Updated Spanish and Vietnamese translations
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4
5 Most of the information added by Ian Lance Taylor, Cygnus Support,
6 <ian@cygnus.com>.
7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8 <mark@codesourcery.com>
9 Traditional MIPS targets support added by Koundinya.K, Dansk Data
10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29
30 /* This file handles functionality common to the different MIPS ABI's. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libbfd.h"
35 #include "libiberty.h"
36 #include "elf-bfd.h"
37 #include "elfxx-mips.h"
38 #include "elf/mips.h"
39 #include "elf-vxworks.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* This structure is used to hold information about one GOT entry.
50 There are three types of entry:
51
52 (1) absolute addresses
53 (abfd == NULL)
54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 (abfd != NULL, symndx >= 0)
56 (3) global and forced-local symbols
57 (abfd != NULL, symndx == -1)
58
59 Type (3) entries are treated differently for different types of GOT.
60 In the "master" GOT -- i.e. the one that describes every GOT
61 reference needed in the link -- the mips_got_entry is keyed on both
62 the symbol and the input bfd that references it. If it turns out
63 that we need multiple GOTs, we can then use this information to
64 create separate GOTs for each input bfd.
65
66 However, we want each of these separate GOTs to have at most one
67 entry for a given symbol, so their type (3) entries are keyed only
68 on the symbol. The input bfd given by the "abfd" field is somewhat
69 arbitrary in this case.
70
71 This means that when there are multiple GOTs, each GOT has a unique
72 mips_got_entry for every symbol within it. We can therefore use the
73 mips_got_entry fields (tls_type and gotidx) to track the symbol's
74 GOT index.
75
76 However, if it turns out that we need only a single GOT, we continue
77 to use the master GOT to describe it. There may therefore be several
78 mips_got_entries for the same symbol, each with a different input bfd.
79 We want to make sure that each symbol gets a unique GOT entry, so when
80 there's a single GOT, we use the symbol's hash entry, not the
81 mips_got_entry fields, to track a symbol's GOT index. */
82 struct mips_got_entry
83 {
84 /* The input bfd in which the symbol is defined. */
85 bfd *abfd;
86 /* The index of the symbol, as stored in the relocation r_info, if
87 we have a local symbol; -1 otherwise. */
88 long symndx;
89 union
90 {
91 /* If abfd == NULL, an address that must be stored in the got. */
92 bfd_vma address;
93 /* If abfd != NULL && symndx != -1, the addend of the relocation
94 that should be added to the symbol value. */
95 bfd_vma addend;
96 /* If abfd != NULL && symndx == -1, the hash table entry
97 corresponding to a global symbol in the got (or, local, if
98 h->forced_local). */
99 struct mips_elf_link_hash_entry *h;
100 } d;
101
102 /* The TLS types included in this GOT entry (specifically, GD and
103 IE). The GD and IE flags can be added as we encounter new
104 relocations. LDM can also be set; it will always be alone, not
105 combined with any GD or IE flags. An LDM GOT entry will be
106 a local symbol entry with r_symndx == 0. */
107 unsigned char tls_type;
108
109 /* The offset from the beginning of the .got section to the entry
110 corresponding to this symbol+addend. If it's a global symbol
111 whose offset is yet to be decided, it's going to be -1. */
112 long gotidx;
113 };
114
115 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
116 The structures form a non-overlapping list that is sorted by increasing
117 MIN_ADDEND. */
118 struct mips_got_page_range
119 {
120 struct mips_got_page_range *next;
121 bfd_signed_vma min_addend;
122 bfd_signed_vma max_addend;
123 };
124
125 /* This structure describes the range of addends that are applied to page
126 relocations against a given symbol. */
127 struct mips_got_page_entry
128 {
129 /* The input bfd in which the symbol is defined. */
130 bfd *abfd;
131 /* The index of the symbol, as stored in the relocation r_info. */
132 long symndx;
133 /* The ranges for this page entry. */
134 struct mips_got_page_range *ranges;
135 /* The maximum number of page entries needed for RANGES. */
136 bfd_vma num_pages;
137 };
138
139 /* This structure is used to hold .got information when linking. */
140
141 struct mips_got_info
142 {
143 /* The global symbol in the GOT with the lowest index in the dynamic
144 symbol table. */
145 struct elf_link_hash_entry *global_gotsym;
146 /* The number of global .got entries. */
147 unsigned int global_gotno;
148 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
149 unsigned int reloc_only_gotno;
150 /* The number of .got slots used for TLS. */
151 unsigned int tls_gotno;
152 /* The first unused TLS .got entry. Used only during
153 mips_elf_initialize_tls_index. */
154 unsigned int tls_assigned_gotno;
155 /* The number of local .got entries, eventually including page entries. */
156 unsigned int local_gotno;
157 /* The maximum number of page entries needed. */
158 unsigned int page_gotno;
159 /* The number of local .got entries we have used. */
160 unsigned int assigned_gotno;
161 /* A hash table holding members of the got. */
162 struct htab *got_entries;
163 /* A hash table of mips_got_page_entry structures. */
164 struct htab *got_page_entries;
165 /* A hash table mapping input bfds to other mips_got_info. NULL
166 unless multi-got was necessary. */
167 struct htab *bfd2got;
168 /* In multi-got links, a pointer to the next got (err, rather, most
169 of the time, it points to the previous got). */
170 struct mips_got_info *next;
171 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
172 for none, or MINUS_TWO for not yet assigned. This is needed
173 because a single-GOT link may have multiple hash table entries
174 for the LDM. It does not get initialized in multi-GOT mode. */
175 bfd_vma tls_ldm_offset;
176 };
177
178 /* Map an input bfd to a got in a multi-got link. */
179
180 struct mips_elf_bfd2got_hash {
181 bfd *bfd;
182 struct mips_got_info *g;
183 };
184
185 /* Structure passed when traversing the bfd2got hash table, used to
186 create and merge bfd's gots. */
187
188 struct mips_elf_got_per_bfd_arg
189 {
190 /* A hashtable that maps bfds to gots. */
191 htab_t bfd2got;
192 /* The output bfd. */
193 bfd *obfd;
194 /* The link information. */
195 struct bfd_link_info *info;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 DT_MIPS_GOTSYM. */
199 struct mips_got_info *primary;
200 /* A non-primary got we're trying to merge with other input bfd's
201 gots. */
202 struct mips_got_info *current;
203 /* The maximum number of got entries that can be addressed with a
204 16-bit offset. */
205 unsigned int max_count;
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages;
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
211 the "master" GOT. */
212 unsigned int global_count;
213 };
214
215 /* Another structure used to pass arguments for got entries traversal. */
216
217 struct mips_elf_set_global_got_offset_arg
218 {
219 struct mips_got_info *g;
220 int value;
221 unsigned int needed_relocs;
222 struct bfd_link_info *info;
223 };
224
225 /* A structure used to count TLS relocations or GOT entries, for GOT
226 entry or ELF symbol table traversal. */
227
228 struct mips_elf_count_tls_arg
229 {
230 struct bfd_link_info *info;
231 unsigned int needed;
232 };
233
234 struct _mips_elf_section_data
235 {
236 struct bfd_elf_section_data elf;
237 union
238 {
239 bfd_byte *tdata;
240 } u;
241 };
242
243 #define mips_elf_section_data(sec) \
244 ((struct _mips_elf_section_data *) elf_section_data (sec))
245
246 #define is_mips_elf(bfd) \
247 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
248 && elf_tdata (bfd) != NULL \
249 && elf_object_id (bfd) == MIPS_ELF_TDATA)
250
251 /* The ABI says that every symbol used by dynamic relocations must have
252 a global GOT entry. Among other things, this provides the dynamic
253 linker with a free, directly-indexed cache. The GOT can therefore
254 contain symbols that are not referenced by GOT relocations themselves
255 (in other words, it may have symbols that are not referenced by things
256 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
257
258 GOT relocations are less likely to overflow if we put the associated
259 GOT entries towards the beginning. We therefore divide the global
260 GOT entries into two areas: "normal" and "reloc-only". Entries in
261 the first area can be used for both dynamic relocations and GP-relative
262 accesses, while those in the "reloc-only" area are for dynamic
263 relocations only.
264
265 These GGA_* ("Global GOT Area") values are organised so that lower
266 values are more general than higher values. Also, non-GGA_NONE
267 values are ordered by the position of the area in the GOT. */
268 #define GGA_NORMAL 0
269 #define GGA_RELOC_ONLY 1
270 #define GGA_NONE 2
271
272 /* Information about a non-PIC interface to a PIC function. There are
273 two ways of creating these interfaces. The first is to add:
274
275 lui $25,%hi(func)
276 addiu $25,$25,%lo(func)
277
278 immediately before a PIC function "func". The second is to add:
279
280 lui $25,%hi(func)
281 j func
282 addiu $25,$25,%lo(func)
283
284 to a separate trampoline section.
285
286 Stubs of the first kind go in a new section immediately before the
287 target function. Stubs of the second kind go in a single section
288 pointed to by the hash table's "strampoline" field. */
289 struct mips_elf_la25_stub {
290 /* The generated section that contains this stub. */
291 asection *stub_section;
292
293 /* The offset of the stub from the start of STUB_SECTION. */
294 bfd_vma offset;
295
296 /* One symbol for the original function. Its location is available
297 in H->root.root.u.def. */
298 struct mips_elf_link_hash_entry *h;
299 };
300
301 /* Macros for populating a mips_elf_la25_stub. */
302
303 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
304 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
305 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
306
307 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
308 the dynamic symbols. */
309
310 struct mips_elf_hash_sort_data
311 {
312 /* The symbol in the global GOT with the lowest dynamic symbol table
313 index. */
314 struct elf_link_hash_entry *low;
315 /* The least dynamic symbol table index corresponding to a non-TLS
316 symbol with a GOT entry. */
317 long min_got_dynindx;
318 /* The greatest dynamic symbol table index corresponding to a symbol
319 with a GOT entry that is not referenced (e.g., a dynamic symbol
320 with dynamic relocations pointing to it from non-primary GOTs). */
321 long max_unref_got_dynindx;
322 /* The greatest dynamic symbol table index not corresponding to a
323 symbol without a GOT entry. */
324 long max_non_got_dynindx;
325 };
326
327 /* The MIPS ELF linker needs additional information for each symbol in
328 the global hash table. */
329
330 struct mips_elf_link_hash_entry
331 {
332 struct elf_link_hash_entry root;
333
334 /* External symbol information. */
335 EXTR esym;
336
337 /* The la25 stub we have created for ths symbol, if any. */
338 struct mips_elf_la25_stub *la25_stub;
339
340 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
341 this symbol. */
342 unsigned int possibly_dynamic_relocs;
343
344 /* If there is a stub that 32 bit functions should use to call this
345 16 bit function, this points to the section containing the stub. */
346 asection *fn_stub;
347
348 /* If there is a stub that 16 bit functions should use to call this
349 32 bit function, this points to the section containing the stub. */
350 asection *call_stub;
351
352 /* This is like the call_stub field, but it is used if the function
353 being called returns a floating point value. */
354 asection *call_fp_stub;
355
356 #define GOT_NORMAL 0
357 #define GOT_TLS_GD 1
358 #define GOT_TLS_LDM 2
359 #define GOT_TLS_IE 4
360 #define GOT_TLS_OFFSET_DONE 0x40
361 #define GOT_TLS_DONE 0x80
362 unsigned char tls_type;
363
364 /* This is only used in single-GOT mode; in multi-GOT mode there
365 is one mips_got_entry per GOT entry, so the offset is stored
366 there. In single-GOT mode there may be many mips_got_entry
367 structures all referring to the same GOT slot. It might be
368 possible to use root.got.offset instead, but that field is
369 overloaded already. */
370 bfd_vma tls_got_offset;
371
372 /* The highest GGA_* value that satisfies all references to this symbol. */
373 unsigned int global_got_area : 2;
374
375 /* True if one of the relocations described by possibly_dynamic_relocs
376 is against a readonly section. */
377 unsigned int readonly_reloc : 1;
378
379 /* True if there is a relocation against this symbol that must be
380 resolved by the static linker (in other words, if the relocation
381 cannot possibly be made dynamic). */
382 unsigned int has_static_relocs : 1;
383
384 /* True if we must not create a .MIPS.stubs entry for this symbol.
385 This is set, for example, if there are relocations related to
386 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
387 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
388 unsigned int no_fn_stub : 1;
389
390 /* Whether we need the fn_stub; this is true if this symbol appears
391 in any relocs other than a 16 bit call. */
392 unsigned int need_fn_stub : 1;
393
394 /* True if this symbol is referenced by branch relocations from
395 any non-PIC input file. This is used to determine whether an
396 la25 stub is required. */
397 unsigned int has_nonpic_branches : 1;
398
399 /* Does this symbol need a traditional MIPS lazy-binding stub
400 (as opposed to a PLT entry)? */
401 unsigned int needs_lazy_stub : 1;
402 };
403
404 /* MIPS ELF linker hash table. */
405
406 struct mips_elf_link_hash_table
407 {
408 struct elf_link_hash_table root;
409 #if 0
410 /* We no longer use this. */
411 /* String section indices for the dynamic section symbols. */
412 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
413 #endif
414
415 /* The number of .rtproc entries. */
416 bfd_size_type procedure_count;
417
418 /* The size of the .compact_rel section (if SGI_COMPAT). */
419 bfd_size_type compact_rel_size;
420
421 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
422 entry is set to the address of __rld_obj_head as in IRIX5. */
423 bfd_boolean use_rld_obj_head;
424
425 /* This is the value of the __rld_map or __rld_obj_head symbol. */
426 bfd_vma rld_value;
427
428 /* This is set if we see any mips16 stub sections. */
429 bfd_boolean mips16_stubs_seen;
430
431 /* True if we can generate copy relocs and PLTs. */
432 bfd_boolean use_plts_and_copy_relocs;
433
434 /* True if we're generating code for VxWorks. */
435 bfd_boolean is_vxworks;
436
437 /* True if we already reported the small-data section overflow. */
438 bfd_boolean small_data_overflow_reported;
439
440 /* Shortcuts to some dynamic sections, or NULL if they are not
441 being used. */
442 asection *srelbss;
443 asection *sdynbss;
444 asection *srelplt;
445 asection *srelplt2;
446 asection *sgotplt;
447 asection *splt;
448 asection *sstubs;
449 asection *sgot;
450
451 /* The master GOT information. */
452 struct mips_got_info *got_info;
453
454 /* The size of the PLT header in bytes. */
455 bfd_vma plt_header_size;
456
457 /* The size of a PLT entry in bytes. */
458 bfd_vma plt_entry_size;
459
460 /* The number of functions that need a lazy-binding stub. */
461 bfd_vma lazy_stub_count;
462
463 /* The size of a function stub entry in bytes. */
464 bfd_vma function_stub_size;
465
466 /* The number of reserved entries at the beginning of the GOT. */
467 unsigned int reserved_gotno;
468
469 /* The section used for mips_elf_la25_stub trampolines.
470 See the comment above that structure for details. */
471 asection *strampoline;
472
473 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
474 pairs. */
475 htab_t la25_stubs;
476
477 /* A function FN (NAME, IS, OS) that creates a new input section
478 called NAME and links it to output section OS. If IS is nonnull,
479 the new section should go immediately before it, otherwise it
480 should go at the (current) beginning of OS.
481
482 The function returns the new section on success, otherwise it
483 returns null. */
484 asection *(*add_stub_section) (const char *, asection *, asection *);
485 };
486
487 /* A structure used to communicate with htab_traverse callbacks. */
488 struct mips_htab_traverse_info {
489 /* The usual link-wide information. */
490 struct bfd_link_info *info;
491 bfd *output_bfd;
492
493 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
494 bfd_boolean error;
495 };
496
497 #define TLS_RELOC_P(r_type) \
498 (r_type == R_MIPS_TLS_DTPMOD32 \
499 || r_type == R_MIPS_TLS_DTPMOD64 \
500 || r_type == R_MIPS_TLS_DTPREL32 \
501 || r_type == R_MIPS_TLS_DTPREL64 \
502 || r_type == R_MIPS_TLS_GD \
503 || r_type == R_MIPS_TLS_LDM \
504 || r_type == R_MIPS_TLS_DTPREL_HI16 \
505 || r_type == R_MIPS_TLS_DTPREL_LO16 \
506 || r_type == R_MIPS_TLS_GOTTPREL \
507 || r_type == R_MIPS_TLS_TPREL32 \
508 || r_type == R_MIPS_TLS_TPREL64 \
509 || r_type == R_MIPS_TLS_TPREL_HI16 \
510 || r_type == R_MIPS_TLS_TPREL_LO16)
511
512 /* Structure used to pass information to mips_elf_output_extsym. */
513
514 struct extsym_info
515 {
516 bfd *abfd;
517 struct bfd_link_info *info;
518 struct ecoff_debug_info *debug;
519 const struct ecoff_debug_swap *swap;
520 bfd_boolean failed;
521 };
522
523 /* The names of the runtime procedure table symbols used on IRIX5. */
524
525 static const char * const mips_elf_dynsym_rtproc_names[] =
526 {
527 "_procedure_table",
528 "_procedure_string_table",
529 "_procedure_table_size",
530 NULL
531 };
532
533 /* These structures are used to generate the .compact_rel section on
534 IRIX5. */
535
536 typedef struct
537 {
538 unsigned long id1; /* Always one? */
539 unsigned long num; /* Number of compact relocation entries. */
540 unsigned long id2; /* Always two? */
541 unsigned long offset; /* The file offset of the first relocation. */
542 unsigned long reserved0; /* Zero? */
543 unsigned long reserved1; /* Zero? */
544 } Elf32_compact_rel;
545
546 typedef struct
547 {
548 bfd_byte id1[4];
549 bfd_byte num[4];
550 bfd_byte id2[4];
551 bfd_byte offset[4];
552 bfd_byte reserved0[4];
553 bfd_byte reserved1[4];
554 } Elf32_External_compact_rel;
555
556 typedef struct
557 {
558 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
559 unsigned int rtype : 4; /* Relocation types. See below. */
560 unsigned int dist2to : 8;
561 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
562 unsigned long konst; /* KONST field. See below. */
563 unsigned long vaddr; /* VADDR to be relocated. */
564 } Elf32_crinfo;
565
566 typedef struct
567 {
568 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
569 unsigned int rtype : 4; /* Relocation types. See below. */
570 unsigned int dist2to : 8;
571 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
572 unsigned long konst; /* KONST field. See below. */
573 } Elf32_crinfo2;
574
575 typedef struct
576 {
577 bfd_byte info[4];
578 bfd_byte konst[4];
579 bfd_byte vaddr[4];
580 } Elf32_External_crinfo;
581
582 typedef struct
583 {
584 bfd_byte info[4];
585 bfd_byte konst[4];
586 } Elf32_External_crinfo2;
587
588 /* These are the constants used to swap the bitfields in a crinfo. */
589
590 #define CRINFO_CTYPE (0x1)
591 #define CRINFO_CTYPE_SH (31)
592 #define CRINFO_RTYPE (0xf)
593 #define CRINFO_RTYPE_SH (27)
594 #define CRINFO_DIST2TO (0xff)
595 #define CRINFO_DIST2TO_SH (19)
596 #define CRINFO_RELVADDR (0x7ffff)
597 #define CRINFO_RELVADDR_SH (0)
598
599 /* A compact relocation info has long (3 words) or short (2 words)
600 formats. A short format doesn't have VADDR field and relvaddr
601 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
602 #define CRF_MIPS_LONG 1
603 #define CRF_MIPS_SHORT 0
604
605 /* There are 4 types of compact relocation at least. The value KONST
606 has different meaning for each type:
607
608 (type) (konst)
609 CT_MIPS_REL32 Address in data
610 CT_MIPS_WORD Address in word (XXX)
611 CT_MIPS_GPHI_LO GP - vaddr
612 CT_MIPS_JMPAD Address to jump
613 */
614
615 #define CRT_MIPS_REL32 0xa
616 #define CRT_MIPS_WORD 0xb
617 #define CRT_MIPS_GPHI_LO 0xc
618 #define CRT_MIPS_JMPAD 0xd
619
620 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
621 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
622 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
623 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
624 \f
625 /* The structure of the runtime procedure descriptor created by the
626 loader for use by the static exception system. */
627
628 typedef struct runtime_pdr {
629 bfd_vma adr; /* Memory address of start of procedure. */
630 long regmask; /* Save register mask. */
631 long regoffset; /* Save register offset. */
632 long fregmask; /* Save floating point register mask. */
633 long fregoffset; /* Save floating point register offset. */
634 long frameoffset; /* Frame size. */
635 short framereg; /* Frame pointer register. */
636 short pcreg; /* Offset or reg of return pc. */
637 long irpss; /* Index into the runtime string table. */
638 long reserved;
639 struct exception_info *exception_info;/* Pointer to exception array. */
640 } RPDR, *pRPDR;
641 #define cbRPDR sizeof (RPDR)
642 #define rpdNil ((pRPDR) 0)
643 \f
644 static struct mips_got_entry *mips_elf_create_local_got_entry
645 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
646 struct mips_elf_link_hash_entry *, int);
647 static bfd_boolean mips_elf_sort_hash_table_f
648 (struct mips_elf_link_hash_entry *, void *);
649 static bfd_vma mips_elf_high
650 (bfd_vma);
651 static bfd_boolean mips_elf_create_dynamic_relocation
652 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
653 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
654 bfd_vma *, asection *);
655 static hashval_t mips_elf_got_entry_hash
656 (const void *);
657 static bfd_vma mips_elf_adjust_gp
658 (bfd *, struct mips_got_info *, bfd *);
659 static struct mips_got_info *mips_elf_got_for_ibfd
660 (struct mips_got_info *, bfd *);
661
662 /* This will be used when we sort the dynamic relocation records. */
663 static bfd *reldyn_sorting_bfd;
664
665 /* True if ABFD is for CPUs with load interlocking that include
666 non-MIPS1 CPUs and R3900. */
667 #define LOAD_INTERLOCKS_P(abfd) \
668 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
669 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
670
671 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
672 This should be safe for all architectures. We enable this predicate
673 for RM9000 for now. */
674 #define JAL_TO_BAL_P(abfd) \
675 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
676
677 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
678 This should be safe for all architectures. We enable this predicate for
679 all CPUs. */
680 #define JALR_TO_BAL_P(abfd) 1
681
682 /* True if ABFD is a PIC object. */
683 #define PIC_OBJECT_P(abfd) \
684 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
685
686 /* Nonzero if ABFD is using the N32 ABI. */
687 #define ABI_N32_P(abfd) \
688 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
689
690 /* Nonzero if ABFD is using the N64 ABI. */
691 #define ABI_64_P(abfd) \
692 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
693
694 /* Nonzero if ABFD is using NewABI conventions. */
695 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
696
697 /* The IRIX compatibility level we are striving for. */
698 #define IRIX_COMPAT(abfd) \
699 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
700
701 /* Whether we are trying to be compatible with IRIX at all. */
702 #define SGI_COMPAT(abfd) \
703 (IRIX_COMPAT (abfd) != ict_none)
704
705 /* The name of the options section. */
706 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
707 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
708
709 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
710 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
711 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
712 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
713
714 /* Whether the section is readonly. */
715 #define MIPS_ELF_READONLY_SECTION(sec) \
716 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
717 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
718
719 /* The name of the stub section. */
720 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
721
722 /* The size of an external REL relocation. */
723 #define MIPS_ELF_REL_SIZE(abfd) \
724 (get_elf_backend_data (abfd)->s->sizeof_rel)
725
726 /* The size of an external RELA relocation. */
727 #define MIPS_ELF_RELA_SIZE(abfd) \
728 (get_elf_backend_data (abfd)->s->sizeof_rela)
729
730 /* The size of an external dynamic table entry. */
731 #define MIPS_ELF_DYN_SIZE(abfd) \
732 (get_elf_backend_data (abfd)->s->sizeof_dyn)
733
734 /* The size of a GOT entry. */
735 #define MIPS_ELF_GOT_SIZE(abfd) \
736 (get_elf_backend_data (abfd)->s->arch_size / 8)
737
738 /* The size of a symbol-table entry. */
739 #define MIPS_ELF_SYM_SIZE(abfd) \
740 (get_elf_backend_data (abfd)->s->sizeof_sym)
741
742 /* The default alignment for sections, as a power of two. */
743 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
744 (get_elf_backend_data (abfd)->s->log_file_align)
745
746 /* Get word-sized data. */
747 #define MIPS_ELF_GET_WORD(abfd, ptr) \
748 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
749
750 /* Put out word-sized data. */
751 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
752 (ABI_64_P (abfd) \
753 ? bfd_put_64 (abfd, val, ptr) \
754 : bfd_put_32 (abfd, val, ptr))
755
756 /* The opcode for word-sized loads (LW or LD). */
757 #define MIPS_ELF_LOAD_WORD(abfd) \
758 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
759
760 /* Add a dynamic symbol table-entry. */
761 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
762 _bfd_elf_add_dynamic_entry (info, tag, val)
763
764 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
765 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
766
767 /* Determine whether the internal relocation of index REL_IDX is REL
768 (zero) or RELA (non-zero). The assumption is that, if there are
769 two relocation sections for this section, one of them is REL and
770 the other is RELA. If the index of the relocation we're testing is
771 in range for the first relocation section, check that the external
772 relocation size is that for RELA. It is also assumed that, if
773 rel_idx is not in range for the first section, and this first
774 section contains REL relocs, then the relocation is in the second
775 section, that is RELA. */
776 #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \
777 ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \
778 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \
779 > (bfd_vma)(rel_idx)) \
780 == (elf_section_data (sec)->rel_hdr.sh_entsize \
781 == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \
782 : sizeof (Elf32_External_Rela))))
783
784 /* The name of the dynamic relocation section. */
785 #define MIPS_ELF_REL_DYN_NAME(INFO) \
786 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
787
788 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
789 from smaller values. Start with zero, widen, *then* decrement. */
790 #define MINUS_ONE (((bfd_vma)0) - 1)
791 #define MINUS_TWO (((bfd_vma)0) - 2)
792
793 /* The value to write into got[1] for SVR4 targets, to identify it is
794 a GNU object. The dynamic linker can then use got[1] to store the
795 module pointer. */
796 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
797 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
798
799 /* The offset of $gp from the beginning of the .got section. */
800 #define ELF_MIPS_GP_OFFSET(INFO) \
801 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
802
803 /* The maximum size of the GOT for it to be addressable using 16-bit
804 offsets from $gp. */
805 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
806
807 /* Instructions which appear in a stub. */
808 #define STUB_LW(abfd) \
809 ((ABI_64_P (abfd) \
810 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
811 : 0x8f998010)) /* lw t9,0x8010(gp) */
812 #define STUB_MOVE(abfd) \
813 ((ABI_64_P (abfd) \
814 ? 0x03e0782d /* daddu t7,ra */ \
815 : 0x03e07821)) /* addu t7,ra */
816 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
817 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
818 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
819 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
820 #define STUB_LI16S(abfd, VAL) \
821 ((ABI_64_P (abfd) \
822 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
823 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
824
825 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
826 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
827
828 /* The name of the dynamic interpreter. This is put in the .interp
829 section. */
830
831 #define ELF_DYNAMIC_INTERPRETER(abfd) \
832 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
833 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
834 : "/usr/lib/libc.so.1")
835
836 #ifdef BFD64
837 #define MNAME(bfd,pre,pos) \
838 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
839 #define ELF_R_SYM(bfd, i) \
840 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
841 #define ELF_R_TYPE(bfd, i) \
842 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
843 #define ELF_R_INFO(bfd, s, t) \
844 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
845 #else
846 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
847 #define ELF_R_SYM(bfd, i) \
848 (ELF32_R_SYM (i))
849 #define ELF_R_TYPE(bfd, i) \
850 (ELF32_R_TYPE (i))
851 #define ELF_R_INFO(bfd, s, t) \
852 (ELF32_R_INFO (s, t))
853 #endif
854 \f
855 /* The mips16 compiler uses a couple of special sections to handle
856 floating point arguments.
857
858 Section names that look like .mips16.fn.FNNAME contain stubs that
859 copy floating point arguments from the fp regs to the gp regs and
860 then jump to FNNAME. If any 32 bit function calls FNNAME, the
861 call should be redirected to the stub instead. If no 32 bit
862 function calls FNNAME, the stub should be discarded. We need to
863 consider any reference to the function, not just a call, because
864 if the address of the function is taken we will need the stub,
865 since the address might be passed to a 32 bit function.
866
867 Section names that look like .mips16.call.FNNAME contain stubs
868 that copy floating point arguments from the gp regs to the fp
869 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
870 then any 16 bit function that calls FNNAME should be redirected
871 to the stub instead. If FNNAME is not a 32 bit function, the
872 stub should be discarded.
873
874 .mips16.call.fp.FNNAME sections are similar, but contain stubs
875 which call FNNAME and then copy the return value from the fp regs
876 to the gp regs. These stubs store the return value in $18 while
877 calling FNNAME; any function which might call one of these stubs
878 must arrange to save $18 around the call. (This case is not
879 needed for 32 bit functions that call 16 bit functions, because
880 16 bit functions always return floating point values in both
881 $f0/$f1 and $2/$3.)
882
883 Note that in all cases FNNAME might be defined statically.
884 Therefore, FNNAME is not used literally. Instead, the relocation
885 information will indicate which symbol the section is for.
886
887 We record any stubs that we find in the symbol table. */
888
889 #define FN_STUB ".mips16.fn."
890 #define CALL_STUB ".mips16.call."
891 #define CALL_FP_STUB ".mips16.call.fp."
892
893 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
894 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
895 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
896 \f
897 /* The format of the first PLT entry in an O32 executable. */
898 static const bfd_vma mips_o32_exec_plt0_entry[] =
899 {
900 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
901 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
902 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
903 0x031cc023, /* subu $24, $24, $28 */
904 0x03e07821, /* move $15, $31 */
905 0x0018c082, /* srl $24, $24, 2 */
906 0x0320f809, /* jalr $25 */
907 0x2718fffe /* subu $24, $24, 2 */
908 };
909
910 /* The format of the first PLT entry in an N32 executable. Different
911 because gp ($28) is not available; we use t2 ($14) instead. */
912 static const bfd_vma mips_n32_exec_plt0_entry[] =
913 {
914 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
915 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
916 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
917 0x030ec023, /* subu $24, $24, $14 */
918 0x03e07821, /* move $15, $31 */
919 0x0018c082, /* srl $24, $24, 2 */
920 0x0320f809, /* jalr $25 */
921 0x2718fffe /* subu $24, $24, 2 */
922 };
923
924 /* The format of the first PLT entry in an N64 executable. Different
925 from N32 because of the increased size of GOT entries. */
926 static const bfd_vma mips_n64_exec_plt0_entry[] =
927 {
928 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
929 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
930 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
931 0x030ec023, /* subu $24, $24, $14 */
932 0x03e07821, /* move $15, $31 */
933 0x0018c0c2, /* srl $24, $24, 3 */
934 0x0320f809, /* jalr $25 */
935 0x2718fffe /* subu $24, $24, 2 */
936 };
937
938 /* The format of subsequent PLT entries. */
939 static const bfd_vma mips_exec_plt_entry[] =
940 {
941 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
942 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
943 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
944 0x03200008 /* jr $25 */
945 };
946
947 /* The format of the first PLT entry in a VxWorks executable. */
948 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
949 {
950 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
951 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
952 0x8f390008, /* lw t9, 8(t9) */
953 0x00000000, /* nop */
954 0x03200008, /* jr t9 */
955 0x00000000 /* nop */
956 };
957
958 /* The format of subsequent PLT entries. */
959 static const bfd_vma mips_vxworks_exec_plt_entry[] =
960 {
961 0x10000000, /* b .PLT_resolver */
962 0x24180000, /* li t8, <pltindex> */
963 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
964 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
965 0x8f390000, /* lw t9, 0(t9) */
966 0x00000000, /* nop */
967 0x03200008, /* jr t9 */
968 0x00000000 /* nop */
969 };
970
971 /* The format of the first PLT entry in a VxWorks shared object. */
972 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
973 {
974 0x8f990008, /* lw t9, 8(gp) */
975 0x00000000, /* nop */
976 0x03200008, /* jr t9 */
977 0x00000000, /* nop */
978 0x00000000, /* nop */
979 0x00000000 /* nop */
980 };
981
982 /* The format of subsequent PLT entries. */
983 static const bfd_vma mips_vxworks_shared_plt_entry[] =
984 {
985 0x10000000, /* b .PLT_resolver */
986 0x24180000 /* li t8, <pltindex> */
987 };
988 \f
989 /* Look up an entry in a MIPS ELF linker hash table. */
990
991 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
992 ((struct mips_elf_link_hash_entry *) \
993 elf_link_hash_lookup (&(table)->root, (string), (create), \
994 (copy), (follow)))
995
996 /* Traverse a MIPS ELF linker hash table. */
997
998 #define mips_elf_link_hash_traverse(table, func, info) \
999 (elf_link_hash_traverse \
1000 (&(table)->root, \
1001 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1002 (info)))
1003
1004 /* Get the MIPS ELF linker hash table from a link_info structure. */
1005
1006 #define mips_elf_hash_table(p) \
1007 ((struct mips_elf_link_hash_table *) ((p)->hash))
1008
1009 /* Find the base offsets for thread-local storage in this object,
1010 for GD/LD and IE/LE respectively. */
1011
1012 #define TP_OFFSET 0x7000
1013 #define DTP_OFFSET 0x8000
1014
1015 static bfd_vma
1016 dtprel_base (struct bfd_link_info *info)
1017 {
1018 /* If tls_sec is NULL, we should have signalled an error already. */
1019 if (elf_hash_table (info)->tls_sec == NULL)
1020 return 0;
1021 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1022 }
1023
1024 static bfd_vma
1025 tprel_base (struct bfd_link_info *info)
1026 {
1027 /* If tls_sec is NULL, we should have signalled an error already. */
1028 if (elf_hash_table (info)->tls_sec == NULL)
1029 return 0;
1030 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1031 }
1032
1033 /* Create an entry in a MIPS ELF linker hash table. */
1034
1035 static struct bfd_hash_entry *
1036 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1037 struct bfd_hash_table *table, const char *string)
1038 {
1039 struct mips_elf_link_hash_entry *ret =
1040 (struct mips_elf_link_hash_entry *) entry;
1041
1042 /* Allocate the structure if it has not already been allocated by a
1043 subclass. */
1044 if (ret == NULL)
1045 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1046 if (ret == NULL)
1047 return (struct bfd_hash_entry *) ret;
1048
1049 /* Call the allocation method of the superclass. */
1050 ret = ((struct mips_elf_link_hash_entry *)
1051 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1052 table, string));
1053 if (ret != NULL)
1054 {
1055 /* Set local fields. */
1056 memset (&ret->esym, 0, sizeof (EXTR));
1057 /* We use -2 as a marker to indicate that the information has
1058 not been set. -1 means there is no associated ifd. */
1059 ret->esym.ifd = -2;
1060 ret->la25_stub = 0;
1061 ret->possibly_dynamic_relocs = 0;
1062 ret->fn_stub = NULL;
1063 ret->call_stub = NULL;
1064 ret->call_fp_stub = NULL;
1065 ret->tls_type = GOT_NORMAL;
1066 ret->global_got_area = GGA_NONE;
1067 ret->readonly_reloc = FALSE;
1068 ret->has_static_relocs = FALSE;
1069 ret->no_fn_stub = FALSE;
1070 ret->need_fn_stub = FALSE;
1071 ret->has_nonpic_branches = FALSE;
1072 ret->needs_lazy_stub = FALSE;
1073 }
1074
1075 return (struct bfd_hash_entry *) ret;
1076 }
1077
1078 bfd_boolean
1079 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1080 {
1081 if (!sec->used_by_bfd)
1082 {
1083 struct _mips_elf_section_data *sdata;
1084 bfd_size_type amt = sizeof (*sdata);
1085
1086 sdata = bfd_zalloc (abfd, amt);
1087 if (sdata == NULL)
1088 return FALSE;
1089 sec->used_by_bfd = sdata;
1090 }
1091
1092 return _bfd_elf_new_section_hook (abfd, sec);
1093 }
1094 \f
1095 /* Read ECOFF debugging information from a .mdebug section into a
1096 ecoff_debug_info structure. */
1097
1098 bfd_boolean
1099 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1100 struct ecoff_debug_info *debug)
1101 {
1102 HDRR *symhdr;
1103 const struct ecoff_debug_swap *swap;
1104 char *ext_hdr;
1105
1106 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1107 memset (debug, 0, sizeof (*debug));
1108
1109 ext_hdr = bfd_malloc (swap->external_hdr_size);
1110 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1111 goto error_return;
1112
1113 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1114 swap->external_hdr_size))
1115 goto error_return;
1116
1117 symhdr = &debug->symbolic_header;
1118 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1119
1120 /* The symbolic header contains absolute file offsets and sizes to
1121 read. */
1122 #define READ(ptr, offset, count, size, type) \
1123 if (symhdr->count == 0) \
1124 debug->ptr = NULL; \
1125 else \
1126 { \
1127 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1128 debug->ptr = bfd_malloc (amt); \
1129 if (debug->ptr == NULL) \
1130 goto error_return; \
1131 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1132 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1133 goto error_return; \
1134 }
1135
1136 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1137 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1138 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1139 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1140 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1141 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1142 union aux_ext *);
1143 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1144 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1145 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1146 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1147 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1148 #undef READ
1149
1150 debug->fdr = NULL;
1151
1152 return TRUE;
1153
1154 error_return:
1155 if (ext_hdr != NULL)
1156 free (ext_hdr);
1157 if (debug->line != NULL)
1158 free (debug->line);
1159 if (debug->external_dnr != NULL)
1160 free (debug->external_dnr);
1161 if (debug->external_pdr != NULL)
1162 free (debug->external_pdr);
1163 if (debug->external_sym != NULL)
1164 free (debug->external_sym);
1165 if (debug->external_opt != NULL)
1166 free (debug->external_opt);
1167 if (debug->external_aux != NULL)
1168 free (debug->external_aux);
1169 if (debug->ss != NULL)
1170 free (debug->ss);
1171 if (debug->ssext != NULL)
1172 free (debug->ssext);
1173 if (debug->external_fdr != NULL)
1174 free (debug->external_fdr);
1175 if (debug->external_rfd != NULL)
1176 free (debug->external_rfd);
1177 if (debug->external_ext != NULL)
1178 free (debug->external_ext);
1179 return FALSE;
1180 }
1181 \f
1182 /* Swap RPDR (runtime procedure table entry) for output. */
1183
1184 static void
1185 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1186 {
1187 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1188 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1189 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1190 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1191 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1192 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1193
1194 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1195 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1196
1197 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1198 }
1199
1200 /* Create a runtime procedure table from the .mdebug section. */
1201
1202 static bfd_boolean
1203 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1204 struct bfd_link_info *info, asection *s,
1205 struct ecoff_debug_info *debug)
1206 {
1207 const struct ecoff_debug_swap *swap;
1208 HDRR *hdr = &debug->symbolic_header;
1209 RPDR *rpdr, *rp;
1210 struct rpdr_ext *erp;
1211 void *rtproc;
1212 struct pdr_ext *epdr;
1213 struct sym_ext *esym;
1214 char *ss, **sv;
1215 char *str;
1216 bfd_size_type size;
1217 bfd_size_type count;
1218 unsigned long sindex;
1219 unsigned long i;
1220 PDR pdr;
1221 SYMR sym;
1222 const char *no_name_func = _("static procedure (no name)");
1223
1224 epdr = NULL;
1225 rpdr = NULL;
1226 esym = NULL;
1227 ss = NULL;
1228 sv = NULL;
1229
1230 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1231
1232 sindex = strlen (no_name_func) + 1;
1233 count = hdr->ipdMax;
1234 if (count > 0)
1235 {
1236 size = swap->external_pdr_size;
1237
1238 epdr = bfd_malloc (size * count);
1239 if (epdr == NULL)
1240 goto error_return;
1241
1242 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1243 goto error_return;
1244
1245 size = sizeof (RPDR);
1246 rp = rpdr = bfd_malloc (size * count);
1247 if (rpdr == NULL)
1248 goto error_return;
1249
1250 size = sizeof (char *);
1251 sv = bfd_malloc (size * count);
1252 if (sv == NULL)
1253 goto error_return;
1254
1255 count = hdr->isymMax;
1256 size = swap->external_sym_size;
1257 esym = bfd_malloc (size * count);
1258 if (esym == NULL)
1259 goto error_return;
1260
1261 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1262 goto error_return;
1263
1264 count = hdr->issMax;
1265 ss = bfd_malloc (count);
1266 if (ss == NULL)
1267 goto error_return;
1268 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1269 goto error_return;
1270
1271 count = hdr->ipdMax;
1272 for (i = 0; i < (unsigned long) count; i++, rp++)
1273 {
1274 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1275 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1276 rp->adr = sym.value;
1277 rp->regmask = pdr.regmask;
1278 rp->regoffset = pdr.regoffset;
1279 rp->fregmask = pdr.fregmask;
1280 rp->fregoffset = pdr.fregoffset;
1281 rp->frameoffset = pdr.frameoffset;
1282 rp->framereg = pdr.framereg;
1283 rp->pcreg = pdr.pcreg;
1284 rp->irpss = sindex;
1285 sv[i] = ss + sym.iss;
1286 sindex += strlen (sv[i]) + 1;
1287 }
1288 }
1289
1290 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1291 size = BFD_ALIGN (size, 16);
1292 rtproc = bfd_alloc (abfd, size);
1293 if (rtproc == NULL)
1294 {
1295 mips_elf_hash_table (info)->procedure_count = 0;
1296 goto error_return;
1297 }
1298
1299 mips_elf_hash_table (info)->procedure_count = count + 2;
1300
1301 erp = rtproc;
1302 memset (erp, 0, sizeof (struct rpdr_ext));
1303 erp++;
1304 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1305 strcpy (str, no_name_func);
1306 str += strlen (no_name_func) + 1;
1307 for (i = 0; i < count; i++)
1308 {
1309 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1310 strcpy (str, sv[i]);
1311 str += strlen (sv[i]) + 1;
1312 }
1313 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1314
1315 /* Set the size and contents of .rtproc section. */
1316 s->size = size;
1317 s->contents = rtproc;
1318
1319 /* Skip this section later on (I don't think this currently
1320 matters, but someday it might). */
1321 s->map_head.link_order = NULL;
1322
1323 if (epdr != NULL)
1324 free (epdr);
1325 if (rpdr != NULL)
1326 free (rpdr);
1327 if (esym != NULL)
1328 free (esym);
1329 if (ss != NULL)
1330 free (ss);
1331 if (sv != NULL)
1332 free (sv);
1333
1334 return TRUE;
1335
1336 error_return:
1337 if (epdr != NULL)
1338 free (epdr);
1339 if (rpdr != NULL)
1340 free (rpdr);
1341 if (esym != NULL)
1342 free (esym);
1343 if (ss != NULL)
1344 free (ss);
1345 if (sv != NULL)
1346 free (sv);
1347 return FALSE;
1348 }
1349 \f
1350 /* We're going to create a stub for H. Create a symbol for the stub's
1351 value and size, to help make the disassembly easier to read. */
1352
1353 static bfd_boolean
1354 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1355 struct mips_elf_link_hash_entry *h,
1356 const char *prefix, asection *s, bfd_vma value,
1357 bfd_vma size)
1358 {
1359 struct bfd_link_hash_entry *bh;
1360 struct elf_link_hash_entry *elfh;
1361 const char *name;
1362
1363 /* Create a new symbol. */
1364 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1365 bh = NULL;
1366 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1367 BSF_LOCAL, s, value, NULL,
1368 TRUE, FALSE, &bh))
1369 return FALSE;
1370
1371 /* Make it a local function. */
1372 elfh = (struct elf_link_hash_entry *) bh;
1373 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1374 elfh->size = size;
1375 elfh->forced_local = 1;
1376 return TRUE;
1377 }
1378
1379 /* We're about to redefine H. Create a symbol to represent H's
1380 current value and size, to help make the disassembly easier
1381 to read. */
1382
1383 static bfd_boolean
1384 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1385 struct mips_elf_link_hash_entry *h,
1386 const char *prefix)
1387 {
1388 struct bfd_link_hash_entry *bh;
1389 struct elf_link_hash_entry *elfh;
1390 const char *name;
1391 asection *s;
1392 bfd_vma value;
1393
1394 /* Read the symbol's value. */
1395 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1396 || h->root.root.type == bfd_link_hash_defweak);
1397 s = h->root.root.u.def.section;
1398 value = h->root.root.u.def.value;
1399
1400 /* Create a new symbol. */
1401 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1402 bh = NULL;
1403 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1404 BSF_LOCAL, s, value, NULL,
1405 TRUE, FALSE, &bh))
1406 return FALSE;
1407
1408 /* Make it local and copy the other attributes from H. */
1409 elfh = (struct elf_link_hash_entry *) bh;
1410 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1411 elfh->other = h->root.other;
1412 elfh->size = h->root.size;
1413 elfh->forced_local = 1;
1414 return TRUE;
1415 }
1416
1417 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1418 function rather than to a hard-float stub. */
1419
1420 static bfd_boolean
1421 section_allows_mips16_refs_p (asection *section)
1422 {
1423 const char *name;
1424
1425 name = bfd_get_section_name (section->owner, section);
1426 return (FN_STUB_P (name)
1427 || CALL_STUB_P (name)
1428 || CALL_FP_STUB_P (name)
1429 || strcmp (name, ".pdr") == 0);
1430 }
1431
1432 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1433 stub section of some kind. Return the R_SYMNDX of the target
1434 function, or 0 if we can't decide which function that is. */
1435
1436 static unsigned long
1437 mips16_stub_symndx (asection *sec ATTRIBUTE_UNUSED,
1438 const Elf_Internal_Rela *relocs,
1439 const Elf_Internal_Rela *relend)
1440 {
1441 const Elf_Internal_Rela *rel;
1442
1443 /* Trust the first R_MIPS_NONE relocation, if any. */
1444 for (rel = relocs; rel < relend; rel++)
1445 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1446 return ELF_R_SYM (sec->owner, rel->r_info);
1447
1448 /* Otherwise trust the first relocation, whatever its kind. This is
1449 the traditional behavior. */
1450 if (relocs < relend)
1451 return ELF_R_SYM (sec->owner, relocs->r_info);
1452
1453 return 0;
1454 }
1455
1456 /* Check the mips16 stubs for a particular symbol, and see if we can
1457 discard them. */
1458
1459 static void
1460 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1461 struct mips_elf_link_hash_entry *h)
1462 {
1463 /* Dynamic symbols must use the standard call interface, in case other
1464 objects try to call them. */
1465 if (h->fn_stub != NULL
1466 && h->root.dynindx != -1)
1467 {
1468 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1469 h->need_fn_stub = TRUE;
1470 }
1471
1472 if (h->fn_stub != NULL
1473 && ! h->need_fn_stub)
1474 {
1475 /* We don't need the fn_stub; the only references to this symbol
1476 are 16 bit calls. Clobber the size to 0 to prevent it from
1477 being included in the link. */
1478 h->fn_stub->size = 0;
1479 h->fn_stub->flags &= ~SEC_RELOC;
1480 h->fn_stub->reloc_count = 0;
1481 h->fn_stub->flags |= SEC_EXCLUDE;
1482 }
1483
1484 if (h->call_stub != NULL
1485 && ELF_ST_IS_MIPS16 (h->root.other))
1486 {
1487 /* We don't need the call_stub; this is a 16 bit function, so
1488 calls from other 16 bit functions are OK. Clobber the size
1489 to 0 to prevent it from being included in the link. */
1490 h->call_stub->size = 0;
1491 h->call_stub->flags &= ~SEC_RELOC;
1492 h->call_stub->reloc_count = 0;
1493 h->call_stub->flags |= SEC_EXCLUDE;
1494 }
1495
1496 if (h->call_fp_stub != NULL
1497 && ELF_ST_IS_MIPS16 (h->root.other))
1498 {
1499 /* We don't need the call_stub; this is a 16 bit function, so
1500 calls from other 16 bit functions are OK. Clobber the size
1501 to 0 to prevent it from being included in the link. */
1502 h->call_fp_stub->size = 0;
1503 h->call_fp_stub->flags &= ~SEC_RELOC;
1504 h->call_fp_stub->reloc_count = 0;
1505 h->call_fp_stub->flags |= SEC_EXCLUDE;
1506 }
1507 }
1508
1509 /* Hashtable callbacks for mips_elf_la25_stubs. */
1510
1511 static hashval_t
1512 mips_elf_la25_stub_hash (const void *entry_)
1513 {
1514 const struct mips_elf_la25_stub *entry;
1515
1516 entry = (struct mips_elf_la25_stub *) entry_;
1517 return entry->h->root.root.u.def.section->id
1518 + entry->h->root.root.u.def.value;
1519 }
1520
1521 static int
1522 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1523 {
1524 const struct mips_elf_la25_stub *entry1, *entry2;
1525
1526 entry1 = (struct mips_elf_la25_stub *) entry1_;
1527 entry2 = (struct mips_elf_la25_stub *) entry2_;
1528 return ((entry1->h->root.root.u.def.section
1529 == entry2->h->root.root.u.def.section)
1530 && (entry1->h->root.root.u.def.value
1531 == entry2->h->root.root.u.def.value));
1532 }
1533
1534 /* Called by the linker to set up the la25 stub-creation code. FN is
1535 the linker's implementation of add_stub_function. Return true on
1536 success. */
1537
1538 bfd_boolean
1539 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1540 asection *(*fn) (const char *, asection *,
1541 asection *))
1542 {
1543 struct mips_elf_link_hash_table *htab;
1544
1545 htab = mips_elf_hash_table (info);
1546 htab->add_stub_section = fn;
1547 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1548 mips_elf_la25_stub_eq, NULL);
1549 if (htab->la25_stubs == NULL)
1550 return FALSE;
1551
1552 return TRUE;
1553 }
1554
1555 /* Return true if H is a locally-defined PIC function, in the sense
1556 that it might need $25 to be valid on entry. Note that MIPS16
1557 functions never need $25 to be valid on entry; they set up $gp
1558 using PC-relative instructions instead. */
1559
1560 static bfd_boolean
1561 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1562 {
1563 return ((h->root.root.type == bfd_link_hash_defined
1564 || h->root.root.type == bfd_link_hash_defweak)
1565 && h->root.def_regular
1566 && !bfd_is_abs_section (h->root.root.u.def.section)
1567 && !ELF_ST_IS_MIPS16 (h->root.other)
1568 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1569 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1570 }
1571
1572 /* STUB describes an la25 stub that we have decided to implement
1573 by inserting an LUI/ADDIU pair before the target function.
