* elfxx-mips.c (_bfd_mips_elf_finish_dynamic_symbol): Also clear
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
30
31 /* This file handles functionality common to the different MIPS ABI's. */
32
33 #include "sysdep.h"
34 #include "bfd.h"
35 #include "libbfd.h"
36 #include "libiberty.h"
37 #include "elf-bfd.h"
38 #include "elfxx-mips.h"
39 #include "elf/mips.h"
40 #include "elf-vxworks.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* Types of TLS GOT entry. */
51 enum mips_got_tls_type {
52 GOT_TLS_NONE,
53 GOT_TLS_GD,
54 GOT_TLS_LDM,
55 GOT_TLS_IE
56 };
57
58 /* This structure is used to hold information about one GOT entry.
59 There are four types of entry:
60
61 (1) an absolute address
62 requires: abfd == NULL
63 fields: d.address
64
65 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
66 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
67 fields: abfd, symndx, d.addend, tls_type
68
69 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
70 requires: abfd != NULL, symndx == -1
71 fields: d.h, tls_type
72
73 (4) a TLS LDM slot
74 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
75 fields: none; there's only one of these per GOT. */
76 struct mips_got_entry
77 {
78 /* One input bfd that needs the GOT entry. */
79 bfd *abfd;
80 /* The index of the symbol, as stored in the relocation r_info, if
81 we have a local symbol; -1 otherwise. */
82 long symndx;
83 union
84 {
85 /* If abfd == NULL, an address that must be stored in the got. */
86 bfd_vma address;
87 /* If abfd != NULL && symndx != -1, the addend of the relocation
88 that should be added to the symbol value. */
89 bfd_vma addend;
90 /* If abfd != NULL && symndx == -1, the hash table entry
91 corresponding to a symbol in the GOT. The symbol's entry
92 is in the local area if h->global_got_area is GGA_NONE,
93 otherwise it is in the global area. */
94 struct mips_elf_link_hash_entry *h;
95 } d;
96
97 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
98 symbol entry with r_symndx == 0. */
99 unsigned char tls_type;
100
101 /* True if we have filled in the GOT contents for a TLS entry,
102 and created the associated relocations. */
103 unsigned char tls_initialized;
104
105 /* The offset from the beginning of the .got section to the entry
106 corresponding to this symbol+addend. If it's a global symbol
107 whose offset is yet to be decided, it's going to be -1. */
108 long gotidx;
109 };
110
111 /* This structure represents a GOT page reference from an input bfd.
112 Each instance represents a symbol + ADDEND, where the representation
113 of the symbol depends on whether it is local to the input bfd.
114 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
115 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
116
117 Page references with SYMNDX >= 0 always become page references
118 in the output. Page references with SYMNDX < 0 only become page
119 references if the symbol binds locally; in other cases, the page
120 reference decays to a global GOT reference. */
121 struct mips_got_page_ref
122 {
123 long symndx;
124 union
125 {
126 struct mips_elf_link_hash_entry *h;
127 bfd *abfd;
128 } u;
129 bfd_vma addend;
130 };
131
132 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
133 The structures form a non-overlapping list that is sorted by increasing
134 MIN_ADDEND. */
135 struct mips_got_page_range
136 {
137 struct mips_got_page_range *next;
138 bfd_signed_vma min_addend;
139 bfd_signed_vma max_addend;
140 };
141
142 /* This structure describes the range of addends that are applied to page
143 relocations against a given section. */
144 struct mips_got_page_entry
145 {
146 /* The section that these entries are based on. */
147 asection *sec;
148 /* The ranges for this page entry. */
149 struct mips_got_page_range *ranges;
150 /* The maximum number of page entries needed for RANGES. */
151 bfd_vma num_pages;
152 };
153
154 /* This structure is used to hold .got information when linking. */
155
156 struct mips_got_info
157 {
158 /* The number of global .got entries. */
159 unsigned int global_gotno;
160 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
161 unsigned int reloc_only_gotno;
162 /* The number of .got slots used for TLS. */
163 unsigned int tls_gotno;
164 /* The first unused TLS .got entry. Used only during
165 mips_elf_initialize_tls_index. */
166 unsigned int tls_assigned_gotno;
167 /* The number of local .got entries, eventually including page entries. */
168 unsigned int local_gotno;
169 /* The maximum number of page entries needed. */
170 unsigned int page_gotno;
171 /* The number of relocations needed for the GOT entries. */
172 unsigned int relocs;
173 /* The number of local .got entries we have used. */
174 unsigned int assigned_gotno;
175 /* A hash table holding members of the got. */
176 struct htab *got_entries;
177 /* A hash table holding mips_got_page_ref structures. */
178 struct htab *got_page_refs;
179 /* A hash table of mips_got_page_entry structures. */
180 struct htab *got_page_entries;
181 /* In multi-got links, a pointer to the next got (err, rather, most
182 of the time, it points to the previous got). */
183 struct mips_got_info *next;
184 };
185
186 /* Structure passed when merging bfds' gots. */
187
188 struct mips_elf_got_per_bfd_arg
189 {
190 /* The output bfd. */
191 bfd *obfd;
192 /* The link information. */
193 struct bfd_link_info *info;
194 /* A pointer to the primary got, i.e., the one that's going to get
195 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
196 DT_MIPS_GOTSYM. */
197 struct mips_got_info *primary;
198 /* A non-primary got we're trying to merge with other input bfd's
199 gots. */
200 struct mips_got_info *current;
201 /* The maximum number of got entries that can be addressed with a
202 16-bit offset. */
203 unsigned int max_count;
204 /* The maximum number of page entries needed by each got. */
205 unsigned int max_pages;
206 /* The total number of global entries which will live in the
207 primary got and be automatically relocated. This includes
208 those not referenced by the primary GOT but included in
209 the "master" GOT. */
210 unsigned int global_count;
211 };
212
213 /* A structure used to pass information to htab_traverse callbacks
214 when laying out the GOT. */
215
216 struct mips_elf_traverse_got_arg
217 {
218 struct bfd_link_info *info;
219 struct mips_got_info *g;
220 int value;
221 };
222
223 struct _mips_elf_section_data
224 {
225 struct bfd_elf_section_data elf;
226 union
227 {
228 bfd_byte *tdata;
229 } u;
230 };
231
232 #define mips_elf_section_data(sec) \
233 ((struct _mips_elf_section_data *) elf_section_data (sec))
234
235 #define is_mips_elf(bfd) \
236 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
237 && elf_tdata (bfd) != NULL \
238 && elf_object_id (bfd) == MIPS_ELF_DATA)
239
240 /* The ABI says that every symbol used by dynamic relocations must have
241 a global GOT entry. Among other things, this provides the dynamic
242 linker with a free, directly-indexed cache. The GOT can therefore
243 contain symbols that are not referenced by GOT relocations themselves
244 (in other words, it may have symbols that are not referenced by things
245 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
246
247 GOT relocations are less likely to overflow if we put the associated
248 GOT entries towards the beginning. We therefore divide the global
249 GOT entries into two areas: "normal" and "reloc-only". Entries in
250 the first area can be used for both dynamic relocations and GP-relative
251 accesses, while those in the "reloc-only" area are for dynamic
252 relocations only.
253
254 These GGA_* ("Global GOT Area") values are organised so that lower
255 values are more general than higher values. Also, non-GGA_NONE
256 values are ordered by the position of the area in the GOT. */
257 #define GGA_NORMAL 0
258 #define GGA_RELOC_ONLY 1
259 #define GGA_NONE 2
260
261 /* Information about a non-PIC interface to a PIC function. There are
262 two ways of creating these interfaces. The first is to add:
263
264 lui $25,%hi(func)
265 addiu $25,$25,%lo(func)
266
267 immediately before a PIC function "func". The second is to add:
268
269 lui $25,%hi(func)
270 j func
271 addiu $25,$25,%lo(func)
272
273 to a separate trampoline section.
274
275 Stubs of the first kind go in a new section immediately before the
276 target function. Stubs of the second kind go in a single section
277 pointed to by the hash table's "strampoline" field. */
278 struct mips_elf_la25_stub {
279 /* The generated section that contains this stub. */
280 asection *stub_section;
281
282 /* The offset of the stub from the start of STUB_SECTION. */
283 bfd_vma offset;
284
285 /* One symbol for the original function. Its location is available
286 in H->root.root.u.def. */
287 struct mips_elf_link_hash_entry *h;
288 };
289
290 /* Macros for populating a mips_elf_la25_stub. */
291
292 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
293 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
294 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
295 #define LA25_LUI_MICROMIPS(VAL) \
296 (0x41b90000 | (VAL)) /* lui t9,VAL */
297 #define LA25_J_MICROMIPS(VAL) \
298 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
299 #define LA25_ADDIU_MICROMIPS(VAL) \
300 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
301
302 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
303 the dynamic symbols. */
304
305 struct mips_elf_hash_sort_data
306 {
307 /* The symbol in the global GOT with the lowest dynamic symbol table
308 index. */
309 struct elf_link_hash_entry *low;
310 /* The least dynamic symbol table index corresponding to a non-TLS
311 symbol with a GOT entry. */
312 long min_got_dynindx;
313 /* The greatest dynamic symbol table index corresponding to a symbol
314 with a GOT entry that is not referenced (e.g., a dynamic symbol
315 with dynamic relocations pointing to it from non-primary GOTs). */
316 long max_unref_got_dynindx;
317 /* The greatest dynamic symbol table index not corresponding to a
318 symbol without a GOT entry. */
319 long max_non_got_dynindx;
320 };
321
322 /* The MIPS ELF linker needs additional information for each symbol in
323 the global hash table. */
324
325 struct mips_elf_link_hash_entry
326 {
327 struct elf_link_hash_entry root;
328
329 /* External symbol information. */
330 EXTR esym;
331
332 /* The la25 stub we have created for ths symbol, if any. */
333 struct mips_elf_la25_stub *la25_stub;
334
335 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
336 this symbol. */
337 unsigned int possibly_dynamic_relocs;
338
339 /* If there is a stub that 32 bit functions should use to call this
340 16 bit function, this points to the section containing the stub. */
341 asection *fn_stub;
342
343 /* If there is a stub that 16 bit functions should use to call this
344 32 bit function, this points to the section containing the stub. */
345 asection *call_stub;
346
347 /* This is like the call_stub field, but it is used if the function
348 being called returns a floating point value. */
349 asection *call_fp_stub;
350
351 /* The highest GGA_* value that satisfies all references to this symbol. */
352 unsigned int global_got_area : 2;
353
354 /* True if all GOT relocations against this symbol are for calls. This is
355 a looser condition than no_fn_stub below, because there may be other
356 non-call non-GOT relocations against the symbol. */
357 unsigned int got_only_for_calls : 1;
358
359 /* True if one of the relocations described by possibly_dynamic_relocs
360 is against a readonly section. */
361 unsigned int readonly_reloc : 1;
362
363 /* True if there is a relocation against this symbol that must be
364 resolved by the static linker (in other words, if the relocation
365 cannot possibly be made dynamic). */
366 unsigned int has_static_relocs : 1;
367
368 /* True if we must not create a .MIPS.stubs entry for this symbol.
369 This is set, for example, if there are relocations related to
370 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
371 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
372 unsigned int no_fn_stub : 1;
373
374 /* Whether we need the fn_stub; this is true if this symbol appears
375 in any relocs other than a 16 bit call. */
376 unsigned int need_fn_stub : 1;
377
378 /* True if this symbol is referenced by branch relocations from
379 any non-PIC input file. This is used to determine whether an
380 la25 stub is required. */
381 unsigned int has_nonpic_branches : 1;
382
383 /* Does this symbol need a traditional MIPS lazy-binding stub
384 (as opposed to a PLT entry)? */
385 unsigned int needs_lazy_stub : 1;
386 };
387
388 /* MIPS ELF linker hash table. */
389
390 struct mips_elf_link_hash_table
391 {
392 struct elf_link_hash_table root;
393
394 /* The number of .rtproc entries. */
395 bfd_size_type procedure_count;
396
397 /* The size of the .compact_rel section (if SGI_COMPAT). */
398 bfd_size_type compact_rel_size;
399
400 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
401 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
402 bfd_boolean use_rld_obj_head;
403
404 /* The __rld_map or __rld_obj_head symbol. */
405 struct elf_link_hash_entry *rld_symbol;
406
407 /* This is set if we see any mips16 stub sections. */
408 bfd_boolean mips16_stubs_seen;
409
410 /* True if we can generate copy relocs and PLTs. */
411 bfd_boolean use_plts_and_copy_relocs;
412
413 /* True if we're generating code for VxWorks. */
414 bfd_boolean is_vxworks;
415
416 /* True if we already reported the small-data section overflow. */
417 bfd_boolean small_data_overflow_reported;
418
419 /* Shortcuts to some dynamic sections, or NULL if they are not
420 being used. */
421 asection *srelbss;
422 asection *sdynbss;
423 asection *srelplt;
424 asection *srelplt2;
425 asection *sgotplt;
426 asection *splt;
427 asection *sstubs;
428 asection *sgot;
429
430 /* The master GOT information. */
431 struct mips_got_info *got_info;
432
433 /* The global symbol in the GOT with the lowest index in the dynamic
434 symbol table. */
435 struct elf_link_hash_entry *global_gotsym;
436
437 /* The size of the PLT header in bytes. */
438 bfd_vma plt_header_size;
439
440 /* The size of a PLT entry in bytes. */
441 bfd_vma plt_entry_size;
442
443 /* The number of functions that need a lazy-binding stub. */
444 bfd_vma lazy_stub_count;
445
446 /* The size of a function stub entry in bytes. */
447 bfd_vma function_stub_size;
448
449 /* The number of reserved entries at the beginning of the GOT. */
450 unsigned int reserved_gotno;
451
452 /* The section used for mips_elf_la25_stub trampolines.
453 See the comment above that structure for details. */
454 asection *strampoline;
455
456 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
457 pairs. */
458 htab_t la25_stubs;
459
460 /* A function FN (NAME, IS, OS) that creates a new input section
461 called NAME and links it to output section OS. If IS is nonnull,
462 the new section should go immediately before it, otherwise it
463 should go at the (current) beginning of OS.
464
465 The function returns the new section on success, otherwise it
466 returns null. */
467 asection *(*add_stub_section) (const char *, asection *, asection *);
468
469 /* Small local sym cache. */
470 struct sym_cache sym_cache;
471 };
472
473 /* Get the MIPS ELF linker hash table from a link_info structure. */
474
475 #define mips_elf_hash_table(p) \
476 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
477 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
478
479 /* A structure used to communicate with htab_traverse callbacks. */
480 struct mips_htab_traverse_info
481 {
482 /* The usual link-wide information. */
483 struct bfd_link_info *info;
484 bfd *output_bfd;
485
486 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
487 bfd_boolean error;
488 };
489
490 /* MIPS ELF private object data. */
491
492 struct mips_elf_obj_tdata
493 {
494 /* Generic ELF private object data. */
495 struct elf_obj_tdata root;
496
497 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
498 bfd *abi_fp_bfd;
499
500 /* The GOT requirements of input bfds. */
501 struct mips_got_info *got;
502
503 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
504 included directly in this one, but there's no point to wasting
505 the memory just for the infrequently called find_nearest_line. */
506 struct mips_elf_find_line *find_line_info;
507
508 /* An array of stub sections indexed by symbol number. */
509 asection **local_stubs;
510 asection **local_call_stubs;
511
512 /* The Irix 5 support uses two virtual sections, which represent
513 text/data symbols defined in dynamic objects. */
514 asymbol *elf_data_symbol;
515 asymbol *elf_text_symbol;
516 asection *elf_data_section;
517 asection *elf_text_section;
518 };
519
520 /* Get MIPS ELF private object data from BFD's tdata. */
521
522 #define mips_elf_tdata(bfd) \
523 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
524
525 #define TLS_RELOC_P(r_type) \
526 (r_type == R_MIPS_TLS_DTPMOD32 \
527 || r_type == R_MIPS_TLS_DTPMOD64 \
528 || r_type == R_MIPS_TLS_DTPREL32 \
529 || r_type == R_MIPS_TLS_DTPREL64 \
530 || r_type == R_MIPS_TLS_GD \
531 || r_type == R_MIPS_TLS_LDM \
532 || r_type == R_MIPS_TLS_DTPREL_HI16 \
533 || r_type == R_MIPS_TLS_DTPREL_LO16 \
534 || r_type == R_MIPS_TLS_GOTTPREL \
535 || r_type == R_MIPS_TLS_TPREL32 \
536 || r_type == R_MIPS_TLS_TPREL64 \
537 || r_type == R_MIPS_TLS_TPREL_HI16 \
538 || r_type == R_MIPS_TLS_TPREL_LO16 \
539 || r_type == R_MIPS16_TLS_GD \
540 || r_type == R_MIPS16_TLS_LDM \
541 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
542 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
543 || r_type == R_MIPS16_TLS_GOTTPREL \
544 || r_type == R_MIPS16_TLS_TPREL_HI16 \
545 || r_type == R_MIPS16_TLS_TPREL_LO16 \
546 || r_type == R_MICROMIPS_TLS_GD \
547 || r_type == R_MICROMIPS_TLS_LDM \
548 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
549 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
550 || r_type == R_MICROMIPS_TLS_GOTTPREL \
551 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
552 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
553
554 /* Structure used to pass information to mips_elf_output_extsym. */
555
556 struct extsym_info
557 {
558 bfd *abfd;
559 struct bfd_link_info *info;
560 struct ecoff_debug_info *debug;
561 const struct ecoff_debug_swap *swap;
562 bfd_boolean failed;
563 };
564
565 /* The names of the runtime procedure table symbols used on IRIX5. */
566
567 static const char * const mips_elf_dynsym_rtproc_names[] =
568 {
569 "_procedure_table",
570 "_procedure_string_table",
571 "_procedure_table_size",
572 NULL
573 };
574
575 /* These structures are used to generate the .compact_rel section on
576 IRIX5. */
577
578 typedef struct
579 {
580 unsigned long id1; /* Always one? */
581 unsigned long num; /* Number of compact relocation entries. */
582 unsigned long id2; /* Always two? */
583 unsigned long offset; /* The file offset of the first relocation. */
584 unsigned long reserved0; /* Zero? */
585 unsigned long reserved1; /* Zero? */
586 } Elf32_compact_rel;
587
588 typedef struct
589 {
590 bfd_byte id1[4];
591 bfd_byte num[4];
592 bfd_byte id2[4];
593 bfd_byte offset[4];
594 bfd_byte reserved0[4];
595 bfd_byte reserved1[4];
596 } Elf32_External_compact_rel;
597
598 typedef struct
599 {
600 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
601 unsigned int rtype : 4; /* Relocation types. See below. */
602 unsigned int dist2to : 8;
603 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
604 unsigned long konst; /* KONST field. See below. */
605 unsigned long vaddr; /* VADDR to be relocated. */
606 } Elf32_crinfo;
607
608 typedef struct
609 {
610 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
611 unsigned int rtype : 4; /* Relocation types. See below. */
612 unsigned int dist2to : 8;
613 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
614 unsigned long konst; /* KONST field. See below. */
615 } Elf32_crinfo2;
616
617 typedef struct
618 {
619 bfd_byte info[4];
620 bfd_byte konst[4];
621 bfd_byte vaddr[4];
622 } Elf32_External_crinfo;
623
624 typedef struct
625 {
626 bfd_byte info[4];
627 bfd_byte konst[4];
628 } Elf32_External_crinfo2;
629
630 /* These are the constants used to swap the bitfields in a crinfo. */
631
632 #define CRINFO_CTYPE (0x1)
633 #define CRINFO_CTYPE_SH (31)
634 #define CRINFO_RTYPE (0xf)
635 #define CRINFO_RTYPE_SH (27)
636 #define CRINFO_DIST2TO (0xff)
637 #define CRINFO_DIST2TO_SH (19)
638 #define CRINFO_RELVADDR (0x7ffff)
639 #define CRINFO_RELVADDR_SH (0)
640
641 /* A compact relocation info has long (3 words) or short (2 words)
642 formats. A short format doesn't have VADDR field and relvaddr
643 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
644 #define CRF_MIPS_LONG 1
645 #define CRF_MIPS_SHORT 0
646
647 /* There are 4 types of compact relocation at least. The value KONST
648 has different meaning for each type:
649
650 (type) (konst)
651 CT_MIPS_REL32 Address in data
652 CT_MIPS_WORD Address in word (XXX)
653 CT_MIPS_GPHI_LO GP - vaddr
654 CT_MIPS_JMPAD Address to jump
655 */
656
657 #define CRT_MIPS_REL32 0xa
658 #define CRT_MIPS_WORD 0xb
659 #define CRT_MIPS_GPHI_LO 0xc
660 #define CRT_MIPS_JMPAD 0xd
661
662 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
663 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
664 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
665 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
666 \f
667 /* The structure of the runtime procedure descriptor created by the
668 loader for use by the static exception system. */
669
670 typedef struct runtime_pdr {
671 bfd_vma adr; /* Memory address of start of procedure. */
672 long regmask; /* Save register mask. */
673 long regoffset; /* Save register offset. */
674 long fregmask; /* Save floating point register mask. */
675 long fregoffset; /* Save floating point register offset. */
676 long frameoffset; /* Frame size. */
677 short framereg; /* Frame pointer register. */
678 short pcreg; /* Offset or reg of return pc. */
679 long irpss; /* Index into the runtime string table. */
680 long reserved;
681 struct exception_info *exception_info;/* Pointer to exception array. */
682 } RPDR, *pRPDR;
683 #define cbRPDR sizeof (RPDR)
684 #define rpdNil ((pRPDR) 0)
685 \f
686 static struct mips_got_entry *mips_elf_create_local_got_entry
687 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
688 struct mips_elf_link_hash_entry *, int);
689 static bfd_boolean mips_elf_sort_hash_table_f
690 (struct mips_elf_link_hash_entry *, void *);
691 static bfd_vma mips_elf_high
692 (bfd_vma);
693 static bfd_boolean mips_elf_create_dynamic_relocation
694 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
695 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
696 bfd_vma *, asection *);
697 static bfd_vma mips_elf_adjust_gp
698 (bfd *, struct mips_got_info *, bfd *);
699
700 /* This will be used when we sort the dynamic relocation records. */
701 static bfd *reldyn_sorting_bfd;
702
703 /* True if ABFD is for CPUs with load interlocking that include
704 non-MIPS1 CPUs and R3900. */
705 #define LOAD_INTERLOCKS_P(abfd) \
706 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
707 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
708
709 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
710 This should be safe for all architectures. We enable this predicate
711 for RM9000 for now. */
712 #define JAL_TO_BAL_P(abfd) \
713 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
714
715 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
716 This should be safe for all architectures. We enable this predicate for
717 all CPUs. */
718 #define JALR_TO_BAL_P(abfd) 1
719
720 /* True if ABFD is for CPUs that are faster if JR is converted to B.
721 This should be safe for all architectures. We enable this predicate for
722 all CPUs. */
723 #define JR_TO_B_P(abfd) 1
724
725 /* True if ABFD is a PIC object. */
726 #define PIC_OBJECT_P(abfd) \
727 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
728
729 /* Nonzero if ABFD is using the N32 ABI. */
730 #define ABI_N32_P(abfd) \
731 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
732
733 /* Nonzero if ABFD is using the N64 ABI. */
734 #define ABI_64_P(abfd) \
735 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
736
737 /* Nonzero if ABFD is using NewABI conventions. */
738 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
739
740 /* Nonzero if ABFD has microMIPS code. */
741 #define MICROMIPS_P(abfd) \
742 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
743
744 /* The IRIX compatibility level we are striving for. */
745 #define IRIX_COMPAT(abfd) \
746 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
747
748 /* Whether we are trying to be compatible with IRIX at all. */
749 #define SGI_COMPAT(abfd) \
750 (IRIX_COMPAT (abfd) != ict_none)
751
752 /* The name of the options section. */
753 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
754 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
755
756 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
757 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
758 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
759 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
760
761 /* Whether the section is readonly. */
762 #define MIPS_ELF_READONLY_SECTION(sec) \
763 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
764 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
765
766 /* The name of the stub section. */
767 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
768
769 /* The size of an external REL relocation. */
770 #define MIPS_ELF_REL_SIZE(abfd) \
771 (get_elf_backend_data (abfd)->s->sizeof_rel)
772
773 /* The size of an external RELA relocation. */
774 #define MIPS_ELF_RELA_SIZE(abfd) \
775 (get_elf_backend_data (abfd)->s->sizeof_rela)
776
777 /* The size of an external dynamic table entry. */
778 #define MIPS_ELF_DYN_SIZE(abfd) \
779 (get_elf_backend_data (abfd)->s->sizeof_dyn)
780
781 /* The size of a GOT entry. */
782 #define MIPS_ELF_GOT_SIZE(abfd) \
783 (get_elf_backend_data (abfd)->s->arch_size / 8)
784
785 /* The size of the .rld_map section. */
786 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
787 (get_elf_backend_data (abfd)->s->arch_size / 8)
788
789 /* The size of a symbol-table entry. */
790 #define MIPS_ELF_SYM_SIZE(abfd) \
791 (get_elf_backend_data (abfd)->s->sizeof_sym)
792
793 /* The default alignment for sections, as a power of two. */
794 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
795 (get_elf_backend_data (abfd)->s->log_file_align)
796
797 /* Get word-sized data. */
798 #define MIPS_ELF_GET_WORD(abfd, ptr) \
799 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
800
801 /* Put out word-sized data. */
802 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
803 (ABI_64_P (abfd) \
804 ? bfd_put_64 (abfd, val, ptr) \
805 : bfd_put_32 (abfd, val, ptr))
806
807 /* The opcode for word-sized loads (LW or LD). */
808 #define MIPS_ELF_LOAD_WORD(abfd) \
809 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
810
811 /* Add a dynamic symbol table-entry. */
812 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
813 _bfd_elf_add_dynamic_entry (info, tag, val)
814
815 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
816 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
817
818 /* The name of the dynamic relocation section. */
819 #define MIPS_ELF_REL_DYN_NAME(INFO) \
820 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
821
822 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
823 from smaller values. Start with zero, widen, *then* decrement. */
824 #define MINUS_ONE (((bfd_vma)0) - 1)
825 #define MINUS_TWO (((bfd_vma)0) - 2)
826
827 /* The value to write into got[1] for SVR4 targets, to identify it is
828 a GNU object. The dynamic linker can then use got[1] to store the
829 module pointer. */
830 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
831 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
832
833 /* The offset of $gp from the beginning of the .got section. */
834 #define ELF_MIPS_GP_OFFSET(INFO) \
835 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
836
837 /* The maximum size of the GOT for it to be addressable using 16-bit
838 offsets from $gp. */
839 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
840
841 /* Instructions which appear in a stub. */
842 #define STUB_LW(abfd) \
843 ((ABI_64_P (abfd) \
844 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
845 : 0x8f998010)) /* lw t9,0x8010(gp) */
846 #define STUB_MOVE(abfd) \
847 ((ABI_64_P (abfd) \
848 ? 0x03e0782d /* daddu t7,ra */ \
849 : 0x03e07821)) /* addu t7,ra */
850 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
851 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
852 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
853 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
854 #define STUB_LI16S(abfd, VAL) \
855 ((ABI_64_P (abfd) \
856 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
857 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
858
859 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
860 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
861
862 /* The name of the dynamic interpreter. This is put in the .interp
863 section. */
864
865 #define ELF_DYNAMIC_INTERPRETER(abfd) \
866 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
867 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
868 : "/usr/lib/libc.so.1")
869
870 #ifdef BFD64
871 #define MNAME(bfd,pre,pos) \
872 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
873 #define ELF_R_SYM(bfd, i) \
874 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
875 #define ELF_R_TYPE(bfd, i) \
876 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
877 #define ELF_R_INFO(bfd, s, t) \
878 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
879 #else
880 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
881 #define ELF_R_SYM(bfd, i) \
882 (ELF32_R_SYM (i))
883 #define ELF_R_TYPE(bfd, i) \
884 (ELF32_R_TYPE (i))
885 #define ELF_R_INFO(bfd, s, t) \
886 (ELF32_R_INFO (s, t))
887 #endif
888 \f
889 /* The mips16 compiler uses a couple of special sections to handle
890 floating point arguments.
891
892 Section names that look like .mips16.fn.FNNAME contain stubs that
893 copy floating point arguments from the fp regs to the gp regs and
894 then jump to FNNAME. If any 32 bit function calls FNNAME, the
895 call should be redirected to the stub instead. If no 32 bit
896 function calls FNNAME, the stub should be discarded. We need to
897 consider any reference to the function, not just a call, because
898 if the address of the function is taken we will need the stub,
899 since the address might be passed to a 32 bit function.
900
901 Section names that look like .mips16.call.FNNAME contain stubs
902 that copy floating point arguments from the gp regs to the fp
903 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
904 then any 16 bit function that calls FNNAME should be redirected
905 to the stub instead. If FNNAME is not a 32 bit function, the
906 stub should be discarded.
907
908 .mips16.call.fp.FNNAME sections are similar, but contain stubs
909 which call FNNAME and then copy the return value from the fp regs
910 to the gp regs. These stubs store the return value in $18 while
911 calling FNNAME; any function which might call one of these stubs
912 must arrange to save $18 around the call. (This case is not
913 needed for 32 bit functions that call 16 bit functions, because
914 16 bit functions always return floating point values in both
915 $f0/$f1 and $2/$3.)
916
917 Note that in all cases FNNAME might be defined statically.
918 Therefore, FNNAME is not used literally. Instead, the relocation
919 information will indicate which symbol the section is for.
920
921 We record any stubs that we find in the symbol table. */
922
923 #define FN_STUB ".mips16.fn."
924 #define CALL_STUB ".mips16.call."
925 #define CALL_FP_STUB ".mips16.call.fp."
926
927 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
928 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
929 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
930 \f
931 /* The format of the first PLT entry in an O32 executable. */
932 static const bfd_vma mips_o32_exec_plt0_entry[] =
933 {
934 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
935 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
936 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
937 0x031cc023, /* subu $24, $24, $28 */
938 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
939 0x0018c082, /* srl $24, $24, 2 */
940 0x0320f809, /* jalr $25 */
941 0x2718fffe /* subu $24, $24, 2 */
942 };
943
944 /* The format of the first PLT entry in an N32 executable. Different
945 because gp ($28) is not available; we use t2 ($14) instead. */
946 static const bfd_vma mips_n32_exec_plt0_entry[] =
947 {
948 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
949 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
950 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
951 0x030ec023, /* subu $24, $24, $14 */
952 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
953 0x0018c082, /* srl $24, $24, 2 */
954 0x0320f809, /* jalr $25 */
955 0x2718fffe /* subu $24, $24, 2 */
956 };
957
958 /* The format of the first PLT entry in an N64 executable. Different
959 from N32 because of the increased size of GOT entries. */
960 static const bfd_vma mips_n64_exec_plt0_entry[] =
961 {
962 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
963 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
964 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
965 0x030ec023, /* subu $24, $24, $14 */
966 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
967 0x0018c0c2, /* srl $24, $24, 3 */
968 0x0320f809, /* jalr $25 */
969 0x2718fffe /* subu $24, $24, 2 */
970 };
971
972 /* The format of subsequent PLT entries. */
973 static const bfd_vma mips_exec_plt_entry[] =
974 {
975 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
976 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
977 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
978 0x03200008 /* jr $25 */
979 };
980
981 /* The format of the first PLT entry in a VxWorks executable. */
982 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
983 {
984 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
985 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
986 0x8f390008, /* lw t9, 8(t9) */
987 0x00000000, /* nop */
988 0x03200008, /* jr t9 */
989 0x00000000 /* nop */
990 };
991
992 /* The format of subsequent PLT entries. */
993 static const bfd_vma mips_vxworks_exec_plt_entry[] =
994 {
995 0x10000000, /* b .PLT_resolver */
996 0x24180000, /* li t8, <pltindex> */
997 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
998 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
999 0x8f390000, /* lw t9, 0(t9) */
1000 0x00000000, /* nop */
1001 0x03200008, /* jr t9 */
1002 0x00000000 /* nop */
1003 };
1004
1005 /* The format of the first PLT entry in a VxWorks shared object. */
1006 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1007 {
1008 0x8f990008, /* lw t9, 8(gp) */
1009 0x00000000, /* nop */
1010 0x03200008, /* jr t9 */
1011 0x00000000, /* nop */
1012 0x00000000, /* nop */
1013 0x00000000 /* nop */
1014 };
1015
1016 /* The format of subsequent PLT entries. */
1017 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1018 {
1019 0x10000000, /* b .PLT_resolver */
1020 0x24180000 /* li t8, <pltindex> */
1021 };
1022 \f
1023 /* microMIPS 32-bit opcode helper installer. */
1024
1025 static void
1026 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1027 {
1028 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1029 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1030 }
1031
1032 /* microMIPS 32-bit opcode helper retriever. */
1033
1034 static bfd_vma
1035 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1036 {
1037 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1038 }
1039 \f
1040 /* Look up an entry in a MIPS ELF linker hash table. */
1041
1042 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1043 ((struct mips_elf_link_hash_entry *) \
1044 elf_link_hash_lookup (&(table)->root, (string), (create), \
1045 (copy), (follow)))
1046
1047 /* Traverse a MIPS ELF linker hash table. */
1048
1049 #define mips_elf_link_hash_traverse(table, func, info) \
1050 (elf_link_hash_traverse \
1051 (&(table)->root, \
1052 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1053 (info)))
1054
1055 /* Find the base offsets for thread-local storage in this object,
1056 for GD/LD and IE/LE respectively. */
1057
1058 #define TP_OFFSET 0x7000
1059 #define DTP_OFFSET 0x8000
1060
1061 static bfd_vma
1062 dtprel_base (struct bfd_link_info *info)
1063 {
1064 /* If tls_sec is NULL, we should have signalled an error already. */
1065 if (elf_hash_table (info)->tls_sec == NULL)
1066 return 0;
1067 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1068 }
1069
1070 static bfd_vma
1071 tprel_base (struct bfd_link_info *info)
1072 {
1073 /* If tls_sec is NULL, we should have signalled an error already. */
1074 if (elf_hash_table (info)->tls_sec == NULL)
1075 return 0;
1076 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1077 }
1078
1079 /* Create an entry in a MIPS ELF linker hash table. */
1080
1081 static struct bfd_hash_entry *
1082 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1083 struct bfd_hash_table *table, const char *string)
1084 {
1085 struct mips_elf_link_hash_entry *ret =
1086 (struct mips_elf_link_hash_entry *) entry;
1087
1088 /* Allocate the structure if it has not already been allocated by a
1089 subclass. */
1090 if (ret == NULL)
1091 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1092 if (ret == NULL)
1093 return (struct bfd_hash_entry *) ret;
1094
1095 /* Call the allocation method of the superclass. */
1096 ret = ((struct mips_elf_link_hash_entry *)
1097 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1098 table, string));
1099 if (ret != NULL)
1100 {
1101 /* Set local fields. */
1102 memset (&ret->esym, 0, sizeof (EXTR));
1103 /* We use -2 as a marker to indicate that the information has
1104 not been set. -1 means there is no associated ifd. */
1105 ret->esym.ifd = -2;
1106 ret->la25_stub = 0;
1107 ret->possibly_dynamic_relocs = 0;
1108 ret->fn_stub = NULL;
1109 ret->call_stub = NULL;
1110 ret->call_fp_stub = NULL;
1111 ret->global_got_area = GGA_NONE;
1112 ret->got_only_for_calls = TRUE;
1113 ret->readonly_reloc = FALSE;
1114 ret->has_static_relocs = FALSE;
1115 ret->no_fn_stub = FALSE;
1116 ret->need_fn_stub = FALSE;
1117 ret->has_nonpic_branches = FALSE;
1118 ret->needs_lazy_stub = FALSE;
1119 }
1120
1121 return (struct bfd_hash_entry *) ret;
1122 }
1123
1124 /* Allocate MIPS ELF private object data. */
1125
1126 bfd_boolean
1127 _bfd_mips_elf_mkobject (bfd *abfd)
1128 {
1129 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1130 MIPS_ELF_DATA);
1131 }
1132
1133 bfd_boolean
1134 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1135 {
1136 if (!sec->used_by_bfd)
1137 {
1138 struct _mips_elf_section_data *sdata;
1139 bfd_size_type amt = sizeof (*sdata);
1140
1141 sdata = bfd_zalloc (abfd, amt);
1142 if (sdata == NULL)
1143 return FALSE;
1144 sec->used_by_bfd = sdata;
1145 }
1146
1147 return _bfd_elf_new_section_hook (abfd, sec);
1148 }
1149 \f
1150 /* Read ECOFF debugging information from a .mdebug section into a
1151 ecoff_debug_info structure. */
1152
1153 bfd_boolean
1154 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1155 struct ecoff_debug_info *debug)
1156 {
1157 HDRR *symhdr;
1158 const struct ecoff_debug_swap *swap;
1159 char *ext_hdr;
1160
1161 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1162 memset (debug, 0, sizeof (*debug));
1163
1164 ext_hdr = bfd_malloc (swap->external_hdr_size);
1165 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1166 goto error_return;
1167
1168 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1169 swap->external_hdr_size))
1170 goto error_return;
1171
1172 symhdr = &debug->symbolic_header;
1173 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1174
1175 /* The symbolic header contains absolute file offsets and sizes to
1176 read. */
1177 #define READ(ptr, offset, count, size, type) \
1178 if (symhdr->count == 0) \
1179 debug->ptr = NULL; \
1180 else \
1181 { \
1182 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1183 debug->ptr = bfd_malloc (amt); \
1184 if (debug->ptr == NULL) \
1185 goto error_return; \
1186 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1187 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1188 goto error_return; \
1189 }
1190
1191 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1192 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1193 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1194 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1195 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1196 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1197 union aux_ext *);
1198 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1199 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1200 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1201 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1202 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1203 #undef READ
1204
1205 debug->fdr = NULL;
1206
1207 return TRUE;
1208
1209 error_return:
1210 if (ext_hdr != NULL)
1211 free (ext_hdr);
1212 if (debug->line != NULL)
1213 free (debug->line);
1214 if (debug->external_dnr != NULL)
1215 free (debug->external_dnr);
1216 if (debug->external_pdr != NULL)
1217 free (debug->external_pdr);
1218 if (debug->external_sym != NULL)
1219 free (debug->external_sym);
1220 if (debug->external_opt != NULL)
1221 free (debug->external_opt);
1222 if (debug->external_aux != NULL)
1223 free (debug->external_aux);
1224 if (debug->ss != NULL)
1225 free (debug->ss);
1226 if (debug->ssext != NULL)
1227 free (debug->ssext);
1228 if (debug->external_fdr != NULL)
1229 free (debug->external_fdr);
1230 if (debug->external_rfd != NULL)
1231 free (debug->external_rfd);
1232 if (debug->external_ext != NULL)
1233 free (debug->external_ext);
1234 return FALSE;
1235 }
1236 \f
1237 /* Swap RPDR (runtime procedure table entry) for output. */
1238
1239 static void
1240 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1241 {
1242 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1243 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1244 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1245 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1246 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1247 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1248
1249 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1250 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1251
1252 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1253 }
1254
1255 /* Create a runtime procedure table from the .mdebug section. */
1256
1257 static bfd_boolean
1258 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1259 struct bfd_link_info *info, asection *s,
1260 struct ecoff_debug_info *debug)
1261 {
1262 const struct ecoff_debug_swap *swap;
1263 HDRR *hdr = &debug->symbolic_header;
1264 RPDR *rpdr, *rp;
1265 struct rpdr_ext *erp;
1266 void *rtproc;
1267 struct pdr_ext *epdr;
1268 struct sym_ext *esym;
1269 char *ss, **sv;
1270 char *str;
1271 bfd_size_type size;
1272 bfd_size_type count;
1273 unsigned long sindex;
1274 unsigned long i;
1275 PDR pdr;
1276 SYMR sym;
1277 const char *no_name_func = _("static procedure (no name)");
1278
1279 epdr = NULL;
1280 rpdr = NULL;
1281 esym = NULL;
1282 ss = NULL;
1283 sv = NULL;
1284
1285 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1286
1287 sindex = strlen (no_name_func) + 1;
1288 count = hdr->ipdMax;
1289 if (count > 0)
1290 {
1291 size = swap->external_pdr_size;
1292
1293 epdr = bfd_malloc (size * count);
1294 if (epdr == NULL)
1295 goto error_return;
1296
1297 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1298 goto error_return;
1299
1300 size = sizeof (RPDR);
1301 rp = rpdr = bfd_malloc (size * count);
1302 if (rpdr == NULL)
1303 goto error_return;
1304
1305 size = sizeof (char *);
1306 sv = bfd_malloc (size * count);
1307 if (sv == NULL)
1308 goto error_return;
1309
1310 count = hdr->isymMax;
1311 size = swap->external_sym_size;
1312 esym = bfd_malloc (size * count);
1313 if (esym == NULL)
1314 goto error_return;
1315
1316 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1317 goto error_return;
1318
1319 count = hdr->issMax;
1320 ss = bfd_malloc (count);
1321 if (ss == NULL)
1322 goto error_return;
1323 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1324 goto error_return;
1325
1326 count = hdr->ipdMax;
1327 for (i = 0; i < (unsigned long) count; i++, rp++)
1328 {
1329 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1330 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1331 rp->adr = sym.value;
1332 rp->regmask = pdr.regmask;
1333 rp->regoffset = pdr.regoffset;
1334 rp->fregmask = pdr.fregmask;
1335 rp->fregoffset = pdr.fregoffset;
1336 rp->frameoffset = pdr.frameoffset;
1337 rp->framereg = pdr.framereg;
1338 rp->pcreg = pdr.pcreg;
1339 rp->irpss = sindex;
1340 sv[i] = ss + sym.iss;
1341 sindex += strlen (sv[i]) + 1;
1342 }
1343 }
1344
1345 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1346 size = BFD_ALIGN (size, 16);
1347 rtproc = bfd_alloc (abfd, size);
1348 if (rtproc == NULL)
1349 {
1350 mips_elf_hash_table (info)->procedure_count = 0;
1351 goto error_return;
1352 }
1353
1354 mips_elf_hash_table (info)->procedure_count = count + 2;
1355
1356 erp = rtproc;
1357 memset (erp, 0, sizeof (struct rpdr_ext));
1358 erp++;
1359 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1360 strcpy (str, no_name_func);
1361 str += strlen (no_name_func) + 1;
1362 for (i = 0; i < count; i++)
1363 {
1364 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1365 strcpy (str, sv[i]);
1366 str += strlen (sv[i]) + 1;
1367 }
1368 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1369
1370 /* Set the size and contents of .rtproc section. */
1371 s->size = size;
1372 s->contents = rtproc;
1373
1374 /* Skip this section later on (I don't think this currently
1375 matters, but someday it might). */
1376 s->map_head.link_order = NULL;
1377
1378 if (epdr != NULL)
1379 free (epdr);
1380 if (rpdr != NULL)
1381 free (rpdr);
1382 if (esym != NULL)
1383 free (esym);
1384 if (ss != NULL)
1385 free (ss);
1386 if (sv != NULL)
1387 free (sv);
1388
1389 return TRUE;
1390
1391 error_return:
1392 if (epdr != NULL)
1393 free (epdr);
1394 if (rpdr != NULL)
1395 free (rpdr);
1396 if (esym != NULL)
1397 free (esym);
1398 if (ss != NULL)
1399 free (ss);
1400 if (sv != NULL)
1401 free (sv);
1402 return FALSE;
1403 }
1404 \f
1405 /* We're going to create a stub for H. Create a symbol for the stub's
1406 value and size, to help make the disassembly easier to read. */
1407
1408 static bfd_boolean
1409 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1410 struct mips_elf_link_hash_entry *h,
1411 const char *prefix, asection *s, bfd_vma value,
1412 bfd_vma size)
1413 {
1414 struct bfd_link_hash_entry *bh;
1415 struct elf_link_hash_entry *elfh;
1416 const char *name;
1417
1418 if (ELF_ST_IS_MICROMIPS (h->root.other))
1419 value |= 1;
1420
1421 /* Create a new symbol. */
1422 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1423 bh = NULL;
1424 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1425 BSF_LOCAL, s, value, NULL,
1426 TRUE, FALSE, &bh))
1427 return FALSE;
1428
1429 /* Make it a local function. */
1430 elfh = (struct elf_link_hash_entry *) bh;
1431 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1432 elfh->size = size;
1433 elfh->forced_local = 1;
1434 return TRUE;
1435 }
1436
1437 /* We're about to redefine H. Create a symbol to represent H's
1438 current value and size, to help make the disassembly easier
1439 to read. */
1440
1441 static bfd_boolean
1442 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1443 struct mips_elf_link_hash_entry *h,
1444 const char *prefix)
1445 {
1446 struct bfd_link_hash_entry *bh;
1447 struct elf_link_hash_entry *elfh;
1448 const char *name;
1449 asection *s;
1450 bfd_vma value;
1451
1452 /* Read the symbol's value. */
1453 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1454 || h->root.root.type == bfd_link_hash_defweak);
1455 s = h->root.root.u.def.section;
1456 value = h->root.root.u.def.value;
1457
1458 /* Create a new symbol. */
1459 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1460 bh = NULL;
1461 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1462 BSF_LOCAL, s, value, NULL,
1463 TRUE, FALSE, &bh))
1464 return FALSE;
1465
1466 /* Make it local and copy the other attributes from H. */
1467 elfh = (struct elf_link_hash_entry *) bh;
1468 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1469 elfh->other = h->root.other;
1470 elfh->size = h->root.size;
1471 elfh->forced_local = 1;
1472 return TRUE;
1473 }
1474
1475 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1476 function rather than to a hard-float stub. */
1477
1478 static bfd_boolean
1479 section_allows_mips16_refs_p (asection *section)
1480 {
1481 const char *name;
1482
1483 name = bfd_get_section_name (section->owner, section);
1484 return (FN_STUB_P (name)
1485 || CALL_STUB_P (name)
1486 || CALL_FP_STUB_P (name)
1487 || strcmp (name, ".pdr") == 0);
1488 }
1489
1490 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1491 stub section of some kind. Return the R_SYMNDX of the target
1492 function, or 0 if we can't decide which function that is. */
1493
1494 static unsigned long
1495 mips16_stub_symndx (const struct elf_backend_data *bed,
1496 asection *sec ATTRIBUTE_UNUSED,
1497 const Elf_Internal_Rela *relocs,
1498 const Elf_Internal_Rela *relend)
1499 {
1500 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1501 const Elf_Internal_Rela *rel;
1502
1503 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1504 one in a compound relocation. */
1505 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1506 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1507 return ELF_R_SYM (sec->owner, rel->r_info);
1508
1509 /* Otherwise trust the first relocation, whatever its kind. This is
1510 the traditional behavior. */
1511 if (relocs < relend)
1512 return ELF_R_SYM (sec->owner, relocs->r_info);
1513
1514 return 0;
1515 }
1516
1517 /* Check the mips16 stubs for a particular symbol, and see if we can
1518 discard them. */
1519
1520 static void
1521 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1522 struct mips_elf_link_hash_entry *h)
1523 {
1524 /* Dynamic symbols must use the standard call interface, in case other
1525 objects try to call them. */
1526 if (h->fn_stub != NULL
1527 && h->root.dynindx != -1)
1528 {
1529 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1530 h->need_fn_stub = TRUE;
1531 }
1532
1533 if (h->fn_stub != NULL
1534 && ! h->need_fn_stub)
1535 {
1536 /* We don't need the fn_stub; the only references to this symbol
1537 are 16 bit calls. Clobber the size to 0 to prevent it from
1538 being included in the link. */
1539 h->fn_stub->size = 0;
1540 h->fn_stub->flags &= ~SEC_RELOC;
1541 h->fn_stub->reloc_count = 0;
1542 h->fn_stub->flags |= SEC_EXCLUDE;
1543 }
1544
1545 if (h->call_stub != NULL
1546 && ELF_ST_IS_MIPS16 (h->root.other))
1547 {
1548 /* We don't need the call_stub; this is a 16 bit function, so
1549 calls from other 16 bit functions are OK. Clobber the size
1550 to 0 to prevent it from being included in the link. */
1551 h->call_stub->size = 0;
1552 h->call_stub->flags &= ~SEC_RELOC;
1553 h->call_stub->reloc_count = 0;
1554 h->call_stub->flags |= SEC_EXCLUDE;
1555 }
1556
1557 if (h->call_fp_stub != NULL
1558 && ELF_ST_IS_MIPS16 (h->root.other))
1559 {
1560 /* We don't need the call_stub; this is a 16 bit function, so
1561 calls from other 16 bit functions are OK. Clobber the size
1562 to 0 to prevent it from being included in the link. */
1563 h->call_fp_stub->size = 0;
1564 h->call_fp_stub->flags &= ~SEC_RELOC;
1565 h->call_fp_stub->reloc_count = 0;
1566 h->call_fp_stub->flags |= SEC_EXCLUDE;
1567 }
1568 }
1569
1570 /* Hashtable callbacks for mips_elf_la25_stubs. */
1571
1572 static hashval_t
1573 mips_elf_la25_stub_hash (const void *entry_)
1574 {
1575 const struct mips_elf_la25_stub *entry;
1576
1577 entry = (struct mips_elf_la25_stub *) entry_;
1578 return entry->h->root.root.u.def.section->id
1579 + entry->h->root.root.u.def.value;
1580 }
1581
1582 static int
1583 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1584 {
1585 const struct mips_elf_la25_stub *entry1, *entry2;
1586
1587 entry1 = (struct mips_elf_la25_stub *) entry1_;
1588 entry2 = (struct mips_elf_la25_stub *) entry2_;
1589 return ((entry1->h->root.root.u.def.section
1590 == entry2->h->root.root.u.def.section)
1591 && (entry1->h->root.root.u.def.value
1592 == entry2->h->root.root.u.def.value));
1593 }
1594
1595 /* Called by the linker to set up the la25 stub-creation code. FN is
1596 the linker's implementation of add_stub_function. Return true on
1597 success. */
1598
1599 bfd_boolean
1600 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1601 asection *(*fn) (const char *, asection *,
1602 asection *))
1603 {
1604 struct mips_elf_link_hash_table *htab;
1605
1606 htab = mips_elf_hash_table (info);
1607 if (htab == NULL)
1608 return FALSE;
1609
1610 htab->add_stub_section = fn;
1611 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1612 mips_elf_la25_stub_eq, NULL);
1613 if (htab->la25_stubs == NULL)
1614 return FALSE;
1615
1616 return TRUE;
1617 }
1618
1619 /* Return true if H is a locally-defined PIC function, in the sense
1620 that it or its fn_stub might need $25 to be valid on entry.
1621 Note that MIPS16 functions set up $gp using PC-relative instructions,
1622 so they themselves never need $25 to be valid. Only non-MIPS16
1623 entry points are of interest here. */
1624
1625 static bfd_boolean
1626 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1627 {
1628 return ((h->root.root.type == bfd_link_hash_defined
1629 || h->root.root.type == bfd_link_hash_defweak)
1630 && h->root.def_regular
1631 && !bfd_is_abs_section (h->root.root.u.def.section)
1632 && (!ELF_ST_IS_MIPS16 (h->root.other)
1633 || (h->fn_stub && h->need_fn_stub))
1634 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1635 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1636 }
1637
1638 /* Set *SEC to the input section that contains the target of STUB.
1639 Return the offset of the target from the start of that section. */
1640
1641 static bfd_vma
1642 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1643 asection **sec)
1644 {
1645 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1646 {
1647 BFD_ASSERT (stub->h->need_fn_stub);
1648 *sec = stub->h->fn_stub;
1649 return 0;
1650 }
1651 else
1652 {
1653 *sec = stub->h->root.root.u.def.section;
1654 return stub->h->root.root.u.def.value;
1655 }
1656 }
1657
1658 /* STUB describes an la25 stub that we have decided to implement
1659 by inserting an LUI/ADDIU pair before the target function.
1660 Create the section and redirect the function symbol to it. */
1661
1662 static bfd_boolean
1663 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1664 struct bfd_link_info *info)
1665 {
1666 struct mips_elf_link_hash_table *htab;
1667 char *name;
1668 asection *s, *input_section;
1669 unsigned int align;
1670
1671 htab = mips_elf_hash_table (info);
1672 if (htab == NULL)
1673 return FALSE;
1674
1675 /* Create a unique name for the new section. */
1676 name = bfd_malloc (11 + sizeof (".text.stub."));
1677 if (name == NULL)
1678 return FALSE;
1679 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1680
1681 /* Create the section. */
1682 mips_elf_get_la25_target (stub, &input_section);
1683 s = htab->add_stub_section (name, input_section,
1684 input_section->output_section);
1685 if (s == NULL)
1686 return FALSE;
1687
1688 /* Make sure that any padding goes before the stub. */
1689 align = input_section->alignment_power;
1690 if (!bfd_set_section_alignment (s->owner, s, align))
1691 return FALSE;
1692 if (align > 3)
1693 s->size = (1 << align) - 8;
1694
1695 /* Create a symbol for the stub. */
1696 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1697 stub->stub_section = s;
1698 stub->offset = s->size;
1699
1700 /* Allocate room for it. */
1701 s->size += 8;
1702 return TRUE;
1703 }
1704
1705 /* STUB describes an la25 stub that we have decided to implement
1706 with a separate trampoline. Allocate room for it and redirect
1707 the function symbol to it. */
1708
1709 static bfd_boolean
1710 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1711 struct bfd_link_info *info)
1712 {
1713 struct mips_elf_link_hash_table *htab;
1714 asection *s;
1715
1716 htab = mips_elf_hash_table (info);
1717 if (htab == NULL)
1718 return FALSE;
1719
1720 /* Create a trampoline section, if we haven't already. */
1721 s = htab->strampoline;
1722 if (s == NULL)
1723 {
1724 asection *input_section = stub->h->root.root.u.def.section;
1725 s = htab->add_stub_section (".text", NULL,
1726 input_section->output_section);
1727 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1728 return FALSE;
1729 htab->strampoline = s;
1730 }
1731
1732 /* Create a symbol for the stub. */
1733 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1734 stub->stub_section = s;
1735 stub->offset = s->size;
1736
1737 /* Allocate room for it. */
1738 s->size += 16;
1739 return TRUE;
1740 }
1741
1742 /* H describes a symbol that needs an la25 stub. Make sure that an
1743 appropriate stub exists and point H at it. */
1744
1745 static bfd_boolean
1746 mips_elf_add_la25_stub (struct bfd_link_info *info,
1747 struct mips_elf_link_hash_entry *h)
1748 {
1749 struct mips_elf_link_hash_table *htab;
1750 struct mips_elf_la25_stub search, *stub;
1751 bfd_boolean use_trampoline_p;
1752 asection *s;
1753 bfd_vma value;
1754 void **slot;
1755
1756 /* Describe the stub we want. */
1757 search.stub_section = NULL;
1758 search.offset = 0;
1759 search.h = h;
1760
1761 /* See if we've already created an equivalent stub. */
1762 htab = mips_elf_hash_table (info);
1763 if (htab == NULL)
1764 return FALSE;
1765
1766 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1767 if (slot == NULL)
1768 return FALSE;
1769
1770 stub = (struct mips_elf_la25_stub *) *slot;
1771 if (stub != NULL)
1772 {
1773 /* We can reuse the existing stub. */
1774 h->la25_stub = stub;
1775 return TRUE;
1776 }
1777
1778 /* Create a permanent copy of ENTRY and add it to the hash table. */
1779 stub = bfd_malloc (sizeof (search));
1780 if (stub == NULL)
1781 return FALSE;
1782 *stub = search;
1783 *slot = stub;
1784
1785 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1786 of the section and if we would need no more than 2 nops. */
1787 value = mips_elf_get_la25_target (stub, &s);
1788 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1789
1790 h->la25_stub = stub;
1791 return (use_trampoline_p
1792 ? mips_elf_add_la25_trampoline (stub, info)
1793 : mips_elf_add_la25_intro (stub, info));
1794 }
1795
1796 /* A mips_elf_link_hash_traverse callback that is called before sizing
1797 sections. DATA points to a mips_htab_traverse_info structure. */
1798
1799 static bfd_boolean
1800 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1801 {
1802 struct mips_htab_traverse_info *hti;
1803
1804 hti = (struct mips_htab_traverse_info *) data;
1805 if (!hti->info->relocatable)
1806 mips_elf_check_mips16_stubs (hti->info, h);
1807
1808 if (mips_elf_local_pic_function_p (h))
1809 {
1810 /* PR 12845: If H is in a section that has been garbage
1811 collected it will have its output section set to *ABS*. */
1812 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1813 return TRUE;
1814
1815 /* H is a function that might need $25 to be valid on entry.
