* archive.c (bfd_generic_archive_p): Remove unused local variable
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37 #include "elf-vxworks.h"
38
39 /* Get the ECOFF swapping routines. */
40 #include "coff/sym.h"
41 #include "coff/symconst.h"
42 #include "coff/ecoff.h"
43 #include "coff/mips.h"
44
45 #include "hashtab.h"
46
47 /* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
49
50 (1) absolute addresses
51 (abfd == NULL)
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
56
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
63
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
68
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
72 GOT index.
73
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
80 struct mips_got_entry
81 {
82 /* The input bfd in which the symbol is defined. */
83 bfd *abfd;
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
86 long symndx;
87 union
88 {
89 /* If abfd == NULL, an address that must be stored in the got. */
90 bfd_vma address;
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
93 bfd_vma addend;
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
96 h->forced_local). */
97 struct mips_elf_link_hash_entry *h;
98 } d;
99
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type;
106
107 /* The offset from the beginning of the .got section to the entry
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
110 long gotidx;
111 };
112
113 /* This structure is used to hold .got information when linking. */
114
115 struct mips_got_info
116 {
117 /* The global symbol in the GOT with the lowest index in the dynamic
118 symbol table. */
119 struct elf_link_hash_entry *global_gotsym;
120 /* The number of global .got entries. */
121 unsigned int global_gotno;
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno;
127 /* The number of local .got entries. */
128 unsigned int local_gotno;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno;
131 /* A hash table holding members of the got. */
132 struct htab *got_entries;
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab *bfd2got;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info *next;
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset;
144 };
145
146 /* Map an input bfd to a got in a multi-got link. */
147
148 struct mips_elf_bfd2got_hash {
149 bfd *bfd;
150 struct mips_got_info *g;
151 };
152
153 /* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
155
156 struct mips_elf_got_per_bfd_arg
157 {
158 /* A hashtable that maps bfds to gots. */
159 htab_t bfd2got;
160 /* The output bfd. */
161 bfd *obfd;
162 /* The link information. */
163 struct bfd_link_info *info;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
166 DT_MIPS_GOTSYM. */
167 struct mips_got_info *primary;
168 /* A non-primary got we're trying to merge with other input bfd's
169 gots. */
170 struct mips_got_info *current;
171 /* The maximum number of got entries that can be addressed with a
172 16-bit offset. */
173 unsigned int max_count;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count;
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
181 the "master" GOT. */
182 unsigned int global_count;
183 };
184
185 /* Another structure used to pass arguments for got entries traversal. */
186
187 struct mips_elf_set_global_got_offset_arg
188 {
189 struct mips_got_info *g;
190 int value;
191 unsigned int needed_relocs;
192 struct bfd_link_info *info;
193 };
194
195 /* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
197
198 struct mips_elf_count_tls_arg
199 {
200 struct bfd_link_info *info;
201 unsigned int needed;
202 };
203
204 struct _mips_elf_section_data
205 {
206 struct bfd_elf_section_data elf;
207 union
208 {
209 struct mips_got_info *got_info;
210 bfd_byte *tdata;
211 } u;
212 };
213
214 #define mips_elf_section_data(sec) \
215 ((struct _mips_elf_section_data *) elf_section_data (sec))
216
217 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
219
220 struct mips_elf_hash_sort_data
221 {
222 /* The symbol in the global GOT with the lowest dynamic symbol table
223 index. */
224 struct elf_link_hash_entry *low;
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
227 long min_got_dynindx;
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
230 with dynamic relocations pointing to it from non-primary GOTs). */
231 long max_unref_got_dynindx;
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx;
235 };
236
237 /* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
239
240 struct mips_elf_link_hash_entry
241 {
242 struct elf_link_hash_entry root;
243
244 /* External symbol information. */
245 EXTR esym;
246
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
248 this symbol. */
249 unsigned int possibly_dynamic_relocs;
250
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
253 bfd_boolean readonly_reloc;
254
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
258 p. 4-20. */
259 bfd_boolean no_fn_stub;
260
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
263 asection *fn_stub;
264
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
267 bfd_boolean need_fn_stub;
268
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
271 asection *call_stub;
272
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection *call_fp_stub;
276
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
279 bfd_boolean forced_local;
280
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target;
283
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target;
286
287 #define GOT_NORMAL 0
288 #define GOT_TLS_GD 1
289 #define GOT_TLS_LDM 2
290 #define GOT_TLS_IE 4
291 #define GOT_TLS_OFFSET_DONE 0x40
292 #define GOT_TLS_DONE 0x80
293 unsigned char tls_type;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset;
301 };
302
303 /* MIPS ELF linker hash table. */
304
305 struct mips_elf_link_hash_table
306 {
307 struct elf_link_hash_table root;
308 #if 0
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
312 #endif
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
318 entry is set to the address of __rld_obj_head as in IRIX5. */
319 bfd_boolean use_rld_obj_head;
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
321 bfd_vma rld_value;
322 /* This is set if we see any mips16 stub sections. */
323 bfd_boolean mips16_stubs_seen;
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
327 being used. */
328 asection *srelbss;
329 asection *sdynbss;
330 asection *srelplt;
331 asection *srelplt2;
332 asection *sgotplt;
333 asection *splt;
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size;
338 };
339
340 #define TLS_RELOC_P(r_type) \
341 (r_type == R_MIPS_TLS_DTPMOD32 \
342 || r_type == R_MIPS_TLS_DTPMOD64 \
343 || r_type == R_MIPS_TLS_DTPREL32 \
344 || r_type == R_MIPS_TLS_DTPREL64 \
345 || r_type == R_MIPS_TLS_GD \
346 || r_type == R_MIPS_TLS_LDM \
347 || r_type == R_MIPS_TLS_DTPREL_HI16 \
348 || r_type == R_MIPS_TLS_DTPREL_LO16 \
349 || r_type == R_MIPS_TLS_GOTTPREL \
350 || r_type == R_MIPS_TLS_TPREL32 \
351 || r_type == R_MIPS_TLS_TPREL64 \
352 || r_type == R_MIPS_TLS_TPREL_HI16 \
353 || r_type == R_MIPS_TLS_TPREL_LO16)
354
355 /* Structure used to pass information to mips_elf_output_extsym. */
356
357 struct extsym_info
358 {
359 bfd *abfd;
360 struct bfd_link_info *info;
361 struct ecoff_debug_info *debug;
362 const struct ecoff_debug_swap *swap;
363 bfd_boolean failed;
364 };
365
366 /* The names of the runtime procedure table symbols used on IRIX5. */
367
368 static const char * const mips_elf_dynsym_rtproc_names[] =
369 {
370 "_procedure_table",
371 "_procedure_string_table",
372 "_procedure_table_size",
373 NULL
374 };
375
376 /* These structures are used to generate the .compact_rel section on
377 IRIX5. */
378
379 typedef struct
380 {
381 unsigned long id1; /* Always one? */
382 unsigned long num; /* Number of compact relocation entries. */
383 unsigned long id2; /* Always two? */
384 unsigned long offset; /* The file offset of the first relocation. */
385 unsigned long reserved0; /* Zero? */
386 unsigned long reserved1; /* Zero? */
387 } Elf32_compact_rel;
388
389 typedef struct
390 {
391 bfd_byte id1[4];
392 bfd_byte num[4];
393 bfd_byte id2[4];
394 bfd_byte offset[4];
395 bfd_byte reserved0[4];
396 bfd_byte reserved1[4];
397 } Elf32_External_compact_rel;
398
399 typedef struct
400 {
401 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
402 unsigned int rtype : 4; /* Relocation types. See below. */
403 unsigned int dist2to : 8;
404 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
405 unsigned long konst; /* KONST field. See below. */
406 unsigned long vaddr; /* VADDR to be relocated. */
407 } Elf32_crinfo;
408
409 typedef struct
410 {
411 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
412 unsigned int rtype : 4; /* Relocation types. See below. */
413 unsigned int dist2to : 8;
414 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
415 unsigned long konst; /* KONST field. See below. */
416 } Elf32_crinfo2;
417
418 typedef struct
419 {
420 bfd_byte info[4];
421 bfd_byte konst[4];
422 bfd_byte vaddr[4];
423 } Elf32_External_crinfo;
424
425 typedef struct
426 {
427 bfd_byte info[4];
428 bfd_byte konst[4];
429 } Elf32_External_crinfo2;
430
431 /* These are the constants used to swap the bitfields in a crinfo. */
432
433 #define CRINFO_CTYPE (0x1)
434 #define CRINFO_CTYPE_SH (31)
435 #define CRINFO_RTYPE (0xf)
436 #define CRINFO_RTYPE_SH (27)
437 #define CRINFO_DIST2TO (0xff)
438 #define CRINFO_DIST2TO_SH (19)
439 #define CRINFO_RELVADDR (0x7ffff)
440 #define CRINFO_RELVADDR_SH (0)
441
442 /* A compact relocation info has long (3 words) or short (2 words)
443 formats. A short format doesn't have VADDR field and relvaddr
444 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
445 #define CRF_MIPS_LONG 1
446 #define CRF_MIPS_SHORT 0
447
448 /* There are 4 types of compact relocation at least. The value KONST
449 has different meaning for each type:
450
451 (type) (konst)
452 CT_MIPS_REL32 Address in data
453 CT_MIPS_WORD Address in word (XXX)
454 CT_MIPS_GPHI_LO GP - vaddr
455 CT_MIPS_JMPAD Address to jump
456 */
457
458 #define CRT_MIPS_REL32 0xa
459 #define CRT_MIPS_WORD 0xb
460 #define CRT_MIPS_GPHI_LO 0xc
461 #define CRT_MIPS_JMPAD 0xd
462
463 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
464 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
465 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
466 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
467 \f
468 /* The structure of the runtime procedure descriptor created by the
469 loader for use by the static exception system. */
470
471 typedef struct runtime_pdr {
472 bfd_vma adr; /* Memory address of start of procedure. */
473 long regmask; /* Save register mask. */
474 long regoffset; /* Save register offset. */
475 long fregmask; /* Save floating point register mask. */
476 long fregoffset; /* Save floating point register offset. */
477 long frameoffset; /* Frame size. */
478 short framereg; /* Frame pointer register. */
479 short pcreg; /* Offset or reg of return pc. */
480 long irpss; /* Index into the runtime string table. */
481 long reserved;
482 struct exception_info *exception_info;/* Pointer to exception array. */
483 } RPDR, *pRPDR;
484 #define cbRPDR sizeof (RPDR)
485 #define rpdNil ((pRPDR) 0)
486 \f
487 static struct mips_got_entry *mips_elf_create_local_got_entry
488 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
489 asection *, bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
490 static bfd_boolean mips_elf_sort_hash_table_f
491 (struct mips_elf_link_hash_entry *, void *);
492 static bfd_vma mips_elf_high
493 (bfd_vma);
494 static bfd_boolean mips_elf_stub_section_p
495 (bfd *, asection *);
496 static bfd_boolean mips_elf_create_dynamic_relocation
497 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
498 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
499 bfd_vma *, asection *);
500 static hashval_t mips_elf_got_entry_hash
501 (const void *);
502 static bfd_vma mips_elf_adjust_gp
503 (bfd *, struct mips_got_info *, bfd *);
504 static struct mips_got_info *mips_elf_got_for_ibfd
505 (struct mips_got_info *, bfd *);
506
507 /* This will be used when we sort the dynamic relocation records. */
508 static bfd *reldyn_sorting_bfd;
509
510 /* Nonzero if ABFD is using the N32 ABI. */
511 #define ABI_N32_P(abfd) \
512 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
513
514 /* Nonzero if ABFD is using the N64 ABI. */
515 #define ABI_64_P(abfd) \
516 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
517
518 /* Nonzero if ABFD is using NewABI conventions. */
519 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
520
521 /* The IRIX compatibility level we are striving for. */
522 #define IRIX_COMPAT(abfd) \
523 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
524
525 /* Whether we are trying to be compatible with IRIX at all. */
526 #define SGI_COMPAT(abfd) \
527 (IRIX_COMPAT (abfd) != ict_none)
528
529 /* The name of the options section. */
530 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
531 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
532
533 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
534 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
535 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
536 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
537
538 /* The name of the stub section. */
539 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
540
541 /* The size of an external REL relocation. */
542 #define MIPS_ELF_REL_SIZE(abfd) \
543 (get_elf_backend_data (abfd)->s->sizeof_rel)
544
545 /* The size of an external RELA relocation. */
546 #define MIPS_ELF_RELA_SIZE(abfd) \
547 (get_elf_backend_data (abfd)->s->sizeof_rela)
548
549 /* The size of an external dynamic table entry. */
550 #define MIPS_ELF_DYN_SIZE(abfd) \
551 (get_elf_backend_data (abfd)->s->sizeof_dyn)
552
553 /* The size of a GOT entry. */
554 #define MIPS_ELF_GOT_SIZE(abfd) \
555 (get_elf_backend_data (abfd)->s->arch_size / 8)
556
557 /* The size of a symbol-table entry. */
558 #define MIPS_ELF_SYM_SIZE(abfd) \
559 (get_elf_backend_data (abfd)->s->sizeof_sym)
560
561 /* The default alignment for sections, as a power of two. */
562 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
563 (get_elf_backend_data (abfd)->s->log_file_align)
564
565 /* Get word-sized data. */
566 #define MIPS_ELF_GET_WORD(abfd, ptr) \
567 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
568
569 /* Put out word-sized data. */
570 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
571 (ABI_64_P (abfd) \
572 ? bfd_put_64 (abfd, val, ptr) \
573 : bfd_put_32 (abfd, val, ptr))
574
575 /* Add a dynamic symbol table-entry. */
576 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
577 _bfd_elf_add_dynamic_entry (info, tag, val)
578
579 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
580 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
581
582 /* Determine whether the internal relocation of index REL_IDX is REL
583 (zero) or RELA (non-zero). The assumption is that, if there are
584 two relocation sections for this section, one of them is REL and
585 the other is RELA. If the index of the relocation we're testing is
586 in range for the first relocation section, check that the external
587 relocation size is that for RELA. It is also assumed that, if
588 rel_idx is not in range for the first section, and this first
589 section contains REL relocs, then the relocation is in the second
590 section, that is RELA. */
591 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
592 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
593 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
594 > (bfd_vma)(rel_idx)) \
595 == (elf_section_data (sec)->rel_hdr.sh_entsize \
596 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
597 : sizeof (Elf32_External_Rela))))
598
599 /* The name of the dynamic relocation section. */
600 #define MIPS_ELF_REL_DYN_NAME(INFO) \
601 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
602
603 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
604 from smaller values. Start with zero, widen, *then* decrement. */
605 #define MINUS_ONE (((bfd_vma)0) - 1)
606 #define MINUS_TWO (((bfd_vma)0) - 2)
607
608 /* The number of local .got entries we reserve. */
609 #define MIPS_RESERVED_GOTNO(INFO) \
610 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
611
612 /* The offset of $gp from the beginning of the .got section. */
613 #define ELF_MIPS_GP_OFFSET(INFO) \
614 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
615
616 /* The maximum size of the GOT for it to be addressable using 16-bit
617 offsets from $gp. */
618 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
619
620 /* Instructions which appear in a stub. */
621 #define STUB_LW(abfd) \
622 ((ABI_64_P (abfd) \
623 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
624 : 0x8f998010)) /* lw t9,0x8010(gp) */
625 #define STUB_MOVE(abfd) \
626 ((ABI_64_P (abfd) \
627 ? 0x03e0782d /* daddu t7,ra */ \
628 : 0x03e07821)) /* addu t7,ra */
629 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
630 #define STUB_LI16(abfd) \
631 ((ABI_64_P (abfd) \
632 ? 0x64180000 /* daddiu t8,zero,0 */ \
633 : 0x24180000)) /* addiu t8,zero,0 */
634 #define MIPS_FUNCTION_STUB_SIZE (16)
635
636 /* The name of the dynamic interpreter. This is put in the .interp
637 section. */
638
639 #define ELF_DYNAMIC_INTERPRETER(abfd) \
640 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
641 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
642 : "/usr/lib/libc.so.1")
643
644 #ifdef BFD64
645 #define MNAME(bfd,pre,pos) \
646 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
647 #define ELF_R_SYM(bfd, i) \
648 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
649 #define ELF_R_TYPE(bfd, i) \
650 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
651 #define ELF_R_INFO(bfd, s, t) \
652 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
653 #else
654 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
655 #define ELF_R_SYM(bfd, i) \
656 (ELF32_R_SYM (i))
657 #define ELF_R_TYPE(bfd, i) \
658 (ELF32_R_TYPE (i))
659 #define ELF_R_INFO(bfd, s, t) \
660 (ELF32_R_INFO (s, t))
661 #endif
662 \f
663 /* The mips16 compiler uses a couple of special sections to handle
664 floating point arguments.
665
666 Section names that look like .mips16.fn.FNNAME contain stubs that
667 copy floating point arguments from the fp regs to the gp regs and
668 then jump to FNNAME. If any 32 bit function calls FNNAME, the
669 call should be redirected to the stub instead. If no 32 bit
670 function calls FNNAME, the stub should be discarded. We need to
671 consider any reference to the function, not just a call, because
672 if the address of the function is taken we will need the stub,
673 since the address might be passed to a 32 bit function.
674
675 Section names that look like .mips16.call.FNNAME contain stubs
676 that copy floating point arguments from the gp regs to the fp
677 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
678 then any 16 bit function that calls FNNAME should be redirected
679 to the stub instead. If FNNAME is not a 32 bit function, the
680 stub should be discarded.
681
682 .mips16.call.fp.FNNAME sections are similar, but contain stubs
683 which call FNNAME and then copy the return value from the fp regs
684 to the gp regs. These stubs store the return value in $18 while
685 calling FNNAME; any function which might call one of these stubs
686 must arrange to save $18 around the call. (This case is not
687 needed for 32 bit functions that call 16 bit functions, because
688 16 bit functions always return floating point values in both
689 $f0/$f1 and $2/$3.)
690
691 Note that in all cases FNNAME might be defined statically.
692 Therefore, FNNAME is not used literally. Instead, the relocation
693 information will indicate which symbol the section is for.
694
695 We record any stubs that we find in the symbol table. */
696
697 #define FN_STUB ".mips16.fn."
698 #define CALL_STUB ".mips16.call."
699 #define CALL_FP_STUB ".mips16.call.fp."
700 \f
701 /* The format of the first PLT entry in a VxWorks executable. */
702 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
703 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
704 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
705 0x8f390008, /* lw t9, 8(t9) */
706 0x00000000, /* nop */
707 0x03200008, /* jr t9 */
708 0x00000000 /* nop */
709 };
710
711 /* The format of subsequent PLT entries. */
712 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
713 0x10000000, /* b .PLT_resolver */
714 0x24180000, /* li t8, <pltindex> */
715 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
716 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
717 0x8f390000, /* lw t9, 0(t9) */
718 0x00000000, /* nop */
719 0x03200008, /* jr t9 */
720 0x00000000 /* nop */
721 };
722
723 /* The format of the first PLT entry in a VxWorks shared object. */
724 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
725 0x8f990008, /* lw t9, 8(gp) */
726 0x00000000, /* nop */
727 0x03200008, /* jr t9 */
728 0x00000000, /* nop */
729 0x00000000, /* nop */
730 0x00000000 /* nop */
731 };
732
733 /* The format of subsequent PLT entries. */
734 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
735 0x10000000, /* b .PLT_resolver */
736 0x24180000 /* li t8, <pltindex> */
737 };
738 \f
739 /* Look up an entry in a MIPS ELF linker hash table. */
740
741 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
742 ((struct mips_elf_link_hash_entry *) \
743 elf_link_hash_lookup (&(table)->root, (string), (create), \
744 (copy), (follow)))
745
746 /* Traverse a MIPS ELF linker hash table. */
747
748 #define mips_elf_link_hash_traverse(table, func, info) \
749 (elf_link_hash_traverse \
750 (&(table)->root, \
751 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
752 (info)))
753
754 /* Get the MIPS ELF linker hash table from a link_info structure. */
755
756 #define mips_elf_hash_table(p) \
757 ((struct mips_elf_link_hash_table *) ((p)->hash))
758
759 /* Find the base offsets for thread-local storage in this object,
760 for GD/LD and IE/LE respectively. */
761
762 #define TP_OFFSET 0x7000
763 #define DTP_OFFSET 0x8000
764
765 static bfd_vma
766 dtprel_base (struct bfd_link_info *info)
767 {
768 /* If tls_sec is NULL, we should have signalled an error already. */
769 if (elf_hash_table (info)->tls_sec == NULL)
770 return 0;
771 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
772 }
773
774 static bfd_vma
775 tprel_base (struct bfd_link_info *info)
776 {
777 /* If tls_sec is NULL, we should have signalled an error already. */
778 if (elf_hash_table (info)->tls_sec == NULL)
779 return 0;
780 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
781 }
782
783 /* Create an entry in a MIPS ELF linker hash table. */
784
785 static struct bfd_hash_entry *
786 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
787 struct bfd_hash_table *table, const char *string)
788 {
789 struct mips_elf_link_hash_entry *ret =
790 (struct mips_elf_link_hash_entry *) entry;
791
792 /* Allocate the structure if it has not already been allocated by a
793 subclass. */
794 if (ret == NULL)
795 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
796 if (ret == NULL)
797 return (struct bfd_hash_entry *) ret;
798
799 /* Call the allocation method of the superclass. */
800 ret = ((struct mips_elf_link_hash_entry *)
801 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
802 table, string));
803 if (ret != NULL)
804 {
805 /* Set local fields. */
806 memset (&ret->esym, 0, sizeof (EXTR));
807 /* We use -2 as a marker to indicate that the information has
808 not been set. -1 means there is no associated ifd. */
809 ret->esym.ifd = -2;
810 ret->possibly_dynamic_relocs = 0;
811 ret->readonly_reloc = FALSE;
812 ret->no_fn_stub = FALSE;
813 ret->fn_stub = NULL;
814 ret->need_fn_stub = FALSE;
815 ret->call_stub = NULL;
816 ret->call_fp_stub = NULL;
817 ret->forced_local = FALSE;
818 ret->is_branch_target = FALSE;
819 ret->is_relocation_target = FALSE;
820 ret->tls_type = GOT_NORMAL;
821 }
822
823 return (struct bfd_hash_entry *) ret;
824 }
825
826 bfd_boolean
827 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
828 {
829 struct _mips_elf_section_data *sdata;
830 bfd_size_type amt = sizeof (*sdata);
831
832 sdata = bfd_zalloc (abfd, amt);
833 if (sdata == NULL)
834 return FALSE;
835 sec->used_by_bfd = sdata;
836
837 return _bfd_elf_new_section_hook (abfd, sec);
838 }
839 \f
840 /* Read ECOFF debugging information from a .mdebug section into a
841 ecoff_debug_info structure. */
842
843 bfd_boolean
844 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
845 struct ecoff_debug_info *debug)
846 {
847 HDRR *symhdr;
848 const struct ecoff_debug_swap *swap;
849 char *ext_hdr;
850
851 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
852 memset (debug, 0, sizeof (*debug));
853
854 ext_hdr = bfd_malloc (swap->external_hdr_size);
855 if (ext_hdr == NULL && swap->external_hdr_size != 0)
856 goto error_return;
857
858 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
859 swap->external_hdr_size))
860 goto error_return;
861
862 symhdr = &debug->symbolic_header;
863 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
864
865 /* The symbolic header contains absolute file offsets and sizes to
866 read. */
867 #define READ(ptr, offset, count, size, type) \
868 if (symhdr->count == 0) \
869 debug->ptr = NULL; \
870 else \
871 { \
872 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
873 debug->ptr = bfd_malloc (amt); \
874 if (debug->ptr == NULL) \
875 goto error_return; \
876 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
877 || bfd_bread (debug->ptr, amt, abfd) != amt) \
878 goto error_return; \
879 }
880
881 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
882 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
883 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
884 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
885 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
886 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
887 union aux_ext *);
888 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
889 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
890 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
891 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
892 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
893 #undef READ
894
895 debug->fdr = NULL;
896
897 return TRUE;
898
899 error_return:
900 if (ext_hdr != NULL)
901 free (ext_hdr);
902 if (debug->line != NULL)
903 free (debug->line);
904 if (debug->external_dnr != NULL)
905 free (debug->external_dnr);
906 if (debug->external_pdr != NULL)
907 free (debug->external_pdr);
908 if (debug->external_sym != NULL)
909 free (debug->external_sym);
910 if (debug->external_opt != NULL)
911 free (debug->external_opt);
912 if (debug->external_aux != NULL)
913 free (debug->external_aux);
914 if (debug->ss != NULL)
915 free (debug->ss);
916 if (debug->ssext != NULL)
917 free (debug->ssext);
918 if (debug->external_fdr != NULL)
919 free (debug->external_fdr);
920 if (debug->external_rfd != NULL)
921 free (debug->external_rfd);
922 if (debug->external_ext != NULL)
923 free (debug->external_ext);
924 return FALSE;
925 }
926 \f
927 /* Swap RPDR (runtime procedure table entry) for output. */
928
929 static void
930 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
931 {
932 H_PUT_S32 (abfd, in->adr, ex->p_adr);
933 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
934 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
935 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
936 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
937 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
938
939 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
940 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
941
942 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
943 }
944
945 /* Create a runtime procedure table from the .mdebug section. */
946
947 static bfd_boolean
948 mips_elf_create_procedure_table (void *handle, bfd *abfd,
949 struct bfd_link_info *info, asection *s,
950 struct ecoff_debug_info *debug)
951 {
952 const struct ecoff_debug_swap *swap;
953 HDRR *hdr = &debug->symbolic_header;
954 RPDR *rpdr, *rp;
955 struct rpdr_ext *erp;
956 void *rtproc;
957 struct pdr_ext *epdr;
958 struct sym_ext *esym;
959 char *ss, **sv;
960 char *str;
961 bfd_size_type size;
962 bfd_size_type count;
963 unsigned long sindex;
964 unsigned long i;
965 PDR pdr;
966 SYMR sym;
967 const char *no_name_func = _("static procedure (no name)");
968
969 epdr = NULL;
970 rpdr = NULL;
971 esym = NULL;
972 ss = NULL;
973 sv = NULL;
974
975 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
976
977 sindex = strlen (no_name_func) + 1;
978 count = hdr->ipdMax;
979 if (count > 0)
980 {
981 size = swap->external_pdr_size;
982
983 epdr = bfd_malloc (size * count);
984 if (epdr == NULL)
985 goto error_return;
986
987 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
988 goto error_return;
989
990 size = sizeof (RPDR);
991 rp = rpdr = bfd_malloc (size * count);
992 if (rpdr == NULL)
993 goto error_return;
994
995 size = sizeof (char *);
996 sv = bfd_malloc (size * count);
997 if (sv == NULL)
998 goto error_return;
999
1000 count = hdr->isymMax;
1001 size = swap->external_sym_size;
1002 esym = bfd_malloc (size * count);
1003 if (esym == NULL)
1004 goto error_return;
1005
1006 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1007 goto error_return;
1008
1009 count = hdr->issMax;
1010 ss = bfd_malloc (count);
1011 if (ss == NULL)
1012 goto error_return;
1013 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1014 goto error_return;
1015
1016 count = hdr->ipdMax;
1017 for (i = 0; i < (unsigned long) count; i++, rp++)
1018 {
1019 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1020 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1021 rp->adr = sym.value;
1022 rp->regmask = pdr.regmask;
1023 rp->regoffset = pdr.regoffset;
1024 rp->fregmask = pdr.fregmask;
1025 rp->fregoffset = pdr.fregoffset;
1026 rp->frameoffset = pdr.frameoffset;
1027 rp->framereg = pdr.framereg;
1028 rp->pcreg = pdr.pcreg;
1029 rp->irpss = sindex;
1030 sv[i] = ss + sym.iss;
1031 sindex += strlen (sv[i]) + 1;
1032 }
1033 }
1034
1035 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1036 size = BFD_ALIGN (size, 16);
1037 rtproc = bfd_alloc (abfd, size);
1038 if (rtproc == NULL)
1039 {
1040 mips_elf_hash_table (info)->procedure_count = 0;
1041 goto error_return;
1042 }
1043
1044 mips_elf_hash_table (info)->procedure_count = count + 2;
1045
1046 erp = rtproc;
1047 memset (erp, 0, sizeof (struct rpdr_ext));
1048 erp++;
1049 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1050 strcpy (str, no_name_func);
1051 str += strlen (no_name_func) + 1;
1052 for (i = 0; i < count; i++)
1053 {
1054 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1055 strcpy (str, sv[i]);
1056 str += strlen (sv[i]) + 1;
1057 }
1058 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1059
1060 /* Set the size and contents of .rtproc section. */
1061 s->size = size;
1062 s->contents = rtproc;
1063
1064 /* Skip this section later on (I don't think this currently
1065 matters, but someday it might). */
1066 s->map_head.link_order = NULL;
1067
1068 if (epdr != NULL)
1069 free (epdr);
1070 if (rpdr != NULL)
1071 free (rpdr);
1072 if (esym != NULL)
1073 free (esym);
1074 if (ss != NULL)
1075 free (ss);
1076 if (sv != NULL)
1077 free (sv);
1078
1079 return TRUE;
1080
1081 error_return:
1082 if (epdr != NULL)
1083 free (epdr);
1084 if (rpdr != NULL)
1085 free (rpdr);
1086 if (esym != NULL)
1087 free (esym);
1088 if (ss != NULL)
1089 free (ss);
1090 if (sv != NULL)
1091 free (sv);
1092 return FALSE;
1093 }
1094
1095 /* Check the mips16 stubs for a particular symbol, and see if we can
1096 discard them. */
1097
1098 static bfd_boolean
1099 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1100 void *data ATTRIBUTE_UNUSED)
1101 {
1102 if (h->root.root.type == bfd_link_hash_warning)
1103 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1104
1105 if (h->fn_stub != NULL
1106 && ! h->need_fn_stub)
1107 {
1108 /* We don't need the fn_stub; the only references to this symbol
1109 are 16 bit calls. Clobber the size to 0 to prevent it from
1110 being included in the link. */
1111 h->fn_stub->size = 0;
1112 h->fn_stub->flags &= ~SEC_RELOC;
1113 h->fn_stub->reloc_count = 0;
1114 h->fn_stub->flags |= SEC_EXCLUDE;
1115 }
1116
1117 if (h->call_stub != NULL
1118 && h->root.other == STO_MIPS16)
1119 {
1120 /* We don't need the call_stub; this is a 16 bit function, so
1121 calls from other 16 bit functions are OK. Clobber the size
1122 to 0 to prevent it from being included in the link. */
1123 h->call_stub->size = 0;
1124 h->call_stub->flags &= ~SEC_RELOC;
1125 h->call_stub->reloc_count = 0;
1126 h->call_stub->flags |= SEC_EXCLUDE;
1127 }
1128
1129 if (h->call_fp_stub != NULL
1130 && h->root.other == STO_MIPS16)
1131 {
1132 /* We don't need the call_stub; this is a 16 bit function, so
1133 calls from other 16 bit functions are OK. Clobber the size
1134 to 0 to prevent it from being included in the link. */
1135 h->call_fp_stub->size = 0;
1136 h->call_fp_stub->flags &= ~SEC_RELOC;
1137 h->call_fp_stub->reloc_count = 0;
1138 h->call_fp_stub->flags |= SEC_EXCLUDE;
1139 }
1140
1141 return TRUE;
1142 }
1143 \f
1144 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1145 Most mips16 instructions are 16 bits, but these instructions
1146 are 32 bits.
1147
1148 The format of these instructions is:
1149
1150 +--------------+--------------------------------+
1151 | JALX | X| Imm 20:16 | Imm 25:21 |
1152 +--------------+--------------------------------+
1153 | Immediate 15:0 |
1154 +-----------------------------------------------+
1155
1156 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1157 Note that the immediate value in the first word is swapped.
1158
1159 When producing a relocatable object file, R_MIPS16_26 is
1160 handled mostly like R_MIPS_26. In particular, the addend is
1161 stored as a straight 26-bit value in a 32-bit instruction.
1162 (gas makes life simpler for itself by never adjusting a
1163 R_MIPS16_26 reloc to be against a section, so the addend is
1164 always zero). However, the 32 bit instruction is stored as 2
1165 16-bit values, rather than a single 32-bit value. In a
1166 big-endian file, the result is the same; in a little-endian
1167 file, the two 16-bit halves of the 32 bit value are swapped.
1168 This is so that a disassembler can recognize the jal
1169 instruction.
1170
1171 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1172 instruction stored as two 16-bit values. The addend A is the
1173 contents of the targ26 field. The calculation is the same as
1174 R_MIPS_26. When storing the calculated value, reorder the
1175 immediate value as shown above, and don't forget to store the
1176 value as two 16-bit values.
1177
1178 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1179 defined as
1180
1181 big-endian:
1182 +--------+----------------------+
1183 | | |
1184 | | targ26-16 |
1185 |31 26|25 0|
1186 +--------+----------------------+
1187
1188 little-endian:
1189 +----------+------+-------------+
1190 | | | |
1191 | sub1 | | sub2 |
1192 |0 9|10 15|16 31|
1193 +----------+--------------------+
1194 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1195 ((sub1 << 16) | sub2)).
1196
1197 When producing a relocatable object file, the calculation is
1198 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1199 When producing a fully linked file, the calculation is
1200 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1201 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1202
1203 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1204 mode. A typical instruction will have a format like this:
1205
1206 +--------------+--------------------------------+
1207 | EXTEND | Imm 10:5 | Imm 15:11 |
1208 +--------------+--------------------------------+
1209 | Major | rx | ry | Imm 4:0 |
1210 +--------------+--------------------------------+
1211
1212 EXTEND is the five bit value 11110. Major is the instruction
1213 opcode.
1214
1215 This is handled exactly like R_MIPS_GPREL16, except that the
1216 addend is retrieved and stored as shown in this diagram; that
1217 is, the Imm fields above replace the V-rel16 field.
1218
1219 All we need to do here is shuffle the bits appropriately. As
1220 above, the two 16-bit halves must be swapped on a
1221 little-endian system.
1222
1223 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1224 access data when neither GP-relative nor PC-relative addressing
1225 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1226 except that the addend is retrieved and stored as shown above
1227 for R_MIPS16_GPREL.
1228 */
1229 void
1230 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1231 bfd_boolean jal_shuffle, bfd_byte *data)
1232 {
1233 bfd_vma extend, insn, val;
1234
1235 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1236 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1237 return;
1238
1239 /* Pick up the mips16 extend instruction and the real instruction. */
1240 extend = bfd_get_16 (abfd, data);
1241 insn = bfd_get_16 (abfd, data + 2);
1242 if (r_type == R_MIPS16_26)
1243 {
1244 if (jal_shuffle)
1245 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1246 | ((extend & 0x1f) << 21) | insn;
1247 else
1248 val = extend << 16 | insn;
1249 }
1250 else
1251 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1252 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1253 bfd_put_32 (abfd, val, data);
1254 }
1255
1256 void
1257 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1258 bfd_boolean jal_shuffle, bfd_byte *data)
1259 {
1260 bfd_vma extend, insn, val;
1261
1262 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1263 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1264 return;
1265
1266 val = bfd_get_32 (abfd, data);
1267 if (r_type == R_MIPS16_26)
1268 {
1269 if (jal_shuffle)
1270 {
1271 insn = val & 0xffff;
1272 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1273 | ((val >> 21) & 0x1f);
1274 }
1275 else
1276 {
1277 insn = val & 0xffff;
1278 extend = val >> 16;
1279 }
1280 }
1281 else
1282 {
1283 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1284 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1285 }
1286 bfd_put_16 (abfd, insn, data + 2);
1287 bfd_put_16 (abfd, extend, data);
1288 }
1289
1290 bfd_reloc_status_type
1291 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1292 arelent *reloc_entry, asection *input_section,
1293 bfd_boolean relocatable, void *data, bfd_vma gp)
1294 {
1295 bfd_vma relocation;
1296 bfd_signed_vma val;
1297 bfd_reloc_status_type status;
1298
1299 if (bfd_is_com_section (symbol->section))
1300 relocation = 0;
1301 else
1302 relocation = symbol->value;
1303
1304 relocation += symbol->section->output_section->vma;
1305 relocation += symbol->section->output_offset;
1306
1307 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1308 return bfd_reloc_outofrange;
1309
1310 /* Set val to the offset into the section or symbol. */
1311 val = reloc_entry->addend;
1312
1313 _bfd_mips_elf_sign_extend (val, 16);
1314
1315 /* Adjust val for the final section location and GP value. If we
1316 are producing relocatable output, we don't want to do this for
1317 an external symbol. */
1318 if (! relocatable
1319 || (symbol->flags & BSF_SECTION_SYM) != 0)
1320 val += relocation - gp;
1321
1322 if (reloc_entry->howto->partial_inplace)
1323 {
1324 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1325 (bfd_byte *) data
1326 + reloc_entry->address);
1327 if (status != bfd_reloc_ok)
1328 return status;
1329 }
1330 else
1331 reloc_entry->addend = val;
1332
1333 if (relocatable)
1334 reloc_entry->address += input_section->output_offset;
1335
1336 return bfd_reloc_ok;
1337 }
1338
1339 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1340 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1341 that contains the relocation field and DATA points to the start of
1342 INPUT_SECTION. */
1343
1344 struct mips_hi16
1345 {
1346 struct mips_hi16 *next;
1347 bfd_byte *data;
1348 asection *input_section;
1349 arelent rel;
1350 };
1351
1352 /* FIXME: This should not be a static variable. */
1353
1354 static struct mips_hi16 *mips_hi16_list;
1355
1356 /* A howto special_function for REL *HI16 relocations. We can only
1357 calculate the correct value once we've seen the partnering
1358 *LO16 relocation, so just save the information for later.
