* elfxx-mips.c (mips_elf_next_relocation): Tighten check to test
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 2 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
27
28 /* This file handles functionality common to the different MIPS ABI's. */
29
30 #include "bfd.h"
31 #include "sysdep.h"
32 #include "libbfd.h"
33 #include "libiberty.h"
34 #include "elf-bfd.h"
35 #include "elfxx-mips.h"
36 #include "elf/mips.h"
37 #include "elf-vxworks.h"
38
39 /* Get the ECOFF swapping routines. */
40 #include "coff/sym.h"
41 #include "coff/symconst.h"
42 #include "coff/ecoff.h"
43 #include "coff/mips.h"
44
45 #include "hashtab.h"
46
47 /* This structure is used to hold information about one GOT entry.
48 There are three types of entry:
49
50 (1) absolute addresses
51 (abfd == NULL)
52 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
53 (abfd != NULL, symndx >= 0)
54 (3) global and forced-local symbols
55 (abfd != NULL, symndx == -1)
56
57 Type (3) entries are treated differently for different types of GOT.
58 In the "master" GOT -- i.e. the one that describes every GOT
59 reference needed in the link -- the mips_got_entry is keyed on both
60 the symbol and the input bfd that references it. If it turns out
61 that we need multiple GOTs, we can then use this information to
62 create separate GOTs for each input bfd.
63
64 However, we want each of these separate GOTs to have at most one
65 entry for a given symbol, so their type (3) entries are keyed only
66 on the symbol. The input bfd given by the "abfd" field is somewhat
67 arbitrary in this case.
68
69 This means that when there are multiple GOTs, each GOT has a unique
70 mips_got_entry for every symbol within it. We can therefore use the
71 mips_got_entry fields (tls_type and gotidx) to track the symbol's
72 GOT index.
73
74 However, if it turns out that we need only a single GOT, we continue
75 to use the master GOT to describe it. There may therefore be several
76 mips_got_entries for the same symbol, each with a different input bfd.
77 We want to make sure that each symbol gets a unique GOT entry, so when
78 there's a single GOT, we use the symbol's hash entry, not the
79 mips_got_entry fields, to track a symbol's GOT index. */
80 struct mips_got_entry
81 {
82 /* The input bfd in which the symbol is defined. */
83 bfd *abfd;
84 /* The index of the symbol, as stored in the relocation r_info, if
85 we have a local symbol; -1 otherwise. */
86 long symndx;
87 union
88 {
89 /* If abfd == NULL, an address that must be stored in the got. */
90 bfd_vma address;
91 /* If abfd != NULL && symndx != -1, the addend of the relocation
92 that should be added to the symbol value. */
93 bfd_vma addend;
94 /* If abfd != NULL && symndx == -1, the hash table entry
95 corresponding to a global symbol in the got (or, local, if
96 h->forced_local). */
97 struct mips_elf_link_hash_entry *h;
98 } d;
99
100 /* The TLS types included in this GOT entry (specifically, GD and
101 IE). The GD and IE flags can be added as we encounter new
102 relocations. LDM can also be set; it will always be alone, not
103 combined with any GD or IE flags. An LDM GOT entry will be
104 a local symbol entry with r_symndx == 0. */
105 unsigned char tls_type;
106
107 /* The offset from the beginning of the .got section to the entry
108 corresponding to this symbol+addend. If it's a global symbol
109 whose offset is yet to be decided, it's going to be -1. */
110 long gotidx;
111 };
112
113 /* This structure is used to hold .got information when linking. */
114
115 struct mips_got_info
116 {
117 /* The global symbol in the GOT with the lowest index in the dynamic
118 symbol table. */
119 struct elf_link_hash_entry *global_gotsym;
120 /* The number of global .got entries. */
121 unsigned int global_gotno;
122 /* The number of .got slots used for TLS. */
123 unsigned int tls_gotno;
124 /* The first unused TLS .got entry. Used only during
125 mips_elf_initialize_tls_index. */
126 unsigned int tls_assigned_gotno;
127 /* The number of local .got entries. */
128 unsigned int local_gotno;
129 /* The number of local .got entries we have used. */
130 unsigned int assigned_gotno;
131 /* A hash table holding members of the got. */
132 struct htab *got_entries;
133 /* A hash table mapping input bfds to other mips_got_info. NULL
134 unless multi-got was necessary. */
135 struct htab *bfd2got;
136 /* In multi-got links, a pointer to the next got (err, rather, most
137 of the time, it points to the previous got). */
138 struct mips_got_info *next;
139 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
140 for none, or MINUS_TWO for not yet assigned. This is needed
141 because a single-GOT link may have multiple hash table entries
142 for the LDM. It does not get initialized in multi-GOT mode. */
143 bfd_vma tls_ldm_offset;
144 };
145
146 /* Map an input bfd to a got in a multi-got link. */
147
148 struct mips_elf_bfd2got_hash {
149 bfd *bfd;
150 struct mips_got_info *g;
151 };
152
153 /* Structure passed when traversing the bfd2got hash table, used to
154 create and merge bfd's gots. */
155
156 struct mips_elf_got_per_bfd_arg
157 {
158 /* A hashtable that maps bfds to gots. */
159 htab_t bfd2got;
160 /* The output bfd. */
161 bfd *obfd;
162 /* The link information. */
163 struct bfd_link_info *info;
164 /* A pointer to the primary got, i.e., the one that's going to get
165 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
166 DT_MIPS_GOTSYM. */
167 struct mips_got_info *primary;
168 /* A non-primary got we're trying to merge with other input bfd's
169 gots. */
170 struct mips_got_info *current;
171 /* The maximum number of got entries that can be addressed with a
172 16-bit offset. */
173 unsigned int max_count;
174 /* The number of local and global entries in the primary got. */
175 unsigned int primary_count;
176 /* The number of local and global entries in the current got. */
177 unsigned int current_count;
178 /* The total number of global entries which will live in the
179 primary got and be automatically relocated. This includes
180 those not referenced by the primary GOT but included in
181 the "master" GOT. */
182 unsigned int global_count;
183 };
184
185 /* Another structure used to pass arguments for got entries traversal. */
186
187 struct mips_elf_set_global_got_offset_arg
188 {
189 struct mips_got_info *g;
190 int value;
191 unsigned int needed_relocs;
192 struct bfd_link_info *info;
193 };
194
195 /* A structure used to count TLS relocations or GOT entries, for GOT
196 entry or ELF symbol table traversal. */
197
198 struct mips_elf_count_tls_arg
199 {
200 struct bfd_link_info *info;
201 unsigned int needed;
202 };
203
204 struct _mips_elf_section_data
205 {
206 struct bfd_elf_section_data elf;
207 union
208 {
209 struct mips_got_info *got_info;
210 bfd_byte *tdata;
211 } u;
212 };
213
214 #define mips_elf_section_data(sec) \
215 ((struct _mips_elf_section_data *) elf_section_data (sec))
216
217 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
218 the dynamic symbols. */
219
220 struct mips_elf_hash_sort_data
221 {
222 /* The symbol in the global GOT with the lowest dynamic symbol table
223 index. */
224 struct elf_link_hash_entry *low;
225 /* The least dynamic symbol table index corresponding to a non-TLS
226 symbol with a GOT entry. */
227 long min_got_dynindx;
228 /* The greatest dynamic symbol table index corresponding to a symbol
229 with a GOT entry that is not referenced (e.g., a dynamic symbol
230 with dynamic relocations pointing to it from non-primary GOTs). */
231 long max_unref_got_dynindx;
232 /* The greatest dynamic symbol table index not corresponding to a
233 symbol without a GOT entry. */
234 long max_non_got_dynindx;
235 };
236
237 /* The MIPS ELF linker needs additional information for each symbol in
238 the global hash table. */
239
240 struct mips_elf_link_hash_entry
241 {
242 struct elf_link_hash_entry root;
243
244 /* External symbol information. */
245 EXTR esym;
246
247 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
248 this symbol. */
249 unsigned int possibly_dynamic_relocs;
250
251 /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against
252 a readonly section. */
253 bfd_boolean readonly_reloc;
254
255 /* We must not create a stub for a symbol that has relocations
256 related to taking the function's address, i.e. any but
257 R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition",
258 p. 4-20. */
259 bfd_boolean no_fn_stub;
260
261 /* If there is a stub that 32 bit functions should use to call this
262 16 bit function, this points to the section containing the stub. */
263 asection *fn_stub;
264
265 /* Whether we need the fn_stub; this is set if this symbol appears
266 in any relocs other than a 16 bit call. */
267 bfd_boolean need_fn_stub;
268
269 /* If there is a stub that 16 bit functions should use to call this
270 32 bit function, this points to the section containing the stub. */
271 asection *call_stub;
272
273 /* This is like the call_stub field, but it is used if the function
274 being called returns a floating point value. */
275 asection *call_fp_stub;
276
277 /* Are we forced local? This will only be set if we have converted
278 the initial global GOT entry to a local GOT entry. */
279 bfd_boolean forced_local;
280
281 /* Are we referenced by some kind of relocation? */
282 bfd_boolean is_relocation_target;
283
284 /* Are we referenced by branch relocations? */
285 bfd_boolean is_branch_target;
286
287 #define GOT_NORMAL 0
288 #define GOT_TLS_GD 1
289 #define GOT_TLS_LDM 2
290 #define GOT_TLS_IE 4
291 #define GOT_TLS_OFFSET_DONE 0x40
292 #define GOT_TLS_DONE 0x80
293 unsigned char tls_type;
294 /* This is only used in single-GOT mode; in multi-GOT mode there
295 is one mips_got_entry per GOT entry, so the offset is stored
296 there. In single-GOT mode there may be many mips_got_entry
297 structures all referring to the same GOT slot. It might be
298 possible to use root.got.offset instead, but that field is
299 overloaded already. */
300 bfd_vma tls_got_offset;
301 };
302
303 /* MIPS ELF linker hash table. */
304
305 struct mips_elf_link_hash_table
306 {
307 struct elf_link_hash_table root;
308 #if 0
309 /* We no longer use this. */
310 /* String section indices for the dynamic section symbols. */
311 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
312 #endif
313 /* The number of .rtproc entries. */
314 bfd_size_type procedure_count;
315 /* The size of the .compact_rel section (if SGI_COMPAT). */
316 bfd_size_type compact_rel_size;
317 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
318 entry is set to the address of __rld_obj_head as in IRIX5. */
319 bfd_boolean use_rld_obj_head;
320 /* This is the value of the __rld_map or __rld_obj_head symbol. */
321 bfd_vma rld_value;
322 /* This is set if we see any mips16 stub sections. */
323 bfd_boolean mips16_stubs_seen;
324 /* True if we're generating code for VxWorks. */
325 bfd_boolean is_vxworks;
326 /* Shortcuts to some dynamic sections, or NULL if they are not
327 being used. */
328 asection *srelbss;
329 asection *sdynbss;
330 asection *srelplt;
331 asection *srelplt2;
332 asection *sgotplt;
333 asection *splt;
334 /* The size of the PLT header in bytes (VxWorks only). */
335 bfd_vma plt_header_size;
336 /* The size of a PLT entry in bytes (VxWorks only). */
337 bfd_vma plt_entry_size;
338 /* The size of a function stub entry in bytes. */
339 bfd_vma function_stub_size;
340 };
341
342 #define TLS_RELOC_P(r_type) \
343 (r_type == R_MIPS_TLS_DTPMOD32 \
344 || r_type == R_MIPS_TLS_DTPMOD64 \
345 || r_type == R_MIPS_TLS_DTPREL32 \
346 || r_type == R_MIPS_TLS_DTPREL64 \
347 || r_type == R_MIPS_TLS_GD \
348 || r_type == R_MIPS_TLS_LDM \
349 || r_type == R_MIPS_TLS_DTPREL_HI16 \
350 || r_type == R_MIPS_TLS_DTPREL_LO16 \
351 || r_type == R_MIPS_TLS_GOTTPREL \
352 || r_type == R_MIPS_TLS_TPREL32 \
353 || r_type == R_MIPS_TLS_TPREL64 \
354 || r_type == R_MIPS_TLS_TPREL_HI16 \
355 || r_type == R_MIPS_TLS_TPREL_LO16)
356
357 /* Structure used to pass information to mips_elf_output_extsym. */
358
359 struct extsym_info
360 {
361 bfd *abfd;
362 struct bfd_link_info *info;
363 struct ecoff_debug_info *debug;
364 const struct ecoff_debug_swap *swap;
365 bfd_boolean failed;
366 };
367
368 /* The names of the runtime procedure table symbols used on IRIX5. */
369
370 static const char * const mips_elf_dynsym_rtproc_names[] =
371 {
372 "_procedure_table",
373 "_procedure_string_table",
374 "_procedure_table_size",
375 NULL
376 };
377
378 /* These structures are used to generate the .compact_rel section on
379 IRIX5. */
380
381 typedef struct
382 {
383 unsigned long id1; /* Always one? */
384 unsigned long num; /* Number of compact relocation entries. */
385 unsigned long id2; /* Always two? */
386 unsigned long offset; /* The file offset of the first relocation. */
387 unsigned long reserved0; /* Zero? */
388 unsigned long reserved1; /* Zero? */
389 } Elf32_compact_rel;
390
391 typedef struct
392 {
393 bfd_byte id1[4];
394 bfd_byte num[4];
395 bfd_byte id2[4];
396 bfd_byte offset[4];
397 bfd_byte reserved0[4];
398 bfd_byte reserved1[4];
399 } Elf32_External_compact_rel;
400
401 typedef struct
402 {
403 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
404 unsigned int rtype : 4; /* Relocation types. See below. */
405 unsigned int dist2to : 8;
406 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
407 unsigned long konst; /* KONST field. See below. */
408 unsigned long vaddr; /* VADDR to be relocated. */
409 } Elf32_crinfo;
410
411 typedef struct
412 {
413 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
414 unsigned int rtype : 4; /* Relocation types. See below. */
415 unsigned int dist2to : 8;
416 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
417 unsigned long konst; /* KONST field. See below. */
418 } Elf32_crinfo2;
419
420 typedef struct
421 {
422 bfd_byte info[4];
423 bfd_byte konst[4];
424 bfd_byte vaddr[4];
425 } Elf32_External_crinfo;
426
427 typedef struct
428 {
429 bfd_byte info[4];
430 bfd_byte konst[4];
431 } Elf32_External_crinfo2;
432
433 /* These are the constants used to swap the bitfields in a crinfo. */
434
435 #define CRINFO_CTYPE (0x1)
436 #define CRINFO_CTYPE_SH (31)
437 #define CRINFO_RTYPE (0xf)
438 #define CRINFO_RTYPE_SH (27)
439 #define CRINFO_DIST2TO (0xff)
440 #define CRINFO_DIST2TO_SH (19)
441 #define CRINFO_RELVADDR (0x7ffff)
442 #define CRINFO_RELVADDR_SH (0)
443
444 /* A compact relocation info has long (3 words) or short (2 words)
445 formats. A short format doesn't have VADDR field and relvaddr
446 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
447 #define CRF_MIPS_LONG 1
448 #define CRF_MIPS_SHORT 0
449
450 /* There are 4 types of compact relocation at least. The value KONST
451 has different meaning for each type:
452
453 (type) (konst)
454 CT_MIPS_REL32 Address in data
455 CT_MIPS_WORD Address in word (XXX)
456 CT_MIPS_GPHI_LO GP - vaddr
457 CT_MIPS_JMPAD Address to jump
458 */
459
460 #define CRT_MIPS_REL32 0xa
461 #define CRT_MIPS_WORD 0xb
462 #define CRT_MIPS_GPHI_LO 0xc
463 #define CRT_MIPS_JMPAD 0xd
464
465 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
466 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
467 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
468 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
469 \f
470 /* The structure of the runtime procedure descriptor created by the
471 loader for use by the static exception system. */
472
473 typedef struct runtime_pdr {
474 bfd_vma adr; /* Memory address of start of procedure. */
475 long regmask; /* Save register mask. */
476 long regoffset; /* Save register offset. */
477 long fregmask; /* Save floating point register mask. */
478 long fregoffset; /* Save floating point register offset. */
479 long frameoffset; /* Frame size. */
480 short framereg; /* Frame pointer register. */
481 short pcreg; /* Offset or reg of return pc. */
482 long irpss; /* Index into the runtime string table. */
483 long reserved;
484 struct exception_info *exception_info;/* Pointer to exception array. */
485 } RPDR, *pRPDR;
486 #define cbRPDR sizeof (RPDR)
487 #define rpdNil ((pRPDR) 0)
488 \f
489 static struct mips_got_entry *mips_elf_create_local_got_entry
490 (bfd *, struct bfd_link_info *, bfd *, struct mips_got_info *, asection *,
491 asection *, bfd_vma, unsigned long, struct mips_elf_link_hash_entry *, int);
492 static bfd_boolean mips_elf_sort_hash_table_f
493 (struct mips_elf_link_hash_entry *, void *);
494 static bfd_vma mips_elf_high
495 (bfd_vma);
496 static bfd_boolean mips_elf_stub_section_p
497 (bfd *, asection *);
498 static bfd_boolean mips_elf_create_dynamic_relocation
499 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
500 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
501 bfd_vma *, asection *);
502 static hashval_t mips_elf_got_entry_hash
503 (const void *);
504 static bfd_vma mips_elf_adjust_gp
505 (bfd *, struct mips_got_info *, bfd *);
506 static struct mips_got_info *mips_elf_got_for_ibfd
507 (struct mips_got_info *, bfd *);
508
509 /* This will be used when we sort the dynamic relocation records. */
510 static bfd *reldyn_sorting_bfd;
511
512 /* Nonzero if ABFD is using the N32 ABI. */
513 #define ABI_N32_P(abfd) \
514 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
515
516 /* Nonzero if ABFD is using the N64 ABI. */
517 #define ABI_64_P(abfd) \
518 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
519
520 /* Nonzero if ABFD is using NewABI conventions. */
521 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
522
523 /* The IRIX compatibility level we are striving for. */
524 #define IRIX_COMPAT(abfd) \
525 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
526
527 /* Whether we are trying to be compatible with IRIX at all. */
528 #define SGI_COMPAT(abfd) \
529 (IRIX_COMPAT (abfd) != ict_none)
530
531 /* The name of the options section. */
532 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
533 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
534
535 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
536 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
537 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
538 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
539
540 /* Whether the section is readonly. */
541 #define MIPS_ELF_READONLY_SECTION(sec) \
542 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
543 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
544
545 /* The name of the stub section. */
546 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
547
548 /* The size of an external REL relocation. */
549 #define MIPS_ELF_REL_SIZE(abfd) \
550 (get_elf_backend_data (abfd)->s->sizeof_rel)
551
552 /* The size of an external RELA relocation. */
553 #define MIPS_ELF_RELA_SIZE(abfd) \
554 (get_elf_backend_data (abfd)->s->sizeof_rela)
555
556 /* The size of an external dynamic table entry. */
557 #define MIPS_ELF_DYN_SIZE(abfd) \
558 (get_elf_backend_data (abfd)->s->sizeof_dyn)
559
560 /* The size of a GOT entry. */
561 #define MIPS_ELF_GOT_SIZE(abfd) \
562 (get_elf_backend_data (abfd)->s->arch_size / 8)
563
564 /* The size of a symbol-table entry. */
565 #define MIPS_ELF_SYM_SIZE(abfd) \
566 (get_elf_backend_data (abfd)->s->sizeof_sym)
567
568 /* The default alignment for sections, as a power of two. */
569 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
570 (get_elf_backend_data (abfd)->s->log_file_align)
571
572 /* Get word-sized data. */
573 #define MIPS_ELF_GET_WORD(abfd, ptr) \
574 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
575
576 /* Put out word-sized data. */
577 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
578 (ABI_64_P (abfd) \
579 ? bfd_put_64 (abfd, val, ptr) \
580 : bfd_put_32 (abfd, val, ptr))
581
582 /* Add a dynamic symbol table-entry. */
583 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
584 _bfd_elf_add_dynamic_entry (info, tag, val)
585
586 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
587 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
588
589 /* Determine whether the internal relocation of index REL_IDX is REL
590 (zero) or RELA (non-zero). The assumption is that, if there are
591 two relocation sections for this section, one of them is REL and
592 the other is RELA. If the index of the relocation we're testing is
593 in range for the first relocation section, check that the external
594 relocation size is that for RELA. It is also assumed that, if
595 rel_idx is not in range for the first section, and this first
596 section contains REL relocs, then the relocation is in the second
597 section, that is RELA. */
598 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
599 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
600 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
601 > (bfd_vma)(rel_idx)) \
602 == (elf_section_data (sec)->rel_hdr.sh_entsize \
603 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
604 : sizeof (Elf32_External_Rela))))
605
606 /* The name of the dynamic relocation section. */
607 #define MIPS_ELF_REL_DYN_NAME(INFO) \
608 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
609
610 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
611 from smaller values. Start with zero, widen, *then* decrement. */
612 #define MINUS_ONE (((bfd_vma)0) - 1)
613 #define MINUS_TWO (((bfd_vma)0) - 2)
614
615 /* The number of local .got entries we reserve. */
616 #define MIPS_RESERVED_GOTNO(INFO) \
617 (mips_elf_hash_table (INFO)->is_vxworks ? 3 : 2)
618
619 /* The offset of $gp from the beginning of the .got section. */
620 #define ELF_MIPS_GP_OFFSET(INFO) \
621 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
622
623 /* The maximum size of the GOT for it to be addressable using 16-bit
624 offsets from $gp. */
625 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
626
627 /* Instructions which appear in a stub. */
628 #define STUB_LW(abfd) \
629 ((ABI_64_P (abfd) \
630 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
631 : 0x8f998010)) /* lw t9,0x8010(gp) */
632 #define STUB_MOVE(abfd) \
633 ((ABI_64_P (abfd) \
634 ? 0x03e0782d /* daddu t7,ra */ \
635 : 0x03e07821)) /* addu t7,ra */
636 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
637 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
638 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
639 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
640 #define STUB_LI16S(abfd, VAL) \
641 ((ABI_64_P (abfd) \
642 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
643 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
644
645 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
646 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
647
648 /* The name of the dynamic interpreter. This is put in the .interp
649 section. */
650
651 #define ELF_DYNAMIC_INTERPRETER(abfd) \
652 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
653 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
654 : "/usr/lib/libc.so.1")
655
656 #ifdef BFD64
657 #define MNAME(bfd,pre,pos) \
658 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
659 #define ELF_R_SYM(bfd, i) \
660 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
661 #define ELF_R_TYPE(bfd, i) \
662 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
663 #define ELF_R_INFO(bfd, s, t) \
664 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
665 #else
666 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
667 #define ELF_R_SYM(bfd, i) \
668 (ELF32_R_SYM (i))
669 #define ELF_R_TYPE(bfd, i) \
670 (ELF32_R_TYPE (i))
671 #define ELF_R_INFO(bfd, s, t) \
672 (ELF32_R_INFO (s, t))
673 #endif
674 \f
675 /* The mips16 compiler uses a couple of special sections to handle
676 floating point arguments.
677
678 Section names that look like .mips16.fn.FNNAME contain stubs that
679 copy floating point arguments from the fp regs to the gp regs and
680 then jump to FNNAME. If any 32 bit function calls FNNAME, the
681 call should be redirected to the stub instead. If no 32 bit
682 function calls FNNAME, the stub should be discarded. We need to
683 consider any reference to the function, not just a call, because
684 if the address of the function is taken we will need the stub,
685 since the address might be passed to a 32 bit function.
686
687 Section names that look like .mips16.call.FNNAME contain stubs
688 that copy floating point arguments from the gp regs to the fp
689 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
690 then any 16 bit function that calls FNNAME should be redirected
691 to the stub instead. If FNNAME is not a 32 bit function, the
692 stub should be discarded.
693
694 .mips16.call.fp.FNNAME sections are similar, but contain stubs
695 which call FNNAME and then copy the return value from the fp regs
696 to the gp regs. These stubs store the return value in $18 while
697 calling FNNAME; any function which might call one of these stubs
698 must arrange to save $18 around the call. (This case is not
699 needed for 32 bit functions that call 16 bit functions, because
700 16 bit functions always return floating point values in both
701 $f0/$f1 and $2/$3.)
702
703 Note that in all cases FNNAME might be defined statically.
704 Therefore, FNNAME is not used literally. Instead, the relocation
705 information will indicate which symbol the section is for.
706
707 We record any stubs that we find in the symbol table. */
708
709 #define FN_STUB ".mips16.fn."
710 #define CALL_STUB ".mips16.call."
711 #define CALL_FP_STUB ".mips16.call.fp."
712 \f
713 /* The format of the first PLT entry in a VxWorks executable. */
714 static const bfd_vma mips_vxworks_exec_plt0_entry[] = {
715 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
716 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
717 0x8f390008, /* lw t9, 8(t9) */
718 0x00000000, /* nop */
719 0x03200008, /* jr t9 */
720 0x00000000 /* nop */
721 };
722
723 /* The format of subsequent PLT entries. */
724 static const bfd_vma mips_vxworks_exec_plt_entry[] = {
725 0x10000000, /* b .PLT_resolver */
726 0x24180000, /* li t8, <pltindex> */
727 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
728 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
729 0x8f390000, /* lw t9, 0(t9) */
730 0x00000000, /* nop */
731 0x03200008, /* jr t9 */
732 0x00000000 /* nop */
733 };
734
735 /* The format of the first PLT entry in a VxWorks shared object. */
736 static const bfd_vma mips_vxworks_shared_plt0_entry[] = {
737 0x8f990008, /* lw t9, 8(gp) */
738 0x00000000, /* nop */
739 0x03200008, /* jr t9 */
740 0x00000000, /* nop */
741 0x00000000, /* nop */
742 0x00000000 /* nop */
743 };
744
745 /* The format of subsequent PLT entries. */
746 static const bfd_vma mips_vxworks_shared_plt_entry[] = {
747 0x10000000, /* b .PLT_resolver */
748 0x24180000 /* li t8, <pltindex> */
749 };
750 \f
751 /* Look up an entry in a MIPS ELF linker hash table. */
752
753 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
754 ((struct mips_elf_link_hash_entry *) \
755 elf_link_hash_lookup (&(table)->root, (string), (create), \
756 (copy), (follow)))
757
758 /* Traverse a MIPS ELF linker hash table. */
759
760 #define mips_elf_link_hash_traverse(table, func, info) \
761 (elf_link_hash_traverse \
762 (&(table)->root, \
763 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
764 (info)))
765
766 /* Get the MIPS ELF linker hash table from a link_info structure. */
767
768 #define mips_elf_hash_table(p) \
769 ((struct mips_elf_link_hash_table *) ((p)->hash))
770
771 /* Find the base offsets for thread-local storage in this object,
772 for GD/LD and IE/LE respectively. */
773
774 #define TP_OFFSET 0x7000
775 #define DTP_OFFSET 0x8000
776
777 static bfd_vma
778 dtprel_base (struct bfd_link_info *info)
779 {
780 /* If tls_sec is NULL, we should have signalled an error already. */
781 if (elf_hash_table (info)->tls_sec == NULL)
782 return 0;
783 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
784 }
785
786 static bfd_vma
787 tprel_base (struct bfd_link_info *info)
788 {
789 /* If tls_sec is NULL, we should have signalled an error already. */
790 if (elf_hash_table (info)->tls_sec == NULL)
791 return 0;
792 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
793 }
794
795 /* Create an entry in a MIPS ELF linker hash table. */
796
797 static struct bfd_hash_entry *
798 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
799 struct bfd_hash_table *table, const char *string)
800 {
801 struct mips_elf_link_hash_entry *ret =
802 (struct mips_elf_link_hash_entry *) entry;
803
804 /* Allocate the structure if it has not already been allocated by a
805 subclass. */
806 if (ret == NULL)
807 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
808 if (ret == NULL)
809 return (struct bfd_hash_entry *) ret;
810
811 /* Call the allocation method of the superclass. */
812 ret = ((struct mips_elf_link_hash_entry *)
813 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
814 table, string));
815 if (ret != NULL)
816 {
817 /* Set local fields. */
818 memset (&ret->esym, 0, sizeof (EXTR));
819 /* We use -2 as a marker to indicate that the information has
820 not been set. -1 means there is no associated ifd. */
821 ret->esym.ifd = -2;
822 ret->possibly_dynamic_relocs = 0;
823 ret->readonly_reloc = FALSE;
824 ret->no_fn_stub = FALSE;
825 ret->fn_stub = NULL;
826 ret->need_fn_stub = FALSE;
827 ret->call_stub = NULL;
828 ret->call_fp_stub = NULL;
829 ret->forced_local = FALSE;
830 ret->is_branch_target = FALSE;
831 ret->is_relocation_target = FALSE;
832 ret->tls_type = GOT_NORMAL;
833 }
834
835 return (struct bfd_hash_entry *) ret;
836 }
837
838 bfd_boolean
839 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
840 {
841 if (!sec->used_by_bfd)
842 {
843 struct _mips_elf_section_data *sdata;
844 bfd_size_type amt = sizeof (*sdata);
845
846 sdata = bfd_zalloc (abfd, amt);
847 if (sdata == NULL)
848 return FALSE;
849 sec->used_by_bfd = sdata;
850 }
851
852 return _bfd_elf_new_section_hook (abfd, sec);
853 }
854 \f
855 /* Read ECOFF debugging information from a .mdebug section into a
856 ecoff_debug_info structure. */
857
858 bfd_boolean
859 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
860 struct ecoff_debug_info *debug)
861 {
862 HDRR *symhdr;
863 const struct ecoff_debug_swap *swap;
864 char *ext_hdr;
865
866 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
867 memset (debug, 0, sizeof (*debug));
868
869 ext_hdr = bfd_malloc (swap->external_hdr_size);
870 if (ext_hdr == NULL && swap->external_hdr_size != 0)
871 goto error_return;
872
873 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
874 swap->external_hdr_size))
875 goto error_return;
876
877 symhdr = &debug->symbolic_header;
878 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
879
880 /* The symbolic header contains absolute file offsets and sizes to
881 read. */
882 #define READ(ptr, offset, count, size, type) \
883 if (symhdr->count == 0) \
884 debug->ptr = NULL; \
885 else \
886 { \
887 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
888 debug->ptr = bfd_malloc (amt); \
889 if (debug->ptr == NULL) \
890 goto error_return; \
891 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
892 || bfd_bread (debug->ptr, amt, abfd) != amt) \
893 goto error_return; \
894 }
895
896 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
897 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
898 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
899 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
900 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
901 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
902 union aux_ext *);
903 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
904 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
905 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
906 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
907 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
908 #undef READ
909
910 debug->fdr = NULL;
911
912 return TRUE;
913
914 error_return:
915 if (ext_hdr != NULL)
916 free (ext_hdr);
917 if (debug->line != NULL)
918 free (debug->line);
919 if (debug->external_dnr != NULL)
920 free (debug->external_dnr);
921 if (debug->external_pdr != NULL)
922 free (debug->external_pdr);
923 if (debug->external_sym != NULL)
924 free (debug->external_sym);
925 if (debug->external_opt != NULL)
926 free (debug->external_opt);
927 if (debug->external_aux != NULL)
928 free (debug->external_aux);
929 if (debug->ss != NULL)
930 free (debug->ss);
931 if (debug->ssext != NULL)
932 free (debug->ssext);
933 if (debug->external_fdr != NULL)
934 free (debug->external_fdr);
935 if (debug->external_rfd != NULL)
936 free (debug->external_rfd);
937 if (debug->external_ext != NULL)
938 free (debug->external_ext);
939 return FALSE;
940 }
941 \f
942 /* Swap RPDR (runtime procedure table entry) for output. */
943
944 static void
945 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
946 {
947 H_PUT_S32 (abfd, in->adr, ex->p_adr);
948 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
949 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
950 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
951 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
952 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
953
954 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
955 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
956
957 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
958 }
959
960 /* Create a runtime procedure table from the .mdebug section. */
961
962 static bfd_boolean
963 mips_elf_create_procedure_table (void *handle, bfd *abfd,
964 struct bfd_link_info *info, asection *s,
965 struct ecoff_debug_info *debug)
966 {
967 const struct ecoff_debug_swap *swap;
968 HDRR *hdr = &debug->symbolic_header;
969 RPDR *rpdr, *rp;
970 struct rpdr_ext *erp;
971 void *rtproc;
972 struct pdr_ext *epdr;
973 struct sym_ext *esym;
974 char *ss, **sv;
975 char *str;
976 bfd_size_type size;
977 bfd_size_type count;
978 unsigned long sindex;
979 unsigned long i;
980 PDR pdr;
981 SYMR sym;
982 const char *no_name_func = _("static procedure (no name)");
983
984 epdr = NULL;
985 rpdr = NULL;
986 esym = NULL;
987 ss = NULL;
988 sv = NULL;
989
990 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
991
992 sindex = strlen (no_name_func) + 1;
993 count = hdr->ipdMax;
994 if (count > 0)
995 {
996 size = swap->external_pdr_size;
997
998 epdr = bfd_malloc (size * count);
999 if (epdr == NULL)
1000 goto error_return;
1001
1002 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1003 goto error_return;
1004
1005 size = sizeof (RPDR);
1006 rp = rpdr = bfd_malloc (size * count);
1007 if (rpdr == NULL)
1008 goto error_return;
1009
1010 size = sizeof (char *);
1011 sv = bfd_malloc (size * count);
1012 if (sv == NULL)
1013 goto error_return;
1014
1015 count = hdr->isymMax;
1016 size = swap->external_sym_size;
1017 esym = bfd_malloc (size * count);
1018 if (esym == NULL)
1019 goto error_return;
1020
1021 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1022 goto error_return;
1023
1024 count = hdr->issMax;
1025 ss = bfd_malloc (count);
1026 if (ss == NULL)
1027 goto error_return;
1028 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1029 goto error_return;
1030
1031 count = hdr->ipdMax;
1032 for (i = 0; i < (unsigned long) count; i++, rp++)
1033 {
1034 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1035 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1036 rp->adr = sym.value;
1037 rp->regmask = pdr.regmask;
1038 rp->regoffset = pdr.regoffset;
1039 rp->fregmask = pdr.fregmask;
1040 rp->fregoffset = pdr.fregoffset;
1041 rp->frameoffset = pdr.frameoffset;
1042 rp->framereg = pdr.framereg;
1043 rp->pcreg = pdr.pcreg;
1044 rp->irpss = sindex;
1045 sv[i] = ss + sym.iss;
1046 sindex += strlen (sv[i]) + 1;
1047 }
1048 }
1049
1050 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1051 size = BFD_ALIGN (size, 16);
1052 rtproc = bfd_alloc (abfd, size);
1053 if (rtproc == NULL)
1054 {
1055 mips_elf_hash_table (info)->procedure_count = 0;
1056 goto error_return;
1057 }
1058
1059 mips_elf_hash_table (info)->procedure_count = count + 2;
1060
1061 erp = rtproc;
1062 memset (erp, 0, sizeof (struct rpdr_ext));
1063 erp++;
1064 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1065 strcpy (str, no_name_func);
1066 str += strlen (no_name_func) + 1;
1067 for (i = 0; i < count; i++)
1068 {
1069 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1070 strcpy (str, sv[i]);
1071 str += strlen (sv[i]) + 1;
1072 }
1073 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1074
1075 /* Set the size and contents of .rtproc section. */
1076 s->size = size;
1077 s->contents = rtproc;
1078
1079 /* Skip this section later on (I don't think this currently
1080 matters, but someday it might). */
1081 s->map_head.link_order = NULL;
1082
1083 if (epdr != NULL)
1084 free (epdr);
1085 if (rpdr != NULL)
1086 free (rpdr);
1087 if (esym != NULL)
1088 free (esym);
1089 if (ss != NULL)
1090 free (ss);
1091 if (sv != NULL)
1092 free (sv);
1093
1094 return TRUE;
1095
1096 error_return:
1097 if (epdr != NULL)
1098 free (epdr);
1099 if (rpdr != NULL)
1100 free (rpdr);
1101 if (esym != NULL)
1102 free (esym);
1103 if (ss != NULL)
1104 free (ss);
1105 if (sv != NULL)
1106 free (sv);
1107 return FALSE;
1108 }
1109
1110 /* Check the mips16 stubs for a particular symbol, and see if we can
1111 discard them. */
1112
1113 static bfd_boolean
1114 mips_elf_check_mips16_stubs (struct mips_elf_link_hash_entry *h,
1115 void *data ATTRIBUTE_UNUSED)
1116 {
1117 if (h->root.root.type == bfd_link_hash_warning)
1118 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1119
1120 if (h->fn_stub != NULL
1121 && ! h->need_fn_stub)
1122 {
1123 /* We don't need the fn_stub; the only references to this symbol
1124 are 16 bit calls. Clobber the size to 0 to prevent it from
1125 being included in the link. */
1126 h->fn_stub->size = 0;
1127 h->fn_stub->flags &= ~SEC_RELOC;
1128 h->fn_stub->reloc_count = 0;
1129 h->fn_stub->flags |= SEC_EXCLUDE;
1130 }
1131
1132 if (h->call_stub != NULL
1133 && h->root.other == STO_MIPS16)
1134 {
1135 /* We don't need the call_stub; this is a 16 bit function, so
1136 calls from other 16 bit functions are OK. Clobber the size
1137 to 0 to prevent it from being included in the link. */
1138 h->call_stub->size = 0;
1139 h->call_stub->flags &= ~SEC_RELOC;
1140 h->call_stub->reloc_count = 0;
1141 h->call_stub->flags |= SEC_EXCLUDE;
1142 }
1143
1144 if (h->call_fp_stub != NULL
1145 && h->root.other == STO_MIPS16)
1146 {
1147 /* We don't need the call_stub; this is a 16 bit function, so
1148 calls from other 16 bit functions are OK. Clobber the size
1149 to 0 to prevent it from being included in the link. */
1150 h->call_fp_stub->size = 0;
1151 h->call_fp_stub->flags &= ~SEC_RELOC;
1152 h->call_fp_stub->reloc_count = 0;
1153 h->call_fp_stub->flags |= SEC_EXCLUDE;
1154 }
1155
1156 return TRUE;
1157 }
1158 \f
1159 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1160 Most mips16 instructions are 16 bits, but these instructions
1161 are 32 bits.
1162
1163 The format of these instructions is:
1164
1165 +--------------+--------------------------------+
1166 | JALX | X| Imm 20:16 | Imm 25:21 |
1167 +--------------+--------------------------------+
1168 | Immediate 15:0 |
1169 +-----------------------------------------------+
1170
1171 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1172 Note that the immediate value in the first word is swapped.
1173
1174 When producing a relocatable object file, R_MIPS16_26 is
1175 handled mostly like R_MIPS_26. In particular, the addend is
1176 stored as a straight 26-bit value in a 32-bit instruction.
1177 (gas makes life simpler for itself by never adjusting a
1178 R_MIPS16_26 reloc to be against a section, so the addend is
1179 always zero). However, the 32 bit instruction is stored as 2
1180 16-bit values, rather than a single 32-bit value. In a
1181 big-endian file, the result is the same; in a little-endian
1182 file, the two 16-bit halves of the 32 bit value are swapped.
1183 This is so that a disassembler can recognize the jal
1184 instruction.
1185
1186 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1187 instruction stored as two 16-bit values. The addend A is the
1188 contents of the targ26 field. The calculation is the same as
1189 R_MIPS_26. When storing the calculated value, reorder the
1190 immediate value as shown above, and don't forget to store the
1191 value as two 16-bit values.
1192
1193 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1194 defined as
1195
1196 big-endian:
1197 +--------+----------------------+
1198 | | |
1199 | | targ26-16 |
1200 |31 26|25 0|
1201 +--------+----------------------+
1202
1203 little-endian:
1204 +----------+------+-------------+
1205 | | | |
1206 | sub1 | | sub2 |
1207 |0 9|10 15|16 31|
1208 +----------+--------------------+
1209 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1210 ((sub1 << 16) | sub2)).
1211
1212 When producing a relocatable object file, the calculation is
1213 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1214 When producing a fully linked file, the calculation is
1215 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1216 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1217
1218 R_MIPS16_GPREL is used for GP-relative addressing in mips16
1219 mode. A typical instruction will have a format like this:
1220
1221 +--------------+--------------------------------+
1222 | EXTEND | Imm 10:5 | Imm 15:11 |
1223 +--------------+--------------------------------+
1224 | Major | rx | ry | Imm 4:0 |
1225 +--------------+--------------------------------+
1226
1227 EXTEND is the five bit value 11110. Major is the instruction
1228 opcode.
1229
1230 This is handled exactly like R_MIPS_GPREL16, except that the
1231 addend is retrieved and stored as shown in this diagram; that
1232 is, the Imm fields above replace the V-rel16 field.
1233
1234 All we need to do here is shuffle the bits appropriately. As
1235 above, the two 16-bit halves must be swapped on a
1236 little-endian system.
1237
1238 R_MIPS16_HI16 and R_MIPS16_LO16 are used in mips16 mode to
1239 access data when neither GP-relative nor PC-relative addressing
1240 can be used. They are handled like R_MIPS_HI16 and R_MIPS_LO16,
1241 except that the addend is retrieved and stored as shown above
1242 for R_MIPS16_GPREL.
1243 */
1244 void
1245 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1246 bfd_boolean jal_shuffle, bfd_byte *data)
1247 {
1248 bfd_vma extend, insn, val;
1249
1250 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1251 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1252 return;
1253
1254 /* Pick up the mips16 extend instruction and the real instruction. */
1255 extend = bfd_get_16 (abfd, data);
1256 insn = bfd_get_16 (abfd, data + 2);
1257 if (r_type == R_MIPS16_26)
1258 {
1259 if (jal_shuffle)
1260 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1261 | ((extend & 0x1f) << 21) | insn;
1262 else
1263 val = extend << 16 | insn;
1264 }
1265 else
1266 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1267 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1268 bfd_put_32 (abfd, val, data);
1269 }
1270
1271 void
1272 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1273 bfd_boolean jal_shuffle, bfd_byte *data)
1274 {
1275 bfd_vma extend, insn, val;
1276
1277 if (r_type != R_MIPS16_26 && r_type != R_MIPS16_GPREL
1278 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
1279 return;
1280
1281 val = bfd_get_32 (abfd, data);
1282 if (r_type == R_MIPS16_26)
1283 {
1284 if (jal_shuffle)
1285 {
1286 insn = val & 0xffff;
1287 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1288 | ((val >> 21) & 0x1f);
1289 }
1290 else
1291 {
1292 insn = val & 0xffff;
1293 extend = val >> 16;
1294 }
1295 }
1296 else
1297 {
1298 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1299 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1300 }
1301 bfd_put_16 (abfd, insn, data + 2);
1302 bfd_put_16 (abfd, extend, data);
1303 }
1304
1305 bfd_reloc_status_type
1306 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1307 arelent *reloc_entry, asection *input_section,
1308 bfd_boolean relocatable, void *data, bfd_vma gp)
1309 {
1310 bfd_vma relocation;
1311 bfd_signed_vma val;
1312 bfd_reloc_status_type status;
1313
1314 if (bfd_is_com_section (symbol->section))
1315 relocation = 0;
1316 else
1317 relocation = symbol->value;
1318
1319 relocation += symbol->section->output_section->vma;
1320 relocation += symbol->section->output_offset;
1321
1322 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1323 return bfd_reloc_outofrange;
1324
1325 /* Set val to the offset into the section or symbol. */
1326 val = reloc_entry->addend;
1327
1328 _bfd_mips_elf_sign_extend (val, 16);
1329
1330 /* Adjust val for the final section location and GP value. If we
1331 are producing relocatable output, we don't want to do this for
1332 an external symbol. */
1333 if (! relocatable
1334 || (symbol->flags & BSF_SECTION_SYM) != 0)
1335 val += relocation - gp;
1336
1337 if (reloc_entry->howto->partial_inplace)
1338 {
1339 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1340 (bfd_byte *) data
1341 + reloc_entry->address);
1342 if (status != bfd_reloc_ok)
1343 return status;
1344 }
1345 else
1346 reloc_entry->addend = val;
1347
1348 if (relocatable)
1349 reloc_entry->address += input_section->output_offset;
1350
1351 return bfd_reloc_ok;
1352 }
1353
1354 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1355 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1356 that contains the relocation field and DATA points to the start of
1357 INPUT_SECTION. */
1358
1359 struct mips_hi16
1360 {
1361 struct mips_hi16 *next;
1362 bfd_byte *data;
1363 asection *input_section;
1364 arelent rel;
1365 };
1366
1367 /* FIXME: This should not be a static variable. */
1368
1369 static struct mips_hi16 *mips_hi16_list;
1370
1371 /* A howto special_function for REL *HI16 relocations. We can only
1372 calculate the correct value once we've seen the partnering
1373 *LO16 relocation, so just save the information for later.