1574 Create the section and redirect the function symbol to it. */
1575
1576 static bfd_boolean
1577 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1578 struct bfd_link_info *info)
1579 {
1580 struct mips_elf_link_hash_table *htab;
1581 char *name;
1582 asection *s, *input_section;
1583 unsigned int align;
1584
1585 htab = mips_elf_hash_table (info);
1586
1587 /* Create a unique name for the new section. */
1588 name = bfd_malloc (11 + sizeof (".text.stub."));
1589 if (name == NULL)
1590 return FALSE;
1591 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1592
1593 /* Create the section. */
1594 input_section = stub->h->root.root.u.def.section;
1595 s = htab->add_stub_section (name, input_section,
1596 input_section->output_section);
1597 if (s == NULL)
1598 return FALSE;
1599
1600 /* Make sure that any padding goes before the stub. */
1601 align = input_section->alignment_power;
1602 if (!bfd_set_section_alignment (s->owner, s, align))
1603 return FALSE;
1604 if (align > 3)
1605 s->size = (1 << align) - 8;
1606
1607 /* Create a symbol for the stub. */
1608 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1609 stub->stub_section = s;
1610 stub->offset = s->size;
1611
1612 /* Allocate room for it. */
1613 s->size += 8;
1614 return TRUE;
1615 }
1616
1617 /* STUB describes an la25 stub that we have decided to implement
1618 with a separate trampoline. Allocate room for it and redirect
1619 the function symbol to it. */
1620
1621 static bfd_boolean
1622 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1623 struct bfd_link_info *info)
1624 {
1625 struct mips_elf_link_hash_table *htab;
1626 asection *s;
1627
1628 htab = mips_elf_hash_table (info);
1629
1630 /* Create a trampoline section, if we haven't already. */
1631 s = htab->strampoline;
1632 if (s == NULL)
1633 {
1634 asection *input_section = stub->h->root.root.u.def.section;
1635 s = htab->add_stub_section (".text", NULL,
1636 input_section->output_section);
1637 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1638 return FALSE;
1639 htab->strampoline = s;
1640 }
1641
1642 /* Create a symbol for the stub. */
1643 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1644 stub->stub_section = s;
1645 stub->offset = s->size;
1646
1647 /* Allocate room for it. */
1648 s->size += 16;
1649 return TRUE;
1650 }
1651
1652 /* H describes a symbol that needs an la25 stub. Make sure that an
1653 appropriate stub exists and point H at it. */
1654
1655 static bfd_boolean
1656 mips_elf_add_la25_stub (struct bfd_link_info *info,
1657 struct mips_elf_link_hash_entry *h)
1658 {
1659 struct mips_elf_link_hash_table *htab;
1660 struct mips_elf_la25_stub search, *stub;
1661 bfd_boolean use_trampoline_p;
1662 asection *s;
1663 bfd_vma value;
1664 void **slot;
1665
1666 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1667 of the section and if we would need no more than 2 nops. */
1668 s = h->root.root.u.def.section;
1669 value = h->root.root.u.def.value;
1670 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1671
1672 /* Describe the stub we want. */
1673 search.stub_section = NULL;
1674 search.offset = 0;
1675 search.h = h;
1676
1677 /* See if we've already created an equivalent stub. */
1678 htab = mips_elf_hash_table (info);
1679 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1680 if (slot == NULL)
1681 return FALSE;
1682
1683 stub = (struct mips_elf_la25_stub *) *slot;
1684 if (stub != NULL)
1685 {
1686 /* We can reuse the existing stub. */
1687 h->la25_stub = stub;
1688 return TRUE;
1689 }
1690
1691 /* Create a permanent copy of ENTRY and add it to the hash table. */
1692 stub = bfd_malloc (sizeof (search));
1693 if (stub == NULL)
1694 return FALSE;
1695 *stub = search;
1696 *slot = stub;
1697
1698 h->la25_stub = stub;
1699 return (use_trampoline_p
1700 ? mips_elf_add_la25_trampoline (stub, info)
1701 : mips_elf_add_la25_intro (stub, info));
1702 }
1703
1704 /* A mips_elf_link_hash_traverse callback that is called before sizing
1705 sections. DATA points to a mips_htab_traverse_info structure. */
1706
1707 static bfd_boolean
1708 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1709 {
1710 struct mips_htab_traverse_info *hti;
1711
1712 hti = (struct mips_htab_traverse_info *) data;
1713 if (h->root.root.type == bfd_link_hash_warning)
1714 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1715
1716 if (!hti->info->relocatable)
1717 mips_elf_check_mips16_stubs (hti->info, h);
1718
1719 if (mips_elf_local_pic_function_p (h))
1720 {
1721 /* H is a function that might need $25 to be valid on entry.
1722 If we're creating a non-PIC relocatable object, mark H as
1723 being PIC. If we're creating a non-relocatable object with
1724 non-PIC branches and jumps to H, make sure that H has an la25
1725 stub. */
1726 if (hti->info->relocatable)
1727 {
1728 if (!PIC_OBJECT_P (hti->output_bfd))
1729 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1730 }
1731 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1732 {
1733 hti->error = TRUE;
1734 return FALSE;
1735 }
1736 }
1737 return TRUE;
1738 }
1739 \f
1740 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1741 Most mips16 instructions are 16 bits, but these instructions
1742 are 32 bits.
1743
1744 The format of these instructions is:
1745
1746 +--------------+--------------------------------+
1747 | JALX | X| Imm 20:16 | Imm 25:21 |
1748 +--------------+--------------------------------+
1749 | Immediate 15:0 |
1750 +-----------------------------------------------+
1751
1752 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1753 Note that the immediate value in the first word is swapped.
1754
1755 When producing a relocatable object file, R_MIPS16_26 is
1756 handled mostly like R_MIPS_26. In particular, the addend is
1757 stored as a straight 26-bit value in a 32-bit instruction.
1758 (gas makes life simpler for itself by never adjusting a
1759 R_MIPS16_26 reloc to be against a section, so the addend is
1760 always zero). However, the 32 bit instruction is stored as 2
1761 16-bit values, rather than a single 32-bit value. In a
1762 big-endian file, the result is the same; in a little-endian
1763 file, the two 16-bit halves of the 32 bit value are swapped.
1764 This is so that a disassembler can recognize the jal
1765 instruction.
1766
1767 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1768 instruction stored as two 16-bit values. The addend A is the
1769 contents of the targ26 field. The calculation is the same as
1770 R_MIPS_26. When storing the calculated value, reorder the
1771 immediate value as shown above, and don't forget to store the
1772 value as two 16-bit values.
1773
1774 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1775 defined as
1776
1777 big-endian:
1778 +--------+----------------------+
1779 | | |
1780 | | targ26-16 |
1781 |31 26|25 0|
1782 +--------+----------------------+
1783
1784 little-endian:
1785 +----------+------+-------------+
1786 | | | |
1787 | sub1 | | sub2 |
1788 |0 9|10 15|16 31|
1789 +----------+--------------------+
1790 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1791 ((sub1 << 16) | sub2)).
1792
1793 When producing a relocatable object file, the calculation is
1794 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1795 When producing a fully linked file, the calculation is
1796 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1797 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1798
1799 The table below lists the other MIPS16 instruction relocations.
1800 Each one is calculated in the same way as the non-MIPS16 relocation
1801 given on the right, but using the extended MIPS16 layout of 16-bit
1802 immediate fields:
1803
1804 R_MIPS16_GPREL R_MIPS_GPREL16
1805 R_MIPS16_GOT16 R_MIPS_GOT16
1806 R_MIPS16_CALL16 R_MIPS_CALL16
1807 R_MIPS16_HI16 R_MIPS_HI16
1808 R_MIPS16_LO16 R_MIPS_LO16
1809
1810 A typical instruction will have a format like this:
1811
1812 +--------------+--------------------------------+
1813 | EXTEND | Imm 10:5 | Imm 15:11 |
1814 +--------------+--------------------------------+
1815 | Major | rx | ry | Imm 4:0 |
1816 +--------------+--------------------------------+
1817
1818 EXTEND is the five bit value 11110. Major is the instruction
1819 opcode.
1820
1821 All we need to do here is shuffle the bits appropriately.
1822 As above, the two 16-bit halves must be swapped on a
1823 little-endian system. */
1824
1825 static inline bfd_boolean
1826 mips16_reloc_p (int r_type)
1827 {
1828 switch (r_type)
1829 {
1830 case R_MIPS16_26:
1831 case R_MIPS16_GPREL:
1832 case R_MIPS16_GOT16:
1833 case R_MIPS16_CALL16:
1834 case R_MIPS16_HI16:
1835 case R_MIPS16_LO16:
1836 return TRUE;
1837
1838 default:
1839 return FALSE;
1840 }
1841 }
1842
1843 static inline bfd_boolean
1844 got16_reloc_p (int r_type)
1845 {
1846 return r_type == R_MIPS_GOT16 || r_type == R_MIPS16_GOT16;
1847 }
1848
1849 static inline bfd_boolean
1850 call16_reloc_p (int r_type)
1851 {
1852 return r_type == R_MIPS_CALL16 || r_type == R_MIPS16_CALL16;
1853 }
1854
1855 static inline bfd_boolean
1856 hi16_reloc_p (int r_type)
1857 {
1858 return r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16;
1859 }
1860
1861 static inline bfd_boolean
1862 lo16_reloc_p (int r_type)
1863 {
1864 return r_type == R_MIPS_LO16 || r_type == R_MIPS16_LO16;
1865 }
1866
1867 static inline bfd_boolean
1868 mips16_call_reloc_p (int r_type)
1869 {
1870 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
1871 }
1872
1873 void
1874 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1875 bfd_boolean jal_shuffle, bfd_byte *data)
1876 {
1877 bfd_vma extend, insn, val;
1878
1879 if (!mips16_reloc_p (r_type))
1880 return;
1881
1882 /* Pick up the mips16 extend instruction and the real instruction. */
1883 extend = bfd_get_16 (abfd, data);
1884 insn = bfd_get_16 (abfd, data + 2);
1885 if (r_type == R_MIPS16_26)
1886 {
1887 if (jal_shuffle)
1888 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1889 | ((extend & 0x1f) << 21) | insn;
1890 else
1891 val = extend << 16 | insn;
1892 }
1893 else
1894 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1895 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1896 bfd_put_32 (abfd, val, data);
1897 }
1898
1899 void
1900 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1901 bfd_boolean jal_shuffle, bfd_byte *data)
1902 {
1903 bfd_vma extend, insn, val;
1904
1905 if (!mips16_reloc_p (r_type))
1906 return;
1907
1908 val = bfd_get_32 (abfd, data);
1909 if (r_type == R_MIPS16_26)
1910 {
1911 if (jal_shuffle)
1912 {
1913 insn = val & 0xffff;
1914 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1915 | ((val >> 21) & 0x1f);
1916 }
1917 else
1918 {
1919 insn = val & 0xffff;
1920 extend = val >> 16;
1921 }
1922 }
1923 else
1924 {
1925 insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1926 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1927 }
1928 bfd_put_16 (abfd, insn, data + 2);
1929 bfd_put_16 (abfd, extend, data);
1930 }
1931
1932 bfd_reloc_status_type
1933 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1934 arelent *reloc_entry, asection *input_section,
1935 bfd_boolean relocatable, void *data, bfd_vma gp)
1936 {
1937 bfd_vma relocation;
1938 bfd_signed_vma val;
1939 bfd_reloc_status_type status;
1940
1941 if (bfd_is_com_section (symbol->section))
1942 relocation = 0;
1943 else
1944 relocation = symbol->value;
1945
1946 relocation += symbol->section->output_section->vma;
1947 relocation += symbol->section->output_offset;
1948
1949 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1950 return bfd_reloc_outofrange;
1951
1952 /* Set val to the offset into the section or symbol. */
1953 val = reloc_entry->addend;
1954
1955 _bfd_mips_elf_sign_extend (val, 16);
1956
1957 /* Adjust val for the final section location and GP value. If we
1958 are producing relocatable output, we don't want to do this for
1959 an external symbol. */
1960 if (! relocatable
1961 || (symbol->flags & BSF_SECTION_SYM) != 0)
1962 val += relocation - gp;
1963
1964 if (reloc_entry->howto->partial_inplace)
1965 {
1966 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1967 (bfd_byte *) data
1968 + reloc_entry->address);
1969 if (status != bfd_reloc_ok)
1970 return status;
1971 }
1972 else
1973 reloc_entry->addend = val;
1974
1975 if (relocatable)
1976 reloc_entry->address += input_section->output_offset;
1977
1978 return bfd_reloc_ok;
1979 }
1980
1981 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1982 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
1983 that contains the relocation field and DATA points to the start of
1984 INPUT_SECTION. */
1985
1986 struct mips_hi16
1987 {
1988 struct mips_hi16 *next;
1989 bfd_byte *data;
1990 asection *input_section;
1991 arelent rel;
1992 };
1993
1994 /* FIXME: This should not be a static variable. */
1995
1996 static struct mips_hi16 *mips_hi16_list;
1997
1998 /* A howto special_function for REL *HI16 relocations. We can only
1999 calculate the correct value once we've seen the partnering
2000 *LO16 relocation, so just save the information for later.
2001
2002 The ABI requires that the *LO16 immediately follow the *HI16.
2003 However, as a GNU extension, we permit an arbitrary number of
2004 *HI16s to be associated with a single *LO16. This significantly
2005 simplies the relocation handling in gcc. */
2006
2007 bfd_reloc_status_type
2008 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2009 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2010 asection *input_section, bfd *output_bfd,
2011 char **error_message ATTRIBUTE_UNUSED)
2012 {
2013 struct mips_hi16 *n;
2014
2015 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2016 return bfd_reloc_outofrange;
2017
2018 n = bfd_malloc (sizeof *n);
2019 if (n == NULL)
2020 return bfd_reloc_outofrange;
2021
2022 n->next = mips_hi16_list;
2023 n->data = data;
2024 n->input_section = input_section;
2025 n->rel = *reloc_entry;
2026 mips_hi16_list = n;
2027
2028 if (output_bfd != NULL)
2029 reloc_entry->address += input_section->output_offset;
2030
2031 return bfd_reloc_ok;
2032 }
2033
2034 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2035 like any other 16-bit relocation when applied to global symbols, but is
2036 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2037
2038 bfd_reloc_status_type
2039 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2040 void *data, asection *input_section,
2041 bfd *output_bfd, char **error_message)
2042 {
2043 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2044 || bfd_is_und_section (bfd_get_section (symbol))
2045 || bfd_is_com_section (bfd_get_section (symbol)))
2046 /* The relocation is against a global symbol. */
2047 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2048 input_section, output_bfd,
2049 error_message);
2050
2051 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2052 input_section, output_bfd, error_message);
2053 }
2054
2055 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2056 is a straightforward 16 bit inplace relocation, but we must deal with
2057 any partnering high-part relocations as well. */
2058
2059 bfd_reloc_status_type
2060 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2061 void *data, asection *input_section,
2062 bfd *output_bfd, char **error_message)
2063 {
2064 bfd_vma vallo;
2065 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2066
2067 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2068 return bfd_reloc_outofrange;
2069
2070 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2071 location);
2072 vallo = bfd_get_32 (abfd, location);
2073 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2074 location);
2075
2076 while (mips_hi16_list != NULL)
2077 {
2078 bfd_reloc_status_type ret;
2079 struct mips_hi16 *hi;
2080
2081 hi = mips_hi16_list;
2082
2083 /* R_MIPS*_GOT16 relocations are something of a special case. We
2084 want to install the addend in the same way as for a R_MIPS*_HI16
2085 relocation (with a rightshift of 16). However, since GOT16
2086 relocations can also be used with global symbols, their howto
2087 has a rightshift of 0. */
2088 if (hi->rel.howto->type == R_MIPS_GOT16)
2089 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2090 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2091 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2092
2093 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2094 carry or borrow will induce a change of +1 or -1 in the high part. */
2095 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2096
2097 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2098 hi->input_section, output_bfd,
2099 error_message);
2100 if (ret != bfd_reloc_ok)
2101 return ret;
2102
2103 mips_hi16_list = hi->next;
2104 free (hi);
2105 }
2106
2107 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2108 input_section, output_bfd,
2109 error_message);
2110 }
2111
2112 /* A generic howto special_function. This calculates and installs the
2113 relocation itself, thus avoiding the oft-discussed problems in
2114 bfd_perform_relocation and bfd_install_relocation. */
2115
2116 bfd_reloc_status_type
2117 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2118 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2119 asection *input_section, bfd *output_bfd,
2120 char **error_message ATTRIBUTE_UNUSED)
2121 {
2122 bfd_signed_vma val;
2123 bfd_reloc_status_type status;
2124 bfd_boolean relocatable;
2125
2126 relocatable = (output_bfd != NULL);
2127
2128 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2129 return bfd_reloc_outofrange;
2130
2131 /* Build up the field adjustment in VAL. */
2132 val = 0;
2133 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2134 {
2135 /* Either we're calculating the final field value or we have a
2136 relocation against a section symbol. Add in the section's
2137 offset or address. */
2138 val += symbol->section->output_section->vma;
2139 val += symbol->section->output_offset;
2140 }
2141
2142 if (!relocatable)
2143 {
2144 /* We're calculating the final field value. Add in the symbol's value
2145 and, if pc-relative, subtract the address of the field itself. */
2146 val += symbol->value;
2147 if (reloc_entry->howto->pc_relative)
2148 {
2149 val -= input_section->output_section->vma;
2150 val -= input_section->output_offset;
2151 val -= reloc_entry->address;
2152 }
2153 }
2154
2155 /* VAL is now the final adjustment. If we're keeping this relocation
2156 in the output file, and if the relocation uses a separate addend,
2157 we just need to add VAL to that addend. Otherwise we need to add
2158 VAL to the relocation field itself. */
2159 if (relocatable && !reloc_entry->howto->partial_inplace)
2160 reloc_entry->addend += val;
2161 else
2162 {
2163 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2164
2165 /* Add in the separate addend, if any. */
2166 val += reloc_entry->addend;
2167
2168 /* Add VAL to the relocation field. */
2169 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2170 location);
2171 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2172 location);
2173 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2174 location);
2175
2176 if (status != bfd_reloc_ok)
2177 return status;
2178 }
2179
2180 if (relocatable)
2181 reloc_entry->address += input_section->output_offset;
2182
2183 return bfd_reloc_ok;
2184 }
2185 \f
2186 /* Swap an entry in a .gptab section. Note that these routines rely
2187 on the equivalence of the two elements of the union. */
2188
2189 static void
2190 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2191 Elf32_gptab *in)
2192 {
2193 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2194 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2195 }
2196
2197 static void
2198 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2199 Elf32_External_gptab *ex)
2200 {
2201 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2202 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2203 }
2204
2205 static void
2206 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2207 Elf32_External_compact_rel *ex)
2208 {
2209 H_PUT_32 (abfd, in->id1, ex->id1);
2210 H_PUT_32 (abfd, in->num, ex->num);
2211 H_PUT_32 (abfd, in->id2, ex->id2);
2212 H_PUT_32 (abfd, in->offset, ex->offset);
2213 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2214 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2215 }
2216
2217 static void
2218 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2219 Elf32_External_crinfo *ex)
2220 {
2221 unsigned long l;
2222
2223 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2224 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2225 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2226 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2227 H_PUT_32 (abfd, l, ex->info);
2228 H_PUT_32 (abfd, in->konst, ex->konst);
2229 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2230 }
2231 \f
2232 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2233 routines swap this structure in and out. They are used outside of
2234 BFD, so they are globally visible. */
2235
2236 void
2237 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2238 Elf32_RegInfo *in)
2239 {
2240 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2241 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2242 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2243 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2244 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2245 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2246 }
2247
2248 void
2249 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2250 Elf32_External_RegInfo *ex)
2251 {
2252 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2253 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2254 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2255 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2256 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2257 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2258 }
2259
2260 /* In the 64 bit ABI, the .MIPS.options section holds register
2261 information in an Elf64_Reginfo structure. These routines swap
2262 them in and out. They are globally visible because they are used
2263 outside of BFD. These routines are here so that gas can call them
2264 without worrying about whether the 64 bit ABI has been included. */
2265
2266 void
2267 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2268 Elf64_Internal_RegInfo *in)
2269 {
2270 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2271 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2272 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2273 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2274 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2275 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2276 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2277 }
2278
2279 void
2280 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2281 Elf64_External_RegInfo *ex)
2282 {
2283 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2284 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2285 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2286 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2287 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2288 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2289 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2290 }
2291
2292 /* Swap in an options header. */
2293
2294 void
2295 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2296 Elf_Internal_Options *in)
2297 {
2298 in->kind = H_GET_8 (abfd, ex->kind);
2299 in->size = H_GET_8 (abfd, ex->size);
2300 in->section = H_GET_16 (abfd, ex->section);
2301 in->info = H_GET_32 (abfd, ex->info);
2302 }
2303
2304 /* Swap out an options header. */
2305
2306 void
2307 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2308 Elf_External_Options *ex)
2309 {
2310 H_PUT_8 (abfd, in->kind, ex->kind);
2311 H_PUT_8 (abfd, in->size, ex->size);
2312 H_PUT_16 (abfd, in->section, ex->section);
2313 H_PUT_32 (abfd, in->info, ex->info);
2314 }
2315 \f
2316 /* This function is called via qsort() to sort the dynamic relocation
2317 entries by increasing r_symndx value. */
2318
2319 static int
2320 sort_dynamic_relocs (const void *arg1, const void *arg2)
2321 {
2322 Elf_Internal_Rela int_reloc1;
2323 Elf_Internal_Rela int_reloc2;
2324 int diff;
2325
2326 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2327 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2328
2329 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2330 if (diff != 0)
2331 return diff;
2332
2333 if (int_reloc1.r_offset < int_reloc2.r_offset)
2334 return -1;
2335 if (int_reloc1.r_offset > int_reloc2.r_offset)
2336 return 1;
2337 return 0;
2338 }
2339
2340 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2341
2342 static int
2343 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2344 const void *arg2 ATTRIBUTE_UNUSED)
2345 {
2346 #ifdef BFD64
2347 Elf_Internal_Rela int_reloc1[3];
2348 Elf_Internal_Rela int_reloc2[3];
2349
2350 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2351 (reldyn_sorting_bfd, arg1, int_reloc1);
2352 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2353 (reldyn_sorting_bfd, arg2, int_reloc2);
2354
2355 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2356 return -1;
2357 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2358 return 1;
2359
2360 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2361 return -1;
2362 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2363 return 1;
2364 return 0;
2365 #else
2366 abort ();
2367 #endif
2368 }
2369
2370
2371 /* This routine is used to write out ECOFF debugging external symbol
2372 information. It is called via mips_elf_link_hash_traverse. The
2373 ECOFF external symbol information must match the ELF external
2374 symbol information. Unfortunately, at this point we don't know
2375 whether a symbol is required by reloc information, so the two
2376 tables may wind up being different. We must sort out the external
2377 symbol information before we can set the final size of the .mdebug
2378 section, and we must set the size of the .mdebug section before we
2379 can relocate any sections, and we can't know which symbols are
2380 required by relocation until we relocate the sections.
2381 Fortunately, it is relatively unlikely that any symbol will be
2382 stripped but required by a reloc. In particular, it can not happen
2383 when generating a final executable. */
2384
2385 static bfd_boolean
2386 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2387 {
2388 struct extsym_info *einfo = data;
2389 bfd_boolean strip;
2390 asection *sec, *output_section;
2391
2392 if (h->root.root.type == bfd_link_hash_warning)
2393 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2394
2395 if (h->root.indx == -2)
2396 strip = FALSE;
2397 else if ((h->root.def_dynamic
2398 || h->root.ref_dynamic
2399 || h->root.type == bfd_link_hash_new)
2400 && !h->root.def_regular
2401 && !h->root.ref_regular)
2402 strip = TRUE;
2403 else if (einfo->info->strip == strip_all
2404 || (einfo->info->strip == strip_some
2405 && bfd_hash_lookup (einfo->info->keep_hash,
2406 h->root.root.root.string,
2407 FALSE, FALSE) == NULL))
2408 strip = TRUE;
2409 else
2410 strip = FALSE;
2411
2412 if (strip)
2413 return TRUE;
2414
2415 if (h->esym.ifd == -2)
2416 {
2417 h->esym.jmptbl = 0;
2418 h->esym.cobol_main = 0;
2419 h->esym.weakext = 0;
2420 h->esym.reserved = 0;
2421 h->esym.ifd = ifdNil;
2422 h->esym.asym.value = 0;
2423 h->esym.asym.st = stGlobal;
2424
2425 if (h->root.root.type == bfd_link_hash_undefined
2426 || h->root.root.type == bfd_link_hash_undefweak)
2427 {
2428 const char *name;
2429
2430 /* Use undefined class. Also, set class and type for some
2431 special symbols. */
2432 name = h->root.root.root.string;
2433 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2434 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2435 {
2436 h->esym.asym.sc = scData;
2437 h->esym.asym.st = stLabel;
2438 h->esym.asym.value = 0;
2439 }
2440 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2441 {
2442 h->esym.asym.sc = scAbs;
2443 h->esym.asym.st = stLabel;
2444 h->esym.asym.value =
2445 mips_elf_hash_table (einfo->info)->procedure_count;
2446 }
2447 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2448 {
2449 h->esym.asym.sc = scAbs;
2450 h->esym.asym.st = stLabel;
2451 h->esym.asym.value = elf_gp (einfo->abfd);
2452 }
2453 else
2454 h->esym.asym.sc = scUndefined;
2455 }
2456 else if (h->root.root.type != bfd_link_hash_defined
2457 && h->root.root.type != bfd_link_hash_defweak)
2458 h->esym.asym.sc = scAbs;
2459 else
2460 {
2461 const char *name;
2462
2463 sec = h->root.root.u.def.section;
2464 output_section = sec->output_section;
2465
2466 /* When making a shared library and symbol h is the one from
2467 the another shared library, OUTPUT_SECTION may be null. */
2468 if (output_section == NULL)
2469 h->esym.asym.sc = scUndefined;
2470 else
2471 {
2472 name = bfd_section_name (output_section->owner, output_section);
2473
2474 if (strcmp (name, ".text") == 0)
2475 h->esym.asym.sc = scText;
2476 else if (strcmp (name, ".data") == 0)
2477 h->esym.asym.sc = scData;
2478 else if (strcmp (name, ".sdata") == 0)
2479 h->esym.asym.sc = scSData;
2480 else if (strcmp (name, ".rodata") == 0
2481 || strcmp (name, ".rdata") == 0)
2482 h->esym.asym.sc = scRData;
2483 else if (strcmp (name, ".bss") == 0)
2484 h->esym.asym.sc = scBss;
2485 else if (strcmp (name, ".sbss") == 0)
2486 h->esym.asym.sc = scSBss;
2487 else if (strcmp (name, ".init") == 0)
2488 h->esym.asym.sc = scInit;
2489 else if (strcmp (name, ".fini") == 0)
2490 h->esym.asym.sc = scFini;
2491 else
2492 h->esym.asym.sc = scAbs;
2493 }
2494 }
2495
2496 h->esym.asym.reserved = 0;
2497 h->esym.asym.index = indexNil;
2498 }
2499
2500 if (h->root.root.type == bfd_link_hash_common)
2501 h->esym.asym.value = h->root.root.u.c.size;
2502 else if (h->root.root.type == bfd_link_hash_defined
2503 || h->root.root.type == bfd_link_hash_defweak)
2504 {
2505 if (h->esym.asym.sc == scCommon)
2506 h->esym.asym.sc = scBss;
2507 else if (h->esym.asym.sc == scSCommon)
2508 h->esym.asym.sc = scSBss;
2509
2510 sec = h->root.root.u.def.section;
2511 output_section = sec->output_section;
2512 if (output_section != NULL)
2513 h->esym.asym.value = (h->root.root.u.def.value
2514 + sec->output_offset
2515 + output_section->vma);
2516 else
2517 h->esym.asym.value = 0;
2518 }
2519 else
2520 {
2521 struct mips_elf_link_hash_entry *hd = h;
2522
2523 while (hd->root.root.type == bfd_link_hash_indirect)
2524 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2525
2526 if (hd->needs_lazy_stub)
2527 {
2528 /* Set type and value for a symbol with a function stub. */
2529 h->esym.asym.st = stProc;
2530 sec = hd->root.root.u.def.section;
2531 if (sec == NULL)
2532 h->esym.asym.value = 0;
2533 else
2534 {
2535 output_section = sec->output_section;
2536 if (output_section != NULL)
2537 h->esym.asym.value = (hd->root.plt.offset
2538 + sec->output_offset
2539 + output_section->vma);
2540 else
2541 h->esym.asym.value = 0;
2542 }
2543 }
2544 }
2545
2546 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2547 h->root.root.root.string,
2548 &h->esym))
2549 {
2550 einfo->failed = TRUE;
2551 return FALSE;
2552 }
2553
2554 return TRUE;
2555 }
2556
2557 /* A comparison routine used to sort .gptab entries. */
2558
2559 static int
2560 gptab_compare (const void *p1, const void *p2)
2561 {
2562 const Elf32_gptab *a1 = p1;
2563 const Elf32_gptab *a2 = p2;
2564
2565 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2566 }
2567 \f
2568 /* Functions to manage the got entry hash table. */
2569
2570 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2571 hash number. */
2572
2573 static INLINE hashval_t
2574 mips_elf_hash_bfd_vma (bfd_vma addr)
2575 {
2576 #ifdef BFD64
2577 return addr + (addr >> 32);
2578 #else
2579 return addr;
2580 #endif
2581 }
2582
2583 /* got_entries only match if they're identical, except for gotidx, so
2584 use all fields to compute the hash, and compare the appropriate
2585 union members. */
2586
2587 static hashval_t
2588 mips_elf_got_entry_hash (const void *entry_)
2589 {
2590 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2591
2592 return entry->symndx
2593 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2594 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2595 : entry->abfd->id
2596 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2597 : entry->d.h->root.root.root.hash));
2598 }
2599
2600 static int
2601 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2602 {
2603 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2604 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2605
2606 /* An LDM entry can only match another LDM entry. */
2607 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2608 return 0;
2609
2610 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2611 && (! e1->abfd ? e1->d.address == e2->d.address
2612 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2613 : e1->d.h == e2->d.h);
2614 }
2615
2616 /* multi_got_entries are still a match in the case of global objects,
2617 even if the input bfd in which they're referenced differs, so the
2618 hash computation and compare functions are adjusted
2619 accordingly. */
2620
2621 static hashval_t
2622 mips_elf_multi_got_entry_hash (const void *entry_)
2623 {
2624 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2625
2626 return entry->symndx
2627 + (! entry->abfd
2628 ? mips_elf_hash_bfd_vma (entry->d.address)
2629 : entry->symndx >= 0
2630 ? ((entry->tls_type & GOT_TLS_LDM)
2631 ? (GOT_TLS_LDM << 17)
2632 : (entry->abfd->id
2633 + mips_elf_hash_bfd_vma (entry->d.addend)))
2634 : entry->d.h->root.root.root.hash);
2635 }
2636
2637 static int
2638 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2639 {
2640 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2641 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2642
2643 /* Any two LDM entries match. */
2644 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2645 return 1;
2646
2647 /* Nothing else matches an LDM entry. */
2648 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2649 return 0;
2650
2651 return e1->symndx == e2->symndx
2652 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2653 : e1->abfd == NULL || e2->abfd == NULL
2654 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2655 : e1->d.h == e2->d.h);
2656 }
2657
2658 static hashval_t
2659 mips_got_page_entry_hash (const void *entry_)
2660 {
2661 const struct mips_got_page_entry *entry;
2662
2663 entry = (const struct mips_got_page_entry *) entry_;
2664 return entry->abfd->id + entry->symndx;
2665 }
2666
2667 static int
2668 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2669 {
2670 const struct mips_got_page_entry *entry1, *entry2;
2671
2672 entry1 = (const struct mips_got_page_entry *) entry1_;
2673 entry2 = (const struct mips_got_page_entry *) entry2_;
2674 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2675 }
2676 \f
2677 /* Return the dynamic relocation section. If it doesn't exist, try to
2678 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2679 if creation fails. */
2680
2681 static asection *
2682 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2683 {
2684 const char *dname;
2685 asection *sreloc;
2686 bfd *dynobj;
2687
2688 dname = MIPS_ELF_REL_DYN_NAME (info);
2689 dynobj = elf_hash_table (info)->dynobj;
2690 sreloc = bfd_get_section_by_name (dynobj, dname);
2691 if (sreloc == NULL && create_p)
2692 {
2693 sreloc = bfd_make_section_with_flags (dynobj, dname,
2694 (SEC_ALLOC
2695 | SEC_LOAD
2696 | SEC_HAS_CONTENTS
2697 | SEC_IN_MEMORY
2698 | SEC_LINKER_CREATED
2699 | SEC_READONLY));
2700 if (sreloc == NULL
2701 || ! bfd_set_section_alignment (dynobj, sreloc,
2702 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2703 return NULL;
2704 }
2705 return sreloc;
2706 }
2707
2708 /* Count the number of relocations needed for a TLS GOT entry, with
2709 access types from TLS_TYPE, and symbol H (or a local symbol if H
2710 is NULL). */
2711
2712 static int
2713 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2714 struct elf_link_hash_entry *h)
2715 {
2716 int indx = 0;
2717 int ret = 0;
2718 bfd_boolean need_relocs = FALSE;
2719 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2720
2721 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2722 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2723 indx = h->dynindx;
2724
2725 if ((info->shared || indx != 0)
2726 && (h == NULL
2727 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2728 || h->root.type != bfd_link_hash_undefweak))
2729 need_relocs = TRUE;
2730
2731 if (!need_relocs)
2732 return FALSE;
2733
2734 if (tls_type & GOT_TLS_GD)
2735 {
2736 ret++;
2737 if (indx != 0)
2738 ret++;
2739 }
2740
2741 if (tls_type & GOT_TLS_IE)
2742 ret++;
2743
2744 if ((tls_type & GOT_TLS_LDM) && info->shared)
2745 ret++;
2746
2747 return ret;
2748 }
2749
2750 /* Count the number of TLS relocations required for the GOT entry in
2751 ARG1, if it describes a local symbol. */
2752
2753 static int
2754 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2755 {
2756 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2757 struct mips_elf_count_tls_arg *arg = arg2;
2758
2759 if (entry->abfd != NULL && entry->symndx != -1)
2760 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2761
2762 return 1;
2763 }
2764
2765 /* Count the number of TLS GOT entries required for the global (or
2766 forced-local) symbol in ARG1. */
2767
2768 static int
2769 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2770 {
2771 struct mips_elf_link_hash_entry *hm
2772 = (struct mips_elf_link_hash_entry *) arg1;
2773 struct mips_elf_count_tls_arg *arg = arg2;
2774
2775 if (hm->tls_type & GOT_TLS_GD)
2776 arg->needed += 2;
2777 if (hm->tls_type & GOT_TLS_IE)
2778 arg->needed += 1;
2779
2780 return 1;
2781 }
2782
2783 /* Count the number of TLS relocations required for the global (or
2784 forced-local) symbol in ARG1. */
2785
2786 static int
2787 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2788 {
2789 struct mips_elf_link_hash_entry *hm
2790 = (struct mips_elf_link_hash_entry *) arg1;
2791 struct mips_elf_count_tls_arg *arg = arg2;
2792
2793 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2794
2795 return 1;
2796 }
2797
2798 /* Output a simple dynamic relocation into SRELOC. */
2799
2800 static void
2801 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2802 asection *sreloc,
2803 unsigned long reloc_index,
2804 unsigned long indx,
2805 int r_type,
2806 bfd_vma offset)
2807 {
2808 Elf_Internal_Rela rel[3];
2809
2810 memset (rel, 0, sizeof (rel));
2811
2812 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2813 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2814
2815 if (ABI_64_P (output_bfd))
2816 {
2817 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2818 (output_bfd, &rel[0],
2819 (sreloc->contents
2820 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
2821 }
2822 else
2823 bfd_elf32_swap_reloc_out
2824 (output_bfd, &rel[0],
2825 (sreloc->contents
2826 + reloc_index * sizeof (Elf32_External_Rel)));
2827 }
2828
2829 /* Initialize a set of TLS GOT entries for one symbol. */
2830
2831 static void
2832 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2833 unsigned char *tls_type_p,
2834 struct bfd_link_info *info,
2835 struct mips_elf_link_hash_entry *h,
2836 bfd_vma value)
2837 {
2838 struct mips_elf_link_hash_table *htab;
2839 int indx;
2840 asection *sreloc, *sgot;
2841 bfd_vma offset, offset2;
2842 bfd_boolean need_relocs = FALSE;
2843
2844 htab = mips_elf_hash_table (info);
2845 sgot = htab->sgot;
2846
2847 indx = 0;
2848 if (h != NULL)
2849 {
2850 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2851
2852 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2853 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2854 indx = h->root.dynindx;
2855 }
2856
2857 if (*tls_type_p & GOT_TLS_DONE)
2858 return;
2859
2860 if ((info->shared || indx != 0)
2861 && (h == NULL
2862 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2863 || h->root.type != bfd_link_hash_undefweak))
2864 need_relocs = TRUE;
2865
2866 /* MINUS_ONE means the symbol is not defined in this object. It may not
2867 be defined at all; assume that the value doesn't matter in that
2868 case. Otherwise complain if we would use the value. */
2869 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2870 || h->root.root.type == bfd_link_hash_undefweak);
2871
2872 /* Emit necessary relocations. */
2873 sreloc = mips_elf_rel_dyn_section (info, FALSE);
2874
2875 /* General Dynamic. */
2876 if (*tls_type_p & GOT_TLS_GD)
2877 {
2878 offset = got_offset;
2879 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2880
2881 if (need_relocs)
2882 {
2883 mips_elf_output_dynamic_relocation
2884 (abfd, sreloc, sreloc->reloc_count++, indx,
2885 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2886 sgot->output_offset + sgot->output_section->vma + offset);
2887
2888 if (indx)
2889 mips_elf_output_dynamic_relocation
2890 (abfd, sreloc, sreloc->reloc_count++, indx,
2891 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2892 sgot->output_offset + sgot->output_section->vma + offset2);
2893 else
2894 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2895 sgot->contents + offset2);
2896 }
2897 else
2898 {
2899 MIPS_ELF_PUT_WORD (abfd, 1,
2900 sgot->contents + offset);
2901 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2902 sgot->contents + offset2);
2903 }
2904
2905 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2906 }
2907
2908 /* Initial Exec model. */
2909 if (*tls_type_p & GOT_TLS_IE)
2910 {
2911 offset = got_offset;
2912
2913 if (need_relocs)
2914 {
2915 if (indx == 0)
2916 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2917 sgot->contents + offset);
2918 else
2919 MIPS_ELF_PUT_WORD (abfd, 0,
2920 sgot->contents + offset);
2921
2922 mips_elf_output_dynamic_relocation
2923 (abfd, sreloc, sreloc->reloc_count++, indx,
2924 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2925 sgot->output_offset + sgot->output_section->vma + offset);
2926 }
2927 else
2928 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2929 sgot->contents + offset);
2930 }
2931
2932 if (*tls_type_p & GOT_TLS_LDM)
2933 {
2934 /* The initial offset is zero, and the LD offsets will include the
2935 bias by DTP_OFFSET. */
2936 MIPS_ELF_PUT_WORD (abfd, 0,
2937 sgot->contents + got_offset
2938 + MIPS_ELF_GOT_SIZE (abfd));
2939
2940 if (!info->shared)
2941 MIPS_ELF_PUT_WORD (abfd, 1,
2942 sgot->contents + got_offset);
2943 else
2944 mips_elf_output_dynamic_relocation
2945 (abfd, sreloc, sreloc->reloc_count++, indx,
2946 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2947 sgot->output_offset + sgot->output_section->vma + got_offset);
2948 }
2949
2950 *tls_type_p |= GOT_TLS_DONE;
2951 }
2952
2953 /* Return the GOT index to use for a relocation of type R_TYPE against
2954 a symbol accessed using TLS_TYPE models. The GOT entries for this
2955 symbol in this GOT start at GOT_INDEX. This function initializes the
2956 GOT entries and corresponding relocations. */
2957
2958 static bfd_vma
2959 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2960 int r_type, struct bfd_link_info *info,
2961 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2962 {
2963 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2964 || r_type == R_MIPS_TLS_LDM);
2965
2966 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2967
2968 if (r_type == R_MIPS_TLS_GOTTPREL)
2969 {
2970 BFD_ASSERT (*tls_type & GOT_TLS_IE);
2971 if (*tls_type & GOT_TLS_GD)
2972 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2973 else
2974 return got_index;
2975 }
2976
2977 if (r_type == R_MIPS_TLS_GD)
2978 {
2979 BFD_ASSERT (*tls_type & GOT_TLS_GD);
2980 return got_index;
2981 }
2982
2983 if (r_type == R_MIPS_TLS_LDM)
2984 {
2985 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
2986 return got_index;
2987 }
2988
2989 return got_index;
2990 }
2991
2992 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
2993 for global symbol H. .got.plt comes before the GOT, so the offset
2994 will be negative. */
2995
2996 static bfd_vma
2997 mips_elf_gotplt_index (struct bfd_link_info *info,
2998 struct elf_link_hash_entry *h)
2999 {
3000 bfd_vma plt_index, got_address, got_value;
3001 struct mips_elf_link_hash_table *htab;
3002
3003 htab = mips_elf_hash_table (info);
3004 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3005
3006 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3007 section starts with reserved entries. */
3008 BFD_ASSERT (htab->is_vxworks);
3009
3010 /* Calculate the index of the symbol's PLT entry. */
3011 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3012
3013 /* Calculate the address of the associated .got.plt entry. */
3014 got_address = (htab->sgotplt->output_section->vma
3015 + htab->sgotplt->output_offset
3016 + plt_index * 4);
3017
3018 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3019 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3020 + htab->root.hgot->root.u.def.section->output_offset
3021 + htab->root.hgot->root.u.def.value);
3022
3023 return got_address - got_value;
3024 }
3025
3026 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3027 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3028 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3029 offset can be found. */
3030
3031 static bfd_vma
3032 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3033 bfd_vma value, unsigned long r_symndx,
3034 struct mips_elf_link_hash_entry *h, int r_type)
3035 {
3036 struct mips_elf_link_hash_table *htab;
3037 struct mips_got_entry *entry;
3038
3039 htab = mips_elf_hash_table (info);
3040 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3041 r_symndx, h, r_type);
3042 if (!entry)
3043 return MINUS_ONE;
3044
3045 if (TLS_RELOC_P (r_type))
3046 {
3047 if (entry->symndx == -1 && htab->got_info->next == NULL)
3048 /* A type (3) entry in the single-GOT case. We use the symbol's
3049 hash table entry to track the index. */
3050 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3051 r_type, info, h, value);
3052 else
3053 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3054 r_type, info, h, value);
3055 }
3056 else
3057 return entry->gotidx;
3058 }
3059
3060 /* Returns the GOT index for the global symbol indicated by H. */
3061
3062 static bfd_vma
3063 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3064 int r_type, struct bfd_link_info *info)
3065 {
3066 struct mips_elf_link_hash_table *htab;
3067 bfd_vma index;
3068 struct mips_got_info *g, *gg;
3069 long global_got_dynindx = 0;
3070
3071 htab = mips_elf_hash_table (info);
3072 gg = g = htab->got_info;
3073 if (g->bfd2got && ibfd)
3074 {
3075 struct mips_got_entry e, *p;
3076
3077 BFD_ASSERT (h->dynindx >= 0);
3078
3079 g = mips_elf_got_for_ibfd (g, ibfd);
3080 if (g->next != gg || TLS_RELOC_P (r_type))
3081 {
3082 e.abfd = ibfd;
3083 e.symndx = -1;
3084 e.d.h = (struct mips_elf_link_hash_entry *)h;
3085 e.tls_type = 0;
3086
3087 p = htab_find (g->got_entries, &e);
3088
3089 BFD_ASSERT (p->gotidx > 0);
3090
3091 if (TLS_RELOC_P (r_type))
3092 {
3093 bfd_vma value = MINUS_ONE;
3094 if ((h->root.type == bfd_link_hash_defined
3095 || h->root.type == bfd_link_hash_defweak)
3096 && h->root.u.def.section->output_section)
3097 value = (h->root.u.def.value
3098 + h->root.u.def.section->output_offset
3099 + h->root.u.def.section->output_section->vma);
3100
3101 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3102 info, e.d.h, value);
3103 }
3104 else
3105 return p->gotidx;
3106 }
3107 }
3108
3109 if (gg->global_gotsym != NULL)
3110 global_got_dynindx = gg->global_gotsym->dynindx;
3111
3112 if (TLS_RELOC_P (r_type))
3113 {
3114 struct mips_elf_link_hash_entry *hm
3115 = (struct mips_elf_link_hash_entry *) h;
3116 bfd_vma value = MINUS_ONE;
3117
3118 if ((h->root.type == bfd_link_hash_defined
3119 || h->root.type == bfd_link_hash_defweak)
3120 && h->root.u.def.section->output_section)
3121 value = (h->root.u.def.value
3122 + h->root.u.def.section->output_offset
3123 + h->root.u.def.section->output_section->vma);
3124
3125 index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3126 r_type, info, hm, value);
3127 }
3128 else
3129 {
3130 /* Once we determine the global GOT entry with the lowest dynamic
3131 symbol table index, we must put all dynamic symbols with greater
3132 indices into the GOT. That makes it easy to calculate the GOT
3133 offset. */
3134 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3135 index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3136 * MIPS_ELF_GOT_SIZE (abfd));
3137 }
3138 BFD_ASSERT (index < htab->sgot->size);
3139
3140 return index;
3141 }
3142
3143 /* Find a GOT page entry that points to within 32KB of VALUE. These
3144 entries are supposed to be placed at small offsets in the GOT, i.e.,
3145 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3146 entry could be created. If OFFSETP is nonnull, use it to return the
3147 offset of the GOT entry from VALUE. */
3148
3149 static bfd_vma
3150 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3151 bfd_vma value, bfd_vma *offsetp)
3152 {
3153 bfd_vma page, index;
3154 struct mips_got_entry *entry;
3155
3156 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3157 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3158 NULL, R_MIPS_GOT_PAGE);
3159
3160 if (!entry)
3161 return MINUS_ONE;
3162
3163 index = entry->gotidx;
3164
3165 if (offsetp)
3166 *offsetp = value - entry->d.address;
3167
3168 return index;
3169 }
3170
3171 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3172 EXTERNAL is true if the relocation was against a global symbol
3173 that has been forced local. */
3174
3175 static bfd_vma
3176 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3177 bfd_vma value, bfd_boolean external)
3178 {
3179 struct mips_got_entry *entry;
3180
3181 /* GOT16 relocations against local symbols are followed by a LO16
3182 relocation; those against global symbols are not. Thus if the
3183 symbol was originally local, the GOT16 relocation should load the
3184 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3185 if (! external)
3186 value = mips_elf_high (value) << 16;
3187
3188 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3189 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3190 same in all cases. */
3191 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3192 NULL, R_MIPS_GOT16);
3193 if (entry)
3194 return entry->gotidx;
3195 else
3196 return MINUS_ONE;
3197 }
3198
3199 /* Returns the offset for the entry at the INDEXth position
3200 in the GOT. */
3201
3202 static bfd_vma
3203 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3204 bfd *input_bfd, bfd_vma index)
3205 {
3206 struct mips_elf_link_hash_table *htab;
3207 asection *sgot;
3208 bfd_vma gp;
3209
3210 htab = mips_elf_hash_table (info);
3211 sgot = htab->sgot;
3212 gp = _bfd_get_gp_value (output_bfd)
3213 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3214
3215 return sgot->output_section->vma + sgot->output_offset + index - gp;
3216 }
3217
3218 /* Create and return a local GOT entry for VALUE, which was calculated
3219 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3220 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3221 instead. */
3222
3223 static struct mips_got_entry *
3224 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3225 bfd *ibfd, bfd_vma value,
3226 unsigned long r_symndx,
3227 struct mips_elf_link_hash_entry *h,
3228 int r_type)
3229 {
3230 struct mips_got_entry entry, **loc;
3231 struct mips_got_info *g;
3232 struct mips_elf_link_hash_table *htab;
3233
3234 htab = mips_elf_hash_table (info);
3235
3236 entry.abfd = NULL;
3237 entry.symndx = -1;
3238 entry.d.address = value;
3239 entry.tls_type = 0;
3240
3241 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3242 if (g == NULL)
3243 {
3244 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3245 BFD_ASSERT (g != NULL);
3246 }
3247
3248 /* We might have a symbol, H, if it has been forced local. Use the
3249 global entry then. It doesn't matter whether an entry is local
3250 or global for TLS, since the dynamic linker does not
3251 automatically relocate TLS GOT entries. */
3252 BFD_ASSERT (h == NULL || h->root.forced_local);
3253 if (TLS_RELOC_P (r_type))
3254 {
3255 struct mips_got_entry *p;
3256
3257 entry.abfd = ibfd;
3258 if (r_type == R_MIPS_TLS_LDM)
3259 {
3260 entry.tls_type = GOT_TLS_LDM;
3261 entry.symndx = 0;
3262 entry.d.addend = 0;
3263 }
3264 else if (h == NULL)
3265 {
3266 entry.symndx = r_symndx;
3267 entry.d.addend = 0;
3268 }
3269 else
3270 entry.d.h = h;
3271
3272 p = (struct mips_got_entry *)
3273 htab_find (g->got_entries, &entry);
3274
3275 BFD_ASSERT (p);
3276 return p;
3277 }
3278
3279 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3280 INSERT);
3281 if (*loc)
3282 return *loc;
3283
3284 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3285 entry.tls_type = 0;
3286
3287 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3288
3289 if (! *loc)
3290 return NULL;
3291
3292 memcpy (*loc, &entry, sizeof entry);
3293
3294 if (g->assigned_gotno > g->local_gotno)
3295 {
3296 (*loc)->gotidx = -1;
3297 /* We didn't allocate enough space in the GOT. */
3298 (*_bfd_error_handler)
3299 (_("not enough GOT space for local GOT entries"));
3300 bfd_set_error (bfd_error_bad_value);
3301 return NULL;
3302 }
3303
3304 MIPS_ELF_PUT_WORD (abfd, value,
3305 (htab->sgot->contents + entry.gotidx));
3306
3307 /* These GOT entries need a dynamic relocation on VxWorks. */
3308 if (htab->is_vxworks)
3309 {
3310 Elf_Internal_Rela outrel;
3311 asection *s;
3312 bfd_byte *loc;
3313 bfd_vma got_address;
3314
3315 s = mips_elf_rel_dyn_section (info, FALSE);
3316 got_address = (htab->sgot->output_section->vma
3317 + htab->sgot->output_offset
3318 + entry.gotidx);
3319
3320 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3321 outrel.r_offset = got_address;
3322 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3323 outrel.r_addend = value;
3324 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
3325 }
3326
3327 return *loc;
3328 }
3329
3330 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3331 The number might be exact or a worst-case estimate, depending on how
3332 much information is available to elf_backend_omit_section_dynsym at
3333 the current linking stage. */
3334
3335 static bfd_size_type
3336 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3337 {
3338 bfd_size_type count;
3339
3340 count = 0;
3341 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3342 {
3343 asection *p;
3344 const struct elf_backend_data *bed;
3345
3346 bed = get_elf_backend_data (output_bfd);
3347 for (p = output_bfd->sections; p ; p = p->next)
3348 if ((p->flags & SEC_EXCLUDE) == 0
3349 && (p->flags & SEC_ALLOC) != 0
3350 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3351 ++count;
3352 }
3353 return count;
3354 }
3355
3356 /* Sort the dynamic symbol table so that symbols that need GOT entries
3357 appear towards the end. */
3358
3359 static bfd_boolean
3360 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3361 {
3362 struct mips_elf_link_hash_table *htab;
3363 struct mips_elf_hash_sort_data hsd;
3364 struct mips_got_info *g;
3365
3366 if (elf_hash_table (info)->dynsymcount == 0)
3367 return TRUE;
3368
3369 htab = mips_elf_hash_table (info);
3370 g = htab->got_info;
3371 if (g == NULL)
3372 return TRUE;
3373
3374 hsd.low = NULL;
3375 hsd.max_unref_got_dynindx
3376 = hsd.min_got_dynindx
3377 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3378 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3379 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3380 elf_hash_table (info)),
3381 mips_elf_sort_hash_table_f,
3382 &hsd);
3383
3384 /* There should have been enough room in the symbol table to
3385 accommodate both the GOT and non-GOT symbols. */
3386 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3387 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3388 == elf_hash_table (info)->dynsymcount);
3389 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3390 == g->global_gotno);
3391
3392 /* Now we know which dynamic symbol has the lowest dynamic symbol
3393 table index in the GOT. */
3394 g->global_gotsym = hsd.low;
3395
3396 return TRUE;
3397 }
3398
3399 /* If H needs a GOT entry, assign it the highest available dynamic
3400 index. Otherwise, assign it the lowest available dynamic
3401 index. */
3402
3403 static bfd_boolean
3404 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3405 {
3406 struct mips_elf_hash_sort_data *hsd = data;
3407
3408 if (h->root.root.type == bfd_link_hash_warning)
3409 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3410
3411 /* Symbols without dynamic symbol table entries aren't interesting
3412 at all. */
3413 if (h->root.dynindx == -1)
3414 return TRUE;
3415
3416 switch (h->global_got_area)
3417 {
3418 case GGA_NONE:
3419 h->root.dynindx = hsd->max_non_got_dynindx++;
3420 break;
3421
3422 case GGA_NORMAL:
3423 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3424
3425 h->root.dynindx = --hsd->min_got_dynindx;
3426 hsd->low = (struct elf_link_hash_entry *) h;
3427 break;
3428
3429 case GGA_RELOC_ONLY:
3430 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3431
3432 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3433 hsd->low = (struct elf_link_hash_entry *) h;
3434 h->root.dynindx = hsd->max_unref_got_dynindx++;
3435 break;
3436 }
3437
3438 return TRUE;
3439 }
3440
3441 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3442 symbol table index lower than any we've seen to date, record it for
3443 posterity. */
3444
3445 static bfd_boolean
3446 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3447 bfd *abfd, struct bfd_link_info *info,
3448 unsigned char tls_flag)
3449 {
3450 struct mips_elf_link_hash_table *htab;
3451 struct mips_elf_link_hash_entry *hmips;
3452 struct mips_got_entry entry, **loc;
3453 struct mips_got_info *g;
3454
3455 htab = mips_elf_hash_table (info);
3456 hmips = (struct mips_elf_link_hash_entry *) h;
3457
3458 /* A global symbol in the GOT must also be in the dynamic symbol
3459 table. */
3460 if (h->dynindx == -1)
3461 {
3462 switch (ELF_ST_VISIBILITY (h->other))
3463 {
3464 case STV_INTERNAL:
3465 case STV_HIDDEN:
3466 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3467 break;
3468 }
3469 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3470 return FALSE;
3471 }
3472
3473 /* Make sure we have a GOT to put this entry into. */
3474 g = htab->got_info;
3475 BFD_ASSERT (g != NULL);
3476
3477 entry.abfd = abfd;
3478 entry.symndx = -1;
3479 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3480 entry.tls_type = 0;
3481
3482 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3483 INSERT);
3484
3485 /* If we've already marked this entry as needing GOT space, we don't
3486 need to do it again. */
3487 if (*loc)
3488 {
3489 (*loc)->tls_type |= tls_flag;
3490 return TRUE;
3491 }
3492
3493 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3494
3495 if (! *loc)
3496 return FALSE;
3497
3498 entry.gotidx = -1;
3499 entry.tls_type = tls_flag;
3500
3501 memcpy (*loc, &entry, sizeof entry);
3502
3503 if (tls_flag == 0)
3504 hmips->global_got_area = GGA_NORMAL;
3505
3506 return TRUE;
3507 }
3508
3509 /* Reserve space in G for a GOT entry containing the value of symbol
3510 SYMNDX in input bfd ABDF, plus ADDEND. */
3511
3512 static bfd_boolean
3513 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3514 struct bfd_link_info *info,
3515 unsigned char tls_flag)
3516 {
3517 struct mips_elf_link_hash_table *htab;
3518 struct mips_got_info *g;
3519 struct mips_got_entry entry, **loc;
3520
3521 htab = mips_elf_hash_table (info);
3522 g = htab->got_info;
3523 BFD_ASSERT (g != NULL);
3524
3525 entry.abfd = abfd;
3526 entry.symndx = symndx;
3527 entry.d.addend = addend;
3528 entry.tls_type = tls_flag;
3529 loc = (struct mips_got_entry **)
3530 htab_find_slot (g->got_entries, &entry, INSERT);
3531
3532 if (*loc)
3533 {
3534 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3535 {
3536 g->tls_gotno += 2;
3537 (*loc)->tls_type |= tls_flag;
3538 }
3539 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3540 {
3541 g->tls_gotno += 1;
3542 (*loc)->tls_type |= tls_flag;
3543 }
3544 return TRUE;
3545 }
3546
3547 if (tls_flag != 0)
3548 {
3549 entry.gotidx = -1;
3550 entry.tls_type = tls_flag;
3551 if (tls_flag == GOT_TLS_IE)
3552 g->tls_gotno += 1;
3553 else if (tls_flag == GOT_TLS_GD)
3554 g->tls_gotno += 2;
3555 else if (g->tls_ldm_offset == MINUS_ONE)
3556 {
3557 g->tls_ldm_offset = MINUS_TWO;
3558 g->tls_gotno += 2;
3559 }
3560 }
3561 else
3562 {
3563 entry.gotidx = g->local_gotno++;
3564 entry.tls_type = 0;
3565 }
3566
3567 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3568
3569 if (! *loc)
3570 return FALSE;
3571
3572 memcpy (*loc, &entry, sizeof entry);
3573
3574 return TRUE;
3575 }
3576
3577 /* Return the maximum number of GOT page entries required for RANGE. */
3578
3579 static bfd_vma
3580 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3581 {
3582 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3583 }
3584
3585 /* Record that ABFD has a page relocation against symbol SYMNDX and
3586 that ADDEND is the addend for that relocation.
