* archures.c: Add support for MIPS r5900
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
30
31 /* This file handles functionality common to the different MIPS ABI's. */
32
33 #include "sysdep.h"
34 #include "bfd.h"
35 #include "libbfd.h"
36 #include "libiberty.h"
37 #include "elf-bfd.h"
38 #include "elfxx-mips.h"
39 #include "elf/mips.h"
40 #include "elf-vxworks.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* This structure is used to hold information about one GOT entry.
51 There are three types of entry:
52
53 (1) absolute addresses
54 (abfd == NULL)
55 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
56 (abfd != NULL, symndx >= 0)
57 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
58 (abfd != NULL, symndx == -1)
59
60 Type (3) entries are treated differently for different types of GOT.
61 In the "master" GOT -- i.e. the one that describes every GOT
62 reference needed in the link -- the mips_got_entry is keyed on both
63 the symbol and the input bfd that references it. If it turns out
64 that we need multiple GOTs, we can then use this information to
65 create separate GOTs for each input bfd.
66
67 However, we want each of these separate GOTs to have at most one
68 entry for a given symbol, so their type (3) entries are keyed only
69 on the symbol. The input bfd given by the "abfd" field is somewhat
70 arbitrary in this case.
71
72 This means that when there are multiple GOTs, each GOT has a unique
73 mips_got_entry for every symbol within it. We can therefore use the
74 mips_got_entry fields (tls_type and gotidx) to track the symbol's
75 GOT index.
76
77 However, if it turns out that we need only a single GOT, we continue
78 to use the master GOT to describe it. There may therefore be several
79 mips_got_entries for the same symbol, each with a different input bfd.
80 We want to make sure that each symbol gets a unique GOT entry, so when
81 there's a single GOT, we use the symbol's hash entry, not the
82 mips_got_entry fields, to track a symbol's GOT index. */
83 struct mips_got_entry
84 {
85 /* The input bfd in which the symbol is defined. */
86 bfd *abfd;
87 /* The index of the symbol, as stored in the relocation r_info, if
88 we have a local symbol; -1 otherwise. */
89 long symndx;
90 union
91 {
92 /* If abfd == NULL, an address that must be stored in the got. */
93 bfd_vma address;
94 /* If abfd != NULL && symndx != -1, the addend of the relocation
95 that should be added to the symbol value. */
96 bfd_vma addend;
97 /* If abfd != NULL && symndx == -1, the hash table entry
98 corresponding to symbol in the GOT. The symbol's entry
99 is in the local area if h->global_got_area is GGA_NONE,
100 otherwise it is in the global area. */
101 struct mips_elf_link_hash_entry *h;
102 } d;
103
104 /* The TLS types included in this GOT entry (specifically, GD and
105 IE). The GD and IE flags can be added as we encounter new
106 relocations. LDM can also be set; it will always be alone, not
107 combined with any GD or IE flags. An LDM GOT entry will be
108 a local symbol entry with r_symndx == 0. */
109 unsigned char tls_type;
110
111 /* The offset from the beginning of the .got section to the entry
112 corresponding to this symbol+addend. If it's a global symbol
113 whose offset is yet to be decided, it's going to be -1. */
114 long gotidx;
115 };
116
117 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
118 The structures form a non-overlapping list that is sorted by increasing
119 MIN_ADDEND. */
120 struct mips_got_page_range
121 {
122 struct mips_got_page_range *next;
123 bfd_signed_vma min_addend;
124 bfd_signed_vma max_addend;
125 };
126
127 /* This structure describes the range of addends that are applied to page
128 relocations against a given symbol. */
129 struct mips_got_page_entry
130 {
131 /* The input bfd in which the symbol is defined. */
132 bfd *abfd;
133 /* The index of the symbol, as stored in the relocation r_info. */
134 long symndx;
135 /* The ranges for this page entry. */
136 struct mips_got_page_range *ranges;
137 /* The maximum number of page entries needed for RANGES. */
138 bfd_vma num_pages;
139 };
140
141 /* This structure is used to hold .got information when linking. */
142
143 struct mips_got_info
144 {
145 /* The global symbol in the GOT with the lowest index in the dynamic
146 symbol table. */
147 struct elf_link_hash_entry *global_gotsym;
148 /* The number of global .got entries. */
149 unsigned int global_gotno;
150 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
151 unsigned int reloc_only_gotno;
152 /* The number of .got slots used for TLS. */
153 unsigned int tls_gotno;
154 /* The first unused TLS .got entry. Used only during
155 mips_elf_initialize_tls_index. */
156 unsigned int tls_assigned_gotno;
157 /* The number of local .got entries, eventually including page entries. */
158 unsigned int local_gotno;
159 /* The maximum number of page entries needed. */
160 unsigned int page_gotno;
161 /* The number of local .got entries we have used. */
162 unsigned int assigned_gotno;
163 /* A hash table holding members of the got. */
164 struct htab *got_entries;
165 /* A hash table of mips_got_page_entry structures. */
166 struct htab *got_page_entries;
167 /* A hash table mapping input bfds to other mips_got_info. NULL
168 unless multi-got was necessary. */
169 struct htab *bfd2got;
170 /* In multi-got links, a pointer to the next got (err, rather, most
171 of the time, it points to the previous got). */
172 struct mips_got_info *next;
173 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
174 for none, or MINUS_TWO for not yet assigned. This is needed
175 because a single-GOT link may have multiple hash table entries
176 for the LDM. It does not get initialized in multi-GOT mode. */
177 bfd_vma tls_ldm_offset;
178 };
179
180 /* Map an input bfd to a got in a multi-got link. */
181
182 struct mips_elf_bfd2got_hash
183 {
184 bfd *bfd;
185 struct mips_got_info *g;
186 };
187
188 /* Structure passed when traversing the bfd2got hash table, used to
189 create and merge bfd's gots. */
190
191 struct mips_elf_got_per_bfd_arg
192 {
193 /* A hashtable that maps bfds to gots. */
194 htab_t bfd2got;
195 /* The output bfd. */
196 bfd *obfd;
197 /* The link information. */
198 struct bfd_link_info *info;
199 /* A pointer to the primary got, i.e., the one that's going to get
200 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
201 DT_MIPS_GOTSYM. */
202 struct mips_got_info *primary;
203 /* A non-primary got we're trying to merge with other input bfd's
204 gots. */
205 struct mips_got_info *current;
206 /* The maximum number of got entries that can be addressed with a
207 16-bit offset. */
208 unsigned int max_count;
209 /* The maximum number of page entries needed by each got. */
210 unsigned int max_pages;
211 /* The total number of global entries which will live in the
212 primary got and be automatically relocated. This includes
213 those not referenced by the primary GOT but included in
214 the "master" GOT. */
215 unsigned int global_count;
216 };
217
218 /* Another structure used to pass arguments for got entries traversal. */
219
220 struct mips_elf_set_global_got_offset_arg
221 {
222 struct mips_got_info *g;
223 int value;
224 unsigned int needed_relocs;
225 struct bfd_link_info *info;
226 };
227
228 /* A structure used to count TLS relocations or GOT entries, for GOT
229 entry or ELF symbol table traversal. */
230
231 struct mips_elf_count_tls_arg
232 {
233 struct bfd_link_info *info;
234 unsigned int needed;
235 };
236
237 struct _mips_elf_section_data
238 {
239 struct bfd_elf_section_data elf;
240 union
241 {
242 bfd_byte *tdata;
243 } u;
244 };
245
246 #define mips_elf_section_data(sec) \
247 ((struct _mips_elf_section_data *) elf_section_data (sec))
248
249 #define is_mips_elf(bfd) \
250 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
251 && elf_tdata (bfd) != NULL \
252 && elf_object_id (bfd) == MIPS_ELF_DATA)
253
254 /* The ABI says that every symbol used by dynamic relocations must have
255 a global GOT entry. Among other things, this provides the dynamic
256 linker with a free, directly-indexed cache. The GOT can therefore
257 contain symbols that are not referenced by GOT relocations themselves
258 (in other words, it may have symbols that are not referenced by things
259 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
260
261 GOT relocations are less likely to overflow if we put the associated
262 GOT entries towards the beginning. We therefore divide the global
263 GOT entries into two areas: "normal" and "reloc-only". Entries in
264 the first area can be used for both dynamic relocations and GP-relative
265 accesses, while those in the "reloc-only" area are for dynamic
266 relocations only.
267
268 These GGA_* ("Global GOT Area") values are organised so that lower
269 values are more general than higher values. Also, non-GGA_NONE
270 values are ordered by the position of the area in the GOT. */
271 #define GGA_NORMAL 0
272 #define GGA_RELOC_ONLY 1
273 #define GGA_NONE 2
274
275 /* Information about a non-PIC interface to a PIC function. There are
276 two ways of creating these interfaces. The first is to add:
277
278 lui $25,%hi(func)
279 addiu $25,$25,%lo(func)
280
281 immediately before a PIC function "func". The second is to add:
282
283 lui $25,%hi(func)
284 j func
285 addiu $25,$25,%lo(func)
286
287 to a separate trampoline section.
288
289 Stubs of the first kind go in a new section immediately before the
290 target function. Stubs of the second kind go in a single section
291 pointed to by the hash table's "strampoline" field. */
292 struct mips_elf_la25_stub {
293 /* The generated section that contains this stub. */
294 asection *stub_section;
295
296 /* The offset of the stub from the start of STUB_SECTION. */
297 bfd_vma offset;
298
299 /* One symbol for the original function. Its location is available
300 in H->root.root.u.def. */
301 struct mips_elf_link_hash_entry *h;
302 };
303
304 /* Macros for populating a mips_elf_la25_stub. */
305
306 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
307 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
308 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
309 #define LA25_LUI_MICROMIPS(VAL) \
310 (0x41b90000 | (VAL)) /* lui t9,VAL */
311 #define LA25_J_MICROMIPS(VAL) \
312 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
313 #define LA25_ADDIU_MICROMIPS(VAL) \
314 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
315
316 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
317 the dynamic symbols. */
318
319 struct mips_elf_hash_sort_data
320 {
321 /* The symbol in the global GOT with the lowest dynamic symbol table
322 index. */
323 struct elf_link_hash_entry *low;
324 /* The least dynamic symbol table index corresponding to a non-TLS
325 symbol with a GOT entry. */
326 long min_got_dynindx;
327 /* The greatest dynamic symbol table index corresponding to a symbol
328 with a GOT entry that is not referenced (e.g., a dynamic symbol
329 with dynamic relocations pointing to it from non-primary GOTs). */
330 long max_unref_got_dynindx;
331 /* The greatest dynamic symbol table index not corresponding to a
332 symbol without a GOT entry. */
333 long max_non_got_dynindx;
334 };
335
336 /* The MIPS ELF linker needs additional information for each symbol in
337 the global hash table. */
338
339 struct mips_elf_link_hash_entry
340 {
341 struct elf_link_hash_entry root;
342
343 /* External symbol information. */
344 EXTR esym;
345
346 /* The la25 stub we have created for ths symbol, if any. */
347 struct mips_elf_la25_stub *la25_stub;
348
349 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
350 this symbol. */
351 unsigned int possibly_dynamic_relocs;
352
353 /* If there is a stub that 32 bit functions should use to call this
354 16 bit function, this points to the section containing the stub. */
355 asection *fn_stub;
356
357 /* If there is a stub that 16 bit functions should use to call this
358 32 bit function, this points to the section containing the stub. */
359 asection *call_stub;
360
361 /* This is like the call_stub field, but it is used if the function
362 being called returns a floating point value. */
363 asection *call_fp_stub;
364
365 #define GOT_NORMAL 0
366 #define GOT_TLS_GD 1
367 #define GOT_TLS_LDM 2
368 #define GOT_TLS_IE 4
369 #define GOT_TLS_OFFSET_DONE 0x40
370 #define GOT_TLS_DONE 0x80
371 unsigned char tls_type;
372
373 /* This is only used in single-GOT mode; in multi-GOT mode there
374 is one mips_got_entry per GOT entry, so the offset is stored
375 there. In single-GOT mode there may be many mips_got_entry
376 structures all referring to the same GOT slot. It might be
377 possible to use root.got.offset instead, but that field is
378 overloaded already. */
379 bfd_vma tls_got_offset;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423 #if 0
424 /* We no longer use this. */
425 /* String section indices for the dynamic section symbols. */
426 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
427 #endif
428
429 /* The number of .rtproc entries. */
430 bfd_size_type procedure_count;
431
432 /* The size of the .compact_rel section (if SGI_COMPAT). */
433 bfd_size_type compact_rel_size;
434
435 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
436 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
437 bfd_boolean use_rld_obj_head;
438
439 /* The __rld_map or __rld_obj_head symbol. */
440 struct elf_link_hash_entry *rld_symbol;
441
442 /* This is set if we see any mips16 stub sections. */
443 bfd_boolean mips16_stubs_seen;
444
445 /* True if we can generate copy relocs and PLTs. */
446 bfd_boolean use_plts_and_copy_relocs;
447
448 /* True if we're generating code for VxWorks. */
449 bfd_boolean is_vxworks;
450
451 /* True if we already reported the small-data section overflow. */
452 bfd_boolean small_data_overflow_reported;
453
454 /* Shortcuts to some dynamic sections, or NULL if they are not
455 being used. */
456 asection *srelbss;
457 asection *sdynbss;
458 asection *srelplt;
459 asection *srelplt2;
460 asection *sgotplt;
461 asection *splt;
462 asection *sstubs;
463 asection *sgot;
464
465 /* The master GOT information. */
466 struct mips_got_info *got_info;
467
468 /* The size of the PLT header in bytes. */
469 bfd_vma plt_header_size;
470
471 /* The size of a PLT entry in bytes. */
472 bfd_vma plt_entry_size;
473
474 /* The number of functions that need a lazy-binding stub. */
475 bfd_vma lazy_stub_count;
476
477 /* The size of a function stub entry in bytes. */
478 bfd_vma function_stub_size;
479
480 /* The number of reserved entries at the beginning of the GOT. */
481 unsigned int reserved_gotno;
482
483 /* The section used for mips_elf_la25_stub trampolines.
484 See the comment above that structure for details. */
485 asection *strampoline;
486
487 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
488 pairs. */
489 htab_t la25_stubs;
490
491 /* A function FN (NAME, IS, OS) that creates a new input section
492 called NAME and links it to output section OS. If IS is nonnull,
493 the new section should go immediately before it, otherwise it
494 should go at the (current) beginning of OS.
495
496 The function returns the new section on success, otherwise it
497 returns null. */
498 asection *(*add_stub_section) (const char *, asection *, asection *);
499 };
500
501 /* Get the MIPS ELF linker hash table from a link_info structure. */
502
503 #define mips_elf_hash_table(p) \
504 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
505 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
506
507 /* A structure used to communicate with htab_traverse callbacks. */
508 struct mips_htab_traverse_info
509 {
510 /* The usual link-wide information. */
511 struct bfd_link_info *info;
512 bfd *output_bfd;
513
514 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
515 bfd_boolean error;
516 };
517
518 /* MIPS ELF private object data. */
519
520 struct mips_elf_obj_tdata
521 {
522 /* Generic ELF private object data. */
523 struct elf_obj_tdata root;
524
525 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
526 bfd *abi_fp_bfd;
527 };
528
529 /* Get MIPS ELF private object data from BFD's tdata. */
530
531 #define mips_elf_tdata(bfd) \
532 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
533
534 #define TLS_RELOC_P(r_type) \
535 (r_type == R_MIPS_TLS_DTPMOD32 \
536 || r_type == R_MIPS_TLS_DTPMOD64 \
537 || r_type == R_MIPS_TLS_DTPREL32 \
538 || r_type == R_MIPS_TLS_DTPREL64 \
539 || r_type == R_MIPS_TLS_GD \
540 || r_type == R_MIPS_TLS_LDM \
541 || r_type == R_MIPS_TLS_DTPREL_HI16 \
542 || r_type == R_MIPS_TLS_DTPREL_LO16 \
543 || r_type == R_MIPS_TLS_GOTTPREL \
544 || r_type == R_MIPS_TLS_TPREL32 \
545 || r_type == R_MIPS_TLS_TPREL64 \
546 || r_type == R_MIPS_TLS_TPREL_HI16 \
547 || r_type == R_MIPS_TLS_TPREL_LO16 \
548 || r_type == R_MIPS16_TLS_GD \
549 || r_type == R_MIPS16_TLS_LDM \
550 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
551 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
552 || r_type == R_MIPS16_TLS_GOTTPREL \
553 || r_type == R_MIPS16_TLS_TPREL_HI16 \
554 || r_type == R_MIPS16_TLS_TPREL_LO16 \
555 || r_type == R_MICROMIPS_TLS_GD \
556 || r_type == R_MICROMIPS_TLS_LDM \
557 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
558 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
559 || r_type == R_MICROMIPS_TLS_GOTTPREL \
560 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
561 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
562
563 /* Structure used to pass information to mips_elf_output_extsym. */
564
565 struct extsym_info
566 {
567 bfd *abfd;
568 struct bfd_link_info *info;
569 struct ecoff_debug_info *debug;
570 const struct ecoff_debug_swap *swap;
571 bfd_boolean failed;
572 };
573
574 /* The names of the runtime procedure table symbols used on IRIX5. */
575
576 static const char * const mips_elf_dynsym_rtproc_names[] =
577 {
578 "_procedure_table",
579 "_procedure_string_table",
580 "_procedure_table_size",
581 NULL
582 };
583
584 /* These structures are used to generate the .compact_rel section on
585 IRIX5. */
586
587 typedef struct
588 {
589 unsigned long id1; /* Always one? */
590 unsigned long num; /* Number of compact relocation entries. */
591 unsigned long id2; /* Always two? */
592 unsigned long offset; /* The file offset of the first relocation. */
593 unsigned long reserved0; /* Zero? */
594 unsigned long reserved1; /* Zero? */
595 } Elf32_compact_rel;
596
597 typedef struct
598 {
599 bfd_byte id1[4];
600 bfd_byte num[4];
601 bfd_byte id2[4];
602 bfd_byte offset[4];
603 bfd_byte reserved0[4];
604 bfd_byte reserved1[4];
605 } Elf32_External_compact_rel;
606
607 typedef struct
608 {
609 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
610 unsigned int rtype : 4; /* Relocation types. See below. */
611 unsigned int dist2to : 8;
612 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
613 unsigned long konst; /* KONST field. See below. */
614 unsigned long vaddr; /* VADDR to be relocated. */
615 } Elf32_crinfo;
616
617 typedef struct
618 {
619 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
620 unsigned int rtype : 4; /* Relocation types. See below. */
621 unsigned int dist2to : 8;
622 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
623 unsigned long konst; /* KONST field. See below. */
624 } Elf32_crinfo2;
625
626 typedef struct
627 {
628 bfd_byte info[4];
629 bfd_byte konst[4];
630 bfd_byte vaddr[4];
631 } Elf32_External_crinfo;
632
633 typedef struct
634 {
635 bfd_byte info[4];
636 bfd_byte konst[4];
637 } Elf32_External_crinfo2;
638
639 /* These are the constants used to swap the bitfields in a crinfo. */
640
641 #define CRINFO_CTYPE (0x1)
642 #define CRINFO_CTYPE_SH (31)
643 #define CRINFO_RTYPE (0xf)
644 #define CRINFO_RTYPE_SH (27)
645 #define CRINFO_DIST2TO (0xff)
646 #define CRINFO_DIST2TO_SH (19)
647 #define CRINFO_RELVADDR (0x7ffff)
648 #define CRINFO_RELVADDR_SH (0)
649
650 /* A compact relocation info has long (3 words) or short (2 words)
651 formats. A short format doesn't have VADDR field and relvaddr
652 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
653 #define CRF_MIPS_LONG 1
654 #define CRF_MIPS_SHORT 0
655
656 /* There are 4 types of compact relocation at least. The value KONST
657 has different meaning for each type:
658
659 (type) (konst)
660 CT_MIPS_REL32 Address in data
661 CT_MIPS_WORD Address in word (XXX)
662 CT_MIPS_GPHI_LO GP - vaddr
663 CT_MIPS_JMPAD Address to jump
664 */
665
666 #define CRT_MIPS_REL32 0xa
667 #define CRT_MIPS_WORD 0xb
668 #define CRT_MIPS_GPHI_LO 0xc
669 #define CRT_MIPS_JMPAD 0xd
670
671 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
672 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
673 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
674 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
675 \f
676 /* The structure of the runtime procedure descriptor created by the
677 loader for use by the static exception system. */
678
679 typedef struct runtime_pdr {
680 bfd_vma adr; /* Memory address of start of procedure. */
681 long regmask; /* Save register mask. */
682 long regoffset; /* Save register offset. */
683 long fregmask; /* Save floating point register mask. */
684 long fregoffset; /* Save floating point register offset. */
685 long frameoffset; /* Frame size. */
686 short framereg; /* Frame pointer register. */
687 short pcreg; /* Offset or reg of return pc. */
688 long irpss; /* Index into the runtime string table. */
689 long reserved;
690 struct exception_info *exception_info;/* Pointer to exception array. */
691 } RPDR, *pRPDR;
692 #define cbRPDR sizeof (RPDR)
693 #define rpdNil ((pRPDR) 0)
694 \f
695 static struct mips_got_entry *mips_elf_create_local_got_entry
696 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
697 struct mips_elf_link_hash_entry *, int);
698 static bfd_boolean mips_elf_sort_hash_table_f
699 (struct mips_elf_link_hash_entry *, void *);
700 static bfd_vma mips_elf_high
701 (bfd_vma);
702 static bfd_boolean mips_elf_create_dynamic_relocation
703 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
704 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
705 bfd_vma *, asection *);
706 static hashval_t mips_elf_got_entry_hash
707 (const void *);
708 static bfd_vma mips_elf_adjust_gp
709 (bfd *, struct mips_got_info *, bfd *);
710 static struct mips_got_info *mips_elf_got_for_ibfd
711 (struct mips_got_info *, bfd *);
712
713 /* This will be used when we sort the dynamic relocation records. */
714 static bfd *reldyn_sorting_bfd;
715
716 /* True if ABFD is for CPUs with load interlocking that include
717 non-MIPS1 CPUs and R3900. */
718 #define LOAD_INTERLOCKS_P(abfd) \
719 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
720 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
721
722 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
723 This should be safe for all architectures. We enable this predicate
724 for RM9000 for now. */
725 #define JAL_TO_BAL_P(abfd) \
726 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
727
728 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
729 This should be safe for all architectures. We enable this predicate for
730 all CPUs. */
731 #define JALR_TO_BAL_P(abfd) 1
732
733 /* True if ABFD is for CPUs that are faster if JR is converted to B.
734 This should be safe for all architectures. We enable this predicate for
735 all CPUs. */
736 #define JR_TO_B_P(abfd) 1
737
738 /* True if ABFD is a PIC object. */
739 #define PIC_OBJECT_P(abfd) \
740 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
741
742 /* Nonzero if ABFD is using the N32 ABI. */
743 #define ABI_N32_P(abfd) \
744 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
745
746 /* Nonzero if ABFD is using the N64 ABI. */
747 #define ABI_64_P(abfd) \
748 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
749
750 /* Nonzero if ABFD is using NewABI conventions. */
751 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
752
753 /* The IRIX compatibility level we are striving for. */
754 #define IRIX_COMPAT(abfd) \
755 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
756
757 /* Whether we are trying to be compatible with IRIX at all. */
758 #define SGI_COMPAT(abfd) \
759 (IRIX_COMPAT (abfd) != ict_none)
760
761 /* The name of the options section. */
762 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
763 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
764
765 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
766 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
767 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
768 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
769
770 /* Whether the section is readonly. */
771 #define MIPS_ELF_READONLY_SECTION(sec) \
772 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
773 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
774
775 /* The name of the stub section. */
776 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
777
778 /* The size of an external REL relocation. */
779 #define MIPS_ELF_REL_SIZE(abfd) \
780 (get_elf_backend_data (abfd)->s->sizeof_rel)
781
782 /* The size of an external RELA relocation. */
783 #define MIPS_ELF_RELA_SIZE(abfd) \
784 (get_elf_backend_data (abfd)->s->sizeof_rela)
785
786 /* The size of an external dynamic table entry. */
787 #define MIPS_ELF_DYN_SIZE(abfd) \
788 (get_elf_backend_data (abfd)->s->sizeof_dyn)
789
790 /* The size of a GOT entry. */
791 #define MIPS_ELF_GOT_SIZE(abfd) \
792 (get_elf_backend_data (abfd)->s->arch_size / 8)
793
794 /* The size of the .rld_map section. */
795 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
796 (get_elf_backend_data (abfd)->s->arch_size / 8)
797
798 /* The size of a symbol-table entry. */
799 #define MIPS_ELF_SYM_SIZE(abfd) \
800 (get_elf_backend_data (abfd)->s->sizeof_sym)
801
802 /* The default alignment for sections, as a power of two. */
803 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
804 (get_elf_backend_data (abfd)->s->log_file_align)
805
806 /* Get word-sized data. */
807 #define MIPS_ELF_GET_WORD(abfd, ptr) \
808 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
809
810 /* Put out word-sized data. */
811 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
812 (ABI_64_P (abfd) \
813 ? bfd_put_64 (abfd, val, ptr) \
814 : bfd_put_32 (abfd, val, ptr))
815
816 /* The opcode for word-sized loads (LW or LD). */
817 #define MIPS_ELF_LOAD_WORD(abfd) \
818 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
819
820 /* Add a dynamic symbol table-entry. */
821 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
822 _bfd_elf_add_dynamic_entry (info, tag, val)
823
824 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
825 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
826
827 /* The name of the dynamic relocation section. */
828 #define MIPS_ELF_REL_DYN_NAME(INFO) \
829 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
830
831 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
832 from smaller values. Start with zero, widen, *then* decrement. */
833 #define MINUS_ONE (((bfd_vma)0) - 1)
834 #define MINUS_TWO (((bfd_vma)0) - 2)
835
836 /* The value to write into got[1] for SVR4 targets, to identify it is
837 a GNU object. The dynamic linker can then use got[1] to store the
838 module pointer. */
839 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
840 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
841
842 /* The offset of $gp from the beginning of the .got section. */
843 #define ELF_MIPS_GP_OFFSET(INFO) \
844 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
845
846 /* The maximum size of the GOT for it to be addressable using 16-bit
847 offsets from $gp. */
848 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
849
850 /* Instructions which appear in a stub. */
851 #define STUB_LW(abfd) \
852 ((ABI_64_P (abfd) \
853 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
854 : 0x8f998010)) /* lw t9,0x8010(gp) */
855 #define STUB_MOVE(abfd) \
856 ((ABI_64_P (abfd) \
857 ? 0x03e0782d /* daddu t7,ra */ \
858 : 0x03e07821)) /* addu t7,ra */
859 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
860 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
861 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
862 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
863 #define STUB_LI16S(abfd, VAL) \
864 ((ABI_64_P (abfd) \
865 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
866 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
867
868 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
869 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
870
871 /* The name of the dynamic interpreter. This is put in the .interp
872 section. */
873
874 #define ELF_DYNAMIC_INTERPRETER(abfd) \
875 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
876 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
877 : "/usr/lib/libc.so.1")
878
879 #ifdef BFD64
880 #define MNAME(bfd,pre,pos) \
881 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
882 #define ELF_R_SYM(bfd, i) \
883 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
884 #define ELF_R_TYPE(bfd, i) \
885 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
886 #define ELF_R_INFO(bfd, s, t) \
887 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
888 #else
889 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
890 #define ELF_R_SYM(bfd, i) \
891 (ELF32_R_SYM (i))
892 #define ELF_R_TYPE(bfd, i) \
893 (ELF32_R_TYPE (i))
894 #define ELF_R_INFO(bfd, s, t) \
895 (ELF32_R_INFO (s, t))
896 #endif
897 \f
898 /* The mips16 compiler uses a couple of special sections to handle
899 floating point arguments.
900
901 Section names that look like .mips16.fn.FNNAME contain stubs that
902 copy floating point arguments from the fp regs to the gp regs and
903 then jump to FNNAME. If any 32 bit function calls FNNAME, the
904 call should be redirected to the stub instead. If no 32 bit
905 function calls FNNAME, the stub should be discarded. We need to
906 consider any reference to the function, not just a call, because
907 if the address of the function is taken we will need the stub,
908 since the address might be passed to a 32 bit function.
909
910 Section names that look like .mips16.call.FNNAME contain stubs
911 that copy floating point arguments from the gp regs to the fp
912 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
913 then any 16 bit function that calls FNNAME should be redirected
914 to the stub instead. If FNNAME is not a 32 bit function, the
915 stub should be discarded.
916
917 .mips16.call.fp.FNNAME sections are similar, but contain stubs
918 which call FNNAME and then copy the return value from the fp regs
919 to the gp regs. These stubs store the return value in $18 while
920 calling FNNAME; any function which might call one of these stubs
921 must arrange to save $18 around the call. (This case is not
922 needed for 32 bit functions that call 16 bit functions, because
923 16 bit functions always return floating point values in both
924 $f0/$f1 and $2/$3.)
925
926 Note that in all cases FNNAME might be defined statically.
927 Therefore, FNNAME is not used literally. Instead, the relocation
928 information will indicate which symbol the section is for.
929
930 We record any stubs that we find in the symbol table. */
931
932 #define FN_STUB ".mips16.fn."
933 #define CALL_STUB ".mips16.call."
934 #define CALL_FP_STUB ".mips16.call.fp."
935
936 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
937 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
938 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
939 \f
940 /* The format of the first PLT entry in an O32 executable. */
941 static const bfd_vma mips_o32_exec_plt0_entry[] =
942 {
943 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
944 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
945 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
946 0x031cc023, /* subu $24, $24, $28 */
947 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
948 0x0018c082, /* srl $24, $24, 2 */
949 0x0320f809, /* jalr $25 */
950 0x2718fffe /* subu $24, $24, 2 */
951 };
952
953 /* The format of the first PLT entry in an N32 executable. Different
954 because gp ($28) is not available; we use t2 ($14) instead. */
955 static const bfd_vma mips_n32_exec_plt0_entry[] =
956 {
957 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
958 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
959 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
960 0x030ec023, /* subu $24, $24, $14 */
961 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
962 0x0018c082, /* srl $24, $24, 2 */
963 0x0320f809, /* jalr $25 */
964 0x2718fffe /* subu $24, $24, 2 */
965 };
966
967 /* The format of the first PLT entry in an N64 executable. Different
968 from N32 because of the increased size of GOT entries. */
969 static const bfd_vma mips_n64_exec_plt0_entry[] =
970 {
971 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
972 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
973 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
974 0x030ec023, /* subu $24, $24, $14 */
975 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
976 0x0018c0c2, /* srl $24, $24, 3 */
977 0x0320f809, /* jalr $25 */
978 0x2718fffe /* subu $24, $24, 2 */
979 };
980
981 /* The format of subsequent PLT entries. */
982 static const bfd_vma mips_exec_plt_entry[] =
983 {
984 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
985 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
986 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
987 0x03200008 /* jr $25 */
988 };
989
990 /* The format of the first PLT entry in a VxWorks executable. */
991 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
992 {
993 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
994 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
995 0x8f390008, /* lw t9, 8(t9) */
996 0x00000000, /* nop */
997 0x03200008, /* jr t9 */
998 0x00000000 /* nop */
999 };
1000
1001 /* The format of subsequent PLT entries. */
1002 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1003 {
1004 0x10000000, /* b .PLT_resolver */
1005 0x24180000, /* li t8, <pltindex> */
1006 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1007 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1008 0x8f390000, /* lw t9, 0(t9) */
1009 0x00000000, /* nop */
1010 0x03200008, /* jr t9 */
1011 0x00000000 /* nop */
1012 };
1013
1014 /* The format of the first PLT entry in a VxWorks shared object. */
1015 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1016 {
1017 0x8f990008, /* lw t9, 8(gp) */
1018 0x00000000, /* nop */
1019 0x03200008, /* jr t9 */
1020 0x00000000, /* nop */
1021 0x00000000, /* nop */
1022 0x00000000 /* nop */
1023 };
1024
1025 /* The format of subsequent PLT entries. */
1026 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1027 {
1028 0x10000000, /* b .PLT_resolver */
1029 0x24180000 /* li t8, <pltindex> */
1030 };
1031 \f
1032 /* microMIPS 32-bit opcode helper installer. */
1033
1034 static void
1035 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1036 {
1037 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1038 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1039 }
1040
1041 /* microMIPS 32-bit opcode helper retriever. */
1042
1043 static bfd_vma
1044 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1045 {
1046 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1047 }
1048 \f
1049 /* Look up an entry in a MIPS ELF linker hash table. */
1050
1051 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1052 ((struct mips_elf_link_hash_entry *) \
1053 elf_link_hash_lookup (&(table)->root, (string), (create), \
1054 (copy), (follow)))
1055
1056 /* Traverse a MIPS ELF linker hash table. */
1057
1058 #define mips_elf_link_hash_traverse(table, func, info) \
1059 (elf_link_hash_traverse \
1060 (&(table)->root, \
1061 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1062 (info)))
1063
1064 /* Find the base offsets for thread-local storage in this object,
1065 for GD/LD and IE/LE respectively. */
1066
1067 #define TP_OFFSET 0x7000
1068 #define DTP_OFFSET 0x8000
1069
1070 static bfd_vma
1071 dtprel_base (struct bfd_link_info *info)
1072 {
1073 /* If tls_sec is NULL, we should have signalled an error already. */
1074 if (elf_hash_table (info)->tls_sec == NULL)
1075 return 0;
1076 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1077 }
1078
1079 static bfd_vma
1080 tprel_base (struct bfd_link_info *info)
1081 {
1082 /* If tls_sec is NULL, we should have signalled an error already. */
1083 if (elf_hash_table (info)->tls_sec == NULL)
1084 return 0;
1085 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1086 }
1087
1088 /* Create an entry in a MIPS ELF linker hash table. */
1089
1090 static struct bfd_hash_entry *
1091 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1092 struct bfd_hash_table *table, const char *string)
1093 {
1094 struct mips_elf_link_hash_entry *ret =
1095 (struct mips_elf_link_hash_entry *) entry;
1096
1097 /* Allocate the structure if it has not already been allocated by a
1098 subclass. */
1099 if (ret == NULL)
1100 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1101 if (ret == NULL)
1102 return (struct bfd_hash_entry *) ret;
1103
1104 /* Call the allocation method of the superclass. */
1105 ret = ((struct mips_elf_link_hash_entry *)
1106 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1107 table, string));
1108 if (ret != NULL)
1109 {
1110 /* Set local fields. */
1111 memset (&ret->esym, 0, sizeof (EXTR));
1112 /* We use -2 as a marker to indicate that the information has
1113 not been set. -1 means there is no associated ifd. */
1114 ret->esym.ifd = -2;
1115 ret->la25_stub = 0;
1116 ret->possibly_dynamic_relocs = 0;
1117 ret->fn_stub = NULL;
1118 ret->call_stub = NULL;
1119 ret->call_fp_stub = NULL;
1120 ret->tls_type = GOT_NORMAL;
1121 ret->global_got_area = GGA_NONE;
1122 ret->got_only_for_calls = TRUE;
1123 ret->readonly_reloc = FALSE;
1124 ret->has_static_relocs = FALSE;
1125 ret->no_fn_stub = FALSE;
1126 ret->need_fn_stub = FALSE;
1127 ret->has_nonpic_branches = FALSE;
1128 ret->needs_lazy_stub = FALSE;
1129 }
1130
1131 return (struct bfd_hash_entry *) ret;
1132 }
1133
1134 /* Allocate MIPS ELF private object data. */
1135
1136 bfd_boolean
1137 _bfd_mips_elf_mkobject (bfd *abfd)
1138 {
1139 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1140 MIPS_ELF_DATA);
1141 }
1142
1143 bfd_boolean
1144 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1145 {
1146 if (!sec->used_by_bfd)
1147 {
1148 struct _mips_elf_section_data *sdata;
1149 bfd_size_type amt = sizeof (*sdata);
1150
1151 sdata = bfd_zalloc (abfd, amt);
1152 if (sdata == NULL)
1153 return FALSE;
1154 sec->used_by_bfd = sdata;
1155 }
1156
1157 return _bfd_elf_new_section_hook (abfd, sec);
1158 }
1159 \f
1160 /* Read ECOFF debugging information from a .mdebug section into a
1161 ecoff_debug_info structure. */
1162
1163 bfd_boolean
1164 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1165 struct ecoff_debug_info *debug)
1166 {
1167 HDRR *symhdr;
1168 const struct ecoff_debug_swap *swap;
1169 char *ext_hdr;
1170
1171 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1172 memset (debug, 0, sizeof (*debug));
1173
1174 ext_hdr = bfd_malloc (swap->external_hdr_size);
1175 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1176 goto error_return;
1177
1178 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1179 swap->external_hdr_size))
1180 goto error_return;
1181
1182 symhdr = &debug->symbolic_header;
1183 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1184
1185 /* The symbolic header contains absolute file offsets and sizes to
1186 read. */
1187 #define READ(ptr, offset, count, size, type) \
1188 if (symhdr->count == 0) \
1189 debug->ptr = NULL; \
1190 else \
1191 { \
1192 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1193 debug->ptr = bfd_malloc (amt); \
1194 if (debug->ptr == NULL) \
1195 goto error_return; \
1196 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1197 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1198 goto error_return; \
1199 }
1200
1201 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1202 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1203 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1204 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1205 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1206 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1207 union aux_ext *);
1208 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1209 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1210 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1211 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1212 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1213 #undef READ
1214
1215 debug->fdr = NULL;
1216
1217 return TRUE;
1218
1219 error_return:
1220 if (ext_hdr != NULL)
1221 free (ext_hdr);
1222 if (debug->line != NULL)
1223 free (debug->line);
1224 if (debug->external_dnr != NULL)
1225 free (debug->external_dnr);
1226 if (debug->external_pdr != NULL)
1227 free (debug->external_pdr);
1228 if (debug->external_sym != NULL)
1229 free (debug->external_sym);
1230 if (debug->external_opt != NULL)
1231 free (debug->external_opt);
1232 if (debug->external_aux != NULL)
1233 free (debug->external_aux);
1234 if (debug->ss != NULL)
1235 free (debug->ss);
1236 if (debug->ssext != NULL)
1237 free (debug->ssext);
1238 if (debug->external_fdr != NULL)
1239 free (debug->external_fdr);
1240 if (debug->external_rfd != NULL)
1241 free (debug->external_rfd);
1242 if (debug->external_ext != NULL)
1243 free (debug->external_ext);
1244 return FALSE;
1245 }
1246 \f
1247 /* Swap RPDR (runtime procedure table entry) for output. */
1248
1249 static void
1250 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1251 {
1252 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1253 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1254 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1255 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1256 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1257 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1258
1259 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1260 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1261
1262 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1263 }
1264
1265 /* Create a runtime procedure table from the .mdebug section. */
1266
1267 static bfd_boolean
1268 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1269 struct bfd_link_info *info, asection *s,
1270 struct ecoff_debug_info *debug)
1271 {
1272 const struct ecoff_debug_swap *swap;
1273 HDRR *hdr = &debug->symbolic_header;
1274 RPDR *rpdr, *rp;
1275 struct rpdr_ext *erp;
1276 void *rtproc;
1277 struct pdr_ext *epdr;
1278 struct sym_ext *esym;
1279 char *ss, **sv;
1280 char *str;
1281 bfd_size_type size;
1282 bfd_size_type count;
1283 unsigned long sindex;
1284 unsigned long i;
1285 PDR pdr;
1286 SYMR sym;
1287 const char *no_name_func = _("static procedure (no name)");
1288
1289 epdr = NULL;
1290 rpdr = NULL;
1291 esym = NULL;
1292 ss = NULL;
1293 sv = NULL;
1294
1295 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1296
1297 sindex = strlen (no_name_func) + 1;
1298 count = hdr->ipdMax;
1299 if (count > 0)
1300 {
1301 size = swap->external_pdr_size;
1302
1303 epdr = bfd_malloc (size * count);
1304 if (epdr == NULL)
1305 goto error_return;
1306
1307 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1308 goto error_return;
1309
1310 size = sizeof (RPDR);
1311 rp = rpdr = bfd_malloc (size * count);
1312 if (rpdr == NULL)
1313 goto error_return;
1314
1315 size = sizeof (char *);
1316 sv = bfd_malloc (size * count);
1317 if (sv == NULL)
1318 goto error_return;
1319
1320 count = hdr->isymMax;
1321 size = swap->external_sym_size;
1322 esym = bfd_malloc (size * count);
1323 if (esym == NULL)
1324 goto error_return;
1325
1326 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1327 goto error_return;
1328
1329 count = hdr->issMax;
1330 ss = bfd_malloc (count);
1331 if (ss == NULL)
1332 goto error_return;
1333 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1334 goto error_return;
1335
1336 count = hdr->ipdMax;
1337 for (i = 0; i < (unsigned long) count; i++, rp++)
1338 {
1339 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1340 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1341 rp->adr = sym.value;
1342 rp->regmask = pdr.regmask;
1343 rp->regoffset = pdr.regoffset;
1344 rp->fregmask = pdr.fregmask;
1345 rp->fregoffset = pdr.fregoffset;
1346 rp->frameoffset = pdr.frameoffset;
1347 rp->framereg = pdr.framereg;
1348 rp->pcreg = pdr.pcreg;
1349 rp->irpss = sindex;
1350 sv[i] = ss + sym.iss;
1351 sindex += strlen (sv[i]) + 1;
1352 }
1353 }
1354
1355 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1356 size = BFD_ALIGN (size, 16);
1357 rtproc = bfd_alloc (abfd, size);
1358 if (rtproc == NULL)
1359 {
1360 mips_elf_hash_table (info)->procedure_count = 0;
1361 goto error_return;
1362 }
1363
1364 mips_elf_hash_table (info)->procedure_count = count + 2;
1365
1366 erp = rtproc;
1367 memset (erp, 0, sizeof (struct rpdr_ext));
1368 erp++;
1369 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1370 strcpy (str, no_name_func);
1371 str += strlen (no_name_func) + 1;
1372 for (i = 0; i < count; i++)
1373 {
1374 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1375 strcpy (str, sv[i]);
1376 str += strlen (sv[i]) + 1;
1377 }
1378 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1379
1380 /* Set the size and contents of .rtproc section. */
1381 s->size = size;
1382 s->contents = rtproc;
1383
1384 /* Skip this section later on (I don't think this currently
1385 matters, but someday it might). */
1386 s->map_head.link_order = NULL;
1387
1388 if (epdr != NULL)
1389 free (epdr);
1390 if (rpdr != NULL)
1391 free (rpdr);
1392 if (esym != NULL)
1393 free (esym);
1394 if (ss != NULL)
1395 free (ss);
1396 if (sv != NULL)
1397 free (sv);
1398
1399 return TRUE;
1400
1401 error_return:
1402 if (epdr != NULL)
1403 free (epdr);
1404 if (rpdr != NULL)
1405 free (rpdr);
1406 if (esym != NULL)
1407 free (esym);
1408 if (ss != NULL)
1409 free (ss);
1410 if (sv != NULL)
1411 free (sv);
1412 return FALSE;
1413 }
1414 \f
1415 /* We're going to create a stub for H. Create a symbol for the stub's
1416 value and size, to help make the disassembly easier to read. */
1417
1418 static bfd_boolean
1419 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1420 struct mips_elf_link_hash_entry *h,
1421 const char *prefix, asection *s, bfd_vma value,
1422 bfd_vma size)
1423 {
1424 struct bfd_link_hash_entry *bh;
1425 struct elf_link_hash_entry *elfh;
1426 const char *name;
1427
1428 if (ELF_ST_IS_MICROMIPS (h->root.other))
1429 value |= 1;
1430
1431 /* Create a new symbol. */
1432 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1433 bh = NULL;
1434 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1435 BSF_LOCAL, s, value, NULL,
1436 TRUE, FALSE, &bh))
1437 return FALSE;
1438
1439 /* Make it a local function. */
1440 elfh = (struct elf_link_hash_entry *) bh;
1441 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1442 elfh->size = size;
1443 elfh->forced_local = 1;
1444 return TRUE;
1445 }
1446
1447 /* We're about to redefine H. Create a symbol to represent H's
1448 current value and size, to help make the disassembly easier
1449 to read. */
1450
1451 static bfd_boolean
1452 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1453 struct mips_elf_link_hash_entry *h,
1454 const char *prefix)
1455 {
1456 struct bfd_link_hash_entry *bh;
1457 struct elf_link_hash_entry *elfh;
1458 const char *name;
1459 asection *s;
1460 bfd_vma value;
1461
1462 /* Read the symbol's value. */
1463 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1464 || h->root.root.type == bfd_link_hash_defweak);
1465 s = h->root.root.u.def.section;
1466 value = h->root.root.u.def.value;
1467
1468 /* Create a new symbol. */
1469 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1470 bh = NULL;
1471 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1472 BSF_LOCAL, s, value, NULL,
1473 TRUE, FALSE, &bh))
1474 return FALSE;
1475
1476 /* Make it local and copy the other attributes from H. */
1477 elfh = (struct elf_link_hash_entry *) bh;
1478 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1479 elfh->other = h->root.other;
1480 elfh->size = h->root.size;
1481 elfh->forced_local = 1;
1482 return TRUE;
1483 }
1484
1485 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1486 function rather than to a hard-float stub. */
1487
1488 static bfd_boolean
1489 section_allows_mips16_refs_p (asection *section)
1490 {
1491 const char *name;
1492
1493 name = bfd_get_section_name (section->owner, section);
1494 return (FN_STUB_P (name)
1495 || CALL_STUB_P (name)
1496 || CALL_FP_STUB_P (name)
1497 || strcmp (name, ".pdr") == 0);
1498 }
1499
1500 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1501 stub section of some kind. Return the R_SYMNDX of the target
1502 function, or 0 if we can't decide which function that is. */
1503
1504 static unsigned long
1505 mips16_stub_symndx (const struct elf_backend_data *bed,
1506 asection *sec ATTRIBUTE_UNUSED,
1507 const Elf_Internal_Rela *relocs,
1508 const Elf_Internal_Rela *relend)
1509 {
1510 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1511 const Elf_Internal_Rela *rel;
1512
1513 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1514 one in a compound relocation. */
1515 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1516 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1517 return ELF_R_SYM (sec->owner, rel->r_info);
1518
1519 /* Otherwise trust the first relocation, whatever its kind. This is
1520 the traditional behavior. */
1521 if (relocs < relend)
1522 return ELF_R_SYM (sec->owner, relocs->r_info);
1523
1524 return 0;
1525 }
1526
1527 /* Check the mips16 stubs for a particular symbol, and see if we can
1528 discard them. */
1529
1530 static void
1531 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1532 struct mips_elf_link_hash_entry *h)
1533 {
1534 /* Dynamic symbols must use the standard call interface, in case other
1535 objects try to call them. */
1536 if (h->fn_stub != NULL
1537 && h->root.dynindx != -1)
1538 {
1539 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1540 h->need_fn_stub = TRUE;
1541 }
1542
1543 if (h->fn_stub != NULL
1544 && ! h->need_fn_stub)
1545 {
1546 /* We don't need the fn_stub; the only references to this symbol
1547 are 16 bit calls. Clobber the size to 0 to prevent it from
1548 being included in the link. */
1549 h->fn_stub->size = 0;
1550 h->fn_stub->flags &= ~SEC_RELOC;
1551 h->fn_stub->reloc_count = 0;
1552 h->fn_stub->flags |= SEC_EXCLUDE;
1553 }
1554
1555 if (h->call_stub != NULL
1556 && ELF_ST_IS_MIPS16 (h->root.other))
1557 {
1558 /* We don't need the call_stub; this is a 16 bit function, so
1559 calls from other 16 bit functions are OK. Clobber the size
1560 to 0 to prevent it from being included in the link. */
1561 h->call_stub->size = 0;
1562 h->call_stub->flags &= ~SEC_RELOC;
1563 h->call_stub->reloc_count = 0;
1564 h->call_stub->flags |= SEC_EXCLUDE;
1565 }
1566
1567 if (h->call_fp_stub != NULL
1568 && ELF_ST_IS_MIPS16 (h->root.other))
1569 {
1570 /* We don't need the call_stub; this is a 16 bit function, so
1571 calls from other 16 bit functions are OK. Clobber the size
1572 to 0 to prevent it from being included in the link. */
1573 h->call_fp_stub->size = 0;
1574 h->call_fp_stub->flags &= ~SEC_RELOC;
1575 h->call_fp_stub->reloc_count = 0;
1576 h->call_fp_stub->flags |= SEC_EXCLUDE;
1577 }
1578 }
1579
1580 /* Hashtable callbacks for mips_elf_la25_stubs. */
1581
1582 static hashval_t
1583 mips_elf_la25_stub_hash (const void *entry_)
1584 {
1585 const struct mips_elf_la25_stub *entry;
1586
1587 entry = (struct mips_elf_la25_stub *) entry_;
1588 return entry->h->root.root.u.def.section->id
1589 + entry->h->root.root.u.def.value;
1590 }
1591
1592 static int
1593 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1594 {
1595 const struct mips_elf_la25_stub *entry1, *entry2;
1596
1597 entry1 = (struct mips_elf_la25_stub *) entry1_;
1598 entry2 = (struct mips_elf_la25_stub *) entry2_;
1599 return ((entry1->h->root.root.u.def.section
1600 == entry2->h->root.root.u.def.section)
1601 && (entry1->h->root.root.u.def.value
1602 == entry2->h->root.root.u.def.value));
1603 }
1604
1605 /* Called by the linker to set up the la25 stub-creation code. FN is
1606 the linker's implementation of add_stub_function. Return true on
1607 success. */
1608
1609 bfd_boolean
1610 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1611 asection *(*fn) (const char *, asection *,
1612 asection *))
1613 {
1614 struct mips_elf_link_hash_table *htab;
1615
1616 htab = mips_elf_hash_table (info);
1617 if (htab == NULL)
1618 return FALSE;
1619
1620 htab->add_stub_section = fn;
1621 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1622 mips_elf_la25_stub_eq, NULL);
1623 if (htab->la25_stubs == NULL)
1624 return FALSE;
1625
1626 return TRUE;
1627 }
1628
1629 /* Return true if H is a locally-defined PIC function, in the sense
1630 that it or its fn_stub might need $25 to be valid on entry.
1631 Note that MIPS16 functions set up $gp using PC-relative instructions,
1632 so they themselves never need $25 to be valid. Only non-MIPS16
1633 entry points are of interest here. */
1634
1635 static bfd_boolean
1636 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1637 {
1638 return ((h->root.root.type == bfd_link_hash_defined
1639 || h->root.root.type == bfd_link_hash_defweak)
1640 && h->root.def_regular
1641 && !bfd_is_abs_section (h->root.root.u.def.section)
1642 && (!ELF_ST_IS_MIPS16 (h->root.other)
1643 || (h->fn_stub && h->need_fn_stub))
1644 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1645 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1646 }
1647
1648 /* Set *SEC to the input section that contains the target of STUB.
1649 Return the offset of the target from the start of that section. */
1650
1651 static bfd_vma
1652 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1653 asection **sec)
1654 {
1655 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1656 {
1657 BFD_ASSERT (stub->h->need_fn_stub);
1658 *sec = stub->h->fn_stub;
1659 return 0;
1660 }
1661 else
1662 {
1663 *sec = stub->h->root.root.u.def.section;
1664 return stub->h->root.root.u.def.value;
1665 }
1666 }
1667
1668 /* STUB describes an la25 stub that we have decided to implement
1669 by inserting an LUI/ADDIU pair before the target function.
1670 Create the section and redirect the function symbol to it. */
1671
1672 static bfd_boolean
1673 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1674 struct bfd_link_info *info)
1675 {
1676 struct mips_elf_link_hash_table *htab;
1677 char *name;
1678 asection *s, *input_section;
1679 unsigned int align;
1680
1681 htab = mips_elf_hash_table (info);
1682 if (htab == NULL)
1683 return FALSE;
1684
1685 /* Create a unique name for the new section. */
1686 name = bfd_malloc (11 + sizeof (".text.stub."));
1687 if (name == NULL)
1688 return FALSE;
1689 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1690
1691 /* Create the section. */
1692 mips_elf_get_la25_target (stub, &input_section);
1693 s = htab->add_stub_section (name, input_section,
1694 input_section->output_section);
1695 if (s == NULL)
1696 return FALSE;
1697
1698 /* Make sure that any padding goes before the stub. */
1699 align = input_section->alignment_power;
1700 if (!bfd_set_section_alignment (s->owner, s, align))
1701 return FALSE;
1702 if (align > 3)
1703 s->size = (1 << align) - 8;
1704
1705 /* Create a symbol for the stub. */
1706 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1707 stub->stub_section = s;
1708 stub->offset = s->size;
1709
1710 /* Allocate room for it. */
1711 s->size += 8;
1712 return TRUE;
1713 }
1714
1715 /* STUB describes an la25 stub that we have decided to implement
1716 with a separate trampoline. Allocate room for it and redirect
1717 the function symbol to it. */
1718
1719 static bfd_boolean
1720 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1721 struct bfd_link_info *info)
1722 {
1723 struct mips_elf_link_hash_table *htab;
1724 asection *s;
1725
1726 htab = mips_elf_hash_table (info);
1727 if (htab == NULL)
1728 return FALSE;
1729
1730 /* Create a trampoline section, if we haven't already. */
1731 s = htab->strampoline;
1732 if (s == NULL)
1733 {
1734 asection *input_section = stub->h->root.root.u.def.section;
1735 s = htab->add_stub_section (".text", NULL,
1736 input_section->output_section);
1737 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1738 return FALSE;
1739 htab->strampoline = s;
1740 }
1741
1742 /* Create a symbol for the stub. */
1743 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1744 stub->stub_section = s;
1745 stub->offset = s->size;
1746
1747 /* Allocate room for it. */
1748 s->size += 16;
1749 return TRUE;
1750 }
1751
1752 /* H describes a symbol that needs an la25 stub. Make sure that an
1753 appropriate stub exists and point H at it. */
1754
1755 static bfd_boolean
1756 mips_elf_add_la25_stub (struct bfd_link_info *info,
1757 struct mips_elf_link_hash_entry *h)
1758 {
1759 struct mips_elf_link_hash_table *htab;
1760 struct mips_elf_la25_stub search, *stub;
1761 bfd_boolean use_trampoline_p;
1762 asection *s;
1763 bfd_vma value;
1764 void **slot;
1765
1766 /* Describe the stub we want. */
1767 search.stub_section = NULL;
1768 search.offset = 0;
1769 search.h = h;
1770
1771 /* See if we've already created an equivalent stub. */
1772 htab = mips_elf_hash_table (info);
1773 if (htab == NULL)
1774 return FALSE;
1775
1776 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1777 if (slot == NULL)
1778 return FALSE;
1779
1780 stub = (struct mips_elf_la25_stub *) *slot;
1781 if (stub != NULL)
1782 {
1783 /* We can reuse the existing stub. */
1784 h->la25_stub = stub;
1785 return TRUE;
1786 }
1787
1788 /* Create a permanent copy of ENTRY and add it to the hash table. */
1789 stub = bfd_malloc (sizeof (search));
1790 if (stub == NULL)
1791 return FALSE;
1792 *stub = search;
1793 *slot = stub;
1794
1795 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1796 of the section and if we would need no more than 2 nops. */
1797 value = mips_elf_get_la25_target (stub, &s);
1798 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1799
1800 h->la25_stub = stub;
1801 return (use_trampoline_p
1802 ? mips_elf_add_la25_trampoline (stub, info)
1803 : mips_elf_add_la25_intro (stub, info));
1804 }
1805
1806 /* A mips_elf_link_hash_traverse callback that is called before sizing
1807 sections. DATA points to a mips_htab_traverse_info structure. */
1808
1809 static bfd_boolean
1810 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1811 {
1812 struct mips_htab_traverse_info *hti;
1813
1814 hti = (struct mips_htab_traverse_info *) data;
1815 if (!hti->info->relocatable)
1816 mips_elf_check_mips16_stubs (hti->info, h);
1817
1818 if (mips_elf_local_pic_function_p (h))
1819 {
1820 /* PR 12845: If H is in a section that has been garbage
1821 collected it will have its output section set to *ABS*. */
1822 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1823 return TRUE;
1824
1825 /* H is a function that might need $25 to be valid on entry.