1816 If we're creating a non-PIC relocatable object, mark H as
1817 being PIC. If we're creating a non-relocatable object with
1818 non-PIC branches and jumps to H, make sure that H has an la25
1819 stub. */
1820 if (hti->info->relocatable)
1821 {
1822 if (!PIC_OBJECT_P (hti->output_bfd))
1823 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1824 }
1825 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1826 {
1827 hti->error = TRUE;
1828 return FALSE;
1829 }
1830 }
1831 return TRUE;
1832 }
1833 \f
1834 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1835 Most mips16 instructions are 16 bits, but these instructions
1836 are 32 bits.
1837
1838 The format of these instructions is:
1839
1840 +--------------+--------------------------------+
1841 | JALX | X| Imm 20:16 | Imm 25:21 |
1842 +--------------+--------------------------------+
1843 | Immediate 15:0 |
1844 +-----------------------------------------------+
1845
1846 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1847 Note that the immediate value in the first word is swapped.
1848
1849 When producing a relocatable object file, R_MIPS16_26 is
1850 handled mostly like R_MIPS_26. In particular, the addend is
1851 stored as a straight 26-bit value in a 32-bit instruction.
1852 (gas makes life simpler for itself by never adjusting a
1853 R_MIPS16_26 reloc to be against a section, so the addend is
1854 always zero). However, the 32 bit instruction is stored as 2
1855 16-bit values, rather than a single 32-bit value. In a
1856 big-endian file, the result is the same; in a little-endian
1857 file, the two 16-bit halves of the 32 bit value are swapped.
1858 This is so that a disassembler can recognize the jal
1859 instruction.
1860
1861 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1862 instruction stored as two 16-bit values. The addend A is the
1863 contents of the targ26 field. The calculation is the same as
1864 R_MIPS_26. When storing the calculated value, reorder the
1865 immediate value as shown above, and don't forget to store the
1866 value as two 16-bit values.
1867
1868 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1869 defined as
1870
1871 big-endian:
1872 +--------+----------------------+
1873 | | |
1874 | | targ26-16 |
1875 |31 26|25 0|
1876 +--------+----------------------+
1877
1878 little-endian:
1879 +----------+------+-------------+
1880 | | | |
1881 | sub1 | | sub2 |
1882 |0 9|10 15|16 31|
1883 +----------+--------------------+
1884 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1885 ((sub1 << 16) | sub2)).
1886
1887 When producing a relocatable object file, the calculation is
1888 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1889 When producing a fully linked file, the calculation is
1890 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1891 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1892
1893 The table below lists the other MIPS16 instruction relocations.
1894 Each one is calculated in the same way as the non-MIPS16 relocation
1895 given on the right, but using the extended MIPS16 layout of 16-bit
1896 immediate fields:
1897
1898 R_MIPS16_GPREL R_MIPS_GPREL16
1899 R_MIPS16_GOT16 R_MIPS_GOT16
1900 R_MIPS16_CALL16 R_MIPS_CALL16
1901 R_MIPS16_HI16 R_MIPS_HI16
1902 R_MIPS16_LO16 R_MIPS_LO16
1903
1904 A typical instruction will have a format like this:
1905
1906 +--------------+--------------------------------+
1907 | EXTEND | Imm 10:5 | Imm 15:11 |
1908 +--------------+--------------------------------+
1909 | Major | rx | ry | Imm 4:0 |
1910 +--------------+--------------------------------+
1911
1912 EXTEND is the five bit value 11110. Major is the instruction
1913 opcode.
1914
1915 All we need to do here is shuffle the bits appropriately.
1916 As above, the two 16-bit halves must be swapped on a
1917 little-endian system. */
1918
1919 static inline bfd_boolean
1920 mips16_reloc_p (int r_type)
1921 {
1922 switch (r_type)
1923 {
1924 case R_MIPS16_26:
1925 case R_MIPS16_GPREL:
1926 case R_MIPS16_GOT16:
1927 case R_MIPS16_CALL16:
1928 case R_MIPS16_HI16:
1929 case R_MIPS16_LO16:
1930 case R_MIPS16_TLS_GD:
1931 case R_MIPS16_TLS_LDM:
1932 case R_MIPS16_TLS_DTPREL_HI16:
1933 case R_MIPS16_TLS_DTPREL_LO16:
1934 case R_MIPS16_TLS_GOTTPREL:
1935 case R_MIPS16_TLS_TPREL_HI16:
1936 case R_MIPS16_TLS_TPREL_LO16:
1937 return TRUE;
1938
1939 default:
1940 return FALSE;
1941 }
1942 }
1943
1944 /* Check if a microMIPS reloc. */
1945
1946 static inline bfd_boolean
1947 micromips_reloc_p (unsigned int r_type)
1948 {
1949 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1950 }
1951
1952 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1953 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1954 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1955
1956 static inline bfd_boolean
1957 micromips_reloc_shuffle_p (unsigned int r_type)
1958 {
1959 return (micromips_reloc_p (r_type)
1960 && r_type != R_MICROMIPS_PC7_S1
1961 && r_type != R_MICROMIPS_PC10_S1);
1962 }
1963
1964 static inline bfd_boolean
1965 got16_reloc_p (int r_type)
1966 {
1967 return (r_type == R_MIPS_GOT16
1968 || r_type == R_MIPS16_GOT16
1969 || r_type == R_MICROMIPS_GOT16);
1970 }
1971
1972 static inline bfd_boolean
1973 call16_reloc_p (int r_type)
1974 {
1975 return (r_type == R_MIPS_CALL16
1976 || r_type == R_MIPS16_CALL16
1977 || r_type == R_MICROMIPS_CALL16);
1978 }
1979
1980 static inline bfd_boolean
1981 got_disp_reloc_p (unsigned int r_type)
1982 {
1983 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1984 }
1985
1986 static inline bfd_boolean
1987 got_page_reloc_p (unsigned int r_type)
1988 {
1989 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1990 }
1991
1992 static inline bfd_boolean
1993 got_ofst_reloc_p (unsigned int r_type)
1994 {
1995 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1996 }
1997
1998 static inline bfd_boolean
1999 got_hi16_reloc_p (unsigned int r_type)
2000 {
2001 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
2002 }
2003
2004 static inline bfd_boolean
2005 got_lo16_reloc_p (unsigned int r_type)
2006 {
2007 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2008 }
2009
2010 static inline bfd_boolean
2011 call_hi16_reloc_p (unsigned int r_type)
2012 {
2013 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2014 }
2015
2016 static inline bfd_boolean
2017 call_lo16_reloc_p (unsigned int r_type)
2018 {
2019 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2020 }
2021
2022 static inline bfd_boolean
2023 hi16_reloc_p (int r_type)
2024 {
2025 return (r_type == R_MIPS_HI16
2026 || r_type == R_MIPS16_HI16
2027 || r_type == R_MICROMIPS_HI16);
2028 }
2029
2030 static inline bfd_boolean
2031 lo16_reloc_p (int r_type)
2032 {
2033 return (r_type == R_MIPS_LO16
2034 || r_type == R_MIPS16_LO16
2035 || r_type == R_MICROMIPS_LO16);
2036 }
2037
2038 static inline bfd_boolean
2039 mips16_call_reloc_p (int r_type)
2040 {
2041 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2042 }
2043
2044 static inline bfd_boolean
2045 jal_reloc_p (int r_type)
2046 {
2047 return (r_type == R_MIPS_26
2048 || r_type == R_MIPS16_26
2049 || r_type == R_MICROMIPS_26_S1);
2050 }
2051
2052 static inline bfd_boolean
2053 micromips_branch_reloc_p (int r_type)
2054 {
2055 return (r_type == R_MICROMIPS_26_S1
2056 || r_type == R_MICROMIPS_PC16_S1
2057 || r_type == R_MICROMIPS_PC10_S1
2058 || r_type == R_MICROMIPS_PC7_S1);
2059 }
2060
2061 static inline bfd_boolean
2062 tls_gd_reloc_p (unsigned int r_type)
2063 {
2064 return (r_type == R_MIPS_TLS_GD
2065 || r_type == R_MIPS16_TLS_GD
2066 || r_type == R_MICROMIPS_TLS_GD);
2067 }
2068
2069 static inline bfd_boolean
2070 tls_ldm_reloc_p (unsigned int r_type)
2071 {
2072 return (r_type == R_MIPS_TLS_LDM
2073 || r_type == R_MIPS16_TLS_LDM
2074 || r_type == R_MICROMIPS_TLS_LDM);
2075 }
2076
2077 static inline bfd_boolean
2078 tls_gottprel_reloc_p (unsigned int r_type)
2079 {
2080 return (r_type == R_MIPS_TLS_GOTTPREL
2081 || r_type == R_MIPS16_TLS_GOTTPREL
2082 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2083 }
2084
2085 void
2086 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2087 bfd_boolean jal_shuffle, bfd_byte *data)
2088 {
2089 bfd_vma first, second, val;
2090
2091 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2092 return;
2093
2094 /* Pick up the first and second halfwords of the instruction. */
2095 first = bfd_get_16 (abfd, data);
2096 second = bfd_get_16 (abfd, data + 2);
2097 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2098 val = first << 16 | second;
2099 else if (r_type != R_MIPS16_26)
2100 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2101 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2102 else
2103 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2104 | ((first & 0x1f) << 21) | second);
2105 bfd_put_32 (abfd, val, data);
2106 }
2107
2108 void
2109 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2110 bfd_boolean jal_shuffle, bfd_byte *data)
2111 {
2112 bfd_vma first, second, val;
2113
2114 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2115 return;
2116
2117 val = bfd_get_32 (abfd, data);
2118 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2119 {
2120 second = val & 0xffff;
2121 first = val >> 16;
2122 }
2123 else if (r_type != R_MIPS16_26)
2124 {
2125 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2126 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2127 }
2128 else
2129 {
2130 second = val & 0xffff;
2131 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2132 | ((val >> 21) & 0x1f);
2133 }
2134 bfd_put_16 (abfd, second, data + 2);
2135 bfd_put_16 (abfd, first, data);
2136 }
2137
2138 bfd_reloc_status_type
2139 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2140 arelent *reloc_entry, asection *input_section,
2141 bfd_boolean relocatable, void *data, bfd_vma gp)
2142 {
2143 bfd_vma relocation;
2144 bfd_signed_vma val;
2145 bfd_reloc_status_type status;
2146
2147 if (bfd_is_com_section (symbol->section))
2148 relocation = 0;
2149 else
2150 relocation = symbol->value;
2151
2152 relocation += symbol->section->output_section->vma;
2153 relocation += symbol->section->output_offset;
2154
2155 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2156 return bfd_reloc_outofrange;
2157
2158 /* Set val to the offset into the section or symbol. */
2159 val = reloc_entry->addend;
2160
2161 _bfd_mips_elf_sign_extend (val, 16);
2162
2163 /* Adjust val for the final section location and GP value. If we
2164 are producing relocatable output, we don't want to do this for
2165 an external symbol. */
2166 if (! relocatable
2167 || (symbol->flags & BSF_SECTION_SYM) != 0)
2168 val += relocation - gp;
2169
2170 if (reloc_entry->howto->partial_inplace)
2171 {
2172 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2173 (bfd_byte *) data
2174 + reloc_entry->address);
2175 if (status != bfd_reloc_ok)
2176 return status;
2177 }
2178 else
2179 reloc_entry->addend = val;
2180
2181 if (relocatable)
2182 reloc_entry->address += input_section->output_offset;
2183
2184 return bfd_reloc_ok;
2185 }
2186
2187 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2188 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2189 that contains the relocation field and DATA points to the start of
2190 INPUT_SECTION. */
2191
2192 struct mips_hi16
2193 {
2194 struct mips_hi16 *next;
2195 bfd_byte *data;
2196 asection *input_section;
2197 arelent rel;
2198 };
2199
2200 /* FIXME: This should not be a static variable. */
2201
2202 static struct mips_hi16 *mips_hi16_list;
2203
2204 /* A howto special_function for REL *HI16 relocations. We can only
2205 calculate the correct value once we've seen the partnering
2206 *LO16 relocation, so just save the information for later.
2207
2208 The ABI requires that the *LO16 immediately follow the *HI16.
2209 However, as a GNU extension, we permit an arbitrary number of
2210 *HI16s to be associated with a single *LO16. This significantly
2211 simplies the relocation handling in gcc. */
2212
2213 bfd_reloc_status_type
2214 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2215 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2216 asection *input_section, bfd *output_bfd,
2217 char **error_message ATTRIBUTE_UNUSED)
2218 {
2219 struct mips_hi16 *n;
2220
2221 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2222 return bfd_reloc_outofrange;
2223
2224 n = bfd_malloc (sizeof *n);
2225 if (n == NULL)
2226 return bfd_reloc_outofrange;
2227
2228 n->next = mips_hi16_list;
2229 n->data = data;
2230 n->input_section = input_section;
2231 n->rel = *reloc_entry;
2232 mips_hi16_list = n;
2233
2234 if (output_bfd != NULL)
2235 reloc_entry->address += input_section->output_offset;
2236
2237 return bfd_reloc_ok;
2238 }
2239
2240 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2241 like any other 16-bit relocation when applied to global symbols, but is
2242 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2243
2244 bfd_reloc_status_type
2245 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2246 void *data, asection *input_section,
2247 bfd *output_bfd, char **error_message)
2248 {
2249 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2250 || bfd_is_und_section (bfd_get_section (symbol))
2251 || bfd_is_com_section (bfd_get_section (symbol)))
2252 /* The relocation is against a global symbol. */
2253 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2254 input_section, output_bfd,
2255 error_message);
2256
2257 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2258 input_section, output_bfd, error_message);
2259 }
2260
2261 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2262 is a straightforward 16 bit inplace relocation, but we must deal with
2263 any partnering high-part relocations as well. */
2264
2265 bfd_reloc_status_type
2266 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2267 void *data, asection *input_section,
2268 bfd *output_bfd, char **error_message)
2269 {
2270 bfd_vma vallo;
2271 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2272
2273 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2274 return bfd_reloc_outofrange;
2275
2276 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2277 location);
2278 vallo = bfd_get_32 (abfd, location);
2279 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2280 location);
2281
2282 while (mips_hi16_list != NULL)
2283 {
2284 bfd_reloc_status_type ret;
2285 struct mips_hi16 *hi;
2286
2287 hi = mips_hi16_list;
2288
2289 /* R_MIPS*_GOT16 relocations are something of a special case. We
2290 want to install the addend in the same way as for a R_MIPS*_HI16
2291 relocation (with a rightshift of 16). However, since GOT16
2292 relocations can also be used with global symbols, their howto
2293 has a rightshift of 0. */
2294 if (hi->rel.howto->type == R_MIPS_GOT16)
2295 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2296 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2297 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2298 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2299 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2300
2301 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2302 carry or borrow will induce a change of +1 or -1 in the high part. */
2303 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2304
2305 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2306 hi->input_section, output_bfd,
2307 error_message);
2308 if (ret != bfd_reloc_ok)
2309 return ret;
2310
2311 mips_hi16_list = hi->next;
2312 free (hi);
2313 }
2314
2315 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2316 input_section, output_bfd,
2317 error_message);
2318 }
2319
2320 /* A generic howto special_function. This calculates and installs the
2321 relocation itself, thus avoiding the oft-discussed problems in
2322 bfd_perform_relocation and bfd_install_relocation. */
2323
2324 bfd_reloc_status_type
2325 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2326 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2327 asection *input_section, bfd *output_bfd,
2328 char **error_message ATTRIBUTE_UNUSED)
2329 {
2330 bfd_signed_vma val;
2331 bfd_reloc_status_type status;
2332 bfd_boolean relocatable;
2333
2334 relocatable = (output_bfd != NULL);
2335
2336 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2337 return bfd_reloc_outofrange;
2338
2339 /* Build up the field adjustment in VAL. */
2340 val = 0;
2341 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2342 {
2343 /* Either we're calculating the final field value or we have a
2344 relocation against a section symbol. Add in the section's
2345 offset or address. */
2346 val += symbol->section->output_section->vma;
2347 val += symbol->section->output_offset;
2348 }
2349
2350 if (!relocatable)
2351 {
2352 /* We're calculating the final field value. Add in the symbol's value
2353 and, if pc-relative, subtract the address of the field itself. */
2354 val += symbol->value;
2355 if (reloc_entry->howto->pc_relative)
2356 {
2357 val -= input_section->output_section->vma;
2358 val -= input_section->output_offset;
2359 val -= reloc_entry->address;
2360 }
2361 }
2362
2363 /* VAL is now the final adjustment. If we're keeping this relocation
2364 in the output file, and if the relocation uses a separate addend,
2365 we just need to add VAL to that addend. Otherwise we need to add
2366 VAL to the relocation field itself. */
2367 if (relocatable && !reloc_entry->howto->partial_inplace)
2368 reloc_entry->addend += val;
2369 else
2370 {
2371 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2372
2373 /* Add in the separate addend, if any. */
2374 val += reloc_entry->addend;
2375
2376 /* Add VAL to the relocation field. */
2377 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2378 location);
2379 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2380 location);
2381 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2382 location);
2383
2384 if (status != bfd_reloc_ok)
2385 return status;
2386 }
2387
2388 if (relocatable)
2389 reloc_entry->address += input_section->output_offset;
2390
2391 return bfd_reloc_ok;
2392 }
2393 \f
2394 /* Swap an entry in a .gptab section. Note that these routines rely
2395 on the equivalence of the two elements of the union. */
2396
2397 static void
2398 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2399 Elf32_gptab *in)
2400 {
2401 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2402 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2403 }
2404
2405 static void
2406 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2407 Elf32_External_gptab *ex)
2408 {
2409 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2410 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2411 }
2412
2413 static void
2414 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2415 Elf32_External_compact_rel *ex)
2416 {
2417 H_PUT_32 (abfd, in->id1, ex->id1);
2418 H_PUT_32 (abfd, in->num, ex->num);
2419 H_PUT_32 (abfd, in->id2, ex->id2);
2420 H_PUT_32 (abfd, in->offset, ex->offset);
2421 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2422 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2423 }
2424
2425 static void
2426 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2427 Elf32_External_crinfo *ex)
2428 {
2429 unsigned long l;
2430
2431 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2432 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2433 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2434 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2435 H_PUT_32 (abfd, l, ex->info);
2436 H_PUT_32 (abfd, in->konst, ex->konst);
2437 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2438 }
2439 \f
2440 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2441 routines swap this structure in and out. They are used outside of
2442 BFD, so they are globally visible. */
2443
2444 void
2445 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2446 Elf32_RegInfo *in)
2447 {
2448 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2449 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2450 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2451 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2452 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2453 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2454 }
2455
2456 void
2457 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2458 Elf32_External_RegInfo *ex)
2459 {
2460 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2461 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2462 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2463 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2464 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2465 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2466 }
2467
2468 /* In the 64 bit ABI, the .MIPS.options section holds register
2469 information in an Elf64_Reginfo structure. These routines swap
2470 them in and out. They are globally visible because they are used
2471 outside of BFD. These routines are here so that gas can call them
2472 without worrying about whether the 64 bit ABI has been included. */
2473
2474 void
2475 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2476 Elf64_Internal_RegInfo *in)
2477 {
2478 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2479 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2480 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2481 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2482 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2483 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2484 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2485 }
2486
2487 void
2488 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2489 Elf64_External_RegInfo *ex)
2490 {
2491 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2492 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2493 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2494 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2495 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2496 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2497 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2498 }
2499
2500 /* Swap in an options header. */
2501
2502 void
2503 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2504 Elf_Internal_Options *in)
2505 {
2506 in->kind = H_GET_8 (abfd, ex->kind);
2507 in->size = H_GET_8 (abfd, ex->size);
2508 in->section = H_GET_16 (abfd, ex->section);
2509 in->info = H_GET_32 (abfd, ex->info);
2510 }
2511
2512 /* Swap out an options header. */
2513
2514 void
2515 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2516 Elf_External_Options *ex)
2517 {
2518 H_PUT_8 (abfd, in->kind, ex->kind);
2519 H_PUT_8 (abfd, in->size, ex->size);
2520 H_PUT_16 (abfd, in->section, ex->section);
2521 H_PUT_32 (abfd, in->info, ex->info);
2522 }
2523 \f
2524 /* This function is called via qsort() to sort the dynamic relocation
2525 entries by increasing r_symndx value. */
2526
2527 static int
2528 sort_dynamic_relocs (const void *arg1, const void *arg2)
2529 {
2530 Elf_Internal_Rela int_reloc1;
2531 Elf_Internal_Rela int_reloc2;
2532 int diff;
2533
2534 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2535 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2536
2537 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2538 if (diff != 0)
2539 return diff;
2540
2541 if (int_reloc1.r_offset < int_reloc2.r_offset)
2542 return -1;
2543 if (int_reloc1.r_offset > int_reloc2.r_offset)
2544 return 1;
2545 return 0;
2546 }
2547
2548 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2549
2550 static int
2551 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2552 const void *arg2 ATTRIBUTE_UNUSED)
2553 {
2554 #ifdef BFD64
2555 Elf_Internal_Rela int_reloc1[3];
2556 Elf_Internal_Rela int_reloc2[3];
2557
2558 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2559 (reldyn_sorting_bfd, arg1, int_reloc1);
2560 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2561 (reldyn_sorting_bfd, arg2, int_reloc2);
2562
2563 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2564 return -1;
2565 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2566 return 1;
2567
2568 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2569 return -1;
2570 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2571 return 1;
2572 return 0;
2573 #else
2574 abort ();
2575 #endif
2576 }
2577
2578
2579 /* This routine is used to write out ECOFF debugging external symbol
2580 information. It is called via mips_elf_link_hash_traverse. The
2581 ECOFF external symbol information must match the ELF external
2582 symbol information. Unfortunately, at this point we don't know
2583 whether a symbol is required by reloc information, so the two
2584 tables may wind up being different. We must sort out the external
2585 symbol information before we can set the final size of the .mdebug
2586 section, and we must set the size of the .mdebug section before we
2587 can relocate any sections, and we can't know which symbols are
2588 required by relocation until we relocate the sections.
2589 Fortunately, it is relatively unlikely that any symbol will be
2590 stripped but required by a reloc. In particular, it can not happen
2591 when generating a final executable. */
2592
2593 static bfd_boolean
2594 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2595 {
2596 struct extsym_info *einfo = data;
2597 bfd_boolean strip;
2598 asection *sec, *output_section;
2599
2600 if (h->root.indx == -2)
2601 strip = FALSE;
2602 else if ((h->root.def_dynamic
2603 || h->root.ref_dynamic
2604 || h->root.type == bfd_link_hash_new)
2605 && !h->root.def_regular
2606 && !h->root.ref_regular)
2607 strip = TRUE;
2608 else if (einfo->info->strip == strip_all
2609 || (einfo->info->strip == strip_some
2610 && bfd_hash_lookup (einfo->info->keep_hash,
2611 h->root.root.root.string,
2612 FALSE, FALSE) == NULL))
2613 strip = TRUE;
2614 else
2615 strip = FALSE;
2616
2617 if (strip)
2618 return TRUE;
2619
2620 if (h->esym.ifd == -2)
2621 {
2622 h->esym.jmptbl = 0;
2623 h->esym.cobol_main = 0;
2624 h->esym.weakext = 0;
2625 h->esym.reserved = 0;
2626 h->esym.ifd = ifdNil;
2627 h->esym.asym.value = 0;
2628 h->esym.asym.st = stGlobal;
2629
2630 if (h->root.root.type == bfd_link_hash_undefined
2631 || h->root.root.type == bfd_link_hash_undefweak)
2632 {
2633 const char *name;
2634
2635 /* Use undefined class. Also, set class and type for some
2636 special symbols. */
2637 name = h->root.root.root.string;
2638 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2639 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2640 {
2641 h->esym.asym.sc = scData;
2642 h->esym.asym.st = stLabel;
2643 h->esym.asym.value = 0;
2644 }
2645 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2646 {
2647 h->esym.asym.sc = scAbs;
2648 h->esym.asym.st = stLabel;
2649 h->esym.asym.value =
2650 mips_elf_hash_table (einfo->info)->procedure_count;
2651 }
2652 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2653 {
2654 h->esym.asym.sc = scAbs;
2655 h->esym.asym.st = stLabel;
2656 h->esym.asym.value = elf_gp (einfo->abfd);
2657 }
2658 else
2659 h->esym.asym.sc = scUndefined;
2660 }
2661 else if (h->root.root.type != bfd_link_hash_defined
2662 && h->root.root.type != bfd_link_hash_defweak)
2663 h->esym.asym.sc = scAbs;
2664 else
2665 {
2666 const char *name;
2667
2668 sec = h->root.root.u.def.section;
2669 output_section = sec->output_section;
2670
2671 /* When making a shared library and symbol h is the one from
2672 the another shared library, OUTPUT_SECTION may be null. */
2673 if (output_section == NULL)
2674 h->esym.asym.sc = scUndefined;
2675 else
2676 {
2677 name = bfd_section_name (output_section->owner, output_section);
2678
2679 if (strcmp (name, ".text") == 0)
2680 h->esym.asym.sc = scText;
2681 else if (strcmp (name, ".data") == 0)
2682 h->esym.asym.sc = scData;
2683 else if (strcmp (name, ".sdata") == 0)
2684 h->esym.asym.sc = scSData;
2685 else if (strcmp (name, ".rodata") == 0
2686 || strcmp (name, ".rdata") == 0)
2687 h->esym.asym.sc = scRData;
2688 else if (strcmp (name, ".bss") == 0)
2689 h->esym.asym.sc = scBss;
2690 else if (strcmp (name, ".sbss") == 0)
2691 h->esym.asym.sc = scSBss;
2692 else if (strcmp (name, ".init") == 0)
2693 h->esym.asym.sc = scInit;
2694 else if (strcmp (name, ".fini") == 0)
2695 h->esym.asym.sc = scFini;
2696 else
2697 h->esym.asym.sc = scAbs;
2698 }
2699 }
2700
2701 h->esym.asym.reserved = 0;
2702 h->esym.asym.index = indexNil;
2703 }
2704
2705 if (h->root.root.type == bfd_link_hash_common)
2706 h->esym.asym.value = h->root.root.u.c.size;
2707 else if (h->root.root.type == bfd_link_hash_defined
2708 || h->root.root.type == bfd_link_hash_defweak)
2709 {
2710 if (h->esym.asym.sc == scCommon)
2711 h->esym.asym.sc = scBss;
2712 else if (h->esym.asym.sc == scSCommon)
2713 h->esym.asym.sc = scSBss;
2714
2715 sec = h->root.root.u.def.section;
2716 output_section = sec->output_section;
2717 if (output_section != NULL)
2718 h->esym.asym.value = (h->root.root.u.def.value
2719 + sec->output_offset
2720 + output_section->vma);
2721 else
2722 h->esym.asym.value = 0;
2723 }
2724 else
2725 {
2726 struct mips_elf_link_hash_entry *hd = h;
2727
2728 while (hd->root.root.type == bfd_link_hash_indirect)
2729 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2730
2731 if (hd->needs_lazy_stub)
2732 {
2733 /* Set type and value for a symbol with a function stub. */
2734 h->esym.asym.st = stProc;
2735 sec = hd->root.root.u.def.section;
2736 if (sec == NULL)
2737 h->esym.asym.value = 0;
2738 else
2739 {
2740 output_section = sec->output_section;
2741 if (output_section != NULL)
2742 h->esym.asym.value = (hd->root.plt.offset
2743 + sec->output_offset
2744 + output_section->vma);
2745 else
2746 h->esym.asym.value = 0;
2747 }
2748 }
2749 }
2750
2751 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2752 h->root.root.root.string,
2753 &h->esym))
2754 {
2755 einfo->failed = TRUE;
2756 return FALSE;
2757 }
2758
2759 return TRUE;
2760 }
2761
2762 /* A comparison routine used to sort .gptab entries. */
2763
2764 static int
2765 gptab_compare (const void *p1, const void *p2)
2766 {
2767 const Elf32_gptab *a1 = p1;
2768 const Elf32_gptab *a2 = p2;
2769
2770 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2771 }
2772 \f
2773 /* Functions to manage the got entry hash table. */
2774
2775 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2776 hash number. */
2777
2778 static INLINE hashval_t
2779 mips_elf_hash_bfd_vma (bfd_vma addr)
2780 {
2781 #ifdef BFD64
2782 return addr + (addr >> 32);
2783 #else
2784 return addr;
2785 #endif
2786 }
2787
2788 static hashval_t
2789 mips_elf_got_entry_hash (const void *entry_)
2790 {
2791 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2792
2793 return (entry->symndx
2794 + ((entry->tls_type == GOT_TLS_LDM) << 18)
2795 + (entry->tls_type == GOT_TLS_LDM ? 0
2796 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2797 : entry->symndx >= 0 ? (entry->abfd->id
2798 + mips_elf_hash_bfd_vma (entry->d.addend))
2799 : entry->d.h->root.root.root.hash));
2800 }
2801
2802 static int
2803 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2804 {
2805 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2806 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2807
2808 return (e1->symndx == e2->symndx
2809 && e1->tls_type == e2->tls_type
2810 && (e1->tls_type == GOT_TLS_LDM ? TRUE
2811 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
2812 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
2813 && e1->d.addend == e2->d.addend)
2814 : e2->abfd && e1->d.h == e2->d.h));
2815 }
2816
2817 static hashval_t
2818 mips_got_page_ref_hash (const void *ref_)
2819 {
2820 const struct mips_got_page_ref *ref;
2821
2822 ref = (const struct mips_got_page_ref *) ref_;
2823 return ((ref->symndx >= 0
2824 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
2825 : ref->u.h->root.root.root.hash)
2826 + mips_elf_hash_bfd_vma (ref->addend));
2827 }
2828
2829 static int
2830 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
2831 {
2832 const struct mips_got_page_ref *ref1, *ref2;
2833
2834 ref1 = (const struct mips_got_page_ref *) ref1_;
2835 ref2 = (const struct mips_got_page_ref *) ref2_;
2836 return (ref1->symndx == ref2->symndx
2837 && (ref1->symndx < 0
2838 ? ref1->u.h == ref2->u.h
2839 : ref1->u.abfd == ref2->u.abfd)
2840 && ref1->addend == ref2->addend);
2841 }
2842
2843 static hashval_t
2844 mips_got_page_entry_hash (const void *entry_)
2845 {
2846 const struct mips_got_page_entry *entry;
2847
2848 entry = (const struct mips_got_page_entry *) entry_;
2849 return entry->sec->id;
2850 }
2851
2852 static int
2853 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2854 {
2855 const struct mips_got_page_entry *entry1, *entry2;
2856
2857 entry1 = (const struct mips_got_page_entry *) entry1_;
2858 entry2 = (const struct mips_got_page_entry *) entry2_;
2859 return entry1->sec == entry2->sec;
2860 }
2861 \f
2862 /* Create and return a new mips_got_info structure. */
2863
2864 static struct mips_got_info *
2865 mips_elf_create_got_info (bfd *abfd)
2866 {
2867 struct mips_got_info *g;
2868
2869 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
2870 if (g == NULL)
2871 return NULL;
2872
2873 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
2874 mips_elf_got_entry_eq, NULL);
2875 if (g->got_entries == NULL)
2876 return NULL;
2877
2878 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
2879 mips_got_page_ref_eq, NULL);
2880 if (g->got_page_refs == NULL)
2881 return NULL;
2882
2883 return g;
2884 }
2885
2886 /* Return the GOT info for input bfd ABFD, trying to create a new one if
2887 CREATE_P and if ABFD doesn't already have a GOT. */
2888
2889 static struct mips_got_info *
2890 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
2891 {
2892 struct mips_elf_obj_tdata *tdata;
2893
2894 if (!is_mips_elf (abfd))
2895 return NULL;
2896
2897 tdata = mips_elf_tdata (abfd);
2898 if (!tdata->got && create_p)
2899 tdata->got = mips_elf_create_got_info (abfd);
2900 return tdata->got;
2901 }
2902
2903 /* Record that ABFD should use output GOT G. */
2904
2905 static void
2906 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
2907 {
2908 struct mips_elf_obj_tdata *tdata;
2909
2910 BFD_ASSERT (is_mips_elf (abfd));
2911 tdata = mips_elf_tdata (abfd);
2912 if (tdata->got)
2913 {
2914 /* The GOT structure itself and the hash table entries are
2915 allocated to a bfd, but the hash tables aren't. */
2916 htab_delete (tdata->got->got_entries);
2917 htab_delete (tdata->got->got_page_refs);
2918 if (tdata->got->got_page_entries)
2919 htab_delete (tdata->got->got_page_entries);
2920 }
2921 tdata->got = g;
2922 }
2923
2924 /* Return the dynamic relocation section. If it doesn't exist, try to
2925 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2926 if creation fails. */
2927
2928 static asection *
2929 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2930 {
2931 const char *dname;
2932 asection *sreloc;
2933 bfd *dynobj;
2934
2935 dname = MIPS_ELF_REL_DYN_NAME (info);
2936 dynobj = elf_hash_table (info)->dynobj;
2937 sreloc = bfd_get_linker_section (dynobj, dname);
2938 if (sreloc == NULL && create_p)
2939 {
2940 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
2941 (SEC_ALLOC
2942 | SEC_LOAD
2943 | SEC_HAS_CONTENTS
2944 | SEC_IN_MEMORY
2945 | SEC_LINKER_CREATED
2946 | SEC_READONLY));
2947 if (sreloc == NULL
2948 || ! bfd_set_section_alignment (dynobj, sreloc,
2949 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2950 return NULL;
2951 }
2952 return sreloc;
2953 }
2954
2955 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
2956
2957 static int
2958 mips_elf_reloc_tls_type (unsigned int r_type)
2959 {
2960 if (tls_gd_reloc_p (r_type))
2961 return GOT_TLS_GD;
2962
2963 if (tls_ldm_reloc_p (r_type))
2964 return GOT_TLS_LDM;
2965
2966 if (tls_gottprel_reloc_p (r_type))
2967 return GOT_TLS_IE;
2968
2969 return GOT_TLS_NONE;
2970 }
2971
2972 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
2973
2974 static int
2975 mips_tls_got_entries (unsigned int type)
2976 {
2977 switch (type)
2978 {
2979 case GOT_TLS_GD:
2980 case GOT_TLS_LDM:
2981 return 2;
2982
2983 case GOT_TLS_IE:
2984 return 1;
2985
2986 case GOT_TLS_NONE:
2987 return 0;
2988 }
2989 abort ();
2990 }
2991
2992 /* Count the number of relocations needed for a TLS GOT entry, with
2993 access types from TLS_TYPE, and symbol H (or a local symbol if H
2994 is NULL). */
2995
2996 static int
2997 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2998 struct elf_link_hash_entry *h)
2999 {
3000 int indx = 0;
3001 bfd_boolean need_relocs = FALSE;
3002 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3003
3004 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3005 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
3006 indx = h->dynindx;
3007
3008 if ((info->shared || indx != 0)
3009 && (h == NULL
3010 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3011 || h->root.type != bfd_link_hash_undefweak))
3012 need_relocs = TRUE;
3013
3014 if (!need_relocs)
3015 return 0;
3016
3017 switch (tls_type)
3018 {
3019 case GOT_TLS_GD:
3020 return indx != 0 ? 2 : 1;
3021
3022 case GOT_TLS_IE:
3023 return 1;
3024
3025 case GOT_TLS_LDM:
3026 return info->shared ? 1 : 0;
3027
3028 default:
3029 return 0;
3030 }
3031 }
3032
3033 /* Add the number of GOT entries and TLS relocations required by ENTRY
3034 to G. */
3035
3036 static void
3037 mips_elf_count_got_entry (struct bfd_link_info *info,
3038 struct mips_got_info *g,
3039 struct mips_got_entry *entry)
3040 {
3041 if (entry->tls_type)
3042 {
3043 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3044 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3045 entry->symndx < 0
3046 ? &entry->d.h->root : NULL);
3047 }
3048 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3049 g->local_gotno += 1;
3050 else
3051 g->global_gotno += 1;
3052 }
3053
3054 /* Output a simple dynamic relocation into SRELOC. */
3055
3056 static void
3057 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3058 asection *sreloc,
3059 unsigned long reloc_index,
3060 unsigned long indx,
3061 int r_type,
3062 bfd_vma offset)
3063 {
3064 Elf_Internal_Rela rel[3];
3065
3066 memset (rel, 0, sizeof (rel));
3067
3068 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3069 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3070
3071 if (ABI_64_P (output_bfd))
3072 {
3073 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3074 (output_bfd, &rel[0],
3075 (sreloc->contents
3076 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3077 }
3078 else
3079 bfd_elf32_swap_reloc_out
3080 (output_bfd, &rel[0],
3081 (sreloc->contents
3082 + reloc_index * sizeof (Elf32_External_Rel)));
3083 }
3084
3085 /* Initialize a set of TLS GOT entries for one symbol. */
3086
3087 static void
3088 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3089 struct mips_got_entry *entry,
3090 struct mips_elf_link_hash_entry *h,
3091 bfd_vma value)
3092 {
3093 struct mips_elf_link_hash_table *htab;
3094 int indx;
3095 asection *sreloc, *sgot;
3096 bfd_vma got_offset, got_offset2;
3097 bfd_boolean need_relocs = FALSE;
3098
3099 htab = mips_elf_hash_table (info);
3100 if (htab == NULL)
3101 return;
3102
3103 sgot = htab->sgot;
3104
3105 indx = 0;
3106 if (h != NULL)
3107 {
3108 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3109
3110 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3111 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3112 indx = h->root.dynindx;
3113 }
3114
3115 if (entry->tls_initialized)
3116 return;
3117
3118 if ((info->shared || indx != 0)
3119 && (h == NULL
3120 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3121 || h->root.type != bfd_link_hash_undefweak))
3122 need_relocs = TRUE;
3123
3124 /* MINUS_ONE means the symbol is not defined in this object. It may not
3125 be defined at all; assume that the value doesn't matter in that
3126 case. Otherwise complain if we would use the value. */
3127 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3128 || h->root.root.type == bfd_link_hash_undefweak);
3129
3130 /* Emit necessary relocations. */
3131 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3132 got_offset = entry->gotidx;
3133
3134 switch (entry->tls_type)
3135 {
3136 case GOT_TLS_GD:
3137 /* General Dynamic. */
3138 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3139
3140 if (need_relocs)
3141 {
3142 mips_elf_output_dynamic_relocation
3143 (abfd, sreloc, sreloc->reloc_count++, indx,
3144 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3145 sgot->output_offset + sgot->output_section->vma + got_offset);
3146
3147 if (indx)
3148 mips_elf_output_dynamic_relocation
3149 (abfd, sreloc, sreloc->reloc_count++, indx,
3150 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3151 sgot->output_offset + sgot->output_section->vma + got_offset2);
3152 else
3153 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3154 sgot->contents + got_offset2);
3155 }
3156 else
3157 {
3158 MIPS_ELF_PUT_WORD (abfd, 1,
3159 sgot->contents + got_offset);
3160 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3161 sgot->contents + got_offset2);
3162 }
3163 break;
3164
3165 case GOT_TLS_IE:
3166 /* Initial Exec model. */
3167 if (need_relocs)
3168 {
3169 if (indx == 0)
3170 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3171 sgot->contents + got_offset);
3172 else
3173 MIPS_ELF_PUT_WORD (abfd, 0,
3174 sgot->contents + got_offset);
3175
3176 mips_elf_output_dynamic_relocation
3177 (abfd, sreloc, sreloc->reloc_count++, indx,
3178 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3179 sgot->output_offset + sgot->output_section->vma + got_offset);
3180 }
3181 else
3182 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3183 sgot->contents + got_offset);
3184 break;
3185
3186 case GOT_TLS_LDM:
3187 /* The initial offset is zero, and the LD offsets will include the
3188 bias by DTP_OFFSET. */
3189 MIPS_ELF_PUT_WORD (abfd, 0,
3190 sgot->contents + got_offset
3191 + MIPS_ELF_GOT_SIZE (abfd));
3192
3193 if (!info->shared)
3194 MIPS_ELF_PUT_WORD (abfd, 1,
3195 sgot->contents + got_offset);
3196 else
3197 mips_elf_output_dynamic_relocation
3198 (abfd, sreloc, sreloc->reloc_count++, indx,
3199 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3200 sgot->output_offset + sgot->output_section->vma + got_offset);
3201 break;
3202
3203 default:
3204 abort ();
3205 }
3206
3207 entry->tls_initialized = TRUE;
3208 }
3209
3210 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3211 for global symbol H. .got.plt comes before the GOT, so the offset
3212 will be negative. */
3213
3214 static bfd_vma
3215 mips_elf_gotplt_index (struct bfd_link_info *info,
3216 struct elf_link_hash_entry *h)
3217 {
3218 bfd_vma plt_index, got_address, got_value;
3219 struct mips_elf_link_hash_table *htab;
3220
3221 htab = mips_elf_hash_table (info);
3222 BFD_ASSERT (htab != NULL);
3223
3224 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3225
3226 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3227 section starts with reserved entries. */
3228 BFD_ASSERT (htab->is_vxworks);
3229
3230 /* Calculate the index of the symbol's PLT entry. */
3231 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3232
3233 /* Calculate the address of the associated .got.plt entry. */
3234 got_address = (htab->sgotplt->output_section->vma
3235 + htab->sgotplt->output_offset
3236 + plt_index * 4);
3237
3238 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3239 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3240 + htab->root.hgot->root.u.def.section->output_offset
3241 + htab->root.hgot->root.u.def.value);
3242
3243 return got_address - got_value;
3244 }
3245
3246 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3247 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3248 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3249 offset can be found. */
3250
3251 static bfd_vma
3252 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3253 bfd_vma value, unsigned long r_symndx,
3254 struct mips_elf_link_hash_entry *h, int r_type)
3255 {
3256 struct mips_elf_link_hash_table *htab;
3257 struct mips_got_entry *entry;
3258
3259 htab = mips_elf_hash_table (info);
3260 BFD_ASSERT (htab != NULL);
3261
3262 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3263 r_symndx, h, r_type);
3264 if (!entry)
3265 return MINUS_ONE;
3266
3267 if (entry->tls_type)
3268 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3269 return entry->gotidx;
3270 }
3271
3272 /* Return the GOT index of global symbol H in the primary GOT. */
3273
3274 static bfd_vma
3275 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3276 struct elf_link_hash_entry *h)
3277 {
3278 struct mips_elf_link_hash_table *htab;
3279 long global_got_dynindx;
3280 struct mips_got_info *g;
3281 bfd_vma got_index;
3282
3283 htab = mips_elf_hash_table (info);
3284 BFD_ASSERT (htab != NULL);
3285
3286 global_got_dynindx = 0;
3287 if (htab->global_gotsym != NULL)
3288 global_got_dynindx = htab->global_gotsym->dynindx;
3289
3290 /* Once we determine the global GOT entry with the lowest dynamic
3291 symbol table index, we must put all dynamic symbols with greater
3292 indices into the primary GOT. That makes it easy to calculate the
3293 GOT offset. */
3294 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3295 g = mips_elf_bfd_got (obfd, FALSE);
3296 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3297 * MIPS_ELF_GOT_SIZE (obfd));
3298 BFD_ASSERT (got_index < htab->sgot->size);
3299
3300 return got_index;
3301 }
3302
3303 /* Return the GOT index for the global symbol indicated by H, which is
3304 referenced by a relocation of type R_TYPE in IBFD. */
3305
3306 static bfd_vma
3307 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3308 struct elf_link_hash_entry *h, int r_type)
3309 {
3310 struct mips_elf_link_hash_table *htab;
3311 struct mips_got_info *g;
3312 struct mips_got_entry lookup, *entry;
3313 bfd_vma gotidx;
3314
3315 htab = mips_elf_hash_table (info);
3316 BFD_ASSERT (htab != NULL);
3317
3318 g = mips_elf_bfd_got (ibfd, FALSE);
3319 BFD_ASSERT (g);
3320
3321 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3322 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3323 return mips_elf_primary_global_got_index (obfd, info, h);
3324
3325 lookup.abfd = ibfd;
3326 lookup.symndx = -1;
3327 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3328 entry = htab_find (g->got_entries, &lookup);
3329 BFD_ASSERT (entry);
3330
3331 gotidx = entry->gotidx;
3332 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3333
3334 if (lookup.tls_type)
3335 {
3336 bfd_vma value = MINUS_ONE;
3337
3338 if ((h->root.type == bfd_link_hash_defined
3339 || h->root.type == bfd_link_hash_defweak)
3340 && h->root.u.def.section->output_section)
3341 value = (h->root.u.def.value
3342 + h->root.u.def.section->output_offset
3343 + h->root.u.def.section->output_section->vma);
3344
3345 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3346 }
3347 return gotidx;
3348 }
3349
3350 /* Find a GOT page entry that points to within 32KB of VALUE. These
3351 entries are supposed to be placed at small offsets in the GOT, i.e.,
3352 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3353 entry could be created. If OFFSETP is nonnull, use it to return the
3354 offset of the GOT entry from VALUE. */
3355
3356 static bfd_vma
3357 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3358 bfd_vma value, bfd_vma *offsetp)
3359 {
3360 bfd_vma page, got_index;
3361 struct mips_got_entry *entry;
3362
3363 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3364 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3365 NULL, R_MIPS_GOT_PAGE);
3366
3367 if (!entry)
3368 return MINUS_ONE;
3369
3370 got_index = entry->gotidx;
3371
3372 if (offsetp)
3373 *offsetp = value - entry->d.address;
3374
3375 return got_index;
3376 }
3377
3378 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3379 EXTERNAL is true if the relocation was originally against a global
3380 symbol that binds locally. */
3381
3382 static bfd_vma
3383 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3384 bfd_vma value, bfd_boolean external)
3385 {
3386 struct mips_got_entry *entry;
3387
3388 /* GOT16 relocations against local symbols are followed by a LO16
3389 relocation; those against global symbols are not. Thus if the
3390 symbol was originally local, the GOT16 relocation should load the
3391 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3392 if (! external)
3393 value = mips_elf_high (value) << 16;
3394
3395 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3396 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3397 same in all cases. */
3398 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3399 NULL, R_MIPS_GOT16);
3400 if (entry)
3401 return entry->gotidx;
3402 else
3403 return MINUS_ONE;
3404 }
3405
3406 /* Returns the offset for the entry at the INDEXth position
3407 in the GOT. */
3408
3409 static bfd_vma
3410 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3411 bfd *input_bfd, bfd_vma got_index)
3412 {
3413 struct mips_elf_link_hash_table *htab;
3414 asection *sgot;
3415 bfd_vma gp;
3416
3417 htab = mips_elf_hash_table (info);
3418 BFD_ASSERT (htab != NULL);
3419
3420 sgot = htab->sgot;
3421 gp = _bfd_get_gp_value (output_bfd)
3422 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3423
3424 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3425 }
3426
3427 /* Create and return a local GOT entry for VALUE, which was calculated
3428 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3429 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3430 instead. */
3431
3432 static struct mips_got_entry *
3433 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3434 bfd *ibfd, bfd_vma value,
3435 unsigned long r_symndx,
3436 struct mips_elf_link_hash_entry *h,
3437 int r_type)
3438 {
3439 struct mips_got_entry lookup, *entry;
3440 void **loc;
3441 struct mips_got_info *g;
3442 struct mips_elf_link_hash_table *htab;
3443 bfd_vma gotidx;
3444
3445 htab = mips_elf_hash_table (info);
3446 BFD_ASSERT (htab != NULL);
3447
3448 g = mips_elf_bfd_got (ibfd, FALSE);
3449 if (g == NULL)
3450 {
3451 g = mips_elf_bfd_got (abfd, FALSE);
3452 BFD_ASSERT (g != NULL);
3453 }
3454
3455 /* This function shouldn't be called for symbols that live in the global
3456 area of the GOT. */
3457 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3458
3459 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3460 if (lookup.tls_type)
3461 {
3462 lookup.abfd = ibfd;
3463 if (tls_ldm_reloc_p (r_type))
3464 {
3465 lookup.symndx = 0;
3466 lookup.d.addend = 0;
3467 }
3468 else if (h == NULL)
3469 {
3470 lookup.symndx = r_symndx;
3471 lookup.d.addend = 0;
3472 }
3473 else
3474 {
3475 lookup.symndx = -1;
3476 lookup.d.h = h;
3477 }
3478
3479 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3480 BFD_ASSERT (entry);
3481
3482 gotidx = entry->gotidx;
3483 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3484
3485 return entry;
3486 }
3487
3488 lookup.abfd = NULL;
3489 lookup.symndx = -1;
3490 lookup.d.address = value;
3491 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3492 if (!loc)
3493 return NULL;
3494
3495 entry = (struct mips_got_entry *) *loc;
3496 if (entry)
3497 return entry;
3498
3499 if (g->assigned_gotno >= g->local_gotno)
3500 {
3501 /* We didn't allocate enough space in the GOT. */
3502 (*_bfd_error_handler)
3503 (_("not enough GOT space for local GOT entries"));
3504 bfd_set_error (bfd_error_bad_value);
3505 return NULL;
3506 }
3507
3508 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3509 if (!entry)
3510 return NULL;
3511
3512 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3513 *entry = lookup;
3514 *loc = entry;
3515
3516 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3517
3518 /* These GOT entries need a dynamic relocation on VxWorks. */
3519 if (htab->is_vxworks)
3520 {
3521 Elf_Internal_Rela outrel;
3522 asection *s;
3523 bfd_byte *rloc;
3524 bfd_vma got_address;
3525
3526 s = mips_elf_rel_dyn_section (info, FALSE);
3527 got_address = (htab->sgot->output_section->vma
3528 + htab->sgot->output_offset
3529 + entry->gotidx);
3530
3531 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3532 outrel.r_offset = got_address;
3533 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3534 outrel.r_addend = value;
3535 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3536 }
3537
3538 return entry;
3539 }
3540
3541 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3542 The number might be exact or a worst-case estimate, depending on how
3543 much information is available to elf_backend_omit_section_dynsym at
3544 the current linking stage. */
3545
3546 static bfd_size_type
3547 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3548 {
3549 bfd_size_type count;
3550
3551 count = 0;
3552 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3553 {
3554 asection *p;
3555 const struct elf_backend_data *bed;
3556
3557 bed = get_elf_backend_data (output_bfd);
3558 for (p = output_bfd->sections; p ; p = p->next)
3559 if ((p->flags & SEC_EXCLUDE) == 0
3560 && (p->flags & SEC_ALLOC) != 0
3561 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3562 ++count;
3563 }
3564 return count;
3565 }
3566
3567 /* Sort the dynamic symbol table so that symbols that need GOT entries
3568 appear towards the end. */
3569
3570 static bfd_boolean
3571 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3572 {
3573 struct mips_elf_link_hash_table *htab;
3574 struct mips_elf_hash_sort_data hsd;
3575 struct mips_got_info *g;
3576
3577 if (elf_hash_table (info)->dynsymcount == 0)
3578 return TRUE;
3579
3580 htab = mips_elf_hash_table (info);
3581 BFD_ASSERT (htab != NULL);
3582
3583 g = htab->got_info;
3584 if (g == NULL)
3585 return TRUE;
3586
3587 hsd.low = NULL;
3588 hsd.max_unref_got_dynindx
3589 = hsd.min_got_dynindx
3590 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3591 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3592 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3593 elf_hash_table (info)),
3594 mips_elf_sort_hash_table_f,
3595 &hsd);
3596
3597 /* There should have been enough room in the symbol table to
3598 accommodate both the GOT and non-GOT symbols. */
3599 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3600 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3601 == elf_hash_table (info)->dynsymcount);
3602 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3603 == g->global_gotno);
3604
3605 /* Now we know which dynamic symbol has the lowest dynamic symbol
3606 table index in the GOT. */
3607 htab->global_gotsym = hsd.low;
3608
3609 return TRUE;
3610 }
3611
3612 /* If H needs a GOT entry, assign it the highest available dynamic
3613 index. Otherwise, assign it the lowest available dynamic
3614 index. */
3615
3616 static bfd_boolean
3617 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3618 {
3619 struct mips_elf_hash_sort_data *hsd = data;
3620
3621 /* Symbols without dynamic symbol table entries aren't interesting
3622 at all. */
3623 if (h->root.dynindx == -1)
3624 return TRUE;
3625
3626 switch (h->global_got_area)
3627 {
3628 case GGA_NONE:
3629 h->root.dynindx = hsd->max_non_got_dynindx++;
3630 break;
3631
3632 case GGA_NORMAL:
3633 h->root.dynindx = --hsd->min_got_dynindx;
3634 hsd->low = (struct elf_link_hash_entry *) h;
3635 break;
3636
3637 case GGA_RELOC_ONLY:
3638 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3639 hsd->low = (struct elf_link_hash_entry *) h;
3640 h->root.dynindx = hsd->max_unref_got_dynindx++;
3641 break;
3642 }
3643
3644 return TRUE;
3645 }
3646
3647 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3648 (which is owned by the caller and shouldn't be added to the
3649 hash table directly). */
3650
3651 static bfd_boolean
3652 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3653 struct mips_got_entry *lookup)
3654 {
3655 struct mips_elf_link_hash_table *htab;
3656 struct mips_got_entry *entry;
3657 struct mips_got_info *g;
3658 void **loc, **bfd_loc;
3659
3660 /* Make sure there's a slot for this entry in the master GOT. */
3661 htab = mips_elf_hash_table (info);
3662 g = htab->got_info;
3663 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3664 if (!loc)
3665 return FALSE;
3666
3667 /* Populate the entry if it isn't already. */
3668 entry = (struct mips_got_entry *) *loc;
3669 if (!entry)
3670 {
3671 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3672 if (!entry)
3673 return FALSE;
3674
3675 lookup->tls_initialized = FALSE;
3676 lookup->gotidx = -1;
3677 *entry = *lookup;
3678 *loc = entry;
3679 }
3680
3681 /* Reuse the same GOT entry for the BFD's GOT. */
3682 g = mips_elf_bfd_got (abfd, TRUE);
3683 if (!g)
3684 return FALSE;
3685
3686 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3687 if (!bfd_loc)
3688 return FALSE;
3689
3690 if (!*bfd_loc)
3691 *bfd_loc = entry;
3692 return TRUE;
3693 }
3694
3695 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3696 entry for it. FOR_CALL is true if the caller is only interested in
3697 using the GOT entry for calls. */
3698
3699 static bfd_boolean
3700 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3701 bfd *abfd, struct bfd_link_info *info,
3702 bfd_boolean for_call, int r_type)
3703 {
3704 struct mips_elf_link_hash_table *htab;
3705 struct mips_elf_link_hash_entry *hmips;
3706 struct mips_got_entry entry;
3707 unsigned char tls_type;
3708
3709 htab = mips_elf_hash_table (info);
3710 BFD_ASSERT (htab != NULL);
3711
3712 hmips = (struct mips_elf_link_hash_entry *) h;
3713 if (!for_call)
3714 hmips->got_only_for_calls = FALSE;
3715
3716 /* A global symbol in the GOT must also be in the dynamic symbol
3717 table. */
3718 if (h->dynindx == -1)
3719 {
3720 switch (ELF_ST_VISIBILITY (h->other))
3721 {
3722 case STV_INTERNAL:
3723 case STV_HIDDEN:
3724 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3725 break;
3726 }
3727 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3728 return FALSE;
3729 }
3730
3731 tls_type = mips_elf_reloc_tls_type (r_type);
3732 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3733 hmips->global_got_area = GGA_NORMAL;
3734
3735 entry.abfd = abfd;
3736 entry.symndx = -1;
3737 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3738 entry.tls_type = tls_type;
3739 return mips_elf_record_got_entry (info, abfd, &entry);
3740 }
3741
3742 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3743 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
3744
3745 static bfd_boolean
3746 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3747 struct bfd_link_info *info, int r_type)
3748 {
3749 struct mips_elf_link_hash_table *htab;
3750 struct mips_got_info *g;
3751 struct mips_got_entry entry;
3752
3753 htab = mips_elf_hash_table (info);
3754 BFD_ASSERT (htab != NULL);
3755
3756 g = htab->got_info;
3757 BFD_ASSERT (g != NULL);
3758
3759 entry.abfd = abfd;
3760 entry.symndx = symndx;
3761 entry.d.addend = addend;
3762 entry.tls_type = mips_elf_reloc_tls_type (r_type);
3763 return mips_elf_record_got_entry (info, abfd, &entry);
3764 }
3765
3766 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
3767 H is the symbol's hash table entry, or null if SYMNDX is local
3768 to ABFD. */
3769
3770 static bfd_boolean
3771 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
3772 long symndx, struct elf_link_hash_entry *h,
3773 bfd_signed_vma addend)
3774 {
3775 struct mips_elf_link_hash_table *htab;
3776 struct mips_got_info *g1, *g2;
3777 struct mips_got_page_ref lookup, *entry;
3778 void **loc, **bfd_loc;
3779
3780 htab = mips_elf_hash_table (info);
3781 BFD_ASSERT (htab != NULL);
3782
3783 g1 = htab->got_info;
3784 BFD_ASSERT (g1 != NULL);
3785
3786 if (h)
3787 {
3788 lookup.symndx = -1;
3789 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
3790 }
3791 else
3792 {
3793 lookup.symndx = symndx;
3794 lookup.u.abfd = abfd;
3795 }
3796 lookup.addend = addend;
3797 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
3798 if (loc == NULL)
3799 return FALSE;
3800
3801 entry = (struct mips_got_page_ref *) *loc;
3802 if (!entry)
3803 {
3804 entry = bfd_alloc (abfd, sizeof (*entry));
3805 if (!entry)
3806 return FALSE;
3807
3808 *entry = lookup;
3809 *loc = entry;
3810 }
3811
3812 /* Add the same entry to the BFD's GOT. */
3813 g2 = mips_elf_bfd_got (abfd, TRUE);
3814 if (!g2)
3815 return FALSE;
3816
3817 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
3818 if (!bfd_loc)
3819 return FALSE;
3820
3821 if (!*bfd_loc)
3822 *bfd_loc = entry;
3823
3824 return TRUE;
3825 }
3826
3827 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3828
3829 static void
3830 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3831 unsigned int n)
3832 {
3833 asection *s;
3834 struct mips_elf_link_hash_table *htab;
3835
3836 htab = mips_elf_hash_table (info);
3837 BFD_ASSERT (htab != NULL);
3838
3839 s = mips_elf_rel_dyn_section (info, FALSE);
3840 BFD_ASSERT (s != NULL);
3841
3842 if (htab->is_vxworks)
3843 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3844 else
3845 {
3846 if (s->size == 0)
3847 {
3848 /* Make room for a null element. */
3849 s->size += MIPS_ELF_REL_SIZE (abfd);
3850 ++s->reloc_count;
3851 }
3852 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3853 }
3854 }
3855 \f
3856 /* A htab_traverse callback for GOT entries, with DATA pointing to a
3857 mips_elf_traverse_got_arg structure. Count the number of GOT
3858 entries and TLS relocs. Set DATA->value to true if we need
3859 to resolve indirect or warning symbols and then recreate the GOT. */
3860
3861 static int
3862 mips_elf_check_recreate_got (void **entryp, void *data)
3863 {
3864 struct mips_got_entry *entry;
3865 struct mips_elf_traverse_got_arg *arg;
3866
3867 entry = (struct mips_got_entry *) *entryp;
3868 arg = (struct mips_elf_traverse_got_arg *) data;
3869 if (entry->abfd != NULL && entry->symndx == -1)
3870 {
3871 struct mips_elf_link_hash_entry *h;
3872
3873 h = entry->d.h;
3874 if (h->root.root.type == bfd_link_hash_indirect
3875 || h->root.root.type == bfd_link_hash_warning)
3876 {
3877 arg->value = TRUE;
3878 return 0;
3879 }
3880 }
3881 mips_elf_count_got_entry (arg->info, arg->g, entry);
3882 return 1;
3883 }
3884
3885 /* A htab_traverse callback for GOT entries, with DATA pointing to a
3886 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
3887 converting entries for indirect and warning symbols into entries
3888 for the target symbol. Set DATA->g to null on error. */
3889
3890 static int
3891 mips_elf_recreate_got (void **entryp, void *data)
3892 {
3893 struct mips_got_entry new_entry, *entry;
3894 struct mips_elf_traverse_got_arg *arg;
3895 void **slot;
3896
3897 entry = (struct mips_got_entry *) *entryp;
3898 arg = (struct mips_elf_traverse_got_arg *) data;
3899 if (entry->abfd != NULL
3900 && entry->symndx == -1
3901 && (entry->d.h->root.root.type == bfd_link_hash_indirect
3902 || entry->d.h->root.root.type == bfd_link_hash_warning))
3903 {
3904 struct mips_elf_link_hash_entry *h;
3905
3906 new_entry = *entry;
3907 entry = &new_entry;
3908 h = entry->d.h;
3909 do
3910 {
3911 BFD_ASSERT (h->global_got_area == GGA_NONE);
3912 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3913 }
3914 while (h->root.root.type == bfd_link_hash_indirect
3915 || h->root.root.type == bfd_link_hash_warning);
3916 entry->d.h = h;
3917 }
3918 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
3919 if (slot == NULL)
3920 {
3921 arg->g = NULL;
3922 return 0;
3923 }
3924 if (*slot == NULL)
3925 {
3926 if (entry == &new_entry)
3927 {
3928 entry = bfd_alloc (entry->abfd, sizeof (*entry));
3929 if (!entry)
3930 {
3931 arg->g = NULL;
3932 return 0;
3933 }
3934 *entry = new_entry;
3935 }
3936 *slot = entry;
3937 mips_elf_count_got_entry (arg->info, arg->g, entry);
3938 }
3939 return 1;
3940 }
3941
3942 /* Return the maximum number of GOT page entries required for RANGE. */
3943
3944 static bfd_vma
3945 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3946 {
3947 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3948 }
3949
3950 /* Record that G requires a page entry that can reach SEC + ADDEND. */
3951
3952 static bfd_boolean
3953 mips_elf_record_got_page_entry (struct mips_got_info *g,
3954 asection *sec, bfd_signed_vma addend)
3955 {
3956 struct mips_got_page_entry lookup, *entry;
3957 struct mips_got_page_range **range_ptr, *range;
3958 bfd_vma old_pages, new_pages;
3959 void **loc;
3960
3961 /* Find the mips_got_page_entry hash table entry for this section. */
3962 lookup.sec = sec;
3963 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3964 if (loc == NULL)
3965 return FALSE;
3966
3967 /* Create a mips_got_page_entry if this is the first time we've
3968 seen the section. */
3969 entry = (struct mips_got_page_entry *) *loc;
3970 if (!entry)
3971 {
3972 entry = bfd_zalloc (sec->owner, sizeof (*entry));
3973 if (!entry)
3974 return FALSE;
3975
3976 entry->sec = sec;
3977 *loc = entry;
3978 }
3979
3980 /* Skip over ranges whose maximum extent cannot share a page entry
3981 with ADDEND. */
3982 range_ptr = &entry->ranges;
3983 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3984 range_ptr = &(*range_ptr)->next;
3985
3986 /* If we scanned to the end of the list, or found a range whose
3987 minimum extent cannot share a page entry with ADDEND, create
3988 a new singleton range. */
3989 range = *range_ptr;
3990 if (!range || addend < range->min_addend - 0xffff)
3991 {
3992 range = bfd_zalloc (sec->owner, sizeof (*range));
3993 if (!range)
3994 return FALSE;
3995
3996 range->next = *range_ptr;
3997 range->min_addend = addend;
3998 range->max_addend = addend;
3999
4000 *range_ptr = range;
4001 entry->num_pages++;
4002 g->page_gotno++;
4003 return TRUE;
4004 }
4005
4006 /* Remember how many pages the old range contributed. */
4007 old_pages = mips_elf_pages_for_range (range);
4008
4009 /* Update the ranges. */
4010 if (addend < range->min_addend)
4011 range->min_addend = addend;
4012 else if (addend > range->max_addend)
4013 {
4014 if (range->next && addend >= range->next->min_addend - 0xffff)
4015 {
4016 old_pages += mips_elf_pages_for_range (range->next);
4017 range->max_addend = range->next->max_addend;
4018 range->next = range->next->next;
4019 }
4020 else
4021 range->max_addend = addend;
4022 }
4023
4024 /* Record any change in the total estimate. */
4025 new_pages = mips_elf_pages_for_range (range);
4026 if (old_pages != new_pages)
4027 {
4028 entry->num_pages += new_pages - old_pages;
4029 g->page_gotno += new_pages - old_pages;
4030 }
4031
4032 return TRUE;
4033 }
4034
4035 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4036 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4037 whether the page reference described by *REFP needs a GOT page entry,
4038 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4039
4040 static bfd_boolean
4041 mips_elf_resolve_got_page_ref (void **refp, void *data)
4042 {
4043 struct mips_got_page_ref *ref;
4044 struct mips_elf_traverse_got_arg *arg;
4045 struct mips_elf_link_hash_table *htab;
4046 asection *sec;
4047 bfd_vma addend;
4048
4049 ref = (struct mips_got_page_ref *) *refp;
4050 arg = (struct mips_elf_traverse_got_arg *) data;
4051 htab = mips_elf_hash_table (arg->info);
4052
4053 if (ref->symndx < 0)
4054 {
4055 struct mips_elf_link_hash_entry *h;
4056
4057 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4058 h = ref->u.h;
4059 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4060 return 1;
4061
4062 /* Ignore undefined symbols; we'll issue an error later if
4063 appropriate. */
4064 if (!((h->root.root.type == bfd_link_hash_defined
4065 || h->root.root.type == bfd_link_hash_defweak)
4066 && h->root.root.u.def.section))
4067 return 1;
4068
4069 sec = h->root.root.u.def.section;
4070 addend = h->root.root.u.def.value + ref->addend;
4071 }
4072 else
4073 {
4074 Elf_Internal_Sym *isym;
4075
4076 /* Read in the symbol. */
4077 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4078 ref->symndx);
4079 if (isym == NULL)
4080 {
4081 arg->g = NULL;
4082 return 0;
4083 }
4084
4085 /* Get the associated input section. */
4086 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4087 if (sec == NULL)
4088 {
4089 arg->g = NULL;
4090 return 0;
4091 }
4092
4093 /* If this is a mergable section, work out the section and offset
4094 of the merged data. For section symbols, the addend specifies
4095 of the offset _of_ the first byte in the data, otherwise it
4096 specifies the offset _from_ the first byte. */
4097 if (sec->flags & SEC_MERGE)
4098 {
4099 void *secinfo;
4100
4101 secinfo = elf_section_data (sec)->sec_info;
4102 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4103 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4104 isym->st_value + ref->addend);
4105 else
4106 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4107 isym->st_value) + ref->addend;
4108 }
4109 else
4110 addend = isym->st_value + ref->addend;
4111 }
4112 if (!mips_elf_record_got_page_entry (arg->g, sec, addend))
4113 {
4114 arg->g = NULL;
4115 return 0;
4116 }
4117 return 1;
4118 }
4119
4120 /* If any entries in G->got_entries are for indirect or warning symbols,
4121 replace them with entries for the target symbol. Convert g->got_page_refs
4122 into got_page_entry structures and estimate the number of page entries
4123 that they require. */
4124
4125 static bfd_boolean
4126 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4127 struct mips_got_info *g)
4128 {
4129 struct mips_elf_traverse_got_arg tga;
4130 struct mips_got_info oldg;
4131
4132 oldg = *g;
4133
4134 tga.info = info;
4135 tga.g = g;
4136 tga.value = FALSE;
4137 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4138 if (tga.value)
4139 {
4140 *g = oldg;
4141 g->got_entries = htab_create (htab_size (oldg.got_entries),
4142 mips_elf_got_entry_hash,
4143 mips_elf_got_entry_eq, NULL);
4144 if (!g->got_entries)
4145 return FALSE;
4146
4147 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4148 if (!tga.g)
4149 return FALSE;
4150
4151 htab_delete (oldg.got_entries);
4152 }
4153
4154 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4155 mips_got_page_entry_eq, NULL);
4156 if (g->got_page_entries == NULL)
4157 return FALSE;
4158
4159 tga.info = info;
4160 tga.g = g;
4161 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4162
4163 return TRUE;
4164 }
4165
4166 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4167 link_info structure. Decide whether the hash entry needs an entry in
4168 the global part of the primary GOT, setting global_got_area accordingly.