3587
3588 This function creates an upper bound on the number of GOT slots
3589 required; no attempt is made to combine references to non-overridable
3590 global symbols across multiple input files. */
3591
3592 static bfd_boolean
3593 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3594 long symndx, bfd_signed_vma addend)
3595 {
3596 struct mips_elf_link_hash_table *htab;
3597 struct mips_got_info *g;
3598 struct mips_got_page_entry lookup, *entry;
3599 struct mips_got_page_range **range_ptr, *range;
3600 bfd_vma old_pages, new_pages;
3601 void **loc;
3602
3603 htab = mips_elf_hash_table (info);
3604 g = htab->got_info;
3605 BFD_ASSERT (g != NULL);
3606
3607 /* Find the mips_got_page_entry hash table entry for this symbol. */
3608 lookup.abfd = abfd;
3609 lookup.symndx = symndx;
3610 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3611 if (loc == NULL)
3612 return FALSE;
3613
3614 /* Create a mips_got_page_entry if this is the first time we've
3615 seen the symbol. */
3616 entry = (struct mips_got_page_entry *) *loc;
3617 if (!entry)
3618 {
3619 entry = bfd_alloc (abfd, sizeof (*entry));
3620 if (!entry)
3621 return FALSE;
3622
3623 entry->abfd = abfd;
3624 entry->symndx = symndx;
3625 entry->ranges = NULL;
3626 entry->num_pages = 0;
3627 *loc = entry;
3628 }
3629
3630 /* Skip over ranges whose maximum extent cannot share a page entry
3631 with ADDEND. */
3632 range_ptr = &entry->ranges;
3633 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3634 range_ptr = &(*range_ptr)->next;
3635
3636 /* If we scanned to the end of the list, or found a range whose
3637 minimum extent cannot share a page entry with ADDEND, create
3638 a new singleton range. */
3639 range = *range_ptr;
3640 if (!range || addend < range->min_addend - 0xffff)
3641 {
3642 range = bfd_alloc (abfd, sizeof (*range));
3643 if (!range)
3644 return FALSE;
3645
3646 range->next = *range_ptr;
3647 range->min_addend = addend;
3648 range->max_addend = addend;
3649
3650 *range_ptr = range;
3651 entry->num_pages++;
3652 g->page_gotno++;
3653 return TRUE;
3654 }
3655
3656 /* Remember how many pages the old range contributed. */
3657 old_pages = mips_elf_pages_for_range (range);
3658
3659 /* Update the ranges. */
3660 if (addend < range->min_addend)
3661 range->min_addend = addend;
3662 else if (addend > range->max_addend)
3663 {
3664 if (range->next && addend >= range->next->min_addend - 0xffff)
3665 {
3666 old_pages += mips_elf_pages_for_range (range->next);
3667 range->max_addend = range->next->max_addend;
3668 range->next = range->next->next;
3669 }
3670 else
3671 range->max_addend = addend;
3672 }
3673
3674 /* Record any change in the total estimate. */
3675 new_pages = mips_elf_pages_for_range (range);
3676 if (old_pages != new_pages)
3677 {
3678 entry->num_pages += new_pages - old_pages;
3679 g->page_gotno += new_pages - old_pages;
3680 }
3681
3682 return TRUE;
3683 }
3684
3685 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3686
3687 static void
3688 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3689 unsigned int n)
3690 {
3691 asection *s;
3692 struct mips_elf_link_hash_table *htab;
3693
3694 htab = mips_elf_hash_table (info);
3695 s = mips_elf_rel_dyn_section (info, FALSE);
3696 BFD_ASSERT (s != NULL);
3697
3698 if (htab->is_vxworks)
3699 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3700 else
3701 {
3702 if (s->size == 0)
3703 {
3704 /* Make room for a null element. */
3705 s->size += MIPS_ELF_REL_SIZE (abfd);
3706 ++s->reloc_count;
3707 }
3708 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3709 }
3710 }
3711 \f
3712 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3713 if the GOT entry is for an indirect or warning symbol. */
3714
3715 static int
3716 mips_elf_check_recreate_got (void **entryp, void *data)
3717 {
3718 struct mips_got_entry *entry;
3719 bfd_boolean *must_recreate;
3720
3721 entry = (struct mips_got_entry *) *entryp;
3722 must_recreate = (bfd_boolean *) data;
3723 if (entry->abfd != NULL && entry->symndx == -1)
3724 {
3725 struct mips_elf_link_hash_entry *h;
3726
3727 h = entry->d.h;
3728 if (h->root.root.type == bfd_link_hash_indirect
3729 || h->root.root.type == bfd_link_hash_warning)
3730 {
3731 *must_recreate = TRUE;
3732 return 0;
3733 }
3734 }
3735 return 1;
3736 }
3737
3738 /* A htab_traverse callback for GOT entries. Add all entries to
3739 hash table *DATA, converting entries for indirect and warning
3740 symbols into entries for the target symbol. Set *DATA to null
3741 on error. */
3742
3743 static int
3744 mips_elf_recreate_got (void **entryp, void *data)
3745 {
3746 htab_t *new_got;
3747 struct mips_got_entry *entry;
3748 void **slot;
3749
3750 new_got = (htab_t *) data;
3751 entry = (struct mips_got_entry *) *entryp;
3752 if (entry->abfd != NULL && entry->symndx == -1)
3753 {
3754 struct mips_elf_link_hash_entry *h;
3755
3756 h = entry->d.h;
3757 while (h->root.root.type == bfd_link_hash_indirect
3758 || h->root.root.type == bfd_link_hash_warning)
3759 {
3760 BFD_ASSERT (h->global_got_area == GGA_NONE);
3761 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3762 }
3763 entry->d.h = h;
3764 }
3765 slot = htab_find_slot (*new_got, entry, INSERT);
3766 if (slot == NULL)
3767 {
3768 *new_got = NULL;
3769 return 0;
3770 }
3771 if (*slot == NULL)
3772 *slot = entry;
3773 else
3774 free (entry);
3775 return 1;
3776 }
3777
3778 /* If any entries in G->got_entries are for indirect or warning symbols,
3779 replace them with entries for the target symbol. */
3780
3781 static bfd_boolean
3782 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3783 {
3784 bfd_boolean must_recreate;
3785 htab_t new_got;
3786
3787 must_recreate = FALSE;
3788 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3789 if (must_recreate)
3790 {
3791 new_got = htab_create (htab_size (g->got_entries),
3792 mips_elf_got_entry_hash,
3793 mips_elf_got_entry_eq, NULL);
3794 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3795 if (new_got == NULL)
3796 return FALSE;
3797
3798 /* Each entry in g->got_entries has either been copied to new_got
3799 or freed. Now delete the hash table itself. */
3800 htab_delete (g->got_entries);
3801 g->got_entries = new_got;
3802 }
3803 return TRUE;
3804 }
3805
3806 /* A mips_elf_link_hash_traverse callback for which DATA points
3807 to a mips_got_info. Count the number of type (3) entries. */
3808
3809 static int
3810 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
3811 {
3812 struct mips_got_info *g;
3813
3814 g = (struct mips_got_info *) data;
3815 if (h->global_got_area != GGA_NONE)
3816 {
3817 if (h->root.forced_local || h->root.dynindx == -1)
3818 {
3819 /* We no longer need this entry if it was only used for
3820 relocations; those relocations will be against the
3821 null or section symbol instead of H. */
3822 if (h->global_got_area != GGA_RELOC_ONLY)
3823 g->local_gotno++;
3824 h->global_got_area = GGA_NONE;
3825 }
3826 else
3827 {
3828 g->global_gotno++;
3829 if (h->global_got_area == GGA_RELOC_ONLY)
3830 g->reloc_only_gotno++;
3831 }
3832 }
3833 return 1;
3834 }
3835 \f
3836 /* Compute the hash value of the bfd in a bfd2got hash entry. */
3837
3838 static hashval_t
3839 mips_elf_bfd2got_entry_hash (const void *entry_)
3840 {
3841 const struct mips_elf_bfd2got_hash *entry
3842 = (struct mips_elf_bfd2got_hash *)entry_;
3843
3844 return entry->bfd->id;
3845 }
3846
3847 /* Check whether two hash entries have the same bfd. */
3848
3849 static int
3850 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
3851 {
3852 const struct mips_elf_bfd2got_hash *e1
3853 = (const struct mips_elf_bfd2got_hash *)entry1;
3854 const struct mips_elf_bfd2got_hash *e2
3855 = (const struct mips_elf_bfd2got_hash *)entry2;
3856
3857 return e1->bfd == e2->bfd;
3858 }
3859
3860 /* In a multi-got link, determine the GOT to be used for IBFD. G must
3861 be the master GOT data. */
3862
3863 static struct mips_got_info *
3864 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
3865 {
3866 struct mips_elf_bfd2got_hash e, *p;
3867
3868 if (! g->bfd2got)
3869 return g;
3870
3871 e.bfd = ibfd;
3872 p = htab_find (g->bfd2got, &e);
3873 return p ? p->g : NULL;
3874 }
3875
3876 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
3877 Return NULL if an error occured. */
3878
3879 static struct mips_got_info *
3880 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
3881 bfd *input_bfd)
3882 {
3883 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3884 struct mips_got_info *g;
3885 void **bfdgotp;
3886
3887 bfdgot_entry.bfd = input_bfd;
3888 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3889 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
3890
3891 if (bfdgot == NULL)
3892 {
3893 bfdgot = ((struct mips_elf_bfd2got_hash *)
3894 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
3895 if (bfdgot == NULL)
3896 return NULL;
3897
3898 *bfdgotp = bfdgot;
3899
3900 g = ((struct mips_got_info *)
3901 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
3902 if (g == NULL)
3903 return NULL;
3904
3905 bfdgot->bfd = input_bfd;
3906 bfdgot->g = g;
3907
3908 g->global_gotsym = NULL;
3909 g->global_gotno = 0;
3910 g->reloc_only_gotno = 0;
3911 g->local_gotno = 0;
3912 g->page_gotno = 0;
3913 g->assigned_gotno = -1;
3914 g->tls_gotno = 0;
3915 g->tls_assigned_gotno = 0;
3916 g->tls_ldm_offset = MINUS_ONE;
3917 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3918 mips_elf_multi_got_entry_eq, NULL);
3919 if (g->got_entries == NULL)
3920 return NULL;
3921
3922 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3923 mips_got_page_entry_eq, NULL);
3924 if (g->got_page_entries == NULL)
3925 return NULL;
3926
3927 g->bfd2got = NULL;
3928 g->next = NULL;
3929 }
3930
3931 return bfdgot->g;
3932 }
3933
3934 /* A htab_traverse callback for the entries in the master got.
3935 Create one separate got for each bfd that has entries in the global
3936 got, such that we can tell how many local and global entries each
3937 bfd requires. */
3938
3939 static int
3940 mips_elf_make_got_per_bfd (void **entryp, void *p)
3941 {
3942 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
3943 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
3944 struct mips_got_info *g;
3945
3946 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3947 if (g == NULL)
3948 {
3949 arg->obfd = NULL;
3950 return 0;
3951 }
3952
3953 /* Insert the GOT entry in the bfd's got entry hash table. */
3954 entryp = htab_find_slot (g->got_entries, entry, INSERT);
3955 if (*entryp != NULL)
3956 return 1;
3957
3958 *entryp = entry;
3959
3960 if (entry->tls_type)
3961 {
3962 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
3963 g->tls_gotno += 2;
3964 if (entry->tls_type & GOT_TLS_IE)
3965 g->tls_gotno += 1;
3966 }
3967 else if (entry->symndx >= 0 || entry->d.h->root.forced_local)
3968 ++g->local_gotno;
3969 else
3970 ++g->global_gotno;
3971
3972 return 1;
3973 }
3974
3975 /* A htab_traverse callback for the page entries in the master got.
3976 Associate each page entry with the bfd's got. */
3977
3978 static int
3979 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
3980 {
3981 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
3982 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
3983 struct mips_got_info *g;
3984
3985 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
3986 if (g == NULL)
3987 {
3988 arg->obfd = NULL;
3989 return 0;
3990 }
3991
3992 /* Insert the GOT entry in the bfd's got entry hash table. */
3993 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
3994 if (*entryp != NULL)
3995 return 1;
3996
3997 *entryp = entry;
3998 g->page_gotno += entry->num_pages;
3999 return 1;
4000 }
4001
4002 /* Consider merging the got described by BFD2GOT with TO, using the
4003 information given by ARG. Return -1 if this would lead to overflow,
4004 1 if they were merged successfully, and 0 if a merge failed due to
4005 lack of memory. (These values are chosen so that nonnegative return
4006 values can be returned by a htab_traverse callback.) */
4007
4008 static int
4009 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4010 struct mips_got_info *to,
4011 struct mips_elf_got_per_bfd_arg *arg)
4012 {
4013 struct mips_got_info *from = bfd2got->g;
4014 unsigned int estimate;
4015
4016 /* Work out how many page entries we would need for the combined GOT. */
4017 estimate = arg->max_pages;
4018 if (estimate >= from->page_gotno + to->page_gotno)
4019 estimate = from->page_gotno + to->page_gotno;
4020
4021 /* And conservatively estimate how many local, global and TLS entries
4022 would be needed. */
4023 estimate += (from->local_gotno
4024 + from->global_gotno
4025 + from->tls_gotno
4026 + to->local_gotno
4027 + to->global_gotno
4028 + to->tls_gotno);
4029
4030 /* Bail out if the combined GOT might be too big. */
4031 if (estimate > arg->max_count)
4032 return -1;
4033
4034 /* Commit to the merge. Record that TO is now the bfd for this got. */
4035 bfd2got->g = to;
4036
4037 /* Transfer the bfd's got information from FROM to TO. */
4038 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4039 if (arg->obfd == NULL)
4040 return 0;
4041
4042 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4043 if (arg->obfd == NULL)
4044 return 0;
4045
4046 /* We don't have to worry about releasing memory of the actual
4047 got entries, since they're all in the master got_entries hash
4048 table anyway. */
4049 htab_delete (from->got_entries);
4050 htab_delete (from->got_page_entries);
4051 return 1;
4052 }
4053
4054 /* Attempt to merge gots of different input bfds. Try to use as much
4055 as possible of the primary got, since it doesn't require explicit
4056 dynamic relocations, but don't use bfds that would reference global
4057 symbols out of the addressable range. Failing the primary got,
4058 attempt to merge with the current got, or finish the current got
4059 and then make make the new got current. */
4060
4061 static int
4062 mips_elf_merge_gots (void **bfd2got_, void *p)
4063 {
4064 struct mips_elf_bfd2got_hash *bfd2got
4065 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4066 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4067 struct mips_got_info *g;
4068 unsigned int estimate;
4069 int result;
4070
4071 g = bfd2got->g;
4072
4073 /* Work out the number of page, local and TLS entries. */
4074 estimate = arg->max_pages;
4075 if (estimate > g->page_gotno)
4076 estimate = g->page_gotno;
4077 estimate += g->local_gotno + g->tls_gotno;
4078
4079 /* We place TLS GOT entries after both locals and globals. The globals
4080 for the primary GOT may overflow the normal GOT size limit, so be
4081 sure not to merge a GOT which requires TLS with the primary GOT in that
4082 case. This doesn't affect non-primary GOTs. */
4083 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4084
4085 if (estimate <= arg->max_count)
4086 {
4087 /* If we don't have a primary GOT, use it as
4088 a starting point for the primary GOT. */
4089 if (!arg->primary)
4090 {
4091 arg->primary = bfd2got->g;
4092 return 1;
4093 }
4094
4095 /* Try merging with the primary GOT. */
4096 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4097 if (result >= 0)
4098 return result;
4099 }
4100
4101 /* If we can merge with the last-created got, do it. */
4102 if (arg->current)
4103 {
4104 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4105 if (result >= 0)
4106 return result;
4107 }
4108
4109 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4110 fits; if it turns out that it doesn't, we'll get relocation
4111 overflows anyway. */
4112 g->next = arg->current;
4113 arg->current = g;
4114
4115 return 1;
4116 }
4117
4118 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4119 is null iff there is just a single GOT. */
4120
4121 static int
4122 mips_elf_initialize_tls_index (void **entryp, void *p)
4123 {
4124 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4125 struct mips_got_info *g = p;
4126 bfd_vma next_index;
4127 unsigned char tls_type;
4128
4129 /* We're only interested in TLS symbols. */
4130 if (entry->tls_type == 0)
4131 return 1;
4132
4133 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4134
4135 if (entry->symndx == -1 && g->next == NULL)
4136 {
4137 /* A type (3) got entry in the single-GOT case. We use the symbol's
4138 hash table entry to track its index. */
4139 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4140 return 1;
4141 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4142 entry->d.h->tls_got_offset = next_index;
4143 tls_type = entry->d.h->tls_type;
4144 }
4145 else
4146 {
4147 if (entry->tls_type & GOT_TLS_LDM)
4148 {
4149 /* There are separate mips_got_entry objects for each input bfd
4150 that requires an LDM entry. Make sure that all LDM entries in
4151 a GOT resolve to the same index. */
4152 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4153 {
4154 entry->gotidx = g->tls_ldm_offset;
4155 return 1;
4156 }
4157 g->tls_ldm_offset = next_index;
4158 }
4159 entry->gotidx = next_index;
4160 tls_type = entry->tls_type;
4161 }
4162
4163 /* Account for the entries we've just allocated. */
4164 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4165 g->tls_assigned_gotno += 2;
4166 if (tls_type & GOT_TLS_IE)
4167 g->tls_assigned_gotno += 1;
4168
4169 return 1;
4170 }
4171
4172 /* If passed a NULL mips_got_info in the argument, set the marker used
4173 to tell whether a global symbol needs a got entry (in the primary
4174 got) to the given VALUE.
4175
4176 If passed a pointer G to a mips_got_info in the argument (it must
4177 not be the primary GOT), compute the offset from the beginning of
4178 the (primary) GOT section to the entry in G corresponding to the
4179 global symbol. G's assigned_gotno must contain the index of the
4180 first available global GOT entry in G. VALUE must contain the size
4181 of a GOT entry in bytes. For each global GOT entry that requires a
4182 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4183 marked as not eligible for lazy resolution through a function
4184 stub. */
4185 static int
4186 mips_elf_set_global_got_offset (void **entryp, void *p)
4187 {
4188 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4189 struct mips_elf_set_global_got_offset_arg *arg
4190 = (struct mips_elf_set_global_got_offset_arg *)p;
4191 struct mips_got_info *g = arg->g;
4192
4193 if (g && entry->tls_type != GOT_NORMAL)
4194 arg->needed_relocs +=
4195 mips_tls_got_relocs (arg->info, entry->tls_type,
4196 entry->symndx == -1 ? &entry->d.h->root : NULL);
4197
4198 if (entry->abfd != NULL
4199 && entry->symndx == -1
4200 && entry->d.h->global_got_area != GGA_NONE)
4201 {
4202 if (g)
4203 {
4204 BFD_ASSERT (g->global_gotsym == NULL);
4205
4206 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4207 if (arg->info->shared
4208 || (elf_hash_table (arg->info)->dynamic_sections_created
4209 && entry->d.h->root.def_dynamic
4210 && !entry->d.h->root.def_regular))
4211 ++arg->needed_relocs;
4212 }
4213 else
4214 entry->d.h->global_got_area = arg->value;
4215 }
4216
4217 return 1;
4218 }
4219
4220 /* A htab_traverse callback for GOT entries for which DATA is the
4221 bfd_link_info. Forbid any global symbols from having traditional
4222 lazy-binding stubs. */
4223
4224 static int
4225 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4226 {
4227 struct bfd_link_info *info;
4228 struct mips_elf_link_hash_table *htab;
4229 struct mips_got_entry *entry;
4230
4231 entry = (struct mips_got_entry *) *entryp;
4232 info = (struct bfd_link_info *) data;
4233 htab = mips_elf_hash_table (info);
4234 if (entry->abfd != NULL
4235 && entry->symndx == -1
4236 && entry->d.h->needs_lazy_stub)
4237 {
4238 entry->d.h->needs_lazy_stub = FALSE;
4239 htab->lazy_stub_count--;
4240 }
4241
4242 return 1;
4243 }
4244
4245 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4246 the primary GOT. */
4247 static bfd_vma
4248 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4249 {
4250 if (g->bfd2got == NULL)
4251 return 0;
4252
4253 g = mips_elf_got_for_ibfd (g, ibfd);
4254 if (! g)
4255 return 0;
4256
4257 BFD_ASSERT (g->next);
4258
4259 g = g->next;
4260
4261 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4262 * MIPS_ELF_GOT_SIZE (abfd);
4263 }
4264
4265 /* Turn a single GOT that is too big for 16-bit addressing into
4266 a sequence of GOTs, each one 16-bit addressable. */
4267
4268 static bfd_boolean
4269 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4270 asection *got, bfd_size_type pages)
4271 {
4272 struct mips_elf_link_hash_table *htab;
4273 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4274 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4275 struct mips_got_info *g, *gg;
4276 unsigned int assign, needed_relocs;
4277 bfd *dynobj;
4278
4279 dynobj = elf_hash_table (info)->dynobj;
4280 htab = mips_elf_hash_table (info);
4281 g = htab->got_info;
4282 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4283 mips_elf_bfd2got_entry_eq, NULL);
4284 if (g->bfd2got == NULL)
4285 return FALSE;
4286
4287 got_per_bfd_arg.bfd2got = g->bfd2got;
4288 got_per_bfd_arg.obfd = abfd;
4289 got_per_bfd_arg.info = info;
4290
4291 /* Count how many GOT entries each input bfd requires, creating a
4292 map from bfd to got info while at that. */
4293 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4294 if (got_per_bfd_arg.obfd == NULL)
4295 return FALSE;
4296
4297 /* Also count how many page entries each input bfd requires. */
4298 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4299 &got_per_bfd_arg);
4300 if (got_per_bfd_arg.obfd == NULL)
4301 return FALSE;
4302
4303 got_per_bfd_arg.current = NULL;
4304 got_per_bfd_arg.primary = NULL;
4305 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4306 / MIPS_ELF_GOT_SIZE (abfd))
4307 - htab->reserved_gotno);
4308 got_per_bfd_arg.max_pages = pages;
4309 /* The number of globals that will be included in the primary GOT.
4310 See the calls to mips_elf_set_global_got_offset below for more
4311 information. */
4312 got_per_bfd_arg.global_count = g->global_gotno;
4313
4314 /* Try to merge the GOTs of input bfds together, as long as they
4315 don't seem to exceed the maximum GOT size, choosing one of them
4316 to be the primary GOT. */
4317 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4318 if (got_per_bfd_arg.obfd == NULL)
4319 return FALSE;
4320
4321 /* If we do not find any suitable primary GOT, create an empty one. */
4322 if (got_per_bfd_arg.primary == NULL)
4323 {
4324 g->next = (struct mips_got_info *)
4325 bfd_alloc (abfd, sizeof (struct mips_got_info));
4326 if (g->next == NULL)
4327 return FALSE;
4328
4329 g->next->global_gotsym = NULL;
4330 g->next->global_gotno = 0;
4331 g->next->reloc_only_gotno = 0;
4332 g->next->local_gotno = 0;
4333 g->next->page_gotno = 0;
4334 g->next->tls_gotno = 0;
4335 g->next->assigned_gotno = 0;
4336 g->next->tls_assigned_gotno = 0;
4337 g->next->tls_ldm_offset = MINUS_ONE;
4338 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4339 mips_elf_multi_got_entry_eq,
4340 NULL);
4341 if (g->next->got_entries == NULL)
4342 return FALSE;
4343 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4344 mips_got_page_entry_eq,
4345 NULL);
4346 if (g->next->got_page_entries == NULL)
4347 return FALSE;
4348 g->next->bfd2got = NULL;
4349 }
4350 else
4351 g->next = got_per_bfd_arg.primary;
4352 g->next->next = got_per_bfd_arg.current;
4353
4354 /* GG is now the master GOT, and G is the primary GOT. */
4355 gg = g;
4356 g = g->next;
4357
4358 /* Map the output bfd to the primary got. That's what we're going
4359 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4360 didn't mark in check_relocs, and we want a quick way to find it.
4361 We can't just use gg->next because we're going to reverse the
4362 list. */
4363 {
4364 struct mips_elf_bfd2got_hash *bfdgot;
4365 void **bfdgotp;
4366
4367 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4368 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4369
4370 if (bfdgot == NULL)
4371 return FALSE;
4372
4373 bfdgot->bfd = abfd;
4374 bfdgot->g = g;
4375 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4376
4377 BFD_ASSERT (*bfdgotp == NULL);
4378 *bfdgotp = bfdgot;
4379 }
4380
4381 /* Every symbol that is referenced in a dynamic relocation must be
4382 present in the primary GOT, so arrange for them to appear after
4383 those that are actually referenced. */
4384 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4385 g->global_gotno = gg->global_gotno;
4386
4387 set_got_offset_arg.g = NULL;
4388 set_got_offset_arg.value = GGA_RELOC_ONLY;
4389 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4390 &set_got_offset_arg);
4391 set_got_offset_arg.value = GGA_NORMAL;
4392 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4393 &set_got_offset_arg);
4394
4395 /* Now go through the GOTs assigning them offset ranges.
4396 [assigned_gotno, local_gotno[ will be set to the range of local
4397 entries in each GOT. We can then compute the end of a GOT by
4398 adding local_gotno to global_gotno. We reverse the list and make
4399 it circular since then we'll be able to quickly compute the
4400 beginning of a GOT, by computing the end of its predecessor. To
4401 avoid special cases for the primary GOT, while still preserving
4402 assertions that are valid for both single- and multi-got links,
4403 we arrange for the main got struct to have the right number of
4404 global entries, but set its local_gotno such that the initial
4405 offset of the primary GOT is zero. Remember that the primary GOT
4406 will become the last item in the circular linked list, so it
4407 points back to the master GOT. */
4408 gg->local_gotno = -g->global_gotno;
4409 gg->global_gotno = g->global_gotno;
4410 gg->tls_gotno = 0;
4411 assign = 0;
4412 gg->next = gg;
4413
4414 do
4415 {
4416 struct mips_got_info *gn;
4417
4418 assign += htab->reserved_gotno;
4419 g->assigned_gotno = assign;
4420 g->local_gotno += assign;
4421 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4422 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4423
4424 /* Take g out of the direct list, and push it onto the reversed
4425 list that gg points to. g->next is guaranteed to be nonnull after
4426 this operation, as required by mips_elf_initialize_tls_index. */
4427 gn = g->next;
4428 g->next = gg->next;
4429 gg->next = g;
4430
4431 /* Set up any TLS entries. We always place the TLS entries after
4432 all non-TLS entries. */
4433 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4434 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4435
4436 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4437 g = gn;
4438
4439 /* Forbid global symbols in every non-primary GOT from having
4440 lazy-binding stubs. */
4441 if (g)
4442 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4443 }
4444 while (g);
4445
4446 got->size = (gg->next->local_gotno
4447 + gg->next->global_gotno
4448 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4449
4450 needed_relocs = 0;
4451 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4452 set_got_offset_arg.info = info;
4453 for (g = gg->next; g && g->next != gg; g = g->next)
4454 {
4455 unsigned int save_assign;
4456
4457 /* Assign offsets to global GOT entries. */
4458 save_assign = g->assigned_gotno;
4459 g->assigned_gotno = g->local_gotno;
4460 set_got_offset_arg.g = g;
4461 set_got_offset_arg.needed_relocs = 0;
4462 htab_traverse (g->got_entries,
4463 mips_elf_set_global_got_offset,
4464 &set_got_offset_arg);
4465 needed_relocs += set_got_offset_arg.needed_relocs;
4466 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4467
4468 g->assigned_gotno = save_assign;
4469 if (info->shared)
4470 {
4471 needed_relocs += g->local_gotno - g->assigned_gotno;
4472 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4473 + g->next->global_gotno
4474 + g->next->tls_gotno
4475 + htab->reserved_gotno);
4476 }
4477 }
4478
4479 if (needed_relocs)
4480 mips_elf_allocate_dynamic_relocations (dynobj, info,
4481 needed_relocs);
4482
4483 return TRUE;
4484 }
4485
4486 \f
4487 /* Returns the first relocation of type r_type found, beginning with
4488 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4489
4490 static const Elf_Internal_Rela *
4491 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4492 const Elf_Internal_Rela *relocation,
4493 const Elf_Internal_Rela *relend)
4494 {
4495 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4496
4497 while (relocation < relend)
4498 {
4499 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4500 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4501 return relocation;
4502
4503 ++relocation;
4504 }
4505
4506 /* We didn't find it. */
4507 return NULL;
4508 }
4509
4510 /* Return whether a relocation is against a local symbol. */
4511
4512 static bfd_boolean
4513 mips_elf_local_relocation_p (bfd *input_bfd,
4514 const Elf_Internal_Rela *relocation,
4515 asection **local_sections,
4516 bfd_boolean check_forced)
4517 {
4518 unsigned long r_symndx;
4519 Elf_Internal_Shdr *symtab_hdr;
4520 struct mips_elf_link_hash_entry *h;
4521 size_t extsymoff;
4522
4523 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4524 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4525 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4526
4527 if (r_symndx < extsymoff)
4528 return TRUE;
4529 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4530 return TRUE;
4531
4532 if (check_forced)
4533 {
4534 /* Look up the hash table to check whether the symbol
4535 was forced local. */
4536 h = (struct mips_elf_link_hash_entry *)
4537 elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
4538 /* Find the real hash-table entry for this symbol. */
4539 while (h->root.root.type == bfd_link_hash_indirect
4540 || h->root.root.type == bfd_link_hash_warning)
4541 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4542 if (h->root.forced_local)
4543 return TRUE;
4544 }
4545
4546 return FALSE;
4547 }
4548 \f
4549 /* Sign-extend VALUE, which has the indicated number of BITS. */
4550
4551 bfd_vma
4552 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4553 {
4554 if (value & ((bfd_vma) 1 << (bits - 1)))
4555 /* VALUE is negative. */
4556 value |= ((bfd_vma) - 1) << bits;
4557
4558 return value;
4559 }
4560
4561 /* Return non-zero if the indicated VALUE has overflowed the maximum
4562 range expressible by a signed number with the indicated number of
4563 BITS. */
4564
4565 static bfd_boolean
4566 mips_elf_overflow_p (bfd_vma value, int bits)
4567 {
4568 bfd_signed_vma svalue = (bfd_signed_vma) value;
4569
4570 if (svalue > (1 << (bits - 1)) - 1)
4571 /* The value is too big. */
4572 return TRUE;
4573 else if (svalue < -(1 << (bits - 1)))
4574 /* The value is too small. */
4575 return TRUE;
4576
4577 /* All is well. */
4578 return FALSE;
4579 }
4580
4581 /* Calculate the %high function. */
4582
4583 static bfd_vma
4584 mips_elf_high (bfd_vma value)
4585 {
4586 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4587 }
4588
4589 /* Calculate the %higher function. */
4590
4591 static bfd_vma
4592 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4593 {
4594 #ifdef BFD64
4595 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4596 #else
4597 abort ();
4598 return MINUS_ONE;
4599 #endif
4600 }
4601
4602 /* Calculate the %highest function. */
4603
4604 static bfd_vma
4605 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4606 {
4607 #ifdef BFD64
4608 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4609 #else
4610 abort ();
4611 return MINUS_ONE;
4612 #endif
4613 }
4614 \f
4615 /* Create the .compact_rel section. */
4616
4617 static bfd_boolean
4618 mips_elf_create_compact_rel_section
4619 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4620 {
4621 flagword flags;
4622 register asection *s;
4623
4624 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4625 {
4626 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4627 | SEC_READONLY);
4628
4629 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
4630 if (s == NULL
4631 || ! bfd_set_section_alignment (abfd, s,
4632 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4633 return FALSE;
4634
4635 s->size = sizeof (Elf32_External_compact_rel);
4636 }
4637
4638 return TRUE;
4639 }
4640
4641 /* Create the .got section to hold the global offset table. */
4642
4643 static bfd_boolean
4644 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4645 {
4646 flagword flags;
4647 register asection *s;
4648 struct elf_link_hash_entry *h;
4649 struct bfd_link_hash_entry *bh;
4650 struct mips_got_info *g;
4651 bfd_size_type amt;
4652 struct mips_elf_link_hash_table *htab;
4653
4654 htab = mips_elf_hash_table (info);
4655
4656 /* This function may be called more than once. */
4657 if (htab->sgot)
4658 return TRUE;
4659
4660 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4661 | SEC_LINKER_CREATED);
4662
4663 /* We have to use an alignment of 2**4 here because this is hardcoded
4664 in the function stub generation and in the linker script. */
4665 s = bfd_make_section_with_flags (abfd, ".got", flags);
4666 if (s == NULL
4667 || ! bfd_set_section_alignment (abfd, s, 4))
4668 return FALSE;
4669 htab->sgot = s;
4670
4671 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4672 linker script because we don't want to define the symbol if we
4673 are not creating a global offset table. */
4674 bh = NULL;
4675 if (! (_bfd_generic_link_add_one_symbol
4676 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4677 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4678 return FALSE;
4679
4680 h = (struct elf_link_hash_entry *) bh;
4681 h->non_elf = 0;
4682 h->def_regular = 1;
4683 h->type = STT_OBJECT;
4684 elf_hash_table (info)->hgot = h;
4685
4686 if (info->shared
4687 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4688 return FALSE;
4689
4690 amt = sizeof (struct mips_got_info);
4691 g = bfd_alloc (abfd, amt);
4692 if (g == NULL)
4693 return FALSE;
4694 g->global_gotsym = NULL;
4695 g->global_gotno = 0;
4696 g->reloc_only_gotno = 0;
4697 g->tls_gotno = 0;
4698 g->local_gotno = 0;
4699 g->page_gotno = 0;
4700 g->assigned_gotno = 0;
4701 g->bfd2got = NULL;
4702 g->next = NULL;
4703 g->tls_ldm_offset = MINUS_ONE;
4704 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4705 mips_elf_got_entry_eq, NULL);
4706 if (g->got_entries == NULL)
4707 return FALSE;
4708 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4709 mips_got_page_entry_eq, NULL);
4710 if (g->got_page_entries == NULL)
4711 return FALSE;
4712 htab->got_info = g;
4713 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4714 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4715
4716 /* We also need a .got.plt section when generating PLTs. */
4717 s = bfd_make_section_with_flags (abfd, ".got.plt",
4718 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4719 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4720 if (s == NULL)
4721 return FALSE;
4722 htab->sgotplt = s;
4723
4724 return TRUE;
4725 }
4726 \f
4727 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4728 __GOTT_INDEX__ symbols. These symbols are only special for
4729 shared objects; they are not used in executables. */
4730
4731 static bfd_boolean
4732 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4733 {
4734 return (mips_elf_hash_table (info)->is_vxworks
4735 && info->shared
4736 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4737 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4738 }
4739
4740 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4741 require an la25 stub. See also mips_elf_local_pic_function_p,
4742 which determines whether the destination function ever requires a
4743 stub. */
4744
4745 static bfd_boolean
4746 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type)
4747 {
4748 /* We specifically ignore branches and jumps from EF_PIC objects,
4749 where the onus is on the compiler or programmer to perform any
4750 necessary initialization of $25. Sometimes such initialization
4751 is unnecessary; for example, -mno-shared functions do not use
4752 the incoming value of $25, and may therefore be called directly. */
4753 if (PIC_OBJECT_P (input_bfd))
4754 return FALSE;
4755
4756 switch (r_type)
4757 {
4758 case R_MIPS_26:
4759 case R_MIPS_PC16:
4760 case R_MIPS16_26:
4761 return TRUE;
4762
4763 default:
4764 return FALSE;
4765 }
4766 }
4767 \f
4768 /* Calculate the value produced by the RELOCATION (which comes from
4769 the INPUT_BFD). The ADDEND is the addend to use for this
4770 RELOCATION; RELOCATION->R_ADDEND is ignored.
4771
4772 The result of the relocation calculation is stored in VALUEP.
4773 REQUIRE_JALXP indicates whether or not the opcode used with this
4774 relocation must be JALX.
4775
4776 This function returns bfd_reloc_continue if the caller need take no
4777 further action regarding this relocation, bfd_reloc_notsupported if
4778 something goes dramatically wrong, bfd_reloc_overflow if an
4779 overflow occurs, and bfd_reloc_ok to indicate success. */
4780
4781 static bfd_reloc_status_type
4782 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4783 asection *input_section,
4784 struct bfd_link_info *info,
4785 const Elf_Internal_Rela *relocation,
4786 bfd_vma addend, reloc_howto_type *howto,
4787 Elf_Internal_Sym *local_syms,
4788 asection **local_sections, bfd_vma *valuep,
4789 const char **namep, bfd_boolean *require_jalxp,
4790 bfd_boolean save_addend)
4791 {
4792 /* The eventual value we will return. */
4793 bfd_vma value;
4794 /* The address of the symbol against which the relocation is
4795 occurring. */
4796 bfd_vma symbol = 0;
4797 /* The final GP value to be used for the relocatable, executable, or
4798 shared object file being produced. */
4799 bfd_vma gp;
4800 /* The place (section offset or address) of the storage unit being
4801 relocated. */
4802 bfd_vma p;
4803 /* The value of GP used to create the relocatable object. */
4804 bfd_vma gp0;
4805 /* The offset into the global offset table at which the address of
4806 the relocation entry symbol, adjusted by the addend, resides
4807 during execution. */
4808 bfd_vma g = MINUS_ONE;
4809 /* The section in which the symbol referenced by the relocation is
4810 located. */
4811 asection *sec = NULL;
4812 struct mips_elf_link_hash_entry *h = NULL;
4813 /* TRUE if the symbol referred to by this relocation is a local
4814 symbol. */
4815 bfd_boolean local_p, was_local_p;
4816 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4817 bfd_boolean gp_disp_p = FALSE;
4818 /* TRUE if the symbol referred to by this relocation is
4819 "__gnu_local_gp". */
4820 bfd_boolean gnu_local_gp_p = FALSE;
4821 Elf_Internal_Shdr *symtab_hdr;
4822 size_t extsymoff;
4823 unsigned long r_symndx;
4824 int r_type;
4825 /* TRUE if overflow occurred during the calculation of the
4826 relocation value. */
4827 bfd_boolean overflowed_p;
4828 /* TRUE if this relocation refers to a MIPS16 function. */
4829 bfd_boolean target_is_16_bit_code_p = FALSE;
4830 struct mips_elf_link_hash_table *htab;
4831 bfd *dynobj;
4832
4833 dynobj = elf_hash_table (info)->dynobj;
4834 htab = mips_elf_hash_table (info);
4835
4836 /* Parse the relocation. */
4837 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4838 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4839 p = (input_section->output_section->vma
4840 + input_section->output_offset
4841 + relocation->r_offset);
4842
4843 /* Assume that there will be no overflow. */
4844 overflowed_p = FALSE;
4845
4846 /* Figure out whether or not the symbol is local, and get the offset
4847 used in the array of hash table entries. */
4848 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4849 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4850 local_sections, FALSE);
4851 was_local_p = local_p;
4852 if (! elf_bad_symtab (input_bfd))
4853 extsymoff = symtab_hdr->sh_info;
4854 else
4855 {
4856 /* The symbol table does not follow the rule that local symbols
4857 must come before globals. */
4858 extsymoff = 0;
4859 }
4860
4861 /* Figure out the value of the symbol. */
4862 if (local_p)
4863 {
4864 Elf_Internal_Sym *sym;
4865
4866 sym = local_syms + r_symndx;
4867 sec = local_sections[r_symndx];
4868
4869 symbol = sec->output_section->vma + sec->output_offset;
4870 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
4871 || (sec->flags & SEC_MERGE))
4872 symbol += sym->st_value;
4873 if ((sec->flags & SEC_MERGE)
4874 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4875 {
4876 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
4877 addend -= symbol;
4878 addend += sec->output_section->vma + sec->output_offset;
4879 }
4880
4881 /* MIPS16 text labels should be treated as odd. */
4882 if (ELF_ST_IS_MIPS16 (sym->st_other))
4883 ++symbol;
4884
4885 /* Record the name of this symbol, for our caller. */
4886 *namep = bfd_elf_string_from_elf_section (input_bfd,
4887 symtab_hdr->sh_link,
4888 sym->st_name);
4889 if (*namep == '\0')
4890 *namep = bfd_section_name (input_bfd, sec);
4891
4892 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
4893 }
4894 else
4895 {
4896 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
4897
4898 /* For global symbols we look up the symbol in the hash-table. */
4899 h = ((struct mips_elf_link_hash_entry *)
4900 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
4901 /* Find the real hash-table entry for this symbol. */
4902 while (h->root.root.type == bfd_link_hash_indirect
4903 || h->root.root.type == bfd_link_hash_warning)
4904 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4905
4906 /* Record the name of this symbol, for our caller. */
4907 *namep = h->root.root.root.string;
4908
4909 /* See if this is the special _gp_disp symbol. Note that such a
4910 symbol must always be a global symbol. */
4911 if (strcmp (*namep, "_gp_disp") == 0
4912 && ! NEWABI_P (input_bfd))
4913 {
4914 /* Relocations against _gp_disp are permitted only with
4915 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
4916 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
4917 return bfd_reloc_notsupported;
4918
4919 gp_disp_p = TRUE;
4920 }
4921 /* See if this is the special _gp symbol. Note that such a
4922 symbol must always be a global symbol. */
4923 else if (strcmp (*namep, "__gnu_local_gp") == 0)
4924 gnu_local_gp_p = TRUE;
4925
4926
4927 /* If this symbol is defined, calculate its address. Note that
4928 _gp_disp is a magic symbol, always implicitly defined by the
4929 linker, so it's inappropriate to check to see whether or not
4930 its defined. */
4931 else if ((h->root.root.type == bfd_link_hash_defined
4932 || h->root.root.type == bfd_link_hash_defweak)
4933 && h->root.root.u.def.section)
4934 {
4935 sec = h->root.root.u.def.section;
4936 if (sec->output_section)
4937 symbol = (h->root.root.u.def.value
4938 + sec->output_section->vma
4939 + sec->output_offset);
4940 else
4941 symbol = h->root.root.u.def.value;
4942 }
4943 else if (h->root.root.type == bfd_link_hash_undefweak)
4944 /* We allow relocations against undefined weak symbols, giving
4945 it the value zero, so that you can undefined weak functions
4946 and check to see if they exist by looking at their
4947 addresses. */
4948 symbol = 0;
4949 else if (info->unresolved_syms_in_objects == RM_IGNORE
4950 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
4951 symbol = 0;
4952 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
4953 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
4954 {
4955 /* If this is a dynamic link, we should have created a
4956 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
4957 in in _bfd_mips_elf_create_dynamic_sections.
