* gdb.texinfo (Index Section Format): Update for version 7.
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
30
31 /* This file handles functionality common to the different MIPS ABI's. */
32
33 #include "sysdep.h"
34 #include "bfd.h"
35 #include "libbfd.h"
36 #include "libiberty.h"
37 #include "elf-bfd.h"
38 #include "elfxx-mips.h"
39 #include "elf/mips.h"
40 #include "elf-vxworks.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* This structure is used to hold information about one GOT entry.
51 There are three types of entry:
52
53 (1) absolute addresses
54 (abfd == NULL)
55 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
56 (abfd != NULL, symndx >= 0)
57 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
58 (abfd != NULL, symndx == -1)
59
60 Type (3) entries are treated differently for different types of GOT.
61 In the "master" GOT -- i.e. the one that describes every GOT
62 reference needed in the link -- the mips_got_entry is keyed on both
63 the symbol and the input bfd that references it. If it turns out
64 that we need multiple GOTs, we can then use this information to
65 create separate GOTs for each input bfd.
66
67 However, we want each of these separate GOTs to have at most one
68 entry for a given symbol, so their type (3) entries are keyed only
69 on the symbol. The input bfd given by the "abfd" field is somewhat
70 arbitrary in this case.
71
72 This means that when there are multiple GOTs, each GOT has a unique
73 mips_got_entry for every symbol within it. We can therefore use the
74 mips_got_entry fields (tls_type and gotidx) to track the symbol's
75 GOT index.
76
77 However, if it turns out that we need only a single GOT, we continue
78 to use the master GOT to describe it. There may therefore be several
79 mips_got_entries for the same symbol, each with a different input bfd.
80 We want to make sure that each symbol gets a unique GOT entry, so when
81 there's a single GOT, we use the symbol's hash entry, not the
82 mips_got_entry fields, to track a symbol's GOT index. */
83 struct mips_got_entry
84 {
85 /* The input bfd in which the symbol is defined. */
86 bfd *abfd;
87 /* The index of the symbol, as stored in the relocation r_info, if
88 we have a local symbol; -1 otherwise. */
89 long symndx;
90 union
91 {
92 /* If abfd == NULL, an address that must be stored in the got. */
93 bfd_vma address;
94 /* If abfd != NULL && symndx != -1, the addend of the relocation
95 that should be added to the symbol value. */
96 bfd_vma addend;
97 /* If abfd != NULL && symndx == -1, the hash table entry
98 corresponding to symbol in the GOT. The symbol's entry
99 is in the local area if h->global_got_area is GGA_NONE,
100 otherwise it is in the global area. */
101 struct mips_elf_link_hash_entry *h;
102 } d;
103
104 /* The TLS types included in this GOT entry (specifically, GD and
105 IE). The GD and IE flags can be added as we encounter new
106 relocations. LDM can also be set; it will always be alone, not
107 combined with any GD or IE flags. An LDM GOT entry will be
108 a local symbol entry with r_symndx == 0. */
109 unsigned char tls_type;
110
111 /* The offset from the beginning of the .got section to the entry
112 corresponding to this symbol+addend. If it's a global symbol
113 whose offset is yet to be decided, it's going to be -1. */
114 long gotidx;
115 };
116
117 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
118 The structures form a non-overlapping list that is sorted by increasing
119 MIN_ADDEND. */
120 struct mips_got_page_range
121 {
122 struct mips_got_page_range *next;
123 bfd_signed_vma min_addend;
124 bfd_signed_vma max_addend;
125 };
126
127 /* This structure describes the range of addends that are applied to page
128 relocations against a given symbol. */
129 struct mips_got_page_entry
130 {
131 /* The input bfd in which the symbol is defined. */
132 bfd *abfd;
133 /* The index of the symbol, as stored in the relocation r_info. */
134 long symndx;
135 /* The ranges for this page entry. */
136 struct mips_got_page_range *ranges;
137 /* The maximum number of page entries needed for RANGES. */
138 bfd_vma num_pages;
139 };
140
141 /* This structure is used to hold .got information when linking. */
142
143 struct mips_got_info
144 {
145 /* The global symbol in the GOT with the lowest index in the dynamic
146 symbol table. */
147 struct elf_link_hash_entry *global_gotsym;
148 /* The number of global .got entries. */
149 unsigned int global_gotno;
150 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
151 unsigned int reloc_only_gotno;
152 /* The number of .got slots used for TLS. */
153 unsigned int tls_gotno;
154 /* The first unused TLS .got entry. Used only during
155 mips_elf_initialize_tls_index. */
156 unsigned int tls_assigned_gotno;
157 /* The number of local .got entries, eventually including page entries. */
158 unsigned int local_gotno;
159 /* The maximum number of page entries needed. */
160 unsigned int page_gotno;
161 /* The number of local .got entries we have used. */
162 unsigned int assigned_gotno;
163 /* A hash table holding members of the got. */
164 struct htab *got_entries;
165 /* A hash table of mips_got_page_entry structures. */
166 struct htab *got_page_entries;
167 /* A hash table mapping input bfds to other mips_got_info. NULL
168 unless multi-got was necessary. */
169 struct htab *bfd2got;
170 /* In multi-got links, a pointer to the next got (err, rather, most
171 of the time, it points to the previous got). */
172 struct mips_got_info *next;
173 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
174 for none, or MINUS_TWO for not yet assigned. This is needed
175 because a single-GOT link may have multiple hash table entries
176 for the LDM. It does not get initialized in multi-GOT mode. */
177 bfd_vma tls_ldm_offset;
178 };
179
180 /* Map an input bfd to a got in a multi-got link. */
181
182 struct mips_elf_bfd2got_hash
183 {
184 bfd *bfd;
185 struct mips_got_info *g;
186 };
187
188 /* Structure passed when traversing the bfd2got hash table, used to
189 create and merge bfd's gots. */
190
191 struct mips_elf_got_per_bfd_arg
192 {
193 /* A hashtable that maps bfds to gots. */
194 htab_t bfd2got;
195 /* The output bfd. */
196 bfd *obfd;
197 /* The link information. */
198 struct bfd_link_info *info;
199 /* A pointer to the primary got, i.e., the one that's going to get
200 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
201 DT_MIPS_GOTSYM. */
202 struct mips_got_info *primary;
203 /* A non-primary got we're trying to merge with other input bfd's
204 gots. */
205 struct mips_got_info *current;
206 /* The maximum number of got entries that can be addressed with a
207 16-bit offset. */
208 unsigned int max_count;
209 /* The maximum number of page entries needed by each got. */
210 unsigned int max_pages;
211 /* The total number of global entries which will live in the
212 primary got and be automatically relocated. This includes
213 those not referenced by the primary GOT but included in
214 the "master" GOT. */
215 unsigned int global_count;
216 };
217
218 /* Another structure used to pass arguments for got entries traversal. */
219
220 struct mips_elf_set_global_got_offset_arg
221 {
222 struct mips_got_info *g;
223 int value;
224 unsigned int needed_relocs;
225 struct bfd_link_info *info;
226 };
227
228 /* A structure used to count TLS relocations or GOT entries, for GOT
229 entry or ELF symbol table traversal. */
230
231 struct mips_elf_count_tls_arg
232 {
233 struct bfd_link_info *info;
234 unsigned int needed;
235 };
236
237 struct _mips_elf_section_data
238 {
239 struct bfd_elf_section_data elf;
240 union
241 {
242 bfd_byte *tdata;
243 } u;
244 };
245
246 #define mips_elf_section_data(sec) \
247 ((struct _mips_elf_section_data *) elf_section_data (sec))
248
249 #define is_mips_elf(bfd) \
250 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
251 && elf_tdata (bfd) != NULL \
252 && elf_object_id (bfd) == MIPS_ELF_DATA)
253
254 /* The ABI says that every symbol used by dynamic relocations must have
255 a global GOT entry. Among other things, this provides the dynamic
256 linker with a free, directly-indexed cache. The GOT can therefore
257 contain symbols that are not referenced by GOT relocations themselves
258 (in other words, it may have symbols that are not referenced by things
259 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
260
261 GOT relocations are less likely to overflow if we put the associated
262 GOT entries towards the beginning. We therefore divide the global
263 GOT entries into two areas: "normal" and "reloc-only". Entries in
264 the first area can be used for both dynamic relocations and GP-relative
265 accesses, while those in the "reloc-only" area are for dynamic
266 relocations only.
267
268 These GGA_* ("Global GOT Area") values are organised so that lower
269 values are more general than higher values. Also, non-GGA_NONE
270 values are ordered by the position of the area in the GOT. */
271 #define GGA_NORMAL 0
272 #define GGA_RELOC_ONLY 1
273 #define GGA_NONE 2
274
275 /* Information about a non-PIC interface to a PIC function. There are
276 two ways of creating these interfaces. The first is to add:
277
278 lui $25,%hi(func)
279 addiu $25,$25,%lo(func)
280
281 immediately before a PIC function "func". The second is to add:
282
283 lui $25,%hi(func)
284 j func
285 addiu $25,$25,%lo(func)
286
287 to a separate trampoline section.
288
289 Stubs of the first kind go in a new section immediately before the
290 target function. Stubs of the second kind go in a single section
291 pointed to by the hash table's "strampoline" field. */
292 struct mips_elf_la25_stub {
293 /* The generated section that contains this stub. */
294 asection *stub_section;
295
296 /* The offset of the stub from the start of STUB_SECTION. */
297 bfd_vma offset;
298
299 /* One symbol for the original function. Its location is available
300 in H->root.root.u.def. */
301 struct mips_elf_link_hash_entry *h;
302 };
303
304 /* Macros for populating a mips_elf_la25_stub. */
305
306 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
307 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
308 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
309 #define LA25_LUI_MICROMIPS_1(VAL) (0x41b9) /* lui t9,VAL */
310 #define LA25_LUI_MICROMIPS_2(VAL) (VAL)
311 #define LA25_J_MICROMIPS_1(VAL) (0xd400 | (((VAL) >> 17) & 0x3ff)) /* j VAL */
312 #define LA25_J_MICROMIPS_2(VAL) ((VAL) >> 1)
313 #define LA25_ADDIU_MICROMIPS_1(VAL) (0x3339) /* addiu t9,t9,VAL */
314 #define LA25_ADDIU_MICROMIPS_2(VAL) (VAL)
315
316 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
317 the dynamic symbols. */
318
319 struct mips_elf_hash_sort_data
320 {
321 /* The symbol in the global GOT with the lowest dynamic symbol table
322 index. */
323 struct elf_link_hash_entry *low;
324 /* The least dynamic symbol table index corresponding to a non-TLS
325 symbol with a GOT entry. */
326 long min_got_dynindx;
327 /* The greatest dynamic symbol table index corresponding to a symbol
328 with a GOT entry that is not referenced (e.g., a dynamic symbol
329 with dynamic relocations pointing to it from non-primary GOTs). */
330 long max_unref_got_dynindx;
331 /* The greatest dynamic symbol table index not corresponding to a
332 symbol without a GOT entry. */
333 long max_non_got_dynindx;
334 };
335
336 /* The MIPS ELF linker needs additional information for each symbol in
337 the global hash table. */
338
339 struct mips_elf_link_hash_entry
340 {
341 struct elf_link_hash_entry root;
342
343 /* External symbol information. */
344 EXTR esym;
345
346 /* The la25 stub we have created for ths symbol, if any. */
347 struct mips_elf_la25_stub *la25_stub;
348
349 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
350 this symbol. */
351 unsigned int possibly_dynamic_relocs;
352
353 /* If there is a stub that 32 bit functions should use to call this
354 16 bit function, this points to the section containing the stub. */
355 asection *fn_stub;
356
357 /* If there is a stub that 16 bit functions should use to call this
358 32 bit function, this points to the section containing the stub. */
359 asection *call_stub;
360
361 /* This is like the call_stub field, but it is used if the function
362 being called returns a floating point value. */
363 asection *call_fp_stub;
364
365 #define GOT_NORMAL 0
366 #define GOT_TLS_GD 1
367 #define GOT_TLS_LDM 2
368 #define GOT_TLS_IE 4
369 #define GOT_TLS_OFFSET_DONE 0x40
370 #define GOT_TLS_DONE 0x80
371 unsigned char tls_type;
372
373 /* This is only used in single-GOT mode; in multi-GOT mode there
374 is one mips_got_entry per GOT entry, so the offset is stored
375 there. In single-GOT mode there may be many mips_got_entry
376 structures all referring to the same GOT slot. It might be
377 possible to use root.got.offset instead, but that field is
378 overloaded already. */
379 bfd_vma tls_got_offset;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423 #if 0
424 /* We no longer use this. */
425 /* String section indices for the dynamic section symbols. */
426 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
427 #endif
428
429 /* The number of .rtproc entries. */
430 bfd_size_type procedure_count;
431
432 /* The size of the .compact_rel section (if SGI_COMPAT). */
433 bfd_size_type compact_rel_size;
434
435 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
436 entry is set to the address of __rld_obj_head as in IRIX5. */
437 bfd_boolean use_rld_obj_head;
438
439 /* The __rld_map or __rld_obj_head symbol. */
440 struct elf_link_hash_entry *rld_symbol;
441
442 /* This is set if we see any mips16 stub sections. */
443 bfd_boolean mips16_stubs_seen;
444
445 /* True if we can generate copy relocs and PLTs. */
446 bfd_boolean use_plts_and_copy_relocs;
447
448 /* True if we're generating code for VxWorks. */
449 bfd_boolean is_vxworks;
450
451 /* True if we already reported the small-data section overflow. */
452 bfd_boolean small_data_overflow_reported;
453
454 /* Shortcuts to some dynamic sections, or NULL if they are not
455 being used. */
456 asection *srelbss;
457 asection *sdynbss;
458 asection *srelplt;
459 asection *srelplt2;
460 asection *sgotplt;
461 asection *splt;
462 asection *sstubs;
463 asection *sgot;
464
465 /* The master GOT information. */
466 struct mips_got_info *got_info;
467
468 /* The size of the PLT header in bytes. */
469 bfd_vma plt_header_size;
470
471 /* The size of a PLT entry in bytes. */
472 bfd_vma plt_entry_size;
473
474 /* The number of functions that need a lazy-binding stub. */
475 bfd_vma lazy_stub_count;
476
477 /* The size of a function stub entry in bytes. */
478 bfd_vma function_stub_size;
479
480 /* The number of reserved entries at the beginning of the GOT. */
481 unsigned int reserved_gotno;
482
483 /* The section used for mips_elf_la25_stub trampolines.
484 See the comment above that structure for details. */
485 asection *strampoline;
486
487 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
488 pairs. */
489 htab_t la25_stubs;
490
491 /* A function FN (NAME, IS, OS) that creates a new input section
492 called NAME and links it to output section OS. If IS is nonnull,
493 the new section should go immediately before it, otherwise it
494 should go at the (current) beginning of OS.
495
496 The function returns the new section on success, otherwise it
497 returns null. */
498 asection *(*add_stub_section) (const char *, asection *, asection *);
499 };
500
501 /* Get the MIPS ELF linker hash table from a link_info structure. */
502
503 #define mips_elf_hash_table(p) \
504 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
505 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
506
507 /* A structure used to communicate with htab_traverse callbacks. */
508 struct mips_htab_traverse_info
509 {
510 /* The usual link-wide information. */
511 struct bfd_link_info *info;
512 bfd *output_bfd;
513
514 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
515 bfd_boolean error;
516 };
517
518 #define TLS_RELOC_P(r_type) \
519 (r_type == R_MIPS_TLS_DTPMOD32 \
520 || r_type == R_MIPS_TLS_DTPMOD64 \
521 || r_type == R_MIPS_TLS_DTPREL32 \
522 || r_type == R_MIPS_TLS_DTPREL64 \
523 || r_type == R_MIPS_TLS_GD \
524 || r_type == R_MIPS_TLS_LDM \
525 || r_type == R_MIPS_TLS_DTPREL_HI16 \
526 || r_type == R_MIPS_TLS_DTPREL_LO16 \
527 || r_type == R_MIPS_TLS_GOTTPREL \
528 || r_type == R_MIPS_TLS_TPREL32 \
529 || r_type == R_MIPS_TLS_TPREL64 \
530 || r_type == R_MIPS_TLS_TPREL_HI16 \
531 || r_type == R_MIPS_TLS_TPREL_LO16 \
532 || r_type == R_MIPS16_TLS_GD \
533 || r_type == R_MIPS16_TLS_LDM \
534 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
535 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
536 || r_type == R_MIPS16_TLS_GOTTPREL \
537 || r_type == R_MIPS16_TLS_TPREL_HI16 \
538 || r_type == R_MIPS16_TLS_TPREL_LO16 \
539 || r_type == R_MICROMIPS_TLS_GD \
540 || r_type == R_MICROMIPS_TLS_LDM \
541 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
542 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
543 || r_type == R_MICROMIPS_TLS_GOTTPREL \
544 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
545 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
546
547 /* Structure used to pass information to mips_elf_output_extsym. */
548
549 struct extsym_info
550 {
551 bfd *abfd;
552 struct bfd_link_info *info;
553 struct ecoff_debug_info *debug;
554 const struct ecoff_debug_swap *swap;
555 bfd_boolean failed;
556 };
557
558 /* The names of the runtime procedure table symbols used on IRIX5. */
559
560 static const char * const mips_elf_dynsym_rtproc_names[] =
561 {
562 "_procedure_table",
563 "_procedure_string_table",
564 "_procedure_table_size",
565 NULL
566 };
567
568 /* These structures are used to generate the .compact_rel section on
569 IRIX5. */
570
571 typedef struct
572 {
573 unsigned long id1; /* Always one? */
574 unsigned long num; /* Number of compact relocation entries. */
575 unsigned long id2; /* Always two? */
576 unsigned long offset; /* The file offset of the first relocation. */
577 unsigned long reserved0; /* Zero? */
578 unsigned long reserved1; /* Zero? */
579 } Elf32_compact_rel;
580
581 typedef struct
582 {
583 bfd_byte id1[4];
584 bfd_byte num[4];
585 bfd_byte id2[4];
586 bfd_byte offset[4];
587 bfd_byte reserved0[4];
588 bfd_byte reserved1[4];
589 } Elf32_External_compact_rel;
590
591 typedef struct
592 {
593 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
594 unsigned int rtype : 4; /* Relocation types. See below. */
595 unsigned int dist2to : 8;
596 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
597 unsigned long konst; /* KONST field. See below. */
598 unsigned long vaddr; /* VADDR to be relocated. */
599 } Elf32_crinfo;
600
601 typedef struct
602 {
603 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
604 unsigned int rtype : 4; /* Relocation types. See below. */
605 unsigned int dist2to : 8;
606 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
607 unsigned long konst; /* KONST field. See below. */
608 } Elf32_crinfo2;
609
610 typedef struct
611 {
612 bfd_byte info[4];
613 bfd_byte konst[4];
614 bfd_byte vaddr[4];
615 } Elf32_External_crinfo;
616
617 typedef struct
618 {
619 bfd_byte info[4];
620 bfd_byte konst[4];
621 } Elf32_External_crinfo2;
622
623 /* These are the constants used to swap the bitfields in a crinfo. */
624
625 #define CRINFO_CTYPE (0x1)
626 #define CRINFO_CTYPE_SH (31)
627 #define CRINFO_RTYPE (0xf)
628 #define CRINFO_RTYPE_SH (27)
629 #define CRINFO_DIST2TO (0xff)
630 #define CRINFO_DIST2TO_SH (19)
631 #define CRINFO_RELVADDR (0x7ffff)
632 #define CRINFO_RELVADDR_SH (0)
633
634 /* A compact relocation info has long (3 words) or short (2 words)
635 formats. A short format doesn't have VADDR field and relvaddr
636 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
637 #define CRF_MIPS_LONG 1
638 #define CRF_MIPS_SHORT 0
639
640 /* There are 4 types of compact relocation at least. The value KONST
641 has different meaning for each type:
642
643 (type) (konst)
644 CT_MIPS_REL32 Address in data
645 CT_MIPS_WORD Address in word (XXX)
646 CT_MIPS_GPHI_LO GP - vaddr
647 CT_MIPS_JMPAD Address to jump
648 */
649
650 #define CRT_MIPS_REL32 0xa
651 #define CRT_MIPS_WORD 0xb
652 #define CRT_MIPS_GPHI_LO 0xc
653 #define CRT_MIPS_JMPAD 0xd
654
655 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
656 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
657 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
658 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
659 \f
660 /* The structure of the runtime procedure descriptor created by the
661 loader for use by the static exception system. */
662
663 typedef struct runtime_pdr {
664 bfd_vma adr; /* Memory address of start of procedure. */
665 long regmask; /* Save register mask. */
666 long regoffset; /* Save register offset. */
667 long fregmask; /* Save floating point register mask. */
668 long fregoffset; /* Save floating point register offset. */
669 long frameoffset; /* Frame size. */
670 short framereg; /* Frame pointer register. */
671 short pcreg; /* Offset or reg of return pc. */
672 long irpss; /* Index into the runtime string table. */
673 long reserved;
674 struct exception_info *exception_info;/* Pointer to exception array. */
675 } RPDR, *pRPDR;
676 #define cbRPDR sizeof (RPDR)
677 #define rpdNil ((pRPDR) 0)
678 \f
679 static struct mips_got_entry *mips_elf_create_local_got_entry
680 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
681 struct mips_elf_link_hash_entry *, int);
682 static bfd_boolean mips_elf_sort_hash_table_f
683 (struct mips_elf_link_hash_entry *, void *);
684 static bfd_vma mips_elf_high
685 (bfd_vma);
686 static bfd_boolean mips_elf_create_dynamic_relocation
687 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
688 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
689 bfd_vma *, asection *);
690 static hashval_t mips_elf_got_entry_hash
691 (const void *);
692 static bfd_vma mips_elf_adjust_gp
693 (bfd *, struct mips_got_info *, bfd *);
694 static struct mips_got_info *mips_elf_got_for_ibfd
695 (struct mips_got_info *, bfd *);
696
697 /* This will be used when we sort the dynamic relocation records. */
698 static bfd *reldyn_sorting_bfd;
699
700 /* True if ABFD is for CPUs with load interlocking that include
701 non-MIPS1 CPUs and R3900. */
702 #define LOAD_INTERLOCKS_P(abfd) \
703 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
704 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
705
706 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
707 This should be safe for all architectures. We enable this predicate
708 for RM9000 for now. */
709 #define JAL_TO_BAL_P(abfd) \
710 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
711
712 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
713 This should be safe for all architectures. We enable this predicate for
714 all CPUs. */
715 #define JALR_TO_BAL_P(abfd) 1
716
717 /* True if ABFD is for CPUs that are faster if JR is converted to B.
718 This should be safe for all architectures. We enable this predicate for
719 all CPUs. */
720 #define JR_TO_B_P(abfd) 1
721
722 /* True if ABFD is a PIC object. */
723 #define PIC_OBJECT_P(abfd) \
724 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
725
726 /* Nonzero if ABFD is using the N32 ABI. */
727 #define ABI_N32_P(abfd) \
728 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
729
730 /* Nonzero if ABFD is using the N64 ABI. */
731 #define ABI_64_P(abfd) \
732 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
733
734 /* Nonzero if ABFD is using NewABI conventions. */
735 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
736
737 /* The IRIX compatibility level we are striving for. */
738 #define IRIX_COMPAT(abfd) \
739 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
740
741 /* Whether we are trying to be compatible with IRIX at all. */
742 #define SGI_COMPAT(abfd) \
743 (IRIX_COMPAT (abfd) != ict_none)
744
745 /* The name of the options section. */
746 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
747 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
748
749 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
750 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
751 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
752 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
753
754 /* Whether the section is readonly. */
755 #define MIPS_ELF_READONLY_SECTION(sec) \
756 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
757 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
758
759 /* The name of the stub section. */
760 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
761
762 /* The size of an external REL relocation. */
763 #define MIPS_ELF_REL_SIZE(abfd) \
764 (get_elf_backend_data (abfd)->s->sizeof_rel)
765
766 /* The size of an external RELA relocation. */
767 #define MIPS_ELF_RELA_SIZE(abfd) \
768 (get_elf_backend_data (abfd)->s->sizeof_rela)
769
770 /* The size of an external dynamic table entry. */
771 #define MIPS_ELF_DYN_SIZE(abfd) \
772 (get_elf_backend_data (abfd)->s->sizeof_dyn)
773
774 /* The size of a GOT entry. */
775 #define MIPS_ELF_GOT_SIZE(abfd) \
776 (get_elf_backend_data (abfd)->s->arch_size / 8)
777
778 /* The size of the .rld_map section. */
779 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
780 (get_elf_backend_data (abfd)->s->arch_size / 8)
781
782 /* The size of a symbol-table entry. */
783 #define MIPS_ELF_SYM_SIZE(abfd) \
784 (get_elf_backend_data (abfd)->s->sizeof_sym)
785
786 /* The default alignment for sections, as a power of two. */
787 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
788 (get_elf_backend_data (abfd)->s->log_file_align)
789
790 /* Get word-sized data. */
791 #define MIPS_ELF_GET_WORD(abfd, ptr) \
792 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
793
794 /* Put out word-sized data. */
795 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
796 (ABI_64_P (abfd) \
797 ? bfd_put_64 (abfd, val, ptr) \
798 : bfd_put_32 (abfd, val, ptr))
799
800 /* The opcode for word-sized loads (LW or LD). */
801 #define MIPS_ELF_LOAD_WORD(abfd) \
802 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
803
804 /* Add a dynamic symbol table-entry. */
805 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
806 _bfd_elf_add_dynamic_entry (info, tag, val)
807
808 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
809 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
810
811 /* The name of the dynamic relocation section. */
812 #define MIPS_ELF_REL_DYN_NAME(INFO) \
813 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
814
815 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
816 from smaller values. Start with zero, widen, *then* decrement. */
817 #define MINUS_ONE (((bfd_vma)0) - 1)
818 #define MINUS_TWO (((bfd_vma)0) - 2)
819
820 /* The value to write into got[1] for SVR4 targets, to identify it is
821 a GNU object. The dynamic linker can then use got[1] to store the
822 module pointer. */
823 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
824 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
825
826 /* The offset of $gp from the beginning of the .got section. */
827 #define ELF_MIPS_GP_OFFSET(INFO) \
828 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
829
830 /* The maximum size of the GOT for it to be addressable using 16-bit
831 offsets from $gp. */
832 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
833
834 /* Instructions which appear in a stub. */
835 #define STUB_LW(abfd) \
836 ((ABI_64_P (abfd) \
837 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
838 : 0x8f998010)) /* lw t9,0x8010(gp) */
839 #define STUB_MOVE(abfd) \
840 ((ABI_64_P (abfd) \
841 ? 0x03e0782d /* daddu t7,ra */ \
842 : 0x03e07821)) /* addu t7,ra */
843 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
844 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
845 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
846 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
847 #define STUB_LI16S(abfd, VAL) \
848 ((ABI_64_P (abfd) \
849 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
850 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
851
852 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
853 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
854
855 /* The name of the dynamic interpreter. This is put in the .interp
856 section. */
857
858 #define ELF_DYNAMIC_INTERPRETER(abfd) \
859 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
860 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
861 : "/usr/lib/libc.so.1")
862
863 #ifdef BFD64
864 #define MNAME(bfd,pre,pos) \
865 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
866 #define ELF_R_SYM(bfd, i) \
867 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
868 #define ELF_R_TYPE(bfd, i) \
869 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
870 #define ELF_R_INFO(bfd, s, t) \
871 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
872 #else
873 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
874 #define ELF_R_SYM(bfd, i) \
875 (ELF32_R_SYM (i))
876 #define ELF_R_TYPE(bfd, i) \
877 (ELF32_R_TYPE (i))
878 #define ELF_R_INFO(bfd, s, t) \
879 (ELF32_R_INFO (s, t))
880 #endif
881 \f
882 /* The mips16 compiler uses a couple of special sections to handle
883 floating point arguments.
884
885 Section names that look like .mips16.fn.FNNAME contain stubs that
886 copy floating point arguments from the fp regs to the gp regs and
887 then jump to FNNAME. If any 32 bit function calls FNNAME, the
888 call should be redirected to the stub instead. If no 32 bit
889 function calls FNNAME, the stub should be discarded. We need to
890 consider any reference to the function, not just a call, because
891 if the address of the function is taken we will need the stub,
892 since the address might be passed to a 32 bit function.
893
894 Section names that look like .mips16.call.FNNAME contain stubs
895 that copy floating point arguments from the gp regs to the fp
896 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
897 then any 16 bit function that calls FNNAME should be redirected
898 to the stub instead. If FNNAME is not a 32 bit function, the
899 stub should be discarded.
900
901 .mips16.call.fp.FNNAME sections are similar, but contain stubs
902 which call FNNAME and then copy the return value from the fp regs
903 to the gp regs. These stubs store the return value in $18 while
904 calling FNNAME; any function which might call one of these stubs
905 must arrange to save $18 around the call. (This case is not
906 needed for 32 bit functions that call 16 bit functions, because
907 16 bit functions always return floating point values in both
908 $f0/$f1 and $2/$3.)
909
910 Note that in all cases FNNAME might be defined statically.
911 Therefore, FNNAME is not used literally. Instead, the relocation
912 information will indicate which symbol the section is for.
913
914 We record any stubs that we find in the symbol table. */
915
916 #define FN_STUB ".mips16.fn."
917 #define CALL_STUB ".mips16.call."
918 #define CALL_FP_STUB ".mips16.call.fp."
919
920 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
921 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
922 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
923 \f
924 /* The format of the first PLT entry in an O32 executable. */
925 static const bfd_vma mips_o32_exec_plt0_entry[] =
926 {
927 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
928 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
929 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
930 0x031cc023, /* subu $24, $24, $28 */
931 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
932 0x0018c082, /* srl $24, $24, 2 */
933 0x0320f809, /* jalr $25 */
934 0x2718fffe /* subu $24, $24, 2 */
935 };
936
937 /* The format of the first PLT entry in an N32 executable. Different
938 because gp ($28) is not available; we use t2 ($14) instead. */
939 static const bfd_vma mips_n32_exec_plt0_entry[] =
940 {
941 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
942 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
943 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
944 0x030ec023, /* subu $24, $24, $14 */
945 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
946 0x0018c082, /* srl $24, $24, 2 */
947 0x0320f809, /* jalr $25 */
948 0x2718fffe /* subu $24, $24, 2 */
949 };
950
951 /* The format of the first PLT entry in an N64 executable. Different
952 from N32 because of the increased size of GOT entries. */
953 static const bfd_vma mips_n64_exec_plt0_entry[] =
954 {
955 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
956 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
957 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
958 0x030ec023, /* subu $24, $24, $14 */
959 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
960 0x0018c0c2, /* srl $24, $24, 3 */
961 0x0320f809, /* jalr $25 */
962 0x2718fffe /* subu $24, $24, 2 */
963 };
964
965 /* The format of subsequent PLT entries. */
966 static const bfd_vma mips_exec_plt_entry[] =
967 {
968 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
969 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
970 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
971 0x03200008 /* jr $25 */
972 };
973
974 /* The format of the first PLT entry in a VxWorks executable. */
975 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
976 {
977 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
978 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
979 0x8f390008, /* lw t9, 8(t9) */
980 0x00000000, /* nop */
981 0x03200008, /* jr t9 */
982 0x00000000 /* nop */
983 };
984
985 /* The format of subsequent PLT entries. */
986 static const bfd_vma mips_vxworks_exec_plt_entry[] =
987 {
988 0x10000000, /* b .PLT_resolver */
989 0x24180000, /* li t8, <pltindex> */
990 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
991 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
992 0x8f390000, /* lw t9, 0(t9) */
993 0x00000000, /* nop */
994 0x03200008, /* jr t9 */
995 0x00000000 /* nop */
996 };
997
998 /* The format of the first PLT entry in a VxWorks shared object. */
999 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1000 {
1001 0x8f990008, /* lw t9, 8(gp) */
1002 0x00000000, /* nop */
1003 0x03200008, /* jr t9 */
1004 0x00000000, /* nop */
1005 0x00000000, /* nop */
1006 0x00000000 /* nop */
1007 };
1008
1009 /* The format of subsequent PLT entries. */
1010 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1011 {
1012 0x10000000, /* b .PLT_resolver */
1013 0x24180000 /* li t8, <pltindex> */
1014 };
1015 \f
1016 /* Look up an entry in a MIPS ELF linker hash table. */
1017
1018 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1019 ((struct mips_elf_link_hash_entry *) \
1020 elf_link_hash_lookup (&(table)->root, (string), (create), \
1021 (copy), (follow)))
1022
1023 /* Traverse a MIPS ELF linker hash table. */
1024
1025 #define mips_elf_link_hash_traverse(table, func, info) \
1026 (elf_link_hash_traverse \
1027 (&(table)->root, \
1028 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1029 (info)))
1030
1031 /* Find the base offsets for thread-local storage in this object,
1032 for GD/LD and IE/LE respectively. */
1033
1034 #define TP_OFFSET 0x7000
1035 #define DTP_OFFSET 0x8000
1036
1037 static bfd_vma
1038 dtprel_base (struct bfd_link_info *info)
1039 {
1040 /* If tls_sec is NULL, we should have signalled an error already. */
1041 if (elf_hash_table (info)->tls_sec == NULL)
1042 return 0;
1043 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1044 }
1045
1046 static bfd_vma
1047 tprel_base (struct bfd_link_info *info)
1048 {
1049 /* If tls_sec is NULL, we should have signalled an error already. */
1050 if (elf_hash_table (info)->tls_sec == NULL)
1051 return 0;
1052 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1053 }
1054
1055 /* Create an entry in a MIPS ELF linker hash table. */
1056
1057 static struct bfd_hash_entry *
1058 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1059 struct bfd_hash_table *table, const char *string)
1060 {
1061 struct mips_elf_link_hash_entry *ret =
1062 (struct mips_elf_link_hash_entry *) entry;
1063
1064 /* Allocate the structure if it has not already been allocated by a
1065 subclass. */
1066 if (ret == NULL)
1067 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1068 if (ret == NULL)
1069 return (struct bfd_hash_entry *) ret;
1070
1071 /* Call the allocation method of the superclass. */
1072 ret = ((struct mips_elf_link_hash_entry *)
1073 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1074 table, string));
1075 if (ret != NULL)
1076 {
1077 /* Set local fields. */
1078 memset (&ret->esym, 0, sizeof (EXTR));
1079 /* We use -2 as a marker to indicate that the information has
1080 not been set. -1 means there is no associated ifd. */
1081 ret->esym.ifd = -2;
1082 ret->la25_stub = 0;
1083 ret->possibly_dynamic_relocs = 0;
1084 ret->fn_stub = NULL;
1085 ret->call_stub = NULL;
1086 ret->call_fp_stub = NULL;
1087 ret->tls_type = GOT_NORMAL;
1088 ret->global_got_area = GGA_NONE;
1089 ret->got_only_for_calls = TRUE;
1090 ret->readonly_reloc = FALSE;
1091 ret->has_static_relocs = FALSE;
1092 ret->no_fn_stub = FALSE;
1093 ret->need_fn_stub = FALSE;
1094 ret->has_nonpic_branches = FALSE;
1095 ret->needs_lazy_stub = FALSE;
1096 }
1097
1098 return (struct bfd_hash_entry *) ret;
1099 }
1100
1101 bfd_boolean
1102 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1103 {
1104 if (!sec->used_by_bfd)
1105 {
1106 struct _mips_elf_section_data *sdata;
1107 bfd_size_type amt = sizeof (*sdata);
1108
1109 sdata = bfd_zalloc (abfd, amt);
1110 if (sdata == NULL)
1111 return FALSE;
1112 sec->used_by_bfd = sdata;
1113 }
1114
1115 return _bfd_elf_new_section_hook (abfd, sec);
1116 }
1117 \f
1118 /* Read ECOFF debugging information from a .mdebug section into a
1119 ecoff_debug_info structure. */
1120
1121 bfd_boolean
1122 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1123 struct ecoff_debug_info *debug)
1124 {
1125 HDRR *symhdr;
1126 const struct ecoff_debug_swap *swap;
1127 char *ext_hdr;
1128
1129 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1130 memset (debug, 0, sizeof (*debug));
1131
1132 ext_hdr = bfd_malloc (swap->external_hdr_size);
1133 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1134 goto error_return;
1135
1136 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1137 swap->external_hdr_size))
1138 goto error_return;
1139
1140 symhdr = &debug->symbolic_header;
1141 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1142
1143 /* The symbolic header contains absolute file offsets and sizes to
1144 read. */
1145 #define READ(ptr, offset, count, size, type) \
1146 if (symhdr->count == 0) \
1147 debug->ptr = NULL; \
1148 else \
1149 { \
1150 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1151 debug->ptr = bfd_malloc (amt); \
1152 if (debug->ptr == NULL) \
1153 goto error_return; \
1154 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1155 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1156 goto error_return; \
1157 }
1158
1159 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1160 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1161 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1162 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1163 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1164 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1165 union aux_ext *);
1166 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1167 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1168 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1169 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1170 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1171 #undef READ
1172
1173 debug->fdr = NULL;
1174
1175 return TRUE;
1176
1177 error_return:
1178 if (ext_hdr != NULL)
1179 free (ext_hdr);
1180 if (debug->line != NULL)
1181 free (debug->line);
1182 if (debug->external_dnr != NULL)
1183 free (debug->external_dnr);
1184 if (debug->external_pdr != NULL)
1185 free (debug->external_pdr);
1186 if (debug->external_sym != NULL)
1187 free (debug->external_sym);
1188 if (debug->external_opt != NULL)
1189 free (debug->external_opt);
1190 if (debug->external_aux != NULL)
1191 free (debug->external_aux);
1192 if (debug->ss != NULL)
1193 free (debug->ss);
1194 if (debug->ssext != NULL)
1195 free (debug->ssext);
1196 if (debug->external_fdr != NULL)
1197 free (debug->external_fdr);
1198 if (debug->external_rfd != NULL)
1199 free (debug->external_rfd);
1200 if (debug->external_ext != NULL)
1201 free (debug->external_ext);
1202 return FALSE;
1203 }
1204 \f
1205 /* Swap RPDR (runtime procedure table entry) for output. */
1206
1207 static void
1208 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1209 {
1210 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1211 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1212 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1213 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1214 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1215 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1216
1217 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1218 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1219
1220 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1221 }
1222
1223 /* Create a runtime procedure table from the .mdebug section. */
1224
1225 static bfd_boolean
1226 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1227 struct bfd_link_info *info, asection *s,
1228 struct ecoff_debug_info *debug)
1229 {
1230 const struct ecoff_debug_swap *swap;
1231 HDRR *hdr = &debug->symbolic_header;
1232 RPDR *rpdr, *rp;
1233 struct rpdr_ext *erp;
1234 void *rtproc;
1235 struct pdr_ext *epdr;
1236 struct sym_ext *esym;
1237 char *ss, **sv;
1238 char *str;
1239 bfd_size_type size;
1240 bfd_size_type count;
1241 unsigned long sindex;
1242 unsigned long i;
1243 PDR pdr;
1244 SYMR sym;
1245 const char *no_name_func = _("static procedure (no name)");
1246
1247 epdr = NULL;
1248 rpdr = NULL;
1249 esym = NULL;
1250 ss = NULL;
1251 sv = NULL;
1252
1253 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1254
1255 sindex = strlen (no_name_func) + 1;
1256 count = hdr->ipdMax;
1257 if (count > 0)
1258 {
1259 size = swap->external_pdr_size;
1260
1261 epdr = bfd_malloc (size * count);
1262 if (epdr == NULL)
1263 goto error_return;
1264
1265 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1266 goto error_return;
1267
1268 size = sizeof (RPDR);
1269 rp = rpdr = bfd_malloc (size * count);
1270 if (rpdr == NULL)
1271 goto error_return;
1272
1273 size = sizeof (char *);
1274 sv = bfd_malloc (size * count);
1275 if (sv == NULL)
1276 goto error_return;
1277
1278 count = hdr->isymMax;
1279 size = swap->external_sym_size;
1280 esym = bfd_malloc (size * count);
1281 if (esym == NULL)
1282 goto error_return;
1283
1284 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1285 goto error_return;
1286
1287 count = hdr->issMax;
1288 ss = bfd_malloc (count);
1289 if (ss == NULL)
1290 goto error_return;
1291 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1292 goto error_return;
1293
1294 count = hdr->ipdMax;
1295 for (i = 0; i < (unsigned long) count; i++, rp++)
1296 {
1297 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1298 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1299 rp->adr = sym.value;
1300 rp->regmask = pdr.regmask;
1301 rp->regoffset = pdr.regoffset;
1302 rp->fregmask = pdr.fregmask;
1303 rp->fregoffset = pdr.fregoffset;
1304 rp->frameoffset = pdr.frameoffset;
1305 rp->framereg = pdr.framereg;
1306 rp->pcreg = pdr.pcreg;
1307 rp->irpss = sindex;
1308 sv[i] = ss + sym.iss;
1309 sindex += strlen (sv[i]) + 1;
1310 }
1311 }
1312
1313 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1314 size = BFD_ALIGN (size, 16);
1315 rtproc = bfd_alloc (abfd, size);
1316 if (rtproc == NULL)
1317 {
1318 mips_elf_hash_table (info)->procedure_count = 0;
1319 goto error_return;
1320 }
1321
1322 mips_elf_hash_table (info)->procedure_count = count + 2;
1323
1324 erp = rtproc;
1325 memset (erp, 0, sizeof (struct rpdr_ext));
1326 erp++;
1327 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1328 strcpy (str, no_name_func);
1329 str += strlen (no_name_func) + 1;
1330 for (i = 0; i < count; i++)
1331 {
1332 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1333 strcpy (str, sv[i]);
1334 str += strlen (sv[i]) + 1;
1335 }
1336 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1337
1338 /* Set the size and contents of .rtproc section. */
1339 s->size = size;
1340 s->contents = rtproc;
1341
1342 /* Skip this section later on (I don't think this currently
1343 matters, but someday it might). */
1344 s->map_head.link_order = NULL;
1345
1346 if (epdr != NULL)
1347 free (epdr);
1348 if (rpdr != NULL)
1349 free (rpdr);
1350 if (esym != NULL)
1351 free (esym);
1352 if (ss != NULL)
1353 free (ss);
1354 if (sv != NULL)
1355 free (sv);
1356
1357 return TRUE;
1358
1359 error_return:
1360 if (epdr != NULL)
1361 free (epdr);
1362 if (rpdr != NULL)
1363 free (rpdr);
1364 if (esym != NULL)
1365 free (esym);
1366 if (ss != NULL)
1367 free (ss);
1368 if (sv != NULL)
1369 free (sv);
1370 return FALSE;
1371 }
1372 \f
1373 /* We're going to create a stub for H. Create a symbol for the stub's
1374 value and size, to help make the disassembly easier to read. */
1375
1376 static bfd_boolean
1377 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1378 struct mips_elf_link_hash_entry *h,
1379 const char *prefix, asection *s, bfd_vma value,
1380 bfd_vma size)
1381 {
1382 struct bfd_link_hash_entry *bh;
1383 struct elf_link_hash_entry *elfh;
1384 const char *name;
1385
1386 if (ELF_ST_IS_MICROMIPS (h->root.other))
1387 value |= 1;
1388
1389 /* Create a new symbol. */
1390 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1391 bh = NULL;
1392 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1393 BSF_LOCAL, s, value, NULL,
1394 TRUE, FALSE, &bh))
1395 return FALSE;
1396
1397 /* Make it a local function. */
1398 elfh = (struct elf_link_hash_entry *) bh;
1399 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1400 elfh->size = size;
1401 elfh->forced_local = 1;
1402 return TRUE;
1403 }
1404
1405 /* We're about to redefine H. Create a symbol to represent H's
1406 current value and size, to help make the disassembly easier
1407 to read. */
1408
1409 static bfd_boolean
1410 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1411 struct mips_elf_link_hash_entry *h,
1412 const char *prefix)
1413 {
1414 struct bfd_link_hash_entry *bh;
1415 struct elf_link_hash_entry *elfh;
1416 const char *name;
1417 asection *s;
1418 bfd_vma value;
1419
1420 /* Read the symbol's value. */
1421 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1422 || h->root.root.type == bfd_link_hash_defweak);
1423 s = h->root.root.u.def.section;
1424 value = h->root.root.u.def.value;
1425
1426 /* Create a new symbol. */
1427 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1428 bh = NULL;
1429 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1430 BSF_LOCAL, s, value, NULL,
1431 TRUE, FALSE, &bh))
1432 return FALSE;
1433
1434 /* Make it local and copy the other attributes from H. */
1435 elfh = (struct elf_link_hash_entry *) bh;
1436 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1437 elfh->other = h->root.other;
1438 elfh->size = h->root.size;
1439 elfh->forced_local = 1;
1440 return TRUE;
1441 }
1442
1443 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1444 function rather than to a hard-float stub. */
1445
1446 static bfd_boolean
1447 section_allows_mips16_refs_p (asection *section)
1448 {
1449 const char *name;
1450
1451 name = bfd_get_section_name (section->owner, section);
1452 return (FN_STUB_P (name)
1453 || CALL_STUB_P (name)
1454 || CALL_FP_STUB_P (name)
1455 || strcmp (name, ".pdr") == 0);
1456 }
1457
1458 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1459 stub section of some kind. Return the R_SYMNDX of the target
1460 function, or 0 if we can't decide which function that is. */
1461
1462 static unsigned long
1463 mips16_stub_symndx (const struct elf_backend_data *bed,
1464 asection *sec ATTRIBUTE_UNUSED,
1465 const Elf_Internal_Rela *relocs,
1466 const Elf_Internal_Rela *relend)
1467 {
1468 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1469 const Elf_Internal_Rela *rel;
1470
1471 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1472 one in a compound relocation. */
1473 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1474 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1475 return ELF_R_SYM (sec->owner, rel->r_info);
1476
1477 /* Otherwise trust the first relocation, whatever its kind. This is
1478 the traditional behavior. */
1479 if (relocs < relend)
1480 return ELF_R_SYM (sec->owner, relocs->r_info);
1481
1482 return 0;
1483 }
1484
1485 /* Check the mips16 stubs for a particular symbol, and see if we can
1486 discard them. */
1487
1488 static void
1489 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1490 struct mips_elf_link_hash_entry *h)
1491 {
1492 /* Dynamic symbols must use the standard call interface, in case other
1493 objects try to call them. */
1494 if (h->fn_stub != NULL
1495 && h->root.dynindx != -1)
1496 {
1497 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1498 h->need_fn_stub = TRUE;
1499 }
1500
1501 if (h->fn_stub != NULL
1502 && ! h->need_fn_stub)
1503 {
1504 /* We don't need the fn_stub; the only references to this symbol
1505 are 16 bit calls. Clobber the size to 0 to prevent it from
1506 being included in the link. */
1507 h->fn_stub->size = 0;
1508 h->fn_stub->flags &= ~SEC_RELOC;
1509 h->fn_stub->reloc_count = 0;
1510 h->fn_stub->flags |= SEC_EXCLUDE;
1511 }
1512
1513 if (h->call_stub != NULL
1514 && ELF_ST_IS_MIPS16 (h->root.other))
1515 {
1516 /* We don't need the call_stub; this is a 16 bit function, so
1517 calls from other 16 bit functions are OK. Clobber the size
1518 to 0 to prevent it from being included in the link. */
1519 h->call_stub->size = 0;
1520 h->call_stub->flags &= ~SEC_RELOC;
1521 h->call_stub->reloc_count = 0;
1522 h->call_stub->flags |= SEC_EXCLUDE;
1523 }
1524
1525 if (h->call_fp_stub != NULL
1526 && ELF_ST_IS_MIPS16 (h->root.other))
1527 {
1528 /* We don't need the call_stub; this is a 16 bit function, so
1529 calls from other 16 bit functions are OK. Clobber the size
1530 to 0 to prevent it from being included in the link. */
1531 h->call_fp_stub->size = 0;
1532 h->call_fp_stub->flags &= ~SEC_RELOC;
1533 h->call_fp_stub->reloc_count = 0;
1534 h->call_fp_stub->flags |= SEC_EXCLUDE;
1535 }
1536 }
1537
1538 /* Hashtable callbacks for mips_elf_la25_stubs. */
1539
1540 static hashval_t
1541 mips_elf_la25_stub_hash (const void *entry_)
1542 {
1543 const struct mips_elf_la25_stub *entry;
1544
1545 entry = (struct mips_elf_la25_stub *) entry_;
1546 return entry->h->root.root.u.def.section->id
1547 + entry->h->root.root.u.def.value;
1548 }
1549
1550 static int
1551 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1552 {
1553 const struct mips_elf_la25_stub *entry1, *entry2;
1554
1555 entry1 = (struct mips_elf_la25_stub *) entry1_;
1556 entry2 = (struct mips_elf_la25_stub *) entry2_;
1557 return ((entry1->h->root.root.u.def.section
1558 == entry2->h->root.root.u.def.section)
1559 && (entry1->h->root.root.u.def.value
1560 == entry2->h->root.root.u.def.value));
1561 }
1562
1563 /* Called by the linker to set up the la25 stub-creation code. FN is
1564 the linker's implementation of add_stub_function. Return true on
1565 success. */
1566
1567 bfd_boolean
1568 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1569 asection *(*fn) (const char *, asection *,
1570 asection *))
1571 {
1572 struct mips_elf_link_hash_table *htab;
1573
1574 htab = mips_elf_hash_table (info);
1575 if (htab == NULL)
1576 return FALSE;
1577
1578 htab->add_stub_section = fn;
1579 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1580 mips_elf_la25_stub_eq, NULL);
1581 if (htab->la25_stubs == NULL)
1582 return FALSE;
1583
1584 return TRUE;
1585 }
1586
1587 /* Return true if H is a locally-defined PIC function, in the sense
1588 that it or its fn_stub might need $25 to be valid on entry.
1589 Note that MIPS16 functions set up $gp using PC-relative instructions,
1590 so they themselves never need $25 to be valid. Only non-MIPS16
1591 entry points are of interest here. */
1592
1593 static bfd_boolean
1594 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1595 {
1596 return ((h->root.root.type == bfd_link_hash_defined
1597 || h->root.root.type == bfd_link_hash_defweak)
1598 && h->root.def_regular
1599 && !bfd_is_abs_section (h->root.root.u.def.section)
1600 && (!ELF_ST_IS_MIPS16 (h->root.other)
1601 || (h->fn_stub && h->need_fn_stub))
1602 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1603 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1604 }
1605
1606 /* Set *SEC to the input section that contains the target of STUB.
1607 Return the offset of the target from the start of that section. */
1608
1609 static bfd_vma
1610 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1611 asection **sec)
1612 {
1613 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1614 {
1615 BFD_ASSERT (stub->h->need_fn_stub);
1616 *sec = stub->h->fn_stub;
1617 return 0;
1618 }
1619 else
1620 {
1621 *sec = stub->h->root.root.u.def.section;
1622 return stub->h->root.root.u.def.value;
1623 }
1624 }
1625
1626 /* STUB describes an la25 stub that we have decided to implement
1627 by inserting an LUI/ADDIU pair before the target function.
1628 Create the section and redirect the function symbol to it. */
1629
1630 static bfd_boolean
1631 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1632 struct bfd_link_info *info)
1633 {
1634 struct mips_elf_link_hash_table *htab;
1635 char *name;
1636 asection *s, *input_section;
1637 unsigned int align;
1638
1639 htab = mips_elf_hash_table (info);
1640 if (htab == NULL)
1641 return FALSE;
1642
1643 /* Create a unique name for the new section. */
1644 name = bfd_malloc (11 + sizeof (".text.stub."));
1645 if (name == NULL)
1646 return FALSE;
1647 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1648
1649 /* Create the section. */
1650 mips_elf_get_la25_target (stub, &input_section);
1651 s = htab->add_stub_section (name, input_section,
1652 input_section->output_section);
1653 if (s == NULL)
1654 return FALSE;
1655
1656 /* Make sure that any padding goes before the stub. */
1657 align = input_section->alignment_power;
1658 if (!bfd_set_section_alignment (s->owner, s, align))
1659 return FALSE;
1660 if (align > 3)
1661 s->size = (1 << align) - 8;
1662
1663 /* Create a symbol for the stub. */
1664 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1665 stub->stub_section = s;
1666 stub->offset = s->size;
1667
1668 /* Allocate room for it. */
1669 s->size += 8;
1670 return TRUE;
1671 }
1672
1673 /* STUB describes an la25 stub that we have decided to implement
1674 with a separate trampoline. Allocate room for it and redirect
1675 the function symbol to it. */
1676
1677 static bfd_boolean
1678 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1679 struct bfd_link_info *info)
1680 {
1681 struct mips_elf_link_hash_table *htab;
1682 asection *s;
1683
1684 htab = mips_elf_hash_table (info);
1685 if (htab == NULL)
1686 return FALSE;
1687
1688 /* Create a trampoline section, if we haven't already. */
1689 s = htab->strampoline;
1690 if (s == NULL)
1691 {
1692 asection *input_section = stub->h->root.root.u.def.section;
1693 s = htab->add_stub_section (".text", NULL,
1694 input_section->output_section);
1695 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1696 return FALSE;
1697 htab->strampoline = s;
1698 }
1699
1700 /* Create a symbol for the stub. */
1701 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1702 stub->stub_section = s;
1703 stub->offset = s->size;
1704
1705 /* Allocate room for it. */
1706 s->size += 16;
1707 return TRUE;
1708 }
1709
1710 /* H describes a symbol that needs an la25 stub. Make sure that an
1711 appropriate stub exists and point H at it. */
1712
1713 static bfd_boolean
1714 mips_elf_add_la25_stub (struct bfd_link_info *info,
1715 struct mips_elf_link_hash_entry *h)
1716 {
1717 struct mips_elf_link_hash_table *htab;
1718 struct mips_elf_la25_stub search, *stub;
1719 bfd_boolean use_trampoline_p;
1720 asection *s;
1721 bfd_vma value;
1722 void **slot;
1723
1724 /* Describe the stub we want. */
1725 search.stub_section = NULL;
1726 search.offset = 0;
1727 search.h = h;
1728
1729 /* See if we've already created an equivalent stub. */
1730 htab = mips_elf_hash_table (info);
1731 if (htab == NULL)
1732 return FALSE;
1733
1734 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1735 if (slot == NULL)
1736 return FALSE;
1737
1738 stub = (struct mips_elf_la25_stub *) *slot;
1739 if (stub != NULL)
1740 {
1741 /* We can reuse the existing stub. */
1742 h->la25_stub = stub;
1743 return TRUE;
1744 }
1745
1746 /* Create a permanent copy of ENTRY and add it to the hash table. */
1747 stub = bfd_malloc (sizeof (search));
1748 if (stub == NULL)
1749 return FALSE;
1750 *stub = search;
1751 *slot = stub;
1752
1753 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1754 of the section and if we would need no more than 2 nops. */
1755 value = mips_elf_get_la25_target (stub, &s);
1756 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1757
1758 h->la25_stub = stub;
1759 return (use_trampoline_p
1760 ? mips_elf_add_la25_trampoline (stub, info)
1761 : mips_elf_add_la25_intro (stub, info));
1762 }
1763
1764 /* A mips_elf_link_hash_traverse callback that is called before sizing
1765 sections. DATA points to a mips_htab_traverse_info structure. */
1766
1767 static bfd_boolean
1768 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1769 {
1770 struct mips_htab_traverse_info *hti;
1771
1772 hti = (struct mips_htab_traverse_info *) data;
1773 if (!hti->info->relocatable)
1774 mips_elf_check_mips16_stubs (hti->info, h);
1775
1776 if (mips_elf_local_pic_function_p (h))
1777 {
1778 /* PR 12845: If H is in a section that has been garbage
1779 collected it will have its output section set to *ABS*. */
1780 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1781 return TRUE;
1782
1783 /* H is a function that might need $25 to be valid on entry.