1374
1375 The ABI requires that the *LO16 immediately follow the *HI16.
1376 However, as a GNU extension, we permit an arbitrary number of
1377 *HI16s to be associated with a single *LO16. This significantly
1378 simplies the relocation handling in gcc. */
1379
1380 bfd_reloc_status_type
1381 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1382 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
1383 asection *input_section, bfd *output_bfd,
1384 char **error_message ATTRIBUTE_UNUSED)
1385 {
1386 struct mips_hi16 *n;
1387
1388 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1389 return bfd_reloc_outofrange;
1390
1391 n = bfd_malloc (sizeof *n);
1392 if (n == NULL)
1393 return bfd_reloc_outofrange;
1394
1395 n->next = mips_hi16_list;
1396 n->data = data;
1397 n->input_section = input_section;
1398 n->rel = *reloc_entry;
1399 mips_hi16_list = n;
1400
1401 if (output_bfd != NULL)
1402 reloc_entry->address += input_section->output_offset;
1403
1404 return bfd_reloc_ok;
1405 }
1406
1407 /* A howto special_function for REL R_MIPS_GOT16 relocations. This is just
1408 like any other 16-bit relocation when applied to global symbols, but is
1409 treated in the same as R_MIPS_HI16 when applied to local symbols. */
1410
1411 bfd_reloc_status_type
1412 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1413 void *data, asection *input_section,
1414 bfd *output_bfd, char **error_message)
1415 {
1416 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
1417 || bfd_is_und_section (bfd_get_section (symbol))
1418 || bfd_is_com_section (bfd_get_section (symbol)))
1419 /* The relocation is against a global symbol. */
1420 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1421 input_section, output_bfd,
1422 error_message);
1423
1424 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
1425 input_section, output_bfd, error_message);
1426 }
1427
1428 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
1429 is a straightforward 16 bit inplace relocation, but we must deal with
1430 any partnering high-part relocations as well. */
1431
1432 bfd_reloc_status_type
1433 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1434 void *data, asection *input_section,
1435 bfd *output_bfd, char **error_message)
1436 {
1437 bfd_vma vallo;
1438 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1439
1440 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1441 return bfd_reloc_outofrange;
1442
1443 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1444 location);
1445 vallo = bfd_get_32 (abfd, location);
1446 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1447 location);
1448
1449 while (mips_hi16_list != NULL)
1450 {
1451 bfd_reloc_status_type ret;
1452 struct mips_hi16 *hi;
1453
1454 hi = mips_hi16_list;
1455
1456 /* R_MIPS_GOT16 relocations are something of a special case. We
1457 want to install the addend in the same way as for a R_MIPS_HI16
1458 relocation (with a rightshift of 16). However, since GOT16
1459 relocations can also be used with global symbols, their howto
1460 has a rightshift of 0. */
1461 if (hi->rel.howto->type == R_MIPS_GOT16)
1462 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
1463
1464 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
1465 carry or borrow will induce a change of +1 or -1 in the high part. */
1466 hi->rel.addend += (vallo + 0x8000) & 0xffff;
1467
1468 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
1469 hi->input_section, output_bfd,
1470 error_message);
1471 if (ret != bfd_reloc_ok)
1472 return ret;
1473
1474 mips_hi16_list = hi->next;
1475 free (hi);
1476 }
1477
1478 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1479 input_section, output_bfd,
1480 error_message);
1481 }
1482
1483 /* A generic howto special_function. This calculates and installs the
1484 relocation itself, thus avoiding the oft-discussed problems in
1485 bfd_perform_relocation and bfd_install_relocation. */
1486
1487 bfd_reloc_status_type
1488 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
1489 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
1490 asection *input_section, bfd *output_bfd,
1491 char **error_message ATTRIBUTE_UNUSED)
1492 {
1493 bfd_signed_vma val;
1494 bfd_reloc_status_type status;
1495 bfd_boolean relocatable;
1496
1497 relocatable = (output_bfd != NULL);
1498
1499 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1500 return bfd_reloc_outofrange;
1501
1502 /* Build up the field adjustment in VAL. */
1503 val = 0;
1504 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
1505 {
1506 /* Either we're calculating the final field value or we have a
1507 relocation against a section symbol. Add in the section's
1508 offset or address. */
1509 val += symbol->section->output_section->vma;
1510 val += symbol->section->output_offset;
1511 }
1512
1513 if (!relocatable)
1514 {
1515 /* We're calculating the final field value. Add in the symbol's value
1516 and, if pc-relative, subtract the address of the field itself. */
1517 val += symbol->value;
1518 if (reloc_entry->howto->pc_relative)
1519 {
1520 val -= input_section->output_section->vma;
1521 val -= input_section->output_offset;
1522 val -= reloc_entry->address;
1523 }
1524 }
1525
1526 /* VAL is now the final adjustment. If we're keeping this relocation
1527 in the output file, and if the relocation uses a separate addend,
1528 we just need to add VAL to that addend. Otherwise we need to add
1529 VAL to the relocation field itself. */
1530 if (relocatable && !reloc_entry->howto->partial_inplace)
1531 reloc_entry->addend += val;
1532 else
1533 {
1534 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
1535
1536 /* Add in the separate addend, if any. */
1537 val += reloc_entry->addend;
1538
1539 /* Add VAL to the relocation field. */
1540 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
1541 location);
1542 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1543 location);
1544 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
1545 location);
1546
1547 if (status != bfd_reloc_ok)
1548 return status;
1549 }
1550
1551 if (relocatable)
1552 reloc_entry->address += input_section->output_offset;
1553
1554 return bfd_reloc_ok;
1555 }
1556 \f
1557 /* Swap an entry in a .gptab section. Note that these routines rely
1558 on the equivalence of the two elements of the union. */
1559
1560 static void
1561 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
1562 Elf32_gptab *in)
1563 {
1564 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
1565 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
1566 }
1567
1568 static void
1569 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
1570 Elf32_External_gptab *ex)
1571 {
1572 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
1573 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
1574 }
1575
1576 static void
1577 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
1578 Elf32_External_compact_rel *ex)
1579 {
1580 H_PUT_32 (abfd, in->id1, ex->id1);
1581 H_PUT_32 (abfd, in->num, ex->num);
1582 H_PUT_32 (abfd, in->id2, ex->id2);
1583 H_PUT_32 (abfd, in->offset, ex->offset);
1584 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
1585 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
1586 }
1587
1588 static void
1589 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
1590 Elf32_External_crinfo *ex)
1591 {
1592 unsigned long l;
1593
1594 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
1595 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
1596 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
1597 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
1598 H_PUT_32 (abfd, l, ex->info);
1599 H_PUT_32 (abfd, in->konst, ex->konst);
1600 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
1601 }
1602 \f
1603 /* A .reginfo section holds a single Elf32_RegInfo structure. These
1604 routines swap this structure in and out. They are used outside of
1605 BFD, so they are globally visible. */
1606
1607 void
1608 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
1609 Elf32_RegInfo *in)
1610 {
1611 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1612 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1613 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1614 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1615 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1616 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
1617 }
1618
1619 void
1620 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
1621 Elf32_External_RegInfo *ex)
1622 {
1623 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1624 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1625 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1626 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1627 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1628 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
1629 }
1630
1631 /* In the 64 bit ABI, the .MIPS.options section holds register
1632 information in an Elf64_Reginfo structure. These routines swap
1633 them in and out. They are globally visible because they are used
1634 outside of BFD. These routines are here so that gas can call them
1635 without worrying about whether the 64 bit ABI has been included. */
1636
1637 void
1638 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
1639 Elf64_Internal_RegInfo *in)
1640 {
1641 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
1642 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
1643 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
1644 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
1645 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
1646 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
1647 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
1648 }
1649
1650 void
1651 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
1652 Elf64_External_RegInfo *ex)
1653 {
1654 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
1655 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
1656 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
1657 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
1658 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
1659 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
1660 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
1661 }
1662
1663 /* Swap in an options header. */
1664
1665 void
1666 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
1667 Elf_Internal_Options *in)
1668 {
1669 in->kind = H_GET_8 (abfd, ex->kind);
1670 in->size = H_GET_8 (abfd, ex->size);
1671 in->section = H_GET_16 (abfd, ex->section);
1672 in->info = H_GET_32 (abfd, ex->info);
1673 }
1674
1675 /* Swap out an options header. */
1676
1677 void
1678 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
1679 Elf_External_Options *ex)
1680 {
1681 H_PUT_8 (abfd, in->kind, ex->kind);
1682 H_PUT_8 (abfd, in->size, ex->size);
1683 H_PUT_16 (abfd, in->section, ex->section);
1684 H_PUT_32 (abfd, in->info, ex->info);
1685 }
1686 \f
1687 /* This function is called via qsort() to sort the dynamic relocation
1688 entries by increasing r_symndx value. */
1689
1690 static int
1691 sort_dynamic_relocs (const void *arg1, const void *arg2)
1692 {
1693 Elf_Internal_Rela int_reloc1;
1694 Elf_Internal_Rela int_reloc2;
1695
1696 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
1697 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
1698
1699 return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
1700 }
1701
1702 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
1703
1704 static int
1705 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
1706 const void *arg2 ATTRIBUTE_UNUSED)
1707 {
1708 #ifdef BFD64
1709 Elf_Internal_Rela int_reloc1[3];
1710 Elf_Internal_Rela int_reloc2[3];
1711
1712 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1713 (reldyn_sorting_bfd, arg1, int_reloc1);
1714 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
1715 (reldyn_sorting_bfd, arg2, int_reloc2);
1716
1717 return (ELF64_R_SYM (int_reloc1[0].r_info)
1718 - ELF64_R_SYM (int_reloc2[0].r_info));
1719 #else
1720 abort ();
1721 #endif
1722 }
1723
1724
1725 /* This routine is used to write out ECOFF debugging external symbol
1726 information. It is called via mips_elf_link_hash_traverse. The
1727 ECOFF external symbol information must match the ELF external
1728 symbol information. Unfortunately, at this point we don't know
1729 whether a symbol is required by reloc information, so the two
1730 tables may wind up being different. We must sort out the external
1731 symbol information before we can set the final size of the .mdebug
1732 section, and we must set the size of the .mdebug section before we
1733 can relocate any sections, and we can't know which symbols are
1734 required by relocation until we relocate the sections.
1735 Fortunately, it is relatively unlikely that any symbol will be
1736 stripped but required by a reloc. In particular, it can not happen
1737 when generating a final executable. */
1738
1739 static bfd_boolean
1740 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
1741 {
1742 struct extsym_info *einfo = data;
1743 bfd_boolean strip;
1744 asection *sec, *output_section;
1745
1746 if (h->root.root.type == bfd_link_hash_warning)
1747 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1748
1749 if (h->root.indx == -2)
1750 strip = FALSE;
1751 else if ((h->root.def_dynamic
1752 || h->root.ref_dynamic
1753 || h->root.type == bfd_link_hash_new)
1754 && !h->root.def_regular
1755 && !h->root.ref_regular)
1756 strip = TRUE;
1757 else if (einfo->info->strip == strip_all
1758 || (einfo->info->strip == strip_some
1759 && bfd_hash_lookup (einfo->info->keep_hash,
1760 h->root.root.root.string,
1761 FALSE, FALSE) == NULL))
1762 strip = TRUE;
1763 else
1764 strip = FALSE;
1765
1766 if (strip)
1767 return TRUE;
1768
1769 if (h->esym.ifd == -2)
1770 {
1771 h->esym.jmptbl = 0;
1772 h->esym.cobol_main = 0;
1773 h->esym.weakext = 0;
1774 h->esym.reserved = 0;
1775 h->esym.ifd = ifdNil;
1776 h->esym.asym.value = 0;
1777 h->esym.asym.st = stGlobal;
1778
1779 if (h->root.root.type == bfd_link_hash_undefined
1780 || h->root.root.type == bfd_link_hash_undefweak)
1781 {
1782 const char *name;
1783
1784 /* Use undefined class. Also, set class and type for some
1785 special symbols. */
1786 name = h->root.root.root.string;
1787 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
1788 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
1789 {
1790 h->esym.asym.sc = scData;
1791 h->esym.asym.st = stLabel;
1792 h->esym.asym.value = 0;
1793 }
1794 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
1795 {
1796 h->esym.asym.sc = scAbs;
1797 h->esym.asym.st = stLabel;
1798 h->esym.asym.value =
1799 mips_elf_hash_table (einfo->info)->procedure_count;
1800 }
1801 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
1802 {
1803 h->esym.asym.sc = scAbs;
1804 h->esym.asym.st = stLabel;
1805 h->esym.asym.value = elf_gp (einfo->abfd);
1806 }
1807 else
1808 h->esym.asym.sc = scUndefined;
1809 }
1810 else if (h->root.root.type != bfd_link_hash_defined
1811 && h->root.root.type != bfd_link_hash_defweak)
1812 h->esym.asym.sc = scAbs;
1813 else
1814 {
1815 const char *name;
1816
1817 sec = h->root.root.u.def.section;
1818 output_section = sec->output_section;
1819
1820 /* When making a shared library and symbol h is the one from
1821 the another shared library, OUTPUT_SECTION may be null. */
1822 if (output_section == NULL)
1823 h->esym.asym.sc = scUndefined;
1824 else
1825 {
1826 name = bfd_section_name (output_section->owner, output_section);
1827
1828 if (strcmp (name, ".text") == 0)
1829 h->esym.asym.sc = scText;
1830 else if (strcmp (name, ".data") == 0)
1831 h->esym.asym.sc = scData;
1832 else if (strcmp (name, ".sdata") == 0)
1833 h->esym.asym.sc = scSData;
1834 else if (strcmp (name, ".rodata") == 0
1835 || strcmp (name, ".rdata") == 0)
1836 h->esym.asym.sc = scRData;
1837 else if (strcmp (name, ".bss") == 0)
1838 h->esym.asym.sc = scBss;
1839 else if (strcmp (name, ".sbss") == 0)
1840 h->esym.asym.sc = scSBss;
1841 else if (strcmp (name, ".init") == 0)
1842 h->esym.asym.sc = scInit;
1843 else if (strcmp (name, ".fini") == 0)
1844 h->esym.asym.sc = scFini;
1845 else
1846 h->esym.asym.sc = scAbs;
1847 }
1848 }
1849
1850 h->esym.asym.reserved = 0;
1851 h->esym.asym.index = indexNil;
1852 }
1853
1854 if (h->root.root.type == bfd_link_hash_common)
1855 h->esym.asym.value = h->root.root.u.c.size;
1856 else if (h->root.root.type == bfd_link_hash_defined
1857 || h->root.root.type == bfd_link_hash_defweak)
1858 {
1859 if (h->esym.asym.sc == scCommon)
1860 h->esym.asym.sc = scBss;
1861 else if (h->esym.asym.sc == scSCommon)
1862 h->esym.asym.sc = scSBss;
1863
1864 sec = h->root.root.u.def.section;
1865 output_section = sec->output_section;
1866 if (output_section != NULL)
1867 h->esym.asym.value = (h->root.root.u.def.value
1868 + sec->output_offset
1869 + output_section->vma);
1870 else
1871 h->esym.asym.value = 0;
1872 }
1873 else if (h->root.needs_plt)
1874 {
1875 struct mips_elf_link_hash_entry *hd = h;
1876 bfd_boolean no_fn_stub = h->no_fn_stub;
1877
1878 while (hd->root.root.type == bfd_link_hash_indirect)
1879 {
1880 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
1881 no_fn_stub = no_fn_stub || hd->no_fn_stub;
1882 }
1883
1884 if (!no_fn_stub)
1885 {
1886 /* Set type and value for a symbol with a function stub. */
1887 h->esym.asym.st = stProc;
1888 sec = hd->root.root.u.def.section;
1889 if (sec == NULL)
1890 h->esym.asym.value = 0;
1891 else
1892 {
1893 output_section = sec->output_section;
1894 if (output_section != NULL)
1895 h->esym.asym.value = (hd->root.plt.offset
1896 + sec->output_offset
1897 + output_section->vma);
1898 else
1899 h->esym.asym.value = 0;
1900 }
1901 }
1902 }
1903
1904 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1905 h->root.root.root.string,
1906 &h->esym))
1907 {
1908 einfo->failed = TRUE;
1909 return FALSE;
1910 }
1911
1912 return TRUE;
1913 }
1914
1915 /* A comparison routine used to sort .gptab entries. */
1916
1917 static int
1918 gptab_compare (const void *p1, const void *p2)
1919 {
1920 const Elf32_gptab *a1 = p1;
1921 const Elf32_gptab *a2 = p2;
1922
1923 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
1924 }
1925 \f
1926 /* Functions to manage the got entry hash table. */
1927
1928 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
1929 hash number. */
1930
1931 static INLINE hashval_t
1932 mips_elf_hash_bfd_vma (bfd_vma addr)
1933 {
1934 #ifdef BFD64
1935 return addr + (addr >> 32);
1936 #else
1937 return addr;
1938 #endif
1939 }
1940
1941 /* got_entries only match if they're identical, except for gotidx, so
1942 use all fields to compute the hash, and compare the appropriate
1943 union members. */
1944
1945 static hashval_t
1946 mips_elf_got_entry_hash (const void *entry_)
1947 {
1948 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1949
1950 return entry->symndx
1951 + ((entry->tls_type & GOT_TLS_LDM) << 17)
1952 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
1953 : entry->abfd->id
1954 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
1955 : entry->d.h->root.root.root.hash));
1956 }
1957
1958 static int
1959 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
1960 {
1961 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1962 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
1963
1964 /* An LDM entry can only match another LDM entry. */
1965 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
1966 return 0;
1967
1968 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
1969 && (! e1->abfd ? e1->d.address == e2->d.address
1970 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
1971 : e1->d.h == e2->d.h);
1972 }
1973
1974 /* multi_got_entries are still a match in the case of global objects,
1975 even if the input bfd in which they're referenced differs, so the
1976 hash computation and compare functions are adjusted
1977 accordingly. */
1978
1979 static hashval_t
1980 mips_elf_multi_got_entry_hash (const void *entry_)
1981 {
1982 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
1983
1984 return entry->symndx
1985 + (! entry->abfd
1986 ? mips_elf_hash_bfd_vma (entry->d.address)
1987 : entry->symndx >= 0
1988 ? ((entry->tls_type & GOT_TLS_LDM)
1989 ? (GOT_TLS_LDM << 17)
1990 : (entry->abfd->id
1991 + mips_elf_hash_bfd_vma (entry->d.addend)))
1992 : entry->d.h->root.root.root.hash);
1993 }
1994
1995 static int
1996 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
1997 {
1998 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
1999 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2000
2001 /* Any two LDM entries match. */
2002 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2003 return 1;
2004
2005 /* Nothing else matches an LDM entry. */
2006 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2007 return 0;
2008
2009 return e1->symndx == e2->symndx
2010 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2011 : e1->abfd == NULL || e2->abfd == NULL
2012 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2013 : e1->d.h == e2->d.h);
2014 }
2015 \f
2016 /* Return the dynamic relocation section. If it doesn't exist, try to
2017 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2018 if creation fails. */
2019
2020 static asection *
2021 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2022 {
2023 const char *dname;
2024 asection *sreloc;
2025 bfd *dynobj;
2026
2027 dname = MIPS_ELF_REL_DYN_NAME (info);
2028 dynobj = elf_hash_table (info)->dynobj;
2029 sreloc = bfd_get_section_by_name (dynobj, dname);
2030 if (sreloc == NULL && create_p)
2031 {
2032 sreloc = bfd_make_section_with_flags (dynobj, dname,
2033 (SEC_ALLOC
2034 | SEC_LOAD
2035 | SEC_HAS_CONTENTS
2036 | SEC_IN_MEMORY
2037 | SEC_LINKER_CREATED
2038 | SEC_READONLY));
2039 if (sreloc == NULL
2040 || ! bfd_set_section_alignment (dynobj, sreloc,
2041 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2042 return NULL;
2043 }
2044 return sreloc;
2045 }
2046
2047 /* Returns the GOT section for ABFD. */
2048
2049 static asection *
2050 mips_elf_got_section (bfd *abfd, bfd_boolean maybe_excluded)
2051 {
2052 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2053 if (sgot == NULL
2054 || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0))
2055 return NULL;
2056 return sgot;
2057 }
2058
2059 /* Returns the GOT information associated with the link indicated by
2060 INFO. If SGOTP is non-NULL, it is filled in with the GOT
2061 section. */
2062
2063 static struct mips_got_info *
2064 mips_elf_got_info (bfd *abfd, asection **sgotp)
2065 {
2066 asection *sgot;
2067 struct mips_got_info *g;
2068
2069 sgot = mips_elf_got_section (abfd, TRUE);
2070 BFD_ASSERT (sgot != NULL);
2071 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
2072 g = mips_elf_section_data (sgot)->u.got_info;
2073 BFD_ASSERT (g != NULL);
2074
2075 if (sgotp)
2076 *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL;
2077
2078 return g;
2079 }
2080
2081 /* Count the number of relocations needed for a TLS GOT entry, with
2082 access types from TLS_TYPE, and symbol H (or a local symbol if H
2083 is NULL). */
2084
2085 static int
2086 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2087 struct elf_link_hash_entry *h)
2088 {
2089 int indx = 0;
2090 int ret = 0;
2091 bfd_boolean need_relocs = FALSE;
2092 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2093
2094 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2095 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2096 indx = h->dynindx;
2097
2098 if ((info->shared || indx != 0)
2099 && (h == NULL
2100 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2101 || h->root.type != bfd_link_hash_undefweak))
2102 need_relocs = TRUE;
2103
2104 if (!need_relocs)
2105 return FALSE;
2106
2107 if (tls_type & GOT_TLS_GD)
2108 {
2109 ret++;
2110 if (indx != 0)
2111 ret++;
2112 }
2113
2114 if (tls_type & GOT_TLS_IE)
2115 ret++;
2116
2117 if ((tls_type & GOT_TLS_LDM) && info->shared)
2118 ret++;
2119
2120 return ret;
2121 }
2122
2123 /* Count the number of TLS relocations required for the GOT entry in
2124 ARG1, if it describes a local symbol. */
2125
2126 static int
2127 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2128 {
2129 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2130 struct mips_elf_count_tls_arg *arg = arg2;
2131
2132 if (entry->abfd != NULL && entry->symndx != -1)
2133 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2134
2135 return 1;
2136 }
2137
2138 /* Count the number of TLS GOT entries required for the global (or
2139 forced-local) symbol in ARG1. */
2140
2141 static int
2142 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2143 {
2144 struct mips_elf_link_hash_entry *hm
2145 = (struct mips_elf_link_hash_entry *) arg1;
2146 struct mips_elf_count_tls_arg *arg = arg2;
2147
2148 if (hm->tls_type & GOT_TLS_GD)
2149 arg->needed += 2;
2150 if (hm->tls_type & GOT_TLS_IE)
2151 arg->needed += 1;
2152
2153 return 1;
2154 }
2155
2156 /* Count the number of TLS relocations required for the global (or
2157 forced-local) symbol in ARG1. */
2158
2159 static int
2160 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2161 {
2162 struct mips_elf_link_hash_entry *hm
2163 = (struct mips_elf_link_hash_entry *) arg1;
2164 struct mips_elf_count_tls_arg *arg = arg2;
2165
2166 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2167
2168 return 1;
2169 }
2170
2171 /* Output a simple dynamic relocation into SRELOC. */
2172
2173 static void
2174 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2175 asection *sreloc,
2176 unsigned long indx,
2177 int r_type,
2178 bfd_vma offset)
2179 {
2180 Elf_Internal_Rela rel[3];
2181
2182 memset (rel, 0, sizeof (rel));
2183
2184 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2185 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2186
2187 if (ABI_64_P (output_bfd))
2188 {
2189 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2190 (output_bfd, &rel[0],
2191 (sreloc->contents
2192 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
2193 }
2194 else
2195 bfd_elf32_swap_reloc_out
2196 (output_bfd, &rel[0],
2197 (sreloc->contents
2198 + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
2199 ++sreloc->reloc_count;
2200 }
2201
2202 /* Initialize a set of TLS GOT entries for one symbol. */
2203
2204 static void
2205 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2206 unsigned char *tls_type_p,
2207 struct bfd_link_info *info,
2208 struct mips_elf_link_hash_entry *h,
2209 bfd_vma value)
2210 {
2211 int indx;
2212 asection *sreloc, *sgot;
2213 bfd_vma offset, offset2;
2214 bfd *dynobj;
2215 bfd_boolean need_relocs = FALSE;
2216
2217 dynobj = elf_hash_table (info)->dynobj;
2218 sgot = mips_elf_got_section (dynobj, FALSE);
2219
2220 indx = 0;
2221 if (h != NULL)
2222 {
2223 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2224
2225 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2226 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2227 indx = h->root.dynindx;
2228 }
2229
2230 if (*tls_type_p & GOT_TLS_DONE)
2231 return;
2232
2233 if ((info->shared || indx != 0)
2234 && (h == NULL
2235 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2236 || h->root.type != bfd_link_hash_undefweak))
2237 need_relocs = TRUE;
2238
2239 /* MINUS_ONE means the symbol is not defined in this object. It may not
2240 be defined at all; assume that the value doesn't matter in that
2241 case. Otherwise complain if we would use the value. */
2242 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2243 || h->root.root.type == bfd_link_hash_undefweak);
2244
2245 /* Emit necessary relocations. */
2246 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2247
2248 /* General Dynamic. */
2249 if (*tls_type_p & GOT_TLS_GD)
2250 {
2251 offset = got_offset;
2252 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2253
2254 if (need_relocs)
2255 {
2256 mips_elf_output_dynamic_relocation
2257 (abfd, sreloc, indx,
2258 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2259 sgot->output_offset + sgot->output_section->vma + offset);
2260
2261 if (indx)
2262 mips_elf_output_dynamic_relocation
2263 (abfd, sreloc, indx,
2264 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2265 sgot->output_offset + sgot->output_section->vma + offset2);
2266 else
2267 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2268 sgot->contents + offset2);
2269 }
2270 else
2271 {
2272 MIPS_ELF_PUT_WORD (abfd, 1,
2273 sgot->contents + offset);
2274 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2275 sgot->contents + offset2);
2276 }
2277
2278 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2279 }
2280
2281 /* Initial Exec model. */
2282 if (*tls_type_p & GOT_TLS_IE)
2283 {
2284 offset = got_offset;
2285
2286 if (need_relocs)
2287 {
2288 if (indx == 0)
2289 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2290 sgot->contents + offset);
2291 else
2292 MIPS_ELF_PUT_WORD (abfd, 0,
2293 sgot->contents + offset);
2294
2295 mips_elf_output_dynamic_relocation
2296 (abfd, sreloc, indx,
2297 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2298 sgot->output_offset + sgot->output_section->vma + offset);
2299 }
2300 else
2301 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2302 sgot->contents + offset);
2303 }
2304
2305 if (*tls_type_p & GOT_TLS_LDM)
2306 {
2307 /* The initial offset is zero, and the LD offsets will include the
2308 bias by DTP_OFFSET. */
2309 MIPS_ELF_PUT_WORD (abfd, 0,
2310 sgot->contents + got_offset
2311 + MIPS_ELF_GOT_SIZE (abfd));
2312
2313 if (!info->shared)
2314 MIPS_ELF_PUT_WORD (abfd, 1,
2315 sgot->contents + got_offset);
2316 else
2317 mips_elf_output_dynamic_relocation
2318 (abfd, sreloc, indx,
2319 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2320 sgot->output_offset + sgot->output_section->vma + got_offset);
2321 }
2322
2323 *tls_type_p |= GOT_TLS_DONE;
2324 }
2325
2326 /* Return the GOT index to use for a relocation of type R_TYPE against
2327 a symbol accessed using TLS_TYPE models. The GOT entries for this
2328 symbol in this GOT start at GOT_INDEX. This function initializes the
2329 GOT entries and corresponding relocations. */
2330
2331 static bfd_vma
2332 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2333 int r_type, struct bfd_link_info *info,
2334 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2335 {
2336 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2337 || r_type == R_MIPS_TLS_LDM);
2338
2339 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2340
2341 if (r_type == R_MIPS_TLS_GOTTPREL)
2342 {
2343 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2344 if (*tls_type & GOT_TLS_GD)
2345 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2346 else
2347 return got_index;
2348 }
2349
2350 if (r_type == R_MIPS_TLS_GD)
2351 {
2352 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2353 return got_index;
2354 }
2355
2356 if (r_type == R_MIPS_TLS_LDM)
2357 {
2358 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2359 return got_index;
2360 }
2361
2362 return got_index;
2363 }
2364
2365 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2366 for global symbol H. .got.plt comes before the GOT, so the offset
2367 will be negative. */
2368
2369 static bfd_vma
2370 mips_elf_gotplt_index (struct bfd_link_info *info,
2371 struct elf_link_hash_entry *h)
2372 {
2373 bfd_vma plt_index, got_address, got_value;
2374 struct mips_elf_link_hash_table *htab;
2375
2376 htab = mips_elf_hash_table (info);
2377 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
2378
2379 /* Calculate the index of the symbol's PLT entry. */
2380 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
2381
2382 /* Calculate the address of the associated .got.plt entry. */
2383 got_address = (htab->sgotplt->output_section->vma
2384 + htab->sgotplt->output_offset
2385 + plt_index * 4);
2386
2387 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
2388 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
2389 + htab->root.hgot->root.u.def.section->output_offset
2390 + htab->root.hgot->root.u.def.value);
2391
2392 return got_address - got_value;
2393 }
2394
2395 /* Return the GOT offset for address VALUE, which was derived from
2396 a symbol belonging to INPUT_SECTION. If there is not yet a GOT
2397 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
2398 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
2399 offset can be found. */
2400
2401 static bfd_vma
2402 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2403 asection *input_section, bfd_vma value,
2404 unsigned long r_symndx,
2405 struct mips_elf_link_hash_entry *h, int r_type)
2406 {
2407 asection *sgot;
2408 struct mips_got_info *g;
2409 struct mips_got_entry *entry;
2410
2411 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2412
2413 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2414 input_section, value,
2415 r_symndx, h, r_type);
2416 if (!entry)
2417 return MINUS_ONE;
2418
2419 if (TLS_RELOC_P (r_type))
2420 {
2421 if (entry->symndx == -1 && g->next == NULL)
2422 /* A type (3) entry in the single-GOT case. We use the symbol's
2423 hash table entry to track the index. */
2424 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
2425 r_type, info, h, value);
2426 else
2427 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
2428 r_type, info, h, value);
2429 }
2430 else
2431 return entry->gotidx;
2432 }
2433
2434 /* Returns the GOT index for the global symbol indicated by H. */
2435
2436 static bfd_vma
2437 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
2438 int r_type, struct bfd_link_info *info)
2439 {
2440 bfd_vma index;
2441 asection *sgot;
2442 struct mips_got_info *g, *gg;
2443 long global_got_dynindx = 0;
2444
2445 gg = g = mips_elf_got_info (abfd, &sgot);
2446 if (g->bfd2got && ibfd)
2447 {
2448 struct mips_got_entry e, *p;
2449
2450 BFD_ASSERT (h->dynindx >= 0);
2451
2452 g = mips_elf_got_for_ibfd (g, ibfd);
2453 if (g->next != gg || TLS_RELOC_P (r_type))
2454 {
2455 e.abfd = ibfd;
2456 e.symndx = -1;
2457 e.d.h = (struct mips_elf_link_hash_entry *)h;
2458 e.tls_type = 0;
2459
2460 p = htab_find (g->got_entries, &e);
2461
2462 BFD_ASSERT (p->gotidx > 0);
2463
2464 if (TLS_RELOC_P (r_type))
2465 {
2466 bfd_vma value = MINUS_ONE;
2467 if ((h->root.type == bfd_link_hash_defined
2468 || h->root.type == bfd_link_hash_defweak)
2469 && h->root.u.def.section->output_section)
2470 value = (h->root.u.def.value
2471 + h->root.u.def.section->output_offset
2472 + h->root.u.def.section->output_section->vma);
2473
2474 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
2475 info, e.d.h, value);
2476 }
2477 else
2478 return p->gotidx;
2479 }
2480 }
2481
2482 if (gg->global_gotsym != NULL)
2483 global_got_dynindx = gg->global_gotsym->dynindx;
2484
2485 if (TLS_RELOC_P (r_type))
2486 {
2487 struct mips_elf_link_hash_entry *hm
2488 = (struct mips_elf_link_hash_entry *) h;
2489 bfd_vma value = MINUS_ONE;
2490
2491 if ((h->root.type == bfd_link_hash_defined
2492 || h->root.type == bfd_link_hash_defweak)
2493 && h->root.u.def.section->output_section)
2494 value = (h->root.u.def.value
2495 + h->root.u.def.section->output_offset
2496 + h->root.u.def.section->output_section->vma);
2497
2498 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
2499 r_type, info, hm, value);
2500 }
2501 else
2502 {
2503 /* Once we determine the global GOT entry with the lowest dynamic
2504 symbol table index, we must put all dynamic symbols with greater
2505 indices into the GOT. That makes it easy to calculate the GOT
2506 offset. */
2507 BFD_ASSERT (h->dynindx >= global_got_dynindx);
2508 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
2509 * MIPS_ELF_GOT_SIZE (abfd));
2510 }
2511 BFD_ASSERT (index < sgot->size);
2512
2513 return index;
2514 }
2515
2516 /* Find a GOT page entry that points to within 32KB of VALUE, which was
2517 calculated from a symbol belonging to INPUT_SECTION. These entries
2518 are supposed to be placed at small offsets in the GOT, i.e., within
2519 32KB of GP. Return the index of the GOT entry, or -1 if no entry
2520 could be created. If OFFSETP is nonnull, use it to return the
2521 offset of the GOT entry from VALUE. */
2522
2523 static bfd_vma
2524 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2525 asection *input_section, bfd_vma value, bfd_vma *offsetp)
2526 {
2527 asection *sgot;
2528 struct mips_got_info *g;
2529 bfd_vma page, index;
2530 struct mips_got_entry *entry;
2531
2532 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2533
2534 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
2535 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2536 input_section, page, 0,
2537 NULL, R_MIPS_GOT_PAGE);
2538
2539 if (!entry)
2540 return MINUS_ONE;
2541
2542 index = entry->gotidx;
2543
2544 if (offsetp)
2545 *offsetp = value - entry->d.address;
2546
2547 return index;
2548 }
2549
2550 /* Find a local GOT entry for an R_MIPS_GOT16 relocation against VALUE,
2551 which was calculated from a symbol belonging to INPUT_SECTION.
2552 EXTERNAL is true if the relocation was against a global symbol
2553 that has been forced local. */
2554
2555 static bfd_vma
2556 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
2557 asection *input_section, bfd_vma value,
2558 bfd_boolean external)
2559 {
2560 asection *sgot;
2561 struct mips_got_info *g;
2562 struct mips_got_entry *entry;
2563
2564 /* GOT16 relocations against local symbols are followed by a LO16
2565 relocation; those against global symbols are not. Thus if the
2566 symbol was originally local, the GOT16 relocation should load the
2567 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
2568 if (! external)
2569 value = mips_elf_high (value) << 16;
2570
2571 g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot);
2572
2573 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, g, sgot,
2574 input_section, value, 0,
2575 NULL, R_MIPS_GOT16);
2576 if (entry)
2577 return entry->gotidx;
2578 else
2579 return MINUS_ONE;
2580 }
2581
2582 /* Returns the offset for the entry at the INDEXth position
2583 in the GOT. */
2584
2585 static bfd_vma
2586 mips_elf_got_offset_from_index (bfd *dynobj, bfd *output_bfd,
2587 bfd *input_bfd, bfd_vma index)
2588 {
2589 asection *sgot;
2590 bfd_vma gp;
2591 struct mips_got_info *g;
2592
2593 g = mips_elf_got_info (dynobj, &sgot);
2594 gp = _bfd_get_gp_value (output_bfd)
2595 + mips_elf_adjust_gp (output_bfd, g, input_bfd);
2596
2597 return sgot->output_section->vma + sgot->output_offset + index - gp;
2598 }
2599
2600 /* Create and return a local GOT entry for VALUE, which was calculated
2601 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
2602 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
2603 instead. */
2604
2605 static struct mips_got_entry *
2606 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
2607 bfd *ibfd, struct mips_got_info *gg,
2608 asection *sgot, asection *input_section,
2609 bfd_vma value, unsigned long r_symndx,
2610 struct mips_elf_link_hash_entry *h,
2611 int r_type)
2612 {
2613 struct mips_got_entry entry, **loc;
2614 struct mips_got_info *g;
2615 struct mips_elf_link_hash_table *htab;
2616
2617 htab = mips_elf_hash_table (info);
2618
2619 entry.abfd = NULL;
2620 entry.symndx = -1;
2621 entry.d.address = value;
2622 entry.tls_type = 0;
2623
2624 g = mips_elf_got_for_ibfd (gg, ibfd);
2625 if (g == NULL)
2626 {
2627 g = mips_elf_got_for_ibfd (gg, abfd);
2628 BFD_ASSERT (g != NULL);
2629 }
2630
2631 /* We might have a symbol, H, if it has been forced local. Use the
2632 global entry then. It doesn't matter whether an entry is local
2633 or global for TLS, since the dynamic linker does not
2634 automatically relocate TLS GOT entries. */
2635 BFD_ASSERT (h == NULL || h->root.forced_local);
2636 if (TLS_RELOC_P (r_type))
2637 {
2638 struct mips_got_entry *p;
2639
2640 entry.abfd = ibfd;
2641 if (r_type == R_MIPS_TLS_LDM)
2642 {
2643 entry.tls_type = GOT_TLS_LDM;
2644 entry.symndx = 0;
2645 entry.d.addend = 0;
2646 }
2647 else if (h == NULL)
2648 {
2649 entry.symndx = r_symndx;
2650 entry.d.addend = 0;
2651 }
2652 else
2653 entry.d.h = h;
2654
2655 p = (struct mips_got_entry *)
2656 htab_find (g->got_entries, &entry);
2657
2658 BFD_ASSERT (p);
2659 return p;
2660 }
2661
2662 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2663 INSERT);
2664 if (*loc)
2665 return *loc;
2666
2667 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
2668 entry.tls_type = 0;
2669
2670 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2671
2672 if (! *loc)
2673 return NULL;
2674
2675 memcpy (*loc, &entry, sizeof entry);
2676
2677 if (g->assigned_gotno >= g->local_gotno)
2678 {
2679 (*loc)->gotidx = -1;
2680 /* We didn't allocate enough space in the GOT. */
2681 (*_bfd_error_handler)
2682 (_("not enough GOT space for local GOT entries"));
2683 bfd_set_error (bfd_error_bad_value);
2684 return NULL;
2685 }
2686
2687 MIPS_ELF_PUT_WORD (abfd, value,
2688 (sgot->contents + entry.gotidx));
2689
2690 /* These GOT entries need a dynamic relocation on VxWorks. Because
2691 the offset between segments is not fixed, the relocation must be
2692 against a symbol in the same segment as the original symbol.
