, ".mdebug");
13048 if (msec != NULL)
13049 {
13050 flagword origflags;
13051 struct mips_elf_find_line *fi;
13052 const struct ecoff_debug_swap * const swap =
13053 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
13054
13055 /* If we are called during a link, mips_elf_final_link may have
13056 cleared the SEC_HAS_CONTENTS field. We force it back on here
13057 if appropriate (which it normally will be). */
13058 origflags = msec->flags;
13059 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
13060 msec->flags |= SEC_HAS_CONTENTS;
13061
13062 fi = mips_elf_tdata (abfd)->find_line_info;
13063 if (fi == NULL)
13064 {
13065 bfd_size_type external_fdr_size;
13066 char *fraw_src;
13067 char *fraw_end;
13068 struct fdr *fdr_ptr;
13069 bfd_size_type amt = sizeof (struct mips_elf_find_line);
13070
13071 fi = bfd_zalloc (abfd, amt);
13072 if (fi == NULL)
13073 {
13074 msec->flags = origflags;
13075 return FALSE;
13076 }
13077
13078 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
13079 {
13080 msec->flags = origflags;
13081 return FALSE;
13082 }
13083
13084 /* Swap in the FDR information. */
13085 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
13086 fi->d.fdr = bfd_alloc (abfd, amt);
13087 if (fi->d.fdr == NULL)
13088 {
13089 msec->flags = origflags;
13090 return FALSE;
13091 }
13092 external_fdr_size = swap->external_fdr_size;
13093 fdr_ptr = fi->d.fdr;
13094 fraw_src = (char *) fi->d.external_fdr;
13095 fraw_end = (fraw_src
13096 + fi->d.symbolic_header.ifdMax * external_fdr_size);
13097 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
13098 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
13099
13100 mips_elf_tdata (abfd)->find_line_info = fi;
13101
13102 /* Note that we don't bother to ever free this information.
13103 find_nearest_line is either called all the time, as in
13104 objdump -l, so the information should be saved, or it is
13105 rarely called, as in ld error messages, so the memory
13106 wasted is unimportant. Still, it would probably be a
13107 good idea for free_cached_info to throw it away. */
13108 }
13109
13110 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
13111 &fi->i, filename_ptr, functionname_ptr,
13112 line_ptr))
13113 {
13114 msec->flags = origflags;
13115 return TRUE;
13116 }
13117
13118 msec->flags = origflags;
13119 }
13120
13121 /* Fall back on the generic ELF find_nearest_line routine. */
13122
13123 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
13124 filename_ptr, functionname_ptr,
13125 line_ptr, discriminator_ptr);
13126 }
13127
13128 bfd_boolean
13129 _bfd_mips_elf_find_inliner_info (bfd *abfd,
13130 const char **filename_ptr,
13131 const char **functionname_ptr,
13132 unsigned int *line_ptr)
13133 {
13134 bfd_boolean found;
13135 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13136 functionname_ptr, line_ptr,
13137 & elf_tdata (abfd)->dwarf2_find_line_info);
13138 return found;
13139 }
13140
13141 \f
13142 /* When are writing out the .options or .MIPS.options section,
13143 remember the bytes we are writing out, so that we can install the
13144 GP value in the section_processing routine. */
13145
13146 bfd_boolean
13147 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
13148 const void *location,
13149 file_ptr offset, bfd_size_type count)
13150 {
13151 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
13152 {
13153 bfd_byte *c;
13154
13155 if (elf_section_data (section) == NULL)
13156 {
13157 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
13158 section->used_by_bfd = bfd_zalloc (abfd, amt);
13159 if (elf_section_data (section) == NULL)
13160 return FALSE;
13161 }
13162 c = mips_elf_section_data (section)->u.tdata;
13163 if (c == NULL)
13164 {
13165 c = bfd_zalloc (abfd, section->size);
13166 if (c == NULL)
13167 return FALSE;
13168 mips_elf_section_data (section)->u.tdata = c;
13169 }
13170
13171 memcpy (c + offset, location, count);
13172 }
13173
13174 return _bfd_elf_set_section_contents (abfd, section, location, offset,
13175 count);
13176 }
13177
13178 /* This is almost identical to bfd_generic_get_... except that some
13179 MIPS relocations need to be handled specially. Sigh. */
13180
13181 bfd_byte *
13182 _bfd_elf_mips_get_relocated_section_contents
13183 (bfd *abfd,
13184 struct bfd_link_info *link_info,
13185 struct bfd_link_order *link_order,
13186 bfd_byte *data,
13187 bfd_boolean relocatable,
13188 asymbol **symbols)
13189 {
13190 /* Get enough memory to hold the stuff */
13191 bfd *input_bfd = link_order->u.indirect.section->owner;
13192 asection *input_section = link_order->u.indirect.section;
13193 bfd_size_type sz;
13194
13195 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13196 arelent **reloc_vector = NULL;
13197 long reloc_count;
13198
13199 if (reloc_size < 0)
13200 goto error_return;
13201
13202 reloc_vector = bfd_malloc (reloc_size);
13203 if (reloc_vector == NULL && reloc_size != 0)
13204 goto error_return;
13205
13206 /* read in the section */
13207 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13208 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
13209 goto error_return;
13210
13211 reloc_count = bfd_canonicalize_reloc (input_bfd,
13212 input_section,
13213 reloc_vector,
13214 symbols);
13215 if (reloc_count < 0)
13216 goto error_return;
13217
13218 if (reloc_count > 0)
13219 {
13220 arelent **parent;
13221 /* for mips */
13222 int gp_found;
13223 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13224
13225 {
13226 struct bfd_hash_entry *h;
13227 struct bfd_link_hash_entry *lh;
13228 /* Skip all this stuff if we aren't mixing formats. */
13229 if (abfd && input_bfd
13230 && abfd->xvec == input_bfd->xvec)
13231 lh = 0;
13232 else
13233 {
13234 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
13235 lh = (struct bfd_link_hash_entry *) h;
13236 }
13237 lookup:
13238 if (lh)
13239 {
13240 switch (lh->type)
13241 {
13242 case bfd_link_hash_undefined:
13243 case bfd_link_hash_undefweak:
13244 case bfd_link_hash_common:
13245 gp_found = 0;
13246 break;
13247 case bfd_link_hash_defined:
13248 case bfd_link_hash_defweak:
13249 gp_found = 1;
13250 gp = lh->u.def.value;
13251 break;
13252 case bfd_link_hash_indirect:
13253 case bfd_link_hash_warning:
13254 lh = lh->u.i.link;
13255 /* @@FIXME ignoring warning for now */
13256 goto lookup;
13257 case bfd_link_hash_new:
13258 default:
13259 abort ();
13260 }
13261 }
13262 else
13263 gp_found = 0;
13264 }
13265 /* end mips */
13266 for (parent = reloc_vector; *parent != NULL; parent++)
13267 {
13268 char *error_message = NULL;
13269 bfd_reloc_status_type r;
13270
13271 /* Specific to MIPS: Deal with relocation types that require
13272 knowing the gp of the output bfd. */
13273 asymbol *sym = *(*parent)->sym_ptr_ptr;
13274
13275 /* If we've managed to find the gp and have a special
13276 function for the relocation then go ahead, else default
13277 to the generic handling. */
13278 if (gp_found
13279 && (*parent)->howto->special_function
13280 == _bfd_mips_elf32_gprel16_reloc)
13281 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13282 input_section, relocatable,
13283 data, gp);
13284 else
13285 r = bfd_perform_relocation (input_bfd, *parent, data,
13286 input_section,
13287 relocatable ? abfd : NULL,
13288 &error_message);
13289
13290 if (relocatable)
13291 {
13292 asection *os = input_section->output_section;
13293
13294 /* A partial link, so keep the relocs */
13295 os->orelocation[os->reloc_count] = *parent;
13296 os->reloc_count++;
13297 }
13298
13299 if (r != bfd_reloc_ok)
13300 {
13301 switch (r)
13302 {
13303 case bfd_reloc_undefined:
13304 (*link_info->callbacks->undefined_symbol)
13305 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13306 input_bfd, input_section, (*parent)->address, TRUE);
13307 break;
13308 case bfd_reloc_dangerous:
13309 BFD_ASSERT (error_message != NULL);
13310 (*link_info->callbacks->reloc_dangerous)
13311 (link_info, error_message,
13312 input_bfd, input_section, (*parent)->address);
13313 break;
13314 case bfd_reloc_overflow:
13315 (*link_info->callbacks->reloc_overflow)
13316 (link_info, NULL,
13317 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13318 (*parent)->howto->name, (*parent)->addend,
13319 input_bfd, input_section, (*parent)->address);
13320 break;
13321 case bfd_reloc_outofrange:
13322 default:
13323 abort ();
13324 break;
13325 }
13326
13327 }
13328 }
13329 }
13330 if (reloc_vector != NULL)
13331 free (reloc_vector);
13332 return data;
13333
13334 error_return:
13335 if (reloc_vector != NULL)
13336 free (reloc_vector);
13337 return NULL;
13338 }
13339 \f
13340 static bfd_boolean
13341 mips_elf_relax_delete_bytes (bfd *abfd,
13342 asection *sec, bfd_vma addr, int count)
13343 {
13344 Elf_Internal_Shdr *symtab_hdr;
13345 unsigned int sec_shndx;
13346 bfd_byte *contents;
13347 Elf_Internal_Rela *irel, *irelend;
13348 Elf_Internal_Sym *isym;
13349 Elf_Internal_Sym *isymend;
13350 struct elf_link_hash_entry **sym_hashes;
13351 struct elf_link_hash_entry **end_hashes;
13352 struct elf_link_hash_entry **start_hashes;
13353 unsigned int symcount;
13354
13355 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13356 contents = elf_section_data (sec)->this_hdr.contents;
13357
13358 irel = elf_section_data (sec)->relocs;
13359 irelend = irel + sec->reloc_count;
13360
13361 /* Actually delete the bytes. */
13362 memmove (contents + addr, contents + addr + count,
13363 (size_t) (sec->size - addr - count));
13364 sec->size -= count;
13365
13366 /* Adjust all the relocs. */
13367 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13368 {
13369 /* Get the new reloc address. */
13370 if (irel->r_offset > addr)
13371 irel->r_offset -= count;
13372 }
13373
13374 BFD_ASSERT (addr % 2 == 0);
13375 BFD_ASSERT (count % 2 == 0);
13376
13377 /* Adjust the local symbols defined in this section. */
13378 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13379 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13380 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13381 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13382 isym->st_value -= count;
13383
13384 /* Now adjust the global symbols defined in this section. */
13385 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13386 - symtab_hdr->sh_info);
13387 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13388 end_hashes = sym_hashes + symcount;
13389
13390 for (; sym_hashes < end_hashes; sym_hashes++)
13391 {
13392 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13393
13394 if ((sym_hash->root.type == bfd_link_hash_defined
13395 || sym_hash->root.type == bfd_link_hash_defweak)
13396 && sym_hash->root.u.def.section == sec)
13397 {
13398 bfd_vma value = sym_hash->root.u.def.value;
13399
13400 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13401 value &= MINUS_TWO;
13402 if (value > addr)
13403 sym_hash->root.u.def.value -= count;
13404 }
13405 }
13406
13407 return TRUE;
13408 }
13409
13410
13411 /* Opcodes needed for microMIPS relaxation as found in
13412 opcodes/micromips-opc.c. */
13413
13414 struct opcode_descriptor {
13415 unsigned long match;
13416 unsigned long mask;
13417 };
13418
13419 /* The $ra register aka $31. */
13420
13421 #define RA 31
13422
13423 /* 32-bit instruction format register fields. */
13424
13425 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13426 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13427
13428 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13429
13430 #define OP16_VALID_REG(r) \
13431 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13432
13433
13434 /* 32-bit and 16-bit branches. */
13435
13436 static const struct opcode_descriptor b_insns_32[] = {
13437 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13438 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13439 { 0, 0 } /* End marker for find_match(). */
13440 };
13441
13442 static const struct opcode_descriptor bc_insn_32 =
13443 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13444
13445 static const struct opcode_descriptor bz_insn_32 =
13446 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13447
13448 static const struct opcode_descriptor bzal_insn_32 =
13449 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13450
13451 static const struct opcode_descriptor beq_insn_32 =
13452 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13453
13454 static const struct opcode_descriptor b_insn_16 =
13455 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13456
13457 static const struct opcode_descriptor bz_insn_16 =
13458 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13459
13460
13461 /* 32-bit and 16-bit branch EQ and NE zero. */
13462
13463 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13464 eq and second the ne. This convention is used when replacing a
13465 32-bit BEQ/BNE with the 16-bit version. */
13466
13467 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13468
13469 static const struct opcode_descriptor bz_rs_insns_32[] = {
13470 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13471 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13472 { 0, 0 } /* End marker for find_match(). */
13473 };
13474
13475 static const struct opcode_descriptor bz_rt_insns_32[] = {
13476 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13477 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13478 { 0, 0 } /* End marker for find_match(). */
13479 };
13480
13481 static const struct opcode_descriptor bzc_insns_32[] = {
13482 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13483 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13484 { 0, 0 } /* End marker for find_match(). */
13485 };
13486
13487 static const struct opcode_descriptor bz_insns_16[] = {
13488 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13489 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13490 { 0, 0 } /* End marker for find_match(). */
13491 };
13492
13493 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13494
13495 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13496 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13497
13498
13499 /* 32-bit instructions with a delay slot. */
13500
13501 static const struct opcode_descriptor jal_insn_32_bd16 =
13502 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13503
13504 static const struct opcode_descriptor jal_insn_32_bd32 =
13505 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13506
13507 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13508 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13509
13510 static const struct opcode_descriptor j_insn_32 =
13511 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13512
13513 static const struct opcode_descriptor jalr_insn_32 =
13514 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13515
13516 /* This table can be compacted, because no opcode replacement is made. */
13517
13518 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13519 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13520
13521 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13522 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13523
13524 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13525 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13526 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13527 { 0, 0 } /* End marker for find_match(). */
13528 };
13529
13530 /* This table can be compacted, because no opcode replacement is made. */
13531
13532 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13533 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13534
13535 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13536 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13537 { 0, 0 } /* End marker for find_match(). */
13538 };
13539
13540
13541 /* 16-bit instructions with a delay slot. */
13542
13543 static const struct opcode_descriptor jalr_insn_16_bd16 =
13544 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13545
13546 static const struct opcode_descriptor jalr_insn_16_bd32 =
13547 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13548
13549 static const struct opcode_descriptor jr_insn_16 =
13550 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13551
13552 #define JR16_REG(opcode) ((opcode) & 0x1f)
13553
13554 /* This table can be compacted, because no opcode replacement is made. */
13555
13556 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13557 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13558
13559 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13560 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13561 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13562 { 0, 0 } /* End marker for find_match(). */
13563 };
13564
13565
13566 /* LUI instruction. */
13567
13568 static const struct opcode_descriptor lui_insn =
13569 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13570
13571
13572 /* ADDIU instruction. */
13573
13574 static const struct opcode_descriptor addiu_insn =
13575 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13576
13577 static const struct opcode_descriptor addiupc_insn =
13578 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13579
13580 #define ADDIUPC_REG_FIELD(r) \
13581 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13582
13583
13584 /* Relaxable instructions in a JAL delay slot: MOVE. */
13585
13586 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13587 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13588 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13589 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13590
13591 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13592 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13593
13594 static const struct opcode_descriptor move_insns_32[] = {
13595 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13596 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13597 { 0, 0 } /* End marker for find_match(). */
13598 };
13599
13600 static const struct opcode_descriptor move_insn_16 =
13601 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13602
13603
13604 /* NOP instructions. */
13605
13606 static const struct opcode_descriptor nop_insn_32 =
13607 { /* "nop", "", */ 0x00000000, 0xffffffff };
13608
13609 static const struct opcode_descriptor nop_insn_16 =
13610 { /* "nop", "", */ 0x0c00, 0xffff };
13611
13612
13613 /* Instruction match support. */
13614
13615 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13616
13617 static int
13618 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13619 {
13620 unsigned long indx;
13621
13622 for (indx = 0; insn[indx].mask != 0; indx++)
13623 if (MATCH (opcode, insn[indx]))
13624 return indx;
13625
13626 return -1;
13627 }
13628
13629
13630 /* Branch and delay slot decoding support. */
13631
13632 /* If PTR points to what *might* be a 16-bit branch or jump, then
13633 return the minimum length of its delay slot, otherwise return 0.