1826 If we're creating a non-PIC relocatable object, mark H as
1827 being PIC. If we're creating a non-relocatable object with
1828 non-PIC branches and jumps to H, make sure that H has an la25
1829 stub. */
1830 if (hti->info->relocatable)
1831 {
1832 if (!PIC_OBJECT_P (hti->output_bfd))
1833 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1834 }
1835 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1836 {
1837 hti->error = TRUE;
1838 return FALSE;
1839 }
1840 }
1841 return TRUE;
1842 }
1843 \f
1844 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1845 Most mips16 instructions are 16 bits, but these instructions
1846 are 32 bits.
1847
1848 The format of these instructions is:
1849
1850 +--------------+--------------------------------+
1851 | JALX | X| Imm 20:16 | Imm 25:21 |
1852 +--------------+--------------------------------+
1853 | Immediate 15:0 |
1854 +-----------------------------------------------+
1855
1856 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1857 Note that the immediate value in the first word is swapped.
1858
1859 When producing a relocatable object file, R_MIPS16_26 is
1860 handled mostly like R_MIPS_26. In particular, the addend is
1861 stored as a straight 26-bit value in a 32-bit instruction.
1862 (gas makes life simpler for itself by never adjusting a
1863 R_MIPS16_26 reloc to be against a section, so the addend is
1864 always zero). However, the 32 bit instruction is stored as 2
1865 16-bit values, rather than a single 32-bit value. In a
1866 big-endian file, the result is the same; in a little-endian
1867 file, the two 16-bit halves of the 32 bit value are swapped.
1868 This is so that a disassembler can recognize the jal
1869 instruction.
1870
1871 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1872 instruction stored as two 16-bit values. The addend A is the
1873 contents of the targ26 field. The calculation is the same as
1874 R_MIPS_26. When storing the calculated value, reorder the
1875 immediate value as shown above, and don't forget to store the
1876 value as two 16-bit values.
1877
1878 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1879 defined as
1880
1881 big-endian:
1882 +--------+----------------------+
1883 | | |
1884 | | targ26-16 |
1885 |31 26|25 0|
1886 +--------+----------------------+
1887
1888 little-endian:
1889 +----------+------+-------------+
1890 | | | |
1891 | sub1 | | sub2 |
1892 |0 9|10 15|16 31|
1893 +----------+--------------------+
1894 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1895 ((sub1 << 16) | sub2)).
1896
1897 When producing a relocatable object file, the calculation is
1898 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1899 When producing a fully linked file, the calculation is
1900 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1901 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1902
1903 The table below lists the other MIPS16 instruction relocations.
1904 Each one is calculated in the same way as the non-MIPS16 relocation
1905 given on the right, but using the extended MIPS16 layout of 16-bit
1906 immediate fields:
1907
1908 R_MIPS16_GPREL R_MIPS_GPREL16
1909 R_MIPS16_GOT16 R_MIPS_GOT16
1910 R_MIPS16_CALL16 R_MIPS_CALL16
1911 R_MIPS16_HI16 R_MIPS_HI16
1912 R_MIPS16_LO16 R_MIPS_LO16
1913
1914 A typical instruction will have a format like this:
1915
1916 +--------------+--------------------------------+
1917 | EXTEND | Imm 10:5 | Imm 15:11 |
1918 +--------------+--------------------------------+
1919 | Major | rx | ry | Imm 4:0 |
1920 +--------------+--------------------------------+
1921
1922 EXTEND is the five bit value 11110. Major is the instruction
1923 opcode.
1924
1925 All we need to do here is shuffle the bits appropriately.
1926 As above, the two 16-bit halves must be swapped on a
1927 little-endian system. */
1928
1929 static inline bfd_boolean
1930 mips16_reloc_p (int r_type)
1931 {
1932 switch (r_type)
1933 {
1934 case R_MIPS16_26:
1935 case R_MIPS16_GPREL:
1936 case R_MIPS16_GOT16:
1937 case R_MIPS16_CALL16:
1938 case R_MIPS16_HI16:
1939 case R_MIPS16_LO16:
1940 case R_MIPS16_TLS_GD:
1941 case R_MIPS16_TLS_LDM:
1942 case R_MIPS16_TLS_DTPREL_HI16:
1943 case R_MIPS16_TLS_DTPREL_LO16:
1944 case R_MIPS16_TLS_GOTTPREL:
1945 case R_MIPS16_TLS_TPREL_HI16:
1946 case R_MIPS16_TLS_TPREL_LO16:
1947 return TRUE;
1948
1949 default:
1950 return FALSE;
1951 }
1952 }
1953
1954 /* Check if a microMIPS reloc. */
1955
1956 static inline bfd_boolean
1957 micromips_reloc_p (unsigned int r_type)
1958 {
1959 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1960 }
1961
1962 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1963 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1964 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1965
1966 static inline bfd_boolean
1967 micromips_reloc_shuffle_p (unsigned int r_type)
1968 {
1969 return (micromips_reloc_p (r_type)
1970 && r_type != R_MICROMIPS_PC7_S1
1971 && r_type != R_MICROMIPS_PC10_S1);
1972 }
1973
1974 static inline bfd_boolean
1975 got16_reloc_p (int r_type)
1976 {
1977 return (r_type == R_MIPS_GOT16
1978 || r_type == R_MIPS16_GOT16
1979 || r_type == R_MICROMIPS_GOT16);
1980 }
1981
1982 static inline bfd_boolean
1983 call16_reloc_p (int r_type)
1984 {
1985 return (r_type == R_MIPS_CALL16
1986 || r_type == R_MIPS16_CALL16
1987 || r_type == R_MICROMIPS_CALL16);
1988 }
1989
1990 static inline bfd_boolean
1991 got_disp_reloc_p (unsigned int r_type)
1992 {
1993 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1994 }
1995
1996 static inline bfd_boolean
1997 got_page_reloc_p (unsigned int r_type)
1998 {
1999 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2000 }
2001
2002 static inline bfd_boolean
2003 got_ofst_reloc_p (unsigned int r_type)
2004 {
2005 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
2006 }
2007
2008 static inline bfd_boolean
2009 got_hi16_reloc_p (unsigned int r_type)
2010 {
2011 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
2012 }
2013
2014 static inline bfd_boolean
2015 got_lo16_reloc_p (unsigned int r_type)
2016 {
2017 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2018 }
2019
2020 static inline bfd_boolean
2021 call_hi16_reloc_p (unsigned int r_type)
2022 {
2023 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2024 }
2025
2026 static inline bfd_boolean
2027 call_lo16_reloc_p (unsigned int r_type)
2028 {
2029 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2030 }
2031
2032 static inline bfd_boolean
2033 hi16_reloc_p (int r_type)
2034 {
2035 return (r_type == R_MIPS_HI16
2036 || r_type == R_MIPS16_HI16
2037 || r_type == R_MICROMIPS_HI16);
2038 }
2039
2040 static inline bfd_boolean
2041 lo16_reloc_p (int r_type)
2042 {
2043 return (r_type == R_MIPS_LO16
2044 || r_type == R_MIPS16_LO16
2045 || r_type == R_MICROMIPS_LO16);
2046 }
2047
2048 static inline bfd_boolean
2049 mips16_call_reloc_p (int r_type)
2050 {
2051 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2052 }
2053
2054 static inline bfd_boolean
2055 jal_reloc_p (int r_type)
2056 {
2057 return (r_type == R_MIPS_26
2058 || r_type == R_MIPS16_26
2059 || r_type == R_MICROMIPS_26_S1);
2060 }
2061
2062 static inline bfd_boolean
2063 micromips_branch_reloc_p (int r_type)
2064 {
2065 return (r_type == R_MICROMIPS_26_S1
2066 || r_type == R_MICROMIPS_PC16_S1
2067 || r_type == R_MICROMIPS_PC10_S1
2068 || r_type == R_MICROMIPS_PC7_S1);
2069 }
2070
2071 static inline bfd_boolean
2072 tls_gd_reloc_p (unsigned int r_type)
2073 {
2074 return (r_type == R_MIPS_TLS_GD
2075 || r_type == R_MIPS16_TLS_GD
2076 || r_type == R_MICROMIPS_TLS_GD);
2077 }
2078
2079 static inline bfd_boolean
2080 tls_ldm_reloc_p (unsigned int r_type)
2081 {
2082 return (r_type == R_MIPS_TLS_LDM
2083 || r_type == R_MIPS16_TLS_LDM
2084 || r_type == R_MICROMIPS_TLS_LDM);
2085 }
2086
2087 static inline bfd_boolean
2088 tls_gottprel_reloc_p (unsigned int r_type)
2089 {
2090 return (r_type == R_MIPS_TLS_GOTTPREL
2091 || r_type == R_MIPS16_TLS_GOTTPREL
2092 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2093 }
2094
2095 void
2096 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2097 bfd_boolean jal_shuffle, bfd_byte *data)
2098 {
2099 bfd_vma first, second, val;
2100
2101 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2102 return;
2103
2104 /* Pick up the first and second halfwords of the instruction. */
2105 first = bfd_get_16 (abfd, data);
2106 second = bfd_get_16 (abfd, data + 2);
2107 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2108 val = first << 16 | second;
2109 else if (r_type != R_MIPS16_26)
2110 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2111 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2112 else
2113 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2114 | ((first & 0x1f) << 21) | second);
2115 bfd_put_32 (abfd, val, data);
2116 }
2117
2118 void
2119 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2120 bfd_boolean jal_shuffle, bfd_byte *data)
2121 {
2122 bfd_vma first, second, val;
2123
2124 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2125 return;
2126
2127 val = bfd_get_32 (abfd, data);
2128 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2129 {
2130 second = val & 0xffff;
2131 first = val >> 16;
2132 }
2133 else if (r_type != R_MIPS16_26)
2134 {
2135 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2136 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2137 }
2138 else
2139 {
2140 second = val & 0xffff;
2141 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2142 | ((val >> 21) & 0x1f);
2143 }
2144 bfd_put_16 (abfd, second, data + 2);
2145 bfd_put_16 (abfd, first, data);
2146 }
2147
2148 bfd_reloc_status_type
2149 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2150 arelent *reloc_entry, asection *input_section,
2151 bfd_boolean relocatable, void *data, bfd_vma gp)
2152 {
2153 bfd_vma relocation;
2154 bfd_signed_vma val;
2155 bfd_reloc_status_type status;
2156
2157 if (bfd_is_com_section (symbol->section))
2158 relocation = 0;
2159 else
2160 relocation = symbol->value;
2161
2162 relocation += symbol->section->output_section->vma;
2163 relocation += symbol->section->output_offset;
2164
2165 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2166 return bfd_reloc_outofrange;
2167
2168 /* Set val to the offset into the section or symbol. */
2169 val = reloc_entry->addend;
2170
2171 _bfd_mips_elf_sign_extend (val, 16);
2172
2173 /* Adjust val for the final section location and GP value. If we
2174 are producing relocatable output, we don't want to do this for
2175 an external symbol. */
2176 if (! relocatable
2177 || (symbol->flags & BSF_SECTION_SYM) != 0)
2178 val += relocation - gp;
2179
2180 if (reloc_entry->howto->partial_inplace)
2181 {
2182 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2183 (bfd_byte *) data
2184 + reloc_entry->address);
2185 if (status != bfd_reloc_ok)
2186 return status;
2187 }
2188 else
2189 reloc_entry->addend = val;
2190
2191 if (relocatable)
2192 reloc_entry->address += input_section->output_offset;
2193
2194 return bfd_reloc_ok;
2195 }
2196
2197 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2198 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2199 that contains the relocation field and DATA points to the start of
2200 INPUT_SECTION. */
2201
2202 struct mips_hi16
2203 {
2204 struct mips_hi16 *next;
2205 bfd_byte *data;
2206 asection *input_section;
2207 arelent rel;
2208 };
2209
2210 /* FIXME: This should not be a static variable. */
2211
2212 static struct mips_hi16 *mips_hi16_list;
2213
2214 /* A howto special_function for REL *HI16 relocations. We can only
2215 calculate the correct value once we've seen the partnering
2216 *LO16 relocation, so just save the information for later.
2217
2218 The ABI requires that the *LO16 immediately follow the *HI16.
2219 However, as a GNU extension, we permit an arbitrary number of
2220 *HI16s to be associated with a single *LO16. This significantly
2221 simplies the relocation handling in gcc. */
2222
2223 bfd_reloc_status_type
2224 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2225 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2226 asection *input_section, bfd *output_bfd,
2227 char **error_message ATTRIBUTE_UNUSED)
2228 {
2229 struct mips_hi16 *n;
2230
2231 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2232 return bfd_reloc_outofrange;
2233
2234 n = bfd_malloc (sizeof *n);
2235 if (n == NULL)
2236 return bfd_reloc_outofrange;
2237
2238 n->next = mips_hi16_list;
2239 n->data = data;
2240 n->input_section = input_section;
2241 n->rel = *reloc_entry;
2242 mips_hi16_list = n;
2243
2244 if (output_bfd != NULL)
2245 reloc_entry->address += input_section->output_offset;
2246
2247 return bfd_reloc_ok;
2248 }
2249
2250 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2251 like any other 16-bit relocation when applied to global symbols, but is
2252 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2253
2254 bfd_reloc_status_type
2255 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2256 void *data, asection *input_section,
2257 bfd *output_bfd, char **error_message)
2258 {
2259 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2260 || bfd_is_und_section (bfd_get_section (symbol))
2261 || bfd_is_com_section (bfd_get_section (symbol)))
2262 /* The relocation is against a global symbol. */
2263 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2264 input_section, output_bfd,
2265 error_message);
2266
2267 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2268 input_section, output_bfd, error_message);
2269 }
2270
2271 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2272 is a straightforward 16 bit inplace relocation, but we must deal with
2273 any partnering high-part relocations as well. */
2274
2275 bfd_reloc_status_type
2276 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2277 void *data, asection *input_section,
2278 bfd *output_bfd, char **error_message)
2279 {
2280 bfd_vma vallo;
2281 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2282
2283 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2284 return bfd_reloc_outofrange;
2285
2286 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2287 location);
2288 vallo = bfd_get_32 (abfd, location);
2289 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2290 location);
2291
2292 while (mips_hi16_list != NULL)
2293 {
2294 bfd_reloc_status_type ret;
2295 struct mips_hi16 *hi;
2296
2297 hi = mips_hi16_list;
2298
2299 /* R_MIPS*_GOT16 relocations are something of a special case. We
2300 want to install the addend in the same way as for a R_MIPS*_HI16
2301 relocation (with a rightshift of 16). However, since GOT16
2302 relocations can also be used with global symbols, their howto
2303 has a rightshift of 0. */
2304 if (hi->rel.howto->type == R_MIPS_GOT16)
2305 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2306 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2307 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2308 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2309 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2310
2311 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2312 carry or borrow will induce a change of +1 or -1 in the high part. */
2313 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2314
2315 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2316 hi->input_section, output_bfd,
2317 error_message);
2318 if (ret != bfd_reloc_ok)
2319 return ret;
2320
2321 mips_hi16_list = hi->next;
2322 free (hi);
2323 }
2324
2325 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2326 input_section, output_bfd,
2327 error_message);
2328 }
2329
2330 /* A generic howto special_function. This calculates and installs the
2331 relocation itself, thus avoiding the oft-discussed problems in
2332 bfd_perform_relocation and bfd_install_relocation. */
2333
2334 bfd_reloc_status_type
2335 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2336 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2337 asection *input_section, bfd *output_bfd,
2338 char **error_message ATTRIBUTE_UNUSED)
2339 {
2340 bfd_signed_vma val;
2341 bfd_reloc_status_type status;
2342 bfd_boolean relocatable;
2343
2344 relocatable = (output_bfd != NULL);
2345
2346 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2347 return bfd_reloc_outofrange;
2348
2349 /* Build up the field adjustment in VAL. */
2350 val = 0;
2351 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2352 {
2353 /* Either we're calculating the final field value or we have a
2354 relocation against a section symbol. Add in the section's
2355 offset or address. */
2356 val += symbol->section->output_section->vma;
2357 val += symbol->section->output_offset;
2358 }
2359
2360 if (!relocatable)
2361 {
2362 /* We're calculating the final field value. Add in the symbol's value
2363 and, if pc-relative, subtract the address of the field itself. */
2364 val += symbol->value;
2365 if (reloc_entry->howto->pc_relative)
2366 {
2367 val -= input_section->output_section->vma;
2368 val -= input_section->output_offset;
2369 val -= reloc_entry->address;
2370 }
2371 }
2372
2373 /* VAL is now the final adjustment. If we're keeping this relocation
2374 in the output file, and if the relocation uses a separate addend,
2375 we just need to add VAL to that addend. Otherwise we need to add
2376 VAL to the relocation field itself. */
2377 if (relocatable && !reloc_entry->howto->partial_inplace)
2378 reloc_entry->addend += val;
2379 else
2380 {
2381 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2382
2383 /* Add in the separate addend, if any. */
2384 val += reloc_entry->addend;
2385
2386 /* Add VAL to the relocation field. */
2387 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2388 location);
2389 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2390 location);
2391 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2392 location);
2393
2394 if (status != bfd_reloc_ok)
2395 return status;
2396 }
2397
2398 if (relocatable)
2399 reloc_entry->address += input_section->output_offset;
2400
2401 return bfd_reloc_ok;
2402 }
2403 \f
2404 /* Swap an entry in a .gptab section. Note that these routines rely
2405 on the equivalence of the two elements of the union. */
2406
2407 static void
2408 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2409 Elf32_gptab *in)
2410 {
2411 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2412 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2413 }
2414
2415 static void
2416 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2417 Elf32_External_gptab *ex)
2418 {
2419 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2420 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2421 }
2422
2423 static void
2424 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2425 Elf32_External_compact_rel *ex)
2426 {
2427 H_PUT_32 (abfd, in->id1, ex->id1);
2428 H_PUT_32 (abfd, in->num, ex->num);
2429 H_PUT_32 (abfd, in->id2, ex->id2);
2430 H_PUT_32 (abfd, in->offset, ex->offset);
2431 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2432 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2433 }
2434
2435 static void
2436 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2437 Elf32_External_crinfo *ex)
2438 {
2439 unsigned long l;
2440
2441 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2442 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2443 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2444 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2445 H_PUT_32 (abfd, l, ex->info);
2446 H_PUT_32 (abfd, in->konst, ex->konst);
2447 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2448 }
2449 \f
2450 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2451 routines swap this structure in and out. They are used outside of
2452 BFD, so they are globally visible. */
2453
2454 void
2455 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2456 Elf32_RegInfo *in)
2457 {
2458 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2459 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2460 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2461 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2462 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2463 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2464 }
2465
2466 void
2467 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2468 Elf32_External_RegInfo *ex)
2469 {
2470 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2471 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2472 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2473 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2474 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2475 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2476 }
2477
2478 /* In the 64 bit ABI, the .MIPS.options section holds register
2479 information in an Elf64_Reginfo structure. These routines swap
2480 them in and out. They are globally visible because they are used
2481 outside of BFD. These routines are here so that gas can call them
2482 without worrying about whether the 64 bit ABI has been included. */
2483
2484 void
2485 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2486 Elf64_Internal_RegInfo *in)
2487 {
2488 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2489 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2490 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2491 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2492 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2493 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2494 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2495 }
2496
2497 void
2498 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2499 Elf64_External_RegInfo *ex)
2500 {
2501 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2502 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2503 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2504 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2505 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2506 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2507 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2508 }
2509
2510 /* Swap in an options header. */
2511
2512 void
2513 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2514 Elf_Internal_Options *in)
2515 {
2516 in->kind = H_GET_8 (abfd, ex->kind);
2517 in->size = H_GET_8 (abfd, ex->size);
2518 in->section = H_GET_16 (abfd, ex->section);
2519 in->info = H_GET_32 (abfd, ex->info);
2520 }
2521
2522 /* Swap out an options header. */
2523
2524 void
2525 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2526 Elf_External_Options *ex)
2527 {
2528 H_PUT_8 (abfd, in->kind, ex->kind);
2529 H_PUT_8 (abfd, in->size, ex->size);
2530 H_PUT_16 (abfd, in->section, ex->section);
2531 H_PUT_32 (abfd, in->info, ex->info);
2532 }
2533 \f
2534 /* This function is called via qsort() to sort the dynamic relocation
2535 entries by increasing r_symndx value. */
2536
2537 static int
2538 sort_dynamic_relocs (const void *arg1, const void *arg2)
2539 {
2540 Elf_Internal_Rela int_reloc1;
2541 Elf_Internal_Rela int_reloc2;
2542 int diff;
2543
2544 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2545 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2546
2547 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2548 if (diff != 0)
2549 return diff;
2550
2551 if (int_reloc1.r_offset < int_reloc2.r_offset)
2552 return -1;
2553 if (int_reloc1.r_offset > int_reloc2.r_offset)
2554 return 1;
2555 return 0;
2556 }
2557
2558 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2559
2560 static int
2561 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2562 const void *arg2 ATTRIBUTE_UNUSED)
2563 {
2564 #ifdef BFD64
2565 Elf_Internal_Rela int_reloc1[3];
2566 Elf_Internal_Rela int_reloc2[3];
2567
2568 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2569 (reldyn_sorting_bfd, arg1, int_reloc1);
2570 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2571 (reldyn_sorting_bfd, arg2, int_reloc2);
2572
2573 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2574 return -1;
2575 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2576 return 1;
2577
2578 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2579 return -1;
2580 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2581 return 1;
2582 return 0;
2583 #else
2584 abort ();
2585 #endif
2586 }
2587
2588
2589 /* This routine is used to write out ECOFF debugging external symbol
2590 information. It is called via mips_elf_link_hash_traverse. The
2591 ECOFF external symbol information must match the ELF external
2592 symbol information. Unfortunately, at this point we don't know
2593 whether a symbol is required by reloc information, so the two
2594 tables may wind up being different. We must sort out the external
2595 symbol information before we can set the final size of the .mdebug
2596 section, and we must set the size of the .mdebug section before we
2597 can relocate any sections, and we can't know which symbols are
2598 required by relocation until we relocate the sections.
2599 Fortunately, it is relatively unlikely that any symbol will be
2600 stripped but required by a reloc. In particular, it can not happen
2601 when generating a final executable. */
2602
2603 static bfd_boolean
2604 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2605 {
2606 struct extsym_info *einfo = data;
2607 bfd_boolean strip;
2608 asection *sec, *output_section;
2609
2610 if (h->root.indx == -2)
2611 strip = FALSE;
2612 else if ((h->root.def_dynamic
2613 || h->root.ref_dynamic
2614 || h->root.type == bfd_link_hash_new)
2615 && !h->root.def_regular
2616 && !h->root.ref_regular)
2617 strip = TRUE;
2618 else if (einfo->info->strip == strip_all
2619 || (einfo->info->strip == strip_some
2620 && bfd_hash_lookup (einfo->info->keep_hash,
2621 h->root.root.root.string,
2622 FALSE, FALSE) == NULL))
2623 strip = TRUE;
2624 else
2625 strip = FALSE;
2626
2627 if (strip)
2628 return TRUE;
2629
2630 if (h->esym.ifd == -2)
2631 {
2632 h->esym.jmptbl = 0;
2633 h->esym.cobol_main = 0;
2634 h->esym.weakext = 0;
2635 h->esym.reserved = 0;
2636 h->esym.ifd = ifdNil;
2637 h->esym.asym.value = 0;
2638 h->esym.asym.st = stGlobal;
2639
2640 if (h->root.root.type == bfd_link_hash_undefined
2641 || h->root.root.type == bfd_link_hash_undefweak)
2642 {
2643 const char *name;
2644
2645 /* Use undefined class. Also, set class and type for some
2646 special symbols. */
2647 name = h->root.root.root.string;
2648 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2649 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2650 {
2651 h->esym.asym.sc = scData;
2652 h->esym.asym.st = stLabel;
2653 h->esym.asym.value = 0;
2654 }
2655 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2656 {
2657 h->esym.asym.sc = scAbs;
2658 h->esym.asym.st = stLabel;
2659 h->esym.asym.value =
2660 mips_elf_hash_table (einfo->info)->procedure_count;
2661 }
2662 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2663 {
2664 h->esym.asym.sc = scAbs;
2665 h->esym.asym.st = stLabel;
2666 h->esym.asym.value = elf_gp (einfo->abfd);
2667 }
2668 else
2669 h->esym.asym.sc = scUndefined;
2670 }
2671 else if (h->root.root.type != bfd_link_hash_defined
2672 && h->root.root.type != bfd_link_hash_defweak)
2673 h->esym.asym.sc = scAbs;
2674 else
2675 {
2676 const char *name;
2677
2678 sec = h->root.root.u.def.section;
2679 output_section = sec->output_section;
2680
2681 /* When making a shared library and symbol h is the one from
2682 the another shared library, OUTPUT_SECTION may be null. */
2683 if (output_section == NULL)
2684 h->esym.asym.sc = scUndefined;
2685 else
2686 {
2687 name = bfd_section_name (output_section->owner, output_section);
2688
2689 if (strcmp (name, ".text") == 0)
2690 h->esym.asym.sc = scText;
2691 else if (strcmp (name, ".data") == 0)
2692 h->esym.asym.sc = scData;
2693 else if (strcmp (name, ".sdata") == 0)
2694 h->esym.asym.sc = scSData;
2695 else if (strcmp (name, ".rodata") == 0
2696 || strcmp (name, ".rdata") == 0)
2697 h->esym.asym.sc = scRData;
2698 else if (strcmp (name, ".bss") == 0)
2699 h->esym.asym.sc = scBss;
2700 else if (strcmp (name, ".sbss") == 0)
2701 h->esym.asym.sc = scSBss;
2702 else if (strcmp (name, ".init") == 0)
2703 h->esym.asym.sc = scInit;
2704 else if (strcmp (name, ".fini") == 0)
2705 h->esym.asym.sc = scFini;
2706 else
2707 h->esym.asym.sc = scAbs;
2708 }
2709 }
2710
2711 h->esym.asym.reserved = 0;
2712 h->esym.asym.index = indexNil;
2713 }
2714
2715 if (h->root.root.type == bfd_link_hash_common)
2716 h->esym.asym.value = h->root.root.u.c.size;
2717 else if (h->root.root.type == bfd_link_hash_defined
2718 || h->root.root.type == bfd_link_hash_defweak)
2719 {
2720 if (h->esym.asym.sc == scCommon)
2721 h->esym.asym.sc = scBss;
2722 else if (h->esym.asym.sc == scSCommon)
2723 h->esym.asym.sc = scSBss;
2724
2725 sec = h->root.root.u.def.section;
2726 output_section = sec->output_section;
2727 if (output_section != NULL)
2728 h->esym.asym.value = (h->root.root.u.def.value
2729 + sec->output_offset
2730 + output_section->vma);
2731 else
2732 h->esym.asym.value = 0;
2733 }
2734 else
2735 {
2736 struct mips_elf_link_hash_entry *hd = h;
2737
2738 while (hd->root.root.type == bfd_link_hash_indirect)
2739 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2740
2741 if (hd->needs_lazy_stub)
2742 {
2743 /* Set type and value for a symbol with a function stub. */
2744 h->esym.asym.st = stProc;
2745 sec = hd->root.root.u.def.section;
2746 if (sec == NULL)
2747 h->esym.asym.value = 0;
2748 else
2749 {
2750 output_section = sec->output_section;
2751 if (output_section != NULL)
2752 h->esym.asym.value = (hd->root.plt.offset
2753 + sec->output_offset
2754 + output_section->vma);
2755 else
2756 h->esym.asym.value = 0;
2757 }
2758 }
2759 }
2760
2761 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2762 h->root.root.root.string,
2763 &h->esym))
2764 {
2765 einfo->failed = TRUE;
2766 return FALSE;
2767 }
2768
2769 return TRUE;
2770 }
2771
2772 /* A comparison routine used to sort .gptab entries. */
2773
2774 static int
2775 gptab_compare (const void *p1, const void *p2)
2776 {
2777 const Elf32_gptab *a1 = p1;
2778 const Elf32_gptab *a2 = p2;
2779
2780 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2781 }
2782 \f
2783 /* Functions to manage the got entry hash table. */
2784
2785 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2786 hash number. */
2787
2788 static INLINE hashval_t
2789 mips_elf_hash_bfd_vma (bfd_vma addr)
2790 {
2791 #ifdef BFD64
2792 return addr + (addr >> 32);
2793 #else
2794 return addr;
2795 #endif
2796 }
2797
2798 /* got_entries only match if they're identical, except for gotidx, so
2799 use all fields to compute the hash, and compare the appropriate
2800 union members. */
2801
2802 static hashval_t
2803 mips_elf_got_entry_hash (const void *entry_)
2804 {
2805 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2806
2807 return entry->symndx
2808 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2809 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2810 : entry->abfd->id
2811 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2812 : entry->d.h->root.root.root.hash));
2813 }
2814
2815 static int
2816 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2817 {
2818 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2819 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2820
2821 /* An LDM entry can only match another LDM entry. */
2822 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2823 return 0;
2824
2825 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2826 && (! e1->abfd ? e1->d.address == e2->d.address
2827 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2828 : e1->d.h == e2->d.h);
2829 }
2830
2831 /* multi_got_entries are still a match in the case of global objects,
2832 even if the input bfd in which they're referenced differs, so the
2833 hash computation and compare functions are adjusted
2834 accordingly. */
2835
2836 static hashval_t
2837 mips_elf_multi_got_entry_hash (const void *entry_)
2838 {
2839 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2840
2841 return entry->symndx
2842 + (! entry->abfd
2843 ? mips_elf_hash_bfd_vma (entry->d.address)
2844 : entry->symndx >= 0
2845 ? ((entry->tls_type & GOT_TLS_LDM)
2846 ? (GOT_TLS_LDM << 17)
2847 : (entry->abfd->id
2848 + mips_elf_hash_bfd_vma (entry->d.addend)))
2849 : entry->d.h->root.root.root.hash);
2850 }
2851
2852 static int
2853 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2854 {
2855 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2856 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2857
2858 /* Any two LDM entries match. */
2859 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2860 return 1;
2861
2862 /* Nothing else matches an LDM entry. */
2863 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2864 return 0;
2865
2866 return e1->symndx == e2->symndx
2867 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2868 : e1->abfd == NULL || e2->abfd == NULL
2869 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2870 : e1->d.h == e2->d.h);
2871 }
2872
2873 static hashval_t
2874 mips_got_page_entry_hash (const void *entry_)
2875 {
2876 const struct mips_got_page_entry *entry;
2877
2878 entry = (const struct mips_got_page_entry *) entry_;
2879 return entry->abfd->id + entry->symndx;
2880 }
2881
2882 static int
2883 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2884 {
2885 const struct mips_got_page_entry *entry1, *entry2;
2886
2887 entry1 = (const struct mips_got_page_entry *) entry1_;
2888 entry2 = (const struct mips_got_page_entry *) entry2_;
2889 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2890 }
2891 \f
2892 /* Return the dynamic relocation section. If it doesn't exist, try to
2893 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2894 if creation fails. */
2895
2896 static asection *
2897 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2898 {
2899 const char *dname;
2900 asection *sreloc;
2901 bfd *dynobj;
2902
2903 dname = MIPS_ELF_REL_DYN_NAME (info);
2904 dynobj = elf_hash_table (info)->dynobj;
2905 sreloc = bfd_get_linker_section (dynobj, dname);
2906 if (sreloc == NULL && create_p)
2907 {
2908 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
2909 (SEC_ALLOC
2910 | SEC_LOAD
2911 | SEC_HAS_CONTENTS
2912 | SEC_IN_MEMORY
2913 | SEC_LINKER_CREATED
2914 | SEC_READONLY));
2915 if (sreloc == NULL
2916 || ! bfd_set_section_alignment (dynobj, sreloc,
2917 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2918 return NULL;
2919 }
2920 return sreloc;
2921 }
2922
2923 /* Count the number of relocations needed for a TLS GOT entry, with
2924 access types from TLS_TYPE, and symbol H (or a local symbol if H
2925 is NULL). */
2926
2927 static int
2928 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2929 struct elf_link_hash_entry *h)
2930 {
2931 int indx = 0;
2932 int ret = 0;
2933 bfd_boolean need_relocs = FALSE;
2934 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2935
2936 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2937 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2938 indx = h->dynindx;
2939
2940 if ((info->shared || indx != 0)
2941 && (h == NULL
2942 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2943 || h->root.type != bfd_link_hash_undefweak))
2944 need_relocs = TRUE;
2945
2946 if (!need_relocs)
2947 return FALSE;
2948
2949 if (tls_type & GOT_TLS_GD)
2950 {
2951 ret++;
2952 if (indx != 0)
2953 ret++;
2954 }
2955
2956 if (tls_type & GOT_TLS_IE)
2957 ret++;
2958
2959 if ((tls_type & GOT_TLS_LDM) && info->shared)
2960 ret++;
2961
2962 return ret;
2963 }
2964
2965 /* Count the number of TLS relocations required for the GOT entry in
2966 ARG1, if it describes a local symbol. */
2967
2968 static int
2969 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2970 {
2971 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2972 struct mips_elf_count_tls_arg *arg = arg2;
2973
2974 if (entry->abfd != NULL && entry->symndx != -1)
2975 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2976
2977 return 1;
2978 }
2979
2980 /* Count the number of TLS GOT entries required for the global (or
2981 forced-local) symbol in ARG1. */
2982
2983 static int
2984 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2985 {
2986 struct mips_elf_link_hash_entry *hm
2987 = (struct mips_elf_link_hash_entry *) arg1;
2988 struct mips_elf_count_tls_arg *arg = arg2;
2989
2990 if (hm->tls_type & GOT_TLS_GD)
2991 arg->needed += 2;
2992 if (hm->tls_type & GOT_TLS_IE)
2993 arg->needed += 1;
2994
2995 return 1;
2996 }
2997
2998 /* Count the number of TLS relocations required for the global (or
2999 forced-local) symbol in ARG1. */
3000
3001 static int
3002 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
3003 {
3004 struct mips_elf_link_hash_entry *hm
3005 = (struct mips_elf_link_hash_entry *) arg1;
3006 struct mips_elf_count_tls_arg *arg = arg2;
3007
3008 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
3009
3010 return 1;
3011 }
3012
3013 /* Output a simple dynamic relocation into SRELOC. */
3014
3015 static void
3016 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3017 asection *sreloc,
3018 unsigned long reloc_index,
3019 unsigned long indx,
3020 int r_type,
3021 bfd_vma offset)
3022 {
3023 Elf_Internal_Rela rel[3];
3024
3025 memset (rel, 0, sizeof (rel));
3026
3027 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3028 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3029
3030 if (ABI_64_P (output_bfd))
3031 {
3032 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3033 (output_bfd, &rel[0],
3034 (sreloc->contents
3035 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3036 }
3037 else
3038 bfd_elf32_swap_reloc_out
3039 (output_bfd, &rel[0],
3040 (sreloc->contents
3041 + reloc_index * sizeof (Elf32_External_Rel)));
3042 }
3043
3044 /* Initialize a set of TLS GOT entries for one symbol. */
3045
3046 static void
3047 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
3048 unsigned char *tls_type_p,
3049 struct bfd_link_info *info,
3050 struct mips_elf_link_hash_entry *h,
3051 bfd_vma value)
3052 {
3053 struct mips_elf_link_hash_table *htab;
3054 int indx;
3055 asection *sreloc, *sgot;
3056 bfd_vma offset, offset2;
3057 bfd_boolean need_relocs = FALSE;
3058
3059 htab = mips_elf_hash_table (info);
3060 if (htab == NULL)
3061 return;
3062
3063 sgot = htab->sgot;
3064
3065 indx = 0;
3066 if (h != NULL)
3067 {
3068 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3069
3070 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3071 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3072 indx = h->root.dynindx;
3073 }
3074
3075 if (*tls_type_p & GOT_TLS_DONE)
3076 return;
3077
3078 if ((info->shared || indx != 0)
3079 && (h == NULL
3080 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3081 || h->root.type != bfd_link_hash_undefweak))
3082 need_relocs = TRUE;
3083
3084 /* MINUS_ONE means the symbol is not defined in this object. It may not
3085 be defined at all; assume that the value doesn't matter in that
3086 case. Otherwise complain if we would use the value. */
3087 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3088 || h->root.root.type == bfd_link_hash_undefweak);
3089
3090 /* Emit necessary relocations. */
3091 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3092
3093 /* General Dynamic. */
3094 if (*tls_type_p & GOT_TLS_GD)
3095 {
3096 offset = got_offset;
3097 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
3098
3099 if (need_relocs)
3100 {
3101 mips_elf_output_dynamic_relocation
3102 (abfd, sreloc, sreloc->reloc_count++, indx,
3103 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3104 sgot->output_offset + sgot->output_section->vma + offset);
3105
3106 if (indx)
3107 mips_elf_output_dynamic_relocation
3108 (abfd, sreloc, sreloc->reloc_count++, indx,
3109 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3110 sgot->output_offset + sgot->output_section->vma + offset2);
3111 else
3112 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3113 sgot->contents + offset2);
3114 }
3115 else
3116 {
3117 MIPS_ELF_PUT_WORD (abfd, 1,
3118 sgot->contents + offset);
3119 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3120 sgot->contents + offset2);
3121 }
3122
3123 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
3124 }
3125
3126 /* Initial Exec model. */
3127 if (*tls_type_p & GOT_TLS_IE)
3128 {
3129 offset = got_offset;
3130
3131 if (need_relocs)
3132 {
3133 if (indx == 0)
3134 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3135 sgot->contents + offset);
3136 else
3137 MIPS_ELF_PUT_WORD (abfd, 0,
3138 sgot->contents + offset);
3139
3140 mips_elf_output_dynamic_relocation
3141 (abfd, sreloc, sreloc->reloc_count++, indx,
3142 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3143 sgot->output_offset + sgot->output_section->vma + offset);
3144 }
3145 else
3146 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3147 sgot->contents + offset);
3148 }
3149
3150 if (*tls_type_p & GOT_TLS_LDM)
3151 {
3152 /* The initial offset is zero, and the LD offsets will include the
3153 bias by DTP_OFFSET. */
3154 MIPS_ELF_PUT_WORD (abfd, 0,
3155 sgot->contents + got_offset
3156 + MIPS_ELF_GOT_SIZE (abfd));
3157
3158 if (!info->shared)
3159 MIPS_ELF_PUT_WORD (abfd, 1,
3160 sgot->contents + got_offset);
3161 else
3162 mips_elf_output_dynamic_relocation
3163 (abfd, sreloc, sreloc->reloc_count++, indx,
3164 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3165 sgot->output_offset + sgot->output_section->vma + got_offset);
3166 }
3167
3168 *tls_type_p |= GOT_TLS_DONE;
3169 }
3170
3171 /* Return the GOT index to use for a relocation of type R_TYPE against
3172 a symbol accessed using TLS_TYPE models. The GOT entries for this
3173 symbol in this GOT start at GOT_INDEX. This function initializes the
3174 GOT entries and corresponding relocations. */
3175
3176 static bfd_vma
3177 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
3178 int r_type, struct bfd_link_info *info,
3179 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3180 {
3181 BFD_ASSERT (tls_gottprel_reloc_p (r_type)
3182 || tls_gd_reloc_p (r_type)
3183 || tls_ldm_reloc_p (r_type));
3184
3185 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
3186
3187 if (tls_gottprel_reloc_p (r_type))
3188 {
3189 BFD_ASSERT (*tls_type & GOT_TLS_IE);
3190 if (*tls_type & GOT_TLS_GD)
3191 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
3192 else
3193 return got_index;
3194 }
3195
3196 if (tls_gd_reloc_p (r_type))
3197 {
3198 BFD_ASSERT (*tls_type & GOT_TLS_GD);
3199 return got_index;
3200 }
3201
3202 if (tls_ldm_reloc_p (r_type))
3203 {
3204 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3205 return got_index;
3206 }
3207
3208 return got_index;
3209 }
3210
3211 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3212 for global symbol H. .got.plt comes before the GOT, so the offset
3213 will be negative. */
3214
3215 static bfd_vma
3216 mips_elf_gotplt_index (struct bfd_link_info *info,
3217 struct elf_link_hash_entry *h)
3218 {
3219 bfd_vma plt_index, got_address, got_value;
3220 struct mips_elf_link_hash_table *htab;
3221
3222 htab = mips_elf_hash_table (info);
3223 BFD_ASSERT (htab != NULL);
3224
3225 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3226
3227 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3228 section starts with reserved entries. */
3229 BFD_ASSERT (htab->is_vxworks);
3230
3231 /* Calculate the index of the symbol's PLT entry. */
3232 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3233
3234 /* Calculate the address of the associated .got.plt entry. */
3235 got_address = (htab->sgotplt->output_section->vma
3236 + htab->sgotplt->output_offset
3237 + plt_index * 4);
3238
3239 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3240 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3241 + htab->root.hgot->root.u.def.section->output_offset
3242 + htab->root.hgot->root.u.def.value);
3243
3244 return got_address - got_value;
3245 }
3246
3247 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3248 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3249 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3250 offset can be found. */
3251
3252 static bfd_vma
3253 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3254 bfd_vma value, unsigned long r_symndx,
3255 struct mips_elf_link_hash_entry *h, int r_type)
3256 {
3257 struct mips_elf_link_hash_table *htab;
3258 struct mips_got_entry *entry;
3259
3260 htab = mips_elf_hash_table (info);
3261 BFD_ASSERT (htab != NULL);
3262
3263 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3264 r_symndx, h, r_type);
3265 if (!entry)
3266 return MINUS_ONE;
3267
3268 if (TLS_RELOC_P (r_type))
3269 {
3270 if (entry->symndx == -1 && htab->got_info->next == NULL)
3271 /* A type (3) entry in the single-GOT case. We use the symbol's
3272 hash table entry to track the index. */
3273 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3274 r_type, info, h, value);
3275 else
3276 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3277 r_type, info, h, value);
3278 }
3279 else
3280 return entry->gotidx;
3281 }
3282
3283 /* Returns the GOT index for the global symbol indicated by H. */
3284
3285 static bfd_vma
3286 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3287 int r_type, struct bfd_link_info *info)
3288 {
3289 struct mips_elf_link_hash_table *htab;
3290 bfd_vma got_index;
3291 struct mips_got_info *g, *gg;
3292 long global_got_dynindx = 0;
3293
3294 htab = mips_elf_hash_table (info);
3295 BFD_ASSERT (htab != NULL);
3296
3297 gg = g = htab->got_info;
3298 if (g->bfd2got && ibfd)
3299 {
3300 struct mips_got_entry e, *p;
3301
3302 BFD_ASSERT (h->dynindx >= 0);
3303
3304 g = mips_elf_got_for_ibfd (g, ibfd);
3305 if (g->next != gg || TLS_RELOC_P (r_type))
3306 {
3307 e.abfd = ibfd;
3308 e.symndx = -1;
3309 e.d.h = (struct mips_elf_link_hash_entry *)h;
3310 e.tls_type = 0;
3311
3312 p = htab_find (g->got_entries, &e);
3313
3314 BFD_ASSERT (p->gotidx > 0);
3315
3316 if (TLS_RELOC_P (r_type))
3317 {
3318 bfd_vma value = MINUS_ONE;
3319 if ((h->root.type == bfd_link_hash_defined
3320 || h->root.type == bfd_link_hash_defweak)
3321 && h->root.u.def.section->output_section)
3322 value = (h->root.u.def.value
3323 + h->root.u.def.section->output_offset
3324 + h->root.u.def.section->output_section->vma);
3325
3326 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3327 info, e.d.h, value);
3328 }
3329 else
3330 return p->gotidx;
3331 }
3332 }
3333
3334 if (gg->global_gotsym != NULL)
3335 global_got_dynindx = gg->global_gotsym->dynindx;
3336
3337 if (TLS_RELOC_P (r_type))
3338 {
3339 struct mips_elf_link_hash_entry *hm
3340 = (struct mips_elf_link_hash_entry *) h;
3341 bfd_vma value = MINUS_ONE;
3342
3343 if ((h->root.type == bfd_link_hash_defined
3344 || h->root.type == bfd_link_hash_defweak)
3345 && h->root.u.def.section->output_section)
3346 value = (h->root.u.def.value
3347 + h->root.u.def.section->output_offset
3348 + h->root.u.def.section->output_section->vma);
3349
3350 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3351 r_type, info, hm, value);
3352 }
3353 else
3354 {
3355 /* Once we determine the global GOT entry with the lowest dynamic
3356 symbol table index, we must put all dynamic symbols with greater
3357 indices into the GOT. That makes it easy to calculate the GOT
3358 offset. */
3359 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3360 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3361 * MIPS_ELF_GOT_SIZE (abfd));
3362 }
3363 BFD_ASSERT (got_index < htab->sgot->size);
3364
3365 return got_index;
3366 }
3367
3368 /* Find a GOT page entry that points to within 32KB of VALUE. These
3369 entries are supposed to be placed at small offsets in the GOT, i.e.,
3370 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3371 entry could be created. If OFFSETP is nonnull, use it to return the
3372 offset of the GOT entry from VALUE. */
3373
3374 static bfd_vma
3375 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3376 bfd_vma value, bfd_vma *offsetp)
3377 {
3378 bfd_vma page, got_index;
3379 struct mips_got_entry *entry;
3380
3381 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3382 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3383 NULL, R_MIPS_GOT_PAGE);
3384
3385 if (!entry)
3386 return MINUS_ONE;
3387
3388 got_index = entry->gotidx;
3389
3390 if (offsetp)
3391 *offsetp = value - entry->d.address;
3392
3393 return got_index;
3394 }
3395
3396 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3397 EXTERNAL is true if the relocation was originally against a global
3398 symbol that binds locally. */
3399
3400 static bfd_vma
3401 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3402 bfd_vma value, bfd_boolean external)
3403 {
3404 struct mips_got_entry *entry;
3405
3406 /* GOT16 relocations against local symbols are followed by a LO16
3407 relocation; those against global symbols are not. Thus if the
3408 symbol was originally local, the GOT16 relocation should load the
3409 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3410 if (! external)
3411 value = mips_elf_high (value) << 16;
3412
3413 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3414 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3415 same in all cases. */
3416 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3417 NULL, R_MIPS_GOT16);
3418 if (entry)
3419 return entry->gotidx;
3420 else
3421 return MINUS_ONE;
3422 }
3423
3424 /* Returns the offset for the entry at the INDEXth position
3425 in the GOT. */
3426
3427 static bfd_vma
3428 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3429 bfd *input_bfd, bfd_vma got_index)
3430 {
3431 struct mips_elf_link_hash_table *htab;
3432 asection *sgot;
3433 bfd_vma gp;
3434
3435 htab = mips_elf_hash_table (info);
3436 BFD_ASSERT (htab != NULL);
3437
3438 sgot = htab->sgot;
3439 gp = _bfd_get_gp_value (output_bfd)
3440 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3441
3442 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3443 }
3444
3445 /* Create and return a local GOT entry for VALUE, which was calculated
3446 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3447 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3448 instead. */
3449
3450 static struct mips_got_entry *
3451 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3452 bfd *ibfd, bfd_vma value,
3453 unsigned long r_symndx,
3454 struct mips_elf_link_hash_entry *h,
3455 int r_type)
3456 {
3457 struct mips_got_entry entry, **loc;
3458 struct mips_got_info *g;
3459 struct mips_elf_link_hash_table *htab;
3460
3461 htab = mips_elf_hash_table (info);
3462 BFD_ASSERT (htab != NULL);
3463
3464 entry.abfd = NULL;
3465 entry.symndx = -1;
3466 entry.d.address = value;
3467 entry.tls_type = 0;
3468
3469 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3470 if (g == NULL)
3471 {
3472 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3473 BFD_ASSERT (g != NULL);
3474 }
3475
3476 /* This function shouldn't be called for symbols that live in the global
3477 area of the GOT. */
3478 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3479 if (TLS_RELOC_P (r_type))
3480 {
3481 struct mips_got_entry *p;
3482
3483 entry.abfd = ibfd;
3484 if (tls_ldm_reloc_p (r_type))
3485 {
3486 entry.tls_type = GOT_TLS_LDM;
3487 entry.symndx = 0;
3488 entry.d.addend = 0;
3489 }
3490 else if (h == NULL)
3491 {
3492 entry.symndx = r_symndx;
3493 entry.d.addend = 0;
3494 }
3495 else
3496 entry.d.h = h;
3497
3498 p = (struct mips_got_entry *)
3499 htab_find (g->got_entries, &entry);
3500
3501 BFD_ASSERT (p);
3502 return p;
3503 }
3504
3505 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3506 INSERT);
3507 if (*loc)
3508 return *loc;
3509
3510 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3511 entry.tls_type = 0;
3512
3513 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3514
3515 if (! *loc)
3516 return NULL;
3517
3518 memcpy (*loc, &entry, sizeof entry);
3519
3520 if (g->assigned_gotno > g->local_gotno)
3521 {
3522 (*loc)->gotidx = -1;
3523 /* We didn't allocate enough space in the GOT. */
3524 (*_bfd_error_handler)
3525 (_("not enough GOT space for local GOT entries"));
3526 bfd_set_error (bfd_error_bad_value);
3527 return NULL;
3528 }
3529
3530 MIPS_ELF_PUT_WORD (abfd, value,
3531 (htab->sgot->contents + entry.gotidx));
3532
3533 /* These GOT entries need a dynamic relocation on VxWorks. */
3534 if (htab->is_vxworks)
3535 {
3536 Elf_Internal_Rela outrel;
3537 asection *s;
3538 bfd_byte *rloc;
3539 bfd_vma got_address;
3540
3541 s = mips_elf_rel_dyn_section (info, FALSE);
3542 got_address = (htab->sgot->output_section->vma
3543 + htab->sgot->output_offset
3544 + entry.gotidx);
3545
3546 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3547 outrel.r_offset = got_address;
3548 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3549 outrel.r_addend = value;
3550 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3551 }
3552
3553 return *loc;
3554 }
3555
3556 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3557 The number might be exact or a worst-case estimate, depending on how
3558 much information is available to elf_backend_omit_section_dynsym at
3559 the current linking stage. */
3560
3561 static bfd_size_type
3562 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3563 {
3564 bfd_size_type count;
3565
3566 count = 0;
3567 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3568 {
3569 asection *p;
3570 const struct elf_backend_data *bed;
3571
3572 bed = get_elf_backend_data (output_bfd);
3573 for (p = output_bfd->sections; p ; p = p->next)
3574 if ((p->flags & SEC_EXCLUDE) == 0
3575 && (p->flags & SEC_ALLOC) != 0
3576 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3577 ++count;
3578 }
3579 return count;
3580 }
3581
3582 /* Sort the dynamic symbol table so that symbols that need GOT entries
3583 appear towards the end. */
3584
3585 static bfd_boolean
3586 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3587 {
3588 struct mips_elf_link_hash_table *htab;
3589 struct mips_elf_hash_sort_data hsd;
3590 struct mips_got_info *g;
3591
3592 if (elf_hash_table (info)->dynsymcount == 0)
3593 return TRUE;
3594
3595 htab = mips_elf_hash_table (info);
3596 BFD_ASSERT (htab != NULL);
3597
3598 g = htab->got_info;
3599 if (g == NULL)
3600 return TRUE;
3601
3602 hsd.low = NULL;
3603 hsd.max_unref_got_dynindx
3604 = hsd.min_got_dynindx
3605 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3606 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3607 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3608 elf_hash_table (info)),
3609 mips_elf_sort_hash_table_f,
3610 &hsd);
3611
3612 /* There should have been enough room in the symbol table to
3613 accommodate both the GOT and non-GOT symbols. */
3614 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3615 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3616 == elf_hash_table (info)->dynsymcount);
3617 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3618 == g->global_gotno);
3619
3620 /* Now we know which dynamic symbol has the lowest dynamic symbol
3621 table index in the GOT. */
3622 g->global_gotsym = hsd.low;
3623
3624 return TRUE;
3625 }
3626
3627 /* If H needs a GOT entry, assign it the highest available dynamic
3628 index. Otherwise, assign it the lowest available dynamic
3629 index. */
3630
3631 static bfd_boolean
3632 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3633 {
3634 struct mips_elf_hash_sort_data *hsd = data;
3635
3636 /* Symbols without dynamic symbol table entries aren't interesting
3637 at all. */
3638 if (h->root.dynindx == -1)
3639 return TRUE;
3640
3641 switch (h->global_got_area)
3642 {
3643 case GGA_NONE:
3644 h->root.dynindx = hsd->max_non_got_dynindx++;
3645 break;
3646
3647 case GGA_NORMAL:
3648 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3649
3650 h->root.dynindx = --hsd->min_got_dynindx;
3651 hsd->low = (struct elf_link_hash_entry *) h;
3652 break;
3653
3654 case GGA_RELOC_ONLY:
3655 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3656
3657 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3658 hsd->low = (struct elf_link_hash_entry *) h;
3659 h->root.dynindx = hsd->max_unref_got_dynindx++;
3660 break;
3661 }
3662
3663 return TRUE;
3664 }
3665
3666 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3667 symbol table index lower than any we've seen to date, record it for
3668 posterity. FOR_CALL is true if the caller is only interested in
3669 using the GOT entry for calls. */
3670
3671 static bfd_boolean
3672 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3673 bfd *abfd, struct bfd_link_info *info,
3674 bfd_boolean for_call,
3675 unsigned char tls_flag)
3676 {
3677 struct mips_elf_link_hash_table *htab;
3678 struct mips_elf_link_hash_entry *hmips;
3679 struct mips_got_entry entry, **loc;
3680 struct mips_got_info *g;
3681
3682 htab = mips_elf_hash_table (info);
3683 BFD_ASSERT (htab != NULL);
3684
3685 hmips = (struct mips_elf_link_hash_entry *) h;
3686 if (!for_call)
3687 hmips->got_only_for_calls = FALSE;
3688
3689 /* A global symbol in the GOT must also be in the dynamic symbol
3690 table. */
3691 if (h->dynindx == -1)
3692 {
3693 switch (ELF_ST_VISIBILITY (h->other))
3694 {
3695 case STV_INTERNAL:
3696 case STV_HIDDEN:
3697 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3698 break;
3699 }
3700 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3701 return FALSE;
3702 }
3703
3704 /* Make sure we have a GOT to put this entry into. */
3705 g = htab->got_info;
3706 BFD_ASSERT (g != NULL);
3707
3708 entry.abfd = abfd;
3709 entry.symndx = -1;
3710 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3711 entry.tls_type = 0;
3712
3713 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3714 INSERT);
3715
3716 /* If we've already marked this entry as needing GOT space, we don't
3717 need to do it again. */
3718 if (*loc)
3719 {
3720 (*loc)->tls_type |= tls_flag;
3721 return TRUE;
3722 }
3723
3724 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3725
3726 if (! *loc)
3727 return FALSE;
3728
3729 entry.gotidx = -1;
3730 entry.tls_type = tls_flag;
3731
3732 memcpy (*loc, &entry, sizeof entry);
3733
3734 if (tls_flag == 0)
3735 hmips->global_got_area = GGA_NORMAL;
3736
3737 return TRUE;
3738 }
3739
3740 /* Reserve space in G for a GOT entry containing the value of symbol
3741 SYMNDX in input bfd ABDF, plus ADDEND. */
3742
3743 static bfd_boolean
3744 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3745 struct bfd_link_info *info,
3746 unsigned char tls_flag)
3747 {
3748 struct mips_elf_link_hash_table *htab;
3749 struct mips_got_info *g;
3750 struct mips_got_entry entry, **loc;
3751
3752 htab = mips_elf_hash_table (info);
3753 BFD_ASSERT (htab != NULL);
3754
3755 g = htab->got_info;
3756 BFD_ASSERT (g != NULL);
3757
3758 entry.abfd = abfd;
3759 entry.symndx = symndx;
3760 entry.d.addend = addend;
3761 entry.tls_type = tls_flag;
3762 loc = (struct mips_got_entry **)
3763 htab_find_slot (g->got_entries, &entry, INSERT);
3764
3765 if (*loc)
3766 {
3767 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3768 {
3769 g->tls_gotno += 2;
3770 (*loc)->tls_type |= tls_flag;
3771 }
3772 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3773 {
3774 g->tls_gotno += 1;
3775 (*loc)->tls_type |= tls_flag;
3776 }
3777 return TRUE;
3778 }
3779
3780 if (tls_flag != 0)
3781 {
3782 entry.gotidx = -1;
3783 entry.tls_type = tls_flag;
3784 if (tls_flag == GOT_TLS_IE)
3785 g->tls_gotno += 1;
3786 else if (tls_flag == GOT_TLS_GD)
3787 g->tls_gotno += 2;
3788 else if (g->tls_ldm_offset == MINUS_ONE)
3789 {
3790 g->tls_ldm_offset = MINUS_TWO;
3791 g->tls_gotno += 2;
3792 }
3793 }
3794 else
3795 {
3796 entry.gotidx = g->local_gotno++;
3797 entry.tls_type = 0;
3798 }
3799
3800 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3801
3802 if (! *loc)
3803 return FALSE;
3804
3805 memcpy (*loc, &entry, sizeof entry);
3806
3807 return TRUE;
3808 }
3809
3810 /* Return the maximum number of GOT page entries required for RANGE. */
3811
3812 static bfd_vma
3813 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3814 {
3815 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3816 }
3817
3818 /* Record that ABFD has a page relocation against symbol SYMNDX and
3819 that ADDEND is the addend for that relocation.