4169 Count the number of global symbols that are in the primary GOT only
4170 because they have relocations against them (reloc_only_gotno). */
4171
4172 static int
4173 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4174 {
4175 struct bfd_link_info *info;
4176 struct mips_elf_link_hash_table *htab;
4177 struct mips_got_info *g;
4178
4179 info = (struct bfd_link_info *) data;
4180 htab = mips_elf_hash_table (info);
4181 g = htab->got_info;
4182 if (h->global_got_area != GGA_NONE)
4183 {
4184 /* Make a final decision about whether the symbol belongs in the
4185 local or global GOT. Symbols that bind locally can (and in the
4186 case of forced-local symbols, must) live in the local GOT.
4187 Those that are aren't in the dynamic symbol table must also
4188 live in the local GOT.
4189
4190 Note that the former condition does not always imply the
4191 latter: symbols do not bind locally if they are completely
4192 undefined. We'll report undefined symbols later if appropriate. */
4193 if (h->root.dynindx == -1
4194 || (h->got_only_for_calls
4195 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4196 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
4197 /* The symbol belongs in the local GOT. We no longer need this
4198 entry if it was only used for relocations; those relocations
4199 will be against the null or section symbol instead of H. */
4200 h->global_got_area = GGA_NONE;
4201 else if (htab->is_vxworks
4202 && h->got_only_for_calls
4203 && h->root.plt.offset != MINUS_ONE)
4204 /* On VxWorks, calls can refer directly to the .got.plt entry;
4205 they don't need entries in the regular GOT. .got.plt entries
4206 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4207 h->global_got_area = GGA_NONE;
4208 else if (h->global_got_area == GGA_RELOC_ONLY)
4209 {
4210 g->reloc_only_gotno++;
4211 g->global_gotno++;
4212 }
4213 }
4214 return 1;
4215 }
4216 \f
4217 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4218 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4219
4220 static int
4221 mips_elf_add_got_entry (void **entryp, void *data)
4222 {
4223 struct mips_got_entry *entry;
4224 struct mips_elf_traverse_got_arg *arg;
4225 void **slot;
4226
4227 entry = (struct mips_got_entry *) *entryp;
4228 arg = (struct mips_elf_traverse_got_arg *) data;
4229 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4230 if (!slot)
4231 {
4232 arg->g = NULL;
4233 return 0;
4234 }
4235 if (!*slot)
4236 {
4237 *slot = entry;
4238 mips_elf_count_got_entry (arg->info, arg->g, entry);
4239 }
4240 return 1;
4241 }
4242
4243 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4244 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4245
4246 static int
4247 mips_elf_add_got_page_entry (void **entryp, void *data)
4248 {
4249 struct mips_got_page_entry *entry;
4250 struct mips_elf_traverse_got_arg *arg;
4251 void **slot;
4252
4253 entry = (struct mips_got_page_entry *) *entryp;
4254 arg = (struct mips_elf_traverse_got_arg *) data;
4255 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4256 if (!slot)
4257 {
4258 arg->g = NULL;
4259 return 0;
4260 }
4261 if (!*slot)
4262 {
4263 *slot = entry;
4264 arg->g->page_gotno += entry->num_pages;
4265 }
4266 return 1;
4267 }
4268
4269 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4270 this would lead to overflow, 1 if they were merged successfully,
4271 and 0 if a merge failed due to lack of memory. (These values are chosen
4272 so that nonnegative return values can be returned by a htab_traverse
4273 callback.) */
4274
4275 static int
4276 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4277 struct mips_got_info *to,
4278 struct mips_elf_got_per_bfd_arg *arg)
4279 {
4280 struct mips_elf_traverse_got_arg tga;
4281 unsigned int estimate;
4282
4283 /* Work out how many page entries we would need for the combined GOT. */
4284 estimate = arg->max_pages;
4285 if (estimate >= from->page_gotno + to->page_gotno)
4286 estimate = from->page_gotno + to->page_gotno;
4287
4288 /* And conservatively estimate how many local and TLS entries
4289 would be needed. */
4290 estimate += from->local_gotno + to->local_gotno;
4291 estimate += from->tls_gotno + to->tls_gotno;
4292
4293 /* If we're merging with the primary got, any TLS relocations will
4294 come after the full set of global entries. Otherwise estimate those
4295 conservatively as well. */
4296 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4297 estimate += arg->global_count;
4298 else
4299 estimate += from->global_gotno + to->global_gotno;
4300
4301 /* Bail out if the combined GOT might be too big. */
4302 if (estimate > arg->max_count)
4303 return -1;
4304
4305 /* Transfer the bfd's got information from FROM to TO. */
4306 tga.info = arg->info;
4307 tga.g = to;
4308 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4309 if (!tga.g)
4310 return 0;
4311
4312 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4313 if (!tga.g)
4314 return 0;
4315
4316 mips_elf_replace_bfd_got (abfd, to);
4317 return 1;
4318 }
4319
4320 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4321 as possible of the primary got, since it doesn't require explicit
4322 dynamic relocations, but don't use bfds that would reference global
4323 symbols out of the addressable range. Failing the primary got,
4324 attempt to merge with the current got, or finish the current got
4325 and then make make the new got current. */
4326
4327 static bfd_boolean
4328 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4329 struct mips_elf_got_per_bfd_arg *arg)
4330 {
4331 unsigned int estimate;
4332 int result;
4333
4334 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4335 return FALSE;
4336
4337 /* Work out the number of page, local and TLS entries. */
4338 estimate = arg->max_pages;
4339 if (estimate > g->page_gotno)
4340 estimate = g->page_gotno;
4341 estimate += g->local_gotno + g->tls_gotno;
4342
4343 /* We place TLS GOT entries after both locals and globals. The globals
4344 for the primary GOT may overflow the normal GOT size limit, so be
4345 sure not to merge a GOT which requires TLS with the primary GOT in that
4346 case. This doesn't affect non-primary GOTs. */
4347 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4348
4349 if (estimate <= arg->max_count)
4350 {
4351 /* If we don't have a primary GOT, use it as
4352 a starting point for the primary GOT. */
4353 if (!arg->primary)
4354 {
4355 arg->primary = g;
4356 return TRUE;
4357 }
4358
4359 /* Try merging with the primary GOT. */
4360 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4361 if (result >= 0)
4362 return result;
4363 }
4364
4365 /* If we can merge with the last-created got, do it. */
4366 if (arg->current)
4367 {
4368 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4369 if (result >= 0)
4370 return result;
4371 }
4372
4373 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4374 fits; if it turns out that it doesn't, we'll get relocation
4375 overflows anyway. */
4376 g->next = arg->current;
4377 arg->current = g;
4378
4379 return TRUE;
4380 }
4381
4382 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4383 to GOTIDX, duplicating the entry if it has already been assigned
4384 an index in a different GOT. */
4385
4386 static bfd_boolean
4387 mips_elf_set_gotidx (void **entryp, long gotidx)
4388 {
4389 struct mips_got_entry *entry;
4390
4391 entry = (struct mips_got_entry *) *entryp;
4392 if (entry->gotidx > 0)
4393 {
4394 struct mips_got_entry *new_entry;
4395
4396 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4397 if (!new_entry)
4398 return FALSE;
4399
4400 *new_entry = *entry;
4401 *entryp = new_entry;
4402 entry = new_entry;
4403 }
4404 entry->gotidx = gotidx;
4405 return TRUE;
4406 }
4407
4408 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4409 mips_elf_traverse_got_arg in which DATA->value is the size of one
4410 GOT entry. Set DATA->g to null on failure. */
4411
4412 static int
4413 mips_elf_initialize_tls_index (void **entryp, void *data)
4414 {
4415 struct mips_got_entry *entry;
4416 struct mips_elf_traverse_got_arg *arg;
4417
4418 /* We're only interested in TLS symbols. */
4419 entry = (struct mips_got_entry *) *entryp;
4420 if (entry->tls_type == GOT_TLS_NONE)
4421 return 1;
4422
4423 arg = (struct mips_elf_traverse_got_arg *) data;
4424 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4425 {
4426 arg->g = NULL;
4427 return 0;
4428 }
4429
4430 /* Account for the entries we've just allocated. */
4431 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4432 return 1;
4433 }
4434
4435 /* A htab_traverse callback for GOT entries, where DATA points to a
4436 mips_elf_traverse_got_arg. Set the global_got_area of each global
4437 symbol to DATA->value. */
4438
4439 static int
4440 mips_elf_set_global_got_area (void **entryp, void *data)
4441 {
4442 struct mips_got_entry *entry;
4443 struct mips_elf_traverse_got_arg *arg;
4444
4445 entry = (struct mips_got_entry *) *entryp;
4446 arg = (struct mips_elf_traverse_got_arg *) data;
4447 if (entry->abfd != NULL
4448 && entry->symndx == -1
4449 && entry->d.h->global_got_area != GGA_NONE)
4450 entry->d.h->global_got_area = arg->value;
4451 return 1;
4452 }
4453
4454 /* A htab_traverse callback for secondary GOT entries, where DATA points
4455 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4456 and record the number of relocations they require. DATA->value is
4457 the size of one GOT entry. Set DATA->g to null on failure. */
4458
4459 static int
4460 mips_elf_set_global_gotidx (void **entryp, void *data)
4461 {
4462 struct mips_got_entry *entry;
4463 struct mips_elf_traverse_got_arg *arg;
4464
4465 entry = (struct mips_got_entry *) *entryp;
4466 arg = (struct mips_elf_traverse_got_arg *) data;
4467 if (entry->abfd != NULL
4468 && entry->symndx == -1
4469 && entry->d.h->global_got_area != GGA_NONE)
4470 {
4471 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_gotno))
4472 {
4473 arg->g = NULL;
4474 return 0;
4475 }
4476 arg->g->assigned_gotno += 1;
4477
4478 if (arg->info->shared
4479 || (elf_hash_table (arg->info)->dynamic_sections_created
4480 && entry->d.h->root.def_dynamic
4481 && !entry->d.h->root.def_regular))
4482 arg->g->relocs += 1;
4483 }
4484
4485 return 1;
4486 }
4487
4488 /* A htab_traverse callback for GOT entries for which DATA is the
4489 bfd_link_info. Forbid any global symbols from having traditional
4490 lazy-binding stubs. */
4491
4492 static int
4493 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4494 {
4495 struct bfd_link_info *info;
4496 struct mips_elf_link_hash_table *htab;
4497 struct mips_got_entry *entry;
4498
4499 entry = (struct mips_got_entry *) *entryp;
4500 info = (struct bfd_link_info *) data;
4501 htab = mips_elf_hash_table (info);
4502 BFD_ASSERT (htab != NULL);
4503
4504 if (entry->abfd != NULL
4505 && entry->symndx == -1
4506 && entry->d.h->needs_lazy_stub)
4507 {
4508 entry->d.h->needs_lazy_stub = FALSE;
4509 htab->lazy_stub_count--;
4510 }
4511
4512 return 1;
4513 }
4514
4515 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4516 the primary GOT. */
4517 static bfd_vma
4518 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4519 {
4520 if (!g->next)
4521 return 0;
4522
4523 g = mips_elf_bfd_got (ibfd, FALSE);
4524 if (! g)
4525 return 0;
4526
4527 BFD_ASSERT (g->next);
4528
4529 g = g->next;
4530
4531 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4532 * MIPS_ELF_GOT_SIZE (abfd);
4533 }
4534
4535 /* Turn a single GOT that is too big for 16-bit addressing into
4536 a sequence of GOTs, each one 16-bit addressable. */
4537
4538 static bfd_boolean
4539 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4540 asection *got, bfd_size_type pages)
4541 {
4542 struct mips_elf_link_hash_table *htab;
4543 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4544 struct mips_elf_traverse_got_arg tga;
4545 struct mips_got_info *g, *gg;
4546 unsigned int assign, needed_relocs;
4547 bfd *dynobj, *ibfd;
4548
4549 dynobj = elf_hash_table (info)->dynobj;
4550 htab = mips_elf_hash_table (info);
4551 BFD_ASSERT (htab != NULL);
4552
4553 g = htab->got_info;
4554
4555 got_per_bfd_arg.obfd = abfd;
4556 got_per_bfd_arg.info = info;
4557 got_per_bfd_arg.current = NULL;
4558 got_per_bfd_arg.primary = NULL;
4559 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4560 / MIPS_ELF_GOT_SIZE (abfd))
4561 - htab->reserved_gotno);
4562 got_per_bfd_arg.max_pages = pages;
4563 /* The number of globals that will be included in the primary GOT.
4564 See the calls to mips_elf_set_global_got_area below for more
4565 information. */
4566 got_per_bfd_arg.global_count = g->global_gotno;
4567
4568 /* Try to merge the GOTs of input bfds together, as long as they
4569 don't seem to exceed the maximum GOT size, choosing one of them
4570 to be the primary GOT. */
4571 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
4572 {
4573 gg = mips_elf_bfd_got (ibfd, FALSE);
4574 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4575 return FALSE;
4576 }
4577
4578 /* If we do not find any suitable primary GOT, create an empty one. */
4579 if (got_per_bfd_arg.primary == NULL)
4580 g->next = mips_elf_create_got_info (abfd);
4581 else
4582 g->next = got_per_bfd_arg.primary;
4583 g->next->next = got_per_bfd_arg.current;
4584
4585 /* GG is now the master GOT, and G is the primary GOT. */
4586 gg = g;
4587 g = g->next;
4588
4589 /* Map the output bfd to the primary got. That's what we're going
4590 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4591 didn't mark in check_relocs, and we want a quick way to find it.
4592 We can't just use gg->next because we're going to reverse the
4593 list. */
4594 mips_elf_replace_bfd_got (abfd, g);
4595
4596 /* Every symbol that is referenced in a dynamic relocation must be
4597 present in the primary GOT, so arrange for them to appear after
4598 those that are actually referenced. */
4599 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4600 g->global_gotno = gg->global_gotno;
4601
4602 tga.info = info;
4603 tga.value = GGA_RELOC_ONLY;
4604 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4605 tga.value = GGA_NORMAL;
4606 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4607
4608 /* Now go through the GOTs assigning them offset ranges.
4609 [assigned_gotno, local_gotno[ will be set to the range of local
4610 entries in each GOT. We can then compute the end of a GOT by
4611 adding local_gotno to global_gotno. We reverse the list and make
4612 it circular since then we'll be able to quickly compute the
4613 beginning of a GOT, by computing the end of its predecessor. To
4614 avoid special cases for the primary GOT, while still preserving
4615 assertions that are valid for both single- and multi-got links,
4616 we arrange for the main got struct to have the right number of
4617 global entries, but set its local_gotno such that the initial
4618 offset of the primary GOT is zero. Remember that the primary GOT
4619 will become the last item in the circular linked list, so it
4620 points back to the master GOT. */
4621 gg->local_gotno = -g->global_gotno;
4622 gg->global_gotno = g->global_gotno;
4623 gg->tls_gotno = 0;
4624 assign = 0;
4625 gg->next = gg;
4626
4627 do
4628 {
4629 struct mips_got_info *gn;
4630
4631 assign += htab->reserved_gotno;
4632 g->assigned_gotno = assign;
4633 g->local_gotno += assign;
4634 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4635 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4636
4637 /* Take g out of the direct list, and push it onto the reversed
4638 list that gg points to. g->next is guaranteed to be nonnull after
4639 this operation, as required by mips_elf_initialize_tls_index. */
4640 gn = g->next;
4641 g->next = gg->next;
4642 gg->next = g;
4643
4644 /* Set up any TLS entries. We always place the TLS entries after
4645 all non-TLS entries. */
4646 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4647 tga.g = g;
4648 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4649 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4650 if (!tga.g)
4651 return FALSE;
4652 BFD_ASSERT (g->tls_assigned_gotno == assign);
4653
4654 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4655 g = gn;
4656
4657 /* Forbid global symbols in every non-primary GOT from having
4658 lazy-binding stubs. */
4659 if (g)
4660 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4661 }
4662 while (g);
4663
4664 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4665
4666 needed_relocs = 0;
4667 for (g = gg->next; g && g->next != gg; g = g->next)
4668 {
4669 unsigned int save_assign;
4670
4671 /* Assign offsets to global GOT entries and count how many
4672 relocations they need. */
4673 save_assign = g->assigned_gotno;
4674 g->assigned_gotno = g->local_gotno;
4675 tga.info = info;
4676 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4677 tga.g = g;
4678 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4679 if (!tga.g)
4680 return FALSE;
4681 BFD_ASSERT (g->assigned_gotno == g->local_gotno + g->global_gotno);
4682 g->assigned_gotno = save_assign;
4683
4684 if (info->shared)
4685 {
4686 g->relocs += g->local_gotno - g->assigned_gotno;
4687 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4688 + g->next->global_gotno
4689 + g->next->tls_gotno
4690 + htab->reserved_gotno);
4691 }
4692 needed_relocs += g->relocs;
4693 }
4694 needed_relocs += g->relocs;
4695
4696 if (needed_relocs)
4697 mips_elf_allocate_dynamic_relocations (dynobj, info,
4698 needed_relocs);
4699
4700 return TRUE;
4701 }
4702
4703 \f
4704 /* Returns the first relocation of type r_type found, beginning with
4705 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4706
4707 static const Elf_Internal_Rela *
4708 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4709 const Elf_Internal_Rela *relocation,
4710 const Elf_Internal_Rela *relend)
4711 {
4712 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4713
4714 while (relocation < relend)
4715 {
4716 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4717 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4718 return relocation;
4719
4720 ++relocation;
4721 }
4722
4723 /* We didn't find it. */
4724 return NULL;
4725 }
4726
4727 /* Return whether an input relocation is against a local symbol. */
4728
4729 static bfd_boolean
4730 mips_elf_local_relocation_p (bfd *input_bfd,
4731 const Elf_Internal_Rela *relocation,
4732 asection **local_sections)
4733 {
4734 unsigned long r_symndx;
4735 Elf_Internal_Shdr *symtab_hdr;
4736 size_t extsymoff;
4737
4738 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4739 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4740 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4741
4742 if (r_symndx < extsymoff)
4743 return TRUE;
4744 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4745 return TRUE;
4746
4747 return FALSE;
4748 }
4749 \f
4750 /* Sign-extend VALUE, which has the indicated number of BITS. */
4751
4752 bfd_vma
4753 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4754 {
4755 if (value & ((bfd_vma) 1 << (bits - 1)))
4756 /* VALUE is negative. */
4757 value |= ((bfd_vma) - 1) << bits;
4758
4759 return value;
4760 }
4761
4762 /* Return non-zero if the indicated VALUE has overflowed the maximum
4763 range expressible by a signed number with the indicated number of
4764 BITS. */
4765
4766 static bfd_boolean
4767 mips_elf_overflow_p (bfd_vma value, int bits)
4768 {
4769 bfd_signed_vma svalue = (bfd_signed_vma) value;
4770
4771 if (svalue > (1 << (bits - 1)) - 1)
4772 /* The value is too big. */
4773 return TRUE;
4774 else if (svalue < -(1 << (bits - 1)))
4775 /* The value is too small. */
4776 return TRUE;
4777
4778 /* All is well. */
4779 return FALSE;
4780 }
4781
4782 /* Calculate the %high function. */
4783
4784 static bfd_vma
4785 mips_elf_high (bfd_vma value)
4786 {
4787 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4788 }
4789
4790 /* Calculate the %higher function. */
4791
4792 static bfd_vma
4793 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4794 {
4795 #ifdef BFD64
4796 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4797 #else
4798 abort ();
4799 return MINUS_ONE;
4800 #endif
4801 }
4802
4803 /* Calculate the %highest function. */
4804
4805 static bfd_vma
4806 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4807 {
4808 #ifdef BFD64
4809 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4810 #else
4811 abort ();
4812 return MINUS_ONE;
4813 #endif
4814 }
4815 \f
4816 /* Create the .compact_rel section. */
4817
4818 static bfd_boolean
4819 mips_elf_create_compact_rel_section
4820 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4821 {
4822 flagword flags;
4823 register asection *s;
4824
4825 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
4826 {
4827 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4828 | SEC_READONLY);
4829
4830 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
4831 if (s == NULL
4832 || ! bfd_set_section_alignment (abfd, s,
4833 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4834 return FALSE;
4835
4836 s->size = sizeof (Elf32_External_compact_rel);
4837 }
4838
4839 return TRUE;
4840 }
4841
4842 /* Create the .got section to hold the global offset table. */
4843
4844 static bfd_boolean
4845 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4846 {
4847 flagword flags;
4848 register asection *s;
4849 struct elf_link_hash_entry *h;
4850 struct bfd_link_hash_entry *bh;
4851 struct mips_elf_link_hash_table *htab;
4852
4853 htab = mips_elf_hash_table (info);
4854 BFD_ASSERT (htab != NULL);
4855
4856 /* This function may be called more than once. */
4857 if (htab->sgot)
4858 return TRUE;
4859
4860 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4861 | SEC_LINKER_CREATED);
4862
4863 /* We have to use an alignment of 2**4 here because this is hardcoded
4864 in the function stub generation and in the linker script. */
4865 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4866 if (s == NULL
4867 || ! bfd_set_section_alignment (abfd, s, 4))
4868 return FALSE;
4869 htab->sgot = s;
4870
4871 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4872 linker script because we don't want to define the symbol if we
4873 are not creating a global offset table. */
4874 bh = NULL;
4875 if (! (_bfd_generic_link_add_one_symbol
4876 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4877 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4878 return FALSE;
4879
4880 h = (struct elf_link_hash_entry *) bh;
4881 h->non_elf = 0;
4882 h->def_regular = 1;
4883 h->type = STT_OBJECT;
4884 elf_hash_table (info)->hgot = h;
4885
4886 if (info->shared
4887 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4888 return FALSE;
4889
4890 htab->got_info = mips_elf_create_got_info (abfd);
4891 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4892 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4893
4894 /* We also need a .got.plt section when generating PLTs. */
4895 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
4896 SEC_ALLOC | SEC_LOAD
4897 | SEC_HAS_CONTENTS
4898 | SEC_IN_MEMORY
4899 | SEC_LINKER_CREATED);
4900 if (s == NULL)
4901 return FALSE;
4902 htab->sgotplt = s;
4903
4904 return TRUE;
4905 }
4906 \f
4907 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4908 __GOTT_INDEX__ symbols. These symbols are only special for
4909 shared objects; they are not used in executables. */
4910
4911 static bfd_boolean
4912 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4913 {
4914 return (mips_elf_hash_table (info)->is_vxworks
4915 && info->shared
4916 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4917 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4918 }
4919
4920 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4921 require an la25 stub. See also mips_elf_local_pic_function_p,
4922 which determines whether the destination function ever requires a
4923 stub. */
4924
4925 static bfd_boolean
4926 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
4927 bfd_boolean target_is_16_bit_code_p)
4928 {
4929 /* We specifically ignore branches and jumps from EF_PIC objects,
4930 where the onus is on the compiler or programmer to perform any
4931 necessary initialization of $25. Sometimes such initialization
4932 is unnecessary; for example, -mno-shared functions do not use
4933 the incoming value of $25, and may therefore be called directly. */
4934 if (PIC_OBJECT_P (input_bfd))
4935 return FALSE;
4936
4937 switch (r_type)
4938 {
4939 case R_MIPS_26:
4940 case R_MIPS_PC16:
4941 case R_MICROMIPS_26_S1:
4942 case R_MICROMIPS_PC7_S1:
4943 case R_MICROMIPS_PC10_S1:
4944 case R_MICROMIPS_PC16_S1:
4945 case R_MICROMIPS_PC23_S2:
4946 return TRUE;
4947
4948 case R_MIPS16_26:
4949 return !target_is_16_bit_code_p;
4950
4951 default:
4952 return FALSE;
4953 }
4954 }
4955 \f
4956 /* Calculate the value produced by the RELOCATION (which comes from
4957 the INPUT_BFD). The ADDEND is the addend to use for this
4958 RELOCATION; RELOCATION->R_ADDEND is ignored.
4959
4960 The result of the relocation calculation is stored in VALUEP.
4961 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4962 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
4963
4964 This function returns bfd_reloc_continue if the caller need take no
4965 further action regarding this relocation, bfd_reloc_notsupported if
4966 something goes dramatically wrong, bfd_reloc_overflow if an
4967 overflow occurs, and bfd_reloc_ok to indicate success. */
4968
4969 static bfd_reloc_status_type
4970 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4971 asection *input_section,
4972 struct bfd_link_info *info,
4973 const Elf_Internal_Rela *relocation,
4974 bfd_vma addend, reloc_howto_type *howto,
4975 Elf_Internal_Sym *local_syms,
4976 asection **local_sections, bfd_vma *valuep,
4977 const char **namep,
4978 bfd_boolean *cross_mode_jump_p,
4979 bfd_boolean save_addend)
4980 {
4981 /* The eventual value we will return. */
4982 bfd_vma value;
4983 /* The address of the symbol against which the relocation is
4984 occurring. */
4985 bfd_vma symbol = 0;
4986 /* The final GP value to be used for the relocatable, executable, or
4987 shared object file being produced. */
4988 bfd_vma gp;
4989 /* The place (section offset or address) of the storage unit being
4990 relocated. */
4991 bfd_vma p;
4992 /* The value of GP used to create the relocatable object. */
4993 bfd_vma gp0;
4994 /* The offset into the global offset table at which the address of
4995 the relocation entry symbol, adjusted by the addend, resides
4996 during execution. */
4997 bfd_vma g = MINUS_ONE;
4998 /* The section in which the symbol referenced by the relocation is
4999 located. */
5000 asection *sec = NULL;
5001 struct mips_elf_link_hash_entry *h = NULL;
5002 /* TRUE if the symbol referred to by this relocation is a local
5003 symbol. */
5004 bfd_boolean local_p, was_local_p;
5005 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5006 bfd_boolean gp_disp_p = FALSE;
5007 /* TRUE if the symbol referred to by this relocation is
5008 "__gnu_local_gp". */
5009 bfd_boolean gnu_local_gp_p = FALSE;
5010 Elf_Internal_Shdr *symtab_hdr;
5011 size_t extsymoff;
5012 unsigned long r_symndx;
5013 int r_type;
5014 /* TRUE if overflow occurred during the calculation of the
5015 relocation value. */
5016 bfd_boolean overflowed_p;
5017 /* TRUE if this relocation refers to a MIPS16 function. */
5018 bfd_boolean target_is_16_bit_code_p = FALSE;
5019 bfd_boolean target_is_micromips_code_p = FALSE;
5020 struct mips_elf_link_hash_table *htab;
5021 bfd *dynobj;
5022
5023 dynobj = elf_hash_table (info)->dynobj;
5024 htab = mips_elf_hash_table (info);
5025 BFD_ASSERT (htab != NULL);
5026
5027 /* Parse the relocation. */
5028 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5029 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5030 p = (input_section->output_section->vma
5031 + input_section->output_offset
5032 + relocation->r_offset);
5033
5034 /* Assume that there will be no overflow. */
5035 overflowed_p = FALSE;
5036
5037 /* Figure out whether or not the symbol is local, and get the offset
5038 used in the array of hash table entries. */
5039 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5040 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5041 local_sections);
5042 was_local_p = local_p;
5043 if (! elf_bad_symtab (input_bfd))
5044 extsymoff = symtab_hdr->sh_info;
5045 else
5046 {
5047 /* The symbol table does not follow the rule that local symbols
5048 must come before globals. */
5049 extsymoff = 0;
5050 }
5051
5052 /* Figure out the value of the symbol. */
5053 if (local_p)
5054 {
5055 Elf_Internal_Sym *sym;
5056
5057 sym = local_syms + r_symndx;
5058 sec = local_sections[r_symndx];
5059
5060 symbol = sec->output_section->vma + sec->output_offset;
5061 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5062 || (sec->flags & SEC_MERGE))
5063 symbol += sym->st_value;
5064 if ((sec->flags & SEC_MERGE)
5065 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5066 {
5067 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5068 addend -= symbol;
5069 addend += sec->output_section->vma + sec->output_offset;
5070 }
5071
5072 /* MIPS16/microMIPS text labels should be treated as odd. */
5073 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5074 ++symbol;
5075
5076 /* Record the name of this symbol, for our caller. */
5077 *namep = bfd_elf_string_from_elf_section (input_bfd,
5078 symtab_hdr->sh_link,
5079 sym->st_name);
5080 if (*namep == '\0')
5081 *namep = bfd_section_name (input_bfd, sec);
5082
5083 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5084 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5085 }
5086 else
5087 {
5088 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5089
5090 /* For global symbols we look up the symbol in the hash-table. */
5091 h = ((struct mips_elf_link_hash_entry *)
5092 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5093 /* Find the real hash-table entry for this symbol. */
5094 while (h->root.root.type == bfd_link_hash_indirect
5095 || h->root.root.type == bfd_link_hash_warning)
5096 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5097
5098 /* Record the name of this symbol, for our caller. */
5099 *namep = h->root.root.root.string;
5100
5101 /* See if this is the special _gp_disp symbol. Note that such a
5102 symbol must always be a global symbol. */
5103 if (strcmp (*namep, "_gp_disp") == 0
5104 && ! NEWABI_P (input_bfd))
5105 {
5106 /* Relocations against _gp_disp are permitted only with
5107 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5108 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5109 return bfd_reloc_notsupported;
5110
5111 gp_disp_p = TRUE;
5112 }
5113 /* See if this is the special _gp symbol. Note that such a
5114 symbol must always be a global symbol. */
5115 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5116 gnu_local_gp_p = TRUE;
5117
5118
5119 /* If this symbol is defined, calculate its address. Note that
5120 _gp_disp is a magic symbol, always implicitly defined by the
5121 linker, so it's inappropriate to check to see whether or not
5122 its defined. */
5123 else if ((h->root.root.type == bfd_link_hash_defined
5124 || h->root.root.type == bfd_link_hash_defweak)
5125 && h->root.root.u.def.section)
5126 {
5127 sec = h->root.root.u.def.section;
5128 if (sec->output_section)
5129 symbol = (h->root.root.u.def.value
5130 + sec->output_section->vma
5131 + sec->output_offset);
5132 else
5133 symbol = h->root.root.u.def.value;
5134 }
5135 else if (h->root.root.type == bfd_link_hash_undefweak)
5136 /* We allow relocations against undefined weak symbols, giving
5137 it the value zero, so that you can undefined weak functions
5138 and check to see if they exist by looking at their
5139 addresses. */
5140 symbol = 0;
5141 else if (info->unresolved_syms_in_objects == RM_IGNORE
5142 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5143 symbol = 0;
5144 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5145 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5146 {
5147 /* If this is a dynamic link, we should have created a
5148 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5149 in in _bfd_mips_elf_create_dynamic_sections.
5150 Otherwise, we should define the symbol with a value of 0.
5151 FIXME: It should probably get into the symbol table
5152 somehow as well. */
5153 BFD_ASSERT (! info->shared);
5154 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5155 symbol = 0;
5156 }
5157 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5158 {
5159 /* This is an optional symbol - an Irix specific extension to the
5160 ELF spec. Ignore it for now.
5161 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5162 than simply ignoring them, but we do not handle this for now.
5163 For information see the "64-bit ELF Object File Specification"
5164 which is available from here:
5165 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5166 symbol = 0;
5167 }
5168 else if ((*info->callbacks->undefined_symbol)
5169 (info, h->root.root.root.string, input_bfd,
5170 input_section, relocation->r_offset,
5171 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5172 || ELF_ST_VISIBILITY (h->root.other)))
5173 {
5174 return bfd_reloc_undefined;
5175 }
5176 else
5177 {
5178 return bfd_reloc_notsupported;
5179 }
5180
5181 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5182 /* If the output section is the PLT section,
5183 then the target is not microMIPS. */
5184 target_is_micromips_code_p = (htab->splt != sec
5185 && ELF_ST_IS_MICROMIPS (h->root.other));
5186 }
5187
5188 /* If this is a reference to a 16-bit function with a stub, we need
5189 to redirect the relocation to the stub unless:
5190
5191 (a) the relocation is for a MIPS16 JAL;
5192
5193 (b) the relocation is for a MIPS16 PIC call, and there are no
5194 non-MIPS16 uses of the GOT slot; or
5195
5196 (c) the section allows direct references to MIPS16 functions. */
5197 if (r_type != R_MIPS16_26
5198 && !info->relocatable
5199 && ((h != NULL
5200 && h->fn_stub != NULL
5201 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5202 || (local_p
5203 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5204 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5205 && !section_allows_mips16_refs_p (input_section))
5206 {
5207 /* This is a 32- or 64-bit call to a 16-bit function. We should
5208 have already noticed that we were going to need the
5209 stub. */
5210 if (local_p)
5211 {
5212 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5213 value = 0;
5214 }
5215 else
5216 {
5217 BFD_ASSERT (h->need_fn_stub);
5218 if (h->la25_stub)
5219 {
5220 /* If a LA25 header for the stub itself exists, point to the
5221 prepended LUI/ADDIU sequence. */
5222 sec = h->la25_stub->stub_section;
5223 value = h->la25_stub->offset;
5224 }
5225 else
5226 {
5227 sec = h->fn_stub;
5228 value = 0;
5229 }
5230 }
5231
5232 symbol = sec->output_section->vma + sec->output_offset + value;
5233 /* The target is 16-bit, but the stub isn't. */
5234 target_is_16_bit_code_p = FALSE;
5235 }
5236 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5237 need to redirect the call to the stub. Note that we specifically
5238 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5239 use an indirect stub instead. */
5240 else if (r_type == R_MIPS16_26 && !info->relocatable
5241 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5242 || (local_p
5243 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5244 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5245 && !target_is_16_bit_code_p)
5246 {
5247 if (local_p)
5248 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5249 else
5250 {
5251 /* If both call_stub and call_fp_stub are defined, we can figure
5252 out which one to use by checking which one appears in the input
5253 file. */
5254 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5255 {
5256 asection *o;
5257
5258 sec = NULL;
5259 for (o = input_bfd->sections; o != NULL; o = o->next)
5260 {
5261 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5262 {
5263 sec = h->call_fp_stub;
5264 break;
5265 }
5266 }
5267 if (sec == NULL)
5268 sec = h->call_stub;
5269 }
5270 else if (h->call_stub != NULL)
5271 sec = h->call_stub;
5272 else
5273 sec = h->call_fp_stub;
5274 }
5275
5276 BFD_ASSERT (sec->size > 0);
5277 symbol = sec->output_section->vma + sec->output_offset;
5278 }
5279 /* If this is a direct call to a PIC function, redirect to the
5280 non-PIC stub. */
5281 else if (h != NULL && h->la25_stub
5282 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5283 target_is_16_bit_code_p))
5284 symbol = (h->la25_stub->stub_section->output_section->vma
5285 + h->la25_stub->stub_section->output_offset
5286 + h->la25_stub->offset);
5287
5288 /* Make sure MIPS16 and microMIPS are not used together. */
5289 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5290 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5291 {
5292 (*_bfd_error_handler)
5293 (_("MIPS16 and microMIPS functions cannot call each other"));
5294 return bfd_reloc_notsupported;
5295 }
5296
5297 /* Calls from 16-bit code to 32-bit code and vice versa require the
5298 mode change. However, we can ignore calls to undefined weak symbols,
5299 which should never be executed at runtime. This exception is important
5300 because the assembly writer may have "known" that any definition of the
5301 symbol would be 16-bit code, and that direct jumps were therefore
5302 acceptable. */
5303 *cross_mode_jump_p = (!info->relocatable
5304 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5305 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5306 || (r_type == R_MICROMIPS_26_S1
5307 && !target_is_micromips_code_p)
5308 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5309 && (target_is_16_bit_code_p
5310 || target_is_micromips_code_p))));
5311
5312 local_p = (h == NULL
5313 || (h->got_only_for_calls
5314 ? SYMBOL_CALLS_LOCAL (info, &h->root)
5315 : SYMBOL_REFERENCES_LOCAL (info, &h->root)));
5316
5317 gp0 = _bfd_get_gp_value (input_bfd);
5318 gp = _bfd_get_gp_value (abfd);
5319 if (htab->got_info)
5320 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5321
5322 if (gnu_local_gp_p)
5323 symbol = gp;
5324
5325 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5326 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5327 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5328 if (got_page_reloc_p (r_type) && !local_p)
5329 {
5330 r_type = (micromips_reloc_p (r_type)
5331 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5332 addend = 0;
5333 }
5334
5335 /* If we haven't already determined the GOT offset, and we're going
5336 to need it, get it now. */
5337 switch (r_type)
5338 {
5339 case R_MIPS16_CALL16:
5340 case R_MIPS16_GOT16:
5341 case R_MIPS_CALL16:
5342 case R_MIPS_GOT16:
5343 case R_MIPS_GOT_DISP:
5344 case R_MIPS_GOT_HI16:
5345 case R_MIPS_CALL_HI16:
5346 case R_MIPS_GOT_LO16:
5347 case R_MIPS_CALL_LO16:
5348 case R_MICROMIPS_CALL16:
5349 case R_MICROMIPS_GOT16:
5350 case R_MICROMIPS_GOT_DISP:
5351 case R_MICROMIPS_GOT_HI16:
5352 case R_MICROMIPS_CALL_HI16:
5353 case R_MICROMIPS_GOT_LO16:
5354 case R_MICROMIPS_CALL_LO16:
5355 case R_MIPS_TLS_GD:
5356 case R_MIPS_TLS_GOTTPREL:
5357 case R_MIPS_TLS_LDM:
5358 case R_MIPS16_TLS_GD:
5359 case R_MIPS16_TLS_GOTTPREL:
5360 case R_MIPS16_TLS_LDM:
5361 case R_MICROMIPS_TLS_GD:
5362 case R_MICROMIPS_TLS_GOTTPREL:
5363 case R_MICROMIPS_TLS_LDM:
5364 /* Find the index into the GOT where this value is located. */
5365 if (tls_ldm_reloc_p (r_type))
5366 {
5367 g = mips_elf_local_got_index (abfd, input_bfd, info,
5368 0, 0, NULL, r_type);
5369 if (g == MINUS_ONE)
5370 return bfd_reloc_outofrange;
5371 }
5372 else if (!local_p)
5373 {
5374 /* On VxWorks, CALL relocations should refer to the .got.plt
5375 entry, which is initialized to point at the PLT stub. */
5376 if (htab->is_vxworks
5377 && (call_hi16_reloc_p (r_type)
5378 || call_lo16_reloc_p (r_type)
5379 || call16_reloc_p (r_type)))
5380 {
5381 BFD_ASSERT (addend == 0);
5382 BFD_ASSERT (h->root.needs_plt);
5383 g = mips_elf_gotplt_index (info, &h->root);
5384 }
5385 else
5386 {
5387 BFD_ASSERT (addend == 0);
5388 g = mips_elf_global_got_index (abfd, info, input_bfd,
5389 &h->root, r_type);
5390 if (!TLS_RELOC_P (r_type)
5391 && !elf_hash_table (info)->dynamic_sections_created)
5392 /* This is a static link. We must initialize the GOT entry. */
5393 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5394 }
5395 }
5396 else if (!htab->is_vxworks
5397 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5398 /* The calculation below does not involve "g". */
5399 break;
5400 else
5401 {
5402 g = mips_elf_local_got_index (abfd, input_bfd, info,
5403 symbol + addend, r_symndx, h, r_type);
5404 if (g == MINUS_ONE)
5405 return bfd_reloc_outofrange;
5406 }
5407
5408 /* Convert GOT indices to actual offsets. */
5409 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5410 break;
5411 }
5412
5413 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5414 symbols are resolved by the loader. Add them to .rela.dyn. */
5415 if (h != NULL && is_gott_symbol (info, &h->root))
5416 {
5417 Elf_Internal_Rela outrel;
5418 bfd_byte *loc;
5419 asection *s;
5420
5421 s = mips_elf_rel_dyn_section (info, FALSE);
5422 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5423
5424 outrel.r_offset = (input_section->output_section->vma
5425 + input_section->output_offset
5426 + relocation->r_offset);
5427 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5428 outrel.r_addend = addend;
5429 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5430
5431 /* If we've written this relocation for a readonly section,
5432 we need to set DF_TEXTREL again, so that we do not delete the
5433 DT_TEXTREL tag. */
5434 if (MIPS_ELF_READONLY_SECTION (input_section))
5435 info->flags |= DF_TEXTREL;
5436
5437 *valuep = 0;
5438 return bfd_reloc_ok;
5439 }
5440
5441 /* Figure out what kind of relocation is being performed. */
5442 switch (r_type)
5443 {
5444 case R_MIPS_NONE:
5445 return bfd_reloc_continue;
5446
5447 case R_MIPS_16:
5448 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5449 overflowed_p = mips_elf_overflow_p (value, 16);
5450 break;
5451
5452 case R_MIPS_32:
5453 case R_MIPS_REL32:
5454 case R_MIPS_64:
5455 if ((info->shared
5456 || (htab->root.dynamic_sections_created
5457 && h != NULL
5458 && h->root.def_dynamic
5459 && !h->root.def_regular
5460 && !h->has_static_relocs))
5461 && r_symndx != STN_UNDEF
5462 && (h == NULL
5463 || h->root.root.type != bfd_link_hash_undefweak
5464 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5465 && (input_section->flags & SEC_ALLOC) != 0)
5466 {
5467 /* If we're creating a shared library, then we can't know
5468 where the symbol will end up. So, we create a relocation
5469 record in the output, and leave the job up to the dynamic
5470 linker. We must do the same for executable references to
5471 shared library symbols, unless we've decided to use copy
5472 relocs or PLTs instead. */
5473 value = addend;
5474 if (!mips_elf_create_dynamic_relocation (abfd,
5475 info,
5476 relocation,
5477 h,
5478 sec,
5479 symbol,
5480 &value,
5481 input_section))
5482 return bfd_reloc_undefined;
5483 }
5484 else
5485 {
5486 if (r_type != R_MIPS_REL32)
5487 value = symbol + addend;
5488 else
5489 value = addend;
5490 }
5491 value &= howto->dst_mask;
5492 break;
5493
5494 case R_MIPS_PC32:
5495 value = symbol + addend - p;
5496 value &= howto->dst_mask;
5497 break;
5498
5499 case R_MIPS16_26:
5500 /* The calculation for R_MIPS16_26 is just the same as for an
5501 R_MIPS_26. It's only the storage of the relocated field into
5502 the output file that's different. That's handled in
5503 mips_elf_perform_relocation. So, we just fall through to the
5504 R_MIPS_26 case here. */
5505 case R_MIPS_26:
5506 case R_MICROMIPS_26_S1:
5507 {
5508 unsigned int shift;
5509
5510 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5511 the correct ISA mode selector and bit 1 must be 0. */
5512 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5513 return bfd_reloc_outofrange;
5514
5515 /* Shift is 2, unusually, for microMIPS JALX. */
5516 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5517
5518 if (was_local_p)
5519 value = addend | ((p + 4) & (0xfc000000 << shift));
5520 else
5521 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5522 value = (value + symbol) >> shift;
5523 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5524 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5525 value &= howto->dst_mask;
5526 }
5527 break;
5528
5529 case R_MIPS_TLS_DTPREL_HI16:
5530 case R_MIPS16_TLS_DTPREL_HI16:
5531 case R_MICROMIPS_TLS_DTPREL_HI16:
5532 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5533 & howto->dst_mask);
5534 break;
5535
5536 case R_MIPS_TLS_DTPREL_LO16:
5537 case R_MIPS_TLS_DTPREL32:
5538 case R_MIPS_TLS_DTPREL64:
5539 case R_MIPS16_TLS_DTPREL_LO16:
5540 case R_MICROMIPS_TLS_DTPREL_LO16:
5541 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5542 break;
5543
5544 case R_MIPS_TLS_TPREL_HI16:
5545 case R_MIPS16_TLS_TPREL_HI16:
5546 case R_MICROMIPS_TLS_TPREL_HI16:
5547 value = (mips_elf_high (addend + symbol - tprel_base (info))
5548 & howto->dst_mask);
5549 break;
5550
5551 case R_MIPS_TLS_TPREL_LO16:
5552 case R_MIPS_TLS_TPREL32:
5553 case R_MIPS_TLS_TPREL64:
5554 case R_MIPS16_TLS_TPREL_LO16:
5555 case R_MICROMIPS_TLS_TPREL_LO16:
5556 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5557 break;
5558
5559 case R_MIPS_HI16:
5560 case R_MIPS16_HI16:
5561 case R_MICROMIPS_HI16:
5562 if (!gp_disp_p)
5563 {
5564 value = mips_elf_high (addend + symbol);
5565 value &= howto->dst_mask;
5566 }
5567 else
5568 {
5569 /* For MIPS16 ABI code we generate this sequence
5570 0: li $v0,%hi(_gp_disp)
5571 4: addiupc $v1,%lo(_gp_disp)
5572 8: sll $v0,16
5573 12: addu $v0,$v1
5574 14: move $gp,$v0
5575 So the offsets of hi and lo relocs are the same, but the
5576 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5577 ADDIUPC clears the low two bits of the instruction address,
5578 so the base is ($t9 + 4) & ~3. */
5579 if (r_type == R_MIPS16_HI16)
5580 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5581 /* The microMIPS .cpload sequence uses the same assembly
5582 instructions as the traditional psABI version, but the
5583 incoming $t9 has the low bit set. */
5584 else if (r_type == R_MICROMIPS_HI16)
5585 value = mips_elf_high (addend + gp - p - 1);
5586 else
5587 value = mips_elf_high (addend + gp - p);
5588 overflowed_p = mips_elf_overflow_p (value, 16);
5589 }
5590 break;
5591
5592 case R_MIPS_LO16:
5593 case R_MIPS16_LO16:
5594 case R_MICROMIPS_LO16:
5595 case R_MICROMIPS_HI0_LO16:
5596 if (!gp_disp_p)
5597 value = (symbol + addend) & howto->dst_mask;
5598 else
5599 {
5600 /* See the comment for R_MIPS16_HI16 above for the reason
5601 for this conditional. */
5602 if (r_type == R_MIPS16_LO16)
5603 value = addend + gp - (p & ~(bfd_vma) 0x3);
5604 else if (r_type == R_MICROMIPS_LO16
5605 || r_type == R_MICROMIPS_HI0_LO16)
5606 value = addend + gp - p + 3;
5607 else
5608 value = addend + gp - p + 4;
5609 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5610 for overflow. But, on, say, IRIX5, relocations against
5611 _gp_disp are normally generated from the .cpload
5612 pseudo-op. It generates code that normally looks like
5613 this:
5614
5615 lui $gp,%hi(_gp_disp)
5616 addiu $gp,$gp,%lo(_gp_disp)