2693 The easiest way to do this is to take INPUT_SECTION's output
2694 section and emit a relocation against its section symbol. */
2695 if (htab->is_vxworks)
2696 {
2697 Elf_Internal_Rela outrel;
2698 asection *s, *output_section;
2699 bfd_byte *loc;
2700 bfd_vma got_address;
2701 int dynindx;
2702
2703 s = mips_elf_rel_dyn_section (info, FALSE);
2704 output_section = input_section->output_section;
2705 dynindx = elf_section_data (output_section)->dynindx;
2706 got_address = (sgot->output_section->vma
2707 + sgot->output_offset
2708 + entry.gotidx);
2709
2710 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
2711 outrel.r_offset = got_address;
2712 outrel.r_info = ELF32_R_INFO (dynindx, R_MIPS_32);
2713 outrel.r_addend = value - output_section->vma;
2714 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
2715 }
2716
2717 return *loc;
2718 }
2719
2720 /* Sort the dynamic symbol table so that symbols that need GOT entries
2721 appear towards the end. This reduces the amount of GOT space
2722 required. MAX_LOCAL is used to set the number of local symbols
2723 known to be in the dynamic symbol table. During
2724 _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the
2725 section symbols are added and the count is higher. */
2726
2727 static bfd_boolean
2728 mips_elf_sort_hash_table (struct bfd_link_info *info, unsigned long max_local)
2729 {
2730 struct mips_elf_hash_sort_data hsd;
2731 struct mips_got_info *g;
2732 bfd *dynobj;
2733
2734 dynobj = elf_hash_table (info)->dynobj;
2735
2736 g = mips_elf_got_info (dynobj, NULL);
2737
2738 hsd.low = NULL;
2739 hsd.max_unref_got_dynindx =
2740 hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount
2741 /* In the multi-got case, assigned_gotno of the master got_info
2742 indicate the number of entries that aren't referenced in the
2743 primary GOT, but that must have entries because there are
2744 dynamic relocations that reference it. Since they aren't
2745 referenced, we move them to the end of the GOT, so that they
2746 don't prevent other entries that are referenced from getting
2747 too large offsets. */
2748 - (g->next ? g->assigned_gotno : 0);
2749 hsd.max_non_got_dynindx = max_local;
2750 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
2751 elf_hash_table (info)),
2752 mips_elf_sort_hash_table_f,
2753 &hsd);
2754
2755 /* There should have been enough room in the symbol table to
2756 accommodate both the GOT and non-GOT symbols. */
2757 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
2758 BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx
2759 <= elf_hash_table (info)->dynsymcount);
2760
2761 /* Now we know which dynamic symbol has the lowest dynamic symbol
2762 table index in the GOT. */
2763 g->global_gotsym = hsd.low;
2764
2765 return TRUE;
2766 }
2767
2768 /* If H needs a GOT entry, assign it the highest available dynamic
2769 index. Otherwise, assign it the lowest available dynamic
2770 index. */
2771
2772 static bfd_boolean
2773 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
2774 {
2775 struct mips_elf_hash_sort_data *hsd = data;
2776
2777 if (h->root.root.type == bfd_link_hash_warning)
2778 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2779
2780 /* Symbols without dynamic symbol table entries aren't interesting
2781 at all. */
2782 if (h->root.dynindx == -1)
2783 return TRUE;
2784
2785 /* Global symbols that need GOT entries that are not explicitly
2786 referenced are marked with got offset 2. Those that are
2787 referenced get a 1, and those that don't need GOT entries get
2788 -1. */
2789 if (h->root.got.offset == 2)
2790 {
2791 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2792
2793 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
2794 hsd->low = (struct elf_link_hash_entry *) h;
2795 h->root.dynindx = hsd->max_unref_got_dynindx++;
2796 }
2797 else if (h->root.got.offset != 1)
2798 h->root.dynindx = hsd->max_non_got_dynindx++;
2799 else
2800 {
2801 BFD_ASSERT (h->tls_type == GOT_NORMAL);
2802
2803 h->root.dynindx = --hsd->min_got_dynindx;
2804 hsd->low = (struct elf_link_hash_entry *) h;
2805 }
2806
2807 return TRUE;
2808 }
2809
2810 /* If H is a symbol that needs a global GOT entry, but has a dynamic
2811 symbol table index lower than any we've seen to date, record it for
2812 posterity. */
2813
2814 static bfd_boolean
2815 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
2816 bfd *abfd, struct bfd_link_info *info,
2817 struct mips_got_info *g,
2818 unsigned char tls_flag)
2819 {
2820 struct mips_got_entry entry, **loc;
2821
2822 /* A global symbol in the GOT must also be in the dynamic symbol
2823 table. */
2824 if (h->dynindx == -1)
2825 {
2826 switch (ELF_ST_VISIBILITY (h->other))
2827 {
2828 case STV_INTERNAL:
2829 case STV_HIDDEN:
2830 _bfd_mips_elf_hide_symbol (info, h, TRUE);
2831 break;
2832 }
2833 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2834 return FALSE;
2835 }
2836
2837 /* Make sure we have a GOT to put this entry into. */
2838 BFD_ASSERT (g != NULL);
2839
2840 entry.abfd = abfd;
2841 entry.symndx = -1;
2842 entry.d.h = (struct mips_elf_link_hash_entry *) h;
2843 entry.tls_type = 0;
2844
2845 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
2846 INSERT);
2847
2848 /* If we've already marked this entry as needing GOT space, we don't
2849 need to do it again. */
2850 if (*loc)
2851 {
2852 (*loc)->tls_type |= tls_flag;
2853 return TRUE;
2854 }
2855
2856 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2857
2858 if (! *loc)
2859 return FALSE;
2860
2861 entry.gotidx = -1;
2862 entry.tls_type = tls_flag;
2863
2864 memcpy (*loc, &entry, sizeof entry);
2865
2866 if (h->got.offset != MINUS_ONE)
2867 return TRUE;
2868
2869 /* By setting this to a value other than -1, we are indicating that
2870 there needs to be a GOT entry for H. Avoid using zero, as the
2871 generic ELF copy_indirect_symbol tests for <= 0. */
2872 if (tls_flag == 0)
2873 h->got.offset = 1;
2874
2875 return TRUE;
2876 }
2877
2878 /* Reserve space in G for a GOT entry containing the value of symbol
2879 SYMNDX in input bfd ABDF, plus ADDEND. */
2880
2881 static bfd_boolean
2882 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
2883 struct mips_got_info *g,
2884 unsigned char tls_flag)
2885 {
2886 struct mips_got_entry entry, **loc;
2887
2888 entry.abfd = abfd;
2889 entry.symndx = symndx;
2890 entry.d.addend = addend;
2891 entry.tls_type = tls_flag;
2892 loc = (struct mips_got_entry **)
2893 htab_find_slot (g->got_entries, &entry, INSERT);
2894
2895 if (*loc)
2896 {
2897 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
2898 {
2899 g->tls_gotno += 2;
2900 (*loc)->tls_type |= tls_flag;
2901 }
2902 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
2903 {
2904 g->tls_gotno += 1;
2905 (*loc)->tls_type |= tls_flag;
2906 }
2907 return TRUE;
2908 }
2909
2910 if (tls_flag != 0)
2911 {
2912 entry.gotidx = -1;
2913 entry.tls_type = tls_flag;
2914 if (tls_flag == GOT_TLS_IE)
2915 g->tls_gotno += 1;
2916 else if (tls_flag == GOT_TLS_GD)
2917 g->tls_gotno += 2;
2918 else if (g->tls_ldm_offset == MINUS_ONE)
2919 {
2920 g->tls_ldm_offset = MINUS_TWO;
2921 g->tls_gotno += 2;
2922 }
2923 }
2924 else
2925 {
2926 entry.gotidx = g->local_gotno++;
2927 entry.tls_type = 0;
2928 }
2929
2930 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
2931
2932 if (! *loc)
2933 return FALSE;
2934
2935 memcpy (*loc, &entry, sizeof entry);
2936
2937 return TRUE;
2938 }
2939 \f
2940 /* Compute the hash value of the bfd in a bfd2got hash entry. */
2941
2942 static hashval_t
2943 mips_elf_bfd2got_entry_hash (const void *entry_)
2944 {
2945 const struct mips_elf_bfd2got_hash *entry
2946 = (struct mips_elf_bfd2got_hash *)entry_;
2947
2948 return entry->bfd->id;
2949 }
2950
2951 /* Check whether two hash entries have the same bfd. */
2952
2953 static int
2954 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
2955 {
2956 const struct mips_elf_bfd2got_hash *e1
2957 = (const struct mips_elf_bfd2got_hash *)entry1;
2958 const struct mips_elf_bfd2got_hash *e2
2959 = (const struct mips_elf_bfd2got_hash *)entry2;
2960
2961 return e1->bfd == e2->bfd;
2962 }
2963
2964 /* In a multi-got link, determine the GOT to be used for IBFD. G must
2965 be the master GOT data. */
2966
2967 static struct mips_got_info *
2968 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
2969 {
2970 struct mips_elf_bfd2got_hash e, *p;
2971
2972 if (! g->bfd2got)
2973 return g;
2974
2975 e.bfd = ibfd;
2976 p = htab_find (g->bfd2got, &e);
2977 return p ? p->g : NULL;
2978 }
2979
2980 /* Create one separate got for each bfd that has entries in the global
2981 got, such that we can tell how many local and global entries each
2982 bfd requires. */
2983
2984 static int
2985 mips_elf_make_got_per_bfd (void **entryp, void *p)
2986 {
2987 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
2988 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
2989 htab_t bfd2got = arg->bfd2got;
2990 struct mips_got_info *g;
2991 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
2992 void **bfdgotp;
2993
2994 /* Find the got_info for this GOT entry's input bfd. Create one if
2995 none exists. */
2996 bfdgot_entry.bfd = entry->abfd;
2997 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
2998 bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp;
2999
3000 if (bfdgot != NULL)
3001 g = bfdgot->g;
3002 else
3003 {
3004 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3005 (arg->obfd, sizeof (struct mips_elf_bfd2got_hash));
3006
3007 if (bfdgot == NULL)
3008 {
3009 arg->obfd = 0;
3010 return 0;
3011 }
3012
3013 *bfdgotp = bfdgot;
3014
3015 bfdgot->bfd = entry->abfd;
3016 bfdgot->g = g = (struct mips_got_info *)
3017 bfd_alloc (arg->obfd, sizeof (struct mips_got_info));
3018 if (g == NULL)
3019 {
3020 arg->obfd = 0;
3021 return 0;
3022 }
3023
3024 g->global_gotsym = NULL;
3025 g->global_gotno = 0;
3026 g->local_gotno = 0;
3027 g->assigned_gotno = -1;
3028 g->tls_gotno = 0;
3029 g->tls_assigned_gotno = 0;
3030 g->tls_ldm_offset = MINUS_ONE;
3031 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3032 mips_elf_multi_got_entry_eq, NULL);
3033 if (g->got_entries == NULL)
3034 {
3035 arg->obfd = 0;
3036 return 0;
3037 }
3038
3039 g->bfd2got = NULL;
3040 g->next = NULL;
3041 }
3042
3043 /* Insert the GOT entry in the bfd's got entry hash table. */
3044 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3045 if (*entryp != NULL)
3046 return 1;
3047
3048 *entryp = entry;
3049
3050 if (entry->tls_type)
3051 {
3052 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3053 g->tls_gotno += 2;
3054 if (entry->tls_type & GOT_TLS_IE)
3055 g->tls_gotno += 1;
3056 }
3057 else if (entry->symndx >= 0 || entry->d.h->forced_local)
3058 ++g->local_gotno;
3059 else
3060 ++g->global_gotno;
3061
3062 return 1;
3063 }
3064
3065 /* Attempt to merge gots of different input bfds. Try to use as much
3066 as possible of the primary got, since it doesn't require explicit
3067 dynamic relocations, but don't use bfds that would reference global
3068 symbols out of the addressable range. Failing the primary got,
3069 attempt to merge with the current got, or finish the current got
3070 and then make make the new got current. */
3071
3072 static int
3073 mips_elf_merge_gots (void **bfd2got_, void *p)
3074 {
3075 struct mips_elf_bfd2got_hash *bfd2got
3076 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
3077 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3078 unsigned int lcount = bfd2got->g->local_gotno;
3079 unsigned int gcount = bfd2got->g->global_gotno;
3080 unsigned int tcount = bfd2got->g->tls_gotno;
3081 unsigned int maxcnt = arg->max_count;
3082 bfd_boolean too_many_for_tls = FALSE;
3083
3084 /* We place TLS GOT entries after both locals and globals. The globals
3085 for the primary GOT may overflow the normal GOT size limit, so be
3086 sure not to merge a GOT which requires TLS with the primary GOT in that
3087 case. This doesn't affect non-primary GOTs. */
3088 if (tcount > 0)
3089 {
3090 unsigned int primary_total = lcount + tcount + arg->global_count;
3091 if (primary_total * MIPS_ELF_GOT_SIZE (bfd2got->bfd)
3092 >= MIPS_ELF_GOT_MAX_SIZE (arg->info))
3093 too_many_for_tls = TRUE;
3094 }
3095
3096 /* If we don't have a primary GOT and this is not too big, use it as
3097 a starting point for the primary GOT. */
3098 if (! arg->primary && lcount + gcount + tcount <= maxcnt
3099 && ! too_many_for_tls)
3100 {
3101 arg->primary = bfd2got->g;
3102 arg->primary_count = lcount + gcount;
3103 }
3104 /* If it looks like we can merge this bfd's entries with those of
3105 the primary, merge them. The heuristics is conservative, but we
3106 don't have to squeeze it too hard. */
3107 else if (arg->primary && ! too_many_for_tls
3108 && (arg->primary_count + lcount + gcount + tcount) <= maxcnt)
3109 {
3110 struct mips_got_info *g = bfd2got->g;
3111 int old_lcount = arg->primary->local_gotno;
3112 int old_gcount = arg->primary->global_gotno;
3113 int old_tcount = arg->primary->tls_gotno;
3114
3115 bfd2got->g = arg->primary;
3116
3117 htab_traverse (g->got_entries,
3118 mips_elf_make_got_per_bfd,
3119 arg);
3120 if (arg->obfd == NULL)
3121 return 0;
3122
3123 htab_delete (g->got_entries);
3124 /* We don't have to worry about releasing memory of the actual
3125 got entries, since they're all in the master got_entries hash
3126 table anyway. */
3127
3128 BFD_ASSERT (old_lcount + lcount >= arg->primary->local_gotno);
3129 BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno);
3130 BFD_ASSERT (old_tcount + tcount >= arg->primary->tls_gotno);
3131
3132 arg->primary_count = arg->primary->local_gotno
3133 + arg->primary->global_gotno + arg->primary->tls_gotno;
3134 }
3135 /* If we can merge with the last-created got, do it. */
3136 else if (arg->current
3137 && arg->current_count + lcount + gcount + tcount <= maxcnt)
3138 {
3139 struct mips_got_info *g = bfd2got->g;
3140 int old_lcount = arg->current->local_gotno;
3141 int old_gcount = arg->current->global_gotno;
3142 int old_tcount = arg->current->tls_gotno;
3143
3144 bfd2got->g = arg->current;
3145
3146 htab_traverse (g->got_entries,
3147 mips_elf_make_got_per_bfd,
3148 arg);
3149 if (arg->obfd == NULL)
3150 return 0;
3151
3152 htab_delete (g->got_entries);
3153
3154 BFD_ASSERT (old_lcount + lcount >= arg->current->local_gotno);
3155 BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno);
3156 BFD_ASSERT (old_tcount + tcount >= arg->current->tls_gotno);
3157
3158 arg->current_count = arg->current->local_gotno
3159 + arg->current->global_gotno + arg->current->tls_gotno;
3160 }
3161 /* Well, we couldn't merge, so create a new GOT. Don't check if it
3162 fits; if it turns out that it doesn't, we'll get relocation
3163 overflows anyway. */
3164 else
3165 {
3166 bfd2got->g->next = arg->current;
3167 arg->current = bfd2got->g;
3168
3169 arg->current_count = lcount + gcount + 2 * tcount;
3170 }
3171
3172 return 1;
3173 }
3174
3175 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
3176 is null iff there is just a single GOT. */
3177
3178 static int
3179 mips_elf_initialize_tls_index (void **entryp, void *p)
3180 {
3181 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3182 struct mips_got_info *g = p;
3183 bfd_vma next_index;
3184
3185 /* We're only interested in TLS symbols. */
3186 if (entry->tls_type == 0)
3187 return 1;
3188
3189 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
3190
3191 if (entry->symndx == -1 && g->next == NULL)
3192 {
3193 /* A type (3) got entry in the single-GOT case. We use the symbol's
3194 hash table entry to track its index. */
3195 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
3196 return 1;
3197 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
3198 entry->d.h->tls_got_offset = next_index;
3199 }
3200 else
3201 {
3202 if (entry->tls_type & GOT_TLS_LDM)
3203 {
3204 /* There are separate mips_got_entry objects for each input bfd
3205 that requires an LDM entry. Make sure that all LDM entries in
3206 a GOT resolve to the same index. */
3207 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
3208 {
3209 entry->gotidx = g->tls_ldm_offset;
3210 return 1;
3211 }
3212 g->tls_ldm_offset = next_index;
3213 }
3214 entry->gotidx = next_index;
3215 }
3216
3217 /* Account for the entries we've just allocated. */
3218 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3219 g->tls_assigned_gotno += 2;
3220 if (entry->tls_type & GOT_TLS_IE)
3221 g->tls_assigned_gotno += 1;
3222
3223 return 1;
3224 }
3225
3226 /* If passed a NULL mips_got_info in the argument, set the marker used
3227 to tell whether a global symbol needs a got entry (in the primary
3228 got) to the given VALUE.
3229
3230 If passed a pointer G to a mips_got_info in the argument (it must
3231 not be the primary GOT), compute the offset from the beginning of
3232 the (primary) GOT section to the entry in G corresponding to the
3233 global symbol. G's assigned_gotno must contain the index of the
3234 first available global GOT entry in G. VALUE must contain the size
3235 of a GOT entry in bytes. For each global GOT entry that requires a
3236 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
3237 marked as not eligible for lazy resolution through a function
3238 stub. */
3239 static int
3240 mips_elf_set_global_got_offset (void **entryp, void *p)
3241 {
3242 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3243 struct mips_elf_set_global_got_offset_arg *arg
3244 = (struct mips_elf_set_global_got_offset_arg *)p;
3245 struct mips_got_info *g = arg->g;
3246
3247 if (g && entry->tls_type != GOT_NORMAL)
3248 arg->needed_relocs +=
3249 mips_tls_got_relocs (arg->info, entry->tls_type,
3250 entry->symndx == -1 ? &entry->d.h->root : NULL);
3251
3252 if (entry->abfd != NULL && entry->symndx == -1
3253 && entry->d.h->root.dynindx != -1
3254 && entry->d.h->tls_type == GOT_NORMAL)
3255 {
3256 if (g)
3257 {
3258 BFD_ASSERT (g->global_gotsym == NULL);
3259
3260 entry->gotidx = arg->value * (long) g->assigned_gotno++;
3261 if (arg->info->shared
3262 || (elf_hash_table (arg->info)->dynamic_sections_created
3263 && entry->d.h->root.def_dynamic
3264 && !entry->d.h->root.def_regular))
3265 ++arg->needed_relocs;
3266 }
3267 else
3268 entry->d.h->root.got.offset = arg->value;
3269 }
3270
3271 return 1;
3272 }
3273
3274 /* Mark any global symbols referenced in the GOT we are iterating over
3275 as inelligible for lazy resolution stubs. */
3276 static int
3277 mips_elf_set_no_stub (void **entryp, void *p ATTRIBUTE_UNUSED)
3278 {
3279 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3280
3281 if (entry->abfd != NULL
3282 && entry->symndx == -1
3283 && entry->d.h->root.dynindx != -1)
3284 entry->d.h->no_fn_stub = TRUE;
3285
3286 return 1;
3287 }
3288
3289 /* Follow indirect and warning hash entries so that each got entry
3290 points to the final symbol definition. P must point to a pointer
3291 to the hash table we're traversing. Since this traversal may
3292 modify the hash table, we set this pointer to NULL to indicate
3293 we've made a potentially-destructive change to the hash table, so
3294 the traversal must be restarted. */
3295 static int
3296 mips_elf_resolve_final_got_entry (void **entryp, void *p)
3297 {
3298 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3299 htab_t got_entries = *(htab_t *)p;
3300
3301 if (entry->abfd != NULL && entry->symndx == -1)
3302 {
3303 struct mips_elf_link_hash_entry *h = entry->d.h;
3304
3305 while (h->root.root.type == bfd_link_hash_indirect
3306 || h->root.root.type == bfd_link_hash_warning)
3307 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3308
3309 if (entry->d.h == h)
3310 return 1;
3311
3312 entry->d.h = h;
3313
3314 /* If we can't find this entry with the new bfd hash, re-insert
3315 it, and get the traversal restarted. */
3316 if (! htab_find (got_entries, entry))
3317 {
3318 htab_clear_slot (got_entries, entryp);
3319 entryp = htab_find_slot (got_entries, entry, INSERT);
3320 if (! *entryp)
3321 *entryp = entry;
3322 /* Abort the traversal, since the whole table may have
3323 moved, and leave it up to the parent to restart the
3324 process. */
3325 *(htab_t *)p = NULL;
3326 return 0;
3327 }
3328 /* We might want to decrement the global_gotno count, but it's
3329 either too early or too late for that at this point. */
3330 }
3331
3332 return 1;
3333 }
3334
3335 /* Turn indirect got entries in a got_entries table into their final
3336 locations. */
3337 static void
3338 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3339 {
3340 htab_t got_entries;
3341
3342 do
3343 {
3344 got_entries = g->got_entries;
3345
3346 htab_traverse (got_entries,
3347 mips_elf_resolve_final_got_entry,
3348 &got_entries);
3349 }
3350 while (got_entries == NULL);
3351 }
3352
3353 /* Return the offset of an input bfd IBFD's GOT from the beginning of
3354 the primary GOT. */
3355 static bfd_vma
3356 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
3357 {
3358 if (g->bfd2got == NULL)
3359 return 0;
3360
3361 g = mips_elf_got_for_ibfd (g, ibfd);
3362 if (! g)
3363 return 0;
3364
3365 BFD_ASSERT (g->next);
3366
3367 g = g->next;
3368
3369 return (g->local_gotno + g->global_gotno + g->tls_gotno)
3370 * MIPS_ELF_GOT_SIZE (abfd);
3371 }
3372
3373 /* Turn a single GOT that is too big for 16-bit addressing into
3374 a sequence of GOTs, each one 16-bit addressable. */
3375
3376 static bfd_boolean
3377 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
3378 struct mips_got_info *g, asection *got,
3379 bfd_size_type pages)
3380 {
3381 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
3382 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
3383 struct mips_got_info *gg;
3384 unsigned int assign;
3385
3386 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
3387 mips_elf_bfd2got_entry_eq, NULL);
3388 if (g->bfd2got == NULL)
3389 return FALSE;
3390
3391 got_per_bfd_arg.bfd2got = g->bfd2got;
3392 got_per_bfd_arg.obfd = abfd;
3393 got_per_bfd_arg.info = info;
3394
3395 /* Count how many GOT entries each input bfd requires, creating a
3396 map from bfd to got info while at that. */
3397 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
3398 if (got_per_bfd_arg.obfd == NULL)
3399 return FALSE;
3400
3401 got_per_bfd_arg.current = NULL;
3402 got_per_bfd_arg.primary = NULL;
3403 /* Taking out PAGES entries is a worst-case estimate. We could
3404 compute the maximum number of pages that each separate input bfd
3405 uses, but it's probably not worth it. */
3406 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
3407 / MIPS_ELF_GOT_SIZE (abfd))
3408 - MIPS_RESERVED_GOTNO (info) - pages);
3409 /* The number of globals that will be included in the primary GOT.
3410 See the calls to mips_elf_set_global_got_offset below for more
3411 information. */
3412 got_per_bfd_arg.global_count = g->global_gotno;
3413
3414 /* Try to merge the GOTs of input bfds together, as long as they
3415 don't seem to exceed the maximum GOT size, choosing one of them
3416 to be the primary GOT. */
3417 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
3418 if (got_per_bfd_arg.obfd == NULL)
3419 return FALSE;
3420
3421 /* If we do not find any suitable primary GOT, create an empty one. */
3422 if (got_per_bfd_arg.primary == NULL)
3423 {
3424 g->next = (struct mips_got_info *)
3425 bfd_alloc (abfd, sizeof (struct mips_got_info));
3426 if (g->next == NULL)
3427 return FALSE;
3428
3429 g->next->global_gotsym = NULL;
3430 g->next->global_gotno = 0;
3431 g->next->local_gotno = 0;
3432 g->next->tls_gotno = 0;
3433 g->next->assigned_gotno = 0;
3434 g->next->tls_assigned_gotno = 0;
3435 g->next->tls_ldm_offset = MINUS_ONE;
3436 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3437 mips_elf_multi_got_entry_eq,
3438 NULL);
3439 if (g->next->got_entries == NULL)
3440 return FALSE;
3441 g->next->bfd2got = NULL;
3442 }
3443 else
3444 g->next = got_per_bfd_arg.primary;
3445 g->next->next = got_per_bfd_arg.current;
3446
3447 /* GG is now the master GOT, and G is the primary GOT. */
3448 gg = g;
3449 g = g->next;
3450
3451 /* Map the output bfd to the primary got. That's what we're going
3452 to use for bfds that use GOT16 or GOT_PAGE relocations that we
3453 didn't mark in check_relocs, and we want a quick way to find it.
3454 We can't just use gg->next because we're going to reverse the
3455 list. */
3456 {
3457 struct mips_elf_bfd2got_hash *bfdgot;
3458 void **bfdgotp;
3459
3460 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
3461 (abfd, sizeof (struct mips_elf_bfd2got_hash));
3462
3463 if (bfdgot == NULL)
3464 return FALSE;
3465
3466 bfdgot->bfd = abfd;
3467 bfdgot->g = g;
3468 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
3469
3470 BFD_ASSERT (*bfdgotp == NULL);
3471 *bfdgotp = bfdgot;
3472 }
3473
3474 /* The IRIX dynamic linker requires every symbol that is referenced
3475 in a dynamic relocation to be present in the primary GOT, so
3476 arrange for them to appear after those that are actually
3477 referenced.
3478
3479 GNU/Linux could very well do without it, but it would slow down
3480 the dynamic linker, since it would have to resolve every dynamic
3481 symbol referenced in other GOTs more than once, without help from
3482 the cache. Also, knowing that every external symbol has a GOT
3483 helps speed up the resolution of local symbols too, so GNU/Linux
3484 follows IRIX's practice.
3485
3486 The number 2 is used by mips_elf_sort_hash_table_f to count
3487 global GOT symbols that are unreferenced in the primary GOT, with
3488 an initial dynamic index computed from gg->assigned_gotno, where
3489 the number of unreferenced global entries in the primary GOT is
3490 preserved. */
3491 if (1)
3492 {
3493 gg->assigned_gotno = gg->global_gotno - g->global_gotno;
3494 g->global_gotno = gg->global_gotno;
3495 set_got_offset_arg.value = 2;
3496 }
3497 else
3498 {
3499 /* This could be used for dynamic linkers that don't optimize
3500 symbol resolution while applying relocations so as to use
3501 primary GOT entries or assuming the symbol is locally-defined.
3502 With this code, we assign lower dynamic indices to global
3503 symbols that are not referenced in the primary GOT, so that
3504 their entries can be omitted. */
3505 gg->assigned_gotno = 0;
3506 set_got_offset_arg.value = -1;
3507 }
3508
3509 /* Reorder dynamic symbols as described above (which behavior
3510 depends on the setting of VALUE). */
3511 set_got_offset_arg.g = NULL;
3512 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
3513 &set_got_offset_arg);
3514 set_got_offset_arg.value = 1;
3515 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
3516 &set_got_offset_arg);
3517 if (! mips_elf_sort_hash_table (info, 1))
3518 return FALSE;
3519
3520 /* Now go through the GOTs assigning them offset ranges.
3521 [assigned_gotno, local_gotno[ will be set to the range of local
3522 entries in each GOT. We can then compute the end of a GOT by
3523 adding local_gotno to global_gotno. We reverse the list and make
3524 it circular since then we'll be able to quickly compute the
3525 beginning of a GOT, by computing the end of its predecessor. To
3526 avoid special cases for the primary GOT, while still preserving
3527 assertions that are valid for both single- and multi-got links,
3528 we arrange for the main got struct to have the right number of
3529 global entries, but set its local_gotno such that the initial
3530 offset of the primary GOT is zero. Remember that the primary GOT
3531 will become the last item in the circular linked list, so it
3532 points back to the master GOT. */
3533 gg->local_gotno = -g->global_gotno;
3534 gg->global_gotno = g->global_gotno;
3535 gg->tls_gotno = 0;
3536 assign = 0;
3537 gg->next = gg;
3538
3539 do
3540 {
3541 struct mips_got_info *gn;
3542
3543 assign += MIPS_RESERVED_GOTNO (info);
3544 g->assigned_gotno = assign;
3545 g->local_gotno += assign + pages;
3546 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
3547
3548 /* Take g out of the direct list, and push it onto the reversed
3549 list that gg points to. g->next is guaranteed to be nonnull after
3550 this operation, as required by mips_elf_initialize_tls_index. */
3551 gn = g->next;
3552 g->next = gg->next;
3553 gg->next = g;
3554
3555 /* Set up any TLS entries. We always place the TLS entries after
3556 all non-TLS entries. */
3557 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
3558 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
3559
3560 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
3561 g = gn;
3562
3563 /* Mark global symbols in every non-primary GOT as ineligible for
3564 stubs. */
3565 if (g)
3566 htab_traverse (g->got_entries, mips_elf_set_no_stub, NULL);
3567 }
3568 while (g);
3569
3570 got->size = (gg->next->local_gotno
3571 + gg->next->global_gotno
3572 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
3573
3574 return TRUE;
3575 }
3576
3577 \f
3578 /* Returns the first relocation of type r_type found, beginning with
3579 RELOCATION. RELEND is one-past-the-end of the relocation table. */
3580
3581 static const Elf_Internal_Rela *
3582 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
3583 const Elf_Internal_Rela *relocation,
3584 const Elf_Internal_Rela *relend)
3585 {
3586 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
3587
3588 while (relocation < relend)
3589 {
3590 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
3591 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
3592 return relocation;
3593
3594 ++relocation;
3595 }
3596
3597 /* We didn't find it. */
3598 bfd_set_error (bfd_error_bad_value);
3599 return NULL;
3600 }
3601
3602 /* Return whether a relocation is against a local symbol. */
3603
3604 static bfd_boolean
3605 mips_elf_local_relocation_p (bfd *input_bfd,
3606 const Elf_Internal_Rela *relocation,
3607 asection **local_sections,
3608 bfd_boolean check_forced)
3609 {
3610 unsigned long r_symndx;
3611 Elf_Internal_Shdr *symtab_hdr;
3612 struct mips_elf_link_hash_entry *h;
3613 size_t extsymoff;
3614
3615 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3616 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3617 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
3618
3619 if (r_symndx < extsymoff)
3620 return TRUE;
3621 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
3622 return TRUE;
3623
3624 if (check_forced)
3625 {
3626 /* Look up the hash table to check whether the symbol
3627 was forced local. */
3628 h = (struct mips_elf_link_hash_entry *)
3629 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
3630 /* Find the real hash-table entry for this symbol. */
3631 while (h->root.root.type == bfd_link_hash_indirect
3632 || h->root.root.type == bfd_link_hash_warning)
3633 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3634 if (h->root.forced_local)
3635 return TRUE;
3636 }
3637
3638 return FALSE;
3639 }
3640 \f
3641 /* Sign-extend VALUE, which has the indicated number of BITS. */
3642
3643 bfd_vma
3644 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
3645 {
3646 if (value & ((bfd_vma) 1 << (bits - 1)))
3647 /* VALUE is negative. */
3648 value |= ((bfd_vma) - 1) << bits;
3649
3650 return value;
3651 }
3652
3653 /* Return non-zero if the indicated VALUE has overflowed the maximum
3654 range expressible by a signed number with the indicated number of
3655 BITS. */
3656
3657 static bfd_boolean
3658 mips_elf_overflow_p (bfd_vma value, int bits)
3659 {
3660 bfd_signed_vma svalue = (bfd_signed_vma) value;
3661
3662 if (svalue > (1 << (bits - 1)) - 1)
3663 /* The value is too big. */
3664 return TRUE;
3665 else if (svalue < -(1 << (bits - 1)))
3666 /* The value is too small. */
3667 return TRUE;
3668
3669 /* All is well. */
3670 return FALSE;
3671 }
3672
3673 /* Calculate the %high function. */
3674
3675 static bfd_vma
3676 mips_elf_high (bfd_vma value)
3677 {
3678 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
3679 }
3680
3681 /* Calculate the %higher function. */
3682
3683 static bfd_vma
3684 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
3685 {
3686 #ifdef BFD64
3687 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
3688 #else
3689 abort ();
3690 return MINUS_ONE;
3691 #endif
3692 }
3693
3694 /* Calculate the %highest function. */
3695
3696 static bfd_vma
3697 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
3698 {
3699 #ifdef BFD64
3700 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
3701 #else
3702 abort ();
3703 return MINUS_ONE;
3704 #endif
3705 }
3706 \f
3707 /* Create the .compact_rel section. */
3708
3709 static bfd_boolean
3710 mips_elf_create_compact_rel_section
3711 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
3712 {
3713 flagword flags;
3714 register asection *s;
3715
3716 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
3717 {
3718 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
3719 | SEC_READONLY);
3720
3721 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
3722 if (s == NULL
3723 || ! bfd_set_section_alignment (abfd, s,
3724 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
3725 return FALSE;
3726
3727 s->size = sizeof (Elf32_External_compact_rel);
3728 }
3729
3730 return TRUE;
3731 }
3732
3733 /* Create the .got section to hold the global offset table. */
3734
3735 static bfd_boolean
3736 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info,
3737 bfd_boolean maybe_exclude)
3738 {
3739 flagword flags;
3740 register asection *s;
3741 struct elf_link_hash_entry *h;
3742 struct bfd_link_hash_entry *bh;
3743 struct mips_got_info *g;
3744 bfd_size_type amt;
3745 struct mips_elf_link_hash_table *htab;
3746
3747 htab = mips_elf_hash_table (info);
3748
3749 /* This function may be called more than once. */
3750 s = mips_elf_got_section (abfd, TRUE);
3751 if (s)
3752 {
3753 if (! maybe_exclude)
3754 s->flags &= ~SEC_EXCLUDE;
3755 return TRUE;
3756 }
3757
3758 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3759 | SEC_LINKER_CREATED);
3760
3761 if (maybe_exclude)
3762 flags |= SEC_EXCLUDE;
3763
3764 /* We have to use an alignment of 2**4 here because this is hardcoded
3765 in the function stub generation and in the linker script. */
3766 s = bfd_make_section_with_flags (abfd, ".got", flags);
3767 if (s == NULL
3768 || ! bfd_set_section_alignment (abfd, s, 4))
3769 return FALSE;
3770
3771 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
3772 linker script because we don't want to define the symbol if we
3773 are not creating a global offset table. */
3774 bh = NULL;
3775 if (! (_bfd_generic_link_add_one_symbol
3776 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
3777 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
3778 return FALSE;
3779
3780 h = (struct elf_link_hash_entry *) bh;
3781 h->non_elf = 0;
3782 h->def_regular = 1;
3783 h->type = STT_OBJECT;
3784 elf_hash_table (info)->hgot = h;
3785
3786 if (info->shared
3787 && ! bfd_elf_link_record_dynamic_symbol (info, h))
3788 return FALSE;
3789
3790 amt = sizeof (struct mips_got_info);
3791 g = bfd_alloc (abfd, amt);
3792 if (g == NULL)
3793 return FALSE;
3794 g->global_gotsym = NULL;
3795 g->global_gotno = 0;
3796 g->tls_gotno = 0;
3797 g->local_gotno = MIPS_RESERVED_GOTNO (info);
3798 g->assigned_gotno = MIPS_RESERVED_GOTNO (info);
3799 g->bfd2got = NULL;
3800 g->next = NULL;
3801 g->tls_ldm_offset = MINUS_ONE;
3802 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3803 mips_elf_got_entry_eq, NULL);
3804 if (g->got_entries == NULL)
3805 return FALSE;
3806 mips_elf_section_data (s)->u.got_info = g;
3807 mips_elf_section_data (s)->elf.this_hdr.sh_flags
3808 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
3809
3810 /* VxWorks also needs a .got.plt section. */
3811 if (htab->is_vxworks)
3812 {
3813 s = bfd_make_section_with_flags (abfd, ".got.plt",
3814 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3815 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3816 if (s == NULL || !bfd_set_section_alignment (abfd, s, 4))
3817 return FALSE;
3818
3819 htab->sgotplt = s;
3820 }
3821 return TRUE;
3822 }
3823 \f
3824 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
3825 __GOTT_INDEX__ symbols. These symbols are only special for
3826 shared objects; they are not used in executables. */
3827
3828 static bfd_boolean
3829 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
3830 {
3831 return (mips_elf_hash_table (info)->is_vxworks
3832 && info->shared
3833 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
3834 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
3835 }
3836 \f
3837 /* Calculate the value produced by the RELOCATION (which comes from
3838 the INPUT_BFD). The ADDEND is the addend to use for this
3839 RELOCATION; RELOCATION->R_ADDEND is ignored.
3840
3841 The result of the relocation calculation is stored in VALUEP.
3842 REQUIRE_JALXP indicates whether or not the opcode used with this
3843 relocation must be JALX.
3844
3845 This function returns bfd_reloc_continue if the caller need take no
3846 further action regarding this relocation, bfd_reloc_notsupported if
3847 something goes dramatically wrong, bfd_reloc_overflow if an
3848 overflow occurs, and bfd_reloc_ok to indicate success. */
3849
3850 static bfd_reloc_status_type
3851 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
3852 asection *input_section,
3853 struct bfd_link_info *info,
3854 const Elf_Internal_Rela *relocation,
3855 bfd_vma addend, reloc_howto_type *howto,
3856 Elf_Internal_Sym *local_syms,
3857 asection **local_sections, bfd_vma *valuep,
3858 const char **namep, bfd_boolean *require_jalxp,
3859 bfd_boolean save_addend)
3860 {
3861 /* The eventual value we will return. */
3862 bfd_vma value;
3863 /* The address of the symbol against which the relocation is
3864 occurring. */
3865 bfd_vma symbol = 0;
3866 /* The final GP value to be used for the relocatable, executable, or
3867 shared object file being produced. */
3868 bfd_vma gp = MINUS_ONE;
3869 /* The place (section offset or address) of the storage unit being
3870 relocated. */
3871 bfd_vma p;
3872 /* The value of GP used to create the relocatable object. */
3873 bfd_vma gp0 = MINUS_ONE;
3874 /* The offset into the global offset table at which the address of
3875 the relocation entry symbol, adjusted by the addend, resides
3876 during execution. */
3877 bfd_vma g = MINUS_ONE;
3878 /* The section in which the symbol referenced by the relocation is
3879 located. */
3880 asection *sec = NULL;
3881 struct mips_elf_link_hash_entry *h = NULL;
3882 /* TRUE if the symbol referred to by this relocation is a local
3883 symbol. */
3884 bfd_boolean local_p, was_local_p;
3885 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
3886 bfd_boolean gp_disp_p = FALSE;
3887 /* TRUE if the symbol referred to by this relocation is
3888 "__gnu_local_gp". */
3889 bfd_boolean gnu_local_gp_p = FALSE;
3890 Elf_Internal_Shdr *symtab_hdr;
3891 size_t extsymoff;
3892 unsigned long r_symndx;
3893 int r_type;
3894 /* TRUE if overflow occurred during the calculation of the
3895 relocation value. */
3896 bfd_boolean overflowed_p;
3897 /* TRUE if this relocation refers to a MIPS16 function. */
3898 bfd_boolean target_is_16_bit_code_p = FALSE;
3899 struct mips_elf_link_hash_table *htab;
3900 bfd *dynobj;
3901
3902 dynobj = elf_hash_table (info)->dynobj;
3903 htab = mips_elf_hash_table (info);
3904
3905 /* Parse the relocation. */
3906 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
3907 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
3908 p = (input_section->output_section->vma
3909 + input_section->output_offset
3910 + relocation->r_offset);
3911
3912 /* Assume that there will be no overflow. */
3913 overflowed_p = FALSE;
3914
3915 /* Figure out whether or not the symbol is local, and get the offset
3916 used in the array of hash table entries. */
3917 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3918 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
3919 local_sections, FALSE);
3920 was_local_p = local_p;
3921 if (! elf_bad_symtab (input_bfd))
3922 extsymoff = symtab_hdr->sh_info;
3923 else
3924 {
3925 /* The symbol table does not follow the rule that local symbols
3926 must come before globals. */
3927 extsymoff = 0;
3928 }
3929
3930 /* Figure out the value of the symbol. */
3931 if (local_p)
3932 {
3933 Elf_Internal_Sym *sym;
3934
3935 sym = local_syms + r_symndx;
3936 sec = local_sections[r_symndx];
3937
3938 symbol = sec->output_section->vma + sec->output_offset;
3939 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
3940 || (sec->flags & SEC_MERGE))
3941 symbol += sym->st_value;
3942 if ((sec->flags & SEC_MERGE)
3943 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3944 {
3945 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
3946 addend -= symbol;
3947 addend += sec->output_section->vma + sec->output_offset;
3948 }
3949
3950 /* MIPS16 text labels should be treated as odd. */
3951 if (sym->st_other == STO_MIPS16)
3952 ++symbol;
3953
3954 /* Record the name of this symbol, for our caller. */
3955 *namep = bfd_elf_string_from_elf_section (input_bfd,
3956 symtab_hdr->sh_link,
3957 sym->st_name);
3958 if (*namep == '\0')
3959 *namep = bfd_section_name (input_bfd, sec);
3960
3961 target_is_16_bit_code_p = (sym->st_other == STO_MIPS16);
3962 }
3963 else
3964 {
3965 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
3966
3967 /* For global symbols we look up the symbol in the hash-table. */
3968 h = ((struct mips_elf_link_hash_entry *)
3969 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
3970 /* Find the real hash-table entry for this symbol. */
3971 while (h->root.root.type == bfd_link_hash_indirect
3972 || h->root.root.type == bfd_link_hash_warning)
3973 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3974
3975 /* Record the name of this symbol, for our caller. */
3976 *namep = h->root.root.root.string;
3977
3978 /* See if this is the special _gp_disp symbol. Note that such a
3979 symbol must always be a global symbol. */
3980 if (strcmp (*namep, "_gp_disp") == 0
3981 && ! NEWABI_P (input_bfd))
3982 {
3983 /* Relocations against _gp_disp are permitted only with
3984 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
3985 if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16
3986 && r_type != R_MIPS16_HI16 && r_type != R_MIPS16_LO16)
3987 return bfd_reloc_notsupported;
3988
3989 gp_disp_p = TRUE;
3990 }
3991 /* See if this is the special _gp symbol. Note that such a
3992 symbol must always be a global symbol. */
3993 else if (strcmp (*namep, "__gnu_local_gp") == 0)
3994 gnu_local_gp_p = TRUE;
3995
3996
3997 /* If this symbol is defined, calculate its address. Note that
3998 _gp_disp is a magic symbol, always implicitly defined by the
3999 linker, so it's inappropriate to check to see whether or not
4000 its defined. */
4001 else if ((h->root.root.type == bfd_link_hash_defined
4002 || h->root.root.type == bfd_link_hash_defweak)
4003 && h->root.root.u.def.section)
4004 {
4005 sec = h->root.root.u.def.section;
4006 if (sec->output_section)
4007 symbol = (h->root.root.u.def.value
4008 + sec->output_section->vma
4009 + sec->output_offset);
4010 else
4011 symbol = h->root.root.u.def.value;
4012 }
4013 else if (h->root.root.type == bfd_link_hash_undefweak)
4014 /* We allow relocations against undefined weak symbols, giving
4015 it the value zero, so that you can undefined weak functions
4016 and check to see if they exist by looking at their
4017 addresses. */
4018 symbol = 0;
4019 else if (info->unresolved_syms_in_objects == RM_IGNORE
4020 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4021 symbol = 0;
4022 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4023 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4024 {
4025 /* If this is a dynamic link, we should have created a
4026 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4027 in in _bfd_mips_elf_create_dynamic_sections.
4028 Otherwise, we should define the symbol with a value of 0.
4029 FIXME: It should probably get into the symbol table
4030 somehow as well. */
4031 BFD_ASSERT (! info->shared);
4032 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4033 symbol = 0;
4034 }
4035 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4036 {
4037 /* This is an optional symbol - an Irix specific extension to the
4038 ELF spec. Ignore it for now.
4039 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4040 than simply ignoring them, but we do not handle this for now.
4041 For information see the "64-bit ELF Object File Specification"
4042 which is available from here:
4043 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4044 symbol = 0;
4045 }
4046 else
4047 {
4048 if (! ((*info->callbacks->undefined_symbol)
4049 (info, h->root.root.root.string, input_bfd,
4050 input_section, relocation->r_offset,
4051 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4052 || ELF_ST_VISIBILITY (h->root.other))))
4053 return bfd_reloc_undefined;
4054 symbol = 0;
4055 }
4056
4057 target_is_16_bit_code_p = (h->root.other == STO_MIPS16);
4058 }
4059
4060 /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we
4061 need to redirect the call to the stub, unless we're already *in*
4062 a stub. */
4063 if (r_type != R_MIPS16_26 && !info->relocatable
4064 && ((h != NULL && h->fn_stub != NULL)
4065 || (local_p && elf_tdata (input_bfd)->local_stubs != NULL
4066 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
4067 && !mips_elf_stub_section_p (input_bfd, input_section))
4068 {
4069 /* This is a 32- or 64-bit call to a 16-bit function. We should
4070 have already noticed that we were going to need the
4071 stub. */
4072 if (local_p)
4073 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
4074 else
4075 {
4076 BFD_ASSERT (h->need_fn_stub);
4077 sec = h->fn_stub;
4078 }
4079
4080 symbol = sec->output_section->vma + sec->output_offset;
4081 /* The target is 16-bit, but the stub isn't. */
4082 target_is_16_bit_code_p = FALSE;
4083 }
4084 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
4085 need to redirect the call to the stub. */
4086 else if (r_type == R_MIPS16_26 && !info->relocatable
4087 && h != NULL
4088 && (h->call_stub != NULL || h->call_fp_stub != NULL)
4089 && !target_is_16_bit_code_p)
4090 {
4091 /* If both call_stub and call_fp_stub are defined, we can figure
4092 out which one to use by seeing which one appears in the input
4093 file. */
4094 if (h->call_stub != NULL && h->call_fp_stub != NULL)
4095 {
4096 asection *o;
4097
4098 sec = NULL;
4099 for (o = input_bfd->sections; o != NULL; o = o->next)
4100 {
4101 if (strncmp (bfd_get_section_name (input_bfd, o),
4102 CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
4103 {
4104 sec = h->call_fp_stub;
4105 break;
4106 }
4107 }
4108 if (sec == NULL)
4109 sec = h->call_stub;
4110 }
4111 else if (h->call_stub != NULL)
4112 sec = h->call_stub;
4113 else
4114 sec = h->call_fp_stub;
4115
4116 BFD_ASSERT (sec->size > 0);
4117 symbol = sec->output_section->vma + sec->output_offset;
4118 }
4119
4120 /* Calls from 16-bit code to 32-bit code and vice versa require the
4121 special jalx instruction. */
4122 *require_jalxp = (!info->relocatable
4123 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
4124 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
4125
4126 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4127 local_sections, TRUE);
4128
4129 /* If we haven't already determined the GOT offset, or the GP value,
4130 and we're going to need it, get it now. */
4131 switch (r_type)
4132 {
4133 case R_MIPS_GOT_PAGE:
4134 case R_MIPS_GOT_OFST:
4135 /* We need to decay to GOT_DISP/addend if the symbol doesn't
4136 bind locally. */
4137 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
4138 if (local_p || r_type == R_MIPS_GOT_OFST)
4139 break;
4140 /* Fall through. */
4141
4142 case R_MIPS_CALL16:
4143 case R_MIPS_GOT16:
4144 case R_MIPS_GOT_DISP:
4145 case R_MIPS_GOT_HI16:
4146 case R_MIPS_CALL_HI16:
4147 case R_MIPS_GOT_LO16:
4148 case R_MIPS_CALL_LO16:
4149 case R_MIPS_TLS_GD:
4150 case R_MIPS_TLS_GOTTPREL:
4151 case R_MIPS_TLS_LDM:
4152 /* Find the index into the GOT where this value is located. */
4153 if (r_type == R_MIPS_TLS_LDM)
4154 {
4155 g = mips_elf_local_got_index (abfd, input_bfd, info,
4156 sec, 0, 0, NULL, r_type);
4157 if (g == MINUS_ONE)
4158 return bfd_reloc_outofrange;
4159 }
4160 else if (!local_p)
4161 {
4162 /* On VxWorks, CALL relocations should refer to the .got.plt
4163 entry, which is initialized to point at the PLT stub. */
4164 if (htab->is_vxworks
4165 && (r_type == R_MIPS_CALL_HI16
4166 || r_type == R_MIPS_CALL_LO16
4167 || r_type == R_MIPS_CALL16))
4168 {
4169 BFD_ASSERT (addend == 0);
4170 BFD_ASSERT (h->root.needs_plt);
4171 g = mips_elf_gotplt_index (info, &h->root);
4172 }
4173 else
4174 {
4175 /* GOT_PAGE may take a non-zero addend, that is ignored in a
4176 GOT_PAGE relocation that decays to GOT_DISP because the
4177 symbol turns out to be global. The addend is then added
4178 as GOT_OFST. */
4179 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
4180 g = mips_elf_global_got_index (dynobj, input_bfd,
4181 &h->root, r_type, info);
4182 if (h->tls_type == GOT_NORMAL
4183 && (! elf_hash_table(info)->dynamic_sections_created
4184 || (info->shared
4185 && (info->symbolic || h->root.forced_local)
4186 && h->root.def_regular)))
4187 {
4188 /* This is a static link or a -Bsymbolic link. The
4189 symbol is defined locally, or was forced to be local.
