Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / hash.c
1 /* hash.c -- hash table routines for BFD
2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
3 Written by Steve Chamberlain <sac@cygnus.com>
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "objalloc.h"
26 #include "libiberty.h"
27
28 /*
29 SECTION
30 Hash Tables
31
32 @cindex Hash tables
33 BFD provides a simple set of hash table functions. Routines
34 are provided to initialize a hash table, to free a hash table,
35 to look up a string in a hash table and optionally create an
36 entry for it, and to traverse a hash table. There is
37 currently no routine to delete an string from a hash table.
38
39 The basic hash table does not permit any data to be stored
40 with a string. However, a hash table is designed to present a
41 base class from which other types of hash tables may be
42 derived. These derived types may store additional information
43 with the string. Hash tables were implemented in this way,
44 rather than simply providing a data pointer in a hash table
45 entry, because they were designed for use by the linker back
46 ends. The linker may create thousands of hash table entries,
47 and the overhead of allocating private data and storing and
48 following pointers becomes noticeable.
49
50 The basic hash table code is in <<hash.c>>.
51
52 @menu
53 @* Creating and Freeing a Hash Table::
54 @* Looking Up or Entering a String::
55 @* Traversing a Hash Table::
56 @* Deriving a New Hash Table Type::
57 @end menu
58
59 INODE
60 Creating and Freeing a Hash Table, Looking Up or Entering a String, Hash Tables, Hash Tables
61 SUBSECTION
62 Creating and freeing a hash table
63
64 @findex bfd_hash_table_init
65 @findex bfd_hash_table_init_n
66 To create a hash table, create an instance of a <<struct
67 bfd_hash_table>> (defined in <<bfd.h>>) and call
68 <<bfd_hash_table_init>> (if you know approximately how many
69 entries you will need, the function <<bfd_hash_table_init_n>>,
70 which takes a @var{size} argument, may be used).
71 <<bfd_hash_table_init>> returns <<FALSE>> if some sort of
72 error occurs.
73
74 @findex bfd_hash_newfunc
75 The function <<bfd_hash_table_init>> take as an argument a
76 function to use to create new entries. For a basic hash
77 table, use the function <<bfd_hash_newfunc>>. @xref{Deriving
78 a New Hash Table Type}, for why you would want to use a
79 different value for this argument.
80
81 @findex bfd_hash_allocate
82 <<bfd_hash_table_init>> will create an objalloc which will be
83 used to allocate new entries. You may allocate memory on this
84 objalloc using <<bfd_hash_allocate>>.
85
86 @findex bfd_hash_table_free
87 Use <<bfd_hash_table_free>> to free up all the memory that has
88 been allocated for a hash table. This will not free up the
89 <<struct bfd_hash_table>> itself, which you must provide.
90
91 @findex bfd_hash_set_default_size
92 Use <<bfd_hash_set_default_size>> to set the default size of
93 hash table to use.
94
95 INODE
96 Looking Up or Entering a String, Traversing a Hash Table, Creating and Freeing a Hash Table, Hash Tables
97 SUBSECTION
98 Looking up or entering a string
99
100 @findex bfd_hash_lookup
101 The function <<bfd_hash_lookup>> is used both to look up a
102 string in the hash table and to create a new entry.
103
104 If the @var{create} argument is <<FALSE>>, <<bfd_hash_lookup>>
105 will look up a string. If the string is found, it will
106 returns a pointer to a <<struct bfd_hash_entry>>. If the
107 string is not found in the table <<bfd_hash_lookup>> will
108 return <<NULL>>. You should not modify any of the fields in
109 the returns <<struct bfd_hash_entry>>.
110
111 If the @var{create} argument is <<TRUE>>, the string will be
112 entered into the hash table if it is not already there.
113 Either way a pointer to a <<struct bfd_hash_entry>> will be
114 returned, either to the existing structure or to a newly
115 created one. In this case, a <<NULL>> return means that an
116 error occurred.
117
118 If the @var{create} argument is <<TRUE>>, and a new entry is
119 created, the @var{copy} argument is used to decide whether to
120 copy the string onto the hash table objalloc or not. If
121 @var{copy} is passed as <<FALSE>>, you must be careful not to
122 deallocate or modify the string as long as the hash table
123 exists.