5617 addu $gp,$gp,$t9
5618
5619 Here $t9 holds the address of the function being called,
5620 as required by the MIPS ELF ABI. The R_MIPS_LO16
5621 relocation can easily overflow in this situation, but the
5622 R_MIPS_HI16 relocation will handle the overflow.
5623 Therefore, we consider this a bug in the MIPS ABI, and do
5624 not check for overflow here. */
5625 }
5626 break;
5627
5628 case R_MIPS_LITERAL:
5629 case R_MICROMIPS_LITERAL:
5630 /* Because we don't merge literal sections, we can handle this
5631 just like R_MIPS_GPREL16. In the long run, we should merge
5632 shared literals, and then we will need to additional work
5633 here. */
5634
5635 /* Fall through. */
5636
5637 case R_MIPS16_GPREL:
5638 /* The R_MIPS16_GPREL performs the same calculation as
5639 R_MIPS_GPREL16, but stores the relocated bits in a different
5640 order. We don't need to do anything special here; the
5641 differences are handled in mips_elf_perform_relocation. */
5642 case R_MIPS_GPREL16:
5643 case R_MICROMIPS_GPREL7_S2:
5644 case R_MICROMIPS_GPREL16:
5645 /* Only sign-extend the addend if it was extracted from the
5646 instruction. If the addend was separate, leave it alone,
5647 otherwise we may lose significant bits. */
5648 if (howto->partial_inplace)
5649 addend = _bfd_mips_elf_sign_extend (addend, 16);
5650 value = symbol + addend - gp;
5651 /* If the symbol was local, any earlier relocatable links will
5652 have adjusted its addend with the gp offset, so compensate
5653 for that now. Don't do it for symbols forced local in this
5654 link, though, since they won't have had the gp offset applied
5655 to them before. */
5656 if (was_local_p)
5657 value += gp0;
5658 overflowed_p = mips_elf_overflow_p (value, 16);
5659 break;
5660
5661 case R_MIPS16_GOT16:
5662 case R_MIPS16_CALL16:
5663 case R_MIPS_GOT16:
5664 case R_MIPS_CALL16:
5665 case R_MICROMIPS_GOT16:
5666 case R_MICROMIPS_CALL16:
5667 /* VxWorks does not have separate local and global semantics for
5668 R_MIPS*_GOT16; every relocation evaluates to "G". */
5669 if (!htab->is_vxworks && local_p)
5670 {
5671 value = mips_elf_got16_entry (abfd, input_bfd, info,
5672 symbol + addend, !was_local_p);
5673 if (value == MINUS_ONE)
5674 return bfd_reloc_outofrange;
5675 value
5676 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5677 overflowed_p = mips_elf_overflow_p (value, 16);
5678 break;
5679 }
5680
5681 /* Fall through. */
5682
5683 case R_MIPS_TLS_GD:
5684 case R_MIPS_TLS_GOTTPREL:
5685 case R_MIPS_TLS_LDM:
5686 case R_MIPS_GOT_DISP:
5687 case R_MIPS16_TLS_GD:
5688 case R_MIPS16_TLS_GOTTPREL:
5689 case R_MIPS16_TLS_LDM:
5690 case R_MICROMIPS_TLS_GD:
5691 case R_MICROMIPS_TLS_GOTTPREL:
5692 case R_MICROMIPS_TLS_LDM:
5693 case R_MICROMIPS_GOT_DISP:
5694 value = g;
5695 overflowed_p = mips_elf_overflow_p (value, 16);
5696 break;
5697
5698 case R_MIPS_GPREL32:
5699 value = (addend + symbol + gp0 - gp);
5700 if (!save_addend)
5701 value &= howto->dst_mask;
5702 break;
5703
5704 case R_MIPS_PC16:
5705 case R_MIPS_GNU_REL16_S2:
5706 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5707 overflowed_p = mips_elf_overflow_p (value, 18);
5708 value >>= howto->rightshift;
5709 value &= howto->dst_mask;
5710 break;
5711
5712 case R_MICROMIPS_PC7_S1:
5713 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5714 overflowed_p = mips_elf_overflow_p (value, 8);
5715 value >>= howto->rightshift;
5716 value &= howto->dst_mask;
5717 break;
5718
5719 case R_MICROMIPS_PC10_S1:
5720 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5721 overflowed_p = mips_elf_overflow_p (value, 11);
5722 value >>= howto->rightshift;
5723 value &= howto->dst_mask;
5724 break;
5725
5726 case R_MICROMIPS_PC16_S1:
5727 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5728 overflowed_p = mips_elf_overflow_p (value, 17);
5729 value >>= howto->rightshift;
5730 value &= howto->dst_mask;
5731 break;
5732
5733 case R_MICROMIPS_PC23_S2:
5734 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5735 overflowed_p = mips_elf_overflow_p (value, 25);
5736 value >>= howto->rightshift;
5737 value &= howto->dst_mask;
5738 break;
5739
5740 case R_MIPS_GOT_HI16:
5741 case R_MIPS_CALL_HI16:
5742 case R_MICROMIPS_GOT_HI16:
5743 case R_MICROMIPS_CALL_HI16:
5744 /* We're allowed to handle these two relocations identically.
5745 The dynamic linker is allowed to handle the CALL relocations
5746 differently by creating a lazy evaluation stub. */
5747 value = g;
5748 value = mips_elf_high (value);
5749 value &= howto->dst_mask;
5750 break;
5751
5752 case R_MIPS_GOT_LO16:
5753 case R_MIPS_CALL_LO16:
5754 case R_MICROMIPS_GOT_LO16:
5755 case R_MICROMIPS_CALL_LO16:
5756 value = g & howto->dst_mask;
5757 break;
5758
5759 case R_MIPS_GOT_PAGE:
5760 case R_MICROMIPS_GOT_PAGE:
5761 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5762 if (value == MINUS_ONE)
5763 return bfd_reloc_outofrange;
5764 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5765 overflowed_p = mips_elf_overflow_p (value, 16);
5766 break;
5767
5768 case R_MIPS_GOT_OFST:
5769 case R_MICROMIPS_GOT_OFST:
5770 if (local_p)
5771 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5772 else
5773 value = addend;
5774 overflowed_p = mips_elf_overflow_p (value, 16);
5775 break;
5776
5777 case R_MIPS_SUB:
5778 case R_MICROMIPS_SUB:
5779 value = symbol - addend;
5780 value &= howto->dst_mask;
5781 break;
5782
5783 case R_MIPS_HIGHER:
5784 case R_MICROMIPS_HIGHER:
5785 value = mips_elf_higher (addend + symbol);
5786 value &= howto->dst_mask;
5787 break;
5788
5789 case R_MIPS_HIGHEST:
5790 case R_MICROMIPS_HIGHEST:
5791 value = mips_elf_highest (addend + symbol);
5792 value &= howto->dst_mask;
5793 break;
5794
5795 case R_MIPS_SCN_DISP:
5796 case R_MICROMIPS_SCN_DISP:
5797 value = symbol + addend - sec->output_offset;
5798 value &= howto->dst_mask;
5799 break;
5800
5801 case R_MIPS_JALR:
5802 case R_MICROMIPS_JALR:
5803 /* This relocation is only a hint. In some cases, we optimize
5804 it into a bal instruction. But we don't try to optimize
5805 when the symbol does not resolve locally. */
5806 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5807 return bfd_reloc_continue;
5808 value = symbol + addend;
5809 break;
5810
5811 case R_MIPS_PJUMP:
5812 case R_MIPS_GNU_VTINHERIT:
5813 case R_MIPS_GNU_VTENTRY:
5814 /* We don't do anything with these at present. */
5815 return bfd_reloc_continue;
5816
5817 default:
5818 /* An unrecognized relocation type. */
5819 return bfd_reloc_notsupported;
5820 }
5821
5822 /* Store the VALUE for our caller. */
5823 *valuep = value;
5824 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5825 }
5826
5827 /* Obtain the field relocated by RELOCATION. */
5828
5829 static bfd_vma
5830 mips_elf_obtain_contents (reloc_howto_type *howto,
5831 const Elf_Internal_Rela *relocation,
5832 bfd *input_bfd, bfd_byte *contents)
5833 {
5834 bfd_vma x;
5835 bfd_byte *location = contents + relocation->r_offset;
5836
5837 /* Obtain the bytes. */
5838 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5839
5840 return x;
5841 }
5842
5843 /* It has been determined that the result of the RELOCATION is the
5844 VALUE. Use HOWTO to place VALUE into the output file at the
5845 appropriate position. The SECTION is the section to which the
5846 relocation applies.
5847 CROSS_MODE_JUMP_P is true if the relocation field
5848 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5849
5850 Returns FALSE if anything goes wrong. */
5851
5852 static bfd_boolean
5853 mips_elf_perform_relocation (struct bfd_link_info *info,
5854 reloc_howto_type *howto,
5855 const Elf_Internal_Rela *relocation,
5856 bfd_vma value, bfd *input_bfd,
5857 asection *input_section, bfd_byte *contents,
5858 bfd_boolean cross_mode_jump_p)
5859 {
5860 bfd_vma x;
5861 bfd_byte *location;
5862 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5863
5864 /* Figure out where the relocation is occurring. */
5865 location = contents + relocation->r_offset;
5866
5867 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5868
5869 /* Obtain the current value. */
5870 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5871
5872 /* Clear the field we are setting. */
5873 x &= ~howto->dst_mask;
5874
5875 /* Set the field. */
5876 x |= (value & howto->dst_mask);
5877
5878 /* If required, turn JAL into JALX. */
5879 if (cross_mode_jump_p && jal_reloc_p (r_type))
5880 {
5881 bfd_boolean ok;
5882 bfd_vma opcode = x >> 26;
5883 bfd_vma jalx_opcode;
5884
5885 /* Check to see if the opcode is already JAL or JALX. */
5886 if (r_type == R_MIPS16_26)
5887 {
5888 ok = ((opcode == 0x6) || (opcode == 0x7));
5889 jalx_opcode = 0x7;
5890 }
5891 else if (r_type == R_MICROMIPS_26_S1)
5892 {
5893 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5894 jalx_opcode = 0x3c;
5895 }
5896 else
5897 {
5898 ok = ((opcode == 0x3) || (opcode == 0x1d));
5899 jalx_opcode = 0x1d;
5900 }
5901
5902 /* If the opcode is not JAL or JALX, there's a problem. We cannot
5903 convert J or JALS to JALX. */
5904 if (!ok)
5905 {
5906 (*_bfd_error_handler)
5907 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
5908 input_bfd,
5909 input_section,
5910 (unsigned long) relocation->r_offset);
5911 bfd_set_error (bfd_error_bad_value);
5912 return FALSE;
5913 }
5914
5915 /* Make this the JALX opcode. */
5916 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5917 }
5918
5919 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5920 range. */
5921 if (!info->relocatable
5922 && !cross_mode_jump_p
5923 && ((JAL_TO_BAL_P (input_bfd)
5924 && r_type == R_MIPS_26
5925 && (x >> 26) == 0x3) /* jal addr */
5926 || (JALR_TO_BAL_P (input_bfd)
5927 && r_type == R_MIPS_JALR
5928 && x == 0x0320f809) /* jalr t9 */
5929 || (JR_TO_B_P (input_bfd)
5930 && r_type == R_MIPS_JALR
5931 && x == 0x03200008))) /* jr t9 */
5932 {
5933 bfd_vma addr;
5934 bfd_vma dest;
5935 bfd_signed_vma off;
5936
5937 addr = (input_section->output_section->vma
5938 + input_section->output_offset
5939 + relocation->r_offset
5940 + 4);
5941 if (r_type == R_MIPS_26)
5942 dest = (value << 2) | ((addr >> 28) << 28);
5943 else
5944 dest = value;
5945 off = dest - addr;
5946 if (off <= 0x1ffff && off >= -0x20000)
5947 {
5948 if (x == 0x03200008) /* jr t9 */
5949 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5950 else
5951 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5952 }
5953 }
5954
5955 /* Put the value into the output. */
5956 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5957
5958 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
5959 location);
5960
5961 return TRUE;
5962 }
5963 \f
5964 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5965 is the original relocation, which is now being transformed into a
5966 dynamic relocation. The ADDENDP is adjusted if necessary; the
5967 caller should store the result in place of the original addend. */
5968
5969 static bfd_boolean
5970 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5971 struct bfd_link_info *info,
5972 const Elf_Internal_Rela *rel,
5973 struct mips_elf_link_hash_entry *h,
5974 asection *sec, bfd_vma symbol,
5975 bfd_vma *addendp, asection *input_section)
5976 {
5977 Elf_Internal_Rela outrel[3];
5978 asection *sreloc;
5979 bfd *dynobj;
5980 int r_type;
5981 long indx;
5982 bfd_boolean defined_p;
5983 struct mips_elf_link_hash_table *htab;
5984
5985 htab = mips_elf_hash_table (info);
5986 BFD_ASSERT (htab != NULL);
5987
5988 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5989 dynobj = elf_hash_table (info)->dynobj;
5990 sreloc = mips_elf_rel_dyn_section (info, FALSE);
5991 BFD_ASSERT (sreloc != NULL);
5992 BFD_ASSERT (sreloc->contents != NULL);
5993 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5994 < sreloc->size);
5995
5996 outrel[0].r_offset =
5997 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5998 if (ABI_64_P (output_bfd))
5999 {
6000 outrel[1].r_offset =
6001 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6002 outrel[2].r_offset =
6003 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6004 }
6005
6006 if (outrel[0].r_offset == MINUS_ONE)
6007 /* The relocation field has been deleted. */
6008 return TRUE;
6009
6010 if (outrel[0].r_offset == MINUS_TWO)
6011 {
6012 /* The relocation field has been converted into a relative value of
6013 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6014 the field to be fully relocated, so add in the symbol's value. */
6015 *addendp += symbol;
6016 return TRUE;
6017 }
6018
6019 /* We must now calculate the dynamic symbol table index to use
6020 in the relocation. */
6021 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6022 {
6023 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6024 indx = h->root.dynindx;
6025 if (SGI_COMPAT (output_bfd))
6026 defined_p = h->root.def_regular;
6027 else
6028 /* ??? glibc's ld.so just adds the final GOT entry to the
6029 relocation field. It therefore treats relocs against
6030 defined symbols in the same way as relocs against
6031 undefined symbols. */
6032 defined_p = FALSE;
6033 }
6034 else
6035 {
6036 if (sec != NULL && bfd_is_abs_section (sec))
6037 indx = 0;
6038 else if (sec == NULL || sec->owner == NULL)
6039 {
6040 bfd_set_error (bfd_error_bad_value);
6041 return FALSE;
6042 }
6043 else
6044 {
6045 indx = elf_section_data (sec->output_section)->dynindx;
6046 if (indx == 0)
6047 {
6048 asection *osec = htab->root.text_index_section;
6049 indx = elf_section_data (osec)->dynindx;
6050 }
6051 if (indx == 0)
6052 abort ();
6053 }
6054
6055 /* Instead of generating a relocation using the section
6056 symbol, we may as well make it a fully relative
6057 relocation. We want to avoid generating relocations to
6058 local symbols because we used to generate them
6059 incorrectly, without adding the original symbol value,
6060 which is mandated by the ABI for section symbols. In
6061 order to give dynamic loaders and applications time to
6062 phase out the incorrect use, we refrain from emitting
6063 section-relative relocations. It's not like they're
6064 useful, after all. This should be a bit more efficient
6065 as well. */
6066 /* ??? Although this behavior is compatible with glibc's ld.so,
6067 the ABI says that relocations against STN_UNDEF should have
6068 a symbol value of 0. Irix rld honors this, so relocations
6069 against STN_UNDEF have no effect. */
6070 if (!SGI_COMPAT (output_bfd))
6071 indx = 0;
6072 defined_p = TRUE;
6073 }
6074
6075 /* If the relocation was previously an absolute relocation and
6076 this symbol will not be referred to by the relocation, we must
6077 adjust it by the value we give it in the dynamic symbol table.
6078 Otherwise leave the job up to the dynamic linker. */
6079 if (defined_p && r_type != R_MIPS_REL32)
6080 *addendp += symbol;
6081
6082 if (htab->is_vxworks)
6083 /* VxWorks uses non-relative relocations for this. */
6084 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6085 else
6086 /* The relocation is always an REL32 relocation because we don't
6087 know where the shared library will wind up at load-time. */
6088 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6089 R_MIPS_REL32);
6090
6091 /* For strict adherence to the ABI specification, we should
6092 generate a R_MIPS_64 relocation record by itself before the
6093 _REL32/_64 record as well, such that the addend is read in as
6094 a 64-bit value (REL32 is a 32-bit relocation, after all).
6095 However, since none of the existing ELF64 MIPS dynamic
6096 loaders seems to care, we don't waste space with these
6097 artificial relocations. If this turns out to not be true,
6098 mips_elf_allocate_dynamic_relocation() should be tweaked so
6099 as to make room for a pair of dynamic relocations per
6100 invocation if ABI_64_P, and here we should generate an
6101 additional relocation record with R_MIPS_64 by itself for a
6102 NULL symbol before this relocation record. */
6103 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6104 ABI_64_P (output_bfd)
6105 ? R_MIPS_64
6106 : R_MIPS_NONE);
6107 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6108
6109 /* Adjust the output offset of the relocation to reference the
6110 correct location in the output file. */
6111 outrel[0].r_offset += (input_section->output_section->vma
6112 + input_section->output_offset);
6113 outrel[1].r_offset += (input_section->output_section->vma
6114 + input_section->output_offset);
6115 outrel[2].r_offset += (input_section->output_section->vma
6116 + input_section->output_offset);
6117
6118 /* Put the relocation back out. We have to use the special
6119 relocation outputter in the 64-bit case since the 64-bit
6120 relocation format is non-standard. */
6121 if (ABI_64_P (output_bfd))
6122 {
6123 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6124 (output_bfd, &outrel[0],
6125 (sreloc->contents
6126 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6127 }
6128 else if (htab->is_vxworks)
6129 {
6130 /* VxWorks uses RELA rather than REL dynamic relocations. */
6131 outrel[0].r_addend = *addendp;
6132 bfd_elf32_swap_reloca_out
6133 (output_bfd, &outrel[0],
6134 (sreloc->contents
6135 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6136 }
6137 else
6138 bfd_elf32_swap_reloc_out
6139 (output_bfd, &outrel[0],
6140 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6141
6142 /* We've now added another relocation. */
6143 ++sreloc->reloc_count;
6144
6145 /* Make sure the output section is writable. The dynamic linker
6146 will be writing to it. */
6147 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6148 |= SHF_WRITE;
6149
6150 /* On IRIX5, make an entry of compact relocation info. */
6151 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6152 {
6153 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6154 bfd_byte *cr;
6155
6156 if (scpt)
6157 {
6158 Elf32_crinfo cptrel;
6159
6160 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6161 cptrel.vaddr = (rel->r_offset
6162 + input_section->output_section->vma
6163 + input_section->output_offset);
6164 if (r_type == R_MIPS_REL32)
6165 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6166 else
6167 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6168 mips_elf_set_cr_dist2to (cptrel, 0);
6169 cptrel.konst = *addendp;
6170
6171 cr = (scpt->contents
6172 + sizeof (Elf32_External_compact_rel));
6173 mips_elf_set_cr_relvaddr (cptrel, 0);
6174 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6175 ((Elf32_External_crinfo *) cr
6176 + scpt->reloc_count));
6177 ++scpt->reloc_count;
6178 }
6179 }
6180
6181 /* If we've written this relocation for a readonly section,
6182 we need to set DF_TEXTREL again, so that we do not delete the
6183 DT_TEXTREL tag. */
6184 if (MIPS_ELF_READONLY_SECTION (input_section))
6185 info->flags |= DF_TEXTREL;
6186
6187 return TRUE;
6188 }
6189 \f
6190 /* Return the MACH for a MIPS e_flags value. */
6191
6192 unsigned long
6193 _bfd_elf_mips_mach (flagword flags)
6194 {
6195 switch (flags & EF_MIPS_MACH)
6196 {
6197 case E_MIPS_MACH_3900:
6198 return bfd_mach_mips3900;
6199
6200 case E_MIPS_MACH_4010:
6201 return bfd_mach_mips4010;
6202
6203 case E_MIPS_MACH_4100:
6204 return bfd_mach_mips4100;
6205
6206 case E_MIPS_MACH_4111:
6207 return bfd_mach_mips4111;
6208
6209 case E_MIPS_MACH_4120:
6210 return bfd_mach_mips4120;
6211
6212 case E_MIPS_MACH_4650:
6213 return bfd_mach_mips4650;
6214
6215 case E_MIPS_MACH_5400:
6216 return bfd_mach_mips5400;
6217
6218 case E_MIPS_MACH_5500:
6219 return bfd_mach_mips5500;
6220
6221 case E_MIPS_MACH_5900:
6222 return bfd_mach_mips5900;
6223
6224 case E_MIPS_MACH_9000:
6225 return bfd_mach_mips9000;
6226
6227 case E_MIPS_MACH_SB1:
6228 return bfd_mach_mips_sb1;
6229
6230 case E_MIPS_MACH_LS2E:
6231 return bfd_mach_mips_loongson_2e;
6232
6233 case E_MIPS_MACH_LS2F:
6234 return bfd_mach_mips_loongson_2f;
6235
6236 case E_MIPS_MACH_LS3A:
6237 return bfd_mach_mips_loongson_3a;
6238
6239 case E_MIPS_MACH_OCTEON2:
6240 return bfd_mach_mips_octeon2;
6241
6242 case E_MIPS_MACH_OCTEON:
6243 return bfd_mach_mips_octeon;
6244
6245 case E_MIPS_MACH_XLR:
6246 return bfd_mach_mips_xlr;
6247
6248 default:
6249 switch (flags & EF_MIPS_ARCH)
6250 {
6251 default:
6252 case E_MIPS_ARCH_1:
6253 return bfd_mach_mips3000;
6254
6255 case E_MIPS_ARCH_2:
6256 return bfd_mach_mips6000;
6257
6258 case E_MIPS_ARCH_3:
6259 return bfd_mach_mips4000;
6260
6261 case E_MIPS_ARCH_4:
6262 return bfd_mach_mips8000;
6263
6264 case E_MIPS_ARCH_5:
6265 return bfd_mach_mips5;
6266
6267 case E_MIPS_ARCH_32:
6268 return bfd_mach_mipsisa32;
6269
6270 case E_MIPS_ARCH_64:
6271 return bfd_mach_mipsisa64;
6272
6273 case E_MIPS_ARCH_32R2:
6274 return bfd_mach_mipsisa32r2;
6275
6276 case E_MIPS_ARCH_64R2:
6277 return bfd_mach_mipsisa64r2;
6278 }
6279 }
6280
6281 return 0;
6282 }
6283
6284 /* Return printable name for ABI. */
6285
6286 static INLINE char *
6287 elf_mips_abi_name (bfd *abfd)
6288 {
6289 flagword flags;
6290
6291 flags = elf_elfheader (abfd)->e_flags;
6292 switch (flags & EF_MIPS_ABI)
6293 {
6294 case 0:
6295 if (ABI_N32_P (abfd))
6296 return "N32";
6297 else if (ABI_64_P (abfd))
6298 return "64";
6299 else
6300 return "none";
6301 case E_MIPS_ABI_O32:
6302 return "O32";
6303 case E_MIPS_ABI_O64:
6304 return "O64";
6305 case E_MIPS_ABI_EABI32:
6306 return "EABI32";
6307 case E_MIPS_ABI_EABI64:
6308 return "EABI64";
6309 default:
6310 return "unknown abi";
6311 }
6312 }
6313 \f
6314 /* MIPS ELF uses two common sections. One is the usual one, and the
6315 other is for small objects. All the small objects are kept
6316 together, and then referenced via the gp pointer, which yields
6317 faster assembler code. This is what we use for the small common
6318 section. This approach is copied from ecoff.c. */
6319 static asection mips_elf_scom_section;
6320 static asymbol mips_elf_scom_symbol;
6321 static asymbol *mips_elf_scom_symbol_ptr;
6322
6323 /* MIPS ELF also uses an acommon section, which represents an
6324 allocated common symbol which may be overridden by a
6325 definition in a shared library. */
6326 static asection mips_elf_acom_section;
6327 static asymbol mips_elf_acom_symbol;
6328 static asymbol *mips_elf_acom_symbol_ptr;
6329
6330 /* This is used for both the 32-bit and the 64-bit ABI. */
6331
6332 void
6333 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6334 {
6335 elf_symbol_type *elfsym;
6336
6337 /* Handle the special MIPS section numbers that a symbol may use. */
6338 elfsym = (elf_symbol_type *) asym;
6339 switch (elfsym->internal_elf_sym.st_shndx)
6340 {
6341 case SHN_MIPS_ACOMMON:
6342 /* This section is used in a dynamically linked executable file.
6343 It is an allocated common section. The dynamic linker can
6344 either resolve these symbols to something in a shared
6345 library, or it can just leave them here. For our purposes,
6346 we can consider these symbols to be in a new section. */
6347 if (mips_elf_acom_section.name == NULL)
6348 {
6349 /* Initialize the acommon section. */
6350 mips_elf_acom_section.name = ".acommon";
6351 mips_elf_acom_section.flags = SEC_ALLOC;
6352 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6353 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6354 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6355 mips_elf_acom_symbol.name = ".acommon";
6356 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6357 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6358 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6359 }
6360 asym->section = &mips_elf_acom_section;
6361 break;
6362
6363 case SHN_COMMON:
6364 /* Common symbols less than the GP size are automatically
6365 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6366 if (asym->value > elf_gp_size (abfd)
6367 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6368 || IRIX_COMPAT (abfd) == ict_irix6)
6369 break;
6370 /* Fall through. */
6371 case SHN_MIPS_SCOMMON:
6372 if (mips_elf_scom_section.name == NULL)
6373 {
6374 /* Initialize the small common section. */
6375 mips_elf_scom_section.name = ".scommon";
6376 mips_elf_scom_section.flags = SEC_IS_COMMON;
6377 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6378 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6379 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6380 mips_elf_scom_symbol.name = ".scommon";
6381 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6382 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6383 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6384 }
6385 asym->section = &mips_elf_scom_section;
6386 asym->value = elfsym->internal_elf_sym.st_size;
6387 break;
6388
6389 case SHN_MIPS_SUNDEFINED:
6390 asym->section = bfd_und_section_ptr;
6391 break;
6392
6393 case SHN_MIPS_TEXT:
6394 {
6395 asection *section = bfd_get_section_by_name (abfd, ".text");
6396
6397 if (section != NULL)
6398 {
6399 asym->section = section;
6400 /* MIPS_TEXT is a bit special, the address is not an offset
6401 to the base of the .text section. So substract the section
6402 base address to make it an offset. */
6403 asym->value -= section->vma;
6404 }
6405 }
6406 break;
6407
6408 case SHN_MIPS_DATA:
6409 {
6410 asection *section = bfd_get_section_by_name (abfd, ".data");
6411
6412 if (section != NULL)
6413 {
6414 asym->section = section;
6415 /* MIPS_DATA is a bit special, the address is not an offset
6416 to the base of the .data section. So substract the section
6417 base address to make it an offset. */
6418 asym->value -= section->vma;
6419 }
6420 }
6421 break;
6422 }
6423
6424 /* If this is an odd-valued function symbol, assume it's a MIPS16
6425 or microMIPS one. */
6426 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6427 && (asym->value & 1) != 0)
6428 {
6429 asym->value--;
6430 if (MICROMIPS_P (abfd))
6431 elfsym->internal_elf_sym.st_other
6432 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6433 else
6434 elfsym->internal_elf_sym.st_other
6435 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6436 }
6437 }
6438 \f
6439 /* Implement elf_backend_eh_frame_address_size. This differs from
6440 the default in the way it handles EABI64.
6441
6442 EABI64 was originally specified as an LP64 ABI, and that is what
6443 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6444 historically accepted the combination of -mabi=eabi and -mlong32,
6445 and this ILP32 variation has become semi-official over time.
6446 Both forms use elf32 and have pointer-sized FDE addresses.
6447
6448 If an EABI object was generated by GCC 4.0 or above, it will have
6449 an empty .gcc_compiled_longXX section, where XX is the size of longs
6450 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6451 have no special marking to distinguish them from LP64 objects.
6452
6453 We don't want users of the official LP64 ABI to be punished for the
6454 existence of the ILP32 variant, but at the same time, we don't want
6455 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6456 We therefore take the following approach:
6457
6458 - If ABFD contains a .gcc_compiled_longXX section, use it to
6459 determine the pointer size.
6460
6461 - Otherwise check the type of the first relocation. Assume that
6462 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6463
6464 - Otherwise punt.
6465
6466 The second check is enough to detect LP64 objects generated by pre-4.0
6467 compilers because, in the kind of output generated by those compilers,
6468 the first relocation will be associated with either a CIE personality
6469 routine or an FDE start address. Furthermore, the compilers never
6470 used a special (non-pointer) encoding for this ABI.
6471
6472 Checking the relocation type should also be safe because there is no
6473 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6474 did so. */
6475
6476 unsigned int
6477 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6478 {
6479 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6480 return 8;
6481 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6482 {
6483 bfd_boolean long32_p, long64_p;
6484
6485 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6486 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6487 if (long32_p && long64_p)
6488 return 0;
6489 if (long32_p)
6490 return 4;
6491 if (long64_p)
6492 return 8;
6493
6494 if (sec->reloc_count > 0
6495 && elf_section_data (sec)->relocs != NULL
6496 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6497 == R_MIPS_64))
6498 return 8;
6499
6500 return 0;
6501 }
6502 return 4;
6503 }
6504 \f
6505 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6506 relocations against two unnamed section symbols to resolve to the
6507 same address. For example, if we have code like:
6508
6509 lw $4,%got_disp(.data)($gp)
6510 lw $25,%got_disp(.text)($gp)
6511 jalr $25
6512
6513 then the linker will resolve both relocations to .data and the program
6514 will jump there rather than to .text.
6515
6516 We can work around this problem by giving names to local section symbols.
6517 This is also what the MIPSpro tools do. */
6518
6519 bfd_boolean
6520 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6521 {
6522 return SGI_COMPAT (abfd);
6523 }
6524 \f
6525 /* Work over a section just before writing it out. This routine is
6526 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6527 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6528 a better way. */
6529
6530 bfd_boolean
6531 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6532 {
6533 if (hdr->sh_type == SHT_MIPS_REGINFO
6534 && hdr->sh_size > 0)
6535 {
6536 bfd_byte buf[4];
6537
6538 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6539 BFD_ASSERT (hdr->contents == NULL);
6540
6541 if (bfd_seek (abfd,
6542 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6543 SEEK_SET) != 0)
6544 return FALSE;
6545 H_PUT_32 (abfd, elf_gp (abfd), buf);
6546 if (bfd_bwrite (buf, 4, abfd) != 4)
6547 return FALSE;
6548 }
6549
6550 if (hdr->sh_type == SHT_MIPS_OPTIONS
6551 && hdr->bfd_section != NULL
6552 && mips_elf_section_data (hdr->bfd_section) != NULL
6553 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6554 {
6555 bfd_byte *contents, *l, *lend;
6556
6557 /* We stored the section contents in the tdata field in the
6558 set_section_contents routine. We save the section contents
6559 so that we don't have to read them again.
6560 At this point we know that elf_gp is set, so we can look
6561 through the section contents to see if there is an
6562 ODK_REGINFO structure. */
6563
6564 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6565 l = contents;
6566 lend = contents + hdr->sh_size;
6567 while (l + sizeof (Elf_External_Options) <= lend)
6568 {
6569 Elf_Internal_Options intopt;
6570
6571 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6572 &intopt);
6573 if (intopt.size < sizeof (Elf_External_Options))
6574 {
6575 (*_bfd_error_handler)
6576 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6577 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6578 break;
6579 }
6580 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6581 {
6582 bfd_byte buf[8];
6583
6584 if (bfd_seek (abfd,
6585 (hdr->sh_offset
6586 + (l - contents)
6587 + sizeof (Elf_External_Options)
6588 + (sizeof (Elf64_External_RegInfo) - 8)),
6589 SEEK_SET) != 0)
6590 return FALSE;
6591 H_PUT_64 (abfd, elf_gp (abfd), buf);
6592 if (bfd_bwrite (buf, 8, abfd) != 8)
6593 return FALSE;
6594 }
6595 else if (intopt.kind == ODK_REGINFO)
6596 {
6597 bfd_byte buf[4];
6598
6599 if (bfd_seek (abfd,
6600 (hdr->sh_offset
6601 + (l - contents)
6602 + sizeof (Elf_External_Options)
6603 + (sizeof (Elf32_External_RegInfo) - 4)),
6604 SEEK_SET) != 0)
6605 return FALSE;
6606 H_PUT_32 (abfd, elf_gp (abfd), buf);
6607 if (bfd_bwrite (buf, 4, abfd) != 4)
6608 return FALSE;
6609 }
6610 l += intopt.size;
6611 }
6612 }
6613
6614 if (hdr->bfd_section != NULL)
6615 {
6616 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6617
6618 /* .sbss is not handled specially here because the GNU/Linux
6619 prelinker can convert .sbss from NOBITS to PROGBITS and
6620 changing it back to NOBITS breaks the binary. The entry in
6621 _bfd_mips_elf_special_sections will ensure the correct flags
6622 are set on .sbss if BFD creates it without reading it from an
6623 input file, and without special handling here the flags set
6624 on it in an input file will be followed. */
6625 if (strcmp (name, ".sdata") == 0
6626 || strcmp (name, ".lit8") == 0
6627 || strcmp (name, ".lit4") == 0)
6628 {
6629 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6630 hdr->sh_type = SHT_PROGBITS;
6631 }
6632 else if (strcmp (name, ".srdata") == 0)
6633 {
6634 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6635 hdr->sh_type = SHT_PROGBITS;
6636 }
6637 else if (strcmp (name, ".compact_rel") == 0)
6638 {
6639 hdr->sh_flags = 0;
6640 hdr->sh_type = SHT_PROGBITS;
6641 }
6642 else if (strcmp (name, ".rtproc") == 0)
6643 {
6644 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6645 {
6646 unsigned int adjust;
6647
6648 adjust = hdr->sh_size % hdr->sh_addralign;
6649 if (adjust != 0)
6650 hdr->sh_size += hdr->sh_addralign - adjust;
6651 }
6652 }
6653 }
6654
6655 return TRUE;
6656 }
6657
6658 /* Handle a MIPS specific section when reading an object file. This
6659 is called when elfcode.h finds a section with an unknown type.
6660 This routine supports both the 32-bit and 64-bit ELF ABI.
6661
6662 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6663 how to. */
6664
6665 bfd_boolean
6666 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6667 Elf_Internal_Shdr *hdr,
6668 const char *name,
6669 int shindex)
6670 {
6671 flagword flags = 0;
6672
6673 /* There ought to be a place to keep ELF backend specific flags, but
6674 at the moment there isn't one. We just keep track of the
6675 sections by their name, instead. Fortunately, the ABI gives
6676 suggested names for all the MIPS specific sections, so we will
6677 probably get away with this. */
6678 switch (hdr->sh_type)
6679 {
6680 case SHT_MIPS_LIBLIST:
6681 if (strcmp (name, ".liblist") != 0)
6682 return FALSE;
6683 break;
6684 case SHT_MIPS_MSYM:
6685 if (strcmp (name, ".msym") != 0)
6686 return FALSE;
6687 break;
6688 case SHT_MIPS_CONFLICT:
6689 if (strcmp (name, ".conflict") != 0)
6690 return FALSE;
6691 break;
6692 case SHT_MIPS_GPTAB:
6693 if (! CONST_STRNEQ (name, ".gptab."))
6694 return FALSE;
6695 break;
6696 case SHT_MIPS_UCODE:
6697 if (strcmp (name, ".ucode") != 0)
6698 return FALSE;
6699 break;
6700 case SHT_MIPS_DEBUG:
6701 if (strcmp (name, ".mdebug") != 0)
6702 return FALSE;
6703 flags = SEC_DEBUGGING;
6704 break;
6705 case SHT_MIPS_REGINFO:
6706 if (strcmp (name, ".reginfo") != 0
6707 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6708 return FALSE;
6709 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6710 break;
6711 case SHT_MIPS_IFACE:
6712 if (strcmp (name, ".MIPS.interfaces") != 0)
6713 return FALSE;
6714 break;
6715 case SHT_MIPS_CONTENT:
6716 if (! CONST_STRNEQ (name, ".MIPS.content"))
6717 return FALSE;
6718 break;
6719 case SHT_MIPS_OPTIONS:
6720 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6721 return FALSE;
6722 break;
6723 case SHT_MIPS_DWARF:
6724 if (! CONST_STRNEQ (name, ".debug_")
6725 && ! CONST_STRNEQ (name, ".zdebug_"))
6726 return FALSE;
6727 break;
6728 case SHT_MIPS_SYMBOL_LIB:
6729 if (strcmp (name, ".MIPS.symlib") != 0)
6730 return FALSE;
6731 break;
6732 case SHT_MIPS_EVENTS:
6733 if (! CONST_STRNEQ (name, ".MIPS.events")
6734 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6735 return FALSE;
6736 break;
6737 default:
6738 break;
6739 }
6740
6741 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6742 return FALSE;
6743
6744 if (flags)
6745 {
6746 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6747 (bfd_get_section_flags (abfd,
6748 hdr->bfd_section)
6749 | flags)))
6750 return FALSE;
6751 }
6752
6753 /* FIXME: We should record sh_info for a .gptab section. */
6754
6755 /* For a .reginfo section, set the gp value in the tdata information
6756 from the contents of this section. We need the gp value while
6757 processing relocs, so we just get it now. The .reginfo section
6758 is not used in the 64-bit MIPS ELF ABI. */
6759 if (hdr->sh_type == SHT_MIPS_REGINFO)
6760 {
6761 Elf32_External_RegInfo ext;
6762 Elf32_RegInfo s;
6763
6764 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6765 &ext, 0, sizeof ext))
6766 return FALSE;
6767 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6768 elf_gp (abfd) = s.ri_gp_value;
6769 }
6770
6771 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6772 set the gp value based on what we find. We may see both
6773 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6774 they should agree. */
6775 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6776 {
6777 bfd_byte *contents, *l, *lend;
6778
6779 contents = bfd_malloc (hdr->sh_size);
6780 if (contents == NULL)
6781 return FALSE;
6782 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6783 0, hdr->sh_size))
6784 {
6785 free (contents);
6786 return FALSE;
6787 }
6788 l = contents;
6789 lend = contents + hdr->sh_size;
6790 while (l + sizeof (Elf_External_Options) <= lend)
6791 {
6792 Elf_Internal_Options intopt;
6793
6794 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6795 &intopt);
6796 if (intopt.size < sizeof (Elf_External_Options))
6797 {
6798 (*_bfd_error_handler)
6799 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6800 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6801 break;
6802 }
6803 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6804 {
6805 Elf64_Internal_RegInfo intreg;
6806
6807 bfd_mips_elf64_swap_reginfo_in
6808 (abfd,
6809 ((Elf64_External_RegInfo *)
6810 (l + sizeof (Elf_External_Options))),
6811 &intreg);
6812 elf_gp (abfd) = intreg.ri_gp_value;
6813 }
6814 else if (intopt.kind == ODK_REGINFO)
6815 {
6816 Elf32_RegInfo intreg;
6817
6818 bfd_mips_elf32_swap_reginfo_in
6819 (abfd,
6820 ((Elf32_External_RegInfo *)
6821 (l + sizeof (Elf_External_Options))),
6822 &intreg);
6823 elf_gp (abfd) = intreg.ri_gp_value;
6824 }
6825 l += intopt.size;
6826 }
6827 free (contents);
6828 }
6829
6830 return TRUE;
6831 }
6832
6833 /* Set the correct type for a MIPS ELF section. We do this by the
6834 section name, which is a hack, but ought to work. This routine is
6835 used by both the 32-bit and the 64-bit ABI. */
6836
6837 bfd_boolean
6838 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6839 {
6840 const char *name = bfd_get_section_name (abfd, sec);
6841
6842 if (strcmp (name, ".liblist") == 0)
6843 {
6844 hdr->sh_type = SHT_MIPS_LIBLIST;
6845 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6846 /* The sh_link field is set in final_write_processing. */
6847 }
6848 else if (strcmp (name, ".conflict") == 0)
6849 hdr->sh_type = SHT_MIPS_CONFLICT;
6850 else if (CONST_STRNEQ (name, ".gptab."))
6851 {
6852 hdr->sh_type = SHT_MIPS_GPTAB;
6853 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6854 /* The sh_info field is set in final_write_processing. */
6855 }
6856 else if (strcmp (name, ".ucode") == 0)
6857 hdr->sh_type = SHT_MIPS_UCODE;
6858 else if (strcmp (name, ".mdebug") == 0)
6859 {
6860 hdr->sh_type = SHT_MIPS_DEBUG;
6861 /* In a shared object on IRIX 5.3, the .mdebug section has an
6862 entsize of 0. FIXME: Does this matter? */
6863 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6864 hdr->sh_entsize = 0;
6865 else
6866 hdr->sh_entsize = 1;
6867 }
6868 else if (strcmp (name, ".reginfo") == 0)
6869 {
6870 hdr->sh_type = SHT_MIPS_REGINFO;
6871 /* In a shared object on IRIX 5.3, the .reginfo section has an
6872 entsize of 0x18. FIXME: Does this matter? */
6873 if (SGI_COMPAT (abfd))
6874 {
6875 if ((abfd->flags & DYNAMIC) != 0)
6876 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6877 else
6878 hdr->sh_entsize = 1;
6879 }
6880 else
6881 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6882 }
6883 else if (SGI_COMPAT (abfd)
6884 && (strcmp (name, ".hash") == 0
6885 || strcmp (name, ".dynamic") == 0
6886 || strcmp (name, ".dynstr") == 0))
6887 {
6888 if (SGI_COMPAT (abfd))
6889 hdr->sh_entsize = 0;
6890 #if 0
6891 /* This isn't how the IRIX6 linker behaves. */
6892 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6893 #endif
6894 }
6895 else if (strcmp (name, ".got") == 0
6896 || strcmp (name, ".srdata") == 0
6897 || strcmp (name, ".sdata") == 0
6898 || strcmp (name, ".sbss") == 0
6899 || strcmp (name, ".lit4") == 0
6900 || strcmp (name, ".lit8") == 0)
6901 hdr->sh_flags |= SHF_MIPS_GPREL;
6902 else if (strcmp (name, ".MIPS.interfaces") == 0)
6903 {
6904 hdr->sh_type = SHT_MIPS_IFACE;
6905 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6906 }
6907 else if (CONST_STRNEQ (name, ".MIPS.content"))
6908 {
6909 hdr->sh_type = SHT_MIPS_CONTENT;
6910 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6911 /* The sh_info field is set in final_write_processing. */
6912 }
6913 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6914 {
6915 hdr->sh_type = SHT_MIPS_OPTIONS;
6916 hdr->sh_entsize = 1;
6917 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6918 }
6919 else if (CONST_STRNEQ (name, ".debug_")
6920 || CONST_STRNEQ (name, ".zdebug_"))
6921 {
6922 hdr->sh_type = SHT_MIPS_DWARF;
6923
6924 /* Irix facilities such as libexc expect a single .debug_frame
6925 per executable, the system ones have NOSTRIP set and the linker
6926 doesn't merge sections with different flags so ... */
6927 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6928 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6929 }
6930 else if (strcmp (name, ".MIPS.symlib") == 0)
6931 {
6932 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6933 /* The sh_link and sh_info fields are set in
6934 final_write_processing. */
6935 }
6936 else if (CONST_STRNEQ (name, ".MIPS.events")
6937 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6938 {
6939 hdr->sh_type = SHT_MIPS_EVENTS;
6940 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6941 /* The sh_link field is set in final_write_processing. */
6942 }
6943 else if (strcmp (name, ".msym") == 0)
6944 {
6945 hdr->sh_type = SHT_MIPS_MSYM;
6946 hdr->sh_flags |= SHF_ALLOC;
6947 hdr->sh_entsize = 8;
6948 }
6949
6950 /* The generic elf_fake_sections will set up REL_HDR using the default
6951 kind of relocations. We used to set up a second header for the
6952 non-default kind of relocations here, but only NewABI would use
6953 these, and the IRIX ld doesn't like resulting empty RELA sections.
6954 Thus we create those header only on demand now. */
6955
6956 return TRUE;
6957 }
6958
6959 /* Given a BFD section, try to locate the corresponding ELF section
6960 index. This is used by both the 32-bit and the 64-bit ABI.