3820
3821 This function creates an upper bound on the number of GOT slots
3822 required; no attempt is made to combine references to non-overridable
3823 global symbols across multiple input files. */
3824
3825 static bfd_boolean
3826 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3827 long symndx, bfd_signed_vma addend)
3828 {
3829 struct mips_elf_link_hash_table *htab;
3830 struct mips_got_info *g;
3831 struct mips_got_page_entry lookup, *entry;
3832 struct mips_got_page_range **range_ptr, *range;
3833 bfd_vma old_pages, new_pages;
3834 void **loc;
3835
3836 htab = mips_elf_hash_table (info);
3837 BFD_ASSERT (htab != NULL);
3838
3839 g = htab->got_info;
3840 BFD_ASSERT (g != NULL);
3841
3842 /* Find the mips_got_page_entry hash table entry for this symbol. */
3843 lookup.abfd = abfd;
3844 lookup.symndx = symndx;
3845 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3846 if (loc == NULL)
3847 return FALSE;
3848
3849 /* Create a mips_got_page_entry if this is the first time we've
3850 seen the symbol. */
3851 entry = (struct mips_got_page_entry *) *loc;
3852 if (!entry)
3853 {
3854 entry = bfd_alloc (abfd, sizeof (*entry));
3855 if (!entry)
3856 return FALSE;
3857
3858 entry->abfd = abfd;
3859 entry->symndx = symndx;
3860 entry->ranges = NULL;
3861 entry->num_pages = 0;
3862 *loc = entry;
3863 }
3864
3865 /* Skip over ranges whose maximum extent cannot share a page entry
3866 with ADDEND. */
3867 range_ptr = &entry->ranges;
3868 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3869 range_ptr = &(*range_ptr)->next;
3870
3871 /* If we scanned to the end of the list, or found a range whose
3872 minimum extent cannot share a page entry with ADDEND, create
3873 a new singleton range. */
3874 range = *range_ptr;
3875 if (!range || addend < range->min_addend - 0xffff)
3876 {
3877 range = bfd_alloc (abfd, sizeof (*range));
3878 if (!range)
3879 return FALSE;
3880
3881 range->next = *range_ptr;
3882 range->min_addend = addend;
3883 range->max_addend = addend;
3884
3885 *range_ptr = range;
3886 entry->num_pages++;
3887 g->page_gotno++;
3888 return TRUE;
3889 }
3890
3891 /* Remember how many pages the old range contributed. */
3892 old_pages = mips_elf_pages_for_range (range);
3893
3894 /* Update the ranges. */
3895 if (addend < range->min_addend)
3896 range->min_addend = addend;
3897 else if (addend > range->max_addend)
3898 {
3899 if (range->next && addend >= range->next->min_addend - 0xffff)
3900 {
3901 old_pages += mips_elf_pages_for_range (range->next);
3902 range->max_addend = range->next->max_addend;
3903 range->next = range->next->next;
3904 }
3905 else
3906 range->max_addend = addend;
3907 }
3908
3909 /* Record any change in the total estimate. */
3910 new_pages = mips_elf_pages_for_range (range);
3911 if (old_pages != new_pages)
3912 {
3913 entry->num_pages += new_pages - old_pages;
3914 g->page_gotno += new_pages - old_pages;
3915 }
3916
3917 return TRUE;
3918 }
3919
3920 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3921
3922 static void
3923 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3924 unsigned int n)
3925 {
3926 asection *s;
3927 struct mips_elf_link_hash_table *htab;
3928
3929 htab = mips_elf_hash_table (info);
3930 BFD_ASSERT (htab != NULL);
3931
3932 s = mips_elf_rel_dyn_section (info, FALSE);
3933 BFD_ASSERT (s != NULL);
3934
3935 if (htab->is_vxworks)
3936 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3937 else
3938 {
3939 if (s->size == 0)
3940 {
3941 /* Make room for a null element. */
3942 s->size += MIPS_ELF_REL_SIZE (abfd);
3943 ++s->reloc_count;
3944 }
3945 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3946 }
3947 }
3948 \f
3949 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3950 if the GOT entry is for an indirect or warning symbol. */
3951
3952 static int
3953 mips_elf_check_recreate_got (void **entryp, void *data)
3954 {
3955 struct mips_got_entry *entry;
3956 bfd_boolean *must_recreate;
3957
3958 entry = (struct mips_got_entry *) *entryp;
3959 must_recreate = (bfd_boolean *) data;
3960 if (entry->abfd != NULL && entry->symndx == -1)
3961 {
3962 struct mips_elf_link_hash_entry *h;
3963
3964 h = entry->d.h;
3965 if (h->root.root.type == bfd_link_hash_indirect
3966 || h->root.root.type == bfd_link_hash_warning)
3967 {
3968 *must_recreate = TRUE;
3969 return 0;
3970 }
3971 }
3972 return 1;
3973 }
3974
3975 /* A htab_traverse callback for GOT entries. Add all entries to
3976 hash table *DATA, converting entries for indirect and warning
3977 symbols into entries for the target symbol. Set *DATA to null
3978 on error. */
3979
3980 static int
3981 mips_elf_recreate_got (void **entryp, void *data)
3982 {
3983 htab_t *new_got;
3984 struct mips_got_entry *entry;
3985 void **slot;
3986
3987 new_got = (htab_t *) data;
3988 entry = (struct mips_got_entry *) *entryp;
3989 if (entry->abfd != NULL && entry->symndx == -1)
3990 {
3991 struct mips_elf_link_hash_entry *h;
3992
3993 h = entry->d.h;
3994 while (h->root.root.type == bfd_link_hash_indirect
3995 || h->root.root.type == bfd_link_hash_warning)
3996 {
3997 BFD_ASSERT (h->global_got_area == GGA_NONE);
3998 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3999 }
4000 entry->d.h = h;
4001 }
4002 slot = htab_find_slot (*new_got, entry, INSERT);
4003 if (slot == NULL)
4004 {
4005 *new_got = NULL;
4006 return 0;
4007 }
4008 if (*slot == NULL)
4009 *slot = entry;
4010 else
4011 free (entry);
4012 return 1;
4013 }
4014
4015 /* If any entries in G->got_entries are for indirect or warning symbols,
4016 replace them with entries for the target symbol. */
4017
4018 static bfd_boolean
4019 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
4020 {
4021 bfd_boolean must_recreate;
4022 htab_t new_got;
4023
4024 must_recreate = FALSE;
4025 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
4026 if (must_recreate)
4027 {
4028 new_got = htab_create (htab_size (g->got_entries),
4029 mips_elf_got_entry_hash,
4030 mips_elf_got_entry_eq, NULL);
4031 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
4032 if (new_got == NULL)
4033 return FALSE;
4034
4035 /* Each entry in g->got_entries has either been copied to new_got
4036 or freed. Now delete the hash table itself. */
4037 htab_delete (g->got_entries);
4038 g->got_entries = new_got;
4039 }
4040 return TRUE;
4041 }
4042
4043 /* A mips_elf_link_hash_traverse callback for which DATA points
4044 to the link_info structure. Count the number of type (3) entries
4045 in the master GOT. */
4046
4047 static int
4048 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4049 {
4050 struct bfd_link_info *info;
4051 struct mips_elf_link_hash_table *htab;
4052 struct mips_got_info *g;
4053
4054 info = (struct bfd_link_info *) data;
4055 htab = mips_elf_hash_table (info);
4056 g = htab->got_info;
4057 if (h->global_got_area != GGA_NONE)
4058 {
4059 /* Make a final decision about whether the symbol belongs in the
4060 local or global GOT. Symbols that bind locally can (and in the
4061 case of forced-local symbols, must) live in the local GOT.
4062 Those that are aren't in the dynamic symbol table must also
4063 live in the local GOT.
4064
4065 Note that the former condition does not always imply the
4066 latter: symbols do not bind locally if they are completely
4067 undefined. We'll report undefined symbols later if appropriate. */
4068 if (h->root.dynindx == -1
4069 || (h->got_only_for_calls
4070 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4071 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
4072 {
4073 /* The symbol belongs in the local GOT. We no longer need this
4074 entry if it was only used for relocations; those relocations
4075 will be against the null or section symbol instead of H. */
4076 if (h->global_got_area != GGA_RELOC_ONLY)
4077 g->local_gotno++;
4078 h->global_got_area = GGA_NONE;
4079 }
4080 else if (htab->is_vxworks
4081 && h->got_only_for_calls
4082 && h->root.plt.offset != MINUS_ONE)
4083 /* On VxWorks, calls can refer directly to the .got.plt entry;
4084 they don't need entries in the regular GOT. .got.plt entries
4085 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4086 h->global_got_area = GGA_NONE;
4087 else
4088 {
4089 g->global_gotno++;
4090 if (h->global_got_area == GGA_RELOC_ONLY)
4091 g->reloc_only_gotno++;
4092 }
4093 }
4094 return 1;
4095 }
4096 \f
4097 /* Compute the hash value of the bfd in a bfd2got hash entry. */
4098
4099 static hashval_t
4100 mips_elf_bfd2got_entry_hash (const void *entry_)
4101 {
4102 const struct mips_elf_bfd2got_hash *entry
4103 = (struct mips_elf_bfd2got_hash *)entry_;
4104
4105 return entry->bfd->id;
4106 }
4107
4108 /* Check whether two hash entries have the same bfd. */
4109
4110 static int
4111 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
4112 {
4113 const struct mips_elf_bfd2got_hash *e1
4114 = (const struct mips_elf_bfd2got_hash *)entry1;
4115 const struct mips_elf_bfd2got_hash *e2
4116 = (const struct mips_elf_bfd2got_hash *)entry2;
4117
4118 return e1->bfd == e2->bfd;
4119 }
4120
4121 /* In a multi-got link, determine the GOT to be used for IBFD. G must
4122 be the master GOT data. */
4123
4124 static struct mips_got_info *
4125 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
4126 {
4127 struct mips_elf_bfd2got_hash e, *p;
4128
4129 if (! g->bfd2got)
4130 return g;
4131
4132 e.bfd = ibfd;
4133 p = htab_find (g->bfd2got, &e);
4134 return p ? p->g : NULL;
4135 }
4136
4137 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
4138 Return NULL if an error occured. */
4139
4140 static struct mips_got_info *
4141 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
4142 bfd *input_bfd)
4143 {
4144 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
4145 struct mips_got_info *g;
4146 void **bfdgotp;
4147
4148 bfdgot_entry.bfd = input_bfd;
4149 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
4150 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
4151
4152 if (bfdgot == NULL)
4153 {
4154 bfdgot = ((struct mips_elf_bfd2got_hash *)
4155 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
4156 if (bfdgot == NULL)
4157 return NULL;
4158
4159 *bfdgotp = bfdgot;
4160
4161 g = ((struct mips_got_info *)
4162 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
4163 if (g == NULL)
4164 return NULL;
4165
4166 bfdgot->bfd = input_bfd;
4167 bfdgot->g = g;
4168
4169 g->global_gotsym = NULL;
4170 g->global_gotno = 0;
4171 g->reloc_only_gotno = 0;
4172 g->local_gotno = 0;
4173 g->page_gotno = 0;
4174 g->assigned_gotno = -1;
4175 g->tls_gotno = 0;
4176 g->tls_assigned_gotno = 0;
4177 g->tls_ldm_offset = MINUS_ONE;
4178 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4179 mips_elf_multi_got_entry_eq, NULL);
4180 if (g->got_entries == NULL)
4181 return NULL;
4182
4183 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4184 mips_got_page_entry_eq, NULL);
4185 if (g->got_page_entries == NULL)
4186 return NULL;
4187
4188 g->bfd2got = NULL;
4189 g->next = NULL;
4190 }
4191
4192 return bfdgot->g;
4193 }
4194
4195 /* A htab_traverse callback for the entries in the master got.
4196 Create one separate got for each bfd that has entries in the global
4197 got, such that we can tell how many local and global entries each
4198 bfd requires. */
4199
4200 static int
4201 mips_elf_make_got_per_bfd (void **entryp, void *p)
4202 {
4203 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4204 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4205 struct mips_got_info *g;
4206
4207 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4208 if (g == NULL)
4209 {
4210 arg->obfd = NULL;
4211 return 0;
4212 }
4213
4214 /* Insert the GOT entry in the bfd's got entry hash table. */
4215 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4216 if (*entryp != NULL)
4217 return 1;
4218
4219 *entryp = entry;
4220
4221 if (entry->tls_type)
4222 {
4223 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4224 g->tls_gotno += 2;
4225 if (entry->tls_type & GOT_TLS_IE)
4226 g->tls_gotno += 1;
4227 }
4228 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
4229 ++g->local_gotno;
4230 else
4231 ++g->global_gotno;
4232
4233 return 1;
4234 }
4235
4236 /* A htab_traverse callback for the page entries in the master got.
4237 Associate each page entry with the bfd's got. */
4238
4239 static int
4240 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4241 {
4242 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4243 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4244 struct mips_got_info *g;
4245
4246 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4247 if (g == NULL)
4248 {
4249 arg->obfd = NULL;
4250 return 0;
4251 }
4252
4253 /* Insert the GOT entry in the bfd's got entry hash table. */
4254 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4255 if (*entryp != NULL)
4256 return 1;
4257
4258 *entryp = entry;
4259 g->page_gotno += entry->num_pages;
4260 return 1;
4261 }
4262
4263 /* Consider merging the got described by BFD2GOT with TO, using the
4264 information given by ARG. Return -1 if this would lead to overflow,
4265 1 if they were merged successfully, and 0 if a merge failed due to
4266 lack of memory. (These values are chosen so that nonnegative return
4267 values can be returned by a htab_traverse callback.) */
4268
4269 static int
4270 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4271 struct mips_got_info *to,
4272 struct mips_elf_got_per_bfd_arg *arg)
4273 {
4274 struct mips_got_info *from = bfd2got->g;
4275 unsigned int estimate;
4276
4277 /* Work out how many page entries we would need for the combined GOT. */
4278 estimate = arg->max_pages;
4279 if (estimate >= from->page_gotno + to->page_gotno)
4280 estimate = from->page_gotno + to->page_gotno;
4281
4282 /* And conservatively estimate how many local and TLS entries
4283 would be needed. */
4284 estimate += from->local_gotno + to->local_gotno;
4285 estimate += from->tls_gotno + to->tls_gotno;
4286
4287 /* If we're merging with the primary got, we will always have
4288 the full set of global entries. Otherwise estimate those
4289 conservatively as well. */
4290 if (to == arg->primary)
4291 estimate += arg->global_count;
4292 else
4293 estimate += from->global_gotno + to->global_gotno;
4294
4295 /* Bail out if the combined GOT might be too big. */
4296 if (estimate > arg->max_count)
4297 return -1;
4298
4299 /* Commit to the merge. Record that TO is now the bfd for this got. */
4300 bfd2got->g = to;
4301
4302 /* Transfer the bfd's got information from FROM to TO. */
4303 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4304 if (arg->obfd == NULL)
4305 return 0;
4306
4307 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4308 if (arg->obfd == NULL)
4309 return 0;
4310
4311 /* We don't have to worry about releasing memory of the actual
4312 got entries, since they're all in the master got_entries hash
4313 table anyway. */
4314 htab_delete (from->got_entries);
4315 htab_delete (from->got_page_entries);
4316 return 1;
4317 }
4318
4319 /* Attempt to merge gots of different input bfds. Try to use as much
4320 as possible of the primary got, since it doesn't require explicit
4321 dynamic relocations, but don't use bfds that would reference global
4322 symbols out of the addressable range. Failing the primary got,
4323 attempt to merge with the current got, or finish the current got
4324 and then make make the new got current. */
4325
4326 static int
4327 mips_elf_merge_gots (void **bfd2got_, void *p)
4328 {
4329 struct mips_elf_bfd2got_hash *bfd2got
4330 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4331 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4332 struct mips_got_info *g;
4333 unsigned int estimate;
4334 int result;
4335
4336 g = bfd2got->g;
4337
4338 /* Work out the number of page, local and TLS entries. */
4339 estimate = arg->max_pages;
4340 if (estimate > g->page_gotno)
4341 estimate = g->page_gotno;
4342 estimate += g->local_gotno + g->tls_gotno;
4343
4344 /* We place TLS GOT entries after both locals and globals. The globals
4345 for the primary GOT may overflow the normal GOT size limit, so be
4346 sure not to merge a GOT which requires TLS with the primary GOT in that
4347 case. This doesn't affect non-primary GOTs. */
4348 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4349
4350 if (estimate <= arg->max_count)
4351 {
4352 /* If we don't have a primary GOT, use it as
4353 a starting point for the primary GOT. */
4354 if (!arg->primary)
4355 {
4356 arg->primary = bfd2got->g;
4357 return 1;
4358 }
4359
4360 /* Try merging with the primary GOT. */
4361 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4362 if (result >= 0)
4363 return result;
4364 }
4365
4366 /* If we can merge with the last-created got, do it. */
4367 if (arg->current)
4368 {
4369 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4370 if (result >= 0)
4371 return result;
4372 }
4373
4374 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4375 fits; if it turns out that it doesn't, we'll get relocation
4376 overflows anyway. */
4377 g->next = arg->current;
4378 arg->current = g;
4379
4380 return 1;
4381 }
4382
4383 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4384 is null iff there is just a single GOT. */
4385
4386 static int
4387 mips_elf_initialize_tls_index (void **entryp, void *p)
4388 {
4389 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4390 struct mips_got_info *g = p;
4391 bfd_vma next_index;
4392 unsigned char tls_type;
4393
4394 /* We're only interested in TLS symbols. */
4395 if (entry->tls_type == 0)
4396 return 1;
4397
4398 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4399
4400 if (entry->symndx == -1 && g->next == NULL)
4401 {
4402 /* A type (3) got entry in the single-GOT case. We use the symbol's
4403 hash table entry to track its index. */
4404 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4405 return 1;
4406 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4407 entry->d.h->tls_got_offset = next_index;
4408 tls_type = entry->d.h->tls_type;
4409 }
4410 else
4411 {
4412 if (entry->tls_type & GOT_TLS_LDM)
4413 {
4414 /* There are separate mips_got_entry objects for each input bfd
4415 that requires an LDM entry. Make sure that all LDM entries in
4416 a GOT resolve to the same index. */
4417 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4418 {
4419 entry->gotidx = g->tls_ldm_offset;
4420 return 1;
4421 }
4422 g->tls_ldm_offset = next_index;
4423 }
4424 entry->gotidx = next_index;
4425 tls_type = entry->tls_type;
4426 }
4427
4428 /* Account for the entries we've just allocated. */
4429 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4430 g->tls_assigned_gotno += 2;
4431 if (tls_type & GOT_TLS_IE)
4432 g->tls_assigned_gotno += 1;
4433
4434 return 1;
4435 }
4436
4437 /* If passed a NULL mips_got_info in the argument, set the marker used
4438 to tell whether a global symbol needs a got entry (in the primary
4439 got) to the given VALUE.
4440
4441 If passed a pointer G to a mips_got_info in the argument (it must
4442 not be the primary GOT), compute the offset from the beginning of
4443 the (primary) GOT section to the entry in G corresponding to the
4444 global symbol. G's assigned_gotno must contain the index of the
4445 first available global GOT entry in G. VALUE must contain the size
4446 of a GOT entry in bytes. For each global GOT entry that requires a
4447 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4448 marked as not eligible for lazy resolution through a function
4449 stub. */
4450 static int
4451 mips_elf_set_global_got_offset (void **entryp, void *p)
4452 {
4453 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4454 struct mips_elf_set_global_got_offset_arg *arg
4455 = (struct mips_elf_set_global_got_offset_arg *)p;
4456 struct mips_got_info *g = arg->g;
4457
4458 if (g && entry->tls_type != GOT_NORMAL)
4459 arg->needed_relocs +=
4460 mips_tls_got_relocs (arg->info, entry->tls_type,
4461 entry->symndx == -1 ? &entry->d.h->root : NULL);
4462
4463 if (entry->abfd != NULL
4464 && entry->symndx == -1
4465 && entry->d.h->global_got_area != GGA_NONE)
4466 {
4467 if (g)
4468 {
4469 BFD_ASSERT (g->global_gotsym == NULL);
4470
4471 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4472 if (arg->info->shared
4473 || (elf_hash_table (arg->info)->dynamic_sections_created
4474 && entry->d.h->root.def_dynamic
4475 && !entry->d.h->root.def_regular))
4476 ++arg->needed_relocs;
4477 }
4478 else
4479 entry->d.h->global_got_area = arg->value;
4480 }
4481
4482 return 1;
4483 }
4484
4485 /* A htab_traverse callback for GOT entries for which DATA is the
4486 bfd_link_info. Forbid any global symbols from having traditional
4487 lazy-binding stubs. */
4488
4489 static int
4490 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4491 {
4492 struct bfd_link_info *info;
4493 struct mips_elf_link_hash_table *htab;
4494 struct mips_got_entry *entry;
4495
4496 entry = (struct mips_got_entry *) *entryp;
4497 info = (struct bfd_link_info *) data;
4498 htab = mips_elf_hash_table (info);
4499 BFD_ASSERT (htab != NULL);
4500
4501 if (entry->abfd != NULL
4502 && entry->symndx == -1
4503 && entry->d.h->needs_lazy_stub)
4504 {
4505 entry->d.h->needs_lazy_stub = FALSE;
4506 htab->lazy_stub_count--;
4507 }
4508
4509 return 1;
4510 }
4511
4512 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4513 the primary GOT. */
4514 static bfd_vma
4515 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4516 {
4517 if (g->bfd2got == NULL)
4518 return 0;
4519
4520 g = mips_elf_got_for_ibfd (g, ibfd);
4521 if (! g)
4522 return 0;
4523
4524 BFD_ASSERT (g->next);
4525
4526 g = g->next;
4527
4528 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4529 * MIPS_ELF_GOT_SIZE (abfd);
4530 }
4531
4532 /* Turn a single GOT that is too big for 16-bit addressing into
4533 a sequence of GOTs, each one 16-bit addressable. */
4534
4535 static bfd_boolean
4536 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4537 asection *got, bfd_size_type pages)
4538 {
4539 struct mips_elf_link_hash_table *htab;
4540 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4541 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4542 struct mips_got_info *g, *gg;
4543 unsigned int assign, needed_relocs;
4544 bfd *dynobj;
4545
4546 dynobj = elf_hash_table (info)->dynobj;
4547 htab = mips_elf_hash_table (info);
4548 BFD_ASSERT (htab != NULL);
4549
4550 g = htab->got_info;
4551 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4552 mips_elf_bfd2got_entry_eq, NULL);
4553 if (g->bfd2got == NULL)
4554 return FALSE;
4555
4556 got_per_bfd_arg.bfd2got = g->bfd2got;
4557 got_per_bfd_arg.obfd = abfd;
4558 got_per_bfd_arg.info = info;
4559
4560 /* Count how many GOT entries each input bfd requires, creating a
4561 map from bfd to got info while at that. */
4562 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4563 if (got_per_bfd_arg.obfd == NULL)
4564 return FALSE;
4565
4566 /* Also count how many page entries each input bfd requires. */
4567 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4568 &got_per_bfd_arg);
4569 if (got_per_bfd_arg.obfd == NULL)
4570 return FALSE;
4571
4572 got_per_bfd_arg.current = NULL;
4573 got_per_bfd_arg.primary = NULL;
4574 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4575 / MIPS_ELF_GOT_SIZE (abfd))
4576 - htab->reserved_gotno);
4577 got_per_bfd_arg.max_pages = pages;
4578 /* The number of globals that will be included in the primary GOT.
4579 See the calls to mips_elf_set_global_got_offset below for more
4580 information. */
4581 got_per_bfd_arg.global_count = g->global_gotno;
4582
4583 /* Try to merge the GOTs of input bfds together, as long as they
4584 don't seem to exceed the maximum GOT size, choosing one of them
4585 to be the primary GOT. */
4586 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4587 if (got_per_bfd_arg.obfd == NULL)
4588 return FALSE;
4589
4590 /* If we do not find any suitable primary GOT, create an empty one. */
4591 if (got_per_bfd_arg.primary == NULL)
4592 {
4593 g->next = (struct mips_got_info *)
4594 bfd_alloc (abfd, sizeof (struct mips_got_info));
4595 if (g->next == NULL)
4596 return FALSE;
4597
4598 g->next->global_gotsym = NULL;
4599 g->next->global_gotno = 0;
4600 g->next->reloc_only_gotno = 0;
4601 g->next->local_gotno = 0;
4602 g->next->page_gotno = 0;
4603 g->next->tls_gotno = 0;
4604 g->next->assigned_gotno = 0;
4605 g->next->tls_assigned_gotno = 0;
4606 g->next->tls_ldm_offset = MINUS_ONE;
4607 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4608 mips_elf_multi_got_entry_eq,
4609 NULL);
4610 if (g->next->got_entries == NULL)
4611 return FALSE;
4612 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4613 mips_got_page_entry_eq,
4614 NULL);
4615 if (g->next->got_page_entries == NULL)
4616 return FALSE;
4617 g->next->bfd2got = NULL;
4618 }
4619 else
4620 g->next = got_per_bfd_arg.primary;
4621 g->next->next = got_per_bfd_arg.current;
4622
4623 /* GG is now the master GOT, and G is the primary GOT. */
4624 gg = g;
4625 g = g->next;
4626
4627 /* Map the output bfd to the primary got. That's what we're going
4628 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4629 didn't mark in check_relocs, and we want a quick way to find it.
4630 We can't just use gg->next because we're going to reverse the
4631 list. */
4632 {
4633 struct mips_elf_bfd2got_hash *bfdgot;
4634 void **bfdgotp;
4635
4636 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4637 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4638
4639 if (bfdgot == NULL)
4640 return FALSE;
4641
4642 bfdgot->bfd = abfd;
4643 bfdgot->g = g;
4644 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4645
4646 BFD_ASSERT (*bfdgotp == NULL);
4647 *bfdgotp = bfdgot;
4648 }
4649
4650 /* Every symbol that is referenced in a dynamic relocation must be
4651 present in the primary GOT, so arrange for them to appear after
4652 those that are actually referenced. */
4653 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4654 g->global_gotno = gg->global_gotno;
4655
4656 set_got_offset_arg.g = NULL;
4657 set_got_offset_arg.value = GGA_RELOC_ONLY;
4658 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4659 &set_got_offset_arg);
4660 set_got_offset_arg.value = GGA_NORMAL;
4661 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4662 &set_got_offset_arg);
4663
4664 /* Now go through the GOTs assigning them offset ranges.
4665 [assigned_gotno, local_gotno[ will be set to the range of local
4666 entries in each GOT. We can then compute the end of a GOT by
4667 adding local_gotno to global_gotno. We reverse the list and make
4668 it circular since then we'll be able to quickly compute the
4669 beginning of a GOT, by computing the end of its predecessor. To
4670 avoid special cases for the primary GOT, while still preserving
4671 assertions that are valid for both single- and multi-got links,
4672 we arrange for the main got struct to have the right number of
4673 global entries, but set its local_gotno such that the initial
4674 offset of the primary GOT is zero. Remember that the primary GOT
4675 will become the last item in the circular linked list, so it
4676 points back to the master GOT. */
4677 gg->local_gotno = -g->global_gotno;
4678 gg->global_gotno = g->global_gotno;
4679 gg->tls_gotno = 0;
4680 assign = 0;
4681 gg->next = gg;
4682
4683 do
4684 {
4685 struct mips_got_info *gn;
4686
4687 assign += htab->reserved_gotno;
4688 g->assigned_gotno = assign;
4689 g->local_gotno += assign;
4690 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4691 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4692
4693 /* Take g out of the direct list, and push it onto the reversed
4694 list that gg points to. g->next is guaranteed to be nonnull after
4695 this operation, as required by mips_elf_initialize_tls_index. */
4696 gn = g->next;
4697 g->next = gg->next;
4698 gg->next = g;
4699
4700 /* Set up any TLS entries. We always place the TLS entries after
4701 all non-TLS entries. */
4702 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4703 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4704
4705 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4706 g = gn;
4707
4708 /* Forbid global symbols in every non-primary GOT from having
4709 lazy-binding stubs. */
4710 if (g)
4711 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4712 }
4713 while (g);
4714
4715 got->size = (gg->next->local_gotno
4716 + gg->next->global_gotno
4717 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4718
4719 needed_relocs = 0;
4720 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4721 set_got_offset_arg.info = info;
4722 for (g = gg->next; g && g->next != gg; g = g->next)
4723 {
4724 unsigned int save_assign;
4725
4726 /* Assign offsets to global GOT entries. */
4727 save_assign = g->assigned_gotno;
4728 g->assigned_gotno = g->local_gotno;
4729 set_got_offset_arg.g = g;
4730 set_got_offset_arg.needed_relocs = 0;
4731 htab_traverse (g->got_entries,
4732 mips_elf_set_global_got_offset,
4733 &set_got_offset_arg);
4734 needed_relocs += set_got_offset_arg.needed_relocs;
4735 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4736
4737 g->assigned_gotno = save_assign;
4738 if (info->shared)
4739 {
4740 needed_relocs += g->local_gotno - g->assigned_gotno;
4741 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4742 + g->next->global_gotno
4743 + g->next->tls_gotno
4744 + htab->reserved_gotno);
4745 }
4746 }
4747
4748 if (needed_relocs)
4749 mips_elf_allocate_dynamic_relocations (dynobj, info,
4750 needed_relocs);
4751
4752 return TRUE;
4753 }
4754
4755 \f
4756 /* Returns the first relocation of type r_type found, beginning with
4757 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4758
4759 static const Elf_Internal_Rela *
4760 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4761 const Elf_Internal_Rela *relocation,
4762 const Elf_Internal_Rela *relend)
4763 {
4764 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4765
4766 while (relocation < relend)
4767 {
4768 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4769 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4770 return relocation;
4771
4772 ++relocation;
4773 }
4774
4775 /* We didn't find it. */
4776 return NULL;
4777 }
4778
4779 /* Return whether an input relocation is against a local symbol. */
4780
4781 static bfd_boolean
4782 mips_elf_local_relocation_p (bfd *input_bfd,
4783 const Elf_Internal_Rela *relocation,
4784 asection **local_sections)
4785 {
4786 unsigned long r_symndx;
4787 Elf_Internal_Shdr *symtab_hdr;
4788 size_t extsymoff;
4789
4790 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4791 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4792 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4793
4794 if (r_symndx < extsymoff)
4795 return TRUE;
4796 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4797 return TRUE;
4798
4799 return FALSE;
4800 }
4801 \f
4802 /* Sign-extend VALUE, which has the indicated number of BITS. */
4803
4804 bfd_vma
4805 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4806 {
4807 if (value & ((bfd_vma) 1 << (bits - 1)))
4808 /* VALUE is negative. */
4809 value |= ((bfd_vma) - 1) << bits;
4810
4811 return value;
4812 }
4813
4814 /* Return non-zero if the indicated VALUE has overflowed the maximum
4815 range expressible by a signed number with the indicated number of
4816 BITS. */
4817
4818 static bfd_boolean
4819 mips_elf_overflow_p (bfd_vma value, int bits)
4820 {
4821 bfd_signed_vma svalue = (bfd_signed_vma) value;
4822
4823 if (svalue > (1 << (bits - 1)) - 1)
4824 /* The value is too big. */
4825 return TRUE;
4826 else if (svalue < -(1 << (bits - 1)))
4827 /* The value is too small. */
4828 return TRUE;
4829
4830 /* All is well. */
4831 return FALSE;
4832 }
4833
4834 /* Calculate the %high function. */
4835
4836 static bfd_vma
4837 mips_elf_high (bfd_vma value)
4838 {
4839 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4840 }
4841
4842 /* Calculate the %higher function. */
4843
4844 static bfd_vma
4845 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4846 {
4847 #ifdef BFD64
4848 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4849 #else
4850 abort ();
4851 return MINUS_ONE;
4852 #endif
4853 }
4854
4855 /* Calculate the %highest function. */
4856
4857 static bfd_vma
4858 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4859 {
4860 #ifdef BFD64
4861 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4862 #else
4863 abort ();
4864 return MINUS_ONE;
4865 #endif
4866 }
4867 \f
4868 /* Create the .compact_rel section. */
4869
4870 static bfd_boolean
4871 mips_elf_create_compact_rel_section
4872 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4873 {
4874 flagword flags;
4875 register asection *s;
4876
4877 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
4878 {
4879 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4880 | SEC_READONLY);
4881
4882 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
4883 if (s == NULL
4884 || ! bfd_set_section_alignment (abfd, s,
4885 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4886 return FALSE;
4887
4888 s->size = sizeof (Elf32_External_compact_rel);
4889 }
4890
4891 return TRUE;
4892 }
4893
4894 /* Create the .got section to hold the global offset table. */
4895
4896 static bfd_boolean
4897 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4898 {
4899 flagword flags;
4900 register asection *s;
4901 struct elf_link_hash_entry *h;
4902 struct bfd_link_hash_entry *bh;
4903 struct mips_got_info *g;
4904 bfd_size_type amt;
4905 struct mips_elf_link_hash_table *htab;
4906
4907 htab = mips_elf_hash_table (info);
4908 BFD_ASSERT (htab != NULL);
4909
4910 /* This function may be called more than once. */
4911 if (htab->sgot)
4912 return TRUE;
4913
4914 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4915 | SEC_LINKER_CREATED);
4916
4917 /* We have to use an alignment of 2**4 here because this is hardcoded
4918 in the function stub generation and in the linker script. */
4919 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4920 if (s == NULL
4921 || ! bfd_set_section_alignment (abfd, s, 4))
4922 return FALSE;
4923 htab->sgot = s;
4924
4925 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4926 linker script because we don't want to define the symbol if we
4927 are not creating a global offset table. */
4928 bh = NULL;
4929 if (! (_bfd_generic_link_add_one_symbol
4930 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4931 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4932 return FALSE;
4933
4934 h = (struct elf_link_hash_entry *) bh;
4935 h->non_elf = 0;
4936 h->def_regular = 1;
4937 h->type = STT_OBJECT;
4938 elf_hash_table (info)->hgot = h;
4939
4940 if (info->shared
4941 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4942 return FALSE;
4943
4944 amt = sizeof (struct mips_got_info);
4945 g = bfd_alloc (abfd, amt);
4946 if (g == NULL)
4947 return FALSE;
4948 g->global_gotsym = NULL;
4949 g->global_gotno = 0;
4950 g->reloc_only_gotno = 0;
4951 g->tls_gotno = 0;
4952 g->local_gotno = 0;
4953 g->page_gotno = 0;
4954 g->assigned_gotno = 0;
4955 g->bfd2got = NULL;
4956 g->next = NULL;
4957 g->tls_ldm_offset = MINUS_ONE;
4958 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4959 mips_elf_got_entry_eq, NULL);
4960 if (g->got_entries == NULL)
4961 return FALSE;
4962 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4963 mips_got_page_entry_eq, NULL);
4964 if (g->got_page_entries == NULL)
4965 return FALSE;
4966 htab->got_info = g;
4967 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4968 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4969
4970 /* We also need a .got.plt section when generating PLTs. */
4971 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
4972 SEC_ALLOC | SEC_LOAD
4973 | SEC_HAS_CONTENTS
4974 | SEC_IN_MEMORY
4975 | SEC_LINKER_CREATED);
4976 if (s == NULL)
4977 return FALSE;
4978 htab->sgotplt = s;
4979
4980 return TRUE;
4981 }
4982 \f
4983 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4984 __GOTT_INDEX__ symbols. These symbols are only special for
4985 shared objects; they are not used in executables. */
4986
4987 static bfd_boolean
4988 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4989 {
4990 return (mips_elf_hash_table (info)->is_vxworks
4991 && info->shared
4992 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4993 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4994 }
4995
4996 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4997 require an la25 stub. See also mips_elf_local_pic_function_p,
4998 which determines whether the destination function ever requires a
4999 stub. */
5000
5001 static bfd_boolean
5002 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5003 bfd_boolean target_is_16_bit_code_p)
5004 {
5005 /* We specifically ignore branches and jumps from EF_PIC objects,
5006 where the onus is on the compiler or programmer to perform any
5007 necessary initialization of $25. Sometimes such initialization
5008 is unnecessary; for example, -mno-shared functions do not use
5009 the incoming value of $25, and may therefore be called directly. */
5010 if (PIC_OBJECT_P (input_bfd))
5011 return FALSE;
5012
5013 switch (r_type)
5014 {
5015 case R_MIPS_26:
5016 case R_MIPS_PC16:
5017 case R_MICROMIPS_26_S1:
5018 case R_MICROMIPS_PC7_S1:
5019 case R_MICROMIPS_PC10_S1:
5020 case R_MICROMIPS_PC16_S1:
5021 case R_MICROMIPS_PC23_S2:
5022 return TRUE;
5023
5024 case R_MIPS16_26:
5025 return !target_is_16_bit_code_p;
5026
5027 default:
5028 return FALSE;
5029 }
5030 }
5031 \f
5032 /* Calculate the value produced by the RELOCATION (which comes from
5033 the INPUT_BFD). The ADDEND is the addend to use for this
5034 RELOCATION; RELOCATION->R_ADDEND is ignored.
5035
5036 The result of the relocation calculation is stored in VALUEP.
5037 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5038 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5039
5040 This function returns bfd_reloc_continue if the caller need take no
5041 further action regarding this relocation, bfd_reloc_notsupported if
5042 something goes dramatically wrong, bfd_reloc_overflow if an
5043 overflow occurs, and bfd_reloc_ok to indicate success. */
5044
5045 static bfd_reloc_status_type
5046 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5047 asection *input_section,
5048 struct bfd_link_info *info,
5049 const Elf_Internal_Rela *relocation,
5050 bfd_vma addend, reloc_howto_type *howto,
5051 Elf_Internal_Sym *local_syms,
5052 asection **local_sections, bfd_vma *valuep,
5053 const char **namep,
5054 bfd_boolean *cross_mode_jump_p,
5055 bfd_boolean save_addend)
5056 {
5057 /* The eventual value we will return. */
5058 bfd_vma value;
5059 /* The address of the symbol against which the relocation is
5060 occurring. */
5061 bfd_vma symbol = 0;
5062 /* The final GP value to be used for the relocatable, executable, or
5063 shared object file being produced. */
5064 bfd_vma gp;
5065 /* The place (section offset or address) of the storage unit being
5066 relocated. */
5067 bfd_vma p;
5068 /* The value of GP used to create the relocatable object. */
5069 bfd_vma gp0;
5070 /* The offset into the global offset table at which the address of
5071 the relocation entry symbol, adjusted by the addend, resides
5072 during execution. */
5073 bfd_vma g = MINUS_ONE;
5074 /* The section in which the symbol referenced by the relocation is
5075 located. */
5076 asection *sec = NULL;
5077 struct mips_elf_link_hash_entry *h = NULL;
5078 /* TRUE if the symbol referred to by this relocation is a local
5079 symbol. */
5080 bfd_boolean local_p, was_local_p;
5081 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5082 bfd_boolean gp_disp_p = FALSE;
5083 /* TRUE if the symbol referred to by this relocation is
5084 "__gnu_local_gp". */
5085 bfd_boolean gnu_local_gp_p = FALSE;
5086 Elf_Internal_Shdr *symtab_hdr;
5087 size_t extsymoff;
5088 unsigned long r_symndx;
5089 int r_type;
5090 /* TRUE if overflow occurred during the calculation of the
5091 relocation value. */
5092 bfd_boolean overflowed_p;
5093 /* TRUE if this relocation refers to a MIPS16 function. */
5094 bfd_boolean target_is_16_bit_code_p = FALSE;
5095 bfd_boolean target_is_micromips_code_p = FALSE;
5096 struct mips_elf_link_hash_table *htab;
5097 bfd *dynobj;
5098
5099 dynobj = elf_hash_table (info)->dynobj;
5100 htab = mips_elf_hash_table (info);
5101 BFD_ASSERT (htab != NULL);
5102
5103 /* Parse the relocation. */
5104 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5105 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5106 p = (input_section->output_section->vma
5107 + input_section->output_offset
5108 + relocation->r_offset);
5109
5110 /* Assume that there will be no overflow. */
5111 overflowed_p = FALSE;
5112
5113 /* Figure out whether or not the symbol is local, and get the offset
5114 used in the array of hash table entries. */
5115 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5116 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5117 local_sections);
5118 was_local_p = local_p;
5119 if (! elf_bad_symtab (input_bfd))
5120 extsymoff = symtab_hdr->sh_info;
5121 else
5122 {
5123 /* The symbol table does not follow the rule that local symbols
5124 must come before globals. */
5125 extsymoff = 0;
5126 }
5127
5128 /* Figure out the value of the symbol. */
5129 if (local_p)
5130 {
5131 Elf_Internal_Sym *sym;
5132
5133 sym = local_syms + r_symndx;
5134 sec = local_sections[r_symndx];
5135
5136 symbol = sec->output_section->vma + sec->output_offset;
5137 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5138 || (sec->flags & SEC_MERGE))
5139 symbol += sym->st_value;
5140 if ((sec->flags & SEC_MERGE)
5141 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5142 {
5143 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5144 addend -= symbol;
5145 addend += sec->output_section->vma + sec->output_offset;
5146 }
5147
5148 /* MIPS16/microMIPS text labels should be treated as odd. */
5149 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5150 ++symbol;
5151
5152 /* Record the name of this symbol, for our caller. */
5153 *namep = bfd_elf_string_from_elf_section (input_bfd,
5154 symtab_hdr->sh_link,
5155 sym->st_name);
5156 if (*namep == '\0')
5157 *namep = bfd_section_name (input_bfd, sec);
5158
5159 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5160 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5161 }
5162 else
5163 {
5164 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5165
5166 /* For global symbols we look up the symbol in the hash-table. */
5167 h = ((struct mips_elf_link_hash_entry *)
5168 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5169 /* Find the real hash-table entry for this symbol. */
5170 while (h->root.root.type == bfd_link_hash_indirect
5171 || h->root.root.type == bfd_link_hash_warning)
5172 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5173
5174 /* Record the name of this symbol, for our caller. */
5175 *namep = h->root.root.root.string;
5176
5177 /* See if this is the special _gp_disp symbol. Note that such a
5178 symbol must always be a global symbol. */
5179 if (strcmp (*namep, "_gp_disp") == 0
5180 && ! NEWABI_P (input_bfd))
5181 {
5182 /* Relocations against _gp_disp are permitted only with
5183 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5184 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5185 return bfd_reloc_notsupported;
5186
5187 gp_disp_p = TRUE;
5188 }
5189 /* See if this is the special _gp symbol. Note that such a
5190 symbol must always be a global symbol. */
5191 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5192 gnu_local_gp_p = TRUE;
5193
5194
5195 /* If this symbol is defined, calculate its address. Note that
5196 _gp_disp is a magic symbol, always implicitly defined by the
5197 linker, so it's inappropriate to check to see whether or not
5198 its defined. */
5199 else if ((h->root.root.type == bfd_link_hash_defined
5200 || h->root.root.type == bfd_link_hash_defweak)
5201 && h->root.root.u.def.section)
5202 {
5203 sec = h->root.root.u.def.section;
5204 if (sec->output_section)
5205 symbol = (h->root.root.u.def.value
5206 + sec->output_section->vma
5207 + sec->output_offset);
5208 else
5209 symbol = h->root.root.u.def.value;
5210 }
5211 else if (h->root.root.type == bfd_link_hash_undefweak)
5212 /* We allow relocations against undefined weak symbols, giving
5213 it the value zero, so that you can undefined weak functions
5214 and check to see if they exist by looking at their
5215 addresses. */
5216 symbol = 0;
5217 else if (info->unresolved_syms_in_objects == RM_IGNORE
5218 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5219 symbol = 0;
5220 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5221 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5222 {
5223 /* If this is a dynamic link, we should have created a
5224 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5225 in in _bfd_mips_elf_create_dynamic_sections.
5226 Otherwise, we should define the symbol with a value of 0.
5227 FIXME: It should probably get into the symbol table
5228 somehow as well. */
5229 BFD_ASSERT (! info->shared);
5230 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5231 symbol = 0;
5232 }
5233 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5234 {
5235 /* This is an optional symbol - an Irix specific extension to the
5236 ELF spec. Ignore it for now.
5237 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5238 than simply ignoring them, but we do not handle this for now.
5239 For information see the "64-bit ELF Object File Specification"
5240 which is available from here:
5241 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5242 symbol = 0;
5243 }
5244 else if ((*info->callbacks->undefined_symbol)
5245 (info, h->root.root.root.string, input_bfd,
5246 input_section, relocation->r_offset,
5247 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5248 || ELF_ST_VISIBILITY (h->root.other)))
5249 {
5250 return bfd_reloc_undefined;
5251 }
5252 else
5253 {
5254 return bfd_reloc_notsupported;
5255 }
5256
5257 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5258 /* If the output section is the PLT section,
5259 then the target is not microMIPS. */
5260 target_is_micromips_code_p = (htab->splt != sec
5261 && ELF_ST_IS_MICROMIPS (h->root.other));
5262 }
5263
5264 /* If this is a reference to a 16-bit function with a stub, we need
5265 to redirect the relocation to the stub unless:
5266
5267 (a) the relocation is for a MIPS16 JAL;
5268
5269 (b) the relocation is for a MIPS16 PIC call, and there are no
5270 non-MIPS16 uses of the GOT slot; or
5271
5272 (c) the section allows direct references to MIPS16 functions. */
5273 if (r_type != R_MIPS16_26
5274 && !info->relocatable
5275 && ((h != NULL
5276 && h->fn_stub != NULL
5277 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5278 || (local_p
5279 && elf_tdata (input_bfd)->local_stubs != NULL
5280 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5281 && !section_allows_mips16_refs_p (input_section))
5282 {
5283 /* This is a 32- or 64-bit call to a 16-bit function. We should
5284 have already noticed that we were going to need the
5285 stub. */
5286 if (local_p)
5287 {
5288 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5289 value = 0;
5290 }
5291 else
5292 {
5293 BFD_ASSERT (h->need_fn_stub);
5294 if (h->la25_stub)
5295 {
5296 /* If a LA25 header for the stub itself exists, point to the
5297 prepended LUI/ADDIU sequence. */
5298 sec = h->la25_stub->stub_section;
5299 value = h->la25_stub->offset;
5300 }
5301 else
5302 {
5303 sec = h->fn_stub;
5304 value = 0;
5305 }
5306 }
5307
5308 symbol = sec->output_section->vma + sec->output_offset + value;
5309 /* The target is 16-bit, but the stub isn't. */
5310 target_is_16_bit_code_p = FALSE;
5311 }
5312 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5313 need to redirect the call to the stub. Note that we specifically
5314 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5315 use an indirect stub instead. */
5316 else if (r_type == R_MIPS16_26 && !info->relocatable
5317 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5318 || (local_p
5319 && elf_tdata (input_bfd)->local_call_stubs != NULL
5320 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5321 && !target_is_16_bit_code_p)
5322 {
5323 if (local_p)
5324 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5325 else
5326 {
5327 /* If both call_stub and call_fp_stub are defined, we can figure
5328 out which one to use by checking which one appears in the input
5329 file. */
5330 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5331 {
5332 asection *o;
5333
5334 sec = NULL;
5335 for (o = input_bfd->sections; o != NULL; o = o->next)
5336 {
5337 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5338 {
5339 sec = h->call_fp_stub;
5340 break;
5341 }
5342 }
5343 if (sec == NULL)
5344 sec = h->call_stub;
5345 }
5346 else if (h->call_stub != NULL)
5347 sec = h->call_stub;
5348 else
5349 sec = h->call_fp_stub;
5350 }
5351
5352 BFD_ASSERT (sec->size > 0);
5353 symbol = sec->output_section->vma + sec->output_offset;
5354 }
5355 /* If this is a direct call to a PIC function, redirect to the
5356 non-PIC stub. */
5357 else if (h != NULL && h->la25_stub
5358 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5359 target_is_16_bit_code_p))
5360 symbol = (h->la25_stub->stub_section->output_section->vma
5361 + h->la25_stub->stub_section->output_offset
5362 + h->la25_stub->offset);
5363
5364 /* Make sure MIPS16 and microMIPS are not used together. */
5365 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5366 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5367 {
5368 (*_bfd_error_handler)
5369 (_("MIPS16 and microMIPS functions cannot call each other"));
5370 return bfd_reloc_notsupported;
5371 }
5372
5373 /* Calls from 16-bit code to 32-bit code and vice versa require the
5374 mode change. However, we can ignore calls to undefined weak symbols,
5375 which should never be executed at runtime. This exception is important
5376 because the assembly writer may have "known" that any definition of the
5377 symbol would be 16-bit code, and that direct jumps were therefore
5378 acceptable. */
5379 *cross_mode_jump_p = (!info->relocatable
5380 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5381 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5382 || (r_type == R_MICROMIPS_26_S1
5383 && !target_is_micromips_code_p)
5384 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5385 && (target_is_16_bit_code_p
5386 || target_is_micromips_code_p))));
5387
5388 local_p = (h == NULL
5389 || (h->got_only_for_calls
5390 ? SYMBOL_CALLS_LOCAL (info, &h->root)
5391 : SYMBOL_REFERENCES_LOCAL (info, &h->root)));
5392
5393 gp0 = _bfd_get_gp_value (input_bfd);
5394 gp = _bfd_get_gp_value (abfd);
5395 if (htab->got_info)
5396 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5397
5398 if (gnu_local_gp_p)
5399 symbol = gp;
5400
5401 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5402 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5403 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5404 if (got_page_reloc_p (r_type) && !local_p)
5405 {
5406 r_type = (micromips_reloc_p (r_type)
5407 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5408 addend = 0;
5409 }
5410
5411 /* If we haven't already determined the GOT offset, and we're going
5412 to need it, get it now. */
5413 switch (r_type)
5414 {
5415 case R_MIPS16_CALL16:
5416 case R_MIPS16_GOT16:
5417 case R_MIPS_CALL16:
5418 case R_MIPS_GOT16:
5419 case R_MIPS_GOT_DISP:
5420 case R_MIPS_GOT_HI16:
5421 case R_MIPS_CALL_HI16:
5422 case R_MIPS_GOT_LO16:
5423 case R_MIPS_CALL_LO16:
5424 case R_MICROMIPS_CALL16:
5425 case R_MICROMIPS_GOT16:
5426 case R_MICROMIPS_GOT_DISP:
5427 case R_MICROMIPS_GOT_HI16:
5428 case R_MICROMIPS_CALL_HI16:
5429 case R_MICROMIPS_GOT_LO16:
5430 case R_MICROMIPS_CALL_LO16:
5431 case R_MIPS_TLS_GD:
5432 case R_MIPS_TLS_GOTTPREL:
5433 case R_MIPS_TLS_LDM:
5434 case R_MIPS16_TLS_GD:
5435 case R_MIPS16_TLS_GOTTPREL:
5436 case R_MIPS16_TLS_LDM:
5437 case R_MICROMIPS_TLS_GD:
5438 case R_MICROMIPS_TLS_GOTTPREL:
5439 case R_MICROMIPS_TLS_LDM:
5440 /* Find the index into the GOT where this value is located. */
5441 if (tls_ldm_reloc_p (r_type))
5442 {
5443 g = mips_elf_local_got_index (abfd, input_bfd, info,
5444 0, 0, NULL, r_type);
5445 if (g == MINUS_ONE)
5446 return bfd_reloc_outofrange;
5447 }
5448 else if (!local_p)
5449 {
5450 /* On VxWorks, CALL relocations should refer to the .got.plt
5451 entry, which is initialized to point at the PLT stub. */
5452 if (htab->is_vxworks
5453 && (call_hi16_reloc_p (r_type)
5454 || call_lo16_reloc_p (r_type)
5455 || call16_reloc_p (r_type)))
5456 {
5457 BFD_ASSERT (addend == 0);
5458 BFD_ASSERT (h->root.needs_plt);
5459 g = mips_elf_gotplt_index (info, &h->root);
5460 }
5461 else
5462 {
5463 BFD_ASSERT (addend == 0);
5464 g = mips_elf_global_got_index (dynobj, input_bfd,
5465 &h->root, r_type, info);
5466 if (h->tls_type == GOT_NORMAL
5467 && !elf_hash_table (info)->dynamic_sections_created)
5468 /* This is a static link. We must initialize the GOT entry. */
5469 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5470 }
5471 }
5472 else if (!htab->is_vxworks
5473 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5474 /* The calculation below does not involve "g". */
5475 break;
5476 else
5477 {
5478 g = mips_elf_local_got_index (abfd, input_bfd, info,
5479 symbol + addend, r_symndx, h, r_type);
5480 if (g == MINUS_ONE)
5481 return bfd_reloc_outofrange;
5482 }
5483
5484 /* Convert GOT indices to actual offsets. */
5485 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5486 break;
5487 }
5488
5489 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5490 symbols are resolved by the loader. Add them to .rela.dyn. */
5491 if (h != NULL && is_gott_symbol (info, &h->root))
5492 {
5493 Elf_Internal_Rela outrel;
5494 bfd_byte *loc;
5495 asection *s;
5496
5497 s = mips_elf_rel_dyn_section (info, FALSE);
5498 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5499
5500 outrel.r_offset = (input_section->output_section->vma
5501 + input_section->output_offset
5502 + relocation->r_offset);
5503 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5504 outrel.r_addend = addend;
5505 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5506
5507 /* If we've written this relocation for a readonly section,
5508 we need to set DF_TEXTREL again, so that we do not delete the
5509 DT_TEXTREL tag. */
5510 if (MIPS_ELF_READONLY_SECTION (input_section))
5511 info->flags |= DF_TEXTREL;
5512
5513 *valuep = 0;
5514 return bfd_reloc_ok;
5515 }
5516
5517 /* Figure out what kind of relocation is being performed. */
5518 switch (r_type)
5519 {
5520 case R_MIPS_NONE:
5521 return bfd_reloc_continue;
5522
5523 case R_MIPS_16:
5524 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5525 overflowed_p = mips_elf_overflow_p (value, 16);
5526 break;
5527
5528 case R_MIPS_32:
5529 case R_MIPS_REL32:
5530 case R_MIPS_64:
5531 if ((info->shared
5532 || (htab->root.dynamic_sections_created
5533 && h != NULL
5534 && h->root.def_dynamic
5535 && !h->root.def_regular
5536 && !h->has_static_relocs))
5537 && r_symndx != STN_UNDEF
5538 && (h == NULL
5539 || h->root.root.type != bfd_link_hash_undefweak
5540 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5541 && (input_section->flags & SEC_ALLOC) != 0)
5542 {
5543 /* If we're creating a shared library, then we can't know
5544 where the symbol will end up. So, we create a relocation
5545 record in the output, and leave the job up to the dynamic
5546 linker. We must do the same for executable references to
5547 shared library symbols, unless we've decided to use copy
5548 relocs or PLTs instead. */
5549 value = addend;
5550 if (!mips_elf_create_dynamic_relocation (abfd,
5551 info,
5552 relocation,
5553 h,
5554 sec,
5555 symbol,
5556 &value,
5557 input_section))
5558 return bfd_reloc_undefined;
5559 }
5560 else
5561 {
5562 if (r_type != R_MIPS_REL32)
5563 value = symbol + addend;
5564 else
5565 value = addend;
5566 }
5567 value &= howto->dst_mask;
5568 break;
5569
5570 case R_MIPS_PC32:
5571 value = symbol + addend - p;
5572 value &= howto->dst_mask;
5573 break;
5574
5575 case R_MIPS16_26:
5576 /* The calculation for R_MIPS16_26 is just the same as for an
5577 R_MIPS_26. It's only the storage of the relocated field into
5578 the output file that's different. That's handled in
5579 mips_elf_perform_relocation. So, we just fall through to the
5580 R_MIPS_26 case here. */
5581 case R_MIPS_26:
5582 case R_MICROMIPS_26_S1:
5583 {
5584 unsigned int shift;
5585
5586 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5587 the correct ISA mode selector and bit 1 must be 0. */
5588 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5589 return bfd_reloc_outofrange;
5590
5591 /* Shift is 2, unusually, for microMIPS JALX. */
5592 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5593
5594 if (was_local_p)
5595 value = addend | ((p + 4) & (0xfc000000 << shift));
5596 else
5597 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5598 value = (value + symbol) >> shift;
5599 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5600 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5601 value &= howto->dst_mask;
5602 }
5603 break;
5604
5605 case R_MIPS_TLS_DTPREL_HI16:
5606 case R_MIPS16_TLS_DTPREL_HI16:
5607 case R_MICROMIPS_TLS_DTPREL_HI16:
5608 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5609 & howto->dst_mask);
5610 break;
5611
5612 case R_MIPS_TLS_DTPREL_LO16:
5613 case R_MIPS_TLS_DTPREL32:
5614 case R_MIPS_TLS_DTPREL64:
5615 case R_MIPS16_TLS_DTPREL_LO16:
5616 case R_MICROMIPS_TLS_DTPREL_LO16:
5617 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5618 break;
5619
5620 case R_MIPS_TLS_TPREL_HI16:
5621 case R_MIPS16_TLS_TPREL_HI16:
5622 case R_MICROMIPS_TLS_TPREL_HI16:
5623 value = (mips_elf_high (addend + symbol - tprel_base (info))
5624 & howto->dst_mask);
5625 break;
5626
5627 case R_MIPS_TLS_TPREL_LO16:
5628 case R_MIPS_TLS_TPREL32:
5629 case R_MIPS_TLS_TPREL64:
5630 case R_MIPS16_TLS_TPREL_LO16:
5631 case R_MICROMIPS_TLS_TPREL_LO16:
5632 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5633 break;
5634
5635 case R_MIPS_HI16:
5636 case R_MIPS16_HI16:
5637 case R_MICROMIPS_HI16:
5638 if (!gp_disp_p)
5639 {
5640 value = mips_elf_high (addend + symbol);
5641 value &= howto->dst_mask;
5642 }
5643 else
5644 {
5645 /* For MIPS16 ABI code we generate this sequence
5646 0: li $v0,%hi(_gp_disp)
5647 4: addiupc $v1,%lo(_gp_disp)
5648 8: sll $v0,16
5649 12: addu $v0,$v1
5650 14: move $gp,$v0
5651 So the offsets of hi and lo relocs are the same, but the
5652 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5653 ADDIUPC clears the low two bits of the instruction address,
5654 so the base is ($t9 + 4) & ~3. */
5655 if (r_type == R_MIPS16_HI16)
5656 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5657 /* The microMIPS .cpload sequence uses the same assembly
5658 instructions as the traditional psABI version, but the
5659 incoming $t9 has the low bit set. */
5660 else if (r_type == R_MICROMIPS_HI16)
5661 value = mips_elf_high (addend + gp - p - 1);
5662 else
5663 value = mips_elf_high (addend + gp - p);
5664 overflowed_p = mips_elf_overflow_p (value, 16);
5665 }
5666 break;
5667
5668 case R_MIPS_LO16:
5669 case R_MIPS16_LO16:
5670 case R_MICROMIPS_LO16:
5671 case R_MICROMIPS_HI0_LO16:
5672 if (!gp_disp_p)
5673 value = (symbol + addend) & howto->dst_mask;
5674 else
5675 {
5676 /* See the comment for R_MIPS16_HI16 above for the reason
5677 for this conditional. */
5678 if (r_type == R_MIPS16_LO16)
5679 value = addend + gp - (p & ~(bfd_vma) 0x3);
5680 else if (r_type == R_MICROMIPS_LO16
5681 || r_type == R_MICROMIPS_HI0_LO16)
5682 value = addend + gp - p + 3;
5683 else
5684 value = addend + gp - p + 4;
5685 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5686 for overflow. But, on, say, IRIX5, relocations against
5687 _gp_disp are normally generated from the .cpload
5688 pseudo-op. It generates code that normally looks like
5689 this:
5690
5691 lui $gp,%hi(_gp_disp)
5692 addiu $gp,$gp,%lo(_gp_disp)