1359
1360 The ABI requires that the *LO16 immediately follow the *HI16.
1361 However, as a GNU extension, we permit an arbitrary number of
1362 *HI16s to be associated with a single *LO16. This significantly
1363 simplies the relocation handling in gcc. */
1364
1365 bfd_reloc_status_type
1366 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1367 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1368 asection *input_section, bfd *output_bfd,
1369 char **error_message ATTRIBUTE_UNUSED)
1370 {
1371 struct mips_hi16 *n;
1372
1373 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1374 return bfd_reloc_outofrange;
1375
1376 n = bfd_malloc (sizeof *n);
1377 if (n == NULL)
1378 return bfd_reloc_outofrange;
1379
1380 n->next = mips_hi16_list;
1381 n->data = data;
1382 n->input_section = input_section;
1383 n->rel = *reloc_entry;
1384 mips_hi16_list = n;
1385
1386 if (output_bfd != NULL)
1387 reloc_entry->address += input_section->output_offset;
1388
1389 return bfd_reloc_ok;
1390 }
1391
1392 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1393 like any other 16-bit relocation when applied to global symbols, but is
1394 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1395
1396 bfd_reloc_status_type
1397 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1398 void *data, asection *input_section,
1399 bfd *output_bfd, char **error_message)
1400 {
1401 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1402 || bfd_is_und_section (bfd_get_section (symbol))
1403 || bfd_is_com_section (bfd_get_section (symbol)))
1404 /* The relocation is against a global symbol. */
1405 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1406 input_section, output_bfd,
1407 error_message);
1408
1409 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1410 input_section, output_bfd, error_message);
1411 }
1412
1413 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1414 is a straightforward 16 bit inplace relocation, but we must deal with
1415 any partnering high-part relocations as well. */
1416
1417 bfd_reloc_status_type
1418 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1419 void *data, asection *input_section,
1420 bfd *output_bfd, char **error_message)
1421 {
1422 bfd_vma vallo;
1423 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1424
1425 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1426 return bfd_reloc_outofrange;
1427
1428 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1429 location);
1430 vallo = bfd_get_32 (abfd, location);
1431 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1432 location);
1433
1434 while (mips_hi16_list != NULL)
1435 {
1436 bfd_reloc_status_type ret;
1437 struct mips_hi16 *hi;
1438
1439 hi = mips_hi16_list;
1440
1441 /* R_MIPS_GOT16 relocations are something of a special case. We
1442 want to install the addend in the same way as for a R_MIPS_HI16
1443 relocation (with a rightshift of 16). However, since GOT16
1444 relocations can also be used with global symbols, their howto
1445 has a rightshift of 0. */
1446 if (hi->rel.howto->type == R_MIPS_GOT16)
1447 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1448
1449 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1450 carry or borrow will induce a change of +1 or -1 in the high part. */
1451 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1452
1453 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1454 hi->input_section, output_bfd,
1455 error_message);
1456 if (ret != bfd_reloc_ok)
1457 return ret;
1458
1459 mips_hi16_list = hi->next;
1460 free (hi);
1461 }
1462
1463 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1464 input_section, output_bfd,
1465 error_message);
1466 }
1467
1468 /* A generic howto special_function. This calculates and installs the
1469 relocation itself, thus avoiding the oft-discussed problems in
1470 bfd_perform_relocation and bfd_install_relocation. */
1471
1472 bfd_reloc_status_type
1473 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1474 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1475 asection *input_section, bfd *output_bfd,
1476 char **error_message ATTRIBUTE_UNUSED)
1477 {
1478 bfd_signed_vma val;
1479 bfd_reloc_status_type status;
1480 bfd_boolean relocatable;
1481
1482 relocatable = (output_bfd != NULL);
1483
1484 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1485 return bfd_reloc_outofrange;
1486
1487 /* Build up the field adjustment in VAL. */
1488 val = 0;
1489 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1490 {
1491 /* Either we're calculating the final field value or we have a
1492 relocation against a section symbol. Add in the section's
1493 offset or address. */
1494 val += symbol->section->output_section->vma;
1495 val += symbol->section->output_offset;
1496 }
1497
1498 if (!relocatable)
1499 {
1500 /* We're calculating the final field value. Add in the symbol's value
1501 and, if pc-relative, subtract the address of the field itself. */
1502 val += symbol->value;
1503 if (reloc_entry->howto->pc_relative)
1504 {
1505 val -= input_section->output_section->vma;
1506 val -= input_section->output_offset;
1507 val -= reloc_entry->address;
1508 }
1509 }
1510
1511 /* VAL is now the final adjustment. If we're keeping this relocation
1512 in the output file, and if the relocation uses a separate addend,
1513 we just need to add VAL to that addend. Otherwise we need to add
1514 VAL to the relocation field itself. */
1515 if (relocatable && !reloc_entry->howto->partial_inplace)
1516 reloc_entry->addend += val;
1517 else
1518 {
1519 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1520
1521 /* Add in the separate addend, if any. */
1522 val += reloc_entry->addend;
1523
1524 /* Add VAL to the relocation field. */
1525 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1526 location);
1527 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1528 location);
1529 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1530 location);
1531
1532 if (status != bfd_reloc_ok)
1533 return status;
1534 }
1535
1536 if (relocatable)
1537 reloc_entry->address += input_section->output_offset;
1538
1539 return bfd_reloc_ok;
1540 }
1541 \f
1542 /* Swap an entry in a .gptab section. Note that these routines rely
1543 on the equivalence of the two elements of the union. */
1544
1545 static void
1546 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1547 Elf32_gptab *in)
1548 {
1549 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1550 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1551 }
1552
1553 static void
1554 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1555 Elf32_External_gptab *ex)
1556 {
1557 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1558 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1559 }
1560
1561 static void
1562 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1563 Elf32_External_compact_rel *ex)
1564 {
1565 H_PUT_32 (abfd, in->id1, ex->id1);
1566 H_PUT_32 (abfd, in->num, ex->num);
1567 H_PUT_32 (abfd, in->id2, ex->id2);
1568 H_PUT_32 (abfd, in->offset, ex->offset);
1569 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1570 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1571 }
1572
1573 static void
1574 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1575 Elf32_External_crinfo *ex)
1576 {
1577 unsigned long l;
1578
1579 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1580 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1581 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1582 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1583 H_PUT_32 (abfd, l, ex->info);
1584 H_PUT_32 (abfd, in->konst, ex->konst);
1585 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1586 }
1587 \f
1588 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1589 routines swap this structure in and out. They are used outside of
1590 BFD, so they are globally visible. */
1591
1592 void
1593 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1594 Elf32_RegInfo *in)
1595 {
1596 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1597 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1598 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1599 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1600 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1601 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1602 }
1603
1604 void
1605 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1606 Elf32_External_RegInfo *ex)
1607 {
1608 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1609 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1610 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1611 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1612 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1613 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1614 }
1615
1616 /* In the 64 bit ABI, the .MIPS.options section holds register
1617 information in an Elf64_Reginfo structure. These routines swap
1618 them in and out. They are globally visible because they are used
1619 outside of BFD. These routines are here so that gas can call them
1620 without worrying about whether the 64 bit ABI has been included. */
1621
1622 void
1623 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1624 Elf64_Internal_RegInfo *in)
1625 {
1626 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1627 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1628 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1629 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1630 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1631 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1632 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1633 }
1634
1635 void
1636 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1637 Elf64_External_RegInfo *ex)
1638 {
1639 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1640 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1641 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1642 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1643 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1644 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1645 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1646 }
1647
1648 /* Swap in an options header. */
1649
1650 void
1651 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1652 Elf_Internal_Options *in)
1653 {
1654 in->kind = H_GET_8 (abfd, ex->kind);
1655 in->size = H_GET_8 (abfd, ex->size);
1656 in->section = H_GET_16 (abfd, ex->section);
1657 in->info = H_GET_32 (abfd, ex->info);
1658 }
1659
1660 /* Swap out an options header. */
1661
1662 void
1663 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1664 Elf_External_Options *ex)
1665 {
1666 H_PUT_8 (abfd, in->kind, ex->kind);
1667 H_PUT_8 (abfd, in->size, ex->size);
1668 H_PUT_16 (abfd, in->section, ex->section);
1669 H_PUT_32 (abfd, in->info, ex->info);
1670 }
1671 \f
1672 /* This function is called via qsort() to sort the dynamic relocation
1673 entries by increasing r_symndx value. */
1674
1675 static int
1676 sort_dynamic_relocs (const void *arg1, const void *arg2)
1677 {
1678 Elf_Internal_Rela int_reloc1;
1679 Elf_Internal_Rela int_reloc2;
1680
1681 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1682 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1683
1684 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1685 }
1686
1687 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1688
1689 static int
1690 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1691 const void *arg2 ATTRIBUTE_UNUSED)
1692 {
1693 #ifdef BFD64
1694 Elf_Internal_Rela int_reloc1[3];
1695 Elf_Internal_Rela int_reloc2[3];
1696
1697 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1698 (reldyn_sorting_bfd, arg1, int_reloc1);
1699 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1700 (reldyn_sorting_bfd, arg2, int_reloc2);
1701
1702 return (ELF64_R_SYM (int_reloc1[0].r_info)
1703 - ELF64_R_SYM (int_reloc2[0].r_info));
1704 #else
1705 abort ();
1706 #endif
1707 }
1708
1709
1710 /* This routine is used to write out ECOFF debugging external symbol
1711 information. It is called via mips_elf_link_hash_traverse. The
1712 ECOFF external symbol information must match the ELF external
1713 symbol information. Unfortunately, at this point we don't know
1714 whether a symbol is required by reloc information, so the two
1715 tables may wind up being different. We must sort out the external
1716 symbol information before we can set the final size of the .mdebug
1717 section, and we must set the size of the .mdebug section before we
1718 can relocate any sections, and we can't know which symbols are
1719 required by relocation until we relocate the sections.
1720 Fortunately, it is relatively unlikely that any symbol will be
1721 stripped but required by a reloc. In particular, it can not happen
1722 when generating a final executable. */
1723
1724 static bfd_boolean
1725 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1726 {
1727 struct extsym_info *einfo = data;
1728 bfd_boolean strip;
1729 asection *sec, *output_section;
1730
1731 if (h->root.root.type == bfd_link_hash_warning)
1732 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1733
1734 if (h->root.indx == -2)
1735 strip = FALSE;
1736 else if ((h->root.def_dynamic
1737 || h->root.ref_dynamic
1738 || h->root.type == bfd_link_hash_new)
1739 && !h->root.def_regular
1740 && !h->root.ref_regular)
1741 strip = TRUE;
1742 else if (einfo->info->strip == strip_all
1743 || (einfo->info->strip == strip_some
1744 && bfd_hash_lookup (einfo->info->keep_hash,
1745 h->root.root.root.string,
1746 FALSE, FALSE) == NULL))
1747 strip = TRUE;
1748 else
1749 strip = FALSE;
1750
1751 if (strip)
1752 return TRUE;
1753
1754 if (h->esym.ifd == -2)
1755 {
1756 h->esym.jmptbl = 0;
1757 h->esym.cobol_main = 0;
1758 h->esym.weakext = 0;
1759 h->esym.reserved = 0;
1760 h->esym.ifd = ifdNil;
1761 h->esym.asym.value = 0;
1762 h->esym.asym.st = stGlobal;
1763
1764 if (h->root.root.type == bfd_link_hash_undefined
1765 || h->root.root.type == bfd_link_hash_undefweak)
1766 {
1767 const char *name;
1768
1769 /* Use undefined class. Also, set class and type for some
1770 special symbols. */
1771 name = h->root.root.root.string;
1772 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1773 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1774 {
1775 h->esym.asym.sc = scData;
1776 h->esym.asym.st = stLabel;
1777 h->esym.asym.value = 0;
1778 }
1779 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1780 {
1781 h->esym.asym.sc = scAbs;
1782 h->esym.asym.st = stLabel;
1783 h->esym.asym.value =
1784 mips_elf_hash_table (einfo->info)->procedure_count;
1785 }
1786 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1787 {
1788 h->esym.asym.sc = scAbs;
1789 h->esym.asym.st = stLabel;
1790 h->esym.asym.value = elf_gp (einfo->abfd);
1791 }
1792 else
1793 h->esym.asym.sc = scUndefined;
1794 }
1795 else if (h->root.root.type != bfd_link_hash_defined
1796 && h->root.root.type != bfd_link_hash_defweak)
1797 h->esym.asym.sc = scAbs;
1798 else
1799 {
1800 const char *name;
1801
1802 sec = h->root.root.u.def.section;
1803 output_section = sec->output_section;
1804
1805 /* When making a shared library and symbol h is the one from
1806 the another shared library, OUTPUT_SECTION may be null. */
1807 if (output_section == NULL)
1808 h->esym.asym.sc = scUndefined;
1809 else
1810 {
1811 name = bfd_section_name (output_section->owner, output_section);
1812
1813 if (strcmp (name, ".text") == 0)
1814 h->esym.asym.sc = scText;
1815 else if (strcmp (name, ".data") == 0)
1816 h->esym.asym.sc = scData;
1817 else if (strcmp (name, ".sdata") == 0)
1818 h->esym.asym.sc = scSData;
1819 else if (strcmp (name, ".rodata") == 0
1820 || strcmp (name, ".rdata") == 0)
1821 h->esym.asym.sc = scRData;
1822 else if (strcmp (name, ".bss") == 0)
1823 h->esym.asym.sc = scBss;
1824 else if (strcmp (name, ".sbss") == 0)
1825 h->esym.asym.sc = scSBss;
1826 else if (strcmp (name, ".init") == 0)
1827 h->esym.asym.sc = scInit;
1828 else if (strcmp (name, ".fini") == 0)
1829 h->esym.asym.sc = scFini;
1830 else
1831 h->esym.asym.sc = scAbs;
1832 }
1833 }
1834
1835 h->esym.asym.reserved = 0;
1836 h->esym.asym.index = indexNil;
1837 }
1838
1839 if (h->root.root.type == bfd_link_hash_common)
1840 h->esym.asym.value = h->root.root.u.c.size;
1841 else if (h->root.root.type == bfd_link_hash_defined
1842 || h->root.root.type == bfd_link_hash_defweak)
1843 {
1844 if (h->esym.asym.sc == scCommon)
1845 h->esym.asym.sc = scBss;
1846 else if (h->esym.asym.sc == scSCommon)
1847 h->esym.asym.sc = scSBss;
1848
1849 sec = h->root.root.u.def.section;
1850 output_section = sec->output_section;
1851 if (output_section != NULL)
1852 h->esym.asym.value = (h->root.root.u.def.value
1853 + sec->output_offset
1854 + output_section->vma);
1855 else
1856 h->esym.asym.value = 0;
1857 }
1858 else if (h->root.needs_plt)
1859 {
1860 struct mips_elf_link_hash_entry *hd = h;
1861 bfd_boolean no_fn_stub = h->no_fn_stub;
1862
1863 while (hd->root.root.type == bfd_link_hash_indirect)
1864 {
1865 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1866 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1867 }
1868
1869 if (!no_fn_stub)
1870 {
1871 /* Set type and value for a symbol with a function stub. */
1872 h->esym.asym.st = stProc;
1873 sec = hd->root.root.u.def.section;
1874 if (sec == NULL)
1875 h->esym.asym.value = 0;
1876 else
1877 {
1878 output_section = sec->output_section;
1879 if (output_section != NULL)
1880 h->esym.asym.value = (hd->root.plt.offset
1881 + sec->output_offset
1882 + output_section->vma);
1883 else
1884 h->esym.asym.value = 0;
1885 }
1886 }
1887 }
1888
1889 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1890 h->root.root.root.string,
1891 &h->esym))
1892 {
1893 einfo->failed = TRUE;
1894 return FALSE;
1895 }
1896
1897 return TRUE;
1898 }
1899
1900 /* A comparison routine used to sort .gptab entries. */
1901
1902 static int
1903 gptab_compare (const void *p1, const void *p2)
1904 {
1905 const Elf32_gptab *a1 = p1;
1906 const Elf32_gptab *a2 = p2;
1907
1908 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1909 }
1910 \f
1911 /* Functions to manage the got entry hash table. */
1912
1913 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1914 hash number. */
1915
1916 static INLINE hashval_t
1917 mips_elf_hash_bfd_vma (bfd_vma addr)
1918 {
1919 #ifdef BFD64
1920 return addr + (addr >> 32);
1921 #else
1922 return addr;
1923 #endif
1924 }
1925
1926 /* got_entries only match if they're identical, except for gotidx, so
1927 use all fields to compute the hash, and compare the appropriate
1928 union members. */
1929
1930 static hashval_t
1931 mips_elf_got_entry_hash (const void *entry_)
1932 {
1933 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1934
1935 return entry->symndx
1936 + ((entry->tls_type & GOT_TLS_LDM) << 17)
1937 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1938 : entry->abfd->id
1939 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1940 : entry->d.h->root.root.root.hash));
1941 }
1942
1943 static int
1944 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1945 {
1946 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1947 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1948
1949 /* An LDM entry can only match another LDM entry. */
1950 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1951 return 0;
1952
1953 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1954 && (! e1->abfd ? e1->d.address == e2->d.address
1955 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1956 : e1->d.h == e2->d.h);
1957 }
1958
1959 /* multi_got_entries are still a match in the case of global objects,
1960 even if the input bfd in which they're referenced differs, so the
1961 hash computation and compare functions are adjusted
1962 accordingly. */
1963
1964 static hashval_t
1965 mips_elf_multi_got_entry_hash (const void *entry_)
1966 {
1967 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1968
1969 return entry->symndx
1970 + (! entry->abfd
1971 ? mips_elf_hash_bfd_vma (entry->d.address)
1972 : entry->symndx >= 0
1973 ? ((entry->tls_type & GOT_TLS_LDM)
1974 ? (GOT_TLS_LDM << 17)
1975 : (entry->abfd->id
1976 + mips_elf_hash_bfd_vma (entry->d.addend)))
1977 : entry->d.h->root.root.root.hash);
1978 }
1979
1980 static int
1981 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
1982 {
1983 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1984 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1985
1986 /* Any two LDM entries match. */
1987 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
1988 return 1;
1989
1990 /* Nothing else matches an LDM entry. */
1991 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1992 return 0;
1993
1994 return e1->symndx == e2->symndx
1995 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
1996 : e1->abfd == NULL || e2->abfd == NULL
1997 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
1998 : e1->d.h == e2->d.h);
1999 }
2000 \f
2001 /* Return the dynamic relocation section. If it doesn't exist, try to
2002 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2003 if creation fails. */
2004
2005 static asection *
2006 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2007 {
2008 const char *dname;
2009 asection *sreloc;
2010 bfd *dynobj;
2011
2012 dname = MIPS_ELF_REL_DYN_NAME (info);
2013 dynobj = elf_hash_table (info)->dynobj;
2014 sreloc = bfd_get_section_by_name (dynobj, dname);
2015 if (sreloc == NULL && create_p)
2016 {
2017 sreloc = bfd_make_section_with_flags (dynobj, dname,
2018 (SEC_ALLOC
2019 | SEC_LOAD
2020 | SEC_HAS_CONTENTS
2021 | SEC_IN_MEMORY
2022 | SEC_LINKER_CREATED
2023 | SEC_READONLY));
2024 if (sreloc == NULL
2025 || ! bfd_set_section_alignment (dynobj, sreloc,
2026 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2027 return NULL;
2028 }
2029 return sreloc;
2030 }
2031
2032 /* Returns the GOT section for ABFD. */
2033
2034 static asection *
2035 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
2036 {
2037 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2038 if (sgot == NULL
2039 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2040 return NULL;
2041 return sgot;
2042 }
2043
2044 /* Returns the GOT information associated with the link indicated by
2045 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2046 section. */
2047
2048 static struct mips_got_info *
2049 mips_elf_got_info (bfd *abfd, asection **sgotp)
2050 {
2051 asection *sgot;
2052 struct mips_got_info *g;
2053
2054 sgot = mips_elf_got_section (abfd, TRUE);
2055 BFD_ASSERT (sgot != NULL);
2056 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2057 g = mips_elf_section_data (sgot)->u.got_info;
2058 BFD_ASSERT (g != NULL);
2059
2060 if (sgotp)
2061 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2062
2063 return g;
2064 }
2065
2066 /* Count the number of relocations needed for a TLS GOT entry, with
2067 access types from TLS_TYPE, and symbol H (or a local symbol if H
2068 is NULL). */
2069
2070 static int
2071 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2072 struct elf_link_hash_entry *h)
2073 {
2074 int indx = 0;
2075 int ret = 0;
2076 bfd_boolean need_relocs = FALSE;
2077 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2078
2079 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2080 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2081 indx = h->dynindx;
2082
2083 if ((info->shared || indx != 0)
2084 && (h == NULL
2085 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2086 || h->root.type != bfd_link_hash_undefweak))
2087 need_relocs = TRUE;
2088
2089 if (!need_relocs)
2090 return FALSE;
2091
2092 if (tls_type & GOT_TLS_GD)
2093 {
2094 ret++;
2095 if (indx != 0)
2096 ret++;
2097 }
2098
2099 if (tls_type & GOT_TLS_IE)
2100 ret++;
2101
2102 if ((tls_type & GOT_TLS_LDM) && info->shared)
2103 ret++;
2104
2105 return ret;
2106 }
2107
2108 /* Count the number of TLS relocations required for the GOT entry in
2109 ARG1, if it describes a local symbol. */
2110
2111 static int
2112 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2113 {
2114 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2115 struct mips_elf_count_tls_arg *arg = arg2;
2116
2117 if (entry->abfd != NULL && entry->symndx != -1)
2118 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2119
2120 return 1;
2121 }
2122
2123 /* Count the number of TLS GOT entries required for the global (or
2124 forced-local) symbol in ARG1. */
2125
2126 static int
2127 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2128 {
2129 struct mips_elf_link_hash_entry *hm
2130 = (struct mips_elf_link_hash_entry *) arg1;
2131 struct mips_elf_count_tls_arg *arg = arg2;
2132
2133 if (hm->tls_type & GOT_TLS_GD)
2134 arg->needed += 2;
2135 if (hm->tls_type & GOT_TLS_IE)
2136 arg->needed += 1;
2137
2138 return 1;
2139 }
2140
2141 /* Count the number of TLS relocations required for the global (or
2142 forced-local) symbol in ARG1. */
2143
2144 static int
2145 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2146 {
2147 struct mips_elf_link_hash_entry *hm
2148 = (struct mips_elf_link_hash_entry *) arg1;
2149 struct mips_elf_count_tls_arg *arg = arg2;
2150
2151 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2152
2153 return 1;
2154 }
2155
2156 /* Output a simple dynamic relocation into SRELOC. */
2157
2158 static void
2159 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2160 asection *sreloc,
2161 unsigned long indx,
2162 int r_type,
2163 bfd_vma offset)
2164 {
2165 Elf_Internal_Rela rel[3];
2166
2167 memset (rel, 0, sizeof (rel));
2168
2169 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2170 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2171
2172 if (ABI_64_P (output_bfd))
2173 {
2174 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2175 (output_bfd, &rel[0],
2176 (sreloc->contents
2177 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2178 }
2179 else
2180 bfd_elf32_swap_reloc_out
2181 (output_bfd, &rel[0],
2182 (sreloc->contents
2183 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2184 ++sreloc->reloc_count;
2185 }
2186
2187 /* Initialize a set of TLS GOT entries for one symbol. */
2188
2189 static void
2190 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2191 unsigned char *tls_type_p,
2192 struct bfd_link_info *info,
2193 struct mips_elf_link_hash_entry *h,
2194 bfd_vma value)
2195 {
2196 int indx;
2197 asection *sreloc, *sgot;
2198 bfd_vma offset, offset2;
2199 bfd *dynobj;
2200 bfd_boolean need_relocs = FALSE;
2201
2202 dynobj = elf_hash_table (info)->dynobj;
2203 sgot = mips_elf_got_section (dynobj, FALSE);
2204
2205 indx = 0;
2206 if (h != NULL)
2207 {
2208 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2209
2210 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2211 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2212 indx = h->root.dynindx;
2213 }
2214
2215 if (*tls_type_p & GOT_TLS_DONE)
2216 return;
2217
2218 if ((info->shared || indx != 0)
2219 && (h == NULL
2220 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2221 || h->root.type != bfd_link_hash_undefweak))
2222 need_relocs = TRUE;
2223
2224 /* MINUS_ONE means the symbol is not defined in this object. It may not
2225 be defined at all; assume that the value doesn't matter in that
2226 case. Otherwise complain if we would use the value. */
2227 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2228 || h->root.root.type == bfd_link_hash_undefweak);
2229
2230 /* Emit necessary relocations. */
2231 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2232
2233 /* General Dynamic. */
2234 if (*tls_type_p & GOT_TLS_GD)
2235 {
2236 offset = got_offset;
2237 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2238
2239 if (need_relocs)
2240 {
2241 mips_elf_output_dynamic_relocation
2242 (abfd, sreloc, indx,
2243 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2244 sgot->output_offset + sgot->output_section->vma + offset);
2245
2246 if (indx)
2247 mips_elf_output_dynamic_relocation
2248 (abfd, sreloc, indx,
2249 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2250 sgot->output_offset + sgot->output_section->vma + offset2);
2251 else
2252 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2253 sgot->contents + offset2);
2254 }
2255 else
2256 {
2257 MIPS_ELF_PUT_WORD (abfd, 1,
2258 sgot->contents + offset);
2259 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2260 sgot->contents + offset2);
2261 }
2262
2263 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2264 }
2265
2266 /* Initial Exec model. */
2267 if (*tls_type_p & GOT_TLS_IE)
2268 {
2269 offset = got_offset;
2270
2271 if (need_relocs)
2272 {
2273 if (indx == 0)
2274 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2275 sgot->contents + offset);
2276 else
2277 MIPS_ELF_PUT_WORD (abfd, 0,
2278 sgot->contents + offset);
2279
2280 mips_elf_output_dynamic_relocation
2281 (abfd, sreloc, indx,
2282 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2283 sgot->output_offset + sgot->output_section->vma + offset);
2284 }
2285 else
2286 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2287 sgot->contents + offset);
2288 }
2289
2290 if (*tls_type_p & GOT_TLS_LDM)
2291 {
2292 /* The initial offset is zero, and the LD offsets will include the
2293 bias by DTP_OFFSET. */
2294 MIPS_ELF_PUT_WORD (abfd, 0,
2295 sgot->contents + got_offset
2296 + MIPS_ELF_GOT_SIZE (abfd));
2297
2298 if (!info->shared)
2299 MIPS_ELF_PUT_WORD (abfd, 1,
2300 sgot->contents + got_offset);
2301 else
2302 mips_elf_output_dynamic_relocation
2303 (abfd, sreloc, indx,
2304 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2305 sgot->output_offset + sgot->output_section->vma + got_offset);
2306 }
2307
2308 *tls_type_p |= GOT_TLS_DONE;
2309 }
2310
2311 /* Return the GOT index to use for a relocation of type R_TYPE against
2312 a symbol accessed using TLS_TYPE models. The GOT entries for this
2313 symbol in this GOT start at GOT_INDEX. This function initializes the
2314 GOT entries and corresponding relocations. */
2315
2316 static bfd_vma
2317 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2318 int r_type, struct bfd_link_info *info,
2319 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2320 {
2321 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2322 || r_type == R_MIPS_TLS_LDM);
2323
2324 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2325
2326 if (r_type == R_MIPS_TLS_GOTTPREL)
2327 {
2328 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2329 if (*tls_type & GOT_TLS_GD)
2330 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2331 else
2332 return got_index;
2333 }
2334
2335 if (r_type == R_MIPS_TLS_GD)
2336 {
2337 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2338 return got_index;
2339 }
2340
2341 if (r_type == R_MIPS_TLS_LDM)
2342 {
2343 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2344 return got_index;
2345 }
2346
2347 return got_index;
2348 }
2349
2350 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2351 for global symbol H. .got.plt comes before the GOT, so the offset
2352 will be negative. */
2353
2354 static bfd_vma
2355 mips_elf_gotplt_index (struct bfd_link_info *info,
2356 struct elf_link_hash_entry *h)
2357 {
2358 bfd_vma plt_index, got_address, got_value;
2359 struct mips_elf_link_hash_table *htab;
2360
2361 htab = mips_elf_hash_table (info);
2362 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2363
2364 /* Calculate the index of the symbol's PLT entry. */
2365 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2366
2367 /* Calculate the address of the associated .got.plt entry. */
2368 got_address = (htab->sgotplt->output_section->vma
2369 + htab->sgotplt->output_offset
2370 + plt_index * 4);
2371
2372 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2373 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2374 + htab->root.hgot->root.u.def.section->output_offset
2375 + htab->root.hgot->root.u.def.value);
2376
2377 return got_address - got_value;
2378 }
2379
2380 /* Return the GOT offset for address VALUE, which was derived from
2381 a symbol belonging to INPUT_SECTION. If there is not yet a GOT
2382 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2383 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2384 offset can be found. */
2385
2386 static bfd_vma
2387 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2388 asection *input_section, bfd_vma value,
2389 unsigned long r_symndx,
2390 struct mips_elf_link_hash_entry *h, int r_type)
2391 {
2392 asection *sgot;
2393 struct mips_got_info *g;
2394 struct mips_got_entry *entry;
2395
2396 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2397
2398 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2399 input_section, value,
2400 r_symndx, h, r_type);
2401 if (!entry)
2402 return MINUS_ONE;
2403
2404 if (TLS_RELOC_P (r_type))
2405 {
2406 if (entry->symndx == -1 && g->next == NULL)
2407 /* A type (3) entry in the single-GOT case. We use the symbol's
2408 hash table entry to track the index. */
2409 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2410 r_type, info, h, value);
2411 else
2412 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2413 r_type, info, h, value);
2414 }
2415 else
2416 return entry->gotidx;
2417 }
2418
2419 /* Returns the GOT index for the global symbol indicated by H. */
2420
2421 static bfd_vma
2422 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2423 int r_type, struct bfd_link_info *info)
2424 {
2425 bfd_vma index;
2426 asection *sgot;
2427 struct mips_got_info *g, *gg;
2428 long global_got_dynindx = 0;
2429
2430 gg = g = mips_elf_got_info (abfd, &sgot);
2431 if (g->bfd2got && ibfd)
2432 {
2433 struct mips_got_entry e, *p;
2434
2435 BFD_ASSERT (h->dynindx >= 0);
2436
2437 g = mips_elf_got_for_ibfd (g, ibfd);
2438 if (g->next != gg || TLS_RELOC_P (r_type))
2439 {
2440 e.abfd = ibfd;
2441 e.symndx = -1;
2442 e.d.h = (struct mips_elf_link_hash_entry *)h;
2443 e.tls_type = 0;
2444
2445 p = htab_find (g->got_entries, &e);
2446
2447 BFD_ASSERT (p->gotidx > 0);
2448
2449 if (TLS_RELOC_P (r_type))
2450 {
2451 bfd_vma value = MINUS_ONE;
2452 if ((h->root.type == bfd_link_hash_defined
2453 || h->root.type == bfd_link_hash_defweak)
2454 && h->root.u.def.section->output_section)
2455 value = (h->root.u.def.value
2456 + h->root.u.def.section->output_offset
2457 + h->root.u.def.section->output_section->vma);
2458
2459 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2460 info, e.d.h, value);
2461 }
2462 else
2463 return p->gotidx;
2464 }
2465 }
2466
2467 if (gg->global_gotsym != NULL)
2468 global_got_dynindx = gg->global_gotsym->dynindx;
2469
2470 if (TLS_RELOC_P (r_type))
2471 {
2472 struct mips_elf_link_hash_entry *hm
2473 = (struct mips_elf_link_hash_entry *) h;
2474 bfd_vma value = MINUS_ONE;
2475
2476 if ((h->root.type == bfd_link_hash_defined
2477 || h->root.type == bfd_link_hash_defweak)
2478 && h->root.u.def.section->output_section)
2479 value = (h->root.u.def.value
2480 + h->root.u.def.section->output_offset
2481 + h->root.u.def.section->output_section->vma);
2482
2483 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2484 r_type, info, hm, value);
2485 }
2486 else
2487 {
2488 /* Once we determine the global GOT entry with the lowest dynamic
2489 symbol table index, we must put all dynamic symbols with greater
2490 indices into the GOT. That makes it easy to calculate the GOT
2491 offset. */
2492 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2493 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2494 * MIPS_ELF_GOT_SIZE (abfd));
2495 }
2496 BFD_ASSERT (index < sgot->size);
2497
2498 return index;
2499 }
2500
2501 /* Find a GOT page entry that points to within 32KB of VALUE, which was
2502 calculated from a symbol belonging to INPUT_SECTION. These entries
2503 are supposed to be placed at small offsets in the GOT, i.e., within
2504 32KB of GP. Return the index of the GOT entry, or -1 if no entry
2505 could be created. If OFFSETP is nonnull, use it to return the
2506 offset of the GOT entry from VALUE. */
2507
2508 static bfd_vma
2509 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2510 asection *input_section, bfd_vma value, bfd_vma *offsetp)
2511 {
2512 asection *sgot;
2513 struct mips_got_info *g;
2514 bfd_vma page, index;
2515 struct mips_got_entry *entry;
2516
2517 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2518
2519 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2520 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2521 input_section, page, 0,
2522 NULL, R_MIPS_GOT_PAGE);
2523
2524 if (!entry)
2525 return MINUS_ONE;
2526
2527 index = entry->gotidx;
2528
2529 if (offsetp)
2530 *offsetp = value - entry->d.address;
2531
2532 return index;
2533 }
2534
2535 /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE,
2536 which was calculated from a symbol belonging to INPUT_SECTION.
2537 EXTERNAL is true if the relocation was against a global symbol
2538 that has been forced local. */
2539
2540 static bfd_vma
2541 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2542 asection *input_section, bfd_vma value,
2543 bfd_boolean external)
2544 {
2545 asection *sgot;
2546 struct mips_got_info *g;
2547 struct mips_got_entry *entry;
2548
2549 /* GOT16 relocations against local symbols are followed by a LO16
2550 relocation; those against global symbols are not. Thus if the
2551 symbol was originally local, the GOT16 relocation should load the
2552 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2553 if (! external)
2554 value = mips_elf_high (value) << 16;
2555
2556 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2557
2558 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2559 input_section, value, 0,
2560 NULL, R_MIPS_GOT16);
2561 if (entry)
2562 return entry->gotidx;
2563 else
2564 return MINUS_ONE;
2565 }
2566
2567 /* Returns the offset for the entry at the INDEXth position
2568 in the GOT. */
2569
2570 static bfd_vma
2571 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2572 bfd *input_bfd, bfd_vma index)
2573 {
2574 asection *sgot;
2575 bfd_vma gp;
2576 struct mips_got_info *g;
2577
2578 g = mips_elf_got_info (dynobj, &sgot);
2579 gp = _bfd_get_gp_value (output_bfd)
2580 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2581
2582 return sgot->output_section->vma + sgot->output_offset + index - gp;
2583 }
2584
2585 /* Create and return a local GOT entry for VALUE, which was calculated
2586 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2587 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2588 instead. */
2589
2590 static struct mips_got_entry *
2591 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2592 bfd *ibfd, struct mips_got_info *gg,
2593 asection *sgot, asection *input_section,
2594 bfd_vma value, unsigned long r_symndx,
2595 struct mips_elf_link_hash_entry *h,
2596 int r_type)
2597 {
2598 struct mips_got_entry entry, **loc;
2599 struct mips_got_info *g;
2600 struct mips_elf_link_hash_table *htab;
2601
2602 htab = mips_elf_hash_table (info);
2603
2604 entry.abfd = NULL;
2605 entry.symndx = -1;
2606 entry.d.address = value;
2607 entry.tls_type = 0;
2608
2609 g = mips_elf_got_for_ibfd (gg, ibfd);
2610 if (g == NULL)
2611 {
2612 g = mips_elf_got_for_ibfd (gg, abfd);
2613 BFD_ASSERT (g != NULL);
2614 }
2615
2616 /* We might have a symbol, H, if it has been forced local. Use the
2617 global entry then. It doesn't matter whether an entry is local
2618 or global for TLS, since the dynamic linker does not
2619 automatically relocate TLS GOT entries. */
2620 BFD_ASSERT (h == NULL || h->root.forced_local);
2621 if (TLS_RELOC_P (r_type))
2622 {
2623 struct mips_got_entry *p;
2624
2625 entry.abfd = ibfd;
2626 if (r_type == R_MIPS_TLS_LDM)
2627 {
2628 entry.tls_type = GOT_TLS_LDM;
2629 entry.symndx = 0;
2630 entry.d.addend = 0;
2631 }
2632 else if (h == NULL)
2633 {
2634 entry.symndx = r_symndx;
2635 entry.d.addend = 0;
2636 }
2637 else
2638 entry.d.h = h;
2639
2640 p = (struct mips_got_entry *)
2641 htab_find (g->got_entries, &entry);
2642
2643 BFD_ASSERT (p);
2644 return p;
2645 }
2646
2647 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2648 INSERT);
2649 if (*loc)
2650 return *loc;
2651
2652 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2653 entry.tls_type = 0;
2654
2655 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2656
2657 if (! *loc)
2658 return NULL;
2659
2660 memcpy (*loc, &entry, sizeof entry);
2661
2662 if (g->assigned_gotno >= g->local_gotno)
2663 {
2664 (*loc)->gotidx = -1;
2665 /* We didn't allocate enough space in the GOT. */
2666 (*_bfd_error_handler)
2667 (_("not enough GOT space for local GOT entries"));
2668 bfd_set_error (bfd_error_bad_value);
2669 return NULL;
2670 }
2671
2672 MIPS_ELF_PUT_WORD (abfd, value,
2673 (sgot->contents + entry.gotidx));
2674
2675 /* These GOT entries need a dynamic relocation on VxWorks. Because
2676 the offset between segments is not fixed, the relocation must be
2677 against a symbol in the same segment as the original symbol.