6961 Actually, it's not clear to me that the 64-bit ABI supports these,
6962 but for non-PIC objects we will certainly want support for at least
6963 the .scommon section. */
6964
6965 bfd_boolean
6966 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6967 asection *sec, int *retval)
6968 {
6969 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6970 {
6971 *retval = SHN_MIPS_SCOMMON;
6972 return TRUE;
6973 }
6974 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6975 {
6976 *retval = SHN_MIPS_ACOMMON;
6977 return TRUE;
6978 }
6979 return FALSE;
6980 }
6981 \f
6982 /* Hook called by the linker routine which adds symbols from an object
6983 file. We must handle the special MIPS section numbers here. */
6984
6985 bfd_boolean
6986 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6987 Elf_Internal_Sym *sym, const char **namep,
6988 flagword *flagsp ATTRIBUTE_UNUSED,
6989 asection **secp, bfd_vma *valp)
6990 {
6991 if (SGI_COMPAT (abfd)
6992 && (abfd->flags & DYNAMIC) != 0
6993 && strcmp (*namep, "_rld_new_interface") == 0)
6994 {
6995 /* Skip IRIX5 rld entry name. */
6996 *namep = NULL;
6997 return TRUE;
6998 }
6999
7000 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7001 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7002 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7003 a magic symbol resolved by the linker, we ignore this bogus definition
7004 of _gp_disp. New ABI objects do not suffer from this problem so this
7005 is not done for them. */
7006 if (!NEWABI_P(abfd)
7007 && (sym->st_shndx == SHN_ABS)
7008 && (strcmp (*namep, "_gp_disp") == 0))
7009 {
7010 *namep = NULL;
7011 return TRUE;
7012 }
7013
7014 switch (sym->st_shndx)
7015 {
7016 case SHN_COMMON:
7017 /* Common symbols less than the GP size are automatically
7018 treated as SHN_MIPS_SCOMMON symbols. */
7019 if (sym->st_size > elf_gp_size (abfd)
7020 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7021 || IRIX_COMPAT (abfd) == ict_irix6)
7022 break;
7023 /* Fall through. */
7024 case SHN_MIPS_SCOMMON:
7025 *secp = bfd_make_section_old_way (abfd, ".scommon");
7026 (*secp)->flags |= SEC_IS_COMMON;
7027 *valp = sym->st_size;
7028 break;
7029
7030 case SHN_MIPS_TEXT:
7031 /* This section is used in a shared object. */
7032 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7033 {
7034 asymbol *elf_text_symbol;
7035 asection *elf_text_section;
7036 bfd_size_type amt = sizeof (asection);
7037
7038 elf_text_section = bfd_zalloc (abfd, amt);
7039 if (elf_text_section == NULL)
7040 return FALSE;
7041
7042 amt = sizeof (asymbol);
7043 elf_text_symbol = bfd_zalloc (abfd, amt);
7044 if (elf_text_symbol == NULL)
7045 return FALSE;
7046
7047 /* Initialize the section. */
7048
7049 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7050 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7051
7052 elf_text_section->symbol = elf_text_symbol;
7053 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7054
7055 elf_text_section->name = ".text";
7056 elf_text_section->flags = SEC_NO_FLAGS;
7057 elf_text_section->output_section = NULL;
7058 elf_text_section->owner = abfd;
7059 elf_text_symbol->name = ".text";
7060 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7061 elf_text_symbol->section = elf_text_section;
7062 }
7063 /* This code used to do *secp = bfd_und_section_ptr if
7064 info->shared. I don't know why, and that doesn't make sense,
7065 so I took it out. */
7066 *secp = mips_elf_tdata (abfd)->elf_text_section;
7067 break;
7068
7069 case SHN_MIPS_ACOMMON:
7070 /* Fall through. XXX Can we treat this as allocated data? */
7071 case SHN_MIPS_DATA:
7072 /* This section is used in a shared object. */
7073 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7074 {
7075 asymbol *elf_data_symbol;
7076 asection *elf_data_section;
7077 bfd_size_type amt = sizeof (asection);
7078
7079 elf_data_section = bfd_zalloc (abfd, amt);
7080 if (elf_data_section == NULL)
7081 return FALSE;
7082
7083 amt = sizeof (asymbol);
7084 elf_data_symbol = bfd_zalloc (abfd, amt);
7085 if (elf_data_symbol == NULL)
7086 return FALSE;
7087
7088 /* Initialize the section. */
7089
7090 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7091 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7092
7093 elf_data_section->symbol = elf_data_symbol;
7094 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7095
7096 elf_data_section->name = ".data";
7097 elf_data_section->flags = SEC_NO_FLAGS;
7098 elf_data_section->output_section = NULL;
7099 elf_data_section->owner = abfd;
7100 elf_data_symbol->name = ".data";
7101 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7102 elf_data_symbol->section = elf_data_section;
7103 }
7104 /* This code used to do *secp = bfd_und_section_ptr if
7105 info->shared. I don't know why, and that doesn't make sense,
7106 so I took it out. */
7107 *secp = mips_elf_tdata (abfd)->elf_data_section;
7108 break;
7109
7110 case SHN_MIPS_SUNDEFINED:
7111 *secp = bfd_und_section_ptr;
7112 break;
7113 }
7114
7115 if (SGI_COMPAT (abfd)
7116 && ! info->shared
7117 && info->output_bfd->xvec == abfd->xvec
7118 && strcmp (*namep, "__rld_obj_head") == 0)
7119 {
7120 struct elf_link_hash_entry *h;
7121 struct bfd_link_hash_entry *bh;
7122
7123 /* Mark __rld_obj_head as dynamic. */
7124 bh = NULL;
7125 if (! (_bfd_generic_link_add_one_symbol
7126 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7127 get_elf_backend_data (abfd)->collect, &bh)))
7128 return FALSE;
7129
7130 h = (struct elf_link_hash_entry *) bh;
7131 h->non_elf = 0;
7132 h->def_regular = 1;
7133 h->type = STT_OBJECT;
7134
7135 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7136 return FALSE;
7137
7138 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7139 mips_elf_hash_table (info)->rld_symbol = h;
7140 }
7141
7142 /* If this is a mips16 text symbol, add 1 to the value to make it
7143 odd. This will cause something like .word SYM to come up with
7144 the right value when it is loaded into the PC. */
7145 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7146 ++*valp;
7147
7148 return TRUE;
7149 }
7150
7151 /* This hook function is called before the linker writes out a global
7152 symbol. We mark symbols as small common if appropriate. This is
7153 also where we undo the increment of the value for a mips16 symbol. */
7154
7155 int
7156 _bfd_mips_elf_link_output_symbol_hook
7157 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7158 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7159 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7160 {
7161 /* If we see a common symbol, which implies a relocatable link, then
7162 if a symbol was small common in an input file, mark it as small
7163 common in the output file. */
7164 if (sym->st_shndx == SHN_COMMON
7165 && strcmp (input_sec->name, ".scommon") == 0)
7166 sym->st_shndx = SHN_MIPS_SCOMMON;
7167
7168 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7169 sym->st_value &= ~1;
7170
7171 return 1;
7172 }
7173 \f
7174 /* Functions for the dynamic linker. */
7175
7176 /* Create dynamic sections when linking against a dynamic object. */
7177
7178 bfd_boolean
7179 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7180 {
7181 struct elf_link_hash_entry *h;
7182 struct bfd_link_hash_entry *bh;
7183 flagword flags;
7184 register asection *s;
7185 const char * const *namep;
7186 struct mips_elf_link_hash_table *htab;
7187
7188 htab = mips_elf_hash_table (info);
7189 BFD_ASSERT (htab != NULL);
7190
7191 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7192 | SEC_LINKER_CREATED | SEC_READONLY);
7193
7194 /* The psABI requires a read-only .dynamic section, but the VxWorks
7195 EABI doesn't. */
7196 if (!htab->is_vxworks)
7197 {
7198 s = bfd_get_linker_section (abfd, ".dynamic");
7199 if (s != NULL)
7200 {
7201 if (! bfd_set_section_flags (abfd, s, flags))
7202 return FALSE;
7203 }
7204 }
7205
7206 /* We need to create .got section. */
7207 if (!mips_elf_create_got_section (abfd, info))
7208 return FALSE;
7209
7210 if (! mips_elf_rel_dyn_section (info, TRUE))
7211 return FALSE;
7212
7213 /* Create .stub section. */
7214 s = bfd_make_section_anyway_with_flags (abfd,
7215 MIPS_ELF_STUB_SECTION_NAME (abfd),
7216 flags | SEC_CODE);
7217 if (s == NULL
7218 || ! bfd_set_section_alignment (abfd, s,
7219 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7220 return FALSE;
7221 htab->sstubs = s;
7222
7223 if (!mips_elf_hash_table (info)->use_rld_obj_head
7224 && !info->shared
7225 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7226 {
7227 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7228 flags &~ (flagword) SEC_READONLY);
7229 if (s == NULL
7230 || ! bfd_set_section_alignment (abfd, s,
7231 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7232 return FALSE;
7233 }
7234
7235 /* On IRIX5, we adjust add some additional symbols and change the
7236 alignments of several sections. There is no ABI documentation
7237 indicating that this is necessary on IRIX6, nor any evidence that
7238 the linker takes such action. */
7239 if (IRIX_COMPAT (abfd) == ict_irix5)
7240 {
7241 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7242 {
7243 bh = NULL;
7244 if (! (_bfd_generic_link_add_one_symbol
7245 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7246 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7247 return FALSE;
7248
7249 h = (struct elf_link_hash_entry *) bh;
7250 h->non_elf = 0;
7251 h->def_regular = 1;
7252 h->type = STT_SECTION;
7253
7254 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7255 return FALSE;
7256 }
7257
7258 /* We need to create a .compact_rel section. */
7259 if (SGI_COMPAT (abfd))
7260 {
7261 if (!mips_elf_create_compact_rel_section (abfd, info))
7262 return FALSE;
7263 }
7264
7265 /* Change alignments of some sections. */
7266 s = bfd_get_linker_section (abfd, ".hash");
7267 if (s != NULL)
7268 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7269 s = bfd_get_linker_section (abfd, ".dynsym");
7270 if (s != NULL)
7271 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7272 s = bfd_get_linker_section (abfd, ".dynstr");
7273 if (s != NULL)
7274 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7275 /* ??? */
7276 s = bfd_get_section_by_name (abfd, ".reginfo");
7277 if (s != NULL)
7278 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7279 s = bfd_get_linker_section (abfd, ".dynamic");
7280 if (s != NULL)
7281 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7282 }
7283
7284 if (!info->shared)
7285 {
7286 const char *name;
7287
7288 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7289 bh = NULL;
7290 if (!(_bfd_generic_link_add_one_symbol
7291 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7292 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7293 return FALSE;
7294
7295 h = (struct elf_link_hash_entry *) bh;
7296 h->non_elf = 0;
7297 h->def_regular = 1;
7298 h->type = STT_SECTION;
7299
7300 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7301 return FALSE;
7302
7303 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7304 {
7305 /* __rld_map is a four byte word located in the .data section
7306 and is filled in by the rtld to contain a pointer to
7307 the _r_debug structure. Its symbol value will be set in
7308 _bfd_mips_elf_finish_dynamic_symbol. */
7309 s = bfd_get_linker_section (abfd, ".rld_map");
7310 BFD_ASSERT (s != NULL);
7311
7312 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7313 bh = NULL;
7314 if (!(_bfd_generic_link_add_one_symbol
7315 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7316 get_elf_backend_data (abfd)->collect, &bh)))
7317 return FALSE;
7318
7319 h = (struct elf_link_hash_entry *) bh;
7320 h->non_elf = 0;
7321 h->def_regular = 1;
7322 h->type = STT_OBJECT;
7323
7324 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7325 return FALSE;
7326 mips_elf_hash_table (info)->rld_symbol = h;
7327 }
7328 }
7329
7330 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7331 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7332 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7333 return FALSE;
7334
7335 /* Cache the sections created above. */
7336 htab->splt = bfd_get_linker_section (abfd, ".plt");
7337 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7338 if (htab->is_vxworks)
7339 {
7340 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7341 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7342 }
7343 else
7344 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7345 if (!htab->sdynbss
7346 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7347 || !htab->srelplt
7348 || !htab->splt)
7349 abort ();
7350
7351 if (htab->is_vxworks)
7352 {
7353 /* Do the usual VxWorks handling. */
7354 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7355 return FALSE;
7356
7357 /* Work out the PLT sizes. */
7358 if (info->shared)
7359 {
7360 htab->plt_header_size
7361 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7362 htab->plt_entry_size
7363 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7364 }
7365 else
7366 {
7367 htab->plt_header_size
7368 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7369 htab->plt_entry_size
7370 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7371 }
7372 }
7373 else if (!info->shared)
7374 {
7375 /* All variants of the plt0 entry are the same size. */
7376 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7377 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7378 }
7379
7380 return TRUE;
7381 }
7382 \f
7383 /* Return true if relocation REL against section SEC is a REL rather than
7384 RELA relocation. RELOCS is the first relocation in the section and
7385 ABFD is the bfd that contains SEC. */
7386
7387 static bfd_boolean
7388 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7389 const Elf_Internal_Rela *relocs,
7390 const Elf_Internal_Rela *rel)
7391 {
7392 Elf_Internal_Shdr *rel_hdr;
7393 const struct elf_backend_data *bed;
7394
7395 /* To determine which flavor of relocation this is, we depend on the
7396 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7397 rel_hdr = elf_section_data (sec)->rel.hdr;
7398 if (rel_hdr == NULL)
7399 return FALSE;
7400 bed = get_elf_backend_data (abfd);
7401 return ((size_t) (rel - relocs)
7402 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7403 }
7404
7405 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7406 HOWTO is the relocation's howto and CONTENTS points to the contents
7407 of the section that REL is against. */
7408
7409 static bfd_vma
7410 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7411 reloc_howto_type *howto, bfd_byte *contents)
7412 {
7413 bfd_byte *location;
7414 unsigned int r_type;
7415 bfd_vma addend;
7416
7417 r_type = ELF_R_TYPE (abfd, rel->r_info);
7418 location = contents + rel->r_offset;
7419
7420 /* Get the addend, which is stored in the input file. */
7421 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7422 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7423 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7424
7425 return addend & howto->src_mask;
7426 }
7427
7428 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7429 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7430 and update *ADDEND with the final addend. Return true on success
7431 or false if the LO16 could not be found. RELEND is the exclusive
7432 upper bound on the relocations for REL's section. */
7433
7434 static bfd_boolean
7435 mips_elf_add_lo16_rel_addend (bfd *abfd,
7436 const Elf_Internal_Rela *rel,
7437 const Elf_Internal_Rela *relend,
7438 bfd_byte *contents, bfd_vma *addend)
7439 {
7440 unsigned int r_type, lo16_type;
7441 const Elf_Internal_Rela *lo16_relocation;
7442 reloc_howto_type *lo16_howto;
7443 bfd_vma l;
7444
7445 r_type = ELF_R_TYPE (abfd, rel->r_info);
7446 if (mips16_reloc_p (r_type))
7447 lo16_type = R_MIPS16_LO16;
7448 else if (micromips_reloc_p (r_type))
7449 lo16_type = R_MICROMIPS_LO16;
7450 else
7451 lo16_type = R_MIPS_LO16;
7452
7453 /* The combined value is the sum of the HI16 addend, left-shifted by
7454 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7455 code does a `lui' of the HI16 value, and then an `addiu' of the
7456 LO16 value.)
7457
7458 Scan ahead to find a matching LO16 relocation.
7459
7460 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7461 be immediately following. However, for the IRIX6 ABI, the next
7462 relocation may be a composed relocation consisting of several
7463 relocations for the same address. In that case, the R_MIPS_LO16
7464 relocation may occur as one of these. We permit a similar
7465 extension in general, as that is useful for GCC.
7466
7467 In some cases GCC dead code elimination removes the LO16 but keeps
7468 the corresponding HI16. This is strictly speaking a violation of
7469 the ABI but not immediately harmful. */
7470 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7471 if (lo16_relocation == NULL)
7472 return FALSE;
7473
7474 /* Obtain the addend kept there. */
7475 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7476 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7477
7478 l <<= lo16_howto->rightshift;
7479 l = _bfd_mips_elf_sign_extend (l, 16);
7480
7481 *addend <<= 16;
7482 *addend += l;
7483 return TRUE;
7484 }
7485
7486 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7487 store the contents in *CONTENTS on success. Assume that *CONTENTS
7488 already holds the contents if it is nonull on entry. */
7489
7490 static bfd_boolean
7491 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7492 {
7493 if (*contents)
7494 return TRUE;
7495
7496 /* Get cached copy if it exists. */
7497 if (elf_section_data (sec)->this_hdr.contents != NULL)
7498 {
7499 *contents = elf_section_data (sec)->this_hdr.contents;
7500 return TRUE;
7501 }
7502
7503 return bfd_malloc_and_get_section (abfd, sec, contents);
7504 }
7505
7506 /* Look through the relocs for a section during the first phase, and
7507 allocate space in the global offset table. */
7508
7509 bfd_boolean
7510 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7511 asection *sec, const Elf_Internal_Rela *relocs)
7512 {
7513 const char *name;
7514 bfd *dynobj;
7515 Elf_Internal_Shdr *symtab_hdr;
7516 struct elf_link_hash_entry **sym_hashes;
7517 size_t extsymoff;
7518 const Elf_Internal_Rela *rel;
7519 const Elf_Internal_Rela *rel_end;
7520 asection *sreloc;
7521 const struct elf_backend_data *bed;
7522 struct mips_elf_link_hash_table *htab;
7523 bfd_byte *contents;
7524 bfd_vma addend;
7525 reloc_howto_type *howto;
7526
7527 if (info->relocatable)
7528 return TRUE;
7529
7530 htab = mips_elf_hash_table (info);
7531 BFD_ASSERT (htab != NULL);
7532
7533 dynobj = elf_hash_table (info)->dynobj;
7534 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7535 sym_hashes = elf_sym_hashes (abfd);
7536 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7537
7538 bed = get_elf_backend_data (abfd);
7539 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7540
7541 /* Check for the mips16 stub sections. */
7542
7543 name = bfd_get_section_name (abfd, sec);
7544 if (FN_STUB_P (name))
7545 {
7546 unsigned long r_symndx;
7547
7548 /* Look at the relocation information to figure out which symbol
7549 this is for. */
7550
7551 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7552 if (r_symndx == 0)
7553 {
7554 (*_bfd_error_handler)
7555 (_("%B: Warning: cannot determine the target function for"
7556 " stub section `%s'"),
7557 abfd, name);
7558 bfd_set_error (bfd_error_bad_value);
7559 return FALSE;
7560 }
7561
7562 if (r_symndx < extsymoff
7563 || sym_hashes[r_symndx - extsymoff] == NULL)
7564 {
7565 asection *o;
7566
7567 /* This stub is for a local symbol. This stub will only be
7568 needed if there is some relocation in this BFD, other
7569 than a 16 bit function call, which refers to this symbol. */
7570 for (o = abfd->sections; o != NULL; o = o->next)
7571 {
7572 Elf_Internal_Rela *sec_relocs;
7573 const Elf_Internal_Rela *r, *rend;
7574
7575 /* We can ignore stub sections when looking for relocs. */
7576 if ((o->flags & SEC_RELOC) == 0
7577 || o->reloc_count == 0
7578 || section_allows_mips16_refs_p (o))
7579 continue;
7580
7581 sec_relocs
7582 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7583 info->keep_memory);
7584 if (sec_relocs == NULL)
7585 return FALSE;
7586
7587 rend = sec_relocs + o->reloc_count;
7588 for (r = sec_relocs; r < rend; r++)
7589 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7590 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7591 break;
7592
7593 if (elf_section_data (o)->relocs != sec_relocs)
7594 free (sec_relocs);
7595
7596 if (r < rend)
7597 break;
7598 }
7599
7600 if (o == NULL)
7601 {
7602 /* There is no non-call reloc for this stub, so we do
7603 not need it. Since this function is called before
7604 the linker maps input sections to output sections, we
7605 can easily discard it by setting the SEC_EXCLUDE
7606 flag. */
7607 sec->flags |= SEC_EXCLUDE;
7608 return TRUE;
7609 }
7610
7611 /* Record this stub in an array of local symbol stubs for
7612 this BFD. */
7613 if (mips_elf_tdata (abfd)->local_stubs == NULL)
7614 {
7615 unsigned long symcount;
7616 asection **n;
7617 bfd_size_type amt;
7618
7619 if (elf_bad_symtab (abfd))
7620 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7621 else
7622 symcount = symtab_hdr->sh_info;
7623 amt = symcount * sizeof (asection *);
7624 n = bfd_zalloc (abfd, amt);
7625 if (n == NULL)
7626 return FALSE;
7627 mips_elf_tdata (abfd)->local_stubs = n;
7628 }
7629
7630 sec->flags |= SEC_KEEP;
7631 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7632
7633 /* We don't need to set mips16_stubs_seen in this case.
7634 That flag is used to see whether we need to look through
7635 the global symbol table for stubs. We don't need to set
7636 it here, because we just have a local stub. */
7637 }
7638 else
7639 {
7640 struct mips_elf_link_hash_entry *h;
7641
7642 h = ((struct mips_elf_link_hash_entry *)
7643 sym_hashes[r_symndx - extsymoff]);
7644
7645 while (h->root.root.type == bfd_link_hash_indirect
7646 || h->root.root.type == bfd_link_hash_warning)
7647 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7648
7649 /* H is the symbol this stub is for. */
7650
7651 /* If we already have an appropriate stub for this function, we
7652 don't need another one, so we can discard this one. Since
7653 this function is called before the linker maps input sections
7654 to output sections, we can easily discard it by setting the
7655 SEC_EXCLUDE flag. */
7656 if (h->fn_stub != NULL)
7657 {
7658 sec->flags |= SEC_EXCLUDE;
7659 return TRUE;
7660 }
7661
7662 sec->flags |= SEC_KEEP;
7663 h->fn_stub = sec;
7664 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7665 }
7666 }
7667 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7668 {
7669 unsigned long r_symndx;
7670 struct mips_elf_link_hash_entry *h;
7671 asection **loc;
7672
7673 /* Look at the relocation information to figure out which symbol
7674 this is for. */
7675
7676 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7677 if (r_symndx == 0)
7678 {
7679 (*_bfd_error_handler)
7680 (_("%B: Warning: cannot determine the target function for"
7681 " stub section `%s'"),
7682 abfd, name);
7683 bfd_set_error (bfd_error_bad_value);
7684 return FALSE;
7685 }
7686
7687 if (r_symndx < extsymoff
7688 || sym_hashes[r_symndx - extsymoff] == NULL)
7689 {
7690 asection *o;
7691
7692 /* This stub is for a local symbol. This stub will only be
7693 needed if there is some relocation (R_MIPS16_26) in this BFD
7694 that refers to this symbol. */
7695 for (o = abfd->sections; o != NULL; o = o->next)
7696 {
7697 Elf_Internal_Rela *sec_relocs;
7698 const Elf_Internal_Rela *r, *rend;
7699
7700 /* We can ignore stub sections when looking for relocs. */
7701 if ((o->flags & SEC_RELOC) == 0
7702 || o->reloc_count == 0
7703 || section_allows_mips16_refs_p (o))
7704 continue;
7705
7706 sec_relocs
7707 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7708 info->keep_memory);
7709 if (sec_relocs == NULL)
7710 return FALSE;
7711
7712 rend = sec_relocs + o->reloc_count;
7713 for (r = sec_relocs; r < rend; r++)
7714 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7715 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7716 break;
7717
7718 if (elf_section_data (o)->relocs != sec_relocs)
7719 free (sec_relocs);
7720
7721 if (r < rend)
7722 break;
7723 }
7724
7725 if (o == NULL)
7726 {
7727 /* There is no non-call reloc for this stub, so we do
7728 not need it. Since this function is called before
7729 the linker maps input sections to output sections, we
7730 can easily discard it by setting the SEC_EXCLUDE
7731 flag. */
7732 sec->flags |= SEC_EXCLUDE;
7733 return TRUE;
7734 }
7735
7736 /* Record this stub in an array of local symbol call_stubs for
7737 this BFD. */
7738 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
7739 {
7740 unsigned long symcount;
7741 asection **n;
7742 bfd_size_type amt;
7743
7744 if (elf_bad_symtab (abfd))
7745 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7746 else
7747 symcount = symtab_hdr->sh_info;
7748 amt = symcount * sizeof (asection *);
7749 n = bfd_zalloc (abfd, amt);
7750 if (n == NULL)
7751 return FALSE;
7752 mips_elf_tdata (abfd)->local_call_stubs = n;
7753 }
7754
7755 sec->flags |= SEC_KEEP;
7756 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7757
7758 /* We don't need to set mips16_stubs_seen in this case.
7759 That flag is used to see whether we need to look through
7760 the global symbol table for stubs. We don't need to set
7761 it here, because we just have a local stub. */
7762 }
7763 else
7764 {
7765 h = ((struct mips_elf_link_hash_entry *)
7766 sym_hashes[r_symndx - extsymoff]);
7767
7768 /* H is the symbol this stub is for. */
7769
7770 if (CALL_FP_STUB_P (name))
7771 loc = &h->call_fp_stub;
7772 else
7773 loc = &h->call_stub;
7774
7775 /* If we already have an appropriate stub for this function, we
7776 don't need another one, so we can discard this one. Since
7777 this function is called before the linker maps input sections
7778 to output sections, we can easily discard it by setting the
7779 SEC_EXCLUDE flag. */
7780 if (*loc != NULL)
7781 {
7782 sec->flags |= SEC_EXCLUDE;
7783 return TRUE;
7784 }
7785
7786 sec->flags |= SEC_KEEP;
7787 *loc = sec;
7788 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7789 }
7790 }
7791
7792 sreloc = NULL;
7793 contents = NULL;
7794 for (rel = relocs; rel < rel_end; ++rel)
7795 {
7796 unsigned long r_symndx;
7797 unsigned int r_type;
7798 struct elf_link_hash_entry *h;
7799 bfd_boolean can_make_dynamic_p;
7800
7801 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7802 r_type = ELF_R_TYPE (abfd, rel->r_info);
7803
7804 if (r_symndx < extsymoff)
7805 h = NULL;
7806 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7807 {
7808 (*_bfd_error_handler)
7809 (_("%B: Malformed reloc detected for section %s"),
7810 abfd, name);
7811 bfd_set_error (bfd_error_bad_value);
7812 return FALSE;
7813 }
7814 else
7815 {
7816 h = sym_hashes[r_symndx - extsymoff];
7817 while (h != NULL
7818 && (h->root.type == bfd_link_hash_indirect
7819 || h->root.type == bfd_link_hash_warning))
7820 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7821 }
7822
7823 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7824 relocation into a dynamic one. */
7825 can_make_dynamic_p = FALSE;
7826 switch (r_type)
7827 {
7828 case R_MIPS_GOT16:
7829 case R_MIPS_CALL16:
7830 case R_MIPS_CALL_HI16:
7831 case R_MIPS_CALL_LO16:
7832 case R_MIPS_GOT_HI16:
7833 case R_MIPS_GOT_LO16:
7834 case R_MIPS_GOT_PAGE:
7835 case R_MIPS_GOT_OFST:
7836 case R_MIPS_GOT_DISP:
7837 case R_MIPS_TLS_GOTTPREL:
7838 case R_MIPS_TLS_GD:
7839 case R_MIPS_TLS_LDM:
7840 case R_MIPS16_GOT16:
7841 case R_MIPS16_CALL16:
7842 case R_MIPS16_TLS_GOTTPREL:
7843 case R_MIPS16_TLS_GD:
7844 case R_MIPS16_TLS_LDM:
7845 case R_MICROMIPS_GOT16:
7846 case R_MICROMIPS_CALL16:
7847 case R_MICROMIPS_CALL_HI16:
7848 case R_MICROMIPS_CALL_LO16:
7849 case R_MICROMIPS_GOT_HI16:
7850 case R_MICROMIPS_GOT_LO16:
7851 case R_MICROMIPS_GOT_PAGE:
7852 case R_MICROMIPS_GOT_OFST:
7853 case R_MICROMIPS_GOT_DISP:
7854 case R_MICROMIPS_TLS_GOTTPREL:
7855 case R_MICROMIPS_TLS_GD:
7856 case R_MICROMIPS_TLS_LDM:
7857 if (dynobj == NULL)
7858 elf_hash_table (info)->dynobj = dynobj = abfd;
7859 if (!mips_elf_create_got_section (dynobj, info))
7860 return FALSE;
7861 if (htab->is_vxworks && !info->shared)
7862 {
7863 (*_bfd_error_handler)
7864 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7865 abfd, (unsigned long) rel->r_offset);
7866 bfd_set_error (bfd_error_bad_value);
7867 return FALSE;
7868 }
7869 break;
7870
7871 /* This is just a hint; it can safely be ignored. Don't set
7872 has_static_relocs for the corresponding symbol. */
7873 case R_MIPS_JALR:
7874 case R_MICROMIPS_JALR:
7875 break;
7876
7877 case R_MIPS_32:
7878 case R_MIPS_REL32:
7879 case R_MIPS_64:
7880 /* In VxWorks executables, references to external symbols
7881 must be handled using copy relocs or PLT entries; it is not
7882 possible to convert this relocation into a dynamic one.
7883
7884 For executables that use PLTs and copy-relocs, we have a
7885 choice between converting the relocation into a dynamic
7886 one or using copy relocations or PLT entries. It is
7887 usually better to do the former, unless the relocation is
7888 against a read-only section. */
7889 if ((info->shared
7890 || (h != NULL
7891 && !htab->is_vxworks
7892 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7893 && !(!info->nocopyreloc
7894 && !PIC_OBJECT_P (abfd)
7895 && MIPS_ELF_READONLY_SECTION (sec))))
7896 && (sec->flags & SEC_ALLOC) != 0)
7897 {
7898 can_make_dynamic_p = TRUE;
7899 if (dynobj == NULL)
7900 elf_hash_table (info)->dynobj = dynobj = abfd;
7901 break;
7902 }
7903 /* For sections that are not SEC_ALLOC a copy reloc would be
7904 output if possible (implying questionable semantics for
7905 read-only data objects) or otherwise the final link would
7906 fail as ld.so will not process them and could not therefore
7907 handle any outstanding dynamic relocations.
7908
7909 For such sections that are also SEC_DEBUGGING, we can avoid
7910 these problems by simply ignoring any relocs as these
7911 sections have a predefined use and we know it is safe to do
7912 so.
7913
7914 This is needed in cases such as a global symbol definition
7915 in a shared library causing a common symbol from an object
7916 file to be converted to an undefined reference. If that
7917 happens, then all the relocations against this symbol from
7918 SEC_DEBUGGING sections in the object file will resolve to
7919 nil. */
7920 if ((sec->flags & SEC_DEBUGGING) != 0)
7921 break;
7922 /* Fall through. */
7923
7924 default:
7925 /* Most static relocations require pointer equality, except
7926 for branches. */
7927 if (h)
7928 h->pointer_equality_needed = TRUE;
7929 /* Fall through. */
7930
7931 case R_MIPS_26:
7932 case R_MIPS_PC16:
7933 case R_MIPS16_26:
7934 case R_MICROMIPS_26_S1:
7935 case R_MICROMIPS_PC7_S1:
7936 case R_MICROMIPS_PC10_S1:
7937 case R_MICROMIPS_PC16_S1:
7938 case R_MICROMIPS_PC23_S2:
7939 if (h)
7940 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7941 break;
7942 }
7943
7944 if (h)
7945 {
7946 /* Relocations against the special VxWorks __GOTT_BASE__ and
7947 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7948 room for them in .rela.dyn. */
7949 if (is_gott_symbol (info, h))
7950 {
7951 if (sreloc == NULL)
7952 {
7953 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7954 if (sreloc == NULL)
7955 return FALSE;
7956 }
7957 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7958 if (MIPS_ELF_READONLY_SECTION (sec))
7959 /* We tell the dynamic linker that there are
7960 relocations against the text segment. */
7961 info->flags |= DF_TEXTREL;
7962 }
7963 }
7964 else if (call_lo16_reloc_p (r_type)
7965 || got_lo16_reloc_p (r_type)
7966 || got_disp_reloc_p (r_type)
7967 || (got16_reloc_p (r_type) && htab->is_vxworks))
7968 {
7969 /* We may need a local GOT entry for this relocation. We
7970 don't count R_MIPS_GOT_PAGE because we can estimate the
7971 maximum number of pages needed by looking at the size of
7972 the segment. Similar comments apply to R_MIPS*_GOT16 and
7973 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7974 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7975 R_MIPS_CALL_HI16 because these are always followed by an
7976 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7977 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7978 rel->r_addend, info, r_type))
7979 return FALSE;
7980 }
7981
7982 if (h != NULL
7983 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
7984 ELF_ST_IS_MIPS16 (h->other)))
7985 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7986
7987 switch (r_type)
7988 {
7989 case R_MIPS_CALL16:
7990 case R_MIPS16_CALL16:
7991 case R_MICROMIPS_CALL16:
7992 if (h == NULL)
7993 {
7994 (*_bfd_error_handler)
7995 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7996 abfd, (unsigned long) rel->r_offset);
7997 bfd_set_error (bfd_error_bad_value);
7998 return FALSE;
7999 }
8000 /* Fall through. */
8001
8002 case R_MIPS_CALL_HI16:
8003 case R_MIPS_CALL_LO16:
8004 case R_MICROMIPS_CALL_HI16:
8005 case R_MICROMIPS_CALL_LO16:
8006 if (h != NULL)
8007 {
8008 /* Make sure there is room in the regular GOT to hold the
8009 function's address. We may eliminate it in favour of
8010 a .got.plt entry later; see mips_elf_count_got_symbols. */
8011 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8012 r_type))
8013 return FALSE;
8014
8015 /* We need a stub, not a plt entry for the undefined
8016 function. But we record it as if it needs plt. See
8017 _bfd_elf_adjust_dynamic_symbol. */
8018 h->needs_plt = 1;
8019 h->type = STT_FUNC;
8020 }
8021 break;
8022
8023 case R_MIPS_GOT_PAGE:
8024 case R_MICROMIPS_GOT_PAGE:
8025 case R_MIPS16_GOT16:
8026 case R_MIPS_GOT16:
8027 case R_MIPS_GOT_HI16:
8028 case R_MIPS_GOT_LO16:
8029 case R_MICROMIPS_GOT16:
8030 case R_MICROMIPS_GOT_HI16:
8031 case R_MICROMIPS_GOT_LO16:
8032 if (!h || got_page_reloc_p (r_type))
8033 {
8034 /* This relocation needs (or may need, if h != NULL) a
8035 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8036 know for sure until we know whether the symbol is
8037 preemptible. */
8038 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8039 {
8040 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8041 return FALSE;
8042 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8043 addend = mips_elf_read_rel_addend (abfd, rel,
8044 howto, contents);
8045 if (got16_reloc_p (r_type))
8046 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8047 contents, &addend);
8048 else
8049 addend <<= howto->rightshift;
8050 }
8051 else
8052 addend = rel->r_addend;
8053 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8054 h, addend))
8055 return FALSE;
8056
8057 if (h)
8058 {
8059 struct mips_elf_link_hash_entry *hmips =
8060 (struct mips_elf_link_hash_entry *) h;
8061
8062 /* This symbol is definitely not overridable. */
8063 if (hmips->root.def_regular
8064 && ! (info->shared && ! info->symbolic
8065 && ! hmips->root.forced_local))
8066 h = NULL;
8067 }
8068 }
8069 /* If this is a global, overridable symbol, GOT_PAGE will
8070 decay to GOT_DISP, so we'll need a GOT entry for it. */
8071 /* Fall through. */
8072
8073 case R_MIPS_GOT_DISP:
8074 case R_MICROMIPS_GOT_DISP:
8075 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8076 FALSE, r_type))
8077 return FALSE;
8078 break;
8079
8080 case R_MIPS_TLS_GOTTPREL:
8081 case R_MIPS16_TLS_GOTTPREL:
8082 case R_MICROMIPS_TLS_GOTTPREL:
8083 if (info->shared)
8084 info->flags |= DF_STATIC_TLS;
8085 /* Fall through */
8086
8087 case R_MIPS_TLS_LDM:
8088 case R_MIPS16_TLS_LDM:
8089 case R_MICROMIPS_TLS_LDM:
8090 if (tls_ldm_reloc_p (r_type))
8091 {
8092 r_symndx = STN_UNDEF;
8093 h = NULL;
8094 }
8095 /* Fall through */
8096
8097 case R_MIPS_TLS_GD:
8098 case R_MIPS16_TLS_GD:
8099 case R_MICROMIPS_TLS_GD:
8100 /* This symbol requires a global offset table entry, or two
8101 for TLS GD relocations. */
8102 if (h != NULL)
8103 {
8104 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8105 FALSE, r_type))
8106 return FALSE;
8107 }
8108 else
8109 {
8110 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8111 rel->r_addend,
8112 info, r_type))
8113 return FALSE;
8114 }
8115 break;
8116
8117 case R_MIPS_32:
8118 case R_MIPS_REL32:
8119 case R_MIPS_64:
8120 /* In VxWorks executables, references to external symbols
8121 are handled using copy relocs or PLT stubs, so there's
8122 no need to add a .rela.dyn entry for this relocation. */
8123 if (can_make_dynamic_p)
8124 {
8125 if (sreloc == NULL)
8126 {
8127 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8128 if (sreloc == NULL)
8129 return FALSE;
8130 }
8131 if (info->shared && h == NULL)
8132 {
8133 /* When creating a shared object, we must copy these
8134 reloc types into the output file as R_MIPS_REL32
8135 relocs. Make room for this reloc in .rel(a).dyn. */
8136 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8137 if (MIPS_ELF_READONLY_SECTION (sec))
8138 /* We tell the dynamic linker that there are
8139 relocations against the text segment. */
8140 info->flags |= DF_TEXTREL;
8141 }
8142 else
8143 {
8144 struct mips_elf_link_hash_entry *hmips;
8145
8146 /* For a shared object, we must copy this relocation
8147 unless the symbol turns out to be undefined and
8148 weak with non-default visibility, in which case
8149 it will be left as zero.
8150
8151 We could elide R_MIPS_REL32 for locally binding symbols
8152 in shared libraries, but do not yet do so.
8153
8154 For an executable, we only need to copy this
8155 reloc if the symbol is defined in a dynamic
8156 object. */
8157 hmips = (struct mips_elf_link_hash_entry *) h;
8158 ++hmips->possibly_dynamic_relocs;
8159 if (MIPS_ELF_READONLY_SECTION (sec))
8160 /* We need it to tell the dynamic linker if there
8161 are relocations against the text segment. */
8162 hmips->readonly_reloc = TRUE;
8163 }
8164 }
8165
8166 if (SGI_COMPAT (abfd))
8167 mips_elf_hash_table (info)->compact_rel_size +=
8168 sizeof (Elf32_External_crinfo);
8169 break;
8170
8171 case R_MIPS_26:
8172 case R_MIPS_GPREL16:
8173 case R_MIPS_LITERAL:
8174 case R_MIPS_GPREL32:
8175 case R_MICROMIPS_26_S1:
8176 case R_MICROMIPS_GPREL16:
8177 case R_MICROMIPS_LITERAL:
8178 case R_MICROMIPS_GPREL7_S2:
8179 if (SGI_COMPAT (abfd))
8180 mips_elf_hash_table (info)->compact_rel_size +=
8181 sizeof (Elf32_External_crinfo);
8182 break;
8183
8184 /* This relocation describes the C++ object vtable hierarchy.
8185 Reconstruct it for later use during GC. */
8186 case R_MIPS_GNU_VTINHERIT:
8187 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8188 return FALSE;
8189 break;
8190
8191 /* This relocation describes which C++ vtable entries are actually
8192 used. Record for later use during GC. */
8193 case R_MIPS_GNU_VTENTRY:
8194 BFD_ASSERT (h != NULL);
8195 if (h != NULL
8196 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8197 return FALSE;
8198 break;
8199
8200 default:
8201 break;
8202 }
8203
8204 /* We must not create a stub for a symbol that has relocations
8205 related to taking the function's address. This doesn't apply to
8206 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8207 a normal .got entry. */
8208 if (!htab->is_vxworks && h != NULL)
8209 switch (r_type)
8210 {
8211 default:
8212 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8213 break;
8214 case R_MIPS16_CALL16:
8215 case R_MIPS_CALL16:
8216 case R_MIPS_CALL_HI16:
8217 case R_MIPS_CALL_LO16:
8218 case R_MIPS_JALR:
8219 case R_MICROMIPS_CALL16:
8220 case R_MICROMIPS_CALL_HI16:
8221 case R_MICROMIPS_CALL_LO16:
8222 case R_MICROMIPS_JALR:
8223 break;
8224 }
8225
8226 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8227 if there is one. We only need to handle global symbols here;
8228 we decide whether to keep or delete stubs for local symbols
8229 when processing the stub's relocations. */
8230 if (h != NULL
8231 && !mips16_call_reloc_p (r_type)
8232 && !section_allows_mips16_refs_p (sec))
8233 {
8234 struct mips_elf_link_hash_entry *mh;
8235
8236 mh = (struct mips_elf_link_hash_entry *) h;
8237 mh->need_fn_stub = TRUE;
8238 }
8239
8240 /* Refuse some position-dependent relocations when creating a
8241 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8242 not PIC, but we can create dynamic relocations and the result
8243 will be fine. Also do not refuse R_MIPS_LO16, which can be
8244 combined with R_MIPS_GOT16. */
8245 if (info->shared)
8246 {
8247 switch (r_type)
8248 {
8249 case R_MIPS16_HI16:
8250 case R_MIPS_HI16:
8251 case R_MIPS_HIGHER:
8252 case R_MIPS_HIGHEST:
8253 case R_MICROMIPS_HI16:
8254 case R_MICROMIPS_HIGHER:
8255 case R_MICROMIPS_HIGHEST:
8256 /* Don't refuse a high part relocation if it's against
8257 no symbol (e.g. part of a compound relocation). */
8258 if (r_symndx == STN_UNDEF)
8259 break;
8260
8261 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8262 and has a special meaning. */
8263 if (!NEWABI_P (abfd) && h != NULL
8264 && strcmp (h->root.root.string, "_gp_disp") == 0)
8265 break;
8266
8267 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8268 if (is_gott_symbol (info, h))
8269 break;
8270
8271 /* FALLTHROUGH */
8272
8273 case R_MIPS16_26:
8274 case R_MIPS_26:
8275 case R_MICROMIPS_26_S1:
8276 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8277 (*_bfd_error_handler)
8278 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8279 abfd, howto->name,
8280 (h) ? h->root.root.string : "a local symbol");
8281 bfd_set_error (bfd_error_bad_value);
8282 return FALSE;
8283 default:
8284 break;
8285 }
8286 }
8287 }
8288
8289 return TRUE;
8290 }
8291 \f
8292 bfd_boolean
8293 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8294 struct bfd_link_info *link_info,
8295 bfd_boolean *again)
8296 {
8297 Elf_Internal_Rela *internal_relocs;
8298 Elf_Internal_Rela *irel, *irelend;
8299 Elf_Internal_Shdr *symtab_hdr;
8300 bfd_byte *contents = NULL;
8301 size_t extsymoff;
8302 bfd_boolean changed_contents = FALSE;
8303 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8304 Elf_Internal_Sym *isymbuf = NULL;
8305
8306 /* We are not currently changing any sizes, so only one pass. */
8307 *again = FALSE;
8308
8309 if (link_info->relocatable)
8310 return TRUE;
8311
8312 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8313 link_info->keep_memory);
8314 if (internal_relocs == NULL)
8315 return TRUE;
8316
8317 irelend = internal_relocs + sec->reloc_count
8318 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8319 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8320 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8321
8322 for (irel = internal_relocs; irel < irelend; irel++)
8323 {
8324 bfd_vma symval;
8325 bfd_signed_vma sym_offset;
8326 unsigned int r_type;
8327 unsigned long r_symndx;
8328 asection *sym_sec;
8329 unsigned long instruction;
8330
8331 /* Turn jalr into bgezal, and jr into beq, if they're marked
8332 with a JALR relocation, that indicate where they jump to.
8333 This saves some pipeline bubbles. */
8334 r_type = ELF_R_TYPE (abfd, irel->r_info);
8335 if (r_type != R_MIPS_JALR)
8336 continue;
8337
8338 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8339 /* Compute the address of the jump target. */
8340 if (r_symndx >= extsymoff)
8341 {
8342 struct mips_elf_link_hash_entry *h
8343 = ((struct mips_elf_link_hash_entry *)
8344 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8345
8346 while (h->root.root.type == bfd_link_hash_indirect
8347 || h->root.root.type == bfd_link_hash_warning)
8348 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8349
8350 /* If a symbol is undefined, or if it may be overridden,
8351 skip it. */
8352 if (! ((h->root.root.type == bfd_link_hash_defined
8353 || h->root.root.type == bfd_link_hash_defweak)
8354 && h->root.root.u.def.section)
8355 || (link_info->shared && ! link_info->symbolic
8356 && !h->root.forced_local))
8357 continue;
8358
8359 sym_sec = h->root.root.u.def.section;
8360 if (sym_sec->output_section)
8361 symval = (h->root.root.u.def.value
8362 + sym_sec->output_section->vma
8363 + sym_sec->output_offset);
8364 else
8365 symval = h->root.root.u.def.value;
8366 }
8367 else
8368 {
8369 Elf_Internal_Sym *isym;
8370
8371 /* Read this BFD's symbols if we haven't done so already. */
8372 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8373 {
8374 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8375 if (isymbuf == NULL)
8376 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8377 symtab_hdr->sh_info, 0,
8378 NULL, NULL, NULL);
8379 if (isymbuf == NULL)
8380 goto relax_return;
8381 }
8382
8383 isym = isymbuf + r_symndx;
8384 if (isym->st_shndx == SHN_UNDEF)
8385 continue;
8386 else if (isym->st_shndx == SHN_ABS)
8387 sym_sec = bfd_abs_section_ptr;
8388 else if (isym->st_shndx == SHN_COMMON)
8389 sym_sec = bfd_com_section_ptr;
8390 else
8391 sym_sec
8392 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8393 symval = isym->st_value
8394 + sym_sec->output_section->vma
8395 + sym_sec->output_offset;
8396 }
8397
8398 /* Compute branch offset, from delay slot of the jump to the
8399 branch target. */
8400 sym_offset = (symval + irel->r_addend)
8401 - (sec_start + irel->r_offset + 4);
8402
8403 /* Branch offset must be properly aligned. */
8404 if ((sym_offset & 3) != 0)
8405 continue;
8406
8407 sym_offset >>= 2;
8408
8409 /* Check that it's in range. */
8410 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8411 continue;
8412
8413 /* Get the section contents if we haven't done so already. */
8414 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8415 goto relax_return;
8416
8417 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8418
8419 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8420 if ((instruction & 0xfc1fffff) == 0x0000f809)
8421 instruction = 0x04110000;
8422 /* If it was jr <reg>, turn it into b <target>. */
8423 else if ((instruction & 0xfc1fffff) == 0x00000008)
8424 instruction = 0x10000000;
8425 else
8426 continue;
8427
8428 instruction |= (sym_offset & 0xffff);
8429 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8430 changed_contents = TRUE;
8431 }
8432
8433 if (contents != NULL
8434 && elf_section_data (sec)->this_hdr.contents != contents)
8435 {
8436 if (!changed_contents && !link_info->keep_memory)
8437 free (contents);
8438 else
8439 {
8440 /* Cache the section contents for elf_link_input_bfd. */
8441 elf_section_data (sec)->this_hdr.contents = contents;
8442 }
8443 }
8444 return TRUE;
8445
8446 relax_return:
8447 if (contents != NULL
8448 && elf_section_data (sec)->this_hdr.contents != contents)
8449 free (contents);
8450 return FALSE;
8451 }
8452 \f
8453 /* Allocate space for global sym dynamic relocs. */
8454
8455 static bfd_boolean
8456 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8457 {
8458 struct bfd_link_info *info = inf;
8459 bfd *dynobj;
8460 struct mips_elf_link_hash_entry *hmips;
8461 struct mips_elf_link_hash_table *htab;
8462
8463 htab = mips_elf_hash_table (info);
8464 BFD_ASSERT (htab != NULL);
8465
8466 dynobj = elf_hash_table (info)->dynobj;
8467 hmips = (struct mips_elf_link_hash_entry *) h;
8468
8469 /* VxWorks executables are handled elsewhere; we only need to
8470 allocate relocations in shared objects. */
8471 if (htab->is_vxworks && !info->shared)
8472 return TRUE;
8473
8474 /* Ignore indirect symbols. All relocations against such symbols
8475 will be redirected to the target symbol. */
8476 if (h->root.type == bfd_link_hash_indirect)
8477 return TRUE;
8478
8479 /* If this symbol is defined in a dynamic object, or we are creating
8480 a shared library, we will need to copy any R_MIPS_32 or
8481 R_MIPS_REL32 relocs against it into the output file. */
8482 if (! info->relocatable
8483 && hmips->possibly_dynamic_relocs != 0
8484 && (h->root.type == bfd_link_hash_defweak
8485 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8486 || info->shared))
8487 {
8488 bfd_boolean do_copy = TRUE;
8489
8490 if (h->root.type == bfd_link_hash_undefweak)
8491 {
8492 /* Do not copy relocations for undefined weak symbols with
8493 non-default visibility. */
8494 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8495 do_copy = FALSE;
8496
8497 /* Make sure undefined weak symbols are output as a dynamic
8498 symbol in PIEs. */
8499 else if (h->dynindx == -1 && !h->forced_local)
8500 {
8501 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8502 return FALSE;
8503 }
8504 }
8505
8506 if (do_copy)
8507 {
8508 /* Even though we don't directly need a GOT entry for this symbol,
8509 the SVR4 psABI requires it to have a dynamic symbol table
8510 index greater that DT_MIPS_GOTSYM if there are dynamic
8511 relocations against it.
8512
8513 VxWorks does not enforce the same mapping between the GOT
8514 and the symbol table, so the same requirement does not
8515 apply there. */
8516 if (!htab->is_vxworks)
8517 {
8518 if (hmips->global_got_area > GGA_RELOC_ONLY)
8519 hmips->global_got_area = GGA_RELOC_ONLY;
8520 hmips->got_only_for_calls = FALSE;
8521 }
8522
8523 mips_elf_allocate_dynamic_relocations
8524 (dynobj, info, hmips->possibly_dynamic_relocs);
8525 if (hmips->readonly_reloc)
8526 /* We tell the dynamic linker that there are relocations
8527 against the text segment. */
8528 info->flags |= DF_TEXTREL;
8529 }
8530 }
8531
8532 return TRUE;
8533 }
8534
8535 /* Adjust a symbol defined by a dynamic object and referenced by a
8536 regular object. The current definition is in some section of the
8537 dynamic object, but we're not including those sections. We have to
8538 change the definition to something the rest of the link can
8539 understand. */
8540
8541 bfd_boolean
8542 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8543 struct elf_link_hash_entry *h)
8544 {
8545 bfd *dynobj;
8546 struct mips_elf_link_hash_entry *hmips;
8547 struct mips_elf_link_hash_table *htab;
8548
8549 htab = mips_elf_hash_table (info);
8550 BFD_ASSERT (htab != NULL);
8551
8552 dynobj = elf_hash_table (info)->dynobj;
8553 hmips = (struct mips_elf_link_hash_entry *) h;
8554
8555 /* Make sure we know what is going on here. */
8556 BFD_ASSERT (dynobj != NULL
8557 && (h->needs_plt
8558 || h->u.weakdef != NULL
8559 || (h->def_dynamic
8560 && h->ref_regular
8561 && !h->def_regular)));
8562
8563 hmips = (struct mips_elf_link_hash_entry *) h;
8564
8565 /* If there are call relocations against an externally-defined symbol,
8566 see whether we can create a MIPS lazy-binding stub for it. We can
8567 only do this if all references to the function are through call
8568 relocations, and in that case, the traditional lazy-binding stubs
8569 are much more efficient than PLT entries.
8570
8571 Traditional stubs are only available on SVR4 psABI-based systems;
8572 VxWorks always uses PLTs instead. */
8573 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8574 {
8575 if (! elf_hash_table (info)->dynamic_sections_created)
8576 return TRUE;
8577
8578 /* If this symbol is not defined in a regular file, then set
8579 the symbol to the stub location. This is required to make
8580 function pointers compare as equal between the normal
8581 executable and the shared library. */
8582 if (!h->def_regular)
8583 {
8584 hmips->needs_lazy_stub = TRUE;
8585 htab->lazy_stub_count++;
8586 return TRUE;
8587 }
8588 }
8589 /* As above, VxWorks requires PLT entries for externally-defined
8590 functions that are only accessed through call relocations.
8591
8592 Both VxWorks and non-VxWorks targets also need PLT entries if there
8593 are static-only relocations against an externally-defined function.
8594 This can technically occur for shared libraries if there are
8595 branches to the symbol, although it is unlikely that this will be
8596 used in practice due to the short ranges involved. It can occur
8597 for any relative or absolute relocation in executables; in that
8598 case, the PLT entry becomes the function's canonical address. */
8599 else if (((h->needs_plt && !hmips->no_fn_stub)
8600 || (h->type == STT_FUNC && hmips->has_static_relocs))
8601 && htab->use_plts_and_copy_relocs
8602 && !SYMBOL_CALLS_LOCAL (info, h)
8603 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8604 && h->root.type == bfd_link_hash_undefweak))
8605 {
8606 /* If this is the first symbol to need a PLT entry, allocate room
8607 for the header. */
8608 if (htab->splt->size == 0)
8609 {
8610 BFD_ASSERT (htab->sgotplt->size == 0);
8611
8612 /* If we're using the PLT additions to the psABI, each PLT
8613 entry is 16 bytes and the PLT0 entry is 32 bytes.
8614 Encourage better cache usage by aligning. We do this
8615 lazily to avoid pessimizing traditional objects. */
8616 if (!htab->is_vxworks
8617 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8618 return FALSE;
8619
8620 /* Make sure that .got.plt is word-aligned. We do this lazily
8621 for the same reason as above. */
8622 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8623 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8624 return FALSE;
8625
8626 htab->splt->size += htab->plt_header_size;
8627
8628 /* On non-VxWorks targets, the first two entries in .got.plt
8629 are reserved. */
8630 if (!htab->is_vxworks)
8631 htab->sgotplt->size
8632 += get_elf_backend_data (dynobj)->got_header_size;
8633
8634 /* On VxWorks, also allocate room for the header's
8635 .rela.plt.unloaded entries. */
8636 if (htab->is_vxworks && !info->shared)
8637 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8638 }
8639
8640 /* Assign the next .plt entry to this symbol. */
8641 h->plt.offset = htab->splt->size;
8642 htab->splt->size += htab->plt_entry_size;
8643
8644 /* If the output file has no definition of the symbol, set the
8645 symbol's value to the address of the stub. */
8646 if (!info->shared && !h->def_regular)
8647 {
8648 h->root.u.def.section = htab->splt;
8649 h->root.u.def.value = h->plt.offset;
8650 /* For VxWorks, point at the PLT load stub rather than the
8651 lazy resolution stub; this stub will become the canonical
8652 function address. */
8653 if (htab->is_vxworks)
8654 h->root.u.def.value += 8;
8655 }
8656
8657 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8658 relocation. */
8659 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8660 htab->srelplt->size += (htab->is_vxworks
8661 ? MIPS_ELF_RELA_SIZE (dynobj)
8662 : MIPS_ELF_REL_SIZE (dynobj));
8663
8664 /* Make room for the .rela.plt.unloaded relocations. */
8665 if (htab->is_vxworks && !info->shared)
8666 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8667
8668 /* All relocations against this symbol that could have been made
8669 dynamic will now refer to the PLT entry instead. */
8670 hmips->possibly_dynamic_relocs = 0;
8671
8672 return TRUE;
8673 }
8674
8675 /* If this is a weak symbol, and there is a real definition, the
8676 processor independent code will have arranged for us to see the
8677 real definition first, and we can just use the same value. */
8678 if (h->u.weakdef != NULL)
8679 {
8680 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8681 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8682 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8683 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8684 return TRUE;
8685 }
8686
8687 /* Otherwise, there is nothing further to do for symbols defined
8688 in regular objects. */
8689 if (h->def_regular)
8690 return TRUE;
8691
8692 /* There's also nothing more to do if we'll convert all relocations
8693 against this symbol into dynamic relocations. */
8694 if (!hmips->has_static_relocs)
8695 return TRUE;
8696
8697 /* We're now relying on copy relocations. Complain if we have
8698 some that we can't convert. */
8699 if (!htab->use_plts_and_copy_relocs || info->shared)
8700 {
8701 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8702 "dynamic symbol %s"),
8703 h->root.root.string);
8704 bfd_set_error (bfd_error_bad_value);
8705 return FALSE;
8706 }
8707
8708 /* We must allocate the symbol in our .dynbss section, which will
8709 become part of the .bss section of the executable. There will be
8710 an entry for this symbol in the .dynsym section. The dynamic
8711 object will contain position independent code, so all references
8712 from the dynamic object to this symbol will go through the global
8713 offset table. The dynamic linker will use the .dynsym entry to
8714 determine the address it must put in the global offset table, so
8715 both the dynamic object and the regular object will refer to the
8716 same memory location for the variable. */
8717
8718 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8719 {
8720 if (htab->is_vxworks)
8721 htab->srelbss->size += sizeof (Elf32_External_Rela);
8722 else
8723 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8724 h->needs_copy = 1;
8725 }
8726
8727 /* All relocations against this symbol that could have been made
8728 dynamic will now refer to the local copy instead. */
8729 hmips->possibly_dynamic_relocs = 0;
8730
8731 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8732 }
8733 \f
8734 /* This function is called after all the input files have been read,
8735 and the input sections have been assigned to output sections. We
8736 check for any mips16 stub sections that we can discard. */
8737
8738 bfd_boolean
8739 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8740 struct bfd_link_info *info)
8741 {
8742 asection *ri;
8743 struct mips_elf_link_hash_table *htab;
8744 struct mips_htab_traverse_info hti;
8745
8746 htab = mips_elf_hash_table (info);
8747 BFD_ASSERT (htab != NULL);
8748
8749 /* The .reginfo section has a fixed size. */
8750 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8751 if (ri != NULL)
8752 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8753
8754 hti.info = info;
8755 hti.output_bfd = output_bfd;
8756 hti.error = FALSE;
8757 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8758 mips_elf_check_symbols, &hti);
8759 if (hti.error)
8760 return FALSE;
8761
8762 return TRUE;
8763 }
8764
8765 /* If the link uses a GOT, lay it out and work out its size. */
8766
8767 static bfd_boolean
8768 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8769 {
8770 bfd *dynobj;
8771 asection *s;
8772 struct mips_got_info *g;
8773 bfd_size_type loadable_size = 0;
8774 bfd_size_type page_gotno;
8775 bfd *ibfd;
8776 struct mips_elf_traverse_got_arg tga;
8777 struct mips_elf_link_hash_table *htab;
8778
8779 htab = mips_elf_hash_table (info);
8780 BFD_ASSERT (htab != NULL);
8781
8782 s = htab->sgot;
8783 if (s == NULL)
8784 return TRUE;
8785
8786 dynobj = elf_hash_table (info)->dynobj;
8787 g = htab->got_info;
8788
8789 /* Allocate room for the reserved entries. VxWorks always reserves
8790 3 entries; other objects only reserve 2 entries. */
8791 BFD_ASSERT (g->assigned_gotno == 0);
8792 if (htab->is_vxworks)
8793 htab->reserved_gotno = 3;
8794 else
8795 htab->reserved_gotno = 2;
8796 g->local_gotno += htab->reserved_gotno;
8797 g->assigned_gotno = htab->reserved_gotno;
8798
8799 /* Decide which symbols need to go in the global part of the GOT and
8800 count the number of reloc-only GOT symbols. */
8801 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8802
8803 if (!mips_elf_resolve_final_got_entries (info, g))
8804 return FALSE;
8805
8806 /* Calculate the total loadable size of the output. That
8807 will give us the maximum number of GOT_PAGE entries
8808 required. */
8809 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
8810 {
8811 asection *subsection;
8812
8813 for (subsection = ibfd->sections;
8814 subsection;
8815 subsection = subsection->next)
8816 {
8817 if ((subsection->flags & SEC_ALLOC) == 0)
8818 continue;
8819 loadable_size += ((subsection->size + 0xf)
8820 &~ (bfd_size_type) 0xf);
8821 }
8822 }
8823
8824 if (htab->is_vxworks)
8825 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8826 relocations against local symbols evaluate to "G", and the EABI does
8827 not include R_MIPS_GOT_PAGE. */
8828 page_gotno = 0;
8829 else
8830 /* Assume there are two loadable segments consisting of contiguous
8831 sections. Is 5 enough? */
8832 page_gotno = (loadable_size >> 16) + 5;
8833
8834 /* Choose the smaller of the two page estimates; both are intended to be
8835 conservative. */
8836 if (page_gotno > g->page_gotno)
8837 page_gotno = g->page_gotno;
8838
8839 g->local_gotno += page_gotno;
8840
8841 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8842 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8843 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8844
8845 /* VxWorks does not support multiple GOTs. It initializes $gp to
8846 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8847 dynamic loader. */
8848 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8849 {
8850 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8851 return FALSE;
8852 }
8853 else
8854 {
8855 /* Record that all bfds use G. This also has the effect of freeing
8856 the per-bfd GOTs, which we no longer need. */
8857 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
8858 if (mips_elf_bfd_got (ibfd, FALSE))
8859 mips_elf_replace_bfd_got (ibfd, g);
8860 mips_elf_replace_bfd_got (output_bfd, g);
8861
8862 /* Set up TLS entries. */
8863 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8864 tga.info = info;
8865 tga.g = g;
8866 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
8867 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
8868 if (!tga.g)
8869 return FALSE;
8870 BFD_ASSERT (g->tls_assigned_gotno
8871 == g->global_gotno + g->local_gotno + g->tls_gotno);
8872
8873 /* Each VxWorks GOT entry needs an explicit relocation. */
8874 if (htab->is_vxworks && info->shared)
8875 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
8876
8877 /* Allocate room for the TLS relocations. */
8878 if (g->relocs)
8879 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
8880 }
8881
8882 return TRUE;
8883 }
8884
8885 /* Estimate the size of the .MIPS.stubs section. */
8886
8887 static void
8888 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8889 {
8890 struct mips_elf_link_hash_table *htab;
8891 bfd_size_type dynsymcount;
8892
8893 htab = mips_elf_hash_table (info);
8894 BFD_ASSERT (htab != NULL);
8895
8896 if (htab->lazy_stub_count == 0)
8897 return;
8898
8899 /* IRIX rld assumes that a function stub isn't at the end of the .text
8900 section, so add a dummy entry to the end. */
8901 htab->lazy_stub_count++;
8902
8903 /* Get a worst-case estimate of the number of dynamic symbols needed.