1784 If we're creating a non-PIC relocatable object, mark H as
1785 being PIC. If we're creating a non-relocatable object with
1786 non-PIC branches and jumps to H, make sure that H has an la25
1787 stub. */
1788 if (hti->info->relocatable)
1789 {
1790 if (!PIC_OBJECT_P (hti->output_bfd))
1791 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1792 }
1793 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1794 {
1795 hti->error = TRUE;
1796 return FALSE;
1797 }
1798 }
1799 return TRUE;
1800 }
1801 \f
1802 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1803 Most mips16 instructions are 16 bits, but these instructions
1804 are 32 bits.
1805
1806 The format of these instructions is:
1807
1808 +--------------+--------------------------------+
1809 | JALX | X| Imm 20:16 | Imm 25:21 |
1810 +--------------+--------------------------------+
1811 | Immediate 15:0 |
1812 +-----------------------------------------------+
1813
1814 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1815 Note that the immediate value in the first word is swapped.
1816
1817 When producing a relocatable object file, R_MIPS16_26 is
1818 handled mostly like R_MIPS_26. In particular, the addend is
1819 stored as a straight 26-bit value in a 32-bit instruction.
1820 (gas makes life simpler for itself by never adjusting a
1821 R_MIPS16_26 reloc to be against a section, so the addend is
1822 always zero). However, the 32 bit instruction is stored as 2
1823 16-bit values, rather than a single 32-bit value. In a
1824 big-endian file, the result is the same; in a little-endian
1825 file, the two 16-bit halves of the 32 bit value are swapped.
1826 This is so that a disassembler can recognize the jal
1827 instruction.
1828
1829 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1830 instruction stored as two 16-bit values. The addend A is the
1831 contents of the targ26 field. The calculation is the same as
1832 R_MIPS_26. When storing the calculated value, reorder the
1833 immediate value as shown above, and don't forget to store the
1834 value as two 16-bit values.
1835
1836 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1837 defined as
1838
1839 big-endian:
1840 +--------+----------------------+
1841 | | |
1842 | | targ26-16 |
1843 |31 26|25 0|
1844 +--------+----------------------+
1845
1846 little-endian:
1847 +----------+------+-------------+
1848 | | | |
1849 | sub1 | | sub2 |
1850 |0 9|10 15|16 31|
1851 +----------+--------------------+
1852 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1853 ((sub1 << 16) | sub2)).
1854
1855 When producing a relocatable object file, the calculation is
1856 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1857 When producing a fully linked file, the calculation is
1858 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1859 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1860
1861 The table below lists the other MIPS16 instruction relocations.
1862 Each one is calculated in the same way as the non-MIPS16 relocation
1863 given on the right, but using the extended MIPS16 layout of 16-bit
1864 immediate fields:
1865
1866 R_MIPS16_GPREL R_MIPS_GPREL16
1867 R_MIPS16_GOT16 R_MIPS_GOT16
1868 R_MIPS16_CALL16 R_MIPS_CALL16
1869 R_MIPS16_HI16 R_MIPS_HI16
1870 R_MIPS16_LO16 R_MIPS_LO16
1871
1872 A typical instruction will have a format like this:
1873
1874 +--------------+--------------------------------+
1875 | EXTEND | Imm 10:5 | Imm 15:11 |
1876 +--------------+--------------------------------+
1877 | Major | rx | ry | Imm 4:0 |
1878 +--------------+--------------------------------+
1879
1880 EXTEND is the five bit value 11110. Major is the instruction
1881 opcode.
1882
1883 All we need to do here is shuffle the bits appropriately.
1884 As above, the two 16-bit halves must be swapped on a
1885 little-endian system. */
1886
1887 static inline bfd_boolean
1888 mips16_reloc_p (int r_type)
1889 {
1890 switch (r_type)
1891 {
1892 case R_MIPS16_26:
1893 case R_MIPS16_GPREL:
1894 case R_MIPS16_GOT16:
1895 case R_MIPS16_CALL16:
1896 case R_MIPS16_HI16:
1897 case R_MIPS16_LO16:
1898 case R_MIPS16_TLS_GD:
1899 case R_MIPS16_TLS_LDM:
1900 case R_MIPS16_TLS_DTPREL_HI16:
1901 case R_MIPS16_TLS_DTPREL_LO16:
1902 case R_MIPS16_TLS_GOTTPREL:
1903 case R_MIPS16_TLS_TPREL_HI16:
1904 case R_MIPS16_TLS_TPREL_LO16:
1905 return TRUE;
1906
1907 default:
1908 return FALSE;
1909 }
1910 }
1911
1912 /* Check if a microMIPS reloc. */
1913
1914 static inline bfd_boolean
1915 micromips_reloc_p (unsigned int r_type)
1916 {
1917 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1918 }
1919
1920 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1921 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1922 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1923
1924 static inline bfd_boolean
1925 micromips_reloc_shuffle_p (unsigned int r_type)
1926 {
1927 return (micromips_reloc_p (r_type)
1928 && r_type != R_MICROMIPS_PC7_S1
1929 && r_type != R_MICROMIPS_PC10_S1);
1930 }
1931
1932 static inline bfd_boolean
1933 got16_reloc_p (int r_type)
1934 {
1935 return (r_type == R_MIPS_GOT16
1936 || r_type == R_MIPS16_GOT16
1937 || r_type == R_MICROMIPS_GOT16);
1938 }
1939
1940 static inline bfd_boolean
1941 call16_reloc_p (int r_type)
1942 {
1943 return (r_type == R_MIPS_CALL16
1944 || r_type == R_MIPS16_CALL16
1945 || r_type == R_MICROMIPS_CALL16);
1946 }
1947
1948 static inline bfd_boolean
1949 got_disp_reloc_p (unsigned int r_type)
1950 {
1951 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1952 }
1953
1954 static inline bfd_boolean
1955 got_page_reloc_p (unsigned int r_type)
1956 {
1957 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1958 }
1959
1960 static inline bfd_boolean
1961 got_ofst_reloc_p (unsigned int r_type)
1962 {
1963 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1964 }
1965
1966 static inline bfd_boolean
1967 got_hi16_reloc_p (unsigned int r_type)
1968 {
1969 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
1970 }
1971
1972 static inline bfd_boolean
1973 got_lo16_reloc_p (unsigned int r_type)
1974 {
1975 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
1976 }
1977
1978 static inline bfd_boolean
1979 call_hi16_reloc_p (unsigned int r_type)
1980 {
1981 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
1982 }
1983
1984 static inline bfd_boolean
1985 call_lo16_reloc_p (unsigned int r_type)
1986 {
1987 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
1988 }
1989
1990 static inline bfd_boolean
1991 hi16_reloc_p (int r_type)
1992 {
1993 return (r_type == R_MIPS_HI16
1994 || r_type == R_MIPS16_HI16
1995 || r_type == R_MICROMIPS_HI16);
1996 }
1997
1998 static inline bfd_boolean
1999 lo16_reloc_p (int r_type)
2000 {
2001 return (r_type == R_MIPS_LO16
2002 || r_type == R_MIPS16_LO16
2003 || r_type == R_MICROMIPS_LO16);
2004 }
2005
2006 static inline bfd_boolean
2007 mips16_call_reloc_p (int r_type)
2008 {
2009 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2010 }
2011
2012 static inline bfd_boolean
2013 jal_reloc_p (int r_type)
2014 {
2015 return (r_type == R_MIPS_26
2016 || r_type == R_MIPS16_26
2017 || r_type == R_MICROMIPS_26_S1);
2018 }
2019
2020 static inline bfd_boolean
2021 micromips_branch_reloc_p (int r_type)
2022 {
2023 return (r_type == R_MICROMIPS_26_S1
2024 || r_type == R_MICROMIPS_PC16_S1
2025 || r_type == R_MICROMIPS_PC10_S1
2026 || r_type == R_MICROMIPS_PC7_S1);
2027 }
2028
2029 static inline bfd_boolean
2030 tls_gd_reloc_p (unsigned int r_type)
2031 {
2032 return (r_type == R_MIPS_TLS_GD
2033 || r_type == R_MIPS16_TLS_GD
2034 || r_type == R_MICROMIPS_TLS_GD);
2035 }
2036
2037 static inline bfd_boolean
2038 tls_ldm_reloc_p (unsigned int r_type)
2039 {
2040 return (r_type == R_MIPS_TLS_LDM
2041 || r_type == R_MIPS16_TLS_LDM
2042 || r_type == R_MICROMIPS_TLS_LDM);
2043 }
2044
2045 static inline bfd_boolean
2046 tls_gottprel_reloc_p (unsigned int r_type)
2047 {
2048 return (r_type == R_MIPS_TLS_GOTTPREL
2049 || r_type == R_MIPS16_TLS_GOTTPREL
2050 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2051 }
2052
2053 void
2054 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2055 bfd_boolean jal_shuffle, bfd_byte *data)
2056 {
2057 bfd_vma first, second, val;
2058
2059 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2060 return;
2061
2062 /* Pick up the first and second halfwords of the instruction. */
2063 first = bfd_get_16 (abfd, data);
2064 second = bfd_get_16 (abfd, data + 2);
2065 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2066 val = first << 16 | second;
2067 else if (r_type != R_MIPS16_26)
2068 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2069 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2070 else
2071 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2072 | ((first & 0x1f) << 21) | second);
2073 bfd_put_32 (abfd, val, data);
2074 }
2075
2076 void
2077 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2078 bfd_boolean jal_shuffle, bfd_byte *data)
2079 {
2080 bfd_vma first, second, val;
2081
2082 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2083 return;
2084
2085 val = bfd_get_32 (abfd, data);
2086 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2087 {
2088 second = val & 0xffff;
2089 first = val >> 16;
2090 }
2091 else if (r_type != R_MIPS16_26)
2092 {
2093 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2094 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2095 }
2096 else
2097 {
2098 second = val & 0xffff;
2099 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2100 | ((val >> 21) & 0x1f);
2101 }
2102 bfd_put_16 (abfd, second, data + 2);
2103 bfd_put_16 (abfd, first, data);
2104 }
2105
2106 bfd_reloc_status_type
2107 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2108 arelent *reloc_entry, asection *input_section,
2109 bfd_boolean relocatable, void *data, bfd_vma gp)
2110 {
2111 bfd_vma relocation;
2112 bfd_signed_vma val;
2113 bfd_reloc_status_type status;
2114
2115 if (bfd_is_com_section (symbol->section))
2116 relocation = 0;
2117 else
2118 relocation = symbol->value;
2119
2120 relocation += symbol->section->output_section->vma;
2121 relocation += symbol->section->output_offset;
2122
2123 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2124 return bfd_reloc_outofrange;
2125
2126 /* Set val to the offset into the section or symbol. */
2127 val = reloc_entry->addend;
2128
2129 _bfd_mips_elf_sign_extend (val, 16);
2130
2131 /* Adjust val for the final section location and GP value. If we
2132 are producing relocatable output, we don't want to do this for
2133 an external symbol. */
2134 if (! relocatable
2135 || (symbol->flags & BSF_SECTION_SYM) != 0)
2136 val += relocation - gp;
2137
2138 if (reloc_entry->howto->partial_inplace)
2139 {
2140 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2141 (bfd_byte *) data
2142 + reloc_entry->address);
2143 if (status != bfd_reloc_ok)
2144 return status;
2145 }
2146 else
2147 reloc_entry->addend = val;
2148
2149 if (relocatable)
2150 reloc_entry->address += input_section->output_offset;
2151
2152 return bfd_reloc_ok;
2153 }
2154
2155 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2156 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2157 that contains the relocation field and DATA points to the start of
2158 INPUT_SECTION. */
2159
2160 struct mips_hi16
2161 {
2162 struct mips_hi16 *next;
2163 bfd_byte *data;
2164 asection *input_section;
2165 arelent rel;
2166 };
2167
2168 /* FIXME: This should not be a static variable. */
2169
2170 static struct mips_hi16 *mips_hi16_list;
2171
2172 /* A howto special_function for REL *HI16 relocations. We can only
2173 calculate the correct value once we've seen the partnering
2174 *LO16 relocation, so just save the information for later.
2175
2176 The ABI requires that the *LO16 immediately follow the *HI16.
2177 However, as a GNU extension, we permit an arbitrary number of
2178 *HI16s to be associated with a single *LO16. This significantly
2179 simplies the relocation handling in gcc. */
2180
2181 bfd_reloc_status_type
2182 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2183 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2184 asection *input_section, bfd *output_bfd,
2185 char **error_message ATTRIBUTE_UNUSED)
2186 {
2187 struct mips_hi16 *n;
2188
2189 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2190 return bfd_reloc_outofrange;
2191
2192 n = bfd_malloc (sizeof *n);
2193 if (n == NULL)
2194 return bfd_reloc_outofrange;
2195
2196 n->next = mips_hi16_list;
2197 n->data = data;
2198 n->input_section = input_section;
2199 n->rel = *reloc_entry;
2200 mips_hi16_list = n;
2201
2202 if (output_bfd != NULL)
2203 reloc_entry->address += input_section->output_offset;
2204
2205 return bfd_reloc_ok;
2206 }
2207
2208 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2209 like any other 16-bit relocation when applied to global symbols, but is
2210 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2211
2212 bfd_reloc_status_type
2213 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2214 void *data, asection *input_section,
2215 bfd *output_bfd, char **error_message)
2216 {
2217 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2218 || bfd_is_und_section (bfd_get_section (symbol))
2219 || bfd_is_com_section (bfd_get_section (symbol)))
2220 /* The relocation is against a global symbol. */
2221 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2222 input_section, output_bfd,
2223 error_message);
2224
2225 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2226 input_section, output_bfd, error_message);
2227 }
2228
2229 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2230 is a straightforward 16 bit inplace relocation, but we must deal with
2231 any partnering high-part relocations as well. */
2232
2233 bfd_reloc_status_type
2234 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2235 void *data, asection *input_section,
2236 bfd *output_bfd, char **error_message)
2237 {
2238 bfd_vma vallo;
2239 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2240
2241 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2242 return bfd_reloc_outofrange;
2243
2244 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2245 location);
2246 vallo = bfd_get_32 (abfd, location);
2247 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2248 location);
2249
2250 while (mips_hi16_list != NULL)
2251 {
2252 bfd_reloc_status_type ret;
2253 struct mips_hi16 *hi;
2254
2255 hi = mips_hi16_list;
2256
2257 /* R_MIPS*_GOT16 relocations are something of a special case. We
2258 want to install the addend in the same way as for a R_MIPS*_HI16
2259 relocation (with a rightshift of 16). However, since GOT16
2260 relocations can also be used with global symbols, their howto
2261 has a rightshift of 0. */
2262 if (hi->rel.howto->type == R_MIPS_GOT16)
2263 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2264 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2265 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2266 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2267 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2268
2269 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2270 carry or borrow will induce a change of +1 or -1 in the high part. */
2271 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2272
2273 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2274 hi->input_section, output_bfd,
2275 error_message);
2276 if (ret != bfd_reloc_ok)
2277 return ret;
2278
2279 mips_hi16_list = hi->next;
2280 free (hi);
2281 }
2282
2283 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2284 input_section, output_bfd,
2285 error_message);
2286 }
2287
2288 /* A generic howto special_function. This calculates and installs the
2289 relocation itself, thus avoiding the oft-discussed problems in
2290 bfd_perform_relocation and bfd_install_relocation. */
2291
2292 bfd_reloc_status_type
2293 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2294 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2295 asection *input_section, bfd *output_bfd,
2296 char **error_message ATTRIBUTE_UNUSED)
2297 {
2298 bfd_signed_vma val;
2299 bfd_reloc_status_type status;
2300 bfd_boolean relocatable;
2301
2302 relocatable = (output_bfd != NULL);
2303
2304 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2305 return bfd_reloc_outofrange;
2306
2307 /* Build up the field adjustment in VAL. */
2308 val = 0;
2309 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2310 {
2311 /* Either we're calculating the final field value or we have a
2312 relocation against a section symbol. Add in the section's
2313 offset or address. */
2314 val += symbol->section->output_section->vma;
2315 val += symbol->section->output_offset;
2316 }
2317
2318 if (!relocatable)
2319 {
2320 /* We're calculating the final field value. Add in the symbol's value
2321 and, if pc-relative, subtract the address of the field itself. */
2322 val += symbol->value;
2323 if (reloc_entry->howto->pc_relative)
2324 {
2325 val -= input_section->output_section->vma;
2326 val -= input_section->output_offset;
2327 val -= reloc_entry->address;
2328 }
2329 }
2330
2331 /* VAL is now the final adjustment. If we're keeping this relocation
2332 in the output file, and if the relocation uses a separate addend,
2333 we just need to add VAL to that addend. Otherwise we need to add
2334 VAL to the relocation field itself. */
2335 if (relocatable && !reloc_entry->howto->partial_inplace)
2336 reloc_entry->addend += val;
2337 else
2338 {
2339 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2340
2341 /* Add in the separate addend, if any. */
2342 val += reloc_entry->addend;
2343
2344 /* Add VAL to the relocation field. */
2345 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2346 location);
2347 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2348 location);
2349 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2350 location);
2351
2352 if (status != bfd_reloc_ok)
2353 return status;
2354 }
2355
2356 if (relocatable)
2357 reloc_entry->address += input_section->output_offset;
2358
2359 return bfd_reloc_ok;
2360 }
2361 \f
2362 /* Swap an entry in a .gptab section. Note that these routines rely
2363 on the equivalence of the two elements of the union. */
2364
2365 static void
2366 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2367 Elf32_gptab *in)
2368 {
2369 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2370 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2371 }
2372
2373 static void
2374 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2375 Elf32_External_gptab *ex)
2376 {
2377 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2378 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2379 }
2380
2381 static void
2382 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2383 Elf32_External_compact_rel *ex)
2384 {
2385 H_PUT_32 (abfd, in->id1, ex->id1);
2386 H_PUT_32 (abfd, in->num, ex->num);
2387 H_PUT_32 (abfd, in->id2, ex->id2);
2388 H_PUT_32 (abfd, in->offset, ex->offset);
2389 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2390 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2391 }
2392
2393 static void
2394 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2395 Elf32_External_crinfo *ex)
2396 {
2397 unsigned long l;
2398
2399 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2400 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2401 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2402 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2403 H_PUT_32 (abfd, l, ex->info);
2404 H_PUT_32 (abfd, in->konst, ex->konst);
2405 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2406 }
2407 \f
2408 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2409 routines swap this structure in and out. They are used outside of
2410 BFD, so they are globally visible. */
2411
2412 void
2413 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2414 Elf32_RegInfo *in)
2415 {
2416 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2417 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2418 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2419 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2420 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2421 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2422 }
2423
2424 void
2425 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2426 Elf32_External_RegInfo *ex)
2427 {
2428 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2429 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2430 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2431 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2432 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2433 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2434 }
2435
2436 /* In the 64 bit ABI, the .MIPS.options section holds register
2437 information in an Elf64_Reginfo structure. These routines swap
2438 them in and out. They are globally visible because they are used
2439 outside of BFD. These routines are here so that gas can call them
2440 without worrying about whether the 64 bit ABI has been included. */
2441
2442 void
2443 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2444 Elf64_Internal_RegInfo *in)
2445 {
2446 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2447 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2448 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2449 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2450 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2451 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2452 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2453 }
2454
2455 void
2456 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2457 Elf64_External_RegInfo *ex)
2458 {
2459 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2460 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2461 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2462 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2463 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2464 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2465 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2466 }
2467
2468 /* Swap in an options header. */
2469
2470 void
2471 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2472 Elf_Internal_Options *in)
2473 {
2474 in->kind = H_GET_8 (abfd, ex->kind);
2475 in->size = H_GET_8 (abfd, ex->size);
2476 in->section = H_GET_16 (abfd, ex->section);
2477 in->info = H_GET_32 (abfd, ex->info);
2478 }
2479
2480 /* Swap out an options header. */
2481
2482 void
2483 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2484 Elf_External_Options *ex)
2485 {
2486 H_PUT_8 (abfd, in->kind, ex->kind);
2487 H_PUT_8 (abfd, in->size, ex->size);
2488 H_PUT_16 (abfd, in->section, ex->section);
2489 H_PUT_32 (abfd, in->info, ex->info);
2490 }
2491 \f
2492 /* This function is called via qsort() to sort the dynamic relocation
2493 entries by increasing r_symndx value. */
2494
2495 static int
2496 sort_dynamic_relocs (const void *arg1, const void *arg2)
2497 {
2498 Elf_Internal_Rela int_reloc1;
2499 Elf_Internal_Rela int_reloc2;
2500 int diff;
2501
2502 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2503 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2504
2505 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2506 if (diff != 0)
2507 return diff;
2508
2509 if (int_reloc1.r_offset < int_reloc2.r_offset)
2510 return -1;
2511 if (int_reloc1.r_offset > int_reloc2.r_offset)
2512 return 1;
2513 return 0;
2514 }
2515
2516 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2517
2518 static int
2519 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2520 const void *arg2 ATTRIBUTE_UNUSED)
2521 {
2522 #ifdef BFD64
2523 Elf_Internal_Rela int_reloc1[3];
2524 Elf_Internal_Rela int_reloc2[3];
2525
2526 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2527 (reldyn_sorting_bfd, arg1, int_reloc1);
2528 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2529 (reldyn_sorting_bfd, arg2, int_reloc2);
2530
2531 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2532 return -1;
2533 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2534 return 1;
2535
2536 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2537 return -1;
2538 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2539 return 1;
2540 return 0;
2541 #else
2542 abort ();
2543 #endif
2544 }
2545
2546
2547 /* This routine is used to write out ECOFF debugging external symbol
2548 information. It is called via mips_elf_link_hash_traverse. The
2549 ECOFF external symbol information must match the ELF external
2550 symbol information. Unfortunately, at this point we don't know
2551 whether a symbol is required by reloc information, so the two
2552 tables may wind up being different. We must sort out the external
2553 symbol information before we can set the final size of the .mdebug
2554 section, and we must set the size of the .mdebug section before we
2555 can relocate any sections, and we can't know which symbols are
2556 required by relocation until we relocate the sections.
2557 Fortunately, it is relatively unlikely that any symbol will be
2558 stripped but required by a reloc. In particular, it can not happen
2559 when generating a final executable. */
2560
2561 static bfd_boolean
2562 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2563 {
2564 struct extsym_info *einfo = data;
2565 bfd_boolean strip;
2566 asection *sec, *output_section;
2567
2568 if (h->root.indx == -2)
2569 strip = FALSE;
2570 else if ((h->root.def_dynamic
2571 || h->root.ref_dynamic
2572 || h->root.type == bfd_link_hash_new)
2573 && !h->root.def_regular
2574 && !h->root.ref_regular)
2575 strip = TRUE;
2576 else if (einfo->info->strip == strip_all
2577 || (einfo->info->strip == strip_some
2578 && bfd_hash_lookup (einfo->info->keep_hash,
2579 h->root.root.root.string,
2580 FALSE, FALSE) == NULL))
2581 strip = TRUE;
2582 else
2583 strip = FALSE;
2584
2585 if (strip)
2586 return TRUE;
2587
2588 if (h->esym.ifd == -2)
2589 {
2590 h->esym.jmptbl = 0;
2591 h->esym.cobol_main = 0;
2592 h->esym.weakext = 0;
2593 h->esym.reserved = 0;
2594 h->esym.ifd = ifdNil;
2595 h->esym.asym.value = 0;
2596 h->esym.asym.st = stGlobal;
2597
2598 if (h->root.root.type == bfd_link_hash_undefined
2599 || h->root.root.type == bfd_link_hash_undefweak)
2600 {
2601 const char *name;
2602
2603 /* Use undefined class. Also, set class and type for some
2604 special symbols. */
2605 name = h->root.root.root.string;
2606 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2607 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2608 {
2609 h->esym.asym.sc = scData;
2610 h->esym.asym.st = stLabel;
2611 h->esym.asym.value = 0;
2612 }
2613 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2614 {
2615 h->esym.asym.sc = scAbs;
2616 h->esym.asym.st = stLabel;
2617 h->esym.asym.value =
2618 mips_elf_hash_table (einfo->info)->procedure_count;
2619 }
2620 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2621 {
2622 h->esym.asym.sc = scAbs;
2623 h->esym.asym.st = stLabel;
2624 h->esym.asym.value = elf_gp (einfo->abfd);
2625 }
2626 else
2627 h->esym.asym.sc = scUndefined;
2628 }
2629 else if (h->root.root.type != bfd_link_hash_defined
2630 && h->root.root.type != bfd_link_hash_defweak)
2631 h->esym.asym.sc = scAbs;
2632 else
2633 {
2634 const char *name;
2635
2636 sec = h->root.root.u.def.section;
2637 output_section = sec->output_section;
2638
2639 /* When making a shared library and symbol h is the one from
2640 the another shared library, OUTPUT_SECTION may be null. */
2641 if (output_section == NULL)
2642 h->esym.asym.sc = scUndefined;
2643 else
2644 {
2645 name = bfd_section_name (output_section->owner, output_section);
2646
2647 if (strcmp (name, ".text") == 0)
2648 h->esym.asym.sc = scText;
2649 else if (strcmp (name, ".data") == 0)
2650 h->esym.asym.sc = scData;
2651 else if (strcmp (name, ".sdata") == 0)
2652 h->esym.asym.sc = scSData;
2653 else if (strcmp (name, ".rodata") == 0
2654 || strcmp (name, ".rdata") == 0)
2655 h->esym.asym.sc = scRData;
2656 else if (strcmp (name, ".bss") == 0)
2657 h->esym.asym.sc = scBss;
2658 else if (strcmp (name, ".sbss") == 0)
2659 h->esym.asym.sc = scSBss;
2660 else if (strcmp (name, ".init") == 0)
2661 h->esym.asym.sc = scInit;
2662 else if (strcmp (name, ".fini") == 0)
2663 h->esym.asym.sc = scFini;
2664 else
2665 h->esym.asym.sc = scAbs;
2666 }
2667 }
2668
2669 h->esym.asym.reserved = 0;
2670 h->esym.asym.index = indexNil;
2671 }
2672
2673 if (h->root.root.type == bfd_link_hash_common)
2674 h->esym.asym.value = h->root.root.u.c.size;
2675 else if (h->root.root.type == bfd_link_hash_defined
2676 || h->root.root.type == bfd_link_hash_defweak)
2677 {
2678 if (h->esym.asym.sc == scCommon)
2679 h->esym.asym.sc = scBss;
2680 else if (h->esym.asym.sc == scSCommon)
2681 h->esym.asym.sc = scSBss;
2682
2683 sec = h->root.root.u.def.section;
2684 output_section = sec->output_section;
2685 if (output_section != NULL)
2686 h->esym.asym.value = (h->root.root.u.def.value
2687 + sec->output_offset
2688 + output_section->vma);
2689 else
2690 h->esym.asym.value = 0;
2691 }
2692 else
2693 {
2694 struct mips_elf_link_hash_entry *hd = h;
2695
2696 while (hd->root.root.type == bfd_link_hash_indirect)
2697 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2698
2699 if (hd->needs_lazy_stub)
2700 {
2701 /* Set type and value for a symbol with a function stub. */
2702 h->esym.asym.st = stProc;
2703 sec = hd->root.root.u.def.section;
2704 if (sec == NULL)
2705 h->esym.asym.value = 0;
2706 else
2707 {
2708 output_section = sec->output_section;
2709 if (output_section != NULL)
2710 h->esym.asym.value = (hd->root.plt.offset
2711 + sec->output_offset
2712 + output_section->vma);
2713 else
2714 h->esym.asym.value = 0;
2715 }
2716 }
2717 }
2718
2719 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2720 h->root.root.root.string,
2721 &h->esym))
2722 {
2723 einfo->failed = TRUE;
2724 return FALSE;
2725 }
2726
2727 return TRUE;
2728 }
2729
2730 /* A comparison routine used to sort .gptab entries. */
2731
2732 static int
2733 gptab_compare (const void *p1, const void *p2)
2734 {
2735 const Elf32_gptab *a1 = p1;
2736 const Elf32_gptab *a2 = p2;
2737
2738 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2739 }
2740 \f
2741 /* Functions to manage the got entry hash table. */
2742
2743 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2744 hash number. */
2745
2746 static INLINE hashval_t
2747 mips_elf_hash_bfd_vma (bfd_vma addr)
2748 {
2749 #ifdef BFD64
2750 return addr + (addr >> 32);
2751 #else
2752 return addr;
2753 #endif
2754 }
2755
2756 /* got_entries only match if they're identical, except for gotidx, so
2757 use all fields to compute the hash, and compare the appropriate
2758 union members. */
2759
2760 static hashval_t
2761 mips_elf_got_entry_hash (const void *entry_)
2762 {
2763 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2764
2765 return entry->symndx
2766 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2767 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2768 : entry->abfd->id
2769 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2770 : entry->d.h->root.root.root.hash));
2771 }
2772
2773 static int
2774 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2775 {
2776 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2777 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2778
2779 /* An LDM entry can only match another LDM entry. */
2780 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2781 return 0;
2782
2783 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2784 && (! e1->abfd ? e1->d.address == e2->d.address
2785 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2786 : e1->d.h == e2->d.h);
2787 }
2788
2789 /* multi_got_entries are still a match in the case of global objects,
2790 even if the input bfd in which they're referenced differs, so the
2791 hash computation and compare functions are adjusted
2792 accordingly. */
2793
2794 static hashval_t
2795 mips_elf_multi_got_entry_hash (const void *entry_)
2796 {
2797 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2798
2799 return entry->symndx
2800 + (! entry->abfd
2801 ? mips_elf_hash_bfd_vma (entry->d.address)
2802 : entry->symndx >= 0
2803 ? ((entry->tls_type & GOT_TLS_LDM)
2804 ? (GOT_TLS_LDM << 17)
2805 : (entry->abfd->id
2806 + mips_elf_hash_bfd_vma (entry->d.addend)))
2807 : entry->d.h->root.root.root.hash);
2808 }
2809
2810 static int
2811 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2812 {
2813 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2814 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2815
2816 /* Any two LDM entries match. */
2817 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2818 return 1;
2819
2820 /* Nothing else matches an LDM entry. */
2821 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2822 return 0;
2823
2824 return e1->symndx == e2->symndx
2825 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2826 : e1->abfd == NULL || e2->abfd == NULL
2827 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2828 : e1->d.h == e2->d.h);
2829 }
2830
2831 static hashval_t
2832 mips_got_page_entry_hash (const void *entry_)
2833 {
2834 const struct mips_got_page_entry *entry;
2835
2836 entry = (const struct mips_got_page_entry *) entry_;
2837 return entry->abfd->id + entry->symndx;
2838 }
2839
2840 static int
2841 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2842 {
2843 const struct mips_got_page_entry *entry1, *entry2;
2844
2845 entry1 = (const struct mips_got_page_entry *) entry1_;
2846 entry2 = (const struct mips_got_page_entry *) entry2_;
2847 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2848 }
2849 \f
2850 /* Return the dynamic relocation section. If it doesn't exist, try to
2851 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2852 if creation fails. */
2853
2854 static asection *
2855 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2856 {
2857 const char *dname;
2858 asection *sreloc;
2859 bfd *dynobj;
2860
2861 dname = MIPS_ELF_REL_DYN_NAME (info);
2862 dynobj = elf_hash_table (info)->dynobj;
2863 sreloc = bfd_get_section_by_name (dynobj, dname);
2864 if (sreloc == NULL && create_p)
2865 {
2866 sreloc = bfd_make_section_with_flags (dynobj, dname,
2867 (SEC_ALLOC
2868 | SEC_LOAD
2869 | SEC_HAS_CONTENTS
2870 | SEC_IN_MEMORY
2871 | SEC_LINKER_CREATED
2872 | SEC_READONLY));
2873 if (sreloc == NULL
2874 || ! bfd_set_section_alignment (dynobj, sreloc,
2875 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2876 return NULL;
2877 }
2878 return sreloc;
2879 }
2880
2881 /* Count the number of relocations needed for a TLS GOT entry, with
2882 access types from TLS_TYPE, and symbol H (or a local symbol if H
2883 is NULL). */
2884
2885 static int
2886 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2887 struct elf_link_hash_entry *h)
2888 {
2889 int indx = 0;
2890 int ret = 0;
2891 bfd_boolean need_relocs = FALSE;
2892 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2893
2894 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2895 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2896 indx = h->dynindx;
2897
2898 if ((info->shared || indx != 0)
2899 && (h == NULL
2900 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2901 || h->root.type != bfd_link_hash_undefweak))
2902 need_relocs = TRUE;
2903
2904 if (!need_relocs)
2905 return FALSE;
2906
2907 if (tls_type & GOT_TLS_GD)
2908 {
2909 ret++;
2910 if (indx != 0)
2911 ret++;
2912 }
2913
2914 if (tls_type & GOT_TLS_IE)
2915 ret++;
2916
2917 if ((tls_type & GOT_TLS_LDM) && info->shared)
2918 ret++;
2919
2920 return ret;
2921 }
2922
2923 /* Count the number of TLS relocations required for the GOT entry in
2924 ARG1, if it describes a local symbol. */
2925
2926 static int
2927 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2928 {
2929 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2930 struct mips_elf_count_tls_arg *arg = arg2;
2931
2932 if (entry->abfd != NULL && entry->symndx != -1)
2933 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2934
2935 return 1;
2936 }
2937
2938 /* Count the number of TLS GOT entries required for the global (or
2939 forced-local) symbol in ARG1. */
2940
2941 static int
2942 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2943 {
2944 struct mips_elf_link_hash_entry *hm
2945 = (struct mips_elf_link_hash_entry *) arg1;
2946 struct mips_elf_count_tls_arg *arg = arg2;
2947
2948 if (hm->tls_type & GOT_TLS_GD)
2949 arg->needed += 2;
2950 if (hm->tls_type & GOT_TLS_IE)
2951 arg->needed += 1;
2952
2953 return 1;
2954 }
2955
2956 /* Count the number of TLS relocations required for the global (or
2957 forced-local) symbol in ARG1. */
2958
2959 static int
2960 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2961 {
2962 struct mips_elf_link_hash_entry *hm
2963 = (struct mips_elf_link_hash_entry *) arg1;
2964 struct mips_elf_count_tls_arg *arg = arg2;
2965
2966 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2967
2968 return 1;
2969 }
2970
2971 /* Output a simple dynamic relocation into SRELOC. */
2972
2973 static void
2974 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2975 asection *sreloc,
2976 unsigned long reloc_index,
2977 unsigned long indx,
2978 int r_type,
2979 bfd_vma offset)
2980 {
2981 Elf_Internal_Rela rel[3];
2982
2983 memset (rel, 0, sizeof (rel));
2984
2985 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2986 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2987
2988 if (ABI_64_P (output_bfd))
2989 {
2990 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2991 (output_bfd, &rel[0],
2992 (sreloc->contents
2993 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
2994 }
2995 else
2996 bfd_elf32_swap_reloc_out
2997 (output_bfd, &rel[0],
2998 (sreloc->contents
2999 + reloc_index * sizeof (Elf32_External_Rel)));
3000 }
3001
3002 /* Initialize a set of TLS GOT entries for one symbol. */
3003
3004 static void
3005 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
3006 unsigned char *tls_type_p,
3007 struct bfd_link_info *info,
3008 struct mips_elf_link_hash_entry *h,
3009 bfd_vma value)
3010 {
3011 struct mips_elf_link_hash_table *htab;
3012 int indx;
3013 asection *sreloc, *sgot;
3014 bfd_vma offset, offset2;
3015 bfd_boolean need_relocs = FALSE;
3016
3017 htab = mips_elf_hash_table (info);
3018 if (htab == NULL)
3019 return;
3020
3021 sgot = htab->sgot;
3022
3023 indx = 0;
3024 if (h != NULL)
3025 {
3026 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3027
3028 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3029 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3030 indx = h->root.dynindx;
3031 }
3032
3033 if (*tls_type_p & GOT_TLS_DONE)
3034 return;
3035
3036 if ((info->shared || indx != 0)
3037 && (h == NULL
3038 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3039 || h->root.type != bfd_link_hash_undefweak))
3040 need_relocs = TRUE;
3041
3042 /* MINUS_ONE means the symbol is not defined in this object. It may not
3043 be defined at all; assume that the value doesn't matter in that
3044 case. Otherwise complain if we would use the value. */
3045 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3046 || h->root.root.type == bfd_link_hash_undefweak);
3047
3048 /* Emit necessary relocations. */
3049 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3050
3051 /* General Dynamic. */
3052 if (*tls_type_p & GOT_TLS_GD)
3053 {
3054 offset = got_offset;
3055 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
3056
3057 if (need_relocs)
3058 {
3059 mips_elf_output_dynamic_relocation
3060 (abfd, sreloc, sreloc->reloc_count++, indx,
3061 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3062 sgot->output_offset + sgot->output_section->vma + offset);
3063
3064 if (indx)
3065 mips_elf_output_dynamic_relocation
3066 (abfd, sreloc, sreloc->reloc_count++, indx,
3067 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3068 sgot->output_offset + sgot->output_section->vma + offset2);
3069 else
3070 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3071 sgot->contents + offset2);
3072 }
3073 else
3074 {
3075 MIPS_ELF_PUT_WORD (abfd, 1,
3076 sgot->contents + offset);
3077 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3078 sgot->contents + offset2);
3079 }
3080
3081 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
3082 }
3083
3084 /* Initial Exec model. */
3085 if (*tls_type_p & GOT_TLS_IE)
3086 {
3087 offset = got_offset;
3088
3089 if (need_relocs)
3090 {
3091 if (indx == 0)
3092 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3093 sgot->contents + offset);
3094 else
3095 MIPS_ELF_PUT_WORD (abfd, 0,
3096 sgot->contents + offset);
3097
3098 mips_elf_output_dynamic_relocation
3099 (abfd, sreloc, sreloc->reloc_count++, indx,
3100 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3101 sgot->output_offset + sgot->output_section->vma + offset);
3102 }
3103 else
3104 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3105 sgot->contents + offset);
3106 }
3107
3108 if (*tls_type_p & GOT_TLS_LDM)
3109 {
3110 /* The initial offset is zero, and the LD offsets will include the
3111 bias by DTP_OFFSET. */
3112 MIPS_ELF_PUT_WORD (abfd, 0,
3113 sgot->contents + got_offset
3114 + MIPS_ELF_GOT_SIZE (abfd));
3115
3116 if (!info->shared)
3117 MIPS_ELF_PUT_WORD (abfd, 1,
3118 sgot->contents + got_offset);
3119 else
3120 mips_elf_output_dynamic_relocation
3121 (abfd, sreloc, sreloc->reloc_count++, indx,
3122 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3123 sgot->output_offset + sgot->output_section->vma + got_offset);
3124 }
3125
3126 *tls_type_p |= GOT_TLS_DONE;
3127 }
3128
3129 /* Return the GOT index to use for a relocation of type R_TYPE against
3130 a symbol accessed using TLS_TYPE models. The GOT entries for this
3131 symbol in this GOT start at GOT_INDEX. This function initializes the
3132 GOT entries and corresponding relocations. */
3133
3134 static bfd_vma
3135 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
3136 int r_type, struct bfd_link_info *info,
3137 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3138 {
3139 BFD_ASSERT (tls_gottprel_reloc_p (r_type)
3140 || tls_gd_reloc_p (r_type)
3141 || tls_ldm_reloc_p (r_type));
3142
3143 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
3144
3145 if (tls_gottprel_reloc_p (r_type))
3146 {
3147 BFD_ASSERT (*tls_type & GOT_TLS_IE);
3148 if (*tls_type & GOT_TLS_GD)
3149 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
3150 else
3151 return got_index;
3152 }
3153
3154 if (tls_gd_reloc_p (r_type))
3155 {
3156 BFD_ASSERT (*tls_type & GOT_TLS_GD);
3157 return got_index;
3158 }
3159
3160 if (tls_ldm_reloc_p (r_type))
3161 {
3162 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3163 return got_index;
3164 }
3165
3166 return got_index;
3167 }
3168
3169 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3170 for global symbol H. .got.plt comes before the GOT, so the offset
3171 will be negative. */
3172
3173 static bfd_vma
3174 mips_elf_gotplt_index (struct bfd_link_info *info,
3175 struct elf_link_hash_entry *h)
3176 {
3177 bfd_vma plt_index, got_address, got_value;
3178 struct mips_elf_link_hash_table *htab;
3179
3180 htab = mips_elf_hash_table (info);
3181 BFD_ASSERT (htab != NULL);
3182
3183 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3184
3185 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3186 section starts with reserved entries. */
3187 BFD_ASSERT (htab->is_vxworks);
3188
3189 /* Calculate the index of the symbol's PLT entry. */
3190 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3191
3192 /* Calculate the address of the associated .got.plt entry. */
3193 got_address = (htab->sgotplt->output_section->vma
3194 + htab->sgotplt->output_offset
3195 + plt_index * 4);
3196
3197 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3198 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3199 + htab->root.hgot->root.u.def.section->output_offset
3200 + htab->root.hgot->root.u.def.value);
3201
3202 return got_address - got_value;
3203 }
3204
3205 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3206 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3207 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3208 offset can be found. */
3209
3210 static bfd_vma
3211 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3212 bfd_vma value, unsigned long r_symndx,
3213 struct mips_elf_link_hash_entry *h, int r_type)
3214 {
3215 struct mips_elf_link_hash_table *htab;
3216 struct mips_got_entry *entry;
3217
3218 htab = mips_elf_hash_table (info);
3219 BFD_ASSERT (htab != NULL);
3220
3221 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3222 r_symndx, h, r_type);
3223 if (!entry)
3224 return MINUS_ONE;
3225
3226 if (TLS_RELOC_P (r_type))
3227 {
3228 if (entry->symndx == -1 && htab->got_info->next == NULL)
3229 /* A type (3) entry in the single-GOT case. We use the symbol's
3230 hash table entry to track the index. */
3231 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3232 r_type, info, h, value);
3233 else
3234 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3235 r_type, info, h, value);
3236 }
3237 else
3238 return entry->gotidx;
3239 }
3240
3241 /* Returns the GOT index for the global symbol indicated by H. */
3242
3243 static bfd_vma
3244 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3245 int r_type, struct bfd_link_info *info)
3246 {
3247 struct mips_elf_link_hash_table *htab;
3248 bfd_vma got_index;
3249 struct mips_got_info *g, *gg;
3250 long global_got_dynindx = 0;
3251
3252 htab = mips_elf_hash_table (info);
3253 BFD_ASSERT (htab != NULL);
3254
3255 gg = g = htab->got_info;
3256 if (g->bfd2got && ibfd)
3257 {
3258 struct mips_got_entry e, *p;
3259
3260 BFD_ASSERT (h->dynindx >= 0);
3261
3262 g = mips_elf_got_for_ibfd (g, ibfd);
3263 if (g->next != gg || TLS_RELOC_P (r_type))
3264 {
3265 e.abfd = ibfd;
3266 e.symndx = -1;
3267 e.d.h = (struct mips_elf_link_hash_entry *)h;
3268 e.tls_type = 0;
3269
3270 p = htab_find (g->got_entries, &e);
3271
3272 BFD_ASSERT (p->gotidx > 0);
3273
3274 if (TLS_RELOC_P (r_type))
3275 {
3276 bfd_vma value = MINUS_ONE;
3277 if ((h->root.type == bfd_link_hash_defined
3278 || h->root.type == bfd_link_hash_defweak)
3279 && h->root.u.def.section->output_section)
3280 value = (h->root.u.def.value
3281 + h->root.u.def.section->output_offset
3282 + h->root.u.def.section->output_section->vma);
3283
3284 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3285 info, e.d.h, value);
3286 }
3287 else
3288 return p->gotidx;
3289 }
3290 }
3291
3292 if (gg->global_gotsym != NULL)
3293 global_got_dynindx = gg->global_gotsym->dynindx;
3294
3295 if (TLS_RELOC_P (r_type))
3296 {
3297 struct mips_elf_link_hash_entry *hm
3298 = (struct mips_elf_link_hash_entry *) h;
3299 bfd_vma value = MINUS_ONE;
3300
3301 if ((h->root.type == bfd_link_hash_defined
3302 || h->root.type == bfd_link_hash_defweak)
3303 && h->root.u.def.section->output_section)
3304 value = (h->root.u.def.value
3305 + h->root.u.def.section->output_offset
3306 + h->root.u.def.section->output_section->vma);
3307
3308 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3309 r_type, info, hm, value);
3310 }
3311 else
3312 {
3313 /* Once we determine the global GOT entry with the lowest dynamic
3314 symbol table index, we must put all dynamic symbols with greater
3315 indices into the GOT. That makes it easy to calculate the GOT
3316 offset. */
3317 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3318 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3319 * MIPS_ELF_GOT_SIZE (abfd));
3320 }
3321 BFD_ASSERT (got_index < htab->sgot->size);
3322
3323 return got_index;
3324 }
3325
3326 /* Find a GOT page entry that points to within 32KB of VALUE. These
3327 entries are supposed to be placed at small offsets in the GOT, i.e.,
3328 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3329 entry could be created. If OFFSETP is nonnull, use it to return the
3330 offset of the GOT entry from VALUE. */
3331
3332 static bfd_vma
3333 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3334 bfd_vma value, bfd_vma *offsetp)
3335 {
3336 bfd_vma page, got_index;
3337 struct mips_got_entry *entry;
3338
3339 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3340 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3341 NULL, R_MIPS_GOT_PAGE);
3342
3343 if (!entry)
3344 return MINUS_ONE;
3345
3346 got_index = entry->gotidx;
3347
3348 if (offsetp)
3349 *offsetp = value - entry->d.address;
3350
3351 return got_index;
3352 }
3353
3354 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3355 EXTERNAL is true if the relocation was originally against a global
3356 symbol that binds locally. */
3357
3358 static bfd_vma
3359 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3360 bfd_vma value, bfd_boolean external)
3361 {
3362 struct mips_got_entry *entry;
3363
3364 /* GOT16 relocations against local symbols are followed by a LO16
3365 relocation; those against global symbols are not. Thus if the
3366 symbol was originally local, the GOT16 relocation should load the
3367 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3368 if (! external)
3369 value = mips_elf_high (value) << 16;
3370
3371 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3372 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3373 same in all cases. */
3374 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3375 NULL, R_MIPS_GOT16);
3376 if (entry)
3377 return entry->gotidx;
3378 else
3379 return MINUS_ONE;
3380 }
3381
3382 /* Returns the offset for the entry at the INDEXth position
3383 in the GOT. */
3384
3385 static bfd_vma
3386 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3387 bfd *input_bfd, bfd_vma got_index)
3388 {
3389 struct mips_elf_link_hash_table *htab;
3390 asection *sgot;
3391 bfd_vma gp;
3392
3393 htab = mips_elf_hash_table (info);
3394 BFD_ASSERT (htab != NULL);
3395
3396 sgot = htab->sgot;
3397 gp = _bfd_get_gp_value (output_bfd)
3398 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3399
3400 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3401 }
3402
3403 /* Create and return a local GOT entry for VALUE, which was calculated
3404 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3405 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3406 instead. */
3407
3408 static struct mips_got_entry *
3409 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3410 bfd *ibfd, bfd_vma value,
3411 unsigned long r_symndx,
3412 struct mips_elf_link_hash_entry *h,
3413 int r_type)
3414 {
3415 struct mips_got_entry entry, **loc;
3416 struct mips_got_info *g;
3417 struct mips_elf_link_hash_table *htab;
3418
3419 htab = mips_elf_hash_table (info);
3420 BFD_ASSERT (htab != NULL);
3421
3422 entry.abfd = NULL;
3423 entry.symndx = -1;
3424 entry.d.address = value;
3425 entry.tls_type = 0;
3426
3427 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3428 if (g == NULL)
3429 {
3430 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3431 BFD_ASSERT (g != NULL);
3432 }
3433
3434 /* This function shouldn't be called for symbols that live in the global
3435 area of the GOT. */
3436 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3437 if (TLS_RELOC_P (r_type))
3438 {
3439 struct mips_got_entry *p;
3440
3441 entry.abfd = ibfd;
3442 if (tls_ldm_reloc_p (r_type))
3443 {
3444 entry.tls_type = GOT_TLS_LDM;
3445 entry.symndx = 0;
3446 entry.d.addend = 0;
3447 }
3448 else if (h == NULL)
3449 {
3450 entry.symndx = r_symndx;
3451 entry.d.addend = 0;
3452 }
3453 else
3454 entry.d.h = h;
3455
3456 p = (struct mips_got_entry *)
3457 htab_find (g->got_entries, &entry);
3458
3459 BFD_ASSERT (p);
3460 return p;
3461 }
3462
3463 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3464 INSERT);
3465 if (*loc)
3466 return *loc;
3467
3468 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3469 entry.tls_type = 0;
3470
3471 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3472
3473 if (! *loc)
3474 return NULL;
3475
3476 memcpy (*loc, &entry, sizeof entry);
3477
3478 if (g->assigned_gotno > g->local_gotno)
3479 {
3480 (*loc)->gotidx = -1;
3481 /* We didn't allocate enough space in the GOT. */
3482 (*_bfd_error_handler)
3483 (_("not enough GOT space for local GOT entries"));
3484 bfd_set_error (bfd_error_bad_value);
3485 return NULL;
3486 }
3487
3488 MIPS_ELF_PUT_WORD (abfd, value,
3489 (htab->sgot->contents + entry.gotidx));
3490
3491 /* These GOT entries need a dynamic relocation on VxWorks. */
3492 if (htab->is_vxworks)
3493 {
3494 Elf_Internal_Rela outrel;
3495 asection *s;
3496 bfd_byte *rloc;
3497 bfd_vma got_address;
3498
3499 s = mips_elf_rel_dyn_section (info, FALSE);
3500 got_address = (htab->sgot->output_section->vma
3501 + htab->sgot->output_offset
3502 + entry.gotidx);
3503
3504 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3505 outrel.r_offset = got_address;
3506 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3507 outrel.r_addend = value;
3508 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3509 }
3510
3511 return *loc;
3512 }
3513
3514 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3515 The number might be exact or a worst-case estimate, depending on how
3516 much information is available to elf_backend_omit_section_dynsym at
3517 the current linking stage. */
3518
3519 static bfd_size_type
3520 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3521 {
3522 bfd_size_type count;
3523
3524 count = 0;
3525 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3526 {
3527 asection *p;
3528 const struct elf_backend_data *bed;
3529
3530 bed = get_elf_backend_data (output_bfd);
3531 for (p = output_bfd->sections; p ; p = p->next)
3532 if ((p->flags & SEC_EXCLUDE) == 0
3533 && (p->flags & SEC_ALLOC) != 0
3534 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3535 ++count;
3536 }
3537 return count;
3538 }
3539
3540 /* Sort the dynamic symbol table so that symbols that need GOT entries
3541 appear towards the end. */
3542
3543 static bfd_boolean
3544 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3545 {
3546 struct mips_elf_link_hash_table *htab;
3547 struct mips_elf_hash_sort_data hsd;
3548 struct mips_got_info *g;
3549
3550 if (elf_hash_table (info)->dynsymcount == 0)
3551 return TRUE;
3552
3553 htab = mips_elf_hash_table (info);
3554 BFD_ASSERT (htab != NULL);
3555
3556 g = htab->got_info;
3557 if (g == NULL)
3558 return TRUE;
3559
3560 hsd.low = NULL;
3561 hsd.max_unref_got_dynindx
3562 = hsd.min_got_dynindx
3563 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3564 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3565 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3566 elf_hash_table (info)),
3567 mips_elf_sort_hash_table_f,
3568 &hsd);
3569
3570 /* There should have been enough room in the symbol table to
3571 accommodate both the GOT and non-GOT symbols. */
3572 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3573 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3574 == elf_hash_table (info)->dynsymcount);
3575 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3576 == g->global_gotno);
3577
3578 /* Now we know which dynamic symbol has the lowest dynamic symbol
3579 table index in the GOT. */
3580 g->global_gotsym = hsd.low;
3581
3582 return TRUE;
3583 }
3584
3585 /* If H needs a GOT entry, assign it the highest available dynamic
3586 index. Otherwise, assign it the lowest available dynamic
3587 index. */
3588
3589 static bfd_boolean
3590 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3591 {
3592 struct mips_elf_hash_sort_data *hsd = data;
3593
3594 /* Symbols without dynamic symbol table entries aren't interesting
3595 at all. */
3596 if (h->root.dynindx == -1)
3597 return TRUE;
3598
3599 switch (h->global_got_area)
3600 {
3601 case GGA_NONE:
3602 h->root.dynindx = hsd->max_non_got_dynindx++;
3603 break;
3604
3605 case GGA_NORMAL:
3606 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3607
3608 h->root.dynindx = --hsd->min_got_dynindx;
3609 hsd->low = (struct elf_link_hash_entry *) h;
3610 break;
3611
3612 case GGA_RELOC_ONLY:
3613 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3614
3615 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3616 hsd->low = (struct elf_link_hash_entry *) h;
3617 h->root.dynindx = hsd->max_unref_got_dynindx++;
3618 break;
3619 }
3620
3621 return TRUE;
3622 }
3623
3624 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3625 symbol table index lower than any we've seen to date, record it for
3626 posterity. FOR_CALL is true if the caller is only interested in
3627 using the GOT entry for calls. */
3628
3629 static bfd_boolean
3630 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3631 bfd *abfd, struct bfd_link_info *info,
3632 bfd_boolean for_call,
3633 unsigned char tls_flag)
3634 {
3635 struct mips_elf_link_hash_table *htab;
3636 struct mips_elf_link_hash_entry *hmips;
3637 struct mips_got_entry entry, **loc;
3638 struct mips_got_info *g;
3639
3640 htab = mips_elf_hash_table (info);
3641 BFD_ASSERT (htab != NULL);
3642
3643 hmips = (struct mips_elf_link_hash_entry *) h;
3644 if (!for_call)
3645 hmips->got_only_for_calls = FALSE;
3646
3647 /* A global symbol in the GOT must also be in the dynamic symbol
3648 table. */
3649 if (h->dynindx == -1)
3650 {
3651 switch (ELF_ST_VISIBILITY (h->other))
3652 {
3653 case STV_INTERNAL:
3654 case STV_HIDDEN:
3655 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3656 break;
3657 }
3658 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3659 return FALSE;
3660 }
3661
3662 /* Make sure we have a GOT to put this entry into. */
3663 g = htab->got_info;
3664 BFD_ASSERT (g != NULL);
3665
3666 entry.abfd = abfd;
3667 entry.symndx = -1;
3668 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3669 entry.tls_type = 0;
3670
3671 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3672 INSERT);
3673
3674 /* If we've already marked this entry as needing GOT space, we don't
3675 need to do it again. */
3676 if (*loc)
3677 {
3678 (*loc)->tls_type |= tls_flag;
3679 return TRUE;
3680 }
3681
3682 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3683
3684 if (! *loc)
3685 return FALSE;
3686
3687 entry.gotidx = -1;
3688 entry.tls_type = tls_flag;
3689
3690 memcpy (*loc, &entry, sizeof entry);
3691
3692 if (tls_flag == 0)
3693 hmips->global_got_area = GGA_NORMAL;
3694
3695 return TRUE;
3696 }
3697
3698 /* Reserve space in G for a GOT entry containing the value of symbol
3699 SYMNDX in input bfd ABDF, plus ADDEND. */
3700
3701 static bfd_boolean
3702 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3703 struct bfd_link_info *info,
3704 unsigned char tls_flag)
3705 {
3706 struct mips_elf_link_hash_table *htab;
3707 struct mips_got_info *g;
3708 struct mips_got_entry entry, **loc;
3709
3710 htab = mips_elf_hash_table (info);
3711 BFD_ASSERT (htab != NULL);
3712
3713 g = htab->got_info;
3714 BFD_ASSERT (g != NULL);
3715
3716 entry.abfd = abfd;
3717 entry.symndx = symndx;
3718 entry.d.addend = addend;
3719 entry.tls_type = tls_flag;
3720 loc = (struct mips_got_entry **)
3721 htab_find_slot (g->got_entries, &entry, INSERT);
3722
3723 if (*loc)
3724 {
3725 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3726 {
3727 g->tls_gotno += 2;
3728 (*loc)->tls_type |= tls_flag;
3729 }
3730 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3731 {
3732 g->tls_gotno += 1;
3733 (*loc)->tls_type |= tls_flag;
3734 }
3735 return TRUE;
3736 }
3737
3738 if (tls_flag != 0)
3739 {
3740 entry.gotidx = -1;
3741 entry.tls_type = tls_flag;
3742 if (tls_flag == GOT_TLS_IE)
3743 g->tls_gotno += 1;
3744 else if (tls_flag == GOT_TLS_GD)
3745 g->tls_gotno += 2;
3746 else if (g->tls_ldm_offset == MINUS_ONE)
3747 {
3748 g->tls_ldm_offset = MINUS_TWO;
3749 g->tls_gotno += 2;
3750 }
3751 }
3752 else
3753 {
3754 entry.gotidx = g->local_gotno++;
3755 entry.tls_type = 0;
3756 }
3757
3758 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3759
3760 if (! *loc)
3761 return FALSE;
3762
3763 memcpy (*loc, &entry, sizeof entry);
3764
3765 return TRUE;
3766 }
3767
3768 /* Return the maximum number of GOT page entries required for RANGE. */
3769
3770 static bfd_vma
3771 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3772 {
3773 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3774 }
3775
3776 /* Record that ABFD has a page relocation against symbol SYMNDX and
3777 that ADDEND is the addend for that relocation.