4958 Otherwise, we should define the symbol with a value of 0.
4959 FIXME: It should probably get into the symbol table
4960 somehow as well. */
4961 BFD_ASSERT (! info->shared);
4962 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
4963 symbol = 0;
4964 }
4965 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
4966 {
4967 /* This is an optional symbol - an Irix specific extension to the
4968 ELF spec. Ignore it for now.
4969 XXX - FIXME - there is more to the spec for OPTIONAL symbols
4970 than simply ignoring them, but we do not handle this for now.
4971 For information see the "64-bit ELF Object File Specification"
4972 which is available from here:
4973 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
4974 symbol = 0;
4975 }
4976 else
4977 {
4978 if (! ((*info->callbacks->undefined_symbol)
4979 (info, h->root.root.root.string, input_bfd,
4980 input_section, relocation->r_offset,
4981 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
4982 || ELF_ST_VISIBILITY (h->root.other))))
4983 return bfd_reloc_undefined;
4984 symbol = 0;
4985 }
4986
4987 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
4988 }
4989
4990 /* If this is a reference to a 16-bit function with a stub, we need
4991 to redirect the relocation to the stub unless:
4992
4993 (a) the relocation is for a MIPS16 JAL;
4994
4995 (b) the relocation is for a MIPS16 PIC call, and there are no
4996 non-MIPS16 uses of the GOT slot; or
4997
4998 (c) the section allows direct references to MIPS16 functions. */
4999 if (r_type != R_MIPS16_26
5000 && !info->relocatable
5001 && ((h != NULL
5002 && h->fn_stub != NULL
5003 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5004 || (local_p
5005 && elf_tdata (input_bfd)->local_stubs != NULL
5006 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5007 && !section_allows_mips16_refs_p (input_section))
5008 {
5009 /* This is a 32- or 64-bit call to a 16-bit function. We should
5010 have already noticed that we were going to need the
5011 stub. */
5012 if (local_p)
5013 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5014 else
5015 {
5016 BFD_ASSERT (h->need_fn_stub);
5017 sec = h->fn_stub;
5018 }
5019
5020 symbol = sec->output_section->vma + sec->output_offset;
5021 /* The target is 16-bit, but the stub isn't. */
5022 target_is_16_bit_code_p = FALSE;
5023 }
5024 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5025 need to redirect the call to the stub. Note that we specifically
5026 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5027 use an indirect stub instead. */
5028 else if (r_type == R_MIPS16_26 && !info->relocatable
5029 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5030 || (local_p
5031 && elf_tdata (input_bfd)->local_call_stubs != NULL
5032 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5033 && !target_is_16_bit_code_p)
5034 {
5035 if (local_p)
5036 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5037 else
5038 {
5039 /* If both call_stub and call_fp_stub are defined, we can figure
5040 out which one to use by checking which one appears in the input
5041 file. */
5042 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5043 {
5044 asection *o;
5045
5046 sec = NULL;
5047 for (o = input_bfd->sections; o != NULL; o = o->next)
5048 {
5049 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5050 {
5051 sec = h->call_fp_stub;
5052 break;
5053 }
5054 }
5055 if (sec == NULL)
5056 sec = h->call_stub;
5057 }
5058 else if (h->call_stub != NULL)
5059 sec = h->call_stub;
5060 else
5061 sec = h->call_fp_stub;
5062 }
5063
5064 BFD_ASSERT (sec->size > 0);
5065 symbol = sec->output_section->vma + sec->output_offset;
5066 }
5067 /* If this is a direct call to a PIC function, redirect to the
5068 non-PIC stub. */
5069 else if (h != NULL && h->la25_stub
5070 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type))
5071 symbol = (h->la25_stub->stub_section->output_section->vma
5072 + h->la25_stub->stub_section->output_offset
5073 + h->la25_stub->offset);
5074
5075 /* Calls from 16-bit code to 32-bit code and vice versa require the
5076 special jalx instruction. */
5077 *require_jalxp = (!info->relocatable
5078 && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p)
5079 || ((r_type == R_MIPS_26) && target_is_16_bit_code_p)));
5080
5081 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5082 local_sections, TRUE);
5083
5084 gp0 = _bfd_get_gp_value (input_bfd);
5085 gp = _bfd_get_gp_value (abfd);
5086 if (htab->got_info)
5087 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5088
5089 if (gnu_local_gp_p)
5090 symbol = gp;
5091
5092 /* If we haven't already determined the GOT offset, oand we're going
5093 to need it, get it now. */
5094 switch (r_type)
5095 {
5096 case R_MIPS_GOT_PAGE:
5097 case R_MIPS_GOT_OFST:
5098 /* We need to decay to GOT_DISP/addend if the symbol doesn't
5099 bind locally. */
5100 local_p = local_p || _bfd_elf_symbol_refs_local_p (&h->root, info, 1);
5101 if (local_p || r_type == R_MIPS_GOT_OFST)
5102 break;
5103 /* Fall through. */
5104
5105 case R_MIPS16_CALL16:
5106 case R_MIPS16_GOT16:
5107 case R_MIPS_CALL16:
5108 case R_MIPS_GOT16:
5109 case R_MIPS_GOT_DISP:
5110 case R_MIPS_GOT_HI16:
5111 case R_MIPS_CALL_HI16:
5112 case R_MIPS_GOT_LO16:
5113 case R_MIPS_CALL_LO16:
5114 case R_MIPS_TLS_GD:
5115 case R_MIPS_TLS_GOTTPREL:
5116 case R_MIPS_TLS_LDM:
5117 /* Find the index into the GOT where this value is located. */
5118 if (r_type == R_MIPS_TLS_LDM)
5119 {
5120 g = mips_elf_local_got_index (abfd, input_bfd, info,
5121 0, 0, NULL, r_type);
5122 if (g == MINUS_ONE)
5123 return bfd_reloc_outofrange;
5124 }
5125 else if (!local_p)
5126 {
5127 /* On VxWorks, CALL relocations should refer to the .got.plt
5128 entry, which is initialized to point at the PLT stub. */
5129 if (htab->is_vxworks
5130 && (r_type == R_MIPS_CALL_HI16
5131 || r_type == R_MIPS_CALL_LO16
5132 || call16_reloc_p (r_type)))
5133 {
5134 BFD_ASSERT (addend == 0);
5135 BFD_ASSERT (h->root.needs_plt);
5136 g = mips_elf_gotplt_index (info, &h->root);
5137 }
5138 else
5139 {
5140 /* GOT_PAGE may take a non-zero addend, that is ignored in a
5141 GOT_PAGE relocation that decays to GOT_DISP because the
5142 symbol turns out to be global. The addend is then added
5143 as GOT_OFST. */
5144 BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE);
5145 g = mips_elf_global_got_index (dynobj, input_bfd,
5146 &h->root, r_type, info);
5147 if (h->tls_type == GOT_NORMAL
5148 && (! elf_hash_table(info)->dynamic_sections_created
5149 || (info->shared
5150 && (info->symbolic || h->root.forced_local)
5151 && h->root.def_regular)))
5152 /* This is a static link or a -Bsymbolic link. The
5153 symbol is defined locally, or was forced to be local.
5154 We must initialize this entry in the GOT. */
5155 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5156 }
5157 }
5158 else if (!htab->is_vxworks
5159 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5160 /* The calculation below does not involve "g". */
5161 break;
5162 else
5163 {
5164 g = mips_elf_local_got_index (abfd, input_bfd, info,
5165 symbol + addend, r_symndx, h, r_type);
5166 if (g == MINUS_ONE)
5167 return bfd_reloc_outofrange;
5168 }
5169
5170 /* Convert GOT indices to actual offsets. */
5171 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5172 break;
5173 }
5174
5175 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5176 symbols are resolved by the loader. Add them to .rela.dyn. */
5177 if (h != NULL && is_gott_symbol (info, &h->root))
5178 {
5179 Elf_Internal_Rela outrel;
5180 bfd_byte *loc;
5181 asection *s;
5182
5183 s = mips_elf_rel_dyn_section (info, FALSE);
5184 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5185
5186 outrel.r_offset = (input_section->output_section->vma
5187 + input_section->output_offset
5188 + relocation->r_offset);
5189 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5190 outrel.r_addend = addend;
5191 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5192
5193 /* If we've written this relocation for a readonly section,
5194 we need to set DF_TEXTREL again, so that we do not delete the
5195 DT_TEXTREL tag. */
5196 if (MIPS_ELF_READONLY_SECTION (input_section))
5197 info->flags |= DF_TEXTREL;
5198
5199 *valuep = 0;
5200 return bfd_reloc_ok;
5201 }
5202
5203 /* Figure out what kind of relocation is being performed. */
5204 switch (r_type)
5205 {
5206 case R_MIPS_NONE:
5207 return bfd_reloc_continue;
5208
5209 case R_MIPS_16:
5210 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5211 overflowed_p = mips_elf_overflow_p (value, 16);
5212 break;
5213
5214 case R_MIPS_32:
5215 case R_MIPS_REL32:
5216 case R_MIPS_64:
5217 if ((info->shared
5218 || (htab->root.dynamic_sections_created
5219 && h != NULL
5220 && h->root.def_dynamic
5221 && !h->root.def_regular
5222 && !h->has_static_relocs))
5223 && r_symndx != 0
5224 && (h == NULL
5225 || h->root.root.type != bfd_link_hash_undefweak
5226 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5227 && (input_section->flags & SEC_ALLOC) != 0)
5228 {
5229 /* If we're creating a shared library, then we can't know
5230 where the symbol will end up. So, we create a relocation
5231 record in the output, and leave the job up to the dynamic
5232 linker. We must do the same for executable references to
5233 shared library symbols, unless we've decided to use copy
5234 relocs or PLTs instead. */
5235 value = addend;
5236 if (!mips_elf_create_dynamic_relocation (abfd,
5237 info,
5238 relocation,
5239 h,
5240 sec,
5241 symbol,
5242 &value,
5243 input_section))
5244 return bfd_reloc_undefined;
5245 }
5246 else
5247 {
5248 if (r_type != R_MIPS_REL32)
5249 value = symbol + addend;
5250 else
5251 value = addend;
5252 }
5253 value &= howto->dst_mask;
5254 break;
5255
5256 case R_MIPS_PC32:
5257 value = symbol + addend - p;
5258 value &= howto->dst_mask;
5259 break;
5260
5261 case R_MIPS16_26:
5262 /* The calculation for R_MIPS16_26 is just the same as for an
5263 R_MIPS_26. It's only the storage of the relocated field into
5264 the output file that's different. That's handled in
5265 mips_elf_perform_relocation. So, we just fall through to the
5266 R_MIPS_26 case here. */
5267 case R_MIPS_26:
5268 if (local_p)
5269 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
5270 else
5271 {
5272 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
5273 if (h->root.root.type != bfd_link_hash_undefweak)
5274 overflowed_p = (value >> 26) != ((p + 4) >> 28);
5275 }
5276 value &= howto->dst_mask;
5277 break;
5278
5279 case R_MIPS_TLS_DTPREL_HI16:
5280 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5281 & howto->dst_mask);
5282 break;
5283
5284 case R_MIPS_TLS_DTPREL_LO16:
5285 case R_MIPS_TLS_DTPREL32:
5286 case R_MIPS_TLS_DTPREL64:
5287 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5288 break;
5289
5290 case R_MIPS_TLS_TPREL_HI16:
5291 value = (mips_elf_high (addend + symbol - tprel_base (info))
5292 & howto->dst_mask);
5293 break;
5294
5295 case R_MIPS_TLS_TPREL_LO16:
5296 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5297 break;
5298
5299 case R_MIPS_HI16:
5300 case R_MIPS16_HI16:
5301 if (!gp_disp_p)
5302 {
5303 value = mips_elf_high (addend + symbol);
5304 value &= howto->dst_mask;
5305 }
5306 else
5307 {
5308 /* For MIPS16 ABI code we generate this sequence
5309 0: li $v0,%hi(_gp_disp)
5310 4: addiupc $v1,%lo(_gp_disp)
5311 8: sll $v0,16
5312 12: addu $v0,$v1
5313 14: move $gp,$v0
5314 So the offsets of hi and lo relocs are the same, but the
5315 $pc is four higher than $t9 would be, so reduce
5316 both reloc addends by 4. */
5317 if (r_type == R_MIPS16_HI16)
5318 value = mips_elf_high (addend + gp - p - 4);
5319 else
5320 value = mips_elf_high (addend + gp - p);
5321 overflowed_p = mips_elf_overflow_p (value, 16);
5322 }
5323 break;
5324
5325 case R_MIPS_LO16:
5326 case R_MIPS16_LO16:
5327 if (!gp_disp_p)
5328 value = (symbol + addend) & howto->dst_mask;
5329 else
5330 {
5331 /* See the comment for R_MIPS16_HI16 above for the reason
5332 for this conditional. */
5333 if (r_type == R_MIPS16_LO16)
5334 value = addend + gp - p;
5335 else
5336 value = addend + gp - p + 4;
5337 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5338 for overflow. But, on, say, IRIX5, relocations against
5339 _gp_disp are normally generated from the .cpload
5340 pseudo-op. It generates code that normally looks like
5341 this:
5342
5343 lui $gp,%hi(_gp_disp)
5344 addiu $gp,$gp,%lo(_gp_disp)
5345 addu $gp,$gp,$t9
5346
5347 Here $t9 holds the address of the function being called,
5348 as required by the MIPS ELF ABI. The R_MIPS_LO16
5349 relocation can easily overflow in this situation, but the
5350 R_MIPS_HI16 relocation will handle the overflow.
5351 Therefore, we consider this a bug in the MIPS ABI, and do
5352 not check for overflow here. */
5353 }
5354 break;
5355
5356 case R_MIPS_LITERAL:
5357 /* Because we don't merge literal sections, we can handle this
5358 just like R_MIPS_GPREL16. In the long run, we should merge
5359 shared literals, and then we will need to additional work
5360 here. */
5361
5362 /* Fall through. */
5363
5364 case R_MIPS16_GPREL:
5365 /* The R_MIPS16_GPREL performs the same calculation as
5366 R_MIPS_GPREL16, but stores the relocated bits in a different
5367 order. We don't need to do anything special here; the
5368 differences are handled in mips_elf_perform_relocation. */
5369 case R_MIPS_GPREL16:
5370 /* Only sign-extend the addend if it was extracted from the
5371 instruction. If the addend was separate, leave it alone,
5372 otherwise we may lose significant bits. */
5373 if (howto->partial_inplace)
5374 addend = _bfd_mips_elf_sign_extend (addend, 16);
5375 value = symbol + addend - gp;
5376 /* If the symbol was local, any earlier relocatable links will
5377 have adjusted its addend with the gp offset, so compensate
5378 for that now. Don't do it for symbols forced local in this
5379 link, though, since they won't have had the gp offset applied
5380 to them before. */
5381 if (was_local_p)
5382 value += gp0;
5383 overflowed_p = mips_elf_overflow_p (value, 16);
5384 break;
5385
5386 case R_MIPS16_GOT16:
5387 case R_MIPS16_CALL16:
5388 case R_MIPS_GOT16:
5389 case R_MIPS_CALL16:
5390 /* VxWorks does not have separate local and global semantics for
5391 R_MIPS*_GOT16; every relocation evaluates to "G". */
5392 if (!htab->is_vxworks && local_p)
5393 {
5394 bfd_boolean forced;
5395
5396 forced = ! mips_elf_local_relocation_p (input_bfd, relocation,
5397 local_sections, FALSE);
5398 value = mips_elf_got16_entry (abfd, input_bfd, info,
5399 symbol + addend, forced);
5400 if (value == MINUS_ONE)
5401 return bfd_reloc_outofrange;
5402 value
5403 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5404 overflowed_p = mips_elf_overflow_p (value, 16);
5405 break;
5406 }
5407
5408 /* Fall through. */
5409
5410 case R_MIPS_TLS_GD:
5411 case R_MIPS_TLS_GOTTPREL:
5412 case R_MIPS_TLS_LDM:
5413 case R_MIPS_GOT_DISP:
5414 got_disp:
5415 value = g;
5416 overflowed_p = mips_elf_overflow_p (value, 16);
5417 break;
5418
5419 case R_MIPS_GPREL32:
5420 value = (addend + symbol + gp0 - gp);
5421 if (!save_addend)
5422 value &= howto->dst_mask;
5423 break;
5424
5425 case R_MIPS_PC16:
5426 case R_MIPS_GNU_REL16_S2:
5427 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5428 overflowed_p = mips_elf_overflow_p (value, 18);
5429 value >>= howto->rightshift;
5430 value &= howto->dst_mask;
5431 break;
5432
5433 case R_MIPS_GOT_HI16:
5434 case R_MIPS_CALL_HI16:
5435 /* We're allowed to handle these two relocations identically.
5436 The dynamic linker is allowed to handle the CALL relocations
5437 differently by creating a lazy evaluation stub. */
5438 value = g;
5439 value = mips_elf_high (value);
5440 value &= howto->dst_mask;
5441 break;
5442
5443 case R_MIPS_GOT_LO16:
5444 case R_MIPS_CALL_LO16:
5445 value = g & howto->dst_mask;
5446 break;
5447
5448 case R_MIPS_GOT_PAGE:
5449 /* GOT_PAGE relocations that reference non-local symbols decay
5450 to GOT_DISP. The corresponding GOT_OFST relocation decays to
5451 0. */
5452 if (! local_p)
5453 goto got_disp;
5454 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5455 if (value == MINUS_ONE)
5456 return bfd_reloc_outofrange;
5457 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5458 overflowed_p = mips_elf_overflow_p (value, 16);
5459 break;
5460
5461 case R_MIPS_GOT_OFST:
5462 if (local_p)
5463 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5464 else
5465 value = addend;
5466 overflowed_p = mips_elf_overflow_p (value, 16);
5467 break;
5468
5469 case R_MIPS_SUB:
5470 value = symbol - addend;
5471 value &= howto->dst_mask;
5472 break;
5473
5474 case R_MIPS_HIGHER:
5475 value = mips_elf_higher (addend + symbol);
5476 value &= howto->dst_mask;
5477 break;
5478
5479 case R_MIPS_HIGHEST:
5480 value = mips_elf_highest (addend + symbol);
5481 value &= howto->dst_mask;
5482 break;
5483
5484 case R_MIPS_SCN_DISP:
5485 value = symbol + addend - sec->output_offset;
5486 value &= howto->dst_mask;
5487 break;
5488
5489 case R_MIPS_JALR:
5490 /* This relocation is only a hint. In some cases, we optimize
5491 it into a bal instruction. But we don't try to optimize
5492 when the symbol does not resolve locally. */
5493 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5494 return bfd_reloc_continue;
5495 value = symbol + addend;
5496 break;
5497
5498 case R_MIPS_PJUMP:
5499 case R_MIPS_GNU_VTINHERIT:
5500 case R_MIPS_GNU_VTENTRY:
5501 /* We don't do anything with these at present. */
5502 return bfd_reloc_continue;
5503
5504 default:
5505 /* An unrecognized relocation type. */
5506 return bfd_reloc_notsupported;
5507 }
5508
5509 /* Store the VALUE for our caller. */
5510 *valuep = value;
5511 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5512 }
5513
5514 /* Obtain the field relocated by RELOCATION. */
5515
5516 static bfd_vma
5517 mips_elf_obtain_contents (reloc_howto_type *howto,
5518 const Elf_Internal_Rela *relocation,
5519 bfd *input_bfd, bfd_byte *contents)
5520 {
5521 bfd_vma x;
5522 bfd_byte *location = contents + relocation->r_offset;
5523
5524 /* Obtain the bytes. */
5525 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5526
5527 return x;
5528 }
5529
5530 /* It has been determined that the result of the RELOCATION is the
5531 VALUE. Use HOWTO to place VALUE into the output file at the
5532 appropriate position. The SECTION is the section to which the
5533 relocation applies. If REQUIRE_JALX is TRUE, then the opcode used
5534 for the relocation must be either JAL or JALX, and it is
5535 unconditionally converted to JALX.
5536
5537 Returns FALSE if anything goes wrong. */
5538
5539 static bfd_boolean
5540 mips_elf_perform_relocation (struct bfd_link_info *info,
5541 reloc_howto_type *howto,
5542 const Elf_Internal_Rela *relocation,
5543 bfd_vma value, bfd *input_bfd,
5544 asection *input_section, bfd_byte *contents,
5545 bfd_boolean require_jalx)
5546 {
5547 bfd_vma x;
5548 bfd_byte *location;
5549 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5550
5551 /* Figure out where the relocation is occurring. */
5552 location = contents + relocation->r_offset;
5553
5554 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5555
5556 /* Obtain the current value. */
5557 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5558
5559 /* Clear the field we are setting. */
5560 x &= ~howto->dst_mask;
5561
5562 /* Set the field. */
5563 x |= (value & howto->dst_mask);
5564
5565 /* If required, turn JAL into JALX. */
5566 if (require_jalx)
5567 {
5568 bfd_boolean ok;
5569 bfd_vma opcode = x >> 26;
5570 bfd_vma jalx_opcode;
5571
5572 /* Check to see if the opcode is already JAL or JALX. */
5573 if (r_type == R_MIPS16_26)
5574 {
5575 ok = ((opcode == 0x6) || (opcode == 0x7));
5576 jalx_opcode = 0x7;
5577 }
5578 else
5579 {
5580 ok = ((opcode == 0x3) || (opcode == 0x1d));
5581 jalx_opcode = 0x1d;
5582 }
5583
5584 /* If the opcode is not JAL or JALX, there's a problem. */
5585 if (!ok)
5586 {
5587 (*_bfd_error_handler)
5588 (_("%B: %A+0x%lx: jump to stub routine which is not jal"),
5589 input_bfd,
5590 input_section,
5591 (unsigned long) relocation->r_offset);
5592 bfd_set_error (bfd_error_bad_value);
5593 return FALSE;
5594 }
5595
5596 /* Make this the JALX opcode. */
5597 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5598 }
5599
5600 /* Try converting JAL and JALR to BAL, if the target is in range. */
5601 if (!info->relocatable
5602 && !require_jalx
5603 && ((JAL_TO_BAL_P (input_bfd)
5604 && r_type == R_MIPS_26
5605 && (x >> 26) == 0x3) /* jal addr */
5606 || (JALR_TO_BAL_P (input_bfd)
5607 && r_type == R_MIPS_JALR
5608 && x == 0x0320f809))) /* jalr t9 */
5609 {
5610 bfd_vma addr;
5611 bfd_vma dest;
5612 bfd_signed_vma off;
5613
5614 addr = (input_section->output_section->vma
5615 + input_section->output_offset
5616 + relocation->r_offset
5617 + 4);
5618 if (r_type == R_MIPS_26)
5619 dest = (value << 2) | ((addr >> 28) << 28);
5620 else
5621 dest = value;
5622 off = dest - addr;
5623 if (off <= 0x1ffff && off >= -0x20000)
5624 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5625 }
5626
5627 /* Put the value into the output. */
5628 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5629
5630 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
5631 location);
5632
5633 return TRUE;
5634 }
5635 \f
5636 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5637 is the original relocation, which is now being transformed into a
5638 dynamic relocation. The ADDENDP is adjusted if necessary; the
5639 caller should store the result in place of the original addend. */
5640
5641 static bfd_boolean
5642 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5643 struct bfd_link_info *info,
5644 const Elf_Internal_Rela *rel,
5645 struct mips_elf_link_hash_entry *h,
5646 asection *sec, bfd_vma symbol,
5647 bfd_vma *addendp, asection *input_section)
5648 {
5649 Elf_Internal_Rela outrel[3];
5650 asection *sreloc;
5651 bfd *dynobj;
5652 int r_type;
5653 long indx;
5654 bfd_boolean defined_p;
5655 struct mips_elf_link_hash_table *htab;
5656
5657 htab = mips_elf_hash_table (info);
5658 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5659 dynobj = elf_hash_table (info)->dynobj;
5660 sreloc = mips_elf_rel_dyn_section (info, FALSE);
5661 BFD_ASSERT (sreloc != NULL);
5662 BFD_ASSERT (sreloc->contents != NULL);
5663 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5664 < sreloc->size);
5665
5666 outrel[0].r_offset =
5667 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5668 if (ABI_64_P (output_bfd))
5669 {
5670 outrel[1].r_offset =
5671 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5672 outrel[2].r_offset =
5673 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5674 }
5675
5676 if (outrel[0].r_offset == MINUS_ONE)
5677 /* The relocation field has been deleted. */
5678 return TRUE;
5679
5680 if (outrel[0].r_offset == MINUS_TWO)
5681 {
5682 /* The relocation field has been converted into a relative value of
5683 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5684 the field to be fully relocated, so add in the symbol's value. */
5685 *addendp += symbol;
5686 return TRUE;
5687 }
5688
5689 /* We must now calculate the dynamic symbol table index to use
5690 in the relocation. */
5691 if (h != NULL
5692 && (!h->root.def_regular
5693 || (info->shared && !info->symbolic && !h->root.forced_local)))
5694 {
5695 indx = h->root.dynindx;
5696 if (SGI_COMPAT (output_bfd))
5697 defined_p = h->root.def_regular;
5698 else
5699 /* ??? glibc's ld.so just adds the final GOT entry to the
5700 relocation field. It therefore treats relocs against
5701 defined symbols in the same way as relocs against
5702 undefined symbols. */
5703 defined_p = FALSE;
5704 }
5705 else
5706 {
5707 if (sec != NULL && bfd_is_abs_section (sec))
5708 indx = 0;
5709 else if (sec == NULL || sec->owner == NULL)
5710 {
5711 bfd_set_error (bfd_error_bad_value);
5712 return FALSE;
5713 }
5714 else
5715 {
5716 indx = elf_section_data (sec->output_section)->dynindx;
5717 if (indx == 0)
5718 {
5719 asection *osec = htab->root.text_index_section;
5720 indx = elf_section_data (osec)->dynindx;
5721 }
5722 if (indx == 0)
5723 abort ();
5724 }
5725
5726 /* Instead of generating a relocation using the section
5727 symbol, we may as well make it a fully relative
5728 relocation. We want to avoid generating relocations to
5729 local symbols because we used to generate them
5730 incorrectly, without adding the original symbol value,
5731 which is mandated by the ABI for section symbols. In
5732 order to give dynamic loaders and applications time to
5733 phase out the incorrect use, we refrain from emitting
5734 section-relative relocations. It's not like they're
5735 useful, after all. This should be a bit more efficient
5736 as well. */
5737 /* ??? Although this behavior is compatible with glibc's ld.so,
5738 the ABI says that relocations against STN_UNDEF should have
5739 a symbol value of 0. Irix rld honors this, so relocations
5740 against STN_UNDEF have no effect. */
5741 if (!SGI_COMPAT (output_bfd))
5742 indx = 0;
5743 defined_p = TRUE;
5744 }
5745
5746 /* If the relocation was previously an absolute relocation and
5747 this symbol will not be referred to by the relocation, we must
5748 adjust it by the value we give it in the dynamic symbol table.
5749 Otherwise leave the job up to the dynamic linker. */
5750 if (defined_p && r_type != R_MIPS_REL32)
5751 *addendp += symbol;
5752
5753 if (htab->is_vxworks)
5754 /* VxWorks uses non-relative relocations for this. */
5755 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
5756 else
5757 /* The relocation is always an REL32 relocation because we don't
5758 know where the shared library will wind up at load-time. */
5759 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
5760 R_MIPS_REL32);
5761
5762 /* For strict adherence to the ABI specification, we should
5763 generate a R_MIPS_64 relocation record by itself before the
5764 _REL32/_64 record as well, such that the addend is read in as
5765 a 64-bit value (REL32 is a 32-bit relocation, after all).
5766 However, since none of the existing ELF64 MIPS dynamic
5767 loaders seems to care, we don't waste space with these
5768 artificial relocations. If this turns out to not be true,
5769 mips_elf_allocate_dynamic_relocation() should be tweaked so
5770 as to make room for a pair of dynamic relocations per
5771 invocation if ABI_64_P, and here we should generate an
5772 additional relocation record with R_MIPS_64 by itself for a
5773 NULL symbol before this relocation record. */
5774 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
5775 ABI_64_P (output_bfd)
5776 ? R_MIPS_64
5777 : R_MIPS_NONE);
5778 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
5779
5780 /* Adjust the output offset of the relocation to reference the
5781 correct location in the output file. */
5782 outrel[0].r_offset += (input_section->output_section->vma
5783 + input_section->output_offset);
5784 outrel[1].r_offset += (input_section->output_section->vma
5785 + input_section->output_offset);
5786 outrel[2].r_offset += (input_section->output_section->vma
5787 + input_section->output_offset);
5788
5789 /* Put the relocation back out. We have to use the special
5790 relocation outputter in the 64-bit case since the 64-bit
5791 relocation format is non-standard. */
5792 if (ABI_64_P (output_bfd))
5793 {
5794 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5795 (output_bfd, &outrel[0],
5796 (sreloc->contents
5797 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5798 }
5799 else if (htab->is_vxworks)
5800 {
5801 /* VxWorks uses RELA rather than REL dynamic relocations. */
5802 outrel[0].r_addend = *addendp;
5803 bfd_elf32_swap_reloca_out
5804 (output_bfd, &outrel[0],
5805 (sreloc->contents
5806 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
5807 }
5808 else
5809 bfd_elf32_swap_reloc_out
5810 (output_bfd, &outrel[0],
5811 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
5812
5813 /* We've now added another relocation. */
5814 ++sreloc->reloc_count;
5815
5816 /* Make sure the output section is writable. The dynamic linker
5817 will be writing to it. */
5818 elf_section_data (input_section->output_section)->this_hdr.sh_flags
5819 |= SHF_WRITE;
5820
5821 /* On IRIX5, make an entry of compact relocation info. */
5822 if (IRIX_COMPAT (output_bfd) == ict_irix5)
5823 {
5824 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5825 bfd_byte *cr;
5826
5827 if (scpt)
5828 {
5829 Elf32_crinfo cptrel;
5830
5831 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5832 cptrel.vaddr = (rel->r_offset
5833 + input_section->output_section->vma
5834 + input_section->output_offset);
5835 if (r_type == R_MIPS_REL32)
5836 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5837 else
5838 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5839 mips_elf_set_cr_dist2to (cptrel, 0);
5840 cptrel.konst = *addendp;
5841
5842 cr = (scpt->contents
5843 + sizeof (Elf32_External_compact_rel));
5844 mips_elf_set_cr_relvaddr (cptrel, 0);
5845 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5846 ((Elf32_External_crinfo *) cr
5847 + scpt->reloc_count));
5848 ++scpt->reloc_count;
5849 }
5850 }
5851
5852 /* If we've written this relocation for a readonly section,
5853 we need to set DF_TEXTREL again, so that we do not delete the
5854 DT_TEXTREL tag. */
5855 if (MIPS_ELF_READONLY_SECTION (input_section))
5856 info->flags |= DF_TEXTREL;
5857
5858 return TRUE;
5859 }
5860 \f
5861 /* Return the MACH for a MIPS e_flags value. */
5862
5863 unsigned long
5864 _bfd_elf_mips_mach (flagword flags)
5865 {
5866 switch (flags & EF_MIPS_MACH)
5867 {
5868 case E_MIPS_MACH_3900:
5869 return bfd_mach_mips3900;
5870
5871 case E_MIPS_MACH_4010:
5872 return bfd_mach_mips4010;
5873
5874 case E_MIPS_MACH_4100:
5875 return bfd_mach_mips4100;
5876
5877 case E_MIPS_MACH_4111:
5878 return bfd_mach_mips4111;
5879
5880 case E_MIPS_MACH_4120:
5881 return bfd_mach_mips4120;
5882
5883 case E_MIPS_MACH_4650:
5884 return bfd_mach_mips4650;
5885
5886 case E_MIPS_MACH_5400:
5887 return bfd_mach_mips5400;
5888
5889 case E_MIPS_MACH_5500:
5890 return bfd_mach_mips5500;
5891
5892 case E_MIPS_MACH_9000:
5893 return bfd_mach_mips9000;
5894
5895 case E_MIPS_MACH_SB1:
5896 return bfd_mach_mips_sb1;
5897
5898 case E_MIPS_MACH_LS2E:
5899 return bfd_mach_mips_loongson_2e;
5900
5901 case E_MIPS_MACH_LS2F:
5902 return bfd_mach_mips_loongson_2f;
5903
5904 case E_MIPS_MACH_OCTEON:
5905 return bfd_mach_mips_octeon;
5906
5907 case E_MIPS_MACH_XLR:
5908 return bfd_mach_mips_xlr;
5909
5910 default:
5911 switch (flags & EF_MIPS_ARCH)
5912 {
5913 default:
5914 case E_MIPS_ARCH_1:
5915 return bfd_mach_mips3000;
5916
5917 case E_MIPS_ARCH_2:
5918 return bfd_mach_mips6000;
5919
5920 case E_MIPS_ARCH_3:
5921 return bfd_mach_mips4000;
5922
5923 case E_MIPS_ARCH_4:
5924 return bfd_mach_mips8000;
5925
5926 case E_MIPS_ARCH_5:
5927 return bfd_mach_mips5;
5928
5929 case E_MIPS_ARCH_32:
5930 return bfd_mach_mipsisa32;
5931
5932 case E_MIPS_ARCH_64:
5933 return bfd_mach_mipsisa64;
5934
5935 case E_MIPS_ARCH_32R2:
5936 return bfd_mach_mipsisa32r2;
5937
5938 case E_MIPS_ARCH_64R2:
5939 return bfd_mach_mipsisa64r2;
5940 }
5941 }
5942
5943 return 0;
5944 }
5945
5946 /* Return printable name for ABI. */
5947
5948 static INLINE char *
5949 elf_mips_abi_name (bfd *abfd)
5950 {
5951 flagword flags;
5952
5953 flags = elf_elfheader (abfd)->e_flags;
5954 switch (flags & EF_MIPS_ABI)
5955 {
5956 case 0:
5957 if (ABI_N32_P (abfd))
5958 return "N32";
5959 else if (ABI_64_P (abfd))
5960 return "64";
5961 else
5962 return "none";
5963 case E_MIPS_ABI_O32:
5964 return "O32";
5965 case E_MIPS_ABI_O64:
5966 return "O64";
5967 case E_MIPS_ABI_EABI32:
5968 return "EABI32";
5969 case E_MIPS_ABI_EABI64:
5970 return "EABI64";
5971 default:
5972 return "unknown abi";
5973 }
5974 }
5975 \f
5976 /* MIPS ELF uses two common sections. One is the usual one, and the
5977 other is for small objects. All the small objects are kept
5978 together, and then referenced via the gp pointer, which yields
5979 faster assembler code. This is what we use for the small common
5980 section. This approach is copied from ecoff.c. */
5981 static asection mips_elf_scom_section;
5982 static asymbol mips_elf_scom_symbol;
5983 static asymbol *mips_elf_scom_symbol_ptr;
5984
5985 /* MIPS ELF also uses an acommon section, which represents an
5986 allocated common symbol which may be overridden by a
5987 definition in a shared library. */
5988 static asection mips_elf_acom_section;
5989 static asymbol mips_elf_acom_symbol;
5990 static asymbol *mips_elf_acom_symbol_ptr;
5991
5992 /* This is used for both the 32-bit and the 64-bit ABI. */
5993
5994 void
5995 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
5996 {
5997 elf_symbol_type *elfsym;
5998
5999 /* Handle the special MIPS section numbers that a symbol may use. */
6000 elfsym = (elf_symbol_type *) asym;
6001 switch (elfsym->internal_elf_sym.st_shndx)
6002 {
6003 case SHN_MIPS_ACOMMON:
6004 /* This section is used in a dynamically linked executable file.
6005 It is an allocated common section. The dynamic linker can
6006 either resolve these symbols to something in a shared
6007 library, or it can just leave them here. For our purposes,
6008 we can consider these symbols to be in a new section. */
6009 if (mips_elf_acom_section.name == NULL)
6010 {
6011 /* Initialize the acommon section. */
6012 mips_elf_acom_section.name = ".acommon";
6013 mips_elf_acom_section.flags = SEC_ALLOC;
6014 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6015 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6016 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6017 mips_elf_acom_symbol.name = ".acommon";
6018 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6019 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6020 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6021 }
6022 asym->section = &mips_elf_acom_section;
6023 break;
6024
6025 case SHN_COMMON:
6026 /* Common symbols less than the GP size are automatically
6027 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6028 if (asym->value > elf_gp_size (abfd)
6029 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6030 || IRIX_COMPAT (abfd) == ict_irix6)
6031 break;
6032 /* Fall through. */
6033 case SHN_MIPS_SCOMMON:
6034 if (mips_elf_scom_section.name == NULL)
6035 {
6036 /* Initialize the small common section. */
6037 mips_elf_scom_section.name = ".scommon";
6038 mips_elf_scom_section.flags = SEC_IS_COMMON;
6039 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6040 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6041 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6042 mips_elf_scom_symbol.name = ".scommon";
6043 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6044 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6045 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6046 }
6047 asym->section = &mips_elf_scom_section;
6048 asym->value = elfsym->internal_elf_sym.st_size;
6049 break;
6050
6051 case SHN_MIPS_SUNDEFINED:
6052 asym->section = bfd_und_section_ptr;
6053 break;
6054
6055 case SHN_MIPS_TEXT:
6056 {
6057 asection *section = bfd_get_section_by_name (abfd, ".text");
6058
6059 BFD_ASSERT (SGI_COMPAT (abfd));
6060 if (section != NULL)
6061 {
6062 asym->section = section;
6063 /* MIPS_TEXT is a bit special, the address is not an offset
6064 to the base of the .text section. So substract the section
6065 base address to make it an offset. */
6066 asym->value -= section->vma;
6067 }
6068 }
6069 break;
6070
6071 case SHN_MIPS_DATA:
6072 {
6073 asection *section = bfd_get_section_by_name (abfd, ".data");
6074
6075 BFD_ASSERT (SGI_COMPAT (abfd));
6076 if (section != NULL)
6077 {
6078 asym->section = section;
6079 /* MIPS_DATA is a bit special, the address is not an offset
6080 to the base of the .data section. So substract the section
6081 base address to make it an offset. */
6082 asym->value -= section->vma;
6083 }
6084 }
6085 break;
6086 }
6087
6088 /* If this is an odd-valued function symbol, assume it's a MIPS16 one. */
6089 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6090 && (asym->value & 1) != 0)
6091 {
6092 asym->value--;
6093 elfsym->internal_elf_sym.st_other
6094 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6095 }
6096 }
6097 \f
6098 /* Implement elf_backend_eh_frame_address_size. This differs from
6099 the default in the way it handles EABI64.
6100
6101 EABI64 was originally specified as an LP64 ABI, and that is what
6102 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6103 historically accepted the combination of -mabi=eabi and -mlong32,
6104 and this ILP32 variation has become semi-official over time.
6105 Both forms use elf32 and have pointer-sized FDE addresses.
6106
6107 If an EABI object was generated by GCC 4.0 or above, it will have
6108 an empty .gcc_compiled_longXX section, where XX is the size of longs
6109 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6110 have no special marking to distinguish them from LP64 objects.
6111
6112 We don't want users of the official LP64 ABI to be punished for the
6113 existence of the ILP32 variant, but at the same time, we don't want
6114 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6115 We therefore take the following approach:
6116
6117 - If ABFD contains a .gcc_compiled_longXX section, use it to
6118 determine the pointer size.
6119
6120 - Otherwise check the type of the first relocation. Assume that
6121 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6122
6123 - Otherwise punt.
6124
6125 The second check is enough to detect LP64 objects generated by pre-4.0
6126 compilers because, in the kind of output generated by those compilers,
6127 the first relocation will be associated with either a CIE personality
6128 routine or an FDE start address. Furthermore, the compilers never
6129 used a special (non-pointer) encoding for this ABI.
6130
6131 Checking the relocation type should also be safe because there is no
6132 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6133 did so. */
6134
6135 unsigned int
6136 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6137 {
6138 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6139 return 8;
6140 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6141 {
6142 bfd_boolean long32_p, long64_p;
6143
6144 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6145 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6146 if (long32_p && long64_p)
6147 return 0;
6148 if (long32_p)
6149 return 4;
6150 if (long64_p)
6151 return 8;
6152
6153 if (sec->reloc_count > 0
6154 && elf_section_data (sec)->relocs != NULL
6155 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6156 == R_MIPS_64))
6157 return 8;
6158
6159 return 0;
6160 }
6161 return 4;
6162 }
6163 \f
6164 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6165 relocations against two unnamed section symbols to resolve to the
6166 same address. For example, if we have code like:
6167
6168 lw $4,%got_disp(.data)($gp)
6169 lw $25,%got_disp(.text)($gp)
6170 jalr $25
6171
6172 then the linker will resolve both relocations to .data and the program
6173 will jump there rather than to .text.
6174
6175 We can work around this problem by giving names to local section symbols.
6176 This is also what the MIPSpro tools do. */
6177
6178 bfd_boolean
6179 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6180 {
6181 return SGI_COMPAT (abfd);
6182 }
6183 \f
6184 /* Work over a section just before writing it out. This routine is
6185 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6186 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6187 a better way. */
6188
6189 bfd_boolean
6190 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6191 {
6192 if (hdr->sh_type == SHT_MIPS_REGINFO
6193 && hdr->sh_size > 0)
6194 {
6195 bfd_byte buf[4];
6196
6197 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6198 BFD_ASSERT (hdr->contents == NULL);
6199
6200 if (bfd_seek (abfd,
6201 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6202 SEEK_SET) != 0)
6203 return FALSE;
6204 H_PUT_32 (abfd, elf_gp (abfd), buf);
6205 if (bfd_bwrite (buf, 4, abfd) != 4)
6206 return FALSE;
6207 }
6208
6209 if (hdr->sh_type == SHT_MIPS_OPTIONS
6210 && hdr->bfd_section != NULL
6211 && mips_elf_section_data (hdr->bfd_section) != NULL
6212 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6213 {
6214 bfd_byte *contents, *l, *lend;
6215
6216 /* We stored the section contents in the tdata field in the
6217 set_section_contents routine. We save the section contents
6218 so that we don't have to read them again.
6219 At this point we know that elf_gp is set, so we can look
6220 through the section contents to see if there is an
6221 ODK_REGINFO structure. */
6222
6223 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6224 l = contents;
6225 lend = contents + hdr->sh_size;
6226 while (l + sizeof (Elf_External_Options) <= lend)
6227 {
6228 Elf_Internal_Options intopt;
6229
6230 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6231 &intopt);
6232 if (intopt.size < sizeof (Elf_External_Options))
6233 {
6234 (*_bfd_error_handler)
6235 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6236 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6237 break;
6238 }
6239 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6240 {
6241 bfd_byte buf[8];
6242
6243 if (bfd_seek (abfd,
6244 (hdr->sh_offset
6245 + (l - contents)
6246 + sizeof (Elf_External_Options)
6247 + (sizeof (Elf64_External_RegInfo) - 8)),
6248 SEEK_SET) != 0)
6249 return FALSE;
6250 H_PUT_64 (abfd, elf_gp (abfd), buf);
6251 if (bfd_bwrite (buf, 8, abfd) != 8)
6252 return FALSE;
6253 }
6254 else if (intopt.kind == ODK_REGINFO)
6255 {
6256 bfd_byte buf[4];
6257
6258 if (bfd_seek (abfd,
6259 (hdr->sh_offset
6260 + (l - contents)
6261 + sizeof (Elf_External_Options)
6262 + (sizeof (Elf32_External_RegInfo) - 4)),
6263 SEEK_SET) != 0)
6264 return FALSE;
6265 H_PUT_32 (abfd, elf_gp (abfd), buf);
6266 if (bfd_bwrite (buf, 4, abfd) != 4)
6267 return FALSE;
6268 }
6269 l += intopt.size;
6270 }
6271 }
6272
6273 if (hdr->bfd_section != NULL)
6274 {
6275 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6276
6277 /* .sbss is not handled specially here because the GNU/Linux
6278 prelinker can convert .sbss from NOBITS to PROGBITS and
6279 changing it back to NOBITS breaks the binary. The entry in
6280 _bfd_mips_elf_special_sections will ensure the correct flags
6281 are set on .sbss if BFD creates it without reading it from an
6282 input file, and without special handling here the flags set
6283 on it in an input file will be followed. */
6284 if (strcmp (name, ".sdata") == 0
6285 || strcmp (name, ".lit8") == 0
6286 || strcmp (name, ".lit4") == 0)
6287 {
6288 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6289 hdr->sh_type = SHT_PROGBITS;
6290 }
6291 else if (strcmp (name, ".srdata") == 0)
6292 {
6293 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6294 hdr->sh_type = SHT_PROGBITS;
6295 }
6296 else if (strcmp (name, ".compact_rel") == 0)
6297 {
6298 hdr->sh_flags = 0;
6299 hdr->sh_type = SHT_PROGBITS;
6300 }
6301 else if (strcmp (name, ".rtproc") == 0)
6302 {
6303 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6304 {
6305 unsigned int adjust;
6306
6307 adjust = hdr->sh_size % hdr->sh_addralign;
6308 if (adjust != 0)
6309 hdr->sh_size += hdr->sh_addralign - adjust;
6310 }
6311 }
6312 }
6313
6314 return TRUE;
6315 }
6316
6317 /* Handle a MIPS specific section when reading an object file. This
6318 is called when elfcode.h finds a section with an unknown type.
6319 This routine supports both the 32-bit and 64-bit ELF ABI.
6320
6321 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6322 how to. */
6323
6324 bfd_boolean
6325 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6326 Elf_Internal_Shdr *hdr,
6327 const char *name,
6328 int shindex)
6329 {
6330 flagword flags = 0;
6331
6332 /* There ought to be a place to keep ELF backend specific flags, but
6333 at the moment there isn't one. We just keep track of the
6334 sections by their name, instead. Fortunately, the ABI gives
6335 suggested names for all the MIPS specific sections, so we will
6336 probably get away with this. */
6337 switch (hdr->sh_type)
6338 {
6339 case SHT_MIPS_LIBLIST:
6340 if (strcmp (name, ".liblist") != 0)
6341 return FALSE;
6342 break;
6343 case SHT_MIPS_MSYM:
6344 if (strcmp (name, ".msym") != 0)
6345 return FALSE;
6346 break;
6347 case SHT_MIPS_CONFLICT:
6348 if (strcmp (name, ".conflict") != 0)
6349 return FALSE;
6350 break;
6351 case SHT_MIPS_GPTAB:
6352 if (! CONST_STRNEQ (name, ".gptab."))
6353 return FALSE;
6354 break;
6355 case SHT_MIPS_UCODE:
6356 if (strcmp (name, ".ucode") != 0)
6357 return FALSE;
6358 break;
6359 case SHT_MIPS_DEBUG:
6360 if (strcmp (name, ".mdebug") != 0)
6361 return FALSE;
6362 flags = SEC_DEBUGGING;
6363 break;
6364 case SHT_MIPS_REGINFO:
6365 if (strcmp (name, ".reginfo") != 0
6366 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6367 return FALSE;
6368 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6369 break;
6370 case SHT_MIPS_IFACE:
6371 if (strcmp (name, ".MIPS.interfaces") != 0)
6372 return FALSE;
6373 break;
6374 case SHT_MIPS_CONTENT:
6375 if (! CONST_STRNEQ (name, ".MIPS.content"))
6376 return FALSE;
6377 break;
6378 case SHT_MIPS_OPTIONS:
6379 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6380 return FALSE;
6381 break;
6382 case SHT_MIPS_DWARF:
6383 if (! CONST_STRNEQ (name, ".debug_")
6384 && ! CONST_STRNEQ (name, ".zdebug_"))
6385 return FALSE;
6386 break;
6387 case SHT_MIPS_SYMBOL_LIB:
6388 if (strcmp (name, ".MIPS.symlib") != 0)
6389 return FALSE;
6390 break;
6391 case SHT_MIPS_EVENTS:
6392 if (! CONST_STRNEQ (name, ".MIPS.events")
6393 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6394 return FALSE;
6395 break;
6396 default:
6397 break;
6398 }
6399
6400 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6401 return FALSE;
6402
6403 if (flags)
6404 {
6405 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6406 (bfd_get_section_flags (abfd,
6407 hdr->bfd_section)
6408 | flags)))
6409 return FALSE;
6410 }
6411
6412 /* FIXME: We should record sh_info for a .gptab section. */
6413
6414 /* For a .reginfo section, set the gp value in the tdata information
6415 from the contents of this section. We need the gp value while
6416 processing relocs, so we just get it now. The .reginfo section
6417 is not used in the 64-bit MIPS ELF ABI. */
6418 if (hdr->sh_type == SHT_MIPS_REGINFO)
6419 {
6420 Elf32_External_RegInfo ext;
6421 Elf32_RegInfo s;
6422
6423 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6424 &ext, 0, sizeof ext))
6425 return FALSE;
6426 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6427 elf_gp (abfd) = s.ri_gp_value;
6428 }
6429
6430 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6431 set the gp value based on what we find. We may see both
6432 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6433 they should agree. */
6434 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6435 {
6436 bfd_byte *contents, *l, *lend;
6437
6438 contents = bfd_malloc (hdr->sh_size);
6439 if (contents == NULL)
6440 return FALSE;
6441 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6442 0, hdr->sh_size))
6443 {
6444 free (contents);
6445 return FALSE;
6446 }
6447 l = contents;
6448 lend = contents + hdr->sh_size;
6449 while (l + sizeof (Elf_External_Options) <= lend)
6450 {
6451 Elf_Internal_Options intopt;
6452
6453 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6454 &intopt);
6455 if (intopt.size < sizeof (Elf_External_Options))
6456 {
6457 (*_bfd_error_handler)
6458 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6459 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6460 break;
6461 }
6462 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6463 {
6464 Elf64_Internal_RegInfo intreg;
6465
6466 bfd_mips_elf64_swap_reginfo_in
6467 (abfd,
6468 ((Elf64_External_RegInfo *)
6469 (l + sizeof (Elf_External_Options))),
6470 &intreg);
6471 elf_gp (abfd) = intreg.ri_gp_value;
6472 }
6473 else if (intopt.kind == ODK_REGINFO)
6474 {
6475 Elf32_RegInfo intreg;
6476
6477 bfd_mips_elf32_swap_reginfo_in
6478 (abfd,
6479 ((Elf32_External_RegInfo *)
6480 (l + sizeof (Elf_External_Options))),
6481 &intreg);
6482 elf_gp (abfd) = intreg.ri_gp_value;
6483 }
6484 l += intopt.size;
6485 }
6486 free (contents);
6487 }
6488
6489 return TRUE;
6490 }
6491
6492 /* Set the correct type for a MIPS ELF section. We do this by the
6493 section name, which is a hack, but ought to work. This routine is
6494 used by both the 32-bit and the 64-bit ABI. */
6495
6496 bfd_boolean
6497 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6498 {
6499 const char *name = bfd_get_section_name (abfd, sec);
6500
6501 if (strcmp (name, ".liblist") == 0)
6502 {
6503 hdr->sh_type = SHT_MIPS_LIBLIST;
6504 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6505 /* The sh_link field is set in final_write_processing. */
6506 }
6507 else if (strcmp (name, ".conflict") == 0)
6508 hdr->sh_type = SHT_MIPS_CONFLICT;
6509 else if (CONST_STRNEQ (name, ".gptab."))