13634 Non-zero results are not definitive as we might be checking against
13635 the second half of another instruction. */
13636
13637 static int
13638 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13639 {
13640 unsigned long opcode;
13641 int bdsize;
13642
13643 opcode = bfd_get_16 (abfd, ptr);
13644 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13645 /* 16-bit branch/jump with a 32-bit delay slot. */
13646 bdsize = 4;
13647 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13648 || find_match (opcode, ds_insns_16_bd16) >= 0)
13649 /* 16-bit branch/jump with a 16-bit delay slot. */
13650 bdsize = 2;
13651 else
13652 /* No delay slot. */
13653 bdsize = 0;
13654
13655 return bdsize;
13656 }
13657
13658 /* If PTR points to what *might* be a 32-bit branch or jump, then
13659 return the minimum length of its delay slot, otherwise return 0.
13660 Non-zero results are not definitive as we might be checking against
13661 the second half of another instruction. */
13662
13663 static int
13664 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13665 {
13666 unsigned long opcode;
13667 int bdsize;
13668
13669 opcode = bfd_get_micromips_32 (abfd, ptr);
13670 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13671 /* 32-bit branch/jump with a 32-bit delay slot. */
13672 bdsize = 4;
13673 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13674 /* 32-bit branch/jump with a 16-bit delay slot. */
13675 bdsize = 2;
13676 else
13677 /* No delay slot. */
13678 bdsize = 0;
13679
13680 return bdsize;
13681 }
13682
13683 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13684 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13685
13686 static bfd_boolean
13687 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13688 {
13689 unsigned long opcode;
13690
13691 opcode = bfd_get_16 (abfd, ptr);
13692 if (MATCH (opcode, b_insn_16)
13693 /* B16 */
13694 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13695 /* JR16 */
13696 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13697 /* BEQZ16, BNEZ16 */
13698 || (MATCH (opcode, jalr_insn_16_bd32)
13699 /* JALR16 */
13700 && reg != JR16_REG (opcode) && reg != RA))
13701 return TRUE;
13702
13703 return FALSE;
13704 }
13705
13706 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13707 then return TRUE, otherwise FALSE. */
13708
13709 static bfd_boolean
13710 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13711 {
13712 unsigned long opcode;
13713
13714 opcode = bfd_get_micromips_32 (abfd, ptr);
13715 if (MATCH (opcode, j_insn_32)
13716 /* J */
13717 || MATCH (opcode, bc_insn_32)
13718 /* BC1F, BC1T, BC2F, BC2T */
13719 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13720 /* JAL, JALX */
13721 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13722 /* BGEZ, BGTZ, BLEZ, BLTZ */
13723 || (MATCH (opcode, bzal_insn_32)
13724 /* BGEZAL, BLTZAL */
13725 && reg != OP32_SREG (opcode) && reg != RA)
13726 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13727 /* JALR, JALR.HB, BEQ, BNE */
13728 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13729 return TRUE;
13730
13731 return FALSE;
13732 }
13733
13734 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13735 IRELEND) at OFFSET indicate that there must be a compact branch there,
13736 then return TRUE, otherwise FALSE. */
13737
13738 static bfd_boolean
13739 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13740 const Elf_Internal_Rela *internal_relocs,
13741 const Elf_Internal_Rela *irelend)
13742 {
13743 const Elf_Internal_Rela *irel;
13744 unsigned long opcode;
13745
13746 opcode = bfd_get_micromips_32 (abfd, ptr);
13747 if (find_match (opcode, bzc_insns_32) < 0)
13748 return FALSE;
13749
13750 for (irel = internal_relocs; irel < irelend; irel++)
13751 if (irel->r_offset == offset
13752 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13753 return TRUE;
13754
13755 return FALSE;
13756 }
13757
13758 /* Bitsize checking. */
13759 #define IS_BITSIZE(val, N) \
13760 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13761 - (1ULL << ((N) - 1))) == (val))
13762
13763 \f
13764 bfd_boolean
13765 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13766 struct bfd_link_info *link_info,
13767 bfd_boolean *again)
13768 {
13769 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13770 Elf_Internal_Shdr *symtab_hdr;
13771 Elf_Internal_Rela *internal_relocs;
13772 Elf_Internal_Rela *irel, *irelend;
13773 bfd_byte *contents = NULL;
13774 Elf_Internal_Sym *isymbuf = NULL;
13775
13776 /* Assume nothing changes. */
13777 *again = FALSE;
13778
13779 /* We don't have to do anything for a relocatable link, if
13780 this section does not have relocs, or if this is not a
13781 code section. */
13782
13783 if (bfd_link_relocatable (link_info)
13784 || (sec->flags & SEC_RELOC) == 0
13785 || sec->reloc_count == 0
13786 || (sec->flags & SEC_CODE) == 0)
13787 return TRUE;
13788
13789 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13790
13791 /* Get a copy of the native relocations. */
13792 internal_relocs = (_bfd_elf_link_read_relocs
13793 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13794 link_info->keep_memory));
13795 if (internal_relocs == NULL)
13796 goto error_return;
13797
13798 /* Walk through them looking for relaxing opportunities. */
13799 irelend = internal_relocs + sec->reloc_count;
13800 for (irel = internal_relocs; irel < irelend; irel++)
13801 {
13802 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13803 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13804 bfd_boolean target_is_micromips_code_p;
13805 unsigned long opcode;
13806 bfd_vma symval;
13807 bfd_vma pcrval;
13808 bfd_byte *ptr;
13809 int fndopc;
13810
13811 /* The number of bytes to delete for relaxation and from where
13812 to delete these bytes starting at irel->r_offset. */
13813 int delcnt = 0;
13814 int deloff = 0;
13815
13816 /* If this isn't something that can be relaxed, then ignore
13817 this reloc. */
13818 if (r_type != R_MICROMIPS_HI16
13819 && r_type != R_MICROMIPS_PC16_S1
13820 && r_type != R_MICROMIPS_26_S1)
13821 continue;
13822
13823 /* Get the section contents if we haven't done so already. */
13824 if (contents == NULL)
13825 {
13826 /* Get cached copy if it exists. */
13827 if (elf_section_data (sec)->this_hdr.contents != NULL)
13828 contents = elf_section_data (sec)->this_hdr.contents;
13829 /* Go get them off disk. */
13830 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13831 goto error_return;
13832 }
13833 ptr = contents + irel->r_offset;
13834
13835 /* Read this BFD's local symbols if we haven't done so already. */
13836 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13837 {
13838 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13839 if (isymbuf == NULL)
13840 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13841 symtab_hdr->sh_info, 0,
13842 NULL, NULL, NULL);
13843 if (isymbuf == NULL)
13844 goto error_return;
13845 }
13846
13847 /* Get the value of the symbol referred to by the reloc. */
13848 if (r_symndx < symtab_hdr->sh_info)
13849 {
13850 /* A local symbol. */
13851 Elf_Internal_Sym *isym;
13852 asection *sym_sec;
13853
13854 isym = isymbuf + r_symndx;
13855 if (isym->st_shndx == SHN_UNDEF)
13856 sym_sec = bfd_und_section_ptr;
13857 else if (isym->st_shndx == SHN_ABS)
13858 sym_sec = bfd_abs_section_ptr;
13859 else if (isym->st_shndx == SHN_COMMON)
13860 sym_sec = bfd_com_section_ptr;
13861 else
13862 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13863 symval = (isym->st_value
13864 + sym_sec->output_section->vma
13865 + sym_sec->output_offset);
13866 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13867 }
13868 else
13869 {
13870 unsigned long indx;
13871 struct elf_link_hash_entry *h;
13872
13873 /* An external symbol. */
13874 indx = r_symndx - symtab_hdr->sh_info;
13875 h = elf_sym_hashes (abfd)[indx];
13876 BFD_ASSERT (h != NULL);
13877
13878 if (h->root.type != bfd_link_hash_defined
13879 && h->root.type != bfd_link_hash_defweak)
13880 /* This appears to be a reference to an undefined
13881 symbol. Just ignore it -- it will be caught by the
13882 regular reloc processing. */
13883 continue;
13884
13885 symval = (h->root.u.def.value
13886 + h->root.u.def.section->output_section->vma
13887 + h->root.u.def.section->output_offset);
13888 target_is_micromips_code_p = (!h->needs_plt
13889 && ELF_ST_IS_MICROMIPS (h->other));
13890 }
13891
13892
13893 /* For simplicity of coding, we are going to modify the
13894 section contents, the section relocs, and the BFD symbol
13895 table. We must tell the rest of the code not to free up this
13896 information. It would be possible to instead create a table
13897 of changes which have to be made, as is done in coff-mips.c;
13898 that would be more work, but would require less memory when
13899 the linker is run. */
13900
13901 /* Only 32-bit instructions relaxed. */
13902 if (irel->r_offset + 4 > sec->size)
13903 continue;
13904
13905 opcode = bfd_get_micromips_32 (abfd, ptr);
13906
13907 /* This is the pc-relative distance from the instruction the
13908 relocation is applied to, to the symbol referred. */
13909 pcrval = (symval
13910 - (sec->output_section->vma + sec->output_offset)
13911 - irel->r_offset);
13912
13913 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13914 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13915 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13916
13917 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13918
13919 where pcrval has first to be adjusted to apply against the LO16
13920 location (we make the adjustment later on, when we have figured
13921 out the offset). */
13922 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13923 {
13924 bfd_boolean bzc = FALSE;
13925 unsigned long nextopc;
13926 unsigned long reg;
13927 bfd_vma offset;
13928
13929 /* Give up if the previous reloc was a HI16 against this symbol
13930 too. */
13931 if (irel > internal_relocs
13932 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13933 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13934 continue;
13935
13936 /* Or if the next reloc is not a LO16 against this symbol. */
13937 if (irel + 1 >= irelend
13938 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13939 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13940 continue;
13941
13942 /* Or if the second next reloc is a LO16 against this symbol too. */
13943 if (irel + 2 >= irelend
13944 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13945 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13946 continue;
13947
13948 /* See if the LUI instruction *might* be in a branch delay slot.
13949 We check whether what looks like a 16-bit branch or jump is
13950 actually an immediate argument to a compact branch, and let
13951 it through if so. */
13952 if (irel->r_offset >= 2
13953 && check_br16_dslot (abfd, ptr - 2)
13954 && !(irel->r_offset >= 4
13955 && (bzc = check_relocated_bzc (abfd,
13956 ptr - 4, irel->r_offset - 4,
13957 internal_relocs, irelend))))
13958 continue;
13959 if (irel->r_offset >= 4
13960 && !bzc
13961 && check_br32_dslot (abfd, ptr - 4))
13962 continue;
13963
13964 reg = OP32_SREG (opcode);
13965
13966 /* We only relax adjacent instructions or ones separated with
13967 a branch or jump that has a delay slot. The branch or jump
13968 must not fiddle with the register used to hold the address.