3778
3779 This function creates an upper bound on the number of GOT slots
3780 required; no attempt is made to combine references to non-overridable
3781 global symbols across multiple input files. */
3782
3783 static bfd_boolean
3784 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3785 long symndx, bfd_signed_vma addend)
3786 {
3787 struct mips_elf_link_hash_table *htab;
3788 struct mips_got_info *g;
3789 struct mips_got_page_entry lookup, *entry;
3790 struct mips_got_page_range **range_ptr, *range;
3791 bfd_vma old_pages, new_pages;
3792 void **loc;
3793
3794 htab = mips_elf_hash_table (info);
3795 BFD_ASSERT (htab != NULL);
3796
3797 g = htab->got_info;
3798 BFD_ASSERT (g != NULL);
3799
3800 /* Find the mips_got_page_entry hash table entry for this symbol. */
3801 lookup.abfd = abfd;
3802 lookup.symndx = symndx;
3803 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3804 if (loc == NULL)
3805 return FALSE;
3806
3807 /* Create a mips_got_page_entry if this is the first time we've
3808 seen the symbol. */
3809 entry = (struct mips_got_page_entry *) *loc;
3810 if (!entry)
3811 {
3812 entry = bfd_alloc (abfd, sizeof (*entry));
3813 if (!entry)
3814 return FALSE;
3815
3816 entry->abfd = abfd;
3817 entry->symndx = symndx;
3818 entry->ranges = NULL;
3819 entry->num_pages = 0;
3820 *loc = entry;
3821 }
3822
3823 /* Skip over ranges whose maximum extent cannot share a page entry
3824 with ADDEND. */
3825 range_ptr = &entry->ranges;
3826 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3827 range_ptr = &(*range_ptr)->next;
3828
3829 /* If we scanned to the end of the list, or found a range whose
3830 minimum extent cannot share a page entry with ADDEND, create
3831 a new singleton range. */
3832 range = *range_ptr;
3833 if (!range || addend < range->min_addend - 0xffff)
3834 {
3835 range = bfd_alloc (abfd, sizeof (*range));
3836 if (!range)
3837 return FALSE;
3838
3839 range->next = *range_ptr;
3840 range->min_addend = addend;
3841 range->max_addend = addend;
3842
3843 *range_ptr = range;
3844 entry->num_pages++;
3845 g->page_gotno++;
3846 return TRUE;
3847 }
3848
3849 /* Remember how many pages the old range contributed. */
3850 old_pages = mips_elf_pages_for_range (range);
3851
3852 /* Update the ranges. */
3853 if (addend < range->min_addend)
3854 range->min_addend = addend;
3855 else if (addend > range->max_addend)
3856 {
3857 if (range->next && addend >= range->next->min_addend - 0xffff)
3858 {
3859 old_pages += mips_elf_pages_for_range (range->next);
3860 range->max_addend = range->next->max_addend;
3861 range->next = range->next->next;
3862 }
3863 else
3864 range->max_addend = addend;
3865 }
3866
3867 /* Record any change in the total estimate. */
3868 new_pages = mips_elf_pages_for_range (range);
3869 if (old_pages != new_pages)
3870 {
3871 entry->num_pages += new_pages - old_pages;
3872 g->page_gotno += new_pages - old_pages;
3873 }
3874
3875 return TRUE;
3876 }
3877
3878 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3879
3880 static void
3881 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3882 unsigned int n)
3883 {
3884 asection *s;
3885 struct mips_elf_link_hash_table *htab;
3886
3887 htab = mips_elf_hash_table (info);
3888 BFD_ASSERT (htab != NULL);
3889
3890 s = mips_elf_rel_dyn_section (info, FALSE);
3891 BFD_ASSERT (s != NULL);
3892
3893 if (htab->is_vxworks)
3894 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3895 else
3896 {
3897 if (s->size == 0)
3898 {
3899 /* Make room for a null element. */
3900 s->size += MIPS_ELF_REL_SIZE (abfd);
3901 ++s->reloc_count;
3902 }
3903 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3904 }
3905 }
3906 \f
3907 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3908 if the GOT entry is for an indirect or warning symbol. */
3909
3910 static int
3911 mips_elf_check_recreate_got (void **entryp, void *data)
3912 {
3913 struct mips_got_entry *entry;
3914 bfd_boolean *must_recreate;
3915
3916 entry = (struct mips_got_entry *) *entryp;
3917 must_recreate = (bfd_boolean *) data;
3918 if (entry->abfd != NULL && entry->symndx == -1)
3919 {
3920 struct mips_elf_link_hash_entry *h;
3921
3922 h = entry->d.h;
3923 if (h->root.root.type == bfd_link_hash_indirect
3924 || h->root.root.type == bfd_link_hash_warning)
3925 {
3926 *must_recreate = TRUE;
3927 return 0;
3928 }
3929 }
3930 return 1;
3931 }
3932
3933 /* A htab_traverse callback for GOT entries. Add all entries to
3934 hash table *DATA, converting entries for indirect and warning
3935 symbols into entries for the target symbol. Set *DATA to null
3936 on error. */
3937
3938 static int
3939 mips_elf_recreate_got (void **entryp, void *data)
3940 {
3941 htab_t *new_got;
3942 struct mips_got_entry *entry;
3943 void **slot;
3944
3945 new_got = (htab_t *) data;
3946 entry = (struct mips_got_entry *) *entryp;
3947 if (entry->abfd != NULL && entry->symndx == -1)
3948 {
3949 struct mips_elf_link_hash_entry *h;
3950
3951 h = entry->d.h;
3952 while (h->root.root.type == bfd_link_hash_indirect
3953 || h->root.root.type == bfd_link_hash_warning)
3954 {
3955 BFD_ASSERT (h->global_got_area == GGA_NONE);
3956 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3957 }
3958 entry->d.h = h;
3959 }
3960 slot = htab_find_slot (*new_got, entry, INSERT);
3961 if (slot == NULL)
3962 {
3963 *new_got = NULL;
3964 return 0;
3965 }
3966 if (*slot == NULL)
3967 *slot = entry;
3968 else
3969 free (entry);
3970 return 1;
3971 }
3972
3973 /* If any entries in G->got_entries are for indirect or warning symbols,
3974 replace them with entries for the target symbol. */
3975
3976 static bfd_boolean
3977 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3978 {
3979 bfd_boolean must_recreate;
3980 htab_t new_got;
3981
3982 must_recreate = FALSE;
3983 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3984 if (must_recreate)
3985 {
3986 new_got = htab_create (htab_size (g->got_entries),
3987 mips_elf_got_entry_hash,
3988 mips_elf_got_entry_eq, NULL);
3989 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3990 if (new_got == NULL)
3991 return FALSE;
3992
3993 /* Each entry in g->got_entries has either been copied to new_got
3994 or freed. Now delete the hash table itself. */
3995 htab_delete (g->got_entries);
3996 g->got_entries = new_got;
3997 }
3998 return TRUE;
3999 }
4000
4001 /* A mips_elf_link_hash_traverse callback for which DATA points
4002 to the link_info structure. Count the number of type (3) entries
4003 in the master GOT. */
4004
4005 static int
4006 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4007 {
4008 struct bfd_link_info *info;
4009 struct mips_elf_link_hash_table *htab;
4010 struct mips_got_info *g;
4011
4012 info = (struct bfd_link_info *) data;
4013 htab = mips_elf_hash_table (info);
4014 g = htab->got_info;
4015 if (h->global_got_area != GGA_NONE)
4016 {
4017 /* Make a final decision about whether the symbol belongs in the
4018 local or global GOT. Symbols that bind locally can (and in the
4019 case of forced-local symbols, must) live in the local GOT.
4020 Those that are aren't in the dynamic symbol table must also
4021 live in the local GOT.
4022
4023 Note that the former condition does not always imply the
4024 latter: symbols do not bind locally if they are completely
4025 undefined. We'll report undefined symbols later if appropriate. */
4026 if (h->root.dynindx == -1
4027 || (h->got_only_for_calls
4028 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4029 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
4030 {
4031 /* The symbol belongs in the local GOT. We no longer need this
4032 entry if it was only used for relocations; those relocations
4033 will be against the null or section symbol instead of H. */
4034 if (h->global_got_area != GGA_RELOC_ONLY)
4035 g->local_gotno++;
4036 h->global_got_area = GGA_NONE;
4037 }
4038 else if (htab->is_vxworks
4039 && h->got_only_for_calls
4040 && h->root.plt.offset != MINUS_ONE)
4041 /* On VxWorks, calls can refer directly to the .got.plt entry;
4042 they don't need entries in the regular GOT. .got.plt entries
4043 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4044 h->global_got_area = GGA_NONE;
4045 else
4046 {
4047 g->global_gotno++;
4048 if (h->global_got_area == GGA_RELOC_ONLY)
4049 g->reloc_only_gotno++;
4050 }
4051 }
4052 return 1;
4053 }
4054 \f
4055 /* Compute the hash value of the bfd in a bfd2got hash entry. */
4056
4057 static hashval_t
4058 mips_elf_bfd2got_entry_hash (const void *entry_)
4059 {
4060 const struct mips_elf_bfd2got_hash *entry
4061 = (struct mips_elf_bfd2got_hash *)entry_;
4062
4063 return entry->bfd->id;
4064 }
4065
4066 /* Check whether two hash entries have the same bfd. */
4067
4068 static int
4069 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
4070 {
4071 const struct mips_elf_bfd2got_hash *e1
4072 = (const struct mips_elf_bfd2got_hash *)entry1;
4073 const struct mips_elf_bfd2got_hash *e2
4074 = (const struct mips_elf_bfd2got_hash *)entry2;
4075
4076 return e1->bfd == e2->bfd;
4077 }
4078
4079 /* In a multi-got link, determine the GOT to be used for IBFD. G must
4080 be the master GOT data. */
4081
4082 static struct mips_got_info *
4083 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
4084 {
4085 struct mips_elf_bfd2got_hash e, *p;
4086
4087 if (! g->bfd2got)
4088 return g;
4089
4090 e.bfd = ibfd;
4091 p = htab_find (g->bfd2got, &e);
4092 return p ? p->g : NULL;
4093 }
4094
4095 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
4096 Return NULL if an error occured. */
4097
4098 static struct mips_got_info *
4099 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
4100 bfd *input_bfd)
4101 {
4102 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
4103 struct mips_got_info *g;
4104 void **bfdgotp;
4105
4106 bfdgot_entry.bfd = input_bfd;
4107 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
4108 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
4109
4110 if (bfdgot == NULL)
4111 {
4112 bfdgot = ((struct mips_elf_bfd2got_hash *)
4113 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
4114 if (bfdgot == NULL)
4115 return NULL;
4116
4117 *bfdgotp = bfdgot;
4118
4119 g = ((struct mips_got_info *)
4120 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
4121 if (g == NULL)
4122 return NULL;
4123
4124 bfdgot->bfd = input_bfd;
4125 bfdgot->g = g;
4126
4127 g->global_gotsym = NULL;
4128 g->global_gotno = 0;
4129 g->reloc_only_gotno = 0;
4130 g->local_gotno = 0;
4131 g->page_gotno = 0;
4132 g->assigned_gotno = -1;
4133 g->tls_gotno = 0;
4134 g->tls_assigned_gotno = 0;
4135 g->tls_ldm_offset = MINUS_ONE;
4136 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4137 mips_elf_multi_got_entry_eq, NULL);
4138 if (g->got_entries == NULL)
4139 return NULL;
4140
4141 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4142 mips_got_page_entry_eq, NULL);
4143 if (g->got_page_entries == NULL)
4144 return NULL;
4145
4146 g->bfd2got = NULL;
4147 g->next = NULL;
4148 }
4149
4150 return bfdgot->g;
4151 }
4152
4153 /* A htab_traverse callback for the entries in the master got.
4154 Create one separate got for each bfd that has entries in the global
4155 got, such that we can tell how many local and global entries each
4156 bfd requires. */
4157
4158 static int
4159 mips_elf_make_got_per_bfd (void **entryp, void *p)
4160 {
4161 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4162 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4163 struct mips_got_info *g;
4164
4165 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4166 if (g == NULL)
4167 {
4168 arg->obfd = NULL;
4169 return 0;
4170 }
4171
4172 /* Insert the GOT entry in the bfd's got entry hash table. */
4173 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4174 if (*entryp != NULL)
4175 return 1;
4176
4177 *entryp = entry;
4178
4179 if (entry->tls_type)
4180 {
4181 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4182 g->tls_gotno += 2;
4183 if (entry->tls_type & GOT_TLS_IE)
4184 g->tls_gotno += 1;
4185 }
4186 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
4187 ++g->local_gotno;
4188 else
4189 ++g->global_gotno;
4190
4191 return 1;
4192 }
4193
4194 /* A htab_traverse callback for the page entries in the master got.
4195 Associate each page entry with the bfd's got. */
4196
4197 static int
4198 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4199 {
4200 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4201 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4202 struct mips_got_info *g;
4203
4204 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4205 if (g == NULL)
4206 {
4207 arg->obfd = NULL;
4208 return 0;
4209 }
4210
4211 /* Insert the GOT entry in the bfd's got entry hash table. */
4212 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4213 if (*entryp != NULL)
4214 return 1;
4215
4216 *entryp = entry;
4217 g->page_gotno += entry->num_pages;
4218 return 1;
4219 }
4220
4221 /* Consider merging the got described by BFD2GOT with TO, using the
4222 information given by ARG. Return -1 if this would lead to overflow,
4223 1 if they were merged successfully, and 0 if a merge failed due to
4224 lack of memory. (These values are chosen so that nonnegative return
4225 values can be returned by a htab_traverse callback.) */
4226
4227 static int
4228 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4229 struct mips_got_info *to,
4230 struct mips_elf_got_per_bfd_arg *arg)
4231 {
4232 struct mips_got_info *from = bfd2got->g;
4233 unsigned int estimate;
4234
4235 /* Work out how many page entries we would need for the combined GOT. */
4236 estimate = arg->max_pages;
4237 if (estimate >= from->page_gotno + to->page_gotno)
4238 estimate = from->page_gotno + to->page_gotno;
4239
4240 /* And conservatively estimate how many local and TLS entries
4241 would be needed. */
4242 estimate += from->local_gotno + to->local_gotno;
4243 estimate += from->tls_gotno + to->tls_gotno;
4244
4245 /* If we're merging with the primary got, we will always have
4246 the full set of global entries. Otherwise estimate those
4247 conservatively as well. */
4248 if (to == arg->primary)
4249 estimate += arg->global_count;
4250 else
4251 estimate += from->global_gotno + to->global_gotno;
4252
4253 /* Bail out if the combined GOT might be too big. */
4254 if (estimate > arg->max_count)
4255 return -1;
4256
4257 /* Commit to the merge. Record that TO is now the bfd for this got. */
4258 bfd2got->g = to;
4259
4260 /* Transfer the bfd's got information from FROM to TO. */
4261 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4262 if (arg->obfd == NULL)
4263 return 0;
4264
4265 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4266 if (arg->obfd == NULL)
4267 return 0;
4268
4269 /* We don't have to worry about releasing memory of the actual
4270 got entries, since they're all in the master got_entries hash
4271 table anyway. */
4272 htab_delete (from->got_entries);
4273 htab_delete (from->got_page_entries);
4274 return 1;
4275 }
4276
4277 /* Attempt to merge gots of different input bfds. Try to use as much
4278 as possible of the primary got, since it doesn't require explicit
4279 dynamic relocations, but don't use bfds that would reference global
4280 symbols out of the addressable range. Failing the primary got,
4281 attempt to merge with the current got, or finish the current got
4282 and then make make the new got current. */
4283
4284 static int
4285 mips_elf_merge_gots (void **bfd2got_, void *p)
4286 {
4287 struct mips_elf_bfd2got_hash *bfd2got
4288 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4289 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4290 struct mips_got_info *g;
4291 unsigned int estimate;
4292 int result;
4293
4294 g = bfd2got->g;
4295
4296 /* Work out the number of page, local and TLS entries. */
4297 estimate = arg->max_pages;
4298 if (estimate > g->page_gotno)
4299 estimate = g->page_gotno;
4300 estimate += g->local_gotno + g->tls_gotno;
4301
4302 /* We place TLS GOT entries after both locals and globals. The globals
4303 for the primary GOT may overflow the normal GOT size limit, so be
4304 sure not to merge a GOT which requires TLS with the primary GOT in that
4305 case. This doesn't affect non-primary GOTs. */
4306 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4307
4308 if (estimate <= arg->max_count)
4309 {
4310 /* If we don't have a primary GOT, use it as
4311 a starting point for the primary GOT. */
4312 if (!arg->primary)
4313 {
4314 arg->primary = bfd2got->g;
4315 return 1;
4316 }
4317
4318 /* Try merging with the primary GOT. */
4319 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4320 if (result >= 0)
4321 return result;
4322 }
4323
4324 /* If we can merge with the last-created got, do it. */
4325 if (arg->current)
4326 {
4327 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4328 if (result >= 0)
4329 return result;
4330 }
4331
4332 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4333 fits; if it turns out that it doesn't, we'll get relocation
4334 overflows anyway. */
4335 g->next = arg->current;
4336 arg->current = g;
4337
4338 return 1;
4339 }
4340
4341 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4342 is null iff there is just a single GOT. */
4343
4344 static int
4345 mips_elf_initialize_tls_index (void **entryp, void *p)
4346 {
4347 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4348 struct mips_got_info *g = p;
4349 bfd_vma next_index;
4350 unsigned char tls_type;
4351
4352 /* We're only interested in TLS symbols. */
4353 if (entry->tls_type == 0)
4354 return 1;
4355
4356 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4357
4358 if (entry->symndx == -1 && g->next == NULL)
4359 {
4360 /* A type (3) got entry in the single-GOT case. We use the symbol's
4361 hash table entry to track its index. */
4362 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4363 return 1;
4364 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4365 entry->d.h->tls_got_offset = next_index;
4366 tls_type = entry->d.h->tls_type;
4367 }
4368 else
4369 {
4370 if (entry->tls_type & GOT_TLS_LDM)
4371 {
4372 /* There are separate mips_got_entry objects for each input bfd
4373 that requires an LDM entry. Make sure that all LDM entries in
4374 a GOT resolve to the same index. */
4375 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4376 {
4377 entry->gotidx = g->tls_ldm_offset;
4378 return 1;
4379 }
4380 g->tls_ldm_offset = next_index;
4381 }
4382 entry->gotidx = next_index;
4383 tls_type = entry->tls_type;
4384 }
4385
4386 /* Account for the entries we've just allocated. */
4387 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4388 g->tls_assigned_gotno += 2;
4389 if (tls_type & GOT_TLS_IE)
4390 g->tls_assigned_gotno += 1;
4391
4392 return 1;
4393 }
4394
4395 /* If passed a NULL mips_got_info in the argument, set the marker used
4396 to tell whether a global symbol needs a got entry (in the primary
4397 got) to the given VALUE.
4398
4399 If passed a pointer G to a mips_got_info in the argument (it must
4400 not be the primary GOT), compute the offset from the beginning of
4401 the (primary) GOT section to the entry in G corresponding to the
4402 global symbol. G's assigned_gotno must contain the index of the
4403 first available global GOT entry in G. VALUE must contain the size
4404 of a GOT entry in bytes. For each global GOT entry that requires a
4405 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4406 marked as not eligible for lazy resolution through a function
4407 stub. */
4408 static int
4409 mips_elf_set_global_got_offset (void **entryp, void *p)
4410 {
4411 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4412 struct mips_elf_set_global_got_offset_arg *arg
4413 = (struct mips_elf_set_global_got_offset_arg *)p;
4414 struct mips_got_info *g = arg->g;
4415
4416 if (g && entry->tls_type != GOT_NORMAL)
4417 arg->needed_relocs +=
4418 mips_tls_got_relocs (arg->info, entry->tls_type,
4419 entry->symndx == -1 ? &entry->d.h->root : NULL);
4420
4421 if (entry->abfd != NULL
4422 && entry->symndx == -1
4423 && entry->d.h->global_got_area != GGA_NONE)
4424 {
4425 if (g)
4426 {
4427 BFD_ASSERT (g->global_gotsym == NULL);
4428
4429 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4430 if (arg->info->shared
4431 || (elf_hash_table (arg->info)->dynamic_sections_created
4432 && entry->d.h->root.def_dynamic
4433 && !entry->d.h->root.def_regular))
4434 ++arg->needed_relocs;
4435 }
4436 else
4437 entry->d.h->global_got_area = arg->value;
4438 }
4439
4440 return 1;
4441 }
4442
4443 /* A htab_traverse callback for GOT entries for which DATA is the
4444 bfd_link_info. Forbid any global symbols from having traditional
4445 lazy-binding stubs. */
4446
4447 static int
4448 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4449 {
4450 struct bfd_link_info *info;
4451 struct mips_elf_link_hash_table *htab;
4452 struct mips_got_entry *entry;
4453
4454 entry = (struct mips_got_entry *) *entryp;
4455 info = (struct bfd_link_info *) data;
4456 htab = mips_elf_hash_table (info);
4457 BFD_ASSERT (htab != NULL);
4458
4459 if (entry->abfd != NULL
4460 && entry->symndx == -1
4461 && entry->d.h->needs_lazy_stub)
4462 {
4463 entry->d.h->needs_lazy_stub = FALSE;
4464 htab->lazy_stub_count--;
4465 }
4466
4467 return 1;
4468 }
4469
4470 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4471 the primary GOT. */
4472 static bfd_vma
4473 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4474 {
4475 if (g->bfd2got == NULL)
4476 return 0;
4477
4478 g = mips_elf_got_for_ibfd (g, ibfd);
4479 if (! g)
4480 return 0;
4481
4482 BFD_ASSERT (g->next);
4483
4484 g = g->next;
4485
4486 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4487 * MIPS_ELF_GOT_SIZE (abfd);
4488 }
4489
4490 /* Turn a single GOT that is too big for 16-bit addressing into
4491 a sequence of GOTs, each one 16-bit addressable. */
4492
4493 static bfd_boolean
4494 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4495 asection *got, bfd_size_type pages)
4496 {
4497 struct mips_elf_link_hash_table *htab;
4498 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4499 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4500 struct mips_got_info *g, *gg;
4501 unsigned int assign, needed_relocs;
4502 bfd *dynobj;
4503
4504 dynobj = elf_hash_table (info)->dynobj;
4505 htab = mips_elf_hash_table (info);
4506 BFD_ASSERT (htab != NULL);
4507
4508 g = htab->got_info;
4509 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4510 mips_elf_bfd2got_entry_eq, NULL);
4511 if (g->bfd2got == NULL)
4512 return FALSE;
4513
4514 got_per_bfd_arg.bfd2got = g->bfd2got;
4515 got_per_bfd_arg.obfd = abfd;
4516 got_per_bfd_arg.info = info;
4517
4518 /* Count how many GOT entries each input bfd requires, creating a
4519 map from bfd to got info while at that. */
4520 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4521 if (got_per_bfd_arg.obfd == NULL)
4522 return FALSE;
4523
4524 /* Also count how many page entries each input bfd requires. */
4525 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4526 &got_per_bfd_arg);
4527 if (got_per_bfd_arg.obfd == NULL)
4528 return FALSE;
4529
4530 got_per_bfd_arg.current = NULL;
4531 got_per_bfd_arg.primary = NULL;
4532 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4533 / MIPS_ELF_GOT_SIZE (abfd))
4534 - htab->reserved_gotno);
4535 got_per_bfd_arg.max_pages = pages;
4536 /* The number of globals that will be included in the primary GOT.
4537 See the calls to mips_elf_set_global_got_offset below for more
4538 information. */
4539 got_per_bfd_arg.global_count = g->global_gotno;
4540
4541 /* Try to merge the GOTs of input bfds together, as long as they
4542 don't seem to exceed the maximum GOT size, choosing one of them
4543 to be the primary GOT. */
4544 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4545 if (got_per_bfd_arg.obfd == NULL)
4546 return FALSE;
4547
4548 /* If we do not find any suitable primary GOT, create an empty one. */
4549 if (got_per_bfd_arg.primary == NULL)
4550 {
4551 g->next = (struct mips_got_info *)
4552 bfd_alloc (abfd, sizeof (struct mips_got_info));
4553 if (g->next == NULL)
4554 return FALSE;
4555
4556 g->next->global_gotsym = NULL;
4557 g->next->global_gotno = 0;
4558 g->next->reloc_only_gotno = 0;
4559 g->next->local_gotno = 0;
4560 g->next->page_gotno = 0;
4561 g->next->tls_gotno = 0;
4562 g->next->assigned_gotno = 0;
4563 g->next->tls_assigned_gotno = 0;
4564 g->next->tls_ldm_offset = MINUS_ONE;
4565 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4566 mips_elf_multi_got_entry_eq,
4567 NULL);
4568 if (g->next->got_entries == NULL)
4569 return FALSE;
4570 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4571 mips_got_page_entry_eq,
4572 NULL);
4573 if (g->next->got_page_entries == NULL)
4574 return FALSE;
4575 g->next->bfd2got = NULL;
4576 }
4577 else
4578 g->next = got_per_bfd_arg.primary;
4579 g->next->next = got_per_bfd_arg.current;
4580
4581 /* GG is now the master GOT, and G is the primary GOT. */
4582 gg = g;
4583 g = g->next;
4584
4585 /* Map the output bfd to the primary got. That's what we're going
4586 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4587 didn't mark in check_relocs, and we want a quick way to find it.
4588 We can't just use gg->next because we're going to reverse the
4589 list. */
4590 {
4591 struct mips_elf_bfd2got_hash *bfdgot;
4592 void **bfdgotp;
4593
4594 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4595 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4596
4597 if (bfdgot == NULL)
4598 return FALSE;
4599
4600 bfdgot->bfd = abfd;
4601 bfdgot->g = g;
4602 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4603
4604 BFD_ASSERT (*bfdgotp == NULL);
4605 *bfdgotp = bfdgot;
4606 }
4607
4608 /* Every symbol that is referenced in a dynamic relocation must be
4609 present in the primary GOT, so arrange for them to appear after
4610 those that are actually referenced. */
4611 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4612 g->global_gotno = gg->global_gotno;
4613
4614 set_got_offset_arg.g = NULL;
4615 set_got_offset_arg.value = GGA_RELOC_ONLY;
4616 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4617 &set_got_offset_arg);
4618 set_got_offset_arg.value = GGA_NORMAL;
4619 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4620 &set_got_offset_arg);
4621
4622 /* Now go through the GOTs assigning them offset ranges.
4623 [assigned_gotno, local_gotno[ will be set to the range of local
4624 entries in each GOT. We can then compute the end of a GOT by
4625 adding local_gotno to global_gotno. We reverse the list and make
4626 it circular since then we'll be able to quickly compute the
4627 beginning of a GOT, by computing the end of its predecessor. To
4628 avoid special cases for the primary GOT, while still preserving
4629 assertions that are valid for both single- and multi-got links,
4630 we arrange for the main got struct to have the right number of
4631 global entries, but set its local_gotno such that the initial
4632 offset of the primary GOT is zero. Remember that the primary GOT
4633 will become the last item in the circular linked list, so it
4634 points back to the master GOT. */
4635 gg->local_gotno = -g->global_gotno;
4636 gg->global_gotno = g->global_gotno;
4637 gg->tls_gotno = 0;
4638 assign = 0;
4639 gg->next = gg;
4640
4641 do
4642 {
4643 struct mips_got_info *gn;
4644
4645 assign += htab->reserved_gotno;
4646 g->assigned_gotno = assign;
4647 g->local_gotno += assign;
4648 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4649 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4650
4651 /* Take g out of the direct list, and push it onto the reversed
4652 list that gg points to. g->next is guaranteed to be nonnull after
4653 this operation, as required by mips_elf_initialize_tls_index. */
4654 gn = g->next;
4655 g->next = gg->next;
4656 gg->next = g;
4657
4658 /* Set up any TLS entries. We always place the TLS entries after
4659 all non-TLS entries. */
4660 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4661 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4662
4663 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4664 g = gn;
4665
4666 /* Forbid global symbols in every non-primary GOT from having
4667 lazy-binding stubs. */
4668 if (g)
4669 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4670 }
4671 while (g);
4672
4673 got->size = (gg->next->local_gotno
4674 + gg->next->global_gotno
4675 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4676
4677 needed_relocs = 0;
4678 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4679 set_got_offset_arg.info = info;
4680 for (g = gg->next; g && g->next != gg; g = g->next)
4681 {
4682 unsigned int save_assign;
4683
4684 /* Assign offsets to global GOT entries. */
4685 save_assign = g->assigned_gotno;
4686 g->assigned_gotno = g->local_gotno;
4687 set_got_offset_arg.g = g;
4688 set_got_offset_arg.needed_relocs = 0;
4689 htab_traverse (g->got_entries,
4690 mips_elf_set_global_got_offset,
4691 &set_got_offset_arg);
4692 needed_relocs += set_got_offset_arg.needed_relocs;
4693 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4694
4695 g->assigned_gotno = save_assign;
4696 if (info->shared)
4697 {
4698 needed_relocs += g->local_gotno - g->assigned_gotno;
4699 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4700 + g->next->global_gotno
4701 + g->next->tls_gotno
4702 + htab->reserved_gotno);
4703 }
4704 }
4705
4706 if (needed_relocs)
4707 mips_elf_allocate_dynamic_relocations (dynobj, info,
4708 needed_relocs);
4709
4710 return TRUE;
4711 }
4712
4713 \f
4714 /* Returns the first relocation of type r_type found, beginning with
4715 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4716
4717 static const Elf_Internal_Rela *
4718 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4719 const Elf_Internal_Rela *relocation,
4720 const Elf_Internal_Rela *relend)
4721 {
4722 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4723
4724 while (relocation < relend)
4725 {
4726 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4727 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4728 return relocation;
4729
4730 ++relocation;
4731 }
4732
4733 /* We didn't find it. */
4734 return NULL;
4735 }
4736
4737 /* Return whether an input relocation is against a local symbol. */
4738
4739 static bfd_boolean
4740 mips_elf_local_relocation_p (bfd *input_bfd,
4741 const Elf_Internal_Rela *relocation,
4742 asection **local_sections)
4743 {
4744 unsigned long r_symndx;
4745 Elf_Internal_Shdr *symtab_hdr;
4746 size_t extsymoff;
4747
4748 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4749 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4750 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4751
4752 if (r_symndx < extsymoff)
4753 return TRUE;
4754 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4755 return TRUE;
4756
4757 return FALSE;
4758 }
4759 \f
4760 /* Sign-extend VALUE, which has the indicated number of BITS. */
4761
4762 bfd_vma
4763 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4764 {
4765 if (value & ((bfd_vma) 1 << (bits - 1)))
4766 /* VALUE is negative. */
4767 value |= ((bfd_vma) - 1) << bits;
4768
4769 return value;
4770 }
4771
4772 /* Return non-zero if the indicated VALUE has overflowed the maximum
4773 range expressible by a signed number with the indicated number of
4774 BITS. */
4775
4776 static bfd_boolean
4777 mips_elf_overflow_p (bfd_vma value, int bits)
4778 {
4779 bfd_signed_vma svalue = (bfd_signed_vma) value;
4780
4781 if (svalue > (1 << (bits - 1)) - 1)
4782 /* The value is too big. */
4783 return TRUE;
4784 else if (svalue < -(1 << (bits - 1)))
4785 /* The value is too small. */
4786 return TRUE;
4787
4788 /* All is well. */
4789 return FALSE;
4790 }
4791
4792 /* Calculate the %high function. */
4793
4794 static bfd_vma
4795 mips_elf_high (bfd_vma value)
4796 {
4797 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4798 }
4799
4800 /* Calculate the %higher function. */
4801
4802 static bfd_vma
4803 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4804 {
4805 #ifdef BFD64
4806 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4807 #else
4808 abort ();
4809 return MINUS_ONE;
4810 #endif
4811 }
4812
4813 /* Calculate the %highest function. */
4814
4815 static bfd_vma
4816 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4817 {
4818 #ifdef BFD64
4819 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4820 #else
4821 abort ();
4822 return MINUS_ONE;
4823 #endif
4824 }
4825 \f
4826 /* Create the .compact_rel section. */
4827
4828 static bfd_boolean
4829 mips_elf_create_compact_rel_section
4830 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4831 {
4832 flagword flags;
4833 register asection *s;
4834
4835 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4836 {
4837 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4838 | SEC_READONLY);
4839
4840 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
4841 if (s == NULL
4842 || ! bfd_set_section_alignment (abfd, s,
4843 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4844 return FALSE;
4845
4846 s->size = sizeof (Elf32_External_compact_rel);
4847 }
4848
4849 return TRUE;
4850 }
4851
4852 /* Create the .got section to hold the global offset table. */
4853
4854 static bfd_boolean
4855 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4856 {
4857 flagword flags;
4858 register asection *s;
4859 struct elf_link_hash_entry *h;
4860 struct bfd_link_hash_entry *bh;
4861 struct mips_got_info *g;
4862 bfd_size_type amt;
4863 struct mips_elf_link_hash_table *htab;
4864
4865 htab = mips_elf_hash_table (info);
4866 BFD_ASSERT (htab != NULL);
4867
4868 /* This function may be called more than once. */
4869 if (htab->sgot)
4870 return TRUE;
4871
4872 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4873 | SEC_LINKER_CREATED);
4874
4875 /* We have to use an alignment of 2**4 here because this is hardcoded
4876 in the function stub generation and in the linker script. */
4877 s = bfd_make_section_with_flags (abfd, ".got", flags);
4878 if (s == NULL
4879 || ! bfd_set_section_alignment (abfd, s, 4))
4880 return FALSE;
4881 htab->sgot = s;
4882
4883 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4884 linker script because we don't want to define the symbol if we
4885 are not creating a global offset table. */
4886 bh = NULL;
4887 if (! (_bfd_generic_link_add_one_symbol
4888 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4889 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4890 return FALSE;
4891
4892 h = (struct elf_link_hash_entry *) bh;
4893 h->non_elf = 0;
4894 h->def_regular = 1;
4895 h->type = STT_OBJECT;
4896 elf_hash_table (info)->hgot = h;
4897
4898 if (info->shared
4899 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4900 return FALSE;
4901
4902 amt = sizeof (struct mips_got_info);
4903 g = bfd_alloc (abfd, amt);
4904 if (g == NULL)
4905 return FALSE;
4906 g->global_gotsym = NULL;
4907 g->global_gotno = 0;
4908 g->reloc_only_gotno = 0;
4909 g->tls_gotno = 0;
4910 g->local_gotno = 0;
4911 g->page_gotno = 0;
4912 g->assigned_gotno = 0;
4913 g->bfd2got = NULL;
4914 g->next = NULL;
4915 g->tls_ldm_offset = MINUS_ONE;
4916 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4917 mips_elf_got_entry_eq, NULL);
4918 if (g->got_entries == NULL)
4919 return FALSE;
4920 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4921 mips_got_page_entry_eq, NULL);
4922 if (g->got_page_entries == NULL)
4923 return FALSE;
4924 htab->got_info = g;
4925 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4926 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4927
4928 /* We also need a .got.plt section when generating PLTs. */
4929 s = bfd_make_section_with_flags (abfd, ".got.plt",
4930 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4931 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4932 if (s == NULL)
4933 return FALSE;
4934 htab->sgotplt = s;
4935
4936 return TRUE;
4937 }
4938 \f
4939 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4940 __GOTT_INDEX__ symbols. These symbols are only special for
4941 shared objects; they are not used in executables. */
4942
4943 static bfd_boolean
4944 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4945 {
4946 return (mips_elf_hash_table (info)->is_vxworks
4947 && info->shared
4948 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4949 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4950 }
4951
4952 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4953 require an la25 stub. See also mips_elf_local_pic_function_p,
4954 which determines whether the destination function ever requires a
4955 stub. */
4956
4957 static bfd_boolean
4958 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
4959 bfd_boolean target_is_16_bit_code_p)
4960 {
4961 /* We specifically ignore branches and jumps from EF_PIC objects,
4962 where the onus is on the compiler or programmer to perform any
4963 necessary initialization of $25. Sometimes such initialization
4964 is unnecessary; for example, -mno-shared functions do not use
4965 the incoming value of $25, and may therefore be called directly. */
4966 if (PIC_OBJECT_P (input_bfd))
4967 return FALSE;
4968
4969 switch (r_type)
4970 {
4971 case R_MIPS_26:
4972 case R_MIPS_PC16:
4973 case R_MICROMIPS_26_S1:
4974 case R_MICROMIPS_PC7_S1:
4975 case R_MICROMIPS_PC10_S1:
4976 case R_MICROMIPS_PC16_S1:
4977 case R_MICROMIPS_PC23_S2:
4978 return TRUE;
4979
4980 case R_MIPS16_26:
4981 return !target_is_16_bit_code_p;
4982
4983 default:
4984 return FALSE;
4985 }
4986 }
4987 \f
4988 /* Calculate the value produced by the RELOCATION (which comes from
4989 the INPUT_BFD). The ADDEND is the addend to use for this
4990 RELOCATION; RELOCATION->R_ADDEND is ignored.
4991
4992 The result of the relocation calculation is stored in VALUEP.
4993 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4994 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
4995
4996 This function returns bfd_reloc_continue if the caller need take no
4997 further action regarding this relocation, bfd_reloc_notsupported if
4998 something goes dramatically wrong, bfd_reloc_overflow if an
4999 overflow occurs, and bfd_reloc_ok to indicate success. */
5000
5001 static bfd_reloc_status_type
5002 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5003 asection *input_section,
5004 struct bfd_link_info *info,
5005 const Elf_Internal_Rela *relocation,
5006 bfd_vma addend, reloc_howto_type *howto,
5007 Elf_Internal_Sym *local_syms,
5008 asection **local_sections, bfd_vma *valuep,
5009 const char **namep,
5010 bfd_boolean *cross_mode_jump_p,
5011 bfd_boolean save_addend)
5012 {
5013 /* The eventual value we will return. */
5014 bfd_vma value;
5015 /* The address of the symbol against which the relocation is
5016 occurring. */
5017 bfd_vma symbol = 0;
5018 /* The final GP value to be used for the relocatable, executable, or
5019 shared object file being produced. */
5020 bfd_vma gp;
5021 /* The place (section offset or address) of the storage unit being
5022 relocated. */
5023 bfd_vma p;
5024 /* The value of GP used to create the relocatable object. */
5025 bfd_vma gp0;
5026 /* The offset into the global offset table at which the address of
5027 the relocation entry symbol, adjusted by the addend, resides
5028 during execution. */
5029 bfd_vma g = MINUS_ONE;
5030 /* The section in which the symbol referenced by the relocation is
5031 located. */
5032 asection *sec = NULL;
5033 struct mips_elf_link_hash_entry *h = NULL;
5034 /* TRUE if the symbol referred to by this relocation is a local
5035 symbol. */
5036 bfd_boolean local_p, was_local_p;
5037 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5038 bfd_boolean gp_disp_p = FALSE;
5039 /* TRUE if the symbol referred to by this relocation is
5040 "__gnu_local_gp". */
5041 bfd_boolean gnu_local_gp_p = FALSE;
5042 Elf_Internal_Shdr *symtab_hdr;
5043 size_t extsymoff;
5044 unsigned long r_symndx;
5045 int r_type;
5046 /* TRUE if overflow occurred during the calculation of the
5047 relocation value. */
5048 bfd_boolean overflowed_p;
5049 /* TRUE if this relocation refers to a MIPS16 function. */
5050 bfd_boolean target_is_16_bit_code_p = FALSE;
5051 bfd_boolean target_is_micromips_code_p = FALSE;
5052 struct mips_elf_link_hash_table *htab;
5053 bfd *dynobj;
5054
5055 dynobj = elf_hash_table (info)->dynobj;
5056 htab = mips_elf_hash_table (info);
5057 BFD_ASSERT (htab != NULL);
5058
5059 /* Parse the relocation. */
5060 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5061 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5062 p = (input_section->output_section->vma
5063 + input_section->output_offset
5064 + relocation->r_offset);
5065
5066 /* Assume that there will be no overflow. */
5067 overflowed_p = FALSE;
5068
5069 /* Figure out whether or not the symbol is local, and get the offset
5070 used in the array of hash table entries. */
5071 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5072 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5073 local_sections);
5074 was_local_p = local_p;
5075 if (! elf_bad_symtab (input_bfd))
5076 extsymoff = symtab_hdr->sh_info;
5077 else
5078 {
5079 /* The symbol table does not follow the rule that local symbols
5080 must come before globals. */
5081 extsymoff = 0;
5082 }
5083
5084 /* Figure out the value of the symbol. */
5085 if (local_p)
5086 {
5087 Elf_Internal_Sym *sym;
5088
5089 sym = local_syms + r_symndx;
5090 sec = local_sections[r_symndx];
5091
5092 symbol = sec->output_section->vma + sec->output_offset;
5093 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5094 || (sec->flags & SEC_MERGE))
5095 symbol += sym->st_value;
5096 if ((sec->flags & SEC_MERGE)
5097 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5098 {
5099 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5100 addend -= symbol;
5101 addend += sec->output_section->vma + sec->output_offset;
5102 }
5103
5104 /* MIPS16/microMIPS text labels should be treated as odd. */
5105 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5106 ++symbol;
5107
5108 /* Record the name of this symbol, for our caller. */
5109 *namep = bfd_elf_string_from_elf_section (input_bfd,
5110 symtab_hdr->sh_link,
5111 sym->st_name);
5112 if (*namep == '\0')
5113 *namep = bfd_section_name (input_bfd, sec);
5114
5115 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5116 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5117 }
5118 else
5119 {
5120 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5121
5122 /* For global symbols we look up the symbol in the hash-table. */
5123 h = ((struct mips_elf_link_hash_entry *)
5124 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5125 /* Find the real hash-table entry for this symbol. */
5126 while (h->root.root.type == bfd_link_hash_indirect
5127 || h->root.root.type == bfd_link_hash_warning)
5128 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5129
5130 /* Record the name of this symbol, for our caller. */
5131 *namep = h->root.root.root.string;
5132
5133 /* See if this is the special _gp_disp symbol. Note that such a
5134 symbol must always be a global symbol. */
5135 if (strcmp (*namep, "_gp_disp") == 0
5136 && ! NEWABI_P (input_bfd))
5137 {
5138 /* Relocations against _gp_disp are permitted only with
5139 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5140 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5141 return bfd_reloc_notsupported;
5142
5143 gp_disp_p = TRUE;
5144 }
5145 /* See if this is the special _gp symbol. Note that such a
5146 symbol must always be a global symbol. */
5147 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5148 gnu_local_gp_p = TRUE;
5149
5150
5151 /* If this symbol is defined, calculate its address. Note that
5152 _gp_disp is a magic symbol, always implicitly defined by the
5153 linker, so it's inappropriate to check to see whether or not
5154 its defined. */
5155 else if ((h->root.root.type == bfd_link_hash_defined
5156 || h->root.root.type == bfd_link_hash_defweak)
5157 && h->root.root.u.def.section)
5158 {
5159 sec = h->root.root.u.def.section;
5160 if (sec->output_section)
5161 symbol = (h->root.root.u.def.value
5162 + sec->output_section->vma
5163 + sec->output_offset);
5164 else
5165 symbol = h->root.root.u.def.value;
5166 }
5167 else if (h->root.root.type == bfd_link_hash_undefweak)
5168 /* We allow relocations against undefined weak symbols, giving
5169 it the value zero, so that you can undefined weak functions
5170 and check to see if they exist by looking at their
5171 addresses. */
5172 symbol = 0;
5173 else if (info->unresolved_syms_in_objects == RM_IGNORE
5174 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5175 symbol = 0;
5176 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5177 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5178 {
5179 /* If this is a dynamic link, we should have created a
5180 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5181 in in _bfd_mips_elf_create_dynamic_sections.
5182 Otherwise, we should define the symbol with a value of 0.
5183 FIXME: It should probably get into the symbol table
5184 somehow as well. */
5185 BFD_ASSERT (! info->shared);
5186 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5187 symbol = 0;
5188 }
5189 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5190 {
5191 /* This is an optional symbol - an Irix specific extension to the
5192 ELF spec. Ignore it for now.
5193 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5194 than simply ignoring them, but we do not handle this for now.
5195 For information see the "64-bit ELF Object File Specification"
5196 which is available from here:
5197 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5198 symbol = 0;
5199 }
5200 else if ((*info->callbacks->undefined_symbol)
5201 (info, h->root.root.root.string, input_bfd,
5202 input_section, relocation->r_offset,
5203 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5204 || ELF_ST_VISIBILITY (h->root.other)))
5205 {
5206 return bfd_reloc_undefined;
5207 }
5208 else
5209 {
5210 return bfd_reloc_notsupported;
5211 }
5212
5213 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5214 /* If the output section is the PLT section,
5215 then the target is not microMIPS. */
5216 target_is_micromips_code_p = (htab->splt != sec
5217 && ELF_ST_IS_MICROMIPS (h->root.other));
5218 }
5219
5220 /* If this is a reference to a 16-bit function with a stub, we need
5221 to redirect the relocation to the stub unless:
5222
5223 (a) the relocation is for a MIPS16 JAL;
5224
5225 (b) the relocation is for a MIPS16 PIC call, and there are no
5226 non-MIPS16 uses of the GOT slot; or
5227
5228 (c) the section allows direct references to MIPS16 functions. */
5229 if (r_type != R_MIPS16_26
5230 && !info->relocatable
5231 && ((h != NULL
5232 && h->fn_stub != NULL
5233 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5234 || (local_p
5235 && elf_tdata (input_bfd)->local_stubs != NULL
5236 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5237 && !section_allows_mips16_refs_p (input_section))
5238 {
5239 /* This is a 32- or 64-bit call to a 16-bit function. We should
5240 have already noticed that we were going to need the
5241 stub. */
5242 if (local_p)
5243 {
5244 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5245 value = 0;
5246 }
5247 else
5248 {
5249 BFD_ASSERT (h->need_fn_stub);
5250 if (h->la25_stub)
5251 {
5252 /* If a LA25 header for the stub itself exists, point to the
5253 prepended LUI/ADDIU sequence. */
5254 sec = h->la25_stub->stub_section;
5255 value = h->la25_stub->offset;
5256 }
5257 else
5258 {
5259 sec = h->fn_stub;
5260 value = 0;
5261 }
5262 }
5263
5264 symbol = sec->output_section->vma + sec->output_offset + value;
5265 /* The target is 16-bit, but the stub isn't. */
5266 target_is_16_bit_code_p = FALSE;
5267 }
5268 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5269 need to redirect the call to the stub. Note that we specifically
5270 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5271 use an indirect stub instead. */
5272 else if (r_type == R_MIPS16_26 && !info->relocatable
5273 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5274 || (local_p
5275 && elf_tdata (input_bfd)->local_call_stubs != NULL
5276 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5277 && !target_is_16_bit_code_p)
5278 {
5279 if (local_p)
5280 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5281 else
5282 {
5283 /* If both call_stub and call_fp_stub are defined, we can figure
5284 out which one to use by checking which one appears in the input
5285 file. */
5286 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5287 {
5288 asection *o;
5289
5290 sec = NULL;
5291 for (o = input_bfd->sections; o != NULL; o = o->next)
5292 {
5293 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5294 {
5295 sec = h->call_fp_stub;
5296 break;
5297 }
5298 }
5299 if (sec == NULL)
5300 sec = h->call_stub;
5301 }
5302 else if (h->call_stub != NULL)
5303 sec = h->call_stub;
5304 else
5305 sec = h->call_fp_stub;
5306 }
5307
5308 BFD_ASSERT (sec->size > 0);
5309 symbol = sec->output_section->vma + sec->output_offset;
5310 }
5311 /* If this is a direct call to a PIC function, redirect to the
5312 non-PIC stub. */
5313 else if (h != NULL && h->la25_stub
5314 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5315 target_is_16_bit_code_p))
5316 symbol = (h->la25_stub->stub_section->output_section->vma
5317 + h->la25_stub->stub_section->output_offset
5318 + h->la25_stub->offset);
5319
5320 /* Make sure MIPS16 and microMIPS are not used together. */
5321 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5322 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5323 {
5324 (*_bfd_error_handler)
5325 (_("MIPS16 and microMIPS functions cannot call each other"));
5326 return bfd_reloc_notsupported;
5327 }
5328
5329 /* Calls from 16-bit code to 32-bit code and vice versa require the
5330 mode change. However, we can ignore calls to undefined weak symbols,
5331 which should never be executed at runtime. This exception is important
5332 because the assembly writer may have "known" that any definition of the
5333 symbol would be 16-bit code, and that direct jumps were therefore
5334 acceptable. */
5335 *cross_mode_jump_p = (!info->relocatable
5336 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5337 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5338 || (r_type == R_MICROMIPS_26_S1
5339 && !target_is_micromips_code_p)
5340 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5341 && (target_is_16_bit_code_p
5342 || target_is_micromips_code_p))));
5343
5344 local_p = h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->root);
5345
5346 gp0 = _bfd_get_gp_value (input_bfd);
5347 gp = _bfd_get_gp_value (abfd);
5348 if (htab->got_info)
5349 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5350
5351 if (gnu_local_gp_p)
5352 symbol = gp;
5353
5354 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5355 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5356 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5357 if (got_page_reloc_p (r_type) && !local_p)
5358 {
5359 r_type = (micromips_reloc_p (r_type)
5360 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5361 addend = 0;
5362 }
5363
5364 /* If we haven't already determined the GOT offset, and we're going
5365 to need it, get it now. */
5366 switch (r_type)
5367 {
5368 case R_MIPS16_CALL16:
5369 case R_MIPS16_GOT16:
5370 case R_MIPS_CALL16:
5371 case R_MIPS_GOT16:
5372 case R_MIPS_GOT_DISP:
5373 case R_MIPS_GOT_HI16:
5374 case R_MIPS_CALL_HI16:
5375 case R_MIPS_GOT_LO16:
5376 case R_MIPS_CALL_LO16:
5377 case R_MICROMIPS_CALL16:
5378 case R_MICROMIPS_GOT16:
5379 case R_MICROMIPS_GOT_DISP:
5380 case R_MICROMIPS_GOT_HI16:
5381 case R_MICROMIPS_CALL_HI16:
5382 case R_MICROMIPS_GOT_LO16:
5383 case R_MICROMIPS_CALL_LO16:
5384 case R_MIPS_TLS_GD:
5385 case R_MIPS_TLS_GOTTPREL:
5386 case R_MIPS_TLS_LDM:
5387 case R_MIPS16_TLS_GD:
5388 case R_MIPS16_TLS_GOTTPREL:
5389 case R_MIPS16_TLS_LDM:
5390 case R_MICROMIPS_TLS_GD:
5391 case R_MICROMIPS_TLS_GOTTPREL:
5392 case R_MICROMIPS_TLS_LDM:
5393 /* Find the index into the GOT where this value is located. */
5394 if (tls_ldm_reloc_p (r_type))
5395 {
5396 g = mips_elf_local_got_index (abfd, input_bfd, info,
5397 0, 0, NULL, r_type);
5398 if (g == MINUS_ONE)
5399 return bfd_reloc_outofrange;
5400 }
5401 else if (!local_p)
5402 {
5403 /* On VxWorks, CALL relocations should refer to the .got.plt
5404 entry, which is initialized to point at the PLT stub. */
5405 if (htab->is_vxworks
5406 && (call_hi16_reloc_p (r_type)
5407 || call_lo16_reloc_p (r_type)
5408 || call16_reloc_p (r_type)))
5409 {
5410 BFD_ASSERT (addend == 0);
5411 BFD_ASSERT (h->root.needs_plt);
5412 g = mips_elf_gotplt_index (info, &h->root);
5413 }
5414 else
5415 {
5416 BFD_ASSERT (addend == 0);
5417 g = mips_elf_global_got_index (dynobj, input_bfd,
5418 &h->root, r_type, info);
5419 if (h->tls_type == GOT_NORMAL
5420 && !elf_hash_table (info)->dynamic_sections_created)
5421 /* This is a static link. We must initialize the GOT entry. */
5422 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5423 }
5424 }
5425 else if (!htab->is_vxworks
5426 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5427 /* The calculation below does not involve "g". */
5428 break;
5429 else
5430 {
5431 g = mips_elf_local_got_index (abfd, input_bfd, info,
5432 symbol + addend, r_symndx, h, r_type);
5433 if (g == MINUS_ONE)
5434 return bfd_reloc_outofrange;
5435 }
5436
5437 /* Convert GOT indices to actual offsets. */
5438 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5439 break;
5440 }
5441
5442 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5443 symbols are resolved by the loader. Add them to .rela.dyn. */
5444 if (h != NULL && is_gott_symbol (info, &h->root))
5445 {
5446 Elf_Internal_Rela outrel;
5447 bfd_byte *loc;
5448 asection *s;
5449
5450 s = mips_elf_rel_dyn_section (info, FALSE);
5451 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5452
5453 outrel.r_offset = (input_section->output_section->vma
5454 + input_section->output_offset
5455 + relocation->r_offset);
5456 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5457 outrel.r_addend = addend;
5458 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5459
5460 /* If we've written this relocation for a readonly section,
5461 we need to set DF_TEXTREL again, so that we do not delete the
5462 DT_TEXTREL tag. */
5463 if (MIPS_ELF_READONLY_SECTION (input_section))
5464 info->flags |= DF_TEXTREL;
5465
5466 *valuep = 0;
5467 return bfd_reloc_ok;
5468 }
5469
5470 /* Figure out what kind of relocation is being performed. */
5471 switch (r_type)
5472 {
5473 case R_MIPS_NONE:
5474 return bfd_reloc_continue;
5475
5476 case R_MIPS_16:
5477 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5478 overflowed_p = mips_elf_overflow_p (value, 16);
5479 break;
5480
5481 case R_MIPS_32:
5482 case R_MIPS_REL32:
5483 case R_MIPS_64:
5484 if ((info->shared
5485 || (htab->root.dynamic_sections_created
5486 && h != NULL
5487 && h->root.def_dynamic
5488 && !h->root.def_regular
5489 && !h->has_static_relocs))
5490 && r_symndx != STN_UNDEF
5491 && (h == NULL
5492 || h->root.root.type != bfd_link_hash_undefweak
5493 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5494 && (input_section->flags & SEC_ALLOC) != 0)
5495 {
5496 /* If we're creating a shared library, then we can't know
5497 where the symbol will end up. So, we create a relocation
5498 record in the output, and leave the job up to the dynamic
5499 linker. We must do the same for executable references to
5500 shared library symbols, unless we've decided to use copy
5501 relocs or PLTs instead. */
5502 value = addend;
5503 if (!mips_elf_create_dynamic_relocation (abfd,
5504 info,
5505 relocation,
5506 h,
5507 sec,
5508 symbol,
5509 &value,
5510 input_section))
5511 return bfd_reloc_undefined;
5512 }
5513 else
5514 {
5515 if (r_type != R_MIPS_REL32)
5516 value = symbol + addend;
5517 else
5518 value = addend;
5519 }
5520 value &= howto->dst_mask;
5521 break;
5522
5523 case R_MIPS_PC32:
5524 value = symbol + addend - p;
5525 value &= howto->dst_mask;
5526 break;
5527
5528 case R_MIPS16_26:
5529 /* The calculation for R_MIPS16_26 is just the same as for an
5530 R_MIPS_26. It's only the storage of the relocated field into
5531 the output file that's different. That's handled in
5532 mips_elf_perform_relocation. So, we just fall through to the
5533 R_MIPS_26 case here. */
5534 case R_MIPS_26:
5535 case R_MICROMIPS_26_S1:
5536 {
5537 unsigned int shift;
5538
5539 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5540 the correct ISA mode selector and bit 1 must be 0. */
5541 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5542 return bfd_reloc_outofrange;
5543
5544 /* Shift is 2, unusually, for microMIPS JALX. */
5545 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5546
5547 if (was_local_p)
5548 value = addend | ((p + 4) & (0xfc000000 << shift));
5549 else
5550 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5551 value = (value + symbol) >> shift;
5552 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5553 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5554 value &= howto->dst_mask;
5555 }
5556 break;
5557
5558 case R_MIPS_TLS_DTPREL_HI16:
5559 case R_MIPS16_TLS_DTPREL_HI16:
5560 case R_MICROMIPS_TLS_DTPREL_HI16:
5561 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5562 & howto->dst_mask);
5563 break;
5564
5565 case R_MIPS_TLS_DTPREL_LO16:
5566 case R_MIPS_TLS_DTPREL32:
5567 case R_MIPS_TLS_DTPREL64:
5568 case R_MIPS16_TLS_DTPREL_LO16:
5569 case R_MICROMIPS_TLS_DTPREL_LO16:
5570 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5571 break;
5572
5573 case R_MIPS_TLS_TPREL_HI16:
5574 case R_MIPS16_TLS_TPREL_HI16:
5575 case R_MICROMIPS_TLS_TPREL_HI16:
5576 value = (mips_elf_high (addend + symbol - tprel_base (info))
5577 & howto->dst_mask);
5578 break;
5579
5580 case R_MIPS_TLS_TPREL_LO16:
5581 case R_MIPS_TLS_TPREL32:
5582 case R_MIPS_TLS_TPREL64:
5583 case R_MIPS16_TLS_TPREL_LO16:
5584 case R_MICROMIPS_TLS_TPREL_LO16:
5585 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5586 break;
5587
5588 case R_MIPS_HI16:
5589 case R_MIPS16_HI16:
5590 case R_MICROMIPS_HI16:
5591 if (!gp_disp_p)
5592 {
5593 value = mips_elf_high (addend + symbol);
5594 value &= howto->dst_mask;
5595 }
5596 else
5597 {
5598 /* For MIPS16 ABI code we generate this sequence
5599 0: li $v0,%hi(_gp_disp)
5600 4: addiupc $v1,%lo(_gp_disp)
5601 8: sll $v0,16
5602 12: addu $v0,$v1
5603 14: move $gp,$v0
5604 So the offsets of hi and lo relocs are the same, but the
5605 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5606 ADDIUPC clears the low two bits of the instruction address,
5607 so the base is ($t9 + 4) & ~3. */
5608 if (r_type == R_MIPS16_HI16)
5609 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5610 /* The microMIPS .cpload sequence uses the same assembly
5611 instructions as the traditional psABI version, but the
5612 incoming $t9 has the low bit set. */
5613 else if (r_type == R_MICROMIPS_HI16)
5614 value = mips_elf_high (addend + gp - p - 1);
5615 else
5616 value = mips_elf_high (addend + gp - p);
5617 overflowed_p = mips_elf_overflow_p (value, 16);
5618 }
5619 break;
5620
5621 case R_MIPS_LO16:
5622 case R_MIPS16_LO16:
5623 case R_MICROMIPS_LO16:
5624 case R_MICROMIPS_HI0_LO16:
5625 if (!gp_disp_p)
5626 value = (symbol + addend) & howto->dst_mask;
5627 else
5628 {
5629 /* See the comment for R_MIPS16_HI16 above for the reason
5630 for this conditional. */
5631 if (r_type == R_MIPS16_LO16)
5632 value = addend + gp - (p & ~(bfd_vma) 0x3);
5633 else if (r_type == R_MICROMIPS_LO16
5634 || r_type == R_MICROMIPS_HI0_LO16)
5635 value = addend + gp - p + 3;
5636 else
5637 value = addend + gp - p + 4;
5638 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5639 for overflow. But, on, say, IRIX5, relocations against
5640 _gp_disp are normally generated from the .cpload
5641 pseudo-op. It generates code that normally looks like
5642 this:
5643
5644 lui $gp,%hi(_gp_disp)
5645 addiu $gp,$gp,%lo(_gp_disp)