6510 {
6511 hdr->sh_type = SHT_MIPS_GPTAB;
6512 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6513 /* The sh_info field is set in final_write_processing. */
6514 }
6515 else if (strcmp (name, ".ucode") == 0)
6516 hdr->sh_type = SHT_MIPS_UCODE;
6517 else if (strcmp (name, ".mdebug") == 0)
6518 {
6519 hdr->sh_type = SHT_MIPS_DEBUG;
6520 /* In a shared object on IRIX 5.3, the .mdebug section has an
6521 entsize of 0. FIXME: Does this matter? */
6522 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6523 hdr->sh_entsize = 0;
6524 else
6525 hdr->sh_entsize = 1;
6526 }
6527 else if (strcmp (name, ".reginfo") == 0)
6528 {
6529 hdr->sh_type = SHT_MIPS_REGINFO;
6530 /* In a shared object on IRIX 5.3, the .reginfo section has an
6531 entsize of 0x18. FIXME: Does this matter? */
6532 if (SGI_COMPAT (abfd))
6533 {
6534 if ((abfd->flags & DYNAMIC) != 0)
6535 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6536 else
6537 hdr->sh_entsize = 1;
6538 }
6539 else
6540 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6541 }
6542 else if (SGI_COMPAT (abfd)
6543 && (strcmp (name, ".hash") == 0
6544 || strcmp (name, ".dynamic") == 0
6545 || strcmp (name, ".dynstr") == 0))
6546 {
6547 if (SGI_COMPAT (abfd))
6548 hdr->sh_entsize = 0;
6549 #if 0
6550 /* This isn't how the IRIX6 linker behaves. */
6551 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6552 #endif
6553 }
6554 else if (strcmp (name, ".got") == 0
6555 || strcmp (name, ".srdata") == 0
6556 || strcmp (name, ".sdata") == 0
6557 || strcmp (name, ".sbss") == 0
6558 || strcmp (name, ".lit4") == 0
6559 || strcmp (name, ".lit8") == 0)
6560 hdr->sh_flags |= SHF_MIPS_GPREL;
6561 else if (strcmp (name, ".MIPS.interfaces") == 0)
6562 {
6563 hdr->sh_type = SHT_MIPS_IFACE;
6564 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6565 }
6566 else if (CONST_STRNEQ (name, ".MIPS.content"))
6567 {
6568 hdr->sh_type = SHT_MIPS_CONTENT;
6569 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6570 /* The sh_info field is set in final_write_processing. */
6571 }
6572 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6573 {
6574 hdr->sh_type = SHT_MIPS_OPTIONS;
6575 hdr->sh_entsize = 1;
6576 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6577 }
6578 else if (CONST_STRNEQ (name, ".debug_")
6579 || CONST_STRNEQ (name, ".zdebug_"))
6580 {
6581 hdr->sh_type = SHT_MIPS_DWARF;
6582
6583 /* Irix facilities such as libexc expect a single .debug_frame
6584 per executable, the system ones have NOSTRIP set and the linker
6585 doesn't merge sections with different flags so ... */
6586 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6587 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6588 }
6589 else if (strcmp (name, ".MIPS.symlib") == 0)
6590 {
6591 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6592 /* The sh_link and sh_info fields are set in
6593 final_write_processing. */
6594 }
6595 else if (CONST_STRNEQ (name, ".MIPS.events")
6596 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6597 {
6598 hdr->sh_type = SHT_MIPS_EVENTS;
6599 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6600 /* The sh_link field is set in final_write_processing. */
6601 }
6602 else if (strcmp (name, ".msym") == 0)
6603 {
6604 hdr->sh_type = SHT_MIPS_MSYM;
6605 hdr->sh_flags |= SHF_ALLOC;
6606 hdr->sh_entsize = 8;
6607 }
6608
6609 /* The generic elf_fake_sections will set up REL_HDR using the default
6610 kind of relocations. We used to set up a second header for the
6611 non-default kind of relocations here, but only NewABI would use
6612 these, and the IRIX ld doesn't like resulting empty RELA sections.
6613 Thus we create those header only on demand now. */
6614
6615 return TRUE;
6616 }
6617
6618 /* Given a BFD section, try to locate the corresponding ELF section
6619 index. This is used by both the 32-bit and the 64-bit ABI.
6620 Actually, it's not clear to me that the 64-bit ABI supports these,
6621 but for non-PIC objects we will certainly want support for at least
6622 the .scommon section. */
6623
6624 bfd_boolean
6625 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6626 asection *sec, int *retval)
6627 {
6628 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6629 {
6630 *retval = SHN_MIPS_SCOMMON;
6631 return TRUE;
6632 }
6633 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6634 {
6635 *retval = SHN_MIPS_ACOMMON;
6636 return TRUE;
6637 }
6638 return FALSE;
6639 }
6640 \f
6641 /* Hook called by the linker routine which adds symbols from an object
6642 file. We must handle the special MIPS section numbers here. */
6643
6644 bfd_boolean
6645 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6646 Elf_Internal_Sym *sym, const char **namep,
6647 flagword *flagsp ATTRIBUTE_UNUSED,
6648 asection **secp, bfd_vma *valp)
6649 {
6650 if (SGI_COMPAT (abfd)
6651 && (abfd->flags & DYNAMIC) != 0
6652 && strcmp (*namep, "_rld_new_interface") == 0)
6653 {
6654 /* Skip IRIX5 rld entry name. */
6655 *namep = NULL;
6656 return TRUE;
6657 }
6658
6659 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6660 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6661 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6662 a magic symbol resolved by the linker, we ignore this bogus definition
6663 of _gp_disp. New ABI objects do not suffer from this problem so this
6664 is not done for them. */
6665 if (!NEWABI_P(abfd)
6666 && (sym->st_shndx == SHN_ABS)
6667 && (strcmp (*namep, "_gp_disp") == 0))
6668 {
6669 *namep = NULL;
6670 return TRUE;
6671 }
6672
6673 switch (sym->st_shndx)
6674 {
6675 case SHN_COMMON:
6676 /* Common symbols less than the GP size are automatically
6677 treated as SHN_MIPS_SCOMMON symbols. */
6678 if (sym->st_size > elf_gp_size (abfd)
6679 || ELF_ST_TYPE (sym->st_info) == STT_TLS
6680 || IRIX_COMPAT (abfd) == ict_irix6)
6681 break;
6682 /* Fall through. */
6683 case SHN_MIPS_SCOMMON:
6684 *secp = bfd_make_section_old_way (abfd, ".scommon");
6685 (*secp)->flags |= SEC_IS_COMMON;
6686 *valp = sym->st_size;
6687 break;
6688
6689 case SHN_MIPS_TEXT:
6690 /* This section is used in a shared object. */
6691 if (elf_tdata (abfd)->elf_text_section == NULL)
6692 {
6693 asymbol *elf_text_symbol;
6694 asection *elf_text_section;
6695 bfd_size_type amt = sizeof (asection);
6696
6697 elf_text_section = bfd_zalloc (abfd, amt);
6698 if (elf_text_section == NULL)
6699 return FALSE;
6700
6701 amt = sizeof (asymbol);
6702 elf_text_symbol = bfd_zalloc (abfd, amt);
6703 if (elf_text_symbol == NULL)
6704 return FALSE;
6705
6706 /* Initialize the section. */
6707
6708 elf_tdata (abfd)->elf_text_section = elf_text_section;
6709 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6710
6711 elf_text_section->symbol = elf_text_symbol;
6712 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
6713
6714 elf_text_section->name = ".text";
6715 elf_text_section->flags = SEC_NO_FLAGS;
6716 elf_text_section->output_section = NULL;
6717 elf_text_section->owner = abfd;
6718 elf_text_symbol->name = ".text";
6719 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6720 elf_text_symbol->section = elf_text_section;
6721 }
6722 /* This code used to do *secp = bfd_und_section_ptr if
6723 info->shared. I don't know why, and that doesn't make sense,
6724 so I took it out. */
6725 *secp = elf_tdata (abfd)->elf_text_section;
6726 break;
6727
6728 case SHN_MIPS_ACOMMON:
6729 /* Fall through. XXX Can we treat this as allocated data? */
6730 case SHN_MIPS_DATA:
6731 /* This section is used in a shared object. */
6732 if (elf_tdata (abfd)->elf_data_section == NULL)
6733 {
6734 asymbol *elf_data_symbol;
6735 asection *elf_data_section;
6736 bfd_size_type amt = sizeof (asection);
6737
6738 elf_data_section = bfd_zalloc (abfd, amt);
6739 if (elf_data_section == NULL)
6740 return FALSE;
6741
6742 amt = sizeof (asymbol);
6743 elf_data_symbol = bfd_zalloc (abfd, amt);
6744 if (elf_data_symbol == NULL)
6745 return FALSE;
6746
6747 /* Initialize the section. */
6748
6749 elf_tdata (abfd)->elf_data_section = elf_data_section;
6750 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
6751
6752 elf_data_section->symbol = elf_data_symbol;
6753 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
6754
6755 elf_data_section->name = ".data";
6756 elf_data_section->flags = SEC_NO_FLAGS;
6757 elf_data_section->output_section = NULL;
6758 elf_data_section->owner = abfd;
6759 elf_data_symbol->name = ".data";
6760 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6761 elf_data_symbol->section = elf_data_section;
6762 }
6763 /* This code used to do *secp = bfd_und_section_ptr if
6764 info->shared. I don't know why, and that doesn't make sense,
6765 so I took it out. */
6766 *secp = elf_tdata (abfd)->elf_data_section;
6767 break;
6768
6769 case SHN_MIPS_SUNDEFINED:
6770 *secp = bfd_und_section_ptr;
6771 break;
6772 }
6773
6774 if (SGI_COMPAT (abfd)
6775 && ! info->shared
6776 && info->output_bfd->xvec == abfd->xvec
6777 && strcmp (*namep, "__rld_obj_head") == 0)
6778 {
6779 struct elf_link_hash_entry *h;
6780 struct bfd_link_hash_entry *bh;
6781
6782 /* Mark __rld_obj_head as dynamic. */
6783 bh = NULL;
6784 if (! (_bfd_generic_link_add_one_symbol
6785 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
6786 get_elf_backend_data (abfd)->collect, &bh)))
6787 return FALSE;
6788
6789 h = (struct elf_link_hash_entry *) bh;
6790 h->non_elf = 0;
6791 h->def_regular = 1;
6792 h->type = STT_OBJECT;
6793
6794 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6795 return FALSE;
6796
6797 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
6798 }
6799
6800 /* If this is a mips16 text symbol, add 1 to the value to make it
6801 odd. This will cause something like .word SYM to come up with
6802 the right value when it is loaded into the PC. */
6803 if (ELF_ST_IS_MIPS16 (sym->st_other))
6804 ++*valp;
6805
6806 return TRUE;
6807 }
6808
6809 /* This hook function is called before the linker writes out a global
6810 symbol. We mark symbols as small common if appropriate. This is
6811 also where we undo the increment of the value for a mips16 symbol. */
6812
6813 int
6814 _bfd_mips_elf_link_output_symbol_hook
6815 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6816 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
6817 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
6818 {
6819 /* If we see a common symbol, which implies a relocatable link, then
6820 if a symbol was small common in an input file, mark it as small
6821 common in the output file. */
6822 if (sym->st_shndx == SHN_COMMON
6823 && strcmp (input_sec->name, ".scommon") == 0)
6824 sym->st_shndx = SHN_MIPS_SCOMMON;
6825
6826 if (ELF_ST_IS_MIPS16 (sym->st_other))
6827 sym->st_value &= ~1;
6828
6829 return 1;
6830 }
6831 \f
6832 /* Functions for the dynamic linker. */
6833
6834 /* Create dynamic sections when linking against a dynamic object. */
6835
6836 bfd_boolean
6837 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
6838 {
6839 struct elf_link_hash_entry *h;
6840 struct bfd_link_hash_entry *bh;
6841 flagword flags;
6842 register asection *s;
6843 const char * const *namep;
6844 struct mips_elf_link_hash_table *htab;
6845
6846 htab = mips_elf_hash_table (info);
6847 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6848 | SEC_LINKER_CREATED | SEC_READONLY);
6849
6850 /* The psABI requires a read-only .dynamic section, but the VxWorks
6851 EABI doesn't. */
6852 if (!htab->is_vxworks)
6853 {
6854 s = bfd_get_section_by_name (abfd, ".dynamic");
6855 if (s != NULL)
6856 {
6857 if (! bfd_set_section_flags (abfd, s, flags))
6858 return FALSE;
6859 }
6860 }
6861
6862 /* We need to create .got section. */
6863 if (!mips_elf_create_got_section (abfd, info))
6864 return FALSE;
6865
6866 if (! mips_elf_rel_dyn_section (info, TRUE))
6867 return FALSE;
6868
6869 /* Create .stub section. */
6870 s = bfd_make_section_with_flags (abfd,
6871 MIPS_ELF_STUB_SECTION_NAME (abfd),
6872 flags | SEC_CODE);
6873 if (s == NULL
6874 || ! bfd_set_section_alignment (abfd, s,
6875 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6876 return FALSE;
6877 htab->sstubs = s;
6878
6879 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
6880 && !info->shared
6881 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
6882 {
6883 s = bfd_make_section_with_flags (abfd, ".rld_map",
6884 flags &~ (flagword) SEC_READONLY);
6885 if (s == NULL
6886 || ! bfd_set_section_alignment (abfd, s,
6887 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6888 return FALSE;
6889 }
6890
6891 /* On IRIX5, we adjust add some additional symbols and change the
6892 alignments of several sections. There is no ABI documentation
6893 indicating that this is necessary on IRIX6, nor any evidence that
6894 the linker takes such action. */
6895 if (IRIX_COMPAT (abfd) == ict_irix5)
6896 {
6897 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
6898 {
6899 bh = NULL;
6900 if (! (_bfd_generic_link_add_one_symbol
6901 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
6902 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6903 return FALSE;
6904
6905 h = (struct elf_link_hash_entry *) bh;
6906 h->non_elf = 0;
6907 h->def_regular = 1;
6908 h->type = STT_SECTION;
6909
6910 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6911 return FALSE;
6912 }
6913
6914 /* We need to create a .compact_rel section. */
6915 if (SGI_COMPAT (abfd))
6916 {
6917 if (!mips_elf_create_compact_rel_section (abfd, info))
6918 return FALSE;
6919 }
6920
6921 /* Change alignments of some sections. */
6922 s = bfd_get_section_by_name (abfd, ".hash");
6923 if (s != NULL)
6924 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6925 s = bfd_get_section_by_name (abfd, ".dynsym");
6926 if (s != NULL)
6927 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6928 s = bfd_get_section_by_name (abfd, ".dynstr");
6929 if (s != NULL)
6930 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6931 s = bfd_get_section_by_name (abfd, ".reginfo");
6932 if (s != NULL)
6933 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6934 s = bfd_get_section_by_name (abfd, ".dynamic");
6935 if (s != NULL)
6936 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6937 }
6938
6939 if (!info->shared)
6940 {
6941 const char *name;
6942
6943 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6944 bh = NULL;
6945 if (!(_bfd_generic_link_add_one_symbol
6946 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6947 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6948 return FALSE;
6949
6950 h = (struct elf_link_hash_entry *) bh;
6951 h->non_elf = 0;
6952 h->def_regular = 1;
6953 h->type = STT_SECTION;
6954
6955 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6956 return FALSE;
6957
6958 if (! mips_elf_hash_table (info)->use_rld_obj_head)
6959 {
6960 /* __rld_map is a four byte word located in the .data section
6961 and is filled in by the rtld to contain a pointer to
6962 the _r_debug structure. Its symbol value will be set in
6963 _bfd_mips_elf_finish_dynamic_symbol. */
6964 s = bfd_get_section_by_name (abfd, ".rld_map");
6965 if (s != NULL)
6966 {
6967 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
6968 bh = NULL;
6969 if (!(_bfd_generic_link_add_one_symbol
6970 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
6971 get_elf_backend_data (abfd)->collect, &bh)))
6972 return FALSE;
6973
6974 h = (struct elf_link_hash_entry *) bh;
6975 h->non_elf = 0;
6976 h->def_regular = 1;
6977 h->type = STT_OBJECT;
6978
6979 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6980 return FALSE;
6981 }
6982 }
6983 }
6984
6985 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
6986 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
6987 if (!_bfd_elf_create_dynamic_sections (abfd, info))
6988 return FALSE;
6989
6990 /* Cache the sections created above. */
6991 htab->splt = bfd_get_section_by_name (abfd, ".plt");
6992 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
6993 if (htab->is_vxworks)
6994 {
6995 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
6996 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
6997 }
6998 else
6999 htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt");
7000 if (!htab->sdynbss
7001 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7002 || !htab->srelplt
7003 || !htab->splt)
7004 abort ();
7005
7006 if (htab->is_vxworks)
7007 {
7008 /* Do the usual VxWorks handling. */
7009 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7010 return FALSE;
7011
7012 /* Work out the PLT sizes. */
7013 if (info->shared)
7014 {
7015 htab->plt_header_size
7016 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7017 htab->plt_entry_size
7018 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7019 }
7020 else
7021 {
7022 htab->plt_header_size
7023 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7024 htab->plt_entry_size
7025 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7026 }
7027 }
7028 else if (!info->shared)
7029 {
7030 /* All variants of the plt0 entry are the same size. */
7031 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7032 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7033 }
7034
7035 return TRUE;
7036 }
7037 \f
7038 /* Return true if relocation REL against section SEC is a REL rather than
7039 RELA relocation. RELOCS is the first relocation in the section and
7040 ABFD is the bfd that contains SEC. */
7041
7042 static bfd_boolean
7043 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7044 const Elf_Internal_Rela *relocs,
7045 const Elf_Internal_Rela *rel)
7046 {
7047 Elf_Internal_Shdr *rel_hdr;
7048 const struct elf_backend_data *bed;
7049
7050 /* To determine which flavor or relocation this is, we depend on the
7051 fact that the INPUT_SECTION's REL_HDR is read before its REL_HDR2. */
7052 rel_hdr = &elf_section_data (sec)->rel_hdr;
7053 bed = get_elf_backend_data (abfd);
7054 if ((size_t) (rel - relocs)
7055 >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel))
7056 rel_hdr = elf_section_data (sec)->rel_hdr2;
7057 return rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (abfd);
7058 }
7059
7060 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7061 HOWTO is the relocation's howto and CONTENTS points to the contents
7062 of the section that REL is against. */
7063
7064 static bfd_vma
7065 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7066 reloc_howto_type *howto, bfd_byte *contents)
7067 {
7068 bfd_byte *location;
7069 unsigned int r_type;
7070 bfd_vma addend;
7071
7072 r_type = ELF_R_TYPE (abfd, rel->r_info);
7073 location = contents + rel->r_offset;
7074
7075 /* Get the addend, which is stored in the input file. */
7076 _bfd_mips16_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7077 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7078 _bfd_mips16_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7079
7080 return addend & howto->src_mask;
7081 }
7082
7083 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7084 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7085 and update *ADDEND with the final addend. Return true on success
7086 or false if the LO16 could not be found. RELEND is the exclusive
7087 upper bound on the relocations for REL's section. */
7088
7089 static bfd_boolean
7090 mips_elf_add_lo16_rel_addend (bfd *abfd,
7091 const Elf_Internal_Rela *rel,
7092 const Elf_Internal_Rela *relend,
7093 bfd_byte *contents, bfd_vma *addend)
7094 {
7095 unsigned int r_type, lo16_type;
7096 const Elf_Internal_Rela *lo16_relocation;
7097 reloc_howto_type *lo16_howto;
7098 bfd_vma l;
7099
7100 r_type = ELF_R_TYPE (abfd, rel->r_info);
7101 if (mips16_reloc_p (r_type))
7102 lo16_type = R_MIPS16_LO16;
7103 else
7104 lo16_type = R_MIPS_LO16;
7105
7106 /* The combined value is the sum of the HI16 addend, left-shifted by
7107 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7108 code does a `lui' of the HI16 value, and then an `addiu' of the
7109 LO16 value.)
7110
7111 Scan ahead to find a matching LO16 relocation.
7112
7113 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7114 be immediately following. However, for the IRIX6 ABI, the next
7115 relocation may be a composed relocation consisting of several
7116 relocations for the same address. In that case, the R_MIPS_LO16
7117 relocation may occur as one of these. We permit a similar
7118 extension in general, as that is useful for GCC.
7119
7120 In some cases GCC dead code elimination removes the LO16 but keeps
7121 the corresponding HI16. This is strictly speaking a violation of
7122 the ABI but not immediately harmful. */
7123 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7124 if (lo16_relocation == NULL)
7125 return FALSE;
7126
7127 /* Obtain the addend kept there. */
7128 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7129 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7130
7131 l <<= lo16_howto->rightshift;
7132 l = _bfd_mips_elf_sign_extend (l, 16);
7133
7134 *addend <<= 16;
7135 *addend += l;
7136 return TRUE;
7137 }
7138
7139 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7140 store the contents in *CONTENTS on success. Assume that *CONTENTS
7141 already holds the contents if it is nonull on entry. */
7142
7143 static bfd_boolean
7144 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7145 {
7146 if (*contents)
7147 return TRUE;
7148
7149 /* Get cached copy if it exists. */
7150 if (elf_section_data (sec)->this_hdr.contents != NULL)
7151 {
7152 *contents = elf_section_data (sec)->this_hdr.contents;
7153 return TRUE;
7154 }
7155
7156 return bfd_malloc_and_get_section (abfd, sec, contents);
7157 }
7158
7159 /* Look through the relocs for a section during the first phase, and
7160 allocate space in the global offset table. */
7161
7162 bfd_boolean
7163 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7164 asection *sec, const Elf_Internal_Rela *relocs)
7165 {
7166 const char *name;
7167 bfd *dynobj;
7168 Elf_Internal_Shdr *symtab_hdr;
7169 struct elf_link_hash_entry **sym_hashes;
7170 size_t extsymoff;
7171 const Elf_Internal_Rela *rel;
7172 const Elf_Internal_Rela *rel_end;
7173 asection *sreloc;
7174 const struct elf_backend_data *bed;
7175 struct mips_elf_link_hash_table *htab;
7176 bfd_byte *contents;
7177 bfd_vma addend;
7178 reloc_howto_type *howto;
7179
7180 if (info->relocatable)
7181 return TRUE;
7182
7183 htab = mips_elf_hash_table (info);
7184 dynobj = elf_hash_table (info)->dynobj;
7185 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7186 sym_hashes = elf_sym_hashes (abfd);
7187 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7188
7189 bed = get_elf_backend_data (abfd);
7190 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7191
7192 /* Check for the mips16 stub sections. */
7193
7194 name = bfd_get_section_name (abfd, sec);
7195 if (FN_STUB_P (name))
7196 {
7197 unsigned long r_symndx;
7198
7199 /* Look at the relocation information to figure out which symbol
7200 this is for. */
7201
7202 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7203 if (r_symndx == 0)
7204 {
7205 (*_bfd_error_handler)
7206 (_("%B: Warning: cannot determine the target function for"
7207 " stub section `%s'"),
7208 abfd, name);
7209 bfd_set_error (bfd_error_bad_value);
7210 return FALSE;
7211 }
7212
7213 if (r_symndx < extsymoff
7214 || sym_hashes[r_symndx - extsymoff] == NULL)
7215 {
7216 asection *o;
7217
7218 /* This stub is for a local symbol. This stub will only be
7219 needed if there is some relocation in this BFD, other
7220 than a 16 bit function call, which refers to this symbol. */
7221 for (o = abfd->sections; o != NULL; o = o->next)
7222 {
7223 Elf_Internal_Rela *sec_relocs;
7224 const Elf_Internal_Rela *r, *rend;
7225
7226 /* We can ignore stub sections when looking for relocs. */
7227 if ((o->flags & SEC_RELOC) == 0
7228 || o->reloc_count == 0
7229 || section_allows_mips16_refs_p (o))
7230 continue;
7231
7232 sec_relocs
7233 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7234 info->keep_memory);
7235 if (sec_relocs == NULL)
7236 return FALSE;
7237
7238 rend = sec_relocs + o->reloc_count;
7239 for (r = sec_relocs; r < rend; r++)
7240 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7241 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7242 break;
7243
7244 if (elf_section_data (o)->relocs != sec_relocs)
7245 free (sec_relocs);
7246
7247 if (r < rend)
7248 break;
7249 }
7250
7251 if (o == NULL)
7252 {
7253 /* There is no non-call reloc for this stub, so we do
7254 not need it. Since this function is called before
7255 the linker maps input sections to output sections, we
7256 can easily discard it by setting the SEC_EXCLUDE
7257 flag. */
7258 sec->flags |= SEC_EXCLUDE;
7259 return TRUE;
7260 }
7261
7262 /* Record this stub in an array of local symbol stubs for
7263 this BFD. */
7264 if (elf_tdata (abfd)->local_stubs == NULL)
7265 {
7266 unsigned long symcount;
7267 asection **n;
7268 bfd_size_type amt;
7269
7270 if (elf_bad_symtab (abfd))
7271 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7272 else
7273 symcount = symtab_hdr->sh_info;
7274 amt = symcount * sizeof (asection *);
7275 n = bfd_zalloc (abfd, amt);
7276 if (n == NULL)
7277 return FALSE;
7278 elf_tdata (abfd)->local_stubs = n;
7279 }
7280
7281 sec->flags |= SEC_KEEP;
7282 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7283
7284 /* We don't need to set mips16_stubs_seen in this case.
7285 That flag is used to see whether we need to look through
7286 the global symbol table for stubs. We don't need to set
7287 it here, because we just have a local stub. */
7288 }
7289 else
7290 {
7291 struct mips_elf_link_hash_entry *h;
7292
7293 h = ((struct mips_elf_link_hash_entry *)
7294 sym_hashes[r_symndx - extsymoff]);
7295
7296 while (h->root.root.type == bfd_link_hash_indirect
7297 || h->root.root.type == bfd_link_hash_warning)
7298 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7299
7300 /* H is the symbol this stub is for. */
7301
7302 /* If we already have an appropriate stub for this function, we
7303 don't need another one, so we can discard this one. Since
7304 this function is called before the linker maps input sections
7305 to output sections, we can easily discard it by setting the
7306 SEC_EXCLUDE flag. */
7307 if (h->fn_stub != NULL)
7308 {
7309 sec->flags |= SEC_EXCLUDE;
7310 return TRUE;
7311 }
7312
7313 sec->flags |= SEC_KEEP;
7314 h->fn_stub = sec;
7315 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7316 }
7317 }
7318 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7319 {
7320 unsigned long r_symndx;
7321 struct mips_elf_link_hash_entry *h;
7322 asection **loc;
7323
7324 /* Look at the relocation information to figure out which symbol
7325 this is for. */
7326
7327 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7328 if (r_symndx == 0)
7329 {
7330 (*_bfd_error_handler)
7331 (_("%B: Warning: cannot determine the target function for"
7332 " stub section `%s'"),
7333 abfd, name);
7334 bfd_set_error (bfd_error_bad_value);
7335 return FALSE;
7336 }
7337
7338 if (r_symndx < extsymoff
7339 || sym_hashes[r_symndx - extsymoff] == NULL)
7340 {
7341 asection *o;
7342
7343 /* This stub is for a local symbol. This stub will only be
7344 needed if there is some relocation (R_MIPS16_26) in this BFD
7345 that refers to this symbol. */
7346 for (o = abfd->sections; o != NULL; o = o->next)
7347 {
7348 Elf_Internal_Rela *sec_relocs;
7349 const Elf_Internal_Rela *r, *rend;
7350
7351 /* We can ignore stub sections when looking for relocs. */
7352 if ((o->flags & SEC_RELOC) == 0
7353 || o->reloc_count == 0
7354 || section_allows_mips16_refs_p (o))
7355 continue;
7356
7357 sec_relocs
7358 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7359 info->keep_memory);
7360 if (sec_relocs == NULL)
7361 return FALSE;
7362
7363 rend = sec_relocs + o->reloc_count;
7364 for (r = sec_relocs; r < rend; r++)
7365 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7366 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7367 break;
7368
7369 if (elf_section_data (o)->relocs != sec_relocs)
7370 free (sec_relocs);
7371
7372 if (r < rend)
7373 break;
7374 }
7375
7376 if (o == NULL)
7377 {
7378 /* There is no non-call reloc for this stub, so we do
7379 not need it. Since this function is called before
7380 the linker maps input sections to output sections, we
7381 can easily discard it by setting the SEC_EXCLUDE
7382 flag. */
7383 sec->flags |= SEC_EXCLUDE;
7384 return TRUE;
7385 }
7386
7387 /* Record this stub in an array of local symbol call_stubs for
7388 this BFD. */
7389 if (elf_tdata (abfd)->local_call_stubs == NULL)
7390 {
7391 unsigned long symcount;
7392 asection **n;
7393 bfd_size_type amt;
7394
7395 if (elf_bad_symtab (abfd))
7396 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7397 else
7398 symcount = symtab_hdr->sh_info;
7399 amt = symcount * sizeof (asection *);
7400 n = bfd_zalloc (abfd, amt);
7401 if (n == NULL)
7402 return FALSE;
7403 elf_tdata (abfd)->local_call_stubs = n;
7404 }
7405
7406 sec->flags |= SEC_KEEP;
7407 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7408
7409 /* We don't need to set mips16_stubs_seen in this case.
7410 That flag is used to see whether we need to look through
7411 the global symbol table for stubs. We don't need to set
7412 it here, because we just have a local stub. */
7413 }
7414 else
7415 {
7416 h = ((struct mips_elf_link_hash_entry *)
7417 sym_hashes[r_symndx - extsymoff]);
7418
7419 /* H is the symbol this stub is for. */
7420
7421 if (CALL_FP_STUB_P (name))
7422 loc = &h->call_fp_stub;
7423 else
7424 loc = &h->call_stub;
7425
7426 /* If we already have an appropriate stub for this function, we
7427 don't need another one, so we can discard this one. Since
7428 this function is called before the linker maps input sections
7429 to output sections, we can easily discard it by setting the
7430 SEC_EXCLUDE flag. */
7431 if (*loc != NULL)
7432 {
7433 sec->flags |= SEC_EXCLUDE;
7434 return TRUE;
7435 }
7436
7437 sec->flags |= SEC_KEEP;
7438 *loc = sec;
7439 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7440 }
7441 }
7442
7443 sreloc = NULL;
7444 contents = NULL;
7445 for (rel = relocs; rel < rel_end; ++rel)
7446 {
7447 unsigned long r_symndx;
7448 unsigned int r_type;
7449 struct elf_link_hash_entry *h;
7450 bfd_boolean can_make_dynamic_p;
7451
7452 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7453 r_type = ELF_R_TYPE (abfd, rel->r_info);
7454
7455 if (r_symndx < extsymoff)
7456 h = NULL;
7457 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7458 {
7459 (*_bfd_error_handler)
7460 (_("%B: Malformed reloc detected for section %s"),
7461 abfd, name);
7462 bfd_set_error (bfd_error_bad_value);
7463 return FALSE;
7464 }
7465 else
7466 {
7467 h = sym_hashes[r_symndx - extsymoff];
7468 while (h != NULL
7469 && (h->root.type == bfd_link_hash_indirect
7470 || h->root.type == bfd_link_hash_warning))
7471 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7472 }
7473
7474 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7475 relocation into a dynamic one. */
7476 can_make_dynamic_p = FALSE;
7477 switch (r_type)
7478 {
7479 case R_MIPS16_GOT16:
7480 case R_MIPS16_CALL16:
7481 case R_MIPS_GOT16:
7482 case R_MIPS_CALL16:
7483 case R_MIPS_CALL_HI16:
7484 case R_MIPS_CALL_LO16:
7485 case R_MIPS_GOT_HI16:
7486 case R_MIPS_GOT_LO16:
7487 case R_MIPS_GOT_PAGE:
7488 case R_MIPS_GOT_OFST:
7489 case R_MIPS_GOT_DISP:
7490 case R_MIPS_TLS_GOTTPREL:
7491 case R_MIPS_TLS_GD:
7492 case R_MIPS_TLS_LDM:
7493 if (dynobj == NULL)
7494 elf_hash_table (info)->dynobj = dynobj = abfd;
7495 if (!mips_elf_create_got_section (dynobj, info))
7496 return FALSE;
7497 if (htab->is_vxworks && !info->shared)
7498 {
7499 (*_bfd_error_handler)
7500 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7501 abfd, (unsigned long) rel->r_offset);
7502 bfd_set_error (bfd_error_bad_value);
7503 return FALSE;
7504 }
7505 break;
7506
7507 /* This is just a hint; it can safely be ignored. Don't set
7508 has_static_relocs for the corresponding symbol. */
7509 case R_MIPS_JALR:
7510 break;
7511
7512 case R_MIPS_32:
7513 case R_MIPS_REL32:
7514 case R_MIPS_64:
7515 /* In VxWorks executables, references to external symbols
7516 must be handled using copy relocs or PLT entries; it is not
7517 possible to convert this relocation into a dynamic one.
7518
7519 For executables that use PLTs and copy-relocs, we have a
7520 choice between converting the relocation into a dynamic
7521 one or using copy relocations or PLT entries. It is
7522 usually better to do the former, unless the relocation is
7523 against a read-only section. */
7524 if ((info->shared
7525 || (h != NULL
7526 && !htab->is_vxworks
7527 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7528 && !(!info->nocopyreloc
7529 && !PIC_OBJECT_P (abfd)
7530 && MIPS_ELF_READONLY_SECTION (sec))))
7531 && (sec->flags & SEC_ALLOC) != 0)
7532 {
7533 can_make_dynamic_p = TRUE;
7534 if (dynobj == NULL)
7535 elf_hash_table (info)->dynobj = dynobj = abfd;
7536 break;
7537 }
7538 /* Fall through. */
7539
7540 default:
7541 /* Most static relocations require pointer equality, except
7542 for branches. */
7543 if (h)
7544 h->pointer_equality_needed = TRUE;
7545 /* Fall through. */
7546
7547 case R_MIPS_26:
7548 case R_MIPS_PC16:
7549 case R_MIPS16_26:
7550 if (h)
7551 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7552 break;
7553 }
7554
7555 if (h)
7556 {
7557 /* Relocations against the special VxWorks __GOTT_BASE__ and
7558 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7559 room for them in .rela.dyn. */
7560 if (is_gott_symbol (info, h))
7561 {
7562 if (sreloc == NULL)
7563 {
7564 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7565 if (sreloc == NULL)
7566 return FALSE;
7567 }
7568 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7569 if (MIPS_ELF_READONLY_SECTION (sec))
7570 /* We tell the dynamic linker that there are
7571 relocations against the text segment. */
7572 info->flags |= DF_TEXTREL;
7573 }
7574 }
7575 else if (r_type == R_MIPS_CALL_LO16
7576 || r_type == R_MIPS_GOT_LO16
7577 || r_type == R_MIPS_GOT_DISP
7578 || (got16_reloc_p (r_type) && htab->is_vxworks))
7579 {
7580 /* We may need a local GOT entry for this relocation. We
7581 don't count R_MIPS_GOT_PAGE because we can estimate the
7582 maximum number of pages needed by looking at the size of
7583 the segment. Similar comments apply to R_MIPS*_GOT16 and
7584 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7585 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7586 R_MIPS_CALL_HI16 because these are always followed by an
7587 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7588 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7589 rel->r_addend, info, 0))
7590 return FALSE;
7591 }
7592
7593 if (h != NULL && mips_elf_relocation_needs_la25_stub (abfd, r_type))
7594 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7595
7596 switch (r_type)
7597 {
7598 case R_MIPS_CALL16:
7599 case R_MIPS16_CALL16:
7600 if (h == NULL)
7601 {
7602 (*_bfd_error_handler)
7603 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7604 abfd, (unsigned long) rel->r_offset);
7605 bfd_set_error (bfd_error_bad_value);
7606 return FALSE;
7607 }
7608 /* Fall through. */
7609
7610 case R_MIPS_CALL_HI16:
7611 case R_MIPS_CALL_LO16:
7612 if (h != NULL)
7613 {
7614 /* VxWorks call relocations point at the function's .got.plt
7615 entry, which will be allocated by adjust_dynamic_symbol.
7616 Otherwise, this symbol requires a global GOT entry. */
7617 if ((!htab->is_vxworks || h->forced_local)
7618 && !mips_elf_record_global_got_symbol (h, abfd, info, 0))
7619 return FALSE;
7620
7621 /* We need a stub, not a plt entry for the undefined
7622 function. But we record it as if it needs plt. See
7623 _bfd_elf_adjust_dynamic_symbol. */
7624 h->needs_plt = 1;
7625 h->type = STT_FUNC;
7626 }
7627 break;
7628
7629 case R_MIPS_GOT_PAGE:
7630 /* If this is a global, overridable symbol, GOT_PAGE will
7631 decay to GOT_DISP, so we'll need a GOT entry for it. */
7632 if (h)
7633 {
7634 struct mips_elf_link_hash_entry *hmips =
7635 (struct mips_elf_link_hash_entry *) h;
7636
7637 /* This symbol is definitely not overridable. */
7638 if (hmips->root.def_regular
7639 && ! (info->shared && ! info->symbolic
7640 && ! hmips->root.forced_local))
7641 h = NULL;
7642 }
7643 /* Fall through. */
7644
7645 case R_MIPS16_GOT16:
7646 case R_MIPS_GOT16:
7647 case R_MIPS_GOT_HI16:
7648 case R_MIPS_GOT_LO16:
7649 if (!h || r_type == R_MIPS_GOT_PAGE)
7650 {
7651 /* This relocation needs (or may need, if h != NULL) a
7652 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7653 know for sure until we know whether the symbol is
7654 preemptible. */
7655 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
7656 {
7657 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7658 return FALSE;
7659 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7660 addend = mips_elf_read_rel_addend (abfd, rel,
7661 howto, contents);
7662 if (r_type == R_MIPS_GOT16)
7663 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
7664 contents, &addend);
7665 else
7666 addend <<= howto->rightshift;
7667 }
7668 else
7669 addend = rel->r_addend;
7670 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
7671 addend))
7672 return FALSE;
7673 break;
7674 }
7675 /* Fall through. */
7676
7677 case R_MIPS_GOT_DISP:
7678 if (h && !mips_elf_record_global_got_symbol (h, abfd, info, 0))
7679 return FALSE;
7680 break;
7681
7682 case R_MIPS_TLS_GOTTPREL:
7683 if (info->shared)
7684 info->flags |= DF_STATIC_TLS;
7685 /* Fall through */
7686
7687 case R_MIPS_TLS_LDM:
7688 if (r_type == R_MIPS_TLS_LDM)
7689 {
7690 r_symndx = 0;
7691 h = NULL;
7692 }
7693 /* Fall through */
7694
7695 case R_MIPS_TLS_GD:
7696 /* This symbol requires a global offset table entry, or two
7697 for TLS GD relocations. */
7698 {
7699 unsigned char flag = (r_type == R_MIPS_TLS_GD
7700 ? GOT_TLS_GD
7701 : r_type == R_MIPS_TLS_LDM
7702 ? GOT_TLS_LDM
7703 : GOT_TLS_IE);
7704 if (h != NULL)
7705 {
7706 struct mips_elf_link_hash_entry *hmips =
7707 (struct mips_elf_link_hash_entry *) h;
7708 hmips->tls_type |= flag;
7709
7710 if (h && !mips_elf_record_global_got_symbol (h, abfd,
7711 info, flag))
7712 return FALSE;
7713 }
7714 else
7715 {
7716 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != 0);
7717
7718 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7719 rel->r_addend,
7720 info, flag))
7721 return FALSE;
7722 }
7723 }
7724 break;
7725
7726 case R_MIPS_32:
7727 case R_MIPS_REL32:
7728 case R_MIPS_64:
7729 /* In VxWorks executables, references to external symbols
7730 are handled using copy relocs or PLT stubs, so there's
7731 no need to add a .rela.dyn entry for this relocation. */
7732 if (can_make_dynamic_p)
7733 {
7734 if (sreloc == NULL)
7735 {
7736 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7737 if (sreloc == NULL)
7738 return FALSE;
7739 }
7740 if (info->shared && h == NULL)
7741 {
7742 /* When creating a shared object, we must copy these
7743 reloc types into the output file as R_MIPS_REL32
7744 relocs. Make room for this reloc in .rel(a).dyn. */
7745 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7746 if (MIPS_ELF_READONLY_SECTION (sec))
7747 /* We tell the dynamic linker that there are
7748 relocations against the text segment. */
7749 info->flags |= DF_TEXTREL;
7750 }
7751 else
7752 {
7753 struct mips_elf_link_hash_entry *hmips;
7754
7755 /* For a shared object, we must copy this relocation
7756 unless the symbol turns out to be undefined and
7757 weak with non-default visibility, in which case
7758 it will be left as zero.
7759
7760 We could elide R_MIPS_REL32 for locally binding symbols
7761 in shared libraries, but do not yet do so.
7762
7763 For an executable, we only need to copy this
7764 reloc if the symbol is defined in a dynamic
7765 object. */
7766 hmips = (struct mips_elf_link_hash_entry *) h;
7767 ++hmips->possibly_dynamic_relocs;
7768 if (MIPS_ELF_READONLY_SECTION (sec))
7769 /* We need it to tell the dynamic linker if there
7770 are relocations against the text segment. */
7771 hmips->readonly_reloc = TRUE;
7772 }
7773 }
7774
7775 if (SGI_COMPAT (abfd))
7776 mips_elf_hash_table (info)->compact_rel_size +=
7777 sizeof (Elf32_External_crinfo);
7778 break;
7779
7780 case R_MIPS_26:
7781 case R_MIPS_GPREL16:
7782 case R_MIPS_LITERAL:
7783 case R_MIPS_GPREL32:
7784 if (SGI_COMPAT (abfd))
7785 mips_elf_hash_table (info)->compact_rel_size +=
7786 sizeof (Elf32_External_crinfo);
7787 break;
7788
7789 /* This relocation describes the C++ object vtable hierarchy.
7790 Reconstruct it for later use during GC. */
7791 case R_MIPS_GNU_VTINHERIT:
7792 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7793 return FALSE;
7794 break;
7795
7796 /* This relocation describes which C++ vtable entries are actually
7797 used. Record for later use during GC. */
7798 case R_MIPS_GNU_VTENTRY:
7799 BFD_ASSERT (h != NULL);
7800 if (h != NULL
7801 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7802 return FALSE;
7803 break;
7804
7805 default:
7806 break;
7807 }
7808
7809 /* We must not create a stub for a symbol that has relocations
7810 related to taking the function's address. This doesn't apply to
7811 VxWorks, where CALL relocs refer to a .got.plt entry instead of
7812 a normal .got entry. */
7813 if (!htab->is_vxworks && h != NULL)
7814 switch (r_type)
7815 {
7816 default:
7817 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
7818 break;
7819 case R_MIPS16_CALL16:
7820 case R_MIPS_CALL16:
7821 case R_MIPS_CALL_HI16:
7822 case R_MIPS_CALL_LO16:
7823 case R_MIPS_JALR:
7824 break;
7825 }
7826
7827 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
7828 if there is one. We only need to handle global symbols here;
7829 we decide whether to keep or delete stubs for local symbols
7830 when processing the stub's relocations. */
7831 if (h != NULL
7832 && !mips16_call_reloc_p (r_type)
7833 && !section_allows_mips16_refs_p (sec))
7834 {
7835 struct mips_elf_link_hash_entry *mh;
7836
7837 mh = (struct mips_elf_link_hash_entry *) h;
7838 mh->need_fn_stub = TRUE;
7839 }
7840
7841 /* Refuse some position-dependent relocations when creating a
7842 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
7843 not PIC, but we can create dynamic relocations and the result
7844 will be fine. Also do not refuse R_MIPS_LO16, which can be
7845 combined with R_MIPS_GOT16. */
7846 if (info->shared)
7847 {
7848 switch (r_type)
7849 {
7850 case R_MIPS16_HI16:
7851 case R_MIPS_HI16:
7852 case R_MIPS_HIGHER:
7853 case R_MIPS_HIGHEST:
7854 /* Don't refuse a high part relocation if it's against
7855 no symbol (e.g. part of a compound relocation). */
7856 if (r_symndx == 0)
7857 break;
7858
7859 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
7860 and has a special meaning. */
7861 if (!NEWABI_P (abfd) && h != NULL
7862 && strcmp (h->root.root.string, "_gp_disp") == 0)
7863 break;
7864
7865 /* FALLTHROUGH */
7866
7867 case R_MIPS16_26:
7868 case R_MIPS_26:
7869 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7870 (*_bfd_error_handler)
7871 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
7872 abfd, howto->name,
7873 (h) ? h->root.root.string : "a local symbol");
7874 bfd_set_error (bfd_error_bad_value);
7875 return FALSE;
7876 default:
7877 break;
7878 }
7879 }
7880 }
7881
7882 return TRUE;
7883 }
7884 \f
7885 bfd_boolean
7886 _bfd_mips_relax_section (bfd *abfd, asection *sec,
7887 struct bfd_link_info *link_info,
7888 bfd_boolean *again)
7889 {
7890 Elf_Internal_Rela *internal_relocs;
7891 Elf_Internal_Rela *irel, *irelend;
7892 Elf_Internal_Shdr *symtab_hdr;
7893 bfd_byte *contents = NULL;
7894 size_t extsymoff;
7895 bfd_boolean changed_contents = FALSE;
7896 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
7897 Elf_Internal_Sym *isymbuf = NULL;
7898
7899 /* We are not currently changing any sizes, so only one pass. */
7900 *again = FALSE;
7901
7902 if (link_info->relocatable)
7903 return TRUE;
7904
7905 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7906 link_info->keep_memory);
7907 if (internal_relocs == NULL)
7908 return TRUE;
7909
7910 irelend = internal_relocs + sec->reloc_count
7911 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
7912 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7913 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7914
7915 for (irel = internal_relocs; irel < irelend; irel++)
7916 {
7917 bfd_vma symval;
7918 bfd_signed_vma sym_offset;
7919 unsigned int r_type;
7920 unsigned long r_symndx;
7921 asection *sym_sec;
7922 unsigned long instruction;
7923
7924 /* Turn jalr into bgezal, and jr into beq, if they're marked
7925 with a JALR relocation, that indicate where they jump to.