2678 The easiest way to do this is to take INPUT_SECTION's output
2679 section and emit a relocation against its section symbol. */
2680 if (htab->is_vxworks)
2681 {
2682 Elf_Internal_Rela outrel;
2683 asection *s, *output_section;
2684 bfd_byte *loc;
2685 bfd_vma got_address;
2686 int dynindx;
2687
2688 s = mips_elf_rel_dyn_section (info, FALSE);
2689 output_section = input_section->output_section;
2690 dynindx = elf_section_data (output_section)->dynindx;
2691 got_address = (sgot->output_section->vma
2692 + sgot->output_offset
2693 + entry.gotidx);
2694
2695 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2696 outrel.r_offset = got_address;
2697 outrel.r_info = ELF32_R_INFO (dynindx, R_MIPS_32);
2698 outrel.r_addend = value - output_section->vma;
2699 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2700 }
2701
2702 return *loc;
2703 }
2704
2705 /* Sort the dynamic symbol table so that symbols that need GOT entries
2706 appear towards the end. This reduces the amount of GOT space
2707 required. MAX_LOCAL is used to set the number of local symbols
2708 known to be in the dynamic symbol table. During
2709 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2710 section symbols are added and the count is higher. */
2711
2712 static bfd_boolean
2713 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2714 {
2715 struct mips_elf_hash_sort_data hsd;
2716 struct mips_got_info *g;
2717 bfd *dynobj;
2718
2719 dynobj = elf_hash_table (info)->dynobj;
2720
2721 g = mips_elf_got_info (dynobj, NULL);
2722
2723 hsd.low = NULL;
2724 hsd.max_unref_got_dynindx =
2725 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2726 /* In the multi-got case, assigned_gotno of the master got_info
2727 indicate the number of entries that aren't referenced in the
2728 primary GOT, but that must have entries because there are
2729 dynamic relocations that reference it. Since they aren't
2730 referenced, we move them to the end of the GOT, so that they
2731 don't prevent other entries that are referenced from getting
2732 too large offsets. */
2733 - (g->next ? g->assigned_gotno : 0);
2734 hsd.max_non_got_dynindx = max_local;
2735 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2736 elf_hash_table (info)),
2737 mips_elf_sort_hash_table_f,
2738 &hsd);
2739
2740 /* There should have been enough room in the symbol table to
2741 accommodate both the GOT and non-GOT symbols. */
2742 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2743 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2744 <= elf_hash_table (info)->dynsymcount);
2745
2746 /* Now we know which dynamic symbol has the lowest dynamic symbol
2747 table index in the GOT. */
2748 g->global_gotsym = hsd.low;
2749
2750 return TRUE;
2751 }
2752
2753 /* If H needs a GOT entry, assign it the highest available dynamic
2754 index. Otherwise, assign it the lowest available dynamic
2755 index. */
2756
2757 static bfd_boolean
2758 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2759 {
2760 struct mips_elf_hash_sort_data *hsd = data;
2761
2762 if (h->root.root.type == bfd_link_hash_warning)
2763 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2764
2765 /* Symbols without dynamic symbol table entries aren't interesting
2766 at all. */
2767 if (h->root.dynindx == -1)
2768 return TRUE;
2769
2770 /* Global symbols that need GOT entries that are not explicitly
2771 referenced are marked with got offset 2. Those that are
2772 referenced get a 1, and those that don't need GOT entries get
2773 -1. */
2774 if (h->root.got.offset == 2)
2775 {
2776 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2777
2778 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2779 hsd->low = (struct elf_link_hash_entry *) h;
2780 h->root.dynindx = hsd->max_unref_got_dynindx++;
2781 }
2782 else if (h->root.got.offset != 1)
2783 h->root.dynindx = hsd->max_non_got_dynindx++;
2784 else
2785 {
2786 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2787
2788 h->root.dynindx = --hsd->min_got_dynindx;
2789 hsd->low = (struct elf_link_hash_entry *) h;
2790 }
2791
2792 return TRUE;
2793 }
2794
2795 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2796 symbol table index lower than any we've seen to date, record it for
2797 posterity. */
2798
2799 static bfd_boolean
2800 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2801 bfd *abfd, struct bfd_link_info *info,
2802 struct mips_got_info *g,
2803 unsigned char tls_flag)
2804 {
2805 struct mips_got_entry entry, **loc;
2806
2807 /* A global symbol in the GOT must also be in the dynamic symbol
2808 table. */
2809 if (h->dynindx == -1)
2810 {
2811 switch (ELF_ST_VISIBILITY (h->other))
2812 {
2813 case STV_INTERNAL:
2814 case STV_HIDDEN:
2815 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2816 break;
2817 }
2818 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2819 return FALSE;
2820 }
2821
2822 /* Make sure we have a GOT to put this entry into. */
2823 BFD_ASSERT (g != NULL);
2824
2825 entry.abfd = abfd;
2826 entry.symndx = -1;
2827 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2828 entry.tls_type = 0;
2829
2830 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2831 INSERT);
2832
2833 /* If we've already marked this entry as needing GOT space, we don't
2834 need to do it again. */
2835 if (*loc)
2836 {
2837 (*loc)->tls_type |= tls_flag;
2838 return TRUE;
2839 }
2840
2841 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2842
2843 if (! *loc)
2844 return FALSE;
2845
2846 entry.gotidx = -1;
2847 entry.tls_type = tls_flag;
2848
2849 memcpy (*loc, &entry, sizeof entry);
2850
2851 if (h->got.offset != MINUS_ONE)
2852 return TRUE;
2853
2854 /* By setting this to a value other than -1, we are indicating that
2855 there needs to be a GOT entry for H. Avoid using zero, as the
2856 generic ELF copy_indirect_symbol tests for <= 0. */
2857 if (tls_flag == 0)
2858 h->got.offset = 1;
2859
2860 return TRUE;
2861 }
2862
2863 /* Reserve space in G for a GOT entry containing the value of symbol
2864 SYMNDX in input bfd ABDF, plus ADDEND. */
2865
2866 static bfd_boolean
2867 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2868 struct mips_got_info *g,
2869 unsigned char tls_flag)
2870 {
2871 struct mips_got_entry entry, **loc;
2872
2873 entry.abfd = abfd;
2874 entry.symndx = symndx;
2875 entry.d.addend = addend;
2876 entry.tls_type = tls_flag;
2877 loc = (struct mips_got_entry **)
2878 htab_find_slot (g->got_entries, &entry, INSERT);
2879
2880 if (*loc)
2881 {
2882 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2883 {
2884 g->tls_gotno += 2;
2885 (*loc)->tls_type |= tls_flag;
2886 }
2887 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2888 {
2889 g->tls_gotno += 1;
2890 (*loc)->tls_type |= tls_flag;
2891 }
2892 return TRUE;
2893 }
2894
2895 if (tls_flag != 0)
2896 {
2897 entry.gotidx = -1;
2898 entry.tls_type = tls_flag;
2899 if (tls_flag == GOT_TLS_IE)
2900 g->tls_gotno += 1;
2901 else if (tls_flag == GOT_TLS_GD)
2902 g->tls_gotno += 2;
2903 else if (g->tls_ldm_offset == MINUS_ONE)
2904 {
2905 g->tls_ldm_offset = MINUS_TWO;
2906 g->tls_gotno += 2;
2907 }
2908 }
2909 else
2910 {
2911 entry.gotidx = g->local_gotno++;
2912 entry.tls_type = 0;
2913 }
2914
2915 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2916
2917 if (! *loc)
2918 return FALSE;
2919
2920 memcpy (*loc, &entry, sizeof entry);
2921
2922 return TRUE;
2923 }
2924 \f
2925 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2926
2927 static hashval_t
2928 mips_elf_bfd2got_entry_hash (const void *entry_)
2929 {
2930 const struct mips_elf_bfd2got_hash *entry
2931 = (struct mips_elf_bfd2got_hash *)entry_;
2932
2933 return entry->bfd->id;
2934 }
2935
2936 /* Check whether two hash entries have the same bfd. */
2937
2938 static int
2939 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2940 {
2941 const struct mips_elf_bfd2got_hash *e1
2942 = (const struct mips_elf_bfd2got_hash *)entry1;
2943 const struct mips_elf_bfd2got_hash *e2
2944 = (const struct mips_elf_bfd2got_hash *)entry2;
2945
2946 return e1->bfd == e2->bfd;
2947 }
2948
2949 /* In a multi-got link, determine the GOT to be used for IBFD. G must
2950 be the master GOT data. */
2951
2952 static struct mips_got_info *
2953 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2954 {
2955 struct mips_elf_bfd2got_hash e, *p;
2956
2957 if (! g->bfd2got)
2958 return g;
2959
2960 e.bfd = ibfd;
2961 p = htab_find (g->bfd2got, &e);
2962 return p ? p->g : NULL;
2963 }
2964
2965 /* Create one separate got for each bfd that has entries in the global
2966 got, such that we can tell how many local and global entries each
2967 bfd requires. */
2968
2969 static int
2970 mips_elf_make_got_per_bfd (void **entryp, void *p)
2971 {
2972 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2973 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2974 htab_t bfd2got = arg->bfd2got;
2975 struct mips_got_info *g;
2976 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2977 void **bfdgotp;
2978
2979 /* Find the got_info for this GOT entry's input bfd. Create one if
2980 none exists. */
2981 bfdgot_entry.bfd = entry->abfd;
2982 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2983 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2984
2985 if (bfdgot != NULL)
2986 g = bfdgot->g;
2987 else
2988 {
2989 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
2990 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
2991
2992 if (bfdgot == NULL)
2993 {
2994 arg->obfd = 0;
2995 return 0;
2996 }
2997
2998 *bfdgotp = bfdgot;
2999
3000 bfdgot->bfd = entry->abfd;
3001 bfdgot->g = g = (struct mips_got_info *)
3002 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3003 if (g == NULL)
3004 {
3005 arg->obfd = 0;
3006 return 0;
3007 }
3008
3009 g->global_gotsym = NULL;
3010 g->global_gotno = 0;
3011 g->local_gotno = 0;
3012 g->assigned_gotno = -1;
3013 g->tls_gotno = 0;
3014 g->tls_assigned_gotno = 0;
3015 g->tls_ldm_offset = MINUS_ONE;
3016 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3017 mips_elf_multi_got_entry_eq, NULL);
3018 if (g->got_entries == NULL)
3019 {
3020 arg->obfd = 0;
3021 return 0;
3022 }
3023
3024 g->bfd2got = NULL;
3025 g->next = NULL;
3026 }
3027
3028 /* Insert the GOT entry in the bfd's got entry hash table. */
3029 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3030 if (*entryp != NULL)
3031 return 1;
3032
3033 *entryp = entry;
3034
3035 if (entry->tls_type)
3036 {
3037 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3038 g->tls_gotno += 2;
3039 if (entry->tls_type & GOT_TLS_IE)
3040 g->tls_gotno += 1;
3041 }
3042 else if (entry->symndx >= 0 || entry->d.h->forced_local)
3043 ++g->local_gotno;
3044 else
3045 ++g->global_gotno;
3046
3047 return 1;
3048 }
3049
3050 /* Attempt to merge gots of different input bfds. Try to use as much
3051 as possible of the primary got, since it doesn't require explicit
3052 dynamic relocations, but don't use bfds that would reference global
3053 symbols out of the addressable range. Failing the primary got,
3054 attempt to merge with the current got, or finish the current got
3055 and then make make the new got current. */
3056
3057 static int
3058 mips_elf_merge_gots (void **bfd2got_, void *p)
3059 {
3060 struct mips_elf_bfd2got_hash *bfd2got
3061 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3062 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3063 unsigned int lcount = bfd2got->g->local_gotno;
3064 unsigned int gcount = bfd2got->g->global_gotno;
3065 unsigned int tcount = bfd2got->g->tls_gotno;
3066 unsigned int maxcnt = arg->max_count;
3067 bfd_boolean too_many_for_tls = FALSE;
3068
3069 /* We place TLS GOT entries after both locals and globals. The globals
3070 for the primary GOT may overflow the normal GOT size limit, so be
3071 sure not to merge a GOT which requires TLS with the primary GOT in that
3072 case. This doesn't affect non-primary GOTs. */
3073 if (tcount > 0)
3074 {
3075 unsigned int primary_total = lcount + tcount + arg->global_count;
3076 if (primary_total * MIPS_ELF_GOT_SIZE (bfd2got->bfd)
3077 >= MIPS_ELF_GOT_MAX_SIZE (arg->info))
3078 too_many_for_tls = TRUE;
3079 }
3080
3081 /* If we don't have a primary GOT and this is not too big, use it as
3082 a starting point for the primary GOT. */
3083 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3084 && ! too_many_for_tls)
3085 {
3086 arg->primary = bfd2got->g;
3087 arg->primary_count = lcount + gcount;
3088 }
3089 /* If it looks like we can merge this bfd's entries with those of
3090 the primary, merge them. The heuristics is conservative, but we
3091 don't have to squeeze it too hard. */
3092 else if (arg->primary && ! too_many_for_tls
3093 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
3094 {
3095 struct mips_got_info *g = bfd2got->g;
3096 int old_lcount = arg->primary->local_gotno;
3097 int old_gcount = arg->primary->global_gotno;
3098 int old_tcount = arg->primary->tls_gotno;
3099
3100 bfd2got->g = arg->primary;
3101
3102 htab_traverse (g->got_entries,
3103 mips_elf_make_got_per_bfd,
3104 arg);
3105 if (arg->obfd == NULL)
3106 return 0;
3107
3108 htab_delete (g->got_entries);
3109 /* We don't have to worry about releasing memory of the actual
3110 got entries, since they're all in the master got_entries hash
3111 table anyway. */
3112
3113 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
3114 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
3115 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
3116
3117 arg->primary_count = arg->primary->local_gotno
3118 + arg->primary->global_gotno + arg->primary->tls_gotno;
3119 }
3120 /* If we can merge with the last-created got, do it. */
3121 else if (arg->current
3122 && arg->current_count + lcount + gcount + tcount <= maxcnt)
3123 {
3124 struct mips_got_info *g = bfd2got->g;
3125 int old_lcount = arg->current->local_gotno;
3126 int old_gcount = arg->current->global_gotno;
3127 int old_tcount = arg->current->tls_gotno;
3128
3129 bfd2got->g = arg->current;
3130
3131 htab_traverse (g->got_entries,
3132 mips_elf_make_got_per_bfd,
3133 arg);
3134 if (arg->obfd == NULL)
3135 return 0;
3136
3137 htab_delete (g->got_entries);
3138
3139 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
3140 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
3141 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
3142
3143 arg->current_count = arg->current->local_gotno
3144 + arg->current->global_gotno + arg->current->tls_gotno;
3145 }
3146 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3147 fits; if it turns out that it doesn't, we'll get relocation
3148 overflows anyway. */
3149 else
3150 {
3151 bfd2got->g->next = arg->current;
3152 arg->current = bfd2got->g;
3153
3154 arg->current_count = lcount + gcount + 2 * tcount;
3155 }
3156
3157 return 1;
3158 }
3159
3160 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3161 is null iff there is just a single GOT. */
3162
3163 static int
3164 mips_elf_initialize_tls_index (void **entryp, void *p)
3165 {
3166 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3167 struct mips_got_info *g = p;
3168 bfd_vma next_index;
3169
3170 /* We're only interested in TLS symbols. */
3171 if (entry->tls_type == 0)
3172 return 1;
3173
3174 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3175
3176 if (entry->symndx == -1 && g->next == NULL)
3177 {
3178 /* A type (3) got entry in the single-GOT case. We use the symbol's
3179 hash table entry to track its index. */
3180 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3181 return 1;
3182 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3183 entry->d.h->tls_got_offset = next_index;
3184 }
3185 else
3186 {
3187 if (entry->tls_type & GOT_TLS_LDM)
3188 {
3189 /* There are separate mips_got_entry objects for each input bfd
3190 that requires an LDM entry. Make sure that all LDM entries in
3191 a GOT resolve to the same index. */
3192 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3193 {
3194 entry->gotidx = g->tls_ldm_offset;
3195 return 1;
3196 }
3197 g->tls_ldm_offset = next_index;
3198 }
3199 entry->gotidx = next_index;
3200 }
3201
3202 /* Account for the entries we've just allocated. */
3203 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3204 g->tls_assigned_gotno += 2;
3205 if (entry->tls_type & GOT_TLS_IE)
3206 g->tls_assigned_gotno += 1;
3207
3208 return 1;
3209 }
3210
3211 /* If passed a NULL mips_got_info in the argument, set the marker used
3212 to tell whether a global symbol needs a got entry (in the primary
3213 got) to the given VALUE.
3214
3215 If passed a pointer G to a mips_got_info in the argument (it must
3216 not be the primary GOT), compute the offset from the beginning of
3217 the (primary) GOT section to the entry in G corresponding to the
3218 global symbol. G's assigned_gotno must contain the index of the
3219 first available global GOT entry in G. VALUE must contain the size
3220 of a GOT entry in bytes. For each global GOT entry that requires a
3221 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3222 marked as not eligible for lazy resolution through a function
3223 stub. */
3224 static int
3225 mips_elf_set_global_got_offset (void **entryp, void *p)
3226 {
3227 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3228 struct mips_elf_set_global_got_offset_arg *arg
3229 = (struct mips_elf_set_global_got_offset_arg *)p;
3230 struct mips_got_info *g = arg->g;
3231
3232 if (g && entry->tls_type != GOT_NORMAL)
3233 arg->needed_relocs +=
3234 mips_tls_got_relocs (arg->info, entry->tls_type,
3235 entry->symndx == -1 ? &entry->d.h->root : NULL);
3236
3237 if (entry->abfd != NULL && entry->symndx == -1
3238 && entry->d.h->root.dynindx != -1
3239 && entry->d.h->tls_type == GOT_NORMAL)
3240 {
3241 if (g)
3242 {
3243 BFD_ASSERT (g->global_gotsym == NULL);
3244
3245 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3246 if (arg->info->shared
3247 || (elf_hash_table (arg->info)->dynamic_sections_created
3248 && entry->d.h->root.def_dynamic
3249 && !entry->d.h->root.def_regular))
3250 ++arg->needed_relocs;
3251 }
3252 else
3253 entry->d.h->root.got.offset = arg->value;
3254 }
3255
3256 return 1;
3257 }
3258
3259 /* Mark any global symbols referenced in the GOT we are iterating over
3260 as inelligible for lazy resolution stubs. */
3261 static int
3262 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3263 {
3264 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3265
3266 if (entry->abfd != NULL
3267 && entry->symndx == -1
3268 && entry->d.h->root.dynindx != -1)
3269 entry->d.h->no_fn_stub = TRUE;
3270
3271 return 1;
3272 }
3273
3274 /* Follow indirect and warning hash entries so that each got entry
3275 points to the final symbol definition. P must point to a pointer
3276 to the hash table we're traversing. Since this traversal may
3277 modify the hash table, we set this pointer to NULL to indicate
3278 we've made a potentially-destructive change to the hash table, so
3279 the traversal must be restarted. */
3280 static int
3281 mips_elf_resolve_final_got_entry (void **entryp, void *p)
3282 {
3283 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3284 htab_t got_entries = *(htab_t *)p;
3285
3286 if (entry->abfd != NULL && entry->symndx == -1)
3287 {
3288 struct mips_elf_link_hash_entry *h = entry->d.h;
3289
3290 while (h->root.root.type == bfd_link_hash_indirect
3291 || h->root.root.type == bfd_link_hash_warning)
3292 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3293
3294 if (entry->d.h == h)
3295 return 1;
3296
3297 entry->d.h = h;
3298
3299 /* If we can't find this entry with the new bfd hash, re-insert
3300 it, and get the traversal restarted. */
3301 if (! htab_find (got_entries, entry))
3302 {
3303 htab_clear_slot (got_entries, entryp);
3304 entryp = htab_find_slot (got_entries, entry, INSERT);
3305 if (! *entryp)
3306 *entryp = entry;
3307 /* Abort the traversal, since the whole table may have
3308 moved, and leave it up to the parent to restart the
3309 process. */
3310 *(htab_t *)p = NULL;
3311 return 0;
3312 }
3313 /* We might want to decrement the global_gotno count, but it's
3314 either too early or too late for that at this point. */
3315 }
3316
3317 return 1;
3318 }
3319
3320 /* Turn indirect got entries in a got_entries table into their final
3321 locations. */
3322 static void
3323 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3324 {
3325 htab_t got_entries;
3326
3327 do
3328 {
3329 got_entries = g->got_entries;
3330
3331 htab_traverse (got_entries,
3332 mips_elf_resolve_final_got_entry,
3333 &got_entries);
3334 }
3335 while (got_entries == NULL);
3336 }
3337
3338 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3339 the primary GOT. */
3340 static bfd_vma
3341 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3342 {
3343 if (g->bfd2got == NULL)
3344 return 0;
3345
3346 g = mips_elf_got_for_ibfd (g, ibfd);
3347 if (! g)
3348 return 0;
3349
3350 BFD_ASSERT (g->next);
3351
3352 g = g->next;
3353
3354 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3355 * MIPS_ELF_GOT_SIZE (abfd);
3356 }
3357
3358 /* Turn a single GOT that is too big for 16-bit addressing into
3359 a sequence of GOTs, each one 16-bit addressable. */
3360
3361 static bfd_boolean
3362 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3363 struct mips_got_info *g, asection *got,
3364 bfd_size_type pages)
3365 {
3366 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3367 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3368 struct mips_got_info *gg;
3369 unsigned int assign;
3370
3371 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3372 mips_elf_bfd2got_entry_eq, NULL);
3373 if (g->bfd2got == NULL)
3374 return FALSE;
3375
3376 got_per_bfd_arg.bfd2got = g->bfd2got;
3377 got_per_bfd_arg.obfd = abfd;
3378 got_per_bfd_arg.info = info;
3379
3380 /* Count how many GOT entries each input bfd requires, creating a
3381 map from bfd to got info while at that. */
3382 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3383 if (got_per_bfd_arg.obfd == NULL)
3384 return FALSE;
3385
3386 got_per_bfd_arg.current = NULL;
3387 got_per_bfd_arg.primary = NULL;
3388 /* Taking out PAGES entries is a worst-case estimate. We could
3389 compute the maximum number of pages that each separate input bfd
3390 uses, but it's probably not worth it. */
3391 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
3392 / MIPS_ELF_GOT_SIZE (abfd))
3393 - MIPS_RESERVED_GOTNO (info) - pages);
3394 /* The number of globals that will be included in the primary GOT.
3395 See the calls to mips_elf_set_global_got_offset below for more
3396 information. */
3397 got_per_bfd_arg.global_count = g->global_gotno;
3398
3399 /* Try to merge the GOTs of input bfds together, as long as they
3400 don't seem to exceed the maximum GOT size, choosing one of them
3401 to be the primary GOT. */
3402 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3403 if (got_per_bfd_arg.obfd == NULL)
3404 return FALSE;
3405
3406 /* If we do not find any suitable primary GOT, create an empty one. */
3407 if (got_per_bfd_arg.primary == NULL)
3408 {
3409 g->next = (struct mips_got_info *)
3410 bfd_alloc (abfd, sizeof (struct mips_got_info));
3411 if (g->next == NULL)
3412 return FALSE;
3413
3414 g->next->global_gotsym = NULL;
3415 g->next->global_gotno = 0;
3416 g->next->local_gotno = 0;
3417 g->next->tls_gotno = 0;
3418 g->next->assigned_gotno = 0;
3419 g->next->tls_assigned_gotno = 0;
3420 g->next->tls_ldm_offset = MINUS_ONE;
3421 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3422 mips_elf_multi_got_entry_eq,
3423 NULL);
3424 if (g->next->got_entries == NULL)
3425 return FALSE;
3426 g->next->bfd2got = NULL;
3427 }
3428 else
3429 g->next = got_per_bfd_arg.primary;
3430 g->next->next = got_per_bfd_arg.current;
3431
3432 /* GG is now the master GOT, and G is the primary GOT. */
3433 gg = g;
3434 g = g->next;
3435
3436 /* Map the output bfd to the primary got. That's what we're going
3437 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3438 didn't mark in check_relocs, and we want a quick way to find it.
3439 We can't just use gg->next because we're going to reverse the
3440 list. */
3441 {
3442 struct mips_elf_bfd2got_hash *bfdgot;
3443 void **bfdgotp;
3444
3445 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3446 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3447
3448 if (bfdgot == NULL)
3449 return FALSE;
3450
3451 bfdgot->bfd = abfd;
3452 bfdgot->g = g;
3453 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3454
3455 BFD_ASSERT (*bfdgotp == NULL);
3456 *bfdgotp = bfdgot;
3457 }
3458
3459 /* The IRIX dynamic linker requires every symbol that is referenced
3460 in a dynamic relocation to be present in the primary GOT, so
3461 arrange for them to appear after those that are actually
3462 referenced.
3463
3464 GNU/Linux could very well do without it, but it would slow down
3465 the dynamic linker, since it would have to resolve every dynamic
3466 symbol referenced in other GOTs more than once, without help from
3467 the cache. Also, knowing that every external symbol has a GOT
3468 helps speed up the resolution of local symbols too, so GNU/Linux
3469 follows IRIX's practice.
3470
3471 The number 2 is used by mips_elf_sort_hash_table_f to count
3472 global GOT symbols that are unreferenced in the primary GOT, with
3473 an initial dynamic index computed from gg->assigned_gotno, where
3474 the number of unreferenced global entries in the primary GOT is
3475 preserved. */
3476 if (1)
3477 {
3478 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3479 g->global_gotno = gg->global_gotno;
3480 set_got_offset_arg.value = 2;
3481 }
3482 else
3483 {
3484 /* This could be used for dynamic linkers that don't optimize
3485 symbol resolution while applying relocations so as to use
3486 primary GOT entries or assuming the symbol is locally-defined.
3487 With this code, we assign lower dynamic indices to global
3488 symbols that are not referenced in the primary GOT, so that
3489 their entries can be omitted. */
3490 gg->assigned_gotno = 0;
3491 set_got_offset_arg.value = -1;
3492 }
3493
3494 /* Reorder dynamic symbols as described above (which behavior
3495 depends on the setting of VALUE). */
3496 set_got_offset_arg.g = NULL;
3497 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3498 &set_got_offset_arg);
3499 set_got_offset_arg.value = 1;
3500 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3501 &set_got_offset_arg);
3502 if (! mips_elf_sort_hash_table (info, 1))
3503 return FALSE;
3504
3505 /* Now go through the GOTs assigning them offset ranges.
3506 [assigned_gotno, local_gotno[ will be set to the range of local
3507 entries in each GOT. We can then compute the end of a GOT by
3508 adding local_gotno to global_gotno. We reverse the list and make
3509 it circular since then we'll be able to quickly compute the
3510 beginning of a GOT, by computing the end of its predecessor. To
3511 avoid special cases for the primary GOT, while still preserving
3512 assertions that are valid for both single- and multi-got links,
3513 we arrange for the main got struct to have the right number of
3514 global entries, but set its local_gotno such that the initial
3515 offset of the primary GOT is zero. Remember that the primary GOT
3516 will become the last item in the circular linked list, so it
3517 points back to the master GOT. */
3518 gg->local_gotno = -g->global_gotno;
3519 gg->global_gotno = g->global_gotno;
3520 gg->tls_gotno = 0;
3521 assign = 0;
3522 gg->next = gg;
3523
3524 do
3525 {
3526 struct mips_got_info *gn;
3527
3528 assign += MIPS_RESERVED_GOTNO (info);
3529 g->assigned_gotno = assign;
3530 g->local_gotno += assign + pages;
3531 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3532
3533 /* Take g out of the direct list, and push it onto the reversed
3534 list that gg points to. g->next is guaranteed to be nonnull after
3535 this operation, as required by mips_elf_initialize_tls_index. */
3536 gn = g->next;
3537 g->next = gg->next;
3538 gg->next = g;
3539
3540 /* Set up any TLS entries. We always place the TLS entries after
3541 all non-TLS entries. */
3542 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3543 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3544
3545 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3546 g = gn;
3547
3548 /* Mark global symbols in every non-primary GOT as ineligible for
3549 stubs. */
3550 if (g)
3551 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3552 }
3553 while (g);
3554
3555 got->size = (gg->next->local_gotno
3556 + gg->next->global_gotno
3557 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3558
3559 return TRUE;
3560 }
3561
3562 \f
3563 /* Returns the first relocation of type r_type found, beginning with
3564 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3565
3566 static const Elf_Internal_Rela *
3567 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3568 const Elf_Internal_Rela *relocation,
3569 const Elf_Internal_Rela *relend)
3570 {
3571 while (relocation < relend)
3572 {
3573 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type)
3574 return relocation;
3575
3576 ++relocation;
3577 }
3578
3579 /* We didn't find it. */
3580 bfd_set_error (bfd_error_bad_value);
3581 return NULL;
3582 }
3583
3584 /* Return whether a relocation is against a local symbol. */
3585
3586 static bfd_boolean
3587 mips_elf_local_relocation_p (bfd *input_bfd,
3588 const Elf_Internal_Rela *relocation,
3589 asection **local_sections,
3590 bfd_boolean check_forced)
3591 {
3592 unsigned long r_symndx;
3593 Elf_Internal_Shdr *symtab_hdr;
3594 struct mips_elf_link_hash_entry *h;
3595 size_t extsymoff;
3596
3597 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3598 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3599 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3600
3601 if (r_symndx < extsymoff)
3602 return TRUE;
3603 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3604 return TRUE;
3605
3606 if (check_forced)
3607 {
3608 /* Look up the hash table to check whether the symbol
3609 was forced local. */
3610 h = (struct mips_elf_link_hash_entry *)
3611 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3612 /* Find the real hash-table entry for this symbol. */
3613 while (h->root.root.type == bfd_link_hash_indirect
3614 || h->root.root.type == bfd_link_hash_warning)
3615 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3616 if (h->root.forced_local)
3617 return TRUE;
3618 }
3619
3620 return FALSE;
3621 }
3622 \f
3623 /* Sign-extend VALUE, which has the indicated number of BITS. */
3624
3625 bfd_vma
3626 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
3627 {
3628 if (value & ((bfd_vma) 1 << (bits - 1)))
3629 /* VALUE is negative. */
3630 value |= ((bfd_vma) - 1) << bits;
3631
3632 return value;
3633 }
3634
3635 /* Return non-zero if the indicated VALUE has overflowed the maximum
3636 range expressible by a signed number with the indicated number of
3637 BITS. */
3638
3639 static bfd_boolean
3640 mips_elf_overflow_p (bfd_vma value, int bits)
3641 {
3642 bfd_signed_vma svalue = (bfd_signed_vma) value;
3643
3644 if (svalue > (1 << (bits - 1)) - 1)
3645 /* The value is too big. */
3646 return TRUE;
3647 else if (svalue < -(1 << (bits - 1)))
3648 /* The value is too small. */
3649 return TRUE;
3650
3651 /* All is well. */
3652 return FALSE;
3653 }
3654
3655 /* Calculate the %high function. */
3656
3657 static bfd_vma
3658 mips_elf_high (bfd_vma value)
3659 {
3660 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3661 }
3662
3663 /* Calculate the %higher function. */
3664
3665 static bfd_vma
3666 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
3667 {
3668 #ifdef BFD64
3669 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3670 #else
3671 abort ();
3672 return MINUS_ONE;
3673 #endif
3674 }
3675
3676 /* Calculate the %highest function. */
3677
3678 static bfd_vma
3679 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
3680 {
3681 #ifdef BFD64
3682 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3683 #else
3684 abort ();
3685 return MINUS_ONE;
3686 #endif
3687 }
3688 \f
3689 /* Create the .compact_rel section. */
3690
3691 static bfd_boolean
3692 mips_elf_create_compact_rel_section
3693 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
3694 {
3695 flagword flags;
3696 register asection *s;
3697
3698 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3699 {
3700 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3701 | SEC_READONLY);
3702
3703 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
3704 if (s == NULL
3705 || ! bfd_set_section_alignment (abfd, s,
3706 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3707 return FALSE;
3708
3709 s->size = sizeof (Elf32_External_compact_rel);
3710 }
3711
3712 return TRUE;
3713 }
3714
3715 /* Create the .got section to hold the global offset table. */
3716
3717 static bfd_boolean
3718 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3719 bfd_boolean maybe_exclude)
3720 {
3721 flagword flags;
3722 register asection *s;
3723 struct elf_link_hash_entry *h;
3724 struct bfd_link_hash_entry *bh;
3725 struct mips_got_info *g;
3726 bfd_size_type amt;
3727 struct mips_elf_link_hash_table *htab;
3728
3729 htab = mips_elf_hash_table (info);
3730
3731 /* This function may be called more than once. */
3732 s = mips_elf_got_section (abfd, TRUE);
3733 if (s)
3734 {
3735 if (! maybe_exclude)
3736 s->flags &= ~SEC_EXCLUDE;
3737 return TRUE;
3738 }
3739
3740 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3741 | SEC_LINKER_CREATED);
3742
3743 if (maybe_exclude)
3744 flags |= SEC_EXCLUDE;
3745
3746 /* We have to use an alignment of 2**4 here because this is hardcoded
3747 in the function stub generation and in the linker script. */
3748 s = bfd_make_section_with_flags (abfd, ".got", flags);
3749 if (s == NULL
3750 || ! bfd_set_section_alignment (abfd, s, 4))
3751 return FALSE;
3752
3753 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3754 linker script because we don't want to define the symbol if we
3755 are not creating a global offset table. */
3756 bh = NULL;
3757 if (! (_bfd_generic_link_add_one_symbol
3758 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
3759 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
3760 return FALSE;
3761
3762 h = (struct elf_link_hash_entry *) bh;
3763 h->non_elf = 0;
3764 h->def_regular = 1;
3765 h->type = STT_OBJECT;
3766 elf_hash_table (info)->hgot = h;
3767
3768 if (info->shared
3769 && ! bfd_elf_link_record_dynamic_symbol (info, h))
3770 return FALSE;
3771
3772 amt = sizeof (struct mips_got_info);
3773 g = bfd_alloc (abfd, amt);
3774 if (g == NULL)
3775 return FALSE;
3776 g->global_gotsym = NULL;
3777 g->global_gotno = 0;
3778 g->tls_gotno = 0;
3779 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3780 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
3781 g->bfd2got = NULL;
3782 g->next = NULL;
3783 g->tls_ldm_offset = MINUS_ONE;
3784 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3785 mips_elf_got_entry_eq, NULL);
3786 if (g->got_entries == NULL)
3787 return FALSE;
3788 mips_elf_section_data (s)->u.got_info = g;
3789 mips_elf_section_data (s)->elf.this_hdr.sh_flags
3790 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3791
3792 /* VxWorks also needs a .got.plt section. */
3793 if (htab->is_vxworks)
3794 {
3795 s = bfd_make_section_with_flags (abfd, ".got.plt",
3796 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3797 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3798 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3799 return FALSE;
3800
3801 htab->sgotplt = s;
3802 }
3803 return TRUE;
3804 }
3805 \f
3806 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3807 __GOTT_INDEX__ symbols. These symbols are only special for
3808 shared objects; they are not used in executables. */
3809
3810 static bfd_boolean
3811 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3812 {
3813 return (mips_elf_hash_table (info)->is_vxworks
3814 && info->shared
3815 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3816 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3817 }
3818 \f
3819 /* Calculate the value produced by the RELOCATION (which comes from
3820 the INPUT_BFD). The ADDEND is the addend to use for this
3821 RELOCATION; RELOCATION->R_ADDEND is ignored.
3822
3823 The result of the relocation calculation is stored in VALUEP.
3824 REQUIRE_JALXP indicates whether or not the opcode used with this
3825 relocation must be JALX.
3826
3827 This function returns bfd_reloc_continue if the caller need take no
3828 further action regarding this relocation, bfd_reloc_notsupported if
3829 something goes dramatically wrong, bfd_reloc_overflow if an
3830 overflow occurs, and bfd_reloc_ok to indicate success. */
3831
3832 static bfd_reloc_status_type
3833 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3834 asection *input_section,
3835 struct bfd_link_info *info,
3836 const Elf_Internal_Rela *relocation,
3837 bfd_vma addend, reloc_howto_type *howto,
3838 Elf_Internal_Sym *local_syms,
3839 asection **local_sections, bfd_vma *valuep,
3840 const char **namep, bfd_boolean *require_jalxp,
3841 bfd_boolean save_addend)
3842 {
3843 /* The eventual value we will return. */
3844 bfd_vma value;
3845 /* The address of the symbol against which the relocation is
3846 occurring. */
3847 bfd_vma symbol = 0;
3848 /* The final GP value to be used for the relocatable, executable, or
3849 shared object file being produced. */
3850 bfd_vma gp = MINUS_ONE;
3851 /* The place (section offset or address) of the storage unit being
3852 relocated. */
3853 bfd_vma p;
3854 /* The value of GP used to create the relocatable object. */
3855 bfd_vma gp0 = MINUS_ONE;
3856 /* The offset into the global offset table at which the address of
3857 the relocation entry symbol, adjusted by the addend, resides
3858 during execution. */
3859 bfd_vma g = MINUS_ONE;
3860 /* The section in which the symbol referenced by the relocation is
3861 located. */
3862 asection *sec = NULL;
3863 struct mips_elf_link_hash_entry *h = NULL;
3864 /* TRUE if the symbol referred to by this relocation is a local
3865 symbol. */
3866 bfd_boolean local_p, was_local_p;
3867 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3868 bfd_boolean gp_disp_p = FALSE;
3869 /* TRUE if the symbol referred to by this relocation is
3870 "__gnu_local_gp". */
3871 bfd_boolean gnu_local_gp_p = FALSE;
3872 Elf_Internal_Shdr *symtab_hdr;
3873 size_t extsymoff;
3874 unsigned long r_symndx;
3875 int r_type;
3876 /* TRUE if overflow occurred during the calculation of the
3877 relocation value. */
3878 bfd_boolean overflowed_p;
3879 /* TRUE if this relocation refers to a MIPS16 function. */
3880 bfd_boolean target_is_16_bit_code_p = FALSE;
3881 struct mips_elf_link_hash_table *htab;
3882 bfd *dynobj;
3883
3884 dynobj = elf_hash_table (info)->dynobj;
3885 htab = mips_elf_hash_table (info);
3886
3887 /* Parse the relocation. */
3888 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3889 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3890 p = (input_section->output_section->vma
3891 + input_section->output_offset
3892 + relocation->r_offset);
3893
3894 /* Assume that there will be no overflow. */
3895 overflowed_p = FALSE;
3896
3897 /* Figure out whether or not the symbol is local, and get the offset
3898 used in the array of hash table entries. */
3899 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3900 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3901 local_sections, FALSE);
3902 was_local_p = local_p;
3903 if (! elf_bad_symtab (input_bfd))
3904 extsymoff = symtab_hdr->sh_info;
3905 else
3906 {
3907 /* The symbol table does not follow the rule that local symbols
3908 must come before globals. */
3909 extsymoff = 0;
3910 }
3911
3912 /* Figure out the value of the symbol. */
3913 if (local_p)
3914 {
3915 Elf_Internal_Sym *sym;
3916
3917 sym = local_syms + r_symndx;
3918 sec = local_sections[r_symndx];
3919
3920 symbol = sec->output_section->vma + sec->output_offset;
3921 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3922 || (sec->flags & SEC_MERGE))
3923 symbol += sym->st_value;
3924 if ((sec->flags & SEC_MERGE)
3925 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3926 {
3927 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3928 addend -= symbol;
3929 addend += sec->output_section->vma + sec->output_offset;
3930 }
3931
3932 /* MIPS16 text labels should be treated as odd. */
3933 if (sym->st_other == STO_MIPS16)
3934 ++symbol;
3935
3936 /* Record the name of this symbol, for our caller. */
3937 *namep = bfd_elf_string_from_elf_section (input_bfd,
3938 symtab_hdr->sh_link,
3939 sym->st_name);
3940 if (*namep == '\0')
3941 *namep = bfd_section_name (input_bfd, sec);
3942
3943 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3944 }
3945 else
3946 {
3947 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3948
3949 /* For global symbols we look up the symbol in the hash-table. */
3950 h = ((struct mips_elf_link_hash_entry *)
3951 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3952 /* Find the real hash-table entry for this symbol. */
3953 while (h->root.root.type == bfd_link_hash_indirect
3954 || h->root.root.type == bfd_link_hash_warning)
3955 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3956
3957 /* Record the name of this symbol, for our caller. */
3958 *namep = h->root.root.root.string;
3959
3960 /* See if this is the special _gp_disp symbol. Note that such a
3961 symbol must always be a global symbol. */
3962 if (strcmp (*namep, "_gp_disp") == 0
3963 && ! NEWABI_P (input_bfd))
3964 {
3965 /* Relocations against _gp_disp are permitted only with
3966 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3967 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3968 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
3969 return bfd_reloc_notsupported;
3970
3971 gp_disp_p = TRUE;
3972 }
3973 /* See if this is the special _gp symbol. Note that such a
3974 symbol must always be a global symbol. */
3975 else if (strcmp (*namep, "__gnu_local_gp") == 0)
3976 gnu_local_gp_p = TRUE;
3977
3978
3979 /* If this symbol is defined, calculate its address. Note that
3980 _gp_disp is a magic symbol, always implicitly defined by the
3981 linker, so it's inappropriate to check to see whether or not
3982 its defined. */
3983 else if ((h->root.root.type == bfd_link_hash_defined
3984 || h->root.root.type == bfd_link_hash_defweak)
3985 && h->root.root.u.def.section)
3986 {
3987 sec = h->root.root.u.def.section;
3988 if (sec->output_section)
3989 symbol = (h->root.root.u.def.value
3990 + sec->output_section->vma
3991 + sec->output_offset);
3992 else
3993 symbol = h->root.root.u.def.value;
3994 }
3995 else if (h->root.root.type == bfd_link_hash_undefweak)
3996 /* We allow relocations against undefined weak symbols, giving
3997 it the value zero, so that you can undefined weak functions
3998 and check to see if they exist by looking at their
3999 addresses. */
4000 symbol = 0;
4001 else if (info->unresolved_syms_in_objects == RM_IGNORE
4002 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4003 symbol = 0;
4004 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4005 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4006 {
4007 /* If this is a dynamic link, we should have created a
4008 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4009 in in _bfd_mips_elf_create_dynamic_sections.
4010 Otherwise, we should define the symbol with a value of 0.
4011 FIXME: It should probably get into the symbol table
4012 somehow as well. */
4013 BFD_ASSERT (! info->shared);
4014 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4015 symbol = 0;
4016 }
4017 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4018 {
4019 /* This is an optional symbol - an Irix specific extension to the
4020 ELF spec. Ignore it for now.
4021 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4022 than simply ignoring them, but we do not handle this for now.
4023 For information see the "64-bit ELF Object File Specification"
4024 which is available from here:
4025 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4026 symbol = 0;
4027 }
4028 else
4029 {
4030 if (! ((*info->callbacks->undefined_symbol)
4031 (info, h->root.root.root.string, input_bfd,
4032 input_section, relocation->r_offset,
4033 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4034 || ELF_ST_VISIBILITY (h->root.other))))
4035 return bfd_reloc_undefined;
4036 symbol = 0;
4037 }
4038
4039 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4040 }
4041
4042 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4043 need to redirect the call to the stub, unless we're already *in*
4044 a stub. */
4045 if (r_type != R_MIPS16_26 && !info->relocatable
4046 && ((h != NULL && h->fn_stub != NULL)
4047 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
4048 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4049 && !mips_elf_stub_section_p (input_bfd, input_section))
4050 {
4051 /* This is a 32- or 64-bit call to a 16-bit function. We should
4052 have already noticed that we were going to need the
4053 stub. */
4054 if (local_p)
4055 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4056 else
4057 {
4058 BFD_ASSERT (h->need_fn_stub);
4059 sec = h->fn_stub;
4060 }
4061
4062 symbol = sec->output_section->vma + sec->output_offset;
4063 }
4064 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4065 need to redirect the call to the stub. */
4066 else if (r_type == R_MIPS16_26 && !info->relocatable
4067 && h != NULL
4068 && (h->call_stub != NULL || h->call_fp_stub != NULL)
4069 && !target_is_16_bit_code_p)
4070 {
4071 /* If both call_stub and call_fp_stub are defined, we can figure
4072 out which one to use by seeing which one appears in the input
4073 file. */
4074 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4075 {
4076 asection *o;
4077
4078 sec = NULL;
4079 for (o = input_bfd->sections; o != NULL; o = o->next)
4080 {
4081 if (strncmp (bfd_get_section_name (input_bfd, o),
4082 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
4083 {
4084 sec = h->call_fp_stub;
4085 break;
4086 }
4087 }
4088 if (sec == NULL)
4089 sec = h->call_stub;
4090 }
4091 else if (h->call_stub != NULL)
4092 sec = h->call_stub;
4093 else
4094 sec = h->call_fp_stub;
4095
4096 BFD_ASSERT (sec->size > 0);
4097 symbol = sec->output_section->vma + sec->output_offset;
4098 }
4099
4100 /* Calls from 16-bit code to 32-bit code and vice versa require the
4101 special jalx instruction. */
4102 *require_jalxp = (!info->relocatable
4103 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4104 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4105
4106 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4107 local_sections, TRUE);
4108
4109 /* If we haven't already determined the GOT offset, or the GP value,
4110 and we're going to need it, get it now. */
4111 switch (r_type)
4112 {
4113 case R_MIPS_GOT_PAGE:
4114 case R_MIPS_GOT_OFST:
4115 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4116 bind locally. */
4117 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
4118 if (local_p || r_type == R_MIPS_GOT_OFST)
4119 break;
4120 /* Fall through. */
4121
4122 case R_MIPS_CALL16:
4123 case R_MIPS_GOT16:
4124 case R_MIPS_GOT_DISP:
4125 case R_MIPS_GOT_HI16:
4126 case R_MIPS_CALL_HI16:
4127 case R_MIPS_GOT_LO16:
4128 case R_MIPS_CALL_LO16:
4129 case R_MIPS_TLS_GD:
4130 case R_MIPS_TLS_GOTTPREL:
4131 case R_MIPS_TLS_LDM:
4132 /* Find the index into the GOT where this value is located. */
4133 if (r_type == R_MIPS_TLS_LDM)
4134 {
4135 g = mips_elf_local_got_index (abfd, input_bfd, info,
4136 sec, 0, 0, NULL, r_type);
4137 if (g == MINUS_ONE)
4138 return bfd_reloc_outofrange;
4139 }
4140 else if (!local_p)
4141 {
4142 /* On VxWorks, CALL relocations should refer to the .got.plt
4143 entry, which is initialized to point at the PLT stub. */
4144 if (htab->is_vxworks
4145 && (r_type == R_MIPS_CALL_HI16
4146 || r_type == R_MIPS_CALL_LO16
4147 || r_type == R_MIPS_CALL16))
4148 {
4149 BFD_ASSERT (addend == 0);
4150 BFD_ASSERT (h->root.needs_plt);
4151 g = mips_elf_gotplt_index (info, &h->root);
4152 }
4153 else
4154 {
4155 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4156 GOT_PAGE relocation that decays to GOT_DISP because the
4157 symbol turns out to be global. The addend is then added
4158 as GOT_OFST. */
4159 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4160 g = mips_elf_global_got_index (dynobj, input_bfd,
4161 &h->root, r_type, info);
4162 if (h->tls_type == GOT_NORMAL
4163 && (! elf_hash_table(info)->dynamic_sections_created
4164 || (info->shared
4165 && (info->symbolic || h->root.forced_local)
4166 && h->root.def_regular)))
4167 {
4168 /* This is a static link or a -Bsymbolic link. The
4169 symbol is defined locally, or was forced to be local.
4170 We must initialize this entry in the GOT. */
4171 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4172 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4173 }
4174 }
4175 }
4176 else if (!htab->is_vxworks
4177 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4178 /* The calculation below does not involve "g". */
4179 break;
4180 else
4181 {
4182 g = mips_elf_local_got_index (abfd, input_bfd, info, sec,
4183 symbol + addend, r_symndx, h, r_type);
4184 if (g == MINUS_ONE)
4185 return bfd_reloc_outofrange;
4186 }
4187
4188 /* Convert GOT indices to actual offsets. */
4189 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
4190 break;
4191
4192 case R_MIPS_HI16:
4193 case R_MIPS_LO16:
4194 case R_MIPS_GPREL16:
4195 case R_MIPS_GPREL32:
4196 case R_MIPS_LITERAL:
4197 case R_MIPS16_HI16:
4198 case R_MIPS16_LO16:
4199 case R_MIPS16_GPREL:
4200 gp0 = _bfd_get_gp_value (input_bfd);
4201 gp = _bfd_get_gp_value (abfd);
4202 if (dynobj)
4203 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
4204 input_bfd);
4205 break;
4206
4207 default:
4208 break;
4209 }
4210
4211 if (gnu_local_gp_p)
4212 symbol = gp;
4213
4214 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4215 symbols are resolved by the loader. Add them to .rela.dyn. */
4216 if (h != NULL && is_gott_symbol (info, &h->root))
4217 {
4218 Elf_Internal_Rela outrel;
4219 bfd_byte *loc;
4220 asection *s;
4221
4222 s = mips_elf_rel_dyn_section (info, FALSE);
4223 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4224
4225 outrel.r_offset = (input_section->output_section->vma
4226 + input_section->output_offset
4227 + relocation->r_offset);
4228 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4229 outrel.r_addend = addend;
4230 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4231 *valuep = 0;
4232 return bfd_reloc_ok;
4233 }
4234
4235 /* Figure out what kind of relocation is being performed. */
4236 switch (r_type)
4237 {
4238 case R_MIPS_NONE:
4239 return bfd_reloc_continue;
4240
4241 case R_MIPS_16:
4242 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
4243 overflowed_p = mips_elf_overflow_p (value, 16);
4244 break;
4245
4246 case R_MIPS_32:
4247 case R_MIPS_REL32:
4248 case R_MIPS_64:
4249 if ((info->shared
4250 || (!htab->is_vxworks
4251 && htab->root.dynamic_sections_created
4252 && h != NULL
4253 && h->root.def_dynamic
4254 && !h->root.def_regular))
4255 && r_symndx != 0
4256 && (input_section->flags & SEC_ALLOC) != 0)
4257 {
4258 /* If we're creating a shared library, or this relocation is
4259 against a symbol in a shared library, then we can't know
4260 where the symbol will end up. So, we create a relocation
4261 record in the output, and leave the job up to the dynamic
4262 linker.