13969 Subtract 4 for the LUI itself. */
13970 offset = irel[1].r_offset - irel[0].r_offset;
13971 switch (offset - 4)
13972 {
13973 case 0:
13974 break;
13975 case 2:
13976 if (check_br16 (abfd, ptr + 4, reg))
13977 break;
13978 continue;
13979 case 4:
13980 if (check_br32 (abfd, ptr + 4, reg))
13981 break;
13982 continue;
13983 default:
13984 continue;
13985 }
13986
13987 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13988
13989 /* Give up unless the same register is used with both
13990 relocations. */
13991 if (OP32_SREG (nextopc) != reg)
13992 continue;
13993
13994 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13995 and rounding up to take masking of the two LSBs into account. */
13996 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13997
13998 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13999 if (IS_BITSIZE (symval, 16))
14000 {
14001 /* Fix the relocation's type. */
14002 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
14003
14004 /* Instructions using R_MICROMIPS_LO16 have the base or
14005 source register in bits 20:16. This register becomes $0
14006 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
14007 nextopc &= ~0x001f0000;
14008 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
14009 contents + irel[1].r_offset);
14010 }
14011
14012 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
14013 We add 4 to take LUI deletion into account while checking
14014 the PC-relative distance. */
14015 else if (symval % 4 == 0
14016 && IS_BITSIZE (pcrval + 4, 25)
14017 && MATCH (nextopc, addiu_insn)
14018 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
14019 && OP16_VALID_REG (OP32_TREG (nextopc)))
14020 {
14021 /* Fix the relocation's type. */
14022 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
14023
14024 /* Replace ADDIU with the ADDIUPC version. */
14025 nextopc = (addiupc_insn.match
14026 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
14027
14028 bfd_put_micromips_32 (abfd, nextopc,
14029 contents + irel[1].r_offset);
14030 }
14031
14032 /* Can't do anything, give up, sigh... */
14033 else
14034 continue;
14035
14036 /* Fix the relocation's type. */
14037 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
14038
14039 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
14040 delcnt = 4;
14041 deloff = 0;
14042 }
14043
14044 /* Compact branch relaxation -- due to the multitude of macros
14045 employed by the compiler/assembler, compact branches are not
14046 always generated. Obviously, this can/will be fixed elsewhere,
14047 but there is no drawback in double checking it here. */
14048 else if (r_type == R_MICROMIPS_PC16_S1
14049 && irel->r_offset + 5 < sec->size
14050 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14051 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
14052 && ((!insn32
14053 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
14054 nop_insn_16) ? 2 : 0))
14055 || (irel->r_offset + 7 < sec->size
14056 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
14057 ptr + 4),
14058 nop_insn_32) ? 4 : 0))))
14059 {
14060 unsigned long reg;
14061
14062 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14063
14064 /* Replace BEQZ/BNEZ with the compact version. */
14065 opcode = (bzc_insns_32[fndopc].match
14066 | BZC32_REG_FIELD (reg)
14067 | (opcode & 0xffff)); /* Addend value. */
14068
14069 bfd_put_micromips_32 (abfd, opcode, ptr);
14070
14071 /* Delete the delay slot NOP: two or four bytes from
14072 irel->offset + 4; delcnt has already been set above. */
14073 deloff = 4;
14074 }
14075
14076 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
14077 to check the distance from the next instruction, so subtract 2. */
14078 else if (!insn32
14079 && r_type == R_MICROMIPS_PC16_S1
14080 && IS_BITSIZE (pcrval - 2, 11)
14081 && find_match (opcode, b_insns_32) >= 0)
14082 {
14083 /* Fix the relocation's type. */
14084 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
14085
14086 /* Replace the 32-bit opcode with a 16-bit opcode. */
14087 bfd_put_16 (abfd,
14088 (b_insn_16.match
14089 | (opcode & 0x3ff)), /* Addend value. */
14090 ptr);
14091
14092 /* Delete 2 bytes from irel->r_offset + 2. */
14093 delcnt = 2;
14094 deloff = 2;
14095 }
14096
14097 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
14098 to check the distance from the next instruction, so subtract 2. */
14099 else if (!insn32
14100 && r_type == R_MICROMIPS_PC16_S1
14101 && IS_BITSIZE (pcrval - 2, 8)
14102 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14103 && OP16_VALID_REG (OP32_SREG (opcode)))
14104 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
14105 && OP16_VALID_REG (OP32_TREG (opcode)))))
14106 {
14107 unsigned long reg;
14108
14109 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14110
14111 /* Fix the relocation's type. */
14112 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
14113
14114 /* Replace the 32-bit opcode with a 16-bit opcode. */
14115 bfd_put_16 (abfd,
14116 (bz_insns_16[fndopc].match
14117 | BZ16_REG_FIELD (reg)
14118 | (opcode & 0x7f)), /* Addend value. */
14119 ptr);
14120
14121 /* Delete 2 bytes from irel->r_offset + 2. */
14122 delcnt = 2;
14123 deloff = 2;
14124 }
14125
14126 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
14127 else if (!insn32
14128 && r_type == R_MICROMIPS_26_S1
14129 && target_is_micromips_code_p
14130 && irel->r_offset + 7 < sec->size
14131 && MATCH (opcode, jal_insn_32_bd32))
14132 {
14133 unsigned long n32opc;
14134 bfd_boolean relaxed = FALSE;
14135
14136 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
14137
14138 if (MATCH (n32opc, nop_insn_32))
14139 {
14140 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
14141 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
14142
14143 relaxed = TRUE;
14144 }
14145 else if (find_match (n32opc, move_insns_32) >= 0)
14146 {
14147 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
14148 bfd_put_16 (abfd,
14149 (move_insn_16.match
14150 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
14151 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
14152 ptr + 4);
14153
14154 relaxed = TRUE;
14155 }
14156 /* Other 32-bit instructions relaxable to 16-bit
14157 instructions will be handled here later. */
14158
14159 if (relaxed)
14160 {
14161 /* JAL with 32-bit delay slot that is changed to a JALS
14162 with 16-bit delay slot. */
14163 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
14164
14165 /* Delete 2 bytes from irel->r_offset + 6. */
14166 delcnt = 2;
14167 deloff = 6;
14168 }
14169 }
14170
14171 if (delcnt != 0)
14172 {
14173 /* Note that we've changed the relocs, section contents, etc. */
14174 elf_section_data (sec)->relocs = internal_relocs;
14175 elf_section_data (sec)->this_hdr.contents = contents;
14176 symtab_hdr->contents = (unsigned char *) isymbuf;
14177
14178 /* Delete bytes depending on the delcnt and deloff. */
14179 if (!mips_elf_relax_delete_bytes (abfd, sec,
14180 irel->r_offset + deloff, delcnt))
14181 goto error_return;
14182
14183 /* That will change things, so we should relax again.
14184 Note that this is not required, and it may be slow. */
14185 *again = TRUE;
14186 }
14187 }
14188
14189 if (isymbuf != NULL
14190 && symtab_hdr->contents != (unsigned char *) isymbuf)
14191 {
14192 if (! link_info->keep_memory)
14193 free (isymbuf);
14194 else
14195 {
14196 /* Cache the symbols for elf_link_input_bfd. */
14197 symtab_hdr->contents = (unsigned char *) isymbuf;
14198 }
14199 }
14200
14201 if (contents != NULL
14202 && elf_section_data (sec)->this_hdr.contents != contents)
14203 {
14204 if (! link_info->keep_memory)
14205 free (contents);
14206 else
14207 {
14208 /* Cache the section contents for elf_link_input_bfd. */
14209 elf_section_data (sec)->this_hdr.contents = contents;
14210 }
14211 }
14212
14213 if (internal_relocs != NULL
14214 && elf_section_data (sec)->relocs != internal_relocs)
14215 free (internal_relocs);
14216
14217 return TRUE;
14218
14219 error_return:
14220 if (isymbuf != NULL
14221 && symtab_hdr->contents != (unsigned char *) isymbuf)
14222 free (isymbuf);
14223 if (contents != NULL
14224 && elf_section_data (sec)->this_hdr.contents != contents)
14225 free (contents);
14226 if (internal_relocs != NULL
14227 && elf_section_data (sec)->relocs != internal_relocs)
14228 free (internal_relocs);
14229
14230 return FALSE;
14231 }
14232 \f
14233 /* Create a MIPS ELF linker hash table. */
14234
14235 struct bfd_link_hash_table *
14236 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14237 {
14238 struct mips_elf_link_hash_table *ret;
14239 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14240
14241 ret = bfd_zmalloc (amt);
14242 if (ret == NULL)
14243 return NULL;
14244
14245 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14246 mips_elf_link_hash_newfunc,
14247 sizeof (struct mips_elf_link_hash_entry),
14248 MIPS_ELF_DATA))
14249 {
14250 free (ret);
14251 return NULL;
14252 }
14253 ret->root.init_plt_refcount.plist = NULL;
14254 ret->root.init_plt_offset.plist = NULL;
14255
14256 return &ret->root.root;
14257 }
14258
14259 /* Likewise, but indicate that the target is VxWorks. */
14260
14261 struct bfd_link_hash_table *
14262 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14263 {
14264 struct bfd_link_hash_table *ret;
14265
14266 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14267 if (ret)
14268 {
14269 struct mips_elf_link_hash_table *htab;
14270
14271 htab = (struct mips_elf_link_hash_table *) ret;
14272 htab->use_plts_and_copy_relocs = TRUE;
14273 htab->is_vxworks = TRUE;
14274 }
14275 return ret;
14276 }
14277
14278 /* A function that the linker calls if we are allowed to use PLTs
14279 and copy relocs. */
14280
14281 void
14282 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14283 {
14284 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14285 }
14286
14287 /* A function that the linker calls to select between all or only
14288 32-bit microMIPS instructions, and between making or ignoring
14289 branch relocation checks for invalid transitions between ISA modes.