4190 We must initialize this entry in the GOT. */
4191 asection *sgot = mips_elf_got_section (dynobj, FALSE);
4192 MIPS_ELF_PUT_WORD (dynobj, symbol, sgot->contents + g);
4193 }
4194 }
4195 }
4196 else if (!htab->is_vxworks
4197 && (r_type == R_MIPS_CALL16 || (r_type == R_MIPS_GOT16)))
4198 /* The calculation below does not involve "g". */
4199 break;
4200 else
4201 {
4202 g = mips_elf_local_got_index (abfd, input_bfd, info, sec,
4203 symbol + addend, r_symndx, h, r_type);
4204 if (g == MINUS_ONE)
4205 return bfd_reloc_outofrange;
4206 }
4207
4208 /* Convert GOT indices to actual offsets. */
4209 g = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, g);
4210 break;
4211
4212 case R_MIPS_HI16:
4213 case R_MIPS_LO16:
4214 case R_MIPS_GPREL16:
4215 case R_MIPS_GPREL32:
4216 case R_MIPS_LITERAL:
4217 case R_MIPS16_HI16:
4218 case R_MIPS16_LO16:
4219 case R_MIPS16_GPREL:
4220 gp0 = _bfd_get_gp_value (input_bfd);
4221 gp = _bfd_get_gp_value (abfd);
4222 if (dynobj)
4223 gp += mips_elf_adjust_gp (abfd, mips_elf_got_info (dynobj, NULL),
4224 input_bfd);
4225 break;
4226
4227 default:
4228 break;
4229 }
4230
4231 if (gnu_local_gp_p)
4232 symbol = gp;
4233
4234 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
4235 symbols are resolved by the loader. Add them to .rela.dyn. */
4236 if (h != NULL && is_gott_symbol (info, &h->root))
4237 {
4238 Elf_Internal_Rela outrel;
4239 bfd_byte *loc;
4240 asection *s;
4241
4242 s = mips_elf_rel_dyn_section (info, FALSE);
4243 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4244
4245 outrel.r_offset = (input_section->output_section->vma
4246 + input_section->output_offset
4247 + relocation->r_offset);
4248 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
4249 outrel.r_addend = addend;
4250 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
4251 *valuep = 0;
4252 return bfd_reloc_ok;
4253 }
4254
4255 /* Figure out what kind of relocation is being performed. */
4256 switch (r_type)
4257 {
4258 case R_MIPS_NONE:
4259 return bfd_reloc_continue;
4260
4261 case R_MIPS_16:
4262 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
4263 overflowed_p = mips_elf_overflow_p (value, 16);
4264 break;
4265
4266 case R_MIPS_32:
4267 case R_MIPS_REL32:
4268 case R_MIPS_64:
4269 if ((info->shared
4270 || (!htab->is_vxworks
4271 && htab->root.dynamic_sections_created
4272 && h != NULL
4273 && h->root.def_dynamic
4274 && !h->root.def_regular))
4275 && r_symndx != 0
4276 && (input_section->flags & SEC_ALLOC) != 0)
4277 {
4278 /* If we're creating a shared library, or this relocation is
4279 against a symbol in a shared library, then we can't know
4280 where the symbol will end up. So, we create a relocation
4281 record in the output, and leave the job up to the dynamic
4282 linker.
4283
4284 In VxWorks executables, references to external symbols
4285 are handled using copy relocs or PLT stubs, so there's
4286 no need to add a dynamic relocation here. */
4287 value = addend;
4288 if (!mips_elf_create_dynamic_relocation (abfd,
4289 info,
4290 relocation,
4291 h,
4292 sec,
4293 symbol,
4294 &value,
4295 input_section))
4296 return bfd_reloc_undefined;
4297 }
4298 else
4299 {
4300 if (r_type != R_MIPS_REL32)
4301 value = symbol + addend;
4302 else
4303 value = addend;
4304 }
4305 value &= howto->dst_mask;
4306 break;
4307
4308 case R_MIPS_PC32:
4309 value = symbol + addend - p;
4310 value &= howto->dst_mask;
4311 break;
4312
4313 case R_MIPS16_26:
4314 /* The calculation for R_MIPS16_26 is just the same as for an
4315 R_MIPS_26. It's only the storage of the relocated field into
4316 the output file that's different. That's handled in
4317 mips_elf_perform_relocation. So, we just fall through to the
4318 R_MIPS_26 case here. */
4319 case R_MIPS_26:
4320 if (local_p)
4321 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
4322 else
4323 {
4324 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
4325 if (h->root.root.type != bfd_link_hash_undefweak)
4326 overflowed_p = (value >> 26) != ((p + 4) >> 28);
4327 }
4328 value &= howto->dst_mask;
4329 break;
4330
4331 case R_MIPS_TLS_DTPREL_HI16:
4332 value = (mips_elf_high (addend + symbol - dtprel_base (info))
4333 & howto->dst_mask);
4334 break;
4335
4336 case R_MIPS_TLS_DTPREL_LO16:
4337 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
4338 break;
4339
4340 case R_MIPS_TLS_TPREL_HI16:
4341 value = (mips_elf_high (addend + symbol - tprel_base (info))
4342 & howto->dst_mask);
4343 break;
4344
4345 case R_MIPS_TLS_TPREL_LO16:
4346 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
4347 break;
4348
4349 case R_MIPS_HI16:
4350 case R_MIPS16_HI16:
4351 if (!gp_disp_p)
4352 {
4353 value = mips_elf_high (addend + symbol);
4354 value &= howto->dst_mask;
4355 }
4356 else
4357 {
4358 /* For MIPS16 ABI code we generate this sequence
4359 0: li $v0,%hi(_gp_disp)
4360 4: addiupc $v1,%lo(_gp_disp)
4361 8: sll $v0,16
4362 12: addu $v0,$v1
4363 14: move $gp,$v0
4364 So the offsets of hi and lo relocs are the same, but the
4365 $pc is four higher than $t9 would be, so reduce
4366 both reloc addends by 4. */
4367 if (r_type == R_MIPS16_HI16)
4368 value = mips_elf_high (addend + gp - p - 4);
4369 else
4370 value = mips_elf_high (addend + gp - p);
4371 overflowed_p = mips_elf_overflow_p (value, 16);
4372 }
4373 break;
4374
4375 case R_MIPS_LO16:
4376 case R_MIPS16_LO16:
4377 if (!gp_disp_p)
4378 value = (symbol + addend) & howto->dst_mask;
4379 else
4380 {
4381 /* See the comment for R_MIPS16_HI16 above for the reason
4382 for this conditional. */
4383 if (r_type == R_MIPS16_LO16)
4384 value = addend + gp - p;
4385 else
4386 value = addend + gp - p + 4;
4387 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
4388 for overflow. But, on, say, IRIX5, relocations against
4389 _gp_disp are normally generated from the .cpload
4390 pseudo-op. It generates code that normally looks like
4391 this:
4392
4393 lui $gp,%hi(_gp_disp)
4394 addiu $gp,$gp,%lo(_gp_disp)
4395 addu $gp,$gp,$t9
4396
4397 Here $t9 holds the address of the function being called,
4398 as required by the MIPS ELF ABI. The R_MIPS_LO16
4399 relocation can easily overflow in this situation, but the
4400 R_MIPS_HI16 relocation will handle the overflow.
4401 Therefore, we consider this a bug in the MIPS ABI, and do
4402 not check for overflow here. */
4403 }
4404 break;
4405
4406 case R_MIPS_LITERAL:
4407 /* Because we don't merge literal sections, we can handle this
4408 just like R_MIPS_GPREL16. In the long run, we should merge
4409 shared literals, and then we will need to additional work
4410 here. */
4411
4412 /* Fall through. */
4413
4414 case R_MIPS16_GPREL:
4415 /* The R_MIPS16_GPREL performs the same calculation as
4416 R_MIPS_GPREL16, but stores the relocated bits in a different
4417 order. We don't need to do anything special here; the
4418 differences are handled in mips_elf_perform_relocation. */
4419 case R_MIPS_GPREL16:
4420 /* Only sign-extend the addend if it was extracted from the
4421 instruction. If the addend was separate, leave it alone,
4422 otherwise we may lose significant bits. */
4423 if (howto->partial_inplace)
4424 addend = _bfd_mips_elf_sign_extend (addend, 16);
4425 value = symbol + addend - gp;
4426 /* If the symbol was local, any earlier relocatable links will
4427 have adjusted its addend with the gp offset, so compensate
4428 for that now. Don't do it for symbols forced local in this
4429 link, though, since they won't have had the gp offset applied
4430 to them before. */
4431 if (was_local_p)
4432 value += gp0;
4433 overflowed_p = mips_elf_overflow_p (value, 16);
4434 break;
4435
4436 case R_MIPS_GOT16:
4437 case R_MIPS_CALL16:
4438 /* VxWorks does not have separate local and global semantics for
4439 R_MIPS_GOT16; every relocation evaluates to "G". */
4440 if (!htab->is_vxworks && local_p)
4441 {
4442 bfd_boolean forced;
4443
4444 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
4445 local_sections, FALSE);
4446 value = mips_elf_got16_entry (abfd, input_bfd, info, sec,
4447 symbol + addend, forced);
4448 if (value == MINUS_ONE)
4449 return bfd_reloc_outofrange;
4450 value
4451 = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4452 overflowed_p = mips_elf_overflow_p (value, 16);
4453 break;
4454 }
4455
4456 /* Fall through. */
4457
4458 case R_MIPS_TLS_GD:
4459 case R_MIPS_TLS_GOTTPREL:
4460 case R_MIPS_TLS_LDM:
4461 case R_MIPS_GOT_DISP:
4462 got_disp:
4463 value = g;
4464 overflowed_p = mips_elf_overflow_p (value, 16);
4465 break;
4466
4467 case R_MIPS_GPREL32:
4468 value = (addend + symbol + gp0 - gp);
4469 if (!save_addend)
4470 value &= howto->dst_mask;
4471 break;
4472
4473 case R_MIPS_PC16:
4474 case R_MIPS_GNU_REL16_S2:
4475 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
4476 overflowed_p = mips_elf_overflow_p (value, 18);
4477 value >>= howto->rightshift;
4478 value &= howto->dst_mask;
4479 break;
4480
4481 case R_MIPS_GOT_HI16:
4482 case R_MIPS_CALL_HI16:
4483 /* We're allowed to handle these two relocations identically.
4484 The dynamic linker is allowed to handle the CALL relocations
4485 differently by creating a lazy evaluation stub. */
4486 value = g;
4487 value = mips_elf_high (value);
4488 value &= howto->dst_mask;
4489 break;
4490
4491 case R_MIPS_GOT_LO16:
4492 case R_MIPS_CALL_LO16:
4493 value = g & howto->dst_mask;
4494 break;
4495
4496 case R_MIPS_GOT_PAGE:
4497 /* GOT_PAGE relocations that reference non-local symbols decay
4498 to GOT_DISP. The corresponding GOT_OFST relocation decays to
4499 0. */
4500 if (! local_p)
4501 goto got_disp;
4502 value = mips_elf_got_page (abfd, input_bfd, info, sec,
4503 symbol + addend, NULL);
4504 if (value == MINUS_ONE)
4505 return bfd_reloc_outofrange;
4506 value = mips_elf_got_offset_from_index (dynobj, abfd, input_bfd, value);
4507 overflowed_p = mips_elf_overflow_p (value, 16);
4508 break;
4509
4510 case R_MIPS_GOT_OFST:
4511 if (local_p)
4512 mips_elf_got_page (abfd, input_bfd, info, sec,
4513 symbol + addend, &value);
4514 else
4515 value = addend;
4516 overflowed_p = mips_elf_overflow_p (value, 16);
4517 break;
4518
4519 case R_MIPS_SUB:
4520 value = symbol - addend;
4521 value &= howto->dst_mask;
4522 break;
4523
4524 case R_MIPS_HIGHER:
4525 value = mips_elf_higher (addend + symbol);
4526 value &= howto->dst_mask;
4527 break;
4528
4529 case R_MIPS_HIGHEST:
4530 value = mips_elf_highest (addend + symbol);
4531 value &= howto->dst_mask;
4532 break;
4533
4534 case R_MIPS_SCN_DISP:
4535 value = symbol + addend - sec->output_offset;
4536 value &= howto->dst_mask;
4537 break;
4538
4539 case R_MIPS_JALR:
4540 /* This relocation is only a hint. In some cases, we optimize
4541 it into a bal instruction. But we don't try to optimize
4542 branches to the PLT; that will wind up wasting time. */
4543 if (h != NULL && h->root.plt.offset != (bfd_vma) -1)
4544 return bfd_reloc_continue;
4545 value = symbol + addend;
4546 break;
4547
4548 case R_MIPS_PJUMP:
4549 case R_MIPS_GNU_VTINHERIT:
4550 case R_MIPS_GNU_VTENTRY:
4551 /* We don't do anything with these at present. */
4552 return bfd_reloc_continue;
4553
4554 default:
4555 /* An unrecognized relocation type. */
4556 return bfd_reloc_notsupported;
4557 }
4558
4559 /* Store the VALUE for our caller. */
4560 *valuep = value;
4561 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
4562 }
4563
4564 /* Obtain the field relocated by RELOCATION. */
4565
4566 static bfd_vma
4567 mips_elf_obtain_contents (reloc_howto_type *howto,
4568 const Elf_Internal_Rela *relocation,
4569 bfd *input_bfd, bfd_byte *contents)
4570 {
4571 bfd_vma x;
4572 bfd_byte *location = contents + relocation->r_offset;
4573
4574 /* Obtain the bytes. */
4575 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
4576
4577 return x;
4578 }
4579
4580 /* It has been determined that the result of the RELOCATION is the
4581 VALUE. Use HOWTO to place VALUE into the output file at the
4582 appropriate position. The SECTION is the section to which the
4583 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
4584 for the relocation must be either JAL or JALX, and it is
4585 unconditionally converted to JALX.
4586
4587 Returns FALSE if anything goes wrong. */
4588
4589 static bfd_boolean
4590 mips_elf_perform_relocation (struct bfd_link_info *info,
4591 reloc_howto_type *howto,
4592 const Elf_Internal_Rela *relocation,
4593 bfd_vma value, bfd *input_bfd,
4594 asection *input_section, bfd_byte *contents,
4595 bfd_boolean require_jalx)
4596 {
4597 bfd_vma x;
4598 bfd_byte *location;
4599 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4600
4601 /* Figure out where the relocation is occurring. */
4602 location = contents + relocation->r_offset;
4603
4604 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
4605
4606 /* Obtain the current value. */
4607 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
4608
4609 /* Clear the field we are setting. */
4610 x &= ~howto->dst_mask;
4611
4612 /* Set the field. */
4613 x |= (value & howto->dst_mask);
4614
4615 /* If required, turn JAL into JALX. */
4616 if (require_jalx)
4617 {
4618 bfd_boolean ok;
4619 bfd_vma opcode = x >> 26;
4620 bfd_vma jalx_opcode;
4621
4622 /* Check to see if the opcode is already JAL or JALX. */
4623 if (r_type == R_MIPS16_26)
4624 {
4625 ok = ((opcode == 0x6) || (opcode == 0x7));
4626 jalx_opcode = 0x7;
4627 }
4628 else
4629 {
4630 ok = ((opcode == 0x3) || (opcode == 0x1d));
4631 jalx_opcode = 0x1d;
4632 }
4633
4634 /* If the opcode is not JAL or JALX, there's a problem. */
4635 if (!ok)
4636 {
4637 (*_bfd_error_handler)
4638 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
4639 input_bfd,
4640 input_section,
4641 (unsigned long) relocation->r_offset);
4642 bfd_set_error (bfd_error_bad_value);
4643 return FALSE;
4644 }
4645
4646 /* Make this the JALX opcode. */
4647 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
4648 }
4649
4650 /* On the RM9000, bal is faster than jal, because bal uses branch
4651 prediction hardware. If we are linking for the RM9000, and we
4652 see jal, and bal fits, use it instead. Note that this
4653 transformation should be safe for all architectures. */
4654 if (bfd_get_mach (input_bfd) == bfd_mach_mips9000
4655 && !info->relocatable
4656 && !require_jalx
4657 && ((r_type == R_MIPS_26 && (x >> 26) == 0x3) /* jal addr */
4658 || (r_type == R_MIPS_JALR && x == 0x0320f809))) /* jalr t9 */
4659 {
4660 bfd_vma addr;
4661 bfd_vma dest;
4662 bfd_signed_vma off;
4663
4664 addr = (input_section->output_section->vma
4665 + input_section->output_offset
4666 + relocation->r_offset
4667 + 4);
4668 if (r_type == R_MIPS_26)
4669 dest = (value << 2) | ((addr >> 28) << 28);
4670 else
4671 dest = value;
4672 off = dest - addr;
4673 if (off <= 0x1ffff && off >= -0x20000)
4674 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
4675 }
4676
4677 /* Put the value into the output. */
4678 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
4679
4680 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
4681 location);
4682
4683 return TRUE;
4684 }
4685
4686 /* Returns TRUE if SECTION is a MIPS16 stub section. */
4687
4688 static bfd_boolean
4689 mips_elf_stub_section_p (bfd *abfd ATTRIBUTE_UNUSED, asection *section)
4690 {
4691 const char *name = bfd_get_section_name (abfd, section);
4692
4693 return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0
4694 || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
4695 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0);
4696 }
4697 \f
4698 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4699
4700 static void
4701 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4702 unsigned int n)
4703 {
4704 asection *s;
4705 struct mips_elf_link_hash_table *htab;
4706
4707 htab = mips_elf_hash_table (info);
4708 s = mips_elf_rel_dyn_section (info, FALSE);
4709 BFD_ASSERT (s != NULL);
4710
4711 if (htab->is_vxworks)
4712 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4713 else
4714 {
4715 if (s->size == 0)
4716 {
4717 /* Make room for a null element. */
4718 s->size += MIPS_ELF_REL_SIZE (abfd);
4719 ++s->reloc_count;
4720 }
4721 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4722 }
4723 }
4724
4725 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
4726 is the original relocation, which is now being transformed into a
4727 dynamic relocation. The ADDENDP is adjusted if necessary; the
4728 caller should store the result in place of the original addend. */
4729
4730 static bfd_boolean
4731 mips_elf_create_dynamic_relocation (bfd *output_bfd,
4732 struct bfd_link_info *info,
4733 const Elf_Internal_Rela *rel,
4734 struct mips_elf_link_hash_entry *h,
4735 asection *sec, bfd_vma symbol,
4736 bfd_vma *addendp, asection *input_section)
4737 {
4738 Elf_Internal_Rela outrel[3];
4739 asection *sreloc;
4740 bfd *dynobj;
4741 int r_type;
4742 long indx;
4743 bfd_boolean defined_p;
4744 struct mips_elf_link_hash_table *htab;
4745
4746 htab = mips_elf_hash_table (info);
4747 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
4748 dynobj = elf_hash_table (info)->dynobj;
4749 sreloc = mips_elf_rel_dyn_section (info, FALSE);
4750 BFD_ASSERT (sreloc != NULL);
4751 BFD_ASSERT (sreloc->contents != NULL);
4752 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
4753 < sreloc->size);
4754
4755 outrel[0].r_offset =
4756 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
4757 outrel[1].r_offset =
4758 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
4759 outrel[2].r_offset =
4760 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
4761
4762 if (outrel[0].r_offset == MINUS_ONE)
4763 /* The relocation field has been deleted. */
4764 return TRUE;
4765
4766 if (outrel[0].r_offset == MINUS_TWO)
4767 {
4768 /* The relocation field has been converted into a relative value of
4769 some sort. Functions like _bfd_elf_write_section_eh_frame expect
4770 the field to be fully relocated, so add in the symbol's value. */
4771 *addendp += symbol;
4772 return TRUE;
4773 }
4774
4775 /* We must now calculate the dynamic symbol table index to use
4776 in the relocation. */
4777 if (h != NULL
4778 && (!h->root.def_regular
4779 || (info->shared && !info->symbolic && !h->root.forced_local)))
4780 {
4781 indx = h->root.dynindx;
4782 if (SGI_COMPAT (output_bfd))
4783 defined_p = h->root.def_regular;
4784 else
4785 /* ??? glibc's ld.so just adds the final GOT entry to the
4786 relocation field. It therefore treats relocs against
4787 defined symbols in the same way as relocs against
4788 undefined symbols. */
4789 defined_p = FALSE;
4790 }
4791 else
4792 {
4793 if (sec != NULL && bfd_is_abs_section (sec))
4794 indx = 0;
4795 else if (sec == NULL || sec->owner == NULL)
4796 {
4797 bfd_set_error (bfd_error_bad_value);
4798 return FALSE;
4799 }
4800 else
4801 {
4802 indx = elf_section_data (sec->output_section)->dynindx;
4803 if (indx == 0)
4804 abort ();
4805 }
4806
4807 /* Instead of generating a relocation using the section
4808 symbol, we may as well make it a fully relative
4809 relocation. We want to avoid generating relocations to
4810 local symbols because we used to generate them
4811 incorrectly, without adding the original symbol value,
4812 which is mandated by the ABI for section symbols. In
4813 order to give dynamic loaders and applications time to
4814 phase out the incorrect use, we refrain from emitting
4815 section-relative relocations. It's not like they're
4816 useful, after all. This should be a bit more efficient
4817 as well. */
4818 /* ??? Although this behavior is compatible with glibc's ld.so,
4819 the ABI says that relocations against STN_UNDEF should have
4820 a symbol value of 0. Irix rld honors this, so relocations
4821 against STN_UNDEF have no effect. */
4822 if (!SGI_COMPAT (output_bfd))
4823 indx = 0;
4824 defined_p = TRUE;
4825 }
4826
4827 /* If the relocation was previously an absolute relocation and
4828 this symbol will not be referred to by the relocation, we must
4829 adjust it by the value we give it in the dynamic symbol table.
4830 Otherwise leave the job up to the dynamic linker. */
4831 if (defined_p && r_type != R_MIPS_REL32)
4832 *addendp += symbol;
4833
4834 if (htab->is_vxworks)
4835 /* VxWorks uses non-relative relocations for this. */
4836 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
4837 else
4838 /* The relocation is always an REL32 relocation because we don't
4839 know where the shared library will wind up at load-time. */
4840 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
4841 R_MIPS_REL32);
4842
4843 /* For strict adherence to the ABI specification, we should
4844 generate a R_MIPS_64 relocation record by itself before the
4845 _REL32/_64 record as well, such that the addend is read in as
4846 a 64-bit value (REL32 is a 32-bit relocation, after all).
4847 However, since none of the existing ELF64 MIPS dynamic
4848 loaders seems to care, we don't waste space with these
4849 artificial relocations. If this turns out to not be true,
4850 mips_elf_allocate_dynamic_relocation() should be tweaked so
4851 as to make room for a pair of dynamic relocations per
4852 invocation if ABI_64_P, and here we should generate an
4853 additional relocation record with R_MIPS_64 by itself for a
4854 NULL symbol before this relocation record. */
4855 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
4856 ABI_64_P (output_bfd)
4857 ? R_MIPS_64
4858 : R_MIPS_NONE);
4859 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
4860
4861 /* Adjust the output offset of the relocation to reference the
4862 correct location in the output file. */
4863 outrel[0].r_offset += (input_section->output_section->vma
4864 + input_section->output_offset);
4865 outrel[1].r_offset += (input_section->output_section->vma
4866 + input_section->output_offset);
4867 outrel[2].r_offset += (input_section->output_section->vma
4868 + input_section->output_offset);
4869
4870 /* Put the relocation back out. We have to use the special
4871 relocation outputter in the 64-bit case since the 64-bit
4872 relocation format is non-standard. */
4873 if (ABI_64_P (output_bfd))
4874 {
4875 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
4876 (output_bfd, &outrel[0],
4877 (sreloc->contents
4878 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
4879 }
4880 else if (htab->is_vxworks)
4881 {
4882 /* VxWorks uses RELA rather than REL dynamic relocations. */
4883 outrel[0].r_addend = *addendp;
4884 bfd_elf32_swap_reloca_out
4885 (output_bfd, &outrel[0],
4886 (sreloc->contents
4887 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
4888 }
4889 else
4890 bfd_elf32_swap_reloc_out
4891 (output_bfd, &outrel[0],
4892 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
4893
4894 /* We've now added another relocation. */
4895 ++sreloc->reloc_count;
4896
4897 /* Make sure the output section is writable. The dynamic linker
4898 will be writing to it. */
4899 elf_section_data (input_section->output_section)->this_hdr.sh_flags
4900 |= SHF_WRITE;
4901
4902 /* On IRIX5, make an entry of compact relocation info. */
4903 if (IRIX_COMPAT (output_bfd) == ict_irix5)
4904 {
4905 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
4906 bfd_byte *cr;
4907
4908 if (scpt)
4909 {
4910 Elf32_crinfo cptrel;
4911
4912 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
4913 cptrel.vaddr = (rel->r_offset
4914 + input_section->output_section->vma
4915 + input_section->output_offset);
4916 if (r_type == R_MIPS_REL32)
4917 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
4918 else
4919 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
4920 mips_elf_set_cr_dist2to (cptrel, 0);
4921 cptrel.konst = *addendp;
4922
4923 cr = (scpt->contents
4924 + sizeof (Elf32_External_compact_rel));
4925 mips_elf_set_cr_relvaddr (cptrel, 0);
4926 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
4927 ((Elf32_External_crinfo *) cr
4928 + scpt->reloc_count));
4929 ++scpt->reloc_count;
4930 }
4931 }
4932
4933 /* If we've written this relocation for a readonly section,
4934 we need to set DF_TEXTREL again, so that we do not delete the
4935 DT_TEXTREL tag. */
4936 if (MIPS_ELF_READONLY_SECTION (input_section))
4937 info->flags |= DF_TEXTREL;
4938
4939 return TRUE;
4940 }
4941 \f
4942 /* Return the MACH for a MIPS e_flags value. */
4943
4944 unsigned long
4945 _bfd_elf_mips_mach (flagword flags)
4946 {
4947 switch (flags & EF_MIPS_MACH)
4948 {
4949 case E_MIPS_MACH_3900:
4950 return bfd_mach_mips3900;
4951
4952 case E_MIPS_MACH_4010:
4953 return bfd_mach_mips4010;
4954
4955 case E_MIPS_MACH_4100:
4956 return bfd_mach_mips4100;
4957
4958 case E_MIPS_MACH_4111:
4959 return bfd_mach_mips4111;
4960
4961 case E_MIPS_MACH_4120:
4962 return bfd_mach_mips4120;
4963
4964 case E_MIPS_MACH_4650:
4965 return bfd_mach_mips4650;
4966
4967 case E_MIPS_MACH_5400:
4968 return bfd_mach_mips5400;
4969
4970 case E_MIPS_MACH_5500:
4971 return bfd_mach_mips5500;
4972
4973 case E_MIPS_MACH_9000:
4974 return bfd_mach_mips9000;
4975
4976 case E_MIPS_MACH_SB1:
4977 return bfd_mach_mips_sb1;
4978
4979 default:
4980 switch (flags & EF_MIPS_ARCH)
4981 {
4982 default:
4983 case E_MIPS_ARCH_1:
4984 return bfd_mach_mips3000;
4985
4986 case E_MIPS_ARCH_2:
4987 return bfd_mach_mips6000;
4988
4989 case E_MIPS_ARCH_3:
4990 return bfd_mach_mips4000;
4991
4992 case E_MIPS_ARCH_4:
4993 return bfd_mach_mips8000;
4994
4995 case E_MIPS_ARCH_5:
4996 return bfd_mach_mips5;
4997
4998 case E_MIPS_ARCH_32:
4999 return bfd_mach_mipsisa32;
5000
5001 case E_MIPS_ARCH_64:
5002 return bfd_mach_mipsisa64;
5003
5004 case E_MIPS_ARCH_32R2:
5005 return bfd_mach_mipsisa32r2;
5006
5007 case E_MIPS_ARCH_64R2:
5008 return bfd_mach_mipsisa64r2;
5009 }
5010 }
5011
5012 return 0;
5013 }
5014
5015 /* Return printable name for ABI. */
5016
5017 static INLINE char *
5018 elf_mips_abi_name (bfd *abfd)
5019 {
5020 flagword flags;
5021
5022 flags = elf_elfheader (abfd)->e_flags;
5023 switch (flags & EF_MIPS_ABI)
5024 {
5025 case 0:
5026 if (ABI_N32_P (abfd))
5027 return "N32";
5028 else if (ABI_64_P (abfd))
5029 return "64";
5030 else
5031 return "none";
5032 case E_MIPS_ABI_O32:
5033 return "O32";
5034 case E_MIPS_ABI_O64:
5035 return "O64";
5036 case E_MIPS_ABI_EABI32:
5037 return "EABI32";
5038 case E_MIPS_ABI_EABI64:
5039 return "EABI64";
5040 default:
5041 return "unknown abi";
5042 }
5043 }
5044 \f
5045 /* MIPS ELF uses two common sections. One is the usual one, and the
5046 other is for small objects. All the small objects are kept
5047 together, and then referenced via the gp pointer, which yields
5048 faster assembler code. This is what we use for the small common
5049 section. This approach is copied from ecoff.c. */
5050 static asection mips_elf_scom_section;
5051 static asymbol mips_elf_scom_symbol;
5052 static asymbol *mips_elf_scom_symbol_ptr;
5053
5054 /* MIPS ELF also uses an acommon section, which represents an
5055 allocated common symbol which may be overridden by a
5056 definition in a shared library. */
5057 static asection mips_elf_acom_section;
5058 static asymbol mips_elf_acom_symbol;
5059 static asymbol *mips_elf_acom_symbol_ptr;
5060
5061 /* Handle the special MIPS section numbers that a symbol may use.
5062 This is used for both the 32-bit and the 64-bit ABI. */
5063
5064 void
5065 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5066 {
5067 elf_symbol_type *elfsym;
5068
5069 elfsym = (elf_symbol_type *) asym;
5070 switch (elfsym->internal_elf_sym.st_shndx)
5071 {
5072 case SHN_MIPS_ACOMMON:
5073 /* This section is used in a dynamically linked executable file.
5074 It is an allocated common section. The dynamic linker can
5075 either resolve these symbols to something in a shared
5076 library, or it can just leave them here. For our purposes,
5077 we can consider these symbols to be in a new section. */
5078 if (mips_elf_acom_section.name == NULL)
5079 {
5080 /* Initialize the acommon section. */
5081 mips_elf_acom_section.name = ".acommon";
5082 mips_elf_acom_section.flags = SEC_ALLOC;
5083 mips_elf_acom_section.output_section = &mips_elf_acom_section;
5084 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
5085 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
5086 mips_elf_acom_symbol.name = ".acommon";
5087 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
5088 mips_elf_acom_symbol.section = &mips_elf_acom_section;
5089 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
5090 }
5091 asym->section = &mips_elf_acom_section;
5092 break;
5093
5094 case SHN_COMMON:
5095 /* Common symbols less than the GP size are automatically
5096 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
5097 if (asym->value > elf_gp_size (abfd)
5098 || IRIX_COMPAT (abfd) == ict_irix6)
5099 break;
5100 /* Fall through. */
5101 case SHN_MIPS_SCOMMON:
5102 if (mips_elf_scom_section.name == NULL)
5103 {
5104 /* Initialize the small common section. */
5105 mips_elf_scom_section.name = ".scommon";
5106 mips_elf_scom_section.flags = SEC_IS_COMMON;
5107 mips_elf_scom_section.output_section = &mips_elf_scom_section;
5108 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
5109 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
5110 mips_elf_scom_symbol.name = ".scommon";
5111 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
5112 mips_elf_scom_symbol.section = &mips_elf_scom_section;
5113 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
5114 }
5115 asym->section = &mips_elf_scom_section;
5116 asym->value = elfsym->internal_elf_sym.st_size;
5117 break;
5118
5119 case SHN_MIPS_SUNDEFINED:
5120 asym->section = bfd_und_section_ptr;
5121 break;
5122
5123 case SHN_MIPS_TEXT:
5124 {
5125 asection *section = bfd_get_section_by_name (abfd, ".text");
5126
5127 BFD_ASSERT (SGI_COMPAT (abfd));
5128 if (section != NULL)
5129 {
5130 asym->section = section;
5131 /* MIPS_TEXT is a bit special, the address is not an offset
5132 to the base of the .text section. So substract the section
5133 base address to make it an offset. */
5134 asym->value -= section->vma;
5135 }
5136 }
5137 break;
5138
5139 case SHN_MIPS_DATA:
5140 {
5141 asection *section = bfd_get_section_by_name (abfd, ".data");
5142
5143 BFD_ASSERT (SGI_COMPAT (abfd));
5144 if (section != NULL)
5145 {
5146 asym->section = section;
5147 /* MIPS_DATA is a bit special, the address is not an offset
5148 to the base of the .data section. So substract the section
5149 base address to make it an offset. */
5150 asym->value -= section->vma;
5151 }
5152 }
5153 break;
5154 }
5155 }
5156 \f
5157 /* Implement elf_backend_eh_frame_address_size. This differs from
5158 the default in the way it handles EABI64.
5159
5160 EABI64 was originally specified as an LP64 ABI, and that is what
5161 -mabi=eabi normally gives on a 64-bit target. However, gcc has
5162 historically accepted the combination of -mabi=eabi and -mlong32,
5163 and this ILP32 variation has become semi-official over time.
5164 Both forms use elf32 and have pointer-sized FDE addresses.
5165
5166 If an EABI object was generated by GCC 4.0 or above, it will have
5167 an empty .gcc_compiled_longXX section, where XX is the size of longs
5168 in bits. Unfortunately, ILP32 objects generated by earlier compilers
5169 have no special marking to distinguish them from LP64 objects.
5170
5171 We don't want users of the official LP64 ABI to be punished for the
5172 existence of the ILP32 variant, but at the same time, we don't want
5173 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
5174 We therefore take the following approach:
5175
5176 - If ABFD contains a .gcc_compiled_longXX section, use it to
5177 determine the pointer size.
5178
5179 - Otherwise check the type of the first relocation. Assume that
5180 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
5181
5182 - Otherwise punt.
5183
5184 The second check is enough to detect LP64 objects generated by pre-4.0
5185 compilers because, in the kind of output generated by those compilers,
5186 the first relocation will be associated with either a CIE personality
5187 routine or an FDE start address. Furthermore, the compilers never
5188 used a special (non-pointer) encoding for this ABI.
5189
5190 Checking the relocation type should also be safe because there is no
5191 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
5192 did so. */
5193
5194 unsigned int
5195 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
5196 {
5197 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5198 return 8;
5199 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
5200 {
5201 bfd_boolean long32_p, long64_p;
5202
5203 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
5204 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
5205 if (long32_p && long64_p)
5206 return 0;
5207 if (long32_p)
5208 return 4;
5209 if (long64_p)
5210 return 8;
5211
5212 if (sec->reloc_count > 0
5213 && elf_section_data (sec)->relocs != NULL
5214 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
5215 == R_MIPS_64))
5216 return 8;
5217
5218 return 0;
5219 }
5220 return 4;
5221 }
5222 \f
5223 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
5224 relocations against two unnamed section symbols to resolve to the
5225 same address. For example, if we have code like:
5226
5227 lw $4,%got_disp(.data)($gp)
5228 lw $25,%got_disp(.text)($gp)
5229 jalr $25
5230
5231 then the linker will resolve both relocations to .data and the program
5232 will jump there rather than to .text.
5233
5234 We can work around this problem by giving names to local section symbols.
5235 This is also what the MIPSpro tools do. */
5236
5237 bfd_boolean
5238 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
5239 {
5240 return SGI_COMPAT (abfd);
5241 }
5242 \f
5243 /* Work over a section just before writing it out. This routine is
5244 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
5245 sections that need the SHF_MIPS_GPREL flag by name; there has to be
5246 a better way. */
5247
5248 bfd_boolean
5249 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
5250 {
5251 if (hdr->sh_type == SHT_MIPS_REGINFO
5252 && hdr->sh_size > 0)
5253 {
5254 bfd_byte buf[4];
5255
5256 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
5257 BFD_ASSERT (hdr->contents == NULL);
5258
5259 if (bfd_seek (abfd,
5260 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
5261 SEEK_SET) != 0)
5262 return FALSE;
5263 H_PUT_32 (abfd, elf_gp (abfd), buf);
5264 if (bfd_bwrite (buf, 4, abfd) != 4)
5265 return FALSE;
5266 }
5267
5268 if (hdr->sh_type == SHT_MIPS_OPTIONS
5269 && hdr->bfd_section != NULL
5270 && mips_elf_section_data (hdr->bfd_section) != NULL
5271 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
5272 {
5273 bfd_byte *contents, *l, *lend;
5274
5275 /* We stored the section contents in the tdata field in the
5276 set_section_contents routine. We save the section contents
5277 so that we don't have to read them again.
5278 At this point we know that elf_gp is set, so we can look
5279 through the section contents to see if there is an
5280 ODK_REGINFO structure. */
5281
5282 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
5283 l = contents;
5284 lend = contents + hdr->sh_size;
5285 while (l + sizeof (Elf_External_Options) <= lend)
5286 {
5287 Elf_Internal_Options intopt;
5288
5289 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5290 &intopt);
5291 if (intopt.size < sizeof (Elf_External_Options))
5292 {
5293 (*_bfd_error_handler)
5294 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5295 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5296 break;
5297 }
5298 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5299 {
5300 bfd_byte buf[8];
5301
5302 if (bfd_seek (abfd,
5303 (hdr->sh_offset
5304 + (l - contents)
5305 + sizeof (Elf_External_Options)
5306 + (sizeof (Elf64_External_RegInfo) - 8)),
5307 SEEK_SET) != 0)
5308 return FALSE;
5309 H_PUT_64 (abfd, elf_gp (abfd), buf);
5310 if (bfd_bwrite (buf, 8, abfd) != 8)
5311 return FALSE;
5312 }
5313 else if (intopt.kind == ODK_REGINFO)
5314 {
5315 bfd_byte buf[4];
5316
5317 if (bfd_seek (abfd,
5318 (hdr->sh_offset
5319 + (l - contents)
5320 + sizeof (Elf_External_Options)
5321 + (sizeof (Elf32_External_RegInfo) - 4)),
5322 SEEK_SET) != 0)
5323 return FALSE;
5324 H_PUT_32 (abfd, elf_gp (abfd), buf);
5325 if (bfd_bwrite (buf, 4, abfd) != 4)
5326 return FALSE;
5327 }
5328 l += intopt.size;
5329 }
5330 }
5331
5332 if (hdr->bfd_section != NULL)
5333 {
5334 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
5335
5336 if (strcmp (name, ".sdata") == 0
5337 || strcmp (name, ".lit8") == 0
5338 || strcmp (name, ".lit4") == 0)
5339 {
5340 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5341 hdr->sh_type = SHT_PROGBITS;
5342 }
5343 else if (strcmp (name, ".sbss") == 0)
5344 {
5345 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5346 hdr->sh_type = SHT_NOBITS;
5347 }
5348 else if (strcmp (name, ".srdata") == 0)
5349 {
5350 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
5351 hdr->sh_type = SHT_PROGBITS;
5352 }
5353 else if (strcmp (name, ".compact_rel") == 0)
5354 {
5355 hdr->sh_flags = 0;
5356 hdr->sh_type = SHT_PROGBITS;
5357 }
5358 else if (strcmp (name, ".rtproc") == 0)
5359 {
5360 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
5361 {
5362 unsigned int adjust;
5363
5364 adjust = hdr->sh_size % hdr->sh_addralign;
5365 if (adjust != 0)
5366 hdr->sh_size += hdr->sh_addralign - adjust;
5367 }
5368 }
5369 }
5370
5371 return TRUE;
5372 }
5373
5374 /* Handle a MIPS specific section when reading an object file. This
5375 is called when elfcode.h finds a section with an unknown type.