5693 addu $gp,$gp,$t9
5694
5695 Here $t9 holds the address of the function being called,
5696 as required by the MIPS ELF ABI. The R_MIPS_LO16
5697 relocation can easily overflow in this situation, but the
5698 R_MIPS_HI16 relocation will handle the overflow.
5699 Therefore, we consider this a bug in the MIPS ABI, and do
5700 not check for overflow here. */
5701 }
5702 break;
5703
5704 case R_MIPS_LITERAL:
5705 case R_MICROMIPS_LITERAL:
5706 /* Because we don't merge literal sections, we can handle this
5707 just like R_MIPS_GPREL16. In the long run, we should merge
5708 shared literals, and then we will need to additional work
5709 here. */
5710
5711 /* Fall through. */
5712
5713 case R_MIPS16_GPREL:
5714 /* The R_MIPS16_GPREL performs the same calculation as
5715 R_MIPS_GPREL16, but stores the relocated bits in a different
5716 order. We don't need to do anything special here; the
5717 differences are handled in mips_elf_perform_relocation. */
5718 case R_MIPS_GPREL16:
5719 case R_MICROMIPS_GPREL7_S2:
5720 case R_MICROMIPS_GPREL16:
5721 /* Only sign-extend the addend if it was extracted from the
5722 instruction. If the addend was separate, leave it alone,
5723 otherwise we may lose significant bits. */
5724 if (howto->partial_inplace)
5725 addend = _bfd_mips_elf_sign_extend (addend, 16);
5726 value = symbol + addend - gp;
5727 /* If the symbol was local, any earlier relocatable links will
5728 have adjusted its addend with the gp offset, so compensate
5729 for that now. Don't do it for symbols forced local in this
5730 link, though, since they won't have had the gp offset applied
5731 to them before. */
5732 if (was_local_p)
5733 value += gp0;
5734 overflowed_p = mips_elf_overflow_p (value, 16);
5735 break;
5736
5737 case R_MIPS16_GOT16:
5738 case R_MIPS16_CALL16:
5739 case R_MIPS_GOT16:
5740 case R_MIPS_CALL16:
5741 case R_MICROMIPS_GOT16:
5742 case R_MICROMIPS_CALL16:
5743 /* VxWorks does not have separate local and global semantics for
5744 R_MIPS*_GOT16; every relocation evaluates to "G". */
5745 if (!htab->is_vxworks && local_p)
5746 {
5747 value = mips_elf_got16_entry (abfd, input_bfd, info,
5748 symbol + addend, !was_local_p);
5749 if (value == MINUS_ONE)
5750 return bfd_reloc_outofrange;
5751 value
5752 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5753 overflowed_p = mips_elf_overflow_p (value, 16);
5754 break;
5755 }
5756
5757 /* Fall through. */
5758
5759 case R_MIPS_TLS_GD:
5760 case R_MIPS_TLS_GOTTPREL:
5761 case R_MIPS_TLS_LDM:
5762 case R_MIPS_GOT_DISP:
5763 case R_MIPS16_TLS_GD:
5764 case R_MIPS16_TLS_GOTTPREL:
5765 case R_MIPS16_TLS_LDM:
5766 case R_MICROMIPS_TLS_GD:
5767 case R_MICROMIPS_TLS_GOTTPREL:
5768 case R_MICROMIPS_TLS_LDM:
5769 case R_MICROMIPS_GOT_DISP:
5770 value = g;
5771 overflowed_p = mips_elf_overflow_p (value, 16);
5772 break;
5773
5774 case R_MIPS_GPREL32:
5775 value = (addend + symbol + gp0 - gp);
5776 if (!save_addend)
5777 value &= howto->dst_mask;
5778 break;
5779
5780 case R_MIPS_PC16:
5781 case R_MIPS_GNU_REL16_S2:
5782 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5783 overflowed_p = mips_elf_overflow_p (value, 18);
5784 value >>= howto->rightshift;
5785 value &= howto->dst_mask;
5786 break;
5787
5788 case R_MICROMIPS_PC7_S1:
5789 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5790 overflowed_p = mips_elf_overflow_p (value, 8);
5791 value >>= howto->rightshift;
5792 value &= howto->dst_mask;
5793 break;
5794
5795 case R_MICROMIPS_PC10_S1:
5796 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5797 overflowed_p = mips_elf_overflow_p (value, 11);
5798 value >>= howto->rightshift;
5799 value &= howto->dst_mask;
5800 break;
5801
5802 case R_MICROMIPS_PC16_S1:
5803 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5804 overflowed_p = mips_elf_overflow_p (value, 17);
5805 value >>= howto->rightshift;
5806 value &= howto->dst_mask;
5807 break;
5808
5809 case R_MICROMIPS_PC23_S2:
5810 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5811 overflowed_p = mips_elf_overflow_p (value, 25);
5812 value >>= howto->rightshift;
5813 value &= howto->dst_mask;
5814 break;
5815
5816 case R_MIPS_GOT_HI16:
5817 case R_MIPS_CALL_HI16:
5818 case R_MICROMIPS_GOT_HI16:
5819 case R_MICROMIPS_CALL_HI16:
5820 /* We're allowed to handle these two relocations identically.
5821 The dynamic linker is allowed to handle the CALL relocations
5822 differently by creating a lazy evaluation stub. */
5823 value = g;
5824 value = mips_elf_high (value);
5825 value &= howto->dst_mask;
5826 break;
5827
5828 case R_MIPS_GOT_LO16:
5829 case R_MIPS_CALL_LO16:
5830 case R_MICROMIPS_GOT_LO16:
5831 case R_MICROMIPS_CALL_LO16:
5832 value = g & howto->dst_mask;
5833 break;
5834
5835 case R_MIPS_GOT_PAGE:
5836 case R_MICROMIPS_GOT_PAGE:
5837 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5838 if (value == MINUS_ONE)
5839 return bfd_reloc_outofrange;
5840 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5841 overflowed_p = mips_elf_overflow_p (value, 16);
5842 break;
5843
5844 case R_MIPS_GOT_OFST:
5845 case R_MICROMIPS_GOT_OFST:
5846 if (local_p)
5847 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5848 else
5849 value = addend;
5850 overflowed_p = mips_elf_overflow_p (value, 16);
5851 break;
5852
5853 case R_MIPS_SUB:
5854 case R_MICROMIPS_SUB:
5855 value = symbol - addend;
5856 value &= howto->dst_mask;
5857 break;
5858
5859 case R_MIPS_HIGHER:
5860 case R_MICROMIPS_HIGHER:
5861 value = mips_elf_higher (addend + symbol);
5862 value &= howto->dst_mask;
5863 break;
5864
5865 case R_MIPS_HIGHEST:
5866 case R_MICROMIPS_HIGHEST:
5867 value = mips_elf_highest (addend + symbol);
5868 value &= howto->dst_mask;
5869 break;
5870
5871 case R_MIPS_SCN_DISP:
5872 case R_MICROMIPS_SCN_DISP:
5873 value = symbol + addend - sec->output_offset;
5874 value &= howto->dst_mask;
5875 break;
5876
5877 case R_MIPS_JALR:
5878 case R_MICROMIPS_JALR:
5879 /* This relocation is only a hint. In some cases, we optimize
5880 it into a bal instruction. But we don't try to optimize
5881 when the symbol does not resolve locally. */
5882 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5883 return bfd_reloc_continue;
5884 value = symbol + addend;
5885 break;
5886
5887 case R_MIPS_PJUMP:
5888 case R_MIPS_GNU_VTINHERIT:
5889 case R_MIPS_GNU_VTENTRY:
5890 /* We don't do anything with these at present. */
5891 return bfd_reloc_continue;
5892
5893 default:
5894 /* An unrecognized relocation type. */
5895 return bfd_reloc_notsupported;
5896 }
5897
5898 /* Store the VALUE for our caller. */
5899 *valuep = value;
5900 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5901 }
5902
5903 /* Obtain the field relocated by RELOCATION. */
5904
5905 static bfd_vma
5906 mips_elf_obtain_contents (reloc_howto_type *howto,
5907 const Elf_Internal_Rela *relocation,
5908 bfd *input_bfd, bfd_byte *contents)
5909 {
5910 bfd_vma x;
5911 bfd_byte *location = contents + relocation->r_offset;
5912
5913 /* Obtain the bytes. */
5914 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5915
5916 return x;
5917 }
5918
5919 /* It has been determined that the result of the RELOCATION is the
5920 VALUE. Use HOWTO to place VALUE into the output file at the
5921 appropriate position. The SECTION is the section to which the
5922 relocation applies.
5923 CROSS_MODE_JUMP_P is true if the relocation field
5924 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5925
5926 Returns FALSE if anything goes wrong. */
5927
5928 static bfd_boolean
5929 mips_elf_perform_relocation (struct bfd_link_info *info,
5930 reloc_howto_type *howto,
5931 const Elf_Internal_Rela *relocation,
5932 bfd_vma value, bfd *input_bfd,
5933 asection *input_section, bfd_byte *contents,
5934 bfd_boolean cross_mode_jump_p)
5935 {
5936 bfd_vma x;
5937 bfd_byte *location;
5938 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5939
5940 /* Figure out where the relocation is occurring. */
5941 location = contents + relocation->r_offset;
5942
5943 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5944
5945 /* Obtain the current value. */
5946 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5947
5948 /* Clear the field we are setting. */
5949 x &= ~howto->dst_mask;
5950
5951 /* Set the field. */
5952 x |= (value & howto->dst_mask);
5953
5954 /* If required, turn JAL into JALX. */
5955 if (cross_mode_jump_p && jal_reloc_p (r_type))
5956 {
5957 bfd_boolean ok;
5958 bfd_vma opcode = x >> 26;
5959 bfd_vma jalx_opcode;
5960
5961 /* Check to see if the opcode is already JAL or JALX. */
5962 if (r_type == R_MIPS16_26)
5963 {
5964 ok = ((opcode == 0x6) || (opcode == 0x7));
5965 jalx_opcode = 0x7;
5966 }
5967 else if (r_type == R_MICROMIPS_26_S1)
5968 {
5969 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5970 jalx_opcode = 0x3c;
5971 }
5972 else
5973 {
5974 ok = ((opcode == 0x3) || (opcode == 0x1d));
5975 jalx_opcode = 0x1d;
5976 }
5977
5978 /* If the opcode is not JAL or JALX, there's a problem. We cannot
5979 convert J or JALS to JALX. */
5980 if (!ok)
5981 {
5982 (*_bfd_error_handler)
5983 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
5984 input_bfd,
5985 input_section,
5986 (unsigned long) relocation->r_offset);
5987 bfd_set_error (bfd_error_bad_value);
5988 return FALSE;
5989 }
5990
5991 /* Make this the JALX opcode. */
5992 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5993 }
5994
5995 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5996 range. */
5997 if (!info->relocatable
5998 && !cross_mode_jump_p
5999 && ((JAL_TO_BAL_P (input_bfd)
6000 && r_type == R_MIPS_26
6001 && (x >> 26) == 0x3) /* jal addr */
6002 || (JALR_TO_BAL_P (input_bfd)
6003 && r_type == R_MIPS_JALR
6004 && x == 0x0320f809) /* jalr t9 */
6005 || (JR_TO_B_P (input_bfd)
6006 && r_type == R_MIPS_JALR
6007 && x == 0x03200008))) /* jr t9 */
6008 {
6009 bfd_vma addr;
6010 bfd_vma dest;
6011 bfd_signed_vma off;
6012
6013 addr = (input_section->output_section->vma
6014 + input_section->output_offset
6015 + relocation->r_offset
6016 + 4);
6017 if (r_type == R_MIPS_26)
6018 dest = (value << 2) | ((addr >> 28) << 28);
6019 else
6020 dest = value;
6021 off = dest - addr;
6022 if (off <= 0x1ffff && off >= -0x20000)
6023 {
6024 if (x == 0x03200008) /* jr t9 */
6025 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6026 else
6027 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6028 }
6029 }
6030
6031 /* Put the value into the output. */
6032 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
6033
6034 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
6035 location);
6036
6037 return TRUE;
6038 }
6039 \f
6040 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6041 is the original relocation, which is now being transformed into a
6042 dynamic relocation. The ADDENDP is adjusted if necessary; the
6043 caller should store the result in place of the original addend. */
6044
6045 static bfd_boolean
6046 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6047 struct bfd_link_info *info,
6048 const Elf_Internal_Rela *rel,
6049 struct mips_elf_link_hash_entry *h,
6050 asection *sec, bfd_vma symbol,
6051 bfd_vma *addendp, asection *input_section)
6052 {
6053 Elf_Internal_Rela outrel[3];
6054 asection *sreloc;
6055 bfd *dynobj;
6056 int r_type;
6057 long indx;
6058 bfd_boolean defined_p;
6059 struct mips_elf_link_hash_table *htab;
6060
6061 htab = mips_elf_hash_table (info);
6062 BFD_ASSERT (htab != NULL);
6063
6064 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6065 dynobj = elf_hash_table (info)->dynobj;
6066 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6067 BFD_ASSERT (sreloc != NULL);
6068 BFD_ASSERT (sreloc->contents != NULL);
6069 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6070 < sreloc->size);
6071
6072 outrel[0].r_offset =
6073 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6074 if (ABI_64_P (output_bfd))
6075 {
6076 outrel[1].r_offset =
6077 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6078 outrel[2].r_offset =
6079 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6080 }
6081
6082 if (outrel[0].r_offset == MINUS_ONE)
6083 /* The relocation field has been deleted. */
6084 return TRUE;
6085
6086 if (outrel[0].r_offset == MINUS_TWO)
6087 {
6088 /* The relocation field has been converted into a relative value of
6089 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6090 the field to be fully relocated, so add in the symbol's value. */
6091 *addendp += symbol;
6092 return TRUE;
6093 }
6094
6095 /* We must now calculate the dynamic symbol table index to use
6096 in the relocation. */
6097 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6098 {
6099 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6100 indx = h->root.dynindx;
6101 if (SGI_COMPAT (output_bfd))
6102 defined_p = h->root.def_regular;
6103 else
6104 /* ??? glibc's ld.so just adds the final GOT entry to the
6105 relocation field. It therefore treats relocs against
6106 defined symbols in the same way as relocs against
6107 undefined symbols. */
6108 defined_p = FALSE;
6109 }
6110 else
6111 {
6112 if (sec != NULL && bfd_is_abs_section (sec))
6113 indx = 0;
6114 else if (sec == NULL || sec->owner == NULL)
6115 {
6116 bfd_set_error (bfd_error_bad_value);
6117 return FALSE;
6118 }
6119 else
6120 {
6121 indx = elf_section_data (sec->output_section)->dynindx;
6122 if (indx == 0)
6123 {
6124 asection *osec = htab->root.text_index_section;
6125 indx = elf_section_data (osec)->dynindx;
6126 }
6127 if (indx == 0)
6128 abort ();
6129 }
6130
6131 /* Instead of generating a relocation using the section
6132 symbol, we may as well make it a fully relative
6133 relocation. We want to avoid generating relocations to
6134 local symbols because we used to generate them
6135 incorrectly, without adding the original symbol value,
6136 which is mandated by the ABI for section symbols. In
6137 order to give dynamic loaders and applications time to
6138 phase out the incorrect use, we refrain from emitting
6139 section-relative relocations. It's not like they're
6140 useful, after all. This should be a bit more efficient
6141 as well. */
6142 /* ??? Although this behavior is compatible with glibc's ld.so,
6143 the ABI says that relocations against STN_UNDEF should have
6144 a symbol value of 0. Irix rld honors this, so relocations
6145 against STN_UNDEF have no effect. */
6146 if (!SGI_COMPAT (output_bfd))
6147 indx = 0;
6148 defined_p = TRUE;
6149 }
6150
6151 /* If the relocation was previously an absolute relocation and
6152 this symbol will not be referred to by the relocation, we must
6153 adjust it by the value we give it in the dynamic symbol table.
6154 Otherwise leave the job up to the dynamic linker. */
6155 if (defined_p && r_type != R_MIPS_REL32)
6156 *addendp += symbol;
6157
6158 if (htab->is_vxworks)
6159 /* VxWorks uses non-relative relocations for this. */
6160 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6161 else
6162 /* The relocation is always an REL32 relocation because we don't
6163 know where the shared library will wind up at load-time. */
6164 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6165 R_MIPS_REL32);
6166
6167 /* For strict adherence to the ABI specification, we should
6168 generate a R_MIPS_64 relocation record by itself before the
6169 _REL32/_64 record as well, such that the addend is read in as
6170 a 64-bit value (REL32 is a 32-bit relocation, after all).
6171 However, since none of the existing ELF64 MIPS dynamic
6172 loaders seems to care, we don't waste space with these
6173 artificial relocations. If this turns out to not be true,
6174 mips_elf_allocate_dynamic_relocation() should be tweaked so
6175 as to make room for a pair of dynamic relocations per
6176 invocation if ABI_64_P, and here we should generate an
6177 additional relocation record with R_MIPS_64 by itself for a
6178 NULL symbol before this relocation record. */
6179 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6180 ABI_64_P (output_bfd)
6181 ? R_MIPS_64
6182 : R_MIPS_NONE);
6183 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6184
6185 /* Adjust the output offset of the relocation to reference the
6186 correct location in the output file. */
6187 outrel[0].r_offset += (input_section->output_section->vma
6188 + input_section->output_offset);
6189 outrel[1].r_offset += (input_section->output_section->vma
6190 + input_section->output_offset);
6191 outrel[2].r_offset += (input_section->output_section->vma
6192 + input_section->output_offset);
6193
6194 /* Put the relocation back out. We have to use the special
6195 relocation outputter in the 64-bit case since the 64-bit
6196 relocation format is non-standard. */
6197 if (ABI_64_P (output_bfd))
6198 {
6199 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6200 (output_bfd, &outrel[0],
6201 (sreloc->contents
6202 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6203 }
6204 else if (htab->is_vxworks)
6205 {
6206 /* VxWorks uses RELA rather than REL dynamic relocations. */
6207 outrel[0].r_addend = *addendp;
6208 bfd_elf32_swap_reloca_out
6209 (output_bfd, &outrel[0],
6210 (sreloc->contents
6211 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6212 }
6213 else
6214 bfd_elf32_swap_reloc_out
6215 (output_bfd, &outrel[0],
6216 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6217
6218 /* We've now added another relocation. */
6219 ++sreloc->reloc_count;
6220
6221 /* Make sure the output section is writable. The dynamic linker
6222 will be writing to it. */
6223 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6224 |= SHF_WRITE;
6225
6226 /* On IRIX5, make an entry of compact relocation info. */
6227 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6228 {
6229 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6230 bfd_byte *cr;
6231
6232 if (scpt)
6233 {
6234 Elf32_crinfo cptrel;
6235
6236 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6237 cptrel.vaddr = (rel->r_offset
6238 + input_section->output_section->vma
6239 + input_section->output_offset);
6240 if (r_type == R_MIPS_REL32)
6241 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6242 else
6243 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6244 mips_elf_set_cr_dist2to (cptrel, 0);
6245 cptrel.konst = *addendp;
6246
6247 cr = (scpt->contents
6248 + sizeof (Elf32_External_compact_rel));
6249 mips_elf_set_cr_relvaddr (cptrel, 0);
6250 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6251 ((Elf32_External_crinfo *) cr
6252 + scpt->reloc_count));
6253 ++scpt->reloc_count;
6254 }
6255 }
6256
6257 /* If we've written this relocation for a readonly section,
6258 we need to set DF_TEXTREL again, so that we do not delete the
6259 DT_TEXTREL tag. */
6260 if (MIPS_ELF_READONLY_SECTION (input_section))
6261 info->flags |= DF_TEXTREL;
6262
6263 return TRUE;
6264 }
6265 \f
6266 /* Return the MACH for a MIPS e_flags value. */
6267
6268 unsigned long
6269 _bfd_elf_mips_mach (flagword flags)
6270 {
6271 switch (flags & EF_MIPS_MACH)
6272 {
6273 case E_MIPS_MACH_3900:
6274 return bfd_mach_mips3900;
6275
6276 case E_MIPS_MACH_4010:
6277 return bfd_mach_mips4010;
6278
6279 case E_MIPS_MACH_4100:
6280 return bfd_mach_mips4100;
6281
6282 case E_MIPS_MACH_4111:
6283 return bfd_mach_mips4111;
6284
6285 case E_MIPS_MACH_4120:
6286 return bfd_mach_mips4120;
6287
6288 case E_MIPS_MACH_4650:
6289 return bfd_mach_mips4650;
6290
6291 case E_MIPS_MACH_5400:
6292 return bfd_mach_mips5400;
6293
6294 case E_MIPS_MACH_5500:
6295 return bfd_mach_mips5500;
6296
6297 case E_MIPS_MACH_5900:
6298 return bfd_mach_mips5900;
6299
6300 case E_MIPS_MACH_9000:
6301 return bfd_mach_mips9000;
6302
6303 case E_MIPS_MACH_SB1:
6304 return bfd_mach_mips_sb1;
6305
6306 case E_MIPS_MACH_LS2E:
6307 return bfd_mach_mips_loongson_2e;
6308
6309 case E_MIPS_MACH_LS2F:
6310 return bfd_mach_mips_loongson_2f;
6311
6312 case E_MIPS_MACH_LS3A:
6313 return bfd_mach_mips_loongson_3a;
6314
6315 case E_MIPS_MACH_OCTEON2:
6316 return bfd_mach_mips_octeon2;
6317
6318 case E_MIPS_MACH_OCTEON:
6319 return bfd_mach_mips_octeon;
6320
6321 case E_MIPS_MACH_XLR:
6322 return bfd_mach_mips_xlr;
6323
6324 default:
6325 switch (flags & EF_MIPS_ARCH)
6326 {
6327 default:
6328 case E_MIPS_ARCH_1:
6329 return bfd_mach_mips3000;
6330
6331 case E_MIPS_ARCH_2:
6332 return bfd_mach_mips6000;
6333
6334 case E_MIPS_ARCH_3:
6335 return bfd_mach_mips4000;
6336
6337 case E_MIPS_ARCH_4:
6338 return bfd_mach_mips8000;
6339
6340 case E_MIPS_ARCH_5:
6341 return bfd_mach_mips5;
6342
6343 case E_MIPS_ARCH_32:
6344 return bfd_mach_mipsisa32;
6345
6346 case E_MIPS_ARCH_64:
6347 return bfd_mach_mipsisa64;
6348
6349 case E_MIPS_ARCH_32R2:
6350 return bfd_mach_mipsisa32r2;
6351
6352 case E_MIPS_ARCH_64R2:
6353 return bfd_mach_mipsisa64r2;
6354 }
6355 }
6356
6357 return 0;
6358 }
6359
6360 /* Return printable name for ABI. */
6361
6362 static INLINE char *
6363 elf_mips_abi_name (bfd *abfd)
6364 {
6365 flagword flags;
6366
6367 flags = elf_elfheader (abfd)->e_flags;
6368 switch (flags & EF_MIPS_ABI)
6369 {
6370 case 0:
6371 if (ABI_N32_P (abfd))
6372 return "N32";
6373 else if (ABI_64_P (abfd))
6374 return "64";
6375 else
6376 return "none";
6377 case E_MIPS_ABI_O32:
6378 return "O32";
6379 case E_MIPS_ABI_O64:
6380 return "O64";
6381 case E_MIPS_ABI_EABI32:
6382 return "EABI32";
6383 case E_MIPS_ABI_EABI64:
6384 return "EABI64";
6385 default:
6386 return "unknown abi";
6387 }
6388 }
6389 \f
6390 /* MIPS ELF uses two common sections. One is the usual one, and the
6391 other is for small objects. All the small objects are kept
6392 together, and then referenced via the gp pointer, which yields
6393 faster assembler code. This is what we use for the small common
6394 section. This approach is copied from ecoff.c. */
6395 static asection mips_elf_scom_section;
6396 static asymbol mips_elf_scom_symbol;
6397 static asymbol *mips_elf_scom_symbol_ptr;
6398
6399 /* MIPS ELF also uses an acommon section, which represents an
6400 allocated common symbol which may be overridden by a
6401 definition in a shared library. */
6402 static asection mips_elf_acom_section;
6403 static asymbol mips_elf_acom_symbol;
6404 static asymbol *mips_elf_acom_symbol_ptr;
6405
6406 /* This is used for both the 32-bit and the 64-bit ABI. */
6407
6408 void
6409 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6410 {
6411 elf_symbol_type *elfsym;
6412
6413 /* Handle the special MIPS section numbers that a symbol may use. */
6414 elfsym = (elf_symbol_type *) asym;
6415 switch (elfsym->internal_elf_sym.st_shndx)
6416 {
6417 case SHN_MIPS_ACOMMON:
6418 /* This section is used in a dynamically linked executable file.
6419 It is an allocated common section. The dynamic linker can
6420 either resolve these symbols to something in a shared
6421 library, or it can just leave them here. For our purposes,
6422 we can consider these symbols to be in a new section. */
6423 if (mips_elf_acom_section.name == NULL)
6424 {
6425 /* Initialize the acommon section. */
6426 mips_elf_acom_section.name = ".acommon";
6427 mips_elf_acom_section.flags = SEC_ALLOC;
6428 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6429 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6430 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6431 mips_elf_acom_symbol.name = ".acommon";
6432 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6433 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6434 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6435 }
6436 asym->section = &mips_elf_acom_section;
6437 break;
6438
6439 case SHN_COMMON:
6440 /* Common symbols less than the GP size are automatically
6441 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6442 if (asym->value > elf_gp_size (abfd)
6443 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6444 || IRIX_COMPAT (abfd) == ict_irix6)
6445 break;
6446 /* Fall through. */
6447 case SHN_MIPS_SCOMMON:
6448 if (mips_elf_scom_section.name == NULL)
6449 {
6450 /* Initialize the small common section. */
6451 mips_elf_scom_section.name = ".scommon";
6452 mips_elf_scom_section.flags = SEC_IS_COMMON;
6453 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6454 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6455 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6456 mips_elf_scom_symbol.name = ".scommon";
6457 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6458 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6459 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6460 }
6461 asym->section = &mips_elf_scom_section;
6462 asym->value = elfsym->internal_elf_sym.st_size;
6463 break;
6464
6465 case SHN_MIPS_SUNDEFINED:
6466 asym->section = bfd_und_section_ptr;
6467 break;
6468
6469 case SHN_MIPS_TEXT:
6470 {
6471 asection *section = bfd_get_section_by_name (abfd, ".text");
6472
6473 if (section != NULL)
6474 {
6475 asym->section = section;
6476 /* MIPS_TEXT is a bit special, the address is not an offset
6477 to the base of the .text section. So substract the section
6478 base address to make it an offset. */
6479 asym->value -= section->vma;
6480 }
6481 }
6482 break;
6483
6484 case SHN_MIPS_DATA:
6485 {
6486 asection *section = bfd_get_section_by_name (abfd, ".data");
6487
6488 if (section != NULL)
6489 {
6490 asym->section = section;
6491 /* MIPS_DATA is a bit special, the address is not an offset
6492 to the base of the .data section. So substract the section
6493 base address to make it an offset. */
6494 asym->value -= section->vma;
6495 }
6496 }
6497 break;
6498 }
6499
6500 /* If this is an odd-valued function symbol, assume it's a MIPS16
6501 or microMIPS one. */
6502 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6503 && (asym->value & 1) != 0)
6504 {
6505 asym->value--;
6506 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6507 elfsym->internal_elf_sym.st_other
6508 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6509 else
6510 elfsym->internal_elf_sym.st_other
6511 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6512 }
6513 }
6514 \f
6515 /* Implement elf_backend_eh_frame_address_size. This differs from
6516 the default in the way it handles EABI64.
6517
6518 EABI64 was originally specified as an LP64 ABI, and that is what
6519 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6520 historically accepted the combination of -mabi=eabi and -mlong32,
6521 and this ILP32 variation has become semi-official over time.
6522 Both forms use elf32 and have pointer-sized FDE addresses.
6523
6524 If an EABI object was generated by GCC 4.0 or above, it will have
6525 an empty .gcc_compiled_longXX section, where XX is the size of longs
6526 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6527 have no special marking to distinguish them from LP64 objects.
6528
6529 We don't want users of the official LP64 ABI to be punished for the
6530 existence of the ILP32 variant, but at the same time, we don't want
6531 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6532 We therefore take the following approach:
6533
6534 - If ABFD contains a .gcc_compiled_longXX section, use it to
6535 determine the pointer size.
6536
6537 - Otherwise check the type of the first relocation. Assume that
6538 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6539
6540 - Otherwise punt.
6541
6542 The second check is enough to detect LP64 objects generated by pre-4.0
6543 compilers because, in the kind of output generated by those compilers,
6544 the first relocation will be associated with either a CIE personality
6545 routine or an FDE start address. Furthermore, the compilers never
6546 used a special (non-pointer) encoding for this ABI.
6547
6548 Checking the relocation type should also be safe because there is no
6549 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6550 did so. */
6551
6552 unsigned int
6553 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6554 {
6555 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6556 return 8;
6557 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6558 {
6559 bfd_boolean long32_p, long64_p;
6560
6561 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6562 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6563 if (long32_p && long64_p)
6564 return 0;
6565 if (long32_p)
6566 return 4;
6567 if (long64_p)
6568 return 8;
6569
6570 if (sec->reloc_count > 0
6571 && elf_section_data (sec)->relocs != NULL
6572 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6573 == R_MIPS_64))
6574 return 8;
6575
6576 return 0;
6577 }
6578 return 4;
6579 }
6580 \f
6581 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6582 relocations against two unnamed section symbols to resolve to the
6583 same address. For example, if we have code like:
6584
6585 lw $4,%got_disp(.data)($gp)
6586 lw $25,%got_disp(.text)($gp)
6587 jalr $25
6588
6589 then the linker will resolve both relocations to .data and the program
6590 will jump there rather than to .text.
6591
6592 We can work around this problem by giving names to local section symbols.
6593 This is also what the MIPSpro tools do. */
6594
6595 bfd_boolean
6596 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6597 {
6598 return SGI_COMPAT (abfd);
6599 }
6600 \f
6601 /* Work over a section just before writing it out. This routine is
6602 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6603 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6604 a better way. */
6605
6606 bfd_boolean
6607 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6608 {
6609 if (hdr->sh_type == SHT_MIPS_REGINFO
6610 && hdr->sh_size > 0)
6611 {
6612 bfd_byte buf[4];
6613
6614 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6615 BFD_ASSERT (hdr->contents == NULL);
6616
6617 if (bfd_seek (abfd,
6618 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6619 SEEK_SET) != 0)
6620 return FALSE;
6621 H_PUT_32 (abfd, elf_gp (abfd), buf);
6622 if (bfd_bwrite (buf, 4, abfd) != 4)
6623 return FALSE;
6624 }
6625
6626 if (hdr->sh_type == SHT_MIPS_OPTIONS
6627 && hdr->bfd_section != NULL
6628 && mips_elf_section_data (hdr->bfd_section) != NULL
6629 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6630 {
6631 bfd_byte *contents, *l, *lend;
6632
6633 /* We stored the section contents in the tdata field in the
6634 set_section_contents routine. We save the section contents
6635 so that we don't have to read them again.
6636 At this point we know that elf_gp is set, so we can look
6637 through the section contents to see if there is an
6638 ODK_REGINFO structure. */
6639
6640 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6641 l = contents;
6642 lend = contents + hdr->sh_size;
6643 while (l + sizeof (Elf_External_Options) <= lend)
6644 {
6645 Elf_Internal_Options intopt;
6646
6647 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6648 &intopt);
6649 if (intopt.size < sizeof (Elf_External_Options))
6650 {
6651 (*_bfd_error_handler)
6652 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6653 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6654 break;
6655 }
6656 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6657 {
6658 bfd_byte buf[8];
6659
6660 if (bfd_seek (abfd,
6661 (hdr->sh_offset
6662 + (l - contents)
6663 + sizeof (Elf_External_Options)
6664 + (sizeof (Elf64_External_RegInfo) - 8)),
6665 SEEK_SET) != 0)
6666 return FALSE;
6667 H_PUT_64 (abfd, elf_gp (abfd), buf);
6668 if (bfd_bwrite (buf, 8, abfd) != 8)
6669 return FALSE;
6670 }
6671 else if (intopt.kind == ODK_REGINFO)
6672 {
6673 bfd_byte buf[4];
6674
6675 if (bfd_seek (abfd,
6676 (hdr->sh_offset
6677 + (l - contents)
6678 + sizeof (Elf_External_Options)
6679 + (sizeof (Elf32_External_RegInfo) - 4)),
6680 SEEK_SET) != 0)
6681 return FALSE;
6682 H_PUT_32 (abfd, elf_gp (abfd), buf);
6683 if (bfd_bwrite (buf, 4, abfd) != 4)
6684 return FALSE;
6685 }
6686 l += intopt.size;
6687 }
6688 }
6689
6690 if (hdr->bfd_section != NULL)
6691 {
6692 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6693
6694 /* .sbss is not handled specially here because the GNU/Linux
6695 prelinker can convert .sbss from NOBITS to PROGBITS and
6696 changing it back to NOBITS breaks the binary. The entry in
6697 _bfd_mips_elf_special_sections will ensure the correct flags
6698 are set on .sbss if BFD creates it without reading it from an
6699 input file, and without special handling here the flags set
6700 on it in an input file will be followed. */
6701 if (strcmp (name, ".sdata") == 0
6702 || strcmp (name, ".lit8") == 0
6703 || strcmp (name, ".lit4") == 0)
6704 {
6705 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6706 hdr->sh_type = SHT_PROGBITS;
6707 }
6708 else if (strcmp (name, ".srdata") == 0)
6709 {
6710 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6711 hdr->sh_type = SHT_PROGBITS;
6712 }
6713 else if (strcmp (name, ".compact_rel") == 0)
6714 {
6715 hdr->sh_flags = 0;
6716 hdr->sh_type = SHT_PROGBITS;
6717 }
6718 else if (strcmp (name, ".rtproc") == 0)
6719 {
6720 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6721 {
6722 unsigned int adjust;
6723
6724 adjust = hdr->sh_size % hdr->sh_addralign;
6725 if (adjust != 0)
6726 hdr->sh_size += hdr->sh_addralign - adjust;
6727 }
6728 }
6729 }
6730
6731 return TRUE;
6732 }
6733
6734 /* Handle a MIPS specific section when reading an object file. This
6735 is called when elfcode.h finds a section with an unknown type.
6736 This routine supports both the 32-bit and 64-bit ELF ABI.
6737
6738 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6739 how to. */
6740
6741 bfd_boolean
6742 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6743 Elf_Internal_Shdr *hdr,
6744 const char *name,
6745 int shindex)
6746 {
6747 flagword flags = 0;
6748
6749 /* There ought to be a place to keep ELF backend specific flags, but
6750 at the moment there isn't one. We just keep track of the
6751 sections by their name, instead. Fortunately, the ABI gives
6752 suggested names for all the MIPS specific sections, so we will
6753 probably get away with this. */
6754 switch (hdr->sh_type)
6755 {
6756 case SHT_MIPS_LIBLIST:
6757 if (strcmp (name, ".liblist") != 0)
6758 return FALSE;
6759 break;
6760 case SHT_MIPS_MSYM:
6761 if (strcmp (name, ".msym") != 0)
6762 return FALSE;
6763 break;
6764 case SHT_MIPS_CONFLICT:
6765 if (strcmp (name, ".conflict") != 0)
6766 return FALSE;
6767 break;
6768 case SHT_MIPS_GPTAB:
6769 if (! CONST_STRNEQ (name, ".gptab."))
6770 return FALSE;
6771 break;
6772 case SHT_MIPS_UCODE:
6773 if (strcmp (name, ".ucode") != 0)
6774 return FALSE;
6775 break;
6776 case SHT_MIPS_DEBUG:
6777 if (strcmp (name, ".mdebug") != 0)
6778 return FALSE;
6779 flags = SEC_DEBUGGING;
6780 break;
6781 case SHT_MIPS_REGINFO:
6782 if (strcmp (name, ".reginfo") != 0
6783 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6784 return FALSE;
6785 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6786 break;
6787 case SHT_MIPS_IFACE:
6788 if (strcmp (name, ".MIPS.interfaces") != 0)
6789 return FALSE;
6790 break;
6791 case SHT_MIPS_CONTENT:
6792 if (! CONST_STRNEQ (name, ".MIPS.content"))
6793 return FALSE;
6794 break;
6795 case SHT_MIPS_OPTIONS:
6796 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6797 return FALSE;
6798 break;
6799 case SHT_MIPS_DWARF:
6800 if (! CONST_STRNEQ (name, ".debug_")
6801 && ! CONST_STRNEQ (name, ".zdebug_"))
6802 return FALSE;
6803 break;
6804 case SHT_MIPS_SYMBOL_LIB:
6805 if (strcmp (name, ".MIPS.symlib") != 0)
6806 return FALSE;
6807 break;
6808 case SHT_MIPS_EVENTS:
6809 if (! CONST_STRNEQ (name, ".MIPS.events")
6810 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6811 return FALSE;
6812 break;
6813 default:
6814 break;
6815 }
6816
6817 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6818 return FALSE;
6819
6820 if (flags)
6821 {
6822 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6823 (bfd_get_section_flags (abfd,
6824 hdr->bfd_section)
6825 | flags)))
6826 return FALSE;
6827 }
6828
6829 /* FIXME: We should record sh_info for a .gptab section. */
6830
6831 /* For a .reginfo section, set the gp value in the tdata information
6832 from the contents of this section. We need the gp value while
6833 processing relocs, so we just get it now. The .reginfo section
6834 is not used in the 64-bit MIPS ELF ABI. */
6835 if (hdr->sh_type == SHT_MIPS_REGINFO)
6836 {
6837 Elf32_External_RegInfo ext;
6838 Elf32_RegInfo s;
6839
6840 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6841 &ext, 0, sizeof ext))
6842 return FALSE;
6843 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6844 elf_gp (abfd) = s.ri_gp_value;
6845 }
6846
6847 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6848 set the gp value based on what we find. We may see both
6849 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6850 they should agree. */
6851 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6852 {
6853 bfd_byte *contents, *l, *lend;
6854
6855 contents = bfd_malloc (hdr->sh_size);
6856 if (contents == NULL)
6857 return FALSE;
6858 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6859 0, hdr->sh_size))
6860 {
6861 free (contents);
6862 return FALSE;
6863 }
6864 l = contents;
6865 lend = contents + hdr->sh_size;
6866 while (l + sizeof (Elf_External_Options) <= lend)
6867 {
6868 Elf_Internal_Options intopt;
6869
6870 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6871 &intopt);
6872 if (intopt.size < sizeof (Elf_External_Options))
6873 {
6874 (*_bfd_error_handler)
6875 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6876 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6877 break;
6878 }
6879 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6880 {
6881 Elf64_Internal_RegInfo intreg;
6882
6883 bfd_mips_elf64_swap_reginfo_in
6884 (abfd,
6885 ((Elf64_External_RegInfo *)
6886 (l + sizeof (Elf_External_Options))),
6887 &intreg);
6888 elf_gp (abfd) = intreg.ri_gp_value;
6889 }
6890 else if (intopt.kind == ODK_REGINFO)
6891 {
6892 Elf32_RegInfo intreg;
6893
6894 bfd_mips_elf32_swap_reginfo_in
6895 (abfd,
6896 ((Elf32_External_RegInfo *)
6897 (l + sizeof (Elf_External_Options))),
6898 &intreg);
6899 elf_gp (abfd) = intreg.ri_gp_value;
6900 }
6901 l += intopt.size;
6902 }
6903 free (contents);
6904 }
6905
6906 return TRUE;
6907 }
6908
6909 /* Set the correct type for a MIPS ELF section. We do this by the
6910 section name, which is a hack, but ought to work. This routine is
6911 used by both the 32-bit and the 64-bit ABI. */
6912
6913 bfd_boolean
6914 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6915 {
6916 const char *name = bfd_get_section_name (abfd, sec);
6917
6918 if (strcmp (name, ".liblist") == 0)
6919 {
6920 hdr->sh_type = SHT_MIPS_LIBLIST;
6921 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6922 /* The sh_link field is set in final_write_processing. */
6923 }
6924 else if (strcmp (name, ".conflict") == 0)
6925 hdr->sh_type = SHT_MIPS_CONFLICT;
6926 else if (CONST_STRNEQ (name, ".gptab."))
6927 {
6928 hdr->sh_type = SHT_MIPS_GPTAB;
6929 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6930 /* The sh_info field is set in final_write_processing. */
6931 }
6932 else if (strcmp (name, ".ucode") == 0)
6933 hdr->sh_type = SHT_MIPS_UCODE;
6934 else if (strcmp (name, ".mdebug") == 0)
6935 {
6936 hdr->sh_type = SHT_MIPS_DEBUG;
6937 /* In a shared object on IRIX 5.3, the .mdebug section has an
6938 entsize of 0. FIXME: Does this matter? */
6939 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6940 hdr->sh_entsize = 0;
6941 else
6942 hdr->sh_entsize = 1;
6943 }
6944 else if (strcmp (name, ".reginfo") == 0)
6945 {
6946 hdr->sh_type = SHT_MIPS_REGINFO;
6947 /* In a shared object on IRIX 5.3, the .reginfo section has an
6948 entsize of 0x18. FIXME: Does this matter? */
6949 if (SGI_COMPAT (abfd))
6950 {
6951 if ((abfd->flags & DYNAMIC) != 0)
6952 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6953 else
6954 hdr->sh_entsize = 1;
6955 }
6956 else
6957 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6958 }
6959 else if (SGI_COMPAT (abfd)
6960 && (strcmp (name, ".hash") == 0
6961 || strcmp (name, ".dynamic") == 0
6962 || strcmp (name, ".dynstr") == 0))
6963 {
6964 if (SGI_COMPAT (abfd))
6965 hdr->sh_entsize = 0;
6966 #if 0
6967 /* This isn't how the IRIX6 linker behaves. */
6968 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6969 #endif
6970 }
6971 else if (strcmp (name, ".got") == 0
6972 || strcmp (name, ".srdata") == 0
6973 || strcmp (name, ".sdata") == 0
6974 || strcmp (name, ".sbss") == 0
6975 || strcmp (name, ".lit4") == 0
6976 || strcmp (name, ".lit8") == 0)
6977 hdr->sh_flags |= SHF_MIPS_GPREL;
6978 else if (strcmp (name, ".MIPS.interfaces") == 0)
6979 {
6980 hdr->sh_type = SHT_MIPS_IFACE;
6981 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6982 }
6983 else if (CONST_STRNEQ (name, ".MIPS.content"))
6984 {
6985 hdr->sh_type = SHT_MIPS_CONTENT;
6986 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6987 /* The sh_info field is set in final_write_processing. */
6988 }
6989 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6990 {
6991 hdr->sh_type = SHT_MIPS_OPTIONS;
6992 hdr->sh_entsize = 1;
6993 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6994 }
6995 else if (CONST_STRNEQ (name, ".debug_")
6996 || CONST_STRNEQ (name, ".zdebug_"))
6997 {
6998 hdr->sh_type = SHT_MIPS_DWARF;
6999
7000 /* Irix facilities such as libexc expect a single .debug_frame
7001 per executable, the system ones have NOSTRIP set and the linker
7002 doesn't merge sections with different flags so ... */
7003 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7004 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7005 }
7006 else if (strcmp (name, ".MIPS.symlib") == 0)
7007 {
7008 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7009 /* The sh_link and sh_info fields are set in
7010 final_write_processing. */
7011 }
7012 else if (CONST_STRNEQ (name, ".MIPS.events")
7013 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7014 {
7015 hdr->sh_type = SHT_MIPS_EVENTS;
7016 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7017 /* The sh_link field is set in final_write_processing. */
7018 }
7019 else if (strcmp (name, ".msym") == 0)
7020 {
7021 hdr->sh_type = SHT_MIPS_MSYM;
7022 hdr->sh_flags |= SHF_ALLOC;
7023 hdr->sh_entsize = 8;
7024 }
7025
7026 /* The generic elf_fake_sections will set up REL_HDR using the default
7027 kind of relocations. We used to set up a second header for the
7028 non-default kind of relocations here, but only NewABI would use
7029 these, and the IRIX ld doesn't like resulting empty RELA sections.
7030 Thus we create those header only on demand now. */
7031
7032 return TRUE;
7033 }
7034
7035 /* Given a BFD section, try to locate the corresponding ELF section
7036 index. This is used by both the 32-bit and the 64-bit ABI.