124
125 INODE
126 Traversing a Hash Table, Deriving a New Hash Table Type, Looking Up or Entering a String, Hash Tables
127 SUBSECTION
128 Traversing a hash table
129
130 @findex bfd_hash_traverse
131 The function <<bfd_hash_traverse>> may be used to traverse a
132 hash table, calling a function on each element. The traversal
133 is done in a random order.
134
135 <<bfd_hash_traverse>> takes as arguments a function and a
136 generic <<void *>> pointer. The function is called with a
137 hash table entry (a <<struct bfd_hash_entry *>>) and the
138 generic pointer passed to <<bfd_hash_traverse>>. The function
139 must return a <<boolean>> value, which indicates whether to
140 continue traversing the hash table. If the function returns
141 <<FALSE>>, <<bfd_hash_traverse>> will stop the traversal and
142 return immediately.
143
144 INODE
145 Deriving a New Hash Table Type, , Traversing a Hash Table, Hash Tables
146 SUBSECTION
147 Deriving a new hash table type
148
149 Many uses of hash tables want to store additional information
150 which each entry in the hash table. Some also find it
151 convenient to store additional information with the hash table
152 itself. This may be done using a derived hash table.
153
154 Since C is not an object oriented language, creating a derived
155 hash table requires sticking together some boilerplate
156 routines with a few differences specific to the type of hash
157 table you want to create.
158
159 An example of a derived hash table is the linker hash table.
160 The structures for this are defined in <<bfdlink.h>>. The
161 functions are in <<linker.c>>.
162
163 You may also derive a hash table from an already derived hash
164 table. For example, the a.out linker backend code uses a hash
165 table derived from the linker hash table.
166
167 @menu
168 @* Define the Derived Structures::
169 @* Write the Derived Creation Routine::
170 @* Write Other Derived Routines::
171 @end menu
172
173 INODE
174 Define the Derived Structures, Write the Derived Creation Routine, Deriving a New Hash Table Type, Deriving a New Hash Table Type
175 SUBSUBSECTION
176 Define the derived structures
177
178 You must define a structure for an entry in the hash table,
179 and a structure for the hash table itself.
180
181 The first field in the structure for an entry in the hash
182 table must be of the type used for an entry in the hash table
183 you are deriving from. If you are deriving from a basic hash
184 table this is <<struct bfd_hash_entry>>, which is defined in
185 <<bfd.h>>. The first field in the structure for the hash
186 table itself must be of the type of the hash table you are
187 deriving from itself. If you are deriving from a basic hash
188 table, this is <<struct bfd_hash_table>>.
189
190 For example, the linker hash table defines <<struct
191 bfd_link_hash_entry>> (in <<bfdlink.h>>). The first field,
192 <<root>>, is of type <<struct bfd_hash_entry>>. Similarly,
193 the first field in <<struct bfd_link_hash_table>>, <<table>>,
194 is of type <<struct bfd_hash_table>>.
195
196 INODE
197 Write the Derived Creation Routine, Write Other Derived Routines, Define the Derived Structures, Deriving a New Hash Table Type
198 SUBSUBSECTION
199 Write the derived creation routine
200
201 You must write a routine which will create and initialize an
202 entry in the hash table. This routine is passed as the
203 function argument to <<bfd_hash_table_init>>.
204
205 In order to permit other hash tables to be derived from the
206 hash table you are creating, this routine must be written in a
207 standard way.
208
209 The first argument to the creation routine is a pointer to a
210 hash table entry. This may be <<NULL>>, in which case the
211 routine should allocate the right amount of space. Otherwise
212 the space has already been allocated by a hash table type
213 derived from this one.
214
215 After allocating space, the creation routine must call the
216 creation routine of the hash table type it is derived from,
217 passing in a pointer to the space it just allocated. This
218 will initialize any fields used by the base hash table.
219
220 Finally the creation routine must initialize any local fields
221 for the new hash table type.
222
223 Here is a boilerplate example of a creation routine.
224 @var{function_name} is the name of the routine.
225 @var{entry_type} is the type of an entry in the hash table you
226 are creating. @var{base_newfunc} is the name of the creation
227 routine of the hash table type your hash table is derived
228 from.