4263
4264 In VxWorks executables, references to external symbols
4265 are handled using copy relocs or PLT stubs, so there's
4266 no need to add a dynamic relocation here. */
4267 value = addend;
4268 if (!mips_elf_create_dynamic_relocation (abfd,
4269 info,
4270 relocation,
4271 h,
4272 sec,
4273 symbol,
4274 &value,
4275 input_section))
4276 return bfd_reloc_undefined;
4277 }
4278 else
4279 {
4280 if (r_type != R_MIPS_REL32)
4281 value = symbol + addend;
4282 else
4283 value = addend;
4284 }
4285 value &= howto->dst_mask;
4286 break;
4287
4288 case R_MIPS_PC32:
4289 value = symbol + addend - p;
4290 value &= howto->dst_mask;
4291 break;
4292
4293 case R_MIPS16_26:
4294 /* The calculation for R_MIPS16_26 is just the same as for an
4295 R_MIPS_26. It's only the storage of the relocated field into
4296 the output file that's different. That's handled in
4297 mips_elf_perform_relocation. So, we just fall through to the
4298 R_MIPS_26 case here. */
4299 case R_MIPS_26:
4300 if (local_p)
4301 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4302 else
4303 {
4304 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4305 if (h->root.root.type != bfd_link_hash_undefweak)
4306 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4307 }
4308 value &= howto->dst_mask;
4309 break;
4310
4311 case R_MIPS_TLS_DTPREL_HI16:
4312 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4313 & howto->dst_mask);
4314 break;
4315
4316 case R_MIPS_TLS_DTPREL_LO16:
4317 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4318 break;
4319
4320 case R_MIPS_TLS_TPREL_HI16:
4321 value = (mips_elf_high (addend + symbol - tprel_base (info))
4322 & howto->dst_mask);
4323 break;
4324
4325 case R_MIPS_TLS_TPREL_LO16:
4326 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4327 break;
4328
4329 case R_MIPS_HI16:
4330 case R_MIPS16_HI16:
4331 if (!gp_disp_p)
4332 {
4333 value = mips_elf_high (addend + symbol);
4334 value &= howto->dst_mask;
4335 }
4336 else
4337 {
4338 /* For MIPS16 ABI code we generate this sequence
4339 0: li $v0,%hi(_gp_disp)
4340 4: addiupc $v1,%lo(_gp_disp)
4341 8: sll $v0,16
4342 12: addu $v0,$v1
4343 14: move $gp,$v0
4344 So the offsets of hi and lo relocs are the same, but the
4345 $pc is four higher than $t9 would be, so reduce
4346 both reloc addends by 4. */
4347 if (r_type == R_MIPS16_HI16)
4348 value = mips_elf_high (addend + gp - p - 4);
4349 else
4350 value = mips_elf_high (addend + gp - p);
4351 overflowed_p = mips_elf_overflow_p (value, 16);
4352 }
4353 break;
4354
4355 case R_MIPS_LO16:
4356 case R_MIPS16_LO16:
4357 if (!gp_disp_p)
4358 value = (symbol + addend) & howto->dst_mask;
4359 else
4360 {
4361 /* See the comment for R_MIPS16_HI16 above for the reason
4362 for this conditional. */
4363 if (r_type == R_MIPS16_LO16)
4364 value = addend + gp - p;
4365 else
4366 value = addend + gp - p + 4;
4367 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4368 for overflow. But, on, say, IRIX5, relocations against
4369 _gp_disp are normally generated from the .cpload
4370 pseudo-op. It generates code that normally looks like
4371 this:
4372
4373 lui $gp,%hi(_gp_disp)
4374 addiu $gp,$gp,%lo(_gp_disp)
4375 addu $gp,$gp,$t9
4376
4377 Here $t9 holds the address of the function being called,
4378 as required by the MIPS ELF ABI. The R_MIPS_LO16
4379 relocation can easily overflow in this situation, but the
4380 R_MIPS_HI16 relocation will handle the overflow.
4381 Therefore, we consider this a bug in the MIPS ABI, and do
4382 not check for overflow here. */
4383 }
4384 break;
4385
4386 case R_MIPS_LITERAL:
4387 /* Because we don't merge literal sections, we can handle this
4388 just like R_MIPS_GPREL16. In the long run, we should merge
4389 shared literals, and then we will need to additional work
4390 here. */
4391
4392 /* Fall through. */
4393
4394 case R_MIPS16_GPREL:
4395 /* The R_MIPS16_GPREL performs the same calculation as
4396 R_MIPS_GPREL16, but stores the relocated bits in a different
4397 order. We don't need to do anything special here; the
4398 differences are handled in mips_elf_perform_relocation. */
4399 case R_MIPS_GPREL16:
4400 /* Only sign-extend the addend if it was extracted from the
4401 instruction. If the addend was separate, leave it alone,
4402 otherwise we may lose significant bits. */
4403 if (howto->partial_inplace)
4404 addend = _bfd_mips_elf_sign_extend (addend, 16);
4405 value = symbol + addend - gp;
4406 /* If the symbol was local, any earlier relocatable links will
4407 have adjusted its addend with the gp offset, so compensate
4408 for that now. Don't do it for symbols forced local in this
4409 link, though, since they won't have had the gp offset applied
4410 to them before. */
4411 if (was_local_p)
4412 value += gp0;
4413 overflowed_p = mips_elf_overflow_p (value, 16);
4414 break;
4415
4416 case R_MIPS_GOT16:
4417 case R_MIPS_CALL16:
4418 /* VxWorks does not have separate local and global semantics for
4419 R_MIPS_GOT16; every relocation evaluates to "G". */
4420 if (!htab->is_vxworks && local_p)
4421 {
4422 bfd_boolean forced;
4423
4424 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4425 local_sections, FALSE);
4426 value = mips_elf_got16_entry (abfd, input_bfd, info, sec,
4427 symbol + addend, forced);
4428 if (value == MINUS_ONE)
4429 return bfd_reloc_outofrange;
4430 value
4431 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4432 overflowed_p = mips_elf_overflow_p (value, 16);
4433 break;
4434 }
4435
4436 /* Fall through. */
4437
4438 case R_MIPS_TLS_GD:
4439 case R_MIPS_TLS_GOTTPREL:
4440 case R_MIPS_TLS_LDM:
4441 case R_MIPS_GOT_DISP:
4442 got_disp:
4443 value = g;
4444 overflowed_p = mips_elf_overflow_p (value, 16);
4445 break;
4446
4447 case R_MIPS_GPREL32:
4448 value = (addend + symbol + gp0 - gp);
4449 if (!save_addend)
4450 value &= howto->dst_mask;
4451 break;
4452
4453 case R_MIPS_PC16:
4454 case R_MIPS_GNU_REL16_S2:
4455 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4456 overflowed_p = mips_elf_overflow_p (value, 18);
4457 value = (value >> 2) & howto->dst_mask;
4458 break;
4459
4460 case R_MIPS_GOT_HI16:
4461 case R_MIPS_CALL_HI16:
4462 /* We're allowed to handle these two relocations identically.
4463 The dynamic linker is allowed to handle the CALL relocations
4464 differently by creating a lazy evaluation stub. */
4465 value = g;
4466 value = mips_elf_high (value);
4467 value &= howto->dst_mask;
4468 break;
4469
4470 case R_MIPS_GOT_LO16:
4471 case R_MIPS_CALL_LO16:
4472 value = g & howto->dst_mask;
4473 break;
4474
4475 case R_MIPS_GOT_PAGE:
4476 /* GOT_PAGE relocations that reference non-local symbols decay
4477 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4478 0. */
4479 if (! local_p)
4480 goto got_disp;
4481 value = mips_elf_got_page (abfd, input_bfd, info, sec,
4482 symbol + addend, NULL);
4483 if (value == MINUS_ONE)
4484 return bfd_reloc_outofrange;
4485 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4486 overflowed_p = mips_elf_overflow_p (value, 16);
4487 break;
4488
4489 case R_MIPS_GOT_OFST:
4490 if (local_p)
4491 mips_elf_got_page (abfd, input_bfd, info, sec,
4492 symbol + addend, &value);
4493 else
4494 value = addend;
4495 overflowed_p = mips_elf_overflow_p (value, 16);
4496 break;
4497
4498 case R_MIPS_SUB:
4499 value = symbol - addend;
4500 value &= howto->dst_mask;
4501 break;
4502
4503 case R_MIPS_HIGHER:
4504 value = mips_elf_higher (addend + symbol);
4505 value &= howto->dst_mask;
4506 break;
4507
4508 case R_MIPS_HIGHEST:
4509 value = mips_elf_highest (addend + symbol);
4510 value &= howto->dst_mask;
4511 break;
4512
4513 case R_MIPS_SCN_DISP:
4514 value = symbol + addend - sec->output_offset;
4515 value &= howto->dst_mask;
4516 break;
4517
4518 case R_MIPS_JALR:
4519 /* This relocation is only a hint. In some cases, we optimize
4520 it into a bal instruction. But we don't try to optimize
4521 branches to the PLT; that will wind up wasting time. */
4522 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4523 return bfd_reloc_continue;
4524 value = symbol + addend;
4525 break;
4526
4527 case R_MIPS_PJUMP:
4528 case R_MIPS_GNU_VTINHERIT:
4529 case R_MIPS_GNU_VTENTRY:
4530 /* We don't do anything with these at present. */
4531 return bfd_reloc_continue;
4532
4533 default:
4534 /* An unrecognized relocation type. */
4535 return bfd_reloc_notsupported;
4536 }
4537
4538 /* Store the VALUE for our caller. */
4539 *valuep = value;
4540 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4541 }
4542
4543 /* Obtain the field relocated by RELOCATION. */
4544
4545 static bfd_vma
4546 mips_elf_obtain_contents (reloc_howto_type *howto,
4547 const Elf_Internal_Rela *relocation,
4548 bfd *input_bfd, bfd_byte *contents)
4549 {
4550 bfd_vma x;
4551 bfd_byte *location = contents + relocation->r_offset;
4552
4553 /* Obtain the bytes. */
4554 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4555
4556 return x;
4557 }
4558
4559 /* It has been determined that the result of the RELOCATION is the
4560 VALUE. Use HOWTO to place VALUE into the output file at the
4561 appropriate position. The SECTION is the section to which the
4562 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4563 for the relocation must be either JAL or JALX, and it is
4564 unconditionally converted to JALX.
4565
4566 Returns FALSE if anything goes wrong. */
4567
4568 static bfd_boolean
4569 mips_elf_perform_relocation (struct bfd_link_info *info,
4570 reloc_howto_type *howto,
4571 const Elf_Internal_Rela *relocation,
4572 bfd_vma value, bfd *input_bfd,
4573 asection *input_section, bfd_byte *contents,
4574 bfd_boolean require_jalx)
4575 {
4576 bfd_vma x;
4577 bfd_byte *location;
4578 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4579
4580 /* Figure out where the relocation is occurring. */
4581 location = contents + relocation->r_offset;
4582
4583 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4584
4585 /* Obtain the current value. */
4586 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4587
4588 /* Clear the field we are setting. */
4589 x &= ~howto->dst_mask;
4590
4591 /* Set the field. */
4592 x |= (value & howto->dst_mask);
4593
4594 /* If required, turn JAL into JALX. */
4595 if (require_jalx)
4596 {
4597 bfd_boolean ok;
4598 bfd_vma opcode = x >> 26;
4599 bfd_vma jalx_opcode;
4600
4601 /* Check to see if the opcode is already JAL or JALX. */
4602 if (r_type == R_MIPS16_26)
4603 {
4604 ok = ((opcode == 0x6) || (opcode == 0x7));
4605 jalx_opcode = 0x7;
4606 }
4607 else
4608 {
4609 ok = ((opcode == 0x3) || (opcode == 0x1d));
4610 jalx_opcode = 0x1d;
4611 }
4612
4613 /* If the opcode is not JAL or JALX, there's a problem. */
4614 if (!ok)
4615 {
4616 (*_bfd_error_handler)
4617 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4618 input_bfd,
4619 input_section,
4620 (unsigned long) relocation->r_offset);
4621 bfd_set_error (bfd_error_bad_value);
4622 return FALSE;
4623 }
4624
4625 /* Make this the JALX opcode. */
4626 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4627 }
4628
4629 /* On the RM9000, bal is faster than jal, because bal uses branch
4630 prediction hardware. If we are linking for the RM9000, and we
4631 see jal, and bal fits, use it instead. Note that this
4632 transformation should be safe for all architectures. */
4633 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4634 && !info->relocatable
4635 && !require_jalx
4636 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4637 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4638 {
4639 bfd_vma addr;
4640 bfd_vma dest;
4641 bfd_signed_vma off;
4642
4643 addr = (input_section->output_section->vma
4644 + input_section->output_offset
4645 + relocation->r_offset
4646 + 4);
4647 if (r_type == R_MIPS_26)
4648 dest = (value << 2) | ((addr >> 28) << 28);
4649 else
4650 dest = value;
4651 off = dest - addr;
4652 if (off <= 0x1ffff && off >= -0x20000)
4653 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4654 }
4655
4656 /* Put the value into the output. */
4657 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
4658
4659 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4660 location);
4661
4662 return TRUE;
4663 }
4664
4665 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4666
4667 static bfd_boolean
4668 mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
4669 {
4670 const char *name = bfd_get_section_name (abfd, section);
4671
4672 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
4673 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
4674 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
4675 }
4676 \f
4677 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4678
4679 static void
4680 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4681 unsigned int n)
4682 {
4683 asection *s;
4684 struct mips_elf_link_hash_table *htab;
4685
4686 htab = mips_elf_hash_table (info);
4687 s = mips_elf_rel_dyn_section (info, FALSE);
4688 BFD_ASSERT (s != NULL);
4689
4690 if (htab->is_vxworks)
4691 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4692 else
4693 {
4694 if (s->size == 0)
4695 {
4696 /* Make room for a null element. */
4697 s->size += MIPS_ELF_REL_SIZE (abfd);
4698 ++s->reloc_count;
4699 }
4700 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4701 }
4702 }
4703
4704 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4705 is the original relocation, which is now being transformed into a
4706 dynamic relocation. The ADDENDP is adjusted if necessary; the
4707 caller should store the result in place of the original addend. */
4708
4709 static bfd_boolean
4710 mips_elf_create_dynamic_relocation (bfd *output_bfd,
4711 struct bfd_link_info *info,
4712 const Elf_Internal_Rela *rel,
4713 struct mips_elf_link_hash_entry *h,
4714 asection *sec, bfd_vma symbol,
4715 bfd_vma *addendp, asection *input_section)
4716 {
4717 Elf_Internal_Rela outrel[3];
4718 asection *sreloc;
4719 bfd *dynobj;
4720 int r_type;
4721 long indx;
4722 bfd_boolean defined_p;
4723 struct mips_elf_link_hash_table *htab;
4724
4725 htab = mips_elf_hash_table (info);
4726 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4727 dynobj = elf_hash_table (info)->dynobj;
4728 sreloc = mips_elf_rel_dyn_section (info, FALSE);
4729 BFD_ASSERT (sreloc != NULL);
4730 BFD_ASSERT (sreloc->contents != NULL);
4731 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
4732 < sreloc->size);
4733
4734 outrel[0].r_offset =
4735 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4736 outrel[1].r_offset =
4737 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4738 outrel[2].r_offset =
4739 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4740
4741 if (outrel[0].r_offset == MINUS_ONE)
4742 /* The relocation field has been deleted. */
4743 return TRUE;
4744
4745 if (outrel[0].r_offset == MINUS_TWO)
4746 {
4747 /* The relocation field has been converted into a relative value of
4748 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4749 the field to be fully relocated, so add in the symbol's value. */
4750 *addendp += symbol;
4751 return TRUE;
4752 }
4753
4754 /* We must now calculate the dynamic symbol table index to use
4755 in the relocation. */
4756 if (h != NULL
4757 && (!h->root.def_regular
4758 || (info->shared && !info->symbolic && !h->root.forced_local)))
4759 {
4760 indx = h->root.dynindx;
4761 if (SGI_COMPAT (output_bfd))
4762 defined_p = h->root.def_regular;
4763 else
4764 /* ??? glibc's ld.so just adds the final GOT entry to the
4765 relocation field. It therefore treats relocs against
4766 defined symbols in the same way as relocs against
4767 undefined symbols. */
4768 defined_p = FALSE;
4769 }
4770 else
4771 {
4772 if (sec != NULL && bfd_is_abs_section (sec))
4773 indx = 0;
4774 else if (sec == NULL || sec->owner == NULL)
4775 {
4776 bfd_set_error (bfd_error_bad_value);
4777 return FALSE;
4778 }
4779 else
4780 {
4781 indx = elf_section_data (sec->output_section)->dynindx;
4782 if (indx == 0)
4783 abort ();
4784 }
4785
4786 /* Instead of generating a relocation using the section
4787 symbol, we may as well make it a fully relative
4788 relocation. We want to avoid generating relocations to
4789 local symbols because we used to generate them
4790 incorrectly, without adding the original symbol value,
4791 which is mandated by the ABI for section symbols. In
4792 order to give dynamic loaders and applications time to
4793 phase out the incorrect use, we refrain from emitting
4794 section-relative relocations. It's not like they're
4795 useful, after all. This should be a bit more efficient
4796 as well. */
4797 /* ??? Although this behavior is compatible with glibc's ld.so,
4798 the ABI says that relocations against STN_UNDEF should have
4799 a symbol value of 0. Irix rld honors this, so relocations
4800 against STN_UNDEF have no effect. */
4801 if (!SGI_COMPAT (output_bfd))
4802 indx = 0;
4803 defined_p = TRUE;
4804 }
4805
4806 /* If the relocation was previously an absolute relocation and
4807 this symbol will not be referred to by the relocation, we must
4808 adjust it by the value we give it in the dynamic symbol table.
4809 Otherwise leave the job up to the dynamic linker. */
4810 if (defined_p && r_type != R_MIPS_REL32)
4811 *addendp += symbol;
4812
4813 if (htab->is_vxworks)
4814 /* VxWorks uses non-relative relocations for this. */
4815 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4816 else
4817 /* The relocation is always an REL32 relocation because we don't
4818 know where the shared library will wind up at load-time. */
4819 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4820 R_MIPS_REL32);
4821
4822 /* For strict adherence to the ABI specification, we should
4823 generate a R_MIPS_64 relocation record by itself before the
4824 _REL32/_64 record as well, such that the addend is read in as
4825 a 64-bit value (REL32 is a 32-bit relocation, after all).
4826 However, since none of the existing ELF64 MIPS dynamic
4827 loaders seems to care, we don't waste space with these
4828 artificial relocations. If this turns out to not be true,
4829 mips_elf_allocate_dynamic_relocation() should be tweaked so
4830 as to make room for a pair of dynamic relocations per
4831 invocation if ABI_64_P, and here we should generate an
4832 additional relocation record with R_MIPS_64 by itself for a
4833 NULL symbol before this relocation record. */
4834 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4835 ABI_64_P (output_bfd)
4836 ? R_MIPS_64
4837 : R_MIPS_NONE);
4838 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4839
4840 /* Adjust the output offset of the relocation to reference the
4841 correct location in the output file. */
4842 outrel[0].r_offset += (input_section->output_section->vma
4843 + input_section->output_offset);
4844 outrel[1].r_offset += (input_section->output_section->vma
4845 + input_section->output_offset);
4846 outrel[2].r_offset += (input_section->output_section->vma
4847 + input_section->output_offset);
4848
4849 /* Put the relocation back out. We have to use the special
4850 relocation outputter in the 64-bit case since the 64-bit
4851 relocation format is non-standard. */
4852 if (ABI_64_P (output_bfd))
4853 {
4854 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4855 (output_bfd, &outrel[0],
4856 (sreloc->contents
4857 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4858 }
4859 else if (htab->is_vxworks)
4860 {
4861 /* VxWorks uses RELA rather than REL dynamic relocations. */
4862 outrel[0].r_addend = *addendp;
4863 bfd_elf32_swap_reloca_out
4864 (output_bfd, &outrel[0],
4865 (sreloc->contents
4866 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4867 }
4868 else
4869 bfd_elf32_swap_reloc_out
4870 (output_bfd, &outrel[0],
4871 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4872
4873 /* We've now added another relocation. */
4874 ++sreloc->reloc_count;
4875
4876 /* Make sure the output section is writable. The dynamic linker
4877 will be writing to it. */
4878 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4879 |= SHF_WRITE;
4880
4881 /* On IRIX5, make an entry of compact relocation info. */
4882 if (IRIX_COMPAT (output_bfd) == ict_irix5)
4883 {
4884 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4885 bfd_byte *cr;
4886
4887 if (scpt)
4888 {
4889 Elf32_crinfo cptrel;
4890
4891 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4892 cptrel.vaddr = (rel->r_offset
4893 + input_section->output_section->vma
4894 + input_section->output_offset);
4895 if (r_type == R_MIPS_REL32)
4896 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4897 else
4898 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4899 mips_elf_set_cr_dist2to (cptrel, 0);
4900 cptrel.konst = *addendp;
4901
4902 cr = (scpt->contents
4903 + sizeof (Elf32_External_compact_rel));
4904 mips_elf_set_cr_relvaddr (cptrel, 0);
4905 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4906 ((Elf32_External_crinfo *) cr
4907 + scpt->reloc_count));
4908 ++scpt->reloc_count;
4909 }
4910 }
4911
4912 return TRUE;
4913 }
4914 \f
4915 /* Return the MACH for a MIPS e_flags value. */
4916
4917 unsigned long
4918 _bfd_elf_mips_mach (flagword flags)
4919 {
4920 switch (flags & EF_MIPS_MACH)
4921 {
4922 case E_MIPS_MACH_3900:
4923 return bfd_mach_mips3900;
4924
4925 case E_MIPS_MACH_4010:
4926 return bfd_mach_mips4010;
4927
4928 case E_MIPS_MACH_4100:
4929 return bfd_mach_mips4100;
4930
4931 case E_MIPS_MACH_4111:
4932 return bfd_mach_mips4111;
4933
4934 case E_MIPS_MACH_4120:
4935 return bfd_mach_mips4120;
4936
4937 case E_MIPS_MACH_4650:
4938 return bfd_mach_mips4650;
4939
4940 case E_MIPS_MACH_5400:
4941 return bfd_mach_mips5400;
4942
4943 case E_MIPS_MACH_5500:
4944 return bfd_mach_mips5500;
4945
4946 case E_MIPS_MACH_9000:
4947 return bfd_mach_mips9000;
4948
4949 case E_MIPS_MACH_SB1:
4950 return bfd_mach_mips_sb1;
4951
4952 default:
4953 switch (flags & EF_MIPS_ARCH)
4954 {
4955 default:
4956 case E_MIPS_ARCH_1:
4957 return bfd_mach_mips3000;
4958
4959 case E_MIPS_ARCH_2:
4960 return bfd_mach_mips6000;
4961
4962 case E_MIPS_ARCH_3:
4963 return bfd_mach_mips4000;
4964
4965 case E_MIPS_ARCH_4:
4966 return bfd_mach_mips8000;
4967
4968 case E_MIPS_ARCH_5:
4969 return bfd_mach_mips5;
4970
4971 case E_MIPS_ARCH_32:
4972 return bfd_mach_mipsisa32;
4973
4974 case E_MIPS_ARCH_64:
4975 return bfd_mach_mipsisa64;
4976
4977 case E_MIPS_ARCH_32R2:
4978 return bfd_mach_mipsisa32r2;
4979
4980 case E_MIPS_ARCH_64R2:
4981 return bfd_mach_mipsisa64r2;
4982 }
4983 }
4984
4985 return 0;
4986 }
4987
4988 /* Return printable name for ABI. */
4989
4990 static INLINE char *
4991 elf_mips_abi_name (bfd *abfd)
4992 {
4993 flagword flags;
4994
4995 flags = elf_elfheader (abfd)->e_flags;
4996 switch (flags & EF_MIPS_ABI)
4997 {
4998 case 0:
4999 if (ABI_N32_P (abfd))
5000 return "N32";
5001 else if (ABI_64_P (abfd))
5002 return "64";
5003 else
5004 return "none";
5005 case E_MIPS_ABI_O32:
5006 return "O32";
5007 case E_MIPS_ABI_O64:
5008 return "O64";
5009 case E_MIPS_ABI_EABI32:
5010 return "EABI32";
5011 case E_MIPS_ABI_EABI64:
5012 return "EABI64";
5013 default:
5014 return "unknown abi";
5015 }
5016 }
5017 \f
5018 /* MIPS ELF uses two common sections. One is the usual one, and the
5019 other is for small objects. All the small objects are kept
5020 together, and then referenced via the gp pointer, which yields
5021 faster assembler code. This is what we use for the small common
5022 section. This approach is copied from ecoff.c. */
5023 static asection mips_elf_scom_section;
5024 static asymbol mips_elf_scom_symbol;
5025 static asymbol *mips_elf_scom_symbol_ptr;
5026
5027 /* MIPS ELF also uses an acommon section, which represents an
5028 allocated common symbol which may be overridden by a
5029 definition in a shared library. */
5030 static asection mips_elf_acom_section;
5031 static asymbol mips_elf_acom_symbol;
5032 static asymbol *mips_elf_acom_symbol_ptr;
5033
5034 /* Handle the special MIPS section numbers that a symbol may use.
5035 This is used for both the 32-bit and the 64-bit ABI. */
5036
5037 void
5038 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5039 {
5040 elf_symbol_type *elfsym;
5041
5042 elfsym = (elf_symbol_type *) asym;
5043 switch (elfsym->internal_elf_sym.st_shndx)
5044 {
5045 case SHN_MIPS_ACOMMON:
5046 /* This section is used in a dynamically linked executable file.
5047 It is an allocated common section. The dynamic linker can
5048 either resolve these symbols to something in a shared
5049 library, or it can just leave them here. For our purposes,
5050 we can consider these symbols to be in a new section. */
5051 if (mips_elf_acom_section.name == NULL)
5052 {
5053 /* Initialize the acommon section. */
5054 mips_elf_acom_section.name = ".acommon";
5055 mips_elf_acom_section.flags = SEC_ALLOC;
5056 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5057 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5058 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5059 mips_elf_acom_symbol.name = ".acommon";
5060 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5061 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5062 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5063 }
5064 asym->section = &mips_elf_acom_section;
5065 break;
5066
5067 case SHN_COMMON:
5068 /* Common symbols less than the GP size are automatically
5069 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5070 if (asym->value > elf_gp_size (abfd)
5071 || IRIX_COMPAT (abfd) == ict_irix6)
5072 break;
5073 /* Fall through. */
5074 case SHN_MIPS_SCOMMON:
5075 if (mips_elf_scom_section.name == NULL)
5076 {
5077 /* Initialize the small common section. */
5078 mips_elf_scom_section.name = ".scommon";
5079 mips_elf_scom_section.flags = SEC_IS_COMMON;
5080 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5081 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5082 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5083 mips_elf_scom_symbol.name = ".scommon";
5084 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5085 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5086 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5087 }
5088 asym->section = &mips_elf_scom_section;
5089 asym->value = elfsym->internal_elf_sym.st_size;
5090 break;
5091
5092 case SHN_MIPS_SUNDEFINED:
5093 asym->section = bfd_und_section_ptr;
5094 break;
5095
5096 case SHN_MIPS_TEXT:
5097 {
5098 asection *section = bfd_get_section_by_name (abfd, ".text");
5099
5100 BFD_ASSERT (SGI_COMPAT (abfd));
5101 if (section != NULL)
5102 {
5103 asym->section = section;
5104 /* MIPS_TEXT is a bit special, the address is not an offset
5105 to the base of the .text section. So substract the section
5106 base address to make it an offset. */
5107 asym->value -= section->vma;
5108 }
5109 }
5110 break;
5111
5112 case SHN_MIPS_DATA:
5113 {
5114 asection *section = bfd_get_section_by_name (abfd, ".data");
5115
5116 BFD_ASSERT (SGI_COMPAT (abfd));
5117 if (section != NULL)
5118 {
5119 asym->section = section;
5120 /* MIPS_DATA is a bit special, the address is not an offset
5121 to the base of the .data section. So substract the section
5122 base address to make it an offset. */
5123 asym->value -= section->vma;
5124 }
5125 }
5126 break;
5127 }
5128 }
5129 \f
5130 /* Implement elf_backend_eh_frame_address_size. This differs from
5131 the default in the way it handles EABI64.
5132
5133 EABI64 was originally specified as an LP64 ABI, and that is what
5134 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5135 historically accepted the combination of -mabi=eabi and -mlong32,
5136 and this ILP32 variation has become semi-official over time.
5137 Both forms use elf32 and have pointer-sized FDE addresses.
5138
5139 If an EABI object was generated by GCC 4.0 or above, it will have
5140 an empty .gcc_compiled_longXX section, where XX is the size of longs
5141 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5142 have no special marking to distinguish them from LP64 objects.
5143
5144 We don't want users of the official LP64 ABI to be punished for the
5145 existence of the ILP32 variant, but at the same time, we don't want
5146 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5147 We therefore take the following approach:
5148
5149 - If ABFD contains a .gcc_compiled_longXX section, use it to
5150 determine the pointer size.
5151
5152 - Otherwise check the type of the first relocation. Assume that
5153 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5154
5155 - Otherwise punt.
5156
5157 The second check is enough to detect LP64 objects generated by pre-4.0
5158 compilers because, in the kind of output generated by those compilers,
5159 the first relocation will be associated with either a CIE personality
5160 routine or an FDE start address. Furthermore, the compilers never
5161 used a special (non-pointer) encoding for this ABI.
5162
5163 Checking the relocation type should also be safe because there is no
5164 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5165 did so. */
5166
5167 unsigned int
5168 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5169 {
5170 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5171 return 8;
5172 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5173 {
5174 bfd_boolean long32_p, long64_p;
5175
5176 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5177 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5178 if (long32_p && long64_p)
5179 return 0;
5180 if (long32_p)
5181 return 4;
5182 if (long64_p)
5183 return 8;
5184
5185 if (sec->reloc_count > 0
5186 && elf_section_data (sec)->relocs != NULL
5187 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5188 == R_MIPS_64))
5189 return 8;
5190
5191 return 0;
5192 }
5193 return 4;
5194 }
5195 \f
5196 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5197 relocations against two unnamed section symbols to resolve to the
5198 same address. For example, if we have code like:
5199
5200 lw $4,%got_disp(.data)($gp)
5201 lw $25,%got_disp(.text)($gp)
5202 jalr $25
5203
5204 then the linker will resolve both relocations to .data and the program
5205 will jump there rather than to .text.
5206
5207 We can work around this problem by giving names to local section symbols.
5208 This is also what the MIPSpro tools do. */
5209
5210 bfd_boolean
5211 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5212 {
5213 return SGI_COMPAT (abfd);
5214 }
5215 \f
5216 /* Work over a section just before writing it out. This routine is
5217 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5218 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5219 a better way. */
5220
5221 bfd_boolean
5222 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
5223 {
5224 if (hdr->sh_type == SHT_MIPS_REGINFO
5225 && hdr->sh_size > 0)
5226 {
5227 bfd_byte buf[4];
5228
5229 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5230 BFD_ASSERT (hdr->contents == NULL);
5231
5232 if (bfd_seek (abfd,
5233 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5234 SEEK_SET) != 0)
5235 return FALSE;
5236 H_PUT_32 (abfd, elf_gp (abfd), buf);
5237 if (bfd_bwrite (buf, 4, abfd) != 4)
5238 return FALSE;
5239 }
5240
5241 if (hdr->sh_type == SHT_MIPS_OPTIONS
5242 && hdr->bfd_section != NULL
5243 && mips_elf_section_data (hdr->bfd_section) != NULL
5244 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
5245 {
5246 bfd_byte *contents, *l, *lend;
5247
5248 /* We stored the section contents in the tdata field in the
5249 set_section_contents routine. We save the section contents
5250 so that we don't have to read them again.
5251 At this point we know that elf_gp is set, so we can look
5252 through the section contents to see if there is an
5253 ODK_REGINFO structure. */
5254
5255 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
5256 l = contents;
5257 lend = contents + hdr->sh_size;
5258 while (l + sizeof (Elf_External_Options) <= lend)
5259 {
5260 Elf_Internal_Options intopt;
5261
5262 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5263 &intopt);
5264 if (intopt.size < sizeof (Elf_External_Options))
5265 {
5266 (*_bfd_error_handler)
5267 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5268 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5269 break;
5270 }
5271 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5272 {
5273 bfd_byte buf[8];
5274
5275 if (bfd_seek (abfd,
5276 (hdr->sh_offset
5277 + (l - contents)
5278 + sizeof (Elf_External_Options)
5279 + (sizeof (Elf64_External_RegInfo) - 8)),
5280 SEEK_SET) != 0)
5281 return FALSE;
5282 H_PUT_64 (abfd, elf_gp (abfd), buf);
5283 if (bfd_bwrite (buf, 8, abfd) != 8)
5284 return FALSE;
5285 }
5286 else if (intopt.kind == ODK_REGINFO)
5287 {
5288 bfd_byte buf[4];
5289
5290 if (bfd_seek (abfd,
5291 (hdr->sh_offset
5292 + (l - contents)
5293 + sizeof (Elf_External_Options)
5294 + (sizeof (Elf32_External_RegInfo) - 4)),
5295 SEEK_SET) != 0)
5296 return FALSE;
5297 H_PUT_32 (abfd, elf_gp (abfd), buf);
5298 if (bfd_bwrite (buf, 4, abfd) != 4)
5299 return FALSE;
5300 }
5301 l += intopt.size;
5302 }
5303 }
5304
5305 if (hdr->bfd_section != NULL)
5306 {
5307 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5308
5309 if (strcmp (name, ".sdata") == 0
5310 || strcmp (name, ".lit8") == 0
5311 || strcmp (name, ".lit4") == 0)
5312 {
5313 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5314 hdr->sh_type = SHT_PROGBITS;
5315 }
5316 else if (strcmp (name, ".sbss") == 0)
5317 {
5318 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5319 hdr->sh_type = SHT_NOBITS;
5320 }
5321 else if (strcmp (name, ".srdata") == 0)
5322 {
5323 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5324 hdr->sh_type = SHT_PROGBITS;
5325 }
5326 else if (strcmp (name, ".compact_rel") == 0)
5327 {
5328 hdr->sh_flags = 0;
5329 hdr->sh_type = SHT_PROGBITS;
5330 }
5331 else if (strcmp (name, ".rtproc") == 0)
5332 {
5333 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5334 {
5335 unsigned int adjust;
5336
5337 adjust = hdr->sh_size % hdr->sh_addralign;
5338 if (adjust != 0)
5339 hdr->sh_size += hdr->sh_addralign - adjust;
5340 }
5341 }
5342 }
5343
5344 return TRUE;
5345 }
5346
5347 /* Handle a MIPS specific section when reading an object file. This
5348 is called when elfcode.h finds a section with an unknown type.
5349 This routine supports both the 32-bit and 64-bit ELF ABI.
5350
5351 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5352 how to. */
5353
5354 bfd_boolean
5355 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5356 Elf_Internal_Shdr *hdr,
5357 const char *name,
5358 int shindex)
5359 {
5360 flagword flags = 0;
5361
5362 /* There ought to be a place to keep ELF backend specific flags, but
5363 at the moment there isn't one. We just keep track of the
5364 sections by their name, instead. Fortunately, the ABI gives
5365 suggested names for all the MIPS specific sections, so we will
5366 probably get away with this. */
5367 switch (hdr->sh_type)
5368 {
5369 case SHT_MIPS_LIBLIST:
5370 if (strcmp (name, ".liblist") != 0)
5371 return FALSE;
5372 break;
5373 case SHT_MIPS_MSYM:
5374 if (strcmp (name, ".msym") != 0)
5375 return FALSE;
5376 break;
5377 case SHT_MIPS_CONFLICT:
5378 if (strcmp (name, ".conflict") != 0)
5379 return FALSE;
5380 break;
5381 case SHT_MIPS_GPTAB:
5382 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
5383 return FALSE;
5384 break;
5385 case SHT_MIPS_UCODE:
5386 if (strcmp (name, ".ucode") != 0)
5387 return FALSE;
5388 break;
5389 case SHT_MIPS_DEBUG:
5390 if (strcmp (name, ".mdebug") != 0)
5391 return FALSE;
5392 flags = SEC_DEBUGGING;
5393 break;
5394 case SHT_MIPS_REGINFO:
5395 if (strcmp (name, ".reginfo") != 0
5396 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5397 return FALSE;
5398 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5399 break;
5400 case SHT_MIPS_IFACE:
5401 if (strcmp (name, ".MIPS.interfaces") != 0)
5402 return FALSE;
5403 break;
5404 case SHT_MIPS_CONTENT:
5405 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
5406 return FALSE;
5407 break;
5408 case SHT_MIPS_OPTIONS:
5409 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5410 return FALSE;
5411 break;
5412 case SHT_MIPS_DWARF:
5413 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
5414 return FALSE;
5415 break;
5416 case SHT_MIPS_SYMBOL_LIB:
5417 if (strcmp (name, ".MIPS.symlib") != 0)
5418 return FALSE;
5419 break;
5420 case SHT_MIPS_EVENTS:
5421 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
5422 && strncmp (name, ".MIPS.post_rel",
5423 sizeof ".MIPS.post_rel" - 1) != 0)
5424 return FALSE;
5425 break;
5426 default:
5427 break;
5428 }
5429
5430 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5431 return FALSE;
5432
5433 if (flags)
5434 {
5435 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5436 (bfd_get_section_flags (abfd,
5437 hdr->bfd_section)
5438 | flags)))
5439 return FALSE;
5440 }
5441
5442 /* FIXME: We should record sh_info for a .gptab section. */
5443
5444 /* For a .reginfo section, set the gp value in the tdata information
5445 from the contents of this section. We need the gp value while
5446 processing relocs, so we just get it now. The .reginfo section
5447 is not used in the 64-bit MIPS ELF ABI. */
5448 if (hdr->sh_type == SHT_MIPS_REGINFO)
5449 {
5450 Elf32_External_RegInfo ext;
5451 Elf32_RegInfo s;
5452
5453 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5454 &ext, 0, sizeof ext))
5455 return FALSE;
5456 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5457 elf_gp (abfd) = s.ri_gp_value;
5458 }
5459
5460 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5461 set the gp value based on what we find. We may see both
5462 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5463 they should agree. */
5464 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5465 {
5466 bfd_byte *contents, *l, *lend;
5467
5468 contents = bfd_malloc (hdr->sh_size);
5469 if (contents == NULL)
5470 return FALSE;
5471 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5472 0, hdr->sh_size))
5473 {
5474 free (contents);
5475 return FALSE;
5476 }
5477 l = contents;
5478 lend = contents + hdr->sh_size;
5479 while (l + sizeof (Elf_External_Options) <= lend)
5480 {
5481 Elf_Internal_Options intopt;
5482
5483 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5484 &intopt);
5485 if (intopt.size < sizeof (Elf_External_Options))
5486 {
5487 (*_bfd_error_handler)
5488 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5489 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5490 break;
5491 }
5492 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5493 {
5494 Elf64_Internal_RegInfo intreg;
5495
5496 bfd_mips_elf64_swap_reginfo_in
5497 (abfd,
5498 ((Elf64_External_RegInfo *)
5499 (l + sizeof (Elf_External_Options))),
5500 &intreg);
5501 elf_gp (abfd) = intreg.ri_gp_value;
5502 }
5503 else if (intopt.kind == ODK_REGINFO)
5504 {
5505 Elf32_RegInfo intreg;
5506
5507 bfd_mips_elf32_swap_reginfo_in
5508 (abfd,
5509 ((Elf32_External_RegInfo *)
5510 (l + sizeof (Elf_External_Options))),
5511 &intreg);
5512 elf_gp (abfd) = intreg.ri_gp_value;
5513 }
5514 l += intopt.size;
5515 }
5516 free (contents);
5517 }
5518
5519 return TRUE;
5520 }
5521
5522 /* Set the correct type for a MIPS ELF section. We do this by the
5523 section name, which is a hack, but ought to work. This routine is
5524 used by both the 32-bit and the 64-bit ABI. */
5525
5526 bfd_boolean
5527 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5528 {
5529 register const char *name;
5530 unsigned int sh_type;
5531
5532 name = bfd_get_section_name (abfd, sec);
5533 sh_type = hdr->sh_type;
5534
5535 if (strcmp (name, ".liblist") == 0)
5536 {
5537 hdr->sh_type = SHT_MIPS_LIBLIST;
5538 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5539 /* The sh_link field is set in final_write_processing. */
5540 }
5541 else if (strcmp (name, ".conflict") == 0)
5542 hdr->sh_type = SHT_MIPS_CONFLICT;
5543 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
5544 {
5545 hdr->sh_type = SHT_MIPS_GPTAB;
5546 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5547 /* The sh_info field is set in final_write_processing. */
5548 }
5549 else if (strcmp (name, ".ucode") == 0)
5550 hdr->sh_type = SHT_MIPS_UCODE;
5551 else if (strcmp (name, ".mdebug") == 0)
5552 {
5553 hdr->sh_type = SHT_MIPS_DEBUG;
5554 /* In a shared object on IRIX 5.3, the .mdebug section has an
5555 entsize of 0. FIXME: Does this matter? */
5556 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5557 hdr->sh_entsize = 0;
5558 else
5559 hdr->sh_entsize = 1;
5560 }
5561 else if (strcmp (name, ".reginfo") == 0)
5562 {
5563 hdr->sh_type = SHT_MIPS_REGINFO;
5564 /* In a shared object on IRIX 5.3, the .reginfo section has an
5565 entsize of 0x18. FIXME: Does this matter? */
5566 if (SGI_COMPAT (abfd))
5567 {
5568 if ((abfd->flags & DYNAMIC) != 0)
5569 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5570 else
5571 hdr->sh_entsize = 1;
5572 }
5573 else
5574 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5575 }
5576 else if (SGI_COMPAT (abfd)
5577 && (strcmp (name, ".hash") == 0
5578 || strcmp (name, ".dynamic") == 0
5579 || strcmp (name, ".dynstr") == 0))
5580 {
5581 if (SGI_COMPAT (abfd))
5582 hdr->sh_entsize = 0;
5583 #if 0
5584 /* This isn't how the IRIX6 linker behaves. */
5585 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5586 #endif
5587 }
5588 else if (strcmp (name, ".got") == 0
5589 || strcmp (name, ".srdata") == 0
5590 || strcmp (name, ".sdata") == 0
5591 || strcmp (name, ".sbss") == 0
5592 || strcmp (name, ".lit4") == 0
5593 || strcmp (name, ".lit8") == 0)
5594 hdr->sh_flags |= SHF_MIPS_GPREL;
5595 else if (strcmp (name, ".MIPS.interfaces") == 0)
5596 {
5597 hdr->sh_type = SHT_MIPS_IFACE;
5598 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5599 }
5600 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
5601 {
5602 hdr->sh_type = SHT_MIPS_CONTENT;
5603 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5604 /* The sh_info field is set in final_write_processing. */
5605 }
5606 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5607 {
5608 hdr->sh_type = SHT_MIPS_OPTIONS;
5609 hdr->sh_entsize = 1;
5610 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5611 }
5612 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
5613 hdr->sh_type = SHT_MIPS_DWARF;
5614 else if (strcmp (name, ".MIPS.symlib") == 0)
5615 {
5616 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5617 /* The sh_link and sh_info fields are set in
5618 final_write_processing. */
5619 }
5620 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
5621 || strncmp (name, ".MIPS.post_rel",
5622 sizeof ".MIPS.post_rel" - 1) == 0)
5623 {
5624 hdr->sh_type = SHT_MIPS_EVENTS;
5625 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5626 /* The sh_link field is set in final_write_processing. */
5627 }
5628 else if (strcmp (name, ".msym") == 0)
5629 {
5630 hdr->sh_type = SHT_MIPS_MSYM;
5631 hdr->sh_flags |= SHF_ALLOC;
5632 hdr->sh_entsize = 8;
5633 }
5634
5635 /* In the unlikely event a special section is empty it has to lose its
5636 special meaning. This may happen e.g. when using `strip' with the
5637 "--only-keep-debug" option. */
5638 if (sec->size > 0 && !(sec->flags & SEC_HAS_CONTENTS))
5639 hdr->sh_type = sh_type;
5640
5641 /* The generic elf_fake_sections will set up REL_HDR using the default
5642 kind of relocations. We used to set up a second header for the
5643 non-default kind of relocations here, but only NewABI would use
5644 these, and the IRIX ld doesn't like resulting empty RELA sections.