5646 addu $gp,$gp,$t9
5647
5648 Here $t9 holds the address of the function being called,
5649 as required by the MIPS ELF ABI. The R_MIPS_LO16
5650 relocation can easily overflow in this situation, but the
5651 R_MIPS_HI16 relocation will handle the overflow.
5652 Therefore, we consider this a bug in the MIPS ABI, and do
5653 not check for overflow here. */
5654 }
5655 break;
5656
5657 case R_MIPS_LITERAL:
5658 case R_MICROMIPS_LITERAL:
5659 /* Because we don't merge literal sections, we can handle this
5660 just like R_MIPS_GPREL16. In the long run, we should merge
5661 shared literals, and then we will need to additional work
5662 here. */
5663
5664 /* Fall through. */
5665
5666 case R_MIPS16_GPREL:
5667 /* The R_MIPS16_GPREL performs the same calculation as
5668 R_MIPS_GPREL16, but stores the relocated bits in a different
5669 order. We don't need to do anything special here; the
5670 differences are handled in mips_elf_perform_relocation. */
5671 case R_MIPS_GPREL16:
5672 case R_MICROMIPS_GPREL7_S2:
5673 case R_MICROMIPS_GPREL16:
5674 /* Only sign-extend the addend if it was extracted from the
5675 instruction. If the addend was separate, leave it alone,
5676 otherwise we may lose significant bits. */
5677 if (howto->partial_inplace)
5678 addend = _bfd_mips_elf_sign_extend (addend, 16);
5679 value = symbol + addend - gp;
5680 /* If the symbol was local, any earlier relocatable links will
5681 have adjusted its addend with the gp offset, so compensate
5682 for that now. Don't do it for symbols forced local in this
5683 link, though, since they won't have had the gp offset applied
5684 to them before. */
5685 if (was_local_p)
5686 value += gp0;
5687 overflowed_p = mips_elf_overflow_p (value, 16);
5688 break;
5689
5690 case R_MIPS16_GOT16:
5691 case R_MIPS16_CALL16:
5692 case R_MIPS_GOT16:
5693 case R_MIPS_CALL16:
5694 case R_MICROMIPS_GOT16:
5695 case R_MICROMIPS_CALL16:
5696 /* VxWorks does not have separate local and global semantics for
5697 R_MIPS*_GOT16; every relocation evaluates to "G". */
5698 if (!htab->is_vxworks && local_p)
5699 {
5700 value = mips_elf_got16_entry (abfd, input_bfd, info,
5701 symbol + addend, !was_local_p);
5702 if (value == MINUS_ONE)
5703 return bfd_reloc_outofrange;
5704 value
5705 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5706 overflowed_p = mips_elf_overflow_p (value, 16);
5707 break;
5708 }
5709
5710 /* Fall through. */
5711
5712 case R_MIPS_TLS_GD:
5713 case R_MIPS_TLS_GOTTPREL:
5714 case R_MIPS_TLS_LDM:
5715 case R_MIPS_GOT_DISP:
5716 case R_MIPS16_TLS_GD:
5717 case R_MIPS16_TLS_GOTTPREL:
5718 case R_MIPS16_TLS_LDM:
5719 case R_MICROMIPS_TLS_GD:
5720 case R_MICROMIPS_TLS_GOTTPREL:
5721 case R_MICROMIPS_TLS_LDM:
5722 case R_MICROMIPS_GOT_DISP:
5723 value = g;
5724 overflowed_p = mips_elf_overflow_p (value, 16);
5725 break;
5726
5727 case R_MIPS_GPREL32:
5728 value = (addend + symbol + gp0 - gp);
5729 if (!save_addend)
5730 value &= howto->dst_mask;
5731 break;
5732
5733 case R_MIPS_PC16:
5734 case R_MIPS_GNU_REL16_S2:
5735 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5736 overflowed_p = mips_elf_overflow_p (value, 18);
5737 value >>= howto->rightshift;
5738 value &= howto->dst_mask;
5739 break;
5740
5741 case R_MICROMIPS_PC7_S1:
5742 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5743 overflowed_p = mips_elf_overflow_p (value, 8);
5744 value >>= howto->rightshift;
5745 value &= howto->dst_mask;
5746 break;
5747
5748 case R_MICROMIPS_PC10_S1:
5749 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5750 overflowed_p = mips_elf_overflow_p (value, 11);
5751 value >>= howto->rightshift;
5752 value &= howto->dst_mask;
5753 break;
5754
5755 case R_MICROMIPS_PC16_S1:
5756 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5757 overflowed_p = mips_elf_overflow_p (value, 17);
5758 value >>= howto->rightshift;
5759 value &= howto->dst_mask;
5760 break;
5761
5762 case R_MICROMIPS_PC23_S2:
5763 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5764 overflowed_p = mips_elf_overflow_p (value, 25);
5765 value >>= howto->rightshift;
5766 value &= howto->dst_mask;
5767 break;
5768
5769 case R_MIPS_GOT_HI16:
5770 case R_MIPS_CALL_HI16:
5771 case R_MICROMIPS_GOT_HI16:
5772 case R_MICROMIPS_CALL_HI16:
5773 /* We're allowed to handle these two relocations identically.
5774 The dynamic linker is allowed to handle the CALL relocations
5775 differently by creating a lazy evaluation stub. */
5776 value = g;
5777 value = mips_elf_high (value);
5778 value &= howto->dst_mask;
5779 break;
5780
5781 case R_MIPS_GOT_LO16:
5782 case R_MIPS_CALL_LO16:
5783 case R_MICROMIPS_GOT_LO16:
5784 case R_MICROMIPS_CALL_LO16:
5785 value = g & howto->dst_mask;
5786 break;
5787
5788 case R_MIPS_GOT_PAGE:
5789 case R_MICROMIPS_GOT_PAGE:
5790 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5791 if (value == MINUS_ONE)
5792 return bfd_reloc_outofrange;
5793 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5794 overflowed_p = mips_elf_overflow_p (value, 16);
5795 break;
5796
5797 case R_MIPS_GOT_OFST:
5798 case R_MICROMIPS_GOT_OFST:
5799 if (local_p)
5800 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5801 else
5802 value = addend;
5803 overflowed_p = mips_elf_overflow_p (value, 16);
5804 break;
5805
5806 case R_MIPS_SUB:
5807 case R_MICROMIPS_SUB:
5808 value = symbol - addend;
5809 value &= howto->dst_mask;
5810 break;
5811
5812 case R_MIPS_HIGHER:
5813 case R_MICROMIPS_HIGHER:
5814 value = mips_elf_higher (addend + symbol);
5815 value &= howto->dst_mask;
5816 break;
5817
5818 case R_MIPS_HIGHEST:
5819 case R_MICROMIPS_HIGHEST:
5820 value = mips_elf_highest (addend + symbol);
5821 value &= howto->dst_mask;
5822 break;
5823
5824 case R_MIPS_SCN_DISP:
5825 case R_MICROMIPS_SCN_DISP:
5826 value = symbol + addend - sec->output_offset;
5827 value &= howto->dst_mask;
5828 break;
5829
5830 case R_MIPS_JALR:
5831 case R_MICROMIPS_JALR:
5832 /* This relocation is only a hint. In some cases, we optimize
5833 it into a bal instruction. But we don't try to optimize
5834 when the symbol does not resolve locally. */
5835 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5836 return bfd_reloc_continue;
5837 value = symbol + addend;
5838 break;
5839
5840 case R_MIPS_PJUMP:
5841 case R_MIPS_GNU_VTINHERIT:
5842 case R_MIPS_GNU_VTENTRY:
5843 /* We don't do anything with these at present. */
5844 return bfd_reloc_continue;
5845
5846 default:
5847 /* An unrecognized relocation type. */
5848 return bfd_reloc_notsupported;
5849 }
5850
5851 /* Store the VALUE for our caller. */
5852 *valuep = value;
5853 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5854 }
5855
5856 /* Obtain the field relocated by RELOCATION. */
5857
5858 static bfd_vma
5859 mips_elf_obtain_contents (reloc_howto_type *howto,
5860 const Elf_Internal_Rela *relocation,
5861 bfd *input_bfd, bfd_byte *contents)
5862 {
5863 bfd_vma x;
5864 bfd_byte *location = contents + relocation->r_offset;
5865
5866 /* Obtain the bytes. */
5867 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5868
5869 return x;
5870 }
5871
5872 /* It has been determined that the result of the RELOCATION is the
5873 VALUE. Use HOWTO to place VALUE into the output file at the
5874 appropriate position. The SECTION is the section to which the
5875 relocation applies.
5876 CROSS_MODE_JUMP_P is true if the relocation field
5877 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5878
5879 Returns FALSE if anything goes wrong. */
5880
5881 static bfd_boolean
5882 mips_elf_perform_relocation (struct bfd_link_info *info,
5883 reloc_howto_type *howto,
5884 const Elf_Internal_Rela *relocation,
5885 bfd_vma value, bfd *input_bfd,
5886 asection *input_section, bfd_byte *contents,
5887 bfd_boolean cross_mode_jump_p)
5888 {
5889 bfd_vma x;
5890 bfd_byte *location;
5891 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5892
5893 /* Figure out where the relocation is occurring. */
5894 location = contents + relocation->r_offset;
5895
5896 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5897
5898 /* Obtain the current value. */
5899 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5900
5901 /* Clear the field we are setting. */
5902 x &= ~howto->dst_mask;
5903
5904 /* Set the field. */
5905 x |= (value & howto->dst_mask);
5906
5907 /* If required, turn JAL into JALX. */
5908 if (cross_mode_jump_p && jal_reloc_p (r_type))
5909 {
5910 bfd_boolean ok;
5911 bfd_vma opcode = x >> 26;
5912 bfd_vma jalx_opcode;
5913
5914 /* Check to see if the opcode is already JAL or JALX. */
5915 if (r_type == R_MIPS16_26)
5916 {
5917 ok = ((opcode == 0x6) || (opcode == 0x7));
5918 jalx_opcode = 0x7;
5919 }
5920 else if (r_type == R_MICROMIPS_26_S1)
5921 {
5922 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5923 jalx_opcode = 0x3c;
5924 }
5925 else
5926 {
5927 ok = ((opcode == 0x3) || (opcode == 0x1d));
5928 jalx_opcode = 0x1d;
5929 }
5930
5931 /* If the opcode is not JAL or JALX, there's a problem. */
5932 if (!ok)
5933 {
5934 (*_bfd_error_handler)
5935 (_("%B: %A+0x%lx: Direct jumps between ISA modes are not allowed; consider recompiling with interlinking enabled."),
5936 input_bfd,
5937 input_section,
5938 (unsigned long) relocation->r_offset);
5939 bfd_set_error (bfd_error_bad_value);
5940 return FALSE;
5941 }
5942
5943 /* Make this the JALX opcode. */
5944 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5945 }
5946
5947 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5948 range. */
5949 if (!info->relocatable
5950 && !cross_mode_jump_p
5951 && ((JAL_TO_BAL_P (input_bfd)
5952 && r_type == R_MIPS_26
5953 && (x >> 26) == 0x3) /* jal addr */
5954 || (JALR_TO_BAL_P (input_bfd)
5955 && r_type == R_MIPS_JALR
5956 && x == 0x0320f809) /* jalr t9 */
5957 || (JR_TO_B_P (input_bfd)
5958 && r_type == R_MIPS_JALR
5959 && x == 0x03200008))) /* jr t9 */
5960 {
5961 bfd_vma addr;
5962 bfd_vma dest;
5963 bfd_signed_vma off;
5964
5965 addr = (input_section->output_section->vma
5966 + input_section->output_offset
5967 + relocation->r_offset
5968 + 4);
5969 if (r_type == R_MIPS_26)
5970 dest = (value << 2) | ((addr >> 28) << 28);
5971 else
5972 dest = value;
5973 off = dest - addr;
5974 if (off <= 0x1ffff && off >= -0x20000)
5975 {
5976 if (x == 0x03200008) /* jr t9 */
5977 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5978 else
5979 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5980 }
5981 }
5982
5983 /* Put the value into the output. */
5984 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5985
5986 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
5987 location);
5988
5989 return TRUE;
5990 }
5991 \f
5992 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5993 is the original relocation, which is now being transformed into a
5994 dynamic relocation. The ADDENDP is adjusted if necessary; the
5995 caller should store the result in place of the original addend. */
5996
5997 static bfd_boolean
5998 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5999 struct bfd_link_info *info,
6000 const Elf_Internal_Rela *rel,
6001 struct mips_elf_link_hash_entry *h,
6002 asection *sec, bfd_vma symbol,
6003 bfd_vma *addendp, asection *input_section)
6004 {
6005 Elf_Internal_Rela outrel[3];
6006 asection *sreloc;
6007 bfd *dynobj;
6008 int r_type;
6009 long indx;
6010 bfd_boolean defined_p;
6011 struct mips_elf_link_hash_table *htab;
6012
6013 htab = mips_elf_hash_table (info);
6014 BFD_ASSERT (htab != NULL);
6015
6016 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6017 dynobj = elf_hash_table (info)->dynobj;
6018 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6019 BFD_ASSERT (sreloc != NULL);
6020 BFD_ASSERT (sreloc->contents != NULL);
6021 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6022 < sreloc->size);
6023
6024 outrel[0].r_offset =
6025 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6026 if (ABI_64_P (output_bfd))
6027 {
6028 outrel[1].r_offset =
6029 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6030 outrel[2].r_offset =
6031 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6032 }
6033
6034 if (outrel[0].r_offset == MINUS_ONE)
6035 /* The relocation field has been deleted. */
6036 return TRUE;
6037
6038 if (outrel[0].r_offset == MINUS_TWO)
6039 {
6040 /* The relocation field has been converted into a relative value of
6041 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6042 the field to be fully relocated, so add in the symbol's value. */
6043 *addendp += symbol;
6044 return TRUE;
6045 }
6046
6047 /* We must now calculate the dynamic symbol table index to use
6048 in the relocation. */
6049 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6050 {
6051 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6052 indx = h->root.dynindx;
6053 if (SGI_COMPAT (output_bfd))
6054 defined_p = h->root.def_regular;
6055 else
6056 /* ??? glibc's ld.so just adds the final GOT entry to the
6057 relocation field. It therefore treats relocs against
6058 defined symbols in the same way as relocs against
6059 undefined symbols. */
6060 defined_p = FALSE;
6061 }
6062 else
6063 {
6064 if (sec != NULL && bfd_is_abs_section (sec))
6065 indx = 0;
6066 else if (sec == NULL || sec->owner == NULL)
6067 {
6068 bfd_set_error (bfd_error_bad_value);
6069 return FALSE;
6070 }
6071 else
6072 {
6073 indx = elf_section_data (sec->output_section)->dynindx;
6074 if (indx == 0)
6075 {
6076 asection *osec = htab->root.text_index_section;
6077 indx = elf_section_data (osec)->dynindx;
6078 }
6079 if (indx == 0)
6080 abort ();
6081 }
6082
6083 /* Instead of generating a relocation using the section
6084 symbol, we may as well make it a fully relative
6085 relocation. We want to avoid generating relocations to
6086 local symbols because we used to generate them
6087 incorrectly, without adding the original symbol value,
6088 which is mandated by the ABI for section symbols. In
6089 order to give dynamic loaders and applications time to
6090 phase out the incorrect use, we refrain from emitting
6091 section-relative relocations. It's not like they're
6092 useful, after all. This should be a bit more efficient
6093 as well. */
6094 /* ??? Although this behavior is compatible with glibc's ld.so,
6095 the ABI says that relocations against STN_UNDEF should have
6096 a symbol value of 0. Irix rld honors this, so relocations
6097 against STN_UNDEF have no effect. */
6098 if (!SGI_COMPAT (output_bfd))
6099 indx = 0;
6100 defined_p = TRUE;
6101 }
6102
6103 /* If the relocation was previously an absolute relocation and
6104 this symbol will not be referred to by the relocation, we must
6105 adjust it by the value we give it in the dynamic symbol table.
6106 Otherwise leave the job up to the dynamic linker. */
6107 if (defined_p && r_type != R_MIPS_REL32)
6108 *addendp += symbol;
6109
6110 if (htab->is_vxworks)
6111 /* VxWorks uses non-relative relocations for this. */
6112 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6113 else
6114 /* The relocation is always an REL32 relocation because we don't
6115 know where the shared library will wind up at load-time. */
6116 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6117 R_MIPS_REL32);
6118
6119 /* For strict adherence to the ABI specification, we should
6120 generate a R_MIPS_64 relocation record by itself before the
6121 _REL32/_64 record as well, such that the addend is read in as
6122 a 64-bit value (REL32 is a 32-bit relocation, after all).
6123 However, since none of the existing ELF64 MIPS dynamic
6124 loaders seems to care, we don't waste space with these
6125 artificial relocations. If this turns out to not be true,
6126 mips_elf_allocate_dynamic_relocation() should be tweaked so
6127 as to make room for a pair of dynamic relocations per
6128 invocation if ABI_64_P, and here we should generate an
6129 additional relocation record with R_MIPS_64 by itself for a
6130 NULL symbol before this relocation record. */
6131 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6132 ABI_64_P (output_bfd)
6133 ? R_MIPS_64
6134 : R_MIPS_NONE);
6135 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6136
6137 /* Adjust the output offset of the relocation to reference the
6138 correct location in the output file. */
6139 outrel[0].r_offset += (input_section->output_section->vma
6140 + input_section->output_offset);
6141 outrel[1].r_offset += (input_section->output_section->vma
6142 + input_section->output_offset);
6143 outrel[2].r_offset += (input_section->output_section->vma
6144 + input_section->output_offset);
6145
6146 /* Put the relocation back out. We have to use the special
6147 relocation outputter in the 64-bit case since the 64-bit
6148 relocation format is non-standard. */
6149 if (ABI_64_P (output_bfd))
6150 {
6151 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6152 (output_bfd, &outrel[0],
6153 (sreloc->contents
6154 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6155 }
6156 else if (htab->is_vxworks)
6157 {
6158 /* VxWorks uses RELA rather than REL dynamic relocations. */
6159 outrel[0].r_addend = *addendp;
6160 bfd_elf32_swap_reloca_out
6161 (output_bfd, &outrel[0],
6162 (sreloc->contents
6163 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6164 }
6165 else
6166 bfd_elf32_swap_reloc_out
6167 (output_bfd, &outrel[0],
6168 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6169
6170 /* We've now added another relocation. */
6171 ++sreloc->reloc_count;
6172
6173 /* Make sure the output section is writable. The dynamic linker
6174 will be writing to it. */
6175 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6176 |= SHF_WRITE;
6177
6178 /* On IRIX5, make an entry of compact relocation info. */
6179 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6180 {
6181 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
6182 bfd_byte *cr;
6183
6184 if (scpt)
6185 {
6186 Elf32_crinfo cptrel;
6187
6188 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6189 cptrel.vaddr = (rel->r_offset
6190 + input_section->output_section->vma
6191 + input_section->output_offset);
6192 if (r_type == R_MIPS_REL32)
6193 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6194 else
6195 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6196 mips_elf_set_cr_dist2to (cptrel, 0);
6197 cptrel.konst = *addendp;
6198
6199 cr = (scpt->contents
6200 + sizeof (Elf32_External_compact_rel));
6201 mips_elf_set_cr_relvaddr (cptrel, 0);
6202 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6203 ((Elf32_External_crinfo *) cr
6204 + scpt->reloc_count));
6205 ++scpt->reloc_count;
6206 }
6207 }
6208
6209 /* If we've written this relocation for a readonly section,
6210 we need to set DF_TEXTREL again, so that we do not delete the
6211 DT_TEXTREL tag. */
6212 if (MIPS_ELF_READONLY_SECTION (input_section))
6213 info->flags |= DF_TEXTREL;
6214
6215 return TRUE;
6216 }
6217 \f
6218 /* Return the MACH for a MIPS e_flags value. */
6219
6220 unsigned long
6221 _bfd_elf_mips_mach (flagword flags)
6222 {
6223 switch (flags & EF_MIPS_MACH)
6224 {
6225 case E_MIPS_MACH_3900:
6226 return bfd_mach_mips3900;
6227
6228 case E_MIPS_MACH_4010:
6229 return bfd_mach_mips4010;
6230
6231 case E_MIPS_MACH_4100:
6232 return bfd_mach_mips4100;
6233
6234 case E_MIPS_MACH_4111:
6235 return bfd_mach_mips4111;
6236
6237 case E_MIPS_MACH_4120:
6238 return bfd_mach_mips4120;
6239
6240 case E_MIPS_MACH_4650:
6241 return bfd_mach_mips4650;
6242
6243 case E_MIPS_MACH_5400:
6244 return bfd_mach_mips5400;
6245
6246 case E_MIPS_MACH_5500:
6247 return bfd_mach_mips5500;
6248
6249 case E_MIPS_MACH_9000:
6250 return bfd_mach_mips9000;
6251
6252 case E_MIPS_MACH_SB1:
6253 return bfd_mach_mips_sb1;
6254
6255 case E_MIPS_MACH_LS2E:
6256 return bfd_mach_mips_loongson_2e;
6257
6258 case E_MIPS_MACH_LS2F:
6259 return bfd_mach_mips_loongson_2f;
6260
6261 case E_MIPS_MACH_LS3A:
6262 return bfd_mach_mips_loongson_3a;
6263
6264 case E_MIPS_MACH_OCTEON2:
6265 return bfd_mach_mips_octeon2;
6266
6267 case E_MIPS_MACH_OCTEON:
6268 return bfd_mach_mips_octeon;
6269
6270 case E_MIPS_MACH_XLR:
6271 return bfd_mach_mips_xlr;
6272
6273 default:
6274 switch (flags & EF_MIPS_ARCH)
6275 {
6276 default:
6277 case E_MIPS_ARCH_1:
6278 return bfd_mach_mips3000;
6279
6280 case E_MIPS_ARCH_2:
6281 return bfd_mach_mips6000;
6282
6283 case E_MIPS_ARCH_3:
6284 return bfd_mach_mips4000;
6285
6286 case E_MIPS_ARCH_4:
6287 return bfd_mach_mips8000;
6288
6289 case E_MIPS_ARCH_5:
6290 return bfd_mach_mips5;
6291
6292 case E_MIPS_ARCH_32:
6293 return bfd_mach_mipsisa32;
6294
6295 case E_MIPS_ARCH_64:
6296 return bfd_mach_mipsisa64;
6297
6298 case E_MIPS_ARCH_32R2:
6299 return bfd_mach_mipsisa32r2;
6300
6301 case E_MIPS_ARCH_64R2:
6302 return bfd_mach_mipsisa64r2;
6303 }
6304 }
6305
6306 return 0;
6307 }
6308
6309 /* Return printable name for ABI. */
6310
6311 static INLINE char *
6312 elf_mips_abi_name (bfd *abfd)
6313 {
6314 flagword flags;
6315
6316 flags = elf_elfheader (abfd)->e_flags;
6317 switch (flags & EF_MIPS_ABI)
6318 {
6319 case 0:
6320 if (ABI_N32_P (abfd))
6321 return "N32";
6322 else if (ABI_64_P (abfd))
6323 return "64";
6324 else
6325 return "none";
6326 case E_MIPS_ABI_O32:
6327 return "O32";
6328 case E_MIPS_ABI_O64:
6329 return "O64";
6330 case E_MIPS_ABI_EABI32:
6331 return "EABI32";
6332 case E_MIPS_ABI_EABI64:
6333 return "EABI64";
6334 default:
6335 return "unknown abi";
6336 }
6337 }
6338 \f
6339 /* MIPS ELF uses two common sections. One is the usual one, and the
6340 other is for small objects. All the small objects are kept
6341 together, and then referenced via the gp pointer, which yields
6342 faster assembler code. This is what we use for the small common
6343 section. This approach is copied from ecoff.c. */
6344 static asection mips_elf_scom_section;
6345 static asymbol mips_elf_scom_symbol;
6346 static asymbol *mips_elf_scom_symbol_ptr;
6347
6348 /* MIPS ELF also uses an acommon section, which represents an
6349 allocated common symbol which may be overridden by a
6350 definition in a shared library. */
6351 static asection mips_elf_acom_section;
6352 static asymbol mips_elf_acom_symbol;
6353 static asymbol *mips_elf_acom_symbol_ptr;
6354
6355 /* This is used for both the 32-bit and the 64-bit ABI. */
6356
6357 void
6358 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6359 {
6360 elf_symbol_type *elfsym;
6361
6362 /* Handle the special MIPS section numbers that a symbol may use. */
6363 elfsym = (elf_symbol_type *) asym;
6364 switch (elfsym->internal_elf_sym.st_shndx)
6365 {
6366 case SHN_MIPS_ACOMMON:
6367 /* This section is used in a dynamically linked executable file.
6368 It is an allocated common section. The dynamic linker can
6369 either resolve these symbols to something in a shared
6370 library, or it can just leave them here. For our purposes,
6371 we can consider these symbols to be in a new section. */
6372 if (mips_elf_acom_section.name == NULL)
6373 {
6374 /* Initialize the acommon section. */
6375 mips_elf_acom_section.name = ".acommon";
6376 mips_elf_acom_section.flags = SEC_ALLOC;
6377 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6378 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6379 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6380 mips_elf_acom_symbol.name = ".acommon";
6381 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6382 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6383 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6384 }
6385 asym->section = &mips_elf_acom_section;
6386 break;
6387
6388 case SHN_COMMON:
6389 /* Common symbols less than the GP size are automatically
6390 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6391 if (asym->value > elf_gp_size (abfd)
6392 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6393 || IRIX_COMPAT (abfd) == ict_irix6)
6394 break;
6395 /* Fall through. */
6396 case SHN_MIPS_SCOMMON:
6397 if (mips_elf_scom_section.name == NULL)
6398 {
6399 /* Initialize the small common section. */
6400 mips_elf_scom_section.name = ".scommon";
6401 mips_elf_scom_section.flags = SEC_IS_COMMON;
6402 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6403 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6404 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6405 mips_elf_scom_symbol.name = ".scommon";
6406 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6407 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6408 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6409 }
6410 asym->section = &mips_elf_scom_section;
6411 asym->value = elfsym->internal_elf_sym.st_size;
6412 break;
6413
6414 case SHN_MIPS_SUNDEFINED:
6415 asym->section = bfd_und_section_ptr;
6416 break;
6417
6418 case SHN_MIPS_TEXT:
6419 {
6420 asection *section = bfd_get_section_by_name (abfd, ".text");
6421
6422 if (section != NULL)
6423 {
6424 asym->section = section;
6425 /* MIPS_TEXT is a bit special, the address is not an offset
6426 to the base of the .text section. So substract the section
6427 base address to make it an offset. */
6428 asym->value -= section->vma;
6429 }
6430 }
6431 break;
6432
6433 case SHN_MIPS_DATA:
6434 {
6435 asection *section = bfd_get_section_by_name (abfd, ".data");
6436
6437 if (section != NULL)
6438 {
6439 asym->section = section;
6440 /* MIPS_DATA is a bit special, the address is not an offset
6441 to the base of the .data section. So substract the section
6442 base address to make it an offset. */
6443 asym->value -= section->vma;
6444 }
6445 }
6446 break;
6447 }
6448
6449 /* If this is an odd-valued function symbol, assume it's a MIPS16
6450 or microMIPS one. */
6451 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6452 && (asym->value & 1) != 0)
6453 {
6454 asym->value--;
6455 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6456 elfsym->internal_elf_sym.st_other
6457 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6458 else
6459 elfsym->internal_elf_sym.st_other
6460 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6461 }
6462 }
6463 \f
6464 /* Implement elf_backend_eh_frame_address_size. This differs from
6465 the default in the way it handles EABI64.
6466
6467 EABI64 was originally specified as an LP64 ABI, and that is what
6468 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6469 historically accepted the combination of -mabi=eabi and -mlong32,
6470 and this ILP32 variation has become semi-official over time.
6471 Both forms use elf32 and have pointer-sized FDE addresses.
6472
6473 If an EABI object was generated by GCC 4.0 or above, it will have
6474 an empty .gcc_compiled_longXX section, where XX is the size of longs
6475 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6476 have no special marking to distinguish them from LP64 objects.
6477
6478 We don't want users of the official LP64 ABI to be punished for the
6479 existence of the ILP32 variant, but at the same time, we don't want
6480 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6481 We therefore take the following approach:
6482
6483 - If ABFD contains a .gcc_compiled_longXX section, use it to
6484 determine the pointer size.
6485
6486 - Otherwise check the type of the first relocation. Assume that
6487 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6488
6489 - Otherwise punt.
6490
6491 The second check is enough to detect LP64 objects generated by pre-4.0
6492 compilers because, in the kind of output generated by those compilers,
6493 the first relocation will be associated with either a CIE personality
6494 routine or an FDE start address. Furthermore, the compilers never
6495 used a special (non-pointer) encoding for this ABI.
6496
6497 Checking the relocation type should also be safe because there is no
6498 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6499 did so. */
6500
6501 unsigned int
6502 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6503 {
6504 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6505 return 8;
6506 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6507 {
6508 bfd_boolean long32_p, long64_p;
6509
6510 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6511 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6512 if (long32_p && long64_p)
6513 return 0;
6514 if (long32_p)
6515 return 4;
6516 if (long64_p)
6517 return 8;
6518
6519 if (sec->reloc_count > 0
6520 && elf_section_data (sec)->relocs != NULL
6521 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6522 == R_MIPS_64))
6523 return 8;
6524
6525 return 0;
6526 }
6527 return 4;
6528 }
6529 \f
6530 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6531 relocations against two unnamed section symbols to resolve to the
6532 same address. For example, if we have code like:
6533
6534 lw $4,%got_disp(.data)($gp)
6535 lw $25,%got_disp(.text)($gp)
6536 jalr $25
6537
6538 then the linker will resolve both relocations to .data and the program
6539 will jump there rather than to .text.
6540
6541 We can work around this problem by giving names to local section symbols.
6542 This is also what the MIPSpro tools do. */
6543
6544 bfd_boolean
6545 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6546 {
6547 return SGI_COMPAT (abfd);
6548 }
6549 \f
6550 /* Work over a section just before writing it out. This routine is
6551 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6552 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6553 a better way. */
6554
6555 bfd_boolean
6556 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6557 {
6558 if (hdr->sh_type == SHT_MIPS_REGINFO
6559 && hdr->sh_size > 0)
6560 {
6561 bfd_byte buf[4];
6562
6563 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6564 BFD_ASSERT (hdr->contents == NULL);
6565
6566 if (bfd_seek (abfd,
6567 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6568 SEEK_SET) != 0)
6569 return FALSE;
6570 H_PUT_32 (abfd, elf_gp (abfd), buf);
6571 if (bfd_bwrite (buf, 4, abfd) != 4)
6572 return FALSE;
6573 }
6574
6575 if (hdr->sh_type == SHT_MIPS_OPTIONS
6576 && hdr->bfd_section != NULL
6577 && mips_elf_section_data (hdr->bfd_section) != NULL
6578 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6579 {
6580 bfd_byte *contents, *l, *lend;
6581
6582 /* We stored the section contents in the tdata field in the
6583 set_section_contents routine. We save the section contents
6584 so that we don't have to read them again.
6585 At this point we know that elf_gp is set, so we can look
6586 through the section contents to see if there is an
6587 ODK_REGINFO structure. */
6588
6589 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6590 l = contents;
6591 lend = contents + hdr->sh_size;
6592 while (l + sizeof (Elf_External_Options) <= lend)
6593 {
6594 Elf_Internal_Options intopt;
6595
6596 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6597 &intopt);
6598 if (intopt.size < sizeof (Elf_External_Options))
6599 {
6600 (*_bfd_error_handler)
6601 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6602 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6603 break;
6604 }
6605 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6606 {
6607 bfd_byte buf[8];
6608
6609 if (bfd_seek (abfd,
6610 (hdr->sh_offset
6611 + (l - contents)
6612 + sizeof (Elf_External_Options)
6613 + (sizeof (Elf64_External_RegInfo) - 8)),
6614 SEEK_SET) != 0)
6615 return FALSE;
6616 H_PUT_64 (abfd, elf_gp (abfd), buf);
6617 if (bfd_bwrite (buf, 8, abfd) != 8)
6618 return FALSE;
6619 }
6620 else if (intopt.kind == ODK_REGINFO)
6621 {
6622 bfd_byte buf[4];
6623
6624 if (bfd_seek (abfd,
6625 (hdr->sh_offset
6626 + (l - contents)
6627 + sizeof (Elf_External_Options)
6628 + (sizeof (Elf32_External_RegInfo) - 4)),
6629 SEEK_SET) != 0)
6630 return FALSE;
6631 H_PUT_32 (abfd, elf_gp (abfd), buf);
6632 if (bfd_bwrite (buf, 4, abfd) != 4)
6633 return FALSE;
6634 }
6635 l += intopt.size;
6636 }
6637 }
6638
6639 if (hdr->bfd_section != NULL)
6640 {
6641 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6642
6643 /* .sbss is not handled specially here because the GNU/Linux
6644 prelinker can convert .sbss from NOBITS to PROGBITS and
6645 changing it back to NOBITS breaks the binary. The entry in
6646 _bfd_mips_elf_special_sections will ensure the correct flags
6647 are set on .sbss if BFD creates it without reading it from an
6648 input file, and without special handling here the flags set
6649 on it in an input file will be followed. */
6650 if (strcmp (name, ".sdata") == 0
6651 || strcmp (name, ".lit8") == 0
6652 || strcmp (name, ".lit4") == 0)
6653 {
6654 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6655 hdr->sh_type = SHT_PROGBITS;
6656 }
6657 else if (strcmp (name, ".srdata") == 0)
6658 {
6659 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6660 hdr->sh_type = SHT_PROGBITS;
6661 }
6662 else if (strcmp (name, ".compact_rel") == 0)
6663 {
6664 hdr->sh_flags = 0;
6665 hdr->sh_type = SHT_PROGBITS;
6666 }
6667 else if (strcmp (name, ".rtproc") == 0)
6668 {
6669 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6670 {
6671 unsigned int adjust;
6672
6673 adjust = hdr->sh_size % hdr->sh_addralign;
6674 if (adjust != 0)
6675 hdr->sh_size += hdr->sh_addralign - adjust;
6676 }
6677 }
6678 }
6679
6680 return TRUE;
6681 }
6682
6683 /* Handle a MIPS specific section when reading an object file. This
6684 is called when elfcode.h finds a section with an unknown type.
6685 This routine supports both the 32-bit and 64-bit ELF ABI.
6686
6687 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6688 how to. */
6689
6690 bfd_boolean
6691 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6692 Elf_Internal_Shdr *hdr,
6693 const char *name,
6694 int shindex)
6695 {
6696 flagword flags = 0;
6697
6698 /* There ought to be a place to keep ELF backend specific flags, but
6699 at the moment there isn't one. We just keep track of the
6700 sections by their name, instead. Fortunately, the ABI gives
6701 suggested names for all the MIPS specific sections, so we will
6702 probably get away with this. */
6703 switch (hdr->sh_type)
6704 {
6705 case SHT_MIPS_LIBLIST:
6706 if (strcmp (name, ".liblist") != 0)
6707 return FALSE;
6708 break;
6709 case SHT_MIPS_MSYM:
6710 if (strcmp (name, ".msym") != 0)
6711 return FALSE;
6712 break;
6713 case SHT_MIPS_CONFLICT:
6714 if (strcmp (name, ".conflict") != 0)
6715 return FALSE;
6716 break;
6717 case SHT_MIPS_GPTAB:
6718 if (! CONST_STRNEQ (name, ".gptab."))
6719 return FALSE;
6720 break;
6721 case SHT_MIPS_UCODE:
6722 if (strcmp (name, ".ucode") != 0)
6723 return FALSE;
6724 break;
6725 case SHT_MIPS_DEBUG:
6726 if (strcmp (name, ".mdebug") != 0)
6727 return FALSE;
6728 flags = SEC_DEBUGGING;
6729 break;
6730 case SHT_MIPS_REGINFO:
6731 if (strcmp (name, ".reginfo") != 0
6732 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6733 return FALSE;
6734 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6735 break;
6736 case SHT_MIPS_IFACE:
6737 if (strcmp (name, ".MIPS.interfaces") != 0)
6738 return FALSE;
6739 break;
6740 case SHT_MIPS_CONTENT:
6741 if (! CONST_STRNEQ (name, ".MIPS.content"))
6742 return FALSE;
6743 break;
6744 case SHT_MIPS_OPTIONS:
6745 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6746 return FALSE;
6747 break;
6748 case SHT_MIPS_DWARF:
6749 if (! CONST_STRNEQ (name, ".debug_")
6750 && ! CONST_STRNEQ (name, ".zdebug_"))
6751 return FALSE;
6752 break;
6753 case SHT_MIPS_SYMBOL_LIB:
6754 if (strcmp (name, ".MIPS.symlib") != 0)
6755 return FALSE;
6756 break;
6757 case SHT_MIPS_EVENTS:
6758 if (! CONST_STRNEQ (name, ".MIPS.events")
6759 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6760 return FALSE;
6761 break;
6762 default:
6763 break;
6764 }
6765
6766 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6767 return FALSE;
6768
6769 if (flags)
6770 {
6771 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6772 (bfd_get_section_flags (abfd,
6773 hdr->bfd_section)
6774 | flags)))
6775 return FALSE;
6776 }
6777
6778 /* FIXME: We should record sh_info for a .gptab section. */
6779
6780 /* For a .reginfo section, set the gp value in the tdata information
6781 from the contents of this section. We need the gp value while
6782 processing relocs, so we just get it now. The .reginfo section
6783 is not used in the 64-bit MIPS ELF ABI. */
6784 if (hdr->sh_type == SHT_MIPS_REGINFO)
6785 {
6786 Elf32_External_RegInfo ext;
6787 Elf32_RegInfo s;
6788
6789 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6790 &ext, 0, sizeof ext))
6791 return FALSE;
6792 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6793 elf_gp (abfd) = s.ri_gp_value;
6794 }
6795
6796 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6797 set the gp value based on what we find. We may see both
6798 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6799 they should agree. */
6800 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6801 {
6802 bfd_byte *contents, *l, *lend;
6803
6804 contents = bfd_malloc (hdr->sh_size);
6805 if (contents == NULL)
6806 return FALSE;
6807 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6808 0, hdr->sh_size))
6809 {
6810 free (contents);
6811 return FALSE;
6812 }
6813 l = contents;
6814 lend = contents + hdr->sh_size;
6815 while (l + sizeof (Elf_External_Options) <= lend)
6816 {
6817 Elf_Internal_Options intopt;
6818
6819 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6820 &intopt);
6821 if (intopt.size < sizeof (Elf_External_Options))
6822 {
6823 (*_bfd_error_handler)
6824 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6825 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6826 break;
6827 }
6828 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6829 {
6830 Elf64_Internal_RegInfo intreg;
6831
6832 bfd_mips_elf64_swap_reginfo_in
6833 (abfd,
6834 ((Elf64_External_RegInfo *)
6835 (l + sizeof (Elf_External_Options))),
6836 &intreg);
6837 elf_gp (abfd) = intreg.ri_gp_value;
6838 }
6839 else if (intopt.kind == ODK_REGINFO)
6840 {
6841 Elf32_RegInfo intreg;
6842
6843 bfd_mips_elf32_swap_reginfo_in
6844 (abfd,
6845 ((Elf32_External_RegInfo *)
6846 (l + sizeof (Elf_External_Options))),
6847 &intreg);
6848 elf_gp (abfd) = intreg.ri_gp_value;
6849 }
6850 l += intopt.size;
6851 }
6852 free (contents);
6853 }
6854
6855 return TRUE;
6856 }
6857
6858 /* Set the correct type for a MIPS ELF section. We do this by the
6859 section name, which is a hack, but ought to work. This routine is
6860 used by both the 32-bit and the 64-bit ABI. */
6861
6862 bfd_boolean
6863 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6864 {
6865 const char *name = bfd_get_section_name (abfd, sec);
6866
6867 if (strcmp (name, ".liblist") == 0)
6868 {
6869 hdr->sh_type = SHT_MIPS_LIBLIST;
6870 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6871 /* The sh_link field is set in final_write_processing. */
6872 }
6873 else if (strcmp (name, ".conflict") == 0)
6874 hdr->sh_type = SHT_MIPS_CONFLICT;
6875 else if (CONST_STRNEQ (name, ".gptab."))
6876 {
6877 hdr->sh_type = SHT_MIPS_GPTAB;
6878 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6879 /* The sh_info field is set in final_write_processing. */
6880 }
6881 else if (strcmp (name, ".ucode") == 0)
6882 hdr->sh_type = SHT_MIPS_UCODE;
6883 else if (strcmp (name, ".mdebug") == 0)
6884 {
6885 hdr->sh_type = SHT_MIPS_DEBUG;
6886 /* In a shared object on IRIX 5.3, the .mdebug section has an
6887 entsize of 0. FIXME: Does this matter? */
6888 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6889 hdr->sh_entsize = 0;
6890 else
6891 hdr->sh_entsize = 1;
6892 }
6893 else if (strcmp (name, ".reginfo") == 0)
6894 {
6895 hdr->sh_type = SHT_MIPS_REGINFO;
6896 /* In a shared object on IRIX 5.3, the .reginfo section has an
6897 entsize of 0x18. FIXME: Does this matter? */
6898 if (SGI_COMPAT (abfd))
6899 {
6900 if ((abfd->flags & DYNAMIC) != 0)
6901 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6902 else
6903 hdr->sh_entsize = 1;
6904 }
6905 else
6906 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6907 }
6908 else if (SGI_COMPAT (abfd)
6909 && (strcmp (name, ".hash") == 0
6910 || strcmp (name, ".dynamic") == 0
6911 || strcmp (name, ".dynstr") == 0))
6912 {
6913 if (SGI_COMPAT (abfd))
6914 hdr->sh_entsize = 0;
6915 #if 0
6916 /* This isn't how the IRIX6 linker behaves. */
6917 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6918 #endif
6919 }
6920 else if (strcmp (name, ".got") == 0
6921 || strcmp (name, ".srdata") == 0
6922 || strcmp (name, ".sdata") == 0
6923 || strcmp (name, ".sbss") == 0
6924 || strcmp (name, ".lit4") == 0
6925 || strcmp (name, ".lit8") == 0)
6926 hdr->sh_flags |= SHF_MIPS_GPREL;
6927 else if (strcmp (name, ".MIPS.interfaces") == 0)
6928 {
6929 hdr->sh_type = SHT_MIPS_IFACE;
6930 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6931 }
6932 else if (CONST_STRNEQ (name, ".MIPS.content"))
6933 {
6934 hdr->sh_type = SHT_MIPS_CONTENT;
6935 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6936 /* The sh_info field is set in final_write_processing. */
6937 }
6938 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6939 {
6940 hdr->sh_type = SHT_MIPS_OPTIONS;
6941 hdr->sh_entsize = 1;
6942 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6943 }
6944 else if (CONST_STRNEQ (name, ".debug_")
6945 || CONST_STRNEQ (name, ".zdebug_"))
6946 {
6947 hdr->sh_type = SHT_MIPS_DWARF;
6948
6949 /* Irix facilities such as libexc expect a single .debug_frame
6950 per executable, the system ones have NOSTRIP set and the linker
6951 doesn't merge sections with different flags so ... */
6952 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6953 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6954 }
6955 else if (strcmp (name, ".MIPS.symlib") == 0)
6956 {
6957 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6958 /* The sh_link and sh_info fields are set in
6959 final_write_processing. */
6960 }
6961 else if (CONST_STRNEQ (name, ".MIPS.events")
6962 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6963 {
6964 hdr->sh_type = SHT_MIPS_EVENTS;
6965 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6966 /* The sh_link field is set in final_write_processing. */
6967 }
6968 else if (strcmp (name, ".msym") == 0)
6969 {
6970 hdr->sh_type = SHT_MIPS_MSYM;
6971 hdr->sh_flags |= SHF_ALLOC;
6972 hdr->sh_entsize = 8;
6973 }
6974
6975 /* The generic elf_fake_sections will set up REL_HDR using the default
6976 kind of relocations. We used to set up a second header for the
6977 non-default kind of relocations here, but only NewABI would use
6978 these, and the IRIX ld doesn't like resulting empty RELA sections.
6979 Thus we create those header only on demand now. */
6980
6981 return TRUE;
6982 }
6983
6984 /* Given a BFD section, try to locate the corresponding ELF section
6985 index. This is used by both the 32-bit and the 64-bit ABI.