7926 This saves some pipeline bubbles. */
7927 r_type = ELF_R_TYPE (abfd, irel->r_info);
7928 if (r_type != R_MIPS_JALR)
7929 continue;
7930
7931 r_symndx = ELF_R_SYM (abfd, irel->r_info);
7932 /* Compute the address of the jump target. */
7933 if (r_symndx >= extsymoff)
7934 {
7935 struct mips_elf_link_hash_entry *h
7936 = ((struct mips_elf_link_hash_entry *)
7937 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
7938
7939 while (h->root.root.type == bfd_link_hash_indirect
7940 || h->root.root.type == bfd_link_hash_warning)
7941 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7942
7943 /* If a symbol is undefined, or if it may be overridden,
7944 skip it. */
7945 if (! ((h->root.root.type == bfd_link_hash_defined
7946 || h->root.root.type == bfd_link_hash_defweak)
7947 && h->root.root.u.def.section)
7948 || (link_info->shared && ! link_info->symbolic
7949 && !h->root.forced_local))
7950 continue;
7951
7952 sym_sec = h->root.root.u.def.section;
7953 if (sym_sec->output_section)
7954 symval = (h->root.root.u.def.value
7955 + sym_sec->output_section->vma
7956 + sym_sec->output_offset);
7957 else
7958 symval = h->root.root.u.def.value;
7959 }
7960 else
7961 {
7962 Elf_Internal_Sym *isym;
7963
7964 /* Read this BFD's symbols if we haven't done so already. */
7965 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
7966 {
7967 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
7968 if (isymbuf == NULL)
7969 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
7970 symtab_hdr->sh_info, 0,
7971 NULL, NULL, NULL);
7972 if (isymbuf == NULL)
7973 goto relax_return;
7974 }
7975
7976 isym = isymbuf + r_symndx;
7977 if (isym->st_shndx == SHN_UNDEF)
7978 continue;
7979 else if (isym->st_shndx == SHN_ABS)
7980 sym_sec = bfd_abs_section_ptr;
7981 else if (isym->st_shndx == SHN_COMMON)
7982 sym_sec = bfd_com_section_ptr;
7983 else
7984 sym_sec
7985 = bfd_section_from_elf_index (abfd, isym->st_shndx);
7986 symval = isym->st_value
7987 + sym_sec->output_section->vma
7988 + sym_sec->output_offset;
7989 }
7990
7991 /* Compute branch offset, from delay slot of the jump to the
7992 branch target. */
7993 sym_offset = (symval + irel->r_addend)
7994 - (sec_start + irel->r_offset + 4);
7995
7996 /* Branch offset must be properly aligned. */
7997 if ((sym_offset & 3) != 0)
7998 continue;
7999
8000 sym_offset >>= 2;
8001
8002 /* Check that it's in range. */
8003 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8004 continue;
8005
8006 /* Get the section contents if we haven't done so already. */
8007 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8008 goto relax_return;
8009
8010 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8011
8012 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8013 if ((instruction & 0xfc1fffff) == 0x0000f809)
8014 instruction = 0x04110000;
8015 /* If it was jr <reg>, turn it into b <target>. */
8016 else if ((instruction & 0xfc1fffff) == 0x00000008)
8017 instruction = 0x10000000;
8018 else
8019 continue;
8020
8021 instruction |= (sym_offset & 0xffff);
8022 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8023 changed_contents = TRUE;
8024 }
8025
8026 if (contents != NULL
8027 && elf_section_data (sec)->this_hdr.contents != contents)
8028 {
8029 if (!changed_contents && !link_info->keep_memory)
8030 free (contents);
8031 else
8032 {
8033 /* Cache the section contents for elf_link_input_bfd. */
8034 elf_section_data (sec)->this_hdr.contents = contents;
8035 }
8036 }
8037 return TRUE;
8038
8039 relax_return:
8040 if (contents != NULL
8041 && elf_section_data (sec)->this_hdr.contents != contents)
8042 free (contents);
8043 return FALSE;
8044 }
8045 \f
8046 /* Allocate space for global sym dynamic relocs. */
8047
8048 static bfd_boolean
8049 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8050 {
8051 struct bfd_link_info *info = inf;
8052 bfd *dynobj;
8053 struct mips_elf_link_hash_entry *hmips;
8054 struct mips_elf_link_hash_table *htab;
8055
8056 htab = mips_elf_hash_table (info);
8057 dynobj = elf_hash_table (info)->dynobj;
8058 hmips = (struct mips_elf_link_hash_entry *) h;
8059
8060 /* VxWorks executables are handled elsewhere; we only need to
8061 allocate relocations in shared objects. */
8062 if (htab->is_vxworks && !info->shared)
8063 return TRUE;
8064
8065 /* Ignore indirect and warning symbols. All relocations against
8066 such symbols will be redirected to the target symbol. */
8067 if (h->root.type == bfd_link_hash_indirect
8068 || h->root.type == bfd_link_hash_warning)
8069 return TRUE;
8070
8071 /* If this symbol is defined in a dynamic object, or we are creating
8072 a shared library, we will need to copy any R_MIPS_32 or
8073 R_MIPS_REL32 relocs against it into the output file. */
8074 if (! info->relocatable
8075 && hmips->possibly_dynamic_relocs != 0
8076 && (h->root.type == bfd_link_hash_defweak
8077 || !h->def_regular
8078 || info->shared))
8079 {
8080 bfd_boolean do_copy = TRUE;
8081
8082 if (h->root.type == bfd_link_hash_undefweak)
8083 {
8084 /* Do not copy relocations for undefined weak symbols with
8085 non-default visibility. */
8086 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8087 do_copy = FALSE;
8088
8089 /* Make sure undefined weak symbols are output as a dynamic
8090 symbol in PIEs. */
8091 else if (h->dynindx == -1 && !h->forced_local)
8092 {
8093 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8094 return FALSE;
8095 }
8096 }
8097
8098 if (do_copy)
8099 {
8100 /* Even though we don't directly need a GOT entry for this symbol,
8101 a symbol must have a dynamic symbol table index greater that
8102 DT_MIPS_GOTSYM if there are dynamic relocations against it. */
8103 if (hmips->global_got_area > GGA_RELOC_ONLY)
8104 hmips->global_got_area = GGA_RELOC_ONLY;
8105
8106 mips_elf_allocate_dynamic_relocations
8107 (dynobj, info, hmips->possibly_dynamic_relocs);
8108 if (hmips->readonly_reloc)
8109 /* We tell the dynamic linker that there are relocations
8110 against the text segment. */
8111 info->flags |= DF_TEXTREL;
8112 }
8113 }
8114
8115 return TRUE;
8116 }
8117
8118 /* Adjust a symbol defined by a dynamic object and referenced by a
8119 regular object. The current definition is in some section of the
8120 dynamic object, but we're not including those sections. We have to
8121 change the definition to something the rest of the link can
8122 understand. */
8123
8124 bfd_boolean
8125 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8126 struct elf_link_hash_entry *h)
8127 {
8128 bfd *dynobj;
8129 struct mips_elf_link_hash_entry *hmips;
8130 struct mips_elf_link_hash_table *htab;
8131
8132 htab = mips_elf_hash_table (info);
8133 dynobj = elf_hash_table (info)->dynobj;
8134 hmips = (struct mips_elf_link_hash_entry *) h;
8135
8136 /* Make sure we know what is going on here. */
8137 BFD_ASSERT (dynobj != NULL
8138 && (h->needs_plt
8139 || h->u.weakdef != NULL
8140 || (h->def_dynamic
8141 && h->ref_regular
8142 && !h->def_regular)));
8143
8144 hmips = (struct mips_elf_link_hash_entry *) h;
8145
8146 /* If there are call relocations against an externally-defined symbol,
8147 see whether we can create a MIPS lazy-binding stub for it. We can
8148 only do this if all references to the function are through call
8149 relocations, and in that case, the traditional lazy-binding stubs
8150 are much more efficient than PLT entries.
8151
8152 Traditional stubs are only available on SVR4 psABI-based systems;
8153 VxWorks always uses PLTs instead. */
8154 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8155 {
8156 if (! elf_hash_table (info)->dynamic_sections_created)
8157 return TRUE;
8158
8159 /* If this symbol is not defined in a regular file, then set
8160 the symbol to the stub location. This is required to make
8161 function pointers compare as equal between the normal
8162 executable and the shared library. */
8163 if (!h->def_regular)
8164 {
8165 hmips->needs_lazy_stub = TRUE;
8166 htab->lazy_stub_count++;
8167 return TRUE;
8168 }
8169 }
8170 /* As above, VxWorks requires PLT entries for externally-defined
8171 functions that are only accessed through call relocations.
8172
8173 Both VxWorks and non-VxWorks targets also need PLT entries if there
8174 are static-only relocations against an externally-defined function.
8175 This can technically occur for shared libraries if there are
8176 branches to the symbol, although it is unlikely that this will be
8177 used in practice due to the short ranges involved. It can occur
8178 for any relative or absolute relocation in executables; in that
8179 case, the PLT entry becomes the function's canonical address. */
8180 else if (((h->needs_plt && !hmips->no_fn_stub)
8181 || (h->type == STT_FUNC && hmips->has_static_relocs))
8182 && htab->use_plts_and_copy_relocs
8183 && !SYMBOL_CALLS_LOCAL (info, h)
8184 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8185 && h->root.type == bfd_link_hash_undefweak))
8186 {
8187 /* If this is the first symbol to need a PLT entry, allocate room
8188 for the header. */
8189 if (htab->splt->size == 0)
8190 {
8191 BFD_ASSERT (htab->sgotplt->size == 0);
8192
8193 /* If we're using the PLT additions to the psABI, each PLT
8194 entry is 16 bytes and the PLT0 entry is 32 bytes.
8195 Encourage better cache usage by aligning. We do this
8196 lazily to avoid pessimizing traditional objects. */
8197 if (!htab->is_vxworks
8198 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8199 return FALSE;
8200
8201 /* Make sure that .got.plt is word-aligned. We do this lazily
8202 for the same reason as above. */
8203 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8204 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8205 return FALSE;
8206
8207 htab->splt->size += htab->plt_header_size;
8208
8209 /* On non-VxWorks targets, the first two entries in .got.plt
8210 are reserved. */
8211 if (!htab->is_vxworks)
8212 htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj);
8213
8214 /* On VxWorks, also allocate room for the header's
8215 .rela.plt.unloaded entries. */
8216 if (htab->is_vxworks && !info->shared)
8217 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8218 }
8219
8220 /* Assign the next .plt entry to this symbol. */
8221 h->plt.offset = htab->splt->size;
8222 htab->splt->size += htab->plt_entry_size;
8223
8224 /* If the output file has no definition of the symbol, set the
8225 symbol's value to the address of the stub. */
8226 if (!info->shared && !h->def_regular)
8227 {
8228 h->root.u.def.section = htab->splt;
8229 h->root.u.def.value = h->plt.offset;
8230 /* For VxWorks, point at the PLT load stub rather than the
8231 lazy resolution stub; this stub will become the canonical
8232 function address. */
8233 if (htab->is_vxworks)
8234 h->root.u.def.value += 8;
8235 }
8236
8237 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8238 relocation. */
8239 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8240 htab->srelplt->size += (htab->is_vxworks
8241 ? MIPS_ELF_RELA_SIZE (dynobj)
8242 : MIPS_ELF_REL_SIZE (dynobj));
8243
8244 /* Make room for the .rela.plt.unloaded relocations. */
8245 if (htab->is_vxworks && !info->shared)
8246 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8247
8248 /* All relocations against this symbol that could have been made
8249 dynamic will now refer to the PLT entry instead. */
8250 hmips->possibly_dynamic_relocs = 0;
8251
8252 return TRUE;
8253 }
8254
8255 /* If this is a weak symbol, and there is a real definition, the
8256 processor independent code will have arranged for us to see the
8257 real definition first, and we can just use the same value. */
8258 if (h->u.weakdef != NULL)
8259 {
8260 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8261 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8262 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8263 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8264 return TRUE;
8265 }
8266
8267 /* Otherwise, there is nothing further to do for symbols defined
8268 in regular objects. */
8269 if (h->def_regular)
8270 return TRUE;
8271
8272 /* There's also nothing more to do if we'll convert all relocations
8273 against this symbol into dynamic relocations. */
8274 if (!hmips->has_static_relocs)
8275 return TRUE;
8276
8277 /* We're now relying on copy relocations. Complain if we have
8278 some that we can't convert. */
8279 if (!htab->use_plts_and_copy_relocs || info->shared)
8280 {
8281 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8282 "dynamic symbol %s"),
8283 h->root.root.string);
8284 bfd_set_error (bfd_error_bad_value);
8285 return FALSE;
8286 }
8287
8288 /* We must allocate the symbol in our .dynbss section, which will
8289 become part of the .bss section of the executable. There will be
8290 an entry for this symbol in the .dynsym section. The dynamic
8291 object will contain position independent code, so all references
8292 from the dynamic object to this symbol will go through the global
8293 offset table. The dynamic linker will use the .dynsym entry to
8294 determine the address it must put in the global offset table, so
8295 both the dynamic object and the regular object will refer to the
8296 same memory location for the variable. */
8297
8298 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8299 {
8300 if (htab->is_vxworks)
8301 htab->srelbss->size += sizeof (Elf32_External_Rela);
8302 else
8303 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8304 h->needs_copy = 1;
8305 }
8306
8307 /* All relocations against this symbol that could have been made
8308 dynamic will now refer to the local copy instead. */
8309 hmips->possibly_dynamic_relocs = 0;
8310
8311 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8312 }
8313 \f
8314 /* This function is called after all the input files have been read,
8315 and the input sections have been assigned to output sections. We
8316 check for any mips16 stub sections that we can discard. */
8317
8318 bfd_boolean
8319 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8320 struct bfd_link_info *info)
8321 {
8322 asection *ri;
8323 struct mips_elf_link_hash_table *htab;
8324 struct mips_htab_traverse_info hti;
8325
8326 htab = mips_elf_hash_table (info);
8327
8328 /* The .reginfo section has a fixed size. */
8329 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8330 if (ri != NULL)
8331 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8332
8333 hti.info = info;
8334 hti.output_bfd = output_bfd;
8335 hti.error = FALSE;
8336 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8337 mips_elf_check_symbols, &hti);
8338 if (hti.error)
8339 return FALSE;
8340
8341 return TRUE;
8342 }
8343
8344 /* If the link uses a GOT, lay it out and work out its size. */
8345
8346 static bfd_boolean
8347 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8348 {
8349 bfd *dynobj;
8350 asection *s;
8351 struct mips_got_info *g;
8352 bfd_size_type loadable_size = 0;
8353 bfd_size_type page_gotno;
8354 bfd *sub;
8355 struct mips_elf_count_tls_arg count_tls_arg;
8356 struct mips_elf_link_hash_table *htab;
8357
8358 htab = mips_elf_hash_table (info);
8359 s = htab->sgot;
8360 if (s == NULL)
8361 return TRUE;
8362
8363 dynobj = elf_hash_table (info)->dynobj;
8364 g = htab->got_info;
8365
8366 /* Allocate room for the reserved entries. VxWorks always reserves
8367 3 entries; other objects only reserve 2 entries. */
8368 BFD_ASSERT (g->assigned_gotno == 0);
8369 if (htab->is_vxworks)
8370 htab->reserved_gotno = 3;
8371 else
8372 htab->reserved_gotno = 2;
8373 g->local_gotno += htab->reserved_gotno;
8374 g->assigned_gotno = htab->reserved_gotno;
8375
8376 /* Replace entries for indirect and warning symbols with entries for
8377 the target symbol. */
8378 if (!mips_elf_resolve_final_got_entries (g))
8379 return FALSE;
8380
8381 /* Count the number of GOT symbols. */
8382 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, g);
8383
8384 /* Calculate the total loadable size of the output. That
8385 will give us the maximum number of GOT_PAGE entries
8386 required. */
8387 for (sub = info->input_bfds; sub; sub = sub->link_next)
8388 {
8389 asection *subsection;
8390
8391 for (subsection = sub->sections;
8392 subsection;
8393 subsection = subsection->next)
8394 {
8395 if ((subsection->flags & SEC_ALLOC) == 0)
8396 continue;
8397 loadable_size += ((subsection->size + 0xf)
8398 &~ (bfd_size_type) 0xf);
8399 }
8400 }
8401
8402 if (htab->is_vxworks)
8403 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8404 relocations against local symbols evaluate to "G", and the EABI does
8405 not include R_MIPS_GOT_PAGE. */
8406 page_gotno = 0;
8407 else
8408 /* Assume there are two loadable segments consisting of contiguous
8409 sections. Is 5 enough? */
8410 page_gotno = (loadable_size >> 16) + 5;
8411
8412 /* Choose the smaller of the two estimates; both are intended to be
8413 conservative. */
8414 if (page_gotno > g->page_gotno)
8415 page_gotno = g->page_gotno;
8416
8417 g->local_gotno += page_gotno;
8418 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8419 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8420
8421 /* We need to calculate tls_gotno for global symbols at this point
8422 instead of building it up earlier, to avoid doublecounting
8423 entries for one global symbol from multiple input files. */
8424 count_tls_arg.info = info;
8425 count_tls_arg.needed = 0;
8426 elf_link_hash_traverse (elf_hash_table (info),
8427 mips_elf_count_global_tls_entries,
8428 &count_tls_arg);
8429 g->tls_gotno += count_tls_arg.needed;
8430 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8431
8432 /* VxWorks does not support multiple GOTs. It initializes $gp to
8433 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8434 dynamic loader. */
8435 if (htab->is_vxworks)
8436 {
8437 /* VxWorks executables do not need a GOT. */
8438 if (info->shared)
8439 {
8440 /* Each VxWorks GOT entry needs an explicit relocation. */
8441 unsigned int count;
8442
8443 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8444 if (count)
8445 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8446 }
8447 }
8448 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8449 {
8450 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8451 return FALSE;
8452 }
8453 else
8454 {
8455 struct mips_elf_count_tls_arg arg;
8456
8457 /* Set up TLS entries. */
8458 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8459 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8460
8461 /* Allocate room for the TLS relocations. */
8462 arg.info = info;
8463 arg.needed = 0;
8464 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8465 elf_link_hash_traverse (elf_hash_table (info),
8466 mips_elf_count_global_tls_relocs,
8467 &arg);
8468 if (arg.needed)
8469 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8470 }
8471
8472 return TRUE;
8473 }
8474
8475 /* Estimate the size of the .MIPS.stubs section. */
8476
8477 static void
8478 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8479 {
8480 struct mips_elf_link_hash_table *htab;
8481 bfd_size_type dynsymcount;
8482
8483 htab = mips_elf_hash_table (info);
8484 if (htab->lazy_stub_count == 0)
8485 return;
8486
8487 /* IRIX rld assumes that a function stub isn't at the end of the .text
8488 section, so add a dummy entry to the end. */
8489 htab->lazy_stub_count++;
8490
8491 /* Get a worst-case estimate of the number of dynamic symbols needed.
8492 At this point, dynsymcount does not account for section symbols
8493 and count_section_dynsyms may overestimate the number that will
8494 be needed. */
8495 dynsymcount = (elf_hash_table (info)->dynsymcount
8496 + count_section_dynsyms (output_bfd, info));
8497
8498 /* Determine the size of one stub entry. */
8499 htab->function_stub_size = (dynsymcount > 0x10000
8500 ? MIPS_FUNCTION_STUB_BIG_SIZE
8501 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8502
8503 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8504 }
8505
8506 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8507 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8508 allocate an entry in the stubs section. */
8509
8510 static bfd_boolean
8511 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8512 {
8513 struct mips_elf_link_hash_table *htab;
8514
8515 htab = (struct mips_elf_link_hash_table *) data;
8516 if (h->needs_lazy_stub)
8517 {
8518 h->root.root.u.def.section = htab->sstubs;
8519 h->root.root.u.def.value = htab->sstubs->size;
8520 h->root.plt.offset = htab->sstubs->size;
8521 htab->sstubs->size += htab->function_stub_size;
8522 }
8523 return TRUE;
8524 }
8525
8526 /* Allocate offsets in the stubs section to each symbol that needs one.
8527 Set the final size of the .MIPS.stub section. */
8528
8529 static void
8530 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8531 {
8532 struct mips_elf_link_hash_table *htab;
8533
8534 htab = mips_elf_hash_table (info);
8535 if (htab->lazy_stub_count == 0)
8536 return;
8537
8538 htab->sstubs->size = 0;
8539 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8540 mips_elf_allocate_lazy_stub, htab);
8541 htab->sstubs->size += htab->function_stub_size;
8542 BFD_ASSERT (htab->sstubs->size
8543 == htab->lazy_stub_count * htab->function_stub_size);
8544 }
8545
8546 /* Set the sizes of the dynamic sections. */
8547
8548 bfd_boolean
8549 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8550 struct bfd_link_info *info)
8551 {
8552 bfd *dynobj;
8553 asection *s, *sreldyn;
8554 bfd_boolean reltext;
8555 struct mips_elf_link_hash_table *htab;
8556
8557 htab = mips_elf_hash_table (info);
8558 dynobj = elf_hash_table (info)->dynobj;
8559 BFD_ASSERT (dynobj != NULL);
8560
8561 if (elf_hash_table (info)->dynamic_sections_created)
8562 {
8563 /* Set the contents of the .interp section to the interpreter. */
8564 if (info->executable)
8565 {
8566 s = bfd_get_section_by_name (dynobj, ".interp");
8567 BFD_ASSERT (s != NULL);
8568 s->size
8569 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8570 s->contents
8571 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8572 }
8573
8574 /* Create a symbol for the PLT, if we know that we are using it. */
8575 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8576 {
8577 struct elf_link_hash_entry *h;
8578
8579 BFD_ASSERT (htab->use_plts_and_copy_relocs);
8580
8581 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8582 "_PROCEDURE_LINKAGE_TABLE_");
8583 htab->root.hplt = h;
8584 if (h == NULL)
8585 return FALSE;
8586 h->type = STT_FUNC;
8587 }
8588 }
8589
8590 /* Allocate space for global sym dynamic relocs. */
8591 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
8592
8593 mips_elf_estimate_stub_size (output_bfd, info);
8594
8595 if (!mips_elf_lay_out_got (output_bfd, info))
8596 return FALSE;
8597
8598 mips_elf_lay_out_lazy_stubs (info);
8599
8600 /* The check_relocs and adjust_dynamic_symbol entry points have
8601 determined the sizes of the various dynamic sections. Allocate
8602 memory for them. */
8603 reltext = FALSE;
8604 for (s = dynobj->sections; s != NULL; s = s->next)
8605 {
8606 const char *name;
8607
8608 /* It's OK to base decisions on the section name, because none
8609 of the dynobj section names depend upon the input files. */
8610 name = bfd_get_section_name (dynobj, s);
8611
8612 if ((s->flags & SEC_LINKER_CREATED) == 0)
8613 continue;
8614
8615 if (CONST_STRNEQ (name, ".rel"))
8616 {
8617 if (s->size != 0)
8618 {
8619 const char *outname;
8620 asection *target;
8621
8622 /* If this relocation section applies to a read only
8623 section, then we probably need a DT_TEXTREL entry.
8624 If the relocation section is .rel(a).dyn, we always
8625 assert a DT_TEXTREL entry rather than testing whether
8626 there exists a relocation to a read only section or
8627 not. */
8628 outname = bfd_get_section_name (output_bfd,
8629 s->output_section);
8630 target = bfd_get_section_by_name (output_bfd, outname + 4);
8631 if ((target != NULL
8632 && (target->flags & SEC_READONLY) != 0
8633 && (target->flags & SEC_ALLOC) != 0)
8634 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
8635 reltext = TRUE;
8636
8637 /* We use the reloc_count field as a counter if we need
8638 to copy relocs into the output file. */
8639 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
8640 s->reloc_count = 0;
8641
8642 /* If combreloc is enabled, elf_link_sort_relocs() will
8643 sort relocations, but in a different way than we do,
8644 and before we're done creating relocations. Also, it
8645 will move them around between input sections'
8646 relocation's contents, so our sorting would be
8647 broken, so don't let it run. */
8648 info->combreloc = 0;
8649 }
8650 }
8651 else if (! info->shared
8652 && ! mips_elf_hash_table (info)->use_rld_obj_head
8653 && CONST_STRNEQ (name, ".rld_map"))
8654 {
8655 /* We add a room for __rld_map. It will be filled in by the
8656 rtld to contain a pointer to the _r_debug structure. */
8657 s->size += 4;
8658 }
8659 else if (SGI_COMPAT (output_bfd)
8660 && CONST_STRNEQ (name, ".compact_rel"))
8661 s->size += mips_elf_hash_table (info)->compact_rel_size;
8662 else if (s == htab->splt)
8663 {
8664 /* If the last PLT entry has a branch delay slot, allocate
8665 room for an extra nop to fill the delay slot. This is
8666 for CPUs without load interlocking. */
8667 if (! LOAD_INTERLOCKS_P (output_bfd)
8668 && ! htab->is_vxworks && s->size > 0)
8669 s->size += 4;
8670 }
8671 else if (! CONST_STRNEQ (name, ".init")
8672 && s != htab->sgot
8673 && s != htab->sgotplt
8674 && s != htab->sstubs
8675 && s != htab->sdynbss)
8676 {
8677 /* It's not one of our sections, so don't allocate space. */
8678 continue;
8679 }
8680
8681 if (s->size == 0)
8682 {
8683 s->flags |= SEC_EXCLUDE;
8684 continue;
8685 }
8686
8687 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8688 continue;
8689
8690 /* Allocate memory for the section contents. */
8691 s->contents = bfd_zalloc (dynobj, s->size);
8692 if (s->contents == NULL)
8693 {
8694 bfd_set_error (bfd_error_no_memory);
8695 return FALSE;
8696 }
8697 }
8698
8699 if (elf_hash_table (info)->dynamic_sections_created)
8700 {
8701 /* Add some entries to the .dynamic section. We fill in the
8702 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
8703 must add the entries now so that we get the correct size for
8704 the .dynamic section. */
8705
8706 /* SGI object has the equivalence of DT_DEBUG in the
8707 DT_MIPS_RLD_MAP entry. This must come first because glibc
8708 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
8709 looks at the first one it sees. */
8710 if (!info->shared
8711 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8712 return FALSE;
8713
8714 /* The DT_DEBUG entry may be filled in by the dynamic linker and
8715 used by the debugger. */
8716 if (info->executable
8717 && !SGI_COMPAT (output_bfd)
8718 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8719 return FALSE;
8720
8721 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
8722 info->flags |= DF_TEXTREL;
8723
8724 if ((info->flags & DF_TEXTREL) != 0)
8725 {
8726 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
8727 return FALSE;
8728
8729 /* Clear the DF_TEXTREL flag. It will be set again if we
8730 write out an actual text relocation; we may not, because
8731 at this point we do not know whether e.g. any .eh_frame
8732 absolute relocations have been converted to PC-relative. */
8733 info->flags &= ~DF_TEXTREL;
8734 }
8735
8736 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
8737 return FALSE;
8738
8739 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
8740 if (htab->is_vxworks)
8741 {
8742 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
8743 use any of the DT_MIPS_* tags. */
8744 if (sreldyn && sreldyn->size > 0)
8745 {
8746 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
8747 return FALSE;
8748
8749 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
8750 return FALSE;
8751
8752 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
8753 return FALSE;
8754 }
8755 }
8756 else
8757 {
8758 if (sreldyn && sreldyn->size > 0)
8759 {
8760 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8761 return FALSE;
8762
8763 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8764 return FALSE;
8765
8766 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8767 return FALSE;
8768 }
8769
8770 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8771 return FALSE;
8772
8773 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8774 return FALSE;
8775
8776 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8777 return FALSE;
8778
8779 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8780 return FALSE;
8781
8782 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8783 return FALSE;
8784
8785 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8786 return FALSE;
8787
8788 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8789 return FALSE;
8790
8791 if (IRIX_COMPAT (dynobj) == ict_irix5
8792 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8793 return FALSE;
8794
8795 if (IRIX_COMPAT (dynobj) == ict_irix6
8796 && (bfd_get_section_by_name
8797 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8798 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8799 return FALSE;
8800 }
8801 if (htab->splt->size > 0)
8802 {
8803 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
8804 return FALSE;
8805
8806 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
8807 return FALSE;
8808
8809 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
8810 return FALSE;
8811
8812 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
8813 return FALSE;
8814 }
8815 if (htab->is_vxworks
8816 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
8817 return FALSE;
8818 }
8819
8820 return TRUE;
8821 }
8822 \f
8823 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
8824 Adjust its R_ADDEND field so that it is correct for the output file.
8825 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
8826 and sections respectively; both use symbol indexes. */
8827
8828 static void
8829 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
8830 bfd *input_bfd, Elf_Internal_Sym *local_syms,
8831 asection **local_sections, Elf_Internal_Rela *rel)
8832 {
8833 unsigned int r_type, r_symndx;
8834 Elf_Internal_Sym *sym;
8835 asection *sec;
8836
8837 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
8838 {
8839 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8840 if (r_type == R_MIPS16_GPREL
8841 || r_type == R_MIPS_GPREL16
8842 || r_type == R_MIPS_GPREL32
8843 || r_type == R_MIPS_LITERAL)
8844 {
8845 rel->r_addend += _bfd_get_gp_value (input_bfd);
8846 rel->r_addend -= _bfd_get_gp_value (output_bfd);
8847 }
8848
8849 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
8850 sym = local_syms + r_symndx;
8851
8852 /* Adjust REL's addend to account for section merging. */
8853 if (!info->relocatable)
8854 {
8855 sec = local_sections[r_symndx];
8856 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8857 }
8858
8859 /* This would normally be done by the rela_normal code in elflink.c. */
8860 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8861 rel->r_addend += local_sections[r_symndx]->output_offset;
8862 }
8863 }
8864
8865 /* Relocate a MIPS ELF section. */
8866
8867 bfd_boolean
8868 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
8869 bfd *input_bfd, asection *input_section,
8870 bfd_byte *contents, Elf_Internal_Rela *relocs,
8871 Elf_Internal_Sym *local_syms,
8872 asection **local_sections)
8873 {
8874 Elf_Internal_Rela *rel;
8875 const Elf_Internal_Rela *relend;
8876 bfd_vma addend = 0;
8877 bfd_boolean use_saved_addend_p = FALSE;
8878 const struct elf_backend_data *bed;
8879
8880 bed = get_elf_backend_data (output_bfd);
8881 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
8882 for (rel = relocs; rel < relend; ++rel)
8883 {
8884 const char *name;
8885 bfd_vma value = 0;
8886 reloc_howto_type *howto;
8887 bfd_boolean require_jalx;
8888 /* TRUE if the relocation is a RELA relocation, rather than a
8889 REL relocation. */
8890 bfd_boolean rela_relocation_p = TRUE;
8891 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8892 const char *msg;
8893 unsigned long r_symndx;
8894 asection *sec;
8895 Elf_Internal_Shdr *symtab_hdr;
8896 struct elf_link_hash_entry *h;
8897
8898 /* Find the relocation howto for this relocation. */
8899 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type,
8900 NEWABI_P (input_bfd)
8901 && (MIPS_RELOC_RELA_P
8902 (input_bfd, input_section,
8903 rel - relocs)));
8904
8905 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
8906 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8907 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections, FALSE))
8908 {
8909 sec = local_sections[r_symndx];
8910 h = NULL;
8911 }
8912 else
8913 {
8914 unsigned long extsymoff;
8915
8916 extsymoff = 0;
8917 if (!elf_bad_symtab (input_bfd))
8918 extsymoff = symtab_hdr->sh_info;
8919 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
8920 while (h->root.type == bfd_link_hash_indirect
8921 || h->root.type == bfd_link_hash_warning)
8922 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8923
8924 sec = NULL;
8925 if (h->root.type == bfd_link_hash_defined
8926 || h->root.type == bfd_link_hash_defweak)
8927 sec = h->root.u.def.section;
8928 }
8929
8930 if (sec != NULL && elf_discarded_section (sec))
8931 {
8932 /* For relocs against symbols from removed linkonce sections,
8933 or sections discarded by a linker script, we just want the
8934 section contents zeroed. Avoid any special processing. */
8935 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
8936 rel->r_info = 0;
8937 rel->r_addend = 0;
8938 continue;
8939 }
8940
8941 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
8942 {
8943 /* Some 32-bit code uses R_MIPS_64. In particular, people use
8944 64-bit code, but make sure all their addresses are in the
8945 lowermost or uppermost 32-bit section of the 64-bit address
8946 space. Thus, when they use an R_MIPS_64 they mean what is
8947 usually meant by R_MIPS_32, with the exception that the
8948 stored value is sign-extended to 64 bits. */
8949 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
8950
8951 /* On big-endian systems, we need to lie about the position
8952 of the reloc. */
8953 if (bfd_big_endian (input_bfd))
8954 rel->r_offset += 4;
8955 }
8956
8957 if (!use_saved_addend_p)
8958 {
8959 /* If these relocations were originally of the REL variety,
8960 we must pull the addend out of the field that will be
8961 relocated. Otherwise, we simply use the contents of the
8962 RELA relocation. */
8963 if (mips_elf_rel_relocation_p (input_bfd, input_section,
8964 relocs, rel))
8965 {
8966 rela_relocation_p = FALSE;
8967 addend = mips_elf_read_rel_addend (input_bfd, rel,
8968 howto, contents);
8969 if (hi16_reloc_p (r_type)
8970 || (got16_reloc_p (r_type)
8971 && mips_elf_local_relocation_p (input_bfd, rel,
8972 local_sections, FALSE)))
8973 {
8974 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
8975 contents, &addend))
8976 {
8977 const char *name;
8978
8979 if (h)
8980 name = h->root.root.string;
8981 else
8982 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
8983 local_syms + r_symndx,
8984 sec);
8985 (*_bfd_error_handler)
8986 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
8987 input_bfd, input_section, name, howto->name,
8988 rel->r_offset);
8989 }
8990 }
8991 else
8992 addend <<= howto->rightshift;
8993 }
8994 else
8995 addend = rel->r_addend;
8996 mips_elf_adjust_addend (output_bfd, info, input_bfd,
8997 local_syms, local_sections, rel);
8998 }
8999
9000 if (info->relocatable)
9001 {
9002 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9003 && bfd_big_endian (input_bfd))
9004 rel->r_offset -= 4;
9005
9006 if (!rela_relocation_p && rel->r_addend)
9007 {
9008 addend += rel->r_addend;
9009 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9010 addend = mips_elf_high (addend);
9011 else if (r_type == R_MIPS_HIGHER)
9012 addend = mips_elf_higher (addend);
9013 else if (r_type == R_MIPS_HIGHEST)
9014 addend = mips_elf_highest (addend);
9015 else
9016 addend >>= howto->rightshift;
9017
9018 /* We use the source mask, rather than the destination
9019 mask because the place to which we are writing will be
9020 source of the addend in the final link. */
9021 addend &= howto->src_mask;
9022
9023 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9024 /* See the comment above about using R_MIPS_64 in the 32-bit
9025 ABI. Here, we need to update the addend. It would be
9026 possible to get away with just using the R_MIPS_32 reloc
9027 but for endianness. */
9028 {
9029 bfd_vma sign_bits;
9030 bfd_vma low_bits;
9031 bfd_vma high_bits;
9032
9033 if (addend & ((bfd_vma) 1 << 31))
9034 #ifdef BFD64
9035 sign_bits = ((bfd_vma) 1 << 32) - 1;
9036 #else
9037 sign_bits = -1;
9038 #endif
9039 else
9040 sign_bits = 0;
9041
9042 /* If we don't know that we have a 64-bit type,
9043 do two separate stores. */
9044 if (bfd_big_endian (input_bfd))
9045 {
9046 /* Store the sign-bits (which are most significant)
9047 first. */
9048 low_bits = sign_bits;
9049 high_bits = addend;
9050 }
9051 else
9052 {
9053 low_bits = addend;
9054 high_bits = sign_bits;
9055 }
9056 bfd_put_32 (input_bfd, low_bits,
9057 contents + rel->r_offset);
9058 bfd_put_32 (input_bfd, high_bits,
9059 contents + rel->r_offset + 4);
9060 continue;
9061 }
9062
9063 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9064 input_bfd, input_section,
9065 contents, FALSE))
9066 return FALSE;
9067 }
9068
9069 /* Go on to the next relocation. */
9070 continue;
9071 }
9072
9073 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9074 relocations for the same offset. In that case we are
9075 supposed to treat the output of each relocation as the addend
9076 for the next. */
9077 if (rel + 1 < relend
9078 && rel->r_offset == rel[1].r_offset
9079 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9080 use_saved_addend_p = TRUE;
9081 else
9082 use_saved_addend_p = FALSE;
9083
9084 /* Figure out what value we are supposed to relocate. */
9085 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9086 input_section, info, rel,
9087 addend, howto, local_syms,
9088 local_sections, &value,
9089 &name, &require_jalx,
9090 use_saved_addend_p))
9091 {
9092 case bfd_reloc_continue:
9093 /* There's nothing to do. */
9094 continue;
9095
9096 case bfd_reloc_undefined:
9097 /* mips_elf_calculate_relocation already called the
9098 undefined_symbol callback. There's no real point in
9099 trying to perform the relocation at this point, so we
9100 just skip ahead to the next relocation. */
9101 continue;
9102
9103 case bfd_reloc_notsupported:
9104 msg = _("internal error: unsupported relocation error");
9105 info->callbacks->warning
9106 (info, msg, name, input_bfd, input_section, rel->r_offset);
9107 return FALSE;
9108
9109 case bfd_reloc_overflow:
9110 if (use_saved_addend_p)
9111 /* Ignore overflow until we reach the last relocation for
9112 a given location. */
9113 ;
9114 else
9115 {
9116 struct mips_elf_link_hash_table *htab;
9117
9118 htab = mips_elf_hash_table (info);
9119 BFD_ASSERT (name != NULL);
9120 if (!htab->small_data_overflow_reported
9121 && (howto->type == R_MIPS_GPREL16
9122 || howto->type == R_MIPS_LITERAL))
9123 {
9124 const char *msg =
9125 _("small-data section exceeds 64KB;"
9126 " lower small-data size limit (see option -G)");
9127
9128 htab->small_data_overflow_reported = TRUE;
9129 (*info->callbacks->einfo) ("%P: %s\n", msg);
9130 }
9131 if (! ((*info->callbacks->reloc_overflow)
9132 (info, NULL, name, howto->name, (bfd_vma) 0,
9133 input_bfd, input_section, rel->r_offset)))
9134 return FALSE;
9135 }
9136 break;
9137
9138 case bfd_reloc_ok:
9139 break;
9140
9141 default:
9142 abort ();
9143 break;
9144 }
9145
9146 /* If we've got another relocation for the address, keep going
9147 until we reach the last one. */
9148 if (use_saved_addend_p)
9149 {
9150 addend = value;
9151 continue;
9152 }
9153
9154 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9155 /* See the comment above about using R_MIPS_64 in the 32-bit
9156 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9157 that calculated the right value. Now, however, we
9158 sign-extend the 32-bit result to 64-bits, and store it as a
9159 64-bit value. We are especially generous here in that we
9160 go to extreme lengths to support this usage on systems with
9161 only a 32-bit VMA. */
9162 {
9163 bfd_vma sign_bits;
9164 bfd_vma low_bits;
9165 bfd_vma high_bits;
9166
9167 if (value & ((bfd_vma) 1 << 31))
9168 #ifdef BFD64
9169 sign_bits = ((bfd_vma) 1 << 32) - 1;
9170 #else
9171 sign_bits = -1;
9172 #endif
9173 else
9174 sign_bits = 0;
9175
9176 /* If we don't know that we have a 64-bit type,
9177 do two separate stores. */
9178 if (bfd_big_endian (input_bfd))
9179 {
9180 /* Undo what we did above. */
9181 rel->r_offset -= 4;
9182 /* Store the sign-bits (which are most significant)
9183 first. */
9184 low_bits = sign_bits;
9185 high_bits = value;
9186 }
9187 else
9188 {
9189 low_bits = value;
9190 high_bits = sign_bits;
9191 }
9192 bfd_put_32 (input_bfd, low_bits,
9193 contents + rel->r_offset);
9194 bfd_put_32 (input_bfd, high_bits,
9195 contents + rel->r_offset + 4);
9196 continue;
9197 }
9198
9199 /* Actually perform the relocation. */
9200 if (! mips_elf_perform_relocation (info, howto, rel, value,
9201 input_bfd, input_section,
9202 contents, require_jalx))
9203 return FALSE;
9204 }
9205
9206 return TRUE;
9207 }
9208 \f
9209 /* A function that iterates over each entry in la25_stubs and fills
9210 in the code for each one. DATA points to a mips_htab_traverse_info. */
9211
9212 static int
9213 mips_elf_create_la25_stub (void **slot, void *data)
9214 {
9215 struct mips_htab_traverse_info *hti;
9216 struct mips_elf_link_hash_table *htab;
9217 struct mips_elf_la25_stub *stub;
9218 asection *s;
9219 bfd_byte *loc;
9220 bfd_vma offset, target, target_high, target_low;
9221
9222 stub = (struct mips_elf_la25_stub *) *slot;
9223 hti = (struct mips_htab_traverse_info *) data;
9224 htab = mips_elf_hash_table (hti->info);
9225
9226 /* Create the section contents, if we haven't already. */
9227 s = stub->stub_section;
9228 loc = s->contents;
9229 if (loc == NULL)
9230 {
9231 loc = bfd_malloc (s->size);
9232 if (loc == NULL)
9233 {
9234 hti->error = TRUE;
9235 return FALSE;
9236 }
9237 s->contents = loc;
9238 }
9239
9240 /* Work out where in the section this stub should go. */
9241 offset = stub->offset;
9242
9243 /* Work out the target address. */
9244 target = (stub->h->root.root.u.def.section->output_section->vma
9245 + stub->h->root.root.u.def.section->output_offset
9246 + stub->h->root.root.u.def.value);
9247 target_high = ((target + 0x8000) >> 16) & 0xffff;
9248 target_low = (target & 0xffff);
9249
9250 if (stub->stub_section != htab->strampoline)
9251 {
9252 /* This is a simple LUI/ADIDU stub. Zero out the beginning
9253 of the section and write the two instructions at the end. */
9254 memset (loc, 0, offset);
9255 loc += offset;
9256 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9257 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9258 }
9259 else
9260 {
9261 /* This is trampoline. */
9262 loc += offset;
9263 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9264 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9265 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9266 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9267 }
9268 return TRUE;
9269 }
9270
9271 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9272 adjust it appropriately now. */
9273
9274 static void
9275 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9276 const char *name, Elf_Internal_Sym *sym)
9277 {
9278 /* The linker script takes care of providing names and values for
9279 these, but we must place them into the right sections. */
9280 static const char* const text_section_symbols[] = {
9281 "_ftext",
9282 "_etext",
9283 "__dso_displacement",
9284 "__elf_header",
9285 "__program_header_table",
9286 NULL
9287 };
9288
9289 static const char* const data_section_symbols[] = {
9290 "_fdata",
9291 "_edata",
9292 "_end",
9293 "_fbss",
9294 NULL
9295 };
9296
9297 const char* const *p;
9298 int i;
9299
9300 for (i = 0; i < 2; ++i)
9301 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9302 *p;
9303 ++p)
9304 if (strcmp (*p, name) == 0)
9305 {
9306 /* All of these symbols are given type STT_SECTION by the
9307 IRIX6 linker. */
9308 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9309 sym->st_other = STO_PROTECTED;
9310
9311 /* The IRIX linker puts these symbols in special sections. */
9312 if (i == 0)
9313 sym->st_shndx = SHN_MIPS_TEXT;
9314 else
9315 sym->st_shndx = SHN_MIPS_DATA;
9316
9317 break;
9318 }
9319 }
9320
9321 /* Finish up dynamic symbol handling. We set the contents of various
9322 dynamic sections here. */
9323
9324 bfd_boolean
9325 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9326 struct bfd_link_info *info,
9327 struct elf_link_hash_entry *h,
9328 Elf_Internal_Sym *sym)
9329 {
9330 bfd *dynobj;
9331 asection *sgot;
9332 struct mips_got_info *g, *gg;
9333 const char *name;
9334 int idx;
9335 struct mips_elf_link_hash_table *htab;
9336 struct mips_elf_link_hash_entry *hmips;
9337
9338 htab = mips_elf_hash_table (info);
9339 dynobj = elf_hash_table (info)->dynobj;
9340 hmips = (struct mips_elf_link_hash_entry *) h;
9341
9342 BFD_ASSERT (!htab->is_vxworks);
9343
9344 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9345 {
9346 /* We've decided to create a PLT entry for this symbol. */
9347 bfd_byte *loc;
9348 bfd_vma header_address, plt_index, got_address;
9349 bfd_vma got_address_high, got_address_low, load;
9350 const bfd_vma *plt_entry;
9351
9352 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9353 BFD_ASSERT (h->dynindx != -1);
9354 BFD_ASSERT (htab->splt != NULL);
9355 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9356 BFD_ASSERT (!h->def_regular);
9357
9358 /* Calculate the address of the PLT header. */
9359 header_address = (htab->splt->output_section->vma
9360 + htab->splt->output_offset);
9361
9362 /* Calculate the index of the entry. */
9363 plt_index = ((h->plt.offset - htab->plt_header_size)
9364 / htab->plt_entry_size);
9365
9366 /* Calculate the address of the .got.plt entry. */
9367 got_address = (htab->sgotplt->output_section->vma
9368 + htab->sgotplt->output_offset
9369 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9370 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9371 got_address_low = got_address & 0xffff;
9372
9373 /* Initially point the .got.plt entry at the PLT header. */
9374 loc = (htab->sgotplt->contents
9375 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9376 if (ABI_64_P (output_bfd))
9377 bfd_put_64 (output_bfd, header_address, loc);
9378 else
9379 bfd_put_32 (output_bfd, header_address, loc);
9380
9381 /* Find out where the .plt entry should go. */
9382 loc = htab->splt->contents + h->plt.offset;
9383
9384 /* Pick the load opcode. */
9385 load = MIPS_ELF_LOAD_WORD (output_bfd);
9386
9387 /* Fill in the PLT entry itself. */
9388 plt_entry = mips_exec_plt_entry;
9389 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9390 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9391
9392 if (! LOAD_INTERLOCKS_P (output_bfd))
9393 {
9394 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9395 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9396 }
9397 else
9398 {
9399 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9400 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9401 }
9402
9403 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9404 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9405 plt_index, h->dynindx,
9406 R_MIPS_JUMP_SLOT, got_address);
9407
9408 /* We distinguish between PLT entries and lazy-binding stubs by
9409 giving the former an st_other value of STO_MIPS_PLT. Set the
9410 flag and leave the value if there are any relocations in the
9411 binary where pointer equality matters. */
9412 sym->st_shndx = SHN_UNDEF;
9413 if (h->pointer_equality_needed)
9414 sym->st_other = STO_MIPS_PLT;
9415 else
9416 sym->st_value = 0;
9417 }
9418 else if (h->plt.offset != MINUS_ONE)
9419 {
9420 /* We've decided to create a lazy-binding stub. */
9421 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9422
9423 /* This symbol has a stub. Set it up. */
9424
9425 BFD_ASSERT (h->dynindx != -1);
9426
9427 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9428 || (h->dynindx <= 0xffff));
9429
9430 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9431 sign extension at runtime in the stub, resulting in a negative
9432 index value. */
9433 if (h->dynindx & ~0x7fffffff)
9434 return FALSE;
9435
9436 /* Fill the stub. */
9437 idx = 0;
9438 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9439 idx += 4;
9440 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9441 idx += 4;
9442 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9443 {
9444 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9445 stub + idx);
9446 idx += 4;
9447 }
9448 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9449 idx += 4;
9450
9451 /* If a large stub is not required and sign extension is not a
9452 problem, then use legacy code in the stub. */
9453 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9454 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9455 else if (h->dynindx & ~0x7fff)
9456 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9457 else
9458 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9459 stub + idx);
9460
9461 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9462 memcpy (htab->sstubs->contents + h->plt.offset,
9463 stub, htab->function_stub_size);
9464
9465 /* Mark the symbol as undefined. plt.offset != -1 occurs
9466 only for the referenced symbol. */
9467 sym->st_shndx = SHN_UNDEF;
9468
9469 /* The run-time linker uses the st_value field of the symbol
9470 to reset the global offset table entry for this external
9471 to its stub address when unlinking a shared object. */
9472 sym->st_value = (htab->sstubs->output_section->vma
9473 + htab->sstubs->output_offset
9474 + h->plt.offset);
9475 }
9476
9477 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9478 refer to the stub, since only the stub uses the standard calling
9479 conventions. */
9480 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9481 {
9482 BFD_ASSERT (hmips->need_fn_stub);
9483 sym->st_value = (hmips->fn_stub->output_section->vma
9484 + hmips->fn_stub->output_offset);
9485 sym->st_size = hmips->fn_stub->size;
9486 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9487 }
9488
9489 BFD_ASSERT (h->dynindx != -1
9490 || h->forced_local);
9491
9492 sgot = htab->sgot;
9493 g = htab->got_info;
9494 BFD_ASSERT (g != NULL);
9495
9496 /* Run through the global symbol table, creating GOT entries for all
9497 the symbols that need them. */
9498 if (g->global_gotsym != NULL
9499 && h->dynindx >= g->global_gotsym->dynindx)
9500 {
9501 bfd_vma offset;
9502 bfd_vma value;
9503
9504 value = sym->st_value;
9505 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9506 R_MIPS_GOT16, info);
9507 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9508 }
9509
9510 if (g->next && h->dynindx != -1 && h->type != STT_TLS)
9511 {
9512 struct mips_got_entry e, *p;
9513 bfd_vma entry;