229
230 EXAMPLE
231
232 .struct bfd_hash_entry *
233 .@var{function_name} (struct bfd_hash_entry *entry,
234 . struct bfd_hash_table *table,
235 . const char *string)
236 .{
237 . struct @var{entry_type} *ret = (@var{entry_type} *) entry;
238 .
239 . {* Allocate the structure if it has not already been allocated by a
240 . derived class. *}
241 . if (ret == NULL)
242 . {
243 . ret = bfd_hash_allocate (table, sizeof (* ret));
244 . if (ret == NULL)
245 . return NULL;
246 . }
247 .
248 . {* Call the allocation method of the base class. *}
249 . ret = ((@var{entry_type} *)
250 . @var{base_newfunc} ((struct bfd_hash_entry *) ret, table, string));
251 .
252 . {* Initialize the local fields here. *}
253 .
254 . return (struct bfd_hash_entry *) ret;
255 .}
256
257 DESCRIPTION
258 The creation routine for the linker hash table, which is in
259 <<linker.c>>, looks just like this example.
260 @var{function_name} is <<_bfd_link_hash_newfunc>>.
261 @var{entry_type} is <<struct bfd_link_hash_entry>>.
262 @var{base_newfunc} is <<bfd_hash_newfunc>>, the creation
263 routine for a basic hash table.
264
265 <<_bfd_link_hash_newfunc>> also initializes the local fields
266 in a linker hash table entry: <<type>>, <<written>> and
267 <<next>>.
268
269 INODE
270 Write Other Derived Routines, , Write the Derived Creation Routine, Deriving a New Hash Table Type
271 SUBSUBSECTION
272 Write other derived routines
273
274 You will want to write other routines for your new hash table,
275 as well.
276
277 You will want an initialization routine which calls the
278 initialization routine of the hash table you are deriving from
279 and initializes any other local fields. For the linker hash
280 table, this is <<_bfd_link_hash_table_init>> in <<linker.c>>.
281
282 You will want a lookup routine which calls the lookup routine
283 of the hash table you are deriving from and casts the result.
284 The linker hash table uses <<bfd_link_hash_lookup>> in
285 <<linker.c>> (this actually takes an additional argument which
286 it uses to decide how to return the looked up value).
287
288 You may want a traversal routine. This should just call the
289 traversal routine of the hash table you are deriving from with
290 appropriate casts. The linker hash table uses
291 <<bfd_link_hash_traverse>> in <<linker.c>>.
292
293 These routines may simply be defined as macros. For example,
294 the a.out backend linker hash table, which is derived from the
295 linker hash table, uses macros for the lookup and traversal
296 routines. These are <<aout_link_hash_lookup>> and
297 <<aout_link_hash_traverse>> in aoutx.h.
298 */
299
300 /* The default number of entries to use when creating a hash table. */
301 #define DEFAULT_SIZE 4051
302
303 /* The following function returns a nearest prime number which is
304 greater than N, and near a power of two. Copied from libiberty.