6986 Actually, it's not clear to me that the 64-bit ABI supports these,
6987 but for non-PIC objects we will certainly want support for at least
6988 the .scommon section. */
6989
6990 bfd_boolean
6991 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6992 asection *sec, int *retval)
6993 {
6994 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6995 {
6996 *retval = SHN_MIPS_SCOMMON;
6997 return TRUE;
6998 }
6999 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7000 {
7001 *retval = SHN_MIPS_ACOMMON;
7002 return TRUE;
7003 }
7004 return FALSE;
7005 }
7006 \f
7007 /* Hook called by the linker routine which adds symbols from an object
7008 file. We must handle the special MIPS section numbers here. */
7009
7010 bfd_boolean
7011 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7012 Elf_Internal_Sym *sym, const char **namep,
7013 flagword *flagsp ATTRIBUTE_UNUSED,
7014 asection **secp, bfd_vma *valp)
7015 {
7016 if (SGI_COMPAT (abfd)
7017 && (abfd->flags & DYNAMIC) != 0
7018 && strcmp (*namep, "_rld_new_interface") == 0)
7019 {
7020 /* Skip IRIX5 rld entry name. */
7021 *namep = NULL;
7022 return TRUE;
7023 }
7024
7025 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7026 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7027 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7028 a magic symbol resolved by the linker, we ignore this bogus definition
7029 of _gp_disp. New ABI objects do not suffer from this problem so this
7030 is not done for them. */
7031 if (!NEWABI_P(abfd)
7032 && (sym->st_shndx == SHN_ABS)
7033 && (strcmp (*namep, "_gp_disp") == 0))
7034 {
7035 *namep = NULL;
7036 return TRUE;
7037 }
7038
7039 switch (sym->st_shndx)
7040 {
7041 case SHN_COMMON:
7042 /* Common symbols less than the GP size are automatically
7043 treated as SHN_MIPS_SCOMMON symbols. */
7044 if (sym->st_size > elf_gp_size (abfd)
7045 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7046 || IRIX_COMPAT (abfd) == ict_irix6)
7047 break;
7048 /* Fall through. */
7049 case SHN_MIPS_SCOMMON:
7050 *secp = bfd_make_section_old_way (abfd, ".scommon");
7051 (*secp)->flags |= SEC_IS_COMMON;
7052 *valp = sym->st_size;
7053 break;
7054
7055 case SHN_MIPS_TEXT:
7056 /* This section is used in a shared object. */
7057 if (elf_tdata (abfd)->elf_text_section == NULL)
7058 {
7059 asymbol *elf_text_symbol;
7060 asection *elf_text_section;
7061 bfd_size_type amt = sizeof (asection);
7062
7063 elf_text_section = bfd_zalloc (abfd, amt);
7064 if (elf_text_section == NULL)
7065 return FALSE;
7066
7067 amt = sizeof (asymbol);
7068 elf_text_symbol = bfd_zalloc (abfd, amt);
7069 if (elf_text_symbol == NULL)
7070 return FALSE;
7071
7072 /* Initialize the section. */
7073
7074 elf_tdata (abfd)->elf_text_section = elf_text_section;
7075 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7076
7077 elf_text_section->symbol = elf_text_symbol;
7078 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
7079
7080 elf_text_section->name = ".text";
7081 elf_text_section->flags = SEC_NO_FLAGS;
7082 elf_text_section->output_section = NULL;
7083 elf_text_section->owner = abfd;
7084 elf_text_symbol->name = ".text";
7085 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7086 elf_text_symbol->section = elf_text_section;
7087 }
7088 /* This code used to do *secp = bfd_und_section_ptr if
7089 info->shared. I don't know why, and that doesn't make sense,
7090 so I took it out. */
7091 *secp = elf_tdata (abfd)->elf_text_section;
7092 break;
7093
7094 case SHN_MIPS_ACOMMON:
7095 /* Fall through. XXX Can we treat this as allocated data? */
7096 case SHN_MIPS_DATA:
7097 /* This section is used in a shared object. */
7098 if (elf_tdata (abfd)->elf_data_section == NULL)
7099 {
7100 asymbol *elf_data_symbol;
7101 asection *elf_data_section;
7102 bfd_size_type amt = sizeof (asection);
7103
7104 elf_data_section = bfd_zalloc (abfd, amt);
7105 if (elf_data_section == NULL)
7106 return FALSE;
7107
7108 amt = sizeof (asymbol);
7109 elf_data_symbol = bfd_zalloc (abfd, amt);
7110 if (elf_data_symbol == NULL)
7111 return FALSE;
7112
7113 /* Initialize the section. */
7114
7115 elf_tdata (abfd)->elf_data_section = elf_data_section;
7116 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7117
7118 elf_data_section->symbol = elf_data_symbol;
7119 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
7120
7121 elf_data_section->name = ".data";
7122 elf_data_section->flags = SEC_NO_FLAGS;
7123 elf_data_section->output_section = NULL;
7124 elf_data_section->owner = abfd;
7125 elf_data_symbol->name = ".data";
7126 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7127 elf_data_symbol->section = elf_data_section;
7128 }
7129 /* This code used to do *secp = bfd_und_section_ptr if
7130 info->shared. I don't know why, and that doesn't make sense,
7131 so I took it out. */
7132 *secp = elf_tdata (abfd)->elf_data_section;
7133 break;
7134
7135 case SHN_MIPS_SUNDEFINED:
7136 *secp = bfd_und_section_ptr;
7137 break;
7138 }
7139
7140 if (SGI_COMPAT (abfd)
7141 && ! info->shared
7142 && info->output_bfd->xvec == abfd->xvec
7143 && strcmp (*namep, "__rld_obj_head") == 0)
7144 {
7145 struct elf_link_hash_entry *h;
7146 struct bfd_link_hash_entry *bh;
7147
7148 /* Mark __rld_obj_head as dynamic. */
7149 bh = NULL;
7150 if (! (_bfd_generic_link_add_one_symbol
7151 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7152 get_elf_backend_data (abfd)->collect, &bh)))
7153 return FALSE;
7154
7155 h = (struct elf_link_hash_entry *) bh;
7156 h->non_elf = 0;
7157 h->def_regular = 1;
7158 h->type = STT_OBJECT;
7159
7160 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7161 return FALSE;
7162
7163 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7164 mips_elf_hash_table (info)->rld_symbol = h;
7165 }
7166
7167 /* If this is a mips16 text symbol, add 1 to the value to make it
7168 odd. This will cause something like .word SYM to come up with
7169 the right value when it is loaded into the PC. */
7170 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7171 ++*valp;
7172
7173 return TRUE;
7174 }
7175
7176 /* This hook function is called before the linker writes out a global
7177 symbol. We mark symbols as small common if appropriate. This is
7178 also where we undo the increment of the value for a mips16 symbol. */
7179
7180 int
7181 _bfd_mips_elf_link_output_symbol_hook
7182 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7183 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7184 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7185 {
7186 /* If we see a common symbol, which implies a relocatable link, then
7187 if a symbol was small common in an input file, mark it as small
7188 common in the output file. */
7189 if (sym->st_shndx == SHN_COMMON
7190 && strcmp (input_sec->name, ".scommon") == 0)
7191 sym->st_shndx = SHN_MIPS_SCOMMON;
7192
7193 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7194 sym->st_value &= ~1;
7195
7196 return 1;
7197 }
7198 \f
7199 /* Functions for the dynamic linker. */
7200
7201 /* Create dynamic sections when linking against a dynamic object. */
7202
7203 bfd_boolean
7204 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7205 {
7206 struct elf_link_hash_entry *h;
7207 struct bfd_link_hash_entry *bh;
7208 flagword flags;
7209 register asection *s;
7210 const char * const *namep;
7211 struct mips_elf_link_hash_table *htab;
7212
7213 htab = mips_elf_hash_table (info);
7214 BFD_ASSERT (htab != NULL);
7215
7216 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7217 | SEC_LINKER_CREATED | SEC_READONLY);
7218
7219 /* The psABI requires a read-only .dynamic section, but the VxWorks
7220 EABI doesn't. */
7221 if (!htab->is_vxworks)
7222 {
7223 s = bfd_get_section_by_name (abfd, ".dynamic");
7224 if (s != NULL)
7225 {
7226 if (! bfd_set_section_flags (abfd, s, flags))
7227 return FALSE;
7228 }
7229 }
7230
7231 /* We need to create .got section. */
7232 if (!mips_elf_create_got_section (abfd, info))
7233 return FALSE;
7234
7235 if (! mips_elf_rel_dyn_section (info, TRUE))
7236 return FALSE;
7237
7238 /* Create .stub section. */
7239 s = bfd_make_section_with_flags (abfd,
7240 MIPS_ELF_STUB_SECTION_NAME (abfd),
7241 flags | SEC_CODE);
7242 if (s == NULL
7243 || ! bfd_set_section_alignment (abfd, s,
7244 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7245 return FALSE;
7246 htab->sstubs = s;
7247
7248 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
7249 && !info->shared
7250 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
7251 {
7252 s = bfd_make_section_with_flags (abfd, ".rld_map",
7253 flags &~ (flagword) SEC_READONLY);
7254 if (s == NULL
7255 || ! bfd_set_section_alignment (abfd, s,
7256 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7257 return FALSE;
7258 }
7259
7260 /* On IRIX5, we adjust add some additional symbols and change the
7261 alignments of several sections. There is no ABI documentation
7262 indicating that this is necessary on IRIX6, nor any evidence that
7263 the linker takes such action. */
7264 if (IRIX_COMPAT (abfd) == ict_irix5)
7265 {
7266 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7267 {
7268 bh = NULL;
7269 if (! (_bfd_generic_link_add_one_symbol
7270 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7271 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7272 return FALSE;
7273
7274 h = (struct elf_link_hash_entry *) bh;
7275 h->non_elf = 0;
7276 h->def_regular = 1;
7277 h->type = STT_SECTION;
7278
7279 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7280 return FALSE;
7281 }
7282
7283 /* We need to create a .compact_rel section. */
7284 if (SGI_COMPAT (abfd))
7285 {
7286 if (!mips_elf_create_compact_rel_section (abfd, info))
7287 return FALSE;
7288 }
7289
7290 /* Change alignments of some sections. */
7291 s = bfd_get_section_by_name (abfd, ".hash");
7292 if (s != NULL)
7293 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7294 s = bfd_get_section_by_name (abfd, ".dynsym");
7295 if (s != NULL)
7296 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7297 s = bfd_get_section_by_name (abfd, ".dynstr");
7298 if (s != NULL)
7299 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7300 s = bfd_get_section_by_name (abfd, ".reginfo");
7301 if (s != NULL)
7302 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7303 s = bfd_get_section_by_name (abfd, ".dynamic");
7304 if (s != NULL)
7305 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7306 }
7307
7308 if (!info->shared)
7309 {
7310 const char *name;
7311
7312 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7313 bh = NULL;
7314 if (!(_bfd_generic_link_add_one_symbol
7315 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7316 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7317 return FALSE;
7318
7319 h = (struct elf_link_hash_entry *) bh;
7320 h->non_elf = 0;
7321 h->def_regular = 1;
7322 h->type = STT_SECTION;
7323
7324 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7325 return FALSE;
7326
7327 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7328 {
7329 /* __rld_map is a four byte word located in the .data section
7330 and is filled in by the rtld to contain a pointer to
7331 the _r_debug structure. Its symbol value will be set in
7332 _bfd_mips_elf_finish_dynamic_symbol. */
7333 s = bfd_get_section_by_name (abfd, ".rld_map");
7334 BFD_ASSERT (s != NULL);
7335
7336 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7337 bh = NULL;
7338 if (!(_bfd_generic_link_add_one_symbol
7339 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7340 get_elf_backend_data (abfd)->collect, &bh)))
7341 return FALSE;
7342
7343 h = (struct elf_link_hash_entry *) bh;
7344 h->non_elf = 0;
7345 h->def_regular = 1;
7346 h->type = STT_OBJECT;
7347
7348 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7349 return FALSE;
7350 mips_elf_hash_table (info)->rld_symbol = h;
7351 }
7352 }
7353
7354 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7355 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7356 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7357 return FALSE;
7358
7359 /* Cache the sections created above. */
7360 htab->splt = bfd_get_section_by_name (abfd, ".plt");
7361 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
7362 if (htab->is_vxworks)
7363 {
7364 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
7365 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
7366 }
7367 else
7368 htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt");
7369 if (!htab->sdynbss
7370 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7371 || !htab->srelplt
7372 || !htab->splt)
7373 abort ();
7374
7375 if (htab->is_vxworks)
7376 {
7377 /* Do the usual VxWorks handling. */
7378 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7379 return FALSE;
7380
7381 /* Work out the PLT sizes. */
7382 if (info->shared)
7383 {
7384 htab->plt_header_size
7385 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7386 htab->plt_entry_size
7387 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7388 }
7389 else
7390 {
7391 htab->plt_header_size
7392 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7393 htab->plt_entry_size
7394 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7395 }
7396 }
7397 else if (!info->shared)
7398 {
7399 /* All variants of the plt0 entry are the same size. */
7400 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7401 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7402 }
7403
7404 return TRUE;
7405 }
7406 \f
7407 /* Return true if relocation REL against section SEC is a REL rather than
7408 RELA relocation. RELOCS is the first relocation in the section and
7409 ABFD is the bfd that contains SEC. */
7410
7411 static bfd_boolean
7412 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7413 const Elf_Internal_Rela *relocs,
7414 const Elf_Internal_Rela *rel)
7415 {
7416 Elf_Internal_Shdr *rel_hdr;
7417 const struct elf_backend_data *bed;
7418
7419 /* To determine which flavor of relocation this is, we depend on the
7420 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7421 rel_hdr = elf_section_data (sec)->rel.hdr;
7422 if (rel_hdr == NULL)
7423 return FALSE;
7424 bed = get_elf_backend_data (abfd);
7425 return ((size_t) (rel - relocs)
7426 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7427 }
7428
7429 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7430 HOWTO is the relocation's howto and CONTENTS points to the contents
7431 of the section that REL is against. */
7432
7433 static bfd_vma
7434 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7435 reloc_howto_type *howto, bfd_byte *contents)
7436 {
7437 bfd_byte *location;
7438 unsigned int r_type;
7439 bfd_vma addend;
7440
7441 r_type = ELF_R_TYPE (abfd, rel->r_info);
7442 location = contents + rel->r_offset;
7443
7444 /* Get the addend, which is stored in the input file. */
7445 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7446 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7447 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7448
7449 return addend & howto->src_mask;
7450 }
7451
7452 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7453 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7454 and update *ADDEND with the final addend. Return true on success
7455 or false if the LO16 could not be found. RELEND is the exclusive
7456 upper bound on the relocations for REL's section. */
7457
7458 static bfd_boolean
7459 mips_elf_add_lo16_rel_addend (bfd *abfd,
7460 const Elf_Internal_Rela *rel,
7461 const Elf_Internal_Rela *relend,
7462 bfd_byte *contents, bfd_vma *addend)
7463 {
7464 unsigned int r_type, lo16_type;
7465 const Elf_Internal_Rela *lo16_relocation;
7466 reloc_howto_type *lo16_howto;
7467 bfd_vma l;
7468
7469 r_type = ELF_R_TYPE (abfd, rel->r_info);
7470 if (mips16_reloc_p (r_type))
7471 lo16_type = R_MIPS16_LO16;
7472 else if (micromips_reloc_p (r_type))
7473 lo16_type = R_MICROMIPS_LO16;
7474 else
7475 lo16_type = R_MIPS_LO16;
7476
7477 /* The combined value is the sum of the HI16 addend, left-shifted by
7478 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7479 code does a `lui' of the HI16 value, and then an `addiu' of the
7480 LO16 value.)
7481
7482 Scan ahead to find a matching LO16 relocation.
7483
7484 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7485 be immediately following. However, for the IRIX6 ABI, the next
7486 relocation may be a composed relocation consisting of several
7487 relocations for the same address. In that case, the R_MIPS_LO16
7488 relocation may occur as one of these. We permit a similar
7489 extension in general, as that is useful for GCC.
7490
7491 In some cases GCC dead code elimination removes the LO16 but keeps
7492 the corresponding HI16. This is strictly speaking a violation of
7493 the ABI but not immediately harmful. */
7494 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7495 if (lo16_relocation == NULL)
7496 return FALSE;
7497
7498 /* Obtain the addend kept there. */
7499 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7500 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7501
7502 l <<= lo16_howto->rightshift;
7503 l = _bfd_mips_elf_sign_extend (l, 16);
7504
7505 *addend <<= 16;
7506 *addend += l;
7507 return TRUE;
7508 }
7509
7510 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7511 store the contents in *CONTENTS on success. Assume that *CONTENTS
7512 already holds the contents if it is nonull on entry. */
7513
7514 static bfd_boolean
7515 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7516 {
7517 if (*contents)
7518 return TRUE;
7519
7520 /* Get cached copy if it exists. */
7521 if (elf_section_data (sec)->this_hdr.contents != NULL)
7522 {
7523 *contents = elf_section_data (sec)->this_hdr.contents;
7524 return TRUE;
7525 }
7526
7527 return bfd_malloc_and_get_section (abfd, sec, contents);
7528 }
7529
7530 /* Look through the relocs for a section during the first phase, and
7531 allocate space in the global offset table. */
7532
7533 bfd_boolean
7534 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7535 asection *sec, const Elf_Internal_Rela *relocs)
7536 {
7537 const char *name;
7538 bfd *dynobj;
7539 Elf_Internal_Shdr *symtab_hdr;
7540 struct elf_link_hash_entry **sym_hashes;
7541 size_t extsymoff;
7542 const Elf_Internal_Rela *rel;
7543 const Elf_Internal_Rela *rel_end;
7544 asection *sreloc;
7545 const struct elf_backend_data *bed;
7546 struct mips_elf_link_hash_table *htab;
7547 bfd_byte *contents;
7548 bfd_vma addend;
7549 reloc_howto_type *howto;
7550
7551 if (info->relocatable)
7552 return TRUE;
7553
7554 htab = mips_elf_hash_table (info);
7555 BFD_ASSERT (htab != NULL);
7556
7557 dynobj = elf_hash_table (info)->dynobj;
7558 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7559 sym_hashes = elf_sym_hashes (abfd);
7560 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7561
7562 bed = get_elf_backend_data (abfd);
7563 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7564
7565 /* Check for the mips16 stub sections. */
7566
7567 name = bfd_get_section_name (abfd, sec);
7568 if (FN_STUB_P (name))
7569 {
7570 unsigned long r_symndx;
7571
7572 /* Look at the relocation information to figure out which symbol
7573 this is for. */
7574
7575 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7576 if (r_symndx == 0)
7577 {
7578 (*_bfd_error_handler)
7579 (_("%B: Warning: cannot determine the target function for"
7580 " stub section `%s'"),
7581 abfd, name);
7582 bfd_set_error (bfd_error_bad_value);
7583 return FALSE;
7584 }
7585
7586 if (r_symndx < extsymoff
7587 || sym_hashes[r_symndx - extsymoff] == NULL)
7588 {
7589 asection *o;
7590
7591 /* This stub is for a local symbol. This stub will only be
7592 needed if there is some relocation in this BFD, other
7593 than a 16 bit function call, which refers to this symbol. */
7594 for (o = abfd->sections; o != NULL; o = o->next)
7595 {
7596 Elf_Internal_Rela *sec_relocs;
7597 const Elf_Internal_Rela *r, *rend;
7598
7599 /* We can ignore stub sections when looking for relocs. */
7600 if ((o->flags & SEC_RELOC) == 0
7601 || o->reloc_count == 0
7602 || section_allows_mips16_refs_p (o))
7603 continue;
7604
7605 sec_relocs
7606 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7607 info->keep_memory);
7608 if (sec_relocs == NULL)
7609 return FALSE;
7610
7611 rend = sec_relocs + o->reloc_count;
7612 for (r = sec_relocs; r < rend; r++)
7613 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7614 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7615 break;
7616
7617 if (elf_section_data (o)->relocs != sec_relocs)
7618 free (sec_relocs);
7619
7620 if (r < rend)
7621 break;
7622 }
7623
7624 if (o == NULL)
7625 {
7626 /* There is no non-call reloc for this stub, so we do
7627 not need it. Since this function is called before
7628 the linker maps input sections to output sections, we
7629 can easily discard it by setting the SEC_EXCLUDE
7630 flag. */
7631 sec->flags |= SEC_EXCLUDE;
7632 return TRUE;
7633 }
7634
7635 /* Record this stub in an array of local symbol stubs for
7636 this BFD. */
7637 if (elf_tdata (abfd)->local_stubs == NULL)
7638 {
7639 unsigned long symcount;
7640 asection **n;
7641 bfd_size_type amt;
7642
7643 if (elf_bad_symtab (abfd))
7644 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7645 else
7646 symcount = symtab_hdr->sh_info;
7647 amt = symcount * sizeof (asection *);
7648 n = bfd_zalloc (abfd, amt);
7649 if (n == NULL)
7650 return FALSE;
7651 elf_tdata (abfd)->local_stubs = n;
7652 }
7653
7654 sec->flags |= SEC_KEEP;
7655 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7656
7657 /* We don't need to set mips16_stubs_seen in this case.
7658 That flag is used to see whether we need to look through
7659 the global symbol table for stubs. We don't need to set
7660 it here, because we just have a local stub. */
7661 }
7662 else
7663 {
7664 struct mips_elf_link_hash_entry *h;
7665
7666 h = ((struct mips_elf_link_hash_entry *)
7667 sym_hashes[r_symndx - extsymoff]);
7668
7669 while (h->root.root.type == bfd_link_hash_indirect
7670 || h->root.root.type == bfd_link_hash_warning)
7671 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7672
7673 /* H is the symbol this stub is for. */
7674
7675 /* If we already have an appropriate stub for this function, we
7676 don't need another one, so we can discard this one. Since
7677 this function is called before the linker maps input sections
7678 to output sections, we can easily discard it by setting the
7679 SEC_EXCLUDE flag. */
7680 if (h->fn_stub != NULL)
7681 {
7682 sec->flags |= SEC_EXCLUDE;
7683 return TRUE;
7684 }
7685
7686 sec->flags |= SEC_KEEP;
7687 h->fn_stub = sec;
7688 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7689 }
7690 }
7691 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7692 {
7693 unsigned long r_symndx;
7694 struct mips_elf_link_hash_entry *h;
7695 asection **loc;
7696
7697 /* Look at the relocation information to figure out which symbol
7698 this is for. */
7699
7700 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7701 if (r_symndx == 0)
7702 {
7703 (*_bfd_error_handler)
7704 (_("%B: Warning: cannot determine the target function for"
7705 " stub section `%s'"),
7706 abfd, name);
7707 bfd_set_error (bfd_error_bad_value);
7708 return FALSE;
7709 }
7710
7711 if (r_symndx < extsymoff
7712 || sym_hashes[r_symndx - extsymoff] == NULL)
7713 {
7714 asection *o;
7715
7716 /* This stub is for a local symbol. This stub will only be
7717 needed if there is some relocation (R_MIPS16_26) in this BFD
7718 that refers to this symbol. */
7719 for (o = abfd->sections; o != NULL; o = o->next)
7720 {
7721 Elf_Internal_Rela *sec_relocs;
7722 const Elf_Internal_Rela *r, *rend;
7723
7724 /* We can ignore stub sections when looking for relocs. */
7725 if ((o->flags & SEC_RELOC) == 0
7726 || o->reloc_count == 0
7727 || section_allows_mips16_refs_p (o))
7728 continue;
7729
7730 sec_relocs
7731 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7732 info->keep_memory);
7733 if (sec_relocs == NULL)
7734 return FALSE;
7735
7736 rend = sec_relocs + o->reloc_count;
7737 for (r = sec_relocs; r < rend; r++)
7738 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7739 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7740 break;
7741
7742 if (elf_section_data (o)->relocs != sec_relocs)
7743 free (sec_relocs);
7744
7745 if (r < rend)
7746 break;
7747 }
7748
7749 if (o == NULL)
7750 {
7751 /* There is no non-call reloc for this stub, so we do
7752 not need it. Since this function is called before
7753 the linker maps input sections to output sections, we
7754 can easily discard it by setting the SEC_EXCLUDE
7755 flag. */
7756 sec->flags |= SEC_EXCLUDE;
7757 return TRUE;
7758 }
7759
7760 /* Record this stub in an array of local symbol call_stubs for
7761 this BFD. */
7762 if (elf_tdata (abfd)->local_call_stubs == NULL)
7763 {
7764 unsigned long symcount;
7765 asection **n;
7766 bfd_size_type amt;
7767
7768 if (elf_bad_symtab (abfd))
7769 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7770 else
7771 symcount = symtab_hdr->sh_info;
7772 amt = symcount * sizeof (asection *);
7773 n = bfd_zalloc (abfd, amt);
7774 if (n == NULL)
7775 return FALSE;
7776 elf_tdata (abfd)->local_call_stubs = n;
7777 }
7778
7779 sec->flags |= SEC_KEEP;
7780 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7781
7782 /* We don't need to set mips16_stubs_seen in this case.
7783 That flag is used to see whether we need to look through
7784 the global symbol table for stubs. We don't need to set
7785 it here, because we just have a local stub. */
7786 }
7787 else
7788 {
7789 h = ((struct mips_elf_link_hash_entry *)
7790 sym_hashes[r_symndx - extsymoff]);
7791
7792 /* H is the symbol this stub is for. */
7793
7794 if (CALL_FP_STUB_P (name))
7795 loc = &h->call_fp_stub;
7796 else
7797 loc = &h->call_stub;
7798
7799 /* If we already have an appropriate stub for this function, we
7800 don't need another one, so we can discard this one. Since
7801 this function is called before the linker maps input sections
7802 to output sections, we can easily discard it by setting the
7803 SEC_EXCLUDE flag. */
7804 if (*loc != NULL)
7805 {
7806 sec->flags |= SEC_EXCLUDE;
7807 return TRUE;
7808 }
7809
7810 sec->flags |= SEC_KEEP;
7811 *loc = sec;
7812 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7813 }
7814 }
7815
7816 sreloc = NULL;
7817 contents = NULL;
7818 for (rel = relocs; rel < rel_end; ++rel)
7819 {
7820 unsigned long r_symndx;
7821 unsigned int r_type;
7822 struct elf_link_hash_entry *h;
7823 bfd_boolean can_make_dynamic_p;
7824
7825 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7826 r_type = ELF_R_TYPE (abfd, rel->r_info);
7827
7828 if (r_symndx < extsymoff)
7829 h = NULL;
7830 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7831 {
7832 (*_bfd_error_handler)
7833 (_("%B: Malformed reloc detected for section %s"),
7834 abfd, name);
7835 bfd_set_error (bfd_error_bad_value);
7836 return FALSE;
7837 }
7838 else
7839 {
7840 h = sym_hashes[r_symndx - extsymoff];
7841 while (h != NULL
7842 && (h->root.type == bfd_link_hash_indirect
7843 || h->root.type == bfd_link_hash_warning))
7844 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7845 }
7846
7847 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7848 relocation into a dynamic one. */
7849 can_make_dynamic_p = FALSE;
7850 switch (r_type)
7851 {
7852 case R_MIPS_GOT16:
7853 case R_MIPS_CALL16:
7854 case R_MIPS_CALL_HI16:
7855 case R_MIPS_CALL_LO16:
7856 case R_MIPS_GOT_HI16:
7857 case R_MIPS_GOT_LO16:
7858 case R_MIPS_GOT_PAGE:
7859 case R_MIPS_GOT_OFST:
7860 case R_MIPS_GOT_DISP:
7861 case R_MIPS_TLS_GOTTPREL:
7862 case R_MIPS_TLS_GD:
7863 case R_MIPS_TLS_LDM:
7864 case R_MIPS16_GOT16:
7865 case R_MIPS16_CALL16:
7866 case R_MIPS16_TLS_GOTTPREL:
7867 case R_MIPS16_TLS_GD:
7868 case R_MIPS16_TLS_LDM:
7869 case R_MICROMIPS_GOT16:
7870 case R_MICROMIPS_CALL16:
7871 case R_MICROMIPS_CALL_HI16:
7872 case R_MICROMIPS_CALL_LO16:
7873 case R_MICROMIPS_GOT_HI16:
7874 case R_MICROMIPS_GOT_LO16:
7875 case R_MICROMIPS_GOT_PAGE:
7876 case R_MICROMIPS_GOT_OFST:
7877 case R_MICROMIPS_GOT_DISP:
7878 case R_MICROMIPS_TLS_GOTTPREL:
7879 case R_MICROMIPS_TLS_GD:
7880 case R_MICROMIPS_TLS_LDM:
7881 if (dynobj == NULL)
7882 elf_hash_table (info)->dynobj = dynobj = abfd;
7883 if (!mips_elf_create_got_section (dynobj, info))
7884 return FALSE;
7885 if (htab->is_vxworks && !info->shared)
7886 {
7887 (*_bfd_error_handler)
7888 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7889 abfd, (unsigned long) rel->r_offset);
7890 bfd_set_error (bfd_error_bad_value);
7891 return FALSE;
7892 }
7893 break;
7894
7895 /* This is just a hint; it can safely be ignored. Don't set
7896 has_static_relocs for the corresponding symbol. */
7897 case R_MIPS_JALR:
7898 case R_MICROMIPS_JALR:
7899 break;
7900
7901 case R_MIPS_32:
7902 case R_MIPS_REL32:
7903 case R_MIPS_64:
7904 /* In VxWorks executables, references to external symbols
7905 must be handled using copy relocs or PLT entries; it is not
7906 possible to convert this relocation into a dynamic one.
7907
7908 For executables that use PLTs and copy-relocs, we have a
7909 choice between converting the relocation into a dynamic
7910 one or using copy relocations or PLT entries. It is
7911 usually better to do the former, unless the relocation is
7912 against a read-only section. */
7913 if ((info->shared
7914 || (h != NULL
7915 && !htab->is_vxworks
7916 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7917 && !(!info->nocopyreloc
7918 && !PIC_OBJECT_P (abfd)
7919 && MIPS_ELF_READONLY_SECTION (sec))))
7920 && (sec->flags & SEC_ALLOC) != 0)
7921 {
7922 can_make_dynamic_p = TRUE;
7923 if (dynobj == NULL)
7924 elf_hash_table (info)->dynobj = dynobj = abfd;
7925 break;
7926 }
7927 /* For sections that are not SEC_ALLOC a copy reloc would be
7928 output if possible (implying questionable semantics for
7929 read-only data objects) or otherwise the final link would
7930 fail as ld.so will not process them and could not therefore
7931 handle any outstanding dynamic relocations.
7932
7933 For such sections that are also SEC_DEBUGGING, we can avoid
7934 these problems by simply ignoring any relocs as these
7935 sections have a predefined use and we know it is safe to do
7936 so.
7937
7938 This is needed in cases such as a global symbol definition
7939 in a shared library causing a common symbol from an object
7940 file to be converted to an undefined reference. If that
7941 happens, then all the relocations against this symbol from
7942 SEC_DEBUGGING sections in the object file will resolve to
7943 nil. */
7944 if ((sec->flags & SEC_DEBUGGING) != 0)
7945 break;
7946 /* Fall through. */
7947
7948 default:
7949 /* Most static relocations require pointer equality, except
7950 for branches. */
7951 if (h)
7952 h->pointer_equality_needed = TRUE;
7953 /* Fall through. */
7954
7955 case R_MIPS_26:
7956 case R_MIPS_PC16:
7957 case R_MIPS16_26:
7958 case R_MICROMIPS_26_S1:
7959 case R_MICROMIPS_PC7_S1:
7960 case R_MICROMIPS_PC10_S1:
7961 case R_MICROMIPS_PC16_S1:
7962 case R_MICROMIPS_PC23_S2:
7963 if (h)
7964 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7965 break;
7966 }
7967
7968 if (h)
7969 {
7970 /* Relocations against the special VxWorks __GOTT_BASE__ and
7971 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7972 room for them in .rela.dyn. */
7973 if (is_gott_symbol (info, h))
7974 {
7975 if (sreloc == NULL)
7976 {
7977 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7978 if (sreloc == NULL)
7979 return FALSE;
7980 }
7981 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7982 if (MIPS_ELF_READONLY_SECTION (sec))
7983 /* We tell the dynamic linker that there are
7984 relocations against the text segment. */
7985 info->flags |= DF_TEXTREL;
7986 }
7987 }
7988 else if (call_lo16_reloc_p (r_type)
7989 || got_lo16_reloc_p (r_type)
7990 || got_disp_reloc_p (r_type)
7991 || (got16_reloc_p (r_type) && htab->is_vxworks))
7992 {
7993 /* We may need a local GOT entry for this relocation. We
7994 don't count R_MIPS_GOT_PAGE because we can estimate the
7995 maximum number of pages needed by looking at the size of
7996 the segment. Similar comments apply to R_MIPS*_GOT16 and
7997 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7998 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7999 R_MIPS_CALL_HI16 because these are always followed by an
8000 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8001 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8002 rel->r_addend, info, 0))
8003 return FALSE;
8004 }
8005
8006 if (h != NULL
8007 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8008 ELF_ST_IS_MIPS16 (h->other)))
8009 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8010
8011 switch (r_type)
8012 {
8013 case R_MIPS_CALL16:
8014 case R_MIPS16_CALL16:
8015 case R_MICROMIPS_CALL16:
8016 if (h == NULL)
8017 {
8018 (*_bfd_error_handler)
8019 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8020 abfd, (unsigned long) rel->r_offset);
8021 bfd_set_error (bfd_error_bad_value);
8022 return FALSE;
8023 }
8024 /* Fall through. */
8025
8026 case R_MIPS_CALL_HI16:
8027 case R_MIPS_CALL_LO16:
8028 case R_MICROMIPS_CALL_HI16:
8029 case R_MICROMIPS_CALL_LO16:
8030 if (h != NULL)
8031 {
8032 /* Make sure there is room in the regular GOT to hold the
8033 function's address. We may eliminate it in favour of
8034 a .got.plt entry later; see mips_elf_count_got_symbols. */
8035 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
8036 return FALSE;
8037
8038 /* We need a stub, not a plt entry for the undefined
8039 function. But we record it as if it needs plt. See
8040 _bfd_elf_adjust_dynamic_symbol. */
8041 h->needs_plt = 1;
8042 h->type = STT_FUNC;
8043 }
8044 break;
8045
8046 case R_MIPS_GOT_PAGE:
8047 case R_MICROMIPS_GOT_PAGE:
8048 /* If this is a global, overridable symbol, GOT_PAGE will
8049 decay to GOT_DISP, so we'll need a GOT entry for it. */
8050 if (h)
8051 {
8052 struct mips_elf_link_hash_entry *hmips =
8053 (struct mips_elf_link_hash_entry *) h;
8054
8055 /* This symbol is definitely not overridable. */
8056 if (hmips->root.def_regular
8057 && ! (info->shared && ! info->symbolic
8058 && ! hmips->root.forced_local))
8059 h = NULL;
8060 }
8061 /* Fall through. */
8062
8063 case R_MIPS16_GOT16:
8064 case R_MIPS_GOT16:
8065 case R_MIPS_GOT_HI16:
8066 case R_MIPS_GOT_LO16:
8067 case R_MICROMIPS_GOT16:
8068 case R_MICROMIPS_GOT_HI16:
8069 case R_MICROMIPS_GOT_LO16:
8070 if (!h || got_page_reloc_p (r_type))
8071 {
8072 /* This relocation needs (or may need, if h != NULL) a
8073 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8074 know for sure until we know whether the symbol is
8075 preemptible. */
8076 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8077 {
8078 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8079 return FALSE;
8080 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8081 addend = mips_elf_read_rel_addend (abfd, rel,
8082 howto, contents);
8083 if (got16_reloc_p (r_type))
8084 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8085 contents, &addend);
8086 else
8087 addend <<= howto->rightshift;
8088 }
8089 else
8090 addend = rel->r_addend;
8091 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
8092 addend))
8093 return FALSE;
8094 }
8095 /* Fall through. */
8096
8097 case R_MIPS_GOT_DISP:
8098 case R_MICROMIPS_GOT_DISP:
8099 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8100 FALSE, 0))
8101 return FALSE;
8102 break;
8103
8104 case R_MIPS_TLS_GOTTPREL:
8105 case R_MIPS16_TLS_GOTTPREL:
8106 case R_MICROMIPS_TLS_GOTTPREL:
8107 if (info->shared)
8108 info->flags |= DF_STATIC_TLS;
8109 /* Fall through */
8110
8111 case R_MIPS_TLS_LDM:
8112 case R_MIPS16_TLS_LDM:
8113 case R_MICROMIPS_TLS_LDM:
8114 if (tls_ldm_reloc_p (r_type))
8115 {
8116 r_symndx = STN_UNDEF;
8117 h = NULL;
8118 }
8119 /* Fall through */
8120
8121 case R_MIPS_TLS_GD:
8122 case R_MIPS16_TLS_GD:
8123 case R_MICROMIPS_TLS_GD:
8124 /* This symbol requires a global offset table entry, or two
8125 for TLS GD relocations. */
8126 {
8127 unsigned char flag;
8128
8129 flag = (tls_gd_reloc_p (r_type)
8130 ? GOT_TLS_GD
8131 : tls_ldm_reloc_p (r_type) ? GOT_TLS_LDM : GOT_TLS_IE);
8132 if (h != NULL)
8133 {
8134 struct mips_elf_link_hash_entry *hmips =
8135 (struct mips_elf_link_hash_entry *) h;
8136 hmips->tls_type |= flag;
8137
8138 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8139 FALSE, flag))
8140 return FALSE;
8141 }
8142 else
8143 {
8144 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
8145
8146 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8147 rel->r_addend,
8148 info, flag))
8149 return FALSE;
8150 }
8151 }
8152 break;
8153
8154 case R_MIPS_32:
8155 case R_MIPS_REL32:
8156 case R_MIPS_64:
8157 /* In VxWorks executables, references to external symbols
8158 are handled using copy relocs or PLT stubs, so there's
8159 no need to add a .rela.dyn entry for this relocation. */
8160 if (can_make_dynamic_p)
8161 {
8162 if (sreloc == NULL)
8163 {
8164 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8165 if (sreloc == NULL)
8166 return FALSE;
8167 }
8168 if (info->shared && h == NULL)
8169 {
8170 /* When creating a shared object, we must copy these
8171 reloc types into the output file as R_MIPS_REL32
8172 relocs. Make room for this reloc in .rel(a).dyn. */
8173 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8174 if (MIPS_ELF_READONLY_SECTION (sec))
8175 /* We tell the dynamic linker that there are
8176 relocations against the text segment. */
8177 info->flags |= DF_TEXTREL;
8178 }
8179 else
8180 {
8181 struct mips_elf_link_hash_entry *hmips;
8182
8183 /* For a shared object, we must copy this relocation
8184 unless the symbol turns out to be undefined and
8185 weak with non-default visibility, in which case
8186 it will be left as zero.
8187
8188 We could elide R_MIPS_REL32 for locally binding symbols
8189 in shared libraries, but do not yet do so.
8190
8191 For an executable, we only need to copy this
8192 reloc if the symbol is defined in a dynamic
8193 object. */
8194 hmips = (struct mips_elf_link_hash_entry *) h;
8195 ++hmips->possibly_dynamic_relocs;
8196 if (MIPS_ELF_READONLY_SECTION (sec))
8197 /* We need it to tell the dynamic linker if there
8198 are relocations against the text segment. */
8199 hmips->readonly_reloc = TRUE;
8200 }
8201 }
8202
8203 if (SGI_COMPAT (abfd))
8204 mips_elf_hash_table (info)->compact_rel_size +=
8205 sizeof (Elf32_External_crinfo);
8206 break;
8207
8208 case R_MIPS_26:
8209 case R_MIPS_GPREL16:
8210 case R_MIPS_LITERAL:
8211 case R_MIPS_GPREL32:
8212 case R_MICROMIPS_26_S1:
8213 case R_MICROMIPS_GPREL16:
8214 case R_MICROMIPS_LITERAL:
8215 case R_MICROMIPS_GPREL7_S2:
8216 if (SGI_COMPAT (abfd))
8217 mips_elf_hash_table (info)->compact_rel_size +=
8218 sizeof (Elf32_External_crinfo);
8219 break;
8220
8221 /* This relocation describes the C++ object vtable hierarchy.
8222 Reconstruct it for later use during GC. */
8223 case R_MIPS_GNU_VTINHERIT:
8224 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8225 return FALSE;
8226 break;
8227
8228 /* This relocation describes which C++ vtable entries are actually
8229 used. Record for later use during GC. */
8230 case R_MIPS_GNU_VTENTRY:
8231 BFD_ASSERT (h != NULL);
8232 if (h != NULL
8233 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8234 return FALSE;
8235 break;
8236
8237 default:
8238 break;
8239 }
8240
8241 /* We must not create a stub for a symbol that has relocations
8242 related to taking the function's address. This doesn't apply to
8243 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8244 a normal .got entry. */
8245 if (!htab->is_vxworks && h != NULL)
8246 switch (r_type)
8247 {
8248 default:
8249 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8250 break;
8251 case R_MIPS16_CALL16:
8252 case R_MIPS_CALL16:
8253 case R_MIPS_CALL_HI16:
8254 case R_MIPS_CALL_LO16:
8255 case R_MIPS_JALR:
8256 case R_MICROMIPS_CALL16:
8257 case R_MICROMIPS_CALL_HI16:
8258 case R_MICROMIPS_CALL_LO16:
8259 case R_MICROMIPS_JALR:
8260 break;
8261 }
8262
8263 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8264 if there is one. We only need to handle global symbols here;
8265 we decide whether to keep or delete stubs for local symbols
8266 when processing the stub's relocations. */
8267 if (h != NULL
8268 && !mips16_call_reloc_p (r_type)
8269 && !section_allows_mips16_refs_p (sec))
8270 {
8271 struct mips_elf_link_hash_entry *mh;
8272
8273 mh = (struct mips_elf_link_hash_entry *) h;
8274 mh->need_fn_stub = TRUE;
8275 }
8276
8277 /* Refuse some position-dependent relocations when creating a
8278 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8279 not PIC, but we can create dynamic relocations and the result
8280 will be fine. Also do not refuse R_MIPS_LO16, which can be
8281 combined with R_MIPS_GOT16. */
8282 if (info->shared)
8283 {
8284 switch (r_type)
8285 {
8286 case R_MIPS16_HI16:
8287 case R_MIPS_HI16:
8288 case R_MIPS_HIGHER:
8289 case R_MIPS_HIGHEST:
8290 case R_MICROMIPS_HI16:
8291 case R_MICROMIPS_HIGHER:
8292 case R_MICROMIPS_HIGHEST:
8293 /* Don't refuse a high part relocation if it's against
8294 no symbol (e.g. part of a compound relocation). */
8295 if (r_symndx == STN_UNDEF)
8296 break;
8297
8298 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8299 and has a special meaning. */
8300 if (!NEWABI_P (abfd) && h != NULL
8301 && strcmp (h->root.root.string, "_gp_disp") == 0)
8302 break;
8303
8304 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8305 if (is_gott_symbol (info, h))
8306 break;
8307
8308 /* FALLTHROUGH */
8309
8310 case R_MIPS16_26:
8311 case R_MIPS_26:
8312 case R_MICROMIPS_26_S1:
8313 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8314 (*_bfd_error_handler)
8315 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8316 abfd, howto->name,
8317 (h) ? h->root.root.string : "a local symbol");
8318 bfd_set_error (bfd_error_bad_value);
8319 return FALSE;
8320 default:
8321 break;
8322 }
8323 }
8324 }
8325
8326 return TRUE;
8327 }
8328 \f
8329 bfd_boolean
8330 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8331 struct bfd_link_info *link_info,
8332 bfd_boolean *again)
8333 {
8334 Elf_Internal_Rela *internal_relocs;
8335 Elf_Internal_Rela *irel, *irelend;
8336 Elf_Internal_Shdr *symtab_hdr;
8337 bfd_byte *contents = NULL;
8338 size_t extsymoff;
8339 bfd_boolean changed_contents = FALSE;
8340 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8341 Elf_Internal_Sym *isymbuf = NULL;
8342
8343 /* We are not currently changing any sizes, so only one pass. */
8344 *again = FALSE;
8345
8346 if (link_info->relocatable)
8347 return TRUE;
8348
8349 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8350 link_info->keep_memory);
8351 if (internal_relocs == NULL)
8352 return TRUE;
8353
8354 irelend = internal_relocs + sec->reloc_count
8355 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8356 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8357 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8358
8359 for (irel = internal_relocs; irel < irelend; irel++)
8360 {
8361 bfd_vma symval;
8362 bfd_signed_vma sym_offset;
8363 unsigned int r_type;
8364 unsigned long r_symndx;
8365 asection *sym_sec;
8366 unsigned long instruction;
8367
8368 /* Turn jalr into bgezal, and jr into beq, if they're marked
8369 with a JALR relocation, that indicate where they jump to.
8370 This saves some pipeline bubbles. */
8371 r_type = ELF_R_TYPE (abfd, irel->r_info);
8372 if (r_type != R_MIPS_JALR)
8373 continue;
8374
8375 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8376 /* Compute the address of the jump target. */
8377 if (r_symndx >= extsymoff)
8378 {
8379 struct mips_elf_link_hash_entry *h
8380 = ((struct mips_elf_link_hash_entry *)
8381 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8382
8383 while (h->root.root.type == bfd_link_hash_indirect
8384 || h->root.root.type == bfd_link_hash_warning)
8385 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8386
8387 /* If a symbol is undefined, or if it may be overridden,
8388 skip it. */
8389 if (! ((h->root.root.type == bfd_link_hash_defined
8390 || h->root.root.type == bfd_link_hash_defweak)
8391 && h->root.root.u.def.section)
8392 || (link_info->shared && ! link_info->symbolic
8393 && !h->root.forced_local))
8394 continue;
8395
8396 sym_sec = h->root.root.u.def.section;
8397 if (sym_sec->output_section)
8398 symval = (h->root.root.u.def.value
8399 + sym_sec->output_section->vma
8400 + sym_sec->output_offset);
8401 else
8402 symval = h->root.root.u.def.value;
8403 }
8404 else
8405 {
8406 Elf_Internal_Sym *isym;
8407
8408 /* Read this BFD's symbols if we haven't done so already. */
8409 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8410 {
8411 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8412 if (isymbuf == NULL)
8413 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8414 symtab_hdr->sh_info, 0,
8415 NULL, NULL, NULL);
8416 if (isymbuf == NULL)
8417 goto relax_return;
8418 }
8419
8420 isym = isymbuf + r_symndx;
8421 if (isym->st_shndx == SHN_UNDEF)
8422 continue;
8423 else if (isym->st_shndx == SHN_ABS)
8424 sym_sec = bfd_abs_section_ptr;
8425 else if (isym->st_shndx == SHN_COMMON)
8426 sym_sec = bfd_com_section_ptr;
8427 else
8428 sym_sec
8429 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8430 symval = isym->st_value
8431 + sym_sec->output_section->vma
8432 + sym_sec->output_offset;
8433 }
8434
8435 /* Compute branch offset, from delay slot of the jump to the
8436 branch target. */
8437 sym_offset = (symval + irel->r_addend)
8438 - (sec_start + irel->r_offset + 4);
8439
8440 /* Branch offset must be properly aligned. */
8441 if ((sym_offset & 3) != 0)
8442 continue;
8443
8444 sym_offset >>= 2;
8445
8446 /* Check that it's in range. */
8447 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8448 continue;
8449
8450 /* Get the section contents if we haven't done so already. */
8451 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8452 goto relax_return;
8453
8454 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8455
8456 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8457 if ((instruction & 0xfc1fffff) == 0x0000f809)
8458 instruction = 0x04110000;
8459 /* If it was jr <reg>, turn it into b <target>. */
8460 else if ((instruction & 0xfc1fffff) == 0x00000008)
8461 instruction = 0x10000000;
8462 else
8463 continue;
8464
8465 instruction |= (sym_offset & 0xffff);
8466 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8467 changed_contents = TRUE;
8468 }
8469
8470 if (contents != NULL
8471 && elf_section_data (sec)->this_hdr.contents != contents)
8472 {
8473 if (!changed_contents && !link_info->keep_memory)
8474 free (contents);
8475 else
8476 {
8477 /* Cache the section contents for elf_link_input_bfd. */
8478 elf_section_data (sec)->this_hdr.contents = contents;
8479 }
8480 }
8481 return TRUE;
8482
8483 relax_return:
8484 if (contents != NULL
8485 && elf_section_data (sec)->this_hdr.contents != contents)
8486 free (contents);
8487 return FALSE;
8488 }
8489 \f
8490 /* Allocate space for global sym dynamic relocs. */
8491
8492 static bfd_boolean
8493 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8494 {
8495 struct bfd_link_info *info = inf;
8496 bfd *dynobj;
8497 struct mips_elf_link_hash_entry *hmips;
8498 struct mips_elf_link_hash_table *htab;
8499
8500 htab = mips_elf_hash_table (info);
8501 BFD_ASSERT (htab != NULL);
8502
8503 dynobj = elf_hash_table (info)->dynobj;
8504 hmips = (struct mips_elf_link_hash_entry *) h;
8505
8506 /* VxWorks executables are handled elsewhere; we only need to
8507 allocate relocations in shared objects. */
8508 if (htab->is_vxworks && !info->shared)
8509 return TRUE;
8510
8511 /* Ignore indirect symbols. All relocations against such symbols
8512 will be redirected to the target symbol. */
8513 if (h->root.type == bfd_link_hash_indirect)
8514 return TRUE;
8515
8516 /* If this symbol is defined in a dynamic object, or we are creating
8517 a shared library, we will need to copy any R_MIPS_32 or
8518 R_MIPS_REL32 relocs against it into the output file. */
8519 if (! info->relocatable
8520 && hmips->possibly_dynamic_relocs != 0
8521 && (h->root.type == bfd_link_hash_defweak
8522 || !h->def_regular
8523 || info->shared))
8524 {
8525 bfd_boolean do_copy = TRUE;
8526
8527 if (h->root.type == bfd_link_hash_undefweak)
8528 {
8529 /* Do not copy relocations for undefined weak symbols with
8530 non-default visibility. */
8531 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8532 do_copy = FALSE;
8533
8534 /* Make sure undefined weak symbols are output as a dynamic
8535 symbol in PIEs. */
8536 else if (h->dynindx == -1 && !h->forced_local)
8537 {
8538 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8539 return FALSE;
8540 }
8541 }
8542
8543 if (do_copy)
8544 {
8545 /* Even though we don't directly need a GOT entry for this symbol,
8546 the SVR4 psABI requires it to have a dynamic symbol table
8547 index greater that DT_MIPS_GOTSYM if there are dynamic
8548 relocations against it.
8549
8550 VxWorks does not enforce the same mapping between the GOT
8551 and the symbol table, so the same requirement does not
8552 apply there. */
8553 if (!htab->is_vxworks)
8554 {
8555 if (hmips->global_got_area > GGA_RELOC_ONLY)
8556 hmips->global_got_area = GGA_RELOC_ONLY;
8557 hmips->got_only_for_calls = FALSE;
8558 }
8559
8560 mips_elf_allocate_dynamic_relocations
8561 (dynobj, info, hmips->possibly_dynamic_relocs);
8562 if (hmips->readonly_reloc)
8563 /* We tell the dynamic linker that there are relocations
8564 against the text segment. */
8565 info->flags |= DF_TEXTREL;
8566 }
8567 }
8568
8569 return TRUE;
8570 }
8571
8572 /* Adjust a symbol defined by a dynamic object and referenced by a
8573 regular object. The current definition is in some section of the
8574 dynamic object, but we're not including those sections. We have to
8575 change the definition to something the rest of the link can
8576 understand. */
8577
8578 bfd_boolean
8579 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8580 struct elf_link_hash_entry *h)
8581 {
8582 bfd *dynobj;
8583 struct mips_elf_link_hash_entry *hmips;
8584 struct mips_elf_link_hash_table *htab;
8585
8586 htab = mips_elf_hash_table (info);
8587 BFD_ASSERT (htab != NULL);
8588
8589 dynobj = elf_hash_table (info)->dynobj;
8590 hmips = (struct mips_elf_link_hash_entry *) h;
8591
8592 /* Make sure we know what is going on here. */
8593 BFD_ASSERT (dynobj != NULL
8594 && (h->needs_plt
8595 || h->u.weakdef != NULL
8596 || (h->def_dynamic
8597 && h->ref_regular
8598 && !h->def_regular)));
8599
8600 hmips = (struct mips_elf_link_hash_entry *) h;
8601
8602 /* If there are call relocations against an externally-defined symbol,
8603 see whether we can create a MIPS lazy-binding stub for it. We can
8604 only do this if all references to the function are through call
8605 relocations, and in that case, the traditional lazy-binding stubs
8606 are much more efficient than PLT entries.
8607
8608 Traditional stubs are only available on SVR4 psABI-based systems;
8609 VxWorks always uses PLTs instead. */
8610 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8611 {
8612 if (! elf_hash_table (info)->dynamic_sections_created)
8613 return TRUE;
8614
8615 /* If this symbol is not defined in a regular file, then set
8616 the symbol to the stub location. This is required to make
8617 function pointers compare as equal between the normal
8618 executable and the shared library. */
8619 if (!h->def_regular)
8620 {
8621 hmips->needs_lazy_stub = TRUE;
8622 htab->lazy_stub_count++;
8623 return TRUE;
8624 }
8625 }
8626 /* As above, VxWorks requires PLT entries for externally-defined
8627 functions that are only accessed through call relocations.
8628
8629 Both VxWorks and non-VxWorks targets also need PLT entries if there
8630 are static-only relocations against an externally-defined function.
8631 This can technically occur for shared libraries if there are
8632 branches to the symbol, although it is unlikely that this will be
8633 used in practice due to the short ranges involved. It can occur
8634 for any relative or absolute relocation in executables; in that
8635 case, the PLT entry becomes the function's canonical address. */
8636 else if (((h->needs_plt && !hmips->no_fn_stub)
8637 || (h->type == STT_FUNC && hmips->has_static_relocs))
8638 && htab->use_plts_and_copy_relocs
8639 && !SYMBOL_CALLS_LOCAL (info, h)
8640 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8641 && h->root.type == bfd_link_hash_undefweak))
8642 {
8643 /* If this is the first symbol to need a PLT entry, allocate room
8644 for the header. */
8645 if (htab->splt->size == 0)
8646 {
8647 BFD_ASSERT (htab->sgotplt->size == 0);
8648
8649 /* If we're using the PLT additions to the psABI, each PLT
8650 entry is 16 bytes and the PLT0 entry is 32 bytes.