14290 Also record whether we have been configured for a GNU target. */
14291
14292 void
14293 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
14294 bfd_boolean ignore_branch_isa,
14295 bfd_boolean gnu_target)
14296 {
14297 mips_elf_hash_table (info)->insn32 = insn32;
14298 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
14299 mips_elf_hash_table (info)->gnu_target = gnu_target;
14300 }
14301
14302 /* A function that the linker calls to enable use of compact branches in
14303 linker generated code for MIPSR6. */
14304
14305 void
14306 _bfd_mips_elf_compact_branches (struct bfd_link_info *info, bfd_boolean on)
14307 {
14308 mips_elf_hash_table (info)->compact_branches = on;
14309 }
14310
14311 \f
14312 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14313
14314 struct mips_mach_extension
14315 {
14316 unsigned long extension, base;
14317 };
14318
14319
14320 /* An array describing how BFD machines relate to one another. The entries
14321 are ordered topologically with MIPS I extensions listed last. */
14322
14323 static const struct mips_mach_extension mips_mach_extensions[] =
14324 {
14325 /* MIPS64r2 extensions. */
14326 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14327 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14328 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14329 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14330 { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e },
14331 { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
14332 { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
14333
14334 /* MIPS64 extensions. */
14335 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14336 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14337 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14338
14339 /* MIPS V extensions. */
14340 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14341
14342 /* R10000 extensions. */
14343 { bfd_mach_mips12000, bfd_mach_mips10000 },
14344 { bfd_mach_mips14000, bfd_mach_mips10000 },
14345 { bfd_mach_mips16000, bfd_mach_mips10000 },
14346
14347 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14348 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14349 better to allow vr5400 and vr5500 code to be merged anyway, since
14350 many libraries will just use the core ISA. Perhaps we could add
14351 some sort of ASE flag if this ever proves a problem. */
14352 { bfd_mach_mips5500, bfd_mach_mips5400 },
14353 { bfd_mach_mips5400, bfd_mach_mips5000 },
14354
14355 /* MIPS IV extensions. */
14356 { bfd_mach_mips5, bfd_mach_mips8000 },
14357 { bfd_mach_mips10000, bfd_mach_mips8000 },
14358 { bfd_mach_mips5000, bfd_mach_mips8000 },
14359 { bfd_mach_mips7000, bfd_mach_mips8000 },
14360 { bfd_mach_mips9000, bfd_mach_mips8000 },
14361
14362 /* VR4100 extensions. */
14363 { bfd_mach_mips4120, bfd_mach_mips4100 },
14364 { bfd_mach_mips4111, bfd_mach_mips4100 },
14365
14366 /* MIPS III extensions. */
14367 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14368 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14369 { bfd_mach_mips8000, bfd_mach_mips4000 },
14370 { bfd_mach_mips4650, bfd_mach_mips4000 },
14371 { bfd_mach_mips4600, bfd_mach_mips4000 },
14372 { bfd_mach_mips4400, bfd_mach_mips4000 },
14373 { bfd_mach_mips4300, bfd_mach_mips4000 },
14374 { bfd_mach_mips4100, bfd_mach_mips4000 },
14375 { bfd_mach_mips5900, bfd_mach_mips4000 },
14376
14377 /* MIPS32r3 extensions. */
14378 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14379
14380 /* MIPS32r2 extensions. */
14381 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14382
14383 /* MIPS32 extensions. */
14384 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14385
14386 /* MIPS II extensions. */
14387 { bfd_mach_mips4000, bfd_mach_mips6000 },
14388 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14389 { bfd_mach_mips4010, bfd_mach_mips6000 },
14390
14391 /* MIPS I extensions. */
14392 { bfd_mach_mips6000, bfd_mach_mips3000 },
14393 { bfd_mach_mips3900, bfd_mach_mips3000 }
14394 };
14395
14396 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14397
14398 static bfd_boolean
14399 mips_mach_extends_p (unsigned long base, unsigned long extension)
14400 {
14401 size_t i;
14402
14403 if (extension == base)
14404 return TRUE;
14405
14406 if (base == bfd_mach_mipsisa32
14407 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14408 return TRUE;
14409
14410 if (base == bfd_mach_mipsisa32r2
14411 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14412 return TRUE;
14413
14414 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14415 if (extension == mips_mach_extensions[i].extension)
14416 {
14417 extension = mips_mach_extensions[i].base;
14418 if (extension == base)
14419 return TRUE;
14420 }
14421
14422 return FALSE;
14423 }
14424
14425 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14426
14427 static unsigned long
14428 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14429 {
14430 switch (isa_ext)
14431 {
14432 case AFL_EXT_3900: return bfd_mach_mips3900;
14433 case AFL_EXT_4010: return bfd_mach_mips4010;
14434 case AFL_EXT_4100: return bfd_mach_mips4100;
14435 case AFL_EXT_4111: return bfd_mach_mips4111;
14436 case AFL_EXT_4120: return bfd_mach_mips4120;
14437 case AFL_EXT_4650: return bfd_mach_mips4650;
14438 case AFL_EXT_5400: return bfd_mach_mips5400;
14439 case AFL_EXT_5500: return bfd_mach_mips5500;
14440 case AFL_EXT_5900: return bfd_mach_mips5900;
14441 case AFL_EXT_10000: return bfd_mach_mips10000;
14442 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14443 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14444 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14445 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14446 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14447 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14448 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14449 default: return bfd_mach_mips3000;
14450 }
14451 }
14452
14453 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14454
14455 unsigned int
14456 bfd_mips_isa_ext (bfd *abfd)
14457 {
14458 switch (bfd_get_mach (abfd))
14459 {
14460 case bfd_mach_mips3900: return AFL_EXT_3900;
14461 case bfd_mach_mips4010: return AFL_EXT_4010;
14462 case bfd_mach_mips4100: return AFL_EXT_4100;
14463 case bfd_mach_mips4111: return AFL_EXT_4111;
14464 case bfd_mach_mips4120: return AFL_EXT_4120;
14465 case bfd_mach_mips4650: return AFL_EXT_4650;
14466 case bfd_mach_mips5400: return AFL_EXT_5400;
14467 case bfd_mach_mips5500: return AFL_EXT_5500;
14468 case bfd_mach_mips5900: return AFL_EXT_5900;
14469 case bfd_mach_mips10000: return AFL_EXT_10000;
14470 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14471 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14472 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14473 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14474 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14475 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14476 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14477 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14478 case bfd_mach_mips_interaptiv_mr2:
14479 return AFL_EXT_INTERAPTIV_MR2;
14480 default: return 0;
14481 }
14482 }
14483
14484 /* Encode ISA level and revision as a single value. */
14485 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14486
14487 /* Decode a single value into level and revision. */
14488 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14489 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14490
14491 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14492
14493 static void
14494 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14495 {
14496 int new_isa = 0;
14497 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14498 {
14499 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14500 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14501 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14502 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14503 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14504 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14505 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14506 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14507 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14508 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14509 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14510 default:
14511 _bfd_error_handler
14512 /* xgettext:c-format */
14513 (_("%pB: unknown architecture %s"),
14514 abfd, bfd_printable_name (abfd));
14515 }
14516
14517 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14518 {
14519 abiflags->isa_level = ISA_LEVEL (new_isa);
14520 abiflags->isa_rev = ISA_REV (new_isa);
14521 }
14522
14523 /* Update the isa_ext if ABFD describes a further extension. */
14524 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14525 bfd_get_mach (abfd)))
14526 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14527 }
14528
14529 /* Return true if the given ELF header flags describe a 32-bit binary. */
14530
14531 static bfd_boolean
14532 mips_32bit_flags_p (flagword flags)
14533 {
14534 return ((flags & EF_MIPS_32BITMODE) != 0
14535 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14536 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14537 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14538 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14539 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14540 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14541 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14542 }
14543
14544 /* Infer the content of the ABI flags based on the elf header. */
14545
14546 static void
14547 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14548 {
14549 obj_attribute *in_attr;
14550
14551 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14552 update_mips_abiflags_isa (abfd, abiflags);
14553
14554 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14555 abiflags->gpr_size = AFL_REG_32;
14556 else
14557 abiflags->gpr_size = AFL_REG_64;
14558
14559 abiflags->cpr1_size = AFL_REG_NONE;
14560
14561 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14562 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14563
14564 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14565 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14566 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14567 && abiflags->gpr_size == AFL_REG_32))
14568 abiflags->cpr1_size = AFL_REG_32;
14569 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14570 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14571 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14572 abiflags->cpr1_size = AFL_REG_64;
14573
14574 abiflags->cpr2_size = AFL_REG_NONE;
14575
14576 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14577 abiflags->ases |= AFL_ASE_MDMX;
14578 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14579 abiflags->ases |= AFL_ASE_MIPS16;
14580 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14581 abiflags->ases |= AFL_ASE_MICROMIPS;
14582
14583 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14584 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14585 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14586 && abiflags->isa_level >= 32
14587 && abiflags->ases != AFL_ASE_LOONGSON_EXT)
14588 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14589 }
14590
14591 /* We need to use a special link routine to handle the .reginfo and
14592 the .mdebug sections. We need to merge all instances of these
14593 sections together, not write them all out sequentially. */
14594
14595 bfd_boolean
14596 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14597 {
14598 asection *o;
14599 struct bfd_link_order *p;
14600 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14601 asection *rtproc_sec, *abiflags_sec;
14602 Elf32_RegInfo reginfo;
14603 struct ecoff_debug_info debug;
14604 struct mips_htab_traverse_info hti;
14605 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14606 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14607 HDRR *symhdr = &debug.symbolic_header;
14608 void *mdebug_handle = NULL;
14609 asection *s;
14610 EXTR esym;
14611 unsigned int i;
14612 bfd_size_type amt;
14613 struct mips_elf_link_hash_table *htab;
14614
14615 static const char * const secname[] =
14616 {
14617 ".text", ".init", ".fini", ".data",
14618 ".rodata", ".sdata", ".sbss", ".bss"
14619 };
14620 static const int sc[] =
14621 {
14622 scText, scInit, scFini, scData,
14623 scRData, scSData, scSBss, scBss
14624 };
14625
14626 htab = mips_elf_hash_table (info);
14627 BFD_ASSERT (htab != NULL);
14628
14629 /* Sort the dynamic symbols so that those with GOT entries come after
14630 those without. */
14631 if (!mips_elf_sort_hash_table (abfd, info))
14632 return FALSE;
14633
14634 /* Create any scheduled LA25 stubs. */
14635 hti.info = info;
14636 hti.output_bfd = abfd;
14637 hti.error = FALSE;
14638 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14639 if (hti.error)
14640 return FALSE;
14641
14642 /* Get a value for the GP register. */
14643 if (elf_gp (abfd) == 0)
14644 {
14645 struct bfd_link_hash_entry *h;
14646
14647 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14648 if (h != NULL && h->type == bfd_link_hash_defined)
14649 elf_gp (abfd) = (h->u.def.value
14650 + h->u.def.section->output_section->vma
14651 + h->u.def.section->output_offset);
14652 else if (htab->is_vxworks
14653 && (h = bfd_link_hash_lookup (info->hash,
14654 "_GLOBAL_OFFSET_TABLE_",
14655 FALSE, FALSE, TRUE))
14656 && h->type == bfd_link_hash_defined)
14657 elf_gp (abfd) = (h->u.def.section->output_section->vma
14658 + h->u.def.section->output_offset
14659 + h->u.def.value);
14660 else if (bfd_link_relocatable (info))
14661 {
14662 bfd_vma lo = MINUS_ONE;
14663
14664 /* Find the GP-relative section with the lowest offset. */
14665 for (o = abfd->sections; o != NULL; o = o->next)
14666 if (o->vma < lo
14667 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14668 lo = o->vma;
14669
14670 /* And calculate GP relative to that. */
14671 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14672 }
14673 else
14674 {
14675 /* If the relocate_section function needs to do a reloc
14676 involving the GP value, it should make a reloc_dangerous
14677 callback to warn that GP is not defined. */
14678 }
14679 }
14680
14681 /* Go through the sections and collect the .reginfo and .mdebug
14682 information. */
14683 abiflags_sec = NULL;
14684 reginfo_sec = NULL;
14685 mdebug_sec = NULL;
14686 gptab_data_sec = NULL;
14687 gptab_bss_sec = NULL;
14688 for (o = abfd->sections; o != NULL; o = o->next)
14689 {
14690 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14691 {
14692 /* We have found the .MIPS.abiflags section in the output file.
14693 Look through all the link_orders comprising it and remove them.
14694 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14695 for (p = o->map_head.link_order; p != NULL; p = p->next)
14696 {
14697 asection *input_section;
14698
14699 if (p->type != bfd_indirect_link_order)
14700 {
14701 if (p->type == bfd_data_link_order)
14702 continue;
14703 abort ();
14704 }
14705
14706 input_section = p->u.indirect.section;
14707
14708 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14709 elf_link_input_bfd ignores this section. */
14710 input_section->flags &= ~SEC_HAS_CONTENTS;
14711 }
14712
14713 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14714 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14715
14716 /* Skip this section later on (I don't think this currently
14717 matters, but someday it might). */
14718 o->map_head.link_order = NULL;
14719
14720 abiflags_sec = o;
14721 }
14722
14723 if (strcmp (o->name, ".reginfo") == 0)
14724 {
14725 memset (&reginfo, 0, sizeof reginfo);
14726
14727 /* We have found the .reginfo section in the output file.
14728 Look through all the link_orders comprising it and merge
14729 the information together. */
14730 for (p = o->map_head.link_order; p != NULL; p = p->next)
14731 {
14732 asection *input_section;
14733 bfd *input_bfd;
14734 Elf32_External_RegInfo ext;
14735 Elf32_RegInfo sub;
14736 bfd_size_type sz;
14737
14738 if (p->type != bfd_indirect_link_order)
14739 {
14740 if (p->type == bfd_data_link_order)
14741 continue;
14742 abort ();
14743 }
14744
14745 input_section = p->u.indirect.section;
14746 input_bfd = input_section->owner;
14747
14748 sz = (input_section->size < sizeof (ext)
14749 ? input_section->size : sizeof (ext));
14750 memset (&ext, 0, sizeof (ext));
14751 if (! bfd_get_section_contents (input_bfd, input_section,
14752 &ext, 0, sz))
14753 return FALSE;
14754
14755 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14756
14757 reginfo.ri_gprmask |= sub.ri_gprmask;
14758 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14759 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14760 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14761 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14762
14763 /* ri_gp_value is set by the function
14764 `_bfd_mips_elf_section_processing' when the section is
14765 finally written out. */
14766
14767 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14768 elf_link_input_bfd ignores this section. */
14769 input_section->flags &= ~SEC_HAS_CONTENTS;
14770 }
14771
14772 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14773 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14774
14775 /* Skip this section later on (I don't think this currently
14776 matters, but someday it might). */
14777 o->map_head.link_order = NULL;
14778
14779 reginfo_sec = o;
14780 }
14781
14782 if (strcmp (o->name, ".mdebug") == 0)
14783 {
14784 struct extsym_info einfo;
14785 bfd_vma last;
14786
14787 /* We have found the .mdebug section in the output file.