305 Returns zero for ridiculously large N to signify an error. */
306
307 static unsigned long
308 higher_prime_number (unsigned long n)
309 {
310 /* These are primes that are near, but slightly smaller than, a
311 power of two. */
312 static const unsigned long primes[] =
313 {
314 (unsigned long) 31,
315 (unsigned long) 61,
316 (unsigned long) 127,
317 (unsigned long) 251,
318 (unsigned long) 509,
319 (unsigned long) 1021,
320 (unsigned long) 2039,
321 (unsigned long) 4093,
322 (unsigned long) 8191,
323 (unsigned long) 16381,
324 (unsigned long) 32749,
325 (unsigned long) 65521,
326 (unsigned long) 131071,
327 (unsigned long) 262139,
328 (unsigned long) 524287,
329 (unsigned long) 1048573,
330 (unsigned long) 2097143,
331 (unsigned long) 4194301,
332 (unsigned long) 8388593,
333 (unsigned long) 16777213,
334 (unsigned long) 33554393,
335 (unsigned long) 67108859,
336 (unsigned long) 134217689,
337 (unsigned long) 268435399,
338 (unsigned long) 536870909,
339 (unsigned long) 1073741789,
340 (unsigned long) 2147483647,
341 /* 4294967291L */
342 ((unsigned long) 2147483647) + ((unsigned long) 2147483644),
343 };
344
345 const unsigned long *low = &primes[0];
346 const unsigned long *high = &primes[sizeof (primes) / sizeof (primes[0])];
347
348 while (low != high)
349 {
350 const unsigned long *mid = low + (high - low) / 2;
351 if (n >= *mid)
352 low = mid + 1;
353 else
354 high = mid;
355 }
356
357 if (n >= *low)
358 return 0;
359
360 return *low;
361 }
362
363 static unsigned long bfd_default_hash_table_size = DEFAULT_SIZE;
364
365 /* Create a new hash table, given a number of entries. */
366
367 bfd_boolean
368 bfd_hash_table_init_n (struct bfd_hash_table *table,
369 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
370 struct bfd_hash_table *,
371 const char *),
372 unsigned int entsize,
373 unsigned int size)
374 {
375 unsigned long alloc;
376
377 alloc = size;
378 alloc *= sizeof (struct bfd_hash_entry *);
379 if (alloc / sizeof (struct bfd_hash_entry *) != size)
380 {
381 bfd_set_error (bfd_error_no_memory);
382 return FALSE;
383 }
384
385 table->memory = (void *) objalloc_create ();
386 if (table->memory == NULL)
387 {
388 bfd_set_error (bfd_error_no_memory);
389 return FALSE;
390 }
391 table->table = (struct bfd_hash_entry **)
392 objalloc_alloc ((struct objalloc *) table->memory, alloc);
393 if (table->table == NULL)
394 {
395 bfd_hash_table_free (table);
396 bfd_set_error (bfd_error_no_memory);
397 return FALSE;
398 }
399 memset ((void *) table->table, 0, alloc);
400 table->size = size;
401 table->entsize = entsize;
402 table->count = 0;
403 table->frozen = 0;
404 table->newfunc = newfunc;
405 return TRUE;
406 }
407
408 /* Create a new hash table with the default number of entries. */
409
410 bfd_boolean
411 bfd_hash_table_init (struct bfd_hash_table *table,
412 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
413 struct bfd_hash_table *,
414 const char *),
415 unsigned int entsize)
416 {
417 return bfd_hash_table_init_n (table, newfunc, entsize,
418 bfd_default_hash_table_size);
419 }
420
421 /* Free a hash table. */
422
423 void
424 bfd_hash_table_free (struct bfd_hash_table *table)
425 {
426 objalloc_free ((struct objalloc *) table->memory);
427 table->memory = NULL;
428 }
429
430 static inline unsigned long
431 bfd_hash_hash (const char *string, unsigned int *lenp)
432 {
433 const unsigned char *s;
434 unsigned long hash;
435 unsigned int len;
436 unsigned int c;
437
438 hash = 0;
439 len = 0;
440 s = (const unsigned char *) string;
441 while ((c = *s++) != '\0')
442 {
443 hash += c + (c << 17);
444 hash ^= hash >> 2;
445 }
446 len = (s - (const unsigned char *) string) - 1;
447 hash += len + (len << 17);
448 hash ^= hash >> 2;
449 if (lenp != NULL)
450 *lenp = len;
451 return hash;
452 }
453
454 /* Look up a string in a hash table. */
455