7037 Actually, it's not clear to me that the 64-bit ABI supports these,
7038 but for non-PIC objects we will certainly want support for at least
7039 the .scommon section. */
7040
7041 bfd_boolean
7042 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7043 asection *sec, int *retval)
7044 {
7045 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7046 {
7047 *retval = SHN_MIPS_SCOMMON;
7048 return TRUE;
7049 }
7050 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7051 {
7052 *retval = SHN_MIPS_ACOMMON;
7053 return TRUE;
7054 }
7055 return FALSE;
7056 }
7057 \f
7058 /* Hook called by the linker routine which adds symbols from an object
7059 file. We must handle the special MIPS section numbers here. */
7060
7061 bfd_boolean
7062 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7063 Elf_Internal_Sym *sym, const char **namep,
7064 flagword *flagsp ATTRIBUTE_UNUSED,
7065 asection **secp, bfd_vma *valp)
7066 {
7067 if (SGI_COMPAT (abfd)
7068 && (abfd->flags & DYNAMIC) != 0
7069 && strcmp (*namep, "_rld_new_interface") == 0)
7070 {
7071 /* Skip IRIX5 rld entry name. */
7072 *namep = NULL;
7073 return TRUE;
7074 }
7075
7076 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7077 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7078 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7079 a magic symbol resolved by the linker, we ignore this bogus definition
7080 of _gp_disp. New ABI objects do not suffer from this problem so this
7081 is not done for them. */
7082 if (!NEWABI_P(abfd)
7083 && (sym->st_shndx == SHN_ABS)
7084 && (strcmp (*namep, "_gp_disp") == 0))
7085 {
7086 *namep = NULL;
7087 return TRUE;
7088 }
7089
7090 switch (sym->st_shndx)
7091 {
7092 case SHN_COMMON:
7093 /* Common symbols less than the GP size are automatically
7094 treated as SHN_MIPS_SCOMMON symbols. */
7095 if (sym->st_size > elf_gp_size (abfd)
7096 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7097 || IRIX_COMPAT (abfd) == ict_irix6)
7098 break;
7099 /* Fall through. */
7100 case SHN_MIPS_SCOMMON:
7101 *secp = bfd_make_section_old_way (abfd, ".scommon");
7102 (*secp)->flags |= SEC_IS_COMMON;
7103 *valp = sym->st_size;
7104 break;
7105
7106 case SHN_MIPS_TEXT:
7107 /* This section is used in a shared object. */
7108 if (elf_tdata (abfd)->elf_text_section == NULL)
7109 {
7110 asymbol *elf_text_symbol;
7111 asection *elf_text_section;
7112 bfd_size_type amt = sizeof (asection);
7113
7114 elf_text_section = bfd_zalloc (abfd, amt);
7115 if (elf_text_section == NULL)
7116 return FALSE;
7117
7118 amt = sizeof (asymbol);
7119 elf_text_symbol = bfd_zalloc (abfd, amt);
7120 if (elf_text_symbol == NULL)
7121 return FALSE;
7122
7123 /* Initialize the section. */
7124
7125 elf_tdata (abfd)->elf_text_section = elf_text_section;
7126 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7127
7128 elf_text_section->symbol = elf_text_symbol;
7129 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
7130
7131 elf_text_section->name = ".text";
7132 elf_text_section->flags = SEC_NO_FLAGS;
7133 elf_text_section->output_section = NULL;
7134 elf_text_section->owner = abfd;
7135 elf_text_symbol->name = ".text";
7136 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7137 elf_text_symbol->section = elf_text_section;
7138 }
7139 /* This code used to do *secp = bfd_und_section_ptr if
7140 info->shared. I don't know why, and that doesn't make sense,
7141 so I took it out. */
7142 *secp = elf_tdata (abfd)->elf_text_section;
7143 break;
7144
7145 case SHN_MIPS_ACOMMON:
7146 /* Fall through. XXX Can we treat this as allocated data? */
7147 case SHN_MIPS_DATA:
7148 /* This section is used in a shared object. */
7149 if (elf_tdata (abfd)->elf_data_section == NULL)
7150 {
7151 asymbol *elf_data_symbol;
7152 asection *elf_data_section;
7153 bfd_size_type amt = sizeof (asection);
7154
7155 elf_data_section = bfd_zalloc (abfd, amt);
7156 if (elf_data_section == NULL)
7157 return FALSE;
7158
7159 amt = sizeof (asymbol);
7160 elf_data_symbol = bfd_zalloc (abfd, amt);
7161 if (elf_data_symbol == NULL)
7162 return FALSE;
7163
7164 /* Initialize the section. */
7165
7166 elf_tdata (abfd)->elf_data_section = elf_data_section;
7167 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7168
7169 elf_data_section->symbol = elf_data_symbol;
7170 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
7171
7172 elf_data_section->name = ".data";
7173 elf_data_section->flags = SEC_NO_FLAGS;
7174 elf_data_section->output_section = NULL;
7175 elf_data_section->owner = abfd;
7176 elf_data_symbol->name = ".data";
7177 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7178 elf_data_symbol->section = elf_data_section;
7179 }
7180 /* This code used to do *secp = bfd_und_section_ptr if
7181 info->shared. I don't know why, and that doesn't make sense,
7182 so I took it out. */
7183 *secp = elf_tdata (abfd)->elf_data_section;
7184 break;
7185
7186 case SHN_MIPS_SUNDEFINED:
7187 *secp = bfd_und_section_ptr;
7188 break;
7189 }
7190
7191 if (SGI_COMPAT (abfd)
7192 && ! info->shared
7193 && info->output_bfd->xvec == abfd->xvec
7194 && strcmp (*namep, "__rld_obj_head") == 0)
7195 {
7196 struct elf_link_hash_entry *h;
7197 struct bfd_link_hash_entry *bh;
7198
7199 /* Mark __rld_obj_head as dynamic. */
7200 bh = NULL;
7201 if (! (_bfd_generic_link_add_one_symbol
7202 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7203 get_elf_backend_data (abfd)->collect, &bh)))
7204 return FALSE;
7205
7206 h = (struct elf_link_hash_entry *) bh;
7207 h->non_elf = 0;
7208 h->def_regular = 1;
7209 h->type = STT_OBJECT;
7210
7211 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7212 return FALSE;
7213
7214 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7215 mips_elf_hash_table (info)->rld_symbol = h;
7216 }
7217
7218 /* If this is a mips16 text symbol, add 1 to the value to make it
7219 odd. This will cause something like .word SYM to come up with
7220 the right value when it is loaded into the PC. */
7221 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7222 ++*valp;
7223
7224 return TRUE;
7225 }
7226
7227 /* This hook function is called before the linker writes out a global
7228 symbol. We mark symbols as small common if appropriate. This is
7229 also where we undo the increment of the value for a mips16 symbol. */
7230
7231 int
7232 _bfd_mips_elf_link_output_symbol_hook
7233 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7234 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7235 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7236 {
7237 /* If we see a common symbol, which implies a relocatable link, then
7238 if a symbol was small common in an input file, mark it as small
7239 common in the output file. */
7240 if (sym->st_shndx == SHN_COMMON
7241 && strcmp (input_sec->name, ".scommon") == 0)
7242 sym->st_shndx = SHN_MIPS_SCOMMON;
7243
7244 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7245 sym->st_value &= ~1;
7246
7247 return 1;
7248 }
7249 \f
7250 /* Functions for the dynamic linker. */
7251
7252 /* Create dynamic sections when linking against a dynamic object. */
7253
7254 bfd_boolean
7255 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7256 {
7257 struct elf_link_hash_entry *h;
7258 struct bfd_link_hash_entry *bh;
7259 flagword flags;
7260 register asection *s;
7261 const char * const *namep;
7262 struct mips_elf_link_hash_table *htab;
7263
7264 htab = mips_elf_hash_table (info);
7265 BFD_ASSERT (htab != NULL);
7266
7267 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7268 | SEC_LINKER_CREATED | SEC_READONLY);
7269
7270 /* The psABI requires a read-only .dynamic section, but the VxWorks
7271 EABI doesn't. */
7272 if (!htab->is_vxworks)
7273 {
7274 s = bfd_get_linker_section (abfd, ".dynamic");
7275 if (s != NULL)
7276 {
7277 if (! bfd_set_section_flags (abfd, s, flags))
7278 return FALSE;
7279 }
7280 }
7281
7282 /* We need to create .got section. */
7283 if (!mips_elf_create_got_section (abfd, info))
7284 return FALSE;
7285
7286 if (! mips_elf_rel_dyn_section (info, TRUE))
7287 return FALSE;
7288
7289 /* Create .stub section. */
7290 s = bfd_make_section_anyway_with_flags (abfd,
7291 MIPS_ELF_STUB_SECTION_NAME (abfd),
7292 flags | SEC_CODE);
7293 if (s == NULL
7294 || ! bfd_set_section_alignment (abfd, s,
7295 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7296 return FALSE;
7297 htab->sstubs = s;
7298
7299 if (!mips_elf_hash_table (info)->use_rld_obj_head
7300 && !info->shared
7301 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7302 {
7303 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7304 flags &~ (flagword) SEC_READONLY);
7305 if (s == NULL
7306 || ! bfd_set_section_alignment (abfd, s,
7307 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7308 return FALSE;
7309 }
7310
7311 /* On IRIX5, we adjust add some additional symbols and change the
7312 alignments of several sections. There is no ABI documentation
7313 indicating that this is necessary on IRIX6, nor any evidence that
7314 the linker takes such action. */
7315 if (IRIX_COMPAT (abfd) == ict_irix5)
7316 {
7317 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7318 {
7319 bh = NULL;
7320 if (! (_bfd_generic_link_add_one_symbol
7321 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7322 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7323 return FALSE;
7324
7325 h = (struct elf_link_hash_entry *) bh;
7326 h->non_elf = 0;
7327 h->def_regular = 1;
7328 h->type = STT_SECTION;
7329
7330 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7331 return FALSE;
7332 }
7333
7334 /* We need to create a .compact_rel section. */
7335 if (SGI_COMPAT (abfd))
7336 {
7337 if (!mips_elf_create_compact_rel_section (abfd, info))
7338 return FALSE;
7339 }
7340
7341 /* Change alignments of some sections. */
7342 s = bfd_get_linker_section (abfd, ".hash");
7343 if (s != NULL)
7344 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7345 s = bfd_get_linker_section (abfd, ".dynsym");
7346 if (s != NULL)
7347 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7348 s = bfd_get_linker_section (abfd, ".dynstr");
7349 if (s != NULL)
7350 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7351 /* ??? */
7352 s = bfd_get_section_by_name (abfd, ".reginfo");
7353 if (s != NULL)
7354 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7355 s = bfd_get_linker_section (abfd, ".dynamic");
7356 if (s != NULL)
7357 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7358 }
7359
7360 if (!info->shared)
7361 {
7362 const char *name;
7363
7364 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7365 bh = NULL;
7366 if (!(_bfd_generic_link_add_one_symbol
7367 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7368 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7369 return FALSE;
7370
7371 h = (struct elf_link_hash_entry *) bh;
7372 h->non_elf = 0;
7373 h->def_regular = 1;
7374 h->type = STT_SECTION;
7375
7376 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7377 return FALSE;
7378
7379 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7380 {
7381 /* __rld_map is a four byte word located in the .data section
7382 and is filled in by the rtld to contain a pointer to
7383 the _r_debug structure. Its symbol value will be set in
7384 _bfd_mips_elf_finish_dynamic_symbol. */
7385 s = bfd_get_linker_section (abfd, ".rld_map");
7386 BFD_ASSERT (s != NULL);
7387
7388 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7389 bh = NULL;
7390 if (!(_bfd_generic_link_add_one_symbol
7391 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7392 get_elf_backend_data (abfd)->collect, &bh)))
7393 return FALSE;
7394
7395 h = (struct elf_link_hash_entry *) bh;
7396 h->non_elf = 0;
7397 h->def_regular = 1;
7398 h->type = STT_OBJECT;
7399
7400 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7401 return FALSE;
7402 mips_elf_hash_table (info)->rld_symbol = h;
7403 }
7404 }
7405
7406 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7407 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7408 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7409 return FALSE;
7410
7411 /* Cache the sections created above. */
7412 htab->splt = bfd_get_linker_section (abfd, ".plt");
7413 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7414 if (htab->is_vxworks)
7415 {
7416 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7417 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7418 }
7419 else
7420 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7421 if (!htab->sdynbss
7422 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7423 || !htab->srelplt
7424 || !htab->splt)
7425 abort ();
7426
7427 if (htab->is_vxworks)
7428 {
7429 /* Do the usual VxWorks handling. */
7430 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7431 return FALSE;
7432
7433 /* Work out the PLT sizes. */
7434 if (info->shared)
7435 {
7436 htab->plt_header_size
7437 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7438 htab->plt_entry_size
7439 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7440 }
7441 else
7442 {
7443 htab->plt_header_size
7444 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7445 htab->plt_entry_size
7446 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7447 }
7448 }
7449 else if (!info->shared)
7450 {
7451 /* All variants of the plt0 entry are the same size. */
7452 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7453 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7454 }
7455
7456 return TRUE;
7457 }
7458 \f
7459 /* Return true if relocation REL against section SEC is a REL rather than
7460 RELA relocation. RELOCS is the first relocation in the section and
7461 ABFD is the bfd that contains SEC. */
7462
7463 static bfd_boolean
7464 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7465 const Elf_Internal_Rela *relocs,
7466 const Elf_Internal_Rela *rel)
7467 {
7468 Elf_Internal_Shdr *rel_hdr;
7469 const struct elf_backend_data *bed;
7470
7471 /* To determine which flavor of relocation this is, we depend on the
7472 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7473 rel_hdr = elf_section_data (sec)->rel.hdr;
7474 if (rel_hdr == NULL)
7475 return FALSE;
7476 bed = get_elf_backend_data (abfd);
7477 return ((size_t) (rel - relocs)
7478 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7479 }
7480
7481 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7482 HOWTO is the relocation's howto and CONTENTS points to the contents
7483 of the section that REL is against. */
7484
7485 static bfd_vma
7486 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7487 reloc_howto_type *howto, bfd_byte *contents)
7488 {
7489 bfd_byte *location;
7490 unsigned int r_type;
7491 bfd_vma addend;
7492
7493 r_type = ELF_R_TYPE (abfd, rel->r_info);
7494 location = contents + rel->r_offset;
7495
7496 /* Get the addend, which is stored in the input file. */
7497 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7498 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7499 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7500
7501 return addend & howto->src_mask;
7502 }
7503
7504 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7505 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7506 and update *ADDEND with the final addend. Return true on success
7507 or false if the LO16 could not be found. RELEND is the exclusive
7508 upper bound on the relocations for REL's section. */
7509
7510 static bfd_boolean
7511 mips_elf_add_lo16_rel_addend (bfd *abfd,
7512 const Elf_Internal_Rela *rel,
7513 const Elf_Internal_Rela *relend,
7514 bfd_byte *contents, bfd_vma *addend)
7515 {
7516 unsigned int r_type, lo16_type;
7517 const Elf_Internal_Rela *lo16_relocation;
7518 reloc_howto_type *lo16_howto;
7519 bfd_vma l;
7520
7521 r_type = ELF_R_TYPE (abfd, rel->r_info);
7522 if (mips16_reloc_p (r_type))
7523 lo16_type = R_MIPS16_LO16;
7524 else if (micromips_reloc_p (r_type))
7525 lo16_type = R_MICROMIPS_LO16;
7526 else
7527 lo16_type = R_MIPS_LO16;
7528
7529 /* The combined value is the sum of the HI16 addend, left-shifted by
7530 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7531 code does a `lui' of the HI16 value, and then an `addiu' of the
7532 LO16 value.)
7533
7534 Scan ahead to find a matching LO16 relocation.
7535
7536 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7537 be immediately following. However, for the IRIX6 ABI, the next
7538 relocation may be a composed relocation consisting of several
7539 relocations for the same address. In that case, the R_MIPS_LO16
7540 relocation may occur as one of these. We permit a similar
7541 extension in general, as that is useful for GCC.
7542
7543 In some cases GCC dead code elimination removes the LO16 but keeps
7544 the corresponding HI16. This is strictly speaking a violation of
7545 the ABI but not immediately harmful. */
7546 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7547 if (lo16_relocation == NULL)
7548 return FALSE;
7549
7550 /* Obtain the addend kept there. */
7551 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7552 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7553
7554 l <<= lo16_howto->rightshift;
7555 l = _bfd_mips_elf_sign_extend (l, 16);
7556
7557 *addend <<= 16;
7558 *addend += l;
7559 return TRUE;
7560 }
7561
7562 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7563 store the contents in *CONTENTS on success. Assume that *CONTENTS
7564 already holds the contents if it is nonull on entry. */
7565
7566 static bfd_boolean
7567 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7568 {
7569 if (*contents)
7570 return TRUE;
7571
7572 /* Get cached copy if it exists. */
7573 if (elf_section_data (sec)->this_hdr.contents != NULL)
7574 {
7575 *contents = elf_section_data (sec)->this_hdr.contents;
7576 return TRUE;
7577 }
7578
7579 return bfd_malloc_and_get_section (abfd, sec, contents);
7580 }
7581
7582 /* Look through the relocs for a section during the first phase, and
7583 allocate space in the global offset table. */
7584
7585 bfd_boolean
7586 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7587 asection *sec, const Elf_Internal_Rela *relocs)
7588 {
7589 const char *name;
7590 bfd *dynobj;
7591 Elf_Internal_Shdr *symtab_hdr;
7592 struct elf_link_hash_entry **sym_hashes;
7593 size_t extsymoff;
7594 const Elf_Internal_Rela *rel;
7595 const Elf_Internal_Rela *rel_end;
7596 asection *sreloc;
7597 const struct elf_backend_data *bed;
7598 struct mips_elf_link_hash_table *htab;
7599 bfd_byte *contents;
7600 bfd_vma addend;
7601 reloc_howto_type *howto;
7602
7603 if (info->relocatable)
7604 return TRUE;
7605
7606 htab = mips_elf_hash_table (info);
7607 BFD_ASSERT (htab != NULL);
7608
7609 dynobj = elf_hash_table (info)->dynobj;
7610 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7611 sym_hashes = elf_sym_hashes (abfd);
7612 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7613
7614 bed = get_elf_backend_data (abfd);
7615 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7616
7617 /* Check for the mips16 stub sections. */
7618
7619 name = bfd_get_section_name (abfd, sec);
7620 if (FN_STUB_P (name))
7621 {
7622 unsigned long r_symndx;
7623
7624 /* Look at the relocation information to figure out which symbol
7625 this is for. */
7626
7627 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7628 if (r_symndx == 0)
7629 {
7630 (*_bfd_error_handler)
7631 (_("%B: Warning: cannot determine the target function for"
7632 " stub section `%s'"),
7633 abfd, name);
7634 bfd_set_error (bfd_error_bad_value);
7635 return FALSE;
7636 }
7637
7638 if (r_symndx < extsymoff
7639 || sym_hashes[r_symndx - extsymoff] == NULL)
7640 {
7641 asection *o;
7642
7643 /* This stub is for a local symbol. This stub will only be
7644 needed if there is some relocation in this BFD, other
7645 than a 16 bit function call, which refers to this symbol. */
7646 for (o = abfd->sections; o != NULL; o = o->next)
7647 {
7648 Elf_Internal_Rela *sec_relocs;
7649 const Elf_Internal_Rela *r, *rend;
7650
7651 /* We can ignore stub sections when looking for relocs. */
7652 if ((o->flags & SEC_RELOC) == 0
7653 || o->reloc_count == 0
7654 || section_allows_mips16_refs_p (o))
7655 continue;
7656
7657 sec_relocs
7658 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7659 info->keep_memory);
7660 if (sec_relocs == NULL)
7661 return FALSE;
7662
7663 rend = sec_relocs + o->reloc_count;
7664 for (r = sec_relocs; r < rend; r++)
7665 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7666 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7667 break;
7668
7669 if (elf_section_data (o)->relocs != sec_relocs)
7670 free (sec_relocs);
7671
7672 if (r < rend)
7673 break;
7674 }
7675
7676 if (o == NULL)
7677 {
7678 /* There is no non-call reloc for this stub, so we do
7679 not need it. Since this function is called before
7680 the linker maps input sections to output sections, we
7681 can easily discard it by setting the SEC_EXCLUDE
7682 flag. */
7683 sec->flags |= SEC_EXCLUDE;
7684 return TRUE;
7685 }
7686
7687 /* Record this stub in an array of local symbol stubs for
7688 this BFD. */
7689 if (elf_tdata (abfd)->local_stubs == NULL)
7690 {
7691 unsigned long symcount;
7692 asection **n;
7693 bfd_size_type amt;
7694
7695 if (elf_bad_symtab (abfd))
7696 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7697 else
7698 symcount = symtab_hdr->sh_info;
7699 amt = symcount * sizeof (asection *);
7700 n = bfd_zalloc (abfd, amt);
7701 if (n == NULL)
7702 return FALSE;
7703 elf_tdata (abfd)->local_stubs = n;
7704 }
7705
7706 sec->flags |= SEC_KEEP;
7707 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7708
7709 /* We don't need to set mips16_stubs_seen in this case.
7710 That flag is used to see whether we need to look through
7711 the global symbol table for stubs. We don't need to set
7712 it here, because we just have a local stub. */
7713 }
7714 else
7715 {
7716 struct mips_elf_link_hash_entry *h;
7717
7718 h = ((struct mips_elf_link_hash_entry *)
7719 sym_hashes[r_symndx - extsymoff]);
7720
7721 while (h->root.root.type == bfd_link_hash_indirect
7722 || h->root.root.type == bfd_link_hash_warning)
7723 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7724
7725 /* H is the symbol this stub is for. */
7726
7727 /* If we already have an appropriate stub for this function, we
7728 don't need another one, so we can discard this one. Since
7729 this function is called before the linker maps input sections
7730 to output sections, we can easily discard it by setting the
7731 SEC_EXCLUDE flag. */
7732 if (h->fn_stub != NULL)
7733 {
7734 sec->flags |= SEC_EXCLUDE;
7735 return TRUE;
7736 }
7737
7738 sec->flags |= SEC_KEEP;
7739 h->fn_stub = sec;
7740 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7741 }
7742 }
7743 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7744 {
7745 unsigned long r_symndx;
7746 struct mips_elf_link_hash_entry *h;
7747 asection **loc;
7748
7749 /* Look at the relocation information to figure out which symbol
7750 this is for. */
7751
7752 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7753 if (r_symndx == 0)
7754 {
7755 (*_bfd_error_handler)
7756 (_("%B: Warning: cannot determine the target function for"
7757 " stub section `%s'"),
7758 abfd, name);
7759 bfd_set_error (bfd_error_bad_value);
7760 return FALSE;
7761 }
7762
7763 if (r_symndx < extsymoff
7764 || sym_hashes[r_symndx - extsymoff] == NULL)
7765 {
7766 asection *o;
7767
7768 /* This stub is for a local symbol. This stub will only be
7769 needed if there is some relocation (R_MIPS16_26) in this BFD
7770 that refers to this symbol. */
7771 for (o = abfd->sections; o != NULL; o = o->next)
7772 {
7773 Elf_Internal_Rela *sec_relocs;
7774 const Elf_Internal_Rela *r, *rend;
7775
7776 /* We can ignore stub sections when looking for relocs. */
7777 if ((o->flags & SEC_RELOC) == 0
7778 || o->reloc_count == 0
7779 || section_allows_mips16_refs_p (o))
7780 continue;
7781
7782 sec_relocs
7783 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7784 info->keep_memory);
7785 if (sec_relocs == NULL)
7786 return FALSE;
7787
7788 rend = sec_relocs + o->reloc_count;
7789 for (r = sec_relocs; r < rend; r++)
7790 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7791 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7792 break;
7793
7794 if (elf_section_data (o)->relocs != sec_relocs)
7795 free (sec_relocs);
7796
7797 if (r < rend)
7798 break;
7799 }
7800
7801 if (o == NULL)
7802 {
7803 /* There is no non-call reloc for this stub, so we do
7804 not need it. Since this function is called before
7805 the linker maps input sections to output sections, we
7806 can easily discard it by setting the SEC_EXCLUDE
7807 flag. */
7808 sec->flags |= SEC_EXCLUDE;
7809 return TRUE;
7810 }
7811
7812 /* Record this stub in an array of local symbol call_stubs for
7813 this BFD. */
7814 if (elf_tdata (abfd)->local_call_stubs == NULL)
7815 {
7816 unsigned long symcount;
7817 asection **n;
7818 bfd_size_type amt;
7819
7820 if (elf_bad_symtab (abfd))
7821 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7822 else
7823 symcount = symtab_hdr->sh_info;
7824 amt = symcount * sizeof (asection *);
7825 n = bfd_zalloc (abfd, amt);
7826 if (n == NULL)
7827 return FALSE;
7828 elf_tdata (abfd)->local_call_stubs = n;
7829 }
7830
7831 sec->flags |= SEC_KEEP;
7832 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7833
7834 /* We don't need to set mips16_stubs_seen in this case.
7835 That flag is used to see whether we need to look through
7836 the global symbol table for stubs. We don't need to set
7837 it here, because we just have a local stub. */
7838 }
7839 else
7840 {
7841 h = ((struct mips_elf_link_hash_entry *)
7842 sym_hashes[r_symndx - extsymoff]);
7843
7844 /* H is the symbol this stub is for. */
7845
7846 if (CALL_FP_STUB_P (name))
7847 loc = &h->call_fp_stub;
7848 else
7849 loc = &h->call_stub;
7850
7851 /* If we already have an appropriate stub for this function, we
7852 don't need another one, so we can discard this one. Since
7853 this function is called before the linker maps input sections
7854 to output sections, we can easily discard it by setting the
7855 SEC_EXCLUDE flag. */
7856 if (*loc != NULL)
7857 {
7858 sec->flags |= SEC_EXCLUDE;
7859 return TRUE;
7860 }
7861
7862 sec->flags |= SEC_KEEP;
7863 *loc = sec;
7864 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7865 }
7866 }
7867
7868 sreloc = NULL;
7869 contents = NULL;
7870 for (rel = relocs; rel < rel_end; ++rel)
7871 {
7872 unsigned long r_symndx;
7873 unsigned int r_type;
7874 struct elf_link_hash_entry *h;
7875 bfd_boolean can_make_dynamic_p;
7876
7877 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7878 r_type = ELF_R_TYPE (abfd, rel->r_info);
7879
7880 if (r_symndx < extsymoff)
7881 h = NULL;
7882 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7883 {
7884 (*_bfd_error_handler)
7885 (_("%B: Malformed reloc detected for section %s"),
7886 abfd, name);
7887 bfd_set_error (bfd_error_bad_value);
7888 return FALSE;
7889 }
7890 else
7891 {
7892 h = sym_hashes[r_symndx - extsymoff];
7893 while (h != NULL
7894 && (h->root.type == bfd_link_hash_indirect
7895 || h->root.type == bfd_link_hash_warning))
7896 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7897 }
7898
7899 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7900 relocation into a dynamic one. */
7901 can_make_dynamic_p = FALSE;
7902 switch (r_type)
7903 {
7904 case R_MIPS_GOT16:
7905 case R_MIPS_CALL16:
7906 case R_MIPS_CALL_HI16:
7907 case R_MIPS_CALL_LO16:
7908 case R_MIPS_GOT_HI16:
7909 case R_MIPS_GOT_LO16:
7910 case R_MIPS_GOT_PAGE:
7911 case R_MIPS_GOT_OFST:
7912 case R_MIPS_GOT_DISP:
7913 case R_MIPS_TLS_GOTTPREL:
7914 case R_MIPS_TLS_GD:
7915 case R_MIPS_TLS_LDM:
7916 case R_MIPS16_GOT16:
7917 case R_MIPS16_CALL16:
7918 case R_MIPS16_TLS_GOTTPREL:
7919 case R_MIPS16_TLS_GD:
7920 case R_MIPS16_TLS_LDM:
7921 case R_MICROMIPS_GOT16:
7922 case R_MICROMIPS_CALL16:
7923 case R_MICROMIPS_CALL_HI16:
7924 case R_MICROMIPS_CALL_LO16:
7925 case R_MICROMIPS_GOT_HI16:
7926 case R_MICROMIPS_GOT_LO16:
7927 case R_MICROMIPS_GOT_PAGE:
7928 case R_MICROMIPS_GOT_OFST:
7929 case R_MICROMIPS_GOT_DISP:
7930 case R_MICROMIPS_TLS_GOTTPREL:
7931 case R_MICROMIPS_TLS_GD:
7932 case R_MICROMIPS_TLS_LDM:
7933 if (dynobj == NULL)
7934 elf_hash_table (info)->dynobj = dynobj = abfd;
7935 if (!mips_elf_create_got_section (dynobj, info))
7936 return FALSE;
7937 if (htab->is_vxworks && !info->shared)
7938 {
7939 (*_bfd_error_handler)
7940 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7941 abfd, (unsigned long) rel->r_offset);
7942 bfd_set_error (bfd_error_bad_value);
7943 return FALSE;
7944 }
7945 break;
7946
7947 /* This is just a hint; it can safely be ignored. Don't set
7948 has_static_relocs for the corresponding symbol. */
7949 case R_MIPS_JALR:
7950 case R_MICROMIPS_JALR:
7951 break;
7952
7953 case R_MIPS_32:
7954 case R_MIPS_REL32:
7955 case R_MIPS_64:
7956 /* In VxWorks executables, references to external symbols
7957 must be handled using copy relocs or PLT entries; it is not
7958 possible to convert this relocation into a dynamic one.
7959
7960 For executables that use PLTs and copy-relocs, we have a
7961 choice between converting the relocation into a dynamic
7962 one or using copy relocations or PLT entries. It is
7963 usually better to do the former, unless the relocation is
7964 against a read-only section. */
7965 if ((info->shared
7966 || (h != NULL
7967 && !htab->is_vxworks
7968 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7969 && !(!info->nocopyreloc
7970 && !PIC_OBJECT_P (abfd)
7971 && MIPS_ELF_READONLY_SECTION (sec))))
7972 && (sec->flags & SEC_ALLOC) != 0)
7973 {
7974 can_make_dynamic_p = TRUE;
7975 if (dynobj == NULL)
7976 elf_hash_table (info)->dynobj = dynobj = abfd;
7977 break;
7978 }
7979 /* For sections that are not SEC_ALLOC a copy reloc would be
7980 output if possible (implying questionable semantics for
7981 read-only data objects) or otherwise the final link would
7982 fail as ld.so will not process them and could not therefore
7983 handle any outstanding dynamic relocations.
7984
7985 For such sections that are also SEC_DEBUGGING, we can avoid
7986 these problems by simply ignoring any relocs as these
7987 sections have a predefined use and we know it is safe to do
7988 so.
7989
7990 This is needed in cases such as a global symbol definition
7991 in a shared library causing a common symbol from an object
7992 file to be converted to an undefined reference. If that
7993 happens, then all the relocations against this symbol from
7994 SEC_DEBUGGING sections in the object file will resolve to
7995 nil. */
7996 if ((sec->flags & SEC_DEBUGGING) != 0)
7997 break;
7998 /* Fall through. */
7999
8000 default:
8001 /* Most static relocations require pointer equality, except
8002 for branches. */
8003 if (h)
8004 h->pointer_equality_needed = TRUE;
8005 /* Fall through. */
8006
8007 case R_MIPS_26:
8008 case R_MIPS_PC16:
8009 case R_MIPS16_26:
8010 case R_MICROMIPS_26_S1:
8011 case R_MICROMIPS_PC7_S1:
8012 case R_MICROMIPS_PC10_S1:
8013 case R_MICROMIPS_PC16_S1:
8014 case R_MICROMIPS_PC23_S2:
8015 if (h)
8016 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
8017 break;
8018 }
8019
8020 if (h)
8021 {
8022 /* Relocations against the special VxWorks __GOTT_BASE__ and
8023 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8024 room for them in .rela.dyn. */
8025 if (is_gott_symbol (info, h))
8026 {
8027 if (sreloc == NULL)
8028 {
8029 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8030 if (sreloc == NULL)
8031 return FALSE;
8032 }
8033 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8034 if (MIPS_ELF_READONLY_SECTION (sec))
8035 /* We tell the dynamic linker that there are
8036 relocations against the text segment. */
8037 info->flags |= DF_TEXTREL;
8038 }
8039 }
8040 else if (call_lo16_reloc_p (r_type)
8041 || got_lo16_reloc_p (r_type)
8042 || got_disp_reloc_p (r_type)
8043 || (got16_reloc_p (r_type) && htab->is_vxworks))
8044 {
8045 /* We may need a local GOT entry for this relocation. We
8046 don't count R_MIPS_GOT_PAGE because we can estimate the
8047 maximum number of pages needed by looking at the size of
8048 the segment. Similar comments apply to R_MIPS*_GOT16 and
8049 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8050 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8051 R_MIPS_CALL_HI16 because these are always followed by an
8052 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8053 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8054 rel->r_addend, info, 0))
8055 return FALSE;
8056 }
8057
8058 if (h != NULL
8059 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8060 ELF_ST_IS_MIPS16 (h->other)))
8061 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8062
8063 switch (r_type)
8064 {
8065 case R_MIPS_CALL16:
8066 case R_MIPS16_CALL16:
8067 case R_MICROMIPS_CALL16:
8068 if (h == NULL)
8069 {
8070 (*_bfd_error_handler)
8071 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8072 abfd, (unsigned long) rel->r_offset);
8073 bfd_set_error (bfd_error_bad_value);
8074 return FALSE;
8075 }
8076 /* Fall through. */
8077
8078 case R_MIPS_CALL_HI16:
8079 case R_MIPS_CALL_LO16:
8080 case R_MICROMIPS_CALL_HI16:
8081 case R_MICROMIPS_CALL_LO16:
8082 if (h != NULL)
8083 {
8084 /* Make sure there is room in the regular GOT to hold the
8085 function's address. We may eliminate it in favour of
8086 a .got.plt entry later; see mips_elf_count_got_symbols. */
8087 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
8088 return FALSE;
8089
8090 /* We need a stub, not a plt entry for the undefined
8091 function. But we record it as if it needs plt. See
8092 _bfd_elf_adjust_dynamic_symbol. */
8093 h->needs_plt = 1;
8094 h->type = STT_FUNC;
8095 }
8096 break;
8097
8098 case R_MIPS_GOT_PAGE:
8099 case R_MICROMIPS_GOT_PAGE:
8100 /* If this is a global, overridable symbol, GOT_PAGE will
8101 decay to GOT_DISP, so we'll need a GOT entry for it. */
8102 if (h)
8103 {
8104 struct mips_elf_link_hash_entry *hmips =
8105 (struct mips_elf_link_hash_entry *) h;
8106
8107 /* This symbol is definitely not overridable. */
8108 if (hmips->root.def_regular
8109 && ! (info->shared && ! info->symbolic
8110 && ! hmips->root.forced_local))
8111 h = NULL;
8112 }
8113 /* Fall through. */
8114
8115 case R_MIPS16_GOT16:
8116 case R_MIPS_GOT16:
8117 case R_MIPS_GOT_HI16:
8118 case R_MIPS_GOT_LO16:
8119 case R_MICROMIPS_GOT16:
8120 case R_MICROMIPS_GOT_HI16:
8121 case R_MICROMIPS_GOT_LO16:
8122 if (!h || got_page_reloc_p (r_type))
8123 {
8124 /* This relocation needs (or may need, if h != NULL) a
8125 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8126 know for sure until we know whether the symbol is
8127 preemptible. */
8128 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8129 {
8130 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8131 return FALSE;
8132 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8133 addend = mips_elf_read_rel_addend (abfd, rel,
8134 howto, contents);
8135 if (got16_reloc_p (r_type))
8136 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8137 contents, &addend);
8138 else
8139 addend <<= howto->rightshift;
8140 }
8141 else
8142 addend = rel->r_addend;
8143 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
8144 addend))
8145 return FALSE;
8146 }
8147 /* Fall through. */
8148
8149 case R_MIPS_GOT_DISP:
8150 case R_MICROMIPS_GOT_DISP:
8151 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8152 FALSE, 0))
8153 return FALSE;
8154 break;
8155
8156 case R_MIPS_TLS_GOTTPREL:
8157 case R_MIPS16_TLS_GOTTPREL:
8158 case R_MICROMIPS_TLS_GOTTPREL:
8159 if (info->shared)
8160 info->flags |= DF_STATIC_TLS;
8161 /* Fall through */
8162
8163 case R_MIPS_TLS_LDM:
8164 case R_MIPS16_TLS_LDM:
8165 case R_MICROMIPS_TLS_LDM:
8166 if (tls_ldm_reloc_p (r_type))
8167 {
8168 r_symndx = STN_UNDEF;
8169 h = NULL;
8170 }
8171 /* Fall through */
8172
8173 case R_MIPS_TLS_GD:
8174 case R_MIPS16_TLS_GD:
8175 case R_MICROMIPS_TLS_GD:
8176 /* This symbol requires a global offset table entry, or two
8177 for TLS GD relocations. */
8178 {
8179 unsigned char flag;
8180
8181 flag = (tls_gd_reloc_p (r_type)
8182 ? GOT_TLS_GD
8183 : tls_ldm_reloc_p (r_type) ? GOT_TLS_LDM : GOT_TLS_IE);
8184 if (h != NULL)
8185 {
8186 struct mips_elf_link_hash_entry *hmips =
8187 (struct mips_elf_link_hash_entry *) h;
8188 hmips->tls_type |= flag;
8189
8190 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8191 FALSE, flag))
8192 return FALSE;
8193 }
8194 else
8195 {
8196 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
8197
8198 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8199 rel->r_addend,
8200 info, flag))
8201 return FALSE;
8202 }
8203 }
8204 break;
8205
8206 case R_MIPS_32:
8207 case R_MIPS_REL32:
8208 case R_MIPS_64:
8209 /* In VxWorks executables, references to external symbols
8210 are handled using copy relocs or PLT stubs, so there's
8211 no need to add a .rela.dyn entry for this relocation. */
8212 if (can_make_dynamic_p)
8213 {
8214 if (sreloc == NULL)
8215 {
8216 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8217 if (sreloc == NULL)
8218 return FALSE;
8219 }
8220 if (info->shared && h == NULL)
8221 {
8222 /* When creating a shared object, we must copy these
8223 reloc types into the output file as R_MIPS_REL32
8224 relocs. Make room for this reloc in .rel(a).dyn. */
8225 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8226 if (MIPS_ELF_READONLY_SECTION (sec))
8227 /* We tell the dynamic linker that there are
8228 relocations against the text segment. */
8229 info->flags |= DF_TEXTREL;
8230 }
8231 else
8232 {
8233 struct mips_elf_link_hash_entry *hmips;
8234
8235 /* For a shared object, we must copy this relocation
8236 unless the symbol turns out to be undefined and
8237 weak with non-default visibility, in which case
8238 it will be left as zero.
8239
8240 We could elide R_MIPS_REL32 for locally binding symbols
8241 in shared libraries, but do not yet do so.
8242
8243 For an executable, we only need to copy this
8244 reloc if the symbol is defined in a dynamic
8245 object. */
8246 hmips = (struct mips_elf_link_hash_entry *) h;
8247 ++hmips->possibly_dynamic_relocs;
8248 if (MIPS_ELF_READONLY_SECTION (sec))
8249 /* We need it to tell the dynamic linker if there
8250 are relocations against the text segment. */
8251 hmips->readonly_reloc = TRUE;
8252 }
8253 }
8254
8255 if (SGI_COMPAT (abfd))
8256 mips_elf_hash_table (info)->compact_rel_size +=
8257 sizeof (Elf32_External_crinfo);
8258 break;
8259
8260 case R_MIPS_26:
8261 case R_MIPS_GPREL16:
8262 case R_MIPS_LITERAL:
8263 case R_MIPS_GPREL32:
8264 case R_MICROMIPS_26_S1:
8265 case R_MICROMIPS_GPREL16:
8266 case R_MICROMIPS_LITERAL:
8267 case R_MICROMIPS_GPREL7_S2:
8268 if (SGI_COMPAT (abfd))
8269 mips_elf_hash_table (info)->compact_rel_size +=
8270 sizeof (Elf32_External_crinfo);
8271 break;
8272
8273 /* This relocation describes the C++ object vtable hierarchy.
8274 Reconstruct it for later use during GC. */
8275 case R_MIPS_GNU_VTINHERIT:
8276 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8277 return FALSE;
8278 break;
8279
8280 /* This relocation describes which C++ vtable entries are actually
8281 used. Record for later use during GC. */
8282 case R_MIPS_GNU_VTENTRY:
8283 BFD_ASSERT (h != NULL);
8284 if (h != NULL
8285 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8286 return FALSE;
8287 break;
8288
8289 default:
8290 break;
8291 }
8292
8293 /* We must not create a stub for a symbol that has relocations
8294 related to taking the function's address. This doesn't apply to
8295 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8296 a normal .got entry. */
8297 if (!htab->is_vxworks && h != NULL)
8298 switch (r_type)
8299 {
8300 default:
8301 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8302 break;
8303 case R_MIPS16_CALL16:
8304 case R_MIPS_CALL16:
8305 case R_MIPS_CALL_HI16:
8306 case R_MIPS_CALL_LO16:
8307 case R_MIPS_JALR:
8308 case R_MICROMIPS_CALL16:
8309 case R_MICROMIPS_CALL_HI16:
8310 case R_MICROMIPS_CALL_LO16:
8311 case R_MICROMIPS_JALR:
8312 break;
8313 }
8314
8315 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8316 if there is one. We only need to handle global symbols here;
8317 we decide whether to keep or delete stubs for local symbols
8318 when processing the stub's relocations. */
8319 if (h != NULL
8320 && !mips16_call_reloc_p (r_type)
8321 && !section_allows_mips16_refs_p (sec))
8322 {
8323 struct mips_elf_link_hash_entry *mh;
8324
8325 mh = (struct mips_elf_link_hash_entry *) h;
8326 mh->need_fn_stub = TRUE;
8327 }
8328
8329 /* Refuse some position-dependent relocations when creating a
8330 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8331 not PIC, but we can create dynamic relocations and the result
8332 will be fine. Also do not refuse R_MIPS_LO16, which can be
8333 combined with R_MIPS_GOT16. */
8334 if (info->shared)
8335 {
8336 switch (r_type)
8337 {
8338 case R_MIPS16_HI16:
8339 case R_MIPS_HI16:
8340 case R_MIPS_HIGHER:
8341 case R_MIPS_HIGHEST:
8342 case R_MICROMIPS_HI16:
8343 case R_MICROMIPS_HIGHER:
8344 case R_MICROMIPS_HIGHEST:
8345 /* Don't refuse a high part relocation if it's against
8346 no symbol (e.g. part of a compound relocation). */
8347 if (r_symndx == STN_UNDEF)
8348 break;
8349
8350 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8351 and has a special meaning. */
8352 if (!NEWABI_P (abfd) && h != NULL
8353 && strcmp (h->root.root.string, "_gp_disp") == 0)
8354 break;
8355
8356 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8357 if (is_gott_symbol (info, h))
8358 break;
8359
8360 /* FALLTHROUGH */
8361
8362 case R_MIPS16_26:
8363 case R_MIPS_26:
8364 case R_MICROMIPS_26_S1:
8365 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8366 (*_bfd_error_handler)
8367 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8368 abfd, howto->name,
8369 (h) ? h->root.root.string : "a local symbol");
8370 bfd_set_error (bfd_error_bad_value);
8371 return FALSE;
8372 default:
8373 break;
8374 }
8375 }
8376 }
8377
8378 return TRUE;
8379 }
8380 \f
8381 bfd_boolean
8382 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8383 struct bfd_link_info *link_info,
8384 bfd_boolean *again)
8385 {
8386 Elf_Internal_Rela *internal_relocs;
8387 Elf_Internal_Rela *irel, *irelend;
8388 Elf_Internal_Shdr *symtab_hdr;
8389 bfd_byte *contents = NULL;
8390 size_t extsymoff;
8391 bfd_boolean changed_contents = FALSE;
8392 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8393 Elf_Internal_Sym *isymbuf = NULL;
8394
8395 /* We are not currently changing any sizes, so only one pass. */
8396 *again = FALSE;
8397
8398 if (link_info->relocatable)
8399 return TRUE;
8400
8401 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8402 link_info->keep_memory);
8403 if (internal_relocs == NULL)
8404 return TRUE;
8405
8406 irelend = internal_relocs + sec->reloc_count
8407 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8408 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8409 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8410
8411 for (irel = internal_relocs; irel < irelend; irel++)
8412 {
8413 bfd_vma symval;
8414 bfd_signed_vma sym_offset;
8415 unsigned int r_type;
8416 unsigned long r_symndx;
8417 asection *sym_sec;
8418 unsigned long instruction;
8419
8420 /* Turn jalr into bgezal, and jr into beq, if they're marked
8421 with a JALR relocation, that indicate where they jump to.
8422 This saves some pipeline bubbles. */
8423 r_type = ELF_R_TYPE (abfd, irel->r_info);
8424 if (r_type != R_MIPS_JALR)
8425 continue;
8426
8427 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8428 /* Compute the address of the jump target. */
8429 if (r_symndx >= extsymoff)
8430 {
8431 struct mips_elf_link_hash_entry *h
8432 = ((struct mips_elf_link_hash_entry *)
8433 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8434
8435 while (h->root.root.type == bfd_link_hash_indirect
8436 || h->root.root.type == bfd_link_hash_warning)
8437 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8438
8439 /* If a symbol is undefined, or if it may be overridden,
8440 skip it. */
8441 if (! ((h->root.root.type == bfd_link_hash_defined
8442 || h->root.root.type == bfd_link_hash_defweak)
8443 && h->root.root.u.def.section)
8444 || (link_info->shared && ! link_info->symbolic
8445 && !h->root.forced_local))
8446 continue;
8447
8448 sym_sec = h->root.root.u.def.section;
8449 if (sym_sec->output_section)
8450 symval = (h->root.root.u.def.value
8451 + sym_sec->output_section->vma
8452 + sym_sec->output_offset);
8453 else
8454 symval = h->root.root.u.def.value;
8455 }
8456 else
8457 {
8458 Elf_Internal_Sym *isym;
8459
8460 /* Read this BFD's symbols if we haven't done so already. */
8461 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8462 {
8463 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8464 if (isymbuf == NULL)
8465 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8466 symtab_hdr->sh_info, 0,
8467 NULL, NULL, NULL);
8468 if (isymbuf == NULL)
8469 goto relax_return;
8470 }
8471
8472 isym = isymbuf + r_symndx;
8473 if (isym->st_shndx == SHN_UNDEF)
8474 continue;
8475 else if (isym->st_shndx == SHN_ABS)
8476 sym_sec = bfd_abs_section_ptr;
8477 else if (isym->st_shndx == SHN_COMMON)
8478 sym_sec = bfd_com_section_ptr;
8479 else
8480 sym_sec
8481 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8482 symval = isym->st_value
8483 + sym_sec->output_section->vma
8484 + sym_sec->output_offset;
8485 }
8486
8487 /* Compute branch offset, from delay slot of the jump to the
8488 branch target. */
8489 sym_offset = (symval + irel->r_addend)
8490 - (sec_start + irel->r_offset + 4);
8491
8492 /* Branch offset must be properly aligned. */
8493 if ((sym_offset & 3) != 0)
8494 continue;
8495
8496 sym_offset >>= 2;
8497
8498 /* Check that it's in range. */
8499 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8500 continue;
8501
8502 /* Get the section contents if we haven't done so already. */
8503 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8504 goto relax_return;
8505
8506 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8507
8508 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8509 if ((instruction & 0xfc1fffff) == 0x0000f809)
8510 instruction = 0x04110000;
8511 /* If it was jr <reg>, turn it into b <target>. */
8512 else if ((instruction & 0xfc1fffff) == 0x00000008)
8513 instruction = 0x10000000;
8514 else
8515 continue;
8516
8517 instruction |= (sym_offset & 0xffff);
8518 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8519 changed_contents = TRUE;
8520 }
8521
8522 if (contents != NULL
8523 && elf_section_data (sec)->this_hdr.contents != contents)
8524 {
8525 if (!changed_contents && !link_info->keep_memory)
8526 free (contents);
8527 else
8528 {
8529 /* Cache the section contents for elf_link_input_bfd. */
8530 elf_section_data (sec)->this_hdr.contents = contents;
8531 }
8532 }
8533 return TRUE;
8534
8535 relax_return:
8536 if (contents != NULL
8537 && elf_section_data (sec)->this_hdr.contents != contents)
8538 free (contents);
8539 return FALSE;
8540 }
8541 \f
8542 /* Allocate space for global sym dynamic relocs. */
8543
8544 static bfd_boolean
8545 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8546 {
8547 struct bfd_link_info *info = inf;
8548 bfd *dynobj;
8549 struct mips_elf_link_hash_entry *hmips;
8550 struct mips_elf_link_hash_table *htab;
8551
8552 htab = mips_elf_hash_table (info);
8553 BFD_ASSERT (htab != NULL);
8554
8555 dynobj = elf_hash_table (info)->dynobj;
8556 hmips = (struct mips_elf_link_hash_entry *) h;
8557
8558 /* VxWorks executables are handled elsewhere; we only need to
8559 allocate relocations in shared objects. */
8560 if (htab->is_vxworks && !info->shared)
8561 return TRUE;
8562
8563 /* Ignore indirect symbols. All relocations against such symbols
8564 will be redirected to the target symbol. */
8565 if (h->root.type == bfd_link_hash_indirect)
8566 return TRUE;
8567
8568 /* If this symbol is defined in a dynamic object, or we are creating
8569 a shared library, we will need to copy any R_MIPS_32 or
8570 R_MIPS_REL32 relocs against it into the output file. */
8571 if (! info->relocatable
8572 && hmips->possibly_dynamic_relocs != 0
8573 && (h->root.type == bfd_link_hash_defweak
8574 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8575 || info->shared))
8576 {
8577 bfd_boolean do_copy = TRUE;
8578
8579 if (h->root.type == bfd_link_hash_undefweak)
8580 {
8581 /* Do not copy relocations for undefined weak symbols with
8582 non-default visibility. */
8583 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8584 do_copy = FALSE;
8585
8586 /* Make sure undefined weak symbols are output as a dynamic
8587 symbol in PIEs. */
8588 else if (h->dynindx == -1 && !h->forced_local)
8589 {
8590 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8591 return FALSE;
8592 }
8593 }
8594
8595 if (do_copy)
8596 {
8597 /* Even though we don't directly need a GOT entry for this symbol,
8598 the SVR4 psABI requires it to have a dynamic symbol table
8599 index greater that DT_MIPS_GOTSYM if there are dynamic
8600 relocations against it.
8601
8602 VxWorks does not enforce the same mapping between the GOT
8603 and the symbol table, so the same requirement does not
8604 apply there. */
8605 if (!htab->is_vxworks)
8606 {
8607 if (hmips->global_got_area > GGA_RELOC_ONLY)
8608 hmips->global_got_area = GGA_RELOC_ONLY;
8609 hmips->got_only_for_calls = FALSE;
8610 }
8611
8612 mips_elf_allocate_dynamic_relocations
8613 (dynobj, info, hmips->possibly_dynamic_relocs);
8614 if (hmips->readonly_reloc)
8615 /* We tell the dynamic linker that there are relocations
8616 against the text segment. */
8617 info->flags |= DF_TEXTREL;
8618 }
8619 }
8620
8621 return TRUE;
8622 }
8623
8624 /* Adjust a symbol defined by a dynamic object and referenced by a
8625 regular object. The current definition is in some section of the
8626 dynamic object, but we're not including those sections. We have to
8627 change the definition to something the rest of the link can
8628 understand. */
8629
8630 bfd_boolean
8631 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8632 struct elf_link_hash_entry *h)
8633 {
8634 bfd *dynobj;
8635 struct mips_elf_link_hash_entry *hmips;
8636 struct mips_elf_link_hash_table *htab;
8637
8638 htab = mips_elf_hash_table (info);
8639 BFD_ASSERT (htab != NULL);
8640
8641 dynobj = elf_hash_table (info)->dynobj;
8642 hmips = (struct mips_elf_link_hash_entry *) h;
8643
8644 /* Make sure we know what is going on here. */
8645 BFD_ASSERT (dynobj != NULL
8646 && (h->needs_plt
8647 || h->u.weakdef != NULL
8648 || (h->def_dynamic
8649 && h->ref_regular
8650 && !h->def_regular)));
8651
8652 hmips = (struct mips_elf_link_hash_entry *) h;
8653
8654 /* If there are call relocations against an externally-defined symbol,
8655 see whether we can create a MIPS lazy-binding stub for it. We can
8656 only do this if all references to the function are through call
8657 relocations, and in that case, the traditional lazy-binding stubs
8658 are much more efficient than PLT entries.
8659
8660 Traditional stubs are only available on SVR4 psABI-based systems;
8661 VxWorks always uses PLTs instead. */
8662 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8663 {
8664 if (! elf_hash_table (info)->dynamic_sections_created)
8665 return TRUE;
8666
8667 /* If this symbol is not defined in a regular file, then set
8668 the symbol to the stub location. This is required to make
8669 function pointers compare as equal between the normal
8670 executable and the shared library. */
8671 if (!h->def_regular)
8672 {
8673 hmips->needs_lazy_stub = TRUE;
8674 htab->lazy_stub_count++;
8675 return TRUE;
8676 }
8677 }
8678 /* As above, VxWorks requires PLT entries for externally-defined
8679 functions that are only accessed through call relocations.
8680
8681 Both VxWorks and non-VxWorks targets also need PLT entries if there
8682 are static-only relocations against an externally-defined function.
8683 This can technically occur for shared libraries if there are
8684 branches to the symbol, although it is unlikely that this will be
8685 used in practice due to the short ranges involved. It can occur
8686 for any relative or absolute relocation in executables; in that
8687 case, the PLT entry becomes the function's canonical address. */
8688 else if (((h->needs_plt && !hmips->no_fn_stub)
8689 || (h->type == STT_FUNC && hmips->has_static_relocs))
8690 && htab->use_plts_and_copy_relocs
8691 && !SYMBOL_CALLS_LOCAL (info, h)
8692 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8693 && h->root.type == bfd_link_hash_undefweak))
8694 {
8695 /* If this is the first symbol to need a PLT entry, allocate room
8696 for the header. */
8697 if (htab->splt->size == 0)
8698 {
8699 BFD_ASSERT (htab->sgotplt->size == 0);
8700
8701 /* If we're using the PLT additions to the psABI, each PLT
8702 entry is 16 bytes and the PLT0 entry is 32 bytes.
8703 Encourage better cache usage by aligning. We do this
8704 lazily to avoid pessimizing traditional objects. */
8705 if (!htab->is_vxworks
8706 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8707 return FALSE;
8708
8709 /* Make sure that .got.plt is word-aligned. We do this lazily
8710 for the same reason as above. */
8711 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8712 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8713 return FALSE;
8714
8715 htab->splt->size += htab->plt_header_size;
8716
8717 /* On non-VxWorks targets, the first two entries in .got.plt
8718 are reserved. */
8719 if (!htab->is_vxworks)
8720 htab->sgotplt->size
8721 += get_elf_backend_data (dynobj)->got_header_size;
8722
8723 /* On VxWorks, also allocate room for the header's
8724 .rela.plt.unloaded entries. */
8725 if (htab->is_vxworks && !info->shared)
8726 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8727 }
8728
8729 /* Assign the next .plt entry to this symbol. */
8730 h->plt.offset = htab->splt->size;
8731 htab->splt->size += htab->plt_entry_size;
8732
8733 /* If the output file has no definition of the symbol, set the
8734 symbol's value to the address of the stub. */
8735 if (!info->shared && !h->def_regular)
8736 {
8737 h->root.u.def.section = htab->splt;
8738 h->root.u.def.value = h->plt.offset;
8739 /* For VxWorks, point at the PLT load stub rather than the
8740 lazy resolution stub; this stub will become the canonical
8741 function address. */
8742 if (htab->is_vxworks)
8743 h->root.u.def.value += 8;
8744 }
8745
8746 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8747 relocation. */
8748 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8749 htab->srelplt->size += (htab->is_vxworks
8750 ? MIPS_ELF_RELA_SIZE (dynobj)
8751 : MIPS_ELF_REL_SIZE (dynobj));
8752
8753 /* Make room for the .rela.plt.unloaded relocations. */
8754 if (htab->is_vxworks && !info->shared)
8755 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8756
8757 /* All relocations against this symbol that could have been made
8758 dynamic will now refer to the PLT entry instead. */
8759 hmips->possibly_dynamic_relocs = 0;
8760
8761 return TRUE;
8762 }
8763
8764 /* If this is a weak symbol, and there is a real definition, the
8765 processor independent code will have arranged for us to see the
8766 real definition first, and we can just use the same value. */
8767 if (h->u.weakdef != NULL)
8768 {
8769 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8770 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8771 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8772 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8773 return TRUE;
8774 }
8775
8776 /* Otherwise, there is nothing further to do for symbols defined
8777 in regular objects. */
8778 if (h->def_regular)
8779 return TRUE;
8780
8781 /* There's also nothing more to do if we'll convert all relocations
8782 against this symbol into dynamic relocations. */
8783 if (!hmips->has_static_relocs)
8784 return TRUE;
8785
8786 /* We're now relying on copy relocations. Complain if we have
8787 some that we can't convert. */
8788 if (!htab->use_plts_and_copy_relocs || info->shared)
8789 {
8790 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8791 "dynamic symbol %s"),
8792 h->root.root.string);
8793 bfd_set_error (bfd_error_bad_value);
8794 return FALSE;
8795 }
8796
8797 /* We must allocate the symbol in our .dynbss section, which will
8798 become part of the .bss section of the executable. There will be
8799 an entry for this symbol in the .dynsym section. The dynamic
8800 object will contain position independent code, so all references
8801 from the dynamic object to this symbol will go through the global
8802 offset table. The dynamic linker will use the .dynsym entry to
8803 determine the address it must put in the global offset table, so
8804 both the dynamic object and the regular object will refer to the
8805 same memory location for the variable. */
8806
8807 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8808 {
8809 if (htab->is_vxworks)
8810 htab->srelbss->size += sizeof (Elf32_External_Rela);
8811 else
8812 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8813 h->needs_copy = 1;
8814 }
8815
8816 /* All relocations against this symbol that could have been made
8817 dynamic will now refer to the local copy instead. */
8818 hmips->possibly_dynamic_relocs = 0;
8819
8820 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8821 }
8822 \f
8823 /* This function is called after all the input files have been read,
8824 and the input sections have been assigned to output sections. We
8825 check for any mips16 stub sections that we can discard. */
8826
8827 bfd_boolean
8828 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8829 struct bfd_link_info *info)
8830 {
8831 asection *ri;
8832 struct mips_elf_link_hash_table *htab;
8833 struct mips_htab_traverse_info hti;
8834
8835 htab = mips_elf_hash_table (info);
8836 BFD_ASSERT (htab != NULL);
8837
8838 /* The .reginfo section has a fixed size. */
8839 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8840 if (ri != NULL)
8841 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8842
8843 hti.info = info;
8844 hti.output_bfd = output_bfd;
8845 hti.error = FALSE;
8846 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8847 mips_elf_check_symbols, &hti);
8848 if (hti.error)
8849 return FALSE;
8850
8851 return TRUE;
8852 }
8853
8854 /* If the link uses a GOT, lay it out and work out its size. */
8855
8856 static bfd_boolean
8857 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8858 {
8859 bfd *dynobj;
8860 asection *s;
8861 struct mips_got_info *g;
8862 bfd_size_type loadable_size = 0;
8863 bfd_size_type page_gotno;
8864 bfd *sub;
8865 struct mips_elf_count_tls_arg count_tls_arg;
8866 struct mips_elf_link_hash_table *htab;
8867
8868 htab = mips_elf_hash_table (info);
8869 BFD_ASSERT (htab != NULL);
8870
8871 s = htab->sgot;
8872 if (s == NULL)
8873 return TRUE;
8874
8875 dynobj = elf_hash_table (info)->dynobj;
8876 g = htab->got_info;
8877
8878 /* Allocate room for the reserved entries. VxWorks always reserves
8879 3 entries; other objects only reserve 2 entries. */
8880 BFD_ASSERT (g->assigned_gotno == 0);
8881 if (htab->is_vxworks)
8882 htab->reserved_gotno = 3;
8883 else
8884 htab->reserved_gotno = 2;
8885 g->local_gotno += htab->reserved_gotno;
8886 g->assigned_gotno = htab->reserved_gotno;
8887
8888 /* Replace entries for indirect and warning symbols with entries for
8889 the target symbol. */
8890 if (!mips_elf_resolve_final_got_entries (g))
8891 return FALSE;
8892
8893 /* Count the number of GOT symbols. */
8894 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8895
8896 /* Calculate the total loadable size of the output. That
8897 will give us the maximum number of GOT_PAGE entries
8898 required. */
8899 for (sub = info->input_bfds; sub; sub = sub->link_next)
8900 {
8901 asection *subsection;
8902
8903 for (subsection = sub->sections;
8904 subsection;
8905 subsection = subsection->next)
8906 {
8907 if ((subsection->flags & SEC_ALLOC) == 0)
8908 continue;
8909 loadable_size += ((subsection->size + 0xf)
8910 &~ (bfd_size_type) 0xf);
8911 }
8912 }
8913
8914 if (htab->is_vxworks)
8915 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8916 relocations against local symbols evaluate to "G", and the EABI does
8917 not include R_MIPS_GOT_PAGE. */
8918 page_gotno = 0;
8919 else
8920 /* Assume there are two loadable segments consisting of contiguous
8921 sections. Is 5 enough? */
8922 page_gotno = (loadable_size >> 16) + 5;
8923
8924 /* Choose the smaller of the two estimates; both are intended to be
8925 conservative. */
8926 if (page_gotno > g->page_gotno)
8927 page_gotno = g->page_gotno;
8928
8929 g->local_gotno += page_gotno;
8930 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8931 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8932
8933 /* We need to calculate tls_gotno for global symbols at this point
8934 instead of building it up earlier, to avoid doublecounting
8935 entries for one global symbol from multiple input files. */
8936 count_tls_arg.info = info;
8937 count_tls_arg.needed = 0;
8938 elf_link_hash_traverse (elf_hash_table (info),
8939 mips_elf_count_global_tls_entries,
8940 &count_tls_arg);
8941 g->tls_gotno += count_tls_arg.needed;
8942 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8943
8944 /* VxWorks does not support multiple GOTs. It initializes $gp to
8945 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8946 dynamic loader. */
8947 if (htab->is_vxworks)
8948 {
8949 /* VxWorks executables do not need a GOT. */
8950 if (info->shared)
8951 {
8952 /* Each VxWorks GOT entry needs an explicit relocation. */
8953 unsigned int count;
8954
8955 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8956 if (count)
8957 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8958 }
8959 }
8960 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8961 {
8962 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8963 return FALSE;
8964 }
8965 else
8966 {
8967 struct mips_elf_count_tls_arg arg;
8968
8969 /* Set up TLS entries. */
8970 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8971 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8972
8973 /* Allocate room for the TLS relocations. */
8974 arg.info = info;
8975 arg.needed = 0;
8976 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8977 elf_link_hash_traverse (elf_hash_table (info),
8978 mips_elf_count_global_tls_relocs,
8979 &arg);
8980 if (arg.needed)
8981 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8982 }
8983
8984 return TRUE;
8985 }
8986
8987 /* Estimate the size of the .MIPS.stubs section. */
8988
8989 static void
8990 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8991 {
8992 struct mips_elf_link_hash_table *htab;
8993 bfd_size_type dynsymcount;
8994
8995 htab = mips_elf_hash_table (info);
8996 BFD_ASSERT (htab != NULL);
8997
8998 if (htab->lazy_stub_count == 0)
8999 return;
9000
9001 /* IRIX rld assumes that a function stub isn't at the end of the .text
9002 section, so add a dummy entry to the end. */
9003 htab->lazy_stub_count++;
9004
9005 /* Get a worst-case estimate of the number of dynamic symbols needed.