8651 Encourage better cache usage by aligning. We do this
8652 lazily to avoid pessimizing traditional objects. */
8653 if (!htab->is_vxworks
8654 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8655 return FALSE;
8656
8657 /* Make sure that .got.plt is word-aligned. We do this lazily
8658 for the same reason as above. */
8659 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8660 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8661 return FALSE;
8662
8663 htab->splt->size += htab->plt_header_size;
8664
8665 /* On non-VxWorks targets, the first two entries in .got.plt
8666 are reserved. */
8667 if (!htab->is_vxworks)
8668 htab->sgotplt->size
8669 += get_elf_backend_data (dynobj)->got_header_size;
8670
8671 /* On VxWorks, also allocate room for the header's
8672 .rela.plt.unloaded entries. */
8673 if (htab->is_vxworks && !info->shared)
8674 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8675 }
8676
8677 /* Assign the next .plt entry to this symbol. */
8678 h->plt.offset = htab->splt->size;
8679 htab->splt->size += htab->plt_entry_size;
8680
8681 /* If the output file has no definition of the symbol, set the
8682 symbol's value to the address of the stub. */
8683 if (!info->shared && !h->def_regular)
8684 {
8685 h->root.u.def.section = htab->splt;
8686 h->root.u.def.value = h->plt.offset;
8687 /* For VxWorks, point at the PLT load stub rather than the
8688 lazy resolution stub; this stub will become the canonical
8689 function address. */
8690 if (htab->is_vxworks)
8691 h->root.u.def.value += 8;
8692 }
8693
8694 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8695 relocation. */
8696 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8697 htab->srelplt->size += (htab->is_vxworks
8698 ? MIPS_ELF_RELA_SIZE (dynobj)
8699 : MIPS_ELF_REL_SIZE (dynobj));
8700
8701 /* Make room for the .rela.plt.unloaded relocations. */
8702 if (htab->is_vxworks && !info->shared)
8703 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8704
8705 /* All relocations against this symbol that could have been made
8706 dynamic will now refer to the PLT entry instead. */
8707 hmips->possibly_dynamic_relocs = 0;
8708
8709 return TRUE;
8710 }
8711
8712 /* If this is a weak symbol, and there is a real definition, the
8713 processor independent code will have arranged for us to see the
8714 real definition first, and we can just use the same value. */
8715 if (h->u.weakdef != NULL)
8716 {
8717 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8718 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8719 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8720 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8721 return TRUE;
8722 }
8723
8724 /* Otherwise, there is nothing further to do for symbols defined
8725 in regular objects. */
8726 if (h->def_regular)
8727 return TRUE;
8728
8729 /* There's also nothing more to do if we'll convert all relocations
8730 against this symbol into dynamic relocations. */
8731 if (!hmips->has_static_relocs)
8732 return TRUE;
8733
8734 /* We're now relying on copy relocations. Complain if we have
8735 some that we can't convert. */
8736 if (!htab->use_plts_and_copy_relocs || info->shared)
8737 {
8738 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8739 "dynamic symbol %s"),
8740 h->root.root.string);
8741 bfd_set_error (bfd_error_bad_value);
8742 return FALSE;
8743 }
8744
8745 /* We must allocate the symbol in our .dynbss section, which will
8746 become part of the .bss section of the executable. There will be
8747 an entry for this symbol in the .dynsym section. The dynamic
8748 object will contain position independent code, so all references
8749 from the dynamic object to this symbol will go through the global
8750 offset table. The dynamic linker will use the .dynsym entry to
8751 determine the address it must put in the global offset table, so
8752 both the dynamic object and the regular object will refer to the
8753 same memory location for the variable. */
8754
8755 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8756 {
8757 if (htab->is_vxworks)
8758 htab->srelbss->size += sizeof (Elf32_External_Rela);
8759 else
8760 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8761 h->needs_copy = 1;
8762 }
8763
8764 /* All relocations against this symbol that could have been made
8765 dynamic will now refer to the local copy instead. */
8766 hmips->possibly_dynamic_relocs = 0;
8767
8768 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8769 }
8770 \f
8771 /* This function is called after all the input files have been read,
8772 and the input sections have been assigned to output sections. We
8773 check for any mips16 stub sections that we can discard. */
8774
8775 bfd_boolean
8776 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8777 struct bfd_link_info *info)
8778 {
8779 asection *ri;
8780 struct mips_elf_link_hash_table *htab;
8781 struct mips_htab_traverse_info hti;
8782
8783 htab = mips_elf_hash_table (info);
8784 BFD_ASSERT (htab != NULL);
8785
8786 /* The .reginfo section has a fixed size. */
8787 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8788 if (ri != NULL)
8789 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8790
8791 hti.info = info;
8792 hti.output_bfd = output_bfd;
8793 hti.error = FALSE;
8794 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8795 mips_elf_check_symbols, &hti);
8796 if (hti.error)
8797 return FALSE;
8798
8799 return TRUE;
8800 }
8801
8802 /* If the link uses a GOT, lay it out and work out its size. */
8803
8804 static bfd_boolean
8805 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8806 {
8807 bfd *dynobj;
8808 asection *s;
8809 struct mips_got_info *g;
8810 bfd_size_type loadable_size = 0;
8811 bfd_size_type page_gotno;
8812 bfd *sub;
8813 struct mips_elf_count_tls_arg count_tls_arg;
8814 struct mips_elf_link_hash_table *htab;
8815
8816 htab = mips_elf_hash_table (info);
8817 BFD_ASSERT (htab != NULL);
8818
8819 s = htab->sgot;
8820 if (s == NULL)
8821 return TRUE;
8822
8823 dynobj = elf_hash_table (info)->dynobj;
8824 g = htab->got_info;
8825
8826 /* Allocate room for the reserved entries. VxWorks always reserves
8827 3 entries; other objects only reserve 2 entries. */
8828 BFD_ASSERT (g->assigned_gotno == 0);
8829 if (htab->is_vxworks)
8830 htab->reserved_gotno = 3;
8831 else
8832 htab->reserved_gotno = 2;
8833 g->local_gotno += htab->reserved_gotno;
8834 g->assigned_gotno = htab->reserved_gotno;
8835
8836 /* Replace entries for indirect and warning symbols with entries for
8837 the target symbol. */
8838 if (!mips_elf_resolve_final_got_entries (g))
8839 return FALSE;
8840
8841 /* Count the number of GOT symbols. */
8842 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8843
8844 /* Calculate the total loadable size of the output. That
8845 will give us the maximum number of GOT_PAGE entries
8846 required. */
8847 for (sub = info->input_bfds; sub; sub = sub->link_next)
8848 {
8849 asection *subsection;
8850
8851 for (subsection = sub->sections;
8852 subsection;
8853 subsection = subsection->next)
8854 {
8855 if ((subsection->flags & SEC_ALLOC) == 0)
8856 continue;
8857 loadable_size += ((subsection->size + 0xf)
8858 &~ (bfd_size_type) 0xf);
8859 }
8860 }
8861
8862 if (htab->is_vxworks)
8863 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8864 relocations against local symbols evaluate to "G", and the EABI does
8865 not include R_MIPS_GOT_PAGE. */
8866 page_gotno = 0;
8867 else
8868 /* Assume there are two loadable segments consisting of contiguous
8869 sections. Is 5 enough? */
8870 page_gotno = (loadable_size >> 16) + 5;
8871
8872 /* Choose the smaller of the two estimates; both are intended to be
8873 conservative. */
8874 if (page_gotno > g->page_gotno)
8875 page_gotno = g->page_gotno;
8876
8877 g->local_gotno += page_gotno;
8878 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8879 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8880
8881 /* We need to calculate tls_gotno for global symbols at this point
8882 instead of building it up earlier, to avoid doublecounting
8883 entries for one global symbol from multiple input files. */
8884 count_tls_arg.info = info;
8885 count_tls_arg.needed = 0;
8886 elf_link_hash_traverse (elf_hash_table (info),
8887 mips_elf_count_global_tls_entries,
8888 &count_tls_arg);
8889 g->tls_gotno += count_tls_arg.needed;
8890 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8891
8892 /* VxWorks does not support multiple GOTs. It initializes $gp to
8893 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8894 dynamic loader. */
8895 if (htab->is_vxworks)
8896 {
8897 /* VxWorks executables do not need a GOT. */
8898 if (info->shared)
8899 {
8900 /* Each VxWorks GOT entry needs an explicit relocation. */
8901 unsigned int count;
8902
8903 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8904 if (count)
8905 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8906 }
8907 }
8908 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8909 {
8910 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8911 return FALSE;
8912 }
8913 else
8914 {
8915 struct mips_elf_count_tls_arg arg;
8916
8917 /* Set up TLS entries. */
8918 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8919 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8920
8921 /* Allocate room for the TLS relocations. */
8922 arg.info = info;
8923 arg.needed = 0;
8924 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8925 elf_link_hash_traverse (elf_hash_table (info),
8926 mips_elf_count_global_tls_relocs,
8927 &arg);
8928 if (arg.needed)
8929 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8930 }
8931
8932 return TRUE;
8933 }
8934
8935 /* Estimate the size of the .MIPS.stubs section. */
8936
8937 static void
8938 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8939 {
8940 struct mips_elf_link_hash_table *htab;
8941 bfd_size_type dynsymcount;
8942
8943 htab = mips_elf_hash_table (info);
8944 BFD_ASSERT (htab != NULL);
8945
8946 if (htab->lazy_stub_count == 0)
8947 return;
8948
8949 /* IRIX rld assumes that a function stub isn't at the end of the .text
8950 section, so add a dummy entry to the end. */
8951 htab->lazy_stub_count++;
8952
8953 /* Get a worst-case estimate of the number of dynamic symbols needed.
8954 At this point, dynsymcount does not account for section symbols
8955 and count_section_dynsyms may overestimate the number that will
8956 be needed. */
8957 dynsymcount = (elf_hash_table (info)->dynsymcount
8958 + count_section_dynsyms (output_bfd, info));
8959
8960 /* Determine the size of one stub entry. */
8961 htab->function_stub_size = (dynsymcount > 0x10000
8962 ? MIPS_FUNCTION_STUB_BIG_SIZE
8963 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8964
8965 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8966 }
8967
8968 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8969 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8970 allocate an entry in the stubs section. */
8971
8972 static bfd_boolean
8973 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8974 {
8975 struct mips_elf_link_hash_table *htab;
8976
8977 htab = (struct mips_elf_link_hash_table *) data;
8978 if (h->needs_lazy_stub)
8979 {
8980 h->root.root.u.def.section = htab->sstubs;
8981 h->root.root.u.def.value = htab->sstubs->size;
8982 h->root.plt.offset = htab->sstubs->size;
8983 htab->sstubs->size += htab->function_stub_size;
8984 }
8985 return TRUE;
8986 }
8987
8988 /* Allocate offsets in the stubs section to each symbol that needs one.
8989 Set the final size of the .MIPS.stub section. */
8990
8991 static void
8992 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8993 {
8994 struct mips_elf_link_hash_table *htab;
8995
8996 htab = mips_elf_hash_table (info);
8997 BFD_ASSERT (htab != NULL);
8998
8999 if (htab->lazy_stub_count == 0)
9000 return;
9001
9002 htab->sstubs->size = 0;
9003 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
9004 htab->sstubs->size += htab->function_stub_size;
9005 BFD_ASSERT (htab->sstubs->size
9006 == htab->lazy_stub_count * htab->function_stub_size);
9007 }
9008
9009 /* Set the sizes of the dynamic sections. */
9010
9011 bfd_boolean
9012 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9013 struct bfd_link_info *info)
9014 {
9015 bfd *dynobj;
9016 asection *s, *sreldyn;
9017 bfd_boolean reltext;
9018 struct mips_elf_link_hash_table *htab;
9019
9020 htab = mips_elf_hash_table (info);
9021 BFD_ASSERT (htab != NULL);
9022 dynobj = elf_hash_table (info)->dynobj;
9023 BFD_ASSERT (dynobj != NULL);
9024
9025 if (elf_hash_table (info)->dynamic_sections_created)
9026 {
9027 /* Set the contents of the .interp section to the interpreter. */
9028 if (info->executable)
9029 {
9030 s = bfd_get_section_by_name (dynobj, ".interp");
9031 BFD_ASSERT (s != NULL);
9032 s->size
9033 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9034 s->contents
9035 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9036 }
9037
9038 /* Create a symbol for the PLT, if we know that we are using it. */
9039 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
9040 {
9041 struct elf_link_hash_entry *h;
9042
9043 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9044
9045 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9046 "_PROCEDURE_LINKAGE_TABLE_");
9047 htab->root.hplt = h;
9048 if (h == NULL)
9049 return FALSE;
9050 h->type = STT_FUNC;
9051 }
9052 }
9053
9054 /* Allocate space for global sym dynamic relocs. */
9055 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
9056
9057 mips_elf_estimate_stub_size (output_bfd, info);
9058
9059 if (!mips_elf_lay_out_got (output_bfd, info))
9060 return FALSE;
9061
9062 mips_elf_lay_out_lazy_stubs (info);
9063
9064 /* The check_relocs and adjust_dynamic_symbol entry points have
9065 determined the sizes of the various dynamic sections. Allocate
9066 memory for them. */
9067 reltext = FALSE;
9068 for (s = dynobj->sections; s != NULL; s = s->next)
9069 {
9070 const char *name;
9071
9072 /* It's OK to base decisions on the section name, because none
9073 of the dynobj section names depend upon the input files. */
9074 name = bfd_get_section_name (dynobj, s);
9075
9076 if ((s->flags & SEC_LINKER_CREATED) == 0)
9077 continue;
9078
9079 if (CONST_STRNEQ (name, ".rel"))
9080 {
9081 if (s->size != 0)
9082 {
9083 const char *outname;
9084 asection *target;
9085
9086 /* If this relocation section applies to a read only
9087 section, then we probably need a DT_TEXTREL entry.
9088 If the relocation section is .rel(a).dyn, we always
9089 assert a DT_TEXTREL entry rather than testing whether
9090 there exists a relocation to a read only section or
9091 not. */
9092 outname = bfd_get_section_name (output_bfd,
9093 s->output_section);
9094 target = bfd_get_section_by_name (output_bfd, outname + 4);
9095 if ((target != NULL
9096 && (target->flags & SEC_READONLY) != 0
9097 && (target->flags & SEC_ALLOC) != 0)
9098 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9099 reltext = TRUE;
9100
9101 /* We use the reloc_count field as a counter if we need
9102 to copy relocs into the output file. */
9103 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9104 s->reloc_count = 0;
9105
9106 /* If combreloc is enabled, elf_link_sort_relocs() will
9107 sort relocations, but in a different way than we do,
9108 and before we're done creating relocations. Also, it
9109 will move them around between input sections'
9110 relocation's contents, so our sorting would be
9111 broken, so don't let it run. */
9112 info->combreloc = 0;
9113 }
9114 }
9115 else if (! info->shared
9116 && ! mips_elf_hash_table (info)->use_rld_obj_head
9117 && CONST_STRNEQ (name, ".rld_map"))
9118 {
9119 /* We add a room for __rld_map. It will be filled in by the
9120 rtld to contain a pointer to the _r_debug structure. */
9121 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9122 }
9123 else if (SGI_COMPAT (output_bfd)
9124 && CONST_STRNEQ (name, ".compact_rel"))
9125 s->size += mips_elf_hash_table (info)->compact_rel_size;
9126 else if (s == htab->splt)
9127 {
9128 /* If the last PLT entry has a branch delay slot, allocate
9129 room for an extra nop to fill the delay slot. This is
9130 for CPUs without load interlocking. */
9131 if (! LOAD_INTERLOCKS_P (output_bfd)
9132 && ! htab->is_vxworks && s->size > 0)
9133 s->size += 4;
9134 }
9135 else if (! CONST_STRNEQ (name, ".init")
9136 && s != htab->sgot
9137 && s != htab->sgotplt
9138 && s != htab->sstubs
9139 && s != htab->sdynbss)
9140 {
9141 /* It's not one of our sections, so don't allocate space. */
9142 continue;
9143 }
9144
9145 if (s->size == 0)
9146 {
9147 s->flags |= SEC_EXCLUDE;
9148 continue;
9149 }
9150
9151 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9152 continue;
9153
9154 /* Allocate memory for the section contents. */
9155 s->contents = bfd_zalloc (dynobj, s->size);
9156 if (s->contents == NULL)
9157 {
9158 bfd_set_error (bfd_error_no_memory);
9159 return FALSE;
9160 }
9161 }
9162
9163 if (elf_hash_table (info)->dynamic_sections_created)
9164 {
9165 /* Add some entries to the .dynamic section. We fill in the
9166 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9167 must add the entries now so that we get the correct size for
9168 the .dynamic section. */
9169
9170 /* SGI object has the equivalence of DT_DEBUG in the
9171 DT_MIPS_RLD_MAP entry. This must come first because glibc
9172 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
9173 looks at the first one it sees. */
9174 if (!info->shared
9175 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9176 return FALSE;
9177
9178 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9179 used by the debugger. */
9180 if (info->executable
9181 && !SGI_COMPAT (output_bfd)
9182 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9183 return FALSE;
9184
9185 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9186 info->flags |= DF_TEXTREL;
9187
9188 if ((info->flags & DF_TEXTREL) != 0)
9189 {
9190 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9191 return FALSE;
9192
9193 /* Clear the DF_TEXTREL flag. It will be set again if we
9194 write out an actual text relocation; we may not, because
9195 at this point we do not know whether e.g. any .eh_frame
9196 absolute relocations have been converted to PC-relative. */
9197 info->flags &= ~DF_TEXTREL;
9198 }
9199
9200 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9201 return FALSE;
9202
9203 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9204 if (htab->is_vxworks)
9205 {
9206 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9207 use any of the DT_MIPS_* tags. */
9208 if (sreldyn && sreldyn->size > 0)
9209 {
9210 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9211 return FALSE;
9212
9213 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9214 return FALSE;
9215
9216 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9217 return FALSE;
9218 }
9219 }
9220 else
9221 {
9222 if (sreldyn && sreldyn->size > 0)
9223 {
9224 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9225 return FALSE;
9226
9227 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9228 return FALSE;
9229
9230 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9231 return FALSE;
9232 }
9233
9234 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9235 return FALSE;
9236
9237 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9238 return FALSE;
9239
9240 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9241 return FALSE;
9242
9243 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9244 return FALSE;
9245
9246 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9247 return FALSE;
9248
9249 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9250 return FALSE;
9251
9252 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9253 return FALSE;
9254
9255 if (IRIX_COMPAT (dynobj) == ict_irix5
9256 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9257 return FALSE;
9258
9259 if (IRIX_COMPAT (dynobj) == ict_irix6
9260 && (bfd_get_section_by_name
9261 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9262 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9263 return FALSE;
9264 }
9265 if (htab->splt->size > 0)
9266 {
9267 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9268 return FALSE;
9269
9270 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9271 return FALSE;
9272
9273 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9274 return FALSE;
9275
9276 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9277 return FALSE;
9278 }
9279 if (htab->is_vxworks
9280 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9281 return FALSE;
9282 }
9283
9284 return TRUE;
9285 }
9286 \f
9287 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9288 Adjust its R_ADDEND field so that it is correct for the output file.
9289 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9290 and sections respectively; both use symbol indexes. */
9291
9292 static void
9293 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9294 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9295 asection **local_sections, Elf_Internal_Rela *rel)
9296 {
9297 unsigned int r_type, r_symndx;
9298 Elf_Internal_Sym *sym;
9299 asection *sec;
9300
9301 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9302 {
9303 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9304 if (gprel16_reloc_p (r_type)
9305 || r_type == R_MIPS_GPREL32
9306 || literal_reloc_p (r_type))
9307 {
9308 rel->r_addend += _bfd_get_gp_value (input_bfd);
9309 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9310 }
9311
9312 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9313 sym = local_syms + r_symndx;
9314
9315 /* Adjust REL's addend to account for section merging. */
9316 if (!info->relocatable)
9317 {
9318 sec = local_sections[r_symndx];
9319 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9320 }
9321
9322 /* This would normally be done by the rela_normal code in elflink.c. */
9323 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9324 rel->r_addend += local_sections[r_symndx]->output_offset;
9325 }
9326 }
9327
9328 /* Handle relocations against symbols from removed linkonce sections,
9329 or sections discarded by a linker script. We use this wrapper around
9330 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9331 on 64-bit ELF targets. In this case for any relocation handled, which
9332 always be the first in a triplet, the remaining two have to be processed
9333 together with the first, even if they are R_MIPS_NONE. It is the symbol
9334 index referred by the first reloc that applies to all the three and the
9335 remaining two never refer to an object symbol. And it is the final
9336 relocation (the last non-null one) that determines the output field of
9337 the whole relocation so retrieve the corresponding howto structure for
9338 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9339
9340 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9341 and therefore requires to be pasted in a loop. It also defines a block
9342 and does not protect any of its arguments, hence the extra brackets. */
9343
9344 static void
9345 mips_reloc_against_discarded_section (bfd *output_bfd,
9346 struct bfd_link_info *info,
9347 bfd *input_bfd, asection *input_section,
9348 Elf_Internal_Rela **rel,
9349 const Elf_Internal_Rela **relend,
9350 bfd_boolean rel_reloc,
9351 reloc_howto_type *howto,
9352 bfd_byte *contents)
9353 {
9354 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9355 int count = bed->s->int_rels_per_ext_rel;
9356 unsigned int r_type;
9357 int i;
9358
9359 for (i = count - 1; i > 0; i--)
9360 {
9361 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9362 if (r_type != R_MIPS_NONE)
9363 {
9364 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9365 break;
9366 }
9367 }
9368 do
9369 {
9370 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9371 (*rel), count, (*relend),
9372 howto, i, contents);
9373 }
9374 while (0);
9375 }
9376
9377 /* Relocate a MIPS ELF section. */
9378
9379 bfd_boolean
9380 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9381 bfd *input_bfd, asection *input_section,
9382 bfd_byte *contents, Elf_Internal_Rela *relocs,
9383 Elf_Internal_Sym *local_syms,
9384 asection **local_sections)
9385 {
9386 Elf_Internal_Rela *rel;
9387 const Elf_Internal_Rela *relend;
9388 bfd_vma addend = 0;
9389 bfd_boolean use_saved_addend_p = FALSE;
9390 const struct elf_backend_data *bed;
9391
9392 bed = get_elf_backend_data (output_bfd);
9393 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9394 for (rel = relocs; rel < relend; ++rel)
9395 {
9396 const char *name;
9397 bfd_vma value = 0;
9398 reloc_howto_type *howto;
9399 bfd_boolean cross_mode_jump_p;
9400 /* TRUE if the relocation is a RELA relocation, rather than a
9401 REL relocation. */
9402 bfd_boolean rela_relocation_p = TRUE;
9403 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9404 const char *msg;
9405 unsigned long r_symndx;
9406 asection *sec;
9407 Elf_Internal_Shdr *symtab_hdr;
9408 struct elf_link_hash_entry *h;
9409 bfd_boolean rel_reloc;
9410
9411 rel_reloc = (NEWABI_P (input_bfd)
9412 && mips_elf_rel_relocation_p (input_bfd, input_section,
9413 relocs, rel));
9414 /* Find the relocation howto for this relocation. */
9415 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9416
9417 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9418 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9419 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9420 {
9421 sec = local_sections[r_symndx];
9422 h = NULL;
9423 }
9424 else
9425 {
9426 unsigned long extsymoff;
9427
9428 extsymoff = 0;
9429 if (!elf_bad_symtab (input_bfd))
9430 extsymoff = symtab_hdr->sh_info;
9431 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9432 while (h->root.type == bfd_link_hash_indirect
9433 || h->root.type == bfd_link_hash_warning)
9434 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9435
9436 sec = NULL;
9437 if (h->root.type == bfd_link_hash_defined
9438 || h->root.type == bfd_link_hash_defweak)
9439 sec = h->root.u.def.section;
9440 }
9441
9442 if (sec != NULL && discarded_section (sec))
9443 {
9444 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9445 input_section, &rel, &relend,
9446 rel_reloc, howto, contents);
9447 continue;
9448 }
9449
9450 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9451 {
9452 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9453 64-bit code, but make sure all their addresses are in the
9454 lowermost or uppermost 32-bit section of the 64-bit address
9455 space. Thus, when they use an R_MIPS_64 they mean what is
9456 usually meant by R_MIPS_32, with the exception that the
9457 stored value is sign-extended to 64 bits. */
9458 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9459
9460 /* On big-endian systems, we need to lie about the position
9461 of the reloc. */
9462 if (bfd_big_endian (input_bfd))
9463 rel->r_offset += 4;
9464 }
9465
9466 if (!use_saved_addend_p)
9467 {
9468 /* If these relocations were originally of the REL variety,
9469 we must pull the addend out of the field that will be
9470 relocated. Otherwise, we simply use the contents of the
9471 RELA relocation. */
9472 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9473 relocs, rel))
9474 {
9475 rela_relocation_p = FALSE;
9476 addend = mips_elf_read_rel_addend (input_bfd, rel,
9477 howto, contents);
9478 if (hi16_reloc_p (r_type)
9479 || (got16_reloc_p (r_type)
9480 && mips_elf_local_relocation_p (input_bfd, rel,
9481 local_sections)))
9482 {
9483 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9484 contents, &addend))
9485 {
9486 if (h)
9487 name = h->root.root.string;
9488 else
9489 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9490 local_syms + r_symndx,
9491 sec);
9492 (*_bfd_error_handler)
9493 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9494 input_bfd, input_section, name, howto->name,
9495 rel->r_offset);
9496 }
9497 }
9498 else
9499 addend <<= howto->rightshift;
9500 }
9501 else
9502 addend = rel->r_addend;
9503 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9504 local_syms, local_sections, rel);
9505 }
9506
9507 if (info->relocatable)
9508 {
9509 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9510 && bfd_big_endian (input_bfd))
9511 rel->r_offset -= 4;
9512
9513 if (!rela_relocation_p && rel->r_addend)
9514 {
9515 addend += rel->r_addend;
9516 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9517 addend = mips_elf_high (addend);
9518 else if (r_type == R_MIPS_HIGHER)
9519 addend = mips_elf_higher (addend);
9520 else if (r_type == R_MIPS_HIGHEST)
9521 addend = mips_elf_highest (addend);
9522 else
9523 addend >>= howto->rightshift;
9524
9525 /* We use the source mask, rather than the destination
9526 mask because the place to which we are writing will be
9527 source of the addend in the final link. */
9528 addend &= howto->src_mask;
9529
9530 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9531 /* See the comment above about using R_MIPS_64 in the 32-bit
9532 ABI. Here, we need to update the addend. It would be
9533 possible to get away with just using the R_MIPS_32 reloc
9534 but for endianness. */
9535 {
9536 bfd_vma sign_bits;
9537 bfd_vma low_bits;
9538 bfd_vma high_bits;
9539
9540 if (addend & ((bfd_vma) 1 << 31))
9541 #ifdef BFD64
9542 sign_bits = ((bfd_vma) 1 << 32) - 1;
9543 #else
9544 sign_bits = -1;
9545 #endif
9546 else
9547 sign_bits = 0;
9548
9549 /* If we don't know that we have a 64-bit type,
9550 do two separate stores. */
9551 if (bfd_big_endian (input_bfd))
9552 {
9553 /* Store the sign-bits (which are most significant)
9554 first. */
9555 low_bits = sign_bits;
9556 high_bits = addend;
9557 }
9558 else
9559 {
9560 low_bits = addend;
9561 high_bits = sign_bits;
9562 }
9563 bfd_put_32 (input_bfd, low_bits,
9564 contents + rel->r_offset);
9565 bfd_put_32 (input_bfd, high_bits,
9566 contents + rel->r_offset + 4);
9567 continue;
9568 }
9569
9570 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9571 input_bfd, input_section,
9572 contents, FALSE))
9573 return FALSE;
9574 }
9575
9576 /* Go on to the next relocation. */
9577 continue;
9578 }
9579
9580 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9581 relocations for the same offset. In that case we are
9582 supposed to treat the output of each relocation as the addend
9583 for the next. */
9584 if (rel + 1 < relend
9585 && rel->r_offset == rel[1].r_offset
9586 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9587 use_saved_addend_p = TRUE;
9588 else
9589 use_saved_addend_p = FALSE;
9590
9591 /* Figure out what value we are supposed to relocate. */
9592 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9593 input_section, info, rel,
9594 addend, howto, local_syms,
9595 local_sections, &value,
9596 &name, &cross_mode_jump_p,
9597 use_saved_addend_p))
9598 {
9599 case bfd_reloc_continue:
9600 /* There's nothing to do. */
9601 continue;
9602
9603 case bfd_reloc_undefined:
9604 /* mips_elf_calculate_relocation already called the
9605 undefined_symbol callback. There's no real point in
9606 trying to perform the relocation at this point, so we
9607 just skip ahead to the next relocation. */
9608 continue;
9609
9610 case bfd_reloc_notsupported:
9611 msg = _("internal error: unsupported relocation error");
9612 info->callbacks->warning
9613 (info, msg, name, input_bfd, input_section, rel->r_offset);
9614 return FALSE;
9615
9616 case bfd_reloc_overflow:
9617 if (use_saved_addend_p)
9618 /* Ignore overflow until we reach the last relocation for
9619 a given location. */
9620 ;
9621 else
9622 {
9623 struct mips_elf_link_hash_table *htab;
9624
9625 htab = mips_elf_hash_table (info);
9626 BFD_ASSERT (htab != NULL);
9627 BFD_ASSERT (name != NULL);
9628 if (!htab->small_data_overflow_reported
9629 && (gprel16_reloc_p (howto->type)
9630 || literal_reloc_p (howto->type)))
9631 {
9632 msg = _("small-data section exceeds 64KB;"
9633 " lower small-data size limit (see option -G)");
9634
9635 htab->small_data_overflow_reported = TRUE;
9636 (*info->callbacks->einfo) ("%P: %s\n", msg);
9637 }
9638 if (! ((*info->callbacks->reloc_overflow)
9639 (info, NULL, name, howto->name, (bfd_vma) 0,
9640 input_bfd, input_section, rel->r_offset)))
9641 return FALSE;
9642 }
9643 break;
9644
9645 case bfd_reloc_ok:
9646 break;
9647
9648 case bfd_reloc_outofrange:
9649 if (jal_reloc_p (howto->type))
9650 {
9651 msg = _("JALX to a non-word-aligned address");
9652 info->callbacks->warning
9653 (info, msg, name, input_bfd, input_section, rel->r_offset);
9654 return FALSE;
9655 }
9656 /* Fall through. */
9657
9658 default:
9659 abort ();
9660 break;
9661 }
9662
9663 /* If we've got another relocation for the address, keep going
9664 until we reach the last one. */
9665 if (use_saved_addend_p)
9666 {
9667 addend = value;
9668 continue;
9669 }
9670
9671 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9672 /* See the comment above about using R_MIPS_64 in the 32-bit
9673 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9674 that calculated the right value. Now, however, we
9675 sign-extend the 32-bit result to 64-bits, and store it as a
9676 64-bit value. We are especially generous here in that we
9677 go to extreme lengths to support this usage on systems with
9678 only a 32-bit VMA. */
9679 {
9680 bfd_vma sign_bits;
9681 bfd_vma low_bits;
9682 bfd_vma high_bits;
9683
9684 if (value & ((bfd_vma) 1 << 31))
9685 #ifdef BFD64
9686 sign_bits = ((bfd_vma) 1 << 32) - 1;
9687 #else
9688 sign_bits = -1;
9689 #endif
9690 else
9691 sign_bits = 0;
9692
9693 /* If we don't know that we have a 64-bit type,
9694 do two separate stores. */
9695 if (bfd_big_endian (input_bfd))
9696 {
9697 /* Undo what we did above. */
9698 rel->r_offset -= 4;
9699 /* Store the sign-bits (which are most significant)
9700 first. */
9701 low_bits = sign_bits;
9702 high_bits = value;
9703 }
9704 else
9705 {
9706 low_bits = value;
9707 high_bits = sign_bits;
9708 }
9709 bfd_put_32 (input_bfd, low_bits,
9710 contents + rel->r_offset);
9711 bfd_put_32 (input_bfd, high_bits,
9712 contents + rel->r_offset + 4);
9713 continue;
9714 }
9715
9716 /* Actually perform the relocation. */
9717 if (! mips_elf_perform_relocation (info, howto, rel, value,
9718 input_bfd, input_section,
9719 contents, cross_mode_jump_p))
9720 return FALSE;
9721 }
9722
9723 return TRUE;
9724 }
9725 \f
9726 /* A function that iterates over each entry in la25_stubs and fills
9727 in the code for each one. DATA points to a mips_htab_traverse_info. */
9728
9729 static int
9730 mips_elf_create_la25_stub (void **slot, void *data)
9731 {
9732 struct mips_htab_traverse_info *hti;
9733 struct mips_elf_link_hash_table *htab;
9734 struct mips_elf_la25_stub *stub;
9735 asection *s;
9736 bfd_byte *loc;
9737 bfd_vma offset, target, target_high, target_low;
9738
9739 stub = (struct mips_elf_la25_stub *) *slot;
9740 hti = (struct mips_htab_traverse_info *) data;
9741 htab = mips_elf_hash_table (hti->info);
9742 BFD_ASSERT (htab != NULL);
9743
9744 /* Create the section contents, if we haven't already. */
9745 s = stub->stub_section;
9746 loc = s->contents;
9747 if (loc == NULL)
9748 {
9749 loc = bfd_malloc (s->size);
9750 if (loc == NULL)
9751 {
9752 hti->error = TRUE;
9753 return FALSE;
9754 }
9755 s->contents = loc;
9756 }
9757
9758 /* Work out where in the section this stub should go. */
9759 offset = stub->offset;
9760
9761 /* Work out the target address. */
9762 target = mips_elf_get_la25_target (stub, &s);
9763 target += s->output_section->vma + s->output_offset;
9764
9765 target_high = ((target + 0x8000) >> 16) & 0xffff;
9766 target_low = (target & 0xffff);
9767
9768 if (stub->stub_section != htab->strampoline)
9769 {
9770 /* This is a simple LUI/ADDIU stub. Zero out the beginning
9771 of the section and write the two instructions at the end. */
9772 memset (loc, 0, offset);
9773 loc += offset;
9774 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9775 {
9776 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
9777 loc);
9778 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
9779 loc + 2);
9780 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
9781 loc + 4);
9782 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
9783 loc + 6);
9784 }
9785 else
9786 {
9787 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9788 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9789 }
9790 }
9791 else
9792 {
9793 /* This is trampoline. */
9794 loc += offset;
9795 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9796 {
9797 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
9798 loc);
9799 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
9800 loc + 2);
9801 bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_1 (target), loc + 4);
9802 bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_2 (target), loc + 6);
9803 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
9804 loc + 8);
9805 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
9806 loc + 10);
9807 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9808 }
9809 else
9810 {
9811 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9812 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9813 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9814 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9815 }
9816 }
9817 return TRUE;
9818 }
9819
9820 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9821 adjust it appropriately now. */
9822
9823 static void
9824 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9825 const char *name, Elf_Internal_Sym *sym)
9826 {
9827 /* The linker script takes care of providing names and values for
9828 these, but we must place them into the right sections. */
9829 static const char* const text_section_symbols[] = {
9830 "_ftext",
9831 "_etext",
9832 "__dso_displacement",
9833 "__elf_header",
9834 "__program_header_table",
9835 NULL
9836 };
9837
9838 static const char* const data_section_symbols[] = {
9839 "_fdata",
9840 "_edata",
9841 "_end",
9842 "_fbss",
9843 NULL
9844 };
9845
9846 const char* const *p;
9847 int i;
9848
9849 for (i = 0; i < 2; ++i)
9850 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9851 *p;
9852 ++p)
9853 if (strcmp (*p, name) == 0)
9854 {
9855 /* All of these symbols are given type STT_SECTION by the
9856 IRIX6 linker. */
9857 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9858 sym->st_other = STO_PROTECTED;
9859
9860 /* The IRIX linker puts these symbols in special sections. */
9861 if (i == 0)
9862 sym->st_shndx = SHN_MIPS_TEXT;
9863 else
9864 sym->st_shndx = SHN_MIPS_DATA;
9865
9866 break;
9867 }
9868 }
9869
9870 /* Finish up dynamic symbol handling. We set the contents of various
9871 dynamic sections here. */
9872
9873 bfd_boolean
9874 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9875 struct bfd_link_info *info,
9876 struct elf_link_hash_entry *h,
9877 Elf_Internal_Sym *sym)
9878 {
9879 bfd *dynobj;
9880 asection *sgot;
9881 struct mips_got_info *g, *gg;
9882 const char *name;
9883 int idx;
9884 struct mips_elf_link_hash_table *htab;
9885 struct mips_elf_link_hash_entry *hmips;
9886
9887 htab = mips_elf_hash_table (info);
9888 BFD_ASSERT (htab != NULL);
9889 dynobj = elf_hash_table (info)->dynobj;
9890 hmips = (struct mips_elf_link_hash_entry *) h;
9891
9892 BFD_ASSERT (!htab->is_vxworks);
9893
9894 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9895 {
9896 /* We've decided to create a PLT entry for this symbol. */
9897 bfd_byte *loc;
9898 bfd_vma header_address, plt_index, got_address;
9899 bfd_vma got_address_high, got_address_low, load;
9900 const bfd_vma *plt_entry;
9901
9902 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9903 BFD_ASSERT (h->dynindx != -1);
9904 BFD_ASSERT (htab->splt != NULL);
9905 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9906 BFD_ASSERT (!h->def_regular);
9907
9908 /* Calculate the address of the PLT header. */
9909 header_address = (htab->splt->output_section->vma
9910 + htab->splt->output_offset);
9911
9912 /* Calculate the index of the entry. */
9913 plt_index = ((h->plt.offset - htab->plt_header_size)
9914 / htab->plt_entry_size);
9915
9916 /* Calculate the address of the .got.plt entry. */
9917 got_address = (htab->sgotplt->output_section->vma
9918 + htab->sgotplt->output_offset
9919 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9920 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9921 got_address_low = got_address & 0xffff;
9922
9923 /* Initially point the .got.plt entry at the PLT header. */
9924 loc = (htab->sgotplt->contents
9925 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9926 if (ABI_64_P (output_bfd))
9927 bfd_put_64 (output_bfd, header_address, loc);
9928 else
9929 bfd_put_32 (output_bfd, header_address, loc);
9930
9931 /* Find out where the .plt entry should go. */
9932 loc = htab->splt->contents + h->plt.offset;
9933
9934 /* Pick the load opcode. */
9935 load = MIPS_ELF_LOAD_WORD (output_bfd);
9936
9937 /* Fill in the PLT entry itself. */
9938 plt_entry = mips_exec_plt_entry;
9939 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9940 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9941
9942 if (! LOAD_INTERLOCKS_P (output_bfd))
9943 {
9944 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9945 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9946 }
9947 else
9948 {
9949 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9950 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9951 }
9952
9953 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9954 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9955 plt_index, h->dynindx,
9956 R_MIPS_JUMP_SLOT, got_address);
9957
9958 /* We distinguish between PLT entries and lazy-binding stubs by
9959 giving the former an st_other value of STO_MIPS_PLT. Set the
9960 flag and leave the value if there are any relocations in the
9961 binary where pointer equality matters. */
9962 sym->st_shndx = SHN_UNDEF;
9963 if (h->pointer_equality_needed)
9964 sym->st_other = STO_MIPS_PLT;
9965 else
9966 sym->st_value = 0;
9967 }
9968 else if (h->plt.offset != MINUS_ONE)
9969 {
9970 /* We've decided to create a lazy-binding stub. */
9971 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9972
9973 /* This symbol has a stub. Set it up. */
9974
9975 BFD_ASSERT (h->dynindx != -1);
9976
9977 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9978 || (h->dynindx <= 0xffff));
9979
9980 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9981 sign extension at runtime in the stub, resulting in a negative
9982 index value. */
9983 if (h->dynindx & ~0x7fffffff)
9984 return FALSE;
9985
9986 /* Fill the stub. */
9987 idx = 0;
9988 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9989 idx += 4;
9990 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9991 idx += 4;
9992 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9993 {
9994 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9995 stub + idx);
9996 idx += 4;
9997 }
9998 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9999 idx += 4;
10000
10001 /* If a large stub is not required and sign extension is not a
10002 problem, then use legacy code in the stub. */
10003 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
10004 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
10005 else if (h->dynindx & ~0x7fff)
10006 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
10007 else
10008 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10009 stub + idx);
10010
10011 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
10012 memcpy (htab->sstubs->contents + h->plt.offset,
10013 stub, htab->function_stub_size);
10014
10015 /* Mark the symbol as undefined. plt.offset != -1 occurs
10016 only for the referenced symbol. */
10017 sym->st_shndx = SHN_UNDEF;
10018
10019 /* The run-time linker uses the st_value field of the symbol
10020 to reset the global offset table entry for this external
10021 to its stub address when unlinking a shared object. */
10022 sym->st_value = (htab->sstubs->output_section->vma
10023 + htab->sstubs->output_offset
10024 + h->plt.offset);
10025 }
10026
10027 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10028 refer to the stub, since only the stub uses the standard calling
10029 conventions. */
10030 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10031 {
10032 BFD_ASSERT (hmips->need_fn_stub);
10033 sym->st_value = (hmips->fn_stub->output_section->vma
10034 + hmips->fn_stub->output_offset);
10035 sym->st_size = hmips->fn_stub->size;
10036 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10037 }
10038
10039 BFD_ASSERT (h->dynindx != -1
10040 || h->forced_local);
10041
10042 sgot = htab->sgot;
10043 g = htab->got_info;
10044 BFD_ASSERT (g != NULL);
10045
10046 /* Run through the global symbol table, creating GOT entries for all
10047 the symbols that need them. */
10048 if (hmips->global_got_area != GGA_NONE)
10049 {
10050 bfd_vma offset;
10051 bfd_vma value;
10052
10053 value = sym->st_value;
10054 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10055 R_MIPS_GOT16, info);
10056 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10057 }
10058
10059 if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
10060 {
10061 struct mips_got_entry e, *p;
10062 bfd_vma entry;
10063 bfd_vma offset;
10064
10065 gg = g;
10066
10067 e.abfd = output_bfd;
10068 e.symndx = -1;
10069 e.d.h = hmips;
10070 e.tls_type = 0;
10071
10072 for (g = g->next; g->next != gg; g = g->next)
10073 {
10074 if (g->got_entries
10075 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10076 &e)))
10077 {
10078 offset = p->gotidx;
10079 if (info->shared
10080 || (elf_hash_table (info)->dynamic_sections_created
10081 && p->d.h != NULL
10082 && p->d.h->root.def_dynamic
10083 && !p->d.h->root.def_regular))
10084 {
10085 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10086 the various compatibility problems, it's easier to mock
10087 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10088 mips_elf_create_dynamic_relocation to calculate the
10089 appropriate addend. */
10090 Elf_Internal_Rela rel[3];
10091
10092 memset (rel, 0, sizeof (rel));
10093 if (ABI_64_P (output_bfd))
10094 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10095 else
10096 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10097 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10098
10099 entry = 0;
10100 if (! (mips_elf_create_dynamic_relocation
10101 (output_bfd, info, rel,
10102 e.d.h, NULL, sym->st_value, &entry, sgot)))
10103 return FALSE;
10104 }
10105 else
10106 entry = sym->st_value;
10107 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10108 }
10109 }
10110 }
10111
10112 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10113 name = h->root.root.string;
10114 if (strcmp (name, "_DYNAMIC") == 0
10115 || h == elf_hash_table (info)->hgot)
10116 sym->st_shndx = SHN_ABS;
10117 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10118 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10119 {
10120 sym->st_shndx = SHN_ABS;
10121 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10122 sym->st_value = 1;
10123 }
10124 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10125 {
10126 sym->st_shndx = SHN_ABS;
10127 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10128 sym->st_value = elf_gp (output_bfd);
10129 }
10130 else if (SGI_COMPAT (output_bfd))
10131 {
10132 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10133 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10134 {
10135 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10136 sym->st_other = STO_PROTECTED;
10137 sym->st_value = 0;
10138 sym->st_shndx = SHN_MIPS_DATA;
10139 }
10140 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10141 {
10142 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10143 sym->st_other = STO_PROTECTED;
10144 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10145 sym->st_shndx = SHN_ABS;
10146 }
10147 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10148 {
10149 if (h->type == STT_FUNC)
10150 sym->st_shndx = SHN_MIPS_TEXT;
10151 else if (h->type == STT_OBJECT)
10152 sym->st_shndx = SHN_MIPS_DATA;
10153 }
10154 }
10155
10156 /* Emit a copy reloc, if needed. */
10157 if (h->needs_copy)
10158 {
10159 asection *s;
10160 bfd_vma symval;
10161
10162 BFD_ASSERT (h->dynindx != -1);
10163 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10164
10165 s = mips_elf_rel_dyn_section (info, FALSE);
10166 symval = (h->root.u.def.section->output_section->vma
10167 + h->root.u.def.section->output_offset
10168 + h->root.u.def.value);
10169 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10170 h->dynindx, R_MIPS_COPY, symval);
10171 }
10172
10173 /* Handle the IRIX6-specific symbols. */
10174 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10175 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10176
10177 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10178 treat MIPS16 symbols like any other. */
10179 if (ELF_ST_IS_MIPS16 (sym->st_other))
10180 {
10181 BFD_ASSERT (sym->st_value & 1);
10182 sym->st_other -= STO_MIPS16;
10183 }
10184
10185 return TRUE;
10186 }
10187
10188 /* Likewise, for VxWorks. */
10189
10190 bfd_boolean
10191 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10192 struct bfd_link_info *info,
10193 struct elf_link_hash_entry *h,
10194 Elf_Internal_Sym *sym)
10195 {
10196 bfd *dynobj;
10197 asection *sgot;
10198 struct mips_got_info *g;
10199 struct mips_elf_link_hash_table *htab;
10200 struct mips_elf_link_hash_entry *hmips;
10201
10202 htab = mips_elf_hash_table (info);
10203 BFD_ASSERT (htab != NULL);
10204 dynobj = elf_hash_table (info)->dynobj;
10205 hmips = (struct mips_elf_link_hash_entry *) h;
10206
10207 if (h->plt.offset != (bfd_vma) -1)
10208 {
10209 bfd_byte *loc;
10210 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10211 Elf_Internal_Rela rel;
10212 static const bfd_vma *plt_entry;
10213
10214 BFD_ASSERT (h->dynindx != -1);
10215 BFD_ASSERT (htab->splt != NULL);
10216 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10217
10218 /* Calculate the address of the .plt entry. */
10219 plt_address = (htab->splt->output_section->vma
10220 + htab->splt->output_offset
10221 + h->plt.offset);
10222
10223 /* Calculate the index of the entry. */
10224 plt_index = ((h->plt.offset - htab->plt_header_size)
10225 / htab->plt_entry_size);
10226
10227 /* Calculate the address of the .got.plt entry. */
10228 got_address = (htab->sgotplt->output_section->vma
10229 + htab->sgotplt->output_offset
10230 + plt_index * 4);
10231
10232 /* Calculate the offset of the .got.plt entry from
10233 _GLOBAL_OFFSET_TABLE_. */
10234 got_offset = mips_elf_gotplt_index (info, h);
10235
10236 /* Calculate the offset for the branch at the start of the PLT
10237 entry. The branch jumps to the beginning of .plt. */
10238 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10239
10240 /* Fill in the initial value of the .got.plt entry. */
10241 bfd_put_32 (output_bfd, plt_address,
10242 htab->sgotplt->contents + plt_index * 4);
10243
10244 /* Find out where the .plt entry should go. */
10245 loc = htab->splt->contents + h->plt.offset;
10246
10247 if (info->shared)
10248 {
10249 plt_entry = mips_vxworks_shared_plt_entry;
10250 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10251 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10252 }
10253 else
10254 {
10255 bfd_vma got_address_high, got_address_low;
10256
10257 plt_entry = mips_vxworks_exec_plt_entry;
10258 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10259 got_address_low = got_address & 0xffff;
10260
10261 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10262 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10263 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10264 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10265 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10266 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10267 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10268 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10269
10270 loc = (htab->srelplt2->contents
10271 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10272
10273 /* Emit a relocation for the .got.plt entry. */
10274 rel.r_offset = got_address;
10275 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10276 rel.r_addend = h->plt.offset;
10277 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10278
10279 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10280 loc += sizeof (Elf32_External_Rela);
10281 rel.r_offset = plt_address + 8;
10282 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10283 rel.r_addend = got_offset;
10284 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10285
10286 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10287 loc += sizeof (Elf32_External_Rela);
10288 rel.r_offset += 4;
10289 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10290 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10291 }
10292
10293 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10294 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10295 rel.r_offset = got_address;
10296 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10297 rel.r_addend = 0;
10298 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10299
10300 if (!h->def_regular)
10301 sym->st_shndx = SHN_UNDEF;
10302 }
10303
10304 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10305
10306 sgot = htab->sgot;
10307 g = htab->got_info;
10308 BFD_ASSERT (g != NULL);
10309
10310 /* See if this symbol has an entry in the GOT. */
10311 if (hmips->global_got_area != GGA_NONE)
10312 {
10313 bfd_vma offset;
10314 Elf_Internal_Rela outrel;
10315 bfd_byte *loc;
10316 asection *s;
10317
10318 /* Install the symbol value in the GOT. */
10319 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10320 R_MIPS_GOT16, info);
10321 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10322
10323 /* Add a dynamic relocation for it. */
10324 s = mips_elf_rel_dyn_section (info, FALSE);
10325 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10326 outrel.r_offset = (sgot->output_section->vma
10327 + sgot->output_offset
10328 + offset);
10329 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10330 outrel.r_addend = 0;
10331 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10332 }
10333
10334 /* Emit a copy reloc, if needed. */
10335 if (h->needs_copy)
10336 {
10337 Elf_Internal_Rela rel;
10338
10339 BFD_ASSERT (h->dynindx != -1);
10340
10341 rel.r_offset = (h->root.u.def.section->output_section->vma
10342 + h->root.u.def.section->output_offset
10343 + h->root.u.def.value);
10344 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10345 rel.r_addend = 0;
10346 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10347 htab->srelbss->contents
10348 + (htab->srelbss->reloc_count
10349 * sizeof (Elf32_External_Rela)));
10350 ++htab->srelbss->reloc_count;
10351 }
10352
10353 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10354 if (ELF_ST_IS_COMPRESSED (sym->st_other))
10355 sym->st_value &= ~1;
10356
10357 return TRUE;
10358 }
10359
10360 /* Write out a plt0 entry to the beginning of .plt. */
10361
10362 static void
10363 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10364 {
10365 bfd_byte *loc;
10366 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10367 static const bfd_vma *plt_entry;
10368 struct mips_elf_link_hash_table *htab;
10369
10370 htab = mips_elf_hash_table (info);
10371 BFD_ASSERT (htab != NULL);
10372
10373 if (ABI_64_P (output_bfd))
10374 plt_entry = mips_n64_exec_plt0_entry;
10375 else if (ABI_N32_P (output_bfd))
10376 plt_entry = mips_n32_exec_plt0_entry;
10377 else
10378 plt_entry = mips_o32_exec_plt0_entry;
10379
10380 /* Calculate the value of .got.plt. */
10381 gotplt_value = (htab->sgotplt->output_section->vma
10382 + htab->sgotplt->output_offset);
10383 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10384 gotplt_value_low = gotplt_value & 0xffff;
10385
10386 /* The PLT sequence is not safe for N64 if .got.plt's address can
10387 not be loaded in two instructions. */
10388 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10389 || ~(gotplt_value | 0x7fffffff) == 0);
10390
10391 /* Install the PLT header. */
10392 loc = htab->splt->contents;
10393 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10394 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10395 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10396 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10397 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10398 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10399 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10400 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10401 }
10402
10403 /* Install the PLT header for a VxWorks executable and finalize the
10404 contents of .rela.plt.unloaded. */
10405
10406 static void
10407 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10408 {
10409 Elf_Internal_Rela rela;
10410 bfd_byte *loc;
10411 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10412 static const bfd_vma *plt_entry;
10413 struct mips_elf_link_hash_table *htab;
10414
10415 htab = mips_elf_hash_table (info);
10416 BFD_ASSERT (htab != NULL);
10417
10418 plt_entry = mips_vxworks_exec_plt0_entry;
10419
10420 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10421 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10422 + htab->root.hgot->root.u.def.section->output_offset
10423 + htab->root.hgot->root.u.def.value);
10424
10425 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10426 got_value_low = got_value & 0xffff;
10427
10428 /* Calculate the address of the PLT header. */
10429 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10430
10431 /* Install the PLT header. */
10432 loc = htab->splt->contents;
10433 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10434 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10435 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10436 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10437 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10438 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10439
10440 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10441 loc = htab->srelplt2->contents;
10442 rela.r_offset = plt_address;
10443 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10444 rela.r_addend = 0;
10445 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10446 loc += sizeof (Elf32_External_Rela);
10447
10448 /* Output the relocation for the following addiu of
10449 %lo(_GLOBAL_OFFSET_TABLE_). */
10450 rela.r_offset += 4;
10451 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10452 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10453 loc += sizeof (Elf32_External_Rela);
10454
10455 /* Fix up the remaining relocations. They may have the wrong
10456 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10457 in which symbols were output. */
10458 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10459 {
10460 Elf_Internal_Rela rel;
10461
10462 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10463 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10464 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10465 loc += sizeof (Elf32_External_Rela);
10466
10467 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10468 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10469 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10470 loc += sizeof (Elf32_External_Rela);
10471
10472 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10473 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10474 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10475 loc += sizeof (Elf32_External_Rela);
10476 }
10477 }
10478
10479 /* Install the PLT header for a VxWorks shared library. */
10480
10481 static void
10482 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10483 {
10484 unsigned int i;
10485 struct mips_elf_link_hash_table *htab;
10486
10487 htab = mips_elf_hash_table (info);
10488 BFD_ASSERT (htab != NULL);
10489
10490 /* We just need to copy the entry byte-by-byte. */
10491 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10492 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10493 htab->splt->contents + i * 4);
10494 }
10495
10496 /* Finish up the dynamic sections. */
10497
10498 bfd_boolean
10499 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10500 struct bfd_link_info *info)
10501 {
10502 bfd *dynobj;
10503 asection *sdyn;
10504 asection *sgot;
10505 struct mips_got_info *gg, *g;
10506 struct mips_elf_link_hash_table *htab;
10507
10508 htab = mips_elf_hash_table (info);
10509 BFD_ASSERT (htab != NULL);
10510
10511 dynobj = elf_hash_table (info)->dynobj;
10512
10513 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10514
10515 sgot = htab->sgot;
10516 gg = htab->got_info;
10517
10518 if (elf_hash_table (info)->dynamic_sections_created)
10519 {
10520 bfd_byte *b;
10521 int dyn_to_skip = 0, dyn_skipped = 0;
10522
10523 BFD_ASSERT (sdyn != NULL);
10524 BFD_ASSERT (gg != NULL);
10525
10526 g = mips_elf_got_for_ibfd (gg, output_bfd);
10527 BFD_ASSERT (g != NULL);
10528
10529 for (b = sdyn->contents;
10530 b < sdyn->contents + sdyn->size;
10531 b += MIPS_ELF_DYN_SIZE (dynobj))
10532 {
10533 Elf_Internal_Dyn dyn;
10534 const char *name;
10535 size_t elemsize;
10536 asection *s;
10537 bfd_boolean swap_out_p;
10538
10539 /* Read in the current dynamic entry. */
10540 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10541
10542 /* Assume that we're going to modify it and write it out. */
10543 swap_out_p = TRUE;
10544
10545 switch (dyn.d_tag)
10546 {
10547 case DT_RELENT:
10548 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10549 break;
10550
10551 case DT_RELAENT:
10552 BFD_ASSERT (htab->is_vxworks);
10553 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10554 break;
10555
10556 case DT_STRSZ:
10557 /* Rewrite DT_STRSZ. */
10558 dyn.d_un.d_val =
10559 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10560 break;
10561
10562 case DT_PLTGOT:
10563 s = htab->sgot;
10564 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10565 break;
10566
10567 case DT_MIPS_PLTGOT:
10568 s = htab->sgotplt;
10569 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10570 break;
10571
10572 case DT_MIPS_RLD_VERSION:
10573 dyn.d_un.d_val = 1; /* XXX */
10574 break;
10575
10576 case DT_MIPS_FLAGS:
10577 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10578 break;
10579
10580 case DT_MIPS_TIME_STAMP:
10581 {
10582 time_t t;
10583 time (&t);
10584 dyn.d_un.d_val = t;
10585 }
10586 break;
10587
10588 case DT_MIPS_ICHECKSUM:
10589 /* XXX FIXME: */
10590 swap_out_p = FALSE;
10591 break;
10592
10593 case DT_MIPS_IVERSION:
10594 /* XXX FIXME: */
10595 swap_out_p = FALSE;
10596 break;
10597
10598 case DT_MIPS_BASE_ADDRESS:
10599 s = output_bfd->sections;
10600 BFD_ASSERT (s != NULL);
10601 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10602 break;
10603
10604 case DT_MIPS_LOCAL_GOTNO:
10605 dyn.d_un.d_val = g->local_gotno;
10606 break;
10607
10608 case DT_MIPS_UNREFEXTNO:
10609 /* The index into the dynamic symbol table which is the
10610 entry of the first external symbol that is not
10611 referenced within the same object. */
10612 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10613 break;
10614
10615 case DT_MIPS_GOTSYM:
10616 if (gg->global_gotsym)
10617 {
10618 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10619 break;
10620 }
10621 /* In case if we don't have global got symbols we default
10622 to setting DT_MIPS_GOTSYM to the same value as
10623 DT_MIPS_SYMTABNO, so we just fall through. */
10624
10625 case DT_MIPS_SYMTABNO:
10626 name = ".dynsym";
10627 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10628 s = bfd_get_section_by_name (output_bfd, name);
10629 BFD_ASSERT (s != NULL);
10630
10631 dyn.d_un.d_val = s->size / elemsize;
10632 break;
10633
10634 case DT_MIPS_HIPAGENO:
10635 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10636 break;
10637
10638 case DT_MIPS_RLD_MAP:
10639 {
10640 struct elf_link_hash_entry *h;
10641 h = mips_elf_hash_table (info)->rld_symbol;
10642 if (!h)
10643 {
10644 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10645 swap_out_p = FALSE;
10646 break;
10647 }
10648 s = h->root.u.def.section;
10649 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10650 + h->root.u.def.value);
10651 }
10652 break;
10653
10654 case DT_MIPS_OPTIONS:
10655 s = (bfd_get_section_by_name
10656 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10657 dyn.d_un.d_ptr = s->vma;
10658 break;
10659
10660 case DT_RELASZ:
10661 BFD_ASSERT (htab->is_vxworks);
10662 /* The count does not include the JUMP_SLOT relocations. */
10663 if (htab->srelplt)
10664 dyn.d_un.d_val -= htab->srelplt->size;
10665 break;
10666
10667 case DT_PLTREL:
10668 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10669 if (htab->is_vxworks)
10670 dyn.d_un.d_val = DT_RELA;
10671 else
10672 dyn.d_un.d_val = DT_REL;
10673 break;
10674
10675 case DT_PLTRELSZ:
10676 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10677 dyn.d_un.d_val = htab->srelplt->size;
10678 break;
10679
10680 case DT_JMPREL:
10681 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10682 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10683 + htab->srelplt->output_offset);
10684 break;
10685
10686 case DT_TEXTREL:
10687 /* If we didn't need any text relocations after all, delete
10688 the dynamic tag. */
10689 if (!(info->flags & DF_TEXTREL))
10690 {
10691 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10692 swap_out_p = FALSE;
10693 }
10694 break;
10695
10696 case DT_FLAGS:
10697 /* If we didn't need any text relocations after all, clear
10698 DF_TEXTREL from DT_FLAGS. */
10699 if (!(info->flags & DF_TEXTREL))
10700 dyn.d_un.d_val &= ~DF_TEXTREL;
10701 else
10702 swap_out_p = FALSE;
10703 break;
10704
10705 default:
10706 swap_out_p = FALSE;
10707 if (htab->is_vxworks
10708 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10709 swap_out_p = TRUE;
10710 break;
10711 }
10712
10713 if (swap_out_p || dyn_skipped)
10714 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10715 (dynobj, &dyn, b - dyn_skipped);
10716
10717 if (dyn_to_skip)
10718 {
10719 dyn_skipped += dyn_to_skip;
10720 dyn_to_skip = 0;
10721 }
10722 }
10723
10724 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10725 if (dyn_skipped > 0)
10726 memset (b - dyn_skipped, 0, dyn_skipped);
10727 }
10728
10729 if (sgot != NULL && sgot->size > 0
10730 && !bfd_is_abs_section (sgot->output_section))
10731 {
10732 if (htab->is_vxworks)
10733 {
10734 /* The first entry of the global offset table points to the
10735 ".dynamic" section. The second is initialized by the
10736 loader and contains the shared library identifier.