5376 This routine supports both the 32-bit and 64-bit ELF ABI.
5377
5378 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
5379 how to. */
5380
5381 bfd_boolean
5382 _bfd_mips_elf_section_from_shdr (bfd *abfd,
5383 Elf_Internal_Shdr *hdr,
5384 const char *name,
5385 int shindex)
5386 {
5387 flagword flags = 0;
5388
5389 /* There ought to be a place to keep ELF backend specific flags, but
5390 at the moment there isn't one. We just keep track of the
5391 sections by their name, instead. Fortunately, the ABI gives
5392 suggested names for all the MIPS specific sections, so we will
5393 probably get away with this. */
5394 switch (hdr->sh_type)
5395 {
5396 case SHT_MIPS_LIBLIST:
5397 if (strcmp (name, ".liblist") != 0)
5398 return FALSE;
5399 break;
5400 case SHT_MIPS_MSYM:
5401 if (strcmp (name, ".msym") != 0)
5402 return FALSE;
5403 break;
5404 case SHT_MIPS_CONFLICT:
5405 if (strcmp (name, ".conflict") != 0)
5406 return FALSE;
5407 break;
5408 case SHT_MIPS_GPTAB:
5409 if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0)
5410 return FALSE;
5411 break;
5412 case SHT_MIPS_UCODE:
5413 if (strcmp (name, ".ucode") != 0)
5414 return FALSE;
5415 break;
5416 case SHT_MIPS_DEBUG:
5417 if (strcmp (name, ".mdebug") != 0)
5418 return FALSE;
5419 flags = SEC_DEBUGGING;
5420 break;
5421 case SHT_MIPS_REGINFO:
5422 if (strcmp (name, ".reginfo") != 0
5423 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
5424 return FALSE;
5425 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
5426 break;
5427 case SHT_MIPS_IFACE:
5428 if (strcmp (name, ".MIPS.interfaces") != 0)
5429 return FALSE;
5430 break;
5431 case SHT_MIPS_CONTENT:
5432 if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0)
5433 return FALSE;
5434 break;
5435 case SHT_MIPS_OPTIONS:
5436 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5437 return FALSE;
5438 break;
5439 case SHT_MIPS_DWARF:
5440 if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0)
5441 return FALSE;
5442 break;
5443 case SHT_MIPS_SYMBOL_LIB:
5444 if (strcmp (name, ".MIPS.symlib") != 0)
5445 return FALSE;
5446 break;
5447 case SHT_MIPS_EVENTS:
5448 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0
5449 && strncmp (name, ".MIPS.post_rel",
5450 sizeof ".MIPS.post_rel" - 1) != 0)
5451 return FALSE;
5452 break;
5453 default:
5454 break;
5455 }
5456
5457 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
5458 return FALSE;
5459
5460 if (flags)
5461 {
5462 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
5463 (bfd_get_section_flags (abfd,
5464 hdr->bfd_section)
5465 | flags)))
5466 return FALSE;
5467 }
5468
5469 /* FIXME: We should record sh_info for a .gptab section. */
5470
5471 /* For a .reginfo section, set the gp value in the tdata information
5472 from the contents of this section. We need the gp value while
5473 processing relocs, so we just get it now. The .reginfo section
5474 is not used in the 64-bit MIPS ELF ABI. */
5475 if (hdr->sh_type == SHT_MIPS_REGINFO)
5476 {
5477 Elf32_External_RegInfo ext;
5478 Elf32_RegInfo s;
5479
5480 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
5481 &ext, 0, sizeof ext))
5482 return FALSE;
5483 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
5484 elf_gp (abfd) = s.ri_gp_value;
5485 }
5486
5487 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
5488 set the gp value based on what we find. We may see both
5489 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
5490 they should agree. */
5491 if (hdr->sh_type == SHT_MIPS_OPTIONS)
5492 {
5493 bfd_byte *contents, *l, *lend;
5494
5495 contents = bfd_malloc (hdr->sh_size);
5496 if (contents == NULL)
5497 return FALSE;
5498 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
5499 0, hdr->sh_size))
5500 {
5501 free (contents);
5502 return FALSE;
5503 }
5504 l = contents;
5505 lend = contents + hdr->sh_size;
5506 while (l + sizeof (Elf_External_Options) <= lend)
5507 {
5508 Elf_Internal_Options intopt;
5509
5510 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
5511 &intopt);
5512 if (intopt.size < sizeof (Elf_External_Options))
5513 {
5514 (*_bfd_error_handler)
5515 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
5516 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
5517 break;
5518 }
5519 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
5520 {
5521 Elf64_Internal_RegInfo intreg;
5522
5523 bfd_mips_elf64_swap_reginfo_in
5524 (abfd,
5525 ((Elf64_External_RegInfo *)
5526 (l + sizeof (Elf_External_Options))),
5527 &intreg);
5528 elf_gp (abfd) = intreg.ri_gp_value;
5529 }
5530 else if (intopt.kind == ODK_REGINFO)
5531 {
5532 Elf32_RegInfo intreg;
5533
5534 bfd_mips_elf32_swap_reginfo_in
5535 (abfd,
5536 ((Elf32_External_RegInfo *)
5537 (l + sizeof (Elf_External_Options))),
5538 &intreg);
5539 elf_gp (abfd) = intreg.ri_gp_value;
5540 }
5541 l += intopt.size;
5542 }
5543 free (contents);
5544 }
5545
5546 return TRUE;
5547 }
5548
5549 /* Set the correct type for a MIPS ELF section. We do this by the
5550 section name, which is a hack, but ought to work. This routine is
5551 used by both the 32-bit and the 64-bit ABI. */
5552
5553 bfd_boolean
5554 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
5555 {
5556 register const char *name;
5557 unsigned int sh_type;
5558
5559 name = bfd_get_section_name (abfd, sec);
5560 sh_type = hdr->sh_type;
5561
5562 if (strcmp (name, ".liblist") == 0)
5563 {
5564 hdr->sh_type = SHT_MIPS_LIBLIST;
5565 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
5566 /* The sh_link field is set in final_write_processing. */
5567 }
5568 else if (strcmp (name, ".conflict") == 0)
5569 hdr->sh_type = SHT_MIPS_CONFLICT;
5570 else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0)
5571 {
5572 hdr->sh_type = SHT_MIPS_GPTAB;
5573 hdr->sh_entsize = sizeof (Elf32_External_gptab);
5574 /* The sh_info field is set in final_write_processing. */
5575 }
5576 else if (strcmp (name, ".ucode") == 0)
5577 hdr->sh_type = SHT_MIPS_UCODE;
5578 else if (strcmp (name, ".mdebug") == 0)
5579 {
5580 hdr->sh_type = SHT_MIPS_DEBUG;
5581 /* In a shared object on IRIX 5.3, the .mdebug section has an
5582 entsize of 0. FIXME: Does this matter? */
5583 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
5584 hdr->sh_entsize = 0;
5585 else
5586 hdr->sh_entsize = 1;
5587 }
5588 else if (strcmp (name, ".reginfo") == 0)
5589 {
5590 hdr->sh_type = SHT_MIPS_REGINFO;
5591 /* In a shared object on IRIX 5.3, the .reginfo section has an
5592 entsize of 0x18. FIXME: Does this matter? */
5593 if (SGI_COMPAT (abfd))
5594 {
5595 if ((abfd->flags & DYNAMIC) != 0)
5596 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5597 else
5598 hdr->sh_entsize = 1;
5599 }
5600 else
5601 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
5602 }
5603 else if (SGI_COMPAT (abfd)
5604 && (strcmp (name, ".hash") == 0
5605 || strcmp (name, ".dynamic") == 0
5606 || strcmp (name, ".dynstr") == 0))
5607 {
5608 if (SGI_COMPAT (abfd))
5609 hdr->sh_entsize = 0;
5610 #if 0
5611 /* This isn't how the IRIX6 linker behaves. */
5612 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
5613 #endif
5614 }
5615 else if (strcmp (name, ".got") == 0
5616 || strcmp (name, ".srdata") == 0
5617 || strcmp (name, ".sdata") == 0
5618 || strcmp (name, ".sbss") == 0
5619 || strcmp (name, ".lit4") == 0
5620 || strcmp (name, ".lit8") == 0)
5621 hdr->sh_flags |= SHF_MIPS_GPREL;
5622 else if (strcmp (name, ".MIPS.interfaces") == 0)
5623 {
5624 hdr->sh_type = SHT_MIPS_IFACE;
5625 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5626 }
5627 else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0)
5628 {
5629 hdr->sh_type = SHT_MIPS_CONTENT;
5630 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5631 /* The sh_info field is set in final_write_processing. */
5632 }
5633 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
5634 {
5635 hdr->sh_type = SHT_MIPS_OPTIONS;
5636 hdr->sh_entsize = 1;
5637 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5638 }
5639 else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0)
5640 hdr->sh_type = SHT_MIPS_DWARF;
5641 else if (strcmp (name, ".MIPS.symlib") == 0)
5642 {
5643 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
5644 /* The sh_link and sh_info fields are set in
5645 final_write_processing. */
5646 }
5647 else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0
5648 || strncmp (name, ".MIPS.post_rel",
5649 sizeof ".MIPS.post_rel" - 1) == 0)
5650 {
5651 hdr->sh_type = SHT_MIPS_EVENTS;
5652 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
5653 /* The sh_link field is set in final_write_processing. */
5654 }
5655 else if (strcmp (name, ".msym") == 0)
5656 {
5657 hdr->sh_type = SHT_MIPS_MSYM;
5658 hdr->sh_flags |= SHF_ALLOC;
5659 hdr->sh_entsize = 8;
5660 }
5661
5662 /* In the unlikely event a special section is empty it has to lose its
5663 special meaning. This may happen e.g. when using `strip' with the
5664 "--only-keep-debug" option. */
5665 if (sec->size > 0 && !(sec->flags & SEC_HAS_CONTENTS))
5666 hdr->sh_type = sh_type;
5667
5668 /* The generic elf_fake_sections will set up REL_HDR using the default
5669 kind of relocations. We used to set up a second header for the
5670 non-default kind of relocations here, but only NewABI would use
5671 these, and the IRIX ld doesn't like resulting empty RELA sections.
5672 Thus we create those header only on demand now. */
5673
5674 return TRUE;
5675 }
5676
5677 /* Given a BFD section, try to locate the corresponding ELF section
5678 index. This is used by both the 32-bit and the 64-bit ABI.
5679 Actually, it's not clear to me that the 64-bit ABI supports these,
5680 but for non-PIC objects we will certainly want support for at least
5681 the .scommon section. */
5682
5683 bfd_boolean
5684 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5685 asection *sec, int *retval)
5686 {
5687 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
5688 {
5689 *retval = SHN_MIPS_SCOMMON;
5690 return TRUE;
5691 }
5692 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
5693 {
5694 *retval = SHN_MIPS_ACOMMON;
5695 return TRUE;
5696 }
5697 return FALSE;
5698 }
5699 \f
5700 /* Hook called by the linker routine which adds symbols from an object
5701 file. We must handle the special MIPS section numbers here. */
5702
5703 bfd_boolean
5704 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
5705 Elf_Internal_Sym *sym, const char **namep,
5706 flagword *flagsp ATTRIBUTE_UNUSED,
5707 asection **secp, bfd_vma *valp)
5708 {
5709 if (SGI_COMPAT (abfd)
5710 && (abfd->flags & DYNAMIC) != 0
5711 && strcmp (*namep, "_rld_new_interface") == 0)
5712 {
5713 /* Skip IRIX5 rld entry name. */
5714 *namep = NULL;
5715 return TRUE;
5716 }
5717
5718 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
5719 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
5720 by setting a DT_NEEDED for the shared object. Since _gp_disp is
5721 a magic symbol resolved by the linker, we ignore this bogus definition
5722 of _gp_disp. New ABI objects do not suffer from this problem so this
5723 is not done for them. */
5724 if (!NEWABI_P(abfd)
5725 && (sym->st_shndx == SHN_ABS)
5726 && (strcmp (*namep, "_gp_disp") == 0))
5727 {
5728 *namep = NULL;
5729 return TRUE;
5730 }
5731
5732 switch (sym->st_shndx)
5733 {
5734 case SHN_COMMON:
5735 /* Common symbols less than the GP size are automatically
5736 treated as SHN_MIPS_SCOMMON symbols. */
5737 if (sym->st_size > elf_gp_size (abfd)
5738 || IRIX_COMPAT (abfd) == ict_irix6)
5739 break;
5740 /* Fall through. */
5741 case SHN_MIPS_SCOMMON:
5742 *secp = bfd_make_section_old_way (abfd, ".scommon");
5743 (*secp)->flags |= SEC_IS_COMMON;
5744 *valp = sym->st_size;
5745 break;
5746
5747 case SHN_MIPS_TEXT:
5748 /* This section is used in a shared object. */
5749 if (elf_tdata (abfd)->elf_text_section == NULL)
5750 {
5751 asymbol *elf_text_symbol;
5752 asection *elf_text_section;
5753 bfd_size_type amt = sizeof (asection);
5754
5755 elf_text_section = bfd_zalloc (abfd, amt);
5756 if (elf_text_section == NULL)
5757 return FALSE;
5758
5759 amt = sizeof (asymbol);
5760 elf_text_symbol = bfd_zalloc (abfd, amt);
5761 if (elf_text_symbol == NULL)
5762 return FALSE;
5763
5764 /* Initialize the section. */
5765
5766 elf_tdata (abfd)->elf_text_section = elf_text_section;
5767 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
5768
5769 elf_text_section->symbol = elf_text_symbol;
5770 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
5771
5772 elf_text_section->name = ".text";
5773 elf_text_section->flags = SEC_NO_FLAGS;
5774 elf_text_section->output_section = NULL;
5775 elf_text_section->owner = abfd;
5776 elf_text_symbol->name = ".text";
5777 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5778 elf_text_symbol->section = elf_text_section;
5779 }
5780 /* This code used to do *secp = bfd_und_section_ptr if
5781 info->shared. I don't know why, and that doesn't make sense,
5782 so I took it out. */
5783 *secp = elf_tdata (abfd)->elf_text_section;
5784 break;
5785
5786 case SHN_MIPS_ACOMMON:
5787 /* Fall through. XXX Can we treat this as allocated data? */
5788 case SHN_MIPS_DATA:
5789 /* This section is used in a shared object. */
5790 if (elf_tdata (abfd)->elf_data_section == NULL)
5791 {
5792 asymbol *elf_data_symbol;
5793 asection *elf_data_section;
5794 bfd_size_type amt = sizeof (asection);
5795
5796 elf_data_section = bfd_zalloc (abfd, amt);
5797 if (elf_data_section == NULL)
5798 return FALSE;
5799
5800 amt = sizeof (asymbol);
5801 elf_data_symbol = bfd_zalloc (abfd, amt);
5802 if (elf_data_symbol == NULL)
5803 return FALSE;
5804
5805 /* Initialize the section. */
5806
5807 elf_tdata (abfd)->elf_data_section = elf_data_section;
5808 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
5809
5810 elf_data_section->symbol = elf_data_symbol;
5811 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
5812
5813 elf_data_section->name = ".data";
5814 elf_data_section->flags = SEC_NO_FLAGS;
5815 elf_data_section->output_section = NULL;
5816 elf_data_section->owner = abfd;
5817 elf_data_symbol->name = ".data";
5818 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
5819 elf_data_symbol->section = elf_data_section;
5820 }
5821 /* This code used to do *secp = bfd_und_section_ptr if
5822 info->shared. I don't know why, and that doesn't make sense,
5823 so I took it out. */
5824 *secp = elf_tdata (abfd)->elf_data_section;
5825 break;
5826
5827 case SHN_MIPS_SUNDEFINED:
5828 *secp = bfd_und_section_ptr;
5829 break;
5830 }
5831
5832 if (SGI_COMPAT (abfd)
5833 && ! info->shared
5834 && info->hash->creator == abfd->xvec
5835 && strcmp (*namep, "__rld_obj_head") == 0)
5836 {
5837 struct elf_link_hash_entry *h;
5838 struct bfd_link_hash_entry *bh;
5839
5840 /* Mark __rld_obj_head as dynamic. */
5841 bh = NULL;
5842 if (! (_bfd_generic_link_add_one_symbol
5843 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
5844 get_elf_backend_data (abfd)->collect, &bh)))
5845 return FALSE;
5846
5847 h = (struct elf_link_hash_entry *) bh;
5848 h->non_elf = 0;
5849 h->def_regular = 1;
5850 h->type = STT_OBJECT;
5851
5852 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5853 return FALSE;
5854
5855 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
5856 }
5857
5858 /* If this is a mips16 text symbol, add 1 to the value to make it
5859 odd. This will cause something like .word SYM to come up with
5860 the right value when it is loaded into the PC. */
5861 if (sym->st_other == STO_MIPS16)
5862 ++*valp;
5863
5864 return TRUE;
5865 }
5866
5867 /* This hook function is called before the linker writes out a global
5868 symbol. We mark symbols as small common if appropriate. This is
5869 also where we undo the increment of the value for a mips16 symbol. */
5870
5871 bfd_boolean
5872 _bfd_mips_elf_link_output_symbol_hook
5873 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5874 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
5875 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
5876 {
5877 /* If we see a common symbol, which implies a relocatable link, then
5878 if a symbol was small common in an input file, mark it as small
5879 common in the output file. */
5880 if (sym->st_shndx == SHN_COMMON
5881 && strcmp (input_sec->name, ".scommon") == 0)
5882 sym->st_shndx = SHN_MIPS_SCOMMON;
5883
5884 if (sym->st_other == STO_MIPS16)
5885 sym->st_value &= ~1;
5886
5887 return TRUE;
5888 }
5889 \f
5890 /* Functions for the dynamic linker. */
5891
5892 /* Create dynamic sections when linking against a dynamic object. */
5893
5894 bfd_boolean
5895 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
5896 {
5897 struct elf_link_hash_entry *h;
5898 struct bfd_link_hash_entry *bh;
5899 flagword flags;
5900 register asection *s;
5901 const char * const *namep;
5902 struct mips_elf_link_hash_table *htab;
5903
5904 htab = mips_elf_hash_table (info);
5905 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5906 | SEC_LINKER_CREATED | SEC_READONLY);
5907
5908 /* The psABI requires a read-only .dynamic section, but the VxWorks
5909 EABI doesn't. */
5910 if (!htab->is_vxworks)
5911 {
5912 s = bfd_get_section_by_name (abfd, ".dynamic");
5913 if (s != NULL)
5914 {
5915 if (! bfd_set_section_flags (abfd, s, flags))
5916 return FALSE;
5917 }
5918 }
5919
5920 /* We need to create .got section. */
5921 if (! mips_elf_create_got_section (abfd, info, FALSE))
5922 return FALSE;
5923
5924 if (! mips_elf_rel_dyn_section (info, TRUE))
5925 return FALSE;
5926
5927 /* Create .stub section. */
5928 if (bfd_get_section_by_name (abfd,
5929 MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL)
5930 {
5931 s = bfd_make_section_with_flags (abfd,
5932 MIPS_ELF_STUB_SECTION_NAME (abfd),
5933 flags | SEC_CODE);
5934 if (s == NULL
5935 || ! bfd_set_section_alignment (abfd, s,
5936 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5937 return FALSE;
5938 }
5939
5940 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
5941 && !info->shared
5942 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
5943 {
5944 s = bfd_make_section_with_flags (abfd, ".rld_map",
5945 flags &~ (flagword) SEC_READONLY);
5946 if (s == NULL
5947 || ! bfd_set_section_alignment (abfd, s,
5948 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5949 return FALSE;
5950 }
5951
5952 /* On IRIX5, we adjust add some additional symbols and change the
5953 alignments of several sections. There is no ABI documentation
5954 indicating that this is necessary on IRIX6, nor any evidence that
5955 the linker takes such action. */
5956 if (IRIX_COMPAT (abfd) == ict_irix5)
5957 {
5958 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
5959 {
5960 bh = NULL;
5961 if (! (_bfd_generic_link_add_one_symbol
5962 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
5963 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5964 return FALSE;
5965
5966 h = (struct elf_link_hash_entry *) bh;
5967 h->non_elf = 0;
5968 h->def_regular = 1;
5969 h->type = STT_SECTION;
5970
5971 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5972 return FALSE;
5973 }
5974
5975 /* We need to create a .compact_rel section. */
5976 if (SGI_COMPAT (abfd))
5977 {
5978 if (!mips_elf_create_compact_rel_section (abfd, info))
5979 return FALSE;
5980 }
5981
5982 /* Change alignments of some sections. */
5983 s = bfd_get_section_by_name (abfd, ".hash");
5984 if (s != NULL)
5985 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5986 s = bfd_get_section_by_name (abfd, ".dynsym");
5987 if (s != NULL)
5988 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5989 s = bfd_get_section_by_name (abfd, ".dynstr");
5990 if (s != NULL)
5991 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5992 s = bfd_get_section_by_name (abfd, ".reginfo");
5993 if (s != NULL)
5994 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5995 s = bfd_get_section_by_name (abfd, ".dynamic");
5996 if (s != NULL)
5997 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
5998 }
5999
6000 if (!info->shared)
6001 {
6002 const char *name;
6003
6004 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6005 bh = NULL;
6006 if (!(_bfd_generic_link_add_one_symbol
6007 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6008 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6009 return FALSE;
6010
6011 h = (struct elf_link_hash_entry *) bh;
6012 h->non_elf = 0;
6013 h->def_regular = 1;
6014 h->type = STT_SECTION;
6015
6016 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6017 return FALSE;
6018
6019 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6020 {
6021 /* __rld_map is a four byte word located in the .data section
6022 and is filled in by the rtld to contain a pointer to
6023 the _r_debug structure. Its symbol value will be set in
6024 _bfd_mips_elf_finish_dynamic_symbol. */
6025 s = bfd_get_section_by_name (abfd, ".rld_map");
6026 BFD_ASSERT (s != NULL);
6027
6028 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6029 bh = NULL;
6030 if (!(_bfd_generic_link_add_one_symbol
6031 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6032 get_elf_backend_data (abfd)->collect, &bh)))
6033 return FALSE;
6034
6035 h = (struct elf_link_hash_entry *) bh;
6036 h->non_elf = 0;
6037 h->def_regular = 1;
6038 h->type = STT_OBJECT;
6039
6040 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6041 return FALSE;
6042 }
6043 }
6044
6045 if (htab->is_vxworks)
6046 {
6047 /* Create the .plt, .rela.plt, .dynbss and .rela.bss sections.
6048 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6049 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6050 return FALSE;
6051
6052 /* Cache the sections created above. */
6053 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6054 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6055 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6056 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6057 if (!htab->sdynbss
6058 || (!htab->srelbss && !info->shared)
6059 || !htab->srelplt
6060 || !htab->splt)
6061 abort ();
6062
6063 /* Do the usual VxWorks handling. */
6064 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
6065 return FALSE;
6066
6067 /* Work out the PLT sizes. */
6068 if (info->shared)
6069 {
6070 htab->plt_header_size
6071 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
6072 htab->plt_entry_size
6073 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
6074 }
6075 else
6076 {
6077 htab->plt_header_size
6078 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
6079 htab->plt_entry_size
6080 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
6081 }
6082 }
6083
6084 return TRUE;
6085 }
6086 \f
6087 /* Look through the relocs for a section during the first phase, and
6088 allocate space in the global offset table. */
6089
6090 bfd_boolean
6091 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
6092 asection *sec, const Elf_Internal_Rela *relocs)
6093 {
6094 const char *name;
6095 bfd *dynobj;
6096 Elf_Internal_Shdr *symtab_hdr;
6097 struct elf_link_hash_entry **sym_hashes;
6098 struct mips_got_info *g;
6099 size_t extsymoff;
6100 const Elf_Internal_Rela *rel;
6101 const Elf_Internal_Rela *rel_end;
6102 asection *sgot;
6103 asection *sreloc;
6104 const struct elf_backend_data *bed;
6105 struct mips_elf_link_hash_table *htab;
6106
6107 if (info->relocatable)
6108 return TRUE;
6109
6110 htab = mips_elf_hash_table (info);
6111 dynobj = elf_hash_table (info)->dynobj;
6112 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6113 sym_hashes = elf_sym_hashes (abfd);
6114 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6115
6116 /* Check for the mips16 stub sections. */
6117
6118 name = bfd_get_section_name (abfd, sec);
6119 if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0)
6120 {
6121 unsigned long r_symndx;
6122
6123 /* Look at the relocation information to figure out which symbol
6124 this is for. */
6125
6126 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6127
6128 if (r_symndx < extsymoff
6129 || sym_hashes[r_symndx - extsymoff] == NULL)
6130 {
6131 asection *o;
6132
6133 /* This stub is for a local symbol. This stub will only be
6134 needed if there is some relocation in this BFD, other
6135 than a 16 bit function call, which refers to this symbol. */
6136 for (o = abfd->sections; o != NULL; o = o->next)
6137 {
6138 Elf_Internal_Rela *sec_relocs;
6139 const Elf_Internal_Rela *r, *rend;
6140
6141 /* We can ignore stub sections when looking for relocs. */
6142 if ((o->flags & SEC_RELOC) == 0
6143 || o->reloc_count == 0
6144 || strncmp (bfd_get_section_name (abfd, o), FN_STUB,
6145 sizeof FN_STUB - 1) == 0
6146 || strncmp (bfd_get_section_name (abfd, o), CALL_STUB,
6147 sizeof CALL_STUB - 1) == 0
6148 || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB,
6149 sizeof CALL_FP_STUB - 1) == 0)
6150 continue;
6151
6152 sec_relocs
6153 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
6154 info->keep_memory);
6155 if (sec_relocs == NULL)
6156 return FALSE;
6157
6158 rend = sec_relocs + o->reloc_count;
6159 for (r = sec_relocs; r < rend; r++)
6160 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
6161 && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26)
6162 break;
6163
6164 if (elf_section_data (o)->relocs != sec_relocs)
6165 free (sec_relocs);
6166
6167 if (r < rend)
6168 break;
6169 }
6170
6171 if (o == NULL)
6172 {
6173 /* There is no non-call reloc for this stub, so we do
6174 not need it. Since this function is called before
6175 the linker maps input sections to output sections, we
6176 can easily discard it by setting the SEC_EXCLUDE
6177 flag. */
6178 sec->flags |= SEC_EXCLUDE;
6179 return TRUE;
6180 }
6181
6182 /* Record this stub in an array of local symbol stubs for
6183 this BFD. */
6184 if (elf_tdata (abfd)->local_stubs == NULL)
6185 {
6186 unsigned long symcount;
6187 asection **n;
6188 bfd_size_type amt;
6189
6190 if (elf_bad_symtab (abfd))
6191 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
6192 else
6193 symcount = symtab_hdr->sh_info;
6194 amt = symcount * sizeof (asection *);
6195 n = bfd_zalloc (abfd, amt);
6196 if (n == NULL)
6197 return FALSE;
6198 elf_tdata (abfd)->local_stubs = n;
6199 }
6200
6201 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
6202
6203 /* We don't need to set mips16_stubs_seen in this case.
6204 That flag is used to see whether we need to look through
6205 the global symbol table for stubs. We don't need to set
6206 it here, because we just have a local stub. */
6207 }
6208 else
6209 {
6210 struct mips_elf_link_hash_entry *h;
6211
6212 h = ((struct mips_elf_link_hash_entry *)
6213 sym_hashes[r_symndx - extsymoff]);
6214
6215 while (h->root.root.type == bfd_link_hash_indirect
6216 || h->root.root.type == bfd_link_hash_warning)
6217 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6218
6219 /* H is the symbol this stub is for. */
6220
6221 h->fn_stub = sec;
6222 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6223 }
6224 }
6225 else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0
6226 || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6227 {
6228 unsigned long r_symndx;
6229 struct mips_elf_link_hash_entry *h;
6230 asection **loc;
6231
6232 /* Look at the relocation information to figure out which symbol
6233 this is for. */
6234
6235 r_symndx = ELF_R_SYM (abfd, relocs->r_info);
6236
6237 if (r_symndx < extsymoff
6238 || sym_hashes[r_symndx - extsymoff] == NULL)
6239 {
6240 /* This stub was actually built for a static symbol defined
6241 in the same file. We assume that all static symbols in
6242 mips16 code are themselves mips16, so we can simply
6243 discard this stub. Since this function is called before
6244 the linker maps input sections to output sections, we can
6245 easily discard it by setting the SEC_EXCLUDE flag. */
6246 sec->flags |= SEC_EXCLUDE;
6247 return TRUE;
6248 }
6249
6250 h = ((struct mips_elf_link_hash_entry *)
6251 sym_hashes[r_symndx - extsymoff]);
6252
6253 /* H is the symbol this stub is for. */
6254
6255 if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0)
6256 loc = &h->call_fp_stub;
6257 else
6258 loc = &h->call_stub;
6259
6260 /* If we already have an appropriate stub for this function, we
6261 don't need another one, so we can discard this one. Since
6262 this function is called before the linker maps input sections
6263 to output sections, we can easily discard it by setting the
6264 SEC_EXCLUDE flag. We can also discard this section if we
6265 happen to already know that this is a mips16 function; it is
6266 not necessary to check this here, as it is checked later, but
6267 it is slightly faster to check now. */
6268 if (*loc != NULL || h->root.other == STO_MIPS16)
6269 {
6270 sec->flags |= SEC_EXCLUDE;
6271 return TRUE;
6272 }
6273
6274 *loc = sec;
6275 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
6276 }
6277
6278 if (dynobj == NULL)
6279 {
6280 sgot = NULL;
6281 g = NULL;
6282 }
6283 else
6284 {
6285 sgot = mips_elf_got_section (dynobj, FALSE);
6286 if (sgot == NULL)
6287 g = NULL;
6288 else
6289 {
6290 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
6291 g = mips_elf_section_data (sgot)->u.got_info;
6292 BFD_ASSERT (g != NULL);
6293 }
6294 }
6295
6296 sreloc = NULL;
6297 bed = get_elf_backend_data (abfd);
6298 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
6299 for (rel = relocs; rel < rel_end; ++rel)
6300 {
6301 unsigned long r_symndx;
6302 unsigned int r_type;
6303 struct elf_link_hash_entry *h;
6304
6305 r_symndx = ELF_R_SYM (abfd, rel->r_info);
6306 r_type = ELF_R_TYPE (abfd, rel->r_info);
6307
6308 if (r_symndx < extsymoff)
6309 h = NULL;
6310 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
6311 {
6312 (*_bfd_error_handler)
6313 (_("%B: Malformed reloc detected for section %s"),
6314 abfd, name);
6315 bfd_set_error (bfd_error_bad_value);
6316 return FALSE;
6317 }
6318 else
6319 {
6320 h = sym_hashes[r_symndx - extsymoff];
6321
6322 /* This may be an indirect symbol created because of a version. */
6323 if (h != NULL)
6324 {
6325 while (h->root.type == bfd_link_hash_indirect)
6326 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6327 }
6328 }
6329
6330 /* Some relocs require a global offset table. */
6331 if (dynobj == NULL || sgot == NULL)
6332 {
6333 switch (r_type)
6334 {
6335 case R_MIPS_GOT16:
6336 case R_MIPS_CALL16:
6337 case R_MIPS_CALL_HI16:
6338 case R_MIPS_CALL_LO16:
6339 case R_MIPS_GOT_HI16:
6340 case R_MIPS_GOT_LO16:
6341 case R_MIPS_GOT_PAGE:
6342 case R_MIPS_GOT_OFST:
6343 case R_MIPS_GOT_DISP:
6344 case R_MIPS_TLS_GOTTPREL:
6345 case R_MIPS_TLS_GD:
6346 case R_MIPS_TLS_LDM:
6347 if (dynobj == NULL)
6348 elf_hash_table (info)->dynobj = dynobj = abfd;
6349 if (! mips_elf_create_got_section (dynobj, info, FALSE))
6350 return FALSE;
6351 g = mips_elf_got_info (dynobj, &sgot);
6352 if (htab->is_vxworks && !info->shared)
6353 {
6354 (*_bfd_error_handler)
6355 (_("%B: GOT reloc at 0x%lx not expected in executables"),
6356 abfd, (unsigned long) rel->r_offset);
6357 bfd_set_error (bfd_error_bad_value);
6358 return FALSE;
6359 }
6360 break;
6361
6362 case R_MIPS_32:
6363 case R_MIPS_REL32:
6364 case R_MIPS_64:
6365 /* In VxWorks executables, references to external symbols
6366 are handled using copy relocs or PLT stubs, so there's
6367 no need to add a dynamic relocation here. */
6368 if (dynobj == NULL
6369 && (info->shared || (h != NULL && !htab->is_vxworks))
6370 && (sec->flags & SEC_ALLOC) != 0)
6371 elf_hash_table (info)->dynobj = dynobj = abfd;
6372 break;
6373
6374 default:
6375 break;
6376 }
6377 }
6378
6379 if (h)
6380 {
6381 ((struct mips_elf_link_hash_entry *) h)->is_relocation_target = TRUE;
6382
6383 /* Relocations against the special VxWorks __GOTT_BASE__ and
6384 __GOTT_INDEX__ symbols must be left to the loader. Allocate
6385 room for them in .rela.dyn. */
6386 if (is_gott_symbol (info, h))
6387 {
6388 if (sreloc == NULL)
6389 {
6390 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6391 if (sreloc == NULL)
6392 return FALSE;
6393 }
6394 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6395 }
6396 }
6397 else if (r_type == R_MIPS_CALL_LO16
6398 || r_type == R_MIPS_GOT_LO16
6399 || r_type == R_MIPS_GOT_DISP
6400 || (r_type == R_MIPS_GOT16 && htab->is_vxworks))
6401 {
6402 /* We may need a local GOT entry for this relocation. We
6403 don't count R_MIPS_GOT_PAGE because we can estimate the
6404 maximum number of pages needed by looking at the size of
6405 the segment. Similar comments apply to R_MIPS_GOT16 and
6406 R_MIPS_CALL16, except on VxWorks, where GOT relocations
6407 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
6408 R_MIPS_CALL_HI16 because these are always followed by an
6409 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
6410 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6411 rel->r_addend, g, 0))
6412 return FALSE;
6413 }
6414
6415 switch (r_type)
6416 {
6417 case R_MIPS_CALL16:
6418 if (h == NULL)
6419 {
6420 (*_bfd_error_handler)
6421 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
6422 abfd, (unsigned long) rel->r_offset);
6423 bfd_set_error (bfd_error_bad_value);
6424 return FALSE;
6425 }
6426 /* Fall through. */
6427
6428 case R_MIPS_CALL_HI16:
6429 case R_MIPS_CALL_LO16:
6430 if (h != NULL)
6431 {
6432 /* VxWorks call relocations point the function's .got.plt
6433 entry, which will be allocated by adjust_dynamic_symbol.
6434 Otherwise, this symbol requires a global GOT entry. */
6435 if (!htab->is_vxworks
6436 && !mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6437 return FALSE;
6438
6439 /* We need a stub, not a plt entry for the undefined
6440 function. But we record it as if it needs plt. See
6441 _bfd_elf_adjust_dynamic_symbol. */
6442 h->needs_plt = 1;
6443 h->type = STT_FUNC;
6444 }
6445 break;
6446
6447 case R_MIPS_GOT_PAGE:
6448 /* If this is a global, overridable symbol, GOT_PAGE will
6449 decay to GOT_DISP, so we'll need a GOT entry for it. */
6450 if (h == NULL)
6451 break;
6452 else
6453 {
6454 struct mips_elf_link_hash_entry *hmips =
6455 (struct mips_elf_link_hash_entry *) h;
6456
6457 while (hmips->root.root.type == bfd_link_hash_indirect
6458 || hmips->root.root.type == bfd_link_hash_warning)
6459 hmips = (struct mips_elf_link_hash_entry *)
6460 hmips->root.root.u.i.link;
6461
6462 if (hmips->root.def_regular
6463 && ! (info->shared && ! info->symbolic
6464 && ! hmips->root.forced_local))
6465 break;
6466 }
6467 /* Fall through. */
6468
6469 case R_MIPS_GOT16:
6470 case R_MIPS_GOT_HI16:
6471 case R_MIPS_GOT_LO16:
6472 case R_MIPS_GOT_DISP:
6473 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6474 return FALSE;
6475 break;
6476
6477 case R_MIPS_TLS_GOTTPREL:
6478 if (info->shared)
6479 info->flags |= DF_STATIC_TLS;
6480 /* Fall through */
6481
6482 case R_MIPS_TLS_LDM:
6483 if (r_type == R_MIPS_TLS_LDM)
6484 {
6485 r_symndx = 0;
6486 h = NULL;
6487 }
6488 /* Fall through */
6489
6490 case R_MIPS_TLS_GD:
6491 /* This symbol requires a global offset table entry, or two
6492 for TLS GD relocations. */
6493 {
6494 unsigned char flag = (r_type == R_MIPS_TLS_GD
6495 ? GOT_TLS_GD
6496 : r_type == R_MIPS_TLS_LDM
6497 ? GOT_TLS_LDM
6498 : GOT_TLS_IE);
6499 if (h != NULL)
6500 {
6501 struct mips_elf_link_hash_entry *hmips =
6502 (struct mips_elf_link_hash_entry *) h;
6503 hmips->tls_type |= flag;
6504
6505 if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g, flag))
6506 return FALSE;
6507 }
6508 else
6509 {
6510 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
6511
6512 if (! mips_elf_record_local_got_symbol (abfd, r_symndx,
6513 rel->r_addend, g, flag))
6514 return FALSE;
6515 }
6516 }
6517 break;
6518
6519 case R_MIPS_32:
6520 case R_MIPS_REL32:
6521 case R_MIPS_64:
6522 /* In VxWorks executables, references to external symbols
6523 are handled using copy relocs or PLT stubs, so there's
6524 no need to add a .rela.dyn entry for this relocation. */
6525 if ((info->shared || (h != NULL && !htab->is_vxworks))
6526 && (sec->flags & SEC_ALLOC) != 0)
6527 {
6528 if (sreloc == NULL)
6529 {
6530 sreloc = mips_elf_rel_dyn_section (info, TRUE);
6531 if (sreloc == NULL)
6532 return FALSE;
6533 }
6534 if (info->shared)
6535 {
6536 /* When creating a shared object, we must copy these
6537 reloc types into the output file as R_MIPS_REL32
6538 relocs. Make room for this reloc in .rel(a).dyn. */
6539 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
6540 if (MIPS_ELF_READONLY_SECTION (sec))
6541 /* We tell the dynamic linker that there are
6542 relocations against the text segment. */
6543 info->flags |= DF_TEXTREL;
6544 }
6545 else
6546 {
6547 struct mips_elf_link_hash_entry *hmips;
6548
6549 /* We only need to copy this reloc if the symbol is
6550 defined in a dynamic object. */
6551 hmips = (struct mips_elf_link_hash_entry *) h;
6552 ++hmips->possibly_dynamic_relocs;
6553 if (MIPS_ELF_READONLY_SECTION (sec))
6554 /* We need it to tell the dynamic linker if there
6555 are relocations against the text segment. */
6556 hmips->readonly_reloc = TRUE;
6557 }
6558
6559 /* Even though we don't directly need a GOT entry for
6560 this symbol, a symbol must have a dynamic symbol
6561 table index greater that DT_MIPS_GOTSYM if there are
6562 dynamic relocations against it. This does not apply
6563 to VxWorks, which does not have the usual coupling
6564 between global GOT entries and .dynsym entries. */
6565 if (h != NULL && !htab->is_vxworks)
6566 {
6567 if (dynobj == NULL)
6568 elf_hash_table (info)->dynobj = dynobj = abfd;
6569 if (! mips_elf_create_got_section (dynobj, info, TRUE))
6570 return FALSE;
6571 g = mips_elf_got_info (dynobj, &sgot);
6572 if (! mips_elf_record_global_got_symbol (h, abfd, info, g, 0))
6573 return FALSE;
6574 }
6575 }
6576
6577 if (SGI_COMPAT (abfd))
6578 mips_elf_hash_table (info)->compact_rel_size +=
6579 sizeof (Elf32_External_crinfo);
6580 break;
6581
6582 case R_MIPS_PC16:
6583 if (h)
6584 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6585 break;
6586
6587 case R_MIPS_26:
6588 if (h)
6589 ((struct mips_elf_link_hash_entry *) h)->is_branch_target = TRUE;
6590 /* Fall through. */
6591
6592 case R_MIPS_GPREL16:
6593 case R_MIPS_LITERAL:
6594 case R_MIPS_GPREL32:
6595 if (SGI_COMPAT (abfd))
6596 mips_elf_hash_table (info)->compact_rel_size +=
6597 sizeof (Elf32_External_crinfo);
6598 break;
6599
6600 /* This relocation describes the C++ object vtable hierarchy.
6601 Reconstruct it for later use during GC. */
6602 case R_MIPS_GNU_VTINHERIT:
6603 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
6604 return FALSE;
6605 break;
6606
6607 /* This relocation describes which C++ vtable entries are actually
6608 used. Record for later use during GC. */
6609 case R_MIPS_GNU_VTENTRY:
6610 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
6611 return FALSE;
6612 break;
6613
6614 default:
6615 break;
6616 }
6617
6618 /* We must not create a stub for a symbol that has relocations
6619 related to taking the function's address. This doesn't apply to
6620 VxWorks, where CALL relocs refer to a .got.plt entry instead of
6621 a normal .got entry. */
6622 if (!htab->is_vxworks && h != NULL)
6623 switch (r_type)
6624 {
6625 default:
6626 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
6627 break;
6628 case R_MIPS_CALL16:
6629 case R_MIPS_CALL_HI16:
6630 case R_MIPS_CALL_LO16:
6631 case R_MIPS_JALR:
6632 break;
6633 }
6634
6635 /* If this reloc is not a 16 bit call, and it has a global
6636 symbol, then we will need the fn_stub if there is one.
6637 References from a stub section do not count. */
6638 if (h != NULL
6639 && r_type != R_MIPS16_26
6640 && strncmp (bfd_get_section_name (abfd, sec), FN_STUB,
6641 sizeof FN_STUB - 1) != 0
6642 && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB,
6643 sizeof CALL_STUB - 1) != 0
6644 && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB,
6645 sizeof CALL_FP_STUB - 1) != 0)
6646 {
6647 struct mips_elf_link_hash_entry *mh;
6648
6649 mh = (struct mips_elf_link_hash_entry *) h;
6650 mh->need_fn_stub = TRUE;
6651 }
6652 }
6653
6654 return TRUE;
6655 }
6656 \f
6657 bfd_boolean
6658 _bfd_mips_relax_section (bfd *abfd, asection *sec,
6659 struct bfd_link_info *link_info,
6660 bfd_boolean *again)
6661 {
6662 Elf_Internal_Rela *internal_relocs;
6663 Elf_Internal_Rela *irel, *irelend;
6664 Elf_Internal_Shdr *symtab_hdr;
6665 bfd_byte *contents = NULL;
6666 size_t extsymoff;
6667 bfd_boolean changed_contents = FALSE;
6668 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
6669 Elf_Internal_Sym *isymbuf = NULL;
6670
6671 /* We are not currently changing any sizes, so only one pass. */
6672 *again = FALSE;
6673
6674 if (link_info->relocatable)
6675 return TRUE;
6676
6677 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
6678 link_info->keep_memory);
6679 if (internal_relocs == NULL)
6680 return TRUE;
6681
6682 irelend = internal_relocs + sec->reloc_count
6683 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
6684 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6685 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
6686
6687 for (irel = internal_relocs; irel < irelend; irel++)
6688 {
6689 bfd_vma symval;
6690 bfd_signed_vma sym_offset;
6691 unsigned int r_type;
6692 unsigned long r_symndx;
6693 asection *sym_sec;
6694 unsigned long instruction;
6695
6696 /* Turn jalr into bgezal, and jr into beq, if they're marked
6697 with a JALR relocation, that indicate where they jump to.