9006 At this point, dynsymcount does not account for section symbols
9007 and count_section_dynsyms may overestimate the number that will
9008 be needed. */
9009 dynsymcount = (elf_hash_table (info)->dynsymcount
9010 + count_section_dynsyms (output_bfd, info));
9011
9012 /* Determine the size of one stub entry. */
9013 htab->function_stub_size = (dynsymcount > 0x10000
9014 ? MIPS_FUNCTION_STUB_BIG_SIZE
9015 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9016
9017 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9018 }
9019
9020 /* A mips_elf_link_hash_traverse callback for which DATA points to the
9021 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
9022 allocate an entry in the stubs section. */
9023
9024 static bfd_boolean
9025 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
9026 {
9027 struct mips_elf_link_hash_table *htab;
9028
9029 htab = (struct mips_elf_link_hash_table *) data;
9030 if (h->needs_lazy_stub)
9031 {
9032 h->root.root.u.def.section = htab->sstubs;
9033 h->root.root.u.def.value = htab->sstubs->size;
9034 h->root.plt.offset = htab->sstubs->size;
9035 htab->sstubs->size += htab->function_stub_size;
9036 }
9037 return TRUE;
9038 }
9039
9040 /* Allocate offsets in the stubs section to each symbol that needs one.
9041 Set the final size of the .MIPS.stub section. */
9042
9043 static void
9044 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9045 {
9046 struct mips_elf_link_hash_table *htab;
9047
9048 htab = mips_elf_hash_table (info);
9049 BFD_ASSERT (htab != NULL);
9050
9051 if (htab->lazy_stub_count == 0)
9052 return;
9053
9054 htab->sstubs->size = 0;
9055 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
9056 htab->sstubs->size += htab->function_stub_size;
9057 BFD_ASSERT (htab->sstubs->size
9058 == htab->lazy_stub_count * htab->function_stub_size);
9059 }
9060
9061 /* Set the sizes of the dynamic sections. */
9062
9063 bfd_boolean
9064 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9065 struct bfd_link_info *info)
9066 {
9067 bfd *dynobj;
9068 asection *s, *sreldyn;
9069 bfd_boolean reltext;
9070 struct mips_elf_link_hash_table *htab;
9071
9072 htab = mips_elf_hash_table (info);
9073 BFD_ASSERT (htab != NULL);
9074 dynobj = elf_hash_table (info)->dynobj;
9075 BFD_ASSERT (dynobj != NULL);
9076
9077 if (elf_hash_table (info)->dynamic_sections_created)
9078 {
9079 /* Set the contents of the .interp section to the interpreter. */
9080 if (info->executable)
9081 {
9082 s = bfd_get_linker_section (dynobj, ".interp");
9083 BFD_ASSERT (s != NULL);
9084 s->size
9085 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9086 s->contents
9087 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9088 }
9089
9090 /* Create a symbol for the PLT, if we know that we are using it. */
9091 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
9092 {
9093 struct elf_link_hash_entry *h;
9094
9095 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9096
9097 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9098 "_PROCEDURE_LINKAGE_TABLE_");
9099 htab->root.hplt = h;
9100 if (h == NULL)
9101 return FALSE;
9102 h->type = STT_FUNC;
9103 }
9104 }
9105
9106 /* Allocate space for global sym dynamic relocs. */
9107 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9108
9109 mips_elf_estimate_stub_size (output_bfd, info);
9110
9111 if (!mips_elf_lay_out_got (output_bfd, info))
9112 return FALSE;
9113
9114 mips_elf_lay_out_lazy_stubs (info);
9115
9116 /* The check_relocs and adjust_dynamic_symbol entry points have
9117 determined the sizes of the various dynamic sections. Allocate
9118 memory for them. */
9119 reltext = FALSE;
9120 for (s = dynobj->sections; s != NULL; s = s->next)
9121 {
9122 const char *name;
9123
9124 /* It's OK to base decisions on the section name, because none
9125 of the dynobj section names depend upon the input files. */
9126 name = bfd_get_section_name (dynobj, s);
9127
9128 if ((s->flags & SEC_LINKER_CREATED) == 0)
9129 continue;
9130
9131 if (CONST_STRNEQ (name, ".rel"))
9132 {
9133 if (s->size != 0)
9134 {
9135 const char *outname;
9136 asection *target;
9137
9138 /* If this relocation section applies to a read only
9139 section, then we probably need a DT_TEXTREL entry.
9140 If the relocation section is .rel(a).dyn, we always
9141 assert a DT_TEXTREL entry rather than testing whether
9142 there exists a relocation to a read only section or
9143 not. */
9144 outname = bfd_get_section_name (output_bfd,
9145 s->output_section);
9146 target = bfd_get_section_by_name (output_bfd, outname + 4);
9147 if ((target != NULL
9148 && (target->flags & SEC_READONLY) != 0
9149 && (target->flags & SEC_ALLOC) != 0)
9150 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9151 reltext = TRUE;
9152
9153 /* We use the reloc_count field as a counter if we need
9154 to copy relocs into the output file. */
9155 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9156 s->reloc_count = 0;
9157
9158 /* If combreloc is enabled, elf_link_sort_relocs() will
9159 sort relocations, but in a different way than we do,
9160 and before we're done creating relocations. Also, it
9161 will move them around between input sections'
9162 relocation's contents, so our sorting would be
9163 broken, so don't let it run. */
9164 info->combreloc = 0;
9165 }
9166 }
9167 else if (! info->shared
9168 && ! mips_elf_hash_table (info)->use_rld_obj_head
9169 && CONST_STRNEQ (name, ".rld_map"))
9170 {
9171 /* We add a room for __rld_map. It will be filled in by the
9172 rtld to contain a pointer to the _r_debug structure. */
9173 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9174 }
9175 else if (SGI_COMPAT (output_bfd)
9176 && CONST_STRNEQ (name, ".compact_rel"))
9177 s->size += mips_elf_hash_table (info)->compact_rel_size;
9178 else if (s == htab->splt)
9179 {
9180 /* If the last PLT entry has a branch delay slot, allocate
9181 room for an extra nop to fill the delay slot. This is
9182 for CPUs without load interlocking. */
9183 if (! LOAD_INTERLOCKS_P (output_bfd)
9184 && ! htab->is_vxworks && s->size > 0)
9185 s->size += 4;
9186 }
9187 else if (! CONST_STRNEQ (name, ".init")
9188 && s != htab->sgot
9189 && s != htab->sgotplt
9190 && s != htab->sstubs
9191 && s != htab->sdynbss)
9192 {
9193 /* It's not one of our sections, so don't allocate space. */
9194 continue;
9195 }
9196
9197 if (s->size == 0)
9198 {
9199 s->flags |= SEC_EXCLUDE;
9200 continue;
9201 }
9202
9203 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9204 continue;
9205
9206 /* Allocate memory for the section contents. */
9207 s->contents = bfd_zalloc (dynobj, s->size);
9208 if (s->contents == NULL)
9209 {
9210 bfd_set_error (bfd_error_no_memory);
9211 return FALSE;
9212 }
9213 }
9214
9215 if (elf_hash_table (info)->dynamic_sections_created)
9216 {
9217 /* Add some entries to the .dynamic section. We fill in the
9218 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9219 must add the entries now so that we get the correct size for
9220 the .dynamic section. */
9221
9222 /* SGI object has the equivalence of DT_DEBUG in the
9223 DT_MIPS_RLD_MAP entry. This must come first because glibc
9224 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9225 may only look at the first one they see. */
9226 if (!info->shared
9227 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9228 return FALSE;
9229
9230 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9231 used by the debugger. */
9232 if (info->executable
9233 && !SGI_COMPAT (output_bfd)
9234 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9235 return FALSE;
9236
9237 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9238 info->flags |= DF_TEXTREL;
9239
9240 if ((info->flags & DF_TEXTREL) != 0)
9241 {
9242 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9243 return FALSE;
9244
9245 /* Clear the DF_TEXTREL flag. It will be set again if we
9246 write out an actual text relocation; we may not, because
9247 at this point we do not know whether e.g. any .eh_frame
9248 absolute relocations have been converted to PC-relative. */
9249 info->flags &= ~DF_TEXTREL;
9250 }
9251
9252 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9253 return FALSE;
9254
9255 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9256 if (htab->is_vxworks)
9257 {
9258 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9259 use any of the DT_MIPS_* tags. */
9260 if (sreldyn && sreldyn->size > 0)
9261 {
9262 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9263 return FALSE;
9264
9265 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9266 return FALSE;
9267
9268 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9269 return FALSE;
9270 }
9271 }
9272 else
9273 {
9274 if (sreldyn && sreldyn->size > 0)
9275 {
9276 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9277 return FALSE;
9278
9279 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9280 return FALSE;
9281
9282 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9283 return FALSE;
9284 }
9285
9286 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9287 return FALSE;
9288
9289 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9290 return FALSE;
9291
9292 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9293 return FALSE;
9294
9295 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9296 return FALSE;
9297
9298 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9299 return FALSE;
9300
9301 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9302 return FALSE;
9303
9304 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9305 return FALSE;
9306
9307 if (IRIX_COMPAT (dynobj) == ict_irix5
9308 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9309 return FALSE;
9310
9311 if (IRIX_COMPAT (dynobj) == ict_irix6
9312 && (bfd_get_section_by_name
9313 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9314 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9315 return FALSE;
9316 }
9317 if (htab->splt->size > 0)
9318 {
9319 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9320 return FALSE;
9321
9322 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9323 return FALSE;
9324
9325 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9326 return FALSE;
9327
9328 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9329 return FALSE;
9330 }
9331 if (htab->is_vxworks
9332 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9333 return FALSE;
9334 }
9335
9336 return TRUE;
9337 }
9338 \f
9339 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9340 Adjust its R_ADDEND field so that it is correct for the output file.
9341 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9342 and sections respectively; both use symbol indexes. */
9343
9344 static void
9345 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9346 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9347 asection **local_sections, Elf_Internal_Rela *rel)
9348 {
9349 unsigned int r_type, r_symndx;
9350 Elf_Internal_Sym *sym;
9351 asection *sec;
9352
9353 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9354 {
9355 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9356 if (gprel16_reloc_p (r_type)
9357 || r_type == R_MIPS_GPREL32
9358 || literal_reloc_p (r_type))
9359 {
9360 rel->r_addend += _bfd_get_gp_value (input_bfd);
9361 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9362 }
9363
9364 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9365 sym = local_syms + r_symndx;
9366
9367 /* Adjust REL's addend to account for section merging. */
9368 if (!info->relocatable)
9369 {
9370 sec = local_sections[r_symndx];
9371 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9372 }
9373
9374 /* This would normally be done by the rela_normal code in elflink.c. */
9375 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9376 rel->r_addend += local_sections[r_symndx]->output_offset;
9377 }
9378 }
9379
9380 /* Handle relocations against symbols from removed linkonce sections,
9381 or sections discarded by a linker script. We use this wrapper around
9382 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9383 on 64-bit ELF targets. In this case for any relocation handled, which
9384 always be the first in a triplet, the remaining two have to be processed
9385 together with the first, even if they are R_MIPS_NONE. It is the symbol
9386 index referred by the first reloc that applies to all the three and the
9387 remaining two never refer to an object symbol. And it is the final
9388 relocation (the last non-null one) that determines the output field of
9389 the whole relocation so retrieve the corresponding howto structure for
9390 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9391
9392 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9393 and therefore requires to be pasted in a loop. It also defines a block
9394 and does not protect any of its arguments, hence the extra brackets. */
9395
9396 static void
9397 mips_reloc_against_discarded_section (bfd *output_bfd,
9398 struct bfd_link_info *info,
9399 bfd *input_bfd, asection *input_section,
9400 Elf_Internal_Rela **rel,
9401 const Elf_Internal_Rela **relend,
9402 bfd_boolean rel_reloc,
9403 reloc_howto_type *howto,
9404 bfd_byte *contents)
9405 {
9406 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9407 int count = bed->s->int_rels_per_ext_rel;
9408 unsigned int r_type;
9409 int i;
9410
9411 for (i = count - 1; i > 0; i--)
9412 {
9413 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9414 if (r_type != R_MIPS_NONE)
9415 {
9416 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9417 break;
9418 }
9419 }
9420 do
9421 {
9422 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9423 (*rel), count, (*relend),
9424 howto, i, contents);
9425 }
9426 while (0);
9427 }
9428
9429 /* Relocate a MIPS ELF section. */
9430
9431 bfd_boolean
9432 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9433 bfd *input_bfd, asection *input_section,
9434 bfd_byte *contents, Elf_Internal_Rela *relocs,
9435 Elf_Internal_Sym *local_syms,
9436 asection **local_sections)
9437 {
9438 Elf_Internal_Rela *rel;
9439 const Elf_Internal_Rela *relend;
9440 bfd_vma addend = 0;
9441 bfd_boolean use_saved_addend_p = FALSE;
9442 const struct elf_backend_data *bed;
9443
9444 bed = get_elf_backend_data (output_bfd);
9445 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9446 for (rel = relocs; rel < relend; ++rel)
9447 {
9448 const char *name;
9449 bfd_vma value = 0;
9450 reloc_howto_type *howto;
9451 bfd_boolean cross_mode_jump_p;
9452 /* TRUE if the relocation is a RELA relocation, rather than a
9453 REL relocation. */
9454 bfd_boolean rela_relocation_p = TRUE;
9455 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9456 const char *msg;
9457 unsigned long r_symndx;
9458 asection *sec;
9459 Elf_Internal_Shdr *symtab_hdr;
9460 struct elf_link_hash_entry *h;
9461 bfd_boolean rel_reloc;
9462
9463 rel_reloc = (NEWABI_P (input_bfd)
9464 && mips_elf_rel_relocation_p (input_bfd, input_section,
9465 relocs, rel));
9466 /* Find the relocation howto for this relocation. */
9467 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9468
9469 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9470 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9471 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9472 {
9473 sec = local_sections[r_symndx];
9474 h = NULL;
9475 }
9476 else
9477 {
9478 unsigned long extsymoff;
9479
9480 extsymoff = 0;
9481 if (!elf_bad_symtab (input_bfd))
9482 extsymoff = symtab_hdr->sh_info;
9483 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9484 while (h->root.type == bfd_link_hash_indirect
9485 || h->root.type == bfd_link_hash_warning)
9486 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9487
9488 sec = NULL;
9489 if (h->root.type == bfd_link_hash_defined
9490 || h->root.type == bfd_link_hash_defweak)
9491 sec = h->root.u.def.section;
9492 }
9493
9494 if (sec != NULL && discarded_section (sec))
9495 {
9496 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9497 input_section, &rel, &relend,
9498 rel_reloc, howto, contents);
9499 continue;
9500 }
9501
9502 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9503 {
9504 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9505 64-bit code, but make sure all their addresses are in the
9506 lowermost or uppermost 32-bit section of the 64-bit address
9507 space. Thus, when they use an R_MIPS_64 they mean what is
9508 usually meant by R_MIPS_32, with the exception that the
9509 stored value is sign-extended to 64 bits. */
9510 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9511
9512 /* On big-endian systems, we need to lie about the position
9513 of the reloc. */
9514 if (bfd_big_endian (input_bfd))
9515 rel->r_offset += 4;
9516 }
9517
9518 if (!use_saved_addend_p)
9519 {
9520 /* If these relocations were originally of the REL variety,
9521 we must pull the addend out of the field that will be
9522 relocated. Otherwise, we simply use the contents of the
9523 RELA relocation. */
9524 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9525 relocs, rel))
9526 {
9527 rela_relocation_p = FALSE;
9528 addend = mips_elf_read_rel_addend (input_bfd, rel,
9529 howto, contents);
9530 if (hi16_reloc_p (r_type)
9531 || (got16_reloc_p (r_type)
9532 && mips_elf_local_relocation_p (input_bfd, rel,
9533 local_sections)))
9534 {
9535 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9536 contents, &addend))
9537 {
9538 if (h)
9539 name = h->root.root.string;
9540 else
9541 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9542 local_syms + r_symndx,
9543 sec);
9544 (*_bfd_error_handler)
9545 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9546 input_bfd, input_section, name, howto->name,
9547 rel->r_offset);
9548 }
9549 }
9550 else
9551 addend <<= howto->rightshift;
9552 }
9553 else
9554 addend = rel->r_addend;
9555 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9556 local_syms, local_sections, rel);
9557 }
9558
9559 if (info->relocatable)
9560 {
9561 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9562 && bfd_big_endian (input_bfd))
9563 rel->r_offset -= 4;
9564
9565 if (!rela_relocation_p && rel->r_addend)
9566 {
9567 addend += rel->r_addend;
9568 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9569 addend = mips_elf_high (addend);
9570 else if (r_type == R_MIPS_HIGHER)
9571 addend = mips_elf_higher (addend);
9572 else if (r_type == R_MIPS_HIGHEST)
9573 addend = mips_elf_highest (addend);
9574 else
9575 addend >>= howto->rightshift;
9576
9577 /* We use the source mask, rather than the destination
9578 mask because the place to which we are writing will be
9579 source of the addend in the final link. */
9580 addend &= howto->src_mask;
9581
9582 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9583 /* See the comment above about using R_MIPS_64 in the 32-bit
9584 ABI. Here, we need to update the addend. It would be
9585 possible to get away with just using the R_MIPS_32 reloc
9586 but for endianness. */
9587 {
9588 bfd_vma sign_bits;
9589 bfd_vma low_bits;
9590 bfd_vma high_bits;
9591
9592 if (addend & ((bfd_vma) 1 << 31))
9593 #ifdef BFD64
9594 sign_bits = ((bfd_vma) 1 << 32) - 1;
9595 #else
9596 sign_bits = -1;
9597 #endif
9598 else
9599 sign_bits = 0;
9600
9601 /* If we don't know that we have a 64-bit type,
9602 do two separate stores. */
9603 if (bfd_big_endian (input_bfd))
9604 {
9605 /* Store the sign-bits (which are most significant)
9606 first. */
9607 low_bits = sign_bits;
9608 high_bits = addend;
9609 }
9610 else
9611 {
9612 low_bits = addend;
9613 high_bits = sign_bits;
9614 }
9615 bfd_put_32 (input_bfd, low_bits,
9616 contents + rel->r_offset);
9617 bfd_put_32 (input_bfd, high_bits,
9618 contents + rel->r_offset + 4);
9619 continue;
9620 }
9621
9622 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9623 input_bfd, input_section,
9624 contents, FALSE))
9625 return FALSE;
9626 }
9627
9628 /* Go on to the next relocation. */
9629 continue;
9630 }
9631
9632 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9633 relocations for the same offset. In that case we are
9634 supposed to treat the output of each relocation as the addend
9635 for the next. */
9636 if (rel + 1 < relend
9637 && rel->r_offset == rel[1].r_offset
9638 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9639 use_saved_addend_p = TRUE;
9640 else
9641 use_saved_addend_p = FALSE;
9642
9643 /* Figure out what value we are supposed to relocate. */
9644 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9645 input_section, info, rel,
9646 addend, howto, local_syms,
9647 local_sections, &value,
9648 &name, &cross_mode_jump_p,
9649 use_saved_addend_p))
9650 {
9651 case bfd_reloc_continue:
9652 /* There's nothing to do. */
9653 continue;
9654
9655 case bfd_reloc_undefined:
9656 /* mips_elf_calculate_relocation already called the
9657 undefined_symbol callback. There's no real point in
9658 trying to perform the relocation at this point, so we
9659 just skip ahead to the next relocation. */
9660 continue;
9661
9662 case bfd_reloc_notsupported:
9663 msg = _("internal error: unsupported relocation error");
9664 info->callbacks->warning
9665 (info, msg, name, input_bfd, input_section, rel->r_offset);
9666 return FALSE;
9667
9668 case bfd_reloc_overflow:
9669 if (use_saved_addend_p)
9670 /* Ignore overflow until we reach the last relocation for
9671 a given location. */
9672 ;
9673 else
9674 {
9675 struct mips_elf_link_hash_table *htab;
9676
9677 htab = mips_elf_hash_table (info);
9678 BFD_ASSERT (htab != NULL);
9679 BFD_ASSERT (name != NULL);
9680 if (!htab->small_data_overflow_reported
9681 && (gprel16_reloc_p (howto->type)
9682 || literal_reloc_p (howto->type)))
9683 {
9684 msg = _("small-data section exceeds 64KB;"
9685 " lower small-data size limit (see option -G)");
9686
9687 htab->small_data_overflow_reported = TRUE;
9688 (*info->callbacks->einfo) ("%P: %s\n", msg);
9689 }
9690 if (! ((*info->callbacks->reloc_overflow)
9691 (info, NULL, name, howto->name, (bfd_vma) 0,
9692 input_bfd, input_section, rel->r_offset)))
9693 return FALSE;
9694 }
9695 break;
9696
9697 case bfd_reloc_ok:
9698 break;
9699
9700 case bfd_reloc_outofrange:
9701 if (jal_reloc_p (howto->type))
9702 {
9703 msg = _("JALX to a non-word-aligned address");
9704 info->callbacks->warning
9705 (info, msg, name, input_bfd, input_section, rel->r_offset);
9706 return FALSE;
9707 }
9708 /* Fall through. */
9709
9710 default:
9711 abort ();
9712 break;
9713 }
9714
9715 /* If we've got another relocation for the address, keep going
9716 until we reach the last one. */
9717 if (use_saved_addend_p)
9718 {
9719 addend = value;
9720 continue;
9721 }
9722
9723 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9724 /* See the comment above about using R_MIPS_64 in the 32-bit
9725 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9726 that calculated the right value. Now, however, we
9727 sign-extend the 32-bit result to 64-bits, and store it as a
9728 64-bit value. We are especially generous here in that we
9729 go to extreme lengths to support this usage on systems with
9730 only a 32-bit VMA. */
9731 {
9732 bfd_vma sign_bits;
9733 bfd_vma low_bits;
9734 bfd_vma high_bits;
9735
9736 if (value & ((bfd_vma) 1 << 31))
9737 #ifdef BFD64
9738 sign_bits = ((bfd_vma) 1 << 32) - 1;
9739 #else
9740 sign_bits = -1;
9741 #endif
9742 else
9743 sign_bits = 0;
9744
9745 /* If we don't know that we have a 64-bit type,
9746 do two separate stores. */
9747 if (bfd_big_endian (input_bfd))
9748 {
9749 /* Undo what we did above. */
9750 rel->r_offset -= 4;
9751 /* Store the sign-bits (which are most significant)
9752 first. */
9753 low_bits = sign_bits;
9754 high_bits = value;
9755 }
9756 else
9757 {
9758 low_bits = value;
9759 high_bits = sign_bits;
9760 }
9761 bfd_put_32 (input_bfd, low_bits,
9762 contents + rel->r_offset);
9763 bfd_put_32 (input_bfd, high_bits,
9764 contents + rel->r_offset + 4);
9765 continue;
9766 }
9767
9768 /* Actually perform the relocation. */
9769 if (! mips_elf_perform_relocation (info, howto, rel, value,
9770 input_bfd, input_section,
9771 contents, cross_mode_jump_p))
9772 return FALSE;
9773 }
9774
9775 return TRUE;
9776 }
9777 \f
9778 /* A function that iterates over each entry in la25_stubs and fills
9779 in the code for each one. DATA points to a mips_htab_traverse_info. */
9780
9781 static int
9782 mips_elf_create_la25_stub (void **slot, void *data)
9783 {
9784 struct mips_htab_traverse_info *hti;
9785 struct mips_elf_link_hash_table *htab;
9786 struct mips_elf_la25_stub *stub;
9787 asection *s;
9788 bfd_byte *loc;
9789 bfd_vma offset, target, target_high, target_low;
9790
9791 stub = (struct mips_elf_la25_stub *) *slot;
9792 hti = (struct mips_htab_traverse_info *) data;
9793 htab = mips_elf_hash_table (hti->info);
9794 BFD_ASSERT (htab != NULL);
9795
9796 /* Create the section contents, if we haven't already. */
9797 s = stub->stub_section;
9798 loc = s->contents;
9799 if (loc == NULL)
9800 {
9801 loc = bfd_malloc (s->size);
9802 if (loc == NULL)
9803 {
9804 hti->error = TRUE;
9805 return FALSE;
9806 }
9807 s->contents = loc;
9808 }
9809
9810 /* Work out where in the section this stub should go. */
9811 offset = stub->offset;
9812
9813 /* Work out the target address. */
9814 target = mips_elf_get_la25_target (stub, &s);
9815 target += s->output_section->vma + s->output_offset;
9816
9817 target_high = ((target + 0x8000) >> 16) & 0xffff;
9818 target_low = (target & 0xffff);
9819
9820 if (stub->stub_section != htab->strampoline)
9821 {
9822 /* This is a simple LUI/ADDIU stub. Zero out the beginning
9823 of the section and write the two instructions at the end. */
9824 memset (loc, 0, offset);
9825 loc += offset;
9826 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9827 {
9828 bfd_put_micromips_32 (hti->output_bfd,
9829 LA25_LUI_MICROMIPS (target_high),
9830 loc);
9831 bfd_put_micromips_32 (hti->output_bfd,
9832 LA25_ADDIU_MICROMIPS (target_low),
9833 loc + 4);
9834 }
9835 else
9836 {
9837 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9838 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9839 }
9840 }
9841 else
9842 {
9843 /* This is trampoline. */
9844 loc += offset;
9845 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9846 {
9847 bfd_put_micromips_32 (hti->output_bfd,
9848 LA25_LUI_MICROMIPS (target_high), loc);
9849 bfd_put_micromips_32 (hti->output_bfd,
9850 LA25_J_MICROMIPS (target), loc + 4);
9851 bfd_put_micromips_32 (hti->output_bfd,
9852 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
9853 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9854 }
9855 else
9856 {
9857 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9858 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9859 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9860 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9861 }
9862 }
9863 return TRUE;
9864 }
9865
9866 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9867 adjust it appropriately now. */
9868
9869 static void
9870 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9871 const char *name, Elf_Internal_Sym *sym)
9872 {
9873 /* The linker script takes care of providing names and values for
9874 these, but we must place them into the right sections. */
9875 static const char* const text_section_symbols[] = {
9876 "_ftext",
9877 "_etext",
9878 "__dso_displacement",
9879 "__elf_header",
9880 "__program_header_table",
9881 NULL
9882 };
9883
9884 static const char* const data_section_symbols[] = {
9885 "_fdata",
9886 "_edata",
9887 "_end",
9888 "_fbss",
9889 NULL
9890 };
9891
9892 const char* const *p;
9893 int i;
9894
9895 for (i = 0; i < 2; ++i)
9896 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9897 *p;
9898 ++p)
9899 if (strcmp (*p, name) == 0)
9900 {
9901 /* All of these symbols are given type STT_SECTION by the
9902 IRIX6 linker. */
9903 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9904 sym->st_other = STO_PROTECTED;
9905
9906 /* The IRIX linker puts these symbols in special sections. */
9907 if (i == 0)
9908 sym->st_shndx = SHN_MIPS_TEXT;
9909 else
9910 sym->st_shndx = SHN_MIPS_DATA;
9911
9912 break;
9913 }
9914 }
9915
9916 /* Finish up dynamic symbol handling. We set the contents of various
9917 dynamic sections here. */
9918
9919 bfd_boolean
9920 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9921 struct bfd_link_info *info,
9922 struct elf_link_hash_entry *h,
9923 Elf_Internal_Sym *sym)
9924 {
9925 bfd *dynobj;
9926 asection *sgot;
9927 struct mips_got_info *g, *gg;
9928 const char *name;
9929 int idx;
9930 struct mips_elf_link_hash_table *htab;
9931 struct mips_elf_link_hash_entry *hmips;
9932
9933 htab = mips_elf_hash_table (info);
9934 BFD_ASSERT (htab != NULL);
9935 dynobj = elf_hash_table (info)->dynobj;
9936 hmips = (struct mips_elf_link_hash_entry *) h;
9937
9938 BFD_ASSERT (!htab->is_vxworks);
9939
9940 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9941 {
9942 /* We've decided to create a PLT entry for this symbol. */
9943 bfd_byte *loc;
9944 bfd_vma header_address, plt_index, got_address;
9945 bfd_vma got_address_high, got_address_low, load;
9946 const bfd_vma *plt_entry;
9947
9948 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9949 BFD_ASSERT (h->dynindx != -1);
9950 BFD_ASSERT (htab->splt != NULL);
9951 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9952 BFD_ASSERT (!h->def_regular);
9953
9954 /* Calculate the address of the PLT header. */
9955 header_address = (htab->splt->output_section->vma
9956 + htab->splt->output_offset);
9957
9958 /* Calculate the index of the entry. */
9959 plt_index = ((h->plt.offset - htab->plt_header_size)
9960 / htab->plt_entry_size);
9961
9962 /* Calculate the address of the .got.plt entry. */
9963 got_address = (htab->sgotplt->output_section->vma
9964 + htab->sgotplt->output_offset
9965 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9966 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9967 got_address_low = got_address & 0xffff;
9968
9969 /* Initially point the .got.plt entry at the PLT header. */
9970 loc = (htab->sgotplt->contents
9971 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9972 if (ABI_64_P (output_bfd))
9973 bfd_put_64 (output_bfd, header_address, loc);
9974 else
9975 bfd_put_32 (output_bfd, header_address, loc);
9976
9977 /* Find out where the .plt entry should go. */
9978 loc = htab->splt->contents + h->plt.offset;
9979
9980 /* Pick the load opcode. */
9981 load = MIPS_ELF_LOAD_WORD (output_bfd);
9982
9983 /* Fill in the PLT entry itself. */
9984 plt_entry = mips_exec_plt_entry;
9985 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9986 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9987
9988 if (! LOAD_INTERLOCKS_P (output_bfd))
9989 {
9990 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9991 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9992 }
9993 else
9994 {
9995 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9996 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9997 }
9998
9999 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10000 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
10001 plt_index, h->dynindx,
10002 R_MIPS_JUMP_SLOT, got_address);
10003
10004 /* We distinguish between PLT entries and lazy-binding stubs by
10005 giving the former an st_other value of STO_MIPS_PLT. Set the
10006 flag and leave the value if there are any relocations in the
10007 binary where pointer equality matters. */
10008 sym->st_shndx = SHN_UNDEF;
10009 if (h->pointer_equality_needed)
10010 sym->st_other = STO_MIPS_PLT;
10011 else
10012 sym->st_value = 0;
10013 }
10014 else if (h->plt.offset != MINUS_ONE)
10015 {
10016 /* We've decided to create a lazy-binding stub. */
10017 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10018
10019 /* This symbol has a stub. Set it up. */
10020
10021 BFD_ASSERT (h->dynindx != -1);
10022
10023 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
10024 || (h->dynindx <= 0xffff));
10025
10026 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10027 sign extension at runtime in the stub, resulting in a negative
10028 index value. */
10029 if (h->dynindx & ~0x7fffffff)
10030 return FALSE;
10031
10032 /* Fill the stub. */
10033 idx = 0;
10034 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10035 idx += 4;
10036 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
10037 idx += 4;
10038 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
10039 {
10040 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10041 stub + idx);
10042 idx += 4;
10043 }
10044 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10045 idx += 4;
10046
10047 /* If a large stub is not required and sign extension is not a
10048 problem, then use legacy code in the stub. */
10049 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
10050 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
10051 else if (h->dynindx & ~0x7fff)
10052 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
10053 else
10054 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10055 stub + idx);
10056
10057 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
10058 memcpy (htab->sstubs->contents + h->plt.offset,
10059 stub, htab->function_stub_size);
10060
10061 /* Mark the symbol as undefined. plt.offset != -1 occurs
10062 only for the referenced symbol. */
10063 sym->st_shndx = SHN_UNDEF;
10064
10065 /* The run-time linker uses the st_value field of the symbol
10066 to reset the global offset table entry for this external
10067 to its stub address when unlinking a shared object. */
10068 sym->st_value = (htab->sstubs->output_section->vma
10069 + htab->sstubs->output_offset
10070 + h->plt.offset);
10071 }
10072
10073 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10074 refer to the stub, since only the stub uses the standard calling
10075 conventions. */
10076 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10077 {
10078 BFD_ASSERT (hmips->need_fn_stub);
10079 sym->st_value = (hmips->fn_stub->output_section->vma
10080 + hmips->fn_stub->output_offset);
10081 sym->st_size = hmips->fn_stub->size;
10082 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10083 }
10084
10085 BFD_ASSERT (h->dynindx != -1
10086 || h->forced_local);
10087
10088 sgot = htab->sgot;
10089 g = htab->got_info;
10090 BFD_ASSERT (g != NULL);
10091
10092 /* Run through the global symbol table, creating GOT entries for all
10093 the symbols that need them. */
10094 if (hmips->global_got_area != GGA_NONE)
10095 {
10096 bfd_vma offset;
10097 bfd_vma value;
10098
10099 value = sym->st_value;
10100 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10101 R_MIPS_GOT16, info);
10102 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10103 }
10104
10105 if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
10106 {
10107 struct mips_got_entry e, *p;
10108 bfd_vma entry;
10109 bfd_vma offset;
10110
10111 gg = g;
10112
10113 e.abfd = output_bfd;
10114 e.symndx = -1;
10115 e.d.h = hmips;
10116 e.tls_type = 0;
10117
10118 for (g = g->next; g->next != gg; g = g->next)
10119 {
10120 if (g->got_entries
10121 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10122 &e)))
10123 {
10124 offset = p->gotidx;
10125 if (info->shared
10126 || (elf_hash_table (info)->dynamic_sections_created
10127 && p->d.h != NULL
10128 && p->d.h->root.def_dynamic
10129 && !p->d.h->root.def_regular))
10130 {
10131 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10132 the various compatibility problems, it's easier to mock
10133 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10134 mips_elf_create_dynamic_relocation to calculate the
10135 appropriate addend. */
10136 Elf_Internal_Rela rel[3];
10137
10138 memset (rel, 0, sizeof (rel));
10139 if (ABI_64_P (output_bfd))
10140 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10141 else
10142 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10143 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10144
10145 entry = 0;
10146 if (! (mips_elf_create_dynamic_relocation
10147 (output_bfd, info, rel,
10148 e.d.h, NULL, sym->st_value, &entry, sgot)))
10149 return FALSE;
10150 }
10151 else
10152 entry = sym->st_value;
10153 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10154 }
10155 }
10156 }
10157
10158 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10159 name = h->root.root.string;
10160 if (h == elf_hash_table (info)->hdynamic
10161 || h == elf_hash_table (info)->hgot)
10162 sym->st_shndx = SHN_ABS;
10163 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10164 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10165 {
10166 sym->st_shndx = SHN_ABS;
10167 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10168 sym->st_value = 1;
10169 }
10170 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10171 {
10172 sym->st_shndx = SHN_ABS;
10173 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10174 sym->st_value = elf_gp (output_bfd);
10175 }
10176 else if (SGI_COMPAT (output_bfd))
10177 {
10178 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10179 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10180 {
10181 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10182 sym->st_other = STO_PROTECTED;
10183 sym->st_value = 0;
10184 sym->st_shndx = SHN_MIPS_DATA;
10185 }
10186 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10187 {
10188 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10189 sym->st_other = STO_PROTECTED;
10190 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10191 sym->st_shndx = SHN_ABS;
10192 }
10193 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10194 {
10195 if (h->type == STT_FUNC)
10196 sym->st_shndx = SHN_MIPS_TEXT;
10197 else if (h->type == STT_OBJECT)
10198 sym->st_shndx = SHN_MIPS_DATA;
10199 }
10200 }
10201
10202 /* Emit a copy reloc, if needed. */
10203 if (h->needs_copy)
10204 {
10205 asection *s;
10206 bfd_vma symval;
10207
10208 BFD_ASSERT (h->dynindx != -1);
10209 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10210
10211 s = mips_elf_rel_dyn_section (info, FALSE);
10212 symval = (h->root.u.def.section->output_section->vma
10213 + h->root.u.def.section->output_offset
10214 + h->root.u.def.value);
10215 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10216 h->dynindx, R_MIPS_COPY, symval);
10217 }
10218
10219 /* Handle the IRIX6-specific symbols. */
10220 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10221 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10222
10223 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10224 treat MIPS16 symbols like any other. */
10225 if (ELF_ST_IS_MIPS16 (sym->st_other))
10226 {
10227 BFD_ASSERT (sym->st_value & 1);
10228 sym->st_other -= STO_MIPS16;
10229 }
10230
10231 return TRUE;
10232 }
10233
10234 /* Likewise, for VxWorks. */
10235
10236 bfd_boolean
10237 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10238 struct bfd_link_info *info,
10239 struct elf_link_hash_entry *h,
10240 Elf_Internal_Sym *sym)
10241 {
10242 bfd *dynobj;
10243 asection *sgot;
10244 struct mips_got_info *g;
10245 struct mips_elf_link_hash_table *htab;
10246 struct mips_elf_link_hash_entry *hmips;
10247
10248 htab = mips_elf_hash_table (info);
10249 BFD_ASSERT (htab != NULL);
10250 dynobj = elf_hash_table (info)->dynobj;
10251 hmips = (struct mips_elf_link_hash_entry *) h;
10252
10253 if (h->plt.offset != (bfd_vma) -1)
10254 {
10255 bfd_byte *loc;
10256 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10257 Elf_Internal_Rela rel;
10258 static const bfd_vma *plt_entry;
10259
10260 BFD_ASSERT (h->dynindx != -1);
10261 BFD_ASSERT (htab->splt != NULL);
10262 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10263
10264 /* Calculate the address of the .plt entry. */
10265 plt_address = (htab->splt->output_section->vma
10266 + htab->splt->output_offset
10267 + h->plt.offset);
10268
10269 /* Calculate the index of the entry. */
10270 plt_index = ((h->plt.offset - htab->plt_header_size)
10271 / htab->plt_entry_size);
10272
10273 /* Calculate the address of the .got.plt entry. */
10274 got_address = (htab->sgotplt->output_section->vma
10275 + htab->sgotplt->output_offset
10276 + plt_index * 4);
10277
10278 /* Calculate the offset of the .got.plt entry from
10279 _GLOBAL_OFFSET_TABLE_. */
10280 got_offset = mips_elf_gotplt_index (info, h);
10281
10282 /* Calculate the offset for the branch at the start of the PLT
10283 entry. The branch jumps to the beginning of .plt. */
10284 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10285
10286 /* Fill in the initial value of the .got.plt entry. */
10287 bfd_put_32 (output_bfd, plt_address,
10288 htab->sgotplt->contents + plt_index * 4);
10289
10290 /* Find out where the .plt entry should go. */
10291 loc = htab->splt->contents + h->plt.offset;
10292
10293 if (info->shared)
10294 {
10295 plt_entry = mips_vxworks_shared_plt_entry;
10296 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10297 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10298 }
10299 else
10300 {
10301 bfd_vma got_address_high, got_address_low;
10302
10303 plt_entry = mips_vxworks_exec_plt_entry;
10304 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10305 got_address_low = got_address & 0xffff;
10306
10307 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10308 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10309 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10310 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10311 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10312 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10313 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10314 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10315
10316 loc = (htab->srelplt2->contents
10317 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10318
10319 /* Emit a relocation for the .got.plt entry. */
10320 rel.r_offset = got_address;
10321 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10322 rel.r_addend = h->plt.offset;
10323 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10324
10325 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10326 loc += sizeof (Elf32_External_Rela);
10327 rel.r_offset = plt_address + 8;
10328 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10329 rel.r_addend = got_offset;
10330 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10331
10332 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10333 loc += sizeof (Elf32_External_Rela);
10334 rel.r_offset += 4;
10335 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10336 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10337 }
10338
10339 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10340 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10341 rel.r_offset = got_address;
10342 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10343 rel.r_addend = 0;
10344 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10345
10346 if (!h->def_regular)
10347 sym->st_shndx = SHN_UNDEF;
10348 }
10349
10350 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10351
10352 sgot = htab->sgot;
10353 g = htab->got_info;
10354 BFD_ASSERT (g != NULL);
10355
10356 /* See if this symbol has an entry in the GOT. */
10357 if (hmips->global_got_area != GGA_NONE)
10358 {
10359 bfd_vma offset;
10360 Elf_Internal_Rela outrel;
10361 bfd_byte *loc;
10362 asection *s;
10363
10364 /* Install the symbol value in the GOT. */
10365 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10366 R_MIPS_GOT16, info);
10367 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10368
10369 /* Add a dynamic relocation for it. */
10370 s = mips_elf_rel_dyn_section (info, FALSE);
10371 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10372 outrel.r_offset = (sgot->output_section->vma
10373 + sgot->output_offset
10374 + offset);
10375 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10376 outrel.r_addend = 0;
10377 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10378 }
10379
10380 /* Emit a copy reloc, if needed. */
10381 if (h->needs_copy)
10382 {
10383 Elf_Internal_Rela rel;
10384
10385 BFD_ASSERT (h->dynindx != -1);
10386
10387 rel.r_offset = (h->root.u.def.section->output_section->vma
10388 + h->root.u.def.section->output_offset
10389 + h->root.u.def.value);
10390 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10391 rel.r_addend = 0;
10392 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10393 htab->srelbss->contents
10394 + (htab->srelbss->reloc_count
10395 * sizeof (Elf32_External_Rela)));
10396 ++htab->srelbss->reloc_count;
10397 }
10398
10399 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10400 if (ELF_ST_IS_COMPRESSED (sym->st_other))
10401 sym->st_value &= ~1;
10402
10403 return TRUE;
10404 }
10405
10406 /* Write out a plt0 entry to the beginning of .plt. */
10407
10408 static void
10409 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10410 {
10411 bfd_byte *loc;
10412 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10413 static const bfd_vma *plt_entry;
10414 struct mips_elf_link_hash_table *htab;
10415
10416 htab = mips_elf_hash_table (info);
10417 BFD_ASSERT (htab != NULL);
10418
10419 if (ABI_64_P (output_bfd))
10420 plt_entry = mips_n64_exec_plt0_entry;
10421 else if (ABI_N32_P (output_bfd))
10422 plt_entry = mips_n32_exec_plt0_entry;
10423 else
10424 plt_entry = mips_o32_exec_plt0_entry;
10425
10426 /* Calculate the value of .got.plt. */
10427 gotplt_value = (htab->sgotplt->output_section->vma
10428 + htab->sgotplt->output_offset);
10429 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10430 gotplt_value_low = gotplt_value & 0xffff;
10431
10432 /* The PLT sequence is not safe for N64 if .got.plt's address can
10433 not be loaded in two instructions. */
10434 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10435 || ~(gotplt_value | 0x7fffffff) == 0);
10436
10437 /* Install the PLT header. */
10438 loc = htab->splt->contents;
10439 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10440 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10441 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10442 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10443 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10444 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10445 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10446 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10447 }
10448
10449 /* Install the PLT header for a VxWorks executable and finalize the
10450 contents of .rela.plt.unloaded. */
10451
10452 static void
10453 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10454 {
10455 Elf_Internal_Rela rela;
10456 bfd_byte *loc;
10457 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10458 static const bfd_vma *plt_entry;
10459 struct mips_elf_link_hash_table *htab;
10460
10461 htab = mips_elf_hash_table (info);
10462 BFD_ASSERT (htab != NULL);
10463
10464 plt_entry = mips_vxworks_exec_plt0_entry;
10465
10466 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10467 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10468 + htab->root.hgot->root.u.def.section->output_offset
10469 + htab->root.hgot->root.u.def.value);
10470
10471 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10472 got_value_low = got_value & 0xffff;
10473
10474 /* Calculate the address of the PLT header. */
10475 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10476
10477 /* Install the PLT header. */
10478 loc = htab->splt->contents;
10479 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10480 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10481 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10482 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10483 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10484 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10485
10486 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10487 loc = htab->srelplt2->contents;
10488 rela.r_offset = plt_address;
10489 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10490 rela.r_addend = 0;
10491 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10492 loc += sizeof (Elf32_External_Rela);
10493
10494 /* Output the relocation for the following addiu of
10495 %lo(_GLOBAL_OFFSET_TABLE_). */
10496 rela.r_offset += 4;
10497 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10498 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10499 loc += sizeof (Elf32_External_Rela);
10500
10501 /* Fix up the remaining relocations. They may have the wrong
10502 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10503 in which symbols were output. */
10504 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10505 {
10506 Elf_Internal_Rela rel;
10507
10508 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10509 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10510 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10511 loc += sizeof (Elf32_External_Rela);
10512
10513 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10514 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10515 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10516 loc += sizeof (Elf32_External_Rela);
10517
10518 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10519 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10520 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10521 loc += sizeof (Elf32_External_Rela);
10522 }
10523 }
10524
10525 /* Install the PLT header for a VxWorks shared library. */
10526
10527 static void
10528 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10529 {
10530 unsigned int i;
10531 struct mips_elf_link_hash_table *htab;
10532
10533 htab = mips_elf_hash_table (info);
10534 BFD_ASSERT (htab != NULL);
10535
10536 /* We just need to copy the entry byte-by-byte. */
10537 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10538 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10539 htab->splt->contents + i * 4);
10540 }
10541
10542 /* Finish up the dynamic sections. */
10543
10544 bfd_boolean
10545 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10546 struct bfd_link_info *info)
10547 {
10548 bfd *dynobj;
10549 asection *sdyn;
10550 asection *sgot;
10551 struct mips_got_info *gg, *g;
10552 struct mips_elf_link_hash_table *htab;
10553
10554 htab = mips_elf_hash_table (info);
10555 BFD_ASSERT (htab != NULL);
10556
10557 dynobj = elf_hash_table (info)->dynobj;
10558
10559 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
10560
10561 sgot = htab->sgot;
10562 gg = htab->got_info;
10563
10564 if (elf_hash_table (info)->dynamic_sections_created)
10565 {
10566 bfd_byte *b;
10567 int dyn_to_skip = 0, dyn_skipped = 0;
10568
10569 BFD_ASSERT (sdyn != NULL);
10570 BFD_ASSERT (gg != NULL);
10571
10572 g = mips_elf_got_for_ibfd (gg, output_bfd);
10573 BFD_ASSERT (g != NULL);
10574
10575 for (b = sdyn->contents;
10576 b < sdyn->contents + sdyn->size;
10577 b += MIPS_ELF_DYN_SIZE (dynobj))
10578 {
10579 Elf_Internal_Dyn dyn;
10580 const char *name;
10581 size_t elemsize;
10582 asection *s;
10583 bfd_boolean swap_out_p;
10584
10585 /* Read in the current dynamic entry. */
10586 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10587
10588 /* Assume that we're going to modify it and write it out. */
10589 swap_out_p = TRUE;
10590
10591 switch (dyn.d_tag)
10592 {
10593 case DT_RELENT:
10594 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10595 break;
10596
10597 case DT_RELAENT:
10598 BFD_ASSERT (htab->is_vxworks);
10599 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10600 break;
10601
10602 case DT_STRSZ:
10603 /* Rewrite DT_STRSZ. */
10604 dyn.d_un.d_val =
10605 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10606 break;
10607
10608 case DT_PLTGOT:
10609 s = htab->sgot;
10610 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10611 break;
10612
10613 case DT_MIPS_PLTGOT:
10614 s = htab->sgotplt;
10615 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10616 break;
10617
10618 case DT_MIPS_RLD_VERSION:
10619 dyn.d_un.d_val = 1; /* XXX */
10620 break;
10621
10622 case DT_MIPS_FLAGS:
10623 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10624 break;
10625
10626 case DT_MIPS_TIME_STAMP:
10627 {
10628 time_t t;
10629 time (&t);
10630 dyn.d_un.d_val = t;
10631 }
10632 break;
10633
10634 case DT_MIPS_ICHECKSUM:
10635 /* XXX FIXME: */
10636 swap_out_p = FALSE;
10637 break;
10638
10639 case DT_MIPS_IVERSION:
10640 /* XXX FIXME: */
10641 swap_out_p = FALSE;
10642 break;
10643
10644 case DT_MIPS_BASE_ADDRESS:
10645 s = output_bfd->sections;
10646 BFD_ASSERT (s != NULL);
10647 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10648 break;
10649
10650 case DT_MIPS_LOCAL_GOTNO:
10651 dyn.d_un.d_val = g->local_gotno;
10652 break;
10653
10654 case DT_MIPS_UNREFEXTNO:
10655 /* The index into the dynamic symbol table which is the
10656 entry of the first external symbol that is not
10657 referenced within the same object. */
10658 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10659 break;
10660
10661 case DT_MIPS_GOTSYM:
10662 if (gg->global_gotsym)
10663 {
10664 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10665 break;
10666 }
10667 /* In case if we don't have global got symbols we default
10668 to setting DT_MIPS_GOTSYM to the same value as
10669 DT_MIPS_SYMTABNO, so we just fall through. */
10670
10671 case DT_MIPS_SYMTABNO:
10672 name = ".dynsym";
10673 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10674 s = bfd_get_section_by_name (output_bfd, name);
10675 BFD_ASSERT (s != NULL);
10676
10677 dyn.d_un.d_val = s->size / elemsize;
10678 break;
10679
10680 case DT_MIPS_HIPAGENO:
10681 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10682 break;
10683
10684 case DT_MIPS_RLD_MAP:
10685 {
10686 struct elf_link_hash_entry *h;
10687 h = mips_elf_hash_table (info)->rld_symbol;
10688 if (!h)
10689 {
10690 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10691 swap_out_p = FALSE;
10692 break;
10693 }
10694 s = h->root.u.def.section;
10695 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
10696 + h->root.u.def.value);
10697 }
10698 break;
10699
10700 case DT_MIPS_OPTIONS:
10701 s = (bfd_get_section_by_name
10702 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10703 dyn.d_un.d_ptr = s->vma;
10704 break;
10705
10706 case DT_RELASZ:
10707 BFD_ASSERT (htab->is_vxworks);
10708 /* The count does not include the JUMP_SLOT relocations. */
10709 if (htab->srelplt)
10710 dyn.d_un.d_val -= htab->srelplt->size;
10711 break;
10712
10713 case DT_PLTREL:
10714 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10715 if (htab->is_vxworks)
10716 dyn.d_un.d_val = DT_RELA;
10717 else
10718 dyn.d_un.d_val = DT_REL;
10719 break;
10720
10721 case DT_PLTRELSZ:
10722 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10723 dyn.d_un.d_val = htab->srelplt->size;
10724 break;
10725
10726 case DT_JMPREL:
10727 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10728 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10729 + htab->srelplt->output_offset);
10730 break;
10731
10732 case DT_TEXTREL:
10733 /* If we didn't need any text relocations after all, delete
10734 the dynamic tag. */
10735 if (!(info->flags & DF_TEXTREL))
10736 {
10737 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10738 swap_out_p = FALSE;
10739 }
10740 break;
10741
10742 case DT_FLAGS:
10743 /* If we didn't need any text relocations after all, clear
10744 DF_TEXTREL from DT_FLAGS. */
10745 if (!(info->flags & DF_TEXTREL))
10746 dyn.d_un.d_val &= ~DF_TEXTREL;
10747 else
10748 swap_out_p = FALSE;
10749 break;
10750
10751 default:
10752 swap_out_p = FALSE;
10753 if (htab->is_vxworks
10754 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10755 swap_out_p = TRUE;
10756 break;
10757 }
10758
10759 if (swap_out_p || dyn_skipped)
10760 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10761 (dynobj, &dyn, b - dyn_skipped);
10762
10763 if (dyn_to_skip)
10764 {
10765 dyn_skipped += dyn_to_skip;
10766 dyn_to_skip = 0;
10767 }
10768 }
10769
10770 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10771 if (dyn_skipped > 0)
10772 memset (b - dyn_skipped, 0, dyn_skipped);
10773 }
10774
10775 if (sgot != NULL && sgot->size > 0
10776 && !bfd_is_abs_section (sgot->output_section))
10777 {
10778 if (htab->is_vxworks)
10779 {
10780 /* The first entry of the global offset table points to the
10781 ".dynamic" section. The second is initialized by the
10782 loader and contains the shared library identifier.
10783 The third is also initialized by the loader and points
10784 to the lazy resolution stub. */
10785 MIPS_ELF_PUT_WORD (output_bfd,
10786 sdyn->output_offset + sdyn->output_section->vma,
10787 sgot->contents);
10788 MIPS_ELF_PUT_WORD (output_bfd, 0,
10789 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10790 MIPS_ELF_PUT_WORD (output_bfd, 0,
10791 sgot->contents
10792 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10793 }
10794 else
10795 {
10796 /* The first entry of the global offset table will be filled at
10797 runtime. The second entry will be used by some runtime loaders.