14788 Look through all the link_orders comprising it and merge
14789 the information together. */
14790 symhdr->magic = swap->sym_magic;
14791 /* FIXME: What should the version stamp be? */
14792 symhdr->vstamp = 0;
14793 symhdr->ilineMax = 0;
14794 symhdr->cbLine = 0;
14795 symhdr->idnMax = 0;
14796 symhdr->ipdMax = 0;
14797 symhdr->isymMax = 0;
14798 symhdr->ioptMax = 0;
14799 symhdr->iauxMax = 0;
14800 symhdr->issMax = 0;
14801 symhdr->issExtMax = 0;
14802 symhdr->ifdMax = 0;
14803 symhdr->crfd = 0;
14804 symhdr->iextMax = 0;
14805
14806 /* We accumulate the debugging information itself in the
14807 debug_info structure. */
14808 debug.line = NULL;
14809 debug.external_dnr = NULL;
14810 debug.external_pdr = NULL;
14811 debug.external_sym = NULL;
14812 debug.external_opt = NULL;
14813 debug.external_aux = NULL;
14814 debug.ss = NULL;
14815 debug.ssext = debug.ssext_end = NULL;
14816 debug.external_fdr = NULL;
14817 debug.external_rfd = NULL;
14818 debug.external_ext = debug.external_ext_end = NULL;
14819
14820 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14821 if (mdebug_handle == NULL)
14822 return FALSE;
14823
14824 esym.jmptbl = 0;
14825 esym.cobol_main = 0;
14826 esym.weakext = 0;
14827 esym.reserved = 0;
14828 esym.ifd = ifdNil;
14829 esym.asym.iss = issNil;
14830 esym.asym.st = stLocal;
14831 esym.asym.reserved = 0;
14832 esym.asym.index = indexNil;
14833 last = 0;
14834 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14835 {
14836 esym.asym.sc = sc[i];
14837 s = bfd_get_section_by_name (abfd, secname[i]);
14838 if (s != NULL)
14839 {
14840 esym.asym.value = s->vma;
14841 last = s->vma + s->size;
14842 }
14843 else
14844 esym.asym.value = last;
14845 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14846 secname[i], &esym))
14847 return FALSE;
14848 }
14849
14850 for (p = o->map_head.link_order; p != NULL; p = p->next)
14851 {
14852 asection *input_section;
14853 bfd *input_bfd;
14854 const struct ecoff_debug_swap *input_swap;
14855 struct ecoff_debug_info input_debug;
14856 char *eraw_src;
14857 char *eraw_end;
14858
14859 if (p->type != bfd_indirect_link_order)
14860 {
14861 if (p->type == bfd_data_link_order)
14862 continue;
14863 abort ();
14864 }
14865
14866 input_section = p->u.indirect.section;
14867 input_bfd = input_section->owner;
14868
14869 if (!is_mips_elf (input_bfd))
14870 {
14871 /* I don't know what a non MIPS ELF bfd would be
14872 doing with a .mdebug section, but I don't really
14873 want to deal with it. */
14874 continue;
14875 }
14876
14877 input_swap = (get_elf_backend_data (input_bfd)
14878 ->elf_backend_ecoff_debug_swap);
14879
14880 BFD_ASSERT (p->size == input_section->size);
14881
14882 /* The ECOFF linking code expects that we have already
14883 read in the debugging information and set up an
14884 ecoff_debug_info structure, so we do that now. */
14885 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14886 &input_debug))
14887 return FALSE;
14888
14889 if (! (bfd_ecoff_debug_accumulate
14890 (mdebug_handle, abfd, &debug, swap, input_bfd,
14891 &input_debug, input_swap, info)))
14892 return FALSE;
14893
14894 /* Loop through the external symbols. For each one with
14895 interesting information, try to find the symbol in
14896 the linker global hash table and save the information
14897 for the output external symbols. */
14898 eraw_src = input_debug.external_ext;
14899 eraw_end = (eraw_src
14900 + (input_debug.symbolic_header.iextMax
14901 * input_swap->external_ext_size));
14902 for (;
14903 eraw_src < eraw_end;
14904 eraw_src += input_swap->external_ext_size)
14905 {
14906 EXTR ext;
14907 const char *name;
14908 struct mips_elf_link_hash_entry *h;
14909
14910 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14911 if (ext.asym.sc == scNil
14912 || ext.asym.sc == scUndefined
14913 || ext.asym.sc == scSUndefined)
14914 continue;
14915
14916 name = input_debug.ssext + ext.asym.iss;
14917 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14918 name, FALSE, FALSE, TRUE);
14919 if (h == NULL || h->esym.ifd != -2)
14920 continue;
14921
14922 if (ext.ifd != -1)
14923 {
14924 BFD_ASSERT (ext.ifd
14925 < input_debug.symbolic_header.ifdMax);
14926 ext.ifd = input_debug.ifdmap[ext.ifd];
14927 }
14928
14929 h->esym = ext;
14930 }
14931
14932 /* Free up the information we just read. */
14933 free (input_debug.line);
14934 free (input_debug.external_dnr);
14935 free (input_debug.external_pdr);
14936 free (input_debug.external_sym);
14937 free (input_debug.external_opt);
14938 free (input_debug.external_aux);
14939 free (input_debug.ss);
14940 free (input_debug.ssext);
14941 free (input_debug.external_fdr);
14942 free (input_debug.external_rfd);
14943 free (input_debug.external_ext);
14944
14945 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14946 elf_link_input_bfd ignores this section. */
14947 input_section->flags &= ~SEC_HAS_CONTENTS;
14948 }
14949
14950 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14951 {
14952 /* Create .rtproc section. */
14953 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14954 if (rtproc_sec == NULL)
14955 {
14956 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14957 | SEC_LINKER_CREATED | SEC_READONLY);
14958
14959 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14960 ".rtproc",
14961 flags);
14962 if (rtproc_sec == NULL
14963 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14964 return FALSE;
14965 }
14966
14967 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14968 info, rtproc_sec,
14969 &debug))
14970 return FALSE;
14971 }
14972
14973 /* Build the external symbol information. */
14974 einfo.abfd = abfd;
14975 einfo.info = info;
14976 einfo.debug = &debug;
14977 einfo.swap = swap;
14978 einfo.failed = FALSE;
14979 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14980 mips_elf_output_extsym, &einfo);
14981 if (einfo.failed)
14982 return FALSE;
14983
14984 /* Set the size of the .mdebug section. */
14985 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14986
14987 /* Skip this section later on (I don't think this currently
14988 matters, but someday it might). */
14989 o->map_head.link_order = NULL;
14990
14991 mdebug_sec = o;
14992 }
14993
14994 if (CONST_STRNEQ (o->name, ".gptab."))
14995 {
14996 const char *subname;
14997 unsigned int c;
14998 Elf32_gptab *tab;
14999 Elf32_External_gptab *ext_tab;
15000 unsigned int j;
15001
15002 /* The .gptab.sdata and .gptab.sbss sections hold
15003 information describing how the small data area would
15004 change depending upon the -G switch. These sections
15005 not used in executables files. */
15006 if (! bfd_link_relocatable (info))
15007 {
15008 for (p = o->map_head.link_order; p != NULL; p = p->next)
15009 {
15010 asection *input_section;
15011
15012 if (p->type != bfd_indirect_link_order)
15013 {
15014 if (p->type == bfd_data_link_order)
15015 continue;
15016 abort ();
15017 }
15018
15019 input_section = p->u.indirect.section;
15020
15021 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15022 elf_link_input_bfd ignores this section. */
15023 input_section->flags &= ~SEC_HAS_CONTENTS;
15024 }
15025
15026 /* Skip this section later on (I don't think this
15027 currently matters, but someday it might). */
15028 o->map_head.link_order = NULL;
15029
15030 /* Really remove the section. */
15031 bfd_section_list_remove (abfd, o);
15032 --abfd->section_count;
15033
15034 continue;
15035 }
15036
15037 /* There is one gptab for initialized data, and one for
15038 uninitialized data. */
15039 if (strcmp (o->name, ".gptab.sdata") == 0)
15040 gptab_data_sec = o;
15041 else if (strcmp (o->name, ".gptab.sbss") == 0)
15042 gptab_bss_sec = o;
15043 else
15044 {
15045 _bfd_error_handler
15046 /* xgettext:c-format */
15047 (_("%pB: illegal section name `%pA'"), abfd, o);
15048 bfd_set_error (bfd_error_nonrepresentable_section);
15049 return FALSE;
15050 }
15051
15052 /* The linker script always combines .gptab.data and
15053 .gptab.sdata into .gptab.sdata, and likewise for
15054 .gptab.bss and .gptab.sbss. It is possible that there is
15055 no .sdata or .sbss section in the output file, in which
15056 case we must change the name of the output section. */
15057 subname = o->name + sizeof ".gptab" - 1;
15058 if (bfd_get_section_by_name (abfd, subname) == NULL)
15059 {
15060 if (o == gptab_data_sec)
15061 o->name = ".gptab.data";
15062 else
15063 o->name = ".gptab.bss";
15064 subname = o->name + sizeof ".gptab" - 1;
15065 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
15066 }
15067
15068 /* Set up the first entry. */
15069 c = 1;
15070 amt = c * sizeof (Elf32_gptab);
15071 tab = bfd_malloc (amt);
15072 if (tab == NULL)
15073 return FALSE;
15074 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
15075 tab[0].gt_header.gt_unused = 0;
15076
15077 /* Combine the input sections. */
15078 for (p = o->map_head.link_order; p != NULL; p = p->next)
15079 {
15080 asection *input_section;
15081 bfd *input_bfd;
15082 bfd_size_type size;
15083 unsigned long last;
15084 bfd_size_type gpentry;
15085
15086 if (p->type != bfd_indirect_link_order)
15087 {
15088 if (p->type == bfd_data_link_order)
15089 continue;
15090 abort ();
15091 }
15092
15093 input_section = p->u.indirect.section;
15094 input_bfd = input_section->owner;
15095
15096 /* Combine the gptab entries for this input section one
15097 by one. We know that the input gptab entries are
15098 sorted by ascending -G value. */
15099 size = input_section->size;
15100 last = 0;
15101 for (gpentry = sizeof (Elf32_External_gptab);
15102 gpentry < size;
15103 gpentry += sizeof (Elf32_External_gptab))
15104 {
15105 Elf32_External_gptab ext_gptab;
15106 Elf32_gptab int_gptab;
15107 unsigned long val;
15108 unsigned long add;
15109 bfd_boolean exact;
15110 unsigned int look;
15111
15112 if (! (bfd_get_section_contents
15113 (input_bfd, input_section, &ext_gptab, gpentry,
15114 sizeof (Elf32_External_gptab))))
15115 {
15116 free (tab);
15117 return FALSE;
15118 }
15119
15120 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
15121 &int_gptab);
15122 val = int_gptab.gt_entry.gt_g_value;
15123 add = int_gptab.gt_entry.gt_bytes - last;
15124
15125 exact = FALSE;
15126 for (look = 1; look < c; look++)
15127 {
15128 if (tab[look].gt_entry.gt_g_value >= val)
15129 tab[look].gt_entry.gt_bytes += add;
15130
15131 if (tab[look].gt_entry.gt_g_value == val)
15132 exact = TRUE;
15133 }
15134
15135 if (! exact)
15136 {
15137 Elf32_gptab *new_tab;
15138 unsigned int max;
15139
15140 /* We need a new table entry. */
15141 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
15142 new_tab = bfd_realloc (tab, amt);
15143 if (new_tab == NULL)
15144 {
15145 free (tab);
15146 return FALSE;
15147 }
15148 tab = new_tab;
15149 tab[c].gt_entry.gt_g_value = val;
15150 tab[c].gt_entry.gt_bytes = add;
15151
15152 /* Merge in the size for the next smallest -G
15153 value, since that will be implied by this new
15154 value. */
15155 max = 0;
15156 for (look = 1; look < c; look++)
15157 {
15158 if (tab[look].gt_entry.gt_g_value < val
15159 && (max == 0
15160 || (tab[look].gt_entry.gt_g_value
15161 > tab[max].gt_entry.gt_g_value)))
15162 max = look;
15163 }
15164 if (max != 0)
15165 tab[c].gt_entry.gt_bytes +=
15166 tab[max].gt_entry.gt_bytes;
15167
15168 ++c;
15169 }
15170
15171 last = int_gptab.gt_entry.gt_bytes;
15172 }
15173
15174 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15175 elf_link_input_bfd ignores this section. */
15176 input_section->flags &= ~SEC_HAS_CONTENTS;
15177 }
15178
15179 /* The table must be sorted by -G value. */
15180 if (c > 2)
15181 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
15182
15183 /* Swap out the table. */
15184 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
15185 ext_tab = bfd_alloc (abfd, amt);
15186 if (ext_tab == NULL)
15187 {
15188 free (tab);
15189 return FALSE;
15190 }
15191
15192 for (j = 0; j < c; j++)
15193 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
15194 free (tab);
15195
15196 o->size = c * sizeof (Elf32_External_gptab);
15197 o->contents = (bfd_byte *) ext_tab;
15198
15199 /* Skip this section later on (I don't think this currently
15200 matters, but someday it might). */
15201 o->map_head.link_order = NULL;
15202 }
15203 }
15204
15205 /* Invoke the regular ELF backend linker to do all the work. */
15206 if (!bfd_elf_final_link (abfd, info))
15207 return FALSE;
15208
15209 /* Now write out the computed sections. */
15210
15211 if (abiflags_sec != NULL)
15212 {
15213 Elf_External_ABIFlags_v0 ext;
15214 Elf_Internal_ABIFlags_v0 *abiflags;
15215
15216 abiflags = &mips_elf_tdata (abfd)->abiflags;
15217
15218 /* Set up the abiflags if no valid input sections were found. */
15219 if (!mips_elf_tdata (abfd)->abiflags_valid)
15220 {
15221 infer_mips_abiflags (abfd, abiflags);
15222 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15223 }
15224 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15225 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15226 return FALSE;
15227 }
15228
15229 if (reginfo_sec != NULL)
15230 {
15231 Elf32_External_RegInfo ext;
15232
15233 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
15234 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15235 return FALSE;
15236 }
15237
15238 if (mdebug_sec != NULL)
15239 {
15240 BFD_ASSERT (abfd->output_has_begun);
15241 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15242 swap, info,
15243 mdebug_sec->filepos))
15244 return FALSE;
15245
15246 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15247 }
15248
15249 if (gptab_data_sec != NULL)
15250 {
15251 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15252 gptab_data_sec->contents,
15253 0, gptab_data_sec->size))
15254 return FALSE;
15255 }
15256
15257 if (gptab_bss_sec != NULL)
15258 {
15259 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15260 gptab_bss_sec->contents,
15261 0, gptab_bss_sec->size))
15262 return FALSE;
15263 }
15264
15265 if (SGI_COMPAT (abfd))
15266 {
15267 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15268 if (rtproc_sec != NULL)
15269 {
15270 if (! bfd_set_section_contents (abfd, rtproc_sec,
15271 rtproc_sec->contents,
15272 0, rtproc_sec->size))
15273 return FALSE;
15274 }
15275 }
15276
15277 return TRUE;
15278 }
15279 \f
15280 /* Merge object file header flags from IBFD into OBFD. Raise an error
15281 if there are conflicting settings. */
15282
15283 static bfd_boolean
15284 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15285 {
15286 bfd *obfd = info->output_bfd;
15287 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15288 flagword old_flags;
15289 flagword new_flags;
15290 bfd_boolean ok;
15291
15292 new_flags = elf_elfheader (ibfd)->e_flags;
15293 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15294 old_flags = elf_elfheader (obfd)->e_flags;