6698 This saves some pipeline bubbles. */
6699 r_type = ELF_R_TYPE (abfd, irel->r_info);
6700 if (r_type != R_MIPS_JALR)
6701 continue;
6702
6703 r_symndx = ELF_R_SYM (abfd, irel->r_info);
6704 /* Compute the address of the jump target. */
6705 if (r_symndx >= extsymoff)
6706 {
6707 struct mips_elf_link_hash_entry *h
6708 = ((struct mips_elf_link_hash_entry *)
6709 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
6710
6711 while (h->root.root.type == bfd_link_hash_indirect
6712 || h->root.root.type == bfd_link_hash_warning)
6713 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
6714
6715 /* If a symbol is undefined, or if it may be overridden,
6716 skip it. */
6717 if (! ((h->root.root.type == bfd_link_hash_defined
6718 || h->root.root.type == bfd_link_hash_defweak)
6719 && h->root.root.u.def.section)
6720 || (link_info->shared && ! link_info->symbolic
6721 && !h->root.forced_local))
6722 continue;
6723
6724 sym_sec = h->root.root.u.def.section;
6725 if (sym_sec->output_section)
6726 symval = (h->root.root.u.def.value
6727 + sym_sec->output_section->vma
6728 + sym_sec->output_offset);
6729 else
6730 symval = h->root.root.u.def.value;
6731 }
6732 else
6733 {
6734 Elf_Internal_Sym *isym;
6735
6736 /* Read this BFD's symbols if we haven't done so already. */
6737 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
6738 {
6739 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6740 if (isymbuf == NULL)
6741 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
6742 symtab_hdr->sh_info, 0,
6743 NULL, NULL, NULL);
6744 if (isymbuf == NULL)
6745 goto relax_return;
6746 }
6747
6748 isym = isymbuf + r_symndx;
6749 if (isym->st_shndx == SHN_UNDEF)
6750 continue;
6751 else if (isym->st_shndx == SHN_ABS)
6752 sym_sec = bfd_abs_section_ptr;
6753 else if (isym->st_shndx == SHN_COMMON)
6754 sym_sec = bfd_com_section_ptr;
6755 else
6756 sym_sec
6757 = bfd_section_from_elf_index (abfd, isym->st_shndx);
6758 symval = isym->st_value
6759 + sym_sec->output_section->vma
6760 + sym_sec->output_offset;
6761 }
6762
6763 /* Compute branch offset, from delay slot of the jump to the
6764 branch target. */
6765 sym_offset = (symval + irel->r_addend)
6766 - (sec_start + irel->r_offset + 4);
6767
6768 /* Branch offset must be properly aligned. */
6769 if ((sym_offset & 3) != 0)
6770 continue;
6771
6772 sym_offset >>= 2;
6773
6774 /* Check that it's in range. */
6775 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
6776 continue;
6777
6778 /* Get the section contents if we haven't done so already. */
6779 if (contents == NULL)
6780 {
6781 /* Get cached copy if it exists. */
6782 if (elf_section_data (sec)->this_hdr.contents != NULL)
6783 contents = elf_section_data (sec)->this_hdr.contents;
6784 else
6785 {
6786 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6787 goto relax_return;
6788 }
6789 }
6790
6791 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
6792
6793 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
6794 if ((instruction & 0xfc1fffff) == 0x0000f809)
6795 instruction = 0x04110000;
6796 /* If it was jr <reg>, turn it into b <target>. */
6797 else if ((instruction & 0xfc1fffff) == 0x00000008)
6798 instruction = 0x10000000;
6799 else
6800 continue;
6801
6802 instruction |= (sym_offset & 0xffff);
6803 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
6804 changed_contents = TRUE;
6805 }
6806
6807 if (contents != NULL
6808 && elf_section_data (sec)->this_hdr.contents != contents)
6809 {
6810 if (!changed_contents && !link_info->keep_memory)
6811 free (contents);
6812 else
6813 {
6814 /* Cache the section contents for elf_link_input_bfd. */
6815 elf_section_data (sec)->this_hdr.contents = contents;
6816 }
6817 }
6818 return TRUE;
6819
6820 relax_return:
6821 if (contents != NULL
6822 && elf_section_data (sec)->this_hdr.contents != contents)
6823 free (contents);
6824 return FALSE;
6825 }
6826 \f
6827 /* Adjust a symbol defined by a dynamic object and referenced by a
6828 regular object. The current definition is in some section of the
6829 dynamic object, but we're not including those sections. We have to
6830 change the definition to something the rest of the link can
6831 understand. */
6832
6833 bfd_boolean
6834 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6835 struct elf_link_hash_entry *h)
6836 {
6837 bfd *dynobj;
6838 struct mips_elf_link_hash_entry *hmips;
6839 asection *s;
6840 struct mips_elf_link_hash_table *htab;
6841
6842 htab = mips_elf_hash_table (info);
6843 dynobj = elf_hash_table (info)->dynobj;
6844
6845 /* Make sure we know what is going on here. */
6846 BFD_ASSERT (dynobj != NULL
6847 && (h->needs_plt
6848 || h->u.weakdef != NULL
6849 || (h->def_dynamic
6850 && h->ref_regular
6851 && !h->def_regular)));
6852
6853 /* If this symbol is defined in a dynamic object, we need to copy
6854 any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output
6855 file. */
6856 hmips = (struct mips_elf_link_hash_entry *) h;
6857 if (! info->relocatable
6858 && hmips->possibly_dynamic_relocs != 0
6859 && (h->root.type == bfd_link_hash_defweak
6860 || !h->def_regular))
6861 {
6862 mips_elf_allocate_dynamic_relocations
6863 (dynobj, info, hmips->possibly_dynamic_relocs);
6864 if (hmips->readonly_reloc)
6865 /* We tell the dynamic linker that there are relocations
6866 against the text segment. */
6867 info->flags |= DF_TEXTREL;
6868 }
6869
6870 /* For a function, create a stub, if allowed. */
6871 if (! hmips->no_fn_stub
6872 && h->needs_plt)
6873 {
6874 if (! elf_hash_table (info)->dynamic_sections_created)
6875 return TRUE;
6876
6877 /* If this symbol is not defined in a regular file, then set
6878 the symbol to the stub location. This is required to make
6879 function pointers compare as equal between the normal
6880 executable and the shared library. */
6881 if (!h->def_regular)
6882 {
6883 /* We need .stub section. */
6884 s = bfd_get_section_by_name (dynobj,
6885 MIPS_ELF_STUB_SECTION_NAME (dynobj));
6886 BFD_ASSERT (s != NULL);
6887
6888 h->root.u.def.section = s;
6889 h->root.u.def.value = s->size;
6890
6891 /* XXX Write this stub address somewhere. */
6892 h->plt.offset = s->size;
6893
6894 /* Make room for this stub code. */
6895 s->size += htab->function_stub_size;
6896
6897 /* The last half word of the stub will be filled with the index
6898 of this symbol in .dynsym section. */
6899 return TRUE;
6900 }
6901 }
6902 else if ((h->type == STT_FUNC)
6903 && !h->needs_plt)
6904 {
6905 /* This will set the entry for this symbol in the GOT to 0, and
6906 the dynamic linker will take care of this. */
6907 h->root.u.def.value = 0;
6908 return TRUE;
6909 }
6910
6911 /* If this is a weak symbol, and there is a real definition, the
6912 processor independent code will have arranged for us to see the
6913 real definition first, and we can just use the same value. */
6914 if (h->u.weakdef != NULL)
6915 {
6916 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6917 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6918 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6919 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6920 return TRUE;
6921 }
6922
6923 /* This is a reference to a symbol defined by a dynamic object which
6924 is not a function. */
6925
6926 return TRUE;
6927 }
6928
6929 /* Likewise, for VxWorks. */
6930
6931 bfd_boolean
6932 _bfd_mips_vxworks_adjust_dynamic_symbol (struct bfd_link_info *info,
6933 struct elf_link_hash_entry *h)
6934 {
6935 bfd *dynobj;
6936 struct mips_elf_link_hash_entry *hmips;
6937 struct mips_elf_link_hash_table *htab;
6938 unsigned int power_of_two;
6939
6940 htab = mips_elf_hash_table (info);
6941 dynobj = elf_hash_table (info)->dynobj;
6942 hmips = (struct mips_elf_link_hash_entry *) h;
6943
6944 /* Make sure we know what is going on here. */
6945 BFD_ASSERT (dynobj != NULL
6946 && (h->needs_plt
6947 || h->needs_copy
6948 || h->u.weakdef != NULL
6949 || (h->def_dynamic
6950 && h->ref_regular
6951 && !h->def_regular)));
6952
6953 /* If the symbol is defined by a dynamic object, we need a PLT stub if
6954 either (a) we want to branch to the symbol or (b) we're linking an
6955 executable that needs a canonical function address. In the latter
6956 case, the canonical address will be the address of the executable's
6957 load stub. */
6958 if ((hmips->is_branch_target
6959 || (!info->shared
6960 && h->type == STT_FUNC
6961 && hmips->is_relocation_target))
6962 && h->def_dynamic
6963 && h->ref_regular
6964 && !h->def_regular
6965 && !h->forced_local)
6966 h->needs_plt = 1;
6967
6968 /* Locally-binding symbols do not need a PLT stub; we can refer to
6969 the functions directly. */
6970 else if (h->needs_plt
6971 && (SYMBOL_CALLS_LOCAL (info, h)
6972 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6973 && h->root.type == bfd_link_hash_undefweak)))
6974 {
6975 h->needs_plt = 0;
6976 return TRUE;
6977 }
6978
6979 if (h->needs_plt)
6980 {
6981 /* If this is the first symbol to need a PLT entry, allocate room
6982 for the header, and for the header's .rela.plt.unloaded entries. */
6983 if (htab->splt->size == 0)
6984 {
6985 htab->splt->size += htab->plt_header_size;
6986 if (!info->shared)
6987 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
6988 }
6989
6990 /* Assign the next .plt entry to this symbol. */
6991 h->plt.offset = htab->splt->size;
6992 htab->splt->size += htab->plt_entry_size;
6993
6994 /* If the output file has no definition of the symbol, set the
6995 symbol's value to the address of the stub. For executables,
6996 point at the PLT load stub rather than the lazy resolution stub;
6997 this stub will become the canonical function address. */
6998 if (!h->def_regular)
6999 {
7000 h->root.u.def.section = htab->splt;
7001 h->root.u.def.value = h->plt.offset;
7002 if (!info->shared)
7003 h->root.u.def.value += 8;
7004 }
7005
7006 /* Make room for the .got.plt entry and the R_JUMP_SLOT relocation. */
7007 htab->sgotplt->size += 4;
7008 htab->srelplt->size += sizeof (Elf32_External_Rela);
7009
7010 /* Make room for the .rela.plt.unloaded relocations. */
7011 if (!info->shared)
7012 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
7013
7014 return TRUE;
7015 }
7016
7017 /* If a function symbol is defined by a dynamic object, and we do not
7018 need a PLT stub for it, the symbol's value should be zero. */
7019 if (h->type == STT_FUNC
7020 && h->def_dynamic
7021 && h->ref_regular
7022 && !h->def_regular)
7023 {
7024 h->root.u.def.value = 0;
7025 return TRUE;
7026 }
7027
7028 /* If this is a weak symbol, and there is a real definition, the
7029 processor independent code will have arranged for us to see the
7030 real definition first, and we can just use the same value. */
7031 if (h->u.weakdef != NULL)
7032 {
7033 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
7034 || h->u.weakdef->root.type == bfd_link_hash_defweak);
7035 h->root.u.def.section = h->u.weakdef->root.u.def.section;
7036 h->root.u.def.value = h->u.weakdef->root.u.def.value;
7037 return TRUE;
7038 }
7039
7040 /* This is a reference to a symbol defined by a dynamic object which
7041 is not a function. */
7042 if (info->shared)
7043 return TRUE;
7044
7045 /* We must allocate the symbol in our .dynbss section, which will
7046 become part of the .bss section of the executable. There will be
7047 an entry for this symbol in the .dynsym section. The dynamic
7048 object will contain position independent code, so all references
7049 from the dynamic object to this symbol will go through the global
7050 offset table. The dynamic linker will use the .dynsym entry to
7051 determine the address it must put in the global offset table, so
7052 both the dynamic object and the regular object will refer to the
7053 same memory location for the variable. */
7054
7055 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
7056 {
7057 htab->srelbss->size += sizeof (Elf32_External_Rela);
7058 h->needs_copy = 1;
7059 }
7060
7061 /* We need to figure out the alignment required for this symbol. */
7062 power_of_two = bfd_log2 (h->size);
7063 if (power_of_two > 4)
7064 power_of_two = 4;
7065
7066 /* Apply the required alignment. */
7067 htab->sdynbss->size = BFD_ALIGN (htab->sdynbss->size,
7068 (bfd_size_type) 1 << power_of_two);
7069 if (power_of_two > bfd_get_section_alignment (dynobj, htab->sdynbss)
7070 && !bfd_set_section_alignment (dynobj, htab->sdynbss, power_of_two))
7071 return FALSE;
7072
7073 /* Define the symbol as being at this point in the section. */
7074 h->root.u.def.section = htab->sdynbss;
7075 h->root.u.def.value = htab->sdynbss->size;
7076
7077 /* Increment the section size to make room for the symbol. */
7078 htab->sdynbss->size += h->size;
7079
7080 return TRUE;
7081 }
7082 \f
7083 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
7084 The number might be exact or a worst-case estimate, depending on how
7085 much information is available to elf_backend_omit_section_dynsym at
7086 the current linking stage. */
7087
7088 static bfd_size_type
7089 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
7090 {
7091 bfd_size_type count;
7092
7093 count = 0;
7094 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
7095 {
7096 asection *p;
7097 const struct elf_backend_data *bed;
7098
7099 bed = get_elf_backend_data (output_bfd);
7100 for (p = output_bfd->sections; p ; p = p->next)
7101 if ((p->flags & SEC_EXCLUDE) == 0
7102 && (p->flags & SEC_ALLOC) != 0
7103 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
7104 ++count;
7105 }
7106 return count;
7107 }
7108
7109 /* This function is called after all the input files have been read,
7110 and the input sections have been assigned to output sections. We
7111 check for any mips16 stub sections that we can discard. */
7112
7113 bfd_boolean
7114 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
7115 struct bfd_link_info *info)
7116 {
7117 asection *ri;
7118
7119 bfd *dynobj;
7120 asection *s;
7121 struct mips_got_info *g;
7122 int i;
7123 bfd_size_type loadable_size = 0;
7124 bfd_size_type local_gotno;
7125 bfd_size_type dynsymcount;
7126 bfd *sub;
7127 struct mips_elf_count_tls_arg count_tls_arg;
7128 struct mips_elf_link_hash_table *htab;
7129
7130 htab = mips_elf_hash_table (info);
7131
7132 /* The .reginfo section has a fixed size. */
7133 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
7134 if (ri != NULL)
7135 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
7136
7137 if (! (info->relocatable
7138 || ! mips_elf_hash_table (info)->mips16_stubs_seen))
7139 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
7140 mips_elf_check_mips16_stubs, NULL);
7141
7142 dynobj = elf_hash_table (info)->dynobj;
7143 if (dynobj == NULL)
7144 /* Relocatable links don't have it. */
7145 return TRUE;
7146
7147 g = mips_elf_got_info (dynobj, &s);
7148 if (s == NULL)
7149 return TRUE;
7150
7151 /* Calculate the total loadable size of the output. That
7152 will give us the maximum number of GOT_PAGE entries
7153 required. */
7154 for (sub = info->input_bfds; sub; sub = sub->link_next)
7155 {
7156 asection *subsection;
7157
7158 for (subsection = sub->sections;
7159 subsection;
7160 subsection = subsection->next)
7161 {
7162 if ((subsection->flags & SEC_ALLOC) == 0)
7163 continue;
7164 loadable_size += ((subsection->size + 0xf)
7165 &~ (bfd_size_type) 0xf);
7166 }
7167 }
7168
7169 /* There has to be a global GOT entry for every symbol with
7170 a dynamic symbol table index of DT_MIPS_GOTSYM or
7171 higher. Therefore, it make sense to put those symbols
7172 that need GOT entries at the end of the symbol table. We
7173 do that here. */
7174 if (! mips_elf_sort_hash_table (info, 1))
7175 return FALSE;
7176
7177 if (g->global_gotsym != NULL)
7178 i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx;
7179 else
7180 /* If there are no global symbols, or none requiring
7181 relocations, then GLOBAL_GOTSYM will be NULL. */
7182 i = 0;
7183
7184 /* Get a worst-case estimate of the number of dynamic symbols needed.
7185 At this point, dynsymcount does not account for section symbols
7186 and count_section_dynsyms may overestimate the number that will
7187 be needed. */
7188 dynsymcount = (elf_hash_table (info)->dynsymcount
7189 + count_section_dynsyms (output_bfd, info));
7190
7191 /* Determine the size of one stub entry. */
7192 htab->function_stub_size = (dynsymcount > 0x10000
7193 ? MIPS_FUNCTION_STUB_BIG_SIZE
7194 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
7195
7196 /* In the worst case, we'll get one stub per dynamic symbol, plus
7197 one to account for the dummy entry at the end required by IRIX
7198 rld. */
7199 loadable_size += htab->function_stub_size * (i + 1);
7200
7201 if (htab->is_vxworks)
7202 /* There's no need to allocate page entries for VxWorks; R_MIPS_GOT16
7203 relocations against local symbols evaluate to "G", and the EABI does
7204 not include R_MIPS_GOT_PAGE. */
7205 local_gotno = 0;
7206 else
7207 /* Assume there are two loadable segments consisting of contiguous
7208 sections. Is 5 enough? */
7209 local_gotno = (loadable_size >> 16) + 5;
7210
7211 g->local_gotno += local_gotno;
7212 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7213
7214 g->global_gotno = i;
7215 s->size += i * MIPS_ELF_GOT_SIZE (output_bfd);
7216
7217 /* We need to calculate tls_gotno for global symbols at this point
7218 instead of building it up earlier, to avoid doublecounting
7219 entries for one global symbol from multiple input files. */
7220 count_tls_arg.info = info;
7221 count_tls_arg.needed = 0;
7222 elf_link_hash_traverse (elf_hash_table (info),
7223 mips_elf_count_global_tls_entries,
7224 &count_tls_arg);
7225 g->tls_gotno += count_tls_arg.needed;
7226 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
7227
7228 mips_elf_resolve_final_got_entries (g);
7229
7230 /* VxWorks does not support multiple GOTs. It initializes $gp to
7231 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
7232 dynamic loader. */
7233 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
7234 {
7235 if (! mips_elf_multi_got (output_bfd, info, g, s, local_gotno))
7236 return FALSE;
7237 }
7238 else
7239 {
7240 /* Set up TLS entries for the first GOT. */
7241 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
7242 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
7243 }
7244
7245 return TRUE;
7246 }
7247
7248 /* Set the sizes of the dynamic sections. */
7249
7250 bfd_boolean
7251 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
7252 struct bfd_link_info *info)
7253 {
7254 bfd *dynobj;
7255 asection *s, *sreldyn;
7256 bfd_boolean reltext;
7257 struct mips_elf_link_hash_table *htab;
7258
7259 htab = mips_elf_hash_table (info);
7260 dynobj = elf_hash_table (info)->dynobj;
7261 BFD_ASSERT (dynobj != NULL);
7262
7263 if (elf_hash_table (info)->dynamic_sections_created)
7264 {
7265 /* Set the contents of the .interp section to the interpreter. */
7266 if (info->executable)
7267 {
7268 s = bfd_get_section_by_name (dynobj, ".interp");
7269 BFD_ASSERT (s != NULL);
7270 s->size
7271 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
7272 s->contents
7273 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
7274 }
7275 }
7276
7277 /* The check_relocs and adjust_dynamic_symbol entry points have
7278 determined the sizes of the various dynamic sections. Allocate
7279 memory for them. */
7280 reltext = FALSE;
7281 sreldyn = NULL;
7282 for (s = dynobj->sections; s != NULL; s = s->next)
7283 {
7284 const char *name;
7285
7286 /* It's OK to base decisions on the section name, because none
7287 of the dynobj section names depend upon the input files. */
7288 name = bfd_get_section_name (dynobj, s);
7289
7290 if ((s->flags & SEC_LINKER_CREATED) == 0)
7291 continue;
7292
7293 if (strncmp (name, ".rel", 4) == 0)
7294 {
7295 if (s->size != 0)
7296 {
7297 const char *outname;
7298 asection *target;
7299
7300 /* If this relocation section applies to a read only
7301 section, then we probably need a DT_TEXTREL entry.
7302 If the relocation section is .rel(a).dyn, we always
7303 assert a DT_TEXTREL entry rather than testing whether
7304 there exists a relocation to a read only section or
7305 not. */
7306 outname = bfd_get_section_name (output_bfd,
7307 s->output_section);
7308 target = bfd_get_section_by_name (output_bfd, outname + 4);
7309 if ((target != NULL
7310 && (target->flags & SEC_READONLY) != 0
7311 && (target->flags & SEC_ALLOC) != 0)
7312 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7313 reltext = TRUE;
7314
7315 /* We use the reloc_count field as a counter if we need
7316 to copy relocs into the output file. */
7317 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
7318 s->reloc_count = 0;
7319
7320 /* If combreloc is enabled, elf_link_sort_relocs() will
7321 sort relocations, but in a different way than we do,
7322 and before we're done creating relocations. Also, it
7323 will move them around between input sections'
7324 relocation's contents, so our sorting would be
7325 broken, so don't let it run. */
7326 info->combreloc = 0;
7327 }
7328 }
7329 else if (htab->is_vxworks && strcmp (name, ".got") == 0)
7330 {
7331 /* Executables do not need a GOT. */
7332 if (info->shared)
7333 {
7334 /* Allocate relocations for all but the reserved entries. */
7335 struct mips_got_info *g;
7336 unsigned int count;
7337
7338 g = mips_elf_got_info (dynobj, NULL);
7339 count = (g->global_gotno
7340 + g->local_gotno
7341 - MIPS_RESERVED_GOTNO (info));
7342 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
7343 }
7344 }
7345 else if (!htab->is_vxworks && strncmp (name, ".got", 4) == 0)
7346 {
7347 /* _bfd_mips_elf_always_size_sections() has already done
7348 most of the work, but some symbols may have been mapped
7349 to versions that we must now resolve in the got_entries
7350 hash tables. */
7351 struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL);
7352 struct mips_got_info *g = gg;
7353 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
7354 unsigned int needed_relocs = 0;
7355
7356 if (gg->next)
7357 {
7358 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd);
7359 set_got_offset_arg.info = info;
7360
7361 /* NOTE 2005-02-03: How can this call, or the next, ever
7362 find any indirect entries to resolve? They were all
7363 resolved in mips_elf_multi_got. */
7364 mips_elf_resolve_final_got_entries (gg);
7365 for (g = gg->next; g && g->next != gg; g = g->next)
7366 {
7367 unsigned int save_assign;
7368
7369 mips_elf_resolve_final_got_entries (g);
7370
7371 /* Assign offsets to global GOT entries. */
7372 save_assign = g->assigned_gotno;
7373 g->assigned_gotno = g->local_gotno;
7374 set_got_offset_arg.g = g;
7375 set_got_offset_arg.needed_relocs = 0;
7376 htab_traverse (g->got_entries,
7377 mips_elf_set_global_got_offset,
7378 &set_got_offset_arg);
7379 needed_relocs += set_got_offset_arg.needed_relocs;
7380 BFD_ASSERT (g->assigned_gotno - g->local_gotno
7381 <= g->global_gotno);
7382
7383 g->assigned_gotno = save_assign;
7384 if (info->shared)
7385 {
7386 needed_relocs += g->local_gotno - g->assigned_gotno;
7387 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
7388 + g->next->global_gotno
7389 + g->next->tls_gotno
7390 + MIPS_RESERVED_GOTNO (info));
7391 }
7392 }
7393 }
7394 else
7395 {
7396 struct mips_elf_count_tls_arg arg;
7397 arg.info = info;
7398 arg.needed = 0;
7399
7400 htab_traverse (gg->got_entries, mips_elf_count_local_tls_relocs,
7401 &arg);
7402 elf_link_hash_traverse (elf_hash_table (info),
7403 mips_elf_count_global_tls_relocs,
7404 &arg);
7405
7406 needed_relocs += arg.needed;
7407 }
7408
7409 if (needed_relocs)
7410 mips_elf_allocate_dynamic_relocations (dynobj, info,
7411 needed_relocs);
7412 }
7413 else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0)
7414 {
7415 /* IRIX rld assumes that the function stub isn't at the end
7416 of .text section. So put a dummy. XXX */
7417 s->size += htab->function_stub_size;
7418 }
7419 else if (! info->shared
7420 && ! mips_elf_hash_table (info)->use_rld_obj_head
7421 && strncmp (name, ".rld_map", 8) == 0)
7422 {
7423 /* We add a room for __rld_map. It will be filled in by the
7424 rtld to contain a pointer to the _r_debug structure. */
7425 s->size += 4;
7426 }
7427 else if (SGI_COMPAT (output_bfd)
7428 && strncmp (name, ".compact_rel", 12) == 0)
7429 s->size += mips_elf_hash_table (info)->compact_rel_size;
7430 else if (strncmp (name, ".init", 5) != 0
7431 && s != htab->sgotplt
7432 && s != htab->splt)
7433 {
7434 /* It's not one of our sections, so don't allocate space. */
7435 continue;
7436 }
7437
7438 if (s->size == 0)
7439 {
7440 s->flags |= SEC_EXCLUDE;
7441 continue;
7442 }
7443
7444 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7445 continue;
7446
7447 /* Allocate memory for this section last, since we may increase its
7448 size above. */
7449 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) == 0)
7450 {
7451 sreldyn = s;
7452 continue;
7453 }
7454
7455 /* Allocate memory for the section contents. */
7456 s->contents = bfd_zalloc (dynobj, s->size);
7457 if (s->contents == NULL)
7458 {
7459 bfd_set_error (bfd_error_no_memory);
7460 return FALSE;
7461 }
7462 }
7463
7464 /* Allocate memory for the .rel(a).dyn section. */
7465 if (sreldyn != NULL)
7466 {
7467 sreldyn->contents = bfd_zalloc (dynobj, sreldyn->size);
7468 if (sreldyn->contents == NULL)
7469 {
7470 bfd_set_error (bfd_error_no_memory);
7471 return FALSE;
7472 }
7473 }
7474
7475 if (elf_hash_table (info)->dynamic_sections_created)
7476 {
7477 /* Add some entries to the .dynamic section. We fill in the
7478 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
7479 must add the entries now so that we get the correct size for
7480 the .dynamic section. The DT_DEBUG entry is filled in by the
7481 dynamic linker and used by the debugger. */
7482 if (! info->shared)
7483 {
7484 /* SGI object has the equivalence of DT_DEBUG in the
7485 DT_MIPS_RLD_MAP entry. */
7486 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
7487 return FALSE;
7488 if (!SGI_COMPAT (output_bfd))
7489 {
7490 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7491 return FALSE;
7492 }
7493 }
7494 else
7495 {
7496 /* Shared libraries on traditional mips have DT_DEBUG. */
7497 if (!SGI_COMPAT (output_bfd))
7498 {
7499 if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
7500 return FALSE;
7501 }
7502 }
7503
7504 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
7505 info->flags |= DF_TEXTREL;
7506
7507 if ((info->flags & DF_TEXTREL) != 0)
7508 {
7509 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
7510 return FALSE;
7511
7512 /* Clear the DF_TEXTREL flag. It will be set again if we
7513 write out an actual text relocation; we may not, because
7514 at this point we do not know whether e.g. any .eh_frame
7515 absolute relocations have been converted to PC-relative. */
7516 info->flags &= ~DF_TEXTREL;
7517 }
7518
7519 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
7520 return FALSE;
7521
7522 if (htab->is_vxworks)
7523 {
7524 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
7525 use any of the DT_MIPS_* tags. */
7526 if (mips_elf_rel_dyn_section (info, FALSE))
7527 {
7528 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
7529 return FALSE;
7530
7531 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
7532 return FALSE;
7533
7534 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
7535 return FALSE;
7536 }
7537 if (htab->splt->size > 0)
7538 {
7539 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
7540 return FALSE;
7541
7542 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
7543 return FALSE;
7544
7545 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
7546 return FALSE;
7547 }
7548 }
7549 else
7550 {
7551 if (mips_elf_rel_dyn_section (info, FALSE))
7552 {
7553 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
7554 return FALSE;
7555
7556 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
7557 return FALSE;
7558
7559 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
7560 return FALSE;
7561 }
7562
7563 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
7564 return FALSE;
7565
7566 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
7567 return FALSE;
7568
7569 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
7570 return FALSE;
7571
7572 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
7573 return FALSE;
7574
7575 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
7576 return FALSE;
7577
7578 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
7579 return FALSE;
7580
7581 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
7582 return FALSE;
7583
7584 if (IRIX_COMPAT (dynobj) == ict_irix5
7585 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
7586 return FALSE;
7587
7588 if (IRIX_COMPAT (dynobj) == ict_irix6
7589 && (bfd_get_section_by_name
7590 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
7591 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
7592 return FALSE;
7593 }
7594 }
7595
7596 return TRUE;
7597 }
7598 \f
7599 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
7600 Adjust its R_ADDEND field so that it is correct for the output file.
7601 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
7602 and sections respectively; both use symbol indexes. */
7603
7604 static void
7605 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
7606 bfd *input_bfd, Elf_Internal_Sym *local_syms,
7607 asection **local_sections, Elf_Internal_Rela *rel)
7608 {
7609 unsigned int r_type, r_symndx;
7610 Elf_Internal_Sym *sym;
7611 asection *sec;
7612
7613 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
7614 {
7615 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7616 if (r_type == R_MIPS16_GPREL
7617 || r_type == R_MIPS_GPREL16
7618 || r_type == R_MIPS_GPREL32
7619 || r_type == R_MIPS_LITERAL)
7620 {
7621 rel->r_addend += _bfd_get_gp_value (input_bfd);
7622 rel->r_addend -= _bfd_get_gp_value (output_bfd);
7623 }
7624
7625 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
7626 sym = local_syms + r_symndx;
7627
7628 /* Adjust REL's addend to account for section merging. */
7629 if (!info->relocatable)
7630 {
7631 sec = local_sections[r_symndx];
7632 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7633 }
7634
7635 /* This would normally be done by the rela_normal code in elflink.c. */
7636 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7637 rel->r_addend += local_sections[r_symndx]->output_offset;
7638 }
7639 }
7640
7641 /* Relocate a MIPS ELF section. */
7642
7643 bfd_boolean
7644 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
7645 bfd *input_bfd, asection *input_section,
7646 bfd_byte *contents, Elf_Internal_Rela *relocs,
7647 Elf_Internal_Sym *local_syms,
7648 asection **local_sections)
7649 {
7650 Elf_Internal_Rela *rel;
7651 const Elf_Internal_Rela *relend;
7652 bfd_vma addend = 0;
7653 bfd_boolean use_saved_addend_p = FALSE;
7654 const struct elf_backend_data *bed;
7655
7656 bed = get_elf_backend_data (output_bfd);
7657 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
7658 for (rel = relocs; rel < relend; ++rel)
7659 {
7660 const char *name;
7661 bfd_vma value = 0;
7662 reloc_howto_type *howto;
7663 bfd_boolean require_jalx;
7664 /* TRUE if the relocation is a RELA relocation, rather than a
7665 REL relocation. */
7666 bfd_boolean rela_relocation_p = TRUE;
7667 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
7668 const char *msg;
7669
7670 /* Find the relocation howto for this relocation. */
7671 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
7672 {
7673 /* Some 32-bit code uses R_MIPS_64. In particular, people use
7674 64-bit code, but make sure all their addresses are in the
7675 lowermost or uppermost 32-bit section of the 64-bit address
7676 space. Thus, when they use an R_MIPS_64 they mean what is
7677 usually meant by R_MIPS_32, with the exception that the
7678 stored value is sign-extended to 64 bits. */
7679 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
7680
7681 /* On big-endian systems, we need to lie about the position
7682 of the reloc. */
7683 if (bfd_big_endian (input_bfd))
7684 rel->r_offset += 4;
7685 }
7686 else
7687 /* NewABI defaults to RELA relocations. */
7688 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
7689 NEWABI_P (input_bfd)
7690 && (MIPS_RELOC_RELA_P
7691 (input_bfd, input_section,
7692 rel - relocs)));
7693
7694 if (!use_saved_addend_p)
7695 {
7696 Elf_Internal_Shdr *rel_hdr;
7697
7698 /* If these relocations were originally of the REL variety,
7699 we must pull the addend out of the field that will be
7700 relocated. Otherwise, we simply use the contents of the
7701 RELA relocation. To determine which flavor or relocation
7702 this is, we depend on the fact that the INPUT_SECTION's
7703 REL_HDR is read before its REL_HDR2. */
7704 rel_hdr = &elf_section_data (input_section)->rel_hdr;
7705 if ((size_t) (rel - relocs)
7706 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7707 rel_hdr = elf_section_data (input_section)->rel_hdr2;
7708 if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd))
7709 {
7710 bfd_byte *location = contents + rel->r_offset;
7711
7712 /* Note that this is a REL relocation. */
7713 rela_relocation_p = FALSE;
7714
7715 /* Get the addend, which is stored in the input file. */
7716 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE,
7717 location);
7718 addend = mips_elf_obtain_contents (howto, rel, input_bfd,
7719 contents);
7720 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, FALSE,
7721 location);
7722
7723 addend &= howto->src_mask;
7724
7725 /* For some kinds of relocations, the ADDEND is a
7726 combination of the addend stored in two different
7727 relocations. */
7728 if (r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16
7729 || (r_type == R_MIPS_GOT16
7730 && mips_elf_local_relocation_p (input_bfd, rel,
7731 local_sections, FALSE)))
7732 {
7733 bfd_vma l;
7734 const Elf_Internal_Rela *lo16_relocation;
7735 reloc_howto_type *lo16_howto;
7736 bfd_byte *lo16_location;
7737 int lo16_type;
7738
7739 if (r_type == R_MIPS16_HI16)
7740 lo16_type = R_MIPS16_LO16;
7741 else
7742 lo16_type = R_MIPS_LO16;
7743
7744 /* The combined value is the sum of the HI16 addend,
7745 left-shifted by sixteen bits, and the LO16
7746 addend, sign extended. (Usually, the code does
7747 a `lui' of the HI16 value, and then an `addiu' of
7748 the LO16 value.)
7749
7750 Scan ahead to find a matching LO16 relocation.
7751
7752 According to the MIPS ELF ABI, the R_MIPS_LO16
7753 relocation must be immediately following.
7754 However, for the IRIX6 ABI, the next relocation
7755 may be a composed relocation consisting of
7756 several relocations for the same address. In
7757 that case, the R_MIPS_LO16 relocation may occur
7758 as one of these. We permit a similar extension
7759 in general, as that is useful for GCC. */
7760 lo16_relocation = mips_elf_next_relocation (input_bfd,
7761 lo16_type,
7762 rel, relend);
7763 if (lo16_relocation == NULL)
7764 return FALSE;
7765
7766 lo16_location = contents + lo16_relocation->r_offset;
7767
7768 /* Obtain the addend kept there. */
7769 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd,
7770 lo16_type, FALSE);
7771 _bfd_mips16_elf_reloc_unshuffle (input_bfd, lo16_type, FALSE,
7772 lo16_location);
7773 l = mips_elf_obtain_contents (lo16_howto, lo16_relocation,
7774 input_bfd, contents);
7775 _bfd_mips16_elf_reloc_shuffle (input_bfd, lo16_type, FALSE,
7776 lo16_location);
7777 l &= lo16_howto->src_mask;
7778 l <<= lo16_howto->rightshift;
7779 l = _bfd_mips_elf_sign_extend (l, 16);
7780
7781 addend <<= 16;
7782
7783 /* Compute the combined addend. */
7784 addend += l;
7785 }
7786 else
7787 addend <<= howto->rightshift;
7788 }
7789 else
7790 addend = rel->r_addend;
7791 mips_elf_adjust_addend (output_bfd, info, input_bfd,
7792 local_syms, local_sections, rel);
7793 }
7794
7795 if (info->relocatable)
7796 {
7797 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
7798 && bfd_big_endian (input_bfd))
7799 rel->r_offset -= 4;
7800
7801 if (!rela_relocation_p && rel->r_addend)
7802 {
7803 addend += rel->r_addend;
7804 if (r_type == R_MIPS_HI16
7805 || r_type == R_MIPS_GOT16)
7806 addend = mips_elf_high (addend);
7807 else if (r_type == R_MIPS_HIGHER)
7808 addend = mips_elf_higher (addend);
7809 else if (r_type == R_MIPS_HIGHEST)
7810 addend = mips_elf_highest (addend);
7811 else
7812 addend >>= howto->rightshift;
7813
7814 /* We use the source mask, rather than the destination
7815 mask because the place to which we are writing will be
7816 source of the addend in the final link. */
7817 addend &= howto->src_mask;
7818
7819 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7820 /* See the comment above about using R_MIPS_64 in the 32-bit
7821 ABI. Here, we need to update the addend. It would be
7822 possible to get away with just using the R_MIPS_32 reloc
7823 but for endianness. */
7824 {
7825 bfd_vma sign_bits;
7826 bfd_vma low_bits;
7827 bfd_vma high_bits;
7828
7829 if (addend & ((bfd_vma) 1 << 31))
7830 #ifdef BFD64
7831 sign_bits = ((bfd_vma) 1 << 32) - 1;
7832 #else
7833 sign_bits = -1;
7834 #endif
7835 else
7836 sign_bits = 0;
7837
7838 /* If we don't know that we have a 64-bit type,
7839 do two separate stores. */
7840 if (bfd_big_endian (input_bfd))
7841 {
7842 /* Store the sign-bits (which are most significant)
7843 first. */
7844 low_bits = sign_bits;
7845 high_bits = addend;
7846 }
7847 else
7848 {
7849 low_bits = addend;
7850 high_bits = sign_bits;
7851 }
7852 bfd_put_32 (input_bfd, low_bits,
7853 contents + rel->r_offset);
7854 bfd_put_32 (input_bfd, high_bits,
7855 contents + rel->r_offset + 4);
7856 continue;
7857 }
7858
7859 if (! mips_elf_perform_relocation (info, howto, rel, addend,
7860 input_bfd, input_section,
7861 contents, FALSE))
7862 return FALSE;
7863 }
7864
7865 /* Go on to the next relocation. */
7866 continue;
7867 }
7868
7869 /* In the N32 and 64-bit ABIs there may be multiple consecutive
7870 relocations for the same offset. In that case we are
7871 supposed to treat the output of each relocation as the addend
7872 for the next. */
7873 if (rel + 1 < relend
7874 && rel->r_offset == rel[1].r_offset
7875 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
7876 use_saved_addend_p = TRUE;
7877 else
7878 use_saved_addend_p = FALSE;
7879
7880 /* Figure out what value we are supposed to relocate. */
7881 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
7882 input_section, info, rel,
7883 addend, howto, local_syms,
7884 local_sections, &value,
7885 &name, &require_jalx,
7886 use_saved_addend_p))
7887 {
7888 case bfd_reloc_continue:
7889 /* There's nothing to do. */
7890 continue;
7891
7892 case bfd_reloc_undefined:
7893 /* mips_elf_calculate_relocation already called the
7894 undefined_symbol callback. There's no real point in
7895 trying to perform the relocation at this point, so we
7896 just skip ahead to the next relocation. */
7897 continue;
7898
7899 case bfd_reloc_notsupported:
7900 msg = _("internal error: unsupported relocation error");
7901 info->callbacks->warning
7902 (info, msg, name, input_bfd, input_section, rel->r_offset);
7903 return FALSE;
7904
7905 case bfd_reloc_overflow:
7906 if (use_saved_addend_p)
7907 /* Ignore overflow until we reach the last relocation for
7908 a given location. */
7909 ;
7910 else
7911 {
7912 BFD_ASSERT (name != NULL);
7913 if (! ((*info->callbacks->reloc_overflow)
7914 (info, NULL, name, howto->name, (bfd_vma) 0,
7915 input_bfd, input_section, rel->r_offset)))
7916 return FALSE;
7917 }
7918 break;
7919
7920 case bfd_reloc_ok:
7921 break;
7922
7923 default:
7924 abort ();
7925 break;
7926 }
7927
7928 /* If we've got another relocation for the address, keep going
7929 until we reach the last one. */
7930 if (use_saved_addend_p)
7931 {
7932 addend = value;
7933 continue;
7934 }
7935
7936 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
7937 /* See the comment above about using R_MIPS_64 in the 32-bit
7938 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
7939 that calculated the right value. Now, however, we
7940 sign-extend the 32-bit result to 64-bits, and store it as a
7941 64-bit value. We are especially generous here in that we
7942 go to extreme lengths to support this usage on systems with
7943 only a 32-bit VMA. */
7944 {
7945 bfd_vma sign_bits;
7946 bfd_vma low_bits;
7947 bfd_vma high_bits;
7948
7949 if (value & ((bfd_vma) 1 << 31))
7950 #ifdef BFD64
7951 sign_bits = ((bfd_vma) 1 << 32) - 1;
7952 #else
7953 sign_bits = -1;
7954 #endif
7955 else
7956 sign_bits = 0;
7957
7958 /* If we don't know that we have a 64-bit type,
7959 do two separate stores. */
7960 if (bfd_big_endian (input_bfd))
7961 {
7962 /* Undo what we did above. */
7963 rel->r_offset -= 4;
7964 /* Store the sign-bits (which are most significant)
7965 first. */
7966 low_bits = sign_bits;
7967 high_bits = value;
7968 }
7969 else
7970 {
7971 low_bits = value;
7972 high_bits = sign_bits;
7973 }
7974 bfd_put_32 (input_bfd, low_bits,
7975 contents + rel->r_offset);
7976 bfd_put_32 (input_bfd, high_bits,
7977 contents + rel->r_offset + 4);
7978 continue;
7979 }
7980
7981 /* Actually perform the relocation. */
7982 if (! mips_elf_perform_relocation (info, howto, rel, value,
7983 input_bfd, input_section,
7984 contents, require_jalx))
7985 return FALSE;
7986 }
7987
7988 return TRUE;
7989 }
7990 \f
7991 /* If NAME is one of the special IRIX6 symbols defined by the linker,
7992 adjust it appropriately now. */
7993
7994 static void
7995 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7996 const char *name, Elf_Internal_Sym *sym)
7997 {
7998 /* The linker script takes care of providing names and values for
7999 these, but we must place them into the right sections. */
8000 static const char* const text_section_symbols[] = {
8001 "_ftext",
8002 "_etext",
8003 "__dso_displacement",
8004 "__elf_header",
8005 "__program_header_table",
8006 NULL
8007 };
8008
8009 static const char* const data_section_symbols[] = {
8010 "_fdata",
8011 "_edata",
8012 "_end",
8013 "_fbss",
8014 NULL
8015 };
8016
8017 const char* const *p;
8018 int i;
8019
8020 for (i = 0; i < 2; ++i)
8021 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
8022 *p;
8023 ++p)
8024 if (strcmp (*p, name) == 0)
8025 {
8026 /* All of these symbols are given type STT_SECTION by the
8027 IRIX6 linker. */
8028 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8029 sym->st_other = STO_PROTECTED;
8030
8031 /* The IRIX linker puts these symbols in special sections. */
8032 if (i == 0)
8033 sym->st_shndx = SHN_MIPS_TEXT;
8034 else
8035 sym->st_shndx = SHN_MIPS_DATA;
8036
8037 break;
8038 }
8039 }
8040
8041 /* Finish up dynamic symbol handling. We set the contents of various
8042 dynamic sections here. */
8043
8044 bfd_boolean
8045 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
8046 struct bfd_link_info *info,
8047 struct elf_link_hash_entry *h,
8048 Elf_Internal_Sym *sym)
8049 {
8050 bfd *dynobj;
8051 asection *sgot;
8052 struct mips_got_info *g, *gg;
8053 const char *name;
8054 int idx;
8055 struct mips_elf_link_hash_table *htab;
8056
8057 htab = mips_elf_hash_table (info);
8058 dynobj = elf_hash_table (info)->dynobj;
8059
8060 if (h->plt.offset != MINUS_ONE)
8061 {
8062 asection *s;
8063 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
8064
8065 /* This symbol has a stub. Set it up. */
8066
8067 BFD_ASSERT (h->dynindx != -1);
8068
8069 s = bfd_get_section_by_name (dynobj,
8070 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8071 BFD_ASSERT (s != NULL);
8072
8073 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8074 || (h->dynindx <= 0xffff));
8075
8076 /* Values up to 2^31 - 1 are allowed. Larger values would cause
8077 sign extension at runtime in the stub, resulting in a negative
8078 index value. */
8079 if (h->dynindx & ~0x7fffffff)
8080 return FALSE;
8081
8082 /* Fill the stub. */
8083 idx = 0;
8084 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
8085 idx += 4;
8086 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
8087 idx += 4;
8088 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8089 {
8090 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
8091 stub + idx);
8092 idx += 4;
8093 }
8094 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
8095 idx += 4;
8096
8097 /* If a large stub is not required and sign extension is not a
8098 problem, then use legacy code in the stub. */
8099 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
8100 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
8101 else if (h->dynindx & ~0x7fff)
8102 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
8103 else
8104 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
8105 stub + idx);
8106
8107 BFD_ASSERT (h->plt.offset <= s->size);
8108 memcpy (s->contents + h->plt.offset, stub, htab->function_stub_size);
8109
8110 /* Mark the symbol as undefined. plt.offset != -1 occurs
8111 only for the referenced symbol. */
8112 sym->st_shndx = SHN_UNDEF;
8113
8114 /* The run-time linker uses the st_value field of the symbol
8115 to reset the global offset table entry for this external
8116 to its stub address when unlinking a shared object. */
8117 sym->st_value = (s->output_section->vma + s->output_offset
8118 + h->plt.offset);
8119 }
8120
8121 BFD_ASSERT (h->dynindx != -1
8122 || h->forced_local);
8123
8124 sgot = mips_elf_got_section (dynobj, FALSE);
8125 BFD_ASSERT (sgot != NULL);
8126 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8127 g = mips_elf_section_data (sgot)->u.got_info;
8128 BFD_ASSERT (g != NULL);
8129
8130 /* Run through the global symbol table, creating GOT entries for all
8131 the symbols that need them. */
8132 if (g->global_gotsym != NULL
8133 && h->dynindx >= g->global_gotsym->dynindx)
8134 {
8135 bfd_vma offset;
8136 bfd_vma value;
8137
8138 value = sym->st_value;
8139 offset = mips_elf_global_got_index (dynobj, output_bfd, h, R_MIPS_GOT16, info);
8140 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
8141 }
8142
8143 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
8144 {
8145 struct mips_got_entry e, *p;
8146 bfd_vma entry;
8147 bfd_vma offset;
8148
8149 gg = g;
8150
8151 e.abfd = output_bfd;
8152 e.symndx = -1;
8153 e.d.h = (struct mips_elf_link_hash_entry *)h;
8154 e.tls_type = 0;
8155
8156 for (g = g->next; g->next != gg; g = g->next)
8157 {
8158 if (g->got_entries
8159 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
8160 &e)))
8161 {
8162 offset = p->gotidx;
8163 if (info->shared
8164 || (elf_hash_table (info)->dynamic_sections_created
8165 && p->d.h != NULL
8166 && p->d.h->root.def_dynamic
8167 && !p->d.h->root.def_regular))