5645 Thus we create those header only on demand now. */
5646
5647 return TRUE;
5648 }
5649
5650 /* Given a BFD section, try to locate the corresponding ELF section
5651 index. This is used by both the 32-bit and the 64-bit ABI.
5652 Actually, it's not clear to me that the 64-bit ABI supports these,
5653 but for non-PIC objects we will certainly want support for at least
5654 the .scommon section. */
5655
5656 bfd_boolean
5657 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5658 asection *sec, int *retval)
5659 {
5660 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5661 {
5662 *retval = SHN_MIPS_SCOMMON;
5663 return TRUE;
5664 }
5665 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5666 {
5667 *retval = SHN_MIPS_ACOMMON;
5668 return TRUE;
5669 }
5670 return FALSE;
5671 }
5672 \f
5673 /* Hook called by the linker routine which adds symbols from an object
5674 file. We must handle the special MIPS section numbers here. */
5675
5676 bfd_boolean
5677 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
5678 Elf_Internal_Sym *sym, const char **namep,
5679 flagword *flagsp ATTRIBUTE_UNUSED,
5680 asection **secp, bfd_vma *valp)
5681 {
5682 if (SGI_COMPAT (abfd)
5683 && (abfd->flags & DYNAMIC) != 0
5684 && strcmp (*namep, "_rld_new_interface") == 0)
5685 {
5686 /* Skip IRIX5 rld entry name. */
5687 *namep = NULL;
5688 return TRUE;
5689 }
5690
5691 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5692 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5693 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5694 a magic symbol resolved by the linker, we ignore this bogus definition
5695 of _gp_disp. New ABI objects do not suffer from this problem so this
5696 is not done for them. */
5697 if (!NEWABI_P(abfd)
5698 && (sym->st_shndx == SHN_ABS)
5699 && (strcmp (*namep, "_gp_disp") == 0))
5700 {
5701 *namep = NULL;
5702 return TRUE;
5703 }
5704
5705 switch (sym->st_shndx)
5706 {
5707 case SHN_COMMON:
5708 /* Common symbols less than the GP size are automatically
5709 treated as SHN_MIPS_SCOMMON symbols. */
5710 if (sym->st_size > elf_gp_size (abfd)
5711 || IRIX_COMPAT (abfd) == ict_irix6)
5712 break;
5713 /* Fall through. */
5714 case SHN_MIPS_SCOMMON:
5715 *secp = bfd_make_section_old_way (abfd, ".scommon");
5716 (*secp)->flags |= SEC_IS_COMMON;
5717 *valp = sym->st_size;
5718 break;
5719
5720 case SHN_MIPS_TEXT:
5721 /* This section is used in a shared object. */
5722 if (elf_tdata (abfd)->elf_text_section == NULL)
5723 {
5724 asymbol *elf_text_symbol;
5725 asection *elf_text_section;
5726 bfd_size_type amt = sizeof (asection);
5727
5728 elf_text_section = bfd_zalloc (abfd, amt);
5729 if (elf_text_section == NULL)
5730 return FALSE;
5731
5732 amt = sizeof (asymbol);
5733 elf_text_symbol = bfd_zalloc (abfd, amt);
5734 if (elf_text_symbol == NULL)
5735 return FALSE;
5736
5737 /* Initialize the section. */
5738
5739 elf_tdata (abfd)->elf_text_section = elf_text_section;
5740 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5741
5742 elf_text_section->symbol = elf_text_symbol;
5743 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5744
5745 elf_text_section->name = ".text";
5746 elf_text_section->flags = SEC_NO_FLAGS;
5747 elf_text_section->output_section = NULL;
5748 elf_text_section->owner = abfd;
5749 elf_text_symbol->name = ".text";
5750 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5751 elf_text_symbol->section = elf_text_section;
5752 }
5753 /* This code used to do *secp = bfd_und_section_ptr if
5754 info->shared. I don't know why, and that doesn't make sense,
5755 so I took it out. */
5756 *secp = elf_tdata (abfd)->elf_text_section;
5757 break;
5758
5759 case SHN_MIPS_ACOMMON:
5760 /* Fall through. XXX Can we treat this as allocated data? */
5761 case SHN_MIPS_DATA:
5762 /* This section is used in a shared object. */
5763 if (elf_tdata (abfd)->elf_data_section == NULL)
5764 {
5765 asymbol *elf_data_symbol;
5766 asection *elf_data_section;
5767 bfd_size_type amt = sizeof (asection);
5768
5769 elf_data_section = bfd_zalloc (abfd, amt);
5770 if (elf_data_section == NULL)
5771 return FALSE;
5772
5773 amt = sizeof (asymbol);
5774 elf_data_symbol = bfd_zalloc (abfd, amt);
5775 if (elf_data_symbol == NULL)
5776 return FALSE;
5777
5778 /* Initialize the section. */
5779
5780 elf_tdata (abfd)->elf_data_section = elf_data_section;
5781 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5782
5783 elf_data_section->symbol = elf_data_symbol;
5784 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5785
5786 elf_data_section->name = ".data";
5787 elf_data_section->flags = SEC_NO_FLAGS;
5788 elf_data_section->output_section = NULL;
5789 elf_data_section->owner = abfd;
5790 elf_data_symbol->name = ".data";
5791 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5792 elf_data_symbol->section = elf_data_section;
5793 }
5794 /* This code used to do *secp = bfd_und_section_ptr if
5795 info->shared. I don't know why, and that doesn't make sense,
5796 so I took it out. */
5797 *secp = elf_tdata (abfd)->elf_data_section;
5798 break;
5799
5800 case SHN_MIPS_SUNDEFINED:
5801 *secp = bfd_und_section_ptr;
5802 break;
5803 }
5804
5805 if (SGI_COMPAT (abfd)
5806 && ! info->shared
5807 && info->hash->creator == abfd->xvec
5808 && strcmp (*namep, "__rld_obj_head") == 0)
5809 {
5810 struct elf_link_hash_entry *h;
5811 struct bfd_link_hash_entry *bh;
5812
5813 /* Mark __rld_obj_head as dynamic. */
5814 bh = NULL;
5815 if (! (_bfd_generic_link_add_one_symbol
5816 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
5817 get_elf_backend_data (abfd)->collect, &bh)))
5818 return FALSE;
5819
5820 h = (struct elf_link_hash_entry *) bh;
5821 h->non_elf = 0;
5822 h->def_regular = 1;
5823 h->type = STT_OBJECT;
5824
5825 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5826 return FALSE;
5827
5828 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
5829 }
5830
5831 /* If this is a mips16 text symbol, add 1 to the value to make it
5832 odd. This will cause something like .word SYM to come up with
5833 the right value when it is loaded into the PC. */
5834 if (sym->st_other == STO_MIPS16)
5835 ++*valp;
5836
5837 return TRUE;
5838 }
5839
5840 /* This hook function is called before the linker writes out a global
5841 symbol. We mark symbols as small common if appropriate. This is
5842 also where we undo the increment of the value for a mips16 symbol. */
5843
5844 bfd_boolean
5845 _bfd_mips_elf_link_output_symbol_hook
5846 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5847 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5848 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
5849 {
5850 /* If we see a common symbol, which implies a relocatable link, then
5851 if a symbol was small common in an input file, mark it as small
5852 common in the output file. */
5853 if (sym->st_shndx == SHN_COMMON
5854 && strcmp (input_sec->name, ".scommon") == 0)
5855 sym->st_shndx = SHN_MIPS_SCOMMON;
5856
5857 if (sym->st_other == STO_MIPS16)
5858 sym->st_value &= ~1;
5859
5860 return TRUE;
5861 }
5862 \f
5863 /* Functions for the dynamic linker. */
5864
5865 /* Create dynamic sections when linking against a dynamic object. */
5866
5867 bfd_boolean
5868 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
5869 {
5870 struct elf_link_hash_entry *h;
5871 struct bfd_link_hash_entry *bh;
5872 flagword flags;
5873 register asection *s;
5874 const char * const *namep;
5875 struct mips_elf_link_hash_table *htab;
5876
5877 htab = mips_elf_hash_table (info);
5878 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5879 | SEC_LINKER_CREATED | SEC_READONLY);
5880
5881 /* The psABI requires a read-only .dynamic section, but the VxWorks
5882 EABI doesn't. */
5883 if (!htab->is_vxworks)
5884 {
5885 s = bfd_get_section_by_name (abfd, ".dynamic");
5886 if (s != NULL)
5887 {
5888 if (! bfd_set_section_flags (abfd, s, flags))
5889 return FALSE;
5890 }
5891 }
5892
5893 /* We need to create .got section. */
5894 if (! mips_elf_create_got_section (abfd, info, FALSE))
5895 return FALSE;
5896
5897 if (! mips_elf_rel_dyn_section (info, TRUE))
5898 return FALSE;
5899
5900 /* Create .stub section. */
5901 if (bfd_get_section_by_name (abfd,
5902 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5903 {
5904 s = bfd_make_section_with_flags (abfd,
5905 MIPS_ELF_STUB_SECTION_NAME (abfd),
5906 flags | SEC_CODE);
5907 if (s == NULL
5908 || ! bfd_set_section_alignment (abfd, s,
5909 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5910 return FALSE;
5911 }
5912
5913 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5914 && !info->shared
5915 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5916 {
5917 s = bfd_make_section_with_flags (abfd, ".rld_map",
5918 flags &~ (flagword) SEC_READONLY);
5919 if (s == NULL
5920 || ! bfd_set_section_alignment (abfd, s,
5921 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5922 return FALSE;
5923 }
5924
5925 /* On IRIX5, we adjust add some additional symbols and change the
5926 alignments of several sections. There is no ABI documentation
5927 indicating that this is necessary on IRIX6, nor any evidence that
5928 the linker takes such action. */
5929 if (IRIX_COMPAT (abfd) == ict_irix5)
5930 {
5931 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5932 {
5933 bh = NULL;
5934 if (! (_bfd_generic_link_add_one_symbol
5935 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5936 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5937 return FALSE;
5938
5939 h = (struct elf_link_hash_entry *) bh;
5940 h->non_elf = 0;
5941 h->def_regular = 1;
5942 h->type = STT_SECTION;
5943
5944 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5945 return FALSE;
5946 }
5947
5948 /* We need to create a .compact_rel section. */
5949 if (SGI_COMPAT (abfd))
5950 {
5951 if (!mips_elf_create_compact_rel_section (abfd, info))
5952 return FALSE;
5953 }
5954
5955 /* Change alignments of some sections. */
5956 s = bfd_get_section_by_name (abfd, ".hash");
5957 if (s != NULL)
5958 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5959 s = bfd_get_section_by_name (abfd, ".dynsym");
5960 if (s != NULL)
5961 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5962 s = bfd_get_section_by_name (abfd, ".dynstr");
5963 if (s != NULL)
5964 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5965 s = bfd_get_section_by_name (abfd, ".reginfo");
5966 if (s != NULL)
5967 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5968 s = bfd_get_section_by_name (abfd, ".dynamic");
5969 if (s != NULL)
5970 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5971 }
5972
5973 if (!info->shared)
5974 {
5975 const char *name;
5976
5977 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
5978 bh = NULL;
5979 if (!(_bfd_generic_link_add_one_symbol
5980 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
5981 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5982 return FALSE;
5983
5984 h = (struct elf_link_hash_entry *) bh;
5985 h->non_elf = 0;
5986 h->def_regular = 1;
5987 h->type = STT_SECTION;
5988
5989 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5990 return FALSE;
5991
5992 if (! mips_elf_hash_table (info)->use_rld_obj_head)
5993 {
5994 /* __rld_map is a four byte word located in the .data section
5995 and is filled in by the rtld to contain a pointer to
5996 the _r_debug structure. Its symbol value will be set in
5997 _bfd_mips_elf_finish_dynamic_symbol. */
5998 s = bfd_get_section_by_name (abfd, ".rld_map");
5999 BFD_ASSERT (s != NULL);
6000
6001 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6002 bh = NULL;
6003 if (!(_bfd_generic_link_add_one_symbol
6004 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6005 get_elf_backend_data (abfd)->collect, &bh)))
6006 return FALSE;
6007
6008 h = (struct elf_link_hash_entry *) bh;
6009 h->non_elf = 0;
6010 h->def_regular = 1;
6011 h->type = STT_OBJECT;
6012
6013 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6014 return FALSE;
6015 }
6016 }
6017
6018 if (htab->is_vxworks)
6019 {
6020 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6021 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6022 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6023 return FALSE;
6024
6025 /* Cache the sections created above. */
6026 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6027 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6028 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6029 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6030 if (!htab->sdynbss
6031 || (!htab->srelbss && !info->shared)
6032 || !htab->srelplt
6033 || !htab->splt)
6034 abort ();
6035
6036 /* Do the usual VxWorks handling. */
6037 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6038 return FALSE;
6039
6040 /* Work out the PLT sizes. */
6041 if (info->shared)
6042 {
6043 htab->plt_header_size
6044 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6045 htab->plt_entry_size
6046 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6047 }
6048 else
6049 {
6050 htab->plt_header_size
6051 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6052 htab->plt_entry_size
6053 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6054 }
6055 }
6056
6057 return TRUE;
6058 }
6059 \f
6060 /* Look through the relocs for a section during the first phase, and
6061 allocate space in the global offset table. */
6062
6063 bfd_boolean
6064 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6065 asection *sec, const Elf_Internal_Rela *relocs)
6066 {
6067 const char *name;
6068 bfd *dynobj;
6069 Elf_Internal_Shdr *symtab_hdr;
6070 struct elf_link_hash_entry **sym_hashes;
6071 struct mips_got_info *g;
6072 size_t extsymoff;
6073 const Elf_Internal_Rela *rel;
6074 const Elf_Internal_Rela *rel_end;
6075 asection *sgot;
6076 asection *sreloc;
6077 const struct elf_backend_data *bed;
6078 struct mips_elf_link_hash_table *htab;
6079
6080 if (info->relocatable)
6081 return TRUE;
6082
6083 htab = mips_elf_hash_table (info);
6084 dynobj = elf_hash_table (info)->dynobj;
6085 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6086 sym_hashes = elf_sym_hashes (abfd);
6087 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6088
6089 /* Check for the mips16 stub sections. */
6090
6091 name = bfd_get_section_name (abfd, sec);
6092 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
6093 {
6094 unsigned long r_symndx;
6095
6096 /* Look at the relocation information to figure out which symbol
6097 this is for. */
6098
6099 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6100
6101 if (r_symndx < extsymoff
6102 || sym_hashes[r_symndx - extsymoff] == NULL)
6103 {
6104 asection *o;
6105
6106 /* This stub is for a local symbol. This stub will only be
6107 needed if there is some relocation in this BFD, other
6108 than a 16 bit function call, which refers to this symbol. */
6109 for (o = abfd->sections; o != NULL; o = o->next)
6110 {
6111 Elf_Internal_Rela *sec_relocs;
6112 const Elf_Internal_Rela *r, *rend;
6113
6114 /* We can ignore stub sections when looking for relocs. */
6115 if ((o->flags & SEC_RELOC) == 0
6116 || o->reloc_count == 0
6117 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
6118 sizeof FN_STUB - 1) == 0
6119 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
6120 sizeof CALL_STUB - 1) == 0
6121 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
6122 sizeof CALL_FP_STUB - 1) == 0)
6123 continue;
6124
6125 sec_relocs
6126 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6127 info->keep_memory);
6128 if (sec_relocs == NULL)
6129 return FALSE;
6130
6131 rend = sec_relocs + o->reloc_count;
6132 for (r = sec_relocs; r < rend; r++)
6133 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6134 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6135 break;
6136
6137 if (elf_section_data (o)->relocs != sec_relocs)
6138 free (sec_relocs);
6139
6140 if (r < rend)
6141 break;
6142 }
6143
6144 if (o == NULL)
6145 {
6146 /* There is no non-call reloc for this stub, so we do
6147 not need it. Since this function is called before
6148 the linker maps input sections to output sections, we
6149 can easily discard it by setting the SEC_EXCLUDE
6150 flag. */
6151 sec->flags |= SEC_EXCLUDE;
6152 return TRUE;
6153 }
6154
6155 /* Record this stub in an array of local symbol stubs for
6156 this BFD. */
6157 if (elf_tdata (abfd)->local_stubs == NULL)
6158 {
6159 unsigned long symcount;
6160 asection **n;
6161 bfd_size_type amt;
6162
6163 if (elf_bad_symtab (abfd))
6164 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6165 else
6166 symcount = symtab_hdr->sh_info;
6167 amt = symcount * sizeof (asection *);
6168 n = bfd_zalloc (abfd, amt);
6169 if (n == NULL)
6170 return FALSE;
6171 elf_tdata (abfd)->local_stubs = n;
6172 }
6173
6174 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6175
6176 /* We don't need to set mips16_stubs_seen in this case.
6177 That flag is used to see whether we need to look through
6178 the global symbol table for stubs. We don't need to set
6179 it here, because we just have a local stub. */
6180 }
6181 else
6182 {
6183 struct mips_elf_link_hash_entry *h;
6184
6185 h = ((struct mips_elf_link_hash_entry *)
6186 sym_hashes[r_symndx - extsymoff]);
6187
6188 while (h->root.root.type == bfd_link_hash_indirect
6189 || h->root.root.type == bfd_link_hash_warning)
6190 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6191
6192 /* H is the symbol this stub is for. */
6193
6194 h->fn_stub = sec;
6195 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6196 }
6197 }
6198 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
6199 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6200 {
6201 unsigned long r_symndx;
6202 struct mips_elf_link_hash_entry *h;
6203 asection **loc;
6204
6205 /* Look at the relocation information to figure out which symbol
6206 this is for. */
6207
6208 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6209
6210 if (r_symndx < extsymoff
6211 || sym_hashes[r_symndx - extsymoff] == NULL)
6212 {
6213 /* This stub was actually built for a static symbol defined
6214 in the same file. We assume that all static symbols in
6215 mips16 code are themselves mips16, so we can simply
6216 discard this stub. Since this function is called before
6217 the linker maps input sections to output sections, we can
6218 easily discard it by setting the SEC_EXCLUDE flag. */
6219 sec->flags |= SEC_EXCLUDE;
6220 return TRUE;
6221 }
6222
6223 h = ((struct mips_elf_link_hash_entry *)
6224 sym_hashes[r_symndx - extsymoff]);
6225
6226 /* H is the symbol this stub is for. */
6227
6228 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6229 loc = &h->call_fp_stub;
6230 else
6231 loc = &h->call_stub;
6232
6233 /* If we already have an appropriate stub for this function, we
6234 don't need another one, so we can discard this one. Since
6235 this function is called before the linker maps input sections
6236 to output sections, we can easily discard it by setting the
6237 SEC_EXCLUDE flag. We can also discard this section if we
6238 happen to already know that this is a mips16 function; it is
6239 not necessary to check this here, as it is checked later, but
6240 it is slightly faster to check now. */
6241 if (*loc != NULL || h->root.other == STO_MIPS16)
6242 {
6243 sec->flags |= SEC_EXCLUDE;
6244 return TRUE;
6245 }
6246
6247 *loc = sec;
6248 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6249 }
6250
6251 if (dynobj == NULL)
6252 {
6253 sgot = NULL;
6254 g = NULL;
6255 }
6256 else
6257 {
6258 sgot = mips_elf_got_section (dynobj, FALSE);
6259 if (sgot == NULL)
6260 g = NULL;
6261 else
6262 {
6263 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6264 g = mips_elf_section_data (sgot)->u.got_info;
6265 BFD_ASSERT (g != NULL);
6266 }
6267 }
6268
6269 sreloc = NULL;
6270 bed = get_elf_backend_data (abfd);
6271 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6272 for (rel = relocs; rel < rel_end; ++rel)
6273 {
6274 unsigned long r_symndx;
6275 unsigned int r_type;
6276 struct elf_link_hash_entry *h;
6277
6278 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6279 r_type = ELF_R_TYPE (abfd, rel->r_info);
6280
6281 if (r_symndx < extsymoff)
6282 h = NULL;
6283 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6284 {
6285 (*_bfd_error_handler)
6286 (_("%B: Malformed reloc detected for section %s"),
6287 abfd, name);
6288 bfd_set_error (bfd_error_bad_value);
6289 return FALSE;
6290 }
6291 else
6292 {
6293 h = sym_hashes[r_symndx - extsymoff];
6294
6295 /* This may be an indirect symbol created because of a version. */
6296 if (h != NULL)
6297 {
6298 while (h->root.type == bfd_link_hash_indirect)
6299 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6300 }
6301 }
6302
6303 /* Some relocs require a global offset table. */
6304 if (dynobj == NULL || sgot == NULL)
6305 {
6306 switch (r_type)
6307 {
6308 case R_MIPS_GOT16:
6309 case R_MIPS_CALL16:
6310 case R_MIPS_CALL_HI16:
6311 case R_MIPS_CALL_LO16:
6312 case R_MIPS_GOT_HI16:
6313 case R_MIPS_GOT_LO16:
6314 case R_MIPS_GOT_PAGE:
6315 case R_MIPS_GOT_OFST:
6316 case R_MIPS_GOT_DISP:
6317 case R_MIPS_TLS_GOTTPREL:
6318 case R_MIPS_TLS_GD:
6319 case R_MIPS_TLS_LDM:
6320 if (dynobj == NULL)
6321 elf_hash_table (info)->dynobj = dynobj = abfd;
6322 if (! mips_elf_create_got_section (dynobj, info, FALSE))
6323 return FALSE;
6324 g = mips_elf_got_info (dynobj, &sgot);
6325 if (htab->is_vxworks && !info->shared)
6326 {
6327 (*_bfd_error_handler)
6328 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6329 abfd, (unsigned long) rel->r_offset);
6330 bfd_set_error (bfd_error_bad_value);
6331 return FALSE;
6332 }
6333 break;
6334
6335 case R_MIPS_32:
6336 case R_MIPS_REL32:
6337 case R_MIPS_64:
6338 /* In VxWorks executables, references to external symbols
6339 are handled using copy relocs or PLT stubs, so there's
6340 no need to add a dynamic relocation here. */
6341 if (dynobj == NULL
6342 && (info->shared || (h != NULL && !htab->is_vxworks))
6343 && (sec->flags & SEC_ALLOC) != 0)
6344 elf_hash_table (info)->dynobj = dynobj = abfd;
6345 break;
6346
6347 default:
6348 break;
6349 }
6350 }
6351
6352 if (h)
6353 {
6354 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6355
6356 /* Relocations against the special VxWorks __GOTT_BASE__ and
6357 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6358 room for them in .rela.dyn. */
6359 if (is_gott_symbol (info, h))
6360 {
6361 if (sreloc == NULL)
6362 {
6363 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6364 if (sreloc == NULL)
6365 return FALSE;
6366 }
6367 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6368 }
6369 }
6370 else if (r_type == R_MIPS_CALL_LO16
6371 || r_type == R_MIPS_GOT_LO16
6372 || r_type == R_MIPS_GOT_DISP
6373 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
6374 {
6375 /* We may need a local GOT entry for this relocation. We
6376 don't count R_MIPS_GOT_PAGE because we can estimate the
6377 maximum number of pages needed by looking at the size of
6378 the segment. Similar comments apply to R_MIPS_GOT16 and
6379 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6380 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
6381 R_MIPS_CALL_HI16 because these are always followed by an
6382 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6383 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6384 rel->r_addend, g, 0))
6385 return FALSE;
6386 }
6387
6388 switch (r_type)
6389 {
6390 case R_MIPS_CALL16:
6391 if (h == NULL)
6392 {
6393 (*_bfd_error_handler)
6394 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6395 abfd, (unsigned long) rel->r_offset);
6396 bfd_set_error (bfd_error_bad_value);
6397 return FALSE;
6398 }
6399 /* Fall through. */
6400
6401 case R_MIPS_CALL_HI16:
6402 case R_MIPS_CALL_LO16:
6403 if (h != NULL)
6404 {
6405 /* VxWorks call relocations point the function's .got.plt
6406 entry, which will be allocated by adjust_dynamic_symbol.
6407 Otherwise, this symbol requires a global GOT entry. */
6408 if (!htab->is_vxworks
6409 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6410 return FALSE;
6411
6412 /* We need a stub, not a plt entry for the undefined
6413 function. But we record it as if it needs plt. See
6414 _bfd_elf_adjust_dynamic_symbol. */
6415 h->needs_plt = 1;
6416 h->type = STT_FUNC;
6417 }
6418 break;
6419
6420 case R_MIPS_GOT_PAGE:
6421 /* If this is a global, overridable symbol, GOT_PAGE will
6422 decay to GOT_DISP, so we'll need a GOT entry for it. */
6423 if (h == NULL)
6424 break;
6425 else
6426 {
6427 struct mips_elf_link_hash_entry *hmips =
6428 (struct mips_elf_link_hash_entry *) h;
6429
6430 while (hmips->root.root.type == bfd_link_hash_indirect
6431 || hmips->root.root.type == bfd_link_hash_warning)
6432 hmips = (struct mips_elf_link_hash_entry *)
6433 hmips->root.root.u.i.link;
6434
6435 if (hmips->root.def_regular
6436 && ! (info->shared && ! info->symbolic
6437 && ! hmips->root.forced_local))
6438 break;
6439 }
6440 /* Fall through. */
6441
6442 case R_MIPS_GOT16:
6443 case R_MIPS_GOT_HI16:
6444 case R_MIPS_GOT_LO16:
6445 case R_MIPS_GOT_DISP:
6446 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6447 return FALSE;
6448 break;
6449
6450 case R_MIPS_TLS_GOTTPREL:
6451 if (info->shared)
6452 info->flags |= DF_STATIC_TLS;
6453 /* Fall through */
6454
6455 case R_MIPS_TLS_LDM:
6456 if (r_type == R_MIPS_TLS_LDM)
6457 {
6458 r_symndx = 0;
6459 h = NULL;
6460 }
6461 /* Fall through */
6462
6463 case R_MIPS_TLS_GD:
6464 /* This symbol requires a global offset table entry, or two
6465 for TLS GD relocations. */
6466 {
6467 unsigned char flag = (r_type == R_MIPS_TLS_GD
6468 ? GOT_TLS_GD
6469 : r_type == R_MIPS_TLS_LDM
6470 ? GOT_TLS_LDM
6471 : GOT_TLS_IE);
6472 if (h != NULL)
6473 {
6474 struct mips_elf_link_hash_entry *hmips =
6475 (struct mips_elf_link_hash_entry *) h;
6476 hmips->tls_type |= flag;
6477
6478 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6479 return FALSE;
6480 }
6481 else
6482 {
6483 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6484
6485 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6486 rel->r_addend, g, flag))
6487 return FALSE;
6488 }
6489 }
6490 break;
6491
6492 case R_MIPS_32:
6493 case R_MIPS_REL32:
6494 case R_MIPS_64:
6495 /* In VxWorks executables, references to external symbols
6496 are handled using copy relocs or PLT stubs, so there's
6497 no need to add a .rela.dyn entry for this relocation. */
6498 if ((info->shared || (h != NULL && !htab->is_vxworks))
6499 && (sec->flags & SEC_ALLOC) != 0)
6500 {
6501 if (sreloc == NULL)
6502 {
6503 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6504 if (sreloc == NULL)
6505 return FALSE;
6506 }
6507 #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
6508 if (info->shared)
6509 {
6510 /* When creating a shared object, we must copy these
6511 reloc types into the output file as R_MIPS_REL32
6512 relocs. Make room for this reloc in .rel(a).dyn. */
6513 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6514 if ((sec->flags & MIPS_READONLY_SECTION)
6515 == MIPS_READONLY_SECTION)
6516 /* We tell the dynamic linker that there are
6517 relocations against the text segment. */
6518 info->flags |= DF_TEXTREL;
6519 }
6520 else
6521 {
6522 struct mips_elf_link_hash_entry *hmips;
6523
6524 /* We only need to copy this reloc if the symbol is
6525 defined in a dynamic object. */
6526 hmips = (struct mips_elf_link_hash_entry *) h;
6527 ++hmips->possibly_dynamic_relocs;
6528 if ((sec->flags & MIPS_READONLY_SECTION)
6529 == MIPS_READONLY_SECTION)
6530 /* We need it to tell the dynamic linker if there
6531 are relocations against the text segment. */
6532 hmips->readonly_reloc = TRUE;
6533 }
6534
6535 /* Even though we don't directly need a GOT entry for
6536 this symbol, a symbol must have a dynamic symbol
6537 table index greater that DT_MIPS_GOTSYM if there are
6538 dynamic relocations against it. This does not apply
6539 to VxWorks, which does not have the usual coupling
6540 between global GOT entries and .dynsym entries. */
6541 if (h != NULL && !htab->is_vxworks)
6542 {
6543 if (dynobj == NULL)
6544 elf_hash_table (info)->dynobj = dynobj = abfd;
6545 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6546 return FALSE;
6547 g = mips_elf_got_info (dynobj, &sgot);
6548 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6549 return FALSE;
6550 }
6551 }
6552
6553 if (SGI_COMPAT (abfd))
6554 mips_elf_hash_table (info)->compact_rel_size +=
6555 sizeof (Elf32_External_crinfo);
6556 break;
6557
6558 case R_MIPS_PC16:
6559 if (h)
6560 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6561 break;
6562
6563 case R_MIPS_26:
6564 if (h)
6565 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6566 /* Fall through. */
6567
6568 case R_MIPS_GPREL16:
6569 case R_MIPS_LITERAL:
6570 case R_MIPS_GPREL32:
6571 if (SGI_COMPAT (abfd))
6572 mips_elf_hash_table (info)->compact_rel_size +=
6573 sizeof (Elf32_External_crinfo);
6574 break;
6575
6576 /* This relocation describes the C++ object vtable hierarchy.
6577 Reconstruct it for later use during GC. */
6578 case R_MIPS_GNU_VTINHERIT:
6579 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
6580 return FALSE;
6581 break;
6582
6583 /* This relocation describes which C++ vtable entries are actually
6584 used. Record for later use during GC. */
6585 case R_MIPS_GNU_VTENTRY:
6586 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
6587 return FALSE;
6588 break;
6589
6590 default:
6591 break;
6592 }
6593
6594 /* We must not create a stub for a symbol that has relocations
6595 related to taking the function's address. This doesn't apply to
6596 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6597 a normal .got entry. */
6598 if (!htab->is_vxworks && h != NULL)
6599 switch (r_type)
6600 {
6601 default:
6602 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6603 break;
6604 case R_MIPS_CALL16:
6605 case R_MIPS_CALL_HI16:
6606 case R_MIPS_CALL_LO16:
6607 case R_MIPS_JALR:
6608 break;
6609 }
6610
6611 /* If this reloc is not a 16 bit call, and it has a global
6612 symbol, then we will need the fn_stub if there is one.
6613 References from a stub section do not count. */
6614 if (h != NULL
6615 && r_type != R_MIPS16_26
6616 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
6617 sizeof FN_STUB - 1) != 0
6618 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
6619 sizeof CALL_STUB - 1) != 0
6620 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
6621 sizeof CALL_FP_STUB - 1) != 0)
6622 {
6623 struct mips_elf_link_hash_entry *mh;
6624
6625 mh = (struct mips_elf_link_hash_entry *) h;
6626 mh->need_fn_stub = TRUE;
6627 }
6628 }
6629
6630 return TRUE;
6631 }
6632 \f
6633 bfd_boolean
6634 _bfd_mips_relax_section (bfd *abfd, asection *sec,
6635 struct bfd_link_info *link_info,
6636 bfd_boolean *again)
6637 {
6638 Elf_Internal_Rela *internal_relocs;
6639 Elf_Internal_Rela *irel, *irelend;
6640 Elf_Internal_Shdr *symtab_hdr;
6641 bfd_byte *contents = NULL;
6642 size_t extsymoff;
6643 bfd_boolean changed_contents = FALSE;
6644 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6645 Elf_Internal_Sym *isymbuf = NULL;
6646
6647 /* We are not currently changing any sizes, so only one pass. */
6648 *again = FALSE;
6649
6650 if (link_info->relocatable)
6651 return TRUE;
6652
6653 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
6654 link_info->keep_memory);
6655 if (internal_relocs == NULL)
6656 return TRUE;
6657
6658 irelend = internal_relocs + sec->reloc_count
6659 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6660 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6661 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6662
6663 for (irel = internal_relocs; irel < irelend; irel++)
6664 {
6665 bfd_vma symval;
6666 bfd_signed_vma sym_offset;
6667 unsigned int r_type;
6668 unsigned long r_symndx;
6669 asection *sym_sec;
6670 unsigned long instruction;
6671
6672 /* Turn jalr into bgezal, and jr into beq, if they're marked
6673 with a JALR relocation, that indicate where they jump to.