15295
15296 /* Check flag compatibility. */
15297
15298 new_flags &= ~EF_MIPS_NOREORDER;
15299 old_flags &= ~EF_MIPS_NOREORDER;
15300
15301 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15302 doesn't seem to matter. */
15303 new_flags &= ~EF_MIPS_XGOT;
15304 old_flags &= ~EF_MIPS_XGOT;
15305
15306 /* MIPSpro generates ucode info in n64 objects. Again, we should
15307 just be able to ignore this. */
15308 new_flags &= ~EF_MIPS_UCODE;
15309 old_flags &= ~EF_MIPS_UCODE;
15310
15311 /* DSOs should only be linked with CPIC code. */
15312 if ((ibfd->flags & DYNAMIC) != 0)
15313 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15314
15315 if (new_flags == old_flags)
15316 return TRUE;
15317
15318 ok = TRUE;
15319
15320 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15321 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15322 {
15323 _bfd_error_handler
15324 (_("%pB: warning: linking abicalls files with non-abicalls files"),
15325 ibfd);
15326 ok = TRUE;
15327 }
15328
15329 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15330 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15331 if (! (new_flags & EF_MIPS_PIC))
15332 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15333
15334 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15335 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15336
15337 /* Compare the ISAs. */
15338 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15339 {
15340 _bfd_error_handler
15341 (_("%pB: linking 32-bit code with 64-bit code"),
15342 ibfd);
15343 ok = FALSE;
15344 }
15345 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15346 {
15347 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15348 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15349 {
15350 /* Copy the architecture info from IBFD to OBFD. Also copy
15351 the 32-bit flag (if set) so that we continue to recognise
15352 OBFD as a 32-bit binary. */
15353 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15354 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15355 elf_elfheader (obfd)->e_flags
15356 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15357
15358 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15359 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15360
15361 /* Copy across the ABI flags if OBFD doesn't use them
15362 and if that was what caused us to treat IBFD as 32-bit. */
15363 if ((old_flags & EF_MIPS_ABI) == 0
15364 && mips_32bit_flags_p (new_flags)
15365 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15366 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15367 }
15368 else
15369 {
15370 /* The ISAs aren't compatible. */
15371 _bfd_error_handler
15372 /* xgettext:c-format */
15373 (_("%pB: linking %s module with previous %s modules"),
15374 ibfd,
15375 bfd_printable_name (ibfd),
15376 bfd_printable_name (obfd));
15377 ok = FALSE;
15378 }
15379 }
15380
15381 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15382 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15383
15384 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15385 does set EI_CLASS differently from any 32-bit ABI. */
15386 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15387 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15388 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15389 {
15390 /* Only error if both are set (to different values). */
15391 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15392 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15393 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15394 {
15395 _bfd_error_handler
15396 /* xgettext:c-format */
15397 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15398 ibfd,
15399 elf_mips_abi_name (ibfd),
15400 elf_mips_abi_name (obfd));
15401 ok = FALSE;
15402 }
15403 new_flags &= ~EF_MIPS_ABI;
15404 old_flags &= ~EF_MIPS_ABI;
15405 }
15406
15407 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15408 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15409 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15410 {
15411 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15412 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15413 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15414 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15415 int micro_mis = old_m16 && new_micro;
15416 int m16_mis = old_micro && new_m16;
15417
15418 if (m16_mis || micro_mis)
15419 {
15420 _bfd_error_handler
15421 /* xgettext:c-format */
15422 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15423 ibfd,
15424 m16_mis ? "MIPS16" : "microMIPS",
15425 m16_mis ? "microMIPS" : "MIPS16");
15426 ok = FALSE;
15427 }
15428
15429 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15430
15431 new_flags &= ~ EF_MIPS_ARCH_ASE;
15432 old_flags &= ~ EF_MIPS_ARCH_ASE;
15433 }
15434
15435 /* Compare NaN encodings. */
15436 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15437 {
15438 /* xgettext:c-format */
15439 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15440 ibfd,
15441 (new_flags & EF_MIPS_NAN2008
15442 ? "-mnan=2008" : "-mnan=legacy"),
15443 (old_flags & EF_MIPS_NAN2008
15444 ? "-mnan=2008" : "-mnan=legacy"));
15445 ok = FALSE;
15446 new_flags &= ~EF_MIPS_NAN2008;
15447 old_flags &= ~EF_MIPS_NAN2008;
15448 }
15449
15450 /* Compare FP64 state. */
15451 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15452 {
15453 /* xgettext:c-format */
15454 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15455 ibfd,
15456 (new_flags & EF_MIPS_FP64
15457 ? "-mfp64" : "-mfp32"),
15458 (old_flags & EF_MIPS_FP64
15459 ? "-mfp64" : "-mfp32"));
15460 ok = FALSE;
15461 new_flags &= ~EF_MIPS_FP64;
15462 old_flags &= ~EF_MIPS_FP64;
15463 }
15464
15465 /* Warn about any other mismatches */
15466 if (new_flags != old_flags)
15467 {
15468 /* xgettext:c-format */
15469 _bfd_error_handler
15470 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15471 "(%#x)"),
15472 ibfd, new_flags, old_flags);
15473 ok = FALSE;
15474 }
15475
15476 return ok;
15477 }
15478
15479 /* Merge object attributes from IBFD into OBFD. Raise an error if
15480 there are conflicting attributes. */
15481 static bfd_boolean
15482 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15483 {
15484 bfd *obfd = info->output_bfd;
15485 obj_attribute *in_attr;
15486 obj_attribute *out_attr;
15487 bfd *abi_fp_bfd;
15488 bfd *abi_msa_bfd;
15489
15490 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15491 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15492 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15493 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15494
15495 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15496 if (!abi_msa_bfd
15497 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15498 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15499
15500 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15501 {
15502 /* This is the first object. Copy the attributes. */
15503 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15504
15505 /* Use the Tag_null value to indicate the attributes have been
15506 initialized. */
15507 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15508
15509 return TRUE;
15510 }
15511
15512 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15513 non-conflicting ones. */
15514 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15515 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15516 {
15517 int out_fp, in_fp;
15518
15519 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15520 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15521 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15522 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15523 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15524 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15525 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15526 || in_fp == Val_GNU_MIPS_ABI_FP_64
15527 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15528 {
15529 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15530 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15531 }
15532 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15533 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15534 || out_fp == Val_GNU_MIPS_ABI_FP_64
15535 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15536 /* Keep the current setting. */;
15537 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15538 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15539 {
15540 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15541 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15542 }
15543 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15544 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15545 /* Keep the current setting. */;
15546 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15547 {
15548 const char *out_string, *in_string;
15549
15550 out_string = _bfd_mips_fp_abi_string (out_fp);
15551 in_string = _bfd_mips_fp_abi_string (in_fp);
15552 /* First warn about cases involving unrecognised ABIs. */
15553 if (!out_string && !in_string)
15554 /* xgettext:c-format */
15555 _bfd_error_handler
15556 (_("warning: %pB uses unknown floating point ABI %d "
15557 "(set by %pB), %pB uses unknown floating point ABI %d"),
15558 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15559 else if (!out_string)
15560 _bfd_error_handler
15561 /* xgettext:c-format */
15562 (_("warning: %pB uses unknown floating point ABI %d "
15563 "(set by %pB), %pB uses %s"),
15564 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15565 else if (!in_string)
15566 _bfd_error_handler
15567 /* xgettext:c-format */
15568 (_("warning: %pB uses %s (set by %pB), "
15569 "%pB uses unknown floating point ABI %d"),
15570 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15571 else
15572 {
15573 /* If one of the bfds is soft-float, the other must be
15574 hard-float. The exact choice of hard-float ABI isn't
15575 really relevant to the error message. */
15576 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15577 out_string = "-mhard-float";
15578 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15579 in_string = "-mhard-float";
15580 _bfd_error_handler
15581 /* xgettext:c-format */
15582 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15583 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15584 }
15585 }
15586 }
15587
15588 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15589 non-conflicting ones. */
15590 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15591 {
15592 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15593 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15594 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15595 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15596 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15597 {
15598 case Val_GNU_MIPS_ABI_MSA_128:
15599 _bfd_error_handler
15600 /* xgettext:c-format */
15601 (_("warning: %pB uses %s (set by %pB), "
15602 "%pB uses unknown MSA ABI %d"),
15603 obfd, "-mmsa", abi_msa_bfd,
15604 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15605 break;
15606
15607 default:
15608 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15609 {
15610 case Val_GNU_MIPS_ABI_MSA_128:
15611 _bfd_error_handler
15612 /* xgettext:c-format */
15613 (_("warning: %pB uses unknown MSA ABI %d "
15614 "(set by %pB), %pB uses %s"),
15615 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15616 abi_msa_bfd, ibfd, "-mmsa");
15617 break;
15618
15619 default:
15620 _bfd_error_handler
15621 /* xgettext:c-format */
15622 (_("warning: %pB uses unknown MSA ABI %d "
15623 "(set by %pB), %pB uses unknown MSA ABI %d"),
15624 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15625 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15626 break;
15627 }
15628 }
15629 }
15630
15631 /* Merge Tag_compatibility attributes and any common GNU ones. */
15632 return _bfd_elf_merge_object_attributes (ibfd, info);
15633 }
15634
15635 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15636 there are conflicting settings. */
15637
15638 static bfd_boolean
15639 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15640 {
15641 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15642 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15643 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15644
15645 /* Update the output abiflags fp_abi using the computed fp_abi. */
15646 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15647
15648 #define max(a, b) ((a) > (b) ? (a) : (b))
15649 /* Merge abiflags. */
15650 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15651 in_tdata->abiflags.isa_level);
15652 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15653 in_tdata->abiflags.isa_rev);
15654 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15655 in_tdata->abiflags.gpr_size);
15656 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15657 in_tdata->abiflags.cpr1_size);
15658 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15659 in_tdata->abiflags.cpr2_size);
15660 #undef max
15661 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15662 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15663
15664 return TRUE;
15665 }
15666
15667 /* Merge backend specific data from an object file to the output
15668 object file when linking. */
15669
15670 bfd_boolean
15671 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15672 {
15673 bfd *obfd = info->output_bfd;
15674 struct mips_elf_obj_tdata *out_tdata;
15675 struct mips_elf_obj_tdata *in_tdata;
15676 bfd_boolean null_input_bfd = TRUE;
15677 asection *sec;
15678 bfd_boolean ok;
15679
15680 /* Check if we have the same endianness. */
15681 if (! _bfd_generic_verify_endian_match (ibfd, info))
15682 {
15683 _bfd_error_handler
15684 (_("%pB: endianness incompatible with that of the selected emulation"),
15685 ibfd);
15686 return FALSE;
15687 }
15688
15689 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15690 return TRUE;
15691
15692 in_tdata = mips_elf_tdata (ibfd);
15693 out_tdata = mips_elf_tdata (obfd);
15694
15695 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15696 {
15697 _bfd_error_handler
15698 (_("%pB: ABI is incompatible with that of the selected emulation"),
15699 ibfd);
15700 return FALSE;
15701 }
15702
15703 /* Check to see if the input BFD actually contains any sections. If not,
15704 then it has no attributes, and its flags may not have been initialized
15705 either, but it cannot actually cause any incompatibility. */
15706 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15707 {
15708 /* Ignore synthetic sections and empty .text, .data and .bss sections
15709 which are automatically generated by gas. Also ignore fake