8904 At this point, dynsymcount does not account for section symbols
8905 and count_section_dynsyms may overestimate the number that will
8906 be needed. */
8907 dynsymcount = (elf_hash_table (info)->dynsymcount
8908 + count_section_dynsyms (output_bfd, info));
8909
8910 /* Determine the size of one stub entry. */
8911 htab->function_stub_size = (dynsymcount > 0x10000
8912 ? MIPS_FUNCTION_STUB_BIG_SIZE
8913 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8914
8915 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8916 }
8917
8918 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8919 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8920 allocate an entry in the stubs section. */
8921
8922 static bfd_boolean
8923 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8924 {
8925 struct mips_elf_link_hash_table *htab;
8926
8927 htab = (struct mips_elf_link_hash_table *) data;
8928 if (h->needs_lazy_stub)
8929 {
8930 h->root.root.u.def.section = htab->sstubs;
8931 h->root.root.u.def.value = htab->sstubs->size;
8932 h->root.plt.offset = htab->sstubs->size;
8933 htab->sstubs->size += htab->function_stub_size;
8934 }
8935 return TRUE;
8936 }
8937
8938 /* Allocate offsets in the stubs section to each symbol that needs one.
8939 Set the final size of the .MIPS.stub section. */
8940
8941 static void
8942 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8943 {
8944 struct mips_elf_link_hash_table *htab;
8945
8946 htab = mips_elf_hash_table (info);
8947 BFD_ASSERT (htab != NULL);
8948
8949 if (htab->lazy_stub_count == 0)
8950 return;
8951
8952 htab->sstubs->size = 0;
8953 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
8954 htab->sstubs->size += htab->function_stub_size;
8955 BFD_ASSERT (htab->sstubs->size
8956 == htab->lazy_stub_count * htab->function_stub_size);
8957 }
8958
8959 /* Set the sizes of the dynamic sections. */
8960
8961 bfd_boolean
8962 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8963 struct bfd_link_info *info)
8964 {
8965 bfd *dynobj;
8966 asection *s, *sreldyn;
8967 bfd_boolean reltext;
8968 struct mips_elf_link_hash_table *htab;
8969
8970 htab = mips_elf_hash_table (info);
8971 BFD_ASSERT (htab != NULL);
8972 dynobj = elf_hash_table (info)->dynobj;
8973 BFD_ASSERT (dynobj != NULL);
8974
8975 if (elf_hash_table (info)->dynamic_sections_created)
8976 {
8977 /* Set the contents of the .interp section to the interpreter. */
8978 if (info->executable)
8979 {
8980 s = bfd_get_linker_section (dynobj, ".interp");
8981 BFD_ASSERT (s != NULL);
8982 s->size
8983 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8984 s->contents
8985 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8986 }
8987
8988 /* Create a symbol for the PLT, if we know that we are using it. */
8989 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8990 {
8991 struct elf_link_hash_entry *h;
8992
8993 BFD_ASSERT (htab->use_plts_and_copy_relocs);
8994
8995 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8996 "_PROCEDURE_LINKAGE_TABLE_");
8997 htab->root.hplt = h;
8998 if (h == NULL)
8999 return FALSE;
9000 h->type = STT_FUNC;
9001 }
9002 }
9003
9004 /* Allocate space for global sym dynamic relocs. */
9005 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9006
9007 mips_elf_estimate_stub_size (output_bfd, info);
9008
9009 if (!mips_elf_lay_out_got (output_bfd, info))
9010 return FALSE;
9011
9012 mips_elf_lay_out_lazy_stubs (info);
9013
9014 /* The check_relocs and adjust_dynamic_symbol entry points have
9015 determined the sizes of the various dynamic sections. Allocate
9016 memory for them. */
9017 reltext = FALSE;
9018 for (s = dynobj->sections; s != NULL; s = s->next)
9019 {
9020 const char *name;
9021
9022 /* It's OK to base decisions on the section name, because none
9023 of the dynobj section names depend upon the input files. */
9024 name = bfd_get_section_name (dynobj, s);
9025
9026 if ((s->flags & SEC_LINKER_CREATED) == 0)
9027 continue;
9028
9029 if (CONST_STRNEQ (name, ".rel"))
9030 {
9031 if (s->size != 0)
9032 {
9033 const char *outname;
9034 asection *target;
9035
9036 /* If this relocation section applies to a read only
9037 section, then we probably need a DT_TEXTREL entry.
9038 If the relocation section is .rel(a).dyn, we always
9039 assert a DT_TEXTREL entry rather than testing whether
9040 there exists a relocation to a read only section or
9041 not. */
9042 outname = bfd_get_section_name (output_bfd,
9043 s->output_section);
9044 target = bfd_get_section_by_name (output_bfd, outname + 4);
9045 if ((target != NULL
9046 && (target->flags & SEC_READONLY) != 0
9047 && (target->flags & SEC_ALLOC) != 0)
9048 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9049 reltext = TRUE;
9050
9051 /* We use the reloc_count field as a counter if we need
9052 to copy relocs into the output file. */
9053 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9054 s->reloc_count = 0;
9055
9056 /* If combreloc is enabled, elf_link_sort_relocs() will
9057 sort relocations, but in a different way than we do,
9058 and before we're done creating relocations. Also, it
9059 will move them around between input sections'
9060 relocation's contents, so our sorting would be
9061 broken, so don't let it run. */
9062 info->combreloc = 0;
9063 }
9064 }
9065 else if (! info->shared
9066 && ! mips_elf_hash_table (info)->use_rld_obj_head
9067 && CONST_STRNEQ (name, ".rld_map"))
9068 {
9069 /* We add a room for __rld_map. It will be filled in by the
9070 rtld to contain a pointer to the _r_debug structure. */
9071 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9072 }
9073 else if (SGI_COMPAT (output_bfd)
9074 && CONST_STRNEQ (name, ".compact_rel"))
9075 s->size += mips_elf_hash_table (info)->compact_rel_size;
9076 else if (s == htab->splt)
9077 {
9078 /* If the last PLT entry has a branch delay slot, allocate
9079 room for an extra nop to fill the delay slot. This is
9080 for CPUs without load interlocking. */
9081 if (! LOAD_INTERLOCKS_P (output_bfd)
9082 && ! htab->is_vxworks && s->size > 0)
9083 s->size += 4;
9084 }
9085 else if (! CONST_STRNEQ (name, ".init")
9086 && s != htab->sgot
9087 && s != htab->sgotplt
9088 && s != htab->sstubs
9089 && s != htab->sdynbss)
9090 {
9091 /* It's not one of our sections, so don't allocate space. */
9092 continue;
9093 }
9094
9095 if (s->size == 0)
9096 {
9097 s->flags |= SEC_EXCLUDE;
9098 continue;
9099 }
9100
9101 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9102 continue;
9103
9104 /* Allocate memory for the section contents. */
9105 s->contents = bfd_zalloc (dynobj, s->size);
9106 if (s->contents == NULL)
9107 {
9108 bfd_set_error (bfd_error_no_memory);
9109 return FALSE;
9110 }
9111 }
9112
9113 if (elf_hash_table (info)->dynamic_sections_created)
9114 {
9115 /* Add some entries to the .dynamic section. We fill in the
9116 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9117 must add the entries now so that we get the correct size for
9118 the .dynamic section. */
9119
9120 /* SGI object has the equivalence of DT_DEBUG in the
9121 DT_MIPS_RLD_MAP entry. This must come first because glibc
9122 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9123 may only look at the first one they see. */
9124 if (!info->shared
9125 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9126 return FALSE;
9127
9128 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9129 used by the debugger. */
9130 if (info->executable
9131 && !SGI_COMPAT (output_bfd)
9132 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9133 return FALSE;
9134
9135 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9136 info->flags |= DF_TEXTREL;
9137
9138 if ((info->flags & DF_TEXTREL) != 0)
9139 {
9140 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9141 return FALSE;
9142
9143 /* Clear the DF_TEXTREL flag. It will be set again if we
9144 write out an actual text relocation; we may not, because
9145 at this point we do not know whether e.g. any .eh_frame
9146 absolute relocations have been converted to PC-relative. */
9147 info->flags &= ~DF_TEXTREL;
9148 }
9149
9150 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9151 return FALSE;
9152
9153 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9154 if (htab->is_vxworks)
9155 {
9156 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9157 use any of the DT_MIPS_* tags. */
9158 if (sreldyn && sreldyn->size > 0)
9159 {
9160 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9161 return FALSE;
9162
9163 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9164 return FALSE;
9165
9166 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9167 return FALSE;
9168 }
9169 }
9170 else
9171 {
9172 if (sreldyn && sreldyn->size > 0)
9173 {
9174 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9175 return FALSE;
9176
9177 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9178 return FALSE;
9179
9180 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9181 return FALSE;
9182 }
9183
9184 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9185 return FALSE;
9186
9187 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9188 return FALSE;
9189
9190 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9191 return FALSE;
9192
9193 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9194 return FALSE;
9195
9196 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9197 return FALSE;
9198
9199 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9200 return FALSE;
9201
9202 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9203 return FALSE;
9204
9205 if (IRIX_COMPAT (dynobj) == ict_irix5
9206 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9207 return FALSE;
9208
9209 if (IRIX_COMPAT (dynobj) == ict_irix6
9210 && (bfd_get_section_by_name
9211 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9212 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9213 return FALSE;
9214 }
9215 if (htab->splt->size > 0)
9216 {
9217 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9218 return FALSE;
9219
9220 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9221 return FALSE;
9222
9223 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9224 return FALSE;
9225
9226 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9227 return FALSE;
9228 }
9229 if (htab->is_vxworks
9230 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9231 return FALSE;
9232 }
9233
9234 return TRUE;
9235 }
9236 \f
9237 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9238 Adjust its R_ADDEND field so that it is correct for the output file.
9239 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9240 and sections respectively; both use symbol indexes. */
9241
9242 static void
9243 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9244 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9245 asection **local_sections, Elf_Internal_Rela *rel)
9246 {
9247 unsigned int r_type, r_symndx;
9248 Elf_Internal_Sym *sym;
9249 asection *sec;
9250
9251 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9252 {
9253 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9254 if (gprel16_reloc_p (r_type)
9255 || r_type == R_MIPS_GPREL32
9256 || literal_reloc_p (r_type))
9257 {
9258 rel->r_addend += _bfd_get_gp_value (input_bfd);
9259 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9260 }
9261
9262 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9263 sym = local_syms + r_symndx;
9264
9265 /* Adjust REL's addend to account for section merging. */
9266 if (!info->relocatable)
9267 {
9268 sec = local_sections[r_symndx];
9269 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9270 }
9271
9272 /* This would normally be done by the rela_normal code in elflink.c. */
9273 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9274 rel->r_addend += local_sections[r_symndx]->output_offset;
9275 }
9276 }
9277
9278 /* Handle relocations against symbols from removed linkonce sections,
9279 or sections discarded by a linker script. We use this wrapper around
9280 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9281 on 64-bit ELF targets. In this case for any relocation handled, which
9282 always be the first in a triplet, the remaining two have to be processed
9283 together with the first, even if they are R_MIPS_NONE. It is the symbol
9284 index referred by the first reloc that applies to all the three and the
9285 remaining two never refer to an object symbol. And it is the final
9286 relocation (the last non-null one) that determines the output field of
9287 the whole relocation so retrieve the corresponding howto structure for
9288 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9289
9290 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9291 and therefore requires to be pasted in a loop. It also defines a block
9292 and does not protect any of its arguments, hence the extra brackets. */
9293
9294 static void
9295 mips_reloc_against_discarded_section (bfd *output_bfd,
9296 struct bfd_link_info *info,
9297 bfd *input_bfd, asection *input_section,
9298 Elf_Internal_Rela **rel,
9299 const Elf_Internal_Rela **relend,
9300 bfd_boolean rel_reloc,
9301 reloc_howto_type *howto,
9302 bfd_byte *contents)
9303 {
9304 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9305 int count = bed->s->int_rels_per_ext_rel;
9306 unsigned int r_type;
9307 int i;
9308
9309 for (i = count - 1; i > 0; i--)
9310 {
9311 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9312 if (r_type != R_MIPS_NONE)
9313 {
9314 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9315 break;
9316 }
9317 }
9318 do
9319 {
9320 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9321 (*rel), count, (*relend),
9322 howto, i, contents);
9323 }
9324 while (0);
9325 }
9326
9327 /* Relocate a MIPS ELF section. */
9328
9329 bfd_boolean
9330 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9331 bfd *input_bfd, asection *input_section,
9332 bfd_byte *contents, Elf_Internal_Rela *relocs,
9333 Elf_Internal_Sym *local_syms,
9334 asection **local_sections)
9335 {
9336 Elf_Internal_Rela *rel;
9337 const Elf_Internal_Rela *relend;
9338 bfd_vma addend = 0;
9339 bfd_boolean use_saved_addend_p = FALSE;
9340 const struct elf_backend_data *bed;
9341
9342 bed = get_elf_backend_data (output_bfd);
9343 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9344 for (rel = relocs; rel < relend; ++rel)
9345 {
9346 const char *name;
9347 bfd_vma value = 0;
9348 reloc_howto_type *howto;
9349 bfd_boolean cross_mode_jump_p;
9350 /* TRUE if the relocation is a RELA relocation, rather than a
9351 REL relocation. */
9352 bfd_boolean rela_relocation_p = TRUE;
9353 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9354 const char *msg;
9355 unsigned long r_symndx;
9356 asection *sec;
9357 Elf_Internal_Shdr *symtab_hdr;
9358 struct elf_link_hash_entry *h;
9359 bfd_boolean rel_reloc;
9360
9361 rel_reloc = (NEWABI_P (input_bfd)
9362 && mips_elf_rel_relocation_p (input_bfd, input_section,
9363 relocs, rel));
9364 /* Find the relocation howto for this relocation. */
9365 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9366
9367 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9368 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9369 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9370 {
9371 sec = local_sections[r_symndx];
9372 h = NULL;
9373 }
9374 else
9375 {
9376 unsigned long extsymoff;
9377
9378 extsymoff = 0;
9379 if (!elf_bad_symtab (input_bfd))
9380 extsymoff = symtab_hdr->sh_info;
9381 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9382 while (h->root.type == bfd_link_hash_indirect
9383 || h->root.type == bfd_link_hash_warning)
9384 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9385
9386 sec = NULL;
9387 if (h->root.type == bfd_link_hash_defined
9388 || h->root.type == bfd_link_hash_defweak)
9389 sec = h->root.u.def.section;
9390 }
9391
9392 if (sec != NULL && discarded_section (sec))
9393 {
9394 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9395 input_section, &rel, &relend,
9396 rel_reloc, howto, contents);
9397 continue;
9398 }
9399
9400 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9401 {
9402 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9403 64-bit code, but make sure all their addresses are in the
9404 lowermost or uppermost 32-bit section of the 64-bit address
9405 space. Thus, when they use an R_MIPS_64 they mean what is
9406 usually meant by R_MIPS_32, with the exception that the
9407 stored value is sign-extended to 64 bits. */
9408 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9409
9410 /* On big-endian systems, we need to lie about the position
9411 of the reloc. */
9412 if (bfd_big_endian (input_bfd))
9413 rel->r_offset += 4;
9414 }
9415
9416 if (!use_saved_addend_p)
9417 {
9418 /* If these relocations were originally of the REL variety,
9419 we must pull the addend out of the field that will be
9420 relocated. Otherwise, we simply use the contents of the
9421 RELA relocation. */
9422 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9423 relocs, rel))
9424 {
9425 rela_relocation_p = FALSE;
9426 addend = mips_elf_read_rel_addend (input_bfd, rel,
9427 howto, contents);
9428 if (hi16_reloc_p (r_type)
9429 || (got16_reloc_p (r_type)
9430 && mips_elf_local_relocation_p (input_bfd, rel,
9431 local_sections)))
9432 {
9433 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9434 contents, &addend))
9435 {
9436 if (h)
9437 name = h->root.root.string;
9438 else
9439 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9440 local_syms + r_symndx,
9441 sec);
9442 (*_bfd_error_handler)
9443 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9444 input_bfd, input_section, name, howto->name,
9445 rel->r_offset);
9446 }
9447 }
9448 else
9449 addend <<= howto->rightshift;
9450 }
9451 else
9452 addend = rel->r_addend;
9453 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9454 local_syms, local_sections, rel);
9455 }
9456
9457 if (info->relocatable)
9458 {
9459 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9460 && bfd_big_endian (input_bfd))
9461 rel->r_offset -= 4;
9462
9463 if (!rela_relocation_p && rel->r_addend)
9464 {
9465 addend += rel->r_addend;
9466 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9467 addend = mips_elf_high (addend);
9468 else if (r_type == R_MIPS_HIGHER)
9469 addend = mips_elf_higher (addend);
9470 else if (r_type == R_MIPS_HIGHEST)
9471 addend = mips_elf_highest (addend);
9472 else
9473 addend >>= howto->rightshift;
9474
9475 /* We use the source mask, rather than the destination
9476 mask because the place to which we are writing will be
9477 source of the addend in the final link. */
9478 addend &= howto->src_mask;
9479
9480 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9481 /* See the comment above about using R_MIPS_64 in the 32-bit
9482 ABI. Here, we need to update the addend. It would be
9483 possible to get away with just using the R_MIPS_32 reloc
9484 but for endianness. */
9485 {
9486 bfd_vma sign_bits;
9487 bfd_vma low_bits;
9488 bfd_vma high_bits;
9489
9490 if (addend & ((bfd_vma) 1 << 31))
9491 #ifdef BFD64
9492 sign_bits = ((bfd_vma) 1 << 32) - 1;
9493 #else
9494 sign_bits = -1;
9495 #endif
9496 else
9497 sign_bits = 0;
9498
9499 /* If we don't know that we have a 64-bit type,
9500 do two separate stores. */
9501 if (bfd_big_endian (input_bfd))
9502 {
9503 /* Store the sign-bits (which are most significant)
9504 first. */
9505 low_bits = sign_bits;
9506 high_bits = addend;
9507 }
9508 else
9509 {
9510 low_bits = addend;
9511 high_bits = sign_bits;
9512 }
9513 bfd_put_32 (input_bfd, low_bits,
9514 contents + rel->r_offset);
9515 bfd_put_32 (input_bfd, high_bits,
9516 contents + rel->r_offset + 4);
9517 continue;
9518 }
9519
9520 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9521 input_bfd, input_section,
9522 contents, FALSE))
9523 return FALSE;
9524 }
9525
9526 /* Go on to the next relocation. */
9527 continue;
9528 }
9529
9530 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9531 relocations for the same offset. In that case we are
9532 supposed to treat the output of each relocation as the addend
9533 for the next. */
9534 if (rel + 1 < relend
9535 && rel->r_offset == rel[1].r_offset
9536 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9537 use_saved_addend_p = TRUE;
9538 else
9539 use_saved_addend_p = FALSE;
9540
9541 /* Figure out what value we are supposed to relocate. */
9542 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9543 input_section, info, rel,
9544 addend, howto, local_syms,
9545 local_sections, &value,
9546 &name, &cross_mode_jump_p,
9547 use_saved_addend_p))
9548 {
9549 case bfd_reloc_continue:
9550 /* There's nothing to do. */
9551 continue;
9552
9553 case bfd_reloc_undefined:
9554 /* mips_elf_calculate_relocation already called the
9555 undefined_symbol callback. There's no real point in
9556 trying to perform the relocation at this point, so we
9557 just skip ahead to the next relocation. */
9558 continue;
9559
9560 case bfd_reloc_notsupported:
9561 msg = _("internal error: unsupported relocation error");
9562 info->callbacks->warning
9563 (info, msg, name, input_bfd, input_section, rel->r_offset);
9564 return FALSE;
9565
9566 case bfd_reloc_overflow:
9567 if (use_saved_addend_p)
9568 /* Ignore overflow until we reach the last relocation for
9569 a given location. */
9570 ;
9571 else
9572 {
9573 struct mips_elf_link_hash_table *htab;
9574
9575 htab = mips_elf_hash_table (info);
9576 BFD_ASSERT (htab != NULL);
9577 BFD_ASSERT (name != NULL);
9578 if (!htab->small_data_overflow_reported
9579 && (gprel16_reloc_p (howto->type)
9580 || literal_reloc_p (howto->type)))
9581 {
9582 msg = _("small-data section exceeds 64KB;"
9583 " lower small-data size limit (see option -G)");
9584
9585 htab->small_data_overflow_reported = TRUE;
9586 (*info->callbacks->einfo) ("%P: %s\n", msg);
9587 }
9588 if (! ((*info->callbacks->reloc_overflow)
9589 (info, NULL, name, howto->name, (bfd_vma) 0,
9590 input_bfd, input_section, rel->r_offset)))
9591 return FALSE;
9592 }
9593 break;
9594
9595 case bfd_reloc_ok:
9596 break;
9597
9598 case bfd_reloc_outofrange:
9599 if (jal_reloc_p (howto->type))
9600 {
9601 msg = _("JALX to a non-word-aligned address");
9602 info->callbacks->warning
9603 (info, msg, name, input_bfd, input_section, rel->r_offset);
9604 return FALSE;
9605 }
9606 /* Fall through. */
9607
9608 default:
9609 abort ();
9610 break;
9611 }
9612
9613 /* If we've got another relocation for the address, keep going
9614 until we reach the last one. */
9615 if (use_saved_addend_p)
9616 {
9617 addend = value;
9618 continue;
9619 }
9620
9621 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9622 /* See the comment above about using R_MIPS_64 in the 32-bit
9623 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9624 that calculated the right value. Now, however, we
9625 sign-extend the 32-bit result to 64-bits, and store it as a
9626 64-bit value. We are especially generous here in that we
9627 go to extreme lengths to support this usage on systems with
9628 only a 32-bit VMA. */
9629 {
9630 bfd_vma sign_bits;
9631 bfd_vma low_bits;
9632 bfd_vma high_bits;
9633
9634 if (value & ((bfd_vma) 1 << 31))
9635 #ifdef BFD64
9636 sign_bits = ((bfd_vma) 1 << 32) - 1;
9637 #else
9638 sign_bits = -1;
9639 #endif
9640 else
9641 sign_bits = 0;
9642
9643 /* If we don't know that we have a 64-bit type,
9644 do two separate stores. */
9645 if (bfd_big_endian (input_bfd))
9646 {
9647 /* Undo what we did above. */
9648 rel->r_offset -= 4;
9649 /* Store the sign-bits (which are most significant)
9650 first. */
9651 low_bits = sign_bits;
9652 high_bits = value;
9653 }
9654 else
9655 {
9656 low_bits = value;
9657 high_bits = sign_bits;
9658 }
9659 bfd_put_32 (input_bfd, low_bits,
9660 contents + rel->r_offset);
9661 bfd_put_32 (input_bfd, high_bits,
9662 contents + rel->r_offset + 4);
9663 continue;
9664 }
9665
9666 /* Actually perform the relocation. */
9667 if (! mips_elf_perform_relocation (info, howto, rel, value,
9668 input_bfd, input_section,
9669 contents, cross_mode_jump_p))
9670 return FALSE;
9671 }
9672
9673 return TRUE;
9674 }
9675 \f
9676 /* A function that iterates over each entry in la25_stubs and fills
9677 in the code for each one. DATA points to a mips_htab_traverse_info. */
9678
9679 static int
9680 mips_elf_create_la25_stub (void **slot, void *data)
9681 {
9682 struct mips_htab_traverse_info *hti;
9683 struct mips_elf_link_hash_table *htab;
9684 struct mips_elf_la25_stub *stub;
9685 asection *s;
9686 bfd_byte *loc;
9687 bfd_vma offset, target, target_high, target_low;
9688
9689 stub = (struct mips_elf_la25_stub *) *slot;
9690 hti = (struct mips_htab_traverse_info *) data;
9691 htab = mips_elf_hash_table (hti->info);
9692 BFD_ASSERT (htab != NULL);
9693
9694 /* Create the section contents, if we haven't already. */
9695 s = stub->stub_section;
9696 loc = s->contents;
9697 if (loc == NULL)
9698 {
9699 loc = bfd_malloc (s->size);
9700 if (loc == NULL)
9701 {
9702 hti->error = TRUE;
9703 return FALSE;
9704 }
9705 s->contents = loc;
9706 }
9707
9708 /* Work out where in the section this stub should go. */
9709 offset = stub->offset;
9710
9711 /* Work out the target address. */
9712 target = mips_elf_get_la25_target (stub, &s);
9713 target += s->output_section->vma + s->output_offset;
9714
9715 target_high = ((target + 0x8000) >> 16) & 0xffff;
9716 target_low = (target & 0xffff);
9717
9718 if (stub->stub_section != htab->strampoline)
9719 {
9720 /* This is a simple LUI/ADDIU stub. Zero out the beginning
9721 of the section and write the two instructions at the end. */
9722 memset (loc, 0, offset);
9723 loc += offset;
9724 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9725 {
9726 bfd_put_micromips_32 (hti->output_bfd,
9727 LA25_LUI_MICROMIPS (target_high),
9728 loc);
9729 bfd_put_micromips_32 (hti->output_bfd,
9730 LA25_ADDIU_MICROMIPS (target_low),
9731 loc + 4);
9732 }
9733 else
9734 {
9735 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9736 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9737 }
9738 }
9739 else
9740 {
9741 /* This is trampoline. */
9742 loc += offset;
9743 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9744 {
9745 bfd_put_micromips_32 (hti->output_bfd,
9746 LA25_LUI_MICROMIPS (target_high), loc);
9747 bfd_put_micromips_32 (hti->output_bfd,
9748 LA25_J_MICROMIPS (target), loc + 4);
9749 bfd_put_micromips_32 (hti->output_bfd,
9750 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
9751 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9752 }
9753 else
9754 {
9755 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9756 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9757 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9758 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9759 }
9760 }
9761 return TRUE;
9762 }
9763
9764 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9765 adjust it appropriately now. */
9766
9767 static void
9768 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9769 const char *name, Elf_Internal_Sym *sym)
9770 {
9771 /* The linker script takes care of providing names and values for
9772 these, but we must place them into the right sections. */
9773 static const char* const text_section_symbols[] = {
9774 "_ftext",
9775 "_etext",
9776 "__dso_displacement",
9777 "__elf_header",
9778 "__program_header_table",
9779 NULL
9780 };
9781
9782 static const char* const data_section_symbols[] = {
9783 "_fdata",
9784 "_edata",
9785 "_end",
9786 "_fbss",
9787 NULL
9788 };
9789
9790 const char* const *p;
9791 int i;
9792
9793 for (i = 0; i < 2; ++i)
9794 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9795 *p;
9796 ++p)
9797 if (strcmp (*p, name) == 0)
9798 {
9799 /* All of these symbols are given type STT_SECTION by the
9800 IRIX6 linker. */
9801 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9802 sym->st_other = STO_PROTECTED;
9803
9804 /* The IRIX linker puts these symbols in special sections. */
9805 if (i == 0)
9806 sym->st_shndx = SHN_MIPS_TEXT;
9807 else
9808 sym->st_shndx = SHN_MIPS_DATA;
9809
9810 break;
9811 }
9812 }
9813
9814 /* Finish up dynamic symbol handling. We set the contents of various
9815 dynamic sections here. */
9816
9817 bfd_boolean
9818 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9819 struct bfd_link_info *info,
9820 struct elf_link_hash_entry *h,
9821 Elf_Internal_Sym *sym)
9822 {
9823 bfd *dynobj;
9824 asection *sgot;
9825 struct mips_got_info *g, *gg;
9826 const char *name;
9827 int idx;
9828 struct mips_elf_link_hash_table *htab;
9829 struct mips_elf_link_hash_entry *hmips;
9830
9831 htab = mips_elf_hash_table (info);
9832 BFD_ASSERT (htab != NULL);
9833 dynobj = elf_hash_table (info)->dynobj;
9834 hmips = (struct mips_elf_link_hash_entry *) h;
9835
9836 BFD_ASSERT (!htab->is_vxworks);
9837
9838 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9839 {
9840 /* We've decided to create a PLT entry for this symbol. */
9841 bfd_byte *loc;
9842 bfd_vma header_address, plt_index, got_address;
9843 bfd_vma got_address_high, got_address_low, load;
9844 const bfd_vma *plt_entry;
9845
9846 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9847 BFD_ASSERT (h->dynindx != -1);
9848 BFD_ASSERT (htab->splt != NULL);
9849 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9850 BFD_ASSERT (!h->def_regular);
9851
9852 /* Calculate the address of the PLT header. */
9853 header_address = (htab->splt->output_section->vma
9854 + htab->splt->output_offset);
9855
9856 /* Calculate the index of the entry. */
9857 plt_index = ((h->plt.offset - htab->plt_header_size)
9858 / htab->plt_entry_size);
9859
9860 /* Calculate the address of the .got.plt entry. */
9861 got_address = (htab->sgotplt->output_section->vma
9862 + htab->sgotplt->output_offset
9863 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9864 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9865 got_address_low = got_address & 0xffff;
9866
9867 /* Initially point the .got.plt entry at the PLT header. */
9868 loc = (htab->sgotplt->contents
9869 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9870 if (ABI_64_P (output_bfd))
9871 bfd_put_64 (output_bfd, header_address, loc);
9872 else
9873 bfd_put_32 (output_bfd, header_address, loc);
9874
9875 /* Find out where the .plt entry should go. */
9876 loc = htab->splt->contents + h->plt.offset;
9877
9878 /* Pick the load opcode. */
9879 load = MIPS_ELF_LOAD_WORD (output_bfd);
9880
9881 /* Fill in the PLT entry itself. */
9882 plt_entry = mips_exec_plt_entry;
9883 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9884 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9885
9886 if (! LOAD_INTERLOCKS_P (output_bfd))
9887 {
9888 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9889 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9890 }
9891 else
9892 {
9893 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9894 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9895 }
9896
9897 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9898 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9899 plt_index, h->dynindx,
9900 R_MIPS_JUMP_SLOT, got_address);
9901
9902 /* We distinguish between PLT entries and lazy-binding stubs by
9903 giving the former an st_other value of STO_MIPS_PLT. Set the
9904 flag and leave the value if there are any relocations in the
9905 binary where pointer equality matters. */
9906 sym->st_shndx = SHN_UNDEF;
9907 if (h->pointer_equality_needed)
9908 sym->st_other = STO_MIPS_PLT;
9909 else
9910 sym->st_value = 0;
9911 }
9912 else if (h->plt.offset != MINUS_ONE)
9913 {
9914 /* We've decided to create a lazy-binding stub. */
9915 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9916
9917 /* This symbol has a stub. Set it up. */
9918
9919 BFD_ASSERT (h->dynindx != -1);
9920
9921 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9922 || (h->dynindx <= 0xffff));
9923
9924 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9925 sign extension at runtime in the stub, resulting in a negative
9926 index value. */
9927 if (h->dynindx & ~0x7fffffff)
9928 return FALSE;
9929
9930 /* Fill the stub. */
9931 idx = 0;
9932 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9933 idx += 4;
9934 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9935 idx += 4;
9936 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9937 {
9938 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9939 stub + idx);
9940 idx += 4;
9941 }
9942 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9943 idx += 4;
9944
9945 /* If a large stub is not required and sign extension is not a
9946 problem, then use legacy code in the stub. */
9947 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9948 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9949 else if (h->dynindx & ~0x7fff)
9950 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9951 else
9952 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9953 stub + idx);
9954
9955 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9956 memcpy (htab->sstubs->contents + h->plt.offset,
9957 stub, htab->function_stub_size);
9958
9959 /* Mark the symbol as undefined. plt.offset != -1 occurs
9960 only for the referenced symbol. */
9961 sym->st_shndx = SHN_UNDEF;
9962
9963 /* The run-time linker uses the st_value field of the symbol
9964 to reset the global offset table entry for this external
9965 to its stub address when unlinking a shared object. */
9966 sym->st_value = (htab->sstubs->output_section->vma
9967 + htab->sstubs->output_offset
9968 + h->plt.offset);
9969 }
9970
9971 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9972 refer to the stub, since only the stub uses the standard calling
9973 conventions. */
9974 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9975 {
9976 BFD_ASSERT (hmips->need_fn_stub);
9977 sym->st_value = (hmips->fn_stub->output_section->vma
9978 + hmips->fn_stub->output_offset);
9979 sym->st_size = hmips->fn_stub->size;
9980 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9981 }
9982
9983 BFD_ASSERT (h->dynindx != -1
9984 || h->forced_local);
9985
9986 sgot = htab->sgot;
9987 g = htab->got_info;
9988 BFD_ASSERT (g != NULL);
9989
9990 /* Run through the global symbol table, creating GOT entries for all
9991 the symbols that need them. */
9992 if (hmips->global_got_area != GGA_NONE)
9993 {
9994 bfd_vma offset;
9995 bfd_vma value;
9996
9997 value = sym->st_value;
9998 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
9999 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10000 }
10001
10002 if (hmips->global_got_area != GGA_NONE && g->next)
10003 {
10004 struct mips_got_entry e, *p;
10005 bfd_vma entry;
10006 bfd_vma offset;
10007
10008 gg = g;
10009
10010 e.abfd = output_bfd;
10011 e.symndx = -1;
10012 e.d.h = hmips;
10013 e.tls_type = GOT_TLS_NONE;
10014
10015 for (g = g->next; g->next != gg; g = g->next)
10016 {
10017 if (g->got_entries
10018 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10019 &e)))
10020 {
10021 offset = p->gotidx;
10022 BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
10023 if (info->shared
10024 || (elf_hash_table (info)->dynamic_sections_created
10025 && p->d.h != NULL
10026 && p->d.h->root.def_dynamic
10027 && !p->d.h->root.def_regular))
10028 {
10029 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10030 the various compatibility problems, it's easier to mock
10031 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10032 mips_elf_create_dynamic_relocation to calculate the
10033 appropriate addend. */
10034 Elf_Internal_Rela rel[3];
10035
10036 memset (rel, 0, sizeof (rel));
10037 if (ABI_64_P (output_bfd))
10038 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10039 else
10040 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10041 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10042
10043 entry = 0;
10044 if (! (mips_elf_create_dynamic_relocation
10045 (output_bfd, info, rel,
10046 e.d.h, NULL, sym->st_value, &entry, sgot)))
10047 return FALSE;
10048 }
10049 else
10050 entry = sym->st_value;
10051 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10052 }
10053 }
10054 }
10055
10056 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10057 name = h->root.root.string;
10058 if (h == elf_hash_table (info)->hdynamic
10059 || h == elf_hash_table (info)->hgot)
10060 sym->st_shndx = SHN_ABS;
10061 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10062 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10063 {
10064 sym->st_shndx = SHN_ABS;
10065 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10066 sym->st_value = 1;
10067 }
10068 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10069 {
10070 sym->st_shndx = SHN_ABS;
10071 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10072 sym->st_value = elf_gp (output_bfd);
10073 }
10074 else if (SGI_COMPAT (output_bfd))
10075 {
10076 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10077 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10078 {
10079 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10080 sym->st_other = STO_PROTECTED;
10081 sym->st_value = 0;
10082 sym->st_shndx = SHN_MIPS_DATA;
10083 }
10084 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10085 {
10086 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10087 sym->st_other = STO_PROTECTED;
10088 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10089 sym->st_shndx = SHN_ABS;
10090 }
10091 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10092 {
10093 if (h->type == STT_FUNC)
10094 sym->st_shndx = SHN_MIPS_TEXT;
10095 else if (h->type == STT_OBJECT)
10096 sym->st_shndx = SHN_MIPS_DATA;
10097 }
10098 }
10099
10100 /* Emit a copy reloc, if needed. */
10101 if (h->needs_copy)
10102 {
10103 asection *s;
10104 bfd_vma symval;
10105
10106 BFD_ASSERT (h->dynindx != -1);
10107 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10108
10109 s = mips_elf_rel_dyn_section (info, FALSE);
10110 symval = (h->root.u.def.section->output_section->vma
10111 + h->root.u.def.section->output_offset
10112 + h->root.u.def.value);
10113 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10114 h->dynindx, R_MIPS_COPY, symval);
10115 }
10116
10117 /* Handle the IRIX6-specific symbols. */
10118 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10119 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10120
10121 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
10122 to treat compressed symbols like any other. */
10123 if (ELF_ST_IS_MIPS16 (sym->st_other))
10124 {
10125 BFD_ASSERT (sym->st_value & 1);
10126 sym->st_other -= STO_MIPS16;
10127 }
10128 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
10129 {
10130 BFD_ASSERT (sym->st_value & 1);
10131 sym->st_other -= STO_MICROMIPS;
10132 }
10133
10134 return TRUE;
10135 }
10136
10137 /* Likewise, for VxWorks. */
10138
10139 bfd_boolean
10140 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10141 struct bfd_link_info *info,
10142 struct elf_link_hash_entry *h,
10143 Elf_Internal_Sym *sym)
10144 {
10145 bfd *dynobj;
10146 asection *sgot;
10147 struct mips_got_info *g;
10148 struct mips_elf_link_hash_table *htab;
10149 struct mips_elf_link_hash_entry *hmips;
10150
10151 htab = mips_elf_hash_table (info);
10152 BFD_ASSERT (htab != NULL);
10153 dynobj = elf_hash_table (info)->dynobj;
10154 hmips = (struct mips_elf_link_hash_entry *) h;
10155
10156 if (h->plt.offset != (bfd_vma) -1)
10157 {
10158 bfd_byte *loc;
10159 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10160 Elf_Internal_Rela rel;
10161 static const bfd_vma *plt_entry;
10162
10163 BFD_ASSERT (h->dynindx != -1);
10164 BFD_ASSERT (htab->splt != NULL);
10165 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10166
10167 /* Calculate the address of the .plt entry. */
10168 plt_address = (htab->splt->output_section->vma
10169 + htab->splt->output_offset
10170 + h->plt.offset);
10171
10172 /* Calculate the index of the entry. */
10173 plt_index = ((h->plt.offset - htab->plt_header_size)
10174 / htab->plt_entry_size);
10175
10176 /* Calculate the address of the .got.plt entry. */
10177 got_address = (htab->sgotplt->output_section->vma
10178 + htab->sgotplt->output_offset
10179 + plt_index * 4);
10180
10181 /* Calculate the offset of the .got.plt entry from
10182 _GLOBAL_OFFSET_TABLE_. */
10183 got_offset = mips_elf_gotplt_index (info, h);
10184
10185 /* Calculate the offset for the branch at the start of the PLT
10186 entry. The branch jumps to the beginning of .plt. */
10187 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10188
10189 /* Fill in the initial value of the .got.plt entry. */
10190 bfd_put_32 (output_bfd, plt_address,
10191 htab->sgotplt->contents + plt_index * 4);
10192
10193 /* Find out where the .plt entry should go. */
10194 loc = htab->splt->contents + h->plt.offset;
10195
10196 if (info->shared)
10197 {
10198 plt_entry = mips_vxworks_shared_plt_entry;
10199 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10200 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10201 }
10202 else
10203 {
10204 bfd_vma got_address_high, got_address_low;
10205
10206 plt_entry = mips_vxworks_exec_plt_entry;
10207 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10208 got_address_low = got_address & 0xffff;
10209
10210 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10211 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10212 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10213 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10214 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10215 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10216 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10217 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10218
10219 loc = (htab->srelplt2->contents
10220 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10221
10222 /* Emit a relocation for the .got.plt entry. */
10223 rel.r_offset = got_address;
10224 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10225 rel.r_addend = h->plt.offset;
10226 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10227
10228 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10229 loc += sizeof (Elf32_External_Rela);
10230 rel.r_offset = plt_address + 8;
10231 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10232 rel.r_addend = got_offset;
10233 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10234
10235 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10236 loc += sizeof (Elf32_External_Rela);
10237 rel.r_offset += 4;
10238 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10239 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10240 }
10241
10242 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10243 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10244 rel.r_offset = got_address;
10245 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10246 rel.r_addend = 0;
10247 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10248
10249 if (!h->def_regular)
10250 sym->st_shndx = SHN_UNDEF;
10251 }
10252
10253 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10254
10255 sgot = htab->sgot;
10256 g = htab->got_info;
10257 BFD_ASSERT (g != NULL);
10258
10259 /* See if this symbol has an entry in the GOT. */
10260 if (hmips->global_got_area != GGA_NONE)
10261 {
10262 bfd_vma offset;
10263 Elf_Internal_Rela outrel;
10264 bfd_byte *loc;
10265 asection *s;
10266
10267 /* Install the symbol value in the GOT. */
10268 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10269 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10270
10271 /* Add a dynamic relocation for it. */
10272 s = mips_elf_rel_dyn_section (info, FALSE);
10273 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10274 outrel.r_offset = (sgot->output_section->vma
10275 + sgot->output_offset
10276 + offset);
10277 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10278 outrel.r_addend = 0;
10279 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10280 }
10281
10282 /* Emit a copy reloc, if needed. */
10283 if (h->needs_copy)
10284 {
10285 Elf_Internal_Rela rel;
10286
10287 BFD_ASSERT (h->dynindx != -1);
10288
10289 rel.r_offset = (h->root.u.def.section->output_section->vma
10290 + h->root.u.def.section->output_offset
10291 + h->root.u.def.value);
10292 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10293 rel.r_addend = 0;
10294 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10295 htab->srelbss->contents
10296 + (htab->srelbss->reloc_count
10297 * sizeof (Elf32_External_Rela)));
10298 ++htab->srelbss->reloc_count;
10299 }
10300
10301 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10302 if (ELF_ST_IS_COMPRESSED (sym->st_other))
10303 sym->st_value &= ~1;
10304
10305 return TRUE;
10306 }
10307
10308 /* Write out a plt0 entry to the beginning of .plt. */
10309
10310 static void
10311 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10312 {
10313 bfd_byte *loc;
10314 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10315 static const bfd_vma *plt_entry;
10316 struct mips_elf_link_hash_table *htab;
10317
10318 htab = mips_elf_hash_table (info);
10319 BFD_ASSERT (htab != NULL);
10320
10321 if (ABI_64_P (output_bfd))
10322 plt_entry = mips_n64_exec_plt0_entry;
10323 else if (ABI_N32_P (output_bfd))
10324 plt_entry = mips_n32_exec_plt0_entry;
10325 else
10326 plt_entry = mips_o32_exec_plt0_entry;
10327
10328 /* Calculate the value of .got.plt. */
10329 gotplt_value = (htab->sgotplt->output_section->vma
10330 + htab->sgotplt->output_offset);
10331 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10332 gotplt_value_low = gotplt_value & 0xffff;
10333
10334 /* The PLT sequence is not safe for N64 if .got.plt's address can
10335 not be loaded in two instructions. */
10336 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10337 || ~(gotplt_value | 0x7fffffff) == 0);
10338
10339 /* Install the PLT header. */
10340 loc = htab->splt->contents;
10341 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10342 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10343 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10344 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10345 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10346 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10347 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10348 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10349 }
10350
10351 /* Install the PLT header for a VxWorks executable and finalize the
10352 contents of .rela.plt.unloaded. */
10353
10354 static void
10355 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10356 {
10357 Elf_Internal_Rela rela;
10358 bfd_byte *loc;
10359 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10360 static const bfd_vma *plt_entry;
10361 struct mips_elf_link_hash_table *htab;
10362
10363 htab = mips_elf_hash_table (info);
10364 BFD_ASSERT (htab != NULL);
10365
10366 plt_entry = mips_vxworks_exec_plt0_entry;
10367
10368 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10369 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10370 + htab->root.hgot->root.u.def.section->output_offset
10371 + htab->root.hgot->root.u.def.value);
10372
10373 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10374 got_value_low = got_value & 0xffff;
10375
10376 /* Calculate the address of the PLT header. */
10377 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10378
10379 /* Install the PLT header. */
10380 loc = htab->splt->contents;
10381 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10382 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10383 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10384 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10385 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10386 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10387
10388 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10389 loc = htab->srelplt2->contents;
10390 rela.r_offset = plt_address;
10391 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10392 rela.r_addend = 0;
10393 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10394 loc += sizeof (Elf32_External_Rela);
10395
10396 /* Output the relocation for the following addiu of
10397 %lo(_GLOBAL_OFFSET_TABLE_). */
10398 rela.r_offset += 4;
10399 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10400 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10401 loc += sizeof (Elf32_External_Rela);
10402
10403 /* Fix up the remaining relocations. They may have the wrong
10404 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10405 in which symbols were output. */
10406 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10407 {
10408 Elf_Internal_Rela rel;
10409
10410 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10411 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10412 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10413 loc += sizeof (Elf32_External_Rela);
10414
10415 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10416 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10417 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10418 loc += sizeof (Elf32_External_Rela);
10419
10420 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10421 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10422 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10423 loc += sizeof (Elf32_External_Rela);
10424 }
10425 }
10426
10427 /* Install the PLT header for a VxWorks shared library. */
10428
10429 static void
10430 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10431 {
10432 unsigned int i;
10433 struct mips_elf_link_hash_table *htab;
10434
10435 htab = mips_elf_hash_table (info);
10436 BFD_ASSERT (htab != NULL);
10437
10438 /* We just need to copy the entry byte-by-byte. */
10439 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10440 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10441 htab->splt->contents + i * 4);
10442 }
10443
10444 /* Finish up the dynamic sections. */
10445
10446 bfd_boolean
10447 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10448 struct bfd_link_info *info)
10449 {
10450 bfd *dynobj;
10451 asection *sdyn;
10452 asection *sgot;
10453 struct mips_got_info *gg, *g;
10454 struct mips_elf_link_hash_table *htab;
10455
10456 htab = mips_elf_hash_table (info);
10457 BFD_ASSERT (htab != NULL);
10458
10459 dynobj = elf_hash_table (info)->dynobj;
10460
10461 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
10462
10463 sgot = htab->sgot;
10464 gg = htab->got_info;
10465
10466 if (elf_hash_table (info)->dynamic_sections_created)
10467 {
10468 bfd_byte *b;
10469 int dyn_to_skip = 0, dyn_skipped = 0;
10470
10471 BFD_ASSERT (sdyn != NULL);
10472 BFD_ASSERT (gg != NULL);
10473
10474 g = mips_elf_bfd_got (output_bfd, FALSE);
10475 BFD_ASSERT (g != NULL);
10476
10477 for (b = sdyn->contents;
10478 b < sdyn->contents + sdyn->size;
10479 b += MIPS_ELF_DYN_SIZE (dynobj))
10480 {
10481 Elf_Internal_Dyn dyn;
10482 const char *name;
10483 size_t elemsize;
10484 asection *s;
10485 bfd_boolean swap_out_p;
10486
10487 /* Read in the current dynamic entry. */
10488 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10489
10490 /* Assume that we're going to modify it and write it out. */
10491 swap_out_p = TRUE;
10492
10493 switch (dyn.d_tag)
10494 {
10495 case DT_RELENT:
10496 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10497 break;
10498
10499 case DT_RELAENT:
10500 BFD_ASSERT (htab->is_vxworks);
10501 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10502 break;
10503
10504 case DT_STRSZ:
10505 /* Rewrite DT_STRSZ. */
10506 dyn.d_un.d_val =
10507 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10508 break;
10509
10510 case DT_PLTGOT:
10511 s = htab->sgot;
10512 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10513 break;
10514
10515 case DT_MIPS_PLTGOT:
10516 s = htab->sgotplt;
10517 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10518 break;
10519
10520 case DT_MIPS_RLD_VERSION:
10521 dyn.d_un.d_val = 1; /* XXX */
10522 break;
10523
10524 case DT_MIPS_FLAGS:
10525 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10526 break;
10527
10528 case DT_MIPS_TIME_STAMP:
10529 {
10530 time_t t;
10531 time (&t);
10532 dyn.d_un.d_val = t;
10533 }
10534 break;
10535
10536 case DT_MIPS_ICHECKSUM:
10537 /* XXX FIXME: */
10538 swap_out_p = FALSE;
10539 break;
10540
10541 case DT_MIPS_IVERSION:
10542 /* XXX FIXME: */
10543 swap_out_p = FALSE;
10544 break;
10545
10546 case DT_MIPS_BASE_ADDRESS:
10547 s = output_bfd->sections;
10548 BFD_ASSERT (s != NULL);
10549 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10550 break;
10551
10552 case DT_MIPS_LOCAL_GOTNO:
10553 dyn.d_un.d_val = g->local_gotno;
10554 break;
10555
10556 case DT_MIPS_UNREFEXTNO:
10557 /* The index into the dynamic symbol table which is the
10558 entry of the first external symbol that is not
10559 referenced within the same object. */
10560 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10561 break;
10562
10563 case DT_MIPS_GOTSYM:
10564 if (htab->global_gotsym)
10565 {
10566 dyn.d_un.d_val = htab->global_gotsym->dynindx;
10567 break;
10568 }
10569 /* In case if we don't have global got symbols we default
10570 to setting DT_MIPS_GOTSYM to the same value as
10571 DT_MIPS_SYMTABNO, so we just fall through. */
10572
10573 case DT_MIPS_SYMTABNO:
10574 name = ".dynsym";
10575 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10576 s = bfd_get_section_by_name (output_bfd, name);
10577 BFD_ASSERT (s != NULL);
10578
10579 dyn.d_un.d_val = s->size / elemsize;
10580 break;
10581
10582 case DT_MIPS_HIPAGENO:
10583 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10584 break;
10585
10586 case DT_MIPS_RLD_MAP:
10587 {
10588 struct elf_link_hash_entry *h;
10589 h = mips_elf_hash_table (info)->rld_symbol;
10590 if (!h)
10591 {
10592 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10593 swap_out_p = FALSE;
10594 break;
10595 }
10596 s = h->root.u.def.section;
10597 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10598 + h->root.u.def.value);
10599 }
10600 break;
10601
10602 case DT_MIPS_OPTIONS:
10603 s = (bfd_get_section_by_name
10604 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10605 dyn.d_un.d_ptr = s->vma;
10606 break;
10607
10608 case DT_RELASZ:
10609 BFD_ASSERT (htab->is_vxworks);
10610 /* The count does not include the JUMP_SLOT relocations. */
10611 if (htab->srelplt)
10612 dyn.d_un.d_val -= htab->srelplt->size;
10613 break;
10614
10615 case DT_PLTREL:
10616 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10617 if (htab->is_vxworks)
10618 dyn.d_un.d_val = DT_RELA;
10619 else
10620 dyn.d_un.d_val = DT_REL;
10621 break;
10622
10623 case DT_PLTRELSZ:
10624 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10625 dyn.d_un.d_val = htab->srelplt->size;
10626 break;
10627
10628 case DT_JMPREL:
10629 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10630 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10631 + htab->srelplt->output_offset);
10632 break;
10633
10634 case DT_TEXTREL:
10635 /* If we didn't need any text relocations after all, delete
10636 the dynamic tag. */
10637 if (!(info->flags & DF_TEXTREL))
10638 {
10639 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10640 swap_out_p = FALSE;
10641 }
10642 break;
10643
10644 case DT_FLAGS:
10645 /* If we didn't need any text relocations after all, clear
10646 DF_TEXTREL from DT_FLAGS. */
10647 if (!(info->flags & DF_TEXTREL))
10648 dyn.d_un.d_val &= ~DF_TEXTREL;
10649 else
10650 swap_out_p = FALSE;
10651 break;
10652
10653 default:
10654 swap_out_p = FALSE;
10655 if (htab->is_vxworks
10656 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10657 swap_out_p = TRUE;
10658 break;
10659 }
10660
10661 if (swap_out_p || dyn_skipped)
10662 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10663 (dynobj, &dyn, b - dyn_skipped);
10664
10665 if (dyn_to_skip)
10666 {
10667 dyn_skipped += dyn_to_skip;
10668 dyn_to_skip = 0;
10669 }
10670 }
10671
10672 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10673 if (dyn_skipped > 0)
10674 memset (b - dyn_skipped, 0, dyn_skipped);
10675 }
10676
10677 if (sgot != NULL && sgot->size > 0
10678 && !bfd_is_abs_section (sgot->output_section))
10679 {
10680 if (htab->is_vxworks)
10681 {
10682 /* The first entry of the global offset table points to the
10683 ".dynamic" section. The second is initialized by the
10684 loader and contains the shared library identifier.