10737 The third is also initialized by the loader and points
10738 to the lazy resolution stub. */
10739 MIPS_ELF_PUT_WORD (output_bfd,
10740 sdyn->output_offset + sdyn->output_section->vma,
10741 sgot->contents);
10742 MIPS_ELF_PUT_WORD (output_bfd, 0,
10743 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10744 MIPS_ELF_PUT_WORD (output_bfd, 0,
10745 sgot->contents
10746 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10747 }
10748 else
10749 {
10750 /* The first entry of the global offset table will be filled at
10751 runtime. The second entry will be used by some runtime loaders.
10752 This isn't the case of IRIX rld. */
10753 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10754 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10755 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10756 }
10757
10758 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10759 = MIPS_ELF_GOT_SIZE (output_bfd);
10760 }
10761
10762 /* Generate dynamic relocations for the non-primary gots. */
10763 if (gg != NULL && gg->next)
10764 {
10765 Elf_Internal_Rela rel[3];
10766 bfd_vma addend = 0;
10767
10768 memset (rel, 0, sizeof (rel));
10769 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10770
10771 for (g = gg->next; g->next != gg; g = g->next)
10772 {
10773 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10774 + g->next->tls_gotno;
10775
10776 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10777 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10778 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10779 sgot->contents
10780 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10781
10782 if (! info->shared)
10783 continue;
10784
10785 while (got_index < g->assigned_gotno)
10786 {
10787 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10788 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10789 if (!(mips_elf_create_dynamic_relocation
10790 (output_bfd, info, rel, NULL,
10791 bfd_abs_section_ptr,
10792 0, &addend, sgot)))
10793 return FALSE;
10794 BFD_ASSERT (addend == 0);
10795 }
10796 }
10797 }
10798
10799 /* The generation of dynamic relocations for the non-primary gots
10800 adds more dynamic relocations. We cannot count them until
10801 here. */
10802
10803 if (elf_hash_table (info)->dynamic_sections_created)
10804 {
10805 bfd_byte *b;
10806 bfd_boolean swap_out_p;
10807
10808 BFD_ASSERT (sdyn != NULL);
10809
10810 for (b = sdyn->contents;
10811 b < sdyn->contents + sdyn->size;
10812 b += MIPS_ELF_DYN_SIZE (dynobj))
10813 {
10814 Elf_Internal_Dyn dyn;
10815 asection *s;
10816
10817 /* Read in the current dynamic entry. */
10818 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10819
10820 /* Assume that we're going to modify it and write it out. */
10821 swap_out_p = TRUE;
10822
10823 switch (dyn.d_tag)
10824 {
10825 case DT_RELSZ:
10826 /* Reduce DT_RELSZ to account for any relocations we
10827 decided not to make. This is for the n64 irix rld,
10828 which doesn't seem to apply any relocations if there
10829 are trailing null entries. */
10830 s = mips_elf_rel_dyn_section (info, FALSE);
10831 dyn.d_un.d_val = (s->reloc_count
10832 * (ABI_64_P (output_bfd)
10833 ? sizeof (Elf64_Mips_External_Rel)
10834 : sizeof (Elf32_External_Rel)));
10835 /* Adjust the section size too. Tools like the prelinker
10836 can reasonably expect the values to the same. */
10837 elf_section_data (s->output_section)->this_hdr.sh_size
10838 = dyn.d_un.d_val;
10839 break;
10840
10841 default:
10842 swap_out_p = FALSE;
10843 break;
10844 }
10845
10846 if (swap_out_p)
10847 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10848 (dynobj, &dyn, b);
10849 }
10850 }
10851
10852 {
10853 asection *s;
10854 Elf32_compact_rel cpt;
10855
10856 if (SGI_COMPAT (output_bfd))
10857 {
10858 /* Write .compact_rel section out. */
10859 s = bfd_get_section_by_name (dynobj, ".compact_rel");
10860 if (s != NULL)
10861 {
10862 cpt.id1 = 1;
10863 cpt.num = s->reloc_count;
10864 cpt.id2 = 2;
10865 cpt.offset = (s->output_section->filepos
10866 + sizeof (Elf32_External_compact_rel));
10867 cpt.reserved0 = 0;
10868 cpt.reserved1 = 0;
10869 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10870 ((Elf32_External_compact_rel *)
10871 s->contents));
10872
10873 /* Clean up a dummy stub function entry in .text. */
10874 if (htab->sstubs != NULL)
10875 {
10876 file_ptr dummy_offset;
10877
10878 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10879 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10880 memset (htab->sstubs->contents + dummy_offset, 0,
10881 htab->function_stub_size);
10882 }
10883 }
10884 }
10885
10886 /* The psABI says that the dynamic relocations must be sorted in
10887 increasing order of r_symndx. The VxWorks EABI doesn't require
10888 this, and because the code below handles REL rather than RELA
10889 relocations, using it for VxWorks would be outright harmful. */
10890 if (!htab->is_vxworks)
10891 {
10892 s = mips_elf_rel_dyn_section (info, FALSE);
10893 if (s != NULL
10894 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10895 {
10896 reldyn_sorting_bfd = output_bfd;
10897
10898 if (ABI_64_P (output_bfd))
10899 qsort ((Elf64_External_Rel *) s->contents + 1,
10900 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10901 sort_dynamic_relocs_64);
10902 else
10903 qsort ((Elf32_External_Rel *) s->contents + 1,
10904 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10905 sort_dynamic_relocs);
10906 }
10907 }
10908 }
10909
10910 if (htab->splt && htab->splt->size > 0)
10911 {
10912 if (htab->is_vxworks)
10913 {
10914 if (info->shared)
10915 mips_vxworks_finish_shared_plt (output_bfd, info);
10916 else
10917 mips_vxworks_finish_exec_plt (output_bfd, info);
10918 }
10919 else
10920 {
10921 BFD_ASSERT (!info->shared);
10922 mips_finish_exec_plt (output_bfd, info);
10923 }
10924 }
10925 return TRUE;
10926 }
10927
10928
10929 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10930
10931 static void
10932 mips_set_isa_flags (bfd *abfd)
10933 {
10934 flagword val;
10935
10936 switch (bfd_get_mach (abfd))
10937 {
10938 default:
10939 case bfd_mach_mips3000:
10940 val = E_MIPS_ARCH_1;
10941 break;
10942
10943 case bfd_mach_mips3900:
10944 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10945 break;
10946
10947 case bfd_mach_mips6000:
10948 val = E_MIPS_ARCH_2;
10949 break;
10950
10951 case bfd_mach_mips4000:
10952 case bfd_mach_mips4300:
10953 case bfd_mach_mips4400:
10954 case bfd_mach_mips4600:
10955 val = E_MIPS_ARCH_3;
10956 break;
10957
10958 case bfd_mach_mips4010:
10959 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10960 break;
10961
10962 case bfd_mach_mips4100:
10963 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10964 break;
10965
10966 case bfd_mach_mips4111:
10967 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10968 break;
10969
10970 case bfd_mach_mips4120:
10971 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10972 break;
10973
10974 case bfd_mach_mips4650:
10975 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10976 break;
10977
10978 case bfd_mach_mips5400:
10979 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10980 break;
10981
10982 case bfd_mach_mips5500:
10983 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10984 break;
10985
10986 case bfd_mach_mips9000:
10987 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10988 break;
10989
10990 case bfd_mach_mips5000:
10991 case bfd_mach_mips7000:
10992 case bfd_mach_mips8000:
10993 case bfd_mach_mips10000:
10994 case bfd_mach_mips12000:
10995 case bfd_mach_mips14000:
10996 case bfd_mach_mips16000:
10997 val = E_MIPS_ARCH_4;
10998 break;
10999
11000 case bfd_mach_mips5:
11001 val = E_MIPS_ARCH_5;
11002 break;
11003
11004 case bfd_mach_mips_loongson_2e:
11005 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11006 break;
11007
11008 case bfd_mach_mips_loongson_2f:
11009 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11010 break;
11011
11012 case bfd_mach_mips_sb1:
11013 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11014 break;
11015
11016 case bfd_mach_mips_loongson_3a:
11017 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
11018 break;
11019
11020 case bfd_mach_mips_octeon:
11021 case bfd_mach_mips_octeonp:
11022 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11023 break;
11024
11025 case bfd_mach_mips_xlr:
11026 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11027 break;
11028
11029 case bfd_mach_mips_octeon2:
11030 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11031 break;
11032
11033 case bfd_mach_mipsisa32:
11034 val = E_MIPS_ARCH_32;
11035 break;
11036
11037 case bfd_mach_mipsisa64:
11038 val = E_MIPS_ARCH_64;
11039 break;
11040
11041 case bfd_mach_mipsisa32r2:
11042 val = E_MIPS_ARCH_32R2;
11043 break;
11044
11045 case bfd_mach_mipsisa64r2:
11046 val = E_MIPS_ARCH_64R2;
11047 break;
11048 }
11049 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11050 elf_elfheader (abfd)->e_flags |= val;
11051
11052 }
11053
11054
11055 /* The final processing done just before writing out a MIPS ELF object
11056 file. This gets the MIPS architecture right based on the machine
11057 number. This is used by both the 32-bit and the 64-bit ABI. */
11058
11059 void
11060 _bfd_mips_elf_final_write_processing (bfd *abfd,
11061 bfd_boolean linker ATTRIBUTE_UNUSED)
11062 {
11063 unsigned int i;
11064 Elf_Internal_Shdr **hdrpp;
11065 const char *name;
11066 asection *sec;
11067
11068 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11069 is nonzero. This is for compatibility with old objects, which used
11070 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11071 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11072 mips_set_isa_flags (abfd);
11073
11074 /* Set the sh_info field for .gptab sections and other appropriate
11075 info for each special section. */
11076 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11077 i < elf_numsections (abfd);
11078 i++, hdrpp++)
11079 {
11080 switch ((*hdrpp)->sh_type)
11081 {
11082 case SHT_MIPS_MSYM:
11083 case SHT_MIPS_LIBLIST:
11084 sec = bfd_get_section_by_name (abfd, ".dynstr");
11085 if (sec != NULL)
11086 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11087 break;
11088
11089 case SHT_MIPS_GPTAB:
11090 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11091 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11092 BFD_ASSERT (name != NULL
11093 && CONST_STRNEQ (name, ".gptab."));
11094 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11095 BFD_ASSERT (sec != NULL);
11096 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11097 break;
11098
11099 case SHT_MIPS_CONTENT:
11100 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11101 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11102 BFD_ASSERT (name != NULL
11103 && CONST_STRNEQ (name, ".MIPS.content"));
11104 sec = bfd_get_section_by_name (abfd,
11105 name + sizeof ".MIPS.content" - 1);
11106 BFD_ASSERT (sec != NULL);
11107 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11108 break;
11109
11110 case SHT_MIPS_SYMBOL_LIB:
11111 sec = bfd_get_section_by_name (abfd, ".dynsym");
11112 if (sec != NULL)
11113 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11114 sec = bfd_get_section_by_name (abfd, ".liblist");
11115 if (sec != NULL)
11116 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11117 break;
11118
11119 case SHT_MIPS_EVENTS:
11120 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11121 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11122 BFD_ASSERT (name != NULL);
11123 if (CONST_STRNEQ (name, ".MIPS.events"))
11124 sec = bfd_get_section_by_name (abfd,
11125 name + sizeof ".MIPS.events" - 1);
11126 else
11127 {
11128 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
11129 sec = bfd_get_section_by_name (abfd,
11130 (name
11131 + sizeof ".MIPS.post_rel" - 1));
11132 }
11133 BFD_ASSERT (sec != NULL);
11134 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11135 break;
11136
11137 }
11138 }
11139 }
11140 \f
11141 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11142 segments. */
11143
11144 int
11145 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11146 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11147 {
11148 asection *s;
11149 int ret = 0;
11150
11151 /* See if we need a PT_MIPS_REGINFO segment. */
11152 s = bfd_get_section_by_name (abfd, ".reginfo");
11153 if (s && (s->flags & SEC_LOAD))
11154 ++ret;
11155
11156 /* See if we need a PT_MIPS_OPTIONS segment. */
11157 if (IRIX_COMPAT (abfd) == ict_irix6
11158 && bfd_get_section_by_name (abfd,
11159 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11160 ++ret;
11161
11162 /* See if we need a PT_MIPS_RTPROC segment. */
11163 if (IRIX_COMPAT (abfd) == ict_irix5
11164 && bfd_get_section_by_name (abfd, ".dynamic")
11165 && bfd_get_section_by_name (abfd, ".mdebug"))
11166 ++ret;
11167
11168 /* Allocate a PT_NULL header in dynamic objects. See
11169 _bfd_mips_elf_modify_segment_map for details. */
11170 if (!SGI_COMPAT (abfd)
11171 && bfd_get_section_by_name (abfd, ".dynamic"))
11172 ++ret;
11173
11174 return ret;
11175 }
11176
11177 /* Modify the segment map for an IRIX5 executable. */
11178
11179 bfd_boolean
11180 _bfd_mips_elf_modify_segment_map (bfd *abfd,
11181 struct bfd_link_info *info)
11182 {
11183 asection *s;
11184 struct elf_segment_map *m, **pm;
11185 bfd_size_type amt;
11186
11187 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11188 segment. */
11189 s = bfd_get_section_by_name (abfd, ".reginfo");
11190 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11191 {
11192 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11193 if (m->p_type == PT_MIPS_REGINFO)
11194 break;
11195 if (m == NULL)
11196 {
11197 amt = sizeof *m;
11198 m = bfd_zalloc (abfd, amt);
11199 if (m == NULL)
11200 return FALSE;
11201
11202 m->p_type = PT_MIPS_REGINFO;
11203 m->count = 1;
11204 m->sections[0] = s;
11205
11206 /* We want to put it after the PHDR and INTERP segments. */
11207 pm = &elf_tdata (abfd)->segment_map;
11208 while (*pm != NULL
11209 && ((*pm)->p_type == PT_PHDR
11210 || (*pm)->p_type == PT_INTERP))
11211 pm = &(*pm)->next;
11212
11213 m->next = *pm;
11214 *pm = m;
11215 }
11216 }
11217
11218 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11219 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
11220 PT_MIPS_OPTIONS segment immediately following the program header
11221 table. */
11222 if (NEWABI_P (abfd)
11223 /* On non-IRIX6 new abi, we'll have already created a segment
11224 for this section, so don't create another. I'm not sure this
11225 is not also the case for IRIX 6, but I can't test it right
11226 now. */
11227 && IRIX_COMPAT (abfd) == ict_irix6)
11228 {
11229 for (s = abfd->sections; s; s = s->next)
11230 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11231 break;
11232
11233 if (s)
11234 {
11235 struct elf_segment_map *options_segment;
11236
11237 pm = &elf_tdata (abfd)->segment_map;
11238 while (*pm != NULL
11239 && ((*pm)->p_type == PT_PHDR
11240 || (*pm)->p_type == PT_INTERP))
11241 pm = &(*pm)->next;
11242
11243 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11244 {
11245 amt = sizeof (struct elf_segment_map);
11246 options_segment = bfd_zalloc (abfd, amt);
11247 options_segment->next = *pm;
11248 options_segment->p_type = PT_MIPS_OPTIONS;
11249 options_segment->p_flags = PF_R;
11250 options_segment->p_flags_valid = TRUE;
11251 options_segment->count = 1;
11252 options_segment->sections[0] = s;
11253 *pm = options_segment;
11254 }
11255 }
11256 }
11257 else
11258 {
11259 if (IRIX_COMPAT (abfd) == ict_irix5)
11260 {
11261 /* If there are .dynamic and .mdebug sections, we make a room
11262 for the RTPROC header. FIXME: Rewrite without section names. */
11263 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11264 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11265 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11266 {
11267 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11268 if (m->p_type == PT_MIPS_RTPROC)
11269 break;
11270 if (m == NULL)
11271 {
11272 amt = sizeof *m;
11273 m = bfd_zalloc (abfd, amt);
11274 if (m == NULL)
11275 return FALSE;
11276
11277 m->p_type = PT_MIPS_RTPROC;
11278
11279 s = bfd_get_section_by_name (abfd, ".rtproc");
11280 if (s == NULL)
11281 {
11282 m->count = 0;
11283 m->p_flags = 0;
11284 m->p_flags_valid = 1;
11285 }
11286 else
11287 {
11288 m->count = 1;
11289 m->sections[0] = s;
11290 }
11291
11292 /* We want to put it after the DYNAMIC segment. */
11293 pm = &elf_tdata (abfd)->segment_map;
11294 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11295 pm = &(*pm)->next;
11296 if (*pm != NULL)
11297 pm = &(*pm)->next;
11298
11299 m->next = *pm;
11300 *pm = m;
11301 }
11302 }
11303 }
11304 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11305 .dynstr, .dynsym, and .hash sections, and everything in
11306 between. */
11307 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11308 pm = &(*pm)->next)
11309 if ((*pm)->p_type == PT_DYNAMIC)
11310 break;
11311 m = *pm;
11312 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11313 {
11314 /* For a normal mips executable the permissions for the PT_DYNAMIC
11315 segment are read, write and execute. We do that here since
11316 the code in elf.c sets only the read permission. This matters
11317 sometimes for the dynamic linker. */
11318 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11319 {
11320 m->p_flags = PF_R | PF_W | PF_X;
11321 m->p_flags_valid = 1;
11322 }
11323 }
11324 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11325 glibc's dynamic linker has traditionally derived the number of
11326 tags from the p_filesz field, and sometimes allocates stack
11327 arrays of that size. An overly-big PT_DYNAMIC segment can
11328 be actively harmful in such cases. Making PT_DYNAMIC contain
11329 other sections can also make life hard for the prelinker,
11330 which might move one of the other sections to a different
11331 PT_LOAD segment. */
11332 if (SGI_COMPAT (abfd)
11333 && m != NULL
11334 && m->count == 1
11335 && strcmp (m->sections[0]->name, ".dynamic") == 0)
11336 {
11337 static const char *sec_names[] =
11338 {
11339 ".dynamic", ".dynstr", ".dynsym", ".hash"
11340 };
11341 bfd_vma low, high;
11342 unsigned int i, c;
11343 struct elf_segment_map *n;
11344
11345 low = ~(bfd_vma) 0;
11346 high = 0;
11347 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11348 {
11349 s = bfd_get_section_by_name (abfd, sec_names[i]);
11350 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11351 {
11352 bfd_size_type sz;
11353
11354 if (low > s->vma)
11355 low = s->vma;
11356 sz = s->size;
11357 if (high < s->vma + sz)
11358 high = s->vma + sz;
11359 }
11360 }
11361
11362 c = 0;
11363 for (s = abfd->sections; s != NULL; s = s->next)
11364 if ((s->flags & SEC_LOAD) != 0
11365 && s->vma >= low
11366 && s->vma + s->size <= high)
11367 ++c;
11368
11369 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11370 n = bfd_zalloc (abfd, amt);
11371 if (n == NULL)
11372 return FALSE;
11373 *n = *m;
11374 n->count = c;
11375
11376 i = 0;
11377 for (s = abfd->sections; s != NULL; s = s->next)
11378 {
11379 if ((s->flags & SEC_LOAD) != 0
11380 && s->vma >= low
11381 && s->vma + s->size <= high)
11382 {
11383 n->sections[i] = s;
11384 ++i;
11385 }
11386 }
11387
11388 *pm = n;
11389 }
11390 }
11391
11392 /* Allocate a spare program header in dynamic objects so that tools
11393 like the prelinker can add an extra PT_LOAD entry.
11394
11395 If the prelinker needs to make room for a new PT_LOAD entry, its
11396 standard procedure is to move the first (read-only) sections into
11397 the new (writable) segment. However, the MIPS ABI requires
11398 .dynamic to be in a read-only segment, and the section will often
11399 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11400
11401 Although the prelinker could in principle move .dynamic to a
11402 writable segment, it seems better to allocate a spare program
11403 header instead, and avoid the need to move any sections.
11404 There is a long tradition of allocating spare dynamic tags,
11405 so allocating a spare program header seems like a natural
11406 extension.
11407
11408 If INFO is NULL, we may be copying an already prelinked binary
11409 with objcopy or strip, so do not add this header. */
11410 if (info != NULL
11411 && !SGI_COMPAT (abfd)
11412 && bfd_get_section_by_name (abfd, ".dynamic"))
11413 {
11414 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11415 if ((*pm)->p_type == PT_NULL)
11416 break;
11417 if (*pm == NULL)
11418 {
11419 m = bfd_zalloc (abfd, sizeof (*m));
11420 if (m == NULL)
11421 return FALSE;
11422
11423 m->p_type = PT_NULL;
11424 *pm = m;
11425 }
11426 }
11427
11428 return TRUE;
11429 }
11430 \f
11431 /* Return the section that should be marked against GC for a given
11432 relocation. */
11433
11434 asection *
11435 _bfd_mips_elf_gc_mark_hook (asection *sec,
11436 struct bfd_link_info *info,
11437 Elf_Internal_Rela *rel,
11438 struct elf_link_hash_entry *h,
11439 Elf_Internal_Sym *sym)
11440 {
11441 /* ??? Do mips16 stub sections need to be handled special? */
11442
11443 if (h != NULL)
11444 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11445 {
11446 case R_MIPS_GNU_VTINHERIT:
11447 case R_MIPS_GNU_VTENTRY:
11448 return NULL;
11449 }
11450
11451 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11452 }
11453
11454 /* Update the got entry reference counts for the section being removed. */
11455
11456 bfd_boolean
11457 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11458 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11459 asection *sec ATTRIBUTE_UNUSED,
11460 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11461 {
11462 #if 0
11463 Elf_Internal_Shdr *symtab_hdr;
11464 struct elf_link_hash_entry **sym_hashes;
11465 bfd_signed_vma *local_got_refcounts;
11466 const Elf_Internal_Rela *rel, *relend;
11467 unsigned long r_symndx;
11468 struct elf_link_hash_entry *h;
11469
11470 if (info->relocatable)
11471 return TRUE;
11472
11473 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11474 sym_hashes = elf_sym_hashes (abfd);
11475 local_got_refcounts = elf_local_got_refcounts (abfd);
11476
11477 relend = relocs + sec->reloc_count;
11478 for (rel = relocs; rel < relend; rel++)
11479 switch (ELF_R_TYPE (abfd, rel->r_info))
11480 {
11481 case R_MIPS16_GOT16:
11482 case R_MIPS16_CALL16:
11483 case R_MIPS_GOT16:
11484 case R_MIPS_CALL16:
11485 case R_MIPS_CALL_HI16:
11486 case R_MIPS_CALL_LO16:
11487 case R_MIPS_GOT_HI16:
11488 case R_MIPS_GOT_LO16:
11489 case R_MIPS_GOT_DISP:
11490 case R_MIPS_GOT_PAGE:
11491 case R_MIPS_GOT_OFST:
11492 case R_MICROMIPS_GOT16:
11493 case R_MICROMIPS_CALL16:
11494 case R_MICROMIPS_CALL_HI16:
11495 case R_MICROMIPS_CALL_LO16:
11496 case R_MICROMIPS_GOT_HI16:
11497 case R_MICROMIPS_GOT_LO16:
11498 case R_MICROMIPS_GOT_DISP:
11499 case R_MICROMIPS_GOT_PAGE:
11500 case R_MICROMIPS_GOT_OFST:
11501 /* ??? It would seem that the existing MIPS code does no sort
11502 of reference counting or whatnot on its GOT and PLT entries,
11503 so it is not possible to garbage collect them at this time. */
11504 break;
11505
11506 default:
11507 break;
11508 }
11509 #endif
11510
11511 return TRUE;
11512 }
11513 \f
11514 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11515 hiding the old indirect symbol. Process additional relocation
11516 information. Also called for weakdefs, in which case we just let
11517 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11518
11519 void
11520 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11521 struct elf_link_hash_entry *dir,
11522 struct elf_link_hash_entry *ind)
11523 {
11524 struct mips_elf_link_hash_entry *dirmips, *indmips;
11525
11526 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11527
11528 dirmips = (struct mips_elf_link_hash_entry *) dir;
11529 indmips = (struct mips_elf_link_hash_entry *) ind;
11530 /* Any absolute non-dynamic relocations against an indirect or weak
11531 definition will be against the target symbol. */
11532 if (indmips->has_static_relocs)
11533 dirmips->has_static_relocs = TRUE;
11534
11535 if (ind->root.type != bfd_link_hash_indirect)
11536 return;
11537
11538 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11539 if (indmips->readonly_reloc)
11540 dirmips->readonly_reloc = TRUE;
11541 if (indmips->no_fn_stub)
11542 dirmips->no_fn_stub = TRUE;
11543 if (indmips->fn_stub)
11544 {
11545 dirmips->fn_stub = indmips->fn_stub;
11546 indmips->fn_stub = NULL;
11547 }
11548 if (indmips->need_fn_stub)
11549 {
11550 dirmips->need_fn_stub = TRUE;
11551 indmips->need_fn_stub = FALSE;
11552 }
11553 if (indmips->call_stub)
11554 {
11555 dirmips->call_stub = indmips->call_stub;
11556 indmips->call_stub = NULL;
11557 }
11558 if (indmips->call_fp_stub)
11559 {
11560 dirmips->call_fp_stub = indmips->call_fp_stub;
11561 indmips->call_fp_stub = NULL;
11562 }
11563 if (indmips->global_got_area < dirmips->global_got_area)
11564 dirmips->global_got_area = indmips->global_got_area;
11565 if (indmips->global_got_area < GGA_NONE)
11566 indmips->global_got_area = GGA_NONE;
11567 if (indmips->has_nonpic_branches)
11568 dirmips->has_nonpic_branches = TRUE;
11569
11570 if (dirmips->tls_type == 0)
11571 dirmips->tls_type = indmips->tls_type;
11572 }
11573 \f
11574 #define PDR_SIZE 32
11575
11576 bfd_boolean
11577 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11578 struct bfd_link_info *info)
11579 {
11580 asection *o;
11581 bfd_boolean ret = FALSE;
11582 unsigned char *tdata;
11583 size_t i, skip;
11584
11585 o = bfd_get_section_by_name (abfd, ".pdr");
11586 if (! o)
11587 return FALSE;
11588 if (o->size == 0)
11589 return FALSE;
11590 if (o->size % PDR_SIZE != 0)
11591 return FALSE;
11592 if (o->output_section != NULL
11593 && bfd_is_abs_section (o->output_section))
11594 return FALSE;
11595
11596 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11597 if (! tdata)
11598 return FALSE;
11599
11600 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11601 info->keep_memory);
11602 if (!cookie->rels)
11603 {
11604 free (tdata);
11605 return FALSE;
11606 }
11607
11608 cookie->rel = cookie->rels;
11609 cookie->relend = cookie->rels + o->reloc_count;
11610
11611 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11612 {
11613 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11614 {
11615 tdata[i] = 1;
11616 skip ++;
11617 }
11618 }
11619
11620 if (skip != 0)
11621 {
11622 mips_elf_section_data (o)->u.tdata = tdata;
11623 o->size -= skip * PDR_SIZE;
11624 ret = TRUE;
11625 }
11626 else
11627 free (tdata);
11628
11629 if (! info->keep_memory)
11630 free (cookie->rels);
11631
11632 return ret;
11633 }
11634
11635 bfd_boolean
11636 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11637 {
11638 if (strcmp (sec->name, ".pdr") == 0)
11639 return TRUE;
11640 return FALSE;
11641 }
11642
11643 bfd_boolean
11644 _bfd_mips_elf_write_section (bfd *output_bfd,
11645 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11646 asection *sec, bfd_byte *contents)
11647 {
11648 bfd_byte *to, *from, *end;
11649 int i;
11650
11651 if (strcmp (sec->name, ".pdr") != 0)
11652 return FALSE;
11653
11654 if (mips_elf_section_data (sec)->u.tdata == NULL)
11655 return FALSE;
11656
11657 to = contents;
11658 end = contents + sec->size;
11659 for (from = contents, i = 0;
11660 from < end;
11661 from += PDR_SIZE, i++)
11662 {
11663 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11664 continue;
11665 if (to != from)
11666 memcpy (to, from, PDR_SIZE);
11667 to += PDR_SIZE;
11668 }
11669 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11670 sec->output_offset, sec->size);
11671 return TRUE;
11672 }
11673 \f
11674 /* microMIPS code retains local labels for linker relaxation. Omit them
11675 from output by default for clarity. */
11676
11677 bfd_boolean
11678 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11679 {
11680 return _bfd_elf_is_local_label_name (abfd, sym->name);
11681 }
11682
11683 /* MIPS ELF uses a special find_nearest_line routine in order the
11684 handle the ECOFF debugging information. */
11685
11686 struct mips_elf_find_line
11687 {
11688 struct ecoff_debug_info d;
11689 struct ecoff_find_line i;
11690 };
11691
11692 bfd_boolean
11693 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11694 asymbol **symbols, bfd_vma offset,
11695 const char **filename_ptr,
11696 const char **functionname_ptr,
11697 unsigned int *line_ptr)
11698 {
11699 asection *msec;
11700
11701 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11702 filename_ptr, functionname_ptr,
11703 line_ptr))
11704 return TRUE;
11705
11706 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11707 section, symbols, offset,
11708 filename_ptr, functionname_ptr,
11709 line_ptr, ABI_64_P (abfd) ? 8 : 0,
11710 &elf_tdata (abfd)->dwarf2_find_line_info))
11711 return TRUE;
11712
11713 msec = bfd_get_section_by_name (abfd, ".mdebug");
11714 if (msec != NULL)
11715 {
11716 flagword origflags;
11717 struct mips_elf_find_line *fi;
11718 const struct ecoff_debug_swap * const swap =
11719 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11720
11721 /* If we are called during a link, mips_elf_final_link may have
11722 cleared the SEC_HAS_CONTENTS field. We force it back on here
11723 if appropriate (which it normally will be). */
11724 origflags = msec->flags;
11725 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11726 msec->flags |= SEC_HAS_CONTENTS;
11727
11728 fi = elf_tdata (abfd)->find_line_info;
11729 if (fi == NULL)
11730 {
11731 bfd_size_type external_fdr_size;
11732 char *fraw_src;
11733 char *fraw_end;
11734 struct fdr *fdr_ptr;
11735 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11736
11737 fi = bfd_zalloc (abfd, amt);
11738 if (fi == NULL)
11739 {
11740 msec->flags = origflags;
11741 return FALSE;
11742 }
11743
11744 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11745 {
11746 msec->flags = origflags;
11747 return FALSE;
11748 }
11749
11750 /* Swap in the FDR information. */
11751 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11752 fi->d.fdr = bfd_alloc (abfd, amt);
11753 if (fi->d.fdr == NULL)
11754 {
11755 msec->flags = origflags;
11756 return FALSE;
11757 }
11758 external_fdr_size = swap->external_fdr_size;
11759 fdr_ptr = fi->d.fdr;
11760 fraw_src = (char *) fi->d.external_fdr;
11761 fraw_end = (fraw_src
11762 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11763 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11764 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11765
11766 elf_tdata (abfd)->find_line_info = fi;
11767
11768 /* Note that we don't bother to ever free this information.
11769 find_nearest_line is either called all the time, as in
11770 objdump -l, so the information should be saved, or it is
11771 rarely called, as in ld error messages, so the memory
11772 wasted is unimportant. Still, it would probably be a
11773 good idea for free_cached_info to throw it away. */
11774 }
11775
11776 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11777 &fi->i, filename_ptr, functionname_ptr,
11778 line_ptr))
11779 {
11780 msec->flags = origflags;
11781 return TRUE;
11782 }
11783
11784 msec->flags = origflags;
11785 }
11786
11787 /* Fall back on the generic ELF find_nearest_line routine. */
11788
11789 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11790 filename_ptr, functionname_ptr,
11791 line_ptr);
11792 }
11793
11794 bfd_boolean
11795 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11796 const char **filename_ptr,
11797 const char **functionname_ptr,
11798 unsigned int *line_ptr)
11799 {
11800 bfd_boolean found;
11801 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11802 functionname_ptr, line_ptr,
11803 & elf_tdata (abfd)->dwarf2_find_line_info);
11804 return found;
11805 }
11806
11807 \f
11808 /* When are writing out the .options or .MIPS.options section,
11809 remember the bytes we are writing out, so that we can install the
11810 GP value in the section_processing routine. */
11811
11812 bfd_boolean
11813 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11814 const void *location,
11815 file_ptr offset, bfd_size_type count)
11816 {
11817 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11818 {
11819 bfd_byte *c;
11820
11821 if (elf_section_data (section) == NULL)
11822 {
11823 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11824 section->used_by_bfd = bfd_zalloc (abfd, amt);
11825 if (elf_section_data (section) == NULL)
11826 return FALSE;
11827 }
11828 c = mips_elf_section_data (section)->u.tdata;
11829 if (c == NULL)
11830 {
11831 c = bfd_zalloc (abfd, section->size);
11832 if (c == NULL)
11833 return FALSE;
11834 mips_elf_section_data (section)->u.tdata = c;
11835 }
11836
11837 memcpy (c + offset, location, count);
11838 }
11839
11840 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11841 count);
11842 }
11843
11844 /* This is almost identical to bfd_generic_get_... except that some
11845 MIPS relocations need to be handled specially. Sigh. */
11846
11847 bfd_byte *
11848 _bfd_elf_mips_get_relocated_section_contents
11849 (bfd *abfd,
11850 struct bfd_link_info *link_info,
11851 struct bfd_link_order *link_order,
11852 bfd_byte *data,
11853 bfd_boolean relocatable,
11854 asymbol **symbols)
11855 {
11856 /* Get enough memory to hold the stuff */
11857 bfd *input_bfd = link_order->u.indirect.section->owner;
11858 asection *input_section = link_order->u.indirect.section;
11859 bfd_size_type sz;
11860
11861 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11862 arelent **reloc_vector = NULL;
11863 long reloc_count;
11864
11865 if (reloc_size < 0)
11866 goto error_return;
11867
11868 reloc_vector = bfd_malloc (reloc_size);
11869 if (reloc_vector == NULL && reloc_size != 0)
11870 goto error_return;
11871
11872 /* read in the section */
11873 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11874 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11875 goto error_return;
11876
11877 reloc_count = bfd_canonicalize_reloc (input_bfd,
11878 input_section,
11879 reloc_vector,
11880 symbols);
11881 if (reloc_count < 0)
11882 goto error_return;
11883
11884 if (reloc_count > 0)
11885 {
11886 arelent **parent;
11887 /* for mips */
11888 int gp_found;
11889 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11890
11891 {
11892 struct bfd_hash_entry *h;
11893 struct bfd_link_hash_entry *lh;
11894 /* Skip all this stuff if we aren't mixing formats. */
11895 if (abfd && input_bfd
11896 && abfd->xvec == input_bfd->xvec)
11897 lh = 0;
11898 else
11899 {
11900 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11901 lh = (struct bfd_link_hash_entry *) h;
11902 }
11903 lookup:
11904 if (lh)
11905 {
11906 switch (lh->type)
11907 {
11908 case bfd_link_hash_undefined:
11909 case bfd_link_hash_undefweak:
11910 case bfd_link_hash_common:
11911 gp_found = 0;
11912 break;
11913 case bfd_link_hash_defined:
11914 case bfd_link_hash_defweak:
11915 gp_found = 1;
11916 gp = lh->u.def.value;
11917 break;
11918 case bfd_link_hash_indirect:
11919 case bfd_link_hash_warning:
11920 lh = lh->u.i.link;
11921 /* @@FIXME ignoring warning for now */
11922 goto lookup;
11923 case bfd_link_hash_new:
11924 default:
11925 abort ();
11926 }
11927 }
11928 else
11929 gp_found = 0;
11930 }
11931 /* end mips */
11932 for (parent = reloc_vector; *parent != NULL; parent++)
11933 {
11934 char *error_message = NULL;
11935 bfd_reloc_status_type r;
11936
11937 /* Specific to MIPS: Deal with relocation types that require
11938 knowing the gp of the output bfd. */
11939 asymbol *sym = *(*parent)->sym_ptr_ptr;
11940
11941 /* If we've managed to find the gp and have a special
11942 function for the relocation then go ahead, else default
11943 to the generic handling. */
11944 if (gp_found
11945 && (*parent)->howto->special_function
11946 == _bfd_mips_elf32_gprel16_reloc)
11947 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11948 input_section, relocatable,
11949 data, gp);
11950 else
11951 r = bfd_perform_relocation (input_bfd, *parent, data,
11952 input_section,
11953 relocatable ? abfd : NULL,
11954 &error_message);
11955
11956 if (relocatable)
11957 {
11958 asection *os = input_section->output_section;
11959
11960 /* A partial link, so keep the relocs */
11961 os->orelocation[os->reloc_count] = *parent;
11962 os->reloc_count++;
11963 }
11964
11965 if (r != bfd_reloc_ok)
11966 {
11967 switch (r)
11968 {
11969 case bfd_reloc_undefined:
11970 if (!((*link_info->callbacks->undefined_symbol)
11971 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11972 input_bfd, input_section, (*parent)->address, TRUE)))
11973 goto error_return;
11974 break;
11975 case bfd_reloc_dangerous:
11976 BFD_ASSERT (error_message != NULL);
11977 if (!((*link_info->callbacks->reloc_dangerous)
11978 (link_info, error_message, input_bfd, input_section,
11979 (*parent)->address)))
11980 goto error_return;
11981 break;
11982 case bfd_reloc_overflow:
11983 if (!((*link_info->callbacks->reloc_overflow)
11984 (link_info, NULL,
11985 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11986 (*parent)->howto->name, (*parent)->addend,
11987 input_bfd, input_section, (*parent)->address)))
11988 goto error_return;
11989 break;
11990 case bfd_reloc_outofrange:
11991 default:
11992 abort ();
11993 break;
11994 }
11995
11996 }
11997 }
11998 }
11999 if (reloc_vector != NULL)
12000 free (reloc_vector);
12001 return data;
12002
12003 error_return:
12004 if (reloc_vector != NULL)
12005 free (reloc_vector);
12006 return NULL;
12007 }
12008 \f
12009 static bfd_boolean
12010 mips_elf_relax_delete_bytes (bfd *abfd,
12011 asection *sec, bfd_vma addr, int count)
12012 {
12013 Elf_Internal_Shdr *symtab_hdr;
12014 unsigned int sec_shndx;
12015 bfd_byte *contents;
12016 Elf_Internal_Rela *irel, *irelend;
12017 Elf_Internal_Sym *isym;
12018 Elf_Internal_Sym *isymend;
12019 struct elf_link_hash_entry **sym_hashes;
12020 struct elf_link_hash_entry **end_hashes;
12021 struct elf_link_hash_entry **start_hashes;
12022 unsigned int symcount;
12023
12024 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12025 contents = elf_section_data (sec)->this_hdr.contents;
12026
12027 irel = elf_section_data (sec)->relocs;
12028 irelend = irel + sec->reloc_count;
12029
12030 /* Actually delete the bytes. */
12031 memmove (contents + addr, contents + addr + count,
12032 (size_t) (sec->size - addr - count));
12033 sec->size -= count;
12034
12035 /* Adjust all the relocs. */
12036 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12037 {
12038 /* Get the new reloc address. */
12039 if (irel->r_offset > addr)
12040 irel->r_offset -= count;
12041 }
12042
12043 BFD_ASSERT (addr % 2 == 0);
12044 BFD_ASSERT (count % 2 == 0);
12045
12046 /* Adjust the local symbols defined in this section. */
12047 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12048 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12049 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
12050 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
12051 isym->st_value -= count;
12052
12053 /* Now adjust the global symbols defined in this section. */
12054 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12055 - symtab_hdr->sh_info);
12056 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12057 end_hashes = sym_hashes + symcount;
12058
12059 for (; sym_hashes < end_hashes; sym_hashes++)
12060 {
12061 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12062
12063 if ((sym_hash->root.type == bfd_link_hash_defined
12064 || sym_hash->root.type == bfd_link_hash_defweak)
12065 && sym_hash->root.u.def.section == sec)
12066 {
12067 bfd_vma value = sym_hash->root.u.def.value;
12068
12069 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12070 value &= MINUS_TWO;
12071 if (value > addr)
12072 sym_hash->root.u.def.value -= count;
12073 }
12074 }
12075
12076 return TRUE;
12077 }
12078
12079
12080 /* Opcodes needed for microMIPS relaxation as found in
12081 opcodes/micromips-opc.c. */
12082
12083 struct opcode_descriptor {
12084 unsigned long match;
12085 unsigned long mask;
12086 };
12087
12088 /* The $ra register aka $31. */
12089
12090 #define RA 31
12091
12092 /* 32-bit instruction format register fields. */
12093
12094 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12095 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12096
12097 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
12098
12099 #define OP16_VALID_REG(r) \
12100 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12101
12102
12103 /* 32-bit and 16-bit branches. */
12104
12105 static const struct opcode_descriptor b_insns_32[] = {
12106 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12107 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12108 { 0, 0 } /* End marker for find_match(). */
12109 };
12110
12111 static const struct opcode_descriptor bc_insn_32 =
12112 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12113
12114 static const struct opcode_descriptor bz_insn_32 =
12115 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12116
12117 static const struct opcode_descriptor bzal_insn_32 =
12118 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12119
12120 static const struct opcode_descriptor beq_insn_32 =
12121 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12122
12123 static const struct opcode_descriptor b_insn_16 =
12124 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12125
12126 static const struct opcode_descriptor bz_insn_16 =
12127 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
12128
12129
12130 /* 32-bit and 16-bit branch EQ and NE zero. */
12131
12132 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12133 eq and second the ne. This convention is used when replacing a
12134 32-bit BEQ/BNE with the 16-bit version. */
12135
12136 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12137
12138 static const struct opcode_descriptor bz_rs_insns_32[] = {
12139 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12140 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12141 { 0, 0 } /* End marker for find_match(). */
12142 };
12143
12144 static const struct opcode_descriptor bz_rt_insns_32[] = {
12145 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12146 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12147 { 0, 0 } /* End marker for find_match(). */
12148 };
12149
12150 static const struct opcode_descriptor bzc_insns_32[] = {
12151 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12152 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12153 { 0, 0 } /* End marker for find_match(). */
12154 };
12155
12156 static const struct opcode_descriptor bz_insns_16[] = {
12157 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12158 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12159 { 0, 0 } /* End marker for find_match(). */
12160 };
12161
12162 /* Switch between a 5-bit register index and its 3-bit shorthand. */
12163
12164 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12165 #define BZ16_REG_FIELD(r) \
12166 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12167
12168
12169 /* 32-bit instructions with a delay slot. */
12170
12171 static const struct opcode_descriptor jal_insn_32_bd16 =
12172 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12173
12174 static const struct opcode_descriptor jal_insn_32_bd32 =
12175 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12176
12177 static const struct opcode_descriptor jal_x_insn_32_bd32 =
12178 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12179
12180 static const struct opcode_descriptor j_insn_32 =
12181 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12182
12183 static const struct opcode_descriptor jalr_insn_32 =
12184 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12185
12186 /* This table can be compacted, because no opcode replacement is made. */
12187
12188 static const struct opcode_descriptor ds_insns_32_bd16[] = {
12189 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12190
12191 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12192 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12193
12194 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12195 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12196 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12197 { 0, 0 } /* End marker for find_match(). */
12198 };
12199
12200 /* This table can be compacted, because no opcode replacement is made. */
12201
12202 static const struct opcode_descriptor ds_insns_32_bd32[] = {
12203 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12204
12205 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12206 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12207 { 0, 0 } /* End marker for find_match(). */
12208 };
12209
12210
12211 /* 16-bit instructions with a delay slot. */
12212
12213 static const struct opcode_descriptor jalr_insn_16_bd16 =
12214 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12215
12216 static const struct opcode_descriptor jalr_insn_16_bd32 =
12217 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12218
12219 static const struct opcode_descriptor jr_insn_16 =
12220 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12221
12222 #define JR16_REG(opcode) ((opcode) & 0x1f)
12223
12224 /* This table can be compacted, because no opcode replacement is made. */
12225
12226 static const struct opcode_descriptor ds_insns_16_bd16[] = {
12227 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12228
12229 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12230 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12231 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12232 { 0, 0 } /* End marker for find_match(). */
12233 };
12234
12235
12236 /* LUI instruction. */
12237
12238 static const struct opcode_descriptor lui_insn =
12239 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12240
12241
12242 /* ADDIU instruction. */
12243
12244 static const struct opcode_descriptor addiu_insn =
12245 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12246
12247 static const struct opcode_descriptor addiupc_insn =
12248 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12249
12250 #define ADDIUPC_REG_FIELD(r) \
12251 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12252
12253
12254 /* Relaxable instructions in a JAL delay slot: MOVE. */
12255
12256 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12257 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12258 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12259 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12260
12261 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12262 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12263
12264 static const struct opcode_descriptor move_insns_32[] = {
12265 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12266 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12267 { 0, 0 } /* End marker for find_match(). */
12268 };
12269
12270 static const struct opcode_descriptor move_insn_16 =
12271 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12272
12273
12274 /* NOP instructions. */
12275
12276 static const struct opcode_descriptor nop_insn_32 =
12277 { /* "nop", "", */ 0x00000000, 0xffffffff };
12278
12279 static const struct opcode_descriptor nop_insn_16 =
12280 { /* "nop", "", */ 0x0c00, 0xffff };
12281
12282
12283 /* Instruction match support. */
12284
12285 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12286
12287 static int
12288 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12289 {
12290 unsigned long indx;
12291
12292 for (indx = 0; insn[indx].mask != 0; indx++)
12293 if (MATCH (opcode, insn[indx]))
12294 return indx;
12295
12296 return -1;
12297 }
12298
12299
12300 /* Branch and delay slot decoding support. */
12301
12302 /* If PTR points to what *might* be a 16-bit branch or jump, then
12303 return the minimum length of its delay slot, otherwise return 0.
12304 Non-zero results are not definitive as we might be checking against
12305 the second half of another instruction. */
12306
12307 static int
12308 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12309 {
12310 unsigned long opcode;
12311 int bdsize;
12312
12313 opcode = bfd_get_16 (abfd, ptr);
12314 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12315 /* 16-bit branch/jump with a 32-bit delay slot. */
12316 bdsize = 4;
12317 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12318 || find_match (opcode, ds_insns_16_bd16) >= 0)
12319 /* 16-bit branch/jump with a 16-bit delay slot. */
12320 bdsize = 2;
12321 else
12322 /* No delay slot. */
12323 bdsize = 0;
12324
12325 return bdsize;
12326 }
12327
12328 /* If PTR points to what *might* be a 32-bit branch or jump, then
12329 return the minimum length of its delay slot, otherwise return 0.
12330 Non-zero results are not definitive as we might be checking against
12331 the second half of another instruction. */
12332
12333 static int
12334 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12335 {
12336 unsigned long opcode;
12337 int bdsize;
12338
12339 opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
12340 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12341 /* 32-bit branch/jump with a 32-bit delay slot. */
12342 bdsize = 4;
12343 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12344 /* 32-bit branch/jump with a 16-bit delay slot. */
12345 bdsize = 2;
12346 else
12347 /* No delay slot. */
12348 bdsize = 0;
12349
12350 return bdsize;
12351 }
12352
12353 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12354 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12355
12356 static bfd_boolean
12357 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12358 {
12359 unsigned long opcode;
12360
12361 opcode = bfd_get_16 (abfd, ptr);
12362 if (MATCH (opcode, b_insn_16)
12363 /* B16 */
12364 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12365 /* JR16 */
12366 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12367 /* BEQZ16, BNEZ16 */
12368 || (MATCH (opcode, jalr_insn_16_bd32)
12369 /* JALR16 */
12370 && reg != JR16_REG (opcode) && reg != RA))
12371 return TRUE;
12372
12373 return FALSE;
12374 }
12375
12376 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12377 then return TRUE, otherwise FALSE. */
12378
12379 static bfd_boolean
12380 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12381 {
12382 unsigned long opcode;
12383
12384 opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
12385 if (MATCH (opcode, j_insn_32)
12386 /* J */
12387 || MATCH (opcode, bc_insn_32)
12388 /* BC1F, BC1T, BC2F, BC2T */
12389 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12390 /* JAL, JALX */
12391 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12392 /* BGEZ, BGTZ, BLEZ, BLTZ */
12393 || (MATCH (opcode, bzal_insn_32)
12394 /* BGEZAL, BLTZAL */
12395 && reg != OP32_SREG (opcode) && reg != RA)
12396 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12397 /* JALR, JALR.HB, BEQ, BNE */
12398 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12399 return TRUE;
12400
12401 return FALSE;
12402 }
12403
12404 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12405 IRELEND) at OFFSET indicate that there must be a compact branch there,
12406 then return TRUE, otherwise FALSE. */
12407
12408 static bfd_boolean
12409 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12410 const Elf_Internal_Rela *internal_relocs,
12411 const Elf_Internal_Rela *irelend)
12412 {
12413 const Elf_Internal_Rela *irel;
12414 unsigned long opcode;
12415
12416 opcode = bfd_get_16 (abfd, ptr);
12417 opcode <<= 16;
12418 opcode |= bfd_get_16 (abfd, ptr + 2);
12419 if (find_match (opcode, bzc_insns_32) < 0)
12420 return FALSE;
12421
12422 for (irel = internal_relocs; irel < irelend; irel++)
12423 if (irel->r_offset == offset
12424 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12425 return TRUE;
12426
12427 return FALSE;
12428 }
12429
12430 /* Bitsize checking. */
12431 #define IS_BITSIZE(val, N) \
12432 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12433 - (1ULL << ((N) - 1))) == (val))
12434
12435 \f
12436 bfd_boolean
12437 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12438 struct bfd_link_info *link_info,
12439 bfd_boolean *again)
12440 {
12441 Elf_Internal_Shdr *symtab_hdr;
12442 Elf_Internal_Rela *internal_relocs;
12443 Elf_Internal_Rela *irel, *irelend;
12444 bfd_byte *contents = NULL;
12445 Elf_Internal_Sym *isymbuf = NULL;
12446
12447 /* Assume nothing changes. */
12448 *again = FALSE;
12449
12450 /* We don't have to do anything for a relocatable link, if
12451 this section does not have relocs, or if this is not a
12452 code section. */
12453
12454 if (link_info->relocatable
12455 || (sec->flags & SEC_RELOC) == 0
12456 || sec->reloc_count == 0
12457 || (sec->flags & SEC_CODE) == 0)
12458 return TRUE;
12459
12460 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12461
12462 /* Get a copy of the native relocations. */
12463 internal_relocs = (_bfd_elf_link_read_relocs
12464 (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
12465 link_info->keep_memory));
12466 if (internal_relocs == NULL)
12467 goto error_return;
12468
12469 /* Walk through them looking for relaxing opportunities. */
12470 irelend = internal_relocs + sec->reloc_count;
12471 for (irel = internal_relocs; irel < irelend; irel++)
12472 {
12473 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12474 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12475 bfd_boolean target_is_micromips_code_p;
12476 unsigned long opcode;
12477 bfd_vma symval;
12478 bfd_vma pcrval;
12479 bfd_byte *ptr;
12480 int fndopc;
12481
12482 /* The number of bytes to delete for relaxation and from where
12483 to delete these bytes starting at irel->r_offset. */
12484 int delcnt = 0;
12485 int deloff = 0;
12486
12487 /* If this isn't something that can be relaxed, then ignore
12488 this reloc. */
12489 if (r_type != R_MICROMIPS_HI16
12490 && r_type != R_MICROMIPS_PC16_S1
12491 && r_type != R_MICROMIPS_26_S1)
12492 continue;
12493
12494 /* Get the section contents if we haven't done so already. */
12495 if (contents == NULL)
12496 {
12497 /* Get cached copy if it exists. */
12498 if (elf_section_data (sec)->this_hdr.contents != NULL)
12499 contents = elf_section_data (sec)->this_hdr.contents;
12500 /* Go get them off disk. */
12501 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12502 goto error_return;
12503 }
12504 ptr = contents + irel->r_offset;
12505
12506 /* Read this BFD's local symbols if we haven't done so already. */
12507 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12508 {
12509 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12510 if (isymbuf == NULL)
12511 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12512 symtab_hdr->sh_info, 0,
12513 NULL, NULL, NULL);
12514 if (isymbuf == NULL)
12515 goto error_return;
12516 }
12517
12518 /* Get the value of the symbol referred to by the reloc. */
12519 if (r_symndx < symtab_hdr->sh_info)
12520 {
12521 /* A local symbol. */
12522 Elf_Internal_Sym *isym;
12523 asection *sym_sec;
12524
12525 isym = isymbuf + r_symndx;
12526 if (isym->st_shndx == SHN_UNDEF)
12527 sym_sec = bfd_und_section_ptr;
12528 else if (isym->st_shndx == SHN_ABS)
12529 sym_sec = bfd_abs_section_ptr;
12530 else if (isym->st_shndx == SHN_COMMON)
12531 sym_sec = bfd_com_section_ptr;
12532 else
12533 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12534 symval = (isym->st_value
12535 + sym_sec->output_section->vma
12536 + sym_sec->output_offset);
12537 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12538 }
12539 else
12540 {
12541 unsigned long indx;
12542 struct elf_link_hash_entry *h;
12543
12544 /* An external symbol. */
12545 indx = r_symndx - symtab_hdr->sh_info;
12546 h = elf_sym_hashes (abfd)[indx];
12547 BFD_ASSERT (h != NULL);
12548
12549 if (h->root.type != bfd_link_hash_defined
12550 && h->root.type != bfd_link_hash_defweak)
12551 /* This appears to be a reference to an undefined
12552 symbol. Just ignore it -- it will be caught by the
12553 regular reloc processing. */
12554 continue;
12555
12556 symval = (h->root.u.def.value
12557 + h->root.u.def.section->output_section->vma
12558 + h->root.u.def.section->output_offset);
12559 target_is_micromips_code_p = (!h->needs_plt
12560 && ELF_ST_IS_MICROMIPS (h->other));
12561 }
12562
12563
12564 /* For simplicity of coding, we are going to modify the
12565 section contents, the section relocs, and the BFD symbol
12566 table. We must tell the rest of the code not to free up this
12567 information. It would be possible to instead create a table
12568 of changes which have to be made, as is done in coff-mips.c;
12569 that would be more work, but would require less memory when
12570 the linker is run. */
12571
12572 /* Only 32-bit instructions relaxed. */
12573 if (irel->r_offset + 4 > sec->size)
12574 continue;
12575
12576 opcode = bfd_get_16 (abfd, ptr ) << 16;
12577 opcode |= bfd_get_16 (abfd, ptr + 2);
12578
12579 /* This is the pc-relative distance from the instruction the
12580 relocation is applied to, to the symbol referred. */
12581 pcrval = (symval
12582 - (sec->output_section->vma + sec->output_offset)
12583 - irel->r_offset);
12584
12585 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12586 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12587 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12588
12589 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12590
12591 where pcrval has first to be adjusted to apply against the LO16
12592 location (we make the adjustment later on, when we have figured
12593 out the offset). */
12594 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12595 {
12596 bfd_boolean bzc = FALSE;
12597 unsigned long nextopc;
12598 unsigned long reg;
12599 bfd_vma offset;
12600
12601 /* Give up if the previous reloc was a HI16 against this symbol
12602 too. */
12603 if (irel > internal_relocs
12604 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12605 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12606 continue;
12607
12608 /* Or if the next reloc is not a LO16 against this symbol. */
12609 if (irel + 1 >= irelend
12610 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12611 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12612 continue;
12613
12614 /* Or if the second next reloc is a LO16 against this symbol too. */
12615 if (irel + 2 >= irelend
12616 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12617 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12618 continue;
12619
12620 /* See if the LUI instruction *might* be in a branch delay slot.