15710 (s)common sections, since merely defining a common symbol does
15711 not affect compatibility. */
15712 if ((sec->flags & SEC_IS_COMMON) == 0
15713 && strcmp (sec->name, ".reginfo")
15714 && strcmp (sec->name, ".mdebug")
15715 && (sec->size != 0
15716 || (strcmp (sec->name, ".text")
15717 && strcmp (sec->name, ".data")
15718 && strcmp (sec->name, ".bss"))))
15719 {
15720 null_input_bfd = FALSE;
15721 break;
15722 }
15723 }
15724 if (null_input_bfd)
15725 return TRUE;
15726
15727 /* Populate abiflags using existing information. */
15728 if (in_tdata->abiflags_valid)
15729 {
15730 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15731 Elf_Internal_ABIFlags_v0 in_abiflags;
15732 Elf_Internal_ABIFlags_v0 abiflags;
15733
15734 /* Set up the FP ABI attribute from the abiflags if it is not already
15735 set. */
15736 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15737 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15738
15739 infer_mips_abiflags (ibfd, &abiflags);
15740 in_abiflags = in_tdata->abiflags;
15741
15742 /* It is not possible to infer the correct ISA revision
15743 for R3 or R5 so drop down to R2 for the checks. */
15744 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15745 in_abiflags.isa_rev = 2;
15746
15747 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15748 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15749 _bfd_error_handler
15750 (_("%pB: warning: inconsistent ISA between e_flags and "
15751 ".MIPS.abiflags"), ibfd);
15752 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15753 && in_abiflags.fp_abi != abiflags.fp_abi)
15754 _bfd_error_handler
15755 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15756 ".MIPS.abiflags"), ibfd);
15757 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15758 _bfd_error_handler
15759 (_("%pB: warning: inconsistent ASEs between e_flags and "
15760 ".MIPS.abiflags"), ibfd);
15761 /* The isa_ext is allowed to be an extension of what can be inferred
15762 from e_flags. */
15763 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15764 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15765 _bfd_error_handler
15766 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15767 ".MIPS.abiflags"), ibfd);
15768 if (in_abiflags.flags2 != 0)
15769 _bfd_error_handler
15770 (_("%pB: warning: unexpected flag in the flags2 field of "
15771 ".MIPS.abiflags (0x%lx)"), ibfd,
15772 in_abiflags.flags2);
15773 }
15774 else
15775 {
15776 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15777 in_tdata->abiflags_valid = TRUE;
15778 }
15779
15780 if (!out_tdata->abiflags_valid)
15781 {
15782 /* Copy input abiflags if output abiflags are not already valid. */
15783 out_tdata->abiflags = in_tdata->abiflags;
15784 out_tdata->abiflags_valid = TRUE;
15785 }
15786
15787 if (! elf_flags_init (obfd))
15788 {
15789 elf_flags_init (obfd) = TRUE;
15790 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15791 elf_elfheader (obfd)->e_ident[EI_CLASS]
15792 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15793
15794 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15795 && (bfd_get_arch_info (obfd)->the_default
15796 || mips_mach_extends_p (bfd_get_mach (obfd),
15797 bfd_get_mach (ibfd))))
15798 {
15799 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15800 bfd_get_mach (ibfd)))
15801 return FALSE;
15802
15803 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15804 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15805 }
15806
15807 ok = TRUE;
15808 }
15809 else
15810 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15811
15812 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15813
15814 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15815
15816 if (!ok)
15817 {
15818 bfd_set_error (bfd_error_bad_value);
15819 return FALSE;
15820 }
15821
15822 return TRUE;
15823 }
15824
15825 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15826
15827 bfd_boolean
15828 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15829 {
15830 BFD_ASSERT (!elf_flags_init (abfd)
15831 || elf_elfheader (abfd)->e_flags == flags);
15832
15833 elf_elfheader (abfd)->e_flags = flags;
15834 elf_flags_init (abfd) = TRUE;
15835 return TRUE;
15836 }
15837
15838 char *
15839 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15840 {
15841 switch (dtag)
15842 {
15843 default: return "";
15844 case DT_MIPS_RLD_VERSION:
15845 return "MIPS_RLD_VERSION";
15846 case DT_MIPS_TIME_STAMP:
15847 return "MIPS_TIME_STAMP";
15848 case DT_MIPS_ICHECKSUM:
15849 return "MIPS_ICHECKSUM";
15850 case DT_MIPS_IVERSION:
15851 return "MIPS_IVERSION";
15852 case DT_MIPS_FLAGS:
15853 return "MIPS_FLAGS";
15854 case DT_MIPS_BASE_ADDRESS:
15855 return "MIPS_BASE_ADDRESS";
15856 case DT_MIPS_MSYM:
15857 return "MIPS_MSYM";
15858 case DT_MIPS_CONFLICT:
15859 return "MIPS_CONFLICT";
15860 case DT_MIPS_LIBLIST:
15861 return "MIPS_LIBLIST";
15862 case DT_MIPS_LOCAL_GOTNO:
15863 return "MIPS_LOCAL_GOTNO";
15864 case DT_MIPS_CONFLICTNO:
15865 return "MIPS_CONFLICTNO";
15866 case DT_MIPS_LIBLISTNO:
15867 return "MIPS_LIBLISTNO";
15868 case DT_MIPS_SYMTABNO:
15869 return "MIPS_SYMTABNO";
15870 case DT_MIPS_UNREFEXTNO:
15871 return "MIPS_UNREFEXTNO";
15872 case DT_MIPS_GOTSYM:
15873 return "MIPS_GOTSYM";
15874 case DT_MIPS_HIPAGENO:
15875 return "MIPS_HIPAGENO";
15876 case DT_MIPS_RLD_MAP:
15877 return "MIPS_RLD_MAP";
15878 case DT_MIPS_RLD_MAP_REL:
15879 return "MIPS_RLD_MAP_REL";
15880 case DT_MIPS_DELTA_CLASS:
15881 return "MIPS_DELTA_CLASS";
15882 case DT_MIPS_DELTA_CLASS_NO:
15883 return "MIPS_DELTA_CLASS_NO";
15884 case DT_MIPS_DELTA_INSTANCE:
15885 return "MIPS_DELTA_INSTANCE";
15886 case DT_MIPS_DELTA_INSTANCE_NO:
15887 return "MIPS_DELTA_INSTANCE_NO";
15888 case DT_MIPS_DELTA_RELOC:
15889 return "MIPS_DELTA_RELOC";
15890 case DT_MIPS_DELTA_RELOC_NO:
15891 return "MIPS_DELTA_RELOC_NO";
15892 case DT_MIPS_DELTA_SYM:
15893 return "MIPS_DELTA_SYM";
15894 case DT_MIPS_DELTA_SYM_NO:
15895 return "MIPS_DELTA_SYM_NO";
15896 case DT_MIPS_DELTA_CLASSSYM:
15897 return "MIPS_DELTA_CLASSSYM";
15898 case DT_MIPS_DELTA_CLASSSYM_NO:
15899 return "MIPS_DELTA_CLASSSYM_NO";
15900 case DT_MIPS_CXX_FLAGS:
15901 return "MIPS_CXX_FLAGS";
15902 case DT_MIPS_PIXIE_INIT:
15903 return "MIPS_PIXIE_INIT";
15904 case DT_MIPS_SYMBOL_LIB:
15905 return "MIPS_SYMBOL_LIB";
15906 case DT_MIPS_LOCALPAGE_GOTIDX:
15907 return "MIPS_LOCALPAGE_GOTIDX";
15908 case DT_MIPS_LOCAL_GOTIDX:
15909 return "MIPS_LOCAL_GOTIDX";
15910 case DT_MIPS_HIDDEN_GOTIDX:
15911 return "MIPS_HIDDEN_GOTIDX";
15912 case DT_MIPS_PROTECTED_GOTIDX:
15913 return "MIPS_PROTECTED_GOT_IDX";
15914 case DT_MIPS_OPTIONS:
15915 return "MIPS_OPTIONS";
15916 case DT_MIPS_INTERFACE:
15917 return "MIPS_INTERFACE";
15918 case DT_MIPS_DYNSTR_ALIGN:
15919 return "DT_MIPS_DYNSTR_ALIGN";
15920 case DT_MIPS_INTERFACE_SIZE:
15921 return "DT_MIPS_INTERFACE_SIZE";
15922 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15923 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15924 case DT_MIPS_PERF_SUFFIX:
15925 return "DT_MIPS_PERF_SUFFIX";
15926 case DT_MIPS_COMPACT_SIZE:
15927 return "DT_MIPS_COMPACT_SIZE";
15928 case DT_MIPS_GP_VALUE:
15929 return "DT_MIPS_GP_VALUE";
15930 case DT_MIPS_AUX_DYNAMIC:
15931 return "DT_MIPS_AUX_DYNAMIC";
15932 case DT_MIPS_PLTGOT:
15933 return "DT_MIPS_PLTGOT";
15934 case DT_MIPS_RWPLT:
15935 return "DT_MIPS_RWPLT";
15936 }
15937 }
15938
15939 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15940 not known. */
15941
15942 const char *
15943 _bfd_mips_fp_abi_string (int fp)
15944 {
15945 switch (fp)
15946 {
15947 /* These strings aren't translated because they're simply
15948 option lists. */
15949 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15950 return "-mdouble-float";
15951
15952 case Val_GNU_MIPS_ABI_FP_SINGLE:
15953 return "-msingle-float";
15954
15955 case Val_GNU_MIPS_ABI_FP_SOFT:
15956 return "-msoft-float";
15957
15958 case Val_GNU_MIPS_ABI_FP_OLD_64:
15959 return _("-mips32r2 -mfp64 (12 callee-saved)");
15960
15961 case Val_GNU_MIPS_ABI_FP_XX:
15962 return "-mfpxx";
15963
15964 case Val_GNU_MIPS_ABI_FP_64:
15965 return "-mgp32 -mfp64";
15966
15967 case Val_GNU_MIPS_ABI_FP_64A:
15968 return "-mgp32 -mfp64 -mno-odd-spreg";
15969
15970 default:
15971 return 0;
15972 }
15973 }
15974
15975 static void
15976 print_mips_ases (FILE *file, unsigned int mask)
15977 {
15978 if (mask & AFL_ASE_DSP)
15979 fputs ("\n\tDSP ASE", file);
15980 if (mask & AFL_ASE_DSPR2)
15981 fputs ("\n\tDSP R2 ASE", file);
15982 if (mask & AFL_ASE_DSPR3)
15983 fputs ("\n\tDSP R3 ASE", file);
15984 if (mask & AFL_ASE_EVA)
15985 fputs ("\n\tEnhanced VA Scheme", file);
15986 if (mask & AFL_ASE_MCU)
15987 fputs ("\n\tMCU (MicroController) ASE", file);
15988 if (mask & AFL_ASE_MDMX)
15989 fputs ("\n\tMDMX ASE", file);
15990 if (mask & AFL_ASE_MIPS3D)
15991 fputs ("\n\tMIPS-3D ASE", file);
15992 if (mask & AFL_ASE_MT)
15993 fputs ("\n\tMT ASE", file);
15994 if (mask & AFL_ASE_SMARTMIPS)
15995 fputs ("\n\tSmartMIPS ASE", file);
15996 if (mask & AFL_ASE_VIRT)
15997 fputs ("\n\tVZ ASE", file);
15998 if (mask & AFL_ASE_MSA)
15999 fputs ("\n\tMSA ASE", file);
16000 if (mask & AFL_ASE_MIPS16)
16001 fputs ("\n\tMIPS16 ASE", file);
16002 if (mask & AFL_ASE_MICROMIPS)
16003 fputs ("\n\tMICROMIPS ASE", file);
16004 if (mask & AFL_ASE_XPA)
16005 fputs ("\n\tXPA ASE", file);
16006 if (mask & AFL_ASE_MIPS16E2)
16007 fputs ("\n\tMIPS16e2 ASE", file);
16008 if (mask & AFL_ASE_CRC)
16009 fputs ("\n\tCRC ASE", file);
16010 if (mask & AFL_ASE_GINV)
16011 fputs ("\n\tGINV ASE", file);
16012 if (mask & AFL_ASE_LOONGSON_MMI)
16013 fputs ("\n\tLoongson MMI ASE", file);
16014 if (mask & AFL_ASE_LOONGSON_CAM)
16015 fputs ("\n\tLoongson CAM ASE", file);
16016 if (mask & AFL_ASE_LOONGSON_EXT)
16017 fputs ("\n\tLoongson EXT ASE", file);
16018 if (mask & AFL_ASE_LOONGSON_EXT2)
16019 fputs ("\n\tLoongson EXT2 ASE", file);
16020 if (mask == 0)
16021 fprintf (file, "\n\t%s", _("None"));
16022 else if ((mask & ~AFL_ASE_MASK) != 0)
16023 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
16024 }
16025
16026 static void
16027 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
16028 {
16029 switch (isa_ext)
16030 {
16031 case 0:
16032 fputs (_("None"), file);
16033 break;
16034 case AFL_EXT_XLR:
16035 fputs ("RMI XLR", file);
16036 break;
16037 case AFL_EXT_OCTEON3:
16038 fputs ("Cavium Networks Octeon3", file);
16039 break;
16040 case AFL_EXT_OCTEON2:
16041 fputs ("Cavium Networks Octeon2", file);
16042 break;
16043 case AFL_EXT_OCTEONP:
16044 fputs ("Cavium Networks OcteonP", file);
16045 break;
16046 case AFL_EXT_OCTEON:
16047 fputs ("Cavium Networks Octeon", file);
16048 break;
16049 case AFL_EXT_5900:
16050 fputs ("Toshiba R5900", file);
16051 break;
16052 case AFL_EXT_4650:
16053 fputs ("MIPS R4650", file);
16054 break;
16055 case AFL_EXT_4010:
16056 fputs ("LSI R4010", file);
16057 break;
16058 case AFL_EXT_4100:
16059 fputs ("NEC VR4100", file);
16060 break;
16061 case AFL_EXT_3900:
16062 fputs ("Toshiba R3900", file);
16063 break;
16064 case AFL_EXT_10000:
16065 fputs ("MIPS R10000", file);
16066 break;
16067 case AFL_EXT_SB1:
16068 fputs ("Broadcom SB-1", file);
16069 break;
16070 case AFL_EXT_4111:
16071 fputs ("NEC VR4111/VR4181", file);
16072 break;
16073 case AFL_EXT_4120:
16074 fputs ("NEC VR4120", file);
16075 break;
16076 case AFL_EXT_5400:
16077 fputs ("NEC VR5400", file);
16078 break;
16079 case AFL_EXT_5500:
16080 fputs ("NEC VR5500", file);
16081 break;
16082 case AFL_EXT_LOONGSON_2E:
16083 fputs ("ST Microelectronics Loongson 2E", file);
16084 break;
16085 case AFL_EXT_LOONGSON_2F:
16086 fputs ("ST Microelectronics Loongson 2F", file);
16087 break;
16088 case AFL_EXT_INTERAPTIV_MR2:
16089 fputs ("Imagination interAptiv MR2", file);
16090 break;
16091 default:
16092 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
16093 break;
16094 }
16095 }
16096
16097 static void
16098 print_mips_fp_abi_value (FILE *file, int val)
16099 {
16100 switch (val)
16101 {
16102 case Val_GNU_MIPS_ABI_FP_ANY:
16103 fprintf (file, _("Hard or soft float\n"));
16104 break;
16105 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16106 fprintf (file, _("Hard float (double precision)\n"));
16107 break;
16108 case Val_GNU_MIPS_ABI_FP_SINGLE:
16109 fprintf (file, _("Hard float (single precision)\n"));
16110 break;
16111 case Val_GNU_MIPS_ABI_FP_SOFT:
16112 fprintf (file, _("Soft float\n"));
16113 break;
16114 case Val_GNU_MIPS_ABI_FP_OLD_64:
16115 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
16116 break;
16117 case Val_GNU_MIPS_ABI_FP_XX:
16118 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
16119 break;
16120 case Val_GNU_MIPS_ABI_FP_64:
16121 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16122 break;
16123 case Val_GNU_MIPS_ABI_FP_64A:
16124 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16125 break;
16126 default:
16127 fprintf (file, "??? (%d)\n", val);
16128 break;
16129 }
16130 }
16131
16132 static int
16133 get_mips_reg_size (int reg_size)
16134 {
16135 return (reg_size == AFL_REG_NONE) ? 0
16136 : (reg_size == AFL_REG_32) ? 32
16137 : (reg_size == AFL_REG_64) ? 64
16138 : (reg_size == AFL_REG_128) ? 128
16139 : -1;
16140 }
16141
16142 bfd_boolean
16143 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
16144 {
16145 FILE *file = ptr;
16146
16147 BFD_ASSERT (abfd != NULL && ptr != NULL);
16148
16149 /* Print normal ELF private data. */
16150 _bfd_elf_print_private_bfd_data (abfd, ptr);
16151
16152 /* xgettext:c-format */
16153 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
16154
16155 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
16156 fprintf (file, _(" [abi=O32]"));
16157 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
16158 fprintf (file, _(" [abi=O64]"));
16159 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
16160 fprintf (file, _(" [abi=EABI32]"));
16161 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
16162 fprintf (file, _(" [abi=EABI64]"));
16163 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
16164 fprintf (file, _(" [abi unknown]"));
16165 else if (ABI_N32_P (abfd))
16166 fprintf (file, _(" [abi=N32]"));
16167 else if (ABI_64_P (abfd))
16168 fprintf (file, _(" [abi=64]"));
16169 else
16170 fprintf (file, _(" [no abi set]"));
16171
16172 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
16173 fprintf (file, " [mips1]");
16174 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
16175 fprintf (file, " [mips2]");
16176 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
16177 fprintf (file, " [mips3]");
16178 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
16179 fprintf (file, " [mips4]");
16180 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
16181 fprintf (file, " [mips5]");