6674 This saves some pipeline bubbles. */
6675 r_type = ELF_R_TYPE (abfd, irel->r_info);
6676 if (r_type != R_MIPS_JALR)
6677 continue;
6678
6679 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6680 /* Compute the address of the jump target. */
6681 if (r_symndx >= extsymoff)
6682 {
6683 struct mips_elf_link_hash_entry *h
6684 = ((struct mips_elf_link_hash_entry *)
6685 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6686
6687 while (h->root.root.type == bfd_link_hash_indirect
6688 || h->root.root.type == bfd_link_hash_warning)
6689 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6690
6691 /* If a symbol is undefined, or if it may be overridden,
6692 skip it. */
6693 if (! ((h->root.root.type == bfd_link_hash_defined
6694 || h->root.root.type == bfd_link_hash_defweak)
6695 && h->root.root.u.def.section)
6696 || (link_info->shared && ! link_info->symbolic
6697 && !h->root.forced_local))
6698 continue;
6699
6700 sym_sec = h->root.root.u.def.section;
6701 if (sym_sec->output_section)
6702 symval = (h->root.root.u.def.value
6703 + sym_sec->output_section->vma
6704 + sym_sec->output_offset);
6705 else
6706 symval = h->root.root.u.def.value;
6707 }
6708 else
6709 {
6710 Elf_Internal_Sym *isym;
6711
6712 /* Read this BFD's symbols if we haven't done so already. */
6713 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6714 {
6715 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6716 if (isymbuf == NULL)
6717 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6718 symtab_hdr->sh_info, 0,
6719 NULL, NULL, NULL);
6720 if (isymbuf == NULL)
6721 goto relax_return;
6722 }
6723
6724 isym = isymbuf + r_symndx;
6725 if (isym->st_shndx == SHN_UNDEF)
6726 continue;
6727 else if (isym->st_shndx == SHN_ABS)
6728 sym_sec = bfd_abs_section_ptr;
6729 else if (isym->st_shndx == SHN_COMMON)
6730 sym_sec = bfd_com_section_ptr;
6731 else
6732 sym_sec
6733 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6734 symval = isym->st_value
6735 + sym_sec->output_section->vma
6736 + sym_sec->output_offset;
6737 }
6738
6739 /* Compute branch offset, from delay slot of the jump to the
6740 branch target. */
6741 sym_offset = (symval + irel->r_addend)
6742 - (sec_start + irel->r_offset + 4);
6743
6744 /* Branch offset must be properly aligned. */
6745 if ((sym_offset & 3) != 0)
6746 continue;
6747
6748 sym_offset >>= 2;
6749
6750 /* Check that it's in range. */
6751 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6752 continue;
6753
6754 /* Get the section contents if we haven't done so already. */
6755 if (contents == NULL)
6756 {
6757 /* Get cached copy if it exists. */
6758 if (elf_section_data (sec)->this_hdr.contents != NULL)
6759 contents = elf_section_data (sec)->this_hdr.contents;
6760 else
6761 {
6762 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6763 goto relax_return;
6764 }
6765 }
6766
6767 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6768
6769 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6770 if ((instruction & 0xfc1fffff) == 0x0000f809)
6771 instruction = 0x04110000;
6772 /* If it was jr <reg>, turn it into b <target>. */
6773 else if ((instruction & 0xfc1fffff) == 0x00000008)
6774 instruction = 0x10000000;
6775 else
6776 continue;
6777
6778 instruction |= (sym_offset & 0xffff);
6779 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6780 changed_contents = TRUE;
6781 }
6782
6783 if (contents != NULL
6784 && elf_section_data (sec)->this_hdr.contents != contents)
6785 {
6786 if (!changed_contents && !link_info->keep_memory)
6787 free (contents);
6788 else
6789 {
6790 /* Cache the section contents for elf_link_input_bfd. */
6791 elf_section_data (sec)->this_hdr.contents = contents;
6792 }
6793 }
6794 return TRUE;
6795
6796 relax_return:
6797 if (contents != NULL
6798 && elf_section_data (sec)->this_hdr.contents != contents)
6799 free (contents);
6800 return FALSE;
6801 }
6802 \f
6803 /* Adjust a symbol defined by a dynamic object and referenced by a
6804 regular object. The current definition is in some section of the
6805 dynamic object, but we're not including those sections. We have to
6806 change the definition to something the rest of the link can
6807 understand. */
6808
6809 bfd_boolean
6810 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6811 struct elf_link_hash_entry *h)
6812 {
6813 bfd *dynobj;
6814 struct mips_elf_link_hash_entry *hmips;
6815 asection *s;
6816
6817 dynobj = elf_hash_table (info)->dynobj;
6818
6819 /* Make sure we know what is going on here. */
6820 BFD_ASSERT (dynobj != NULL
6821 && (h->needs_plt
6822 || h->u.weakdef != NULL
6823 || (h->def_dynamic
6824 && h->ref_regular
6825 && !h->def_regular)));
6826
6827 /* If this symbol is defined in a dynamic object, we need to copy
6828 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6829 file. */
6830 hmips = (struct mips_elf_link_hash_entry *) h;
6831 if (! info->relocatable
6832 && hmips->possibly_dynamic_relocs != 0
6833 && (h->root.type == bfd_link_hash_defweak
6834 || !h->def_regular))
6835 {
6836 mips_elf_allocate_dynamic_relocations
6837 (dynobj, info, hmips->possibly_dynamic_relocs);
6838 if (hmips->readonly_reloc)
6839 /* We tell the dynamic linker that there are relocations
6840 against the text segment. */
6841 info->flags |= DF_TEXTREL;
6842 }
6843
6844 /* For a function, create a stub, if allowed. */
6845 if (! hmips->no_fn_stub
6846 && h->needs_plt)
6847 {
6848 if (! elf_hash_table (info)->dynamic_sections_created)
6849 return TRUE;
6850
6851 /* If this symbol is not defined in a regular file, then set
6852 the symbol to the stub location. This is required to make
6853 function pointers compare as equal between the normal
6854 executable and the shared library. */
6855 if (!h->def_regular)
6856 {
6857 /* We need .stub section. */
6858 s = bfd_get_section_by_name (dynobj,
6859 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6860 BFD_ASSERT (s != NULL);
6861
6862 h->root.u.def.section = s;
6863 h->root.u.def.value = s->size;
6864
6865 /* XXX Write this stub address somewhere. */
6866 h->plt.offset = s->size;
6867
6868 /* Make room for this stub code. */
6869 s->size += MIPS_FUNCTION_STUB_SIZE;
6870
6871 /* The last half word of the stub will be filled with the index
6872 of this symbol in .dynsym section. */
6873 return TRUE;
6874 }
6875 }
6876 else if ((h->type == STT_FUNC)
6877 && !h->needs_plt)
6878 {
6879 /* This will set the entry for this symbol in the GOT to 0, and
6880 the dynamic linker will take care of this. */
6881 h->root.u.def.value = 0;
6882 return TRUE;
6883 }
6884
6885 /* If this is a weak symbol, and there is a real definition, the
6886 processor independent code will have arranged for us to see the
6887 real definition first, and we can just use the same value. */
6888 if (h->u.weakdef != NULL)
6889 {
6890 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6891 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6892 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6893 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6894 return TRUE;
6895 }
6896
6897 /* This is a reference to a symbol defined by a dynamic object which
6898 is not a function. */
6899
6900 return TRUE;
6901 }
6902
6903 /* Likewise, for VxWorks. */
6904
6905 bfd_boolean
6906 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
6907 struct elf_link_hash_entry *h)
6908 {
6909 bfd *dynobj;
6910 struct mips_elf_link_hash_entry *hmips;
6911 struct mips_elf_link_hash_table *htab;
6912 unsigned int power_of_two;
6913
6914 htab = mips_elf_hash_table (info);
6915 dynobj = elf_hash_table (info)->dynobj;
6916 hmips = (struct mips_elf_link_hash_entry *) h;
6917
6918 /* Make sure we know what is going on here. */
6919 BFD_ASSERT (dynobj != NULL
6920 && (h->needs_plt
6921 || h->needs_copy
6922 || h->u.weakdef != NULL
6923 || (h->def_dynamic
6924 && h->ref_regular
6925 && !h->def_regular)));
6926
6927 /* If the symbol is defined by a dynamic object, we need a PLT stub if
6928 either (a) we want to branch to the symbol or (b) we're linking an
6929 executable that needs a canonical function address. In the latter
6930 case, the canonical address will be the address of the executable's
6931 load stub. */
6932 if ((hmips->is_branch_target
6933 || (!info->shared
6934 && h->type == STT_FUNC
6935 && hmips->is_relocation_target))
6936 && h->def_dynamic
6937 && h->ref_regular
6938 && !h->def_regular
6939 && !h->forced_local)
6940 h->needs_plt = 1;
6941
6942 /* Locally-binding symbols do not need a PLT stub; we can refer to
6943 the functions directly. */
6944 else if (h->needs_plt
6945 && (SYMBOL_CALLS_LOCAL (info, h)
6946 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6947 && h->root.type == bfd_link_hash_undefweak)))
6948 {
6949 h->needs_plt = 0;
6950 return TRUE;
6951 }
6952
6953 if (h->needs_plt)
6954 {
6955 /* If this is the first symbol to need a PLT entry, allocate room
6956 for the header, and for the header's .rela.plt.unloaded entries. */
6957 if (htab->splt->size == 0)
6958 {
6959 htab->splt->size += htab->plt_header_size;
6960 if (!info->shared)
6961 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
6962 }
6963
6964 /* Assign the next .plt entry to this symbol. */
6965 h->plt.offset = htab->splt->size;
6966 htab->splt->size += htab->plt_entry_size;
6967
6968 /* If the output file has no definition of the symbol, set the
6969 symbol's value to the address of the stub. For executables,
6970 point at the PLT load stub rather than the lazy resolution stub;
6971 this stub will become the canonical function address. */
6972 if (!h->def_regular)
6973 {
6974 h->root.u.def.section = htab->splt;
6975 h->root.u.def.value = h->plt.offset;
6976 if (!info->shared)
6977 h->root.u.def.value += 8;
6978 }
6979
6980 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
6981 htab->sgotplt->size += 4;
6982 htab->srelplt->size += sizeof (Elf32_External_Rela);
6983
6984 /* Make room for the .rela.plt.unloaded relocations. */
6985 if (!info->shared)
6986 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
6987
6988 return TRUE;
6989 }
6990
6991 /* If a function symbol is defined by a dynamic object, and we do not
6992 need a PLT stub for it, the symbol's value should be zero. */
6993 if (h->type == STT_FUNC
6994 && h->def_dynamic
6995 && h->ref_regular
6996 && !h->def_regular)
6997 {
6998 h->root.u.def.value = 0;
6999 return TRUE;
7000 }
7001
7002 /* If this is a weak symbol, and there is a real definition, the
7003 processor independent code will have arranged for us to see the
7004 real definition first, and we can just use the same value. */
7005 if (h->u.weakdef != NULL)
7006 {
7007 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7008 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7009 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7010 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7011 return TRUE;
7012 }
7013
7014 /* This is a reference to a symbol defined by a dynamic object which
7015 is not a function. */
7016 if (info->shared)
7017 return TRUE;
7018
7019 /* We must allocate the symbol in our .dynbss section, which will
7020 become part of the .bss section of the executable. There will be
7021 an entry for this symbol in the .dynsym section. The dynamic
7022 object will contain position independent code, so all references
7023 from the dynamic object to this symbol will go through the global
7024 offset table. The dynamic linker will use the .dynsym entry to
7025 determine the address it must put in the global offset table, so
7026 both the dynamic object and the regular object will refer to the
7027 same memory location for the variable. */
7028
7029 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7030 {
7031 htab->srelbss->size += sizeof (Elf32_External_Rela);
7032 h->needs_copy = 1;
7033 }
7034
7035 /* We need to figure out the alignment required for this symbol. */
7036 power_of_two = bfd_log2 (h->size);
7037 if (power_of_two > 4)
7038 power_of_two = 4;
7039
7040 /* Apply the required alignment. */
7041 htab->sdynbss->size = BFD_ALIGN (htab->sdynbss->size,
7042 (bfd_size_type) 1 << power_of_two);
7043 if (power_of_two > bfd_get_section_alignment (dynobj, htab->sdynbss)
7044 && !bfd_set_section_alignment (dynobj, htab->sdynbss, power_of_two))
7045 return FALSE;
7046
7047 /* Define the symbol as being at this point in the section. */
7048 h->root.u.def.section = htab->sdynbss;
7049 h->root.u.def.value = htab->sdynbss->size;
7050
7051 /* Increment the section size to make room for the symbol. */
7052 htab->sdynbss->size += h->size;
7053
7054 return TRUE;
7055 }
7056 \f
7057 /* This function is called after all the input files have been read,
7058 and the input sections have been assigned to output sections. We
7059 check for any mips16 stub sections that we can discard. */
7060
7061 bfd_boolean
7062 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
7063 struct bfd_link_info *info)
7064 {
7065 asection *ri;
7066
7067 bfd *dynobj;
7068 asection *s;
7069 struct mips_got_info *g;
7070 int i;
7071 bfd_size_type loadable_size = 0;
7072 bfd_size_type local_gotno;
7073 bfd *sub;
7074 struct mips_elf_count_tls_arg count_tls_arg;
7075 struct mips_elf_link_hash_table *htab;
7076
7077 htab = mips_elf_hash_table (info);
7078
7079 /* The .reginfo section has a fixed size. */
7080 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7081 if (ri != NULL)
7082 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7083
7084 if (! (info->relocatable
7085 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7086 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7087 mips_elf_check_mips16_stubs, NULL);
7088
7089 dynobj = elf_hash_table (info)->dynobj;
7090 if (dynobj == NULL)
7091 /* Relocatable links don't have it. */
7092 return TRUE;
7093
7094 g = mips_elf_got_info (dynobj, &s);
7095 if (s == NULL)
7096 return TRUE;
7097
7098 /* Calculate the total loadable size of the output. That
7099 will give us the maximum number of GOT_PAGE entries
7100 required. */
7101 for (sub = info->input_bfds; sub; sub = sub->link_next)
7102 {
7103 asection *subsection;
7104
7105 for (subsection = sub->sections;
7106 subsection;
7107 subsection = subsection->next)
7108 {
7109 if ((subsection->flags & SEC_ALLOC) == 0)
7110 continue;
7111 loadable_size += ((subsection->size + 0xf)
7112 &~ (bfd_size_type) 0xf);
7113 }
7114 }
7115
7116 /* There has to be a global GOT entry for every symbol with
7117 a dynamic symbol table index of DT_MIPS_GOTSYM or
7118 higher. Therefore, it make sense to put those symbols
7119 that need GOT entries at the end of the symbol table. We
7120 do that here. */
7121 if (! mips_elf_sort_hash_table (info, 1))
7122 return FALSE;
7123
7124 if (g->global_gotsym != NULL)
7125 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7126 else
7127 /* If there are no global symbols, or none requiring
7128 relocations, then GLOBAL_GOTSYM will be NULL. */
7129 i = 0;
7130
7131 /* In the worst case, we'll get one stub per dynamic symbol, plus
7132 one to account for the dummy entry at the end required by IRIX
7133 rld. */
7134 loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1);
7135
7136 if (htab->is_vxworks)
7137 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7138 relocations against local symbols evaluate to "G", and the EABI does
7139 not include R_MIPS_GOT_PAGE. */
7140 local_gotno = 0;
7141 else
7142 /* Assume there are two loadable segments consisting of contiguous
7143 sections. Is 5 enough? */
7144 local_gotno = (loadable_size >> 16) + 5;
7145
7146 g->local_gotno += local_gotno;
7147 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7148
7149 g->global_gotno = i;
7150 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
7151
7152 /* We need to calculate tls_gotno for global symbols at this point
7153 instead of building it up earlier, to avoid doublecounting
7154 entries for one global symbol from multiple input files. */
7155 count_tls_arg.info = info;
7156 count_tls_arg.needed = 0;
7157 elf_link_hash_traverse (elf_hash_table (info),
7158 mips_elf_count_global_tls_entries,
7159 &count_tls_arg);
7160 g->tls_gotno += count_tls_arg.needed;
7161 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7162
7163 mips_elf_resolve_final_got_entries (g);
7164
7165 /* VxWorks does not support multiple GOTs. It initializes $gp to
7166 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7167 dynamic loader. */
7168 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
7169 {
7170 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7171 return FALSE;
7172 }
7173 else
7174 {
7175 /* Set up TLS entries for the first GOT. */
7176 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7177 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7178 }
7179
7180 return TRUE;
7181 }
7182
7183 /* Set the sizes of the dynamic sections. */
7184
7185 bfd_boolean
7186 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7187 struct bfd_link_info *info)
7188 {
7189 bfd *dynobj;
7190 asection *s, *sreldyn;
7191 bfd_boolean reltext;
7192 struct mips_elf_link_hash_table *htab;
7193
7194 htab = mips_elf_hash_table (info);
7195 dynobj = elf_hash_table (info)->dynobj;
7196 BFD_ASSERT (dynobj != NULL);
7197
7198 if (elf_hash_table (info)->dynamic_sections_created)
7199 {
7200 /* Set the contents of the .interp section to the interpreter. */
7201 if (info->executable)
7202 {
7203 s = bfd_get_section_by_name (dynobj, ".interp");
7204 BFD_ASSERT (s != NULL);
7205 s->size
7206 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7207 s->contents
7208 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7209 }
7210 }
7211
7212 /* The check_relocs and adjust_dynamic_symbol entry points have
7213 determined the sizes of the various dynamic sections. Allocate
7214 memory for them. */
7215 reltext = FALSE;
7216 sreldyn = NULL;
7217 for (s = dynobj->sections; s != NULL; s = s->next)
7218 {
7219 const char *name;
7220
7221 /* It's OK to base decisions on the section name, because none
7222 of the dynobj section names depend upon the input files. */
7223 name = bfd_get_section_name (dynobj, s);
7224
7225 if ((s->flags & SEC_LINKER_CREATED) == 0)
7226 continue;
7227
7228 if (strncmp (name, ".rel", 4) == 0)
7229 {
7230 if (s->size != 0)
7231 {
7232 const char *outname;
7233 asection *target;
7234
7235 /* If this relocation section applies to a read only
7236 section, then we probably need a DT_TEXTREL entry.
7237 If the relocation section is .rel(a).dyn, we always
7238 assert a DT_TEXTREL entry rather than testing whether
7239 there exists a relocation to a read only section or
7240 not. */
7241 outname = bfd_get_section_name (output_bfd,
7242 s->output_section);
7243 target = bfd_get_section_by_name (output_bfd, outname + 4);
7244 if ((target != NULL
7245 && (target->flags & SEC_READONLY) != 0
7246 && (target->flags & SEC_ALLOC) != 0)
7247 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7248 reltext = TRUE;
7249
7250 /* We use the reloc_count field as a counter if we need
7251 to copy relocs into the output file. */
7252 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
7253 s->reloc_count = 0;
7254
7255 /* If combreloc is enabled, elf_link_sort_relocs() will
7256 sort relocations, but in a different way than we do,
7257 and before we're done creating relocations. Also, it
7258 will move them around between input sections'
7259 relocation's contents, so our sorting would be
7260 broken, so don't let it run. */
7261 info->combreloc = 0;
7262 }
7263 }
7264 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7265 {
7266 /* Executables do not need a GOT. */
7267 if (info->shared)
7268 {
7269 /* Allocate relocations for all but the reserved entries. */
7270 struct mips_got_info *g;
7271 unsigned int count;
7272
7273 g = mips_elf_got_info (dynobj, NULL);
7274 count = (g->global_gotno
7275 + g->local_gotno
7276 - MIPS_RESERVED_GOTNO (info));
7277 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7278 }
7279 }
7280 else if (!htab->is_vxworks && strncmp (name, ".got", 4) == 0)
7281 {
7282 /* _bfd_mips_elf_always_size_sections() has already done
7283 most of the work, but some symbols may have been mapped
7284 to versions that we must now resolve in the got_entries
7285 hash tables. */
7286 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7287 struct mips_got_info *g = gg;
7288 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7289 unsigned int needed_relocs = 0;
7290
7291 if (gg->next)
7292 {
7293 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7294 set_got_offset_arg.info = info;
7295
7296 /* NOTE 2005-02-03: How can this call, or the next, ever
7297 find any indirect entries to resolve? They were all
7298 resolved in mips_elf_multi_got. */
7299 mips_elf_resolve_final_got_entries (gg);
7300 for (g = gg->next; g && g->next != gg; g = g->next)
7301 {
7302 unsigned int save_assign;
7303
7304 mips_elf_resolve_final_got_entries (g);
7305
7306 /* Assign offsets to global GOT entries. */
7307 save_assign = g->assigned_gotno;
7308 g->assigned_gotno = g->local_gotno;
7309 set_got_offset_arg.g = g;
7310 set_got_offset_arg.needed_relocs = 0;
7311 htab_traverse (g->got_entries,
7312 mips_elf_set_global_got_offset,
7313 &set_got_offset_arg);
7314 needed_relocs += set_got_offset_arg.needed_relocs;
7315 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7316 <= g->global_gotno);
7317
7318 g->assigned_gotno = save_assign;
7319 if (info->shared)
7320 {
7321 needed_relocs += g->local_gotno - g->assigned_gotno;
7322 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7323 + g->next->global_gotno
7324 + g->next->tls_gotno
7325 + MIPS_RESERVED_GOTNO (info));
7326 }
7327 }
7328 }
7329 else
7330 {
7331 struct mips_elf_count_tls_arg arg;
7332 arg.info = info;
7333 arg.needed = 0;
7334
7335 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7336 &arg);
7337 elf_link_hash_traverse (elf_hash_table (info),
7338 mips_elf_count_global_tls_relocs,
7339 &arg);
7340
7341 needed_relocs += arg.needed;
7342 }
7343
7344 if (needed_relocs)
7345 mips_elf_allocate_dynamic_relocations (dynobj, info,
7346 needed_relocs);
7347 }
7348 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7349 {
7350 /* IRIX rld assumes that the function stub isn't at the end
7351 of .text section. So put a dummy. XXX */
7352 s->size += MIPS_FUNCTION_STUB_SIZE;
7353 }
7354 else if (! info->shared
7355 && ! mips_elf_hash_table (info)->use_rld_obj_head
7356 && strncmp (name, ".rld_map", 8) == 0)
7357 {
7358 /* We add a room for __rld_map. It will be filled in by the
7359 rtld to contain a pointer to the _r_debug structure. */
7360 s->size += 4;
7361 }
7362 else if (SGI_COMPAT (output_bfd)
7363 && strncmp (name, ".compact_rel", 12) == 0)
7364 s->size += mips_elf_hash_table (info)->compact_rel_size;
7365 else if (strncmp (name, ".init", 5) != 0
7366 && s != htab->sgotplt
7367 && s != htab->splt)
7368 {
7369 /* It's not one of our sections, so don't allocate space. */
7370 continue;
7371 }
7372
7373 if (s->size == 0)
7374 {
7375 s->flags |= SEC_EXCLUDE;
7376 continue;
7377 }
7378
7379 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7380 continue;
7381
7382 /* Allocate memory for this section last, since we may increase its
7383 size above. */
7384 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7385 {
7386 sreldyn = s;
7387 continue;
7388 }
7389
7390 /* Allocate memory for the section contents. */
7391 s->contents = bfd_zalloc (dynobj, s->size);
7392 if (s->contents == NULL)
7393 {
7394 bfd_set_error (bfd_error_no_memory);
7395 return FALSE;
7396 }
7397 }
7398
7399 /* Allocate memory for the .rel(a).dyn section. */
7400 if (sreldyn != NULL)
7401 {
7402 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7403 if (sreldyn->contents == NULL)
7404 {
7405 bfd_set_error (bfd_error_no_memory);
7406 return FALSE;
7407 }
7408 }
7409
7410 if (elf_hash_table (info)->dynamic_sections_created)
7411 {
7412 /* Add some entries to the .dynamic section. We fill in the
7413 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7414 must add the entries now so that we get the correct size for
7415 the .dynamic section. The DT_DEBUG entry is filled in by the
7416 dynamic linker and used by the debugger. */
7417 if (! info->shared)
7418 {
7419 /* SGI object has the equivalence of DT_DEBUG in the
7420 DT_MIPS_RLD_MAP entry. */
7421 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7422 return FALSE;
7423 if (!SGI_COMPAT (output_bfd))
7424 {
7425 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7426 return FALSE;
7427 }
7428 }
7429 else
7430 {
7431 /* Shared libraries on traditional mips have DT_DEBUG. */
7432 if (!SGI_COMPAT (output_bfd))
7433 {
7434 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7435 return FALSE;
7436 }
7437 }
7438
7439 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
7440 info->flags |= DF_TEXTREL;
7441
7442 if ((info->flags & DF_TEXTREL) != 0)
7443 {
7444 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
7445 return FALSE;
7446 }
7447
7448 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
7449 return FALSE;
7450
7451 if (htab->is_vxworks)
7452 {
7453 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7454 use any of the DT_MIPS_* tags. */
7455 if (mips_elf_rel_dyn_section (info, FALSE))
7456 {
7457 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7458 return FALSE;
7459
7460 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7461 return FALSE;
7462
7463 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7464 return FALSE;
7465 }
7466 if (htab->splt->size > 0)
7467 {
7468 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7469 return FALSE;
7470
7471 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7472 return FALSE;
7473
7474 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7475 return FALSE;
7476 }
7477 }
7478 else
7479 {
7480 if (mips_elf_rel_dyn_section (info, FALSE))
7481 {
7482 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7483 return FALSE;
7484
7485 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7486 return FALSE;
7487
7488 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7489 return FALSE;
7490 }
7491
7492 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7493 return FALSE;
7494
7495 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7496 return FALSE;
7497
7498 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7499 return FALSE;
7500
7501 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7502 return FALSE;
7503
7504 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7505 return FALSE;
7506
7507 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7508 return FALSE;
7509
7510 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7511 return FALSE;
7512
7513 if (IRIX_COMPAT (dynobj) == ict_irix5
7514 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7515 return FALSE;
7516
7517 if (IRIX_COMPAT (dynobj) == ict_irix6
7518 && (bfd_get_section_by_name
7519 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7520 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7521 return FALSE;
7522 }
7523 }
7524
7525 return TRUE;
7526 }
7527 \f
7528 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7529 Adjust its R_ADDEND field so that it is correct for the output file.
7530 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7531 and sections respectively; both use symbol indexes. */
7532
7533 static void
7534 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7535 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7536 asection **local_sections, Elf_Internal_Rela *rel)
7537 {
7538 unsigned int r_type, r_symndx;
7539 Elf_Internal_Sym *sym;
7540 asection *sec;
7541
7542 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7543 {
7544 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7545 if (r_type == R_MIPS16_GPREL
7546 || r_type == R_MIPS_GPREL16
7547 || r_type == R_MIPS_GPREL32
7548 || r_type == R_MIPS_LITERAL)
7549 {
7550 rel->r_addend += _bfd_get_gp_value (input_bfd);
7551 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7552 }
7553
7554 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7555 sym = local_syms + r_symndx;
7556
7557 /* Adjust REL's addend to account for section merging. */
7558 if (!info->relocatable)
7559 {
7560 sec = local_sections[r_symndx];
7561 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7562 }
7563
7564 /* This would normally be done by the rela_normal code in elflink.c. */
7565 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7566 rel->r_addend += local_sections[r_symndx]->output_offset;
7567 }
7568 }
7569
7570 /* Relocate a MIPS ELF section. */
7571
7572 bfd_boolean
7573 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7574 bfd *input_bfd, asection *input_section,
7575 bfd_byte *contents, Elf_Internal_Rela *relocs,
7576 Elf_Internal_Sym *local_syms,
7577 asection **local_sections)
7578 {
7579 Elf_Internal_Rela *rel;
7580 const Elf_Internal_Rela *relend;
7581 bfd_vma addend = 0;
7582 bfd_boolean use_saved_addend_p = FALSE;
7583 const struct elf_backend_data *bed;
7584
7585 bed = get_elf_backend_data (output_bfd);
7586 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7587 for (rel = relocs; rel < relend; ++rel)
7588 {
7589 const char *name;
7590 bfd_vma value = 0;
7591 reloc_howto_type *howto;
7592 bfd_boolean require_jalx;
7593 /* TRUE if the relocation is a RELA relocation, rather than a
7594 REL relocation. */
7595 bfd_boolean rela_relocation_p = TRUE;
7596 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7597 const char *msg;
7598
7599 /* Find the relocation howto for this relocation. */
7600 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
7601 {
7602 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7603 64-bit code, but make sure all their addresses are in the
7604 lowermost or uppermost 32-bit section of the 64-bit address
7605 space. Thus, when they use an R_MIPS_64 they mean what is
7606 usually meant by R_MIPS_32, with the exception that the
7607 stored value is sign-extended to 64 bits. */
7608 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
7609
7610 /* On big-endian systems, we need to lie about the position
7611 of the reloc. */
7612 if (bfd_big_endian (input_bfd))
7613 rel->r_offset += 4;
7614 }
7615 else
7616 /* NewABI defaults to RELA relocations. */
7617 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7618 NEWABI_P (input_bfd)
7619 && (MIPS_RELOC_RELA_P
7620 (input_bfd, input_section,
7621 rel - relocs)));
7622
7623 if (!use_saved_addend_p)
7624 {
7625 Elf_Internal_Shdr *rel_hdr;
7626
7627 /* If these relocations were originally of the REL variety,
7628 we must pull the addend out of the field that will be
7629 relocated. Otherwise, we simply use the contents of the
7630 RELA relocation. To determine which flavor or relocation
7631 this is, we depend on the fact that the INPUT_SECTION's
7632 REL_HDR is read before its REL_HDR2. */
7633 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7634 if ((size_t) (rel - relocs)
7635 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7636 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7637 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7638 {
7639 bfd_byte *location = contents + rel->r_offset;
7640
7641 /* Note that this is a REL relocation. */
7642 rela_relocation_p = FALSE;
7643
7644 /* Get the addend, which is stored in the input file. */
7645 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7646 location);
7647 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7648 contents);
7649 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7650 location);
7651
7652 addend &= howto->src_mask;
7653
7654 /* For some kinds of relocations, the ADDEND is a
7655 combination of the addend stored in two different
7656 relocations. */
7657 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
7658 || (r_type == R_MIPS_GOT16
7659 && mips_elf_local_relocation_p (input_bfd, rel,
7660 local_sections, FALSE)))
7661 {
7662 bfd_vma l;
7663 const Elf_Internal_Rela *lo16_relocation;
7664 reloc_howto_type *lo16_howto;
7665 bfd_byte *lo16_location;
7666 int lo16_type;
7667
7668 if (r_type == R_MIPS16_HI16)
7669 lo16_type = R_MIPS16_LO16;
7670 else
7671 lo16_type = R_MIPS_LO16;
7672
7673 /* The combined value is the sum of the HI16 addend,
7674 left-shifted by sixteen bits, and the LO16
7675 addend, sign extended. (Usually, the code does
7676 a `lui' of the HI16 value, and then an `addiu' of
7677 the LO16 value.)
7678
7679 Scan ahead to find a matching LO16 relocation.
7680
7681 According to the MIPS ELF ABI, the R_MIPS_LO16
7682 relocation must be immediately following.
7683 However, for the IRIX6 ABI, the next relocation
7684 may be a composed relocation consisting of
7685 several relocations for the same address. In
7686 that case, the R_MIPS_LO16 relocation may occur
7687 as one of these. We permit a similar extension
7688 in general, as that is useful for GCC. */
7689 lo16_relocation = mips_elf_next_relocation (input_bfd,
7690 lo16_type,
7691 rel, relend);
7692 if (lo16_relocation == NULL)
7693 return FALSE;
7694
7695 lo16_location = contents + lo16_relocation->r_offset;
7696
7697 /* Obtain the addend kept there. */
7698 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7699 lo16_type, FALSE);
7700 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE,
7701 lo16_location);
7702 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
7703 input_bfd, contents);
7704 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE,
7705 lo16_location);
7706 l &= lo16_howto->src_mask;
7707 l <<= lo16_howto->rightshift;
7708 l = _bfd_mips_elf_sign_extend (l, 16);
7709
7710 addend <<= 16;
7711
7712 /* Compute the combined addend. */
7713 addend += l;
7714 }
7715 else
7716 addend <<= howto->rightshift;
7717 }
7718 else
7719 addend = rel->r_addend;
7720 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7721 local_syms, local_sections, rel);
7722 }
7723
7724 if (info->relocatable)
7725 {
7726 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
7727 && bfd_big_endian (input_bfd))
7728 rel->r_offset -= 4;
7729
7730 if (!rela_relocation_p && rel->r_addend)
7731 {
7732 addend += rel->r_addend;
7733 if (r_type == R_MIPS_HI16
7734 || r_type == R_MIPS_GOT16)
7735 addend = mips_elf_high (addend);
7736 else if (r_type == R_MIPS_HIGHER)
7737 addend = mips_elf_higher (addend);
7738 else if (r_type == R_MIPS_HIGHEST)
7739 addend = mips_elf_highest (addend);
7740 else
7741 addend >>= howto->rightshift;
7742
7743 /* We use the source mask, rather than the destination
7744 mask because the place to which we are writing will be
7745 source of the addend in the final link. */
7746 addend &= howto->src_mask;
7747
7748 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7749 /* See the comment above about using R_MIPS_64 in the 32-bit
7750 ABI. Here, we need to update the addend. It would be
7751 possible to get away with just using the R_MIPS_32 reloc
7752 but for endianness. */
7753 {
7754 bfd_vma sign_bits;
7755 bfd_vma low_bits;
7756 bfd_vma high_bits;
7757
7758 if (addend & ((bfd_vma) 1 << 31))
7759 #ifdef BFD64
7760 sign_bits = ((bfd_vma) 1 << 32) - 1;
7761 #else
7762 sign_bits = -1;
7763 #endif
7764 else
7765 sign_bits = 0;
7766
7767 /* If we don't know that we have a 64-bit type,
7768 do two separate stores. */
7769 if (bfd_big_endian (input_bfd))
7770 {
7771 /* Store the sign-bits (which are most significant)
7772 first. */
7773 low_bits = sign_bits;
7774 high_bits = addend;
7775 }
7776 else
7777 {
7778 low_bits = addend;
7779 high_bits = sign_bits;
7780 }
7781 bfd_put_32 (input_bfd, low_bits,
7782 contents + rel->r_offset);
7783 bfd_put_32 (input_bfd, high_bits,
7784 contents + rel->r_offset + 4);
7785 continue;
7786 }
7787
7788 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7789 input_bfd, input_section,
7790 contents, FALSE))
7791 return FALSE;
7792 }
7793
7794 /* Go on to the next relocation. */
7795 continue;
7796 }
7797
7798 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7799 relocations for the same offset. In that case we are
7800 supposed to treat the output of each relocation as the addend
7801 for the next. */
7802 if (rel + 1 < relend
7803 && rel->r_offset == rel[1].r_offset
7804 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
7805 use_saved_addend_p = TRUE;
7806 else
7807 use_saved_addend_p = FALSE;
7808
7809 /* Figure out what value we are supposed to relocate. */
7810 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
7811 input_section, info, rel,
7812 addend, howto, local_syms,
7813 local_sections, &value,
7814 &name, &require_jalx,
7815 use_saved_addend_p))
7816 {
7817 case bfd_reloc_continue:
7818 /* There's nothing to do. */
7819 continue;
7820
7821 case bfd_reloc_undefined:
7822 /* mips_elf_calculate_relocation already called the
7823 undefined_symbol callback. There's no real point in
7824 trying to perform the relocation at this point, so we
7825 just skip ahead to the next relocation. */
7826 continue;
7827
7828 case bfd_reloc_notsupported:
7829 msg = _("internal error: unsupported relocation error");
7830 info->callbacks->warning
7831 (info, msg, name, input_bfd, input_section, rel->r_offset);
7832 return FALSE;
7833
7834 case bfd_reloc_overflow:
7835 if (use_saved_addend_p)
7836 /* Ignore overflow until we reach the last relocation for
7837 a given location. */
7838 ;
7839 else
7840 {
7841 BFD_ASSERT (name != NULL);
7842 if (! ((*info->callbacks->reloc_overflow)
7843 (info, NULL, name, howto->name, (bfd_vma) 0,
7844 input_bfd, input_section, rel->r_offset)))
7845 return FALSE;
7846 }
7847 break;
7848
7849 case bfd_reloc_ok:
7850 break;
7851
7852 default:
7853 abort ();
7854 break;
7855 }
7856
7857 /* If we've got another relocation for the address, keep going
7858 until we reach the last one. */
7859 if (use_saved_addend_p)
7860 {
7861 addend = value;
7862 continue;
7863 }
7864
7865 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7866 /* See the comment above about using R_MIPS_64 in the 32-bit
7867 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7868 that calculated the right value. Now, however, we
7869 sign-extend the 32-bit result to 64-bits, and store it as a
7870 64-bit value. We are especially generous here in that we
7871 go to extreme lengths to support this usage on systems with
7872 only a 32-bit VMA. */
7873 {
7874 bfd_vma sign_bits;
7875 bfd_vma low_bits;
7876 bfd_vma high_bits;
7877
7878 if (value & ((bfd_vma) 1 << 31))
7879 #ifdef BFD64
7880 sign_bits = ((bfd_vma) 1 << 32) - 1;
7881 #else
7882 sign_bits = -1;
7883 #endif
7884 else
7885 sign_bits = 0;
7886
7887 /* If we don't know that we have a 64-bit type,
7888 do two separate stores. */
7889 if (bfd_big_endian (input_bfd))
7890 {
7891 /* Undo what we did above. */
7892 rel->r_offset -= 4;
7893 /* Store the sign-bits (which are most significant)
7894 first. */
7895 low_bits = sign_bits;
7896 high_bits = value;
7897 }
7898 else
7899 {
7900 low_bits = value;
7901 high_bits = sign_bits;
7902 }
7903 bfd_put_32 (input_bfd, low_bits,
7904 contents + rel->r_offset);
7905 bfd_put_32 (input_bfd, high_bits,
7906 contents + rel->r_offset + 4);
7907 continue;
7908 }
7909
7910 /* Actually perform the relocation. */
7911 if (! mips_elf_perform_relocation (info, howto, rel, value,
7912 input_bfd, input_section,
7913 contents, require_jalx))
7914 return FALSE;
7915 }
7916
7917 return TRUE;
7918 }
7919 \f
7920 /* If NAME is one of the special IRIX6 symbols defined by the linker,
7921 adjust it appropriately now. */
7922
7923 static void
7924 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7925 const char *name, Elf_Internal_Sym *sym)
7926 {
7927 /* The linker script takes care of providing names and values for
7928 these, but we must place them into the right sections. */
7929 static const char* const text_section_symbols[] = {
7930 "_ftext",
7931 "_etext",
7932 "__dso_displacement",
7933 "__elf_header",
7934 "__program_header_table",
7935 NULL
7936 };
7937
7938 static const char* const data_section_symbols[] = {
7939 "_fdata",
7940 "_edata",
7941 "_end",
7942 "_fbss",
7943 NULL
7944 };
7945
7946 const char* const *p;
7947 int i;
7948
7949 for (i = 0; i < 2; ++i)
7950 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
7951 *p;
7952 ++p)
7953 if (strcmp (*p, name) == 0)
7954 {
7955 /* All of these symbols are given type STT_SECTION by the
7956 IRIX6 linker. */
7957 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7958 sym->st_other = STO_PROTECTED;
7959
7960 /* The IRIX linker puts these symbols in special sections. */
7961 if (i == 0)
7962 sym->st_shndx = SHN_MIPS_TEXT;
7963 else
7964 sym->st_shndx = SHN_MIPS_DATA;
7965
7966 break;
7967 }
7968 }
7969
7970 /* Finish up dynamic symbol handling. We set the contents of various
7971 dynamic sections here. */
7972
7973 bfd_boolean
7974 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
7975 struct bfd_link_info *info,
7976 struct elf_link_hash_entry *h,
7977 Elf_Internal_Sym *sym)
7978 {
7979 bfd *dynobj;
7980 asection *sgot;
7981 struct mips_got_info *g, *gg;
7982 const char *name;
7983
7984 dynobj = elf_hash_table (info)->dynobj;
7985
7986 if (h->plt.offset != MINUS_ONE)
7987 {
7988 asection *s;
7989 bfd_byte stub[MIPS_FUNCTION_STUB_SIZE];
7990
7991 /* This symbol has a stub. Set it up. */
7992
7993 BFD_ASSERT (h->dynindx != -1);
7994
7995 s = bfd_get_section_by_name (dynobj,
7996 MIPS_ELF_STUB_SECTION_NAME (dynobj));
7997 BFD_ASSERT (s != NULL);
7998
7999 /* FIXME: Can h->dynindx be more than 64K? */
8000 if (h->dynindx & 0xffff0000)
8001 return FALSE;
8002
8003 /* Fill the stub. */
8004 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub);
8005 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4);
8006 bfd_put_32 (output_bfd, STUB_JALR, stub + 8);
8007 bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12);
8008
8009 BFD_ASSERT (h->plt.offset <= s->size);
8010 memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE);
8011
8012 /* Mark the symbol as undefined. plt.offset != -1 occurs
8013 only for the referenced symbol. */
8014 sym->st_shndx = SHN_UNDEF;
8015
8016 /* The run-time linker uses the st_value field of the symbol
8017 to reset the global offset table entry for this external
8018 to its stub address when unlinking a shared object. */
8019 sym->st_value = (s->output_section->vma + s->output_offset
8020 + h->plt.offset);
8021 }
8022
8023 BFD_ASSERT (h->dynindx != -1
8024 || h->forced_local);
8025
8026 sgot = mips_elf_got_section (dynobj, FALSE);
8027 BFD_ASSERT (sgot != NULL);
8028 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8029 g = mips_elf_section_data (sgot)->u.got_info;
8030 BFD_ASSERT (g != NULL);
8031
8032 /* Run through the global symbol table, creating GOT entries for all
8033 the symbols that need them. */
8034 if (g->global_gotsym != NULL
8035 && h->dynindx >= g->global_gotsym->dynindx)
8036 {
8037 bfd_vma offset;
8038 bfd_vma value;
8039
8040 value = sym->st_value;
8041 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
8042 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8043 }
8044
8045 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
8046 {
8047 struct mips_got_entry e, *p;
8048 bfd_vma entry;
8049 bfd_vma offset;
8050
8051 gg = g;
8052
8053 e.abfd = output_bfd;
8054 e.symndx = -1;
8055 e.d.h = (struct mips_elf_link_hash_entry *)h;
8056 e.tls_type = 0;
8057
8058 for (g = g->next; g->next != gg; g = g->next)
8059 {
8060 if (g->got_entries
8061 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8062 &e)))
8063 {
8064 offset = p->gotidx;
8065 if (info->shared
8066 || (elf_hash_table (info)->dynamic_sections_created
8067 && p->d.h != NULL
8068 && p->d.h->root.def_dynamic
8069 && !p->d.h->root.def_regular))
8070 {
8071 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8072 the various compatibility problems, it's easier to mock
8073 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8074 mips_elf_create_dynamic_relocation to calculate the
8075 appropriate addend. */
8076 Elf_Internal_Rela rel[3];
8077
8078 memset (rel, 0, sizeof (rel));
8079 if (ABI_64_P (output_bfd))
8080 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8081 else
8082 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8083 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8084
8085 entry = 0;
8086 if (! (mips_elf_create_dynamic_relocation
8087 (output_bfd, info, rel,
8088 e.d.h, NULL, sym->st_value, &entry, sgot)))
8089 return FALSE;
8090 }
8091 else
8092 entry = sym->st_value;
8093 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
8094 }
8095 }
8096 }
8097
8098 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8099 name = h->root.root.string;
8100 if (strcmp (name, "_DYNAMIC") == 0
8101 || h == elf_hash_table (info)->hgot)
8102 sym->st_shndx = SHN_ABS;
8103 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8104 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8105 {
8106 sym->st_shndx = SHN_ABS;
8107 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8108 sym->st_value = 1;
8109 }
8110 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
8111 {
8112 sym->st_shndx = SHN_ABS;
8113 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8114 sym->st_value = elf_gp (output_bfd);
8115 }
8116 else if (SGI_COMPAT (output_bfd))
8117 {
8118 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8119 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8120 {
8121 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8122 sym->st_other = STO_PROTECTED;
8123 sym->st_value = 0;
8124 sym->st_shndx = SHN_MIPS_DATA;
8125 }
8126 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8127 {
8128 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8129 sym->st_other = STO_PROTECTED;
8130 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8131 sym->st_shndx = SHN_ABS;
8132 }
8133 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8134 {
8135 if (h->type == STT_FUNC)
8136 sym->st_shndx = SHN_MIPS_TEXT;
8137 else if (h->type == STT_OBJECT)
8138 sym->st_shndx = SHN_MIPS_DATA;
8139 }
8140 }
8141
8142 /* Handle the IRIX6-specific symbols. */
8143 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8144 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8145
8146 if (! info->shared)
8147 {
8148 if (! mips_elf_hash_table (info)->use_rld_obj_head
8149 && (strcmp (name, "__rld_map") == 0
8150 || strcmp (name, "__RLD_MAP") == 0))
8151 {
8152 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8153 BFD_ASSERT (s != NULL);
8154 sym->st_value = s->output_section->vma + s->output_offset;
8155 bfd_put_32 (output_bfd, 0, s->contents);
8156 if (mips_elf_hash_table (info)->rld_value == 0)
8157 mips_elf_hash_table (info)->rld_value = sym->st_value;
8158 }
8159 else if (mips_elf_hash_table (info)->use_rld_obj_head
8160 && strcmp (name, "__rld_obj_head") == 0)
8161 {
8162 /* IRIX6 does not use a .rld_map section. */
8163 if (IRIX_COMPAT (output_bfd) == ict_irix5
8164 || IRIX_COMPAT (output_bfd) == ict_none)
8165 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8166 != NULL);
8167 mips_elf_hash_table (info)->rld_value = sym->st_value;
8168 }
8169 }
8170
8171 /* If this is a mips16 symbol, force the value to be even. */
8172 if (sym->st_other == STO_MIPS16)
8173 sym->st_value &= ~1;
8174
8175 return TRUE;
8176 }
8177
8178 /* Likewise, for VxWorks. */
8179
8180 bfd_boolean
8181 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8182 struct bfd_link_info *info,
8183 struct elf_link_hash_entry *h,
8184 Elf_Internal_Sym *sym)
8185 {
8186 bfd *dynobj;
8187 asection *sgot;
8188 struct mips_got_info *g;
8189 struct mips_elf_link_hash_table *htab;
8190
8191 htab = mips_elf_hash_table (info);
8192 dynobj = elf_hash_table (info)->dynobj;
8193
8194 if (h->plt.offset != (bfd_vma) -1)
8195 {
8196 bfd_byte *loc;
8197 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8198 Elf_Internal_Rela rel;
8199 static const bfd_vma *plt_entry;
8200
8201 BFD_ASSERT (h->dynindx != -1);
8202 BFD_ASSERT (htab->splt != NULL);
8203 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8204
8205 /* Calculate the address of the .plt entry. */
8206 plt_address = (htab->splt->output_section->vma
8207 + htab->splt->output_offset
8208 + h->plt.offset);
8209
8210 /* Calculate the index of the entry. */
8211 plt_index = ((h->plt.offset - htab->plt_header_size)
8212 / htab->plt_entry_size);
8213
8214 /* Calculate the address of the .got.plt entry. */
8215 got_address = (htab->sgotplt->output_section->vma
8216 + htab->sgotplt->output_offset
8217 + plt_index * 4);
8218
8219 /* Calculate the offset of the .got.plt entry from
8220 _GLOBAL_OFFSET_TABLE_. */
8221 got_offset = mips_elf_gotplt_index (info, h);
8222
8223 /* Calculate the offset for the branch at the start of the PLT
8224 entry. The branch jumps to the beginning of .plt. */
8225 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8226
8227 /* Fill in the initial value of the .got.plt entry. */
8228 bfd_put_32 (output_bfd, plt_address,
8229 htab->sgotplt->contents + plt_index * 4);
8230
8231 /* Find out where the .plt entry should go. */
8232 loc = htab->splt->contents + h->plt.offset;
8233
8234 if (info->shared)
8235 {
8236 plt_entry = mips_vxworks_shared_plt_entry;
8237 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8238 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8239 }
8240 else
8241 {
8242 bfd_vma got_address_high, got_address_low;
8243
8244 plt_entry = mips_vxworks_exec_plt_entry;
8245 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8246 got_address_low = got_address & 0xffff;
8247
8248 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8249 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8250 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8251 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8252 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8253 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8254 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8255 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8256
8257 loc = (htab->srelplt2->contents
8258 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8259
8260 /* Emit a relocation for the .got.plt entry. */
8261 rel.r_offset = got_address;
8262 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8263 rel.r_addend = h->plt.offset;
8264 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8265
8266 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8267 loc += sizeof (Elf32_External_Rela);
8268 rel.r_offset = plt_address + 8;
8269 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8270 rel.r_addend = got_offset;
8271 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8272
8273 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8274 loc += sizeof (Elf32_External_Rela);
8275 rel.r_offset += 4;
8276 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8277 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8278 }
8279
8280 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8281 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8282 rel.r_offset = got_address;
8283 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8284 rel.r_addend = 0;
8285 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8286
8287 if (!h->def_regular)
8288 sym->st_shndx = SHN_UNDEF;
8289 }
8290
8291 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8292
8293 sgot = mips_elf_got_section (dynobj, FALSE);
8294 BFD_ASSERT (sgot != NULL);
8295 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8296 g = mips_elf_section_data (sgot)->u.got_info;
8297 BFD_ASSERT (g != NULL);
8298
8299 /* See if this symbol has an entry in the GOT. */
8300 if (g->global_gotsym != NULL
8301 && h->dynindx >= g->global_gotsym->dynindx)
8302 {
8303 bfd_vma offset;
8304 Elf_Internal_Rela outrel;
8305 bfd_byte *loc;
8306 asection *s;
8307
8308 /* Install the symbol value in the GOT. */
8309 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8310 R_MIPS_GOT16, info);
8311 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8312
8313 /* Add a dynamic relocation for it. */
8314 s = mips_elf_rel_dyn_section (info, FALSE);
8315 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8316 outrel.r_offset = (sgot->output_section->vma
8317 + sgot->output_offset
8318 + offset);
8319 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8320 outrel.r_addend = 0;
8321 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8322 }
8323
8324 /* Emit a copy reloc, if needed. */
8325 if (h->needs_copy)
8326 {
8327 Elf_Internal_Rela rel;
8328
8329 BFD_ASSERT (h->dynindx != -1);
8330
8331 rel.r_offset = (h->root.u.def.section->output_section->vma
8332 + h->root.u.def.section->output_offset
8333 + h->root.u.def.value);
8334 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8335 rel.r_addend = 0;
8336 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8337 htab->srelbss->contents
8338 + (htab->srelbss->reloc_count
8339 * sizeof (Elf32_External_Rela)));
8340 ++htab->srelbss->reloc_count;
8341 }
8342
8343 /* If this is a mips16 symbol, force the value to be even. */
8344 if (sym->st_other == STO_MIPS16)
8345 sym->st_value &= ~1;
8346
8347 return TRUE;
8348 }
8349
8350 /* Install the PLT header for a VxWorks executable and finalize the
8351 contents of .rela.plt.unloaded. */
8352
8353 static void
8354 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8355 {
8356 Elf_Internal_Rela rela;
8357 bfd_byte *loc;
8358 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8359 static const bfd_vma *plt_entry;
8360 struct mips_elf_link_hash_table *htab;
8361
8362 htab = mips_elf_hash_table (info);
8363 plt_entry = mips_vxworks_exec_plt0_entry;
8364
8365 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8366 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8367 + htab->root.hgot->root.u.def.section->output_offset
8368 + htab->root.hgot->root.u.def.value);
8369
8370 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8371 got_value_low = got_value & 0xffff;
8372
8373 /* Calculate the address of the PLT header. */
8374 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8375
8376 /* Install the PLT header. */
8377 loc = htab->splt->contents;
8378 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8379 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8380 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8381 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8382 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8383 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8384
8385 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8386 loc = htab->srelplt2->contents;
8387 rela.r_offset = plt_address;
8388 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8389 rela.r_addend = 0;
8390 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8391 loc += sizeof (Elf32_External_Rela);
8392
8393 /* Output the relocation for the following addiu of
8394 %lo(_GLOBAL_OFFSET_TABLE_). */
8395 rela.r_offset += 4;
8396 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8397 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8398 loc += sizeof (Elf32_External_Rela);
8399
8400 /* Fix up the remaining relocations. They may have the wrong
8401 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8402 in which symbols were output. */
8403 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8404 {
8405 Elf_Internal_Rela rel;
8406
8407 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8408 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8409 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8410 loc += sizeof (Elf32_External_Rela);
8411
8412 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8413 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8414 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8415 loc += sizeof (Elf32_External_Rela);
8416
8417 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8418 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8419 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8420 loc += sizeof (Elf32_External_Rela);
8421 }
8422 }
8423
8424 /* Install the PLT header for a VxWorks shared library. */
8425
8426 static void
8427 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8428 {
8429 unsigned int i;
8430 struct mips_elf_link_hash_table *htab;
8431
8432 htab = mips_elf_hash_table (info);
8433
8434 /* We just need to copy the entry byte-by-byte. */
8435 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8436 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8437 htab->splt->contents + i * 4);
8438 }
8439
8440 /* Finish up the dynamic sections. */
8441
8442 bfd_boolean
8443 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8444 struct bfd_link_info *info)
8445 {
8446 bfd *dynobj;
8447 asection *sdyn;
8448 asection *sgot;
8449 struct mips_got_info *gg, *g;
8450 struct mips_elf_link_hash_table *htab;
8451
8452 htab = mips_elf_hash_table (info);
8453 dynobj = elf_hash_table (info)->dynobj;
8454
8455 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8456
8457 sgot = mips_elf_got_section (dynobj, FALSE);
8458 if (sgot == NULL)
8459 gg = g = NULL;
8460 else
8461 {
8462 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8463 gg = mips_elf_section_data (sgot)->u.got_info;
8464 BFD_ASSERT (gg != NULL);
8465 g = mips_elf_got_for_ibfd (gg, output_bfd);
8466 BFD_ASSERT (g != NULL);
8467 }
8468
8469 if (elf_hash_table (info)->dynamic_sections_created)
8470 {
8471 bfd_byte *b;
8472
8473 BFD_ASSERT (sdyn != NULL);
8474 BFD_ASSERT (g != NULL);
8475
8476 for (b = sdyn->contents;
8477 b < sdyn->contents + sdyn->size;
8478 b += MIPS_ELF_DYN_SIZE (dynobj))
8479 {
8480 Elf_Internal_Dyn dyn;
8481 const char *name;
8482 size_t elemsize;
8483 asection *s;
8484 bfd_boolean swap_out_p;
8485
8486 /* Read in the current dynamic entry. */
8487 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8488
8489 /* Assume that we're going to modify it and write it out. */
8490 swap_out_p = TRUE;
8491
8492 switch (dyn.d_tag)
8493 {
8494 case DT_RELENT:
8495 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8496 break;
8497
8498 case DT_RELAENT:
8499 BFD_ASSERT (htab->is_vxworks);
8500 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8501 break;
8502
8503 case DT_STRSZ:
8504 /* Rewrite DT_STRSZ. */
8505 dyn.d_un.d_val =
8506 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8507 break;
8508
8509 case DT_PLTGOT:
8510 name = ".got";
8511 if (htab->is_vxworks)
8512 {
8513 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8514 of the ".got" section in DYNOBJ. */
8515 s = bfd_get_section_by_name (dynobj, name);
8516 BFD_ASSERT (s != NULL);
8517 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8518 }
8519 else
8520 {
8521 s = bfd_get_section_by_name (output_bfd, name);
8522 BFD_ASSERT (s != NULL);
8523 dyn.d_un.d_ptr = s->vma;
8524 }
8525 break;
8526
8527 case DT_MIPS_RLD_VERSION:
8528 dyn.d_un.d_val = 1; /* XXX */
8529 break;
8530
8531 case DT_MIPS_FLAGS:
8532 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8533 break;
8534
8535 case DT_MIPS_TIME_STAMP:
8536 {
8537 time_t t;
8538 time (&t);
8539 dyn.d_un.d_val = t;
8540 }
8541 break;
8542
8543 case DT_MIPS_ICHECKSUM:
8544 /* XXX FIXME: */
8545 swap_out_p = FALSE;
8546 break;
8547
8548 case DT_MIPS_IVERSION:
8549 /* XXX FIXME: */
8550 swap_out_p = FALSE;
8551 break;
8552
8553 case DT_MIPS_BASE_ADDRESS:
8554 s = output_bfd->sections;
8555 BFD_ASSERT (s != NULL);
8556 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8557 break;
8558
8559 case DT_MIPS_LOCAL_GOTNO:
8560 dyn.d_un.d_val = g->local_gotno;
8561 break;
8562
8563 case DT_MIPS_UNREFEXTNO:
8564 /* The index into the dynamic symbol table which is the
8565 entry of the first external symbol that is not
8566 referenced within the same object. */
8567 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8568 break;
8569
8570 case DT_MIPS_GOTSYM:
8571 if (gg->global_gotsym)
8572 {
8573 dyn.d_un.d_val = gg->global_gotsym->dynindx;
8574 break;
8575 }
8576 /* In case if we don't have global got symbols we default
8577 to setting DT_MIPS_GOTSYM to the same value as
8578 DT_MIPS_SYMTABNO, so we just fall through. */
8579
8580 case DT_MIPS_SYMTABNO:
8581 name = ".dynsym";
8582 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8583 s = bfd_get_section_by_name (output_bfd, name);
8584 BFD_ASSERT (s != NULL);
8585
8586 dyn.d_un.d_val = s->size / elemsize;
8587 break;
8588
8589 case DT_MIPS_HIPAGENO:
8590 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
8591 break;
8592
8593 case DT_MIPS_RLD_MAP:
8594 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8595 break;
8596
8597 case DT_MIPS_OPTIONS:
8598 s = (bfd_get_section_by_name
8599 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8600 dyn.d_un.d_ptr = s->vma;
8601 break;
8602
8603 case DT_RELASZ:
8604 BFD_ASSERT (htab->is_vxworks);
8605 /* The count does not include the JUMP_SLOT relocations. */
8606 if (htab->srelplt)
8607 dyn.d_un.d_val -= htab->srelplt->size;
8608 break;
8609
8610 case DT_PLTREL:
8611 BFD_ASSERT (htab->is_vxworks);
8612 dyn.d_un.d_val = DT_RELA;
8613 break;
8614
8615 case DT_PLTRELSZ:
8616 BFD_ASSERT (htab->is_vxworks);
8617 dyn.d_un.d_val = htab->srelplt->size;
8618 break;
8619
8620 case DT_JMPREL:
8621 BFD_ASSERT (htab->is_vxworks);
8622 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8623 + htab->srelplt->output_offset);
8624 break;
8625
8626 default:
8627 swap_out_p = FALSE;
8628 break;
8629 }
8630
8631 if (swap_out_p)
8632 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8633 (dynobj, &dyn, b);
8634 }
8635 }
8636
8637 if (sgot != NULL && sgot->size > 0)
8638 {
8639 if (htab->is_vxworks)
8640 {
8641 /* The first entry of the global offset table points to the
8642 ".dynamic" section. The second is initialized by the
8643 loader and contains the shared library identifier.