456 struct bfd_hash_entry *
457 bfd_hash_lookup (struct bfd_hash_table *table,
458 const char *string,
459 bfd_boolean create,
460 bfd_boolean copy)
461 {
462 unsigned long hash;
463 struct bfd_hash_entry *hashp;
464 unsigned int len;
465 unsigned int _index;
466
467 hash = bfd_hash_hash (string, &len);
468 _index = hash % table->size;
469 for (hashp = table->table[_index];
470 hashp != NULL;
471 hashp = hashp->next)
472 {
473 if (hashp->hash == hash
474 && strcmp (hashp->string, string) == 0)
475 return hashp;
476 }
477
478 if (! create)
479 return NULL;
480
481 if (copy)
482 {
483 char *new_string;
484
485 new_string = (char *) objalloc_alloc ((struct objalloc *) table->memory,
486 len + 1);
487 if (!new_string)
488 {
489 bfd_set_error (bfd_error_no_memory);
490 return NULL;
491 }
492 memcpy (new_string, string, len + 1);
493 string = new_string;
494 }
495
496 return bfd_hash_insert (table, string, hash);
497 }
498
499 /* Insert an entry in a hash table. */
500
501 struct bfd_hash_entry *
502 bfd_hash_insert (struct bfd_hash_table *table,
503 const char *string,
504 unsigned long hash)
505 {
506 struct bfd_hash_entry *hashp;
507 unsigned int _index;
508
509 hashp = (*table->newfunc) (NULL, table, string);
510 if (hashp == NULL)
511 return NULL;
512 hashp->string = string;
513 hashp->hash = hash;
514 _index = hash % table->size;
515 hashp->next = table->table[_index];
516 table->table[_index] = hashp;
517 table->count++;
518
519 if (!table->frozen && table->count > table->size * 3 / 4)
520 {
521 unsigned long newsize = higher_prime_number (table->size);
522 struct bfd_hash_entry **newtable;
523 unsigned int hi;
524 unsigned long alloc = newsize * sizeof (struct bfd_hash_entry *);
525
526 /* If we can't find a higher prime, or we can't possibly alloc
527 that much memory, don't try to grow the table. */
528 if (newsize == 0 || alloc / sizeof (struct bfd_hash_entry *) != newsize)
529 {
530 table->frozen = 1;
531 return hashp;
532 }
533
534 newtable = ((struct bfd_hash_entry **)
535 objalloc_alloc ((struct objalloc *) table->memory, alloc));
536 if (newtable == NULL)
537 {
538 table->frozen = 1;
539 return hashp;
540 }
541 memset (newtable, 0, alloc);
542
543 for (hi = 0; hi < table->size; hi ++)
544 while (table->table[hi])
545 {
546 struct bfd_hash_entry *chain = table->table[hi];
547 struct bfd_hash_entry *chain_end = chain;
548
549 while (chain_end->next && chain_end->next->hash == chain->hash)
550 chain_end = chain_end->next;
551
552 table->table[hi] = chain_end->next;
553 _index = chain->hash % newsize;
554 chain_end->next = newtable[_index];
555 newtable[_index] = chain;
556 }
557 table->table = newtable;
558 table->size = newsize;
559 }
560
561 return hashp;
562 }
563
564 /* Rename an entry in a hash table. */
565
566 void
567 bfd_hash_rename (struct bfd_hash_table *table,
568 const char *string,
569 struct bfd_hash_entry *ent)
570 {
571 unsigned int _index;
572 struct bfd_hash_entry **pph;
573
574 _index = ent->hash % table->size;
575 for (pph = &table->table[_index]; *pph != NULL; pph = &(*pph)->next)
576 if (*pph == ent)
577 break;
578 if (*pph == NULL)
579 abort ();
580
581 *pph = ent->next;
582 ent->string = string;
583 ent->hash = bfd_hash_hash (string, NULL);
584 _index = ent->hash % table->size;
585 ent->next = table->table[_index];
586 table->table[_index] = ent;
587 }
588
589 /* Replace an entry in a hash table. */
590
591 void
592 bfd_hash_replace (struct bfd_hash_table *table,
593 struct bfd_hash_entry *old,
594 struct bfd_hash_entry *nw)
595 {
596 unsigned int _index;
597 struct bfd_hash_entry **pph;
598
599 _index = old->hash % table->size;
600 for (pph = &table->table[_index];
601 (*pph) != NULL;
602 pph = &(*pph)->next)
603 {
604 if (*pph == old)
605 {
606 *pph = nw;
607 return;
608 }
609 }
610
611 abort ();
612 }
613
614 /* Allocate space in a hash table. */