9514 bfd_vma offset;
9515
9516 gg = g;
9517
9518 e.abfd = output_bfd;
9519 e.symndx = -1;
9520 e.d.h = hmips;
9521 e.tls_type = 0;
9522
9523 for (g = g->next; g->next != gg; g = g->next)
9524 {
9525 if (g->got_entries
9526 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
9527 &e)))
9528 {
9529 offset = p->gotidx;
9530 if (info->shared
9531 || (elf_hash_table (info)->dynamic_sections_created
9532 && p->d.h != NULL
9533 && p->d.h->root.def_dynamic
9534 && !p->d.h->root.def_regular))
9535 {
9536 /* Create an R_MIPS_REL32 relocation for this entry. Due to
9537 the various compatibility problems, it's easier to mock
9538 up an R_MIPS_32 or R_MIPS_64 relocation and leave
9539 mips_elf_create_dynamic_relocation to calculate the
9540 appropriate addend. */
9541 Elf_Internal_Rela rel[3];
9542
9543 memset (rel, 0, sizeof (rel));
9544 if (ABI_64_P (output_bfd))
9545 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
9546 else
9547 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
9548 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
9549
9550 entry = 0;
9551 if (! (mips_elf_create_dynamic_relocation
9552 (output_bfd, info, rel,
9553 e.d.h, NULL, sym->st_value, &entry, sgot)))
9554 return FALSE;
9555 }
9556 else
9557 entry = sym->st_value;
9558 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
9559 }
9560 }
9561 }
9562
9563 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9564 name = h->root.root.string;
9565 if (strcmp (name, "_DYNAMIC") == 0
9566 || h == elf_hash_table (info)->hgot)
9567 sym->st_shndx = SHN_ABS;
9568 else if (strcmp (name, "_DYNAMIC_LINK") == 0
9569 || strcmp (name, "_DYNAMIC_LINKING") == 0)
9570 {
9571 sym->st_shndx = SHN_ABS;
9572 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9573 sym->st_value = 1;
9574 }
9575 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
9576 {
9577 sym->st_shndx = SHN_ABS;
9578 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9579 sym->st_value = elf_gp (output_bfd);
9580 }
9581 else if (SGI_COMPAT (output_bfd))
9582 {
9583 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
9584 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
9585 {
9586 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9587 sym->st_other = STO_PROTECTED;
9588 sym->st_value = 0;
9589 sym->st_shndx = SHN_MIPS_DATA;
9590 }
9591 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
9592 {
9593 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9594 sym->st_other = STO_PROTECTED;
9595 sym->st_value = mips_elf_hash_table (info)->procedure_count;
9596 sym->st_shndx = SHN_ABS;
9597 }
9598 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
9599 {
9600 if (h->type == STT_FUNC)
9601 sym->st_shndx = SHN_MIPS_TEXT;
9602 else if (h->type == STT_OBJECT)
9603 sym->st_shndx = SHN_MIPS_DATA;
9604 }
9605 }
9606
9607 /* Emit a copy reloc, if needed. */
9608 if (h->needs_copy)
9609 {
9610 asection *s;
9611 bfd_vma symval;
9612
9613 BFD_ASSERT (h->dynindx != -1);
9614 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9615
9616 s = mips_elf_rel_dyn_section (info, FALSE);
9617 symval = (h->root.u.def.section->output_section->vma
9618 + h->root.u.def.section->output_offset
9619 + h->root.u.def.value);
9620 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
9621 h->dynindx, R_MIPS_COPY, symval);
9622 }
9623
9624 /* Handle the IRIX6-specific symbols. */
9625 if (IRIX_COMPAT (output_bfd) == ict_irix6)
9626 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
9627
9628 if (! info->shared)
9629 {
9630 if (! mips_elf_hash_table (info)->use_rld_obj_head
9631 && (strcmp (name, "__rld_map") == 0
9632 || strcmp (name, "__RLD_MAP") == 0))
9633 {
9634 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
9635 BFD_ASSERT (s != NULL);
9636 sym->st_value = s->output_section->vma + s->output_offset;
9637 bfd_put_32 (output_bfd, 0, s->contents);
9638 if (mips_elf_hash_table (info)->rld_value == 0)
9639 mips_elf_hash_table (info)->rld_value = sym->st_value;
9640 }
9641 else if (mips_elf_hash_table (info)->use_rld_obj_head
9642 && strcmp (name, "__rld_obj_head") == 0)
9643 {
9644 /* IRIX6 does not use a .rld_map section. */
9645 if (IRIX_COMPAT (output_bfd) == ict_irix5
9646 || IRIX_COMPAT (output_bfd) == ict_none)
9647 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
9648 != NULL);
9649 mips_elf_hash_table (info)->rld_value = sym->st_value;
9650 }
9651 }
9652
9653 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
9654 treat MIPS16 symbols like any other. */
9655 if (ELF_ST_IS_MIPS16 (sym->st_other))
9656 {
9657 BFD_ASSERT (sym->st_value & 1);
9658 sym->st_other -= STO_MIPS16;
9659 }
9660
9661 return TRUE;
9662 }
9663
9664 /* Likewise, for VxWorks. */
9665
9666 bfd_boolean
9667 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
9668 struct bfd_link_info *info,
9669 struct elf_link_hash_entry *h,
9670 Elf_Internal_Sym *sym)
9671 {
9672 bfd *dynobj;
9673 asection *sgot;
9674 struct mips_got_info *g;
9675 struct mips_elf_link_hash_table *htab;
9676
9677 htab = mips_elf_hash_table (info);
9678 dynobj = elf_hash_table (info)->dynobj;
9679
9680 if (h->plt.offset != (bfd_vma) -1)
9681 {
9682 bfd_byte *loc;
9683 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
9684 Elf_Internal_Rela rel;
9685 static const bfd_vma *plt_entry;
9686
9687 BFD_ASSERT (h->dynindx != -1);
9688 BFD_ASSERT (htab->splt != NULL);
9689 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9690
9691 /* Calculate the address of the .plt entry. */
9692 plt_address = (htab->splt->output_section->vma
9693 + htab->splt->output_offset
9694 + h->plt.offset);
9695
9696 /* Calculate the index of the entry. */
9697 plt_index = ((h->plt.offset - htab->plt_header_size)
9698 / htab->plt_entry_size);
9699
9700 /* Calculate the address of the .got.plt entry. */
9701 got_address = (htab->sgotplt->output_section->vma
9702 + htab->sgotplt->output_offset
9703 + plt_index * 4);
9704
9705 /* Calculate the offset of the .got.plt entry from
9706 _GLOBAL_OFFSET_TABLE_. */
9707 got_offset = mips_elf_gotplt_index (info, h);
9708
9709 /* Calculate the offset for the branch at the start of the PLT
9710 entry. The branch jumps to the beginning of .plt. */
9711 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
9712
9713 /* Fill in the initial value of the .got.plt entry. */
9714 bfd_put_32 (output_bfd, plt_address,
9715 htab->sgotplt->contents + plt_index * 4);
9716
9717 /* Find out where the .plt entry should go. */
9718 loc = htab->splt->contents + h->plt.offset;
9719
9720 if (info->shared)
9721 {
9722 plt_entry = mips_vxworks_shared_plt_entry;
9723 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9724 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9725 }
9726 else
9727 {
9728 bfd_vma got_address_high, got_address_low;
9729
9730 plt_entry = mips_vxworks_exec_plt_entry;
9731 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9732 got_address_low = got_address & 0xffff;
9733
9734 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9735 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9736 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
9737 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
9738 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9739 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9740 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9741 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9742
9743 loc = (htab->srelplt2->contents
9744 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
9745
9746 /* Emit a relocation for the .got.plt entry. */
9747 rel.r_offset = got_address;
9748 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
9749 rel.r_addend = h->plt.offset;
9750 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9751
9752 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
9753 loc += sizeof (Elf32_External_Rela);
9754 rel.r_offset = plt_address + 8;
9755 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9756 rel.r_addend = got_offset;
9757 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9758
9759 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
9760 loc += sizeof (Elf32_External_Rela);
9761 rel.r_offset += 4;
9762 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9763 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9764 }
9765
9766 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9767 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
9768 rel.r_offset = got_address;
9769 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
9770 rel.r_addend = 0;
9771 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9772
9773 if (!h->def_regular)
9774 sym->st_shndx = SHN_UNDEF;
9775 }
9776
9777 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
9778
9779 sgot = htab->sgot;
9780 g = htab->got_info;
9781 BFD_ASSERT (g != NULL);
9782
9783 /* See if this symbol has an entry in the GOT. */
9784 if (g->global_gotsym != NULL
9785 && h->dynindx >= g->global_gotsym->dynindx)
9786 {
9787 bfd_vma offset;
9788 Elf_Internal_Rela outrel;
9789 bfd_byte *loc;
9790 asection *s;
9791
9792 /* Install the symbol value in the GOT. */
9793 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9794 R_MIPS_GOT16, info);
9795 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
9796
9797 /* Add a dynamic relocation for it. */
9798 s = mips_elf_rel_dyn_section (info, FALSE);
9799 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
9800 outrel.r_offset = (sgot->output_section->vma
9801 + sgot->output_offset
9802 + offset);
9803 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
9804 outrel.r_addend = 0;
9805 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
9806 }
9807
9808 /* Emit a copy reloc, if needed. */
9809 if (h->needs_copy)
9810 {
9811 Elf_Internal_Rela rel;
9812
9813 BFD_ASSERT (h->dynindx != -1);
9814
9815 rel.r_offset = (h->root.u.def.section->output_section->vma
9816 + h->root.u.def.section->output_offset
9817 + h->root.u.def.value);
9818 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
9819 rel.r_addend = 0;
9820 bfd_elf32_swap_reloca_out (output_bfd, &rel,
9821 htab->srelbss->contents
9822 + (htab->srelbss->reloc_count
9823 * sizeof (Elf32_External_Rela)));
9824 ++htab->srelbss->reloc_count;
9825 }
9826
9827 /* If this is a mips16 symbol, force the value to be even. */
9828 if (ELF_ST_IS_MIPS16 (sym->st_other))
9829 sym->st_value &= ~1;
9830
9831 return TRUE;
9832 }
9833
9834 /* Write out a plt0 entry to the beginning of .plt. */
9835
9836 static void
9837 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9838 {
9839 bfd_byte *loc;
9840 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
9841 static const bfd_vma *plt_entry;
9842 struct mips_elf_link_hash_table *htab;
9843
9844 htab = mips_elf_hash_table (info);
9845 if (ABI_64_P (output_bfd))
9846 plt_entry = mips_n64_exec_plt0_entry;
9847 else if (ABI_N32_P (output_bfd))
9848 plt_entry = mips_n32_exec_plt0_entry;
9849 else
9850 plt_entry = mips_o32_exec_plt0_entry;
9851
9852 /* Calculate the value of .got.plt. */
9853 gotplt_value = (htab->sgotplt->output_section->vma
9854 + htab->sgotplt->output_offset);
9855 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
9856 gotplt_value_low = gotplt_value & 0xffff;
9857
9858 /* The PLT sequence is not safe for N64 if .got.plt's address can
9859 not be loaded in two instructions. */
9860 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
9861 || ~(gotplt_value | 0x7fffffff) == 0);
9862
9863 /* Install the PLT header. */
9864 loc = htab->splt->contents;
9865 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
9866 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
9867 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
9868 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9869 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9870 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9871 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9872 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9873 }
9874
9875 /* Install the PLT header for a VxWorks executable and finalize the
9876 contents of .rela.plt.unloaded. */
9877
9878 static void
9879 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9880 {
9881 Elf_Internal_Rela rela;
9882 bfd_byte *loc;
9883 bfd_vma got_value, got_value_high, got_value_low, plt_address;
9884 static const bfd_vma *plt_entry;
9885 struct mips_elf_link_hash_table *htab;
9886
9887 htab = mips_elf_hash_table (info);
9888 plt_entry = mips_vxworks_exec_plt0_entry;
9889
9890 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
9891 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
9892 + htab->root.hgot->root.u.def.section->output_offset
9893 + htab->root.hgot->root.u.def.value);
9894
9895 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
9896 got_value_low = got_value & 0xffff;
9897
9898 /* Calculate the address of the PLT header. */
9899 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
9900
9901 /* Install the PLT header. */
9902 loc = htab->splt->contents;
9903 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
9904 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
9905 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
9906 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9907 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9908 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9909
9910 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
9911 loc = htab->srelplt2->contents;
9912 rela.r_offset = plt_address;
9913 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9914 rela.r_addend = 0;
9915 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
9916 loc += sizeof (Elf32_External_Rela);
9917
9918 /* Output the relocation for the following addiu of
9919 %lo(_GLOBAL_OFFSET_TABLE_). */
9920 rela.r_offset += 4;
9921 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9922 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
9923 loc += sizeof (Elf32_External_Rela);
9924
9925 /* Fix up the remaining relocations. They may have the wrong
9926 symbol index for _G_O_T_ or _P_L_T_ depending on the order
9927 in which symbols were output. */
9928 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
9929 {
9930 Elf_Internal_Rela rel;
9931
9932 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9933 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
9934 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9935 loc += sizeof (Elf32_External_Rela);
9936
9937 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9938 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9939 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9940 loc += sizeof (Elf32_External_Rela);
9941
9942 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
9943 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9944 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9945 loc += sizeof (Elf32_External_Rela);
9946 }
9947 }
9948
9949 /* Install the PLT header for a VxWorks shared library. */
9950
9951 static void
9952 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
9953 {
9954 unsigned int i;
9955 struct mips_elf_link_hash_table *htab;
9956
9957 htab = mips_elf_hash_table (info);
9958
9959 /* We just need to copy the entry byte-by-byte. */
9960 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
9961 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
9962 htab->splt->contents + i * 4);
9963 }
9964
9965 /* Finish up the dynamic sections. */
9966
9967 bfd_boolean
9968 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
9969 struct bfd_link_info *info)
9970 {
9971 bfd *dynobj;
9972 asection *sdyn;
9973 asection *sgot;
9974 struct mips_got_info *gg, *g;
9975 struct mips_elf_link_hash_table *htab;
9976
9977 htab = mips_elf_hash_table (info);
9978 dynobj = elf_hash_table (info)->dynobj;
9979
9980 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
9981
9982 sgot = htab->sgot;
9983 gg = htab->got_info;
9984
9985 if (elf_hash_table (info)->dynamic_sections_created)
9986 {
9987 bfd_byte *b;
9988 int dyn_to_skip = 0, dyn_skipped = 0;
9989
9990 BFD_ASSERT (sdyn != NULL);
9991 BFD_ASSERT (gg != NULL);
9992
9993 g = mips_elf_got_for_ibfd (gg, output_bfd);
9994 BFD_ASSERT (g != NULL);
9995
9996 for (b = sdyn->contents;
9997 b < sdyn->contents + sdyn->size;
9998 b += MIPS_ELF_DYN_SIZE (dynobj))
9999 {
10000 Elf_Internal_Dyn dyn;
10001 const char *name;
10002 size_t elemsize;
10003 asection *s;
10004 bfd_boolean swap_out_p;
10005
10006 /* Read in the current dynamic entry. */
10007 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10008
10009 /* Assume that we're going to modify it and write it out. */
10010 swap_out_p = TRUE;
10011
10012 switch (dyn.d_tag)
10013 {
10014 case DT_RELENT:
10015 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10016 break;
10017
10018 case DT_RELAENT:
10019 BFD_ASSERT (htab->is_vxworks);
10020 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10021 break;
10022
10023 case DT_STRSZ:
10024 /* Rewrite DT_STRSZ. */
10025 dyn.d_un.d_val =
10026 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10027 break;
10028
10029 case DT_PLTGOT:
10030 s = htab->sgot;
10031 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10032 break;
10033
10034 case DT_MIPS_PLTGOT:
10035 s = htab->sgotplt;
10036 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10037 break;
10038
10039 case DT_MIPS_RLD_VERSION:
10040 dyn.d_un.d_val = 1; /* XXX */
10041 break;
10042
10043 case DT_MIPS_FLAGS:
10044 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10045 break;
10046
10047 case DT_MIPS_TIME_STAMP:
10048 {
10049 time_t t;
10050 time (&t);
10051 dyn.d_un.d_val = t;
10052 }
10053 break;
10054
10055 case DT_MIPS_ICHECKSUM:
10056 /* XXX FIXME: */
10057 swap_out_p = FALSE;
10058 break;
10059
10060 case DT_MIPS_IVERSION:
10061 /* XXX FIXME: */
10062 swap_out_p = FALSE;
10063 break;
10064
10065 case DT_MIPS_BASE_ADDRESS:
10066 s = output_bfd->sections;
10067 BFD_ASSERT (s != NULL);
10068 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10069 break;
10070
10071 case DT_MIPS_LOCAL_GOTNO:
10072 dyn.d_un.d_val = g->local_gotno;
10073 break;
10074
10075 case DT_MIPS_UNREFEXTNO:
10076 /* The index into the dynamic symbol table which is the
10077 entry of the first external symbol that is not
10078 referenced within the same object. */
10079 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10080 break;
10081
10082 case DT_MIPS_GOTSYM:
10083 if (gg->global_gotsym)
10084 {
10085 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10086 break;
10087 }
10088 /* In case if we don't have global got symbols we default
10089 to setting DT_MIPS_GOTSYM to the same value as
10090 DT_MIPS_SYMTABNO, so we just fall through. */
10091
10092 case DT_MIPS_SYMTABNO:
10093 name = ".dynsym";
10094 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10095 s = bfd_get_section_by_name (output_bfd, name);
10096 BFD_ASSERT (s != NULL);
10097
10098 dyn.d_un.d_val = s->size / elemsize;
10099 break;
10100
10101 case DT_MIPS_HIPAGENO:
10102 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10103 break;
10104
10105 case DT_MIPS_RLD_MAP:
10106 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
10107 break;
10108
10109 case DT_MIPS_OPTIONS:
10110 s = (bfd_get_section_by_name
10111 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10112 dyn.d_un.d_ptr = s->vma;
10113 break;
10114
10115 case DT_RELASZ:
10116 BFD_ASSERT (htab->is_vxworks);
10117 /* The count does not include the JUMP_SLOT relocations. */
10118 if (htab->srelplt)
10119 dyn.d_un.d_val -= htab->srelplt->size;
10120 break;
10121
10122 case DT_PLTREL:
10123 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10124 if (htab->is_vxworks)
10125 dyn.d_un.d_val = DT_RELA;
10126 else
10127 dyn.d_un.d_val = DT_REL;
10128 break;
10129
10130 case DT_PLTRELSZ:
10131 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10132 dyn.d_un.d_val = htab->srelplt->size;
10133 break;
10134
10135 case DT_JMPREL:
10136 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10137 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10138 + htab->srelplt->output_offset);
10139 break;
10140
10141 case DT_TEXTREL:
10142 /* If we didn't need any text relocations after all, delete
10143 the dynamic tag. */
10144 if (!(info->flags & DF_TEXTREL))
10145 {
10146 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10147 swap_out_p = FALSE;
10148 }
10149 break;
10150
10151 case DT_FLAGS:
10152 /* If we didn't need any text relocations after all, clear
10153 DF_TEXTREL from DT_FLAGS. */
10154 if (!(info->flags & DF_TEXTREL))
10155 dyn.d_un.d_val &= ~DF_TEXTREL;
10156 else
10157 swap_out_p = FALSE;
10158 break;
10159
10160 default:
10161 swap_out_p = FALSE;
10162 if (htab->is_vxworks
10163 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10164 swap_out_p = TRUE;
10165 break;
10166 }
10167
10168 if (swap_out_p || dyn_skipped)
10169 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10170 (dynobj, &dyn, b - dyn_skipped);
10171
10172 if (dyn_to_skip)
10173 {
10174 dyn_skipped += dyn_to_skip;
10175 dyn_to_skip = 0;
10176 }
10177 }
10178
10179 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10180 if (dyn_skipped > 0)
10181 memset (b - dyn_skipped, 0, dyn_skipped);
10182 }
10183
10184 if (sgot != NULL && sgot->size > 0
10185 && !bfd_is_abs_section (sgot->output_section))
10186 {
10187 if (htab->is_vxworks)
10188 {
10189 /* The first entry of the global offset table points to the
10190 ".dynamic" section. The second is initialized by the
10191 loader and contains the shared library identifier.
10192 The third is also initialized by the loader and points
10193 to the lazy resolution stub. */
10194 MIPS_ELF_PUT_WORD (output_bfd,
10195 sdyn->output_offset + sdyn->output_section->vma,
10196 sgot->contents);
10197 MIPS_ELF_PUT_WORD (output_bfd, 0,
10198 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10199 MIPS_ELF_PUT_WORD (output_bfd, 0,
10200 sgot->contents
10201 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10202 }
10203 else
10204 {
10205 /* The first entry of the global offset table will be filled at
10206 runtime. The second entry will be used by some runtime loaders.
10207 This isn't the case of IRIX rld. */
10208 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10209 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10210 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10211 }
10212
10213 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10214 = MIPS_ELF_GOT_SIZE (output_bfd);
10215 }
10216
10217 /* Generate dynamic relocations for the non-primary gots. */
10218 if (gg != NULL && gg->next)
10219 {
10220 Elf_Internal_Rela rel[3];
10221 bfd_vma addend = 0;
10222
10223 memset (rel, 0, sizeof (rel));
10224 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10225
10226 for (g = gg->next; g->next != gg; g = g->next)
10227 {
10228 bfd_vma index = g->next->local_gotno + g->next->global_gotno
10229 + g->next->tls_gotno;
10230
10231 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10232 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10233 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10234 sgot->contents
10235 + index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10236
10237 if (! info->shared)
10238 continue;
10239
10240 while (index < g->assigned_gotno)
10241 {
10242 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10243 = index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10244 if (!(mips_elf_create_dynamic_relocation
10245 (output_bfd, info, rel, NULL,
10246 bfd_abs_section_ptr,
10247 0, &addend, sgot)))
10248 return FALSE;
10249 BFD_ASSERT (addend == 0);
10250 }
10251 }
10252 }
10253
10254 /* The generation of dynamic relocations for the non-primary gots
10255 adds more dynamic relocations. We cannot count them until
10256 here. */
10257
10258 if (elf_hash_table (info)->dynamic_sections_created)
10259 {
10260 bfd_byte *b;
10261 bfd_boolean swap_out_p;
10262
10263 BFD_ASSERT (sdyn != NULL);
10264
10265 for (b = sdyn->contents;
10266 b < sdyn->contents + sdyn->size;
10267 b += MIPS_ELF_DYN_SIZE (dynobj))
10268 {
10269 Elf_Internal_Dyn dyn;
10270 asection *s;
10271
10272 /* Read in the current dynamic entry. */
10273 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10274
10275 /* Assume that we're going to modify it and write it out. */
10276 swap_out_p = TRUE;
10277
10278 switch (dyn.d_tag)
10279 {
10280 case DT_RELSZ:
10281 /* Reduce DT_RELSZ to account for any relocations we
10282 decided not to make. This is for the n64 irix rld,
10283 which doesn't seem to apply any relocations if there
10284 are trailing null entries. */
10285 s = mips_elf_rel_dyn_section (info, FALSE);
10286 dyn.d_un.d_val = (s->reloc_count
10287 * (ABI_64_P (output_bfd)
10288 ? sizeof (Elf64_Mips_External_Rel)
10289 : sizeof (Elf32_External_Rel)));
10290 /* Adjust the section size too. Tools like the prelinker
10291 can reasonably expect the values to the same. */
10292 elf_section_data (s->output_section)->this_hdr.sh_size
10293 = dyn.d_un.d_val;
10294 break;
10295
10296 default:
10297 swap_out_p = FALSE;
10298 break;
10299 }
10300
10301 if (swap_out_p)
10302 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10303 (dynobj, &dyn, b);
10304 }
10305 }
10306
10307 {
10308 asection *s;
10309 Elf32_compact_rel cpt;
10310
10311 if (SGI_COMPAT (output_bfd))
10312 {
10313 /* Write .compact_rel section out. */
10314 s = bfd_get_section_by_name (dynobj, ".compact_rel");
10315 if (s != NULL)
10316 {
10317 cpt.id1 = 1;
10318 cpt.num = s->reloc_count;
10319 cpt.id2 = 2;
10320 cpt.offset = (s->output_section->filepos
10321 + sizeof (Elf32_External_compact_rel));
10322 cpt.reserved0 = 0;
10323 cpt.reserved1 = 0;
10324 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10325 ((Elf32_External_compact_rel *)
10326 s->contents));
10327
10328 /* Clean up a dummy stub function entry in .text. */
10329 if (htab->sstubs != NULL)
10330 {
10331 file_ptr dummy_offset;
10332
10333 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10334 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10335 memset (htab->sstubs->contents + dummy_offset, 0,
10336 htab->function_stub_size);
10337 }
10338 }
10339 }
10340
10341 /* The psABI says that the dynamic relocations must be sorted in
10342 increasing order of r_symndx. The VxWorks EABI doesn't require
10343 this, and because the code below handles REL rather than RELA
10344 relocations, using it for VxWorks would be outright harmful. */
10345 if (!htab->is_vxworks)
10346 {
10347 s = mips_elf_rel_dyn_section (info, FALSE);
10348 if (s != NULL
10349 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10350 {
10351 reldyn_sorting_bfd = output_bfd;
10352
10353 if (ABI_64_P (output_bfd))
10354 qsort ((Elf64_External_Rel *) s->contents + 1,
10355 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10356 sort_dynamic_relocs_64);
10357 else
10358 qsort ((Elf32_External_Rel *) s->contents + 1,
10359 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10360 sort_dynamic_relocs);
10361 }
10362 }
10363 }
10364
10365 if (htab->splt && htab->splt->size > 0)
10366 {
10367 if (htab->is_vxworks)
10368 {
10369 if (info->shared)
10370 mips_vxworks_finish_shared_plt (output_bfd, info);
10371 else
10372 mips_vxworks_finish_exec_plt (output_bfd, info);
10373 }
10374 else
10375 {
10376 BFD_ASSERT (!info->shared);
10377 mips_finish_exec_plt (output_bfd, info);
10378 }
10379 }
10380 return TRUE;
10381 }
10382
10383
10384 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10385
10386 static void
10387 mips_set_isa_flags (bfd *abfd)
10388 {
10389 flagword val;
10390
10391 switch (bfd_get_mach (abfd))
10392 {
10393 default:
10394 case bfd_mach_mips3000:
10395 val = E_MIPS_ARCH_1;
10396 break;
10397
10398 case bfd_mach_mips3900:
10399 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10400 break;
10401
10402 case bfd_mach_mips6000:
10403 val = E_MIPS_ARCH_2;
10404 break;
10405
10406 case bfd_mach_mips4000:
10407 case bfd_mach_mips4300:
10408 case bfd_mach_mips4400:
10409 case bfd_mach_mips4600:
10410 val = E_MIPS_ARCH_3;
10411 break;
10412
10413 case bfd_mach_mips4010:
10414 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10415 break;
10416
10417 case bfd_mach_mips4100:
10418 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10419 break;
10420
10421 case bfd_mach_mips4111:
10422 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10423 break;
10424
10425 case bfd_mach_mips4120:
10426 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10427 break;
10428
10429 case bfd_mach_mips4650:
10430 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10431 break;
10432
10433 case bfd_mach_mips5400:
10434 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10435 break;
10436
10437 case bfd_mach_mips5500:
10438 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10439 break;
10440
10441 case bfd_mach_mips9000:
10442 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10443 break;
10444
10445 case bfd_mach_mips5000:
10446 case bfd_mach_mips7000:
10447 case bfd_mach_mips8000:
10448 case bfd_mach_mips10000:
10449 case bfd_mach_mips12000:
10450 case bfd_mach_mips14000:
10451 case bfd_mach_mips16000:
10452 val = E_MIPS_ARCH_4;
10453 break;
10454
10455 case bfd_mach_mips5:
10456 val = E_MIPS_ARCH_5;
10457 break;
10458
10459 case bfd_mach_mips_loongson_2e:
10460 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10461 break;
10462
10463 case bfd_mach_mips_loongson_2f:
10464 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10465 break;
10466
10467 case bfd_mach_mips_sb1:
10468 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10469 break;
10470
10471 case bfd_mach_mips_octeon:
10472 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10473 break;
10474
10475 case bfd_mach_mips_xlr:
10476 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10477 break;
10478
10479 case bfd_mach_mipsisa32:
10480 val = E_MIPS_ARCH_32;
10481 break;
10482
10483 case bfd_mach_mipsisa64:
10484 val = E_MIPS_ARCH_64;
10485 break;
10486
10487 case bfd_mach_mipsisa32r2:
10488 val = E_MIPS_ARCH_32R2;
10489 break;
10490
10491 case bfd_mach_mipsisa64r2:
10492 val = E_MIPS_ARCH_64R2;
10493 break;
10494 }
10495 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10496 elf_elfheader (abfd)->e_flags |= val;
10497
10498 }
10499
10500
10501 /* The final processing done just before writing out a MIPS ELF object
10502 file. This gets the MIPS architecture right based on the machine
10503 number. This is used by both the 32-bit and the 64-bit ABI. */
10504
10505 void
10506 _bfd_mips_elf_final_write_processing (bfd *abfd,
10507 bfd_boolean linker ATTRIBUTE_UNUSED)
10508 {
10509 unsigned int i;
10510 Elf_Internal_Shdr **hdrpp;
10511 const char *name;
10512 asection *sec;
10513
10514 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10515 is nonzero. This is for compatibility with old objects, which used
10516 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
10517 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
10518 mips_set_isa_flags (abfd);
10519
10520 /* Set the sh_info field for .gptab sections and other appropriate
10521 info for each special section. */
10522 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
10523 i < elf_numsections (abfd);
10524 i++, hdrpp++)
10525 {
10526 switch ((*hdrpp)->sh_type)
10527 {
10528 case SHT_MIPS_MSYM:
10529 case SHT_MIPS_LIBLIST:
10530 sec = bfd_get_section_by_name (abfd, ".dynstr");
10531 if (sec != NULL)
10532 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10533 break;
10534
10535 case SHT_MIPS_GPTAB:
10536 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10537 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10538 BFD_ASSERT (name != NULL
10539 && CONST_STRNEQ (name, ".gptab."));
10540 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
10541 BFD_ASSERT (sec != NULL);
10542 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10543 break;
10544
10545 case SHT_MIPS_CONTENT:
10546 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10547 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10548 BFD_ASSERT (name != NULL
10549 && CONST_STRNEQ (name, ".MIPS.content"));
10550 sec = bfd_get_section_by_name (abfd,
10551 name + sizeof ".MIPS.content" - 1);
10552 BFD_ASSERT (sec != NULL);
10553 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10554 break;
10555
10556 case SHT_MIPS_SYMBOL_LIB:
10557 sec = bfd_get_section_by_name (abfd, ".dynsym");
10558 if (sec != NULL)
10559 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10560 sec = bfd_get_section_by_name (abfd, ".liblist");
10561 if (sec != NULL)
10562 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10563 break;
10564
10565 case SHT_MIPS_EVENTS:
10566 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10567 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10568 BFD_ASSERT (name != NULL);
10569 if (CONST_STRNEQ (name, ".MIPS.events"))
10570 sec = bfd_get_section_by_name (abfd,
10571 name + sizeof ".MIPS.events" - 1);
10572 else
10573 {
10574 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
10575 sec = bfd_get_section_by_name (abfd,
10576 (name
10577 + sizeof ".MIPS.post_rel" - 1));
10578 }
10579 BFD_ASSERT (sec != NULL);
10580 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10581 break;
10582
10583 }
10584 }
10585 }
10586 \f
10587 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
10588 segments. */
10589
10590 int
10591 _bfd_mips_elf_additional_program_headers (bfd *abfd,
10592 struct bfd_link_info *info ATTRIBUTE_UNUSED)
10593 {
10594 asection *s;
10595 int ret = 0;
10596
10597 /* See if we need a PT_MIPS_REGINFO segment. */
10598 s = bfd_get_section_by_name (abfd, ".reginfo");
10599 if (s && (s->flags & SEC_LOAD))
10600 ++ret;
10601
10602 /* See if we need a PT_MIPS_OPTIONS segment. */
10603 if (IRIX_COMPAT (abfd) == ict_irix6
10604 && bfd_get_section_by_name (abfd,
10605 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
10606 ++ret;
10607
10608 /* See if we need a PT_MIPS_RTPROC segment. */
10609 if (IRIX_COMPAT (abfd) == ict_irix5
10610 && bfd_get_section_by_name (abfd, ".dynamic")
10611 && bfd_get_section_by_name (abfd, ".mdebug"))
10612 ++ret;
10613
10614 /* Allocate a PT_NULL header in dynamic objects. See
10615 _bfd_mips_elf_modify_segment_map for details. */
10616 if (!SGI_COMPAT (abfd)
10617 && bfd_get_section_by_name (abfd, ".dynamic"))
10618 ++ret;
10619
10620 return ret;
10621 }
10622
10623 /* Modify the segment map for an IRIX5 executable. */
10624
10625 bfd_boolean
10626 _bfd_mips_elf_modify_segment_map (bfd *abfd,
10627 struct bfd_link_info *info)
10628 {
10629 asection *s;
10630 struct elf_segment_map *m, **pm;
10631 bfd_size_type amt;
10632
10633 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
10634 segment. */
10635 s = bfd_get_section_by_name (abfd, ".reginfo");
10636 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10637 {
10638 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10639 if (m->p_type == PT_MIPS_REGINFO)
10640 break;
10641 if (m == NULL)
10642 {
10643 amt = sizeof *m;
10644 m = bfd_zalloc (abfd, amt);
10645 if (m == NULL)
10646 return FALSE;
10647
10648 m->p_type = PT_MIPS_REGINFO;
10649 m->count = 1;
10650 m->sections[0] = s;
10651
10652 /* We want to put it after the PHDR and INTERP segments. */
10653 pm = &elf_tdata (abfd)->segment_map;
10654 while (*pm != NULL
10655 && ((*pm)->p_type == PT_PHDR
10656 || (*pm)->p_type == PT_INTERP))
10657 pm = &(*pm)->next;
10658
10659 m->next = *pm;
10660 *pm = m;
10661 }
10662 }
10663
10664 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
10665 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
10666 PT_MIPS_OPTIONS segment immediately following the program header
10667 table. */
10668 if (NEWABI_P (abfd)
10669 /* On non-IRIX6 new abi, we'll have already created a segment
10670 for this section, so don't create another. I'm not sure this
10671 is not also the case for IRIX 6, but I can't test it right
10672 now. */
10673 && IRIX_COMPAT (abfd) == ict_irix6)
10674 {
10675 for (s = abfd->sections; s; s = s->next)
10676 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
10677 break;
10678
10679 if (s)
10680 {
10681 struct elf_segment_map *options_segment;
10682
10683 pm = &elf_tdata (abfd)->segment_map;
10684 while (*pm != NULL
10685 && ((*pm)->p_type == PT_PHDR
10686 || (*pm)->p_type == PT_INTERP))
10687 pm = &(*pm)->next;
10688
10689 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
10690 {
10691 amt = sizeof (struct elf_segment_map);
10692 options_segment = bfd_zalloc (abfd, amt);
10693 options_segment->next = *pm;
10694 options_segment->p_type = PT_MIPS_OPTIONS;
10695 options_segment->p_flags = PF_R;
10696 options_segment->p_flags_valid = TRUE;
10697 options_segment->count = 1;
10698 options_segment->sections[0] = s;
10699 *pm = options_segment;
10700 }
10701 }
10702 }
10703 else
10704 {
10705 if (IRIX_COMPAT (abfd) == ict_irix5)
10706 {
10707 /* If there are .dynamic and .mdebug sections, we make a room
10708 for the RTPROC header. FIXME: Rewrite without section names. */
10709 if (bfd_get_section_by_name (abfd, ".interp") == NULL
10710 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
10711 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
10712 {
10713 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10714 if (m->p_type == PT_MIPS_RTPROC)
10715 break;
10716 if (m == NULL)
10717 {
10718 amt = sizeof *m;
10719 m = bfd_zalloc (abfd, amt);
10720 if (m == NULL)
10721 return FALSE;
10722
10723 m->p_type = PT_MIPS_RTPROC;
10724
10725 s = bfd_get_section_by_name (abfd, ".rtproc");
10726 if (s == NULL)
10727 {
10728 m->count = 0;
10729 m->p_flags = 0;
10730 m->p_flags_valid = 1;
10731 }
10732 else
10733 {
10734 m->count = 1;
10735 m->sections[0] = s;
10736 }
10737
10738 /* We want to put it after the DYNAMIC segment. */
10739 pm = &elf_tdata (abfd)->segment_map;
10740 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
10741 pm = &(*pm)->next;
10742 if (*pm != NULL)
10743 pm = &(*pm)->next;
10744
10745 m->next = *pm;
10746 *pm = m;
10747 }
10748 }
10749 }
10750 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
10751 .dynstr, .dynsym, and .hash sections, and everything in
10752 between. */
10753 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
10754 pm = &(*pm)->next)
10755 if ((*pm)->p_type == PT_DYNAMIC)
10756 break;
10757 m = *pm;
10758 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
10759 {
10760 /* For a normal mips executable the permissions for the PT_DYNAMIC
10761 segment are read, write and execute. We do that here since
10762 the code in elf.c sets only the read permission. This matters
10763 sometimes for the dynamic linker. */
10764 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
10765 {
10766 m->p_flags = PF_R | PF_W | PF_X;
10767 m->p_flags_valid = 1;
10768 }
10769 }
10770 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
10771 glibc's dynamic linker has traditionally derived the number of
10772 tags from the p_filesz field, and sometimes allocates stack
10773 arrays of that size. An overly-big PT_DYNAMIC segment can
10774 be actively harmful in such cases. Making PT_DYNAMIC contain
10775 other sections can also make life hard for the prelinker,
10776 which might move one of the other sections to a different
10777 PT_LOAD segment. */
10778 if (SGI_COMPAT (abfd)
10779 && m != NULL
10780 && m->count == 1
10781 && strcmp (m->sections[0]->name, ".dynamic") == 0)
10782 {
10783 static const char *sec_names[] =
10784 {
10785 ".dynamic", ".dynstr", ".dynsym", ".hash"
10786 };
10787 bfd_vma low, high;
10788 unsigned int i, c;
10789 struct elf_segment_map *n;
10790
10791 low = ~(bfd_vma) 0;
10792 high = 0;
10793 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
10794 {
10795 s = bfd_get_section_by_name (abfd, sec_names[i]);
10796 if (s != NULL && (s->flags & SEC_LOAD) != 0)
10797 {
10798 bfd_size_type sz;
10799
10800 if (low > s->vma)
10801 low = s->vma;
10802 sz = s->size;
10803 if (high < s->vma + sz)
10804 high = s->vma + sz;
10805 }
10806 }
10807
10808 c = 0;
10809 for (s = abfd->sections; s != NULL; s = s->next)
10810 if ((s->flags & SEC_LOAD) != 0
10811 && s->vma >= low
10812 && s->vma + s->size <= high)
10813 ++c;
10814
10815 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
10816 n = bfd_zalloc (abfd, amt);
10817 if (n == NULL)
10818 return FALSE;
10819 *n = *m;
10820 n->count = c;
10821
10822 i = 0;
10823 for (s = abfd->sections; s != NULL; s = s->next)
10824 {
10825 if ((s->flags & SEC_LOAD) != 0
10826 && s->vma >= low
10827 && s->vma + s->size <= high)
10828 {
10829 n->sections[i] = s;
10830 ++i;
10831 }
10832 }
10833
10834 *pm = n;
10835 }
10836 }
10837
10838 /* Allocate a spare program header in dynamic objects so that tools
10839 like the prelinker can add an extra PT_LOAD entry.
10840
10841 If the prelinker needs to make room for a new PT_LOAD entry, its
10842 standard procedure is to move the first (read-only) sections into
10843 the new (writable) segment. However, the MIPS ABI requires
10844 .dynamic to be in a read-only segment, and the section will often
10845 start within sizeof (ElfNN_Phdr) bytes of the last program header.
10846
10847 Although the prelinker could in principle move .dynamic to a
10848 writable segment, it seems better to allocate a spare program
10849 header instead, and avoid the need to move any sections.
10850 There is a long tradition of allocating spare dynamic tags,
10851 so allocating a spare program header seems like a natural
10852 extension.
10853
10854 If INFO is NULL, we may be copying an already prelinked binary
10855 with objcopy or strip, so do not add this header. */
10856 if (info != NULL
10857 && !SGI_COMPAT (abfd)
10858 && bfd_get_section_by_name (abfd, ".dynamic"))
10859 {
10860 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
10861 if ((*pm)->p_type == PT_NULL)
10862 break;
10863 if (*pm == NULL)
10864 {
10865 m = bfd_zalloc (abfd, sizeof (*m));
10866 if (m == NULL)
10867 return FALSE;
10868
10869 m->p_type = PT_NULL;
10870 *pm = m;
10871 }
10872 }
10873
10874 return TRUE;
10875 }
10876 \f
10877 /* Return the section that should be marked against GC for a given
10878 relocation. */
10879
10880 asection *
10881 _bfd_mips_elf_gc_mark_hook (asection *sec,
10882 struct bfd_link_info *info,
10883 Elf_Internal_Rela *rel,
10884 struct elf_link_hash_entry *h,
10885 Elf_Internal_Sym *sym)
10886 {
10887 /* ??? Do mips16 stub sections need to be handled special? */
10888
10889 if (h != NULL)
10890 switch (ELF_R_TYPE (sec->owner, rel->r_info))
10891 {
10892 case R_MIPS_GNU_VTINHERIT:
10893 case R_MIPS_GNU_VTENTRY:
10894 return NULL;
10895 }
10896
10897 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
10898 }
10899
10900 /* Update the got entry reference counts for the section being removed. */
10901
10902 bfd_boolean
10903 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
10904 struct bfd_link_info *info ATTRIBUTE_UNUSED,
10905 asection *sec ATTRIBUTE_UNUSED,
10906 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
10907 {
10908 #if 0
10909 Elf_Internal_Shdr *symtab_hdr;
10910 struct elf_link_hash_entry **sym_hashes;
10911 bfd_signed_vma *local_got_refcounts;
10912 const Elf_Internal_Rela *rel, *relend;
10913 unsigned long r_symndx;
10914 struct elf_link_hash_entry *h;
10915
10916 if (info->relocatable)
10917 return TRUE;
10918
10919 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10920 sym_hashes = elf_sym_hashes (abfd);
10921 local_got_refcounts = elf_local_got_refcounts (abfd);
10922
10923 relend = relocs + sec->reloc_count;
10924 for (rel = relocs; rel < relend; rel++)
10925 switch (ELF_R_TYPE (abfd, rel->r_info))
10926 {
10927 case R_MIPS16_GOT16:
10928 case R_MIPS16_CALL16:
10929 case R_MIPS_GOT16:
10930 case R_MIPS_CALL16:
10931 case R_MIPS_CALL_HI16:
10932 case R_MIPS_CALL_LO16:
10933 case R_MIPS_GOT_HI16:
10934 case R_MIPS_GOT_LO16:
10935 case R_MIPS_GOT_DISP:
10936 case R_MIPS_GOT_PAGE:
10937 case R_MIPS_GOT_OFST:
10938 /* ??? It would seem that the existing MIPS code does no sort
10939 of reference counting or whatnot on its GOT and PLT entries,
10940 so it is not possible to garbage collect them at this time. */
10941 break;
10942
10943 default:
10944 break;
10945 }
10946 #endif
10947
10948 return TRUE;
10949 }
10950 \f
10951 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
10952 hiding the old indirect symbol. Process additional relocation
10953 information. Also called for weakdefs, in which case we just let
10954 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
10955
10956 void
10957 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
10958 struct elf_link_hash_entry *dir,
10959 struct elf_link_hash_entry *ind)
10960 {
10961 struct mips_elf_link_hash_entry *dirmips, *indmips;
10962
10963 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
10964
10965 dirmips = (struct mips_elf_link_hash_entry *) dir;
10966 indmips = (struct mips_elf_link_hash_entry *) ind;
10967 /* Any absolute non-dynamic relocations against an indirect or weak
10968 definition will be against the target symbol. */
10969 if (indmips->has_static_relocs)
10970 dirmips->has_static_relocs = TRUE;
10971
10972 if (ind->root.type != bfd_link_hash_indirect)
10973 return;
10974
10975 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
10976 if (indmips->readonly_reloc)
10977 dirmips->readonly_reloc = TRUE;
10978 if (indmips->no_fn_stub)
10979 dirmips->no_fn_stub = TRUE;
10980 if (indmips->fn_stub)
10981 {
10982 dirmips->fn_stub = indmips->fn_stub;
10983 indmips->fn_stub = NULL;
10984 }
10985 if (indmips->need_fn_stub)
10986 {
10987 dirmips->need_fn_stub = TRUE;
10988 indmips->need_fn_stub = FALSE;
10989 }
10990 if (indmips->call_stub)
10991 {
10992 dirmips->call_stub = indmips->call_stub;
10993 indmips->call_stub = NULL;
10994 }
10995 if (indmips->call_fp_stub)
10996 {
10997 dirmips->call_fp_stub = indmips->call_fp_stub;
10998 indmips->call_fp_stub = NULL;
10999 }
11000 if (indmips->global_got_area < dirmips->global_got_area)
11001 dirmips->global_got_area = indmips->global_got_area;
11002 if (indmips->global_got_area < GGA_NONE)
11003 indmips->global_got_area = GGA_NONE;
11004 if (indmips->has_nonpic_branches)
11005 dirmips->has_nonpic_branches = TRUE;
11006
11007 if (dirmips->tls_type == 0)
11008 dirmips->tls_type = indmips->tls_type;
11009 }
11010 \f
11011 #define PDR_SIZE 32
11012
11013 bfd_boolean
11014 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11015 struct bfd_link_info *info)
11016 {
11017 asection *o;
11018 bfd_boolean ret = FALSE;
11019 unsigned char *tdata;
11020 size_t i, skip;
11021
11022 o = bfd_get_section_by_name (abfd, ".pdr");
11023 if (! o)
11024 return FALSE;
11025 if (o->size == 0)
11026 return FALSE;
11027 if (o->size % PDR_SIZE != 0)
11028 return FALSE;
11029 if (o->output_section != NULL
11030 && bfd_is_abs_section (o->output_section))
11031 return FALSE;
11032
11033 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11034 if (! tdata)
11035 return FALSE;
11036
11037 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11038 info->keep_memory);
11039 if (!cookie->rels)
11040 {
11041 free (tdata);
11042 return FALSE;
11043 }
11044
11045 cookie->rel = cookie->rels;
11046 cookie->relend = cookie->rels + o->reloc_count;
11047
11048 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11049 {
11050 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11051 {
11052 tdata[i] = 1;
11053 skip ++;
11054 }
11055 }
11056
11057 if (skip != 0)
11058 {
11059 mips_elf_section_data (o)->u.tdata = tdata;
11060 o->size -= skip * PDR_SIZE;
11061 ret = TRUE;
11062 }
11063 else
11064 free (tdata);
11065
11066 if (! info->keep_memory)
11067 free (cookie->rels);
11068
11069 return ret;
11070 }
11071
11072 bfd_boolean
11073 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11074 {
11075 if (strcmp (sec->name, ".pdr") == 0)
11076 return TRUE;
11077 return FALSE;
11078 }
11079
11080 bfd_boolean
11081 _bfd_mips_elf_write_section (bfd *output_bfd,
11082 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11083 asection *sec, bfd_byte *contents)
11084 {
11085 bfd_byte *to, *from, *end;
11086 int i;
11087
11088 if (strcmp (sec->name, ".pdr") != 0)
11089 return FALSE;
11090
11091 if (mips_elf_section_data (sec)->u.tdata == NULL)
11092 return FALSE;
11093
11094 to = contents;
11095 end = contents + sec->size;
11096 for (from = contents, i = 0;
11097 from < end;
11098 from += PDR_SIZE, i++)
11099 {
11100 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11101 continue;
11102 if (to != from)
11103 memcpy (to, from, PDR_SIZE);
11104 to += PDR_SIZE;
11105 }
11106 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11107 sec->output_offset, sec->size);
11108 return TRUE;
11109 }
11110 \f
11111 /* MIPS ELF uses a special find_nearest_line routine in order the
11112 handle the ECOFF debugging information. */
11113
11114 struct mips_elf_find_line
11115 {
11116 struct ecoff_debug_info d;
11117 struct ecoff_find_line i;
11118 };
11119
11120 bfd_boolean
11121 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11122 asymbol **symbols, bfd_vma offset,
11123 const char **filename_ptr,
11124 const char **functionname_ptr,
11125 unsigned int *line_ptr)
11126 {
11127 asection *msec;
11128
11129 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11130 filename_ptr, functionname_ptr,
11131 line_ptr))
11132 return TRUE;
11133
11134 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
11135 filename_ptr, functionname_ptr,
11136 line_ptr, ABI_64_P (abfd) ? 8 : 0,
11137 &elf_tdata (abfd)->dwarf2_find_line_info))
11138 return TRUE;
11139
11140 msec = bfd_get_section_by_name (abfd, ".mdebug");
11141 if (msec != NULL)
11142 {
11143 flagword origflags;
11144 struct mips_elf_find_line *fi;
11145 const struct ecoff_debug_swap * const swap =
11146 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11147
11148 /* If we are called during a link, mips_elf_final_link may have
11149 cleared the SEC_HAS_CONTENTS field. We force it back on here
11150 if appropriate (which it normally will be). */
11151 origflags = msec->flags;
11152 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11153 msec->flags |= SEC_HAS_CONTENTS;
11154
11155 fi = elf_tdata (abfd)->find_line_info;
11156 if (fi == NULL)
11157 {
11158 bfd_size_type external_fdr_size;
11159 char *fraw_src;
11160 char *fraw_end;
11161 struct fdr *fdr_ptr;
11162 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11163
11164 fi = bfd_zalloc (abfd, amt);
11165 if (fi == NULL)
11166 {
11167 msec->flags = origflags;
11168 return FALSE;
11169 }
11170
11171 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11172 {
11173 msec->flags = origflags;
11174 return FALSE;
11175 }
11176
11177 /* Swap in the FDR information. */
11178 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11179 fi->d.fdr = bfd_alloc (abfd, amt);
11180 if (fi->d.fdr == NULL)
11181 {
11182 msec->flags = origflags;
11183 return FALSE;
11184 }
11185 external_fdr_size = swap->external_fdr_size;
11186 fdr_ptr = fi->d.fdr;
11187 fraw_src = (char *) fi->d.external_fdr;
11188 fraw_end = (fraw_src
11189 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11190 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11191 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11192
11193 elf_tdata (abfd)->find_line_info = fi;
11194
11195 /* Note that we don't bother to ever free this information.