8644 The third is also initialized by the loader and points
8645 to the lazy resolution stub. */
8646 MIPS_ELF_PUT_WORD (output_bfd,
8647 sdyn->output_offset + sdyn->output_section->vma,
8648 sgot->contents);
8649 MIPS_ELF_PUT_WORD (output_bfd, 0,
8650 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8651 MIPS_ELF_PUT_WORD (output_bfd, 0,
8652 sgot->contents
8653 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8654 }
8655 else
8656 {
8657 /* The first entry of the global offset table will be filled at
8658 runtime. The second entry will be used by some runtime loaders.
8659 This isn't the case of IRIX rld. */
8660 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8661 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8662 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8663 }
8664 }
8665
8666 if (sgot != NULL)
8667 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8668 = MIPS_ELF_GOT_SIZE (output_bfd);
8669
8670 /* Generate dynamic relocations for the non-primary gots. */
8671 if (gg != NULL && gg->next)
8672 {
8673 Elf_Internal_Rela rel[3];
8674 bfd_vma addend = 0;
8675
8676 memset (rel, 0, sizeof (rel));
8677 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8678
8679 for (g = gg->next; g->next != gg; g = g->next)
8680 {
8681 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8682 + g->next->tls_gotno;
8683
8684 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
8685 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8686 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
8687 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8688
8689 if (! info->shared)
8690 continue;
8691
8692 while (index < g->assigned_gotno)
8693 {
8694 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8695 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8696 if (!(mips_elf_create_dynamic_relocation
8697 (output_bfd, info, rel, NULL,
8698 bfd_abs_section_ptr,
8699 0, &addend, sgot)))
8700 return FALSE;
8701 BFD_ASSERT (addend == 0);
8702 }
8703 }
8704 }
8705
8706 /* The generation of dynamic relocations for the non-primary gots
8707 adds more dynamic relocations. We cannot count them until
8708 here. */
8709
8710 if (elf_hash_table (info)->dynamic_sections_created)
8711 {
8712 bfd_byte *b;
8713 bfd_boolean swap_out_p;
8714
8715 BFD_ASSERT (sdyn != NULL);
8716
8717 for (b = sdyn->contents;
8718 b < sdyn->contents + sdyn->size;
8719 b += MIPS_ELF_DYN_SIZE (dynobj))
8720 {
8721 Elf_Internal_Dyn dyn;
8722 asection *s;
8723
8724 /* Read in the current dynamic entry. */
8725 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8726
8727 /* Assume that we're going to modify it and write it out. */
8728 swap_out_p = TRUE;
8729
8730 switch (dyn.d_tag)
8731 {
8732 case DT_RELSZ:
8733 /* Reduce DT_RELSZ to account for any relocations we
8734 decided not to make. This is for the n64 irix rld,
8735 which doesn't seem to apply any relocations if there
8736 are trailing null entries. */
8737 s = mips_elf_rel_dyn_section (info, FALSE);
8738 dyn.d_un.d_val = (s->reloc_count
8739 * (ABI_64_P (output_bfd)
8740 ? sizeof (Elf64_Mips_External_Rel)
8741 : sizeof (Elf32_External_Rel)));
8742 break;
8743
8744 default:
8745 swap_out_p = FALSE;
8746 break;
8747 }
8748
8749 if (swap_out_p)
8750 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8751 (dynobj, &dyn, b);
8752 }
8753 }
8754
8755 {
8756 asection *s;
8757 Elf32_compact_rel cpt;
8758
8759 if (SGI_COMPAT (output_bfd))
8760 {
8761 /* Write .compact_rel section out. */
8762 s = bfd_get_section_by_name (dynobj, ".compact_rel");
8763 if (s != NULL)
8764 {
8765 cpt.id1 = 1;
8766 cpt.num = s->reloc_count;
8767 cpt.id2 = 2;
8768 cpt.offset = (s->output_section->filepos
8769 + sizeof (Elf32_External_compact_rel));
8770 cpt.reserved0 = 0;
8771 cpt.reserved1 = 0;
8772 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
8773 ((Elf32_External_compact_rel *)
8774 s->contents));
8775
8776 /* Clean up a dummy stub function entry in .text. */
8777 s = bfd_get_section_by_name (dynobj,
8778 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8779 if (s != NULL)
8780 {
8781 file_ptr dummy_offset;
8782
8783 BFD_ASSERT (s->size >= MIPS_FUNCTION_STUB_SIZE);
8784 dummy_offset = s->size - MIPS_FUNCTION_STUB_SIZE;
8785 memset (s->contents + dummy_offset, 0,
8786 MIPS_FUNCTION_STUB_SIZE);
8787 }
8788 }
8789 }
8790
8791 /* The psABI says that the dynamic relocations must be sorted in
8792 increasing order of r_symndx. The VxWorks EABI doesn't require
8793 this, and because the code below handles REL rather than RELA
8794 relocations, using it for VxWorks would be outright harmful. */
8795 if (!htab->is_vxworks)
8796 {
8797 s = mips_elf_rel_dyn_section (info, FALSE);
8798 if (s != NULL
8799 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
8800 {
8801 reldyn_sorting_bfd = output_bfd;
8802
8803 if (ABI_64_P (output_bfd))
8804 qsort ((Elf64_External_Rel *) s->contents + 1,
8805 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
8806 sort_dynamic_relocs_64);
8807 else
8808 qsort ((Elf32_External_Rel *) s->contents + 1,
8809 s->reloc_count - 1, sizeof (Elf32_External_Rel),
8810 sort_dynamic_relocs);
8811 }
8812 }
8813 }
8814
8815 if (htab->is_vxworks && htab->splt->size > 0)
8816 {
8817 if (info->shared)
8818 mips_vxworks_finish_shared_plt (output_bfd, info);
8819 else
8820 mips_vxworks_finish_exec_plt (output_bfd, info);
8821 }
8822 return TRUE;
8823 }
8824
8825
8826 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
8827
8828 static void
8829 mips_set_isa_flags (bfd *abfd)
8830 {
8831 flagword val;
8832
8833 switch (bfd_get_mach (abfd))
8834 {
8835 default:
8836 case bfd_mach_mips3000:
8837 val = E_MIPS_ARCH_1;
8838 break;
8839
8840 case bfd_mach_mips3900:
8841 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
8842 break;
8843
8844 case bfd_mach_mips6000:
8845 val = E_MIPS_ARCH_2;
8846 break;
8847
8848 case bfd_mach_mips4000:
8849 case bfd_mach_mips4300:
8850 case bfd_mach_mips4400:
8851 case bfd_mach_mips4600:
8852 val = E_MIPS_ARCH_3;
8853 break;
8854
8855 case bfd_mach_mips4010:
8856 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
8857 break;
8858
8859 case bfd_mach_mips4100:
8860 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
8861 break;
8862
8863 case bfd_mach_mips4111:
8864 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
8865 break;
8866
8867 case bfd_mach_mips4120:
8868 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
8869 break;
8870
8871 case bfd_mach_mips4650:
8872 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
8873 break;
8874
8875 case bfd_mach_mips5400:
8876 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
8877 break;
8878
8879 case bfd_mach_mips5500:
8880 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
8881 break;
8882
8883 case bfd_mach_mips9000:
8884 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
8885 break;
8886
8887 case bfd_mach_mips5000:
8888 case bfd_mach_mips7000:
8889 case bfd_mach_mips8000:
8890 case bfd_mach_mips10000:
8891 case bfd_mach_mips12000:
8892 val = E_MIPS_ARCH_4;
8893 break;
8894
8895 case bfd_mach_mips5:
8896 val = E_MIPS_ARCH_5;
8897 break;
8898
8899 case bfd_mach_mips_sb1:
8900 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
8901 break;
8902
8903 case bfd_mach_mipsisa32:
8904 val = E_MIPS_ARCH_32;
8905 break;
8906
8907 case bfd_mach_mipsisa64:
8908 val = E_MIPS_ARCH_64;
8909 break;
8910
8911 case bfd_mach_mipsisa32r2:
8912 val = E_MIPS_ARCH_32R2;
8913 break;
8914
8915 case bfd_mach_mipsisa64r2:
8916 val = E_MIPS_ARCH_64R2;
8917 break;
8918 }
8919 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
8920 elf_elfheader (abfd)->e_flags |= val;
8921
8922 }
8923
8924
8925 /* The final processing done just before writing out a MIPS ELF object
8926 file. This gets the MIPS architecture right based on the machine
8927 number. This is used by both the 32-bit and the 64-bit ABI. */
8928
8929 void
8930 _bfd_mips_elf_final_write_processing (bfd *abfd,
8931 bfd_boolean linker ATTRIBUTE_UNUSED)
8932 {
8933 unsigned int i;
8934 Elf_Internal_Shdr **hdrpp;
8935 const char *name;
8936 asection *sec;
8937
8938 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
8939 is nonzero. This is for compatibility with old objects, which used
8940 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
8941 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
8942 mips_set_isa_flags (abfd);
8943
8944 /* Set the sh_info field for .gptab sections and other appropriate
8945 info for each special section. */
8946 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
8947 i < elf_numsections (abfd);
8948 i++, hdrpp++)
8949 {
8950 switch ((*hdrpp)->sh_type)
8951 {
8952 case SHT_MIPS_MSYM:
8953 case SHT_MIPS_LIBLIST:
8954 sec = bfd_get_section_by_name (abfd, ".dynstr");
8955 if (sec != NULL)
8956 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8957 break;
8958
8959 case SHT_MIPS_GPTAB:
8960 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
8961 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
8962 BFD_ASSERT (name != NULL
8963 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
8964 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
8965 BFD_ASSERT (sec != NULL);
8966 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
8967 break;
8968
8969 case SHT_MIPS_CONTENT:
8970 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
8971 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
8972 BFD_ASSERT (name != NULL
8973 && strncmp (name, ".MIPS.content",
8974 sizeof ".MIPS.content" - 1) == 0);
8975 sec = bfd_get_section_by_name (abfd,
8976 name + sizeof ".MIPS.content" - 1);
8977 BFD_ASSERT (sec != NULL);
8978 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8979 break;
8980
8981 case SHT_MIPS_SYMBOL_LIB:
8982 sec = bfd_get_section_by_name (abfd, ".dynsym");
8983 if (sec != NULL)
8984 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
8985 sec = bfd_get_section_by_name (abfd, ".liblist");
8986 if (sec != NULL)
8987 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
8988 break;
8989
8990 case SHT_MIPS_EVENTS:
8991 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
8992 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
8993 BFD_ASSERT (name != NULL);
8994 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
8995 sec = bfd_get_section_by_name (abfd,
8996 name + sizeof ".MIPS.events" - 1);
8997 else
8998 {
8999 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
9000 sizeof ".MIPS.post_rel" - 1) == 0);
9001 sec = bfd_get_section_by_name (abfd,
9002 (name
9003 + sizeof ".MIPS.post_rel" - 1));
9004 }
9005 BFD_ASSERT (sec != NULL);
9006 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9007 break;
9008
9009 }
9010 }
9011 }
9012 \f
9013 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9014 segments. */
9015
9016 int
9017 _bfd_mips_elf_additional_program_headers (bfd *abfd)
9018 {
9019 asection *s;
9020 int ret = 0;
9021
9022 /* See if we need a PT_MIPS_REGINFO segment. */
9023 s = bfd_get_section_by_name (abfd, ".reginfo");
9024 if (s && (s->flags & SEC_LOAD))
9025 ++ret;
9026
9027 /* See if we need a PT_MIPS_OPTIONS segment. */
9028 if (IRIX_COMPAT (abfd) == ict_irix6
9029 && bfd_get_section_by_name (abfd,
9030 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9031 ++ret;
9032
9033 /* See if we need a PT_MIPS_RTPROC segment. */
9034 if (IRIX_COMPAT (abfd) == ict_irix5
9035 && bfd_get_section_by_name (abfd, ".dynamic")
9036 && bfd_get_section_by_name (abfd, ".mdebug"))
9037 ++ret;
9038
9039 return ret;
9040 }
9041
9042 /* Modify the segment map for an IRIX5 executable. */
9043
9044 bfd_boolean
9045 _bfd_mips_elf_modify_segment_map (bfd *abfd,
9046 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9047 {
9048 asection *s;
9049 struct elf_segment_map *m, **pm;
9050 bfd_size_type amt;
9051
9052 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9053 segment. */
9054 s = bfd_get_section_by_name (abfd, ".reginfo");
9055 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9056 {
9057 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9058 if (m->p_type == PT_MIPS_REGINFO)
9059 break;
9060 if (m == NULL)
9061 {
9062 amt = sizeof *m;
9063 m = bfd_zalloc (abfd, amt);
9064 if (m == NULL)
9065 return FALSE;
9066
9067 m->p_type = PT_MIPS_REGINFO;
9068 m->count = 1;
9069 m->sections[0] = s;
9070
9071 /* We want to put it after the PHDR and INTERP segments. */
9072 pm = &elf_tdata (abfd)->segment_map;
9073 while (*pm != NULL
9074 && ((*pm)->p_type == PT_PHDR
9075 || (*pm)->p_type == PT_INTERP))
9076 pm = &(*pm)->next;
9077
9078 m->next = *pm;
9079 *pm = m;
9080 }
9081 }
9082
9083 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9084 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9085 PT_MIPS_OPTIONS segment immediately following the program header
9086 table. */
9087 if (NEWABI_P (abfd)
9088 /* On non-IRIX6 new abi, we'll have already created a segment
9089 for this section, so don't create another. I'm not sure this
9090 is not also the case for IRIX 6, but I can't test it right
9091 now. */
9092 && IRIX_COMPAT (abfd) == ict_irix6)
9093 {
9094 for (s = abfd->sections; s; s = s->next)
9095 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9096 break;
9097
9098 if (s)
9099 {
9100 struct elf_segment_map *options_segment;
9101
9102 pm = &elf_tdata (abfd)->segment_map;
9103 while (*pm != NULL
9104 && ((*pm)->p_type == PT_PHDR
9105 || (*pm)->p_type == PT_INTERP))
9106 pm = &(*pm)->next;
9107
9108 amt = sizeof (struct elf_segment_map);
9109 options_segment = bfd_zalloc (abfd, amt);
9110 options_segment->next = *pm;
9111 options_segment->p_type = PT_MIPS_OPTIONS;
9112 options_segment->p_flags = PF_R;
9113 options_segment->p_flags_valid = TRUE;
9114 options_segment->count = 1;
9115 options_segment->sections[0] = s;
9116 *pm = options_segment;
9117 }
9118 }
9119 else
9120 {
9121 if (IRIX_COMPAT (abfd) == ict_irix5)
9122 {
9123 /* If there are .dynamic and .mdebug sections, we make a room
9124 for the RTPROC header. FIXME: Rewrite without section names. */
9125 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9126 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9127 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9128 {
9129 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9130 if (m->p_type == PT_MIPS_RTPROC)
9131 break;
9132 if (m == NULL)
9133 {
9134 amt = sizeof *m;
9135 m = bfd_zalloc (abfd, amt);
9136 if (m == NULL)
9137 return FALSE;
9138
9139 m->p_type = PT_MIPS_RTPROC;
9140
9141 s = bfd_get_section_by_name (abfd, ".rtproc");
9142 if (s == NULL)
9143 {
9144 m->count = 0;
9145 m->p_flags = 0;
9146 m->p_flags_valid = 1;
9147 }
9148 else
9149 {
9150 m->count = 1;
9151 m->sections[0] = s;
9152 }
9153
9154 /* We want to put it after the DYNAMIC segment. */
9155 pm = &elf_tdata (abfd)->segment_map;
9156 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9157 pm = &(*pm)->next;
9158 if (*pm != NULL)
9159 pm = &(*pm)->next;
9160
9161 m->next = *pm;
9162 *pm = m;
9163 }
9164 }
9165 }
9166 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9167 .dynstr, .dynsym, and .hash sections, and everything in
9168 between. */
9169 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9170 pm = &(*pm)->next)
9171 if ((*pm)->p_type == PT_DYNAMIC)
9172 break;
9173 m = *pm;
9174 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9175 {
9176 /* For a normal mips executable the permissions for the PT_DYNAMIC
9177 segment are read, write and execute. We do that here since
9178 the code in elf.c sets only the read permission. This matters
9179 sometimes for the dynamic linker. */
9180 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9181 {
9182 m->p_flags = PF_R | PF_W | PF_X;
9183 m->p_flags_valid = 1;
9184 }
9185 }
9186 if (m != NULL
9187 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9188 {
9189 static const char *sec_names[] =
9190 {
9191 ".dynamic", ".dynstr", ".dynsym", ".hash"
9192 };
9193 bfd_vma low, high;
9194 unsigned int i, c;
9195 struct elf_segment_map *n;
9196
9197 low = ~(bfd_vma) 0;
9198 high = 0;
9199 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9200 {
9201 s = bfd_get_section_by_name (abfd, sec_names[i]);
9202 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9203 {
9204 bfd_size_type sz;
9205
9206 if (low > s->vma)
9207 low = s->vma;
9208 sz = s->size;
9209 if (high < s->vma + sz)
9210 high = s->vma + sz;
9211 }
9212 }
9213
9214 c = 0;
9215 for (s = abfd->sections; s != NULL; s = s->next)
9216 if ((s->flags & SEC_LOAD) != 0
9217 && s->vma >= low
9218 && s->vma + s->size <= high)
9219 ++c;
9220
9221 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9222 n = bfd_zalloc (abfd, amt);
9223 if (n == NULL)
9224 return FALSE;
9225 *n = *m;
9226 n->count = c;
9227
9228 i = 0;
9229 for (s = abfd->sections; s != NULL; s = s->next)
9230 {
9231 if ((s->flags & SEC_LOAD) != 0
9232 && s->vma >= low
9233 && s->vma + s->size <= high)
9234 {
9235 n->sections[i] = s;
9236 ++i;
9237 }
9238 }
9239
9240 *pm = n;
9241 }
9242 }
9243
9244 return TRUE;
9245 }
9246 \f
9247 /* Return the section that should be marked against GC for a given
9248 relocation. */
9249
9250 asection *
9251 _bfd_mips_elf_gc_mark_hook (asection *sec,
9252 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9253 Elf_Internal_Rela *rel,
9254 struct elf_link_hash_entry *h,
9255 Elf_Internal_Sym *sym)
9256 {
9257 /* ??? Do mips16 stub sections need to be handled special? */
9258
9259 if (h != NULL)
9260 {
9261 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9262 {
9263 case R_MIPS_GNU_VTINHERIT:
9264 case R_MIPS_GNU_VTENTRY:
9265 break;
9266
9267 default:
9268 switch (h->root.type)
9269 {
9270 case bfd_link_hash_defined:
9271 case bfd_link_hash_defweak:
9272 return h->root.u.def.section;
9273
9274 case bfd_link_hash_common:
9275 return h->root.u.c.p->section;
9276
9277 default:
9278 break;
9279 }
9280 }
9281 }
9282 else
9283 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
9284
9285 return NULL;
9286 }
9287
9288 /* Update the got entry reference counts for the section being removed. */
9289
9290 bfd_boolean
9291 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9292 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9293 asection *sec ATTRIBUTE_UNUSED,
9294 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
9295 {
9296 #if 0
9297 Elf_Internal_Shdr *symtab_hdr;
9298 struct elf_link_hash_entry **sym_hashes;
9299 bfd_signed_vma *local_got_refcounts;
9300 const Elf_Internal_Rela *rel, *relend;
9301 unsigned long r_symndx;
9302 struct elf_link_hash_entry *h;
9303
9304 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9305 sym_hashes = elf_sym_hashes (abfd);
9306 local_got_refcounts = elf_local_got_refcounts (abfd);
9307
9308 relend = relocs + sec->reloc_count;
9309 for (rel = relocs; rel < relend; rel++)
9310 switch (ELF_R_TYPE (abfd, rel->r_info))
9311 {
9312 case R_MIPS_GOT16:
9313 case R_MIPS_CALL16:
9314 case R_MIPS_CALL_HI16:
9315 case R_MIPS_CALL_LO16:
9316 case R_MIPS_GOT_HI16:
9317 case R_MIPS_GOT_LO16:
9318 case R_MIPS_GOT_DISP:
9319 case R_MIPS_GOT_PAGE:
9320 case R_MIPS_GOT_OFST:
9321 /* ??? It would seem that the existing MIPS code does no sort
9322 of reference counting or whatnot on its GOT and PLT entries,
9323 so it is not possible to garbage collect them at this time. */
9324 break;
9325
9326 default:
9327 break;
9328 }
9329 #endif
9330
9331 return TRUE;
9332 }
9333 \f
9334 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9335 hiding the old indirect symbol. Process additional relocation
9336 information. Also called for weakdefs, in which case we just let
9337 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9338
9339 void
9340 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9341 struct elf_link_hash_entry *dir,
9342 struct elf_link_hash_entry *ind)
9343 {
9344 struct mips_elf_link_hash_entry *dirmips, *indmips;
9345
9346 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
9347
9348 if (ind->root.type != bfd_link_hash_indirect)
9349 return;
9350
9351 dirmips = (struct mips_elf_link_hash_entry *) dir;
9352 indmips = (struct mips_elf_link_hash_entry *) ind;
9353 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9354 if (indmips->readonly_reloc)
9355 dirmips->readonly_reloc = TRUE;
9356 if (indmips->no_fn_stub)
9357 dirmips->no_fn_stub = TRUE;
9358
9359 if (dirmips->tls_type == 0)
9360 dirmips->tls_type = indmips->tls_type;
9361 }
9362
9363 void
9364 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9365 struct elf_link_hash_entry *entry,
9366 bfd_boolean force_local)
9367 {
9368 bfd *dynobj;
9369 asection *got;
9370 struct mips_got_info *g;
9371 struct mips_elf_link_hash_entry *h;
9372
9373 h = (struct mips_elf_link_hash_entry *) entry;
9374 if (h->forced_local)
9375 return;
9376 h->forced_local = force_local;
9377
9378 dynobj = elf_hash_table (info)->dynobj;
9379 if (dynobj != NULL && force_local && h->root.type != STT_TLS
9380 && (got = mips_elf_got_section (dynobj, FALSE)) != NULL
9381 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
9382 {
9383 if (g->next)
9384 {
9385 struct mips_got_entry e;
9386 struct mips_got_info *gg = g;
9387
9388 /* Since we're turning what used to be a global symbol into a
9389 local one, bump up the number of local entries of each GOT
9390 that had an entry for it. This will automatically decrease
9391 the number of global entries, since global_gotno is actually
9392 the upper limit of global entries. */
9393 e.abfd = dynobj;
9394 e.symndx = -1;
9395 e.d.h = h;
9396 e.tls_type = 0;
9397
9398 for (g = g->next; g != gg; g = g->next)
9399 if (htab_find (g->got_entries, &e))
9400 {
9401 BFD_ASSERT (g->global_gotno > 0);
9402 g->local_gotno++;
9403 g->global_gotno--;
9404 }
9405
9406 /* If this was a global symbol forced into the primary GOT, we
9407 no longer need an entry for it. We can't release the entry
9408 at this point, but we must at least stop counting it as one
9409 of the symbols that required a forced got entry. */
9410 if (h->root.got.offset == 2)
9411 {
9412 BFD_ASSERT (gg->assigned_gotno > 0);
9413 gg->assigned_gotno--;
9414 }
9415 }
9416 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9417 /* If we haven't got through GOT allocation yet, just bump up the
9418 number of local entries, as this symbol won't be counted as
9419 global. */
9420 g->local_gotno++;
9421 else if (h->root.got.offset == 1)
9422 {
9423 /* If we're past non-multi-GOT allocation and this symbol had
9424 been marked for a global got entry, give it a local entry
9425 instead. */
9426 BFD_ASSERT (g->global_gotno > 0);
9427 g->local_gotno++;
9428 g->global_gotno--;
9429 }
9430 }
9431
9432 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
9433 }
9434 \f
9435 #define PDR_SIZE 32
9436
9437 bfd_boolean
9438 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9439 struct bfd_link_info *info)
9440 {
9441 asection *o;
9442 bfd_boolean ret = FALSE;
9443 unsigned char *tdata;
9444 size_t i, skip;
9445
9446 o = bfd_get_section_by_name (abfd, ".pdr");
9447 if (! o)
9448 return FALSE;
9449 if (o->size == 0)
9450 return FALSE;
9451 if (o->size % PDR_SIZE != 0)
9452 return FALSE;
9453 if (o->output_section != NULL
9454 && bfd_is_abs_section (o->output_section))
9455 return FALSE;
9456
9457 tdata = bfd_zmalloc (o->size / PDR_SIZE);
9458 if (! tdata)
9459 return FALSE;
9460
9461 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
9462 info->keep_memory);
9463 if (!cookie->rels)
9464 {
9465 free (tdata);
9466 return FALSE;
9467 }
9468
9469 cookie->rel = cookie->rels;
9470 cookie->relend = cookie->rels + o->reloc_count;
9471
9472 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
9473 {
9474 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
9475 {
9476 tdata[i] = 1;
9477 skip ++;
9478 }
9479 }
9480
9481 if (skip != 0)
9482 {
9483 mips_elf_section_data (o)->u.tdata = tdata;
9484 o->size -= skip * PDR_SIZE;
9485 ret = TRUE;
9486 }
9487 else
9488 free (tdata);
9489
9490 if (! info->keep_memory)
9491 free (cookie->rels);
9492
9493 return ret;
9494 }
9495
9496 bfd_boolean
9497 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
9498 {
9499 if (strcmp (sec->name, ".pdr") == 0)
9500 return TRUE;
9501 return FALSE;
9502 }
9503
9504 bfd_boolean
9505 _bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
9506 bfd_byte *contents)
9507 {
9508 bfd_byte *to, *from, *end;
9509 int i;
9510
9511 if (strcmp (sec->name, ".pdr") != 0)
9512 return FALSE;
9513
9514 if (mips_elf_section_data (sec)->u.tdata == NULL)
9515 return FALSE;
9516
9517 to = contents;
9518 end = contents + sec->size;
9519 for (from = contents, i = 0;
9520 from < end;
9521 from += PDR_SIZE, i++)
9522 {
9523 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
9524 continue;
9525 if (to != from)
9526 memcpy (to, from, PDR_SIZE);
9527 to += PDR_SIZE;
9528 }
9529 bfd_set_section_contents (output_bfd, sec->output_section, contents,
9530 sec->output_offset, sec->size);
9531 return TRUE;
9532 }
9533 \f
9534 /* MIPS ELF uses a special find_nearest_line routine in order the
9535 handle the ECOFF debugging information. */
9536
9537 struct mips_elf_find_line
9538 {
9539 struct ecoff_debug_info d;
9540 struct ecoff_find_line i;
9541 };
9542
9543 bfd_boolean
9544 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9545 asymbol **symbols, bfd_vma offset,
9546 const char **filename_ptr,
9547 const char **functionname_ptr,
9548 unsigned int *line_ptr)
9549 {
9550 asection *msec;
9551
9552 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9553 filename_ptr, functionname_ptr,
9554 line_ptr))
9555 return TRUE;
9556
9557 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9558 filename_ptr, functionname_ptr,
9559 line_ptr, ABI_64_P (abfd) ? 8 : 0,
9560 &elf_tdata (abfd)->dwarf2_find_line_info))
9561 return TRUE;
9562
9563 msec = bfd_get_section_by_name (abfd, ".mdebug");
9564 if (msec != NULL)
9565 {
9566 flagword origflags;
9567 struct mips_elf_find_line *fi;
9568 const struct ecoff_debug_swap * const swap =
9569 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9570
9571 /* If we are called during a link, mips_elf_final_link may have
9572 cleared the SEC_HAS_CONTENTS field. We force it back on here
9573 if appropriate (which it normally will be). */
9574 origflags = msec->flags;
9575 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9576 msec->flags |= SEC_HAS_CONTENTS;
9577
9578 fi = elf_tdata (abfd)->find_line_info;
9579 if (fi == NULL)
9580 {
9581 bfd_size_type external_fdr_size;
9582 char *fraw_src;
9583 char *fraw_end;
9584 struct fdr *fdr_ptr;
9585 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9586
9587 fi = bfd_zalloc (abfd, amt);
9588 if (fi == NULL)
9589 {
9590 msec->flags = origflags;
9591 return FALSE;
9592 }
9593
9594 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9595 {
9596 msec->flags = origflags;
9597 return FALSE;
9598 }
9599
9600 /* Swap in the FDR information. */
9601 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9602 fi->d.fdr = bfd_alloc (abfd, amt);
9603 if (fi->d.fdr == NULL)
9604 {
9605 msec->flags = origflags;
9606 return FALSE;
9607 }
9608 external_fdr_size = swap->external_fdr_size;
9609 fdr_ptr = fi->d.fdr;
9610 fraw_src = (char *) fi->d.external_fdr;
9611 fraw_end = (fraw_src
9612 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9613 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9614 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
9615
9616 elf_tdata (abfd)->find_line_info = fi;
9617
9618 /* Note that we don't bother to ever free this information.