10798 This isn't the case of IRIX rld. */
10799 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10800 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10801 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10802 }
10803
10804 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10805 = MIPS_ELF_GOT_SIZE (output_bfd);
10806 }
10807
10808 /* Generate dynamic relocations for the non-primary gots. */
10809 if (gg != NULL && gg->next)
10810 {
10811 Elf_Internal_Rela rel[3];
10812 bfd_vma addend = 0;
10813
10814 memset (rel, 0, sizeof (rel));
10815 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10816
10817 for (g = gg->next; g->next != gg; g = g->next)
10818 {
10819 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10820 + g->next->tls_gotno;
10821
10822 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10823 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10824 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10825 sgot->contents
10826 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10827
10828 if (! info->shared)
10829 continue;
10830
10831 while (got_index < g->assigned_gotno)
10832 {
10833 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10834 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10835 if (!(mips_elf_create_dynamic_relocation
10836 (output_bfd, info, rel, NULL,
10837 bfd_abs_section_ptr,
10838 0, &addend, sgot)))
10839 return FALSE;
10840 BFD_ASSERT (addend == 0);
10841 }
10842 }
10843 }
10844
10845 /* The generation of dynamic relocations for the non-primary gots
10846 adds more dynamic relocations. We cannot count them until
10847 here. */
10848
10849 if (elf_hash_table (info)->dynamic_sections_created)
10850 {
10851 bfd_byte *b;
10852 bfd_boolean swap_out_p;
10853
10854 BFD_ASSERT (sdyn != NULL);
10855
10856 for (b = sdyn->contents;
10857 b < sdyn->contents + sdyn->size;
10858 b += MIPS_ELF_DYN_SIZE (dynobj))
10859 {
10860 Elf_Internal_Dyn dyn;
10861 asection *s;
10862
10863 /* Read in the current dynamic entry. */
10864 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10865
10866 /* Assume that we're going to modify it and write it out. */
10867 swap_out_p = TRUE;
10868
10869 switch (dyn.d_tag)
10870 {
10871 case DT_RELSZ:
10872 /* Reduce DT_RELSZ to account for any relocations we
10873 decided not to make. This is for the n64 irix rld,
10874 which doesn't seem to apply any relocations if there
10875 are trailing null entries. */
10876 s = mips_elf_rel_dyn_section (info, FALSE);
10877 dyn.d_un.d_val = (s->reloc_count
10878 * (ABI_64_P (output_bfd)
10879 ? sizeof (Elf64_Mips_External_Rel)
10880 : sizeof (Elf32_External_Rel)));
10881 /* Adjust the section size too. Tools like the prelinker
10882 can reasonably expect the values to the same. */
10883 elf_section_data (s->output_section)->this_hdr.sh_size
10884 = dyn.d_un.d_val;
10885 break;
10886
10887 default:
10888 swap_out_p = FALSE;
10889 break;
10890 }
10891
10892 if (swap_out_p)
10893 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10894 (dynobj, &dyn, b);
10895 }
10896 }
10897
10898 {
10899 asection *s;
10900 Elf32_compact_rel cpt;
10901
10902 if (SGI_COMPAT (output_bfd))
10903 {
10904 /* Write .compact_rel section out. */
10905 s = bfd_get_linker_section (dynobj, ".compact_rel");
10906 if (s != NULL)
10907 {
10908 cpt.id1 = 1;
10909 cpt.num = s->reloc_count;
10910 cpt.id2 = 2;
10911 cpt.offset = (s->output_section->filepos
10912 + sizeof (Elf32_External_compact_rel));
10913 cpt.reserved0 = 0;
10914 cpt.reserved1 = 0;
10915 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10916 ((Elf32_External_compact_rel *)
10917 s->contents));
10918
10919 /* Clean up a dummy stub function entry in .text. */
10920 if (htab->sstubs != NULL)
10921 {
10922 file_ptr dummy_offset;
10923
10924 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10925 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10926 memset (htab->sstubs->contents + dummy_offset, 0,
10927 htab->function_stub_size);
10928 }
10929 }
10930 }
10931
10932 /* The psABI says that the dynamic relocations must be sorted in
10933 increasing order of r_symndx. The VxWorks EABI doesn't require
10934 this, and because the code below handles REL rather than RELA
10935 relocations, using it for VxWorks would be outright harmful. */
10936 if (!htab->is_vxworks)
10937 {
10938 s = mips_elf_rel_dyn_section (info, FALSE);
10939 if (s != NULL
10940 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10941 {
10942 reldyn_sorting_bfd = output_bfd;
10943
10944 if (ABI_64_P (output_bfd))
10945 qsort ((Elf64_External_Rel *) s->contents + 1,
10946 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10947 sort_dynamic_relocs_64);
10948 else
10949 qsort ((Elf32_External_Rel *) s->contents + 1,
10950 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10951 sort_dynamic_relocs);
10952 }
10953 }
10954 }
10955
10956 if (htab->splt && htab->splt->size > 0)
10957 {
10958 if (htab->is_vxworks)
10959 {
10960 if (info->shared)
10961 mips_vxworks_finish_shared_plt (output_bfd, info);
10962 else
10963 mips_vxworks_finish_exec_plt (output_bfd, info);
10964 }
10965 else
10966 {
10967 BFD_ASSERT (!info->shared);
10968 mips_finish_exec_plt (output_bfd, info);
10969 }
10970 }
10971 return TRUE;
10972 }
10973
10974
10975 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10976
10977 static void
10978 mips_set_isa_flags (bfd *abfd)
10979 {
10980 flagword val;
10981
10982 switch (bfd_get_mach (abfd))
10983 {
10984 default:
10985 case bfd_mach_mips3000:
10986 val = E_MIPS_ARCH_1;
10987 break;
10988
10989 case bfd_mach_mips3900:
10990 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10991 break;
10992
10993 case bfd_mach_mips6000:
10994 val = E_MIPS_ARCH_2;
10995 break;
10996
10997 case bfd_mach_mips4000:
10998 case bfd_mach_mips4300:
10999 case bfd_mach_mips4400:
11000 case bfd_mach_mips4600:
11001 val = E_MIPS_ARCH_3;
11002 break;
11003
11004 case bfd_mach_mips4010:
11005 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11006 break;
11007
11008 case bfd_mach_mips4100:
11009 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11010 break;
11011
11012 case bfd_mach_mips4111:
11013 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11014 break;
11015
11016 case bfd_mach_mips4120:
11017 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11018 break;
11019
11020 case bfd_mach_mips4650:
11021 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11022 break;
11023
11024 case bfd_mach_mips5400:
11025 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11026 break;
11027
11028 case bfd_mach_mips5500:
11029 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11030 break;
11031
11032 case bfd_mach_mips5900:
11033 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11034 break;
11035
11036 case bfd_mach_mips9000:
11037 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11038 break;
11039
11040 case bfd_mach_mips5000:
11041 case bfd_mach_mips7000:
11042 case bfd_mach_mips8000:
11043 case bfd_mach_mips10000:
11044 case bfd_mach_mips12000:
11045 case bfd_mach_mips14000:
11046 case bfd_mach_mips16000:
11047 val = E_MIPS_ARCH_4;
11048 break;
11049
11050 case bfd_mach_mips5:
11051 val = E_MIPS_ARCH_5;
11052 break;
11053
11054 case bfd_mach_mips_loongson_2e:
11055 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11056 break;
11057
11058 case bfd_mach_mips_loongson_2f:
11059 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11060 break;
11061
11062 case bfd_mach_mips_sb1:
11063 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11064 break;
11065
11066 case bfd_mach_mips_loongson_3a:
11067 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
11068 break;
11069
11070 case bfd_mach_mips_octeon:
11071 case bfd_mach_mips_octeonp:
11072 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11073 break;
11074
11075 case bfd_mach_mips_xlr:
11076 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11077 break;
11078
11079 case bfd_mach_mips_octeon2:
11080 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11081 break;
11082
11083 case bfd_mach_mipsisa32:
11084 val = E_MIPS_ARCH_32;
11085 break;
11086
11087 case bfd_mach_mipsisa64:
11088 val = E_MIPS_ARCH_64;
11089 break;
11090
11091 case bfd_mach_mipsisa32r2:
11092 val = E_MIPS_ARCH_32R2;
11093 break;
11094
11095 case bfd_mach_mipsisa64r2:
11096 val = E_MIPS_ARCH_64R2;
11097 break;
11098 }
11099 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11100 elf_elfheader (abfd)->e_flags |= val;
11101
11102 }
11103
11104
11105 /* The final processing done just before writing out a MIPS ELF object
11106 file. This gets the MIPS architecture right based on the machine
11107 number. This is used by both the 32-bit and the 64-bit ABI. */
11108
11109 void
11110 _bfd_mips_elf_final_write_processing (bfd *abfd,
11111 bfd_boolean linker ATTRIBUTE_UNUSED)
11112 {
11113 unsigned int i;
11114 Elf_Internal_Shdr **hdrpp;
11115 const char *name;
11116 asection *sec;
11117
11118 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11119 is nonzero. This is for compatibility with old objects, which used
11120 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
11121 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11122 mips_set_isa_flags (abfd);
11123
11124 /* Set the sh_info field for .gptab sections and other appropriate
11125 info for each special section. */
11126 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11127 i < elf_numsections (abfd);
11128 i++, hdrpp++)
11129 {
11130 switch ((*hdrpp)->sh_type)
11131 {
11132 case SHT_MIPS_MSYM:
11133 case SHT_MIPS_LIBLIST:
11134 sec = bfd_get_section_by_name (abfd, ".dynstr");
11135 if (sec != NULL)
11136 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11137 break;
11138
11139 case SHT_MIPS_GPTAB:
11140 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11141 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11142 BFD_ASSERT (name != NULL
11143 && CONST_STRNEQ (name, ".gptab."));
11144 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11145 BFD_ASSERT (sec != NULL);
11146 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11147 break;
11148
11149 case SHT_MIPS_CONTENT:
11150 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11151 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11152 BFD_ASSERT (name != NULL
11153 && CONST_STRNEQ (name, ".MIPS.content"));
11154 sec = bfd_get_section_by_name (abfd,
11155 name + sizeof ".MIPS.content" - 1);
11156 BFD_ASSERT (sec != NULL);
11157 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11158 break;
11159
11160 case SHT_MIPS_SYMBOL_LIB:
11161 sec = bfd_get_section_by_name (abfd, ".dynsym");
11162 if (sec != NULL)
11163 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11164 sec = bfd_get_section_by_name (abfd, ".liblist");
11165 if (sec != NULL)
11166 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11167 break;
11168
11169 case SHT_MIPS_EVENTS:
11170 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11171 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11172 BFD_ASSERT (name != NULL);
11173 if (CONST_STRNEQ (name, ".MIPS.events"))
11174 sec = bfd_get_section_by_name (abfd,
11175 name + sizeof ".MIPS.events" - 1);
11176 else
11177 {
11178 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
11179 sec = bfd_get_section_by_name (abfd,
11180 (name
11181 + sizeof ".MIPS.post_rel" - 1));
11182 }
11183 BFD_ASSERT (sec != NULL);
11184 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11185 break;
11186
11187 }
11188 }
11189 }
11190 \f
11191 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11192 segments. */
11193
11194 int
11195 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11196 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11197 {
11198 asection *s;
11199 int ret = 0;
11200
11201 /* See if we need a PT_MIPS_REGINFO segment. */
11202 s = bfd_get_section_by_name (abfd, ".reginfo");
11203 if (s && (s->flags & SEC_LOAD))
11204 ++ret;
11205
11206 /* See if we need a PT_MIPS_OPTIONS segment. */
11207 if (IRIX_COMPAT (abfd) == ict_irix6
11208 && bfd_get_section_by_name (abfd,
11209 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11210 ++ret;
11211
11212 /* See if we need a PT_MIPS_RTPROC segment. */
11213 if (IRIX_COMPAT (abfd) == ict_irix5
11214 && bfd_get_section_by_name (abfd, ".dynamic")
11215 && bfd_get_section_by_name (abfd, ".mdebug"))
11216 ++ret;
11217
11218 /* Allocate a PT_NULL header in dynamic objects. See
11219 _bfd_mips_elf_modify_segment_map for details. */
11220 if (!SGI_COMPAT (abfd)
11221 && bfd_get_section_by_name (abfd, ".dynamic"))
11222 ++ret;
11223
11224 return ret;
11225 }
11226
11227 /* Modify the segment map for an IRIX5 executable. */
11228
11229 bfd_boolean
11230 _bfd_mips_elf_modify_segment_map (bfd *abfd,
11231 struct bfd_link_info *info)
11232 {
11233 asection *s;
11234 struct elf_segment_map *m, **pm;
11235 bfd_size_type amt;
11236
11237 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11238 segment. */
11239 s = bfd_get_section_by_name (abfd, ".reginfo");
11240 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11241 {
11242 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11243 if (m->p_type == PT_MIPS_REGINFO)
11244 break;
11245 if (m == NULL)
11246 {
11247 amt = sizeof *m;
11248 m = bfd_zalloc (abfd, amt);
11249 if (m == NULL)
11250 return FALSE;
11251
11252 m->p_type = PT_MIPS_REGINFO;
11253 m->count = 1;
11254 m->sections[0] = s;
11255
11256 /* We want to put it after the PHDR and INTERP segments. */
11257 pm = &elf_tdata (abfd)->segment_map;
11258 while (*pm != NULL
11259 && ((*pm)->p_type == PT_PHDR
11260 || (*pm)->p_type == PT_INTERP))
11261 pm = &(*pm)->next;
11262
11263 m->next = *pm;
11264 *pm = m;
11265 }
11266 }
11267
11268 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11269 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
11270 PT_MIPS_OPTIONS segment immediately following the program header
11271 table. */
11272 if (NEWABI_P (abfd)
11273 /* On non-IRIX6 new abi, we'll have already created a segment
11274 for this section, so don't create another. I'm not sure this
11275 is not also the case for IRIX 6, but I can't test it right
11276 now. */
11277 && IRIX_COMPAT (abfd) == ict_irix6)
11278 {
11279 for (s = abfd->sections; s; s = s->next)
11280 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11281 break;
11282
11283 if (s)
11284 {
11285 struct elf_segment_map *options_segment;
11286
11287 pm = &elf_tdata (abfd)->segment_map;
11288 while (*pm != NULL
11289 && ((*pm)->p_type == PT_PHDR
11290 || (*pm)->p_type == PT_INTERP))
11291 pm = &(*pm)->next;
11292
11293 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11294 {
11295 amt = sizeof (struct elf_segment_map);
11296 options_segment = bfd_zalloc (abfd, amt);
11297 options_segment->next = *pm;
11298 options_segment->p_type = PT_MIPS_OPTIONS;
11299 options_segment->p_flags = PF_R;
11300 options_segment->p_flags_valid = TRUE;
11301 options_segment->count = 1;
11302 options_segment->sections[0] = s;
11303 *pm = options_segment;
11304 }
11305 }
11306 }
11307 else
11308 {
11309 if (IRIX_COMPAT (abfd) == ict_irix5)
11310 {
11311 /* If there are .dynamic and .mdebug sections, we make a room
11312 for the RTPROC header. FIXME: Rewrite without section names. */
11313 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11314 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11315 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11316 {
11317 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11318 if (m->p_type == PT_MIPS_RTPROC)
11319 break;
11320 if (m == NULL)
11321 {
11322 amt = sizeof *m;
11323 m = bfd_zalloc (abfd, amt);
11324 if (m == NULL)
11325 return FALSE;
11326
11327 m->p_type = PT_MIPS_RTPROC;
11328
11329 s = bfd_get_section_by_name (abfd, ".rtproc");
11330 if (s == NULL)
11331 {
11332 m->count = 0;
11333 m->p_flags = 0;
11334 m->p_flags_valid = 1;
11335 }
11336 else
11337 {
11338 m->count = 1;
11339 m->sections[0] = s;
11340 }
11341
11342 /* We want to put it after the DYNAMIC segment. */
11343 pm = &elf_tdata (abfd)->segment_map;
11344 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11345 pm = &(*pm)->next;
11346 if (*pm != NULL)
11347 pm = &(*pm)->next;
11348
11349 m->next = *pm;
11350 *pm = m;
11351 }
11352 }
11353 }
11354 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11355 .dynstr, .dynsym, and .hash sections, and everything in
11356 between. */
11357 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11358 pm = &(*pm)->next)
11359 if ((*pm)->p_type == PT_DYNAMIC)
11360 break;
11361 m = *pm;
11362 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11363 {
11364 /* For a normal mips executable the permissions for the PT_DYNAMIC
11365 segment are read, write and execute. We do that here since
11366 the code in elf.c sets only the read permission. This matters
11367 sometimes for the dynamic linker. */
11368 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11369 {
11370 m->p_flags = PF_R | PF_W | PF_X;
11371 m->p_flags_valid = 1;
11372 }
11373 }
11374 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11375 glibc's dynamic linker has traditionally derived the number of
11376 tags from the p_filesz field, and sometimes allocates stack
11377 arrays of that size. An overly-big PT_DYNAMIC segment can
11378 be actively harmful in such cases. Making PT_DYNAMIC contain
11379 other sections can also make life hard for the prelinker,
11380 which might move one of the other sections to a different
11381 PT_LOAD segment. */
11382 if (SGI_COMPAT (abfd)
11383 && m != NULL
11384 && m->count == 1
11385 && strcmp (m->sections[0]->name, ".dynamic") == 0)
11386 {
11387 static const char *sec_names[] =
11388 {
11389 ".dynamic", ".dynstr", ".dynsym", ".hash"
11390 };
11391 bfd_vma low, high;
11392 unsigned int i, c;
11393 struct elf_segment_map *n;
11394
11395 low = ~(bfd_vma) 0;
11396 high = 0;
11397 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11398 {
11399 s = bfd_get_section_by_name (abfd, sec_names[i]);
11400 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11401 {
11402 bfd_size_type sz;
11403
11404 if (low > s->vma)
11405 low = s->vma;
11406 sz = s->size;
11407 if (high < s->vma + sz)
11408 high = s->vma + sz;
11409 }
11410 }
11411
11412 c = 0;
11413 for (s = abfd->sections; s != NULL; s = s->next)
11414 if ((s->flags & SEC_LOAD) != 0
11415 && s->vma >= low
11416 && s->vma + s->size <= high)
11417 ++c;
11418
11419 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11420 n = bfd_zalloc (abfd, amt);
11421 if (n == NULL)
11422 return FALSE;
11423 *n = *m;
11424 n->count = c;
11425
11426 i = 0;
11427 for (s = abfd->sections; s != NULL; s = s->next)
11428 {
11429 if ((s->flags & SEC_LOAD) != 0
11430 && s->vma >= low
11431 && s->vma + s->size <= high)
11432 {
11433 n->sections[i] = s;
11434 ++i;
11435 }
11436 }
11437
11438 *pm = n;
11439 }
11440 }
11441
11442 /* Allocate a spare program header in dynamic objects so that tools
11443 like the prelinker can add an extra PT_LOAD entry.
11444
11445 If the prelinker needs to make room for a new PT_LOAD entry, its
11446 standard procedure is to move the first (read-only) sections into
11447 the new (writable) segment. However, the MIPS ABI requires
11448 .dynamic to be in a read-only segment, and the section will often
11449 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11450
11451 Although the prelinker could in principle move .dynamic to a
11452 writable segment, it seems better to allocate a spare program
11453 header instead, and avoid the need to move any sections.
11454 There is a long tradition of allocating spare dynamic tags,
11455 so allocating a spare program header seems like a natural
11456 extension.
11457
11458 If INFO is NULL, we may be copying an already prelinked binary
11459 with objcopy or strip, so do not add this header. */
11460 if (info != NULL
11461 && !SGI_COMPAT (abfd)
11462 && bfd_get_section_by_name (abfd, ".dynamic"))
11463 {
11464 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11465 if ((*pm)->p_type == PT_NULL)
11466 break;
11467 if (*pm == NULL)
11468 {
11469 m = bfd_zalloc (abfd, sizeof (*m));
11470 if (m == NULL)
11471 return FALSE;
11472
11473 m->p_type = PT_NULL;
11474 *pm = m;
11475 }
11476 }
11477
11478 return TRUE;
11479 }
11480 \f
11481 /* Return the section that should be marked against GC for a given
11482 relocation. */
11483
11484 asection *
11485 _bfd_mips_elf_gc_mark_hook (asection *sec,
11486 struct bfd_link_info *info,
11487 Elf_Internal_Rela *rel,
11488 struct elf_link_hash_entry *h,
11489 Elf_Internal_Sym *sym)
11490 {
11491 /* ??? Do mips16 stub sections need to be handled special? */
11492
11493 if (h != NULL)
11494 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11495 {
11496 case R_MIPS_GNU_VTINHERIT:
11497 case R_MIPS_GNU_VTENTRY:
11498 return NULL;
11499 }
11500
11501 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11502 }
11503
11504 /* Update the got entry reference counts for the section being removed. */
11505
11506 bfd_boolean
11507 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11508 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11509 asection *sec ATTRIBUTE_UNUSED,
11510 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11511 {
11512 #if 0
11513 Elf_Internal_Shdr *symtab_hdr;
11514 struct elf_link_hash_entry **sym_hashes;
11515 bfd_signed_vma *local_got_refcounts;
11516 const Elf_Internal_Rela *rel, *relend;
11517 unsigned long r_symndx;
11518 struct elf_link_hash_entry *h;
11519
11520 if (info->relocatable)
11521 return TRUE;
11522
11523 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11524 sym_hashes = elf_sym_hashes (abfd);
11525 local_got_refcounts = elf_local_got_refcounts (abfd);
11526
11527 relend = relocs + sec->reloc_count;
11528 for (rel = relocs; rel < relend; rel++)
11529 switch (ELF_R_TYPE (abfd, rel->r_info))
11530 {
11531 case R_MIPS16_GOT16:
11532 case R_MIPS16_CALL16:
11533 case R_MIPS_GOT16:
11534 case R_MIPS_CALL16:
11535 case R_MIPS_CALL_HI16:
11536 case R_MIPS_CALL_LO16:
11537 case R_MIPS_GOT_HI16:
11538 case R_MIPS_GOT_LO16:
11539 case R_MIPS_GOT_DISP:
11540 case R_MIPS_GOT_PAGE:
11541 case R_MIPS_GOT_OFST:
11542 case R_MICROMIPS_GOT16:
11543 case R_MICROMIPS_CALL16:
11544 case R_MICROMIPS_CALL_HI16:
11545 case R_MICROMIPS_CALL_LO16:
11546 case R_MICROMIPS_GOT_HI16:
11547 case R_MICROMIPS_GOT_LO16:
11548 case R_MICROMIPS_GOT_DISP:
11549 case R_MICROMIPS_GOT_PAGE:
11550 case R_MICROMIPS_GOT_OFST:
11551 /* ??? It would seem that the existing MIPS code does no sort
11552 of reference counting or whatnot on its GOT and PLT entries,
11553 so it is not possible to garbage collect them at this time. */
11554 break;
11555
11556 default:
11557 break;
11558 }
11559 #endif
11560
11561 return TRUE;
11562 }
11563 \f
11564 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11565 hiding the old indirect symbol. Process additional relocation
11566 information. Also called for weakdefs, in which case we just let
11567 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11568
11569 void
11570 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11571 struct elf_link_hash_entry *dir,
11572 struct elf_link_hash_entry *ind)
11573 {
11574 struct mips_elf_link_hash_entry *dirmips, *indmips;
11575
11576 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11577
11578 dirmips = (struct mips_elf_link_hash_entry *) dir;
11579 indmips = (struct mips_elf_link_hash_entry *) ind;
11580 /* Any absolute non-dynamic relocations against an indirect or weak
11581 definition will be against the target symbol. */
11582 if (indmips->has_static_relocs)
11583 dirmips->has_static_relocs = TRUE;
11584
11585 if (ind->root.type != bfd_link_hash_indirect)
11586 return;
11587
11588 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11589 if (indmips->readonly_reloc)
11590 dirmips->readonly_reloc = TRUE;
11591 if (indmips->no_fn_stub)
11592 dirmips->no_fn_stub = TRUE;
11593 if (indmips->fn_stub)
11594 {
11595 dirmips->fn_stub = indmips->fn_stub;
11596 indmips->fn_stub = NULL;
11597 }
11598 if (indmips->need_fn_stub)
11599 {
11600 dirmips->need_fn_stub = TRUE;
11601 indmips->need_fn_stub = FALSE;
11602 }
11603 if (indmips->call_stub)
11604 {
11605 dirmips->call_stub = indmips->call_stub;
11606 indmips->call_stub = NULL;
11607 }
11608 if (indmips->call_fp_stub)
11609 {
11610 dirmips->call_fp_stub = indmips->call_fp_stub;
11611 indmips->call_fp_stub = NULL;
11612 }
11613 if (indmips->global_got_area < dirmips->global_got_area)
11614 dirmips->global_got_area = indmips->global_got_area;
11615 if (indmips->global_got_area < GGA_NONE)
11616 indmips->global_got_area = GGA_NONE;
11617 if (indmips->has_nonpic_branches)
11618 dirmips->has_nonpic_branches = TRUE;
11619
11620 if (dirmips->tls_type == 0)
11621 dirmips->tls_type = indmips->tls_type;
11622 }
11623 \f
11624 #define PDR_SIZE 32
11625
11626 bfd_boolean
11627 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11628 struct bfd_link_info *info)
11629 {
11630 asection *o;
11631 bfd_boolean ret = FALSE;
11632 unsigned char *tdata;
11633 size_t i, skip;
11634
11635 o = bfd_get_section_by_name (abfd, ".pdr");
11636 if (! o)
11637 return FALSE;
11638 if (o->size == 0)
11639 return FALSE;
11640 if (o->size % PDR_SIZE != 0)
11641 return FALSE;
11642 if (o->output_section != NULL
11643 && bfd_is_abs_section (o->output_section))
11644 return FALSE;
11645
11646 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11647 if (! tdata)
11648 return FALSE;
11649
11650 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11651 info->keep_memory);
11652 if (!cookie->rels)
11653 {
11654 free (tdata);
11655 return FALSE;
11656 }
11657
11658 cookie->rel = cookie->rels;
11659 cookie->relend = cookie->rels + o->reloc_count;
11660
11661 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11662 {
11663 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11664 {
11665 tdata[i] = 1;
11666 skip ++;
11667 }
11668 }
11669
11670 if (skip != 0)
11671 {
11672 mips_elf_section_data (o)->u.tdata = tdata;
11673 o->size -= skip * PDR_SIZE;
11674 ret = TRUE;
11675 }
11676 else
11677 free (tdata);
11678
11679 if (! info->keep_memory)
11680 free (cookie->rels);
11681
11682 return ret;
11683 }
11684
11685 bfd_boolean
11686 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11687 {
11688 if (strcmp (sec->name, ".pdr") == 0)
11689 return TRUE;
11690 return FALSE;
11691 }
11692
11693 bfd_boolean
11694 _bfd_mips_elf_write_section (bfd *output_bfd,
11695 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11696 asection *sec, bfd_byte *contents)
11697 {
11698 bfd_byte *to, *from, *end;
11699 int i;
11700
11701 if (strcmp (sec->name, ".pdr") != 0)
11702 return FALSE;
11703
11704 if (mips_elf_section_data (sec)->u.tdata == NULL)
11705 return FALSE;
11706
11707 to = contents;
11708 end = contents + sec->size;
11709 for (from = contents, i = 0;
11710 from < end;
11711 from += PDR_SIZE, i++)
11712 {
11713 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11714 continue;
11715 if (to != from)
11716 memcpy (to, from, PDR_SIZE);
11717 to += PDR_SIZE;
11718 }
11719 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11720 sec->output_offset, sec->size);
11721 return TRUE;
11722 }
11723 \f
11724 /* microMIPS code retains local labels for linker relaxation. Omit them
11725 from output by default for clarity. */
11726
11727 bfd_boolean
11728 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11729 {
11730 return _bfd_elf_is_local_label_name (abfd, sym->name);
11731 }
11732
11733 /* MIPS ELF uses a special find_nearest_line routine in order the
11734 handle the ECOFF debugging information. */
11735
11736 struct mips_elf_find_line
11737 {
11738 struct ecoff_debug_info d;
11739 struct ecoff_find_line i;
11740 };
11741
11742 bfd_boolean
11743 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11744 asymbol **symbols, bfd_vma offset,
11745 const char **filename_ptr,
11746 const char **functionname_ptr,
11747 unsigned int *line_ptr)
11748 {
11749 asection *msec;
11750
11751 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11752 filename_ptr, functionname_ptr,
11753 line_ptr))
11754 return TRUE;
11755
11756 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
11757 section, symbols, offset,
11758 filename_ptr, functionname_ptr,
11759 line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
11760 &elf_tdata (abfd)->dwarf2_find_line_info))
11761 return TRUE;
11762
11763 msec = bfd_get_section_by_name (abfd, ".mdebug");
11764 if (msec != NULL)
11765 {
11766 flagword origflags;
11767 struct mips_elf_find_line *fi;
11768 const struct ecoff_debug_swap * const swap =
11769 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11770
11771 /* If we are called during a link, mips_elf_final_link may have
11772 cleared the SEC_HAS_CONTENTS field. We force it back on here
11773 if appropriate (which it normally will be). */
11774 origflags = msec->flags;
11775 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11776 msec->flags |= SEC_HAS_CONTENTS;
11777
11778 fi = elf_tdata (abfd)->find_line_info;
11779 if (fi == NULL)
11780 {
11781 bfd_size_type external_fdr_size;
11782 char *fraw_src;
11783 char *fraw_end;
11784 struct fdr *fdr_ptr;
11785 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11786
11787 fi = bfd_zalloc (abfd, amt);
11788 if (fi == NULL)
11789 {
11790 msec->flags = origflags;
11791 return FALSE;
11792 }
11793
11794 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11795 {
11796 msec->flags = origflags;
11797 return FALSE;
11798 }
11799
11800 /* Swap in the FDR information. */
11801 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11802 fi->d.fdr = bfd_alloc (abfd, amt);
11803 if (fi->d.fdr == NULL)
11804 {
11805 msec->flags = origflags;
11806 return FALSE;
11807 }
11808 external_fdr_size = swap->external_fdr_size;
11809 fdr_ptr = fi->d.fdr;
11810 fraw_src = (char *) fi->d.external_fdr;
11811 fraw_end = (fraw_src
11812 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11813 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11814 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11815
11816 elf_tdata (abfd)->find_line_info = fi;
11817
11818 /* Note that we don't bother to ever free this information.
11819 find_nearest_line is either called all the time, as in
11820 objdump -l, so the information should be saved, or it is
11821 rarely called, as in ld error messages, so the memory
11822 wasted is unimportant. Still, it would probably be a
11823 good idea for free_cached_info to throw it away. */
11824 }
11825
11826 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11827 &fi->i, filename_ptr, functionname_ptr,
11828 line_ptr))
11829 {
11830 msec->flags = origflags;
11831 return TRUE;
11832 }
11833
11834 msec->flags = origflags;
11835 }
11836
11837 /* Fall back on the generic ELF find_nearest_line routine. */
11838
11839 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11840 filename_ptr, functionname_ptr,
11841 line_ptr);
11842 }
11843
11844 bfd_boolean
11845 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11846 const char **filename_ptr,
11847 const char **functionname_ptr,
11848 unsigned int *line_ptr)
11849 {
11850 bfd_boolean found;
11851 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11852 functionname_ptr, line_ptr,
11853 & elf_tdata (abfd)->dwarf2_find_line_info);
11854 return found;
11855 }
11856
11857 \f
11858 /* When are writing out the .options or .MIPS.options section,
11859 remember the bytes we are writing out, so that we can install the
11860 GP value in the section_processing routine. */
11861
11862 bfd_boolean
11863 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11864 const void *location,
11865 file_ptr offset, bfd_size_type count)
11866 {
11867 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11868 {
11869 bfd_byte *c;
11870
11871 if (elf_section_data (section) == NULL)
11872 {
11873 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11874 section->used_by_bfd = bfd_zalloc (abfd, amt);
11875 if (elf_section_data (section) == NULL)
11876 return FALSE;
11877 }
11878 c = mips_elf_section_data (section)->u.tdata;
11879 if (c == NULL)
11880 {
11881 c = bfd_zalloc (abfd, section->size);
11882 if (c == NULL)
11883 return FALSE;
11884 mips_elf_section_data (section)->u.tdata = c;
11885 }
11886
11887 memcpy (c + offset, location, count);
11888 }
11889
11890 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11891 count);
11892 }
11893
11894 /* This is almost identical to bfd_generic_get_... except that some
11895 MIPS relocations need to be handled specially. Sigh. */
11896
11897 bfd_byte *
11898 _bfd_elf_mips_get_relocated_section_contents
11899 (bfd *abfd,
11900 struct bfd_link_info *link_info,
11901 struct bfd_link_order *link_order,
11902 bfd_byte *data,
11903 bfd_boolean relocatable,
11904 asymbol **symbols)
11905 {
11906 /* Get enough memory to hold the stuff */
11907 bfd *input_bfd = link_order->u.indirect.section->owner;
11908 asection *input_section = link_order->u.indirect.section;
11909 bfd_size_type sz;
11910
11911 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11912 arelent **reloc_vector = NULL;
11913 long reloc_count;
11914
11915 if (reloc_size < 0)
11916 goto error_return;
11917
11918 reloc_vector = bfd_malloc (reloc_size);
11919 if (reloc_vector == NULL && reloc_size != 0)
11920 goto error_return;
11921
11922 /* read in the section */
11923 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11924 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11925 goto error_return;
11926
11927 reloc_count = bfd_canonicalize_reloc (input_bfd,
11928 input_section,
11929 reloc_vector,
11930 symbols);
11931 if (reloc_count < 0)
11932 goto error_return;
11933
11934 if (reloc_count > 0)
11935 {
11936 arelent **parent;
11937 /* for mips */
11938 int gp_found;
11939 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11940
11941 {
11942 struct bfd_hash_entry *h;
11943 struct bfd_link_hash_entry *lh;
11944 /* Skip all this stuff if we aren't mixing formats. */
11945 if (abfd && input_bfd
11946 && abfd->xvec == input_bfd->xvec)
11947 lh = 0;
11948 else
11949 {
11950 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11951 lh = (struct bfd_link_hash_entry *) h;
11952 }
11953 lookup:
11954 if (lh)
11955 {
11956 switch (lh->type)
11957 {
11958 case bfd_link_hash_undefined:
11959 case bfd_link_hash_undefweak:
11960 case bfd_link_hash_common:
11961 gp_found = 0;
11962 break;
11963 case bfd_link_hash_defined:
11964 case bfd_link_hash_defweak:
11965 gp_found = 1;
11966 gp = lh->u.def.value;
11967 break;
11968 case bfd_link_hash_indirect:
11969 case bfd_link_hash_warning:
11970 lh = lh->u.i.link;
11971 /* @@FIXME ignoring warning for now */
11972 goto lookup;
11973 case bfd_link_hash_new:
11974 default:
11975 abort ();
11976 }
11977 }
11978 else
11979 gp_found = 0;
11980 }
11981 /* end mips */
11982 for (parent = reloc_vector; *parent != NULL; parent++)
11983 {
11984 char *error_message = NULL;
11985 bfd_reloc_status_type r;
11986
11987 /* Specific to MIPS: Deal with relocation types that require
11988 knowing the gp of the output bfd. */
11989 asymbol *sym = *(*parent)->sym_ptr_ptr;
11990
11991 /* If we've managed to find the gp and have a special
11992 function for the relocation then go ahead, else default
11993 to the generic handling. */
11994 if (gp_found
11995 && (*parent)->howto->special_function
11996 == _bfd_mips_elf32_gprel16_reloc)
11997 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11998 input_section, relocatable,
11999 data, gp);
12000 else
12001 r = bfd_perform_relocation (input_bfd, *parent, data,
12002 input_section,
12003 relocatable ? abfd : NULL,
12004 &error_message);
12005
12006 if (relocatable)
12007 {
12008 asection *os = input_section->output_section;
12009
12010 /* A partial link, so keep the relocs */
12011 os->orelocation[os->reloc_count] = *parent;
12012 os->reloc_count++;
12013 }
12014
12015 if (r != bfd_reloc_ok)
12016 {
12017 switch (r)
12018 {
12019 case bfd_reloc_undefined:
12020 if (!((*link_info->callbacks->undefined_symbol)
12021 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12022 input_bfd, input_section, (*parent)->address, TRUE)))
12023 goto error_return;
12024 break;
12025 case bfd_reloc_dangerous:
12026 BFD_ASSERT (error_message != NULL);
12027 if (!((*link_info->callbacks->reloc_dangerous)
12028 (link_info, error_message, input_bfd, input_section,
12029 (*parent)->address)))
12030 goto error_return;
12031 break;
12032 case bfd_reloc_overflow:
12033 if (!((*link_info->callbacks->reloc_overflow)
12034 (link_info, NULL,
12035 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12036 (*parent)->howto->name, (*parent)->addend,
12037 input_bfd, input_section, (*parent)->address)))
12038 goto error_return;
12039 break;
12040 case bfd_reloc_outofrange:
12041 default:
12042 abort ();
12043 break;
12044 }
12045
12046 }
12047 }
12048 }
12049 if (reloc_vector != NULL)
12050 free (reloc_vector);
12051 return data;
12052
12053 error_return:
12054 if (reloc_vector != NULL)
12055 free (reloc_vector);
12056 return NULL;
12057 }
12058 \f
12059 static bfd_boolean
12060 mips_elf_relax_delete_bytes (bfd *abfd,
12061 asection *sec, bfd_vma addr, int count)
12062 {
12063 Elf_Internal_Shdr *symtab_hdr;
12064 unsigned int sec_shndx;
12065 bfd_byte *contents;
12066 Elf_Internal_Rela *irel, *irelend;
12067 Elf_Internal_Sym *isym;
12068 Elf_Internal_Sym *isymend;
12069 struct elf_link_hash_entry **sym_hashes;
12070 struct elf_link_hash_entry **end_hashes;
12071 struct elf_link_hash_entry **start_hashes;
12072 unsigned int symcount;
12073
12074 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12075 contents = elf_section_data (sec)->this_hdr.contents;
12076
12077 irel = elf_section_data (sec)->relocs;
12078 irelend = irel + sec->reloc_count;
12079
12080 /* Actually delete the bytes. */
12081 memmove (contents + addr, contents + addr + count,
12082 (size_t) (sec->size - addr - count));
12083 sec->size -= count;
12084
12085 /* Adjust all the relocs. */
12086 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12087 {
12088 /* Get the new reloc address. */
12089 if (irel->r_offset > addr)
12090 irel->r_offset -= count;
12091 }
12092
12093 BFD_ASSERT (addr % 2 == 0);
12094 BFD_ASSERT (count % 2 == 0);
12095
12096 /* Adjust the local symbols defined in this section. */
12097 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12098 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12099 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
12100 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
12101 isym->st_value -= count;
12102
12103 /* Now adjust the global symbols defined in this section. */
12104 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12105 - symtab_hdr->sh_info);
12106 sym_hashes = start_hashes = elf_sym_hashes (abfd);
12107 end_hashes = sym_hashes + symcount;
12108
12109 for (; sym_hashes < end_hashes; sym_hashes++)
12110 {
12111 struct elf_link_hash_entry *sym_hash = *sym_hashes;
12112
12113 if ((sym_hash->root.type == bfd_link_hash_defined
12114 || sym_hash->root.type == bfd_link_hash_defweak)
12115 && sym_hash->root.u.def.section == sec)
12116 {
12117 bfd_vma value = sym_hash->root.u.def.value;
12118
12119 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12120 value &= MINUS_TWO;
12121 if (value > addr)
12122 sym_hash->root.u.def.value -= count;
12123 }
12124 }
12125
12126 return TRUE;
12127 }
12128
12129
12130 /* Opcodes needed for microMIPS relaxation as found in
12131 opcodes/micromips-opc.c. */
12132
12133 struct opcode_descriptor {
12134 unsigned long match;
12135 unsigned long mask;
12136 };
12137
12138 /* The $ra register aka $31. */
12139
12140 #define RA 31
12141
12142 /* 32-bit instruction format register fields. */
12143
12144 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12145 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12146
12147 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
12148
12149 #define OP16_VALID_REG(r) \
12150 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12151
12152
12153 /* 32-bit and 16-bit branches. */
12154
12155 static const struct opcode_descriptor b_insns_32[] = {
12156 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
12157 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12158 { 0, 0 } /* End marker for find_match(). */
12159 };
12160
12161 static const struct opcode_descriptor bc_insn_32 =
12162 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
12163
12164 static const struct opcode_descriptor bz_insn_32 =
12165 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
12166
12167 static const struct opcode_descriptor bzal_insn_32 =
12168 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
12169
12170 static const struct opcode_descriptor beq_insn_32 =
12171 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
12172
12173 static const struct opcode_descriptor b_insn_16 =
12174 { /* "b", "mD", */ 0xcc00, 0xfc00 };
12175
12176 static const struct opcode_descriptor bz_insn_16 =
12177 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
12178
12179
12180 /* 32-bit and 16-bit branch EQ and NE zero. */
12181
12182 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12183 eq and second the ne. This convention is used when replacing a
12184 32-bit BEQ/BNE with the 16-bit version. */
12185
12186 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12187
12188 static const struct opcode_descriptor bz_rs_insns_32[] = {
12189 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12190 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12191 { 0, 0 } /* End marker for find_match(). */
12192 };
12193
12194 static const struct opcode_descriptor bz_rt_insns_32[] = {
12195 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12196 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12197 { 0, 0 } /* End marker for find_match(). */
12198 };
12199
12200 static const struct opcode_descriptor bzc_insns_32[] = {
12201 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12202 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12203 { 0, 0 } /* End marker for find_match(). */
12204 };
12205
12206 static const struct opcode_descriptor bz_insns_16[] = {
12207 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12208 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12209 { 0, 0 } /* End marker for find_match(). */
12210 };
12211
12212 /* Switch between a 5-bit register index and its 3-bit shorthand. */
12213
12214 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12215 #define BZ16_REG_FIELD(r) \
12216 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12217
12218
12219 /* 32-bit instructions with a delay slot. */
12220
12221 static const struct opcode_descriptor jal_insn_32_bd16 =
12222 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12223
12224 static const struct opcode_descriptor jal_insn_32_bd32 =
12225 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12226
12227 static const struct opcode_descriptor jal_x_insn_32_bd32 =
12228 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12229
12230 static const struct opcode_descriptor j_insn_32 =
12231 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12232
12233 static const struct opcode_descriptor jalr_insn_32 =
12234 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12235
12236 /* This table can be compacted, because no opcode replacement is made. */
12237
12238 static const struct opcode_descriptor ds_insns_32_bd16[] = {
12239 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12240
12241 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12242 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12243
12244 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12245 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12246 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12247 { 0, 0 } /* End marker for find_match(). */
12248 };
12249
12250 /* This table can be compacted, because no opcode replacement is made. */
12251
12252 static const struct opcode_descriptor ds_insns_32_bd32[] = {
12253 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12254
12255 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12256 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12257 { 0, 0 } /* End marker for find_match(). */
12258 };
12259
12260
12261 /* 16-bit instructions with a delay slot. */
12262
12263 static const struct opcode_descriptor jalr_insn_16_bd16 =
12264 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12265
12266 static const struct opcode_descriptor jalr_insn_16_bd32 =
12267 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12268
12269 static const struct opcode_descriptor jr_insn_16 =
12270 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12271
12272 #define JR16_REG(opcode) ((opcode) & 0x1f)
12273
12274 /* This table can be compacted, because no opcode replacement is made. */
12275
12276 static const struct opcode_descriptor ds_insns_16_bd16[] = {
12277 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12278
12279 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12280 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12281 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12282 { 0, 0 } /* End marker for find_match(). */
12283 };
12284
12285
12286 /* LUI instruction. */
12287
12288 static const struct opcode_descriptor lui_insn =
12289 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12290
12291
12292 /* ADDIU instruction. */
12293
12294 static const struct opcode_descriptor addiu_insn =
12295 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12296
12297 static const struct opcode_descriptor addiupc_insn =
12298 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12299
12300 #define ADDIUPC_REG_FIELD(r) \
12301 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12302
12303
12304 /* Relaxable instructions in a JAL delay slot: MOVE. */
12305
12306 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12307 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12308 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12309 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12310
12311 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12312 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12313
12314 static const struct opcode_descriptor move_insns_32[] = {
12315 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12316 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12317 { 0, 0 } /* End marker for find_match(). */
12318 };
12319
12320 static const struct opcode_descriptor move_insn_16 =
12321 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12322
12323
12324 /* NOP instructions. */
12325
12326 static const struct opcode_descriptor nop_insn_32 =
12327 { /* "nop", "", */ 0x00000000, 0xffffffff };
12328
12329 static const struct opcode_descriptor nop_insn_16 =
12330 { /* "nop", "", */ 0x0c00, 0xffff };
12331
12332
12333 /* Instruction match support. */
12334
12335 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12336
12337 static int
12338 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12339 {
12340 unsigned long indx;
12341
12342 for (indx = 0; insn[indx].mask != 0; indx++)
12343 if (MATCH (opcode, insn[indx]))
12344 return indx;
12345
12346 return -1;
12347 }
12348
12349
12350 /* Branch and delay slot decoding support. */
12351
12352 /* If PTR points to what *might* be a 16-bit branch or jump, then
12353 return the minimum length of its delay slot, otherwise return 0.
12354 Non-zero results are not definitive as we might be checking against
12355 the second half of another instruction. */
12356
12357 static int
12358 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12359 {
12360 unsigned long opcode;
12361 int bdsize;
12362
12363 opcode = bfd_get_16 (abfd, ptr);
12364 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12365 /* 16-bit branch/jump with a 32-bit delay slot. */
12366 bdsize = 4;
12367 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12368 || find_match (opcode, ds_insns_16_bd16) >= 0)
12369 /* 16-bit branch/jump with a 16-bit delay slot. */
12370 bdsize = 2;
12371 else
12372 /* No delay slot. */
12373 bdsize = 0;
12374
12375 return bdsize;
12376 }
12377
12378 /* If PTR points to what *might* be a 32-bit branch or jump, then
12379 return the minimum length of its delay slot, otherwise return 0.
12380 Non-zero results are not definitive as we might be checking against
12381 the second half of another instruction. */
12382
12383 static int
12384 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12385 {
12386 unsigned long opcode;
12387 int bdsize;
12388
12389 opcode = bfd_get_micromips_32 (abfd, ptr);
12390 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12391 /* 32-bit branch/jump with a 32-bit delay slot. */
12392 bdsize = 4;
12393 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12394 /* 32-bit branch/jump with a 16-bit delay slot. */
12395 bdsize = 2;
12396 else
12397 /* No delay slot. */
12398 bdsize = 0;
12399
12400 return bdsize;
12401 }
12402
12403 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12404 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12405
12406 static bfd_boolean
12407 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12408 {
12409 unsigned long opcode;
12410
12411 opcode = bfd_get_16 (abfd, ptr);
12412 if (MATCH (opcode, b_insn_16)
12413 /* B16 */
12414 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12415 /* JR16 */
12416 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12417 /* BEQZ16, BNEZ16 */
12418 || (MATCH (opcode, jalr_insn_16_bd32)
12419 /* JALR16 */
12420 && reg != JR16_REG (opcode) && reg != RA))
12421 return TRUE;
12422
12423 return FALSE;
12424 }
12425
12426 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12427 then return TRUE, otherwise FALSE. */
12428
12429 static bfd_boolean
12430 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12431 {
12432 unsigned long opcode;
12433
12434 opcode = bfd_get_micromips_32 (abfd, ptr);
12435 if (MATCH (opcode, j_insn_32)
12436 /* J */
12437 || MATCH (opcode, bc_insn_32)
12438 /* BC1F, BC1T, BC2F, BC2T */
12439 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12440 /* JAL, JALX */
12441 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12442 /* BGEZ, BGTZ, BLEZ, BLTZ */
12443 || (MATCH (opcode, bzal_insn_32)
12444 /* BGEZAL, BLTZAL */
12445 && reg != OP32_SREG (opcode) && reg != RA)
12446 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12447 /* JALR, JALR.HB, BEQ, BNE */
12448 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12449 return TRUE;
12450
12451 return FALSE;
12452 }
12453
12454 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
12455 IRELEND) at OFFSET indicate that there must be a compact branch there,
12456 then return TRUE, otherwise FALSE. */
12457
12458 static bfd_boolean
12459 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
12460 const Elf_Internal_Rela *internal_relocs,
12461 const Elf_Internal_Rela *irelend)
12462 {
12463 const Elf_Internal_Rela *irel;
12464 unsigned long opcode;
12465
12466 opcode = bfd_get_micromips_32 (abfd, ptr);
12467 if (find_match (opcode, bzc_insns_32) < 0)
12468 return FALSE;
12469
12470 for (irel = internal_relocs; irel < irelend; irel++)
12471 if (irel->r_offset == offset
12472 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
12473 return TRUE;
12474
12475 return FALSE;
12476 }
12477
12478 /* Bitsize checking. */
12479 #define IS_BITSIZE(val, N) \
12480 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12481 - (1ULL << ((N) - 1))) == (val))
12482
12483 \f
12484 bfd_boolean
12485 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12486 struct bfd_link_info *link_info,
12487 bfd_boolean *again)
12488 {
12489 Elf_Internal_Shdr *symtab_hdr;
12490 Elf_Internal_Rela *internal_relocs;
12491 Elf_Internal_Rela *irel, *irelend;
12492 bfd_byte *contents = NULL;
12493 Elf_Internal_Sym *isymbuf = NULL;
12494
12495 /* Assume nothing changes. */
12496 *again = FALSE;
12497
12498 /* We don't have to do anything for a relocatable link, if
12499 this section does not have relocs, or if this is not a
12500 code section. */
12501
12502 if (link_info->relocatable
12503 || (sec->flags & SEC_RELOC) == 0
12504 || sec->reloc_count == 0
12505 || (sec->flags & SEC_CODE) == 0)
12506 return TRUE;
12507
12508 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12509
12510 /* Get a copy of the native relocations. */
12511 internal_relocs = (_bfd_elf_link_read_relocs
12512 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
12513 link_info->keep_memory));
12514 if (internal_relocs == NULL)
12515 goto error_return;
12516
12517 /* Walk through them looking for relaxing opportunities. */
12518 irelend = internal_relocs + sec->reloc_count;
12519 for (irel = internal_relocs; irel < irelend; irel++)
12520 {
12521 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12522 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12523 bfd_boolean target_is_micromips_code_p;
12524 unsigned long opcode;
12525 bfd_vma symval;
12526 bfd_vma pcrval;
12527 bfd_byte *ptr;
12528 int fndopc;
12529
12530 /* The number of bytes to delete for relaxation and from where
12531 to delete these bytes starting at irel->r_offset. */
12532 int delcnt = 0;
12533 int deloff = 0;
12534
12535 /* If this isn't something that can be relaxed, then ignore
12536 this reloc. */
12537 if (r_type != R_MICROMIPS_HI16
12538 && r_type != R_MICROMIPS_PC16_S1
12539 && r_type != R_MICROMIPS_26_S1)
12540 continue;
12541
12542 /* Get the section contents if we haven't done so already. */
12543 if (contents == NULL)
12544 {
12545 /* Get cached copy if it exists. */
12546 if (elf_section_data (sec)->this_hdr.contents != NULL)
12547 contents = elf_section_data (sec)->this_hdr.contents;
12548 /* Go get them off disk. */
12549 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12550 goto error_return;
12551 }
12552 ptr = contents + irel->r_offset;
12553
12554 /* Read this BFD's local symbols if we haven't done so already. */
12555 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12556 {
12557 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12558 if (isymbuf == NULL)
12559 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12560 symtab_hdr->sh_info, 0,
12561 NULL, NULL, NULL);
12562 if (isymbuf == NULL)
12563 goto error_return;
12564 }
12565
12566 /* Get the value of the symbol referred to by the reloc. */
12567 if (r_symndx < symtab_hdr->sh_info)
12568 {
12569 /* A local symbol. */
12570 Elf_Internal_Sym *isym;
12571 asection *sym_sec;
12572
12573 isym = isymbuf + r_symndx;
12574 if (isym->st_shndx == SHN_UNDEF)
12575 sym_sec = bfd_und_section_ptr;
12576 else if (isym->st_shndx == SHN_ABS)
12577 sym_sec = bfd_abs_section_ptr;
12578 else if (isym->st_shndx == SHN_COMMON)
12579 sym_sec = bfd_com_section_ptr;
12580 else
12581 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12582 symval = (isym->st_value
12583 + sym_sec->output_section->vma
12584 + sym_sec->output_offset);
12585 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12586 }
12587 else
12588 {
12589 unsigned long indx;
12590 struct elf_link_hash_entry *h;
12591
12592 /* An external symbol. */
12593 indx = r_symndx - symtab_hdr->sh_info;
12594 h = elf_sym_hashes (abfd)[indx];
12595 BFD_ASSERT (h != NULL);
12596
12597 if (h->root.type != bfd_link_hash_defined
12598 && h->root.type != bfd_link_hash_defweak)
12599 /* This appears to be a reference to an undefined
12600 symbol. Just ignore it -- it will be caught by the
12601 regular reloc processing. */
12602 continue;
12603
12604 symval = (h->root.u.def.value
12605 + h->root.u.def.section->output_section->vma
12606 + h->root.u.def.section->output_offset);
12607 target_is_micromips_code_p = (!h->needs_plt
12608 && ELF_ST_IS_MICROMIPS (h->other));
12609 }
12610
12611
12612 /* For simplicity of coding, we are going to modify the
12613 section contents, the section relocs, and the BFD symbol
12614 table. We must tell the rest of the code not to free up this
12615 information. It would be possible to instead create a table
12616 of changes which have to be made, as is done in coff-mips.c;
12617 that would be more work, but would require less memory when
12618 the linker is run. */
12619
12620 /* Only 32-bit instructions relaxed. */
12621 if (irel->r_offset + 4 > sec->size)
12622 continue;
12623
12624 opcode = bfd_get_micromips_32 (abfd, ptr);
12625
12626 /* This is the pc-relative distance from the instruction the
12627 relocation is applied to, to the symbol referred. */
12628 pcrval = (symval
12629 - (sec->output_section->vma + sec->output_offset)
12630 - irel->r_offset);
12631
12632 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12633 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12634 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12635
12636 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12637
12638 where pcrval has first to be adjusted to apply against the LO16
12639 location (we make the adjustment later on, when we have figured
12640 out the offset). */
12641 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12642 {
12643 bfd_boolean bzc = FALSE;
12644 unsigned long nextopc;
12645 unsigned long reg;
12646 bfd_vma offset;
12647
12648 /* Give up if the previous reloc was a HI16 against this symbol
12649 too. */
12650 if (irel > internal_relocs
12651 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12652 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12653 continue;
12654
12655 /* Or if the next reloc is not a LO16 against this symbol. */
12656 if (irel + 1 >= irelend
12657 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12658 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12659 continue;
12660
12661 /* Or if the second next reloc is a LO16 against this symbol too. */
12662 if (irel + 2 >= irelend
12663 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12664 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12665 continue;
12666
12667 /* See if the LUI instruction *might* be in a branch delay slot.
12668 We check whether what looks like a 16-bit branch or jump is
12669 actually an immediate argument to a compact branch, and let
12670 it through if so. */
12671 if (irel->r_offset >= 2
12672 && check_br16_dslot (abfd, ptr - 2)
12673 && !(irel->r_offset >= 4
12674 && (bzc = check_relocated_bzc (abfd,
12675 ptr - 4, irel->r_offset - 4,
12676 internal_relocs, irelend))))
12677 continue;
12678 if (irel->r_offset >= 4
12679 && !bzc
12680 && check_br32_dslot (abfd, ptr - 4))
12681 continue;
12682
12683 reg = OP32_SREG (opcode);
12684
12685 /* We only relax adjacent instructions or ones separated with
12686 a branch or jump that has a delay slot. The branch or jump
12687 must not fiddle with the register used to hold the address.