10685 The third is also initialized by the loader and points
10686 to the lazy resolution stub. */
10687 MIPS_ELF_PUT_WORD (output_bfd,
10688 sdyn->output_offset + sdyn->output_section->vma,
10689 sgot->contents);
10690 MIPS_ELF_PUT_WORD (output_bfd, 0,
10691 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10692 MIPS_ELF_PUT_WORD (output_bfd, 0,
10693 sgot->contents
10694 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10695 }
10696 else
10697 {
10698 /* The first entry of the global offset table will be filled at
10699 runtime. The second entry will be used by some runtime loaders.
10700 This isn't the case of IRIX rld. */
10701 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10702 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10703 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10704 }
10705
10706 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10707 = MIPS_ELF_GOT_SIZE (output_bfd);
10708 }
10709
10710 /* Generate dynamic relocations for the non-primary gots. */
10711 if (gg != NULL && gg->next)
10712 {
10713 Elf_Internal_Rela rel[3];
10714 bfd_vma addend = 0;
10715
10716 memset (rel, 0, sizeof (rel));
10717 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10718
10719 for (g = gg->next; g->next != gg; g = g->next)
10720 {
10721 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10722 + g->next->tls_gotno;
10723
10724 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10725 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10726 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10727 sgot->contents
10728 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10729
10730 if (! info->shared)
10731 continue;
10732
10733 while (got_index < g->assigned_gotno)
10734 {
10735 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10736 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10737 if (!(mips_elf_create_dynamic_relocation
10738 (output_bfd, info, rel, NULL,
10739 bfd_abs_section_ptr,
10740 0, &addend, sgot)))
10741 return FALSE;
10742 BFD_ASSERT (addend == 0);
10743 }
10744 }
10745 }
10746
10747 /* The generation of dynamic relocations for the non-primary gots
10748 adds more dynamic relocations. We cannot count them until
10749 here. */
10750
10751 if (elf_hash_table (info)->dynamic_sections_created)
10752 {
10753 bfd_byte *b;
10754 bfd_boolean swap_out_p;
10755
10756 BFD_ASSERT (sdyn != NULL);
10757
10758 for (b = sdyn->contents;
10759 b < sdyn->contents + sdyn->size;
10760 b += MIPS_ELF_DYN_SIZE (dynobj))
10761 {
10762 Elf_Internal_Dyn dyn;
10763 asection *s;
10764
10765 /* Read in the current dynamic entry. */
10766 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10767
10768 /* Assume that we're going to modify it and write it out. */
10769 swap_out_p = TRUE;
10770
10771 switch (dyn.d_tag)
10772 {
10773 case DT_RELSZ:
10774 /* Reduce DT_RELSZ to account for any relocations we
10775 decided not to make. This is for the n64 irix rld,
10776 which doesn't seem to apply any relocations if there
10777 are trailing null entries. */
10778 s = mips_elf_rel_dyn_section (info, FALSE);
10779 dyn.d_un.d_val = (s->reloc_count
10780 * (ABI_64_P (output_bfd)
10781 ? sizeof (Elf64_Mips_External_Rel)
10782 : sizeof (Elf32_External_Rel)));
10783 /* Adjust the section size too. Tools like the prelinker
10784 can reasonably expect the values to the same. */
10785 elf_section_data (s->output_section)->this_hdr.sh_size
10786 = dyn.d_un.d_val;
10787 break;
10788
10789 default:
10790 swap_out_p = FALSE;
10791 break;
10792 }
10793
10794 if (swap_out_p)
10795 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10796 (dynobj, &dyn, b);
10797 }
10798 }
10799
10800 {
10801 asection *s;
10802 Elf32_compact_rel cpt;
10803
10804 if (SGI_COMPAT (output_bfd))
10805 {
10806 /* Write .compact_rel section out. */
10807 s = bfd_get_linker_section (dynobj, ".compact_rel");
10808 if (s != NULL)
10809 {
10810 cpt.id1 = 1;
10811 cpt.num = s->reloc_count;
10812 cpt.id2 = 2;
10813 cpt.offset = (s->output_section->filepos
10814 + sizeof (Elf32_External_compact_rel));
10815 cpt.reserved0 = 0;
10816 cpt.reserved1 = 0;
10817 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10818 ((Elf32_External_compact_rel *)
10819 s->contents));
10820
10821 /* Clean up a dummy stub function entry in .text. */
10822 if (htab->sstubs != NULL)
10823 {
10824 file_ptr dummy_offset;
10825
10826 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10827 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10828 memset (htab->sstubs->contents + dummy_offset, 0,
10829 htab->function_stub_size);
10830 }
10831 }
10832 }
10833
10834 /* The psABI says that the dynamic relocations must be sorted in
10835 increasing order of r_symndx. The VxWorks EABI doesn't require
10836 this, and because the code below handles REL rather than RELA
10837 relocations, using it for VxWorks would be outright harmful. */
10838 if (!htab->is_vxworks)
10839 {
10840 s = mips_elf_rel_dyn_section (info, FALSE);
10841 if (s != NULL
10842 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10843 {
10844 reldyn_sorting_bfd = output_bfd;
10845
10846 if (ABI_64_P (output_bfd))
10847 qsort ((Elf64_External_Rel *) s->contents + 1,
10848 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10849 sort_dynamic_relocs_64);
10850 else
10851 qsort ((Elf32_External_Rel *) s->contents + 1,
10852 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10853 sort_dynamic_relocs);
10854 }
10855 }
10856 }
10857
10858 if (htab->splt && htab->splt->size > 0)
10859 {
10860 if (htab->is_vxworks)
10861 {
10862 if (info->shared)
10863 mips_vxworks_finish_shared_plt (output_bfd, info);
10864 else
10865 mips_vxworks_finish_exec_plt (output_bfd, info);
10866 }
10867 else
10868 {
10869 BFD_ASSERT (!info->shared);
10870 mips_finish_exec_plt (output_bfd, info);
10871 }
10872 }
10873 return TRUE;
10874 }
10875
10876
10877 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10878
10879 static void
10880 mips_set_isa_flags (bfd *abfd)
10881 {
10882 flagword val;
10883
10884 switch (bfd_get_mach (abfd))
10885 {
10886 default:
10887 case bfd_mach_mips3000:
10888 val = E_MIPS_ARCH_1;
10889 break;
10890
10891 case bfd_mach_mips3900:
10892 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10893 break;
10894
10895 case bfd_mach_mips6000:
10896 val = E_MIPS_ARCH_2;
10897 break;
10898
10899 case bfd_mach_mips4000:
10900 case bfd_mach_mips4300:
10901 case bfd_mach_mips4400:
10902 case bfd_mach_mips4600:
10903 val = E_MIPS_ARCH_3;
10904 break;
10905
10906 case bfd_mach_mips4010:
10907 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10908 break;
10909
10910 case bfd_mach_mips4100:
10911 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10912 break;
10913
10914 case bfd_mach_mips4111:
10915 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10916 break;
10917
10918 case bfd_mach_mips4120:
10919 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10920 break;
10921
10922 case bfd_mach_mips4650:
10923 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10924 break;
10925
10926 case bfd_mach_mips5400:
10927 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10928 break;
10929
10930 case bfd_mach_mips5500:
10931 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10932 break;
10933
10934 case bfd_mach_mips5900:
10935 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
10936 break;
10937
10938 case bfd_mach_mips9000:
10939 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10940 break;
10941
10942 case bfd_mach_mips5000:
10943 case bfd_mach_mips7000:
10944 case bfd_mach_mips8000:
10945 case bfd_mach_mips10000:
10946 case bfd_mach_mips12000:
10947 case bfd_mach_mips14000:
10948 case bfd_mach_mips16000:
10949 val = E_MIPS_ARCH_4;
10950 break;
10951
10952 case bfd_mach_mips5:
10953 val = E_MIPS_ARCH_5;
10954 break;
10955
10956 case bfd_mach_mips_loongson_2e:
10957 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10958 break;
10959
10960 case bfd_mach_mips_loongson_2f:
10961 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10962 break;
10963
10964 case bfd_mach_mips_sb1:
10965 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10966 break;
10967
10968 case bfd_mach_mips_loongson_3a:
10969 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
10970 break;
10971
10972 case bfd_mach_mips_octeon:
10973 case bfd_mach_mips_octeonp:
10974 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10975 break;
10976
10977 case bfd_mach_mips_xlr:
10978 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10979 break;
10980
10981 case bfd_mach_mips_octeon2:
10982 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
10983 break;
10984
10985 case bfd_mach_mipsisa32:
10986 val = E_MIPS_ARCH_32;
10987 break;
10988
10989 case bfd_mach_mipsisa64:
10990 val = E_MIPS_ARCH_64;
10991 break;
10992
10993 case bfd_mach_mipsisa32r2:
10994 val = E_MIPS_ARCH_32R2;
10995 break;
10996
10997 case bfd_mach_mipsisa64r2:
10998 val = E_MIPS_ARCH_64R2;
10999 break;
11000 }
11001 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11002 elf_elfheader (abfd)->e_flags |= val;
11003
11004 }
11005
11006
11007 /* The final processing done just before writing out a MIPS ELF object
11008 file. This gets the MIPS architecture right based on the machine
11009 number. This is used by both the 32-bit and the 64-bit ABI. */
11010
11011 void
11012 _bfd_mips_elf_final_write_processing (bfd *abfd,
11013 bfd_boolean linker ATTRIBUTE_UNUSED)
11014 {
11015 unsigned int i;
11016 Elf_Internal_Shdr **hdrpp;
11017 const char *name;
11018 asection *sec;
11019
11020 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11021 is nonzero. This is for compatibility with old objects, which used
11022 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11023 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11024 mips_set_isa_flags (abfd);
11025
11026 /* Set the sh_info field for .gptab sections and other appropriate
11027 info for each special section. */
11028 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11029 i < elf_numsections (abfd);
11030 i++, hdrpp++)
11031 {
11032 switch ((*hdrpp)->sh_type)
11033 {
11034 case SHT_MIPS_MSYM:
11035 case SHT_MIPS_LIBLIST:
11036 sec = bfd_get_section_by_name (abfd, ".dynstr");
11037 if (sec != NULL)
11038 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11039 break;
11040
11041 case SHT_MIPS_GPTAB:
11042 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11043 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11044 BFD_ASSERT (name != NULL
11045 && CONST_STRNEQ (name, ".gptab."));
11046 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11047 BFD_ASSERT (sec != NULL);
11048 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11049 break;
11050
11051 case SHT_MIPS_CONTENT:
11052 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11053 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11054 BFD_ASSERT (name != NULL
11055 && CONST_STRNEQ (name, ".MIPS.content"));
11056 sec = bfd_get_section_by_name (abfd,
11057 name + sizeof ".MIPS.content" - 1);
11058 BFD_ASSERT (sec != NULL);
11059 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11060 break;
11061
11062 case SHT_MIPS_SYMBOL_LIB:
11063 sec = bfd_get_section_by_name (abfd, ".dynsym");
11064 if (sec != NULL)
11065 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11066 sec = bfd_get_section_by_name (abfd, ".liblist");
11067 if (sec != NULL)
11068 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11069 break;
11070
11071 case SHT_MIPS_EVENTS:
11072 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11073 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11074 BFD_ASSERT (name != NULL);
11075 if (CONST_STRNEQ (name, ".MIPS.events"))
11076 sec = bfd_get_section_by_name (abfd,
11077 name + sizeof ".MIPS.events" - 1);
11078 else
11079 {
11080 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
11081 sec = bfd_get_section_by_name (abfd,
11082 (name
11083 + sizeof ".MIPS.post_rel" - 1));
11084 }
11085 BFD_ASSERT (sec != NULL);
11086 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11087 break;
11088
11089 }
11090 }
11091 }
11092 \f
11093 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11094 segments. */
11095
11096 int
11097 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11098 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11099 {
11100 asection *s;
11101 int ret = 0;
11102
11103 /* See if we need a PT_MIPS_REGINFO segment. */
11104 s = bfd_get_section_by_name (abfd, ".reginfo");
11105 if (s && (s->flags & SEC_LOAD))
11106 ++ret;
11107
11108 /* See if we need a PT_MIPS_OPTIONS segment. */
11109 if (IRIX_COMPAT (abfd) == ict_irix6
11110 && bfd_get_section_by_name (abfd,
11111 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11112 ++ret;
11113
11114 /* See if we need a PT_MIPS_RTPROC segment. */
11115 if (IRIX_COMPAT (abfd) == ict_irix5
11116 && bfd_get_section_by_name (abfd, ".dynamic")
11117 && bfd_get_section_by_name (abfd, ".mdebug"))
11118 ++ret;
11119
11120 /* Allocate a PT_NULL header in dynamic objects. See
11121 _bfd_mips_elf_modify_segment_map for details. */
11122 if (!SGI_COMPAT (abfd)
11123 && bfd_get_section_by_name (abfd, ".dynamic"))
11124 ++ret;
11125
11126 return ret;
11127 }
11128
11129 /* Modify the segment map for an IRIX5 executable. */
11130
11131 bfd_boolean
11132 _bfd_mips_elf_modify_segment_map (bfd *abfd,
11133 struct bfd_link_info *info)
11134 {
11135 asection *s;
11136 struct elf_segment_map *m, **pm;
11137 bfd_size_type amt;
11138
11139 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11140 segment. */
11141 s = bfd_get_section_by_name (abfd, ".reginfo");
11142 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11143 {
11144 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11145 if (m->p_type == PT_MIPS_REGINFO)
11146 break;
11147 if (m == NULL)
11148 {
11149 amt = sizeof *m;
11150 m = bfd_zalloc (abfd, amt);
11151 if (m == NULL)
11152 return FALSE;
11153
11154 m->p_type = PT_MIPS_REGINFO;
11155 m->count = 1;
11156 m->sections[0] = s;
11157
11158 /* We want to put it after the PHDR and INTERP segments. */
11159 pm = &elf_tdata (abfd)->segment_map;
11160 while (*pm != NULL
11161 && ((*pm)->p_type == PT_PHDR
11162 || (*pm)->p_type == PT_INTERP))
11163 pm = &(*pm)->next;
11164
11165 m->next = *pm;
11166 *pm = m;
11167 }
11168 }
11169
11170 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11171 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
11172 PT_MIPS_OPTIONS segment immediately following the program header
11173 table. */
11174 if (NEWABI_P (abfd)
11175 /* On non-IRIX6 new abi, we'll have already created a segment
11176 for this section, so don't create another. I'm not sure this
11177 is not also the case for IRIX 6, but I can't test it right
11178 now. */
11179 && IRIX_COMPAT (abfd) == ict_irix6)
11180 {
11181 for (s = abfd->sections; s; s = s->next)
11182 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11183 break;
11184
11185 if (s)
11186 {
11187 struct elf_segment_map *options_segment;
11188
11189 pm = &elf_tdata (abfd)->segment_map;
11190 while (*pm != NULL
11191 && ((*pm)->p_type == PT_PHDR
11192 || (*pm)->p_type == PT_INTERP))
11193 pm = &(*pm)->next;
11194
11195 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11196 {
11197 amt = sizeof (struct elf_segment_map);
11198 options_segment = bfd_zalloc (abfd, amt);
11199 options_segment->next = *pm;
11200 options_segment->p_type = PT_MIPS_OPTIONS;
11201 options_segment->p_flags = PF_R;
11202 options_segment->p_flags_valid = TRUE;
11203 options_segment->count = 1;
11204 options_segment->sections[0] = s;
11205 *pm = options_segment;
11206 }
11207 }
11208 }
11209 else
11210 {
11211 if (IRIX_COMPAT (abfd) == ict_irix5)
11212 {
11213 /* If there are .dynamic and .mdebug sections, we make a room
11214 for the RTPROC header. FIXME: Rewrite without section names. */
11215 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11216 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11217 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11218 {
11219 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11220 if (m->p_type == PT_MIPS_RTPROC)
11221 break;
11222 if (m == NULL)
11223 {
11224 amt = sizeof *m;
11225 m = bfd_zalloc (abfd, amt);
11226 if (m == NULL)
11227 return FALSE;
11228
11229 m->p_type = PT_MIPS_RTPROC;
11230
11231 s = bfd_get_section_by_name (abfd, ".rtproc");
11232 if (s == NULL)
11233 {
11234 m->count = 0;
11235 m->p_flags = 0;
11236 m->p_flags_valid = 1;
11237 }
11238 else
11239 {
11240 m->count = 1;
11241 m->sections[0] = s;
11242 }
11243
11244 /* We want to put it after the DYNAMIC segment. */
11245 pm = &elf_tdata (abfd)->segment_map;
11246 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11247 pm = &(*pm)->next;
11248 if (*pm != NULL)
11249 pm = &(*pm)->next;
11250
11251 m->next = *pm;
11252 *pm = m;
11253 }
11254 }
11255 }
11256 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11257 .dynstr, .dynsym, and .hash sections, and everything in
11258 between. */
11259 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11260 pm = &(*pm)->next)
11261 if ((*pm)->p_type == PT_DYNAMIC)
11262 break;
11263 m = *pm;
11264 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11265 {
11266 /* For a normal mips executable the permissions for the PT_DYNAMIC
11267 segment are read, write and execute. We do that here since
11268 the code in elf.c sets only the read permission. This matters
11269 sometimes for the dynamic linker. */
11270 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11271 {
11272 m->p_flags = PF_R | PF_W | PF_X;
11273 m->p_flags_valid = 1;
11274 }
11275 }
11276 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11277 glibc's dynamic linker has traditionally derived the number of
11278 tags from the p_filesz field, and sometimes allocates stack
11279 arrays of that size. An overly-big PT_DYNAMIC segment can
11280 be actively harmful in such cases. Making PT_DYNAMIC contain
11281 other sections can also make life hard for the prelinker,
11282 which might move one of the other sections to a different
11283 PT_LOAD segment. */
11284 if (SGI_COMPAT (abfd)
11285 && m != NULL
11286 && m->count == 1
11287 && strcmp (m->sections[0]->name, ".dynamic") == 0)
11288 {
11289 static const char *sec_names[] =
11290 {
11291 ".dynamic", ".dynstr", ".dynsym", ".hash"
11292 };
11293 bfd_vma low, high;
11294 unsigned int i, c;
11295 struct elf_segment_map *n;
11296
11297 low = ~(bfd_vma) 0;
11298 high = 0;
11299 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11300 {
11301 s = bfd_get_section_by_name (abfd, sec_names[i]);
11302 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11303 {
11304 bfd_size_type sz;
11305
11306 if (low > s->vma)
11307 low = s->vma;
11308 sz = s->size;
11309 if (high < s->vma + sz)
11310 high = s->vma + sz;
11311 }
11312 }
11313
11314 c = 0;
11315 for (s = abfd->sections; s != NULL; s = s->next)
11316 if ((s->flags & SEC_LOAD) != 0
11317 && s->vma >= low
11318 && s->vma + s->size <= high)
11319 ++c;
11320
11321 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11322 n = bfd_zalloc (abfd, amt);
11323 if (n == NULL)
11324 return FALSE;
11325 *n = *m;
11326 n->count = c;
11327
11328 i = 0;
11329 for (s = abfd->sections; s != NULL; s = s->next)
11330 {
11331 if ((s->flags & SEC_LOAD) != 0
11332 && s->vma >= low
11333 && s->vma + s->size <= high)
11334 {
11335 n->sections[i] = s;
11336 ++i;
11337 }
11338 }
11339
11340 *pm = n;
11341 }
11342 }
11343
11344 /* Allocate a spare program header in dynamic objects so that tools
11345 like the prelinker can add an extra PT_LOAD entry.
11346
11347 If the prelinker needs to make room for a new PT_LOAD entry, its
11348 standard procedure is to move the first (read-only) sections into
11349 the new (writable) segment. However, the MIPS ABI requires
11350 .dynamic to be in a read-only segment, and the section will often
11351 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11352
11353 Although the prelinker could in principle move .dynamic to a
11354 writable segment, it seems better to allocate a spare program
11355 header instead, and avoid the need to move any sections.
11356 There is a long tradition of allocating spare dynamic tags,
11357 so allocating a spare program header seems like a natural
11358 extension.
11359
11360 If INFO is NULL, we may be copying an already prelinked binary
11361 with objcopy or strip, so do not add this header. */
11362 if (info != NULL
11363 && !SGI_COMPAT (abfd)
11364 && bfd_get_section_by_name (abfd, ".dynamic"))
11365 {
11366 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11367 if ((*pm)->p_type == PT_NULL)
11368 break;
11369 if (*pm == NULL)
11370 {
11371 m = bfd_zalloc (abfd, sizeof (*m));
11372 if (m == NULL)
11373 return FALSE;
11374
11375 m->p_type = PT_NULL;
11376 *pm = m;
11377 }
11378 }
11379
11380 return TRUE;
11381 }
11382 \f
11383 /* Return the section that should be marked against GC for a given
11384 relocation. */
11385
11386 asection *
11387 _bfd_mips_elf_gc_mark_hook (asection *sec,
11388 struct bfd_link_info *info,
11389 Elf_Internal_Rela *rel,
11390 struct elf_link_hash_entry *h,
11391 Elf_Internal_Sym *sym)
11392 {
11393 /* ??? Do mips16 stub sections need to be handled special? */
11394
11395 if (h != NULL)
11396 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11397 {
11398 case R_MIPS_GNU_VTINHERIT:
11399 case R_MIPS_GNU_VTENTRY:
11400 return NULL;
11401 }
11402
11403 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11404 }
11405
11406 /* Update the got entry reference counts for the section being removed. */
11407
11408 bfd_boolean
11409 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11410 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11411 asection *sec ATTRIBUTE_UNUSED,
11412 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11413 {
11414 #if 0
11415 Elf_Internal_Shdr *symtab_hdr;
11416 struct elf_link_hash_entry **sym_hashes;
11417 bfd_signed_vma *local_got_refcounts;
11418 const Elf_Internal_Rela *rel, *relend;
11419 unsigned long r_symndx;
11420 struct elf_link_hash_entry *h;
11421
11422 if (info->relocatable)
11423 return TRUE;
11424
11425 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11426 sym_hashes = elf_sym_hashes (abfd);
11427 local_got_refcounts = elf_local_got_refcounts (abfd);
11428
11429 relend = relocs + sec->reloc_count;
11430 for (rel = relocs; rel < relend; rel++)
11431 switch (ELF_R_TYPE (abfd, rel->r_info))
11432 {
11433 case R_MIPS16_GOT16:
11434 case R_MIPS16_CALL16:
11435 case R_MIPS_GOT16:
11436 case R_MIPS_CALL16:
11437 case R_MIPS_CALL_HI16:
11438 case R_MIPS_CALL_LO16:
11439 case R_MIPS_GOT_HI16:
11440 case R_MIPS_GOT_LO16:
11441 case R_MIPS_GOT_DISP:
11442 case R_MIPS_GOT_PAGE:
11443 case R_MIPS_GOT_OFST:
11444 case R_MICROMIPS_GOT16:
11445 case R_MICROMIPS_CALL16:
11446 case R_MICROMIPS_CALL_HI16:
11447 case R_MICROMIPS_CALL_LO16:
11448 case R_MICROMIPS_GOT_HI16:
11449 case R_MICROMIPS_GOT_LO16:
11450 case R_MICROMIPS_GOT_DISP:
11451 case R_MICROMIPS_GOT_PAGE:
11452 case R_MICROMIPS_GOT_OFST:
11453 /* ??? It would seem that the existing MIPS code does no sort
11454 of reference counting or whatnot on its GOT and PLT entries,
11455 so it is not possible to garbage collect them at this time. */
11456 break;
11457
11458 default:
11459 break;
11460 }
11461 #endif
11462
11463 return TRUE;
11464 }
11465 \f
11466 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11467 hiding the old indirect symbol. Process additional relocation
11468 information. Also called for weakdefs, in which case we just let
11469 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11470
11471 void
11472 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11473 struct elf_link_hash_entry *dir,
11474 struct elf_link_hash_entry *ind)
11475 {
11476 struct mips_elf_link_hash_entry *dirmips, *indmips;
11477
11478 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11479
11480 dirmips = (struct mips_elf_link_hash_entry *) dir;
11481 indmips = (struct mips_elf_link_hash_entry *) ind;
11482 /* Any absolute non-dynamic relocations against an indirect or weak
11483 definition will be against the target symbol. */
11484 if (indmips->has_static_relocs)
11485 dirmips->has_static_relocs = TRUE;
11486
11487 if (ind->root.type != bfd_link_hash_indirect)
11488 return;
11489
11490 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11491 if (indmips->readonly_reloc)
11492 dirmips->readonly_reloc = TRUE;
11493 if (indmips->no_fn_stub)
11494 dirmips->no_fn_stub = TRUE;
11495 if (indmips->fn_stub)
11496 {
11497 dirmips->fn_stub = indmips->fn_stub;
11498 indmips->fn_stub = NULL;
11499 }
11500 if (indmips->need_fn_stub)
11501 {
11502 dirmips->need_fn_stub = TRUE;
11503 indmips->need_fn_stub = FALSE;
11504 }
11505 if (indmips->call_stub)
11506 {
11507 dirmips->call_stub = indmips->call_stub;
11508 indmips->call_stub = NULL;
11509 }
11510 if (indmips->call_fp_stub)
11511 {
11512 dirmips->call_fp_stub = indmips->call_fp_stub;
11513 indmips->call_fp_stub = NULL;
11514 }
11515 if (indmips->global_got_area < dirmips->global_got_area)
11516 dirmips->global_got_area = indmips->global_got_area;
11517 if (indmips->global_got_area < GGA_NONE)
11518 indmips->global_got_area = GGA_NONE;
11519 if (indmips->has_nonpic_branches)
11520 dirmips->has_nonpic_branches = TRUE;
11521 }
11522 \f
11523 #define PDR_SIZE 32
11524
11525 bfd_boolean
11526 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11527 struct bfd_link_info *info)
11528 {
11529 asection *o;
11530 bfd_boolean ret = FALSE;
11531 unsigned char *tdata;
11532 size_t i, skip;
11533
11534 o = bfd_get_section_by_name (abfd, ".pdr");
11535 if (! o)
11536 return FALSE;
11537 if (o->size == 0)
11538 return FALSE;
11539 if (o->size % PDR_SIZE != 0)
11540 return FALSE;
11541 if (o->output_section != NULL
11542 && bfd_is_abs_section (o->output_section))
11543 return FALSE;
11544
11545 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11546 if (! tdata)
11547 return FALSE;
11548
11549 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11550 info->keep_memory);
11551 if (!cookie->rels)
11552 {
11553 free (tdata);
11554 return FALSE;
11555 }
11556
11557 cookie->rel = cookie->rels;
11558 cookie->relend = cookie->rels + o->reloc_count;
11559
11560 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11561 {
11562 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11563 {
11564 tdata[i] = 1;
11565 skip ++;
11566 }
11567 }
11568
11569 if (skip != 0)
11570 {
11571 mips_elf_section_data (o)->u.tdata = tdata;
11572 o->size -= skip * PDR_SIZE;
11573 ret = TRUE;
11574 }
11575 else
11576 free (tdata);
11577
11578 if (! info->keep_memory)
11579 free (cookie->rels);
11580
11581 return ret;
11582 }
11583
11584 bfd_boolean
11585 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11586 {
11587 if (strcmp (sec->name, ".pdr") == 0)
11588 return TRUE;
11589 return FALSE;
11590 }
11591
11592 bfd_boolean
11593 _bfd_mips_elf_write_section (bfd *output_bfd,
11594 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11595 asection *sec, bfd_byte *contents)
11596 {
11597 bfd_byte *to, *from, *end;
11598 int i;
11599
11600 if (strcmp (sec->name, ".pdr") != 0)
11601 return FALSE;
11602
11603 if (mips_elf_section_data (sec)->u.tdata == NULL)
11604 return FALSE;
11605
11606 to = contents;
11607 end = contents + sec->size;
11608 for (from = contents, i = 0;
11609 from < end;
11610 from += PDR_SIZE, i++)
11611 {
11612 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11613 continue;
11614 if (to != from)
11615 memcpy (to, from, PDR_SIZE);
11616 to += PDR_SIZE;
11617 }
11618 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11619 sec->output_offset, sec->size);
11620 return TRUE;
11621 }
11622 \f
11623 /* microMIPS code retains local labels for linker relaxation. Omit them
11624 from output by default for clarity. */
11625
11626 bfd_boolean
11627 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11628 {
11629 return _bfd_elf_is_local_label_name (abfd, sym->name);
11630 }
11631
11632 /* MIPS ELF uses a special find_nearest_line routine in order the
11633 handle the ECOFF debugging information. */
11634
11635 struct mips_elf_find_line
11636 {
11637 struct ecoff_debug_info d;
11638 struct ecoff_find_line i;
11639 };
11640
11641 bfd_boolean
11642 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11643 asymbol **symbols, bfd_vma offset,
11644 const char **filename_ptr,
11645 const char **functionname_ptr,
11646 unsigned int *line_ptr)
11647 {
11648 asection *msec;
11649
11650 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11651 filename_ptr, functionname_ptr,
11652 line_ptr))
11653 return TRUE;
11654
11655 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11656 section, symbols, offset,
11657 filename_ptr, functionname_ptr,
11658 line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
11659 &elf_tdata (abfd)->dwarf2_find_line_info))
11660 return TRUE;
11661
11662 msec = bfd_get_section_by_name (abfd, ".mdebug");
11663 if (msec != NULL)
11664 {
11665 flagword origflags;
11666 struct mips_elf_find_line *fi;
11667 const struct ecoff_debug_swap * const swap =
11668 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11669
11670 /* If we are called during a link, mips_elf_final_link may have
11671 cleared the SEC_HAS_CONTENTS field. We force it back on here
11672 if appropriate (which it normally will be). */
11673 origflags = msec->flags;
11674 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11675 msec->flags |= SEC_HAS_CONTENTS;
11676
11677 fi = mips_elf_tdata (abfd)->find_line_info;
11678 if (fi == NULL)
11679 {
11680 bfd_size_type external_fdr_size;
11681 char *fraw_src;
11682 char *fraw_end;
11683 struct fdr *fdr_ptr;
11684 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11685
11686 fi = bfd_zalloc (abfd, amt);
11687 if (fi == NULL)
11688 {
11689 msec->flags = origflags;
11690 return FALSE;
11691 }
11692
11693 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11694 {
11695 msec->flags = origflags;
11696 return FALSE;
11697 }
11698
11699 /* Swap in the FDR information. */
11700 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11701 fi->d.fdr = bfd_alloc (abfd, amt);
11702 if (fi->d.fdr == NULL)
11703 {
11704 msec->flags = origflags;
11705 return FALSE;
11706 }
11707 external_fdr_size = swap->external_fdr_size;
11708 fdr_ptr = fi->d.fdr;
11709 fraw_src = (char *) fi->d.external_fdr;
11710 fraw_end = (fraw_src
11711 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11712 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11713 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11714
11715 mips_elf_tdata (abfd)->find_line_info = fi;
11716
11717 /* Note that we don't bother to ever free this information.
11718 find_nearest_line is either called all the time, as in
11719 objdump -l, so the information should be saved, or it is
11720 rarely called, as in ld error messages, so the memory
11721 wasted is unimportant. Still, it would probably be a
11722 good idea for free_cached_info to throw it away. */
11723 }
11724
11725 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11726 &fi->i, filename_ptr, functionname_ptr,
11727 line_ptr))
11728 {
11729 msec->flags = origflags;
11730 return TRUE;
11731 }
11732
11733 msec->flags = origflags;
11734 }
11735
11736 /* Fall back on the generic ELF find_nearest_line routine. */
11737
11738 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11739 filename_ptr, functionname_ptr,
11740 line_ptr);
11741 }
11742
11743 bfd_boolean
11744 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11745 const char **filename_ptr,
11746 const char **functionname_ptr,
11747 unsigned int *line_ptr)
11748 {
11749 bfd_boolean found;
11750 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11751 functionname_ptr, line_ptr,
11752 & elf_tdata (abfd)->dwarf2_find_line_info);
11753 return found;
11754 }
11755
11756 \f
11757 /* When are writing out the .options or .MIPS.options section,
11758 remember the bytes we are writing out, so that we can install the
11759 GP value in the section_processing routine. */
11760
11761 bfd_boolean
11762 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11763 const void *location,
11764 file_ptr offset, bfd_size_type count)
11765 {
11766 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11767 {
11768 bfd_byte *c;
11769
11770 if (elf_section_data (section) == NULL)
11771 {
11772 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11773 section->used_by_bfd = bfd_zalloc (abfd, amt);
11774 if (elf_section_data (section) == NULL)
11775 return FALSE;
11776 }
11777 c = mips_elf_section_data (section)->u.tdata;
11778 if (c == NULL)
11779 {
11780 c = bfd_zalloc (abfd, section->size);
11781 if (c == NULL)
11782 return FALSE;
11783 mips_elf_section_data (section)->u.tdata = c;
11784 }
11785
11786 memcpy (c + offset, location, count);
11787 }
11788
11789 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11790 count);
11791 }
11792
11793 /* This is almost identical to bfd_generic_get_... except that some
11794 MIPS relocations need to be handled specially. Sigh. */
11795
11796 bfd_byte *
11797 _bfd_elf_mips_get_relocated_section_contents
11798 (bfd *abfd,
11799 struct bfd_link_info *link_info,
11800 struct bfd_link_order *link_order,
11801 bfd_byte *data,
11802 bfd_boolean relocatable,
11803 asymbol **symbols)
11804 {
11805 /* Get enough memory to hold the stuff */
11806 bfd *input_bfd = link_order->u.indirect.section->owner;
11807 asection *input_section = link_order->u.indirect.section;
11808 bfd_size_type sz;
11809
11810 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11811 arelent **reloc_vector = NULL;
11812 long reloc_count;
11813
11814 if (reloc_size < 0)
11815 goto error_return;
11816
11817 reloc_vector = bfd_malloc (reloc_size);
11818 if (reloc_vector == NULL && reloc_size != 0)
11819 goto error_return;
11820
11821 /* read in the section */
11822 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11823 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11824 goto error_return;
11825
11826 reloc_count = bfd_canonicalize_reloc (input_bfd,
11827 input_section,
11828 reloc_vector,
11829 symbols);
11830 if (reloc_count < 0)
11831 goto error_return;
11832
11833 if (reloc_count > 0)
11834 {
11835 arelent **parent;
11836 /* for mips */
11837 int gp_found;
11838 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11839
11840 {
11841 struct bfd_hash_entry *h;
11842 struct bfd_link_hash_entry *lh;
11843 /* Skip all this stuff if we aren't mixing formats. */
11844 if (abfd && input_bfd
11845 && abfd->xvec == input_bfd->xvec)
11846 lh = 0;
11847 else
11848 {
11849 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11850 lh = (struct bfd_link_hash_entry *) h;
11851 }
11852 lookup:
11853 if (lh)
11854 {
11855 switch (lh->type)
11856 {
11857 case bfd_link_hash_undefined:
11858 case bfd_link_hash_undefweak:
11859 case bfd_link_hash_common:
11860 gp_found = 0;
11861 break;
11862 case bfd_link_hash_defined:
11863 case bfd_link_hash_defweak:
11864 gp_found = 1;
11865 gp = lh->u.def.value;
11866 break;
11867 case bfd_link_hash_indirect:
11868 case bfd_link_hash_warning:
11869 lh = lh->u.i.link;
11870 /* @@FIXME ignoring warning for now */
11871 goto lookup;
11872 case bfd_link_hash_new:
11873 default:
11874 abort ();
11875 }
11876 }
11877 else
11878 gp_found = 0;
11879 }
11880 /* end mips */
11881 for (parent = reloc_vector; *parent != NULL; parent++)
11882 {
11883 char *error_message = NULL;
11884 bfd_reloc_status_type r;
11885
11886 /* Specific to MIPS: Deal with relocation types that require
11887 knowing the gp of the output bfd. */
11888 asymbol *sym = *(*parent)->sym_ptr_ptr;
11889
11890 /* If we've managed to find the gp and have a special
11891 function for the relocation then go ahead, else default
11892 to the generic handling. */
11893 if (gp_found
11894 && (*parent)->howto->special_function
11895 == _bfd_mips_elf32_gprel16_reloc)
11896 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11897 input_section, relocatable,
11898 data, gp);
11899 else
11900 r = bfd_perform_relocation (input_bfd, *parent, data,
11901 input_section,
11902 relocatable ? abfd : NULL,
11903 &error_message);
11904
11905 if (relocatable)
11906 {
11907 asection *os = input_section->output_section;
11908
11909 /* A partial link, so keep the relocs */
11910 os->orelocation[os->reloc_count] = *parent;
11911 os->reloc_count++;
11912 }
11913
11914 if (r != bfd_reloc_ok)
11915 {
11916 switch (r)
11917 {
11918 case bfd_reloc_undefined:
11919 if (!((*link_info->callbacks->undefined_symbol)
11920 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11921 input_bfd, input_section, (*parent)->address, TRUE)))
11922 goto error_return;
11923 break;
11924 case bfd_reloc_dangerous:
11925 BFD_ASSERT (error_message != NULL);
11926 if (!((*link_info->callbacks->reloc_dangerous)
11927 (link_info, error_message, input_bfd, input_section,
11928 (*parent)->address)))
11929 goto error_return;
11930 break;
11931 case bfd_reloc_overflow:
11932 if (!((*link_info->callbacks->reloc_overflow)
11933 (link_info, NULL,
11934 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11935 (*parent)->howto->name, (*parent)->addend,
11936 input_bfd, input_section, (*parent)->address)))
11937 goto error_return;
11938 break;
11939 case bfd_reloc_outofrange:
11940 default:
11941 abort ();
11942 break;
11943 }
11944
11945 }
11946 }
11947 }
11948 if (reloc_vector != NULL)
11949 free (reloc_vector);
11950 return data;
11951
11952 error_return:
11953 if (reloc_vector != NULL)
11954 free (reloc_vector);
11955 return NULL;
11956 }
11957 \f
11958 static bfd_boolean
11959 mips_elf_relax_delete_bytes (bfd *abfd,
11960 asection *sec, bfd_vma addr, int count)
11961 {
11962 Elf_Internal_Shdr *symtab_hdr;
11963 unsigned int sec_shndx;
11964 bfd_byte *contents;
11965 Elf_Internal_Rela *irel, *irelend;
11966 Elf_Internal_Sym *isym;
11967 Elf_Internal_Sym *isymend;
11968 struct elf_link_hash_entry **sym_hashes;
11969 struct elf_link_hash_entry **end_hashes;
11970 struct elf_link_hash_entry **start_hashes;
11971 unsigned int symcount;
11972
11973 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
11974 contents = elf_section_data (sec)->this_hdr.contents;
11975
11976 irel = elf_section_data (sec)->relocs;
11977 irelend = irel + sec->reloc_count;
11978
11979 /* Actually delete the bytes. */
11980 memmove (contents + addr, contents + addr + count,
11981 (size_t) (sec->size - addr - count));
11982 sec->size -= count;
11983
11984 /* Adjust all the relocs. */
11985 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
11986 {
11987 /* Get the new reloc address. */
11988 if (irel->r_offset > addr)
11989 irel->r_offset -= count;
11990 }
11991
11992 BFD_ASSERT (addr % 2 == 0);
11993 BFD_ASSERT (count % 2 == 0);
11994
11995 /* Adjust the local symbols defined in this section. */
11996 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11997 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
11998 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
11999 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
12000 isym->st_value -= count;
12001
12002 /* Now adjust the global symbols defined in this section. */
12003 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12004 - symtab_hdr->sh_info);
12005 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12006 end_hashes = sym_hashes + symcount;
12007
12008 for (; sym_hashes < end_hashes; sym_hashes++)
12009 {
12010 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12011
12012 if ((sym_hash->root.type == bfd_link_hash_defined
12013 || sym_hash->root.type == bfd_link_hash_defweak)
12014 && sym_hash->root.u.def.section == sec)
12015 {
12016 bfd_vma value = sym_hash->root.u.def.value;
12017
12018 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12019 value &= MINUS_TWO;
12020 if (value > addr)
12021 sym_hash->root.u.def.value -= count;
12022 }
12023 }
12024
12025 return TRUE;
12026 }
12027
12028
12029 /* Opcodes needed for microMIPS relaxation as found in
12030 opcodes/micromips-opc.c. */
12031
12032 struct opcode_descriptor {
12033 unsigned long match;
12034 unsigned long mask;
12035 };
12036
12037 /* The $ra register aka $31. */
12038
12039 #define RA 31
12040
12041 /* 32-bit instruction format register fields. */
12042
12043 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12044 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12045
12046 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
12047
12048 #define OP16_VALID_REG(r) \
12049 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12050
12051
12052 /* 32-bit and 16-bit branches. */
12053
12054 static const struct opcode_descriptor b_insns_32[] = {
12055 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12056 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12057 { 0, 0 } /* End marker for find_match(). */
12058 };
12059
12060 static const struct opcode_descriptor bc_insn_32 =
12061 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12062
12063 static const struct opcode_descriptor bz_insn_32 =
12064 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12065
12066 static const struct opcode_descriptor bzal_insn_32 =
12067 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12068
12069 static const struct opcode_descriptor beq_insn_32 =
12070 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12071
12072 static const struct opcode_descriptor b_insn_16 =
12073 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12074
12075 static const struct opcode_descriptor bz_insn_16 =
12076 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
12077
12078
12079 /* 32-bit and 16-bit branch EQ and NE zero. */
12080
12081 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12082 eq and second the ne. This convention is used when replacing a
12083 32-bit BEQ/BNE with the 16-bit version. */
12084
12085 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12086
12087 static const struct opcode_descriptor bz_rs_insns_32[] = {
12088 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12089 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12090 { 0, 0 } /* End marker for find_match(). */
12091 };
12092
12093 static const struct opcode_descriptor bz_rt_insns_32[] = {
12094 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12095 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12096 { 0, 0 } /* End marker for find_match(). */
12097 };
12098
12099 static const struct opcode_descriptor bzc_insns_32[] = {
12100 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12101 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12102 { 0, 0 } /* End marker for find_match(). */
12103 };
12104
12105 static const struct opcode_descriptor bz_insns_16[] = {
12106 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12107 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12108 { 0, 0 } /* End marker for find_match(). */
12109 };
12110
12111 /* Switch between a 5-bit register index and its 3-bit shorthand. */
12112
12113 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12114 #define BZ16_REG_FIELD(r) \
12115 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12116
12117
12118 /* 32-bit instructions with a delay slot. */
12119
12120 static const struct opcode_descriptor jal_insn_32_bd16 =
12121 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12122
12123 static const struct opcode_descriptor jal_insn_32_bd32 =
12124 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12125
12126 static const struct opcode_descriptor jal_x_insn_32_bd32 =
12127 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12128
12129 static const struct opcode_descriptor j_insn_32 =
12130 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12131
12132 static const struct opcode_descriptor jalr_insn_32 =
12133 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12134
12135 /* This table can be compacted, because no opcode replacement is made. */
12136
12137 static const struct opcode_descriptor ds_insns_32_bd16[] = {
12138 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12139
12140 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12141 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12142
12143 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12144 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12145 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12146 { 0, 0 } /* End marker for find_match(). */
12147 };
12148
12149 /* This table can be compacted, because no opcode replacement is made. */
12150
12151 static const struct opcode_descriptor ds_insns_32_bd32[] = {
12152 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12153
12154 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12155 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12156 { 0, 0 } /* End marker for find_match(). */
12157 };
12158
12159
12160 /* 16-bit instructions with a delay slot. */
12161
12162 static const struct opcode_descriptor jalr_insn_16_bd16 =
12163 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12164
12165 static const struct opcode_descriptor jalr_insn_16_bd32 =
12166 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12167
12168 static const struct opcode_descriptor jr_insn_16 =
12169 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12170
12171 #define JR16_REG(opcode) ((opcode) & 0x1f)
12172
12173 /* This table can be compacted, because no opcode replacement is made. */
12174
12175 static const struct opcode_descriptor ds_insns_16_bd16[] = {
12176 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12177
12178 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12179 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12180 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12181 { 0, 0 } /* End marker for find_match(). */
12182 };
12183
12184
12185 /* LUI instruction. */
12186
12187 static const struct opcode_descriptor lui_insn =
12188 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12189
12190
12191 /* ADDIU instruction. */
12192
12193 static const struct opcode_descriptor addiu_insn =
12194 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12195
12196 static const struct opcode_descriptor addiupc_insn =
12197 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12198
12199 #define ADDIUPC_REG_FIELD(r) \
12200 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12201
12202
12203 /* Relaxable instructions in a JAL delay slot: MOVE. */
12204
12205 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12206 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12207 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12208 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12209
12210 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12211 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12212
12213 static const struct opcode_descriptor move_insns_32[] = {
12214 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12215 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12216 { 0, 0 } /* End marker for find_match(). */
12217 };
12218
12219 static const struct opcode_descriptor move_insn_16 =
12220 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12221
12222
12223 /* NOP instructions. */
12224
12225 static const struct opcode_descriptor nop_insn_32 =
12226 { /* "nop", "", */ 0x00000000, 0xffffffff };
12227
12228 static const struct opcode_descriptor nop_insn_16 =
12229 { /* "nop", "", */ 0x0c00, 0xffff };
12230
12231
12232 /* Instruction match support. */
12233
12234 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12235
12236 static int
12237 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12238 {
12239 unsigned long indx;
12240
12241 for (indx = 0; insn[indx].mask != 0; indx++)
12242 if (MATCH (opcode, insn[indx]))
12243 return indx;
12244
12245 return -1;
12246 }
12247
12248
12249 /* Branch and delay slot decoding support. */
12250
12251 /* If PTR points to what *might* be a 16-bit branch or jump, then
12252 return the minimum length of its delay slot, otherwise return 0.
12253 Non-zero results are not definitive as we might be checking against
12254 the second half of another instruction. */
12255
12256 static int
12257 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12258 {
12259 unsigned long opcode;
12260 int bdsize;
12261
12262 opcode = bfd_get_16 (abfd, ptr);
12263 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12264 /* 16-bit branch/jump with a 32-bit delay slot. */
12265 bdsize = 4;
12266 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12267 || find_match (opcode, ds_insns_16_bd16) >= 0)
12268 /* 16-bit branch/jump with a 16-bit delay slot. */
12269 bdsize = 2;
12270 else
12271 /* No delay slot. */
12272 bdsize = 0;
12273
12274 return bdsize;
12275 }
12276
12277 /* If PTR points to what *might* be a 32-bit branch or jump, then
12278 return the minimum length of its delay slot, otherwise return 0.
12279 Non-zero results are not definitive as we might be checking against
12280 the second half of another instruction. */
12281
12282 static int
12283 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12284 {
12285 unsigned long opcode;
12286 int bdsize;
12287
12288 opcode = bfd_get_micromips_32 (abfd, ptr);
12289 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12290 /* 32-bit branch/jump with a 32-bit delay slot. */
12291 bdsize = 4;
12292 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12293 /* 32-bit branch/jump with a 16-bit delay slot. */
12294 bdsize = 2;
12295 else
12296 /* No delay slot. */
12297 bdsize = 0;
12298
12299 return bdsize;
12300 }
12301
12302 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12303 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12304
12305 static bfd_boolean
12306 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12307 {
12308 unsigned long opcode;
12309
12310 opcode = bfd_get_16 (abfd, ptr);
12311 if (MATCH (opcode, b_insn_16)
12312 /* B16 */
12313 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12314 /* JR16 */
12315 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12316 /* BEQZ16, BNEZ16 */
12317 || (MATCH (opcode, jalr_insn_16_bd32)
12318 /* JALR16 */
12319 && reg != JR16_REG (opcode) && reg != RA))
12320 return TRUE;
12321
12322 return FALSE;
12323 }
12324
12325 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12326 then return TRUE, otherwise FALSE. */
12327
12328 static bfd_boolean
12329 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12330 {
12331 unsigned long opcode;
12332
12333 opcode = bfd_get_micromips_32 (abfd, ptr);
12334 if (MATCH (opcode, j_insn_32)
12335 /* J */
12336 || MATCH (opcode, bc_insn_32)
12337 /* BC1F, BC1T, BC2F, BC2T */
12338 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12339 /* JAL, JALX */
12340 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12341 /* BGEZ, BGTZ, BLEZ, BLTZ */
12342 || (MATCH (opcode, bzal_insn_32)
12343 /* BGEZAL, BLTZAL */
12344 && reg != OP32_SREG (opcode) && reg != RA)
12345 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12346 /* JALR, JALR.HB, BEQ, BNE */
12347 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12348 return TRUE;
12349
12350 return FALSE;
12351 }
12352
12353 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12354 IRELEND) at OFFSET indicate that there must be a compact branch there,
12355 then return TRUE, otherwise FALSE. */
12356
12357 static bfd_boolean
12358 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12359 const Elf_Internal_Rela *internal_relocs,
12360 const Elf_Internal_Rela *irelend)
12361 {
12362 const Elf_Internal_Rela *irel;
12363 unsigned long opcode;
12364
12365 opcode = bfd_get_micromips_32 (abfd, ptr);
12366 if (find_match (opcode, bzc_insns_32) < 0)
12367 return FALSE;
12368
12369 for (irel = internal_relocs; irel < irelend; irel++)
12370 if (irel->r_offset == offset
12371 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12372 return TRUE;
12373
12374 return FALSE;
12375 }
12376
12377 /* Bitsize checking. */
12378 #define IS_BITSIZE(val, N) \
12379 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12380 - (1ULL << ((N) - 1))) == (val))
12381
12382 \f
12383 bfd_boolean
12384 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12385 struct bfd_link_info *link_info,
12386 bfd_boolean *again)
12387 {
12388 Elf_Internal_Shdr *symtab_hdr;
12389 Elf_Internal_Rela *internal_relocs;
12390 Elf_Internal_Rela *irel, *irelend;
12391 bfd_byte *contents = NULL;
12392 Elf_Internal_Sym *isymbuf = NULL;
12393
12394 /* Assume nothing changes. */
12395 *again = FALSE;
12396
12397 /* We don't have to do anything for a relocatable link, if
12398 this section does not have relocs, or if this is not a
12399 code section. */
12400
12401 if (link_info->relocatable
12402 || (sec->flags & SEC_RELOC) == 0
12403 || sec->reloc_count == 0
12404 || (sec->flags & SEC_CODE) == 0)
12405 return TRUE;
12406
12407 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12408
12409 /* Get a copy of the native relocations. */
12410 internal_relocs = (_bfd_elf_link_read_relocs
12411 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
12412 link_info->keep_memory));
12413 if (internal_relocs == NULL)
12414 goto error_return;
12415
12416 /* Walk through them looking for relaxing opportunities. */
12417 irelend = internal_relocs + sec->reloc_count;
12418 for (irel = internal_relocs; irel < irelend; irel++)
12419 {
12420 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12421 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12422 bfd_boolean target_is_micromips_code_p;
12423 unsigned long opcode;
12424 bfd_vma symval;
12425 bfd_vma pcrval;
12426 bfd_byte *ptr;
12427 int fndopc;
12428
12429 /* The number of bytes to delete for relaxation and from where
12430 to delete these bytes starting at irel->r_offset. */
12431 int delcnt = 0;
12432 int deloff = 0;
12433
12434 /* If this isn't something that can be relaxed, then ignore
12435 this reloc. */
12436 if (r_type != R_MICROMIPS_HI16
12437 && r_type != R_MICROMIPS_PC16_S1
12438 && r_type != R_MICROMIPS_26_S1)
12439 continue;
12440
12441 /* Get the section contents if we haven't done so already. */
12442 if (contents == NULL)
12443 {
12444 /* Get cached copy if it exists. */
12445 if (elf_section_data (sec)->this_hdr.contents != NULL)
12446 contents = elf_section_data (sec)->this_hdr.contents;
12447 /* Go get them off disk. */
12448 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12449 goto error_return;
12450 }
12451 ptr = contents + irel->r_offset;
12452
12453 /* Read this BFD's local symbols if we haven't done so already. */
12454 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12455 {
12456 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12457 if (isymbuf == NULL)
12458 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12459 symtab_hdr->sh_info, 0,
12460 NULL, NULL, NULL);
12461 if (isymbuf == NULL)
12462 goto error_return;
12463 }
12464
12465 /* Get the value of the symbol referred to by the reloc. */
12466 if (r_symndx < symtab_hdr->sh_info)
12467 {
12468 /* A local symbol. */
12469 Elf_Internal_Sym *isym;
12470 asection *sym_sec;
12471
12472 isym = isymbuf + r_symndx;
12473 if (isym->st_shndx == SHN_UNDEF)
12474 sym_sec = bfd_und_section_ptr;
12475 else if (isym->st_shndx == SHN_ABS)
12476 sym_sec = bfd_abs_section_ptr;
12477 else if (isym->st_shndx == SHN_COMMON)
12478 sym_sec = bfd_com_section_ptr;
12479 else
12480 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12481 symval = (isym->st_value
12482 + sym_sec->output_section->vma
12483 + sym_sec->output_offset);
12484 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12485 }
12486 else
12487 {
12488 unsigned long indx;
12489 struct elf_link_hash_entry *h;
12490
12491 /* An external symbol. */
12492 indx = r_symndx - symtab_hdr->sh_info;
12493 h = elf_sym_hashes (abfd)[indx];
12494 BFD_ASSERT (h != NULL);
12495
12496 if (h->root.type != bfd_link_hash_defined
12497 && h->root.type != bfd_link_hash_defweak)
12498 /* This appears to be a reference to an undefined
12499 symbol. Just ignore it -- it will be caught by the
12500 regular reloc processing. */
12501 continue;
12502
12503 symval = (h->root.u.def.value
12504 + h->root.u.def.section->output_section->vma
12505 + h->root.u.def.section->output_offset);
12506 target_is_micromips_code_p = (!h->needs_plt
12507 && ELF_ST_IS_MICROMIPS (h->other));
12508 }
12509
12510
12511 /* For simplicity of coding, we are going to modify the
12512 section contents, the section relocs, and the BFD symbol
12513 table. We must tell the rest of the code not to free up this
12514 information. It would be possible to instead create a table
12515 of changes which have to be made, as is done in coff-mips.c;
12516 that would be more work, but would require less memory when
12517 the linker is run. */
12518
12519 /* Only 32-bit instructions relaxed. */
12520 if (irel->r_offset + 4 > sec->size)
12521 continue;
12522
12523 opcode = bfd_get_micromips_32 (abfd, ptr);
12524
12525 /* This is the pc-relative distance from the instruction the
12526 relocation is applied to, to the symbol referred. */
12527 pcrval = (symval
12528 - (sec->output_section->vma + sec->output_offset)
12529 - irel->r_offset);
12530
12531 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12532 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12533 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12534
12535 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12536
12537 where pcrval has first to be adjusted to apply against the LO16
12538 location (we make the adjustment later on, when we have figured
12539 out the offset). */
12540 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12541 {
12542 bfd_boolean bzc = FALSE;
12543 unsigned long nextopc;
12544 unsigned long reg;
12545 bfd_vma offset;
12546
12547 /* Give up if the previous reloc was a HI16 against this symbol
12548 too. */
12549 if (irel > internal_relocs
12550 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12551 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12552 continue;
12553
12554 /* Or if the next reloc is not a LO16 against this symbol. */
12555 if (irel + 1 >= irelend
12556 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12557 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12558 continue;
12559
12560 /* Or if the second next reloc is a LO16 against this symbol too. */
12561 if (irel + 2 >= irelend
12562 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12563 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12564 continue;
12565
12566 /* See if the LUI instruction *might* be in a branch delay slot.