615
616 void *
617 bfd_hash_allocate (struct bfd_hash_table *table,
618 unsigned int size)
619 {
620 void * ret;
621
622 ret = objalloc_alloc ((struct objalloc *) table->memory, size);
623 if (ret == NULL && size != 0)
624 bfd_set_error (bfd_error_no_memory);
625 return ret;
626 }
627
628 /* Base method for creating a new hash table entry. */
629
630 struct bfd_hash_entry *
631 bfd_hash_newfunc (struct bfd_hash_entry *entry,
632 struct bfd_hash_table *table,
633 const char *string ATTRIBUTE_UNUSED)
634 {
635 if (entry == NULL)
636 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
637 sizeof (* entry));
638 return entry;
639 }
640
641 /* Traverse a hash table. */
642
643 void
644 bfd_hash_traverse (struct bfd_hash_table *table,
645 bfd_boolean (*func) (struct bfd_hash_entry *, void *),
646 void * info)
647 {
648 unsigned int i;
649
650 table->frozen = 1;
651 for (i = 0; i < table->size; i++)
652 {
653 struct bfd_hash_entry *p;
654
655 for (p = table->table[i]; p != NULL; p = p->next)
656 if (! (*func) (p, info))
657 goto out;
658 }
659 out:
660 table->frozen = 0;
661 }
662 \f
663 unsigned long
664 bfd_hash_set_default_size (unsigned long hash_size)
665 {
666 /* Extend this prime list if you want more granularity of hash table size. */
667 static const unsigned long hash_size_primes[] =
668 {
669 31, 61, 127, 251, 509, 1021, 2039, 4091, 8191, 16381, 32749, 65537
670 };
671 unsigned int _index;
672
673 /* Work out best prime number near the hash_size. */
674 for (_index = 0; _index < ARRAY_SIZE (hash_size_primes) - 1; ++_index)
675 if (hash_size <= hash_size_primes[_index])
676 break;
677
678 bfd_default_hash_table_size = hash_size_primes[_index];
679 return bfd_default_hash_table_size;
680 }
681 \f
682 /* A few different object file formats (a.out, COFF, ELF) use a string
683 table. These functions support adding strings to a string table,
684 returning the byte offset, and writing out the table.
685
686 Possible improvements:
687 + look for strings matching trailing substrings of other strings
688 + better data structures? balanced trees?
689 + look at reducing memory use elsewhere -- maybe if we didn't have
690 to construct the entire symbol table at once, we could get by
691 with smaller amounts of VM? (What effect does that have on the
692 string table reductions?) */
693
694 /* An entry in the strtab hash table. */
695
696 struct strtab_hash_entry
697 {
698 struct bfd_hash_entry root;
699 /* Index in string table. */
700 bfd_size_type index;
701 /* Next string in strtab. */
702 struct strtab_hash_entry *next;
703 };
704
705 /* The strtab hash table. */
706
707 struct bfd_strtab_hash
708 {
709 struct bfd_hash_table table;
710 /* Size of strtab--also next available index. */
711 bfd_size_type size;
712 /* First string in strtab. */
713 struct strtab_hash_entry *first;
714 /* Last string in strtab. */
715 struct strtab_hash_entry *last;
716 /* Whether to precede strings with a two byte length, as in the
717 XCOFF .debug section. */
718 bfd_boolean xcoff;
719 };
720
721 /* Routine to create an entry in a strtab. */
722
723 static struct bfd_hash_entry *
724 strtab_hash_newfunc (struct bfd_hash_entry *entry,
725 struct bfd_hash_table *table,
726 const char *string)
727 {
728 struct strtab_hash_entry *ret = (struct strtab_hash_entry *) entry;
729
730 /* Allocate the structure if it has not already been allocated by a
731 subclass. */
732 if (ret == NULL)
733 ret = (struct strtab_hash_entry *) bfd_hash_allocate (table,
734 sizeof (* ret));
735 if (ret == NULL)
736 return NULL;
737
738 /* Call the allocation method of the superclass. */
739 ret = (struct strtab_hash_entry *)
740 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string);
741
742 if (ret)
743 {
744 /* Initialize the local fields. */
745 ret->index = (bfd_size_type) -1;
746 ret->next = NULL;
747 }
748