12621 We check whether what looks like a 16-bit branch or jump is
12622 actually an immediate argument to a compact branch, and let
12623 it through if so. */
12624 if (irel->r_offset >= 2
12625 && check_br16_dslot (abfd, ptr - 2)
12626 && !(irel->r_offset >= 4
12627 && (bzc = check_relocated_bzc (abfd,
12628 ptr - 4, irel->r_offset - 4,
12629 internal_relocs, irelend))))
12630 continue;
12631 if (irel->r_offset >= 4
12632 && !bzc
12633 && check_br32_dslot (abfd, ptr - 4))
12634 continue;
12635
12636 reg = OP32_SREG (opcode);
12637
12638 /* We only relax adjacent instructions or ones separated with
12639 a branch or jump that has a delay slot. The branch or jump
12640 must not fiddle with the register used to hold the address.
12641 Subtract 4 for the LUI itself. */
12642 offset = irel[1].r_offset - irel[0].r_offset;
12643 switch (offset - 4)
12644 {
12645 case 0:
12646 break;
12647 case 2:
12648 if (check_br16 (abfd, ptr + 4, reg))
12649 break;
12650 continue;
12651 case 4:
12652 if (check_br32 (abfd, ptr + 4, reg))
12653 break;
12654 continue;
12655 default:
12656 continue;
12657 }
12658
12659 nextopc = bfd_get_16 (abfd, contents + irel[1].r_offset ) << 16;
12660 nextopc |= bfd_get_16 (abfd, contents + irel[1].r_offset + 2);
12661
12662 /* Give up unless the same register is used with both
12663 relocations. */
12664 if (OP32_SREG (nextopc) != reg)
12665 continue;
12666
12667 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12668 and rounding up to take masking of the two LSBs into account. */
12669 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12670
12671 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12672 if (IS_BITSIZE (symval, 16))
12673 {
12674 /* Fix the relocation's type. */
12675 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12676
12677 /* Instructions using R_MICROMIPS_LO16 have the base or
12678 source register in bits 20:16. This register becomes $0
12679 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12680 nextopc &= ~0x001f0000;
12681 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12682 contents + irel[1].r_offset);
12683 }
12684
12685 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12686 We add 4 to take LUI deletion into account while checking
12687 the PC-relative distance. */
12688 else if (symval % 4 == 0
12689 && IS_BITSIZE (pcrval + 4, 25)
12690 && MATCH (nextopc, addiu_insn)
12691 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12692 && OP16_VALID_REG (OP32_TREG (nextopc)))
12693 {
12694 /* Fix the relocation's type. */
12695 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12696
12697 /* Replace ADDIU with the ADDIUPC version. */
12698 nextopc = (addiupc_insn.match
12699 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12700
12701 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12702 contents + irel[1].r_offset);
12703 bfd_put_16 (abfd, nextopc & 0xffff,
12704 contents + irel[1].r_offset + 2);
12705 }
12706
12707 /* Can't do anything, give up, sigh... */
12708 else
12709 continue;
12710
12711 /* Fix the relocation's type. */
12712 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12713
12714 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12715 delcnt = 4;
12716 deloff = 0;
12717 }
12718
12719 /* Compact branch relaxation -- due to the multitude of macros
12720 employed by the compiler/assembler, compact branches are not
12721 always generated. Obviously, this can/will be fixed elsewhere,
12722 but there is no drawback in double checking it here. */
12723 else if (r_type == R_MICROMIPS_PC16_S1
12724 && irel->r_offset + 5 < sec->size
12725 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12726 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
12727 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
12728 {
12729 unsigned long reg;
12730
12731 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12732
12733 /* Replace BEQZ/BNEZ with the compact version. */
12734 opcode = (bzc_insns_32[fndopc].match
12735 | BZC32_REG_FIELD (reg)
12736 | (opcode & 0xffff)); /* Addend value. */
12737
12738 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
12739 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
12740
12741 /* Delete the 16-bit delay slot NOP: two bytes from
12742 irel->offset + 4. */
12743 delcnt = 2;
12744 deloff = 4;
12745 }
12746
12747 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12748 to check the distance from the next instruction, so subtract 2. */
12749 else if (r_type == R_MICROMIPS_PC16_S1
12750 && IS_BITSIZE (pcrval - 2, 11)
12751 && find_match (opcode, b_insns_32) >= 0)
12752 {
12753 /* Fix the relocation's type. */
12754 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12755
12756 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12757 bfd_put_16 (abfd,
12758 (b_insn_16.match
12759 | (opcode & 0x3ff)), /* Addend value. */
12760 ptr);
12761
12762 /* Delete 2 bytes from irel->r_offset + 2. */
12763 delcnt = 2;
12764 deloff = 2;
12765 }
12766
12767 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12768 to check the distance from the next instruction, so subtract 2. */
12769 else if (r_type == R_MICROMIPS_PC16_S1
12770 && IS_BITSIZE (pcrval - 2, 8)
12771 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12772 && OP16_VALID_REG (OP32_SREG (opcode)))
12773 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12774 && OP16_VALID_REG (OP32_TREG (opcode)))))
12775 {
12776 unsigned long reg;
12777
12778 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12779
12780 /* Fix the relocation's type. */
12781 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12782
12783 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12784 bfd_put_16 (abfd,
12785 (bz_insns_16[fndopc].match
12786 | BZ16_REG_FIELD (reg)
12787 | (opcode & 0x7f)), /* Addend value. */
12788 ptr);
12789
12790 /* Delete 2 bytes from irel->r_offset + 2. */
12791 delcnt = 2;
12792 deloff = 2;
12793 }
12794
12795 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12796 else if (r_type == R_MICROMIPS_26_S1
12797 && target_is_micromips_code_p
12798 && irel->r_offset + 7 < sec->size
12799 && MATCH (opcode, jal_insn_32_bd32))
12800 {
12801 unsigned long n32opc;
12802 bfd_boolean relaxed = FALSE;
12803
12804 n32opc = bfd_get_16 (abfd, ptr + 4) << 16;
12805 n32opc |= bfd_get_16 (abfd, ptr + 6);
12806
12807 if (MATCH (n32opc, nop_insn_32))
12808 {
12809 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
12810 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
12811
12812 relaxed = TRUE;
12813 }
12814 else if (find_match (n32opc, move_insns_32) >= 0)
12815 {
12816 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12817 bfd_put_16 (abfd,
12818 (move_insn_16.match
12819 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12820 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
12821 ptr + 4);
12822
12823 relaxed = TRUE;
12824 }
12825 /* Other 32-bit instructions relaxable to 16-bit
12826 instructions will be handled here later. */
12827
12828 if (relaxed)
12829 {
12830 /* JAL with 32-bit delay slot that is changed to a JALS
12831 with 16-bit delay slot. */
12832 bfd_put_16 (abfd, (jal_insn_32_bd16.match >> 16) & 0xffff,
12833 ptr);
12834 bfd_put_16 (abfd, jal_insn_32_bd16.match & 0xffff,
12835 ptr + 2);
12836
12837 /* Delete 2 bytes from irel->r_offset + 6. */
12838 delcnt = 2;
12839 deloff = 6;
12840 }
12841 }
12842
12843 if (delcnt != 0)
12844 {
12845 /* Note that we've changed the relocs, section contents, etc. */
12846 elf_section_data (sec)->relocs = internal_relocs;
12847 elf_section_data (sec)->this_hdr.contents = contents;
12848 symtab_hdr->contents = (unsigned char *) isymbuf;
12849
12850 /* Delete bytes depending on the delcnt and deloff. */
12851 if (!mips_elf_relax_delete_bytes (abfd, sec,
12852 irel->r_offset + deloff, delcnt))
12853 goto error_return;
12854
12855 /* That will change things, so we should relax again.
12856 Note that this is not required, and it may be slow. */
12857 *again = TRUE;
12858 }
12859 }
12860
12861 if (isymbuf != NULL
12862 && symtab_hdr->contents != (unsigned char *) isymbuf)
12863 {
12864 if (! link_info->keep_memory)
12865 free (isymbuf);
12866 else
12867 {
12868 /* Cache the symbols for elf_link_input_bfd. */
12869 symtab_hdr->contents = (unsigned char *) isymbuf;
12870 }
12871 }
12872
12873 if (contents != NULL
12874 && elf_section_data (sec)->this_hdr.contents != contents)
12875 {
12876 if (! link_info->keep_memory)
12877 free (contents);
12878 else
12879 {
12880 /* Cache the section contents for elf_link_input_bfd. */
12881 elf_section_data (sec)->this_hdr.contents = contents;
12882 }
12883 }
12884
12885 if (internal_relocs != NULL
12886 && elf_section_data (sec)->relocs != internal_relocs)
12887 free (internal_relocs);
12888
12889 return TRUE;
12890
12891 error_return:
12892 if (isymbuf != NULL
12893 && symtab_hdr->contents != (unsigned char *) isymbuf)
12894 free (isymbuf);
12895 if (contents != NULL
12896 && elf_section_data (sec)->this_hdr.contents != contents)
12897 free (contents);
12898 if (internal_relocs != NULL
12899 && elf_section_data (sec)->relocs != internal_relocs)
12900 free (internal_relocs);
12901
12902 return FALSE;
12903 }
12904 \f
12905 /* Create a MIPS ELF linker hash table. */
12906
12907 struct bfd_link_hash_table *
12908 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
12909 {
12910 struct mips_elf_link_hash_table *ret;
12911 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12912
12913 ret = bfd_malloc (amt);
12914 if (ret == NULL)
12915 return NULL;
12916
12917 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12918 mips_elf_link_hash_newfunc,
12919 sizeof (struct mips_elf_link_hash_entry),
12920 MIPS_ELF_DATA))
12921 {
12922 free (ret);
12923 return NULL;
12924 }
12925
12926 #if 0
12927 /* We no longer use this. */
12928 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
12929 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
12930 #endif
12931 ret->procedure_count = 0;
12932 ret->compact_rel_size = 0;
12933 ret->use_rld_obj_head = FALSE;
12934 ret->rld_symbol = NULL;
12935 ret->mips16_stubs_seen = FALSE;
12936 ret->use_plts_and_copy_relocs = FALSE;
12937 ret->is_vxworks = FALSE;
12938 ret->small_data_overflow_reported = FALSE;
12939 ret->srelbss = NULL;
12940 ret->sdynbss = NULL;
12941 ret->srelplt = NULL;
12942 ret->srelplt2 = NULL;
12943 ret->sgotplt = NULL;
12944 ret->splt = NULL;
12945 ret->sstubs = NULL;
12946 ret->sgot = NULL;
12947 ret->got_info = NULL;
12948 ret->plt_header_size = 0;
12949 ret->plt_entry_size = 0;
12950 ret->lazy_stub_count = 0;
12951 ret->function_stub_size = 0;
12952 ret->strampoline = NULL;
12953 ret->la25_stubs = NULL;
12954 ret->add_stub_section = NULL;
12955
12956 return &ret->root.root;
12957 }
12958
12959 /* Likewise, but indicate that the target is VxWorks. */
12960
12961 struct bfd_link_hash_table *
12962 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12963 {
12964 struct bfd_link_hash_table *ret;
12965
12966 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12967 if (ret)
12968 {
12969 struct mips_elf_link_hash_table *htab;
12970
12971 htab = (struct mips_elf_link_hash_table *) ret;
12972 htab->use_plts_and_copy_relocs = TRUE;
12973 htab->is_vxworks = TRUE;
12974 }
12975 return ret;
12976 }
12977
12978 /* A function that the linker calls if we are allowed to use PLTs
12979 and copy relocs. */
12980
12981 void
12982 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12983 {
12984 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12985 }
12986 \f
12987 /* We need to use a special link routine to handle the .reginfo and
12988 the .mdebug sections. We need to merge all instances of these
12989 sections together, not write them all out sequentially. */
12990
12991 bfd_boolean
12992 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12993 {
12994 asection *o;
12995 struct bfd_link_order *p;
12996 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
12997 asection *rtproc_sec;
12998 Elf32_RegInfo reginfo;
12999 struct ecoff_debug_info debug;
13000 struct mips_htab_traverse_info hti;
13001 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13002 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
13003 HDRR *symhdr = &debug.symbolic_header;
13004 void *mdebug_handle = NULL;
13005 asection *s;
13006 EXTR esym;
13007 unsigned int i;
13008 bfd_size_type amt;
13009 struct mips_elf_link_hash_table *htab;
13010
13011 static const char * const secname[] =
13012 {
13013 ".text", ".init", ".fini", ".data",
13014 ".rodata", ".sdata", ".sbss", ".bss"
13015 };
13016 static const int sc[] =
13017 {
13018 scText, scInit, scFini, scData,
13019 scRData, scSData, scSBss, scBss
13020 };
13021
13022 /* Sort the dynamic symbols so that those with GOT entries come after
13023 those without. */
13024 htab = mips_elf_hash_table (info);
13025 BFD_ASSERT (htab != NULL);
13026
13027 if (!mips_elf_sort_hash_table (abfd, info))
13028 return FALSE;
13029
13030 /* Create any scheduled LA25 stubs. */
13031 hti.info = info;
13032 hti.output_bfd = abfd;
13033 hti.error = FALSE;
13034 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
13035 if (hti.error)
13036 return FALSE;
13037
13038 /* Get a value for the GP register. */
13039 if (elf_gp (abfd) == 0)
13040 {
13041 struct bfd_link_hash_entry *h;
13042
13043 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
13044 if (h != NULL && h->type == bfd_link_hash_defined)
13045 elf_gp (abfd) = (h->u.def.value
13046 + h->u.def.section->output_section->vma
13047 + h->u.def.section->output_offset);
13048 else if (htab->is_vxworks
13049 && (h = bfd_link_hash_lookup (info->hash,
13050 "_GLOBAL_OFFSET_TABLE_",
13051 FALSE, FALSE, TRUE))
13052 && h->type == bfd_link_hash_defined)
13053 elf_gp (abfd) = (h->u.def.section->output_section->vma
13054 + h->u.def.section->output_offset
13055 + h->u.def.value);
13056 else if (info->relocatable)
13057 {
13058 bfd_vma lo = MINUS_ONE;
13059
13060 /* Find the GP-relative section with the lowest offset. */
13061 for (o = abfd->sections; o != NULL; o = o->next)
13062 if (o->vma < lo
13063 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
13064 lo = o->vma;
13065
13066 /* And calculate GP relative to that. */
13067 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
13068 }
13069 else
13070 {
13071 /* If the relocate_section function needs to do a reloc
13072 involving the GP value, it should make a reloc_dangerous
13073 callback to warn that GP is not defined. */
13074 }
13075 }
13076
13077 /* Go through the sections and collect the .reginfo and .mdebug
13078 information. */
13079 reginfo_sec = NULL;
13080 mdebug_sec = NULL;
13081 gptab_data_sec = NULL;
13082 gptab_bss_sec = NULL;
13083 for (o = abfd->sections; o != NULL; o = o->next)
13084 {
13085 if (strcmp (o->name, ".reginfo") == 0)
13086 {
13087 memset (&reginfo, 0, sizeof reginfo);
13088
13089 /* We have found the .reginfo section in the output file.
13090 Look through all the link_orders comprising it and merge
13091 the information together. */
13092 for (p = o->map_head.link_order; p != NULL; p = p->next)
13093 {
13094 asection *input_section;
13095 bfd *input_bfd;
13096 Elf32_External_RegInfo ext;
13097 Elf32_RegInfo sub;
13098
13099 if (p->type != bfd_indirect_link_order)
13100 {
13101 if (p->type == bfd_data_link_order)
13102 continue;
13103 abort ();
13104 }
13105
13106 input_section = p->u.indirect.section;
13107 input_bfd = input_section->owner;
13108
13109 if (! bfd_get_section_contents (input_bfd, input_section,
13110 &ext, 0, sizeof ext))
13111 return FALSE;
13112
13113 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
13114
13115 reginfo.ri_gprmask |= sub.ri_gprmask;
13116 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13117 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13118 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13119 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13120
13121 /* ri_gp_value is set by the function
13122 mips_elf32_section_processing when the section is
13123 finally written out. */
13124
13125 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13126 elf_link_input_bfd ignores this section. */
13127 input_section->flags &= ~SEC_HAS_CONTENTS;
13128 }
13129
13130 /* Size has been set in _bfd_mips_elf_always_size_sections. */
13131 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
13132
13133 /* Skip this section later on (I don't think this currently
13134 matters, but someday it might). */
13135 o->map_head.link_order = NULL;
13136
13137 reginfo_sec = o;
13138 }
13139
13140 if (strcmp (o->name, ".mdebug") == 0)
13141 {
13142 struct extsym_info einfo;
13143 bfd_vma last;
13144
13145 /* We have found the .mdebug section in the output file.
13146 Look through all the link_orders comprising it and merge
13147 the information together. */
13148 symhdr->magic = swap->sym_magic;
13149 /* FIXME: What should the version stamp be? */
13150 symhdr->vstamp = 0;
13151 symhdr->ilineMax = 0;
13152 symhdr->cbLine = 0;
13153 symhdr->idnMax = 0;
13154 symhdr->ipdMax = 0;
13155 symhdr->isymMax = 0;
13156 symhdr->ioptMax = 0;
13157 symhdr->iauxMax = 0;
13158 symhdr->issMax = 0;
13159 symhdr->issExtMax = 0;
13160 symhdr->ifdMax = 0;
13161 symhdr->crfd = 0;
13162 symhdr->iextMax = 0;
13163
13164 /* We accumulate the debugging information itself in the
13165 debug_info structure. */
13166 debug.line = NULL;
13167 debug.external_dnr = NULL;
13168 debug.external_pdr = NULL;
13169 debug.external_sym = NULL;
13170 debug.external_opt = NULL;
13171 debug.external_aux = NULL;
13172 debug.ss = NULL;
13173 debug.ssext = debug.ssext_end = NULL;
13174 debug.external_fdr = NULL;
13175 debug.external_rfd = NULL;
13176 debug.external_ext = debug.external_ext_end = NULL;
13177
13178 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
13179 if (mdebug_handle == NULL)
13180 return FALSE;
13181
13182 esym.jmptbl = 0;
13183 esym.cobol_main = 0;
13184 esym.weakext = 0;
13185 esym.reserved = 0;
13186 esym.ifd = ifdNil;
13187 esym.asym.iss = issNil;
13188 esym.asym.st = stLocal;
13189 esym.asym.reserved = 0;
13190 esym.asym.index = indexNil;
13191 last = 0;
13192 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13193 {
13194 esym.asym.sc = sc[i];
13195 s = bfd_get_section_by_name (abfd, secname[i]);
13196 if (s != NULL)
13197 {
13198 esym.asym.value = s->vma;
13199 last = s->vma + s->size;
13200 }
13201 else
13202 esym.asym.value = last;
13203 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13204 secname[i], &esym))
13205 return FALSE;
13206 }
13207
13208 for (p = o->map_head.link_order; p != NULL; p = p->next)
13209 {
13210 asection *input_section;
13211 bfd *input_bfd;
13212 const struct ecoff_debug_swap *input_swap;
13213 struct ecoff_debug_info input_debug;
13214 char *eraw_src;
13215 char *eraw_end;
13216
13217 if (p->type != bfd_indirect_link_order)
13218 {
13219 if (p->type == bfd_data_link_order)
13220 continue;
13221 abort ();
13222 }
13223
13224 input_section = p->u.indirect.section;
13225 input_bfd = input_section->owner;
13226
13227 if (!is_mips_elf (input_bfd))
13228 {
13229 /* I don't know what a non MIPS ELF bfd would be
13230 doing with a .mdebug section, but I don't really
13231 want to deal with it. */
13232 continue;
13233 }
13234
13235 input_swap = (get_elf_backend_data (input_bfd)
13236 ->elf_backend_ecoff_debug_swap);
13237
13238 BFD_ASSERT (p->size == input_section->size);
13239
13240 /* The ECOFF linking code expects that we have already
13241 read in the debugging information and set up an
13242 ecoff_debug_info structure, so we do that now. */
13243 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13244 &input_debug))
13245 return FALSE;
13246
13247 if (! (bfd_ecoff_debug_accumulate
13248 (mdebug_handle, abfd, &debug, swap, input_bfd,
13249 &input_debug, input_swap, info)))
13250 return FALSE;
13251
13252 /* Loop through the external symbols. For each one with
13253 interesting information, try to find the symbol in
13254 the linker global hash table and save the information
13255 for the output external symbols. */
13256 eraw_src = input_debug.external_ext;
13257 eraw_end = (eraw_src
13258 + (input_debug.symbolic_header.iextMax
13259 * input_swap->external_ext_size));
13260 for (;
13261 eraw_src < eraw_end;
13262 eraw_src += input_swap->external_ext_size)
13263 {
13264 EXTR ext;
13265 const char *name;
13266 struct mips_elf_link_hash_entry *h;
13267
13268 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13269 if (ext.asym.sc == scNil
13270 || ext.asym.sc == scUndefined
13271 || ext.asym.sc == scSUndefined)
13272 continue;
13273
13274 name = input_debug.ssext + ext.asym.iss;
13275 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13276 name, FALSE, FALSE, TRUE);
13277 if (h == NULL || h->esym.ifd != -2)
13278 continue;
13279
13280 if (ext.ifd != -1)
13281 {
13282 BFD_ASSERT (ext.ifd
13283 < input_debug.symbolic_header.ifdMax);
13284 ext.ifd = input_debug.ifdmap[ext.ifd];
13285 }
13286
13287 h->esym = ext;
13288 }
13289
13290 /* Free up the information we just read. */
13291 free (input_debug.line);
13292 free (input_debug.external_dnr);
13293 free (input_debug.external_pdr);
13294 free (input_debug.external_sym);
13295 free (input_debug.external_opt);
13296 free (input_debug.external_aux);
13297 free (input_debug.ss);
13298 free (input_debug.ssext);
13299 free (input_debug.external_fdr);
13300 free (input_debug.external_rfd);
13301 free (input_debug.external_ext);
13302
13303 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13304 elf_link_input_bfd ignores this section. */
13305 input_section->flags &= ~SEC_HAS_CONTENTS;
13306 }
13307
13308 if (SGI_COMPAT (abfd) && info->shared)
13309 {
13310 /* Create .rtproc section. */
13311 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13312 if (rtproc_sec == NULL)
13313 {
13314 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13315 | SEC_LINKER_CREATED | SEC_READONLY);
13316
13317 rtproc_sec = bfd_make_section_with_flags (abfd,
13318 ".rtproc",
13319 flags);
13320 if (rtproc_sec == NULL
13321 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13322 return FALSE;
13323 }
13324
13325 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13326 info, rtproc_sec,
13327 &debug))
13328 return FALSE;
13329 }
13330
13331 /* Build the external symbol information. */
13332 einfo.abfd = abfd;
13333 einfo.info = info;
13334 einfo.debug = &debug;
13335 einfo.swap = swap;
13336 einfo.failed = FALSE;
13337 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13338 mips_elf_output_extsym, &einfo);
13339 if (einfo.failed)
13340 return FALSE;
13341
13342 /* Set the size of the .mdebug section. */
13343 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13344
13345 /* Skip this section later on (I don't think this currently
13346 matters, but someday it might). */
13347 o->map_head.link_order = NULL;
13348
13349 mdebug_sec = o;
13350 }
13351
13352 if (CONST_STRNEQ (o->name, ".gptab."))
13353 {
13354 const char *subname;
13355 unsigned int c;
13356 Elf32_gptab *tab;
13357 Elf32_External_gptab *ext_tab;
13358 unsigned int j;
13359
13360 /* The .gptab.sdata and .gptab.sbss sections hold
13361 information describing how the small data area would
13362 change depending upon the -G switch. These sections
13363 not used in executables files. */
13364 if (! info->relocatable)
13365 {
13366 for (p = o->map_head.link_order; p != NULL; p = p->next)
13367 {
13368 asection *input_section;
13369
13370 if (p->type != bfd_indirect_link_order)
13371 {
13372 if (p->type == bfd_data_link_order)
13373 continue;
13374 abort ();
13375 }
13376
13377 input_section = p->u.indirect.section;
13378
13379 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13380 elf_link_input_bfd ignores this section. */
13381 input_section->flags &= ~SEC_HAS_CONTENTS;
13382 }
13383
13384 /* Skip this section later on (I don't think this
13385 currently matters, but someday it might). */
13386 o->map_head.link_order = NULL;
13387
13388 /* Really remove the section. */
13389 bfd_section_list_remove (abfd, o);
13390 --abfd->section_count;
13391
13392 continue;
13393 }
13394
13395 /* There is one gptab for initialized data, and one for
13396 uninitialized data. */
13397 if (strcmp (o->name, ".gptab.sdata") == 0)
13398 gptab_data_sec = o;
13399 else if (strcmp (o->name, ".gptab.sbss") == 0)
13400 gptab_bss_sec = o;
13401 else
13402 {
13403 (*_bfd_error_handler)
13404 (_("%s: illegal section name `%s'"),
13405 bfd_get_filename (abfd), o->name);
13406 bfd_set_error (bfd_error_nonrepresentable_section);
13407 return FALSE;
13408 }
13409
13410 /* The linker script always combines .gptab.data and
13411 .gptab.sdata into .gptab.sdata, and likewise for
13412 .gptab.bss and .gptab.sbss. It is possible that there is
13413 no .sdata or .sbss section in the output file, in which
13414 case we must change the name of the output section. */
13415 subname = o->name + sizeof ".gptab" - 1;
13416 if (bfd_get_section_by_name (abfd, subname) == NULL)
13417 {
13418 if (o == gptab_data_sec)
13419 o->name = ".gptab.data";
13420 else
13421 o->name = ".gptab.bss";
13422 subname = o->name + sizeof ".gptab" - 1;
13423 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13424 }
13425
13426 /* Set up the first entry. */
13427 c = 1;
13428 amt = c * sizeof (Elf32_gptab);
13429 tab = bfd_malloc (amt);
13430 if (tab == NULL)
13431 return FALSE;
13432 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13433 tab[0].gt_header.gt_unused = 0;
13434
13435 /* Combine the input sections. */
13436 for (p = o->map_head.link_order; p != NULL; p = p->next)
13437 {
13438 asection *input_section;
13439 bfd *input_bfd;
13440 bfd_size_type size;
13441 unsigned long last;
13442 bfd_size_type gpentry;
13443
13444 if (p->type != bfd_indirect_link_order)
13445 {
13446 if (p->type == bfd_data_link_order)
13447 continue;
13448 abort ();
13449 }
13450
13451 input_section = p->u.indirect.section;
13452 input_bfd = input_section->owner;
13453
13454 /* Combine the gptab entries for this input section one
13455 by one. We know that the input gptab entries are
13456 sorted by ascending -G value. */
13457 size = input_section->size;
13458 last = 0;
13459 for (gpentry = sizeof (Elf32_External_gptab);
13460 gpentry < size;
13461 gpentry += sizeof (Elf32_External_gptab))
13462 {
13463 Elf32_External_gptab ext_gptab;
13464 Elf32_gptab int_gptab;
13465 unsigned long val;
13466 unsigned long add;
13467 bfd_boolean exact;
13468 unsigned int look;
13469
13470 if (! (bfd_get_section_contents
13471 (input_bfd, input_section, &ext_gptab, gpentry,
13472 sizeof (Elf32_External_gptab))))
13473 {
13474 free (tab);
13475 return FALSE;
13476 }
13477
13478 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13479 &int_gptab);
13480 val = int_gptab.gt_entry.gt_g_value;
13481 add = int_gptab.gt_entry.gt_bytes - last;
13482
13483 exact = FALSE;
13484 for (look = 1; look < c; look++)
13485 {
13486 if (tab[look].gt_entry.gt_g_value >= val)
13487 tab[look].gt_entry.gt_bytes += add;
13488
13489 if (tab[look].gt_entry.gt_g_value == val)
13490 exact = TRUE;
13491 }
13492
13493 if (! exact)
13494 {
13495 Elf32_gptab *new_tab;
13496 unsigned int max;
13497
13498 /* We need a new table entry. */
13499 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
13500 new_tab = bfd_realloc (tab, amt);
13501 if (new_tab == NULL)
13502 {
13503 free (tab);
13504 return FALSE;
13505 }
13506 tab = new_tab;
13507 tab[c].gt_entry.gt_g_value = val;
13508 tab[c].gt_entry.gt_bytes = add;
13509
13510 /* Merge in the size for the next smallest -G
13511 value, since that will be implied by this new
13512 value. */
13513 max = 0;
13514 for (look = 1; look < c; look++)
13515 {
13516 if (tab[look].gt_entry.gt_g_value < val
13517 && (max == 0
13518 || (tab[look].gt_entry.gt_g_value
13519 > tab[max].gt_entry.gt_g_value)))
13520 max = look;
13521 }
13522 if (max != 0)
13523 tab[c].gt_entry.gt_bytes +=
13524 tab[max].gt_entry.gt_bytes;
13525
13526 ++c;
13527 }
13528
13529 last = int_gptab.gt_entry.gt_bytes;
13530 }
13531
13532 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13533 elf_link_input_bfd ignores this section. */
13534 input_section->flags &= ~SEC_HAS_CONTENTS;
13535 }
13536
13537 /* The table must be sorted by -G value. */
13538 if (c > 2)
13539 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13540
13541 /* Swap out the table. */
13542 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
13543 ext_tab = bfd_alloc (abfd, amt);
13544 if (ext_tab == NULL)
13545 {
13546 free (tab);
13547 return FALSE;
13548 }
13549
13550 for (j = 0; j < c; j++)
13551 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13552 free (tab);
13553
13554 o->size = c * sizeof (Elf32_External_gptab);
13555 o->contents = (bfd_byte *) ext_tab;
13556
13557 /* Skip this section later on (I don't think this currently
13558 matters, but someday it might). */
13559 o->map_head.link_order = NULL;
13560 }
13561 }
13562
13563 /* Invoke the regular ELF backend linker to do all the work. */
13564 if (!bfd_elf_final_link (abfd, info))
13565 return FALSE;
13566
13567 /* Now write out the computed sections. */
13568
13569 if (reginfo_sec != NULL)
13570 {
13571 Elf32_External_RegInfo ext;
13572
13573 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
13574 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
13575 return FALSE;
13576 }
13577
13578 if (mdebug_sec != NULL)
13579 {
13580 BFD_ASSERT (abfd->output_has_begun);
13581 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13582 swap, info,
13583 mdebug_sec->filepos))
13584 return FALSE;
13585
13586 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13587 }
13588
13589 if (gptab_data_sec != NULL)
13590 {
13591 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13592 gptab_data_sec->contents,
13593 0, gptab_data_sec->size))
13594 return FALSE;
13595 }
13596
13597 if (gptab_bss_sec != NULL)
13598 {
13599 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13600 gptab_bss_sec->contents,
13601 0, gptab_bss_sec->size))
13602 return FALSE;
13603 }
13604
13605 if (SGI_COMPAT (abfd))
13606 {
13607 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13608 if (rtproc_sec != NULL)
13609 {
13610 if (! bfd_set_section_contents (abfd, rtproc_sec,
13611 rtproc_sec->contents,
13612 0, rtproc_sec->size))
13613 return FALSE;
13614 }
13615 }
13616
13617 return TRUE;
13618 }
13619 \f
13620 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13621
13622 struct mips_mach_extension {
13623 unsigned long extension, base;
13624 };
13625
13626
13627 /* An array describing how BFD machines relate to one another. The entries
13628 are ordered topologically with MIPS I extensions listed last. */
13629
13630 static const struct mips_mach_extension mips_mach_extensions[] = {
13631 /* MIPS64r2 extensions. */
13632 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13633 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13634 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13635
13636 /* MIPS64 extensions. */
13637 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13638 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13639 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13640 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
13641
13642 /* MIPS V extensions. */
13643 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13644
13645 /* R10000 extensions. */
13646 { bfd_mach_mips12000, bfd_mach_mips10000 },
13647 { bfd_mach_mips14000, bfd_mach_mips10000 },
13648 { bfd_mach_mips16000, bfd_mach_mips10000 },
13649
13650 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13651 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13652 better to allow vr5400 and vr5500 code to be merged anyway, since
13653 many libraries will just use the core ISA. Perhaps we could add
13654 some sort of ASE flag if this ever proves a problem. */
13655 { bfd_mach_mips5500, bfd_mach_mips5400 },
13656 { bfd_mach_mips5400, bfd_mach_mips5000 },
13657
13658 /* MIPS IV extensions. */
13659 { bfd_mach_mips5, bfd_mach_mips8000 },
13660 { bfd_mach_mips10000, bfd_mach_mips8000 },
13661 { bfd_mach_mips5000, bfd_mach_mips8000 },
13662 { bfd_mach_mips7000, bfd_mach_mips8000 },
13663 { bfd_mach_mips9000, bfd_mach_mips8000 },
13664
13665 /* VR4100 extensions. */
13666 { bfd_mach_mips4120, bfd_mach_mips4100 },
13667 { bfd_mach_mips4111, bfd_mach_mips4100 },
13668
13669 /* MIPS III extensions. */
13670 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13671 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13672 { bfd_mach_mips8000, bfd_mach_mips4000 },
13673 { bfd_mach_mips4650, bfd_mach_mips4000 },
13674 { bfd_mach_mips4600, bfd_mach_mips4000 },
13675 { bfd_mach_mips4400, bfd_mach_mips4000 },
13676 { bfd_mach_mips4300, bfd_mach_mips4000 },
13677 { bfd_mach_mips4100, bfd_mach_mips4000 },
13678 { bfd_mach_mips4010, bfd_mach_mips4000 },
13679
13680 /* MIPS32 extensions. */
13681 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13682
13683 /* MIPS II extensions. */
13684 { bfd_mach_mips4000, bfd_mach_mips6000 },
13685 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13686
13687 /* MIPS I extensions. */
13688 { bfd_mach_mips6000, bfd_mach_mips3000 },
13689 { bfd_mach_mips3900, bfd_mach_mips3000 }
13690 };
13691
13692
13693 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13694
13695 static bfd_boolean
13696 mips_mach_extends_p (unsigned long base, unsigned long extension)
13697 {
13698 size_t i;
13699
13700 if (extension == base)
13701 return TRUE;
13702
13703 if (base == bfd_mach_mipsisa32
13704 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13705 return TRUE;
13706
13707 if (base == bfd_mach_mipsisa32r2
13708 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13709 return TRUE;
13710
13711 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
13712 if (extension == mips_mach_extensions[i].extension)
13713 {
13714 extension = mips_mach_extensions[i].base;
13715 if (extension == base)
13716 return TRUE;
13717 }
13718
13719 return FALSE;
13720 }
13721
13722
13723 /* Return true if the given ELF header flags describe a 32-bit binary. */
13724
13725 static bfd_boolean
13726 mips_32bit_flags_p (flagword flags)
13727 {
13728 return ((flags & EF_MIPS_32BITMODE) != 0
13729 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13730 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13731 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13732 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13733 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13734 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13735 }
13736
13737
13738 /* Merge object attributes from IBFD into OBFD. Raise an error if
13739 there are conflicting attributes. */
13740 static bfd_boolean
13741 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13742 {
13743 obj_attribute *in_attr;
13744 obj_attribute *out_attr;
13745
13746 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13747 {
13748 /* This is the first object. Copy the attributes. */
13749 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13750
13751 /* Use the Tag_null value to indicate the attributes have been
13752 initialized. */
13753 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13754
13755 return TRUE;
13756 }
13757
13758 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13759 non-conflicting ones. */
13760 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13761 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13762 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13763 {
13764 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13765 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13766 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13767 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13768 ;
13769 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13770 _bfd_error_handler
13771 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
13772 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13773 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13774 _bfd_error_handler
13775 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
13776 out_attr[Tag_GNU_MIPS_ABI_FP].i);
13777 else
13778 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13779 {
13780 case 1:
13781 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13782 {
13783 case 2:
13784 _bfd_error_handler
13785 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13786 obfd, ibfd);
13787 break;
13788
13789 case 3:
13790 _bfd_error_handler
13791 (_("Warning: %B uses hard float, %B uses soft float"),
13792 obfd, ibfd);
13793 break;
13794
13795 case 4:
13796 _bfd_error_handler
13797 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13798 obfd, ibfd);
13799 break;
13800
13801 default:
13802 abort ();
13803 }
13804 break;
13805
13806 case 2:
13807 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13808 {
13809 case 1:
13810 _bfd_error_handler
13811 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13812 ibfd, obfd);
13813 break;
13814
13815 case 3:
13816 _bfd_error_handler
13817 (_("Warning: %B uses hard float, %B uses soft float"),
13818 obfd, ibfd);
13819 break;
13820
13821 case 4:
13822 _bfd_error_handler
13823 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13824 obfd, ibfd);
13825 break;
13826
13827 default:
13828 abort ();
13829 }
13830 break;
13831
13832 case 3:
13833 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13834 {
13835 case 1:
13836 case 2:
13837 case 4:
13838 _bfd_error_handler
13839 (_("Warning: %B uses hard float, %B uses soft float"),
13840 ibfd, obfd);
13841 break;
13842
13843 default:
13844 abort ();
13845 }
13846 break;
13847
13848 case 4:
13849 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13850 {
13851 case 1:
13852 _bfd_error_handler
13853 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13854 ibfd, obfd);
13855 break;
13856
13857 case 2:
13858 _bfd_error_handler
13859 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13860 ibfd, obfd);
13861 break;
13862
13863 case 3:
13864 _bfd_error_handler
13865 (_("Warning: %B uses hard float, %B uses soft float"),
13866 obfd, ibfd);
13867 break;
13868
13869 default:
13870 abort ();
13871 }
13872 break;
13873
13874 default:
13875 abort ();
13876 }
13877 }
13878
13879 /* Merge Tag_compatibility attributes and any common GNU ones. */
13880 _bfd_elf_merge_object_attributes (ibfd, obfd);
13881
13882 return TRUE;
13883 }
13884
13885 /* Merge backend specific data from an object file to the output
13886 object file when linking. */
13887
13888 bfd_boolean
13889 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
13890 {
13891 flagword old_flags;
13892 flagword new_flags;
13893 bfd_boolean ok;
13894 bfd_boolean null_input_bfd = TRUE;
13895 asection *sec;
13896
13897 /* Check if we have the same endianness. */
13898 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13899 {
13900 (*_bfd_error_handler)
13901 (_("%B: endianness incompatible with that of the selected emulation"),
13902 ibfd);
13903 return FALSE;
13904 }
13905
13906 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
13907 return TRUE;
13908
13909 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13910 {
13911 (*_bfd_error_handler)
13912 (_("%B: ABI is incompatible with that of the selected emulation"),
13913 ibfd);
13914 return FALSE;
13915 }
13916
13917 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13918 return FALSE;
13919
13920 new_flags = elf_elfheader (ibfd)->e_flags;
13921 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13922 old_flags = elf_elfheader (obfd)->e_flags;
13923
13924 if (! elf_flags_init (obfd))
13925 {
13926 elf_flags_init (obfd) = TRUE;
13927 elf_elfheader (obfd)->e_flags = new_flags;
13928 elf_elfheader (obfd)->e_ident[EI_CLASS]
13929 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13930
13931 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
13932 && (bfd_get_arch_info (obfd)->the_default
13933 || mips_mach_extends_p (bfd_get_mach (obfd),
13934 bfd_get_mach (ibfd))))
13935 {
13936 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13937 bfd_get_mach (ibfd)))
13938 return FALSE;
13939 }
13940
13941 return TRUE;
13942 }
13943
13944 /* Check flag compatibility. */
13945
13946 new_flags &= ~EF_MIPS_NOREORDER;
13947 old_flags &= ~EF_MIPS_NOREORDER;
13948
13949 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13950 doesn't seem to matter. */
13951 new_flags &= ~EF_MIPS_XGOT;
13952 old_flags &= ~EF_MIPS_XGOT;
13953
13954 /* MIPSpro generates ucode info in n64 objects. Again, we should
13955 just be able to ignore this. */
13956 new_flags &= ~EF_MIPS_UCODE;
13957 old_flags &= ~EF_MIPS_UCODE;
13958
13959 /* DSOs should only be linked with CPIC code. */
13960 if ((ibfd->flags & DYNAMIC) != 0)
13961 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
13962
13963 if (new_flags == old_flags)
13964 return TRUE;
13965
13966 /* Check to see if the input BFD actually contains any sections.
13967 If not, its flags may not have been initialised either, but it cannot
13968 actually cause any incompatibility. */
13969 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13970 {
13971 /* Ignore synthetic sections and empty .text, .data and .bss sections
13972 which are automatically generated by gas. Also ignore fake
13973 (s)common sections, since merely defining a common symbol does
13974 not affect compatibility. */
13975 if ((sec->flags & SEC_IS_COMMON) == 0
13976 && strcmp (sec->name, ".reginfo")
13977 && strcmp (sec->name, ".mdebug")
13978 && (sec->size != 0
13979 || (strcmp (sec->name, ".text")
13980 && strcmp (sec->name, ".data")
13981 && strcmp (sec->name, ".bss"))))
13982 {
13983 null_input_bfd = FALSE;
13984 break;
13985 }
13986 }
13987 if (null_input_bfd)
13988 return TRUE;
13989
13990 ok = TRUE;
13991
13992 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
13993 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
13994 {
13995 (*_bfd_error_handler)
13996 (_("%B: warning: linking abicalls files with non-abicalls files"),
13997 ibfd);
13998 ok = TRUE;
13999 }
14000
14001 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14002 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14003 if (! (new_flags & EF_MIPS_PIC))
14004 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14005
14006 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14007 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14008
14009 /* Compare the ISAs. */
14010 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14011 {
14012 (*_bfd_error_handler)
14013 (_("%B: linking 32-bit code with 64-bit code"),
14014 ibfd);
14015 ok = FALSE;
14016 }
14017 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14018 {
14019 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14020 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14021 {
14022 /* Copy the architecture info from IBFD to OBFD. Also copy
14023 the 32-bit flag (if set) so that we continue to recognise
14024 OBFD as a 32-bit binary. */
14025 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14026 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14027 elf_elfheader (obfd)->e_flags
14028 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14029
14030 /* Copy across the ABI flags if OBFD doesn't use them
14031 and if that was what caused us to treat IBFD as 32-bit. */
14032 if ((old_flags & EF_MIPS_ABI) == 0
14033 && mips_32bit_flags_p (new_flags)
14034 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14035 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
14036 }
14037 else
14038 {
14039 /* The ISAs aren't compatible. */
14040 (*_bfd_error_handler)
14041 (_("%B: linking %s module with previous %s modules"),
14042 ibfd,
14043 bfd_printable_name (ibfd),
14044 bfd_printable_name (obfd));
14045 ok = FALSE;
14046 }
14047 }
14048
14049 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14050 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14051
14052 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
14053 does set EI_CLASS differently from any 32-bit ABI. */
14054 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14055 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14056 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14057 {
14058 /* Only error if both are set (to different values). */
14059 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14060 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14061 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14062 {
14063 (*_bfd_error_handler)
14064 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14065 ibfd,
14066 elf_mips_abi_name (ibfd),
14067 elf_mips_abi_name (obfd));
14068 ok = FALSE;
14069 }
14070 new_flags &= ~EF_MIPS_ABI;
14071 old_flags &= ~EF_MIPS_ABI;
14072 }
14073
14074 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14075 and allow arbitrary mixing of the remaining ASEs (retain the union). */
14076 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14077 {
14078 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14079 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14080 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14081 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14082 int micro_mis = old_m16 && new_micro;
14083 int m16_mis = old_micro && new_m16;
14084
14085 if (m16_mis || micro_mis)
14086 {
14087 (*_bfd_error_handler)
14088 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14089 ibfd,
14090 m16_mis ? "MIPS16" : "microMIPS",
14091 m16_mis ? "microMIPS" : "MIPS16");
14092 ok = FALSE;
14093 }
14094
14095 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14096
14097 new_flags &= ~ EF_MIPS_ARCH_ASE;
14098 old_flags &= ~ EF_MIPS_ARCH_ASE;
14099 }
14100
14101 /* Warn about any other mismatches */
14102 if (new_flags != old_flags)
14103 {
14104 (*_bfd_error_handler)
14105 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14106 ibfd, (unsigned long) new_flags,
14107 (unsigned long) old_flags);
14108 ok = FALSE;
14109 }
14110
14111 if (! ok)
14112 {
14113 bfd_set_error (bfd_error_bad_value);
14114 return FALSE;
14115 }
14116
14117 return TRUE;
14118 }
14119
14120 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14121
14122 bfd_boolean
14123 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
14124 {
14125 BFD_ASSERT (!elf_flags_init (abfd)
14126 || elf_elfheader (abfd)->e_flags == flags);
14127
14128 elf_elfheader (abfd)->e_flags = flags;
14129 elf_flags_init (abfd) = TRUE;
14130 return TRUE;
14131 }
14132
14133 char *
14134 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14135 {
14136 switch (dtag)
14137 {
14138 default: return "";
14139 case DT_MIPS_RLD_VERSION:
14140 return "MIPS_RLD_VERSION";
14141 case DT_MIPS_TIME_STAMP:
14142 return "MIPS_TIME_STAMP";
14143 case DT_MIPS_ICHECKSUM:
14144 return "MIPS_ICHECKSUM";
14145 case DT_MIPS_IVERSION:
14146 return "MIPS_IVERSION";
14147 case DT_MIPS_FLAGS:
14148 return "MIPS_FLAGS";
14149 case DT_MIPS_BASE_ADDRESS:
14150 return "MIPS_BASE_ADDRESS";
14151 case DT_MIPS_MSYM:
14152 return "MIPS_MSYM";
14153 case DT_MIPS_CONFLICT:
14154 return "MIPS_CONFLICT";
14155 case DT_MIPS_LIBLIST:
14156 return "MIPS_LIBLIST";
14157 case DT_MIPS_LOCAL_GOTNO:
14158 return "MIPS_LOCAL_GOTNO";
14159 case DT_MIPS_CONFLICTNO:
14160 return "MIPS_CONFLICTNO";
14161 case DT_MIPS_LIBLISTNO:
14162 return "MIPS_LIBLISTNO";
14163 case DT_MIPS_SYMTABNO:
14164 return "MIPS_SYMTABNO";
14165 case DT_MIPS_UNREFEXTNO:
14166 return "MIPS_UNREFEXTNO";
14167 case DT_MIPS_GOTSYM:
14168 return "MIPS_GOTSYM";
14169 case DT_MIPS_HIPAGENO:
14170 return "MIPS_HIPAGENO";
14171 case DT_MIPS_RLD_MAP:
14172 return "MIPS_RLD_MAP";
14173 case DT_MIPS_DELTA_CLASS:
14174 return "MIPS_DELTA_CLASS";
14175 case DT_MIPS_DELTA_CLASS_NO:
14176 return "MIPS_DELTA_CLASS_NO";
14177 case DT_MIPS_DELTA_INSTANCE:
14178 return "MIPS_DELTA_INSTANCE";
14179 case DT_MIPS_DELTA_INSTANCE_NO:
14180 return "MIPS_DELTA_INSTANCE_NO";
14181 case DT_MIPS_DELTA_RELOC:
14182 return "MIPS_DELTA_RELOC";
14183 case DT_MIPS_DELTA_RELOC_NO:
14184 return "MIPS_DELTA_RELOC_NO";
14185 case DT_MIPS_DELTA_SYM:
14186 return "MIPS_DELTA_SYM";
14187 case DT_MIPS_DELTA_SYM_NO:
14188 return "MIPS_DELTA_SYM_NO";
14189 case DT_MIPS_DELTA_CLASSSYM:
14190 return "MIPS_DELTA_CLASSSYM";
14191 case DT_MIPS_DELTA_CLASSSYM_NO:
14192 return "MIPS_DELTA_CLASSSYM_NO";
14193 case DT_MIPS_CXX_FLAGS:
14194 return "MIPS_CXX_FLAGS";
14195 case DT_MIPS_PIXIE_INIT:
14196 return "MIPS_PIXIE_INIT";
14197 case DT_MIPS_SYMBOL_LIB:
14198 return "MIPS_SYMBOL_LIB";
14199 case DT_MIPS_LOCALPAGE_GOTIDX:
14200 return "MIPS_LOCALPAGE_GOTIDX";
14201 case DT_MIPS_LOCAL_GOTIDX:
14202 return "MIPS_LOCAL_GOTIDX";
14203 case DT_MIPS_HIDDEN_GOTIDX:
14204 return "MIPS_HIDDEN_GOTIDX";
14205 case DT_MIPS_PROTECTED_GOTIDX:
14206 return "MIPS_PROTECTED_GOT_IDX";
14207 case DT_MIPS_OPTIONS:
14208 return "MIPS_OPTIONS";
14209 case DT_MIPS_INTERFACE:
14210 return "MIPS_INTERFACE";
14211 case DT_MIPS_DYNSTR_ALIGN:
14212 return "DT_MIPS_DYNSTR_ALIGN";
14213 case DT_MIPS_INTERFACE_SIZE:
14214 return "DT_MIPS_INTERFACE_SIZE";
14215 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14216 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14217 case DT_MIPS_PERF_SUFFIX:
14218 return "DT_MIPS_PERF_SUFFIX";
14219 case DT_MIPS_COMPACT_SIZE:
14220 return "DT_MIPS_COMPACT_SIZE";
14221 case DT_MIPS_GP_VALUE:
14222 return "DT_MIPS_GP_VALUE";
14223 case DT_MIPS_AUX_DYNAMIC:
14224 return "DT_MIPS_AUX_DYNAMIC";
14225 case DT_MIPS_PLTGOT:
14226 return "DT_MIPS_PLTGOT";
14227 case DT_MIPS_RWPLT:
14228 return "DT_MIPS_RWPLT";
14229 }
14230 }
14231
14232 bfd_boolean
14233 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14234 {
14235 FILE *file = ptr;
14236
14237 BFD_ASSERT (abfd != NULL && ptr != NULL);
14238
14239 /* Print normal ELF private data. */
14240 _bfd_elf_print_private_bfd_data (abfd, ptr);
14241
14242 /* xgettext:c-format */
14243 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14244
14245 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14246 fprintf (file, _(" [abi=O32]"));
14247 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14248 fprintf (file, _(" [abi=O64]"));
14249 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14250 fprintf (file, _(" [abi=EABI32]"));
14251 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14252 fprintf (file, _(" [abi=EABI64]"));
14253 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14254 fprintf (file, _(" [abi unknown]"));
14255 else if (ABI_N32_P (abfd))
14256 fprintf (file, _(" [abi=N32]"));
14257 else if (ABI_64_P (abfd))
14258 fprintf (file, _(" [abi=64]"));
14259 else
14260 fprintf (file, _(" [no abi set]"));
14261
14262 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14263 fprintf (file, " [mips1]");
14264 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14265 fprintf (file, " [mips2]");
14266 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14267 fprintf (file, " [mips3]");
14268 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14269 fprintf (file, " [mips4]");
14270 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14271 fprintf (file, " [mips5]");
14272 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14273 fprintf (file, " [mips32]");
14274 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14275 fprintf (file, " [mips64]");
14276 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14277 fprintf (file, " [mips32r2]");
14278 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14279 fprintf (file, " [mips64r2]");
14280 else
14281 fprintf (file, _(" [unknown ISA]"));
14282
14283 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14284 fprintf (file, " [mdmx]");
14285
14286 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14287 fprintf (file, " [mips16]");
14288
14289 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14290 fprintf (file, " [micromips]");
14291
14292 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14293 fprintf (file, " [32bitmode]");
14294 else
14295 fprintf (file, _(" [not 32bitmode]"));
14296
14297 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
14298 fprintf (file, " [noreorder]");
14299
14300 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
14301 fprintf (file, " [PIC]");
14302
14303 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
14304 fprintf (file, " [CPIC]");
14305
14306 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
14307 fprintf (file, " [XGOT]");
14308
14309 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
14310 fprintf (file, " [UCODE]");
14311
14312 fputc ('\n', file);
14313
14314 return TRUE;
14315 }
14316
14317 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
14318 {
14319 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14320 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14321 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14322 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14323 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14324 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14325 { NULL, 0, 0, 0, 0 }
14326 };
14327
14328 /* Merge non visibility st_other attributes. Ensure that the
14329 STO_OPTIONAL flag is copied into h->other, even if this is not a
14330 definiton of the symbol. */
14331 void
14332 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14333 const Elf_Internal_Sym *isym,
14334 bfd_boolean definition,
14335 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14336 {
14337 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14338 {
14339 unsigned char other;
14340
14341 other = (definition ? isym->st_other : h->other);
14342 other &= ~ELF_ST_VISIBILITY (-1);
14343 h->other = other | ELF_ST_VISIBILITY (h->other);
14344 }
14345
14346 if (!definition
14347 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14348 h->other |= STO_OPTIONAL;
14349 }
14350
14351 /* Decide whether an undefined symbol is special and can be ignored.
14352 This is the case for OPTIONAL symbols on IRIX. */
14353 bfd_boolean
14354 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14355 {
14356 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14357 }
14358
14359 bfd_boolean
14360 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14361 {
14362 return (sym->st_shndx == SHN_COMMON
14363 || sym->st_shndx == SHN_MIPS_ACOMMON
14364 || sym->st_shndx == SHN_MIPS_SCOMMON);
14365 }
14366
14367 /* Return address for Ith PLT stub in section PLT, for relocation REL
14368 or (bfd_vma) -1 if it should not be included. */
14369
14370 bfd_vma
14371 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14372 const arelent *rel ATTRIBUTE_UNUSED)
14373 {
14374 return (plt->vma
14375 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14376 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14377 }
14378
14379 void
14380 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14381 {
14382 struct mips_elf_link_hash_table *htab;
14383 Elf_Internal_Ehdr *i_ehdrp;
14384
14385 i_ehdrp = elf_elfheader (abfd);
14386 if (link_info)
14387 {
14388 htab = mips_elf_hash_table (link_info);
14389 BFD_ASSERT (htab != NULL);
14390
14391 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14392 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14393 }
14394 }
This page took 0.660332 seconds and 5 git commands to generate.