12567 We check whether what looks like a 16-bit branch or jump is
12568 actually an immediate argument to a compact branch, and let
12569 it through if so. */
12570 if (irel->r_offset >= 2
12571 && check_br16_dslot (abfd, ptr - 2)
12572 && !(irel->r_offset >= 4
12573 && (bzc = check_relocated_bzc (abfd,
12574 ptr - 4, irel->r_offset - 4,
12575 internal_relocs, irelend))))
12576 continue;
12577 if (irel->r_offset >= 4
12578 && !bzc
12579 && check_br32_dslot (abfd, ptr - 4))
12580 continue;
12581
12582 reg = OP32_SREG (opcode);
12583
12584 /* We only relax adjacent instructions or ones separated with
12585 a branch or jump that has a delay slot. The branch or jump
12586 must not fiddle with the register used to hold the address.
12587 Subtract 4 for the LUI itself. */
12588 offset = irel[1].r_offset - irel[0].r_offset;
12589 switch (offset - 4)
12590 {
12591 case 0:
12592 break;
12593 case 2:
12594 if (check_br16 (abfd, ptr + 4, reg))
12595 break;
12596 continue;
12597 case 4:
12598 if (check_br32 (abfd, ptr + 4, reg))
12599 break;
12600 continue;
12601 default:
12602 continue;
12603 }
12604
12605 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
12606
12607 /* Give up unless the same register is used with both
12608 relocations. */
12609 if (OP32_SREG (nextopc) != reg)
12610 continue;
12611
12612 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12613 and rounding up to take masking of the two LSBs into account. */
12614 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12615
12616 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12617 if (IS_BITSIZE (symval, 16))
12618 {
12619 /* Fix the relocation's type. */
12620 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12621
12622 /* Instructions using R_MICROMIPS_LO16 have the base or
12623 source register in bits 20:16. This register becomes $0
12624 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12625 nextopc &= ~0x001f0000;
12626 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12627 contents + irel[1].r_offset);
12628 }
12629
12630 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12631 We add 4 to take LUI deletion into account while checking
12632 the PC-relative distance. */
12633 else if (symval % 4 == 0
12634 && IS_BITSIZE (pcrval + 4, 25)
12635 && MATCH (nextopc, addiu_insn)
12636 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12637 && OP16_VALID_REG (OP32_TREG (nextopc)))
12638 {
12639 /* Fix the relocation's type. */
12640 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12641
12642 /* Replace ADDIU with the ADDIUPC version. */
12643 nextopc = (addiupc_insn.match
12644 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12645
12646 bfd_put_micromips_32 (abfd, nextopc,
12647 contents + irel[1].r_offset);
12648 }
12649
12650 /* Can't do anything, give up, sigh... */
12651 else
12652 continue;
12653
12654 /* Fix the relocation's type. */
12655 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12656
12657 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12658 delcnt = 4;
12659 deloff = 0;
12660 }
12661
12662 /* Compact branch relaxation -- due to the multitude of macros
12663 employed by the compiler/assembler, compact branches are not
12664 always generated. Obviously, this can/will be fixed elsewhere,
12665 but there is no drawback in double checking it here. */
12666 else if (r_type == R_MICROMIPS_PC16_S1
12667 && irel->r_offset + 5 < sec->size
12668 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12669 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
12670 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
12671 {
12672 unsigned long reg;
12673
12674 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12675
12676 /* Replace BEQZ/BNEZ with the compact version. */
12677 opcode = (bzc_insns_32[fndopc].match
12678 | BZC32_REG_FIELD (reg)
12679 | (opcode & 0xffff)); /* Addend value. */
12680
12681 bfd_put_micromips_32 (abfd, opcode, ptr);
12682
12683 /* Delete the 16-bit delay slot NOP: two bytes from
12684 irel->offset + 4. */
12685 delcnt = 2;
12686 deloff = 4;
12687 }
12688
12689 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12690 to check the distance from the next instruction, so subtract 2. */
12691 else if (r_type == R_MICROMIPS_PC16_S1
12692 && IS_BITSIZE (pcrval - 2, 11)
12693 && find_match (opcode, b_insns_32) >= 0)
12694 {
12695 /* Fix the relocation's type. */
12696 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12697
12698 /* Replace the 32-bit opcode with a 16-bit opcode. */
12699 bfd_put_16 (abfd,
12700 (b_insn_16.match
12701 | (opcode & 0x3ff)), /* Addend value. */
12702 ptr);
12703
12704 /* Delete 2 bytes from irel->r_offset + 2. */
12705 delcnt = 2;
12706 deloff = 2;
12707 }
12708
12709 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12710 to check the distance from the next instruction, so subtract 2. */
12711 else if (r_type == R_MICROMIPS_PC16_S1
12712 && IS_BITSIZE (pcrval - 2, 8)
12713 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12714 && OP16_VALID_REG (OP32_SREG (opcode)))
12715 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12716 && OP16_VALID_REG (OP32_TREG (opcode)))))
12717 {
12718 unsigned long reg;
12719
12720 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12721
12722 /* Fix the relocation's type. */
12723 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12724
12725 /* Replace the 32-bit opcode with a 16-bit opcode. */
12726 bfd_put_16 (abfd,
12727 (bz_insns_16[fndopc].match
12728 | BZ16_REG_FIELD (reg)
12729 | (opcode & 0x7f)), /* Addend value. */
12730 ptr);
12731
12732 /* Delete 2 bytes from irel->r_offset + 2. */
12733 delcnt = 2;
12734 deloff = 2;
12735 }
12736
12737 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12738 else if (r_type == R_MICROMIPS_26_S1
12739 && target_is_micromips_code_p
12740 && irel->r_offset + 7 < sec->size
12741 && MATCH (opcode, jal_insn_32_bd32))
12742 {
12743 unsigned long n32opc;
12744 bfd_boolean relaxed = FALSE;
12745
12746 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
12747
12748 if (MATCH (n32opc, nop_insn_32))
12749 {
12750 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
12751 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
12752
12753 relaxed = TRUE;
12754 }
12755 else if (find_match (n32opc, move_insns_32) >= 0)
12756 {
12757 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12758 bfd_put_16 (abfd,
12759 (move_insn_16.match
12760 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12761 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
12762 ptr + 4);
12763
12764 relaxed = TRUE;
12765 }
12766 /* Other 32-bit instructions relaxable to 16-bit
12767 instructions will be handled here later. */
12768
12769 if (relaxed)
12770 {
12771 /* JAL with 32-bit delay slot that is changed to a JALS
12772 with 16-bit delay slot. */
12773 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
12774
12775 /* Delete 2 bytes from irel->r_offset + 6. */
12776 delcnt = 2;
12777 deloff = 6;
12778 }
12779 }
12780
12781 if (delcnt != 0)
12782 {
12783 /* Note that we've changed the relocs, section contents, etc. */
12784 elf_section_data (sec)->relocs = internal_relocs;
12785 elf_section_data (sec)->this_hdr.contents = contents;
12786 symtab_hdr->contents = (unsigned char *) isymbuf;
12787
12788 /* Delete bytes depending on the delcnt and deloff. */
12789 if (!mips_elf_relax_delete_bytes (abfd, sec,
12790 irel->r_offset + deloff, delcnt))
12791 goto error_return;
12792
12793 /* That will change things, so we should relax again.
12794 Note that this is not required, and it may be slow. */
12795 *again = TRUE;
12796 }
12797 }
12798
12799 if (isymbuf != NULL
12800 && symtab_hdr->contents != (unsigned char *) isymbuf)
12801 {
12802 if (! link_info->keep_memory)
12803 free (isymbuf);
12804 else
12805 {
12806 /* Cache the symbols for elf_link_input_bfd. */
12807 symtab_hdr->contents = (unsigned char *) isymbuf;
12808 }
12809 }
12810
12811 if (contents != NULL
12812 && elf_section_data (sec)->this_hdr.contents != contents)
12813 {
12814 if (! link_info->keep_memory)
12815 free (contents);
12816 else
12817 {
12818 /* Cache the section contents for elf_link_input_bfd. */
12819 elf_section_data (sec)->this_hdr.contents = contents;
12820 }
12821 }
12822
12823 if (internal_relocs != NULL
12824 && elf_section_data (sec)->relocs != internal_relocs)
12825 free (internal_relocs);
12826
12827 return TRUE;
12828
12829 error_return:
12830 if (isymbuf != NULL
12831 && symtab_hdr->contents != (unsigned char *) isymbuf)
12832 free (isymbuf);
12833 if (contents != NULL
12834 && elf_section_data (sec)->this_hdr.contents != contents)
12835 free (contents);
12836 if (internal_relocs != NULL
12837 && elf_section_data (sec)->relocs != internal_relocs)
12838 free (internal_relocs);
12839
12840 return FALSE;
12841 }
12842 \f
12843 /* Create a MIPS ELF linker hash table. */
12844
12845 struct bfd_link_hash_table *
12846 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
12847 {
12848 struct mips_elf_link_hash_table *ret;
12849 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12850
12851 ret = bfd_zmalloc (amt);
12852 if (ret == NULL)
12853 return NULL;
12854
12855 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12856 mips_elf_link_hash_newfunc,
12857 sizeof (struct mips_elf_link_hash_entry),
12858 MIPS_ELF_DATA))
12859 {
12860 free (ret);
12861 return NULL;
12862 }
12863
12864 return &ret->root.root;
12865 }
12866
12867 /* Likewise, but indicate that the target is VxWorks. */
12868
12869 struct bfd_link_hash_table *
12870 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12871 {
12872 struct bfd_link_hash_table *ret;
12873
12874 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12875 if (ret)
12876 {
12877 struct mips_elf_link_hash_table *htab;
12878
12879 htab = (struct mips_elf_link_hash_table *) ret;
12880 htab->use_plts_and_copy_relocs = TRUE;
12881 htab->is_vxworks = TRUE;
12882 }
12883 return ret;
12884 }
12885
12886 /* A function that the linker calls if we are allowed to use PLTs
12887 and copy relocs. */
12888
12889 void
12890 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12891 {
12892 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12893 }
12894 \f
12895 /* We need to use a special link routine to handle the .reginfo and
12896 the .mdebug sections. We need to merge all instances of these
12897 sections together, not write them all out sequentially. */
12898
12899 bfd_boolean
12900 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12901 {
12902 asection *o;
12903 struct bfd_link_order *p;
12904 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
12905 asection *rtproc_sec;
12906 Elf32_RegInfo reginfo;
12907 struct ecoff_debug_info debug;
12908 struct mips_htab_traverse_info hti;
12909 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12910 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
12911 HDRR *symhdr = &debug.symbolic_header;
12912 void *mdebug_handle = NULL;
12913 asection *s;
12914 EXTR esym;
12915 unsigned int i;
12916 bfd_size_type amt;
12917 struct mips_elf_link_hash_table *htab;
12918
12919 static const char * const secname[] =
12920 {
12921 ".text", ".init", ".fini", ".data",
12922 ".rodata", ".sdata", ".sbss", ".bss"
12923 };
12924 static const int sc[] =
12925 {
12926 scText, scInit, scFini, scData,
12927 scRData, scSData, scSBss, scBss
12928 };
12929
12930 /* Sort the dynamic symbols so that those with GOT entries come after
12931 those without. */
12932 htab = mips_elf_hash_table (info);
12933 BFD_ASSERT (htab != NULL);
12934
12935 if (!mips_elf_sort_hash_table (abfd, info))
12936 return FALSE;
12937
12938 /* Create any scheduled LA25 stubs. */
12939 hti.info = info;
12940 hti.output_bfd = abfd;
12941 hti.error = FALSE;
12942 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
12943 if (hti.error)
12944 return FALSE;
12945
12946 /* Get a value for the GP register. */
12947 if (elf_gp (abfd) == 0)
12948 {
12949 struct bfd_link_hash_entry *h;
12950
12951 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
12952 if (h != NULL && h->type == bfd_link_hash_defined)
12953 elf_gp (abfd) = (h->u.def.value
12954 + h->u.def.section->output_section->vma
12955 + h->u.def.section->output_offset);
12956 else if (htab->is_vxworks
12957 && (h = bfd_link_hash_lookup (info->hash,
12958 "_GLOBAL_OFFSET_TABLE_",
12959 FALSE, FALSE, TRUE))
12960 && h->type == bfd_link_hash_defined)
12961 elf_gp (abfd) = (h->u.def.section->output_section->vma
12962 + h->u.def.section->output_offset
12963 + h->u.def.value);
12964 else if (info->relocatable)
12965 {
12966 bfd_vma lo = MINUS_ONE;
12967
12968 /* Find the GP-relative section with the lowest offset. */
12969 for (o = abfd->sections; o != NULL; o = o->next)
12970 if (o->vma < lo
12971 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
12972 lo = o->vma;
12973
12974 /* And calculate GP relative to that. */
12975 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
12976 }
12977 else
12978 {
12979 /* If the relocate_section function needs to do a reloc
12980 involving the GP value, it should make a reloc_dangerous
12981 callback to warn that GP is not defined. */
12982 }
12983 }
12984
12985 /* Go through the sections and collect the .reginfo and .mdebug
12986 information. */
12987 reginfo_sec = NULL;
12988 mdebug_sec = NULL;
12989 gptab_data_sec = NULL;
12990 gptab_bss_sec = NULL;
12991 for (o = abfd->sections; o != NULL; o = o->next)
12992 {
12993 if (strcmp (o->name, ".reginfo") == 0)
12994 {
12995 memset (&reginfo, 0, sizeof reginfo);
12996
12997 /* We have found the .reginfo section in the output file.
12998 Look through all the link_orders comprising it and merge
12999 the information together. */
13000 for (p = o->map_head.link_order; p != NULL; p = p->next)
13001 {
13002 asection *input_section;
13003 bfd *input_bfd;
13004 Elf32_External_RegInfo ext;
13005 Elf32_RegInfo sub;
13006
13007 if (p->type != bfd_indirect_link_order)
13008 {
13009 if (p->type == bfd_data_link_order)
13010 continue;
13011 abort ();
13012 }
13013
13014 input_section = p->u.indirect.section;
13015 input_bfd = input_section->owner;
13016
13017 if (! bfd_get_section_contents (input_bfd, input_section,
13018 &ext, 0, sizeof ext))
13019 return FALSE;
13020
13021 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
13022
13023 reginfo.ri_gprmask |= sub.ri_gprmask;
13024 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13025 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13026 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13027 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13028
13029 /* ri_gp_value is set by the function
13030 mips_elf32_section_processing when the section is
13031 finally written out. */
13032
13033 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13034 elf_link_input_bfd ignores this section. */
13035 input_section->flags &= ~SEC_HAS_CONTENTS;
13036 }
13037
13038 /* Size has been set in _bfd_mips_elf_always_size_sections. */
13039 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
13040
13041 /* Skip this section later on (I don't think this currently
13042 matters, but someday it might). */
13043 o->map_head.link_order = NULL;
13044
13045 reginfo_sec = o;
13046 }
13047
13048 if (strcmp (o->name, ".mdebug") == 0)
13049 {
13050 struct extsym_info einfo;
13051 bfd_vma last;
13052
13053 /* We have found the .mdebug section in the output file.
13054 Look through all the link_orders comprising it and merge
13055 the information together. */
13056 symhdr->magic = swap->sym_magic;
13057 /* FIXME: What should the version stamp be? */
13058 symhdr->vstamp = 0;
13059 symhdr->ilineMax = 0;
13060 symhdr->cbLine = 0;
13061 symhdr->idnMax = 0;
13062 symhdr->ipdMax = 0;
13063 symhdr->isymMax = 0;
13064 symhdr->ioptMax = 0;
13065 symhdr->iauxMax = 0;
13066 symhdr->issMax = 0;
13067 symhdr->issExtMax = 0;
13068 symhdr->ifdMax = 0;
13069 symhdr->crfd = 0;
13070 symhdr->iextMax = 0;
13071
13072 /* We accumulate the debugging information itself in the
13073 debug_info structure. */
13074 debug.line = NULL;
13075 debug.external_dnr = NULL;
13076 debug.external_pdr = NULL;
13077 debug.external_sym = NULL;
13078 debug.external_opt = NULL;
13079 debug.external_aux = NULL;
13080 debug.ss = NULL;
13081 debug.ssext = debug.ssext_end = NULL;
13082 debug.external_fdr = NULL;
13083 debug.external_rfd = NULL;
13084 debug.external_ext = debug.external_ext_end = NULL;
13085
13086 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
13087 if (mdebug_handle == NULL)
13088 return FALSE;
13089
13090 esym.jmptbl = 0;
13091 esym.cobol_main = 0;
13092 esym.weakext = 0;
13093 esym.reserved = 0;
13094 esym.ifd = ifdNil;
13095 esym.asym.iss = issNil;
13096 esym.asym.st = stLocal;
13097 esym.asym.reserved = 0;
13098 esym.asym.index = indexNil;
13099 last = 0;
13100 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13101 {
13102 esym.asym.sc = sc[i];
13103 s = bfd_get_section_by_name (abfd, secname[i]);
13104 if (s != NULL)
13105 {
13106 esym.asym.value = s->vma;
13107 last = s->vma + s->size;
13108 }
13109 else
13110 esym.asym.value = last;
13111 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13112 secname[i], &esym))
13113 return FALSE;
13114 }
13115
13116 for (p = o->map_head.link_order; p != NULL; p = p->next)
13117 {
13118 asection *input_section;
13119 bfd *input_bfd;
13120 const struct ecoff_debug_swap *input_swap;
13121 struct ecoff_debug_info input_debug;
13122 char *eraw_src;
13123 char *eraw_end;
13124
13125 if (p->type != bfd_indirect_link_order)
13126 {
13127 if (p->type == bfd_data_link_order)
13128 continue;
13129 abort ();
13130 }
13131
13132 input_section = p->u.indirect.section;
13133 input_bfd = input_section->owner;
13134
13135 if (!is_mips_elf (input_bfd))
13136 {
13137 /* I don't know what a non MIPS ELF bfd would be
13138 doing with a .mdebug section, but I don't really
13139 want to deal with it. */
13140 continue;
13141 }
13142
13143 input_swap = (get_elf_backend_data (input_bfd)
13144 ->elf_backend_ecoff_debug_swap);
13145
13146 BFD_ASSERT (p->size == input_section->size);
13147
13148 /* The ECOFF linking code expects that we have already
13149 read in the debugging information and set up an
13150 ecoff_debug_info structure, so we do that now. */
13151 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13152 &input_debug))
13153 return FALSE;
13154
13155 if (! (bfd_ecoff_debug_accumulate
13156 (mdebug_handle, abfd, &debug, swap, input_bfd,
13157 &input_debug, input_swap, info)))
13158 return FALSE;
13159
13160 /* Loop through the external symbols. For each one with
13161 interesting information, try to find the symbol in
13162 the linker global hash table and save the information
13163 for the output external symbols. */
13164 eraw_src = input_debug.external_ext;
13165 eraw_end = (eraw_src
13166 + (input_debug.symbolic_header.iextMax
13167 * input_swap->external_ext_size));
13168 for (;
13169 eraw_src < eraw_end;
13170 eraw_src += input_swap->external_ext_size)
13171 {
13172 EXTR ext;
13173 const char *name;
13174 struct mips_elf_link_hash_entry *h;
13175
13176 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13177 if (ext.asym.sc == scNil
13178 || ext.asym.sc == scUndefined
13179 || ext.asym.sc == scSUndefined)
13180 continue;
13181
13182 name = input_debug.ssext + ext.asym.iss;
13183 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13184 name, FALSE, FALSE, TRUE);
13185 if (h == NULL || h->esym.ifd != -2)
13186 continue;
13187
13188 if (ext.ifd != -1)
13189 {
13190 BFD_ASSERT (ext.ifd
13191 < input_debug.symbolic_header.ifdMax);
13192 ext.ifd = input_debug.ifdmap[ext.ifd];
13193 }
13194
13195 h->esym = ext;
13196 }
13197
13198 /* Free up the information we just read. */
13199 free (input_debug.line);
13200 free (input_debug.external_dnr);
13201 free (input_debug.external_pdr);
13202 free (input_debug.external_sym);
13203 free (input_debug.external_opt);
13204 free (input_debug.external_aux);
13205 free (input_debug.ss);
13206 free (input_debug.ssext);
13207 free (input_debug.external_fdr);
13208 free (input_debug.external_rfd);
13209 free (input_debug.external_ext);
13210
13211 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13212 elf_link_input_bfd ignores this section. */
13213 input_section->flags &= ~SEC_HAS_CONTENTS;
13214 }
13215
13216 if (SGI_COMPAT (abfd) && info->shared)
13217 {
13218 /* Create .rtproc section. */
13219 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
13220 if (rtproc_sec == NULL)
13221 {
13222 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13223 | SEC_LINKER_CREATED | SEC_READONLY);
13224
13225 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
13226 ".rtproc",
13227 flags);
13228 if (rtproc_sec == NULL
13229 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13230 return FALSE;
13231 }
13232
13233 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13234 info, rtproc_sec,
13235 &debug))
13236 return FALSE;
13237 }
13238
13239 /* Build the external symbol information. */
13240 einfo.abfd = abfd;
13241 einfo.info = info;
13242 einfo.debug = &debug;
13243 einfo.swap = swap;
13244 einfo.failed = FALSE;
13245 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13246 mips_elf_output_extsym, &einfo);
13247 if (einfo.failed)
13248 return FALSE;
13249
13250 /* Set the size of the .mdebug section. */
13251 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13252
13253 /* Skip this section later on (I don't think this currently
13254 matters, but someday it might). */
13255 o->map_head.link_order = NULL;
13256
13257 mdebug_sec = o;
13258 }
13259
13260 if (CONST_STRNEQ (o->name, ".gptab."))
13261 {
13262 const char *subname;
13263 unsigned int c;
13264 Elf32_gptab *tab;
13265 Elf32_External_gptab *ext_tab;
13266 unsigned int j;
13267
13268 /* The .gptab.sdata and .gptab.sbss sections hold
13269 information describing how the small data area would
13270 change depending upon the -G switch. These sections
13271 not used in executables files. */
13272 if (! info->relocatable)
13273 {
13274 for (p = o->map_head.link_order; p != NULL; p = p->next)
13275 {
13276 asection *input_section;
13277
13278 if (p->type != bfd_indirect_link_order)
13279 {
13280 if (p->type == bfd_data_link_order)
13281 continue;
13282 abort ();
13283 }
13284
13285 input_section = p->u.indirect.section;
13286
13287 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13288 elf_link_input_bfd ignores this section. */
13289 input_section->flags &= ~SEC_HAS_CONTENTS;
13290 }
13291
13292 /* Skip this section later on (I don't think this
13293 currently matters, but someday it might). */
13294 o->map_head.link_order = NULL;
13295
13296 /* Really remove the section. */
13297 bfd_section_list_remove (abfd, o);
13298 --abfd->section_count;
13299
13300 continue;
13301 }
13302
13303 /* There is one gptab for initialized data, and one for
13304 uninitialized data. */
13305 if (strcmp (o->name, ".gptab.sdata") == 0)
13306 gptab_data_sec = o;
13307 else if (strcmp (o->name, ".gptab.sbss") == 0)
13308 gptab_bss_sec = o;
13309 else
13310 {
13311 (*_bfd_error_handler)
13312 (_("%s: illegal section name `%s'"),
13313 bfd_get_filename (abfd), o->name);
13314 bfd_set_error (bfd_error_nonrepresentable_section);
13315 return FALSE;
13316 }
13317
13318 /* The linker script always combines .gptab.data and
13319 .gptab.sdata into .gptab.sdata, and likewise for
13320 .gptab.bss and .gptab.sbss. It is possible that there is
13321 no .sdata or .sbss section in the output file, in which
13322 case we must change the name of the output section. */
13323 subname = o->name + sizeof ".gptab" - 1;
13324 if (bfd_get_section_by_name (abfd, subname) == NULL)
13325 {
13326 if (o == gptab_data_sec)
13327 o->name = ".gptab.data";
13328 else
13329 o->name = ".gptab.bss";
13330 subname = o->name + sizeof ".gptab" - 1;
13331 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13332 }
13333
13334 /* Set up the first entry. */
13335 c = 1;
13336 amt = c * sizeof (Elf32_gptab);
13337 tab = bfd_malloc (amt);
13338 if (tab == NULL)
13339 return FALSE;
13340 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13341 tab[0].gt_header.gt_unused = 0;
13342
13343 /* Combine the input sections. */
13344 for (p = o->map_head.link_order; p != NULL; p = p->next)
13345 {
13346 asection *input_section;
13347 bfd *input_bfd;
13348 bfd_size_type size;
13349 unsigned long last;
13350 bfd_size_type gpentry;
13351
13352 if (p->type != bfd_indirect_link_order)
13353 {
13354 if (p->type == bfd_data_link_order)
13355 continue;
13356 abort ();
13357 }
13358
13359 input_section = p->u.indirect.section;
13360 input_bfd = input_section->owner;
13361
13362 /* Combine the gptab entries for this input section one
13363 by one. We know that the input gptab entries are
13364 sorted by ascending -G value. */
13365 size = input_section->size;
13366 last = 0;
13367 for (gpentry = sizeof (Elf32_External_gptab);
13368 gpentry < size;
13369 gpentry += sizeof (Elf32_External_gptab))
13370 {
13371 Elf32_External_gptab ext_gptab;
13372 Elf32_gptab int_gptab;
13373 unsigned long val;
13374 unsigned long add;
13375 bfd_boolean exact;
13376 unsigned int look;
13377
13378 if (! (bfd_get_section_contents
13379 (input_bfd, input_section, &ext_gptab, gpentry,
13380 sizeof (Elf32_External_gptab))))
13381 {
13382 free (tab);
13383 return FALSE;
13384 }
13385
13386 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13387 &int_gptab);
13388 val = int_gptab.gt_entry.gt_g_value;
13389 add = int_gptab.gt_entry.gt_bytes - last;
13390
13391 exact = FALSE;
13392 for (look = 1; look < c; look++)
13393 {
13394 if (tab[look].gt_entry.gt_g_value >= val)
13395 tab[look].gt_entry.gt_bytes += add;
13396
13397 if (tab[look].gt_entry.gt_g_value == val)
13398 exact = TRUE;
13399 }
13400
13401 if (! exact)
13402 {
13403 Elf32_gptab *new_tab;
13404 unsigned int max;
13405
13406 /* We need a new table entry. */
13407 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
13408 new_tab = bfd_realloc (tab, amt);
13409 if (new_tab == NULL)
13410 {
13411 free (tab);
13412 return FALSE;
13413 }
13414 tab = new_tab;
13415 tab[c].gt_entry.gt_g_value = val;
13416 tab[c].gt_entry.gt_bytes = add;
13417
13418 /* Merge in the size for the next smallest -G
13419 value, since that will be implied by this new
13420 value. */
13421 max = 0;
13422 for (look = 1; look < c; look++)
13423 {
13424 if (tab[look].gt_entry.gt_g_value < val
13425 && (max == 0
13426 || (tab[look].gt_entry.gt_g_value
13427 > tab[max].gt_entry.gt_g_value)))
13428 max = look;
13429 }
13430 if (max != 0)
13431 tab[c].gt_entry.gt_bytes +=
13432 tab[max].gt_entry.gt_bytes;
13433
13434 ++c;
13435 }
13436
13437 last = int_gptab.gt_entry.gt_bytes;
13438 }
13439
13440 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13441 elf_link_input_bfd ignores this section. */
13442 input_section->flags &= ~SEC_HAS_CONTENTS;
13443 }
13444
13445 /* The table must be sorted by -G value. */
13446 if (c > 2)
13447 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13448
13449 /* Swap out the table. */
13450 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
13451 ext_tab = bfd_alloc (abfd, amt);
13452 if (ext_tab == NULL)
13453 {
13454 free (tab);
13455 return FALSE;
13456 }
13457
13458 for (j = 0; j < c; j++)
13459 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13460 free (tab);
13461
13462 o->size = c * sizeof (Elf32_External_gptab);
13463 o->contents = (bfd_byte *) ext_tab;
13464
13465 /* Skip this section later on (I don't think this currently
13466 matters, but someday it might). */
13467 o->map_head.link_order = NULL;
13468 }
13469 }
13470
13471 /* Invoke the regular ELF backend linker to do all the work. */
13472 if (!bfd_elf_final_link (abfd, info))
13473 return FALSE;
13474
13475 /* Now write out the computed sections. */
13476
13477 if (reginfo_sec != NULL)
13478 {
13479 Elf32_External_RegInfo ext;
13480
13481 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
13482 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
13483 return FALSE;
13484 }
13485
13486 if (mdebug_sec != NULL)
13487 {
13488 BFD_ASSERT (abfd->output_has_begun);
13489 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13490 swap, info,
13491 mdebug_sec->filepos))
13492 return FALSE;
13493
13494 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13495 }
13496
13497 if (gptab_data_sec != NULL)
13498 {
13499 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13500 gptab_data_sec->contents,
13501 0, gptab_data_sec->size))
13502 return FALSE;
13503 }
13504
13505 if (gptab_bss_sec != NULL)
13506 {
13507 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13508 gptab_bss_sec->contents,
13509 0, gptab_bss_sec->size))
13510 return FALSE;
13511 }
13512
13513 if (SGI_COMPAT (abfd))
13514 {
13515 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13516 if (rtproc_sec != NULL)
13517 {
13518 if (! bfd_set_section_contents (abfd, rtproc_sec,
13519 rtproc_sec->contents,
13520 0, rtproc_sec->size))
13521 return FALSE;
13522 }
13523 }
13524
13525 return TRUE;
13526 }
13527 \f
13528 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13529
13530 struct mips_mach_extension {
13531 unsigned long extension, base;
13532 };
13533
13534
13535 /* An array describing how BFD machines relate to one another. The entries
13536 are ordered topologically with MIPS I extensions listed last. */
13537
13538 static const struct mips_mach_extension mips_mach_extensions[] = {
13539 /* MIPS64r2 extensions. */
13540 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13541 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13542 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13543
13544 /* MIPS64 extensions. */
13545 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13546 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13547 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13548 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
13549
13550 /* MIPS V extensions. */
13551 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13552
13553 /* R10000 extensions. */
13554 { bfd_mach_mips12000, bfd_mach_mips10000 },
13555 { bfd_mach_mips14000, bfd_mach_mips10000 },
13556 { bfd_mach_mips16000, bfd_mach_mips10000 },
13557
13558 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13559 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13560 better to allow vr5400 and vr5500 code to be merged anyway, since
13561 many libraries will just use the core ISA. Perhaps we could add
13562 some sort of ASE flag if this ever proves a problem. */
13563 { bfd_mach_mips5500, bfd_mach_mips5400 },
13564 { bfd_mach_mips5400, bfd_mach_mips5000 },
13565
13566 /* MIPS IV extensions. */
13567 { bfd_mach_mips5, bfd_mach_mips8000 },
13568 { bfd_mach_mips10000, bfd_mach_mips8000 },
13569 { bfd_mach_mips5000, bfd_mach_mips8000 },
13570 { bfd_mach_mips7000, bfd_mach_mips8000 },
13571 { bfd_mach_mips9000, bfd_mach_mips8000 },
13572
13573 /* VR4100 extensions. */
13574 { bfd_mach_mips4120, bfd_mach_mips4100 },
13575 { bfd_mach_mips4111, bfd_mach_mips4100 },
13576
13577 /* MIPS III extensions. */
13578 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13579 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13580 { bfd_mach_mips8000, bfd_mach_mips4000 },
13581 { bfd_mach_mips4650, bfd_mach_mips4000 },
13582 { bfd_mach_mips4600, bfd_mach_mips4000 },
13583 { bfd_mach_mips4400, bfd_mach_mips4000 },
13584 { bfd_mach_mips4300, bfd_mach_mips4000 },
13585 { bfd_mach_mips4100, bfd_mach_mips4000 },
13586 { bfd_mach_mips4010, bfd_mach_mips4000 },
13587 { bfd_mach_mips5900, bfd_mach_mips4000 },
13588
13589 /* MIPS32 extensions. */
13590 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13591
13592 /* MIPS II extensions. */
13593 { bfd_mach_mips4000, bfd_mach_mips6000 },
13594 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13595
13596 /* MIPS I extensions. */
13597 { bfd_mach_mips6000, bfd_mach_mips3000 },
13598 { bfd_mach_mips3900, bfd_mach_mips3000 }
13599 };
13600
13601
13602 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13603
13604 static bfd_boolean
13605 mips_mach_extends_p (unsigned long base, unsigned long extension)
13606 {
13607 size_t i;
13608
13609 if (extension == base)
13610 return TRUE;
13611
13612 if (base == bfd_mach_mipsisa32
13613 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13614 return TRUE;
13615
13616 if (base == bfd_mach_mipsisa32r2
13617 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13618 return TRUE;
13619
13620 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
13621 if (extension == mips_mach_extensions[i].extension)
13622 {
13623 extension = mips_mach_extensions[i].base;
13624 if (extension == base)
13625 return TRUE;
13626 }
13627
13628 return FALSE;
13629 }
13630
13631
13632 /* Return true if the given ELF header flags describe a 32-bit binary. */
13633
13634 static bfd_boolean
13635 mips_32bit_flags_p (flagword flags)
13636 {
13637 return ((flags & EF_MIPS_32BITMODE) != 0
13638 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13639 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13640 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13641 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13642 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13643 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13644 }
13645
13646
13647 /* Merge object attributes from IBFD into OBFD. Raise an error if
13648 there are conflicting attributes. */
13649 static bfd_boolean
13650 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13651 {
13652 obj_attribute *in_attr;
13653 obj_attribute *out_attr;
13654 bfd *abi_fp_bfd;
13655
13656 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
13657 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13658 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13659 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
13660
13661 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13662 {
13663 /* This is the first object. Copy the attributes. */
13664 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13665
13666 /* Use the Tag_null value to indicate the attributes have been
13667 initialized. */
13668 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13669
13670 return TRUE;
13671 }
13672
13673 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13674 non-conflicting ones. */
13675 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13676 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13677 {
13678 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13679 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13680 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13681 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13682 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13683 {
13684 case 1:
13685 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13686 {
13687 case 2:
13688 _bfd_error_handler
13689 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13690 obfd, abi_fp_bfd, ibfd, "-mdouble-float", "-msingle-float");
13691 break;
13692
13693 case 3:
13694 _bfd_error_handler
13695 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13696 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13697 break;
13698
13699 case 4:
13700 _bfd_error_handler
13701 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13702 obfd, abi_fp_bfd, ibfd,
13703 "-mdouble-float", "-mips32r2 -mfp64");
13704 break;
13705
13706 default:
13707 _bfd_error_handler
13708 (_("Warning: %B uses %s (set by %B), "
13709 "%B uses unknown floating point ABI %d"),
13710 obfd, abi_fp_bfd, ibfd,
13711 "-mdouble-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13712 break;
13713 }
13714 break;
13715
13716 case 2:
13717 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13718 {
13719 case 1:
13720 _bfd_error_handler
13721 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13722 obfd, abi_fp_bfd, ibfd, "-msingle-float", "-mdouble-float");
13723 break;
13724
13725 case 3:
13726 _bfd_error_handler
13727 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13728 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13729 break;
13730
13731 case 4:
13732 _bfd_error_handler
13733 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13734 obfd, abi_fp_bfd, ibfd,
13735 "-msingle-float", "-mips32r2 -mfp64");
13736 break;
13737
13738 default:
13739 _bfd_error_handler
13740 (_("Warning: %B uses %s (set by %B), "
13741 "%B uses unknown floating point ABI %d"),
13742 obfd, abi_fp_bfd, ibfd,
13743 "-msingle-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13744 break;
13745 }
13746 break;
13747
13748 case 3:
13749 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13750 {
13751 case 1:
13752 case 2:
13753 case 4:
13754 _bfd_error_handler
13755 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13756 obfd, abi_fp_bfd, ibfd, "-msoft-float", "-mhard-float");
13757 break;
13758
13759 default:
13760 _bfd_error_handler
13761 (_("Warning: %B uses %s (set by %B), "
13762 "%B uses unknown floating point ABI %d"),
13763 obfd, abi_fp_bfd, ibfd,
13764 "-msoft-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13765 break;
13766 }
13767 break;
13768
13769 case 4:
13770 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13771 {
13772 case 1:
13773 _bfd_error_handler
13774 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13775 obfd, abi_fp_bfd, ibfd,
13776 "-mips32r2 -mfp64", "-mdouble-float");
13777 break;
13778
13779 case 2:
13780 _bfd_error_handler
13781 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13782 obfd, abi_fp_bfd, ibfd,
13783 "-mips32r2 -mfp64", "-msingle-float");
13784 break;
13785
13786 case 3:
13787 _bfd_error_handler
13788 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13789 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13790 break;
13791
13792 default:
13793 _bfd_error_handler
13794 (_("Warning: %B uses %s (set by %B), "
13795 "%B uses unknown floating point ABI %d"),
13796 obfd, abi_fp_bfd, ibfd,
13797 "-mips32r2 -mfp64", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13798 break;
13799 }
13800 break;
13801
13802 default:
13803 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13804 {
13805 case 1:
13806 _bfd_error_handler
13807 (_("Warning: %B uses unknown floating point ABI %d "
13808 "(set by %B), %B uses %s"),
13809 obfd, abi_fp_bfd, ibfd,
13810 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mdouble-float");
13811 break;
13812
13813 case 2:
13814 _bfd_error_handler
13815 (_("Warning: %B uses unknown floating point ABI %d "
13816 "(set by %B), %B uses %s"),
13817 obfd, abi_fp_bfd, ibfd,
13818 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msingle-float");
13819 break;
13820
13821 case 3:
13822 _bfd_error_handler
13823 (_("Warning: %B uses unknown floating point ABI %d "
13824 "(set by %B), %B uses %s"),
13825 obfd, abi_fp_bfd, ibfd,
13826 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msoft-float");
13827 break;
13828
13829 case 4:
13830 _bfd_error_handler
13831 (_("Warning: %B uses unknown floating point ABI %d "
13832 "(set by %B), %B uses %s"),
13833 obfd, abi_fp_bfd, ibfd,
13834 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mips32r2 -mfp64");
13835 break;
13836
13837 default:
13838 _bfd_error_handler
13839 (_("Warning: %B uses unknown floating point ABI %d "
13840 "(set by %B), %B uses unknown floating point ABI %d"),
13841 obfd, abi_fp_bfd, ibfd,
13842 out_attr[Tag_GNU_MIPS_ABI_FP].i,
13843 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13844 break;
13845 }
13846 break;
13847 }
13848 }
13849
13850 /* Merge Tag_compatibility attributes and any common GNU ones. */
13851 _bfd_elf_merge_object_attributes (ibfd, obfd);
13852
13853 return TRUE;
13854 }
13855
13856 /* Merge backend specific data from an object file to the output
13857 object file when linking. */
13858
13859 bfd_boolean
13860 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
13861 {
13862 flagword old_flags;
13863 flagword new_flags;
13864 bfd_boolean ok;
13865 bfd_boolean null_input_bfd = TRUE;
13866 asection *sec;
13867
13868 /* Check if we have the same endianness. */
13869 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13870 {
13871 (*_bfd_error_handler)
13872 (_("%B: endianness incompatible with that of the selected emulation"),
13873 ibfd);
13874 return FALSE;
13875 }
13876
13877 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
13878 return TRUE;
13879
13880 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13881 {
13882 (*_bfd_error_handler)
13883 (_("%B: ABI is incompatible with that of the selected emulation"),
13884 ibfd);
13885 return FALSE;
13886 }
13887
13888 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13889 return FALSE;
13890
13891 new_flags = elf_elfheader (ibfd)->e_flags;
13892 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13893 old_flags = elf_elfheader (obfd)->e_flags;
13894
13895 if (! elf_flags_init (obfd))
13896 {
13897 elf_flags_init (obfd) = TRUE;
13898 elf_elfheader (obfd)->e_flags = new_flags;
13899 elf_elfheader (obfd)->e_ident[EI_CLASS]
13900 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13901
13902 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
13903 && (bfd_get_arch_info (obfd)->the_default
13904 || mips_mach_extends_p (bfd_get_mach (obfd),
13905 bfd_get_mach (ibfd))))
13906 {
13907 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13908 bfd_get_mach (ibfd)))
13909 return FALSE;
13910 }
13911
13912 return TRUE;
13913 }
13914
13915 /* Check flag compatibility. */
13916
13917 new_flags &= ~EF_MIPS_NOREORDER;
13918 old_flags &= ~EF_MIPS_NOREORDER;
13919
13920 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13921 doesn't seem to matter. */
13922 new_flags &= ~EF_MIPS_XGOT;
13923 old_flags &= ~EF_MIPS_XGOT;
13924
13925 /* MIPSpro generates ucode info in n64 objects. Again, we should
13926 just be able to ignore this. */
13927 new_flags &= ~EF_MIPS_UCODE;
13928 old_flags &= ~EF_MIPS_UCODE;
13929
13930 /* DSOs should only be linked with CPIC code. */
13931 if ((ibfd->flags & DYNAMIC) != 0)
13932 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
13933
13934 if (new_flags == old_flags)
13935 return TRUE;
13936
13937 /* Check to see if the input BFD actually contains any sections.
13938 If not, its flags may not have been initialised either, but it cannot
13939 actually cause any incompatibility. */
13940 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13941 {
13942 /* Ignore synthetic sections and empty .text, .data and .bss sections
13943 which are automatically generated by gas. Also ignore fake
13944 (s)common sections, since merely defining a common symbol does
13945 not affect compatibility. */
13946 if ((sec->flags & SEC_IS_COMMON) == 0
13947 && strcmp (sec->name, ".reginfo")
13948 && strcmp (sec->name, ".mdebug")
13949 && (sec->size != 0
13950 || (strcmp (sec->name, ".text")
13951 && strcmp (sec->name, ".data")
13952 && strcmp (sec->name, ".bss"))))
13953 {
13954 null_input_bfd = FALSE;
13955 break;
13956 }
13957 }
13958 if (null_input_bfd)
13959 return TRUE;
13960
13961 ok = TRUE;
13962
13963 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
13964 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
13965 {
13966 (*_bfd_error_handler)
13967 (_("%B: warning: linking abicalls files with non-abicalls files"),
13968 ibfd);
13969 ok = TRUE;
13970 }
13971
13972 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
13973 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
13974 if (! (new_flags & EF_MIPS_PIC))
13975 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
13976
13977 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13978 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13979
13980 /* Compare the ISAs. */
13981 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
13982 {
13983 (*_bfd_error_handler)
13984 (_("%B: linking 32-bit code with 64-bit code"),
13985 ibfd);
13986 ok = FALSE;
13987 }
13988 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
13989 {
13990 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
13991 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
13992 {
13993 /* Copy the architecture info from IBFD to OBFD. Also copy
13994 the 32-bit flag (if set) so that we continue to recognise
13995 OBFD as a 32-bit binary. */
13996 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
13997 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
13998 elf_elfheader (obfd)->e_flags
13999 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14000
14001 /* Copy across the ABI flags if OBFD doesn't use them
14002 and if that was what caused us to treat IBFD as 32-bit. */
14003 if ((old_flags & EF_MIPS_ABI) == 0
14004 && mips_32bit_flags_p (new_flags)
14005 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14006 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
14007 }
14008 else
14009 {
14010 /* The ISAs aren't compatible. */
14011 (*_bfd_error_handler)
14012 (_("%B: linking %s module with previous %s modules"),
14013 ibfd,
14014 bfd_printable_name (ibfd),
14015 bfd_printable_name (obfd));
14016 ok = FALSE;
14017 }
14018 }
14019
14020 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14021 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14022
14023 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
14024 does set EI_CLASS differently from any 32-bit ABI. */
14025 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14026 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14027 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14028 {
14029 /* Only error if both are set (to different values). */
14030 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14031 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14032 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14033 {
14034 (*_bfd_error_handler)
14035 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14036 ibfd,
14037 elf_mips_abi_name (ibfd),
14038 elf_mips_abi_name (obfd));
14039 ok = FALSE;
14040 }
14041 new_flags &= ~EF_MIPS_ABI;
14042 old_flags &= ~EF_MIPS_ABI;
14043 }
14044
14045 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14046 and allow arbitrary mixing of the remaining ASEs (retain the union). */
14047 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14048 {
14049 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14050 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14051 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14052 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14053 int micro_mis = old_m16 && new_micro;
14054 int m16_mis = old_micro && new_m16;
14055
14056 if (m16_mis || micro_mis)
14057 {
14058 (*_bfd_error_handler)
14059 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14060 ibfd,
14061 m16_mis ? "MIPS16" : "microMIPS",
14062 m16_mis ? "microMIPS" : "MIPS16");
14063 ok = FALSE;
14064 }
14065
14066 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14067
14068 new_flags &= ~ EF_MIPS_ARCH_ASE;
14069 old_flags &= ~ EF_MIPS_ARCH_ASE;
14070 }
14071
14072 /* Warn about any other mismatches */
14073 if (new_flags != old_flags)
14074 {
14075 (*_bfd_error_handler)
14076 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14077 ibfd, (unsigned long) new_flags,
14078 (unsigned long) old_flags);
14079 ok = FALSE;
14080 }
14081
14082 if (! ok)
14083 {
14084 bfd_set_error (bfd_error_bad_value);
14085 return FALSE;
14086 }
14087
14088 return TRUE;
14089 }
14090
14091 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14092
14093 bfd_boolean
14094 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
14095 {
14096 BFD_ASSERT (!elf_flags_init (abfd)
14097 || elf_elfheader (abfd)->e_flags == flags);
14098
14099 elf_elfheader (abfd)->e_flags = flags;
14100 elf_flags_init (abfd) = TRUE;
14101 return TRUE;
14102 }
14103
14104 char *
14105 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14106 {
14107 switch (dtag)
14108 {
14109 default: return "";
14110 case DT_MIPS_RLD_VERSION:
14111 return "MIPS_RLD_VERSION";
14112 case DT_MIPS_TIME_STAMP:
14113 return "MIPS_TIME_STAMP";
14114 case DT_MIPS_ICHECKSUM:
14115 return "MIPS_ICHECKSUM";
14116 case DT_MIPS_IVERSION:
14117 return "MIPS_IVERSION";
14118 case DT_MIPS_FLAGS:
14119 return "MIPS_FLAGS";
14120 case DT_MIPS_BASE_ADDRESS:
14121 return "MIPS_BASE_ADDRESS";
14122 case DT_MIPS_MSYM:
14123 return "MIPS_MSYM";
14124 case DT_MIPS_CONFLICT:
14125 return "MIPS_CONFLICT";
14126 case DT_MIPS_LIBLIST:
14127 return "MIPS_LIBLIST";
14128 case DT_MIPS_LOCAL_GOTNO:
14129 return "MIPS_LOCAL_GOTNO";
14130 case DT_MIPS_CONFLICTNO:
14131 return "MIPS_CONFLICTNO";
14132 case DT_MIPS_LIBLISTNO:
14133 return "MIPS_LIBLISTNO";
14134 case DT_MIPS_SYMTABNO:
14135 return "MIPS_SYMTABNO";
14136 case DT_MIPS_UNREFEXTNO:
14137 return "MIPS_UNREFEXTNO";
14138 case DT_MIPS_GOTSYM:
14139 return "MIPS_GOTSYM";
14140 case DT_MIPS_HIPAGENO:
14141 return "MIPS_HIPAGENO";
14142 case DT_MIPS_RLD_MAP:
14143 return "MIPS_RLD_MAP";
14144 case DT_MIPS_DELTA_CLASS:
14145 return "MIPS_DELTA_CLASS";
14146 case DT_MIPS_DELTA_CLASS_NO:
14147 return "MIPS_DELTA_CLASS_NO";
14148 case DT_MIPS_DELTA_INSTANCE:
14149 return "MIPS_DELTA_INSTANCE";
14150 case DT_MIPS_DELTA_INSTANCE_NO:
14151 return "MIPS_DELTA_INSTANCE_NO";
14152 case DT_MIPS_DELTA_RELOC:
14153 return "MIPS_DELTA_RELOC";
14154 case DT_MIPS_DELTA_RELOC_NO:
14155 return "MIPS_DELTA_RELOC_NO";
14156 case DT_MIPS_DELTA_SYM:
14157 return "MIPS_DELTA_SYM";
14158 case DT_MIPS_DELTA_SYM_NO:
14159 return "MIPS_DELTA_SYM_NO";
14160 case DT_MIPS_DELTA_CLASSSYM:
14161 return "MIPS_DELTA_CLASSSYM";
14162 case DT_MIPS_DELTA_CLASSSYM_NO:
14163 return "MIPS_DELTA_CLASSSYM_NO";
14164 case DT_MIPS_CXX_FLAGS:
14165 return "MIPS_CXX_FLAGS";
14166 case DT_MIPS_PIXIE_INIT:
14167 return "MIPS_PIXIE_INIT";
14168 case DT_MIPS_SYMBOL_LIB:
14169 return "MIPS_SYMBOL_LIB";
14170 case DT_MIPS_LOCALPAGE_GOTIDX:
14171 return "MIPS_LOCALPAGE_GOTIDX";
14172 case DT_MIPS_LOCAL_GOTIDX:
14173 return "MIPS_LOCAL_GOTIDX";
14174 case DT_MIPS_HIDDEN_GOTIDX:
14175 return "MIPS_HIDDEN_GOTIDX";
14176 case DT_MIPS_PROTECTED_GOTIDX:
14177 return "MIPS_PROTECTED_GOT_IDX";
14178 case DT_MIPS_OPTIONS:
14179 return "MIPS_OPTIONS";
14180 case DT_MIPS_INTERFACE:
14181 return "MIPS_INTERFACE";
14182 case DT_MIPS_DYNSTR_ALIGN:
14183 return "DT_MIPS_DYNSTR_ALIGN";
14184 case DT_MIPS_INTERFACE_SIZE:
14185 return "DT_MIPS_INTERFACE_SIZE";
14186 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14187 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14188 case DT_MIPS_PERF_SUFFIX:
14189 return "DT_MIPS_PERF_SUFFIX";
14190 case DT_MIPS_COMPACT_SIZE:
14191 return "DT_MIPS_COMPACT_SIZE";
14192 case DT_MIPS_GP_VALUE:
14193 return "DT_MIPS_GP_VALUE";
14194 case DT_MIPS_AUX_DYNAMIC:
14195 return "DT_MIPS_AUX_DYNAMIC";
14196 case DT_MIPS_PLTGOT:
14197 return "DT_MIPS_PLTGOT";
14198 case DT_MIPS_RWPLT:
14199 return "DT_MIPS_RWPLT";
14200 }
14201 }
14202
14203 bfd_boolean
14204 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14205 {
14206 FILE *file = ptr;
14207
14208 BFD_ASSERT (abfd != NULL && ptr != NULL);
14209
14210 /* Print normal ELF private data. */
14211 _bfd_elf_print_private_bfd_data (abfd, ptr);
14212
14213 /* xgettext:c-format */
14214 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14215
14216 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14217 fprintf (file, _(" [abi=O32]"));
14218 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14219 fprintf (file, _(" [abi=O64]"));
14220 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14221 fprintf (file, _(" [abi=EABI32]"));
14222 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14223 fprintf (file, _(" [abi=EABI64]"));
14224 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14225 fprintf (file, _(" [abi unknown]"));
14226 else if (ABI_N32_P (abfd))
14227 fprintf (file, _(" [abi=N32]"));
14228 else if (ABI_64_P (abfd))
14229 fprintf (file, _(" [abi=64]"));
14230 else
14231 fprintf (file, _(" [no abi set]"));
14232
14233 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14234 fprintf (file, " [mips1]");
14235 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14236 fprintf (file, " [mips2]");
14237 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14238 fprintf (file, " [mips3]");
14239 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14240 fprintf (file, " [mips4]");
14241 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14242 fprintf (file, " [mips5]");
14243 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14244 fprintf (file, " [mips32]");
14245 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14246 fprintf (file, " [mips64]");
14247 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14248 fprintf (file, " [mips32r2]");
14249 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14250 fprintf (file, " [mips64r2]");
14251 else
14252 fprintf (file, _(" [unknown ISA]"));
14253
14254 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14255 fprintf (file, " [mdmx]");
14256
14257 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14258 fprintf (file, " [mips16]");
14259
14260 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14261 fprintf (file, " [micromips]");
14262
14263 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14264 fprintf (file, " [32bitmode]");
14265 else
14266 fprintf (file, _(" [not 32bitmode]"));
14267
14268 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
14269 fprintf (file, " [noreorder]");
14270
14271 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
14272 fprintf (file, " [PIC]");
14273
14274 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
14275 fprintf (file, " [CPIC]");
14276
14277 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
14278 fprintf (file, " [XGOT]");
14279
14280 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
14281 fprintf (file, " [UCODE]");
14282
14283 fputc ('\n', file);
14284
14285 return TRUE;
14286 }
14287
14288 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
14289 {
14290 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14291 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14292 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14293 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14294 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14295 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14296 { NULL, 0, 0, 0, 0 }
14297 };
14298
14299 /* Merge non visibility st_other attributes. Ensure that the
14300 STO_OPTIONAL flag is copied into h->other, even if this is not a
14301 definiton of the symbol. */
14302 void
14303 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14304 const Elf_Internal_Sym *isym,
14305 bfd_boolean definition,
14306 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14307 {
14308 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14309 {
14310 unsigned char other;
14311
14312 other = (definition ? isym->st_other : h->other);
14313 other &= ~ELF_ST_VISIBILITY (-1);
14314 h->other = other | ELF_ST_VISIBILITY (h->other);
14315 }
14316
14317 if (!definition
14318 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14319 h->other |= STO_OPTIONAL;
14320 }
14321
14322 /* Decide whether an undefined symbol is special and can be ignored.
14323 This is the case for OPTIONAL symbols on IRIX. */
14324 bfd_boolean
14325 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14326 {
14327 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14328 }
14329
14330 bfd_boolean
14331 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14332 {
14333 return (sym->st_shndx == SHN_COMMON
14334 || sym->st_shndx == SHN_MIPS_ACOMMON
14335 || sym->st_shndx == SHN_MIPS_SCOMMON);
14336 }
14337
14338 /* Return address for Ith PLT stub in section PLT, for relocation REL
14339 or (bfd_vma) -1 if it should not be included. */
14340
14341 bfd_vma
14342 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14343 const arelent *rel ATTRIBUTE_UNUSED)
14344 {
14345 return (plt->vma
14346 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14347 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14348 }
14349
14350 void
14351 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14352 {
14353 struct mips_elf_link_hash_table *htab;
14354 Elf_Internal_Ehdr *i_ehdrp;
14355
14356 i_ehdrp = elf_elfheader (abfd);
14357 if (link_info)
14358 {
14359 htab = mips_elf_hash_table (link_info);
14360 BFD_ASSERT (htab != NULL);
14361
14362 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14363 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14364 }
14365 }
This page took 0.572014 seconds and 5 git commands to generate.