749 return (struct bfd_hash_entry *) ret;
750 }
751
752 /* Look up an entry in an strtab. */
753
754 #define strtab_hash_lookup(t, string, create, copy) \
755 ((struct strtab_hash_entry *) \
756 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
757
758 /* Create a new strtab. */
759
760 struct bfd_strtab_hash *
761 _bfd_stringtab_init (void)
762 {
763 struct bfd_strtab_hash *table;
764 bfd_size_type amt = sizeof (* table);
765
766 table = (struct bfd_strtab_hash *) bfd_malloc (amt);
767 if (table == NULL)
768 return NULL;
769
770 if (!bfd_hash_table_init (&table->table, strtab_hash_newfunc,
771 sizeof (struct strtab_hash_entry)))
772 {
773 free (table);
774 return NULL;
775 }
776
777 table->size = 0;
778 table->first = NULL;
779 table->last = NULL;
780 table->xcoff = FALSE;
781
782 return table;
783 }
784
785 /* Create a new strtab in which the strings are output in the format
786 used in the XCOFF .debug section: a two byte length precedes each
787 string. */
788
789 struct bfd_strtab_hash *
790 _bfd_xcoff_stringtab_init (void)
791 {
792 struct bfd_strtab_hash *ret;
793
794 ret = _bfd_stringtab_init ();
795 if (ret != NULL)
796 ret->xcoff = TRUE;
797 return ret;
798 }
799
800 /* Free a strtab. */
801
802 void
803 _bfd_stringtab_free (struct bfd_strtab_hash *table)
804 {
805 bfd_hash_table_free (&table->table);
806 free (table);
807 }
808
809 /* Get the index of a string in a strtab, adding it if it is not
810 already present. If HASH is FALSE, we don't really use the hash
811 table, and we don't eliminate duplicate strings. If COPY is true
812 then store a copy of STR if creating a new entry. */
813
814 bfd_size_type
815 _bfd_stringtab_add (struct bfd_strtab_hash *tab,
816 const char *str,
817 bfd_boolean hash,
818 bfd_boolean copy)
819 {
820 struct strtab_hash_entry *entry;
821
822 if (hash)
823 {
824 entry = strtab_hash_lookup (tab, str, TRUE, copy);
825 if (entry == NULL)
826 return (bfd_size_type) -1;
827 }
828 else
829 {
830 entry = (struct strtab_hash_entry *) bfd_hash_allocate (&tab->table,
831 sizeof (* entry));
832 if (entry == NULL)
833 return (bfd_size_type) -1;
834 if (! copy)
835 entry->root.string = str;
836 else
837 {
838 size_t len = strlen (str) + 1;
839 char *n;
840
841 n = (char *) bfd_hash_allocate (&tab->table, len);
842 if (n == NULL)
843 return (bfd_size_type) -1;
844 memcpy (n, str, len);
845 entry->root.string = n;
846 }
847 entry->index = (bfd_size_type) -1;
848 entry->next = NULL;
849 }
850
851 if (entry->index == (bfd_size_type) -1)
852 {
853 entry->index = tab->size;
854 tab->size += strlen (str) + 1;
855 if (tab->xcoff)
856 {
857 entry->index += 2;
858 tab->size += 2;
859 }
860 if (tab->first == NULL)
861 tab->first = entry;
862 else
863 tab->last->next = entry;
864 tab->last = entry;
865 }
866
867 return entry->index;
868 }
869
870 /* Get the number of bytes in a strtab. */
871
872 bfd_size_type
873 _bfd_stringtab_size (struct bfd_strtab_hash *tab)
874 {
875 return tab->size;
876 }
877
878 /* Write out a strtab. ABFD must already be at the right location in
879 the file. */
880
881 bfd_boolean
882 _bfd_stringtab_emit (bfd *abfd, struct bfd_strtab_hash *tab)
883 {
884 bfd_boolean xcoff;
885 struct strtab_hash_entry *entry;
886
887 xcoff = tab->xcoff;
888
889 for (entry = tab->first; entry != NULL; entry = entry->next)
890 {
891 const char *str;
892 size_t len;
893
894 str = entry->root.string;
895 len = strlen (str) + 1;
896
897 if (xcoff)
898 {
899 bfd_byte buf[2];
900
901 /* The output length includes the null byte. */
902 bfd_put_16 (abfd, (bfd_vma) len, buf);
903 if (bfd_bwrite ((void *) buf, (bfd_size_type) 2, abfd) != 2)
904 return FALSE;
905 }
906
907 if (bfd_bwrite ((void *) str, (bfd_size_type) len, abfd) != len)
908 return FALSE;
909 }
910
911 return TRUE;
912 }
This page took 0.048029 seconds and 4 git commands to generate.