11196 find_nearest_line is either called all the time, as in
11197 objdump -l, so the information should be saved, or it is
11198 rarely called, as in ld error messages, so the memory
11199 wasted is unimportant. Still, it would probably be a
11200 good idea for free_cached_info to throw it away. */
11201 }
11202
11203 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11204 &fi->i, filename_ptr, functionname_ptr,
11205 line_ptr))
11206 {
11207 msec->flags = origflags;
11208 return TRUE;
11209 }
11210
11211 msec->flags = origflags;
11212 }
11213
11214 /* Fall back on the generic ELF find_nearest_line routine. */
11215
11216 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11217 filename_ptr, functionname_ptr,
11218 line_ptr);
11219 }
11220
11221 bfd_boolean
11222 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11223 const char **filename_ptr,
11224 const char **functionname_ptr,
11225 unsigned int *line_ptr)
11226 {
11227 bfd_boolean found;
11228 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11229 functionname_ptr, line_ptr,
11230 & elf_tdata (abfd)->dwarf2_find_line_info);
11231 return found;
11232 }
11233
11234 \f
11235 /* When are writing out the .options or .MIPS.options section,
11236 remember the bytes we are writing out, so that we can install the
11237 GP value in the section_processing routine. */
11238
11239 bfd_boolean
11240 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11241 const void *location,
11242 file_ptr offset, bfd_size_type count)
11243 {
11244 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11245 {
11246 bfd_byte *c;
11247
11248 if (elf_section_data (section) == NULL)
11249 {
11250 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11251 section->used_by_bfd = bfd_zalloc (abfd, amt);
11252 if (elf_section_data (section) == NULL)
11253 return FALSE;
11254 }
11255 c = mips_elf_section_data (section)->u.tdata;
11256 if (c == NULL)
11257 {
11258 c = bfd_zalloc (abfd, section->size);
11259 if (c == NULL)
11260 return FALSE;
11261 mips_elf_section_data (section)->u.tdata = c;
11262 }
11263
11264 memcpy (c + offset, location, count);
11265 }
11266
11267 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11268 count);
11269 }
11270
11271 /* This is almost identical to bfd_generic_get_... except that some
11272 MIPS relocations need to be handled specially. Sigh. */
11273
11274 bfd_byte *
11275 _bfd_elf_mips_get_relocated_section_contents
11276 (bfd *abfd,
11277 struct bfd_link_info *link_info,
11278 struct bfd_link_order *link_order,
11279 bfd_byte *data,
11280 bfd_boolean relocatable,
11281 asymbol **symbols)
11282 {
11283 /* Get enough memory to hold the stuff */
11284 bfd *input_bfd = link_order->u.indirect.section->owner;
11285 asection *input_section = link_order->u.indirect.section;
11286 bfd_size_type sz;
11287
11288 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11289 arelent **reloc_vector = NULL;
11290 long reloc_count;
11291
11292 if (reloc_size < 0)
11293 goto error_return;
11294
11295 reloc_vector = bfd_malloc (reloc_size);
11296 if (reloc_vector == NULL && reloc_size != 0)
11297 goto error_return;
11298
11299 /* read in the section */
11300 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11301 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11302 goto error_return;
11303
11304 reloc_count = bfd_canonicalize_reloc (input_bfd,
11305 input_section,
11306 reloc_vector,
11307 symbols);
11308 if (reloc_count < 0)
11309 goto error_return;
11310
11311 if (reloc_count > 0)
11312 {
11313 arelent **parent;
11314 /* for mips */
11315 int gp_found;
11316 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11317
11318 {
11319 struct bfd_hash_entry *h;
11320 struct bfd_link_hash_entry *lh;
11321 /* Skip all this stuff if we aren't mixing formats. */
11322 if (abfd && input_bfd
11323 && abfd->xvec == input_bfd->xvec)
11324 lh = 0;
11325 else
11326 {
11327 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11328 lh = (struct bfd_link_hash_entry *) h;
11329 }
11330 lookup:
11331 if (lh)
11332 {
11333 switch (lh->type)
11334 {
11335 case bfd_link_hash_undefined:
11336 case bfd_link_hash_undefweak:
11337 case bfd_link_hash_common:
11338 gp_found = 0;
11339 break;
11340 case bfd_link_hash_defined:
11341 case bfd_link_hash_defweak:
11342 gp_found = 1;
11343 gp = lh->u.def.value;
11344 break;
11345 case bfd_link_hash_indirect:
11346 case bfd_link_hash_warning:
11347 lh = lh->u.i.link;
11348 /* @@FIXME ignoring warning for now */
11349 goto lookup;
11350 case bfd_link_hash_new:
11351 default:
11352 abort ();
11353 }
11354 }
11355 else
11356 gp_found = 0;
11357 }
11358 /* end mips */
11359 for (parent = reloc_vector; *parent != NULL; parent++)
11360 {
11361 char *error_message = NULL;
11362 bfd_reloc_status_type r;
11363
11364 /* Specific to MIPS: Deal with relocation types that require
11365 knowing the gp of the output bfd. */
11366 asymbol *sym = *(*parent)->sym_ptr_ptr;
11367
11368 /* If we've managed to find the gp and have a special
11369 function for the relocation then go ahead, else default
11370 to the generic handling. */
11371 if (gp_found
11372 && (*parent)->howto->special_function
11373 == _bfd_mips_elf32_gprel16_reloc)
11374 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11375 input_section, relocatable,
11376 data, gp);
11377 else
11378 r = bfd_perform_relocation (input_bfd, *parent, data,
11379 input_section,
11380 relocatable ? abfd : NULL,
11381 &error_message);
11382
11383 if (relocatable)
11384 {
11385 asection *os = input_section->output_section;
11386
11387 /* A partial link, so keep the relocs */
11388 os->orelocation[os->reloc_count] = *parent;
11389 os->reloc_count++;
11390 }
11391
11392 if (r != bfd_reloc_ok)
11393 {
11394 switch (r)
11395 {
11396 case bfd_reloc_undefined:
11397 if (!((*link_info->callbacks->undefined_symbol)
11398 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11399 input_bfd, input_section, (*parent)->address, TRUE)))
11400 goto error_return;
11401 break;
11402 case bfd_reloc_dangerous:
11403 BFD_ASSERT (error_message != NULL);
11404 if (!((*link_info->callbacks->reloc_dangerous)
11405 (link_info, error_message, input_bfd, input_section,
11406 (*parent)->address)))
11407 goto error_return;
11408 break;
11409 case bfd_reloc_overflow:
11410 if (!((*link_info->callbacks->reloc_overflow)
11411 (link_info, NULL,
11412 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11413 (*parent)->howto->name, (*parent)->addend,
11414 input_bfd, input_section, (*parent)->address)))
11415 goto error_return;
11416 break;
11417 case bfd_reloc_outofrange:
11418 default:
11419 abort ();
11420 break;
11421 }
11422
11423 }
11424 }
11425 }
11426 if (reloc_vector != NULL)
11427 free (reloc_vector);
11428 return data;
11429
11430 error_return:
11431 if (reloc_vector != NULL)
11432 free (reloc_vector);
11433 return NULL;
11434 }
11435 \f
11436 /* Allocate ABFD's target-dependent data. */
11437
11438 bfd_boolean
11439 _bfd_mips_elf_mkobject (bfd *abfd)
11440 {
11441 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
11442 MIPS_ELF_TDATA);
11443 }
11444
11445 /* Create a MIPS ELF linker hash table. */
11446
11447 struct bfd_link_hash_table *
11448 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
11449 {
11450 struct mips_elf_link_hash_table *ret;
11451 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
11452
11453 ret = bfd_malloc (amt);
11454 if (ret == NULL)
11455 return NULL;
11456
11457 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
11458 mips_elf_link_hash_newfunc,
11459 sizeof (struct mips_elf_link_hash_entry)))
11460 {
11461 free (ret);
11462 return NULL;
11463 }
11464
11465 #if 0
11466 /* We no longer use this. */
11467 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
11468 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
11469 #endif
11470 ret->procedure_count = 0;
11471 ret->compact_rel_size = 0;
11472 ret->use_rld_obj_head = FALSE;
11473 ret->rld_value = 0;
11474 ret->mips16_stubs_seen = FALSE;
11475 ret->use_plts_and_copy_relocs = FALSE;
11476 ret->is_vxworks = FALSE;
11477 ret->small_data_overflow_reported = FALSE;
11478 ret->srelbss = NULL;
11479 ret->sdynbss = NULL;
11480 ret->srelplt = NULL;
11481 ret->srelplt2 = NULL;
11482 ret->sgotplt = NULL;
11483 ret->splt = NULL;
11484 ret->sstubs = NULL;
11485 ret->sgot = NULL;
11486 ret->got_info = NULL;
11487 ret->plt_header_size = 0;
11488 ret->plt_entry_size = 0;
11489 ret->lazy_stub_count = 0;
11490 ret->function_stub_size = 0;
11491 ret->strampoline = NULL;
11492 ret->la25_stubs = NULL;
11493 ret->add_stub_section = NULL;
11494
11495 return &ret->root.root;
11496 }
11497
11498 /* Likewise, but indicate that the target is VxWorks. */
11499
11500 struct bfd_link_hash_table *
11501 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
11502 {
11503 struct bfd_link_hash_table *ret;
11504
11505 ret = _bfd_mips_elf_link_hash_table_create (abfd);
11506 if (ret)
11507 {
11508 struct mips_elf_link_hash_table *htab;
11509
11510 htab = (struct mips_elf_link_hash_table *) ret;
11511 htab->use_plts_and_copy_relocs = TRUE;
11512 htab->is_vxworks = TRUE;
11513 }
11514 return ret;
11515 }
11516
11517 /* A function that the linker calls if we are allowed to use PLTs
11518 and copy relocs. */
11519
11520 void
11521 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
11522 {
11523 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
11524 }
11525 \f
11526 /* We need to use a special link routine to handle the .reginfo and
11527 the .mdebug sections. We need to merge all instances of these
11528 sections together, not write them all out sequentially. */
11529
11530 bfd_boolean
11531 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11532 {
11533 asection *o;
11534 struct bfd_link_order *p;
11535 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
11536 asection *rtproc_sec;
11537 Elf32_RegInfo reginfo;
11538 struct ecoff_debug_info debug;
11539 struct mips_htab_traverse_info hti;
11540 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11541 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
11542 HDRR *symhdr = &debug.symbolic_header;
11543 void *mdebug_handle = NULL;
11544 asection *s;
11545 EXTR esym;
11546 unsigned int i;
11547 bfd_size_type amt;
11548 struct mips_elf_link_hash_table *htab;
11549
11550 static const char * const secname[] =
11551 {
11552 ".text", ".init", ".fini", ".data",
11553 ".rodata", ".sdata", ".sbss", ".bss"
11554 };
11555 static const int sc[] =
11556 {
11557 scText, scInit, scFini, scData,
11558 scRData, scSData, scSBss, scBss
11559 };
11560
11561 /* Sort the dynamic symbols so that those with GOT entries come after
11562 those without. */
11563 htab = mips_elf_hash_table (info);
11564 if (!mips_elf_sort_hash_table (abfd, info))
11565 return FALSE;
11566
11567 /* Create any scheduled LA25 stubs. */
11568 hti.info = info;
11569 hti.output_bfd = abfd;
11570 hti.error = FALSE;
11571 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
11572 if (hti.error)
11573 return FALSE;
11574
11575 /* Get a value for the GP register. */
11576 if (elf_gp (abfd) == 0)
11577 {
11578 struct bfd_link_hash_entry *h;
11579
11580 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
11581 if (h != NULL && h->type == bfd_link_hash_defined)
11582 elf_gp (abfd) = (h->u.def.value
11583 + h->u.def.section->output_section->vma
11584 + h->u.def.section->output_offset);
11585 else if (htab->is_vxworks
11586 && (h = bfd_link_hash_lookup (info->hash,
11587 "_GLOBAL_OFFSET_TABLE_",
11588 FALSE, FALSE, TRUE))
11589 && h->type == bfd_link_hash_defined)
11590 elf_gp (abfd) = (h->u.def.section->output_section->vma
11591 + h->u.def.section->output_offset
11592 + h->u.def.value);
11593 else if (info->relocatable)
11594 {
11595 bfd_vma lo = MINUS_ONE;
11596
11597 /* Find the GP-relative section with the lowest offset. */
11598 for (o = abfd->sections; o != NULL; o = o->next)
11599 if (o->vma < lo
11600 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
11601 lo = o->vma;
11602
11603 /* And calculate GP relative to that. */
11604 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
11605 }
11606 else
11607 {
11608 /* If the relocate_section function needs to do a reloc
11609 involving the GP value, it should make a reloc_dangerous
11610 callback to warn that GP is not defined. */
11611 }
11612 }
11613
11614 /* Go through the sections and collect the .reginfo and .mdebug
11615 information. */
11616 reginfo_sec = NULL;
11617 mdebug_sec = NULL;
11618 gptab_data_sec = NULL;
11619 gptab_bss_sec = NULL;
11620 for (o = abfd->sections; o != NULL; o = o->next)
11621 {
11622 if (strcmp (o->name, ".reginfo") == 0)
11623 {
11624 memset (&reginfo, 0, sizeof reginfo);
11625
11626 /* We have found the .reginfo section in the output file.
11627 Look through all the link_orders comprising it and merge
11628 the information together. */
11629 for (p = o->map_head.link_order; p != NULL; p = p->next)
11630 {
11631 asection *input_section;
11632 bfd *input_bfd;
11633 Elf32_External_RegInfo ext;
11634 Elf32_RegInfo sub;
11635
11636 if (p->type != bfd_indirect_link_order)
11637 {
11638 if (p->type == bfd_data_link_order)
11639 continue;
11640 abort ();
11641 }
11642
11643 input_section = p->u.indirect.section;
11644 input_bfd = input_section->owner;
11645
11646 if (! bfd_get_section_contents (input_bfd, input_section,
11647 &ext, 0, sizeof ext))
11648 return FALSE;
11649
11650 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
11651
11652 reginfo.ri_gprmask |= sub.ri_gprmask;
11653 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
11654 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
11655 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
11656 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
11657
11658 /* ri_gp_value is set by the function
11659 mips_elf32_section_processing when the section is
11660 finally written out. */
11661
11662 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11663 elf_link_input_bfd ignores this section. */
11664 input_section->flags &= ~SEC_HAS_CONTENTS;
11665 }
11666
11667 /* Size has been set in _bfd_mips_elf_always_size_sections. */
11668 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
11669
11670 /* Skip this section later on (I don't think this currently
11671 matters, but someday it might). */
11672 o->map_head.link_order = NULL;
11673
11674 reginfo_sec = o;
11675 }
11676
11677 if (strcmp (o->name, ".mdebug") == 0)
11678 {
11679 struct extsym_info einfo;
11680 bfd_vma last;
11681
11682 /* We have found the .mdebug section in the output file.
11683 Look through all the link_orders comprising it and merge
11684 the information together. */
11685 symhdr->magic = swap->sym_magic;
11686 /* FIXME: What should the version stamp be? */
11687 symhdr->vstamp = 0;
11688 symhdr->ilineMax = 0;
11689 symhdr->cbLine = 0;
11690 symhdr->idnMax = 0;
11691 symhdr->ipdMax = 0;
11692 symhdr->isymMax = 0;
11693 symhdr->ioptMax = 0;
11694 symhdr->iauxMax = 0;
11695 symhdr->issMax = 0;
11696 symhdr->issExtMax = 0;
11697 symhdr->ifdMax = 0;
11698 symhdr->crfd = 0;
11699 symhdr->iextMax = 0;
11700
11701 /* We accumulate the debugging information itself in the
11702 debug_info structure. */
11703 debug.line = NULL;
11704 debug.external_dnr = NULL;
11705 debug.external_pdr = NULL;
11706 debug.external_sym = NULL;
11707 debug.external_opt = NULL;
11708 debug.external_aux = NULL;
11709 debug.ss = NULL;
11710 debug.ssext = debug.ssext_end = NULL;
11711 debug.external_fdr = NULL;
11712 debug.external_rfd = NULL;
11713 debug.external_ext = debug.external_ext_end = NULL;
11714
11715 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
11716 if (mdebug_handle == NULL)
11717 return FALSE;
11718
11719 esym.jmptbl = 0;
11720 esym.cobol_main = 0;
11721 esym.weakext = 0;
11722 esym.reserved = 0;
11723 esym.ifd = ifdNil;
11724 esym.asym.iss = issNil;
11725 esym.asym.st = stLocal;
11726 esym.asym.reserved = 0;
11727 esym.asym.index = indexNil;
11728 last = 0;
11729 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
11730 {
11731 esym.asym.sc = sc[i];
11732 s = bfd_get_section_by_name (abfd, secname[i]);
11733 if (s != NULL)
11734 {
11735 esym.asym.value = s->vma;
11736 last = s->vma + s->size;
11737 }
11738 else
11739 esym.asym.value = last;
11740 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
11741 secname[i], &esym))
11742 return FALSE;
11743 }
11744
11745 for (p = o->map_head.link_order; p != NULL; p = p->next)
11746 {
11747 asection *input_section;
11748 bfd *input_bfd;
11749 const struct ecoff_debug_swap *input_swap;
11750 struct ecoff_debug_info input_debug;
11751 char *eraw_src;
11752 char *eraw_end;
11753
11754 if (p->type != bfd_indirect_link_order)
11755 {
11756 if (p->type == bfd_data_link_order)
11757 continue;
11758 abort ();
11759 }
11760
11761 input_section = p->u.indirect.section;
11762 input_bfd = input_section->owner;
11763
11764 if (!is_mips_elf (input_bfd))
11765 {
11766 /* I don't know what a non MIPS ELF bfd would be
11767 doing with a .mdebug section, but I don't really
11768 want to deal with it. */
11769 continue;
11770 }
11771
11772 input_swap = (get_elf_backend_data (input_bfd)
11773 ->elf_backend_ecoff_debug_swap);
11774
11775 BFD_ASSERT (p->size == input_section->size);
11776
11777 /* The ECOFF linking code expects that we have already
11778 read in the debugging information and set up an
11779 ecoff_debug_info structure, so we do that now. */
11780 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
11781 &input_debug))
11782 return FALSE;
11783
11784 if (! (bfd_ecoff_debug_accumulate
11785 (mdebug_handle, abfd, &debug, swap, input_bfd,
11786 &input_debug, input_swap, info)))
11787 return FALSE;
11788
11789 /* Loop through the external symbols. For each one with
11790 interesting information, try to find the symbol in
11791 the linker global hash table and save the information
11792 for the output external symbols. */
11793 eraw_src = input_debug.external_ext;
11794 eraw_end = (eraw_src
11795 + (input_debug.symbolic_header.iextMax
11796 * input_swap->external_ext_size));
11797 for (;
11798 eraw_src < eraw_end;
11799 eraw_src += input_swap->external_ext_size)
11800 {
11801 EXTR ext;
11802 const char *name;
11803 struct mips_elf_link_hash_entry *h;
11804
11805 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
11806 if (ext.asym.sc == scNil
11807 || ext.asym.sc == scUndefined
11808 || ext.asym.sc == scSUndefined)
11809 continue;
11810
11811 name = input_debug.ssext + ext.asym.iss;
11812 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
11813 name, FALSE, FALSE, TRUE);
11814 if (h == NULL || h->esym.ifd != -2)
11815 continue;
11816
11817 if (ext.ifd != -1)
11818 {
11819 BFD_ASSERT (ext.ifd
11820 < input_debug.symbolic_header.ifdMax);
11821 ext.ifd = input_debug.ifdmap[ext.ifd];
11822 }
11823
11824 h->esym = ext;
11825 }
11826
11827 /* Free up the information we just read. */
11828 free (input_debug.line);
11829 free (input_debug.external_dnr);
11830 free (input_debug.external_pdr);
11831 free (input_debug.external_sym);
11832 free (input_debug.external_opt);
11833 free (input_debug.external_aux);
11834 free (input_debug.ss);
11835 free (input_debug.ssext);
11836 free (input_debug.external_fdr);
11837 free (input_debug.external_rfd);
11838 free (input_debug.external_ext);
11839
11840 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11841 elf_link_input_bfd ignores this section. */
11842 input_section->flags &= ~SEC_HAS_CONTENTS;
11843 }
11844
11845 if (SGI_COMPAT (abfd) && info->shared)
11846 {
11847 /* Create .rtproc section. */
11848 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
11849 if (rtproc_sec == NULL)
11850 {
11851 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
11852 | SEC_LINKER_CREATED | SEC_READONLY);
11853
11854 rtproc_sec = bfd_make_section_with_flags (abfd,
11855 ".rtproc",
11856 flags);
11857 if (rtproc_sec == NULL
11858 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
11859 return FALSE;
11860 }
11861
11862 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
11863 info, rtproc_sec,
11864 &debug))
11865 return FALSE;
11866 }
11867
11868 /* Build the external symbol information. */
11869 einfo.abfd = abfd;
11870 einfo.info = info;
11871 einfo.debug = &debug;
11872 einfo.swap = swap;
11873 einfo.failed = FALSE;
11874 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
11875 mips_elf_output_extsym, &einfo);
11876 if (einfo.failed)
11877 return FALSE;
11878
11879 /* Set the size of the .mdebug section. */
11880 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
11881
11882 /* Skip this section later on (I don't think this currently
11883 matters, but someday it might). */
11884 o->map_head.link_order = NULL;
11885
11886 mdebug_sec = o;
11887 }
11888
11889 if (CONST_STRNEQ (o->name, ".gptab."))
11890 {
11891 const char *subname;
11892 unsigned int c;
11893 Elf32_gptab *tab;
11894 Elf32_External_gptab *ext_tab;
11895 unsigned int j;
11896
11897 /* The .gptab.sdata and .gptab.sbss sections hold
11898 information describing how the small data area would
11899 change depending upon the -G switch. These sections
11900 not used in executables files. */
11901 if (! info->relocatable)
11902 {
11903 for (p = o->map_head.link_order; p != NULL; p = p->next)
11904 {
11905 asection *input_section;
11906
11907 if (p->type != bfd_indirect_link_order)
11908 {
11909 if (p->type == bfd_data_link_order)
11910 continue;
11911 abort ();
11912 }
11913
11914 input_section = p->u.indirect.section;
11915
11916 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11917 elf_link_input_bfd ignores this section. */
11918 input_section->flags &= ~SEC_HAS_CONTENTS;
11919 }
11920
11921 /* Skip this section later on (I don't think this
11922 currently matters, but someday it might). */
11923 o->map_head.link_order = NULL;
11924
11925 /* Really remove the section. */
11926 bfd_section_list_remove (abfd, o);
11927 --abfd->section_count;
11928
11929 continue;
11930 }
11931
11932 /* There is one gptab for initialized data, and one for
11933 uninitialized data. */
11934 if (strcmp (o->name, ".gptab.sdata") == 0)
11935 gptab_data_sec = o;
11936 else if (strcmp (o->name, ".gptab.sbss") == 0)
11937 gptab_bss_sec = o;
11938 else
11939 {
11940 (*_bfd_error_handler)
11941 (_("%s: illegal section name `%s'"),
11942 bfd_get_filename (abfd), o->name);
11943 bfd_set_error (bfd_error_nonrepresentable_section);
11944 return FALSE;
11945 }
11946
11947 /* The linker script always combines .gptab.data and
11948 .gptab.sdata into .gptab.sdata, and likewise for
11949 .gptab.bss and .gptab.sbss. It is possible that there is
11950 no .sdata or .sbss section in the output file, in which
11951 case we must change the name of the output section. */
11952 subname = o->name + sizeof ".gptab" - 1;
11953 if (bfd_get_section_by_name (abfd, subname) == NULL)
11954 {
11955 if (o == gptab_data_sec)
11956 o->name = ".gptab.data";
11957 else
11958 o->name = ".gptab.bss";
11959 subname = o->name + sizeof ".gptab" - 1;
11960 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
11961 }
11962
11963 /* Set up the first entry. */
11964 c = 1;
11965 amt = c * sizeof (Elf32_gptab);
11966 tab = bfd_malloc (amt);
11967 if (tab == NULL)
11968 return FALSE;
11969 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
11970 tab[0].gt_header.gt_unused = 0;
11971
11972 /* Combine the input sections. */
11973 for (p = o->map_head.link_order; p != NULL; p = p->next)
11974 {
11975 asection *input_section;
11976 bfd *input_bfd;
11977 bfd_size_type size;
11978 unsigned long last;
11979 bfd_size_type gpentry;
11980
11981 if (p->type != bfd_indirect_link_order)
11982 {
11983 if (p->type == bfd_data_link_order)
11984 continue;
11985 abort ();
11986 }
11987
11988 input_section = p->u.indirect.section;
11989 input_bfd = input_section->owner;
11990
11991 /* Combine the gptab entries for this input section one
11992 by one. We know that the input gptab entries are
11993 sorted by ascending -G value. */
11994 size = input_section->size;
11995 last = 0;
11996 for (gpentry = sizeof (Elf32_External_gptab);
11997 gpentry < size;
11998 gpentry += sizeof (Elf32_External_gptab))
11999 {
12000 Elf32_External_gptab ext_gptab;
12001 Elf32_gptab int_gptab;
12002 unsigned long val;
12003 unsigned long add;
12004 bfd_boolean exact;
12005 unsigned int look;
12006
12007 if (! (bfd_get_section_contents
12008 (input_bfd, input_section, &ext_gptab, gpentry,
12009 sizeof (Elf32_External_gptab))))
12010 {
12011 free (tab);
12012 return FALSE;
12013 }
12014
12015 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
12016 &int_gptab);
12017 val = int_gptab.gt_entry.gt_g_value;
12018 add = int_gptab.gt_entry.gt_bytes - last;
12019
12020 exact = FALSE;
12021 for (look = 1; look < c; look++)
12022 {
12023 if (tab[look].gt_entry.gt_g_value >= val)
12024 tab[look].gt_entry.gt_bytes += add;
12025
12026 if (tab[look].gt_entry.gt_g_value == val)
12027 exact = TRUE;
12028 }
12029
12030 if (! exact)
12031 {
12032 Elf32_gptab *new_tab;
12033 unsigned int max;
12034
12035 /* We need a new table entry. */
12036 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
12037 new_tab = bfd_realloc (tab, amt);
12038 if (new_tab == NULL)
12039 {
12040 free (tab);
12041 return FALSE;
12042 }
12043 tab = new_tab;
12044 tab[c].gt_entry.gt_g_value = val;
12045 tab[c].gt_entry.gt_bytes = add;
12046
12047 /* Merge in the size for the next smallest -G
12048 value, since that will be implied by this new
12049 value. */
12050 max = 0;
12051 for (look = 1; look < c; look++)
12052 {
12053 if (tab[look].gt_entry.gt_g_value < val
12054 && (max == 0
12055 || (tab[look].gt_entry.gt_g_value
12056 > tab[max].gt_entry.gt_g_value)))
12057 max = look;
12058 }
12059 if (max != 0)
12060 tab[c].gt_entry.gt_bytes +=
12061 tab[max].gt_entry.gt_bytes;
12062
12063 ++c;
12064 }
12065
12066 last = int_gptab.gt_entry.gt_bytes;
12067 }
12068
12069 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12070 elf_link_input_bfd ignores this section. */
12071 input_section->flags &= ~SEC_HAS_CONTENTS;
12072 }
12073
12074 /* The table must be sorted by -G value. */
12075 if (c > 2)
12076 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
12077
12078 /* Swap out the table. */
12079 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
12080 ext_tab = bfd_alloc (abfd, amt);
12081 if (ext_tab == NULL)
12082 {
12083 free (tab);
12084 return FALSE;
12085 }
12086
12087 for (j = 0; j < c; j++)
12088 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
12089 free (tab);
12090
12091 o->size = c * sizeof (Elf32_External_gptab);
12092 o->contents = (bfd_byte *) ext_tab;
12093
12094 /* Skip this section later on (I don't think this currently
12095 matters, but someday it might). */
12096 o->map_head.link_order = NULL;
12097 }
12098 }
12099
12100 /* Invoke the regular ELF backend linker to do all the work. */
12101 if (!bfd_elf_final_link (abfd, info))
12102 return FALSE;
12103
12104 /* Now write out the computed sections. */
12105
12106 if (reginfo_sec != NULL)
12107 {
12108 Elf32_External_RegInfo ext;
12109
12110 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
12111 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
12112 return FALSE;
12113 }
12114
12115 if (mdebug_sec != NULL)
12116 {
12117 BFD_ASSERT (abfd->output_has_begun);
12118 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
12119 swap, info,
12120 mdebug_sec->filepos))
12121 return FALSE;
12122
12123 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
12124 }
12125
12126 if (gptab_data_sec != NULL)
12127 {
12128 if (! bfd_set_section_contents (abfd, gptab_data_sec,
12129 gptab_data_sec->contents,
12130 0, gptab_data_sec->size))
12131 return FALSE;
12132 }
12133
12134 if (gptab_bss_sec != NULL)
12135 {
12136 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
12137 gptab_bss_sec->contents,
12138 0, gptab_bss_sec->size))
12139 return FALSE;
12140 }
12141
12142 if (SGI_COMPAT (abfd))
12143 {
12144 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
12145 if (rtproc_sec != NULL)
12146 {
12147 if (! bfd_set_section_contents (abfd, rtproc_sec,
12148 rtproc_sec->contents,
12149 0, rtproc_sec->size))
12150 return FALSE;
12151 }
12152 }
12153
12154 return TRUE;
12155 }
12156 \f
12157 /* Structure for saying that BFD machine EXTENSION extends BASE. */
12158
12159 struct mips_mach_extension {
12160 unsigned long extension, base;
12161 };
12162
12163
12164 /* An array describing how BFD machines relate to one another. The entries
12165 are ordered topologically with MIPS I extensions listed last. */
12166
12167 static const struct mips_mach_extension mips_mach_extensions[] = {
12168 /* MIPS64r2 extensions. */
12169 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
12170
12171 /* MIPS64 extensions. */
12172 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
12173 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
12174 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
12175
12176 /* MIPS V extensions. */
12177 { bfd_mach_mipsisa64, bfd_mach_mips5 },
12178
12179 /* R10000 extensions. */
12180 { bfd_mach_mips12000, bfd_mach_mips10000 },
12181 { bfd_mach_mips14000, bfd_mach_mips10000 },
12182 { bfd_mach_mips16000, bfd_mach_mips10000 },
12183
12184 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
12185 vr5400 ISA, but doesn't include the multimedia stuff. It seems
12186 better to allow vr5400 and vr5500 code to be merged anyway, since
12187 many libraries will just use the core ISA. Perhaps we could add
12188 some sort of ASE flag if this ever proves a problem. */
12189 { bfd_mach_mips5500, bfd_mach_mips5400 },
12190 { bfd_mach_mips5400, bfd_mach_mips5000 },
12191
12192 /* MIPS IV extensions. */
12193 { bfd_mach_mips5, bfd_mach_mips8000 },
12194 { bfd_mach_mips10000, bfd_mach_mips8000 },
12195 { bfd_mach_mips5000, bfd_mach_mips8000 },
12196 { bfd_mach_mips7000, bfd_mach_mips8000 },
12197 { bfd_mach_mips9000, bfd_mach_mips8000 },
12198
12199 /* VR4100 extensions. */
12200 { bfd_mach_mips4120, bfd_mach_mips4100 },
12201 { bfd_mach_mips4111, bfd_mach_mips4100 },
12202
12203 /* MIPS III extensions. */
12204 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
12205 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
12206 { bfd_mach_mips8000, bfd_mach_mips4000 },
12207 { bfd_mach_mips4650, bfd_mach_mips4000 },
12208 { bfd_mach_mips4600, bfd_mach_mips4000 },
12209 { bfd_mach_mips4400, bfd_mach_mips4000 },
12210 { bfd_mach_mips4300, bfd_mach_mips4000 },
12211 { bfd_mach_mips4100, bfd_mach_mips4000 },
12212 { bfd_mach_mips4010, bfd_mach_mips4000 },
12213
12214 /* MIPS32 extensions. */
12215 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
12216
12217 /* MIPS II extensions. */
12218 { bfd_mach_mips4000, bfd_mach_mips6000 },
12219 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
12220
12221 /* MIPS I extensions. */
12222 { bfd_mach_mips6000, bfd_mach_mips3000 },
12223 { bfd_mach_mips3900, bfd_mach_mips3000 }
12224 };
12225
12226
12227 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
12228
12229 static bfd_boolean
12230 mips_mach_extends_p (unsigned long base, unsigned long extension)
12231 {
12232 size_t i;
12233
12234 if (extension == base)
12235 return TRUE;
12236
12237 if (base == bfd_mach_mipsisa32
12238 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
12239 return TRUE;
12240
12241 if (base == bfd_mach_mipsisa32r2
12242 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
12243 return TRUE;
12244
12245 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
12246 if (extension == mips_mach_extensions[i].extension)
12247 {
12248 extension = mips_mach_extensions[i].base;
12249 if (extension == base)
12250 return TRUE;
12251 }
12252
12253 return FALSE;
12254 }
12255
12256
12257 /* Return true if the given ELF header flags describe a 32-bit binary. */
12258
12259 static bfd_boolean
12260 mips_32bit_flags_p (flagword flags)
12261 {
12262 return ((flags & EF_MIPS_32BITMODE) != 0
12263 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
12264 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
12265 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
12266 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
12267 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
12268 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
12269 }
12270
12271
12272 /* Merge object attributes from IBFD into OBFD. Raise an error if
12273 there are conflicting attributes. */
12274 static bfd_boolean
12275 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
12276 {
12277 obj_attribute *in_attr;
12278 obj_attribute *out_attr;
12279
12280 if (!elf_known_obj_attributes_proc (obfd)[0].i)
12281 {
12282 /* This is the first object. Copy the attributes. */
12283 _bfd_elf_copy_obj_attributes (ibfd, obfd);
12284
12285 /* Use the Tag_null value to indicate the attributes have been
12286 initialized. */
12287 elf_known_obj_attributes_proc (obfd)[0].i = 1;
12288
12289 return TRUE;
12290 }
12291
12292 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
12293 non-conflicting ones. */
12294 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
12295 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
12296 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
12297 {
12298 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
12299 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12300 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
12301 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12302 ;
12303 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
12304 _bfd_error_handler
12305 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
12306 in_attr[Tag_GNU_MIPS_ABI_FP].i);
12307 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
12308 _bfd_error_handler
12309 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
12310 out_attr[Tag_GNU_MIPS_ABI_FP].i);
12311 else
12312 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
12313 {
12314 case 1:
12315 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12316 {
12317 case 2:
12318 _bfd_error_handler
12319 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12320 obfd, ibfd);
12321 break;
12322
12323 case 3:
12324 _bfd_error_handler
12325 (_("Warning: %B uses hard float, %B uses soft float"),
12326 obfd, ibfd);
12327 break;
12328
12329 case 4:
12330 _bfd_error_handler
12331 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12332 obfd, ibfd);
12333 break;
12334
12335 default:
12336 abort ();
12337 }
12338 break;
12339
12340 case 2:
12341 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12342 {
12343 case 1:
12344 _bfd_error_handler
12345 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12346 ibfd, obfd);
12347 break;
12348
12349 case 3:
12350 _bfd_error_handler
12351 (_("Warning: %B uses hard float, %B uses soft float"),
12352 obfd, ibfd);
12353 break;
12354
12355 case 4:
12356 _bfd_error_handler
12357 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12358 obfd, ibfd);
12359 break;
12360
12361 default:
12362 abort ();
12363 }
12364 break;
12365
12366 case 3:
12367 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12368 {
12369 case 1:
12370 case 2:
12371 case 4:
12372 _bfd_error_handler
12373 (_("Warning: %B uses hard float, %B uses soft float"),
12374 ibfd, obfd);
12375 break;
12376
12377 default:
12378 abort ();
12379 }
12380 break;
12381
12382 case 4:
12383 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12384 {
12385 case 1:
12386 _bfd_error_handler
12387 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12388 ibfd, obfd);
12389 break;
12390
12391 case 2:
12392 _bfd_error_handler
12393 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12394 ibfd, obfd);
12395 break;
12396
12397 case 3:
12398 _bfd_error_handler
12399 (_("Warning: %B uses hard float, %B uses soft float"),
12400 obfd, ibfd);
12401 break;
12402
12403 default:
12404 abort ();
12405 }
12406 break;
12407
12408 default:
12409 abort ();
12410 }
12411 }
12412
12413 /* Merge Tag_compatibility attributes and any common GNU ones. */
12414 _bfd_elf_merge_object_attributes (ibfd, obfd);
12415
12416 return TRUE;
12417 }
12418
12419 /* Merge backend specific data from an object file to the output
12420 object file when linking. */
12421
12422 bfd_boolean
12423 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
12424 {
12425 flagword old_flags;
12426 flagword new_flags;
12427 bfd_boolean ok;
12428 bfd_boolean null_input_bfd = TRUE;
12429 asection *sec;
12430
12431 /* Check if we have the same endianess */
12432 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
12433 {
12434 (*_bfd_error_handler)
12435 (_("%B: endianness incompatible with that of the selected emulation"),
12436 ibfd);
12437 return FALSE;
12438 }
12439
12440 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
12441 return TRUE;
12442
12443 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
12444 {
12445 (*_bfd_error_handler)
12446 (_("%B: ABI is incompatible with that of the selected emulation"),
12447 ibfd);
12448 return FALSE;
12449 }
12450
12451 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
12452 return FALSE;
12453
12454 new_flags = elf_elfheader (ibfd)->e_flags;
12455 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
12456 old_flags = elf_elfheader (obfd)->e_flags;
12457
12458 if (! elf_flags_init (obfd))
12459 {
12460 elf_flags_init (obfd) = TRUE;
12461 elf_elfheader (obfd)->e_flags = new_flags;
12462 elf_elfheader (obfd)->e_ident[EI_CLASS]
12463 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
12464
12465 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
12466 && (bfd_get_arch_info (obfd)->the_default
12467 || mips_mach_extends_p (bfd_get_mach (obfd),
12468 bfd_get_mach (ibfd))))
12469 {
12470 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
12471 bfd_get_mach (ibfd)))
12472 return FALSE;
12473 }
12474
12475 return TRUE;
12476 }
12477
12478 /* Check flag compatibility. */
12479
12480 new_flags &= ~EF_MIPS_NOREORDER;
12481 old_flags &= ~EF_MIPS_NOREORDER;
12482
12483 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
12484 doesn't seem to matter. */
12485 new_flags &= ~EF_MIPS_XGOT;
12486 old_flags &= ~EF_MIPS_XGOT;
12487
12488 /* MIPSpro generates ucode info in n64 objects. Again, we should
12489 just be able to ignore this. */
12490 new_flags &= ~EF_MIPS_UCODE;
12491 old_flags &= ~EF_MIPS_UCODE;
12492
12493 /* DSOs should only be linked with CPIC code. */
12494 if ((ibfd->flags & DYNAMIC) != 0)
12495 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
12496
12497 if (new_flags == old_flags)
12498 return TRUE;
12499
12500 /* Check to see if the input BFD actually contains any sections.
12501 If not, its flags may not have been initialised either, but it cannot
12502 actually cause any incompatibility. */
12503 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
12504 {
12505 /* Ignore synthetic sections and empty .text, .data and .bss sections
12506 which are automatically generated by gas. */
12507 if (strcmp (sec->name, ".reginfo")
12508 && strcmp (sec->name, ".mdebug")
12509 && (sec->size != 0
12510 || (strcmp (sec->name, ".text")
12511 && strcmp (sec->name, ".data")
12512 && strcmp (sec->name, ".bss"))))
12513 {
12514 null_input_bfd = FALSE;
12515 break;
12516 }
12517 }
12518 if (null_input_bfd)
12519 return TRUE;
12520
12521 ok = TRUE;
12522
12523 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
12524 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
12525 {
12526 (*_bfd_error_handler)
12527 (_("%B: warning: linking abicalls files with non-abicalls files"),
12528 ibfd);
12529 ok = TRUE;
12530 }
12531
12532 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
12533 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
12534 if (! (new_flags & EF_MIPS_PIC))
12535 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
12536
12537 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
12538 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
12539
12540 /* Compare the ISAs. */
12541 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
12542 {
12543 (*_bfd_error_handler)
12544 (_("%B: linking 32-bit code with 64-bit code"),
12545 ibfd);
12546 ok = FALSE;
12547 }
12548 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
12549 {
12550 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
12551 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
12552 {
12553 /* Copy the architecture info from IBFD to OBFD. Also copy
12554 the 32-bit flag (if set) so that we continue to recognise
12555 OBFD as a 32-bit binary. */
12556 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
12557 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12558 elf_elfheader (obfd)->e_flags
12559 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12560
12561 /* Copy across the ABI flags if OBFD doesn't use them
12562 and if that was what caused us to treat IBFD as 32-bit. */
12563 if ((old_flags & EF_MIPS_ABI) == 0
12564 && mips_32bit_flags_p (new_flags)
12565 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
12566 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
12567 }
12568 else
12569 {
12570 /* The ISAs aren't compatible. */
12571 (*_bfd_error_handler)
12572 (_("%B: linking %s module with previous %s modules"),
12573 ibfd,
12574 bfd_printable_name (ibfd),
12575 bfd_printable_name (obfd));
12576 ok = FALSE;
12577 }
12578 }
12579
12580 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12581 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12582
12583 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
12584 does set EI_CLASS differently from any 32-bit ABI. */
12585 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
12586 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12587 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12588 {
12589 /* Only error if both are set (to different values). */
12590 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
12591 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12592 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12593 {
12594 (*_bfd_error_handler)
12595 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
12596 ibfd,
12597 elf_mips_abi_name (ibfd),
12598 elf_mips_abi_name (obfd));
12599 ok = FALSE;
12600 }
12601 new_flags &= ~EF_MIPS_ABI;
12602 old_flags &= ~EF_MIPS_ABI;
12603 }
12604
12605 /* For now, allow arbitrary mixing of ASEs (retain the union). */
12606 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
12607 {
12608 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
12609
12610 new_flags &= ~ EF_MIPS_ARCH_ASE;
12611 old_flags &= ~ EF_MIPS_ARCH_ASE;
12612 }
12613
12614 /* Warn about any other mismatches */
12615 if (new_flags != old_flags)
12616 {
12617 (*_bfd_error_handler)
12618 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
12619 ibfd, (unsigned long) new_flags,
12620 (unsigned long) old_flags);
12621 ok = FALSE;
12622 }
12623
12624 if (! ok)
12625 {
12626 bfd_set_error (bfd_error_bad_value);
12627 return FALSE;
12628 }
12629
12630 return TRUE;
12631 }
12632
12633 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
12634
12635 bfd_boolean
12636 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
12637 {
12638 BFD_ASSERT (!elf_flags_init (abfd)
12639 || elf_elfheader (abfd)->e_flags == flags);
12640
12641 elf_elfheader (abfd)->e_flags = flags;
12642 elf_flags_init (abfd) = TRUE;
12643 return TRUE;
12644 }
12645
12646 char *
12647 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
12648 {
12649 switch (dtag)
12650 {
12651 default: return "";
12652 case DT_MIPS_RLD_VERSION:
12653 return "MIPS_RLD_VERSION";
12654 case DT_MIPS_TIME_STAMP:
12655 return "MIPS_TIME_STAMP";
12656 case DT_MIPS_ICHECKSUM:
12657 return "MIPS_ICHECKSUM";
12658 case DT_MIPS_IVERSION:
12659 return "MIPS_IVERSION";
12660 case DT_MIPS_FLAGS:
12661 return "MIPS_FLAGS";
12662 case DT_MIPS_BASE_ADDRESS:
12663 return "MIPS_BASE_ADDRESS";
12664 case DT_MIPS_MSYM:
12665 return "MIPS_MSYM";
12666 case DT_MIPS_CONFLICT:
12667 return "MIPS_CONFLICT";
12668 case DT_MIPS_LIBLIST:
12669 return "MIPS_LIBLIST";
12670 case DT_MIPS_LOCAL_GOTNO:
12671 return "MIPS_LOCAL_GOTNO";
12672 case DT_MIPS_CONFLICTNO:
12673 return "MIPS_CONFLICTNO";
12674 case DT_MIPS_LIBLISTNO:
12675 return "MIPS_LIBLISTNO";
12676 case DT_MIPS_SYMTABNO:
12677 return "MIPS_SYMTABNO";
12678 case DT_MIPS_UNREFEXTNO:
12679 return "MIPS_UNREFEXTNO";
12680 case DT_MIPS_GOTSYM:
12681 return "MIPS_GOTSYM";
12682 case DT_MIPS_HIPAGENO:
12683 return "MIPS_HIPAGENO";
12684 case DT_MIPS_RLD_MAP:
12685 return "MIPS_RLD_MAP";
12686 case DT_MIPS_DELTA_CLASS:
12687 return "MIPS_DELTA_CLASS";
12688 case DT_MIPS_DELTA_CLASS_NO:
12689 return "MIPS_DELTA_CLASS_NO";
12690 case DT_MIPS_DELTA_INSTANCE:
12691 return "MIPS_DELTA_INSTANCE";
12692 case DT_MIPS_DELTA_INSTANCE_NO:
12693 return "MIPS_DELTA_INSTANCE_NO";
12694 case DT_MIPS_DELTA_RELOC:
12695 return "MIPS_DELTA_RELOC";
12696 case DT_MIPS_DELTA_RELOC_NO:
12697 return "MIPS_DELTA_RELOC_NO";
12698 case DT_MIPS_DELTA_SYM:
12699 return "MIPS_DELTA_SYM";
12700 case DT_MIPS_DELTA_SYM_NO:
12701 return "MIPS_DELTA_SYM_NO";
12702 case DT_MIPS_DELTA_CLASSSYM:
12703 return "MIPS_DELTA_CLASSSYM";
12704 case DT_MIPS_DELTA_CLASSSYM_NO:
12705 return "MIPS_DELTA_CLASSSYM_NO";
12706 case DT_MIPS_CXX_FLAGS:
12707 return "MIPS_CXX_FLAGS";
12708 case DT_MIPS_PIXIE_INIT:
12709 return "MIPS_PIXIE_INIT";
12710 case DT_MIPS_SYMBOL_LIB:
12711 return "MIPS_SYMBOL_LIB";
12712 case DT_MIPS_LOCALPAGE_GOTIDX:
12713 return "MIPS_LOCALPAGE_GOTIDX";
12714 case DT_MIPS_LOCAL_GOTIDX:
12715 return "MIPS_LOCAL_GOTIDX";
12716 case DT_MIPS_HIDDEN_GOTIDX:
12717 return "MIPS_HIDDEN_GOTIDX";
12718 case DT_MIPS_PROTECTED_GOTIDX:
12719 return "MIPS_PROTECTED_GOT_IDX";
12720 case DT_MIPS_OPTIONS:
12721 return "MIPS_OPTIONS";
12722 case DT_MIPS_INTERFACE:
12723 return "MIPS_INTERFACE";
12724 case DT_MIPS_DYNSTR_ALIGN:
12725 return "DT_MIPS_DYNSTR_ALIGN";
12726 case DT_MIPS_INTERFACE_SIZE:
12727 return "DT_MIPS_INTERFACE_SIZE";
12728 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
12729 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
12730 case DT_MIPS_PERF_SUFFIX:
12731 return "DT_MIPS_PERF_SUFFIX";
12732 case DT_MIPS_COMPACT_SIZE:
12733 return "DT_MIPS_COMPACT_SIZE";
12734 case DT_MIPS_GP_VALUE:
12735 return "DT_MIPS_GP_VALUE";
12736 case DT_MIPS_AUX_DYNAMIC:
12737 return "DT_MIPS_AUX_DYNAMIC";
12738 case DT_MIPS_PLTGOT:
12739 return "DT_MIPS_PLTGOT";
12740 case DT_MIPS_RWPLT:
12741 return "DT_MIPS_RWPLT";
12742 }
12743 }
12744
12745 bfd_boolean
12746 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
12747 {
12748 FILE *file = ptr;
12749
12750 BFD_ASSERT (abfd != NULL && ptr != NULL);
12751
12752 /* Print normal ELF private data. */
12753 _bfd_elf_print_private_bfd_data (abfd, ptr);
12754
12755 /* xgettext:c-format */
12756 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
12757
12758 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
12759 fprintf (file, _(" [abi=O32]"));
12760 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
12761 fprintf (file, _(" [abi=O64]"));
12762 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
12763 fprintf (file, _(" [abi=EABI32]"));
12764 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
12765 fprintf (file, _(" [abi=EABI64]"));
12766 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
12767 fprintf (file, _(" [abi unknown]"));
12768 else if (ABI_N32_P (abfd))
12769 fprintf (file, _(" [abi=N32]"));
12770 else if (ABI_64_P (abfd))
12771 fprintf (file, _(" [abi=64]"));
12772 else
12773 fprintf (file, _(" [no abi set]"));
12774
12775 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
12776 fprintf (file, " [mips1]");
12777 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
12778 fprintf (file, " [mips2]");
12779 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
12780 fprintf (file, " [mips3]");
12781 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
12782 fprintf (file, " [mips4]");
12783 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
12784 fprintf (file, " [mips5]");
12785 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
12786 fprintf (file, " [mips32]");
12787 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
12788 fprintf (file, " [mips64]");
12789 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
12790 fprintf (file, " [mips32r2]");
12791 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
12792 fprintf (file, " [mips64r2]");
12793 else
12794 fprintf (file, _(" [unknown ISA]"));
12795
12796 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
12797 fprintf (file, " [mdmx]");
12798
12799 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
12800 fprintf (file, " [mips16]");
12801
12802 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
12803 fprintf (file, " [32bitmode]");
12804 else
12805 fprintf (file, _(" [not 32bitmode]"));
12806
12807 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
12808 fprintf (file, " [noreorder]");
12809
12810 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
12811 fprintf (file, " [PIC]");
12812
12813 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
12814 fprintf (file, " [CPIC]");
12815
12816 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
12817 fprintf (file, " [XGOT]");
12818
12819 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
12820 fprintf (file, " [UCODE]");
12821
12822 fputc ('\n', file);
12823
12824 return TRUE;
12825 }
12826
12827 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
12828 {
12829 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12830 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12831 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
12832 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12833 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12834 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
12835 { NULL, 0, 0, 0, 0 }
12836 };
12837
12838 /* Merge non visibility st_other attributes. Ensure that the
12839 STO_OPTIONAL flag is copied into h->other, even if this is not a
12840 definiton of the symbol. */
12841 void
12842 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
12843 const Elf_Internal_Sym *isym,
12844 bfd_boolean definition,
12845 bfd_boolean dynamic ATTRIBUTE_UNUSED)
12846 {
12847 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
12848 {
12849 unsigned char other;
12850
12851 other = (definition ? isym->st_other : h->other);
12852 other &= ~ELF_ST_VISIBILITY (-1);
12853 h->other = other | ELF_ST_VISIBILITY (h->other);
12854 }
12855
12856 if (!definition
12857 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
12858 h->other |= STO_OPTIONAL;
12859 }
12860
12861 /* Decide whether an undefined symbol is special and can be ignored.
12862 This is the case for OPTIONAL symbols on IRIX. */
12863 bfd_boolean
12864 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
12865 {
12866 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
12867 }
12868
12869 bfd_boolean
12870 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
12871 {
12872 return (sym->st_shndx == SHN_COMMON
12873 || sym->st_shndx == SHN_MIPS_ACOMMON
12874 || sym->st_shndx == SHN_MIPS_SCOMMON);
12875 }
12876
12877 /* Return address for Ith PLT stub in section PLT, for relocation REL
12878 or (bfd_vma) -1 if it should not be included. */
12879
12880 bfd_vma
12881 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
12882 const arelent *rel ATTRIBUTE_UNUSED)
12883 {
12884 return (plt->vma
12885 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
12886 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
12887 }
12888
12889 void
12890 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
12891 {
12892 struct mips_elf_link_hash_table *htab;
12893 Elf_Internal_Ehdr *i_ehdrp;
12894
12895 i_ehdrp = elf_elfheader (abfd);
12896 if (link_info)
12897 {
12898 htab = mips_elf_hash_table (link_info);
12899 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
12900 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
12901 }
12902 }
This page took 0.283928 seconds and 5 git commands to generate.