8168 {
8169 /* Create an R_MIPS_REL32 relocation for this entry. Due to
8170 the various compatibility problems, it's easier to mock
8171 up an R_MIPS_32 or R_MIPS_64 relocation and leave
8172 mips_elf_create_dynamic_relocation to calculate the
8173 appropriate addend. */
8174 Elf_Internal_Rela rel[3];
8175
8176 memset (rel, 0, sizeof (rel));
8177 if (ABI_64_P (output_bfd))
8178 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
8179 else
8180 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
8181 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
8182
8183 entry = 0;
8184 if (! (mips_elf_create_dynamic_relocation
8185 (output_bfd, info, rel,
8186 e.d.h, NULL, sym->st_value, &entry, sgot)))
8187 return FALSE;
8188 }
8189 else
8190 entry = sym->st_value;
8191 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
8192 }
8193 }
8194 }
8195
8196 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
8197 name = h->root.root.string;
8198 if (strcmp (name, "_DYNAMIC") == 0
8199 || h == elf_hash_table (info)->hgot)
8200 sym->st_shndx = SHN_ABS;
8201 else if (strcmp (name, "_DYNAMIC_LINK") == 0
8202 || strcmp (name, "_DYNAMIC_LINKING") == 0)
8203 {
8204 sym->st_shndx = SHN_ABS;
8205 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8206 sym->st_value = 1;
8207 }
8208 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
8209 {
8210 sym->st_shndx = SHN_ABS;
8211 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8212 sym->st_value = elf_gp (output_bfd);
8213 }
8214 else if (SGI_COMPAT (output_bfd))
8215 {
8216 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
8217 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
8218 {
8219 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8220 sym->st_other = STO_PROTECTED;
8221 sym->st_value = 0;
8222 sym->st_shndx = SHN_MIPS_DATA;
8223 }
8224 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
8225 {
8226 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8227 sym->st_other = STO_PROTECTED;
8228 sym->st_value = mips_elf_hash_table (info)->procedure_count;
8229 sym->st_shndx = SHN_ABS;
8230 }
8231 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
8232 {
8233 if (h->type == STT_FUNC)
8234 sym->st_shndx = SHN_MIPS_TEXT;
8235 else if (h->type == STT_OBJECT)
8236 sym->st_shndx = SHN_MIPS_DATA;
8237 }
8238 }
8239
8240 /* Handle the IRIX6-specific symbols. */
8241 if (IRIX_COMPAT (output_bfd) == ict_irix6)
8242 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
8243
8244 if (! info->shared)
8245 {
8246 if (! mips_elf_hash_table (info)->use_rld_obj_head
8247 && (strcmp (name, "__rld_map") == 0
8248 || strcmp (name, "__RLD_MAP") == 0))
8249 {
8250 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
8251 BFD_ASSERT (s != NULL);
8252 sym->st_value = s->output_section->vma + s->output_offset;
8253 bfd_put_32 (output_bfd, 0, s->contents);
8254 if (mips_elf_hash_table (info)->rld_value == 0)
8255 mips_elf_hash_table (info)->rld_value = sym->st_value;
8256 }
8257 else if (mips_elf_hash_table (info)->use_rld_obj_head
8258 && strcmp (name, "__rld_obj_head") == 0)
8259 {
8260 /* IRIX6 does not use a .rld_map section. */
8261 if (IRIX_COMPAT (output_bfd) == ict_irix5
8262 || IRIX_COMPAT (output_bfd) == ict_none)
8263 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
8264 != NULL);
8265 mips_elf_hash_table (info)->rld_value = sym->st_value;
8266 }
8267 }
8268
8269 /* If this is a mips16 symbol, force the value to be even. */
8270 if (sym->st_other == STO_MIPS16)
8271 sym->st_value &= ~1;
8272
8273 return TRUE;
8274 }
8275
8276 /* Likewise, for VxWorks. */
8277
8278 bfd_boolean
8279 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
8280 struct bfd_link_info *info,
8281 struct elf_link_hash_entry *h,
8282 Elf_Internal_Sym *sym)
8283 {
8284 bfd *dynobj;
8285 asection *sgot;
8286 struct mips_got_info *g;
8287 struct mips_elf_link_hash_table *htab;
8288
8289 htab = mips_elf_hash_table (info);
8290 dynobj = elf_hash_table (info)->dynobj;
8291
8292 if (h->plt.offset != (bfd_vma) -1)
8293 {
8294 bfd_byte *loc;
8295 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
8296 Elf_Internal_Rela rel;
8297 static const bfd_vma *plt_entry;
8298
8299 BFD_ASSERT (h->dynindx != -1);
8300 BFD_ASSERT (htab->splt != NULL);
8301 BFD_ASSERT (h->plt.offset <= htab->splt->size);
8302
8303 /* Calculate the address of the .plt entry. */
8304 plt_address = (htab->splt->output_section->vma
8305 + htab->splt->output_offset
8306 + h->plt.offset);
8307
8308 /* Calculate the index of the entry. */
8309 plt_index = ((h->plt.offset - htab->plt_header_size)
8310 / htab->plt_entry_size);
8311
8312 /* Calculate the address of the .got.plt entry. */
8313 got_address = (htab->sgotplt->output_section->vma
8314 + htab->sgotplt->output_offset
8315 + plt_index * 4);
8316
8317 /* Calculate the offset of the .got.plt entry from
8318 _GLOBAL_OFFSET_TABLE_. */
8319 got_offset = mips_elf_gotplt_index (info, h);
8320
8321 /* Calculate the offset for the branch at the start of the PLT
8322 entry. The branch jumps to the beginning of .plt. */
8323 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
8324
8325 /* Fill in the initial value of the .got.plt entry. */
8326 bfd_put_32 (output_bfd, plt_address,
8327 htab->sgotplt->contents + plt_index * 4);
8328
8329 /* Find out where the .plt entry should go. */
8330 loc = htab->splt->contents + h->plt.offset;
8331
8332 if (info->shared)
8333 {
8334 plt_entry = mips_vxworks_shared_plt_entry;
8335 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8336 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8337 }
8338 else
8339 {
8340 bfd_vma got_address_high, got_address_low;
8341
8342 plt_entry = mips_vxworks_exec_plt_entry;
8343 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
8344 got_address_low = got_address & 0xffff;
8345
8346 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
8347 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
8348 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
8349 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
8350 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8351 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8352 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
8353 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
8354
8355 loc = (htab->srelplt2->contents
8356 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
8357
8358 /* Emit a relocation for the .got.plt entry. */
8359 rel.r_offset = got_address;
8360 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8361 rel.r_addend = h->plt.offset;
8362 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8363
8364 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
8365 loc += sizeof (Elf32_External_Rela);
8366 rel.r_offset = plt_address + 8;
8367 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8368 rel.r_addend = got_offset;
8369 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8370
8371 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
8372 loc += sizeof (Elf32_External_Rela);
8373 rel.r_offset += 4;
8374 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8375 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8376 }
8377
8378 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
8379 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
8380 rel.r_offset = got_address;
8381 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
8382 rel.r_addend = 0;
8383 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8384
8385 if (!h->def_regular)
8386 sym->st_shndx = SHN_UNDEF;
8387 }
8388
8389 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
8390
8391 sgot = mips_elf_got_section (dynobj, FALSE);
8392 BFD_ASSERT (sgot != NULL);
8393 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8394 g = mips_elf_section_data (sgot)->u.got_info;
8395 BFD_ASSERT (g != NULL);
8396
8397 /* See if this symbol has an entry in the GOT. */
8398 if (g->global_gotsym != NULL
8399 && h->dynindx >= g->global_gotsym->dynindx)
8400 {
8401 bfd_vma offset;
8402 Elf_Internal_Rela outrel;
8403 bfd_byte *loc;
8404 asection *s;
8405
8406 /* Install the symbol value in the GOT. */
8407 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
8408 R_MIPS_GOT16, info);
8409 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
8410
8411 /* Add a dynamic relocation for it. */
8412 s = mips_elf_rel_dyn_section (info, FALSE);
8413 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
8414 outrel.r_offset = (sgot->output_section->vma
8415 + sgot->output_offset
8416 + offset);
8417 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
8418 outrel.r_addend = 0;
8419 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
8420 }
8421
8422 /* Emit a copy reloc, if needed. */
8423 if (h->needs_copy)
8424 {
8425 Elf_Internal_Rela rel;
8426
8427 BFD_ASSERT (h->dynindx != -1);
8428
8429 rel.r_offset = (h->root.u.def.section->output_section->vma
8430 + h->root.u.def.section->output_offset
8431 + h->root.u.def.value);
8432 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
8433 rel.r_addend = 0;
8434 bfd_elf32_swap_reloca_out (output_bfd, &rel,
8435 htab->srelbss->contents
8436 + (htab->srelbss->reloc_count
8437 * sizeof (Elf32_External_Rela)));
8438 ++htab->srelbss->reloc_count;
8439 }
8440
8441 /* If this is a mips16 symbol, force the value to be even. */
8442 if (sym->st_other == STO_MIPS16)
8443 sym->st_value &= ~1;
8444
8445 return TRUE;
8446 }
8447
8448 /* Install the PLT header for a VxWorks executable and finalize the
8449 contents of .rela.plt.unloaded. */
8450
8451 static void
8452 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
8453 {
8454 Elf_Internal_Rela rela;
8455 bfd_byte *loc;
8456 bfd_vma got_value, got_value_high, got_value_low, plt_address;
8457 static const bfd_vma *plt_entry;
8458 struct mips_elf_link_hash_table *htab;
8459
8460 htab = mips_elf_hash_table (info);
8461 plt_entry = mips_vxworks_exec_plt0_entry;
8462
8463 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
8464 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
8465 + htab->root.hgot->root.u.def.section->output_offset
8466 + htab->root.hgot->root.u.def.value);
8467
8468 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
8469 got_value_low = got_value & 0xffff;
8470
8471 /* Calculate the address of the PLT header. */
8472 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
8473
8474 /* Install the PLT header. */
8475 loc = htab->splt->contents;
8476 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
8477 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
8478 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
8479 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
8480 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
8481 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
8482
8483 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
8484 loc = htab->srelplt2->contents;
8485 rela.r_offset = plt_address;
8486 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8487 rela.r_addend = 0;
8488 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8489 loc += sizeof (Elf32_External_Rela);
8490
8491 /* Output the relocation for the following addiu of
8492 %lo(_GLOBAL_OFFSET_TABLE_). */
8493 rela.r_offset += 4;
8494 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8495 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
8496 loc += sizeof (Elf32_External_Rela);
8497
8498 /* Fix up the remaining relocations. They may have the wrong
8499 symbol index for _G_O_T_ or _P_L_T_ depending on the order
8500 in which symbols were output. */
8501 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
8502 {
8503 Elf_Internal_Rela rel;
8504
8505 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8506 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
8507 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8508 loc += sizeof (Elf32_External_Rela);
8509
8510 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8511 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
8512 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8513 loc += sizeof (Elf32_External_Rela);
8514
8515 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
8516 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
8517 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
8518 loc += sizeof (Elf32_External_Rela);
8519 }
8520 }
8521
8522 /* Install the PLT header for a VxWorks shared library. */
8523
8524 static void
8525 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
8526 {
8527 unsigned int i;
8528 struct mips_elf_link_hash_table *htab;
8529
8530 htab = mips_elf_hash_table (info);
8531
8532 /* We just need to copy the entry byte-by-byte. */
8533 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
8534 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
8535 htab->splt->contents + i * 4);
8536 }
8537
8538 /* Finish up the dynamic sections. */
8539
8540 bfd_boolean
8541 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
8542 struct bfd_link_info *info)
8543 {
8544 bfd *dynobj;
8545 asection *sdyn;
8546 asection *sgot;
8547 struct mips_got_info *gg, *g;
8548 struct mips_elf_link_hash_table *htab;
8549
8550 htab = mips_elf_hash_table (info);
8551 dynobj = elf_hash_table (info)->dynobj;
8552
8553 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
8554
8555 sgot = mips_elf_got_section (dynobj, FALSE);
8556 if (sgot == NULL)
8557 gg = g = NULL;
8558 else
8559 {
8560 BFD_ASSERT (mips_elf_section_data (sgot) != NULL);
8561 gg = mips_elf_section_data (sgot)->u.got_info;
8562 BFD_ASSERT (gg != NULL);
8563 g = mips_elf_got_for_ibfd (gg, output_bfd);
8564 BFD_ASSERT (g != NULL);
8565 }
8566
8567 if (elf_hash_table (info)->dynamic_sections_created)
8568 {
8569 bfd_byte *b;
8570 int dyn_to_skip = 0, dyn_skipped = 0;
8571
8572 BFD_ASSERT (sdyn != NULL);
8573 BFD_ASSERT (g != NULL);
8574
8575 for (b = sdyn->contents;
8576 b < sdyn->contents + sdyn->size;
8577 b += MIPS_ELF_DYN_SIZE (dynobj))
8578 {
8579 Elf_Internal_Dyn dyn;
8580 const char *name;
8581 size_t elemsize;
8582 asection *s;
8583 bfd_boolean swap_out_p;
8584
8585 /* Read in the current dynamic entry. */
8586 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8587
8588 /* Assume that we're going to modify it and write it out. */
8589 swap_out_p = TRUE;
8590
8591 switch (dyn.d_tag)
8592 {
8593 case DT_RELENT:
8594 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
8595 break;
8596
8597 case DT_RELAENT:
8598 BFD_ASSERT (htab->is_vxworks);
8599 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
8600 break;
8601
8602 case DT_STRSZ:
8603 /* Rewrite DT_STRSZ. */
8604 dyn.d_un.d_val =
8605 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
8606 break;
8607
8608 case DT_PLTGOT:
8609 name = ".got";
8610 if (htab->is_vxworks)
8611 {
8612 /* _GLOBAL_OFFSET_TABLE_ is defined to be the beginning
8613 of the ".got" section in DYNOBJ. */
8614 s = bfd_get_section_by_name (dynobj, name);
8615 BFD_ASSERT (s != NULL);
8616 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
8617 }
8618 else
8619 {
8620 s = bfd_get_section_by_name (output_bfd, name);
8621 BFD_ASSERT (s != NULL);
8622 dyn.d_un.d_ptr = s->vma;
8623 }
8624 break;
8625
8626 case DT_MIPS_RLD_VERSION:
8627 dyn.d_un.d_val = 1; /* XXX */
8628 break;
8629
8630 case DT_MIPS_FLAGS:
8631 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
8632 break;
8633
8634 case DT_MIPS_TIME_STAMP:
8635 {
8636 time_t t;
8637 time (&t);
8638 dyn.d_un.d_val = t;
8639 }
8640 break;
8641
8642 case DT_MIPS_ICHECKSUM:
8643 /* XXX FIXME: */
8644 swap_out_p = FALSE;
8645 break;
8646
8647 case DT_MIPS_IVERSION:
8648 /* XXX FIXME: */
8649 swap_out_p = FALSE;
8650 break;
8651
8652 case DT_MIPS_BASE_ADDRESS:
8653 s = output_bfd->sections;
8654 BFD_ASSERT (s != NULL);
8655 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
8656 break;
8657
8658 case DT_MIPS_LOCAL_GOTNO:
8659 dyn.d_un.d_val = g->local_gotno;
8660 break;
8661
8662 case DT_MIPS_UNREFEXTNO:
8663 /* The index into the dynamic symbol table which is the
8664 entry of the first external symbol that is not
8665 referenced within the same object. */
8666 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
8667 break;
8668
8669 case DT_MIPS_GOTSYM:
8670 if (gg->global_gotsym)
8671 {
8672 dyn.d_un.d_val = gg->global_gotsym->dynindx;
8673 break;
8674 }
8675 /* In case if we don't have global got symbols we default
8676 to setting DT_MIPS_GOTSYM to the same value as
8677 DT_MIPS_SYMTABNO, so we just fall through. */
8678
8679 case DT_MIPS_SYMTABNO:
8680 name = ".dynsym";
8681 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
8682 s = bfd_get_section_by_name (output_bfd, name);
8683 BFD_ASSERT (s != NULL);
8684
8685 dyn.d_un.d_val = s->size / elemsize;
8686 break;
8687
8688 case DT_MIPS_HIPAGENO:
8689 dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO (info);
8690 break;
8691
8692 case DT_MIPS_RLD_MAP:
8693 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
8694 break;
8695
8696 case DT_MIPS_OPTIONS:
8697 s = (bfd_get_section_by_name
8698 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
8699 dyn.d_un.d_ptr = s->vma;
8700 break;
8701
8702 case DT_RELASZ:
8703 BFD_ASSERT (htab->is_vxworks);
8704 /* The count does not include the JUMP_SLOT relocations. */
8705 if (htab->srelplt)
8706 dyn.d_un.d_val -= htab->srelplt->size;
8707 break;
8708
8709 case DT_PLTREL:
8710 BFD_ASSERT (htab->is_vxworks);
8711 dyn.d_un.d_val = DT_RELA;
8712 break;
8713
8714 case DT_PLTRELSZ:
8715 BFD_ASSERT (htab->is_vxworks);
8716 dyn.d_un.d_val = htab->srelplt->size;
8717 break;
8718
8719 case DT_JMPREL:
8720 BFD_ASSERT (htab->is_vxworks);
8721 dyn.d_un.d_val = (htab->srelplt->output_section->vma
8722 + htab->srelplt->output_offset);
8723 break;
8724
8725 case DT_TEXTREL:
8726 /* If we didn't need any text relocations after all, delete
8727 the dynamic tag. */
8728 if (!(info->flags & DF_TEXTREL))
8729 {
8730 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
8731 swap_out_p = FALSE;
8732 }
8733 break;
8734
8735 case DT_FLAGS:
8736 /* If we didn't need any text relocations after all, clear
8737 DF_TEXTREL from DT_FLAGS. */
8738 if (!(info->flags & DF_TEXTREL))
8739 dyn.d_un.d_val &= ~DF_TEXTREL;
8740 else
8741 swap_out_p = FALSE;
8742 break;
8743
8744 default:
8745 swap_out_p = FALSE;
8746 break;
8747 }
8748
8749 if (swap_out_p || dyn_skipped)
8750 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8751 (dynobj, &dyn, b - dyn_skipped);
8752
8753 if (dyn_to_skip)
8754 {
8755 dyn_skipped += dyn_to_skip;
8756 dyn_to_skip = 0;
8757 }
8758 }
8759
8760 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
8761 if (dyn_skipped > 0)
8762 memset (b - dyn_skipped, 0, dyn_skipped);
8763 }
8764
8765 if (sgot != NULL && sgot->size > 0)
8766 {
8767 if (htab->is_vxworks)
8768 {
8769 /* The first entry of the global offset table points to the
8770 ".dynamic" section. The second is initialized by the
8771 loader and contains the shared library identifier.
8772 The third is also initialized by the loader and points
8773 to the lazy resolution stub. */
8774 MIPS_ELF_PUT_WORD (output_bfd,
8775 sdyn->output_offset + sdyn->output_section->vma,
8776 sgot->contents);
8777 MIPS_ELF_PUT_WORD (output_bfd, 0,
8778 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8779 MIPS_ELF_PUT_WORD (output_bfd, 0,
8780 sgot->contents
8781 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
8782 }
8783 else
8784 {
8785 /* The first entry of the global offset table will be filled at
8786 runtime. The second entry will be used by some runtime loaders.
8787 This isn't the case of IRIX rld. */
8788 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
8789 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000,
8790 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
8791 }
8792 }
8793
8794 if (sgot != NULL)
8795 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
8796 = MIPS_ELF_GOT_SIZE (output_bfd);
8797
8798 /* Generate dynamic relocations for the non-primary gots. */
8799 if (gg != NULL && gg->next)
8800 {
8801 Elf_Internal_Rela rel[3];
8802 bfd_vma addend = 0;
8803
8804 memset (rel, 0, sizeof (rel));
8805 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
8806
8807 for (g = gg->next; g->next != gg; g = g->next)
8808 {
8809 bfd_vma index = g->next->local_gotno + g->next->global_gotno
8810 + g->next->tls_gotno;
8811
8812 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
8813 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8814 MIPS_ELF_PUT_WORD (output_bfd, 0x80000000, sgot->contents
8815 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
8816
8817 if (! info->shared)
8818 continue;
8819
8820 while (index < g->assigned_gotno)
8821 {
8822 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
8823 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
8824 if (!(mips_elf_create_dynamic_relocation
8825 (output_bfd, info, rel, NULL,
8826 bfd_abs_section_ptr,
8827 0, &addend, sgot)))
8828 return FALSE;
8829 BFD_ASSERT (addend == 0);
8830 }
8831 }
8832 }
8833
8834 /* The generation of dynamic relocations for the non-primary gots
8835 adds more dynamic relocations. We cannot count them until
8836 here. */
8837
8838 if (elf_hash_table (info)->dynamic_sections_created)
8839 {
8840 bfd_byte *b;
8841 bfd_boolean swap_out_p;
8842
8843 BFD_ASSERT (sdyn != NULL);
8844
8845 for (b = sdyn->contents;
8846 b < sdyn->contents + sdyn->size;
8847 b += MIPS_ELF_DYN_SIZE (dynobj))
8848 {
8849 Elf_Internal_Dyn dyn;
8850 asection *s;
8851
8852 /* Read in the current dynamic entry. */
8853 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
8854
8855 /* Assume that we're going to modify it and write it out. */
8856 swap_out_p = TRUE;
8857
8858 switch (dyn.d_tag)
8859 {
8860 case DT_RELSZ:
8861 /* Reduce DT_RELSZ to account for any relocations we
8862 decided not to make. This is for the n64 irix rld,
8863 which doesn't seem to apply any relocations if there
8864 are trailing null entries. */
8865 s = mips_elf_rel_dyn_section (info, FALSE);
8866 dyn.d_un.d_val = (s->reloc_count
8867 * (ABI_64_P (output_bfd)
8868 ? sizeof (Elf64_Mips_External_Rel)
8869 : sizeof (Elf32_External_Rel)));
8870 break;
8871
8872 default:
8873 swap_out_p = FALSE;
8874 break;
8875 }
8876
8877 if (swap_out_p)
8878 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
8879 (dynobj, &dyn, b);
8880 }
8881 }
8882
8883 {
8884 asection *s;
8885 Elf32_compact_rel cpt;
8886
8887 if (SGI_COMPAT (output_bfd))
8888 {
8889 /* Write .compact_rel section out. */
8890 s = bfd_get_section_by_name (dynobj, ".compact_rel");
8891 if (s != NULL)
8892 {
8893 cpt.id1 = 1;
8894 cpt.num = s->reloc_count;
8895 cpt.id2 = 2;
8896 cpt.offset = (s->output_section->filepos
8897 + sizeof (Elf32_External_compact_rel));
8898 cpt.reserved0 = 0;
8899 cpt.reserved1 = 0;
8900 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
8901 ((Elf32_External_compact_rel *)
8902 s->contents));
8903
8904 /* Clean up a dummy stub function entry in .text. */
8905 s = bfd_get_section_by_name (dynobj,
8906 MIPS_ELF_STUB_SECTION_NAME (dynobj));
8907 if (s != NULL)
8908 {
8909 file_ptr dummy_offset;
8910
8911 BFD_ASSERT (s->size >= htab->function_stub_size);
8912 dummy_offset = s->size - htab->function_stub_size;
8913 memset (s->contents + dummy_offset, 0,
8914 htab->function_stub_size);
8915 }
8916 }
8917 }
8918
8919 /* The psABI says that the dynamic relocations must be sorted in
8920 increasing order of r_symndx. The VxWorks EABI doesn't require
8921 this, and because the code below handles REL rather than RELA
8922 relocations, using it for VxWorks would be outright harmful. */
8923 if (!htab->is_vxworks)
8924 {
8925 s = mips_elf_rel_dyn_section (info, FALSE);
8926 if (s != NULL
8927 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
8928 {
8929 reldyn_sorting_bfd = output_bfd;
8930
8931 if (ABI_64_P (output_bfd))
8932 qsort ((Elf64_External_Rel *) s->contents + 1,
8933 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
8934 sort_dynamic_relocs_64);
8935 else
8936 qsort ((Elf32_External_Rel *) s->contents + 1,
8937 s->reloc_count - 1, sizeof (Elf32_External_Rel),
8938 sort_dynamic_relocs);
8939 }
8940 }
8941 }
8942
8943 if (htab->is_vxworks && htab->splt->size > 0)
8944 {
8945 if (info->shared)
8946 mips_vxworks_finish_shared_plt (output_bfd, info);
8947 else
8948 mips_vxworks_finish_exec_plt (output_bfd, info);
8949 }
8950 return TRUE;
8951 }
8952
8953
8954 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
8955
8956 static void
8957 mips_set_isa_flags (bfd *abfd)
8958 {
8959 flagword val;
8960
8961 switch (bfd_get_mach (abfd))
8962 {
8963 default:
8964 case bfd_mach_mips3000:
8965 val = E_MIPS_ARCH_1;
8966 break;
8967
8968 case bfd_mach_mips3900:
8969 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
8970 break;
8971
8972 case bfd_mach_mips6000:
8973 val = E_MIPS_ARCH_2;
8974 break;
8975
8976 case bfd_mach_mips4000:
8977 case bfd_mach_mips4300:
8978 case bfd_mach_mips4400:
8979 case bfd_mach_mips4600:
8980 val = E_MIPS_ARCH_3;
8981 break;
8982
8983 case bfd_mach_mips4010:
8984 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
8985 break;
8986
8987 case bfd_mach_mips4100:
8988 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
8989 break;
8990
8991 case bfd_mach_mips4111:
8992 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
8993 break;
8994
8995 case bfd_mach_mips4120:
8996 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
8997 break;
8998
8999 case bfd_mach_mips4650:
9000 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
9001 break;
9002
9003 case bfd_mach_mips5400:
9004 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
9005 break;
9006
9007 case bfd_mach_mips5500:
9008 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
9009 break;
9010
9011 case bfd_mach_mips9000:
9012 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
9013 break;
9014
9015 case bfd_mach_mips5000:
9016 case bfd_mach_mips7000:
9017 case bfd_mach_mips8000:
9018 case bfd_mach_mips10000:
9019 case bfd_mach_mips12000:
9020 val = E_MIPS_ARCH_4;
9021 break;
9022
9023 case bfd_mach_mips5:
9024 val = E_MIPS_ARCH_5;
9025 break;
9026
9027 case bfd_mach_mips_sb1:
9028 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
9029 break;
9030
9031 case bfd_mach_mipsisa32:
9032 val = E_MIPS_ARCH_32;
9033 break;
9034
9035 case bfd_mach_mipsisa64:
9036 val = E_MIPS_ARCH_64;
9037 break;
9038
9039 case bfd_mach_mipsisa32r2:
9040 val = E_MIPS_ARCH_32R2;
9041 break;
9042
9043 case bfd_mach_mipsisa64r2:
9044 val = E_MIPS_ARCH_64R2;
9045 break;
9046 }
9047 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
9048 elf_elfheader (abfd)->e_flags |= val;
9049
9050 }
9051
9052
9053 /* The final processing done just before writing out a MIPS ELF object
9054 file. This gets the MIPS architecture right based on the machine
9055 number. This is used by both the 32-bit and the 64-bit ABI. */
9056
9057 void
9058 _bfd_mips_elf_final_write_processing (bfd *abfd,
9059 bfd_boolean linker ATTRIBUTE_UNUSED)
9060 {
9061 unsigned int i;
9062 Elf_Internal_Shdr **hdrpp;
9063 const char *name;
9064 asection *sec;
9065
9066 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
9067 is nonzero. This is for compatibility with old objects, which used
9068 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
9069 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
9070 mips_set_isa_flags (abfd);
9071
9072 /* Set the sh_info field for .gptab sections and other appropriate
9073 info for each special section. */
9074 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
9075 i < elf_numsections (abfd);
9076 i++, hdrpp++)
9077 {
9078 switch ((*hdrpp)->sh_type)
9079 {
9080 case SHT_MIPS_MSYM:
9081 case SHT_MIPS_LIBLIST:
9082 sec = bfd_get_section_by_name (abfd, ".dynstr");
9083 if (sec != NULL)
9084 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9085 break;
9086
9087 case SHT_MIPS_GPTAB:
9088 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9089 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9090 BFD_ASSERT (name != NULL
9091 && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0);
9092 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
9093 BFD_ASSERT (sec != NULL);
9094 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9095 break;
9096
9097 case SHT_MIPS_CONTENT:
9098 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9099 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9100 BFD_ASSERT (name != NULL
9101 && strncmp (name, ".MIPS.content",
9102 sizeof ".MIPS.content" - 1) == 0);
9103 sec = bfd_get_section_by_name (abfd,
9104 name + sizeof ".MIPS.content" - 1);
9105 BFD_ASSERT (sec != NULL);
9106 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9107 break;
9108
9109 case SHT_MIPS_SYMBOL_LIB:
9110 sec = bfd_get_section_by_name (abfd, ".dynsym");
9111 if (sec != NULL)
9112 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9113 sec = bfd_get_section_by_name (abfd, ".liblist");
9114 if (sec != NULL)
9115 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
9116 break;
9117
9118 case SHT_MIPS_EVENTS:
9119 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
9120 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
9121 BFD_ASSERT (name != NULL);
9122 if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0)
9123 sec = bfd_get_section_by_name (abfd,
9124 name + sizeof ".MIPS.events" - 1);
9125 else
9126 {
9127 BFD_ASSERT (strncmp (name, ".MIPS.post_rel",
9128 sizeof ".MIPS.post_rel" - 1) == 0);
9129 sec = bfd_get_section_by_name (abfd,
9130 (name
9131 + sizeof ".MIPS.post_rel" - 1));
9132 }
9133 BFD_ASSERT (sec != NULL);
9134 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
9135 break;
9136
9137 }
9138 }
9139 }
9140 \f
9141 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
9142 segments. */
9143
9144 int
9145 _bfd_mips_elf_additional_program_headers (bfd *abfd,
9146 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9147 {
9148 asection *s;
9149 int ret = 0;
9150
9151 /* See if we need a PT_MIPS_REGINFO segment. */
9152 s = bfd_get_section_by_name (abfd, ".reginfo");
9153 if (s && (s->flags & SEC_LOAD))
9154 ++ret;
9155
9156 /* See if we need a PT_MIPS_OPTIONS segment. */
9157 if (IRIX_COMPAT (abfd) == ict_irix6
9158 && bfd_get_section_by_name (abfd,
9159 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
9160 ++ret;
9161
9162 /* See if we need a PT_MIPS_RTPROC segment. */
9163 if (IRIX_COMPAT (abfd) == ict_irix5
9164 && bfd_get_section_by_name (abfd, ".dynamic")
9165 && bfd_get_section_by_name (abfd, ".mdebug"))
9166 ++ret;
9167
9168 return ret;
9169 }
9170
9171 /* Modify the segment map for an IRIX5 executable. */
9172
9173 bfd_boolean
9174 _bfd_mips_elf_modify_segment_map (bfd *abfd,
9175 struct bfd_link_info *info ATTRIBUTE_UNUSED)
9176 {
9177 asection *s;
9178 struct elf_segment_map *m, **pm;
9179 bfd_size_type amt;
9180
9181 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
9182 segment. */
9183 s = bfd_get_section_by_name (abfd, ".reginfo");
9184 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9185 {
9186 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9187 if (m->p_type == PT_MIPS_REGINFO)
9188 break;
9189 if (m == NULL)
9190 {
9191 amt = sizeof *m;
9192 m = bfd_zalloc (abfd, amt);
9193 if (m == NULL)
9194 return FALSE;
9195
9196 m->p_type = PT_MIPS_REGINFO;
9197 m->count = 1;
9198 m->sections[0] = s;
9199
9200 /* We want to put it after the PHDR and INTERP segments. */
9201 pm = &elf_tdata (abfd)->segment_map;
9202 while (*pm != NULL
9203 && ((*pm)->p_type == PT_PHDR
9204 || (*pm)->p_type == PT_INTERP))
9205 pm = &(*pm)->next;
9206
9207 m->next = *pm;
9208 *pm = m;
9209 }
9210 }
9211
9212 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
9213 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
9214 PT_MIPS_OPTIONS segment immediately following the program header
9215 table. */
9216 if (NEWABI_P (abfd)
9217 /* On non-IRIX6 new abi, we'll have already created a segment
9218 for this section, so don't create another. I'm not sure this
9219 is not also the case for IRIX 6, but I can't test it right
9220 now. */
9221 && IRIX_COMPAT (abfd) == ict_irix6)
9222 {
9223 for (s = abfd->sections; s; s = s->next)
9224 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
9225 break;
9226
9227 if (s)
9228 {
9229 struct elf_segment_map *options_segment;
9230
9231 pm = &elf_tdata (abfd)->segment_map;
9232 while (*pm != NULL
9233 && ((*pm)->p_type == PT_PHDR
9234 || (*pm)->p_type == PT_INTERP))
9235 pm = &(*pm)->next;
9236
9237 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
9238 {
9239 amt = sizeof (struct elf_segment_map);
9240 options_segment = bfd_zalloc (abfd, amt);
9241 options_segment->next = *pm;
9242 options_segment->p_type = PT_MIPS_OPTIONS;
9243 options_segment->p_flags = PF_R;
9244 options_segment->p_flags_valid = TRUE;
9245 options_segment->count = 1;
9246 options_segment->sections[0] = s;
9247 *pm = options_segment;
9248 }
9249 }
9250 }
9251 else
9252 {
9253 if (IRIX_COMPAT (abfd) == ict_irix5)
9254 {
9255 /* If there are .dynamic and .mdebug sections, we make a room
9256 for the RTPROC header. FIXME: Rewrite without section names. */
9257 if (bfd_get_section_by_name (abfd, ".interp") == NULL
9258 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
9259 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
9260 {
9261 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
9262 if (m->p_type == PT_MIPS_RTPROC)
9263 break;
9264 if (m == NULL)
9265 {
9266 amt = sizeof *m;
9267 m = bfd_zalloc (abfd, amt);
9268 if (m == NULL)
9269 return FALSE;
9270
9271 m->p_type = PT_MIPS_RTPROC;
9272
9273 s = bfd_get_section_by_name (abfd, ".rtproc");
9274 if (s == NULL)
9275 {
9276 m->count = 0;
9277 m->p_flags = 0;
9278 m->p_flags_valid = 1;
9279 }
9280 else
9281 {
9282 m->count = 1;
9283 m->sections[0] = s;
9284 }
9285
9286 /* We want to put it after the DYNAMIC segment. */
9287 pm = &elf_tdata (abfd)->segment_map;
9288 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
9289 pm = &(*pm)->next;
9290 if (*pm != NULL)
9291 pm = &(*pm)->next;
9292
9293 m->next = *pm;
9294 *pm = m;
9295 }
9296 }
9297 }
9298 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
9299 .dynstr, .dynsym, and .hash sections, and everything in
9300 between. */
9301 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
9302 pm = &(*pm)->next)
9303 if ((*pm)->p_type == PT_DYNAMIC)
9304 break;
9305 m = *pm;
9306 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
9307 {
9308 /* For a normal mips executable the permissions for the PT_DYNAMIC
9309 segment are read, write and execute. We do that here since
9310 the code in elf.c sets only the read permission. This matters
9311 sometimes for the dynamic linker. */
9312 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
9313 {
9314 m->p_flags = PF_R | PF_W | PF_X;
9315 m->p_flags_valid = 1;
9316 }
9317 }
9318 if (m != NULL
9319 && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0)
9320 {
9321 static const char *sec_names[] =
9322 {
9323 ".dynamic", ".dynstr", ".dynsym", ".hash"
9324 };
9325 bfd_vma low, high;
9326 unsigned int i, c;
9327 struct elf_segment_map *n;
9328
9329 low = ~(bfd_vma) 0;
9330 high = 0;
9331 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
9332 {
9333 s = bfd_get_section_by_name (abfd, sec_names[i]);
9334 if (s != NULL && (s->flags & SEC_LOAD) != 0)
9335 {
9336 bfd_size_type sz;
9337
9338 if (low > s->vma)
9339 low = s->vma;
9340 sz = s->size;
9341 if (high < s->vma + sz)
9342 high = s->vma + sz;
9343 }
9344 }
9345
9346 c = 0;
9347 for (s = abfd->sections; s != NULL; s = s->next)
9348 if ((s->flags & SEC_LOAD) != 0
9349 && s->vma >= low
9350 && s->vma + s->size <= high)
9351 ++c;
9352
9353 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
9354 n = bfd_zalloc (abfd, amt);
9355 if (n == NULL)
9356 return FALSE;
9357 *n = *m;
9358 n->count = c;
9359
9360 i = 0;
9361 for (s = abfd->sections; s != NULL; s = s->next)
9362 {
9363 if ((s->flags & SEC_LOAD) != 0
9364 && s->vma >= low
9365 && s->vma + s->size <= high)
9366 {
9367 n->sections[i] = s;
9368 ++i;
9369 }
9370 }
9371
9372 *pm = n;
9373 }
9374 }
9375
9376 return TRUE;
9377 }
9378 \f
9379 /* Return the section that should be marked against GC for a given
9380 relocation. */
9381
9382 asection *
9383 _bfd_mips_elf_gc_mark_hook (asection *sec,
9384 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9385 Elf_Internal_Rela *rel,
9386 struct elf_link_hash_entry *h,
9387 Elf_Internal_Sym *sym)
9388 {
9389 /* ??? Do mips16 stub sections need to be handled special? */
9390
9391 if (h != NULL)
9392 {
9393 switch (ELF_R_TYPE (sec->owner, rel->r_info))
9394 {
9395 case R_MIPS_GNU_VTINHERIT:
9396 case R_MIPS_GNU_VTENTRY:
9397 break;
9398
9399 default:
9400 switch (h->root.type)
9401 {
9402 case bfd_link_hash_defined:
9403 case bfd_link_hash_defweak:
9404 return h->root.u.def.section;
9405
9406 case bfd_link_hash_common:
9407 return h->root.u.c.p->section;
9408
9409 default:
9410 break;
9411 }
9412 }
9413 }
9414 else
9415 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
9416
9417 return NULL;
9418 }
9419
9420 /* Update the got entry reference counts for the section being removed. */
9421
9422 bfd_boolean
9423 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
9424 struct bfd_link_info *info ATTRIBUTE_UNUSED,
9425 asection *sec ATTRIBUTE_UNUSED,
9426 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
9427 {
9428 #if 0
9429 Elf_Internal_Shdr *symtab_hdr;
9430 struct elf_link_hash_entry **sym_hashes;
9431 bfd_signed_vma *local_got_refcounts;
9432 const Elf_Internal_Rela *rel, *relend;
9433 unsigned long r_symndx;
9434 struct elf_link_hash_entry *h;
9435
9436 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9437 sym_hashes = elf_sym_hashes (abfd);
9438 local_got_refcounts = elf_local_got_refcounts (abfd);
9439
9440 relend = relocs + sec->reloc_count;
9441 for (rel = relocs; rel < relend; rel++)
9442 switch (ELF_R_TYPE (abfd, rel->r_info))
9443 {
9444 case R_MIPS_GOT16:
9445 case R_MIPS_CALL16:
9446 case R_MIPS_CALL_HI16:
9447 case R_MIPS_CALL_LO16:
9448 case R_MIPS_GOT_HI16:
9449 case R_MIPS_GOT_LO16:
9450 case R_MIPS_GOT_DISP:
9451 case R_MIPS_GOT_PAGE:
9452 case R_MIPS_GOT_OFST:
9453 /* ??? It would seem that the existing MIPS code does no sort
9454 of reference counting or whatnot on its GOT and PLT entries,
9455 so it is not possible to garbage collect them at this time. */
9456 break;
9457
9458 default:
9459 break;
9460 }
9461 #endif
9462
9463 return TRUE;
9464 }
9465 \f
9466 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
9467 hiding the old indirect symbol. Process additional relocation
9468 information. Also called for weakdefs, in which case we just let
9469 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
9470
9471 void
9472 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
9473 struct elf_link_hash_entry *dir,
9474 struct elf_link_hash_entry *ind)
9475 {
9476 struct mips_elf_link_hash_entry *dirmips, *indmips;
9477
9478 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
9479
9480 if (ind->root.type != bfd_link_hash_indirect)
9481 return;
9482
9483 dirmips = (struct mips_elf_link_hash_entry *) dir;
9484 indmips = (struct mips_elf_link_hash_entry *) ind;
9485 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
9486 if (indmips->readonly_reloc)
9487 dirmips->readonly_reloc = TRUE;
9488 if (indmips->no_fn_stub)
9489 dirmips->no_fn_stub = TRUE;
9490
9491 if (dirmips->tls_type == 0)
9492 dirmips->tls_type = indmips->tls_type;
9493 }
9494
9495 void
9496 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
9497 struct elf_link_hash_entry *entry,
9498 bfd_boolean force_local)
9499 {
9500 bfd *dynobj;
9501 asection *got;
9502 struct mips_got_info *g;
9503 struct mips_elf_link_hash_entry *h;
9504
9505 h = (struct mips_elf_link_hash_entry *) entry;
9506 if (h->forced_local)
9507 return;
9508 h->forced_local = force_local;
9509
9510 dynobj = elf_hash_table (info)->dynobj;
9511 if (dynobj != NULL && force_local && h->root.type != STT_TLS
9512 && (got = mips_elf_got_section (dynobj, TRUE)) != NULL
9513 && (g = mips_elf_section_data (got)->u.got_info) != NULL)
9514 {
9515 if (g->next)
9516 {
9517 struct mips_got_entry e;
9518 struct mips_got_info *gg = g;
9519
9520 /* Since we're turning what used to be a global symbol into a
9521 local one, bump up the number of local entries of each GOT
9522 that had an entry for it. This will automatically decrease
9523 the number of global entries, since global_gotno is actually
9524 the upper limit of global entries. */
9525 e.abfd = dynobj;
9526 e.symndx = -1;
9527 e.d.h = h;
9528 e.tls_type = 0;
9529
9530 for (g = g->next; g != gg; g = g->next)
9531 if (htab_find (g->got_entries, &e))
9532 {
9533 BFD_ASSERT (g->global_gotno > 0);
9534 g->local_gotno++;
9535 g->global_gotno--;
9536 }
9537
9538 /* If this was a global symbol forced into the primary GOT, we
9539 no longer need an entry for it. We can't release the entry
9540 at this point, but we must at least stop counting it as one
9541 of the symbols that required a forced got entry. */
9542 if (h->root.got.offset == 2)
9543 {
9544 BFD_ASSERT (gg->assigned_gotno > 0);
9545 gg->assigned_gotno--;
9546 }
9547 }
9548 else if (g->global_gotno == 0 && g->global_gotsym == NULL)
9549 /* If we haven't got through GOT allocation yet, just bump up the
9550 number of local entries, as this symbol won't be counted as
9551 global. */
9552 g->local_gotno++;
9553 else if (h->root.got.offset == 1)
9554 {
9555 /* If we're past non-multi-GOT allocation and this symbol had
9556 been marked for a global got entry, give it a local entry
9557 instead. */
9558 BFD_ASSERT (g->global_gotno > 0);
9559 g->local_gotno++;
9560 g->global_gotno--;
9561 }
9562 }
9563
9564 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
9565 }
9566 \f
9567 #define PDR_SIZE 32
9568
9569 bfd_boolean
9570 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
9571 struct bfd_link_info *info)
9572 {
9573 asection *o;
9574 bfd_boolean ret = FALSE;
9575 unsigned char *tdata;
9576 size_t i, skip;
9577
9578 o = bfd_get_section_by_name (abfd, ".pdr");
9579 if (! o)
9580 return FALSE;
9581 if (o->size == 0)
9582 return FALSE;
9583 if (o->size % PDR_SIZE != 0)
9584 return FALSE;
9585 if (o->output_section != NULL
9586 && bfd_is_abs_section (o->output_section))
9587 return FALSE;
9588
9589 tdata = bfd_zmalloc (o->size / PDR_SIZE);
9590 if (! tdata)
9591 return FALSE;
9592
9593 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
9594 info->keep_memory);
9595 if (!cookie->rels)
9596 {
9597 free (tdata);
9598 return FALSE;
9599 }
9600
9601 cookie->rel = cookie->rels;
9602 cookie->relend = cookie->rels + o->reloc_count;
9603
9604 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
9605 {
9606 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
9607 {
9608 tdata[i] = 1;
9609 skip ++;
9610 }
9611 }
9612
9613 if (skip != 0)
9614 {
9615 mips_elf_section_data (o)->u.tdata = tdata;
9616 o->size -= skip * PDR_SIZE;
9617 ret = TRUE;
9618 }
9619 else
9620 free (tdata);
9621
9622 if (! info->keep_memory)
9623 free (cookie->rels);
9624
9625 return ret;
9626 }
9627
9628 bfd_boolean
9629 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
9630 {
9631 if (strcmp (sec->name, ".pdr") == 0)
9632 return TRUE;
9633 return FALSE;
9634 }
9635
9636 bfd_boolean
9637 _bfd_mips_elf_write_section (bfd *output_bfd, asection *sec,
9638 bfd_byte *contents)
9639 {
9640 bfd_byte *to, *from, *end;
9641 int i;
9642
9643 if (strcmp (sec->name, ".pdr") != 0)
9644 return FALSE;
9645
9646 if (mips_elf_section_data (sec)->u.tdata == NULL)
9647 return FALSE;
9648
9649 to = contents;
9650 end = contents + sec->size;
9651 for (from = contents, i = 0;
9652 from < end;
9653 from += PDR_SIZE, i++)
9654 {
9655 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
9656 continue;
9657 if (to != from)
9658 memcpy (to, from, PDR_SIZE);
9659 to += PDR_SIZE;
9660 }
9661 bfd_set_section_contents (output_bfd, sec->output_section, contents,
9662 sec->output_offset, sec->size);
9663 return TRUE;
9664 }
9665 \f
9666 /* MIPS ELF uses a special find_nearest_line routine in order the
9667 handle the ECOFF debugging information. */
9668
9669 struct mips_elf_find_line
9670 {
9671 struct ecoff_debug_info d;
9672 struct ecoff_find_line i;
9673 };
9674
9675 bfd_boolean
9676 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
9677 asymbol **symbols, bfd_vma offset,
9678 const char **filename_ptr,
9679 const char **functionname_ptr,
9680 unsigned int *line_ptr)
9681 {
9682 asection *msec;
9683
9684 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
9685 filename_ptr, functionname_ptr,
9686 line_ptr))
9687 return TRUE;
9688
9689 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9690 filename_ptr, functionname_ptr,
9691 line_ptr, ABI_64_P (abfd) ? 8 : 0,
9692 &elf_tdata (abfd)->dwarf2_find_line_info))
9693 return TRUE;
9694
9695 msec = bfd_get_section_by_name (abfd, ".mdebug");
9696 if (msec != NULL)
9697 {
9698 flagword origflags;
9699 struct mips_elf_find_line *fi;
9700 const struct ecoff_debug_swap * const swap =
9701 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
9702
9703 /* If we are called during a link, mips_elf_final_link may have
9704 cleared the SEC_HAS_CONTENTS field. We force it back on here
9705 if appropriate (which it normally will be). */
9706 origflags = msec->flags;
9707 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
9708 msec->flags |= SEC_HAS_CONTENTS;
9709
9710 fi = elf_tdata (abfd)->find_line_info;
9711 if (fi == NULL)
9712 {
9713 bfd_size_type external_fdr_size;
9714 char *fraw_src;
9715 char *fraw_end;
9716 struct fdr *fdr_ptr;
9717 bfd_size_type amt = sizeof (struct mips_elf_find_line);
9718
9719 fi = bfd_zalloc (abfd, amt);
9720 if (fi == NULL)
9721 {
9722 msec->flags = origflags;
9723 return FALSE;
9724 }
9725
9726 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
9727 {
9728 msec->flags = origflags;
9729 return FALSE;
9730 }
9731
9732 /* Swap in the FDR information. */
9733 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
9734 fi->d.fdr = bfd_alloc (abfd, amt);
9735 if (fi->d.fdr == NULL)
9736 {
9737 msec->flags = origflags;
9738 return FALSE;
9739 }
9740 external_fdr_size = swap->external_fdr_size;
9741 fdr_ptr = fi->d.fdr;
9742 fraw_src = (char *) fi->d.external_fdr;
9743 fraw_end = (fraw_src
9744 + fi->d.symbolic_header.ifdMax * external_fdr_size);
9745 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
9746 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
9747
9748 elf_tdata (abfd)->find_line_info = fi;
9749
9750 /* Note that we don't bother to ever free this information.