12688 Subtract 4 for the LUI itself. */
12689 offset = irel[1].r_offset - irel[0].r_offset;
12690 switch (offset - 4)
12691 {
12692 case 0:
12693 break;
12694 case 2:
12695 if (check_br16 (abfd, ptr + 4, reg))
12696 break;
12697 continue;
12698 case 4:
12699 if (check_br32 (abfd, ptr + 4, reg))
12700 break;
12701 continue;
12702 default:
12703 continue;
12704 }
12705
12706 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
12707
12708 /* Give up unless the same register is used with both
12709 relocations. */
12710 if (OP32_SREG (nextopc) != reg)
12711 continue;
12712
12713 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12714 and rounding up to take masking of the two LSBs into account. */
12715 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12716
12717 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12718 if (IS_BITSIZE (symval, 16))
12719 {
12720 /* Fix the relocation's type. */
12721 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12722
12723 /* Instructions using R_MICROMIPS_LO16 have the base or
12724 source register in bits 20:16. This register becomes $0
12725 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12726 nextopc &= ~0x001f0000;
12727 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12728 contents + irel[1].r_offset);
12729 }
12730
12731 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12732 We add 4 to take LUI deletion into account while checking
12733 the PC-relative distance. */
12734 else if (symval % 4 == 0
12735 && IS_BITSIZE (pcrval + 4, 25)
12736 && MATCH (nextopc, addiu_insn)
12737 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12738 && OP16_VALID_REG (OP32_TREG (nextopc)))
12739 {
12740 /* Fix the relocation's type. */
12741 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12742
12743 /* Replace ADDIU with the ADDIUPC version. */
12744 nextopc = (addiupc_insn.match
12745 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12746
12747 bfd_put_micromips_32 (abfd, nextopc,
12748 contents + irel[1].r_offset);
12749 }
12750
12751 /* Can't do anything, give up, sigh... */
12752 else
12753 continue;
12754
12755 /* Fix the relocation's type. */
12756 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12757
12758 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12759 delcnt = 4;
12760 deloff = 0;
12761 }
12762
12763 /* Compact branch relaxation -- due to the multitude of macros
12764 employed by the compiler/assembler, compact branches are not
12765 always generated. Obviously, this can/will be fixed elsewhere,
12766 but there is no drawback in double checking it here. */
12767 else if (r_type == R_MICROMIPS_PC16_S1
12768 && irel->r_offset + 5 < sec->size
12769 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12770 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
12771 && MATCH (bfd_get_16 (abfd, ptr + 4), nop_insn_16))
12772 {
12773 unsigned long reg;
12774
12775 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12776
12777 /* Replace BEQZ/BNEZ with the compact version. */
12778 opcode = (bzc_insns_32[fndopc].match
12779 | BZC32_REG_FIELD (reg)
12780 | (opcode & 0xffff)); /* Addend value. */
12781
12782 bfd_put_micromips_32 (abfd, opcode, ptr);
12783
12784 /* Delete the 16-bit delay slot NOP: two bytes from
12785 irel->offset + 4. */
12786 delcnt = 2;
12787 deloff = 4;
12788 }
12789
12790 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12791 to check the distance from the next instruction, so subtract 2. */
12792 else if (r_type == R_MICROMIPS_PC16_S1
12793 && IS_BITSIZE (pcrval - 2, 11)
12794 && find_match (opcode, b_insns_32) >= 0)
12795 {
12796 /* Fix the relocation's type. */
12797 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12798
12799 /* Replace the 32-bit opcode with a 16-bit opcode. */
12800 bfd_put_16 (abfd,
12801 (b_insn_16.match
12802 | (opcode & 0x3ff)), /* Addend value. */
12803 ptr);
12804
12805 /* Delete 2 bytes from irel->r_offset + 2. */
12806 delcnt = 2;
12807 deloff = 2;
12808 }
12809
12810 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12811 to check the distance from the next instruction, so subtract 2. */
12812 else if (r_type == R_MICROMIPS_PC16_S1
12813 && IS_BITSIZE (pcrval - 2, 8)
12814 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12815 && OP16_VALID_REG (OP32_SREG (opcode)))
12816 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12817 && OP16_VALID_REG (OP32_TREG (opcode)))))
12818 {
12819 unsigned long reg;
12820
12821 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12822
12823 /* Fix the relocation's type. */
12824 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12825
12826 /* Replace the 32-bit opcode with a 16-bit opcode. */
12827 bfd_put_16 (abfd,
12828 (bz_insns_16[fndopc].match
12829 | BZ16_REG_FIELD (reg)
12830 | (opcode & 0x7f)), /* Addend value. */
12831 ptr);
12832
12833 /* Delete 2 bytes from irel->r_offset + 2. */
12834 delcnt = 2;
12835 deloff = 2;
12836 }
12837
12838 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12839 else if (r_type == R_MICROMIPS_26_S1
12840 && target_is_micromips_code_p
12841 && irel->r_offset + 7 < sec->size
12842 && MATCH (opcode, jal_insn_32_bd32))
12843 {
12844 unsigned long n32opc;
12845 bfd_boolean relaxed = FALSE;
12846
12847 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
12848
12849 if (MATCH (n32opc, nop_insn_32))
12850 {
12851 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
12852 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
12853
12854 relaxed = TRUE;
12855 }
12856 else if (find_match (n32opc, move_insns_32) >= 0)
12857 {
12858 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12859 bfd_put_16 (abfd,
12860 (move_insn_16.match
12861 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12862 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
12863 ptr + 4);
12864
12865 relaxed = TRUE;
12866 }
12867 /* Other 32-bit instructions relaxable to 16-bit
12868 instructions will be handled here later. */
12869
12870 if (relaxed)
12871 {
12872 /* JAL with 32-bit delay slot that is changed to a JALS
12873 with 16-bit delay slot. */
12874 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
12875
12876 /* Delete 2 bytes from irel->r_offset + 6. */
12877 delcnt = 2;
12878 deloff = 6;
12879 }
12880 }
12881
12882 if (delcnt != 0)
12883 {
12884 /* Note that we've changed the relocs, section contents, etc. */
12885 elf_section_data (sec)->relocs = internal_relocs;
12886 elf_section_data (sec)->this_hdr.contents = contents;
12887 symtab_hdr->contents = (unsigned char *) isymbuf;
12888
12889 /* Delete bytes depending on the delcnt and deloff. */
12890 if (!mips_elf_relax_delete_bytes (abfd, sec,
12891 irel->r_offset + deloff, delcnt))
12892 goto error_return;
12893
12894 /* That will change things, so we should relax again.
12895 Note that this is not required, and it may be slow. */
12896 *again = TRUE;
12897 }
12898 }
12899
12900 if (isymbuf != NULL
12901 && symtab_hdr->contents != (unsigned char *) isymbuf)
12902 {
12903 if (! link_info->keep_memory)
12904 free (isymbuf);
12905 else
12906 {
12907 /* Cache the symbols for elf_link_input_bfd. */
12908 symtab_hdr->contents = (unsigned char *) isymbuf;
12909 }
12910 }
12911
12912 if (contents != NULL
12913 && elf_section_data (sec)->this_hdr.contents != contents)
12914 {
12915 if (! link_info->keep_memory)
12916 free (contents);
12917 else
12918 {
12919 /* Cache the section contents for elf_link_input_bfd. */
12920 elf_section_data (sec)->this_hdr.contents = contents;
12921 }
12922 }
12923
12924 if (internal_relocs != NULL
12925 && elf_section_data (sec)->relocs != internal_relocs)
12926 free (internal_relocs);
12927
12928 return TRUE;
12929
12930 error_return:
12931 if (isymbuf != NULL
12932 && symtab_hdr->contents != (unsigned char *) isymbuf)
12933 free (isymbuf);
12934 if (contents != NULL
12935 && elf_section_data (sec)->this_hdr.contents != contents)
12936 free (contents);
12937 if (internal_relocs != NULL
12938 && elf_section_data (sec)->relocs != internal_relocs)
12939 free (internal_relocs);
12940
12941 return FALSE;
12942 }
12943 \f
12944 /* Create a MIPS ELF linker hash table. */
12945
12946 struct bfd_link_hash_table *
12947 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
12948 {
12949 struct mips_elf_link_hash_table *ret;
12950 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12951
12952 ret = bfd_malloc (amt);
12953 if (ret == NULL)
12954 return NULL;
12955
12956 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12957 mips_elf_link_hash_newfunc,
12958 sizeof (struct mips_elf_link_hash_entry),
12959 MIPS_ELF_DATA))
12960 {
12961 free (ret);
12962 return NULL;
12963 }
12964
12965 #if 0
12966 /* We no longer use this. */
12967 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
12968 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
12969 #endif
12970 ret->procedure_count = 0;
12971 ret->compact_rel_size = 0;
12972 ret->use_rld_obj_head = FALSE;
12973 ret->rld_symbol = NULL;
12974 ret->mips16_stubs_seen = FALSE;
12975 ret->use_plts_and_copy_relocs = FALSE;
12976 ret->is_vxworks = FALSE;
12977 ret->small_data_overflow_reported = FALSE;
12978 ret->srelbss = NULL;
12979 ret->sdynbss = NULL;
12980 ret->srelplt = NULL;
12981 ret->srelplt2 = NULL;
12982 ret->sgotplt = NULL;
12983 ret->splt = NULL;
12984 ret->sstubs = NULL;
12985 ret->sgot = NULL;
12986 ret->got_info = NULL;
12987 ret->plt_header_size = 0;
12988 ret->plt_entry_size = 0;
12989 ret->lazy_stub_count = 0;
12990 ret->function_stub_size = 0;
12991 ret->strampoline = NULL;
12992 ret->la25_stubs = NULL;
12993 ret->add_stub_section = NULL;
12994
12995 return &ret->root.root;
12996 }
12997
12998 /* Likewise, but indicate that the target is VxWorks. */
12999
13000 struct bfd_link_hash_table *
13001 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13002 {
13003 struct bfd_link_hash_table *ret;
13004
13005 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13006 if (ret)
13007 {
13008 struct mips_elf_link_hash_table *htab;
13009
13010 htab = (struct mips_elf_link_hash_table *) ret;
13011 htab->use_plts_and_copy_relocs = TRUE;
13012 htab->is_vxworks = TRUE;
13013 }
13014 return ret;
13015 }
13016
13017 /* A function that the linker calls if we are allowed to use PLTs
13018 and copy relocs. */
13019
13020 void
13021 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13022 {
13023 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13024 }
13025 \f
13026 /* We need to use a special link routine to handle the .reginfo and
13027 the .mdebug sections. We need to merge all instances of these
13028 sections together, not write them all out sequentially. */
13029
13030 bfd_boolean
13031 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
13032 {
13033 asection *o;
13034 struct bfd_link_order *p;
13035 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
13036 asection *rtproc_sec;
13037 Elf32_RegInfo reginfo;
13038 struct ecoff_debug_info debug;
13039 struct mips_htab_traverse_info hti;
13040 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13041 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
13042 HDRR *symhdr = &debug.symbolic_header;
13043 void *mdebug_handle = NULL;
13044 asection *s;
13045 EXTR esym;
13046 unsigned int i;
13047 bfd_size_type amt;
13048 struct mips_elf_link_hash_table *htab;
13049
13050 static const char * const secname[] =
13051 {
13052 ".text", ".init", ".fini", ".data",
13053 ".rodata", ".sdata", ".sbss", ".bss"
13054 };
13055 static const int sc[] =
13056 {
13057 scText, scInit, scFini, scData,
13058 scRData, scSData, scSBss, scBss
13059 };
13060
13061 /* Sort the dynamic symbols so that those with GOT entries come after
13062 those without. */
13063 htab = mips_elf_hash_table (info);
13064 BFD_ASSERT (htab != NULL);
13065
13066 if (!mips_elf_sort_hash_table (abfd, info))
13067 return FALSE;
13068
13069 /* Create any scheduled LA25 stubs. */
13070 hti.info = info;
13071 hti.output_bfd = abfd;
13072 hti.error = FALSE;
13073 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
13074 if (hti.error)
13075 return FALSE;
13076
13077 /* Get a value for the GP register. */
13078 if (elf_gp (abfd) == 0)
13079 {
13080 struct bfd_link_hash_entry *h;
13081
13082 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
13083 if (h != NULL && h->type == bfd_link_hash_defined)
13084 elf_gp (abfd) = (h->u.def.value
13085 + h->u.def.section->output_section->vma
13086 + h->u.def.section->output_offset);
13087 else if (htab->is_vxworks
13088 && (h = bfd_link_hash_lookup (info->hash,
13089 "_GLOBAL_OFFSET_TABLE_",
13090 FALSE, FALSE, TRUE))
13091 && h->type == bfd_link_hash_defined)
13092 elf_gp (abfd) = (h->u.def.section->output_section->vma
13093 + h->u.def.section->output_offset
13094 + h->u.def.value);
13095 else if (info->relocatable)
13096 {
13097 bfd_vma lo = MINUS_ONE;
13098
13099 /* Find the GP-relative section with the lowest offset. */
13100 for (o = abfd->sections; o != NULL; o = o->next)
13101 if (o->vma < lo
13102 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
13103 lo = o->vma;
13104
13105 /* And calculate GP relative to that. */
13106 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
13107 }
13108 else
13109 {
13110 /* If the relocate_section function needs to do a reloc
13111 involving the GP value, it should make a reloc_dangerous
13112 callback to warn that GP is not defined. */
13113 }
13114 }
13115
13116 /* Go through the sections and collect the .reginfo and .mdebug
13117 information. */
13118 reginfo_sec = NULL;
13119 mdebug_sec = NULL;
13120 gptab_data_sec = NULL;
13121 gptab_bss_sec = NULL;
13122 for (o = abfd->sections; o != NULL; o = o->next)
13123 {
13124 if (strcmp (o->name, ".reginfo") == 0)
13125 {
13126 memset (&reginfo, 0, sizeof reginfo);
13127
13128 /* We have found the .reginfo section in the output file.
13129 Look through all the link_orders comprising it and merge
13130 the information together. */
13131 for (p = o->map_head.link_order; p != NULL; p = p->next)
13132 {
13133 asection *input_section;
13134 bfd *input_bfd;
13135 Elf32_External_RegInfo ext;
13136 Elf32_RegInfo sub;
13137
13138 if (p->type != bfd_indirect_link_order)
13139 {
13140 if (p->type == bfd_data_link_order)
13141 continue;
13142 abort ();
13143 }
13144
13145 input_section = p->u.indirect.section;
13146 input_bfd = input_section->owner;
13147
13148 if (! bfd_get_section_contents (input_bfd, input_section,
13149 &ext, 0, sizeof ext))
13150 return FALSE;
13151
13152 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
13153
13154 reginfo.ri_gprmask |= sub.ri_gprmask;
13155 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13156 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13157 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13158 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13159
13160 /* ri_gp_value is set by the function
13161 mips_elf32_section_processing when the section is
13162 finally written out. */
13163
13164 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13165 elf_link_input_bfd ignores this section. */
13166 input_section->flags &= ~SEC_HAS_CONTENTS;
13167 }
13168
13169 /* Size has been set in _bfd_mips_elf_always_size_sections. */
13170 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
13171
13172 /* Skip this section later on (I don't think this currently
13173 matters, but someday it might). */
13174 o->map_head.link_order = NULL;
13175
13176 reginfo_sec = o;
13177 }
13178
13179 if (strcmp (o->name, ".mdebug") == 0)
13180 {
13181 struct extsym_info einfo;
13182 bfd_vma last;
13183
13184 /* We have found the .mdebug section in the output file.
13185 Look through all the link_orders comprising it and merge
13186 the information together. */
13187 symhdr->magic = swap->sym_magic;
13188 /* FIXME: What should the version stamp be? */
13189 symhdr->vstamp = 0;
13190 symhdr->ilineMax = 0;
13191 symhdr->cbLine = 0;
13192 symhdr->idnMax = 0;
13193 symhdr->ipdMax = 0;
13194 symhdr->isymMax = 0;
13195 symhdr->ioptMax = 0;
13196 symhdr->iauxMax = 0;
13197 symhdr->issMax = 0;
13198 symhdr->issExtMax = 0;
13199 symhdr->ifdMax = 0;
13200 symhdr->crfd = 0;
13201 symhdr->iextMax = 0;
13202
13203 /* We accumulate the debugging information itself in the
13204 debug_info structure. */
13205 debug.line = NULL;
13206 debug.external_dnr = NULL;
13207 debug.external_pdr = NULL;
13208 debug.external_sym = NULL;
13209 debug.external_opt = NULL;
13210 debug.external_aux = NULL;
13211 debug.ss = NULL;
13212 debug.ssext = debug.ssext_end = NULL;
13213 debug.external_fdr = NULL;
13214 debug.external_rfd = NULL;
13215 debug.external_ext = debug.external_ext_end = NULL;
13216
13217 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
13218 if (mdebug_handle == NULL)
13219 return FALSE;
13220
13221 esym.jmptbl = 0;
13222 esym.cobol_main = 0;
13223 esym.weakext = 0;
13224 esym.reserved = 0;
13225 esym.ifd = ifdNil;
13226 esym.asym.iss = issNil;
13227 esym.asym.st = stLocal;
13228 esym.asym.reserved = 0;
13229 esym.asym.index = indexNil;
13230 last = 0;
13231 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13232 {
13233 esym.asym.sc = sc[i];
13234 s = bfd_get_section_by_name (abfd, secname[i]);
13235 if (s != NULL)
13236 {
13237 esym.asym.value = s->vma;
13238 last = s->vma + s->size;
13239 }
13240 else
13241 esym.asym.value = last;
13242 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13243 secname[i], &esym))
13244 return FALSE;
13245 }
13246
13247 for (p = o->map_head.link_order; p != NULL; p = p->next)
13248 {
13249 asection *input_section;
13250 bfd *input_bfd;
13251 const struct ecoff_debug_swap *input_swap;
13252 struct ecoff_debug_info input_debug;
13253 char *eraw_src;
13254 char *eraw_end;
13255
13256 if (p->type != bfd_indirect_link_order)
13257 {
13258 if (p->type == bfd_data_link_order)
13259 continue;
13260 abort ();
13261 }
13262
13263 input_section = p->u.indirect.section;
13264 input_bfd = input_section->owner;
13265
13266 if (!is_mips_elf (input_bfd))
13267 {
13268 /* I don't know what a non MIPS ELF bfd would be
13269 doing with a .mdebug section, but I don't really
13270 want to deal with it. */
13271 continue;
13272 }
13273
13274 input_swap = (get_elf_backend_data (input_bfd)
13275 ->elf_backend_ecoff_debug_swap);
13276
13277 BFD_ASSERT (p->size == input_section->size);
13278
13279 /* The ECOFF linking code expects that we have already
13280 read in the debugging information and set up an
13281 ecoff_debug_info structure, so we do that now. */
13282 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13283 &input_debug))
13284 return FALSE;
13285
13286 if (! (bfd_ecoff_debug_accumulate
13287 (mdebug_handle, abfd, &debug, swap, input_bfd,
13288 &input_debug, input_swap, info)))
13289 return FALSE;
13290
13291 /* Loop through the external symbols. For each one with
13292 interesting information, try to find the symbol in
13293 the linker global hash table and save the information
13294 for the output external symbols. */
13295 eraw_src = input_debug.external_ext;
13296 eraw_end = (eraw_src
13297 + (input_debug.symbolic_header.iextMax
13298 * input_swap->external_ext_size));
13299 for (;
13300 eraw_src < eraw_end;
13301 eraw_src += input_swap->external_ext_size)
13302 {
13303 EXTR ext;
13304 const char *name;
13305 struct mips_elf_link_hash_entry *h;
13306
13307 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13308 if (ext.asym.sc == scNil
13309 || ext.asym.sc == scUndefined
13310 || ext.asym.sc == scSUndefined)
13311 continue;
13312
13313 name = input_debug.ssext + ext.asym.iss;
13314 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13315 name, FALSE, FALSE, TRUE);
13316 if (h == NULL || h->esym.ifd != -2)
13317 continue;
13318
13319 if (ext.ifd != -1)
13320 {
13321 BFD_ASSERT (ext.ifd
13322 < input_debug.symbolic_header.ifdMax);
13323 ext.ifd = input_debug.ifdmap[ext.ifd];
13324 }
13325
13326 h->esym = ext;
13327 }
13328
13329 /* Free up the information we just read. */
13330 free (input_debug.line);
13331 free (input_debug.external_dnr);
13332 free (input_debug.external_pdr);
13333 free (input_debug.external_sym);
13334 free (input_debug.external_opt);
13335 free (input_debug.external_aux);
13336 free (input_debug.ss);
13337 free (input_debug.ssext);
13338 free (input_debug.external_fdr);
13339 free (input_debug.external_rfd);
13340 free (input_debug.external_ext);
13341
13342 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13343 elf_link_input_bfd ignores this section. */
13344 input_section->flags &= ~SEC_HAS_CONTENTS;
13345 }
13346
13347 if (SGI_COMPAT (abfd) && info->shared)
13348 {
13349 /* Create .rtproc section. */
13350 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
13351 if (rtproc_sec == NULL)
13352 {
13353 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13354 | SEC_LINKER_CREATED | SEC_READONLY);
13355
13356 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
13357 ".rtproc",
13358 flags);
13359 if (rtproc_sec == NULL
13360 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13361 return FALSE;
13362 }
13363
13364 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13365 info, rtproc_sec,
13366 &debug))
13367 return FALSE;
13368 }
13369
13370 /* Build the external symbol information. */
13371 einfo.abfd = abfd;
13372 einfo.info = info;
13373 einfo.debug = &debug;
13374 einfo.swap = swap;
13375 einfo.failed = FALSE;
13376 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13377 mips_elf_output_extsym, &einfo);
13378 if (einfo.failed)
13379 return FALSE;
13380
13381 /* Set the size of the .mdebug section. */
13382 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13383
13384 /* Skip this section later on (I don't think this currently
13385 matters, but someday it might). */
13386 o->map_head.link_order = NULL;
13387
13388 mdebug_sec = o;
13389 }
13390
13391 if (CONST_STRNEQ (o->name, ".gptab."))
13392 {
13393 const char *subname;
13394 unsigned int c;
13395 Elf32_gptab *tab;
13396 Elf32_External_gptab *ext_tab;
13397 unsigned int j;
13398
13399 /* The .gptab.sdata and .gptab.sbss sections hold
13400 information describing how the small data area would
13401 change depending upon the -G switch. These sections
13402 not used in executables files. */
13403 if (! info->relocatable)
13404 {
13405 for (p = o->map_head.link_order; p != NULL; p = p->next)
13406 {
13407 asection *input_section;
13408
13409 if (p->type != bfd_indirect_link_order)
13410 {
13411 if (p->type == bfd_data_link_order)
13412 continue;
13413 abort ();
13414 }
13415
13416 input_section = p->u.indirect.section;
13417
13418 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13419 elf_link_input_bfd ignores this section. */
13420 input_section->flags &= ~SEC_HAS_CONTENTS;
13421 }
13422
13423 /* Skip this section later on (I don't think this
13424 currently matters, but someday it might). */
13425 o->map_head.link_order = NULL;
13426
13427 /* Really remove the section. */
13428 bfd_section_list_remove (abfd, o);
13429 --abfd->section_count;
13430
13431 continue;
13432 }
13433
13434 /* There is one gptab for initialized data, and one for
13435 uninitialized data. */
13436 if (strcmp (o->name, ".gptab.sdata") == 0)
13437 gptab_data_sec = o;
13438 else if (strcmp (o->name, ".gptab.sbss") == 0)
13439 gptab_bss_sec = o;
13440 else
13441 {
13442 (*_bfd_error_handler)
13443 (_("%s: illegal section name `%s'"),
13444 bfd_get_filename (abfd), o->name);
13445 bfd_set_error (bfd_error_nonrepresentable_section);
13446 return FALSE;
13447 }
13448
13449 /* The linker script always combines .gptab.data and
13450 .gptab.sdata into .gptab.sdata, and likewise for
13451 .gptab.bss and .gptab.sbss. It is possible that there is
13452 no .sdata or .sbss section in the output file, in which
13453 case we must change the name of the output section. */
13454 subname = o->name + sizeof ".gptab" - 1;
13455 if (bfd_get_section_by_name (abfd, subname) == NULL)
13456 {
13457 if (o == gptab_data_sec)
13458 o->name = ".gptab.data";
13459 else
13460 o->name = ".gptab.bss";
13461 subname = o->name + sizeof ".gptab" - 1;
13462 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13463 }
13464
13465 /* Set up the first entry. */
13466 c = 1;
13467 amt = c * sizeof (Elf32_gptab);
13468 tab = bfd_malloc (amt);
13469 if (tab == NULL)
13470 return FALSE;
13471 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13472 tab[0].gt_header.gt_unused = 0;
13473
13474 /* Combine the input sections. */
13475 for (p = o->map_head.link_order; p != NULL; p = p->next)
13476 {
13477 asection *input_section;
13478 bfd *input_bfd;
13479 bfd_size_type size;
13480 unsigned long last;
13481 bfd_size_type gpentry;
13482
13483 if (p->type != bfd_indirect_link_order)
13484 {
13485 if (p->type == bfd_data_link_order)
13486 continue;
13487 abort ();
13488 }
13489
13490 input_section = p->u.indirect.section;
13491 input_bfd = input_section->owner;
13492
13493 /* Combine the gptab entries for this input section one
13494 by one. We know that the input gptab entries are
13495 sorted by ascending -G value. */
13496 size = input_section->size;
13497 last = 0;
13498 for (gpentry = sizeof (Elf32_External_gptab);
13499 gpentry < size;
13500 gpentry += sizeof (Elf32_External_gptab))
13501 {
13502 Elf32_External_gptab ext_gptab;
13503 Elf32_gptab int_gptab;
13504 unsigned long val;
13505 unsigned long add;
13506 bfd_boolean exact;
13507 unsigned int look;
13508
13509 if (! (bfd_get_section_contents
13510 (input_bfd, input_section, &ext_gptab, gpentry,
13511 sizeof (Elf32_External_gptab))))
13512 {
13513 free (tab);
13514 return FALSE;
13515 }
13516
13517 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13518 &int_gptab);
13519 val = int_gptab.gt_entry.gt_g_value;
13520 add = int_gptab.gt_entry.gt_bytes - last;
13521
13522 exact = FALSE;
13523 for (look = 1; look < c; look++)
13524 {
13525 if (tab[look].gt_entry.gt_g_value >= val)
13526 tab[look].gt_entry.gt_bytes += add;
13527
13528 if (tab[look].gt_entry.gt_g_value == val)
13529 exact = TRUE;
13530 }
13531
13532 if (! exact)
13533 {
13534 Elf32_gptab *new_tab;
13535 unsigned int max;
13536
13537 /* We need a new table entry. */
13538 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
13539 new_tab = bfd_realloc (tab, amt);
13540 if (new_tab == NULL)
13541 {
13542 free (tab);
13543 return FALSE;
13544 }
13545 tab = new_tab;
13546 tab[c].gt_entry.gt_g_value = val;
13547 tab[c].gt_entry.gt_bytes = add;
13548
13549 /* Merge in the size for the next smallest -G
13550 value, since that will be implied by this new
13551 value. */
13552 max = 0;
13553 for (look = 1; look < c; look++)
13554 {
13555 if (tab[look].gt_entry.gt_g_value < val
13556 && (max == 0
13557 || (tab[look].gt_entry.gt_g_value
13558 > tab[max].gt_entry.gt_g_value)))
13559 max = look;
13560 }
13561 if (max != 0)
13562 tab[c].gt_entry.gt_bytes +=
13563 tab[max].gt_entry.gt_bytes;
13564
13565 ++c;
13566 }
13567
13568 last = int_gptab.gt_entry.gt_bytes;
13569 }
13570
13571 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13572 elf_link_input_bfd ignores this section. */
13573 input_section->flags &= ~SEC_HAS_CONTENTS;
13574 }
13575
13576 /* The table must be sorted by -G value. */
13577 if (c > 2)
13578 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13579
13580 /* Swap out the table. */
13581 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
13582 ext_tab = bfd_alloc (abfd, amt);
13583 if (ext_tab == NULL)
13584 {
13585 free (tab);
13586 return FALSE;
13587 }
13588
13589 for (j = 0; j < c; j++)
13590 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13591 free (tab);
13592
13593 o->size = c * sizeof (Elf32_External_gptab);
13594 o->contents = (bfd_byte *) ext_tab;
13595
13596 /* Skip this section later on (I don't think this currently
13597 matters, but someday it might). */
13598 o->map_head.link_order = NULL;
13599 }
13600 }
13601
13602 /* Invoke the regular ELF backend linker to do all the work. */
13603 if (!bfd_elf_final_link (abfd, info))
13604 return FALSE;
13605
13606 /* Now write out the computed sections. */
13607
13608 if (reginfo_sec != NULL)
13609 {
13610 Elf32_External_RegInfo ext;
13611
13612 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
13613 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
13614 return FALSE;
13615 }
13616
13617 if (mdebug_sec != NULL)
13618 {
13619 BFD_ASSERT (abfd->output_has_begun);
13620 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13621 swap, info,
13622 mdebug_sec->filepos))
13623 return FALSE;
13624
13625 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13626 }
13627
13628 if (gptab_data_sec != NULL)
13629 {
13630 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13631 gptab_data_sec->contents,
13632 0, gptab_data_sec->size))
13633 return FALSE;
13634 }
13635
13636 if (gptab_bss_sec != NULL)
13637 {
13638 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13639 gptab_bss_sec->contents,
13640 0, gptab_bss_sec->size))
13641 return FALSE;
13642 }
13643
13644 if (SGI_COMPAT (abfd))
13645 {
13646 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13647 if (rtproc_sec != NULL)
13648 {
13649 if (! bfd_set_section_contents (abfd, rtproc_sec,
13650 rtproc_sec->contents,
13651 0, rtproc_sec->size))
13652 return FALSE;
13653 }
13654 }
13655
13656 return TRUE;
13657 }
13658 \f
13659 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13660
13661 struct mips_mach_extension {
13662 unsigned long extension, base;
13663 };
13664
13665
13666 /* An array describing how BFD machines relate to one another. The entries
13667 are ordered topologically with MIPS I extensions listed last. */
13668
13669 static const struct mips_mach_extension mips_mach_extensions[] = {
13670 /* MIPS64r2 extensions. */
13671 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13672 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13673 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13674
13675 /* MIPS64 extensions. */
13676 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13677 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13678 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13679 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
13680
13681 /* MIPS V extensions. */
13682 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13683
13684 /* R10000 extensions. */
13685 { bfd_mach_mips12000, bfd_mach_mips10000 },
13686 { bfd_mach_mips14000, bfd_mach_mips10000 },
13687 { bfd_mach_mips16000, bfd_mach_mips10000 },
13688
13689 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13690 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13691 better to allow vr5400 and vr5500 code to be merged anyway, since
13692 many libraries will just use the core ISA. Perhaps we could add
13693 some sort of ASE flag if this ever proves a problem. */
13694 { bfd_mach_mips5500, bfd_mach_mips5400 },
13695 { bfd_mach_mips5400, bfd_mach_mips5000 },
13696
13697 /* MIPS IV extensions. */
13698 { bfd_mach_mips5, bfd_mach_mips8000 },
13699 { bfd_mach_mips10000, bfd_mach_mips8000 },
13700 { bfd_mach_mips5000, bfd_mach_mips8000 },
13701 { bfd_mach_mips7000, bfd_mach_mips8000 },
13702 { bfd_mach_mips9000, bfd_mach_mips8000 },
13703
13704 /* VR4100 extensions. */
13705 { bfd_mach_mips4120, bfd_mach_mips4100 },
13706 { bfd_mach_mips4111, bfd_mach_mips4100 },
13707
13708 /* MIPS III extensions. */
13709 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13710 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13711 { bfd_mach_mips8000, bfd_mach_mips4000 },
13712 { bfd_mach_mips4650, bfd_mach_mips4000 },
13713 { bfd_mach_mips4600, bfd_mach_mips4000 },
13714 { bfd_mach_mips4400, bfd_mach_mips4000 },
13715 { bfd_mach_mips4300, bfd_mach_mips4000 },
13716 { bfd_mach_mips4100, bfd_mach_mips4000 },
13717 { bfd_mach_mips4010, bfd_mach_mips4000 },
13718 { bfd_mach_mips5900, bfd_mach_mips4000 },
13719
13720 /* MIPS32 extensions. */
13721 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13722
13723 /* MIPS II extensions. */
13724 { bfd_mach_mips4000, bfd_mach_mips6000 },
13725 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13726
13727 /* MIPS I extensions. */
13728 { bfd_mach_mips6000, bfd_mach_mips3000 },
13729 { bfd_mach_mips3900, bfd_mach_mips3000 }
13730 };
13731
13732
13733 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13734
13735 static bfd_boolean
13736 mips_mach_extends_p (unsigned long base, unsigned long extension)
13737 {
13738 size_t i;
13739
13740 if (extension == base)
13741 return TRUE;
13742
13743 if (base == bfd_mach_mipsisa32
13744 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13745 return TRUE;
13746
13747 if (base == bfd_mach_mipsisa32r2
13748 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13749 return TRUE;
13750
13751 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
13752 if (extension == mips_mach_extensions[i].extension)
13753 {
13754 extension = mips_mach_extensions[i].base;
13755 if (extension == base)
13756 return TRUE;
13757 }
13758
13759 return FALSE;
13760 }
13761
13762
13763 /* Return true if the given ELF header flags describe a 32-bit binary. */
13764
13765 static bfd_boolean
13766 mips_32bit_flags_p (flagword flags)
13767 {
13768 return ((flags & EF_MIPS_32BITMODE) != 0
13769 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13770 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13771 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13772 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13773 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13774 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13775 }
13776
13777
13778 /* Merge object attributes from IBFD into OBFD. Raise an error if
13779 there are conflicting attributes. */
13780 static bfd_boolean
13781 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13782 {
13783 obj_attribute *in_attr;
13784 obj_attribute *out_attr;
13785 bfd *abi_fp_bfd;
13786
13787 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
13788 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13789 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13790 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
13791
13792 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13793 {
13794 /* This is the first object. Copy the attributes. */
13795 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13796
13797 /* Use the Tag_null value to indicate the attributes have been
13798 initialized. */
13799 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13800
13801 return TRUE;
13802 }
13803
13804 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13805 non-conflicting ones. */
13806 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13807 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13808 {
13809 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13810 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13811 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13812 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i != 0)
13813 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13814 {
13815 case 1:
13816 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13817 {
13818 case 2:
13819 _bfd_error_handler
13820 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13821 obfd, abi_fp_bfd, ibfd, "-mdouble-float", "-msingle-float");
13822 break;
13823
13824 case 3:
13825 _bfd_error_handler
13826 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13827 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13828 break;
13829
13830 case 4:
13831 _bfd_error_handler
13832 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13833 obfd, abi_fp_bfd, ibfd,
13834 "-mdouble-float", "-mips32r2 -mfp64");
13835 break;
13836
13837 default:
13838 _bfd_error_handler
13839 (_("Warning: %B uses %s (set by %B), "
13840 "%B uses unknown floating point ABI %d"),
13841 obfd, abi_fp_bfd, ibfd,
13842 "-mdouble-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13843 break;
13844 }
13845 break;
13846
13847 case 2:
13848 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13849 {
13850 case 1:
13851 _bfd_error_handler
13852 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13853 obfd, abi_fp_bfd, ibfd, "-msingle-float", "-mdouble-float");
13854 break;
13855
13856 case 3:
13857 _bfd_error_handler
13858 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13859 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13860 break;
13861
13862 case 4:
13863 _bfd_error_handler
13864 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13865 obfd, abi_fp_bfd, ibfd,
13866 "-msingle-float", "-mips32r2 -mfp64");
13867 break;
13868
13869 default:
13870 _bfd_error_handler
13871 (_("Warning: %B uses %s (set by %B), "
13872 "%B uses unknown floating point ABI %d"),
13873 obfd, abi_fp_bfd, ibfd,
13874 "-msingle-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13875 break;
13876 }
13877 break;
13878
13879 case 3:
13880 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13881 {
13882 case 1:
13883 case 2:
13884 case 4:
13885 _bfd_error_handler
13886 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13887 obfd, abi_fp_bfd, ibfd, "-msoft-float", "-mhard-float");
13888 break;
13889
13890 default:
13891 _bfd_error_handler
13892 (_("Warning: %B uses %s (set by %B), "
13893 "%B uses unknown floating point ABI %d"),
13894 obfd, abi_fp_bfd, ibfd,
13895 "-msoft-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13896 break;
13897 }
13898 break;
13899
13900 case 4:
13901 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13902 {
13903 case 1:
13904 _bfd_error_handler
13905 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13906 obfd, abi_fp_bfd, ibfd,
13907 "-mips32r2 -mfp64", "-mdouble-float");
13908 break;
13909
13910 case 2:
13911 _bfd_error_handler
13912 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13913 obfd, abi_fp_bfd, ibfd,
13914 "-mips32r2 -mfp64", "-msingle-float");
13915 break;
13916
13917 case 3:
13918 _bfd_error_handler
13919 (_("Warning: %B uses %s (set by %B), %B uses %s"),
13920 obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
13921 break;
13922
13923 default:
13924 _bfd_error_handler
13925 (_("Warning: %B uses %s (set by %B), "
13926 "%B uses unknown floating point ABI %d"),
13927 obfd, abi_fp_bfd, ibfd,
13928 "-mips32r2 -mfp64", in_attr[Tag_GNU_MIPS_ABI_FP].i);
13929 break;
13930 }
13931 break;
13932
13933 default:
13934 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13935 {
13936 case 1:
13937 _bfd_error_handler
13938 (_("Warning: %B uses unknown floating point ABI %d "
13939 "(set by %B), %B uses %s"),
13940 obfd, abi_fp_bfd, ibfd,
13941 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mdouble-float");
13942 break;
13943
13944 case 2:
13945 _bfd_error_handler
13946 (_("Warning: %B uses unknown floating point ABI %d "
13947 "(set by %B), %B uses %s"),
13948 obfd, abi_fp_bfd, ibfd,
13949 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msingle-float");
13950 break;
13951
13952 case 3:
13953 _bfd_error_handler
13954 (_("Warning: %B uses unknown floating point ABI %d "
13955 "(set by %B), %B uses %s"),
13956 obfd, abi_fp_bfd, ibfd,
13957 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msoft-float");
13958 break;
13959
13960 case 4:
13961 _bfd_error_handler
13962 (_("Warning: %B uses unknown floating point ABI %d "
13963 "(set by %B), %B uses %s"),
13964 obfd, abi_fp_bfd, ibfd,
13965 out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mips32r2 -mfp64");
13966 break;
13967
13968 default:
13969 _bfd_error_handler
13970 (_("Warning: %B uses unknown floating point ABI %d "
13971 "(set by %B), %B uses unknown floating point ABI %d"),
13972 obfd, abi_fp_bfd, ibfd,
13973 out_attr[Tag_GNU_MIPS_ABI_FP].i,
13974 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13975 break;
13976 }
13977 break;
13978 }
13979 }
13980
13981 /* Merge Tag_compatibility attributes and any common GNU ones. */
13982 _bfd_elf_merge_object_attributes (ibfd, obfd);
13983
13984 return TRUE;
13985 }
13986
13987 /* Merge backend specific data from an object file to the output
13988 object file when linking. */
13989
13990 bfd_boolean
13991 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
13992 {
13993 flagword old_flags;
13994 flagword new_flags;
13995 bfd_boolean ok;
13996 bfd_boolean null_input_bfd = TRUE;
13997 asection *sec;
13998
13999 /* Check if we have the same endianness. */
14000 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
14001 {
14002 (*_bfd_error_handler)
14003 (_("%B: endianness incompatible with that of the selected emulation"),
14004 ibfd);
14005 return FALSE;
14006 }
14007
14008 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
14009 return TRUE;
14010
14011 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
14012 {
14013 (*_bfd_error_handler)
14014 (_("%B: ABI is incompatible with that of the selected emulation"),
14015 ibfd);
14016 return FALSE;
14017 }
14018
14019 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
14020 return FALSE;
14021
14022 new_flags = elf_elfheader (ibfd)->e_flags;
14023 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14024 old_flags = elf_elfheader (obfd)->e_flags;
14025
14026 if (! elf_flags_init (obfd))
14027 {
14028 elf_flags_init (obfd) = TRUE;
14029 elf_elfheader (obfd)->e_flags = new_flags;
14030 elf_elfheader (obfd)->e_ident[EI_CLASS]
14031 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
14032
14033 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
14034 && (bfd_get_arch_info (obfd)->the_default
14035 || mips_mach_extends_p (bfd_get_mach (obfd),
14036 bfd_get_mach (ibfd))))
14037 {
14038 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
14039 bfd_get_mach (ibfd)))
14040 return FALSE;
14041 }
14042
14043 return TRUE;
14044 }
14045
14046 /* Check flag compatibility. */
14047
14048 new_flags &= ~EF_MIPS_NOREORDER;
14049 old_flags &= ~EF_MIPS_NOREORDER;
14050
14051 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14052 doesn't seem to matter. */
14053 new_flags &= ~EF_MIPS_XGOT;
14054 old_flags &= ~EF_MIPS_XGOT;
14055
14056 /* MIPSpro generates ucode info in n64 objects. Again, we should
14057 just be able to ignore this. */
14058 new_flags &= ~EF_MIPS_UCODE;
14059 old_flags &= ~EF_MIPS_UCODE;
14060
14061 /* DSOs should only be linked with CPIC code. */
14062 if ((ibfd->flags & DYNAMIC) != 0)
14063 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14064
14065 if (new_flags == old_flags)
14066 return TRUE;
14067
14068 /* Check to see if the input BFD actually contains any sections.
14069 If not, its flags may not have been initialised either, but it cannot
14070 actually cause any incompatibility. */
14071 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
14072 {
14073 /* Ignore synthetic sections and empty .text, .data and .bss sections
14074 which are automatically generated by gas. Also ignore fake
14075 (s)common sections, since merely defining a common symbol does
14076 not affect compatibility. */
14077 if ((sec->flags & SEC_IS_COMMON) == 0
14078 && strcmp (sec->name, ".reginfo")
14079 && strcmp (sec->name, ".mdebug")
14080 && (sec->size != 0
14081 || (strcmp (sec->name, ".text")
14082 && strcmp (sec->name, ".data")
14083 && strcmp (sec->name, ".bss"))))
14084 {
14085 null_input_bfd = FALSE;
14086 break;
14087 }
14088 }
14089 if (null_input_bfd)
14090 return TRUE;
14091
14092 ok = TRUE;
14093
14094 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14095 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14096 {
14097 (*_bfd_error_handler)
14098 (_("%B: warning: linking abicalls files with non-abicalls files"),
14099 ibfd);
14100 ok = TRUE;
14101 }
14102
14103 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14104 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14105 if (! (new_flags & EF_MIPS_PIC))
14106 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14107
14108 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14109 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14110
14111 /* Compare the ISAs. */
14112 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14113 {
14114 (*_bfd_error_handler)
14115 (_("%B: linking 32-bit code with 64-bit code"),
14116 ibfd);
14117 ok = FALSE;
14118 }
14119 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14120 {
14121 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
14122 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14123 {
14124 /* Copy the architecture info from IBFD to OBFD. Also copy
14125 the 32-bit flag (if set) so that we continue to recognise
14126 OBFD as a 32-bit binary. */
14127 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14128 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14129 elf_elfheader (obfd)->e_flags
14130 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14131
14132 /* Copy across the ABI flags if OBFD doesn't use them
14133 and if that was what caused us to treat IBFD as 32-bit. */
14134 if ((old_flags & EF_MIPS_ABI) == 0
14135 && mips_32bit_flags_p (new_flags)
14136 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14137 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
14138 }
14139 else
14140 {
14141 /* The ISAs aren't compatible. */
14142 (*_bfd_error_handler)
14143 (_("%B: linking %s module with previous %s modules"),
14144 ibfd,
14145 bfd_printable_name (ibfd),
14146 bfd_printable_name (obfd));
14147 ok = FALSE;
14148 }
14149 }
14150
14151 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14152 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14153
14154 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
14155 does set EI_CLASS differently from any 32-bit ABI. */
14156 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14157 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14158 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14159 {
14160 /* Only error if both are set (to different values). */
14161 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14162 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14163 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14164 {
14165 (*_bfd_error_handler)
14166 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14167 ibfd,
14168 elf_mips_abi_name (ibfd),
14169 elf_mips_abi_name (obfd));
14170 ok = FALSE;
14171 }
14172 new_flags &= ~EF_MIPS_ABI;
14173 old_flags &= ~EF_MIPS_ABI;
14174 }
14175
14176 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
14177 and allow arbitrary mixing of the remaining ASEs (retain the union). */
14178 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14179 {
14180 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14181 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14182 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14183 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14184 int micro_mis = old_m16 && new_micro;
14185 int m16_mis = old_micro && new_m16;
14186
14187 if (m16_mis || micro_mis)
14188 {
14189 (*_bfd_error_handler)
14190 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14191 ibfd,
14192 m16_mis ? "MIPS16" : "microMIPS",
14193 m16_mis ? "microMIPS" : "MIPS16");
14194 ok = FALSE;
14195 }
14196
14197 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14198
14199 new_flags &= ~ EF_MIPS_ARCH_ASE;
14200 old_flags &= ~ EF_MIPS_ARCH_ASE;
14201 }
14202
14203 /* Warn about any other mismatches */
14204 if (new_flags != old_flags)
14205 {
14206 (*_bfd_error_handler)
14207 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14208 ibfd, (unsigned long) new_flags,
14209 (unsigned long) old_flags);
14210 ok = FALSE;
14211 }
14212
14213 if (! ok)
14214 {
14215 bfd_set_error (bfd_error_bad_value);
14216 return FALSE;
14217 }
14218
14219 return TRUE;
14220 }
14221
14222 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
14223
14224 bfd_boolean
14225 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
14226 {
14227 BFD_ASSERT (!elf_flags_init (abfd)
14228 || elf_elfheader (abfd)->e_flags == flags);
14229
14230 elf_elfheader (abfd)->e_flags = flags;
14231 elf_flags_init (abfd) = TRUE;
14232 return TRUE;
14233 }
14234
14235 char *
14236 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14237 {
14238 switch (dtag)
14239 {
14240 default: return "";
14241 case DT_MIPS_RLD_VERSION:
14242 return "MIPS_RLD_VERSION";
14243 case DT_MIPS_TIME_STAMP:
14244 return "MIPS_TIME_STAMP";
14245 case DT_MIPS_ICHECKSUM:
14246 return "MIPS_ICHECKSUM";
14247 case DT_MIPS_IVERSION:
14248 return "MIPS_IVERSION";
14249 case DT_MIPS_FLAGS:
14250 return "MIPS_FLAGS";
14251 case DT_MIPS_BASE_ADDRESS:
14252 return "MIPS_BASE_ADDRESS";
14253 case DT_MIPS_MSYM:
14254 return "MIPS_MSYM";
14255 case DT_MIPS_CONFLICT:
14256 return "MIPS_CONFLICT";
14257 case DT_MIPS_LIBLIST:
14258 return "MIPS_LIBLIST";
14259 case DT_MIPS_LOCAL_GOTNO:
14260 return "MIPS_LOCAL_GOTNO";
14261 case DT_MIPS_CONFLICTNO:
14262 return "MIPS_CONFLICTNO";
14263 case DT_MIPS_LIBLISTNO:
14264 return "MIPS_LIBLISTNO";
14265 case DT_MIPS_SYMTABNO:
14266 return "MIPS_SYMTABNO";
14267 case DT_MIPS_UNREFEXTNO:
14268 return "MIPS_UNREFEXTNO";
14269 case DT_MIPS_GOTSYM:
14270 return "MIPS_GOTSYM";
14271 case DT_MIPS_HIPAGENO:
14272 return "MIPS_HIPAGENO";
14273 case DT_MIPS_RLD_MAP:
14274 return "MIPS_RLD_MAP";
14275 case DT_MIPS_DELTA_CLASS:
14276 return "MIPS_DELTA_CLASS";
14277 case DT_MIPS_DELTA_CLASS_NO:
14278 return "MIPS_DELTA_CLASS_NO";
14279 case DT_MIPS_DELTA_INSTANCE:
14280 return "MIPS_DELTA_INSTANCE";
14281 case DT_MIPS_DELTA_INSTANCE_NO:
14282 return "MIPS_DELTA_INSTANCE_NO";
14283 case DT_MIPS_DELTA_RELOC:
14284 return "MIPS_DELTA_RELOC";
14285 case DT_MIPS_DELTA_RELOC_NO:
14286 return "MIPS_DELTA_RELOC_NO";
14287 case DT_MIPS_DELTA_SYM:
14288 return "MIPS_DELTA_SYM";
14289 case DT_MIPS_DELTA_SYM_NO:
14290 return "MIPS_DELTA_SYM_NO";
14291 case DT_MIPS_DELTA_CLASSSYM:
14292 return "MIPS_DELTA_CLASSSYM";
14293 case DT_MIPS_DELTA_CLASSSYM_NO:
14294 return "MIPS_DELTA_CLASSSYM_NO";
14295 case DT_MIPS_CXX_FLAGS:
14296 return "MIPS_CXX_FLAGS";
14297 case DT_MIPS_PIXIE_INIT:
14298 return "MIPS_PIXIE_INIT";
14299 case DT_MIPS_SYMBOL_LIB:
14300 return "MIPS_SYMBOL_LIB";
14301 case DT_MIPS_LOCALPAGE_GOTIDX:
14302 return "MIPS_LOCALPAGE_GOTIDX";
14303 case DT_MIPS_LOCAL_GOTIDX:
14304 return "MIPS_LOCAL_GOTIDX";
14305 case DT_MIPS_HIDDEN_GOTIDX:
14306 return "MIPS_HIDDEN_GOTIDX";
14307 case DT_MIPS_PROTECTED_GOTIDX:
14308 return "MIPS_PROTECTED_GOT_IDX";
14309 case DT_MIPS_OPTIONS:
14310 return "MIPS_OPTIONS";
14311 case DT_MIPS_INTERFACE:
14312 return "MIPS_INTERFACE";
14313 case DT_MIPS_DYNSTR_ALIGN:
14314 return "DT_MIPS_DYNSTR_ALIGN";
14315 case DT_MIPS_INTERFACE_SIZE:
14316 return "DT_MIPS_INTERFACE_SIZE";
14317 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14318 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14319 case DT_MIPS_PERF_SUFFIX:
14320 return "DT_MIPS_PERF_SUFFIX";
14321 case DT_MIPS_COMPACT_SIZE:
14322 return "DT_MIPS_COMPACT_SIZE";
14323 case DT_MIPS_GP_VALUE:
14324 return "DT_MIPS_GP_VALUE";
14325 case DT_MIPS_AUX_DYNAMIC:
14326 return "DT_MIPS_AUX_DYNAMIC";
14327 case DT_MIPS_PLTGOT:
14328 return "DT_MIPS_PLTGOT";
14329 case DT_MIPS_RWPLT:
14330 return "DT_MIPS_RWPLT";
14331 }
14332 }
14333
14334 bfd_boolean
14335 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14336 {
14337 FILE *file = ptr;
14338
14339 BFD_ASSERT (abfd != NULL && ptr != NULL);
14340
14341 /* Print normal ELF private data. */
14342 _bfd_elf_print_private_bfd_data (abfd, ptr);
14343
14344 /* xgettext:c-format */
14345 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14346
14347 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14348 fprintf (file, _(" [abi=O32]"));
14349 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14350 fprintf (file, _(" [abi=O64]"));
14351 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14352 fprintf (file, _(" [abi=EABI32]"));
14353 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14354 fprintf (file, _(" [abi=EABI64]"));
14355 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14356 fprintf (file, _(" [abi unknown]"));
14357 else if (ABI_N32_P (abfd))
14358 fprintf (file, _(" [abi=N32]"));
14359 else if (ABI_64_P (abfd))
14360 fprintf (file, _(" [abi=64]"));
14361 else
14362 fprintf (file, _(" [no abi set]"));
14363
14364 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14365 fprintf (file, " [mips1]");
14366 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14367 fprintf (file, " [mips2]");
14368 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14369 fprintf (file, " [mips3]");
14370 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14371 fprintf (file, " [mips4]");
14372 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14373 fprintf (file, " [mips5]");
14374 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14375 fprintf (file, " [mips32]");
14376 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14377 fprintf (file, " [mips64]");
14378 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14379 fprintf (file, " [mips32r2]");
14380 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14381 fprintf (file, " [mips64r2]");
14382 else
14383 fprintf (file, _(" [unknown ISA]"));
14384
14385 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14386 fprintf (file, " [mdmx]");
14387
14388 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14389 fprintf (file, " [mips16]");
14390
14391 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14392 fprintf (file, " [micromips]");
14393
14394 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14395 fprintf (file, " [32bitmode]");
14396 else
14397 fprintf (file, _(" [not 32bitmode]"));
14398
14399 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
14400 fprintf (file, " [noreorder]");
14401
14402 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
14403 fprintf (file, " [PIC]");
14404
14405 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
14406 fprintf (file, " [CPIC]");
14407
14408 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
14409 fprintf (file, " [XGOT]");
14410
14411 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
14412 fprintf (file, " [UCODE]");
14413
14414 fputc ('\n', file);
14415
14416 return TRUE;
14417 }
14418
14419 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
14420 {
14421 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14422 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14423 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14424 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14425 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14426 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14427 { NULL, 0, 0, 0, 0 }
14428 };
14429
14430 /* Merge non visibility st_other attributes. Ensure that the
14431 STO_OPTIONAL flag is copied into h->other, even if this is not a
14432 definiton of the symbol. */
14433 void
14434 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14435 const Elf_Internal_Sym *isym,
14436 bfd_boolean definition,
14437 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14438 {
14439 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14440 {
14441 unsigned char other;
14442
14443 other = (definition ? isym->st_other : h->other);
14444 other &= ~ELF_ST_VISIBILITY (-1);
14445 h->other = other | ELF_ST_VISIBILITY (h->other);
14446 }
14447
14448 if (!definition
14449 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14450 h->other |= STO_OPTIONAL;
14451 }
14452
14453 /* Decide whether an undefined symbol is special and can be ignored.
14454 This is the case for OPTIONAL symbols on IRIX. */
14455 bfd_boolean
14456 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14457 {
14458 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14459 }
14460
14461 bfd_boolean
14462 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14463 {
14464 return (sym->st_shndx == SHN_COMMON
14465 || sym->st_shndx == SHN_MIPS_ACOMMON
14466 || sym->st_shndx == SHN_MIPS_SCOMMON);
14467 }
14468
14469 /* Return address for Ith PLT stub in section PLT, for relocation REL
14470 or (bfd_vma) -1 if it should not be included. */
14471
14472 bfd_vma
14473 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14474 const arelent *rel ATTRIBUTE_UNUSED)
14475 {
14476 return (plt->vma
14477 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14478 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14479 }
14480
14481 void
14482 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14483 {
14484 struct mips_elf_link_hash_table *htab;
14485 Elf_Internal_Ehdr *i_ehdrp;
14486
14487 i_ehdrp = elf_elfheader (abfd);
14488 if (link_info)
14489 {
14490 htab = mips_elf_hash_table (link_info);
14491 BFD_ASSERT (htab != NULL);
14492
14493 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14494 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14495 }
14496 }
This page took 0.317714 seconds and 5 git commands to generate.