16182 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
16183 fprintf (file, " [mips32]");
16184 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
16185 fprintf (file, " [mips64]");
16186 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
16187 fprintf (file, " [mips32r2]");
16188 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
16189 fprintf (file, " [mips64r2]");
16190 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
16191 fprintf (file, " [mips32r6]");
16192 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
16193 fprintf (file, " [mips64r6]");
16194 else
16195 fprintf (file, _(" [unknown ISA]"));
16196
16197 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
16198 fprintf (file, " [mdmx]");
16199
16200 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
16201 fprintf (file, " [mips16]");
16202
16203 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
16204 fprintf (file, " [micromips]");
16205
16206 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
16207 fprintf (file, " [nan2008]");
16208
16209 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
16210 fprintf (file, " [old fp64]");
16211
16212 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
16213 fprintf (file, " [32bitmode]");
16214 else
16215 fprintf (file, _(" [not 32bitmode]"));
16216
16217 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
16218 fprintf (file, " [noreorder]");
16219
16220 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
16221 fprintf (file, " [PIC]");
16222
16223 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
16224 fprintf (file, " [CPIC]");
16225
16226 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
16227 fprintf (file, " [XGOT]");
16228
16229 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
16230 fprintf (file, " [UCODE]");
16231
16232 fputc ('\n', file);
16233
16234 if (mips_elf_tdata (abfd)->abiflags_valid)
16235 {
16236 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16237 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16238 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16239 if (abiflags->isa_rev > 1)
16240 fprintf (file, "r%d", abiflags->isa_rev);
16241 fprintf (file, "\nGPR size: %d",
16242 get_mips_reg_size (abiflags->gpr_size));
16243 fprintf (file, "\nCPR1 size: %d",
16244 get_mips_reg_size (abiflags->cpr1_size));
16245 fprintf (file, "\nCPR2 size: %d",
16246 get_mips_reg_size (abiflags->cpr2_size));
16247 fputs ("\nFP ABI: ", file);
16248 print_mips_fp_abi_value (file, abiflags->fp_abi);
16249 fputs ("ISA Extension: ", file);
16250 print_mips_isa_ext (file, abiflags->isa_ext);
16251 fputs ("\nASEs:", file);
16252 print_mips_ases (file, abiflags->ases);
16253 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16254 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16255 fputc ('\n', file);
16256 }
16257
16258 return TRUE;
16259 }
16260
16261 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16262 {
16263 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16264 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16265 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16266 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16267 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16268 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16269 { NULL, 0, 0, 0, 0 }
16270 };
16271
16272 /* Merge non visibility st_other attributes. Ensure that the
16273 STO_OPTIONAL flag is copied into h->other, even if this is not a
16274 definiton of the symbol. */
16275 void
16276 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16277 const Elf_Internal_Sym *isym,
16278 bfd_boolean definition,
16279 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16280 {
16281 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16282 {
16283 unsigned char other;
16284
16285 other = (definition ? isym->st_other : h->other);
16286 other &= ~ELF_ST_VISIBILITY (-1);
16287 h->other = other | ELF_ST_VISIBILITY (h->other);
16288 }
16289
16290 if (!definition
16291 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16292 h->other |= STO_OPTIONAL;
16293 }
16294
16295 /* Decide whether an undefined symbol is special and can be ignored.
16296 This is the case for OPTIONAL symbols on IRIX. */
16297 bfd_boolean
16298 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16299 {
16300 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16301 }
16302
16303 bfd_boolean
16304 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16305 {
16306 return (sym->st_shndx == SHN_COMMON
16307 || sym->st_shndx == SHN_MIPS_ACOMMON
16308 || sym->st_shndx == SHN_MIPS_SCOMMON);
16309 }
16310
16311 /* Return address for Ith PLT stub in section PLT, for relocation REL
16312 or (bfd_vma) -1 if it should not be included. */
16313
16314 bfd_vma
16315 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16316 const arelent *rel ATTRIBUTE_UNUSED)
16317 {
16318 return (plt->vma
16319 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16320 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16321 }
16322
16323 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16324 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16325 and .got.plt and also the slots may be of a different size each we walk
16326 the PLT manually fetching instructions and matching them against known
16327 patterns. To make things easier standard MIPS slots, if any, always come
16328 first. As we don't create proper ELF symbols we use the UDATA.I member
16329 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16330 with the ST_OTHER member of the ELF symbol. */
16331
16332 long
16333 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16334 long symcount ATTRIBUTE_UNUSED,
16335 asymbol **syms ATTRIBUTE_UNUSED,
16336 long dynsymcount, asymbol **dynsyms,
16337 asymbol **ret)
16338 {
16339 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16340 static const char microsuffix[] = "@micromipsplt";
16341 static const char m16suffix[] = "@mips16plt";
16342 static const char mipssuffix[] = "@plt";
16343
16344 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16345 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16346 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16347 Elf_Internal_Shdr *hdr;
16348 bfd_byte *plt_data;
16349 bfd_vma plt_offset;
16350 unsigned int other;
16351 bfd_vma entry_size;
16352 bfd_vma plt0_size;
16353 asection *relplt;
16354 bfd_vma opcode;
16355 asection *plt;
16356 asymbol *send;
16357 size_t size;
16358 char *names;
16359 long counti;
16360 arelent *p;
16361 asymbol *s;
16362 char *nend;
16363 long count;
16364 long pi;
16365 long i;
16366 long n;
16367
16368 *ret = NULL;
16369
16370 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16371 return 0;
16372
16373 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16374 if (relplt == NULL)
16375 return 0;
16376
16377 hdr = &elf_section_data (relplt)->this_hdr;
16378 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16379 return 0;
16380
16381 plt = bfd_get_section_by_name (abfd, ".plt");
16382 if (plt == NULL)
16383 return 0;
16384
16385 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16386 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16387 return -1;
16388 p = relplt->relocation;
16389
16390 /* Calculating the exact amount of space required for symbols would
16391 require two passes over the PLT, so just pessimise assuming two
16392 PLT slots per relocation. */
16393 count = relplt->size / hdr->sh_entsize;
16394 counti = count * bed->s->int_rels_per_ext_rel;
16395 size = 2 * count * sizeof (asymbol);
16396 size += count * (sizeof (mipssuffix) +
16397 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16398 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16399 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16400
16401 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16402 size += sizeof (asymbol) + sizeof (pltname);
16403
16404 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16405 return -1;
16406
16407 if (plt->size < 16)
16408 return -1;
16409
16410 s = *ret = bfd_malloc (size);
16411 if (s == NULL)
16412 return -1;
16413 send = s + 2 * count + 1;
16414
16415 names = (char *) send;
16416 nend = (char *) s + size;
16417 n = 0;
16418
16419 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16420 if (opcode == 0x3302fffe)
16421 {
16422 if (!micromips_p)
16423 return -1;
16424 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16425 other = STO_MICROMIPS;
16426 }
16427 else if (opcode == 0x0398c1d0)
16428 {
16429 if (!micromips_p)
16430 return -1;
16431 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16432 other = STO_MICROMIPS;
16433 }
16434 else
16435 {
16436 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16437 other = 0;
16438 }
16439
16440 s->the_bfd = abfd;
16441 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16442 s->section = plt;
16443 s->value = 0;
16444 s->name = names;
16445 s->udata.i = other;
16446 memcpy (names, pltname, sizeof (pltname));
16447 names += sizeof (pltname);
16448 ++s, ++n;
16449
16450 pi = 0;
16451 for (plt_offset = plt0_size;
16452 plt_offset + 8 <= plt->size && s < send;
16453 plt_offset += entry_size)
16454 {
16455 bfd_vma gotplt_addr;
16456 const char *suffix;
16457 bfd_vma gotplt_hi;
16458 bfd_vma gotplt_lo;
16459 size_t suffixlen;
16460
16461 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16462
16463 /* Check if the second word matches the expected MIPS16 instruction. */
16464 if (opcode == 0x651aeb00)
16465 {
16466 if (micromips_p)
16467 return -1;
16468 /* Truncated table??? */
16469 if (plt_offset + 16 > plt->size)
16470 break;
16471 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16472 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16473 suffixlen = sizeof (m16suffix);
16474 suffix = m16suffix;
16475 other = STO_MIPS16;
16476 }
16477 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16478 else if (opcode == 0xff220000)
16479 {
16480 if (!micromips_p)
16481 return -1;
16482 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16483 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16484 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16485 gotplt_lo <<= 2;
16486 gotplt_addr = gotplt_hi + gotplt_lo;
16487 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16488 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16489 suffixlen = sizeof (microsuffix);
16490 suffix = microsuffix;
16491 other = STO_MICROMIPS;
16492 }
16493 /* Likewise the expected microMIPS instruction (insn32 mode). */
16494 else if ((opcode & 0xffff0000) == 0xff2f0000)
16495 {
16496 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16497 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16498 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16499 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16500 gotplt_addr = gotplt_hi + gotplt_lo;
16501 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16502 suffixlen = sizeof (microsuffix);
16503 suffix = microsuffix;
16504 other = STO_MICROMIPS;
16505 }
16506 /* Otherwise assume standard MIPS code. */
16507 else
16508 {
16509 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16510 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16511 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16512 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16513 gotplt_addr = gotplt_hi + gotplt_lo;
16514 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16515 suffixlen = sizeof (mipssuffix);
16516 suffix = mipssuffix;
16517 other = 0;
16518 }
16519 /* Truncated table??? */
16520 if (plt_offset + entry_size > plt->size)
16521 break;
16522
16523 for (i = 0;
16524 i < count && p[pi].address != gotplt_addr;
16525 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16526
16527 if (i < count)
16528 {
16529 size_t namelen;
16530 size_t len;
16531
16532 *s = **p[pi].sym_ptr_ptr;
16533 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16534 we are defining a symbol, ensure one of them is set. */
16535 if ((s->flags & BSF_LOCAL) == 0)
16536 s->flags |= BSF_GLOBAL;
16537 s->flags |= BSF_SYNTHETIC;
16538 s->section = plt;
16539 s->value = plt_offset;
16540 s->name = names;
16541 s->udata.i = other;
16542
16543 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16544 namelen = len + suffixlen;
16545 if (names + namelen > nend)
16546 break;
16547
16548 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16549 names += len;
16550 memcpy (names, suffix, suffixlen);
16551 names += suffixlen;
16552
16553 ++s, ++n;
16554 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16555 }
16556 }
16557
16558 free (plt_data);
16559
16560 return n;
16561 }
16562
16563 /* Return the ABI flags associated with ABFD if available. */
16564
16565 Elf_Internal_ABIFlags_v0 *
16566 bfd_mips_elf_get_abiflags (bfd *abfd)
16567 {
16568 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16569
16570 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16571 }
16572
16573 /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16574 field. Taken from `libc-abis.h' generated at GNU libc build time.
16575 Using a MIPS_ prefix as other libc targets use different values. */
16576 enum
16577 {
16578 MIPS_LIBC_ABI_DEFAULT = 0,
16579 MIPS_LIBC_ABI_MIPS_PLT,
16580 MIPS_LIBC_ABI_UNIQUE,
16581 MIPS_LIBC_ABI_MIPS_O32_FP64,
16582 MIPS_LIBC_ABI_ABSOLUTE,
16583 MIPS_LIBC_ABI_MAX
16584 };
16585
16586 void
16587 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16588 {
16589 struct mips_elf_link_hash_table *htab = NULL;
16590 Elf_Internal_Ehdr *i_ehdrp;
16591
16592 i_ehdrp = elf_elfheader (abfd);
16593 if (link_info)
16594 {
16595 htab = mips_elf_hash_table (link_info);
16596 BFD_ASSERT (htab != NULL);
16597 }
16598
16599 if (htab != NULL && htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16600 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16601
16602 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16603 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16604 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
16605
16606 /* Mark that we need support for absolute symbols in the dynamic loader. */
16607 if (htab != NULL && htab->use_absolute_zero && htab->gnu_target)
16608 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE;
16609
16610 _bfd_elf_post_process_headers (abfd, link_info);
16611 }
16612
16613 int
16614 _bfd_mips_elf_compact_eh_encoding
16615 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16616 {
16617 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16618 }
16619
16620 /* Return the opcode for can't unwind. */
16621
16622 int
16623 _bfd_mips_elf_cant_unwind_opcode
16624 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16625 {
16626 return COMPACT_EH_CANT_UNWIND_OPCODE;
16627 }
This page took 0.35297 seconds and 5 git commands to generate.