9751 find_nearest_line is either called all the time, as in
9752 objdump -l, so the information should be saved, or it is
9753 rarely called, as in ld error messages, so the memory
9754 wasted is unimportant. Still, it would probably be a
9755 good idea for free_cached_info to throw it away. */
9756 }
9757
9758 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
9759 &fi->i, filename_ptr, functionname_ptr,
9760 line_ptr))
9761 {
9762 msec->flags = origflags;
9763 return TRUE;
9764 }
9765
9766 msec->flags = origflags;
9767 }
9768
9769 /* Fall back on the generic ELF find_nearest_line routine. */
9770
9771 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
9772 filename_ptr, functionname_ptr,
9773 line_ptr);
9774 }
9775
9776 bfd_boolean
9777 _bfd_mips_elf_find_inliner_info (bfd *abfd,
9778 const char **filename_ptr,
9779 const char **functionname_ptr,
9780 unsigned int *line_ptr)
9781 {
9782 bfd_boolean found;
9783 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9784 functionname_ptr, line_ptr,
9785 & elf_tdata (abfd)->dwarf2_find_line_info);
9786 return found;
9787 }
9788
9789 \f
9790 /* When are writing out the .options or .MIPS.options section,
9791 remember the bytes we are writing out, so that we can install the
9792 GP value in the section_processing routine. */
9793
9794 bfd_boolean
9795 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
9796 const void *location,
9797 file_ptr offset, bfd_size_type count)
9798 {
9799 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
9800 {
9801 bfd_byte *c;
9802
9803 if (elf_section_data (section) == NULL)
9804 {
9805 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
9806 section->used_by_bfd = bfd_zalloc (abfd, amt);
9807 if (elf_section_data (section) == NULL)
9808 return FALSE;
9809 }
9810 c = mips_elf_section_data (section)->u.tdata;
9811 if (c == NULL)
9812 {
9813 c = bfd_zalloc (abfd, section->size);
9814 if (c == NULL)
9815 return FALSE;
9816 mips_elf_section_data (section)->u.tdata = c;
9817 }
9818
9819 memcpy (c + offset, location, count);
9820 }
9821
9822 return _bfd_elf_set_section_contents (abfd, section, location, offset,
9823 count);
9824 }
9825
9826 /* This is almost identical to bfd_generic_get_... except that some
9827 MIPS relocations need to be handled specially. Sigh. */
9828
9829 bfd_byte *
9830 _bfd_elf_mips_get_relocated_section_contents
9831 (bfd *abfd,
9832 struct bfd_link_info *link_info,
9833 struct bfd_link_order *link_order,
9834 bfd_byte *data,
9835 bfd_boolean relocatable,
9836 asymbol **symbols)
9837 {
9838 /* Get enough memory to hold the stuff */
9839 bfd *input_bfd = link_order->u.indirect.section->owner;
9840 asection *input_section = link_order->u.indirect.section;
9841 bfd_size_type sz;
9842
9843 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
9844 arelent **reloc_vector = NULL;
9845 long reloc_count;
9846
9847 if (reloc_size < 0)
9848 goto error_return;
9849
9850 reloc_vector = bfd_malloc (reloc_size);
9851 if (reloc_vector == NULL && reloc_size != 0)
9852 goto error_return;
9853
9854 /* read in the section */
9855 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
9856 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
9857 goto error_return;
9858
9859 reloc_count = bfd_canonicalize_reloc (input_bfd,
9860 input_section,
9861 reloc_vector,
9862 symbols);
9863 if (reloc_count < 0)
9864 goto error_return;
9865
9866 if (reloc_count > 0)
9867 {
9868 arelent **parent;
9869 /* for mips */
9870 int gp_found;
9871 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
9872
9873 {
9874 struct bfd_hash_entry *h;
9875 struct bfd_link_hash_entry *lh;
9876 /* Skip all this stuff if we aren't mixing formats. */
9877 if (abfd && input_bfd
9878 && abfd->xvec == input_bfd->xvec)
9879 lh = 0;
9880 else
9881 {
9882 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
9883 lh = (struct bfd_link_hash_entry *) h;
9884 }
9885 lookup:
9886 if (lh)
9887 {
9888 switch (lh->type)
9889 {
9890 case bfd_link_hash_undefined:
9891 case bfd_link_hash_undefweak:
9892 case bfd_link_hash_common:
9893 gp_found = 0;
9894 break;
9895 case bfd_link_hash_defined:
9896 case bfd_link_hash_defweak:
9897 gp_found = 1;
9898 gp = lh->u.def.value;
9899 break;
9900 case bfd_link_hash_indirect:
9901 case bfd_link_hash_warning:
9902 lh = lh->u.i.link;
9903 /* @@FIXME ignoring warning for now */
9904 goto lookup;
9905 case bfd_link_hash_new:
9906 default:
9907 abort ();
9908 }
9909 }
9910 else
9911 gp_found = 0;
9912 }
9913 /* end mips */
9914 for (parent = reloc_vector; *parent != NULL; parent++)
9915 {
9916 char *error_message = NULL;
9917 bfd_reloc_status_type r;
9918
9919 /* Specific to MIPS: Deal with relocation types that require
9920 knowing the gp of the output bfd. */
9921 asymbol *sym = *(*parent)->sym_ptr_ptr;
9922
9923 /* If we've managed to find the gp and have a special
9924 function for the relocation then go ahead, else default
9925 to the generic handling. */
9926 if (gp_found
9927 && (*parent)->howto->special_function
9928 == _bfd_mips_elf32_gprel16_reloc)
9929 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
9930 input_section, relocatable,
9931 data, gp);
9932 else
9933 r = bfd_perform_relocation (input_bfd, *parent, data,
9934 input_section,
9935 relocatable ? abfd : NULL,
9936 &error_message);
9937
9938 if (relocatable)
9939 {
9940 asection *os = input_section->output_section;
9941
9942 /* A partial link, so keep the relocs */
9943 os->orelocation[os->reloc_count] = *parent;
9944 os->reloc_count++;
9945 }
9946
9947 if (r != bfd_reloc_ok)
9948 {
9949 switch (r)
9950 {
9951 case bfd_reloc_undefined:
9952 if (!((*link_info->callbacks->undefined_symbol)
9953 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9954 input_bfd, input_section, (*parent)->address, TRUE)))
9955 goto error_return;
9956 break;
9957 case bfd_reloc_dangerous:
9958 BFD_ASSERT (error_message != NULL);
9959 if (!((*link_info->callbacks->reloc_dangerous)
9960 (link_info, error_message, input_bfd, input_section,
9961 (*parent)->address)))
9962 goto error_return;
9963 break;
9964 case bfd_reloc_overflow:
9965 if (!((*link_info->callbacks->reloc_overflow)
9966 (link_info, NULL,
9967 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
9968 (*parent)->howto->name, (*parent)->addend,
9969 input_bfd, input_section, (*parent)->address)))
9970 goto error_return;
9971 break;
9972 case bfd_reloc_outofrange:
9973 default:
9974 abort ();
9975 break;
9976 }
9977
9978 }
9979 }
9980 }
9981 if (reloc_vector != NULL)
9982 free (reloc_vector);
9983 return data;
9984
9985 error_return:
9986 if (reloc_vector != NULL)
9987 free (reloc_vector);
9988 return NULL;
9989 }
9990 \f
9991 /* Create a MIPS ELF linker hash table. */
9992
9993 struct bfd_link_hash_table *
9994 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
9995 {
9996 struct mips_elf_link_hash_table *ret;
9997 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
9998
9999 ret = bfd_malloc (amt);
10000 if (ret == NULL)
10001 return NULL;
10002
10003 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
10004 mips_elf_link_hash_newfunc,
10005 sizeof (struct mips_elf_link_hash_entry)))
10006 {
10007 free (ret);
10008 return NULL;
10009 }
10010
10011 #if 0
10012 /* We no longer use this. */
10013 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
10014 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
10015 #endif
10016 ret->procedure_count = 0;
10017 ret->compact_rel_size = 0;
10018 ret->use_rld_obj_head = FALSE;
10019 ret->rld_value = 0;
10020 ret->mips16_stubs_seen = FALSE;
10021 ret->is_vxworks = FALSE;
10022 ret->srelbss = NULL;
10023 ret->sdynbss = NULL;
10024 ret->srelplt = NULL;
10025 ret->srelplt2 = NULL;
10026 ret->sgotplt = NULL;
10027 ret->splt = NULL;
10028 ret->plt_header_size = 0;
10029 ret->plt_entry_size = 0;
10030 ret->function_stub_size = 0;
10031
10032 return &ret->root.root;
10033 }
10034
10035 /* Likewise, but indicate that the target is VxWorks. */
10036
10037 struct bfd_link_hash_table *
10038 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
10039 {
10040 struct bfd_link_hash_table *ret;
10041
10042 ret = _bfd_mips_elf_link_hash_table_create (abfd);
10043 if (ret)
10044 {
10045 struct mips_elf_link_hash_table *htab;
10046
10047 htab = (struct mips_elf_link_hash_table *) ret;
10048 htab->is_vxworks = 1;
10049 }
10050 return ret;
10051 }
10052 \f
10053 /* We need to use a special link routine to handle the .reginfo and
10054 the .mdebug sections. We need to merge all instances of these
10055 sections together, not write them all out sequentially. */
10056
10057 bfd_boolean
10058 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10059 {
10060 asection *o;
10061 struct bfd_link_order *p;
10062 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
10063 asection *rtproc_sec;
10064 Elf32_RegInfo reginfo;
10065 struct ecoff_debug_info debug;
10066 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10067 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
10068 HDRR *symhdr = &debug.symbolic_header;
10069 void *mdebug_handle = NULL;
10070 asection *s;
10071 EXTR esym;
10072 unsigned int i;
10073 bfd_size_type amt;
10074 struct mips_elf_link_hash_table *htab;
10075
10076 static const char * const secname[] =
10077 {
10078 ".text", ".init", ".fini", ".data",
10079 ".rodata", ".sdata", ".sbss", ".bss"
10080 };
10081 static const int sc[] =
10082 {
10083 scText, scInit, scFini, scData,
10084 scRData, scSData, scSBss, scBss
10085 };
10086
10087 /* We'd carefully arranged the dynamic symbol indices, and then the
10088 generic size_dynamic_sections renumbered them out from under us.
10089 Rather than trying somehow to prevent the renumbering, just do
10090 the sort again. */
10091 htab = mips_elf_hash_table (info);
10092 if (elf_hash_table (info)->dynamic_sections_created)
10093 {
10094 bfd *dynobj;
10095 asection *got;
10096 struct mips_got_info *g;
10097 bfd_size_type dynsecsymcount;
10098
10099 /* When we resort, we must tell mips_elf_sort_hash_table what
10100 the lowest index it may use is. That's the number of section
10101 symbols we're going to add. The generic ELF linker only
10102 adds these symbols when building a shared object. Note that
10103 we count the sections after (possibly) removing the .options
10104 section above. */
10105
10106 dynsecsymcount = count_section_dynsyms (abfd, info);
10107 if (! mips_elf_sort_hash_table (info, dynsecsymcount + 1))
10108 return FALSE;
10109
10110 /* Make sure we didn't grow the global .got region. */
10111 dynobj = elf_hash_table (info)->dynobj;
10112 got = mips_elf_got_section (dynobj, FALSE);
10113 g = mips_elf_section_data (got)->u.got_info;
10114
10115 if (g->global_gotsym != NULL)
10116 BFD_ASSERT ((elf_hash_table (info)->dynsymcount
10117 - g->global_gotsym->dynindx)
10118 <= g->global_gotno);
10119 }
10120
10121 /* Get a value for the GP register. */
10122 if (elf_gp (abfd) == 0)
10123 {
10124 struct bfd_link_hash_entry *h;
10125
10126 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
10127 if (h != NULL && h->type == bfd_link_hash_defined)
10128 elf_gp (abfd) = (h->u.def.value
10129 + h->u.def.section->output_section->vma
10130 + h->u.def.section->output_offset);
10131 else if (htab->is_vxworks
10132 && (h = bfd_link_hash_lookup (info->hash,
10133 "_GLOBAL_OFFSET_TABLE_",
10134 FALSE, FALSE, TRUE))
10135 && h->type == bfd_link_hash_defined)
10136 elf_gp (abfd) = (h->u.def.section->output_section->vma
10137 + h->u.def.section->output_offset
10138 + h->u.def.value);
10139 else if (info->relocatable)
10140 {
10141 bfd_vma lo = MINUS_ONE;
10142
10143 /* Find the GP-relative section with the lowest offset. */
10144 for (o = abfd->sections; o != NULL; o = o->next)
10145 if (o->vma < lo
10146 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
10147 lo = o->vma;
10148
10149 /* And calculate GP relative to that. */
10150 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
10151 }
10152 else
10153 {
10154 /* If the relocate_section function needs to do a reloc
10155 involving the GP value, it should make a reloc_dangerous
10156 callback to warn that GP is not defined. */
10157 }
10158 }
10159
10160 /* Go through the sections and collect the .reginfo and .mdebug
10161 information. */
10162 reginfo_sec = NULL;
10163 mdebug_sec = NULL;
10164 gptab_data_sec = NULL;
10165 gptab_bss_sec = NULL;
10166 for (o = abfd->sections; o != NULL; o = o->next)
10167 {
10168 if (strcmp (o->name, ".reginfo") == 0)
10169 {
10170 memset (&reginfo, 0, sizeof reginfo);
10171
10172 /* We have found the .reginfo section in the output file.
10173 Look through all the link_orders comprising it and merge
10174 the information together. */
10175 for (p = o->map_head.link_order; p != NULL; p = p->next)
10176 {
10177 asection *input_section;
10178 bfd *input_bfd;
10179 Elf32_External_RegInfo ext;
10180 Elf32_RegInfo sub;
10181
10182 if (p->type != bfd_indirect_link_order)
10183 {
10184 if (p->type == bfd_data_link_order)
10185 continue;
10186 abort ();
10187 }
10188
10189 input_section = p->u.indirect.section;
10190 input_bfd = input_section->owner;
10191
10192 if (! bfd_get_section_contents (input_bfd, input_section,
10193 &ext, 0, sizeof ext))
10194 return FALSE;
10195
10196 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
10197
10198 reginfo.ri_gprmask |= sub.ri_gprmask;
10199 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
10200 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
10201 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
10202 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
10203
10204 /* ri_gp_value is set by the function
10205 mips_elf32_section_processing when the section is
10206 finally written out. */
10207
10208 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10209 elf_link_input_bfd ignores this section. */
10210 input_section->flags &= ~SEC_HAS_CONTENTS;
10211 }
10212
10213 /* Size has been set in _bfd_mips_elf_always_size_sections. */
10214 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
10215
10216 /* Skip this section later on (I don't think this currently
10217 matters, but someday it might). */
10218 o->map_head.link_order = NULL;
10219
10220 reginfo_sec = o;
10221 }
10222
10223 if (strcmp (o->name, ".mdebug") == 0)
10224 {
10225 struct extsym_info einfo;
10226 bfd_vma last;
10227
10228 /* We have found the .mdebug section in the output file.
10229 Look through all the link_orders comprising it and merge
10230 the information together. */
10231 symhdr->magic = swap->sym_magic;
10232 /* FIXME: What should the version stamp be? */
10233 symhdr->vstamp = 0;
10234 symhdr->ilineMax = 0;
10235 symhdr->cbLine = 0;
10236 symhdr->idnMax = 0;
10237 symhdr->ipdMax = 0;
10238 symhdr->isymMax = 0;
10239 symhdr->ioptMax = 0;
10240 symhdr->iauxMax = 0;
10241 symhdr->issMax = 0;
10242 symhdr->issExtMax = 0;
10243 symhdr->ifdMax = 0;
10244 symhdr->crfd = 0;
10245 symhdr->iextMax = 0;
10246
10247 /* We accumulate the debugging information itself in the
10248 debug_info structure. */
10249 debug.line = NULL;
10250 debug.external_dnr = NULL;
10251 debug.external_pdr = NULL;
10252 debug.external_sym = NULL;
10253 debug.external_opt = NULL;
10254 debug.external_aux = NULL;
10255 debug.ss = NULL;
10256 debug.ssext = debug.ssext_end = NULL;
10257 debug.external_fdr = NULL;
10258 debug.external_rfd = NULL;
10259 debug.external_ext = debug.external_ext_end = NULL;
10260
10261 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
10262 if (mdebug_handle == NULL)
10263 return FALSE;
10264
10265 esym.jmptbl = 0;
10266 esym.cobol_main = 0;
10267 esym.weakext = 0;
10268 esym.reserved = 0;
10269 esym.ifd = ifdNil;
10270 esym.asym.iss = issNil;
10271 esym.asym.st = stLocal;
10272 esym.asym.reserved = 0;
10273 esym.asym.index = indexNil;
10274 last = 0;
10275 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
10276 {
10277 esym.asym.sc = sc[i];
10278 s = bfd_get_section_by_name (abfd, secname[i]);
10279 if (s != NULL)
10280 {
10281 esym.asym.value = s->vma;
10282 last = s->vma + s->size;
10283 }
10284 else
10285 esym.asym.value = last;
10286 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
10287 secname[i], &esym))
10288 return FALSE;
10289 }
10290
10291 for (p = o->map_head.link_order; p != NULL; p = p->next)
10292 {
10293 asection *input_section;
10294 bfd *input_bfd;
10295 const struct ecoff_debug_swap *input_swap;
10296 struct ecoff_debug_info input_debug;
10297 char *eraw_src;
10298 char *eraw_end;
10299
10300 if (p->type != bfd_indirect_link_order)
10301 {
10302 if (p->type == bfd_data_link_order)
10303 continue;
10304 abort ();
10305 }
10306
10307 input_section = p->u.indirect.section;
10308 input_bfd = input_section->owner;
10309
10310 if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour
10311 || (get_elf_backend_data (input_bfd)
10312 ->elf_backend_ecoff_debug_swap) == NULL)
10313 {
10314 /* I don't know what a non MIPS ELF bfd would be
10315 doing with a .mdebug section, but I don't really
10316 want to deal with it. */
10317 continue;
10318 }
10319
10320 input_swap = (get_elf_backend_data (input_bfd)
10321 ->elf_backend_ecoff_debug_swap);
10322
10323 BFD_ASSERT (p->size == input_section->size);
10324
10325 /* The ECOFF linking code expects that we have already
10326 read in the debugging information and set up an
10327 ecoff_debug_info structure, so we do that now. */
10328 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
10329 &input_debug))
10330 return FALSE;
10331
10332 if (! (bfd_ecoff_debug_accumulate
10333 (mdebug_handle, abfd, &debug, swap, input_bfd,
10334 &input_debug, input_swap, info)))
10335 return FALSE;
10336
10337 /* Loop through the external symbols. For each one with
10338 interesting information, try to find the symbol in
10339 the linker global hash table and save the information
10340 for the output external symbols. */
10341 eraw_src = input_debug.external_ext;
10342 eraw_end = (eraw_src
10343 + (input_debug.symbolic_header.iextMax
10344 * input_swap->external_ext_size));
10345 for (;
10346 eraw_src < eraw_end;
10347 eraw_src += input_swap->external_ext_size)
10348 {
10349 EXTR ext;
10350 const char *name;
10351 struct mips_elf_link_hash_entry *h;
10352
10353 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
10354 if (ext.asym.sc == scNil
10355 || ext.asym.sc == scUndefined
10356 || ext.asym.sc == scSUndefined)
10357 continue;
10358
10359 name = input_debug.ssext + ext.asym.iss;
10360 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
10361 name, FALSE, FALSE, TRUE);
10362 if (h == NULL || h->esym.ifd != -2)
10363 continue;
10364
10365 if (ext.ifd != -1)
10366 {
10367 BFD_ASSERT (ext.ifd
10368 < input_debug.symbolic_header.ifdMax);
10369 ext.ifd = input_debug.ifdmap[ext.ifd];
10370 }
10371
10372 h->esym = ext;
10373 }
10374
10375 /* Free up the information we just read. */
10376 free (input_debug.line);
10377 free (input_debug.external_dnr);
10378 free (input_debug.external_pdr);
10379 free (input_debug.external_sym);
10380 free (input_debug.external_opt);
10381 free (input_debug.external_aux);
10382 free (input_debug.ss);
10383 free (input_debug.ssext);
10384 free (input_debug.external_fdr);
10385 free (input_debug.external_rfd);
10386 free (input_debug.external_ext);
10387
10388 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10389 elf_link_input_bfd ignores this section. */
10390 input_section->flags &= ~SEC_HAS_CONTENTS;
10391 }
10392
10393 if (SGI_COMPAT (abfd) && info->shared)
10394 {
10395 /* Create .rtproc section. */
10396 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10397 if (rtproc_sec == NULL)
10398 {
10399 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
10400 | SEC_LINKER_CREATED | SEC_READONLY);
10401
10402 rtproc_sec = bfd_make_section_with_flags (abfd,
10403 ".rtproc",
10404 flags);
10405 if (rtproc_sec == NULL
10406 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
10407 return FALSE;
10408 }
10409
10410 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
10411 info, rtproc_sec,
10412 &debug))
10413 return FALSE;
10414 }
10415
10416 /* Build the external symbol information. */
10417 einfo.abfd = abfd;
10418 einfo.info = info;
10419 einfo.debug = &debug;
10420 einfo.swap = swap;
10421 einfo.failed = FALSE;
10422 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
10423 mips_elf_output_extsym, &einfo);
10424 if (einfo.failed)
10425 return FALSE;
10426
10427 /* Set the size of the .mdebug section. */
10428 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
10429
10430 /* Skip this section later on (I don't think this currently
10431 matters, but someday it might). */
10432 o->map_head.link_order = NULL;
10433
10434 mdebug_sec = o;
10435 }
10436
10437 if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0)
10438 {
10439 const char *subname;
10440 unsigned int c;
10441 Elf32_gptab *tab;
10442 Elf32_External_gptab *ext_tab;
10443 unsigned int j;
10444
10445 /* The .gptab.sdata and .gptab.sbss sections hold
10446 information describing how the small data area would
10447 change depending upon the -G switch. These sections
10448 not used in executables files. */
10449 if (! info->relocatable)
10450 {
10451 for (p = o->map_head.link_order; p != NULL; p = p->next)
10452 {
10453 asection *input_section;
10454
10455 if (p->type != bfd_indirect_link_order)
10456 {
10457 if (p->type == bfd_data_link_order)
10458 continue;
10459 abort ();
10460 }
10461
10462 input_section = p->u.indirect.section;
10463
10464 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10465 elf_link_input_bfd ignores this section. */
10466 input_section->flags &= ~SEC_HAS_CONTENTS;
10467 }
10468
10469 /* Skip this section later on (I don't think this
10470 currently matters, but someday it might). */
10471 o->map_head.link_order = NULL;
10472
10473 /* Really remove the section. */
10474 bfd_section_list_remove (abfd, o);
10475 --abfd->section_count;
10476
10477 continue;
10478 }
10479
10480 /* There is one gptab for initialized data, and one for
10481 uninitialized data. */
10482 if (strcmp (o->name, ".gptab.sdata") == 0)
10483 gptab_data_sec = o;
10484 else if (strcmp (o->name, ".gptab.sbss") == 0)
10485 gptab_bss_sec = o;
10486 else
10487 {
10488 (*_bfd_error_handler)
10489 (_("%s: illegal section name `%s'"),
10490 bfd_get_filename (abfd), o->name);
10491 bfd_set_error (bfd_error_nonrepresentable_section);
10492 return FALSE;
10493 }
10494
10495 /* The linker script always combines .gptab.data and
10496 .gptab.sdata into .gptab.sdata, and likewise for
10497 .gptab.bss and .gptab.sbss. It is possible that there is
10498 no .sdata or .sbss section in the output file, in which
10499 case we must change the name of the output section. */
10500 subname = o->name + sizeof ".gptab" - 1;
10501 if (bfd_get_section_by_name (abfd, subname) == NULL)
10502 {
10503 if (o == gptab_data_sec)
10504 o->name = ".gptab.data";
10505 else
10506 o->name = ".gptab.bss";
10507 subname = o->name + sizeof ".gptab" - 1;
10508 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
10509 }
10510
10511 /* Set up the first entry. */
10512 c = 1;
10513 amt = c * sizeof (Elf32_gptab);
10514 tab = bfd_malloc (amt);
10515 if (tab == NULL)
10516 return FALSE;
10517 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
10518 tab[0].gt_header.gt_unused = 0;
10519
10520 /* Combine the input sections. */
10521 for (p = o->map_head.link_order; p != NULL; p = p->next)
10522 {
10523 asection *input_section;
10524 bfd *input_bfd;
10525 bfd_size_type size;
10526 unsigned long last;
10527 bfd_size_type gpentry;
10528
10529 if (p->type != bfd_indirect_link_order)
10530 {
10531 if (p->type == bfd_data_link_order)
10532 continue;
10533 abort ();
10534 }
10535
10536 input_section = p->u.indirect.section;
10537 input_bfd = input_section->owner;
10538
10539 /* Combine the gptab entries for this input section one
10540 by one. We know that the input gptab entries are
10541 sorted by ascending -G value. */
10542 size = input_section->size;
10543 last = 0;
10544 for (gpentry = sizeof (Elf32_External_gptab);
10545 gpentry < size;
10546 gpentry += sizeof (Elf32_External_gptab))
10547 {
10548 Elf32_External_gptab ext_gptab;
10549 Elf32_gptab int_gptab;
10550 unsigned long val;
10551 unsigned long add;
10552 bfd_boolean exact;
10553 unsigned int look;
10554
10555 if (! (bfd_get_section_contents
10556 (input_bfd, input_section, &ext_gptab, gpentry,
10557 sizeof (Elf32_External_gptab))))
10558 {
10559 free (tab);
10560 return FALSE;
10561 }
10562
10563 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
10564 &int_gptab);
10565 val = int_gptab.gt_entry.gt_g_value;
10566 add = int_gptab.gt_entry.gt_bytes - last;
10567
10568 exact = FALSE;
10569 for (look = 1; look < c; look++)
10570 {
10571 if (tab[look].gt_entry.gt_g_value >= val)
10572 tab[look].gt_entry.gt_bytes += add;
10573
10574 if (tab[look].gt_entry.gt_g_value == val)
10575 exact = TRUE;
10576 }
10577
10578 if (! exact)
10579 {
10580 Elf32_gptab *new_tab;
10581 unsigned int max;
10582
10583 /* We need a new table entry. */
10584 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
10585 new_tab = bfd_realloc (tab, amt);
10586 if (new_tab == NULL)
10587 {
10588 free (tab);
10589 return FALSE;
10590 }
10591 tab = new_tab;
10592 tab[c].gt_entry.gt_g_value = val;
10593 tab[c].gt_entry.gt_bytes = add;
10594
10595 /* Merge in the size for the next smallest -G
10596 value, since that will be implied by this new
10597 value. */
10598 max = 0;
10599 for (look = 1; look < c; look++)
10600 {
10601 if (tab[look].gt_entry.gt_g_value < val
10602 && (max == 0
10603 || (tab[look].gt_entry.gt_g_value
10604 > tab[max].gt_entry.gt_g_value)))
10605 max = look;
10606 }
10607 if (max != 0)
10608 tab[c].gt_entry.gt_bytes +=
10609 tab[max].gt_entry.gt_bytes;
10610
10611 ++c;
10612 }
10613
10614 last = int_gptab.gt_entry.gt_bytes;
10615 }
10616
10617 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10618 elf_link_input_bfd ignores this section. */
10619 input_section->flags &= ~SEC_HAS_CONTENTS;
10620 }
10621
10622 /* The table must be sorted by -G value. */
10623 if (c > 2)
10624 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
10625
10626 /* Swap out the table. */
10627 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
10628 ext_tab = bfd_alloc (abfd, amt);
10629 if (ext_tab == NULL)
10630 {
10631 free (tab);
10632 return FALSE;
10633 }
10634
10635 for (j = 0; j < c; j++)
10636 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
10637 free (tab);
10638
10639 o->size = c * sizeof (Elf32_External_gptab);
10640 o->contents = (bfd_byte *) ext_tab;
10641
10642 /* Skip this section later on (I don't think this currently
10643 matters, but someday it might). */
10644 o->map_head.link_order = NULL;
10645 }
10646 }
10647
10648 /* Invoke the regular ELF backend linker to do all the work. */
10649 if (!bfd_elf_final_link (abfd, info))
10650 return FALSE;
10651
10652 /* Now write out the computed sections. */
10653
10654 if (reginfo_sec != NULL)
10655 {
10656 Elf32_External_RegInfo ext;
10657
10658 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
10659 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
10660 return FALSE;
10661 }
10662
10663 if (mdebug_sec != NULL)
10664 {
10665 BFD_ASSERT (abfd->output_has_begun);
10666 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
10667 swap, info,
10668 mdebug_sec->filepos))
10669 return FALSE;
10670
10671 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
10672 }
10673
10674 if (gptab_data_sec != NULL)
10675 {
10676 if (! bfd_set_section_contents (abfd, gptab_data_sec,
10677 gptab_data_sec->contents,
10678 0, gptab_data_sec->size))
10679 return FALSE;
10680 }
10681
10682 if (gptab_bss_sec != NULL)
10683 {
10684 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
10685 gptab_bss_sec->contents,
10686 0, gptab_bss_sec->size))
10687 return FALSE;
10688 }
10689
10690 if (SGI_COMPAT (abfd))
10691 {
10692 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
10693 if (rtproc_sec != NULL)
10694 {
10695 if (! bfd_set_section_contents (abfd, rtproc_sec,
10696 rtproc_sec->contents,
10697 0, rtproc_sec->size))
10698 return FALSE;
10699 }
10700 }
10701
10702 return TRUE;
10703 }
10704 \f
10705 /* Structure for saying that BFD machine EXTENSION extends BASE. */
10706
10707 struct mips_mach_extension {
10708 unsigned long extension, base;
10709 };
10710
10711
10712 /* An array describing how BFD machines relate to one another. The entries
10713 are ordered topologically with MIPS I extensions listed last. */
10714
10715 static const struct mips_mach_extension mips_mach_extensions[] = {
10716 /* MIPS64 extensions. */
10717 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
10718 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
10719
10720 /* MIPS V extensions. */
10721 { bfd_mach_mipsisa64, bfd_mach_mips5 },
10722
10723 /* R10000 extensions. */
10724 { bfd_mach_mips12000, bfd_mach_mips10000 },
10725
10726 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
10727 vr5400 ISA, but doesn't include the multimedia stuff. It seems
10728 better to allow vr5400 and vr5500 code to be merged anyway, since
10729 many libraries will just use the core ISA. Perhaps we could add
10730 some sort of ASE flag if this ever proves a problem. */
10731 { bfd_mach_mips5500, bfd_mach_mips5400 },
10732 { bfd_mach_mips5400, bfd_mach_mips5000 },
10733
10734 /* MIPS IV extensions. */
10735 { bfd_mach_mips5, bfd_mach_mips8000 },
10736 { bfd_mach_mips10000, bfd_mach_mips8000 },
10737 { bfd_mach_mips5000, bfd_mach_mips8000 },
10738 { bfd_mach_mips7000, bfd_mach_mips8000 },
10739 { bfd_mach_mips9000, bfd_mach_mips8000 },
10740
10741 /* VR4100 extensions. */
10742 { bfd_mach_mips4120, bfd_mach_mips4100 },
10743 { bfd_mach_mips4111, bfd_mach_mips4100 },
10744
10745 /* MIPS III extensions. */
10746 { bfd_mach_mips8000, bfd_mach_mips4000 },
10747 { bfd_mach_mips4650, bfd_mach_mips4000 },
10748 { bfd_mach_mips4600, bfd_mach_mips4000 },
10749 { bfd_mach_mips4400, bfd_mach_mips4000 },
10750 { bfd_mach_mips4300, bfd_mach_mips4000 },
10751 { bfd_mach_mips4100, bfd_mach_mips4000 },
10752 { bfd_mach_mips4010, bfd_mach_mips4000 },
10753
10754 /* MIPS32 extensions. */
10755 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
10756
10757 /* MIPS II extensions. */
10758 { bfd_mach_mips4000, bfd_mach_mips6000 },
10759 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
10760
10761 /* MIPS I extensions. */
10762 { bfd_mach_mips6000, bfd_mach_mips3000 },
10763 { bfd_mach_mips3900, bfd_mach_mips3000 }
10764 };
10765
10766
10767 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
10768
10769 static bfd_boolean
10770 mips_mach_extends_p (unsigned long base, unsigned long extension)
10771 {
10772 size_t i;
10773
10774 if (extension == base)
10775 return TRUE;
10776
10777 if (base == bfd_mach_mipsisa32
10778 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
10779 return TRUE;
10780
10781 if (base == bfd_mach_mipsisa32r2
10782 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
10783 return TRUE;
10784
10785 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
10786 if (extension == mips_mach_extensions[i].extension)
10787 {
10788 extension = mips_mach_extensions[i].base;
10789 if (extension == base)
10790 return TRUE;
10791 }
10792
10793 return FALSE;
10794 }
10795
10796
10797 /* Return true if the given ELF header flags describe a 32-bit binary. */
10798
10799 static bfd_boolean
10800 mips_32bit_flags_p (flagword flags)
10801 {
10802 return ((flags & EF_MIPS_32BITMODE) != 0
10803 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
10804 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
10805 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
10806 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
10807 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
10808 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
10809 }
10810
10811
10812 /* Merge backend specific data from an object file to the output
10813 object file when linking. */
10814
10815 bfd_boolean
10816 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
10817 {
10818 flagword old_flags;
10819 flagword new_flags;
10820 bfd_boolean ok;
10821 bfd_boolean null_input_bfd = TRUE;
10822 asection *sec;
10823
10824 /* Check if we have the same endianess */
10825 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
10826 {
10827 (*_bfd_error_handler)
10828 (_("%B: endianness incompatible with that of the selected emulation"),
10829 ibfd);
10830 return FALSE;
10831 }
10832
10833 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
10834 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
10835 return TRUE;
10836
10837 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
10838 {
10839 (*_bfd_error_handler)
10840 (_("%B: ABI is incompatible with that of the selected emulation"),
10841 ibfd);
10842 return FALSE;
10843 }
10844
10845 new_flags = elf_elfheader (ibfd)->e_flags;
10846 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
10847 old_flags = elf_elfheader (obfd)->e_flags;
10848
10849 if (! elf_flags_init (obfd))
10850 {
10851 elf_flags_init (obfd) = TRUE;
10852 elf_elfheader (obfd)->e_flags = new_flags;
10853 elf_elfheader (obfd)->e_ident[EI_CLASS]
10854 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
10855
10856 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
10857 && bfd_get_arch_info (obfd)->the_default)
10858 {
10859 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
10860 bfd_get_mach (ibfd)))
10861 return FALSE;
10862 }
10863
10864 return TRUE;
10865 }
10866
10867 /* Check flag compatibility. */
10868
10869 new_flags &= ~EF_MIPS_NOREORDER;
10870 old_flags &= ~EF_MIPS_NOREORDER;
10871
10872 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
10873 doesn't seem to matter. */
10874 new_flags &= ~EF_MIPS_XGOT;
10875 old_flags &= ~EF_MIPS_XGOT;
10876
10877 /* MIPSpro generates ucode info in n64 objects. Again, we should
10878 just be able to ignore this. */
10879 new_flags &= ~EF_MIPS_UCODE;
10880 old_flags &= ~EF_MIPS_UCODE;
10881
10882 /* Don't care about the PIC flags from dynamic objects; they are
10883 PIC by design. */
10884 if ((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0
10885 && (ibfd->flags & DYNAMIC) != 0)
10886 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10887
10888 if (new_flags == old_flags)
10889 return TRUE;
10890
10891 /* Check to see if the input BFD actually contains any sections.
10892 If not, its flags may not have been initialised either, but it cannot
10893 actually cause any incompatibility. */
10894 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
10895 {
10896 /* Ignore synthetic sections and empty .text, .data and .bss sections
10897 which are automatically generated by gas. */
10898 if (strcmp (sec->name, ".reginfo")
10899 && strcmp (sec->name, ".mdebug")
10900 && (sec->size != 0
10901 || (strcmp (sec->name, ".text")
10902 && strcmp (sec->name, ".data")
10903 && strcmp (sec->name, ".bss"))))
10904 {
10905 null_input_bfd = FALSE;
10906 break;
10907 }
10908 }
10909 if (null_input_bfd)
10910 return TRUE;
10911
10912 ok = TRUE;
10913
10914 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
10915 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
10916 {
10917 (*_bfd_error_handler)
10918 (_("%B: warning: linking PIC files with non-PIC files"),
10919 ibfd);
10920 ok = TRUE;
10921 }
10922
10923 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
10924 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
10925 if (! (new_flags & EF_MIPS_PIC))
10926 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
10927
10928 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10929 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
10930
10931 /* Compare the ISAs. */
10932 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
10933 {
10934 (*_bfd_error_handler)
10935 (_("%B: linking 32-bit code with 64-bit code"),
10936 ibfd);
10937 ok = FALSE;
10938 }
10939 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
10940 {
10941 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
10942 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
10943 {
10944 /* Copy the architecture info from IBFD to OBFD. Also copy
10945 the 32-bit flag (if set) so that we continue to recognise
10946 OBFD as a 32-bit binary. */
10947 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
10948 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10949 elf_elfheader (obfd)->e_flags
10950 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10951
10952 /* Copy across the ABI flags if OBFD doesn't use them
10953 and if that was what caused us to treat IBFD as 32-bit. */
10954 if ((old_flags & EF_MIPS_ABI) == 0
10955 && mips_32bit_flags_p (new_flags)
10956 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
10957 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
10958 }
10959 else
10960 {
10961 /* The ISAs aren't compatible. */
10962 (*_bfd_error_handler)
10963 (_("%B: linking %s module with previous %s modules"),
10964 ibfd,
10965 bfd_printable_name (ibfd),
10966 bfd_printable_name (obfd));
10967 ok = FALSE;
10968 }
10969 }
10970
10971 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10972 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
10973
10974 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
10975 does set EI_CLASS differently from any 32-bit ABI. */
10976 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
10977 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
10978 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
10979 {
10980 /* Only error if both are set (to different values). */
10981 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
10982 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
10983 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
10984 {
10985 (*_bfd_error_handler)
10986 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
10987 ibfd,
10988 elf_mips_abi_name (ibfd),
10989 elf_mips_abi_name (obfd));
10990 ok = FALSE;
10991 }
10992 new_flags &= ~EF_MIPS_ABI;
10993 old_flags &= ~EF_MIPS_ABI;
10994 }
10995
10996 /* For now, allow arbitrary mixing of ASEs (retain the union). */
10997 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
10998 {
10999 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
11000
11001 new_flags &= ~ EF_MIPS_ARCH_ASE;
11002 old_flags &= ~ EF_MIPS_ARCH_ASE;
11003 }
11004
11005 /* Warn about any other mismatches */
11006 if (new_flags != old_flags)
11007 {
11008 (*_bfd_error_handler)
11009 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
11010 ibfd, (unsigned long) new_flags,
11011 (unsigned long) old_flags);
11012 ok = FALSE;
11013 }
11014
11015 if (! ok)
11016 {
11017 bfd_set_error (bfd_error_bad_value);
11018 return FALSE;
11019 }
11020
11021 return TRUE;
11022 }
11023
11024 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
11025
11026 bfd_boolean
11027 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
11028 {
11029 BFD_ASSERT (!elf_flags_init (abfd)
11030 || elf_elfheader (abfd)->e_flags == flags);
11031
11032 elf_elfheader (abfd)->e_flags = flags;
11033 elf_flags_init (abfd) = TRUE;
11034 return TRUE;
11035 }
11036
11037 bfd_boolean
11038 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
11039 {
11040 FILE *file = ptr;
11041
11042 BFD_ASSERT (abfd != NULL && ptr != NULL);
11043
11044 /* Print normal ELF private data. */
11045 _bfd_elf_print_private_bfd_data (abfd, ptr);
11046
11047 /* xgettext:c-format */
11048 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11049
11050 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
11051 fprintf (file, _(" [abi=O32]"));
11052 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
11053 fprintf (file, _(" [abi=O64]"));
11054 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
11055 fprintf (file, _(" [abi=EABI32]"));
11056 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
11057 fprintf (file, _(" [abi=EABI64]"));
11058 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
11059 fprintf (file, _(" [abi unknown]"));
11060 else if (ABI_N32_P (abfd))
11061 fprintf (file, _(" [abi=N32]"));
11062 else if (ABI_64_P (abfd))
11063 fprintf (file, _(" [abi=64]"));
11064 else
11065 fprintf (file, _(" [no abi set]"));
11066
11067 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
11068 fprintf (file, _(" [mips1]"));
11069 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
11070 fprintf (file, _(" [mips2]"));
11071 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
11072 fprintf (file, _(" [mips3]"));
11073 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
11074 fprintf (file, _(" [mips4]"));
11075 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
11076 fprintf (file, _(" [mips5]"));
11077 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
11078 fprintf (file, _(" [mips32]"));
11079 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
11080 fprintf (file, _(" [mips64]"));
11081 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
11082 fprintf (file, _(" [mips32r2]"));
11083 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
11084 fprintf (file, _(" [mips64r2]"));
11085 else
11086 fprintf (file, _(" [unknown ISA]"));
11087
11088 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
11089 fprintf (file, _(" [mdmx]"));
11090
11091 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
11092 fprintf (file, _(" [mips16]"));
11093
11094 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
11095 fprintf (file, _(" [32bitmode]"));
11096 else
11097 fprintf (file, _(" [not 32bitmode]"));
11098
11099 fputc ('\n', file);
11100
11101 return TRUE;
11102 }
11103
11104 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
11105 {
11106 { ".lit4", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11107 { ".lit8", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11108 { ".mdebug", 7, 0, SHT_MIPS_DEBUG, 0 },
11109 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11110 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
11111 { ".ucode", 6, 0, SHT_MIPS_UCODE, 0 },
11112 { NULL, 0, 0, 0, 0 }
11113 };
11114
11115 /* Ensure that the STO_OPTIONAL flag is copied into h->other,
11116 even if this is not a defintion of the symbol. */
11117 void
11118 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
11119 const Elf_Internal_Sym *isym,
11120 bfd_boolean definition,
11121 bfd_boolean dynamic ATTRIBUTE_UNUSED)
11122 {
11123 if (! definition
11124 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
11125 h->other |= STO_OPTIONAL;
11126 }
11127
11128 /* Decide whether an undefined symbol is special and can be ignored.
11129 This is the case for OPTIONAL symbols on IRIX. */
11130 bfd_boolean
11131 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
11132 {
11133 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
11134 }
11135
11136 bfd_boolean
11137 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
11138 {
11139 return (sym->st_shndx == SHN_COMMON
11140 || sym->st_shndx == SHN_MIPS_ACOMMON
11141 || sym->st_shndx == SHN_MIPS_SCOMMON);
11142 }
This page took 0.282378 seconds and 5 git commands to generate.