9619 find_nearest_line is either called all the time, as in
9620 objdump -l, so the information should be saved, or it is
9621 rarely called, as in ld error messages, so the memory
9622 wasted is unimportant. Still, it would probably be a
9623 good idea for free_cached_info to throw it away. */
9624 }
9625
9626 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9627 &fi->i, filename_ptr, functionname_ptr,
9628 line_ptr))
9629 {
9630 msec->flags = origflags;
9631 return TRUE;
9632 }
9633
9634 msec->flags = origflags;
9635 }
9636
9637 /* Fall back on the generic ELF find_nearest_line routine. */
9638
9639 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9640 filename_ptr, functionname_ptr,
9641 line_ptr);
9642 }
9643
9644 bfd_boolean
9645 _bfd_mips_elf_find_inliner_info (bfd *abfd,
9646 const char **filename_ptr,
9647 const char **functionname_ptr,
9648 unsigned int *line_ptr)
9649 {
9650 bfd_boolean found;
9651 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9652 functionname_ptr, line_ptr,
9653 & elf_tdata (abfd)->dwarf2_find_line_info);
9654 return found;
9655 }
9656
9657 \f
9658 /* When are writing out the .options or .MIPS.options section,
9659 remember the bytes we are writing out, so that we can install the
9660 GP value in the section_processing routine. */
9661
9662 bfd_boolean
9663 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9664 const void *location,
9665 file_ptr offset, bfd_size_type count)
9666 {
9667 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
9668 {
9669 bfd_byte *c;
9670
9671 if (elf_section_data (section) == NULL)
9672 {
9673 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9674 section->used_by_bfd = bfd_zalloc (abfd, amt);
9675 if (elf_section_data (section) == NULL)
9676 return FALSE;
9677 }
9678 c = mips_elf_section_data (section)->u.tdata;
9679 if (c == NULL)
9680 {
9681 c = bfd_zalloc (abfd, section->size);
9682 if (c == NULL)
9683 return FALSE;
9684 mips_elf_section_data (section)->u.tdata = c;
9685 }
9686
9687 memcpy (c + offset, location, count);
9688 }
9689
9690 return _bfd_elf_set_section_contents (abfd, section, location, offset,
9691 count);
9692 }
9693
9694 /* This is almost identical to bfd_generic_get_... except that some
9695 MIPS relocations need to be handled specially. Sigh. */
9696
9697 bfd_byte *
9698 _bfd_elf_mips_get_relocated_section_contents
9699 (bfd *abfd,
9700 struct bfd_link_info *link_info,
9701 struct bfd_link_order *link_order,
9702 bfd_byte *data,
9703 bfd_boolean relocatable,
9704 asymbol **symbols)
9705 {
9706 /* Get enough memory to hold the stuff */
9707 bfd *input_bfd = link_order->u.indirect.section->owner;
9708 asection *input_section = link_order->u.indirect.section;
9709 bfd_size_type sz;
9710
9711 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9712 arelent **reloc_vector = NULL;
9713 long reloc_count;
9714
9715 if (reloc_size < 0)
9716 goto error_return;
9717
9718 reloc_vector = bfd_malloc (reloc_size);
9719 if (reloc_vector == NULL && reloc_size != 0)
9720 goto error_return;
9721
9722 /* read in the section */
9723 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
9724 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
9725 goto error_return;
9726
9727 reloc_count = bfd_canonicalize_reloc (input_bfd,
9728 input_section,
9729 reloc_vector,
9730 symbols);
9731 if (reloc_count < 0)
9732 goto error_return;
9733
9734 if (reloc_count > 0)
9735 {
9736 arelent **parent;
9737 /* for mips */
9738 int gp_found;
9739 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
9740
9741 {
9742 struct bfd_hash_entry *h;
9743 struct bfd_link_hash_entry *lh;
9744 /* Skip all this stuff if we aren't mixing formats. */
9745 if (abfd && input_bfd
9746 && abfd->xvec == input_bfd->xvec)
9747 lh = 0;
9748 else
9749 {
9750 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
9751 lh = (struct bfd_link_hash_entry *) h;
9752 }
9753 lookup:
9754 if (lh)
9755 {
9756 switch (lh->type)
9757 {
9758 case bfd_link_hash_undefined:
9759 case bfd_link_hash_undefweak:
9760 case bfd_link_hash_common:
9761 gp_found = 0;
9762 break;
9763 case bfd_link_hash_defined:
9764 case bfd_link_hash_defweak:
9765 gp_found = 1;
9766 gp = lh->u.def.value;
9767 break;
9768 case bfd_link_hash_indirect:
9769 case bfd_link_hash_warning:
9770 lh = lh->u.i.link;
9771 /* @@FIXME ignoring warning for now */
9772 goto lookup;
9773 case bfd_link_hash_new:
9774 default:
9775 abort ();
9776 }
9777 }
9778 else
9779 gp_found = 0;
9780 }
9781 /* end mips */
9782 for (parent = reloc_vector; *parent != NULL; parent++)
9783 {
9784 char *error_message = NULL;
9785 bfd_reloc_status_type r;
9786
9787 /* Specific to MIPS: Deal with relocation types that require
9788 knowing the gp of the output bfd. */
9789 asymbol *sym = *(*parent)->sym_ptr_ptr;
9790
9791 /* If we've managed to find the gp and have a special
9792 function for the relocation then go ahead, else default
9793 to the generic handling. */
9794 if (gp_found
9795 && (*parent)->howto->special_function
9796 == _bfd_mips_elf32_gprel16_reloc)
9797 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
9798 input_section, relocatable,
9799 data, gp);
9800 else
9801 r = bfd_perform_relocation (input_bfd, *parent, data,
9802 input_section,
9803 relocatable ? abfd : NULL,
9804 &error_message);
9805
9806 if (relocatable)
9807 {
9808 asection *os = input_section->output_section;
9809
9810 /* A partial link, so keep the relocs */
9811 os->orelocation[os->reloc_count] = *parent;
9812 os->reloc_count++;
9813 }
9814
9815 if (r != bfd_reloc_ok)
9816 {
9817 switch (r)
9818 {
9819 case bfd_reloc_undefined:
9820 if (!((*link_info->callbacks->undefined_symbol)
9821 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9822 input_bfd, input_section, (*parent)->address, TRUE)))
9823 goto error_return;
9824 break;
9825 case bfd_reloc_dangerous:
9826 BFD_ASSERT (error_message != NULL);
9827 if (!((*link_info->callbacks->reloc_dangerous)
9828 (link_info, error_message, input_bfd, input_section,
9829 (*parent)->address)))
9830 goto error_return;
9831 break;
9832 case bfd_reloc_overflow:
9833 if (!((*link_info->callbacks->reloc_overflow)
9834 (link_info, NULL,
9835 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9836 (*parent)->howto->name, (*parent)->addend,
9837 input_bfd, input_section, (*parent)->address)))
9838 goto error_return;
9839 break;
9840 case bfd_reloc_outofrange:
9841 default:
9842 abort ();
9843 break;
9844 }
9845
9846 }
9847 }
9848 }
9849 if (reloc_vector != NULL)
9850 free (reloc_vector);
9851 return data;
9852
9853 error_return:
9854 if (reloc_vector != NULL)
9855 free (reloc_vector);
9856 return NULL;
9857 }
9858 \f
9859 /* Create a MIPS ELF linker hash table. */
9860
9861 struct bfd_link_hash_table *
9862 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
9863 {
9864 struct mips_elf_link_hash_table *ret;
9865 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
9866
9867 ret = bfd_malloc (amt);
9868 if (ret == NULL)
9869 return NULL;
9870
9871 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
9872 mips_elf_link_hash_newfunc,
9873 sizeof (struct mips_elf_link_hash_entry)))
9874 {
9875 free (ret);
9876 return NULL;
9877 }
9878
9879 #if 0
9880 /* We no longer use this. */
9881 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
9882 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
9883 #endif
9884 ret->procedure_count = 0;
9885 ret->compact_rel_size = 0;
9886 ret->use_rld_obj_head = FALSE;
9887 ret->rld_value = 0;
9888 ret->mips16_stubs_seen = FALSE;
9889 ret->is_vxworks = FALSE;
9890 ret->srelbss = NULL;
9891 ret->sdynbss = NULL;
9892 ret->srelplt = NULL;
9893 ret->srelplt2 = NULL;
9894 ret->sgotplt = NULL;
9895 ret->splt = NULL;
9896 ret->plt_header_size = 0;
9897 ret->plt_entry_size = 0;
9898
9899 return &ret->root.root;
9900 }
9901
9902 /* Likewise, but indicate that the target is VxWorks. */
9903
9904 struct bfd_link_hash_table *
9905 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
9906 {
9907 struct bfd_link_hash_table *ret;
9908
9909 ret = _bfd_mips_elf_link_hash_table_create (abfd);
9910 if (ret)
9911 {
9912 struct mips_elf_link_hash_table *htab;
9913
9914 htab = (struct mips_elf_link_hash_table *) ret;
9915 htab->is_vxworks = 1;
9916 }
9917 return ret;
9918 }
9919 \f
9920 /* We need to use a special link routine to handle the .reginfo and
9921 the .mdebug sections. We need to merge all instances of these
9922 sections together, not write them all out sequentially. */
9923
9924 bfd_boolean
9925 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
9926 {
9927 asection *o;
9928 struct bfd_link_order *p;
9929 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
9930 asection *rtproc_sec;
9931 Elf32_RegInfo reginfo;
9932 struct ecoff_debug_info debug;
9933 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9934 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
9935 HDRR *symhdr = &debug.symbolic_header;
9936 void *mdebug_handle = NULL;
9937 asection *s;
9938 EXTR esym;
9939 unsigned int i;
9940 bfd_size_type amt;
9941 struct mips_elf_link_hash_table *htab;
9942
9943 static const char * const secname[] =
9944 {
9945 ".text", ".init", ".fini", ".data",
9946 ".rodata", ".sdata", ".sbss", ".bss"
9947 };
9948 static const int sc[] =
9949 {
9950 scText, scInit, scFini, scData,
9951 scRData, scSData, scSBss, scBss
9952 };
9953
9954 /* We'd carefully arranged the dynamic symbol indices, and then the
9955 generic size_dynamic_sections renumbered them out from under us.
9956 Rather than trying somehow to prevent the renumbering, just do
9957 the sort again. */
9958 htab = mips_elf_hash_table (info);
9959 if (elf_hash_table (info)->dynamic_sections_created)
9960 {
9961 bfd *dynobj;
9962 asection *got;
9963 struct mips_got_info *g;
9964 bfd_size_type dynsecsymcount;
9965
9966 /* When we resort, we must tell mips_elf_sort_hash_table what
9967 the lowest index it may use is. That's the number of section
9968 symbols we're going to add. The generic ELF linker only
9969 adds these symbols when building a shared object. Note that
9970 we count the sections after (possibly) removing the .options
9971 section above. */
9972
9973 dynsecsymcount = 0;
9974 if (info->shared)
9975 {
9976 asection * p;
9977
9978 for (p = abfd->sections; p ; p = p->next)
9979 if ((p->flags & SEC_EXCLUDE) == 0
9980 && (p->flags & SEC_ALLOC) != 0
9981 && !(*bed->elf_backend_omit_section_dynsym) (abfd, info, p))
9982 ++ dynsecsymcount;
9983 }
9984
9985 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
9986 return FALSE;
9987
9988 /* Make sure we didn't grow the global .got region. */
9989 dynobj = elf_hash_table (info)->dynobj;
9990 got = mips_elf_got_section (dynobj, FALSE);
9991 g = mips_elf_section_data (got)->u.got_info;
9992
9993 if (g->global_gotsym != NULL)
9994 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
9995 - g->global_gotsym->dynindx)
9996 <= g->global_gotno);
9997 }
9998
9999 /* Get a value for the GP register. */
10000 if (elf_gp (abfd) == 0)
10001 {
10002 struct bfd_link_hash_entry *h;
10003
10004 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
10005 if (h != NULL && h->type == bfd_link_hash_defined)
10006 elf_gp (abfd) = (h->u.def.value
10007 + h->u.def.section->output_section->vma
10008 + h->u.def.section->output_offset);
10009 else if (htab->is_vxworks
10010 && (h = bfd_link_hash_lookup (info->hash,
10011 "_GLOBAL_OFFSET_TABLE_",
10012 FALSE, FALSE, TRUE))
10013 && h->type == bfd_link_hash_defined)
10014 elf_gp (abfd) = (h->u.def.section->output_section->vma
10015 + h->u.def.section->output_offset
10016 + h->u.def.value);
10017 else if (info->relocatable)
10018 {
10019 bfd_vma lo = MINUS_ONE;
10020
10021 /* Find the GP-relative section with the lowest offset. */
10022 for (o = abfd->sections; o != NULL; o = o->next)
10023 if (o->vma < lo
10024 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10025 lo = o->vma;
10026
10027 /* And calculate GP relative to that. */
10028 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
10029 }
10030 else
10031 {
10032 /* If the relocate_section function needs to do a reloc
10033 involving the GP value, it should make a reloc_dangerous
10034 callback to warn that GP is not defined. */
10035 }
10036 }
10037
10038 /* Go through the sections and collect the .reginfo and .mdebug
10039 information. */
10040 reginfo_sec = NULL;
10041 mdebug_sec = NULL;
10042 gptab_data_sec = NULL;
10043 gptab_bss_sec = NULL;
10044 for (o = abfd->sections; o != NULL; o = o->next)
10045 {
10046 if (strcmp (o->name, ".reginfo") == 0)
10047 {
10048 memset (&reginfo, 0, sizeof reginfo);
10049
10050 /* We have found the .reginfo section in the output file.
10051 Look through all the link_orders comprising it and merge
10052 the information together. */
10053 for (p = o->map_head.link_order; p != NULL; p = p->next)
10054 {
10055 asection *input_section;
10056 bfd *input_bfd;
10057 Elf32_External_RegInfo ext;
10058 Elf32_RegInfo sub;
10059
10060 if (p->type != bfd_indirect_link_order)
10061 {
10062 if (p->type == bfd_data_link_order)
10063 continue;
10064 abort ();
10065 }
10066
10067 input_section = p->u.indirect.section;
10068 input_bfd = input_section->owner;
10069
10070 if (! bfd_get_section_contents (input_bfd, input_section,
10071 &ext, 0, sizeof ext))
10072 return FALSE;
10073
10074 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10075
10076 reginfo.ri_gprmask |= sub.ri_gprmask;
10077 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10078 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10079 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10080 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10081
10082 /* ri_gp_value is set by the function
10083 mips_elf32_section_processing when the section is
10084 finally written out. */
10085
10086 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10087 elf_link_input_bfd ignores this section. */
10088 input_section->flags &= ~SEC_HAS_CONTENTS;
10089 }
10090
10091 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10092 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
10093
10094 /* Skip this section later on (I don't think this currently
10095 matters, but someday it might). */
10096 o->map_head.link_order = NULL;
10097
10098 reginfo_sec = o;
10099 }
10100
10101 if (strcmp (o->name, ".mdebug") == 0)
10102 {
10103 struct extsym_info einfo;
10104 bfd_vma last;
10105
10106 /* We have found the .mdebug section in the output file.
10107 Look through all the link_orders comprising it and merge
10108 the information together. */
10109 symhdr->magic = swap->sym_magic;
10110 /* FIXME: What should the version stamp be? */
10111 symhdr->vstamp = 0;
10112 symhdr->ilineMax = 0;
10113 symhdr->cbLine = 0;
10114 symhdr->idnMax = 0;
10115 symhdr->ipdMax = 0;
10116 symhdr->isymMax = 0;
10117 symhdr->ioptMax = 0;
10118 symhdr->iauxMax = 0;
10119 symhdr->issMax = 0;
10120 symhdr->issExtMax = 0;
10121 symhdr->ifdMax = 0;
10122 symhdr->crfd = 0;
10123 symhdr->iextMax = 0;
10124
10125 /* We accumulate the debugging information itself in the
10126 debug_info structure. */
10127 debug.line = NULL;
10128 debug.external_dnr = NULL;
10129 debug.external_pdr = NULL;
10130 debug.external_sym = NULL;
10131 debug.external_opt = NULL;
10132 debug.external_aux = NULL;
10133 debug.ss = NULL;
10134 debug.ssext = debug.ssext_end = NULL;
10135 debug.external_fdr = NULL;
10136 debug.external_rfd = NULL;
10137 debug.external_ext = debug.external_ext_end = NULL;
10138
10139 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
10140 if (mdebug_handle == NULL)
10141 return FALSE;
10142
10143 esym.jmptbl = 0;
10144 esym.cobol_main = 0;
10145 esym.weakext = 0;
10146 esym.reserved = 0;
10147 esym.ifd = ifdNil;
10148 esym.asym.iss = issNil;
10149 esym.asym.st = stLocal;
10150 esym.asym.reserved = 0;
10151 esym.asym.index = indexNil;
10152 last = 0;
10153 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10154 {
10155 esym.asym.sc = sc[i];
10156 s = bfd_get_section_by_name (abfd, secname[i]);
10157 if (s != NULL)
10158 {
10159 esym.asym.value = s->vma;
10160 last = s->vma + s->size;
10161 }
10162 else
10163 esym.asym.value = last;
10164 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10165 secname[i], &esym))
10166 return FALSE;
10167 }
10168
10169 for (p = o->map_head.link_order; p != NULL; p = p->next)
10170 {
10171 asection *input_section;
10172 bfd *input_bfd;
10173 const struct ecoff_debug_swap *input_swap;
10174 struct ecoff_debug_info input_debug;
10175 char *eraw_src;
10176 char *eraw_end;
10177
10178 if (p->type != bfd_indirect_link_order)
10179 {
10180 if (p->type == bfd_data_link_order)
10181 continue;
10182 abort ();
10183 }
10184
10185 input_section = p->u.indirect.section;
10186 input_bfd = input_section->owner;
10187
10188 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10189 || (get_elf_backend_data (input_bfd)
10190 ->elf_backend_ecoff_debug_swap) == NULL)
10191 {
10192 /* I don't know what a non MIPS ELF bfd would be
10193 doing with a .mdebug section, but I don't really
10194 want to deal with it. */
10195 continue;
10196 }
10197
10198 input_swap = (get_elf_backend_data (input_bfd)
10199 ->elf_backend_ecoff_debug_swap);
10200
10201 BFD_ASSERT (p->size == input_section->size);
10202
10203 /* The ECOFF linking code expects that we have already
10204 read in the debugging information and set up an
10205 ecoff_debug_info structure, so we do that now. */
10206 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10207 &input_debug))
10208 return FALSE;
10209
10210 if (! (bfd_ecoff_debug_accumulate
10211 (mdebug_handle, abfd, &debug, swap, input_bfd,
10212 &input_debug, input_swap, info)))
10213 return FALSE;
10214
10215 /* Loop through the external symbols. For each one with
10216 interesting information, try to find the symbol in
10217 the linker global hash table and save the information
10218 for the output external symbols. */
10219 eraw_src = input_debug.external_ext;
10220 eraw_end = (eraw_src
10221 + (input_debug.symbolic_header.iextMax
10222 * input_swap->external_ext_size));
10223 for (;
10224 eraw_src < eraw_end;
10225 eraw_src += input_swap->external_ext_size)
10226 {
10227 EXTR ext;
10228 const char *name;
10229 struct mips_elf_link_hash_entry *h;
10230
10231 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
10232 if (ext.asym.sc == scNil
10233 || ext.asym.sc == scUndefined
10234 || ext.asym.sc == scSUndefined)
10235 continue;
10236
10237 name = input_debug.ssext + ext.asym.iss;
10238 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
10239 name, FALSE, FALSE, TRUE);
10240 if (h == NULL || h->esym.ifd != -2)
10241 continue;
10242
10243 if (ext.ifd != -1)
10244 {
10245 BFD_ASSERT (ext.ifd
10246 < input_debug.symbolic_header.ifdMax);
10247 ext.ifd = input_debug.ifdmap[ext.ifd];
10248 }
10249
10250 h->esym = ext;
10251 }
10252
10253 /* Free up the information we just read. */
10254 free (input_debug.line);
10255 free (input_debug.external_dnr);
10256 free (input_debug.external_pdr);
10257 free (input_debug.external_sym);
10258 free (input_debug.external_opt);
10259 free (input_debug.external_aux);
10260 free (input_debug.ss);
10261 free (input_debug.ssext);
10262 free (input_debug.external_fdr);
10263 free (input_debug.external_rfd);
10264 free (input_debug.external_ext);
10265
10266 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10267 elf_link_input_bfd ignores this section. */
10268 input_section->flags &= ~SEC_HAS_CONTENTS;
10269 }
10270
10271 if (SGI_COMPAT (abfd) && info->shared)
10272 {
10273 /* Create .rtproc section. */
10274 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10275 if (rtproc_sec == NULL)
10276 {
10277 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10278 | SEC_LINKER_CREATED | SEC_READONLY);
10279
10280 rtproc_sec = bfd_make_section_with_flags (abfd,
10281 ".rtproc",
10282 flags);
10283 if (rtproc_sec == NULL
10284 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
10285 return FALSE;
10286 }
10287
10288 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10289 info, rtproc_sec,
10290 &debug))
10291 return FALSE;
10292 }
10293
10294 /* Build the external symbol information. */
10295 einfo.abfd = abfd;
10296 einfo.info = info;
10297 einfo.debug = &debug;
10298 einfo.swap = swap;
10299 einfo.failed = FALSE;
10300 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
10301 mips_elf_output_extsym, &einfo);
10302 if (einfo.failed)
10303 return FALSE;
10304
10305 /* Set the size of the .mdebug section. */
10306 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
10307
10308 /* Skip this section later on (I don't think this currently
10309 matters, but someday it might). */
10310 o->map_head.link_order = NULL;
10311
10312 mdebug_sec = o;
10313 }
10314
10315 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
10316 {
10317 const char *subname;
10318 unsigned int c;
10319 Elf32_gptab *tab;
10320 Elf32_External_gptab *ext_tab;
10321 unsigned int j;
10322
10323 /* The .gptab.sdata and .gptab.sbss sections hold
10324 information describing how the small data area would
10325 change depending upon the -G switch. These sections
10326 not used in executables files. */
10327 if (! info->relocatable)
10328 {
10329 for (p = o->map_head.link_order; p != NULL; p = p->next)
10330 {
10331 asection *input_section;
10332
10333 if (p->type != bfd_indirect_link_order)
10334 {
10335 if (p->type == bfd_data_link_order)
10336 continue;
10337 abort ();
10338 }
10339
10340 input_section = p->u.indirect.section;
10341
10342 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10343 elf_link_input_bfd ignores this section. */
10344 input_section->flags &= ~SEC_HAS_CONTENTS;
10345 }
10346
10347 /* Skip this section later on (I don't think this
10348 currently matters, but someday it might). */
10349 o->map_head.link_order = NULL;
10350
10351 /* Really remove the section. */
10352 bfd_section_list_remove (abfd, o);
10353 --abfd->section_count;
10354
10355 continue;
10356 }
10357
10358 /* There is one gptab for initialized data, and one for
10359 uninitialized data. */
10360 if (strcmp (o->name, ".gptab.sdata") == 0)
10361 gptab_data_sec = o;
10362 else if (strcmp (o->name, ".gptab.sbss") == 0)
10363 gptab_bss_sec = o;
10364 else
10365 {
10366 (*_bfd_error_handler)
10367 (_("%s: illegal section name `%s'"),
10368 bfd_get_filename (abfd), o->name);
10369 bfd_set_error (bfd_error_nonrepresentable_section);
10370 return FALSE;
10371 }
10372
10373 /* The linker script always combines .gptab.data and
10374 .gptab.sdata into .gptab.sdata, and likewise for
10375 .gptab.bss and .gptab.sbss. It is possible that there is
10376 no .sdata or .sbss section in the output file, in which
10377 case we must change the name of the output section. */
10378 subname = o->name + sizeof ".gptab" - 1;
10379 if (bfd_get_section_by_name (abfd, subname) == NULL)
10380 {
10381 if (o == gptab_data_sec)
10382 o->name = ".gptab.data";
10383 else
10384 o->name = ".gptab.bss";
10385 subname = o->name + sizeof ".gptab" - 1;
10386 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10387 }
10388
10389 /* Set up the first entry. */
10390 c = 1;
10391 amt = c * sizeof (Elf32_gptab);
10392 tab = bfd_malloc (amt);
10393 if (tab == NULL)
10394 return FALSE;
10395 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10396 tab[0].gt_header.gt_unused = 0;
10397
10398 /* Combine the input sections. */
10399 for (p = o->map_head.link_order; p != NULL; p = p->next)
10400 {
10401 asection *input_section;
10402 bfd *input_bfd;
10403 bfd_size_type size;
10404 unsigned long last;
10405 bfd_size_type gpentry;
10406
10407 if (p->type != bfd_indirect_link_order)
10408 {
10409 if (p->type == bfd_data_link_order)
10410 continue;
10411 abort ();
10412 }
10413
10414 input_section = p->u.indirect.section;
10415 input_bfd = input_section->owner;
10416
10417 /* Combine the gptab entries for this input section one
10418 by one. We know that the input gptab entries are
10419 sorted by ascending -G value. */
10420 size = input_section->size;
10421 last = 0;
10422 for (gpentry = sizeof (Elf32_External_gptab);
10423 gpentry < size;
10424 gpentry += sizeof (Elf32_External_gptab))
10425 {
10426 Elf32_External_gptab ext_gptab;
10427 Elf32_gptab int_gptab;
10428 unsigned long val;
10429 unsigned long add;
10430 bfd_boolean exact;
10431 unsigned int look;
10432
10433 if (! (bfd_get_section_contents
10434 (input_bfd, input_section, &ext_gptab, gpentry,
10435 sizeof (Elf32_External_gptab))))
10436 {
10437 free (tab);
10438 return FALSE;
10439 }
10440
10441 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10442 &int_gptab);
10443 val = int_gptab.gt_entry.gt_g_value;
10444 add = int_gptab.gt_entry.gt_bytes - last;
10445
10446 exact = FALSE;
10447 for (look = 1; look < c; look++)
10448 {
10449 if (tab[look].gt_entry.gt_g_value >= val)
10450 tab[look].gt_entry.gt_bytes += add;
10451
10452 if (tab[look].gt_entry.gt_g_value == val)
10453 exact = TRUE;
10454 }
10455
10456 if (! exact)
10457 {
10458 Elf32_gptab *new_tab;
10459 unsigned int max;
10460
10461 /* We need a new table entry. */
10462 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
10463 new_tab = bfd_realloc (tab, amt);
10464 if (new_tab == NULL)
10465 {
10466 free (tab);
10467 return FALSE;
10468 }
10469 tab = new_tab;
10470 tab[c].gt_entry.gt_g_value = val;
10471 tab[c].gt_entry.gt_bytes = add;
10472
10473 /* Merge in the size for the next smallest -G
10474 value, since that will be implied by this new
10475 value. */
10476 max = 0;
10477 for (look = 1; look < c; look++)
10478 {
10479 if (tab[look].gt_entry.gt_g_value < val
10480 && (max == 0
10481 || (tab[look].gt_entry.gt_g_value
10482 > tab[max].gt_entry.gt_g_value)))
10483 max = look;
10484 }
10485 if (max != 0)
10486 tab[c].gt_entry.gt_bytes +=
10487 tab[max].gt_entry.gt_bytes;
10488
10489 ++c;
10490 }
10491
10492 last = int_gptab.gt_entry.gt_bytes;
10493 }
10494
10495 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10496 elf_link_input_bfd ignores this section. */
10497 input_section->flags &= ~SEC_HAS_CONTENTS;
10498 }
10499
10500 /* The table must be sorted by -G value. */
10501 if (c > 2)
10502 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10503
10504 /* Swap out the table. */
10505 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
10506 ext_tab = bfd_alloc (abfd, amt);
10507 if (ext_tab == NULL)
10508 {
10509 free (tab);
10510 return FALSE;
10511 }
10512
10513 for (j = 0; j < c; j++)
10514 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10515 free (tab);
10516
10517 o->size = c * sizeof (Elf32_External_gptab);
10518 o->contents = (bfd_byte *) ext_tab;
10519
10520 /* Skip this section later on (I don't think this currently
10521 matters, but someday it might). */
10522 o->map_head.link_order = NULL;
10523 }
10524 }
10525
10526 /* Invoke the regular ELF backend linker to do all the work. */
10527 if (!bfd_elf_final_link (abfd, info))
10528 return FALSE;
10529
10530 /* Now write out the computed sections. */
10531
10532 if (reginfo_sec != NULL)
10533 {
10534 Elf32_External_RegInfo ext;
10535
10536 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
10537 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
10538 return FALSE;
10539 }
10540
10541 if (mdebug_sec != NULL)
10542 {
10543 BFD_ASSERT (abfd->output_has_begun);
10544 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10545 swap, info,
10546 mdebug_sec->filepos))
10547 return FALSE;
10548
10549 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10550 }
10551
10552 if (gptab_data_sec != NULL)
10553 {
10554 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10555 gptab_data_sec->contents,
10556 0, gptab_data_sec->size))
10557 return FALSE;
10558 }
10559
10560 if (gptab_bss_sec != NULL)
10561 {
10562 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10563 gptab_bss_sec->contents,
10564 0, gptab_bss_sec->size))
10565 return FALSE;
10566 }
10567
10568 if (SGI_COMPAT (abfd))
10569 {
10570 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10571 if (rtproc_sec != NULL)
10572 {
10573 if (! bfd_set_section_contents (abfd, rtproc_sec,
10574 rtproc_sec->contents,
10575 0, rtproc_sec->size))
10576 return FALSE;
10577 }
10578 }
10579
10580 return TRUE;
10581 }
10582 \f
10583 /* Structure for saying that BFD machine EXTENSION extends BASE. */
10584
10585 struct mips_mach_extension {
10586 unsigned long extension, base;
10587 };
10588
10589
10590 /* An array describing how BFD machines relate to one another. The entries
10591 are ordered topologically with MIPS I extensions listed last. */
10592
10593 static const struct mips_mach_extension mips_mach_extensions[] = {
10594 /* MIPS64 extensions. */
10595 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
10596 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10597
10598 /* MIPS V extensions. */
10599 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10600
10601 /* R10000 extensions. */
10602 { bfd_mach_mips12000, bfd_mach_mips10000 },
10603
10604 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10605 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10606 better to allow vr5400 and vr5500 code to be merged anyway, since
10607 many libraries will just use the core ISA. Perhaps we could add
10608 some sort of ASE flag if this ever proves a problem. */
10609 { bfd_mach_mips5500, bfd_mach_mips5400 },
10610 { bfd_mach_mips5400, bfd_mach_mips5000 },
10611
10612 /* MIPS IV extensions. */
10613 { bfd_mach_mips5, bfd_mach_mips8000 },
10614 { bfd_mach_mips10000, bfd_mach_mips8000 },
10615 { bfd_mach_mips5000, bfd_mach_mips8000 },
10616 { bfd_mach_mips7000, bfd_mach_mips8000 },
10617 { bfd_mach_mips9000, bfd_mach_mips8000 },
10618
10619 /* VR4100 extensions. */
10620 { bfd_mach_mips4120, bfd_mach_mips4100 },
10621 { bfd_mach_mips4111, bfd_mach_mips4100 },
10622
10623 /* MIPS III extensions. */
10624 { bfd_mach_mips8000, bfd_mach_mips4000 },
10625 { bfd_mach_mips4650, bfd_mach_mips4000 },
10626 { bfd_mach_mips4600, bfd_mach_mips4000 },
10627 { bfd_mach_mips4400, bfd_mach_mips4000 },
10628 { bfd_mach_mips4300, bfd_mach_mips4000 },
10629 { bfd_mach_mips4100, bfd_mach_mips4000 },
10630 { bfd_mach_mips4010, bfd_mach_mips4000 },
10631
10632 /* MIPS32 extensions. */
10633 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10634
10635 /* MIPS II extensions. */
10636 { bfd_mach_mips4000, bfd_mach_mips6000 },
10637 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10638
10639 /* MIPS I extensions. */
10640 { bfd_mach_mips6000, bfd_mach_mips3000 },
10641 { bfd_mach_mips3900, bfd_mach_mips3000 }
10642 };
10643
10644
10645 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10646
10647 static bfd_boolean
10648 mips_mach_extends_p (unsigned long base, unsigned long extension)
10649 {
10650 size_t i;
10651
10652 if (extension == base)
10653 return TRUE;
10654
10655 if (base == bfd_mach_mipsisa32
10656 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10657 return TRUE;
10658
10659 if (base == bfd_mach_mipsisa32r2
10660 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10661 return TRUE;
10662
10663 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
10664 if (extension == mips_mach_extensions[i].extension)
10665 {
10666 extension = mips_mach_extensions[i].base;
10667 if (extension == base)
10668 return TRUE;
10669 }
10670
10671 return FALSE;
10672 }
10673
10674
10675 /* Return true if the given ELF header flags describe a 32-bit binary. */
10676
10677 static bfd_boolean
10678 mips_32bit_flags_p (flagword flags)
10679 {
10680 return ((flags & EF_MIPS_32BITMODE) != 0
10681 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10682 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10683 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10684 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10685 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10686 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
10687 }
10688
10689
10690 /* Merge backend specific data from an object file to the output
10691 object file when linking. */
10692
10693 bfd_boolean
10694 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
10695 {
10696 flagword old_flags;
10697 flagword new_flags;
10698 bfd_boolean ok;
10699 bfd_boolean null_input_bfd = TRUE;
10700 asection *sec;
10701
10702 /* Check if we have the same endianess */
10703 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
10704 {
10705 (*_bfd_error_handler)
10706 (_("%B: endianness incompatible with that of the selected emulation"),
10707 ibfd);
10708 return FALSE;
10709 }
10710
10711 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
10712 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
10713 return TRUE;
10714
10715 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
10716 {
10717 (*_bfd_error_handler)
10718 (_("%B: ABI is incompatible with that of the selected emulation"),
10719 ibfd);
10720 return FALSE;
10721 }
10722
10723 new_flags = elf_elfheader (ibfd)->e_flags;
10724 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
10725 old_flags = elf_elfheader (obfd)->e_flags;
10726
10727 if (! elf_flags_init (obfd))
10728 {
10729 elf_flags_init (obfd) = TRUE;
10730 elf_elfheader (obfd)->e_flags = new_flags;
10731 elf_elfheader (obfd)->e_ident[EI_CLASS]
10732 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
10733
10734 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
10735 && bfd_get_arch_info (obfd)->the_default)
10736 {
10737 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
10738 bfd_get_mach (ibfd)))
10739 return FALSE;
10740 }
10741
10742 return TRUE;
10743 }
10744
10745 /* Check flag compatibility. */
10746
10747 new_flags &= ~EF_MIPS_NOREORDER;
10748 old_flags &= ~EF_MIPS_NOREORDER;
10749
10750 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
10751 doesn't seem to matter. */
10752 new_flags &= ~EF_MIPS_XGOT;
10753 old_flags &= ~EF_MIPS_XGOT;
10754
10755 /* MIPSpro generates ucode info in n64 objects. Again, we should
10756 just be able to ignore this. */
10757 new_flags &= ~EF_MIPS_UCODE;
10758 old_flags &= ~EF_MIPS_UCODE;
10759
10760 /* Don't care about the PIC flags from dynamic objects; they are
10761 PIC by design. */
10762 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
10763 && (ibfd->flags & DYNAMIC) != 0)
10764 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10765
10766 if (new_flags == old_flags)
10767 return TRUE;
10768
10769 /* Check to see if the input BFD actually contains any sections.
10770 If not, its flags may not have been initialised either, but it cannot
10771 actually cause any incompatibility. */
10772 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
10773 {
10774 /* Ignore synthetic sections and empty .text, .data and .bss sections
10775 which are automatically generated by gas. */
10776 if (strcmp (sec->name, ".reginfo")
10777 && strcmp (sec->name, ".mdebug")
10778 && (sec->size != 0
10779 || (strcmp (sec->name, ".text")
10780 && strcmp (sec->name, ".data")
10781 && strcmp (sec->name, ".bss"))))
10782 {
10783 null_input_bfd = FALSE;
10784 break;
10785 }
10786 }
10787 if (null_input_bfd)
10788 return TRUE;
10789
10790 ok = TRUE;
10791
10792 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
10793 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
10794 {
10795 (*_bfd_error_handler)
10796 (_("%B: warning: linking PIC files with non-PIC files"),
10797 ibfd);
10798 ok = TRUE;
10799 }
10800
10801 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
10802 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
10803 if (! (new_flags & EF_MIPS_PIC))
10804 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
10805
10806 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10807 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10808
10809 /* Compare the ISAs. */
10810 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
10811 {
10812 (*_bfd_error_handler)
10813 (_("%B: linking 32-bit code with 64-bit code"),
10814 ibfd);
10815 ok = FALSE;
10816 }
10817 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
10818 {
10819 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
10820 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
10821 {
10822 /* Copy the architecture info from IBFD to OBFD. Also copy
10823 the 32-bit flag (if set) so that we continue to recognise
10824 OBFD as a 32-bit binary. */
10825 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
10826 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10827 elf_elfheader (obfd)->e_flags
10828 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10829
10830 /* Copy across the ABI flags if OBFD doesn't use them
10831 and if that was what caused us to treat IBFD as 32-bit. */
10832 if ((old_flags & EF_MIPS_ABI) == 0
10833 && mips_32bit_flags_p (new_flags)
10834 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
10835 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
10836 }
10837 else
10838 {
10839 /* The ISAs aren't compatible. */
10840 (*_bfd_error_handler)
10841 (_("%B: linking %s module with previous %s modules"),
10842 ibfd,
10843 bfd_printable_name (ibfd),
10844 bfd_printable_name (obfd));
10845 ok = FALSE;
10846 }
10847 }
10848
10849 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10850 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10851
10852 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
10853 does set EI_CLASS differently from any 32-bit ABI. */
10854 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
10855 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
10856 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
10857 {
10858 /* Only error if both are set (to different values). */
10859 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
10860 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
10861 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
10862 {
10863 (*_bfd_error_handler)
10864 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
10865 ibfd,
10866 elf_mips_abi_name (ibfd),
10867 elf_mips_abi_name (obfd));
10868 ok = FALSE;
10869 }
10870 new_flags &= ~EF_MIPS_ABI;
10871 old_flags &= ~EF_MIPS_ABI;
10872 }
10873
10874 /* For now, allow arbitrary mixing of ASEs (retain the union). */
10875 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
10876 {
10877 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
10878
10879 new_flags &= ~ EF_MIPS_ARCH_ASE;
10880 old_flags &= ~ EF_MIPS_ARCH_ASE;
10881 }
10882
10883 /* Warn about any other mismatches */
10884 if (new_flags != old_flags)
10885 {
10886 (*_bfd_error_handler)
10887 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
10888 ibfd, (unsigned long) new_flags,
10889 (unsigned long) old_flags);
10890 ok = FALSE;
10891 }
10892
10893 if (! ok)
10894 {
10895 bfd_set_error (bfd_error_bad_value);
10896 return FALSE;
10897 }
10898
10899 return TRUE;
10900 }
10901
10902 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
10903
10904 bfd_boolean
10905 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
10906 {
10907 BFD_ASSERT (!elf_flags_init (abfd)
10908 || elf_elfheader (abfd)->e_flags == flags);
10909
10910 elf_elfheader (abfd)->e_flags = flags;
10911 elf_flags_init (abfd) = TRUE;
10912 return TRUE;
10913 }
10914
10915 bfd_boolean
10916 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
10917 {
10918 FILE *file = ptr;
10919
10920 BFD_ASSERT (abfd != NULL && ptr != NULL);
10921
10922 /* Print normal ELF private data. */
10923 _bfd_elf_print_private_bfd_data (abfd, ptr);
10924
10925 /* xgettext:c-format */
10926 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
10927
10928 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
10929 fprintf (file, _(" [abi=O32]"));
10930 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
10931 fprintf (file, _(" [abi=O64]"));
10932 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
10933 fprintf (file, _(" [abi=EABI32]"));
10934 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
10935 fprintf (file, _(" [abi=EABI64]"));
10936 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
10937 fprintf (file, _(" [abi unknown]"));
10938 else if (ABI_N32_P (abfd))
10939 fprintf (file, _(" [abi=N32]"));
10940 else if (ABI_64_P (abfd))
10941 fprintf (file, _(" [abi=64]"));
10942 else
10943 fprintf (file, _(" [no abi set]"));
10944
10945 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
10946 fprintf (file, _(" [mips1]"));
10947 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
10948 fprintf (file, _(" [mips2]"));
10949 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
10950 fprintf (file, _(" [mips3]"));
10951 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
10952 fprintf (file, _(" [mips4]"));
10953 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
10954 fprintf (file, _(" [mips5]"));
10955 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
10956 fprintf (file, _(" [mips32]"));
10957 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
10958 fprintf (file, _(" [mips64]"));
10959 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
10960 fprintf (file, _(" [mips32r2]"));
10961 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
10962 fprintf (file, _(" [mips64r2]"));
10963 else
10964 fprintf (file, _(" [unknown ISA]"));
10965
10966 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
10967 fprintf (file, _(" [mdmx]"));
10968
10969 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
10970 fprintf (file, _(" [mips16]"));
10971
10972 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
10973 fprintf (file, _(" [32bitmode]"));
10974 else
10975 fprintf (file, _(" [not 32bitmode]"));
10976
10977 fputc ('\n', file);
10978
10979 return TRUE;
10980 }
10981
10982 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
10983 {
10984 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
10985 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
10986 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
10987 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
10988 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
10989 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
10990 { NULL, 0, 0, 0, 0 }
10991 };
10992
10993 /* Ensure that the STO_OPTIONAL flag is copied into h->other,
10994 even if this is not a defintion of the symbol. */
10995 void
10996 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
10997 const Elf_Internal_Sym *isym,
10998 bfd_boolean definition,
10999 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11000 {
11001 if (! definition
11002 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11003 h->other |= STO_OPTIONAL;
11004 }
11005
11006 /* Decide whether an undefined symbol is special and can be ignored.
11007 This is the case for OPTIONAL symbols on IRIX. */
11008 bfd_boolean
11009 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11010 {
11011 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11012 }
This page took 0.339035 seconds and 5 git commands to generate.